
~National
D Se~iconductor

BELL INDUSTRIES
Electronic Distribution Group

1161 N. Fairoaks Avenue

Sunnyvale, California 94089

(408) 734·8570

FAX NO. (408) 734-8875

400071

A Corporate Dedication to
Quality and Reliability

National Semiconductor is an industry leader in the
manufacture of high quality, high reliability integrated
circuits. We have been the leading proponent of driv­
ing down IC defects and extending product lifetimes.
From raw material through product design, manufac­
turing and shipping, our quality and reliability is second
to none.
We are proud of our success ... it sets a standard for
others to achieve. Yet, our quest for perfection is on­
going so that you, our customer, can continue to rely
on National Semiconductor Corporation to produce
high quality products for your design systems.

Charles E. Sporck
President, Chief Executive Officer
National Semiconductor Corporation

Wir flihlen uns zu Qualitat und
Zuverlassigkeit verpflichtet

National Semiconductor Corporation ist fUhrend bei der Her­
stellung von integrierten Schaltungen hoher QualiUit und
hoher Zuverlassigkeit. National Semiconductor war schon
immer Vorreiter, wenn es galt, die Zahl von IC AusHillen zu
verringern und die Lebensdauern von Produkten zu verbes­
sern. Vom Rohmaterial Ober Entwurf und Herstellung bis zur
Auslieferung, die Qualitat und die Zuverlassigkeit der Pro­
dukte von National Semiconductor sind unObertroffen.

Wir sind stolz auf unseren Erfolg, der Standards setzt, die
fUr andere erstrebenswert sind. Auch ihre AnsprOche steig­
en standig. Sie als unser Kunde konnen sich auch weiterhin
auf National Semiconductor verlassen.

La Qualite et La Fiabilite:
Une Vocation Commune Chez National
Semiconductor Corporation

National Semiconductor Corporation est un des leaders in­
dustriels qui fabrique des circuits integres d'une tres grande
qualite et d'une fiabilite exceptionelle. National a ete Ie pre­
mier a vouloir faire chuter Ie nombre de circuits integres
defectueux et a augmenter la duree de vie des produits.
Oepuis les matieres premieres, en passant par la concep­
tion du produit sa fabrication et son expedition, partout la
qualite et la fiabilite chez National sont sans equivalents.

Nous sommes fiers de notre succes et Ie standard ainsi
defini devrait devenir I'objectif a atteindre par les autres so­
cietes. Et nous continuons a vouloir faire progresser notre
recherche de la perfection; iI en resulte que vous, qui etes
notre client, pouvez toujours faire confiance a National
Semiconductor Corporation, en produisant des systemes
d'une tres grande qualite standard.

Charles E. Sporck

Un Impegno Societario di Qualita e
Affidabilita

National Semiconductor Corporation e un'industria al ver­
tice nella costruzione di circuiti integrati di alta qualM ed
affidabilM. National e stata il principale promotore per I'ab­
battimento della difettosita dei circuiti integrati e per I'allun­
gamento della vita dei prodotti. Oal materiale grezzo attra­
verso tutte Ie fasi di progettazione, costruzione e sped i­
zione, la qualita e affidabilita National non e seconda a nes­
suno.

Noi siamo orgogliosi del nostro successo che fissa per gli
altri un traguardo da raggiungere. II nostro desiderio di per­
fezione e d'altra parte illimitato e pertanto tu, nostro cliente,
puoi continuare ad affidarti a National Semiconductor Cor­
poration per la produzione dei tuoi sistemi con elevati livelli
di qualita.

President, Chief Executive Officer

National Semiconductor Corporation

MICROPROCESSOR

DATABOOK

• Series 32000
• NSC800

1989 Edition

Series 32000 Overview

CPU-Central Processing Units

Slave Processors

Peripherals

Development Systems and
Software Tools

Application Notes

NSC800

Physical Dimensionsl Appendices

iii

III • III
III

• • ,.
•

TRADEMARKS

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

Abuseable™ FAIRCADTM MSTTM SERIES/800TM
AnadigTM FairtechTM Naked-8™ Series 900TM
ANS-R-TRANTM FAST® National® Series 3000TM
APPSTM 5-Star Service™ National Semiconductor® Series 32000®
ASPECTTM GENIXTM National Semiconductor Shelf ... ChekTM
Auto-Chern DefiasherTM GNXTM Corp.® SofChekTM
BCPTM HAMRTM NAX800TM SPIRETM
BI-FETTM HandiScan™ Nitride PIUS™ Staggered RefreshTM
BI-FET IITM HEX3000TM Nitride Plus Oxide™ STARTM
BI-LiNETM HPCTM NMLTM StarlinkTM
BIPLANTM 13L® NOBUSTM STARPLEXTM
BLCTM ICMTM NSC800TM Super-BlockTM
BLXTM INFOCHEXTM NSCISETM SuperChipTM
Brite-Lite™ IntegrallSETM NSX-16TM SuperScript™
BTLTM IntelisplayTM NS-XC-16TM SYS32TM
CheckTrackTM ISETM NTERCOMTM TapePak®
CIMTM ISE/06TM NURAMTM TDSTM
CIMBUSTM ISE/08TM OXISSTM TeleGate™
CLASICTM ISE/16TM p2CMOSTM The National Anthem®
Clockio'''Chek™ ISE32TM PC Master™ Time ... ChekTM
COMBOTM ISOPLANARTM Perfect WatchTM TINATM
COMBO ITM ISOPLANAR-ZTM Pharmaio'''Chek™ TLCTM
COMBO IITM KeyScanTM PLANTM Trapezoidal™
COPSTM microcontrollers LMCMOSTM PLANARTM TRI-CODETM
Datachecker® M2CMOSTM Plus-2TM TRI-POLYTM
DENSPAKTM Macrobus™ Polycraft™ TRI-SAFETM
DIBTM Macrocomponent™ POSilink™ TRI-STATE®
Digitalker® MAXI-ROM® POSitalker™ TURBOTRANSCEIVERTM
DISCERNTM Meatlo'''Chek™ Power + Control™ VIPTM
DlSTILLTM MenuMaster™ POWERplanar™ VR32TM
DNR® Microbus™ data bus QUAD3000TM WATCH DOGTM
DPVMTM MICRO-DACTM QUIKLOOKTM XMOSTM
ELSTARTM JJ.talker™ RATTM XPUTM
Embedded System Microtalker™ RTX16TM Z STARTM

Processor™ MICROWIRETM SABRTM 883B/RETSTM
E-Z-LlNKTM MICROWIRE/PLUSTM Scriptlo'''Chek™ 883S/RETSTM
FACTTM MOLETM SCXTM

IBM®, PC®, and AT® are registered trademarks of International Business Machines, Inc.
MUL TIBUS® is a registered trademark of Intel Corporation.
Sun-3® Workstation is a registered trademark of Sun Microsystems, Inc.
UNIX® and DWB® are registered trademarks of AT&T.
Z80® is a registered trademark of Zilog Corporation.
CCS-Page™ is a trademark of Control-C Software, Inc.
CP/MTM is a trademark of Digital Research Corporation.
Documenter's WorkbenchTM is a trademark of AT&T.
Model 19TM is a trademark of DATA 1/0 Corporation.
OpUS5™ is a trademark of Opus Systems.
PAL® and PALASMTM are trademarks of and are used under license from Monolithic Memories, Inc.
SunOS™ is a trademark of Sun Microsystems.
VAXTM, VMSTM, DECTM, PDP-11TM, RSX-11TM and ULTRIXTM are trademarks of Digital Equipment Corporation.
VisiCalc™ is a trademark of Visi Corporation.

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR COR-
PORATION. As used herein:

1. Life support devices or systems are devices or systems 2. A critical component is any component of a life support
which, (a) are intended for surgical implant into the body, device or system whose failure to perform can be reason-
or (b) support or sustain life, and whose failure to per- ably expected to cause the failure of the life support de-
form, when properly used in accordance with instructions vice or system, or to affect its safety or effectiveness.
for use provided in the labeling, can be reasonably ex-
pected to result in a significant injury to the user.

NatJonaiSemiconductorCorporatlon2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 (408) 721-5000
TWX (910) 339-9240
National does not assume any responsibility for use of any Circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time
without notice, to change said circuitry or specifications.

iv

~National
~ Semiconductor

Definition of Terms

Data Sheet Identification

i Advance Information
) ..

,.

f Preliminary

:
: ,> •. ' ..•

NO .. , .••.•• ,. ::.i ·' ... ·.'··i'·>'·

Ide.ntlfl. cation·'. ···.··:,i
Noted. > ,. ,.J i ' •..

Product Status Definitions

Product Status

Formative or
In Design

First
Production

Full
Production

Definition

This data sheet contains the design specifications for product
development. Specifications may change in any manner without notice.

This data sheet contains preliminary data, and supplementary data will
be published at a later date. National Semiconductor Corporation
reserves the right to make changes at any time without notice in order
to improve design and supply the best possible product.

This data sheet contains final specifications. National Semiconductor
Corporation reserves the right to make changes at any time without
notice in order to improve design and supply the best possible product.

National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to
improve reliability, function or design. National does not assume any liability arising out of the application or use of any product
or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

v

"'0
(;
c.
c
n -en -Q) -c en
C
(I) -5"
;::;:
0"
::s en

Table of Contents
Alphanumeric Index. viii

Section 1 Series 32000 Overview
Introduction. 1-3
Key Features of Series 32000 . 1-4
Series 32000 Component Descriptions . 1-5
Hardware Chart .. 1-6
Support Devices. 1-7
Military Aerospace Program. • . 1-8

Section 2 CPU-Central Processing Units
NS32532-20. NS32532-25. NS32532-30 High-Performance 32-Bit Microprocessors. . • 2-3
NS32332-15 32-Bit Advanced Microprocessor 2-104
NS32C032-10. NS32C032-15 High-Performance Microprocessors.................. 2-178
NS32C016-10. NS32C016·15 High-Performance Microprocessors.................. 2-243

Section 3 Slave Processors
NS32382-10. NS32382-15 Memory Management Units (MMU) 3-3
NS32082-10 Memory Management Unit (MMU) 3-42
NS32381-15. NS32381-20. NS32381-25. NS32381-30 Floating-Point Units.......... 3-81
NS32081-10. NS32081-15 Floating-Point Units. 3-110
NS32580-20. NS32580-25. NS32580-30 Floating-Point Controllers. 3-127

Section 4 Peripherals
NS32C201-10. NS32C201-15 Timing Control Units............................... 4-3
NS32202-10 Interrupt Control Unit.. 4-25
NS32203-10 Direct Memory Access Controller . 4-50

Section 5 Development Systems and Software Tools
SYS32/30 PC-Add-In Development Package. 5-3
Series 32000 GENIX Native and Cross-Support (GNX) Development Tools (Version 3) 5-9
Series 32000 Ada Cross-Development System for SYS32/20 Host.................. 5-14
Series 32000 Ada Cross-Development System for VAX/VMS Host. 5-18
Series 32000 GNX-Version 3 C Optimizing Compiler 5-23
Series 32000 GNX-Version 3 Fortran 77 Optimizing Compiler. 5-27
Series 32000 GNX-Version 3 Pascal Optimizing Compiler.......................... 5-31

Section 6 Application Notes
AB-26 Instruction Execution Times of FPU NS32081 Considered for Stand-Alone

Configurations ... 6-3
AB-27 Use of the NS32332 with the NS32082 and the NS32201 6-4
AB-40 PC Board Layout for Floating Point Units 6-6
AB-44 A Method for Efficient Task Switching Using the NS32381 FPU 6-7
AN-383 Interfacing the NS32081 as a Floating-Point Peripheral. 6-8
AN-405 Using Dynamic RAM with Series 32000 CPUs . 6-16
AN-464 Effects of NS32082 Memory Management Unit on Processor Throughput. 6-23
AN-524 Introduction to Bresenham's Line Algorithm Using the SBIT Instruction; Series

32000 Note 5 . 6-27
AN-526 Block Move Optimization Techniques; Series 32000 Graphics Note 2 6-37
AN-527 Clearing Memory with the 32000; Series 32000 Graphics Note 3 6-40
AN-528 Image Rotation Algorithm; Series 32000 Graphics Note 4 '.' 6-44
AN-529 80 x 86 to Series 32000 Translation; Series 32000 Graphics Note 6 6-53
AN-530 Bit Mirror Routine; Series 32000 Graphics Note 7 . 6-59
AN-583 Operating Theory of the Series 32000 GNX Version 3 Compiler Optimizer 6-61
AN-590 Application Development Using Multiple Programming Languages 6-67
AN-601 Portability Issues and the GNX Version 3 C Optimizing Compiler. 6-76

vi

Table of ContentS(Continued)

Section 6 Application Notes (Continued)
AN-605 Using the GNX-Version 3 C Optimizing Compiler in the UNIX Environment. . . . 6-S4
AN-606 Using the GNX-Version 3 C Optimizing Compiler in the VMS Environment. 6-91

Section 7 NSC800
NSCSOO High-Performance Low-Power CMOS Microprocessor. 7-3
NSCS10A RAM-I/O-Timer 7-76
NSCS31 Parallel I/O .. 7-97
NSCS5S Universal Asynchronous Receiver/Transmitter " . . 7-111
NSCSSS NSCSOO Evaluation Board... 7-130
Comparison Study NSCSOO vs. SOS5/S0CS5/ZS0/ZS0 CMOS...................... 7-134
Software Comparison NSCSOO vs. SOS5, ZSO 7 -137
AN-612 NSCSOO Applications System: ROM Monitor and System Board............. 7-139
AN-613 NSCSOO Applications System: NS16550A UART S237A DMA Controller

Interface. 7-162

Section 8 Physical Dimensions! Appendices
Glossary of Terms .. " . . S-3
Physical Dimensions . S-10
Bookshelf
Distributors

vii

Alpha-Numeric Index
AB-26 Instruction Execution Times of FPU NS32081 Considered for Stand-Alone Configurations 6-3
AB-27 Use of the NS32332 with the NS32082 and the NS32201 6-4
AB-40 PC Board Layout for Floating Point Units .. 6-6
AB-44 A Method for Efficient Task Switching Using the NS32381 FPU 6-7
AN-383 Interfacing the NS32081 as a Floating-Point Peripheral 6-8
AN-405 Using Dynamic RAM with Series 32000 CPUs : 6-16
AN-464 Effects of NS32082 Memory Management Unit on Processor Throughput 6-23
AN-524 Introduction to Bresenham's Line Algorithm Using the SBIT Instruction; Series 32000

Note 5 .. 6-27
AN-526 Block Move Optimization Techniques; Series 32000 Graphics Note 2 6-37
AN-527 Clearing Memory with the 32000; Series 32000 Graphics Note 3 6-40
AN-528 Image Rotation Algorithm; Series 32000 Graphics Note 4 6-44
AN-529 80 x 86 to Series 32000 Translation; Series 32000 Graphics Note 6 6-53
AN-530 Bit Mirror Routine; Series 32000 Graphics Note 7 6-59
AN-583 Operating Theory of the Series 32000 GNX Version 3 Compiler Optimizer 6-61
AN-590 Application Development Using Multiple Programming Languages 6-67
AN-601 Portability Issues and the GNX Version 3 C Optimizing Compiler 6-76
AN-60S Using the GNX-Version 3 C Optimizing Compiler in the UNIX Environment 6-84
AN-606 Using the GNX-Version 3 C Optimizing Compiler in the VMS Environment 6-91
AN-612 NSC800 Applications System: ROM Monitor and System Board 7-139
AN-613 NSC800 Applications System: NS16550A UART 8237A DMA Controller Interface 7-162
Comparison Study NSC800 vs. 8085/80C85/Z80/Z80 CMOS 7-134
NS32C016-10 High-Performance Microprocessor ... 2-243
NS32C016-15 High-Performance Microprocessor ... 2-243
NS32C032-10 High-Performance Microprocessor ... 2-178
NS32C032-15 High-Performance Microprocessor ... 2-178
NS32C201-10 Timing Control Unit ... 4-3
NS32C201-15 Timing Control Unit ... 4-3
NS32081-10 Floating-Point Unit ... 3-110
NS32081-15 Floating-Point Unit ... 3-110
NS32082-10 Memory Management Unit (MMU) .. 3-42
NS32202-10 Interrupt Control Unit .. 4-25
NS32203-10 Direct Memory Access Controller ... 4-50
NS32332-15 32-Bit Advanced Microprocessor .. 2-104
NS32381-15 Floating-Point Unit .. 3-81
NS32381-20 Floating-Point Unit .. 3-81
NS32381-25 Floating-Point Unit .. 3-81
NS32381-30 Floating-Point Unit .. 3-81
NS32382-10 Memory Management Unit (MMU) ... 3-3
NS32382-15 Memory Management Unit (MMU) ... 3-3
NS32532-20 High-Performance 32-Bit Microprocessor ... 2-3
NS32532-25 High-Performance 32-Bit Microprocessor ... 2-3
NS32532-30 High-Performance 32-Bit Microprocessor ... 2-3
NS32580-20 Floating-Point Controller .. 3-127
NS32580-25 Floating-Point Controller .. 3-127
NS32580-30 Floating-Point Controller .. 3-127
NSC800 High-Performance Low-Power CMOS Microprocessor 7-3
NSC810A RAM-I/O-Timer ... 7-76
NSC831 Parallel I/O .. 7-97
NSC858 Universal Asynchronous Receiver/Transmitter 7-111
NSC888 NSC800 Evaluation Board .. 7-130

viii

Alpha-Numeric Index(continUed)

Series 32000 Ada Cross-Development System for VAX/VMS Host 5-1S
Series 32000 Ada Cross-Development System for SYS32/20 Host 5-14
Series 32000 GENIX Native and Cross-Support (GNX) Development Tools (Version 3) 5-9
Series 32000 GNX-Version 3 Pascal Optimizing Compiler 5-31
Series 32000 GNX-Version 3 Fortran 77 Optimizing Compiler ' 5-27
Series 32000 GNX-Version 3 C Optimizing Compiler .. 5-23
Software Comparison NSCSOO vs. SOS5, ZSO ... 7-137
SYS32/30 PC-Add-In Development Package .. 5-3

ix

Section 1
Series 32000 Overview

Section 1 Contents
Introduction. • . 1-3
Key Features of Series 32000 . 1-4
Series 32000 Component Descriptions . 1-5
Hardware Chart . 1-6
Support Devices ... 1-7
Military Aerospace Program. 1-8

1·2

Introduction
Series 32000 offers the most complete solution to your 32-bit micro­
processor needs via CPUs, slave processors, system peripherals,
evaluation/development tools and software.

We at National Semiconductor firmly believe that it takes a total family
of microprocessors to effectively meet the needs of a system design­
er.

This Series 32000 Databook presents technical descriptions of Series
32000 8-, 16- and 32-bit microprocessors, slave processors, peripher­
als, software and development tools. It is designed to be updated
frequently so that our customers can have the latest technical infor­
mation on the Series 32000.

Series 32000 leads the way in state-of-the-art microprocessor de­
signs because of its advanced architecture, which includes:

• 32-Bit Architecture

• Demand Paged Virtual Memory

• Fast Floating-Point Capability

• High-Level Language Support

• Symmetrical Architecture

When we at National Semiconductor began the design of the Series
32000 microprocessor family, we decided to take a radical departure
from popular trends in architectural design that dated back more than
a decade. We chose to take the time to design it properly.

Working from the top down, we analyzed the issues and anticipated
the computing needs of the 80's and 90's. The result is an advanced
and efficient family of microprocessor hardware and software prod­
ucts.

Clearly, software productivity has become a major issue in computer­
related product development. In microprocessor-based systems this
issue centers around the capability of the microprocessor to maximize
the utility of software relative to shorter development cycles, im­
proved software reliability and extended software life cycles.

In short, the degree to which the microprocessor can maximize soft­
ware utility directly affects the cost of a product, its reliability, and time
to market. It also affects future software modification for product en­
hancement or rapid advances in hardware technology.

Our approach has been to define an architecture addressing these
software issues most effectively. Series 32000 combines 32-bit per­
formance with efficient management of large address space. It facili­
tates high-level language program development and efficient instruc­
tion execution. Floating-point is integrated into the architecture.

This combination gives the user large system computing power at two
orders of magnitude less cost.

But we didn't stop there. Advanced architecture isn't enough. Our top­
down approach includes the hardware, software, and development
support products necessary for your design. The evaluation board, in­
system emulator, software development tools, including a VAX-11
cross-software package, and third party software are also available
now for your evaluation and development.

The Series 32000 is a solid foundation from which National Semicon­
ductor can build solutions for your future designs while satisfying your
needs today.

For further information please contact your local sales office.

1-3

•

o o o
N
Cf)

U)
Go)

0':
Go)
U) -o
U)
Go) ... = -tV
Go)
U.
>­
Go)

~

~National
D Semiconductor

Key Features of Series 32000®

Some of the features that set the Series 32000 family apart
as the best choice for 32-bit designs are as follows:

FAMILY OF MICROPROCESSORS
Series 32000 is more than just a single chip set, it is a family
of chip sets. By mixing and matching Series 32000 CPUs
with compatible slave processors and support chips, a sys­
tem designer has an unprecedented degree of flexibility in
matching price/performance to the end product.

CLEANEST 32-BIT ARCHITECTURE
Series 32000 was designed around a 32-bit architecture
from the beginning. It has a fully symmetrical instruction set
so that all addressing modes and all data types can be oper­
ated on by all instructions. This makes it easy to learn the
architecture, easy to program in assembly language, and
easy to write code-efficient, high-level language compilers.

APPLICATION-SPECIFIC SLAVE PROCESSORS
Series 32000 architecture allows users to design their own
application-specific slave processors to interface with the
existing chip set. These processors can be used to increase
the overall system performance by accelerating customized
CPU instructions that would otherwise be implemented in
software. At the same time, software compatibility is main­
tained, i.e., it is always possible to substitute lower-cost soft­
ware modules in place of the slave processor.

1-4

FLOATING-POINT SUPPORT
The Series 32000 offers a complete set of floating-point
solutions. This includes the NS32081 Floating-Point Unit,
the NS32381 Floating-Point Unit and the NS32580 Floating­
Point Controller. The NS32081 provides high-speed arith­
metic computation with high precision and accuracy at low
cost. The NS32381 provides low power consumption and
even greater performance than the NS32081 while main­
taining high-precision and accuracy.

The NS32580 is a floating-point controller that provides a
direct interface between the Weitek WTL 3164 Floating­
Point Data Path and the NS32532 CPU. This two chip com­
bination, NS32580/WTL3164, provides optimum perform­
ance for speed critical floating-point applications.

HIGH-LEVEL LANGUAGE SUPPORT
Series 32000 has special features that support high-level
languages, thus improving software productivity and reduc­
ing development costs. For example, there are special in­
structions that help the compiler deal with structured data
types such as Arrays, Strings, Records, and Stacks.

~NatiOnal
Semiconductor

Series 32000® Component Descriptions

Bus Width

Device Description External Process
Internal

Address Data

CENTRAL PROCESSING UNITS (CPU's)

NS32532 High-Performance 32-Bit Microprocessor 32 32 32 M2CMOS

NS32332 32-Bit Advanced Microprocessor 32 32 32 XMOS
(NMOS)

NS32C032 High-Performance Microprocessor 32 24 32 CMOS

NS32C016 High-Performance Microprocessor 32 24 16 CMOS

SLAVE PROCESSORS

NS32382 Memory Management Unit 32 32 32 XMOS
(NMOS)

NS32082 Memory Management Unit 32 24 16 XMOS
(NMOS)

NS32081 Floating-Point Unit 64 - 16 XMOS

NS32381 Floating-Point Unit 64 - 16 CMOS

NS32580 Floating-Point Controller 64 - 16 or 32 CMOS

PERIPHERALS

NS32C201 CMOS Timing Control Unit - - - CMOS

NS32202 Interrupt Control Unit 32 - 16 XMOS
(NMOS)

NS32203 Direct Memory Access Controller - - 16 XMOS
(NMOS)

1-5

Package
Type

175-pin PGA

84-pin PGA

68-pin LCC
Leadless

Chip Carrier

48-pin DIP
Dual-In-Line

Package

PGA

48-pln DIP
Package

24-pln DIP
Dual-In-Line

Package

68-pln PGA

172-pin PGA

24-pin DIP
Dual-In-Line

Package

40-pin DIP
Dual-In-Line

Package

48-pin DIP
Dual-In-Line

Package

en
CD ...
(D'
en
w
N o
o
o
o
o
3

"C
o
::s
CD
::s -C
CD en
n ...
-6' -0'
::s en

III

t::
co
.c o
CI) ...
cu
~
"E
cu

:::a::::

~National
~ Semiconductor

Hardware Chart

PROCESSORS
SLAVE

PROCESSORS

1-6

PERIPHERALS

TL/XX/OOB4-1

~National
~ Semiconductor

Support Devices Chart

SUPPORT
DEVICES

1·7

TL/XX/0166-1

en
c
"C
"C
o ... -c
(I)
<
(;'
(I)
en
o
::r
D)
;:l.

III

~ o -u
~

"C
C
o
(,)

's
CI)

(J)

'ii c o :;
z
E e -en
E
l!
C)

e
D.
CI)
(,)
as
Q.
en e
CI)

~
~
!i

~NatiOnal
Semiconductor

Military I Aerospace Programs
from National Semiconductor

This section is intended to provide a brief overview of mili- description of· the electrical tests performed and is con-
tary Series 32000 products available from National Semi- trolled by our QA department. Individual copies are available
conductor. upon request.

-883 -MIL
Although originally intended to establish uniform test meth- Some of National's older products are not completely com-
ods and procedures, MIL-STD-883 has also become the pliant with MIL-STD-883, but are still required for use in mili-
general specification for non-JAN military product. Revision tary systems. These devices are screened to the same
C of this document defines minimum requirements for a de- stringent requirements as 883 product but are marked
vice to be marked and advertised as 883-compliant. Includ- "-Mil".
ed are design and construction criteria, documentation con-
trols, electrical and mechanical screening requirements, -MSP
and quality control procedures. Details can be found in par- National's Military Screening Program (MSP) was devel-
agraph 1.2.1 of MIL-STD-883. oped to make screened versions of advanced products
National offers both 883 Class Band 883 Class S product. such as gate arrays and microprocessors available more
The screening requirements for both classes of product are quickly than is possible for JAN and 883 devices. Through
outlined In Table I. this program, screened product is made available for proto-
As with DESC specifications, a manufacturer Is allowed to types and brassboards prior to or during the JAN or 883
use his standard electrical tests provided that all critical pa- qualification activities. MSP products receive the 100%
rameters are tested. Also, the electrical test parameters, screening of Table I, but are not subjected to group C and D
test conditions, test limits, and test temperatures must be quality conformance testing. Other criteria such as electrical
clearly documented. At National Semiconductor, this Infor- testing and temperature range will vary depending upon In-
matlon Is available via our RETS (Reliability Electrical Test dlvldual device status and capability.
Specification) program. The RETS document Is a complete

TABLE 1.100% Screening Requirements

Screen Class S Class B

Method Reqmt Method Reqmt

1. Wafer Lot Acceptance S007 All Lots

2. Nondestructive 2023
100% Bond Pull

3. Internal Visual (Note 1) 2010, Condition A 100% 2010, Condition B 100%

4. Stabilization Bake 1008, Condition C,
100%

1008, Condition C, 100%
Min, 24 Hrs. Min Min, 24 Hrs. Min

S. Temp. Cycling (Note 2) 1010, Condition C 100% 1010, Condition C 100%

6. Constant Acceleration 2001, Condition E (Min)
100%

2001, Condition E (Min)
100%

y 1 Orientation Only y 1 Orientation Only

7. Visual Inspection (Note 3) 100% 100%

8. Particle Impact Noise 2020, Condition A
100% Detection (PIND) (Note 4)

9. Serialization (NoteS) 100%

10. Interim (Pre-Burn-In) Per Applicable Device 100% Per Applicable Device
Electrical Parameters Specification (Note 13) Specification (Note 6)

11. Burn-In Test 1 01S 240 Hrs. at 12SoC
100%

1 01S, 160 Hrs. at 12SoC Min
100%

Min (Cond. F Not Allowed)

1-8

TABLE I. 100% ScreenIng RequIrements (Continued)

Screen
ClassS Class B

Method Reqmt Method Reqmt

12. Interim (Post-Bum-In) Per Applicable Device
100%

Electrical Parameters Specification (Note 13)

13. Reverse Bias Burn-In 1015; Test Condition A, C,
(Note 7) 72 Hrs. at 150·C Min 100%

(Cond. F Not Allowed)

14. Interim (Post-Bum-In) Per Applicable Device
100%

Per Applicable Device
100%

Electrical Parameters Specification (Note 13) Specification

15. PDA Calculation 5% Parametric (Note 14)
All Lots

5% Parametric (Note 14)
All Lots

3% Functional- 25°C

16. Final Electrical Test Per Applicable Device Per Applicable Device
a) Static Tests Specification Specification

1) 25°C (Subgroup 1, 100% 100%
Table I, 5005)

2) Max & Min Rated 100% 100%
Operating Temp
(Subgroups 2, 3,
Table I, 5005)

b) Dynamic Tests & 100% 100%
Switching Tests,
25°C (Subgroups 4, 9,
Table I, 5005)

c) Functional Test, 100% 100%
25°C (Subgroup 7,
Table I, 5005)

17. Seal Fine, Gross 1014 100% 1014 100%
(Note 8) (Note 9)

18. Radiographic (Note 10) 2012 Two Views 100%

19. Qualification or Quality (Note 11) (Note 11)
Conformance Inspection Samp. Samp.
Test Sample Selection

20. External Visual 2009
100% 100%

(Note 12)

Note 1: Unless otherwise specified, at the manufacturer's option, test samples for Group B, bond strength (Method 5005) may be randomly selected prior to or
following internal visual (Method 5004), prior to sealing provided all other specification requirements are satisfied (e.g. bond strength requirements shall apply to
each inspection lot, bond failures shall be counted even if the bond would have failed internal visual).

Note 2: For Class B devices, this test may be replaced with thermal shock method 1011, test condition A, minimum.

Note 3: At the manufacturer's option, visual inspection for castastrophic failures may be conducted after each of the thermal/mechanical screens, after the
sequence or after seal test. Catastrophic failures are defined as missing leads, broken packages or lids off.

Note 4: The PIND test may be performed In any sequence after step 9 and prior to step 16. See MIL·M-38510, paragraph 4.6.3.

Note 5: Class S devices shall be serialized prior to interim electrical parameter measurements.

Note 6: When specified, all devices shall be tested for those parameters requiring delta calculations.

Note 7: Reverse bias burn-in is a requirement only when specified in the applicable device specification. The order of performing burn-in and reverse bias burn-in
may be inverted.

Note 8: For Class S devices, the seal test may be performed in any sequence between step 16 and step 19, but it shall be performed after all shearing and forming
operations on the terminals.

Note 9: For Class B devices, the fine and gross seal tests shall be performed separate or together in any sequence and order between step 6 and step 20 except
that they shall be performed after all shearing and forming operations on the terminals. When 100% seal screen cannot be performed after shearing and forming
(e.g. flatpacks and chip carriers) the seal screen shall be done 100% prior to those operations and a sample test (LTPD = 5) shall be performed on each
inspection lot following these operations. If the sample fails, 100% rescreening shall be required.

Note 10: The radiographic screen may be performed in any sequence after step 9.

Note 11: Samples shall be selected for testing in accordance with the specific device class and lot requirements of Method 5005.

Note 12: External visual shall be performed on the lot any time after step 19 and prior to shipment.

Note 13: Read and Record when post burn·in data measurements are specified.

Note 14: PDA shall apply to all statiC, dynamic, functional and switching measurements at either 25'C or maximum rated operating temperature.

1-9

~
;::;:
Q)

~
:t­
(I) ...
o en

't:J
Q)
(')
(I)

"'C ...
o

CC ...
Q)

3 en -... o
3
z
Q) -0'
:l
e!.
en
(I)

3
C:;'
o
:l
C.
C
(') -o ...

Section 2
CPU-Central
Processing Units

Section 2 Contents
NS32532-20, NS32532-25, NS32532-30 High-Performance 32-Bit Microprocessors. 2-3
NS32332-15 32-Bit Advanced Microprocessor ... 2-104
NS32C032-10, NS32C032-15 High-Performance Microprocessors. .. 2-178
NS32C016-10, NS32C016-15 High-Performance Microprocessors. 2-243

2-2

J?;I National
~ Semiconductor
NS32532-20/NS32532-25/NS32532-30
High-Performance 32-Bit Microprocessor

General Description Features
The NS32532 is a high-performance 32-bit microprocessor
in the Series 32000® family. It is software compatible with
the previous microprocessors in the family but with a greatly
enhanced internal implementation.

• Software compatible with the Series 32000 family
• 32-bit architecture and implementation
• 4-GByte uniform addressing space
• On-chip memory management unit with 64-entry

The high-performance specifications are the result of a four­
stage instruction pipeline, on-chip instruction and data
caches, on-chip memory management unit and a signifi­
cantly increased clock frequency. In addition, the system
interface provides optimal support for applications spanning
a wide range, from low-cost, real-time controllers to highly
sophisticated, general purpose multiprocessor systems.

translation look-aside buffer

• 4-Stage instruction pipeline
• 512-Byte on-chip instruction cache
• 1024-Byte on-chip data cache
• High-performance bus

- Separate 32-bit address and data lines
- Burst mode memory accessing
- Dynamic bus sizing

• Extensive multiprocessing support

The NS32532 integrates more than 370,000 transistors fab­
ricated in a 1.25 p'm double-metal CMOS technology. The
advanced technology and mainframe-like design of the de­
vice enable it to achieve more than 10 times the throughput
of the NS32032 in typical applications.

• Floating-point support via the NS32381 or NS32580
• 1.25 p.m double-metal CMOS technology

In addition to generally improved performance, the
NS32532 offers much faster Interrupt service and task
switching for real-time applications.

• 175-pin PGA package

Block Diagram
,,- STAGE

INSTRUCTION PIPELINE

INSTRUCTION
CACHE

(IC)

FIGURE 1

2-3

BUS
INTERFACE

UNIT
(BIU)

CONTROL

TL/EE/9354-1

z en w
N
U1
W
N • N
o
........
Z en w
N
U1
W
N .
N
U1
........
Z en
w
N
U1
W
~
W o

•

C) r---,
C") · N
C")
LI)
N
C")
(/)
Z

" LI)
N • N
C")
LI)
N
C")
(/)
Z

" C)
N • N
C")
LI)
N
C")
(/)
Z

Table of Contents

1.0 PRODUCT INTRODUCTION

2.0 ARCHITECTURAL DESCRIPTION

2.1 Register Set

2.1.1 General Purpose Registers

2.1.2 Address Registers

2.1.3 Processor Status Register

2.1.4 Configuration Register

2.1.5 Memory Management Registers

2.1.6 Debug Registers

2.2 Memory Organization

2.2.1 Address Mapping

2.3 Modular Software Support

2.4 Memory Management

2.4.1 Page Tables Structure

2.4.2 Virtual Address Spaces

2.4.3 Page Table Entry Formats

2.4.4 Physical Address Generation

2.4.5 Address Translation Algorithm

2.5 Instruction Set

2.5.1 General Instruction Format

2.5.2 Addressing Modes

2.5.3 Instruction Set Summary

3.0 FUNCTIONAL DESCRIPTION

3.1 Instruction Execution

3.1.1 Operating States

3.1.2 Instruction Endings

3.1.2.1 Completed Instructions

3.1.2.2 Suspended Instructions

3.1.2.3 Terminated Instructions

3.1.2.4 Partially Completed Instructions

2-4

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.1.3 Instruction Pipeline

3.1.3.1 Branch Prediction

3.1.3.2 Memory Mapped 1/0

3.1.3.3 Serializing Operations

3.1.4 Slave Processor Instructions

3.1.4.1 Regular Slave Instruction Protocol

3.1.4.2 Pipelined Slave Instruction Protocol

3.1.4.3 Instruction Flow and Exceptions

3.1.4.4 Floating-Point Instructions

3.1.4.5 Custom Slave Instructions

3.2 Exception Processing

3.2.1 Exception Acknowledge Sequence

3.2.2 Returning from an Exception Service Procedure

3.2.3 Maskable Interrupts

3.2.3.1 Non-Vectored Mode

3.2.3.2 Vectored Mode: Non-Cascaded Case

3.2.3.3 Vectored Mode: Cascaded Case

3.2.4 Non-Maskable Interrupt

3.2.5 Traps

3.2.6 Bus Errors

3.2.7 Priority Among Exceptions

3.2.8 Exception Acknowledge Sequences:
Detailed Flow

3.2.8.1 Maskable/Non-Maskable Interrupt
Sequence

3.2.8.2 Abort/Restartable Bus Error Sequence

3.2.8.3 SLAVE/ILLlSVC/DVZ/FLG/BPT/UND
Trap Sequence

3.2.8.4 Trace Trap Sequence

Table of Contents (Continued)

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.2.B.5 Integer-Overflow Trap Sequence

3.2.B.6 Debug Trap Sequence

3.2.B.7 Non-Restartable Bus Error Sequence

3.3 Debugging Support

3.3.1 Instruction Tracing

3.3.2 Debug Trap Capability

3.4 On-Chip Caches

3.4.1 Instruction Cache (IC)

3.4.2 Data Cache (DC)

3.4.3 Cache Coherence Support

3.4.4 Translation Look-aside Buffer (TLB)

3.5 System Interface

3.5.1 Power and Grounding

3.5.2 Clocking

3.5.3 Resetting

3.5.4 Bus Cycles

3.5.4.1 Bus Status

3.5.4.2 Basic Read and Write Cycles

3.5.4.3 Burst Cycles

3.5.4.4 Cycle Extension

3.5.4.5 Interlocked Bus Cycles

3.5.4.6 Interrupt Control Cycles

3.5.4.7 Slave Processor Bus Cycles

3.5.5 Bus Exceptions

3.5.6 Dynamic Bus Configuration

3.5.6.1 Instruction Fetch Sequences

3.5.6.2 Data Read Sequences

3.5.6.3 Data Write Sequences

3.5.7 Bus Access Control

3.5.8 Interfacing Memory-Mapped I/O Devices

3.5.9 Interrupt and Debug Trap Requests

3.5.10 Cache Invalidation Requests

3.5.11 Internal Status

4.0 DEVICE SPECIFICATIONS

4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input/Output Signals

4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics

4.4 Switching Characteristics

2-5

4.0 DEVICE SPECIFICATIONS (Continued)

4.4.1 Definitions

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation
Delays

4.4.2.2 Input Signal Requirements

4.4.3 Timing Diagrams

APPENDIX A: INSTRUCTION FORMATS

B: COMPATIBILITY ISSUES

B.1 Restrictions on Compatibility

B.2 Architecture Extensions

B.3 Integer-Overflow Trap

B.4 Self-Modifying Code

B.5 Memory-Mapped I/O

C: INSTRUCTION SET EXTENSIONS

C.1 Processor Service Instructions

C.2 Memory Management Instructions

C.3 Instruction Definitions

D: INSTRUCTION EXECUTION TIMES

0.1 Internal Organization and Instruction
Execution

0.2 Basic Execution Times

0.2.1 Loader Timing

0.2.2 Address Unit Timing

0.2.3 Execution Unit Timing

0.3 Instruction Dependencies

0.3.1 Data Dependencies

0.3.1.1 Register Interlocks

0.3.1.2 Memory Interlocks

0.3.2 Control Dependencies

0.4 Storage Delays

0.4.1 Instruction Cache Misses

0.4.2 Data Cache Misses

0.4.3 TLB Misses

0.4.4 Instruction and Operand Alignment

0.5 Execution Time Calculations

0.5.1 Definitions

0.5.2 Notes on Table Use

0.5.3 T eff Evaluation

0.5.4 Instruction Timing Example

0.5.5 Execution Timing Tables

0.5.5.1 Basic and Memory
Management Instructions

0.5.5.2 Floating-Point Instructions,
CPU Portion

z en w
N
U1
W
N · N o
Z en
w
N
U1
W
N · N
U1
.......
Z en
w
N
U1
W
N • W o

o
C") · C\I
C")
Lt)
C\I
C")
U)
z
Lt)
C\I · C\I
C")
Lt)
C\I
C")
U)
z
o
C\I · C\I
C")
Lt)
C\I
C")
U)
z

List of Illustrations

CPU Block Diagram ... 1

NS32532 Internal Registers .. 2-1

Processor Status Register (PSR) .. 2-2

Configuration Register (CFG) ... 2-3

Page Table Base Registers (PTBn) ...•...................... 2-4

Memory Management Control Register (MCR) .. 2-5

Memory Management Status Register (MSR) ... 2-6

Debug Condition Register (DCR) .. 2-7

Debug Status Register (DSR) ... 2-8

NS32532 Address Mapping .. 2-9

NS32532 Run-Time Environment .. 2-10

Two-Level Page Tables ... 2-11

Page Table Entries (PTE's) ...•..•..................... 2-12

Virtual to Physical Address Translation .. 2-13

General Instruction Format .. 2-14

Index Byte Format ... 2-15

Displacement Encodings ...•........................ 2-16

Operating States•...•...................... 3-1

NS32532 Internal Instruction Pipeline ...•...................... 3-2

Memory References for Consecutive Instructions ... 3-3

Memory References after Serialization ... 3-4

Regular Slave Instruction Protocol: CPU Actions ..•. 3-5

ID and Operation Word ..•... 3-6

Slave Processor Status Word ... 3-7

Instruction Flow in Pipelined Floating,Point Mode .. 3-8

Interrupt Dispatch Table ... 3-9

Exception Acknowledge Sequence: Direct-Exception Mode Disabled ... 3-10

Exception Acknowledge Sequence: Direct-Exception Mode Enabled .. 3-11

Return From Trap (RETTn) Instruction Flow: Direct-Exception Mode Disabled .. 3-12

Return From Interrupt (RETI) Instruction Flow: Direct-Exception Mode Disabled 3-13

Exception Processing Flowchart ... 3-14

Service Sequence ..•........ 3-15

Instruction Cache Structure ... 3-16

Data Cache Structure•... 3-17

TLB Model .. 3-18

Power and Ground Connections ..•...................... 3-19

Bus Clock Synchronization ..•.. _ 3-20

Power-On Reset Requirements .. 3-21

General Reset Timing ...•........ 3-22

Basic Read Cycle .. 3-23

Write Cycle .. 3-24

Burst Read cycles ...•........ 3-25

Cycle Extension of a Basic Read Cycle ... 3-26

Slave Processor Write Cycle ... 3-27

Slave Processor Read Cycle .. 3-28

Bus Retry During a Basic Read Cycle ...•..................... 3-29

Basic Interface for 32-Bit Memories .. 3-30

Basic Interface for 16-Bit Memories•.. 3-31

Hold Acknowledge: (Bus Initially Idle) ... 3-32

Typical 1/0 Device Interface ... 3-33

2-6

List of Illustrations (Continued)

NS32532 Interface Signals ... 4-1
175-Pin PGA Package•.......................•.. 4-2
Output Signals Specification Standard .•........................•..................................•.............. 4-3
Input Signals Specification Standard•......•.••.....•................................•.... 4-4
Basic Read Cycle Timing .. 4-5
Write Cycle Timing•....••..•..••.........•..•...•.............••......•......•.................. 4-6
Interlocked Read and Write Cycles ...•...•.............•••......................•.......•..........••........... 4-7
Burst Read Cycles•.•...........•••.•....•••......•.....•...•.•.•...............••.......•........ 4-8
External Termination of Burst Cycles•..•.......•.••.•........•.••.....••..•........•••..................... 4-9
Bus Error or Retry During Burst Cycles .•..........•••..•••....••••.•..............••..••.......••..•••.......... 4-10
Extended Retry Timing••.......•.•••.......••••••...•.....•..•.•.•••.....•......••...............•. 4-11
FfOtD Timing (Bus Initially Idle) •.......•••.•..•....•••.•••.......•••..••......•....•.•........•.......•..•..... 4-12
FK5D5 Acknowledge Timing (Bus Initially Not Idle) ..•••••.•........••............••........•...•.•.•..........•... 4-13
Slave Processor Read Timing•......•......•.•...••••..•.....•..•.•...•...•.....................•.. 4-14
Slave Processor Write Timing•.....•...........•......•..•.....••........................•......... 4-15
Slave Processor Done .•........•........••........•...•......•............................•.•.•.............. 4-16
~SignalTimlng•...............•............•....••...............................•.. 4-17
Cache Invalidation Request•...................................•......•................................... 4-18
jjifj' and NMT Signals Sampling•..•...•...........................•................•..............•.. 4-19
Debug Trap Request•................................•...•........................•..............•.. 4-20
PFS Signal Timing•............•.•.......................................•.............. 4-21
iSF Signal Timing•...........•.•.......•..........................•...•.•.............. 4-22
Break Point Signal Timing••......•.......••..............•..•............•......•..............•.. 4-23
Clock Waveforms•...•.••.......................•....•.......................... 4-24
Bus Clock Synchronization•....••.....••............................•......•............................ 4-25
Power-On Reset••.................•.....•...............••...................••.......•........•........ 4-26
Non-Power-On Reset •..........•............•.............•........•......•.....•............................ 4-27
LPRi/SPRi Instruction Formats .•...•.......•...•....•.....•..•.................................•............... C-1
CINV Instruction Format•.........•..................................•............................ C-2
LMRISMR Instruction Formats•..•.•.......... C-3

List of Tables
Access Protection Levels•.. 2-1
NS32532 Addressing Modes•... 2-2
NS32532 Instruction Set Summary ...•.......................... 2-3
Floating-Point Instruction Protocol .. , 3-1
Custom Slave Instruction Protocols .. 3-2
Summary of Exception Processing .. 3-3
Interrupt Sequences "•....................... , , 3-4
Cacheable/Non-Cacheable Instruction Fetches from a 32-Bit Bus •.....................•............................ 3-5
Cacheable/Non-Cacheable Instruction Fetches from a 16-Bit Bus ••.................................. ,•......... 3-6
Cacheable/Non-Cacheable Instruction Fetches from an a-Bit Bus ... 3-7
Cacheable/Non-Cacheable Data Reads from a 32-Bit Bus ..•................ 3-8
Cacheable/Non-Cacheable Data Reads from a 16-Bit Bus•.................•........................... 3-9
Cacheable/Non-Cacheable Data Reads from an 8-Bit Bus .. 3-10
Data Writes to a 32-Bit Bus .. 3-11
Data Writes to a 16-Bit Bus .. 3-12
Data Writes to an a-Bit Bus .. 3-13

LPRi/SPRi New 'Short' Field Encodings•...................................... C-1
LMRISMR 'Short' Field Encodings .. C-2
Additional Address Unit Processing Time for Complex Addressing Modes ... 0-1

2-7

z en
w
N
CJ1
W
N • N
Q

" Z en
w
N
CJ1
W

~
CJ1

" Z
~
N
CJ1
W

~
Q

C) r---,
Cot)

• N
Cot)
In
N
Cot)

en
z
In
N
N
Cot)
In
N
Cot)

en
z
C)
N .
N
Cot)
In
N
Cot)

en
z

1.0 Product Introduction
The NS32532 is an extremely sophisticated microprocessor
in the Series 32000 family with a full 32-bit architecture and
implementation optimized for high-performance applica­
tions.

By employing a number of mainframe-like features, the de­
vice can deliver 15 MIPS peaks performance with no wait
states at a frequency of 30 MHz.

The NS32532 is fully software compatible will all the other
Series 32000 CPUs. The architectural features of the Series
32000 family and particularly the NS32532 CPU, are de­
scribed briefly below.

Powerful Addressing Modes. Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types. The architecture provides for numerous data
types, such as byte, word, doubleword, and BCD, which may
be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case
instructions that compilers can't use, the Series 32000 ar­
chitecture incorporates powerful instructions for control op­
erations, such as array indexing and external procedure
calls, which save considerable space and time for compiled
code.

Memory-to-Memory Operations. The Series 32000 CPUs
represent two-address machines. This means that each op­
erand can be referenced by anyone of the addressing
modes provided.

This powerful memory-to-memory architecture permits
memory locations to be treated as registers for all usefull
operations. This is important for temporary operands as well
as for context switching.

Memory Management. The NS32532 on-chip memory
management unit provides advanced operating system sup­
port functions, including dynamic address translation, virtual
memory management, and memory protection.

Address
~ 3281ts

PC

SPO

SP1
FP

SB
INTBASE

I MOD

Processor Status
PSR

Memory Management
PTBO

PTB1
IVARO
IVAR1
TEAR
MCR

MSR

Large, Uniform Addressing. The NS32532 has 32-bit ad­
dress pointers that can address up to 4 gigabytes without
requiring any segmentation; this addressing scheme pro­
vides flexible memory management without added-on ex­
pense.

Modular Software Support. Any software package for the
Series 32000 family can be developed independent of all
other packages, without regard to individual addressing. In
addition, ROM code is totally relocatable and easy to ac­
cess, which allows a significant reduction in hardware and
software costs.

Software Processor Concept. The Series 32000 architec­
ture allows future expansions of the instruction set that can
be executed by special slave processors, acting as exten­
sions to the CPU. This concept of slave processors is
unique to the Series 32000 family. It allows software com­
patibility even for future components because the slave
hardware is transparent to the software. With future ad­
vances in semiconductor technology, the slaves can be
physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro­
vide three primary performance advantages and character­
istics:

• High-level language support

• Easy future growth path

• Application flexibility

2.0 Architectural Description
2.1 REGISTER SET

The NS32532 CPU has 28 internal registers grouped ac­
cording to functions as follows: 8 general purpose, 7 ad­
dress, 1 processor status, 1 configuration, 7 memory man­
agement and 4 debug. All registers are 32 bits wide except
for the module and processor status, which are each 16 bits
wide. Figure 2-1 shows the NS32532 internal registers.

General Purpose
~ 328its

RO

R1
R2

R3
R4
R5
R6

R7

Debug
DCR
DSR
CAR

BPC

Configuration
CFG

FIGURE 2-1. NS32532 Internal Registers

2-8

2.0 Architectural Description (Continued)

2.1.1 General Purpose Registers

There are eight registers (RO-R7) used for satisfying the
high speed general storage requirements, such as holding
temporary variables and addresses. The general purpose
registers are free for any use by the programmer. They are
32 bits in length. If a general purpose register is specified for
an operand that is eight or 16 bits long, only the low part of
the register is used; the high part is not referenced or modi­
fied.

2.1.2 Address Registers

The seven address registers are used by the processor to
implement specific address functions. A description of them
follows.

PC-Program Counter. The PC register is a pointer to the
first byte of the instruction currently being executed. The PC
is used to reference memory in the program section.

SPO, SP1-5tack Pointers. The SPO register points to the
lowest address of the last item stored on the INTERRUPT
STACK. This stack is normally used only by the operating
system. It is used primarily for storing temporary data, and
holding return information for operating system subroutines
and interrupt and trap service routines. The SP1 register
points to the lowest address of the last item stored on the
USER STACK. This stack is used by normal user programs
to hold temporary data and subroutine return information.

When a reference is made to the selected Stack Pointer
(see PSR S-bit), the terms 'SP Register' or 'SP' are used.
SP refers to either SPO or SP1, depending on the setting of
the S bit in the PSR register. If the S bit in the PSR is 0, SP
refers to SPO. If the S bit in the PSR is 1 then SP refers to
SP1.

The NS32532 also allows the SP1 register to be directly
loaded and stored using privileged forms of the LPRi and
SPRi instructions, regardless of the setting of the PSR S-bit.
When SP1 is accessed in this manner, it is referred to as
'USP Register' or simply 'USP'.

Stacks in the Series 32000 family grow downward in memo­
ry. A Push operation pre-decrements the Stack Pointer by
the operand length. A Pop operation post-increments the
Stack Pointer by the operand length.

FP-Frame Pointer. The FP register is used by a procedure
to access parameters and local variables on the stack. The
FP register is set up on procedure entry with the ENTER
instruction and restored on procedure termination with the
EXIT instruction.

The frame pointer holds the address in memory occupied by
the old contents of the frame pointer.

SB-Statlc Base. The SB register points to the global vari­
ables of a software module. This register is used to support
relocatable global variables for software modules. The SB
register holds the lowest address in memory occupied by
the global variables of a module.

P S

INTBASE-Interrupt Base. The INTBASE register holds
the address of the dispatch table for interrupts and traps
(Section 3.2.1).

MOD-Module. The MOD register holds the address of the
module descriptor of the currently executing software mod­
ule. The MOD register is 16 bits long, therefore the module
table must be contained within the first 64 kbytes of memo­
ry.

2.1.3 Processor Status Register

The Processor Status Register (PSR) holds status informa­
tion for the microprocessor.

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all pro­
grams, but the high order eight bits are accessible only to
programs executing in Supervisor Mode.

C The C bit indicates that a carry or borrow occurred after
an addition or subtraction instruction. It can be used
with the ADDC and SUBC instructions to perform multi­
ple-precision integer arithmetic calculations. It may
have a setting of 0 (no carry or borrow) or 1 (carry or
borrow).

T The T bit causes program tracing. If this bit is set to 1, a
TRC trap is executed after every instruction (Section
3.3.1).

L The L bit is altered by comparison instructions. In a
comparison instruction the L bit is set to "1" if the sec­
ond operand is less than the first operand, when both
operands are interpreted as unsigned integers. Other­
wise, it is set to "0". In Floating-Point comparisons, this
bit is always cleared.

V The V-bit enables generation of a trap (OVF) when an
integer arithmetic operation overflows.

F The F bit is a general condition flag, which is altered by
many instructions (e.g., integer arithmetic instructions
use it to indicate overflow).

Z The Z bit is altered by comparison instructions. In a
comparison instruction the Z bit is set to "1" if the sec­
ond operand is equal to the first operand; otherwise it is
set to "0".

N The N bit is altered by comparison instructions. In a
comparison instruction the N bit is set to "1" if the sec­
ond operand is less than the first operand, when both
operands are interpreted as signed integers. Otherwise,
it is set to "0".

U If the U bit is "1" no privileged instructions may be exe­
cuted. If the U bit is "0" then all instructions may be
executed. When U = 0 the processor is said to be in
Supervisor Mode; when U = 1 the processor is said to

z F V L T

FIGURE 2-2. Processor Status Register (PSR)

2-9

z en
w
I\)
U1
W
I\)

I
I\)
Q
........
Z en
w
I\)
U1
W
I\)

I
I\)
U1
........ z en
w
I\)
U1
W
I\)

I
W
Q

•

2.0 Architectural Description (Continued)
be in User Mode. A User Mode program is restricted
from executing certain instructions and accessing cer­
tain registers which could interfere with the operating
system. For example, a User Mode program is prevent­
ed from changing the setting of the flag used to indicate
its own privilege mode. A Supervisor Mode program is
assumed to be a trusted part of the operating system,
hence it has no such restrictions.

S The S bit specifies whether the SPO register or SP1
register is used as the Stack Pointer. The bit is automat­
ically cleared on interrupts and traps. It may have a
setting of 0 (use the SPO register) or 1 (use the SP1
register).

P The P bit prevents a TRC trap from occuring more than
once for an instruction (Section 3.3.1). It may have a
setting of 0 (no trace pending) or 1 (trace pending).
If I = 1, then all interrupts will be accepted. If I = 0,
only the NMI interrupt is accepted. Trap enables are not
affected by this bit.

2.1.4 Configuration Register
The Configuration Register (CFG) is 32 bits wide, of which
ten bits are implemented. The implemented bits enable vari­
ous operating modes for the CPU, including vectoring of
interrupts, execution of slave instructions, and control of the
on-chip caches. In the NS32332 bits 4 through 7 of the CFG
register selected between the 16-bit and 32-bit slave proto­
cols and between 512-byte and 4-Kbyte page sizes. The
NS32532 supports only the 32-bit slave protocol and
4-Kbyte page size: consequently these bits are forced to 1.
When the CFG register is loaded using the LPRi instruction,
bits 14 through 31 should be set to o. Bits 4 through 7 are
ignored during loading, and are always returned as 1's when
CFG is stored via the SPRi instruction. When the SETCFG
instruction is executed, the contents of the CFG register bits
o through 3 are loaded from the instruction's short field, bits
4 through 7 are ignored and bits 8 through 13 are forced to
O.

The format of the CFG register is shown in Figure 2-3. The
various control bits are described below.
I Interrupt vectoring. This bit controls whether maska­

ble interrupts are handled in nonvectored (I = 0) or
vectored (I = 1) mode. Refer to Section 3.2.3 for more
information.

F Floating-point instruction set. This bit indicates
whether a floating-point unit (FPU) is present to exe­
cute floating-point instructions. If this bit is 0 when the
CPU executes a floating-point instruction, a Trap
(UNO) occurs. If this bit is 1, then the CPU transfers
the instruction and any necessary operands to the
FPU using the slave-processor protocol described in
Section 3.1.4.1.

M Memory management instruction set. This bit en­
ables the execution of memory management instruc­
tions. If this bit is 0 when the CPU executes an LMR,
SMR, RDVAL, or WRVAL instruction, a Trap (UNO)
occurs. If this bit is 1, the CPU executes LMR, SMR,
RDVAL, and WRVAL instructions using the on-Chip
MMU.

C Custom instruction set. This bit indicates whether a
custom slave processor is present to execute custom
instructions. If this bit is 0 when the CPU executes a
custom instruction, a Trap (UNO) occurs. If this bit is
1, the CPU transfers the instruction and any neces­
sary operands to the custom slave processor using
the slave-processor protocol described in Section
3.1.4.1.

DE Direct-Exception mode enable. This bit enables the
Direct-Exception mode for processing exceptions.
When this mode is selected, the CPU response time
to interrupts and other exceptions is significantly im­
proved. Refer to Section 3.2.1 for more information.

DC Data Cache enable. This bit enables the on-chip Data
Cache to be accessed for data reads and writes. Re­
fer to Section 3.4.2 for more information.

LDC Lock Data Cache. This bit controls whether the con­
tents of the on-chip Data Cache are locked to fixed
memory locations (LDC = 1), or updated when a data
read is missing from the cache (LDC=O).

IC Instruction Cache enable. This bit enables the on­
chip Instruction Cache to be accessed for instruction
fetches. Refer to Section 3.4.1 for more information.

LIC Lock Instruction Cache. This bit controls whether the
contents of the on-chip Instruction Cache are locked
to fixed memory locations (L1C= 1), or updated when
an instruction fetch is missing from the cache
(L1C=O).

PF Pipelined Floating-point execution. This bit indicates
whether the floating-point unit uses the pipelined
slave protocol. When PF is 1 the pipelined protocol is
selected. PF is ignored if the F bit is o. Refer to Sec­
tion 3.1.4.2 for more information.

01
I Reserved I PF I L1C I IC I LDC I DC I DE I I 1 I 1 I

FIGURE 2-3. Configuration Register (CFG) Bits
13 to 31 are Reserved; Bits 4 to 7 are Forced to 1.

2-10

I

2.0 Architectural Description (Continued)

2.1.5 Memory Management Registers

The NS32532 provides 7 registers to support memory man­
agement functions. They are accessed by means of the
LMR and SMR instructions. All of them can be read and
written except IVARO and IVAR1 that are write-only. A de­
scription of the memory management registers is given in
the following sections.

PTBO, PTB1-Page Table Base Pointers. The PTBn regis­
ters hold the physical addresses of the level-1 page tables
used in address translation. The least significant 12 bits are
permanently zero, so that each register always points to a
4-Kbyte boundary in memory.

When either PTBO or PTB1 is loaded by executing an LMR
instruction, the MMU automatically invalidates all entries in
the TLB that had been translated using the old value in the
selected PTBn register.

The format of the PTBn registers is shown in Figure 2-4.

31 12 11 ° Base Address 000000000000

FIGURE 2-4. Page Table Base Registers (PTBn)

IVARO, IVAR1-lnvaJidate Virtual Address. The Invalidate
Virtual Address registers are write-only registers. When a
virtual address is written to IVARO or IVAR1 using the LMR
instruction, the translation for that virtual address is purged,
if present, from the TLB. This must be done whenever a
Page Table Entry has been changed in memory, since the
TLB might otherwise contain an incorrect translation value.

Another technique for purging TLB entries is to load a PTBn
register. Turning off translation (clearing the MCR TU and/
or TS bits) does not purge any entries from the TLB.

TEAR-Translation Exception Address Register. The
TEAR register is loaded by the on-chip MMU when a trans­
lation exception occurs. It contains the 32-bit virtual address
that caused the translation exception.

TEAR is not updated if a page fault is detected while pre­
fetching an instruction that is not executed because the pre­
vious instruction caused a trap.

MCR-Memory Management Control. The MCR register
controls the operation of the MMU. Only four bits are imple­
mented. Bits 4 to 31 are reserved for future use and must be
loaded with zeroes.

When MCR is read as a 32-bit word, bits 4 to 31 are re­
turned as zeroes. The format of MCR is shown in Figure 2-5.
Details on the control bits are given below.

TU Translate User. While this bit is 1, address translation
is enabled for User-Mode memory references. While
this bit is 0, address translations is disabled for User­
Mode memory references.

TS Translate Supervisor. While this bit is 1 , address trans­
lation is enabled for Supervisor Mode memory refer­
ences. While this bit is 0, address translation is dis­
abled for Supervisor-Mode memory references.

2-11

DS Dual Space. While this bit is 1, then PTB 1 contains the
level-1 page table base address of all addresses spec­
ified in User-Mode, and PTBO contains the level-1
page table base address of all addresses specified in
Supervisor Mode. While this bit is 0, then PTBO con­
tains the level-1 page table base address of all ad­
dresses specified in both User and Supervisor Modes.

AO Access Level Override. When this bit is set to 1, User­
Mode accesses are given Supervisor Mode privilege.

Reserved

FIGURE 2·5. Memory Management
Control Register (MCR)

MSR-Memory Management Status. The MSR register
provides status information related to the occurrence of a
translation exception. Only eight bits are implemented. Bits
8 to 31 are ignored when MSR is loaded and are returned
as zeroes when it is read as a 32-bit word. MSR is only
updated by the MMU when a protection violation or page
fault is detected while translating an address for a reference
required to execute an instruction. It is not updated if a page
fault is detected during either an operand or an instruction
prefetch, if the data being prefetched is not needed due to a
change in the instruction execution sequence. The format of
MSR is shown in Figure 2-6. Details on the function of each
bit are given below.

TEX Translation Exception. This two-bit field specifies the
cause of the current address translation exception.
(Trap(ABT». Combinations appearing in this field
are summarized below.

00 No Translation Exception

01 First Level PTE Invalid

1 0 Second Level PTE Invalid

11 Protection Violation

During address translation, if a protection violation
and an invalid PTE are detected at the same time,
the TEX field is set to indicate a protection violation.

DDT Data Direction. This bit indicates the direction of the
transfer that the CPU was attempting when the
translation exception occurred.

DDT = 0 = > Read Cycle

DDT = 1 = > Write Cycle

UST User/Supervisor. This bit indicates whether the
Translation Exception was caused by a User-Mode
or Supervisor Mode reference. If UST is 1, then the
exception was caused by a User-Mode reference;
otherwise it was caused by a Supervisor Mode refer­
ence.

z en
Cot)
I\)
U1
Cot)
I\)
• I\)
o
z en
Cot)
I\)
U1
Cot)
I\) · I\)
U1
z en
Cot)
I\)
U1
Cot)
I\) · Cot)
o

o
C")

N
C")
lI)
N
C")
(J)
Z
lI)
N .
N
C")
lI)
N
C")
(J)
Z o
N • N
C")
Lt)
N
C")
(J)
Z

2.0 Architectural Description (Continued)

131 81
7

Reserved DDT

FIGURE 2-6. Memory Management Status Register (MSR)

SIT CPU Status. This four bit field is set on an address
translation exception according to the following en­
codings.

1000 Sequential Instruction Fetch

1001 Non-Sequential Instruction Fetch

1010 Data Transfer

1011 Read Read-Modify-Write Operand

1100 Read for Effective Address

If a reference for an Interrupt-Acknowledge or End­
of-Interrupt bus cycle (either Master of Cascaded)
causes a Translation Exception, then the value of
the SIT-field is undefined.

2.1.6 Debug Registers

The NS32532 contains 4 registers dedicated for debugging
functions.

These registers are accessed using privileged forms of the
LPRi and SPRi instructions.

DCR-Debug Condition Register. The OCR Register en­
ables detection of debug conditions. The format of the OCR
is shown in Figure 2-7; the various bits are described below.
A debug condition is enabled when the related bit is set to 1.

CBEO Compare Byte Enable 0; when set, BYTEO of an
aligned double-word is included in the address com­
parison

CBE1 Compare Byte Enable 1; when set, BYTE1 of an
aligned double-word is included in the address com­
parison

CBE2 Compare Byte Enable 2; when set, BYTE2 of an
aligned double-word is included in the address com­
parison

CBE3 Compare Byte Enable 3; when set, BYTE3 of an
aligned double-word is included in the address com­
parison

VNP Compare virtual address (VNP = 1) or physical ad-
dress (VNP = 0)

CWR Address-compare enable for write references

CRD Address-compare enable for read references

CAE Address-compare enable

TR Enable Trap (DB G) when a debug condition is de­
tected

15

Reserved

31

Reserved

PCE PC-match enable

UD Enable debug conditions in User-Mode

SD Enable debug conditions in Supervisor Mode

DEN Enable debug conditions

The following 2 bits control testing features that can be
used during initial system debugging. These features are
unique to the NS32532 implementation of the Series 32000
architecture; as such, they may not be supported in future
implementations. For normal operation these 2 bits should
be set to o.
SI Single-Instruction mode enable. This bit, when set

to 1, inhibits the overlapping of instruction's execu­
tion.

BCP Branch Condition Prediction disable. When this bit is
1, the branch prediction mechanism is disabled. See
Section 3.1.3.1.

DSR-Debug Status Register. The DSR Register indicates
debug conditions that have been detected. When the CPU
detects an enabled debug condition, it sets the correspond­
ing bit (BC, BEX, BCA) in the DSR to 1. When an address­
compare condition is detected, then the RD-bit is loaded to
indicate whether a read or write reference was performed.
Software must clear all the bits in the DSR when appropri­
ate. The format of the DSR is shown in Figure 2-8; the vari­
ous fields are described below.

RD Indicates whether the last address-compare condi­
tion was for a read (RD = 1) or write (RD = 0)
reference

BPC PC-match condition detected

BEX External condition detected

BCA Address-compare condition detected
Note 1: The content of the DSR register is not defined if a debug condition

was detected on a floating-point instruction in pipelined mode and a
trap was generated by a previous floating·point instruction.

Note 2: If an address compare is detected on a read and a write for the
same instruction then the RD-bit will remain clear.

CAR-Compare Address Register. The CAR Register
contains the address that is compared to operand reference
addresses to detect an address-compare condition. The ad­
dress must be double-word aligned; that is, the two least­
significant bits must be o. The CAR is 32 bits wide.

FIGURE 2-7. Debug Condition Register (DCR)

BPC BEX Reserved

FIGURE 2-8. Debug Status Register (DSR)

2-12

~--~z

2.0 Architectural Description (Continued)
BPC-Breakpolnt Program Counter. The BPC Register
contains the address that is compared with the PC contents
to detect a PC-match condition. The BPC Register is 32 bits
wide.

2.2 MEMORY ORGANIZATION

The NS32532 implements full 32-bit virtual addresses. This
allows the CPU to access up to 4 Gbytes of virtual memory.
The memory is a uniform linear address space. Memory lo­
cations are numbered sequentially starting at zero and end­
ing at 232 -1. The number specifying a memory location is
called an address. The contents of each memory location is
a byte consisting of eight bits. Unless otherwise noted, dia­
grams in this document show data stored in memory with
the lowest address on the right and the highest address on
the left. Also, when data is shown vertically, the lowest ad­
dress is at the top of a diagram and the highest address at
the bottom of the diagram. When bits are numbered in a
diagram, the least significant bit is given the number zero,
and is shown at the right of the diagram. Bits are numbered
in increasing significance and toward the left.

A "I
Byte at Address A

Two contiguous bytes are called a word. Except where not­
ed, the least significant byte of a word is stored at the lower
address, and the most significant byte of the word is stored
at the next higher address. In memory, the address of a
word is the address of its least significant byte, and a word
may start at any address.

A+1 A "I
MSB LSB

Word at Address A

Two contiguous words are called a double-word. Except
where noted, the least significant word of a double-word is

Address (Hex)

00000000

FFOOOOOO

FFBOOOOO

FFFFFEOO

FFFFFFFF

stored at the lowest address and the most significant word
of the double-word is stored at the address two higher. In
memory, the address of a double-word is the address of its
least significant byte, and a double-word may start at any
address.

24123 16
1

15

A+3 A+2 A+1 A "I
MSB LSB

Double-Word at Address A

Although memory is addressed as bytes, it is actually orga­
nized as double-words. Note that access time to a word or a
double-word depends upon its address, e.g. double-words
that are aligned to start at addresses that are multiples of
four will be accessed more quickly than those not so
aligned. This also applies to words that cross a double-word
boundary.

2.2.1 Address Mapping

Figure 2-9 shows the NS32532 address mapping.

The NS32532 supports the use of memory-mapped periph­
eral devices and coprocessors. Such memory-mapped de­
vices can be located at arbitrary locations in the address
space except for the upper B Mbytes of virtual memory (ad­
dresses between FFBOOOOO (hex) and FFFFFFFF (hex), in­
clusive), which are reserved by National Semiconductor
Corporation. Nevertheless, it is recommended that high-per­
formance peripheral devices and coprocessors be located
in a specific B Mbyte region of virtual memory (addresses
between FFOOOOOO (hex) and FF7FFFFF (hex), inclusive),
that is dedicated for memory-mapped I/O. This is because
the NS32532 detects references to the dedicated locations
and serializes reads and writes. See Section 3.1.3.3. When
making I/O references to addresses outside the dedicated
region, external hardware must indicate to the NS32532
that special handling is required.

In this case a small performance degradation will also re­
sult. Refer to Section 3.1.3.2 for more information on memo­
ry-mapped I/O.

Memory and I/O

Memory-Mapped I/O

Reserved by NSC

Interrupt Control

FIGURE 2-9. NS32532 Address Mapping

2-13

en
(,,)
N
U1
(,,)
N

I
N
o
Z en
(,,)
N
U1
(,,)
N
I

N
U1
Z en
(,,)
N
U1
(,,)
N

I
(,,)
o

o
Cf)

• N
Cf)
Lt)
N
Cf)
U)
Z
Lt)
N • N
Cf)
Lt)
N
Cf)
U)
Z
o
N • N
Cf)
Lt)
N
Cf)
U)
Z

2.0 Architectural Description (Continued)

2.3 MODULAR SOFTWARE SUPPORT

The NS32532 provides special support for software mod­
ules and modular programs.

Each module in a NS32532 software environment consists
of three components:

1. Program Code Segment.

This segment contains the module's code and constant
data.

2. Static Data Segment.

Used to store variables and data that may be accessed
by all procedures within the module.

3. Link Table.

This component contains two types of entries: Absolute
Addresses and Procedure Descriptors.

An Absolute Address is used in the external addressing
mode, in conjunction with a displacement and the current
MOD Register contents to compute the effective address
of an external variable belonging to another module.

The Procedure Descriptor is used in the call external pro­
cedure (CXP) instruction to compute the address of an
external procedure.

Normally, the linker program specifies the locations of the
three components. The Static Data and Link Table typically
reside in RAM; the code component can be either in RAM or
in ROM. The three components can be mapped into non­
contiguous locations in memory, and each can be indepen­
dently relocated. Since the Link Table contains the absolute
addresses of external variables, the linker need not assign
absolute memory addresses for these in the module itself;
they may be assigned at load time.

To handle the transfer of control from one module to anoth­
er, the NS32532 uses a module table in memory and two
registers in the CPU.

The Module Table is located within the first 64 kbytes of
virtual memory. This table contains a Module Descriptor
(also called a Module Table Entry) for each module in the
address space of the program. A Module Descriptor has
four 32-bit entries corresponding to each component of a
module:

• The Static Base entry contains the address of the begin­
ning of the module's static data segment.

• The Link Table Base points to the beginning of the mod­
ule's Link Table .

• The Program Base is the address of the beginning of the
code and constant data for the module.

• A fourth entry is currently unused but reserved.

The MOD Register in the CPU contains the address of the
Module Descriptor for the currently executing module.

The Static Base Register (SB) contains a copy of the Static
Base entry in the Module Descriptor of the currently execut­
ing module, Le., it points to the beginning of the current
module's static data area.

This register is implemented in the CPU for efficiency pur­
poses. By having a copy of the static base entry or chip, the
CPU can avoid reading it from memory each time a data
item in the static data segment is accessed.

In an NS32532 software environment modules need not be
linked together prior to loading. As modules are loaded, a
linking loader simply updates the Module Table and fills the
Link Table entries with the appropriate values. No modifica­
tion of a module's code is required. Thus, modules may be
stored in read-only memory and may be added to a system
independently of each other, without regard to their individu­
al addressing. Figure 2-10 shows a typical NS32532 run­
time environment.

STATIC DATA
SEGMENT

SB REGISTER

I
I
I
I
I
I
I
I

OFFSET--+C;)+-~
I
I
I
I
I
I
I
I
I

DISPI x 4

PROGRAM CODE
SEGMENT

DISP

31 LINK TABLE 0

EXT. VARIABLE

Note: Dashed lines indicate information copied to registers during transfer of control between modules.

FIGURE 2-10. NS32532 Run-Time Environment

2-14

DISP2

TL/EE/9354-2

2.0 Architectural Description (Continued)

2.4 MEMORY MANAGEMENT

The Memory Mangement Unit of the NS32532 provides
support for demand-paged virtual memory. The MMU trans­
lates 32-bit virtual addresses into 32-bit physical addresses.
The page size is 4096 bytes.

The mapping from virtual to physical addresses is defined
by means of sets of tables in physical memory. These tables
are found by the MMU using one of its two Page Table Base
registers: PTBO or PTB 1. Which register is used depends on
the currently selected address space. See Section 2.4.2.

Translation efficiency is improved by means of an on-chip
64-entry translation look-aside buffer (TLB). Refer to Sec­
tion 3.4.4 for details.

If the MMU detects a protection violation or page fault while
translating an address for a reference required to execute
an instruction, a translation exception (Trap (ABT)) will re­
sult.

2.4.1 Page Tables Structure

The page tables are arranged in a two-level structure, as
shown in Figure 2-11. Each of the MMU's PTBn registers
may point to a Level-1 page table. Each entry of the Level-1
page table may in turn point to a Level-2 page table. Each
Level-2 page table entry contains translation information for
one page of the virtual space.

The Level-1 page table must remain in physical memory
while the PTBn register contains its address and translation
is enabled. Level-2 Page Tables need not reside in physical
memory permanently, but may be swapped into physical
memory on demand as is done with the pages of the virtual
space.

The Level-1 Page Table contains 1024 32-bit Page Table
Entries (PTE's) and therefore occupies 4 Kbytes. Each entry
of the Level-1 Page Table contains a field used to construct
the physical base address of a Level-2 Page Table. This
field is a 20-bit PFN field, providing bits 12-31 of the physi­
cal address. The remaining bits (0-11) are assumed zero,
placing a Level-2 Page Table always on a 4-Kbyte (page)
boundary.

PTBn ~
10... ___ ---' ~ -32 BITS-

1024

'"IJ-----I
LEVEL-1

PAGE TABLE

1024

Level-2 Page Tables contain 1024 32-bit Page Table en­
tries, and so occupy 4 Kbytes (1 page). Each Level-2 Page
Table Entry points to a final4-Kbyte physical page frame. In
other words, its PFN provides the Page Frame Number por­
tion (bits 12-31) of the translated address (Figure 2-13).
The OFFSET field of the translated address is taken directly
from the corresponding field of the virtual address.

2.4.2 Virtual Address Spaces

When the Dual Space option is selected for address transla­
tion in the MCR (Section 2.1.5) the on-chip MMU uses two
maps: one for translating addresses presented to it in Su­
pervisor Mode and another for User Mode addresses. Each
map is referenced by the MMU using one of the two Page
Table Base registers: PTBO or PTB1. The MMU determines
the map to be used by applying the following rules.

1) While the CPU is in Supervisor Mode (U/S pin = 0), the
CPU is said to be generating virtual addresses belonging
to Address Space 0, and the MMU uses the PTBO regis­
ter as its reference for looking up translations from mem­
ory.

2) While the CPU is in User Mode (U/S pin = 1), and the
MCR DS bit is set to enable Dual Space translation, the
CPU is said to be generating virtual addresses belonging
to Address Space 1, and the MMU uses the PTB1 regis­
ter to look up translations.

3) If Dual Space translation is not selected in the MCR,
there is no Adress Space 1, and all virtual addresses gen­
erated in both Supervisor and User modes are consid­
ered by the MMU to be in Address Space O. The privilege
level of the CPU is used then only for access level check­
ing.

Note: When the CPU executes a Dual-Space Move instruction (MOVUSi or
MOVSUi), it temporarily enters User Mode by switching the state of
the U/S pin. Accesses made by the CPU during this time are treated
by the MMU as User-Mode accesses for both mapping and access
level checking. It is pOSSible, however, to force the MMU to assume
Supervisor Mode privilege on such accesses by setting the Access
Override (AO) bit in the MCR (Section 2.1.5).

-32 BITS-

4KBYTES

'"[..... ----...........

MEMORY

LEVEL-2
PAGE TABLES

TLlEE/9354-3

FIGURE 2-11. Two-Level Page Tables

2-15

z en w
I\)
(J1
W
I\) · I\)
o
z en
w
I\)
(J1
W
I\)
• I\)

(J1
z en
w
I\)
(J1
W
I\)
• W
o

o
C"')
• N

C"')
Ln
N
C"')
(J)
Z
Ln
N · N
C"')
Ln
N
C"')
(J)
Z o
N · N
C"')
Ln
N
C"')
(J)
Z

2.0 Architectural Description (Continued)

2.4.3 Page Table Entry Formats

Figure 2-12 shows the formats of Level-1 and Level-2 Page
Table Entries (PTE's).

The bits are defined as follows:

V Valid. The V bit is set and cleared only by software.

V = 1 = > The PTE is valid and may be used for
translation by the MMU.

V = 0 = > The PTE does not represent a valid trans­
lation. Any attempt to use this PTE to trans­
late and address will cause the MMU to
generate an Abort trap.

PL Protection Level. This two-bit field establishes the
types of accesses permitted for the page in both User
Mode and Supervisor Mode, as shown in Table 2-1.

The PL field is modified only by software. In a Level-1
PTE, it limits the maximum access level allowed for all
pages mapped through that PTE.

TABLE 2-1. Access Protection Levels

Mode U/S
Protection Level Bits (PL)

00 01 10 11

User 1 no no read full
access access only access

Supervisor 0 read full full full
only access access access

NU Not Used. These bits are reserved by National for
future enhancements. Their values should be set to
zero.

CI Cache Inhibit. This bit appears only in Level-2 PTE's.
It is used to specify non-cacheable pages.

PFN USR

R

M

Referenced. This is a status bit, set by the MMU and
cleared by the operating system, that indicates
whether the page mapped by this PTE has been ref­
erenced within a period of time determined by the
operating system. It is intended to assist in imple­
menting memory allocation strategies. In a Level-1
PTE, the R bit indicates only that the Level-2 Page
Table has been referenced for a translation, without
necessarily implying that the translation was suc­
cessful. In a Level-2 PTE, it indicates that the page
mapped by the PTE has been sucessfully referenced.

R = 1 = > The page has been referenced since the
R bit was last cleared.

R = 0 = > The page has not been referenced since
the R bit was last cleared.

Modified. This is a status bit, set by the MMU when­
ever a write cycle is successfully performed to the
page mapped by this PTE. It is initialized to zero by
the operating system when the page is brought into
physical memory.

M = 1 = > The page has been modified since it was
last brought into physical memory.

M = 0 = > The page has not been modified since it
was last brought into physical memory.

In Level-1 Page Table Entries, this bit po­
sition is undefined, and is unaltered.

USR User bits. These bits are ignored by the MMU and
their values are not changed.

They can be used by the user software.

PFN Page Frame Number. This 20-bit field provides bits
12-31 of the physical address. See Figure 2-13.

R : + :
First Level PTE

8

PFN USR : M R CI NU

Second Level PTE

FIGURE 2·12. Page Table Entries (PTE's)

2-16

2.0 Architectural Description (Continued)

VIRTUAL ADDRESS
31 22 21 12 11

I INDEX 1 I I
INDEX 2 OFFSET

I

I

E}-+ lEVEl·l PAGE TABLE

+
~ ,. lEVEl·l PTE

I PTBn I INDEX 1 I OO~ PFN I USR I NU I R Hp+
31 12 11 21 0 ~ 0

(11 SELECT 1ST PTE 1024
IF DS=D THEN PTEs

n=D

1 ELSE
n = 1 FOR USER MODE
n = 0 FOR SUPV MODE - -4 BYTES-

"'III" ~
PFN I INDEX 2 I 00 :

31 1211 21 0

(21 SELECT 2ND PTE

---,
I
I
I
I
~

I PFN I 000000000000 ~

PHYSICAL ADDRESS

lEVEl·2 PAGE TABLE

lEVEl·2 PTE

PFN IUSRI M \ R I CI\NU\PlI V 1024

31

"'III,. ~
I PFN I OFFSET

31 12 11

(31 GENERATE PHYSICAL
ADDRESS

'I
TL/EE/9354-4

FIGURE 2-13. Virtual to Physical Address Translation

2.4.4 Physical Address Generation

When a virtual address is presented to the MMU and the
translation information is not in the TLB, the MMU performs
a page table lookup in order to generate the physical ad­
dress.

The Page Table structure is traversed by the MMU using
fields taken from the virtual address. This sequence is dia­
grammed in Figure 2-13.

Bits 12-31 of the virtual address hold the 20-bit Page Num­
ber, which in the course of the translation is replaced with
the 20-bit Page Frame Number of the physical address. The
virtual Page Number field is further divided into two fields,
INDEX 1 and INDEX 2.

Bits 0-11 constitute the OFFSET field, which identifies a
byte's position within the accessed page. Since the byte
position within a page does not change with translation, this
value is not used, and is simply echoed by the MMU as bits
0-11 of the final physical address.

The 10-bit INDEX 1 field of the virtual address is used as an
index into the Level-1 Page Table, selecting one of its 1024
entries. The address of the entry is computed by adding
INDEX 1 (scaled by 4) to the contents of the current Page
Table Base register. The PFN field of that entry gives the
base address of the selected Level-2 Page Table.

The INDEX 2 field of the virtual address (10 bits) is used as
the index into the Level-2 Page Table, by adding it (scaled

2-17

by 4) to the base address taken from the Level-1 Page Ta­
ble Entry. The PFN field of the selected entry provides the
entire Page Frame Number of the translated address.

The offset field of the virtual address is then appended to
this frame number to generate the final physical address.

2.4.5. Address Translation Algorithm

The MMU either translates the 32-bit virtual address to a 32-
bit physical address or generates an abort trap to report a
translation error. The algorithm used by the MMU to perform
the translation is compatible with that of the NS32382. Re­
fer to Appendix C for differences between the two MMUs.

In the description that follows, the symbol 'U' takes the val­
ue 1 for a User-Mode memory reference. A reference is a
User-Mode reference in the following cases:

1. The reference is performed while executing in User­
Mode.

2. The reference is for the source operand of a MOVUS
instruction.

3. The reference is for the destination operand of a MOVSU
instruction.

The following notations are used in the algorithm.

• AIIB ~ A concatenated with B

• A.B ~ B is a field inside register A

• (A) ~ object pointed to by address A

• (A).B ~ B field of the object pointed to by address A

z en w
N
U1
W
N · N o
Z en
w
N
U1
W
N · N
U1
Z en
w
N
U1
W
N · W
o

C) r---,
C")
• N

C")
II)
N
C")
tJ)
Z
II)
N .
N
C")
II)
N
C")
tJ)
Z
C)

~
C")
II)
N
C")
tJ)
Z

2.0 Architectural Description (Continued)

Each access is associated with one of two Address Spaces
(AS), defined as follows:

AS = U AND MCR.OS

If AS = 1, Page Table Base Register 1 (PTB 1) is used to
select the first-level page table. If AS = 0, PTBO is used to
select the first-level page table.

The access-level is a 2-bit value used to specify the privi­
lege level of an access. It is determined as follows:

• BIT1 = U AND (NOT(MCR.AO»

• BITO = 1 for write, or read with 'RMW' status
o otherwise

START TRANSLATION:

If (U = 0 AND MCR.TS = 0 OR U = 1 AND MCR.TU = 0)

then

1* address translation disabled * /
(physical address ~ virtual address; ClOUT pin = 0);

/* Note: ClOUT = 0 in all MMU generated accesses */

else BEGIN r (see also Figure 2-13) */

1. Select PTB:

• If (MCR.DS = 1 AND U = 1) then

- PTB = PTB1,

- AS = 1;

• else (PTB = PTBO, AS = 0);

2. Fetch first level PTE:

• PTE Pointer = PTB.BASE ADDRESsIIINDEX11100;

• PTE ~ (PTE Pointer); /* Fetch PTE1 * /
• Effective PL ~ PTE.PL

3. Validate First Level PTE:

• If (PTE.PL < access level) then

• / * Protection Exception * /
- TEAR ~ virtual address,

- clock MSR with MSR.TEX = 11,

- terminate translation;

• If (PTE.V = 0) then

• /* PTE1 Invalid */

- TEAR ~ virtual address,

- clock MSR with MSR.TEX = 01,

- terminate translation;

• If (PTE.R = 0) then

- Write a Byte (PTE Pointer) .R = 1;

• Effective PL ~ PTE.PL

4. Fetch second level PTE:

• PTE Pointer = PTE.PFNIIINDEX21100;

• PTE ~ (PTE Pointer); /* Fetch PTE2 */

• If (PTE.PL < effective PL) then

- Effective PL ~ PTE.PL;

5. Validate Second Level PTE:

• If (PTE.PL < access level) then • '* Protection Exception * /

2-18

- TEAR ~ virtual address,

- clock MSR with MSR.TEX = 11,

- terminate translation;

• If (PTE.V = 0) then

• r PTE2 Invalid * /
- TEAR ~ virtual address,

- clock MSR with MSR.TEX = 10,

- terminate translation;

• If «read AND NOT interlocked) AND PTE.R = 0) then
Read-Modify-Write a double-word interlocked (PTE
Pointer).R = 1;

• If «write OR interlocked read) AND (PTE.R = 0 OR
PTE.M = 0) then Read-Modify-Write a double-word in­
terlocked (PTE Pointer).R = 1, (PTE Pointer).M = 1;

6. Generate Physical address:

• physical address ~ PTE.PFNlloFFSET

• ClOUT pin ~ PTE.CI

7. Update Translation Buffer:

• Select entry for replacement;

• TLB. Virtual Page Number ~ INDEX111INDEX2;

• TLB.AS ~ AS;

• TLB. Physical Frame Number ~ PTE.PFN

• TLB.PL ~ Effective PL

• TLB.CI ~ PTE.CI

• TLB.M ~ (PTE Pointer) .M

• Enable entry

END
Note 1: The TEAR and MSR are only updated when a Trap (ABn occurs. It

is possible that the MMU detects a page fault or protection violation
on a reference for an instruction that is not executed, for example
on a prefetch. In that event, Trap (ABn does not occur, and the
TEAR and MSR are not updated.

Note 2: If the MMU is translating a virtual address to check protection while
executing a RDVAL or WRVAL instruction, then Trap (ABn occurs
only if the level-1 PTE is invalid and the access is permitted by the
PL-field. These instructions will not generate an abort if the F bit
value can be determined from Level-1 PTE.

2.5 INSTRUCTION SET

2.5.1 General Instruction Format

Figure 2-14 shows the general format of a Series 32000
instruction. The Basic Instruction is one to three bytes long
and contains the Opcode and up to two 5-bit General Ad­
dressing Mode ("Gen") fields. Following the Basic Instruc­
tion field is a set of optional extensions, which may appear
depending on the instruction and the addressing modes se­
lected.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index­
ing. See Figure 2-15.

2.0 Architectural Description (Continued)

OPnONAL BA~C
EXTENSIONS INSTRucnON

r~------------------~A~------------------~\I~--------~~

DISPZ DISP1 DISPzIDISP1
I i ~ I

GEN I I
IMPUED INDEX INDEX I GEN I

ADDR AD DR I
1 EDlATE DISP DISP BYTE BYTE I I OPCODE

OPERANDlS) MODE
~ MODE I

1 2 I
I I

IMM IMM I I
I

t 4.. j

TL/EE/9354-5

FIGURE 2·14. General Instruction Format

I ' GEN. ADDR. MODE l REG. NO.
o I

TL/EE/9354-6

FIGURE 2·15. Index Byte Format

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select­
ed addressing modes. Each Disp/lmm field may contain
one or two displacements, or one immediate value. The size
of a Displacement field is encoded with the top bits of that
field, as shown in Figure 2-16, with the remaining bits inter­
preted as a signed (two's complement) value. The size of an
immediate value is determined from the Opcode field. Both
Displacement and Immediate fields are stored most signifi­
cant byte first. Note that this is different from the memory
representation of data (Section 2.2).

Some instructions require additional, 'implied" immediates
and/or displacements, apart from those associated with ad­
dressing modes. Any such extensions appear at the end of
the instruction, in the order that they appear within the list of
operands in the instruction definition (Section 2.5.3).

2.5.2 Addressing Modes

The CPU generally accesses an operand by calculating its
Effective Address based on information available when the
operand is to be accessed. The method to be used in per­
forming this calculation is specified by the programmer as
an "addressing mode."

Addressing modes are designed to optimally support high­
level language accesses to variables. In nearly all cases, a
variable access requires only one addressing mode, within
the instruction that acts upon that variable. Extraneous data
movement is therefore minimized.

Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight Gen­
eral Purpose Registers. In certain Slave Processor instruc­
tions, an auxiliary set of eight registers may be referenced
instead.

Register Relative: A General Purpose Register contains an
address to which is added a displacement value from the
instruction, yielding the Effective Address of the operand in
memory.

Memory Space: Identical to Register Relative above, ex­
cept that the register used is one of the dedicated registers

2-19

PC, SP, SB or FP. These registers point to data areas gen­
erally needed by high-level languages.

7

1

Byte Displacement: Range -64 to +63

SIGNED DISPLACEMENT
o I

Word Displacement: Range -8192 to +8191

I
1

Double Word Displacement:
Range -(229 - 224) to + (229 - 1)*

0

1\

~,

cJo~
rI>~"'o

TL/EE/9354-7

FIGURE 2·16. Displacement Encodlngs
'Note: The pattern "11100000" for the most significant byte of the displace­

ment is reserved by National for future enhancements. Therefore, it
should never be used by the user program. This causes the lower
limit of the displacement range to be -(229 -224) instead of -229.

z en w
N
U1
W
N
I

N
o
........
Z en
w
N
U1
W
N
I

N
U1
........
Z en
w
N
U1
W
N
I

W
o

o
C") .
N
C")
II)
N
C")
t/)
Z
II)

~
N
C")
II)
N
C")
t/)
Z o
N .
N
C")
II)
N
C")
t/)
Z

2.0 Architectural Description (Continued)

Memory Relative: A pointer variable is found within the
memory space pointed to by the SP, S8 or FP register. A
displacement is added to that pointer to generate the Effec­
tive Address of the operand.

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written.

Absolute: The address of the operand is specified by a
displacement field in the instruction.

External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis­
placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SPO or
SP1) specifies the location of the operand. The operand is
pushed or popped, depending on whether it is written or
read.

Scaled Index: Although encoded as an addressing mode,
Scaled Indexing is an option on any addressing mode ex­
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen­
eral Purpose Register by 1, 2, 4 or 8 and adding it into the
total, yielding the final Effective Address of the operand.

Table 2-2 is a brief summary of the addressing modes. For a
complete description of their actions, see the Instruction Set
Reference Manual.

2.5.3 InstructIon Set Summary

Table 2-3 presents a brief description of the NS32532 in­
struction set. The Format column refers to the Instruction

2-20

Format tables (Appendix A). The Instruction column gives
the instruction as coded in assembly language, and the De­
scription column provides a short description of the function
provided by that instruction. Further details of the exact op­
erations performed by each instruction may be found in the
Instruction Set Reference Manual.

Notations:

i = Integer length suffix: 8 = 8yte

W = Word

D = Double Word

f = Floating Point length suffix: F = Standard Floating

L = Long Floating

gen = General operand. Any addressing mode can be
specified.

short = A 4-bit value encoded within the Basic Instruction
(see Appendix A for encodings).

imm = Implied immediate operand. An 8-bit value append­
ed after any addressing extensions.

disp = Displacement (addressing constant): 8, 16 or 32
bits. All three lengths legal.

reg = Any General Purpose Register: RO-R7.

areg = Any Processor Register: Address, Debug, Status,
Configuration.

mreg = Any Memory Management Register.

creg = A Custom Slave Processor Register (Implementa­
tion Dependent).

cond = Any condition code, encoded as a 4-bit field within
the Basic Instruction (see Appendix A for encodings).

2.0 Architectural Description (Continued)

ENCODING
Register
00000
00001
00010
00011
00100
00101
00110
00111

Register Relative
01000
01001
01010
01011
01100
01101
01110
01111

Memory Relative
10000
10001
10010

Reserved
10011

Immediate
10100

Absolute
10101

External
10110

Top of Stack
10111

Memory Space
11000
11001
11010
11011

Scaled Index
11100
11101
11110
11111

TABLE 2·2. NS32532 Addressing Modes

MODE

Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7

Register 0 relative
Register 1 relative
Register 2 relative
Register 3 relative
Register 4 relative
Register 5 relative
Register 6 relative
Register 7 relative

Frame memory relative
Stack memory relative
Static memory relative

(Reserved for Future Use)

Immediate

Absolute

External

Top of stack

Frame memory
Stack memory
Static memory
Program memory

Index, bytes
Index, words
Index, double words
Index, quad words

ASSEMBLER SYNTAX

RO, FO, LO
R1, F1, L1
R2, F2, L2
R3, F3, L3
R4,F4,L4
R5,F5,L5
R6, F6, L6
R7, F7, L7

disp(RO)
disp(R1)
disp(R2)
disp(R3)
disp(R4)
disp(R5)
disp(R6)
disp(R7)

disp2(disp1 (FP»
disp2(disp1 (SP»
disp2(disp1 (S8»

value

@disp

EXT(disp1) + disp2

TOS

disp(FP)
disp(SP)
disp(S8)
*+disp

mode[Rn:8]
mode[Rn:W]
mode[Rn:D]
mode[Rn:Q]

2-21

EFFECTIVE ADDRESS

None: Operand is in the
specified register.

Disp + Register.

Disp2 + Pointer; Pointer found at
address Disp1 + Register. "SP" is either
SPO or SP1, as selected in PSR.

None. Operand is input from
instruction queue.

Disp.

Disp2 + Pointer; Pointer is found
at Link Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Disp + Register; "SP" is either
SPO or SP1 , as selected in PSR.

EA (mode) + Rn.
EA (mode) + 2 x Rn.
EA (mode) + 4 X Rn.
EA (mode) + 8 x Rn.
"Mode' and 'n' are contained
within the Index 8yte.
EA (mode) denotes the effective
address generated using mode.

z en
Co)
I\)
U1
Co)
I\) · I\)
o
z en
Co)
I\)
U1
Co)
I\) · I\)
U1 z en
Co)
I\)
U1
Co)
I\) · Co)
o

0
C") · 2.0 Architectural Description (Continued) N
C")
it)

TABLE 2-3. NS32532 Instruction Set Summary N
C")

en MOVES
Z Format Operation Operands Description
it) 4 MOVi gen,gen Move a value. N · 2 MOVQi short,gen Extend and move a signed 4-bit constant. N
C") 7 MOVMi gen,gen,disp Move Multiple: disp bytes (1 to 16). it)
N 7 MOVZBW gen,gen Move with zero extension. C")

en 7 MOVZiD gen,gen Move with zero extension.
Z 7 MOVXBW gen,gen Move with sign extension.
0 7 MOVXiD gen,gen Move with sign extension. N · 4 ADDR Move Effective Address. N gen,gen
C")
it) INTEGER ARITHMETIC N
C") Format Operation Operands Description en
Z 4 ADDI gen,gen Add.

2 ADDQi short,gen Add signed 4-bit constant.
4 ADDCi gen,gen Add with carry.
4 SUBi gen,gen Subtract.
4 SUBCi gen,gen Subtract with carry (borrow).
6 NEGi gen,gen Negate (2's complement).
6 ABSi gen,gen Take absolute value.
7 MUll gen,gen Multiply.
7 QUOi gen,gen Divide, rounding toward zero.
7 REMi gen,gen Remainder from QUO.
7 DIVi gen,gen Divide, rounding down.
7 MODi gen,gen Remainder from DIV (Modulus).
7 MEIi gen,gen Multiply to Extended Integer.
7 DEli gen,gen Divide Extended Integer.

PACKED DECIMAL (BCD) ARITHMETIC
Format Operation Operands Description

6 ADDPi gen,gen Add Packed.
6 SUBPi gen,gen Subtract Packed.

INTEGER COMPARISON
Format Operation Operands Description

4 CMPi gen,gen Compare.
2 CMPQi short,gen Compare to signed 4-bit constant.
7 CMPMi gen,gen,disp Compare Multiple: disp bytes (1 to 16).

LOGICAL AND BOOLEAN
Format Operation Operands Description

4 ANDi gen,gen Logical AND.
4 ORi gen,gen Logical OR.
4 BICi gen,gen Clear selected bits.
4 XORi gen,gen Logical Exclusive OR.
6 COMi gen,gen Complement all bits.
6 NOTi gen,gen Boolean complement: LSB only.
2 Scondi gen Save condition code (cond) as a Boolean variable of size i.

SHIFTS
Format Operation Operands Description

6 LSHi gen,gen Logical Shift, left or right.
6 ASHi gen,gen Arithmetic Shift, left or right.
6 ROTi gen,gen Rotate, left or right.

2-22

2.0 Architectural Description (Continued)

TABLE 2·3. NS32532 Instruction Set Summary (Continued)
BITS
Format Operation Operands Description

4 TBITi gen,gen Test bit.
6 SBITi gen,gen Test and set bit.
6 SBITli gen,gen Test and set bit, interlocked.
6 CBITi gen,gen Test and clear bit.
6 CBITli gen,gen Test and clear bit, interlocked.
6 IBITi gen,gen Test and invert bit.
8 FFSi gen,gen Find first set bit.

BIT FIELDS
Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records used in
Pascal. "Extract" instructions read and align a bit field. "Insert" instructions write a bit field from an aligned source.
Format Operation Operands Description

8 EXTi reg,gen,gen,disp Extract bit field (array oriented).
8 INSi reg,gen,gen,disp Insert bit field (array oriented).
7 EXTSi gen,gen,imm,imm Extract bit field (short form).
7 INSSi gen,gen,imm,imm Insert bit field (short form).
8 CVTP reg,gen,gen Convert to Bit Field Pointer.

ARRAYS
Format

8
8

STRINGS

Operation
CHECKi
INDEXi

Operands
reg,gen,gen
reg,gen,gen

String instructions assign specific functions to
the General Purpose Registers:
R4 • Comparison Value
R3 • Translation Table Pointer
R2 • String 2 Pointer
R1 • String 1 Pointer
RD - Limit Count

Format Operation Operands
5 MOVSi options

MOVST options
5 CMPSi options

CMPST options
5 SKPSi options

SKPST options

Description
Index bounds check.
Recursive indexing step for multiple-dimensional arrays.

Options on all string instructions are:
B (Backward): Decrement string pointers after each step

rather than incrementing.
U (Until match): End instruction if String 1 entry

matches R4.
W (While match): End instruction if String 1 entry

does not match R4.
All string instructions end when RD decrements to zero.
Description
Move String 1 to String 2.
Move string, translating bytes.
Compare String 1 to String 2.
Compare translating, String 1 bytes.
Skip over String 1 entries.
Skip, translating bytes for Until/While.

2-23

z en
CAl
N
U1
CAl
N .
N o
Z en
CAl
N
U1
CAl
N
N
U1
z en
CAl
N
U1
CAl
N
W
o

o
C"')

~ 2.0 Architectural Description (Continued)

~ TABLE 2-3. NS32532 Instruction Set Summary (Continued)
~ JUMPS AND LINKAGE
Z
I.t)
N • N
C"')
I.t)
N
C"')
(J)
Z o
N • N
C"')
I.t)
N
C"')
(J)
Z

Format Operation Operands
3 JUMP gen
0 BR disp
0 Bcond disp
3 CASEi gen
2 ACBi short,gen,disp
3 JSR gen

BSR disp
CXP disp

3 CXPD gen
1 SVC
1 FLAG

BPT
ENTER [reg list] ,disp
EXIT [reg list]
RET disp
RXP disp
RETT disp

1 RETI

CPU REGISTER MANIPULATION
Format Operation Operands

1 SAVE [reg list]
RESTORE [reg list]

2 LPRi areg,gen

2 SPRi areg,gen

3 ADJSPi gen
3 BISPSRi gen
3 BICPSRi gen
5 SETCFG [option list]

FLOATING POINT
Format Operation Operands

11 MOVf gen,gen
9 MOVLF gen,gen
9 MOVFL gen,gen
9 MOVif gen,gen
9 ROUNDfi gen,gen
9 TRUNCfi gen,gen
9 FLOORfi gen,gen
11 ADDf gen,gen
11 SUBf gen,gen
11 MULf gen,gen
11 DIVf gen,gen
11 CMPf gen,gen
11 NEGf gen,gen
11 ABSf gen,gen
12 POLYf gen,gen
12 DOTf gen,gen
12 SCALBf gen,gen
12 LOGBf gen,gen
12 SQRTf gen,gen
12 MACf gen,gen
9 LFSR gen
9 SFSR gen

Description
Jump.
Branch (PC Relative).
Conditional branch.
Multiway branch.
Add 4-bit constant and branch if non-zero.
Jump to subroutine.
Branch to subroutine.
Call external procedure.
Call external procedure using descriptor.
Supervisor Call.
Flag Trap.
Breakpoint Trap.
Save registers and allocate stack frame (Enter Procedure).
Restore registers and reclaim stack frame (Exit Procedure).
Return from subroutine.
Return from external procedure call.
Return from trap. (Privileged)
Return from interrupt. (Privileged)

Description
Save General Purpose Registers.
Restore General Purpose Registers.
Load Processor Register. (Privileged if PSR, INTBASE, USP, CFG
or Debug Registers).
Store Processor Register. (Privileged if PSR, INTBASE, USP, CFG
or Debug Registers).
Adjust Stack Pointer.
Set selected bits in PSR. (Privileged if not Byte length)
Clear selected bits in PSR. (Privileged if not Byte length)
Set Configuration Register. (Privileged)

Description
Move a Floating Point value.
Move and shorten a Long value to Standard.
Move and lengthen a Standard value to Long.
Convert any integer to Standard or Long Floating.
Convert to integer by rounding.
Convert to integer by truncating, toward zero.
Convert to largest integer less than or equal to value.
Add.
Subtract.
Multiply.
Divide.
Compare.
Negate.
Take absolute value.
Polynomial Step.
Dot Product.
Binary Scale.
Binary Log.
Square Root
Multiply and Accumulate
Load FSR.
Store FSR.

2-24

z
2.0 Architectural Description (Continued)

en
CI.)
N
U1

TABLE 2·3. NS32532 Instruction Set Summary (Continued) CI.)
N

MEMORY MANAGEMENT • N
Format Operation Operands Description Q

.......
14 LMR mreg,gen Load Memory Management Register. (Privileged) Z en 14 SMR mreg,gen Store Memory Management Register. (Privileged) CI.)

14 RDVAL Validate address for reading. (Privileged) N gen U1
14 WRVAL gen Validate address for writing. (Privileged) CI.)

N
8 MOVSUi Move a value from Supervisor · gen,gen N

Space to User Space. (Privileged) U1
.......

8 MOVUSi gen,gen Move a value from User Space Z en
to Supervisor Space. (Privileged) CI.)

N
MISCELLANEOUS U1

CI.)

Format Operation Operands Description N •
1 NOP No Operation. CI.)

Q

WAIT Wait for interrupt.
DIA Diagnose. Single-byte "Branch to Self" for hardware

breakpointing. Not for use in programming.
14 CINV options,gen Cache Invalidate. (Privileged)

CUSTOM SLAVE
Format Operation Operands Description

15.5 CCALOc gen,gen Custom Calculate.
15.5 CCAL1c gen,gen
15.5 CCAL2c gen,gen
15.5 CCAL3c gen,gen
15.5 CMOVOc gen,gen Custom Move.
15.5 CMOV1c gen,gen
15.5 CMOV2c gen,gen
15.5 CMOV3c gen,gen
15.5 CCMPOc gen,gen Custom Compare.
15.5 CCMP1c gen,gen
15.1 CCVOci gen,gen Custom Convert.
15.1 CCV1ci gen,gen
15.1 CCV2ci gen,gen
15.1 CCV3ic gen,gen
15.1 CCV4DQ gen,gen
15.1 CCV5QD gen,gen
15.1 LCSR gen Load Custom Status Register.
15.1 SCSR gen Store Custom Status Register.
15.0 LCR creg,gen Load Custom Register. (Privileged)
15.0 SCR creg,gen Store Custom Register. (Privileged) •

2-25

o
C') · C\I
C')
Lt)
C\I
C')
U)
z
Lt)
C\I · C\I
C')
Lt)
C\I
C')
U)
z o
C\I · C\I
C')
Lt)
C\I
C')
U)
z

3.0 Functional Description
This chapter provides details on the functional characteris­
tics of the NS32532 microprocessor.

The chapter is divided into five main sections:

Instruction Execution, Exception Processing, Debugging,
On·Chip Caches and System Interface.

3.1 INSTRUCTION EXECUTION

To execute an instruction, the NS32532 performs the fol­
lowing operations:

• Fetch the instruction

• Read source operands, if any (1)

• Calculate results

• Write result operands, if any

• Modify flags, if necessary

• Update the program counter

Under most circumstances, the CPU can be conceived to
execute instructions by completing the operations above in
strict sequence for one instruction and then beginning the
sequence of operations for the next instruction. However,
due to the internal instruction pipelining, as well as the oc­
currence of exceptions, the sequence of operations per­
formed during the execution of an instruction may be al­
tered. Furthermore, exceptions also break the sequentiality
of the instructions executed by the CPU.

Details on the effects of the internal pipelining, as well as
the occurrence of exceptions on the instruction execution,
are provided in the following sections.
Note: 1 In this and following sections. memory locations read by the CPU to

calculate effective addresses for Memory·Relative and External ad­
dressing modes are considered like source operands, even if the
effective address is being calculated for an operand with access
class of write.

3.1.1 Operating States

The CPU has five operating states regarding the execution
of instructions and the processing of exceptions: Reset, Ex­
ecuting Instructions, Processing An Exception, Waiting-For­
An·lnterrupt, and Halted. The various states and transitions
between them are shown in Figure 3-1.

Whenever the RST signal is asserted, the CPU enters the
reset state. The CPU remains in the reset state until the
RST signal is driven inactive, at which time it enters the
Executing-Instructions state. In the Reset state the contents
of certain registers are initialized. Refer to Section 3.5.3 for
details.

In the Executing-Instructions state, the CPU executes in­
structions. It will exit this state when an exception is recog­
nized or a WAIT instruction is encountered. At which time it
enters the Processing-An-Exception state or the Waiting·
For-An-Interrupt state respectively.

While in the Processing-An-Exception state, the CPU saves
the PC, PSR and MOD register contents on the stack and
reads the new PC and module linkage information to begin
execution of the exception service procedure (see note).

Following the completion of all data references required to
process an exception, the CPU enters the Executing-In­
structions state.

In the Waiting.For-An-lnterrupt state, the CPU Is Idle. A spe­
cial status identifying this state Is presented on the system
Interface (Section 3.5). When an interrupt or a debug condi-

2-26

RST ACTIVE

TLlEE/9354-B

FIGURE 3·1. Operating States

tion is detected, the CPU enters the Processing-An-Excep­
tion state.

The CPU enters the Halted state when a bus error or abort
is detected while the CPU is processing an exception, there­
by preventing the transfer of control to an appropriate ex­
ception service procedure. The CPU remains in the Halted
state until reset occurs. A special status identifying this state
is presented on the system interface.
Note: When the Direct·Exception mode is enabled, the CPU does not save

the MOD Register contents nor does it read the module linkage infor·
mation for the exception service procedure. Refer to Section 3.2 for
details.

3.1.2 Instruction Endings

The NS32532 checks for exceptions at various points while
executing instructions. Certain exceptions, like interrupts,
are in most cases recognized between instructions. Other
exceptions, like Divide-By-Zero Trap, are recognized during
execution of an instruction. When an exception is recog­
nized during execution of an instruction, the instruction ends
in one of four possible ways: completed, suspended, termi­
nated, or partially completed. Each type of exception caus­
es a particular ending, as specified in Section 3.2.

3.1.2.1 Completed Instructions

When an exception Is recognized after an instruction is
completed, the CPU has performed all of the operations for
that instruction and for all other Instructions executed since
the last exception occurred. Result operands have been
written, flags have been modified, and the PC saved on the
Interrupt Stack contains the address of the next Instruction
to execute. The exception service procedure can, at its con·
clusion, execute the RETI instruction (or the RETI instruc·
tion for vectored Interrupts), and the CPU will begin execut·
ing the instruction following the completed instruction.

3.0 Functional Description (Continued)

3.1.2.2 Suspended Instructions

An instruction is suspended when one of several trap condi­
tions or a restartable bus error is detected during execution
of the instruction. A suspended instruction has not been
completed, but all other instructions executed since the last
exception occurred have been completed. Result operands
and flags due to be affected by the instruction may have
been modified, but only modifications that allow the instruc­
tion to be executed again and completed can occur. For
certain exceptions (Trap (ABT), Trap (UNO), Trap (ILL), and
bus errors) the CPU clears the P-flag in the PSR before
saving the copy that is pushed on the Interrupt Stack. The
PC saved on the Interrupt Stack contains the address of the
suspended instruction.

For example, the RESTORE instruction pops up to 8 gener­
al-purpose registers from the stack. If an invalid page table
entry is detected on one of the references to the stack, then
the instruction is suspended. The general-purpose registers
due to be loaded by the instruction may have been modified,
but the stack pOinter still holds the same value that it did
when the instruction began.

To complete a suspended instruction, the exception service
procedure takes either of two actions:

1. The service procedure can simulate the suspended in­
struction's execution. After calculating and writing the in­
struction's results, the flags in the PSR copy saved on the
Interrupt Stack should be modified, and the PC saved on
the Interrupt Stack should be updated to point to the next
instruction to execute. The service procedure can then
execute the RETT instruction, and the CPU begins exe­
cuting the instruction following the suspended instruction.
This is the action taken when floating-point instructions
are simulated by software in systems without a hardware
floating-point unit.

2. The suspended instruction can be executed again after
the service procedure has eliminated the trap condition
that caused the instruction to be suspended. The service
procedure should execute the RETT instruction at its con­
clusion; then the CPU begins executing the suspended
instruction again. This is the action taken by a debugger
when it encounters a BPT instruction that was temporarily
placed in another instruction's location in order to set a
breakpoint.

Note 1: Although the NS32532 allows a suspended instruction to be execut·
ed again and completed, the CPU may have read a source operand
for the instruction from a memory-mapped peripheral port before
the exception was recognized. In such a case, the characteristics of
the peripheral device may prevent correct reexecution of the in­
struction.

Note 2: It may be necessary for the exception service procedure to alter the
P-flag in the PSR copy saved on the Interrupt Stack: If the exception
service procedure simulates the suspended instruction and the P­
flag was cleared by the CPU before saving the PSR copy, then the
saved T-flag must be copied to the saved P-flag (like the floating·
point instruction simulation described above). Or if the exception
service procedure executes the suspended instruction again and
the P-flag was not cleared by the CPU before saving the PSR copy,
then the saved P-flag must be cleared (like the breakpoint trap de­
scribed above). Otherwise, no alteration to the saved P-flag is nec­
essary.

3.1.2.3 Terminated Instructions

An instruction being executed is terminated when reset or a
nonrestartable bus error occurs. Any result operands and
flags due to be affected by the instruction are undefined, as

2-27

are the contents of the Stack Pointers. The result operands
of other instructions executed since the last serializing oper­
ation may not have been written to memory. A terminated
instruction cannot be completed.

3.1.2.4 Partially Completed Instructions

When a restartable bus error, interrupt, abort, or debug con­
dition is recognized during execution of a string instruction,
the instruction is said to be partially completed. A partially
completed instruction has not completed, but all other in­
structions executed since the last exception occurred have
been completed. Result operands and flags due to be af­
fected by the instruction may have been modified, but the
values stored in the string pointers and other general-pur­
pose registers used during the instruction's execution allow
the instruction to be executed again and completed.

The CPU clears the P-flag in the PSR before saving the
copy that is pushed on the Interrupt Stack. The PC saved on
the Interrupt Stack contains the address of the partially
completed instruction. The exception service procedure
can, at its conclusion, simply execute the RETT instruction
(or the RETI instruction for vectored interrupts), and the
CPU will resume executing the partially completed instruc­
tion.

3.1.3 Instruction Pipeline

The NS32532 executes instructions in a heavily pipelined
fashion. This allows a Significant performance enhancement
since the operations of several instructions are performed
simultaneously rather than in a strictly sequential manner.

The CPU provides a four-stage internal instruction pipeline.
As shown in Figure 3-2, a write buffer, that can hold up to
two operands, is also provided to allow write operations to
be performed off-line.

stage 1

Buffer

Stage 2

Buffer

Stage 3

Stage 4

.------- -------.
: 2 Memory Results : Buffer ._-------------_.

TL/EE/9354-9

FIGURE 3·2. NS32532 Internal Instruction Pipeline

Due to the pipelining, operations like fetching one instruc­
tion, reading the source operands of a second instruction,
calculating the results of a third instruction and storing the
results of a fourth instruction, can all occur in parallel.

z en
eN
I\)
UI
eN
I\) · I\)
o
z en
eN
I\)
UI
eN
I\) · I\)
UI
z en
eN
I\)
UI
eN
I\)

• eN
o

•

o
C") · N
C")
LI)
N
C")

en z
.......
LI)
N · N
C")
LI)
N
C")

en z
o
N · N
C")
LI)
N
C")

en z

3.0 Functional Description (Continued)

The order of memory references performed by the CPU may
also differ from that related to a strictly sequential instruc­
tion execution. In fact, when an instruction is being execut­
ed, some of the source operands may be read from memory
before the instruction is completely fetched. For example,
the CPU may read the first source operand for an instruction
before it has fetched a displacement used in calculating the
address of the second source operand. The CPU, however,
always completes fetching an instruction and reading its
source operands before writing its results. When more than
one source operand must be read from memory to execute
an instruction, the operands may be read in any order. Simi­
larly, when more than one result operand is written to mem­
ory to execute an instruction, the operands may be written
in any order.

An instruction is fetched only after all previous instructions
have been completely fetched. However, the CPU may be­
gin fetching an instruction before all of the source operands
have been read and results written for previous instructions.

The source operands for an instruction are read only after
all previous instructions have been fetched and their source
operands read. A source operand for an instruction may be
read before all results of previous instructions have been
written, except when the source operand's value depends
on a result not yet written. The CPU compares the physical
address and length of a source operand with those of any
results not yet written, and delays reading the source oper­
and until after writing all results on which the source oper­
and depends. Also, the CPU ensures that the interlocked
read and write references to execute an SBITli or CBITli
instruction occur after writing all results of previous instruc­
tions and before reading any source operands for subse­
quent instructions.

The result operands for an instruction are written after all
results of previous instructions have been written.

The description above is summarized in Figure 3-3, which
shows the precedence of memory references for two con­
secutive instructions.

INSTRUCTION N INSTRUCTION N + 1

INSTRUCTION FETCH ~UCTION FETCH

\ ~\"W · ~TA\ 1
DATA WRITE ~ DATA WRITE

TLlEE/9354-10

FIGURE 3-3. Memory References for
Consecutive Instructions

(An arrow from one reference to another Indicates that
the first reference always precedes the second.)

Another consequence of overlapping the operations for sev­
eral instructions, is that the CPU may fetch an instruction
and read its source operands, even though the instruction is
not executed (e.g., due to the occurrence of an exception).
In such a case, the MMU may update the R-bit in Page
Table Entries used in referring to the fetched instruction and
its source operands.

Special care is needed in the handling of memory-mapped
liD devices. The CPU provides special mechanisms to en­
sure that the references to these devices are always per-

2-28

formed in the order implied by the program. Refer to Section
3.1.3.2 for details.

It is also to be noted that the CPU does not check for de­
pendencies between the fetching of an instruction and the
writing of previous instructions' results. Therefore, special
care is required when executing self-modifying code.

3.1.3.1 Branch Prediction

One problem inherent to all pipelined machines is what is
called "Pipeline Breakage".

This occurs every time the sequentiality of the instructions is
broken, due to the execution of certain instructions or the
occurrence of exceptions.

The result of a pipeline breakage is a performance degrada­
tion, due to the fact that a certain portion of the pipeline
must be flushed and new data must be brought in.

The NS32532 provides a special mechanism, called branch
prediction, that helps minimize this performance penalty.

When a conditional branch instruction is decoded in the ear­
ly stages of the pipeline, a prediction on the execution of the
instruction is performed.

More precisely, the prediction mechanism predicts back­
ward branches as taken and forward branches as not taken,
except for the branch instructions BLE and BNE that are
always predicted as taken.

Thus, the resulting probability of correct prediction is fairly
high, especially for branch instructions placed at the end of
loops.

The sequence of operations performed by the loader and
execution units in the CPU is given below:

• Loader detects branches and calculates destination ad­
dresses

• Loader uses branch opcode and direction to select be-
tween sequential and non-sequential streams

• Loader saves address for alternate stream

• Execution unit resolves branch decision

Due to the branch predicition, some special care is required
when writing self-modifying code. Refer to the appropriate
section in Appendix B for more information on this subject.

3.1.3.2 Memory-Mapped I/O

The characteristics of certain peripheral devices and the
overlapping of instruction execution in the pipeline of the
NS32532 require that special handling be applied to memo­
ry-mapped liD references. liD references differ from mem­
ory references in two significant ways, imposing the follow­
ing requirements:

1. Reading from a peripheral port can alter the value read
on the next reference to the same port or another port in
the same device. (A characteristic called here "destruc­
tive-reading".) Serial communication controllers and
FIFO buffers commonly operate in this manner. As ex­
plained in "Instruction Pipeline" above, the NS32532 can
read the source operands for one instruction while the
previous instruction is executing. Because the previous
instruction may cause a trap, an interrupt may be recog­
nized, or the flow of control may be otherwise altered, it is
a requirement that destructive-reading of source oper­
ands before the execution of an instruction be avoided.

3.0 Functional Description (Continued)

2. Writing to a peripheral port can alter the value read from
another port of the same device. (A characteristic called
here "side-effects of writing"). For example, before read­
ing the counter's value from the NS32202 Interrupt Con­
trol Unit it is first necessary to freeze the value by writing
to another control register.

However, as mentioned above, the NS32532 can read the
source operands for one instruction before writing the re­
sults of previous instructions unless the addresses indicate
a dependency between the read and write references. Con­
sequently, it is a requirement that read and write references
to peripheral that exhibit side-effects of writing must occur in
the order dictated by the instructions.

The NS32532 supports 2 methods for handling memory­
mapped 1/0. The first method is more general; it satisfies
both requirements listed above and places no restriction on
the location of memory-mapped peripheral devices. The
second method satisfies only the requirement for side ef­
fects of writing, and it restricts the location of memory­
mapped 1/0 devices, but it is more efficient for devices that
do not have destructive-read ports.

The first method for handling memory-mapped 1/0 uses two
signals: 10lNH and 100EC. When the NS32532 generates a
read bus cycle, it asserts the output signallOINH if either of
the 1/0 requirements listed above is not satisfied. That is,
10lNH is asserted during a read bus cycle when (1) the read
reference is for an instruction that may not be executed or
(2) the read reference occurs while a write reference is
pending for a previous instruction. When the read reference
is to a peripheral device that implements ports with destruc­
tive-reading or side-effects of writing, the input signal
100EC must be asserted; in addition, the device must not
be selected if 10lNH is active. When the CPU detects that
the 100EC input signal is active while the 10lNH output sig­
nal is also active, it discards the data read during the bus
cycle and serializes instruction execution. See the next sec­
tion for details on serializing operations. The CPU then gen­
erates the read bus cycle again, this time satisfying the re­
quirements for 1/0 and driving 10lNH inactive.

The second method for handling memory-mapped 1/0 uses
a dedicated region of virtual memory. The NS32532 treats
all references to the memory range from address FFOOOOOO
to address FFFFFFFF inclusive in a special manner.

While a write to a location in this range is pending, reads
from locations in the same range are delayed. However,
reads from locations with addresses lower than FFOOOOOO
may occur. Similarly, reads from locations in the above
range may occur while writes to locations outside of the
range are pending.

It is to be noted that the CPU may assert 10lNH even when
the reference is within the dedicated region. Refer to Sec­
tion 3.5.8 for more information on the handling of 1/0 devic­
es.

3.1.3.3 Serializing Operations

After executing certain instructions or processing an excep­
tion, the CPU serializes instruction execution. Serializing in­
struction execution means that the CPU completes writing
all previous instructions' results to memory, then begins
fetching and executing the next instruction.

For example, when a new value is loaded into the PSR by
executing an LPRW instruction, the pipeline is flushed and a

2-29

serializing operation takes place. This is necessary since
the privilege level might have changed and the instructions
following the LPRW instruction must be fetched again with
the new privilege level and possibly with a different MMU
mapping. See Section 2.4.2.

The CPU serializes instruction execution after executing one
of the following instructions: BICPSRW, BISPSRW, BPT,
CINV, OIA, FLAG (trap taken), LMR, LPR (CFG, INTBASE,
PSR, UPSR, OCR, BPC, OSR, and CAR only), RETT, RETI,
and SVC. Figure 3-4 shows the memory references after
serialization.
Note 1: LPRB UPSR can be executed in User Mode to serialize instruction

execution.

Note 2: After an instruction that writes a result to memory is executed. the
updating of the result's memory location may be delayed until the
next serializing operation.

Note 3: When reset or a nonrestartable bus error exception occurs. the CPU
discards any results that have not yet been written to memory.

INSTRUCTION N INSTRUCTION N + 1

INSTRUCTION rETCH INSTRUCTION rETCH

~\ /~\
DATA WRITE DATA WRITE

TL/EE/9354-11

FIGURE 3-4. Memory References after Serialization

3.1.4 Slave Processor Instructions

The NS32532 recognizes two groups of instructions being
executable by external slave processors:

• Floating Point Instructions

• Custom Slave Instructions

Each Slave Instruction Set is enabled by a bit in the Configu­
ration Register (Section 2.1.4). Any Slave Instruction which
does not have its corresponding Configuration Register bit
set will trap as undefined, without any Slave Processor com­
munication attempted by the CPU. This allows software sim­
ulation of a non-existent Slave Processor.

Note that the Memory Management Instructions, like Float­
ing Point and Custom Slave Instructions, have to be en­
abled through an appropriate bit in the configuration register
in order to be executable.

However, they are not considered here as Slave Instruc­
tions, since the NS32532 integrates the MMU on-chip and
the execution of them does not follow the protocol of the
Slave Instructions.

3.1.4.1 Regular Slave Instruction Protocol

Slave Processor instructions have a three-byte Basic In­
struction field, consisting of an 10 Byte followed by an Oper­
ation Word. The 10 Byte has three functions:

1) It identifies the instruction as being a Slave Processor
instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Operation Word
of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi­
ates the sequence outlined in Figure 3-5. While applying
Status code 11111 (Broadcast 10 Section 3.5.4.1), the CPU
transfers the 10 Byte on bits 024-031, the operation

z en w
N
U1
W
N

I
N
o
........
Z en
w
N
U1
W
N
I

N
U1
........
Z en
w
N
U1
W
N

I
W o

3.0 Functional Description (Continued)

SEND OPERAND
(BUS STATUS = 11101)

READ RESULT
(BUS STATUS = 11101)

FIGURE 3-5. Regular Slave Instruction Protocol: CPU Actions

2·30

TL/EE/9354-12

3.0 Functional Description (Continued)

31

10 BYTE OPCOOE (LOW)

o
OPCOOE (HIGH) XXXXXXXX

FIGURE 3-6. 10 and Operation Word

31 15 7

ZERO TS ZERO N Z o o o L o

FIGURE 3-7. Slave Processor Status Word

word on bits 08-023 in a swapped order of bytes and a
non-used byte XXXXXXXX (X = don't care) on bits 00-07
(Figure 3-6).

All slave processors observe the bus cycle and inspect the
identification code. The slave selected by the identification
code continues with the protocol; other slaves wait for the
next slave instruction to be broadcast.

After transferring the slave instruction, the CPU sends to the
slave any source operands that are located in memory or
the General-Purpose registers. The CPU then waits for the
slave to assert SON or FSSR. While the CPU is waiting, it
can perform bus cycles to fetch instructions and read
source operands for instructions that follow the slave in­
struction being executed. If there are no bus cycles to per­
form, the CPU is idle with a special Status indicating that it is
waiting for a slave processor. After the slave asserts SON or
FSSR, the CPU follows one of the two sequences described
below.

If the slave asserts SON, then the CPU checks whether the
instruction stores any results to memory or the General-Pur­
pose registers. The CPU reads any such results from the
slave by means of 1 or 2 bus cycles and updates the desti­
nation.

If the slave asserts FSSR, then the NS32532 reads a 32-bit
status word from the slave. The CPU checks bit 0 in the
slave's status word to determine whether to update the PSR
flags or to process an exception. Figure 3-7 shows the for­
mat of the slave's status word.

If the Q bit in the status word is 0, the CPU updates the N, Z
and L flags in the PSR.

If the Q bit in the status word is set to 1, the CPU processes
either a Trap (UNO) if TS is 1 or a Trap (SLAVE) if TS is O.
Note 1: Only the floating'point and custom compare instructions are allowed

to return a value of 0 for the Q bit when the FSSR signal is activat·
ed. All other instructions must always set the Q bit to 1 (to Signal a
Trap), when activating FSSR.

Note 2: While executing an LMR or CINV instruction, the CPU displays the
operation code and source operand using slave processor write bus
cycles, as described in the protocol above. Nevertheless, the CPU
does not wait for SON or FSSR to be asserted while executing
these Instructions. This Information can be used to monitor the con­
tents of the on-Chip TLB, Instruction Cache, and Data Cache.

Note 3: The slave processor must be ready to accept new slave Instruction
at any time, even while the slave Is executing another Instruction or
waiting for the CPU to read results. For example, the CPU may
terminate an Instruction being executed by a slave because a non·
restartable bus error Is detected while the MMU Is updating a Page
Table Entry for an Instruction being prefetched.

Not. 4: If a slave Instruction stores a result to memory, the CPU checks
whether Trap (ABT) would occur on the store operation before read·
Ing the result from the slave. For quad·word destination operands,
the CPU checks that both double-words of the destination can be
stored without an abort before reading either double-word of the
result from the slave.

2-31

3.1.4.2 Pipellned Slave Instruction Protocol

In order to increase performance of floating-point instruc­
tions while maintaining full software compatibility with the
Series 32000 architecture, the NS32532 incorporates a
pipelined floating-point protocol. This protocol is designed
to operate in conjunction with the NS32580 FPC, or any
other floating-point slave which conforms to the protocol
and the Series 32000 architecture. The protocol is enabled
by the PF bit in the CFG register.

The basic methods of transferring data and control informa­
tion between the CPU and the FPC, are the same as in the
regular slave protocol.

However, in pipelined mode, the CPU may send a new float­
ing-point instruction to the FPC before the previous instruc­
tion has been completed.

Although the CPU can advance as many as four floating­
point instructions before receiving a completion pulse on
SON for the first instruction, full exception recovery is as­
sured. This is accomplished through a FIFO mechanism
which maintains the addresses of all the floating-point in­
structions sent to the FPC for execution.

Pipe lined execution can occur only for instructions which do
not require a result to be read from the FPC.

In cases where a result is to be read back, the CPU will wait
for instruction completion before issuing the next instruc­
tion. Floating-point instructions can be divided into two
groups, depending on the amount of pipelining permitted.

Group A. Fully-Pipelined Instructions

Instructions in this group can be sent to the FPC before
previous group A instructions are completed. No instruction
completion indication from the FPC is required in order to
continue to another group A or group B instruction.

Group A contains floating-point instructions satisfying all of
the following conditions.

1. The destination operand is in a floating-point register.

2. The source operand is not of type TOS or IMM.

3. The instruction format is either 11 or 12.

Group B. Half-Plpellned Instructions

Group B instructions can begin execution before previous
group A instructions are completed. However, they cannot
complete before the FPC Signals completion of all the previ­
ous floating-point instructions.

Group B contains floating-point instructions satisfying at
least one of the following conditions.

1. The destination operand Is either in memory or in a CPU
register (this includes the CMPf Instruction which modifies
the PSR register).

2. The source operand is of type TOS or IMM.

3. The instruction format is 9.

z en
w
N
U1
W
N · N o
Z en
w
N
U1
W
N • N
U1
........
Z en w
N
U1
W
N · W
o

fII

o
C")

N
C")
1.1)
N
C")
CJ)
Z
1.1)
N • N
C")
1.1)
N
C")
CJ)
Z o
N • N
C")
1.1)
N
C")
CJ)
Z

3.0 Functional Description (Continued)

PROCESS TRAP
SET

INSTRUCTION
ADDRESS

fROM fifO

PROCESS TRAP
SET

INSTRUCTION
ADDRESS

fROM fifO

REMOVE
INSTRUCTION

ADDRESS
fROM fifO

FIGURE 3-8. Instruction Flow In Plpellned Floating-Point Mode

2-32

PROCESS TRAP
SET

INSTRUCTION
ADDRESS

fROM fifO

TL/EE/9354-73

3.0 Functional Description (Continued)
Note: Non·floating'point instructions cannot be pipelined. They can begin

execution only aiter all other instructions have been completed. The
CPU cannot proceed to other instructions before their execution is
completed.

3.1.4.3 Instruction Flow and Exceptions

When operating in pipelined mode, the CPU will push the
address of group A instructions into a five-entry FIFO after
the 10, opcode and source operands have been sent to the
FPC. The address will be pushed into the FIFO only if no
exception is detected during the transfer of the source oper­
ands needed for the execution of the instruction.

Group A instructions are only stalled when the FIFO is full,
in which case the CPU will wait before sending the next
instruction. Group B instructions can begin execution while
some entries are still in the FIFO, but cannot complete be­
fore the FIFO is empty (Le., before all previous instructions
are completed). Non-floating-point instructions cannot begin
execution until the FIFO is empty. When a normal comple­
tion indication is received, the instruction address at the bot­
tom of the FIFO is dropped. If a trap indication is received
and the FIFO is not empty, the instruction address at the
bottom of the FIFO is copied to the PC register and the
floating-point exception is serviced. The remaining entries in
the FIFO are discarded.

A floating-point exception may be received and serviced at
any time after the CPU has sent the 10 and opcode for the
first instruction and until the FPC has signalled completion
for the last instruction.

Other exceptions may occur while the FIFO is not empty.
This may be the case when an interrupt is received or a
translation exception is detected in the access of an oper­
and needed for the execution of the next floating-point in­
struction. These exceptions will be processed as soon as
the FIFO becomes empty, and after any floating-point ex­
ception has been acknowledged.

In the event of a non-restartable bus error, the acknowledge
will occur immediately. The CPU will flush the internal FIFO
and will reset the FPC by performing a dummy read of the
slave status word. This operation is performed for both the
regular and pipe lined floating-point protocol and regardless
of whether any floating-point instruction is pending in the
FPC instruction queue.

The CPU may cancel the last instruction sent to the FPC by
sending another 10 and opcode, before the last source op­
erand for that instruction has been sent. Figure 3-8 shows
the instruction flow in pipe lined floating-point mode.

3.1.4.4 Floating Point Instructions

Table 3-1 gives the protocols followed for each Floating
Point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Appendix A.

The Operand class columns give the Access Class for each
general operand, defining how the addressing modes are
interpreted (see Instruction Set Reference Manual).

The Operand Issued columns show the sizes of the oper­
ands issued to the Floating Point Unit by the CPU. "0" indi­
cates a 32-bit Double Word. "i" indicates that the instruction
specifies an integer size for the operand (B = Byte, W =

Word, 0 = Double Word). "f" indicates that the instruction
specifies a Floating Point size for the operand (F = 32-bit
Standard Floating, L = 64-bit Long Floating).

2-33

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR-Bits-Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-7).

Any operand indicated as being of type "f" will not cause a
transfer if the Register addressing mode is specified. This is
because the Floating Point Registers are physically on the
Floating Point Unit and are therefore available without CPU
assistance.

3.1.4.5 Custom Slave Instructions

Provided in the NS32532 is the capability of communicating
with a user-defined, "Custom" Slave Processor. The in­
struction set provided for a Custom Slave Processor defines
the instruction formats, the operand classes and the com­
munication protocol. Left to the user are the interpretations
of the Op Code fields, the programming model of the Cus­
tom Slave and the actual types of data transferred. The pro­
tocol specifies only the size of an operand, not its data type.

Table 3-2 lists the relevant information for the Custom Slave
instruction set. The designation "c" is used to represent an
operand which can be a 32-bit ("0") or 64-bit ("Q") quantity
in any format; the size is determined by the suffix on the
mnemonic. Similarly, an "i" indicates an integer size (Byte,
Word, Double Word) selected by the corresponding mne­
monic suffix.

Any operand indicated as being of type "c" will not cause a
transfer if the register addressing mode is specified. It is
assumed in this case that the slave processor is already
holding the operand internally.

For the instruction encodings, see Appendix A.

3.2 EXCEPTION PROCESSING

Exceptions are special events that alter the sequence of
instruction execution. The CPU recognizes three basic types
of exceptions: interrupts, traps and bus errors.

An interrupt occurs in response to an event signalled by
activating the NMI or INT input signals. Interrupts are typi­
cally requested by peripheral devices that require the CPU's
attention.

Traps occur as a result either of exceptional conditions
(e.g., attempted division by zero) or of specific instructions
whose purpose is to cause a trap to occur (e.g., supervisor
call instruction).

A bus error exception occurs when the BER signal is acti­
vated during an instruction fetch or data transfer required by
the CPU to execute an instruction.

When an exception is recognized, the CPU saves the PC,
PSR and optionally the MOD register contents on the inter­
rupt stack and then it transfers control to an exception serv­
ice procedure.

Details on the operations performed in the various cases by
the CPU to enter and exit the exception service procedure
are given in the following sections.

It is to be noted that the reset operation is not treated here
as an exception. Even though, like any exception, it alters
the instruction execution sequence.

The reason being that the CPU handles reset in a signifi­
cantly different way than it does for exceptions.

Refer to Section 3.5.3 for details on the reset operation.

z en w
N
U1
W
N
I

N
o
Z en
w
N
U1
W
N
I

N
U1
Z en w
N
U1
W
N
I

W o

0
Cf) · 3.0 Functional Description (Continued) N
Cf)
Ln

TABLE 3·1. Floating Point Instruction Protocols N
Cf)
(J) Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits Z Mnemonic Class Class Issued Issued Type and Dest. Affected Ln
N ADDf read.f rmw.f f f fto Op.2 none · N SUSf read.f rmw.f f f fto Op.2 none Cf)
Ln MULf read.f rmw.f f f fto Op.2 none N
Cf) DIVf read.f rmw.f f ftoOp.2 none
(J)
Z MOVf read.f write.f N/A fto Op.2 none
....... ASSf read.f write.f N/A fto Op.2 none 0
N NEGf read.f write.f N/A fto Op.2 none • N CMPf read.f read.f f N/A N,Z,L Cf)
Ln FLOORfi read.f write.i N/A itoOp.2 none N
Cf) TRUNCfi read.f write.i N/A itoOp.2 none (J)
Z ROUNDfi read.f write.i f N/A itoOp.2 none

MOVFL read.F write.L F N/A L toOp.2 none
MOVLF read.L write.F L N/A FtoOp.2 none
MOVif read.i write.f i N/A fto Op.2 none
LFSR read.D N/A D N/A N/A none
SFSR N/A write.D N/A N/A DtoOp.2 none
POLYf read.f read.f f fto FO none
DOTf read.f read.f f fto FO none
SCALSf read.f rmw.f fto Op.2 none
LOGSf read.f write.f N/A fto Op.2 none
SORTf read.f write.f N/A fto Op.2 none
MACf read.f read.f f fto F1 none

TABLE 3·2. Custom Slave Instruction Protocols

Mnemonic
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits

Class Class Issued Issued Type and Dest. Affected
CCALOc read.c rmw.c c c ctoOp.2 none
CCAL1c read.c rmw.c c c ctoOp.2 none
CCAL2c read.c rmw.c c c ctoOp.2 none
CCAL3c read.c rmw.c c c ctoOp.2 none
CMOVOc read.c write.c c N/A ctoOp.2 none
CMOV1c read.c write.c c N/A ctoOp.2 none
CMOV2c read.c write.c c N/A ctoOp.2 none
CMOV3c read.c write.c c N/A ctoOp.2 none
CCMPOc read.c read.c c c N/A N,Z,L
CCMP1c read.c read.c c c N/A N,Z,L
CCVOci read.c write.i c N/A itoOp.2 none
CCV1ci read.c write.i c N/A itoOp.2 none
CCV2ci read.c write.i c N/A itoOp.2 none
CCV3ic read.i write.c i N/A ctoOp.2 none
CCV4DO read.D write.O D N/A OtoOp.2 none
CCVSOD read.O write.D 0 N/A DtoOp.2 none
LCSR read. 0 N/A 0 N/A N/A none
SCSR N/A wrlte.D N/A N/A DtoOp.2 none
LCR· read.D N/A 0 N/A N/A none
SCR· wrlte.D N/A N/A N/A DtoOp.1 none

Not.:
o - Double Word
I - Integer size (B,W,O) specified In mnemonic.
c - Custom size (0:32 bits or Q:84 bits) specified In mnemonic.
• - Privileged Instruction: will trap If CPU Is In User Mode.
N/A - Not Applicable to this Instruction.

2·34

3.0 Functional Description (Continued)
3.2.1 Exception Acknowledge Sequence

When an exception is recognized, the CPU goes through
three major steps:

1) Adjustment of Registers. Depending on the source of the
exception, the CPU may restore and/or adjust the con­
tents of the Program Counter (PC), the Processor Status
Register (PSR) and the currently-selected Stack Pointer
(SP). A copy of the PSR is made, and the PSR is then set
to reflect Supervisor Mode and selection of the Interrupt
Stack. Trap (TRG) and Trap (OVF) are always disabled.
Maskable interrupts are also disabled if the exception is
caused by an interrupt, Trap (DBG), Trap (ABT) or bus
error.

2) Vector Acquisition. A vector is either obtained from the
data bus or is supplied internally by default.

3) Service Call. The CPU performs one of two sequences
common to all exceptions to complete the acknowledge
process and enter the appropriate service procedure.
The selection between the two sequences depends on
whether the Direct-Exception mode is disabled or en­
abled.

Direct-Exception Mode Disabled

The Direct-Exception mode is disabled while the DE bit in
the CFG register is 0 (Section 2.1.4). In this case the CPU
first pushes the saved PSR copy along with the contents of
the MOD and PC registers on the interrupt stack. Then it

r~ l'oJ

MEMORY ~

CASCADE ADDR 0

· · ~~ ·
CASCADE ADDR 14

CASCADE ADDR 15

FIXED INTERRUPTS

/t----~
CASCADE TABLE ;:.:::

l
'NTERRUPTBAs~t---------~

AND TRAPS

reads the double-word entry from the Interrupt Dispatch ta­
ble at address 'INTBASE + vector X 4'. See Figures 3-9
and 3-10. The CPU uses this entry to call the exception
service procedure, interpreting the entry as an external pro­
cedure descriptor.

A new module number is loaded into the MOD register from
the least-significant word of the descriptor, and the static­
base pointer for the new module is read from memory and
loaded into the SB register. Then the program-base pointer
for the new module is read from memory and added to the
most-significant word of the module descriptor, which is in­
terpreted as an unsigned value. Finally, the result is loaded
into the PC register.

Dlrect·Exceptlon Mode Enabled

The Direct-Exception mode is enabled when the DE bit in
the CFG register is set to 1. In this case the CPU first
pushes the saved PSR copy along with the contents of the
PC register on the Interrupt Stack. The word stored on the
Interrupt Stack between the saved PSR and PC register is
reserved for future use; its contents are undefined. The CPU
then reads the double-word entry from the Interrupt Dis­
patch Table at address 'INTBASE + vector x 4'. The CPU
uses this entry to call the exception service procedure, inter­
preting the entry as an absolute address that is simply load­
ed into the PC register. Figure 3-11 provides a pictorial of
the acknowledge sequence. It is to be noted that while the

r 31 0'"
0 NVI NON-VECTORED INTERRUPT

1 NMI NON-MAS KABLE INTERRUPT

2 ABT ABORT

3 SLAVE SLAVE PROCESSOR TRAP

4 ILL ILLEGAL OPERATION TRAP

5 SVC SUPERVISOR CALL TRAP
R'GOST'R I It-:---------f 1 DISPATCH TABLE 6 DVZ DIVIDE BY ZERO TRAP VECTORED

INTERRUPTS :t 7 FLG FLAG TRAP r
8 BPT BREAKPOINT TRAP

9 TRC TRACE TRAP

10 UNO UNDEFINED INSTRUCTION TRAP

11 RBE RESTARTABLE BUS ERROR

12 NBE NON-RESTARTABLE BUS ERROR

13 OVF INTEGER OVERFLOW TRAP

14 DBG DEBUG TRAP

15 RESERVED

16 VECTORED
INTERRUPTS

....... 1'''-
TL/EE/9354-13

FIGURE 3·9. Interrupt Dispatch Table

2-35

z
en w
N
U1
W
N .
N
Q
Z
en
w
N
U1
W
N .
N
U1
Z
en
w
N
U1
W
~
W
Q

..

o
C")

N
C")
It)
N
C")
C/)
Z
It)
N • N
C")
It)
N
C")
C/)
Z o
N • N
C")
It)
N
C")
C/)
Z

3.0 Functional Description (Continued)

PSR MOD

INTBASE REGISTER

DESCRIPTOR

32BITS_

(PUSH)
PC

t--------It-- PSR
(PUSH)

MOD

INTERRUPT
STACK

r-------------,
! I
I CASCADE TABLE I
I I
I I
I I

DISPATCH
TABLE

DESCRIPTOR (32 BITS)

I~ . -16------r-' 1-. -16i-_" I
OFFSET MODULE

1 0

MOD REGISTER ~ MODULE TABLE

l NEW MODULE

I MODULE TABLE ENTRY

)

MODULE TABLE ENTRY
32

STATIC BASE POINTER - ---...,

LINK BASE POINTER

~ ..., PROGRAM BASE POINTER

(RESERVED)

LOWER
ADDRESSES

HIGHER
ADDRESSES

PROGRAM COUNTER SBREGISTER

I ENTRY POINT ADDRESS 4- NEW STATIC BASE J I

FIGURE 3-10. Exception Acknowledge Sequence.
DIrect-Exception Mode DIsabled.

2-36

TLlEE/9354-14

TL/EE/9354-15

3.0 Functional Description (Continued)

32 BITS

LOWER
ADDRESSES

RETURN ADDRESS t--(P_U_SH_) ____ -+-_
PC

STATUS ~---------------_4--PSR
(PUSH)

PSR

INTBASE REGISTER

I INTERRUPT BASE I
I

I VECTOR x4 +

I
I

INTERRUPT
STACK HIGHER

ADDRESSES

r-------------,
I I
I I
I CASCADE TABLE I
I I
I I
I I

DISPATCH
TABLE

ABSOLUTE ADDRESS

)

PROGRAM COUNTER

ENTRY POINT ADDRESS I

TL/EE/9354-16

TL/EE/9354-17

FIGURE 3-11. Exception Acknowledge Sequence.
Direct-Exception Mode Enabled.

direct-exception mode is enabled, the CPU can respond
more quickly to interrupts and other exceptions because
fewer memory references are required to process an excep­
tion. The MOD and S8 registers, however, are not initialized
before the CPU transfers control to the service procedure.
Consequently, the service procedure is restricted from exe­
cuting any instructions, such as CXP, that use the contents
of the MOD or S8 registers in effective address calcula­
tions.

3.2.2 Returning from an Exception Service Procedure

To return control to an interrupted program, one of two in­
structions can be used: RETT (Return from Trap) and RETI
(Return from Interrupt).

RETT is used to return from any trap, non-maskable inter­
rupt or bus error service procedure. Since some traps are
often used deliberately as a call mechanism for supervisor

2-37

mode procedures, RETT can also adjust the Stack Pointer
(SP) to discard a specified number of bytes from the original
stack as surplus parameter space.

RETI is used to return from a maskable interrupt service
procedure. A difference of RETT, RETI also informs any
external interrupt control units that interrupt service has
completed. Since interrupts are generally asynchronous ex­
ternal events, RETI does not discard parameters from the
stack.

80th of the above instructions always restore the Program
Counter (PC) and the Processor Status Register from the
interrupt stack. If the Direct-Exception mode is disabled,
they also restore the MOD and S8 register contents. Fig­
ures 3-12 and 3-13 show the RETT and RETI instruction
flows when the Direct-Exception mode is disabled.

z en
w
~
U1
W
~ • ~
Q
Z en w
~
U1
W
~ · ~ U1 z en
w
~
U1
W
~ · W
Q

o
C")

• N
C")
II)
N
C")
U)
Z
II)
N • N
C")
II)
N
C")
U)
Z o
N • N
C")
II)
N
C")
U)
Z

3.0 Functional Description (Continued)

PROGRAM COUNTER

I RETURN ADDRESS ·1
(POP)

LOWER
I+--- 32 BITS _ ADDRESSES

PC

I I
(POP)

STATUS MODULE +--------------r--PSR I MOD

PSR MOD

,
MODULE TABLE ENTRY

STATIC BASE POINTER - --....,

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

SBREGISTER

STATIC BASE

- n
BYTES

INTERRUPT

STACK

MODULE

TABLE

MODULE TABLE ENTRY

PARAMETERS

STACK SELECTED

IN NEWLY·

POPPEDPSR.

HIGHER
ADDRESSES

LOWER
ADDRESSES

HIGHER
ADDRESSES

POP AND

DISCARD
TLlEE/9354-1 B

FIGURE 3-12. Return from Trap (RETT n) Instruction Flow.
Direct-Exception Mode Disabled.

3.2.3 Maskable Interrupts

The INT pin is a level-sensitive input. A continuous low level
is allowed for generating multiple interrupt requests. The in­
put is maskable, and is therefore enabled to generate inter­
rupt requests only while the Processor Status Register I bit
is set. The I bit is automatically cleared during service of an
INT, NMI, Trap (DBG), Trap (ABT) or Bus Error request, and
is restored to its original setting upon return from the inter­
rupt service routine via the RETT or RETI instruction.

The INT pin may be configured via the SETCFG instruction
as either Non-Vectored (CFG Register bit I = 0) or Vec­
tored (bit I = 1).

3.2.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT
pin will cause an Interrupt Acknowledge bus cycle, but the
CPU will ignore any value read from the bus and use instead
a default vector of zero. This mode is useful for small sys­
tems in which hardware interrupt prioritization is unneces­
sary.

2-38

3.2.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control
Unit (lCU) to prioritize many interrupt requests. Upon receipt
of an interrupt request on the INT pin, the CPU performs an
"Interrupt Acknowledge, Master" bus cycle (Section
3.5.4.6) reading a vector value from the low-order byte of
the Data Bus. This vector is then used as an index into the
Dispatch Table in order to find the External Procedure De­
scriptor for the proper interrupt service procedure. The serv­
ice procedure eventually returns via the Return from Inter­
rupt (RETI) instruction, which performs an End of Interrupt
bus cycle, informing the ICU that it may re-prioritize any in­
terrupt requests still pending. The ICU provides the vector
number again, which the CPU uses to determine whether it
needs also to inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127; that
is, they must be positive numbers in eight bits. By providing

3.0 Functional Description (Continued)

"END OF INTERRUPT"
--.. -----------1

BUS CYCLE

INT~RRUPT
CONTROL

UNIT

PROGRAM COUNTER

LOWER
It---- 32 BITS _ ADDRESSES

I PC RETURN ADDRESS
.1 (POP)

PSR
I .1 (POP) I

MODULE -It-----------f---PSR MOD 1
STATUS

MOD

o

INTERRUPT
STACK

MODULE
TABLE

'--------------lMODULE TABLE ENTRY

J

f
MODULE TABLE ENTRY

STATIC BASE POINTER - ~

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

STATIC BASE

SBREGISTER

FIGURE 3-13. Return from Interrupt (RETI) Instruction Flow.
Direct-Exception Mode Disabled.

2-39

HIGHER
ADDRESSES

TL/EE/9354-19

z en
w
I\)
U1
W
I\)
• I\)
o z en
w
I\)
U1
W
I\)
• I\)

U1 z en
w
I\)
U1
W
I\)
• W o

o
C") .
N
C")
it)
N
C")

en
z
.......
it)
N
~
C")
it)
N
C")

en
z
o
N .
N
C")
it)
N
C")

en z

3.0 Functional Description (Continued)

a negative vector number, an ICU flags the interrupt source
as being a Cascaded ICU (see below).

3.2.3.3 Vectored Mode: Cascaded Case

In order to allow more levels of interrupt, provision is made
in the CPU to transparently support cascading. Note that
the Interrupt output from a Cascaded ICU goes to an Inter­
rupt Request input of the Master ICU, which is the only ICU
which drives the CPU INT pin. Refer to the ICU data sheet
for details.

In a system which uses cascading, two tasks must be per­
formed upon initialization:

1) For each Cascaded ICU in the system, the Master ICU
must be informed of the line number on which it receives
the cascaded requests.

2) A Cascade Table must be established in memory. The
Cascade Table is located in a NEGATIVE direction from
the location indicated by the CPU Interrupt Base (INT­
BASE) Register. Its entries are 32-bit addresses, pointing
to the Vector Registers of each of up to 16 Cascaded
ICUs.

Figure 3-9 illustrates the position of the Cascade Table. To
find the Cascade Table entry for a Cascaded ICU, take its
Master ICU line number (0 to 15) and subtract 16 from it,
giving an index in the range -16 to -1. Multiply this value
by 4, and add the resulting negative number to the contents
of the INTBASE Register. The 32-bit entry at this address
must be set to the address of the Hardware Vector Register
of the Cascaded ICU. This is referred to as the "Cascade
Address."

Upon receipt of an interrupt request from a Cascaded ICU,
the Master ICU interrupts the CPU and provides the nega­
tive Cascade Table index instead of a (positive) vector num­
ber. The CPU, seeing the negative value, uses it as an index
into the Cascade Table and reads the Cascade Address
from the referenced entry. Applying this address, the CPU
performs an "Interrupt Acknowledge, Cascaded" bus cycle,
reading the final vector value. This vector is interpreted by
the CPU as an unsigned byte, and can therefore be in the
range of 0 through 255.

In returning from a Cascaded interrupt, the service proce­
dure executes the Return from Interrupt (RETI) instruction,
as it would for any Maskable Interrupt. The CPU performs
an "End of Interrupt, Master" bus cycle, whereupon the
Master ICU again provides the negative Cascade Table in­
dex. The CPU, seeing a negative value, uses it to find the
corresponding Cascade Address from the Cascade Table.
Applying this address, it performs an "End of Interrupt, Cas­
caded" bus cycle, informing the Cascaded ICU of the com­
pletion of the service routine. The byte read from the Cas­
caded ICU is discarded.
Note: If an interrupt must be masked off, the CPU can do so by setting the

corresponding bit in the interrupt mask register of the interrupt con­
troller.

However, if an interrupt is set pending during the CPU instruction that
masks off that interrupt, the CPU may still perform an interrupt ac­
knowledge cycle following that instruction since it might have sampled
the INT line before the ICU deasserted it. This could cause the ICU to
provide an invalid vector. To avoid this problem the above operation
should be performed with the CPU interrupt disabled.

3.2.4 Non-Maskable Interrupt

The Non-Maskable Interrupt is triggered whenever a falling
edge is detected on the NMI pin. The CPU performs an
"Interrupt Acknowledge, Master" bus cycle (Section

2-40

3.5.4.6) when processing of this interrupt actually begins.
The Interrupt Acknowledge cycle differs from that provided
for Maskable Interrupts in that the address presented is
FFFFFF0016. The vector value used for the Non-Maskable
Interrupt is taken as 1, regardless of the value read from the
bus.

The service procedure returns from the Non-Maskable In­
terrupt using the Return from Trap (RETT) instruction. No
special bus cycles occur on return.

3.2.5 Traps

Traps are processing exceptions that are generated as di­
rect results of the execution of an instruction.

The return address saved on the stack by any trap except
Trap (TRC) and Trap (DB G) is the address of the first bye of
the instruction during which the trap occurred.

When a trap is recognized, maskable interrupts are not dis­
abled except for the case of Trap (ABT) and Trap (DBG).

There are 11 trap conditions recognized by the NS32532 as
described below.

Trap (ABT): An abort trap occurs when an invalid page ta­
ble entry or a protection level violation is detected for any of
the memory references required to execute an instruction.

Trap (SLAVE): An exceptional condition was detected by
the Floating Point Unit or another Slave Processor during
the execution of a Slave Instruction. This trap is requested
via the Status Word returned as part of the Slave Processor
Protocol (Section 3.1.4.1).

Trap (ILL): Illegal operation. A privileged operation was at­
tempted while the CPU was in User Mode (PSR bit U = 1).

Trap (SVC): The Supervisor Call (SVC) instruction was exe­
cuted.

Trap (OVZ): An attempt was made to divide an integer by
zero. (The FPU trap is used for Floating Point division by
zero.)

Trap (FLG): The FLAG instruction detected a "1" in the
PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut­
ed.

Trap (TRC): The instruction just completed is being traced.

Refer to Section 3.3.1 for details.

Trap (UNO): An Undefined-Instruction trap occurs when an
attempt to execute an instruction is made and one or more
of the following conditions is detected:

1. The instruction is undefined. Refer to Appendix A for a
description of the codes that the CPU recognizes to be
undefined.

2. The instruction is a floating point instruction and the F-bit
in the CFG register is O.

3. The instruction is a custom slave instruction and the C-bit
in the CFG register is O.

4. The instruction is a memory-management instruction and
the M-bit in the CFG register is O.

5. An LMR or SMR instruction is executed while the U-flag
in the PSR is 0 and the most significant bit of the instruc­
tion's short field is O.

6. The reserved general adressing mode encoding (10011)
is used.

7. Immediate addressing mode is used for an operand that
has access class different from read.

3.0 Functional Description (Continued)

8. Scaled Indexing is used and the basemode is also Scaled
Indexing.

9. The instruction is a floating-point or custom slave instruc­
tion that the FPU or custom slave detects to be unde­
fined. Refer to Section 3.1.4.1 for more information.

Trap (OVF): An Integer-Overflow trap occurs when the V-bit
in the PSR register is set to 1 and an Integer-Overflow con­
dition is detected during the execution of an instruction. An
Integer-Overflow condition is detected in the following cas­
es:

1. The F-flag is 1 following execution of an ADDi, ADDQi,
ADDCi, SUBi, SUBCi, NEGi, ABSi, or CHECKi instruction.

2. The product resulting from a MULi instruction cannot be
represented exactly in the destination operand's location.

3. The quotient resulting from a DEli, DIVi, or QUOi instruc­
tion cannot be represented exactly in the destination op­
erand's location.

4. The result of an ASHi instruction cannot be represented
exactly in the destination operand's location.

5. The sum of the 'INC' value and the 'INDEX' operand for
an ACBi instruction cannot be represented exactly in the
index operand's location.

Trap (OBG): A debug trap occurs when one or more of the
conditions selected by the settings of the bits in the DCR
register is detected. This trap can also be requested by acti­
vating the input signal DBG. Refer to Section 3.3.2 for more
information.
Note 1: Following execution of the WAIT Instruction, then a Trap (DBG) can

be pending for a PC-match condition. In such an event, the Trap
(DBG) is processed Immediately.

Note 2: If an attempt is made to execute a memory-management instruction
while In User-Mode and the M-bit in the CFG register is 0, then Trap
(UNO) occurs.

Note 3: If an attempt Is made to execute a privileged custom instruction
while in User-Mode and the C-bit in the CFG register is 0, then Trap
(UNO) occurs.

Note 4: While operating in User-Mode, if an attempt is made to execute a
privileged instruction with an undefined use of a general addressing
mode (either the reserved encoding is used or else scaled-index or
immediate modes are incorrectly used), the Trap (UNO) occurs.

Note 5: If an undefined instruction or illegal operation is detected, then no
data references are performed for the instruction.

Note 6: For certain instructions that are relatively long to execute, such as
DEID, the CPU checks for pending interrupts during execution of the
instruction. In order to reduce interrupt latency, the NS2532 can
suspend executing the instruction and process the interrupt. Refer
to Section B.5 in Appendix B for more information about recognizing
interrupts in this manner.

3.2.6 Bus Errors

A bus error exception occurs when the BER signal is assert­
ed in response to an instruction fetch or data transfer that is
required to execute an instruction.

Two types of bus errors are recognized: Restartable and
Non-Restartable. Restartable bus errors are recognized dur­
ing read bus cycles, except for MMU read cycles (from Page
Tables) needed to translate the address of a result being
stored into memory. All other bus errors are non-restartable.

The CPU responds to restartable bus errors by suspending
the instruction that it was executing. When a non-restartable
bus error is detected, the CPU responds immediately and
the instruction being executed is terminated. See Section
3.1.2.3.

2-41

The PC value saved on the stack is undefined.

The NS32S32 does not respond to bus errors indicated for
instructions that are not executed. For example, no bus er­
ror exception occurs in response to asserting the BER sig­
nal during a bus cycle to prefetch an instruction that is not
executed because the previous instruction caused a trap.

An exception to this rule occurs if the bus error is detected
during an MMU write cycle to update the R-bit in a page
table entry.

In this case the CPU recognizes the bus error and considers
it as non-restartable even though the bus cycle that caused
it belongs to a non-executed instruction.

If a bus error is detected during a data transfer required for
the processing of another exception or during the ICU read
cycle of a RETI instruction, then the CPU considers it as a
fatal bus error and enters the 'HALTED' state.
Note 1: If the address and control signals associated with the last bus cycle

that caused a bus error are latched by external hardware, then the
information they provide can be used by the service procedure for
restartable bus errors to analyze and resolve the exception recog­
nized by the CPU. This can be accomplished because upon detect­
ing a restartable bus error, the NS32532 stops making memory ref­
erences for subsequent instructions until it determines whether the
instruction that caused the bus error is executed and the exception
is processed.

Note 2: When a non-restartable bus error is recognized, the service proce­
dure must execute the CINV and LMR instructions to invalidate the
on-Chip caches and TLB. This is necessary to maintain coherence
between them and external memory.

3.2.7 Priority Among Exceptions

The CPU checks for specific exceptions at various points
while executing an instruction. It is possible that several ex­
ceptions occur simultaneously. In that event, the CPU re­
sponds to the exception with highest priority.

Figure 3-14 shows an exception processing flowchart. A
non-restartable bus error is assigned highest priority and is
serviced immediately regardless of the execution state of
the CPU.

Before executing an instruction, the CPU checks for pend­
ing Trap (DBG), interrupts, and Trap (TRC), in that order. If a
Trap (DBG) is pending, then the CPU processes that excep­
tion, otherwise the CPU checks for pending interrupts. At
this point, the CPU responds to any pending interrupt re­
quests; nonmaskable interrupts are recongized with higher
priority than maskable interrupts. If no interrupts are pend­
ing, then the CPU checks the P-fJag in the PSR to determine
whether a Trap (TRC) is pending. If the P-flag is 1, a Trap
(TRG) is processed. If no Trap (DBG), interrupt or Trap
(TRG) is pending, the CPU begins executing the instruction.

While executing an instruction, the CPU may recognize up
to four exceptions:

1. trap (ABT)

2. restartable bus error

3. trap (DBG) or interrupt, if the instruction is interruptible

4. one of 7 mutually exclusive traps: SLAVE, ILL, SVC, DVZ,
FLG, BPT, UND

Trap (ABT) and restartable bus error have equal priority; the
CPU responds to the first one detected_

If no exception is detected while the instruction is executing,
then the instruction is completed and the PC is updated to
point to the next instruction. If a Trap (OVF) is detected,
then it is processed at this time.

z en
w
N
U1
W
N • N
C
Z en w
N
U1
W
N · N
U1
........
Z en
w
N
U1
W
N · W
C

o
C")

~ 3.0 Functional Description (Continued)
In
N
C")

en z
" In

~
C")
In
N
C")

en z
" o
N
N
C")
In
N
C")

en z

FIGURE 3-14. Exception Processing Flowchart

2·42

Tl/EE/9354-20

3.0 Functional Description (Continued)

While executing the instruction, the CPU checks for enabled
debug conditions. If an enabled debug condition is met, a
Trap (DBG) is held pending until after the instruction is com­
pleted (see Note 3). If another exception is detected before
the instruction is completed, the pending Trap (DBG) is re­
moved and the DSR register is not updated.
Note 1: Trap (DBG) can be detected simultaneously with Trap (OVF). In this

event, the Trap (OVF) is processed before the Trap (DBG).

Note 2: An address-compare debug condition can be detected while pro­
cessing a bus error, Interrupt, or trap. In this event, the Trap (DBG)
is held pending until after the CPU has processed the first excep­
tion.

Note 3: Between operations of a string instruction, the CPU responds to
pending operand address compare and external debug conditions
as well as interrupts. If a PC-match debug condition is detected
while executing a string instruction, then Trap (DBG) is held pending
until the instruction has completed.

3.2.8 Exception Acknowledge Sequences: Detailed Flow

For purposes of the following detailed discussion of excep­
tion acknowledge sequences, a single sequence called
"service" is defined in Figure 3-15.

Upon detecting any interrupt request, trap or bus error con­
dition, the CPU first performs a sequence dependent upon
the type of exception. This sequence will include saving a
copy of the Processor Status Register and establishing a
vector and a return address. The CPU then performs the
service sequence.

3.2.8.1 Maskable/Non-Maskable Interrupt Sequence

This sequence is performed by the CPU when the NMI pin
receives a falling edge, or the INT pin becomes active with
the PSR I bit set. The interrupt sequence begins either at
the next instruction boundary or, in the case of an interrupt­
ible instruction (e.g., string instruction), at the next interrupt­
ible point during its execution.

1. If an interruptible instruction was interrupted and not yet
completed:

a. Clear the Processor Status Register P bit.

b. Set "Return Address" to the address of the first byte of
the interrupted instruction.

Otherwise, set "Return Address" to the address of the
next instruction.

2. Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits T, V, U, S, P and I.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFFFF0016, applying
Status Code 00100 (Interrupt Acknowledge, Master).
Discard the byte read.

b. Set "Vector" to 1.

c. Go to Step a.
4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFFFE0016, applying
Status Code 00100 (Interrupt Acknowledge, Master).
Discard the byte read.

b. Set "Vector" to O.
c. Go to Step a.

5. Here the interrupt is Vectored. Read "Byte" from address
FFFFFE0016, applying Status Code 00100 (Interrupt Ac­
knowledge, Master).

6. If "Byte" ~ 0, then set "Vector" to "Byte" and go to Step
a.

2-43

7. If "Byte" is in the range -16 through -1, then the inter­
rupt source is Cascaded. (More negative values are re­
served for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory. The
address is caiculated as INTBASE + 4· Byte.

b. Read "Vector," applying the Cascade Address Just
read and Status Code 00101 (Interrupt Acknowledge,
Cascaded).

a. Perform Service (Vector, Return Address), Figure 3-15.

3.2.8.2 Abort/Restartable Bus Error Sequence

1. Suspend instruction and restore the currently selected
Stack Pointer to its original contents at the beginning of
the instruction.

2. Clear the PSR P bit.

3. Copy the PSR into a temmporary register, then clear PSR
bits T, V, U, S and I.

4. Set "Vector" to the value corresponding to the exception
type:

Abort: Vector = 2

Restartable Bus Error: Vector = 11

5. Set "Return Address" to the address of the first byte of
the suspended instruction.

6. Perform Service (Vector, Return Address), Figure 3-15.

3.2.8.3 SLA VEIILL/SVC/DVZ/FLG/BPT lUND Trap
Sequence

1. Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction.

2. Set "Vector" to the value corresponding to the trap type.

SLAVE: Vector = 3.
ILL: Vector = 4.
SVC: Vector = 5.
DVZ: Vector = 6.
FLG: Vector = 7.
BPT: Vector = a.
UNO: Vector = 10.

3. if Trap (ILL) or Trap (UNO)

a. Clear the Processor Status Register P bit.

4. Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits T, V, U, Sand P .

5. Set "Return Address" to the address of the first byte of
the trapped instruction.

6. Perform Service (Vector, Return Address), Figure 3-15.

3.2.8.4 Trace Trap Sequence

1. In the Processor Status Register (PSR), clear the P bit.

2. Copy the PSR into a temporary register, then clear PSR
bits T, V, U and S.

3. Set "Vector" to 9.

4. Set "Return Address" to the address of the next instruc-
tion.

5. Perform Service (Vector, Return Address), Figure 3-15.

3.2.8.5 Integer-Overflow Trap Sequence

1. Copy the PSR into a temporary register, then clear PSR
bits T, V, U, Sand P.

2. Set "Vector" to 13.

3. Set "Return Address" to the address of the next instruc­
tion.

z
(f)
W
N en
w

~ o
Z
(f)
W
N en
w
~
N en
Z
(f)
W
N en
w
N • W o

•

o
M • N
M
it)
N
M
t./)
Z
it)
N • N
M
it)
N
M
t./)
Z
o
N • N
M
it)
N
M
t./)
Z

3.0 Functional Description (Continued)

4. Perform Service (Vector, Return Address), Figure 3-15.

3.2.8.6 Debug Trap Sequence

A debug condition can be recognized either at the next in­
struction boundary or, in the case of an interruptible instruc­
tion, at the next interruptible point during its execution.

1. If PC-match condition, then go to Step 3.

2. If a String instruction was interrupted and not yet com­
pleted:

a. Clear the Processor Status Register P bit.

b. Set "Return Address" to the address of the first byte of
the instruction.

c. Go to Step 4.

3. Set "Return Address" to the address of the next instruc­
tion.

4. Set "Vector" to 14.

5. Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits T, V, U, S, P and I.

6. Perform Service (Vector, Return Address), Figure 3-15.
Note: In case of PC·match or address-compare on write, the Trap (OBG)

may occur before the instruction is executed.

3.2.8.7 Non-Restartable Bus Error Sequence

1. Set "Vector" to 12.

2. Set "Return Address" to "Undefined".

3. Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits T, V, U, S, P and I.

4. Perform a dummy read of the Slave Status Word to reset
the Slave Processor.

5. Perform Service (Vector, Return Address), Figure 3-15.

3.3 DEBUGGING SUPPORT

The NS32532 provides serveral features to assist in pro­
gram debugging.

Besides the Breakpoint (BPD instruction that can be used
to generate soft breaks, the CPU also provides instruction
tracing as well as debug trap (or hardware breakpoints) ca­
pabilities. Details on these features are provided in the fol­
lowing sub-sections.

3.3.1 Instruction Tracing

Instruction tracing is a very useful feature that can be used
during debugging to single-step through selected portions of
a program. Tracing is enabled by setting the T-bit in the PSR
Register. When enabled, the CPU generates a Trace Trap
(TRC) after the execution of each instruction.

At the beginning of each instruction, the T bit is copied into
the PSR P (Trace "Pending") bit. If the P bit is set at the end
of an instruction, then the Trace Trap is activated. If any
other trap or interrupt request is made during a traced in­
struction, its entire service procedure is allowed to complete
before the Trace Trap occurs. Each interrupt and trap se­
quence handles the P bit for proper tracing, guaranteeing
only one Trace Trap per instruction, and guaranteeing that
the Return Address pushed during a Trace Trap is always
the address of the next instruction to be traced.

Due to the fact that some instructions can clear the T and P
bits in the PSR, in some cases a Trace Trap may not occur
at the end of the instruction. This happens when one of the
privileged instructions BICPSRW or LPRW PSR is executed.

TABLE 3-3. Summary of Exception Processing

Exception
Instruction Cleared Before Cleared After

Ending Saving PSR Saving PSR

Restartable Bus Error Suspended P TVUSI
Nonrestartable Bus Error Terminated Undefined TVUS

Interrupt Before Instruction None/P' TVUSPI

ABT Suspended P TVUSI
ILL, UND Suspended P TVUS
SLAVE,SVC, DVZ, FLG,BPT Suspended None TVUSP
OVF Completed None TVUSP
TRC Before Instruction P TVUS
DBG Before Instruction None/P' TVUSPI

"Note: The P bit of the saved PSR is cleared in case the exception is acknowledged before the instruction is completed (e.g., interrupted string instruction). This is
to avoid a mid-Instruction trace trap upon return from the Exception Service Routine.

Service (Vector, Return Address):

1) Push the PSR copy onto the Interrupt Stack as a 16·blt value.

2) If Dlrect·Exceptlon mode Is selected, then go to step 4.

3) Push MOD Register Into the Interrupt Stack as a 16-blt value.

4) Read 32-blt Interrupt Dispatch Table (lOT) entry at address 'INTBASE + vector x 4'.

5) If Direct-Exception mode Is selected, then go to Step 10.

6) Move the L.S. word of the lOT entry (Module Field) Into the MOD register.

7) Read the Program Bale pointer from memory address 'MOD + 8', and add to It the M.S. word of the lOT entry (Offset Field), placing the result In the
Program Counter.

8) Read the new Static Base pointer from the memory address contained In MOD, placing It Into the SB Register.

9) Go to Step 11.

10) Place lOT entry In the Program Counter.

11) Push the Return Address onto the Interrupt Stack as a 32·blt quantity.

12) Serialize: Non·sequentlally fetch first Instruction of Exception Service Routine.

Note: Some of the Memory Accesses indicated in the service sequence may be performed in an order different from the one shown.

FIGURE 3-15, Service Sequence

2-44

3.0 Functional Description (Continued)

In other cases, it is still possible to guarantee that a Trace
Trap occurs at the end of the instruction, provided that spe­
cial care is taken before returning from the Trace Trap Serv­
ice Procedure. In case a BICPSRB instruction has been ex­
ecuted, the service procedure should make sure that the T
bit in the PSR copy saved on the Interrupt Stack is set be­
fore executing the RETT instruction to return to the program
begin traced. If the RETT or RETI instructions have to be
traced, the Trace Trap Service Procedure should set the P
and T bits in the PSR copy on the Interrupt Stack that is
going to be restored in the execution of such instructions.
Note: If instruction tracing is enabled while the WAIT instruction is executed,

the Trap (TRC) occurs after the next interrupt, when the interrupt
service procedure has returned.

3.3.2 Debug Trap Capability

The CPU recognizes three different conditions to generate a
Debug Trap:

1) Address Compare

2) PC Match

3) External

These conditions can be enabled and monitored through
the CPU Debug Registers.

An address-compare condition is detected when certain
memory locations are either read or written. The double­
word address used for the comparison is specified in the
CAR Register. The address-compare condition can be sep­
arately enabled for each of the bytes in the specified dou­
ble-word, under control of the CBE bits of the DCR Register.
The VNP bit in the DCR controls whether virtual or physical
addresses are compared. The CRD and CWR bits in the
DCR separately enable the address compare condition for
read and write references; the CAE bit in the DCR can be
used to disable the compare-address condition indepen­
dently from the other control bits. The CPU examines the
address compare condition for all data reads and writes,
reads of memory locations for effective address calcula­
tions, Interrupt-Acknowledge and End-of-Interrupt bus cy­
cles, and memory references for exception processing. An
address-compare condition is not detected for MMU refer­
ences to Page Table Entries.

The PC-match condition is detected when the address of
the instruction equals the value specified in the BPC regis­
ter. The PC-match condition is enabled by the PCE bit in the
DCR.

Detection of address-compare and PC-match conditions is
enabled for User and Supervisor Modes by the UD and SD
bits in the DCR. The DEN-bit can be used to disable detec­
tion of these two conditions independently from the other
control bits.

An external condition is recognized whenever the DBG sig­
nal is activated.

When the CPU detects an address-compare or PC-match
condition while executing an instruction or processing an
exception, then Trap (DBG) occurs if the TR bit in the DCR
is 1, When an external debug condition is detected, Trap
(DBG) occurs regardless of the TR bit. The cause of the
Trap (DBG) is indicated in the DSR Register.

When an address-compare or PC-match condition is detect­
ed while executing an instruction, the CPU asserts the BP
signal at the beginning of the next instruction, synchronous­
ly with PFS. If the instruction is not completed because a

2-45

higher priority trap (Le., ABORT) is detected, the BP signal
mayor may not be asserted.
Note 1: The assertion of BP is not affected by the setting of the TR bit in the

OCR register.

Note 2: While executing the MOVUS and MOVSU instructions, the com­
pare-address condition is enabled for the User space memory refer­
ence under control of the UD·bit in the OCR.

Note 3: When the LPRi instruction is executed to load a new value into the
BPC, CAR or OCR, it is undefined whether the address-compare
and PC-match conditions, in effect while executing the instruction,
are detected under control of the old or new contents of the loaded
register. Therefore, any LPRi instruction that alters the control of the
address-compare or PC-match conditions should use register or im­
mediate addressing mode for the source operand.

3.4 ON-CHIP CACHES

The NS32532 provides three on-chip caches: the Instruc­
tion Cache (IC), the Data Cache (DC) and the Translation
Look-aside Buffer (TLB).

The first two are used to hold the contents of frequently
used memory locations, while the TLB holds address-trans­
lation information.

The IC and DC can be individually enabled by setting appro­
priate bits in the CFG Register (See Section 2.1.4); the TLB
is automatically enabled when address-translation is en­
abled.

The CPU also provides a locking feature that allows the
contents of the IC and DC to be locked to specific memory
locations. This is accomplished by setting the LlC and LDC
bits in the CFG register.

Cache locking can be successfully used in real-time applica­
tions to guarantee fast access to critical instruction and data
areas.

Details on the organization and function of each of the
caches are provided in the following sections.
Note: The size and organization of the on-chip caches may change in future

Series 32000 microprocessors. This however, will not affect software
compatibility.

3.4.1 Instruction Cache (lC)

The basic structure of the instruction cache (IC) is shown in
Figure 3-16.

The IC stores 512 bytes of code in a direct-mapped organi­
zation with 32 sets. Direct-mapped means that each set
contains only one block, thus each memory location can be
loaded into the IC in only one place.

Each block contains a 23-bit tag, which holds the most-sig­
nificant bits of the physical address for the locations stored
in the block, along with 4 double-words and 4 validity bits
(one for each double-word).

A 4-double-word instruction buffer is also provided, which is
loaded either from a selected cache block or from external
memory. Instructions are read from this buffer by the loader
unit and transferred to an a-byte instruction queue.

The IC mayor may not be enabled to cache an instruction
being fetched by the CPU. It is enabled when the IC bit in
the CFG Register is set to 1 and either the address transla­
tion is disabled or the CI bit in the Level-2 PTE used to
translate the virtual address of the instruction is set to O.

If the IC is disabled, the CPU bypasses it during the instruc­
tion fetch and its contents are not affected, The instruction
is read directly from external memory into the instruction
buffer.

z en
w
N
U1
W
N · N o
Z en
w
N
U1
W
N · N
U1
Z en
w
N
U1
W
N · W o

o r---
~
fa
m z
~
~
Cf)
II)
N
Cf)
C/)
Z
C;
N
N
Cf)
II)
N
Cf)
C/)
Z

3.0 Functional Description (Continued)

31

TAG
t.lEt.lORY

23

TAG
COt.lPARE

23

980210
INSTRUCTION ADDRESS

32

INSTRUCTION DOUBLE-WORD

CACHE
INVALIDATE

ADDRESS

TL/EE/9354-21

FIGURE 3-16. Instruction Cache Structure

When the IC is enabled, the instruction address bits 4 to 8
are used to select the IC set where the instruction may be
stored. The tag corresponding to the single block in the set
is compared with the 23 most-significant bits of the instruc­
tion's physical address. The 4 double·words in this block are
loaded into the instruction buffer and the 4 validity bits are
also retrieved. Bits 2 and 3 of the instruction's physical ad­
dress select one of these double·words and the associated
validity bit.

If the tag matches and the selected double-word is valid, a
cache 'hit' occurs and the double-word is directly trans­
ferred to the instruction queue for decoding; otherwise a
cache 'miss' will result.

In the latter case, if the cache is not locked, the CPU will
take the following actions.

First, if the tag of the selected block does not match, the tag
is loaded with the 23 most-significant bits of the instruction
address and all the validity bits are cleared. Then, the in­
struction is read from external memory into the instruction
buffer.

If the CIIN input signal is not active during the fetching of the
missing instruction, then the IC is updated and the instruc­
tion double-words fetched from memory are stored into it
with the validity bits set.

If the cache is locked, its contents are not affected, as the
CPU reads the missing instruction from external memory.

Whenever the CPU accesses external memory, whether or
not the IC is enabled, it always fetches instruction double­
words in a non-wrap-around fashion. Refer to Sections
3.5.4.3 and 3.5.6 for more information.

The contents of the instruction cache can be invalidated by
software through the CINV instruction or by hardware
through the appropriate cache invalidation input signals.
Clearing the IC bit in the CFG Register also invalidates the
instruction cache. Refer to Sections 3.5.10 and C.3 for de­
tails.
Note: If the IC is enabled for a certain instruction and a 'miss' occurs due to

a tag mismatch, the CPU will clear all the validity bits of the selected
tag before fetching the Instruction from external memory. If the CIIN
input signal is activated during the fetching of that instruction, the
validity bits are not set and the IC is not updated.

2-46

3.4.2 Data Cache (DC)

The Data Cache (DC) stores 1,024 bytes of data in a two·
way set associative organization as shown in Figure 3-17.

Each of the 32 sets has 2 cache blocks. Each block con·
tains a 23-bit tag, which holds the most-significant bits of
the physical address for the locations stored in the block,
along with 4 double·words and 4 validity bits (one for each
double-word).

The DC is enabled for a data read when all of the following
conditions are satisfied.

• The DC bit in the CFG Register is set to 1.

• Either the address translation is disabled or the CI bit in
the Level-2 PTE used to translate the virtual address of
the data reference is set to O.

• The reference is not an interlocked read resulting from
executing a CBITI or SBITI instruction.

If the DC is disabled, the CPU bypasses it during the data
read and its contents are not affected. The data is read
directly from external memory. The DC is also bypassed for
MMU reads from Page Table entries during address transla­
tion and for Interrupt-Acknowledge and End-of-Interrupt bus
cycles.

When the DC is enabled for a data read, the address bits 4
to 8 are used to select the DC set where the data may be
stored.

The tags corresponding to the two blocks in the set are
compared to the 23 most-significant bits of the physical ad­
dress. Bits 2 and 3 of the address select one double-word in
each block and the associated validity bit.

If one of the tag matches and the selected double-word in
the corresponding block is valid, a cache 'hit' occurs and
the data is used to execute the instruction; otherwise a
cache 'miss' will result. In the latter case, if the cache is not
locked, the CPU will take the following actions.

3.0 Functional Description (Continued)

23

31

TAG
COMPARE

23

23

DATA ADDRESS DATA

CACHE
INVALIDATE

ADDRESS

TL/EE/9354-22

FIGURE 3·17. Data Cache Structure

First, if the tag of either block in the set matches the data
address, that block is selected for updating. Otherwise, if
neither tag matches, then the least recently used block is
selected; its tag is loaded with the 23 most-significant bits of
the data address, and all the validity bits are cleared.

Then, the data is read from external memory; up to 4 dou­
ble-word bits are read into the cache in a wrap-around fash­
ion. Refer to Sections 3.5.4.3 and 3.5.6 for more informa­
tion.

If the CIIN and IODEC input signals are both inactive during
the bus cycles performed to read the missing data, then the
DC is updated, as each double-word is read from memory,
and the corresponding validity bit is set. If the cache is
locked, its contents are not affected, as the CPU reads the
missing data from external memory.

The DC is enabled for a data write whenever the DC bit in
the CFG Register is set to 1, including interlocked writes
resulting from executing the CBITI and SBITI instructions,
and MMU writes to Page Table entries during address trans­
lation.

The DC does not use write allocation. This means that, dur­
ing a write, if a cache 'hit' occurs, the DC is updated, other­
wise it is unaffected. The data is always written through to
external memory.

The contents of the data cache can be invalidated by soft­
ware through the CINV instruction or by hardware through
the appropriate cache invalidation input signals. Clearing
the DC bit in the CFG Register also invalidates the data
cache. Refer to Sections 3.5.10 and C.3 for details.
Note: If the DC is enabled for a certain data reference and a "miss" occurs

due to tag mismatch, the CPU will clear all the validity bits for the least
recently used tag before reading the data from external memory. If
either CIIN or IODEC are activated during the data read bus cycles,
the validity bits are not set and the DC is not updated.

3.4.3 Cache Coherence Support

The NS32532 provides several mechanisms for maintaining
coherence between the on-chip caches and external mem­
ory. In software, the use of caches can be inhibited for indi-

2-47

vidual pages using the CI-bit in the level-2 Page Table En­
tries. The CINV instruction can be executed to invalidate
entriely the Instruction Cache and/or Data Cache; the CINV
instruction can also be executed to invalidate a single
16-byte block in either or both caches.

In hardware, the use of the caches can be inhibited for indi­
vidual locations using the CIIN input signal. A cache invali­
dation request can cause the entire Instruction Cache and/
or Data Cache to be invalidated; a cache invalidation re­
quest can also cause invalidation of a single set in either or
both caches. Refer to Section 3.5.7 for more information.

An external "Bus Watcher" circuit can also be used to help
maintain cache coherence. The Bus Watcher observes the
CPU's bus cycles to maintain a copy of the on-chip cache
tags while also monitoring writes to main memory by DMA
controllers and other microprocessors in the system. When
the Bus Watcher detects that a location in one of the on­
chip caches has been modified in main memory, it issues an
invalidation request to the CPU. The CPU provides the nec­
essary information on the system interface to help maintain
an external copy of the on-chip tags.

The status codes differentiate between instruction fetches
and data reads.

The set, affected during the bus access (if ClOUT is low), as
well as the tag can be determined from the address bits A4
through AS and A9 through A31 respectively.

During a data read the CPU also indicates, by means of the
CASEC signal, which block in the set is being updated.

Whenever a CINV instruction is executed, the operation
code and operand appear on the system interface using
slave processor bus cycles. Thus, invalidations of the on­
chip caches by software can be monitored externally.

Note, however, that the software is responsible for commu­
nicating to the external circuitry the values of the cache en­
able and lock bits in the CFG Register, since the CPU does
not generate any special cycle (e.g., Slave Cycle) when the
CFG Register is loaded.

z
en
w
N
U1
W
N • N
o
Z
en
w
N
U1
W
N · N
U1
Z
en w
N
U1
W
N · W
o

o r---~
C") · N
C")
II)
N
C")

Ul
Z
II)
N · N
C")
II)
N
C")

Ul
Z o
N · N
C")
II)
N
C")

Ul
Z

3.0 Functional Description (Continued)

3.4.4 Translation Look-aside Buffer (TLB)

The Translation Look-aside Buffer is an on-chip fully asso­
ciative memory. It provides direct virtual to physical mapping
for 64 pages, thus minimizing the time needed to perform
the address translation.

The efficiency of the on-chip MMU is greatly increased by
the TLB, which bypasses the much longer Page Table look­
up in over 99% of the accesses made by the CPU.

Entries in the TLB are allocated and replaced automatically;
the operating system is not involved. The TLB entries can­
not be read or written by software; however, they can be
purged from it under program control.

Figure 3-18 shows a model of the TLB. Information is
placed into the TLB whenever a Page Table lookup is per­
formed. If the retrieved mapping is valid (V = 1 in both
levels of the Page Tables), and the access attempted is
permitted by the protection level, an entry of the TLB is
loaded from the information retrieved from memory.

The on-chip MMU places the Virtual Page Number (VPN)
and the Address Space qualifier (AS) into the tag portion of
the TLB entry.

The value portion of the entry is loaded from the Page Ta­
bles as follows:

• The PFN field (20 bits) as well as the CI and M bits are
loaded from the Level-2 Page Table Entry (PTE2).

• The PL field (2 bits) is loaded to reflect the most restric­
tive of the protection levels imposed by the PL fields of
the Level-1 and Level-2 Page Table Entries (PTE1 and
PTE2).

Not shown in the figure is an additional bit associated with
each TLB entry which indicates whether the entry is valid.

Address translation can be either enabled or disabled for a
memory reference. If translation is disabled, then the TLB is
bypassed and the physical address is identical to the virtual
address.

When translation is enabled and a virtual address needs to
be translated, the high-order 20 bits (VPN) and the Address
Space qualifier are compared associatively to the corre­
sponding fields in all entries of the TLB.

For a read reference, if the tag portion of a valid TLB entry,
completely matches the input values, then the value portion
of the entry is used to complete the address translation and
protection checking.

For a write reference, if a valid entry with a matching tag is
present in the TLB, then the M bit is examined. If the M bit is
1, the value portion of the entry is used to complete the
address translation and protection checking. If the M bit is 0,
the entry is invalidated.

In either case, if a protection level violation is detected, a
translation exception (Trap (ABT» is generated. When no
matching entry is found or a matching entry is invalidated
because the M bit is 0 in a write reference, a Page Table
lookup is performed. The virtual address is translated ac­
cording to the algorithm given in Section 2.4.5 and the
translation information is loaded into the TLB.

The recipient entry is selected by an on-chip circuit that im­
plements a First-In-First-Out (FIFO) algorithm.

Note that for a translation to be loaded into the TLB it is
necessary that the Level-1 and Level-2 Page Table Entries
be valid (V bit = 1). Also, it is guaranteed that in the pro­
cess of loading a TLB entry (during a Page Table lookup)
the Level-1 and Level-2 R bits will be set in memory if they

2-48

were not already set. For these reasons, there is no need to
replicate either the V bit or the R bit in the TLB entries.

Whenever a Page Table Entry in memory is altered by soft­
ware, it is necessary to purge any matching entry from the
TLB, otherwise the corresponding addresses would be
translated according to obsolete information. TLB entries
may be selectively purged by writing a virtual address to one
of the IVARn registers using the LMR instruction. The TLB
entry (if any) that matches that virtual address is then
purged, and its space is made available for another transla­
tion. Purging is also performed whenever an address space
is remapped by altering the contents of the PTBO or PTB1
register. When this is done, all the TLB entries correspond­
ing to the address space mapped by that register are
purged. Turning translation on or off (via the MCR TU and
TS bits) does not affect the contents of the TLB.

It is possible to maintain an external copy of the valid con­
tents of the on-chip TLB by observing the CPU's system
interface during the replacement and invalidation of TLB en­
tries. Whenever the CPU replaces a TLB entry, the page
tables are accessed in external memory using bus cycles
with a special Status. Because a FIFO replacement algo­
rithm is used, it is possible to determine which entry is being
replaced by using a 6-bit counter that is incremented when­
ever a Level-1 PTE is accessed. The contents of the new
entry can be found as follows:

• VPN appears on A2 through A 11 during the PTE1 and
PTE2 accesses. The most-significant 10 bits appear dur­
ing the PTE1 access, and the least-significant 10 bits
appear during the PTE2 access.

• AS can be determined from the U/S signal during the
PTE1 access.

• PFN, M and CI can be determined from the PTE2 value
read on the Data Bus. PL can be determined from the
most restrictive of the PTE1 and PTE2 values read on
the Data Bus.

Whenever a LMR instruction is executed, the operation
code and operand appear on the system interface using
slave processor bus cycles. Thus, the information is avail­
able externally to determine the translation modes con­
trolled by the MCR and to identify that a TLB entry has been
invalidated.

When the PTBO register is loaded by executing the 'LMR
PTBO src' instruction, the internal FIFO pointer is also reset
to point to the first TLB entry.

Note that the contents of the TLB maintained externally in­
clude copies of all valid entries in the on-chip TLB, but the
external copy may include some entries that are invalid in
the on-chip TLB. For example, when the TLB is searched
for a write reference and a matching entry is found with the
M bit clear, then the on-chip entry is invalidated and a miss
is processed. It is not possible to detect externally that the
old matching entry on-chip has been invalidated.

3.5 SYSTEM INTERFACE

This section provides general information on the NS32532
interface to the external world. Descriptions of the CPU re­
quirements as well as the various bus characteristics are
provided here. Details on other device characteristics in­
cluding timing are given in Chapter 4.

3.5.1 Power and Grounding

The NS32532 requires a single 5-volt power supply, applied
on 21 pins. The logic voltage pins (VCCL 1 to VCCL6) supply

3.0 Functional Description (Continued)

VIRTUAL
ADDRESS

(U/S, ZZZ)
COMPARISON

• AS represents the virtual address space qualifier.

I

AS·

0

1

0

1

TAG

VPN (20 BITS)

xxx

YYY

III

www

"
Pl M

11 0

11 0

11 1

00 1

VALUE

CI PF'N (20 BITS)

0 mmm

0 nnn

1 PPP

0 qqq

\

TRANSLATED
ADDRESS

(PPP)

TLlEE/9354-23

FIGURE 3-18. TLB Model

the power to the on-chip logic. The buffer voltage pins
(VCCB1 to VCCB14) supply the power to the output drivers
of the chip. The bus clock power pin (VCCClK) is the power
supply for the on-chip clock drivers. All the voltage pins
should be connected together by a power (VCC) plane on
the printed circuit board.

The NS32532 grounding connections are made on 20 pins.
The logic ground pins (GNDl1 to GNDl6) are the ground
pins for the on-chip logic. The buffer ground pins (GNDB1 to
GNDB13) are the ground pins for the output drivers of the
chip. The bus clock ground pin (GNDClK) is the ground
connection for the on-chip clock drivers. All the ground pins
should be connected together by a ground plane on the
printed circuit board.

Both power and ground connections are shown in Figure
3-19.

+5V

VCCLI - 6

OTHER Vee
veccLJ(1---___ • CONNECTIONS

(Vcc PLANE)

NS32532
CPU

OTHER GROUND
GNDCLK J-o-..... CONNECTIONS

(GND PLANE)

TL/EE/9354-24

FIGURE 3-19. Power and Ground Connections

3.5.2 Clocking

The NS32532 requires a single-phase input clock signal
(ClK) with frequency twice the CPU's operating frequency.

This clock signal is internally divided by two to generate two
non-overlapping phases PHI1 and PHI2. One single-phase
clock signal BClK in phase with PHI1 and its complement
BClK, are also generated and output by the CPU for timing
reference.

Following power-on, the phase relationship between BClK
and ClK is undefined. Nevertheless, in some systems it
may be necessary to synchronize the CPU bus timing to an
external reference. The SYNC input signal can be used to
initialize the phase relationship between ClK and BClK.
SYNC can also be used to stretch BCLK (Low) while ClK is
toggling.

SYNC is sampled on each rising edge of ClK. As shown in
Figure 3-20, whenever SYNC is sampled low, BClK stops
toggling and stays low. On the first rising edge that SYNC is
sampled high, BClK is driven high and then toggles on each
subsequent rising edge of ClK.

Every rising edge of BClK defines a transition in the timing
state (lOT-State") of the CPU.

One T-State represents the execution of one microinstruc­
tion within the CPU and/or one step of an external bus
transfer.
Note: The CPU requirement on the maximum period of BCLK must be satis·

fied when SYNC is asserted at times other than reset.

3.5.3 Resetting

The RST input pin is used to reset the NS32532. The CPU
samples RST synchronously on the rising edge of BClK.
Whenever a low level is detected, the CPU responds imme­
diately. Any instruction being executed is terminated; any
results that have not yet been written to memory are dis­
carded; and any pending bus errors, interrupts, and traps
are eliminated. The internal latches for the edge-sensitive
NMI and DBG signals are cleared.

elK [

I I I I I I I I I I

:~~DI\I\jm
TL/EE/9354-25

FIGURE 3-20. Bus Clock Synchronization

2-49

z en w
N
U1
W
N · N
<:)
.........
Z en
w
N
U1
W
N · N
U1
.........
Z en w
N
U1
W
N • W
<:)

o
Cf) · N
Cf)
I.t)
N
Cf)
(J)
Z
I.t)
N • N
Cf)
I.t)
N
Cf)
(J)
Z
o
N • N
Cf)
I.t)
N
Cf)
(J)
Z

3.0 Functional Description (Continued)

The CPU stores the PC contents in the RO Register and the
PSR contents in the least-significant word of R1, leaving the
most-significant word undefined. The PC is then cleared to 0
and so are all the implemented bits in the PSR, MSR, MCR
and CFG registers. The DEN-bit in the DCR Register is also
cleared to O. After reset, the remaining implemented bits in
DCR and the contents of all other registers are undefined.
The CPU begins executing the instruction at Address O.

On application of power, RST must be held low for at least
50 ""S after Vee is stable. This is to ensure that all on-chip
voltages are completely stable before operation. Whenever
a Reset is applied, it must also remain active for not less
than 64 BCLK cycles. See Figures 3-21 and 3-22.

While in the Reset state, the CPU drives the signals ADS,
BEO-3, BMT, CONF and HLDA inactive. The data bus is
floated and the state of all other output signals is undefined.
Note 1: If HOm is active at the time RST is deasserted, the CPU acknowl-

edges HODJ before performing any bus cycle.

Note 2: If ~ Is asserted while the CPU is being reset, then BCLK does
not toggle. Consequently, SYNC must be high for at least 128 eLK
cycles while RSf is low.

BCLK[_--+~ JLSL
I-i!: 100 CLo;aCK

RST [

CYCLES _

1-----i!:50/-'5
TL/EE/9354-26

FIGURE 3-21. Power-On Reset Requirements

BCLK[~~

c i!: 10::J-0 CLOCK

[
.---_""I"""I!""\ CYCLES

RST \\S~ ~
TL/EE/9354-27

FIGURE 3-22. General Reset Timing

3.5.4 Bus Cycles

The NS32532 CPU will perform bus cycles for one of the
following reasons:

1. To fetch instructions from memory.

2. To write or read data to or from memory or peripheral
devices. Peripheral input and output are memory mapped
in the Series 32000 family.

3. To read and update Page Table Entries in memory to
perform memory management functions.

4. To acknowledge an interrupt and allow external circuitry
to provide a vector number, or to acknowledge comple­
tion of an interrupt service routine.

5. To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 4 above are identi­
cal. For timing specifications, see Section 4. The only exter­
nal difference between them is the 5-bit code placed on the
Bus Status pins (STO-ST4). Slave Processor cycles differ in
that separate control signals are applied (Section 3.5.4.7).

2-50

3.5.4.1 Bus Status

The CPU presents five bits of Bus Status information on
pins STO-ST4. The various combinations on these pins in­
dicate why the CPU is performing a bus cycle, or, if it is idle
on the bus, then why is it idle.

The Bus Status pins are interpreted as a five-bit value, with
STO the least significant bit. Their values decode as follows:

00000 The bus is idle because the CPU does not yet need
to access the bus.

00001 The bus is idle because the CPU is waiting for an
interrupt following execution of the WAIT instruc­
tion.

00010 The bus is idle because the CPU has halted after
detecting an abort or bus error while processing an
exception.

00011 The bus is idle because the CPU is waiting for a
Slave Processor to complete executing an instruc­
tion.

00100 Interrupt Acknowledge, Master.

The CPU is reading an interrupt vector to acknowl­
edge an interrupt request.

00101 Interrupt Acknowledge, Cascaded.

The CPU is reading an interrupt vector to acknowl­
edge a maskable interrupt request from a Cascad­
ed Interrupt Control Unit.

00110 End of Interrupt, Master.

The CPU is performing a read cycle to indicate that
it is executing a Return from Interrupt (RETI) in­
struction at the completion of an interrupt's service
procedure.

00111 End of Interrupt, Cascaded.

The CPU is performing a read cycle from a Cascad­
ed Interrupt Control Unit to indicate that it is execut­
ing a Return from Interrupt (RETI) instruction at the
completion of an interrupt's service procedure.

01000 Sequential Instruction Fetch.

The CPU is fetching the next double-word in se­
quence from the instruction stream.

01001 Non-Sequential Instruction Fetch.

The CPU is fetching the first double-word of a new
sequence of instruction. This will occur as a result
of any JUMP or BRANCH, any exception, or after
the execution of certain instructions.

01010 Data Transfer.

The CPU is reading or writing an operand for an
instruction, or it is referring to memory while pro­
cessing an exception.

01011 Read RMW Class Operand.

The CPU is reading an operand with access class
of read-modify-write.

01100 Read for Effective Address Calculation.

The CPU is reading a pointer from memory in order
to calculate an effective address for Memory Rela­
tive or External addressing modes.

01101 Access PTE1 by MMU.

The CPU is reading or writing a Level-1 Page Table
Entry while the on-chip MMU is translating virtual
address.

3.0 Functional Description (Continued)

01110 Access PTE2 by MMU.

The CPU Is reading or writing a Level·2 Page Table
Entry while the on·chlp MMU Is translating a virtual
address.

11101 Transfer Slave Processor Operand.

The CPU Is transferring an operand to or from a
Slave Processor.

11110 Read Slave Processor Status.

The CPU Is reading a status word from a slave
processor after the slave processor has activated
the FSSR signal.

11111 Broadcast Slave Processor ID + OPCODE.

The CPU is initiating the execution of a Slave In·
struction by transferring the first 3 bytes of the in·
struction, which specify the Slave Processor identi·
fication and operation.

3.5.4.2 Basic Read and Write Cycles

The sequence of events occurring during a basic CPU ac·
cess to either memory or peripheral device is shown in Fig·
ure 3·23 for a read cycle, and Figure 3·24 for a write cycle.

The cases shown assume that the selected memory or pe·
ripheral device is capable of communicating with the CPU at
full speed. If not, then cycle extension may be requested
through the RDY line. See Section 3.5.4.4.

A full speed bus cycle is performed in two cycles of the
BCLK clock, labeled T1 and T2. For both read and write bus
cycles the CPU asserts ADS during the first half of T1 indio
cating the beginning of the bus cycle. From the beginning of
T1 until the completion of the bus cycle the CPU drives the
Address Bus and other relevant control signals as indicated
in the timing diagrams. For cacheable data read cycles the
CPU also drives the CASEC signal to indicate the block in
the DC set where the data will be stored. If the bus cycle is
not cancelled (e.g., state T2 is entered in the next clock
cycle), the confirm signal (CONF) is asserted in the middle
of T1. Note that due to a bus cycle cancellation, the BMT
signal may be asserted at the beginning of T1, and then
deasserted before the time in which it is guaranteed valid
(see Section 4.4.2).

A confirmed bus cycle is completed at the end of T2, unless
a cycle extension is requested. Following state T2 is either
state T1 of the next bus cycle, or an idle T·state, if the CPU
has no bus cycle to perform.

In case of a read cycle the CPU samples the data bus at the
end of state T2.

If a bus exception is detected, the data is ignored.

For write bus cycles, valid data is output from the middle of
T1 until the end of the cycle. When a write bus cycle is
immediately followed by another write cycle, the CPU keeps
driving the bus with the data related to the previous cycle
until the middle of state T1 of the second bus cycle.

The CPU always inserts an idle state before a write cycle
when the write immediately follows a confirmed read cycle.
Note: The CPU can initiate a bus cycle with a T1·state and then cancel the

cycle, such as when a TLB miss or a Cache hit occurs. In such a case,
the CONF signal remains High and the BMT signal is driven High; the
T1·state is followed by another T1·state or an idle T-state.

2·51

ANY

BCLK [

I T- STATE I T1

-AO-3{

00-3{
ODIN [

ADS [

Bt,lT [

-
'/,

CONF [

ROY [

BRT [

'/,

'l.

X
'I/,

\.

r<Q

'I/,

II/,

- ~ -
'I/, ~.

\.

V \.

I~

/

VI/, Iflh

'I~ 'Ih

BER ['It 'Iii '1h 'Iii

BOUT [/

em[II VII VI, 'III

. .

/

-

'1h

rlh

'Iii

VII

T2 I T1 OR n I

X

.. rG)- .. _ ..

/

\. J

V j<bI

/

'/~ Ih /I VII /11

'III (f '< 'Ih 'Ih

'IIJ" '<I 'II/ VI/

VI, 'III 'III 'III VI/

BWO-l, [
CIIN,IOOEC 'I III VII VII VII ~ :x r/h If//, 'I/,

--BEO - 3, STO - 4, [
UjS, ClOUT, IOINH --

-
--CASEC [

X - tx -
- X i'-- i'-

X - X -
~ ~ ~ --

TLlEE/9354-28

FIGURE 3-23. Basic Read Cycle

z en
w
N
U1
W

~ o z en
w
N
U1
W

~
U1 z en w
N
U1
W
~
W
o

o
(f)

• C'i
(f)
II)
C'i
(f)

en z
II)
C'i · C'i
(f)
II)
C'i
(f)

en
z
o
C'i • C'i
(f)
II)
C'i
(f)

en z

3.0 Functional Description (Continued)

ANY

BCLK [

I T- STATE I Tl

x AO-31 [

DO-3{ Z Iflh rlh ~

ODIN [

ADS [

Bt,lT [

CONF [

ROY [

BRT [

BER [

'I.

'I.

'Ii

BOUT [

~[Ii

'I

-
BWO-l [

BEO- 3, [
STO- 4,U/S --

/

\.. V \..

'<Q I~

1/

VII. 'Ih Vlh

I/f I. Ifh IIfh

rlh V/i Vii

/

'Iii Vii 'Iii

11/ VII Vlj

X I--~ I--

-<

/

-

'II.

rlli

Vii

'III

Vlj

T2 I T1 OR n I

X

DATA OUT ~

\.

\.. ./

/ ~ --V
1/ \.. -

'Ih ~ /J /1) /1/

Vh '/ '(rlh V/i

VI/ 'V Vii VI,

'II, VI, 'III ,/11 VII

OC ~ rlh Ifh VIJ:

TLlEE/9354-29

FIGURE 3·24. Write Cycle

2-52

3.5.4.3 Burst Cycles

The NS32532 is capable of performing burst cycles in order
to increase the bus transfer rate. Burst is only available in
instruction fetch cycles and data read cycle from 32-bit wide
memories. Burst is not supported in operand write cycles or
slave cycles.

The sequence of events for burst cycles is shown in Figure
3-25. The case shown assumes that the selected memory is
capable of communicating with the CPU at full speed. If not,
then cycle extension can be requested through the ROY
line. See Section 3.5.4.4.

A Burst cycle is composed of two parts. The first part is a
regular cycle (opening cycle), in which the CPU outputs the
new status and asserts all the other relevant control signals.
In addition, the Burst Out Signal (BOUT) is activated by the
CPU indicating that the CPU can perform Burst cycles. If the
selected memory allows Burst cycles, it will notify the CPU
by activating the burst in signal (BIN). BIN is sampled by the
CPU in the middle of T2 on the falling edge of BClK. If the
memory does not allow burst (BIN high), the cycle will termi­
nate at the end of T2 and BOUT will go inactive immediate­
ly. If the memory allows burst (BIN low), and the CPU has
not deasserted BOUT, the second part of the Burst cycle
will be performed and BOUT will remain active until termina­
tion of the Burst.

The second part consists of up to 3 nibbles, labeled T2B. In
each of them a data item is read by the CPU. For each
nibble in the burst sequence the CPU forces the 2 least-sig­
nificant bits of the address to 0 and increments address bits
2 and 3 to select the next double-word; all the byte enable
signals (BEO-3) are activated.

As shown in Figures 3-25 and 4-8 (in Section 4), the CPU
samples ROY at the end of each nibble and extends the
access time for the burst transfer if ROY is inactive.

The CPU initiates burst read cycles in the following cases.

1. An instruction must be fetched (Status = 01000 or
01001), and the instruction address does not fall within
the last double-word in an aligned 16-byte block (e.g.,
address bits 2 and 3 are not both equal to 1).

2. A data item must be read (Status = 01010, 01011 or
01100), and all of the following conditions are met.

• The data cache is enabled and not locked. (DC = 1
and lOC = 0 in the CFG register.)

• The addressed page is cacheable as indicated in the
level-2 Page Table Entry.

• The bus cycle is not an interlocked data access per-
formed while executing a CBITI or SBITI instruction.

The Burst sequence will be terminated when one of the
following events occurs.

1. The last instruction double-word in an aligned 16-byte
block has been fetched.

2. The CPU detects that the instructions being prefetched
are no longer needed due to an alteration of the flow of
control. This happens, for example, when a Branch in­
struction is executed or an exception occurs.

3. 4 double-words of data have been read by the CPU. The
double-words are transferred within an aligned 16-byte
block in a wrap-around order. For example, if a source
operand is located at address 104, then the burst read
cycle transfers the double-words at 104, 108, 112, and
100, in that order.

3.0 Functional Description (Continued)

ANY
IT-STATE I T1 I T2 I T2B I T2B I T2B I T1 OR n I

ODIN [

ADS [

Bt.H[

CONF [

ROY [

BEO- 3 [

II

'l.

BiN [~

BOUT [

BRT [

BER [

BWO-l, [
CIIN,IODEC

STO- 4,U/S [
CIOUT,IOINH

CASEC [

'j

'l.

'J

-
-

x X - tx !--!-- !--

VIJ VI,,~ I~ K1 t>-K1
\.

\.

l~~ I~ - /

I

Iff) VII Vh Vh rJIJ IA Ii ~ Jj ~

\

VII VII V/J VII ~ Ii t\ Ii ~ IJ

I\,

Ifh '1!J Vii ,/11 '/11 II ~ (I ~ V
Iff) rill rJh '17J 7lJ 77 ~ (I ~ V
11/ VI/ VI/ VI/ ~ J< V/~ If/~ V/7 VII

IX

!--rx: I--~ !-- ~

FIGURE 3-25. Burst Read Cycles

2-53

D<
1oo-

t>< 100-

t>-K! 1:'"\
iJ

:/

I\.. '/

l~ ~ /

\.. ~

Jj ?x IJ VI/ VII

II

VIJ VI/ VI/' ~ VI.

'<G (I VJ '1/ VI,

~ (I '<I. 'II. VII

VI; VI/ VI) Vlj Ih

IX

~ ~
~

~

TL/EE/9354-30

z en
w
N
U1
W
N

I
N
C
Z en
w
N
U1
W
N
I

N
U1
.......
Z en
w
N
U1
W
N
I

W
C

o
Cf') · C\I
Cf')
U')
C\I
Cf')
tJ)
z
U')
C\I • C\I
Cf')
U')
C\I
Cf')
tJ)
z o
C\I • C\I
Cf')
U')
C\I
Cf')
tJ)
z

3.0 Functional Description (Continued)

4. The BIN signal is deasserted.

5. BRT is asserted to signal a bus retry.

6. IODEC is asserted or the BWO-1 signals indicate a bus
width other than 32-bits. The CPU samples these signals
during state T2 of the opening cycle. During T2B-states
BWO-1 are ignored and IODEC must be kept HIGH.

The CPU uses only the values of the above signals sampled
during the last state of the transfer when the cycle is ex­
tended. See Section 3.5.4.4.
Note: A burst sequence is not stopped by the assertion of either SER or

CIIN. See Note 3 in Section 3.5.5.

3.5.4.4 Cycle Extension

To allow sufficient access time for any speed of memory or
peripheral device, the NS32532 provides for extension of a
bus cycle. Any type of bus cycle except a slave processor
cycle can be extended.

A bus cycle can be extended by causing state T2 for a
normal cycle or state T2B for a Burst cycle to be repeated.

At the end of each T2 or T2B state, on the rising edge of
BelK, the RDY line is sampled by the CPU. If RDY is active,
then the transfer cycle will be completed. If RDY is inactive,
then the bus cycle is extended by repeating the T -state for
another clock cycle. These additional T -states inserted by
the CPU in this manner are called 'WAIT' states.

During a transfer the CPU samples the input control signals
BIN, BER, BRT, BWO-1, CIIN and IODEC.

When wait states are inserted, only the values of these sig­
nals sampled during the last wait state are significant.

Figures 3-26 and 4-8 (in Section 4) illustrate both a normal
read cycle and a Burst cycle with wait states added through
the RDY pin.
Note: If RSi Is asserted during a bus cycle, then the cycle Is terminated

without regard of ROY.

3.5.4.5 Interlocked Bus Cycles

The NS32532 supports indivisible read-modify-write trans­
actions by asserting the IlO signal during consecutive read
and write operations. See Figure 4-7 in Section 4.

Interlocked transactions are always preceded and followed
by one or more idle T-states.

The IlO signal is asserted in the middle of the idle T-state
preceding state T1 of the read operation, and is deasserted
in the middle of one of the idle T-states following completion
of the write operation, including any retried bus cycles.

No other bus operations (e.g., instruction fetches) will occur
while an interlocked transaction is taking place.

Interlocked transactions are required in multiprocessor sys­
tems to handle shared resources. The CPU uses them to
reference data while executing a CBITIi or SBITIi instruction,
during which a single byte of data is read and written. They
are also used when the on-chip MMU is updating a level-2
Page Table Entry during a Page Table lookup.

In this case a double-word is read and written. If the level-2
Page Tables are located in a memory area whose width is
other than 32 bits, multiple interlocked reads followed by
multiple interlocked writes will result. The IlO signal is al­
ways released for one or more clock cycles in the middle of
two consecutive interlocked transactions.
Note 1: If a bus error Is detected during an interlocked read cycle, the sub­

sequent Interlocked write cycle will not be performed, and rr:o Is
deasserted before the next bus cycle begins.

2-54

Note 2: The CPU may assert IIO before a read cycle that is cancelled (for
example, due to a TLS miss). In such a case, the CPU deasserts
ILO before performing any additional bus cycles.

3.5.4.6 Interrupt Control Cycles

The CPU generates Interrupt-Acknowledge bus cycles in re­
sponse to non-maskable interrupt and enabled maskable
interrupt requests.

The CPU also generates one or two End-of-Interrupt bus
cycles during execution of the Return-from-Interrupt (RETI)
instruction .

The timing for the interrupt control cycles is the same as for
the basic memory read cycle shown in Figure 3-23; only the
status presented on pins STO-4 is different. These cycles
are single-byte read cycles, and they always bypass the
data cache.

Table 3-4 shows the interrupt control sequences associated
with each interrupt and with the return from its service pro­
cedure.

3.5.4.7 Slave Processor Bus Cycles

The NS32532 performs bus cycles to transfer information to
or from slave processors while executing floating-point or
custom-slave instructions.

The CPU uses slave write bus cycles to broadcast the iden­
tification and operation codes of a slave instruction as well
as to transfer operands from memory or general purpose
registers to a slave.

Figure 3-27 shows the timing for a slave write bus cycle.
The CPU asserts SPC during T1; the status is valid during
T1 and T2. The operation code or operand is output on the
data bus from the middle of T1 until the end of T2.

The CPU uses a slave read bus cycle to transfer a result
operand from a slave to either memory or a general purpose
register. A slave read cycle is also used to read a status
word when the FSSR signal is asserted. Figure 3-28 shows
the timing for a slave read bus cycle.

During T1 and T2 the CPU drives the status lines and as­
serts SPC. The data from the slave is sampled at the end of
T2.

The CPU will never perform another slave cycle immediately
following a slave read cycle. In fact, the T-state following
state T2 of a slave read cycle is either an idle T-state or the
T1 state of a memory cycle.

Slave processor data transfers are always 32 bits wide. If
the operand is a single byte, then it is transferred on DO
through D7. If it is a word, then it is transferred on DO
through D15.

When two operands are transferred, operand 1 is trans­
ferred before operand 2. For double-precision operands, the
least-significant double-word is transferred before the most­
significant double-word.

During a slave bus cycle the output signals BEO-3 are un­
defined while the input signals BWO-1 and RDY are ig­
nored.

BER and BRT must be kept high.

~---'Z

3.0 Functional Description (Continued)

ANY
IT-STATE I Tl I T2 I T2(W) 111 OR n I

AO-3{

00-3{
ODIN [

ADS [

Bt.lT [

-
-
Z

'l.

Jj

CONF [

ROY [

BRT [

BER ['l.

BOUT [

em[';

BWO-l, [
CIIN,IOOEC /j

-BEO - 3, STO- 4, [
U/S, CIOUT,IOINH --

CASEC [--

tx: t--I"-

IIfh VjJj

\.. V

I~

VI/' VII.

VLh rLh

VI/' VII.

VII VI;

VI/' VI/'

tx: t--t--

t--tx: t--

D(

?-- I- _.

'\

\.. V
I~ ~

/

'I/, Ifh

rLh 'fh

If//' VI.

/

VII VI;

VI; Ifl

D<
~

~ t--

IX

-- -- --~
/

I\.

V I~

/

Vfh '/ ~ IX. /)

rth Vh rth V '<

VI/' r//. 'I/''' '<

VI/' II/, VIL VI/' IlL

VI/ ifl} ~ tx Vh

~
3·26. Cycle Extension of a Basic Read Cycle

2-55

~-
. _.

V

t--V

\. ~

VI) VI,

VII. V/~

'(II, '(III

VLl Vfh

rth vI/,

~
I-

I-
TL/EE/9354-31

en
w
N
en
W
N · N o
Z en w
N
en
W
N · N
en
Z en
w
N
en
W
N · W o

•

Q
Cf)
• N

Cf)
&n
N
Cf)

en z
&n
N · N
Cf)
&n
N
Cf)
en z
Q
N · N
Cf)
&n
N
Cf)

en z

3.0 Functional Description (Continued)

TABLE 3-4. Interrupt Sequences
Data Bus .

(

Cycle Status Address ODIN BE3 BE2 BE1 BEO Byte 3 Byte 2 Byte 1
A. Non-Maskable Interrupt Control Sequences

Interrupt Acknowledge
1 00100 FFFFFF0016 o o x X X

Interrupt Return
None: Performed through Return from Trap (RETT) instruction .

B. Non-Vectored Interrupt Control Sequences
Interrupt Acknowledge

1 00100 FFFFFE0016 0 0 X X X
Interrupt Return

1 00110 FFFFFE0016 0 0 X X X
C. Vectored Interrupt Sequences: Non-Cascaded

Interrupt Acknowledge
1 00100 FFFFFE0016 0 0 X X X

Interrupt Return
1 00110 FFFFFE0016 0 0 X X X

D. Vectored Interrupt Sequences: Cascaded
Interrupt Acknowledge

1 00100 FFFFFE0016 o o X X X

(The CPU here uses the Cascade Index to find the Cascade Address)

" Byte 0

X

X

X

Vector:
Range: 0-127

Vector: Same as
in Previous Int.
Ack. Cycle

Cascade Index:
range -16 to -1

2 001101 Cascade 0 See Note
Address

Vector, range 16-255; on appropriate byte of
data bus.

Interrupt Return
1 00110 FFFFFE0016 o

(The CPU here uses the Cascade Index to find the Cascade Address)
2 00111 Cascade 0 See Note

Address
X = Don't Care

Note: BEO-BE3 signals will be activated according to the cascaded leu address

2·56

o X X

X X

X

X

Cascade Index:
Same as in
previous Int.
Ack. Cycle

X

3.0 Functional Description (Continued)

ANY

BCLK [

00-31 [

SPC [

ODIN [

STO-4 [

IT - STATE I T1

>-K

\.. ~

/

T2 I T1 or TI I

I
DATA OUT " I

/

\

IX
TLlEE/9354-32

FIGURE 3-27. Slave Processor Write Cycle

3.5.5 Bus Exceptions

The NS32532 has the capability of handling errors occurring
during the execution of a bus cycle. These errors can be
either correctable or incorrectable, and the CPU can be no­
tified of their occurrence through the input signals BRT and/
or BER.

Bus Retry

If a bus error can be corrected, the CPU may be requested
to repeat the erroneous bus cycle. The request is done by
asserting the BRT signal. BRT is sampled at the end of
state T2 or T2B.

When the CPU detects that BRT is active, it completes the
bus cycle normally, but ignores the data read in case of a
read cycle, and maintains a copy of the data to be written in
case of a write cycle. Then, after a delay of two clock cy­
cles, it will start executing the bus cycle again.

If the transfer cycle is multiple (e.g., for non-aligned data),
only the problematic part will be repeated.

For instance, if a non-aligned double-word is being trans­
ferred and the second half of the transfer fails, only the
second part will be repeated.

The same applies for a retry during a burst sequence. The
repeated cycle will begin where the read operation failed
(rather than the first address of the burst) and will finish the
original burst.

Figures 3-29 and 4-10 (in Section 4) show the BRT timing
for a basic access cycle and for burst cycles respectively.

The CPU always waits for BRT to be HIGH before repeating
the bus cycle. While BRT is lOW, the CPU places all the
output signals shown in Figure 4-11 in a TRI-STATE® condi­
tion.

Bus Error

If a bus error is incorrectable the CPU may be requested to
interrupt the current process and branch to an appropriate
procedure to handle the error. The request is performed by
activating the BER signal. BER is sampled by the CPU at
the end of state T2 or T2B on the rising edge of BClK.

2-57

BCLK [

DO - 31 [

SPC [

ODIN [

STO-4 [

ANY
IT - STATE I T1

" I

\.

T2 I T1 or TI I

~
'--

/

X
TL/EE/9354-33

FIGURE 3-28_ Slave Processor Read Cycle

When BER is sampled active, the CPU completes the bus
cycle normally. If a bus error occurs during a bus cycle for a
reference required to execute an instruction, then a bus er­
ror exception is recognized. However, if an error occurs dur­
ing an acknowledge cycle of another exception or during
the ICU read cycle of a RETI instruction, the CPU interprets
the event as a fatal bus error and enters the 'halted' state.

In this state the CPU floats its address and data buses and
places a special status code on the STO-4 lines. The CPU
can exit this condition only through a hardware reset. Refer
to Section 3.2.6 for more details on bus error.
Note 1: If the erroneous bus cycle is extended by means of wait states, then

the CPU uses the values of BRT and/or BER sampled during the
last wait state.

Note 2: If the CPU samples both BRT and BER active, BRf has higher
priority. The bus error indication is ignored, and the bus cycle is
repeated.

Note 3: If BER is asserted during a bus cycle of a multi-cycle data transfer,
the CPU completes the entire transfer normally, but the data will be
ignored. The CPU also ignores any subsequent assertion of BER
during the same data transfer.

Note 4: Neither BRT nor BER should be asserted during the T2 state of a
slave processor bus cycle.

3.5.6 Dynamic Bus Configuration

The NS32532 is tuned to operate with 32-bit wide memory
and peripheral devices. The bus also supports 8-bit and
16-bit data widths, but at reduced efficiency. The CPU can
switch from one bus width to another dynamically; the only
restriction is that the bus width cannot change for locations
within an aligned 16-byte block.

The CPU determines the bus width in effect for a bus cycle
by using the values of the BWO and BW1 signals sampled
during the last T2 state. Values of BWO and BW1 sampled
before the last T2 state or during T2B states are ignored.
Whenever a bus width other than 32-bit is detected by the
CPU, two idle states are inserted before the next bus cycle
is initiated. These idle states are only inserted once during
an operand access, even if more than two bus cycles are
needed to complete the access.

z
en
Co)
N
U1
Co)
N

I
N
o
Z
en
Co)
N
U1
Co)
N

I
N
U1
Z
en
Co)
N
U1
Co)
N

I
Co)
o

•

o
M • N
M
LI)
N
M en
Z
.......
LI)
N · N
M
LI)
N
M en
Z
o
N · N
M
LI)
N
M en
Z

3.0 Functional Description (Continued)

ANY

BCLK [

IT-STATE I T1 I T2 1T10RTII TI I T1 I T2 lT10rTII

AO-3{

DO-3{

DDIN [

ADS [

BfAT [

CONF' [

RDY [

BRT [

BER [

BOUT [

BiN [

BWO-1, [
CIIN,IODEC

-

'l.

'l.

'l.

Z

b

~

BEO - 3, STO - 4, [
U/S, CIOUT,IOINH

CASEC [

DC
f--

~ X 10-De ~. f-- 10-

Ifll. VII. ~- -- ~-- IN - -- I-- -- -- I-- --
\. / \.

\. / \. V \. ~ I\.. /

r'?J ~ I--V '<Il I~ ~ /

/

VI/. VI/. 1/l1, VJ1. VJl ~ /J VII VIJ 'IIJ VIJ VII VII

VII If/j VI/. VII VII. ~ h VII. Ifl} VII VIJ VII ~

~I. VI. f'lh f'lh f'l/,lf ~ Vii Vii VII VII VIJ VII

I

rJli 'Iii VII VII rJIJ VII VIJ VIJ VI) 'Ilj VIJ 'III 'III

I11J 711 VI} VI} ~ ~ '1h VII. ifll 'II VI} VI} ~

De f--tx X t--De ~ tx ~ t--

IX ~ ~ ~ V/, vI/. rx
FIGURE 3-29. Bus Retry During a Basic Read Cycle

2·58

-I"'""---
I~N - -- I--

II

\. 17

I~ I--1

Ir "-I--

_L...-""---
~ /1 VII ~

V ~ ~ ~

V ~ ~ ~

'III /I} VI} 1/

~ n r/JI rh

~ K I--I--

TLlEE/9354-34

3.0 Functional Description (Continued)

The various combinations for BWO and BW1 are shown be­
low.

BW1 BWO

0 0 Reserved
0 1 a-Bit Bus
1 0 16-Bit Bus
1 1 32-Bit Bus

The bus width must always be 32 bits during slave cycles.
An important feature of the NS32532 is that it does not
impose any restrictions on the data alignment, regardless of
the bus width.

Bus accesses are performed in double-word units. Access­
es of data operands that cross double-word boundaries are
decomposed into two or more aligned double-word access-
es.

The CPU provides four byte enable signals (BEO-3) which
facilitate individual byte accessing on either a 32-bit or a
16-bit bus.

Figures 3-30 and 3-31 show the basic interfaces for 32-bit
and 16-bit memories. An a-bit memory interface (not shown)
is even simpler since it does not use any of the BEO-3
signals and its single bank is always enabled whenever the
memory is selected. Each byte location in this case is se­
lected by address bits AO-31.

The NS32532 does not keep track of the bus width used in
previous instruction fetches or data accesses. At the begin­
ning of every memory transaction, the CPU always assumes
that the bus is 32-bit wide and the BEO-3 Signals are acti­
vated accordingly.

The BOOT signal is also asserted during instruction fetches
or data reads if the conditions for bursting are satisfied. If
the bus is other than 32-bit wide, the BIN signal is ignored
and BOUT is deasserted at the beginning of the T state
following T2, since burst cycles are not allowed for a-bit or
16-bit buses.

CACH--~~--~~--~~--~
(NOTE)

B BITS BBITS

A2-31

00-31~ ________________________ ~

TL/EE/9354-35

FIGURE 3·30. Basic Interface for 32·Blt Memories
Note: The ~ Signal must be asserted during cacheable read accesses.

2-59

The following subsections provide detailed descriptions of
the access sequences performed in the various cases.
Note: Although the NS32532 ignores the BiN signal for a·bit and 1S·bit bus

widths, it is recommended that BiN be asserted only if the system
supports burst transfers. This is to ensure compatibility with future
versions of the CPU that might support burst transfers for a·bit and
1S·bit buses.

AO--------------~
BE3 -------..,
im-----~
CACH------~~--~

8 BITS 8 BITS

AI-31

DO-15,~ ____________ ~

TL/EE/9354-36

FIGURE 3·31. Basic Interface for 16·Blt Memories

3.5.6.1 Instruction Fetch Sequences

The CPU performs two types of instruction fetch cycles: se­
quential and non-sequential. These can be distinguished
from each other by the differing status combinations on pins
STO-4. For non-sequential instruction fetches the CPU
presents on the address bus the exact byte address of the
first instruction in the instruction stream that is about to be­
gin; for sequential instruction fetches, the address of the
next aligned instruction double-word is presented on the ad­
dress bus. The CPU always activates all byte enable signals
(BEO-3) for both sequential and non-sequential fetches.
BOUT is also asserted during T2 if the addressed double­
word is not the last in an aligned 16-byte block. Tables 3-5
to 3-7 show the fetch sequence for the various bus widths.

32·Blt Bus Width

The CPU reads the entire double-word present on the data
bus into its internal instruction buffer.

If BOUT and BIN are both active, the CPU reads up to 3
consecutive double-words using burst cycles. Burst cycles
are used for instruction fetches regardless of whether the
accesses are cacheable.

z
(J)
W
N
U1
W
N • N
o
.........
Z
(J)
W
N
U1
W
N · N
U1
.........
Z
(J)
W
N
U1
W
I\)
• w
o

fII

o
('I') · N
('I')
Lt)
N
('I')
U)
Z
Lt)
N · N
('I')
Lt)
N
('I')
U)
Z o
N · N
('I')
Lt)
N
('I')
U)
Z

3.0 Functional Description (Continued)
Example: JUMP @5 Example JUMP @6

• The CPU performs a fetch cycle at address 5 with BEO-3 • A fetch cycle is performed at address 6 with BEO-3 all
all active. active.

• Two burst cycles are then performed and addresses 8 and • The word at address 4 is then fetched if the access is
12 are output while BEO-3 are kept active. cacheable.

16-Blt Bus Width 8-Blt Bus Width

The word on the least-significant half of the data bus is read The instruction byte on the bus lines 00-7 is fetched. The
by the CPU. This is either the even or the odd word within CPU performs three consecutive cycles to read the remain-
the required instruction double-word, as determined by ad- ing bytes within the required double-word, while keeping
dress bit 1. BEO-3 all active. The 4 bytes are then assembled into a

The CPU then complements address bit 1, clears address double-word and transferred into the instruction buffer. For

bit 0 and initiates a bus cycle to read the other word, while a non-sequential fetch, if the access is not cacheable, the

keeping all the BEO-3 signals active. CPU will only read the upper bytes within the instruction

These two words are then assembled into a double-word double-word starting with the byte at the instruction ad-

and transferred into the instruction buffer. dress.

In case of a non-sequential fetch, if the access is not cache- Example: JUMP @7

able and the instruction address selects the odd word within • The CPU performs a fetch cycle at address 7 with BEO-3

the instruction double-word, the even word is not fetched. all active.

• Bytes at addresses 4, 5 and 6 are then fetched consecu-
tively if the access is cacheable.

TABLE 3-5. Cacheable/Non-Cacheable Instruction Fetches from a 32-Blt Bus

1. In a burst access four bytes are fetched with the L.S. bits of the address set to 00.

2. A 'c' on the data bus refers to cacheable fetches and indicates that the byte is placed in the instruction cache. An 'I' refers
to non-cacheable fetches and indicates that the byte is ignored.

Number Address
Bytes to be Fetched

Address
BEO-3 Data Bus

of Bytes LSB Bus

1 11 BO - - - A LLLL BO CII CII CII

2 10 B1 BO - - A LLLL B1 BO CII C/I

3 01 B2 B1 BO - A LLLL B2 B1 BO CII

4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO

TABLE 3-6. Cacheable/Non-Cacheable Instruction Fetches from a 16-Blt Bus

1. A bus access marked with '.' in the 'Address Bus' column is performed only if the fetch is cacheable.

Number Address
Bytes to be Fetched

Address
BEO-3 Data Bus

of Bytes LSB Bus

1 11 BO - - - A LLLL - - BO CII
*A - 3 LLLL - - C C

2 10 B1 BO - - A LLLL - - B1 BO
*A - 2 LLLL - - C C

3 01 B2 B1 BO - A LLLL - - BO CII
A+1 LLLL - - B2 B1

4 00 B3 B2 B1 BO A LLLL - - B1 BO
A+2 LLLL - - B3 B2

2-60

3.0 Functional Description (Continued)

TABLE 3-7. Cacheable/Non-Cacheable Instruction Fetches from an O-Bit Bus

Number Address
Bytes to be Fetched

of Bytes LSB

1 11 BO - - -

2 10 B1 BO - -

3 01 B2 B1 BO -

4 00 B3 B2 B1 BO

3.5.6.2 Data Read Sequences

The CPU starts a data read access by placing the exact
address of the operand on the address bus. The byte en­
able lines are activated to select only the bytes required by
the instruction being executed. This prevents spurious ac­
cesses to peripheral devices that might be sensitive to read
accesses, such as those which exhibit the characteristic of
destructive reading. If the on-chip data cache is internally
enabled for the read access, the BOUT signal is asserted at
the beginning of state T2. BOUT will be deasserted if the
data cache is externally inhibited (through CIIN or IODEC),
or the bus width is other than 32 bits. During cacheable
accesses the CPU always reads all the bytes in the double­
word, whether or not they are needed to execute the in­
struction, and stores them into the data cache. The external
memory, in this case, must place the data on the bus re­
gardless of the state of the byte enable signals.

If the data cache is either internally or externally inhibited
during the access, the CPU ignores the bytes not selected
by the BEO-3 signals. Data read sequences for the various
bus widths are shown in tables 3-8 to 3-10.

32-Blt Bus Width

The entire double-word present on the bus is read by the
CPU. If the access is cacheable and the memory allows
burst accesses, the CPU reads up to 3 additional double­
words within the aligned 16-byte block containing the first
byte of the operand. These burst accesses are performed in
a wrap-around fashion within the 16-byte block.

Example: MOVW @5, RO

• The CPU reads a double-word at address 5 while keeping
BE1 and BE2 active.

• If the access is not-cacheable, BOUT is deasserted and
the data bytes 0 and 3 are ignored.

• If the access is cacheable, the CPU performs burst cycles
with BEO-3 all active, to read the double-words at ad­
dresses 8, 12, and O.

2-61

Address
BEO-3 Data Bus

Bus

A LLLL - - - BO

• A - 3 LLLL - - - C

• A - 2 LLLL - - - C

• A - 1 LLLL - - - C

A LLLL - - - BO
A+1 LLLL - - - B1

• A - 2 LLLL - - - C

• A - 1 LLLL - - - C

A LLLL - - - BO
A+1 LLLL - - - B1
A+2 LLLL - - - B2

• A - 1 LLLL - - - C

A LLLL - - - BO
A+1 LLLL - - - B1
A+2 LLLL - - - B2
A+3 LLLL - - - B3

16-Blt Bus Width

The word on the least-significant half of the data bus is read
by the CPU. The CPU can then perform another access
cycle with address bit 1 complemented and address bit 0
cleared to read the other word within the addressed double­
word.

If the access is cacheable, the entire double-word is read
and stored into the cache.

If the access is not cacheable, the CPU ignores the bytes in
the double-word not selected by BEO-3. In this case, the
second access cycle is not performed, unless selected
bytes are contained in the second word.

Example: MOVB @5, RO

• The CPU reads a word at address 5 while keeping BE1
active.

• If the access is not cacheable, the CPU ignores byte O.

• If the access is cacheable, the CPU performs another ac­
cess cycle, with BEO-3 all active, to read the word at
address 6.

O-Blt Bus Width

The data byte on the bus lines 00-7 is read by the CPU.
The CPU can then perform up to 3 access cycles to read
the remaining bytes in the double-word.

If the access is cacheable, the entire double-word is read
and stored into the cache.

If the access is not cacheable, the CPU will only perform
those access cycles needed to read the selected bytes.

Example: MOVW @5, RO

• The CPU reads the byte at address 5 while keeping BE1
and BE2 active.

• If the access is not cacheable, the CPU activates BE2 and
reads the byte at address 6.

• If the access is cacheable, the CPU performs three bus
cycles with BEO-3 all active, to read the bytes at address­
es 6,7 and 4.

z
en w
I\)
U1 w
I\)

I
I\)
C)
.......
Z
en
w
I\)
U1 w
I\)

I
I\)
U1
Z
en w
I\)
U1 w
I\)

I w
C)

3.0 Functional Description (Continued)

TABLE 3-8. Cacheable/Non-Cacheable Data Reads from a 32-Blt Bus

1. In a burst access four bytes are read with the L.S. bits of the address set to 00.

2. A 'C' on the data bus refers to cacheable reads and indicates that the byte is placed in the data cache. An 'I' refers to non-
cacheable reads and indicates that the byte is ignored.

Number Address
Bytes to be Read

Address
BEO-3 Data Bus

of Bytes LSB Bus

1 00 - - - 80 A HHHL CII CII CII 80

1 01 - - 80 - A HHLH CII CII 80 CII

1 10 - 80 - - A HLHH CII 80 CII CII

1 11 80 - - - A LHHH 80 CII CII CII

2 00 - - 81 80 A HHLL CII CII 81 80

2 01 - 81 80 - A HLLH CII 81 80 CII

2 10 81 80 - - A LLHH 81 80 CII CII

3 00 - 82 81 80 A H LLL CII 82 81 80

3 01 82 81 80 - A LLLH 82 81 80 CII

4 00 83 82 81 80 A LLLL 83 82 81 80

TABLE 3-9. Cacheable/Non-Cacheable Data Reads from a 16-Blt Bus

1. A bus access marked with '.' in the 'Address 8us' column is performed only if the read is cacheable.

Number Address
Data to be Read

Address BEO-3
Data Bus

of Bytes LSB Bus Cach. Non Cach.

1 00 - - - 80 A HHHL HHHL - - CII 80

• A + 2 LLLL - - C C

1 01 - - 80 - A HHLH HHLH - - 80 CII

• A + 1 LLLL - - C C

1 10 - 80 - - A HLHH HLHH - - CII 80

• A - 2 LLLL - - C C

1 11 80 - - - A LHHH LHHH - - 80 CII
• A - 3 LLLL - - C C

2 00 - - 81 80 A HHLL HHLL - - 81 80

• A + 2 LLLL - - C C

2 01 - 81 80 - A HLLH HLLH - - 80 CII
A+1 LLLL HLHH - - CII 81

2 10 81 80 - - A LLHH LLHH - - 81 80

• A - 2 LLLL - - C C

3 00 - 82 81 80 A HLLL H LLL - - 81 80
A+2 LLLL HLHH - - CII 82

3 01 82 81 80 - A LLLH LLLH - - 80 CII
A+1 LLLL LLH H - - 82 81

4 00 83 82 81 80 A LLLL LLLL - - 81 80
A+2 LLLL LLHH - - 83 82

2-62

3.0 Functional Description (Continued)

TABLE 3-10. CacheablelNon-Cacheable Data Reads from an 8-Blt Bus D8-12

Number Address
Data to be Read

Address BEO-3
Data Bus

of Bytes LSB Bus Cach. NonCach.

1 00 - - - 80 A HHHL HHHL - - - 80
*A + 1 LLLL - - - C
*A + 2 LLLL - - - C
*A + 3 LLLL - - - C

1 01 - - 80 - A HHLH HHLH - - - 80
*A + 1 LLLL - - - C
*A + 2 LLLL - - - C
*A - 1 LLLL - - - C

1 10 - 80 - - A HLHH HLHH - - - 80
*A + 1 LLLL - - - C
*A - 2 LLLL - - - C
*A - 1 LLLL - - - C

1 11 80 - - - A LH H H LHHH - - - 80
*A - 3 LLLL - - - C
*A - 2 LLLL - - - C
*A - 1 LLLL - - - C

2 00 - - 81 80 A H H LL HHLL - - - 80
A+1 LLLL HHLH - - - 81

*A + 2 LLLL - - - C
*A + 3 LLLL - - - C

2 01 - 81 80 - A HLLH HLLH - - - 80
A+1 LLLL HLHH - - - 81

*A + 2 LLLL - - - C
*A - 1 LLLL - - - C

2 10 81 80 - - A LLH H LLH H - - - 80
A + 1 LLLL LHHH - - - 81

*A - 2 LLLL - - - C
*A - 1 LLLL - - - C

3 00 - 82 81 80 A H LL L HLLL - - - 80
A+1 LLLL HLLH - - - 81
A+2 LLLL HLHH - - - 82

*A + 3 LLLL - - - C

3 01 82 81 80 - A LLLH LLLH - - - 80
A+1 LLLL LLH H - - - 81
A+2 LLLL LHHH - - - 82

*A - 1 LLLL - - - C

4 00 83 82 81 80 A LLLL LLLL - - - 80
A+1 LLLL LLLH - - - 81
A+2 LLLL LLH H - - - 82
A+3 LLLL LHHH - - - 83

3.5.6.3 Data Write Sequences 32-Bit Bus Width

In a write access the CPU outputs the operand address and The CPU performs only one access cycle to write the se-
asserts only the byte enable lines needed to select the spe- lected bytes within the addressed double-word.
cific bytes to be written. Example: MOV8 RO, @6
In addition, the CPU duplicates the data to be written on the • The CPU duplicates byte 2 of the data bus into byte 0 and
appropriate bytes of the data bus in order to handle a-bit performs a write cycle at address 6 with 8E2 active.
and 16-bit buses. 16-Bit Bus Width
The various access sequences as well as the duplication of Up to two access cycles are needed to complete the write
data are summarized in tables 3-11 to 3-13. operation.

2-63

z en w
N
U1
W
N

I
N
<:)
.......
Z en w
N
U1
W
N

I
N
U1
Z en w
N
U1
W
N
I

W
<:)

o
('I) · N
('I)
Ln
N
('I)
CJ)
Z
Ln
N · N
('I)
Ln
N
('I)
CJ)
Z o
N · N
('I)
Ln
N
('I)
CJ)
Z

3.0 Functional Description (Continued)

Example: MOVW RO, @5 signals. By asserting HOLD, an external device requests ac-

• The CPU duplicates byte 1 of the data bus into byte 0 and cess to the bus. On receipt of HLDA from the CPU, the

performs a write cycle at address 5 with BE1 and BE2 device may perform bus cycles, as the CPU at this point has

active . placed all the output signals shown in Figure 3-32 into the

• A write at address 6 is then performed with BE2 active
TRI-STATE condition.

and the original byte 2 of the data bus placed on byte o. To return control of the bus to the CPU, the external device

8-Blt Bus Width
sets HOLD inactive, and the CPU acknowledges return of
the bus by setting HLDA inactive.

Up to 4 access cycles are needed in this case to complete
The CPU samples HOLD in the middle of each T-state on

the write operation.
the falling edge of BCLK. If HOLD is asserted when the bus

Example: MOVB RO, @7 is idle between access sequences, then the bus is granted
• The CPU duplicates byte 3 of the data bus into bytes 0 immediately (see Figure 3-31). If HOLD is asserted during

and 1, and then performs a write cycle at address 7 with an access sequence, then the bus is granted immediately
BE3 active. after the access sequence, including any retried bus cycles,

3.5.7 Bus Access Control
has completed (see Figure 4-13). Note that an access se-
quence can be composed of several bus cycles if the bus

The NS32532 has the capability of relinquishing its control width is 8 or 16 bits.
of the bus upon request from a DMA device or another CPU.
This capability is implemented with the HOLD and HLDA

TABLE 3·11. Data Writes to a 32·Blt Bus

1. Bytes on the data bus marked with '.' are undefined.

Number Address
Data to be Written

Address
BEO-3 Data Bus

of Bytes LSB Bus

1 00 - - - BO A HHHL • • • BO

1 01 - - BO - A HHLH • • BO BO

1 10 - BO - - A HLHH • BO • BO

1 11 BO - - - A LHHH BO • BO BO

2 00 - - B1 BO A HHLL • • B1 BO

2 01 - B1 BO - A HLLH • B1 BO BO

2 10 B1 BO - - A LLHH B1 BO B1 BO

3 00 - B2 B1 BO A HLLL • B2 B1 BO

3 01 B2 B1 BO - A LLLH B2 B1 BO BO

4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO

TABLE 3·12. Data Writes to a 16-Blt Bus

Number Address
Data to be Written

Address
BEO-3 Data Bus

of Bytes LSB Bus

1 00 - - - BO A HHHL • • • BO

1 01 - - BO - A HHLH • • BO BO

1 10 - BO - - A HLHH • BO • BO

1 11 BO - - - A LHHH BO • BO BO

2 00 - - B1 BO A HHLL • • B1 BO

2 01 - B1 BO - A HLLH • B1 BO BO

A+1 HLHH • • • B1

2 10 B1 BO - - A LLHH B1 BO B1 BO

3 00 - B2 B1 BO A HLLL • B2 B1 BO
A+2 HLHH • • • B2

3 01 B2 B1 BO - A LLLH B2 B1 BO BO

A+1 LLHH • • B2 B1

4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO

A+2 LLHH • • B3 B2

2-64

3.0 Functional Description (Continued)

TABLE 3-13. Data Writes to an 8-Blt Bus

Number Address
Data to be Written

Address
BEO-3

of Bytes LSB Bus

1 00 - - - BO A HHHL
1 01 - - BO - A HHLH
1 10 - BO - - A HLHH
1 11 BO - - - A LHHH
2 00 - - B1 BO A HHLL

A+1 HHLH
2 01 - B1 BO - A HLLH

A+1 HLHH
2 10 B1 BO - - A LLHH

A+1 LHHH
3 00 - B2 B1 BO A HLLL

A+1 HLLH
A+2 HLHH

3 01 B2 B1 BO - A LLLH
A+1 LLH H
A+2 LHHH

4 00 B3 B2 B1 BO A LLLL
A+1 LLLH
A+2 LLH H
A+3 LHHH

2·65

Data Bus

• • •
• • BO

• BO •
BO • BO

• • B1

· • •
• B1 BO
• • •

B1 BO B1
• • •
• B2 B1
• • •
• • •

B2 B1 BO
• • •
• • •

B3 B2 B1
• • •
• • •
• • •

BO

BO

BO

BO

BO
B1

BO
B1

BO
B1

BO
B1
B2

BO
B1
B2

BO
B1
B2
B3

z en
w
N
U1
W
N

I
N
o
Z en w
N
U1
W
N
I

N
U1
Z en w
N
U1
W
N

I
W
o

•

o
C") .
N
C")
It)
N
C")
C/)
Z
It)
N • N
C")
It)
N
C")
C/)
Z o
N
N
C")
It)
N
C")
C/)
Z

3.0 Functional Description (Continued)

--

BCLK [

AO-3{

00-3{
ODIN [

ADS [

BlAT [

CONF [

HOLD [

HLDA [

BOUT [

BEO- 3 [

CASEC [

STO-4[

TI

t>-

TI

-- I-- --

TI

'.

-- I--

'-

'-

'-

I\,

\.

'-

>-

>-

TI

-- --
-- --

-- --
~-. --
-_. --
--- --

t- _. --
~-. --
I- _. --

"Jif[h
~-. ~S- ~-. 'e ~

E --~ ~-. ~S- ~-. -- ~- ~---'-

~-. ~S- ~ -. Ie ~~ ~-. -- ~-

~- ~s-
100 _.

\. V
1--. ~s- --. '\. r-- /

~-. ~s- --. I\,

rr
II

.. /
JT

~-. ~s- ~ -. \. '-
I-- ~s- 100-· i< tx

i< ~ ~ ~ 100-
I-- ~s- 1--,

r-- I--100-

rr ..
" II

TLlEE/9354-37

FIGURE 3-32. Hold Acknowledge. (Bus Initially Idle.)
Note: The status indicates 'IDLE' while the bus is granted. If the cause of the IDLE changes (e.g., CPU starts waiting for an interrupt), the status also changes.

The CPU will never grant the bus between interlocked read
and write bus cycles.
Note: If an external device requires a very short latency to get control of the

bus, the bus retry signal (BRD can be used instead of hold. See
Section 3.5.5.

3,5.8 Interfacing Memory-Mapped I/O Devices

In Section 3.1.3.2 it was mentioned that some special pre­
cautions are needed when interfacing I/O devices to the
NS32532 due to its internal pipe lined implementation. Two
special signals are provided for this purpose: 10lNH and
10DEC. The CPU asserts 10lNH during a read bus cycle to
indicate that the bus cycle should be ignored if an I/O de­
vice is selected. The system responds by asserting 10DEC
to indicate to the CPU that an I/O device has been select­
ed. 10DEC is sampled by the CPU in the middle of state T2.
If the cycle is extended, then the CPU uses the IODEC val­
ue sampled during the last wait state. If a bus error or a bus
retry occurs, the sampled 10DEC value is ignored. 10DEC
must be kept high during burst transfer cycles.

2-66

When 10DEC is active during a bus cycle for which 10lNH is
asserted, the CPU discards the data and applies the special
handling required for 1/0 devices. Figure 3-33 shows a pos­
sible implementation of an 1/0 device interface where the
address mapping of the I/O devices is fixed.

In an open system configuration, 10DEC could be generated
by the decoding logic of each I/O device subsystem.

When the on-chip MMU is enabled, the ClOUT signal could
also be used for this purpose, since I/O devices are located
in noncacheable areas. In this case however, a small per­
formance degradation could result, due to the fact that the
special 1/0 handling is also applied on references to non­
cacheable program andlor data areas.
Note 1: When iO'DEC is active in response to a read bus cycle, the CPU

treats the reference as noncacheable.

Note 2: iOiNH is kept inactive during write cycles.

3.0 Functional Description (Continued)

-
NS32532 ADDRESS "I ~

CPU)I DECODE
I" 1""-_--1

CHIP
SELECT I/o I DEVICE

TLlEE/9354-38

FIGURE 3-33. Typical 1/0 Device Interface

3.5.9 Interrupt and Debug Trap Requests

Three signals are provided by the CPU to externally request
interrupts and/or a debug trap. INT and NMI are for maska­
ble and non-maskable interrupts respectively. DBG is used
for requesting an external debug trap.

The CPU samples INT and NMI on every other rising edge
of BClK, starting with the second rising edge of BClK after
RST goes high.

NMI is edge-sensitive; a high-to-Iow transition on it is detect­
ed by the CPU and stored in an internal latch, so that there
is no need to keep it asserted until it is acknowledged.

INT is level-sensitive and, as such, once asserted, it must
be kept asserted until it is acknowledged.

The DBG signal, like NMI, is edge-sensitive; it differs from
NMI in that the CPU samples it on each rising edge of
BClK. DBG can be asserted asynchronously to the CPU
clock, but it should be at least 1.5 clock cycles wide in order
to be recognized.

If DBG meets the specified setup and hold times, it will be
recognized on the rising edge of BClK deterministically.

Refer to Figures 4-19 and 4-20 for more details on the tim­
ing of the above signals.
Note: If the NMI Signal is pulsed to request a non·maskable Interrupt, it may

be necessary to keep it asserted for a minimum of two clock cycles to
guarantee its detection, unless extra logic ensures that the pulse oc·
curs around the BCLK sampling edge.

3.5.10 Cache Invalidation Requests

The contents of the on-chip Instruction and Data Caches
can be invalidated by external requests from the system. It
is possible to invalidate a single set or all sets in the Instruc­
tion Cache, Data Cache or both. The input signals INVIC
and INVDC request invalidation of the Instruction Cache
and Data Cache respectively. The input signal INVSET indi­
cates whether the invalidation applies to a single set (16
bytes for the Instruction Cache and 32 bytes for the Data
Cache) or to the entire cache. When only a Single set is
invalidated, the set number is specified on CIAO-CIA6.

2-67

INVIC, INVDC, INVSET and CIAO-CIA6 are all sampled
synchronously by the CPU on the rising edge of BClK. The
CPU can respond to cache invalidation requests at a rate of
one per BClK cycle.

As shown in Figures 3-16 and 3-17, the validity bits of the
on-chip caches are dual-ported. One port is used for ac­
cessing and updating the caches, while the other port is
used independently for invalidation requests. Consequently,
invalidation of the on-chip caches occurs with no interfer­
ence to on-going cache accesses or bus cycles.

A cache invalidation request can occur during a read bus
cycle for a location affected by the invalidation. In such a
case, the data will be invalid in the cache if the invalidation
request occurs after the T2- or T2B-state of the bus cycle.
Note: In the case of the Data Cache, the cache location will also be invali·

dated if the invalidation occurs during T2 or T2B of the read cycle.

Refer to Figure 4-18 in Section 4 for timing details.

3.5.11 Internal Status

The NS32532 provides information on the system interface
concerning its internal activity.

The U/S signal indicates the Address Space for a memory
reference (See Section 2.4.2).

Note that U/S does not necessarily reflect the value of the
U bit in the PSR register. For example, U/S is high during
the memory access used to store the destination operand of
a MOVSU instruction.

The PFS signal is asserted for one BClK cycle when the
CPU begins executing a new instruction. The ISF signal is
driven High along with PFS if the new instruction does not
follow the previous instruction in sequence. More specifical­
ly, ISF is High along with PFS after processing an exception
or after executing one of the following instructions: ACB
(branch taken), Bcond (branch taken), BR, BSR, CASE,
CXP, CXPD, DIA, JSR, JUMP, RET, RETT, RETI, and RXP.

The BP signal is asserted for one BClK cycle when an ad­
dress-compare or PC-match condition is detected. If the BP
signal is asserted one BClK cycle after PFS, it indicates
that an address-compare debug condition has been detect­
ed. If BP is asserted at any other time, it indicates that a PC­
Match debug condition has been detected.

While executing an lMR or CINV instruction, the CPU dis­
plays the operation code and source operand using slave
processor write bus cycles. This information can be used to
monitor the contents of the on-chip TlB, Instruction Cache
and Data Cache.

During idle bus cycles, the signals STO-ST4 indicate wheth­
er the CPU is waiting for an interrupt, waiting for a Slave
Processor to complete executing an instruction or halted.

z en
w
I\)
U1
W
I\) · I\)
o
z en w
I\)
U1
W
I\) · I\)
U1
z en
w
I\)
U1
W
I\) · w
o

o
C") · N
C")
Lt)
N
C")
(J)
Z
Lt)
N • N
C")
Lt)
N
C")
(J)
Z o
N • N
C")
Lt)
N
C")
(J)
Z

4.0 Device Specifications

NS32532

BWO-l

BUS TIMING AND
CONTROL OUTPUTS

}
SLAVE TIMING
AND CONTROL

TLlEE/9354-39

FIGURE 4-1. NS32532 Interface Signals

4.1 NS32532 PIN DESCRIPTIONS
Descriptions of the NS32532 pins are given in the following
sections.

Included are also references to portions of the functional
description, Section 3.

Figure 4-1 shows the NS32532 interface signals grouped
according to related functions.
Note: An asterisk next to the signal name indicates a TRI-STATE condition

for that signal when HQITj is acknowledged or during an extended
retry.

4.1.1 Supplies
VCCl1-6 logic Power.

+ 5V positive supplies for on-chip logic.

VCCB1-14 Buffers Power.
+ 5V positive supplies for on-chip output
buffers.

VCCClK Bus Clock Power.
+ 5V positive supply for on-chip clock driv­
ers.

GNDl1-6 logic Ground.
Ground references for on-chip logic.

GNDB1-13 Buffers Ground.
Ground references for on-chip output buffers.

GNDClK Bus Clock Ground.
Ground reference for on-chip clock drivers.

2-68

4.1.2 Input Signals
ClK Clock.

Input Clock used to derive all CPU Timing.

Synchronize.
When SYNC is active, BCLK will stop tog­
gling. This signal can be used to synchronize
two or more CPUs (Section 3.5.2).

Hold Request.
When active, causes the CPU to release the
bus for DMA or multiprocessing purposes
(Section 3.5.7).
Note:

If the HOLD signal is generated asynchronously. its set
up and hold times may be violated. In this case it is rec­
ommended to synchronize it with the falling edge of
BCLK to minimize the possibility of metastable states.

The CPU provides only one synchronization stage to min­
imize the HLDA latency. This is to avoid speed degrada­
tions in cases of heavy HOLD activity (Le. DMA controller
cycles interleaved with CPU cycles).

Reset.
When RST is active, the CPU is initialized to
a known state (Section 3.5.3).

Interrupt.
A low level on this signal requests a maska­
ble interrupt (Section 3.5.9).

NMI Nonmaskable Interrupt.
A High-to-Low transition of this signal re­
quests a nonmaskable interrupt (Section
3.5.9).

4.0 Device Specifications (Continued)

DBG Debug Trap Request.

CIAO-6

A High-to-Low transition of this signal re­
quests a debug trap (Section 3.5.9).

Cache Invalidation Address Bus.

Bits 0 through 4 specify the set address to
invalidate in the on-chip caches. CIAO is the
least significant. Bits 5 and 6 are reserved
(Section 3.5.10).

Invalidate Set.

When Low, only a set in the on-chip cache(s)
is invalidated; when High, the entire cache(s)
is (are) invalidated.

Invalidate Data Cache.

When Low, the Data Cache contents are in­
validated. INVSET determines whether a sin­
gle set or the entire Data Cache is invalidat­
ed.

Invalidate Instruction Cache.

When Low, the Instruction Cache contents
are invalidated. INVSET determines whether
a single set or the entire Instruction Cache is
invalidated.

CIIN Cache Inhibit In.

BWO-1

When active, indicates that the location refer­
enced in the current bus cycle is not cache­
able. CIIN must not change within an aligned
16-byte block.

110 Decode.

Indicates to the CPU that a peripheral device
is addressed by the current bus cycle. The
value of IODEC must not change within an
aligned 16-byte block (Section 3.5.8).

Force Slave Status Read.

When asserted, indicates that the slave
status word should be read by the CPU (Sec­
tion 3.1.4.1). An external 10 kn resistor
should be connected between FSSR and
Vee·
Slave Done.

Used by a slave processor to signal the com­
pletion of a slave instruction (Section
3.1.4.1). An external 1 0 kn resistor should be
connected between SON and Vee.

Burst In.

When active, indicates to the CPU that the
memory supports burst cycles (Section
3.5.4.3).

Ready.

While this signal is not active, the CPU ex­
tends the current bus cycle to support a slow
memory or peripheral device.

Bus Width.
These lines define the bus width (8, 16 or 32
bits) for each data transfer; BWO is the least
significant bit. The bus width must not
change within an aligned 16-byte block--en­
codings are:

OO-Reserved

01-8 Bits

2-69

10-16 Bits

11-32 Bits

BRT Bus Retry.
When active, the CPU will reexecute the last
bus cycle (Section 3.5.5).

BER Bus Error.
When active, indicates that an error occurred
during a bus cycle. It is treated by the CPU as
the highest priority exception after reset.

4.1.3 Output Signals
BCLK Bus Clock.

Output clock for bus timing (Section 3.5.2).

Bus Clock Inverse.

Inverted output clock.

Hold Acknowledge.

Activated by the CPU in response to the
HOLD input to indicate that the CPU has re­
leased the bus.

PFS Program Flow Status.

U/S

CASEC

ClOUT

A pulse on this signal indicates the beginning
of execution for each instruction (Section
3.5.11).

Internal Sequential Fetch.

Indicates along with PFS that the instruction
beginning execution is sequential (I SF Low)
or non-sequential (ISF High).

User/Supervisor.
User or supervisor mode status.

Break Point.

This signal is activated when the CPU de­
tects a PC or operand-address match debug
condition (Section 3.3.2).

*Cache Section.

For cacheable data read bus cycles indicates
the Section of the on-chip Data Cache where
the data will be placed; undefined for other
bus cycles. This signal can be used for exter­
nal monitoring of the data cache contents.

Cache Inhibit Out.

This signal reflects the state of the CI bit in
the second level page table entry (PTE). It is
used to specify non-cacheable pages. It is
held low while address translation is disabled
and for MMU references to page table en­
tries.

110 Inhibit.
Indicates that the current bus cycle should
be ignored if a peripheral device is ad­
dressed.

Slave Processor Control.

Data strobe for slave processor transfers.

*Burst Out.
When active, indicates that the CPU is re­
questing to perform burst cycles.

Interlocked Operation.
When active, indicates that interlocked cy­
cles are being performed (Section 3.5.4.5).

z en w
N
U1
W
N • N
Q
Z en w
N
U1
W
N · N
U1
Z en w
N
U1
W
N · W
Q

4.0 Device Specifications (Continued)

I5'DIN' *Data Direction.

BEO-3

STO-4

Indicates the direction of a data transfer. It Is
low for reads and high for writes.

*Conflrm Bus Cycle.

When active, Indicates that a bus cycle Initia­
ted by ADS is valid; that is, the bus cycle has
not been cancelled (Section 3.5.4.2).

*Begln Memory Transaction.

When Stable Low indicates that the current
bus cycle is valid; that is, the bus cycle has
not been cancelled (Section 3.5.4.2).

• Address Strobe.
When active, indicates that a bus cycle has
begun and a valid address is on the address
bus.

·Byte Enables.

Used to selectively enable data transfers on
bytes 0-3 of the data bus.

Status.

Bus cycle status code; STO is the least signif­
icant. Encodings are:

OOOOO-idle: CPU Inactive on Bus.

00001-ldle: WAIT Instruction.

00010-ldle: Halted.

00011-ldle: The bus is idle while the slave
processor is executing an instruction.

00100-lnterrupt Acknowledge, Master.

4.2 ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

Case Temperature Under Bias O°C to + 95°C

Storage Temperature - 65°C to + 150°C

AO-31

00101-lnterrupt Acknowledge, Cascaded.

00110-End of Interrupt, Master.

00111-End of Interrupt, Cascaded.

01000-Sequential Instruction Fetch.

01001-Non·Sequential Instruction Fetch.

01 01 O-Data Transfer.

01 011-Read Read-Modify-Write Operand.

01100-Read for Effective Address.

01101-Access PTE1 by MMU.

01110-Access PTE2 by MMU.

~"") Reserved.

11100

11101-Transfer Slave Operand.

11110-Read Slave Status Word.

11111-Broadcast Slave ID.

• Address Bus.
Used by the CPU to output a 32-bit address
at the beginning of a bus cycle. AO is the
least significant.

4.1.4 Input/Output Signals

00-31 *Oata Bus.

Used by the CPU to input or output data dur­
ing a read or write cycle respectively.

All Input or Output Voltages with
RespecttoGND -0.5Vto +7V

Power Dissipation 4 W

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS TeASE = 0° to + 95°C, vee = 5V ±5%,GND = OV

Symbol Parameter Conditions Min Typ Max Units

VIH High Level Input Voltage 2.0 Vee + 0.5 V

Vil Low Level Input Voltage -0.5 0.8 V

VOH High Level Output Voltage IOH = -400 IJ-A 2.4 V

VOL Low Level Output Voltage
AO-11,DO-31,DDIN IOl = 4mA 0.4 V
CONF, BMT IOl = 6 mA 0.4 V

BCLK, BCLK IOl = 16mA 0.4 V
All Other Outputs IOl = 2mA 0.4 V

Il Input Load Current o ~ VIN ~ Vee -20 20 IJ-A

Il Leakage Current (Output and 0.4 ~ VIN ~ Vee -20 20 IJ-A
I/O pins in TAl-STATE/Input Mode)

CIN CLK Input Capacitance 10 pF

Icc Active Supply Current lOUT = 0, T A = 25°C, 650 @ 30 MHz 800 @ 30 MHz

Vee = 5V 550 @ 25 MHz 675@25MHz mA
450 @ 20 MHz 575 @ 20 MHz

2-70

4.0 Device Specifications (Continued)

Connection Diagram

s@@@@@@@@@@@@@@@@
R@@@@@@@@@@@@@@@@
p@@@@@@@@@@@@@@@@
N@@@@@@@@@@@@@@@@
M@@@ @@@
L@@@ @@@
K@@@ @@@
J @ @ @ NS32532 @ @ @
H@@@ @@@
G@@@ @@@
F@@@ @@@
E@@@ @@@
D@@@@@@@@@@@@@@@@
c@@@@@@@@@@@@@@@@
B@@@@@@@@@@@@@@@@
A@@@@@@@@@@@@@@@

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
TL/EE/9354-40

Bottom View

FIGURE 4·2. 175·Pln PGA Package

NS32532 Pinout Descriptions

Desc Pin Desc Pin Desc Pin Desc Pin Desc Pin Desc

Reserved A1 026 B16 GNOB13 014 GNOL6 J14 GNOL5 N9 AO
Reserved A2 Reserved C1 VCCB14 015 VCCL5 J15 CONF N10 VCCB9
Reserved A3 Reserved C2 023 016 013 J16 ROY N11 ClOUT
BP A4 VCCL2 C3 IOINH E1 VCCB6 K1 HOLD N12 SPC
ISF A5 Reserved C4 ILO E2 A23 K2 VCCB11 N13 BE3
RST A6 PFS C5 GNOB3 E3 GNOL4 K3 GNOB10 N14 VCCB10
NMI A7 SON C6 024 E14 GNOB11 K14 04 N15 A08
GNOB1 A8 Reserved C7 022 E15 011 K15 06 N16 BW1
Reserved A9 BCLK C8 020 E16 012 K16 A16 P1 BER
VCCB2 A10 VCCCLK C9 A30 F1 A22 L1 VCCB7 P2 CIIN
INVIC A11 SYNC C10 CASEC F2 A21 L2 GNOB6 P3 02
Reserved (1) A12 CIAO C11 Reserved F3 VCCL3 L3 A10 P4 A13
CIA1 A13 CIA6 C12 021 F14 08 L14 A6 P5 A8
CIA4 A14 VCCL6 C13 019 F15 09 L15 A2 P6 A5
VCCB1 A15 029 C14 018 F16 010 L16 ST3 P7 A3
Reserved B1 027 C15 A29 G1 A20 M1 GNOB8 P8 A1
VCCB4 B2 025 C16 A31 G2 GNOB5 M2 VCCL4 P9 ST2
Reserved B3 U/S 01 VCCB5 G3 A17 M3 BE1 P10 ST1
Reserved B4 Reserved 02 GNOB12 G14 05 M14 GNOB9 P11 STO
VCCB3 B5 Reserved 03 017 G15 07 M15 BWO P12 BOUT
FSSR B6 GNOL3 04 016 G16 VCCB12 M16 BIN P13 OOIN
INT B7 GNOB2 05 A27 H1 A19 N1 Reserved P14 BE2
VCCL1 B8 OBG 06 A28 H2 A18 N2 00 P15 BEO
GNOL2 B9 Reserved 07 GNOB4 H3 A14 N3 03 P16 BMT
INVSET B10 BCLK 08 VCCB13 H14 A11 N4 A15 R1 BRT
INVOC B11 GNOCLK 09 015 H15 VCCB8 N5 A12 R2 IOOEC
CIA3 B12 CLK D10 014 H16 GNOB7 N6 A9 R3 D1
CIA5 B13 CIA2 D11 A26 J1 ST4 N7 A7 R4
030 B14 031 D12 A25 J2 HLDA N8 A4 R5
028 B15 GNOL1 D13 A24 J3 Note 1: This pin should be grounded.

All other reserved pins should be left open.

2-71

Pin

R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
81
S2
83
S4
S5
S6
87
S8
S9

S10
S11
S12
813
S14
S15
S16

z
en
w
N
U1
W
N · N
o
Z
en
w
N
U1
W
N · N
U1
Z
en
w
N
U1
W
N · W
o

o
C")

N
C")
it)
N
C")
U)
Z
it)
N
N
C")
it)
N
C")
U)
Z
o
N • N
C")
it)
N
C")
U)
Z

4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the timing specifications given in this section refer to
O.BV or 2.0V on all the signals as illustrated in Figures 4-3
and 4-4, unless specifically stated otherwise.

BC~[2.0V

O.SV

S~{
- - - - - - - - - - - - 2.4V

tslGlh 2.0V
tSIG1v O.SV

O.4V

S~[
tSIG2v 2.4V

2.0V
tSIG2h

O.SV
- - - - - - - - - - - - - - O.4V

TL/EE/9354-41

FIGURE 4-3. Output Signals Specification Standard

2-72

ABBREVIATIONS:

L.E.-Ieading edge R.E.-rising edge
T.E.-training edge F.E.-falling edge

,~[2.0V

O.SV

S~{ tSIGIs tSlGlh

S~{ tSIG2s tSIG2h

2.4V

O.SV
----------- O.4SV

- - - - - - - - - - - - 2.4V
2.0V

O.4SV
TL/EE/9354-42

FIGURE 4-4. Input Signals Specification Standard

4.0 Device Specifications (Continued)

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation Delays, NS32532-20, NS32532-25, NS32532-30

• Maximum times assume capacitive loading of 100 pF on the clock signals and 50 pF on all the other signals. A minimum
capacitance load of 50 pF on BClK and BClK is also assumed.

Name Figure Description Reference/Conditions
NS32532-20 NS32532-25 NS32532-30

Units
Min Max Min Max Min Max

tBCp 4-24 Bus Clock Period RE., BClK to Next
50 100 40 100 33.3 100

RE., BClK
ns

tBCh 4-24 BClK High Time At 2.0V on BClK
20 16 13

(Both Edges)

tBCI 4-24 BClK low Time At 0.8V on BClK
20 16 13

(Both Edges)

tBCr(1) 4-24 BClK Rise Time 0.8V to 2.0V on
5 4 3

RE., BClK
ns

tBct(1) 4-24 BClK Fall Time 2.0V to 0.8V on
5 4 3

F.E., BClK
ns

tNBCh 4-24 BClK High Time At 2.0V on BClK
20 16 13

(Both Edges)

tNBCI 4-24 BClK low Time At 0.8V on BClK
20 16 13

(Both Edges)

tNBCr(1) 4-24 BClK Rise Time 0.8V to 2.0V on
5 4 3

RE., BClK
ns

tNBct(1) 4-24 BClK Fall Time 2.0V to 0.8V on
5 4 3

F.E., BClK
ns

tcBCdr 4-24 ClKto BClK 2.0V on R.E., ClK to
20 17 15

RE. Delay 2.0V on RE., BClK
ns

tCBCdt 4-24 ClKto BClK 2.0V on RE., ClK to
20 17 15

F.E. Delay 0.8V on F.E., BClK
ns

tCNBCdr 4-24 ClKto BClK 2.0V on RE., ClK to
20 17 15

R.E. Delay 0.8V on RE., BClK
ns

tCNBCdt 4-24 ClK to BClK 2.0V on RE., ClK to
20 17 15

F.E. Delay 0.8V on F.E., BClK
ns

tBCNBCrf 4-24 Bus Clocks Skew 2.0V on RE., BClK to
-2 +2 -2 +2 -1 +1

0.8V on F.E., BClK
ns

tBCNBctr 4-24 Bus Clocks Skew 0.8V on F.E., BClK to
-2 +2 -2 +2 -1 +1

2.0V on R.E., BClK
ns

tAv 4-5,4-6 Address Bits 0-31 After RE., BClK T1
11 9 8

Valid
ns

tAh 4-5,4-6 Address Bits 0-31 After RE., BClK T1 or Ti
0 0 0

Hold
ns

tAt 4-11,4-12 Address Bits 0-31 After F.E., BClK Ti
21 17 13

Floating
ns

tAnt 4-11,4-12 Address Bits 0-31 After F.E., BClK Ti
0 0 0

Not Floating
ns

Note 1: Guaranteed by characterization. Due to tester conditions this parameter is not 100% tested.

2-73

z
en w
I\)
CJ1
W
I\)

I
I\)
o
z en w
I\)
CJ1
W
I\)

I
I\)
CJ1
z
en
w
I\)
CJ1
W
I\)

I
W
o

o
C")
• N

C")
II)
N
C")

en z
'" II)
N • N
C")
II)
N
C")
en z
'" o
N • N
C")
II)
N
C")

en z

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32532-20, NS32532-25, NS32532-30 (Continued)

Name Figure Description Reference/Conditions
NS32532-20 NS32532-25 NS32532-30

Min Max Min Max Min Max

tASv 4-8 Address Bits A2, A3 After RE., BCLK T2B
11 9 8

Valid (Burst Cycle)

tASh 4-8 Address Bits A2, A3 After RE., BCLK T2B
0 0 0

Hold (Burst Cycle)

toov 4-6,4-15 Data Out Valid After RE., BCLK T1 0.5 tscp 0.5 tscp 0.5 tscp
+ 13 ns + 12ns + 11 ns

tOOh 4-6,4-15 Data Out Hold After RE., BCLK T1 or Ti 0 0 0

toospc 4-15 Data Out Setup Before SPC T.E.
12 10 8

(Slave Write)

tOOf 4-7 Data Bus Floating After RE., BCLK
21 17 13

T10rTi

tOOnf 4-7 Data Bus After F.E., BCLK T1
0 0 0

Not Floating

tSMTv 4-5,4-7 BMT Signal Valid After RE., BCLK T1 30 25 21

tSMTh 4-5,4-7 BMT Signal Hold After RE., BCLK T2 0 0 0

tSMT! 4-11,4-12 BMT Signal Floating After F.E., BCLK Ti 21 17 13

tSMThf 4-11,4-12 BMTSignal After F.E., BCLK Ti
0 0 0

Not Floating

tCONFa 4-5,4-8 CONF Signal Active After RE., BCLK T1
0.5tscp

0.5tscp 0.5 tscp
0.5 tscp 0.5 tscp

0.5 tscp
+ 11 +9 +8

tCONFia 4-5,4-8 CONF Signal Inactive After RE., BCLK T1 or Ti 11 9 8

tCONFf 4-11,4-12 CONF Signal Floating After F.E., BCLK Ti 21 17 13

tCONFnf 4-11,4-12 CONFSignal After F.E., BCLK Ti
0 0 0

Not Floating

tAOSa 4-5,4-8 ADS Signal Active After R.E., BCLK T1 11 9 8

tAOSia 4-5,4-8 ADS Signal Inactive After F.E., BCLK T1 11 9 8

tAOSw 4-6 ADS Pulse Width At 0.8V (Both Edges) 15 12 10

tAOS! 4-11,4-12 ADS Signal Floating After F.E., BCLK Ti 21 17 13

tAOSnf 4-11,4-12 ADS Signal After F.E., BCLK Ti
0 0 0

Not Floating

tSEv 4-6,4-8 BEn Signals Valid After RE., BCLK T1 11 9 8

tSEh 4-6,4-8 BEn Signals Hold After R.E., BCLK T1,
0 0 0

Ti orT2B

tSEf 4-11,4-12 BEn Signals Floating After F.E., BCLK Ti 21 17 13

tSEnf 4-11,4-12 BEn Signals After F.E., BCLK Ti
0 0 0

Not Floating

tOOINv 4-5,4-6 DDIN Signal Valid After R.E., BCLK T1 11 9 8

tOOINh 4-5,4-6 DDIN Signal Hold After R.E., BCLK T1 or Ti 0 0 0

tOOINf 4-11,4-12 ODIN Signal Floating After F.E., BCLK Ti 21 17 13

tOOINnf 4-11,4-12 DDINSignal After F.E., BCLK Ti
0 0 0

Not Floating

tSPca 4-14,4-15 SPC Signal Active After R.E., BCLK T1 19 15 12

2-74

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

4.0 Device Specifications (Continued)

4.4.2.1 Output Slgnal8: Internal Propagation DelaY8, NS32632·20, NS32632·26, NS32632·30 (Continued)

Name Figure De8crlptlon Reference/Condltlon8
NS32632·20 NS32632·26 NS32632·30

Unit'
Min Max Min Max Min Max

tSPCla 4-14,4-15 m Signal Inactive After R.E., BCLK TI, T1 or T2 19 15 12 n8

toospd1) 4-14 I5l5TN Valid to Before m L.E.
0 0 0

mActlve
n8

tHLOAa 4-12,4-13 RIJ5A Signal Active After F.E., BCLK TI 15 11 10 n8

tHLOAla 4-12 RIJ5A Signal Inactive After F.E., BCLK TI 15 11 10 ns

tSTv 4-5,4-14 Status (STO-4) Valid After R.E., BCLK T1 11 9 8 ns

tSTh 4-5,4-14 Status (STO-4) Hold After R.E., BCLK T1 or Ti 0 0 0 ns

tSOUTa 4-8,4-9 BOUT Signal Active After R.E., BCLK T2 15 12 11 ns

tSOUTla 4-8,4-9 BOUT Signal Inactive After R.E., BCLK
15 12 11 ns

Last T2B, T1 or Ti

tSOUTf 4-11,4-12 BOUT Signal Floating After F.E., BCLK Ti 21 17 13 ns

tSOUTnf 4-11,4-12 BOUT Signal After F.E., BCLK Ti
0 0 0 ns

Not Floating

tlLOa 4-7 Interlock Signal Active After F.E.. BCLK Ti 11 9 8 ns

tlLOia 4-7 Interlock Signal Inactive After F.E., BCLK Ti 11 9 8 ns

tpFSa 4-21 PFS Signal Active After F.E., BCLK 15 11 10 ns

tPFSia 4-21 PFS Signal Inactive After F.E., Next BCLK 15 11 10 ns

tlSFa 4-22 ISF Signal Active After F.E., BCLK 15 11 10 ns

tlSFia 4-22 ISF Signal Inactive After F.E., Next BCLK 15 11 10 ns

tSPa 4-23 BP Signal Active After F.E., BCLK 15 11 10 ns

tSPia 4-23 BP Signal Inactive After F.E., Next BCLK 15 11 10 ns

tuSv 4-5 U/S Signal Valid After R.E., BCLK T1 11 9 8 ns

tUSh 4-5 U/S Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns

tCASv 4-5 CASEC Signal Valid After F.E., BCLK T1 15 11 10 ns

tCASh 4-5 CASEC Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns

tCASt 4-11,4-12 CASEC Signal Floating After F.E., BCLK Ti 21 17 13 ns

tCASnf 4-11,4-12 CASEC Signal After F.E., BCLK Ti
0 0 0 ns

Not Floating

tCIOv 4-5 ClOUT Signal Valid After R.E., BCLK T1 15 11 10 ns

tCIOh 4-5 ClOUT Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns

tlOlv 4-5 IOINH Signal Valid After R.E., BCLK T1 15 11 10 ns

tlOlh 4-5 IOINH Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns

2-75

o
C")

N
C")
an
N
C")

en z an
N • N
C")
an
N
C")

en z o
N • N
C")
an
N
C")

en z

4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements: NS32532-20, NS32532-25, NS32532-30

Name Figure Description Reference/Conditions
NS32532-20

Min Max

tcp 4-24 Input Clock Period R.E., ClK to Next
25 50

R.E., ClK

tCh 4-24 ClK High Time At 2.0V on ClK 0.5 tcp
(Both Edges) -5 ns

tCI 4-24 ClK low Time At 0.8V on ClK 0.5 tcp
(Both Edges) -5ns

tCr (1) 4-24 ClK Rise Time 0.8V to 2.0V on R.E., ClK 5

tCf (1) 4-24 ClKFaliTime 2.0V to 0.8V on F.E., ClK 5

tOls 4-5,4-14 Data In Setup Before R.E., BClK T1 or Ti 12

tOlh 4-5,4-14 Data In Hold After R.E., BClK T1 or Ti 1

tROYs 4-5 RDY Setup Time Before R.E., BClK T2(W),
19

T10rTi

tROYh 4-5 RDY Hold Time Ater R.E., BClK T2(W),
1

T10rTi

tsws 4-5 BWO-1 Setup Time Before F.E., BClK T2 or T2(W) 19

tSWh 4-5 BWO-1 Hold Time After F.E., BClK T2 or T2(W) 1

tHO LOs 4-12,4-13 HOLD Setup Time Before F.E., BClK 19

tHOLOh 4-12 HOLD Hold Time After F.E., BClK 1

tSINs 4-8 BIN Setup Time Before F.E., BClK T2 or T2(W) 18

tSINh 4-8 BIN Hold Time After F.E., BClK T2 or T2(W) 1

tSERs 4-6,4-8 BER Setup Time Before R.E., BClK T1 or Ti 19

tBERh 4-6,4-8 BER Hold Time After R.E., BClK T1 or Ti 1

tSRTs 4-6,4-8 BRT Setup Time Before R.E., BClK T1 or Ti 19

tBRTh 4-6,4-8 BRT Hold Time After R.E., BClK T1 or Ti 1

tlOOs 4-5 IODEC Setup Time Before F.E., BClK T2 or T2(W) 18

tlOOh 4-5 IODEC Hold Time After F.E., BClK T2 or T2(W) 1

tPWR (1) 4-26 Power Stable to After VCC Reaches 4.5V
50

R.E. of RST

tRSTs 4-27 RST Setup Time Before R.E., BClK 14

tRSTw 4-27 RST Pulse Width At 0.8V (Both Edges) 64

Note 1: Guaranteed by characterization. Due to tester conditions this parameter is not 100% tested.

2-76

NS32532-25 NS32532-30
Units

Min Max Min Max

20 50 16.6 50 ns

0.5tc p 0.5tc p
-5 ns -4ns

0.5 tcp 0.5tc p
-5 ns -4ns

4 3 ns

4 3 ns

10 8 ns

1 1 ns

15 12 ns

1 1 ns

15 12 ns

1 1 ns

15 12 ns

1 1 ns

14 11 ns

1 1 ns

15 12 ns

1 1 ns

15 12 ns

1 1 ns

14 11 ns

1 1 ns

40 30 J-Ls

12 11 ns

64 64 tBCp

4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements: NS32532-20, NS32532-25, NS32532-30 (Continued)

Name Figure Description Reference/Conditions
NS32532-20 NS32532-25

Min Max Min Max

tells 4-5 CIIN Setup Time Before F.E., BCLK T2 19 15

tellh 4-5 CIIN Hold Time After F.E., BCLK T2 1 1

tiNTs 4-19 INT Setup Time Before R.E., BCLK 12 10

tlNTh 4-19 INT Hold Time After R.E., BCLK 1 1

tNMls 4-19 NMI Setup Time Before R.E., BCLK 18 15

tNMlh 4-19 NMI Hold Time After R.E., BCLK 1 1

tSDs 4-16 SON Setup Time Before R.E., BCLK 12 10

tSDh 4-16 SON Hold Time After R.E., BCLK 1 1

tFSSRs 4-17 FSSR Setup Time Before R.E., BCLK 12 10

tFSSRh 4-17 FSSR Hold Time After R.E., BCLK 1 1

tSYNCs 4-25 SYNC Setup Time Before R.E., CLK 10 8

tSYNCh 4-25 SYNC Hold Time After R.E., CLK 1 1

tCIAs 4-18 CIAO-6 Setup Time Before R.E., BCLK 12 10

tCIAh 4-18 CIAO-6 Hold Time After R.E., BCLK 1 1

tlNVSs 4-18 INVSET Setup Time Before R.E., BCLK 12 11

tlNVSh 4-18 INVSET Hold Time After R.E., BCLK 1 1

tlNVls 4-18 INVIC Setup Time Before R.E., BCLK 12 10

tlNVlh 4-18 INVIC Hold Time After R.E., BCLK 1 1

tlNVDs 4-18 INVOC Setup Time Before R.E., BCLK 12 10

tlNVDh 4-18 INVOC Hold Time After R.E., BCLK 1 1

tDBGs 4-20 OBG Setup Time Before R.E., BCLK 12 10

tDBGh 4-20 OBG Hold Time After R.E., BCLK 1 1

2-77

NS32532-30

Min Max

12

1

9

1

14

1

9

1

9

1

7

1

9

1

9

1

9

1

9

1

9

1

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

z en w
N
U1
W
N • N
Q
......
Z en
w
N
U1
W
~
N
U1
Z en
w
N
U1
W
N • W
Q

•

o ~---,
Cf)

N
Cf)
Lt)

'" Cf)
U)
Z
Lt)

~

'" Cf)
Lt)

'" Cf)
U)
Z
o
'" •
'" Cf)
it)

'" Cf)
U)
Z

4.0 Device Specifications (Continued)

4.4.3 Timing Diagrams

AO-3{

DO-3{

ODIN [

ADS [

Bt.lT [

CON!=" [

ROY [

BWO-{

BEO-3 [

STO-4 [

U;S[

CIIN [

ClOUT [

CASEC [

[
[

--

ANY
I T- STATE I Tl T2 I T2(W) I T1 OR n I

- r- tAv - r-~Ah

~ --- JG; X I--

Rr~ I}-1-- -- -- ~-. IN r- ~-.

-{" tDDINv - ~Dlh
I'{

tADSa - { r tADSla -- I-tDDINh

't- l(
-tBt.lTh

\. V

~
It-

r<6 I(~ t--V I-- .. - X tcONF'a - j-~ONF1a

1/ ~tJ:'-i0-

N 1/ \. ¥
tewsLL --~ \..tRDYh

~ ic .'-~ tBWh

- ~ tSTv - tSTh

X t. X

- I'" tUSv - tUSh

X IX
tClls lL --....r

~ {t
Cllh - ~ tclOv

X X

-- ~I- tCASv
tclOh- l-

X IX
~ --- ~Sh t lODs ~

~ tlO~ ~
tiOIv - ~ - r-~IOlh

)(IX
I I I

FIGURE 4·5. Basic Read Cycle Timing

2·78

TL/EE/9354-43

4.0 Device Specifications (Continued)

BCLK [

AO-3{

00-31 [

ODIN [

ADS [

Bt.n[

CONF'[

ROY [

BWO-{

BEO- 3 [

BRT [

BER [

STO-4 [

U/S [

ANY
IT-STATE I T1

tAv - f+
IX

tciov- 1+
I}-f-{

toolNv - r
;

\. J"{ ~
~ I~ ~

1/

tBEy ~
)[

T2 I Tl OR n I

- tAh

X
! - tOOh

DATA OUT 11.

-II:~DlNh
\. V

V ~ ~ V
1/ \. ~

\. /

X ex ... tBEh

IX
~BRTS t1 l-

I;) tBERs ~-
tBRTI

fi
ttBERh -

X

X
TLlEE/9354-44

Note: An Idle State is always inserted before a Write Cycle when the Write immediately follows a confirmed Read Cycle.

FIGURE 4·6. Write Cycle Timing

2·79

z en w
N
U1
W
N .
N
C
Z en
w
N
U1
W
~
N
CI1
Z en w
N
U1 w
2! c

4.0 Device Specifications (Continued)

AO - 3{-t---+_+, "o+--+--+---+--I--+---t--I--'-t-...,., '-+--+-_
- t- tOOnfl - • r tOOf

DO - 31 [~-t-~i"'.~>-t-+--K~~ '" DATA OUT ~
~--+_-"""'+\.. r tOOINv - r-~OOINh/

DDIN[-+_~~~~+--+-~_~~~_~
ADS [

BtolT [

CONF' [

',",,_ \.~I t,.+t_Bt.I Th --+--+.\._ V
I ~~W I~~V

tcoNFa - { ... J tcONFIa

[-~~~ ... }~
ILO 'J.

~---~-I-~~--+-~-+--r~-~~
t -+l-l-.~tBwh

BWO - {-+ ___ ~+--+-BW_S,,)(:~ ",...-+--+-~--"""~)(,+--+-0000+--
- r tBEv IitBEh

BEO - 3 [~--+-kX Xr-t--t--

BRT [~-t-+-"""'+--+-"'/
BER[~-+-+~~~~/ '~~~~-+,/ ,~~_

STO - 4 [x'+--+-+--+---t--I--t--+-.....;.-~ ~_~

FIGURE 4·7. Interlocked Read and Write Cycles

2-80

TLlEE/9354-45

4.0 Device Specifications (Continued)

AO-31 [

00-31 [
ODIN [

ADS [

Bt.1T [

CONF [

ROY [

BWO-{

BEO- 3 [

B1N[

BOUT [

BRT [

BER [

CIIN[

IOOEC [

ANY
IT - STATE I 11 I T2 I T2B I T2B I T28 I 11 OR n I

- r- tAv tA'ev- I -.t;~ -X
I---

~~ X D< I'" I--- -
" ~~ ~o-K!~ ~~ I

\. /

tADss - {J ,...tADSIa

I\.V I\. /

10 I~ l"-V I~ ~ - ~.-tcoNrs tCONrJa - r
/ I\.

\. / '" / '" / ~ / ~tBWh tBWSi;J,..

~ ~ ... r tBEv - {tBEv

1/
tB'N~N l+-

ll" ~ / 1\ /
tBOUTs {

I-tBINh
tBOUTIs f.

l/'
tBRT~1 4-

~ }~ \. / \. V \.
tBER~~""

~ ~h \. / \. V \.

DC :x
~ D<

FIGURE 4-8. Burst Read Cycles

2-81

/

~

TL/EE/9354-46

z en
w
N
c.n
W
N • N o

if5
w
N c.n
W
~
N c.n
Z en
w
N c.n
W
N • W o

o
Cf)

N
Cf)
in
N
Cf)
tJ)
Z
in
N • N
Cf)
in
N
Cf)
tJ)
Z
C;

~
Cf)
in
N

~
Z

4.0 Device Specifications (Continued)

ANY
IT-STATE I T1 T2 T2B

BOUT [

FIGURE 4·9. External Termination of Burst Cycles

ANY
I T- STATE I T1 T2 T28 I Tl or n I

FIGURE 4-10. Bus Error or Retry During Burst Cycles
Not.: Two idle state are always Inserted by the CPU following the assertion of BRT.

2-82

TL/EE/9354-47

TLlEE/9354-48

4.0 Device Specifications (Continued)

BCLK [

AO-31 [

00-31 [

ODIN [

ADS [

Bt.U[

CONt [

BEO-3 [

BRT [

BOUT [

CASEC [

u/s[
STO-4 [

~

I T2 I Tl or n I TI TI

....

~ltAt \ X ~ DC --f~ ~: ~

>- 1--' --
.... tDDINf

--r-....
l-f~DSt -. I\. V

....
~B~l-. I~V

....

rtc:':'- . 1/
.... p: ~,

X t--DC I- - -.
~

t77i ~ ;; ~ Jj ~ Jj ~
....

r~~' ~ -t-·
.... 10.0.1"'" ~Sf -""'"-- }I-- _.

X I--DC ~ D< ~ ~

X t---DC
t---

D< t--- t---

TI Ji..ftli-
-~

tAnf

~s- X --

-§s- ~-. -- -(- -- --
....

;(tDDINnf

-- ~S- -- Kt-1-- 1--
....

~
tADSnf

-§S- -- ~

·f -§~ 1--' rw
....

·f
tcoN~nf

-§~ 1--' 0"{ -S~ ~ ~ _.

M IW '<I Vj} Vj} Vj/. "j/, YfL
.... I: teoUTnf

-- -S~ 1--' r-r ~J. i{ ::D< -S~ ~-.

IX

" ..
IX " ..

FIGURE 4-11. Extended Retry Timing

2-83

TL/EE/9354-49

o
C") .
N
C")
an
N
C")
U)
Z
an
N
N
C")
an
N
C")
U)
Z
o
N • N
C")
an
N
C")
U)
Z

4.0 Device Specifications (Continued)

AO-3{

00-31 [

ODIN [

ADS [

BMT. [

CONF [

--

BEO- 3 [

HOLD [

HLDA [

BOUT [

CASEC [

U/S[

STO-4 [

t>. -- --

X
X

-
--1--.

-
-
-
-
-
~
-
-
-

- X -
- X --

't" (·t ~.
I~"' --r-'
~A~t· .
r.~t ..
r.~l·· ~'~f ••

I- tHOLDs

r-tHOLDr

{ tHLriAa

I

toUT~ . ~ r ~-r-'
,~ \cASf

)- ~- -_.
- D< -
I---

D< I---

....
.(~ --~~ 1--'

-. ~S- 1--- --1--"-(-

-.-KP;;:. -. ~S-

-r: tADSnf

--~S- 1--. rf ."-V -t':. tBMTnf

--~S- -_.
.~J;--

--~S- I- _.
'f I\. -·<0<' --.,~ -_.

tHOLDs f+j I+-

nVf ..
tHLDAla - r
tf .If .. - t: tOUTnf

-- ~S- 1--

~~J --- ~S- ::tx

" .
" ..

FIGURE 4·12. Hold Timing (Bus Initially Idle)

2·84

-_. -.

-- --

/

\. 10-

TL/EE/9354-50

4.0 Device Specifications (Continued)

ANY

BCLK [

I T-STATE I T1

CONr [-+-+--1'
HOLD [

HLoA [

,
'.

T2 TI TI

TLlEE/9354-51

FIGURE 4·13. HOLD Acknowledge Timing
(Bus Initially Not Idle)

ANY

BCLK [

IT - STATEI T1 T2 I T1 or TI I

00 - 3{-+_-+---Iol

SPC [

ODIN [-+_+--1'

STO - .. [-+_+--+, ,,+--+_+--+' "+~f--
TL/EE/9354-53

FIGURE 4·15. Slave Processor Write Timing

2-85

ANY

BCLK [

IT - STATE I T1 T2 I T1 or TI I

00 - 31 [~~-+-_t.l-t--,....~

SPC [

STO - .. [-+_-+---lol 1-+--+-+--+1[" ,,+-....,_
TL/EE/9354-52

FIGURE 4·14. Slave Processor Read Timing

I I I

BCLK[~
I I I
tSDs i

SDh

TL/EE/9354-54

FIGURE 4·16. Slave Processor Done

I I I

BCLK[~

rSSR [

tr~sRs I I I
trssRh

TL/EE/9354-55

FIGURE 4·17. FssR Signal Timing

z en w
N
c.n
W
N · N o
.......
Z en w
N
c.n
W
N · N
c.n
Z en
w
N
c.n
W
N · W
o

o
C")

~ 4.0 Device Specifications (Continued)

~ I I I I

~ BCLK[n.JlJlS

U; tc~s I t-. tclAh

~ CIAO - 6 [-+--+--+-"'I1I'--l~'+---1~
U)

~ INVSrr [-+_-+--+_'1 lIo-+-oiif ~,+:-...,.._
......

~ INVIC[
U)

~ INVDC[

FIGURE 4-18. Cache Invalidation Request
Note 1: CIAO-6 and TFWSET are only relevant when 1"fWI"O and/or l'fJ'i7I5C are asserted.

BCLK [

RST [-10--+--+--1'
ffiIT[-+ __ -+--+_+--+ __ ~l~~'~~--f

FIGURE 4-19. iNf and NMi Signals Sampling

TL/EE/9354-56

TL/EE/9354-57

Not. 1: !NT and 'FJJJ(are sampled on every other rising edge of BClK, starting with the second rising edge of BClK after R'ST goes high.

Not. 2: !NT Is level sensitive, and once asserted, It should not be deasserted until It Is acknowledged.

I I I I

BCLK[~
I I I I

BCLK[~
tOBGS-h I I

tDBGh

DBG [

TL/EE/9354-58

FIGURE 4-20. Debug Trap Request

I I I I

BCLK[~
tls~a I I I

tlsna

~[
TL/EE/9354-60

FIGURE 4-22. ISF Signal Timing

2·86

tPF~a I I I
tPFSla

TL/EE/9354-59

FIGURE 4-21. PFS Signal Timing

I I I I

BCLK[~
tB~a I I I

tBPla

Bfi[
TL/EE/9354-61

FIGURE 4-23. Break Point Signal Timing

4.0 Device Specifications (Continued)

BCLK [

1+-----tNBCp----~

FIGURE 4-24. Clock Waveforms
TL/EE/9354-62

CLKU---ll-uu~JLh..JLJL
I t l I I I

[

SI YNCs tSYNCs
SYNC -+-+--+-"'" tSYNCh _P!--+-~~+-~+-

TLlEE/9354-63

FIGURE 4-25. Bus Clock Synchronization

BCLK [---t-.... s1l.-.fL-
RST [4' tRSTs I I

--------------~~~ TLlEE/9354-64

FIGURE 4-26. Power-On Reset

TL/EE/9354-65

FIGURE 4-27. Non-Power-On Reset

2-87

z
en
(,)
I\)
U1
(,)
I\) · I\)
o
z
en
(,)
I\)
U1
(,)
I\)
• I\)

U1
....... z
en
(,)
I\)
U1
(,)
I\) · (,)
o

~ r---~

• N
C")
II)
N
C")
en z
II)
N
N
C")
II)
N
C")
en z
o
N
N
C")
II)
N
C")

en z

Appendix A: Instruction Formats
NOTATIONS:

i = Integer Type Field
B = 00 (Byte)
W = 01 (Word)
o = 11 (Double Word)

f = Floating Point Type Field
F = 1 (Std. Floating: 32 bits)
L = 0 (Long Floating: 64 bits)

c = Custom Type Field
o = 1 (Double Word)
o = 0 (Ouad Word)

op = Operation Code
Valid encodings shown with each format.

gen, gen 1, gen 2 = General Addressing Mode Field
See Section 2.2 for encodings.

reg = General Purpose Register Number

cond = Condition Code Field
0000 = EOual: Z = 1
0001 = Not Equal: Z = 0
0010 = Carry Set: C = 1
0011 = Carry Clear: C = 0
0100 = Higher: L = 1

0101 = Lower or Same: L = 0
0110 = Greater Than: N = 1
0111 = Less or Equal: N = 0
1000 = Flag Set: F = 1
1001 = Flag Clear: F = 0
1010 = LOwer: L = 0 and Z = 0
1011 = Higher or Same: L = 1 or Z = 1
1100 = Less Than: N = 0 and Z = 0
1101 = Greater or Equal: N = 1 or Z = 1
1110 = (Unconditionally True)
1111 = (Unconditionally False)

short = Short Immediate value. May contain:
quick: Signed 4-bit value, in MOVO, ADDO,

CMPO, ACB.

cond: Condition Code (above), in Scond.

areg: CPU Dedicated Register, in LPR, SPA.
0000 = UPSR
0001 = OCR
0010 = BPC
0011 = DSR
0100 = CAR
0101-0111 = (Reserved)

1000 = FP
1001 = SP
1010 = SB
1011 = USP
1100 = CFG
1101 = PSR
1110 = INTBASE
1111 = MOD

2-88

Options: in String Instructions

I U/W I BIT I
T = Translated
B = Backward
U/W = 00: None

01: While Match
11: Until Match

Configuration bits, in SETCFG Instruction:

I 1 I C I M

mreg: fo~~ ~egi)st.~~:::~~~ LMA, SMA.

0111
1000 = Reserved
1001 = MCR
1010 = MSR
1011 = TEAR
1100 = PTBO
1101 = PTB1
1110 = IVARO
1111 = IVAR1

F

7 0

c;nd' 11' 0' 1 ' 0 I
FormatO

Bcond (BR)

7 0

;p' 1 0 ' 0 ' 1 ' 0 I
Format 1

BSR -0000 ENTER -1000

RET -0001 EXIT -1001

CXP -0010 NOP -1010

RXP -0011 WAIT -1011

RETT -0100 DIA -1100
RETI -0101 FLAG -1101

SAVE -0110 SVC -1110

RESTORE -0111 BPT -1111

15 8
1
7 0 , ,

'Sh~rt 1

, ,
11

,
1 1 gen op

Format 2
ADDO -000 ACB -100

CMPO -001 MOVO -101

SPR -010 LPR -110
Scond -011

~--, z
Appendix A: Instruction Formats (Continued)

15 817 0

I i ~e~ ili;p 11 i 1 i 1 i 1 i 1 1 ; I

CXPO
BICPSR
JUMP
BISPSR

Format 3

-0000
-0010
-0100
-0110

AOJSP
JSR
CASE

Trap (UNO) on XXX1, 1000

ADD
CMP
BIC
AOOC
MOV
OR

MOVS
CMPS

Format 4

-0000
-0001
-0010
-0100
-0101
-0110

SUB
AOOR
AND
SUBC
TBIT
XOR

Format 5

-0000
-0001

SETCFG
SKPS

Trap (UNO) on 1XXX, 01XX

8 7

-1010
-1100
-1110

o
I I I

op

-1000
-1001
-1010
-1100
-1101
-1110

-0010
-0011

o

i 0 1 001 1 1 0

ROT
ASH
CBIT
CBITI
Trap (UND)
LSH
SBIT
SBm

MOVM
CMPM
INSS
EXTS
MOVXBW
MOVZBW
MOVZiD
MOVXiD

FormatS

-0000 NEG -1000
-0001 NOT -1001
-0010 Trap (UND) -1010
-0011 SUBP -1011
-0100 ABS -1100
-0101 COM -1101
-0110 IBIT -1110
-0111 ADDP -1111

Format 7

-0000 MUL -1000
-0001 MEl -1001
-0010 Trap (UND) -1010
-0011 DEI -1011
-0100 QUO -1100
-0101 REM -1101
-0110 MOD -1110
-0111 DIV -1111

2-89

23 16J15 8~ 0

EXT
CVTP
INS
CHECK
MOVSU
MOVUS

MOVif
LFSR
MOVLF
MOVFL

Trap (UND) Always

ADDt
MOVf
CMPf
Note 3
SUBt
NEGf
Note 2
Note 1

TLlEE/9354-66

FormatS

-000 INDEX -100
-001 FFS -1 01
-010
-011
-110, reg = 001
-110,reg = 011

Format 9

-000 ROUND -100
-001 TRUNC -101

-010 SFSR -110
-011 FLOOR -111

7 0
. --I I I I I I I I 1
. __ 0 1 1 1 1 1 1 0

TL/EE/9354-67

Format 10

o

111110

Format 11

-0000
-0001
-0010
-0011
-0100
-0101
-0110
-0111

DIVf
Note 1
Note 3
Note 1
MULf
ABSf
Note 2
Note 1

-1000
-1001
-1010
-1011
-1100
-1101
-1110
-1111

tJ)
w
I\)
CI'I
W
~
I\)
o
Z
tJ)
w
I\)
CI'I
W
I\)

~
CI'I
Z
tJ)
w
I\)
CI'I
W
I\)
• w
o

•

0
C"')

•
'" C"')
Lt)

'" C"')
U)
Z

'" Lt)

'" · '" C"')
Lt)

'" C"')
U)
Z

'" 0

'" • '" C"')
Lt)

'" C"')
U)
Z

Appendix A: Instruction Formats (Continued)

1 1 1 1 1

Format 12

Note 2 -0000 Note 2 -1000
SO RTf -0001 Note 1 -1001
POLYf -0010 MACf -1010
OOTf -0011 Note 1 -1011
SCALSf -0100 Note 2 -1100
LOGSf -0101 Note 1 -1101
Note 2 -0110 Note 2 ,1110
Note 1 -0111 Note 1 -1111

7 0

---I I I I I I I I 1
___ 10011110

TL/EE/9354-68

Format 13
Trap (UNO) Always

ROVAL
WRVAL

Format 14

-0000
-0001

LMR
SMR
CINV

8 7

o 0 0 1 1 1 1

-0010
-0011
-1001

Trap (UNO) on 01XX, 1000, 101X, 11XX

I~

nnn

000

LCR
SCR

16115

Operation Word 10 Syte

Format 15

(Custom Slave)

Operation Word Format

Format 15.0

-0010
-0011

Trap (UNO) on all others

001

0

0

0

0

2-90

Format 15.1

CCV3 -000 CCV2 -100
LCSR -001 CCV1 -101
CCV5 -010 SCSR -110
CCV4 -011 CCVO -111

101

Format 15.5

CCALO -0000 CCAL3 -1000
CMOVO -0001 CMOV3 -1001
CCMPO -0010 Note 3 -1010
CCMP1 -0011 Note 1 -1011
CCAL1 -0100 CCAL2 -1100
CMOV2 -0101 CMOV1 -1101
Note 2 -0110 Note 2 -1110
Note 1 -0111 Note 1 -1111

111

Format 15.7

Note 2 -0000 Note 2 -1000
Note 1 -0001 Note 1 -1001
Note 3 -0010 Note 3 -1010
Note 3 -0011 Note 1 -1011
Note 2 -0100 Note 2 -1100
Note 1 -0101 Note 1 -1101
Note 2 -0110 Note 2 -1110
Note 1 -0111 Note 1 -1111
If nnn = 010,011,100,110 then Trap (UNO) Always.

7 0

---I I I I I I I I 1
___ 0 1 0 1 1 1 1 ~

TL/EE/9354-69

Format 16
Trap (UNO) Always

7 0 ---I II 1\ I I I ,
___ 1 1 0 1 1 1 1 0

TLlEE/9354-70

Format 17
Trap (UNO) Always

7 0

---I \I I I I I I 1
___ 1 0 0 0 1 1 1 0

TLlEE/9354-71

Appendix A: Instruction
Formats (Continued)

Format 18

Trap (UNO) Always

7 0

Format 19

Trap (UNO) Always

Implied Immediate Encodlngs:
7

---I I I I I I I I I ___ x x x 0 0 1 1 0

TL/EE/9354-72

o

r1 rO

Register Mark, Appended to SAVE, ENTER

7 o

Register Mark, Appended to RESTORE, EXIT

7 o

Offset/Length Modifier Appended to INSS, EXTS
Note 1: Opcode not defined; CPU treats like MOV, or CMOVc. First operand
has access class of read; second operand has access class of write; f or c
field selects 32- or 64·blt data.

Note 2: Opcode not defined; CPU treats like ADD, or CCA~. First operand
has access class of read;, second operand has access class of read·modlfy·
write; f or c field selects 32· or 64·blt data.

Note 3: Opcode not defined; CPU treats like CMP, or CCMPc. First operand
has access class of read;, second operand has access class of read; f or c
field selects 32· or 64·blt data.

Appendix B. Compatibility Issues
The NS32532 Is compatible with the Series 32000 architec­
ture implemented by the NS32032, NS32332, and previous
microprocessors In the family. Compatibility means that
within certain limited constraints, programs that execute on
one of the earlier Series 32000 microprocessors will pro­
duce identical results when executed on the NS32532.
Compatibility applies to privileged operating systems pro­
grams, as well as to non-privileged applications programs.
This appendix explains both the restrictions on compatibility
with previous Series 32000 microprocessors and the exten­
sions to the architecture that are implemented by the
NS32532.

B.1 RESTRICTIONS ON COMPATIBILITY

If the following restrictions are observed, then a program
that executes on an earlier Series 32000 microprocessor
will produce identical results when executed on the
NS32532 in an appropriately configured system:

1. The program is not time-dependent. For example, the
program should not use instruction loops to control real­
time delays.

2. The program does not use any encodings of instruc­
tions, operands, addresses, or control fields identified to
be reserved or undefined. For example, if the count op­
erand's value for an LSHi instruction is not within the
range specified by the Series 32000 Instruction Set Ref-

2-91

erence Manual, then the results produced by the
NS32532 may differ from those of the NS32032.

3. Either the program does not depend on the use of a
Memory Management Unit (MMU), or it is written for op­
eration with the NS32382 MMU and does not use the
bus-error or debugging features of the NS32382.

4. The program does not depend on the detection of bus
errors according to the implementation of the NS32332.
For example, the NS32532 distinguishes between re­
startable and nonrestartable bus errors by transferring
control to the appropriate bus-error exception service
procedure through one of two distinct entries in the In­
terrupt Dispatch Table. In contrast, the NS32332 uses a
single entry in the Interrupt Dispatch Table for all bus
errors.

5. The program does not modify itself. Refer to Section B.4
for more information.

6. The program does not depend on the execution of cer­
tain complex instructions to be non·interruptible. Refer
to Section B.5 on. "Memory-Mapped I/O" for more in­
formation.

7. The program does not use the custom slave instructions
CATSTO and CATST1, as they are not supported by the
NS32532 and will result in a Trap (UNO) when their exe­
cution is attempted.

B.2 ARCHITECTURE EXTENSIONS

The NS32532 implements the following extensions of the
Series 32000 architecture using previously reserved control
bits, instruction encodings, and memory locations. Exten­
sions implemented earlier in the NS32332, such as S2-bit
addressing, are not listed.

1. The DC, LDC, IC, and LlC bits in the CFG register have
been defined to control the on-chip Instruction and Data
Caches. The DE-bit in the CFG register has been de­
fined to enable Direct-Exception Mode.

2. The V-flag in the PSR register has been defined to en­
able the Integer-Overflow Trap.

S. The OCR, BPC, DSR, and CAR registers have been de­
fined to control debugging features. Access to these
registers has been added to the definition of the LPR
and SPR instructions.

4. Access to the CFG and SP1 registers has been added
to the definition of the LPR and SPR instructions.

5. The CINV instruction has been defined to Invalidate
control of the on-Chip Instruction and Data Caches.

6. Direct-Exception Mode has been added to support fast­
er interrupt service time and systems without module
tables.

7. A new entry has been added to the Interrupt Dispatch
Table for supporting vectors to distinguish between re­
startable and nonrestartable bus errors. Two additional
entries support Trap (OVF) and Trap (DBG).

8. Restrictions have been eliminated for recovery from
Trap (ABT) for operands with access class of write that
cross page boundaries. Restrictions still exist however,
for the operands of the MOVMi instruction.

B.3 INTEGER OVERFLOW TRAP

A new trap condition is recognized for integer arithmetic
overflow. Trap (OVF) is enabled by the V-flag in the PSR.
This new trap is important because detection of integer
overflow conditions is required for certain programming lan­
guages, such as ADA, and the PSR flags do not indicate the
occurrence of overflow for ASHi, DIVi and MUll instructions.

z en
w
I\)
U1
W
I\) · I\)
«:)
.......
z en
w
I\)
U1
W
I\)
• I\)

U1
z en
w
I\)
U1
W
I\)
• w

«:)

•

o
Cf) · N
Cf)
Ln
N
Cf)
(J)
Z
Ln
N · N
Cf)
Ln
N
Cf)
(J)
Z
o
N • N
Cf)
Ln
N
Cf)
(J)
Z

Appendix B. Compatibility Issues (Continued)

More details on integer overflow are given in Section 3.2.5,
where a description of all the cases in which an overflow
condition is detected is also provided.

INTEGER ARITHMETIC

The V-flag in the PSR enables Trap (OVF) to occur following
execution of an integer arithmetic instruction whose result
cannot be represented exactly in the destination operand's
location.

If the number of bits required to represent the resulting quo­
tient of a DEI instruction exceeds half the number of bits of
the destination, then the contents of both the quotient and
remainder stored in the destination are undefined.

The ADDR instruction can be used in place of integer arith­
metic instructions to perform certain calculations. In this
case however, integer overflow is not detected by the CPU.

LOGICAL INSTRUCTIONS

The V-flag in the PSR enables Trap (OVF) to occur following
execution of an ASHi instruction whose result cannot be
represented exactly in the destination operand's location.

ARRAY INSTRUCTIONS

The V-flag in the PSR enables Trap (OVF) to occur following
execution of a CHECKi instruction whose source operand is
out of bounds.

PROCESSOR CONTROL INSTRUCTIONS

The V-flag in the PSR enables Trap (OVF) to occur following
execution of an ACBi instruction if the sum of the "inc" val­
ue and the "index" operand cannot be represented exactly
in the "index" operand's location.

8.4 SELF-MODIFYING CODE

The Series 32000 architecture does not have special provi­
sions to optimally support self-modifying programs.
Nevertheless, on the NS32332 and previous Series 32000
microprocessors it is possible to execute self-modifying
code according to the following sequence:

1. Modify the appropriate instruction.

2. Execute a JUMP instruction or other instruction that
causes the microprocessor's instruction queue to be
flushed.

3. Execute the modified instruction.

For example, an interactive debugger may follow the se­
quence above after reaching a breakpoint in a program be­
ing monitored.

The same program may not produce identical results when
executed on the NS32532 due to effects of the Instruction
Cache and branch prediction. In order to execute self-modi­
fying code on the NS32532 it is necessary to do the follow­
ing:

1. Modify the appropriate instruction.

2. If the modified instruction is on a cacheable page, exe­
cute CINV to invalidate the contents of the Instruction
Cache.

3. Execute an instruction that causes a serializing opera­
tion. See Section 3.1.3.3.

4. Execute the modified instruction.

8.5 MEMORY-MAPPED 1/0
As was mentioned in Section 3.1.3.2, certain peripheral de­
vices exhibit characteristics identified as "destructive-read-

2-92

ing" and "side-effects of writing" that impose requirements
for special handling of memory-mapped 1/0 references.
The NS32532 supports two methods to use on references
to memory-mapped peripheral devices that exhibit either or
both of these characteristics.

For peripheral devices that exhibit only side-effects of writ­
ing, correct operation can be ensured either by locating the
device between addresses FFOOOOOO (hex) and FF7FFFFF
(hex) in the virtual address space or by observing the first 2
restrictions listed below. For peripheral devices that exhibit
destructive-reading, all the following restrictions must be ob­
served to ensure correct operation:

1. References to the device must be inhibited while the
CPU asserts the output signal 101NH.

2. The input signal 10DEC must be asserted by the system
on references to the device.

3. The device cannot be used for instruction fetches, reads
of effective addresses, or Page Table Entries.

4. If an instruction that reads a source operand from the
device crosses a page boundary, then no Trap (ABT) or
restartable bus error can occur during fetches from the
page with higher addresses.

5. No Trap (ABT) for a data reference or other exception
can occur during execution of an instruction that reads a
source operand from the device. (Exceptions that are
recognized after completion of an instruction, like Trap
(OVF) and Trap (DBG), cause no problem.)

6. The device can be used as a source operand only for
instructions in the list below.
ABSi CBITi MOVMi SBITIi
ADDi CBITIi MOVXi SUBi
ADDCi CMPi MOVZi SUBCi
ADDPi CMPQi NEGi SUBPi
ADDQi COMi NOTi TBITi
ANDi IBITi ORi XORi
ASHi LSHi ROTi
BICi MOVi SBITi

This restriction arises because the CPU can respond to
interrupt requests during the execution of complex in­
struction in order to reduce interrupt latency. Thus, the
CPU may read the source operands for a DEID instruc­
tion (extended-precision divide), begin calculating the in­
struction's results, and then respond to an interrupt re­
quest before completing the instruction. In such an
event, the instruction can be executed again and com­
pleted correctly after the interrupt service procedure re­
turns unless one of the source operands was altered by
destructive-reading.

Appendix C.lnstruction Set
Extensions
The following sections describe the differences and ex­
tensions to the Series 32000 instruction set (as present­
ed in the "Series 32000 Instruction Set Reference Man­
ual") implemented by the NS32352.

No changes or additions have been made to the user­
mode instruction set, and only a few privileged instruc­
tions have been added.

Appendix C. Instruction Set Extensions (Continued)

C.1 PROCESSOR SERVICE INSTRUCTIONS 1'~ "17 :°1 The CFG register, User Stack Pointer (SP1), and Debug
Registers can be loaded and stored using privileged forms
of the LPRi and SPRi instructions.

When the SETCFG instruction is executed, the CFG register
bits 0 through 3 are loaded from the instruction's short field,
bits 4 through 7 are forced to 1, and bits 8 through 12 are
forced to O.

The contents of the on-chip Instruction Cache and Data
Cache can be invalidated by executing the privileged in­
struction CINV. While executing the CINV instruction, the
CPU generates 2 slave bus cycles on the system interface
to display the first 3 bytes of the instruction and the source
operand. External circuitry can thereby detect the execution
of the CINV instruction for use in monitoring the contents of
the on-chip caches.

C.2 MEMORY MANAGEMENT INSTRUCTIONS

The NS32532 on-chip MMU does not implement the BAR,
BDR, BEAR, and BMR registers of the NS32382. These
registers are used in the NS32382 to support bus error and
debugging features. When an attempt is made to access
one of these 4 registers by executing an LMR or SMR in­
struction, a Trap (UND) occurs. More generally, a Trap
(UND) occurs whenever an attempt is made to execute an
LMR or SMR instruction and the most-significant bit of the
short-field is O.

While executing an LMR instruction, the CPU generates 2
slave bus cycles on the system interface to display the first
3 bytes of the instruction and the source operand. External
circuitry can thereby detect the execution of an LMR in­
struction for use in monitoring the contents of the on-chip
Translation Lookaside Buffer.

Like the NS32382 MMU, the F-flag in the PSR is set and no
Trap (ABT) occurs when a RDVAL or WRVAL instruction is
executed and the Protection Level in the Level-1 Page Ta­
ble Entry indicates that the access is not allowed. In the
NS32082 MMU, an abort occurs when the Level-1 PTE is
invalid, regardless of the Protection Level.

C.3 INSTRUCTION DEFINITIONS

This section provides a description of the operations and
encodings of the new NS32532 privileged instructions.

Load and Store Processor Registers

Syntax: LPRI procreg, src
short gen

read.i

SPRI procreg dest
short gen

write.i

The LPRi and SPRi instructions can be used to load and
store the User Stack Pointer (USP or SP1), the Configura­
tion Register (CFG) and the Debug Registers in addition to
the Processor Registers supported by the previous Series
32000 CPUs. Access to these registers is privileged.

Figure C-t and Table C-1 show the instruction formats and
the new 'short' field encodings for LPRi and SPRi.

Flags Affected: No flags affected by loading or storing the
USP, CFG, or Debug Registers.

Traps: Illegal Instruction Trap (ILL) occurs if an
attempt is made to load or store the USP,
CFG or Debug Registers while the U-flag
is 1.

2-93

I I

I " I"" I short 1 1 0 1 1 gen

src procreg LPRi

11~ " I' ,8 1 7
1

' , , , I jOI
. gen short 0 1 0 1 1 .

dest procreg SPRi
FIGURE C-1. LPRl/SPRllnstruction Formats

TABLE C-1. LPRi/SPRi New 'Short' Field Encodings

Register procreg

Debug Condition Register DCR

Breakpoint Program Counter BPC

Debug Status Register DSR

Compare Address Register CAR

User Stack Pointer USP

Configuration Register CFG

Cache Invalidate

Syntax: CINV options, src

gen

read. D

short field

0001

0010

0011

0100

1011

1100

The CINV instruction invalidates the contents of locations in
the on-chip Instruction Cache and Data Cache. The instruc­
tion can be used to invalidate either the entire contents of
the on-chip caches or only a 16-byte block. In the latter
case, the 28 most-significant bits of the source operand
specify the physical address of the aligned 16-byte block;
the 4 least-significant bits of the source operand are ig­
nored. If the specified block is not located in the on-chip
caches, then the instruction has no effect. If the entire
cache contents is to be invalidated, then the source oper­
and is read, but its value is ignored.

Options are specified by listing the letters A (invalidate All), I
(Instruction Cache), and D (Data Cache). If neither the I nor
D option is specified, the instruction has no effect.

In the instruction encoding, the options are represented in
the A, I, and D fields as follows:

A: O-invalidate only a 16-byte block
1-invalidate the entire cache

I: O-do not affect the Instruction Cache
1-invalidate the Instruction Cache

D: O-do not affect the Data Cache
1-invalidate the Data Cache

Flags Affected: None

Traps: Illegal Operation Trap (ILL) occurs if an at­
tempt is made to execute this instruction
while the U-flag is 1.

Examples:

1. CINV A, D, I, R3 1E A7 1B

2. CINV I, R3 1E 2719

Example 1 invalidates the entire Instruction Cache and Data
Cache.

Example 2 invalidates the 16-byte block whose physical ad­
dress in the Instruction Cache is contained in R3.

z en
w
N
U1
W
N

I
N o
Z en w
N
U1
W
N

I
N
U1
Z en
w
N
U1
W
N
I

W
o

Ell

Load and Store Memory Management Register

Syntax: LMR mmreg, src
short gen

read. 0
SMR mmureg, dest

short gen
write. 0

The LMR and SMR instruction load and store the on-chip
MMU registers as 32-bit quantities to and from any general
operand. For reasons of system security, these instructions
are privileged. In order to be executable, they must also be
enabled by setting the M bit in the CFG register.

The Instruction formats as well as the 'short' field encodings
are shown in Figure C-3 and Table C-2 respectively.

It is to be noted that the IVARO and IVAR1 registers are
write-only, and as such, they can only be loaded by the LMR
instruction.

Flags Affected: none

Traps: Undefined Instruction Trap (UNO) occurs if
an attempt is made to execute this instruc­
tion while either of the following conditions
is true:

1. The M-blt In the CFG register Is O.

2. The U-Flag In the PSR Is 0 and the
most-significant bit of the short field Is O.

lIJegallnstructlon Trap (ILL) occurs If an at­
tempt Is made to execute this instruction
while the M-blt In the CFG register and the
U-flag In the PSR are both 1.

TABLE C-2. LMRISMR 'Short' Field Encodlngs

Register mmureg short field

Memory Management MCR 1001
Control Reg

Memory Management MSR 1010
Status Reg

Translation Exception TEAR 1011
Address Reg

Page Table Base PTBO 1100
Register 0

Page Table Base PTB1 1101
Register 1

Invalidate Virtual IVARO 1110
Address 0

Invalidate Virtual IVAR1 1111
Address 1

2-94

a 7 o
00011 1 000 1 1 1 1 0

dest mmureg SMR
FIGURE C-3. LMRISMR Instruction Formats

src mmureg

Appendix D.lnstruction
Execution Times
The NS32532 achieves its performance by using an ad­
vanced implementation incorporating a 4-stage Instruction
Pipeline, a Memory Management Unit, an Instruction Cache
and a Data Cache into a single integrated circuit.

As a consequence of this advanced implementation, the
performance evaluation for the NS32532 is more complex
than for the previous microprocessors in the Series 32000
family. In fact, it is no longer possible to determine the exe­
cution time for an instruction using only a set of tables for
operations and addressing modes. Rather, it is necessary to
consider dependencies between the various instructions ex­
ecuting in the pipeline, as well as the occurrence of misses
for the on-chip caches.

The following sections explain the method to evaluate the
performance of the NS32532 by calculating various timing
parameters for an instruction sequence. Due to the high
degree of parallelism in the NS32532, the evaluation tech­
niques presented here Include some simplifications and ap­
proximations.

D.1INTERNAL ORGANIZATION
AND INSTRUCTION EXECUTION

The NS32532 Is organized internally as a functional units as
shown In Figure 1. The functional units operate in parallel to
execute instructions In the 4-stage pipeline. The structure of
this pipeline Is shown In Figure 3-2. The Instruction Fetch
and Instruction Decode pipeline stages are implemented In
the loader along with the a-byte instruction queue and the
buffer for a decoded instruction. The Address Calculation
pipeline stage is implemented in the address unit. The Exe­
cute pipeline stage is implemented in the Execution Unit
along with the write data buffer that holds up to two results
directed to memory.

The Address Unit and Execution Unit can process instruc­
tions at a peak rate of 2 clock cycles per instruction, en­
abling a sustained pipeline throughput at 30 MHz of
15 MIPS (million instructions per second) for sequences of
register-to-register, immediate-to-register, register-to-mem­
ory and memory-to-register Instructions. Nevertheless, the
execution of instructions in the pipeline is reduced from the
peak throughput of 2 cycles by the following causes of de­
lay:

1. Complex operations, like division, require more than 2 cy­
cles in the Execution Unit, and complex addressing
modes, like memory relative, require more than 2 cycles
in the Address Unit.

Appendix D. Instruction Execution Times (Continued)

2. Dependencies between instructions can limit the flow
through the pipeline. A data dependency can arise when
the result of one instruction is the source of a following
instruction. Control dependencies arise when branching
instructions are executed. Section D.3 describes the
types of instruction dependencies that impact perform­
ance and explains how to calculate the pipeline delays.

3. Cache and TLB misses can cause the flow of instructions
through the pipeline to be delayed, as can non-aligned
references. Section D.4 explains the performance impact
for these forms of storage delays.

The effective time T eff needed to execute an instruction is
given by the following formula:

T ef! = T e + T d + T s

T e is the execution time in the pipeline in the absence of
data dependencies between instructions and storage de­
lays, T d is the delay due to data dependencies, and T s is the
effect of storage delays.

D.2 BASIC EXECUTION TIMES

Instruction flow in sequence through the pipeline stages im­
plemented by the Loader, Address Unit, and Execution Unit.
In almost all cases, the Loader is at least as fast at decod­
ing an instruction as the Address Unit is at processing the
instruction. Consequently, the effects of the Loader can be
ignored when analyzing the smooth flow of instructions in
the pipeline, and it is only necessary to consider the times
for the Address Unit and Execution Unit. The time required
by the Loader to fetch and decode instructions is significant
only when there are control dependencies between instruc­
tions or Instruction Cache misses, both of which are ex­
plained later.

The time for the pipeline to advance from one instruction to
the next is typically determined by the maximum time of the
Address Unit and Execution Unit to complete processing of
the instruction on which they are operating. For example, if
the Execution Unit is completing instruction n in 2 cycles
and the Address Unit is completing instruction n+ 1 in 4
cycles, then the pipeline will advance in 4 cycles. For certain
instructions, such as RESTORE, the Address Unit waits until
the Execution Unit has completed the instruction before
proceeding to the next instruction. When such an instruction
is in the Execution Unit, the time for the pipeline to advance
is equal to the sum of the time for the Execution Unit to
complete instruction n and the time for the Address Unit to
complete instruction n+ 1. The processing times for the
Loader, Address Unit, and Execution Unit are explained be­
low.

D.2.1 Loader Timing

The Loader can process an instruction field on each clock
cycle, where a field is one of the following:

• An opcode of 1 to 3 bytes including addressing mode
specifiers.

• Up to 2 index bytes, if scaled index addressing mode is
used.

• A displacement.

• An immediate value of 8, 16 or 32 bits.

The Loader requires additional time in the following cases:

• 1 additional cycle when 2 consecutive double-word fields
begin at an odd address.

2-95

• 2 cycles in total to process a double-precision floating-
point immediate value.

D.2.2 Address Unit Timing

The processing time of the Address Unit depends on the
instruction's operation and the number and type of its gen­
eral addressing modes. The basic time for most instructions

is 2 cycles. A relatively small number of instructions require
an additional address unit time, as shown in the timing ta­
bles in Section D.5.5. Non-pipelined floating-point instruc­
tions as well as Custom-Slave instructions require an addi­
tional 3 cycles plus 2 cycles for each quad-word operand in
memory.

For instructions with 2 general addressing modes, 2 addi­
tional cycles are required when both addressing modes re­
fer to memory. Certain general addressing modes require an
additional processing time, as shown in Table D-1. For ex­
ample, the instruction MOVD 4(8(FP», TOS requires 7 cy­
cles in the Address Unit; 2 cycles for the basic time, an
additional 2 cycles because both modes refer to memory,
and an additional 3 cycles for Memory Relative addressing
mode.

TABLE D-1. Additional Address Unit Processing
Time for Complex Addressing Modes

Mode
Additional

Cycles

Memory Relative 3
External 8
Scaled Indexing 2

D.2.3 Execution Unit Timing

The Execution Unit processing times for the various
NS32532 instructions are provided in Section D.5.5. Certain
operations cause a break in the instruction flow through the
pipeline.

Some of these operation simply stop the Address Unit,
while others flush the instruction queue as well. The infor­
mation on how to evaluate the penalty resulting from in­
struction flow breaks is provided in the following sections.

D.3 INSTRUCTION DEPENDENCIES

Interactions between instructions in the pipeline can cause
delays. Two types of interactions can arise, as described
below.

D.3.1 Data Dependencies

In certain circumstances the flow of instructions in the pipe­
line will be delayed when the result of an instruction is used
as the source of a succeeding instruction. Such interlocks
are automatically detected by the microprocessor and han­
dled with complete transparency to software.

D.3.1.1 Register Interlocks

When an instruction uses a base register that is the destina­
tion of either of the previous 2 instructions, a delay occurs.
The delay is 3 cycles when, as in the following example, the
base register is modified by the immediately preceding in­
struction. Modifications of the Stack Pointer resulting from
the use of TOS addressing mode do not cause any delay.
Also, there is no delay for a data dependency when the
instruction that modifies the register is one for which the
Address Unit stops.

z en
w
N
U1
W
N .
N
o
Z en w
N
U1
W
N .
N
U1
Z en w
N
U1
W
~
W
o

Q
C") · N
C")
Lt)
N
C")
(J)
Z
.......
Lt)
N · N
C")
Lt)
N
C")
(J)
Z
.......
Q
N · N
C")
Lt)
N
C")
(J)
Z

Appendix D.lnstruction Execution Times (Continued)

n: ADDD Rl,RO modify RO
n+l: MOVD 4(RO),R2 RO is base register,

delay 3 cycles
The delay is 1 cycle when the register is modified 2 instruc­
tions before its use as a base register, as shown in this
example.

n: ADDD Rl,RO modify RO
n+l: MOVD 4(SP),R3 RO not used
n+2: MOVD 4(RO),R2 RO is base register,

delay 1 cycle
When an instruction uses an index register that is the desti­
nation of the previous instruction, a delay of 1 cycle occurs,
as shown in the example below. If the register is modified 2
or more instructions prior to its use as an index register,
then no delay occurs.

n: ADDD Rl,RO ; modify RO
n+l: MOVD 4(SP) [RO:B],R2

; RO is index register,
delay 1 cycle

Bypass circuitry in the Execution Unit generally avoids delay
when a register modified by one instruction is used as the
source operand of the following instruction, as in the follow­
ing example.

n: ADDD Rl,RO
n+l: MOVD RO,R2

modify RO
RO is source register,
no delay

For the uncommon case where the operand in the source
register is larger than the destination of the previous instruc­
tion, a delay of 2 cycles occurs. Here is an example.

n: ADDB Rl,RO modify byte in RO
n+l: MOVD RO,R2 ; RO dw source operand,

2 cycle delay
Note: The Address Unit does not make any differentiation between CPU

and FPU registers. Therefore, register interlocks can occur between
integer and floating-point instructions.

0.3.1.2 Memory Interlocks
When an instruction reads a source operand (or address for
effective address calculation) from memory that depends on
the destination of either of the previous 2 instructions, a
delay occurs. The CPU detects a dependency between a
read and a write reference in the following cases, which
include some false dependencies in addition to all actual
dependencies:

• Either reference crosses a double-word boundary

• Address bits 0 through 11 are equal

• Address bits 2 through 11 are equal and either reference
is for a word

• Address bits 2 through 11 are equal and either reference
is for a double-word

The delay for a memeory interlock is 4 cycles when, as in
the following example, the memory location is modified by
the immediately preceding instruction.

n: ADDQD 1,4(SP) modify 4(SP)
n+l: CMPD lO,4(SP) ; read, 4(SP),

4 cycle delay

2-96

The delay is 2 cycles when the memory location is modified
2 instructions before its use as a source operand or effec­
tive address, as shown in this example.

n: ADDQD l,4(SP) ; modify 4(SP)
n+l: MOVD RO,Rl no reference to 4(SP)
n+2: CMPD 10, 4(SP); read 4(SP),

2 cycles delay
Certain sequences of read and write references can cause
a delay of 1 cycle although there is no data dependency
between the references. This arises because the Data
Cache is occupied for 2 cycles on write references. In the
absence of data dependencies, read references are given
priority over write references. Therefore, this delay only oc­
curs when an instruction with destination in memory is fol­
lowed 2 instructions later by an instruction that refers to
memory (read or write) and 3 instructions later by an instruc­
tion that reads from memory. Here is an example:

n: MOVD RO,4(SP) memory write
n+l: MOVD R6,R7 any instruction
n+2: MOVD 8(SP),RO memory read or write
n+3: MOVD l2(SP),Rl; memory read

delayed 1 cycle

0.3.2 Control Dependencies
The flow of instructions through the pipeline is delayed
when the address from which to fetch an instruction de­
pends on a previous instruction, such as when a conditional
branch is excuted. The Loader includes special circuitry to
handle branch instructions (ACB, BR, Bcond, and BSR) that
serves to reduce such delays. When a branch instruction is
decoded, the Loader calculates the destination address and
selects between the sequential and non-sequential instruc­
tion streams. The non-sequential stream is selected for un­
conditional branches. For conditional branches the selec­
tion is based on the branch's direction (forward or back­
ward) as well as the tested condition. The branch is predict­
ed taken in any of the following cases.

• The branch is backward.

• The tested condition is either NE or LE.

Measurements have shown that the correct stream is se­
lected for 64 % of conditional branches and 71 % of total
branches.

If the Loader selects the non-sequential stream, then the
destination address is transferred to the Instruction Cache.
For conditional branches, the Loader saves the address of
the alternate stream (the one not selected). When a condi­
tional branch instruction reaches the Execution Unit, the
condition is resolved, and the Execution Unit signals the
Loader whether or not the branch was taken. If the branch
had been incorrectly predicted, the Instruction Cache be­
gins fetching instructions from the correct stream.

The delay for handling a branch instruction depends on
whether the branch is taken and whether it is predicted cor­
rectly. Unconditional branches have the same delay as cor­
rectly predicted, taken conditional branches.

Another form of delay occurs when 2 consecutive condition­
al branch instructions are executed. This delay of 2 cycles
arises from contention for the register that holds the alter­
nate stream address in the Loader.

Control dependencies also arise when JUMP, RET, and oth­
er non-branch instructions alter the sequential execution of
instructions.

Appendix D. Instruction Execution Times (Continued)

0.4 STORAGE OELA VS

The flow of instructions in the pipeline can be delayed by
off-chip memory references that result from misses in the
on·chip storage buffers and by misalignment of instructions
and operands. These considerations are explained in the
following sections. The delays reported assume no wait
states on the external bus and no interference between in­
struction and data references.

0.4.1 Instruction Cache Misses

An Instruction Cache miss causes a 5 cycle gap in the fetch­
ing of instructions. When the miss occurs for a non-sequen­
tial instruction fetch, the pipeline is idle for the entire gap, so
the delay is 5 cycles. When the miss occurs for a sequential
fetch, the pipeline is not idle for the entire gap because
instructions that have been prefetched ahead and buffered
can be executed. The delay for misses on non-sequential
instruction fetches can be estimated to be approximately
half the gap, or 2.5 cycles.

0.4.2 Data Cache Misses

A Data Cache miss causes a delay of 2 cycles. When a
burst read cycle is used to fill the cache block, then 3 addi­
tional cycles are required to update the Data Cache. In case
a burst cycle is used and either of the 2 instructions follow­
ing the instruction that caused the miss also reads from
memory, then an additional delay occurs: 3 cycle delay
when the instruction that reads from memory immediately
follows the miss, and 2 cycle delay when the memory read
occurs 2 instructions after the miss.

0.4.3 TLB Misses

There is a delay for the MMU to translate a virtual address
whenever there is a TLB miss for an instruction fetch, data
read or data write and whenever the M-bit in the Page Table
Entry (PTE) must be set for a data write that hits in the TLB.
The delay for the MMU to handle a TLB miss is 15 cycles
when no update to the PTEs is necessary. When only the
Level-1 PTE must be updated, the delay is 17 cycles; when
only the Level-2 PTE must be updated, the delay is 22 cy­
cles. When both PTEs must be updated, the delay is 24
cycles.

0.4.4 Instruction and Operand Alignment

When a data reference (either read or write) crosses a dou­
ble-word boundary, there is a delay of 2 cycles.

When the opcode for a non-sequential instruction crosses a
double-word boundary, there is a delay of 1 cycle. No delay
occurs in the same situation for a sequential instruction.
There is also a delay of 2 cycles when an instruction fetch is
located on a different page from the previous fetch and
there is a hit in the Instruction Cache. This delay, which is
due to the time required to translate the new page's ad­
dress, also occurs following any serializing operation.

0.5 EXECUTION TIME CALCULATIONS

This section provides the necessary information to calculate
the T a portion of the effective time required by the CPU to
execute an instruction.

The effects of data dependencies and storage delays are
not taken into account in the evaluation of T a, rather, they

2-97

should be separately evaluated through a careful examina­
tion of the instruction sequence.

The following assumptions are made:

- The entire instruction, with displacements and immedi­
ate operands, is present in the instruction queue when
needed.

- All memory operands are available to the Execution Unit
and Address Unit when needed.

- Memory writes are performed at full speed through the
write buffer.

- Where possible, the values of operands are taken into
consideration when they affect instruction timing, and a
range of times is given. When this is not done, the worst
case is assumed.

0.5.1 Definitions

Tau Time required by the Execution Unit to execute an
instruction.

Tau Total processing time in the Address Unit.

Tad Extra time needed by the Address Unit, in addition
to the basic time, to process more complex cases.
Tad can be evaluated as follows:

Tad = Tx + TY1 + TY2
T x = 2 if the instruction has two general operands

and both of them are in memory.

o otherwise.

T y1 and T y2 are related to operands 1 and 2 re­
spectively. Their values are given below.

T y(1, 2) = 3 if Memory Relative

8 if External

2 if Scaled Indexing

o if any other addressing mode

The following parameters are only used for floating-point
execution time calculations.

T anp Additional Address Unit time needed to process
floating-point instructions in non-pipelined mode.
(Section D.2.2).

T anp may be totally hidden for pipelined instruc­
tions. For non-pipelined instructions it can be cal­
culated as follows:

T anp = 3 + 2 * (Number of 84-bit operands in
memory)

Ttcs Time required to transfer ID and Opcode, if no op­
erand needs to be transferred to the slave. Other­
wise, it is the time needed to transfer the last 32
bits of operand data to the slave. In the latter case
the transfer of ID and Opcode as well as any oper­
and data except the last 32 bits is included in the
Execution Unit timing.

Ttsc Time required by the CPU to complete the floating­
point instruction upon receiving the DONE signal
from the slave. This includes the time to process
the DONE signal itself in addition to the time need­
ed to read the result (if any) from the slave.

z en
w
I\)
U1
W
I\)

I
I\)
o
.......
z en
w
I\)
U1
W
I\)
I

I\)
U1
z en w
I\)
U1
W
I\)
I

W
o

C) .---,
C")

N
C")
II)
N
C")

en
z
II)
N .
N
C")
II)
N
C")

en z
C)
N .
N
C")
II)
N
C")

en z

Appendix D. Instruction Execution Times (Continued)

I This parameter is related to the floating-point oper- 6. The keyword defined for the Bcond instruction have the
and size as follows: following meaning:

Standard floating (32 bits): I = 0 BTPC Branch Taken, Predicted Correctly

Long floating (64 bits): I = 1 BTPI Branch Taken, Predicted Incorrectly

0.5.2 Notes on Table Use BNTPC Branch Not Taken, Predicted Correctly

1. In the T eu column the notation n1 n2 means n1 mini­
mum, n2 maximum.

2. In the notes column, notations held within angle brackets
< > indicate alternatives in the operand addressing
modes which affect the execution time. A table entry
which is affected by the operand addressing may have
multiple values, corresponding to the alternatives. This
addressing notations are:

< I > Immediate

< R > CPU register

<M> Memory

<F> FPU register, either 32 or 64 bits

<m> Memory, except Top of Stack

<T> Top of Stack

<x> Any addressing mode

<ab> a and b represent the addressing modes of oper­
ands 1 and 2 respectively. Both of them can be
any addressing mode. (e.g., <MR> means
memory to CPU register).

3. The notation 'Break K' provides pipeline status informa­
tion after executing the instruction to which 'Break K' ap­
plies. The value of K is interpreted as follows:

K = 0 The Address Unit was stopped by the instruction
but the pipeline was not flushed. The Address
Unit can start processing the next instruction im­
mediately.

K > 0 The pipeline was flushed by the instruction. The
Address Unit must wait for K cycles before it can
start processing the next instruction.

K < 0 The Address Unit was stopped at the beginning
of the instruction but it was restarted IKI cycles
before the end of it. The Address Unit can start
processing the next instruction IKI cycles before
the end of the instruction to which 'Break K' ap­
plies.

4. Some instructions must wait for pending writes to com­
plete before being able to execute. The number of cycles
that these instructions must wait for, is between 6 and 7
for the first operand in the write buffer and 2 for the sec­
ond operand, if any.

5. The CBITli and SBITIi instructions will execute a RMW
access after waiting for pending writes. The extra time
required for the RMW access is only 3 cycles since the
read portion is overlapped with the time in the Execution
Unit.

2-98

BNTPI Branch Not Taken, Predicted Incorrectly

0.5.3 T eff Evaluation
The T e portion of the effective execution time for a certain
instruction in an instruction sequence is obtained by per­
forming the following steps:

1. Label the current and previous instruction in the se­
quence with nand n-1 respectively.

2. Obtain from the tables the values of T eu and Tau for in­
struction nand T eu for instruction n -1.

3. For floating-point instructions, obtain the values of Ttes
and Ttse.

4. Use the following formula to determine the execution time
Te·
Te = Tdpf(n) + func (Tau(n), Teu(n-1), TfIt(n-1),

Break (n-1» + Teu(n) + TfIt(n)

T dpf is the delay incurred before an instruction can begin
execution. It must be considered only when the floating­
point pipe lined mode is enabled.

For a non-floating-point instruction, it represents the time
needed to complete all the instructions in the FIFO. For a
floating-point instruction, it is only relevant if the FIFO is
full, and represents the time to complete the first instruc­
tion in the FIFO.

func provides the amount of processing time in the Ad­
dress Unit that cannot be hidden. Its definition is given
below.

func = 0 if Tau(n) ::;: (Teu(n-1)

+ TfIt (n-1»
AND NOT Break (n-1)

Tau(n) - Teu(n-1) if Tau(n) > (Teu(n-1)

+ TfIt(n-1»
AND NOT Break (n -1)

Tau(n) + K if (Tau(n) + K) > 0
AND Break (n-1)

o if (Tau(n) + K) ::;: 0
AND Break (n-1)

K is the value associated with Break (n -1).

Appendix D. Instruction Execution Times (Continued)

Tfit only applies to floating-point instructions and is al­
ways 0 for other instructions. It is evaluated as follows:

if pipe lined mode is disabled, then

Tfit = ttcs + Ttsc + Ttpu
else

Ttlt = 0 if group A instruction.

max (T prv, Ttcs) + Ttsc if group B instruction.

Ttpu is the execution time in the Floating-Point
Unit. T prv is the time needed by the CPU and FPU
to complete all the floating-point instructions In the
FIFO.

5. Calculate the total execution time T ett by using the follow­
ing formula:

T eft = T e + T d + T s
Where T d and T s are dependent on the instruction se­
quence, and can be obtained using the information pro­
vided in Section 0.4.

0.5.4 Instruction Timing Example

This section presents a simple instruction timing example
for a procedure that recursively evaluates the Fibonacci

_fib: movd r3.tos 2 cycles
movd r4.tos 2 cycles
movd rl.r3 2 cycles
cmpqd $(2).r3 2 cycles

function. In this example there are no data dependencies or
storage buffer misses; only the basic instruction execution
times in the pipeline, control dependencies, and instruction
alignment are considered.

The following is the source of the procedure in C.

unsigned fib (x)
int x;
(

if' (x > 2)

return (fib(x-l) + fib(x-2)) ;
else

return(l) ;

The assembly code for the procedure with comments indi­
cating the execution time is shown below. The procedure
requires 26 cycles to execute when the actual parameter is
less than or equal to 2 (branch taken) and 99 cycles when
the actual parameter is equal to 3 (recursive calls).

bge .Ll 2 cycles. Break 4 If Branch Taken
movd r3.rl 2 cycles
addqd $(-2) .rl 2 cycles
bsr _fib 3 cycles
movd rO.r4 4 cycles + 4 Cycles due to RET
movd r3.rl 2 cycles
addqd $(-l).rl 2 cycles
bsr _fib 3 cycles
addd r4.rO 4 cycles + 1 cycle alignment + 4 cycles due to RET
movd tos.r4 2 cycles
movd tos.r3 2 cycles
ret $(0) 4 cycles. break 4
.align 4

_Ll: movqd $(1) .rO 4 cycles + 4 cycles due to BGE
movd tos.r4 2 cycles
movd tos.r3 2 cycles
ret $(0) 4 cycles. Break 4

2-99

z en
w
I\)
en
w
I\) .
I\)
o
........ z en
w
I\)
en w
I\)
• I\)
en
........ z en
w
I\)
en
w
~
w o

C) r---~
C")

• N
C")
It)
N
C")
U)
Z
It)
N • N
C")
It)
N
C")
U)
Z
C)
N • N
C")
It)
N
C")
U)
Z

Appendix D. Instruction Execution Times (Continued)

0.5.5 Execution Timing Tables
The following tables provide the execution timing information for all the NS32532 instructions. The table for the floating-point
instructions provides only the CPU portion of the total execution time. The FPU execution times can be found in the NS32381
and NS32580 datasheets .

0.5.5.1 Basic and Memory Management Instructions

Mnemonic Teu Tau Notes Mnemonic Teu Tau Notes

ABSi 5 2 + Tad CHECKi 10 2 + Tad Break -3.
IfSRC isout
of bounds and
the V bit in the

ACBi 5 2 + Tad If incorrect prediction
then Break 1

ADDi 2 2 + Tad PSR is set,
then add trap
time.

ADDCi 2 2 + Tad

CINV 10 2 + Tad Wait for
pending

ADDPi 9 2 + Tad

ADDQi 2 2 + Tad

AD DR 2 4 + Tad writes.

ADJSPi 5 2 + Tad i= B,W Break 0
Break 5

3 2 + Tad i = D Break 0 CMPi 2 2 + Tad

ANDi 2 2 + Tad CMPMi 6 + 8 * n n = number
of elements.
Break 0

ASHi 9 2 + Tad

CMPQi 2 2 + Tad BeONO 2~3 2 BTPC
2 2 BTPI Break 2
2 2 BNTPC CMPSi 7 + 13 * n 2 + Tad n = number

2 2 BNTPI Break 2 of elements.

(see Note 5 in Break 0

Section D.5.2) CMPST 6+20*n 2 + Tad n = number
of elements.
Break 0

BICi 2 2 + Tad

COMi 2 2 + Tad
BICPSRi 6 2 + Tad Wait for pending writes.

Break 5

BISPSRi 6 2 + Tad Wait for pending writes. CVTP 5 4 + Tad

Break 5 CXP 17 13 Break 5

BPT 30 2 Modular CXPD 21 11 + Tad Break 5
21 2 Direct

DEli 28 + 4 * i 5 + Tad i = 0/4/12 for
Break 5 B/W/D.

BR 2~3 2 Break 0

BSR 2~3 3 + Tad DIA 3 2 Break 5

DIVi (30 ~ 40) + 4 • i 2 + Tad i = 0/4/12

for B/W/D
CASEi 7 2 + Tad Break 5

CBITi 10 2 <R>
ENTER 15 + 2 * n 3 n = number

of registers
saved.

14 2 + Tad <M> Break 0

CBITIi 18 2 + Tad <M>
Wait for pending writes. Break 0
Execute interlocked
RMWaccess. Break 5 EXIT 8 + 2· n 2 n = number

of registers
restored

EXTi 12 8 <R>
13 8 + Tad <M>

Break -3

EXSi 11 6 <R>
14 6 + Tad <M>

Break -3

2-100

Appendix D. Instruction Execution Times (Continued)

0.5.5.1 Basic and Memory Management Instructions (Continued)

Mnemonic Teu Tau Notes Mnemonic Teu
FFSi 11+3*i 2 + Tad i = number MOVSVi 9

of bytes

FLAG 4 2 No trap
32 2 Trap, Modular MOVUSi 11
21 2 Trap, Direct

If trap then:
(wait for
pending writes;
Break 5}

MOVXii 2

MOVZii 2

IBITi 10 2 <R> MULi 13 + 2 • i
14 2 + Tad <M> Break 0

INDEXi 43 5 + Tad 24
INSi 15 8 <R>

18 8 + Tad <M> NEGi 2
INSSi 14 6 <R>

19 6 + Tad <M>
NOP 2

NOTi 3
Break 0

JSR 3 9 + Tad Break 5

JUMP 3 4 + Tad Break 5

ORi 2

QUOi (30~40)

+ 4 * i
LMR 11 2 + Tad Wait for RDVAL 10

pending writes.
Break 5

LPRi 6 2 + Tad CPU Reg = FP,
SP, USP, SP, MOD.

REMi (32~42)

+ 4 * i

Tau

2 + Tad

2 + Tad

2 + Tad

2 + Tad

2 + Tad

2 + Tad

2 + Tad

2

2 + Tad

2 + Tad

2 + Tad

2 + Tad

2 + Tad

Break 0
5 2 + Tad CPU Reg = CFG, RESTORE 7+2*n 2

INTBASE, DSR,
BPC, UPSR.
Wait for pending
writes. RET 4 3
Break 5

7 2 + Tad CPU Reg = DCR,
PSR CAR. Wait for
pending writes.
Break 5

RETI 19 5
13 5
29 5
22 5

LSHi 3 2 + Tad

MEli 13 + 2 * i 5 + Tad i = 0/4/12
for B/W/D.
Break 0

RETT 14 5
8 5

MODi (34~49) 2 + Tad i = 0/4/12
+ 4 * i forBIWID

MOVi 2 2 + Tad

MOVMi 5 + 4 * n 2 + Tad n = number
of elements.
Break 0

ROTi 7 2 + Tad

RXP 8 5

MOVQi 2 2 + Tad SCONDi 3 2 + Tad

MOVSi n = number SAVE 8 + 2 * n 2

of elements.
12 + 4 * n 2 + Tad No options.
14 + 8 * n 2 + Tad B, W and lor U SBITi 10 2

Options in effect. 14 2 + Tad

Break 0

MOVST 16 + 9 * n 2 + Tad n = number
of elements.
Break 0

2-101

Notes

Wait for
pending writes.
Break 5

Wait for
pending writes.
Break 5

i = 0/4/12
for B/W/D.
General case.
If MULD and
0:::: SRC:::: 255

i = 0/4/12
for BIWID

Wait for
pending writes.
Break 5

i = 0/4/12
for BIWID

n = number
of registers
restored.
Break 0

Break 4

Noncascaded, Modular
Noncascaded, Direct
Cascaded, Modular
Cascaded, Direct

Wait for
pending writes.
Break 5

Modular
Direct

Wait for
pending writes.
Break 5

Break 5

n = number
of registers.
Break 0

<R>
<M>
Break 0

z en w
N
U1
W
N • N o
.......
Z en
w
N
U1
W
N • N
U1
.......
Z en
w
N
U1
W
~
W o

C) ,---,
C")

~ Appendix D. Instruction Execution Times (Continued)

~ 0.5.5.1 Basic and Memory Management Instructions (Continued)

~
Z
it)

'" N
C")
it)

'" C")

en z
C)

'" •
'" C")
II)

'" C")

en z

Mnemonic

SBITIi

SETCFG

SKPSi

SKPST

SMR

Teu Tau

10 2
18 2 + Tad

6 2

8 + 6· n 2 + Tad

6 + 20· n 2 + Tad

7 2 + Tad

Notes Mnemonic

<R> SPRi
<M>

Wait for pending SUBi
writes. Execute SUBCi
interlocked RMW
access. SUBPi

Break 5 SVC

Break 5

n = number of
elements.
Break 0

n = number of TBITi

elements.
Break 0 WAIT

Wait for
pending writes.
Break 5 WRVAL

XORi

2-102

Teu

5
3

2

2

6

32
21

8
11

3

10

2

Tau Notes

2 + Tad CPU Reg = PSR, CAR
2 + Tad CPU Reg = all others

2 + Tad

2 + Tad

2 + Tad

2 Modular
2 Direct

Wait for
pending writes.
Break 5

2 <R>
2 + Tad <M> Break 0

2 Wait for pending
writes. Wait
for interrupt

2 + Tad Wait for
pending writes.
Break 5

2 + Tad

Appendix D. Instruction Execution Times (Continued)

0.5.5.2 Floating-Point Instructions, CPU Portion

Mnemonic Tau Tau Ttcs Ttsc Group

MOVf, NEGf, 2 2 + Tanp 2 1 A
ABSf, SO RTf, 4 + 3 *1 2 + Tanp + Tad 2 1 A
LOGBf 6 + 3 *1 2 + Tanp 2 1 B

6 + 3 *1 2 + Tanp 2 1 B
11 + 4 *1 2 + Tanp + Tad 2 3 + 2 *1 B
13 + 7 * I 2 + Tanp + Tad 2 3 + 2 *1 B

ADDf, SUBf, 2 2 + Tanp 2 1 A
MULt,DIVf, 4 + 3 *1 2 + Tanp 2 1 A
SCALBf 6 + 3 *1 2 + Tanp 2 1 B

6 + 3 *1 2 + Tanp 2 1 B
17+7*1 2 + Tanp + Tad 2 3 + 2 *1 B
19+10*1 2 + Tanp + Tad 2 3 + 2 *1 B

ROUNDfl, TRUNCfi, 11 2 + Tanp 2 3 + 2 *1 B
FLOORfi 11+4*1 2 + Tanp + Tad 2 3 + 2 *1 B

13 2 + Tanp + Tad 2 3 + 2 *1 B
13 + 7 *1 2 + Tanp + Tad 2 3 + 2 *1 B

CMPf 18 2 + Tanp 2 B
20+3*1 2 + Tanp + Tad 2 B
23 + 3 *1 2 + Tanp + Tad 2 B
25 + 6 *1 2 + Tanp + Tad 2 B

POL Yf, DOTf, 2 2 + Tanp 2 1 A
MACf 4 + 3 *1 2 + Tanp + Tad 2 1 A

6 + 3 *1 2 + Tanp 2 1 B
11 + 4 *1 2 + Tanp + Tad 2 1 A

13 + 7 *1 2 + Tanp + Tad 2 1 B

MOVif 6 2 + Tanp 2 1 B
13 2 + Tanp + Tad 2 B
6 + 3 *1 2 + Tanp + Tad 2 1 B
13 + 7 * I 2 + Tanp + Tad 2 B

LFSR 6 2 + Tanp 2 1 B
6 + 3 *1 2 + Tanp + Tad 2 1 B
6 + 3 *1 2 + Tanp 2 1 B
6 + 3 *1 2 + Tanp 2 1 B

SFSR 11 2 + Tanp + Tad 2 3 B

MOVFL 4 2 + Tanp 2 1 B
6 2 + Tanp + Tad 2 1 B

15 2 + Tanp + Tad 2 B
17 2 + Tanp + Tad 2 B

MOVLF 4 2 + Tanp 2 1 B
9 2 + Tanp + Tad 2 1 B

15 2 + Tanp + Tad 2 B
20 2 + TanD + Tad 2 B

2-103

Notes

<FF>
<MF>
<IF>
<TF>
<FM> Break - (1 + I)
<MM>, <1M> Break - (1 + I)
<FF>
<MF>
<IF>
<TF>
<FM> Break - (1 + I)
<MM>, <1M> Break - (1 + I)

<FR> Break - 1
<FM> Break - (1 + I)
<MR>, < IR> Break - 1
<MM>, <1M> Break - (1 + I)

<FF>
<MF>
<FM>
<MM>, <1M>, <MI>, <II>

Break 3

<FF>
<MF>
<IF>, <TF>
<FM> Break - (1 + I)

<MM>, <MI>, <1M>, <II>
Break - (1 + I)
<RF>
<RM> Break - 1
<MF>, <IF>, <TF>
<MM>, <1M> Break - (1 + I)
<R>
<M>
<I>
<T>

Break - 1

<FF>
<MF>, <IF>, <TF>

<FM> Break 0
<MM>, <1M> Break 0

<FF>
<MF>, <IF>, <TF>

<FM> Break 0
<MM>, <1M> Break 0

z en
w
I\)
U1
W
I\) .
I\)
Q
.......
Z en w
I\)
U1
W
I\)
• I\)

U1 z en
w
I\)
U1 w
2! o

II) ,...
N
C")
C")
N
C")

rn z o ,...
• N

C")
C")
N
C")

rn
z

~National
~ Semiconductor

PRELIMINARY

NS32332-10/NS32332-15
32-Bit Advanced Microprocessors

General Description
The NS32332 is a 32-bit, virtual memory microprocessor
with 4 GByte addressing and an enhanced internal imple­
mentation. It is fully object code compatible with other Se­
ries 32000® microprocessors, and it has the added features
of 32-bit addressing, higher instruction execution through­
put, cache support, and expanded bus handling capabilities.
The new bus features include bus error and retry support,
dynamic bus sizing, burst mode memory accessing, and en­
hanced slave processor communication protocol. The high­
er clock frequency and added features of the NS32332 en­
able it to deliver 2 to 3 times the performance of the
NS32032.

The NS32332 microprocessor is designed to work with both
the 16- and 32-bit slave processors of the Series 32000
family.

Block Diagram

32

Features
• 32-bit architecture and implementation
• 4 Gbyte uniform addressing space
• Software compatible with the Series 32000 Family
• Powerful instruction set

- General 2-address capability
- Very high degree of symmetry
- Address modes optimized for high level languages

• Supports both 16- and 32-bit Slave Processor Protocol
- Memory management support via NS32082 or

NS32382
- Floating point support via NS32081 or NS32381

• Extensive bus feature
- Burst mode memory accessing
- Cache memory support
- Dynamic bus configuration (8-, 16-, 32-bits)
- Fast bus protocol

• High speed XMOSTM technology
• 84 Pin grid array package

ADD/DATA CONTROLS & STATUS

32-81T DATA
INTERNAL BUS

32

MICROCODE ROM
AND

CONTROL LOGIC

I
I
I
I
I
I

·Shaded areas indicate enhancements from the NS32032.

t&Wi IIII
CFG REGISTER

FIGURE 1

2-104

____ J

TL/EE/8673-1

Table of Contents
1.0 PRODUCT INTRODUCTION

1.1 NS32332 Key Features

2.0 ARCHITECTURAL DESCRIPTION

2.1 Programming Model

2.1.1 General Purpose Registers

2.1.2 Dedicated Registers

2.1.3 The Configuration Register (CFG)

2.1.4 Memory Organization

2.1.5 Dedicated Tables

2.2 Instruction Set

2.2.1 General Instruction Format

2.2.2 Addressing Modes

2.2.3 Instruction Set Summary

3.0 FUNCTIONAL DESCRIPTION

3.1 Power and Grounding

3.3 Clocking

3.3 Resetting

3.4 Bus Cycles

3.4.1 Cycle Extension

3.4.2 Burst Cycles

3.4.3 Bus Status

3.4.4 Data Access Sequences

3.4.4.1 Bit Accesses

3.4.4.2 Bit Field Accesses

3.4.4.3 Extending Multiple Accesses

3.4.5 Instruction Fetches

3.4.6 Interrupt Control Cycles

3.4.7 Dynamic Bus Configuration

3.4.8 Bus Exceptions

3.4.8.1 Bus Retry

3.4.8.2 Bus Error

3.4.8.3 Fatal Bus Error

3.4.9 Slave Processor Communication

3.4.9.1 Slave Processor Bus Cycles

3.4.9.2 Slave Operand Transfer Sequence

3.5 Memory Management Option

3.5.1 The FL T (Float) Pin

3.5.2 Aborting Bus Cycles

3.5.2.1 Instruction Abort

3.5.2.2 Hardware Considerations

2-105

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.6 Bus Access Control

3.7 Instruction Status

3.8 NS32332 Interrupt Structure

3.8.1 General Interrupt/Trap Sequence

3.8.2 Interrupt/Trap Return

3.8.3 Maskable Interrupts (The INT Pin)

3.8.3.1 Non-Vectored Mode

3.8.3.2 Vectored Mode: Non·Cascaded Case

3.8.3.3 Vectored Mode: Cascaded Case

3.8.4 Non-Maskable Interrupt (The NMI Pin)

3.8.5 Traps

3.8.6 Prioritization

3.8.7 Interrupt/Trap Sequences: Detailed Flow

3.8.7.1 MaskablelNon-Maskable Interrupt
Sequence

3.8.7.2 Trap Sequence: Traps Other than Trace

3.8.7.3 Trace Trap Sequence

3.8.7.4 Abort Sequence

3.9 Slave Processor Instructions

3.9.1 16-Bit Slave Processor Protocol

3.9.2 32-Bit Fast Slave Protocol

3.9.3 Floating Point Instructions

3.9.4 Memory Management Instructions

3.9.5 Custom Slave Instructions

4.0 DEVICE SPECIFICATIONS

4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input-Output Signals

4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics

4.4 Switching Characteristics

4.4.1 Definitions

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation
Delays

4.4.2.2 Clocking Requirements

4.4.2.3 Input Signal Requirements

4.4.3 Timing Diagrams

Appendix A: Instruction Formats

B: Interfacing Suggestions

z
en
eN
I\)
eN
eN
I\) .
-" o
z
en
eN
I\)
eN
eN
I\)

• -"
U1

it) • N
C")
C")
N
C")
en z
o • N
C")
C")
N
C")

en z

List of Illustrations

CPU Block Diagram .. 1

The General and Dedicated Registers .. 2-1
Processor Status Register .•.•..•........ 2-2
CFG Register .. 2-3

Module Descriptor Format ... 2-4
A Sample Link Table•..•........ 2-5

General Instruction Format ...•..•....... 2-6

Index Byte Format ... 2-7
Displacement Encodings .. 2-8

Recommended Supply Connections ...•.....................•........ 3-1
Clock Timing Relationships .. 3-2
Power-on Reset Requirements ... 3-3
General Reset Timing .. 3-4
Recommended Reset Connections, Non-Memory Managed System ... 3-5a
Recommended Reset Connections, Memory Managed System ... 3-5b
Read-cycle Timing ... 3-6
Write-cycle Timing ... 3-7
Bus Connections ... 3-8
RDY Pin Timing .. 3-9
Extended Cycle Example .. 3-10
Burst Cycles; Normal Termination of Burst .. 3-11 a
Burst Cycles; External Termination of Burst .. 3-11 b
BOUT Timing Resulting from a Bus Width Change ... 3-12
Memory Interface ... 3-13
Bus Width Changes ... 3-14
Bus Cycle Retry; Bus Cycle Not Retried ... 3-15a
Bus Cycle Retry; Bus Cycle Retried .. 3-15b
Bus Error During Read or Write Cycle .. 3-16
Slave Processor Connections .. 3-17
CPU Read from Slave Processor ..•..... 3-18
CPU Write to Slave Processor .. 3-19
Read (Write) Cycle with Address Translation .. 3-20
FL T Timing ... 3-21
HOLD Timing, Bus Initially Idle .. 3-22
HOLD Timing, Bus Initially Not Idle .. 3-23
ILOTiming ... 3-24
Non-Aligned Write Cycle-MC/EXS Timing•..................................... 3-25
Interrupt Dispatch Table ... 3-26
Interrupt/Trap Service Routine Calling Sequence ... 3-27
Return from Trap (REDn) Instruction Flow ... 3-28
Return from Interrupt (RETI) Instruction Flow ... 3-29
Service Sequence .. 3-30
Slave Processor Protocol•..•....... 3-31
Fast Slave Protocol ... 3-32
ID and Opcode Format for Fast Slave Protocol .. 3-33
Slave Processor Status Word Format .. 3-34

2-106

List of Illustrations (Continued)

Connection Diagram, Pin Grid Array Package•........••.....................•...•.•....•....•....••..•.•..... 4-1

Timing Specification Standard (Signal Valid After Clock Edge) "••.....•.•..•.•...•..•...••.•.•..•• 4-2
Timing Specification Standard (Signal Valid Before Clock Edge)••...•..••.....•.•....•..•..••..•••.•.•..•. 4-3
NS32332 Read Cycle Timing•...........................•...•..•........•.••.•.....•.....•.•.•..•. 4-4
NS32332 Write Cycle Timing•.............•.•......••..............••..•.......•.•.•.....•..•..•...•....•.. 4-5
NS32332 Burst Cycle Timing•......•.......................................•....•.•..•....•...•........•..• 4-6
External Termination of Burst Cycle .•......•..•..........••...................•........•.••.•..•..•..•.•.•....•.. 4-7

NS32332 Bus Retry During Normal Bus Cycle•••....•............••...•....•.•..••.•..•....•••..•.•.. 4-8
BRT Activated, but No Bus Retry•.....••.............••..................•........•.••.••.....•...•.•....•.. 4-9
Bus Retry During Burst Bus Cycle•.............•.......................•.....•.•.••.•..•..•••.••....•.•• 4-10
BRT Activated During Burst Bus Cycle, but No Bus Retry•...•....•.•..••.•..••...•.•..•.•. 4-11
Bus Error During Normal Bus Cycle •.............••.....•••.......•..........•.•••....•.•..•.•..••..••.•.•.•.•..• 4-12
Bus Error During Burst Bus Cycle .•..............•.......•.•..............••.•••.....•.•.•..•..•..•...••••••..•• 4-13

Timing of Interlocked Bus Transactions ...•.......•.....•.............. "••.......•.••.•..•..•..•.•••••..•• 4-14
Floating by HOLD Timing (CPU not Idle Initially) ...•.•.......•......................•....••••......•..••.•.•.•.••.• 4-15
Floating by HOLD Timing (Burst Cycle Ended by HOLD Assertion)•....•...•••....•.•••.....••.••..•.•....••.• 4-16
Floating by HOLD Timing (CPU Initially Idle)••.....•...................•..••.......•.•....•....••..••....... 4-17
Release from HOLD•............•........••.................•..•.....•.•..•.•.......•••..••.•..• 4-18
FLT Initiated Cycle Timing •................•....•........••.....•...............•.....••........•.•..•....•.•..• 4-19
Release from FL T Timing (CPU Write Cycle) ...•.•.••.•.......•...•.....•• 4-20
Slave Processor Write Timing••..........•.•......•..................•..•••.•.•.•.••.•.....•••.•.•.•.•.•• 4-21
Slave Processor Read Timing•............•.......•..•...........•......••..•....•.•..•.....••..•..••..•.. 4-22

DT /SDONE Timing (32-Bit Slave Protocol)••.....••..............••...•.•..•.....•...•...•.•....• 4-23
SPC Timing (16-Bit Slave Protocol)•..............•.....•......•...•..•......•..•.•.•...•.• 4-24
Clock Waveforms•..............•.........•..............•..•........•••.•....•..•..•.•.•..••.• 4-25
Relationship of i5"FS to Clock Cycles•.....•.•........•.....••........•.....••.....•.••.••.......•..•.•.•..• 4-26
Guaranteed Delay, PFS to Non-Sequential Fetch ..••........••....................••....••..•....•..•..•..•.•.•... 4-27
Guaranteed Delay, Non-Sequential Fetch to PFS ..••.......•••....•.•.•....••..•..••....••..•.•........••.•.•..... 4-28
Abort Timing, FL T Not Applied•......•..•.•.•........••..............•.•.•..•...•••.••......••.•.•..•.•..• 4-29
Abort Timing, FL T Applied•......................••.................•..•.•.•.•.•.•...•......•.•..•••..•. 4-30
Power-on Reset •................•.....•.......•..•....••.......•............•••.•.•.•.••.••......•.••••.•.... 4-31

Non-Power-on Reset•..............•.......••.....•••.•....••...••.•.....•.••..•......•.•..••..... 4-32
U/S Relationship to Any Bus Cycle, Guaranteed Valid Interval •......••.•....••....•.•...•.•.•....•....••.•.•.••.... 4-33
INT Interrupt Signal Detection•..........•..•........•......... "•••••••...•.••.•..•.•.•..• 4-34
NMllnterrupt Signal Timing •...............•........................••....•.....••...•.•.••..•......•••.••.•.•.• 4-35

System Connection Diagram (32332, 32081 & 32082) .. B-1
System Connection Diagram (32332, 32381 & 32382)•....•....•....•....•••.•...•.•....•.....••••••.•..... B-2

List of Tables

NS32332 Addressing Modes•......•......•......•...............••.•.....•.•.....•..•.....•.•..•••.•..• 2-1
Series 32000 Instruction Set Summary•...........•..........••....•.....••....••..•.•..•.. 2-2
Bus Access Types•........•...........••........•.....•..•....•.•..•..••.•.....•.••.•...•..•.•.•••.•. 3-1
Access Sequences•.......•......•........•....•.•.....•.••...•..•.....•.........••.••..•.•.••.•...... 3-2
Interrupt Sequences•........•..•..•............................•..•.....•....•.....•. '" ••.•.••.......• 3-3

2-107

z en
w
N
W
W
~
o
Z
~
N
W
W
N •
U1

Lt)
N
('f)
('f)
N
('f)
tJ)
Z
o
• N

('f)
('f)
N
('f)
tJ)
Z

1.0 Product Introduction
The Series 32000 Microprocessor family is a new genera­
tion of devices using National's XMOS and CMOS technolo­
gies. By combining state-of-the-art MOS technology with a
very advanced architectural design philosophy, this family
brings mainframe computer processing power to VLSI proc­
essors.

The Series 32000 family supports a variety of system con­
figurations, extending from a minimum low-cost system to a
powerful 4 gigabyte system. The architecture provides com­
plete upward compatibility from one family member to an­
other. The family consists of a selection of CPUs supported
by a set of peripherals and slave processors that provide
sophisticated interrupt and memory management facilities
as well as high-speed floating-point operations. The archi­
tectural features of the Series 32000 family are described
briefly below:

Powerful Addressing Modes. Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types. The architecture provides for numerous data
types, such as byte, word, doubleword, and BCD, which may
be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case
instructions that compilers can't use, the Series 32000 fami­
ly incorporates powerful instructions for control operations,
such as array indexing and external procedure calls, which
save considerable space and time for compiled code.

Memory-to-Memory Operations. The Series 32000 CPUs
represent two-address machines. This means that each op­
erand can be referenced by anyone of the addressing
modes provided. This powerful memory-to-memory archi­
tecture permits memory locations to be treated as registers
for all useful operations. This is important for temporary op­
erands as well as for context switching.

Memory Management. Either the NS32382 or the
NS32082 Memory Management Unit may be added to the
system to provide advanced operating system support func­
tions, including dynamiC address translation, virtual memory
management, and memory protection.

Large, Uniform Addressing. The NS32332 has 32-bit ad­
dress pointers that can address up to 4 gigabytes without
requiring any segmentation; this addressing scheme pro­
vides flexible memory management without added-on ex­
pense.

Modular Software Support. Any software package for the
Series 32000 family can be developed independent of all
other packages, without regard to individual addressing. In
addition, ROM code is totally relocatable and easy to ac­
cess, which allows a significant reduction in hardware and
software cost.

Software Processor Concept. The Series 32000 architec­
ture allows future expansions of the instruction set that can
be executed by special slave processors, acting as exten­
sions to the CPU. This concept of slave processors is
unique to the Series 32000 family. It allows software com­
patibility even for future components because the slave
hardware is transparent to the software. With future ad­
vances in semiconductor technology, the slaves can be
physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro­
vide three primary performance advantages and character­
istics:

2-108

• High-Level Language Support

• Easy Future Growth Path

• Application Flexibility

1.1 NS32332 KEY FEATURES

The NS32332 is a 32-bit CPU in the Series 32000 family. It
is totally software compatible with the NS32032, NS32016,
and NS32008 CPUs but with an enhanced internal imple­
mentation.

The NS32332 design goals were to achieve two to three
times the throughput of the NS32032 and to provide the full
32-bit addressing inherent in the architecture.

The basic approaches to higher throughput were: fewer
clock cycles per instruction, better bus use, and higher
clock frequency.

An examination of the block diagram of the NS32332 shows
it to be identical to that of the NS32032, except for en­
hanced bus interface control, a 20-byte (rather than 8-byte)
instruction prefetch queue, and special hardware in the ad­
dress unit. The new addressing hardware consists of a high­
speed ALU, a barrel shifter on one of its inputs, and an
address register. Of the throughput improvement not due to
increased clock frequency, about 15% is derived from the
new address unit hardware, 15% from the bus enhance­
ments, 10% from the larger prefetch queue, and 60% from
microcode improvements.

Other important aspects of the enhanced bus interface cir­
cuitry of the NS32332 are a burst access mode, designed to
work with nibble and static column RAMs, read and write
timing designed to support caches, and support for bus er­
ror processing.

An enhanced slave processor communication protocol is
designed to achieve improved performance with the
NS32382 MMU and NS32381 FPU, while still working di­
rectly with the previous NS32082 MMU and NS32081 FPU.

2.0 Architectural Description
2.1 PROGRAMMING MODEL

The Series 32000 architecture has 8 general purpose and 8
dedicated registers. All registers are 32 bits wide except the
STATUS and MODULE register. These two registers are
each 16 bits wide.

2.1.1 General Purpose Registers

There are eight registers for meeting high speed general
storage requirements, such as holding temporary variables
and addresses. The general purpose registers are free for
any use by the programmer. They are thirty-two bits in
length. If a general register is specified for an operand that
is eight or sixteen bits long, only the low part of the register
is used; the high part is not referenced or modified.

2.1.2 Dedicated Registers

The eight dedicated registers of the processor are assigned
specific functions.

PC: The PROGRAM COUNTER register is a pointer to the
first byte of the instruction currently being executed. The PC
is used to reference memory in the program section.

SPO, SP1: The SPO register points to the lowest address of
the last item stored on the INTERRUPT STACK. This stack
is normally used only by the operating system. It is used

2.0 Architectural Description (Continued)

GENERAL
DEDICATED

32
32

RO
PROGRAM COUNTER PC

R1
STATIC BASE 58

R2
FRAME POINTER FP

R3
USER STACK PTR. SP, }

SP R4
INTERRUPT STACK PTR. SPO

RS
INTERRUPT BASE INTBASE

PSR MOD RS

STATUS MODULE R7

TL EE/B673-2

FIGURE 2-1. The General and Dedicated Registers

primarily for storing temporary data, and holding return infor­
mation for operating system subroutines and interrupt and
trap service routines. The SP1 register points to the lowest
address of the last item stored on the USER STACK. This
stack is used by normal user programs to hold temporary
data and subroutine return information.

In this document, reference is made to the SP register. The
terms "SP register" or "SP" refer to either SPO or SP1,
depending on the setting of the S bit in the PSR register. If
the S bit in the PSR is 0 the SP refers to SPO. If the S bit in
the PSR is 1 then SP refers to SP1.

Stacks in the Series 32000 family grow downward in memo­
ry. A Push operation pre-decrements the Stack Pointer by
the operand length. A Pop operation post-increments the
Stack Pointer by the operand length.

FP: The FRAME POINTER register is used by a procedure
to access parameters and local variables on the stack. The
FP register is set up on procedure entry with the ENTER
instruction and restored on procedure termination with the
EXIT instruction.

The frame pointer holds the address in memory occupied by
the old contents of the frame pointer.

SB: The STATIC BASE register points to the global vari­
ables of a software module. This register is used to support
relocatable global variables for software modules. The SB
register holds the lowest address in memory occupied by
the global variables of a module.

INTBASE: The INTERRUPT BASE register holds the ad­
dress of the dispatch table for interrupts and traps (Sec.
3.8). The INTBASE register holds the lowest address in
memory occupied by the dispatch table.

MOD: The MODULE register holds the address of the mod­
ule descriptor of the currently executing software module.
The MOD register is sixteen bits long, therefore the module
table must be contained within the first 64K bytes of memo­
ry.

PSR: The PROCESSOR STATUS REGISTER (PSR) holds
the status codes for the microprocessor.

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all pro-

15 a 17 0
1XlXIXIXI,1 plsl U Nlz I FIXIXJ Lhlcl

TL/EE/B673-3

FIGURE 2-2. Processor Status Register

2-109

grams, but the high order eight bits are accessible only to
programs executing in Supervisor Mode.

e: The C bit indicates that a carry or borrow occurred
after an addition or subtraction instruction. It can be
used with the AD DC and SUBC instructions to perform
multiple-precision integer arithmetic calculations. It may
have a setting of 0 (no carry or borrow) or 1 (carry or
borrow).

T: The T bit causes program tracing. If this bit is a 1, a
TRC trap is executed after every instruction (Sec. 3.8.5).

L: The L bit is altered by comparison instructions. In a
comparison instruction the L bit is set to "1" if the sec­
ond operand is less than the first operand, when both
operands are interpreted as unsigned integers. Other­
wise, it is set to "0". In Floating Point comparisons, this
bit is always cleared.

F: The F bit is a general condition flag, which is altered
by many instructions (e.g., integer arithmetic instructions
use it to indicate overflow).

Z: The Z bit is altered by comparison instructions. In a
comparison instruction the Z bit is set to "1" if the sec­
ond operand is equal to the first operand; otherwise it is
set to "0",

N: The N bit is altered by comparison instructions. In a
comparison instruction the N bit is set to "1" if the sec­
ond operand is less than the first operand, when both
operands are interpreted as signed integers. Otherwise,
it is set to "0".

U: If the U bit is "1" no privileged instructions may be
executed. If the U bit is "0" then all instructions may be
executed. When U = 0 the processor is said to be in
Supervisor Mode; when U = 1 the processor is said to
be in User Mode. A User Mode program is restricted
from executing certain instructions and accessing cer­
tain registers which could interfere with the operating
system. For example, a User Mode program is prevent­
ed from changing the setting of the flag used to indicate
its own privilege mode. A Supervisor Mode program is
assumed to be a trusted part of the operating system,
hence it has no such restrictions.

S: The S bit specifies whether the SPO register or SP1
register is used as the stack pointer. The bit is automati­
cally cleared on interrupts and traps. It may have a set­
ting of 0 (use the SPO register) or 1 (use the SP1 regis­
ter).

z
(J)
W
N
W
W
N •
o
........
Z
(J)
W
N
W
W
N
U1

•

U) r---~ ,...
N
Cf)
Cf)

'" Cf)
U)
Z
....... o ,...
N
Cf)
Cf)

'" Cf)
U)
Z

2.0 Architectural Description (Continued)

P: The P bit prevents a TRC trap from occurring more
than once for an instruction (Sec. 3.8.5.). It may have a
setting of 0 (no trace pending) or 1 (trace pending).

I: If I = 1, then all interrupts will be accepted (Sec. 3.8.).
If I = 0, only the NMI interrupt is accepted. Trap en­
ables are not affected by this bit.

2.1.3 The Configuration Register (CFG)*
Within the Control section of the CPU is the CFG Register,
which declares the presence and type of external devices. It
is referenced by only one instruction, SETCFG, which is in­
tended to be executed only as part of system initialization
after reset. The format of the CFG Register is shown in
Figure 2-3.
·The NS32332 CPU has four new bits in the CFG Register, namely P, FC,
FM and FF.

7 0

P 1 FC 1 FM 1 FF 1 C 1 M 1 F I

FIGURE 2-3. CFG Register

The CFG I bit declares the presence of external interrupt
vectoring circuitry (specifically, the Interrupt Control Unit). If
the CFG I bit is set, interrupts requested through the INT pin
are "Vectored." If it is clear, these interrupts are "Non-Vec­
tored." See Sec. 3.8.

The F, M and C bits declare the presence of the FPU, MMU
and Custom Slave Processors. If these bits are not set, the
corresponding instructions are trapped as being undefined.

The FF, FM, FC bits define the Slave Communication Proto­
col to be used in FPU, MMU and Custom Slave instructions
(Sec. 3.4.9). If these bits are not set, the corresponding in­
structions will use the 16-bit protocol (32032 compatible). If
these bits are set, the corresponding instructions will use
the new (fast) 32-bit protocol.

The P bit improves the efficiency of the Write Validation
Buffer in the CPU. It is set If the Virtual Memory has page
size(s) larger than or equal to 4 Kbytes. It is reset otherwise.
In Systems where the MMU is not present, the P bit is not
used.

2.1.4 Memory Organization

The main memory is a uniform linear address space. Memo­
ry locations are numbered sequentially starting at zero and
ending at 232 - 1. The number specifying a memory location
is called an address. The contents of each memory location
is a byte consisting of eight bits. Unless otherwise noted,
diagrams in this document show data stored in memory with
the lowest address on the right and the highest address on
the left. Also, when data is shown vertically, the lowest ad­
dress is at the top of a diagram and the highest address at
the bottom of the diagram. When bits are numbered in a
diagram, the least significant bit is given the number zero,
and is shown at the right of the diagram. Bits are numbered
in increasing significance and toward the left.

01

A
Byte at Address A

Two contiguous bytes are called a word. Except where not­
ed (Sec. 2.2.1), the least significant byte of a word is stored
at the lower address, and the most significant byte of the
word is stored at the next higher address. In memory, the
address of a word is the address of its least significant byte,
and a word may start at any address.

2-110

115 MSB's 817 LSB's 01

A+1 A
Word at Address A

Two contiguous words are called a double word. Except
where noted (Sec. 2.2.1), the least significant word of a dou­
ble word is stored at the lowest address and the most signif­
icant word of the double word is stored at the address two
greater. In memory, the address of a double word is the
address of its least significant byte, and a double word may
start at any address.

31MSB!S\23 16\15 8\7 LSB's 01

A+3 A+2 A+1 A
Double Word at Address A

Although memory is addressed as bytes, it is actually orga­
nized as double-words. Note that access time to a word or a
double-word depends upon its address, e.g. double-words
that are aligned to start at addresses that are multiples of
four will be accessed more quickly than those not so
aligned. This also applies to words that cross a double-word
boundary.

2.1.5 Dedicated Tables

Two of the dedicated registers (MOD and INTBASE) serve
as pointers to dedicated tables In memory.

The INTBASE register points to the Interrupt Dispatch and
Cascade tables.

The MOD register contains a pointer into the Module Table,
whose entries are called Module Descriptors. A Module De­
scriptor contains four pointers. The MOD register contains
the address of the Module Descriptor for the currently run­
ning module. It is automatically up-dated by the Call Exter­
nal Procedure instructions (CXP and CXPD).

15 o
l MOD 1

I
"r-

~u 31

STATIC BASE

LINK TABLE ADDRESS

PROGRAM BASE

RESERVED

.... ..~

TL/EE/8673-4

FIGURE 2-4. Module Descriptor Format

The format of a Module Descriptor is shown in Figure 2-4.
The Static Base entry contains the address of static data
assigned to the running module. It is loaded into the CPU
Static Base register by the CXP and CXPD instructions. The
Program Base entry contains the address of the first byte of
instruction code in the module. Since a module may have
multiple entry points, the Program Base pointer serves only
as a reference to find them.

2.0 Architectural Description (Continued)

The Link Table Address points to the Link Table for the
currently running module. The Link Table provides the infor­
mation needed for:

1) Sharing variables between modules. Such variables are
accessed through the Link Table via the External ad­
dressing mode.

2) Transferring control from one module to another. This is
done via the Call External Procedure (CXP) instruction.

The format of a Link Table is given in Figure 2-5. A Link
Table Entry for an external variable contains the 32-bit ad­
dress of that variable. An entry for an external procedure
contains two 16-bit fields: Module and Offset. The Module
field contains the new MOD register contents for the mod­
ule being entered. The Offset field is an unsigned number
giving the position of the entry point relative to the new
module's Program Base pointer.

For further details of the functions of these tables, see the
Series 32000 Instruction Set Reference Manual.

-r'31 ENTRY

o

......

ABSOL.UTE ADDRESS

ABSOL.UTE ADDRESS

OFFSET I MODUL.E

0-1'

(VARIABL.E)

(VARIABL.E)

(PROCEDURE)

-...
TL/EE/BB73-5

FIGURE 2·5. A Sample Link Table

2.2 INSTRUCTION SET

2.2.1 General Instruction Format

Figure 2-6 shows the general format of a Series 32000 in­
struction. The Basic Instruction is one to three bytes long
and contains the Opcode and up to two 5-bit General Ad­
dressing Mode ("Gen") fields. Following the Basic Instruc­
tion field is a set of optional extensions, which may appear
depending on the instruction and the addressing modes se­
lected.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index­
ing. See Figure 2-7.

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select-

I' GEN. ADDR. MODE l REG. NO.
o I

TL/EE/B673-7

FIGURE 2·7. Index Byte Format

ed address modes. Each Disp/lmm field may contain one or
two displacements, or one immediate value. The size of a
Displacement field is encoded with the top bits of that field,
as shown in Figure 2-8, with the remaining bits interpreted
as a signed (two's complement) value. The size of an imme­
diate value is determined from the Opcode field. Both Dis­
placement and Immediate fields are stored most significant
byte first. Note that this is different from the memory repre­
sentation of data (Sec. 2.1.4).

Some instructions require additional, "implied" immediates
and/or displacements, apart from those associated with ad­
dressing modes. Any such extensions appear at the end of
the instruction, in the order that they appear within the list of
operands in the instruction definition (Sec. 2.2.3).

2.2.2 Addressing Modes

The CPU generally accesses an operand by calculating its
Effective Address based on information available when the
operand is to be accessed. The method to be used in per­
forming this calculation is specified by the programmer as
an "addressing mode."

Addressing modes are designed to optimally support high­
level language accesses to variables. In nearly all cases, a
variable access requires only one addressing mode, within
the instruction that acts upon that variable. Extraneous data
movement is therefore minimized.

Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight Gen­
eral Purpose Registers. In certain Slave Processor instruc­
tions, an auxiliary set of eight registers may be referenced
instead.

Register Relative: A General Purpose Register contains an
address to which is added a displacement value from the
instruction, yielding the Effective Address of the operand in
memory.

Memory Space. Identical to Register Relative above, ex­
cept that the register used is one of the dedicated registers
PC, SP, SB or FP. These registers point to data areas gen­
erally needed by high-level languages.

OPTIONAL. BASIC
EXTENSIONS INSTRUCTION

r~----------------~A~----------------~\(~-------~~

DISP2 DISP1 DISP21DISP1
I

I
IMPUED GEN I GEN INDEX INDEX I

DISP ADDR I ADDR OPCODE IMMEDIATE DISP BYTE BYTE I
OPERAND(S) MODE I MODE

A B
IMM IMM I

:
t , ~ j

TL/EE/B673-6

FIGURE 2-6. General Instruction Format

2-111

z en
w
N
W
W
N
o
z en
w
N
W
W
N •
U1

2.0 Architectural Description (Continued)

BYTE DISPLACEMENT: RANGE -64 TO +63

I' 0 SIGNED DISPLACEMENT
o 1

WORD DISPLACEMENT: RANGE -8192 TO + 8191

7

1
I
I

DOUBLE WORD DISPLACEMENT:
RANGE -(229-224) to +(229 -1)*

0

1 I
/-

~~~ 

TL/EE/B673-B 

FIGURE 2-8. Displacement Encodlngs 
"Note: The paHem "11100000" for the most significant byte of the dis­

placement Is reserved by National for future enhancements. 
Therefore, It should never be used by the user program. This 
causes the lower limit of the displacement range to be 
-(229-224) Instead of -229• 

Memory Relative: A pointer variable is found within the 
memory space pointed to by the SP, SB or FP register. A 
displacement is added to that pointer to generate the Effec­
tive Address of the operand. 

Immediate: The operand is encoded within the instruction. 
This addressing mode is not allowed if the operand is to be 
written. 

Absolute: The address of the operand is specified by a 
displacement field in the instruction. 

External: A pointer value is read from a specified entry of 
the current Link Table. To this pointer value is added a dis­
placement, yielding the Effective Address of the operand. 

2-112 

Top of Stack: The currently-selected Stack Pointer (SPO or 
SP1) specifies the location of the operand. The operand is 
pushed or popped, depending on whether it is written or 
read. 

Scaled Index: Although encoded as an addressing mode. 
Scaled Indexing is an option on any addressing mode ex­
cept Immediate or another Scaled Index. It has the effect of 
calculating an Effective Address, then multiplying any Gen­
eral Purpose Register by 1, 2, 4 or 8 and adding it into the 
total, yielding the final Effective Address of the operand. 

Table 2-1 is a brief summary of the addressing modes. For a 
complete description of their actions, see the Instruction Set 
Reference Manual. 

2.2.3 Instruction Set Summary 

Table 2-2 presents a brief description of the Series 32000 
instruction set. The Format column refers to the Instruction 
Format tables (Appendix A). The Instruction column gives 
the instruction as coded in assembly language, and the De­
scription column provides a short description of the function 
provided by that instruction. Further details of the exact op­
erations performed by each instruction may be found in the 
Instruction Set Reference Manual. 

Notations: 

i = Integer length suffix: B = Byte 

W = Word 

o = Double Word 

f = Floating Point length suffix: F = Standard Floating 

L = Long Floating 

gen = General operand. Any addressing mode can be 
specified. 

short = A 4-bit value encoded within the Basic Instruction 
(see Appendix A for encodings). 

imm = Implied immediate operand. An 8-bit value append­
ed after any addressing extensions. 

disp = Displacement (addressing constant): 8, 16 or 32 
bits. All three lengths legal. 

reg = Any General Purpose Register: RO-R? 

areg = Any Dedicated/Address Register: SP, SB, FP, 
MOD, INTBASE, PSR, US (bottom 8 PSR bits). 

mreg = Any Memory Management Status/Control Regis­
ter. 

creg = A Custom Slave Processor Register (Implementa­
tion Dependent). 

cond = Any condition code, encoded as a 4-bit field within 
the Basic Instruction (see Appendix A for encodings). 



z 
2.0 Architectural Description (Continued) 

en w 
N 
W w 

TABLE 2-1 N • 
NS32332 Addressing Modes 

.... 
0 ....... 
Z 

ENCODING MODE ASSEMBLER SYNTAX EFFECTIVE ADDRESS en w 
Register N w 
00000 Register 0 RO or FO None: Operand is in the specified w 

N 
00001 Register 1 R1 or F1 register • .... 
00010 Register 2 R20rF2 U1 

00011 Register 3 R3 or F3 
00100 Register 4 R40rF4 
00101 Register 5 R50rF5 
00110 RegisterS RSorFS 
00111 Register 7 R7 or F7 
Register Relative 
01000 Register 0 relative disp(RO) Disp + Register. 
01001 Register 1 relative disp(R1) 
01010 Register 2 relative disp(R2) 
01011 Register 3 relative disp(R3) 
01100 Register 4 relative disp(R4) 
01101 Register 5 relative disp(R5) 
01110 Register S relative disp(RS) 
01111 Register 7 relative disp(R7) 
Memory Relative 
10000 Frame memory relative disp2(disp1 (FP» Disp2 + Pointer; Pointer found at 
10001 Stack memory relative disp2(disp1 (SP» address Disp1 + Register. "SP" 
10010 Static memory relative disp2(disp1 (S8» is either SPO or SP1, as selected 

inPSR. 
Reserved 
10011 (Reserved for Future Use) 
Immediate 
10100 Immediate value None: Operand is input from 

instruction queue. 
Absolute 
10101 Absolute @disp Disp. 
External 
10110 External EXT (disp1) + disp2 Disp2 + Pointer; Pointer is found 

at Link Table Entry number Disp1. 
Top of Stack 
10111 Top of stack TOS Top of current stack, using either 

User or Interrupt Stack Pointer, 
as selected in PSR. Automatic 
Push/Pop included. 

Memory Space 
11000 Frame memory disp(FP) Disp + Register; "SP" is either 
11001 Stack memory disp(SP) SPO or SP1, as selected in PSR. 
11010 Static memory disp(S8) 
11011 Program memory *+disp 
Scaled Index 
11100 Index, bytes mode[Rn:8] EA (mode) + Rn. 
11101 Index, words mode[Rn:W] EA (mode) + 2 x Rn. 
11110 Index, double words mode[Rn:D] EA (mode) + 4 x Rn. 
11111 Index, quad words mode[Rn:Q] EA (mode) + 8 x Rn. 

'Mode' and 'n' are contained 
within the Index Byte. 
EA (mode) denotes the effective 
address generated using mode. 

2-113 



U) ~-----------------------------------------------------------------------------------, .... 
~ 2.0 Architectural Description (Continued) 
C") 

~ n~M 
~ Series 32000 Instruction Set Summary 

'" o .... 
N 
C") 
C") 
N 
C") 

en z 

MOVES 

Format Operation Operands 
4 MOVi gen,gen 
2 MOVQi short,gen 
7 MOVMi gen,gen,disp 
7 MOVZBW gen,gen 
7 MOVZiD gen,gen 
7 MOVXBW gen,gen 
7 MOVXiD gen,gen 
4 ADDR gen,gen 

INTEGER ARITHMETIC 

Format Operation Operands 

4 ADDI gen,gen 
2 ADDQi short,gen 
4 ADDCi gen,gen 
4 SUBi gen,gen 
4 SUBCi gen,gen 
6 NEGi gen,gen 
6 ABSi gen,gen 
7 MUll gen,gen 
7 QUOi gen,gen 
7 REMi gen,gen 
7 DIVi gen,gen 
7 MODi gen,gen 
7 MEIi gen,gen 
7 DEli gen,gen 

PACKED DECIMAL (BCD) ARITHMETIC 

Format Operation Operands 

6 ADDPi gen,gen 
6 SUBPi gen,gen 

INTEGER COMPARISON 

Format Operation Operands 

4 CMPi gen,gen 
2 CMPQi short,gen 
7 CMPMi gen,gen,disp 

LOGICAL AND BOOLEAN 

Format Operation Operands 

4 ANDi gen,gen 
4 ORi gen,gen 
4 BICi gen,gen 
4 XORi gen,gen 
6 COMi gen,gen 
6 NOTi gen,gen 
2 Scondi gen 

Description 
Move a value. 
Extend and move a signed 4-bit constant. 
Move Multiple: disp bytes (1 to 16). 
Move with zero extension. 
Move with zero extension. 
Move with sign extension. 
Move with sign extension. 
Move Effective Address. 

Description 

Add. 
Add signed 4-bit constant. 
Add with carry. 
Subtract. 
Subtract with carry (borrow). 
Negate (2's complement). 
Take absolute value. 
Multiply 
Divide, rounding toward zero. 
Remainder from QUO. 
Divide, rounding down. 
Remainder from DIV (Modulus). 
Multiply to Extended Integer. 
Divide Extended Integer. 

Description 

Add Packed. 
Subtract Packed. 

Description 

Compare. 
Compare to signed 4-bit constant. 
Compare Multiple: disp bytes (1 to 16). 

Description 

Logical AND. 
Logical OR. 
Clear selected bits. 
Logical Exclusive OR. 
Complement all bits. 
Boolean complement: LSB only. 
Save condition code (cond) as a Boolean variable of size i. 

2-114 



2.0 Architectural Description (Continued) 

SHIFTS 

Format Operation Operands Description 
6 LSHi gen,gen Logical Shift, left or right. 
6 ASHi gen,gen Arithmetic Shift, left or right. 
6 ROTi gen,gen Rotate, left or right. 

BITS 

Format Operation Operands Description 

4 TBITi gen,gen Test bit. 
6 SBITi gen,gen Test and set bit. 
6 SBITIi gen,gen Test and set bit, interlocked 
6 CBITi gen,gen Test and clear bit. 
6 CBITli gen,gen Test and clear bit, interlocked. 
6 IBITi gen,gen Test and invert bit. 
B FFSi gen,gen Find first set bit 

BIT FIELDS 

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records 
used in Pascal. "Extract" instructions read and align a bit field. "Insert" instructions write a bit field from an aligned 
source. 
Format Operation Operands Description 

B EXTi reg,gen,gen,disp Extract bit field (array oriented). 
B INSi reg,gen,gen,disp Insert bit field (array oriented). 
7 EXTSi gen,gen,imm,imm Extract bit field (short form). 
7 INSSi gen,gen,imm,imm Insert bit field (short form). 
B CVTP reg,gen,gen Convert to Bit Field Pointer. 

ARRAYS 

Format Operation Operands Description 

B CHECKi reg,gen,gen Index bounds check. 
B INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays. 

STRINGS 

String instructions assign specific functions to the Gen­
eral Purpose Registers: 

Options on all string instructions are: 

B (Backward): Decrement string pointers after each step 
rather than incrementing. R4 - Comparison Value 

R3 - Translation Table Pointer 

R2 - String 2 Pointer 

R1 - String 1 Pointer 

RD - Limit Count 

Format Operation 
5 MOVSi 

MOVST 

5 CMPSi 
CMPST 

5 SKPSi 
SKPST 

Operands 
options 
options 

options 
options 

options 
options 

U (Until match): End instruction if String 1 entry matches 
R4. 

W (While match): End instruction if String 1 entry does not 
match R4. 

All string instructions end when RD decrements to zero. 

Descriptions 
Move String 1 to String 2. 
Move string, translating bytes. 

Compare String 1 to String 2. 
Compare translating, String 1 bytes. 

Skip over String 1 entries 
Skip, translating bytes for Until/While. 

2-115 

z en 
w 
N 
W 
w 
N 
I .... 

<:) ...... 
Z en 
w 
N 
W 
w 
N 

I .... 
U1 



I.t) .... 
• 2.0 Architectural Description (Continued) N 

Cf) 
Cf) JUMPS AND LINKAGE 
N 

Format Operation Operands Description Cf) 

til 3 JUMP gen Jump. Z 
"- 0 BR disp Branch (PC Relative). 
0 .... 0 Bcond disp Conditional branch . . 
N 3 CASEi gen Multiway branch. 
Cf) 
Cf) 2 ACBi short,gen,disp Add 4-bit constant and branch if non-zero. 
N 3 JSR gen Jump to subroutine. Cf) 

til BSR disp Branch to subroutine. 
Z 

CXP disp Call external procedure. 
3 CXPD gen Call external procedure using descriptor. 

SVC Supervisor Call. 
FLAG Flag Trap. 
BPT Breakpoint Trap. 
ENTER [reg list] ,disp Save registers and allocate stack frame (Enter Procedure). 
EXIT [reg list] Restore registers and reclaim stack frame (Exit Procedure). 
RET disp Return from subroutine. 
RXP disp Return from external procedure call. 
RETT disp Return from trap. (Privileged) 
RETI Return from interrupt. (Privileged) 

CPU REGISTER MANIPULATION 
Format Operation Operands Description 

SAVE [reg list] Save General Purpose Registers. 
RESTORE [reg list] Restore General Purpose Registers. 

2 LPRi areg,gen Load Dedicated Register. (Privileged if PSR or INTBASE) 
2 SPRi areg,gen Store Dedicated Register. (Privileged if PSR or INTBASE) 
3 ADJSPi gen Adjust Stack Pointer. 
3 BISPSRi gen Set selected bits in PSR. (Privileged if not Byte length) 
3 BICPSRi gen Clear selected bits in PSR. (Privileged if not Byte length) 
5 SETCFG [option list] Set Configuration Register. (Privileged) 

FLOATING POINT 
Format Operation Operands Description 

11 MOVf gen,gen Move a Floating Point value. 
9 MOVLF gen,gen Move and shorten a Long value to Standard. 
9 MOVFL gen,gen Move and lengthen a Standard value to Long. 
9 MOVif gen,gen Convert any integer to Standard or Long Floating. 
9 ROUNDfi gen,gen Convert to integer by rounding. 
9 TRUNCfi gen,gen Convert to integer by truncating, toward zero. 
9 FLOORfi gen,gen Convert to largest integer less than or equal to value. 

11 ADDf gen,gen Add. 
11 SUBf gen,gen Subtract. 
11 MULf gen,gen Multiply. 
11 DIVf gen,gen Divide. 
11 CMPf gen,gen Compare. 
11 NEGf gen,gen Negate. 
11 ABSf gen,gen Take absolute value. 
12 POLYf gen,gen Polynomial Step. 
12 DOTf gen,gen Dot Product. 
12 SCALBf gen,gen Binary Scale. 
12 LOGBf gen,gen Binary Log. 
9 LFSR gen Load FSR. 
9 SFSR gen Store FSR. 

2-116 



z 
2.0 Architectural Description (Continued) 

en 
(,.) 
N 
(,.) 
(,.) 

MEMORY MANAGEMENT N • 
Format Operation Operands Description 

..... 
Q 
...... 

14 LMR mreg,gen Load Memory Management Register. (Privileged) Z 
14 SMR mreg,gen Store Memory Management Register. (Privileged) en 

(,.) 

14 RDVAL gen Validate address for reading. (Privileged) N 
(,.) 

14 WRVAL gen Validate address for writing. (Privileged) (,.) 
N 

8 MOVSUi gen,gen Move a value from Supervisor . ..... 
Space to User Space. (Privileged) c.n 

8 MOVUSi gen,gen Move a value from User Space 
to Supervisor Space. (Privileged) 

MISCELLANEOUS 

Format Operation Operands Description 

NOP No Operation. 
WAIT Wait for interrupt. 
DIA Diagnose. Single-byte "Branch to Self" for hardware 

breakpointing. Not for use in programming. 

CUSTOM SLAVE 

Format Operation Operands Description 

15.5 CCALOc gen,gen Custom Calculate. 
15.5 CCAL1c gen,gen 
15.5 CCAL2c gen,gen 
15.5 CCAL3c gen,gen 
15.5 CMOVOc gen,gen Custom Move. 
15.5 CMOV1c gen,gen 
15.5 CMOV2c gen,gen 
15.5 CMOV3c gen,gen 
15.5 CCMPOc gen,gen Custom Compare. 
15.5 CCMP1c gen,gen 
15.1 CCVOci gen,gen Custom Convert. 
15.1 CCV1ci gen,gen 
15.1 CCV2ci gen,gen 
15.1 CCV3ic gen,gen 
15.1 CCV4DQ gen,gen 
15.1 CCV5QD gen,gen 

15.1 LCSR gen Load Custom Status Register. 
15.1 SCSR gen Store Custom Status Register. 

15.0 CATSTO gen Custom Address/Test. (Privileged) 

II 15.0 CATST1 gen (Privileged) 

15.0 LCR creg,gen Load Custom Register. (Privileged) 
15.0 SCR creg,gen Store Custom Register. (Privileged) 

2-117 



Ln ,.... 
N 
C") 
C") 
('II 
C") 
U) 
Z ...... 
o ,.... 
• ('II 

C") 
C") 
('II 
C") 
U) 
Z 

3.0 Functional Description 
The following is a functional description of the NS32332 
CPU. 

3.1 POWER AND GROUNDING 

The NS32332 requires a single 5-volt power supply, applied 
on 7 pins. The Logic Voltage pins (VeeL 1 and VeeL2) sup­
ply the power to the on-chip logic. The Buffer Voltage pins 
(VeeB1 to VeeBS) supply the power to the output drivers of 
the chip. The Logic Voltage pins and the Buffer Voltage pins 
should be connected together by a power (Vee> plane on 
the printed circuit board. 

The NS32332 grounding connections are made on 8 pins. 
The Logic Ground pins (GNDL 1 and GNDL2) are the ground 
pins for the on-chip logic. The Buffer Ground pins (GNDB1 
to GNDB6) are the ground pins for the output drivers of the 
chip. The Logic Ground pins and the Buffer Ground pins 
should be connected together by a ground plane on the 
printed circuit board. 

In addition to Vee and Ground, the NS32332 CPU uses an 
internally-generated negative voltage. It is necessary to filter 
this voltage externally by attaching a pair of capacitors (Fig­
ur9 3. 1) from the BBG pin to Ground. 

Recommended values for these are: 

C1: 1 Il-F, Tantalum 

C2: 1000 pF, Low inductance. This should be either a disc 
or monolithic capacitor. 

VCCL1. VCCl2 

VCCII-VCCIS 

NS32332 

+5V 

C2 

TL/EE/B673-11 

FIGURE 3-1. Recommended Supply Connections 

3.2 CLOCKING 

The NS32332 inputs clocking signals from the Timing Con­
trol Unit (TCU), which presents two non-overlapping phases 
of a single clock frequency. These phases are called PHI1 
(pin A7) and PHI2 (pin B8). Their relationship to each other 
is shown in Figur9 3-2. 

Vce 

Each rising edge of PHI1 defines a transition in the timing 
state ("T-State") of the CPU. One T-State represents the 
execution of one microinstruction within the CPU, and/or 
one step of an external bus transfer. See Sec. 4 for com­
plete specifications of PHI1 and PHI2. 

PHil 

PHIZ 

TL/EE/B673-9 

FIGURE 3-2. Clock Timing Relationships 

As the TCU presents signals with very fast transitions, it is 
recommended that the conductors carrying PHI1 and PHI2 
be kept as short as possible, and that they not be connect­
ed anywhere except from the TCU to the CPU and, if pres­
ent, the MMU. A TIL Clock signal (CTIL) is provided by the 
TCU for all other clocking. 

3.3 RESETTING 

The RST / ABT pin serves both as a Reset for on-chip logic 
and as the Abort input for Memory-Managed systems. For 
its use as the Abort Command, see Sec. 3.5.2. 

The DT/Si5'Q'fiiE pin is sampled on the rising edge of PHI1, 
one cycle before the reset signal is deasserted to select the 
data timing during write cycles. If DT /SDONE is sampled 
high, ADO-AD31 are floated during state T2 and the data is 
output during state T3. This mode must be selected if an 
MMU is used (Section 3.5). If DT /SDONE is sampled low, 
the data is output during state T2. See Figure 3-7. 

The CPU may be reset at any time by pulling the RST / ABT 
pin low for at least 64 clock cycles. Upon detecting a reset, 
the CPU terminates instruction processing, resets its inter· 
nal logic, and clears the Program Counter (PC) and Proces­
sor Status Register (PSR) to all zeroes. 

On application of power, RST / ABT must be held low for at 
least 50 Il-sec after Vee is stable. This is to ensure that all 

PHll __ -+ __ ........ ~ 
I el4CLOCK r--- CYCLES 

m/m ---+--------.n .. .......I1 

t-----I:50I'MC ------<oo-! 

TL/EE/BB73-10 

FIGURE 3-3. Power·on Reset Requirements 

2-118 



3.0 Functional Description (Continued) 

on-chip voltages are completely stable before operation. 
Whenever a Reset is applied, it must also remain active for 
not less than 64 clock cycles. See Figures 3-3 and 3-4. 

The Timing Control Unit (TCU) provides circuitry to meet the 
Reset requirements of the NS32332 CPU. Figure 3-5a 
shows the recommended connections for a non-Memory­
Managed system. Figure 3-5b shows the connections for a 
Memory-Managed system. 

Vee 

,..------------, 

Teu 

TL/EE/B673-12 

FIGURE 3-4. General Reset Timing 

epu 

I I 

II ~ ~-+I--~~--~--~~~--------~ I JI I RSri RSTO I-------~~------~ RsT/ABr 
! : L _____________ .J 

EXTERNAL RESET 
(OpnONAL) 

RESET SWITCH 
(OPnONAL) 

SYSTEM RESET 

TLlEE/B673-13 

FIGURE 3-5a. Recommended Reset Connections, Non-Memory-Managed System 

Vee 
TCU MMU CPU 

,..------------ , 
I I 

I RESET I>--+I--+-..... --+----+~~---------I RSTI Rsro 
I : 
, I L _____________ .J 

EXTERNAL RESET 
(OPnONAL) 

RESET SWITCH 
(OPnONAL) 

<: SO 11 sec 

TLlEE/B673-14 

FIGURE 3-5b. Recommended Reset Connections, Memory-Managed System 

3.4 BUS CYCLES 

The NS32332 CPU will perform Bus cycles for one of the 
following reasons: 

1) To write or read data to or from memory or peripheral 
interface device. Peripheral input and output are memory 
mapped in the Series 32000 family. 

2) To fetch instructions into the 20-byte instruction queue. 
This happens whenever the bus would otherwise be idle 
and the queue is not already full. 

3) To acknowledge an interrupt and allow external circuitry 
to provide a vector number, or to acknowledge comple­
tion of an interrupt service routine. 

4) To transfer information to or from a Slave Processor. 

In terms of bus timing, cases 1 through 3 above are identi­
cal. For timing specifications, see Sec. 4. The only external 

2-119 

difference between them is the 4-bit code placed on the Bus 
Status pins (STO-ST3). Slave Processor cycles differ in that 
separate control signals are applied (Sec. 3.4.6). 

For case 1 (only Read) and case 2, the NS32332 supports 
Burst cycles which are suitable for memories that can han­
dle "nibble mode" accesses. (Sec. 3.4.2). 

The sequence of events in a non-Slave, non-Burst Bus cy­
cle is shown in Figure 3-6 for a Read cycle, and Figure 3-7 
for a Write cycle. The cases shown assume that the select­
ed memory or interface device is capable of communicating 
with the CPU at full speed. If it is not, then cycle extension 
may be requested through the ROY line (Sec. 3.4.1). 

A full speed Bus cycle is performed in four cycles of the 
PHI1 clock, labeled T1 through T4. Clock cycles not associ­
ated with a Bus cycle are designated Ti (for idle). 

z en w 
I\) 
w 
w 
I\) 

• ...&. 
o ...... 
Z en 
w 
I\) 
w 
w 
I\) 

• ...&. 

U1 

• 



3.0 Functional Description (Continued) 

NS32332 CPU BUS SIGNALS 

Tl T2 T3 T4 I T1 ORTi I 
PHil [ 

PHI 2 [ 

ADO·AD31 [ 

STS [ 

ADS [ 

5TI).5T3 [ ST~ US VALID NEXT STATUS 

ODIN [ 

iiEO.m [ 

BWO·BW1 [ 

ROY [ 

TLlEE/8673-15 

FIGURE 3·6. Read Cycle Timing 

2·120 



r--------------------------------------------------------------------. Z 

3.0 Functional Description (Continued) 

NS32332 CPU BUS SIGNALS 

T3 T4 

FIGURE 3·7. Write Cycle Timing 

2-121 

I T1 ORTI I 

TL/EE/8673-16 

en 
w 
N 
W 
W 
N • ..... 
o 
'" z en w 
N 
W 
W 
~ ..... 
CI1 

fII 



~ ,-------------------------------------------------------------------------------------------, .,.. . 
N 
C") 
C") 
N 
C") 

en z ....... 
o .,.. 
• N 

C") 
C") 
N 
C") 

en z 

3.0 Functional Description (Continued) 

During T 4 or Ti which preceed T1 of the current Bus cycle, 
the CPU applies a Status Code on pins STO-ST3. It also 
provides a low-going pulse on the STS pin to indicate that 
the status code is valid . 

The ADS signal has the dual purpose of informing the exter­
nal circuitry that a Bus cycle is starting and of providing 
control to an external latch for demultiplexing address bits 
0-31 from ADO-AD31 pins. (See Figure 3-8.) 

During this time, the control signal DDTN, which indicates 
the direction of the transfer, and BEO-BE3 which indicate 
which of the four bus bytes to be referenced, become valid. 
Note that during Instruction Fetch cycles BEO-BE3 are all 
active, but in operand Read or Write cycles they indicate the 
byte(s) to be referenced. 
Note: If a burst cycle occurs during an operand read, all the memory banks 

should be enabled, during the burst cycle, regardless of BEn. The 
CPU BEn lines, in this case, are valid in the middle of T3 of the burst 
cycle-thus, there may not be enough time to selectively enable the 
different memory banks, unless a WAIT state is added. See Figure 
4-6. 

During T2 the CPU floats ADO-AD31 lines unless 
DT ISDONE is sampled low on the rising edge of reset and 
the bus cycle is a write cycle. T2 is a time window to be 
used for virtual to physical address translation by the Memo­
ry Management Unit, if virtual memory is used in the system. 

The T3 state provides for access time requirements and it 
occurs at least once in a bus cycle. In the middle of T3 on 
the falling edge of PHI1, the ROY line is sampled to deter­
mine whether the bus cycle will be extended (Sec. 3.4.1). 

If the CPU is performing a Read cycle, the Data Bus (ADO­
AD31) is sampled on the falling edge of PHI2 of the last T3 
state. See Sec. 4. Data must, however, be held at least until 
the beginning of T 4. The T 4 state finishes the Bus cycle. 
Data from the CPU during Write cycles remains valid 
throughout T4. Note that the Bus Status lines (STO-ST3) 
change at the beginning of T 4, anticipating the following bus 
cycle (if any). 

3.4.1 Cycle Extension 

To allow sufficient strobe widths and access times for any 
speed of memory or peripheral device, the NS32332 pro­
vides for extension of a bus cycle. Any type of bus cycle 
except a Slave Processor cycle can be extended. 

In Figures 3-7 and 3-8, note that during T3 all bus control 
signals from the CPU and TCU are flat. Therefore, a bus 
cycle can be cleanly extended by causing the T3 state to be 
repeated. This is the purpose of the ROY (Ready) pin. 

In the middle of T3 on the falling edge of PHI1, the ROY line 
is sampled by the CPU. If ROY is high, the next T-state will 
be T 4, ending the bus cycle. If ROY is low, then another T3 
state will be inserted and the ROY line will again be sampled 
on the falling edge of PHI1. Each additional T3 state after 
the first is referred to as a "WAIT STATE". See Figure 3-9. 

Figure 3-10 illustrates a typical Read cycle, with two WAIT 
states requested through the ROY pin. 

ODIN ~------------~ 

ADO-AD31 

NS32332 

BEo-W L...-__ 

ADS 

AO 

TL/EE/B673-17 

FIGURE 3·8. Bus Connections 

2-122 



3.0 Functional Description (Continued) 

T1 T2 
T3 

(WAIT) T3 

PHI1 

PHI2 

ROY 

PREV.CYCLE 

PHI1 [ 

PHI2 [ 

IT4oRT'1 T1 

ADO·AD23 [ _-+ __ -¥ 

ST()'ST3 [ 

FIGURE 3·9. ROY Pin Timing 

NS32332 CPU BUS SIGNALS 

T2 I T3 I T3 I (WAIT) (WAIT) 

STATUS VALID 

T4 

TL/EE/8673-18 

NEXT CYCLE 

T3 T4 In OR TI I 

ODIN [ --r-----r-~--r-----r_----r_----r_--~~----~--~~ 
w·m [ _..-__ VALID 

ROY [ 

FIGURE 3·10. Extended Cycle Example 

2·123 

• 
TLlEE/6673-1 9 



U) r---------------------------------------------------------------------------------------, ,.... 
N 
C") 
C") 
C\I 
C") 

en z ...... 
o ,.... 
• C\I 

C") 
C") 
C\I 
C") 

en z 

3.0 Functional Description (Continued) 

3.4.2 Burst Cycles 

The NS32332 is capable of performing Burst cycles in order 
to increase the bus throughput. Burst is available in instruc­
tion Fetch cycles and operand Read cycles only. Burst is 
not supported in operand Write cycles or Slave cycles. 

The sequence of events for Burst cycles is shown in Figure 
3-". The cases shown assume that the selected memory is 
capable of communicating with the CPU at full speed. If it is 

T4 T1 T3 T4 

PHil [ 

PHI 2 [ 

m[ 

m[ 

mrr[ 

BfN[ 

ADD-AD3l [ -l' 

not, then cycle extension may be requested through the 
ROY line (Sec. 3.4.1). 

A Burst cycle is composed of two parts. The first part is a 
regular cycle (Le. T1 through T4), in which the CPU outputs 
the new status and asserts all the other relevant control 
signals discussed in Sec. 3.4. In addition, the Burst Out Sig­
nal (BOUT) is activated by the CPU indicating that the CPU 
can perform Burst cycles. If the selected memory allows 

T3 T4 T3 T4 T3 T4 

-¢- --¢----¢--
TLlEE/B673-20 

(a) Normal Termination of Burst 

T1 I T2ITmmu I T3 T4 T3 

PHil [ 

PHI 2 [ 

m[ 

mrr[ 

mn[ 

ADO-AD3l [-+ __ ....jjr '-_-1..1 

(b) External Termination of Burst 

FIGURE 3·11. Burst Cycles (For Read Only) 

2-124 

T4 I \T1orTi I 

TLlEE/B673-21 



3.0 Functional Description (Continued) 

Burst cycles, it will notify the CPU by activating the burst in 
signal (BIN). BIN is sampled by the CPU in the middle of T3 
on the falling edge of PHI1. If the memory does not allow 
burst (BIN high), the cycle will terminate through T4 and 
BOUT will go inactive immediately. If the memory allows 
burst (BIN low), and the CPU has not deasserted BOUT, the 
second part of the Burst cycle will be performed (see Figure 
3-11) and BOUT will remain active until termination of the 
Burst. 

The second part consists of up to 3 nibbles. In each nibble, 
a data item is read by the CPU. The duration of each nibble 
is 2 clock cycles labeled T3 and T 4. 

The Burst chain will be terminated in the following cases: 

1. The CPU has reached a 16 byte boundary Le. the byte 
address of the current nibble is x ... x1111 (binary). 

2. The CPU detects that the instructions being prefetched 
(in Burst Mode) are no longer needed due to an alteration 
of the flow of control. This happens, for example, when a 
branch instruction is executed or an exception occurs. 

Note: In 16-bit bus systems (see Sec. 3.4.7) the Burst chain will be terminat­
ed by the CPU on an B-byte boundary I.e. address x .. x111 (binary) and 
in B-bit bus system on a 4-byte boundary i.e. address x ... x11 (binary). 

T1 T2 T3 

ROY [ 

3. The data operand has been completely read. This applies 
to burst read cycles for non-aligned operands or when 
the bus width is either 8 or 16 bits. 

4. BIN, sampled in the current nibble's last T3, is not active 
any more. (See Figure 3. 11b). 

5. Bus Error or Bus Retry occurs (see Sec. 3.4.8). 

6. A HOLD Request occurs. 

Any nibble's T3 may be extended with WAIT states using 
the ROY line as described in Sec. 3.4.2. 

The control signals BOUT, STO-ST3, and ODIN remain sta­
ble during the Burst chain. 

BEO-BE3 are adjusted for every nibble in operand cycles. 

BOUT is initially set by the CPU according to the known bus 
width. Its state may change in a subsequent T3 as a result 
of a change in the bus width. Figure 3-12 shows the result­
ing BOUT timing. 
Note: If the selected memory is capable of handling burst transfers, it 

should activate BIN regardless of the state of BOUT. 

The reason is that BOUT may be activated by the CPU after the BIN 
sampling time. The BOOf signal indicates when the CPU is going to 
burst, and should not be interpreted as a 'Burst Request' signal. 

T3 T3 T4 

BWO-l [~ ________ -+ __ ~~ __ ~J'+-____ ~ __ ~ __ ~ ____ ~ __ -+ ________ ~ __ _ 

BIN [ 

(1) BOUT [ 

(2) BOUT [ 

Note 1: CPU de asserts BOOf. 
Note 2: CPU asserts BOOf. 

FIGURE 3-12. BOUT Timing Resulting from a Bus Width Change 

2-125 

TLlEE/8673-88 

z 
en w 
N 
W 
W 
N . ..... 
o ....... 
z 
en w 
N 
W 
W 
N • ..... 
(J1 



3.0 Functional Description (Continued) 
3.4.3 BUI Status 

The NS32332 CPU presents four bits of Bus Status informa­
tion on pins STO-ST3. The various combinations on these 
pins indicate why the CPU is performing a bus cycle, or, if it 
is Idle on the bus, then why is it idle. 
Referring to Figures 3-6 and 3-7, note that Bus Status leads 
the corresponding Bus Cycle, going valid one clock cycle 
before T1, and changing to the next state at T4. This allows 
the system designer to fully decode the Bus Status and, if 
desired, latch the decoded signals before Al5S initiates the 
Bus Cycle. 
The Bus Status pins are Interpreted as a four-bit value, with 
STO the least significant bit. Their values decode as follows: 

0000 - The bus Is idle because the CPU does not yet 
need to perform a bus access. 

0001 - The bus is Idle because the CPU Is executing the 
WAIT instruction. 

0010 - (Reserved for future use.) 
0011 - The bus is idle because the CPU is waiting for a 

Slave Processor to complete an instruction. 
0100 - Interrupt Acknowledge, Master. 

The CPU Is performing a Read cycle. To ac­
knowledge receipt of a Non-Maskable Interrupt 
(on FJm) it will read from address FFFFFF0016, 
but will ignore any data provided. 
To acknowledge receipt of a Maskable Interrupt 
(on 1m') It will read from address FFFFFE0016, 
expecting a vector number to be provided from 
the Master Interrupt Control Unit. If the vectoring 
mode selected by the last SETCFG instruction 
was Non-Vectored, then the CPU will Ignore the 
value it has read and will use a default vector 
instead. See Sec. 3.4.5. 

0101 - Interrupt Acknowledge, Cascaded. 
The CPU is reading a vector number from a Cas­
caded Interrupt Control Unit. The address provid-
ed is the address of ICU's Hardware Vector regis­
ter. See Sec. 3.4.6. 

0110 - End of Interrupt, Master. 
The CPU is performing a Read cycle to indicate 
that it is executing a Return from Interrupt (RETI) 
Instruction. See Sec. 3.4.6. 

0111 - End of Interrupt, Cascaded. 
The CPU Is reading from a Cascaded Interrupt 
Control Unit to indicate that it is returning 
(through RETI) from an interrupt service routine 
requested by that unit. See Sec. 3.4.6. 

2-126 

1000 - Sequential Instruction Fetch. 
The CPU is reading the next sequential word 
from the instruction stream into the Instruction 
Queue. It will do so whenever the bus would oth­
erwise be idle and the queue is not already full. 

1001 - Non-Sequential Instruction Fetch. 
The CPU is performing the first fetch of instruc­
tion code after the Instruction Queue is purged. 
This will occur as a result of any jump or branch, 
or any interrupt or trap, or execution of certain 
instructions. 

1010 - Data Transfer. 
The CPU is reading or writing an operand of an 
Instruction. 

1011 - Read RMW Operand. 
The CPU is reading an operand which will subse­
quently be modified and rewritten. If memory pro­
tection circuitry would not allow the following 
Write cycle, It must abort this cycle. 

1100 - Read for Effective Address Calculation. 
The CPU is reading information from memory in 
order to determine the Effective Address of an 
operand. This will occur whenever an instruction 
uses the Memory Relative or External addressing 
mode. 

1101 - Transfer Slave Processor Operand. 
The CPU is either transferring an instruction op­
erand to or from a Slave Processor, or it is issu­
ing the Operation Word of a Slave Processor In­
struction. See Sec. 3.9.1. 

1110 - Read Slave Processor Status. 
The CPU is reading a Status Word from a Slave 
Processor. This occurs after the Slave Processor 
has Signalled completion of an instruction. The 
transferred word tells the CPU whether a trap 
should be taken, and in some instructions it pre­
sents new values for the CPU Processor Status 
Register bits N, Z, L or F. See Sec. 3.9.1. 

1111 - Broadcast Slave 10. 

The CPU is initiating the execution of a Slave 
Processor instruction. The 10 Byte (first byte of 
the instruction) is sent to all Slave Processors, 
one of which will recognize it. From this point the 
CPU is communicating with only one Slave Proc­
essor. See Sec. 3.9.1. 



3.0 Functional Description (Continued) 

3.4.4 Data Access Sequences 

The 32-bit address provided by the NS32332 is a byte ad­
dress; that is, it uniquely identifies one of up to 4 billion 
eight-bit memory locations. An important feature of the 
NS32332 is that the presence of a 32-bit data bus imposes 
no restrictions on data alignment; any data item, regardless 
of size, may be placed starting at any memory address. The 
NS32332 provides special control signals. Byte Enable 
(BEO-BE3) which facilitate individual byte accessing on a 
32-bit bus. 

Memory is organized as four eight-bit banks, each bank re­
ceiving the double-word address (A2-A31) in parallel. One 
bank, connected to Data Bus pins ADO-AD7 is enabled 
when BEO is low. The second bank, connected to data bus 
pins AD8-AD15 is enabled when BE1 is low. The third and 
fourth banks are enabled by BE2 and BE3, respectively. 
See Figure 3-13. 

! ! ! 1 
8 BITS 8 BITS 8 BITS 8 BITS 

E) 

00-031 1,M .. ;M rDYTE1~ tBYT 
..011 113 .' 112 111 110 

~~V~,i,"1~r ... ::~j:::[,,:::,.,~}'~. ,:~.·~.i,::j~"::',:,'::rri:'~ 
E 

'I ... 
TLlEE/8673-22 

FIGURE 3-13. Memory Interface 

Since operands do not need to be aligned with respect to 
the double-word bus access performed by the CPU, a given 
double-word access can contain one, two, three, or four 
bytes of the operand being addressed, and these bytes can 
begin at various positions, as determined by A1, AO. Table 
3-1 lists the 10 resulting access types. 

TABLE 3-1 

Bus Access Types 
Type Bytes Accessed A1,AD BE3 BE2 BE1 BED 

1 1 00 1 1 a 
2 01 a 
3 10 a 
4 11 a 
5 2 00 1 a a 
6 2 01 1 a a 
7 2 10 a a 1 
8 3 00 a a a 
9 3 01 a a a 1 

10 4 00 a a a a 

2-127 

Accesses of operands requiring more than one bus cycle 
are performed sequentially, with no idle T-States separating 
them. The number of bus cycles required to transfer an op­
erand depends on its size and its alignment. Table 3-2 lists 
the bus cycles performed for each situation. 

3.4.4.1 Bit Accesses 

The Bit Instructions perform byte accesses to the byte con­
taining the designated bit. The Test and Set Bit instruction 
(SBIT), for example, reads a byte, alters it, and rewrites it, 
having changed the contents of one bit. 

3.4.4.2 Bit Field Accesses 

An access to a Bit Field in memory always generates a Dou­
ble-Word transfer at the address containing the least signifi­
cant bit of the field. The Double Word is read by an Extract 
instruction; an Insert instruction reads a Double Word, modi­
fies it, and rewrites it. 

3.4.4.3 Extending Multiple Accesses 

The Extending Multiply Instruction (MEl) will return a result 
which is twice the size in bytes of the operand it reads. If the 
multiplicand is in memory, the most-significant half of the 
result is written first (at the higher address), then the least­
significant half. This is done in order to support retry if this 
instruction is aborted. 

3.4.5 Instruction Fetches 

Instructions for the NS32332 CPU are "prefetched"; that is, 
they are input before being needed into the next available 
entry of the twenty-byte Instruction Queue. The CPU per­
forms two types of Instruction Fetch cycles: Sequential and 
Non-Sequential. These can be distinguished from each oth­
er by their differing status combinations on pins STO-ST3 
(Sec. 3.4.3). 

A Sequential Fetch will be performed by the CPU whenever 
the Data Bus would otherwise be idle and the Instruction 
Queue is not currently full. Sequential Fetches are always 
type 10 Read cycles (Table 3-1). 

A Non-Sequential Fetch occurs as a result of any break in 
the normally sequential flow of a program. Any jump or 
branch instruction, a trap or an interrupt will cause the next 
Instruction Fetch cycle to be Non-Sequential. In addition, 
certain instructions flush the instruction queue, causing the 
next instruction fetch to display Non-Sequential status. Only 
the first bus cycle after a break displays Non-Sequential 
status, and that cycle depends on the destination address. 

If a non-sequential fetch is followed by additional sequential 
fetches which are burst continuation of the non-sequential 
fetch, then the Status Bus (STO-ST3) remains tho same. 
Note 1: During instruction fetch cycles, BEO-BE3 are all activll regardless 

of the alignment. 

Note 2: During Operand Access cycles BEO-BE3 are activated as if the bus 
is 32 bits wide, regardless of the real width. 

3.4.6 Interrupt Control Cycles 

Activating the INT or NMI pin on the CPU will initiate one or 
more bus cycles whose purpose is interrupt control rather 
thaI') the transfer of instructions or data. Execution of the 
Return from Interrupt instruction (RETI) will also cause Inter­
rupt Control bus cycles. These differ from instruction or data 
transfers only in the status presented on pins STO-ST3. All 
Interrupt Control cycles are single-byte Read cycles. 

This section describes only the Interrupt Control sequences 
associated with each interrupt and with the return from its 
service routine. 

z en 
w 
I\) 
w 
w 
I\) 

• -­o ...... 
z en 
w 
I\) 
w w 
I\) 

• -­en 

• 



II) ..... • C\I 
C") 
C") 
C\I 
C") 
en z ...... o ..... • C\I 
C") 
C") 
C\I 
C") 
en z 

3.0 Functional Description (Continued) 

Cycle Type Address 

A. Word at address ending with 11 

1. 4 A 0 

2. A+1 

B. Double word at address ending with 01 

1. 9 A 0 
2. 1 A+3 

C. Double word at address ending with 10 

1. 7 A 0 
2. S A+2 

D. Double word at address ending with 11 

o 

0 

0 
1 

TABLE 3·2 

Access Sequences 

0 

0 1 
0 

1 
0 0 

r 
Byte 3 

Byte 0 
X 

Data Bus 
* , 

Byte 2 Byte 1 Byte 0 

I BYTE 11BYTEOI ~ A 

X X X 
X X Byte 1 

I BYTE 31 BYTE 21 BYTE 11BYTEOI ~ A 

Byte 2 Byte 1 Byte 0 X 
X X X Byte 3 

I BYTE 31 BYTE 21 BYTE 1 1 BYTE 01 ~ A 

Byte 1 Byte 0 X X 
X X Byte 3 Byte 2 

I BYTE 31 BYTE 21 BYTE 1 1 BYTE 01 ~ A 

Byte 0 X X X 1. 
2. 

4 
8 

A 
A+1 o 0 0 X Byte 3 Byte 2 Byte 1 

E. Quad word at address ending with 00 I BYTE 71 BYTE SIBYTE SIBYTE 41 BYTE 31 BYTE 21 BYTE 1 1 BYTE 0 1 ~ A 

1. 10 A o o o o Byte 3 Byte 2 Byte 1 Byte 0 

Other bus cycles (instruction prefetch or slave) can occur here. 
2. 10 A + 4 0 0 0 0 Byte 7 Byte S Byte S Byte 4 

F. Quad word at address ending with 01 I BYTE 71 BYTE SIBYTE SIBYTE 41 BYTE 31 BYTE 21 BYTE 1 1 BYTE 0 1 ~ A 

1. 
2. 

9 A 
A+3 

o o o 

Other bus cycles (instruction prefetch or slave) can occur here. 
o 

Byte 2 
X 

Byte 1 
X 

Byte 0 
X 

X 
Byte 3 

3. 9 A + 4 0 0 0 Byte S Byte S Byte 4 X 
4. A + 7 1 1 0 X X X Byte 7 

G. Quad word at address ending with 10 I BYTE 71 BYTE SIBYTE SIBYTE 41 BYTE 31 BYTE 21 BYTE 1 1 BYTE 0 1 ~ A 

1. 
2. 

7 
S 

A 
A+2 

o o 
o 

Other bus cycles (instruction prefetch or slave) can occur here. 

1 
o 

Byte 1 
X 

Byte 0 
X 

X 
Byte 3 

X 
Byte 2 

3. 7 A + 4 0 0 1 Byte S Byte 4 X X 
4. 5 A + S 0 0 X X Byte 7 Byte S 

H. Quad word at address ending with 11 I BYTE 71 BYTE SIBYTE SIBYTE 41 BYTE 31 BYTE 21 BYTE 1 1 BYTE 0 1 ~ A 

1. 4 A 0 1 1 Byte 0 X X X 
2. 8 A+1 0 0 0 X Byte 3 Byte 2 Byte 1 
Other bus cycles (instruction prefetch or slave) can occur here. 
1. 4 A+4 0 1 1 Byte 4 X X X 
2. 8 A+S 0 0 0 X Byte 7 ByteS ByteS 

X = Don't Care 

2-128 



3.0 Functional Description (Continued) 

TABLE 3-3 
Interrupt Sequences 

Data Bus 
r " \ 

Cycle Status Address ODIN BE3 BE2 BE1 BEO Byte 3 Byte 2 Byte 1 Byte 0 
A. Non-Maskablelnterrupt Control Sequences 

Interrupt Acknowledge 
1 0100 FFFFFF0016 0 0 X X X X 

Interrupt Return 
None: Performed through Return from Trap (RETT) instruction. 

B. Non- Vectored Interrupt Control Sequences 

Interrupt Acknowledge 
1 0100 FFFFFE0016 0 0 X X X X 

Interrupt Return 
1 0110 FFFFFE0016 0 0 X X X X 

C. Vectored Interrupt Sequences: Non-Cascaded. 

Interrupt Acknowledge 
1 0100 FFFFFE0016 0 0 X X X Vector: 

Range: 0-127 

Interrupt Return 
1 0110 FFFFFE0016 0 0 X X X Vector: Same as 

in Previous Int. 
Ack. Cycle 

D. Vectored Interrupt Sequences: Cascaded 

Interrupt Acknowledge 
1 0100 FFFFFE0016 0 0 X X X Cascade Index: 

range -16 to -1 

(The CPU here uses the Cascade Index to find the Cascade Address.) 
2 0101 Cascade 0 See Note 

Address 
Vector, range 9-255; on appropriate byte of 
data bus. 

Interrupt Return 
1 0110 FFFFFE0016 o 

(The CPU here uses the Cascade Index to find the Cascade Address) 
2 0111 Cascade 0 See Note 

Address 

X = Don't Care 

o X X 

X X 

X 

X 

Cascade Index: 
Same as in 
previous Int. 
Ack. Cycle 

X 

Note: BEO·BE3 signals will be activated according to the cascaded leu address. The cycle type can be 1, 2, 3 or 4, when reading the interrupt vector. The vector 
value can be in the range 0-255. 

2-129 

z 
en w 
N w w 
N . ..... 
0 
....... 
Z 
en w 
N w w 
N . ..... 
U1 



Lt) ..... • N 
C") 
C") 
N 
C") 
CJ) 
Z 

" o ..... • N 
C") 
Cf) 
N 
Cf) 
CJ) 
Z 

3.0 Functional Description (Continued) 

3.4.7 Dynamic Bus Configuration 

The NS32332 interfaces to external data buses with 3 differ­
ent widths: 8-bit, 16-bit and 32-bit. The NS32332 can switch 
from one bus width to another dynamically i.e. on a cycle by 
cycle basis. 

This feature allows the user to include in his system differ­
ent bus sizes for different purposes, like 8-bit bus for boot­
strap ROM and 32-bit bus for cache memory, etc. 

In each memory cycle, the bus width is determined by the 
inputs BWO and BW1. 

Four combinations exist: 

BW1 BWO 

0 0 reserved 
0 1 8-bitbus 
1 0 16-bit bus 
1 1 32-bit bus 

The dynamic bus configuration is not applicable for slave 
cycles (see Sec. 3.4.1). 

The BWO-BW1 lines are sampled by the CPU in T3 with the 
falling edge of PHI1 (see Figure 3-14). 

T4 T1 I T2/Tmmu I T3 

PHI 1 [ 

PHI2 [ 

m[ 

RDY [ 

awo-aW1 [ 

-.----~----~----~ 

T3 

If the bus width didn't change from the previous memory 
cycle, the CPU terminates the cycle normally. 

If the bus width of the current cycle is different from the bus 
width of the previous cycle, then two WAIT states (see Sec. 
3.4.1) must be inserted in order to let the CPU switch to the 
new width. 

The additional 2 WAIT states count from the moment BWO 
BW1 change. This can be overlapped with the wait states 
due to slow memories. 
Note: BWO-BW1 can only be changed during the first T3 state of a memory 

access cycle. They should be externally latched and should not be 
changed at any other time. 

In write cycles, the appropriate data will be present on the 
appropriate data lines. The CPU presents the data during T3 
in a way that would fit any bus width. 

If the operand being written is a byte, it will be duplicated on 
the 4 bytes ADO-AD31 depending on the operand address: 

Address AO-1 = 00 XX XX XX OP 
01 XX XX OP OP 
10 XX OP XX OP 
11 OP XX OP OP 

T3 14 T1 I T2/Tmmu I T3 

TL/EE/8673-23 

FIGURE 3-14. Bus width changes. Two walt states are required after the signals BWO-BW1 change. 

2-130 



3.0 Functional Description (Continued) 

If the operand being written is a word, 4 cases exist. The 
operand address can be x ... xOO (binary) or x ... x01 (binary) or 
x ... x10 or x ... x11 (binary). 

See the duplications for each case: 

OPERAND STARTS HERE 

11 10 

11 10 

'T---I OP I 
I HIGH .1. ___ 

A1 AD 11 10 

01 

01 

01 

01 

OP 
LOW 

00 

00 

00 

TL/EE/BB73-25 

OPERAND STARTS HERE 

OP 
LOW 1 

T- - - r--__ ---..--+--.., 
I OP 
I HIGH 2 

.1. ___ '--_-'-__ "--_ ...... _--1 

r--T---
I OP I OP 
I HIGH 2 I HIGH 1 

,J. __ .1 ___ ~_ ....... __ ..Io-__ "'--_.-I 

r--j--r---
I OP I OP I OP 
I HIGH 2 I HIGH 1 I LOW 2 .1 __ ..L __ .1 ___ ...... _-'--~ __ ....... _...a 

A1 AD 11 10 01 00 

TL/EE/BB73-2B 

If the operand being written is a double word 4 cases exist: 
The operand address can be x ... xOO (binary) or x ... x01 (bina· 
ry) or x ... x1 0 (binary) or x ... x11 (binary). 

See the duplications for each case: 

Note that the organization of the operand described applies 
to the initial part of the operand cycle. For instance, if the 

2·131 

CPU writes a double word operand to a 16·bit bus and the 
operand address is x ... x11 (binary) it needs three memory 
cycles. 

The description above applies to the first cycle. In the other 
2 memory cycles belonging to the same operand, the data 
will be presented on the data bus lines to fit 16·bit bus width 
and take into account the operand length. 

Example: 

The CPU has to writ~uble word DDCCBBAA to address 
HEX 987653 which is in a 16·bit bus area. In the first cycle, 
the CPU does not know the width until T3 so it generates a 
cycle to address 987653 which activates the BE3 line and 
puts on the data bus AA XX AA AA (X = don't care). After 
this cycle, the CPU knows it has a 16·bit bus and it gener· 
ates a cycle to address 987654 which activates the BEO, 
BE1 and BE2 lines and puts on the data bus XX XX CC BB. 
The last cycle will address 987656, activate BE2, and put on 
the data bus XX XX XX DD. The BEQ-BE3 lines are always 
activated as if the bus is 32·bit wide, regardless of BWQ­
BW1 state. 

The CPU does not support a change of the bus width during 
a sequence of several memory references belonging to the 
same operand e.g. nonaligned double word. In other words, 
any operand should not be split between two memory 
spaces having different bus widths . 

Instruction Fetches do not fall in this category and an In· 
struction Fetch can have its own bus width regardless of the 
bus width in the previous cycle. 

3.4.8 Bus Exceptions 

Any bus cycle may have a bus error during its execution. 
The error may be corrected during the current cycle or may 
be incorrectable. The NS32332 can handle both types of 
errors by means of BUS RETRY and BUS ERROR. 

3.4.8.1 Bus Retry 

If a bus error can be corrected, the CPU may be requested 
to repeat the erroneous bus cycle. The request is done by 
asserting the BRT (Bus Retry) signal. 

The CPU response to Bus Retry depends on the cycle type: 

Instruction Fetch Cycle-If the RETRY occurs during an 
instruction fetch, the fetch cycle will be retried as soon as 
possible. If the RETRY is requested during a burst chain, 
the burst is stopped and the fetch is retried. The only delay 
in retrying the instruction fetch may result from pending op· 
erand requests (and, of course, from hold or wait requests). 

The fetch cycle will be retried only if there are no more than 
four bytes in the queue . 

Operand Read Cycle-If the RETRY occurs on an operand 
read, the bus cycle is immediately repeated. If the data read 
is "multiple" e.g. non·aligned, only the problematic part will 
be repeated. For instance, if the cycle is a non·aligned dou· 
ble word and the second half failed, only the second part 
will be repeated. The same applies for a RETRY occurring 
during a burst chain. The repeated cycle will begin where 
the read operand failed (rather than the first address of the 
burst) and will finish the original burst. 

z en w 
N 
W 
W 
N • ..... 
Q 
....... 
Z en 
w 
N 
W 
W 
N • ..... 
U'I 



I.t) ,... 
• N 

C"') 
C"') 
N 
C"') 

en z 
....... o ,... 
• N 

C"') 
C"') 
N 
C"') 

en z 

3.0 Functional Description (Continued) 

Operand Write Cycle-If the RETRY occurs on a write, the 
bus cycle is immediately repeated. If the operand write is 
"multiple" e.g. non-aligned, only the problematic part will be 
repeated. For instance, if the cycle is a non-aligned double 
word and the second half failed, only the second part will be 
repeated. 

A Bus Retry is requested by activating the BRT line (see 
Figure 3-15). BRT is sampled by the CPU during T3 on the 
falling edge of PHI1. If BRT is inactive, the cycle will be 
terminated in a regular way. In this case BRT must also be 
kept inactive during T4. If BRT is active, BRT will be sam­
pled again during T4 on the falling edge of PHI1. If BRT is 
inactive, the cycle will be terminated in a regular way. If BRT 
is active, T 4 will be followed by an idle state and the 

cycle will be repeated, i.e. a new T 4 for setting the Status 
Bus and issuing STS and then T1 through T4 will be per­
formed. 

Although the decision about Retry is taken by the CPU on 
T4, BRT must have an early activation in T3 as described 
above in order to prevent the internal pipeline to advance. 
Holding the pipeline allows the repeated cycle to override 
the original one. If BRT is activated only in T3 and not in T 4, 
there might be one cycle penalty in the performance of the 
execution unit in operand read cycles. 

Retry is applicable for regular memory cycles and burst cy­
cles, but not for Slave cycles. 

T4 T1 I T2ITmmu I T3 T4 I TIORTl I 
PHil [ 

PHI2 [ 

ADS [ 

T4 

PHil [ 

PHI 2 [ 

(a) Bus Cycle Not Retried 

Tl I T2ITmmu I T3 T4 TI 

(b) Bus Cycle Retried 

FIGURE 3-15. Bus Cycle Retry 

2-132 

TLlEE/8673-27 

T4 T1 I T2ITmmu I 

TLlEE/8673-28 



3.0 Functional Description (Continued) 

3.4.8.2 Bus Error 

If a Bus Error is incorrectable the CPU may be requested to 
abort the current process and branch to an appropriate rou­
tine to handle the error. The request is performed by activat­
ing the BER signal. 

SER is sampled by the CPU during T4 on the falling edge of 
PHI1. If SER is active the bus will go to Tidle after T4 and 
the CPU will jump to the Bus Error handler (see Sec. 3.8). 

The CPU response to Bus Error depends on the cycle type: 

Instruction Fetch Cycles-If the bus error occurs on an 
instruction fetch, additional fetches are inhibited including 
the one which failed. If, after inhibiting instruction fetches, 
some operand cycles are still pending within the CPU, they 
are executed normally, delaying the access to the bus error 
exception. If and when the internal instruction queue be­
comes empty, the CPU will enter the BUS ERROR excep­
tion. This arrangement enables the CPU to ignore bus errors 
which belong to fetch ahead cycles if these fetches are not 
to be used as a result of a jump. 

Operand Read Cycles-If the bus error occurs on an oper­
and read, the bus error is immediately accepted, and the 
CPU enters the BUS ERROR exception. 

Operand Write Cycles-If the bus error occurs on an oper­
and write, the exception is immediately accepted. 
Note 1: When a bus error occurs, the instruction that caused the error is 

generally not re-executable. 

The process that was being executed should either be aborted or 
should be restarted from the last checkpoint. 

Note 2: Bus error has top priority and is accepted even during the acknowl­
edge sequence of another CPU exception (i.e. Abort, Interrupt, etc.). 

It is the responsibility of the user software to detect such an occur­
ence and to take the appropriate corrective actions. 

3.4.8.3 Fatal Bus Error 

As previously mentioned, the CPU response to a bus error is 
to interrupt the current activity and enter the error routine. 

An exception to this rule occurs when a bus error is sig­
nalled to the CPU during the acknowledge of a previous bus 
error. In this case the second error is interpreted by the CPU 
as a fatal bus error. 

The CPU will respond to this event by halting execution and 
floating ADS, SEO-BE3, ODIN, STS and ADO-AD31. 

The Halt condition is indicated by the setting of STO-ST3 to 
zero and by the assertion of MC/EXS for more than one 
clock cycle (see Sec. 4.1.3). 

The CPU can exit this condition only through a hardware 
reset. 

T4 11 I T2ITmmu I T3 T4 Ti TI 

PHil [ 

PHI 2 [ 

m[ 

m[ 

BEA[ 

TL/EE/8673-30 

FIGURE 3-16. Bus Error During Read or Write Cycle 

2-133 

z en 
w 
N 
W 
W 
N . .... 
o ...... 
z en w 
N 
W 
W 
N . .... 
U1 

FJI 



an 
""'" N 
C") 
C") 
N 
C") 
en z ...... 
o 
""'" • N 
C") 
C") 
N 
C") 

en z 

3.0 Functional Description (Continued) 

3.4.9 Slave Processor Communication 
The SPC pin is used as the data strobe for Slave Processor 
transfers. In this role, it is referred to as Slave Processor 
Control (SPC). In a Slave Processor bus cycle, data is trans­
ferred on the Data Bus and the status lines (STO-ST3) are 
monitored by each Slave Processor in order to determine 
the type of transfer being performed. SPC is bidirectional, 
but is driven by the CPU during all Slave Processor bus 
cycles. See Sec. 3.9 for full protocol sequences. 

PREV.CYCLE 

I T40rTI 

PHI1 [ 

PHIZ [ 

spc[ 

ADO·AD31 [ "'f""""~'""'-"'4.11 

STO-ST3 [ 

T1 

~ I\. 
A[»AD31 [»D31 

§PC 
~ v 

SPc 

NS32332 SLAVE 
CPU PROCESSOR 

STO-ST3 STO-ST3 

iiT/S'ii'ONE S'ii'ONE 

TL/EE/8673-31 

FIGURE 3-17. Slave Processor Connections 

NEXT CYCLE 

T4 T10RTI I 

Notes: TL/EE/8673-32 

(1) CPU samples Data Bus here. 

(2) Slave Processor samples CPU Status here. 

FIGURE 3-18. CPU Read from Slave Processor 

2-134 



3.0 Functional Description (Continued) 

3.4.9.1 Slave Processor Bus Cycles 

A Slave Processor bus cycle always takes exactly two clock 
cycles, labeled T1 and T 4 (see Figures 3-18 and 3-19). Dur­
ing a Read cycle, SPC is active from the beginning of T1 to 
the beginning of T 4, and the data is sampled at the end of 
T1. The Cycle Status pins lead the cycle by one clock peri­
od, and are sampled at the leading edge of SiSC. During a 
Write cycle, the CPU applies data and activates SPC at T1 , 
removing SPC at T 4. The Slave Processor latches status on 
the leading edge of SPC and latches data on the trailing 
edge. 

The CPU does not pulse the address (ADS) and status 
(STS) strobes during a slave protocol. The direction of a 
transfer is determined by the sequence ("protocol") estab­
lished by the Instruction under execution; but the CPU IndI­
cates the direction on the ODIN pin for hardware debugging 
purposes. 

3.4.9.2 Slave Operand Transfer Sequences 

A Slave Processor operand is transferred In one or more 
slave operand cycles. The NS32332 supports two slave 
protocols which can be selected by the configuration regis­
ter (CFG). 

PREV.CYCLE 

I T40RTI 

PHI1 [ 

ADO-AD31 [ 

STO-ST3 [ 

STS [ 

ADS [ 

DoiN [ 

Note: 

(1) Arrows indicate points at which the Slave Processor samples. 

T1 

1. The regular Slave protocol Is fully compatible with 
NS32032, NS32016 and NS3200B slave protocols. 

In this protocol the NS32332 uses only the two least sig­
nificant bytes of the data bus for slave cycles. This allows 
the NS32332 CPU to work with the current slaves (like 
NS320B2, NS320B1 etc.) 

A byte operand is transferred on the least significant byte 
of the data bus (ADO-AD15). 

A double word is transferred in a consecutive pair of bus 
cycles least significant word first. A quadword is trans­
ferred in two pairs of slave cycles. 

2. The fast slave protocol Is unique to the NS32332 CPU. In 
this protocol the NS32332 uses the full width of the data 
bus (ADO-AD31) for slave cycles. 

A byte operand Is transferred on the least significant byte 
of the data bus (ADO-AD7), a word operand Is trans­
ferred on bits ADO-AD15 and a double word operand is 
transferred on bits ADO-AD31. A quad word Is trans­
ferred in two pairs of slave cycles with other bus cycles 
possibly occurring between them. 

T4 

NEXT CYCLE 

T1 ORTI I 

Tl/EE/8673-33 

FIGURE 3-19. CPU Write to Slave Processor 

2-135 

z en 
w 
N 
W 
W 
N • ...... 
o ....... 
z en w 
N 
W 
W 
N • ...... 
U1 



U) r---------------------------------------------------------------------------------------, ,... . 
N 
C") 
C") 
N 
C") 

en z ...... 
o ,... 
• N 

C") 
C") 
N 
C") 
en z 

3.0 Functional Description (Continued) 

3.5 MEMORY MANAGEMENT OPTION 

The NS32332 CPU, in conjunction with the Memory Man­
agement Unit (MMU), provides full support for address 
translation, memory protection, and memory allocation 
techniques up to and including Virtual Memory. 

When an MMU is used, the states T2 and TMMU are over­
lapped. During this time the CPU places ADO-AD31 into the 
TRI-STATE mode, allowing the MMU to assert the translat­
ed address and issue the physical address strobe PAV. Fig­
ure 3-20 shows the Bus Cycle timing with address transla­
tion. 
Note 1: If an NS32382 MMU is used, the CPU can be selected to output 

data during write cycles in state T2, by forcing DT/SDONE low dur­
ing reset. This can be done because the NS32382 uses a separate 
physical address bus. 

However, if a write cycle causes an MMU page table lookup, the 
CPU data will be valid in state T3. After FL T is deasserted, regard­
less of the data timing selected. 

DT/SDONE must always be forced high during reset if an NS32082 
MMU is used since, in this case. no separate physical address bus 
is provided. 

Note 2: If an NS32082 MMU is used, in order for it to operate properly, it 
must be set to the 32-Bit mode by forcing a A24IHBF low during 
reset. In this mode the bus lines AD16-AD24 are floated after the 
MMU address has been latched, since they are used by the CPU to 
transfer data. 

3.5.1 The FL T (Float) Pin 

The FL T Signal is used by the CPU for address translation 
support. Activating FL T during Tmmu causes the CPU to 
wait longer than Tmmu for address translation and valida­
tion. This feature is used occasionally by the MMU in order 
to update its Translation Lookaside Buffer (TLB) from page 
tables in memory, or to update certain status bits within 
them. 

Figure 3-21 shows the effect of FL T. Upon sampling FL T 
low, late in Tmmu, the CPU enters idle T-States (Tf) during 
which it: 

1) Sets ADO-AD31, and DDIN to the TRI-STATE condition 
("floating"). 

2) Suspends further internal processing of the current in­
struction. This ensures that the current instruction re­
mains abortable with retry. (See RST / ABT description.) 

The above conditions remain in effect until FL T again goes 
high. See Sec. 4. 

3.5.2 Aborting Bus Cycles 

The RST / ABT pin, apart from its Reset function (Sec. 3.3), 
also serves as the means to "abort", or cancel, a bus cycle 
and the instruction, if any, which initiated it. An Abort re­
quest is distinguished from a Reset in that the RST / ABT pin 
is held active for only one clock cycle. 

If RST / ABT is pulled low during Tmmu or Tf, this Signals 
that the cycle must be aborted. Since it is the MMU PAV 
signal which triggers a physical cycle, the rest of the system 
remains unaware that a cycle was started. 

The MMU will abort a bus cycle for either of two reasons: 

1) The CPU is attempting to access a virtual address which 
is not currently resident in physical memory. The refer­
enced page must be brought into physical memory from 
mass storage to make it accessible to the CPU. 

2) The CPU is attempting to perform an access which is not 
allowed by the protection level assigned to that page. 

2-136 

When a bus cycle is aborted by the MMU, the instruction 
that caused it to occur is also aborted in such a manner that 
it is guaranteed re-executable later. 
Note: To guarantee correct instruction reexecution, Bit M In the CFG Regis­

ter must be set. 
T1 T2fTmmu T3 T4 T1 OR TI 

PHil [ 

PHIZ [ 

AOO-A031 [ 

BEO-BE3 [ 
~ ____ ~ __ ~~ __ ~-J 

ROY [ -+ ___ +-_.1 

Ali [ 

TLlEE/8673-87 

FIGURE 3-20. Read (Write) Cycle with 
Address Translation 

3.5.2.1 Instruction Abort 

Upon aborting an instruction, the CPU immediately inter­
rupts the instruction and performs an abort acknowledge 
using the ABT vector in the Interrupt Table (see Sec. 3.8). 
The Return Address pushed on the Interrupt Stack is the 
address of the aborted instruction, so that a Return from 
Trap (RETT) instruction will automatically retry it. 

The one exception to this sequence occurs if the aborted 
bus cycle was an instruction prefetch. If so, it is not yet 
certain that the aborted prefetched code is to be executed. 
Instead of causing an interrupt, the CPU only aborts the bus 
cycle, and stops prefetching. If the information in the In­
struction Queue runs out, meaning that the instruction will 
actually be executed, the Abort will occur, in effect aborting 
the instruction that was being fetched. 

3.5.2.2 Hardware Considerations 

In order to guarantee instruction retry, certain rules must be 
followed in applying an Abort to the CPU. These rules are 
followed by the Memory Management Unit. 

1) If FL T has not been applied to the CPU, the Abort pulse 
must occur during Tmmu. 



3.0 Functional Description (Continued) 

2) If FLT has been applied to the CPU, the Abort pulse must 
be applied before the T-State in which FLT goes inactive. 
The CPU will not actually respond to the Abort command 
until FIT is removed. 

3) The Write half of a Read-Modify-Write operand access 
may not be aborted. The CPU guarantees that this will 
never be necessary for Memory Management functions 
by applying a special RMW status (Status Code 1011) 
during the Read half of the access. When the CPU pres­
ents RMW status, that cycle must be aborted if it would 
be illegal to write to any of the accessed addresses. 

11 I nIT .. , I Tf 

PHI1 [ 

PHI2 [ 

ADO-AD31· [ 

ADS [ 

FLT [ 

5TO-5T3 [ VALID 

If RST / ABT is pulsed at any time other than as indicated 
above, it will abort either the instruction currently under exe­
cution or the next instruction and will act as a very high-pri­
ority interrupt. However, the program that was running at the 
time is not guaranteed recoverable. 

3.6 BUS ACCESS CONTROL 
The NS32332 CPU has the capability of relinquishing its 
access to the bus upon request from a DMA device or an­
other CPU. This capability is implemented on the HOLD 
(Hold Request) and HLDA (Hold Acknowledge) pins. By as­
serting HOLD low, an external device requests access to 
the bus. On receipt of HLDA from the CPU, the device may 
perform bus cycles, as the CPU at this pOint has set the 

Tf · · · I TI I T3 I 

r--fl-fL-f 

VALID 

ODIN [ VALID ---- ---- ---ff- VALID 

BEQ.BE3 [ VALID 

'See MMU data sheet for details on physical address timing and MMU initiated Bus cycles. TL/EE/8673-34 

FIGURE 3-21. FLT Timing 

2-137 

z 
en w 
N 
W 
W 
N 
I ..... 
o ...... 
z 
en w 
N 
W 
W 
N 
I ..... 

en 



U) r---------------------------------------------------------------------------------------, ,.... 
~ 
Cf) 
Cf) 
N 
Cf) 
en z ...... 
o ,.... 
• N 

Cf) 
Cf) 
N 
Cf) 

en z 

3.0 Functional Description (Continued) 

ADO-AD31, ADS, 5TS, ODIN and BEO-BE3 pins to the 
TRI-STATE condition. To return control of the bus to the 
CPU, the device sets HOLD inactive, and the CPU acknowl­
edges return of the bus by setting HLDA inactive. 

How quickly the CPU releases the bus depends on whether 
it is idle on the bus at the time the HOLD request is made, 
as the CPU must always complete the current bus cycle. 
Figure 3-22 shows the timing sequence when the CPU is 
idle. In this case, the CPU grants the bus during the immedi­
ately following clock cycle. Figure 3-23 shows the sequence 
if the CPU is using the bus at the time that the HOLD re-

quest is made. If the request is made during or before the 
clock cycle shown (two clock cycles before T4), the CPU 
will release the bus during the clock cycle following T 4. If 
the request occurs closer to T 4, the CPU may already have 
decided to initiate another bus cycle. In that case it will not 
grant the bus until after the next T4 state. Note that this 
situation will also occur if the CPU is idle on the bus but has 
initiated a bus cycle internally. 

In a Memory-Managed system, the HLDA signal is connect­
ed in a daisy-chain through the MMU, so that the MMU can 
release the bus ifit is using it. 

[ h" ~" ~'''I 
PHI1 J U U 

TI TI 

PHIZ [ 

HtDA[ 
AFFECTED SIGNAL.S 

-i~ ----

Aoi[ 

-.~~-- -----

BED-iii [ -+ ___ -+ ___ -+..J 

TLlEE/8673-35 

FIGURE 3-22. HOLD Timing, Bus Initially Idle 

2-138 



3.0 Functional Description (Continued) 

3.7 INSTRUCTION STATUS 

In addition to the four bits of Bus Cycle status (STO-ST3), 
the NS32332 CPU also presents Instruction Status informa­
tion on four separate pins. These pins differ from STO-ST3 
in that they are synchronous to the CPU's internal instruc­
tion execution section rather than to its bus interface sec­
tion. 

PFS (Program Flow Status) is pulsed low as each instruction 
begins execution. It is intended for debugging purposes. 

U/S originates from the U bit of the Processor Status Regis­
ter, and indicates whether the CPU Is currently running in 
User or Supervisor mode. It is sampled by the MMU for 

T3 T4 TI 

PHI1[ 

PHI2 [ 

HOLD [ 

HLoi[ 

DffiN[-+ ____________ ~-----__ -----~---------------~ 

BEo-m [ -+ ____________ -+-_______________ -+-_________ +' 

mapping, protection, and debugging purposes. U/S line Is 
updated every T 4. 

iTI5 (Interlocked Operation) is activated during an SBITI (Set 
Bit, Interlocked) or CBITI (Clear Bit, Interlocked) instruction. 
It Is made available to external bus arbitration circuitry in 
order to allow these instructions to implement the sema­
phore primitive operations for multi-processor communica­
tion and resource sharing. 

While iIO is active, the CPU inhibits instruction fetches. In 
order to prevent MMU cycles during i[O, the CPU executes 
a dummy Read cycle with status code 1011 (RMW) prior to 
activating iTI5. Thereafter, iTI5 is activated and the Read is 
performed again but with status code 1010 (operand trans­
fer). Refer to Figure 3-24. 

TI TI 

-- ir-- ----

STO-ST3 [ -t--------------+------------_t_' 

TUEE/8673-36 

FIGURE 3·23. HOLD Timing, Bus Initially Not Idle 

2·139 



in ,... 
I 

N 
('f) 
('f) 
N 
('f) 
tJ) 
Z 
........ 
o ,... 

I 
N 
('f) 
('f) 
N 
('f) 
tJ) 
Z 

3.0 Functional Description (Continued) 

MC/EXS (Multiple Cycle/Exception Status) is activated dur­
ing the access of the first part of an operand that crosses a 
double-word address boundary. The activation of this signal 
is independent of the selected bus width. Its timing is shown 
in Figure 3-25. The MMU or other external circuitry can use 
it as an early indication of a CPU access to an operand that 
crosses a page boundary. 

T4 T1 I T2ITmmu I T3 T4 TI 

PHI 1 [ 

PHI 2 [ 

STS [ 

ADS [ 

ODIN [ 

TEO [ 

MC/EXS is also activated during the first non-sequential in­
struction fetch (status code 1001) following an abort, and 
when the CPU enters the idle state (Status Code 0000) fol­
lowing a fatal bus error . 

TI T1 I T2/Tmmu I T3 T4 TI 

TL/EE/6673-37 

FIGURE 3-24. ILO Timing 

T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 

PHI1 [ 

PHI2 [ 

SECOND HALF 

I 
TL/EE/6673-36 

FIGURE 3-25. Non-aligned Write Cycle-MC/EXS Timing 

2-140 



3.0 Functional Description (Continued) 

3.8 NS32332 INTERRUPT STRUCTURE 

INT, on which maskable interrupts may be requested, 

NMI, on which non-maskable interrupts may be request­
ed, and 

RST / ABT, which may be used to abort a bus cycle and 
any associated instruction. See Sec. 3.5.2. 

In addition there is a set of internally-generated "traps" 
which cause interrupt service to be performed as a result 
either of exceptional conditions (e.g., attempted division by 
zero) or of specific instructions whose purpose is to cause a 
trap to occur (e.g., the Supervisor Call instruction). 

3.8.1 GenerallnterruptlTrap Sequence 

Upon receipt of an interrupt or trap request, the CPU goes 
through three major steps: 

1) Adjustment of Registers. 

Depending on the source of the interrupt or trap, the CPU 
may restore and/or adjust the contents of the Program 

1',.... 
MEMORY ~ 

I'I-J 

/ CASCADE AD DR 0 

· CASCADE TABLE ; ~ • ~~ 

il'NTERRUPT BAS~ 
• 

CASCADE ADDR 14 

CASCADE ADDR 15 

REGISTER I ~ FIXED INTERRUPTS 
AND TRAPS 

Counter (PC), the Processor Status Register (PSR) and 
the currently-selected Stack Pointer (SP). A copy of the 
PSR is made, and the PSR is then set to reflect Supervi­
sor Mode and selection of the Interrupt Stack. 

2) Vector Acquisition. 

A Vector is either obtained from the Data Bus or is sup­
plied by default. 

3) Service Call. 

The Vector is used as an index into the Interrupt Dispatch 
Table, whose base address is taken from the CPU Inter­
rupt Base (lNTBASE) Register. See Figure 3-26. A 32-bit 
External Procedure Descriptor is read from the table en­
try, and an External Procedure Call is performed using it. 
The MOD Register (16 bits) and Program Counter (32 
bits) are pushed on the Interrupt Stack. 

1"'31 0'" 
0 NVI NON-VECTORED INTERRUPT 

1 NMI NON-MASKABLE INTERRUPT 

2 ABT ABORT 

3 SLAVE SLAVE PROCESSOR TRAP 

4 ILL ILLEGAL OPERATION TRAP 

5 SVC SUPERVISOR CALL TRAP 

1 VECTORED i DISPATCH TABLE 
6 DVZ DIVIDE BY ZERO TRAP 

:r INTERRUPTS I 7 FLG FLAG TRAP 

8 BPT BREAKPOINT TRAP 

9 TRC TRACE TRAP 

10 UNO UNDEFINED INSTRUCTION TRAP 

11 RESERVED 

12 BER BUS ERROR 

13-15 ::: ~ RESERVED ~ 
16 VECTORED 

INTERRUPTS 

TLlEE/8673-39 

FIGURE 3·26. Interrupt Dispatch Table 

2-141 

z en w 
N 
W 
W 
N 
I --. 
o ...... 
z en w 
N 
W 
W 
N 

I --. 
U1 

• 



~ ~----------------------------------------------------------------------------------------~ .... 
N 
C'I) 
C'I) 
N 

~ 
Z ...... 
o .... 
N 
C'I) 
C'I) 
N 

~ 
Z 

3.0 Functional Description (Continued) 

This process is Illustrated In Figure 3·27, from the viewpoint of the programmer. 

I RETURN ADDRESS 

I STATUS I MODULE 

PSR MOD 

INTBASE REGISTER 

DESCRIPTOR 

I (PUSH) 

I 

I 
I (PUSH) 

INTERRUPT 
STACK 

r-------------l 
I CASCADE TABLE I 
I I 
I I 

DISPATCH 
TABLE 

DESCRIPTOR (32 BITS) 

It--I -18-~·1-· -18-_., 
OFFSET MODULE 

"""C 
0 

MOD REGISTER ~ MODULE TABLE 

I NEW MODULE 

I MODULE TABLE ENTRY 

) 

MODULE TABLE ENTRY 
32 

STATIC BASE POINTER - --...., 

LINK BASE POINTER 

(~ PROGRAM BASE POINTER 

(RESERVED) 

j
32BITS 

32 BITS 

PROGRAM COUNTER SBREGISTER 

ENTRY POINT ADDRESS +- NEW STATIC BASE 

FIGURE 3-27.lnterrupt/Trap Service Routine Calling Sequence 

2·142 

TL/EE/8873-40 

I 
TL/EE/8873-41 



3.0 Functional Description (Continued) 

3.0.2 Interrupt/Trap Return 

To return control to an interrupted program, one of two in­
structions is used. The RETT (Return from Trap) instruction 
(Figure 3-28) restores the PSR, MOD, PC and S8 registers 
to their previous contents and, since traps are often used 
deliberately as a call mechanism for Supervisor Mode pro­
cedures, it also discards a specified number of bytes from 
the original stack as surplus parameter space. RETT is used 
to return from any trap or interrupt except the Maskable 
Interrupt. For this, the RETI (Return from Interrupt) instruc­
tion is used, which also informs any external Interrupt Con­
trol Units that interrupt service has completed. Since inter­
rupts are generally asynchronous external events, RETI 
does not pop parameters. See Figure 3-29. 

3.0.3 Maskable Interrupts (The INT Pin) 

The INT pin is a level-sensitive input. A continuous low level 
is allowed for generating multiple interrupt requests. The in-

PROGRAM COUNTER 

put is maskable, and is therefore enabled to generate inter­
rupt requests only while the Processor Status Register I bit 
is set. The I bit is automatically cleared during service of an 
INT, NMI or Abort request, and is restored to its original 
setting upon return from the interrupt service routine via the 
RETT or RETI instruction. 

The INT pin may be configured via the SETCFG instruction 
as either Non-Vectored (CFG Register bit I = 0) or Vec­
tored (bit I = 1). 

3.0.3.1 Non-Vectored Mode 

In the Non-Vectored mode, an interrupt request on the TNT 
pin will cause an Interrupt Acknowledge bus cycle, but the 
CPU will ignore any value read from the bus and use instead 
a default vector of zero. This mode is useful for small sys­
tems in which hardware interrupt prioritization is unneces­
sary. 

I RETURN ADDRESS -\ 
(POP) } 

~f--___ (P_O_P_) ____ +-1--_ -::-------i} ::::: 
STATUS I MODULE 

.I 

PSR MOD 

MODULE LBLE ENTRY 

STATIC BASE POINTER - ---., 

LINK BASE POINTER 

PROGRAM BASE POINTER 

(RESERVED) 

SBREGISTER 

STATIC BASE 

POP AND 
DISCARD 

n 
BYTES 

INTERRUPT 
STACK 

MODULE 
TABLE 

MODULE TABLE ENTRY 

PARAMETERS 

STACK SELECTED 
IN NEWLY­

POPPEDPSR. 

FIGURE 3-20. Return from Trap (RETT n) Instruction Flow 

2-143 

TL/EE/8673-42 

z en 
w 
N 
W 
W 
N . ..... 
o 
....... z en 
w 
N 
W 
W 
N • ..... 
U1 



LI) .... . 
N 
C") 
C") 
N 
C") 

en 
z 
....... o .... 
• N 

C") 
C") 
N 
C") 

en 
z 

3.0 Functional Description (Continued) 

"END OF INTERRUPT" 

BUS CYCLE 

PROGRAM COUNTER 

~ 
(POP) 

RETURN ADDRESS 

I 1 (POP) 
STATUS MODULE 

J 
PSR MOD 

INTERRUPT 
CONTROL 

UNIT 

INTERRUPT 
STACK 

MODULE 
TABLE 

L-..-----------~MODULE TABLE ENTRY 

J 

f 
MODULE TABLE ENTRY 

STATIC BASE POINTER 

LINK BASE POINTER 

PROGRAM BASE POINTER 

(RESERVED) 

STATIC BASE 

SBREGISTER 

FIGURE 3-29. Return from Interrupt (RETI) Instruction Flow 

2-144 

TLlEE/B673-43 



3.0 Functional Description (Continued) 

3.S.3.2 Vectored Mode: Non-Cascaded Case 

In the Vectored mode, the CPU uses an Interrupt Control 
Unit (ICU) to prioritize many interrupt requests. Upon receipt 
of an interrupt request on the INT pin, the CPU performs an 
"Interrupt Acknowledge, Master" bus cycle (Sec. 3.4.3) 
reading a vector value from the low-order byte of the Data 
Bus. This vector is then used as an index into the Dispatch 
Table in order to find the External Procedure Descriptor for 
the proper interrupt service procedure. The service proce­
dure eventually returns via the Return from Interrupt (RETI) 
instruction, which performs an End of Interrupt bus cycle, 
informing the ICU that it may re-prioritize any interrupt re­
quests still pending. The ICU provides the vector number 
again, which the CPU uses to determine whether it needs 
also to inform a Cascaded ICU (see below). 

In a system with only one ICU (16 levels of interrupt), the 
vectors provided must be in the range of 0 through 127; that 
is, they must be positive numbers in eight bits. By providing 
a negative vector number, an ICU flags the interrupt source 
as being a Cascaded ICU (see below). 

3.S.3.3 Vectored Mode: Cascaded Case 

In order to allow more levels of interrupt, provision is made 
in the CPU to transparently support cascading. Note that 
the Interrupt output from a Cascaded ICU goes to an Inter­
rupt Request input of the Master ICU, which is the only ICU 
which drives the CPU INT pin. Refer to the ICU data sheet 
for details. 

In a system which uses cascading, two tasks must be per­
formed upon initialization: 

1) For each Cascaded ICU in the system, the Master ICU 
must be informed of the line number on which it receives 
the cascaded requests. 

2) A Cascade Table must be established in memory. The 
Cascade Table is located in a NEGATIVE direction from 
the location indicated by the CPU Interrupt Base (INT­
BASE) Register. Its entries are 32-bit addresses, pointing 
to the Vector Registers of each of up to 16 Cascaded 
ICUs. 

Figure 3-26 illustrates the position of the Cascade Table. To 
find the Cascade Table entry for a Cascaded ICU, take its 
Master ICU line number (0 to 15) and subtract 16 from it, 
giving an index in the range -16 to -1. Multiply this value 
by 4, and add the resulting negative number to the contents 
of the INTBASE Register. The 32-bit entry at this address 
must be set to the address of the Hardware Vector Register 
of the Cascaded ICU. This is referred to as the "Cascade 
Address." 

Upon receipt of an interrupt request from a Cascaded ICU, 
the Master ICU interrupts the CPU and provides the nega­
tive Cascade Table index instead of a (positive) vector num­
ber. The CPU, seeing the negative value, uses it as an index 
into the Cascade Table and reads the Cascade Address 
from the referenced entry. Applying this address, the CPU 
performs an "Interrupt Acknowledge, Cascaded" bus cycle 
(Sec. 3.4.3), reading the final vector value. This vector is 
interpreted by the CPU as an unsigned byte, and can there­
fore be in the range of 0 through 255. 

In returning from a Cascaded interrupt, the service proce­
dure executes the Return from Interrupt (RETI) instruction, 
as it would for any Maskable Interrupt. The CPU performs 
an "End of Interrupt, Master" bus cycle (Sec. 3.4.3), where­
upon the Master ICU again provides the negative Cascade 

2-145 

Table index. The CPU, seeing a negative value, uses it to 
find the corresponding Cascade Address from the Cascade 
Table. Applying this address, it performs an "End of Inter­
rupt, Cascaded" bus cycle (Sec. 3.4.3), informing the Cas­
caded ICU of the completion of the service routine. The byte 
read from the Cascaded ICU is discarded. 
Note: If an interrupt must be masked off, the CPU can do so by setting the 

corresponding bit in the interrupt mask register of the interrupt con­
troller. 

However, if an interrupt is set pending during the CPU instruction that 
masks off that interrupt, the CPU may still perform an interrupt ac­
knowledge cycle following that instruction since it might have sampled 
the INT line before the ICU deasserted it. This could cause the ICU to 
provide an invalid vector. To avoid this problem the above operation 
should be performed with the CPU interrupt disabled. 

3.S.4 Non-Maskable Interrupt (The NMI Pin) 

The Non-Maskable Interrupt is triggered whenever a falling 
edge is detected on the NMI pin. The CPU performs an 
"Interrupt Acknowledge, Master" bus cycle (Sec. 3.4.3) 
when processing of this interrupt actually begins. The Inter­
rupt Acknowledge cycle differs from that provided for Mask­
able Interrupts in that the address presented is 
FFFFFF0016. The vector value used for the Non-Maskable 
Interrupt is taken as 1, regardless of the value read from the 
bus. 

The service procedure returns from the Non-Maskable In­
terrupt using the Return from Trap (RETT) instruction. No 
special bus cycles occur on return. 

For the full sequence of events in processing the Non­
Maskable Interrupt, see Sec. 3.B.7.1. 

3.S.S Traps 

A trap is an internally-generated interrupt request caused as 
a direct and immediate result of the execution of an instruc­
tion. The Return Address pushed by any trap except Trap 
(TRC) is the address of the first byte of the instruction during 
which the trap occurred. Traps do not disable interrupts, as 
they are not associated with external events. Traps recog­
nized by the NS32332 CPU are: 

Trap (SLAVE): An exceptional condition was detected by 
the Floating Point Unit or another Slave Processor during 
the execution of a Slave Instruction. This trap is requested 
via the Status Word returned as part of the Slave Processor 
Protocol (Sec. 3.9.1). 

Trap (ILL): Illegal operation. A privileged operation was at­
tempted while the CPU was in User Mode (PSR bit U = 1). 

Trap (SVC): The Supervisor Call (SVC) instruction was exe­
cuted. 

Trap (OVZ): An attempt was made to divide an integer by 
zero. (The Slave trap is used for Floating Point division by 
zero.) 

Trap (FLG): The FLAG instruction detected a "1" in the 
CPU PSR F bit. 

Trap (BPT): The Breakpoint (BPT) instruction was execut­
ed. 

Trap (TRC): The instruction just completed is being traced. 
See below. 

Trap (UNO): An undefined opcode was encountered by the 
CPU. 

z en 
w 
N 
W 
W 
N • ..... 
o ....... 
z en 
w 
N 
W 
W 
N . ..... 
U1 



an .,.. 
N 
C") 
C") 
N 
C") 
U) 
Z ..... 
o .,.. 
• N 

C") 
C") 
N 
C") 
U) 
Z 

3.0 Functional Description (Continued) 

A special case is the Trace Trap (TRC), which is enabled by 
setting the T bit in the Processor Status Register (PSR). At 
the beginning of each instruction, the T bit is copied into the 
PSR P (Trace "Pending") bit. If the P bit is set at the end of 
an instruction, then the Trace Trap is activated. If any other 
trap or interrupt request is made during a traced instruction, 
its entire service procedure is allowed to complete before 
the Trace Trap occurs. Each interrupt and trap sequence 
handles the P bit for proper tracing, guaranteeing one and 
only one Trace Trap per instruction, and guaranteeing that 
the Return Address pushed during a Trace Trap is always 
the address of the next instruction to be traced. 
Note: A slight difference exists between the NS32332 and previous Series 

32000 CPUs when tracing is enabled. 

The NS32332 always clears the P bit in the PSR before pushing the 
PSR on the stack. Previous CPUs do not clear It when a trap (ILL) 
occurs. 

The result is that an Instruction that causes a trap (ILL) exception Is 
traced by previous Series 32000 CPUs. but is never traced by the 
NS32332. 

3.8.6 Prioritization 

The NS32332 CPU internally prioritizes simultaneous inter­
rupt and trap requests as follows: 

1) Traps other than Trace (Highest priority) 

2) Abort 

3) Bus Error 

4) Non-Maskable Interrupt 

5) Maskable Interrupts 

6) Trace Trap (Lowest priority) 

3.8.7InterruptlTrap Sequences: Detailed Flow 

For purposes of the following detailed discussion of inter­
rupt and trap service sequences, a single sequence called 
"Service" is defined in Figure 3-30. Upon detecting any in­
terrupt request or trap condition, the CPU first performs a 
sequence dependent upon the type of interrupt or trap. This 
sequence will include pushing the Processor Status Regis­
ter and establishing a Vector and a Return Address. The 
CPU then performs the Service sequence. 

For the sequence followed in processing either Maskable or 
Non-Maskable interrupts (on the INT or NMI pins, respec­
tively), see Sec. 3.8.7.1 For Abort Interrupts, see Sec. 
3.8.7.4. For the Trace Trap, see Sec. 3.8.7.3, and for all 
other traps see Sec. 3.8.7.2. 

3.8.7.1 Maskable/Non-Maskable Interrupt Sequence 

This sequence is performed by the CPU when the NMI pin 
receives a falling edge, or the INT pin becomes active with 
the PSR I bit set. The interrupt sequence begins either at 
the next instruction boundary or, in the case of the String 
instructions, at the next interruptible point during its execu­
tion. 

1. If a String instruction was interrupted and not yet com­
pleted: 

a. Clear the Processor Status Register P bit. 

b. Set "Return Address" to the address of the first byte of 
the interrupted instruction. 

Otherwise, set "Return Address" to the address of the 
next instruction. 

2. Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits S, U, T, P and I. 

2-146 

3. If the interrupt is Non-Maskable: 

a. Read a byte from address FFFFFF0016, applying 
Status Code 0100 (Interrupt Acknowledge, Master, 
Sec. 3.4.3). Discard the byte read . 

b. Set "Vector" to 1 . 

c. Go to Step 8. 

4. If the interrupt is Non-Vectored: 

a. Read a byte from address FFFFFE0016, applying 
Status Code 0100 (Interrupt Acknowledge, Master: 
Sec. 3.4.3). Discard the byte read. 

b. Set "Vector" to O. 

c. Go to Step 8. 

5. Here the interrupt is Vectored. Read "Byte" from address 
FFFFFE0016, applying Status Code 0100 (Interrupt Ac­
knowledge, Master: Sec. 3.4.3). 

6. If "Byte" ~ 0, then set "Vector" to "Byte" and go to Step 
8. 

7. If "Byte" is in the range -16 through -1, then the inter­
rupt source is Cascaded. (More negative values are re­
served for future use.) Perform the following: 

a. Read the 32-bit Cascade Address from memory. The 
address is calculated as INTBASE +4* Byte. 

b. Read "Vector," applying the Cascade Address just 
read and Status Code 0101 (Interrupt Acknowledge, 
Cascaded: Sec. 3.4.3). 

8. Perform Service (Vector, Return Address), Figure 3-30. 

Service (Vector, Return Address): 

1) Read the 32·blt External Procedure Descriptor from the Interrupt 
Dispatch Table: address Is Vector· 4 + INTBASE Register contents. 

2) Move the Module field of the Descriptor Into the MOD Register. 

3) Read the Program Base pOinter from memory address MOD + 8, 
and add to It the Offset field from the Descriptor, plaCing the result 
In the Program Counter. 

4) Read the new Static Base pOinter from the memory address con­
tained In MOD, plaCing It Into the SB Register. 

5) Flush queue: Non-sequentially fetch first Instruction of Interrupt 
routine. 

6) Push the PSR copy onto the Interrupt Stack as a 16·blt value. 

7) Push MOD Register Into the Interrupt Stack as a 16-blt value. 

8) Push the Return Address onto the Interrupt Stack as a 32-blt quanti· 
ty. 

FIGURE 3-30. Service Sequence 

Invoked during all interrupt/trap sequences. 

3.8.7.2 Trap Sequence: Traps Other Than Trace 

1) Restore the currently selected Stack Pointer and the 
Processor Status Register to their original values at the 
start of the trapped instruction. 

2) Set "Vector" to the value corresponding to the trap type. 

SLAVE: Vector = 3. 

ILL: Vector = 4. 

SVC: Vector = 5. 

DVZ: Vector = 6. 

FLG: Vector = 7. 

BPT: Vector = 8. 

UND: Vector = 10. 

3) Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits S, U, P and T. 



3.0 Functional Description (Continued) 

4) Set "Return Address" to the address of the first byte of 
the trapped instruction. 

5) Perform Service (Vector, Return Address), Figure 3-30. 

3.8.7.3 Trace Trap Sequence 

1) In the Processor Status Register (PSR), clear the P bit. 

2) Copy the PSR into a temporary register, then clear PSR 
bits S, U and T. 

3) Set "Vector" to 9. 

4) Set "Return Address" to the address of the next instruc-
tion. 

5) Perform Service (Vector, Return Address), Figure 3-30. 

3.8.7.4 Abort Sequence 

1) Restore the currently selected Stack Pointer to its original 
contents at the beginning of the aborted instruction. 

2) Clear the PSR P bit. 

3) Copy the PSR into a temporary register, then clear PSR 
bits S, U, T and I. 

4) Set "Vector" to 2. 

5) Set "Return Address" to the address of the first byte of 
the aborted instruction. 

6) Perform Service (Vector, Return Address), Figure 3-30. 

3.8.7.5 Bus Error Sequence 

1) The same as Abort sequence above, but set vector to 12. 

3.9 SLAVE PROCESSOR INSTRUCTIONS 

The NS32332 CPU recognizes three groups of instructions 
being executable by external Slave Processor: 

Floating Point Instruction Set 

Memory Management Instruction Set 
Custom Instruction Set 

Each Slave Instruction Set is validated by a bit in the Config­
uration Register (Sec. 2.1.3). Any Slave Instruction which 
does not have its corresponding Configuration Register bit 
set will trap as undefined, without any Slave Processor com­
munication attempted by the CPU. This allows software sim­
ulation of a non-existent Slave Processor. 

In addition, each slave instruction will be performed either 
through the regular (32032 compatible) slave protocol or 
through a fast slave protocol according to the relevent bit in 
the configuration register (Sec. 2.1.3). 

A combination of one slave communicating with an old pro­
tocol and another with a new protocol is allowed, e.g. 16-bit 
FPU (32081) and 32-bit MMU (32382) or vice versa. 

3.9.1 16·Blt Slave Processor Protocol 
(32032 Compatible) 

Slave Processor instructions have a three-byte Basic In· 
struction field, consisting of an ID Byte followed by an Oper­
ation Word. The ID Byte has three functions: 

1) It identifies the instruction as being a Slave Processor 
instruction. 

2) It specifies which Slave Processor will execute it. 

3) It determines the format of the following Operation Word 
of the instruction. 

2·147 

Upon receiving a Slave Processor instruction, the CPU initl· 
ates the sequence outlined In Figure 3-31. While applying 
Status Code 1111 (Broadcast ID, Sec. 3.4.3), the CPU 
transfers the ID Byte on bits ADO-AD7 and a non-used byte 
xxxxxxx1 (x = don't care) on bits AD24-AD31. All Slave 
Processors input this byte and decode it. The Slave Proces· 
sor selected by the ID Byte is activated, and from this point 
the CPU is communicating only with it. If any other slave 
protocol was in progress (e.g., an aborted Slave instruction), 
this transfer cancels it. 

The CPU next sends the Operation Word while applying 
Status Code 1101 (Transfer Slave Operand, Sec. 3.4.3). 
Upon receiving it, the Slave Processor decodes it, and at 
this point both the CPU and the Slave Processor are aware 
of the number of operands to be transferred and their sizes. 
The operation Word is swapped on the Data Bus, that is, 
bits 0-7 appear on pins AD8-AD15 and bits 8-15 appear 
on pins ADO-AD7. 

Using the Address Mode fields within the Operation Word, 
the CPU starts fetching operand and issuing them to the 
Slave Processor. To do so, it references any Addressing 
Mode extensions which may be appended to the Slave 
Processor instruction. Since the CPU is solely responsible 
for memory accesses, these extensions are not sent to the 
Slave processor. The Status Code applied is 1101 (Transfer 
Slave Processor Operand, Sec. 3.4.3). 

After the CPU has issued the last operand, the Slave Proc­
essor starts the actual execution of the instruction. Upon 
completion, it will signal the CPU by pulsing SPC low. To 
allow for this SPC is normally held high only by an internal 
pull-up device of approximately 5 kn. 

While the Slave Processor is executing the instruction, the 
CPU is free to prefetch instructions into its queue. If it fills 
the queue before the Slave Processor finishes, the CPU will 
wait, applying Status Code 0011 (Waiting for Slave, Sec. 
3.4.3). 

Upon receiving the pulse on SPC, the CPU uses SPC to 
read a Status Word from the Slave Processor, applying 
Status Code 1110 (Read Slave Status, Sec. 3.4.3). This 
word has the format shown in Figure 3-34. If the Q bit 
("Quit", Bit 0) is set, this indicates that an error was detect· 
ed by the Slave Processor. The CPU will not continue the 
protocol, but will immediately trap through the SLAVE vector 
in the Interrupt Table. Certain Slave Processor instructions 
cause CPU PSR bits to be loaded from the Status Word. 

The last step in the protocol is for the CPU to read a result, 
if any, and transfer it to the destination. The Read cycles 
from the Slave Processor are performed by the CPU while 
applying Status Code 1101 (Transfer Slave Operand, Sec. 
3.4.3). 

An exception to the protocol above is the LMR (Load Mem­
ory Management Register) instruction, and a corresponding 
Custom Slave instruction (LCR: Load Custom Register). In 
executing these instructions, the protocol ends after the 
CPU has issued the last operand. The CPU does not wait for 
an acknowledgement from the Slave Processor, and it does 
not read status. 



it) .... 
N 
C") 
C") 
C\I 
C") 
U) 
Z ....... 
o .... 
• C\I 

C") 
C") 
C\I 
C") 
U) 
Z 

3.0 Functional Description (Continued) 

Status Combinations: 

Send 10 (10): Code 1111 

Xfer Operand tOP): Code 1101 

Read Status (ST): Code 1110 

Step Status Action 

1 10 CPU Send 10 Byte. 

2 OP CPU Sends Operaton Word. 

OP CPU Sends Required Operands 

4 Slave Starts Execution. CPU Pre-fetches. 

Slave Pulses SPC Low. 

6 ST CPU Reads Status Word. (Trap? Alter Flags?) 

7 OP CPU Reads Results (If Any). 

FIGURE 3-31. 16-Blt Slave Processor Protocol 

3.9.2 32-Blt Fast Slave Protocol 

Upon receiving a Slave Processor instruction, the CPU initi­
ates the sequence outlined in Figure 3-32. While applying 
Status code 1111 (Broadcast ID Sec. 3.4.2), the CPU trans­
fers the ID Byte on bits AD24-AD31, the operation word on 
bits AD8-AD23 in a swapped order of bytes and a non-used 
byte XXXXXXX1 (X = don't care) on bits ADO-AD? (Figure 
3-33). 

Using the addressing mode fields within the Operation word, 
the CPU fetches operands and sends them to the Slave 
Processor. Since the CPU is solely responsible for memory 
accesses, addressing mode extensions are not sent to the 
Slave Processor. The Status Code applied is 1101 (Transfer 
Slave Processor Operand Sec. 3.4.2). After the CPU has 
Issued the last operand, the Slave Processor starts the ac­
tual execution of the instruction. Upon completion, it will sig­
nal the CPU by pulsing SDONE or SPC low for one clock 
cycle. 

Unlike the old protocol, the SLAVE may request the CPU to 
read the status by activating the SDONE or SPC line for two 
clock cycles instead of one. The CPU will then read the 
slave status word and update the PSR Register, unless a 
trap is Signalled. If this happens, the CPU will immediately 
abort the protocol and start a trap sequence using either the 
SLAVE or the UND vector in the interrupt table as specified 
in the Status Word. 
Note: The PSR update Is presently restricted to three Instructions: CMPf, 

ROVAL, WRVAL and their custom slave equivalents. 

While the Slave Processor is executing the instruction, the 
CPU is free to prefetch instructions into its queue. If it fills its 
queue before the Slave Processor finishes, the CPU will 
wait applying status code 0011 (waiting for Slave, Sec. 
3.4.2). 

Upon receiving the pulse on either SDONE or SPC, the CPU 
uses SPC to read the result from the Slave Processor and 
transfer it to the destination. The Read cycles from the 
Slave Processor are performed by the CPU while applying 
Status Code 1101 (Transfer Slave Operand, Sec. 3.4.2). 

2-148 

Step 

1 

2 

4 

6 

Status 

10 

OP 

ST 

OP 

Status Combinations: 

Send 10 (ID): Code 1111 

Xfer Operand tOP): Code 1101 

Read Status (ST): Code 1110 

Action 

CPU sends 10 and Operation Word. 

CPU sends required operands (if any). 

Slave starts execution (CPU prefetches). • 

Slave pulses SOONE or SPC low. 

CPU Reads Status word (only if SOONE or SPC 

pulse is two clock cycles wide). 

CPU Reads Results (if any). 

FIGURE 3-32. 32-Blt Fast Slave Protocol 

Certain Slave Processor instructions affect CPU PSR. For 
these instructions only the CPU will perform a Read Slave 
status cycle as described in 3.9.1.1 before reading the re­
sult. The relevent PSR bits will be loaded from the status 
word. 

byte 3 byte 2 byte 1 byte 0 

ID OPCODE low OPCODE high Don't Care 

FIGURE 3-33. 10 and Opcode Format 
for Fast Slave Protocol 

3.9.3 Floating Point Instructions 

Table 3-4 gives the protocols followed for each Floating 
Point instruction. The instructions are referenced by their 
mnemonics. For the bit encodings of each instruction, see 
Appendix A. 
The Operand class columns give the Access Class for each 
general operand, defining how the addressing modes are 
interpreted (see Instruction Set Reference Manual). 

The Operand Issued columns show the sizes of the oper­
ands issued to the Floating Point Unit by the CPU. "D" indi­
cates a 32-bit Double Word. "i" indicates that the instruction 
specifies an integer size for the operand (B = Byte, W = 
Word, D = Double Word). "f" indicates that the instruction 
specifies a Floating Point size for the operand (F = 32-bit 
Standard Floating, L = 64·bit Long Floating). 

The Returned Value Type and Destination column gives the 
size of any returned value and where the CPU places it. The 
PSR Bits Affected column indicates which PSR bits, if any, 
are updated from the Slave Processor Status Word (Figure 
3-34). 



3.0 Functional Description (Continued) 

TABLE 3-4 

Floating Point Instruction Protocols. 

Mnemonic 
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits 

Class Class Issued Issued Type and Dest. Affected 

AD Of 
SUSf 
MULf 
DIVf 

MOVf 
ASSf 
NEGf 

CMPf 

FLOORfi 
TRUNCfi 
ROUNDfi 

MOVFL 
MOVLF 

MOVif 

POLYf 
DOTf 
SCALSf 

read.f 
read.f 
read.f 
read.f 

read.f 
read.f 
read.f 

read.f 

read.f 
read.f 
read.f 

read.F 
read.L 

read.i 

read.f 
read.f 
read.f 

rmw.f 
rmw.f 
rmw.f 
rmw.f 

write.f 
write.f 
write.f 

read.f 

write.i 
write.i 
write.i 

write.L 
write.F 

f 

F 
L 

LOGSf read.f 

LFSR read.D 
SFSR N/A 

write.f 

read.f 
read.f 
rmw.f 
write.f 

N/A 
write. 0 

f 

o 
N/A 

Note 1: 

o = Double Word 

i = Integer size (B,W,O) specified in mnemonic. 

f = Floating Point type (F,l) specified In mnemonic. 

N/A = Not Applicable to this instruction. 

Any operand indicated as being of type "f" will not cause a 
transfer if the Register addressing mode is specified. This is 
because the Floating Point Registers are physically on the 
Floating Point Unit and are therefore available without CPU 
assistance. 

1S 8 7 

l TS 0 0 0 0 0 0 0 I N Z F 0 0 L M/F ~ 
New PSR BIIVaIUe(S)~ 

Tl/EE/6673-44 

FIGURE 3-34. Slave Processor Status Word Format 
Note 1: Q is the Trap Bit. II is set to 1 by the Slave whenever a trap is 

requested. 

Note 2: TS is the Trap Select Bit. When a trap is requested (Q = 1), TS tells 
the CPU whether a SLAVE or an UNO trap is to be generated. TS is 
o for a slave trap and 1 for an UNO trap. 

Note 3: M/F should be set for a ROVAl, WRVAl, or Custom Slave Equiva­
lent instruction. It should be cleared for CMPf and CCMPOc and 
CCMPc. When M/F is cleared, the F bit should also be cleared. 

2-149 

N/A 
N/A 
N/A 

f 

N/A 
N/A 
N/A 
N/A 
N/A 
N/A 

f 

N/A 
N/A 
N/A 

ftoOp.2 
fto Op. 2 
ftoOp.2 
fto Op. 2 

fto Op. 2 
fto Op. 2 
ftoOp.2 

N/A 
itoOp.2 
itoOp.2 
itoOp.2 

LtoOp.2 
FtoOp.2 

ftoOp.2 

fto FO 
fto FO 

fto Op.2 
fto Op.2 

N/A 
DtoOp.2 

3.9.4 Memory Management Instructions 

none 
none 
none 
none 

none 
none 
none 

N,Z,L 

none 
none 
none 

none 
none 

none 

none 
none 
none 
none 

none 
none 

Table 3-5 gives the protocols for Memory Management in­
structions. Encodings for these instructions may be found in 
Appendix A. 
In executing the RDVAL and WRVAL instructions, the CPU 
calculates and issues the 32-bit Effective Address of the 
single operand. The CPU then performs a single-byte Read 
cycle from that address, allowing the MMU to safely abort 
the instruction if the necessary information is not currently in 
physical memory. Upon seeing the memory cycle complete, 
the MMU continues the protocol, and returns the validation 
result in the F bit of the Slave Status Word. 

The size of a Memory Management operand is always a 32-
bit Double Word. For further details of the Memory Manage­
ment Instruction set, see the Instruction Set Reference 
Manual and the MMU Data Sheet. 

z en 
Ct.) 
N 
Ct.) 
Ct.) 
N • ..... 
Q 
....... 
Z en 
Ct.) 
N 
Ct.) 
Ct.) 
N . ..... 
U1 



LI) --~ 3.0 Functional Description (Continued) 
Ct) 
N 
Ct) 

en 
z ...... 
o --• N 
Ct) 
Ct) 
N 
Ct) 

en z 

TABLE 3-5 

Memory Management Instruction Protocols. 
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits 

Mnemonic Class Class Issued Issued Type and Dest. Affected 

RDVAL* addr N/A D N/A N/A F 
WRVAL* addr N/A D N/A N/A F 

LMR* read.D N/A D N/A N/A none 
SMR* write.D N/A N/A N/A Dto Op.1 none 

Note: 

In the RDVAL and WRVAL instructions, the CPU issues the address as a Double Word, and performs a single·byte Read cycle from that memory address. For 
detailS, see the Instruction Set Reference Manual and the Memory Management Unit Data Sheet. 

o = Double Word 

• = Privileged Instruction: will trap if CPU is in User Mode. 

N/ A = Not Applicable to this instruction. 

3.9.5 Custom Slave Instructions 

Provided in the NS32332 is the capability of communicating 
with a user-defined, "Custom" Slave Processor. The in­
struction set provided for a Custom Slave Processor defines 
the instruction formats, the operand classes and the com­
munication protocol. Left to the user are the interpretations 
of the Op Code fields, the programming model of the Cus­
tom Slave and the actual types of data transferred. The pro­
tocol specifies only the size of an operand, not its data type. 

Table 3-6 lists the relevant information for the Custom Slave 
instruction set. The designation "c" is used to represent an 

2-150 

operand which can be a 32-bit (liD") or 64-bit ("Q") quantity 
in any format; the size is determined by the suffix on the 
mnemonic. Similarly, an "i" indicates an integer size (Byte, 
Word, Double Word) selected by the corresponding mne­
monic suffix. 

Any operand indicated as being of type "C" will not cause a 
transfer if the register addressing mode is specified. It is 
assumed in this case that the slave processor is already 
holding the operand internally. 

For the instruction encodings, see Appendix A. 



z 
3.0 Functional Description (Continued) 

en 
Co) 
I\) 
Co) 
Co) 

TABLE 3·6 I\) . 
Custom Slave Instruction Protocols. 

...... 
C) 

Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits 
....... 
Z 

Mnemonic Class Class Issued Issued Type and Dest. Affected en 
Co) 

CCALOc read.c rmw.c C C ctoOp.2 none I\) 
Co) 

CCAL1c read.c rmw.c C C ctoOp.2 none Co) 
I\) 

CCAL2c read.c rmw.c c C ctoOp.2 none . ...... 
CCAL3c read.c rmw.c c c cto Op. 2 none U1 

CMOVOc read.c write.c c N/A cto Op. 2 none 
CMOV1c read.c write.c c N/A ctoOp.2 none 
CMOV2c read.c write.c c N/A cto Op. 2 none 

CMOV3c read.c write.c c N/A cto Op.2 none 

CCMPOc read.c read.c c c N/A N,Z,L 

CCMP1c read.c read.c c c N/A N,Z,L 

CCVOci read.c write.i c N/A itoOp.2 none 
CCV1ci read.c write.i c N/A itoOp.2 none 
CCV2ci read.c write.i c N/A itoOp.2 none 
CCV3ic read.i write.c i N/A ctoOp.2 none 
CCV4DQ read.D write.Q D N/A QtoOp.2 none 
CCV5QD read.Q write.D Q N/A DtoOp.2 none 

LCSR read.D N/A D N/A N/A none 
SCSR N/A write.D N/A N/A DtoOP.2 none 

CATSTO* addr N/A D N/A N/A F 
CATST1* addr N/A D N/A N/A F 

LCR* read.D N/A D N/A N/A none 
SCR- write.D N/A N/A N/A D to Op.1 none 

Note: 

o = Double Word 

i = Integer size (B,W,O) specified in mnemonic. 

c = Custom size (0:32 bits or Q:64 bits) specified in mnemonic. 

• = Privileged instruction: will trap if CPU is in User Mode. 

NI A = Not Applicable to this instruction. 

2·151 



1.1) 
'P" • N 
C") 
C") 
N 
C") 

en z ....... 
o 
'P" . 
N 
C") 
C") 
N 
C") 

en z 

4.0 Device Specifications 
4.1 NS32332 PIN DESCRIPTIONS 

The following is a brief description of all NS32332 pins. The 
descriptions reference portions of the Functional Descrip­
tion, Section 3. 

Unless otherwise indicated, reserved pins should be left 
open. 

4.1. 1 Supplies 

Logic Power (VCCL 1, 2): + 5V positive supply. 

Buffers Power (VCCB1, 2, 3, 4, 5): + 5V positive supply. 
Logic Ground (GNDL 1, GNDL2): Ground reference for on­
chip logic. 

Buffer Grounds (GNDB1, GNDB2, GNDB3, GNDB4, 
GNDB5, GNDBS): Ground references for on-chip drivers. 

Back Bias Generator (BBG): Output of on-Chip substrate 
voltage generator. 

4.1.2 Input Signals 

Clocks (PHI1, PHI2): Two-phase clocking signals. 

Ready (RDY): Active high. While ROY is not active, the CPU 
adds wait cycles to the current bus cycle. Not applicable for 
slave cycles. 

Hold Request (HOLD): Active low. Causes the CPU to re­
lease the bus for DMA or multiprocessing purposes. 
Note: If the FIOLD signal is generated asynchronously. it's set up and hold 

times may be violated. In this case it is recommended to synchronize 
it with CTTL to minimize the possibility of metastable states. 

The CPU provides only one synchronization stage to minimize the 
HLDA latency. This is to avoid speed degradations in cases of heavy 
HOLD activity (i.e. DMA controller cycles interleaved with CPU 
cycles.) 

Interrupt (INT): Active low. Maskable Interrupt request. 

Non-Maskable Interrupt (NMI): Active low. Non-Maskable 
Interrupt request. 

Reset/Abort (RST / ABT): Active low. If held active for one 
clock cycle and released, this pin causes an ABORT. If held 
longer, it is interpreted as RESET. 

Bus Error (BER): Active low. When active, indicates that an 
error occurred during a bus cycle. It is treated by the CPU as 
the highest priority exception after RESET. Not applicable 
for slave cycles. 

Bus Retry (BRT): Active low. When active, the CPU will re­
execute the last bus cycle. Not applicable for slave cycles. 

Bus Width (BW1, BWO): Define the bus width (8, 16,32) in 
every bus cycle. 01-8 bits, 10-16 bits, 11-32 bits. 00 is a 
reserved combination. Not applicable for slave cycles. 

Burst In (BIN): Active low. When active, the CPU may per­
form burst cycles. 

Float (FL T): Active low. Float command input. In non­
memory managed systems, this pin should be tied to Vee 
through a 10 kO resistor. 

Data Timing/Slave Done (DT/SDONE): Active low. Used 
by a 32-bit slave processor to acknowledge the completion 
of an instruction and/ or indicate that the slave status should 
be read (Section 3.9.2). Sampled during reset to select the 
data timing during write cycles (Section 3.3). 

2-152 

4.1.3 Output Signals 

Address Strobe (ADS): Active low. Controls address latch­
es, indicates the start of a bus cycle. 

Data Direction In (DDIN): Active low. Indicates the direc­
tions of data transfers. 

Byte Enables (BEO-BE3): Active low. Enable the access of 
bytes 0-3 in a 32 bit system. 

Status (STO-ST3): Bus cycle status code, STO least signifi­
cant. Encodings are: 

0000 - Idle: CPU Inactive on Bus. 
0001 -Idle: WAIT Instruction. 
0010 - (Reserved). 
0011 - Idle: Waiting for Slave. 
0100 - Interrupt Acknowledge, Master. 
0101 -Interrupt Acknowledge, Cascaded. 
0110 - End of Interrupt, Master. 
0111 - End of Interrupt, Cascaded. 
1000 - Sequential Instruction Fetch. 
1001 - Non-Sequential Instruction Fetch. 
1010 - Data Transfer. 
1011 - Read Read-Modify-Write Operand. 
1100 - Read for Effective Address. 
1101 - Transfer Slave Operand. 
1110 - Read Slave Status Word. 
1111 - Broadcast Slave 10. 

Status Strobe (STS): Active low. Indicates that a new 
status (STO-ST3) is valid. Not applicable for slave cycles. 

Multiple Cycle/Exception Status (MC/EXS): Active low. 
This signal is activated during the access of the first part of 
an operand that crosses a double word address boundary. 

It is also activated in conjunction with status codes 1001 
and 0000 during Abort Acknowledge and when a fatal bus 
error occurs. 
Note: MC/EXS indicates a fatal bus error only when it has been active for 

more than one clock cycle. 

Hold Acknowledge (HLDA): Active low. Activated by the 
CPU in response to HOLD input. Indicates that the CPU has 
released the bus. 

User/Supervisor (U/S): User or Supervisor Mode status. 

Interlocked Operation (ILO): Active low. Indicates that an 
interlocked cycle is being performed. 

Program Flow Status (PFS): Active low. A pulse that indi­
cates the beginning of an instruction execution. 

Burst Out (BOUT): Active low. When active, indicates that 
the CPU will perform burst cycles. 

4.1.4 Input/Output Signals 

Address/Data 0-31 (ADO-AD31): Multiplexed address 
and data lines. 

Slave Processor Control (SPC): Active low. Used by the 
CPU as a data strobe output for slave processor transfers. 
Used by a 16-bit slave processor to acknowledge the com­
pletion of an instruction. 



4.0 Device Specifications (Continued) 

If Military/Aerospace specified devices are required, All Input or Output Voltages with 
please contact the National Semiconductor Sales Respect to GND -0.5Vto +7V 
Office/Distributors for availability and specifications. Power Dissipation 3 Watt 

4.2 ABSOLUTE MAXIMUM RATINGS Note: Absolute maximum ratings indicate limits beyond 

Temperature Under Bias O°Cto + 70°C which permanent damage may occur. Continuous operation 

Storage Temperature - 65°C to + 150°C 
at these limits is not intended; operation should be limited to 
those conditions specified under Electrical Characteristics. 

4.3 ELECTRICAL CHARACTERISTICS T A = 0° to + 70°C, Vcc = 5V ± 5%, GND = OV 

Symbol Parameter Conditions Min Typ Max Units 

VIH High Level Input Voltage 2.0 Vcc +0.5 V 

Vil Low Level Input Voltage -0.5 0.8 V 

VCH High Level Clock Voltage PHI1, PHI2 pins only Vcc -0.5 Vcc +0.5 V 

VCl Low Level Clock Voltage PHI1, PHI2 pins only -0.5 0.3 V 

VCRT Clock Input Ringing Tolerance PH 11, PH 12 pins only -0.5 0.5 V 

VOH High Level Output Voltage IOH = -400 p,A 2.4 V 

VOL Low Level Output Voltage IOl = 2 mA 0.45 V 

IllS SPC and DT /SDONE VIN = O.4V, SPC in input mode 
0.05 1.0 mA 

Input Current (low) 

II Input Load Current o s: VIN s: Vcc, Input Pins except 
-20 20 p,A 

PHI1, PHI2, DT/SDONE 

Il Leakage Current (Output and 0.4 s: VIN s: Vcc -80 80 p,A 
I/O pins in TRI-STATE/lnput Mode) 

Icc Active Supply Current lOUT = O,TA = 25°C 450 600 rnA 

Connection Diagram * 
NS32332 Pinout Descriptions 

®®®®®®®®®®® 84 Pin Grid Array 
N Dese Pin Dese Pin Dese Pin 

®~®®®®®®®®®@® 
GNDB1 B1 AD29 N6 BOOf E12 

M AD6 B2 AD30 M6 SPC D13 
AD7 C1 AD31 N7 MC/EXS D12 

L ®® ®@ ADB C2 VCCL1 M7 VCCB5 C13 

®® ®@ AD9 D1 VCCL2 NB ADS C12 
K AD10 D2 INT MB GNDB6 B13 

AD11 E1 NMI N9 DDIN A12 
J ®® ®@ GNDB2 E2 RESERVED M9 BEO B12 

AD12 F1 RESERVED N10 BE1 A11 
H @® @® AD13 F2 RESERVED M10 BE2 B11 

AD14 G1 RESERVED N11 BE3 A10 
0 ®® NS32332 ®@ AD15 G2 iIO M11 HLDA B10 

VCCB2 H1 VCCB4 N12 ROI:D A9 
F ®® @@ AD16 H2 ST3 M13 RDY B9 

AD17 J1 ST2 M12 DT/Si)()N"E AB 
E ®® @@ AD1B J2 ST1 L13 PHI2 BB 

AD19 K1 STO L12 PHI1 A7 
0 ®® @@ GNDB3 K2 STS K13 BSG B7 

AD20 L1 GNDB5 K12 GNDL2 A6 
C ®®@ ®® AD21 L2 PFS J13 GNDL1 B6 

AD22 M1 U/S J12 VCCB1 A5 
B ®~@®®®®®®®®~® AD23 N2 BW1 H13 ADO B5 

VCCB3 M2 BWO H12 AD1 A4 
A ®@®@@®®®®®@ AD24 N3 BTN G13 AD2 B4 

AD25 M3 FLT G12 AD3 A3 

1 2 3 4 5 6 7 8 9 10 11 12 13 AD26 N4 RST/ABi F13 AD4 B3 
AD27 M4 BRT F12 AD5 A2 

TL/EE/8673-45 GNDB4 N5 BER E13 POSITION PIN C3 
Bottom View AD2B M5 

Order Number NS32332U-10 or NS32332U-15 
See NS Package Number U84C 

FIGURE 4-1. Pin Grid Array Package 

·AMP sockets are recommended for use with NS32332 CPU. AMP sockets are manufactured by AMP INCORPORATED, Harrisburg PA. 

2-153 

z en 
w 
N 
W 
W 
N • -. 
o ........ 
z en 
w 
N 
W 
W 
N . -. 
U1 

• 



Lt) ..... 
• C\I 

('t) 
('t) 
C\I 
('t) 

UJ 
Z 
'­o ..... . 
C\I 
('t) 
('t) 
C\I 
('t) 

UJ 
Z 

4.0 Device Specifications (Continued) 

4.4 SWITCHING CHARACTERISTICS 

4.4.1 Definitions 

All the timing specifications given in this section refer to 
2.0V on the rising or falling edges of the clock phases PHI1 
and PHI2 and 0.8V or 2.0V on all other signals as illustrated 
below, unless specifically stated otherwise. 

ABBREVIATIONS: 

L.E. - leading edge 

T.E. - trailing edge 

R.E. - rising edge 

F.E. - falling edge 

--~ 
[

- ~2'4V 
tSI011 

1--.....,;;....;..;-------- O.BV 
O.45V 

5101 5101 

5102 [ ___ , __ tS_10_2h_"I. _ ___ r2~'O~V~.~~~-~~.~-:.:: 5102 

[ 
[ 

--2.4V 

O.BV -'I'\r----t tSI011 
"---+--O.45V 

r----+--2.4V 

2.0V L tSI02h 

------'----.------.- O.45V 

TL/EE/8673-47 TL/EE/8673-46 

FIGURE 4-2. Timing Specification Standard 
(Signal Valid After Clock Edge) 

FIGURE 4-3. Timing Specification Standard 
(Signal Valid Before Clock Edge) 

4.4.2 Timing Tables 

4.4.2.1 Output Signals: Internal Propagation Delays, NS32332-10, NS32332-15 

Maximum times assume capacitive loading of 100 pF. 

ADO-31, ADS and BOUT timings are defined with a capacitive loading of 75 pF. 

Symbol Figure Description 
Reference! NS32332-10 
Conditions Min Max 

tALv 4-5 Address bits 0-31 valid after R.E., PHI1 T1 30 

tALh 4-5 Address bits 0-31 hold after R.E., PHI1 T2/Tmmu 10 

tov 4-5 Data valid (write cycle) after R.E., PHI1 T3 or T2 50 

tOh 4-5 Data hold (write cycle) after R.E., 0 
PHI1 nextT1 orTi 

tALAOSs 4-4 Address bits 0-31 setup before ADS T.E. 25 

tALAOSh 4-18 Address bits 0-31 hold after ADS T.E. 10 

tAU 4-4 Address bits 0-31 after R.E., PHI1 T2/Tmmu 25 
floating (no MMU) 

tALMf 4-18 Address bits 0-31 after R.E., PHI1 Tf 40 
floating (by FL T line) 

tSTSa 4-3,4-5 STS signal active (low) after R.E., PHI1 T4 of 35 
previous bus cycle or Ti 

tSTSia 4-3,4-5 STS signal inactive after R.E., PHI2 T4 of 45 
previous bus cycle or Ti 

tSTSw 4-3 STS pulse width at 0.8V (both edges) 35 

tSErv 4-4,4-6 BEn signals valid after R.E., PHI2, T 4 or Ti 
140 

(Operand Read Cycles Only) 

tSEv 4-5,4-6 BEn signals valid after R.E., PHI2, T4 orTi 85 

tSEh 4-4 BEn signals hold after R.E., PHI2, T4 0 

2-154 

NS32332-15 
Units 

Min Max 

20 ns 

6 ns 

38 ns 

0 ns 

20 ns 

10 ns 

24 ns 

40 ns 

25 ns 

30 ns 

24 ns 

95 ns 

58 ns 

0 ns 



4.0 Device Specifications (Continued) 

4.4.2.1 Output Signals: Internal Propagation Delays, NS32332·10, NS32332·15 (Continued) 

Symbol Figure Description Reference! NS32332·10 
Conditions Min Max 

tSTv 4·5 Status (STO-ST3) valid after R.E., PHI1 T4 50 
(before T1, see note) 

tSTSTSs 4-5 Status Signals Setup Before STS T.E. 10 

tSTh 4-5 Status (STO-ST3) hold after R.E., PHI1 T4 (afterT1) 0 

tOOINv 4-4 ODIN signal valid after R.E., PHI1 T1 35 

tOOINh 4-4 ODIN signal hold after R.E., PHI1 nextT1 orTi 0 

tAOSa 4-5 ADS signal active (low) after R.E., PHI1 T1 25 

tAOSia 4-5 ADS signal inactive after R.E., PHI2 T1 45 

tAOSw 4-5 ADS pulse width at 0.8V (both edges) 35 

tMCa 4-4,4·5 Me signal active (low) after R.E., PHI1 T1 70 

tMCia 4-4,4-5 MC signal inactive after R.E., PHI1 T1 70 
or T3 (burst) 

tAU 4·15 AOO-A031 floating after R.E., PHI1 T1 25 
(caused by HOLD) 

tAOSf 4-15, ADS floatin~ after R.E., PHI1 Ti 55 
4·17 (caused by HOLD) 

tBEf 4-15, BEn floatinL- after R.E., PHI1 Ti 55 
4-17 (caused by HOLD) 

tOOINf 4-15, DDINfioati~ after R.E., PHI1 Ti 55 
4-17 (caused by HOLD) 

tHLOAa 4-15, HLDA signal active (low) after R.E., PHI1 T4 60 
4-16 

tHLOAia 4-18 HLDA signal inactive after R.E., PHI1 Ti 60 

tAOSr 4-18 ADS signal returns from after R.E., PHI1 Ti 55 
floating (caused by HOLD) 

tSEr 4-18 BEn signals return from after R.E., PHI1 Ti 55 
floating (caused by HOLD) 

tOOINr 4-18 ODIN signal returns from after R.E., PHI1 Ti 55 
floating (caused by HOLD) 

tOOINf 4-19 ODIN signal floating after FL T F.E. 50 
(caused by FLT) 

tOOINr 4·20 DDIN signal returns from after FL T R.E. 40 
floating (caused by FL T) 

tSPCa 4·21 SPC output active (low) after R.E., PHI1 T1 30 

tSPCia 4·21 SPC output inactive after R.E., PHI1 T4 2 35 

tSPCnf 4·24 SPC output nonforcing after R.E .• PHI2 T4 10 

tov 4·21 Data valid (slave after R.E., PHI1 T1 50 
processor write) 

tOh 4·21 Data hold (slave after R.E., PHI1 0 
processor write) nextT10rTi 

tpFSw 4·26 m pulse width at 0.8V (both edges) 70 

tPFSa 4-26 m pulse active (low) after R.E., PHI2 50 

tPFSia 4-26 m pulse inactive after R.E., PHI2 50 

tUSv 4-33 U/S signal valid after R.E., PHI1 T4 48 

tUSh 4-33 U/S signal hold after R.E., PHI1 T4 10 

tNSPF 4·28 Nonsmential fetch to after R.E., PHI1 T1 4 next PF clock cycle 

2-155 

NS32332·15 

Min Max 

35 

6 

0 

25 

0 

17 

29 

24 

50 

50 

24 

40 

40 

45 

45 

45 

40 

40 

40 

45 

28 

21 

2 26 

8 

38 

0 

45 

38 

38 

35 

6 

4 

Units 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

tcp 

z en 
w 
N 
W 
W 
~ .... 
o 
........ 
z en 
w 
N 
W 
W 
N 

I .... 
U1 

• 



II) .... 
• N 

C"') 
C"') 
N 
C"') 
CJ) 
Z ...... 
o .... . 
N 
C"') 
C"') 
N 
C"') 
CJ) 
Z 

4.0 Device Specifications (Continued) 

4.4.2.1 Output Signals: Internal Propagation Delays, NS32332-10, NS32332-15 (Continued) 

Symbol Figure Description 
Referencel NS32332-10 NS32332-15 

Units 
Conditions Min Max Min Max 

tpFNS 4-27 PFS clock cycle to next before R.E., PHI1 T1 
4 4 tep non-sequential fetch 

tSTSf 4-15, STS floating (HOLD) after R.E., PHI1 Ti 
55 44 ns 

4-16 

tSTSr 4-18 STS not floating (HOLD) after R.E., PHI1 Ti, T4 55 40 ns 

teo UTa 4-6, BOUT output active after R.E., PHI2 Tmmu 
100 66 ns 

4-10 

teouTia 4-6, BOUT output inactive after R.E., PHI2 
75 40 ns 

4-10 T30rT4 

tlLOa 4-14 ILO signal active after R.E., PHI1 T4 50 38 ns 

tlLOia 4-14 ILO signal inactive after R.E., PHI1 Ti 50 38 ns 

Note: Every memory cycle starts with T 4, during which Cycle Status is applied. If the CPU was Idling, the sequence will be: ". . . Ti, T 4, T1 . . .". If the CPU was 
not Idling, the sequence will be: " ... T4, T1 ... ". 

4.4.2.2 Input Signal Requirements: NS32332-10, NS32332-15 

Symbol Figure Description 
Referencel NS32332-10 NS32332-15 

Units 
Conditions Min Max Min Max 

tPWR 4-31 Power stable to after Vee 50 33 
RSTR.E. reaches 4.5V 

!-,-S 

tOls 4-4 Data in setup before F.E., PHI2 T3 
12 10 

(read cycle) 
ns 

tOlh 4-4 Data in hold after R.E., PHI1 T4 
3 3 

(read cycle) 
ns 

tHLOa 4-15 HOLD active setup before F.E., PHI2 
25 17 4-16, time T2/Tmmu or T3 or Ti 

ns 

tHLOia 4-18 HOLD inactive setup before F.E., PHI2 Ti 
25 17 

time 
ns 

tHLOh 4-15,4-17, HOLD hold time after R.E., PHI1 
0 0 

4-18 TiorT3 
ns 

tFLTa 4-19 FL T active (low) before F.E., PHI2 
25 17 

setup time Tmmu 
ns 

tFLTia 4-20 FL T inactive setup before F.E., PHI2 T3 
25 17 

time 
ns 

tROYs 4-4,4-5, ROY setup time before F.E., PHI1 T3 
20 12 ns 

4-6 

tROYh 4-4,4-5, ROY hold time after R.E., PHI2 T3 
4 3 

4-6 
ns 

tABTs 4-29 ABT setup time before F.E., PHI2 
20 13 

(FLT inactive) T2/Tmmu 
ns 

tABTs 4-30 ABT setup time before F.E., PHI2 Tf 
20 13 

(FL T active) 
ns 

tABTh 4-29, ABT hold time after R.E., PHI1 T3 
0 0 

4-30 
ns 

tRSTs 4-31,4-32 RST setup time before F.E., PHI1 20 13 ns 

tRSTw 4-31,4-32 RST pulse width at 0.8V (both edges) 64 64 tep 

tiNTs 4-34 INT setup time before F.E., PHI2 20 13 ns 

tNMlw 4-35 NMI pulse width at 0.8V (both edges) 40 27 ns 

2-156 



4.0 Device Specifications (Continued) 

4.4.2.2 Input Signal Requirements: NS32332-10, NS32332-15 (Continued) 

Symbol Figure Description 
Reference/ NS32332-10 NS32332-15 
Conditions Min Max Min Max 

to Is 4-24 Data setup (slave before F.E., PHI2 T1 
12 10 

read cycle) 

tOlh 4-24 Data hold (slave after R.E., PHI1 T4 
3 3 

read cycle) 

tOTs 4-31 DT setup time before F.E., PHI1 0 0 

tOTh 4-31 DT hold time after R.E., PHI1 0 0 

tSPCd 4-24 SPC pulse delay after R.E., PHI2 T4 
10 8 

from slave 

tsPCs 4-24 SPC setup time before F.E., PHI1 25 15 

tsPCw 4-24 SPC pulse width at 0.8V (both edges) 20 100 13 66 

tSONd 4-23 SDONE pulse delay after R.E., PHI2 T4 
10 8 

from slave 

tSONs 4-23 SDONE setup time before F.E., PHI1 25 15 

tSONw 4-23 SDONE pulse width at 0.8V (both edges) 20 100 13 66 

tSONSTw 4-23 SDONE pulse width at 0.8V (both edges) 
(to force CPU to 175 275 115 200 
read slave status) 

tsws 4-4,4-5 BW 0-1 setup time before F.E., PHI1 T3 
25 13 4-6 

tSWh 4-6 BWO-1 hold time after R.E., PHI1 T3 0 0 
of Next Memory 
Access Cycle 

tSINs 4-6,4-7 BIN setup time (for before F.E., PHI1 T3 
25 12 

each cycle of the burst) 

tSINh 4-6,4-7 BIN hold time after R.E., PHI1 T4 0 0 

tSERs 4-12,4-13 BER setup time before F.E., PHI1 T4 25 14 

tSERh 4-12,4-13 BER hold time (see note) after R.E., PHI1 Ti 0 0 

tSRTs 4-8,4-9, BRT setup time before F.E., PHI1 
25 14 

4-10,4-11 T3 and T4 

tSRTh 4-8,4-9, BRT hold time after R.E., PHI1 
0 0 

4-10 T4 orTi 

Note: A n state follows T4 when SER is asserted. SER should be deasserted at the latest in the beginning of the cycle following this Ti state. 

4.4.2.3 Clocking Requirements: NS32332-10, NS32332-15 

Symbol Figure Description 
Reference/ NS32332-10 NS32332-15 
Conditions Min Max Min Max 

tcp 4-25 Clock period R.E., PHI1, PHI2 to next 
100 250 66 250 

R.E., PHI1, PHI2 

tCLw(1,2) 4-25 PHI1, PHI2 Pulse Width At 2.0V on PHI1, PHI2 0.5 tcp 0.5 tcp 
(Both Edges) - 10ns - 6 ns 

tCLh(1,2) 4-25 PHI1, PHI2 high time At Vcc-0.9V on 0.5 tcp 0.5 tcp 
PHI1, PHI2 (Both Edges) - 15 ns - 10ns 

tCLI 4-25 PHI1, PHI210wtime AtO.8Von 0.5 tcp 0.5 tcp 
PHI1, PHI2 (Both Edges) -5ns -5 ns 

tnOVL(1,2) 4-25 Non-overlap time 0.8Von F.E., PHI1, PHI2 to 
-2 2 -2 2 

0.8Von R.E., PHI2, PHI1 

tnOVLas Non-overlap asymmetry At 0.8V on PHI1, PHI2 -3 3 -3 3 
(tnOVL(1) - tnOVL(2») 

tcLhas PHI1, PHI2 asymmetry At Vcc-0.9V on PHI1, PHI2 -5 5 -3 3 
(tCLh(1) - tCLh(2») 

2-157 

Units 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Units 

ns 

ns 

ns 

ns 

z en w 
N 
W 
W 
N • ..... 
<::) 

'" z en w 
N 
W 
W 
N . ..... 
C.1I 



4.0 Device Specifications (Continued) 

4.4.3 Timing Diagrams 

T4 T1 

ADS [ 

T2/Tmmu 

ADO-31 [ __ ....j._...,'-_ .... 

T3 T3 T4 I T1 DR TI 

oom[ __ ~_~~_~ ___ ~ ________ +--+ __ ~ ______ _ 

BWO-1 [ 

121 !ID·3 [ 

I11J;lC/m[ 

mrr[ (HIGH) 

TL/EE/8673-48 

Not. 1: Asserted (low) when the bus transaction crosses a double·word boundary (address bits AO-1 wrap around during the transaction). 

Not. 2: B'EO-13E3 are all active during Instruction fetch cycles. 

FIGURE 4·4. NS32332 Read Cycle Timing 

2-158 



4.0 Device Specifications (Continued) 

T4 T1 I T2ITmmu I T3 T3 T4 I T10RTI 

ADO-31 [ 

--+--"'1~-1""I 

BWO-1 [ ____ -+ __ ~-----------J~----------~~~~---------
iEO-3 [ -_ .... 

EDT [ (HIGH) 

TL/EE/8673-49 

Note: If OT/SOOfJ"E Is sampled low during reset, the CPU outputs the data during T2/TMMU (see Section 3.3). 
FIGURE 4-5. NS32332 Write Cycle Timing 

2-159 



LI) 
'I"'" 

• C'\I 
('t) 
('t) 
C'\I 
('t) 

en z 
....... o 
'I"'" • C'\I 
('t) 
('t) 
C'\I 
('t) 

en z 

4.0 Device Specifications (Continued) 

PHI21 

STD-3I--11Y-+-~-+_+--!!-_f--t-__ +-_-+ __ -+-¥'f-f-_-t--+-_-t-+-_-J'---+-_ 

ADS I 

AOD-31 I_+-¥.~~~_ 

ODIN/ __ ~~ __ +-+--+~ __ -+ ________ +-________ ~-+-+-+ ____ +-~+-+-+-______ ~~_ 

BWD-l/ 

iiEO-3/ 

-~-t--_-J'~----------------~~----~----+-------~--

--~~~-------------------------------~ 

PHIl [ 

PHI 2 [ 

m[ 

8ODT[ 

mw[ 

AOO-A031 [ 

FIGURE 4·6. NS32332 Burst Cycle Timing 
(Instruction fetches followed by Operand Reads) 

T1 I T2ITmmu I T3 T4 T3 T4 I TlorTi I 

-+--of' -.qy- -~-
FIGURE 4·7. External Termination of Burst Cycle 

2-160 

TLlEE/8673-50 

TL/EE/8673-94 



4.0 Device Specifications (Continued) 

T4 Tt T3 T4 TI T4 Tt I T2ITmmu I 
PHlt [ 

PHI 2 [ 

BRT [ 

~----~--~~--~~--------~--~----~----------

FIGURE 4-8. Bus Retry During Normal Bus Cycle 

T4 Tl T3 T4 T1 I T2/Tmmu I 
PHll[ 

PHI2[ 

ADS[ 

BRT[~ ____ -+ ____ ~ ____ ~~ __ -+f 

TlIEE/B673-51 

TL/EE/B673-52 

FIGURE 4-9. BRT Activated, but no Bus Retry 

2-161 

z en 
w 
N 
W 
W 
N . 
-" o ...... 
z en 
w 
N 
W 
W 
N . 
-" 
C11 



4.0 Device Specifications (Continued) 

T4 T1 T3 T4 T3 T4 TI T4 

PHI 1 [ 

PHI 2 [ 

ADS [ 

tBRTh 

BM[ ________________ ~~------------~----~+_~~-------------
taDura 

mrr[ 
NIBBLE 1 NIBBLE 2 

FIGURE 4-10. Bus Retry During Burst Bus Cycle 

T4 T1 I T2ITmmu I T3 

PHI1 [ 

PHI 2 [ 

BRT[ 

--------------+---~--

BMJT[ 

NIBBLE 1 

T4 T3 T4 

NIBBLE 2 

T1 I T2/Tmmu I 

FIGURE 4-11. BRT Activated During Burst Bus Cycle, but no Bus Retry 

2·162 

TLlEE/8673-53 

TL/EE/8673-54 



4.0 Device Specifications (Continued) 

T4 T1 I T2ITmmu I T3 T4 TI TI 

PHI1[ 

PHI 2 [ 

BER[ 

FIGURE 4-12. Bus Error During Normal Bus Cycle 

T4 T1 I T2ITmmu I T3 T4 T3 T4 

PHI 1 [ 

PHI 2 [ 

IBERs 

NIBBLE 1 NIBBLE 2 

FIGURE 4-13. Bus Error During Burst Bus Cycle 

2-163 

TLlEE/8673-55 

TI 

TL/EE/8673-56 

z 
(J) 
W 
N 
W 
W 
N • .... 
o ...... 
Z 
(J) 
W 
N 
W 
W 
N • .... 
U1 



an .... 
• 
'" ('I) 
('I) 

'" ('I) 
(/) 
z ....... 
o .... 
• 
'" ('I) 
('I) 

'" ('I) 
(/) 
z 

4.0 Device Specifications (Continued) 

T4· T1 I T2ITmmu I T3 T4 TI TI T1 I T2ITmmu I T3 T4 

PHI2[ 

m{ 

AiiS[ 

DDlN· [ 

·End of Dummy Read cycle with the address of the interlocked operand. 

FIGURE 4-14. Timing of Interlocked Bus Transactions 

T3 T4 TI TI Ti 

PHI1 [ 

PHI2[-i __ ~ 

HOi:6[ 

HLoA[ 
ADS [ 

50tH -4------~-----+---~-~--J - - - - (FLOATING) - - --

BEO-BE3 [ - - - -,- - - - - (FLo1r1NGI- - - -

ADO-AD23 [-4r------!------4------+--.. 1 '~~-T ----IFU,{"NG.- ---
m [-t-----t-----+-----t-..... I :~~ -r ---iFLotTiNGI----

FIGURE 4-15. Floating by HOLD Timing (CPU Not Idle Initially) 

TI 

tlLOIa 

TLlEE/8673-57 

TLlEE/8673-58 

Note: Whenever the CPU is not idling (not in Til. the HOLD signal must be active before the falling edge of PHI2 of the clock cycle that appears two clock cycles 
before T4 (TX1) and stay low until after the rising edge of PHI1 of the clock cycle that precedes T4 (TX2) for the request to be acknowledged. 

2-164 



4.0 Device Specifications (Continued) 

nORT4 T1 

PHil [ 

PHI2 [ 

STS [ 

STO-3 [ 

ADS [ 

ADO-31 [ 

BEO-3 [ 

BOUT [ 

BiN [ 

RDV[ 

HOLD [ 

HLDA [ 

TL/EE/8673-90 

FIGURE 4·16. Floating by HOLD Timing (Burst Cycle Ended by HOLD Assertion) 

2-165 

z en w 
N 
W 
W 
N • .... 
o ....... z en 
w 
N 
W 
W 
N • .... 
U1 



U) r------------------------------------------------------------------------------------, ,.. 
~ 
C'I') 
C'I') 

'" ~ z 
C) ,.. 
~ 
C'I') 
C'I') 

'" C'I') 
tJ) 
z 

4.0 Device Specifications (Continued) 

I TI I TI I TI I 
PHil [Jl n ..... ----'n ..... ---oI!n _____ _ 
PHI 2 [ --t--... 

HOLD [ 

~,oom[ __ -+ ______ -+ _______ ~------~--' 

BED-BE3 [ _ ..... ________ -+-______ -+ ____ ...., __ 

ADO-AD3l [-

FIGURE 4·17. Floating by HOLD Timing (CPU Initially Idle) 

PHil L...h ..... TI_ .... n .. _T_1 _ .. h .. _Ti_orT_4~n .. -Ti-or-Tl--

PHI2 [--t---
IHLDla 

mlA[_~ ____ ~ __ 1 

BEO-BE3 [ -

___ [ (FLOATING) 
ADO-03l -- ----

~_ISTsr 
(FLOATING) 

STS [----------- V 
FIGURE 4·18. Release from HOLD 

2-166 

TL/EE/BB73-59 

TLlEE/BB73-60 



4.0 Device Specifications (Continued) 

CPU STATES 
MMU STATES I ~~ I 

T2/Tmmu 
Tmmu I 

n PHil [Jl"--_--1n .... __ -! 
PHI2 [ -+-__ ..... 

FLT [ 

ADO-31 [ 
(CPU) 

ADS [ 
(CPU) 

ODiN [+--------+--'1 
BEo-rn [-+ __ --' 

I 
Tf Tf 

T4 Tl 

n 

TLlEE/8673-6l 

Nota: The bus lines AOO-3l are temporarily driven in T2/TMMU and Tf when rn Is asserted only if Di/SiX5NE Is sampled low during reset (see Section 3.3). 

FIGURE 4-19. FLT Initiated Cycle Timing 

CPU STATES Tf T3 T4 TIORTt 

MMU STATES Tmmu 

PHil [ 

PHI2[ 

m[ (MMU) 

ADO-AD3l [ 
(CPU) -

DoiN 
(CPU) [ 

AoS[ 
(CPU) 

m-m[ 
TLlEE/8673-62 

FIGURE 4-20. Release from FL T Timing (CPU Write Cycle) 

Nota: When m Is deasserted the CPU restarts driving WiN before the MMU releases it. This. however. does not cause any conflict. since both CPU and MMU 
force l5i5iN to the same logic level. 

2-167 

z en w 
N 
W 
W 
N • .... 
0 

'" z en w 
N 
W 
W 
N . .... 
U1 



U) --. N 
C") 
C") 
N 
C") 

en z ...... o --. N 
C") 
C") 
N 
C") 

en z 

4.0 Device Specifications (Continued) 

I T1 I T4 I 
PHI1[~ 

PHI2 [ 

ADO-31 [ 
(ADO-1S) 

SPC [ 

DoiN[ 

ST0-3 [ 

ADS [ (HIGH) 
I 

TL/EE/B673-64 

FIGURE 4-21. Slave Processor Write Timing 

T1 

PHI 1 [ 

PHI 2 [ 

m[ 
(FROM CPU) 

SiiONE[ 
(FROM SLAVE) 

T4 

I T1 I T4 I 
PHI1[~ 

PHI2 [ -+ __ -' 

ADO-31 [ 
(ADO-1S) 

SPc[ 
(CPU) 

--tDlh 

DIffiN[~~ _____ +-____ -+_ 

ST0-3 [~_ST_'li._:r_U_S_VA_L_I_D-+--, ",N_E_X_T_S_T'Ii._:r,..U_S 

ADs [ (HIGH) 

TL/EE/B673-65 

FIGURE 4-22. Slave Processor Read Timing 

TL/EE/B673-63 

FIGURE 4-23. OT ISOONE Timing (32-Blt Slave Protocol) 

T1 T4 

PHI 1 [ 

PHI2 [ 

m[ 
(FROM CPU) 

m[ 
(FROM SLAVE) 

TL/EE/B673-66 

FIGURE 4·24. SPC Timing (16-Blt Slave Protocol) 
Note: After transferring last operand to a Slave Processor, CPU turns OFF driver and holds SPC high with internal 5 kO pull up. 

2-168 



4.0 Device Specifications (Continued) 

PHI1 [ 

PHI2 [ ------+'1 
t nOVL(I) 

FIGURE 4-25. Clock Waveforms 

PH. [--fl--flJflSLJ 
mr~r-e-

TL/EE/8673-91 

TLlEE/8673-68 

FIGURE 4-26. Relationship of PFS to Clock Cycles 

Tl 

PHil [ 

m[b / 
IpFNS .I 

STM [ X CODE 1001 

TLlEE/8673-69 

FIGURE 4-27. Guaranteed Delay. PFS to Non-Sequential Fetch 

1 T1 1 12 1 ••• 1 1 1 I 

PH'LfLSUl-;rfl---fl-fL 
ADi[ 

SfO.3 [ CODE 1001 

-+------------------~~--------~-------------

TLlEE/8673-70 

FIGURE 4-28. Guaranteed Delay. Non-Sequential Fetch to PFS 

2-169 

z 
(f) 
W 
N 
W 
W 
N . 
-"" o 
'­
Z 
(f) 
W 
N 
W 
W 
N . 
-"" 
<.n 



4.0 Device Specifications (Continued) 

T1 I T2ITmmu I T3 TI 

PHI1 [ 

PHI2 [ 

TL/EE/8673-71 

FIGURE 4-29. Abort Timing, FL T Not Applied 

Tt Tf Tt Tf Ti TI 

PHI1 [ 

fLi[ __ ~ ____ ~ ______ ~ ____ ~ __ ~ 

TL/EE/8673-72 

FIGURE 4-30. Abort Timing, FL T Applied 

vee _v-----------~~ 

PHI1[ __ -+ ___ .... 

[ 

tPWR 

~/AErr --------_______ ~~-J 
TL/EE/8673-73 

FIGURE 4-31. Power-On Reset 

2-170 



4.0 Device Specifications (Continued) 

PHll[~ 

'II-______ ~,~--t--------d~----F~tRS~ --l
' tRSTw 

RST/ABT [ .. 55 
~s-j tOTI trtOTh 

W/SDONE[ ____________ ~,~ f 
TL/EE/8873-92 

FIGURE 4-32. Non-Power-On Reset 

I T30RTI I T40RTI I T1 T2 T3 T4 

PHI1[ 

AO'S[ 

U/S[ ............. """"""""""-f- I'---+----------I-JI 
TL/EE/8873-75 

FIGURE 4-33. U/S Relationship to Any Bus Cycle - Guaranteed Valid Interval 

PH'2[SUUL 
~~~ 

iT[~
TL/EE/8673-76

FIGURE 4-34. INT Interrupt Signal Detection

... [

2·171

TL/EE/8673-77

FIGURE 4-35. NMllnterrupt Signal Timing

•

U) r--, ,...
• N

Cf)
Cf)
N
Cf)

r.n
z
o ,...
• N

Cf)
Cf)
N
Cf)

r.n z

Appendix A: Instruction Formats
NOTATIONS

i = Integer Type Field

B = 00 (Byte)

W = 01 (Word)

D = 11 (Double Word)

f= Floating Point Type Field

F = 1 (Std. Floating: 32 bits)

L = 0 (Long Floating: 64 bits)

c = Custom Type Field

D = 1 (Double Word)

Q = 0 (Quad Word)

op = Operation Code

Valid encodings shown with each format.

gen, gen 1, gen 2 = General Addressing Mode Field

See Sec. 2.2 for encodings.

reg = General Purpose Register Number

cond = Condition Code Field
0000 = EQual: Z = 1
0001 = Not Equal: Z = 0
0010 = Carry Set: C = 1
0011 = Carry Clear: C = 0
0100 = Higher: L = 1
0101 = Lower or Same: L = 0
0110 = Greater Than: N = 1
0111 = Less or Equal: N = 0
1000 = Flag Set: F = 1
1001 = Flag Clear: F = 0
1010 = LOwer: L = 0 and Z = 0
1011 = Higher or Same: L = 1 or Z = 1
1100 = Less Than: N = 0 and Z = 0
1101 = Greater or Equal: N = 1 or Z = 1
1110 = (Unconditionally True)
1111 = (Unconditionally False)

short= Short Immediate value. May contain
quick: Signed 4-bit value, in MOVQ, ADDQ,

CMPQ, ACB.

cond: Condition Code (above), in Scond.

areg: CPU Dedicated Register, in LPR, SPR.
0000 = US
0001 - 0111 = (Reserved)
1000 = FP
1001 = SP
1010 = SB
1011 = (Reserved)
1100 = (Reserved)
1101 = PSR
1110 = INTBASE
1111 = MOD

Options: in String Instructions

I U/W I BIT I

T = Translated

B = Backward

U/W = 00: None

01: While Match

11: Until Match

2-172

Configuration bits in SETCFG Instruction:

I P I FC I FM I FF I C I M I F II I

mreg: NS32382 Register number, in LMR, SMA.
0000 = BAR
0001 = (Reserved)
0010 = BMR
0011 = BDR
0100 = (Reserved)
0101 = (Reserved)
0110 = BEAR
0111 = (Reserved)
1000 = (Reserved)
1001 = MCR
1010 = MSR
1011 = TEAR
1100 = PTBO
1101 = PTB1
1110 = IVARO
1111 = IVAR1

7 0

co'nd' 11' 0 ' 1 ' 01

FormatO

Bcond (BR)

7 0

1

, ,
10 ' 0 ' 1 i 01 op

Format 1

BSR -0000 ENTER -1000
RET -0001 EXIT -1001
CXP -0010 NOP -1010
RXP -0011 WAIT -1011
RETI -0100 DIA -1100
RETI -0101 FLAG -1101
SAVE -0110 SVC -1110
RESTORE -0111 BPT -1111

15 8
1

7 0 , ,
'Sh~rt 1

, ,
11 ' 1 ' I gen op

Format 2
ADDQ -000 ACB -100
CMPQ -001 MOVQ -101
SPR -010 LPR -110
Scond -011

Appendix A: Instruction Formats (Continued)

15 SI7 0

I I ~e~ I I I alp 11 I 1 I 1 I 1 ' 1 I : I
Format 3

CXPo -0000 ADJSP -1010
BICPSR -0010 JSR -1100
JUMP -0100 CASE -1110
BISPSR -0110

Trap (UNO) on XXX1, 1000

I' , , , I" I I
gen 1 gen 2

I I I

op

Format 4

ADD -0000 SUB -1000
CMP -0001 AD DR -1001
BIC -0010 AND -1010
ADDC -0100 SUBC -1100
MOV -0101 TBIT -1101
OR -0110 XOR -1110

S 7

i o 0 0 0 1 1 1

Format 5
MOVS -0000 SETCFG* -0010
CMPS -0001 SKPS -0011

Trap (UNO) on 1XXX, 01XX

S 7

i o 1 o 0 1 1 1

FormatS
ROT -0000 NEG -1000
ASH -0001 NOT -1001
CBIT -0010 Trap (UNO) -1010
CBITI -0011 SUBP -1011
Trap (UNO) -0100 ABS -1100
LSH -0101 COM -1101
SBIT -0110 IBIT -1110
SBITI -0111 ADDP -1111

·Short 1 In format 5 applies only for SETCFG Instruction. In other instruc­
tions this field Is O.

0

0

0

0

0

2-173

MOVM
CMPM
INSS
EXTS
MOVXBW
MOVZBW
MOVZiD
MOVXiD

EXT
CVTP
INS
CHECK
MOVSU
MOVUS

MOVif
LFSR
MOVLF
MOVFL

Trap (UNO) Always

0

i 1100111 0

Format 7
-0000 MUL -1000
-0001 MEl -1001
-0010 Trap (UNO) -1010
-0011 DEI -1011
-0100 QUO -1100
-0101 REM -1101
-0110 MOD -1110
-0111 DIV -1111

TLlEE/8673-78

FormatS
-000 INDEX -100

-001 FFS -1 01
-010
-011
-110,reg = 001
-110, reg = 011

0

1 1 1 1 0

Format 9
-000 ROUND -100
-001 TRUNC -101
-010 SFSR -110
-011 FLOOR -111

7 0 ---
10 1 1 0 I 1 1 1 1 ---

TL/EE/8673-79

Format 10

z
tJ)
W
N
W
W
N
o
Z
tJ)
W
N
W
W
~
en

Ell

It)
• Appendix A: Instruction Formats (Continued) N

C")
C")

1

23 16115 al7 01
N

0 C")
tJ)
Z 1 1 1 1 0 :nlnlnI1

1
0111110:

0 Operation Word 10 Byte • N Format 11 C")
C") Format 15 N ADDf -0000 OIVf -1000
C")
tJ) MOVf -0001 Note 1 -1001 (Custom Slave) Z CMPf -0010 Trap (UNO) -1010 Operation Word Format nnn

Note 3 -0011 Trap (UNO) -1011
SUBf -0100 MULf -1100
NEGf -0101 ABSf -1101
Trap (UNO) -0110 Trap (UNO) -1110 000
Trap (UNO) -0111 Trap (UNO) -1111

Format 15.0

0 CATSTO -0000 LCR -0010
CATST1 -0001 SCR -0011

111111 0

Trap (UNO) on all others

Format 12

Note 2 -0000 Note 2 -1000 001

Note 1 -0001 Note 1 ·1001
POLYf -0010 Trap (UNO) ·1010 Format 15.1

DOTf -0011 Trap (UNO) ·1011
CCV3 ·000 CCV2 ·100

SCALBf ·0100 Note 2 ·1100
LCSR ·001 CCV1 ·101

LOGBf -0101 Note 1 ·1101
CCV5 ·010 SCSR ·110

Trap (UNO) ·0110 Trap (UNO) ·1110
CCV4 ·011 CCVO -111

Trap (UNO) -0111 Trap (UNO) ·1111

7 0

···1 I I I I I I I 1
_ .. 10011110 101

TL/EE/B673-B1

Format 13 Format 15.5

Trap (UNO) Always
CCALO ·0000 CCAL3 -1000
CMOVO ·0001 CMOV3 -1001
CCMPO ·0010 Trap (UNO) -1010
CCMP1 ·0011 Trap (UNO) -1011
CCAL1 ·0100 CCAL2 ·1100

Format 14 CMOV2 ·0101 CMOV1 -1101
Trap (UNO) ·0110 Trap (UNO) -1110

ROVAL ·0000 LMR ·0010 Trap (UNO) ·0111 Trap (UNO) ·1111
WRVAL -0001 SMR -0011

Trap (UNO) on 01XX, 1XXX

2-174

Appendix A: Instruction Formats (Continued)

23 16115

111
I I I I II I

gen 1 gen 2 op

Format 15.7

Note 2 -0000 Note 2 -1000
Note 1 -0001 Note 1 -1001
Note 3 -0010 Trap (UNO) -1010
Note 3 -0011 Trap (UNO) -1011
Note 2 -0100 Note 2 -1100
Note 1 -0101 Note 1 -1101
Trap (UNO) -0110 Trap (UNO) -1110
Trap (UNO) -0111 Trap (UNO) -1111
If nnn = 010,011,100,110 lhen Trap (UNO) Always.

7 0

---I I I I I I I I 1
___ 0 1 0 1 1 1 1 0

TL/EE/8673-B2

Format 16
Trap (UNO) Always

7 0

---I I I I I I I I 1
___ 1 1 0 1 1 1 1 0

TL/EE/8673-83

Note 1: Opcode not defined; CPU treats like MOV, or CMOVc. First operand
has access class of read; second operand has access class of write; f or c
field selects 32- or 64-bit data.

Note 2: Opcode not defined; CPU treats like ADD, or CCALc. First operand
has access class of read; second operand has access class of read-modify­
write; f or c field selects 32- or 64-bit data.

Note 3: Opcode not defined; CPU treats like CMP, or CCMPc. First operand
has access class of read; second operand has access class of read; f or c
field selects 32- or 64-bit data.

8

2-175

Format 17

Trap (UNO) Always

---I I I I I I I I ,
___ 1 0 0 0 1 1 1 0

TLlEE/B673-B4

Format 18

Trap (UNO) Always

7 0

---I I I I I I I I I ___ x x x 0 0 1 1 0

TLlEE/B673-B5

Format 19

Trap (UNO) Always

Implied Immediate Encodlngs:
7 0

I r7 ; rB ; r5 ; r4 ; r3 ; r2 ; r1 ; rO I
Register Mark, appended to SAVE, ENTER

7 0

I rO ; r1 ; r2 ; r3 ; r4 ; r5 ; rB ; r7 I
Register Mark, appended to RESTORE, EXIT

7 0

I ; offset; I ; ; lengfh -1 ; I
Offset/Length Modifier appended to INSS, EXTS

z en
w
N
W
W
N .
-4
o
.......
Z en
w
N
W
W
N • -4
(J1

•

~
-....I
0'>

~XOUT

Cl
-.:...

ii£Sfi 'I::'T,I
• r PH"

NS32C201
TCU

ilsJo erTL

ROy

lifO

IIfl

1ifi
BU

~
-1

HOTIi

t I~

HlIlAO

~-PHil

PHI2

I, II 3~
I I .IBWI

I I 'IBWO

, ADORIDATA BUS

NS32332
CPU

ADO-AD31 (321.

HLOii
Prs

wSI I I .1 UlS
ADS ADS

ODIN 00iii
STO-ST3

RST/~I. • I I ~E
10kl0

+5V~
132'

U NS320B2
II

~., .-

?U 1=:t~:Jk~M'
132)

5T0-5T'-1'

I'AY

FIT

DiE

r-

NS32332-10/NS32332-15

BUS
CONTROL

LOGIC

f-iiii

I--Wii

f.--- ACK

I I I I I I • ODIN

:J>

" " CD
:J
C.
>e"

~
:J
~

CD
S»
n
S"
cc
en c
cc
cc
CD
tn
~

0"
:J
tn

II' BIN
'Irtf{ .~

TUEE/8673-86

FIGURE B-1. System Connection Diagram (32332, 32081 & 32082)

Appendix 8: Interfacing Suggestions (Continued)

... ,

.... ,

.... ,

-+-

>-4
>--
>--
-+-

>---+
>---+

..
::.
::: ,.

+5 'L
~

... ,

CWAIT

WAITI

WAIT2

BRSn

BRSTO

r+ ITT
RST

1
BEO BEl BE2 BE3 RO~U

BOUT ILO
ITT

BiN ODIN
RST/ABI

BWO
~
HLOA

BWI
NS32332 ADS

CPU BER
PFS BRT

Dl'/SOONE iNT
SPC

iOO
HOLD

STO-3
PHil

AOO-31 PHI2

.II ~

~ ~ ..
.,

.II .. +5

1 10k.o.

'"

"l (,

00-31
SON332 ~ NOE

PSO SPC

PSI ...
STO-3 ,

NS32381 RST fPU

ClK

ODIN

iID
WR

BUS TSO
CONTROL

OBE lOGIC
ADS

ROY

CLK ODIN

ROY
RSTI
ITT
ODIN
RSljABT
llLL
HLOAI

ADS NS32382
BER !.l!.lU
BRT
SDONE
SPC

"
HOLD

".:
STO-3
PHil
PHI2 AOO-31

.. ~

~ Iir

1

~

~f---+ +f'A IV 2A
3A 2Y f---+
4A

3yf---+ lB
28
38 4yf---+
48

'---

I~
~ ~

!.lILO

HlOAO

PAY ... --'" 5V .
CINH

PAO-31
... ..

!.lADS

~
5V

l...wv-+5V
~ ...

...

1

CINH

PAO-31

RST

00-31

PHil PHI2
RSTO

NS32C201
TCU

cm XIN

~
XOUT J

rR~'

TL/EE/8673-93

FIGURE 8-2. System Connection Diagram (32332, 32381 & 32382)

2-177

z
en w
N
W
W
N . -­o
z
en w
N
W
W
N • -­U1

it) --N
C")
o o
N
C")
U)
Z
o --N
C")
o
o
N
C")
U)
Z

~National
~ Semiconductor
NS32C032-10/NS32C032-15
High-Performance Microprocessors
General Description
The NS32C032 is a 32-bit, virtual memory microprocessor
with a 16-MByte linear address space and a 32-bit external
data bus. It has a 32-bit ALU, eight 32-bit general purpose
registers, an eight-byte prefetch queue, and a slave proces­
sor interface. The NS32C032 is fabricated with National
Semiconductor's advanced CMOS process, and is fully ob­
ject code compatible with other Series 32000® processors.
The Series 32000 instruction set is optimized for modular,
high·levellanguages (HLL). The set is very symmetric, it has
a two address format, and it incorporates HLL oriented ad­
dressing modes. The capabilities of the NS32C032 can be
expanded with the use of the NS32081 floating point unit
(FPU), and the NS32082 demand-paged virtual memory
management unit (MMU). Both devices interface to the
NS32C032 as slave processors. The NS32C032 is a gener­
al purpose microprocessor that is ideal for a wide range of
computational intensive applications.

Block Diagram
ADD/DATA CONTROLS & STATUS

SP1
SPO
PC
RO
R1
R2
R3
R4
RS
R8
R7

Features
• 32-bit architecture and implementation

• Virtual memory support
• 16-MByte linear address space

• 32-bit data bus
• Powerful instruction set

- General 2-address capability
- Very high degree of symmetry
- Addressing modes optimized for high-level

languages
• Series 32000 slave processor support
• High-speed CMOS technology
• 68-pin leadless chip carrier

MICROCODE ROM
AND

CONTROL LOGIC

DID
CFG REGISTER

WORKING
REGISTERS

I
I
I
I
I

MOO I

PSR :

L _________________ J
TL/EE/9160-1

FIGURE 1

2-178

1.0 PRODUCT INTRODUCTION

2.0 ARCHITECTURAL DESCRIPTION

2.1 Programming Model

2.1.1 General Purpose Registers
2.1.2 Dedicated Registers
2.1.3 The Configuration Register (CFG)
2.1.4 Memory Organization
2.1.5 Dedicated Tables

2.2 Instruction Set

2.2.1 General Instruction Format
2.2.2 Addressing Modes
2.2.3 Instruction Set Summary

3.0 FUNCTIONAL DESCRIPTION

3.1 Power and Grounding
3.2 Clocking
3.3 Resetting
3.4 Bus Cycles

3.4.1 Cycle Extension
3.4.2 Bus Status
3.4.3 Data Access Sequences

3.4.3.1 Bit Accesses
3.4.3.2 Bit Field Accesses
3.4.3.3 Extending Multiply Accesses

3.4.4 Instruction Fetches
3.4.5 Interrupt Control Cycles
3.4.6 Slave Processor Communication

3.4.6.1 Slave Processor Bus Cycles

Table of Contents
3.0 FUNCTIONAL DESCRIPTION (Continued)

3.8 NS32C032 Interrupt Structure

3.8.1 General Interrupt/Trap Sequence
3.8.2 Interrupt/Trap Return
3.8.3 Maskable Interrupts (The INT Pin)

3.8.3.1 Non·Vectored Mode
3.8.3.2 Vectored Mode: Non·Cascaded Case
3.8.3.3 Vectored Mode: Cascaded Case

3.8.4 Non-Maskable Interrupt (The NMI Pin)
3.8.5 Traps
3.8.6 Prioritization
3.8.7 Interrupt/Trap Sequences Detailed Flow

3.8.7.1 MaskablelNon-Maskable Interrupt
Sequence

3.8.7.2 Trap Sequence: Traps Other Than Trace
3.8.7.3 Trace Trap Sequence
3.8.7.4 Abort Sequence

3.9 Slave Processor Instructions

3.9.1 Slave Processor Protocol
3.9.2 Floating Point Instructions
3.9.3 Memory Management Instructions
3.9.4 Custom Slave Instructions

4.0 DEVICE SPECIFICATIONS

4.1 Pin Descriptions

4.1.1 Supplies
4.1.2 Input Signals
4.1.3 Output Signals

3.4.6.2 Slave Operand Transfer Sequences
4.1.4 Input/Output Signals

4.2 Absolute Maximum Ratings
4.3 Electrical Characteristics
4.4 Switching Characteristics

3.5 Memory Management Option

3.5.1 Address Translation Strap
3.5.2 Translated Bus Timing
3.5.3 The m (Float) Pin
3.5.4 Aborting Bus Cycles

3.5.4.1 The Abort Interrupt
3.5.4.2 Hardware Considerations

3.6 Bus Access Control
3.7 Instruction Status

4.4.1 Definitions
4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation
Delays

4.4.2.2 Input Signals Requirements
4.4.2.3 Clocking Requirements

4.4.3 Timing Diagrams
Appendix A: Instruction Formats
Appendix B: Interfacing Suggestions

List of Illustrations
.•...... 1-1 CPU Block Diagram.......................... 2-1

The General and Dedicated Registers .. 2-2
Processor Status Register ... 2-3

!i~~~~l;;ii~nltions:::: H:::::::::::::::::::::::::::::::: H:: H:::::::::::::::::::: H::::::::::: :11
Clock Timing Relationships. .. . 3 3

~~~:;~~~:':~~~n~Ui:~~~~",.:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :~~;: 
Recommended Reset Connections, Non-Memory-Managed System ................................................ . 
Recommended Reset Connections, Memory-Managed System ..................................................... 3-5b 

2-179 

z en 
w 
N 
o o 
W 
N . 
""'" o ....... 
z en 
w 
N o 
o 
W 
N . 
""'" U1 



II) ..... 
N 
CI) 
o 
o 
N 
CI) 
U) 
Z ..... o ..... • N 
CI) 
o 
o 
N 
CI) 
U) 
Z 

List of Illustrations (Continued) 
Bus Connections .......•.•............................•..•.........•..........••...•....•..•.........••....•... 3-6 
Read Cycle Timing ...•.....•.................••......•...............••...•.............•..••.........•........ 3-7 
Write Cycle Timing ..•..•........•...••.....•..............•....................•......•.•..•.•.....•..•........ 3-8 
ROY Pin Timing •........•......••..•..•.......................•.....•••....................•.••.......••....•.. 3-9 
Extended Cycle Example ...............•.....••.....••..•...........••...............••...••................•. 3-1 0 
Memory Interface ..........•.•.........•......•......•..... " .•......•••....••...•...••... , ...••....•..•...... 3-11 
Slave Processor Connections ....•......•................•.....•.......•.....••........•.•.............•.....•. 3-12 
CPU Read from Slave Processor .••.....•................•..•...................•.......•.•..•.......•..•....... 3-13 
CPU Write to Slave Processor .•..•.......•....••...............•.....•••...............•.•..•..........•....... 3-14 
Read Cycle with Address Translation (CPU Action) •......•......•.•.....•••.....••.•...........•..........•.....•• 3-15 
Write Cycle with Address Translation (CPU Action) ........•...•........•...........•....•...•....•.......•..•.•... 3-16 
Memory-Managed Read Cycle ....•.....••.........•.....•..•..•.•.......••......••..•..........•......•..•..... 3-17 
Memory-Managed Write Cycle •.•.....•.........•.••..........••.••....•.•.........•..........•.••.....•....•..• 3-18 
FLT Timing .......••.......•.....•.....••••..........•..•.....•.•..............•........•..•.•.•......••.•..•. 3-19 
HOLD Timing, Bus Initially Idle ......... " .......•. '" .........•..••......•..............•.•......•..........•..• 3-20 
HOLD Timing, Bus Initially Not Idle .......••.•.....•....•........•.......•...•......•....•.•..•..••......•.••..•. 3-21 
Interrupt Dispatch and Cascade Tables ..........••............•.•••.... " ...•......•....•....•...•......•.....•. 3-22 
Interrupt/Trap Service Routine Calling Sequence ................................................................. 3-23 
Return from Trap (RETI n) Instruction Flow •.......••••......•..•.•••.....•.........•....•..•..•.•••.....••..•..• 3-24 
Return from Interrupt (REn Instruction Flow ••........•....••.•..•.•.•.....•••......•.....•.....•.••..........••.. 3-25 
Interrupt Control Connections (16 levels) ...•••..........•..•.•....•.........•......•...••........•..••.....••.. ~ .3-26 
Cascaded Interrupt Control Unit Connections ..........••..•..•..•.•••.•...•..••.......•..•.........•......•..•... 3-27 
Service Sequence ..••....•..•..••.•....•..•....•.•••..•.....•..••........•...........•........••............. 3-28 
Slave Processor Protocol .....•....................•.......•.....••........••......••.....•.....•...•...•..•... 3-29 
Slave Processor Status Word Format .•..............••............••.........•.....•.•..•..•.....••......•...... 3-30 
NS32C032 Connection Diagram .....•........•.........•..•.....•.•••.....•......•...•......•.....••............ 4-1 
Timing Specification Standard (Signal Valid After Clock Edge) •.....................•...................•.......•..... 4-2 
Timing Specification Standard (Signal Valid Before Clock Edge) .•....•.•..•.....••......••.....•..•.....••.........• .4-3 
Write Cycle ...•..•..•••...•..•.....•........••......•.............•..........•.........•.........•..••......... 4-4 
Read Cycle .••............................................•........••......•.•....•......•..•.....•..•.•.•..... 4-5 
Floating by HOLD Timing (CPU Not Initially Idle) .••...•....•..•.......••......•...................•...•..........•. .4-6 
Floating by HOLD Timing (CPU Initially Idle) ....••...................••......•...•.............•........•......... .4-7 
Release from Hold ..........•......•.......••........••.•..••.......••.....•.......................•........... 4-8 
FLT Initiated Float Cycle Timing .......•.......•••.......•..•........•.........•.•........•...•........•......... .4-9 
Release from FL T Timing ............•••.......••....•........•....•..........••........•............•......•.. 4-1 0 
Ready Sampling (CPU Initially READY) .••.......................................•........•.........•..•.......•. 4-11 
Ready Sampling (CPU Initially NOT READY) ....••...........•....••....••.............•.••...•.......•..•........ 4-12 
Slave Processor Write Timing ...••....•.•...••.......................•..........•....•................•......... 4-13 
Slave Processor Read Timing .•.........•................•...........•••............•...•....•..........•....•• 4-14 
SPC Timing ................................................................................................... 4-15 
Reset Configuration Timing .....••.....••.......••....•........•....•...••...............•.....••......•..•..... 4-16 
Clock Waveforms .............................................................................................. 4-17 
Relationship of PFS to Clock Cycles ....••......••••...•......•..•.....•.•.........••...•.•..•••.•......•.•...... 4-18 
Guaranteed Delay, PFS to Non-Sequential Fetch •........•..•.••.•...............••..•.................•........ 4-19a 
Guaranteed Delay, Non-Sequential Fetch to PFS ............................................................... .4-19b 
Relationship of j[Q to First Operand of an Interlocked Instruction .........•.•....•..•.•......•..•.•......•... ~ ..... 4-20a 
Relationship of ILO to Last Operand of an Interlocked Instruction .•.•......•.•.............•.....•.•.......••..... .4-20b 
Relationship of ILO to Any Clock Cycle ......................................................................... .4-21 
U/S Relationship to any Bus Cycle - Guaranteed Valid Interval. ................................................... .4-22 
Abort Timing, FL T Not Applied •.•...•....•.•............•.•....•.•......•••.......••......•........•........•... 4-23 
Abort Timing, FL T Applied .•.............•.••..................••..•.....•..•......•........•..•..••............ 4-24 
Power-On Reset •.......•....•..•...................•...........•.•.....•............•..•.....•..•......•..... 4-25 
Non-Power-On Reset .....•...............••........•.........••.•..•.....•..•........•..........•............. 4-26 
I NT I nterrupt Signal Detection •...........•••.......••.•........•.•........••.•........•........................ 4-27 
MNllnterrupt Signal Timing ...•.....•......••...•..••...........•.•..•.....••.•......•...........•..•.....•..... 4-28 
Relationship Between Last Data Transfer of an Instruction and PFS Pulse of Next Instruction ..•..•...............•..•.. 4-29 
Processor System Connection Diagram ...•••......................•.......•...............•..•.....•........•.... B-1 

2-180 



List of Tables 
NS32C032 Addressing Modes •...............................................................................•.. 2-1 
NS32C032 Instruction Set Summary ..................................................•........................... 2-2 
Bus Access Type .........................................•....................•.........................•..... 3-1 
Access Sequence ............•..........................••....................................... , ............. 3-2 
Interrupt Sequences ......................................•..................................................... 3-3 
Floating Point Instruction Protocols ............................................................................... 3-4 
Memory Management Instruction Protocols ........................................................................ 3-5 
Custom Slave Instruction Protocols ............................................................................... 3-6 

2-181 

• I 



Ln .... . 
N 
C") 
o 
o 
N 
C") 
(J) 
Z ...... o .... 
N 
C") 
o 
o 
N 
C") 
(J) 
Z 

1.0 Product Introduction 
The Series 32000 microprocessor family is a new genera­
tion of devices using National's XMOS and CMOS technolo­
gies. By combining state-of-the-art MOS technology with a 
very advanced architectural design philosophy, this family 
brings mainframe computer processing power to VLSI proc­
essors. 

The Series 32000 family supports a variety of system con­
figurations, extending from a minimum low-cost system to a 
powerful 4 gigabyte system. The architecture provides com­
plete upward compatibility from one family member to an­
other. The family consists of a selection of CPUs supported 
by a set of peripherals and slave processors that provide 
sophisticated interrupt and memory management facilities 
as well as high-speed floating-point operations. The archi­
tectural features of the Series 32000 family are described 
briefly below: 

Powerful Addressing Modes. Nine addressing modes 
available to all instructions are included to access data 
structures efficiently. 

Data Types. The architecture provides for numerous data 
types, such as byte, word, doubleword, and BCD, which may 
be arranged into a wide variety of data structures. 

Symmetric Instruction Set. While avoiding special case 
instructions that compilers can't use, the Series 32000 fami­
ly incorporates powerful instructions for control operations, 
such as array indexing and external procedure calls, which 
save considerable space and time for compiled code. 

Memory-to-Memory Operations. The Series 32000 CPUs 
represent two-address machines. This means that each op­
erand can be referenced by anyone of the addressing 
modes provided. This powerful memory-to-memory archi­
tecture permits memory locations to be treated as registers 
for all useful operations. This is important for temporary op­
erands as well as for context switching. 

Memory Management. Either the NS32382 or the 
NS32082 Memory Management Unit may be added to the 
system to provide advanced operating system support func­
tions, including dynamic address translation, virtual memory 
management, and memory protection. 

Large, Uniform Addressing. The NS32C032 has 24-bit ad­
dress pointers that can address up to 16 megabytes without 
requiring any segmentation; this addressing scheme pro­
vides flexible memory management without added-on ex­
pense. 

Modular Software Support. Any software package for the 
Series 32000 family can be developed independent of all 
other packages, without regard to individual addreSSing. In 
addition, ROM code is totally relocatable and easy to ac­
cess, which allows a significant reduction in hardware and 
software cost. 

Software Processor Concept. The Series 32000 architec­
ture allows future expansions of the instruction set that can 
be executed by special slave processors, acting as exten­
sions to the CPU. This concept of slave processors is 
unique to the Series 32000 family. It allows software com­
patibility even for future components because the slave 
hardware is transparent to the software. With future ad­
vances in semiconductor technology, the slaves can be 
physically integrated on the CPU chip itself. 

To summarize, the architectural features cited above pro­
vide three primary performance advantages and character­
istics: 

2-182 

• High-Level Language Support 

• Easy Future Growth Path 

• Application Flexibility 

2.0 Architectural Description 
2.1 PROGRAMMING MODEL 

The Series 32000 architecture includes 16 registers on the 
NS32C032 CPU. 

2.1.1 General Purpose Registers 

There are eight registers for meeting high speed general 
storage requirements, such as holding temporary variables 
and addresses. The general purpose registers are free for 
any use by the programmer. They are thirty-two bits in 
length. If a general register is specified for an operand that 
is eight or sixteen bits long, only the low part of the register 
is used; the high part is not referenced or modified. 

2.1.2 Dedicated Registers 

The eight dedicated registers of the NS32C032 are as­
signed specific functions. 

PC: The PROGRAM COUNTER register is a pointer to 
the first byte of the instruction currently being executed. 
The PC is used to reference memory in the program 
section. (In the NS32C032 the upper eight bits of this 
register are always zero.) 

SPO, SP1: The SPO register points to the lowest address 
of the last item stored on the INTERRUPT STACK. This 
stack is normally used only by the operating system. It is 
used primarily for storing temporary data, and holding 
return information for operating system subroutines and 
interrupt and trap service routines. The SP1 register 
points to the lowest address of the last item stored on 
the USER STACK. This stack is used by normal user 
programs to hold temporary data and subroutine return 
information. 

In this document, reference is made to the SP register. 
The terms "SP register" or "SP" refer to either SPO or 
SP1, depending on the setting of the S bit in the PSR 
register. If the S bit in the PSR is 0 the SP refers to SPO. 
If the S bit in the PSR is 1 then SP refers to SP1. (In the 
NS32C032 the upper eight bits of these registers are 
always zero). 

Stacks in the Series 32000 family grow downward in 
memory. A Push operation pre-decrements the Stack 
Pointer by the operand length. A Pop operation post-in­
crements the Stack Pointer by the operand length. 

FP: The FRAME POINTER register is used by a proce­
dure to access parameters and local variables on the 
stack. The FP register is set up on procedure entry with 
the ENTER instruction and restored on procedure termi­
nation with the EXIT instruction. 

The frame pointer holds the address in memory occu­
pied by the old contents of the frame pointer. (In the 
NS32C032 the upper eight bits of this register are al­
ways zero.) 

58: The STATIC BASE register points to the global vari­
ables of a software module. This register is used to sup­
port relocatable global variables for software modules. 



2.0 Architectural Description (Continued) 

GENERAL 
DEDICATED 

32 
32 

RO 
PROGRAM COUNTER PC 

R1 
0 STATIC BASE SB 

R2 
FRAME POINTER FP 

R3 
USER STACK PTA. SPI } 

SP R4 
INTERRUPT STACK PTA. SPO 

R5 
·0 INTERRUPT BASE INTBASE 

PSR MOD RS 

STATUS MODULE R7 

TlIEE/9160-3 

FIGURE 2·1. The General and Dedicated Registers 

The SB register holds the lowest address in memory 
occupied by the global variables of a module. (In the 
NS32C032 the upper eight bits of this register are al­
ways zero.) 

INTBASE: The INTERRUPT BASE register holds the 
address of the dispatch table for interrupts and traps 
(Sec. 3.8). The INTBASE register holds the lowest ad­
dress in memory occupied by the dispatch table. (In the 
NS32C032 the upper eight bits of this register are al­
ways zero.) 

MOD: The MODULE register holds the address of the 
module descriptor of the currently executing software 
module. The MOD register is sixteen bits long, therefore 
the module table must be contained within the first 64K 
bytes of memory. 

PSR: The PROCESSOR STATUS REGISTER (PSR) 
holds the status codes for the NS32C032 microproces­
sor. 

The PSR is sixteen bits long, divided into two eight-bit 
halves. The low order eight bits are accessible to all 
programs, but the high order eight bits are accessible 
only to programs executing in Supervisor Mode. 

15 817 0 

I8IXIXJXIllplslu NlzlFIXIXJLlrlcl 
TlIEE/9160-4 

FIGURE 2·2. Processor Status Register 

C: The C bit indicates that a carry or borrow occurred 
after an addition or subtraction instruction. It can be 
used with the ADDC and SUBC instructions to perform 
multiple-precision integer arithmetic calculations. It may 
have a setting of 0 (no carry or borrow) or 1 (carry or 
borrow). 

T: The T bit causes program tracing. If this bit is a 1, a 
TRC trap is executed after every instruction (Sec. 3.8.5). 

L: The L bit is altered by comparison instructions. In a 
comparison instruction the L bit is set to "1" if the sec­
ond operand is less than the first operand, when both 
operands are interpreted as unsigned integers. Other­
wise, it is set to "0". In Floating Point comparisons, this 
bit is always cleared. 

F: The F bit is a general condition flag, which is altered 
by many instructions (e.g., integer arithmetic instructions 
use it to indicate overflow). 

2-183 

Z: The Z bit is altered by comparison instructions. In a 
comparison instruction the Z bit is set to "1" if the sec­
ond operand is equal to the first operand; otherwise it is 
set to "0". 

N: The N bit is altered by comparison instructions. In a 
comparison instruction the N bit is set to "1" if the sec­
ond operand is less than the first operand, when both 
operands are interpreted as signed integers. Otherwise, 
it is set to "0". 

U: If the U bit is "1" no privileged instructions may be 
executed. If the U bit is "0" then all instructions may be 
executed. When U = 0 the NS32C032 is said to be in 
Supervisor Mode; when U = 1 the NS32C032 is said to 
be in User Mode. A User Mode program is restricted 
from executing certain instructions and accessing cer­
tain registers which could interfere with the operating 
system. For example, a User Mode program is prevent­
ed from changing the setting of the flag used to indicate 
its own privilege mode. A Supervisor Mode program is 
assumed to be a trusted part of the operating system, 
hence it has no such restrictions. 

S: The S bit specifies whether the SPO register or SP1 
register is used as the stack pointer. The bit is automati­
cally cleared on interrupts and traps. It may have a set­
ting of 0 (use the SPO register) or 1 (use the SP1 regis­
ter). 

P: The P bit prevents a TRC trap from occurring more 
than once for an instruction (Sec. 3.8.5.). It may have a 
setting of 0 (no trace pending) or 1 (trace pending). 

I: If I = 1, then all interrupts will be accepted (Sec. 3.8.). 
If I = 0, only the NMI interrupt is accepted. Trap en­
ables are not affected by this bit. 

2.1.3 The Configuration Register (CFG) 

Within the Control section of the NS32C032 CPU is the four­
bit CFG Register, which declares the presence of certain 
external devices. It is referenced by only one instruction, 
SETCFG, which is intended to be executed only as part of 
system initialization after reset. The format of the CFG Reg­
ister is shown in Figure 2-3. 

FIGURE 2·3. CFG Register 

z 
en 
C/o) 
I\) 

0 
0 
C/o) 
I\) . 
-" 
0 ....... 
Z en 
C/o) 
I\) 

0 
0 
C/o) 
I\) . 
-" 
U1 



Lt) ,... 
N 
Ct) 
o 
o 
N 
Ct) 
CJ) 
Z ...... o ,... 
• N 

Ct) 
o 
o 
N 
Ct) 
CJ) 
Z 

2.0 Architectural Description (Continued) 

The CFG I bit declares the presence of external interrupt 
vectoring circuitry (specifically, the NS32202 Interrupt Con­
trol Unit). If the CFG I bit is set, interrupts requested through 
the INT pin are "Vectored." If it is clear, these interrupts are 
"Non-Vectored." See Sec. 3.B. 

The F, M and C bits declare the presence of the FPU, MMU 
and Custom Slave Processors. If these bits are not set, the 
corresponding instructions are trapped as being undefined. 

2.1.4 Memory Organization 

The main memory of the NS32C032 is a uniform linear ad­
dress space. Memory locations are numbered sequentially 
starting at zero and ending at 224 - 1. The number specify­
ing a memory location is called an address. The contents of 
each memory location is a byte conSisting of eight bits. Un­
less otherwise noted, diagrams in this document show data 
stored in memory with the lowest address on the right and 
the highest address on the left. Also, when data is shown 
vertically, the lowest address is at the top of a diagram and 
the highest address at the bottom of the diagram. When bits 
are numbered in a diagram, the least significant bit is given 
the number zero, and is shown at the right of the diagram. 
Sits are numbered in increasing significance and toward the 
left. 

01 

A 
Byte at Address A 

Two contiguous bytes are called a word. Except where not­
ed (Sec. 2.2.1), the least significant byte of a word is stored 
at the lower address, and the most significant byte of the 
word is stored at the next higher address. In memory, the 
address of a word is the address of its least significant byte, 
and a word may start at any address. 

115 MSS's BI7 LSS's 0 I 
A+1 A 

Word at Address A 

Two contiguous words are called a double word. Except 
where noted (Sec. 2.2.1), the least significant word of a dou­
ble word is stored at the lowest address and the most signif­
icant word of the double word is stored at the address two 
greater. In memory, the address of a double word is the 
address of its least significant byte, and a double word may 
start at any address. 

31Ms~123 BI7 LSB's 01 

A+3 A+2 A+1 A 
Double Word at Address A 

Although memory is addressed as bytes, it is actually orga­
nized as double-words. Note that access time to a word or a 
double-word depends upon its address, e.g. double-words 
that are aligned to start at addresses that are multiples of 
four will be accessed more quickly than those not so 
aligned. This also applies to words that cross a double-word 
boundary. 

2.1.5 Dedicated Tables 

Two of the NS32C032 dedicated registers (MOD and INT­
BASE) serve as pointers to dedicated tables in memory. 

The INTSASE register points to the Interrupt Dispatch and 
Cascade tables. These are described In Sec. 3.B. 

2-1B4 

The MOD register contains a pointer into the Module Table, 
whose entries are called Module Descriptors. A Module De­
scriptor contains four pointers, three of which are used by 
NS32C032. The MOD register contains the address of the 
Module Descriptor for the currently running module. It is au­
tomatically up-dated by the Call External Procedure instruc­
tions (CXP and CXPD). 

The format of a Module Descriptor is shown in Figure 2-4. 
The Static Sase entry contains the address of static data 
assigned to the running module. It is loaded into the CPU 
Static Sase register by the CXP and CXPD instructions. The 
Program Sase entry contains the address of the first byte of 
instruction code in the module. Since a module may have 
multiple entry points, the Program Base pointer serves only 
as a reference to find them. 

15 o 
I MOD I 

I 
"r- oj 31 

STATlCBASE 

LINK TABLE ADDRESS 

PROGRAM BASE 

RESERVED 

.... .. .. 
TL/EE/9160-5 

FIGURE 2-4. Module Descriptor Format 

The Link Table Address points to the Link Table for the 
currently running module. The Link Table provides the infor­
mation needed for: 

1) Sharing variables between modules. Such variables are 
accessed through the Link Table via the External ad­
dressing mode. 

2) Transferring control from one module to another. This is 
done via the Call External Procedure (CXP) instruction. 

The format of a Link Table is given in Figure 2-5. A Link 
Table Entry for an external variable contains the 32-bit ad­
dress of that variable. An entry for an external procedure 
contains two 16-bit fields: Module and Offset. The Module 
field contains the new MOD register contents for the mod­
ule being entered. The Offset field is an unsigned number 
giving the position of the entry point relative to the new 
module's Program Base pointer. 

For further details of the functions of these tables, see the 
Series 32000 Instruction Set Reference Manual. 

-31 ENTRY 

o 

2 

_ ..... 

o-r-

ABSOLUTE ADDRESS ( VARIABLE) 

ABSOLUTE ADDRESS ( VARIABLE) 

OFFSET I MODULE ( PROCEDURE) 

-- TL/EE/9160-6 

FIGURE 2-5. A Sample Link Table 



2.0 Architectural Description (Continued) 

2.2 INSTRUCTION SET 

2.2.1 General Instruction Format 

Figure 2-6 shows the general format of a Series 32000 in­
struction. The Basic Instruction is one to three bytes long 
and contains the Opcode and up to two 5-bit General Ad­
dressing Mode ("Gen") fields. Following the Basic Instruc­
tion field is a set of optional extensions, which may appear 
depending on the instruction and the addressing modes se­
lected. 

Index Bytes appear when either or both Gen fields specify 
Scaled Index. In this case, the Gen field specifies only the 
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies 
which General Purpose Register to use as the index, and 
which addressing mode calculation to perform before index­
ing. See Figure 2-1. 

I ' GEN. ADDR. MODE l REO. NO. 
o I 

TL/EE/9160-B 

FIGURE 2-7. Index Byte Format 

Following Index Bytes come any displacements (addressing 
constants) or immediate values associated with the select­
ed address modes. Each Disp/lmm field may contain one or 
two displacements, or one immediate value. The size of a 
Displacement field is encoded with the top bits of that field, 
as shown in Figure 2-8, with the remaining bits interpreted 
as a signed (two's complement) value. The size of an imme­
diate value is determined from the Opcode field. Both Dis­
placement and Immediate fields are stored most significant 
byte first. Note that this is different from the memory repre­
sentation of data (Sec. 2.1.4). 

Some instructions require additional, "implied" immediates 
and/or displacements, apart from those associated with ad­
dressing modes. Any such extensions appear at the end of 
the instruction, in the order that they appear within the list of 
operands in the instruction definition (Sec. 2.2.3). 

Byte Displacement: Range - 64 to + 63 

I' 0 
SIGNED DISPLACEMENT 

o I 

Word Displacement: Range -8192 to +8191 

I' 1 
o 1 

0 ~t""~ 
~tO'" 

Double Word Displacement: 
Range (Entire Addressing Space) 

7 0 

1 
I 

1 I , 
c/ 

o-~ 
~.~ 

TL/EE/9160-11 

FIGURE 2-8. Displacement Encodlngs 

2.2.2 Addressing Modes 

The NS32C032 CPU generally accesses an operand by cal­
culating its Effective Address based on information avail­
able when the operand is to be accessed. The method to be 
used in performing this calculation is specified by the pro­
grammer as an "addressing mode." 

OPTIONAL BASIC 
EXTENSIONS INSTRUCTION 

r~-------------------~'------------------~\r----------~~ 

DISP2DISP1 DISP21DISP1 
I 

: 
IUPUED GEN I GEN INDEX INDEX I 

IUMEDIATE DISP DISP ADDR I ADDR OPCODE BYTE BYTE I 
OPERAND{S) MODE I MODE 

A I B 
IMM IMM 

I 

: 
t ~ 4,. 1 

TL/EE/9160-7 

FIGURE 2-6. General Instruction Format 

2-185 

z en w 
N 
0 
0 
W 
N • .... 
0 ....... z en w 
N 
0 
0 
W 
N • .... 
U1 



I.t) ..... 
N 
C") 
o 
o 
N 
C") 
(/) 
Z ...... o ..... 
N 
C") 
o 
o 
N 
C") 
(/) 
Z 

2.0 Architectural Description (Continued) 

Addressing modes in the NS32C032 are designed to opti­
mally support high-level language accesses to variables. In 
nearly all cases, a variable access requires only one ad­
dressing mode, within the instruction that acts upon that 
variable. Extraneous data movement is therefore minimized. 

NS32C032 Addressing Modes fall into nine basic types: 

Register: The operand is available in one of the eight Gen­
eral Purpose Registers. In certain Slave Processor instruc­
tions, an auxiliary set of eight registers may be referenced 
instead. 

Register Relative: A General Purpose Register contains an 
address to which is added a displacement value from the 
instruction, yielding the Effective Address of the operand in 
memory. 

Memory Space. Identical to Register Relative above, ex­
cept that the register used is one of the dedicated registers 
PC, SP, SB or FP. These registers point to data areas gen­
erally needed by high-level languages. 

Memory Relative: A pointer variable is found within the 
memory space pointed to by the SP, SB or FP register. A 
displacement is added to that pointer to generate the Effec­
tive Address of the operand. 

Immediate: The operand is encoded within the instruction. 
This addressing mode is not allowed if the operand is to be 
written. 

Absolute: The address of the operand is specified by a 
displacement field in the instruction. 

External: A pointer value is read from a specified entry of 
the current Link Table. To this pointer value is added a dis­
placement, yielding the Effective Address of the operand. 

Top of Stack: The currently-selected Stack Pointer (SPO or 
SP1) specifies the location of the operand. The operand is 
pushed or popped, depending on whether it is written or 
read. 

Scaled Index: Although encoded as an addressing mode. 
Scaled Indexing is an option on any addressing mode ex­
cept Immediate or another Scaled Index. It has the effect of 
calculating an Effective Address, then multiplying any Gen­
eral Purpose Register by 1, 2, 4 or 8 and adding it into the 
total, yielding the final Effective Address of the operand. 

2-186 

Table 2-1 is a brief summary of the addressing modes. For a 
complete description of their actions, see the Instruction Set 
Reference Manual. 

2.2.3 Instruction Set Summary 

Table 2-2 presents a brief description of the NS32C032 in­
struction set. The Format column refers to the Instruction 
Format tables (Appendix A). The Instruction column gives 
the instruction as coded in assembly language, and the De­
scription column provides a short description of the function 
provided by that instruction. Further details of the exact op­
erations performed by each instruction may be found in the 
Instruction Set Reference Manual. 

Notations: 

i = Integer length suffix: B = Byte 

W = Word 

D = Double Word 

f = Floating Point length suffix: F = Standard Floating 

L = Long Floating 

gen = General operand. Any addressing mode can be 
specified. 

short = A 4-bit value encoded within the Basic Instruction 
(see Appendix A for encodings). 

imm = Implied immediate operand. An 8-bit value append­
ed after any addressing extensions. 

disp = Displacement (addressing constant): 8, 16 or 32 
bits. All three lengths legal. 

reg = Any General Purpose Register: RO-R7. 

areg = Any Dedicated/Address Register: SP, SB, FP, 
MOD, INTBASE, PSR, US (bottom 8 PSR bits). 

mreg = Any Memory Management Status/Control Regis­
ter. 

creg = A Custom Slave Processor Register (Implementa­
tion Dependent). 

cond = Any condition code, encoded as a 4-bit field within 
the Basic Instruction (see Appendix A for encodings). 



2.0 Architectural Description (Continued) 

ENCODING MODE 
Register 
00000 Register 0 
00001 Register 1 
00010 Register 2 
00011 Register S 
00100 Register 4 
00101 Register 5 
00110 Register 6 
00111 Register 7 
Register Relative 
01000 Register 0 relative 
01001 Register 1 relative 
01010 Register 2 relative 
01011 Register S relative 
01100 Register 4 relative 
01101 Register 5 relative 
01110 Register 6 relative 
01111 Register 7 relative 
Memory Relative 
10000 Frame memory relative 
10001 Stack memory relative 
10010 Static memory relative 

Reserved 

TABLE 2·1 

NS32C032 AddressIng Modes 

ASSEMBLER SYNTAX 

ROorFO 
R1 or F1 
R20rF2 
RS or FS 
R40rF4 
R50rF5 
R60rF6 
R70rF7 

disp(RO) 
disp(R1) 
disp(R2) 
disp(RS) 
disp(R4) 
disp(R5) 
disp(R6) 
disp(R7) 

disp2(disp1 (FP» 
disp2(disp1 (SP» 
disp2(disp1 (SB» 

10011 (Reserved for Future Use) 
Immediate 
10100 

Absolute 
10101 
External 
10110 

Top of Stack 
10111 

Memory Space 
11000 
11001 
11010 
11011 
Scaled Index 
11100 
11101 
11110 
11111 

Immediate 

Absolute 

External 

Top of stack 

Frame memory 
Stack memory 
Static memory 
Program memory 

Index, bytes 
Index, words 
Index, double words 
Index, quad words 

value 

@disp 

EXT (disp1) + disp2 

TOS 

disp(FP) 
disp(SP) 
disp(SB) 
*+disp 

mode[Rn:B] 
mode[Rn:W] 
mode[Rn:D] 
mode[Rn:Q] 

2-187 

EFFECTIVE ADDRESS 

None: Operand is in the specified 
register 

Disp + Register. 

Disp2 + Pointer; Pointer found at 
address Disp1 + Register. "SP" 
is either SPO or SP1 ,as selected 
in PSR. 

None: Operand is input from 
instruction queue. 

Disp. 

Disp2 + Pointer; Pointer is found 
at Link Table Entry number Disp1. 

Top of current stack, using either 
User or Interrupt Stack Pointer, 
as selected in PSR. Automatic 
Push/Pop included. 

Disp + Register; liSP" is either 
SPO or SP1, as selected in PSR. 

EA (mode) + Rn. 
EA (mode) + 2 x Rn. 
EA (mode) + 4X Rn. 
EA (mode) + 8 X Rn. 
'Mode' and 'n' are contained 
within the Index Byte. 
EA (mode) denotes the effective 
address generated using mode. 

z 
en w 
N o 
Q 
W 
N • ...... 
Q 
....... 
Z 
en 
w 
N 
o 
Q 
W 
~ ...... 
U1 

• 



Description 

Add. 
Add signed 4·bit constant. 
Add with carry. 
Subtract. 
Subtract with carry (borrow). 
Negate (2's complement). 
Take absolute value. 
Multiply 
Divide, rounding toward zero. 
Remainder from QUO. 
Divide, rounding down. 
Remainder from DIV (Modulus). 
Multiply to Extended Integer. 
Divide Extended Integer. 

Description 

Add Packed. 
Subtract Packed. 

Description 

Compare. 
Compare to signed 4·bit constant. 
Compare Multiple: disp bytes (1 to 16). 

Description 

Logical AND. 
Logical OR. 
Clear selected bits. 
Logical Exclusive OR. 
Complement all bits. 
Boolean complement: LSB only. 
Save condition code (cond) as a Boolean variable of size i. 

2·188 



2.0 Architectural Description (Continued) 

TABLE 2·2 (Continued) 
NS32C032 Instruction Set Summary (Continued) 

SHIFTS 

Format Operation Operands Description 
6 LSHi gen,gen Logical Shift, left or right. 
6 ASHi gen,gen Arithmetic Shift, left or right. 
6 ROTi gen,gen Rotate, left or right. 

BITS 

Format Operation Operands Description 

4 TBITi gen,gen Test bit. 
6 SBITi gen,gen Test and set bit. 
6 SBITli gen,gen Test and set bit, interlocked 
6 CBITi gen,gen Test and clear bit. 
6 CBITIi gen,gen Test and clear bit, interlocked. 
6 IBITi gen,gen Test and invert bit. 
8 FFSi gen,gen Find first set bit 

BIT FIELDS 

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records 
used in Pascal. "Extract" instructions read and align a bit field. "Insert" instructions write a bit field from an aligned 
source. 
Format Operation Operands Description 

8 EXTi reg,gen,gen,disp Extract bit field (array oriented). 
8 INSi reg,gen,gen,disp Insert bit field (array oriented). 
7 EXTSi gen,gen,imm,imm Extract bit field (short form). 
7 INSSi gen,gen,imm,imm Insert bit field (short form). 
8 CVTP reg,gen,gen Convert to Bit Field Pointer. 

ARRAYS 

Format Operation Operands Description 

8 CHECKi reg,gen,gen Index bounds check. 
8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays. 

STRINGS 

String instructions assign specific functions to the Gen­
eral Purpose Registers: 

Options on all string instructions are: 

B (Backward): Decrement string pOinters after each step 
rather than incrementing. R4 - Comparison Value 

R3 - Translation Table Pointer 

R2 • String 2 Pointer 

R1 - String 1 Pointer 

RO - Limit Count 

Format Operation 
5 MOVSi 

MOVST 

5 CMPSi 
CMPST 

5 SKPSi 
SKPST 

Operands 
options 
options 

options 
options 

options 
options 

U (Until match): End instruction if String 1 entry matches 
R4. 

W(While 
match): End instruction if String 1 entry does not 

match R4. 

All string instructions end when RO decrements to zero. 

Descriptions 
Move String 1 to String 2. 
Move string, translating bytes. 

Compare String 1 to String 2. 
Compare translating, String 1 bytes. 

Skip over String 1 entries 
Skip, translating bytes for Until/While. 

2-189 

z en 
w 
I\) 

0 
0 
w 
I\) 
I ...... 

0 ...... 
Z en 
w 
I\) 

0 
0 
w 
I\) 

I ...... 
(J1 



Description 

Save General Purpose Registers. 
Restore General Purpose Registers. 
Load Dedicated Register. (Privileged if PSR or INTBASE) 
Store Dedicated Register. (Privileged if PSR or INTBASE) 
Adjust Stack Pointer. 
Set selected bits in PSR. (Privileged if not Byte length) 
Clear selected bits in PSR. (Privileged if not Byte length) 
Set Configuration Register. (Privileged) 

Description 

Move a Floating Point value. 
Move and shorten a Long value to Standard. 
Move and lengthen a Standard value to Long. 
Convert any integer to Standard or Long Floating. 
Convert to integer by rounding. 
Convert to integer by truncating, toward zero. 
Convert to largest integer less than or equal to value. 
Add. 
Subtract. 
Multiply. 
Divide. 
Compare. 
Negate. 
Take absolute value. 
Load FSR. 
Store FSR. 

Description 

Load Memory Management Register. (Privileged) 
Store Memory Management Register. (Privileged) 
Validate address for reading. (Privileged) 
Validate address for writing. (Privileged) 
Move a value from Supervisor 
Space to User Space. (Privileged) 
Move a value from User Space 
to Supervisor Space. (Privileged) 

2·190 



z 
2.0 Architectural Description (Continued) 

en w 
N 

TABLE 2·2 (Continued) 0 
0 

NS32C032 Instruction Set Summary (Continued) w 
MISCELLANEOUS N • ...I. 
Format Operation Operands Description 0 ....... 

1 NOP No Operation. Z 
WAIT Wait for interrupt. en w 
DIA Diagnose. Single-byte "Branch to Self" for hardware N 

0 
breakpointing. Not for use in programming. 0 w 

CUSTOM SLAVE N • ...I. 

Format Operation Operands Description U1 

15.5 CCALOc gen,gen Custom Calculate. 
15.5 CCAL1c gen,gen 
15.5 CCAL2c gen,gen 
15.5 CCAL3c gen,gen 

15.5 CMOVOc gen,gen Custom Move. 
15.5 CMOV1c gen,gen 
15.5 CMOV2c gen,gen 
15.5 CMOV3c gen,gen 

15.5 CCMPOc gen,gen Custom Compare. 
15.5 CCMP1c gen,gen 

15.1 CCVOci gen,gen Custom Convert. 
15.1 CCV1ci gen,gen 
15.1 CCV2ci gen,gen 
15.1 CCV3ic gen,gen 
15.1 CCV4DQ gen,gen 
15.1 CCV5QD gen,gen 

15.1 LCSR gen Load Custom Status Register. 
15.1 SCSR gen Store Custom Status Register. 

15.0 CATSTO gen Custom Address/Test. (Privileged) 
15.0 CATST1 gen (Privileged) 

15.0 LCR creg,gen Load Custom Register. (Privileged) 
15.0 SCR creg,gen Store Custom Register. (Privileged) 

2·191 



I.t) ,.... 
N 
('t) 
o 
o 
N 
('t) 
(J) 
Z ...... 
o ,.... 
N 
('t) 
o 
o 
N 
('t) 
(J) 
Z 

3.0 Functional Description 
3.1 POWER AND GROUNDING 

The NS32C032 requires a single 5-volt power supply, ap­
plied on 4 pins. The Logic Voltage pins (VeeL 1 and VeeL2) 
supply the power to the on-chip logiC. The Buffer Voltage 
pins (VeeB1 and VeeB2) supply the power to the output driv­
ers of the chip. The Logic Voltage pins and the Buffer Volt­
age pins should be connected together by a power (Vee> 
plane on the printed circuit board. 

The NS32C032 grounding connections are made on 5 pins. 
The Logic Ground pins (GNDL 1 and GNDL2) are the ground 
pins for the on-chip logic. The Buffer Ground pins (GNDB1 
to GNDB3) are the ground pins for the output drivers of the 
chip. The Logic Ground pins and the Buffer Ground pins 
should be connected together by a ground plane on the 
printed circuit board. 

Both power and ground connections are shown below (Fig­
ure 3-1). 

+5V 

YCCL1·YCCL2 
OTHER Vce 

YCC81·YCC82 CONNECTIONS 

NS32C032 
CPU 

GNDL1, GNDL2 

(Vce PLANE) 

OTHER GROUND 
~~~ CONNECTIONS 

(GND PLANE)

TL/EE/9160-12

FIGURE 3-1. Recommended Supply Connections

3.2 CLOCKING

The NS32C032 inputs clocking signals from the Timing
Control Unit (TCU), which presents two non-overlapping
phases of a single clock frequency. These phases are
called PHI1 (pin 26) and PHI2 (pin 27). Their relationship to
each other is shown in Figure 3-2.

vee

PHil ___ +-__

Each rising edge of PHI1 defines a transition in the timing
state (liT-State") of the CPU. One T-State represents the
execution of one microinstruction within the CPU, and/or
one step of an external bus transfer. See Section 4 for com­
plete specifications of PHI1 and PHI2 .

PHil

PHI2

TL/EE/9160-13

FIGURE 3-2. Clock Timing Relationships

As the TCU presents signals with very fast transitions, it is
recommended that the conductors carrying PHI1 and PHI2
be kept as short as possible, and that they not be connect­
ed anywhere except from the TCU to the CPU and, if pres­
ent, the MMU. A TTL Clock signal (CTTL) is provided by the
TCU for all other clocking.

3.3 RESETTING

The RST / ABT pin serves both as a Reset for on-chip logic
and as the Abort input for Memory-Managed systems. For
its use as the Abort Command, see Sec. 3.5.4.

The CPU may be reset at any time by pulling the RST / ABT
pin low for at least 64 clock cycles. Upon detecting a reset,
the CPU terminates instruction processing, resets its inter­
nal logic, and clears the Program Counter (PC) and Proces­
sor Status Register (PSR) to all zeroes.

On application of power, RST / ABT must be held low for at
least 50 /-Lsec after Vee is stable. This is to ensure that all
on-chip voltages are completely stable before operation.
Whenever a Reset is applied, it must also remain

mrr/AIIT --____ +-_______________ ~,~-J

J....----eso/'H<: ----..-!

TLlEE/9160-14

FIGURE 3-3. Power-on Reset Requirements

2-192

3.0 Functional Description (Continued)

active for not less than 64 clock cycles. The rising edge
must occur while PHil is high. See Figures 3-3 and 3-4.

The NS32C201 Timing Control Unit (TCU) provides circuitry
to meet the Reset requirements of the NS32C032 CPU. Fig­
ure 3-5a shows the recommended connections for a non­
Memory-Managed system. Figure 3-5b shows the connec­
tions for a Memory-Managed system.

vec

r------------l

PHil Jl-JJ-
f---- 2: 64 CLOCK ---I

-----,.t"'T"'t"'T"'~ CYCLES

RsT/ABT ~ ,--

NS32C201
TCU

~""~ n I
TLlEE/9l60-l5

FIGURE 3-4. General Reset Timing

NS32C032
CPU

! RESET J>--;-I-f--t'-i---+-~""----..j RsTi RSTO 1----~----~RST/ffi
! I L. _____________ .J

EXTERNAL RESET
(OPTIONAL)

RESET SWITCH
(OPTIONAL)

2l: 50 I'MC

SYSTEM REsET

TLlEE/9l60-l6

FIGURE 3-5a. Recommended Reset Connections, Non-Memory-Managed System

vcc

r------------,
I I

NS32C201
TCU

NS32082
MMU

NS32C032
CPU

I RESET ~-+I-+-~-+_-~~~----~ I I' I Rsii RsTO
! I L. _____________ .J

EXTERNAL RESET
(OPTIONAL)

RESET SWITCH
(OPTIONAL)

TL/EE/9l60-l7

FIGURE 3-5b. Recommended Reset Connections, Memory-Managed System

3.4 BUS CYCLES

The NS32C032 CPU has a strap option which defines the
Bus Timing Mode as either With or Without Address Trans­
lation. This section describes only bus cycles under the No
Address Translation option. For details of the use of the
strap and of bus cycles with address translation, see Sec.
3.5.

The CPU will perform a bus cycle for one of the following
reasons:

1) To write or read data, to or from memory or a peripheral
interface device. Peripheral input and output are memory­
mapped in the Series 32000 family.

2) To fetch instructions into the eight-byte instruction queue.
This happens whenever the bus would otherwise be idle
and the queue is not already full.

2-193

3) To acknowledge an interrupt and allow external circuitry
to provide a vector number, or to acknowledge comple­
tion of an interrupt service routine.

4) To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 3 above are identi­
cal. For timing specifications, see Sec. 4. The only external
difference between them is the four-bit code placed on the
Bus Status pins (STO-ST3). Slave Processor cycles differ in
that separate control signals are applied (Sec. 3.4.6).

The sequence of events in a non-Slave bus cycle is shown
below in Figure 3-7 for a Read cycle and Figure 3-8 for a
Write cycle. The cases shown assume that the selected
memory or interface device is capable of communicating
with the CPU at full speed. If it is not, then cycle extension
may be requested through the RDY line (Sec. 3.4.1).

z
en
w
I\)

o
o w
I\)
o
"­z en w
I\)

o
o
w
I\)
(J1

1.1)
N
C")
o
o
C'I
C")
(/l
Z
........
o
N
C")
o
o
C'I
C")
(/l
Z

3.0 Functional Description (Continued)

A full-speed bus cycle is performed in four cycles of the
PHI1 clock signal, labeled T1 through T4. Clock cycles not
associated with a bus cycle are designated Ti (for "Idle").

During T1, the CPU applies an address on pins ADO-AD23.
It also provides a low-going pulse on the ADS pin, which
serves the dual purpose of informing external circuitry that a
bus cycle is starting and of providing control to an external
latch for demultiplexing Address bits 0-23 from the ADO­
AD23 pins. See Figure 3-6. During this time also the status
signals ODIN, indicating the direction of the transfer, and
BEO-BE3, indicating which of the four bus bytes are to be
referenced, become valid.

During T2 the CPU switches the Data Bus, ADO-AD31 to
either accept or present data. It also starts the data strobe
(DS), signalling the beginning of the data transfer. Associat­
ed signals from the NS32C201 Timing Control Unit are also
activated at this time: RD (Read Strobe) or WR (Write
Strobe), TSO (Timing State Output, indicating that T2 has
been reached) and DBE (Data Buffer Enable).

The T3 state provides for access time requirements, and it
occurs at least once in a bus cycle. At the end of T2 or T3,
on the falling edge of the PHI2 clock, the RDY (Ready) line
is sampled to determine whether the bus cycle will be ex­
tended (Sec. 3.4.1).

If the CPU is performing a Read cycle, the Data Bus (ADO­
AD31) is sampled at the falling edge of PHI2 of the last T3
state. See Section 4. Data must, however, be held at least
until the beginning of T4. DS and RD are guaranteed not to
go inactive before this point, so the rising edge of either of
them may safely be used to disable the device providing the
input data.

The T 4 state finishes the bus cycle. At the beginning of T 4,
the DS, RD or WR, and TSO signals go inactive, and at the
rising edge of PHI2, DBE goes inactive, having provided for
necessary data hold times. Data during Write cycles re­
mains valid from the CPU throughout T 4. Note that the Bus
Status lines (STO-ST3) change at the beginning of T4, an­
tiCipating the following bus cycle (if any).

DffiN I--........ ----..f
D24-D31

ADO-AD23

NS32C032

llO-m

PHI1 PHI2 Ds/FLT

PHI1 PHI2 iDs DDIN DBE AD Rot--------------
NS32C201 WR WRt--------------

Fa
TsO~------------~

TL/EE/9160-1B

FIGURE 3-6. Bus Connections

2-194

~--~z

3.0 Functional Description (Continued)

NS32C032 CPU BUS SIGNALS

I T40RTi I T1 T2 T3

PHil [

ADO-A023 [

024-031 [

i6i [

ST()'ST3 [

DoiN [

BEo-ln [

FIGURE 3·7. Read Cycle Timing

2-195

T4 I T10RTi I

TL/EE/9160-20

en w
N
o o
W
N
o z
en w
N
o o w
~
U1

Ln .--,
~ 3.0 Functional Description (Continued)

8 NS32CD32 CPU BUS SIGrIAlS
N
Cf)
tIl
Z
o • N
Cf)
o
o
N
Cf)

tIl
Z

PHI 1 [

PHIZ [

ADO-A023 [

024-031 [

iDs [

STo-ST3 [

DoiN [

iEo-iU [

OS [

RoY [

Ro [

WR [

DiiE[

TsO[

T40RTI I 11 T2 T3

DATA OUT

DATA OUT

STATUS VALID

VALID

FIGURE 3-8. Write Cycle Timing

2·196

T4 I T10RTI I

NEXT

TL/EE/9160-19

3.0 Functional Description (Continued)

3.4.1 Cycle Extension

To allow sufficient strobe widths and access times for any
speed of memory or peripheral device, the NS32C032 pro­
vides for extension of a bus cycle. Any type of bus cycle
except a Slave Processor cycle can be extended.

In Figures 3-7 and 3-8, note that during T3 all bus control
signals from the CPU and TCU are flat. Therefore, a bus
cycle can be cleanly extended by causing the T3 state to be
repeated. This is the purpose of the ROY (Ready) pin.

At the end of T2 on the falling edge of PHI2, the ROY line is
sampled by the CPU. If ROY is high, the next T-states will be
T3 and then T4, ending the bus cycle. If ROY is low, then
another T3 state will bo inserted after the next T-state and
the ROY line will again be sampled on the falling edge of
PHI2. Each additional T3 state after the first is referred to as
a "WAIT STATE". See Figure 3-9.

Tl T2

PHil

PHI2

ROY

The ROY pin is driven by the NS32C201 Timing Control
Unit, which applies WAIT States to the CPU as requested
on three sets of pin:

1) CWAIT (Continuous WAIT), which holds the CPU in WAIT
states until removed.

2) WAIT1, WAIT2, WAIT4, WAITS (Collectively WAITn),
which may be given a four-bit binary value requesting a
specific number of WAIT States from 0 to 15.

3) PER (Peripheral), which inserts five additional WAIT
states and causes the TCU to reshape the RO and WR
strobes. This provides the setup and hold times required
by most MOS peripheral interface devices.

Combinations of these various WAIT requests are both legal
and useful. For details of their use, see the NS32C201 Data
Sheet.

Figure 3-10 illustrates a typical Read cycle, with two WAIT
states requested through the TCU WAITn pins.

T3 I T3
(WAin T4

TL/EE/9160-21

FIGURE 3-9. ROY Pin Timing

3.4.2 Bus Status

The NS32C032 CPU presents four bits of Bus Status infor­
mation on pins STO-ST3. The various combinations on
these pins indicate why the CPU is performing a bus cycle,
pr, if it is idle on the bus, then why is it idle.

Referring to Figures 3-7 and 3-8, note that Bus Status leads
the corresponding Bus Cycle, going valid one clock cycle
before T1, and changing to the next state at T4. This allows
the system designer to fully decode the Bus Status and, if
desired, latch the decoded signals before ADS initiates the
Bus Cycle.

The Bus Status pins are interpreted as a four-bit value, with
STO the least significant bit. Their values decode as follows:

0000 - The bus is idle because the CPU does not need to
perform a bus access.

0001 - The bus is idle because the CPU is executing the
WAIT instruction.

0010 - (Reserved for future use.)

0011 - The bus is idle because the CPU is waiting for a
Slave Processor to complete an instruction.

0100 - Interrupt Acknowledge, Master.

The CPU is performing a Read cycle. To acknowl­
edge receipt of a Non-Maskable Interrupt (on
NMI) it will read from address FFFF0016, but will
ignore any data provided.

2-197

To acknowledge receipt of a Maskable Interrupt
(on INn it will read from address FFFE0016, ex­
pecting a vector number to be provided from the
Master NS32202 Interrupt Control Unit. If the vec­
toring mode selected by the last SETCFG instruc­
tion was Non-Vectored, then the CPU will ignore
the value it has read and will use a default vector
instead, having assumed that no NS32202 is
present. See Sec. 3.4.5.

0101 - Interrupt Acknowledge, Cascaded.

The CPU is reading a vector number from a Cas­
caded NS32202 Interrupt Control Unit. The ad­
dress provided is the address of the NS32202
Hardware Vector register. See Sec. 3.4.5.

0110 - End of Interrupt, Master.

The CPU is performing a Read cycle to indicate
that it is executing a Return from Interrupt (RETI)
instruction. See Sec. 3.4.5.

0111 - End of Interrupt, Cascaded.

The CPU is reading from a Cascaded Interrupt
Control Unit to indicate that it is returning (through
RETI) from an interrupt service routine requested
by that unit. See Sec. 3.4.5.

1000 - Sequential Instruction Fetch.

The CPU is reading the next sequential word from
the instruction stream into the Instruction

z
tJ)
W
N
o
o
W
N • ..&.

o
........
Z
tJ)
W
N o o
W
N .
..&.
en

•

Ln
•
'" C")
o o
N
C")

rn
z o
N
C")
o o
N
C")
rn z

3.0 Functional Description (Continued)

PREV.CYCLE
NS32C032 CPU BUS SIGNALS

\T40RTi I T1 I T3
T2 T3 (WAIT)

PHI 1 [

PHI 2 [

AOO-A023 [

024-031 [

ros[

STI).ST3 [STATUS VALlO

DoiN [

ffi-w [

Di[

CWAiT[

PER [

WArn; [

ROY [

(TCU TO CPU)

NS32C201 lCU BUS SIGNALS

Ro[

WA[
0sE[

TSo[

T3
(WAIT)

FIGURE 3-10. Extended Cycle Example

NEXT CYCLE

T4 In ORTII

TL/EE/9160-22

Note: Arrows on CWAIT, PER, WAiTn Indicate points at which the TCU samples. Arrows on AOO-A015 and ROY indicate points at which the CPU samples.

2·198

3.0 Functional Description (Continued)

Queue. It will do so whenever the bus would oth­
erwise be idle and the queue is not already full.

1001 - Non-Sequential Instruction Fetch.

The CPU is performing the first fetch of instruction
code after the Instruction Queue is purged. This
will occur as a result of any jump or branch, or any
interrupt or trap, or execution of certain instruc­
tions.

1010 - Data Transfer.

The CPU is reading or writing an operand of an
instruction.

1011 - Read RMW Operand.

The CPU is reading an operand which will subse­
quently be modified and rewritten. If memory pro­
tection circuitry would not allow the following
Write cycle, it must abort this cycle.

1100 - Read for Effective Address Calculation.

The CPU is reading information from memory in
order to determine the Effective Address of an
operand. This will occur whenever an instruction
uses the Memory Relative or External addressing
mode.

1101 - Transfer Slave Processor Operand.

The CPU is either transferring an instruction oper­
and to or from a Slave Processor, or it is issuing
the Operation Word of a Slave Processor instruc­
tion. See Sec. 3.9.1.

1110 - Read Slave Processor Status.

The CPU is reading a Status Word from a Slave
Processor. This occurs after the Slave Processor
has signalled completion of an instruction. The
transferred word tells the CPU whether a trap
should be taken, and in some instructions it pre­
sents new values for the CPU Processor Status
Register bits N, Z, L or F. See Sec. 3.9.1.

1111 - Broadcast Slave 10.
The CPU is initiating the execution of a Slave
Processor instruction. The 10 Byte (first byte of
the instruction) is sent to all Slave Processors,
one of which will recognize it. From this point the
CPU is communicating with only one Slave Proc­
essor. See Sec. 3.9.1.

3.4.3 Data Access Sequences

The 24-bit address provided by the NS32C032 is a byte
address; that is, it uniquely identifies one of up to
16,777,216 eight-bit memory locations. An important feature
of the NS32C032 is that the presence of a 32-bit data bus
imposes no restrictions on data alignment; any data item,
regardless of size, may be placed starting at any memory
address. The NS32C032 provides special control signals.
Byte Enable (BEO-BE3) which facilitate individual byte ac­
cessing on a 32-bit bus.

Memory is organized as four eight-bit banks, each bank re­
ceiving the double-word address (A2-A23) in parallel. One
bank, connected to Data Bus pins ADO-AD7 is enabled

2-199

when BEO is low. The second bank, connected to data bus
pins AD8-AD15 is enabled when BE1 is low. The third and
fourth banks are enabled by BE2 and BE3, respectively.
See Figure 3-11.

TLlEE/9160-23

FIGURE 3-11. Memory Interface

Since operands do not need to be aligned with respect to
the double-word bus access performed by the CPU, a given
double-word access can contain one, two, three, or four
bytes of the operand being addressed, and these bytes can
begin at various positions, as determined by A 1, AO. Table
3-1 lists the 10 resulting access types.

TABLE 3-1

Bus Access Types
Type Bytes Accessed A 1 ,AO BE3 BE2 BE1 BEO

1 1 00 1 1 0
2 01 0
3 10 0
4 11 0
5 2 00 1 0 0
6 2 01 0 0 1
7 2 10 0 0
8 3 00 0 0 0
9 3 01 0 0 0

10 4 00 0 0 0 0

Accesses of operands requiring more than one bus cycle
are performed sequentially, with no idle T-States separating
them. The number of bus cycles required to transfer an op­
erand depends on its size and its alignment. Table 3-2 lists
the bus cycles performed for each situation.

z
en
w
I\)

o
C)
w
I\)
C)
....... z en w
I\)

o
C)
w
I\)

•
U1

fII

II)

"'"" • N
C")
Q

o
N
C")

en
z
Q

"'"" • N
C")
Q

o
N
C")

en z

3.0 Functional Description (Continued)

Cycle Type Address

A. Word at address ending with 11

1. 4 A 0
2. 1 A+1

B. Double word at address ending with 01

1. 9 A 0
2. 1 A+3

C. Double word at address ending wIth 10

1. 7 A 0
2. s A+2

D. Double word at address ending with 11

0

o

TABLE 3-2

Access Sequences

1
0

0 1
0

o o

Data Bus
£

I \
Byte 3 Byte 2 Byte 1 Byte 0

1 BYTE 11 BYTE 0 I ~ A

Byte 0 X X X
X X X Byte 1

1 BYTE 31 BYTE 21 BYTE 11 BYTE 01 ~ A

Byte 2 Byte 1 Byte 0 X
X X X Byte 3

1 BYTE 31 BYTE 21 BYTE 11BYTEoi ~ A

Byte 1 Byte 0 X X
X X Byte 3 Byte 2

1 BYTE 31 BYTE 21 BYTE 11 BYTE 0 1 ~ A

1.
2.

4
8

A
A+1

o 1 1 1 Byte 0 X X X
o 0 0 X Byte 3 Byte 2 Byte 1

E. Quad word at address ending with 00 I BYTE 71 BYTE 61 BYTE sl BYTE 41 BYTE 31 BYTE 21 BYTE 11 BYTE 0 I ~ A

1. 10 A o o o o Byte 3 Byte 2 Byte 1 Byte 0
Other bus cycles (instruction prefetch or slave) can occur here.
2. 10 A + 4 0 0 0 0 Byte 7 Byte 6 Byte S Byte 4

F. Quad word at address ending with 01 I BYTE 71 BYTE 61 BYTE siBYTE41BYTE 31BYTE21BYTE 11BYTEoi ~ A

1.
2.

9 A
A+3

o o o

Other bus cycles (instruction prefetch or slave) can occur here.

1
o

Byte 2
X

Byte 1
X

Byte 0
X

X
Byte 3

3. 9 A + 4 0 0 0 Byte 6 Byte S Byte 4 X
4. A + 7 1 1 0 X X X Byte 7

G. Quad word at address ending with 10 I BYTE 71 BYTE 61 BYTE sl BYTE 41 BYTE 31 BYTE 21 BYTE 11 BYTE 0 I ~ A

1.
2.

7
S

A
A+2

o o
o

Other bus cycles (instruction prefetch or slave) can occur here.

1
o

Byte 1
X

Byte 0
X

X
Byte 3

X
Byte 2

3. 7 A + 4 0 0 1 Byte S Byte 4 X X
4. S A + 6 1 0 0 X X Byte 7 Byte 6

H. Quad word at address ending with 11 1 BYTE 71 BYTE 61 BYTE sl BYTE 41 BYTE 31 BYTE 21 BYTE 11 BYTE 0 1 ~ A

1. 4 A 0 Byte 0 X X X
2. 8 A+1 0 0 0 X Byte 3 Byte 2 Byte 1
Other bus cycles (instruction prefetch or slave) can occur here.
1. 4 A+4 0 1 1 Byte 4 X X X
2. 8 A+S 0 0 0 X Byte 7 Byte 6 ByteS

X = Don't Care

2-200

3.0 Functional Description (Continued)

3.4.3.1 Bit Accesses

The Bit Instructions perform byte accesses to the byte con­
taining the designated bit. The Test and Set Bit instruction
(SBIT), for example, reads a byte, alters it, and rewrites it,
having changed the contents of one bit.

3.4.3.2 Bit Field Accesses

An access to a Bit Field in memory always generates a Dou­
ble-Word transfer at the address containing the least signifi­
cant bit of the field. The Double Word is read by an Extract
instruction; an Insert instruction reads a Double Word, modi­
fies it, and rewrites it.

3.4.3.3 Extending Multiply Accesses

The Extending Multiply Instruction (MEl) will return a result
which is twice the size in bytes of the operand it reads. If the
multiplicand is in memory, the most·significant half of the
result is written first (at the higher address), then the least­
significant half. This is done in order to support retry if this
instruction is aborted.

3.4.4 Instruction Fetches

Instructions for the NS32C032 CPU are "prefetched"; that
is, they are input before being needed into the next available
entry of the eight-byte Instruction Queue. The CPU performs
two types of Instruction Fetch cycles: Sequential and Non­
Sequential. These can be distinguished from each other by
their differing status combinations on pins STO-5T3 (Sec.
3.4.2).

2-201

A Sequential Fetch will be performed by the CPU whenever
the Data Bus would otherwise be idle and the Instruction
Queue is not currently full. Sequential Fetches are always
type 10 Read cycles (Table 3-1).

A Non-Sequential Fetch occurs as a result of any break in
the normally sequential flow of a program. Any jump or
branch instruction, a trap or an interrupt will cause the next
Instruction Fetch cycle to be Non-Sequential. In addition,
certain instructions flush the instruction queue, causing the
next instruction fetch to display Non-Sequential status. Only
the first bus cycle after a break displays Non-Sequential
status, and that cycle depends on the destination address.
Note: During non-sequential fetches, BEO-BE3 are all active regardless of

the alignment.

3.4.5 Interrupt Control Cycles

Activating the INT or NMI pin on the CPU will initiate one or
more bus cycles whose purpose is interrupt control rather
than the transfer of instructions or data. Execution of the
Return from Interrupt instruction (RETI) will also cause Inter­
rupt Control bus cycles. These differ from instruction or data
transfers only in the status pesented on pins STO-ST3. All
Interrupt Control cycles are single-byte Read cycles.

This section describes only the Interrupt Control sequences
associated with each interrupt and with the return from its
service routine. For full details of the NS32C032 interrupt
structure, see Sec. 3.8.

z en
w
N o
o
W
N .
-a.
o z en w
N o
o
W
N .
-a.
CJ1

U) r---,
• N

Cf)
o
o
N
Cf)
en z
'" o
N
Cf)
o o
N
Cf)
en z

3.0 Functional Description (Continued)

Cycle Status Address

Interrupt Acknowledge

1 0100 FFFF0016

Interrupt Return

TABLE 3·3
Interrupt Sequences

(

ODIN BE3 BE2 BE1 BEO Byte 3
A. Non-Maskable Inteffupt Control Sequences

o o X

None: Performed through Return from Trap (RETT) instruction.

8. Non-Vectored Interrupt Control Sequences

Interrupt Acknowledge

1 0100 FFFE0016 o o X

Interrupt Return
1 0110 FFFE0016 o o X

C. Vectored Interrupt Sequences: Non-Cascaded.

Interrupt Acknowledge

1 0100 FFFE0016 o o X

Interrupt Return
1 0110 FFFE0016 o o X

D. Vectored Interrupt Sequences: Cascaded

I nterrupt Acknowledge
1 0100 FFFE0016 o o X

(The CPU here uses the Cascade Index to find the Cascade Address.)

Data Bus ..
'\

Byte 2 Byte 1 Byte 0

x X X

X X X

X X X

X X Vector:
Range: 0-127

X X Vector: Same as
in Previous Int.
Ack. Cycle

X X Cascade Index:
range -16 to -1

2 0101 Cascade 0 See Note
Address

Vector, range 9-255; on appropriate byte of

data bus.

Interrupt Return

1 0110 FFFE0016 o

(The CPU here uses the Cascade Index to find the Cascade Address)
2 0111 Cascade 0 See Note

Address

x = Don't Care

o X X X

X X X

Cascade Index:
Same as in
previous Int.
Ack. Cycle

X

Note: BEO-m signals will be activated according to the cascaded leu address. The cycle type can be 1, 2, 3 or 4, when reading the interrupt vector. The vector
value can be in the range 0-255.

2-202

3.0 Functional Description (Continued)

3.4.6 Slave Processor Communication

In addition to its use as the Address Translation strap (Sec.
3.5.1), the AT/SPC pin is used as the data strobe for Slave
Processor transfers. In this role, it is referred to as Slave
Processor Control (SPC). In a Slave Processor bus cycle,
data is transferred on the Data Bus (ADO-AD15), and the
status lines (STO-ST3) are monitored by each Slave Proc­
essor in order to determine the type of transfer being per­
formed. SPC is bidirectional, but is driven by the CPU during
all Slave Processor bus cycles. See Sec. 3.9 for full protocol
sequences.

Note:

(1) CPU samples Data Bus here.

PREV.CYCLE

PHil [

PHil [

m[

ADO-AD1. [

ITO-In [

_(3)[
DB!

I T40rTI T1

A /\.
AD(D-151 D(D-151

AT/SPe
'I v

SPC

NS32C032 SLAVE
CPU PROCESSOR

STO-ST3 STO-8T3

TL/EE/9l60-24

FIGURE 3·12. Slave Processor Connections

NEXT CYCLE

T4 T10RTI I

TLlEE/9l60-25

(2) 'IJBi: and all other NS32C201 lCU bus signals remain inactive because no ADS pulse is received from the CPU.

FIGURE 3·13. CPU Read from Slave Processor

2-203

z en
w
N
o
Q
W
N •
Q
Z
en w
N
o
Q
W
N •
U1

I.t)
'I"'" • C\I
C')
o
o
C\I
C')
en
z o
'I"'" • C\I
C')
o
o
C\I
C')

en z

3.0 Functional Description (Continued)

3.4.6.1 Slave Processor Bus Cycles

A Slave Processor bus cycle always takes exactly two clock
cycles, labeled T1 and T4 (see Figures 3-13 and 3-14). Dur­
ing a Read cycle SPC is active from the beginning of T1 to
the beginning of T4, and the data is sampled at the end of
T1. The Cycle Status pins lead the cycle by one clock peri­
od, and are sampled at the leading edge of SPC. During a
Write cycle, the CPU applies data and activates SPC at T1,
removing SPC at T 4. The Slave Processor latches status on
the leading edge of SPC and latches data on the trailing
edge.

Since the CPU does not pulse the Address Strobe (ADS),
no bus signals are generated by the NS32C201 Timing Con­
trol Unit. The direction of a transfer is determined by the
sequence ("protocol") established by the instruction under
execution; but the CPU indicates the direction on the ODIN
pin for hardware debugging purposes.

PREV.CYCLE

I T40RTI

PHil [

T1

3.4.6.2 Slave Operand Transfer Sequences

A Slave Processor operand is transferred in one or more
Slave bus cycles. A Byte operand is transferred on the
least-significant byte of the Data Bus (ADO-AD?), and a
Word operand is transferred on bits ADO-AD15. A Double
Word is transferred in a consecutive pair of bus cycles,
least-significant word first. A Quad Word is transferred in
two pairs of Slave cycles, with other bus cycles possibly
occurring between them. The word order is from least-signif­
icant word to most-significant.

Note that the NS32C032 uses only the two least significant
bytes of the data bus for slave cycles. This is to maintain
compatibility with existing slave processors.

T4

NEXT CYCLE

Tl0RTI I

ADO-AD15 [.""f "'f" '----+----r-# '--_-+_

Note:

8TO-8T3 [

iDs [

_(2)[
DBE

(1) Slave Processor samples Data Bus here.

TL/EE/9160-26

(2) DBE, being provided by the NS32C201 TCU. remains inactive due to the fact that no pulse is presented on ADS. TCU signals RD. WR and'fSO also remain
Inactive.

FIGURE 3-14. CPU Write to Slave Processor

2-204

3.0 Functional Description (Continued)

3.5 MEMORY MANAGEMENT OPTION

The NS32C032 CPU, in conjunction with the NS32082
Memory Management Unit (MMU), provides full support for
address translation, memory protection, and memory alloca·
tion techniques up to and including Virtual Memory.

3.5.1 Address Translation Strap

The Bus Interface Control section of the NS32C032 CPU
has two bus timing modes: With or Without Address Trans­
lation. The mode of operation is selected by the CPU by
sampling the ATISPC (Address TranslationlSlave Proces­
sor Control) pin on the rising edge of the RST (Reset) pulse.

I T40RTI I T1

PHI1 [

PHI2 [

AOO-A023 [

024-031 [

iDS [

STD-ST3 [

ODiN [

iiEci-w [

ROY [

If AT ISPC is sampled as high, the bus timing is as previous­
ly described in Sec. 3.4. If it is sampled as low, two changes
occur:

1) An extra clock cycle, Tmmu, is inserted into all bus cycles
except Slave Processor transfers.

2) The DS/FL T pin changes in function from a Data Strobe
output (DS) to a Float Command input (FL n.

The NS32082 MMU will itself pull the CPU Ar/SPC pin low
when it is reset. In non-Memory-Managed systems this pin
should be pulled up to Vee through a 10 kn resistor.

Note that the Address Translation strap does not specifical-

TL/EE/9160-27

FIGURE 3-15. Read Cycle with Address Translation (CPU Action)

2-205

II) ,...
N
C")
Q

o
N
C")
U)
Z
C; ,...
N
C")
Q o
N
C")
U)
Z

3.0 Functional Description (Continued)

Iy declare the presence of an NS32082 MMU, but only the
presence of external address translation circuitry. MMU in­
structions will still trap as being undefined unless the
SETCFG (Set Configuration) instruction is executed to de­
clare the MMU instruction set valid. See Sec. 2.1.3.

3.5.2 Translated Bus Timing

Figures 3-15 and 3-16 illustrate the CPU activity during a
Read cycle and a Write cycle in Address Translation mode.
The additional T-State, Tmmu, is inserted between T1 and
T2. During this time the CPU places ADO-AD23 into the
TRI-STATE$ mode, allowing the MMU to assert the trans­
lated address and issue the physical address strobe Pii.V.
T2 through T4 of the cycle are identical to their counterparts

I T4 OR TI I Tt

PHI1 [

PHIZ

ADO-AD23 [~"",",,,,,,",,,,,,",IJ.I

iDs [

STG-ST3 [

BEo-iEi [

without Address Translation. Note that in order for the
NS32082 MMU to operate correctly it must be set to the
32032 mode by forcing A24/HBF low during reset. In this
mode the bus lines AD16-AD23 are floated after the MMU
address has been latched, since they are used by the CPU
to transfer data.

Figures 3-17 and 3-18 show a Read cycle and a Write cycle
as generated by the 32C032/32082/32C201 group. Note
that with the CPU 'A'DS signal gOing only to the MMU, and
with the MMU 'PAV signal substituting for ADS everywhere
else, Tmmu through T 4 look exactly like T1 through T 4 in a
non-Memory-Managed system. For the connection diagram,
see Appendix B.

TZ T3 T4

TLlEE/9160-28

FIGURE 3-16. Write Cycle with Address Translation (CPU Action)

2-206

3.0 Functional Description (Continued)

I T40RTI I Tt T2 T3 T4 I TlORTi I
PHI1 [

PHI 2 [

ADO-A023 [
024-031 [

Aiii[

PiV[

STD-ST3 [

~ [~~~~~~---+------~----~------~-+--~~----~
iEO.BE3 [

RD[

ffiiE[

iSO[

FIGURE 3-17. Memory-Managed Read Cycle

2·207

TL/EE/9160-29

z en
w
N o o
W
N •
o z en
w
N
o o
w
~
U1

it)
• 3.0 Functional Description (Continued) N

C")
0
0 I T40RTi I n I Tmmu T2 T3 T4 I nORTi I N
C")
(J)

PHI1 [Z
........
0
• N

PHI 2 [
C")
0
0
N
C")
(J)
Z

ADO-A023 [

024-031 [

AOi[

PiV[

STO-ST3 [STATUS VALID NEXT STATUS

DDiN[

iEo-iEi [VALID

ROY [

NS32C201 TCU BUS SIGNALS

RD[

WA[

DiiE[

iSO[
TL/EE/9160-30

FIGURE 3-18. Memory-Managed Write Cycle

2-208

3.0 Functional Description (Continued)

3.5.3 The FL T (Float) Pin

The FL T pin is used by the CPU for address translation
support. Activating FL T during Tmmu causes the CPU to
wait longer than Tmmu for address translation and valida­
tion. This feature is used occasionally by the NS32082 MMU
in order to update its translation look-aside buffer (TLB)
from page tables in memory, or to update certain status bits
within them.

Figure 3-19 shows the effect of FLT. Upon sampling FLT
low, late in Tmmu, the CPU enters idle T-States (Tf) during
which it:

T1 TI

PHI1 [

PHI2 [

AOO-A023 [

024-031 [-+ ___ +'

ADs' [

PAV [

FLT [

STD-STJ [

ODIN [

BeD-BE3 [VALID

1) Sets AOO-A023, 024-031 and OOIN to the TRI-STATE
condition ("floating").

2) Suspends further internal processing of the current in­
struction. This ensures that the current instruction re­
mains abortable with retry. (See RST / ABT description,
Sec. 3.5.4.)

Note that the AOO-A023 pins may be briefly asserted dur­
ing the first idle T-State. The above conditions remain in
effect until FL T again goes high. See the Timing Specifica­
tions, Sec. 4.

TI ... I n I n I

rfl-fLr

TL/EE/9160-31

FIGURE 3·19. FLTTlming

2-209

z en
CAl
N
o o
CAl
N

I
-4
o
Z en
CAl
N o o
CAl
N

I
-4
(J1

•

~r---~ .,...
• N

C')
<:)

o
N
C')
rJ)
Z
<:) .,...
~
C')
<:)

o
N
C')
rJ)
Z

3.0 Functional Description (Continued)

3.5.4 Aborting Bus Cycles

The RST I ABT pin, apart from its Reset function (Sec. 3.3),
also serves as the means to "abort", or cancel, a bus cycle
and the instruction, if any, which initiated it. An Abort re­
quest is distinguished from a Reset in that the RST I ABT pin
is held active for only one clock cycle.

If RST I ABT is pulled low during Tmmu or Tt, this signals
that the cycle must be aborted. The CPU itself will enter T2
and t~ Ti, thereby terminating the cycle. Since it is the
MMU PAV signal which triggers a physical cycle, the rest of
the system remains unaware that a cycle was started.

The NS32082 MMU will abort a bus cycle for either of two
reasons:

1) The CPU is attempting to access a virtual address which
is not currently resident in physical memory. The refer­
enced page must be brought into physical memory from
mass storage to make it accessible to the CPU.

2) The CPU is attempting to perform an access which is not
allowed by the protection level assigned to that page.

When a bus cycle is aborted by the MMU, the instruction
that caused it to occur is also aborted in such a manner that
it is guaranteed re-executable later. The information that is
changed irrecoverably by such a partly-executed instruction
does not affect its re-execution.

3.5.4.1 The Abort Interrupt

Upon aborting an instruction, the CPU immediately performs
an interrupt through the ABT vector in the Interrupt Table
(see Sec. 3.8). The Return Address pushed on the Interrupt
Stack is the address of the aborted instruction, so that a
Return from Trap (RETT) instruction will automatically retry
it.

The one exception to this sequence occurs if the aborted
bus cycle was an instruction prefetch. If so, it is not yet
certain that the aborted prefetched code is to be executed.
Instead of causing an interrupt, the CPU only aborts the bus
cycle, and stops prefetching. If the information in the In­
struction Queue runs out, meaning that the instruction will
actually be executed, the ABT interrupt will occur, in effect
aborting the instruction that was being fetched.

3.5.4.2 Hardware Considerations

In order to guarantee instruction retry, certain rules must be
followed in applying an Abort to the CPU. These rules are
followed by the NS32082 Memory Management Unit.

1) If FLT has not been applied to the CPU, the Abort pulse
must occur during or before Tmmu. See the Timing Spec­
ifications, Figure 4-22.

2·210

2) If FL T has been applied to the CPU, the Abort pulse must
be applied before the T-State in which FLT goes inactive.
The CPU will not actually respond to the Abort command
until FL T is removed. See Figure 4-23.

3) The Write half of a Read-Modify·Write operand access
may not be aborted. The CPU guarantees that this will
never be necessary for Memory Management functions
by applying a special RMW status (Status Code 1011)
during the Read half of the access. When the CPU pres­
ents RMW status, that cycle must be aborted if it would
be illegal to write to any of the accessed addresses.

If RST I ABT is pulsed at any time other than as indicated
above, it will abort either the instruction currently under exe­
cution or the next instruction and will act as a very high·pri­
ority interrupt. However, the program that was running at the
time is not guaranteed recoverable.

3.6 BUS ACCESS CONTROL

The NS32C032 CPU has the capability of relinquishing its
access to the bus upon request from a DMA device or an­
other CPU. This capability is implemented on the HOLD
(Hold Request) and HLDA (Hold Acknowledge) pins. Byas­
serting HOLD low, an external device requests access to
the bus. On receipt of HLDA from the CPU, the device may
perform bus cycles, as the CPU at this point has set the
ADO-AD23, 024-031, ADS, ODIN and BEO-BE3 pins to
the TRI·STATE condition. To return control of the bus to the
CPU, the device sets HOLD inactive, and the CPU acknowl­
edges return of the bus by setting HLDA inactive.

How quickly the CPU releases the bus depends on whether
it is idle on the bus at the time the HOLD request is made,
as the CPU must always complete the current bus cycle.
Figure 3-20 shows the timing sequence when the CPU is
idle. In this case, the CPU grants the bus during the immedi­
ately following clock cycle. Figure 3-21 shows the sequence
if the CPU is using the bus at the time that the HOLD re­
quest is made. If the request is made during or before the
clock cycle shown (two clock cycles before T4), the CPU
will release the bus during the clock cycle following T 4. If
the request occurs closer to T 4, the CPU may already have
decided to initiate another bus cycle. In that case it will not
grant the bus until after the next T 4 state. Note that this
situation will also occur if the CPU is idle on the bus but has
initiated a bus cycle internally.

In a Memory-Managed system, the HLDA signal is connect­
ed in a daisy-chain through the NS32082, so that the MMU
can release the bus if it is using it.

3.0 Functional Description (Continued)

I Ti I T. I Ti I· Ti Ti Ti I TIORT41 TiORTl I

PHil [

PHI2 [

H&D[

HLDi[

AFFECTED SIGNALS

ACs[~r------ ------- -------

os[

~[---- ~r---------- NEXT

BEO-BE3 [NEXT

ADO-AD23 [NEXT ADDR

z en
w
N
o
Q
W
N •
Q
Z en
w
N o
Q
W
~
U'I

D24-D31 [EI
STO-ST3 [PREVIOUS

TL/EE/9160-32

FIGURE 3-20. HOLD Timing, Bus Initially Idle

2-211

U) r---______________________________ ~
N
C")
o
o
N
C")
U)
Z o
N
C")
o
o
N
C")
U)
Z

3.0 Functional Description (Continued)

T3 T4 TI TI TI TI

PHI1[

.PHI2 [

HoLD [

Ht6A[

ADi[

6S[-+.....a. __ +--__ _+'

DDiN[-+ __, ___ +-__ -f.J NEXT

BEO-W[-+ __ """ ___ +---1

NEXTADOR

TL/EE/9160-33

FIGURE 3·21. HOLD Timing, Bus Initially Not Idle

2-212

3.0 Functional Description (Continued)

3.7 INSTRUCTION STATUS

In addition to the four bits of Bus Cycle status (STO-ST3),
the NS32C032 CPU also presents Instruction Status infor­
mation on three separate pins. These pins differ from STO­
ST3 in that they are synchronous to the CPU's internal in­
struction execution section rather than to its bus interface
section.

PFS (Program Flow Status) is pulsed low as each instruction
begins execution. It is intended for debugging purposes, and
is used that way by the NS32082 Memory Management
Unit.

UlS originates from the U bit of the Processor Status Regis­
ter, and indicates whether the CPU is currently running in
User or Supervisor mode. It is sampled by the MMU for
mapping, protection, and debugging purposes. Although it is
not synchronous to bus cycles, there are guarantees on its
validity during any given bus cycle. See the Timing Specifi­
cations, Figure 4-21.

ILO (Interlocked Operation) is activated during an SBITI (Set
Bit, Interlocked) or CBITI (Clear Bit, Interlocked) instruction.
It is made available to external bus arbitration circuitry in
order to allow these instructions to implement the sema­
phore primitive operations for multi-processor communica- .
tion and resource sharing. As with the U/S pin, there are
guarantees on its validity during the operand accesses per­
formed by the instructions. See the Timing Specification
Section, Figure 4-19.

3.8 NS32C032 INTERRUPT STRUCTURE

INT, on which maskable interrupts may be requested,

NMI, on which non-maskable interrupts may be request­
ed, and

RST / ABT, which may be used to abort a bus cycle and
any associated instruction. See Sec. 3.5.4.

,.~

MEMORY ~
,.~

/ CASCADE ADDR 0

· CASCADE TABLE ;:~ · ~~ ·
I'NTERRUPT .. s~ CASCADE ADDR 14

CASCADE AD DR 15

FIXED INTERRUPTS

AND TRAPS

In addition there is a set of internally-generated "traps"
which cause interrupt service to be performed as a result
either of exceptional conditions (e.g., attempted division by
zero) or of specific instructions whose purpose is to cause a
trap to occur (e.g., the Supervisor Call instruction).

3.8.1 GenerallnterruptlTrap Sequence

Upon receipt of an interrupt or trap request, the CPU goes
through three major steps:

1) Adjustment of Registers.

Depending on the source of the interrupt or trap, the CPU
may restore and/or adjust the contents of the Program
Counter (PC), the Processor Status Register (PSR) and
the currently-selected Stack Pointer (SP). A copy of the
PSR is made, and the PSR is then set to reflect Supervi­
sor Mode and selection of the Interrupt Stack.

2) Vector Acquisition.

A Vector is either obtained from the Data Bus or is sup­
plied by default.

3) Service Call.

The Vector is used as an index into the Interrupt Dispatch
Table, whose base address is taken from the CPU Inter­
rupt Base (INTBASE) Register. See Figure 3-22. A 32-bit
External Procedure Descriptor is read from the table en­
try, and an External Procedure Call is performed using it.
The MOD Register (16 bits) and Program Counter (32
bits) are pushed on the Interrupt Stack.

31 0"'
0 NVI N ON·VECTORED INTERRUPT

1 NMI N ON·MASKABLE INTERRUPT

2 AST A BORT

3 SLAVE SLAVE PROCESSOR TRAP

4 ILL I LLEGAL OPERATION TRAP

5 svc S UPERVISOR CALL TRAP REGISTER I 1
VECTORED i DISPATCH TABLE

6 DVZ DIVIDE BY ZERO TRAP

r INTERRUPTS :t 7 FLG F LAG TRAP

8 BPT B REAKPOINT TRAP

9 TRC T RACE TRAP

10 UNO U NDEFINED INSTRUCTION TRAP

11·15 :: ::: RESERVED ~~
18 VECTORED

INTERRUPTS
,. ... ,. ...

TL/EE/9160-34

FIGURE 3·22. Interrupt Dispatch and Cascade Tables

2-213

z en w
I\)

o
Q
W
I\)
• -'"

Q
Z en w
I\)

o
Q
W
~
-'"
U1

In ...
~
Cf)
o
o
C\I
Cf)
(/)
z o ... • C\I
Cf)
o
o
C\I
Cf)
(/)
z

3.0 Functional Description (Continued)
This process is illustrated in Figure 3-23, from the viewpoint of the programmer.

I RETURN ADDRESS

I STATUS I MODULE

PSR MOD

INTBASE REGISTER

DESCRIPTOR

I (PUSH)

I

I
J (PUSH)

INTERRUPT
STACK

r-------------l
I CASCADE TABLE I
I I I I

DISPATCH
TABLE

DESCRIPTOR (32 BITS)

It--a -18---r-.I-a -18-__ ,
OFFSET MODULE

1: 0

MOD REGISTER ~ MODULE TABLE

I NEW MODULE

I MODULE TABLE ENTRY

J

MODULE TABLE ENTRY
32

STATIC BASE POINTER ---...,

UNK BASE POINTER

(~ PROGRAM BASE POINTER

(RESERVED)

j
32BITS

32 BITS

PROGRAM COUNTER SBREGISTER

I
ENTRY POINT ADDRESS ~ NEW STATIC BASE

FIGURE 3-23. Interrupt/Trap Service Routine Calling Sequence

2-214

TL/EE/9160-35

I
TL/EE/9160-36

3.0 Functional Description (Continued)

3.8.2 Interrupt/Trap Return

To return control to an interrupted program, one of two in­
structions is used. The RED (Return from Trap) instruction
(Figure 3-24) restores the PSR, MOD, PC and S8 registers
to their previous contents and, since traps are often used
deliberately as a call mechanism for Supervisor Mode pro­
cedures, it also discards a specified number of bytes from
the original stack as surplus parameter space. RED is used
to return from any trap or interrupt except the Maskable
Interrupt. For this, the RETI (Return from Interrupt) instruc­
tion is used, which also informs any external Interrupt Con­
trol Units that interrupt service has completed. Since inter­
rupts are generally asynchronous external events, RETI
does not pop parameters. See Figure 3-25.

3.8.3 Maskable Interrupts (The INT Pin)

The INT pin is a level-sensitive input. A continuous low level
is allowed for generating multiple interrupt requests.

PROGRAM COUNTER

I RETURN ADDRESS ·1
STATUS I MODULE

I

PSR MOD

MODULE T~BLE ENTRY

STATIC BASE POINTER - t-----,

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

SBREGISTER

STATIC BASE

(POP)

(POP)

-

POP AND
DISCARD

The input is maskable, and is therefore enabled to generate
interrupt requests only while the Processor Status Register I
bit is set. The I bit is automatically cleared during service of
an INT, NMI or Abort request, and is restored to its original
setting upon return from the interrupt service routine via the
RED or RETI instruction.

The INT pin may be configured via the SETCFG instruction
as either Non-Vectored (CFG Register bit I = C) or Vec­
tored (bit I = 1).

3.8.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT
pin will cause an Interrupt Acknowledge bus cycle, but the
CPU will ignore any value read from the bus and use instead
a default vector of zero. This mode is useful for small sys­
tems in which hardware interrupt prioritization is unneces­
sary.

n
BYTES I

l

· · ·
INTERRUPT

STACK

MODULE
TABLE

MODULE TABLE ENTRY

PARAMETERS

STACK SELECTED
IN NEWLY·

POPPEDPSR.

1 ~"TS
32 BITS

· · ·

TLlEE/9160-37

FIGURE 3-24. Return from Trap (RETT n) Instruction Flow

2-215

z en
w
N o
o
W
N

I
o z en w
N o
o
W
N
I

(J1

•

in
~ • N
C")
o
o
N
C")

en z
o
~ .
N
C")
o
o
N
C")

en z

3.0 Functional Description (Continued)

"END OF INTERRUPT"

BUS CYCLE

PROGRAM COUNTER

I
(POP)

RETURN ADDRESS
I

I I (POP)
STATUS MODULE

I
PSR MOD

INTERRUPT
CONTROL

UNIT

INTERRUPT
STACK

MODULE
TABLE

~------------tMODULETABLE ENTRY

J

~
MODULE TABLE ENTRY

STATIC BASE POINTER

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

STATIC BASE

SBREGISTER

FIGURE 3-25. Return from Interrupt (RETI) Instruction Flow

2-216

TL/EE/9160-39

3.0 Functional Description (Continued)

3.8.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control
Unit (ICU) to prioritize up to 16 interrupt requests. Upon re­
ceipt of an interrupt request on the INT pin, the CPU per­
forms an "Interrupt Acknowledge, Master" bus cycle (Sec.
3.4.2) reading a vector value from the low-order byte of the
Data Bus. This vector is then used as an index into the
Dispatch Table in order to find the External Procedure De­
scriptor for the proper interrupt service procedure. The serv­
ice procedure eventually returns via the Return from Inter­
rupt (RETI) instruction, which performs an End of Interrupt
bus cycle, informing the ICU that it may re-prioritize any in­
terrupt requests still pending. The ICU provides the vector
number again, which the CPU uses to determine whether it
needs also to inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127; that
is, they must be positive numbers in eight bits. By providing
a negative vector number, an ICU flags the interrupt source
as being a Cascaded ICU (see below).

3.8.3.3 Vectored Mode: Cascaded Case

In order to allow up to 256 levels of interrupt, provision is
made both in the CPU and in the NS32202 Interrupt Control
Unit (ICU) to transparently support cascading. Figure 3-27,
shows a typical cascaded configuration. Note that the Inter­
rupt output from a Cascaded ICU goes to an Interrupt Re­
quest input of the Master ICU, which is the only ICU which
drives the CPU INT pin.

In a system which uses cascading, two tasks must be per­
formed upon initialization:

1) For each Cascaded ICU in the system, the Master ICU
must be informed of the line number (0 to 15) on which it
receives the cascaded requests.

2) A Cascade Table must be established in memory. The
Cascade Table is located in a NEGATIVE direction from
the location indicated by the CPU Interrupt Base (INT­
BASE) Register. Its entries are 32-bit addresses, pointing
to the Vector Registers of each of up to 16 Cascaded
ICUs.

Figure 3-22 illustrates the position of the Cascade Table. To
find the Cascade Table entry for a Cascaded ICU, take its
Master ICU line number (0 to 15) and subtract 16 from it,
giving an index in the range -16 to -1. Multiply this value
by 4, and add the resulting negative number to the contents
of the INTBASE Register. The 32-bit entry at this address
must be set to the address of the Hardware Vector Register
of the Cascaded ICU. This is referred to as the "Cascade
Address."

Upon receipt of an interrupt request from a Cascaded ICU,
the Master ICU interrupts the CPU and provides the nega­
tive Cascade Table index instead of a (positive) vector num­
ber. The CPU, seeing the negative value, uses it as an index
into the Cascade Table and reads the Cascade Address
from the referenced entry. Applying this address, the CPU
performs an "Interrupt Acknowledge, Cascaded" bus cycle
(Sec. 3.4.2), reading the final vector value. This vector is
interpreted by the CPU as an unsigned byte, and can there­
fore be in the range of 0 through 255.

In returning from a Cascaded interrupt, the service proce­
dure executes the Return from Interrupt (RETI) instruction,
as it would for any Maskable Interrupt. The CPU performs
an "End of Interrupt, Master" bus cycle (Sec. 3.4.2), where­
upon the Master ICU again provides the negative Cascade
Table index. The CPU, seeing a negative value, uses it to
find the corresponding Cascade Address from the Cascade
Table. Applying this address, it performs an "End of Inter­
rupt, Cascaded" bus cycle (Sec. 3.4.2), informing the Cas­
caded ICU of the completion of the service routine. The byte
read from the Cascaded ICU is discarded.
Note: If an interrupt must be masked off, the CPU can do so by setting the

corresponding bit in the Interrupt Mask Register of the Interrupt Con­
troller.

However, if an interrupt is set pending during the CPU Instruction that
masks off that interrupt, the CPU may still perform an interrupt ac­
knowledge cycle following that instruction since it might have sampled
the INT line before the ICU deasserted it. This could cause the ICU to
provide an invalid vector. To avoid this problem the above operation
should be performed with the CPU interrupt disabled.

NS32C032
CPU

GROUP

NS32202

HARDWARE
INTERRUPTS

OR
CASCADED

CONTROLLERS

STATUS 1

INf I------f TAf

~~g~ESS Cs
DECODER

INTERRUPTS,
CASCADED,

OR
BIlI/O

FIGURE 3-26. Interrupt Control Unit Connections (16 Levels)

2-217

TLlEE/9160-40

z en
w
N
o o
W
N
o
z en w
N o
o
W
N
en

II) .,..
• N

C")
o
o
N
C")
U)
Z
o .,.. .
N
C")
o
o
N
C")
U)
Z

3.0 Functional Description (Continued)

CONTROL

NS32CD32
CPU ADDR

GROUP

STATUS 1

iNr

DATA

FROM
ADDRESS
DECODER

FROM
ADDRESS
DECODER

CASCADED
NS32202

ICU

IRl

IR3

IRS

IR1

IRII

IRl1

IR13

IR15

GO/IRO

GlIIR2

G211R4

G3/1RIS

G411R8

GSIIR10

GISIIR12

G1/1R14

IRl

IR3

IRS

IR1

IRII

IRll

IR13

IRIS

GO/IRO

Gl11R2

G2/1R4

G3/1AIS

G4/1AI

G5/1R10

GII/IA12

G111A14

HARDWARE
INTERRUPTS

INTERRUPTS
OR

81TI/O

TL/EE/9160-41

FIGURE 3-27. Cascaded Interrupt Control Unit Connections

3.8.4 Non-Maskable Interrupt (The NMI Pin)

The Non-Maskable Interrupt is triggered whenever a falling
edge is detected on the NMI pin. The CPU performs an
"Interrupt Acknowledge, Master" bus cycle (Sec. 3.4.2)
when processing of this Interrupt actually begins. The Inter­
rupt Acknowledge cycle differs from that provided for Mask­
able Interrupts in that the address presented is FFFF0016.
The vector value used for the Non-Maskable Interrupt is
taken as 1, regardless of the value read from the bus.

The service procedure returns from the Non-Maskable In­
terrupt using the Return from Trap (RETT) instruction. No
special bus cycles occur on return.

For the full sequence of events in processing the Non­
Maskable Interrupt, see Sec. 3.8.7.1.

2-218

3.8.5 Traps

A trap is an internally-generated interrupt request caused as
a direct and immediate result of the execution of an instruc­
tion. The Return Address pushed by any trap except Trap
(TRC) is the address of the first byte of the instruction during
which the trap occurred. Traps do not disable interrupts, as
they are not associated with external events. Traps recog­
nized by the NS32C032 CPU are:

Trap (SLAVE): An exceptional condition was detected by
the Floating Point Unit or another Slave Processor during
the execution of a Slave Instruction. This trap is requested
via the Status Word returned as part of the Slave Processor
Protocol (Sec. 3.9.1).

3.0 Functional Description (Continued)

Trap (ILL): Illegal operation. A privileged operation was at­
tempted while the CPU was in User Mode (PSR bit U = 1).

Trap (SVC): The Supervisor Call (SVC) instruction was exe­
cuted.

Trap (DVZ): An attempt was made to divide an integer by
zero. (The FPU trap is used for Floating Point division by
zero.)

Trap (FLG): The FLAG instruction detected a "1" in the
CPU PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut­
ed.

Trap (TRC): The instruction just completed is being traced.
See below.

Trap (UNO): An undefined opcode was encountered by the
CPU.

A special case Is the Trace Trap (TRC), which is enabled by
setting the T bit In the Processor Status Register (PSR). At
the beginning of each instruction, the T bit is copied into the
PSR P (Trace "Pending") bit. If the P bit is set at the end of
an instruction, then the Trace Trap is activated. If any other
trap or interrupt request Is made during a traced instruction,
its entire service procedure is allowed to complete before
the Trace Trap occurs. Each interrupt and trap sequence
handles the P bit for proper tracing, guaranteeing one and
only one Trace Trap per instruction, and guaranteeing that
the Return Address pushed during a Trace Trap is always
the address of the next instruction to be traced.

3.8.6 Prioritization

The NS32016 CPU internally prioritizes simultaneous inter­
rupt and trap requests as follows:

1) Traps other than Trace (Highest priority)

2) Abort

3) Non-Maskable Interrupt

4) Maskable Interrupts

5) Trace Trap (Lowest priority)

3.8.7Interrupt/Trap Sequences: Detailed Flow

For purposes of the following detailed discussion of inter­
rupt and trap service sequences, a single sequence called
"Service" is defined in Figure 3-28. Upon detecting any in­
terrupt request or trap condition, the CPU first performs a
sequence dependent upon the type of interrupt or trap. This
sequence will include pushing the Processor Status Regis­
ter and establishing a Vector and a Return Address. The
CPU then performs the Service sequence.

For the sequence followed in processing either Maskable or
Non-Maskable interrupts (on the INT or NMI pins, respec­
tively), see Sec. 3.8.7.1 For Abort Interrupts, see Sec.
3.8.7.4. For the Trace Trap, see Sec. 3.8.7.3, and for all
other traps see Sec. 3.8.7.2.

3.8.7.1 MaskableINon-Maskable Interrupt Sequence

This sequence is performed by the CPU when the NMI pin
receives a falling edge, or the INT pin becomes active with
the PSR I bit set. The interrupt sequence begins either at
the next instruction boundary or, in the case of the String
instructions, at the next interruptible pOint during its execu­
tion.

2-219

1. If a String instruction was interrupted and not yet com­
pleted:

a. Clear the Processor Status Register P bit.

b. Set "Return Address" to the address of the first byte of
the interrupted instruction.

Otherwise, set "Return Address" to the address of the
next instruction.

2. Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits S, U, T, P and I.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFF0016, applying Status
Code 0100 (Interrupt Acknowledge, Master, Sec.
3.4.2). Discard the byte read.

b. Set "Vector" to 1.

c. Go to Step 8.

4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFF0016, applying Status
Code 0100 (Interrupt Acknowledge, Master: Sec.
3.4.2). Discard the byte read.

b. Set "Vector" to O.
c. Go to Step 8.

5. Here the interrupt is Vectored. Read "Byte" from address
FFFE0016, applying Status Code 0100 (Interrupt Ac­
knowledge, Master: Sec. 3.4.2).

6. If "Byte" ~ 0, then set "Vector" to "Byte" and go to Step
8.

7. If "Byte" is in the range -16 through -1, then the inter­
rupt source is Cascaded. (More negative values are re­
served for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory. The
address is calculated as INTBASE + 4· Byte.

b. Read "Vector," applying the Cascade Address just
read and Status Code 0101 (Interrupt Acknowledge,
Cascaded: Sec. 3.4.2).

8. Push the PSR copy (from Step 2) onto the Interrupt Stack
as a 16-bit value.

9. Perform Service (Vector, Return Address), Figure 3-28.

Service (Vector, Return Address):

1) Read the 32-blt External Procedure Descriptor from the Interrupt
Dispatch Table: address Is Vector· 4 + INTBASE Register contents.

2) Move the Module field of the Descriptor Into the MOD Register.

3) Read the new Static Base pOinter from the memory address con­
tained In MOD, plaCing It Into the S8 Register.

4) Read the Program Base pOinter from memory address MOD + 8,
and add to It the Offset field from the Descriptor, placing the result
In the Program Counter.

S) Flush queue: Non-sequentially fetch first Instruction of Interrupt
routine.

6) Push MOD Register Into the Interrupt Stack as a 16-blt value. (The
PSR has already been pushed as a 16-blt value.)

7) Push the Return Address onto the Interrupt Stack as a 32-blt quanti­
ty.

FIGURE 3-28. Service Sequence

Invoked during all interrupt/trap sequences.

z en
w
N
o o
W
N •
o z en
w
N
o o
W
N •
en

~ .---~
N
C")
o
o
N
C")
t/)
Z

" o
N
C")
o
o
N
C")
t/)
Z

3.0 Functional Description (Continued)

3.8.7.2 Trap Sequence: Traps Other Than Trace

1) Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction.

2) Set "Vector" to the value corresponding to the trap type.

SLAVE: Vector = 3.

ILL: Vector = 4.

SVC: Vector = 5.

DVZ: Vector = 6.

FLG: Vector = 7.

BPT: Vector = B.'

UNO: Vector = 10.

3) Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits S, U, P and T.

4) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

5) Set "Return Address" to the address of the first byte of
the trapped instruction.

6) Perform Service (Vector, Return Address), Figure 3-28.

3.8.7.3 Trace Trap Sequence

1) In the Processor Status Register (PSR), clear the P bit.

2) Copy the PSR into a temporary register, then clear PSR
bits S, U and T.

3) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

4) Set "Vector" to 9.

5) Set "Return Address" to the address of the next instruc-
tion.

6) Perform Service (Vector, Return Address), Figure 3-28.

3.8.7.4 Abort Sequence

1) Restore the currently selected Stack Pointer to its original
contents at the beginning of the aborted instruction.

2) Clear the PSR P bit.

3) Copy the PSR into a temporary register, then clear PSR
bits S, U, T and I.

4) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

5) Set "Vector" to 2.

6) Set "Return Address" to the address of the first byte of
the aborted instruction.

7) Perform Service (Vector, Return Address), Figure 3-28.

3.9 SLAVE PROCESSOR INSTRUCTIONS

The NS32C032 CPU recognizes three groups of instructions
being executable by external Slave Processor:

Floating Point Instruction Set

Memory Management Instruction Set
Custom Instruction Set

2-220

Each Slave Instruction Set is validated by a bit in the Config­
uration Register (Sec. 2.1.3). Any Slave Instruction which
does not have its corresponding Configuration Register bit
set will trap as undefined, without any Slave Processor com­
munication attempted by the CPU. This allows software sim­
ulation of a non-existent Slave Processor .

3.9.1 Slave Processor Protocol

Slave Processor instructions have a three-byte Basic In­
struction field, conSisting of an 10 Byte followed by an Oper­
ation Word. The 10 Byte has three functions:

1) It identifies the instruction as being a Slave Proc­
essor instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Opera-
tion Word of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi­
ates the sequence outlined in Figure 3-29. While applying
Status Code 1111 (Broadcast 10, Sec. 3.4.2), the CPU
transfers the 10 Byte on the least-significant byte of the
Data Bus (ADO-AD7). All Slave Processors input this byte
and decode it. The Slave Processor selected by the 10 Byte
is activated, and from this point the CPU is communicating
only with it. If any other slave protocol was in progress (e.g.,
an aborted Slave instruction), this transfer cancels it.

The CPU next sends the Operation Word while applying
Status Code 1101 (Transfer Slave Operand, Sec. 3.4.2).
Upon receiving it, the Slave Processor decodes it, and at
this point both the CPU and the Slave Processor are aware
of the number of operands to be transferred and their sizes.
The operation Word is swapped on the Data Bus, that is,
bits 0-7 appear on pins ADB-AD15 and bits B-15 appear
on pins ADO-AD7.

Using the Address Mode fields within the Operation Word,
the CPU starts fetching operand and issuing them to the
Slave Processor. To do so, it references any AddreSSing
Mode extensions which may be appended to the Slave
Processor instruction. Since the CPU is solely responsible

Step

1

4

Status

10

OP

OP

ST

OP

Status Combinations:

Send 10 (10): Code 1111

Xfer Operand (OP): Code 1101

Read Status (Sn: Code 1110

Action

CPU Send 10 Byte.

CPU Sends Operaton Word.

CPY Sends Required Operands

Slave Starts Execution. CPU Pre-fetches.

Slave Pulses SPC Low.

CPU Reads Status Word. (Trap? Alter Flags?)

CPU Reads Results (If Any).

FIGURE 3-29. Slave Processor Protocol

3.0 Functional Description (Continued)

for memory accesses, these extensions are not sent to the
Slave processor. The Status Code applied is 1101 (Transfer
Slave Processor Operand, Sec. 3.4.2).

After the CPU has issued the last operand, the Slave Proc­
essor starts the actual execution of the instruction. Upon
completion, it will signal the CPU by pulsing SPC low. To
allow for this, and for the Address Translation strap func­
tion, AT ISPC is normally held high only by an internal pull­
up device of approximately 5 kfi.

While the Slave Processor is executing the instruction, the
CPU is free to prefetch instructions into its queue. If it fills
the queue before the Slave Processor finishes, the CPU will
wait, applying Status Code 0011 (Waiting for Slave, Sec.
3.4.2).

Upon receiving the pulse on SPC, the CPU uses SPC to
read a Status Word from the Slave Processor, applying
Status Code 1110 (Read Slave Status, Sec. 3.4.2). This
word has the format shown in Figure 3-30. If the Q bit
("Quit", Bit 0) is set, this indicates that an error was detect­
ed by the Slave Processor. The CPU will not continue the
protocol, but will immediately trap through the Slave vector
in the Interrupt Table. Certain Slave Processor instructions
cause CPU PSR bits to be loaded from the Status Word.

The last step in the protocol is for the CPU to read a result,
if any, and transfer it to the destination. The Read cycles
from the Slave Processor are performed by the CPU while
applying Status Code 1101 (Transfer Slave Operand, Sec.
3.4.2).

An exception to the protocol above is the LMR (Load Mem­
ory Management Register) instruction, and a corresponding
Custom Slave instruction (LCR: Load Custom Register). In
executing these instructions, the protocol ends after the
CPU has issued the last operand. The CPU does not wait for
an acknowledgement from the Slave Processor, and it does
not read status.

3.9.2 Floating Point Instructions

Table 3-4 gives the protocols followed for each Floating
Point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Appendix A.
The Operand class columns give the Access Class for each
general operand, defining how the addressing modes are
interpreted (see Instruction Set Reference Manual).

The Operand Issued columns show the sizes of the oper­
ands issued to the Floating Point Unit by the CPU. "0" indi­
cates a 32-bit Double Word. "i" indicates that the instruction
specifies an integer size for the operand (B = Byte, W =
Word, 0 = Double Word). "f" indicates that the instruction
specifies a Floating Point size for the operand (F = 32-bit
Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR Bits Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-30).

TABLE 3-4

Floating Point Instruction Protocols.

Mnemonic
Operand 1 Operand 2

Class Class

ADDf read.f rmw.f
SUBf read.f rmw.f
MULf read.f rmw.f
DIVf read.f rmw.f

MOVf read.f write.f
ABSf read.f write.f
NEGf read.f write.f

CMPf read.f read.f

FLOORfi read.f write.i
TRUNCfi read.f write.i
ROUNDfi read.f write.i

MOVFL read.F write.L
MOVLF read.L write.F

MOVif read.i write.f

LFSR read. 0 N/A
SFSR N/A write. 0

Note:

o = Double Word

I = Integer size (B,W,O) specified in mnemonic.

f = Floating Point type (F,L) specified In mnemonic.

N/A = Not Applicable to this Instruction.

Operand 1 Operand 2
Issued Issued

N/A
N/A
N/A

N/A
N/A

f N/A

F N/A
L N/A

N/A

0 N/A
N/A N/A

2-221

Returned Value PSR Bits
Type and Dest. Affected

fto Op. 2 none
fto Op. 2 none
ftoOp.2 none
fto Op. 2 none

ftoOp.2 none
fto Op. 2 none
fto Op. 2 none

N/A N,Z,L

itoOp.2 none
itoOp.2 none
itoOp.2 none

LtoOp.2 none
FtoOp.2 none

fto Op. 2 none

N/A none
DtoOp.2 none

z en w
N o
o
W
N •
o
z en
w
N o o
W
N •
c.n

•

3.0 Functional Description (Continued)

15 8 7 o

I 00000000 IN Z F 0 0 L 0 01
New PSR Bit V'IU'(')~ -"" J
"Oult": Termln.te Protocol. Trlp(FPU).

TL/EE/9160-42

FIGURE 3-30. Slave Processor Status Word Format

Any operand indicated as being of type "f" will not cause a
transfer if the Register addressing mode is specified. This is
because the Floating Point Registers are physically on the
Floating Point Unit and are therefore available without CPU
assistance.

3.9.3 Memory Management Instructions

Table 3-5 gives the protocols for Memory Management in­
structions. Encodings for these instructions may be found in
Appendix A.
In executing the RDVAL and WRVAL instructions, the CPU
calculates and issues the 32-bit Effective Address of the
single operand. The CPU then performs a single-byte Read
cycle from that address, allowing the MMU to safely abort
the instruction if the necessary information is not currently in
physical memory. Upon seeing the memory cycle complete,
the MMU continues the protocol, and returns the validation
result in the F bit of the Slave Status Word.

The size of a Memory Management operand is always a 32-
bit Double Word. For further details of the Memory Manage­
ment Instruction set, see the Instruction Set Reference
Manual and the NS32082 MMU Data Sheet.

TABLE 3-5

Memory Management Instruction Protocols.
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits

Mnemonic Class Class Issued Issued Type and Dest. Affected

RDVAL· addr N/A D N/A N/A F
WRVAL· addr N/A D N/A N/A F

LMR· read.D N/A D N/A N/A none
SMR· write.D N/A N/A N/A DtoOp.1 none

Note:

In the RDVAL and WRVAL Instructions. the CPU issues the address as a Double Word. and performs a single-byte Read cycle from that memory address. For
details. see the Instruction Set Reference Manual and the NS32082 Memory Management Unit Data Sheet.

o = Double Word

• = Privileged Instruction: will trap if CPU is in User Mode.

N/A = Not Applicable to this instruction.

2-222

3.0 Functional Description (Continued)

3.9.4 Custom Slave Instructions

Provided in the NS32C032 is the capability of communicat­
ing with a user-defined, "Custom" Slave Processor. The in­
struction set provided for a Custom Slave Processor defines
the instruction formats, the operand classes and the com­
munication protocol. Left to the user are the interpretations
of the Op Code fields, the programming model of the Cus­
tom Slave and the actual types of data transferred. The pro­
tocol specifies only the size of an operand, not its data type.

Table 3-6 lists the relevant information for the Custom Slave
instruction set. The designation "c" is used to represent an
operand which can be a 32-bit ("D") or 64-bit ("a") quantity
in any format; the size is determined by the suffix on the
mnemonic. Similarly, an "i" indicates an integer size (Byte,
Word, Double Word) selected by the corresponding mne­
monic suffix.

Any operand indicated as being of type "c" will not cause a
transfer if the register addressing mode is specified. It is
assumed in this case that the slave processor is already
holding the operand internally.

For the instruction encodings, see Appendix A.

TABLE 3·6
Custom Slave Instruction Protocols.

Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits
Mnemonic Class Class Issued Issued Type and Dest. Affected

CCALOc read.c rmw.c c c ctoOp.2 none
CCAL1c read.c rmw.c c c ctoOp.2 none
CCAL2c read.c rmw.c c c ctoOp.2 none
CCAL3c read.c rmw.c c c ctoOp.2 none

CMOVOc read.c write.c c N/A ctoOp.2 none
CMOV1c read.c write.c c N/A ctoOp.2 none
CMOV2c read.c write.c c N/A ctoOp.2 none
CMOV3c read.c write.c c N/A ctoOp.2 none

CCMPOc read.c read.c c c N/A N,Z,L
CCMP1c read.c read.c c c N/A N,Z,L

CCVOci read.c write.i c N/A itoOp.2 none
CCV1ci read.c write.i c N/A itoOp.2 none
CCV2ci read.c write.i c N/A itoOp.2 none
CCV3ic read.i write.c N/A ctoOp.2 none

CCV4DO read.D write. a D N/A OtoOp.2 none
CCV5QD read.O write.D Q N/A Dto Op. 2 none

LCSR read.D N/A D N/A N/A none
SCSR N/A write.D N/A N/A DtoOP.2 none

CATSTO· addr N/A D N/A N/A F
CATST1· addr N/A D N/A N/A F

LCR· read.D N/A D N/A N/A none
SCR· write.D N/A N/A N/A DtoOp.1 none

Note:

o = Double Word

I = Integer size (B.W.O) specified In mnemonic.

c - Custom size (0:32 bits or 0:64 bits) specified in mnemonic.

• = Privileged instruction: will trap if CPU is in User Mode.

NI A .. Not Applicable to this instruction.

2-223

z
rn
w
N
o
Q
W
~
Q
Z
rn w
N o
Q
W
~
<II

•

Lt) ,....
I

N
C")
o
o
N
C")

en
z
"­o ,....

I
N
C")
o
o
N
C")

en z

4.0 Device Specifications
4.1 NS32C032 PIN DESCRIPTIONS

The following is a brief description of all NS32C032 pins.
The descriptions reference portions of the Functional De­
scription. Sec. 3.

Unless otherwise indicated reserved pins should be left
open.

4.1.1 Supplies

Logic Power (VCCL 1, 2): + SV positive supply.

Buffers Power (VCCB1, 2): + SV positive supply.

Logic Ground (GNDL 1, GNDL2): Ground reference for on­
chip logic.

Buffer Grounds (GNDB1, GNDB2, GNDB3): Ground refer­
ences for on-chip drivers.

4.1.2 Input Signals

Clocks (PHI1, PHI2): Two-phase clocking signals. Sec. 3.2.

Ready (ROY): Active high. While RDY is inactive, the CPU
extends the current bus cycle to provide for a slower memo­
ry or peripheral reference. Upon detecting ROY active, the
CPU terminates the bus cycle. Sec. 3.4.1.

Hold Request (HOLD): Active low. Causes the CPU to re­
lease the bus for DMA or multiprocessing purposes. Sec.
3.6.
Note 1: HOLD must not be asserted until RLiJA from a previous

HOLD/HLDA sequence is deasserted.

Note 2: If the RQ[[j signal is generated asynchronously, it's set up and hold
times may be violated.

In this case it is recommended to synchronize it with CTTL to mini­
mize the possibility of metastable states.

The CPU provides only one synchronization stage to minimize the
HLDA latency. This is to avoid speed degradations in cases of
heavy HOLD activity (i.e., DMA controller cycles interleaved with
CPU cycles.)

Interrupt (INT): Active low. Maskable Interrupt request.
Sec. 3.8.

Non-Maskable Interrupt (NMI): Active low. Non-Maskable
Interrupt request. Sec. 3.8.

Reset/Abort (RST/ABT): Active low. If held active for one
clock cycle and released, this pin causes an Abort Com­
mand, Sec. 3.S.4. If held longer, it initiates a Reset. Sec. 3.3.

4.1.3 Output Signals

Address Strobe (ADS): Active low. Controls address latch­
es: indicates start of a bus cycle. Sec. 3.4.

Data Direction In (ODIN): Active low. Status signal indicat­
ing direction of data transfer during a bus cycle. Sec. 3.4.

2-224

Byte Enable (BEO-BE3): Active low. Four control signals
enabling data transfers on individual bus bytes. Sec. 3.4.3.

Status (STO-ST3): Bus cycle status code, STO least signifi­
cant. Sec. 3.4.2. Encodings are:

0000 - Idle: CPU Inactive on Bus.
0001 - Idle: WAIT Instruction.
0010 - (Reserved).
0011 - Idle: Waiting for Slave.
0100 - Interrupt Acknowledge, Master.
0101 -Interrupt Acknowledge, Cascaded.
0110 - End of Interrupt, Master.
0111 - End of Interrupt, Cascaded.
1000 - Sequential Instruction Fetch.
1001 - Non-Sequential Instruction Fetch.
1010 - Data Transfer.
1011 - Read Read-Modify-Write Operand.
1100 - Read for Effective Address.
1101 - Transfer Slave Operand.
1110 - Read Slave Status Word.
1111 - Broadcast Slave 10.

Hold Acknowledge (HLDA): Active low. Applied by the
CPU in response to HOLD input, indicating that the bus has
been released for DMA or multiprocessing purposes. Sec.
3.6.

User/Supervisor (U/S): User or Supervisor Mode status.
Sec. 3.7. High state indicates User Mode, low indicates Su­
pervisor Mode. Sec. 3.7.

Interlocked Operation (ILO): Active low. Indicates that an
interlocked instruction is being executed. Sec. 3.7.

Program Flow Status (PFS): Active low. Pulse indicates
beginning of an instruction execution. Sec. 3.7.

4.1.4 Input-Output Signals

Address/Data 0-23 (ADO-AD23): Multiplexed Address/
Data information. Bit 0 is the least significant bit of each.
Sec. 3.4.

Data Bits 24-31 (024-031): The high order 8 bits of the
data bus.

Address Translation/Slave Processor Control (AT/
SPC): Active low. Used by the CPU as the data strobe out­
put for Slave Processor transfers; used by Slave Proces­
sors to acknowledge completion of a slave instruction.
Sec. 3.4.6; Sec. 3.9. Sampled on the rising edge of Reset
pulse as Address Translation Strap. Sec. 3.S.1.

In non-memory-managed systems, this pin should be
pulled-up to Vee through a 10 k!l. resistor.

Data Strobe/Float (DS/FLT): Active low. Data Strobe out­
put, Sec. 3.4, or Float Command input, Sec. 3.S.3. Pin func­
tion is selected on AT/SPe pin, Sec. 3.5.1.

4.0 Device Specifications (Continued)

4.2 ABSOLUTE MAXIMUM RATINGS All Input or Output Voltages with
Respect to GND -0.5Vto +7V

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

Temperature Under Bias O°C to + 70°C

Storage Temperature - 65°C to + 150°C

Power Dissipation 1.5 Watt

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICALCHARACTERISTICSTA = 0° to + 70°C, Vee = 5V ±5%, GND = OV

Symbol

VIH

VIL

VeH

VeL

VeRT

VOH

VOL

IlLS

II

IL

lee

Parameter Conditions Min Typ

High Level Input Voltage 2.0

Low Level Input Voltage -0.5

High Level Clock Voltage PHI1, PHI2 pins only 0.85 Vee

Low Level Clock Voltage PHI1, PHI2 pins only -0.5

Clock Input
PHI1, PHI2 pins only -0.5

Ringing Tolerance

High Level Output Voltage IOH = - 400 IlA 0.85 Vee

Low Level Output Voltage IOL = 2 rnA

AT/SPC Input Current (low) VIN = O.4V,AT/SPCininputrnode 0.05

Input Load Current

Leakage Current
Output and I/O Pins in
TRI-STATE/lnput Mode

Active Supply Current

o ~ VIN ~ Vee, All inputs except
-20

PHI1, PHI2, AT/SPC

0.4 ~ VOUT ~ Vee
-20

lOUT = 0, TA = 25°C

~ - 13
eee~~&~~I§~§~~~~~

VCC82 ~ U U u u u u u u u u u u u U U Eli

ST3 ~ t:
m~ I:
iiiiii~ I:
VCCL2 ~ t:

GNDl2 0 c:::
ffi"= t:
PHI2 ~ NS32C032 t:
iDs P CPU C
U/S ~ t:

RESERVED ~ t:
RESERVED = I:

70

AD22
ADZl
AD20
AD19
AD11
AD17
lO16
AD15
AD1.
AD13
AD12
ADll
AD10 if/SPC ~ c:::

...!IIFli ~ I: AD9
RST/AIT = c::: ADa

RESERVED ~ I: AD7
RESERVED (CONNECT TO Vee tD_ _HI AD6

THROUGH A 4.7 kO RESISTOR) '111 n n n n n n n n n n n n n n n Plr

Bottom View

FIGURE 4-1. NS32C032 Connection Diagram

Order Number NS32C032-10E, NS32C032-15E,
NS32C032-10V or NS32C032-15V

See NS Package Number E6SB or V6SA

2-225

Max Units

Vee +0.5 V

0.8 V

Vee +0.5 V

0.10 Vee V

0.6 V

V

0.10 Vee V

1.0 rnA

20 IlA

20 IlA

100 rnA

TLlEE/9160-2

z
CJ)
W
N
o
o
W
N

I
o
Z
CJ)
W
N o
o
W
N
I

U1

Il)
C'I
C")
o
o
C'I
C")

en z
o • C'I
C")
o
o
C'I
C")

en
z

4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS ABBREVIATIONS:

4.4.1 Definitions L.E. - leading edge R.E. - rising edge

All the timing specifications given in this section refer to T.E. - trailing edge F.E. - falling edge

2.0V on the rising or falling edges of the clock phases PHI1 [-
and PHI2; to 15% or 85% of Vee on all the CMOS output PH In)(2.0V -signals, and to 0.8V or 2.0V on all the TTL input signals as
illustrated in Figures 4-2 and 4-3 unless specifically stated

[O.sv"--------- -t;I~1~ otherwise. SIG1

[~
I

PHln 2.0V
I -

SIG2 [2.0V A __________ ~~GJ~

SIG1 [• ,,--O":'1SV;c· TL/EE/9160-44
tSIG11 FIGURE 4-3. Timing Specification Standard

I
(TTL Input Signals)

SIG2 [- tSIG2h -~~~!£.c ________ •
TL/EE/9160-43

FIGURE 4-2. Timing Specification Standard
(CMOS Output Signals)

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation Delays, NS32C032-10, NS32C032-15

Maximum times assume capacitive loading of 100 pF.

Name Figure Description Reference/Conditions
NS32C032-10 NS32C032-15

Units
Min Max Min Max

tALv 4-4 Address bits 0-23 valid after R.E., PHI1 T1 40 35 ns

tALh 4-4 Address bits 0-23 hold after R.E., PHI1 Tmmu or T2 5 5 ns

tov 4-4 Data valid (write cycle) after R.E., PHI1 T2 50 35 ns

tOh 4-4 Data hold (write cycle) after R.E., PHI1 next T1 or Ti 0 0 ns

tALAOSs 4-5 Address bits 0-23 setup before ADS T.E. 25 20 ns

tALAOSh 4-10 Address bits 0-23 hold after ADS T.E. 15 10 ns

tALf 4-5 Address bits 0-23 after R.E., PHI1 T2 25 20 ns
floating (no MMU)

tADf 4-5 Data bits 024-031 after R.E., PHI1 T2 25 20 ns
floating (no MMU)

tALMf 4-9 Address bits 0-23 after R.E., PHI1 Tmmu 25 20 ns
floating (with MMU)

tAOMf 4-9 Data bits 21-31 after R.E., PHI1 Tmmu 25 20 ns
floating (with MMU)

tSEv 4-4 BEn signals valid after R.E., PHI2 T4 60 45 ns

tSEh 4-4 BEn signals hold after R.E., PHI2 T 4 or Ti 0 0 ns

tSTv 4-4 Status (STO-ST3) valid after R.E., PHI1 T4 45 35 ns
(before T1, see note)

tSTh 4-4 Status (STO-ST3) hold after R.E., PHI1 T4 (after T1) 0 0 ns

2-226

4.0 Device Specifications (Continued)

4.4.2.1 Output SIgnals: Internal PropagatIon Delays, NS32C032-0, NS32C032-10 (Continued)

Name FIgure DescrIption
Referencel NS32C032-10
CondItions MIn Max

tOOINv 4·5 ODIN signal valid after R.E., PHI1 T1 50

tOOINh 4·5 ODIN signal hold after R.E., PHI1 next T1 or Ti 0

tAOSa 4·4 ADS signal active (low) after R.E., PHI1 T1 35

tAOSia 4·4 ADS signal inactive after R.E., PHI2 T1 40

tAOSw 4·4 ADS pulse width at 15% Vcc (both edges) 30

to Sa 4·4 OS signal active (low) after R.E., PHI1 T2 40

tOSia 4·4 OS signal inactive after R.E., PHI1 T4 40

tAU 4·6 ADO-AD23 floating after R.E., PHI1 T1 25
(caused by HOLD)

tAOt 4·6 024-031 floating after R.E., PHI1 T1 25
(caused by HOLD)

tOSt 4·6 OS floating after R.E., PHI1 Ti 50
(caused by ROIJ5)

tAOSt 4·6 ADS floating after R.E., PHI1 Ti 50
(caused by HOLD)

tSEt 4·6 BEn floating after R.E., PHI1 Ti 50
(caused by HOLD)

tOOl Nt 4·6 ODIN floating after R.E., PHI1 Ti 50
(caused by HOLD)

tHLOAa 4·6 HLDA signal active (low) after R.E., PHI1 Ti 30

tHLOAia 4·8 HLDA signal inactive after R.E., PHI1 Ti 40

tOSr 4·8 OS signal returns from after R.E., PHI1 Ti 55
floating (caused by HOLD)

tAOSr 4·8 ADS signal returns from after R.E., PHI1 Ti 55
floating (caused by HOLD)

tSEr 4·8 BEn signals return from after R.E., PHI1 Ti 55
floating (caused by HOLD)

tOOINr 4·8 ODIN signal returns from after R.E., PHI1 Ti 55
floating (caused by HOLD)

tOOl Nt 4·9 ODIN signal floating after FL T F.E. 55
(caused by FL T)

tOOINr 4·10 ODIN signal returns from after FL T R.E. 40
floating (caused by FL T)

tSPCa 4·13 SPC output active (low) after R.E., PHI1 T1 35

tSPCia 4·13 SPC output inactive after R.E., PHI1 T4 35

tSPCnt 4·15 SPC output nonforcing after R.E., PHI2 T4 30

tov 4·13 Data valid (slave processor after R.E., PHI1 T1 50
write)

tOh 4·13 Data hold (slave processor after R.E., PHI1 0
write) nextT10rTi

tpFSw 4·18 PFS pulse width at 15% VCC (both edges) 50

2·227

NS32C032-15

MIn Max

35

0

26

30

25

30

30

20

20

40

40

40

40

25

30

40

40

40

40

50

30

26

26

25

35

0

40

UnIts

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

z en
Cot.)
N
o o
Cot.)
N •
o
z en
Cot.)
N o
o
Cot.)

~
U1

I.t)
~
Cf)
o
o
N
Cf)
tJ)
Z
o
N
Cf)
o
o
N
Cf)
tJ)
Z

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32C032-10, NS32C032-15 (Continued)

Name Figure Description
Reference/ NS32C032-10 NS32C032-15

Units
Conditions Min Max Min Max

tPFSa 4-18 PFS pulse active (low) after R.E., PHI2 40 35 ns

tPFSia 4-18 PFS pulse inactive after R.E., PHI2 40 35 ns

tlLOs 4-20a 1[Q signal setup before RE., PHI1 T1 50 35 ns
of first interlocked
read cycle

tlLOh 4-20b 1[Q signal hold after RE., PHI1 T3 10 7 ns
of last interlocked
write cycle

tlLOa 4-21 j[Q signal active (low) after R.E., PHI1 35 30 ns

tlLOia 4-21 ILO signal inactive after RE., PHI1 35 30 ns

tUSv 4-22 U/S signal valid after RE., PHI1 T4 35 30 ns

tUSh 4-22 U/S signal hold after RE., PHI1 T4 8 6 ns

tNSPF 4-19b Nonsequential fetch to after RE., PHI1 T1 4 4 tep
next PFS clock cycle

tpFNS 4-19a PFS clock cycle to next before R.E., PHI1 T1 4 4 tcp
non-sequential fetch

tLXPF 4-29 Last operand transfer before R.E., PHI1 T1 of first 0 0 tep
of an instruction to next of first bus
PFS clock cycle cycle of transfer

Note: Every memory cycle starts with T4. during which Cycle Status is applied. If the CPU was idling. the sequence will be: " ... Ti, T4, T1 ... ". If the CPU was not
idling, the sequence will be: " '" T4, T1 ... ".

4.4.2.2 Input Signal Requirements: NS32C032-10, NS32C032-15

Name Figure Description Reference/Conditions NS32C032·10 NS32C032-15 Units
Min Max Min Max

tpWR 4-25 Power stable to after Vee reaches 4.5V 50 50 /J-s
RSTRE.

tOls 4-5 Data in setup before F.E., PHI2 T3 15 10 ns
(read cycle)

tOlh 4-5 Data in hold after R.E., PHI1 T4 3 3 ns
(read cycle)

tHLDa 4-6 HOLD active (low) setup before F.E., PHI2 TX1 25 17 ns
time (see note)

tHLDia 4-8 HOLD inactive setup before F.E., PHI2 Ti 25 17 ns
time

tHLDh 4-6 HOLD hold time after RE., PHI1 TX2 0 0 ns

tFLTa 4-9 FL T active (low) before F.E., PHI2 Tmmu 25 17 ns
setup time

tFLTia 4-10 FL T inactive setup before F.E., PHI2 T2 25 17 ns
time

tRDYs 4-11,4-12 ROY setup time before F.E., PHI2 T2 or T3 15 10 ns

tRDYh 4-11,4-12 ROY hold time after F.E., PHI1 T3 5 5 ns

tABTs 4-23 ABT setup time before F.E., PHI2 Tmmu 20 13 ns
(FL T inactive)

tABTs 4-24 ABT setup time before F.E., PHI2 Tf 20 13 ns
(FL T active)

tABTh 4-23 ABT hold time after RE., PHI1 0 0 ns

2-228

4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements NS32C032-10, NS32C032-15 (Continued)

Name Figure Description
Referencel NS32C032-10 NS32C032-15

Units
Conditions Min Max Min Max

tRSTs 4·25,4·26 RST setup time before F.E., PHI1 10 B ns

tRSTw 4·26 RST pulse width at O.BV (both edges) 64 64 tcp

tiNTs 4·27 INTsetup time before F.E., PHI1 20 15 ns

tNMlw 4·2B NMI pulse width at O.BV (both edges) 70 70 ns

tOls 4·14 Data setup (slave before F.E., PHI2 T1 15 10 ns
read cycle)

tOlh 4·14 Data hold (slave after R.E., PHI1 T4 3 3 ns
read cycle)

tSPCd 4·15 SPC pulse delay from after R.E., PHI2 T4 30 25 ns
slave

tspcs 4·15 SPC setup time before F.E., PHI1 30 25 ns

tspcw 4·15 SPC pulse width from at O.BV (both edges) 25 20 ns
slave processor
(async input)

tATs 4·16 AT /SPC setup for ad· before R.E., PHI1 of cycle 1 1 tcp
dress translation strap during which RST

pulse is removed

tATh 4·16 AT /SPC hold for ad· after F.E., PHI1 of cycle 2 2 tcp
dress translation strap during which RST

pulse is removed
Note: This setup time is necessary to ensure prompt acknowledgement via HillA and the ensuing floating of CPU off the buses. Note that the time from the receipt
of the HOill Signal until the CPU floats is a function of the time HOLD Signal goes low. the state of the RDY input (in MMU systems). and the length of the current
MMU cycle.

4.4.2.3 Clocking Rcqulrements: NS32C032-10, and NS32C032-15

Name Figure Description
Referencel NS32C032-10 NS32C032-15

Units
Conditions Min Max Min Max

tcp 4·17 Clock Period R.E., PHI1, PHI2 100 250 66 250 ns
to next
R.E., PHI1, PHI2

tCLW(1.2) 4·17 PHI1, PHI2 At2.0Von PHI1, 0.5 tcp 0.5 tcp
Pulse Width PHI2 (Both Edges) -10 ns -6ns

tCLh(1.2) 4·17 PHI1, PHI2 High Time At 90% Vcc on 0.5tcp 0.5tcp
PHI1, PHI2 -15 ns -10 ns

tCLl(1.2) 4-17 PHI1, PHI2 Low Time At 15% Vccon 0.5tcp 0.5 tcp
PHI1, PHI2 -6ns -5ns

ns

tnOVL(1.2) 4·17 Non·Overlap Time At 15% Vcc -2 2 -2 2 ns
on PHI1, PHI2

tnOVLas Non·Overlap Asymmetry At 15% Vcc -3 3 -3 3 ns

(tnOVL(1) - tnOVL(2») on PHI1, PHI2

tcLwas PHI1, PHI2 Asymmetry At2.0V -5 5 -3 3 ns

(tCLw(1) - tCLw(2») on PHI1, PHI2

2·229

z en
w
I\)

o
Q
W
I\)
• -a.

Q
.......
Z en
w
I\)

o
Q
W
I\)
• -a.

U1

Ln
"t-• 4.0 Device Specifications N
C")
0 4.4.3 Timing Diagrams 0
N
C")

rn z T4 OR TI T1 T2 T3 T4
......

PHI1 [0
"t-• N
C")

PHI2 [0
0
N
C")

AOO-AOZ3 [rn z
024-031 [

Aoi[
iEo'-m [

55iN[
ISTY

STO·3 [VALID NEXT

os[IDS.

ROY [(HI~H)

TL/EE/9160-45

FIGURE 4-4. Write Cycle

T40RTI T1 TZ T3 T4

PHI1 [

PHIZ [

AOO-AOZ3 [

D24-D31 [

m[

BED-iii [

DoiN[
loolNv

ST0-3 [VALID

os[
ROY [(HIGH)

TLlEE/9160-46

FIGURE 4·5. Read Cycle

2·230

4.0 Device Specifications (Continued)

PHI1 [

PHI2 [

HOLi5[

TX1 TX2 T4

~[tOSF
D§ tAOSI

Ti Ti Ti

tOOINI

;: [--+ ____ -+ ____ -+-__ ~-.;_-J -- - - -- - (FLO TINGi - ---

BEO-8E3 [--+-----+------+--~ ~~-""""'I ---T ----'A:JilNii,- ---
ADO-AD" ['~~-T ----,JilNii,----

024-031 [:~~-T ----'FLo~;;NGi----
FIGURE 4-6. Floating by HOLD Timing (CPU Not Idle Initially).

TLlEE/9160-47

Note that whenever the CPU is not idling (not in Ti), the HOLD request (HOLD low) must be active tHLDa before the falling edge
of PHI2 of the clock cycle that appears two clock cycles before T4 (TX1) and stay low until tHLDh after the rising edge of PHI1 of
the clock cycle that precedes T 4 (TX2) for the request to be acknowledged.

PHil [

PHI2 [

HOLD [

HLDA [

IDSf
IADSf

os, _-+-___ +-__ -+"""'\IIDDINf

ADS, [
ODIN -+---__l~---+-J

~~[-+---__l-----+-J
ADO-AD23 [- - -

024-031 [--- ------ ------

---------(FLOATING)

---------(FLOATING)

TLlEE/9160-48

FIGURE 4-7. Floating by HOLD Timing (CPU Initially Idle)

Note that during Ti1 the CPU is already idling.

2·231

PHil [

PHI2 [

HLDA [_-+-___ +-__ -+...1

OS,
ADS, [- --
ODIN (FLOATING)

(HIGH)

BEo-~ [---

ADO-AD23 [- --~ - - - -- - t------~(FLOATiNG)'
024-031 I I

TL/EE/9160-49

FIGURE 4-8. Release from HOLD

z en
Co)
~
o o
Co)
~ •
o
z en
Co)
~
o o
Co)
~ •
U1

U) .,..
I

N
('t)
o o
N
('t)
U)
Z
o .,..

I
N
('t)
o
o
N
('t)
U)
Z

4.0 Device Specifications (Continued)

cPU STATES T1 TMMU Tr

MMUSTATES [11

PHil

PHI2 [

m[
AOO-A023 [

(CPU)

024-031 [
(CPU)

ADS [
(CPU)

PAV[(MMU)

DoiN[

BEii-w [

FIGURE 4-9. FL T Initiated Float Cycle Timing

CPU STATES TI T2

MMU STATES Tmmu

PHI1[

PHI2 [-1---
FlT[(MMU)

A111-23 [
(CPU) -

D6iN
(CPU) [

ADs [
(CPU)

___ ~r: ____ -
(FLOATING, DRIVEN BY MMU)

tDDINr

T3

Tr

TL/EE/9160-S0

T4

m-m[~ ____ ~ ____ ~ ____ ~ __ __
TL/EE/9160-S1

FIGURE 4-10. Release from FLTTlming

Note that when FL Tis deasserted the CPU restarts driving ODIN before the MMU releases it. This, however, does not cause any
conflict, since both CPU and MMU force ODIN to the same logic level.

TLlEE/9160-S2

FIGURE 4-11. Ready Sampling (CPU Initially READY)

2-232

4.0 Device Specifications (Continued)

I I I I
[n T3 n T3 n T4

PHil J L--J L--.J L-

PHI2 [

ROY [

TL/EE/9160-53

FIGURE 4-12. Ready Sampling (CPU Initially NOT READY)

I T1 I T4 I
PHI1[~

L T1 I T4 I
PHll[rLJLJ

PHI2 [PHI2 [

IOlh

AOO-15 [AOO-15 [

spc[SPe[(CPU)

DOiN[i5DiN[
-+~----~r-------+-

5T0-3 [-t-------f--' 8T0-3 [-+--------11--' '-----t-

AoS[
TL/EE/9160-54

FIGURE 4-13. Slave Processor Write Timing
TLlEE/9160-55

FIGURE 4-14. Slave Processor Read Timing

PHil [

PHI2 [

SPC [
(FROt.! CPU)

Tl T4

(FROt.! sJJ8 [. ---------------- ------

FIGURE 4-15. SPC Timing

After transferring last operand to a Slave Processor, CPU
turns OFF driver and holds SPC high with internal 5 kn pullup.

FIGURE 4-16. Reset Configuration Timing

2-233

TLlEE/9160-56

TL/EE/9160-57

z
en
eN
N o
o
eN
N • -" o
z
en
eN
N
o
o
eN
N • -"
U1

Lt)
N 4.0 Device Specifications (Continued)
C")
o
o
N
C")
U)
Z

~ PHI1 [

N
C")
o
o
N

~
Z

PHI2 [

FIGURE 4-17. Clock Waveforms

PH.[~!l-fl--J

mr~~

TL/EE/9160-58

TL/EE/9160-59

FIGURE 4-18. Relationship of PFS to Clock Cycles

T1

PHI1 [

m [b"------oj/
tPFNS .1

ST0-3 [X CODE 1001

-----------' ""-----
FIGURE 4-19a. Guaranteed Delay, PFS to Non-Sequential Fetch

1 T1 1 12 1 ••• 1 1 1 1

""LfL~fl---fl--JL
Aoi[

STO-3 [COOE 1001

-+ --~~ ----~ --..... ----......

p;s[
'NSPF

FIGURE 4-19b. Guaranteed Delay, Non-Sequential Fetch to PFS

2-234

TL/EE/9160-60

TLlEE/9160-61

4.0 Device Specifications (Continued)

I T30RTI I T40RTI I T1 12 T3 T4

iDi[

iLO[
TL/EE/9160-62

FIGURE 4·20a. Relationship of iI:() to First Operand Cycle of an Interlocked Instruction

I T30RTI I T40RTI I T1 T2 T3 T4

AtiS[

[a[____________________________ ~----------------------------t'
TL/EE/9160-63

FIGURE 4·20b. Relationship of ILO to Last Operand Cycle of an Interlocked Instruction

TLlEE/9160-64

FIGURE 4·21. Relationship of ILO to Any Clock Cycle

I T3 OR TI I T40RTI I T1 T2 T3 T4

PHI1[

U/S[""'"""'"'~""""'of-'J I'--+----------------..... ~I
TL/EE/9160-65

FIGURE 4·22. U/S Relationship to Any Bus Cycle - Guaranteed Valid Interval

2·235

z en
w
N
(")
Q
W
~
Q
Z
~
N
(")
Q
W
~
en

•

~ r---, ,..
N
C")
o
o
N
C")
(/)
Z o ,..
N
C")
o
o
N
C")
(/)
Z

4.0 Device Specifications (Continued)

T1 I Tmmu T2 TI

PHI1 [

PHI2 [

RSr/ffi [

TL/EE/9160-66

FIGURE 4-23. Abort Timing, FL T Not Applied

PHil [

PHI2 [

Ds/FLT [_f-----+---+----++_~
RSr/ABr [

TL/EE/9160-67

FIGURE 4-24. Abort Timing, FL T Applied

vee v-----------~~

PHil [----i----....

[
tpWR

RST/ABT -------_____ --\'\-..J

TL/EE/9l60-68

FIGURE 4-25. Power-On Reset

PHI1[SLl1-
tRS":"r

RsT/iiT[' d ~~
~Q-----~~~_--~~~/--------~ ..

TLlEE/9l60-69

FIGURE 4-26. Non-Power-On Reset

2·236

4.0 Device Specifications (Continued)

PHI1[SLSLJL
~"~

iNT[~
TL/EE/9160-70

FIGURE 4-27. INT Interrupt Signal Detection

FIRST BUS CYCLE

T1 T2 T3

""'[\~ tNMlw if
)1'---.(

TL/EE/9160-71

FIGURE 4-28. NMllnterrupt Signal Timing

T4

NEXT

T10rTi I

TL/EE/9160-72

FIGURE 4-29. Relationship Between Last Data Transfer of an Instruction and PFS Pulse of Next Instruction
Note: In a transfer of a Read-Modify-Write type operand, this is the Read transfer, displaying RMW Status (Code 1011).

2-237

z en
w
N
o o
W
N . .-.
o
z en
w
N o o
W
N • .-.
(11

•

Ln ,...
N
Cf)
o
o
N
Cf)
(f)
Z
C) ,...
N
Cf)
o
o
N
Cf)
(f)
Z

Appendix A: Instruction Formats
NOTATIONS

i= Integer Type Field

B = 00 (Byte)

W = 01 (Word)

D = 11 (Double Word)

f = Floating Point Type Field

F = 1 (Std. Floating: 32 bits)

L = 0 (Long Floating: 64 bits)

c = Custom Type Field

D = 1 (Double Word)

o = 0 (Ouad Word)

op = Operation Code

Valid encodings shown with each format.

gen, gen 1, gen 2 = General Addressing Mode Field

See Sec. 2.2 for encodings.

reg = General Purpose Register Number

cond = Condition Code Field
0000 = EOual: Z = 1
0001 = Not Equal: Z = 0
0010 = Carry Set: C = 1
0011 = Carry Clear: C=;O
0100 = Higher: L = 1
0101 = Lower or Same: L = 0
0110 = Greater Than: N = 1
0111 = Less or Equal: N = 0
1000 = Flag Set: F = 1
1001 = Flag Clear: F = 0
1010 = LOwer: L = 0 and Z = 0
1011 = Higher or Same: L = 1 or Z = 1
1100 = Less Than: N = 0 and Z = 0
1101 = Greater or Equal: N = 1 or Z = 1
1110 = (Unconditionally True)
1111 = (Unconditionally False)

short= Short Immediate value. May contain
quick: Signed 4-bit value, in MOVO, ADDO,

CMPO, ACB.

cond: Condition Code (above), in Scond.

areg: CPU Dedicated Register, in LPR, SPR.
0000 = US
0001 - 0111 = (Reserved)
1000 = FP
1001 = SP
1010 = SB
1011 = (Reserved)
1100 = (Reserved)
1101 = PSR
1110 = INTBASE
1111 = MOD

Options: in String Instructions

I U/W I BIT I
T = Translated

B = Backward

U/W = 00: None

01: While Match

11: Until Match

2-238

Configuration bits, in SETCFG:

I C I M I Fill
mreg: NS32082 Register number, in LMR, SMR.

0000 = BPRO
0001 = BPR1
0010 = (Reserved)
0011 = (Reserved)
0100 = (Reserved)
0101 = (Reserved)
0110 = (Reserved)
0111 = (Reserved)
1000 = (Reserved)
1001 = (Reserved)
1010 = MSR
1011 = BCNT
1100 = PTBO
1101 = PTB1
1110 = (Reserved)
1111 = EIA

7 0

c~ndi 11 i 0 i 1 i 0 I

FormatO

Bcond (BR)

7 0

~p i 1 0 i 0 i 1 i 0 I

Format 1

BSR -0000 ENTER -1000
RET -0001 EXIT -1001
CXP -0010 NOP -1010
RXP -0011 WAIT -1011
RETT -0100 DIA -1100
RETI -0101 FLAG -1101
SAVE -0110 SVC -1110
RESTORE -0111 BPT -1111

15 81 7 0
i i

i sh~rt 1
i i

11 i 1 i I gen op

Format 2
AD DO -000 ACB -100
CMPO -001 MOVO -101
SPR -010 LPR -110
Scond -011

z
Appendix A: Instruction Formats (Continued)

en w
N

81 7
0

15 0 0 w

I
I I I I

I

I

I
N

I I II I I I I .
gen i ...&. op 1 1 1 1 1

0
Format 3 Z

Format 7 en
CXPD -0000 ADJSP -1010 w

MOVM -0000 MUL -1000 N
BICPSR -0010 JSR -1100

CMPM -0001 MEl -1001
0

JUMP -0100 CASE -1110 0
INSS -0010 Trap (UND) -1010 w

BISPSR -0110 N
EXTS -0011 DEI -1011 • ...&.

Trap (UND) on XXX1, 1000
MOVXBW -0100 QUO -1100

UI

1
817 1

MOVZBW -0101 REM -1101
15 0 MOVZiD -0110 MOD -1110

I
I I I I

I

I

I

I I I

I MOVXiD -0111 DIV -1111
gen 1 gen2 op

Format 4

ADD -0000 SUB -1000
CMP -0001 ADDR -1001 TL/EE/9160-73

BIC -0010 AND -1010 Format 8
ADDC -0100 SUBC -1100 EXT -000 INDEX -100
MOV -0101 TBIT -1101 CVTP -001 FFS -1 01
OR -0110 XOR -1110 INS -010

CHECK -011
0

MOVSU -110, reg = 001

i o 0 0 0 1 1 1 0 MOVUS -110, reg = 011

Format 5
0

MOVS -0000 SETCFG -0010 1 1 1 1 1 0
CMPS -0001 SKPS -0011

Trap (UND) on 1XXX, 01XX Format 9
MOVif -000 ROUND -100 8 7 0 LFSR -001 TRUNC -101

i o 1 00111 0 MOVLF -010 SFSR -110
MOVFL -011 FLOOR -111

Format 6 7 0

ROT -0000 NEG -1000 ---I I I I I I I I 1
ASH -0001 NOT -1001

___ 0 1 0 1 1 1 1 0

CBIT -0010 Trap (UND) -1010
TLlEE/9160-77

Format 10
CBITI -0011 SUBP -1011

Trap (UND) Always
Trap (UND) -0100 ABS -1100
LSH -0101 COM -1101
SBIT -0110 IBIT -1110
SBITI -0111 ADDP -1111

2-239

Lt) ,... .
N
('t)
o
o
N
('t)

rn
z
o ,... .
N
('t)
o
o
N
('t)

rn
z

Appendix A: Instruction Formats (Continued)

AODf
MOVf
CMPf
Trap (SLAVE)
SUBf
NEGf
Trap (UNO)
Trap (UNO)

Trap (UNO) Always

Trap (UNO) Always

ROVAL
WRVAL

o

1 1 1 1 0

Format 11

-0000 OIVf -1000
-0001 Trap (SLAVE) -1001
-0010 Trap (UNO) -1010
-0011 Trap (UNO) -1011
-0100 MULf -1100
-0101 ABSf -1101
-0110 Trap (UNO) -1110
-0111 Trap (UNO) -1111

7 0 ---I II I II I I I
.1 1 1 1 1 1 1 O. ---

Format 12

Format 13

Format 14

-0000
-0001

LMR
SMR

TL/EE/9160-75

7 0

I II I II I I I
.1 0 0 1 1 1 1 O.

TL/EE/9160-76

-0010
-0011

Trap (UNO) on 01 XX, 1 XXX

2-240

Operation Word 10 Byte

Format 15

(Custom Slave)

nnn Operation Word Format

000

Format 15.0

CATSTO
CATST1

-0000
-0001

Trap (UNO) on all others

001

LCR
SCR

Format 15.1

CCV3
LCSR
CCV5
CCV4

101

-000
-001
-010
-011

23

gen 1

CCV2
CCV1
SCSR
CCVO

Format 15.5

CCALO
CMOVO
CCMPO
CCMP1
CCAL1
CMOV2
Trap (UNO)
Trap (UNO)

-0000
-0001
-0010
-0011
-0100
-0101
-0110
-0111

If nnn = 010.011.100.110.111
then Trap (UND) Always

CCAL3
CMOV3
Trap (UNO)
Trap (UNO)
CCAL2
CMOV1
Trap (UNO)
Trap (UNO)

-0010
-0011

-100
-101
-110
-111

-1000
-1001
-1010
-1011
-1100
-1101
-1110
-1111

Appendix A: Instruction Formats (Continued)

7 0

---I I I I I I I I 1
___ 0 1 0 1 1 1 1 0

TL/EE/9160-77

Format 16

Trap (UNO) Always

7 0
---I I I I I I I I 1
___ 1 1 0 1 1 1 1 ~

TL/EE/9160-78

Format 17

Trap (UNO) Always

7 0

---I I I I I I I I 1
___ 1 0 0 0 1 1 1 0

TL/EE/9160-79

Format 18

Trap (UNO) Always

2-241

Format 19

Trap (UNO) Always

Implied Immediate Encodlngs:
7

7 0

---I I I I I I I I 1 ___ x x x 0 0 1 1 0

TL/EE/9160-80

o

r1 rO

Register Mark, appended to SAVE, ENTER
7 o

Register Mark, appended to RESTORE, EXIT
7 o

; offset ;

Offset/Length Modifier appended to INSS, EXTS

z en w
I\)

o
o
w
I\) .
....to.

o
"' Z en
w
I\)

o
o
w
I\) .
....to.
U1

I\)

N
~
I\)

INTS

lICTA12

~ lICTALI

RESET

r
ROY PHil PHI2 BEO •••.•• BE3 ILO

I:: iiif
HOLD

NUl
DSiru

HLDA
NS32C032 PFS

CPU UIS

ADS

ODIN

STO-ST3

RSi/AiT
ArISpe

ADO-A023 024-031 lOKI!

124;-t ~(8) '.
J +5

" AODR/DArA BUS (16)~
ADO-AD IS SPC

NS32081 STO-STI
FPU

RST

CLK

NS32C032-10/NS32C032-15

PIR
PERIPH CYCLE

CN'"
READy

_ITI

WAm I-- _IT R[OU[STS

NS32C201 _1T1

RSH lCU iim1

~I :::= (ADDR DECODED OR STRAPPEDI

iii)

»
'0
'0
CD
::J
C.
>C" PHil 1m

PHI1 WR
ADS

RSTO CTn ODIN ROY DBr

1

T
I-

HOLD ROY
PHil

PHI2

FLT HLDAO
HLDAI PiiI
PFS

UIS NS32082

ADS
IIIIU

Ii: ODIN

STO-ST3

' RSTIABT 1024 1--,...
SPC

ADO-AD23 RST

(24) -.
(32) ... I 1

IT fiU' 1-
~

FIGURE 8-1. System Connection Diagram

WR

BED

BEl
.5'

I BE2

BE3
I H 1Y 2Y 3Y 4Y i~

'tm t'7uu· 1
~

aL~'

HOLD

HLDAO

AI

STROBE
100-1023 ~

(24.

~
AODRESS

AOO-AD23 LATCHI
~7 BUFFER (24) ,

~ DArABUFFERS

-- Di

--.. ~~16-031
ADO-ADIS ~

,
DDIN
~

'31 ~"cfu~j+
(32) AOO-AD23'

~ ANDD24-D31 DATA BUFFERS

TUEE/9160-81

!lJ
::J
CD
OJ
(")

5"
CC
fn
c

CC
CC
CD en
0"
::J en

~National
~ Semiconductor
NS32C016-10/NS32C016-15
High-Performance Microprocessors
General Description Features

PRELIMINARY

The NS32C016 Is a 32-bit, CMOS microprocessor with TIL
compatible Inputs. The NS32C016 has a 16M byte linear
address space and a 16-bit external data bus. It is fabricat­
ed with National Semiconductor's advanced CMOS process
and is fully object code compatible with other Series
320001!l CPU's. The NS32C016 has a 32-bit ALU, eight 32-
bit general purpose registers, an eight-byte prefetch queue
and a highly symmetric architecture. It also incorporates a
slave processor interface and provides for full virtual memo­
ry capability in conjunction with the NS32082 memory man­
agement unit (MMU). High performance floating-point in­
structions are provided with the NS32081 floating-point unit
(FPU). The NS32C016 is intended for a wide range of high
performance computer applications.

• 32-bit architecture and Implementation

Block Diagram

• 16M byte uniform addressing space
• Powerful Instruction set

- General 2-address capability
- Very high degree of symmetry
- Addressing modes optimized for high-level

Language references

• High-speed CMOS technology
• TIL compatible inputs
• Single 5V supply
• 48-pin dual-in-line package

ADD/DATA CONTROLS & STATUS

MICROCODE ROM
AND

CONTROL LOGIC

DISPLACEMENT AND
IMMEDIATE EXTRACTOR

[[IJ]
CFG REGISTER

0
0

REGISTER SET

INTBASE
SB
FP
SP1
SPO
pc
RO
R1
R2
R3
R4
RS
R6
R7

WORKING
REGISTERS

I
I
I
I
I

MOD I

PSR :

L _________________ J

2-243

TL/EE/B525-1

z
(J)
W
N
o o
0)
I
o
Z
(J)
W
N
o o
cp
U1

II)
op-

I
CD
op-

o
o
N
C")
U)
Z
o
op-

I
CD
op-

o
o
N
C")
U)
Z

1.0 PRODUCT INTRODUCTION

2.0 ARCHITECTURAL DESCRIPTION

2.1 Programming Model

2.1.1 General Purpose Registers
2.1.2 Dedicated Registers
2.1.3 The Configuration Register (CFG)
2.1.4 Memory Organization
2.1.5 Dedicated Tables

2.2 Instruction Set

2.2.1 General Instruction Format
2.2.2 Addressing Modes

2.2.3 Instruction Set Summary

3.0 FUNCTIONAL DESCRIPTION

3.1 Power and Grounding

3.2 Clocking

3.3 Resetting

3.4 Bus Cycles

3.4.1 Cycle Extension

3.4.2 Bus Status
3.4.3 Data Access Sequences

3.4.3.1 Bit Accesses

3.4.3.2 Bit Field Accesses
3.4.3.3 Extending Multiply Accesses

3.4.4 Instruction Fetches
3.4.5 Interrupt Control Cycles

3.4.6 Slave Processor Communication
3.4.6.1 Slave Processor Bus Cycles

Table of Contents
3.0 FUNCTIONAL DESCRIPTION (Continued)

3.S NS32C016 Interrupt Structure

3.S.1 General Interrupt/Trap Sequence
3.S.2 Interrupt/Trap Return
3.S.3 Maskable Interrupts (The INT Pin)

3.S.3.1 Non-Vectored Mode
3.S.3.2 Vectored Mode: Non-Cascaded Case
3.S.3.3 Vectored Mode: Cascaded Case'

3.S.4 Non-Maskable Interrupt (The NMI Pin)
3.S.5 Traps
3.S.6 Prioritization
3.S.7 Interrupt/Trap Sequences: Detail Flow

3.S.7.1 MaskablelNon-Maskable Interrupt Se-
quence

3.S.7.2 Trap Sequence: Traps Other Than Trace
3.S.7.3 Trace Trap Sequence
3.S.7.4 Abort Sequence

3.9 Slave Processor Instructions

3.9.1 Slave Processor Protocol

3.9.2 Floating Point Instructions
3.9.3 Memory Management Instructions
3.9.4 Custom Slave Instructions

4.0 DEVICE SPECIFICATIONS

4.1 NS32C016 Pin Descriptions

4.1.1 Supplies
4.1.2 Input Signals
4.1.3 Output Signals
4.1.4 Input-Output Signals

3.4.6.2 Slave Operand Transfer Sequences 4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics

4.4 Switching Characteristics

3.5 Memory Management Option

3.5.1 Address Translation Strap

3.5.2 Translated Bus Timing
3.5.3 The FL T (Float) Pin
3.5.4 Aborting Bus Cycles

3.5.4.1 The Abort Interrupt

3.5.4.2 Hardware Considerations

3.6 Bus Access Control

3.7 Instruction Status

4.4.1 Definitions
4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation De­
lays

4.4.2.2 Input Signal Requirements
4.4.2.3 Clocking Requirements

APPENDIX A: INSTRUCTION FORMATS
APPENDIX B: INTERFACING SUGGESTIONS

List of Illustrations
The General and Dedicated Registers •....•.. 2-1
Processor Status Register• ~ ... 2-2
CFG Register ...•..........•..•.. 2-3
Module Descriptor Format ... 2-4
A Sample Link Table•.. 2-5
General Instruction Format ...•.. 2-6
Index Byte Format•..................•... 2-7
Displacement Encodings•... 2-S
Recommended Supply Connections .. 3-1
Clock Timing Relationships .. 3-2

2-244

List of Illustrations (Continued)

Power-On Reset Requirements ...•........ 3-3

General Reset Timing ..•..............................•.........•........ 3-4

Recommended Reset Connections, Non-Memory-Managed System ...•.....•. 3-5a

Recommended Reset Connections, Memory-Managed System•....................................•..•....... 3-5b

Bus Connections ..•.....•.......... 3-6

Read Cycle Timing ...•.....................................•........... 3-7

Write Cycle Timing•..•..•.......•................. 3-8

ROY Pin Timing ..•.............................•......•............ 3-9

Extended Cycle Example•...•..........•.........•....... .- ...•...•.. 3-1 0

Memory Interface•..................................•.............................•......•.....•..... 3-11

Slave Processor Connections ...•.........•...........•...•.. 3-12

CPU Read from Slave Processor '•.........•.....•......•..... 3-13

CPU Write to Slave Processor ...•.................. 3-14

Read Cycle with Address Translation (CPU Action) .•..........•.............................•...........•..•...•.. 3-15

Write Cycle with Address Translation (CPU Action) ...•...... 3-16

Memory-Managed Read Cycle•...•.............. 3-17

Memory-Managed Write Cycle•.........•...........................•.............. 3-18

FLT Timing ...•...............................•.......•....•..•... 3-19

HOLD Timing, Bus Initially Idle•..•.....•.............••........•...... 3-20

HOLD Timing, Bus Initially Not Idle•..............................•..... "•.•.... 3-21

Interrupt Dispatch and Cascade Tables•........•..................................... 3-22

Interrupt/Trap Service Routine Calling Sequence ...•..•.............. 3-23

Return from Trap (RETT n) Instruction Flow•.....•......................••.•.•....•....... 3-24

Return from Interrupt (RET I) Instruction Flow•.....•..•.............•......•.•......•....... 3-25

Interrupt Control Unit Connections (16 Levels)•...............•................•....••...•...• 3-26

Cascaded Interrupt Control Unit Connections•......•........•.......................•.........•...• 3-27

Slave Processor Status Word Format••...........•..•.......•..............•...............•...............• 3-30

Connection Diagram•.........................•...•........................••..........•.....• 4-1

Timing Specification Standard (CMOS Output Signals)•...............•......•...••..•........•............... 4-2

Timing Specification Standard (TTL Input Signals)•.....•.•.............................•......•.•.....•.•. 4-3

Write Cycle•....................•..•.......•..............................•.............•.•. 4-4

Read Cycle ...•.........•................•..••...•....•.•.•.•.• 4-5

Floating by HOLD Timing (CPU Not Idle Initially) •.......................•.•............................•..•..•..... .4-6

Floating by HOLD Timing (CPU Initially Idle)•.........•..................•...•......•....•..........•. .4-7

Release from HOLD .•.•......•..................•..•........•......•.•.......•..........................•.•.... 4-8

FL T Initiated Cycle Timing•....................•.......•.........•....•..... 4-9

Release from FL T Timing•.....•........................•........•..............•.......................... 4-1 0

Ready Sampling (CPU Initially READY)•.......•......................•...........•........ 4-11

Ready Sampling (CPU Initially NOT READY)••....•.................•...............•......•.... 4-12

Slave Processor Write Timing•...................•............•..................•..•.......•.........•. 4-13

Slave Processor Read Timing•............................•...•.........•.............•.....•.. 4-14

SPC Non-Forcing Delay•..•.....•............. 4-15

Reset Configuration Timing•.................•.......•................•...............•... 4-16

Clock Waveforms•.........•.......................•.............•......•........•.......•..•.......... 4-17

Relationship of PFS to Clock Cycles•.......................•..........•....•.•... 4-18

Guaranteed Delay, PFS to Non-Sequential Fetch•.............................•...........•.. 4-19a

Guaranteed Delay, Non-Sequential Fetch to PFS •.................•..•.... 4-19b

Relationship of ILO to First Operand Cycle of an Interlocked Instruction•......•..•.••. .4-20a

Relationship of ILO to Last Operand Cycle of an Interlocked Instruction•......•..•..•. .4-20b

Relationship of ILO to Any Clock Cycle•......................•........•......•...•.........•..•.....•.•.... .4-21

U/S Relationship to any Bus Cycle-Guaranteed Valid Interval•.•........•....................•..•.........•... 4-22

Abort Timing, FL T Not Applied ..•...............................•..•.. 4-23

Abort Timing, FLT Applied••........•........•............••......•......... 4-24

2-245

z rn
(,)
N o
o
-" en • -" o
z rn
(,)
N
o o
-" en .
-"
U1

II
I

U) r---,
CD
o
o
N
C")
C/)
Z
o
eh
o
o
N
C")
C/)
Z

List of Illustrations (Continued)
Power-On Reset .. 4-25
Non-Power-On Reset .. 4-26
INT Interrupt Signal Detection .. , 4-27
N1iiii Interrupt Signal Timing ... 4-28
Relationship Between Last Data Transfer of an Instruction and PFS

Pulse of Next Instruction ... , 4-29

List of Tables
NS32C016 Addressing Modes •..•... 2-1

NS32C016 Instruction Set Summary .. 2-2
Bus Cycle Gategories•.. 3-1
Access Sequences ...•............. 3-2
Interrupt Sequences•..•....... 3-3

Floating Point Instruction Protocols ... 3-4
Memory Management Instruction Protocols ...•.............. 3-5
Custom Slave Instruction Protocols ... 3-6

2-246

1.0 Product Introduction
The Series 32000 Microprocessor family is a new genera­
tion of devices using National's XMaS and CMOS technolo­
gies. By combining state-of-the-art MaS technology with a
very advanced architectural design philosophy, this family
brings mainframe computer processing power to VLSI proc­
essors.

The Series 32000 family supports a variety of system con­
figurations, extending from a minimum low-cost system to a
powerful 4 gigabyte system. The architecture provides com­
plete upward compatibility from one family member to an­
other. The family consists of a selection of CPUs supported
by a set of peripherals and slave processors that provide
sophisticated interrupt and memory management facilities
as well as high-speed floating-point operations. The archi­
tectural features of the Series 32000 family are described
briefly below:

Powerful Addressing Modes. Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types. The architecture provides for numerous data
types, such as byte, word, doubleword, and BCD, which may
be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case
instructions that compilers can't use, the Series 32000 fami­
ly incorporates powerful instructions for control operations,
such as array indexing and external procedure calls, which
save considerable space and time for compiled code.

Memory-to-Memory Operations. The Series 32000 CPUs
represent two-address machines. This means that each op­
erand can be referenced by anyone of the addressing
modes provided. This powerful memory-to-memory archi­
tecture permits memory locations to be treated as registers
for all useful operations. This is important for temporary op­
erands as well as for context switching.

Memory Management. Either the NS32382 or the
NS32082 Memory Management Unit may be added to the
system to provide advanced operating system support func­
tions, including dynamic address translation, virtual memory
management, and memory protection.

Large, Uniform Addressing. The NS32C016 has 24-bit ad­
dress pointers that can address up to 16 megabytes without
any segmentation; this addressing scheme provides flexible
memory management without added-on expense.

Modular Software Support. Any software package for the
Series 32000 family can be developed independent of all
other packages, without regard to individual addressing. In
addition, ROM code is totally relocatable and easy to ac-

DEDICATED

32

PROGRAM COUNTER PC

STATIC BASE SB

FRAME POINTER FP

USER STACK PTA. sp' }
SP

INTERRUPT STACK PTR. SPO

INTERRUPT BASE INTBASE

PSR MOD

STATUS MODULE

cess, which allows a significant reduction in hardware and
software cost.

Software Processor Concept. The Series 32000 architec­
ture allows future expansions of the instruction set that can
be executed by special slave processors, acting as exten­
sions to the CPU. This concept of slave processors is
unique to the Series 32000 family. It allows software com­
patibility even for future components because the slave
hardware is transparent to the software. With future ad­
vances in semiconductor technology, the slaves can be
physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro­
vide three primary performance advantages and character­
istics:

• High-Level Language Support

• Easy Future Growth Path

• Application Flexibility

2.0 Architectural Description
2.1 PROGRAMMING MODEL

The Series 32000 architecture includes 16 registers on the
NS32C016 CPU.

2.1.1 General Purpose Registers

There are eight registers for meeting high speed general
storage requirements, such as holding temporary variables
and addresses. The general purpose registers are free for
any use by the programmer. They are thirty-two bits in
length. If a general register is specified for an operand that
is eight or sixteen bits long, only the low part of the register
is used; the high part is not referenced or modified.

2.1.2 Dedicated Registers

The eight dedicated registers of the NS32C016 are as­
signed specific functions.

PC: The PROGRAM COUNTER register is a pointer to the
first byte of the instruction currently being executed. The PC
is used to reference memory in the program section. (In the
NS32C016 the upper eight bits of this register are always
zero.)

SPO, SP1: The SPO register points to the lowest address of
the last item stored on the INTERRUPT STACK. This stack
is normally used only by the operating system. It is used
primarily for storing temporary data, and holding return infor­
mation for operating system subroutines and interrupt and

RD

R1

R2

R3

R4

RS

R6

R7

GENERAL

~---------32--------~-

TLlEE/8525-3

FIGURE 2-1. The General and Dedicated egisters

2-247

z
(f)
W
N o o
0)
o
Z
(f)
W
N o
o
~
en

•

1.1)
• CD

o
o
N
C")
(/)
Z
o
CD
o
o
N
C")
(/)
Z

2.0 Architectural Description (Continued)

trap service routines. The SP1 register points to the lowest
address of the last item stored on the USER STACK. This
stack is used by normal user programs to hold temporary
data and subroutine return information.

In this document, reference is made to the SP register. The
terms "SP register" or "SP" refer to either SPO or SP1,
depending on the setting of the S bit in the PSR register. If
the S bit in the PSR is 0 then SP refers to SPO. If the S bit in
the PSR is 1 then SP refers to SP1. (In the NS32C016 the
upper eight bits of these registers are always zero.)

Stacks in the Series 32000 family grow downward in memo­
ry. A Push operation pre-decrements the Stack Pointer by
the operand length. A Pop operation post-increments the
Stack Pointer by the operand length.

FP: The FRAME POINTER register is used by a procedure
to access parameters and local variables on the stack. The
FP register is set up on procedure entry with the ENTER
instruction and restored on procedure termination with the
EXIT instruction.

The frame pointer holds the address in memory occupied by
the old contents of the frame pointer. (In the NS32C016 the
upper eight bits of this register are always zero.)

SB: The STATIC BASE register points to the global vari­
ables of a software module. This register is used to support
relocatable global variables for software modules. The 5B
register holds the lowest address in memory occupied by
the global variables of a module. (In the NS32C016 the up­
per eight bits of this register are always zero.)

INTBASE: The INTERRUPT BASE register holds the ad­
dress of the dispatch table for interrupts and traps (Section
3.B). The INTBASE register holds the lowest address in
memory occupied by the dispatch table. (In the NS32C016
the upper eight bits of this register are always zero.)

MOD: The MODULE register holds the address of the mod­
ule descriptor of the currently executing software module.
The MOD register is sixteen bits long, therefore the module
table must be contained within the first 64k bytes of memo­
ry.

PSR: The PROCESSOR STATUS REGISTER (PSR) holds
the status codes for the NS32C016 microprocessor.

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all pro­
grams, but the high order eight bits are accessible only to
programs executing in Supervisor Mode.

15 817 0
1XIXIXIXI,lplslu NlzlFIXIXJLhlcl

TL/EE/8525-78

FIGURE 2-2. Processor Status Register

C: The C bit indicates that a carry or borrow occurred after
an addition or subtraction instruction. It can be used with the
ADDC and SUBC instructions to perform multiple-precision
integer arithmetic calculations. It may have a setting of 0 (no
carry or borrow) or 1 (carry or borrow).

T: The T bit causes program tracing. If this bit is a 1, a TRC
trap is executed after every instruction (Section 3.B.5).

L: The L bit is altered by comparison instructions. In a com­
parison instruction the L bit is set to "1" if the second oper­
and is less than the first operand, when both operands are
interpreted as unsigned integers. Otherwise, it is set to "0".
In Floating Point comparisons, this bit is always cleared.

2·248

F: The F bit is a general condition flag, which is altered by
many instructions (e.g., integer arithmetic instructions use it
to indicate overflow).

Z: The Z bit is altered by comparison instructions. In a com­
parison instruction the Z bit is set to "1" if the second oper­
and is equal to the first operand; otherwise it is set to "0" .

N: The N bit is altered by comparison instructions. In a com­
parison instruction the N bit is set to "1" if the second oper­
and is less than the first operand, when both operands are
interpreted as signed integers. Otherwise, it is set to "0".

U: If the U bit is "1" no privileged instructions may be exe­
cuted. If the U bit is "0" then all instructions may be execut­
ed. When U = 0 the NS32C016 is said to be in Supervisor
Mode; when U = 1 the NS32C016 is said to be in User
Mode. A User Mode program is restricted from executing
certain instructions and accessing certain registers which
could interfere with the operating system. For example, a
User Mode program is prevented from changing the setting
of the flag used to indicate its own privilege mode. A Super­
visor Mode program is assumed to be a trusted part of the
operating system, hence it has no such restrictions.

S: The S bit specifies whether the SPO register or SP1 regis­
ter is used as the stack pointer. The bit is automatically
cleared on interrupts and traps. It may have a setting of 0
(use the SPO register) or 1 (use the SP1 register).

P: The P bit prevents a TRC trap from occurring more than
once for an instruction (Section 3.B.5). It may have a setting
of 0 (no trace pending) or 1 (trace pending).

I: If 1= 1, then all interrupts will be accepted (Section 3.8). If
1=0, only the NMI interrupt is accepted. Trap enables are
not affected by this bit.

2.1.3 The Configuration Register (CFG)

Within the Control section of the NS32C016 CPU is the four­
bit CFG Register, which declares the presence of certain
external devices. It is referenced by only one instruction,
SETCFG, which is intended to be executed only as part of
system initialization after reset. The format of the CFG Reg­
ister is shown in Figure 2-3.

FIGURE 2-3. CFG Register

The CFG I bit declares the presence of external interrupt
vectoring circuitry (specifically, the NS32202 Interrupt Con­
trol Unit). If the CFG I bit is set, interrupts requested through
the INT pin are "Vectored." If it is clear, these interrupts are
"Non-Vectored." See Section 3.B.

The F, M and C bits declare the presence of the FPU, MMU
and Custom Slave Processors. If these bits are not set, the
corresponding instructions are trapped as being undefined.

2.1.4 Memory Organization

The main memory of the NS32C016 is a uniform linear ad­
dress space. Memory locations are numbered sequentially
starting at zero and ending at 224 - 1. The number specify­
ing a memory location is called an address. The contents of
each memory location is a byte consisting of eight bits. Un­
less otherwise noted, diagrams in this document show data
stored in memory with the lowest address on the right and
the highest address on the left. Also, when data is shown
vertically, the lowest address is at the top of a diagram and

2.0 Architectural Description (Continued)

the highest address at the bottom of the diagram. When bits
are numbered in a diagram, the least significant bit is given
the number zero, and is shown at the right of the diagram.
Bits are numbered in increasing significance and toward the
left.

Byte at Address A

Two contiguous bytes are called a word. Except where not­
ed (Section 2.2.1), the least significant byte of a word is
stored at the lower address, and the most significant byte of
the word is stored at the next higher address. In memory,
the address of a word is the address of its least significant
byte, and a word may start at any address.

115 MSB's 817 LSB's 01
A+1 A

Word at Address A

Two contiguous words are called a double word. Except
where noted (Section 2.2.1), the least significant word of a
double word is stored at the lowest address and the most
significant word of the double word is stored at the address
two greater. In memory, the address of a double word is the
address of its least significant byte, and a double word may
start at any address.

16115 817 LSB's 01
A+3 A+2 A+1 A

Double Word at Address A

Although memory is addressed as bytes, it is actually orga­
nized as words. Therefore, words and double words that are
aligned to start at even addresses (multiples of two) are
accessed more quickly than words and double words that
are not so aligned.

2.1_5 Dedicated Tables

Two of the NS32C016 dedicated registers (MOD and INT­
BASE) serve as pointers to dedicated tables in memory.

The INTBASE register points to the Interrupt Dispatch and
Cascade tables. These are described in Section 3.8.

The MOD register contains a pointer into the Module Table,
whose entries are called Module Descriptors. A Module De­
scriptor contains four pointers, three of which are used by
the NS32C016. The MOD register contains the address of
the Module Descriptor for the currently running module. It is
automatically updated by the Call External Procedure in­
structions (CXP and CXPD).

The format of a Module Descriptor is shown in Figure 2-4.
The Static Base entry contains the address of static data
assigned to the running module. It is loaded into the CPU
Static Base register by the CXP and CXPD instructions. The
Program Base entry contains the address of the first byte of
instruction code in the module. Since a module may have
multiple entry points, the Program Base pointer serves only
as a reference to find them.

2-249

I MOO I

I ..,

°U 31

STATIC BASE

LINK TABLE AOORESS

PROGRAM BASE

RESERVED

• j" j"

TL/EE/8S2S-4

FIGURE 2-4. Module Descriptor Format

The Link Table Address points to the Link Table for the
currently running module. The Link Table provides the infor­
mation needed for:

1) Sharing variables between modules. Such variables
are accessed through the Link Table via the External
addressing mode.

2) Transferring control from one module to another. This
is done via the Call External Procedure (CXP) instruc­
tion.

The format of a Link Table is given in Figure 2-5. A Link
Table Entry for an external variable contains the 32-bit ad­
dress of that variable. An entry for an external procedure
contains two 16-bit fields: Module and Offset. The Module
field contains the new MOD register contents for the mod­
ule being entered. The Offset field is an unsigned number
giving the position of the entry point relative to the new
module's Program Base pointer.

For further details of the functions of these tables, see the
Series 32000 Instruction Set Reference Manual.

ENTRY 31 0

ABSOlUTE ADDRESS (VARIABLE)

ABSOLUTE ADDRESS (VARIABLE)

OFFSET I MODULE (P ROCEDURE)

.... .J...

TL/EE/8S2S-S

FIGURE 2-5. A Sample Link Table

2.2 INSTRUCTION SET

2.2.1 General Instruction Format

Figure 2-6 shows the general format of a Series 32000 in­
struction. The Basic Instruction is one to three bytes long
and contains the Opcode and up to 5-bit General Address­
ing Mode ("Gen") fields. Following the Basic Instruction
field is a set of optional extensions, which may appear de­
pending on the instruction and the addressing modes se­
lected.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index­
ing. See Figure 2-7.

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select­
ed addressing modes. Each Disp/lmm field may contain

z
en
c..l
N o
o
en
o
"­z en
c..l
N
o o
en
U'I

•
I

~ r---~

""'" . CD

""'" o
o
N
M en
Z o
""'" . CD
""'" o
o
N
M en
Z

2.0 Architectural Description (Continued)
OPTIONAL BASIC

EXTENSIONS INSTRUCTION

r~----------------~A~------------------~\r~--------~A----------~

DISP2 DISP1 DISP21DISP1
I ! I I

IMPLIED GEN I GEN I
INDEX INDEX : I

IMMEDIATE DISP DISP ADDR ADDR I OPCODE BYTE BYTE I I
OPERAND(S) MODE I MODE I

A I B I

IMM IMM
I I

I I
!

t ~ 1
TL/EE/8525-6

FIGURE 2-6. General Instruction Format

I' GEN. ADDR. MODE l REG. NO.
o 1

TL/EE/8525-7

FIGURE 2-7. Index Byte Format

one of two displacements, or one immediate value. The size
of a Displacement field is encoded within the top bits of that
field, as shown in Figure 2-8, with the remaining bits inter­
preted as a signed (two's complement) value. The size of an
immediate value is determined from the Opcode field. Both
Displacement and Immediate fields are stored most-signifi­
cant byte first. Note that this is different from the memory
representation of data (Section 2.1.4).

Some instructions require additional "implied" immediates
and/or displacements, apart from those associated with ad­
dressing modes. Any such extensions appear at the end of
the instruction, in the order that they appear within the list of
operands in the instruction definition (Section 2.2.3).

2.2.2 Addressing Modes

The NS32C016 CPU generally accesses an operand by cal­
culating its Effective Address based on information avail­
able when the operand is to be accessed. The method to be
used in performing this calculation is specified by the pro­
grammer as an "addressing mode."

Addressing modes in the NS32C016 are designed to opti­
mally support high-level language accesses to variables. In
nearly all cases, a variable access requires only one ad­
dressing mode, within the instruction that acts upon that
variable. Extraneous data movement is therefore minimized.

NS32C016 Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight Gen­
eral Purpose Registers. In certain Slave Processor instruc­
tions, an auxiliary set of eight registers may be referenced
instead.

Register Relative: A General Purpose Register contains an
address to which is added a displacement value from the
instruction, yielding the Effective Address of the operand in
memory.

Memory Space: Identical to Register Relative above, ex­
cept that the register used is one of the dedicated registers
PC, SP, SB or FP. These registers point to data areas gen­
erally needed by high-level languages.

Memory Relative: A pointer variable is found within the
memory space pointed to by the SP, SB or FP register. A

2-250

Byte Displacement: Range - 64 to + 63

I' 0
SIGNED DISPLACEMENT

o 1

Word Displacement: Range -8192 to +8191
o

Double Word Displacement:
Range (Entire Addressing Space)

7 0

1
I

1 I I
~t,,~

,,~

~~.J:.
~

oJot"Q
eli

TL/EE/8525-8

FIGURE 2-8. Displacement Encodlngs

displacement is added to that pointer to generate the Effec­
tive Address of the operand.

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written.

Absolute: The address of the operand is specified by a
displacement field in the instruction.

External: A pointer value is read from a specified entry of
the current Link Table. To this pOinter value is added a dis­
placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SPO or
SP1) specifies the location of the operand. The operand is
pushed or popped, depending on whether it is written or
read.

2.0 Architectural Description (Continued)

Scaled Index: Although encoded as an addressing mode,
Scaled Indexing is an option on any addressing mode ex·
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen·

eral Purpose Register by 1, 2, 4 or B and adding into the
total, yielding the final Effective Address of the operand.

Table 2·1 is a brief summary of the addressing modes. For a
complete description of their actions, see· the Series 32000
Instruction Set Reference Manual.

TABLE 2-1. NS32C016 Addressing Modes

ENCODING MODE
Register
00000 Register 0
00001 Register 1
00010 Register 2
00011 Register 3
00100 Register 4
00101 Register S
00110 Register 6
00111 Register 7
Register Relative
01000 Register 0 relative
01001 Register 1 relative
01010 Register 2 relative
01011 Register 3 relative
01100 Register 4 relative
01101 Register S relative
01110 Register 6 relative
01111 Register 7 relative
Memory Relative
10000 Frame memory relative
10001 Stack memory relative
10010 Static memory relative

Reserved
10011 (Reserved for Future Use)
Immediate
10100 Immediate

Absolute
10101 Absolute
External
10110 External

Top Of Stack
10111 Top of stack

Memory Space
11000 Frame memory
11001 Stack memory
11010 Static memory
11011 Program memory
Scaled Index
11100 Index, bytes
11101 Index, words
11110 Index, double words
11111 Index, quad words

ASSEMBLER SYNTAX

ROorFO
R1 or F1
R2 or F2
R3 or F3
R40rF4
RS or FS
R60rF6
R60r F7

disp(RO)
disp(R1)
disp(R2)
disp(R3)
disp(R4)
disp(RS)
disp(R6)
disp(R7)

disp2(disp1 (FP»
disp2(disp1 (SP»
disp2(disp1 (S8»

value

@disp

EXT (disp1) + disp2

TOS

disp(FP)
disp(SP)
disp(S8)
-+ disp

mode[Rn:8]
mode[Rn:W]
mode[Rn:D]
mode[Rn:Q]

2·2S1

EFFECTIVE ADDRESS

None: Operand is in the specified
register.

Disp + Register.

Disp2 + Pointer; Pointer found at
address Disp 1 + Register. "SP"
is either SPO or SP1, as selected
inPSR.

None: Operand is input from
instruction queue.

Disp.

Disp2 + Pointer; Pointer is found
at Link Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Disp + Register; "SP" is either
SPO or SP1 , as selected in PSR.

EA (mode) + Rn.
EA (mode) + 2xRn.
EA (mode) + 4 X Rn.
EA (mode) + B x Rn.
"Mode" and "n" are contained
within the Index Byte.
EA (mode) denotes the effective
address generated using mode.

z en
w
N o o
en •
o
z en w
N o o
'P
U'I

,.

Lt)
CD
o
o
N
C")
tJ)
Z o • CD
o
o
N
C")
tJ)
Z

2.0 Architectural Description (Continued)

2.2.3 Instruction Set Summary short=A 4-bit value encoded within the Basic Instruction
(see Appendix A for encodings). Table 2-2 presents a brief description of the NS32C016 in­

struction set. The Format column refers to the Instruction
Format tables (Appendix A). The Instruction column gives
the instruction as coded in assembly language, and the De­
scription column provides a short description of the function
provided by that instruction. Further details of the exact op­
erations performed by each instruction may be found in the
Series 32000 Instruction Set Reference Manual.

imm= Implied immediate operand. An 8-bit value appended
after any addressing extensions.

disp= Displacement (addressing constant): 8, 16 or 32 bits .
All three lengths legal.

reg=Any General Purpose Register: RO-R7.

areg=Any Dedicated/Address Register: SP, SB, FP, MOD,
INTBASE, PSR, US (bottom 8 PSR bits).

Notations:

i= Integer length suffix: B = Byte
W= Word
D = Double Word

f = Floating Point length suffix: F = Standard Floating
L = Long Floating

mreg = Any Memory Management Status/Control Register.

creg=A Custom Slave Processor Register (Implementation
Dependent).

cond = Any condition code, encoded as a 4-bit field within
the Basic Instruction (see Appendix A for encodings).

gen = General operand. Any addressing mode can be speci­
fied.

TABLE 2·2. NS32C016 Instruction Set Summary
MOVES

Format Operation Operands Description

4 MOVi gen,gen Move a value.
2 MOVQi short,gen Extend and move a signed 4-bit constant.
7 MOVMi gen,gen,disp Move multiple: disp bytes (1 to 16).
7 MOVZBW gen,gen Move with zero extension.
7 MOVZiD gen,gen Move with zero extension.
7 MOVXBW gen,gen Move with sign extension.
7 MOVXiD gen,gen Move with sign extension.
4 ADDR gen,gen Move effective address.

INTEGER ARITHMETIC
Format Operation Operands Description

4 ADDi gen,gen Add.
2 ADDQi short,gen Add signed 4-bit constant.
4 ADDCi gen,gen Add with carry.
4 SUBi gen,gen Subtract.
4 SUBCi gen,gen Subtract with carry (borrow).
6 NEGi gen,gen Negate (2's complement).
6 ABSi gen,gen Take absolute value.
7 MULi gen,gen Multiply.
7 QUOi gen,gen Divide, rounding toward zero.
7 REMi gen,gen Remainder from QUO.
7 DIVi gen,gen Divide, rounding down.
7 MODi gen,gen Remainder from DIV (Modulus).
7 MEIi gen,gen Multiply to extended integer.
7 DEli gen,gen Divide extended integer.

PACKED DECIMAL (BCD) ARITHMETIC
Format Operation Operands Description

6 ADDPi gen,gen Add packed.
6 SUBPi gen,gen Subtract packed.

2-252

2.0 Architectural Description (Continued)

TABLE 2-2. NS32C016 Instruction Set Summary (Continued)
INTEGER COMPARISON

Format Operation Operands Description
4 CMPi gen,gen Compare.
2 CMPQi short,gen Compare to signed 4-bit constant.
7 CMPMi gen,gen,disp Compare multiple: disp bytes (1 to 16).

LOGICAL AND BOOLEAN
Format Operation Operands Description

4 ANDi gen,gen Logical AND.
4 ORi gen,gen Logical OR.
4 BICi gen,gen Clear selected bits.
4 XORi gen,gen Logical exclusive OR.
6 COMi gen,gen Complement all bits.
6 NOTi gen,gen Boolean complement: LSB only.
2 Scondi gen Save condition code (cond) as a Boolean variable of size i.

SHIFTS
Format Operation Operands Description

6 LSHi gen,gen Logical shift, left or right.
6 ASHi gen,gen Arithmetic shift, left or right.
6 ROTi gen,gen Rotate, left or right.

BITS
Format Operation Operands Description

4 TBITi gen,gen Test bit.
6 SBITi gen,gen Test and set bit.
6 SBITli gen,gen Test and set bit, interlocked.
6 CBITi gen,gen Test and clear bit.
6 CBITIi gen,gen Test and clear bit, interlocked.
6 IBITi gen,gen Test and invert bit.
8 FFSi gen,gen Find first set bit.

BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records used in
Pascal. "Extract" instructions read and align a bit field. "Insert" instructions write a bit field from an aligned source.

Format Operation Operands Description

8 EXTi reg,gen,gen,disp Extract bit field (array oriented).
8 INSi reg,gen,gen,disp Insert bit field (array oriented).
7 EXTSi gen,gen,imm,imm Extract bit field (short form).
7 INSSi gen,gen,imm,imm Insert bit field (short form).
8 CVTP reg,gen,gen Convert to bit field pointer.

ARRAYS
Format Operation Operands Description

8 CHECKi reg,gen,gen Index bounds check.
8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays.

2·253

z
en
Co)
I\)

o o
CD
o
z en
Co)
I\)

o o
CD
U1

II

&I)
cD
o
o
N
C")
U)
Z
'" o
• CD

o
o
N
C")
U)
Z

2.0 Architectural Description (Continued)

TABLE 2-2. NS32C016 Instruction Set Summary (Continued)

STRINGS Options on all string instructions are:
String instructions assign specific functions to the General
Purpose Registers:

B (Backward): Decrement strong pointers after each
step rather than incrementing .

R4 - Comparison Value
R3 - Translation Table Pointer
R2 - String 2 Pointer
R1 - String 1 Pointer
RO - Limit Count

Format Operation

5 MOVSi
MOVST

5 CMPSi
CMPST

5 SKPSi
SKPST

JUMPS AND LINKAGE

Format Operation

3 JUMP
0 BR
0 Bcond
3 CASEi
2 ACBi
3 JSR

BSR
1 CXP
3 CXPD

SVC
FLAG
BPT
ENTER
EXIT
RET
RXP
RETI
RETI

CPU REGISTER MANIPULATION

Format Operation

SAVE
RESTORE

2 LPRi
2 SPRi
3 ADJSPi
3 BISPSRi
3 BICPSRi
5 SETCFG

Operands

options
options
options
options
options
options

Operands

gen
disp
disp
gen
short,gen,disp
gen
disp
disp
gen

[reg list], disp
[reg list]
disp
disp
disp

Operands

[reg list]
[reg list]
areg,gen
areg,gen
gen
gen
gen
[option list]

U (Until match): End instruction if String 1 entry matches
R4.

W (While match): End instruction if String 1 entry does not
match R4.

All string instructions end when RO decrements to zero.

Description

Move string 1 to string 2.
Move string, translating bytes.
Compare string 1 to string 2.
Compare, translating string 1 bytes.
Skip over string 1 entries.
Skip, translating bytes for until/while.

Description

Jump.
Branch (PC Relative).
Conditional branch.
Multiway branch.
Add 4-bit constant and branch if non-zero.
Jump to subroutine.
Branch to subroutine.
Call external procedure
Call external procedure using descriptor.
Supervisor call.
Flag trap.
Breakpoint trap.
Save registers and allocate stack frame (Enter Procedure).
Restore registers and reclaim stack frame (Exit Procedure).
Return from subroutine.
Return from external procedure call.
Return from trap. (Privileged)
Return from interrupt. (Privileged)

Description

Save general purpose registers.
Restore general purpose registers.
Load dedicated register. (Privileged if PSR or INTBASE)
Store dedicated register. (Privileged if PSR or INTBASE)
Adjust stack pointer.
Set selected bits in PSR. (Privileged if not Byte length)
Clear selected bits in PSR. (Privileged if not Byte length)
Set configuration register. (Privileged)

2-254

z en
2.0 Architectural Description (Continued)

w
I\.)

0
TABLE 2-2. NS32C016 Instruction Set Summary (Continued) 0

FLOATING POINT
.....
en

Format Operation Operands Description
.

11 MOVf gen,gen Move a floating point value. 0
9 MOVLF gen,gen Move and shorten a long value to standard. Z en
9 MOVFL gen,gen Move and lengthen a standard value to long. w
9 MOVif gen,gen Convert any integer to standard or long floating.

I\.)

0
9 ROUNDfi gen,gen Convert to integer by rounding. 0
9 TRUNCfi gen,gen Convert to integer by truncating, toward zero. en .
9 FLOORfi gen,gen Convert to largest integer less than or equal to value.

U1
11 ADDf gen,gen Add.
11 SUBf gen,gen Subtract.
11 MULf gen,gen Multiply.
11 DIVf gen,gen Divide.
11 CMPf gen,gen Compare.
11 NEGf gen,gen Negate.
11 ABSf gen,gen Take absolute value.
9 LFSR gen Load FSR.
9 SFSR gen Store FSR.

MEMORY MANAGEMENT
Format Operation Operands Description

14 LMR mreg,gen Load memory management register. (Privileged)
14 SMR mreg,gen Store memory management register. (Privileged)
14 RDVAL gen Validate address for reading. (Privileged)
14 WRVAL gen Validate address for writing. (Privileged)
8 MOVSUi gen,gen Move a value from supervisor

space to user space. (Privileged)
8 MOVUSi gen,gen Move a value from user space

to supervisor space. (Privileged)

MISCELLANEOUS
Format Operation Operands Description

NOP No operation.
WAIT Wait for interrupt.
DIA Diagnose. Single-byte "Branch to Self" for hardware

breakpointing. Not for use in programming.

CUSTOM SLAVE
Format Operation Operands Description

15.5 CCALOc gen,gen Custom calculate.
15.5 CCAL1c gen,gen
15.5 CCAL2c gen,gen
15.5 CCAL3c gen,gen
15.5 CMOVOc gen,gen Custom move. • 15.5 CMOV1c gen,gen
15.5 CMOV2c gen,gen
15.5 CMOV3c gen,gen
15.5 CCMPOc gen,gen Custom compare.
15.5 CCMP1c gen,gen
15.1 CCVOci gen,gen Custom convert.
15.1 CCV1ci gen,gen
15.1 CCV2ci gen,gen
15.1 CCV3ic gen,gen
15.1 CCV4DQ gen,gen
15.1 CCV5QD gen,gen
15.1 LCSR gen Load custom status register.
15.1 SCSA gen Store custom status register.
15.0 CATSTO gen Custom address/test. (Privileged)
15.0 CATST1 gen (Privileged)
15.0 LCA creg,gen Load custom register. (Privileged)
15.0 SCA creg,gen Store custom register. (Privileged)

2-255

~ r---~ .,.. .
CD .,..
o o
N
C"')
CJ)
Z
o .,..
• CD .,..

o
o
N
C"')
CJ)
Z

3.0 Functional Description
3.1 POWER AND GROUNDING

Power and ground connections for the NS32C016 are made
on four pins. On-chip logic is connected to power through
the logic power pin (VCCL, pin 48) and to ground through
the logic ground pin (GNDL, pin 24). On-chip output drivers
are connected to power through the buffer power pin
(VCCP, pin 29) and to ground through the buffer ground pin
(GNDB, pin 25). For optimal noise immunity, it is recom­
mended that single conductors be connected directly from
VCCL to VCCB and from GNDL to GNDB, as shown below
(Figure 3-1).

.... --o+5V

.-.-.. OTHER GROUND
CONNECTIONS

TL/EE/8525-9

FIGURE 3-1. Recommended Supply Connections

3.2 CLOCKING

The NS32C016 inputs clocking signals from the NS32C201
Timing Control Unit (TCU), which presents two non-overlap­
ping phases of a single clock frequency. These phases are
called PHI1 (pin 26) and PHI2 (pin 27). Their relationship to
each other is shown in Figure 3-2.

Vec

PHil ___ +-__ -'

Each rising edge of PHI1 defines a transition in the timing
state (liT-State") of the CPU. One T-State represents the
execution of one microinstruction within the CPU, and/or
one step of an external bus transfer. See Section 4 for com­
plete specifications of PHI1 and PHI2.

PHil

PHI2

TLlEE/8525-10

FIGURE 3-2. Clock Timing Relationships

As the TCU presents signals with very fast transitions, it is
recommended that the conductors carrying PHI1 and PHI2
be kept as short as possible, and that they not be connect­
ed anywhere except from the TCU to the CPU and, if pres­
ent, the MMU. A TIL Clock signal (CTIL) is provided by the
TCU for all other clocking.

3.3 RESETTING

The RST / ABT pin serves both as a Reset for on-chip logic
and as the Abort input for Memory-Managed systems. For
its use as the Abort Command, see Section 3.5.4.

The CPU may be reset at any time by pulling the RST / ABT
pin low for at least 64 clock cycles. Upon detecting a reset,
the CPU terminates instruction processing, resets its inter­
nal logic, and clears the Program Counter (PC) and Proces­
sor Status Register (PSR) to all zeroes.

On application of power, RST / ABT must be held low for at
least 50 ,.,.S after Vee is stable. This is to ensure that all on­
chip voltages are completely stable before operation.
Whenever a Reset is applied, it must also remain active

m/m ---+--------_-f'~JI
..... ---I:50"MC---~

TL/EE/8525-11

FIGURE 3-3. Power-On Reset Requirements

2-256

3.0 Functional Description (Continued)

for not less than 64 clock cycles. The rising edge must oc­
cur while PHI1 is high. See Figures 3-3 and 3-4.

The NS32C201 Timing Control Unit (TCU) provides circuitry
to meet the Reset requirements of the NS32C016 CPU. Fig­
ure 3-5a shows the recommended connections for a non­
Memory-Managed system. Figure 3-5b shows the connec­
tions for a Memory-Managed system.

VCC

r------------ -,

PHil J1--Jl
I O!:64CLOCK-1

RsT/m---""""'K"~~~ C~ES I
TL/EE/B525-12

FIGURE 3-4. General Reset Timing

NS32C201
TCU

NS32C018
CPU

I I

I REm I>-+I--:-..... __ i---+-~ ----t RSTI RSTO ---...... ----.. RsT/ABT

I I
, I L _____________ .J

EXTERNAL RESET
(OPTIONAL)

RESET SWITCH
(OPTIONAL)

SYSTEM RESET

TL/EE/B525-13

FIGURE 3-5a. Recommended Reset Connections, Non-Memory-Managed System

VCC

r-------------,
I I

NS32C201
TCU

NS32082
MMU

NS32C018
cpu

I RESET I>--:-I-:--..,...--i~-+_~~-----I RSri RSTO
I I

! : L _____________ .J

EXTERNAL RESET
(OPTIONAL)

RESET SWITCH
(OPTIONAL)

O!: SOl'sec

TL/EE/B525-14

FIGURE 3-5b. Recommended Reset Connections, Memory-Managed System

3.4 BUS CYCLES

The NS32C016 CPU has a strap option which defines the
Bus Timing Mode as either With or Without Address Trans­
lation. This section describes only bus cycles under the No
Address Translation option. For details of the use of the
strap and of bus cycles with address translation, see Sec­
tion 3.5.

The CPU will perform a bus cycle for one of the following
reasons:

1) To write or read data, to or from memory or a peripheral
interface device. Peripheral input and output are memo­
ry-mapped in the Series 32000 family.

2) To fetch instructions into the eight-byte instruction
queue. This happens whenever the bus would otherwise
be idle and the queue is not already full.

2-257

3) To acknowledge an interrupt and allow external circuitry
to provide a vector number, or to acknowledge comple­
tion of an interrupt service routine.

4) To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 3 above are identi­
cal. For timing specifications, see Section 4. The only exter­
nal difference between them is the four-bit code placed on
the Bus Status pins (STO-ST3). Slave Processor cycles dif­
fer in that separate control signals are applied (Section
3.4.6).

The sequence of events in a non-Slave bus cycle is shown
in Figure 3-7 for a Read cycle and Figure 3-8 for a Write
cycle. The cases shown assume that the selected memory
or interface device is capable of communicating with the
CPU at full speed. If it is not, then cycle extension may be
requested through the ROY line (Section 3.4.1).

z
en w
I\)

o
o
0')
o
z en w
I\)

o o
0')
U1

II)
CD
o
o
C'I
C")
(/)
z
o
cb
o o
C'I
C")
(/)
z

3.0 Functional Description (Continued)

A full-speed bus cycle is performed in four cycles of the
PHI1 clock signal, labeled T1 through T4. Clock cycles not
associated with a bus cycle are designated Ti (for "Idle").

During T1, the CPU applies an address on pins ADO-AD15
and A 16-A23. It also provides a low-going pulse on the
ADS pin, which serves the dual purpose of informing exter­
nal circuitry that a bus cycle is starting and of providing con­
trol to an external latch for demultiplexing Address bits 0-
15 from the ADO-AD15 pins. See A"gure 3-6. During this
time also the status Signals ODIN, indicating the direction of
the transfer, and HBE, indicating whether the high byte
(AD8-AD15) is to be referenced, become valid.

During T2 the CPU switches the Data Bus, ADO-AD15, to
either accept or present data. Note that the signals A 16-
A23 remain valid, and need not be latched. It also starts the
data strobe (OS), signaling the beginning of the data trans­
fer. Associated signals from the NS32C201 Timing Control
Unit are also activated at this time: RD (Read Strobe) or WR
(Write Strobe), TSO (Timing State Output, indicating that T2
has been reached) and DBE (Data Buffer Enable).

PHil PHI2

NS32C201

DBE

The T3 state provides for access time requirements, and it
occurs at least once in a bus cycle. At the end of T2, on the
falling edge of the PHI2 clock, the ROY (Ready) line is sam­
pled to determine whether the bus cycle will be extended
(Section 3.4.1).

If the CPU is performing a Read cycle, the Data Bus (ADO­
AD15) is sampled at the falling edge of PHI2 of the last T3
state, see Section 4. Data must, however, be held at least
until the beginning of T4. OS and RD are guaranteed not to
go inactive before this point, so the rising edge of either of
them may safely be used to disable the device providing the
input data.

The T 4 state finishes the bus cycle. At the beginning of T 4,
the OS, RD, or WR, and TSO signals go inactive, and at the
rising edge of PHI2, DBE goes inactive, having provided for
necessary data hold times. Data during Write cycles re­
mains valid from the CPU throughout T 4. Note that the Bus
Status lines (STO-ST3) change at the beginning of T 4, an­
ticipating the following bus cycle (if any).

AD
RD~--------------------~

WRb---------------------~

TSo
TsO~--------------------~

TL/EE/8525-l5

FIGURE 3·6. Bus Connections

2-258

3.0 Functional Description (Continued)

NS32C018 CPU BUS SIGNALS

I T4 OR Ti I T1 T2 T3

PHil [

PHI 2 [

A16·A23 [

ADO·AD15 [

ADS [

STO·ST3 [

i5i5iN [

HBe [

os [

ROY [

R5 [

FIGURE 3-7. Read Cycle Timing

2-259

T4 Tl0RTi I

TL/EE/8525-l6

z en
w
N
o o
en •
o z en
w
N
o o
en
U'I

~ r---__________________ --,
op-.
CD
0p-

e o
N
C")
(/)
Z
........
e
op-

• CD
0p-

e
o
N
C")
(/)
Z

3.0 Functional Description (Continued)

NS32C016 CPU BUS SIGNALS

T40RTi I T1 T2 T3 T4 I T10RTi I
PHI. 1 [

PHI2 [

A16·A23 [

ADO-A015 [

AOs[

STO-ST3 [

ODiN [

HeE [

OS [

ROY [

AD [

WR [

DiiE [

TSO [
TL/EE/8525-17

FIGURE 3-8. Write Cycle Timing

2·260

3.0 Functional Description (Continued)

3.4.1 Cycle Extension

To allow sufficient strobe widths and access times for any
speed of memory or peripheral device, the NS32C016 pro­
vides for extension of a bus cycle. Any type of bus cycle
except a Slave Processor cycle can be extended.

In Figures 3-7 and 3-8, note that during T3 all bus control
signals from the CPU and TCU are flat. Therefore, a bus
cycle can be cleanly extended by causing the T3 state to be
repeated. This is the purpose of the RDY (Ready) pin.

At the end of T2 on the falling edge of PHI2, the RDY line is
sampled by the CPU. If RDY is high, the next T-states will be
T3 and then T4, ending the bus cycle. If it is sampled low,
then another T3 state will be inserted after the next T-state
and the RDY line will again be sampled on the falling edge
of PHI2. Each additional T3 state after the first is referred to
as a "wait state." See Figure 3-9.

T1 T2

PHil

PHI2

ROY

The RDY pin is driven by the NS32C201 Timing Control
Unit, which applies WAIT States to the CPU as requested
on three sets of pins:

1) CWAIT (Continues WAID, which holds the CPU in WAIT
states until removed.

2) WAIT1, WAIT2, WAIT4, WAITS (Collectively WAITn),
which may be given a four-bit binary value requesting a
specific number of WAIT States from 0 to 15.

3) PER (Peripheral), which inserts five additional WAIT
states and causes the TCU to reshape the RD and WR
strobes. This provides the setup and hold times required
by most MOS peripheral interface devices.

Combinations of these various WAIT requests are both legal
and useful. For details of their use, see the NS32C201 TCU
Data Sheet.

Figure 3-10 illustrates a typical Read cycle, with two WAIT
states requested through the TCU WAITn pins.

T3 I T3
(WAIT) T4

TL/EE/8525-l8

FIGURE 3-9. ROY Pin Timing

3.4.2 Bus Status

The NS32C016 CPU presents four bits of Bus Status infor­
mation on pins STO-ST3. The various combinations on
these pins indicate why the CPU is performing a bus cycle,
or, if it is idle on the bus, then why it is idle.

Referring to Figures 3-7 and 3-8, note that Bus Status leads
the corresponding Bus Cycle, going valid one clock cycle
before T1, and changing to the next state at T 4. This allows
the system designer to fully decode the Bus Status and, if
desired, latch the decoded signals before ADS initiates the
Bus Cycle.

The Bus Status pins are interpreted as a four-bit value, with
STO the least significant bit. Their values decode as follows:

0000 - The bus is idle because the CPU does not need
to perform a bus access.

0001 - The bus is idle because the CPU is executing
the WAIT instruction.

0010 - (Reserved for future use.)

0011 - The bus is idle because the CPU is waiting for a
Slave Processor to complete an instruction.

0100 - Interrupt Acknowledge, Master.

The CPU is performing a Read cycle. To ac­
knowledge receipt of a Non-Maskable Interrupt
(on NMI) it will read from address FFFF0016,
but will ignore any data provided.

To acknowledge receipt of a Maskable Interrupt
(on INn it will read from address FFFE0016,

2-261

expecting a vector number to be provided from
the Master NS32202 Interrupt Control Unit. If
the vectoring mode selected by the last
SETCFG instruction was Non-Vectored, then
the CPU will ignore the value it has read and will
use a default .vector instead, having assumed
that no NS32202 is present. See Section 3.4.5.

0101 - Interrupt Acknowledge, Cascaded.

The CPU is reading a vector number from a
Cascaded NS32202 Interrupt Control Unit. The
address provided is the address of the
NS32202 Hardware Vector register. See Sec­
tion 3.4.5.

0110- End of Interrupt, Master.

The CPU is performing a Read cycle to indicate
that it is executing a Return from Interrupt
(RETI) instruction. See Section 3.4.5.

0111 - End of Interrupt, Cascaded.

The CPU is reading from a Cascaded Interrupt
Control Unit to indicate that it is returning
(through RETI) from an interrupt service routine
requested by that unit. See Section 3.4.5.

1000 - Sequential Instruction Fetch.

The CPU is reading the next sequential word
from the instruction stream into the Instruction
Queue. It will do so whenever the bus would
otherwise be idle and the queue is not already
full.

z en
w
N
n
o
~

en .
~

o z en
w
N
n o
~

en .
~

U1

~ .---~
• CD

o
(,)
N
(f)
tn
Z o
cD
o
(,)
N
(f)
tn
Z

3.0 Functional Description (Continued)

NS32C018 CPU BUS SIGNALS

T2 T3 I (W~T) I (J~n
NEXT CYCLE

T4 In ORTII
PREV.CYCLE

IT40RTII T1

PHI 1 [

PHI 2 [

A16-A23 [

ADO-AD15 [

ros[

STO-ST3 [STATUS VALID

CoiN [

HeF. [

Os [

CWAiT[

m[

WAiTn[

ROY [

(TCUTOCPU)

NS32C201 TCU BUS SIGNALS

Ra[

WA[
OI;'E [

TSo[

TLlEE/8525-19

FIGURE 3·10. Extended Cycle Example
Note: Arrows on CWAIT, PER, WAITn indicate pOints at which the TCU samples. Arrows on AOO-A015 and
ROY indicate points at which the CPU samples.

2·262

3.0 Functional Description (Continued)

1001 - Non-Sequential Instruction Fetch.
The CPU is performing the first fetch of instruc­
tion code after the Instruction Queue is purged.
This will occur as a result of any jump or branch,
or any interrupt or trap, or execution of certain
instructions.

1010- Data Transfer.
The CPU is reading or writing an operand of an
instruction.

1011 - Read RMW Operand.
The CPU is reading an operand which will sub­
sequently be modified and rewritten. If memory
protection circuitry would not allow the following
Write cycle, it must abort this cycle.

1100 - Read for Effective Address Calculation.
The CPU is reading information from memory in
order to determine the Effective Address of an
operand. This will occur whenever an instruc­
tion uses the Memory Relative or External ad­
dressing mode.

1101 - Transfer Slave Processor Operand.
The CPU is either transferring an instruction op­
erand to or from a Slave Processor, or it is issu­
ing the Operation Word of a Slave Processor
instruction. See Section 3.9.1.

1110 - Read Slave Processor Status.
The CPU is reading a Status Word from a Slave
Processor. This occurs after the Slave Proces­
sor has signalled completion of an instruction.
The transferred word tells the CPU whether a
trap should be taken, and in some instructions it
presents new values for the CPU Processor
Status Register bits N, Z, L or F. See Section
3.9.1.

1111 - Broadcast Slave ID.
The CPU is initiating the execution of a Slave
Processor instruction. The ID Byte (first byte of
the instruction) is sent to all Slave Processors,
one of which will recognize it. From this point
the CPU is communicating with only one Slave
Processor. See Section 3.9.1.

3.4.3 Data Access Sequences

The 24-bit address provided by the NS32C016 is a byte
address; that is, it uniquely identifies one of up to
16,777,216 eight-bit memory locations. An important feature
of the NS32C016 is that the presence of a 16-bit data bus
imposes no restrictions on data alignment; any data item,
regardless of size, may be placed starting at any memory
address. The NS32C016 provides a special control signal,
High Byte Enable (HBE), which facilitates individual byte ad­
dressing on a 16-bit bus.

2-263

Memory is organized as two eight-bit banks, each bank re­
ceiving the word address (A 1-A23) in parallel. One bank,
connected to Data Bus pins ADO-AD7, is enabled to re­
spond to even byte addresses; Le., when the least signifi­
cant address bit (AO) is low. The other bank, connected to
Data Bus pins AD8-AD15, is enabled when HBE is low. See
Figure 3-11.

HBE AO(LBE)

BBITS BBITS

LSBYTE

TL/EE/8525-20

FIGURE 3-11. Memory Interface

Any bus cycle falls into one of three categories: Even Byte
Access, Odd Byte Access, and Even Word Access. All ac­
cesses to any data type are made up of sequences of these
cycles. Table 3-1 gives the state of AO and HBE for each
category.

Category
Even Byte
Odd Byte
Even Word

TABLE 3-1. Bus Cycle Categories

HBE
1
o
o

AO
o
1
o

Accesses of operands requiring more than one bus cycle
are performed sequentially, with no idle T-States separating
them. The number of bus cycles required to transfer an op­
erand depends on its size and its alignment (Le., whether it
starts on an even byte address or an odd byte address).
Table 3-2 lists the bus cycle performed for each situation.
For the timing of AO and HBE, see Section 3.4.

z en w
N o
o
~

en .
~

o
z en w
N o o
~

en • ~
U1

•

II) ..-. 3.0 Functional Description (Continued) CD ..-
0
0 TABLE 3-2. Access Sequences N
C")

en Cycle Type Address HBE AO High Bus Low Bus Z
0 ..-.
CD A. Odd Word Access Sequence ..-
0
0 BYTE 1 BYTE 0 +-A N
C")

en 1 Odd Byte A 0 1 Byte 0 Don't Care
Z

2 Even Byte A+1 0 Don't Care Byte 1

B. Even Double-Word Access Sequence

BYTE 3 BYTE 2 BYTE 1 BYTE 0 +-A

Even Word A 0 0 Byte 1 Byte 0
2 Even Word A+2 0 0 Byte 3 Byte 2

C. Odd Double-Word Access Sequence

BYTE 3 BYTE 2 BYTE 1 BYTE 0 +-A

1 Odd Byte A 0 1 Byte 0 Don't Care
2 Even Word A+1 0 0 Byte 2 Byte 1
3 Even Byte A+3 0 Don't Care Byte 3

D. Even Quad-Word Access Sequence

BYTE 7 BYTE 6 BYTE 5 BYTE 4 BYTE 3 BYTE 2 BYTE 1 BYTE 0 +-A

1 Even Word A 0 0 Byte 1 Byte 0
2 Even Word A+2 0 0 Byte 3 Byte 2

Other bus cycles (instruction prefetch or slave) can occur here.

3 Even Word A+4 0 0 Byte 5 Byte 4
4 Even Word A+S 0 0 Byte 7 ByteS

E Odd Quad-Word Access Sequence

BYTE 7 BYTES BYTE 5 BYTE 4 BYTE 3 BYTE 2 BYTE 1 BYTE 0 +-A

1 Odd Byte A 0 Byte 0 Don't Care

2 Even Word A+1 0 0 Byte 2 Byte 1
3 Even Byte A+3 0 Don't Care Byte 3

Other bus cycles (instruction prefetch or slave) can occur here.

4 Odd Byte A+4 0 Byte 4 Don't Care
5 Even Word A+5 0 0 ByteS Byte 5
S Even Byte A+7 0 Don't Care Byte 7

2-264

3.0 Functional Description (Continued)

3.4.3.1 Bit Accesses

The Bit Instructions perform byte accesses to the byte con­
taining the designated bit. The Test and Set Bit instruction
(SBIT). for example. reads a byte. alters it. and rewrites it.
having changed the contents of one bit.

3.4.3.2 Bit Field Accesses

An access to a Bit Field in memory always generates a Dou­
ble-Word transfer at the address containing the least signifi­
cant bit of the field. The Double Word is read by an Extract
instruction; an Insert instruction reads a Double Word. modi­
fies it. and rewrites it.

3.4.3.3 Extending Multiply Accesses

The Extending Multiply Instruction (MEl) will return a result
which is twice the size in bytes of the operand it reads. If the
multiplicand is in memory. the most-significant half of the
result is written first (at the higher address). then the least­
significant half. This is done in order to support retry if this
instruction is aborted.

3.4.4 Instruction Fetches

Instructions for the NS32C016 CPU are "prefetched"; that
is. they are input before being needed into the next available
entry of the eight-byte Instruction Queue. The CPU performs
two types of Instruction Fetch cycles: Sequential and Non­
Sequential. These can be distinguished from each other by
their differing status combinations on pins STO-ST3 (Sec­
tion 3.4.2).

2-265

A Sequential Fetch will be performed by the CPU whenever
the Data Bus would otherwise be idle and the Instruction
Queue is not currently full. Sequential Fetches are always
Even Word Read cycles (Table 3-1).

A Non-Sequential Fetch occurs as a result of any break in
the normally sequential flow of a program. Any jump or
branch instruction. a trap or an interrupt will cause the next
Instruction Fetch cycle to be Non-Sequential. In addition.
certain instructions flush the instruction queue. causing the
next instruction fetch to display Non-Sequential status. Only
the first bus cycle after a break displays Non-Sequential
status. and that cycle is either an Even Word Read or an
Odd Byte Read. depending on whether the destination ad­
dress is even or odd.

3.4.5 Interrupt Control Cycles

Activating the INT or NMI pin on the CPU will initiate one or
more bus cycles whose purpose is interrupt control rather
than the transfer of instructions or data. Execution of the
Return from Interrupt instruction (RETI) will also cause Inter­
rupt Control bus cycles. These differ from instruction or data
transfers only in the status presented on pins STO-ST3. All
Interrupt Control cycles are single-byte Read cycles.

This section describes only the Interrupt Control sequences
associated with each interrupt and with the return from its
service routine. For full details of the NS32C016 interrupt
structure. see Section 3.8.

z
en
w
N o
o
0)
o
z en
w
N o
o
0)
U1

U') • CD
o
o
N
C")

en z o
cD
o
o
N

~
Z

3.0 Functional Description (Continued)

TABLE 3-3. Interrupt Sequences

Cycle Status Address AO High Bus

A. Non.Maskablelnterrupt Control Sequences.

Interrupt Acknowledge
1 0100 FFFF0016 o o Don't Care

Interrupt Return

None: Performed through Return from Trap (RETT) Instruction.

B. Non-Vectored Interrupt Control Sequences.

Interrupt Acknowledge
1 0100 FFFE0016 o o Don't Care

Interrupt Return

None: Performed through Return from Trap (RETT) instruction.

C. Vectored Interrupt Sequences: Non·Cascaded.

I nterrupt Acknowledge
1 0100 FFFE0016 o o Don't Care

Interrupt Return
1 0110 FFFE0016 o o Don't Care

D. Vectored Interrupt Sequences: Cascaded.

Interrupt Acknowledge
1 0100 FFFE0016 o o Don't Care

(The CPU here uses the Cascade Index to find the Cascade Address.)

Low Bus

Don't Care

Don't Care

Vector:
Range: 0-127

Vector: Same as
in Previous Int.
Ack. Cycle

Cascade Index:
range - 16 to -1

2 0101 Cascade 0 1 or 0 or
Address O· 1*

Vector, range 0-255; on appropriate
half of Data Bus for even! odd address

Interrupt Return
1 0110 FFFE0016 o o

(The CPU here uses the Cascade Index to find the Cascade Address.)
2 0111 Cascade 0 1 or 0 or

Address 0* 1*

Don't Care

Don't Care

Cascade Index:
same asin
previous Int.
Ack.Cycle

Don't Care

• If the Cascaded ICU Address is Even (AO is low), then the CPU applies HBE high and reads the vector number from bits 0-7 of the Data Bus.

If the address Is Odd (AO Is high), then the CPU applies HBE low and reads the vector number from bits 8-15 of the Data Bus. The vector number may be in the
range 0-255.

2·266

3.0 Functional Description (Continued)

3.4.6 Slave Processor Communication

In addition to Its use as the Address Translation strap (Sec­
tion 3.5.1), the Ai/gpo pin Is used as the data strobe for
Slave Processor transfers. In this role, It Is referred to as
Slave Processor Control (SiSC). In a Slave Processor bus
cycle, data Is transferred on the Data Bus (ADO-AD15), and
the status lines STO-ST3 are monitored by each Slave
Processor In order to determine the type of transfer being
performed. SP'O Is bidirectional, but is driven by the CPU
during all Slave Processor bus cycles. See Section 3.9 for
full protocol sequences.

PREVo CYCLE

I T40rTI

PHI1 [

PHI2 [

SPC [

STO-ST3 [

ADs [

-OB-E (3) [-+_......1

Notes:

(1) CPU samples Data Bus here.

T1

A I\.
AO(D-15) -./ 0(0.15)

AT/SPC
'4

iiiC
NS32C018 SLAVE

cPU PROCESSOR

STO-8T3 STO-S13

TL/EE/B525-21

FIGURE 3·12. Slave Processor Connections

T4 I
NEXT CYCLE

T10RTI I

TL/EE/8525-22

(2) ~ and all other NS32C201 TCU bus signals remain inactive because no ADS pulse is received from the CPU.

FIGURE 3·13. CPU Read from Slave Processor

2-267

z en
w
N
o o
cp
o
Z
(J)
W
N
o o
cp
U1

II) ,..
• CD ,..

o
~
('I')
U)
z
o ,..
• CD ,..

o
o
N
('I')
U)
Z

3.0 Functional Description (Continued)

3.4.6.1 Slave Processor Bus Cycles

A Slave Processor bus cycle always takes exactly two clock
cycles, labeled T1 and T4 (see Figures 3-13 and 3-14).
During a Read cycle SPC is active from the beginning of T1
to the beginning of T4, and the data is sampled at the end of
T1. The Cycle Status pins lead the cycle by one clock peri­
od, and are sampled at the leading edge of SPC. During a
Write cycle, the CPU applies data and activates SPC at T1,
removing SPC at T 4. The Slave Processor latches status on
the leading edge of SPC and latches data on the trailing
edge.

Since the CPU does not pulse the Address Strobe (ADS),
no bus signals are generated by the NS32C201 Timing Con­
trol Unit. The direction of a transfer is determined by the

PREV.CYCLE

I T40RTi

PHil [

ADO·AD15 [

STO-ST3 [

ADS [

ODIN [

HBE [
_(2)[
DBE

Notes:

(1) Slave Processor samples Data Bus here.

T1

sequence ("protocol") established by the instruction under
execution; but the CPU indicates the direction on the DDIN
pin for hardware debugging purposes.

3.4.6.2 Slave Operand Transfer Sequences

A Slave Processor operand is transferred in one or more
Slave bus cycles. A Byte operand is transferred on the
least-significant byte of the Data Bus (ADO-AD?), and a
Word operand is transferred on the entire bus. A Double
Word is transferred in a consecutive pair of bus cycles,
least-significant word first. A Quad Word. is transferred in
two pairs of Slave cycles, with other bus cycles possibly
occurring between them. The word order is from least-signif­
icant word to most-significant.

T4

NEXT CYCLE

T1 ORTi I

TL/EE/8S2S-23

(2) DEii:, being provided by the NS32C201 TCU, remains Inactive due to the fact that no pulse Is presented on Arm.
iCO signals RD, WR and TSO also remain Inactive.

FIGURE 3-14. CPU Write to Slave Processor

2-268

3.0 Functional Description (Continued)

3.5 MEMORY MANAGEMENT OPTION

The NS32C016 CPU, in conjunction with the NS32082
Memory Management Unit (MMU), provides full support for
address translation, memory protection, and memory alloca­
tion techniques up to and including Virtual Memory.

3.5.1 Address Translation Strap

The Bus Interface Control section of the NS32C016 CPU
has two bus timing modes: With or Without Address Trans­
lation. The mode of operation is selected by the CPU by
sampling the ATISPC (Address TranslationlSlave Proces­
sor Control) pin on the rising edge of the RST (Reset) pulse.
If ATISPC is sampled as high, the bus timing is as previous-

Iy described in Section 3.4. If it is sampled as low, two
changes occur:

1) An extra clock cycle, Tmmu, is inserted into all bus
cycles except Slave Processor transfers.

2) The OS/FLT pin changes in function from a Data
Strobe output (OS) to a Float Command input (FL T).

The NS32082 MMU will itself pull the CPU ATISPC pin low
when it is reset. In non·Memory-Managed systems this pin
should be pulled up to Vee through a 10 kfl resistor.

Note that the Address Translation strap does not specifical­
ly declare the presence of an NS32082 MMU, but only the

I T40RTi I T1 I Tmmu I T2 T3 T4 I T1 ORTi I
PHil [

PHI2 [

A16·A23 [

ADO-AD15 [

ADS [

STo-ST3 [STATUS VALID

ODiN [

HBE [VALID

ROY [
TL/EE/8525-24

FIGURE 3-15. Read Cycle with Address Translation (CPU Action)

2-269

z en
w
N
o o
en
o
z en
w
N o
o
en
U1

~ r---~
ch
«:)
(.)
N
C')
(/)
Z
«:)
ch
«:)
(.)
N
C')
(/)
Z

3.0 Functional Description (Continued)

presence of external address translation circuitry. MMU in­
structions will still trap as being undefined unless the
SETCFG (Set Configuration) instruction is executed'to de­
clare the MMU instruction set valid. See Section 2.1.3.

3.5.2 Translated Bus Timing

Figures 3-15 and 3-16 illustrate the CPU activity during a
Read cycle and a Write cycle in Address Translation mode.
The additional T-State, Tmmu, is inserted between T1 and
T2. During this time the CPU places ADO-AD15 and A 16-
A23 into the TRI-STATE!!> mode, allowing the MMU to as­
sert the translated address and issue the physical address
strobe PAY. T2 through T4 of the cycle are identical to

I T40RTI I Tl

PHil [

PHI2

A18·A23 [~""",,,,,",,,,,",iI../

ADO·AD15 [~'-L.o'-L.o'-L.o'"

ADS [

STO·5T3 [

their counter-parts without Address Translation, with the ex­
ception that the CPU Address lines A 16-A23 remain in the
TRI-STATE condition. This allows the MMU to continue as­
serting the translated address on those pins.

Note that in order for the NS32082 MMU to operate correct­
ly, it must be set to the 32C016 mode by forcing A24 high
during reset.

Figures 3-17 and 3-18 show a Read cycle and a Write cycle
as generated by the 32C016/32082/32C201 group. Note
that with the CPU ADS signal going only to the MMU, and
with the MMU PAY Signal substituting for ADS everywhere
else, Tmmu through T 4 look exactly like T1 through T 4 in a
non-Memory-Managed system. For the connection diagram,
see Appendix B.

T2 T3 T4

HiE [Lf..£.£..~~~ --I-----+----H----+--~ '-+-__ -+_

TL/EE/8S2S-2S

FIGURE 3-16. Write Cycle with Address Translation (CPU Action)

2·270

3.0 Functional Description (Continued)

NS32C016 CPU BUS SIGNALS

I T40RTi I T1 I Tmmu I T2 T3 T4 I T1 OR T. I
PHil [

PHIZ [

A16·A23 [

ADO-AD15 [

iDs [

STO·ST3 [

0iDIN [~~~~~~--+----_+---44_---~~--~~---+_

HeE [~~""-"~"I'-U ""--+---+----+-1----+--J ""-+-___ "--

iffi[

WR[

DiiE[

rso[

FIGURE 3-17. Memory-Managed Read Cycle

2-271

TLlEE/8525-28

z
en
w
N
o
C)
Q)
C)
........ z en
w
N
o
C)
Q)
•

en

it)
~ • CD
~

o
o
C'i
C")

en z
........
o
~ .
CD
~

o
o
C'i
C")

en z

3.0 Functional Description (Continued)

NS32C016 CPU BUS SIGNALS

I T40RTi I n Tmmu I T2 T3 T4 I nORTI I
PHI 1 [

PHI 2 [

A16-A23 [

ADO·A015 [

iDs [

PiV[

STc)'ST3 [STATUS VALID NEXT STATUS

ODIN [

tiBE[VALID

ROY [

NS32C201 TCU BUS SIGNALS

TL/EE/8525-27

FIGURE 3-18. Memory-Managed Write Cycle

2-272

~--~z

3.0 Functional Description (Continued)

3.5.3 The FL T (Float) Pin

The FL T pin is used by the CPU for address translation
support. Activating FL T during Tmmu causes the CPU to
wait longer than Tmmu for address translation and valida­
tion. This feature is used occasionally by the NS32082 MMU
in order to update its internal translation Look-Aside Buffer
(TLB) from page tables in memory, or to update certain
status bits within them.

Figure 3-19 shows the effects of FLT. Upon sampling FLT
low, late in Tmmu, the CPU enters idle T-States (Tf) during
which it:

1) Sets ADO-AD15, A16-A23 and DDIN to the TRI­
STATE condition ("floating").

2) Sets HBE low.

3) Suspends further internal processing of the current in­
struction. This ensures that the current instruction re­
mains abortable with retry. (See RST / ABT description,
Section 3.5.4.)

Note that the ADO-AD15 pins may be briefly asserted dur­
ing the first idle T-State. The above conditions remain in
effect until FL T again goes high. See the Timing Specifica­
tions, Section 4.

TL/EE/8525-28

FIGURE 3-19. FLT Timing

2-273

en
w
N
o o ..
en • ..
o z en
w
N
o o ..
en . ..
U1

U) ,--,
• CD

o o
N
C")
U)
Z
o
• CD

o o
N
C")
U)
Z

3.0 Functional Description (Continued)

3.5.4 Aborting Bus Cycles

The RST I ABT pin, apart from its Reset function (Section
3.3), also serves as the means to "abort," or cancel, a bus
cycle and the instruction, if any, which initiated it. An Abort
request is distinguished from a Reset in that the RST I ABT
pin is held active for only one clock cycle .

If RS'f I ABT is pulled low during Tmmu or Tt, this signals
that the cycle must be aborted. The CPU itself will enter T2
and then Ti, thereby terminating the cycle. Since it is the
MMU PAY signal which triggers a physical cycle, the rest of
the system remains unaware that a cycle was started.

The NS32082 MMU will abort a bus cycle for either of two
reasons:

1) The CPU is attempting to access a virtual address
which is not currently resident in physical memory. The
reference page must be brought into physical memory
from mass storage to make it accessible to the CPU.

2) The CPU is attempting to perform an access which is
not allowed by the protection level assigned to that
page.

When a bus cycle is aborted by the MMU, the instruction
that caused it to occur is also aborted in such a manner that
it is guaranteed re-executable later. The information that is
changed irrecoverably by such a partly-executed instruction
does not affect its re-execution.

3.5.4.1 The Abort Interrupt

Upon aborting an instruction, the CPU immediately performs
an interrupt through the ABT vector in the Interrupt Table
(see Section 3.8). The Return Address pushed on the Inter­
rupt Stack is the address of the aborted instruction, so that
a Return from Trap (RETT) instruction will automatically re­
try it.

The one exception to this sequence occurs if the aborted
bus cycle was an instruction prefetch. If so, it is not yet
certain that the aborted prefetched code is to be executed.
Instead of causing an interrupt, the CPU only aborts the bus
cycle, and stops prefetching. If the information in the In­
struction Queue runs out, meaning that the instruction will
actually be executed, the ABT interrupt will occur, in effect
aborting the instruction that was being fetched.

3.5.4.2 Hardware Considerations

In order to guarantee instruction retry, certain rules must be
followed in applying an Abort to the CPU. These rules are
followed by the NS32082 Memory Management Unit.

1) If FLT has not been applied to the CPU, the Abort
pulse must occur during or before Tmmu. See the Tim­
ing Specifications, Figure 4-23.

2-274

2) If FL T has been applied to the CPU, the Abort pulse
must be applied before the T-State in which FLT goes
inactive. The CPU will not actually respond to the Abort
command until FL T is removed. See Figure 4-24.

3) The Write half of a Read-Modify-Write operand access
may not be aborted. The CPU guarantees that this will
never be necessary for Memory Management funtions
by applying a special RMW status (Status Code 1011)
during the Read half of the access. When the CPU
presents RMW status, that cycle must be aborted if it
would be illegal to write to any of the accessed ad­
dresses.

If R"ST IA8T is pulsed at any time other than as indicated
above, it will abort either the instruction currently under exe­
cution or the next instruction and will act as a very high-pri­
ority interrupt. However, the program that was running at the
time is not guaranteed recoverable.

3.6 BUS ACCESS CONTROL

The NS32C016 CPU has the capability of relinquishing its
access to the bus upon request from a DMA device or an­
other CPU. This capability is implemented on the HOLD
(Hold Request) and HLDA (Hold Acknowledge) pins. Byas­
serting HOLD low, an external device requests access to
the bus. On receipt of HLDA from the CPU, the device may
perform bus cycles, as the CPU at this point has set the
ADO-AD1S, A16-A23, ADS, ODIN and HBE pins to the
TRI-STATE condition. To return control of the bus to the
CPU, the device sets HOLD inactive, and the CPU acknowl­
edges return of the bus by setting HLDA inactive.

How quickly the CPU releases the bus depends on whether
it is idle on the bus at the time the HOLD request is made,
as the CPU must always complete the current bus cycle.
Figure 3-20 shows the timing sequence when the CPU is
idle. In this case, the CPU grants the bus during the immedi­
ately following clock cycle. Figure 3-21 shows the sequence
if the CPU is using the bus at the time that the HOLD re­
quest is made. If the request is made during or before the
clock cycle shown (two clock cycles before T4), the CPU
will release the bus during the clock cycle following T 4. If
the request occurs closer to T 4, the CPU may already have
decided to initiate another bus cycle. In that case it will not
grant the bus until after the next T 4 state. Note that this
situation will also occur if the CPU is idle on the bus but has
initiated a bus cycle internally.

In a Memory-Managed system, the HLDA signal is connect­
ed in a daisy-chain through the NS32082, so that the MMU
can release the bus if it is using it.

3.0 Functional Description (Continued)

I Ti I TI I··· I
PHI1[1LJL1

Ti TI I TIOAT .. \ TIOAT1 \

PHI2 [

H5LD[

HrDA[

AFFECTED SIGNALS

iDS [~~------ -------

----- 1~----- -----

---- 1r---- -----

HBE[

FIGURE 3-20. HOLD Timing, Bus Initially Idle

2-275

TL/EE/8525-29

z en
w
N
o
Q
en
I

Q
Z en w
N
o
Q
en

I
U"I

~ r---~
"t-.
CD
"t-
O
o
N
Cf)
(/)
Z
o
"t-.
CD
"t­
O
o
N
Cf)
(/)
Z

3.0 Functional Description (Continued)

T3 T4 TI TI

PHI1[

PHI2[

HoLD [

i1LDA[

AFFECTED SIGNALS

ADi[

Di[-+-..... __ ~ __ -+-'

6DIN[-+-__ --+ ___ -+-__ -tJ

~[~--~---+---~

A16-A23[-4-----1---+------1-1

FIGURE 3·21. HOLD Timing, Bus Initially Not Idle

2-276

TI TI

NEXT

NEXT

NEXTADDR

TLlEE/8525-30

3.0 Functional Description (Continued)

3.7 INSTRUCTION STATUS

In addition to the four bits of Bus Cycle status (STO-ST3),
the NS32C016 CPU also presents Instruction Status infor­
mation on three separate pins. These pins differ from STO­
ST3 in that they are synchronous to the CPU's internal in­
struction execution section rather than to its bus interface
section.

PFS (Program Flow Status) is pulsed low as each instruction
begins execution. It is intended for debugging purposes, and
is used that way by the NS32082 Memory Management
Unit.

U/S originates from the U bit of the Processor Status Regis­
ter, and indicates whether the CPU is currently running in
User or Supervisor mode. It is sampled by the MMU for
mapping, protection and debugging purposes. Although it is
not synchronous to bus cycles, there are guarantees on its
validity during any given bus cycle. See the Timing Specifi­
cations, Figure 4-22.

ILO (Interlocked Operation) is activated during an SBIT! (Set
Bit, Interlocked) or CBITI (Clear Bit, Interlocked) instruction.
It is made available to external bus arbitration circuitry in
order to allow these instructions to implement the sema­
phore primitive operations for multi-processor communica­
tion and resource sharing. As with the U/S pin, there are
guarantees on its validity during the operand accesses per­
formed by the instructions. See the Timing Specification
Section, Figure 4-20.

3.8 NS32C016 INTERRUPT STRUCTURE

INT, on which maskable interrupts may be requested,

NMI, on which non-maskable interrupts may be request­
ed, and

RST / ABT, which may be used to abort a bus cycle and
any associated instruction. See Section 3.5.4.

r~

MEMORY J
r~

/ CASCADE ADDR 0

· CASCADE TABLE ::. = · ~~ ·
I ,"m",,, '''~

CASCADE ADDR 14

CASCADE ADDR 15

FIXED INTERRUPTS

AND TRAPS

In addition, there is a set of internally-generated "traps"
which cause interrupt service to be performed as a result
either of exceptional conditions (e.g., attempted division by
zero) or of specific instructions whose purpose is to cause a
trap to occur (e.g., the Supervisor Call instruction).

3.8.1 GenerallnterruptlTrap Sequence

Upon receipt of an interrupt or trap request, the CPU goes
through three major steps:

1) Adjustment of Registers.

Depending on the source of the interrupt or trap, the
CPU may restore and/or adjust the contents of the
Program Counter (PC), the Processor Status Register
(PSR) and the currently-selected Stack Pointer (SP). A
copy of the PSR is made, and the PSR is then set to
reflect Supervisor Mode and selection of the Interrupt
Stack.

2) Vector Acquisition.

A Vector is either obtained from the Data Bus or is
supplied by default.

3) Service Call.

The Vector is used as an index into the Interrupt Dis­
patch Table, whose base address is taken from the
CPU Interrupt Base (INTBASE) Register. See Figure
3-22. A 32-bit External Procedure Descriptor is read
from the table entry, and an External Procedure Call is
performed using it. The MOD Register (16 bits) and
Program Counter (32 bits) are pushed on the Interrupt
Stack.

This process is illustrated in Figure 3-23, from the viewpoint
of the programmer.

r 31 o~

0 NVI NON·VECTORED INTERRUPT

1 NMI NON·MASKABLE INTERRUPT

2 ABT ABORT

3 SLAVE SLAVE PROCESSOR TRAP

4 ILL ILLEGAL OPERATION TRAP

5 SVC SUPERVISOR CALL TRAP "EGO"'" I!
VECTORED i DISPATCH TABLE

6 DVZ DIVIDE BY ZERO TRAP

1: INTERRUPTS t 7 FLG FLAG TRAP

B BPT BREAKPOINT TRAP

9 TRC TRACE TRAP

10 UNO UNDEFINED INSTRUCTION TRAP

11-15 ::;:: RESERVED 1~
16 VECTORED

INTERRUPTS

TL/EE/B525-31

FIGURE 3·22. Interrupt Dispatch and Cascade Tables

2-277

z
en
w
N
o
o
-10
m • -10
o
.........
Z
en w
N
o o
-10
m • -10
U1

FJI

an
cD
o
o
N
CW)
t/)
Z

'" o • U)
o
o
N
CW)
t/)
Z

3.0 Functional Description (Continued)

I RETURN ADDRESS

I STATUS I MODULE

PSR MOO

INTBASE REGISTER

DESCRIPTOR

I (PUSH)

I

I I (PUSH)

INTERRUPT
STACK

r-------- -----.,
! I
I CASCADE TABLE I
I I
I I
I I

DISPATCH
TABLE

DESCRIPTOR (32 BITS)

j
32 BITS

32 BITS

It--. -1S---r-·I---16---,
OFFSET MODULE

l
0

MOO REGISTER ~ MODULE TABLE

I NEW MODULE

I MODULE TABLE ENTRY

J

MODULE TABLE ENTRY
32

STATIC BASE POINTER - t----.,

UNK BASE POINTER

~
i'"

PROGRAM BASE POINTER

(RESERVED)

PROGRAM COUNTER SBREGISTER

ENTRY POINT ADDRESS I NEW STATIC BASE
L T --

FIGURE 3-23. Interrupt/Trap Service Routine Calling Sequence

2-278

TLlEE/8525-32

J
TL/EE/8525-33

3.0 Functional Description (Continued)

3.8.2InterruptlTrap Return

To return control to an interrupted program, one of two in­
structions is used. The RED (Return from Trap) instruction
(Figure 3-24) restores the PSR, MOD, PC and S8 registers
to their previous contents and, since traps are often used
deliberately as a call mechanism for Supervisor Mode pro­
cedures, it also discards a specified number of bytes from
the original stack as surplus parameter space. RED is used
to return from any trap or interrupt except the Maskable
Interrupt. For this, the RETI (Return from Interrupt) instruc­
tion is used, which also informs any external Interrupt Con­
trol Units that interrupt service has completed. Since inter­
rupts are generally asynchronous external events, RETI
does not pop parameters. See Figure 3-25.

3.8.3 Maskable Interrupts (The INT Pin)

The INT pin is a level-sensitive input. A continuous low level
is allowed for generating multiple interrupt requests. The

PROGRAM COUNTER

I ·1
(POP)

RETURN ADDRESS

I I (POP)
STATUS MODULE

PSR MOD

f
MODULE TABLE ENTRY

STATIC BASE POINTER ----...

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

input is maskable, and is therefore enabled to generate in­
terrupt requests only while the Processor Status Register I
bit is set. The I bit is automatically cleared during service of
an INT, NMI or Abort request, and is restored to its original
setting upon return from the interrupt service routine via the
RED or RETI instruction.

The INT pin may be configured via the SETCFG instruction
as either Non-Vectored (CFG Register bit 1=0) or Vectored
(bit 1=1).

3.8.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT
pin will cause an Interrupt Acknowledge bus cycle, but the
CPU will ignore any value read from the bus and use instead
a default vector of zero. This mode is useful for small sys­
tems in which hardware interrupt prioritization is unneces­
sary.

· · ·

I

INTERRUPT
STACK

MODULE
TABLE

MODULE TABLE ENTRY

} 32 BITS

} 32 BITS

· · ·

- PARAMETERS

SBREGISTER

STATIC BASE

n
BYTES

l + STACK SELECTED
'--_________J IN NEWLY-

poP AND
DISCARD

POPPEDPSR.

FIGURE 3-24. Return from Trap (RETT n) Instruction Flow

2-279

TLlEE/8S2S-34

z
(J)
W
N o
o
0)

I
o
Z
(J)
W
N
o o
0)

I
(J1

Ln .,..
cD .,..
o o
N
C")
tJ)
Z o .,..
• CD .,..

o
o
N
C")
tJ)
Z

3.0 Functional Description (Continued)

"END OF INTERRUPT"

BUS CYCLE

PROGRAM COUNTER

I
(POP)

RETURN ADDRESS

I
(POP)

STATUS MODULE
I

PSR MOD

o

INTERRUPT
CONTROL

UNIT

INTERRUPT
STACK

MODULE
TABLE

L-.------------1MODULETABLE ENTRY

J
{

MODULE TABLE ENTRY

STATIC BASE POINTER

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

STATIC BASE

SBREGISTER

FIGURE 3·25. Return from Interrupt (RET I) Instruction Flow

2·280

TUEE/8525-35

3.0 Functional Description (Continued)

3.8.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control
Unit (ICU) to prioritize up to 16 interrupt requests. Upon re­
ceipt of an interrupt request on the INT pin, the CPU per­
forms an "Interrupt Acknowledge, Master" bus cycle (Sec­
tion 3.4.2) reading a vector value from the low-order byte of
the Data Bus. This vector is then used as an index into the
Dispatch Table in order to find the External Procedure De­
scriptor for the proper interrupt service procedure. The serv­
ice procedure eventually returns via the Return from Inter­
rupt (RETI) instruction, which performs an End of Interrupt
bus cycle, informing the ICU that it may re-prioritize any in­
terrupt requests still pending. The ICU provides the vector
number again, which the CPU uses to determine whether it
needs also to inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127; that
is, they must be positive numbers in eight bits. By providing
a negative vector number, an ICU flags the interrupt source
as being a Cascaded ICU (see below).

3.8.3.3 Vectored Mode: Cascaded Case

In order to allow up to 256 levels of interrupt, provision is
made both in the CPU and in the NS32202 Interrupt Control
Unit (ICU) to transparently support cascading. Figure 3-27
shows a typical cascaded configuration. Note that the Inter­
rupt output from a Cascaded ICU goes to an Interrupt Re­
quest input of the Master ICU, which is the only ICU which
drives the CPU INT pin.

In a system which uses cascading, two tasks must be per­
formed upon initialization:

1) For each Cascaded ICU in the system, the Master ICU
must be informed of the line number (0 to 15) on which
it receives the cascaded requests.

2) A Cascade Table must be established in memory. The
Cascade Table is located in a NEGATIVE direction
from the location indicated by the CPU Interrupt Base
(lNTBASE) Register. Its entries are 32-bit addresses,

pointing to the Vector Registers of each of up to 16
Cascaded ICUs.

Figure 3-22 illustrates the position of the Cascade Table. To
find the Cascade Table entry for a Cascaded ICU, take its
Master ICU line number (0 to 15) and subtract 16 from it,
giving an index in the range -16 to -1. Multiply this value
by 4, and add the resulting negative number to the contents
of the INTBASE Register. The 32-bit entry at this address
must be set to the address of the Hardware Vector Register
of the Cascaded ICU. This is referred to as the "Cascade
Address."

Upon receipt of an interrupt request from a Cascaded ICU,
the Master ICU interrupts the CPU and provides the nega­
tive Cascade Table index instead of a (positive) vector num­
ber. The CPU, seeing the negative value, uses it as an index
into the Cascade Table and reads the Cascade Address
from the referenced entry. Applying this address, the CPU
performs an "Interrupt Acknowledge, Cascaded" bus cycle
(Section 3.4.2), reading the final vector value. This vector is
interpreted by the CPU as an unsigned byte, and can there­
fore be in the range of 0 through 255.

In returning from a Cascaded interrupt, the service proce­
dure executes the Return from Interrupt (RETI) instruction,
as it would for any Maskable Interrupt. The CPU performs
an "End of Interrupt, Master" bus cycle (Section 3.4.2),
whereupon the Master ICU again provides the negative
Cascaded Table index. The CPU, seeing a negative value,
uses it to find the corresponding Cascade Address from the
Cascade Table. Applying this address, it performs an "End
of Interrupt, Cascaded" bus cycle (Section 3.4.2), informing
the Cascaded ICU of the completion of the service routine.
The byte read from the Cascaded ICU is discarded.
Note: If an interrupt must be masked off, the CPU can do so by setting the

corresponding bit in the Interrupt Mask Register of the Interrupt Con­
troller. However, if an interrupt Is set pending during the CPU Instruc­
tion that masks off that interrupt, the CPU may still perform an inter­
rupt acknowledge cycle following that instruction since it might have
sampled the INT line before the ICU deasserted it. This could cause
the ICU to provide an invalid vector. To avoid this problem the above
operation should be performed with the CPU interrupt disabled.

IR1

IR3

IR5
HARDWARE

IR7 INTERRUPTS
OR

NS32C016
cpu

GROUP

NS32202 IR9 CASCADED
CONTROLLERS

IR11

IR13

IR15
STATUS 1

GOIIRO

G1/1R2

G2/1R4

G3/1R6
INTERRUPTS,
CASCADED.

G4/1R8 OR
BIT 110

G5/1R10

~~g~ESS Cs
G8JIR12

DECODER G711R14

TL/EE/B525-36

FIGURE 3-26. Interrupt Control Unit Connections (16 Levels)

2-281

z
en
w
N o
Q
en •
Q
Z en
w
N o
Q
en
c.n

•

&I)
CD
o
o
N
C")
CJ)
Z o
CD
o o
N
C")
CJ)
Z

3.0 Functional Description (Continued)

CONTROL

NS32C016
CPU ADDR

GROUP

STATUS 1

DATA

CONTROL

ADDR 5 BITS

FROM
ADDRESS
DECODER

CASCADED
NS32202

ICU

CS

MASTER
NS32202

ICU

IR1

IR3

IR5

IR7

IRII

IR11

IR13

IR15

GOIIRO

G111R2

G211R4

G311R8

G411R8

GSIIR10

G811R12

G711R14

IRl

IR3

IRS

IR7

IR9

HARDWARE
INTERRUPTS

INTERRUPTS
OR

BIT 110

~ ~----------------------------------,~

IRll

IR13

IRIS

GO/IRO

GlIIR2

G211R4

G311R6

G4/1R8

GS/IR10

G611R12

G7/1R14

FROM
ADDRESS
DECODER

TL/EE/8525-37

FIGURE 3-27. Cascaded Interrupt Control Unit Connections

3.8.4 Non-Maskable Interrupt (The NMI Pin)

The Non-Maskable Interrupt is triggered whenever a falling
edge is detected on the NMI pin. The CPU performs an
"Interrupt Acknowledge, Master" bus cycle (Section 3.4.2)
when processing of this interrupt actually begins. The Inter­
rupt Acknowledge cycle differs from that provided for Mask­
able Interrupts in that the address presented is FFFF0016.
The vector value used for the Non-Maskable Interrupt is
taken as 1, regardless of the value read from the bus.

The service procedure returns from the Non-Maskable In­
terrupt using the Return from Trap (RETT) instruction. No
special bus cycles occur on return.

For the full sequence of events in processing the Non­
Maskable Interrupt, see Section 3.8.7.1.

2-282

3.8.STraps

A trap is an internally-generated interrupt request caused as
a direct and immediate result of the execution of an instruc­
tion. The Return Address pushed by any trap except Trap
(TRC) below is the address of the first byte of the instruction
during which the trap occurred. Traps do not disable inter­
rupts, as they are not associated with external events. Traps
recognized by NS32C016 CPU are:

Trap (SLAVE): An exceptional condition was detected by
the Floating Point Unit or another Slave Processor during
the execution of a Slave Instruction. This trap is requested
via the Status Word returned as part of the Slave Processor
Protocol (Section 3.9.1).

3.0 Functional Description (Continued)

Trap (ILL): Illegal operation. A privileged operation was at­
tempted while the CPU was in User Mode (PSR bit U = 1).

Trap (SVC): The Supervisor Call (SVC) instruction was exe­
cuted.

Trap (OVZ): An attempt was made to divide an integer by
zero. (The Slave trap is used for Floating Point division by
zero.)

Trap (FLG): The FLAG instruction detected a "1" in the
CPU PSR F bit.

Trap (BPT): The Breakpoint (BPD instruction was execut­
ed.

Trap (TRC): The instruction just completed is being traced.
See below.

Trap (UNO): An undefined opcode was encountered by the
CPU.

A special case is the Trace Trap (TRC), which is enabled by
setting the T bit in the Processor Status Register (PSR). At
the beginning of each instruction, the T bit is copied into the
PSR P (Trace "Pending") bit. If the P bit is set at the end of
an instruction, then the Trace Trap is activated. If any other
trap or interrupt request is made during a traced instruction,
its entire service procedure is allowed to complete before
the Trace Trap occurs. Each interrupt and trap sequence
handles the P bit for proper tracing, guaranteeing one and
only one Trace Trap per instruction, and guaranteeing that
the Return Address pushed during a Trace Trap is always
the address of the next instruction to be traced.

3.8.6 Prioritization

The NS32C016 CPU internally prioritizes simultaneous inter­
rupt and trap requests as follows:

1) Traps other than Trace (Highest priority)

2) Abort

3) Non-Maskable Interrupt

4) Maskable Interrupts

5) Trace Trap (Lowest priority)

3.8.7Interrupt/Trap Sequences: Detail Flow

For purposes of the following detailed discussion of inter­
rupt and trap service sequences, a single sequence called
"Service" Is defined in Figure 3-28. Upon detecting any In­
terrupt request or trap condition, the CPU first performs a
sequence dependent upon the type of Interrupt or trap. This
sequence will Include pushing the Processor Status Regis­
ter and establishing a Vector and a Return Address. The
CPU then performs the Service sequence.

For the sequenced followed in processing either Maskable
or Non-Maskable Interrupts (on the TNf or NMT pins, respec­
tively), see Section 3.8.7.1. For Abort Interrupts, see Section
3.8.7.4. For the Trace Trap, see Section 3.8.7.3, and for all
other traps see Section 3.8.7.2.

3.8.7.1 Maskable/Non-Maskable Interrupt Sequence

This sequence is performed by the CPU when the NMI pin
receives a falling edge, or the INT pin becomes active with
the PSR I bit set. The Interrupt sequence begins either at
the next instruction boundary or, in the case of the String
instructions, at the next interruptible point during its execu­
tion.

2-283

1. If a String instruction was interrupted and not yet com­
pleted:

a. Clear the Processor Status Register P bit.

b. Set "Return Address" to the address of the first
byte of the interrupted instruction.

Otherwise, set "Return Address" to the address of the
next instruction.

2. Copy the Processor Status Register (PSR) into a tem­
porary register, then clear PSR bits S, U, T, P and I.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFF0016, applying
Status Code 0100 (Interrupt Acknowledge, Mas­
ter: Section 3.4.2). Discard the byte read.

b. Set "Vector" to 1.

c. Go to Step 8.

4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFF0016, applying
Status Code 0100 (Interrupt Acknowledge, Mas­
ter: Section 3.4.2). Discard the byte read.

b. Set "Vector" to O.

c. Go to Step 8.

5. Here the interrupt is Vectored. Read "Byte" from ad­
dress FFFE0016, applying Status Code 0100 (Interrupt
Acknowledge, Master: Section 3.4.2).

6. If "Byte" ~ 0, then set "Vector" to "Byte" and go to
Step 8.

7. If "Byte" is in the range -16 through -1, then the
interrupt source is Cascaded. (More negative values
are reserved for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory.
The address is calculated as INTBASE + 4· Byte.

b. Read "Vector," applying the Cascade Address
just read and Status Code 0101 (Interrupt Ac­
knowledge, Cascaded: Section 3.4.2).

8. Push the PSR copy (from Step 2) onto the Interrupt
Stack as a 16-bit value.

9. Perform Service (Vector, Return Address), Figure 3-28.

Service (Vector, Return Address):

1) Read the 32·blt External Procedure Descriptor from the Interrupt Dis­
patch Table: address Is Vector*4+ INTBASE Register contents.

2) Move the Module field of the Descriptor Into the MOD Register.

3) Read the new Static Base pointer from the memory address contained
In MOD, placing It Into the SB Register.

4) Read the Program Base pointer from memory address MOD+8, and
add to It the Offset field from the Descriptor, placing the result in the
Program Counter.

5) Fiush Queue: Non·sequentially fetch first instruction of Interrupt Rou­
tine.

8) Push MOD Register onto the Interrupt Stack as a 16·blt value. (The
PSR has already been pushed as a 16·bit value.)

7) Push the Return Address onto the Interrupt Stack as a 32·bit quantity.

FIGURE 3-28. Service Sequence
Invoked during all interrupt/trap sequences

z en
w
N o o
en •
o
z en w
N o o
en •
Con

•

U) r---,
• CD

o
o
C\I
C")

UJ
Z
o
• CD

o o
C\I
C")

UJ
Z

3.0 Functional Description (Continued)

3.8.7.2 Trap Sequence: Traps Other Than Trace

1) Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction .

2) Set "Vector" to the value corresponding to the trap
type.

SLAVE: Vector = 3.

ILL: Vector = 4.

SVC: Vector = 5.

DVZ: Vector = 6.

FLG: Vector = 7.

BPT: Vector = 8.

UND: Vector = 10.

3) Copy the Processor Status Register (PSR) into a tem­
porary register, then clear PSR bits S, U, P and T.

4) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

5) Set "Return Address" to the address of the first byte of
the trapped instruction.

6) Perform Service (Vector, Return Address), Figure 3-28.

3.8.7.3 Trace Trap Sequence

1) In the Processor Status Register (PSR), clear the P bit.

2) Copy the PSR into a temporary register, then clear
PSR bits S, U and T.

3) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

4) Set "Vector" to 9.

5) Set "Return Address" to the address of the next in-
struction.

6) Perform Service (Vector, Return Address), Figure 3-28.

3.8.7.4 Abort Sequence

1) Restore the currently selected Stack Pointer to its origi­
nal contents at the beginning of the aborted instruction.

2) Clear the PSR P bit.

3) Copy the PSR into a temporary register, then clear
PSR bits S, U, T and I.

4) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

5) Set "Vector" to 2.

6) Set "Return Address" to the address of the first byte of
the aborted instruction.

7) Perform Service (Vector, Return Address), Figure 3-28.

3.9 SLAVE PROCESSOR INSTRUCTIONS

The NS32C016 CPU recognizes three groups of instructions
as being executable by external Slave Processors:

Floating Point Instruction Set

Memory Management Instruction Set

Custom Instruction Set

2-284

Each Slave Instruction Set is validated by a bit in the Config­
uration Register (Section 2.1.3). Any Slave Instruction which
does not have its corresponding Configuration Register bit
set will trap as undefined, without any Slave Processor com­
munication attempted by the CPU. This allows software sim­
ulation of a non-existent Slave Processor .

3.9.1 Slave Processor Protocol

Slave Processor instructions have a three-byte Basic In­
struction field, consisting of an ID Byte followed by an Oper­
ation Word. The ID Byte has three functions:

1) It identifies the instruction as being a Slave Processor
instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Operation
Word of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi­
ates the sequence outlined in Figure 3-29. While applying
Status Code 1111 (Broadcast ID, Section 3.4.2), the CPU
transfers the ID Byte on the least-significant half of the Data
Bus (ADO-AD7). All Slave Processors input this byte and
decode it. The Slave Processor selected by the ID Byte is
activated, and from this point the CPU is communicating
only with it. If any other slave protocol was in progress (e.g.,
an aborted Slave instruction), this transfer cancels it.

The CPU next sends the Operation Word while applying
Status Code 1101 (Transfer Slave Operand, Section 3.4.2).
Upon receiving it, the Slave Processor decodes it, and at
this point both the CPU and the Slave Processor are aware
of the number of operands to be transferred and their sizes.
The Operation Word is swapped on the Data Bus; that is,
bits 0-7 appear on pins AD8-AD15 and bits 8-15 appear
on pins ADO-AD7.

Using the Addressing Mode fields within the Operation
Word, the CPU starts fetching operands and issuing them to
the Slave Processor. To do so, it references any Addressing
Mode extensions which may be appended to the Slave
Processor instruction. Since the CPU is solely responsible
for memory accesses, these extensions are not sent to the
Slave Processor. The Status Code applied is 1101 (Transfer
Slave Processor Operand, Section 3.4.2).

Status Combinations:
Send 10 (10): Code 1111
Xfer Operand (OP): Code 1101
Read Status (ST): Code 1110

Step Status Action
1 ID CPU Send ID Byte.
2 OP CPU Sends Operation Word.
3 OP CPU Sends Required Operands.
4 Slave Starts Execution. CPU Pre-Fetches.
5 Slave Pulses SPC Low.
6 ST CPU Reads Status Word. (Trap? Alter Flags?)
7 OP CPU Reads Results (If Any).

FIGURE 3-29. Slave Processor Protocol

3.0 Functional Description (Continued)

After the CPU has issued the last operand, the Slave Proc­
essor starts the actual execution of the instruction. Upon
completion, it will signal the CPU by pulsing SPC low. To
allow for this, and for the Address Translation strap func­
tion, AT ISPC is normally held high only by an internal pull­
up device of approximately 5 kn.

While the Slave Processor is executing the instruction, the
CPU is free to prefetch instructions into its queue. If it fills
the queue before the Slave Processor finishes, the CPU will
wait, applying Status Code 0011 (Waiting for Slave, Section
3.4.2).

Upon receiving the pulse on SPC, the CPU uses SPC to
read a Status Word from the Slave Processor, applying
Status Code 1110 (Read Slave Status, Section 3.4.2). This
word has the format shown in Figure 3-30. If the Q bit
("Quit", Bit 0) is set, this indicates that an error was detect­
ed by the Slave Processor. The CPU will not continue the
protocol, but will immediately trap through the Slave vector
in the Interrupt Table. Certain Slave Processor instructions
cause CPU PSR bits to be loaded from the Status Word.

The last step in the protocol is for the CPU to read a result,
if any, and transfer it to the destination. The Read cycles
from the Slave Processor are performed by the CPU while
applying Status Code 1101 (Transfer Slave Operand, Sec­
tion 3.4.2).

An exception to the protocol above is the LMR (Load Mem­
ory Management Register) instruction, and a corresponding

Custom Slave instruction (LCR: Load Custom Register). In
executing these instructions, the protocol ends after the
CPU has issued the last operand. The CPU does not wait for
an acknowledgement from the Slave Processor, and it does
not read status.

3.9.2 Floating Point Instructions

Table 3-4 gives the protocols followed for each Floating
Point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Appendix A.
The Operand class columns give the Access Class for each
general operand, defining how the addressing modes are
interpreted (see Series 32000 Instruction Set Reference
Manual).

The Operand Issued columns show the sizes of the oper­
ands issued to the Floating Point Unit by the CPU. "0" indi­
cates a 32-bit Double Word. "i" indicates that the instruction
specifies an integer size for the operand (B = Byte,
W = Word, 0 = Double Word). "f" indicates that the instruc­
tion specifies a Floating Point size for the operand (F = 32-
bit Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR Bits Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-(0).

TABLE 3-4. Floating Point Instruction Protocols

Operand 1 Operand 2
Mnemonic Class Class

ADDf read.f rmw.f

SUBf read.f rmw.f

MULf read.f rmw.f
DIVf read.f rmw.f

MOVf read.f write.f
ABSf read.f write.f

NEGf read.f write.f

CMPf read.f read.f

FLOORfi read.f write.i

TRUNCfi read.f write.i
ROUNDfi read.f write.i

MOVFL read.F write.L
MOVLF read.L write.F

MOVif read.i write.f

LFSR read.D N/A
SFSR N/A write. 0

Notes:

o = Double Word

i = integer size (B,W,D) specified in mnemonic.

f = Floating Point type (F,L) specified in mnemonic.

N/A = Not Applicable to this instruction.

Operand 1 Operand 2 Returned Value PSR Bits

Issued Issued Type and Dest. Affected

fto Op. 2 none

fto Op. 2 none

fto Op. 2 none

ftoOp.2 none

N/A fto Op. 2 none
N/A ftoOp.2 none
N/A fto Op. 2 none

N/A N,Z,L

N/A itoOp.2 none
N/A itoOp.2 none

f N/A itoOp.2 none

F N/A Lto Op. 2 none

L N/A FtoOp.2 none

N/A fto Op. 2 none

0 N/A N/A none
N/A N/A DtoOp.2 none

2-285

z
en w
I\)

o o
en

I
o
'" z en
w
I\)

o
o
en

I
U1

•

3.0 Functional Description (Continued)

15 • 7 0

I 0 0 0 0 0 0 0 0 IN Z F 0 0 L 0 oj
NewpsRaltVllue(,)~ ~ J
"Quit": Terminate Protocol, "'1p(FPU).

TL/EE/8525-38

FIGURE 3-30. Slave Processor Status Word Format

Any operand indicated as being of type "f" will not cause a
transfer if the Register addressing mode is specified. This is
because the Floating Point Registers are physically on the
Floating Point Unit and are therefore available without CPU
assistance.

3.9.3 Memory Management Instructions

Table 3-5 gives the protocols for Memory Management in­
structions. Encodings for these instructions may be found in
Appendix A.
In executing the ROVAL and WRVAL instructions, the CPU
calculates and issues the 32-bit Effective Address of the
single operand. The CPU then performs a single-byte Read
cycle from that address, allowing the MMU to safely abort
the instruction if the necessary information is not currently in
physical memory. Upon seeing the memory cycle complete,
the MMU continues the protocol, and returns the validation
result in the F bit of the Slave Status Word.

The size of a Memory Management operand is always a 32-
bit Double Word. For further details of the Memory Manage­
ment Instruction set, see the Series 32000 Instruction Set
Reference Manual and the NS32082 MMU Data Sheet.

TABLE 3-5. Memory Management Instruction Protocols

Mnemonic

ROVAL·
WRVAL·

LMR·
SMR·

Note:

Operand 1
Class

addr
addr

read.O
write.O

Operand 2 Operand 1 Operand 2 Returned Value
Class Issued Issued Type and Dest.

N/A 0 N/A N/A
N/A 0 N/A N/A
N/A
N/A

o
N/A

N/A
N/A

N/A
OtoOp.1

PSR Bits
Affected

F
F

none
none

In the RDVAL and WRVAL Instructions, the CPU Issues the address as a Double Word, and performs a slngle·byte Read cycle from that memory address. For
details, see the Series 32000 Instruction Set Reference Manual and the NS32082 Memory Management Unit Data Sheet.

o ... Double Word

• .. Privileged Instruction: will trap If CPU Is In User Mode.
NI A ... Not Applicable to this Instruction.

2-286

3.0 Functional Description (Continued)

3.9.4 Custom Slave Instructions

Provided in the NS32C016 is the capability of communicat­
ing with a user-defined, "Custom" Slave Processor. The In­
struction set provided for a Custom Slave Processor defines
the instruction formats, the operand classes and the com­
munication protocol. Left to the user are the interpretations
of the Op Code fields, the programming model of the Cus­
tom Slave and the actual types of data transferred. The pro­
tocol specifies only the size of an operand, not its data type.

Table 3-6 lists the relevant information for the Custom Slave
instruction set. The designation "c" is used to represent an

operand which can be a 32-bit ("D") or 64-bit ("a") quantity
in any format; the size is determined by the suffix on the
mnemonic. Similarly, an "i" indicates an integer size (Byte,
Word, Double Word) selected by the corresponding mne­
monic suffix.
Any operand indicated as being of type "C' will not cause a
transfer if the register addressing mode is specified. It is
assumed in this case that the slave processor is already
holding the operand internally.

For the instruction encodingsl see Appendix A.

TABLE 3-6. Custom Slave Instruction Protocols
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits

Mnemonic Class Class Issued Issued Type and Dest. Affected

CCALOc read.c rmw.c c c ctoOp.2 none
CCAL1c read.c rmw.c c c ctoOp.2 none
CCAL2c read.c rmw.c c c ctoOp.2 none
CCAL3c read.c rmw.c c c ctoOp.2 none

CMOVOc read.c write.c c N/A ctoOp.2 none
CMOV1c read.c write.c c N/A ctoOp.2 none
CMOV2c read.c write.c c N/A ctoOp.2 none
CMOV3c read.c write.c c N/A ctoOp.2 none

CCMPOc read.c read.c c c N/A N,Z,L
CCMP1c read.c read.c c c N/A N,Z,L

CCVOci read.c write.i c N/A itoOp.2 none
CCV1ci read.c write.i c N/A itoOp.2 none
CCV2ci read.c write.i c N/A itoOp.2 none
CCV3ic readi write.c N/A ctoOp.2 none

CCV4Da read.D write.a D N/A atoOp.2 none
CCVSaD read.a write.D a N/A DtoOp.2 none

LCSR read.D N/A D N/A N/A none
SCSR N/A write.D N/A N/A DtoOp.2 none

CATSTO· addr N/A D N/A N/A F
CATST1· addr N/A D N/A N/A F

LCR· read.D N/A D N/A N/A none
SCR· write.D N/A N/A N/A D to Op.1 none

Notas:

o = Double Word

i = integer size (B,W,O) specified in mnemonic.

c = Custom size (0:32 bits or Q:64 bits) specified in mnemonic.

• = Privileged instruction: will trap if CPU is in User Mode.

NIA = Not Applicable to this instruction.

2-287

z en
w
N
n
Q -.
0)
• -.

Q
Z en
w
N
n
Q -.
0)
• -.

CI'I

•

~ r---~
• U)

o
o
N
C")
(/)
Z
o
• U)

o
o
N
C")
(/)
Z

4.0 Device Specifications
4.1 NS32C016 PIN DESCRIPTIONS

The following is a brief description of all NS32C016 pins.
The descriptions reference portions of the Functional De­
scription, Section 3.

4.1.1 Supplies

Logic Power (VCCL): + 5V positive supply for on-chip logic .
Section 3.1.

Buffer Power (VCCB): + 5V positive supply for on-chip out­
put buffers. Section 3.1.

Logic Ground (GNDL): Ground reference for on-chip logic.
Section 3.1.

Buffer Ground (GNDB): Ground reference for on-chip driv­
ers connected to output pins. Section 3.1. .

4.1.2 Input Signals

Clocks (PHI1, PHI2): Two-phase clocking signals. Section
3.2.

Ready (RDY): Active high. While ROY is inactive, the CPU
extends the current bus cycle to provide for a slower memo­
ry or peripheral reference. Upon detecting ROY active, the
CPU terminates the bus cycle. Section 3.4.1.

Hold Request (HOLD): Active low. Causes the CPU to re­
lease the bus for DMA or multiprocessing purposes. Section
3.6.
Note: If the ROUi signal is generated asynchronously, its set up and hold

times may be violated. In this case it is recommended to synchronize
it with CTTL to minimize the possibility of metastable states.

The CPU provides only one synchronization stage to minimize the
HLOA latency. This is to avoid speed degradations in cases of heavy
'RIT[jj activity (i.e. OMA controller cycles interleaved with CPU cy­
cles).

Interrupt (INT): Active low. Maskable Interrupt request.
Section 3.8.

Non-Maskable Interrupt (NMI): Active low. Non-Maskable
Interrupt request. Section 3.8.

Reset/Abort (RST / ABT): Active low. If held active for one
clock cycle and released, this pin causes an Abort Com­
mand, Section 3.5.4. If held longer, it initiates a Reset, Sec­
tion 3.3.

4.1.3 Output Signals

Address Bits 16-23 (A 16-A23): These are the most sig­
nificant 8 bits of the memory address bus. Section 3.4.

Address Strobe (ADS): Active low. Controls address latch­
es; indicates start of a bus cycle. Section 3.4.

Data Direction In (ODIN): Active low. Status signal indicat­
ing direction of data transfer during a bus cycle. Section 3.4.

High Byte Enable (HBE): Active low. Status signal enabling
transfer on the most significant byte of the Data Bus. Sec­
tion 3.4; Section 3.4.3.
Note: In the current NS32C016, the HBE signal is forced low by the CPU

when ill is asserted by the MMU. However, in future revisions of the
CPU, HEiE will no longer be affected by FL T. Therefore, in a memory
managed system, an external'ANO' gate is required. This is shown in
Figure 8·1 in Appendix B.

2-288

Status (STO-ST3): Active high. Bus cycle status code, STO
least significant. Section 3.4.2. Encodings are:

OOOO-Idle: CPU Inactive on Bus.

0001-ldle: WAIT Instruction .

0010-(Reserved)

0011-ldle: Waiting for Slave.

0100-lnterrupt Acknowledge, Master.

0101-lnterrupt Acknowledge, Cascaded.

0110-End of Interrupt, Master.

0111-End of Interrupt, Cascaded.

1000-Sequential Instruction Fetch.

1001-Non-Sequentiallnstruction Fetch.

1010-Data Transfer.

1 011-Read Read-Modify-Write Operand.

1100-Read for Effective Address.

1101-Transfer Slave Operand.

1110-Read Slave Status Word.

1111-Broadcast Slave 10.
Hold Acknowledge (HLDA): Active low. Applied by the
CPU in response to HOLD input, indicating that the bus has
been released for DMA or multiprocessing purposes. Sec­
tion 3.6.

User/Supervisor (U/S): User or Supervisor Mode status.
Section 3.7. High state indicates User Mode, low indicates
Supervisor Mode. Section 3.7.

Interlocked Operation (ILO): Active low. Indicates that an
interlocked instruction is being executed. Section 3.7.

Program Flow Status (PFS): Active Low. Pulse indicates
beginning of an instruction execution. Section 3.7.

4.1.4 Input-Output Signals

Address/Data 0-15 (ADO-AD15): Multiplexed Addressl
Data information. Bit 0 is the least significant bit of each.
Section 3.4.

Address Translation/Slave Processor Control
(AT/SPC): Active low. Used by the CPU as the data strobe
output for Slave Processor transfers; used by Slave Proces­
sors to acknowledge completion of a slave instruction. Sec­
tion 3.4.6; Section 3.9. Sampled on the rising edge of Reset
as Address Translation Strap. Section 3.5.1.

In non-memory-managed systems this pin should be pulled
up to Vee through a 10 kO resistor.

Data Strobe/Float (DS/FL T): Active low. Data Strobe out­
put, Section 3.4, or Float Command input, Section 3.5.3. Pin
function is selected on ATISPC pin, Section 3.5.1.

4.0 Device Specifications (Continued)

4.2 ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

Temperature Under Bias O·C to + 70·C

Storage Temperature

All Input or Output Voltages with

Respect to GND

- 65·C to + 150·C

-0.5Vto +7V

Power Dissipation 1.5 Watt

4.3 ELECTRICAL CHARACTERISTICS: TA = -40·Cto +85·C, Vcc = 5V ±10%, GND = OV

Symbol Parameter Conditions Min

VIH High Level Input Voltage 2.0

VIL Low Level Input Voltage -0.5

VCH High Level Clock Voltage PHI1, PHI2 pins only 0.90 Vcc

VCL Low Level Clock Voltage PHI1, PHI2 pins only -0.5

VCRT Clock Input
Ringing Tolerance

PHI1, PHI2 pins only
-0.5

VOH High Level Output Voltage IOH = -400,."A 0.90Vcc

VOL Low Level Output Voltage IOL = 2mA

IlLS AT IS PC Input Current (low) VIN = O.4V, ATISPC in input mode 0.05

II Input Load Current

IL Leakage Current Output
and 10 Pins in TRI-STATEI
Input Mode

Icc Active Supply Current

Connection Diagram

o ~ VIN ~ Vcc, All inputs except
PHI1, PHI2, ATISPC

lOUT = 0, TA = 25·C

Dual-ln-L1ne Package

An ~~::::J VCCL
A21 ~ 2 47 ~ A23
A20~3 46:::::jiNf
AI9 r;:::;;; 4 45 :::::J NMi
AI8 ;; 5 44 ~ iLO
A 17 = 6 43 I=::: STO
AI6 == 7 42 b STI

AD15 = 8 41 ~ ST2
AD14 ~ 9 40 -= ST3
AD13 :::::;;; 10 39 = PFS

AD12 ~ II 38 ~ DDIN

ADII ~ 12 NS32COIl 37;;; ADS

ADl0 ~ 13 CPU 36 ~ ,!:S_
AD9 = 14 35 ~ AT/SPe
AD8 ~ 15 34 ~ RST/ABT
AD7 ~ 16 33 ~ OS/m
AD8 ~ 17 32 ~ HBE
ADS ~ 18 31 ~ HLDA
A04 r::: 19 30 :::::: HOLD

AD3 ~ 20 29 ;; VCCB

AD2 = 21 28 = ROY
ADI ~ 22 27 ~ PHI2

ADO ~ 23 26 ~ PHil
GNDL C 24 25 ~ GNDB

Top View

FIGURE 4-1

-20

-20

TLlEE/8525-2

Order Number NS32C016D-10, NS32C016D-15,
NS32C016N-10 or NS32C016N-15

See NS Package Number D48A or N48A

2-289

Typ Max Units

Vec + 0.5 V

0.8 V

Vec + 0.5 V

0.10 Vcc V

0.6 V

V

0.10Vcc V

1.0 mA

20 ,."A

20 ,."A

70 100 rnA

z en w
N o
o
en
o
z en w
N
o o
en •
U'I

U) r---~
• CD

o
o
N
C")
U)
Z
o
cb
o
o
N
C")
U)
Z

4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the timing specifications given in this section refer to
2.0V on the rising or falling edges of the clock phases PHI1
and PHI2; to 15% or 85% of Vee on all the CMOS output
signals, and to 0.8V or 2.0V on all the TTL input signals as
illustrated in Figures 4·2 and 4·3 unless specifically stated
otherwise.

PHln [j (2.0V -

ABBREVIATIONS:

L.E. - leading edge

T.E. - trailing edge

R.E. - rising edge

F.E. - falling edge

PH In [________ -'}~

SIG1 [

TLlEE/8525-40

FIGURE 4·3. Timing Specification Standard

[

I tslG2hJr:
SIG2 I "J:. _o~:v:c ____ .

TLlEE/8525-39

FIGURE 4·2. Timing Specification Standard
(CMOS Output Signals)

4.4.2 Timing Tables

(TTL Input Signals)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32C016-10 and NS32C016·15
Maximum times assume capacitive loading of 75 pF, on the address/data bus signals and 50 pF on all other signals.

Name Figure

4·4

4·4

toy 4·4

4·4

4·4

4·4

tALADSs 4·5

tAHADSs 4·5

4·9

tAHADSh 4·9

4·5

4·9

4·9

4·4

4·4

tSTv 4·4

tSTh 4·4

tODINv 4·5

Description Reference/Conditions I--_N_S_3_2...,.C_01_6_._10 __ -t-__ N_S_32_C O_1_6._1_5--l

Address bits 0-15 valid

Address bits 0-15 hold

Data valid (write cycle)

Data hold (write cycle)

Address bits 16-23 valid

Address bits 16-23 hold

Address bits 0-15 set up

Address bits 16-23 set up

Address bits 0-15 hold

Address bits 16-23 hold

Address bits 0-15 floating
(noMMU)

after R.E., PHI1 T1

after R.E., PHI1
TmmuorT2

after R.E., PHI1 T2

after R.E., PHI1
nextT10rTi

after R.E., PHI1 T1

after R.E., PHI1
nextT10rTi

before ADS T.E.

before ADS T.E.

after ADS T.E.

after ADS T.E.

after R.E., PHI1 T2

Address bits 0-15 floating after R.E., PHI1 TMMU
(withMMU)

Address bits 16-23 floating after R.E., PHI1 TMMU
(withMMU)

HBE signal valid

HBE signal hold

Status (STO-ST3) valid

Status (STO-ST3) hold

ODIN signal valid

after R.E., PHI1 T1

after R.E., PHI1
nextT10rTi

after R.E., PHI1 T4
(before n, see note)

after R.E., PHI1 T4
(afterT1)

after R.E., PHI1 T1

2·290

Min

5

o

o

25

25

15

15

o

o

Max Min Max

40 35

5

50 35

o

40 35

o

20

20

10

10

25 20

25 20

25 20

45 35

o

45 35

o

50 35

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32C016-10 and NS32C016-15 (Continued)

Name Figure Description Reference/Conditions
NS32C016-10

Min Max

tOOINh 4-5 ODIN signal hold after RE., PHI1 0
nextT10rTi

tAOSa 4-4 ADS signal active (low) after R.E., PHI1 T1 35

tAOSia 4-4 ADS signal inactive after RE., PHI2 T1 40

tAOSw 4-4 ADS pulse width at 15% Vec (both edges) 30

tOSa 4-4 OS signal active (low) after RE., PHI1 T2 40

tOSia 4-4 OS signal inactive after RE., PHI1 T4 40

tALf 4-6 ADO-AD15 floating after RE., PHI1 T1
25

(caused by HOLD)

tAHf 4-6 A 16-A23 floating after R.E., PHI1 T1
25

(caused by HOLD)

tOSf 4-6 OS floating (caused by HOLD) after RE., PHI1 Ti 50

tAOSf 4-6 ADS floating (caused by HOLD) after RE., PHI1 Ti 50

tHBEf 4-6 HBE floating (caused by HOLD) after RE., PHI1 Ti 50

tOOINf 4-6 ODIN floating (caused by HOLD) after R.E., PHI1 Ti 50

tHLOAa 4-6 HLDA signal active (low) after R.E., PHI1 Ti 30

tHLOAia 4-8 HLDA signal inactive after RE., PHI1 Ti 40

tOSr 4-8 OS signal returns from floating after R.E., PHI1 Ti
55

(caused by HOLD)

tAOSr 4-8 ADS signal returns from floating after R.E., PHI1 Ti
55

(caused by HOLD)

tHBEr 4-8 HBE signal returns from floating after RE., PHI1 Ti
55

(caused by HOLD)

tOOINr 4-8 ODIN signal returns from floating after RE., PHI1 Ti
55

(caused by HOLD)

tOOINf 4-9 ODIN signal floating (caused by FL T) after FL T F.E. 55

tHBEI 4-9 HBE signal low (caused by FL n after FLT F.E. 40

tOOINr 4-10 ODIN signal returns from floating after FL T R.E.
40

(caused by FL n
tHBEr 4-10 HBE signal returns from low aftermR.E.

35
(caused by FL T)

tSPCa 4-13 gpc output active (low) after RE., PHI1 T1 35

tSPCla 4-13 gpc output inactive after R.E., PHI1 T4 35

tSPCnf 4-15 gpc output nonforcing after RE., PHI2 T4 30

tov 4-13 Data valid (slave processor write) after R.E., PHI1 T1 50

tOh 4-13 Data hold (slave processor write) after R.E., PHI1 next T1 or Ti 0

tpFSw 4-18 PFS pulse width at 15% Vcc (both edges) 50

tPFSa 4-18 PFS pulse active (low) after R.E., PHI2 40

tPFSia 4-18 PFS pulse inactive after R.E., PHI2 40

tlLOs 4-20a ILO signal setup before RE., PHI1 T1 of first
50

interlocked write cycle

tlLOh 4-20b iIO signal hold after RE., PHI1 T3 of last
10

interlocked read cycle

tlLOa 4-21 ILO signal active (low) after R.E., PHI1 35

2-291

NS32C016-15

Min Max

0

26

30

25

30

30

20

20

40

40

40

40

25

30

40

40

40

40

50

30

30

25

26

26

25

35

0

40

35

35

35

7

30

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

z en
c,,)
N
(')
C
en
c
z en
c,,)
N
(')
C
en
CJ1

Lt) .,.. .
CD .,..
o o
N
(f)
en z
........
o .,..
tb .,..
o o
N
(f)

en z

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32C016-10 and NS32C016-15 (Continued)

Name Figure Description Reference/Conditions
NS32C016-10 NS32C016-15

Units
Min Max Min Max

tlLOia 4·21 ILO signal inactive after R.E., PHI1 35 30 ns

tusv 4·22 U/S signal valid after R.E., PHI1 T4 35 30 ns

tUSh 4·22 U/S signal hold after R.E., PHI1 T4 8 6 ns

tNSPF 4·19b Nonsequential fetch to after R.E., PHI1 T1
4 4 tcp next PFS clock cycle

tpFNS 4·19a PFS clock cycle to next before R.E., PHI1 T1
4 4 tcp nonsequential fetch

tLXPF 4·29 Last operand transfer of before R.E., PHI1 T1 of first
an instruction to next bus cycle of transfer 0 0 tcp
PFS clock cycle

Note: Every memory cycle starts with T4, during which Cycle Status is applied. If the CPU was idling, the sequence will be: " ... Ti, T4, T1 ... ". If the CPU was
not idling, the sequence will be: " ... T4, T1 ... ".

4.4.2.2 Input Signal Requirements: NS32C016-10 and NS32C016-15

Name Figure Description Reference/Conditions
NS32C016-10 NS32C016-15

Units
Min Max Min Max

tPWR 4·25 Power stable to RST R.E. after Vcc reaches 4.5V 50 33 J-Ls

tOls 4·5 Data in setup (read cycle) before F.E., PHI2 T3 15 10 ns

tOlh 4·5 Data in hold (read cycle) after F.E., PHI1 T4 3 3 ns

tHLOa 4·6 HOLD active (low) setup before F.E., PHI2 TX1
25 17

time (see note)
ns

tHLOia 4·8 HOLD inactive setup time before F.E., PHI2 Ti 25 17 ns

tHLOh 4·6 HOLD hold time after R.E., PHI1 TX2 0 0 ns

tFLTa 4·9 FL T active (low) setup time before F.E., PHI2 Tmmu 25 17 ns

tFLTia 4·10 FL T inactive setup time before F.E., PHI2 T2 25 17 ns

tROYs 4·11,4·12 ROY setup time before F.E., PHI2 T2 or T3 15 10 ns

tROYh 4·11,4·12 ROY hold time after F.E., PHI1 T3 5 5 ns

tASTs 4·23 ABT setup time before F.E., PHI2 Tmmu
20 13

(FL T inactive)
ns

tASTs 4·24 ABT setup time before F.E., PHI2 Tf
20 13

(FL T active)
ns

tASTh 4·23 ABT hold time after R.E., PHI1 0 0 ns

tRSTs 4·25,4·26 RST setup time before F.E., PHI1 10 8 ns

tRSTw 4·26 RST pulse width at 0.8V (both edges) 64 64 tcp

tiNTs 4·27 INT setup time before R.E., PHI1 20 15 ns

tNMlw 4·28 NMI pulse width at 0.8V (both edges) 70 70 ns

tOls 4·14 Data setup before F.E., PHI2 T1
15 10

(slave read cycle)
ns

tOlh 4·14 Data hold after R.E., PHI1 T4
3 3

(slave read cycle)
ns

2·292

4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements: NS32C016-10 and NS32C016-15 (Continued)

Name Figure Description Reference/Conditions
NS32C016-10 NS32CO 16-15

Units
Min Max Min Max

tSPCd 4-15 SPC pulse delay after R.E.. PHI2 T4
30 25

from slave
ns

tsPCs 4-15 SPC setup time before F.E .• PHI1 30 25 ns

tsPCw 4-15 SPC pulse width from at 0.8V (both edges)
slave processor 20 20 ns
(async. input)

tATs 4-16 AT I SPC setup for before R.E .• PHI1 of cycle
address translation during which RST pulse 1 1 tcp
strap is removed

tATh 4-16 AT/SPC hold for after F.E., PHI1 of cycle
address translation during which RST pulse 2 2 tcp
strap is removed

Note: This setup time is necessary to ensure prompt acknowledgement via HLDA and the ensuing floating of CPU off the buses. Note that the time from the receipt
of the HOLD signal until the CPU floats is a function of the time HOLD signal goes low. the state of the ROY input (in MMU systems). and the length of the current
MMU cycle.

4.4.2.3 Clocking Requirements: NS32C016-10 and NS32C016-15

Name Figure Description Reference/Conditions
NS32C016-10 NS32C016-15

Units
Min Max Min Max

tcp 4-17 Clock period R.E., PHI1, PHI2 to
100 250 66 250

next R.E., PHI1, PHI2
ns

tCLw 4-17 PHI1, PHI2 At2.0V
0.5tcp 0.5tcp pulse width on PHI1, PHI2

(both edges)
-10 ns -6ns

tCLh 4-17 PHI1, PHI2 At90% Vcc 0.5tcp 0.5tcp
High Time on PHI1, PHI2 -15 ns -10 ns

tCLI 4·17 PHI1, PHI2 At 15% Vcc 0.5tcp 0.5tcp
Low Time on PHI1, PHI2 -5ns -5 ns

tnOVL(1.2) 4-17 Non-overlap time At 15% Vcc -2 2 -2 2
on PHI1, PHI2

ns

tnOVLas Non-overlap asymmetry At 15% Vcc
-3 3 -3 3 ns

(tnOVL(1) - tnOVL(2) on PHI1, PHI2

tCLwas PHI1, PHI2 asymmetry At2.0V
-5 5 -3 3

(tCLw(1) -tCLw(~ on PHI1, PHI2
ns

2-293

z
en
w
N
o o -.
en

I -.
o
....... z en
w
N o o -.
en
I -.

U1

an
'I"'"

cb 4.0 Device Specifications (Continued)
'I"'"

B 4.4.3 Timing Diagrams
N
C")

en z
....... o
'I"'" .
CD
'I"'"
o o
N
C")

en z

T1 T2 T3

PHil [

PHI2 [

ADO-1S [

Al6-23 [

56iN[

ST~3[~ ________ -+ ____ V_A_LI_0 __ ~ ______ ~~~

[
~------------(~ 'OSe

55
~------~--------~I

ROY [

PHI1 [

PHI2 [

ADO-1S [

A16-23 [

ros[

HiiE[

DoiN[

ST~3 [

as[
RDY [

T1

(HIGH)
I

FIGURE 4-4. Write Cycle

T2 T3

(HIGH)

FIGURE 4-5. Read Cycle

2-294

T4

NEXT

TL/EE/8525-41

T4

TLlEE/8525-42

4.0 Device Specifications (Continued)

TX1

PHI1 [

PHI2 [-1--'"
H6LD[

Hri5A[
15!
Ai)!

TX2 T4 TI TI TI

HBE[
I5DiN -I-----r------t------t---- - -- - iFL'O :rING! - ---

1~~ _____ --iFL'JrTNGI-- __
ADO·15 [-t-----t-----t-----t-.J

A18·23 [-t-----t-----t-----t--J ~~H~ _______ (FL01TiNGI ___ _

I
TL/EE/8S2S-43

FIGURE 4-6. Floating by HOLD Timing (CPU Not Idle Initially)
Note that whenever the CPU Is not Idling (not In Ti), the HOLD request (HOLD low) must be active tHLDa before the falling edge of PHI2 of the clock cycle that
appears two clock cycles before T4 (TX1) and stay low until tHLDh after the rising edge of PHI1 of the clock cycle that precedes T4 (TX2) for the request to be
acknowledged.

PHI1 [

PHI2 [

HOU5[
-t-~~~~­

Hi:DA[
~ t

ADS HLOa tHBE'

iiiE:[!qQ~-- ---------

ODIN [-t------t-------t~:O~~N~~-
AI)O.15 [_ ______ _(~L~~~~~ _______ _

A18-23 (FLOATING)

TLlEE/8S2S-44

FIGURE 4-7. Floating by HOLD Timing (CPU Initially Idle)
Note that during Ti1 the CPU is already idling.

2·295

TI TI TI

PHil [

PHI2 [

HOLD [

HLDA [-I-----+-.1

Os
ADS
HBE [

ODIN -

A16-23 [_
ADO-IS

--------- (HIGH)

(FlOATING)

---------------- -------(flOATING) 1'----
TL/EE/8S2S-80

FIGURE 4-8. Release from HOLD

z en
w
N
o o
...A.
0')

I
...A.
o
.......
Z en
w
N
o o
...A.
0')

I
...A.
U1

II)
(Q
o o
'" C")

UJ
Z
o
(Q
o
o
'" C")
UJ
Z

4.0 Device Specifications (Continued)

CPU STATES T1 TMMU Tf Tf

MMU STATES [

PHI1

T1

PHI2 [

FLT [

ADO·15 [
(CPU)

A16·23 [
(CPU)

ADS [
(CPU)

DDIN [
(CPU)

*HBE [

(FORCING LOW)

TL/EE/8525-46

"Note: In future higher speed versions of the NS32C016, ABE will no longer be affected by FLT. See Figure 8-1 in Appendix B for the required modification to the
interface logic.

FIGURE 4-9. FL T Initiated Cycle Timing

CPU STATES Tf T2 T3 T4

MMU STATES Tmmu

PHil [

PHI2[-4 __ ~
m[(MMU)

Al6-23 [
(CPU) -

ADs [
(CPU)

HBE [~ ___ ~ __ +-________ ~ ________ -+ ______ ___

TL/EE/8525-47

Note that when FL Tis deasserted the CPU restarts driving ODIN before the MMU releases it. This, however, does not cause any conflict, since both CPU and MMU
force ODIN to the same logic level.

FIGURE 4-10. Release from FL T Timing

PHIl [

PHI2 [

ROY [

TL/EE/8525-48

FIGURE 4-11. Ready Sampling (CPU Initially READY)

2-296

4.0 Device Specifications (Continued)

Inn I u
PHil [Sl _____ n _ n'--_
PHI2 [-+-_--'

FIGURE 4-12. Ready Sampling (CPU Initially NOT READY)

I T1 I T4 I

PHI1[~

PHI2 [I

A00-15 [

Si>C[

PHI2 [

A00-15 [

SPe[(CPU)

TL/EE/8525-49

DoiN[
i5DiN[-+--Jo. ___ -+ ____ +_

5T0-3 [-+_5T:_A_TU_5_VA_U_D-I-J "'-.:==+ 5T0-3 [-+_5_T:_AT_U_5_VA_L_ID-t-J ",N_E_XT_5_t_AT't"U_5

AoS[(HIGH)
J

TL/EE/8525-50

iDS [(HIGH)

FIGURE 4-13. Slave Processor Write Timing
TL/EE/8525-51

FIGURE 4-14. Slave Processor Read Timing

11 T4

PHil [

PHI2 [-+-_--'

SPC [
(FROM CPU)

(FROM sJ:E1 [. ---------------- ------

FIGURE 4-15. SPC Timing

After transferring last operand to a Slave Processor, CPU turns
OFF driver and holds SPC high with internal 5 kn pullup.

FIGURE 4-16. Reset Configuration Timing

2-297

TLlEE/8525-81

TL/EE/8525-53

z
en
w
N o
C
en •
c z
en w
N
o
C
en
en

•

~ r---~
ch
o
(.)
C'I
C")
f/)
z
o
ch
o
(.)
C'I

~
Z

4.0 Device Specifications (Continued)

PHI1 [

PHI2 [------+'11
tnOVL(1)

TL/EE/8525-54

FIGURE 4-17. Clock Waveforms

- [-fl--fl,{LrLJ
m[~V-

TL/EE/8525-55

FIGURE 4-18. Relationship of PFS to Clock Cycles

T1

PHI1 [

m[b---..lJ
tPFNS

51'0-3 [CODE 1001 ____________________________ -J ~ ______________ __

TL/EE/8S2S-S6

FIGURE 4-19a. Guaranteed Delay, PFS to Non-Sequential Fetch

I T1 I nl···1 I I I
""LfLSUl,Jl--fLJl-
Aoi[

ST0-3 [CODE 1001

-+----------------~IJ-------~-------------

PFi[
INSPF

TL/EE/8S2S-57

FIGURE 4-19b. Guaranteed Delay, Non-Sequential Fetch to PFS

2-298

4.0 Device Specifications (Continued)

iDS [

iLO[

Ai5S[

I nORTI I T40RTI I 11 T2 T3 T4

FIGURE 4·20a. Relationship of ILO to First Operand Cycle
of an Interlocked Instruction

I 130RTI I T4 OR Ti I T1 T2 13 T4

[O[______________ ~~------------~

PHI1[

A5S[

FIGURE 4-20b. Relationship of ILO to Last Operand Cycle
of an Interlocked Instruction

FIGURE 4-21. Relationship of ILO to Any Clock Cycle

I T30RTI I T4 OR Ti I T1 T2 T3 T4

U/S[""''-L,ji;..L..c:.LL+V 1'-__ +-_________________ ",1

FIGURE 4-22. U/S Relationship to Any Bus Cycle­
Guaranteed Valid Interval

2·299

TL/EE/8525-58

TL/EE/8525-59

TL/EE/8525-60

TL/EE/8525-81

z
(J)
W
N o
Q
tp
Q
Z
(J)
W
N o
Q
en •
U'I

it)
CD
o
o
N
Cf)

en
z
........
o
CD
o
o
N
Cf)

en
z

4.0 Device Specifications (Continued)

T1 I Trnmu T2 Tl

PHil [

PHI2 [

ADs [

TL/EE/8525-62

FIGURE 4-23. Abort Timing, FL T Not Applied

PHil [

PHI2 [

Ds/FLT [-I-----+----+-----i-t----J

RST/ABr [

TL/EE/8525-83

FIGURE 4-24. Abort Timing, FLT Applied

~----------~'~ vee

PHil [__ -+ ___ ~

[

tPWR

RsT/ABr ____________ -\'~..J

TLlEE/8525-64

FIGURE 4-25. Power-On Reset

TL/EE/8525-65

PHI{ JUl-
tRSlSii-

RsT/AiiT[~ fI 'os,.' (

FIGURE 4-26. Non-Power-On Reset

2-300

4.0 Device Specifications (Continued)

PHI1[~
~"NT'

NW[
iNT[~

TlIEE/8S2S-66

FIGURE 4·27. INT Interrupt Signal Detection

Tl/EE/8S2S-67

FIGURE 4·28. NMllnterrupt Signal Timing

FIRST BUS CYCLE NEXT

T1 T2 T3 T4 T1 arTi I

::~iy I ·ltLXPF I +-? PfS[1 '. /
FIGURE 4·29. Relationship Between Last Data Transfer of

an Instruction and PFs Pulse of Next Instruction
NOTE:

In a transfer of a Read-Modify-Write type operand, this is the Read transfer,
displaying RMW Status (Code 1011).

2-301

TlIEE/8S2S-68

z
en
w
N o
o
en
o
z en w
N
o o
en •
en

•

In
'P'" .
CD
'P'"
e
o
N
Cf)
(J)
Z ,
e
'P'" • CD
'P'"
e
o
N
Cf)
(J)
Z

Appendix A: Instruction Formats
NOTATIONS:

i = Integer Type Field

B = 00 (Byte)

W = 01 (Word)

o = 11 (Double Word)

f = Floating Point Type Field

F = 1 (Std. Floating: 32 bits)

L = 0 (Long Floating: 64 bits)

c = Custom Type Field

o = 1 (Double Word)

Q = 0 (Quad Word)

op = Operation Code

Valid encodings shown with each format.

gen, gen 1 , gen 2 = General Addressing Mode Field

See Sec. 2.2 for encodings.

reg = General Purpose Register Number

cond = Condition Code Field

0000 = EQual: Z = 1

0001 = Not Equal: Z = 0

0010 = Carry Set: C = 1

0011 = Carry Clear: C = 0

0100 = Higher: L = 1

0101 = Lower or Same: L = 0

0110 = Greater Than: N = 1

0111 = Less or Equal: N = 0

1000 = Flag Set: F = 1

1001 = Flag Clear: F = 0

1010 = LOwer: L = 0 and Z = 0

1011 = Higher or Same: L = 1 or Z = 1

1100 = Less Than: N = 0 and Z = 0

1101 = Greater or Equal: N = 1 or Z = 1

1110 = (Unconditionally True)

1111 = (Unconditionally False)

short = Short Immediate Value. May contain:

quick: Signed 4·bit value, in MOVQ, ADDQ,

CMPQ, ACB.

cond: Condition Code (above), in Scond.

areg: CPU Dedicated Register, in LPR, SPR.

0000 = US

0001 - 0111 = (Reserved)

1000 = FP

1001 = SP

1010 = SB

1011 = (Reserved)

1100 = (Reserved)

1101 = PSR

1110 = INTBASE

1111 = MOD

2·302

Options: in String Instruc,:...t...:io_n_s ---,~-,-_.....,

I U/W B T

T = Translated

B = Backward

U/W = 00: None

01: While Match

11: Until Match

Configuration bits, in SETCFG:

I C I M I F

mreg: NS32082 Register number, in LMR, SMR.

0000 = BPRO

Bcond

BSR
RET
CXP
RXP
RETT
RETI
SAVE

0001 = BPR1

0010 = (Reserved)

0011 = (Reserved)

0100 = (Reserved)

0101 = (Reserved)

0110 = (Reserved)

0111 = (Reserved)

1000 = (Reserved)

1001 = (Reserved)

1010 = MSR

1011 = BCNT

1100 = PTBO

1101 = PTB1

1110 = (Reserved)

1111 = EIA
7

Format 0

(BR)
7

Format 1
-0000 ENTER
-0001 EXIT
-0010 NOP
-0011 WAIT
-0100 DIA
-0101 FLAG
-0110 SVC

RESTORE -0111 BPT

15 81 7

gen Sh~rt 1 op

Format 2

ADDQ -000 ACB
CMPQ -001 MOVQ
SPR -010 LPR
Scond -011

11 I 1 1

o

o

-1000
-1001
-1010
-1011
-1100
-1101
-1110
-1111

0

I

-100
-101
-110

Appendix A: Instruction Formats (Continued)

CXPD
BICPSR
JUMP
BISPSR

15 SI7 0

I ~e~ I I I ~p 11 I 1 I 1 I 1 I 1 I

Format 3

-0000
-0010
-0100
-0110

ADJSP
JSR
CASE

-1010
-1100
-1110

Trap (UND) on XXX1, 1000

o
II I I I II I I I

gen 1 gen 2
I I i

op

Format 4

ADD -0000 SUB -1000
CMP -0001 ADDR -1001
BIC -0010 AND -1010
ADDC -0100 SUBC -1100
MOV -0101 TBIT -1101
OR -0110 XOR -1110

0

i o 0 0 0 1 1 1 0

Format 5

MOVS -0000 SETCFG -0010
CMPS -0001 SKPS -0011
Trap (UND) on 1XXX, 01XX

0

00111 0

Format 6

ROT -0000 NEG -1000
ASH -0001 NOT -1001
CBIT -0010 Trap (UND) -1010
CBITI -0011 SUBP -1011
Trap (UND) -0100 ABS -1100
LSH -0101 COM -1101
SBIT -0110 IBIT -1110
SBITI -0111 ADDP -1111

2-303

z en
w
N

8 7 0
0
Q
0')

i 1 1 00111 0 •
Q
Z

Format 7 en
w

MOVM -0000 MUL -1000 N
0

CMPM -0001 MEl -1001 Q
INSS -0010 Trap (UND) -1010 0')

•
EXTS -0011 DEI -1011

U1
MOVXBW -0100 QUO -1100
MOVZBW -0101 REM -1101
MOVZiD -0110 MOD -1110
MOVXiD -0111 DIV -1111

TL/EE/8525-69

FormatS

EXT -000 INDEX -100
CVTP -001 FFS -101
INS -010
CHECK -011
MOVSU -110, reg=001
MOVUS -110, reg=011

8 7 0

i 001 1 1 1 1 0

Format 9
MOVif -000 ROUND -100
LFSR -001 TRUNC -101
MOVLF -010 SFSR -110
MOVFL -011 FLOOR -111

fII
7 0 ---
10 1 01 11 1 1 1

TL/EE/8525-70

Format 10

Trap (UND) Always

II) ,..
ch ,..
o
o
N
C"')
(J)
Z
"" o ,..
• CD ,..

o o
N
C"')
(J)
Z

Appendix A: Instruction Formats (Continued)

AOOf
MOVf
CMPf
Trap (SLAVE)
SUBf
NEGf
Trap (UNO)
Trap (UNO)

Trap (UNO) Always

Trap (UNO) Always

ROVAL
WRVAL

o

1 1 1 0

Format 11

-0000 OIVf -1000
-0001 Trap (SLAVE) -1001
-0010 Trap (UNO) -1010
-0011 Trap (UNO) -1011
-0100 MULf -1100
-0101 ABSf -1101
-0110 Trap (UNO) -1110
-0111 Trap (UNO) -1111

7 0 ... II I I II I I I
... .1 1 1 1 1 1 1 o.

TL/EE/8525-71

Format 12

7 0

.00

1

I I I I I I I I
.. 1 0 0 1 1 1 1 O.

TLlEE/8525-72

Format 13

8 7 0

i 000 1

Format 14

-0000
-0001

LMR
SMR

-0010
-0011

Trap (UNO) on 01 XX, 1 XXX

2·304

Operation Word 10 Byte

Format 15
(Custom Slave)

nnn Operation Word Format

000

Format 15.0
CATSTO -0000 LCR -0010
CATST1 -0001 SCR -0011

Trap (UNO) on all others

001

Format 15.1

CCV3 -000 CCV2 -100
LCSR -001 CCV1 -101
CCV5 -010 SCSR -110
CCV4 -011 CCVO -111

101

Format 15.5

CCALO -0000 CCAL3 -1000
CMOVO -0001 CMOV3 -1001
CCMPO -0010 Trap (UNO) -1010
CCMP1 -0011 Trap (UNO) -1011
CCAL1 -0100 CCAL2 -1100
CMOV2 -0101 CMOV1 -1101
Trap (UNO) -0110 Trap (UNO) -1110
Trap (UNO) -0111 Trap (UNO) -1111
If nnn = 010,011,100,110,111
then Trap (UNO) Always

Appendix A: Instruction Formats (Continued)

7 0

---I I I I I I I I 1
___ 0 1 0 1 1 1 1 0

TLlEE/8525-73

Format 16

Trap (UNO) Always

7 0 ---I I I I I I I I 1
___ 1 1 0 1 1 '1 1 0

TLlEE/8525-75

Format 17

Trap (UNO) Always

7 0

---I I I " I I I I
___ 1 0 0 0 1 1 1 ~

TL/EE/8525-76

Format 18

Trap (UNO) Always

2-305

Format 19

Trap (UND) Always

Implied Immediate Encodlngs:
7

7 0

---I I I I I I I I 1 ___ x x x 0 0 1 1 0

TL/EE/8525-74

o

r1

Register Mask, appended to SAVE, ENTER

7 o

ro r1 r2 r3 r4 r5 r6

Register Mask, appended to RESTORE, EXIT

7 o

: offset: le~gth-1 :
Offset/Length Modifier appended to INSS, EXTS

z en
w
N
o
Q
~

en .
~

Q
.......
Z en
w
N
o
Q
~

en .
~

U1

fII

J\)

l:J
o m

XCTAL2

-E-
f" XCTAl1

RESET

, ~
ROY PHI1 PHI2 ILO HBE HOLD

HLDA

DSIFLT

INTS{ =: INT PFS

NMI NS32C016 UlS
CPU

ADS

DoiN
STO-ST3

RST/ABT

ADDR/DATA Ar,SPe

(24)1 ~
+5

!o ... ":?
y

(24)

ADDR/DATA (16),
MUL TIPlEXED
BUS

DATA
SPC ~

STO-sn
NS3Z081

FPU RST

ClK

NS32C016-10/NS32C016-15

PER

CWAIT

NS32C201 WAiTe

~} TCU WAIT4 :-. WAIT REOUESTS
WArn ~ (ADDR. DECODED OR STRAPPED)

RSTI WAin

PHI1 RD
PHI2 WR

ADS

Rs'fO CTTl ODIN ROY DBE

rI::!

.6 "''''''' +5 1 ,,__ 10 kn

r , !
HOLD ROY RSTI

PHI1 I"""C" PHI2 ADDR.

HLDAI HLDAO VALID

FLT PAV STROBE
PFS

UlS (24) ADDRESS

NS32082 LATCHI
ADS MMU BUFFER
ODiN
STO-ST3

-f--- RST/ABT

- f----. SPC ADDR/DATA

H· '--
(24)

(24) I

I I
(16,-

DATA EN DlR

~
MULTIPLEXED

1 I BUS ----. RST MEMORYI (16)

1----. ClK PERIPHERALS
DATA BUFFERS

FIGURE 8-1. System Connection Diagram

PERI PH. CYCLE

READY

AD
~

---!::
WR

IlO

--:!:
HBE

.....

HOLD

HlDAO
.....

ADDRESS
BUS

(24)

ODIN .

_ DATA BUS

(16)

STATUS

-.

»
"tJ
"a
CD
~
Il.
>C.

~
~ ...
CD
D)
n S·

CC
en
c

CC
CC
CD
til ...
O·
~
til

TUEE/8525-n

Section 3
Slave Processors

Section 3 Contents
NS32382-10, NS32382-15 Memory Management Units (MMU) 3-3
NS32082-10 Memory Management Unit(MMU) .. 3-42
NS32381-15, NS32381-20, NS32381-25, NS32381-30 Floating-Point Units................ 3-81
NS32081-10, NS32081-15 Floating-Point Units..... 3-110
NS32580-20, NS32580-25, NS32580-30 Floating-Point Controllers 3-127

3-2

~National
a Semiconductor
NS32382-10/NS32382-15
Memory Management Units

General Description
The NS32382 Memory Management Unit (MMU) provides
hardware support for demand-paged virtual memory imple­
mentations. The NS32382 functions as a slave processor in
Series 32000 microprocessor-based systems. Its specific
capabilities include fast dynamic translation, protection, and
detailed status to assist an operating system in efficiently
managing up to 4 Gbytes of physical memory. Support for
multiple address spaces, virtual machines, and program de­
bugging is provided.

High-speed address translation is performed on-chip
through a 32-entry fully associative translation look-aside
buffer (TLB), which maintains itself from tables in memory
with no software intervention. Protection violations and
page faults (references to non-resident pages) are automat­
ically detected by the MMU, which invokes the instruction
abort feature of the CPU.

Additional features for program debugging include three
breakpoint registers which provide the programmer with
powerful stand-alone debugging capability.

PRELIMINARY

Features
• Compatible with the NS32332 CPU
• Totally automatic mapping of 4 Gbyte virtual address

space using memory based tables
• On-chip translation look-aside buffer allows 97% of

translations to occur in one clock for most applications
• Full hardware support for virtual memory and virtual

machines
• Implements "referenced" bits for simple, efficient work­

ing set management
• Protection mechanisms implemented via access level

checking and dual space mapping

• Program debugging support
• Dedicated 32-bit physical address bus
• Non-cacheable page support
• 125-pin PGA (Pin grid array) package

conceptual Address Translation Model

---....., VIRTUAL ADDRESS .. ----. PHYSICAL ADDRESS ... ---.....,

NS32332
CPU

ADDRESS STROBE

flOAT
""-

ABORT

--,. ..
NS32382

MMU

3-3

ADDRESS STROBE PHYSICAL
MEMORY

TL/EE/9142-1

z en w
N
W
(X)
N .
-'" o z en w
N
W
(X)
N • -'"
U'I

•

in
N
co
Cf)
N
Cf)
U)
Z
o
• N

CO
Cf)
N
Cf)
U)
Z

Table Of Contents

1.0 PRODUCT INTRODUCTION
1.1 Programming Considerations

2.0 FUNCTIONAL DESCRIPTION
2.1 Power and Grounding

2.2 Clocking

2.3 Resetting

2.4 Bus Operation

2.4.1 Interconnections

2.4.2 CPU.lnitiating Cycles

2.4.3 MMU·lnitiated Cycles

2.4.4 Cycle Extension

2.4.5 Bus Retry

2.4.6 Bus Error

2.4.7 Interlocked Bus Transfers

2.5 Slave Processor Interface

2.5.1 Slave Processor Bus Cycles

2.5.2 Instruction Protocols

2.6 Bus Access Control

2.7 Breakpointlng

3.0 ARCHITECTURAL DESCRIPTION
3.1 Programming Model

3.2 Memory Management Functions

3.2.1 Page Table Structure

3.2.2 Virtual Address Spaces

3.2.3 Page Table Entry Formats

3.2.4 Physical Address Generation

3.3 Page Table Base Registers (PTBO, PTBI)

3.4 Invalidate Virtual Address Registers (IVARn)

3.0 ARCHITECTURAL DESCRIPTION (Continued)

3.5 Translation Exception Address Register (TEAR)

3.6 Bus Error Address Register (BEAR)

3.7 Breakpoint Address Register (BAR)

3.S Breakpoint Mask Register (BMR)

3.9 Breakpoint Data Register (BDR)

3.10 Memory Management Control Register (MCR)

3.11 Memory Management Status Register (MSR)

3.12 Translation Lookaside Buffer (TLB)

3.13 Address Translation Algorithm

3.14 Instruction Set

4.0 DEVICE SPECIFICATIONS
4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input·Output Signals

4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics

4.4 Switching Characteristics

4.4.1 Definitions

4.4.2 Timing Tables

4.4.2.1 Output Signals; Internal

Propagation Delays

4.4.2.2 Input Signal ReqUirements

4.4.2.3 Clocking Requirements

Appendix A: Interfacing Suggestions

List of Illustrations
The Virtual Memory Model... 1·1

NS32382 Address Translation Model ... 1·2

Recommended Supply Connections.........•...............................•......................... 2·1

Clock Timing Relationships • • . . . • . • .. 2·2

Power·On Reset Requirements•..............•........•.....•.. 2·3

General Reset Timing. • • .. 2·4

Recommended Reset Connections, Memory Managed System. .. 2·5

CPU Read Cycle; Translation In TLB . • .. 2·6

Abort Resulting from Protection Violation or a Breakpoint; Translation In TLB. • .. 2·7

Page Table Lookup. • • .. 2·8

Abort Resulting After a Page Table Lookup ..•....•.......••... 2·9

Slave Access Timing; CPU Reading from MMU...................................... 2·10

Slave Access Timing; CPU Writing to MMU ..•.•...........•....................•...... .. 2·11

FL T Deassertation During RDVAL/WRVAL Execution•....................•..•........................... , 2·12

Two·Level Page Tables... 3·1

Page Table Entries. 3·2

Virtual to PhYSical Address Translation .. 3·3

Page Table Base Registers (PTBO, PTB1) ... 3·4

Invalidate Virtual Address Registers (IVARO, IVAR1)•... 3·5

Breakpoint Registers (BAR, BMR, BDR) .. 3·6

3·4

List of Illustrations (Continued)

Memory Management Control Register (MCR) ... 3·7

Memory Managment Status Register (MSR) ... 3·8

TLB Model .. 3·9

Slave Instruction Format 3·10

Pin Grid Array Package ... , 4·1

Timing Specification Standard (Signal Valid After Clock Edge) .. 4·2

Timing Specification Standard (Signal Valid Before Clock Edge) .. 4·3

CPU Write Cycle Timing .. 4·4

MMU Read Cycle Timing After a TLB Miss .. , 4·5

MMU Write Cycle Timing After a TLB Miss. .. 4·6

FL T Deassertation Timing .. , 4·7

Abort Timing (FL T = 1) ... 4·8

Abort Timing (FL T = 0) ... 4·9
Bus Retry Timing. .. 4·10

Bus Error Timing .. 4·11

Slave Access Timing; CPU Reading from MMU .. 4·12
Slave Access Timing; CPU Writing to MMU ... 4·13

SDONETiming ... 4·14

HOLD Timing (FL T = 0) .. 4·15

HOLD Timing (FL T = 1) ... 4·16

Clock Waveforms ... 4·17

NON Power·On Reset Timing , 4·18

Power·On Reset.. 4·19

System Connection Diagram. .. A·1

Tables
STO-ST3 Encodings.. 2·1

LMR Instruction Protocol .. 2·2

SMR Instruction Protocol.. 2·3

RDVALlWRVAL Instruction Protocol.. 2·4

Access Protection Levels ... , 3·1

"Short" Field Encodings .. 3·2

3·5

~ r---~ ... • N
co
C")
N
C")

til
Z o ...
N
CO
C")
N
C")

til
Z

1.0 Product Introduction
The NS32382 MMU provides hardware support for three
basic features of the Series 32000; dynamic address trans­
lation, access level checking and software debugging. Dy­
namic Address Translation is required to implement de­
mand-paged virtual memory. Access level checking is per­
formed during address translation, ensuring that unautho­
rized accesses do not occur. Because the MMU resides on
the local bus and is in an ideal location to monitor CPU
activity, debugging functions are also included.

The MMU is intended for use in implementing demand­
paged virtual memory. The concept of demand-paged virtu­
al memory is illustrated in Figure 1-1. At any point in time, a
program sees a uniform addressing space of up to 4 giga­
bytes (the "virtual" space), regardless of the actual size of
the memory physically present in the system (the "physical"
space). The full virtual space is recorded as an image on a
mass storage device. Portions of the virtual space needed
by a running program are copied into physical memory when
needed.

To make the virtual information directly available to a run­
ning program, a mapping must be established between the
virtual addresses asserted by the CPU and the physical ad­
dresses of the data being referenced.

To perform this mapping, the MMU divides the virtual mem­
ory space into 4 Kbyte blocks called "pages". It interprets
the 32-bit address from the CPU as a 20-bit "page number"
followed by a 12-bit offset, which indicates the position of a
byte within the selected page. Similarly, the MMU divides
the physical memory into 4 Kbyte frames, each of which can
hold a virtual page.

The translation process is therefore modeled as accepting a
virtual page number from the CPU and substituting the cor­
responding physical page frame number for it, as shown in

HIGH

VIRTUAL
MEMORY

MEMORY -----......
ADDRESS

Figure 1-2. The offset is not changed. The translated page
frame number is 20 bits long. Physical addresses issued by
the MMU are 32 bits wide.

TL/EE/9142-3

FIGURE 1·2. NS32382 Address Translation Model

Generally, in virtual memory systems the available physical
memory space is smaller than the maximum virtual memory
space. Therefore, not all virtual pages are simultaneously
resident. Nonresident pages are not directly addressable by
the CPU. Whenever the CPU issues a virtual address for a
nonresident or nonexistent page, a "page fault" will result.
The MMU signals this condition by invoking the Abort fea­
ture of the CPU. The CPU then halts the memory cycle,
restores its internal state to the point prior to the instruction
being executed, and enters the operating system through
the abort trap vector.

PHYSICAL
MEMORY

HIGH _____ MEMORY

ADDRESS

MASS STORAGE
TLlEE/9142-2

FIGURE 1·1. The Virtual Memory Model

3-6

1.0 Product Introduction (Continued)

The operating system reads from the MMU the virtual ad­
dress which caused the abort. It selects a page frame which
is either vacant or not recently used and, if necessary,
writes this frame back to mass storage. The required virtual
page is then copied into the selected page frame.

The MMU is informed of this change by updating the page
tables (Section 3.2), and the operating system returns con­
trol to the aborted program using the RETT instruction.
Since the return address supplied by the abort trap is the
address of the aborted instruction, execution resumes by
retrying the instruction.

This sequence is called paging. Since a page fault encoun­
tered in normal execution serves as a demand for a given
page, the whole scheme is called demand-paged virtual
memory.

The MMU also provides debugging support. It may be pro­
grammed to monitor the CPU bus for a single or a range of
virtual addresses in real time.

1.1 PROGRAMMING CONSIDERATIONS

When a CPU instruction is aborted as a result of a page
fault, some memory resident data might have been already
modified by the instruction before the occurrence of the
abort.

This could compromise the restartability of the instruction
when the CPU returns from the abort routine.

To guarantee correct results following the re-execution of
the aborted instruction, the following actions should not be
attempted:

a) No instruction should try to overlay part of a source oper­
and with part of the result. It is, however, permissible to

rewrite the result into the source operand exactly, if page
faults are being generated only by invalid pages and not
by write protection violations (for example, the instruction
"ABSW X, X", which replaces X with its absolute value).
Also, never write to any memory location which is neces­
sary for calculating the effective address of either oper­
and (i.e. the pointer in "Memory Relative" addressing
mode; the Link Table pointer or Link Table Entry in "Ex­
ternal" addressing mode).

b) No instruction should perform a conversion in place from
one data type to another larger data type (Example:
MOVWF X, X which replaces the 16·bit integer value in
memory location X with its 32-bit floating-point value).
The addressing mode combination "TOS, TOS" is an ex­
ception, and is allowed. This is because the least-signifi­
cant part of the result is written to the possibly invalid
page before the source operand is affected. Also, integer
conversions to larger integers always work correctly in
place, because the low-order portion of the result always
matches the source value.

c) When performing the MOVM instruction, the entire
source and destination blocks must be considered "oper­
ands" as above, and they must not overlap.

2.0 Functional Description
2.1 POWER AND GROUNDING

The NS32382 requires a single 5V power supply, applied on
eight (VCe> pins. These pins should be connected together
by a power (Vce> plane on the printed circuit board. See
Figure 2-1.

The grounding connections are made on eighteen (GND)
pins.

~ ______ ~~-'-4~~'-4-~-. ______ ~~-.--.ornERGROUND
CONNECTION

TL/EE/9142-4

C1 = 1 fLF. Tantalum.

C2 = 1000 pF. low inductance. This should be either a disc or monolithic ceramic capacitor.

FIGURE 2-1. Recommended Supply Connections

3-7

z
tJ)
W
N
W
Q)
N •
o
Z
tJ)
W
N
W
Q)

~
CI'I

•

U) r---~
"P-

I
N
CO
Cf)
N
Cf)
U)
Z

" o
"P-

I
N
CO
Cf)
N
Cf)
U)
Z

2.0 Functional Description (Continued)

These pins should be connected together by a ground
(GNO) plane on the printed circuit board.

In addition to Vee and Ground, the NS32382 MMU uses an
internally-generated negative voltage (BBG), output of the
on-Chip substrate voltage generator. It is necessary to filter
this voltage externally by attaching a pair of capacitors (Fig­
ure 2-1) from the BBG pin to ground.

2.2 CLOCKING

The NS32382 inputs clocking signals from the NS32301
Timing Control Unit (TCU), which presents two non-overlap­
ping phases of a Single clock frequency. These phases are
called PHI1 (pin B8) and PHI2 (pin B9). Their relationship to
each other is shown in Figure 2-2.

PHil

PHI2

VCC

TLlEE/9142-5

FIGURE 2-2. Clock Timing Relationships

PHil ----t----! JDL
I z: 64 CLOCK t--- CYCLES

f----- Z:SOI'MC ----

TL/EE/9l42-6

FIGURE 2-3. Power-On Reset Requirements

Vee

r---------,

Each rising edge of PHI1 defines a transition in the timing
state (liT-State") of the MMU. One T-State represents one
hardware cycle within the MMU, and/or one step of an ex­
ternal bus transfer. See Section 4 for complete specifica­
tions of PHI1 and PHI2.

As the TCU presents signals with very fast transitions, it is
recommended that the conductors carrying PHI1 and PHI2
be kept as short as pOSSible, and that they not be connect­
ed to any devices other than the CPU and MMU. A TTL
Clock signal (CTTL) is provided by the TCU for all other
clocking.

2.3 RESETTING

The RSTI input pin is used to reset the NS32382. The MMU
responds to RSTI by terminating processing, resetting its
internal logic and clearing the MCR and MSR registers.

Only the MCR and MSR registers are changed on reset. No
other program accessible registers are affected.

The RST / ABT signal is activated by the MMU on reset. This
signal should be used to reset the CPU.

On application of power, RSTI must be held low for at least
50 ,..,S after Vee is stable. This is to ensure that all on-Chip
voltages are completely stable before operation. Whenever
a Reset is applied, it must also remain active for not less
than 64 clock cycles. See Figures 2-3 and 2-4.

The NS32C201 Timing Control Unit (TCU) provides circuitry
to meet the Reset requirements of the NS32382 MMU. Fig­
ure 2-5 shows the recommended connections.

PHil

I---Z64CLOCK-\

RsTi ----~~..-.. C~".. r

NS32C201
TCU

TLlEE/9142-7

FIGURE 2-4. General Reset Timing

NS32382
MMU

NS32332
CPU

I I
I limf 1>-I-+-.....;.-.... ~-..... - ... 1 WI RSTO
I I '-_________ .J

EXTERNAL RESET
(OPTIONAL)

RESET SWITCH
(OPTIONAL)

FIGURE 2-5. Recommended Reset Connections, Memory-Managed System

3-8

TL/EE/9142-8

2.0 Functional Description (Continued)

2.4 BUS OPERATION

2.4.1 Interconnections

The MMU runs synchronously with the CPU, sharing with it a
single multiplexed address/data bus. The interconnections
used by the MMU for bus control, when used in conjunction
with the NS32332, are shown in Figure A·1 (Appendix A).

The CPU issues 32·bit virtual addresses on the bus, and
status information on other pins, pulsing the signal ADS low.
These are monitored by the MMU. The MMU issues 32-bit
physical addresses on the Physical Address bus, pulsing the
PAY line low. The PAY pulse triggers the address latches
and signals the NS32C201 TCU to begin a bus cycle. The
TCU in turn generates the necessary bus control signals
and synchronizes the insertion of WAIT states, by providing
the signal ROY to the MMU and CPU. Note that it is the
MMU rather than the CPU that actually triggers bus activity
in the system.

The functions of other interface signals used by the MMU to
control bus activity are described below.

The STO-ST3 pins indicate the type of cycle being initiated
by the CPU. STO is the least-significant bit of the code. Ta­
ble 2-1 shows the interpretations of the status codes pre­
sented on these lines.

Status codes that are relevant to the MMU's function during
a memory reference are:

1000, 1001 Instruction Fetch status, used by the debug­
ging features to distinguish between data and
Instruction references.

1010 Data Transfer. A data value is to be trans­
ferred.

1011 Read RMW Operand. Although this Is always
a Read cycle, the MMU treats it as a Write
cycle for purposes of protection and break­
pointing.

1100 Read for Effective Address. Data used for ad-
dress calculation is being transferred.

The MMU ignores all other status codes. The status
codes 1101, 1110 and 1111 are also recognized by the
MMU in conjunction with pulses on the ~ line while It is
executing Slave Processor Instructions, but these do not
occur In a context relevant to address translation.

TABLE 2-1. STO-ST3 Encodlngs
(STO Is the Least Significant)

0000 - Idle: CPU Inactive on Bus
0001 - Idle: WAIT Instruction
0010- (Reserved)
0011 - Idle: Waiting for Slave
0100 -Interrupt Acknowledge, Master
0101 -Interrupt Acknowledge, Cascaded
0110- End of Interrupt, Master
0111 - End of Interrupt, Cascaded
1000 - Sequential Instruction Fetch
1001 - Non-Sequential Instruction Fetch
1010- Data Transfer
1011 - Read Read-Modify-Write Operand
1100 - Read for Effective Address
1101 - Transfer Slave Operand
1110 - Read Slave Status Word
1111 - Broadcast Slave 10 and Operation Word

3-9

The ODIN line indicates the direction of the transfer: 0 =
Read, 1 = Write.

ODIN is monitored by the MMU during CPU cycles to detect
write operations, and is driven by the MMU during MMU-ini­
tiated bus cycles.

The U/S pin indicates the privilege level at which the CPU is
making the access: 0 = Supervisor Mode, 1 = User Mode.
It is used by the MMU to select the address space for trans­
lation and to perform protection level checking. Normally,
the U/S pin is a direct reflection of the U bit in the CPU's
Processor Status Register (PSR). The MOVUS and MOVSU
CPU instructions, however, toggle this pin on successive
operand accesses in order to move data between virtual
spaces.

The MMU uses the FL T line to take control of the bus from
the CPU. It does so as necessary for updating its internal
TLB from the Page Tables in memory, and for maintaining
the contents of the status bits (R and M) in the Page Table
Entries.

The MMU also aborts invalid accesses attempted by the
CPU. This is done by pulsing the ASf /ABT pin low for one
clock period. (A pulse longer than one clock period Is inter­
preted by the CPU as a Reset command.)

2.4.2 CPU·lnltlated Bus Cycles

A CPU-Initiated bus cycle Is performed in a minimum of four
clock cycles: T1, T2, T3 and T4, as shown in Figure 2-6.

During period T1, the CPU places the virtual address to be
translated on the bus, and the MMU latches it internally and
begins translation. The MMU also sa~ples the ODIN pin,
the status lines STO-ST3, and the U/S pin in the previous
T 4 cycle to determine how the CPU intends to use the bus.

During period T2 the CPU removes the virtual address from
the bus and the MMU takes one of three actions:

1) If the translation for the virtual address is resident in the
MMU's TLB, and the access being attempted by the CPU
does not violate the protection level of the page being
referenced, the MMU presents the translated address on
PAO-PA31 and generates a P'i& pulse to trigger a bus
cycle In the rest of the system. See Figure 2-6.

2) If the translation for the virtual address is resident In the
MMU's TLB, but the access being attempted by the CPU
Is not allowed due to the protection level of the page
being referenced, the MMU generates a pulse on the
Frni /ABT pin to abort the CPU's access. No PA\J pulse
Is generated. See Figure 2-7.

3) If the translation for the virtual address Is not resident In
the TLB, or If the CPU Is writing to a page whose M bit Is
not yet set, the MMU takes control of the bus asserting
the m signal as shown In Figure 2-8. This causes the
CPU to float its bus and wait. The MMU then Initiates a
sequence of bus cycles as described in Section 2.4.3.

From state T2 through T 4 data is transferred on the bus
between the CPU and memory, and the TCU provides the
strobes for the transfer.

Whenever the MMU generates an Abort pulse on the
RST / ABT pin, the CPU enters state T3 and then Ti (idle),
ending the bus cycle. Since no PAY pulse is issued by the
MMU, the rest of the system remains unaware that an ac­
cess has been attempted.

z en
w
N
W
CD
N

I
o
z en
w
N
W
CD
N

I
c.n

an
('II
co
C")
('II
C")
U)
z o
('II
CO
C")
('II
C")
U)
z

2.0 Functional Description (Continued)

2.4.3 MMU·lnltlated Cycles

Bus cycles initiated by the MMU are always nested within
CPU·initiated bus cycles; that is, they appear after the MMU
has accepted a virtual address from the CPU and has set
the FL T line active. The MMU will initiate memory cycles in
the following cases:

1) There is no translation in the MMU's TLB for the virtual
address issued by the CPU, meaning that the MMU must
reference the Page Tables in memory to obtain the trans·
lation.

2) There is a translation for that virtual address in the TLB,
but the page is being written for the first time (the M bit in
its Level·2 Page Table Entry is 0). The MMU treats this
case as if there were no translation in the TLB, and per·
forms a Page Table lookup in order to set the M bit in the
Level·2 Page Table Entry as well as in the TLB.

Having made the necessary memory references, the MMU
either aborts the CPU access or it provides the translated
address and allows the CPU's access to continue to T3.

T4 DR Ti T1 T2

PHil [

PHI2 [

ADD·31 [

PAD·ll [

PA12·3l [

m[
PAY [

oorn[

m[
UtS [

STO·3 [

Figure 2·8 shows the sequence of events in a Page Table
lookup. After asserting FL T, the MMU waits for one addition·
al clock cycle, then reads the Level·1 Page Table Entry and
the Level·2 Page Table Entry in two consecutive memory
Read cycles. There are no idle clock cycles between MMU·
initiated bus cycles unless a bus request is made on the
HOLD line (Section 2.6).

During the Page Table lookup the MMU driv~s the ODIN
signal. The status lines STO-ST3 and the U/S pin are n.ot
released by the CPU, and retain their original settings while
the MMU uses the bus. The Byte Enable signals from the
CPU, BEO-BE3, should be handled externally for correct
memory referencing.

In the clock cycle immediately after T4 of the last lookup
cycle, the MMU issues the translated address and pulses
MADS. In the subsequent cycle it removes FL T and pulses
PAV to continue the CPU's access.

T3 T4 T1 DR TI

(HIGH)

TL/EE/9142-9

FIGURE 2·6. CPU Read Cycle; Translation In TLB (TLB Hit)

3·10

2.0 Functional Description (Continued)

I T1 I TZ T3 T4 TI

PHI1 [

PHIZ [

ADD-31 [

(HIGH)

HDLD [

TL/EE/9142-10

Note 1: The CPU drives the bus if a write cycle is aborted.

FIGURE 2-7. Abort Resulting from Protection Violation or a Breakpoint; Translation in TLB

CPIJ STATES

MMU STATES

PHI1 [

PHI2 [

ADBUS [

PIIBUS [

m[
m1[
PlV[

m[
mrnI

e[
VIII

ROY

Jm[J

CPIJ ACCESS

TI TI

T2 T4 T2

PTE.1

T3 T4 T2

PTE.2

T3

TI

T4

Note 1: If the R bit on the Level-1 PTE must be set, a write cycle Is Inserted here.

Note 2: If either the R or the M bit on the Level-2 PTE must be set, a write cycle Is Inserted here.

FIGURE 2-8. Page Table Lookup

3-11

CPIJ ACCESS

TI T3

T2 T3

T4

T4

TL/EE/9142-11

z en w
N
W
co
N

I
~

o
z en w
N
W
co
N
I
~

U1

IJ)
"t-• N co
C")
N
C")

en
z
o
"t-

N
CO
C")
N
C")

en z

2.0 Functional Description (Continued)

If the V bit (Bit 0) in any of the Page Table Entries is zero, or
the protection level field PL (bits 1 and 2) indicates that the
CPU's attempted access is illegal, the MMU does not gener­
ate any further memory cycles, but instead issues an Abort
pulse during the clock cycle after T 4 and removes the FL T
signal.

If the Rand/or M bit (bit 7 or 8) must be updated, the MMU
does this immediately in a single Write cycle. All bits except
those updated are rewritten with their original values.

At most, the MMU writes two double words to memory dur­
ing a translation: the first to the Level-1 table to update the
R bit, and the second to the Level-2 table to update the R
and/or M bits.

2.4.4 Cycle Extension

To allow sufficient strobe widths and access time require­
ments for any speed of memory or peripheral device, the
NS32382 provides for extension of a bus cycle. Any type of

READ PTE

MMU STATES T1 T2

PHI1 [

PHI2 [

PAD-31 [

ADD-31 [

ws[
PAY [

m

15[

iiSf/ABT [

RDY [

MILO [

T3

bus cycle, CPU-initiated or MMU-initiated, can be extended,
except Slave Processor cycles, which are not memory or
peripheral references.

In Figures 2-6 and 2-8, note that during T3 all bus control
signals are flat. Therefore, a bus cycle can be cleanly ex­
tended by causing the T3 state to be repeated. This is the
purpose of the ROY (Ready) pin.

In the middle of T3, on the falling edge of clock phase PHI1,
the ROY line is sampled by the CPU and/or the MMU. If
ROY is high, the next state after T3 will be T4, ending the
bus cycle. If it is low, the next state after T3 will be another
T3 and the ROY line will be sampled again. ROY is sampled
in each following clock period, with insertion of additional T3
states, until it is sampled high. Each additional T3 state in­
serted is called a "WAIT state".

The ROY pin is driven by the NS32C201 Timing Control
Unit, which applies WAIT states to the CPU and MMU as
requested on its own WAIT request input pins.

T4 T1 TI

TL/EE/9142-12

FIGURE 2·9. Abort Resulting after a Page Table Lookup

3-12

2.0 Functional Description (Continued)

2.4.5 Bus Retry

The Bus Retry input signal (BRD provides a system with the
capability of repeating a bus cycle upon the occurrence of a
"soft" or correctable error. The system first determines that
a correctable error has occurred and then activates the BRT
input. The MMU then samples this input on the falling edge
of PHI1 in both T3 and T4 of a bus cycle. A valid bus retry
will be issued as a result of a low being sampled in both T3
and T4.

If the MMU gets a Bus Retry when it is controlling the bus, it
will re-run the bus cycle until BRT is deactivated.

Any Pending Hold request will not be acknowledged by the
MMU if a bus retry is detected and during Hold Acknowl­
edge, the MMU will not recognize the Bus Retry signal.

2.4.6 Bus Error

The Bus Error input signal BER will be activated (low) when
a "hard" or uncorrectable error occurs within the system
(e.g. bus timeout, double ECC error). BER will be sampled
on the falling edge of PHI1 in T4. If the MMU detects Bus
Error while it is controlling the bus, it will store the virtual
address which caused the error in the BEAR (Bus Error Ad­
dress Register), and set the ME bit in the MSR to indicate
MMU ERROR. An abort signal ABT will be generated and
further memory accesses by the MMU will be inhibited. The
32382 then returns bus control to the CPU by releasing the
FL T signal, (FL T = 1). Any pending Hold request will not be
acknowledged by the MMU if a bus error is detected.

If the Bus Error signal is received when the CPU is control­
ling the bus, the MMU will store the virtual address in BEAR,
and set the CE bit in the MSR to indicate CPU ERROR.

During the Hold Acknowledge, the MMU will ignore the BER
signal.

2.4.7 Interlocked Bus Transfers

Both the 32332 CPU and the 32382 MMU are capable of
executing interlocked cycles to access a stream of data
from memory without intervention from other devices.

Before executing an interlocked access, the 32332 CPU
performs a dummy read with Read-Modify-Write status
(1011). The MMU handles the dummy read as if it were a
real RMW access. The TLB entries will be searched and
page table look-up will be performed if a miss occurs. The
access level is checked and the CPU will be aborted if write
privilege is not currently assigned. The Reference (R) and
the Modify (M) bits in the first and second level PTEs, as
well as those in the Translation look-aside Buffer, will be
updated. By executing the dummy read, the CPU is assured
of no MMU intervention when the actual interlocked access
is performed.

The 32382 MMU executes interlocked Read-Modify-Write
memory cycles to access Page Table Entries (PTEs) and
update the Reference (R) and Modify (M) bit in the PTEs
when necessary. If the Rand/or M bit(s) do not require
updating, the write portion of the RMW cycle will not be
executed. The memory cycles to access PTEs during exe­
cution of RDVAL and WRVAL instructions are not inter­
locked since Rand M bits are not updated.

During interlocked access cycles, the MILO signal from the
MMU will be asserted. MILO has the same timing as ILO

3-13

from the CPU. MILO is asserted in the clock cycle immedi­
ately before the Read-Modify-Write access and de-activated
in the clock cycle following T 4 of the write cycle.

The write portion of the Read-Modify-Write access will not
be executed if anyone of the following conditions occurs:

(1) A bus error has occurred in the read portion of the inter-
locked access.

(2) The Rand/or M bit(s) in the PTE(s) do not require up-
dating.

(3) A protection violation has occurred.

(4) An invalid PTE is detected.

If a bus retry is encountered in an interlocked access, MILO
will continue to be asserted, and the access will be retried.

2.5 SLAVE PROCESSOR INTERFACE

The CPU and MMU execute four instructions cooperatively.
These are LMR, SMR, RDVAL and WRVAL, as described in
Section 2.5.2. The MMU takes the role of a Slave Processor
in executing these instructions, accepting them as they are
issued to it by the CPU. The CPU calculates all effective
addresses and performs all operand transfers to and from
memory and the MMU. The MMU does not take control of
the bus except as necessary in normal operation; i.e., to
translate and validate memory addresses as they are pre­
sented by the CPU.

The sequence of transfers ("protocol") followed by the CPU
and MMU involves a special type of bus cycle performed by
the CPU. This "Slave Processor" bus cycle does not involve
the issuing of an address, but rather performs a fast data
transfer whose purpose is pre-determined by the form of the
instruction under execution and by status codes asserted by
the CPU.

2.5.1 Slave Processor Bus Cycles

The interconnections between the CPU and MMU for Slave
Processor communication are shown in Figure A-1 (Appen­
dix A). The SPC signal is pulsed by the CPU as a low-active
data strobe for Slave Processor transfers. Since SPC is nor­
mally in a high-impedance state, it must be pulled high with
a 10 kn resistor, as shown. The MMU also monitors the
status lines STO-ST3 to follow the protocol for the instruc­
tion being executed.

Data is transferred between the CPU and the MMU with
Slave Processor bus cycles, illustrated in Figures 2-10 and
2-11. Each bus cycle transfers one double-word (32 bits) to
or from the MMU.

Slave Processor bus cycles are performed by the CPU in
two clock periods, which are labeled T1 and T 4. During T1,
the CPU activates SPC and, if it is writing to the MMU, it
presents data on the bus. During T 4, the CPU deactivates
SPC and, if it is reading from the MMU, it latches data from
the bus. The CPU guarantees that data written to the MMU
is held through T4 to provide for the MMU's hold time re­
quirements. The CPU also guarantees that the status code
on STO-ST3 becomes valid, at the latest, during the clock
period preceding T1. The status code changes during T 4 to
anticipate the next bus cycle, if any.

Note that Slave Processor bus cycles are never extended
with WAIT states. The ROY line is not sampled.

•

II)
• 2.0 Functional Description (Continued) C\I

CC)
C")
C\I
C")
en PREV.CYCLE NEXT CYCLE
Z I T4 OR TI Tl
0

[....
• PHil

C\I
CC)

T4 ~10RTI I

C")
C\I
C")

[en z PHIZ

iPC [

ADO-AD31 [NEXT

STO-ST3 [

Aoi[

ODiN [Lf.L.L.L.L.L.L.qc.a....-_I-__ -+'-__ +_

TL/EE/9142-13

Note 1: CPU samples Data Bus here.

FIGURE 2·10. Slave Access Timing; CPU Reading from MMU

PREV.CYCLE NEXT CYCLE

I T4 OR TI T1 T4 Tl0RTI I
PHil [

PHil [

SPC [

ADO-AD31 [

aTO·aT3 [

iDi[

TL/EE/9142-14

FIGURE 2·11. Slave Access Timing; CPU Writing to MMU

3·14

2.0 Functional Description (Continued)

2.5.2 Instruction Protocols

MMU instructions have a three-byte Basic Instruction field
consisting of an 10 byte followed by an Operation Word. See
Figure 3-10 for the MMU instruction encodings. The 10 Byte
has three functions:

1) It identifies the instruction as being a Slave Processor
instruction.

2) It specifies that the MMU will execute it.

3) It determines the format of the following Operation Word
of the instruction.

The CPU initiates an MMU instruction by issuing the 10 Byte
and the Operation Word, using Slave Processor bus cycles.
While applying status code 1111, the CPU transfers the 10
byte on bits AD24-AD31, the operation word on bits ADS­
AD23 in a swapped order of bytes and a non-used byte
XXXXXXX1 (X = Don't Care) on bits ADO-AD7.

Other actions are taken by the CPU and the MMU according
to the instruction under execution, as shown in Tables 2-2,
2-3 and 2-4.

In executing the LMR instruction (Load MMU Register, Ta­
ble 2-2), the CPU issues the 10 Byte, the Operation Word,
and then the operand value to be loaded by the MMU. The
register to be loaded is specified in a field within the Opera­
tion Word of the instruction.

The CPU then waits for the MMU to signal the completion of
the instruction by pulsing SDONE low.

In executing the SMR instruction (Store MMU Register, Ta­
ble 2-3), the CPU also issues the 10 Byte and the Operation
Word of the instruction to the MMU. It then waits for the
MMU to signal (by pulsing SDONE low) that it is ready to
present the specified register's contents to the CPU. Upon
receiving this "Done" pulse, the CPU reads the contents of
the selected register in one Slave Processor bus cycle, and
places this result value into the instruction's destination (a
CPU general-purpose register or a memory location).

In executing the RDVAL (Read-Validate) or WRVAL (Write­
Validate) instruction, the CPU first performs the effective
address calculation and obtains the address to be validated.
It then issues the 10 Byte and the Operation Word to the
MMU. It initiates a one-byte Read cycle from the memory
address whose protection level is being tested. It does so
while presenting status code 1010; this being the only place
that this status code appears during a RDVAL or WRVAL
instruction. This memory access triggers a special address
translation from the MMU. The translation is performed by
the MMU using User-Mode mapping, and any protection vio­
lation occurring during this memory cycle does not cause an
Abort. The MMU will, however, abort the CPU if the Level-1
Page Table Entry is invalid.

Upon completion of the address translation, the MMU puls­
es SDONE for two clock cycles to acknowledge that the
instruction may continue execution and an MMU status read
is required.

TABLE 2-2. LMR Instruction Protocol

CPU Action

Issues 10 Byte and Operation Word, pulsing SPC.
Accesses memory for effective address calculation
and operand fetching or instruction prefetching.
Issues operand value to MMU, pulsing SPC.

Waits for SDONE pulse from MMU.

Status

1111
XXXX

1101

0011

MMU Action

Accepts and decodes instruction.
Translates CPU addresses.

Accepts operand value from bus; places it into
referenced MMU register.
Sends completion signal by pulsing SDONE low.

TABLE 2-3. SMR Instruction Protocol

CPU Action

Issues 10 Byte and Operation Word, pulsing SPC.
Accesses memory for effective address calculation
or instruction prefetching.
Waits for SDONE pulse from MMU.
Reads results from MMU, pulsing SPC.

Status

1111
XXXX

0011
1101

MMUAction

Accepts and decodes instruction.
Translates CPU addresses.

Sends completion signal by pulsing SDONE low.
Presents data value from referenced MMU register
on bus.

TABLE 2-4. RDVAL/WRVAL Instruction Protocol

CPU Action

Performs effective address calculation and obtains
address to be validated.
Issues 10 Byte and operation word, pulsing SPC.
CPU may prefetch instructions.
Performs dummy one-byte memory read from
operand's location.

Waits for SDONE pulse from MMU
Sends SPC pulse and reads Status Word from
MMU; places bit 5 of this word into the F bit of the
PSR register.

Status

XXXX

1111
XXXX
1010

XXXX
1110

3-15

MMUAction

Translates CPU addresses.

Accepts and decodes instruction.

Translates CPU address, using User-Mode
mapping, and performs requested test on the
address presented by the CPU. Aborts the CPU if
there is no protection violation and the level-1 page
table entry is invalid. Aborts on protection violations
are temporarily suppressed.
Pulses SDONE low for two clock cycles.
Presents Status Word on bus, indicating in bit 5 the
result of the test.

z en
w
~ w
Q)
~

I
-'" o
........
z en w
~
w
Q)
~
I

-'"
(J'1

•

I.t) ,....
• C\I

co
C")
C\I
C")

en z
o ,....
• C\I

CO
C")
C\I
C")

en
z

2.0 Functional Description (Continued)

The CPU then reads a status word from the MMU. Bit 5 of
this Status Word indicates the result of the instruction:

o if the CPU in User Mode could have made the corre·
sponding access to the operand at the specified ad·
dress (Read in RDVAL, Write in WRVAL),

1 if the CPU would have been aborted for a protection
violation.

Bit 5 of the Status Word is placed by the CPU into the F bit
of the PSR register, where it can be tested by subsequent
instructions as a condition code.

2.6 BUS ACCESS CONTROL

The NS32382 MMU has the capability of relinquishing its
access to the bus upon request from a DMA device. It does
this by using HOLD, HLDAI and HLDAO.

Details on the interconnections of these pins are provided in
Figure A·1 (Appendix A).

Requests for DMA are presented in parallel to both the CPU
and MMU on the HOLD pin of each. The component that
currently controls the bus then activates its Hold Acknowl·
edge output to grant bus access to the requesting device.
When the CPU grants the bus, the MMU passes the CPU's
HLDA signal to its own HLDAO pin. When the MMU grants
the bus, it does so by activating its HLDAO pin directly, and
the CPU is not involved. HLDAI in this case is ignored.

Refer to Figures 4·15 and 4·16 for details on bus granting
sequences.

CPU STATES Tf Tf Tf
MMU STATES T2 T3 T4

PHil [

PHI2 [

ws[
PAV[

m[
SD6NE[

RST/ABT [

RDY [

Tf
Tl

2.7 BREAKPOINTING

The MMU provides the ability to monitor references to memo
ory locations in real time, generating a Breakpoint trap on
occurrence of any type of reference made by a program to a
specified virtual address or range of addresses.

Breakpoint monitoring is enabled and regulated by the set·
ting of appropriate bits in the BAR, BMR, ~DR, MCR and
MSR registers. See Sections 3.7 through 3.11.

The MMU compares the 32·bit address stored in the BAR
register with the virtual address from the CPU. Selected bits
can be masked off by the data pattern stored in the BMR
register. Only those bit positions which are set in the BMR
register will be used in the comparison process, bit positions
which are cleared become "Don't Cares".

If a Breakpoint condition is detected, an abort will be issued
to the CPU and the BP bit in the MSR register will be set.
The virtual address that triggered the Breakpoint is then
stored in the BDR register.

The dummy read addresses generated by the CPU during
RDVALlWRVAL operations, are not subject to Breakpoint
address comparison. See Section 2.5.2.

When a Breakpoint is enabled, the NS32332 burst cycles
should be inhibited by keeping the BIN signal high. The rea·
son being that the CPU addresses are not incremented duro
ing burst. It is therefore possible for the CPU to skip over the
address specified in the BAR register during burst cycle.

Tf T3 T4
T2 T3 T4 I T1 OR TI I

TLlEE/9142-15

Note 1: If there is a protection violation or an invalid Level-2 PTE then SDONE is issued two clock cycles earlier in Tl.

Note 2: If there is no protection violation and the Level-l PTE is not valid, an abort is generated and SDONE is not pulsed.

FIGURE 2-12. FLT Deassertlon During RDVAL/WRVAL Execution

3·16

~--~z

3.0 Architectural Description
3.1 PROGRAMMING MODEL

The MMU contains a set of registers through which the CPU
controls and monitors management and debugging func­
tions. These registers are not memory-mapped. They are
examined and modified by executing the Slave Processor
instructions LMR (Load Memory Management Register) and
SMR (Store Memory Management Register). These instruc­
tions are explained in Section 3.14, along with the other
Slave Processor instructions executed by the MMU.

A brief description of the MMU registers is provided below.
Details on their formats and functions are provided in the
following sections.

PTBO, PTB1-Page Table Base Registers. They hold the
physical memory addresses of the LEVEL-1 Page Tables
referenced by the MMU for address translation. See Section
3.3.

IVARO, IVAR1-lnvalldate Virtual Address Registers.
These WRITE·ONLY registers are used to remove invalid
Page Table Entries from the Translation Buffer.

TEAR-Translation Exception Address Registers. This
register contains the virtual address which caused the trans­
lation exception.

BEAR-Bus Error Address Register. This register con­
tains the virtual address which triggered the bus error.

BAR-Breakpoint Address Register. Used to hold a virtu­
al address for breakpoint address comparison.

BMR-Breakpolnt Mask Register. The contents of this
register indicate which bit positions of the virtual address
are to be compared.

BDR-Breakpolnt Data Register. This register contains
the virtual address that triggered a breakpoint.

MCR-Memory Management Control Register. Contains
the control field for selecting the various features provided
by the MMU.

PTBn

)_328IT'-
1024

ENI~-----I
LEVEL·l

PAGE TABLE

MSR-Memory Management Status Register. Contains
basic status fields for all MMU functions. See Section 3.11.

3.2 MEMORY MANAGEMENT FUNCTIONS

The NS32382 uses sets of tables in physical memory (the
"Page Tables") to define the mapping from virtual to physi­
cal addresses. These tables are found by the MMU using
one of its two Page Table Base registers: PTBO or PTB1.
Which register is used depends on the currently selected
address space. See Section 3.2.2.

3.2.1. Page Tables Structure

The page tables are arranged in a two·level structure. as
shown in Figure 3-1. Each of the MMU's PTBn registers may
point to a Level-1 page table. Each entry of the Level-1
page table may in turn point to a Level-2 page table. Each
Level-2 page table entry contains translation information for
one page of the virtual space.

The Level-1 page table must remain in physical memory
while the PTBn register contains its address and translation
is enabled. Level-2 Page Tables need not reside in physical
memory permanently, but may be swapped into physical
memory on demand as is done with the pages of the virtual
space.

The Level·1 Page Table contains 1024 32·bit Page Table
Entries (PTE's) and therefore occupies 4 Kbyte. Each entry
of the Level·1 Page Table contains fields used to construct
the physical base address of a Level-2 Page Table. These
fields are a 20-bit PFN field. providing bits 12·31 of the
physical address. The remaining bits (0-11) are assumed
zero, placing a Level-2 Page Table always on a 4 Kbyte
(page) boundary.

-32BITS-

LEVEL·2
PAGE TABLES

4k BYTES

MEMORY

TLlEE/9142-1B

FIGURE 3-1. Two-Level Page Tables

3-17

en
w
I\)
w
co
I\)
o
.......
z en w
I\)
w
co
I\)
•

U1

•

It) ,....
• N

co
C")
N
C")

en z
c ,....
• N co

C")
N
C")

en
z

3.0 Architectural Description (Continued)

Level-2 Page Tables contain 1024 32-bit Page Table en­
tries, and so occupy 4 Kbytes (1 page). Each Level-2 Page
Table Entry points to a final 4 Kbyte physical page frame. In
other words, its PFN provides the Page Frame Number por­
tion (bits 12-31) of the translated address (Figure 3-3). The
OFFSET field of the translated address is taken directly
from the corresponding field of the virtual address.

3.2.2 Virtual Address Spaces

When the Dual Space option is selected for address transla­
tion in the MCR (Sec. 3.10) the MMU uses two maps: one
for translating addresses presented to it in Supervisor Mode
and another for User Mode addresses. Each map is refer­
enced by the MMU using one of the two Page Table Base
registers: PTBO or PTB1. The MMU determines the CPU's
current mode by monitoring the state of the U/S pin and
applying the following rules.

1) While the CPU is in Supervisor Mode (U/S pin = 0), the
CPU is said to be presenting addresses belonging to Ad­
dress Space 0, and the MMU uses the PTBO register as
its reference for looking up translations from memory.

2) While the CPU is in User Mode (U/S pin = 1), and the
MCR OS bit is set to enable Dual Space translation, the
CPU is said to be presenting addresses belonging to Ad­
dress Space 1, and the MMU uses the PTB1 register to
look up translations.

3) If Dual Space translation is not selected in the MCR,
there is no Address Space 1, and all addresses present­
ed in both Supervisor and User modes are considered by
the MMU to be in Address Space O. The privilege level of
the CPU is used then only for access level checking.

Note: When the CPU executes a Dual-Space Move instruction (MOVUSi or
MOVSUi). it temporarily enters User Mode by switching the state of
the U/S pin. Accesses made by the CPU during this time are treated
by the MMU as User-Mode accesses for both mapping and access
level checking. It is possible. however. to force the MMU to assume
Supervisor-Mode privilege on such accesses by setting the Access
Override (AO) bit in the MCR (Sec. 3.10).

3.2.3 Page Table Entry Formats

Figure 3-2 shows the formats of Level-1 and Level-2 Page
Table Entries (PTE's).

The bits are defined as follows:

V Valid. The V bit is set and cleared only by software.

V = 1 => The PTE is valid and may be used for trans­
lation by the MMU.

131
PFN

J11
:USR: 1 NU I

9 8

R I

V=O=> The PTE does not represent a valid transla­
tion. Any attempt to use this PTE will cause
the MMU to generate an Abort trap.

PL Protection Level. This two-bit field establishes the
types of accesses permitted for the page in both User
Mode and Supervisor Mode, as shown in Table 3-1.

The PL field is modified only by software. In a Level-1
PTE, it limits the maximum access level allowed for all
pages mapped through that PTE.

TABLE 3-1. Access Protection Levels

Mode U/S
Protection Level Bits (PL)

00 01 10 11

User 1 no no read full
access access only access

Supervisor 0 read full full full
only access access access

NU Not Used. These bits are reserved by National for fu­
ture enhancements. Their values should be set to
zero.

CI Cache Inhibit. This bit appears only in Level-2 PTE's.
It is used to specify non-cacheable pages.

R Referenced. This is a status bit, set by the MMU and
cleared by the operating system, that indicates wheth­
er the page mapped by this PTE has been referenced
within a period of time determined by the operating
system. It is intended to assist in implementing memo­
ry allocation strategies. In a Level-1 PTE, the R bit
indicates only that the Level-2 Page Table has been
referenced for a translation, without necessarily imply­
ing that the translation was successful. In a Level-2
PTE, it indicates that the page mapped by the PTE
has been successfully referenced.

R = 1 => The page has been referenced since the R
bit was last cleared.

R = 0 => The page has not been referenced since the
R bit was last cleared.

M Modified. This is a status bit, set by the MMU whenev­
er a write cycle is successfully performed to the page
mapped by this PTE. It is initialized to zero by the
operating system when the page is brought into physi­
cal memory.

:

First Level PTE

131
PFN 1 :USR: 1 M I R I CI I

12 11 9 8

: NU : I ~L V

o
Second Level PTE

FIGURE 3-2. Page Table Entries (PTE's)

3-18

3.0 Architectural Description (Continued)

M = 1 => The page has been modified since it was
last brought into physical memory.

M = 0 => The page has not been modified since it
was last brought into physical memory.

In Level-1 Page Table Entries, this bit position is unde­
fined, and is unaltered.

USR User bits. These bits are ignored by the MMU and their
values are not changed.

They can be used by the user software.

PFN Page Frame Number. This 20-bit field provides bits
12-31 of the physical address. See Figure 3-3.

3.2.4 Physical Address Generation

When a virtual address is presented to the MMU by the CPU
and the translation information is not in the TLB, the MMU
performs a page table lookup in order to generate the physi­
cal address.

The Page Table structure is traversed by the MMU using
fields taken from the virtual address. This sequence is dia­
grammed in Figure 3-3.

VIRTUAL ADDRESS
31 22 21 12 11

1 INDEX 1
1

INDEX 2
I

OFFSET
I

I

B--+ lEVEl·l PAGE TABLE

~ P' lEVEl·l PTE

I PTBn I INDEX 1 I OO~ PFN I USR I NU I R INUI Pli V

31 1211 21 0 ~ 0 + (1) SELECT 1 ST PTE 1024
IF OS =0 THEN PTEs

n=O
ELSE

n = 1 FOR USER MODE
n = 0 FOR SUPV MDDE 1- 1---4 BYTES---

.... ~ ~
PFN I INDEX 2 1 001

31 1211 2 1 0

(2) SELECT 2ND PTE

Bits 12-31 of the virtual address hold the 20-bit Page Num­
ber, which in the course of the translation is replaced with
the 20-bit Page Frame Number of the physical address. The
virtual Page Number field is further divided into two fields,
INDEX 1 and INDEX 2.

Bits 0-11 constitute the OFFSET field, which identifies a
byte's position within the accessed page. Since the byte
position within a page does not change with translation, this
value is not used, and is simply echoed by the MMU as bits
0-11 of the final physical address.

The 10-bit INDEX 1 field of the virtual address is used as an
index into the Level-1 Page Table, selecting one of its 1024
entries. The address of the entry is computed by adding
INDEX 1 (scaled by 4) to the contents of the current Page
Table Base register. The PFN field of that entry gives the
base address of the selected Level-2 Page Table.

The INDEX 2 field of the virtual address (10 bits) is used as
the index into the Level-2 Page Table, by adding it (scaled
by 4) to the base address taken from the Level-1 Page Ta­
ble Entry. The PFN field of the selected entry provides the
entire Page Frame Number of the translated address.

The offset field of the virtual address is then appended to
this frame number to generate the final physical address.

fo--,
I
I
I
I
~

I PFN I OOOOODDDOOOO ~ lEVEl·2 PAGE TABLE

lEVEl-2 PTE

PFN IUSRIMIRICIHPlIV 1024

31

""I ~ " PHYSICAL ADDRESS I PFN I OFFSET

31 12 11

(3) GENERATE PHYSICAL
ADDRESS

'1
TLlEE/9142-20

FIGURE 3-3. Virtual to Physical Address Translation

3-19

z en
w
N
W
co
N
o
z en
w
N
W
co
N •
U1

•

U) .---, ,....
N
co
C")
N
C")

en z
o ,.... .
N
CO
C")
N
C")

en z

3.0 Architectural Description (Continued)

3.3 PAGE TABLE BASE REGISTERS (PTBO, PTB1)
The PTBn registers hold the physical addresses of the Lev­
el-1 Page Tables.

The format of these registers is shown in Figure 3-4. The
least-significant 12 bits are permanently zero, so that each
register always points to a 4 Kbyte boundary in memory.

The PTBn registers may be loaded or stored using the MMU
Slave Processor instructions LMR and SMR (Section 3.14).

3.4 INVALIDATE VIRTUAL ADDRESS REGISTERS
(IVARO,IVAR1)
The Invalidate Virtual Address registers are write-only regis­
ters. When a virtual address is written to IVARO or IVAR 1
using the LMR instruction, the translation for that virtual ad­
dress is purged, if present, from the TLB. This must be done
whenever a Page Table Entry has been changed in memo­
ry, since the TLB might otherwise contain an incorrect trans­
lation value.

Another technique for purging TLB entries is to load a PTBn
register. This automatically purges all entries associated
with the addressing space mapped by that register. Turning
off translation (clearing the MCR TU and/or TS bits) does
not purge any entries from the TLB.

The format of the IVARn registers is shown in Figure 3-5.

3.5 TRANSLATION EXCEPTION ADDRESS REGISTER
(TEAR)

The TEAR Register is loaded when a translation exception
occurs. It contains the 32-bit virtual address which caused
the translation exception and is a read-only register. TEAR
has the same format as the IVARn registers of Figure 3-5.
For more details on the updating of TEAR, refer to the note
at the end of Section 3.11.

3.6 BUS ERROR ADDRESS REGISTER (BEAR)
The BEAR Register is loaded when a CPU or MMU bus
error occurs. It contains the 32-bit virtual address which trig­
gered the bus error and is a read-only register. BEAR has
the same format as the IVARn registers of Figure 3-5.

3.7 BREAKPOINT ADDRESS REGISTER (BAR)
The Breakpoint Address Register is used to hold a virtual
address for breakpoint address comparison during instruc­
tion and operand accesses. It is 32 bits in length and its
format is shown in Figure 3-6.

3.8 BREAKPOINT MASK REGISTER (BMR)
The Breakpoint Mask Register provides corresponding bit
positions for each of the virtual address bits that are to be
compared when the Breakpoint Address Compare Function
is enabled. Bits which are set in this register are used for
matching virtual address bits while bits which are cleared
are treated as "don't cares". This allows a breakpoint to be
generated upon an access to any location within a block of
addresses. The BMR Register format is shown in Figure 3-6.

3.9 BREAKPOINT DATA REGISTER (BDR)
The Breakpoint Data Register holds the virtual address that
triggered the breakpoint.

It is a read-only register and its format is shown in Figure 3-6.

3.10 MEMORY MANAGEMENT CONTROL REGISTER
(MCR)
The MCR Register controls the various features provided by
the MMU. It is 32 bits in length and has the format shown in
Figure 3-7. All bits will be cleared on reset. The bits 8 to 31
are RESERVED for future use and must be loaded with ze­
ros.

When MCR is read as a 32-bit word, bits 8 to 31 will be
returned as zeros. Details on the MCR bits are given below.

TU Translate User-Mode Addresses. While this bit is "1",
the MMU translates all addresses presented while
the CPU is in User Mode. While it is "0", the MMU
echoes all User-Mode virtual addresses without per­
forming translation or access level checking.

Note: Altering the TU bit has no effect on the contents of the TLB.

TS Translate Supervisor-Mode Addresses. While this bit
is "1", the M MU translates all addresses presented
while the CPU is in Supervisor Mode. While it is "0",
the MMU echoes all Supervisor-Mode virtual ad­
dresses without translation or access level checking.

Note: Altering the T5 bit has no effect on the contents of the TLB.

DS Dual-Space Translation. While this bit is "1 ", Supervi­
sor Mode addresses and User Mode addresses are
translated independently of each other, using sepa­
rate mappings. While it is "0", both Supervisor Mode
addresses and User Mode addresses are translated
using the same mapping. See Section 3.2.2.

I : : : : : ~+:+~+~2~3:: : : : : 1+1+1+101+101+1
31 12 11 0

FIGURE 3·4. Page Table Base Registers (PTBO, PTB1)

FIGURE 3·5. Address Registers (IVARO,IVAR1, TEAR, BEAR)

FIGURE 3·6. Breakpoint Registers (BAR, BMR, BDR)

3-20

3.0 Architectural Description (Continued)

AO Access Level Override. This bit may be set to tempo­
rarily cause User Mode accesses to be given Supervi­
sor Mode privilege. See Section 3.13.

BR Break on Read. If BR is 1, a break is generated when
data is read from the breakpoint address. Instruction
fetches do not trigger a Read breakpoint. If BR is 0,
this condition is disabled.

BW Break on Write. If BW is 1, a break is generated when
data is written to the breakpoint address or when
data is read from the breakpoint address as the first
part of a read-modify-write access. If BW is 0, this
condition is disabled.

BE Break on Execution. If BE is 1, a break is generated
when the instruction at the breakpoint address is
fetched. If BE is 0, this condition is disabled.

BAS Breakpoint Address Space. This bit selects the ad­
dress space for breakpointing.

BAS = 0 Selects Address Space 0 (PTBO).

BAS = 1 Selects Address Space 1 (PTB1).

3.11 MEMORY MANAGEMENT STATUS REGISTER
(MSR)

The Memory Management Status Register provides status
information for translation exceptions as well as bus errors.

When either a translation exception or a bus error occurs,
the corresponding bits in the MSR are updated.

The MSR register can be loaded with an LMR instruction. Its
format is shown in Figure 3-8. Bits 19 through 31 are re­
served for future use and are returned as zeros when read.
Bits 8 and 18 are also reserved.

Upon reset, all MSR bits are cleared to zero. Details on the
function of each bit are given below.

TEX Translation Exception. This 2-bit field specifies the
cause of the current address translation exception.
Combinations appearing in this field are summarized
below.

00 No Translation Exception

01 First Level PTE Invalid

10 Second Level PTE Invalid

11 Protection Violation
Note: During address translation, if a protection violation and an invalid PTE

are detected at the same time, the TEX field is set to indicate a pro­
tection violation.

DDT Data Direction. This bit indicates the direction of the
transfer that the CPU was attempting when the trans­
lation exception occurred.

DDT = 0 = > Read Cycle

DDT = 1 = > Write Cycle

UST User/Supervisor. This is the state of the U/S pin from
the CPU during the access cycle that triggered the
translation exception.

STT CPU Status. This 4-bit field is set on an address
translation exception to the value of the CPU Status
Bus (STO-ST3).

BP Break. This bit is set to indicate that a breakpoint
condition has been detected by the MMU.

CE CPU Error. This bit is set when a bus error occurs
while the CPU is in control of the bus.

ME MMU Error. This bit is set when a bus error occurs
while the MMU is in control of the bus.

DOE Data Direction. This bit indicates the direction of the
transfer that the CPU was attempting when the bus
error occurred.

DOE = 0 = > Read Cycle

DOE = 1 = > Write Cycle

USE User/Supervisor. This is the state of the U/S pin from
the CPU during the access cycle that triggered the
bus error.

STE CPU Status. This 4-bit field is set to the value of the
CPU status bus (STO-ST3) when a bus error is de­
tected.

Note: The MSR and TEAR registers are updated whenever a translation
exception occurs, regardless of whether a CPU abort will result. As a
consequence, after an abort is recognized, MSR and TEAR may be
overwritten with new data and thus the original contents may be lost.
This happens if the CPU, while executing the abort routine, performs
instruction prefetch cycles from an invalid page. To ensure correct
operation the reading of MSR and TEAR should be performed before
any instruction prefetch crosses a page boundary, unless the next
page is valid. This may place some restrictions in the relocation of the
abort routine.

BAS I BE I BW I BR I AO I OS I TS I TU I
/31 8/7 0/

TL/EE/9142-24

FIGURE 3-7_ Memory Management Control Register (MCR)

TLlEE/9142-25

FIGURE 3-8. Memory Management Status Register (MSR)

3-21

z en
w
I\)
w
(X)
I\)
o
........ z en
w
I\)
w
(X)
I\)
U1

•

LI) ,... .
N
CO
C")
N
C")

en
z
o ,... .
N
CO
C")
N
C")

en
z

3.0 Architectural Description (Continued)

3.12 TRANSLATION LOOKASIDE BUFFER (TLB)
The Translation Lookaside Buffer is an on·chip fully asso­
ciative memory. It provides direct virtual to physical mapping
for the 32 most recently used pages, requiring only one
clock period to perform the address translation .

The efficiency of the MMU is greatly increased by the TLB,
which bypasses the much longer Page Table lookup in over
97% of the accesses made by the CPU.

Entries in the TLB are allocated and replaced by the MMU
itself; the operating system is not involved. The TLB entries
cannot be read or written by software; however, they can be
purged from it under program control.

Figure 3-9 models the TLB. Information is placed into the
TLB whenever the MMU performs a lookup from the Page
Tables in memory. If the retrieved mapping is valid (V = 1 in
both levels of the Page Tables), and the access attempted
is permitted by the protection level, an entry of the TLB is
loaded from the information retrieved from memory. The re­
cipient entry is selected by an on-chip circuit that imple­
ments a Least-Recently-Used (LRU) algorithm. The MMU
places the virtual page number (20 bits) and the Address
Space qualifier bit into the Tag field of the TLB entry.

The Value portion of the entry is loaded from the Page Ta­
bles as follows:

The Translation field (20 bits) is loaded from the PFN field
of the Level-2 Page Table Entry.

The CI and M bits are loaded from the Level-2 Page Table
Entry.

The PL field (2 bits) is loaded to reflect the net protection
level imposed by the PL fields of the Level-1 and Level-2
Page Table Entries.

(Not shown in the figure are additional bits associated with
each TLB entry which flag it as full or empty, and which
select it as the recipient when a Page Table lookup is per­
formed.)

When a virtual address is presented to the MMU for transla­
tion, the high-order 20 bits (page number) and the Address
Space qualifier are compared associatively to the corre-

VIRTUAL
ADDRESS

(UjS, ZZZ)
COMPARISON

AS·

0

1

0

1

TAG

PAGE NUMBER
(20 BITS)

xxx

YYY

zzz

www

sponding fields in all entries of the TLB. When the Tag por­
tion of a TLB entry completely matches the input values, the
Value portion is produced as output. If the protection level is
not violated, and the M bit does not need to be changed,
then the physical address Page Frame number is output in
the next clock cycle. If the protection level is violated, the
MMU instead activates the Abort output. If no TLB entry
matches, or if the matching entry's M bit needs to be
changed, the MMU performs a page-table lookup from
memory.

Note that for a translation to be loaded into the TLB it is
necessary that the Level-1 and Level-2 Page Table Entries
be valid (V bit = 1). Also, it is guaranteed that in the pro­
cess of loading a TLB entry (during a Page Table lookup)
the Level-1 and Level-2 R bits will be set in memory if they
were not already set. For these reasons, there is no need to
replicate either the V bit or the R bit in the TLB entries.

Whenever a Page Table Entry in memory is altered by soft­
ware, it is necessary to purge any matching entry from the
TLB, otherwise the MMU would be translating the corre­
sponding addresses according to obsolete information. TLB
entries may be selectively purged by writing a virtual ad­
dress to one of the IVARn registers using the LMR instruc­
tion. The TLB entry (if any) that matches that virtual address
is then purged, and its space is made available for another
translation. Purging is also performed by the MMU whenev­
er an address space is remapped by altering the contents of
the PTBO or PTB1 register. When this is done, the MMU
purges all the TLB entries corresponding to the address
space mapped by that register. Turning translation on or off
(via the MCR TU and TS bits) does not affect the contents
of the TLB.

3.13 ADDRESS TRANSLATION ALGORITHM
The MMU either translates the 32-bit virtual address to a
32-bit physical address or reports a translation error. This
process is described algorithmically in the following pages.
See also Figure 3-3.

PL M

11 0

11 0

11 1

00 1

VALUE

CI TRANSLATION
(20 BITS)

0 mmm

0 nnn

1 PPP

0 qqq

TRANSLATED
ADDRESS

(PPP)

TL/EE/9142-26

FIGURE 3-9. TLB Model
'AS represents the virtual address space qualifier.

3-22

c.>
N
c.>

MMU Page Table Lookup and Access Validation Algorithm
Legend:
x = y

x == y

x AND y

x OR y

(. . .)

item(i)
item(i:j)
item.x
DONE
ABORT

x is assigned the value y
Comparison expression, true if x is equal to y
Boolean AND expression, true only if assertions x and yare both true
Boolean inclusive OR expression, true if either of assertions x and y is true
Delimiter marking end of statement
Delimiters enclosing a statement block
Bit number i of structure -item-
The field from bit number i through bit number j of structure -item­
The bit or field named -x- in structure -item-
Successful end of translation; MMU provides translated address
Unsuccessful end of translation; MMU aborts CPU access

This algorithm represents for all cases a valid definition of address translation.
Bus activity implied here occurs only if the TLB does not contain the mapping,
or if the reference requires that the MMU alter the M bit of the Page Table Entry.
Otherwise, the MMU provides the translated address in one clock period.
Input (from CPU) :

U (1 if U/S is high)
W (1 if DDIN input is high)
VA Virtual address consisting of:

INDEX_l (from pins A31-A22)
INDEX_2 (from pins A21-A12)
OFFSET (from pins AII-AO)

Cot)

b
l> ...
n
:::J"
;:;
CD
n ..
c
Dl
c
CD
til
n ...
ii ..
0"
:J
'0 o a
:i"
c:
CD .s

ACCESS_LEVEL The access level of a reference is a 2-bit value synthesized by the MMU from CPU status:
bit 1 U AND NOT MCR.AO (U from U/S input pin)
bit 0 = 1 for Write cycle, or Read cycle of an -rmw- class operand access

o otherwise.

Output:

Uses:

PA Physical Address on pins PAO-PA31;
CI Cache Inhibit Signal
Abort pulse on RST/ABT pin.

MCR Control Register:
fields TU, TS and DS

iii
!i ~ ·~8£~£SN/O ~ ·~8£~£SN

(,)

N
~

NS32382-10/NS32382-15

MMU Page Table Lookup and Access Validation Algorithm (Continued)

PTBO
PTBl
PTE_l

PTEP_l
PTE_2

Page Table Base Register 0
Page Table Base Register 1
Level-l Page Table Entry:

fields PFN, PL, V and R
Pointer, holding address of PTE_l
Level-2 Page Table Entry:

fields PFN, PL, V, M, Rand CI
PTEP_2 Pointer, holding address of PTE_2

IF ((MCR.TU = = 0) AND (U = = 1) OR ((MCR.TS
THEN (PA(0:3l) = VA(0:3l) ; CINH PIN = 0 ; DONE

IF (MCR.DS = = 1) AND (U = = 1)
THEN (PTEP_l(3l:l2) = PTB1(3l:l2)

PTEP_l(11:2) = VA.INDEX..1 ; PTEP_l(l:O) =0
ELSE PTEP_l(3l:l2) = PTBO(3l:l2) ;

PTEP_l(11:2) = VA.INDEX_l; PTEP_l(l:O) 0

0) AND (U ==0))

I
If translation not enabled then echo

virtual address as physical address.

If Dual Space mode and CPU in User Mode
then form Level-l PTE address

from PTBl register,
else form Level-l PTE address

from PTBO register.

- - - LEVEL 1 PAGE TABLE LOOKUP - - -

IF (ACCESS_LEVEL> PTE_l.PL) OR (PTE_l.V
THEN ABORT ;

IF PTE_l.R 0 THEN PTE_l.R 1

PTEP _2 (31: 11) = PTE_I. PFN
PTEP_2(11:2) = VA.INDEX_2 ; PTEP_2(1:0) 0

0)

IF (ACCESS_LEVEL > PTE_2. PL) OR (PTE_2. V = = 0)
THEN ABORT ;

IF PTE_2.R = = 0 THEN PTE_2.R = = 1
IF (W = = 1) AND (PTE_2.M = = 0) THEN PTE_2.M 1

If protection violation or invalid Level-2 page
table then abort the access.

Otherwise, set Reference bit if not already set,

and form Level-2 PTE address.

- LEVEL 2 PAGE TABLE LOOKUP - - -

If protection violation or invalid page
then abort the access.

Otherwise, set Referenced bit if not already set,
if Write cycle set Modified bit if not

already set,
PA(3l:ll) PTE_2.PFN PA(ll:O) VA. OFFSET CINH PTE_2.CI and generate physical address.

DONE ;

(,)

b
» ...
n
::::J'
::;
(I)
n ..
c
DJ
c
(I)
tn
n ... -S . ..
c)"
::::J
'0 o a s·
c:
<D
B

3.0 Architectural Description (Continued)

3.14 INSTRUCTION SET

Four instructions of the Series 32000 instruction set are ex­
ecuted cooperatively by the CPU and MMU. These are:

LMR Load Memory Management Register

SMR Store Memory Management Register

ROVAL Validate Address for Reading

WRVAL Validate Address for Writing

The format of the MMU slave instructions is shown in Figure
3-10. Table 3-2 shows the encodings of the "short" field for
selecting the various MMU internal registers.

TABLE 3-2. "Short" Field Encodlngs

"Short" Field Register

0000 BAR
0001 RESERVEO
0010 BMR
0011 BOR
0110 BEAR
1001 MCR
1010 MSR
1011 TEAR
1100 PTBO
1101 PTB1
1110 IVARO
1111 IVAR1

Note: All other codes are illegal. They will cause unpredictable registers to
be selected If used In an Instruction.

For reasons of system security, all MMU instructions are
privileged, and the CPU does not issue them to the MMU in
User Mode. Any such attempt made by a User-Mode pro­
gram generates the Illegal Operation trap, Trap (ILL). In ad­
dition, the CPU will not issue MMU instructions unless its
CFG register's M bit has been set to validate the MMU in­
struction set. If this has not been done, MMU instructions
are not recognized by the CPU, and an Undefined Instruc­
tion trap, Trap (UNO), results.

The LMR and SMR instructions load and store MMU regis­
ters as 32-bit quantities to and from any general operand
(including CPU General-Purpose Registers).

The ROVAL and WRVAL instructions probe a memory ad­
dress and determine whether its current protection level
would allow reading or writing, respectively, if the CPU were
in User Mode. Instead of triggering an Abort trap, these in­
structions have the effect of setting the CPU PSR F bit if the
type of access being tested for would be illegal. The PSR F
bit can then be tested as a condition code.
Note: The Series 32000 Dual-Space Move Instructions (MOVSUI and

MOVUSi), although they involve memory management action. are not
Slave Processor Instructions. The CPU Implements them by switching
the state of its U/S pin at appropriate times to select the desired
mapping and protection from the MMU.

For full architectural details of these instructions, see the
Series 32000 Instruction Set Reference Manual.

4.0 Device Specifications
4.1 NS32382 PIN DESCRIPTIONS

The following is a brief description of all NS32382 pins. The
descriptions reference portions of the Functional Descrip­
tion, Section 2.0.

I : :GEN: : I : sH9R(I 0 I :OPqOD(11 11 I 0 I 0 I 0 11 I q 1 11 I 0 I
123 OPERATION WORD 817 10 CODE 01

TLlEE/9142-27

FIGURE 3-10. MMU Slave Instruction Format

3-25

z en
C/o)
I\)
C/o)
(lC)
I\)
•
o z en
C/o)
I\)
C/o)
(lC)
I\)
c.n

~ r---~
I

C\I co
C")
C\I
C")
CI)
z
o

I
C\I
CO
C")
C\I
C")
CI)
z

4.0 Device Specifications (Continued)

4.1.1 Supplies

Power (Vee): Eight pins, connected to the + 5V supply.

Back Bias Generator (BBG): Output of on-chip substrate
voltage generator.

Ground (GND): Eighteen pins, connected to ground.

4.1.2 Input Signals

Clocks (PHI1, PHI2): Two-phase clocking signals. Section
2.2.

Ready (RDY): Active high. Used by slow memories to ex­
tend MMU originated memory cycles. Section 2.4.4.

Hold Request (HOLD): Active low. Causes a release of the
bus for DMA or multiprocessing purposes. Section 2.6.

Connection Diagram

@@@@@@@@@@@@
B@@@@@@@@@@@@@@
c@@ @@@@@@@@@@@
D@@@ @@@
E@@@ @@@
F@@@ @@@
G@@@ @@@

NS32382
H@@@ @@@
J @@@ @@@
K@@@ @@@
L@@@ @@@
M@@ @@@@@@@@ @@
N@@@@@@@@@@@@@@

@@@@@@@@@@@@
14 13 12 11 10 9 7 6

TL/EE/9142-28

Bottom View

FIGURE 4-1. Pin Grid Array Package

Order Number NS32382U-10 or NS32382U-15
See NS Package Number U 125A

3-26

Hold Acknowledge In (HLDAI): Active low. Applied by the
CPU in response to HOLD input, indicating that the CPU has
released the bus for DMA or multiprocessing purposes.
Section 2.6 .

Reset Input (RSTI): Active low. System reset. Section 2.3 .

Status Lines (STO-ST3): Status code input from the CPU.
Active from T 4 of previous bus cycle through T3 of current
bus cycle. Section 2.4.

User/Supervisor Mode (U/S): This signal is provided by
the CPU. It is used by the MMU for protection and for select­
ing the address space (in dual address space mode only).
Section 2.4.

Address Strobe Input (ADS): Active low. Pulse indicating
that a virtual address is present on the bus.

Bus Error (BER): Active low. When active, indicates that an
error occurred during a bus cycle. Not applicable for slave
cycles.

Desc

NC
SPC
NC
SDONE
MILO
HLDAI
RSTI
BER
BRT
RST/ABT
STO
ST1
NC
NC
GND
GND

Vee
HOLD
ROY
PHI2
PHI1
PAV
FLT
ST2
ST3
RESERVED
NC
MADS
GND
GND
ODIN
HLDAO

NS32382 Pinout Descriptions
125 Pin Grid Array

Pin Desc Pin Desc Pin

A2 Vee C7 AD22 H1
A3 GND C8 AD21 H2
A4 Vee C9 AD20 H3
A5 Vee C10 GND H12
A6 GND C11 PA22 H13
A7 GND C13 PA21 H14
A8 CINH C14 AD19 J1
A9 AD29 01 AD18 J2
A10 AD31 02 AD17 J3
A11 GND 03 PA20 J12
A12 ADS 012 PA19 J13
A13 RESERVED 013 PA18 J14
B1 PA31 014 AD14 K1
B2 AD27 E1 AD15 K2
B3 AD30 E2 AD16 K3
B4 u/s E3 GND K12
B5 PA30 E12 PA17 K13
B6 PA29 E13 PA16 K14
B7 PA28 E14 AD13 L1
B8 AD25 F1 AD12 L2
B9 AD26 F2 Vee L3

B10 AD28 F3 Vee L12
B11 PA27 F12 PA14 L13
B12 PA26 F13 PA15 L14
B13 PA25 F14 NC MI
B14 AD23 G1 GND M2
C1 AD24 G2 GND M4
C2 GND G3 AD7 M5
C3 GND G12 AD3 M6
C4 PA24 G13 Vee M7
C5 PA23 G14 BBG M8
C6

Desc Pin

PA4 M9
PA7 M10
GND M11

Vee M13
PA13 M14
NC N1
GND N2
GND N3
AD9 N4
AD5 N5
AD2 N6
ADO N7
PAO N8
PA3 N9
PA6 N10
PA9 N11
GND N12
NC N13
PA12 N14
AD11 P2
AD10 P3
AD8 P4
AD6 P5
AD4 P6
AD1 P7
PA1 P8
PA2 P9
PA5 P10
PA8 P11
PA10 P12
PA11 P13

4.0 Device Specifications (Continued)

Bus Retry (BRT): Active low. When active, the MMU will re- Slave Done (SOON E): Active low. Used by the MMU to
execute the last bus cycle. Not applicable for slave cycles. inform the CPU of the completion of a slave instruction. It

Slave Processor Control (SPC): Active low. Used as a floats when it is not active.

data strobe for slave processor transfers. MMU Address Strobe (MADS): Active low. This signal is

4.1.3 Output Signals
asserted in T1 of an MMU initiated cycle. It indicates that
the physical address is available on the physical address

Reset Output! Abort (RST / ABT): Active Low. Held active bus. MADS is floated during hold acknowledge.
longer than one clock cycle to reset the CPU. Pulsed low MMU Interlock (MILO): Active low. This signal is asserted
during T2 to abort the current CPU instruction. by the MMU when it performs a read-modify-write operation
Float Output (FLT): Active low. Floats the CPU from the to up-date the R and lor the M bit in the Page Table Entry
bus when the MMU accesses page table entries. Section (PTE). It is inactive during Hold Acknowledge.
2.4.3. Physical Address Bus (PAO-PA31): These 32 signal lines
Physical Address Valid (PAV): Active low. Pulse generat- carry the physical address. They float during Hold Acknowl-
ed during T2 indicating that a physical address is present on edge.
the bus.

Hold Acknowledge Output (HLDAO): Active low. When
4.1.4Input·Output Signals

active, indicates that the bus has been released. Data Direction In (ODIN): Active low. Status signal indicat-

Cache Inhibit (CINH): This output signal reflects the state
ing direction of data transfer during a bus cycle. Driven by

of the CI bit in the second level Page Table Entry (PTE). It is
the MMU during a page-table lookup.

used to specify non-cacheable pages. During MMU generat- Address/Data 0-31 (ADO-AD31): Multiplexed Addressl

ed bus cycles and when the MMU is in No-Translation Data Information. Bit 0 is the least significant bit. .

mode, CINH will be held low.

4.2 ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required, Note: Absolute maximum ratings indicate limits beyond
please contact the National Semiconductor Sales which permanent damage may occur. Continuous operation
Office/Distributors for availability and specifications. at these limits is not intended; operation should be limited to

Temperature Under Bias O°Cto +70°C those conditions specified under Electrical Characteristics.

Storage Temperature - 65°C to + 150°C

All Input or Output Voltages with
Respect to GND -0.5Vto +7V

Power Dissipation 2.5W

4.3 ELECTRICAL CHARACTERISTICS T A = 0 to + 70°C, Vee = 5V ± 5%, GND = OV

Symbol Parameter Conditions Min Typ Max Units

VIH High Level Input Voltage 2.0 Vee + 0.5 V

Vil Low Level Input Voltage -0.5 0.8 V

VeH High Level Clock Voltage PHI1, PHI2 Pins Only Vee - 0.5 Vee + 0.5 V

Vel Low Level Clock Voltage PHI1, PHI2 Pins Only -0.5 0.3 V

VeRT Clock Input PHI1, PHI2 Pins Only
-0.5 0.5 V

Ringing Tolerance

VOH High Level Output Voltage IOH = -400 J.tA 2.4 V

VOL Low Level Output Voltage IOl = 2 rnA 0.45 V

IllS SPC Input Current (Low) VIN = O.4V, SJSL: in Input Mode 0.05 1.0 rnA

II Input Load Current 0::::; VIN ::::; Vee, All Inputs Except
-20 20 J.tA

PHI1, PHI2, ATISPC

IL Leakage Current 0.4 ::::; VOUT ::::; Vee
(Output and 1/0 Pins -20 20 J.tA
in TRI-STATE/lnput Mode)

lee Active Supply Current lOUT = 0, TA = 25°C 350 500 rnA

3-27

z en
w
I\)
w
CIC)
I\)
o
z en w
I\)
w
CIC)
I\)
U1

U) .--, ,... .
N
co
C")
N
C")
en z o ,...
• N

CO
C")
N
C")
en z

4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

and PHI2, and 0.8V or 2.0V on all other signals as illustrated
in Figures 4-2 and 4-3, unless specifically stated otherwise.

All the timing specifications given in this section refer to
2.0V on the rising or falling edges of the clock phases PHI1

ABBREVIATIONS:

SIG1

SIG2

[

- ~2'4V
tSIG11 1--------------- O.BV

O.45V

[

I IS'"'"jr--
2
.
0v
-_2.4V

-----.-----------O.45V

TL/EE/9142-29

FIGURE 4-2. Timing Specification Standard
(Signal Valld after Clock Edge)

L.E. - leading edge R.E. - rising edge

T.E. - trailing edge F.E. - falling edge

PHln

SIGl

SIG2

[

[
[

--~
------"'-.-.- -- - - - 2.4V

O.BV -\\,---~ ISIG11
----+--O.45V

r---+--2.4V

2.0V . L tSIG2h

-----J-·-·------O.45V

TL/EE/9142-30

FIGURE 4-3. Timing Specification Standard
(Signal Valld before Clock Edge)

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation Delays, NS32382-10, NS32382-15.
Maximum times assume capacitive loading of 50 pF.

Name Figure

tPAVla

tClv

tClh

4-4

4-4

4-4

4-4

4-4

4-4

4-4

4-4,
4-15,

4-4

Description

PAO-11 Valid (FLT = 1)

PA12-31 Valid (FLT = 1)

'PAY Signal Active

rrA'iJ Signal Inactive

'PAY Pulse Width

PAO-11 Hold (FLT = 1)

PA12-31 Hold (FI'i" = 1)

CINH Signal Valid (FL T = 1)
(FLT = 0)

CINH Signal Hold (FLT = 1)

tODINv 4-5, ODIN Signal Valid (FL T = 0)
4-7,
4-15

tODINh 4-5 ODIN Signal Hold (FL T = 0)

tov 4-6 ADO-AD31 Valid (Memory Write)

4-6 ADO-AD31 Hold (Memory Write)

4-6 PAO-31 Valid (FLT = 0)

4-6 PAO-31 Hold (FLT = 0)

Reference/Conditions

After R.E., PHI1 T1

After R.E., PHI1 T2

After R.E., PHI1 T2

After R.E., PHI2 T2

At 0.8V (80th Edges)

After R.E., PHI1 (Next) T1

After R.E., PHI1 (Next) T2

After R.E., PHI1 T2
After R.E., PHI1 T1

After R.E., PHI1 (Next) T2

After R.E., PHI1 T1

After R.E., PHI1 (Next) T1

After R.E., PHI1 T2

After R.E., PHI1 (Next) T1

After R.E., PHI1 T1

After R.E., PHI1 (Next) T1

3-28

NS32382-10 NS32382-15
Units

Min Max Min Max

75 50 ns

30 20 ns

25 17 ns

40 27 ns

35 22 ns

o o ns

o o ns

40 27 ns

o o

35 25 ns

o o ns

50 38 ns

o o ns

30 20 ns

o o ns

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32382-10, NS32382-15.
Maximum times assume capacitive loading of 50 pF. (Continued)

Name Figure Description Reference/Conditions

tMAOSa 4-6,15 MADS Signal Active (FL T = 0) After R.E., PHI1 T1

tMAOSla 4-6 MADS Signal Inactive After R.E., PHI2 T1

tMAOSw 4-6 MADS Pulse Width At 0.8V (Both Edges)

tOOINf 4-7, ODiN Floating After R.E., PHI1 T3

4-9,11 After R.E., PHI1 T1

tMILOa 4-5, MiLO Signal Active After R.E., PHI1 T4
4-15

tMILOia 4-7, MILO Signal Inactive After R.E., PHI1 T1 or Ti

4-15

tABTa 4-8 RST / ABT Signal Active (Abort) After R.E., PHI1 T1 or T2

tABTia 4-8 RST / ABT Signal Inactive (Abort) After R.E., PHI1 T2 or T3

tABTw 4-8 RST / ABT Pulse Width (Abort) At 0.8V (Both Edges)

tFLTa 4-5 FL T Signal Active After R.E., PHI1 T2

tFLTia 4-7, FL T Signal Inactive After R.E., PHI1 T2
4-9

tOt 4-12 Data Bits Floating After R.E., PHI1 T4
(Slave Processor Read)

tov 4-12 ADO-AD31 Valid After R.E., PHI1 T1
(CPU Slave Read)

tOh 4-12 ADO-AD31 Hold After R.E., PHI1 T4

(CPU Slave Read)

tSONa 4-14 SDONE Signal Active After R.E., PHI2

tSDNia 4-14 SDONE Signal Inactive Ater R.E., PHI1

tSDNw 4-14 SDONE Pulse Width At 0.8V (Both Edges)

tSDNdw 4-14 SDONE Double Pulse Width At 0.8V (Both Edges)

tSDNt 4-14 SDONE Signal Floating After R.E., PHI2

tHLDAOa 4-15 HLDAO Signal Active (FL T = 0) After R.E., PHI1 Ti

tHLDAOia 4-15 HLDAO Signal Inactive (FL T = 0) After R.E., PHI1 T4

tMADSz 4-15 MADS Signal Floated by HOLD After R.E., PHI1 Ti

tpAVz 4-15 PAY Signal Floated by HOLD After R.E., PHI1 Ti

tPAVr 4-15 PAY Return from Floating After R.E., PHI1 T1
(Caused by HOLD)

tDz 4-15 ADO-AD31 Floating After R.E., PHI1 Ti
(Caused by HOLD)

tMAz 4-15 PAO-31 Floated by HOLD After R.E., PHI1 Ti

tDDINz 4-15 DDIN Signal Floated by HOLD After R.E., PHI1 Ti

telz 4-15 CINH Signal Floated by HOLD After R.E., PHI1 Ti

tMILOia 4-15 MILO Signal Inactive After R.E., PHI1 Ti
by HOLD (FL T = 0)

3-29

NS32382-10

Min Max

25

5 35

35

25

50

50

50

2 50

60

50

40

25

50

4

50

50

25 90

225 275

40

60

60

40

40

40

25

25

40

25

50

NS32382-15

Min Max

17

5 25

22

25

38

38

40

2 40

40

40

30

18

38

3

35

35

17 60

140 180

25

40

40

25

25

25

18

18

25

18

38

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Z
tn
w
N
W
Q)
N .
...a.
Q
......
Z
tn
w
N
W
Q)
N • ...a.
U1

• I

II)
• C'I

CD
Cf)
C'I
Cf)
tJ)
z
o
N
CD
Cf)
C'I
Cf)
tJ)
Z

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32382-10, NS32382-15.
Maximum times assume capacitive loading of 50 pF. (Continued)

Name Figure Description Reference/Conditions
NS32382-10

Min Max

tMILOa 4-15 MILO Signal Active (FLT = 0) After R.E., PHI1 T4 50

tHLOAOa 4-16 HLDAO Signal Active (FLT = 1) After R.E., PHI1 Ti 45

tHLOAOia 4-16 H LDAO Signal Inactive (FL T = 1) After R.E., PHI1 Ti orT4 45

tMAOSz 4-16 MADS Signal Floated After R.E., PHI1 Ti
25

byHLDAI(FLT = 1)

tMAOSr 4-16 MADS Return from After R.E., PHI1 Ti orT4
30

Floating (FL T = 1)

tpAVz 4-16 PAV Signal Floated After R.E., PHI1 Ti
25

HLDAI (FLT = 1)

tPAVr 4-16 PAV Return from Floating After R.E., PHI1 Ti or T 4
30

(FLT = 1)

toz 4-16 ADO-AD31 Signals After R.E., PHI1 Ti
25

Floating (FL T = 1)

tOr 4-16 ADO-AD31 Return After R.E., PHI1 Ti orT4
30

from Floating (FL T = 1)

tMAz 4-16 PAO-31 Signals Floated After R.E., PHI1 T1
25

byHLDAI (FLT = 1)

tMAr 4-16 PAO-31 Return from After R.E., PHI1 Ti or T 4
30

Floating (FL T = 1)

telz 4-16 CINH Signal Floated by HLDAI (FL T = 1) After R.E., PHI1 Ti 25

tClr 4-16 CINH Return from Floating (FL T = 1) After R.E., PHI1 Ti or T4 30

tRSTOa 4-18 RST / ABT Signal Active (Reset) After R.E., PHI2 Ti 50

tRSTOia 4-18 RST / ABT Signal Inactive (Reset) After R.E. PHI2 Ti 50

tRSTOw 4-18 RST / ABT Pulse Width (Reset) At 0.8V (Both Edges) 64

4.4.2.2 Input Signal ReqUirements: NS32382-10, NS32382-15

Name Figure Description Reference/Conditions
NS32382-10

Min Max

tOls 4-5 Input Data Setup (FL T = 0) Before F.E., PHI2 T3 12

tOlh 4-5 Input Data Hold (FL T = 0) After R.E., PHI1 T4 3

tROYs 4-5 RDYSetup Before F.E., PHI1 T3 20

tROYh 4-5 RDYHold After R.E., PHI2 T3 4

tsPCs 4-12 SPC Input Setup Before F.E., PHI2 T1 45

tSPCh 4-12 SPC Input Hold After R.E., PHI1 T4 0

tUSs 4-4,4·12 U/SSetup Before F.E., PHI2 T4 25

tUSh 4-4,4-12 U/SHold After R.E., PHI1 (Next) T4 0

tSTs 4-4,4-12 STO-3Setup Before F.E., PHI2 T4 40

tSTh 4-4,4-12 STO-3 Hold After R.E., PHI1 (Next) T4 0

tOls 4-13 Data In Setup Before F.E., PHI2 T1
40

(Slave Processor Write)

3-30

NS32382-15
Units

Min Max

38 ns

30 ns

30 ns

18 ns

20 ns

18 ns

20 ns

18 ns

20 ns

18 ns

20 ns

18 ns

20 ns

40 ns

40 ns

64 tcp

NS32382-15
Units

Min Max

10 ns

3 ns

12 ns

3 ns

35 ns

0 ns

20 ns

0 ns

25 ns

0 ns

22 ns

4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements: NS32382-10, NS32382-15 (Continued)

Name Figure Description Reference/Conditions

tDlh 4-13 Data In Hold After R.E, PHI1 (Next) Ti
(Slave Processor Write)

tHOLDs 4-15 HOLD Setup (FL T = 0) Before F.E., PHI2 T3

tHOLDh 4-15 HOLD Hold (FL T = 0) After R.E., PHI1 T4

tHLDAls 4-16 HLDAI Signal Setup (FL T = 1) Before F.E, PHI2 Ti

tHLDAih 4-16 HLDAI Signal Hold (FLT = 1) After R.E, PHI1 Ti or T4

tSRTs 4-10 BRT Signal Setup (FL T = 0) Before F.E, PHI1 T30rT4

tSRTh 4-10 BRT Signal Hold (FL T = 0) After R.E, PHI2 T3 or T4

tSERs 4-11 BER Signal Setup (FL T = 0) Before F.E., PHI1 T4

tSERh 4-11 BER Signal Hold (FL T = 0) After R.E, PHI2 T4

tRSTls 4-18 Reset Input Setup Before F.E., PHI1 Ti

tRSTlw 4-18 Reset Input Width At o.ev (Both Edges)

4.4.2.3 Clocking Requirements: NS32382-10, NS32382·15

Name Figure Description
Reference/
Conditions

tep 4-17 Clock Period R.E, PHI1, PHI2 to Next
R.E, PHI1, PHI2

teLw(1,2) 4-17 PHI1, PHI2 Pulse Width At 2.0V on PHI1, PHI2
(Both Edges)

teLh(1,2) 4-17 PHI1, PHI2 High Time At Vee - 0.9Von
PHI1, PHI2 (Both Edges)

tell 4-17 PHI1, PHI2 Low Time AtO.eVon
PHI1, PHI2 (Both Edges)

tnOVL(1,2) 4-17 Non-Overlap Time o.evon F.E, PHI1, PHI2 to
o.evon R.E., PHI2, PHI1

tnOVLas Non-Overlap Asymmetry At 0.8V on PHI1, PHI2

(tnOVL(1) - tnOVL(2»

tcLhas PHI1, PHI2 Asymmetry At Vee - 0.9V on PHI1, PHI2

tcLh(1) - tcLh(2»

3-31

NS32382-10

Min Max

3

15

0

25

0

25

0

25

0

20

64

NS32382·10

Min Max

100 250

0.5 tep
-10 ns

0.5 tep
-15 ns

0.5 tep
-5ns

-2 5

-4 4

-5 5

NS32382-15

Min Max

3

15

0

15

0

14

0

14

0

10

64

NS32382-15

Min Max

66 250

0.5tep
-6ns

0.5tep
-10ns

0.5 tep
-5ns

-2 5

-3 3

-3 3

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

tep

Units

ns

ns

ns

ns

z en
(,.)
N
(,.)
co
N •
o
z en
(,.)
N
(,.)
co
N •
U1

LI)

"'"" ~
co
C")
C'I
C")
U)
z
o
"'"" ~
CO
C")
C'I
C")
U)
z

4.0 Device Specifications (Continued)

4.4.3 Timing Diagrams

T4 Tl T2

PHil [_n n n
l Lr ~ n

VADDR '-, ,-/
"-

tPAl,- r-

T3 T4
r-- n

n ~
DATA OUT

-

PHI2 [

ADO-31 [

PAO-11 [ADDRESS VALID

tpAHv

PA12-31 [) ADDRESS VALID

ADS [

--r'PAVIa IPAVI--
ldJ PAV[

CINH [

f.o-lClv

DOO7[/
(HIGH)

Iussl- -

T1 orTI T2 or TI

n lL-
n

tPAlh

- tPAHh

\...:../
'CJ - tClh

\

tUSh

ISTI-t- - ISTh

STO-3 [

ROY [i' \
TL/EE/9142-31

FIGURE 4·4. CPU Write Cycle Timing; Translation In TLB

3-32

4.0 Device Specifications (Continued)

CPU STATES
MMU STATES

T1 T2

T2
TI
T4

TI
T1

TI
T2

TI
T3

TI
T3

TI
T4

TI
T1

PHll[SLrLrLrLrL~ ~rLrLlL

m12[1LnJlLnJ1Jl--. n~~LI
AOD-31 [=D< VA ~ ~ATA~t---+---

~-I-IDlh

PAD-II [-4--...1 '-+-___ -+-___ -+.1 ,, __ -+-___I~-++--+----_+----I_I

PA12-31 [PH ADOR

m[-rv
MADS [

PAV[

ROY [
-+----i----~--+-----+-'"''f'~l ,~~II-ROY-h _~l""li-~---+--_

- -IOO/Nv IOO/Nh- I-

oorn[- U _~------~ Ir-
FLOATING 1'---+----I------+-----+----I---4-~--m[

mrn[{"U'
- j..-tMAv

CINH [~~

TL/EE/9142-32

FIGURE 4-5. MMU Read Cycle Timing (1-Walt State); After a TLB Miss
Note: After FIT Is deasserted, 'IJOlN may be driven temporarily by both CPU and MMU. This, however, does not cause any conflict. Since CPU and MMU force
l5I5lJ'J to the same logic level.

3-33

z en
eN
I\)
eN
Q)
I\)
o
z en
eN
I\)
eN
Q)
I\)
•

(J1

III
I

it)
• N

CC)
C")
N
C")
U)
Z
........
o
• N

CC)
C")
N
C")
U)
Z

4.0 Device Specifications (Continued)

I T1 I T2 T3 T4

PltI1 [

Pltl2 [

ADO-31 [-+--+--+-G"' ___ -+-___ -r ____ _+_

PAO-31 [

Mm[
~[

ROY [-+-~---r----
ooor[

fIJ[.... +-___ ~----~----~---~----

~[.... -+----~----~--.... -~----+----
TL/EE/9142-33

FIGURE 4-6. MMU Write Cycle Timing; after a TLB Miss

CPU STATES TI TI TI TI TI TI T3 T4

MMU STATES Tl T2 T3 T4 T1 T2 T3 T4

PltI1 [

Pltl2 [

ADO-31 [

PAO-31 [

ms[
PAi[

~[(MMU)

~[(CPU) -

m[
MILO [

CINH [

TLlEE/9142-34

FIGURE 4-7. FLT Deassertlon Timing
Note: After m is deasserted, ODiN may be driven temporarily by both CPU and MMU. This, however, does not cause any conflict. Since CPU and MMU force
ODIN to the same logic level.

3-34

4.0 Device Specifications (Continued)

T4 OR n T1 T2

PHil [

PHI2 [

~[

m[
m[

iiSr/m [

FIGURE 4-8. Abort Timing (FLT = 1)

CPU STATES TI

MMU STATES T4

PHI1 [

PHI2 [

Mm[
m[
m[

im/m[

DofN[(MMU)

FIGURE 4-9. Abort Timing (FL T = 0)

3-35

T3 n

TLlEE/9142-35

TL/EE/9142-36

z
(J)
W
N
W
Q)
N .
-10
o
Z
(J)
W
N
W
Q)
N .
-10
U1

Lt) ,...
• N co

C")
N
C")
U)
Z
"­o ,...
N
CO
C")
N
C")
U)
Z

4.0 Device Specifications (Continued)

T1 T2 T3 T4 T1 T2

PHil [

PHI2 [

PAD-31 [

ADD-31 [

vm[
~[

m[
RDY [

m[(LDWI

~[(LOWI

FIGURE 4·10. MMU Bus Retry Timing

T3 T4 T1

PHI1 [

PHI2 [

m[
m[

ROY [

m[
m[

ID/ID [

FIGURE 4·11. Bus Error Timing

3-36

T3 T4

TLlEE/9142-37

n

TLlEE/9142-53

4.0 Device Specifications (Continued)

T4 OR TI T1 T4 T1 OR TI

PHil [

PHI2 ['"+ __ '"

SPC [

U/S[__ ~ __ ~ ____ ~~ ________ ~~~~ ____ ~~ ______ __

STO-3 [

DDIN[__ ~ __________ ~ __ ~ ____ ~~ ________ ~~ __ ~ __ __

FIGURE 4·12. Slave Access Timing; CPU Reading from MMU

T4 OR TI 11 T4 Tl OR TI

PHil [

PHI2 [

AOO-3l [_+-_______ +-_.1 "" ___ -+-______ +-"'"

STO-3 [_+-_'" "' ___ -+0 ______ -+-_""" "' ___ -+-___ _

(~ [_+-______ +-_rI

FIGURE 4·13. Slave Access Timing; CPU Writing to MMU

3·37

TL/EE/9l42-36

TLlEE/9l42-39

z en
w
I\)
w
C)
I\)

• ...&.

o
Z en
w
I\)
w
C)
I\)

• ...&.
U1

Ln
~
co
CW)
C'I
CW)
U)
z
C)
• C'I co

CW)
C'I
CW)
U)
z

4.0 Device Specifications (Continued)

PHI1 [

PHI2 [

!D[
TUEE/9142-40

FIGURE 4·14. SDONE Timing

T3 T4 TI TI TI T4 T1 T2

PHil [

PHI2 [

HOLD [

RmlU[

ws[
PAV[

m[
AOO-3l [

PAO-3l [

~[(MMU)

elNH [

MILD [

TL/EE/9142-50

FIGURE 4·15. Hold Timing (FLT = 0)

3-38

z
4.0 Device Specifications (Continued)

(J)
w
N
W
(X)

CPU STATE T4 TI TI TI TI TI or T4 N •
PHil [

...A.
C)
"-
Z
(J)
W

PHI2 [

N
W
(X)
N • ...A.

HLm[
U'I

HLDAO [

IMADSz

ws[--~~ -----FLOATING

-lpAVz

PAi[--~~ FLOATING

FLT [
(HIGH)

AoD·3l [---0- ----FLOATING

PAD·31 [-----~~ FLOATING

CINH [----u-
FLOATING

M1[Q[(HIGH)

TLlEE/9142-51

FIGURE 4·16. Hold Timing (FLT = 1)

PHil [•
PHI2 [_____ -+"I~

TL/EE/9142-49

FIGURE 4·17. Clock Waveforms

3·39

II) ,....
N
co
(f)
N
(f)

til
Z
o ,.... .
N
CO
(f)
N
(f)

til
Z

TI

PHI1 [

PHI2 [

m/ABf [

Rm[

TI TI TI TI

TLlEE/9142-4S

FIGURE 4-18. Non Power-On Reset Timing

vee v-----------~r---

PHI{ ----1---....1

[

tpWR

RSfI ____ ______ ~\~
TL/EE/9142-46

FIGURE 4-19. Power-On Reset

3·40

~--. z
Appendix A: Interfacing Suggestions

CWA

WAr
WAIT

IC

Tj~ .-2

1
BEO BEl BE2 BE3 ROY ~.

UT<t- ~ BOUT IlO
FLT ,"

IN>-H BiN ODIN ~
RST/AB!

0>--
M

BWO HlDA

WI>-- BWI
NS32332 ADS

CPU BER
FS..- PfS

BRT "

NT)--+ iN'f DT/SDoNE
SPC

r

t.ti)--+ m1i HOLD
STO-3

PHil I"'"

ADO-31 PHI2 I

.oj ~ ER ...
Rt ~
lD;

'II lr ~

....
.oj ~

.-~
10 .. kA

+5

+5

I kA : I kA
... .,

.. CWAIT

.. WAITI

.. WAIT2 BUS

.. BRSn CONTROL
LOGIC

BRSTO

r+FTI
RST ClK ODIN

RD
WR

TSO

DBE

ADS

ROY

~

ROY
Rsn
FlT
ODIN
RsI/ill
I!LL
HLDAI

ADS NS32382 m t.tt.tU
BRT
SDONE
SPC

.:: HOLD
p;: STO-3

PHil
PHI2 ADO-31

.oj~

.. ~

I

--,.

mLslli
+E~ 1Y~;

3A 2Y 1--+
4A
IB 3Y f---+
2B

4yf--+ 3B
4B

~I~

L.= r-.
t.tILO

HLDAO

PAY 5V .
CINH

..
PAO-31 ,.

t.tADS

~'5Y

~5V
~

I

CINH

PAO-31

RST

00-31

00-31
SDN332 PHil PHI2

"- NOE - RSTO

"""-- PSO SPC

~
PSI STO-3

~

I

NS32381 RST NS32C201
FPU TCU

ClK " cm XIN

~
ODIN I

XOUT U

E1'~

r RSTI

TL/EE/9142-52

FIGURE A-1. System Connection Diagram

3-41

en
w
N
W
Q)
N •
o z en
w
N
W
Q)
N •
C1I

•

o ,.... .
N
CO o
N
Cf)
(J)
Z

~National
a Semiconductor
NS32082-10 Memory Management Unit

General Description
The NS32082 Memory Management Unit (MMU) provides
hardware support for demand-paged virtual memory imple­
mentations. The NS32082 functions as a slave processor in
Series 32000 microprocessor-based systems. Its specific
capabilities include fast dynamic translation, protection, and
detailed status to assist an operating system in efficiently
managing up to 32 Mbytes of physical memory. Support for
multiple address spaces, virtual machines, and program de­
bugging is provided.

High-speed address translation is performed on-chip
through a 32-entry fully associative translation look-aside
buffer (TLB), which maintains itself from tables in memory
with no software intervention. Protection violations and
page faults (references to non-resident pages) are automat­
ically detected by the MMU, which invokes the instruction
abort feature of the CPU.

Additional features for program debugging include two
breakpoint registers and a breakpoint counter, which pro­
vide the programmer with powerful stand-alone debugging
capability.

Features
• Totally automatic mapping of 16 Mbyte virtual address

space using memory based tables
• On-chip translation look-aside buffer allows 97% of

translations to occur in one clock for most applications
• Full hardware support for virtual memory and virtual

machines
• Implements "referenced" bits for simple, efficient work­

ing set management
• Protection mechanisms implemented via access level

checking and dual space mapping
• Program debugging support
• Compatible with NS32016, NS32032 and NS32332

CPUs
• 48-pin dual-in-line package

Conceptual Address Translation Model

SERIES
32000

CPU

VIRTUAL ADDRESS ...

r'

ADDRESS STROBE

FLOAT

ABORT

NS320B2
MMU

3-42

PHYSICAL ADDRESS --" ..
ADDRESS STROBE PHYSICAL

MEMORY

TLlEE/8692-1

Table Of Contents
1.0 PRODUCT INTRODUCTION

1.1 Programming Considerations

2.0 FUNCTIONAL DESCRIPTION

2.1 Power and Grounding

2.2 Clocking

2.3 Resetting

2.4 Bus Operation

2.4.1 Interconnections

2.4.2 CPU-Initiating Cycles

2.4.3 MMU-Initiated Cycles

2.4.4 Cycle Extension

2.5 Slave Processor Interface

2.5.1 Slave Processor Bus Cycles

2.5.2 Instruction Protocols

2.6 Bus Access Control

2.7 Breakpointing

2.7.1 Breakpoints on Execution

3.0 ARCHITECTURAL DESCRIPTION

3.1 Programming Model

3.2 Memory Management Functions

3.2.1 Page Table Structure

3.2.2 Virtual Address Spaces

3.2.3 Page Table Entry Formats

3.2.4 Physical Address Generation

3.3 Page Table Base Registers (PTBO, PTBI)

3.4 Error/Invalidate Address Register (EIA)

3.0 ARCHITECTURAL DESCRIPTION (Continued)

3.5 Breakpoint Registers (BPRO, BPR1)

3.6 Breakpoint Count Register (BCNT)

3.7 Memory Management Status Register (MSR)

3.7.1 MSR Fields for Address Translation

3.7.2 MSR Fields for Debugging

3.8 Translation Lookaside Buffer (TLB)

3.9 Entry/Re-entry into Programs Under Debugging

3.10 Address Translation Algorithm

3.11 Instruction Set

4.0 DEVICE SPECIFICATIONS

4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input-Output Signals

4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics

4.4 Switching Characteristics

4.4.1 Definitions

4.4.2 Timing Tables

4.4.2.1 Output Signals; Internal Propagation
Delays

4.4.2.2 Input Signal Requirements

4.4.2.3 Clocking Requirements

Appendix A: Interfacing Suggestions

List of Illustrations
The Virtual Memory Model... 1-1

NS32082 Address Translation Model ... 1-2

Recommended Supply Connections .. 2-1

Clock Timing Relationships .. 2-2

Power-On Reset Requirements .. 2-3

General Reset Timing. .. 2-4

Recommended Reset Connections, Memory Managed System. .. 2-5

CPU Read Cycle; Translation in TLB 2-6

Abort Resulting from Protection Violation; Translation in TLB 2-7

Page Table Lookup... 2-8

Abort Resulting After a Page Table Lookup......... 2-9

Slave Access Timing; CPU Reading from MMU .. 2-10

Slave Access Timing; CPU Writing to MMU 2-11

FL T Deassertation During RDVAL/WRVAL Execution. .. 2-12

Bus Timing with Breakpoint on Physical Address Enabled. .. 2-13

Execution BreakpointTiming; Insertion of DIA Instruction... 2-14

Two-Level Page Tables .. , 3-1

A Page Table Entry. .. 3-2

Virtual to Physical Address Translation 3-3

Page Table Base Registers (PTBO, PTB1) ... 3-4

EIA Register. .. 3-5

Breakpoint Registers (BPRO, BPR1) .. 3-6

Breakpoint Counter Register (BCNT) 3-7

Memory Managment Status Register (MSR) ... 3-8

3-43

C) r--,
• N

co
C)
N
('I')
(/)
Z

List of Illustrations (Continued)

TLB Model .. 3-9

Slave Instruction Format .. -. .. 3-10

Dual-In-Line Package. 4-1

Timing Specification Standard (Signal Valid After Clock Edge) .. 4-2

Timing Specification Standard (Signal Valid Before Clock Edge) ...•.......... 4-3

CPU Read (Write) Cycle Timing (32-Bit Mode) .. 4-4

MMU Read Cycle Timing (32-Bit Mode) after a TLB Miss. • 4-5

MMU Write Cycle Timing After a TLB Miss. .. 4-6

FL T Deassertation Timing ...•............... 4-7

Abort Timing (FL T = 1)•.......•.......................•. " 4-8

Abort Timing (FL T = 0) ..•............................ 4-9

CPU Operand Access Cycle with Breakpoint On Physical Address Enabled 4-10

Slave Access Timing; CPU Reading from MMU .. 4-11

Slave Access Timing; CPU Writing to MMU ..•. 4-12

SPC Pulse From the MMU.. 4-13

HOLD Timing (FLT = 1); SMR Instruction Not Being Executed•....•....................................... 4-14

FK5[5Timing (FLT = 1); SMR Instruction Being Executed•..................................... 4-15

RC:5I'i5Timlng (FIr = 0) ...•........................... 4-16

Clock Waveforms... ...•.................... 4-17

Reset Timing•...........•.........•..............••..............••................... 4-18

Power-On Reset. • . • • 4-19

System Connection Diagram... A-1

System Connection Diagram. . • • • • • • • • • • . . • . . • • . . . • . .. A-2

Tables
STO-ST3 Encodings.. 2-1

LMR Instruction Protocol . • • • • .. 2-2

SMR Instruction Protocol. • . • • • • .. 2-3

RDVAL/WRVAL Instruction Protocol.. 2-4

Access Protection Levels. • 3-1

Instructions Causing Non-Sequential Fetches. • • . • .. 3-2

"Short" Field Encodings .. 3-3

3-44

1.0 Product Introduction
The NS32082 MMU provides hardware support for three
basic features of the Series 32000; dynamic address trans­
lation, access level checking and software debugging. Dy­
namic Address Translation is required to implement de­
mand-paged virtual memory. Access level checking is per­
formed during address translation, ensuring that unautho­
rized accesses do not occur. Because the MMU resides on
the local bus and· is in an ideal location to monitor CPU
activity, debugging functions are also included.

The MMU is intended for use in implementing demand­
paged virtual memory. The concept of demand-paged virtu­
al memory is illustrated in Figure 1-1. At any point in time, a
program sees a uniform addressing space of up to 16 mega­
bytes (the "virtual" space), regardless of the actual size of
the memory physically present in the system (the "physical"
space). The full virtual space is recorded as an image on a
mass storage device. Portions of the virtual space needed
by a running program are copied into physical memory when
needed.

To make the virtual information directly available to a run­
ning program, a mapping must be established between the
virtual addresses asserted by the CPU and the physical ad­
dresses of the data being referenced.

To perform this mapping, the MMU divides the virtual mem­
ory space into 512-byte blocks called "pages." It interprets
the 24-bit address from the CPU as a 15-bit "page number"
followed by a 9-bit offset, which indicates the position of a
byte within the selected page. Similarly, the MMU divides
the physical memory into 512-byte frames, each of which
can hold a virtual page.

VIRTUAL
MEMORY

HIGH
MEMORY -----­
ADDRESS

The translation process is therefore modeled as accepting a
virtual page number from the CPU and substituting the cor­
responding physical page frame number for it, as shown in
Figure 1-2. The offset is not changed. The translated page
frame number is 16 bits long, including an additional ad­
dress bit (A24) intended for physical bank selection. Physi­
cal addresses issued by the MMU are 25 bits wide.

TLlEE/8692-3

FIGURE 1-2. NS32082 Address Translation Model
Generally, in virtual memory systems the available physical
memory space is smaller than the maximum virtual memory
space. Therefore, not all virtual pages are simultaneously
resident. Nonresident pages are not directly addressable by
the CPU. Whenever the CPU issues a virtual address for a
nO'nresident or nonexistent page, a "page fault" will result.
The MMU signals this condition by invoking the Abort fea­
ture of the CPU. The CPU then halts the memory cycle,

PHYSICAL
MEMORY

HIGH
..... _______ MEMDRY

ADDRESS

MASS STORAGE
TL/EE/8692-2

FIGURE 1-1. The Virtual Memory Model

3-45

z en w
II.)
o
Q)
II.)
• ~
o

•

o ,.... .
N
CO o
N
('f)
C/)
Z

1.0 Product Introduction (Continued)

restores its internal state to the point prior to the instruction
being executed, and enters the operating system through
the abort trap vector.

The operating system reads from the MMU the virtual ad­
dress which caused the abort. It selects a page frame which
is either vacant or not recently used and, if necessary,
writes this frame back to mass storage. The required virtual
page is then copied into the selected page frame.

The MMU is informed of this change by updating the page
tables (Section 3.2), and the operating system returns con­
trol to the aborted program using the RETI instruction.
Since the return address supplied by the abort trap is the
address of the aborted instruction, execution resumes by
retrying the instruction.

This sequence is called paging. Since a page fault encoun­
tered in normal execution serves as a demand for a given
page, the whole scheme is called demand-paged virtual
memory.

The MMU also provides debugging support. It may be pro­
grammed to monitor the bus for two virtual or physical ad­
dresses in real time. A counter register is associated with
one of the'se, providing a "break-on-N-occurrences" capa­
bility.

1.1 PROGRAMMING CONSIDERATIONS

When a CPU instruction is aborted as a result of a page
fault, some memory resident data might have been already
modified by the instruction before the occurrence of the
abort.

This could compromise the restartability of the instruction
when the CPU returns from the abort routine.

To guarantee correct results following the re-execution of
the aborted instruction, the following actions should not be
attempted:

a) No instruction should try to overlay part of a source oper­
and with part of the result. It is, however, permissible to
rewrite the result into the source operand exactly if page
faults are being generated only by invalid pages and not
by write protection violations (for example, the instruction
"ABSW X, X", which replaces X with its absolute value).
Also, never write to any memory location which is neces­
sary for calculating the effective address of either oper­
and (Le. the pointer in "Memory Relative" addressing
mode; the Link Table pointer or Link Table Entry in "Ex­
ternal" addressing mode).

b) No instruction should perform a conversion in place from
one data type to another larger data type (Example:
MOVWF X, X which replaces the 16-bit integer value in
memory location X with its 32-bit floating-point value).
The addressing mode combination "TOS, TOS" is an ex­
ception, and is allowed. This is because the least-signifi­
cant part of the result is written to the possibly invalid
page before the source operand is affected. Also, integer
conversions to larger integers always work correctly in
place, because the low-order portion of the result always
matches the source value.

c) When performing the MOVM instruction, the entire
source and destination blocks must be considered "oper­
ands" as above, and they must not overlap.

3·46

2.0 Functional Description
2.1 POWER AND GROUNDING

The NS32082 requires a single 5V power supply,applied on
pin 48 (Vee>.

Grounding connections are made on two pins. Logic Ground
(GNDL, pin 24) is the common pin for on-chip logic, and
Buffer Ground (GNDB, pin 25) is the common pin for the
output drivers. For optimal noise immunity, it is recommend­
ed that GNDL be attached through a singlE! conductor di­
rectly to GNDB, and that all other grounding connections be
made only to GNDB, as shown below (Figure 2-1).

r---:::--6 Y +5V

1 VCC~

TLlEE/8692-4

FIGURE 2-1. Recommended Supply Connections

2.2 CLOCKING

The NS32082 inputs clocking signals from the NS32201
Timing Control Unit (TCU), which presents two non-overlap­
ping phases of a Single clock frequency. These phases are
called PHI1 (pin 26) and PHI2 (pin 27). Their relationship to
each other is shown in Figure 2-2.
Each riSing edge of PHI1 defines a transition in the timing
state ("T-State") of the MMU. One T-State represents one
hardware cycle within the MMU, and/or one step of an ex­
ternal bus transfer. See Section 4 for complete specifica­
tions of PHI1 and PHI2.

PHI1

PHI 2

TL/EE/8692-5

FIGURE 2-2. Clock Timing Relationships

As the TCU presents signals with very fast transitions, it is
recommended that the conductors carrying PHI1 and PHI2
be kept as short as possible, and that they not be connect­
ed to any devices other than the CPU and MMU. A TIL
Clock signal (CTIL) Is provided by the TCU for all other
clocking.

2.0 Functional Description (Continued)

2.3 RESETTING

The RSTI input pin is used to reset the NS32082. The MMU
responds to RSTI by terminating processing, resetting its
internal logic and clearing the appropriate bits in the MSR
register.

Only the MSR register is changed on reset. No other pro­
gram accessible registers, including the TLB are affected.

The RST / ABT signal is activated by the MMU on reset. This
signal should be used to reset the CPU. AT/SPC is held low
for five clock cycles after the rising edge of RSTI to indicate
to the CPU that the address translation mode must be se­
lected.

The A24/HBF signal is sampled by the MMU on the rising
edge of RSTI. It indicates the bus size of the attached CPU.
A24/HBF must be sampled high for a 16-bit bus and low for
a 32-bit bus.

On application of power, RSTI must be held low for at least
50 J-Ls after Vee is stable. This is to ensure that a" on-chip
voltages are completely stable before operation. Whenever
a Reset is applied, it must also remain active for not less
than 64 clock cycles. The rising edge must occur while PHI1
is high. See Figures 2-3 and 2-4.

The NS32201 Timing Control Unit (TCU) provides circuitry
to meet the Reset requirements of the NS32082 MMU. Fig­
ure 2-5 shows the recommended connections.

Vcc

PHil ----+--~ JJ-JL
I el4CLOCK !--- CYCLES

~---e50j.lMC ----l~

TL/EE/8692-6

FIGURE 2-3. Power-On Reset Requirements

Vee

r----------, I I

2.4 BUS OPERATION

2.4.1 Interconnections

The MMU runs synchronously with the CPU, sharing with it a
single multiplexed address/data bus. The interconnections
used by the MMU for bus control, when used in conjunction
with the NS32016, are shown in Figure A-I (Appendix A).

The CPU issues 24-bit virtual addresses on the bus, and
status information on other pins, pulsing the signal ADS low.
These are monitored by the MMU. The MMU issues 25-bit
physical addresses on the bus, pulsing the PAV line low.
The PAV pulse triggers the address latches and signals the
NS32201 TCU to begin a bus cycle. The lCU in turn gener­
ates the necessary bus control signals and synchronizes
the insertion of WAIT states, by providing the signal ROY to
the MMU and CPU. Note that it is the MMU rather than the
CPU that actually triggers bus activity in the system.

The functions of other interface signals used by the MMU to
control bus activity are described below.

The STO-ST3 pins indicate the type of cycle being initiated
by the CPU. STO is the least-significant bit of the code. Ta­
ble 2-1 shows the interpretations of the status codes pre­
sented on these lines.

PHIl

L O!: 64 CLOCK --_I ___ ~~~r--- CYCLES I
RSn ~"~ ~u..::'~'~L---"""",{Jr--_...J

NS32201
TCU

TLlEE/8692-7

FIGURE 2-4. General Reset Timing

NS32082
MMU

SERIES 32000
CPU

I RESET D-~I-I-.......... - ... ~-.... - ... I RSTI RSTO
I I
1---------_..1

EXTERNAL RESET
(OPTIONAL)

TL/EE/8692-8

FIGURE 2-5. Recommended Reset Connections, Memory-Managed System

3·47

z en
w
N
o
CD
N •
o

o
N
CO
o
N
('t)

en
z

2.0 Functional Description (Continued)

Status codes that are relevant to the MMU's function during
a memory reference are:

1000, 1001 Instruction Fetch status, used by the debug­
ging features to distinguish between data and
instruction references.

1010 Data Transfer. A data value is to be trans­
ferred.

1011 Read RMW Operand. Although this is always
a Read cycle, the MMU treats it as a Write
cycle for purposes of protection and break­
pointing.

1100 Read for effective address. Data used for ad-
dress calculation is being transferred.

All other status codes are treated as data accesses if they
occur in conjunction with a pulse on the ADS pin. Note that
these include Interrupt Acknowledge and End of Interrupt
cycles performed by the CPU. The status codes 1101, 1110
and 1111 are also recognized by the MMU in conjunction
with pulses on the SPC line while it is executing Slave Proc­
essor instructions, but these do not occur in a context rele­
vant to address translation.

TABLE 2-1. STO-ST3 Encodings
(STO is the Least Significant)

0000 -Idle: CPU Inactive on Bus
0001 -Idle: WAIT Instruction
0010- (Reserved)
0011 -Idle: Waiting for Slave
0100 -Interrupt Acknowledge, Master
0101 - Interrupt Acknowledge, Cascaded
0110- End of Interrupt, Master
0111 - End of Interrupt, Cascaded
1000 - Sequential Instruction Fetch
1001 - Non-Sequential Instruction Fetch
1010- Data Transfer
1011 - Read Read-Modify-Write Operand
1100 - Read for Effective Address
1101 - Transfer Slave Operand
1110- Read Slave Status Word
1111 - Broadcast Slave 10

The ODIN line indicates the direction of the transfer: 0 =

Read, 1 = Write.

DDIN is monitored by the MMU during CPU cycles to detect
write operations, and is driven by the MMU during MMU-ini­
tiated bus cycles.

The U/S pin indicates the privilege level at which the CPU is
making the access: 0 = Supervisor Mode, 1 = User Mode.
It is used by the MMU to select the address space for trans­
lation and to perform protection level checking. Normally,
the U/S pin is a direct reflection of the U bit in the CPU's
Processor Status Register (PSR). The MOVUS and MOVSU
CPU instructions, however, toggle this pin on successive
operand accesses in order to move data between virtual
spaces.

The MMU uses the FL T line to take control of the bus from
the CPU. It does so as necessary for updating its internal
TLB from the Page Tables in memory, for maintaining the

3-48

contents of the status bits (R and M) in the Page Table
Entries, and for implementing bus timing adjustments need­
ed by the debugging features.

The MMU also aborts invalid accesses attempted by the
CPU. This is done by pulsing the RST I ABT pin low for one
clock period. (A pulse longer than one clock period is inter­
preted by the CPU as a Reset command).

Because the MMU performs only 16-bit transfers, some ad­
ditional circuitry is needed to interface it to the 32-bit data
bus of an NS32032-based system. However, since the
MMU never writes to the most-significant word of a Page
Table Entry, the only special requirement is that it must be
able to read from the top half of the bus. This can be ac­
complished as shown in Figure A-2 (Appendix A) by using a
16-bit unidirectional buffer and some gating circuitry that en­
ables it whenever an MMU-initiated bus cycle accesses an
address ending in binary "10".

The bus connections required in conjunction with the
NS32332 CPU are somewhat more complex (see the
NS32332 data sheet), but the sequences of events docu­
mented here still hold.

2.4.2 CPU-Initiated Bus Cycles

A CPU-initiated bus cycle is performed in a minimum of five
clock cycles (four in the case of the NS32332): T1, TMMU,
T2, T3 and T 4, as shown in Figure 2-6.

During period T1, the CPU places the virtual address to be
translated on the bus, and the MMU latches it internally and
begins translation. The MMU also samples the ODIN pin,
the status lines STO-ST3, and the U/S pin to determine
how the CPU intends to use the bus.

During period TMMU the CPU floats its bus drivers and the
MMU takes one of three actions:

1) If the translation for the virtual address is resident in the
MMU's TLB, and the access being attempted by the CPU
does not violate the protection level of the page being
referenced, the MMU presents the translated address
and generates a PAY pulse to trigger a bus cycle in the
rest of the system. See Figure 2-6.

2) If the translation for the virtual address is resident in the
MMU's TLB, but the access being attempted by the CPU
is not allowed due to the protection level of the page
being referenced, the MMU generates a pulse on the
RST/ABT pin to abort the CPU's access. No PAY pulse
is generated. See Figure 2-7.

3) If the translation for the virtual address is not resident in
the TLB, or if the CPU is writing to a page whose M bit is
not yet set, the MMU takes control of the bus asserting
the FL T signal as shown in Figure 2-8. This causes the
CPU to float its bus and wait. The MMU then initiates a
sequence of bus cycles as described in Section 2.4.3.

From state T2 through T 4 data is transferred on the bus
between the CPU and memory, and the TCU provides the
strobes for the transfer. During this time the MMU floats

2.0 Functional Description (Continued)

pins ADO-AD15, and handles pins A 16-A24 according to
the mode of operation (16-bit or 32-bit) selected during re­
set (Section 2.3).

In 16-bit bus mode, the MMU drives address lines A 16-A24
from TMMU through T4 and they need not be latched exter­
nally. This is appropriate for the NS32016 CPU, which uses
only ADO-AD15 for data transfers. In 32-bit bus mode, the
MMU asserts the physical address on pins A 16-A24 only
during TMMU, and floats them from T2 through T4 because
the CPU uses them for data transfer. In this case the physi­
cal address presented on these lines must be latched exter­
nally using PAY.

Whenever the MMU generates an Abort pulse on the
RST / ABT pin, the CPU enters state T2 and then Ti (idle),
ending the bus cycle. Since no PAY pulse is issued by the
MMU, the rest of the system remains unaware that an ac­
cess has been attempted. The MMU requires that no further
memory references be attempted by the CPU for at least
two clock cycles after the T2 state, as shown in Figure 2-7.
This requirement is met by all Series 32000 CPU's. During
this time, the RDY line must remain high. This requirement
is met by the NS32201 TCU.

2.4.3 MMU-Inltlated Cycles

Bus cycles Initiated by the MMU are always nested within
CPU-Initiated bus cycles; that is, they appear after the MMU
has accepted a virtual address from the CPU and has set
the m line active. The MMU will Initiate memory cycles In
the following cases:

1) There is no translation In the MMU's TLB for the virtual
address Issued by the CPU, meaning that the MMU must
reference the Page Tables in memory to obtain the trans­
lation.

PHI1 [

T. OR TI T1 TIolIolU

PHI2 [

A16- 2. [

ADO,: 15 [

m[
m[
oorn[

m[
u/s [

STO- 3 [

2) There is a translation for that virtual address in the TLB,
but the page is being written for the first time (the M bit in
its Level-2 Page Table Entry is 0). The MMU treats this
case as if there were no translation in the TLB, and per­
forms a Page Table lookup in order to set the M bit in the
Level-2 Page Table Entry as well as in the TLB.

Having made the necessary memory references, the MMU
either aborts the CPU access or it provides the translated
address and allows the CPU's access to continue to T2.

Figure 2-8 shows the sequence of events in a Page Table
lookup. After asserting FL T, the MMU waits for one addition­
al clock cycle, then reads the Level-1 Page Table Entry and
the Level-2 Page Table Entry in four consecutive memory
Read cycles. Note that the MMU performs two 16-bit trans­
fers to read each Page Table Entry, regardless of the width
of the CPU's data bus. There are no idle clock cycles be­
tween MMU-initiated bus cycles unless a bus request is
made on the HOLD line (Section 2.6).

During the Page Table lookup the MMU drives the DDIN
signal. The status lines STO-ST3 and the U/S pin are not
released by the CPU, and retain their original settings while
the MMU uses the bus. The Byte Enable signals from the
CPU (HBE in 16-bit systems, BEO-BE3 in 32-bit systems)
should in general be handled externally for correct memory
referencing. (The current NS32016 CPU does, however,
handle HBE In a manner that Is acceptable In many systems
at clock rates of 12.5 MHz or less.)

In the clock cycle immediately after T4 of the last lookup
cycle, the MMU removes the m slgnal,lssues the translat·
ed address, and pulses 'PA'J to continue the CPU's access.

Note that when the MMU sets m active, the clock cycle
originally called TMMU is redesignated Tf. Clock cycles in
which the PAY pulse occurs are designated TMMU.

T2 T3 T. I T1 OR n

(HIGH)

TL/EE/8692-9

FIGURE 2-6. CPU Read Cycle; Translation In TLB (TLB Hit)

3-49

z
en w
N
o
Q)
N •
o

•

o
I

N
CO
o
N
C")
t/)
Z

2.0 Functional Description (Continued)

PHil [

PHI2[

T1 no,m

A16 - 2.{-+ '-....;.;.~F-"

m[
ffi/rn[

m[
HOLo[

RDY[

\._.:'(2)

T2 T3 T4 Tl OR n

(HIGH)

(BY cpu)

TL/EE/8692-10

Note 1: The CPU drives the bus if a write cycle is aborted.

Note 2: FL T may be pulsed if a breakpoint on physical address is enabled or an execution breakpoint is triggered.

Note 3: If this bus cycle is a write cycle to a write-protected page, FL T is asserted for two clock cycles and the abort pulse is delayed by one clock cycle.

FIGURE 2-7. Abort Resulting from Protection Violation; Translation In TLB

CPU
STATES

"' ... U
STATES

PHil [

I

cpu ACCESS I L.S. WORD PTE.l I ... ·S. WORD PTE.l I L.S. WORD PTE.21 ... •S• WORD PTE.21 cpu ACCESS I
Tl Tf TI TI... • .. Tf Tt.t ... U T2 T3 T4

T1 I TI I Tf Tt.t ... ~ T2 I T3 I 14 Tt.t ... ~ T2 I T3 I T4 Tt.t ... ~ T2 I T3 I T4 Tt.t ... ~ T2 I T3 I T4 Tt.t ... ~ T2 I T3 I T4

_rL ru n... n... n... rL n... n... il rL rl. ru ru ru n... il il ru n... ru 1..: lJ lJ
PHI2[lLn Ln Ln Jl Jl Jl Ln Jl Jl Jl Ln Ln Jl Jl .Jl Jl Jl Jl Ln 11 U1 Jl Jl

:>S~ ~. I~?-
j

I~~-
j

Ift- 'SA~' ,f~-
j

ieX -SR -SR 'SR PH.'"AD. DATA OUT

BUS[

-U

IV V V IV V
--, I

\ I

r ~ :L r ~ \. r r--~ \.. - - - _1

n...
U1
X -

\-r -

I 1\
(1) (2)

Note 1: If the R bit on the Level-1 PTE must be set, a write cycle is inserted here.

Note 2: If either the R or the M bit on the Level-2 PTE must be set, a write cycle is inserted here.

Note 3: If a breakpoint on physical address is enabled, an extra clock cycle is inserted here.

FIGURE 2-8. Page Table Lookup

3-50

(3) TLlEE/8692-11

2.0 Functional Description (Continued)

The Page Table Entries are read starting with the low-order
word. If the V bit (bit 0) of the low-order word is zero, or the
protection level field PL (bits 1 and 2) indicates that the
CPU's attempted access is illegal, the MMU does not gener­
ate any further memory cycles, but instead issues an Abort
pulse during the clock cycle after T4 and removes the FLT
signal. The CPU continues to T2 and then becomes idle on
the bus, as shown in Figure 2-9.

If the Rand/or M bit (bit 3 or 4) of the low-order word must
be updated, the MMU does this immediately in a single
Write cycle, before reading the high-order word of the Page
Table Entry. All bits except those updated are rewritten with
their original values.

At most, the MMU writes two 16-bit words to memory during
a translation: the first to the Level-1 table to update the R
bit, and the second to the Level-2 table to update the R
and/or M bits.

2.4.4 Cycle Extension

To allow sufficient strobe widths and access time require­
ments for any speed of memory or peripheral device, the
NS32082 provides for extension of a bus cycle. Any type of
bus cycle, CPU-initiated or MMU-initiated, can be extended,
except Slave Processor cycles, which are not memory or
peripheral references.

RST/ ABT[

RDY[

HOLD[

TI.4I.4U

READ L.S. WORD PTE

T2 I T3 T4

In Figures 2-6 and 2-8, note that during T3 all bus control
signals are flat. Therefore, a bus cycle can be cleanly ex­
tended by causing the T3 state to be repeated. This is the
purpose of the ROY (Ready) pin.

(1)

Immediately before T3 begins, on the falling edge of clock
phase PHI2, the ROY line is sampled by the CPU and/or the
MMU. If ROY is high, the next state after T3 will be T4,
ending the bus cycle. If it is low, the next state after T3 will
be another T3 and the ROY line will be sampled again. ROY
is sampled in each following clock period, with insertion of
additional T3 states, until it is sampled high. Each additional
T3 state inserted is called a "WAIT state."

Ouring CPU bus cycles, the MMU monitors the ROY pin only
if the 16-bit mode is selected. This is necessary since the
MMU drives the address lines A16-A24, and needs to de­
tect the end of the bus cycle in order to float them.

If the 32-bit mode is selected, the above address lines are
floated following the TMMU state. The MMU will be ready to
perform another translation after three clock cycles, and the
ROY line is ignored.

The ROY pin is driven by the NS32201 Timing Control Unit,
which applies WAIT states to the CPU and MMU as request­
ed on its own WAIT request input pins.

BUS IDLE

T2 I T3 1T1 OR n T4

(BY CPU)

TLlEE/8692-12

Note 1: If a breakpoint on physical address is enabled, an extra clock cycle is inserted here.

FIGURE 2·9. Abort Resulting after a Page Table Lookup

3-51

z en
w
N
o
co
N .
...Ao

o

•

Q ,...
• N

co
Q
N
C")
(J)
Z

2.0 Functional Description (Continued)

2.5 SLAVE PROCESSOR INTERFACE

The CPU and MMU execute four instructions cooperatively.
These are LMR, SMR, RDVAL and WRVAL, as described in
Section 2.5.2. The MMU takes the role of a Slave Processor
in executing these instructions, accepting them as they are
issued to it by the CPU. The CPU calculates all effective
addresses and performs all operand transfers to and from
memory and the MMU. The MMU does not take control of
the bus except as necessary in normal operation; i.e., to
translate and validate memory addresses as they are pre­
sented by the CPU.

The sequence of transfers ("protocol") followed by the CPU
and MMU involves a special type of bus cycle performed by
the CPU. This "Slave Processor" bus cycle does not involve
the issuing of an address, but rather performs a fast data
transfer whose purpose is pre-determined by the form of the
instruction under execution and by status codes asserted by
the CPU.

2.5.1 Slave Processor Bus Cycles

The interconnections between the CPU and MMU for Slave
Processor communication are shown in Figures A-1 and A-2
(Appendix A). The low-order 16 bits of the bus are used for
data transfers. The SPC signal is bidirectional. It is pulsed by
the CPU as a low-active data strobe for Slave Processor

PREV.CYCLE

I T40RTi

PHil [

PHI2 [

iPC [

ADO-AD15 [

8TO·8T3 [

ADS [

65iN [
Note 1: CPU samples Data Bus here.

T1

transfers, and is also pulsed low by the MMU to acknowl­
edge, when necessary, that it is ready to continue execution
of an MMU instruction. Since SPC is normally in a high-im­
pedance state, it must be pulled high with a 10 kn resistor,
as shown. The MMU also monitors the status lines STO­
ST3 to follow the protocol for the instruction being execut­
ed.

Data is transferred between the CPU and the MMU with
Slave Processor bus cycles, illustrated in Figures 2-10 and
2-11. Each bus cycle transfers one byte or one word (16
bits) to or from the MMU.

Slave Processor bus cycles are performed by the CPU in
two clock periods, which are labeled T1 and T 4. During T1,
the CPU activates SPC and, if it is writing to the MMU, it
presents data on the bus. During T4, the CPU deactivates
SPC and, if it is reading from the MMU, it latches data from
the bus. The CPU guarantees that data written to the MMU
is held through T4 to provide for the MMU's hold time re­
quirements. The CPU also guarantees that the status code
on STO-ST3 becomes valid, at the latest, during the clock
period preceding T1. The status code changes during T 4 to
anticipate the next bus cycle, if any.

Note that Slave Processor bus cycles are never extended
with WAIT states. The ROY line is not sampled.

T4

NEXT CYCLE

T10RTi I

TL/EE/8692-13

FIGURE 2·10. Slave Access Timing; CPU Reading from MMU

3-52

2.0 Functional Description (Continued)

PREVo CYCLE I NEXT CYCLE

I T40RTI T1 T4 T1 ORTI I

PHI1 [

PHI2 [

SPC [

ADO-AD15 [

STO·ST3 [

ADS [

ODiN [
TLlEE/8692-14

Note 1: MMU samples Data Bus here.

FIGURE 2·11. Slave Access Timing; CPU Writing to MMU

2.5.2 Instruction Protocols

MMU instructions have a three-by1e Basic Instruction field
consisting of an ID byte followed by an Operation Word. See
Figure 3-10 for the MMU instruction encodings. The ID By1e
has three functions:

1) It identifies the instruction as being a Slave Processor
instruction.

2) It specifies that the MMU will execute it.

3) It determines the format of the following Operation Word
of the instruction.

The CPU initiates an MMU instruction by issuing first the ID
By1e and then the Operation Word, using Slave Processor
bus cycles. The ID By1e is sent on the least-significant byte
of the bus, in conjunction with status code 1111 (Broadcast
ID By1e). The Operation Word is sent on the entire 16-bit
data bus, with status code 1101 (Transfer Operation Word /
Operand). The Operation Word is sent with its by1es
swapped; I.e., its least-significant by1e is presented to the
MMU on the most-significant half of the 16-bit bus.

Other actions are taken by the CPU and the MMU according
to the instruction under execution, as shown in Tables 2-2,
2-3 and 2-4.

In executing the LMR instruction (Load MMU Register, Ta­
ble 2-2), the CPU issues the ID By1e, the Operation Word,
and then the operand value to be loaded by the MMU. The
register to be loaded is specified in a field within the Opera­
tion Word of the instruction.

3-53

In executing the SMR instruction (Store MMU Register, Ta­
ble 2-3), the CPU also issues the ID Byte and the Operation
Word of the instruction to the MMU. It then waits for the
MMU to signal (by pulsing SPC low) that it is ready to pre­
sent the specified register's contents to the CPU. Upon re­
ceiving this "Done" pulse, the CPU reads first a "Status
Word" (dictated by the protocol for Slave Processor instruc­
tions) which the MMU provides as a word of all zeroes. The
CPU then reads the contents of the selected register in two
successive Slave Processor bus cycles, and places this re­
sult value into the instruction's destination (a CPU general­
purpose register or a memory location).

In executing the RDVAL (Read-Validate) or WRVAL (Write­
Validate) instruction, the CPU again issues the ID Byte and
the Operation Word to the MMU. However, its next action is
to initiate a one-byte Read cycle from the memory address
whose protection level is being tested. It does so while pre­
senting status code 1010; this being the only place that this
status code appears during a RDVAL or WRVAL instruction.
This memory access triggers a special address translation
from the MMU. The translation is performed by the MMU
using User-Mode mapping, and any protection violation oc­
curring during this memory cycle does not cause an Abort.
The MMU will, however, abort the CPU if the Level-1 Page
Table Entry is invalid.

Upon completion of the address translation, the MMU puls­
es SPC to acknowledge that the instruction may continue
execution.

z en
~
N o
Q)
N •
o

•

o • N co o
N
("I')
CJ)
Z

2.0 Functional Description (Continued)

TABLE 2-2. LMR Instruction Protocol

CPU Action

Issues ID Byte of instruction, pulsing SPC.
Sends Operation Word of Instruction, pulsing SPC.
Issues low-order word of new register value to
MMU, pulsing SPC.
Issues high-order word of new register value to
MMU, pulsing SPC.

Status

1111
1101
1101

1101

MMUAction

Accepts ID Byte.
Decodes instruction.
Accepts word from bus; places it into low-order half
of referenced MMU register.
Accepts word from bus; places it into high-order
half of referenced MMU register.

TABLE 2-3. SMR Instruction Protocol

CPU Action

Issues ID Byte of Instruction, pulsing SPC.
Sends Operation Word of instruction, pulsing SPC.
Waits for Done pulse from MMU.
Pulses SPC and reads Status Word from MMU.
Pulses SPC, reading low-order word of result from
MMU.
Pulses SPC, reading high-order word of result from
MMU.

Status

1111
1101
xxxx
1110
1101

1101

MMUAction

Accepts ID Byte.
Decodes instruction.
Sends Done pulse on SPC.
Presents Status Word (all zeroes) on bus.
Presents low-order word of referenced MMU
register on bus.
Presents high-order word of referenced MMU
register on bus.

TABLE 2-4. RDVAL/WRVAL Instruction Protocol

CPU Action

Issues ID Byte of instruction, pulsing SPC.
Sends Operation Word of instruction, pulsing SPC.
Performs dummy one-byte memory read from
operand's location.

Waits for Done pulse from MMU
Sends SPC pulse and reads Status Word from
MMU; places bit 5 of this word into the F bit of the
PSR register.

If the translation is successful the MMU will also start a
dummy memory cycle from the translated address. See Fig­
ure 2-12. Note that, during this time the CPU will monitor the
RDY line. Therefore, for proper operation, the RDY line
must be kept high if the memory cycle is not performed.

The CPU then reads from the MMU a Status Word. Bit 5 of
this Status Word indicates the result of the instruction:

o if the CPU in User Mode could have made the corre­
sponding access to the operand at the specified ad­
dress (Read in RDVAL, Write in WRVAL),

1 if the CPU would have been aborted for a protection
violation.

Bit 5 of the Status Word is placed by the CPU into the F bit
of the PSR register, where it can be tested by subsequent
instructions as a condition code.
Note: The MMU sets the R bit on ROVAL; Rand M bits on WRVAL.

2.6 BUS ACCESS CONTROL

The NS32082 MMU has the capability of relinquishing its
access to the bus upon rquest from a DMA device. It does
this by using HOLD, HLDAI and HLDAO.

Details on the interconnections of these pins are provided in
Figures A-1 and A-2 (Appendix A).

Status

1111
1101
1010

xxxx
1110

3-54

MMUAction

Accepts ID Byte.
Decodes instruction.
Translates CPU's address, using User-Mode
mapping, and performs requested test on the
address presented by the CPU. Aborts the CPU if
the level-1 page table entry is invalid. Starts a
Memory Cycle from the Translated Address if the
translation is successful. Aborts on protection
violations are temporarily suppressed.
Sends Done pulse on SPC.
Presents Status Word on bus, indicating in bit 5 the
result of the test.

Requests for DMA are presented in parallel to both the CPU
and MMU on the HOLD pin of each. The component that
currently controls the bus then activates its Hold Acknowl­
edge output to grant bus access to the requesting device.
When the CPU grants the bus, the MMU passes the CPU's
HLDA signal to its own HLDAO pin. When the MMU grants
the bus, it does so by activating its HLDAO pin directly, and
the CPU is not involved. HLDAI in this case is ignored.

Refer to Figures 4-14, 4-15 and 4-16 for details on bus
granting sequences.

2.7 BREAKPOINTING

The MMU provides the ability to monitor references to two
memory locations in real time, generating a Breakpoint trap
on occurrence of any specified type of reference to either
location made by a program. In addition, a Breakpoint trap
may be inhibited until a specified number of such references
have been performed.

Breakpoint monitoring is enabled and regulated by the set­
ting of appropriate bits in the MSR and BPRO-1 registers.
See Sections 3.5 and 3.7.

A Breakpoint trap is signalled to the CPU as either a Non­
Maskable Interrupt or an Abort trap, depending on the set­
ting of the AI bit in the MSR register.

2.0 Functional Description (Continued)

CPU STATES Tf Tf
t.ft.fU STATES I Tt.ft.fU T2

PHil [

PHI2 [

ADS [

m[
m[

SPC [

RST/ABT [

RDY [
(3)

TL/EE/6692-1S

Note 1: ill is asserted if the translation Is not In the TLB or a WRVAL Instruction is executed and the M Bit is not set.

Note 2: If the Level-1 PTE is not valid, an abort Is generated, ~ is issued in TMMU and m is deasserted in T 2.

Note 3: If a protection violation occurs or the Level-2 PTE is invalid, an Idle State is inserted here, PAY is not pulsed and SPC is pulsed during this Idle State.

FIGURE 2-12. FLT Deassertlon During RDVAL/WRVAL Execution

The MSR register also indicates which breakpoint register
triggered the break, and the direction (read or write) and
type of memory cycle that was detected. The breakpoint
address is not placed into the EIA register, as this register
holds the addresses of address translation errors only. The
breakpoint address is, however, available in the indicated
Breakpoint register.

On occurrence of any trap generated by the MMU, including
the Breakpoint trap, the BEN bit in the MSR register is im­
mediately cleared, disabling any further Breakpoint traps.

Enabling breakpoints may cause variations in the bus timing
given in the previous sections. Specifically:

1) While either breakpoint is enabled to monitor physical ad­
dresses, the MMU inserts an additional clock period into
all bus cycles by asserting the FL T line for one clock. See
Figure 2-13.

2) If the CPU initiates an instruction prefetch from a location
at which a breakpoint is enabled on Execution, the MMU
asserts the FL T line to the CPU, performs the memory
cycle itself, and issues an edited instruction word to the
CPU. See Figure 2-14 and Section 2.7.1.

Note: Instructions which use two operands, a read-type and a write-type
(e.g., MOVO O(r1).O(r2), with the first operand valid and protected to
allow user reads, and the second operand either Invalid (page fault) or
write protected, cause a read-type break event to occur for the first
operand regardless of the outcome of the instruction. Each time the
instruction is retried, the read-event Is recorded. Hence, the break­
point count register may reflect a different count than a casual as­
sumption would lead one to. The same effect can occur on a RMW
type operand with read only protection.

3-55

2.7.1 Breakpoints on Execution

The Series 32000 CPUs have an instruction prefetch which
requires synchronization with execution breakpoints. In con­
sideration of this, the MMU only issues an execution break­
point when an instruction is prefetched with a nonsequential
status code and the conditions specified in a breakpoint reg­
ister are met. This guarantees that the instruction prefetch
queue is empty and there are not pending instructions in the
pipeline. There are three cases to consider:

Case 1: A nonsequential instruction prefetch is made to
a breakpointed address.

Response: The queue is necessarily empty. The breakpoint
is issued.

Case 2, 3: A sequential prefetch is made to a breakpointed
address OR a prefetch is made to an even ad­
dress and the breakpoint is on the next odd ad­
dress.

Response: In these cases, there may be instructions pend­
ing in the queue which must finish before the
breakpoint is fired. Instead of putting the op­
code byte (the one specified by the breakpoint­
ed . address) in the queue, a OIA instruction is
substituted for it. OIA is a single byte instruction
which branches to itself, causing a queue flush.
When the OIA executes, the breakpoint address
is again issued, this time with nonsequential
fetch status and the problem is reduced to
case 1.

Note: Execution breakpoints cannot be used when the MMU is connected
to either an NS32032 or an NS32332 CPU.

z en
w
N o
CO
N .
...&.

o

C) .---,
~ 2.0 Functional Description (Continued)
C)
N
C")

en z
T1 Tf T2 T3 T4

FLTL

RST/AB{

iNTL
TL/EE/8692-16

Note: If a breakpoint condition is met and abort on breakpoint is enabled, the bus cycle is aborted. In this case FL T is stretched by one clock cycle.

CPU STATES T1
IotIotU STATES Tl

PHil [

PHI2[

A1S-24[

AOS[

PAVe

FLT[

RD[

ROV[

FIGURE 2-13. Bus Timing with Breakpoint on Physical Address Enabled

Tt.4t.4U Tf
Tt.4t.4U T2

(1)

Tf
T3

T2
T4

(BV CPU)

T3
n

Note 1: If a breakpoint on physical address is enabled, an extra clock cycle is inserted here.

FIGURE 2·14. Execution Breakpoint Timing; Insertion of DIA Instruction

3-56

T4
n

11 OR n
I T1 OR n

TL/EE/8692-17

3.0 Architectural Description
3.1 PROGRAMMING MODEL

The MMU contains a set of registers through which the CPU
controls and monitors management and debugging func­
tions. These registers are not memory-mapped. They are
examined and modified by executing the Slave Processor
instructions LMR (Load Memory Management Register) and
SMR (Store Memory Management Register). These instruc­
tions are explained in Section 3.11, along with the other
Slave Processor instructions executed by the MMU.

A brief description of the MMU registers is provided below.
Details on their formats and functions are provided in the
following sections.

PTBO, PTB1-Page Table Base Registers. They hold the
physical memory addresses of the Page Tables referenced
by the MMU for address translation. See Section 3.3.

EIA-Error/lnvalldate Register. Dual-function register,
used to display error addresses and also to purge cached
translation information from the TLB. See Section 3.4.

BPRO, BPR1-Breakpolnt Registers. Specify the condi­
tions under which a breakpoint trap is generated. See Sec­
tion 3.5.

BCNT -Breakpoint Counter Register. 24-bit counter used
to count BPRO events. Allows the breakpoint trap from the
BPRO register to be inhibited until a specified number of
events have occurred. See Section 3.6.

MSR-Memory Management Status Register. Contains
basic control and status fields for all MMU functions. See
Section 3.7.

PTBn

)_328IT'-
256

ENJ::~""''''''''''''''''~
LEVEL-1

PAGE TABLE

3.2 MEMORY MANAGEMENT FUNCTIONS

The NS32082 uses sets of tables in physical memory (the
"Page Tables") to define the mapping from virtual to physi­
cal addresses. These tables are found by the MMU using
one of its two Page Table Base registers: PTBO or PTB1.
Which register is used depends on the currently selected
address space. See Section 3.2.2.

3.2.1. Page Table Structure

The page tables are arranged in a two-level structure, as
shown in Figure 3-1. Each of the MMU's PTBn registers may
point to a Level-1 page table. Each entry of the Level-1
page table may in turn point to a Level-2 page table. Each
Level-2 page table entry contains translation information for
one page of the virtual space.

The Level-1 page table must remain in physical memory
while the PTBn register contains its address and translation
is enabled. Level-2 Page Tables need not reside in physical
memory permanently, but may be swapped into physical
memory on demand as is done with the pages of the virtual
space.

The Level-1 Page Table contains 256 32-bit Page Table
Entries (PTE'S) and therefore occupies 1 Kbyte. Each entry
of the Level-1 Page Table contains fields used to construct
the physical base address of a Level-2 Page Table. These
fields are a 15-bit PFN field, providing bits 9-23 of the physi­
cal address, and an MS bit providing bit 24. The remaining
bits (0-8) are assumed zero, placing a Level-2 Page Table
always on a 512-byte (page) boundary.

-32BITS-

LEVEL-2
PAGE TABLES

512 BYTES

MEMORY

TL/EE/B692-1 B

FIGURE 3-1. Two-Level Page Tables

3-57

z
en
Col
I\)
o
co
I\)

•
o

II

o ,...
• N

CO o
N
('t)
tJ)
Z

3.0 Architectural Description (Continued)

Level-2 Page Tables contain 128 32-bit Page Table entries,
and so occupy 512 bytes (1 page). Each Level-2 Page Table
Entry points to a final 512-byte physical page frame. In other
words, its PFN and MS fields provide the Page Frame Num­
ber portion (bits 9-24) of the translated address (Figure 3-3).
The OFFSET field of the translated address is taken directly.
from the corresponding field of the virtual address.

3.2.2 Virtual Address Spaces

When the Dual Space option is selected for address transla­
tion in the MSR (Sec. 3.7) the MMU uses two maps: one for
translating addresses presented to it in Supervisor Mode
and another for User Mode addresses. Each map is refer­
enced by the MMU using one of the two Page Table Base
registers: PTBO or PTB1. The MMU determines the CPU's
current mode by monitoring the state of the U/S pin and
applying the following rules.

1) While the CPU is in Supervisor Mode (U/S pin = 0), the
CPU is said to be presenting addresses belonging to Ad­
dress Space 0, and the MMU uses the PTBO register as
its reference for looking up translations from memory.

2) While the CPU is in User Mode (U/S pin = 1), and the
MSR DS bit is set to enable Dual Space translation, the
CPU is said to be presenting addresses belonging to Ad­
dress Space 1, and the MMU uses the PTB1 register to
look up translations.

3) If Dual Space translation is not selected in the MSR,
there is no Address Space 1, and all addresses present­
ed in both Supervisor and User modes are considered by
the MMU to be in Address Space O. The privilege level of
the CPU is used then only for access level checking.

Note: When the CPU executes a Dual·Space Move instruction (MOVUSi or
MOVSUi), it temporarily enters User Mode by switching the state of
the U/S pin. Accesses made by the CPU during this time are treated
by the MMU as User-Mode accesses for both mapping and access
level checking. It is pOSSible, however, to force the MMU to assume
Supervisor-Mode privilege on such accesses by setting the Access
Override (AO) bit in the MSR (Sec. 3.7).

3.2.3 Page Table Entry Formats

Figure 3-2 shows the formats of Level-1 and Level-2 Page
Table Entries (PTE's). Their formats are identical except for
the "Mil bit, which appears only in a Level-2 PTE.

The bits are defined as follows:

V Valid. The V bit is set and cleared only by software.

V = 1 => The PTE is valid and may be used for trans­
lation by the MMU.

V = 0 => The PTE does not represent a valid transla­
tion. Any attempt to use this PTE will cause
the MMU to generate an Abort trap. While
V = 0, the operating system may use all oth­
er bits except the PL field for any desired
function.

PL Protection Level. This two-bit field establishes the
types of accesses permitted for the page in both User
Mode and Supervisor Mode, as shown in Table 3-1.

The PL field is modified only by software. In a Level-1
PTE, it limits the maximum access level allowed for all
pages mapped through that PTE.

TABLE 3·1 Access Protection Levels

Mode U/S
Protection Level Bits (PL)

00 01 10 11

User 1 no no read full
access access only access

Supervisor 0 read full full full
only access access access

R Referenced. This is a status bit, set by the MMU and
cleared by the operating system, that indicates wheth­
er the page mapped by this PTE has been referenced
within a period of time determined by the operating
system. It is intended to assist in implementing memo­
ry allocation strategies. In a Level-1 PTE, the R bit
indicates only that the Level-2 Page Table has been
referenced for a translation, without necessarily imply­
ing that the translation was successful. In a Level-2
PTE, it indicates that the page mapped by the PTE
has been successfully referenced.

R = 1 => The page has been referenced since the R
bit was last cleared.

R = 0 => The page has not been referenced since the
R bit was last cleared.

Note: The RDVAL and WRVAL instructions set the Level-l and Level-2 bits
for the page whose protection level is tested. See Sections 2.5.2 and
3.11.

M Modified. This is a status bit, set by the MMU whenev­
er a write cycle is successfully performed to the page
mapped by this PTE. It is initialized to zero by the
operating system when the page is brought into physi­
cal memory.

M = 1 => The page has been modified since it was
last brought into physical memory.

M = 0 => The page has not been modified since it
was last brought into physical memory.

In Level-1 Page Table Entries, this bit position is unde­
fined, and is altered in an undefined manner by the
MMU while the V bit is 1.

Note: The WRVAL instruction sets the M bit for the page whose protection
level is tested. See Sections 2.5.2 and 3.11.

NSC Reserved. These bits are ignored by the MMU and
their values are not changed.

They are reserved by National, and therefore should
not be used by the user software.

USR User bits. These bits are ignored by the MMU and
their values are not changed.

They can be used by the user software.

TL/EE/8692-19

FIGURE 3·2. A Page Table Entry

3-58

3.0 Architectural Description (Continued)

PFN Page Frame Number. This 15-bit field provides bits
9-23 of the Page Frame Number of the physical ad­
dress. See Figure 3-3.

MS Memory System. This bit represents the most signifi­
cant bit of the physical address, and is presented by
the MMU on pin A24. This bit is treated by the MMU no
differently than any other physical address bit, and can
be used to implement a 32-Mbyte physical addressing
space if desired.

3.2.4 Physical Address Generation

When a virtual address is presented to the MMU by the CPU
and the translation information is not in the TLB, the MMU
performs a page table lookup in order to generate the physi­
cal address.

The Page Table structure is traversed by the MMU using
fields taken from the virtual address. This sequence is dia­
grammed in Figure 3-3.

Bits 9-23 of the virtual address hold the 15-bit Page Num­
ber, which in the course of the translation is replaced with
the 16-bit Page Frame Number of the physical address. The

(1) SELECT 1ST PTE
IF DS=O THEN

n=D
ELSE

n = 1 FOR USER MODE
n = 0 FOR SUPV MODE

virtual Page Number field is further divided into two fields,
INDEX 1 and INDEX 2.

Bits 0-8 constitute the OFFSET field, which identifies a
byte's position within the accessed page. Since the byte
position within a page does not change with translation, this
value is not used, and is simply echoed by the MMU as bits
0-8 of the final physical address.

The 8-bit INDEX 1 field of the virtual address is used as an
index into the Level-1 Page Table, selecting one of its 256
entries. The address of the entry is computed by adding
INDEX 1 (scaled by 4) to the contents of the current Page
Table Base register. The PFN and MS fields of that entry
give the base address of the selected Level-2 Page Table.

The INDEX 2 field of the virtual address (7 bits) is used as
the index into the Level-2 Page Table, by adding it (scaled
by 4) to the base address taken from the Level-1 Page Ta­
ble Entry. The PFN and MS fields of the selected entry pro­
vide the entire Page Frame Number of the translated ad­
dress.

The offset field of the virtual address is then appended to
this frame number to generate the final physical address.

---,
I
I
I

TLlEE/8692-20

FIGURE 3·3. Virtual to Physical Address Translation

3-59

z
fJ)
eN
N
o
Q)
N
o

•

o
N
CO o
N
(f)
U)
Z

3.0 Architectural Description (Continued)

3.3 PAGE TABLE BASE REGISTERS (PTBO, PTB1)

The PTBn registers hold the physical addresses of the Lev­
el-1 Page Tables.

The format of these registers is shown in Figure 3-4. The
least-significant 10 bits are permanently zero, so that each
register always pOints to a 1 Kbyte boundary in memory.

The PTBn registers may be loaded or stored using the MMU
Slave Processor instructions LMR and SMR (Section 3.11).

3.4 ERROR/lNVALlDATE ADDRESS REGISTER (EIA)

The Errorllnvalidate Address register is a dual-purpose reg­
ister.

1) When it is read using the SMR instruction, it presents the
virtual address which last generated an address transla­
tion error.

2) When a virtual address is written into it using the LMR
instruction, the translation for that virtual address is
purged, if present, from the TLB. This must be done
whenever a Page Table Entry has been changed in mem­
ory, since the TLB might otherwise contain an incorrect
translation value.

The format of the EIA register is shown in Figure 3-5. When
a translation error occurs, the cause of the error is reported
by the MMU in the appropriate fields of the MSR register

MS (RESERVED) ADDRESS BITS 10-23

I 31

(Section 3.7). The ADDRESS field of the EIA register holds
the virtual address at which the error occurred, and the AS
bit indicates the address space that was in use.

In writing a virtual address to the EIA register, the virtual
address is specified in the low-order 24 bits, and the AS bit
specifies the address space. A TLB entry is purged only if it
matches both the ADDRESS and AS fields.

Another technique for purging TLB entries is to load a PTBn
register. This automatically purges all entries associated
with the addressing space mapped by that register. Turning
off translation (clearing the MSR TU and/or TS bits) does
not purge any entries from the TLB.

3.5 BREAKPOINT REGISTERS (BPRO, BPR1)

The Breakpoint registers BPRO and BPR1 specify the ad­
dresses and conditions on which a Breakpoint trap will be
generated. They are each 32 bits in length and have the
format shown in A"gure 3-6. All implemented bits of BPRO
and BPR1 are readable and writable.

Bits 0 through 23 and bit 31 (AS) specify the breakpoint
address. This address may be either virtual or physical, as
specified in the VP bit.

Bits 24 and 25 are not implemented. Bit 26 (CE) is not im­
plemented in register BPR1.

TL/EE/8692-21

FIGURE 3·4. Page Table Base Registers (PTBO, PTB1)

I 31 24 I 23

FIGURE 3·5. EIA Register

I AS I VP I BE I BR I BW I CE IXIXI

FIGURE 3·6. Breakpoint Registers (BPRO, BPR1)

3-60

o I
TL/EE/8692-22

o I
TL/EE/8692-23

3.0 Architectural Description (Continued)

Bits 26 through 30 specify the breakpoint conditions. Break­
point conditions define how the breakpoint address is com­
pared and which conditions permit a break to be generated.
A Breakpoint register can be selectively disabled by setting
all of these bits to zero.

AS Address Space. This bit depends on the setting of
the VP bit. For virtual addresses, this bit contains the
AS (Address Space) qualifier of the virtual address
(Section 3.2.2). For physical addresses, this bit con­
tains the MS (Memory System) bit of the physical
address.

VP Virtual/Physical. If VP is 0, the breakpoint address is
compared against each referenced virtual address. If
VP Is 1, the breakpoint address is compared against
each physical address that is referenced by the CPU
(i.e. after translation).

BE Break on Execution. If BE is 1, a break is generated
immediately before the instruction at the breakpoint
address is executed. While this option is enabled, the
breakpoint address must be the address of the first
byte of an instruction. If BE is 0, this condition is
disabled.

Note: This option cannot be used In systems based on any CPU with a 32-
bit wide bus.

The BE bit should only be set when the CPU has a l6-bit bus (i.e.
NS32016, NS32C016). In other systems, use instead the BPT instruc­
tion placed in memory, to signal a break.

BR Break on Read. If BR is 1, a break is generated when
data is read from the breakpoint address. Instruction
fetches do not trigger a Read breakpoint. If BR is 0,
this condition is disabled.

BW Break on Write. If BW is 1, a break is generated when
data is written to the breakpoint address or when
data is read from the breakpoint address as the first
part of a read-modify-write access. If BW is 0, this
condition is disabled.

CE Counter Enable. This bit is implemented only in the
BPRO register. If CE is 1, no break is generated un­
less the Breakpoint Count register (BCNT, see be­
low) is zero. The BCNT register decrements when
the condition for the breakpoint in register BPRO is
met and the BCNT register is not already zero. If CE
is 0, the BCNT register is disabled, and breaks from
BPRO occur immediately.

Note 1: The bits BR, BW and CE should not all be set. The counting per­
formed by the MMU becomes Inaccurate, and in Abort Mode (MSR
AI bit set), It can trap a program in such a way as to make it impossi­
ble to retry the breakpointed instruction correctly.

Note 2: An execution breakpoint should not be counted (BE and CE bits
both set) if it is placed at an address that Is the destination of a
branch, or if it follows a queue-flushing Instruction. See Table 3-2.
The counting performed by the MMU will be Inaccurate if interrupts
occur during the fetch of that address.

I 0 10 10 10 10 I 0 10 I 0 I
I 31 24 I 23

Branch

ACBi

BR

BSR

Bcond

CASEi

CXP

CXPo

DIA

JSR

JUMP

RET

TABLE 3-2. Instructions Causing
Non-Sequential Fetches

Add, Compare and Branch: unless result is zero

Branch (Unconditional)

Branch to Subroutine

Branch (Conditional): only if condition is met

Case Branch

Call External Procedure

Call External Procedure with Descriptor

Diagnose

Jump to Subroutine

Jump

Return from Subroutine

RXP Return from External Procedure

BPT Breakpoint Trap

FLAG Trap on Flag

RETI Return from Interrupt: if MSR loaded properly
by supervisor

RETT Return from Trap: if MSR loaded properly by
supervisor

SVC Supervisor Call

Also all traps or interrupts not generated by the MMU.

Branch to Following Instruction

BICPSRi Bit Clear in PSR

BISPSRi

LMR

LPRi

MOVSUi

MOVUSi

WAIT

Bit Set in PSR

Load Memory Management Register

Load Processor Register: unless UPSR is the
register specified

Move Value from Supervisor to User Space

Move Value from User to Supervisor Space

Wait: fetches next instruction before waiting

3.6 BREAKPOINT COUNT REGISTER (BCNT)

The Breakpoint Count register (BCNT) permits the user to
specify the number of breakpoint conditions given by regis­
ter BPRO that should be ignored before generating a Break­
point trap. The BCNT register is 32 bits in length, containing
a counter in its low-order 24 bits, as shown in Figure 3-7.
The high-order eight bits are not used.

o I
TLlEE/8692-24

FIGURE 3-7. Breakpoint Count Register (BCNT)

3-61

z
rn
(,,)
N
Q
ClO
N .
""'" Q

•

C) r--,
~ co
C)
C'I
(f)
U)
z

3.0 Architectural Description (Continued)

The BCNT register affects the generation of Breakpoint
traps only when it is enabled by the CE bit in the BPRO
register. When the BPRO breakpoint condition is encoun­
tered, and the BPRO CE bit is 1, the contents of the BCNT
register are checked against zero. If the BCNT contents are
zero, a breakpoint trap is generated. If the contents are not
equal to zero, no breakpoint trap is generated and the
BCNT register is decremented by 1.

If the CE bit in the BPRO register is 0, the BCNT register is
ignored and the BPRO condition breaks the program execu­
tion regardless of the BCNT register's contents. The BCNT
register contents are unaffected.

3.7 MEMORY MANAGEMENT STATUS REGISTER (MSR)

The Memory Management Status Register (MSR) provides
overall control and status fields for both address translation
and debugging functions. The format of the MSR register is
shown in Figure 3-8.

The MSR fields relevant to either of the above functions are
described in the following sUb-sections.

3.7.1 MSR Fields for Address Translation.

Control Functions

The address translation control bits in the MSR, ad excep­
tion of the R bit, are both readable (using the SMR instruc­
tion) and writable (using LMR).

R Reset. When read, this bit's contents are undefined.
Whenever a "1" is written into it, MSR status fields
TE, B, TET, ED, BD, EST and BST are cleared to all
zeroes. (The BN bit is not affected.)

TU Translate User-Mode Addresses. While this bit is "1",
the MMU translates all addresses presented while the
CPU is in User Mode. While it is "0", the MMU ech­
oes all User-Mode virtual addresses without perform­
ing translation or access level checking. This bit is
cleared by a hardware Reset.

Note: Altering the TU bit has no effect on the contents of the TLB.

TS Translate Supervisor-Mode Addresses. While this bit
is "1", the MMU translates all addresses presented
while the CPU is in Supervisor Mode. While it is "0",
the MMU echoes all Supervisor-Mode virtual address­
es without translation or access level checking. This
bit is cleared by a hardware Reset.

Note: Altering the TS bit has no effect on the contents of the TLB.

OS Dual-Space Translation. While this bit is "1", Supervi­
sor Mode addresses and User Mode addresses are
translated independently of each other, using sepa­
rate mappings. While it is "0", both Supervisor Mode
addresses and User Mode addresses are translated
using the same mapping. See Section 3.2.2.

AO Access Level Override. This bit may be set to tempo­
rarily cause User Mode accesses to be given Supervi­
sor Mode privilege. See Section 3.10.

Status Fields

The MSR status fields may be read using the MSR instruc­
tion, but are not writable. Instead, all status fields (except
the BN bit) may be cleared by loading a "1" into the R bit
using the LMR instruction.

TE Translation Error. This bit is set by the MMU to indi­
cate that an address translation error has occurred.
This bit is cleared by a hardware reset.

TET Translation Error Type. This three-bit field shows the
reason(s) for the last address translation error report­
ed by the MMU. The format of the TET field is shown
below.

I 1L2 I IL1 I PL I
PL Protection Level error. The access attempted

by the CPU was not allowed by the protection
level assigned to the page it attempted to ac­
cess (forbidden by either of the Page Table
Entry PL fields).

1L1 Invalid Level 1. The Level-1 Page Table Entry
was invalid (V bit = 0).

IL2 Invalid Level 2. The Level-2 Page Table Entry
was invalid (V bit = 0).

These error indications are not mutually exclusive. A
protection level error and an invalid translation error
can be reported simultaneously by the MMU.

ED Error Direction. This bit indicates the direction of the
transfer that the CPU was attempting on the most
recent address translation error.

ED=O=>Write cycle.

ED=1 =>Read cycle.

EST Error Status. This 3-bit field is set on an address
translation error to the low-order three bits of the CPU
status bus. Combinations appearing in this field are
summarized below.

000 Sequential instruction fetch

001 Non-sequential instruction fetch

010 Operand transfer (read or write)

011 The Read action of a read-modify-write trans­
fer (operands of access class "rmw" only: See
the Series 32000 Instruction Set Reference
Manual for further details).

1 00 A read transfer which is part of an effective
address calculation (Memory Relative or Exter­
nal mode)

01
TUEE/8692-25

Note: In some Series 32000 documentation, the bits TE, Rand B are jointly referenced with the keyword "ERC".

FIGURE 3·8. Memory Management Status Register (MSR)

3-62

3.0 Architectural Description (Continued)

3.7.2 MSR Fields for Debugging

Control Functions

Breakpoint control bits in the MSR are both readable (using
the SMR instruction) and writable (using LMR).

BEN Breakpoint Enable. Setting this bit enables both
Breakpoint Registers (BPRO, BPR1) to monitor CPU
activity. This bit is cleared by a hardware reset or
whenever a Breakpoint trap or an address translation
error occurs. If only one breakpoint register must be
enabled, the other register should be disabled by
clearing all of its control bits (bits 26-31) to zeroes.

Note: When the BEN bit is set (using the LMR instruction). the MMU en­
ables breakpoints only after two non-sequential instruction fetch cy­
cles have been completed by the CPU. See Section 3.9.

UB User-Only Breakpointing. When this bit is set in con­
junction with the BEN bit, it limits the Breakpoint
Registers to monitor addresses only while the CPU is
in User Mode.

AI Abortllnterrupt. This bit selects the action taken by
the MMU on a breakpoint. While AI is "0" the MMU
generates a pulse on the INT pin (this can be used to
generate a non-maskable interrupt). While AI is "1"
the MMU generates an Abort pulse instead.

Status Fields

The MSR status fields may be read using the SMR instruc­
tion, but are not writable. Instead, all status fields (except
the BN bit) may be cleared by loading a "1" into the R bit
using the LMR instruction. See Section 3.7.1.

B Break. This bit is set to indicate that a breakpoint trap
has been generated by the MMU.

BN Breakpoint Number. The BN bit contains the register
number for the most recent breakpoint trap generat­
ed by the MMU. If BN is 1, the breakpoint was trig­
gered by the BPR1 register. If BN is 0, the breakpoint
was triggered by the BPRO register. If both registers
trigger a breakpoint simultaneously, the BN bit is set
to 1.

BD Break Direction. This bit indicates the direction of the
transfer that the CPU was attempting on the access
that triggered the most recent breakpoint trap. It is
loaded from the complement of the ODIN pin.

BD=O=>Write cycle.

BD = 1 => Read cycle.

BST Breakpoint Status. This 3-bit field is loaded on a
Breakpoint trap from the low-order three bits of the
CPU status bus. Combinations appearing in this field
are summarized below.

000 No break has occurred since the field was last
reset.

001 Instruction fetch

010 Operand transfer (read or write)

011 The Read action of a read-modify-write trans­
fer (operands of access class "rmw" only:
See the Series 32000 Instruction Set Refer­
ence Manual for further details).

3-63

1 00 A read transfer which is part of an effective
address calculation (Memory Relative or Ex­
ternal mode)

Note: The BST field encodings 000 and 001 differ from those of the EST
field (Section 3.7.1) because the MMU inserts a DIA Instruction into
the Instruction stream in Implementing Execution breakpoints (Section
2.7.1). One side effect of this Is that a breakpoint trap is never trig­
gered directly by a sequential instruction fetch cycle.

3.8 TRANSLATION LOOKASIDE BUFFER (TLB)

The Translation Lookaside Buffer is an on-chip fully asso­
ciative memory. It provides direct virtual to physical mapping
for the 32 most recently used pages, requiring only one
clock period to perform the address translation.

The efficiency of the MMU is greatly increased by the TLB,
which bypasses the much longer Page Table lookup in over
97% of the accesses made by the CPU.

Entries in the TLB are allocated and replaced by the MMU
itself; the operating system is not involved. The TLB entries
cannot be read or written by software; however, they can be
purged from it under program control.

Figure 3-9 models the TLB. Information is placed into the
TLB whenever the MMU performs a lookup from the Page
Tables in memory. If the retrieved mapping is valid (V= 1 in
both levels of the Page Tables), and the access attempted
is permitted by the protection level, an entry of the TLB is
loaded from the information retrieved from memory. The re­
cipient entry is selected by an on-chip circuit that imple­
ments a Least-Recently-Used (LRU) algorithm. The MMU
places the virtual page number (15 bits) and the Address
Space qualifier bit into the Tag field of the TLB entry.

The Value portion of the entry is loaded from the Page Ta­
bles as follows:

The Translation field (16 bits) is loaded from the MS bit
and PFN field of the Level-2 Page Table Entry.

The M bit is loaded from the Level-2 Page Table Entry.

The PL field (2 bits) is loaded to reflect the net protection
level imposed by the PL fields of the Level-1 and Level-2
Page Table Entries.

(Not shown in the figure are additional bits associated with
each TLB entry which flag it as full or empty, and which
select it as the recipient when a Page Table lookup is per­
formed.)

When a virtual address is presented to the MMU for transla­
tion, the high-order 15 bits (page number) and the Address
Space qualifier are compared associatively to the corre­
sponding fields in all entries of the TLB. When the Tag por­
tion of a TLB entry completely matches the input values, the
Value portion is produced as output. If the protection level is
not violated, and the M bit does not need to be changed,
then the physical address Page Frame number is output in
the next clock cycle. If the protection level is violated, the
MMU instead activates the Abort output. If no TLB entry
matches, or if the matching entry's M bit needs to be
changed, the MMU performs a page-table lookup from
memory.

Note that for a translation to be loaded into the TLB it is
necessary that the Level-1 and Level-2 Page Table Entries
be valid (V bit = 1). Also, it is guaranteed that in

z en
Co)
I\)
o
Q)
I\)
•
o

C) r---~
~
co
C)
N
C")
U)
Z

3.0 Architectural Description (Continued)
the process of loading a TLB entry (during a Page Table
lookup) the Level-1 and Level-2 R bits will be set in memory
if they were not already set. For these reasons, there is no
need to replicate either the V bit or the R bit in the TLB
entries.
Whenever a Page Table Entry in memory is altered by soft­
ware, it is necessary to purge any matching entry from the
TLB, otherwise the MMU would be translating the corre­
sponding addresses according to obsolete information. TLB
entries may be selectively purged by writing a virtual ad­
dress to the EIA register using the LMR instruction. The TLB
entry (if any) that matches that virtual address is then
purged, and Its space is made available for another transla­
tion. Purging is also performed by the MMU whenever an
address space is remapped by altering the contents of the
PTBO or PTB1 register. When this is done, the MMU purges
all the TLB entries corresponding to the address space
mapped by that register. Turning translation on or off (via
the MSR TU and TS bits) does not affect the contents of the
TLB.
Note: If the value In the PTBO register must be changed, It Is strongly recom·

mended that the translation be disabled before loading the new value,
otherwise the purge performed may be Incomplete. This Is due to
Instruction prefetches and/or memory read cycles occurring during
the LMR Instruction which may restore TLB entries from the old map.

TAG

VIRTUAL
ADDRESS

(U/S, ZZZ)
COMPARISON

AS

0

1

0

1

PAGE NUMBER
(15 BITS)

xxx

YYY

ZIZ

www

3.9 ENTRY IRE-ENTRY INTO PROGRAMS
UNDER DEBUGGING
Whenever the MSR is written, breakpoints are disabled. Af­
ter two non-sequential instruction fetch cycles have com­
pleted, they are again enabled if the new BEN bit value is
'1'. The recommended sequence for entering a program un­
der test is:

LMR MSR, New_Value
RETI n ; or RETI

executed with interrupts disabled (CPU PSR I bit off).

This feature allows a debugger or monitor program to return
control to a program being debugged without the risk of a
false breakpoint trap being triggered during the return.
The LMR instruction performs the first non-sequential fetch
cycle, in effect branching to the next sequential instruction.
The RETI (or RETI) instruction performs the second non­
sequential fetch as its last memory reference, branching to
the first (next) instruction of the program under debug. The
non-sequential fetch caused by the RETI instruction, which
might not have occurred otherwise, is not monitored.

3.10 ADDRESS TRANSLATION ALGORITHM
The MMU either translates the 24-bit virtual address to a
25-bit physical address or reports a translation error. This
process is described algorithmically in the following pages.
See also Figure 3-3.

PL M

11 a

11 a

11 1

00 1

VALUE

TRANSLATION
(16 BITS)

mmm

nnn

PPP

qqq

TRANSLATED
ADDRESS

(PPP)

TL/EE/B692-26

FIGURE 3-9. TLB Model

3-64

c.J
OJ
01

MMU Page Table Lookup and Access Validation Algorithm
Legend:
x = y x is assigned the value y
x == y

x AND y

x OR y

Comparison expression. true if x is equal to y
Boolean AND expression. true only if assertions x and yare both true
Boolean inclusive OR expression. true if either of assertions x and y is true
Delimiter marking end of statement

(. . . I
item(i)
item(i:j)
item.x
DONE
ABORT

Delimiters enclosing a statement block
Bit number i of structure DitemD

The field from bit number i through bit number j of structure -item­
The bit or field named ·x· in structure -item-
Successful end of translation; MMU provides translated address
Unsuccessful end of translation; MMU aborts CPU access

This algorithm represents for all cases a valid definition of address translation.
Bus activity implied here occurs only if the TLB does not contain the mapping.
or if the reference requires that the MMU alter the M bit of the Page Table Entry.
Otherwise. the MMU provides the translated address in one clock period.
Input (from CPU) :

U (1 if U/S is high)
W (1 if DDIN input is high)
VA Virtual address consisting of:

INDEX_l (from pins A23-A1S)
INDEX_2 (from pins AD15-AD9)
OFFSET (from pins AD8-ADO)

ACCESS_LEVEL The access level of a reference is a 2-bit value synthesized by the MMU from CPU status:
bit 1 U AND NOT MSR.AO (U from U/S input pin)
bit 0 = 1 for Write cycle. or Read cycle of an -rmwD class operand access

o otherwise.

Output:

Uses:

PA Physical Address on pins A24-A1S. AD15-ADO;
or

Abort pulse on RST/ABT pin.

MSR Status Register:
fields TU. TS and DS

II
O~-~80~£SN

Co)

m
0>

NS32082-10

MMU Page Table Lookup and Access Validation Algorithm (Continued)

PTBO
PTBl
PTE_l

PTEP_l
PTE_2

Page Table Base Register 0
Page Table Base Register 1
Level-l Page Table Entry:

fields PFN, PL, V, Rand MS
Pointer, holding address of PTE_l
Level-2 Page Table Entry:

fields PFN, PL, V, M, Rand MS
PTEP_2 Pointer, holding address of PTE_2

IF ((MSR.TU = = 0) AND (U = = 1) OR (MSR.TS = = 0) AND (U = =0))
THEN (PA(0:23) = VA(0:23) ; PA(24) = 0 ; DONE I

IF (MSR.DS = = 1) AND (U = = 1)
THEN (PTEP_1(24) = PTBloMS ; PTEP_1(23:10) = PTB1(23:10)

PTEP_1(9:2) = VA.INDEX_1 ; PTEP_1(1:0) =0 I
ELSE PTEP_1(24) = PTBO.MS ; PTEP_1(23:1O) = PTBO(23:10)

PTEP_1(9:2) = VA.INDEX_1; PTEL1(l:0) = 0

If translation not enabled then echo
virtual address as physical address.

If Dual Space mode and CPU in User Mode
then form Level-l PTE address

from PTBl register,
else form Level-l PTE address

from PTBO register.

- - - LEVEL 1 PAGE TABLE LOOKUP - - -

IF (ACCESS_LEVEL> PTE_l.PL) OR (PTE_l.V
THEN ABORT;

IF PTE_loR = = 0 THEN PTE_loR
PTE_1(4) = (undefined value) ;

1

0)

PTEP_2(24) = PTE_loMS ; PTEP_2(23:9) = PTE_loPFN
PTEP_2(8:2) = VA.INDEX_2 ; PTEP_2(1:0) = 0 ;

IF (ACCESS_LEVEL> PTE_2.PL) OR (PTE_2. V = =0)
THEN ABORT ;

IF PTE_2.R = = 0 THEN PTE_2.R = = 1
IF (W = = 1) AND (PTE_2.M = = 0) THEN PTE_2.M

PA(24)
DONE;

PTE_2.MS ; PA(23:9) PTE_2.PFN PA(8:0)

If protection violation or invalid Level-2 page
table then abort the access.

Otherwise, set Reference bit if not already set,
(the M bit position may be garbaged)

and form Level-2 PTE address.

- - - LEVEL 2 PAGE TABLE LOOKUP - - -

1

VA. OFFSET

If protection violation or invalid page
then abort the access.

Otherwise, set Referenced bit if not already set,
if Write cycle set Modified bit if not

already set,
and generate physical address.

3.0 Architectural Description (Continued)

3.11 INSTRUCTION SET

Four instructions of the Series 32000 instruction set are ex­
ecuted cooperatively by the CPU and MMU. These are:

LMR Load Memory Management Register

SMR Store Memory Management Register

RDVAL Validate Address for Reading

WRVAL Validate Address for Writing

The format of the MMU slave instructions is shown in Figure
3-10. Table 3-3 shows the encodings of the "short" field for
selecting the various MMU internal registers.

TABLE 3-3. "Short" Field Encodlngs

"Short" Field Register

0000 BPRO
0001 BPR1
1010 MSR
1011 BCNT
1100 PTBO
1101 PTB1
1111 EIA

Note: All other codes are illegal. They will cause unpredictable registers to
be selected if used in an instruction.

For reasons of system security, all MMU instructions are
privileged, and the CPU does not issue them to the MMU in
User Mode. Any such attempt made by a User-Mode pro­
gram generates the Illegal Operation trap, Trap (ILL). In ad­
dition, the CPU will not issue MMU instructions unless its
CFG register's M bit has been set to validate the MMU in­
struction set. If this has not been done, MMU instructions
are not recognized by the CPU, and an Undefined Instruc­
tion trap, Trap (UND), results.

The LMR and SMR instructions load and store MMU regis­
ters as 32-bit quantities to and from any general operand
(including CPU General-Purpose Registers).

The RDVAL and WRVAL instructions probe a memory ad­
dress and determine whether its current protection level
would allow reading or writing, respectively, if the CPU were
in User Mode. Instead of triggering an Abort trap, these in­
structions have the effect of setting the CPU PSR F bit if the
type of access being tested for would be illegal. The PSR F
bit can then be tested as a condition code.
Note: The Series 32000 Dual-Space Move instructions (MOVSUi and

MOVUSi), although they involve memory management action, are not
Slave Processor instructions. The CPU implements them by switching
the state of its U/S pin at appropriate times to select the desired
mapping and protection from the MMU.

For full architectural details of these instructions, see the
Series 32000 Instruction Set Reference Manual.

4.0 Device Specifications
4.1 NS32082 PIN DESCRIPTIONS

The following is a brief description of all NS32082 pins. The
descriptions reference portions of the Functional Descrip­
tion, Section 2.0.

A22

A21

A20

A19

A18

A17

A16 sn
AD15 ST2

AD14 ST3

AD13 m
AD12 DDIN

ADll ADS

AD10 U/S
AD9 AT/SPC

AD8 ffijill
AD7 ill
AD6 HlDAO

ADS HlDAI

AD4 HOLD

AD3 Rsn

AD2 RDY

ADI PHI2

ADO PHI1

GNDl GNDS

TLlEE/8692-28

Top View

Order Number NS16082D
See NS Package Number D48A

FIGURE 4-1. Dual-In-Llne Package Connection Diagram

4.1.1 Supplies

Power (Vee): + 5V positive supply. Section 2.1.

Logic Ground (GNDL): Ground reference for on-chip logic.
Section 2.1.

Buffer Ground (GNDB): Ground reference for on-chip driv­
ers connected to output pins. Section 2.1.

4.1.2 Input Signals

Clocks (PHI1, PHI2): Two-phase clocking signals. Section
2.2.

Ready (ROY): Active high. Used by slow memories to ex­
tend MMU originated memory cycles. Section 2.4.4.

Hold Request (HOLD): Active low. Causes a release of the
bus for DMA or multiprocessing purposes. Section 2.6.

Hold Acknowledge In (HLDAI): Active low. Applied by the
CPU in response to HOLD input, indicating that the CPU has
released the bus for DMA or multiprocessing purposes.
Section 2.6.

/23 OPERATION WORD 8/7 ID CODE 0/
TLlEE/8692-27

FIGURE 3-10. MMU Slave Instruction Format

3-67

z en
w
N
o
QO
N .
-" o

4.0 Device Specifications (Continued)

Reset Input (RSTI): Active low. System reset. Section 2.3. Hold Acknowledge Output (HLDAO): Active low. When

Status Lines (STO-ST3): Status code input from the CPU. active, indicates that the bus has been released.

Active from T 4 of previous bus cycle through T3 of current 4.1.4 Input-Output Signals
bus cycle. Section 2.4.

Data Direction In (ODIN): Active low. Status signal indicat-
Program Flow Status (PFS): Active low. Pulse issued by ing direction of data transfer during a bus cycle. Driven by
the CPU at the beginning of each instruction. the MMU during a page-table lookup.
User/Supervisor Mode (U/S): This signal is provided by Address Translation/Slave Processor Control (AT/
the CPU. It is used by the MMU for protection and for select- SPC): Active low. Used by the CPU as the data strobe out-
ing the address space (in dual address space mode only). put for Slave Processor transfers; used by the MMU to ac-
Section 2.4. knowledge completion of an MMU instruction. Section 2.3
Address Strobe Input (ADS): Active low. Pulse indicating and 2.5. Held low during reset to select the address transla-
that a virtual address is present on the bus. tion mode on the CPU.

4.1.3 Output Signals M.S. Bit of Physical Address/High Byte Float (A24/
HBF): Most significant bit of physical address. Sampled on

Reset Output! Abort (RST / ABn: Active Low. Held active
the rising edge of the reset input to select 16 or 32-bit bus

longer than one clock cycle to reset the CPU. Pulsed low
mode. This pin outputs a low level if address translation is

during T2 or TMMU to abort the current CPU instruction.
not enabled. It is floated during T2-T4 if 32-bit bus mode is

Interrupt Output (INn: Active low. Pulse used by the de- selected.
bug functions to inform the CPU that a break condition has

Address Bits 16-23 (A16-A23): High order bits of the ad-
occurred.

dress bus. These signals are floated by the MMU during
Float Output (FL T): Active low. Floats the CPU from the T2-T4 if 32-bit bus mode is selected.
bus when the MMU accesses page table entries or per-

Address/Data 0-15 (ADO-AD15): Multiplexed Address/
forms a physical breakpoint check. Section 2.4.3.

Data Information. Bit 0 is the least significant bit.
Physical Address Valid (PAV): Active low. Pulse generat-
ed during TMMU indicating that a physical address is pres-
ent on the bus.

Note: Absolute maximum ratings indicate limits beyond
4.2 ABSOLUTE MAXIMUM RATINGS which permanent damage may occur. Continuous operation
If Military/Aerospace specified devices are required, at these limits is not intended; operation should be limited to
please contact the National Semiconductor Sales those conditions specified under Electrical Characteristics.
Office/Distributors for availability and specifications.

Temperature Under Bias a·Cto +70·C

Storage Temperature - 65·C to + 150·C

All Input or Output Voltages with
Respect to GND -0.5Vto +7V

Power Dissipation 1.5W

4.3 ELECTRICAL CHARACTERISTICS T A = 0 to + 70·C, Vcc = 5V ± 5%, GND = OV

Symbol Parameter Conditions Min Typ Max Units

VIH High Level Input Voltage 2.0 Vcc + 0.5 V

Vil Low Level Input Voltage -0.5 0.8 V

VCH High Level Clock Voltage PHI1, PHI2 pins only Vcc - 0.35 Vcc + 0.5 V

VCl Low Level Clock Voltage PHI1, PHI2 pins only -0.5 0.3 V

VClT Low Level Clock Voltage, PHI1, PHI2 pins only
-0.5 0.6 V

Transient (ringing tolerance)

VOH High Level Output Voltage IOH = -400 p.A 2.4 V

VOL Low Level Output Voltage IOl = 2mA 0.45 V

IllS AT /SPC Input Current (low) VIN = O.4V, ATlspc in input mode 0.05 1.0 mA

II Input Load Current o ::5: VIN ::5: Vcc, All inputs except
-20 20 p.A

PHI1, PHI2, AT/SPC

IL Leakage Current 0.4::5: VIN::5: Vc
(Output and I/O Pins -20 30 p.A
in TRI·STATEllnput Mode)

Icc Active Supply Current lOUT = 0, TA = 25°C 200 300 mA

3-68

4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the timing specifications given in this section refer to
2.0V on the rising or falling edges of the clock phases PHI1

[

- ~2'4V
tSlG11

\-----::.:.::..;..:....------ O.BV
O.4SV

SIG1

SIG2 [___ ' __ t_S'_G2_h I, ___ ~ ______ :.::

TlIEE/8692-29

FIGURE 4·2. Timing Specification Standard
(Signal Valid after Clock Edge)

4.4.2 Timing Tables

and PHI2, and O.BV or 2.0V on all other signals as illustrated
in Figures 4-2 and 4-3, unless specifically stated otherwise.

ABBREVIATIONS:

L.E. - leading edge R.E. - rising edge

T.E. - trailing edge F.E. - falling edge

PHln

SIG1

SIG2

[

[
[

__ k
------...... ----- t--2.4V

O.BV \ tSlG11
'----+--O.4SV

,__---\--2.4V

2.0V I tSIG2h

_____ -J ___ ._. --'--- -- O.4SV

TlIEE/8692-30

FIGURE 4·3. Timing Specification Standard
(Signal Valid before Clock Edge)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32082·10.
Maximum times assume capacitive loading of 100 pF.

Name Figure Description Reference/Conditions
NS32082·10

Units
Min Max

tALv 4-4 Address Bits 0-15 Valid After R.E., PHI1 TMMU or T1 40 ns

tALh 4-4 Address Bits 0-15 Hold After R.E., PHI1 T2 5 ns

tAHv 4-4,4-6 Address Bits 16-24 Valid After R.E., PHI1 TMMU or T1 40 ns

tAHh 4-4 Address Bits 16-24 Hold After R.E., PHI1 T2 5 ns

tALPAVs 4-5 Address Bits 0-15 Set Up Before PAV T.E. 25 ns

tAHPAVs 4-5 Address Bits 16-24 Set Up Before PAV T.E. 25 ns

tALPAVh 4-5 Address Bits 0-15 Hold After PAV T.E. 15 ns

tAHPAVh 4-5 Address Bits 16-24 Hold After PAY T.E. 15 ns

tAU 4-10 ADO-AD15 Floating After R.E., PHI1 T2 25 ns

tAHf 4-7,4-10 A 16-A24 Floating After R.E., PHI1 T2 or T1 25 ns

tALz 4-15,4-16 ADO-AD15 Floating After R.E., PHI1 Ti
25

(Caused by HOLD)
ns

tAHZ 4-15,4-16 A 16-A24 Floating After R.E., PHI1 Ti
25 ns

(Caused by HOLD)

tALr 4-15,4-16 ADO-AD15 Return from Floating After R.E., PHI1 T1
50 ns

(Caused by HOLD)

3-69

z en
w
I\)
o
Q)
I\) . -­o

•

o
'I"'"

~
CO o
N
Cf')

en z

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32082-10. (Continued)

Name Figure Description Reference/Conditions

tAHr 4-15,4-16 A 16-A24 Return from Floating After RE., PHI1 T1
(Caused by HOLD)

tev 4-6 Data Valid After RE., PHI1 T2
(Memory Write)

tOh 4-6 Data Hold After R E., PHI1 next T1 or Ti
(Memory Write)

to! 4-11 Data Bits Floating After RE., PHI1 T1 or Ti
(Slave Processor Read)

tev 4-11 Data Valid After RE., PHI1 T1
(Slave Processor Read)

tDh 4-11 Data Hold After RE., PHI1 next T1 or Ti
(Slave Processor Read)

tDDlNv 4-5,4-7 ODIN Signal Valid After RE., PHI1 T1 orTMMU

tODINh 4-5 ODIN Signal Hold After RE., PHI1 T1 or Ti

tODIN! 4-7 ODIN Signal Floating After RE., PHI1 T2

tODINz 4-16 ODIN Signal Floating After RE., PHI1 Ti
(Caused by HOLD)

tODINr 4-16 ODIN Return from Floating After RE., PHI1 T1 or Ti
(Caused by HOLD)

tODINAf 4-9 ODIN Floating after After RE., PHI2 T2
Abort (FL T = 0)

tPAVa 4-4 PAY Signal Active After RE., PHI1 T MMU or T1

tPAVia 4-4 PAY Signal Inactive After RE., PHI2 T MMU or T1

tpAVw 4-4 PAY Pulse Width At O.BV (Both Edges)

tpAVdz 4-14,4-15 PAY Floating Delay After HLDAI F.E.

tPAVdr 4-14,4-15 PAY Return from Floating After HLDAI RE.

tpAVz 4-16 PAY Floating After RE., PHI2 T4
(Caused by HOLD)

tPAVr 4-16 PAY Return from Floating After RE., PHI2 Ti
(Caused by HOLD)

tFLTa 4-5,4-10 FL T Signal Active After RE., PHI1 TMMU

tFLTia 4-7,4-10 FL T Signal Inactive After RE., PHI1 T MMU, Tf or T2

tABTa 4-B,4-10 Abort Signal Active After RE., PHI1 TMMU orT1

tABTia 4-B,4-10 Abort Signal Inactive After RE., PHI1 T2

tABTw 4-B,4-10 Abort Pulse Width At O.BV (Both Edges)

tlNTa 4-4,4-10 INT Signal Active After R.E., PHI1 TMMU orTf

tlNTia 4-4,4-10 INT Signal Inactive After RE., PHI1 T2

tlNTw 4-10 INT Pulse Width At O.BV (Both Edges)

tSPCa 4-13 SPC Signal Active After RE., PHI1 T1

tSPCia 4-13 SPC Signal Inactive After RE., PHI1 T4

3·70

NS32082-10
Units

Min Max

50 ns

50 ns

0 ns

10 ns

50 ns

0 ns

50 ns

0 ns

25 ns

50 ns

50 ns

25 ns

35 ns

40 ns

30 ns

25 ns

25 ns

30 ns

30 ns

55 ns

35 ns

55 ns

55 ns

70 ns

55 ns

55 ns

70 ns

40 ns

40 ns

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32082-10. (Continued)

Name Figure Description Reference/Conditions
NS32082-10

Units
Min Max

tSPCt 4-13 SPC Signal Floating After F.E., PHI1 T4 25 ns

tspCw 4-13 SPC Pulse Width At 0.8V (Both Edges) 70 ns

tHLOOda 4-14 HLDAO Assertion Delay After HLDAI F.E. 50 ns

tHLOOdia 4-14,4-15 HLDAO Deassertion Delay After HLDAI R.E. 50 ns

tHLOOa 4-15,4-16 HLDAO Signal Active After R.E., PHI1 Ti 30 ns

tHLOOia 4-16 HLDAO Signal Inactive After R.E, PHI1 Ti 30 ns

tATa 4-18 AT /SPC Signal Active After R.E., PHI1 35 ns

tATia 4-18 AT ISPC Signal Inactive After R.E., PHI1 35 ns

tATt 4-18 AT/SPC Signal Floating After F.E., PHI1 25 ns

tRSTOa 4-18 RST / ABT Asserted (Low) After R.E. PHI1 30 ns

tRSTOia 4-18 RSf I ABT Deasserted (High) After R.E. PHI1 Ti 30 ns

4.4.2.2 Input Signal Requirements: NS32082-10

Name Figure Description Reference/Conditions
NS32082-10

Units
Min· Ma~

tOls 4-5 Data In Set Up Before F.E., PHI2 T3
15

(Memory Read)
ns

tOlh 4-5 Data In Hold After R.E., PHI1 T4
3

(Memory Read)
ns

tOls 4-12 Data In Set Up Before F.E., PHI2 T1
20

(Slave Processor Write)
ns

tOlh 4-12 Data In Hold After R.E., PHI1 T4
3

(Slave Processor Write)
ns

tROYs 4-5 RDY Signal Set Up Before F.E., PHI2 T2 or T3 15 ns

tROYh 4-5 RDY Signal Hold After F.E., PHI1 T3 5 ns

tuss 4-4,4-11 U/S Signal Set Up Before F.E., PHI2 T 4 or Ti 35 ns

tUSh 4-4,4-11 U/S Signal Hold After R.E., PHI1 Next T4 0 ns

3-71

4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements: NS32082-10 (Continued)

Name Figure Description Reference/Conditions
NS32082-10

Units
Min Max

tSTs 4-4,4-11 Status Signals Set Up Before F.E., PHI2 T4 or Ti 35 ns

tSTh 4-4,4-11 Status Signals Hold After R.E., PHI1 NextT4 0 ns

tspcs 4-11 SPC Input Set Up Before F.E., PHI2 T1 45 ns

tSPCh 4-11 SPC Input Hold After R.E., PHI1 T 4 0 ns

tHLDs 4-16 HOLD Signal Set Up Before F.E., PHI2 T 4 or Ti 25 ns

tHLDh 4-16 HOLD Signal Hold After F.E., PHI2 T 4 or Ti 0 ns

tHLDls 4-15 HLDAI Signal Set Up Before F.E., PHI2 Ti 20 ns

tHLDlh 4-15 HLDAI Signal Hold After F.E., PHI2 Ti 0 ns

tHBFs 4-18 A24/HBF Signal Set Up Before F.E., PHI2 10 ns

tHBFh 4-18 A24/HBF Signal Hold After F.E., PHI2 0 ns

tRSTls 4-18 Reset Input Set Up Before F.E., PHI1 20 ns

tpWR 4-19 Power Stable to RSTI R.E. After Vcc Reaches 4.5V 50 JLs

tRSTlw RSTI Pulse Width At 0.8V (Both Edges) 64 tcp

4.4.2.3 Clocking Requirements: NS32082-10

Name Figure Description
Reference/ NS32082-10

Units
Conditions Min Max

tcp 4-17 Clock Period R.E., PHI1, PHI2 to Next
100 250

R.E., PHI1, PHI2
ns

tCLw 4-17 PHI1, PHI2 At 2.0V on PHI1, 0.5tcp
Pulse Width PHI2 (Both Edges) - 10 ns

tCLh 4-17 PHI1, PHI2 High Time AtVcc - 0.9Von 0.5tcp
PHI1, PHI2 (Both Edges) - 15 ns

tCLl 4-17 PHI1, PHI2 Low Time AtO.8Von 0.5tcp
PHI1, PHI2 - 5ns

tnOVL(1,2) 4-17 Non-overlap Time 0.8V on F.E. PHI1, PHI2 to
-2 5

0.8V on R.E., PHI2, PHI1
ns

tnOVLas Non-overlap Asymmetry At 0.8V on PHI1, PHI2
-4 4 ns

(tnOVL(1) - tnOVL(2)

tCLwas PHI1, PHI2 Asymmetry At2.0Von
-5 5

tCLw(1) - tCLw(2)} PHI1, PHI2
ns

3-72

4.0 Device Specifications (Continued)

4.4.3 Timing Diagrams

T4 OR n T1 Tt.lt.lU T2 T3 T4 I Tl OR n

---- ---------------i-----++-"'-"""':"'-1"-1'+-...,..-'(t (FLOATED BY t.lt.lU)

-+---++-, ,...-~ H----+--'\I ~~ __ L _______ 1 ______ _
(FLOATED BY t.lt.lU)

~L-i-----++-~-~---~----~-------~-------------~--------·
m[(HIGH)

tUSh __

FIGURE 4-4. CPU Read (Write) Cycle Timing (32-Blt Mode); Translation In TLB

CPU STATES T1

c

tOOINh

FIGURE 4-5. MMU Read Cycle Timing (32-Blt Mode); After a TLB Miss

TLlEE/8692-31

TL/EE/8892-32

Note: After m Is asserted, l5l5TFJ may be driven temporarily by both CPU and MMU. This, however, does not cause any conflict, since both CPU and MMU force
l5l5TFJ to the same logic level.

3·73

z en
w
I\)
o
CD
I\)
• ..I.
o

C) r---,
'I"'" • N
co
C)
N
C")
C/)
Z

4.0 Device Specifications (Continued)

CPU STATES Tf
Tl OR n

AI6-24[~--------~J,----~--------~P-H-.A-D-DR-.----~------~~,~----+_----

ADO - 15 [....,. ________ -+-'" "' __ -+-'" ,.. ____ --+-_____ D_A_TA_O..,.U_T ______ -+-JJ _____ -+-__ _

ADS[

PAV[

RDY[

DDIN[~ ________ +_J

(HIGH)

(HIGH)

flJ[-+ ____ ~------~-----~(L~OW~}~-~---_+------~~---

CPU STATES

MMU STATES C
PHil

PHI2[

AI6-24[

ADO-15[

ADS[

PAV[

~[

m[

FIGURE 4-6. MMU Write Cycle Timing; after a TLB Miss

Tf
T4

TMMU T2

TMMU T2

T3

T3

(HIGH)

T4

T4

--------------(FLOATED BY MMU)

FIGURE 4-7. FLT Deassertlon Timing

T1

T1

TLlEE/8692-33

TL/EE/8692-34

Note: After FL T is deasserted, DDIN may be driven temporarily by both CPU and MMU. This, however, does not cause any conflict. Since CPU and MMU force
DDIN to the same logic level.

3-74

4.0 Device Specifications (Continued)

T4 OR n

PHI1 [

PHI2 [. '-!-__

AfiS[

PAV[

m[

rn/rn [

CPU STATES I
IoIIoIU STATES

PHil [

PHI2 [

ADs [

P"AV[

m[

RST/rn [

ODIN [

PHil [

PHI2 [

A16-24 [

ADO-IS [

AfiS[

PAV[

ODIN [

m[
RST/AiiT [

Tf

T4

11

11 TIoIIoIU

(HIGH)

(HIGH)

FIGURE 4-8. Abort Timing (FL T = 1)

Tf

11
T2

T2

FIGURE 4-9. Abort Timing (FL T = 0)

TIoIIoIU T2 T3

iNT [,
"--tl~T:±j

T2

T3

T3

T4

n

T4

T4

FIGURE 4-10. CPU Operand Access Cycle with Breakpoint on Physical Address Enabled

TL/EE/8692-35

TL/EE/8692-36

TLlEE/8692-37

Note: If a breakpoint condition is met and abort on breakpoint is enabled. the bus cycle is aborted. In this case m is stretched by one clock cycle.

3-75

z
en
c..l
N
0
CO
N
0

•

C) .--,
• N co

C)
N
Cf)

en z

4.0 Device Specifications (Continued)

T4 OR TI T1 T4 T1 OR TI

PHil [

PHI2 [-+ __ ""
ADO-IS [_.

SPC [

u/s[~~-~--~-----+_-4---~~----
STO-3 [

DDIN[__ ~----~---~----_+----------~----~---
FIGURE 4-11. Slave Access Timing; CPU Reading from MMU

T4 OR TI T1 T4 T1 OR TI

PHil [

PHI2 [-+ __ ""
ADO-IS [_I-________ ~--_ 'P---~f+-----f'-----+-------

SPC [

u/s [

STO - 3 [----JL----J '-____ ~-----------+---.1 "' ______ -+-______ _

DDIN[__ I-________ ~--_
FIGURE 4-12. Slave Access Timing; CPU Writing to MMU

T4 T1 T4 T1

PHil [

PHI2 [-+ ___ ""

FIGURE 4-13. SPC Pulse from the MMU

3·76

TL/EE/8692-38

TL/EE/8692-39

TL/EE/8892-40

4.0 Device Specifications (Continued)

PHil [

PHI2 [

HLDAI [

HLDAO [

PAY [

m[
16 BIT IIOOE

A16-24 [-- -32 BIT IIODE- - -

AOO-1S[- -------

FIGURE 4-14. Hold Timing (FLT = 1); SMR Instruction Not Being Executed

PHil [

PHI2 [

HLDAI [

HLDAO [

PAY [

m[
A16-24 [_--+-___ -+-___ ~I-"

ADO-IS [.....;. ____ .;..-. _____ ",

(HIGH)

(flOATING) - - - - -~~r - - - E
(flOATING) - - - - -~~ - - -C

FIGURE 4-15. Hold Timing (FLT = 1); SMR Instruction Being Executed

TL/EE/8692-41

TLlEE/8692-42

PHil [

PHI2 [

HOLD [

u--L....J---LJ-l

HLDAO [

PAY [

m[~ ___ -+ ______ ~ __ ~ __ ~~ ______ ~ ~ ____ ~ __ ~~-+ ______ ~~_
(LOW)

A16-24 [+ ______ -+ ______ --+_, ------- i f----- -(FLOATING)-

ADO-IS [+ ___ ~ ___ -+-",,' ------- i f----- -(FLOATING)-

ODIN [+ ____ -+-___ -+-"", ------- i f----- (~OATING)­

FIGURE 4-16. Hold Timing (FL T = 0)

3-77

TL/EE/8692-43

z
tJ)
W
N o
CD
N .
-'" o

o
N 4.0 Device Specifications (Continued)
CC)
o
C\I
C")

en z

PHI1 [

PHI2 [-----~r

FIGURE 4-17. Clock Waveforms
TLlEE/8692-49

Af/SJ5C t~ __ +-__ -H ~r--Ir-\.--_ -_ -_ .. ~~ __ 5_Cl_O_CK __ CY~i'n I ~:~-.
~~mw[~ __ ~ __ ~~r-__ ~_~~~rl-_~~""' __ ~

FIGURE 4-18. Reset Timing

vee

PHI1[__ __ ---1

[

tPWR
RSfa _____________ ~,~

TL/EE/6692-48

FIGURE 4-19. Power-On Reset

3-78

TLlEE/8692-45

to)

~
<0

....L
D
L:.

KCTAL2

KCTAl1

REID ., ::: • r PHI2

NSlZZOl
TCU

RSTO CTTL OOIN ROY

.....--r

PER

eMiT

I WlUT REQUESTS
(AOOR. DECOOED OR STRAPPED)

PERIPH. CYCLE

READY

iiD
Wi!

ito

I I I f I J ":J}----{> H8E •
10IIII

+5

I I 0--

,
ROY PHIl PHI2 ILO HBE HOLD

HOLO ROY RSTI

I' II I I :1:::
HLDAD l-+liNT

INTS. -.I NIII

NS3ZOUII
NS3ZC01&

CPU j ' II 1111f' NSlZ08Z _U

II RSTROBE /WI (24) AODRESS
LATCH!
BUFFER

~ OOW

STO-ST3 STO-ST3

iiS'fiAiii' IiST/m
iiiSPC SiiC

ADDRIDATA ADORIDATA

" +5 ~ (24) (24) J.

, ADDRIDATA
MULnPLEXED
BUS

(16).

ADO-ADI5 g~;~-~, NSlZ081
FPU

CLK" I • -----+lCLK

Note: The "AND" gate on the HBE line is not needed when an NS32016 is used.

(16).

OATA

MULTIPLEXED
BUS

MEMORYI
PERlPERALS

FIGURE A-1. System Connection Diagram

EN OIR

(16H Et1
a.TA BUFFERS

tiOLD

~

ADDRESS
BUS ..

(24) ,.

iiOiii

I~ a.TASUS I
I~

-.l..

STO-ST3 .,

TUEE/8692-47

l>
"C
"C
CD
::l
a. ;Co

~
::l ...
CD .,
Q)
n So

CQ

en
c

CQ
CQ
CD en ...
0-
::l en

O~-~80~eSN

RESET

(.,.)

Co
o {-+I 00

INTS_ --+t NMr

~
Cl
"""t:..

XCTAL2

xeTALI

PERIPH CYCLE
PER -

READY

NS32201
Teu I _IT REQUESTS

(ADDR. DECODED OR STRAPPED)

'IRST! ----------,-"..,;::;
WR

ADS

RSW eTTL ODiN ROY DBEt-1 --------,
i' l'

1
ROY PHil PHI2 BED • • • • • • BE3 ILO ..

I I I I T :1:::rOLD

ROY

NS32032
CPU

HOll)

D~:~I' I I I· II~~~AI
PFS PFS

U1S U1S
ADS ~S

ODIN -(ODIN

STO-ST3 STO-ST3

RST/ABT :' RSTlAii'i'
ATISPC ... _- SPC

NS32082
MMU

HLDAO
p;-_ IV

FIGURE A-2. System Connection Diagram

+5'

AI

AD
ViR
BEo
BEl

BE2

BE3

ILO'

HOLD

HLDAO

• STROBE I
~
24) I ADDRESS AD-A23 ~

~ Aoo-A023 LATCHI
V I BUFFER (24)

p2)

I::
1~31

~
"00--"023', 1

AND 024-031 DATA BUFFERS ~

STO-STir

NS32082-10

TL/EE/8692-48

:I>
"C
"C
CD
~
Q.
;C"

~
~
CD .,
D)
n
S"
Ul
en
c:::
Ul
Ul
CD rn
0"
~ rn
'0 o
3-
5'
c:
CD
S

~National a Semiconductor
PRELIMINARY

NS32381-15/NS32381-20/NS32381-25/NS32381-30
Floating-Point Unit

General Description
The NS32381 is a second generation, CMOS, floating-point
slave processor that is fully software compatible with its
forerunner, the NS32081 FPU. The NS32381 FPU functions
with National's Embedded System Processors™, the
NS32GX32 and the NS32CG16, and with any Series 32000
CPU, from the NS32008 to the NS32532, in a tightly cou­
pled slave configuration. The performance of the NS32381
has been increased over the NS32081 by architecture im­
provements, hardware enhancements, and higher clock fre­
quencies. Key improvements include the addition of a 32-bit
slave protocol, an early done algorithm to increase CPU/
FPU parallelism, an expanded register set, an automatic
power down feature, expanded math hardware, and addi­
tional instructions.

The NS32381 FPU contains eight 64-bit data registers and
a Floating-Point Status Register (FSR). The FPU executes
20 instructions, and operates on both single and double­
precision operands. Three separate processors in the
NS32381 manipulate the mantissa, sign, and exponent.

The CPU and NS32381 FPU form a tightly coupled comput­
er cluster, which appears to the user as a single proceSSing
unit. The CPU and FPU communication is handled automati­
cally, and is user transparent.

FPU Block Diagram

The FPU is fabricated with National's advanced double-met­
al CMOS process. It is available in a 68-pin Pin Grid Array
(PGA) package or 68-pin Plastic package.

Features
• Compatible with NS32008, NS32016, NS32C016,

NS32032, NS32C032, NS32332, NS32532, NS32CG16
and NS32GX32 microprocessors

• Selectable 16-bit or 32-bit Slave Protocol
• Format compatible with IEEE Standard 754-1985 for

binary floating point arithmetic

• Early done algorithm
• Single (32-bit) and double (64-bit) precision operations
• Eight on-chip (64-bit) data registers
• Automatic power down mode
• Full upward compatibility with existing 32000 software
• High speed dOUble-metal CMOS design
• 68-pin PGA package
• 68-pin plastic package

Control
Unit

Execution
Unit

Interface
and
Storage Unit

TL/EE/9157 -1

FIGURE 1-1

3-81

z en
w
I\)
w co
•

en z en
w
I\)
w co
I\)
o

•

o
N
CO
Ct)
N
Ct)
t/)
Z
In
•

CO
Ct)
N
Ct)

en z

Table of Contents
1.0 PRODUCT INTRODUCTION

1.1 IEEE Features Supported-Standard 754-1985

1.2 Operand Formats

1.2.1 Normalized Numbers
1.2.2 Zero

1.2.3 Reserved Operands

1.2.4 Integers

1.2.5 Memory Representations

2.0 ARCHITECTURAL DESCRIPTION

2.1 Programming Model

2.1.1 Floating-Point Registers

2.1.2 Floating-Point Status Register (FSR)

2.1.2.1 FSR Mode Control Fields

2.1.2.2 FSR Status Fields
2.1.2.3 FSR Software Fields (SWF)

2.2 Instruction Set

2.3 Exceptions

3.0 FUNCTIONAL DESCRIPTION

3.1 Power and Grounding

3.2 Automatic Power Down Mode

3.3 Clocking

3.4 Resetting

3.5 Bus Operation

3.5.1 Bus Cycles

3.5.2 Operand Transfer Sequences

3.6 Instruction Protocols

3.6.1 General Protocol Sequence

3.6.2 Early Done Algorithm
3.6.3 Floating-Point Protocols

3-82

4.0 DEVICE SPECIFICATIONS

4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals
4.1.3 Output Signals

4.1.4 Input/Output Signals

4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics

4.4 Switching Characteristics

4.4.1 Definitions
4.4.2 Timing Tables

4.4.2.1 Output Signal Propagation Delays for all
CPUs

4.4.2.2 Output Signal Propagation Delays for the
NS32008, NS32016, NS32032 CPUs

4.4.2.3 Output Signal Propagation Delays for the
32-Bit Slave Protocol NS32332 CPU

4.4.2.4 Output Signal Propagation Delays for the
32-Bit Slave Protocol NS32532 CPU

4.4.2.5 Input Signal Requirements for all CPUs

4.4.2.6 Input Signal Requirements for the
NS32008, NS32016, NS32032 CPUs

4.4.2.7 Input Signal Requirements for the 32-Bit
Slave Protocol NS32332 CPU

4.4.2.8 Input Signal Requirements for the 32-Bit
Slave Protocol NS32532 CPU

4.4.2.9 Clocking Requirements for all CPUs

APPENDIX A: NS32381 PERFORMANCE ANALYSIS

List of Illustrations
FPU Block Diagram ..•.. : 1-1

Floating-Point Operand Formats•.......................•.......................•...................... 1-2

Integer Format ..•........•...............................•............... 1-3

Register Set ...•.......................•..... 2-1

The Floating-Point Status Register•.....•..................•...•.•............... 2-2

Floating-Point Instruction Formats•................................•.............•.........•..... 2-3

Recommended Supply Connections•....•....................................••...•.•... 3-1

Power-On Reset Requirements ...•......•................. 3-2

General Reset Timing•...•........ 3-3

System Connection Diagram with the NS32532 CPU•.. 3-4a

System Connection Diagram with the NS32332 CPU ..•...... 3-4b

System Connection Diagram with the NS32008, NS32016 or NS32032 CPU•................................. 3-4c

System Connection Diagram with the NS32CG 16 CPU•..•......... 3-4d

Slave Processor Read Cycle (NS32008, NS32016, NS32032 and NS32332 CPUs)•............... 3-5

Slave Processor Read Cycle (NS32532 CPU)•.............................•.......... 3-6

Slave Processor Write Cycle (NS32008, NS32016, NS32032 and NS32332 CPUs) ...•................................. 3-7

Slave Processor Write Cycle (NS32532 CPU)•...•................•. 3-8

ID and Opcode Format 16-Bit Slave Protocol•.................................•....... 3-9

ID and Opcode Format 32-Bit Slave Protocol ...•................... 3-10

FPU Status Word Format ...•.............•........•......... 3-11

16-Bit General Slave Instruction Protocol: FPU Actions .. 3-12

32-Bit General Slave Instruction Protocol: FPU Actions .. 3-13

68-Pin PGA Package•...................•.................................•........ 4-1

Timing Specification Standard (Signal Valid After Clock Edge)•........................•................. .4-2

Timing Specification Standard (Signal Valid Before Clock Edge) ...•........•...................••.......••........... 4-3

Clock Timing ...•••........•...........................•........... 4-4

Power-On Reset ...•••.............•..•.........•..•.•.....•. 4-5

Non-Power-On Reset•......•.....•.•••.............•........•.................•..............•...•.... 4-6

RST Release Timing•...••.....•..•.......•. 4-7

Read Cycle from FPU (NS32008, NS32016, NS32032 CPUs) .••....•...•...........•....•....•..•......•..•......... 4-8

Write Cycle to FPU (NS32008, NS32016, NS32032 CPUs)•..............................•........•.• 4-9

Read Cycle from FPU (NS32332 CPU)••.................................•...•.....•..••.....•... 4-10

Write Cycle to FPU (NS32332 CPU) ..•......••...........................•....••.......•..•.•........•.......•.. 4-11

SDN332 Timing (NS32332 CPU)•........•...•.•.............................•.•........... 4-12

SDN332 (TRAP) Timing (NS32332 CPU)•.....................................•..................... 4-13

Read Cycle from FPU (NS32532 CPU)••.............................•••....................•..•....•.•... 4-14

Write Cycle from FPU (NS32532 CPU)•....................................•..•......•........•.. 4-15

SDN532 Timing (NS32532 CPU)•.........•...........•..•.....•............•..•..•......•.......••.• 4-16

FSSR Timing (NS32532 CPU) ...••...•.................•.••.•........ ~-17

SPC Pulse from FPU •..............•..............•......................................•......•..•......•... 4-1 B

3-83

z en
w
N
W
Q)
•

U1 z en
w
N
W
Q)
• N

Q

• I

o
N •
CO
C")
N
C")
U)
Z
Lt)
•

CO
C")
N
C")
U)
Z

List of Tables
Sample F Fields ... 1·1
Sample E Fields ... 1·2
Normalized Number Ranges ... 1·3
16·Bit General Slave Instruction Protocol .. 3·1
32·Bit General Slave Instruction Protocol .. 3·2
Floating·Point Instruction Protocols ... 3·3

3·84

1.0 Product Introduction
The NS32381 Floating-Point Unit (FPU) provides high
speed floating-point operations for the Series 32000 family,
and is fabricated using National high-speed CMOS technol­
ogy. It operates as a slave processor for transparent expan­
sion of the Series 32000 CPU's basic instruction set. The
FPU can also be used with other microprocessors as a pe­
ripheral device by using additional TIL and CMOS interface
logic. The NS32381 is compatible with the IEEE Floating­
Point Formats.

1.1 IEEE FEATURES SUPPORTED·STANDARD 754-1985

a) Basic floating-point number formats

b) Add, subtract, multiply, divide and compare operations

c) Conversions between different floating-point formats

d) Conversions between floating-point and Integer formats

e) Round floating-point number to integer (round to near­
est, round toward negative infinity and round toward
zero, in double or single-precision)

f) Exception signaling and handling (invalid operation, di-
vide by zero, overflow, underflow and inexact)

1.2 OPERAND FORMATS

The N32381 FPU operates on two floating-point data
types-single precision (32 bits) and double precision (64
bits). Floating-point instruction mnemonics use the suffix F
(Floating) to select the single precision data type, and the
suffix L (Long Floating) to select the double precision data
type.

A floating-point number is divided into three fields, as shown
in Figure 1-2.

The F field is the fractional portion of the represented num­
ber. In Normalized numbers (Section 1.2.1), the binary point
is assumed to be immediately to the left of the most signifi.
cant bit of the F field, with an implied 1 bit to the left of the
binary point. Thus, the F field represents values in the range
1.0 ~ x < 2.0.

TABLE 1·1. Sample F Fields

FFleld Binary Value Decimal Value
000 ... 0 1.000 ... 0 1.000 ... 0
010 ... 0 1.010 ... 0 1.250 ... 0
100 ... 0 1.100 ... 0 1.500 ... 0
110 ... 0 1.110 ... 0 1.750 ... 0

i
Implied Bit

The E field contains an unsigned number that gives the bi­
nary exponent of the represented number. The value in the
E field is biased; that is, a constant bias value must be sub­
tracted from the E field value in order to obtain the true

31 30

lsi

exponent. The bias value is 011 ... 112, which is either 127
(single precision) or 1023 (double precision). Thus, the true
exponent can be either positive or negative, as shown in
Table 1-2.

TABLE 1·2. Sample E Fields

EFleld F Field Represented Value
011 ... 110 100 ... 0 1.5X2-1 = 0.75
011 ... 111 100 ... 0 1.5X20 = 1.50
100 ... 000 100 ... 0 1.5X21 = 3.00

Two values of the E field are not exponents. 11 ... 11 sig­
nals a reserved operand (Section 1.2.3). 00 ... 00 repre­
sents the number zero if the F field is also all zeroes, other­
wise it signals a reserved operand.

The S bit indicates the sign of the operand. It is 0 for posi­
tive and 1 for negative. Floating-point numbers are in sign­
magnitude form, that is, only the S bit is complemented in
order to change the sign of the represented number.

1.2.1 Normalized Numbers

Normalized numbers are numbers which can be expressed
as floating-point operands, as described above, where the E
field is neither all zeroes nor all ones.

The value of a Normalized number can be derived by the
formula:

(-1)5 X 2(E-Bias) X (1 + F)

The range of Normalized numbers is given in Table 1-3.

1.2.2 Zero

There are two representations for zero-positive and nega­
tive. Positive zero has all-zero F and E fields, and the S bit is
zero. Negative zero also has all-zero F and E fields, but its S
bit is one.

1.2.3 Reserved Operands

The IEEE Standard for Binary Floating-Point Arithmetic pro­
vides for certain exceptional forms of floating-point oper­
ands. The NS32381 FPU treats these forms as reserved
operands. The reserved operands are:
• Positive and negative infinity
• Not-a-Number (NaN) values
• Denormalized numbers

Both Infinity and NaN values have all ones in their E fields.
Denormalized numbers have all zeroes in their E fields and
non-zero values in their F fields.

The NS32381 FPU causes an Invalid Operation trap (Sec­
tion 2.1.2.2) if it receives a reserved operand, unless the
operation is simply a move (without conversion). The FPU
does not generate reserved operands as results.

Single Precision
2322 o

E F

8 23

Double Precision
6362 5251 o

Is I E F

11 52
FIGURE 1·2. Floating-Point Operand Formats

3-85

•

C) ,--,
N • ,...
co
C")
N
C")
U)
Z
&I) ,... . ,...
co
C")
N
C")
U)
Z

1.0 Product Introduction (Continued)

TABLE 1-3. Normalized Number Ranges

Most Positive

Least Positive

Least Negative

Most Negative

Single PreCision
2127 x (2 - 2-23)

= 3.40282346 x 1038

2- 126

= 1.17549436 X 10-38

-(2- 126)
= -1.17549436 x 10-38

-2127 X (2 - 2-23)
= -3.40282346 x 1038

Double Precision
21023 x (2 - 2-52)
= 1.7976931348623157 x 10308

2- 1022

= 2.2250738585072014 X 10-308

-(2-1022)

= -2.2250738585072014 x 10-308

-21023 X (2 - 2-52)
= -1.7976931348623157 x 10308

Note: The values given are extended one full digit beyond their represented accuracy to help In generating rounding and conversion algorithms.

1.2.4 Integers

In addition to performing floating-point arithmetic, the
NS32381 FPU performs conversions between integer and
floating-point data types. Integers are accepted or generat­
ed by the FPU as two's complement values of byte (8 bits),
word (16 bits) or double word (32 bits) length.

See Figure 1-3 for the Integer Format and Table 1-4 for the
Integer Fields. .

S

0

1

n-1 n-2 o
S I

FIGURE 1-3. Integer Format

TABLE 1-4. Integer Fields

Value Name

I Positive Integer

1- 2" Negative Integer

Note: n represents the number of bits in the word, 8 for byte, 16 for word
and 32 for double-word.

1.2.5 Memory Representations

The NS32381 FPU does not directly access memory. How­
ever, it is cooperatively involved in the execution of a set of
two-address instructions with its Series 32000 Family CPU.
The CPU determines the representation of operands in
memory.

In the Series 32000 family of CPUs, operands are stored in
memory with the least significant byte at the lowest byte

address. The only exception to this rule is the Immediate
addressing mode, where the operand is held (within the in­
struction format) with the most significant byte at the lowest
address.

2.0 Architectural Description
2.1 PROGRAMMING MODEL

The Series 32000 architecture includes nine registers that
are implemented on the NS32381 Floating-Point Unit (FPU).

2.1.1 Floating-Point Registers

There are eight registers (LO-L7) on the NS32381 FPU for
providing high-speed access to floating-point operands.
Each is 64 bits long. A floating-point register is referenced
whenever a floating-point instruction uses the Register ad­
dressing mode (Section 2.2.2) for a floating-point operand.
All other Register mode usages (i.e., integer operands) refer
to the General Purpose Registers (RO-R7) of the CPU, and
the FPU transfers the operand as if it were in memory.
Note: These registers are all upward compatible with the 32-bit NS32081

registers, (FO-F7l, such that when the Register addressing mode is
specified for a double precision (64-bitl operand, a pair of 32-bit reg­
isters holds the operand. The programmer specifies the even register
of the pair which contains the least significant half of the operand and
the next consecutive register contains the most significant half.

2.1.2 Floating-Point Status Register (FSR)

The Floating-Point Status Register (FSR) selects operating
modes and records any exceptional conditions encountered
during execution of a floating-point operation. Figure 2-2
shows the format of the FSR.

32 • I 32

~32---J

I FSR I
F1LLO t.lSDW

L1 t.lSDW
F3/L2 t.lSDW

FOLLO LSDW
L1 LSDW

F2/L2 LSDW

LSDW --. least significant double word
t.lSDW --. most significant double word

L3 t.lSDW
F5/L4 t.lSDW

L5 t.lSDW
F71L6 t.lSDW

L7 t.lSDW

L3 LSDW
F4/L4 LSDW

L5 LSDW
F6LL6 LSDW

L7 LSDW
TL/EE/9157-36

FIGURE 2-1. Register Set

31 17 16 15

I Reserved I Rt.lB I SWF
I I

9876543210

FIGURE 2-2. The Floating-Point Status Register

3-86

TLlEE/9157 -37

2.0 Architectural Description (Continued)

2.1.2.1 FSR Mode Control Fields

The FSR mode control fields select FPU operation modes.
The meanings of the FSR mode control bits are given be­
low.

Rounding Mode (RM): Bits 7 and 8. This field selects the
rounding method. Floating-point results are rounded when­
ever they cannot be exactly represented. The rounding
modes are:

00 Round to nearest value. The value which is nearest to
the exact result is returned. If the result is exactly half­
way between the two nearest values the even value
(LSB = 0) is returned.

01 Round toward zero. The nearest value which is closer
to zero or equal to the exact result is returned.

10 Round toward positive infinity. The nearest value which
is greater than or equal to the exact result is returned.

11 Round toward negative infinity. The nearest value
which is less than or equal to the exact result is re­
turned.

Underflow Trap Enable (UEN): Bit 3. If this bit is set, the
FPU requests a trap whenever a result is too small in abso­
lute value to be represented as a normalized number. If it is
not set, any underflow condition returns a result of exactly
zero.

Inexact Result Trap Enable (lEN): Bit 5. If this bit is set,
the FPU requests a trap whenever the result of an operation
cannot be represented exactly in the operand format of the
destination. If it is not set, the result is rounded according to
the selected rounding mode.

2.1.2.2 FSR Status Fields

The FSR Status Fields record exceptional conditions en­
countered during floating-point data processing. The mean­
ings of the FSR status bits are given below:

Trap Type (TT): bits 0-2. This 3-bit field records any excep­
tional condition detected by a floating-point instruction. The
TT field is loaded with zero whenever any floating-point in­
struction except LFSR or SFSR completes without encoun­
tering an exceptional condition. It is also set to zero by a
hardware reset or by writing zero into it with the Load FSR
(LFSR) instruction. Underflow and Inexact Result are always
reported in the TT field, regardless of the settings of the
UEN and lEN bits.

000 No exceptional condition occurred.

001 Underflow. A non-zero floating-point result is too small
in magnitude to be represented as a normalized float­
ing-point number in the format of the destination oper­
and. This condition is always reported in the TT field
and UF bit, but causes a trap only if the UEN bit is set.
If the UEN bit is not set, a result of Positive Zero is
produced, and no trap occurs.

3-87

010 Overflow. A result (either floating-point or integer) of a
floating-point instruction is too great in magnitude to
be held in the format of the destination operand. Note
that rounding, as well as calculations, can cause this
condition.

011 Divide by zero. An attempt has been made to divide a
non-zero floating-point number by zero. Dividing zero
by zero is considered an Invalid Operation instead
(below).

100 Illegal Instruction. Any instruction forms not included
in the NS32381 Instruction Set are detected by the
FPU as being illegal.

101 Invalid Operation. One of the floating-point operands
of a floating-point instruction is a Reserved operand,
or an attempt has been made to divide zero by zero
using the DIVf instruction.

110 Inexact Result. The result (either floating-point or inte­
ger) of a floating-point instruction cannot be repre­
sented exactly in the format of the destination oper­
and, and a rounding step must alter it to fit. This condi­
tion is always reported in the TT field and IF bit unless
any other exceptional condition has occurred in the
same instruction. In this case, the n field always con­
tains the code for the other exception and the IF bit is
not altered. A trap is caused by this condition only if
the lEN bit is set; otherwise the result is rounded and
delivered, and no trap occurs.

111 (Reserved for future use.)

Underflow Flag (UF): Bit 4. This bit is set by the FPU when­
ever a result is too small in absolute value to be represented
as a normalized number. Its function is not affected by the
state of the UEN bit. The UF bit is cleared only by writing a
zero into it with the Load FSR instruction or by a hardware
reset.

Inexact Result Flag (IF): Bit 6. This bit is set by the FPU
whenever the result of an operation must be rounded to fit
within the destination format. The IF bit is set only if no other
error has occurred. It is cleared only by writing a zero into it
with the Load FSR instruction or by a hardware reset.

Register Modify Bit (RMB): Bit 16. This bit is set by the
FPU whenever writing to a floating point data register. The
RMB bit is cleared only by writing a zero with the LFSR
instruction or by a hardware reset. This bit can be used in
context switching to determine whether the FPU registers
should be saved.

2.1.2.3 FSR Software Field (SWF)

Bits 9-15 of the FSR hold and display any information writ­
ten to them (using the LFSR and SFSR instructions), but are
not otherwise used by FPU hardware. They are reserved for
use with NSC floating-point extension software.

z en
w
N
W
CD
en z en
w
N
W
CD
• N o

o

'" • ...
CD
C")

'" C")
U)
z
&I) ... • ...
CD
C")

'" ~ z

2.0 Architectural Description (Continued)

2_2 INSTRUCTION SET

2.2.1 Floating-Point Instruction Set

This section describes the floating-point instructions execut­
ed by the FPU in conjunction with the CPU. These instruc­
tions form a subset of the Series 32000~ instruction set and
take 9, 11, and 12 encoding formats. A list of all the Series
32000 instructions as well as details on their formats and
addressing modes can be found in the appropriate CPU
data sheets.

Certain notations in the following instruction description ta­
bles serve to relate the assembly language form of each
instruction to its binary format in Figure 2-3.

23

I 1 I 1
" glnl
\

23

I,
1 I ,

", gin 1

23

I I Iii
. gen 1

Format 9

1 1 1
gln2 1,1 1 1 1 1 1 1 1 1 I

• " I 0 0 1 1 1 1 1 0

OPERATION WORD ID BYTE

TL/EE/9157 -5

Format 11

16
1
15

1 1 I 1 1 I 1
10 I, 1 0 1 1 1 1 1 0 I I I I I 1 I

gln2 " op
H •

OPERATION WORO 10 BYTE

TL/EE/9157-6

Format 12

iii
gen2

iii
op

817 0
101 f 111 i 111 i 1 i 1 i 1 i 01

TL/EE/9157-7

FIGURE 2-3. Floating-Point Instruction Formats

The Format column indicates which of the three formats in
Figure 2-3 represents each instruction.

The Op column indicates the binary pattern for the field
called "op" in the applicable format.

The Instruction column gives the form of each instruction as
it appears in assembly language. The form consists of an
instruction mnemonic in upper case, with one or more suffix­
es (i or f) indicating data types, fOllowed by a list of oper­
ands (gen1, gen2).

An i suffix on an instruction mnemonic indicates a choice of
integer data types. This choice affects the binary pattern in
the i field of the corresponding instruction format as follows:

Suffix I
B
W
o

Data Type
Byte
Word
Double Word

I Field
00
01
11

An f suffix on an instruction mnemonic indicates a choice of
floating-point data types. This choice affects the setting of
the f bit of the corresponding instruction format as follows:

Suffix f
F
L

Data Type
Single Precision
Double Precision (Long)

f Bit

o

3-88

An operand designation (gen1, gen2) indicates a choice of
addressing mode expressions. This choice affects the bina­
ry pattern in the corresponding gen1 or gen2 field of the
instruction format. Refer to Table 2-1 for the options avail­
able and their patterns .

Further details of the exact operations performed by each
instruction are found in the Series 32000 Instruction Set
Reference Manual.

Movement and Conversion

The following instructions move the gen1 operand to the
gen2 operand, leaving the gen1 operand intact.

Format Op Instruction
gen1,gen2

Description
Move without
conversion

11 0001 MOVf

9

9

9

9

010 MOVLF gen1,gen2 Move, converting
from double
precision to
single precision.

011 MOVFL gen1, gen2 Move, converting
from single
precision to
double

000 MOVif

precision.

gen1, gen2 Move, converting
from any integer
type to any
floating-point
type.

100 ROUNDfi gen1, gen2 Move, converting
from floating­
point to the
nearest integer.

9 101 TRUNCfi gen1, gen2 Move, converting
from floating­
point to the
nearest integer
closer to zero.

9 111 FLOORfi gen 1, gen2 Move, converting
from floating­
point to the
largest integer
less than or
equal to its
value.

Note: The MOVLF Instruction f bit must be 1 and the I field must be 10.

The MOVFL instruction f bit must be 0 and the i field must be 11.

Arithmetic Operations

The following instructions perform floating-point arithmetic
operations on the gen1 and gen2 operands, leaving the re­
sult in the gen2 operand.
Note: POLY and DOT use the additional third implied operand.

POLY and DOT put their result to LO/FO register and not to GEN2.

Format Op Instruction Description
11 0000 ADDf gen1,gen2 Add gen1 to gen2.

11 0100 SUBf gen1,gen2 Subtract gen1
fromgen2.

11 1100 MULf gen1,gen2 Multiply gen2 by
gen1.

2.0 Architectural Description (Continued)

Format Op Instruction Description
11 1000 DIVf gen1, gen2 Divide gen2 by gen1.

11 0101 NEGf gen1, gen2 Move negative of
gen1 to gen2.

11 1101 ABSf gen1, gen2 Move absolute value
of gen 1 to gen2.

(N) 12 0100 SCALBf gen1, gen2 Move gen2*2gen1 to
gen2, for integral
values of gen1
without computing
2gen1 •

(N) 12 0101 LOGBf gen1, gen2 Move the unbiased
exponentofgen1 to
gen2.

(N) 12 0011 DOTf gen1, gen2 Move (gen1*gen2)
+ LO to LO.(*)

(N) 12 0010 POLYf gen1, gen2 Move (LO*gen1) +
gen2 to LO.(*)

Notes:

(N): Indicates NEW instruction.

(')The third impled operand used by these instructions can be either FO or
LO depending on whether 'floating' or 'long' data type is specified in the
opcode.

Comparison

The Compare instruction compares two floating-point val­
ues, sending the result to the CPU PSR Z and N bits for use
as condition codes. See Figure 3-11. The Z bit is set if the
gen1 and gen2 operands are equal; it is cleared otherwise.
The N bit is set if the gen1 operand is greater than the gen2
operand; it is cleared otherwise. The CPU PSR L bit is un­
conditionally cleared. Positive and negative zero are consid­
ered equal.

Format
11

Op
0010

Instruction
CMPf gen1, gen2

Floating-Point Status Register Access

Description
Compare gen1
to gen2.

The following instructions load and store the FSR as a 32-
bit integer.

Format
9
9

Op
001
110

Instruction
LFSR gen1
SFSR gen2

Description
Load FSR
Store FSR

Note: All Instructions support all of the NS32000 family data formats (for
external operands) and all addressing modes are supported.

+5V

TL/EE/9157-8
PGAPackage

Rounding

The FPU supports all IEEE rounding options: Round toward
nearest value or even significant if a tie. Round toward zero,
Round toward positive infinity and Round toward negative
infinity.

2.3 EXCEPTIONS

The FPU supports five types of exceptions: Invalid opera­
tion, Division by zero, Overflow, Underflow and Inexact Re­
sult. When an exception occurs, the FPU mayor may not
generate a trap depending upon the bit setting in the FSR
Register. The user can disable the Inexact Result and the
Underflow traps. If an undefined Floating-Point instruction is
passed to the FPU an Illegal Instruction trap will occur. The
user can't disable trap on Illegal Instruction.

Upon detecting an exceptional condition in executing a
floating-point instruction, the FPU requests a TRAP by puls­
ing the SPC line for one clock cycle, pulsing the SDN332
line for two and a half clock cycles and pulsing the FSSR
line for one clock cycle. (The user will connect the correct
lines according to the CPU being used).

In addition, the FPU sets the Q bit in the status word regis­
ter. The CPU responds by reading the status word register
(refer to Section 3.6.1 for its format) while applying status
h'E (transferring status word) on the status lines. A trapped
instruction returns no result (even if the destination is FPU
register) and does not affect the CPU PSR. The FPU rec­
ords exceptional cause in the trap type (TI) field of the FSR.
If an illegal opcode is detected, the FPU sets the TS bit in
the slave processor status word register, indicating a trap
(UND).

3.0 Functional Description
3.1 POWER AND GROUNDING

The NS32381 requires a single 5V power supply, applied on
the Vee pins. These pins should be connected together by
a power (Vee> plane on the printed circuit board. See Figure
3-1.

The grounding connections are made on the GND pins.
These pins should be connected together by a ground
(GND) plane on the printed circuit board. See Figure 3-1.

+5V

TLlEE/9157-43
PLCC Package

FIGURE 3-1. Recommended Supply Connections

3-89

z en
w
N
W
Q)
U1 z en w
N
W
Q)
N
C

o
N .
'9"'"
CO
C")
N
C")

en
z
it)
'9"'" .
'9"'"
CO
C")
N
C")

en z

3.0 Functional Description (Continued)

V 4.5VI_----------------..I·~\·,S------
cc ...I

elK

RST

n.n­
I __ ~ 64C;~~~~ ~

--~----------------~~
1 o-------~30 p.S--------- I

--+-------------------~

TL/EE/9157-9

FIGURE 3-2. Power-On Reset Requirements

3.2 AUTOMATIC POWER DOWN MODE

The NS32381 supports a power down mode in which the
device consumes only 10% of its original power at 30 MHz.
The NS32381 enters the power down mode (internal clocks
are stopped with phase two high) if it does not receive an
SPC pulse from the CPU within 256 clocks.

The FPU exits the power down mode and returns to normal
operation after it receives an SPC from the CPU. There is no
extra delay caused by the FPU being in the power down
mode.

3.3 CLOCKING

The NS32381 FPU requires a single-phase TTL clock input
on its ClK pin (pin A8). Different Clock sources can be used
to provide the ClK signal depending on the application. For
example, it can come from the 8ClK of the NS32532 CPU.
It can also come from the CTTl pin of the NS32C201 Tim­
ing Control Unit, if it is required.

3.4 RESETTING

The RST pin serves as a reset for on-chip logic. The FPU
may be reset at any time by pulling the RST pin low for at
least 64 clock cycles. Upon detecting a reset, the FPU ter­
minates instruction processing, resets its internal logic, and
clears the FSR to all zeroes.

On application of power, RST must be held low for at least
30 fJ-s after Vee is stable. This ensures that all on-chip volt­
ages are completely stable before operation. See Figures
3-2 and 3-3.

CLK J1JL.fLSlSL

'"

2:64CLOCK--.I
~ CYCLES I

rn---""I"I'!'~~ I
/I

TLlEE/9157 -10

FIGURE 3-3. General Reset Timing

3.5 BUS OPERATION

Instructions and operands are passed to the NS32381 FPU
with slave processor bus cycles. Each bus cycle transfers

3-90

either one byte (8 bits), one word (16 bits) or one double
word (32 bits) to or from the FPU. During all bus cycles, the
SPC line is driven by the CPU as an active low data strobe,
and the FPU monitors pins STO-ST3 to keep track of the
sequence (protocol) established for the instruction being ex­
ecuted. This is necessary in a virtual memory environment,
allowing the FPU to retry an aborted instruction.

3.5.1 Bus Cycles

A bus cycle is initiated by the CPU, which asserts the proper
status on (STO-ST3) and pulses SPC low. The status lines
are sampled by the FPU on the leading (falling) edge of the
SPC pulse except for the 32532 CPU. When used with the
32532 CPU, the status lines are sampled on the rising edge
of ClK in the T2 state. If the transfer is from the FPU (a
slave processor read cycle), the FPU asserts data on the
data bus for the duration of the SPC pulse. If the transfer is
to the FPU (a slave processor write cycle), the FPU latches
data from the data bus on the trailing (rising) edge of the
SPC pulse. A"gures 3-5, 3-6, 3-7 and 3-8 illustrate these
sequences.

The direction of the transfer and the role of the bidirectional
SPC line are determined by the instruction protocol being
performed. SPC is always driven by the CPU during slave
processor bus cycles. Protocol sequences for each instruc­
tion are given in Section 3.6.

3.5.2 Operand Transfer Sequences

An operand is transferred in one or more bus cycles. For the
16-8it Slave Protocol a 1-byte operand is transferred on the
least significant byte of the data bus (00-07). A 2-byte op­
erand is transferred on the entire bus. A 4-byte or 8-byte
operand is transferred in consecutive bus cycles, least sig­
nificant word first.

For the 32-8it Slave Protocol a 4-byte operand is trans­
ferred on the entire data bus in a single bus cycle and an
8-byte operand is transferred in two consecutive bus cycles
with the most significant byte transferred on data bits (00-
07). The complete operand transfer of bytes 80-87 where
80 is the least significant byte would appear on the data bus
as 84,85,86,87 followed by 80,81,82,83 in the second
bus cycle.

3.0 Functional Description (Continued)

+5V--

:~ 10k: ,.

SPC

ODIN
A

00-031
~

(NS32532) STO

CPU sn
ST2

ST4

SON

FSSR

BClK
..

RST

1

10k

32-BIT .:
DATA BUS

v ..
r

I

-"'+5V

:~lk :~lk : lk ,. ,. •
..

NOE PSO PSI

SPC

ODIN

00-031

STO (NS32381)

sn FPU

ST2

ST3

SDN532
RESERVED ~

FSSR
RESERVED ~

ClK ~ RESERVED
RST

-==
TLlEE/9157 -38

FIGURE 3·4a. System Connection Diagram with the NS32532 CPU

+5V +5V +5V
)

:.10k ~lk ~lk .. • : .
,.

NOE PSO PSI

SPC SPC

A 32-BIT 1\
ADO-AD31 DATA BUS 00-031 ,. I'

(NS32332) STO STO (NS32381)

CPU sn STI FPU

ST2 ST2

ST3 ST3

RESERVED ~
DT/SDONE "'-. SDN332

RESERVED ~
RSTjABT RST

I RESERVED rll-
J

ClK

~7
RSTO cm

SYSTEM ...
Rsn RESET '

NS32C201

TCU

TL/EE/91 57-39

FIGURE 3·4b. System Connection Diagram with the NS32332 CPU

3·91

z
(J)
W
N
W
CX)
...&. • ...&.
U1
Z
(J)
W
N
W
CX)
...&.

• N
Q

•

3.0 Functional Description (Continued)

+SV

• 10k

~ ~ I 1 NOE pso PSI

AY,/SPc SPC

A 16-BIT -".
ADO-ADIS DATA BUS DO-DIS

'I V'

(NS32032) STO STO (NS32381)

(NS32016) STI STI F'PU

(NS32008) ---. ST2
CPU

~ ST3

~ RESERVED ~ -
RESERVED]!-

RST/ABT RST

I RESERVED !!-.. ClK
I -==

RSTO cm
SYSTEtd ..

RSTl RESET '
,

NS32C201

TCU

TL/EE/9157 -40

FIGURE 3-4c. System Connection Diagram with the NS32008, NS32016 or NS32032 CPU

+5V +5V
)

•
• 10k . = Ik

r _l 1 1 NOE pso PSI

SPC SPC

A 16-BIT '" ADO-ADIS DATA BUS 00-015
'I V'

STO STO

(NS32CGI6) STI STI (NS32381)

CPU ---. ST2 F'PU

~ ST3

-== RESERVED ~
RESERVED ~

RSTI RST
~ RESERVED

cm ClK

-==
SYSTEtd ...

RESET
,

TL/EE/9157 -41

FIGURE 3-4d. System Connection Diagram with the NS32CG16 CPU

3·92

3.0 Functional Description (Continued)

STO,STl __ "", ___ VAL.,..ID __ -I_
m ___________ ~NOTE11 ~

00-015 ---------- -<", ___ VA_L_ID_FR_D_M_F_PU __ rJ}- --
TLlEE/9157-12

Note 1: FPU samples CPU status here.

FIGURE 3-5. Slave Processor Read Cycle (NS32008, NS32016, NS32032 and NS32332 CPUs)

r TI

eLK

+ (NOTE I)

STO-ST-4 7171ZZZZ7X'"-__ ~XZZZ7lZZ
ODIN 71Z1/I/ZlA 1JIZ7IZZ

\'"-__ ---'1

OO-D31-------------------~(~ ________________ .J)~----------
TLlEE/9157-13

Note 1: FPU samples CPU status here.

FIGURE 3-6. Slave Processor Read Cycle (NS32532 CPU)

3-93

z en
w
I\)
w
0)
•

(J1 z en
w
I\)
w
0) • I\)
o

•

3.0 Functional Description (Continued)

STO, 8T1 VALID

----------,1 (NOTE 1)

(NOTE 2)

00·015 ------ VALID FROM CPU

TUEE/9157-14

Note 1: FPU samples CPU status here.

Note 2: FPU samples data bus here.

FIGURE 3-7. Slave Processor Write Cycle (NS32008, NS32016, NS32032 and NS32332 CPU)

rn T2--j

elK

'" (NOTE 1)

STO-ST3 7I///Z//ZX,---~X!~Z.,...,.7Z..,....,71..,....Z,...,..71.,...,.7Z~7

ODIN ZZZ7I///IY '<I//Z7I//Z

_-~
! (NOTE 2)

OO-D31--------------------~(~ __________ _J)~-------------
Note 1: FPU samples CPU status here.

Note 2: FPU samples data bus here.

FIGURE 3·8. Slave Processor Write Cycle (NS32532 CPU)

3·94

TUEE/9157-15

3.0 Functional Description (Continued)

3.6 INSTRUCTION PROTOCOLS 2) It specifies which Slave Processor will execute it.

3.6.1 General Protocol Sequences

The NS32381 supports both the 16·bit and 32·bit General
Slave protocol sequences. See Tables 3·1, 3·2 and Figures
3·12,3·13 respectively.

3) It determines the format of the following Operation Word
of the instruction.

Slave Processor instructions have a three·byte Basic In·
struction field, consisting of an 10 byte followed by an Opere
ation Word. See Figure 3·9 for the 10 and Opcode format
16·bit Slave Protocol and Figure 3·10 for the 10 and Opcode
Format 32·bit Slave Protocol. The 10 Byte has three func·
tions:

1) It identifies the instruction to the CPU as being a Slave
Processor instruction.

Upon receiving a slave processor instrUction, the CPU initio
ates a sequence outlined in either Table 3-1 or 3·2, depend·
ing on the PSO and PS1. to allow for the 16·bit or 32·bit
slave protocol. The NS32008, NS32016, NS32C016,
NS32032, NS32C032 and NS32CG16 all communicate with
the NS32381 using the 16·bit Slave Protocol. The NS32332,
NS32532 and NS32GX32 CPUs communicate with the
NS32381 using a 32·bit Slave Protocol; a different version is
provided for each CPU.

Mnemonic

AODf
SUBf
MULf
OIVf
MOVf
ABSf
NEGf
CMPf
FLOORfi
TRUNCfi
ROUNOfi
MOVFL
MOVLF
MOVif
LFSR
SFSR
SCALBf
LOGBf
OOTf
POLYf

D = Double Word

Step

1
2
3
4
5
6
7

Step

1
2
3
4
5

6

Operand 1
Class

read.f
read.f
read.f
read.f
read.f
read.f
read.f
read.f
read.f
read.f
read.f
read.F
read.L
read.i
read.O
N/A

read.f
read.f
read.f
read.f

TABLE 3-1. 16-Blt General Slave Instruction Protocol

Status

10(1111)
OP (1101)
OP (1101)

ST(1110)
OP (1101)

Action

CPU sends ID Byte
CPU sends Operation Word
CPU sends required operands (if any)
Slaves starts execution (CPU prefetches)
Slave pulses SPC low
CPU Reads Status Word
CPU Reads Result (if destination is
memory and if no TRAP occurred)

TABLE 3-2. 32-Blt General Slave Instruction Protocol

Status

ID (1111)
OP (1101)

ST(1110)

OP(1101)

Action

CPU sends ID and Operation Word
CPU sends required operands (if any)
Slaves starts execution (CPU prefetches)
Slave signals DONE or TRAP or CMPf
CPU Reads Status Word (If TRAP was Signaled
or a CMPf instruction was executed)
CPU Reads Result (if destination is memory and
if no TRAP occurred)

TABLE 3-3. Floatlng·Polnt Instruction Protocols

Operand 2 Operand 1 Operand 2 Returned Value
Class Issued Issued Type and Destination

rmw.f f f ftoOp.2
rmw.f f f fto Op. 2
rmw.f f f ftoOp.2
rmw.f f f ftoOp.2
write.f f N/A ftoOp.2
write.f f N/A fto Op. 2
write.f f N/A ftoOp.2
read.f f f N/A
write.i f N/A itoOp.2
write.i f N/A ito Op. 2
write.i f N/A itoOp.2
write.L F N/A LtoOp.2
write.F L N/A FtoOp.2
write.f i N/A ftoOp.2
N/A 0 N/A N/A

write. 0 N/A N/A OtoOp.2
rmw.f f f ftoOp.2
write.f f N/A ftoOp.2
read.f f f *f to FO/LO
read.f f f *f to FO/LO

i = Integer size (B, W, 0) specified in mnemonic.

f = Floating·Point type (F, L) specified in mnemonic.

N/A = Not Applicable to this instruction.

·The "returned value" can go to either FO or LO depending on the "f" bit in the opcode, I.e., whether "floating" or "long" data type is used.

3·95

PSR Bits
Affected

none
none
none
none
none
none
none
N,Z,L
none
none
none
none
none
none
none
none
none
none
none
none

z en
<.)
N
<.)
OJ
•
en z en
<.)
N
<.)
OJ
• N

Q

•

o r---~
N • ,...
CO
C")
N
C")
(J)
Z
Il) ,...
• ,...

CO
C")
N
C")
(J)
Z

3.0 Functional Description (Continued)

7 o

10 Byte

15 7 0

I OPCOOE (low) OPCOOE (high)

Byte 1 Byte 0
Operation Word

FIGURE 3·9. 10 and OPCODE Format
16·Blt Slave Protocol

31 23 15 7 0

10 IOPCOOE (lOW)IOPCOOE (hi9h)1 XXXXXXXX I
Byte 3 Byte 2 Byte 1 Byte 0

FIGURE 3·10. 10 and OPCODE Format
32·Blt Slave Protocol

For the 16·bit Slave Protocol the CPU applies Status Code
1111 (Broadcast 10), and sends the 10 Byte on the least
significant half of the Data Bus (00-07). The CPU next
sends the Operation Word while applying Status Code 1101
(Transfer Slave Operand). The Operation Word is swapped
on the Data Bus; that is, bits 0-7 appear on pins 08-015,
and bits 8-15 appear on pins 00-07.

For the 32·bit Slave Protocol the CPU applies Status Code
1111 and sends the 10 Byte (different 10 for each format) in
byte 3 (024-031) and the Operation Word in bytes 1 and 2
in a single double word transfer. The Operation Word is
swapped such that OPCOOE low appears on byte 2 (016-
023) and OPCOOE high appears on byte 1 (08-015). Byte
o (00-07) is not used.

All Slave Processors input and decode the data from these
transfers. The Slave Processor selected by the 10 Byte is
activated and from this pOint on the CPU is communicating
with it only. If any other slave protocol is in progress (e.g., an
aborted Slave instruction), this transfer cancels it. Both the
CPU and FPU are aware of the number and size of the
operands at this point.

Using the Addressing Mode fields within the Operation
Word, the CPU starts fetching operands and issuing them to
the FPU. To do so, it references any Addressing Mode ex·
tensions appended to the FPU instruction. Since the CPU is
solely responsible for memory accesses, these extensions
are not sent to the Slave Processor. The Status Code ap·
plied is 1101 (Transfer Slave Processor Operand).

After the CPU has issued the last operand, the FPU starts
the actual execution of the instruction. A one clock cycle
SPC pulse is used to indicate the completion of the instruc-

3-96

tion and for the CPU to continue with the 16·Bit Slave Proto·
col by reading the FPU's Status Word Register.

For the 32·bit Slave Protocol, upon completion of the in·
struction, the FPU will signal the CPU by pulsing either
SONXXX or FSSR (Force Slave Status Read).

A half clock cycle SON332 pulse with a NS32332 CPU, or a
one clock cycle SON532 pulse with a NS32532 or
NS32GX32 CPU, indicates a valid completion of the instruc·
tion and that there is no need for the CPU to read its Status
Word Register.

But if there is a need for the CPU to read FPU's Status Word
Register, a two and a half clock cycle SON332 (from
NS32332) or a one clock cycle FSSR pulse (from NS32532
or NS32GX32) will be issued instead.

In all cases for both the 16·Bit and 32·Bit Slave Protocols
the CPU will use SPC to read the Status Word from the
FPU, while applying status code (1110). This word has the
format shown in Figure 3·11. If the Q bit ("Quit", Bit 0) is set,
this indicates that an error (TRAP) has been detected by the
FPU. The CPU will not continue the protocol, but will imme·
diately trap through the Slave vector in the Interrupt Table. If
the instruction being performed is CMPf (Section 2.2.3) and
the Q bit is not set, the CPU loads Processor Status Regis·
ter (PSR) bits N, Z and L from the corresponding bits in the
FPU Status Word. The FPU always sets the L bit to zero.

The last step will be for the CPU to read the result, provided
there are no errors and the results destination is in memory.
Here again the CPU uses SPC to read the result from the
FPU and transfer it to its destination. These Read cycles
from the FPU are performed by the CPU while applying
Status Code 1101 (Transfer Slave Operand).

Bit

(0) Q:

(2) L:

(6) Z:

15 7 0

ZERO

Description

Set to "1" if an FPU TRAP (error) occurred.

Cleared to '0" by a valid CMPf.

Cleared to "0" by the FPU.

Set to "1" if the second operand is equal to
the first operand. Otherwise it is cleared to
"0".

(7) N: Set to "1" if the second operand is less than
the first operand. Otherwise it is cleared to
"0".

(15) TS: Set to "1" if the TRAP is (UNO) and cleared to
"0" if the TRAP is (FPU).

FIGURE 3·11. FPU Status Word Format

3.0 Functional Description (Continued)

READ OPERAND
(BUS STATUS = 1101)

FIGURE 3-12. 16-Blt General Slave Instruction Protocol: FPU Actions

PuIs. Actlv.
SDN332 for ~ clock

__ or
SDN532 for 1 clock (DONE)

READ OPERAND
(BUS STATUS = 1101)

FIGURE 3-13. 32-Blt General Slave Instruction Protocol: FPU Actions

3-97

TL/EE/9157-16

TL/EE/9157 -17

z
~
N
W
CD
I

U'I
........
z en
w
N
W
CD
~
Q

o
N • "I'""

CO
C")
N
C")
U)
Z
it)
"I'"" • "I'""
CO
C")
N
C")
U)
Z

3.0 Functional Description (Continued)

3.6.2 Early Done Algorithm

The NS32381 has the ability to modify the General Slave
protocol sequences and to boost the performance of the
FPU by 20% to 40%. This is called the Early Done Algo­
rithm.

Early Done is defined by the fact that the destination of an
instruction is an FPU register and that the instruction and
range of operands cannot generate a TRAP (error). When
these conditions are met the FPU will send a SDNXXX or
'S'i5C pulse after receiving all of the operands from the CPU
and before executing the instruction. Hence this becomes
an early done as compared to the General Slave Protocols.

In the case of the 16-bit Slave Protocol in which the CPU
always reads the slave status word, the FPU will force all
zeroes to be read. The CPU can then send the next instruc­
tion to the FPU and save the general protocol overhead.
The FPU will start the new instruction immediately after fin­
ishing the previous instruction.

SFSR, CMPF and CMPl do not generate an Early Done.

3.6.3 Floating-Point Protocols

Table 3-3 gives the protocols followed for each floating­
pOint instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
section 2.2.3.

The Operand Class columns give the Access Classes for
each general operand, defining how the addressing modes
are interpreted by the CPU (see Series 32000 Instruction
Set Reference Manual).

The Operand Issued columns show the sizes of the oper­
ands issued to the Floating-Point Unit by the CPU. "0" indi­
cates a 32-bit Double Word. "i" indicates that the instruction
specifies an integer size for the operand (B = Byte, W =
Word, 0 = Double Word). "f" indicates that the instruction
specifies a floating-point size for the operand (F = 32-bit
Standard Floating, l = 64-bit long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR Bits Affected column indicates which PSR bits, if any,
are updated from the FPU Status Word (Figure 3-11).

Any operand indicated as being of type "f" will not cause a
transfer if the Register addressing mode is specified, be­
cause the Floating-Point Registers are physically on the
Floating-Point Unit and are therefore available without CPU
assistance.

4.0 Device Specifications
4.1 PIN DESCRIPTIONS

4.1.1 Supplies

The following is a brief description of all NS32381 pins.

Vee Power: + 5V positive supply.

GND Ground: Ground reference for both on-chip log­
ic and drivers connected to output pins.

3-98

4.1.2 Input Signals

ClK Clock: TIL-level clock signal.

Data Direction In: Active low. Status signal indi­
cating the direction of data transfers during a
bus cycle .

STO-ST3 Status: Bus cycle status code from CPU. STO is
the least significant and rightmost bit.

1100- Reserved

1101- Transferring Operation Word or Oper-
and

1110- Reading Status Word

1111- Broadcasting Slave 10
Note: The NS32332 generates four status lines and the

NS32532 generates five. The user should connect the
status lines as shown below:

NS32381
STO
ST1
ST2
ST3

NS32332
STO
ST1
ST2
ST3

NS32532
STO
ST1
ST2
ST4

RST Reset: Active low. Resets the last operation
and clears the FSR register.

NOE New Opcode Enable: Active high. This signal
enables the new opcodes available in the
NS32381.

PSO, PS1 Protocol Select: Selects the slave protocol to
be used. PSO is the least significant and right­
most bit.

OO-Selects 16-bit protocol.
01-Selects 32-bit protocol for NS32332.
10-Reserved.
11-Selects 32-bit protocol for NS32532.

4.1.3 Output Signals

SDN332 Slave Done 332: Active low. This signal is for
use with the NS32332 CPU only. If held active
for a half clock cycle and released this pin indi­
cates the successful completion of a floating­
point instruction by the FPU. Holding this pin
active for two and a half clock cycles indicates
TRAP or that the CMPf instruction has been ex­
ecuted.

SDN532 Slave Done 532: Active low. This signal is for
use with the NS32532 CPU only. When active it
indicates successful completion of a floating­
point instruction by the FPU.

Force Slave Status Read: Active low. This sig­
nal is for use with the NS32532 CPU only.
When active it indicates TRAP or that the CMPf
instruction has been executed.

4.1.4Input/Output Signals

*00-031 Data Bus: These are the 32 signal lines which
carry data between the NS32381 and the CPU.

SPC Slave Processor Control: Active low. This is the
data strobe signal for slave transfers. For the
32-bit protocol, SPC is only an input signal.

"For the 16-bit Slave Protocol the upper sixteen data input signals (016-
031) and ODIN should be left floating.

4.0 Device Specifications (Continued)

Connection Diagrams

Desc

Vee
01
DO
PS1 (Note 1)
GNO
GNO
ClK
RST
Reserved (Note 2)
Reserved (Note 2)
02
017
016
PSO (Note 1)
GNO
NOE (Note 1)
Reserved (Note 3)
Reserved (Note 2)
Vee
015
018
03
031
014
019
Vee
030
Vee
04
020
013
029
Reserved (Note 3)
05

Note 1: CMOS input; never float.

Note 2: Pin should be grounded.

Note 3: Pin should be left floating.

@@@@@@@@@
K@€)@@@@@@@€)@
J @@ @@
H @@ @@
G @@ @@

@@ NS32381 @@
@@ @ @

D@@ @@
C @ @d @ @
B@€)@@@@@@@€)@
A @@@@@@@@@

1 2 3 4 5 6 7 8 9 10 11

Bottom View

Order Number NS32381
See NS Package Number U68D

FIGURE 4-1. 68-Pin PGA Package
NS32381 Pinout Descriptions

TLlEE/91S7-18

Pin Desc

A2 028
A3 GNO
A4 GNO
A5 021
A6 012
A7 027
A8 06
A9 022
A10 011
B1 SON332
B2 07
B3 023
B4 SPC
B5 SON532
B6 Vee
B7 08
B8 GNO
B9 026
B10 GNO
B11 Vee
C1 Reserved (Note 3)
C2 STO
C10 ST1
C11 Reserved (Note 3)
01 GNO
02 024
010 025
011 09
E1 010
E2 ODIN
E10 Vee
E11 ST2
F1 ST3
F2 FSSR

3·99

Pin

F10
F11
G1
G2
G10
G11
H1
H2
H10
H11
J1
J2
J10
J11
K1
K2
K3
K4
K5
K6
K7
K8
K9
K10
K11
l2
l3
l4
l5
l6
l7
l8
19
L10

z en
w
I\)
w
co
-'" • -'"
U1 z en w
I\)
w
co
-'" .
I\)
c

o .---~
N
; 4.0 Device Specifications (Continued)
C")

~ Connection Diagrams (Continued)
U)
Z
it) ...
• ...

CO
C")
N
C")
U)
Z

08

025

Vee

GNO

D9

026

010

ODiN
Vee

ST2

STO

ST3

STI

", N 8~ N S S :g N
Q Q > C)

~
0 z

~
0 en 00 8~ If) ~ N ~ Q a Q N

Q a: Q Q Q > C)

Vee
017

01

016

DO

PSO

PSI

GNO
NS32381

NOE CPU
Vee
GNO

RESERVED NOTE 1

ClK

RESERVED NOTE 2

RST

Vee
RESERVED NOTE 2

Bottom View

Order Number NS32381V-15, NS32381V-20, NS32381V-25 or NS32381V-30
See NS Package Number V68

Note 1: All these pins should be left open.

Note 2: All these pins should be grounded.

FIGURE 4-2. 68-Pln Plastic Chip Carrier Package

3-100

TL/EE/9157 -42

4.0 Device Specifications (Continued)

4.2 ABSOLUTE MAXIMUM RATINGS All Input or Output Voltages

If Military/Aerospace specified devices are required, with Respect to GND -O.SV to + 7.0V

please contact the National Semiconductor Sales ESD Rating 2000V (in human body model)
Office/Distributors for availability and specifications. Note: Absolute maximum ratings indicate limits beyond
Maximum Case Temperature 9S·C which permanent damage may occur. Continuous operation

Storage Temperature - 65·C to + 150·C at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS T A = O·C to 70·C, Vee = 5V ± S%, GND = OV

Symbol Parameter Conditions Min Typ Max Units

VIH High Level Input Voltage· 2.0 Vee +O.S V

VIL Low Level Input Voltage· -0.5 0.8 V

VOH High Level Output Voltage IOH = -400 J-tA 2.4 V

VOL Low Level Output Voltage IOL = 2 rnA 0.4 V

II Input Load Current· o ~ VIN ~ Vee -10.0 10.0 J-tA

VIH High Level Input Voltage
3.S Vee +o.S V

for PSO, PS1, NOE

VIL Low Level Input Voltage
-O.S 1.S V

for PSO, PS1, NOE

II Input Load Current o ~ VIN ~ Vee
-100 100 J-tA for PSO, PS1, NOE

IL Leakage Current 0.4 ~ VOUT ~ 2.4V
(Output and I/O Pins -20.0 20.0 J-tA
in TRI-STATE®/Input Mode)

Icc Active Supply Current lOUT = 0, T A = 25·C, Vee = SV 300 rnA

Icc Power Down Current lOUT = 0, T A = 2S·C, Vee = SV 60 rnA

"Except PSO, PS1, NOE and Reserved pins.
Note: PSO, PSl NOE pins have to be connected to either GND or Vee (possible via resistor) as it is shown in Figure 3-4a, 3-4b, 3·4c, and 3-4d

4.4 SWITCHING CHARACTERISTICS ABBREVIATIONS

4.4.1 Definitions L.E. - Leading Edge R.E. - Rising Edge

All the Timing Specifications given in this section refer to T.E. - Trailing Edge F.E. - Falling Edge

0.8V and 2.0V on all the input and output signals as iIIustrat-

[UV(C ed in Figures 4.3 and 4.4, unless specifically stated other-
ClK wise.

D.BV

[)'UV ClK

'M~
--2.4V

'\ D.BV
SIG1 [ISIG11

[\
2.4V O.45V

SIG1 2.4V
ISIG11

[2.DV I D.BV ISlG2h
O.45V

[
I /2 .. 2.4V SIG2

ISIG2h -----O.45V

TLlEE/9157-20
SlG2 FIGURE 4·4. Timing Specification Standard

O.45V (Signal Valid before Clock Edge)

TL/EE/9157-19
FIGURE 4·3. Timing Specification Standard

(Signal Valid after Clock Edge)

3-101

z en
w
I\)
w
CD
-'" • -'"
CJ1 z en
w
I\)
w
CD
-'" • I\)
o

4.0 Device Specifications (Continued)

4.4.2 Timing Tables (Maximum times assume temperature range O°C to 70°C)

4.4.2.1 Output Signal Propagation Delays for all CPUs (16-Blt Slave Protocol)
(Maximum times assume capacitive loading of 100 pF)

Symbol Figure Description Reference! NS32381-15 NS32381-20 NS32381-25
Units

Conditions
Min Max Min Max Min Max

tSPCFw 4-18 SPC Pulse Width AtO.8V
tcLKp - 10 tCLKp + 10 tCLKp - 10 tcLKp + 10 tcLKp - 10 tCLKp + 10 from FPU (80th Edges)

ns

tSPCFa 4-18 SPC Output Active After CLK R.E. 17 17 15 ns

tSPCFia 4-18 SPC Output Inactive After CLK R. E. 38 33 25 ns

tSPCFf(1) 4-18 SPC Output Floating After CLK F.E. 35 30 25 ns

4.4.2.2 Output Signal Propagation Delays for the NS32008, NS32016 and NS32032 CPUs
Maximum times assumes capacitive loading of 100 pF

Symbol Figure Description Reference! NS32381-15 NS32381-20 NS32381-25
Units

Conditions Min Max Min Max Min Max

tOy 4-8 Data Valid (00-015) After SPC L.E. 30 18 ns

t01(1) 4·8 00-015 Floating After SPC T.E. 30 30 ns

4.4.2.3 Output Signal Propagation Delays for the 32-Blt Slave Protocol NS32332 CPU
Maximum times assume capacitive loading of 100 pF unless otherwise specified

Reference! NS32381-15
Symbol Figure Description

Conditions
Units

Min Max

tOy 4-10 Data Valid After SPC L.E.;
25

75 pF Cap. Loading
ns

tOh 4-10 Data Hold After $PC T.E. 8 ns

tDf(1) 4·10 Data Floating After SPC T.E. 30 ns

tSONa 4-12,13 Slave Done Active After CLK F.E. 3 28 ns

tSONh 4-13 Slave Done Hold After CLK R.E. 33 ns

tSDNw 4-12 Slave Done AtO.8V
% tcLKp -10 %tCLKp +10 Pulse Width (80th Edges)

ns

tSDNf(1) 4-12,13 Slave Done Floating After CLK R. E. 30 ns

tSTRPw 4-13 Slave Done (TRAP) AtO.8V
2%tCLKp-10 2%tCLKp +10 Pulse Width (80th Edges)

ns

Note 1: Not 100% tested.

3-102

4.0 Device Specifications (Continued)

4.4.2.4 Output Signal Propagation Delays for the 32-81t Slave Protocol NS32532 CPU
Maximum times assume capacitive loading of 50 pF

Reference!
NS32381-

Symbol Figure Description Conditions 20 25 30 Units

Min Max Min Max Min Max

tOy 4·14 Data Valid After SPC L.E. 35 35 35 ns

tOh 4·14 Data Hold After ClK R.E. 3 3 3 ns

tDf(1) 4·14 Data Floating After SPC T.E. 30 30 30 ns

tsoa 4·16 Slave Done Active After ClK R.E. 35 25 20 ns

tSOh 4·16 Slave Done Hold After ClK R.E. 2 33 2 25 2 20 ns

tSOf(1) 4·16 Slave Done Floating After ClK R. E. 30 30 30 ns

tFSSAa 4-17 Forced Slave Status After ClK R.E.
35 25 20

Read Active
ns

tFSSAh 4·17 Forced Slave Status After ClK R.E.
2 33 2 25 2 20

Read Hold
ns

tFSSAf(1) 4·17 Forced Slave Status After ClK R.E.
30 30 30

Read Floating
ns

4.4.2.5 Input Signal Requirements with all CPUs

NS32381-

Symbol Figure Description
Reference!

15 20 25 30 Units
Conditions

Min Max Min Max Min Max Min Max

tpWA 4·5 Power·On Reset Duration After ClK R.E. 30 30 30 30 ,...s

tASTw 4·6 Reset Pulse Width At 0.8V (Both Edges) 64 64 64 64 tcLKp

tASTs 4·7 Reset Setup Time Before ClK R.E. 10 14 12 11 ns

tASTh 4·7 Reset Hold After ClK R.E. 0 0 0 0 ns

4.4.2.6 Input Signal Requirements with the NS32008, NS32016, NS32032 CPUs

Symbol Figure Description
Reference! NS32381-15 NS32381-20 NS32381-25

Units
Conditions

Min Max Min Max Min Max

tss 4·8 Status (STO-ST1) Setup Before SPC L.E. 20 20 15 ns

tSh 4·8 Status (STO-ST1) Hold After SPC L.E. 20 20 17 ns

tos 4·9 Data Setup (DO-D15) Before SPC T.E. 25 20 15 ns

tOh 4·9 Data Hold (00-015) After SPC T.E. 20 20 15 ns

tspCw 4·8 SPC Pulse Width AtO.8V
35 35 28

from CPU (Both Edges)
ns

Note 1: Not 1000/0 tested.

3·103

o
~ .,..
CO
C")
N
C")
en z
Lt) .,..
• .,..

CO
C")
N
C")
en z

4.0 Device Specifications (Continued)

4.4.2.7 Input Signal Requirements with the 32·Blt Slave Protocol NS32332 CPU

Symbol Figure Description
Reference! NS32381·15

Units
Conditions Min Max

tSTs 4·11 Status Setup Before SPC L.E. 20 ns

tSTh 4-11 Status Hold After SPC L.E. 20 ns

tos 4-11 Data Setup Before SPC T.E. 20 ns

tOh 4-11 Data Hold After SPC T.E. 20 ns

tspCw 4-11 SPC Pulse Width At O.BV (Both Edges) 35 ns

4.4.2.8 Input Signal Requirements with the 32-Blt Slave Protocol NS32532 CPU

NS32381

Symbol Figure Description
Reference!

20 25 30
Conditions Units

Min Max Min Max Min Max

tSTs 4-15 Status Setup Before ClK (T2) R.E. 25 20 20 ns

tSTh 4-15 Status Hold After ClK (T2) R.E. 20 10 10 ns

tOOINs 4-15 Data Direction In Setup Before SPC L.E. 0 0 0 ns

tOOINh 4-15 Data Direction In Hold After SPC T.E. 10 10 10 ns

tos 4-15 Data Setup Before SPC T.E. 6 6 4 ns

tOh 4-15 Data Hold After SPC T.E. 20 10 10 ns

tspcs 4-14,15 SPCSetup Before ClK R.E. 20 20 20 ns

tSPCh 4-14,15 SPCHold After ClK R.E. 0 0 0 ns

4.4.2.9 Clocking Requirements with all CPUs

NS32381

Symbol Figure Description
Reference!

15 20 25 30
Conditions Units

Min Max Min Max Min Max Min Max

tCLKh 4-4 Clock High Time At 2.0 V (Both Edges) 25 1000 20 1000 16 1000 13 1000 ns

tCLKI 4-4 Clock low Time At O.BV (Both Edges) 25 DC 20 DC 16 DC 13 DC ns

tcr
r
(1) 4-4 Clock Rise Time Between O.BV and 2.0V 7 5 4 3 ns

tCTd(1) 4-4 Clock Fall Time Between 2.0V and O.BV 7 5 4 3 ns

tCLKp 4-4 Clock Period ClK R.E. to Next ClK R.E. 66 DC 50 DC 40 DC 33.3 DC ns

Note 1: Not 100% tested.

3-104

4.0 Device Specifications (Continued)

4.4.3 Timing Diagrams

elK

TLlEE/9157-21

FIGURE 4-5. Clock Timing

FIGURE 4-6. Power-On Reset

eLK SLI1JLJLIL
m_~\ "p- r-

FIGURE 4-7. Non-Power-On Reset

ClK~ I I
RST 9 j--tRST.---l

RSlh/
----'

TLlEE/9157 -22

TL/EE/9157-23

TL/EE/9157 -24

FIGURE 4-8. RST Release Timing
Note: The rising edge of RST must occur while elK Is high, as shown.

ClK ---'
STO, S11 ?llX VALID X17l1111V

j-tSI1~tSh --j
SPC _tspcw--U-

tOY-j ~l-tDf:j
00-015 -----------< VALID F'ROIol F'PU):.-

TL/EE/9157 -25

FIGURE 4-9. Read Cycle from FPU (NS32008, NS32016, NS32032 CPUs)

3-105

z en
w
N
W
co
•

U1

" z en
w
N
W
co
• N

Q

o r---,
N

~ 4.0 Device Specifications (Continued)
C")
N
C")

(J) ClK
~ ------~
an ,....
~ STO, S11 ?llX VALID XlI/IIIIII
~ f-tss-j r-- tSh ---l
~ SPC ttspcw--j~L

r---- tos -j tOh::j

00-015 """'I/"'"'l!"'"'/"'"'Z""ZX-" VALID FROM CPU ~
TL/EE/9157 -26

FIGURE 4-10. Write Cycle to FPU (NS32008, NS32016, NS32032 CPUs)

CLK[
r T1 'I" T4-1

510-513 [zmzmzx,-----,XI//////////I

SPC[H
00_03{ ________ t_Dv __ f VAU' pmuu __ uu_

FIGURE 4-11. Read Cycle from FPU (NS32332 CPU)

r T1 T4-1

SPC[

00-03{----------<II'-__I\I>----------

FIGURE 4-12. Write Cycle to FPU (NS32332 CPU)

3·106

TL/EE/9157 -27

TL/EE/9157 -28

4.0 Device Specifications (Continued)

CLK [

_ [_____ ~~!-::J~~ I7-t~D~f ______ _

SDN332

tSDNw
TlIEE/9157 -29

FIGURE 4-13. SDN332 Timing (NS32332 CPU)

CLK [

tSDNa--ll

SOH332 [- -- - - - - - - - ____ _

r- tSTRPw
TL/EE/9157-30

FIGURE 4-14. SDN332 (TRAP) Timing (NS32332 CPU)

r T1 'I'

tspcs

SPC[

00-03{-----------el'-____ DA_TA_VA_L_ID __IJ -_

TL/EE/9157 -31

FIGURE 4-15. Read Cycle from FPU (NS32532 CPU)

3-107

z en
Cot)
N
Cot)
(X)
•

U1
z en
Cot)
N
Cot)
(X)
N
o

•

o
C'i •
CO
C"')
C'i
C"')
(J)
z
It)
•

CO
C"')
C'i
C"')
(J)
z

4.0 Device Specifications (Continued)

'I' T2--j rn
ClK[

_ t:tSTS-\ .J":tSTh
STO-ST3 [--71-71--/-ZZ-"""ZK X1--Z,....,..71~71~Z,...,...71.,....,..71~Z

I

00-031[-----------<lI'-__ D_AT_A_VA_l_ID_rlJ~-------
TL/EE/9157-32

FIGURE 4·16. Write Cycle to FPU (NS32532 CPU)

TL/EE/9157-33

FIGURE 4·17. SDN532 Timing (NS32532 CPU)

TL/EE/9157 -34

FIGURE 4·18. FSSR Timing (NS32532 CPU)

elK

TL/EE/9157 -35

FIGURE 4·19. SPC Pulse from FPU

3-108

Appendix A
NS32381 PERFORMANCE ANALYSIS

The following performance numbers were taken from simu­
lations using the 381 SIMPLE model. The timing terms have
been designed to provide performance numbers which are
CPU independent. Numbers were obtained from SIMPLE
simulations, taking the average execution times using 'typi­
cal' operands.

Listed below are definitions of the timing terms:

EXT - (EXecution Time) This is the time from the last data
sent to the FPU, until the early DONE is issued.
(FPU Pipe is empty)

EDD - (Early Done Delta) This is the time from when the
early DONE is issued until the execution of the next
instruction may start.

Provided that the CPU can transfer the ID/OPCODE and
any operands to the FPU during the EDD time, the average
system execution time for an instruction (keeping the FPU
pipe filled) is: EXT + EDD.

The system execution time for a single FPU instruction with
FPU register destination and early done is: EXT plus the
protocol time. (FPU pipe is initially empty)

Instruction EXT· EOO* Total·

LFSR any, reg 5 8 13

MOVF any, reg 5 6 11
MOVL any, reg 5 8 13

MOVif any, reg 5 45 50

MOVFL any, reg 9 6 15

ADDF any, reg 11 31 42
ADDL any, reg 11 31 42

SUBF any, reg 11 31 42
SUBL any, reg 11 31 42

MULF any, reg 11 20 31
MULL any, reg 11 27 38

DIVF any, reg 11 45 56
DIVL any, reg 11 59 70

POL YF any, any 15 46 61
POL YL any, any 15 53 68

DOTF any,any 15 46 61
DOTL any, any 15 53 68

'Measured in the number of clock cycles.

3-109

NS32381 PERFORMANCE ANALYSIS

The following instructions do not generate an early done. In
this case, EXT is the time from the last data sent to the FPU,
until the normal DONE is issued. (FPU Pipe is empty)

. Instruction EXT

SFSR reg, mem 7

MOVLF any,any 18

ROUNDfi any, mem 46
FLOORfi any, mem 46
TRUNCfi any, mem 46

CMPF any,any 17
CMPL any,any 17

ABSf any,any 9
NEGf any,any 9

SCALBf any,any 49

LOGBf any,any 36

II)

"'"" •
"'"" co o
N
CW)
CJ)
Z
o
"'"" •
"'"" CO
o
N
CW)
CJ)
Z

~National
~ Semiconductor
NS32081-10/NS32081-15 Floating-Point Units

General Description Features
• Eight on-chip data registers
• 32-bit and 64-bit operations

The NS320B1 Floating-Point Unit functions as a slave proc­
essor in National Semiconductor's Series 32000~ micro­
processor family. It provides a high-speed floating-point in­
struction set for any Series 32000 family CPU, while remain­
ing architecturally consistent with the full two-address archi­
tecture and powerful addressing modes of the Series 32000
micro-processor family.

• Supports proposed IEEE standard for binary floating­
point arithmetic, Task P754

Block Diagram

r

I

I
I-
I Condilion and

Completion

I
I-

I

MICRO
ROM

STORE

• Directly compatible with NS32016, NS3200B and

Command

Internal Data Bus

NS32032 CPUs
• High-speed XMOSTM technology

• Single 5V supply
• 24-pin dual in-line package

- EXECUTION UN~
I

INTERFAcE ANOI
STORAGE UNIT I

Data Bus 16

Control Bus

L ___________ _ ..J
TL/EE/5234-1

3-110

1.0 PRODUCT INTRODUCTION

1.1 Operand Formats

1.1.1 Normalized Numbers

1.1.2 Zero

1.1.3 Reserved Operands

1.1.4 Integers

1.1.5 Memory Representations

2.0 ARCHITECTURAL DESCRIPTION

2.1 Programming Model

2.1.1 Floating.Point Registers

2.1.2 Floating.Point Status Register (FSR)

2.1.2.1 FSR Mode Control Fields

2.1.2.2 FSR Status Fields

2.1.2.3 FSR Software Field (SWF)

2.2 Instruction Set

2.2.1 General Instruction Format

2.2.2 Addressing Modes

2.2.3 Floating·Point Instruction Set

2.3 Traps

3.0 FUNCTIONAL DESCRIPTION

3.1 Power and Grounding

3.2 Clocking

3.3 Resetting

Table of Contents

3-111

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.4 Bus Operation

3.4.1 Bus Cycles

3.4.2 Operand Transfer Sequences

3.5 Instruction Protocols

3.5.1 General Protocol Sequence

3.5.2 Floating·Point Protocols

4.0 DEVICE SPECIFICATIONS

4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Input/Output Signals

4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics·

4.4 Switching Characteristics

4.4.1 Definitions

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation De­
lays

4.4.2.2 Input Signals Requirements

4.4.2.3 Clocking Requirements

4.4.3 Timing Diagrams

z en
w
I\)
o
Q)
~ .
~

o
z en
w
I\)
o
Q)
~

• ~
U1

U) ,....
• ,....

co
Q
N
C")

en z
Q ,....
• ,....

co
Q
N
C")
en z

List of Illustrations
Floating-Point Operand Formats '"•.........•....................•.........•....•........•................. 1-1

Register Set•.............•.....................................•......... 2-1

The Floating-Point Status Register•.....•..•......•.......•....•.....•.............•....................... 2-2

General Instruction Format•. .-....................•...•.....•.......••....•........•....•...••....•........ 2-3

Index Byte Format .•...........•..........•....•......•........••......•••....•......••........•............... 2-4

Displacement Encodings••........•........•....•.•........•.............•....................... 2-5

Floating-Point Instruction Formats ..•.......•....................•.................................•....•...•..... 2-6

Recommended Supply Connections••..............•...•.....•........••...•.................•.............. 3-1

Power-On Reset Requirements•....•....•.•...•....•..................................... 3-2

General Reset Timing•..............••........•....•.•...........................••........•............. 3-3

System Connection Diagram•.............•...............•........••............•.................•...•. 3-4

Slave Processor Read Cycle .•.............•••........••...•......•........•..................................... 3-5

Slave Processor Write Cycle .. ; 3-6

FPU Protocol Status Word Format. •........................•.........•........•..........•....................... 3-7

Dual-In-Line Package•.......................................•......•.........................•........... 4-1

Timing Specification Standard (Signal Valid After Clock Edge) ..•.........•.......•..................•.•.............. 4-2

Timing Specification Standard (Signal Valid Before Clock Edge) .•.......................................•............ 4-3

Clock Timing •..•...........................•...... 4-4

Power-an-Reset•.........••............................•................................•.. 4-5

Non-Power-On-Reset.•.....•....•...•.........•....•.........•.......................... 4-6

Read Cycle From FPU•..........................•.............•.........•..................•............ 4-7

Write Cycle To FPU•.........•....................••.•.....•..............•.................... 4-8

SPC Pulse from FPU ...•........•..............•................... 4-9

RST Release Timing•....•....•.....•......................••.........•......... 4-1 0

List of Tables
Sample F Fields ..•.........•.............•........•................... 1-1

Sample E Fields•.•......•........•.. 1-2

Normalized Number Ranges ...•........•....................•... 1-3

Series 32000 Family Addressing Modes•...•.........••............•...................•....... 2-1

General Instruction Protocol•...••........•••....................................... 3-1

Floating-Point Instruction Protocols•.......•........................•........•...... 3-2

3-112

1.0 Product Introduction
The NS32081 Floating-Point Unit (FPU) provides high
speed floating-point operations for the Series 32000 family,
and is fabricated using National high-speed XMOS technol­
ogy. It operates as a slave processor for transparent expan­
sion of the Series 32000 CPU's basic instruction set. The
FPU can also be used with other microprocessors as a pe­
ripheral device by using additional TIL interface logic. The
NS32081 is compatible with the IEEE Floating-Point For­
mats by means of its hardware and software features.

1.1 OPERAND FORMATS

The NS32081 FPU operates on two floating-point data
types-single precision (32 bits) and double precision (64
bits). Floating-point instruction mnemonics use the suffix F
(Floating) to select the single precision data type, and the
suffix L (Long Floating) to select the double precision data
type.

A floating-point number is divided into three fields, as shown
in Figure 1-1.

The F field is the fractional portion of the represented num­
ber. In Normalized numbers (Section 1.1.1), the binary point
is assumed to be immediately to the left of the most signifi­
cant bit of the F field, with an implied 1 bit to the left of the
binary pOint. Thus, the F field represents values in the range
1.0 =:;; x =:;; 2.0.

TABLE 1-1. Sample F Fields

FFleld Binary Value Decimal Value
000 ... 0 1.000 ... 0 1.000 ... 0
010 ... 0 1.010 ... 0 1.250 ... 0
100 ... 0 1.100 ... 0' 1.500 ... 0
110 ... 0 1.110 ... 0 1.750 ... 0

i
Implied Bit

The E field contains an unsigned number that gives the bi­
nary exponent of the represented number. The value in the
E field is biased; that is, a constant bias value must be sub­
tracted from the E field value in order to obtain the true
exponent. The bias value is 011 ... 112, which is either 127
(single precision) or 1023 (double precision). Thus, the true
exponent can be either positive or negative, as shown in
Table 1-2.

31 30

Is I E

8

TABLE 1-2. Sample E Fields

E Field F Field Represented Value
011 ... 110 100 ... 0 1.5X2-1 = 0.75
011 ... 111 100 ... 0 1.5x20 = 1.50
100 ... 000 100 ... 0 1.5X21 = 3.00

Two values of the E field are not exponents. 11 ... 11 sig­
nals a reserved operand (Section 2.1.3). 00 ... 00 repre­
sents the number zero if the F field is also all zeroes, other­
wise it signals a reserved operand.

The S bit indicates the sign of the operand. It is 0 for posi­
tive and 1 for negative. Floating-point numbers are in sign­
magnitude form, that is, only the S bit is complemented in
order to change the sign of the represented number.

1.1.1 Normalized Numbers

Normalized numbers are numbers which can be expressed
as floating-point operands, as described above, where the E
field is neither all zeroes nor all ones.

The value of a Normalized number can be derived by the
formula:

(-1)5 X 2(E·Bias) X (1 + F)

The range of Normalized numbers is given in Table 1-3.

1.1.2 Zero

There are two representations for zero-positive and nega­
tive. Positive zero has all-zero F and E fields, and the S bit is
zero. Negative zero also has all-zero F and E fields, but its S
bit is one.

1.1.3 Reserved Operands

The proposed IEEE Standard for Binary Floating-Point Arith­
metic (Task P754) provides for certain exceptional forms of
floating-point operands. The NS32081 FPU treats these
forms as reserved operands. The reserved operands are:

• Positive and negative infinity

• Not-a-Number (NaN) values

• Denormalized numbers
Both Infinity and NaN values have all ones in their E fields.
Denormalized numbers have all zeroes in their E fields and
non-zero values in their F fields.

The NS32081 FPU causes an Invalid Operation trap (Sec­
tion 2.1.2.2) if it receives a reserved operand, unless the
operation is simply a move (without conversion). The FPU
does not generate reserved operands as results.

Single Precision

23 22

F

23

o

Double Precision

6362 5251 o

Is I E F

11 52

FIGURE 1-1. Floating-Point Operand Formats

3-113

z en
(,,)
N
o
Q)
•
o
.........
z en
(,,)
N o
Q)
•

U1

It)
•

co
Q
C'i
C")
(J)
z
Q
co
Q
C'i
C")
(J)
z

1.0 Product Introduction (Continued)

TABLE 1-3. Normalized Number Ranges

Most Positive
Single Precision

2127X(2-2-23)
Double Precision

21023X(2-2-52)

= 3.40282346 x 1038 = 1.7976931348623157 X 10308

Least Positive 2-126 2- 1022

= 1.17549436X 10-38 = 2.2250738585072014 X 10-308

Least Negative -(2-126) -(2- 1022)
= -1.17549436X10-38 = - 2.2250738585072014 X 10-308

Most Negative -2127X(2-2-23) -21023X(2-2-52)

= - 3.40282346 x 1038 = -1.7976931348623157 X 1 0308

Note: The values given are extended one full digit beyond their represented accuracy to help in generating rounding and conversion algorithms.

1.1.4 Integers

In addition to performing floating-point arithmetic, the
NS32081 FPU performs conversions between integer and
floating-point data types. Integers are accepted or generat­
ed by the FPU as two's complement values of byte (8 bits),
word (16 bits) or double word (32 bits) length.

1.1.5 Memory Representations

The NS32081 FPU does not directly access memory. How­
ever, it is cooperatively involved in the execution of a set of
two-address instructions with its Series 32000 Family CPU.
The CPU determines the representation of operands in
memory.

In the Series 32000 family of CPUs, operands are stored in
memory with the least significant byte at the lowest byte
address. The only exception to this rule is the Immediate
addressing mode, where the operand is held (within the in­
struction format) with the most significant byte at the lowest
address.

2.0 Architectural Description
2.1 PROGRAMMING MODEL

The Series 32000 architecture includes nine registers that
are implemented on the NS32081 Floating·Point Unit (FPU).

DEDICATED
-32-

1 FSR 1

DATA
-32-

FO ::1 ======::::
Fl::! ===::::::::
F2::! ====~
F3!:: ===::::
F4::! ===::::::::
F5!~===:::::
F61~==== F71'--___

TL/EE/5234-4

FIGURE 2-1. Register Set

3-114

2.1.1 Floating-Point Registers

There are eight registers (FO-F7) on the NS32081 FPU for
providing high-speed access to floating-point operands.
Each is 32 bits long. A floating-point register is referenced
whenever a floating-point instruction uses the Register ad­
dressing mode (Section 2.2.2) for a floating-point operand.
All other Register mode usages (Le., integer operands) refer
to the General Purpose Registers (RO-R7) of the CPU, and
the FPU transfers the operand as if it were in memory.
When the Register addressing mode is specified for a dou­
ble precision (64-bit) operand, a pair of registers holds the
operand. The programmer must specify the even register of
the pair. The even register contains the least significant half
of the operand and the next consecutive register contains
the most significant half.

2.1.2 Floating-Point Status Register (FSR)

The Floating-Point Status Register (FSR) selects operating
modes and records any exceptional conditions encountered
during execution of a floating-point operation. Figure 2-2
shows the format of the FSR.

31 16 15 9 8 7 6 5 4 3 2 1 0

rRe;:r:ed I SWF I RM IIF IIENI UF IUENI TT I L:... I I , I " I I ,

TLlEE/5234-5

FIGURE 2-2. The Floating-Point Status Register

2.1.2.1 FSR Mode Control Fields

The FSR mode control fields select FPU operation modes.
The meanings of the FSR mode control bits are given be­
low.

Rounding Mode (RM): Bits 7 and 8. This field selects the
rounding method. Floating-point results are rounded when­
ever they cannot be exactly represented. The rounding
modes are:

00 Round to nearest value. The value which is nearest to
the exact result is returned. If the result is exactly half­
way between the two nearest values the even value
(LSB = 0) is returned.

01 Round toward zero. The nearest value which is closer to
zero or equal to the exact result is returned.

2.0 Architectural Description (Continued)

10 Round toward positive infinity. The nearest value which
is greater than or equal to the exact result is returned.

11 Round toward negative infinity. The nearest value which
is less than or equal to the exact result is returned.

Underflow Trap Enable (UEN): Bit 3. If this bit is set, the
FPU requests a trap whenever a result is too small in abso­
lute value to be represented as a normalized number. If it is
not set, any underflow condition returns a result of exactly
zero.

Inexact Result Trap Enable (lEN): Bit 5. If this bit is set,
the FPU requests a trap whenever the result of an operation
cannot be represented exactly in the operand format of the
destination. If it is not set, the result is rounded according to
the selected rounding mode.

2.1.2.2 FSR Status Fields

The FSR Status Fields record exceptional conditions en­
countered during floating-point data processing. The mean­
ings of the FSR status bits are given below:

Trap Type (TT): bits 0-2. This 3-bit field records any excep­
tional condition detected by a floating-point instruction. The
TT field is loaded with zero whenever any floating-point in­
struction except LFSR or SFSR completes without encoun­
tering an exceptional condition. It is also set to zero by a
hardware reset or by writing zero into it with the Load FSR
(LFSR) instruction. Underflow and Inexact Result are always
reported in the TT field, regardless of the settings of the
UEN and lEN bits.

000 No exceptional condition occurred.

001 Underflow. A non-zero floating-point result is too small
in magnitude to be represented as a normalized float­
ing-point number in the format of the destination oper­
and. This condition is always reported in the TT field
and UF bit, but causes a trap only if the UEN bit is set. If
the UEN bit is not set, a result of Positive Zero is pro­
duced, and no trap occurs.

010 Overflow. A result (either floating-point or integer) of a
floating-point instruction is too great in magnitude to be
held in the format of the destination operand. Note that
rounding, as well as calculations, can cause this condi­
tion.

011 Divide by zero. An attempt has been made to divide a
non-zero floating-point number by zero. Dividing zero by
zero is considered an Invalid Operation instead (below).

100 Illegal Instruction. Two undefined floating-point instruc­
tion forms are detected by the FPU as being illegal. The
binary formats causing this trap are:

x~0011xx10111110

xxxxxxxxxx1001xx10111110

101 Invalid Operation. One of the floating-point operands of
a floating-point instruction is a Reserved operand, or an
attempt has been made to divide zero by zero using the
DIVf instruction.

110 Inexact Result. The result (either floating-point or inte­
ger) of a floating-point instruction cannot be represent­
ed exactly in the format of the destination operand, and
a rounding step must alter it to fit. This condition is al­
ways reported in the TT field and IF bit unless any other
exceptional condition has occurred in the same instruc­
tion. In this case, the TT field always contains the code
for the other exception and the IF bit is not altered. A
trap is caused by this condition only if the lEN bit is set;
otherwise the result is rounded and delivered, and no
trap occurs.

111 (Reserved for future use.)

Underflow Flag (UF): Bit 4. This bit is set by the FPU when­
ever a result is too small in absolute value to be represented
as a normalized number. Its function is not affected by the
state of the UEN bit. The UF bit is cleared only by writing a
zero into it with the Load FSR instruction or by a hardware
reset.

Inexact Result Flag (IF): Bit 6. This bit is set by the FPU
whenever the result of an operation must be rounded to fit
within the destination format. The IF bit is set only if no other
error has occurred. It is cleared only by writing a zero into it
with the Load FSR instruction or by a hardware reset.

2.1.2.3 FSR Software Field (SWF)

Bits 9-15 of the FSR hold and display any information writ­
ten to them (using the LFSR and SFSR instructions), but are
not otherwise used by FPU hardware. They are reserved for
use with NSC floating-point extension software.

2.2 INSTRUCTION SET

2.2.1 General Instruction Format

Figure 2-3 shows the general format of an Series 32000
instruction. The Basic Instruction is one to three bytes long

OPTlONAL BASIC
EXTENSIONS INSTRUcnON

r~----------------~A~----------------~\{~--------~A~------~\

DISP2 DISP1 DISP21DISP1
I

I
IMPUED INDEX INDEX GEN I GEN

ADDR I ADDR OPCODE IMMEDIATE DISP DISP BYTE BYTE I
OPERAND(S) MODE I MODE

A I B
IMM IMM 1

l 4 ~ j

TLlEE/S234-6

FIGURE 2·3. General Instruction Format

3-115

z en
w
N o
Q)
...A.

• ...A.
o
Z en
w
N
o
Q)
...A. • ...A.
U1

•

2.0 Architectural Description (Continued)

and contains the opcode and up to two 5-bit General Ad­
dressing Mode (Gen) fields. Following the Basic Instruction
field is a set of optional extensions, which may appear de­
pending on the instruction and the addressing modes se­
lected.

The only form of extension issued to the NS32081 FPU is
an Immediate operand. Other extensions are used only by
the CPU to reference memory operands needed by the
FPU.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index­
ing. See Figure 2-4.

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select­
ed addressing modes. Each Disp/lmm field may contain
one or two displacements, or one immediate value. The size
of a Displacement field is encoded within the top bits of that
field, as shown in Figure 2-5, with the remaining bits inter­
preted as a signed (two's complement) value. The size of an
immediate value is determined from the Opcode field. Both
Displacement and Immediate fields are stored most signifi­
cant byte first.

Some non-FPU instructions require additional, "implied" im­
mediates and/or displacements, apart from those associat­
ed with addressing modes. Any such extensions appear at
the end of the Instruction, in the order that they appear with­
in the list of operands in the instruction definition.

2.2.2 Addressing Modes

The Series 32000 Family CPUs generally access an oper­
and by calculating its Effective Address based on informa­
tion available when the operand is to be accessed. The
method to be used in performing this calculation is specified
by the programmer as an "addressing mode."

Addressing modes in the Series 32000 family are designed
to optimally support high-level language accesses to vari­
ables. In nearly all cases, a variable access requires only
one addressing mode within the instruction which acts upon
that variable. Extraneous data movement is therefore mini­
mized.

Series 32000 Addressing Modes fall into nine basic types:

Register: In floating-point instructions, these addressing
modes refer to a Floating-Point Register (FO-F7) if the op­
erand is of a floating-point type. Otherwise, a CPU General
Purpose Register (RO- R7) is referenced. See Section 2.1.1.

Register Relative: A CPU General Purpose Register con­
tains an address to which is added a displacement value
from the instruction, yielding the Effective Address of the
operand in memory.

GEN. ADDR. MODE

TLlEE/5234-7

FIGURE 2·4. Index Byte Format

3-116

Memory Space: Identical to Register Relative above, ex­
cept that the register used is one of the dedicated CPU
registers PC, SP, SB or FP. These registers point to data
areas generally needed by high-level languages.

Memory Relative: A pointer variable is found within the
memory space pointed to by the CPU SP, SB or FP register.
A displacement is added to that pointer to generate the Ef­
fective Address of the operand.

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written. Floating-point operands as well as integer operands
may be specified using Immediate mode.

Absolute: The address of the operand is specified by a
Displacement field in the instruction.

External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis­
placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected CPU Stack Pointer
(SPO or SP1) specifies the location of the operand. The op­
erand is pushed or popped, depending on whether it is writ­
ten or read.

Scaled Index: Although encoded as an addressing mode,
Scaled Indexing is an option on any addressing mode ex­
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen­
eral Purpose Register by 1, 2, 4 or 8 and adding it into the
total, yielding the final Effective Address of the operand.

The following table, Table 2-1, is a brief summary of the
addressing modes. For a complete description of their ac­
tions, see the Series 32000 Instruction Set Reference Man­
ual.

SIGNED DISPLACEMENT

7 0

1 : 1 I

':J\ru~'f:.~
~\':J't"' .. C'f:.~'f:.~"

TL/EE/5234-10

FIGURE 2·5. Displacement Encodlngs

2.0 Architectural Description (Continued)

TABLE 2·1. Series 32000 Family Addressing Modes

Encoding Mode

REGISTER

00000 Register 0
00001 Register 1
00010 Register 2
00011 Register 3
00100 Register 4
00101 Register S
00110 Register 6
00111 Register 7

REGISTER RELATIVE

01000 Register 0 relative
01001 Register 1 relative
01010 Register 2 relative
01011 Register 3 relative
01100 Register 4 relative
01101 Register S relative
01110 Register 6 relative
01111 Register 7 relative

MEMORY SPACE

11000 Frame memory
11001 Stack memory
11010 Static memory
11011 Program memory

MEMORY RELATIVE

10000
10001
10010

IMMEDIATE

10100

ABSOLUTE

10101

EXTERNAL

10110

TOP OF STACK

10111

SCALED INDEX

11100
11101
11110
11111

10011

Frame memory relative
Stack memory relative
Static memory relative

Immediate

Absolute

External

Top of Stack

Index, bytes
Index, words
Index, double words
Index, quad words

(Reserved for Future Use)

Assembler Syntax

RO or FO
R1 or F1
R20rF2
R3 or F3
R40rF4
RS or FS
R6 or F6
R7 or F7

disp(RO)
disp(R1)
disp(R2)
disp(R3)
disp(R4)
disp(RS)
disp(R6)
disp(R7)

disp(FP)
disp(SP)
disp(SB)

*+disp

disp2(disp1 (FP»
disp2(disp1 (SP»
disp2(disp1 (SB»

value

@disp

EXT (disp1)+disp2

TOS

mode[Rn:B]
mode[Rn:W]
mode[Rn:D]
mode[Rn:Q]

3·117

Effective Address

None: Operand is in the specified register.

Disp + Register.

Disp + Register; "SP" is either
SPO or SP1, as selected in PSR.

Disp2 + Pointer; Pointer found at
address Disp1 + Register. "SP" is
either SPO or SP1, as selected in PSR.

None: Operand is issued from
CPU instruction queue.

Disp.

Disp2 + Pointer; Pointer is found
at Link Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Mode + Rn.
Mode + 2 x Rn.
Mode + 4 X Rn.
Mode + 8 x Rn.
"Mode" and "n" are contained
within the Index Byte.

z en
eN
N
o
CD
o z en
eN
N
o
CD
U1

•

U')
•

co o
N
Cf)
U)
Z
o
•

CO o
N
Cf)
U)
Z

2.0 Architectural Description (Continued)
2.2.3 Floating-Point Instruction Set

The NS32081 FPU instructions occupy formats 9 and 11 of
the Series 32000 Family instruction set (Figure 2-6). A list
of all Series 32000 family instruction formats is found in the
applicable CPU data sheet.

Certain notations in the following instruction description ta­
bles serve to relate the assembly language form of each
instruction to its binary format in Figure 2·6.

23

23

I I I I
. glnl
\

Format 9

I I I
gln2 /

lopl /,/ I I I I I I I I /
. • . I 0 0 1 1 1 1 1 0

OPERATION WORD

Format 11

10 BYTE

TL/EE/5234-11

16115 817 0
I I / I ~ i / / r Iii i I I /
Qln2 ~OI1011111~

H ,

OPERATION WORO ID BYTE

TL/EE/5234-12

FIGURE 2-6. Floating-Point Instruction Formats

The Format column indicates which of the two formats in
Figure 2-6 represents each instruction.

The Op column indicates the binary pattern for the field
called "op" in the applicable format.

The Instruction column gives the form of each instruction as
it appears in assembly language. The form consists of an
instruction mnemonic in upper case, with one or more suffix­
es (i or f) indicating data types, followed by a list of oper­
ands (gen1, gen2).

An i suffix on an instruction mnemonic indicates a choice of
integer data types. This choice affects the binary pattern in
the i field of the corresponding instruction format (Figure 2-6)
as follows:

SuffIx I
B
W
o

Data Type
Byte
Word
Double Word

I Field
00
01
11

An f suffix on an instruction mnemonic indicates a choice of
floating-point data types. This choice affects the setting of
the f bit of the corresponding instruction format (Figure 2-6)
as follows:

Sufflxf
F
L

Data Type
Single Precision
Double Precision (Long)

fBlt
1
o

An operand designation (gen1, gen2) indicates a choice of
addressing mode expressions. This choice affects the bina­
ry pattern in the corresponding gen1 or gen2 field of the
instruction format (Figure 2-6). Refer to Table 2-1 for the
options available and their patterns.

Further details of the exact operations performed by each
instruction are found in the Series 32000 Instruction Set
Reference Manual.

3-118

Movement and Conversion

The following instructions move the gen1 operand to the
gen2 operand, leaving the gen1 operand intact.

Format Op Instruction Description
Move without
conversion

11 0001 MOVf gen1, gen2

9 010 MOVLF gen1, gen2 Move, converting
from double

9

9

precision to
single precision.

011 MOVFL gen1, gen2 Move, converting
from single
preCision to
double

000 MOVif

precision.

gen1, gen2 Move, converting
from any integer
type to any
floating-point
type.

9 100 ROUNDfi gen1, gen2 Move, converting
from floating·
point to the
nearest integer.

9 101 TRUNCfi gen1, gen2 Move, converting
from floating­
point to the
nearest integer
closer to zero.

9 111 FLOORfi gen1, gen2 Move, converting
from floating­
point to the
largest integer
less than or
equal to its
value.

Note: The MOVLF Instruction f bit must be 1 and the I field must be 10.

The MOVFL Instruction f bit must be 0 and the I field must be 11.

Arithmetic Operations

The following instructions perform floating-point arithmetic
operations on the gen1 and gen2 operands, leaving the re­
sult in the gen2 operand.

Format Op Instruction Description
11 0000 ADDf gen1,gen2 Add gen1 to gen2.
11 0100 SUBf gen1,gen2 Subtract gen1

from gen2.
11 1100 MULf gen1,gen2 Multiply gen2 by

gen1.
11 1000 DIVf gen1,gen2 Divide gen2 by

gen1.
11 0101 NEGf gen1,gen2 Move negative of

gen1 to gen2.
11 1101 ABSf gen1,gen2 Move absolute

value of gen1 to
gen2.

2.0 Architectural Description (Continued)
Comparison

The Compare Instruction compares two floating-point val­
ues, sending the result to the CPU PSR Z and N bits for use
as condition codes. See Figur8 3-7. The Z bit Is set if the
gen1 and gen2 operands are equal; it is cleared otherwise.
The N bit Is set If the gen1 operand Is greater than the gen2
operand; It Is cleared otherwise. The CPU PSR L bit is un­
conditionally cleared. Positive and negative zero are consid­
ered equal.

Format
11

Op
0010

Instruction
CMPf gen1, gen2

Description
Compare gen 1
togen2.

Floatlng·Polnt Status Register Access

The following instructions load and store the FSR as a 32-
bit Integer.

Format
9
9

2.3 TRAPS

Op
001
110

Instruction
LFSR gen1
SFSR gen2

Description
Load FSR
Store FSR

Upon detecting an exceptional condition in executing a
floating-point instruction, the NS32081 FPU requests a trap
by setting the a bit of the status word transferred during the
slave protocol (Section 3.5). The CPU responds by perform­
ing a trap using a default vector value of 3. See the Series
32000 Instruction Set Reference Manual and the applicable
CPU data sheet for trap service details.

A trapped floating-point instruction returns no result, and
does not affect the CPU Processor Status Register (PSR).
The FPU displays the reason for the trap in the Trap Type
(TT) field of the FSR (Section 2.1.2.2).

3.0 Functional Description
3.1 POWER AND GROUNDING
The NS32081 requires a single 5V power supply, applied on
pin 24 (Vee). See DC Electrical Characteristics table.

Grounding connections are made on two pins. Logic Ground
(GNDL, pin 12) is the common pin for on-chip logic, and
Buffer Ground (GNDB, pin 13) is the common pin for the
output drivers. For optimal noise immunity, it is recommend­
ed that GNDL be attached through a single conductor di­
rectly to GNDB, and that all other grounding connections be
made only to GNDB, as shown below (Figur83-1).

12
GNDL

NS32081
FPU

+5V

Vee 24

GNDB ~1_3 ~~-+ ~~~~~D
CONNECTIONS

TL/EE/5234-13

FIGURE 3-1. Recommended Supply Connections

3-119

3.2 CLOCKING

The NS32081 FPU requires a single-phase TIL clock input
on its CLK pin (pin 14). When the FPU is connected to a
Series 32000 CPU, the CLK signal is provided from the
CTIL pin of the NS32201 Timing Control Unit.

3.3 RESETTING
The RST pin serves as a reset for on-Chip logic. The FPU
may be reset at any time by pulling the RST pin low for at
least 64 clock cycles. Upon detecting a reset, the FPU ter­
minates Instruction processing, resets its internal logic, and
clears the FSR to all zeroes.
On application of power, RST must be held low for at least
50 ,..,s after Vee is stable. This ensures that all on-chip volt­
ages are completely stable before operation. See Figur8s 3-2
and 3-3.

Vee UV

ClK ILJ1
I. 0!:64ClOCK=t

m
r-- CYCLES _

t-----0!:50 /'1----+1

TL/EE/5234-14

FIGURE 3-2. Power-On Reset Requirements

CLK Jl.JLfLJl.....JL J 0!:64 ClOCK----I
_ CYCLES I

m-....... ~""""~ II ,.

TLlEE/5234-15

FIGURE 3-3. General Reset Timing

3.4 BUS OPERATION
Instructions and operands are passed to the NS32081 FPU
with slave processor bus cycles. Each bus cycle transfers
either one byte (8 bits) or one word (16 bits) to or from the
FPU. During all bus cycles, the SPC line is driven by the
CPU as an active low data strobe, and the FPU monitors

SPC

1Dkn~
SPC SPC

A/D 0-15
.... 16-BIT ..

"'DATA BUS ~
D 0-15

SERIES STO --.. STO NS32081
32000 STO

STt STt F'PU CPU STt ~

RST --.. RST

I r ClK

RST CTTL

NS32201
TCU

TL/EE/5234-2

FIGURE 3-4. System Connection Diagram

Z
tn
w
N
«:)
CC)
•

«:)
Z
tn
w
N
«:)
CC)
•

U1

•

It) •
co
Q
N
C")
U)
Z
Q
•

co
Q
N
C")
U)
Z

3.0 Functional Description (Continued)

pins STO and ST1 to keep track of the sequence (protocol)
established for the instruction being executed. This is nec­
essary in a virtual memory environment, allowing the FPU to
retry an aborted instruction .

3.4.1 Bus Cycles

A bus cycle is initiated by the CPU, which asserts the proper
status on STO and ST1 and pulses SPC low. STO and ST1
are sampled by the FPU on the leading (falling) edge of the
SPC pulse. If the transfer is from the FPU (a slave processor
read cycle), the FPU asserts data on the data bus for the
duration of the SPC pulse. If the transfer is to the FPU (a
slave processor write cycle), the FPU latches data from the
data bus on the trailing (rising) edge of the SPC pulse. Fig­
ures 3-5 and 3-6 illustrate these sequences.

The direction of the transfer and the role of the bidirectional
SPC line are determined by the instruction protocol being
performed. SPC is always driven by the CPU during slave
processor bus cycles. Protocol sequences for each instruc­
tion are given in Section 3.5.

3.4.2 Operand Transfer Sequences

An operand is transferred in one or more bus cycles. A 1-
byte operand is transferred on the least significant byte of
the data bus (00-07). A 2-byte operand is transferred on
the entire bus. A 4-byte or 8-byte operand is transferred in
consecutive bus cycles, least significant word first.

3.5 INSTRUCTION PROTOCOLS

3.5.1 General Protocol Sequence

Slave Processor instructions have a three-byte Basic In­
struction field, consisting of an 10 byte followed by an Oper­
ation Word. See Section 2.2.3 for FPU instruction encod­
ings. The 10 Byte has three functions:

1) It identifies the instruction to the CPU as being a Slave
Processor instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Operation Word
of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi­
ates the sequence outlined in Table 3-2. While applying
Status Code 11 (Broadcast 10. Table 3-1), the CPU trans­
fers the 10 Byte on the least significant half of the Oata Bus
(00-07). All Slave Processors input this byte and decode it.
The Slave Processor selected by the 10 Byte is activated,
and from this point the CPU is communicating only with it. If
any other slave protocol was in progress (e.g., an aborted
Slave instruction), this transfer cancels it.

The CPU next sends the Operation Word while applying
Status Code 01 (Transfer Slave Operand, Table 3-1). Upon
receiving it, the FPU decodes it, and at this point both the
CPU and the FPU are aware of the number of operands to
be transferred and their sizes. The Operation Word is
swapped on the Oata Bus; that is, bits 0-7 appear on pins
08-015, and bits 8-15 appear on pins 00-07.

STO,ST1 _ __ VAL.,-ID _--.-I~
m ___________ {NME11 ~

00-015 ---------- --(", ___ V_AL_IO_F_R_oM_FP_U __
J
>---

Note 1: FPU samples CPU status here.

FIGURE 3-5. Slave Processor Read Cycle

STO, ST1 VALID

__________ ""'l,(NoTE 11

00-015 ------ VALlO FROM CPU

Note 1: FPU samples CPU status here.

Note 2: FPU samples data bus here.

FIGURE 3-6. Slave Processor Write Cycle

3-120

(NOTE 21

TL/EE/5234-16

TLlEE/5234-17

3.0 Functional Description (Continued)

Using the Addressing Mode fields within the Operation
Word, the CPU starts fetching operands and Issuing them to
the FPU. To do so, it references any Addressing Mode ex­
tensions appended to the FPU Instruction. Since the CPU Is
solely responsible for memory accesses, these extensions
are not sent to the Slave Processor. The Status Code ap­
plied Is 01 (Transfer Slave Processor Operand, Table 3-1).

After the CPU has Issued the last operand, the FPU starts
the actual execution of the Instruction. Upon completion, it
will signal the CPU by pulsing S'I5'C low. To allow for this, the
CPU releases the S'I5'C Signal, causing It to float. S'I5'C must
be held high by an external pull-up resistor.

Upon receiving the pulse on S'I5'C, the CPU uses S'I5'C to
read a Status Word from the FPU, applying Status Code 10.
This word has the format shown in Figure 3-7. If the 0 bit
("Ouit", Bit 0) Is set, this indicates that an error has been
detected by the FPU. The CPU will not continue the proto­
col, but will Immediately trap through the Slave vector in the
Interrupt Table. If the instruction being performed is CMPf
(Section 2.2.3) and the 0 bit is not set, the CPU loads Proc­
essor Status Register (PSR) bits N, Z and L from the corre­
sponding bits in the Status Word. The NS32081 FPU always
sets the L bit to zero.

15 B 7 0

100000000iNZOOOLOQI

NEW PSR BIT VALUE(s)~l
"QUIT": TERMINATE PROTOCOL, TRAP (FPU).

TL/EE/5234-18

FIGURE 3-7. FPU Protocol Status Word Format

The last step in the protocol is for the CPU to read a result,
if any, and transfer it to the destination. The Read cycles
from the FPU are performed by the CPU while applying
Status Code 01 (Section 4.1.2).

TABLE 3-1. General Instruction Protocol

Step Status Action
1 11 CPU sends ID Byte.
2 01 CPU sends Operation Word.
3 01 CPU sends required operands.
4 XX FPU starts execution.
S XX FPU pulses 'SPC low.
6 10 CPU reads Status Word.
7 01 CPU reads result (if any).

3.5.2 Floating-Point Protocols

Table 3-2 gives the protocols followed for each floatlng­
point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Section 2.2.3.

The Operand Class columns give the Access Classes for
each general operand, defining how the addressing modes
are interpreted by the CPU (see Series 32000 Instruction
Set Reference Manual).

The Operand Issued columns show the sizes of the oper­
ands issued to the Floating-Point Unit by the CPU. "D" indi­
cates a 32-bit Double Word. "i" indicates that the instruction
specifies an integer size for the operand (B = Byte, W =
Word, D = Double Word). "f" indicates that the instruction
specifies a floating-point size for the operand (F = 32-bit
Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR Bits Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-7).

Any operand indicated as being of type "f" will not cause a
transfer if the Register addressing mode is specified, be­
cause the Floating-Point Registers are physically on the
Floating-Point Unit and are therefore available without CPU
assistance.

TABLE 3-2. Floating Point Instruction Protocols

Mnemonic
Operand 1 Operand 2

Class Class
ADDf read.f rmw.f
SUBf read.f rmw.f
MULf read.f rmw.f
DIVf read.f rmw.f
MOVf read.f write.f
ABSf read.f write.f
NEGf read.f write.f
CMPf read.f read.f
FLOORfi read.f write.i
TRUNCfi read.f write.i
ROUNDfi read.f write.i
MOVFL read.F write.L
MOVLF read.L write.F
MOVif read.i write.f
LFSR read.D N/A
SFSR N/A write.D

D = Double Word

I = Integer size (B, W, D) specified In mnemonic.

f = Floatlng·Polnt type (F, L) specified In mnemonic.

NI A = Not Applicable to this Instruction.

Operand 1
Issued

f

F
L

D
N/A

3-121

Operand 2
Issued

f
f
f
f

N/A
N/A
N/A

f
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

Returned Value PSR Bits
Type and Dest. Affected

fto Op. 2 none
ftoOp.2 none
ftoOp.2 none
ftoOp.2 none
fto Op. 2 none
fto Op. 2 none
fto Op. 2 none

N/A N,Z,L
ito Op. 2 none
itoOp.2 none
itoOp.2 none
LtoOp.2 none
FtoOp.2 none
fto Op. 2 none

N/A none
DtoOp.2 none

z en
w
N o
C)
•
o z en
w
N o
C)
•

U'I

II

U) r---~ .,..
I .,..

co
Q
N
C"')
t/)
Z
Q .,..

I .,..
co
Q
N
C"')
t/)
Z

4.0 Device Specifications
4.1 PIN DESCRIPTIONS

The following are brief descriptions of all NS32081 FPU
pins. The descriptions reference the relevant portions of the
Functional Description, Section 3.

Dual·ln·llne Package

Dl0-~I-VcC
09- 2 23 I- STO

08- 3 22 I- ST1

07- 4 211-m

06- 5 201-011

05- 6
NS32081

191-012 FPU

04- 7 181-013

03- 8 17 -014

02- 9 16 -015

01-10 15-Jm'

00-11 14 -elK

GNOl - 12 13 -GNOB

TL/EE/5234-3

Top View
FIGURE 4·1. Connection Diagram

Order Number NS32081D·10 or NS32081D·15
See NS Package Number D24C

Order Number NS32081N·10 or NS32081N·15
See NS Package Number N24A

4.2 ABSOLUTE MAXIMUM RATINGS

Temperature Under Bias O°C to + 70°C

Storage Temperature -65°C to + 150°C

All Input or Output Voltages

with Respect to GND -0.5V to + 7.0V

Power Dissipation 1.5W

4.1.1 Supplies

Power (Vee): + 5V positive supply. Section 3.1.

logic Ground (GNDl): Ground reference for on-chip logic.
Section 3.1.

Buffer Ground (GNDB): Ground reference for on-chip driv­
ers connected to output pins. Section 3.1 .

4.1.2 Input Signals

Clock (ClK): TTL-level clock signal.

Reset (RST): Active low. Initiates a Reset, Section 3.3.

Status (STO, ST1): Input from CPU. STO is the least signifi­
cant bit. Section 3.4 encodings are:

OO-(Reserved)

01-Transferring Operation Word or Operand

10-Reading Status Word

11-Broadcasting Slave 10

4.1.3 Input/Output Signals

Slave Processor Control (SPC): Active low. Driven by the
CPU as the data strobe for bus transfers to and from the
NS32081 FPU, Section 3.4. Driven by the FPU to signal
completion of an operation, Section 3.5.1. Must be held high
with an external pull-up resistor while floating.

Data Bus (00-015): 16-bit bus for data transfer. DO is the
least significant bit. Section 3.4.

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS T A = O°C to 70°C, Vee = 5V ± 5%, GND = OV

Symbol Parameter Conditions Min Typ Max Units

VIH HIGH Level Input Voltage 2.0 Vee +0.5 V

VIL LOW Level Input Voltage -0.5 0.8 V

VOH HIGH Level Output Voltage IOH = -400 p.A 2.4 V

VOL LOW Level Output Voltage IOL = 4 mA 0.45 V

II Input Load Current o ~ VIN ~ Vee -10.0 10.0 p.A

IL Leakage Current 0.45 ~ VIN ~ 2.4V
Output and I/O Pins in -20.0 20.0 p.A
TRI-STATE/lnput Mode

Ice Active Supply Current lOUT = 0, TA = 25°C 200 300 mA

3-122

4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the Timing Specifications given in this section refer to O.BV
and 2.0V on all the input and output signals as illustrated in
Figures 4.2 and 4.3, unless specifically stated otherwise.

[2.0V

ClK
O.BY

[SlG1
ISIG11

[j'.W 2.4V
ISIG2h

SIG2

O.45V

TL/EE/5234-26

FIGURE 4-2. Timing Specification Standard
(Signal Valid After Clock Edge)

ABBREVIATIONS

L.E. - Leading Edge

T.E. - Trailing Edge

ClK [
SlO1 [
SIG2 [

R.E. - Rising Edge

F.E. - Falling Edge

2.4V

ISIG2h

TLlEE/5234-27

FIGURE 4-3. Timing Specification Standard
(Signal Valid Before Clock Edge)

3·123

z en w
I\)
o co
o z en
w
I\)
o co •
U1

&n ,....
• ,....

co
Q
N
C"')

en z
Q ,.... . ,....
co
Q
N
C"')

en z

4.0 Device Specifications (Continued)

4.4.2 Timing Tables

4.4.2.1 Output Signal Propagation Delays

Maximum times assume capacitive loading of 100 pF .

Reference!
Name Figure Description

Conditions

tov 4·7 Data Valid After SPC L.E.

to! 4·7 Do-D15 Floating After SPC T.E.

tSPCFw 4·9 SPC Pulse Width AtO.8V
from FPU (Both Edges)

tSPCFI 4·9 SPC Output Active After ClK RE.

tSPCFh 4·9 SPC Output Inactive After ClK RE.

tSPCFnf 4·9 SPCOutput After ClK F.E.
Nonforcing

4.4.2.2 Input Signal Requirements

Name Figure Description
Reference!
Conditions

tpWA 4·5 Power Stable to AfterVcc
RST R.E. Reaches 4.5V

tASTw 4·6 RST Pulse Width AtO.8V
(Both Edges)

tss 4·7 Status (STO-ST1) Before SPC L.E.
Setup

tSh 4·7 Status (STO-ST1) After SPC L.E.
Hold

tos 4·8 DO-D15 Setup Time Before SPC T.E.

tOh 4·8 DO-D15 Hold Time After SPC T.E.

tsPCw 4·7 SPC Pulse Width AtO.8V
from CPU (Both Edges)

tsPCs 4·7 SPC Input Active Before ClK R.E.

tSPCh 4·7 SPC Input Inactive After ClK R.E.

tASTs 4·10 RST Setup Before ClK F.E.

tASTh 4·10 RST RE. Delay After ClK RE.

4.4.2.3 Clocking Requirements

Name Figure Description
Reference!
Conditions

tCLKh 4·4 Clock High Time At2.0V
(Both Edges)

tCLKI 4·4 Clock low Time AtO.8V
(Both Edges)

tCLKp 4·4 Clock Period ClK RE. to Next
ClK RE.

NS32081-10 NS32081-15
Units

Min Max Min Max

45 30 ns

50 2 35 ns

tCLKp - 50 tCLKp + 50 tCLKp - 40 tCLKp + 40 ns

55 38 ns

55 38 ns

45 35 ns

Min Max Min Max Units

50 50 ,..,s

64 64 tCLKp

50 33 ns

40 35 ns

40 30 ns

50 35 ns

70 50 ns

40 35 ns

0 0 ns

10 10 ns

0 0 ns

Min Max Min Max Units

42 1000 27 1000 ns

42 1000 27 1000 ns

100 2000 66 ns

3·124

4.0 Device Specifications (Continued)

4.4.3 Timing Diagrams

~--------------------~~
t------tclKp------t Vcc

elK IL
m ____ ~,)-

FIGURE 4-4. Clock TimIng FIGURE 4-5. Power-On Reset

FIGURE 4-6. Non-Power-On Reset

CLK ___ ~

510.511

VALID FROM FPU

FIGURE 4-7. Read Cycle from FPU
Note: SPC pulse must be (nominally) 1 clock wide when writing into FPU.

STO,ST1

I'
00-015 ~,,-___ VA_L_ID_F'_R_O_t.f_C_P_U ___ ~

TL/EE/5234-21

TLlEE/5234-22

TL/EE/5234-20

TL/EE/5234-23

FIGURE 4-8. Write Cycle to FPU
Note: SPC pulse may also be 2 clocks wide, but its edges must meet the tspes and tSPCh requirements with respect to ClK.

3-125

z en w
N o
Q)
o
....... z en w
N o
Q)
•

UI

•

U) .--,
•

co o
N
C')
U)
Z
o •
CO o
N
C')
U)
Z

4.0 Device Specifications (Continued)

--j tSPCA r- -I r- tSPCFh

elK ,,",,,-~I ' ____ ---..1 I ~ ~",.
m---------~ I

I-tsPCFw-l

FIGURE 4-9. SPC Pulse from FPU

ruc-.J I
RST

,! r
ffi~

FIGURE 4-10. RST Release Timing
Note: The riSing edge of FiST must occur while elK is high, as shown.

3-126

TL/EE/5234-25

TLlEE/5234-24

~National
~ Semiconductor

PRELIMINARY

NS32580-20/NS32580-25/NS32580-30
Floating Point Controller

General Description
The NS32580 Floating-Point Controller (FPC) is an interface
device designed to couple the NS32532 Microprocessor
with the Weitek WTL 3164 Floating-Point Data Path (FPDP).
It is a new member of the Series 32000@ family and it is fully
upward compatible with the existing NS32081 floating-point
software. Its performance reaches a peak of 10 Mflops
when executing single and double precision ADD, SUB,
MUL, and MAC instructions in a pipelined mode.

The FPC/FPDP supports the IEEE 754-1985 standard for
Binary Floating-Point Arithmetic. An improved exception
handling scheme allows enabling or disabling of each of the
IEEE defined traps.

The NS32580 contains three FIFOs and a Floating-Point
Status Register (FSR). It executes 18 instructions in con­
junction with the WTL 3164 and with the NS32532 forms a
tightly coupled computer cluster. The FPC/FPDP appears
to the user as a single slave processing unit. The CPU and
FPC/FPDP communication is handled automatically, and is
user transparent.

Block Diagram

DONE

fPDP
STATUS

The FPC is fabricated with National's advanced double-met­
al CMOS process and can operate at a frequency of
30 MHz.

Features
• Provides the NS32532 CPU with a complete interface

controller for high-speed floating-point arithmetic
• 10 Mflops peak performance for single and double pre­

cision ADD, SUB, MUL and MAC instructions with the
Weitek WTL 3164 FPDP

• Floating-point format compatible with IEEE 754-1985
standard

• Pipelined Slave Protocol with Data and Instruction
FIFOs

• Improved exception handling including support of Infini­
ties and Not a Number (NaN)

• Single (32-bit) and double (64-bit) precision operations
• Upward compatible with existing NS32081 software

base
• 20 MHz, 25 MHz and 30 MHz operating frequencies
• 1 Ilm double-metal CMOS technology
• 172-pin PGA package

1 ____ ~~ ____ _+-++-~--~fP~~

BUS

fPDP
CONTROL
WORD

Tl/EE/9421-1

FIGURE 1-1

3-127

z en
w
N
U1
co
c · N
C
Z en
w
N
U1 co
c · N
U1
Z en
w
N
U1
co c • w
c

o
C") · o
CO
it)
N
C")

en z
"" it)
N • o
CO
it)
N
C")

en z
"" o
N • o
CO
it)
N
C")

en z

1.0 PRODUCT INTRODUCTION

1.1 IEEE Features Supported

1.2 Operand Formats

1.2.1 Normalized Numbers

1.2.2 Zero

1.2.3 Reserved Operands

1.2.4 Integer Formats

1.2.5 Memory Representations

2.0 ARCHITECTURAL DESCRIPTION

2.1 Programming Model

2.1.1 Floating-Point Data Registers

2.1.2 Floating-Point Status Register (FSR)

2.1.2.1 FSR Mode Control Fields

2.1.2.2 FSR Status Fields

2.1.2.3 FSR Software Field (SWF)

2.1.2.4 FSR New Fields

2.1.2.5 FSR Default Values

2.2 Instruction Set

2.2.1 Floating Point Instruction Set

2.3 Exceptions

3.0 FUNCTIONAL DESCRIPTION

3.1 Power and Grounding

3.2 Clocking

3.3 Resetting

3.4 Bus Operation

3.4.1 Operand Transfers

3.5 Instruction Protocols

3.5.1 General Protocol Sequence

3.5.2 Byte Sex

3.5.3 Floating-Point Instruction Protocols

Table of Contents

3-128

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.6 FPDP Interface

3.6.1 Controlling the FPDP

3.6.2 Instruction Control

3.6.3 "2 Cycle Mode" and "3 Cycle Mode"

3.6.4 FPDP Mode Control Registers SRO, SR1

3.6.5 IEEE Enables Register SR2

3.6.5.1 FPDP Status Lines (SO-S3)

3.6.6 FPDP Clocking Requirements

4.0 DEVICE SPECIFICATIONS

4.1 NS32580 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input/Output Signals

4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics

4.4 Switching Characteristics

4.4.1 Definitions

4.4.2 Timing Tables

4.4.2.1 Output Signal Propagation Delays

4.4.2.2 Input Signal Requirements

APPENDIX A: Compatibility of FPC-FPDP with
NS32081/NS32381

APPENDIX B: Performance AnalysiS

List of Illustrations
FPC Block Diagram .. 1-1

Floating-Point Operand Formats ... 1-2

Single-Precision Operand E and F Fields .. 1-3

Double-Precision Operand E and F Fields ... 1-4

Integer Format ... 1-5

Data Registers ... 2-1

FSR (Compatible Fields) .. 2-2

New FSR Mode Control Fields ..•.. 2-3

Floating-Point Instruction Formats .. 2-4

Recommended Supply Connections .. 3-1

Power-On Reset Requirements .. 3-2

General Reset Timing .. 3-3

Slave Processor Read Cycle from FPC .. 3-4

Slave Processor Write Cycle to FPC•... 3-5

System Connection Diagram .. 3-6

10 and Operation Word ... 3-7

FPC Status Word .. 3-8

Floating-Point Instruction Processing Flowchart .. 3-9

Byte Sex Connection Diagrams ... 3-10

FPDP Control Word ... 3-11

FPDP Multiplier and ALU Bus Control .. 3-12

IEEE Enables Register (FPDP) .. 3-13

FPDP Status Timing ... 3-14

Divide/Sqrt Clock DCLK2/DCLK3 ... 3-15

NS32580 Interface Signals .. 4-1

172-Pin PGA Package .. 4-2

Timing Specification Standard (Signal Valid after Clock Edge) .. 4-3

Timing Specification Standard (Signal Valid before Clock Edge) .. 4-4

Clock Waveforms .. 4-5

Power-On Reset ... 4-6

Non-Power-On Reset ... 4-7

Read Cycle from FPC ... 4-8

Write Cycle to FPC ... '4-9

Slave Processor Done Timing .. 4-1 0

FSSR Signal Timing ... 4-11

FPDP Status Signal Timing ... 4-12

FPDP Clock Signals Timing ... 4-13

FPDP Output Signals Timing .. 4-14

List of Tables
Sample F Fields ... 1-1

Sample E Fields ... 1-2

Normalized Number Ranges ... 1-3

Integer Fields .. 1-4

FSR Default State Summary ... 2-1

Exception Handling Summary .. 2-2

Floating-Point Instruction Sequence .. 3-1

Floating-Point Instruction Protocols ... 3-2

3-129

z en
w
N
U1
0)
o

I
N o
Z en
w
N
U1
0)
o

I
N
U1
Z en w
N
U1
0)
o

I
W
o

• I

o
C")

o
CO
Ln
C'I
C")

en z
Ln
~ o
CO
Ln
C'I
C")

en z o
C'I . o
CO
Ln
C'I
C")

en z

1.0 Product Introduction
The NS32580 Floating-Point Controller (FPC) provides com­
plete control for high speed floating-point operations be­
tween the NS32532 CPU and the Weitek WTL 3164 Float­
ing-Point Data Path (FPDP). The FPC is fabricated using
National high-speed CMOS technology and operates as a
slave processor for transparent expansion of the Series
32000 CPU's basic instruction set. The NS32580 is compat­
ible with the IEEE Floating-Point Formats by means of its
hardware and software features.

1.1 IEEE FEATURES SUPPORTED

a. Basic floating-point number formats

b. Add, subtract, multiply, divide, sqrt, and compare opera-
tions

c. Conversions between different floating-point formats

d. Conversions between floating-point and integer formats

e. Round floating-point number to integer (round to near­
est, round toward negative infinity and round toward
zero, in double- or single-precision)

f. Exception signaling and handling (invalid operation, di­
vide by zero, overflow, underflow and inexact)

g. Positive and negative infinity (Section 1.2.3)
Note: In addition to supporting the IEEE floating-point overflow, the

NS32580 supports Integer conversion overflow.

Also, the FPC-FPDP can accept Not-a-Number (NaN) as an
operand and generate NaN as a result, but it does not con­
form to the IEEE 754-1985 Standard since it does not differ­
entiate between signaling and quit Not-a-Number.
Note 1: ABSf NaN and NEGf NaN result In a signaling NaN but not a QUIT

NaN.

Note 2: For NaN Op DNRM, where Op is ADDf, SUBf, MULt, DIVf and
MACf, and with ROE = 1, the result is a QUIT NaN and not TRAP
(INV).

Note 3: If ROE = 1, IVE = 0 and the operand Is signalling NaN, the result
is NaN with no TRAP (INV).

The remaining IEEE features can be supported in the soft­
ware library. These items include:

a. Extended floating-point number formats

b. Mixed floating-point data formats

c. Conversions between basic formats, floating-point num-
bers and decimal strings

d. Remainder

e. Denormalized numbers

1.2 OPERAND FORMATS

The NS32580 FPC operates on two floating-point data
types-single precision (32 bits) and double precision (64
bits). Floating-point instruction mnemonics use the suffix F
(Floating) to select the single precision data type, and the
suffix L (Long Floating) to select the double precision data
type.

A floating-point number is divided into three fields, as shown
in Figure 1-2.

3-130

The F field is the fractional portion of the represented num­
ber. In Normalized numbers (Section 1.2.1), the binary point
is assumed to be immediately to the left of the most signifi­
cant bit of the F field, with an implied 1 bit to the left of the
binary point. Thus, the F field represents values in the range
1.0 ~ x < 2.0, as shown in Table 1-1.

TABLE 1·1. Sample F Fields
F Field Binary Value Decimal Value

000 ... 0 1.000 ... 0 1.000 ... 0
010 ... 0 1.010 ... 0 1.250 ... 0
100 ... 0 1.100 ... 0 1.500 ... 0
110 ... 0 1.110 ... 0 1.750 ... 0

t
Implied Bit

The E field contains an unsigned number that gives the bi­
nary exponent of the represented number. The value in the
E field is biased; that is, a constant bias value must be sub­
tracted from the E field value in order to obtain the true
exponent. The bias value is 011 ... 112, which is either 127
(single precision) or 1023 (double precision). Thus, the true
exponent can be either positive or negative, as shown in
Table 1-2.

TABLE 1·2. Sample E Fields
EFleld F Field Represented Value

011 ... 110 100 ... 0 1.5 X 2- 1 = 0.75
011 ... 111 100 ... 0 1.5 x 20 = 1.50
100 ... 000 100 ... 0 1.5 X 21 = 3.00

Two values of the E field are not exponents. 11 ... 11 sig­
nals Not-a-Number (NaN) or Infinity (Section 1.2.3). 00 ...
00 represents the number zero (Section 1.2.2), if the F field
is also all zeroes, otherwise it signals a reserved operand
(Section 1.2.4).

The S bit indicates the sign of the operand. It is 0 for posi­
tive and 1 for negative. Floating-point numbers are in sign­
magnitude form, that is, only the S bit is complemented in
order to change the sign of the represented number.

1.2.1 Normalized Numbers

Normalized numbers are numbers which can be expressed
as floating-point operands, as described above, where the E
field is neither all zeroes nor all ones.

The value of a Normalized number can be derived by the
formula:

(-1)S X 2(E-Bias) X (1 + F)

The range of Normalized numbers is given in Table 1-3.

1.2.2 Zero

There are two representatives for zero-positive and nega­
tive. Positive zero has all-zero F and E fields, and the S bit is
zero. Negative zero also has all-zero F and E fields, but its S
bit is one.

1.0 Product Introduction (Continued)

1.2.3 Reserved Operands

Infinity arithmetic is the limiting case of real arithmetic with
operands of arbitrarily large magnitudes. The NS32580
does not treat infinity as a reserved operand and in
ROUNDfi, TRUNCfi and FLOORfi instructions, when the op­
erand is infinity, the FPC will return the TRAP "Integer over­
flow" instead of TRAP "Invalid Operation" with the Integer
Conversion Overflow Flag, IOF, set to "1" and the Trap type
to "2".

Another special case regarding infinity occurs when dividing
infinity by zero. In this case NO TRAP "Divide by Zero" will
be signaled and infinity will be returned as the result. See
Figures 1-3 and 1-4.

The NS32580 FPC can treat NaN, not a number, either as a
reserved operand (in NS32081 compatibility mode) or as
not a reserved operand, depending upon the setting of the
FSR ROE bit.

Denormalized numbers have all zeroes in their E fields and
non-zero values in their F fields. They are treated as re­
served operands except for those special cases listed in the
compatibility table of Appendix A.

The NS32580 FPC causes an Invalid Operation Trap (Sec­
tion 2.1.2.2) if it receives a reserved operand, unless the
operation is simply a move (without conversion).

Single Precision
31 30

Is I
1

63 62 52 51

Is I E

11

Most Positive

Least Positive

Least Negative

Most Negative

23 22 o
E I F

8 23

Double Precision

F

52
FIGURE 1-2. Floating-Point Operand Formats

TABLE 1-3. Normalized Number Ranges
Single Precision

2127 X (2 - 2-23)
= 3.40282346 x 1038

2- 126
= 1.17549436 X 10-38

-(2- 126)
= -1.17549436 x 10-38

-2127 X (2 - 2-23)
= -3.40282346 x 1038

Double Precision
21023 X (2 - 2-52)
= 1.7976931348623157 x 10308

2- 1022

= 2.2250738585072014 X 10-308

-(2- 1022)
= -2.2250738585072014 x 10-308

-21023 x (2 - 2- 52)
= -1.7976931348623157 x 10308

o

Note: The values given are extended one full digit beyond their represented accuracy to help in generating rounding and conversion algorithms.

E F Value Name Comments

255 Not 0 None ·NaN ROE = 0 -+ Reserved Operand
ROE = 1 -+ NaN Returned as Result

255 0 (-1)9· Infinity ·'nfinity Not a Reserved Operand
1-254 Any (-1)9· 26- 127 • (1.t) Normalized Number

0 Not 0 (-1)9· 2-126 • (O.t) ·Denormalized Number Reserved Operand
0 0 (-1)9. 0 Zero

FIGURE 1-3. Single-Precision Operand E and F Fields

E F Value Name Comments

2047 Not 0 None ·NaN ROE = 0 -+ Reserved Operand
ROE = 1 -+ NaN Returned as Result

2047 0 (-1)9 • Infinity • Infinity Not a Reserved Operand
1-2046 Any (-1)9· 26-1023. (1.t) Normalized Number

0 NotO (-1)9· 2- 1022 • (OJ) • Denormalized Number Reserved Operand
0 0 (-1)9· 0 Zero

·Special cases listed In the compatibility table of Appendix A.

FIGURE 1-4. Double-Precision Operand E and F Fields

3-131

z en w
N en
Q)
o
~
o
....... z en
w
N
en
Q)
o • N en
.......
Z en
w
N en
Q)
o . w
o

o r---~
Cf) · o
CIO
it)
N
Cf)
tJ)
Z
it)
N • o
CIO
it)
N
Cf)
tJ)
Z o
N · o
CIO
it)
N
Cf)
tJ)
Z

1.0 Product Introduction (Continued)

1.2.4 Integer Formats

The FPC-FPDP performs conversions between integer and
floating point operands. Integers are accepted and generat­
ed by the FPC-FPDP as two's complement values of byte
(8 bits), word (16 bits) or double-word (32 bits).

n - 1

S

S

0

1

FIGURE 1-5. Integer Format

TABLE 1-4. Integer Fields

Value Name

I Positive Integer

1- 2" Negative Integer

o

n represents number of bits in the word, 8 for byte, 16 for
word and 32 for double-word.

The FPDP supports only 32-bit integers, therefore, the FPC
has to sign extend 8- and 16-bit integers prior to integer to
floating-point number conversion.

In floating point to integer conversion, FPC has to check
possible integer overflow, in case of 8- and 16-bit integer
formats.

1.2.5 Memory Representations

The NS32580 FPC does not directly access memory. How­
ever, it is cooperatively involved in the execution of a set of
two-address instructions with the NS32532 CPU. The CPU
determines the representation of operands in memory.

In the Series 32000 family of CPUs, operands are stored in
memory with the least significant byte at the lowest byte
address. The only exception to this rule is the Immediate
addressing mode, where the operand is held (within the in­
struction format) with the most significant byte at the lowest
address.

2.0 Architectural Description
2.1 PROGRAMMING MODEL

The Series 32000 architecture implements nine floating
point registers in the FPC; eight data registers and one float­
ing-point status register.

2.1.1 Floating-Point Data Registers (LO-L7)

There are eight registers (LO-L7) in the FPC for providing
high-speed access to floating-point operands. Each is 64
bits long. A floating-point register is referenced whenever a
floating-point instruction uses the Register addressing mode
(Section 2.2.2) for a floating-point operand. All other Regis­
ter mode usages (Le., integer operands) refer to the General
Purpose Registers (RO-R7) of the CPU, and the FPC trans­
fers the operand as if it were in memory.
Note: These registers are all upward compatible with the 32·blt NS32081

registers, (FO-F7), such that when the Register addressing mode Is
specified for a double precision (54·bit) operand, a pair of 32·blt regis.
ters holds the operand. The programmer specifies the even register of
the pair which contains the least significant half of the operand and
the next consecutive register contains the most significant half.

2.1.2 Floating-Point Status Register (FSR)

The Floating-Point Status Register selects operating modes
and records any exceptional condition encountered during
execution of a floating-point operation. The FPC FSR con­
tains all the NS32081INS32381 FSR bits and additional

3-132

fields for better exception handling. The FSR is cleared to
all zeros during reset.

DATA
32 Bits ~ ~

F1 / LO MSDW

L1 MSDW

F3 / L2 MSDW

L3 MSDW

F5 / L4 MSDW

L5 MSDW

F7 / L6 MSDW

L7 MSDW

LSDW - Least Significant Double Word

MSDW - Most Significant Double Word

FO

F2

F4

F6

32 Bits

/ LO

L1

/ L2

L3

/ L4

L5

/ L6

L7

FIGURE 2-1. Data Registers

2.1.2.1 FSR Mode Control Fields

LSDW

LSDW

LSDW

LSDW

LSDW

LSDW

LSDW

LSDW

The FSR mode control fields select FPC operation modes.
The meanings of the FSR mode control bits are given be­
low:

Rounding Mode (RM bit 8-7). This field selects the round­
ing method. Floating-point results are rounded whenever
they cannot be represented exactly. The rounding modes
are:

00 Round to nearest value. The value which is nearest to
the exact result is returned. If the result is exactly half­
way between the two nearest values the even value
(Isb = 0) is returned.

01 Round toward zero. The nearest value which is closer
to zero or equal to the exact result is returned.

10 Round toward positive infinity. The nearest value which
is greater than or equal to the result is returned.

11 Round toward negative infinity. The nearest value
which is less than or equal to the exact result is re­
turned.

Underflow Trap Enable (UEN bit 3). If this bit is set, the
FPC requests a trap whenever a result is too small in abso­
lute value to be presented as a Normalized number. If it is
not set, FPC returns a result of zero.

Inexact Result Trap Enable (lEN bit 5). If this bit is set, the
FPC requests a trap whenever the result of an operation
cannot be represented exactly in the operand format of the
destination (and no other exception occurred in the same
operation) or if the result of an operation overflows and the
overflow trap is disabled. If lEN is not set, the result is
rounded according to the selected rounding mode.

2.1.2.2 FSR Status Fields

The FSR Status Fields record exceptional conditions en­
countered during floating-point data processing. The mean­
ing of the FSR status bits are given below:

Trap Type (TT bits 2-0). This 3-bit field indicates the rea­
son for TRAP (FPU) requested by the FPC. The TT field is
loaded with zero whenever any floating-point instruction ex­
cept LFSR or SFSR completes without exception. It is also
set to zero by a reset or by writing zero into it with the LFSR
instruction. The TT field is updated regardless of the setting
of the exception enable bits.

2.0 Architectural Description (Continued)

31 17 16 15 98 7 6 5 4 3 2 0

New Fields SWF

FIGURE 2-2. FSR (Compatible Fields)

000 No exceptional condition occurred.

001 Underflow. This condition occurs whenever a result is
too close to zero to be represented as a Normalized
number.

010 Overflow. This condition occurs whenever a result is
too large in absolute value to be represented (float or
integer).

011 Divide by Zero. This condition occurs whenever an
attempt was made to divide a non-zero value by zero.

100 Illegal Instruction. An illegal or undefined Floating­
Point instruction was passed to the FPC. If the T bit in
the Status Word Register (SWR) is a "0", then it indi­
cates that an illegal instruction was passed to the
FPC. If the T bit in the SWR is a "1", then it indicates
that an undefined instruction was passed to the FPC.

101 Invalid Operation. This condition occurs if:
1. NaN is used as a floating-point operand by any in­

struction except MOVf and the Reserved Operand
Enable (ROE) bit in the FSR is disabled.

2. DNRM is used as a floating-point operand by any
instruction except MOVf.

3. Both operands of the DIVf instruction are zero.
4. Sqrt when the floating-point number is negative.
5. Infinity plus negative infinity, infinity minus infinity.

110 Inexact Result. This condition occurs whenever the
result of an operation cannot be exactly represented
in the precision of the destination (and no other ex­
ception occurred in the same operation) or if the result
of an operation overflows (floating-point or integer
conversion overflow) and the overflow trap is dis­
abled.

111 Reserved.

Underflow Flag (UF bit 4). This bit is set by the FPC when­
ever a result is too small in absolute value to be represented
as a Normalized number. Its function is not affected by the
state of the UEN bit. The UF bit is "sticky" therefore it can
be cleared only by writing a zero into it with the Load FSR
instruction or by a hardware reset.

Inexact Result Flag (IF bit 6). This bit is set by the FPC
whenever the result of an operation must be rounded to fit
within the destination format (and no other exception oc­
curred in the same operation) or if the result of an operation
overflows and the overflow trap is disabled. This situation
applies both to floating-point and integer destinations. The
IF bit is "sticky" therefore it is cleared only by writing a zero
into it with the Load FSR instruction or by a hardware reset.

Register Modify Bit (RMB BIT 16). This bit is set by the
FPC whenever writing to a floating-point data register. The
RMB bit is cleared only by writing a zero with the LFSR
instruction or by a hardware reset. This bit can be used in
context switching to determine whether the FPC registers
should be saved.

2.1.2.3 FSR Software Field (SWF)

Bits 15-9 of the FSR hold and display any information writ­
ten to them using the LFSR and SFSR instructions, but are
not otherwise used by FPC hardware. They are reserved for
use with NSC floating-point extension software.

3-133

2.1.2.4 FSR New Fields

New fields were added to the FSR for better exception han­
dling. In the FPC, the user can enable or disable each ex­
ception or combination of exceptions by using new "enable
bits" implemented in the FSR. After reset the new fields are
loaded to the default values (compatible with NS32081). il­
legal Instruction always causes TRAP and can't be dis­
abled. The bits are defined as follows:

CONTROL BITS

Reserved Operands Enable (ROE bit 17). If this bit is
cleared, the FPC requests an Invalid Operation trap when­
ever a NaN has been detected by the FPC. When ROE is
disabled, the FPC does not generate reserved operands as
results. If the ROE is set then NaN will be returned as the
result with no trap and the ROF bit is cleared. If Invalid
Operation exception is disabled, the ROE bit is overwritten
internally (the FPC does not change the ROE bit in the FSR)
and the FPC can generate NaN as a result. ROE bit does
not affect MOVf instruction.

Invalid Operation Enable (IVE bit 18). If this bit is cleared,
the FPC requests a trap whenever the operation is invalid. If
this bit is set to "1", the trap is disabled and if invalid opera­
tion occurred, NaN will be delivered as result.

Divide By Zero Enable (DZE bit 19). If this bit is cleared the
FPC requests a trap whenever an attempt is made to divide
by zero. If this bit is set the trap is disabled and if divide by
zero occurred, infinity will be delivered as result.

Overflow Enable (OVE bit 20). If this bit is cleared, the FPC
requests a trap whenever a floating-point result is too big in
absolute value to be represented. If this bit is set, the over­
flow trap is disabled and if overflow occurred, Infinity or
Maximum Number will be delivered as result.

Integer Conversion Overflow Enable (IOE bit 21). If this
bit is cleared, the FPC requests a trap whenever an Integer
result is too big to be represented. If this bit is set, the inte­
ger conversion overflow is disabled and if integer conver­
sion overflow occurred, Max/Min integer will be delivered as
result.

STATUS BITS

Reserved Operand Flag (ROF bit 22). This bit is set by the
FPC whenever reserved operand DNRM or NaN (when
ROE is cleared) is selected by the FPC. The ROF bit is
"sticky" and can be cleared only by writing a zero with the
Load FSR instruction or by a hardware reset.

Invalid Flag (IVF bit 23). This bit is set by the FPC whenev­
er the operation is invalid. The IVF bit is "sticky" and can be
cleared only by writing a zero with the Load FSR instruction
or by a hardware reset.

Divide By Zero Flag (DZF bit 24). This bit is set by the FPC
whenever an attempt is made to divide a non-zero value by
zero. The DZF bit is "sticky" and can be cleared only by
writing a zero with the Load FSR instruction or by a hard­
ware reset.

z en w
N en
CD
o · N o
Z en
w
N
en
CD
o · N
en
Z en w
N en
CD
o · w o

o
Ct)
• o

CO
II)
N
Ct)
(J)
Z
II)
N • o
CO
II)
N
Ct)
(J)
Z o
N • o
CO
II)
N
Ct)
(J)
Z

2.0 Architectural Description (Continued)

31 27 26 25 24 23 22 21 20 19 18 17 16

Reserved IOF OVF DZF IVF I ROF I IOE lOVE I DZE IVE I ROE I RMB I
FIGURE 2-3. New FSR Mode Control Fields

Overflow Flag (OVF bit 25). This bit is set by the FPC
whenever a floating-point result is too large in absolute val­
ue to be represented. The OVF bit is "sticky" and can be
cleared only by writing a zero with the Load FSR instruction
or by a hardware reset.

Integer Conversion Overflow Flag (lOF bit 26). This bit is
set by the FPC whenever an integer result is too large in
absolute value to be represented. The IOF bit is "sticky"
and can be cleared only by writing a zero with the Load FSR
instruction or by a hardware reset.

Reserved Field

Bits 31-27 in the FSR are reserved by NSC for future use.
User should not use this field.

2.1.2.5 FSR Default Values

During Reset the FSR is loaded to a default value (see Ta­
ble 2-1). The default values for the FSR represent upward
compatibility of the FPC-FPDP with the NS32081. The user
can change the default values by loading the FSR register
with new values.

TABLE 2-1. FSR Default State Summary

Bit Name
Default

Default State
Value

TI (bits 2-0) 0 No exceptional condition
occurred.

UEN (bit 3) 0 Underflow trap disabled.

UF(bit4) 0 Underflow flag is cleared.

lEN (bit 5) 0 Inexact result trap disabled.

IF (bit 6) 0 Inexact flag is cleared.

RM (bits 8-7) 0 Round to nearest.

SWF (bits 15-9) 0 Undefined

RMB (bit 16) 0 RMB flag is cleared.

ROE(bit 17) 0 FPC requests a trap
whenever an attempt is
made to use reserved
operand except for MOVf
instruction.

IVE (bit 18) 0 FPC requests a trap
whenever the operation is
invalid.

DZE (bit 19) 0 FPC requests a trap
whenever an attempt is
made to divide by zero.

OVE (bit 20) 0 FPC requests a trap
whenever a floating-point
result is too big to be
represented.

3-134

TABLE 2-1. FSR Default State Summary (Continued)

Bit Name
Default

Default State
Value

IOE (bit 21) 0 FPC requests a trap
whenever an integer
conversion result is too big
to be represented.

ROF (bit 22) 0 ROF flag is cleared.

IVF (bit 23) 0 IVF flag is cleared.

DZF (bit 24) 0 DZF flag is cleared.

OVF (bit 25) 0 OVF flag is cleared.

IOF (bit 26) 0 IOF flag is cleared.

RESERVED 0 Reserved field is cleared.
(bits 31-27)

2.2 INSTRUCTION SET

2.2.1 Floating-Point Instruction Set

This section provides a description of the floating-point in­
structions executed by the FPC in conjunction with the CPU
and the FPDP. These instructions form a small subset of the
Series 32000 instruction set and their encodings use in­
struction formats 9, 11, and 12. A list of all the Series 32000
instructions as well as details on their formats and address­
ing modes can be found in the appropriate CPU data
sheets.

Certain notations in the following instruction description ta­
bles serve to relate the assembly language form of each
instruction to its binary format in Figure 2-4.

Format 9

23 16115 817 0

I r 1 1
. ganl ,

OPERATION WORD IDBYlE
TL/EE/9421-5

Format 11

23 16
1

15

I,
1 I 1

" canl
ill 1 1

cen2 .
I 1

op
1 1 1 1 1 1 1

10 I, 1 0 1 1 1 1 1 0 1
H ,

DPERATION WORD ID BYTE

TLlEE/9421-6

Format 12

23
i ~6115i 1 iii 1 18171 iii iii °1 I ii i 1

• gen 1 gen 2 op 0 f 1 1 1 1 1 1 1 0

TL/EE/9421-7

FIGURE 2-4. Floating-Point Instruction Formats

2.0 Architectural Description (Continued)

The Format column indicates which of the three formats in
Figure 2-4 represents each instruction.

The Op column indicates the binary pattern for the field
called "op" in the applicable format.

The Instruction column gives the form of each instruction as
it appears in assembly language. The form consists of an
instruction mnemonic in upper case, with one or more suffix­
es (i or f) indicating data types, followed by a list of oper­
ands (gen1, gen2).

An i suffix on an instruction mnemonic indicates a choice of
integer data types. This choice affects the binary pattern in
the i field of the corresponding instruction format as follows:

Suffix I
B
W
D

Data Type
Byte
Word
Double Word

I Field
00
01
11

An f suffix on an instruction mnemonic indicates a choice of
floating-point data types. This choice affects the setting of
the f bit of the corresponding instruction format as follows:

Suffix f
F
L

Data Type
Single Precision
Double Precision (Long)

f Bit

o
An operand designation (gen1, gen2) indicates a choice of
addressing mode expressions. This choice affects the bina­
ry pattern in the corresponding gen1 or gen2 field of the
instruction format.

Further details of the exact operations performed by each
instruction are found in the Series 32000 Instruction Set
Reference Manual.

Movement and Conversion

The following instructions move the gen1 operand to the
gen2 operand, leaving the gen1 operand intact.

Format Op Instruction Description

11 0001 MOVf gen1, gen2 Move without
conversion.

9 010 MOVLF gen1, gen2 Move, converting
from double
precision to
single precision.

9 011 MOVFL gen1, gen2 Move, converting
from single
precision to
double precision.

9 000 MOVif gen1, gen2 Move, converting
from any integer
type to any
floating-point
type.

9 100 ROUNDfi gen1, gen2 Move, converting
from floating­
point to the
nearest integer.

3-135

Format Op Instruction Description

Move, converting
from floating­
point to the
nearest integer
closer to zero.

9 101 TRUNCfi gen1, gen2

9 111 FLOORfi gen1, gen2 Move, converting
from floating­
point to the
largest integer
less than or equal
to its value.

Nota: The MOVLF instruction f bit must be 1 and the I field must be 10.
The MOVFL Instruction f bit must be 0 and the i field must be 11.

Arithmetic Operations

The following instructions perform floating-point arithmetic
operations on the gen1 and gen2 operands, leaving the re­
sult in the gen2 operand.

Format Op Instruction Description

11 0000 ADDf gen1,gen2 Add gen1 to gen2.

11 0100 SUBf gen1,gen2 Subtract gen1
from gen2.

11 1100 MULf gen1,gen2 Multiply gen2 by
gen1.

11 1000 DIVf gen1, gen2 Divide gen2 by
gen1.

11 0101 NEGf gen1,gen2 Move negative of
gen1 to gen2.

11 1101 ABSf gen1,gen2 Move absolute
value of gen1 to
gen2.

(N) 12 1010 MACf gen1,gen2 Move
(gen1·gen2) +
L 1 or F1 to L 1 or
F1 with two
rounding errors.

(N) 12 0001 SORTf gen1, gen2 Move the square
root of gen1 to
gen2.

(N): Indicates NEW Instruction.

Comparison

The compare instruction compares two floating-point oper-
ands, sending the result to the CPU PSR Z, Nand L bits for
use as condition codes.

Format Opcode Instruction Description

11 0010 CMPf gen1,gen2 Compare gen1
to gen2.

z en
w
N
U1
CD
C · N
C
Z en
w
N
U1
CD
C · N
U1
Z en w
N
U1
CD
C • W
C

Q
C") · Q
co
II)
C\I
C")
tJ)
z
II)
C\I • Q
co
II)
C\I
C")
tJ)
z
Q
C\I · Q
co
II)
C\I
C")
tJ)
z

2.0 Architectural Description (Continued)

There are four possible results to the CMPf instruction (with
normal operands):

Operands are equal

Operand1 is less
than Operand2

Operand2 is less
than Operand1

Unordered (when
at least one
operand is NaN
and ROE is set)

Z bit is set

N bit is set

L bit is set

N, L bits are cleared

N, L, Z bits are
cleared

L, Z bits are cleared

N, Z bits are cleared

Floating-Point Status Register Access

The following instructions load and store the FSR as a 32-
bit integer. If the user specifies a register (gen1 in LFSR or
gen2 in SFSR) it will be a general purpose register in the
CPU.

Format Opcode Instruction Description

9 001 LFSR gen1 Load FSR with the
content of gen1.
(gen2 field = 0)

9 110 SFSR gen2 Store FSR in gen2.
(gen1 field = 0)

Note: All instructions support all of the NS32000 family data formats (for
external operands) and all addressing modes are supported.

2.3 EXCEPTIONS

An exception for the FPC is a special floating-point condi­
tion with a default handling scheme. Seven types of excep­
tions are supported:

1) Underflows

2) Overflows

3-136

3) Divisions by zero

4) Illegal Instructions

5) Invalid Operations

6) Inexact results

7) Undefined Instructions

The FPC has improved exception handling. Except for Ille­
gal and Undefined Instructions, the user can control all of
the exception types. In addition, there are some specific
exceptions that the user can control:

Overflows - Floating-Point overflow
-Integer conversion overflow

Invalid Operations - Reserved Operands

Most exceptions can be enabled to cause a CPU TRAP or
to return a result without a TRAP on their occurrence. The
TRAP is signaled by the FPC pulsing the FSSR line for one
clock cycle. Illegal and Undefined instructions will always
cause a TRAP if they are passed to the FPC.

When a TRAP occurs, the FPC sets the Q bit in the status
word register. The CPU responds by reading the status
word register while applying status (11110) on the status
lines. If the TRAP is caused by an undefined opcode, the TS
bit in the status word register will also be set by the FPC
indicating a TRAP (UNO). The TS bit is clear in all other
cases.

When an exception occurs, the type field in the FSR register
is also updated. A trapped instruction returns no result
(even if the destination is an FPC register) and does not
affect the CPU PSR. Instructions that end with a disabled
exception will always return a result.

For each exception whose TRAP can be disabled, there is a
flag bit to Signal the occurrence of the exceptional condition
whether or not the TRAP is enabled or disabled. These bits
in the FSR can be used for polling the exception status
while TRAPs are disabled.

2.0 Architectural Description (Continued)

TABLE 2-2. Exception Handling Summary

Q = 1;
Exception Occurred Enabled By

Trap Type
Disabled By

Underflow UEN = 1 001 UEN = 0

Floating-Point Overflow OVE = 0 010 OVE = 1
lEN = 0

OVE = 1
110

lEN = 1

Integer Conversion Ov. IOE = 0 010 IOE = 1
lEN = 0

IOE = 1
110

lEN = 1

Divide by Zero DZE = 0 011 DZE = 1

Illegal Instruction Always Tbit = Oand Cannot be
Enabled 100 Disabled

Invalid Operation IVE = 0 101 IVE = 1

Reserved Op. (NaN) ROE = 0 101 ROE = 0
IVE = 0 IVE = 1

ROE = 1
IVE = X

Reserved Op. (DNRM) ROE = X 101 ROE = X
(Note 1) IVE = 0 IVE = 1

Inexact Result lEN = 1 110 lEN = 0

Undefined Instruction Always T bit = 1 and Cannot be
Enabled 100 Disabled

Exception Occurred Enabled By
Q = 1;

Disabled By
Trap Type

CMPf (NaN) ROE = 0 101 ROE = 0
IVE = 0 IVE = 1

ROE = 1
IVE = X

CMPf(DNRM) ROE = X 101 ROE = X
IVE = 0 IVE = 1

x = Don't Care

Note 1: For MUll o· DNRM

DIVf O/DNRM

DIVf DNRM/lnfinity

NS32580 returns a zero.

For DIVf Infinlty/DNRM and MUll Infinity • DNRM, NS32580 returns an infinity.

For DIVf DNRM/O, TRAP (DVZ) will take place.

3-137

Q = 0;
Default

Result Returned

Zero

Infinity or
Max NRM Number

Max or Min
Integer

Infinity

No Result

NaN

NaN

NaN

Undefined

Correctly
Rounded Result

No Result

Status Word
Register

L = 1, N = Z = 0

L = 1, N = Z = 0

N,L,Z
Undefined

Flag Bits

UF = 1

OVF = 1

OVF = 1
IF = 1

IOF = 1

IOF = 1
IF = 1

DZF = 1

No Flags
Affected

IVF = 1

ROF = 1
IVF = 1

No Flags
Affected

ROF = 1
IVF = 1

IF = 1

No Flags
Affected

Flag Bits

ROF = 1
IVF = 1

No Flags
Affected

ROF = 1
IVF = 1

z en w
N
(J1
CD
C) · N
C)
........
Z en w
N
(J1
CD
C) · N
(J1
........
Z en
w
N
(J1
CD
C)
• W

C)

o
M • o
CO
I.t)
N
M
til
Z
I.t)
N · o
CO
I.t)
N
M
til
Z
o
N · o
CO
I.t)
N
M
til
Z

3.0 Functional Description

(GND PLANE)

GNDB10

GNDB11

GNDB12

GNDB13

NS32580

VCCL1

VCCL2

VCCL3

VCCL4

VCCL5

VCCL6

VCCL7

VCCB1

VCCB2

VCCB3

VCCB4

VCCB5

VCCB6

VCCB7

VCCB8

A2

(VCC PLANE)
+5V

TL/EE/9421-B

a1POWERANDGROUN~NG

FIGURE 3-1. Recommended Supply Connections

3.2 CLOCKING
The NS32580 requires a single 5V power supply, applied on
15 pins. The logic voltage pins (VCCL 1 to VCCL7) supply
the power to the on-chip logic. The buffer voltage pins
(VCCB1 to VCCB8) supply the power to the output drivers of
the chip. All the voltage pins should be connected together
by a power (Vee> plane on the printed circuit board.

The NS32580 grounding connections are made on 26 pins.
The logic ground pins (GNDL 1 to GNDL 13) are the ground
pins for the on-chip logic. The buffer ground pins (GNDB1-
GNDB13) are the ground pins for the output drivers of the
chip. All the ground pins should be connected together by a
ground plane on the printed circuit board.

Both power and ground connections are shown in Figure
3-1.

3-138

The NS32580 FPC requires a single-phase TIL clock input
on its BCLK pin (pin C10) and an inverted TIL clock input
on its BCLK pin (pin B8). When the FPC is connected to a
NS32532 CPU these signals are provided directly from the
CPU's BCLK and BCLK output signals.

3.3 RESETTING
The RSf pin serves as a reset for on-chip logic. The FPC
may be reset at any time by pulling the RSf pin low for at
least 64 clock cycles. Upon detecting a reset, the FPC ter­
minates instruction processing, resets its internal logic,
clears the FSR to all zeroes, and clears the FIFOs.

On application of power, RSf must be held low for at least
50 p,s after Vee is stable. This ensures that all on-chip volt­
ages are completely stable before operation. See Figures
3-2 and 3-3.

3.0 Functional De:scription (Continued)

BCLK[_-+-~ sIUl-
I..-- ~ 64 CLo;aCK

RST [

CYCLES _

~50JJI

TL/EE/9421-9

FIGURE 3-2. Power-On Reset Requirements

C
~ 64::J-CLOCK

[--""'""'I:'"'r""I~ CYCLES
RST \\\\: 1

TUEE/9421-10

FIGURE 3-3. General Reset Timing

3.4 BUS OPERATION

Instructions and operands are passed to the NS32580 FPC
with slave processor bus cycles. Each bus cycle transfers
one double-word (32 bits) to or from the FPC. During all bus
cycles, the SPC line is driven by the CPU as an active low
data strobe, and the FPC monitors pins STO-ST4 to keep
track of the sequence (protocol) established for the instruc­
tion being executed. This is necessary in a virtual memory
environment, allowing the FPC to retry an aborted instruc­
tion.

A bus cycle is initiated by the CPU, which asserts the proper
status on STO-ST 4 and pulses SPC low. The status lines
are sampled by the FPC on the rising edge of BCLK in the
T2 state. Figures 3-4 and 3-5 illustrate these sequences.

3.4.1 Operand Transfers

The CPU fetches operands from memory, aligns them (if
needed) and sends them to the slave (with status h' 1 D) as a
32-bit transfer. If the operand is double-precision the least
significant half is transferred first (in 32000 mode). The FPC
can not access the memory directly.

From the slave processor point of view there are four possi­
ble combinations of locations for operands: (For special
cases see next paragraph.)

BCLK

STo-ST4

OO-D31 -------------- VALID FRO .. F'PC

Note 1: FPC samples CPU status here.
Note 2: CPU samples FPC data here.

(NOTE 2)

TL/EE/9421-11

FIGURE 3·4. Slave Processor Read Cycle from FPC

3-139

BCLK

STo-ST4

00-031

Note 1: FPC samples CPU status here.
Note 2: FPC samples ~ here.
Note 3: FPC samples data here.

(NOTE 3)

TUEE/9421-12

FIGURE 3-5. Slave Processor Write Cycle to FPC

Register to Register Instructions-Both operands reside in
the register file inside the FPDP. No operand fetch or trans­
fer from memory is needed.

Memory to Register-The source operand is in memory,
therefore the CPU will transfer the operand (one 32-bit
transfer for Single-precision and two 32-bit transfers for dou­
ble-precision). The result is going to the floating-point regis­
ter in the register file located inside the FPDP.

Register to Memory-The source operand resides inside
the FPDP. If the instruction is monadic (one operand) the
CPU will not transfer the operand to the FPC before the
beginning of the instruction (all the information needed to
start the operation resides inside the FPDP). For dyadic in­
structions, the CPU will fetch and transfer one operand from
memory.

Memory to Memory-In monadic instructions the source op­
erand is in memory and the CPU will transfer it to the FPC­
FPDP. If the instruction is dyadic, two operands will be
transferred from memory to the FPC-FPDP by the CPU
(gen1 before gen2). The result in both cases is sent back to
memory.

When the CPU transfers an operand from memory to the
FPC-FPDP it is loaded into one of the registers that create
the operand FIFO inside the FPDP. The FPC translates the
incoming instruction (mem, reg or mem, mem) to a register­
to-register instruction with the same register number. From
the incoming instruction addressing mode it should know if
the operands are coming from memory or already located in
the register file.

The Data FIFO inside the FPC is 10 entries deep, single- or
double-precision. If the destination of instruction is memory,
the FPC will wait for completion of the instruction. Then, the
result will be transferred to the FPC and SON will be assert­
ed. If the FPC receives a new ID and Opcode before the
FPC receives all the operands for the last instruction or be­
fore the CPU reads the conplete result for the last instruc­
tion (can happen if page fault has been detected on a write
and with only one instruction in the FPC's pipe), the FPC will
abort the last instruction and will start the execution of the
new instruction. The NS32532 CPU can "reset" the FPC at
any time by asserting SPC with status 11110. In this case
the FPC flushes the instructions currently being executed
and the contents of the floating-point registers are unde­
fined.

z en
w
N
(II
Q)
Q

N
Q

'" Z en w
N
(II
Q)
Q
• N

(II

'" Z en w
N
(II
Q)
Q
• W

Q

•

o
~
CO
in
N
C")
(/)
Z
in
~ o
CO
in
N
C")
(/)
Z
o
N o
CO
in
N
C")
(/)
Z

3.0 Functional Description (Continued)

NS32532-30 NS325S0-30

BCLK BCLK WTL-316-4-15

BCLK BCLK WCLK CLK

DIVCLK DIVCLK
.A DATA BUS " .A DATA BUS

" DO-D31 32-BIT 00-031 XO-X31 32-BIT XO-X31

" t' "I V

" .A
STo-ST-4 STO-ST4 SO-S3 SO-S3

5-BIT
v "I 4-BIT

F'0-F'-4
5

F'0-F'4
MIN MIN
ABIN r ABIN

CPU FPC MAIN MAIN FPDP
MBIN MBIN

+5V 5
MDDO-MDD4

5/
MDDO-MDD4

~ BADDO-BADD-4 ; BADDo-BADD-4

~ 101<.0.
CADDO-CADD4

5 5;
CADDO-CADD-4

101<.0. 1 5; ~ DADDo-DADD4
EF'DDO-EF'DD4 5/

EF'DDO-EF'DD4

SPC SPC XCNTO-XCNT3 '4
XCNTO-XCNT3

/

SON SON WABORT ABORT
F'SSR F'SSR +5V

~O~F1 ~lOk. RST RST BS

~
STALL

NEUT

'" - r OEX ,

TL/EE/9421-13

FIGURE 3-6. System Connection Diagram
*(For Two Cycle Latency in Little Endlan Mode)

'See Pin DeSCription for other configurations.

3.5 INSTRUCTION PROTOCOLS

3.5.1 General Protocol Sequence

The FPC supports both the regular and the pipelined slave
protocols provided by the NS32532. Detailed information on
these protocols is provided in the NS32532 data sheet.

The basic operations performed by the CPU and the FPC
are described below.

Floating-point instructions have a three-byte Basic Instruc­
tion field, consisting of an 10 Byte followed by an Operation
Word.

Upon receiving a floating-point instruction, the CPU initiates
the sequence outlined in Table 3-1. While applying Status
code 11111, the CPU transfers the 10 Byte on bits 024-
031, the operation word on bits 08-023 in a swapped or­
der of bytes and a non-used byte XXXXXXXX (X = don't
care) on bits 00-07 (Figure 3-7).

After transferring the instruction, the CPU sends to the FPC
any source operands that are located in memory or the CPU
General-Purpose registers.

3-140

The CPU action, at this point, depends on whether the regu­
lar or the pipelined slave protocol is selected. If the regular
protocol is selected, the CPU waits for the FPC to complete
the instruction. While the CPU is waiting, it can perform bus
cycles to fetch instructions and read source operands for
instructions that follow the floating-point instruction being
executed. If there are no bus cycles to perform, the CPU is
idle with a special Status indicating that it is waiting for a
slave.

If the pipelined protocol is selected, the CPU may send a
new floating-point instruction to the FPC before the previous
instruction has been completed.

Although the CPU can advance as many as four floating­
point instructions before receiving a completion pulse on
SON for the first instruction, full exception recovery is as­
sured. This is accomplished through a FIFO mechanism
which maintains the addresses of all the floating-point in­
structions sent to the FPC for execution.

Pipelined execution can occur only for instructions which do
not require a result to be read from the FPC.

3.0 Functional Description (Continued)

In cases where a result is to be read back, the CPU will wait
for instruction completion before issuing the next instruc­
tion. After the FPC asserts SON or FSSR, the CPU follows
one of the two sequences described below.

If the FPC asserts SON, then the CPU checks whether the
instruction stores any results to memory or the General-Pur­
pose registers. The CPU reads any such results from the
FPC by means of 1 or 2 bus cycles and updates the destina­
tion. If the instruction had been pipelined, the CPU simply
updates the FIFO pointer to point to the next instruction in
the FIFO.

If the FPC asserts FSSR, then the NS32532 reads a 32-bit
status word from the FPC. The CPU checks bit 0 in the
FPC's status word to determine whether to update the PSR
flags or to process an exception. Figure 3-8 shows the for­
mat of the FPC's status word.

31

10 BYTE

31

ZERO

Step

1
2
3
4

5

6

If the Q bit in the status word is 0, the CPU updates the N, Z
and L flags in the PSR.

If the Q bit in the status word is set to 1, the CPU processes
either a Trap (UNO) if TS is 1 or a Trap (SLAVE) if TS is O.

o
OPCOOE (LOW) OPCOOE (HIGH) xxxxxxxx
FIGURE 3-7. 10 and Operation Word

15 7 o
ITS I ZERO N Z o o o L o Q

FIGURE 3-8. FPC Status Word

TABLE 3-1. Floating-Point Instruction Sequence

Status Action

10(11111) CPU sends 10 and Operation Word
OP(11101) CPU sends required operands (if any)

- Slaves starts execution (CPU prefetches)
- Slave signals completion by pulsing SON

or FSSR.
ST (11110) CPU Reads Status Word (If an exception

occurred or if a CMPf instruction was
executed)

OP (11101) CPU Reads Result (if any)

3-141

z en
w
N
U1
CD
o · N
o
Z en
w
N
U1
CD
o · N
U1
........
Z en
w
N
U1
CD
o · w
o

0
Ct) · 0
ex)
it)
N
Ct)

en
Z
it)
N · 0
ex)
it)
N
Ct)

en
z
0
N · 0
ex)
it)
N
Ct)

en
Z

3.0 Functional Description (Continued)

TABLE 3-2. Floating-Point Instruction Protocols

Operand 1 Operand 2
Mnemonic

Class Class

ADDf read.f rmw.f
SUBf read.f rmw.f
MULf read.f rmw.f
DIVf read.f rmw.f
MOVf read.f write.f
ABSf read.f write.f
NEGf read.f write.f
CMPf read.f read.f
FLOORfi read.f write.i
TRUNCfi read.f write.i
ROUNDfi read.f write.i
MOVFL read.F write.L
MOVLF read.L write.F
MOVif read.i write.f
LFSR read.D N/A
SFSR N/A write.D
SORTf read.f write.f
MACf read.f read.f

D = Double Word

i = Integer size (B, W, OJ specified in mnemonic.

f = Floating-Point type (F, LJ specified in mnemonic.

N/A = Not Applicable to this instruction.

Operand 1
Issued

f
F
L

D
N/A

f

Operand 2
Issued

N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

f

READ OPERAND
(BUS STATUS = 11101)

PSR Bits
Returned Value

Affected

fto Op. 2 none
ftoOp.2 none
fto Op. 2 none
fto Op. 2 none
fto Op. 2 none
fto Op. 2 none
fto Op. 2 none

N/A N,Z,L
itoOp.2 none
itoOp.2 none
itoOp.2 none
LtoOp.2 none
FtoOp.2 none
ftoOp.2 none

N/A none
DtoOp.2 none
ftoOp.2 none
fto L1/F1 none

Pulse rSSR

TLlEE/9421-14

FIGURE 3-9. Floating-Point Instruction Processing Flowchart

3-142

3.0 Functional Description (Continued)

With the pipe lined protocol selected, the FPC can start exe­
cution of a new floating-point instruction every two clock
cycles.

In the following example three floating-point instructions are
executed in pipelined mode:

OIVF O(RO), F1
AOOF F2, F3
MULF F4, F5

Step Status Action
1 10 (h'1F) CPU sends 10 and Opcode of OIVF

instruction.

2 OP (h'10) CPU sends operand (RO).

3 Slave starts execution of OIVF instruction.

4 10 (h'1F) CPU sends 10 and Opcode of AOOF
instruction.

5 Slave starts execution of AOOF
instruction.

6 10(h'1F) CPU sends 10 and Opcode of MULF
instruction.

7 Slave starts execution of MULF
instruction.

8 Slave pulses SON or FSSR for the OIVF
instruction. If an exception occurred, the
rest of the instructions will be aborted.

9 ST(h'1E) CPU Reads Status Word (if an exception
occurred).

10 Slave pulses SON or FSSR for the AOOF
instruction. If an exception occurred, the
rest of the instructions will be aborted.

11 ST (h'1E) CPU Reads Status Word (if an exception
occurred).

12 Slave pulses SON or FSSR for the MULF
instruction.

13 ST (h'1E) CPU Reads Status Word (if an exception
occurred).

Note: Instructions that can be pipelined include all instructions except CMPI
in Format 11, as well as SORTI and MAGI in Format 12. All other
floating-point instructions will cause the pipe to break, that is, the
instruction will be sent to the FPC but the pipe will stop until done or
Trap.

3.5.2 Byte Sex

The FPC supports both little Endian and big Endian byte
ordering, depending on the state of the BS pin. In little Endi­
an mode (BS = "Oil), the FPC receives the least significant
half of a double-precision operand first and the most signifi­
cant half afterward. In Big Endian mode (BS = "1 "), the
FPC receives the most significant half of a double-precision
operand first and the least significant half afterward. The
FPC will send the received operands to the correct destina­
tion registers inside the FPOP. In Big Endian mode, the user
must swap the data bus between the CPU and FPC. See
Figure 3-10 for details. The BS pin is sampled by the FPC
during Reset only.

3-143

Data Bus

07-00 07-00

015-08 015-08
CPU FPC

023-016 023-016

031-024 031-024
Little Endlan Mode (Series 32000)

Data Bus

07-00 031-024

015-08 023-016
CPU FPC

023-016 015-08

031-024 07-00
Big Endian Mode (VME Bus)

FIGURE 3-10. Byte Sex Connection Diagrams

3.5.3 Floating-Point Instruction Protocols

Table 3-2 gives the protocols followed for each floating­
point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Section 2.2.3.

The Operand Class columns give the Access Classes for
each general operand, defining how the addressing modes
are interpreted by the CPU (see Series 32000 Instruction
Set Reference Manual).

The Operand Issued columns show the sizes of the oper­
ands transferred to the Floating-Point Controller by the
CPU. "Oil indicates a 32-bit Double Word. "i" indicates that
the instruction specifies an integer size for the operand (B
= Byte, W = Word, 0 = Double Word). "f" indicates that
the instruction specifies a floating-point size for the operand
(F = 32-bit Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR Bits Affected column indicates which PSR bits, if any,
are updated from the FPC Status Word (Figure 3-9).

Any operand indicated as being of type "1" will not cause a
transfer between CPU and FPC, if the Register addressing
mode is specified, since the Floating-Point Registers are
physically located in the FPC and are therefore available
without CPU assistance.

3.6 FPDP INTERFACE

The FPC uses the Weitek WTL 3164 Floating-Point Data
Path (FPOP) as the computational unit.

The FPDP is capable of supporting 32-bil and 64-bit IEEE
floating-point operations. The FPDP consists of a Multiplier,
ALU, Divide/Sqrt unit, 32 x 64-bit, Six-Port Register file, I/O
port and control unit. There are six major internal 64-bit wide
data buses used for data transfers between the different
blocks inside the FPOP.

z en
(,)
N
c.n
0)
o
N
o
"" z en
(,)
N
c.n
0)
o

I
N
c.n
"" Z en
(,)
N
c.n
0)
o

I
(,)
o

o
~ · o
CO
II)
N
~ en
z
II)
N · o
CO
II)
N
~ en z
o
N · o
CO
II)
N
~ en z

3.0 Functional Description (Continued)

Using six data buses allows the input of two double-preci­
sion operands to a selected unit and to output one double­
precision result in one WCLK cycle, supporting pipelining of
a new double-precision instruction every WCLK cycle. For a
detailed description of the FPDP, refer to the appropriate
data sheet from Weitek.

3.6.1 Controlling the FPDP

The FPC controls the FPDP on an instruction by instruction
basis. The instruction control signals are delayed in the
FPDP to match the FPDP pipeline stages.

This allows to specify all the controls for a Reg to Reg in­
struction in a single control word. There are two types of
operations that can be executed concurrently on the FPDP.
The first operation is a floating-point arithmetic operation
done on operands from the register file. The second opera­
tion is a Load/Store operation using the X port of the FPDP.

5 5

FUNC AAIN ABIN MAIN MBIN AADD

C41

3.6.2 Instruction Control

The FPC controls the FPDP using a 33-bit control word. The
control word contains all the information needed for the ex­
ecution of an instruction including the function to be execut­
ed, source operands and destination of the result. The con­
trols are pipelined along with the instruction and affect the
operation at the appropriate times. The control word is sam­
pled with the rising edge of WCLK.

There are three functional fields in the control word:

1. The FUNC field defines the arithmetic operation to be
executed.

2. The AAIN, ABIN, MAIN, MBIN, A ADD, B ADD, C ADD,
D ADD bits specify the source and destination for arith­
metic operations. Both C ADD and D ADD fields of the
FPDP are connected to the D ADD field in the FPC con­
trol word.

3. The E/F ADD and XC NT fields control the Load and
Store operations. E/F ADD selects the register to be
loaded while XC NT selects the operation. XCNT encod­
ings are provided in the following table.

5 5 5 5 4

BADD CADD DADD E/FADD XCNT

C4
FIGURE 3-11. FPDP Control Word

A Y X B y

~ MAIN MUX MBIN MUX AAIN MUX

B Y TO Tl

ABIN MUX

1" 1" 1"
A B A

MULTIPLIER ALU

TL/EE/9421-15

FIGURE 3-12. FPDP Multiplier and ALU Bus Control

3-144

3.0 Functional Description (Continued)

XC NT Field Encodlngs
The XCNT field specifies the I/O operation to be executed.

Code Operation

H'O NOP

H'1 EREG LS ~ XPAD

H'2 EREG MS ~ XPAD

H'3 EREG INT ~ XPAD

H'5 XPAD ~ XREG/FREG LS

H'6 XPAD ~ XREG/FREG MS

H'? XPAD ~ XREG/FREGINT

Data from the FPC is transferred to the FPDP through the
XPAD Port. The data is loaded into the XREG and into a
register in the register file specified by the ElF ADD.

Loading the data to both locations allows the immediate use
of the data by the ALU and MUL T, bypassing the register
file. Loading the data to a register in the register file pre­
vents data from being lost if the data from memory is need­
ed a few cycles later.

The FPDP 1/0 Mode is determined by the control bits in the
control register SR1 bits 4-0. The FPDP is used in Unde­
layed Single-Pump mode (code 00000).

3.6.3 "2 Cycle Mode" and "3 Cycle Mode"
The FPDP has two timing modes, "Two cycle latency" and
"Three cycle latency". In "Two cycle latency" single- and
double-precision operations have latency of two cycles. In
"Three cycle latency", double-precision multiply has a three
cycle latency, single-precision multiplies and single- or dou­
ble-precision ALU operations have two cycle latency.

When using the "Three cycle latency" the Divide/Sqrt block
uses the same clock as the other functional units in the
FPDP. Although the "Three cycle latency" is not optimized
for double-precision multiply it may be very useful if the
WCLK frequency is higher than the FPDP speed rating.

The FPC has a pin to specify the desired mode. In "Three
cycle latency" the LMODE pin should be connected to Vee
and in "Two cycle latency" it should be connected to GND.
The LMODE line is sampled during reset. After reset, as part
of the initialization cycle, the FPC updates the Multiply La­
tency bit in the FPDP control register SRO bit-? (0 = "Two
cycle latency", 1 = "Three cycle latency").

Description

No Operation

Transfer the Least Significant half of the register specified
by EREG to the X-port (Store LS).

Transfer the Most Significant half of the register specified by
EREG to the X-port (Store MS).

Transfer Integer operand in the register specified by EREG
to the X-port (Store Int).

Load the Least Significant half of the data in the X-port into
the XREG LS and into the register specified by FREG.

Load the Most Significant half of the data in the X-port into
the XREG MS and into the register specified by FREG.

Load the Integer operand in X-port into the XREG and into
the register specified by FREG.

3-145

In "Three cycle latency" the Divide/Sqrt block uses DCLK3
(same as WCLK), in "Two cycle latency" it uses DCLK2 (2
x WCLK). The FPC uses the latency pin to determine the
length of some instructions (number of cycles before FPC
can signal DONE or TRAP).

This feature allows the CPU to run at more than twice the
maximum FPDP frequency.

The following table shows the system speed versus the
FPDP speed and latency selection.

WCLK WCLK
FPOP Speed Max System

Grade "Two Cycle "Three Cycle Speed

120 ns

100 ns
80 ns

60 ns

Latency" Latency"

120 ns
100 ns
80 ns

60 ns

90 ns
?5 ns
60 ns

50 ns

3.6.4 FPOP Mode Control Registers SRO, SR1

45 ns

38ns
30 ns

25 ns

There are few options in the FPDP like Rounding, liD, IEEE
handling, Latency and others that can be controlled by writ­
ing into the control registers SRO and SR1.

After reset and whenever the user changes the relevant
fields in the FSR, the FPC updates the FPDP control regis­
ters.

FastllEEE Mode SRO bit 0
"1" Set to Fast mode. An underflowed instruction with dis­
abled underflow exception delivers zero to the destination
register.

z en
w
I\)
(J1
Q)
Q · I\)
Q
.......
Z en
w
I\)
(J1
Q)
Q
• I\)

(J1
....... z en w
I\)
(J1
Q)
Q · W
Q

o
M o
CD
U')
N
M
t/)
Z
U')
N • o
CD
U')
N
M
t/)
Z
o
N • o
CD
U')
N
M
t/)
Z

3.0 Functional Description (Continued)

Rounding

SRO SRO
Rounding Mode

81t-2 Blt-1

0 0 Round toward nearest value, if tie round
toward even significant

0 1 Round toward zero

1 0 Round toward positive infinity

1 1 Round toward negative infinity

IntAbortOn SRO Blt-3

"0" Internal abort off.

SRO Blt-4
"0"

lIokOn SRO Blt-5

"0" Disables Interlocks.

FpexStlcky SRO Blt-6

"0" FPEX is "Pulsed". In this mode, FPEX is asserted
for one clock cycle.

Multiply Latency SRO Blt-7

The FPDP has two multiply latency modes: Two cycle laten­
cy mode and Three cycle latency mode. See Section 3.6.3.

SRO Blt-7 Latency Mode
o Two Cycle Latency Mode

Three Cycle Latency Mode

110 Mode SR1 Bits 4-0

o 0 0 0 0 Single-Pump Undelayed

The FPDP is used by the FPC in the undelayed single-pump
mode for load and store operations.

FpexDelay SR 1 Blt-5

"1" Delayed FPEX-Mode.

CODE m
S 3-0

BypassOn SR1 Blt-6

"1" Enables bypassing of operands between
instructions.

SR1 Bit-7
"0"

3.6.5 IEEE Enable Register SR2

The SR2 register has enable bits for each of the exception
conditions. The FPC updates the enable bits after Reset
and whenever the user changes the relevant bits in the
FSR. (See LFSR Instruction.)

7 0

EN::~ES I NaN Iinv I t>n I Dnnn I Ovf I Un! Iinx I loW I
FIGURE 3-13. IEEE Enable Register (FPDP)

FPC updates the Inv, Dvz, Ovf and lovf, Unf, Inx enable bits
to reflect those enable bits in the FSR.

The NaN bit is affected by the ROE bit in the FSR. If the
ROE is cleared then NaN should be enabled (signal excep­
tion upon detection of NaN). If ROE is set NaN will be dis­
abled.

The Dnrm bit is always enabled and detection of Dnrm as
operand for operation will cause a source exception.

Whenever the user changes the enable bit in the FSR, the
same bit will be updated in the exception enable register in
the FPDP.

Registers SR3-SR11 are not used by the FPC.

3.6.5.1 FPDP Status Lines (SO-3)

The status of operation in the FPDP can be obtained by
using the FPDP status lines. The status is not "sticky",
therefore, the FPC has to sample the status lines in the
correct timing. If ALU and MUL T instructions end in the
same cycle, the ALU status is valid at the end of the cycle
and the MUL T status is valid at the beginning of the follow­
ing cycle.

ALU t.4UL ALU t.4UL

[![I~~~
TL/EE/9421-16

FIGURE 3-14. FPDP Status Timing

3-146

3.0 Functional Description (Continued)

3.6.6 FPDP Clocking Requirements

The FPC uses BLCK and BLCK from the CPU to generate
the clock signals required by the FPDP.

The FPDP requires two clock signals: DIVCLK and WCLK.
DIVCLK is used by the DIVIDE/SORT unit, while WCLK Is
used by all other functional un!ts. The frequency of DIVCLK

WCLK

DCLK2

1 ns min

is dependent on the latency mode selected. It is either same
or twice the frequency of WCLK for the "Three Cycle Laten­
cy" or "Two Cycle Latency" Modes respectively.

The WCLK frequency is always half the frequency of BCLK.

The FPC determines the DIVCLK frequency by using the
LMODE pin.

TLlEE/9421-17

FIGURE 3-15. Dlvlde/Sqrt Clock DCLK2/DCLK3

4.0 Device Specifications

CPU RESET

DATA

SU~ { TIMING
AND

CONTROL

CLOCKING {

I/O CONTROL

MULTIPLY CONTROL

RST SO-S3

00-031 XO-X31

F'0-F'4

AAIN
STO-ST4 ABIN

NS32580
MAIN

MBIN

AADDO-AADD4

BADDO-BADD4

CADDO-CADD4

SPC

SON EF'DDO-EF'DD4

F'SSR XCNTO-XCNT3

BCLK WABORT
BCLK

WCLK

BS DIVCLK

LMODE

/L.. ___ F'PDP STATUS

5

5

F'PDP
DATA BUS

F'PDP
CONTROL
C BUS

}
F'PDP 1----. CLOCKING

FIGURE 4-1. NS32580 Interface Signals

3-147

TL/EE/9421-18

z en
w
N
U1
Q)
Q · N
Q
Z en
w
N
U1
Q)
Q
• N

U1
Z en
w
N
U1
Q)
Q · W
Q

~ r---~

· o
CO
it)
N
~
U)
Z
it)
N • o
CO
it)
N
~
U)
Z
o
N · o
CO
it)
N
~
U)
Z

4.0 Device Specifications (Continued)

4.1 NS32580 PIN DESCRIPTIONS

Descriptions of the NS32580 pins are given in the following
sections. Figure 4-1 shows the NS32580 interface signals
grouped according to related functions.

4.1.1 Supplies
VCCL 1-7 Logic Power-+ 5V positive supplies for on­

chip logic.

VCCB1-8 Buffers Power-+5V positive supplies for on­
chip buffers .

GNDL1-
13 Logic Ground-Ground references for on-chip

logic.

GNDB1-
13 Buffers Ground-Ground references for on­

chip buffers.

4.1.2 Input Signals

BCLK Bus Clock-Input clock from NS32532.
Bus Clock Inverse-Inverted input clock from
NS32532.

BS Byte Sex-Specifies the I/O byte ordering of
the FPC. If connected to GND the FPC is in lit­
tle Endian mode. If connected to Vee the FPC is
in Big Endian mode. The BS line must be valid
during and after Reset. See Section 3.5.2.

LMODE Latency Mode-Specifies the latency mode of
the FPC-FPDP. If connected to GND the FPC­
FPDP is in the "Two cycle latency", if connect­
ed to Vee the FPC-FPDP is in the "Three cycle
latency". LMODE line must be valid during and
after Reset.

RST Reset-Active low. Resets the last operation,
clears the FIFOs and the FSR register to its de­
fault state.

SO-3 FPDP Status-Indicates any exceptions or con­
ditions that resulted from operations performed
by the WTL 3164 floating-point data path.

SPC Slave Processor Control-Active low. Data
strobe for slave transfers between the CPU and
the FPC.

STO-4 CPU Status-Bus cycle status code from CPU.
STO is the least significant and rightmost bit.
1 1 1 0 0 -Reserved

1 1 1 0 1 -Transferring Operand

1 1 1 1 0 -Reading Status Word

1 1 1 1 1 -Broadcasting Slave ID

3-148

AADDO-4 A Read Port Register Address-Chooses the
inputs to the A bus of the FPDP.

AAIN ALU A Input Select-Controls the A input mUl­
tiplexers of the FPDP ALU.

ABIN ALU B Input Select-Controls the B input mUl­
tiplexers of the FPDP ALU.

BADDO-4 B Read Port Register Address-Chooses the
inputs to the B bus of the FPDP.

CADDO-4 C Write Port Register Address-C/D Bus
Control. Chooses the destinations of C and D
buses. These signals should be connected to
both the (CADDO-4) and the (DADDO-4) lines
of the FPDP.

4.1.3 Output Signals

DIVCLK Divide/Square Root Clock-Clock signal for
the Divide/Sqrt unit in the FPDP.

EFDDO-4 E and/or F Port Register Address-Chooses
the source and destination for the Load/Store
operations of the FPDP.

FO-4 Function Code-Specifies the operation to be
performed by the FPDP.

FSSR Forced Slave Status Read-Active low. When
active, indicates that the FPC status word
should be read by the CPU. It is floating before
and after being active.

MAIN Multiplier A Input Select-Controls the A input
multiplexers of the FPDP multiplier.

MBIN Multiplier B Input Select-Controls the B input
multiplexers of the FPDP multiplier.

SON Slave Done-Active low. When active, indi­
cates successful completion by the FPC-FPDP
of a floating-point instruction. It is floating before
and after being active.

WABORT FPDP Abort-Aborts the current and previous
instructions in the FPDP.

WCLK FPDP Clock-Clock signal for the FPDP. It is
BCLK divided by two. i.e., if BCLK is 30 MHz,
WCLK will be 15 MHz.

XCNTO-3 X Port Control-They are the Load/Store con­
trols for the FPDP.

4.1.4InputlOutput Signals
00-31 CPU Data Bus-Data bus between FPC and

the CPU.

XO-31 FPDP Data Bus-Data bus between FPC and
the FPDP X port.

4.0 Device Specifications (Continued)

Connection Diagram

@@@@@@@@@@@@@
p @@@@@@@@@@@@@@@
N @@@@@@@@@@@@@@@
IA @@@@@@@@@@@@@@@
L @@@@ @@@@
K @@@@ @@@@
J @@@@ @@@@
H @@@@ NS32580 @@@@
G @@@@ @@@@
r @@@@ @@@@
E @@@@ @@@@
o @@@@@@@@@@@@@@@
c @@@@@@@@@@@@@@@
B @@@@@@@@@@@@@@@
A D@@@@@@@@@@@@@

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bottom View

FIGURE 4-2. 172-Pln PGA Package

Order Number NS32580-20, NS32580-25 or NS32580-30
See NS Package Number U172B

3·149

TL/EE/9421-31

z en
w
N
U1
CD
o .
N o
Z en
w
N
U1
CD
o • N
U1
Z en
w
N
U1
CD

'?
w o

•

o ,---,
Cf)

o 4.0 Device Specifications (Continued) co
~ NS32580 Pinout Descriptions
Cf)
CJ)
Z
........
Lt)
C'\I
o co
Lt)
C'\I
Cf)
CJ)
Z
........ o
C'\I

I o co
Lt)
C'\I
Cf)
CJ)
Z

Desc Pin

VCCL1 A2
GNOB1 A3
GNOL1 A4

XCNTO A5
XCNT3 A6

EFA001 A7
EFA002 A8
GNOL2 A9

GNOB2 A10

CADDO A11
CA002 A12

CA003 A13
BAOOO A14

GNOB3 B1

GNOL3 B2

XO B3
XCNT1 B4
XCNT2 B5
EFAOOO B6

EFA003 B7
BCLK B8
WCLK B9

OIVCLK B10

EFA004 B11
CA001 B12

CA004 B13
BA001 B14

BA002 B15

VCCB1 C1

X2 C2
X1 C3
VCCL2 C4
01 C5

DO C6
NC C7
GNOL4 C8
GNOB4 C9

BCLK C10
RST C11
NC C12
BA003 C13
AAOOO C14

BA004 C15
Note: NC = No Connection

Desc

X3

X4
NC

02

017

016

NC
GNOL5

NC

NC

NC

VCCB2

015

AA001

AA002

X5
X7

018

03

031

014
AA003

AA004

X6

X9

019

VCCL3

030

VCCB3

MAIN

MBIN
X8

X10

04

020

013

029

AAIN

ABIN

X11
X12

NC

05

Pin Desc

01 028

02 GNOB5
03 FO

04 F1

05 X13

06 X15

07 GNOB6
08 021

09 012

010 027

011 F2

012 F3
013 X14

014 X17

015 06

E1 022

E2 011

E3 NC

E4 SO

E12 F4

E13 X16
E14 X18

E15 07

F1 023

F2 SPC

F3 SON
F4 S2

F12 S1

F13 X19

F14 Reserved

F15 VCCL4
G1 08

G2 GNOB7

G3 026

G4 GNOL6

G12 VCCB4

G13 NC

G14 STO

G15 ST1

H1 NC
H2 GNOL7

H3 WABORT
H4 S3

3-150

Pin Desc Pin

H12 VCCL5 N1

H13 GNOB8 N2
H14 Reserved N3
H15 024 N4

J1 025 N5

J2 09 N6
J3 010 N7
J4 NC N8

J12 VCCB5 N9

J13 ST2 N10

J14 ST4 N11

J15 FSSR N12
K1 GNOB9 N13

K2 VCCB6 N14

K3 GNOL8 N15
K4 GNOL9 P1
K12 VCCL6 P2

K13 X21 P3

K14 X23 P4

K15 X25 P5

L1 X26 P6
L2 X28 P7

L3 X31 P8

L4 X30 P9

L12 BS P10

L13 ST3 P11
L14 VCCB7 P12

L15 GNOB10 P13

M1 GNOL10 P14

M2 GNOB11 P15

M3 GNOB12 R2
M4 GNOL11 R3

M5 VCCL7 R4

M6 X20 R5

M7 X22 R6
M8 X24 R7

M9 X27 R8

M10 X29 R9
M11 LMOOE R10

M12 GNOB13 R11
M13 GNOL12 R12

M14 VCCB8 R13

M15 GNOL13 R14

4.0 Device Specifications (Continued)

4.2 ABSOLUTE MAXIMUM RATINGS Power Dissipation 1.5W

If Military/Aerospace specified devices are required, ESD Rating is to be determined.
please contact the National Semiconductor Sales Note: Absolute maximum ratings indicate limits beyond
Office/Distributors for availability and specifications. which permanent damage may occur. Continuous operation
Temperature Under Bias O·Cto +70·C at these limits is not intended,' operation should be limited to

Storage Temperature -65·C to + 150·C those conditions specified under Electrical Characteristics.

All Input or Output Voltages
with Respect to GND -0.5Vto +7V

4.3 ELECTRICAL CHARACTERISTICS TA = O·Cto 70·C, Vee = 5V ±10%, GND = OV

Symbol Parameter Conditions Min Typ Max Units

VIH High Level Input Voltage 2.0 Vee + 0.5 V

VIL Low Level Input Voltage -0.5 O.S V

VOH High Level Output Voltage IOH = -400 IJ-A 2.4 V

VOL Low Level Output Voltage IOL = 2mA 0.4 V

'I Input Load Current o ~ VIN ~ Vee

IL Leakage Current 0.4 ~ VOUT ~ 2.4V
(Output and 1/0 Pins in
TRI-STATE@/lnputMode)

Icc Active Supply Current lOUT = 0, TA = 25·C 300 rnA

CIN Input Capacitance pF

COUT Output Capacitance pF

4.4 SWITCHING CHARACTERISTICS ABBREVIATIONS

4.4.1 Definitions L.E. - Leading Edge R.E. - Rising Edge

All the Timing Specifications given in this section refer to
T.E. - Trailing Edge F.E. - Falling Edge

O.SV and 2.0V on all the input and output signals as iIIustrat- [~V~ ed in Figures 4.3 and 4.4, unless specifically stated other- ClK
wise. O.8V
Nole: These voltage levels shown are for 32532-32580 interface only. Lev-

els for 32580-WTL3164 interface are specified in their appropriate
timing diagrams.

[o.~~
--2.4V

[)~uv
SIGI

elK lSIG11

~ O.8V 0.45V

2.4V

[2.0V L

[\
2.4V ISIG2h

SI01
SIG2 ISIGll

O.8V O.45V
O.45V

TL/EE/9421-20

[
I j'W

2.4V FIGURE 4-4. Timing Spec/flcation Standard
ISIG2h (Signal Valid before Clock Edge)

SIG2

O.45V
TL/EE/9421-19

FIGURE 4-3. Timing Specification Standard
(Signal Valid after Clock Edge)

3-151

z en w
N
U1
CD
o .
N o
Z en
w
N
U1
CD
o
N
U1
z en w
N
U1
CD
o . w
o

•

4.0 Device Specifications (Continued)

4.4.2 Timing Tables Maximum times assume temperature range O°C to 70°C

4.4.2.1 Output Signal Propagation Delays Maximum times assume capacitive loading of 100 pF

Symbol Figure Description
Referencel NS32580-20 NS32580-25 NS32580-30

Units
Conditions Min Max Min Max Min Max

tov 4-8 CPU Data Valid After R.E., BCLK T2 35 27 23 ns

tOoh 4-8 CPU Data Hold After R.E., BCLK Next T1 ITi 2 2 2 ns

tOn! 4-8 CPU Data Not Forcing After R.E., BCLK Next T1 ITi 28 23 19 ns

tSDa 4-10 SON Signal Active After R.E., BCLK 35 28 22 ns

tSDia 4-10 'SON Signal Inactive After R.E., Next BCLK 2 2 2 ns

tSDn! 4-10 'SON Signal Not Forcing After R.E., BCLK 25 20 17 ns

tFSSRa 4-11 FSSR Signal Active After R.E., BCLK 35 28 22 ns

tFSSRia 4-11 'FSS'R Signal Inactive After R.E., Next BCLK 2 2 2 ns

tFSSRn! 4-11 FSSR Signal Not Forcing After R.E., BCLK 25 20 17 ns

tev 4-14 CBus After R.E., WCLK 83 63 50 ns

tABRTv 4-14 WABORTValid After R.E., WCLK 83 63 50 ns

tCh 4-14 CBUS After R.E., WCLK 3 3 3 ns

tABRTh 4-14 WABORT Hold Time After R.E., WCLK 5 5 5 ns

tXLv 4-14 FPDP Data Valid After R.E., WCLK 83 63 50 ns

tXLh 4-14 FPDP Data Hold Time After R.E., WCLK 3 3 3 ns

t02p 4-13 DCLK2 Period From 2.0V R.E., to 2.0V R.E. 50 40 33.3 ns

t02h 4-13 DCLK2 High Time From 2.0V R.E., to O.BV F.E. 22 17 14.5 ns

t021 4-13 DCLK2 Low Time From O.BV F.E. to 2.0V R.E. 22 17 14.5 ns

t03p 4-13 DCLK3 Period From 2.0V R.E., to 2.0V R.E. 100 80 66.6 ns

t03h 4-13 DCLK3 High Time From 2.0V R.E., to O.BV F.E. 45 36 30 ns

t031 4-13 DCLK3 Low Time From O.BV F.E., to 2.0V R.E. 45 36 30 ns

tWCLKp 4-13 WCLKPeriod From 2.0V R.E., to 2.0V R.E. 100 BO 66.6 ns

tWCLKh 4-13 WCLK High Time From 2.0V R.E., to O.BV F.E. 45 36 30 ns

tWCLKI 4-13 WCLK Low Time From O.BV F.E. to 2.0V R.E. 45 36 30 ns

tOWd 4-13 DCLK2/DCLK3 to From 2.0V R.E., to 2.0V R.E.
1 8 1 8 1 8

WCLKDelay
ns

tWr 4-13 FPDP Clock Rise Time From O.BV R.E., to 2.4V R.E. 4 4 4 ns

tW! 4-13 FPDP Clock Fall Time From 2.4V F.E. to O.BV F.E. 4 4 4 ns

4.4.2.2 Input Signal Requirements NS325BO-20, NS32580-25, NS325BO-30

Symbol Figure Description
Referencel NS32580-20 NS32580-25 NS32580-30

Units
Conditions Min Max Min Max Min Max

tscp 4-5 BCLK Period R.E., BCLK to Next R.E., BLCK 50 100 40 100 33.3 100 ns

tSCh 4-5 BCLK High Time At 2.0V on BCLK (Both Edges) 0.5 tscp 0.5 tscp 0.5 tscp
-5 -4 -3

tSCI 4-5 BCLK Low Time At 0.8V on BCLK (Both Edges) 0.5 tscp 0.5 tscp 0.5 tscp
-5 -4 -3

tBCr 4-5 BCLK Rise Time 0.8V to 2.0V on R.E., BCLK 5 4 3 ns

tsC! 4-5 BCLK Fall Time 2.0V to O.BV on F.E., BCLK 5 4 3 ns

tNsCp 4-5 BCLK Period R.E., BCLK to Next R.E., BCLK 50 100 40 100 33.3 100 ns

3-152

4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements NS325BO-20, NS325BO-25, NS325BO-30 (Continued)

Symbol Figure Description
Referencel NS32580-20 NS32580-25

Conditions Min Max Min Max

tNBCh 4·5 BCLK High Time At 2.0V on BCLK (Both Edges) 0.5 tNBCp 0.5tNBCp
-5 -4

tNBCI 4·5 BCLK Low Time At O.BV on BCLK (Both Edges) 0.5 tNBCp 0.5 tNBCp
-5 -4

tNBCr 4·5 BCLK Rise Time O.BV to 2.0V on R.E., BCLK 5 4

tNBCf 4·5 BCLK Fall Time 2.0V to O.BV on F.E., BCLK 5 4

tBCNBCrf 4·5 Bus Clock Skew 2.0V on R.E., BCLK to
-2 +2 -2 +2

O.BV on F.E., BCLK

tBCNBCfr 4·5 Bus Clock Skew O.BV on F.E., BCLK to
-2 +2 -2 +2

2.0V on R.E., BCLK

tpWA 4·6 Power Stable to After VCC Reaches 4.5V
50 40

R.E. of RST

tASTs 4·6,4·7 RST Setup Time Before R.E., BCLK 14 12

tASTw 4·7 RST Pulse Width At 0.8V (Both Edges) 64 64

tSTs 4·8,4·9 CPU Status Setup Time Before R.E., BCLK T2 36 30

tSTh 4·8,4·9 CPU Status Hold Time After R.E., BCLK T2 15 12

tsPCs 4·8,4·9 SPC Setup Time Before R.E., BCLK T2 30 23

tSPCh 4·8,4·9 SPC Hold Time After R.E., BCLK T2
0

tBCp 0 tBCp
+19 +15

tos 4·9 Data Setup Time Before R.E., BCLK T2 7 5

tOh 4·9 Data Hold Time After R.E., BCLK Next T1 or Ti -4 -4

tSAs 4·12 FPDP ALU Status Before R.E., WCLK
9 9

Setup Time

tSAh 4·12 FPDP ALU Status After R.E., WCLK
5 5

Hold Time

tSMs 4·12 FPDP Multiplier Status Before F.E., WCLK
9 9

Setup Time

tSMh 4·12 FPDP Multiplier Status After F.E., WCLK
5 5

Hold Time

txss 4·14 FPDP Data Setup Time Before R.E., WCLK 9 9

tXSh 4·14 FPDP Data Hold Time After R.E., WCLK 5 5

1---=1- tBCt -
-tBCr

BCLK[~
t--tBCh - tBC1 -

fi ,
--11- tBCNBCfr

tBCp - I-tBCNBCrf

rtNBCI
r-tNBcr "1 I-tNBCt

BCLK [----1 tNBCh~
I tNBCP

FIGURE 4-5. Clock Waveforms

3·153

NS32580-30

Min Max

0.5 tNBCp
120

-3

0.5tNBCp
120

-3

3

3

-1 +1

-1 +1

30

11

64

24

10

20

0
tBCp
+12

3

-4

8

5

8

5

9

5

TLlEE/9421-21

Units

ns

ns

ns

ns

ns

ns

p,s

ns

tBCp

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

z en
w
N
U1
Q)
o • N o
Z en w
N
U1
Q)
o · N
U1
Z en
w
N
U1
Q)
o • w
o

• I

4.0 Device Specifications (Continued)

04.5V..J,t------~S------

BCLK[. __ -t-.... n.n-
RST [4' tRSlS , I

----------------~s~

BCLK

5T0-5T04

5PC

TL/EE/9421-22

FIGURE 4-6. Power-On Reset

TL/EE/9421-23

FIGURE 4-7. Non-Power-On Reset

ANY
T-STATE T1 T2 T1 OR n

[

[

[

00-D31 [

TL/EE/9421-24

FIGURE 4-8. Read Cycle from FPC

3·154

BCLK [

STo-ST04 [

SPC [

OO-D31 [

ANY
T-STATE Tl 12 Tl OR n

TL/EE/9421-25

FIGURE 4-9. Write Cycle to FPC

SON [

TL/EE/9421-26

FIGURE 4-10. Slave Processor Done Timing

FSS'[
TL/EE/9421-27

FIGURE 4-11. FSSR Signal Timing

4.0 Device Specifications (Continued)

WCLK [

SO-53 [

FIGURE 4-12. FPDP Status Signal Timing

DCLK2 [

DCLK3 [

WCLK [2.0V

WCLK [

C BUS SIGNAL [

WABORT [

XQ-31
(LOAD) [
XO-31 [

(STORE)

FIGURE 4-13. FPDP Clock Signal Timing

FIGURE 4-14. FPDP Output Signal Timing

3-155

TL/EE/9421-28

TLlEE/9421-29

TL/EE/9421-30

z
en
(,,)
1'1.)
U1
co
o · 1'1.)
o
z
en
(,,)
1'1.)
U1
co
o · 1'1.)
U1
.......
z
en
(,,)
1'1.)
U1
co
o · (,,)
o

o
C")

i AppendixA
~ COMPATIBILITY OF FPC·FPDP WITH NS32081INS32381
C")
en z
.......
LC')

~ co
LC')
C'i
C")

en z
c:;
C'i o
co
LC')
C'i
C")

en z

NS32081 NS32381

INSTRUCTIONS

NS32081 +

DOrt
POlYf
SCAlBf
lOGBf

REGISTERS

ax 32 Bit 8 x 64 Bit

RESERVED OPERANDS

DNRM DNRM

NaN NaN

Infinity Infinity

NS32580

NS32081 +

MACf
SO RTf

8x64 Bit

DNRM·

NaN can be
enabled or
Disable.·

Infinity is NOT a
reserved
operand.·

NS32081 NS32381

FSR

NS32081 FSR +

RMB

·See compatibility table for special cases.

Compatibility Table

Special Case NS32081/NS32381 NS32580

ROUNDfi (infinity) TRAP (INV) TRAP (OVF), IOF = 1
TRUNCfi (infinity) TRAP (lNV) TRAP (OVF), IOF = 1
FlOORfi (infinity) TRAP (INV) TRAP (OVF), IOF = 1

DIVf 0, infinity TRAP (DVZ) Result = infinity

SORTf (-DNRM) TRAP (INV) TRAP (INV), ROF = 0,
IVF = 1

DIVfO, DNRM TRAP (INV) TRAP (DVZ)
MULf (0, DNRM) TRAP (INV) Result = 0

or (DNRM, 0)
DIVfDNRM,O TRAP (INV) Result = 0
DIVf infinity, DNRM TRAP (lNV) Result = 0
DIVf DNRM, infinity TRAP (INV) Result = infinity
MULf (infinity, DNRM) TRAP (INV) Result = infinity

or (DNRM, infinity)

FSR.ROE = 1 and

NEGf(NaN) N/A Result = - NaN

ABSf(NaN) N/A Result = INaNI

ADDF

}
N/A

{ Result ~ NaN }

SUBf { Nan.DNRM N/A
MULf or N/A
DIVf DNRM,NaN N/A
MACf N/A

3·156

NS32580

NS32081 FSR +

RMB
ROE
IVE
DZE
OVE
IOE
ROF
IVF
DZF
OVF
IOF

Appendix B
PERFORMANCE ANALYSIS
The execution time is calculated from SPC (T1, T2 included) to SDN (including the SDN pulse)

Latency Latency Throughput Throughput
Instruction reg, reg reg, reg reg, reg reg, reg

2 cycles mode 3 cycles mode 2 cycles mode 3 cycles mode

ADDfll 13 13 2 2

SUBf/1 13 13 2 2

MULf 13 13 2 2
MUll 13 15 2 4

DIVf 29 43 29 43

DIV1 43 71 43 71

MOVfll 13 13 2 2

ABSf/1 13 13 2 2

NEGfll 13 13 2 2

CMPfll 13 + CPU 13 + CPU - -
FLOORfi 13 + CPU 13 + CPU - -
TRUNCfi 13 + CPU 13 + CPU - -
ROUNDfi 13 + CPU 13 + CPU - -
MOVFL 13 + CPU 13 + CPU - -
MOVLF 13 + CPU 13 + CPU - -
MOVif 17 + CPU 17 + CPU - -
MOVil 13 + CPU 13 + CPU - -
LFSR 13 13 - -
SFSR 13 + CPU 13 + CPU - -
MACf 17 17 6 6
MACI 17 19 6 8

SORTf 41 65 41 65

SaRTI 69 123 69 123

3·157

Pipe
Break

No

No

No
No

No
No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes
Yes

Yes

Yes

No
No

No
No

z en
w
N
U1
CD
Q .
N
Q
.......
Z en w
N
U1
CD
9
N
U1
Z en
w
N
U1
CD
9
w
Q

•

o
('I)
• o

CD
II)
C\I
('I)
U)
z
II)
C\I • o
CD
II)
C\I
('I)
U)
z
o
C\I • o
CD
II)
C\I
('I)
U)
z

Appendix B (Continued)

Add the following CPU cycles to the base (reg, reg) number of cycles for the different cases:

Instruction
Latency Latency Throughput Throughput

Pipe Break
2 Cycles Mode 3 Cycles Mode 2 Cycles Mode 3 Cycles Mode

MONADIC FLOAT (One Operand)

mem, reg 0 0 2 2 see reg, reg
reg, mem 0+ CPU 0+ CPU - - Yes
mem,mem 0+ CPU 0+ CPU - - Yes

DYADIC FLOAT (Two Operands)

mem, reg 0 0 2 2 see reg, reg
reg, mem 0+ CPU 0+ CPU - - Yes
mem,mem 2 + CPU 2 + CPU - - Yes

MONADIC LONG (One Operand)

mem, reg 2 2 4 4 see reg, reg
reg, mem 2 + CPU 2 + CPU - - Yes
mem,mem 2 + CPU 2 + CPU - - Yes

DYADIC LONG (Two Operands)

mem, reg 2 2 4 4 see reg, reg
reg,mem 6 + CPU 6 + CPU - - Yes
mem,mem 6 + CPU 6 + CPU - - Yes

Note: CPU stands for the time it takes the CPU to take the result from the FPC and resume operation.

3-158

Section 4
Peripherals

III
I

Section 4 Contents
NS32C201-10. NS32C201-15 Timing Control Units..................................... 4-3
NS32202-10 Interrupt Control Unit. 4-25
NS32203-10 Direct Memory Access Controller. 4-50

4·2

~National
~ Semiconductor

PRELIMINARY

NS32C201-10/NS32C201-15 Timing Control Units

General Description
The NS32C201 Timing Control Unit (TCU) is a 24-pin device
fabricated using National's microCMOS technology. It pro­
vides a two-phase clock, system control logic and cycle ex­
tension logic for the Series 320001!l microprocessor family.
The TCU input clock can be provided by either a crystal or
an external clock signal whose frequency is twice the sys­
tem clock frequency.

In addition to the two-phase clock for the CPU and MMU
(PHI1 and PHI2), it also provides two system clocks for gen­
eral use within the system (FCLK and CTTL). FCLK is a fast
clock whose frequency is the same as the input clock, while
CTTL is a replica of PHI1 clock.

The system control logic and cycle extension logic make the
TCU very attractive by providing extremely accurate bus
control signals, and allowing extensive control over the bus
cycle timing.

Features
• Oscillator at twice the CPU clock frequency
• 2 phase full Vee swing clock drivers (PHI1 and PHI2)

Block Diagram
XIN

XOUT

• 4-bit input (WAITn) allowing precise specification of 0 to
15 wait states

• Cycle Hold for system arbitration and/or memory
refresh

• System timing (FCLK, CTTL) and control (RD, WR, and
DBE) outputs

• General purpose Timing State Output (TOO) that
identifies internal states

• Peripheral cycle to accommodate slower MOS
peripherals

• Provides "ready" (ROY) output for the Series 32000
CPUs

• Synchronous system reset generation from Schmitt
trigger input

• Phase synchronization to a reference signal
• High-speed CMOS technology
• TTL compatible inputs
• Single 5V power supply
• 24-pin dual-in-line package

FCLK

PHI2

PHil

CTn

ma-

WR

RWEN/SYNC-~;x>-t-.... +-------I---I-----'

CWAIT ------...

WAlTa ------~
WAIT4 ------.-1
WAIT2 ------.-1
WAlTl --------1

T-STATE
COUNTER
& LOGIC

WAIT
STATE

COUNTER
& LOGIC

4-3

AD

DBE

TSO

ROY

TL/EE/8524-1

z
(J)
w
~ o
~
Q •
Q
"­
Z
(J)
w
~
o
~
Q
•

U1

III

II) ,...
• ,...

o
C\I
o
C\I
C")
UJ
Z
o ,...
• ,...

o
C\I o
C\I
C")

UJ
Z

1.0 FUNCTIONAL DESCRIPTION

1.1 Power and Grounding
1.2 Crystal Oscillator Characteristics
1.3 Clocks
1.4 Resetting
1.5 Synchronizing Two or More TCUs
1.6 Bus Cycles
1.7 Bus Cycle Extension

1.7.1 Normal Wait States
1.7.2 Peripheral Cycle
1.7.3 Cycle Hold

1.8 Bus Cycle Extension Combinations

1.9 Overriding WAIT Wait States

Table of Contents
2.0 DEVICE SPECIFICATIONS

2.1 Pin Descriptions

2.1.1 Supplies
2.1.2 Input Signals
2.1.3 Output Signals

2.2 Absolute Maximum Ratings
2.3 Electrical Characteristics
2.4 Switching Characteristics

2.4.1 Definitions
2.4.2 Output Loading
2.4.3 Timing Tables
2.4.4 Timing Diagrams

List of Illustrations
Crystal Connection••...............••............•........•.. 1-1
PHI1 and PHI2 Clock Signals•..................•.•......•..........................•..... 1-2

Recommended Reset Connections (Non Memory-Managed System)•.......•..•............................. 1-3a
Recommended Reset Connections (Memory-Managed System) ...•.......... 1-3b
Slave TCU does not use RWEN during Normal Operation••... 1-4a
Slave TCU Uses Both SYNC and RWEN••...............•.. 1-4b
Synchronizing Two TCUs•................•...•........ 1-5
Synchronizing One TCU to an External Pulse•........•... 1-6
Basic TCU Cycle (Fast Cycle)•......•......................•.......•....................................... 1-7
Wait State Insertion Using CWAIT (Fast Cycle)•.......•.. 1-8
Wait State Insertion Using WAITn (Fast Cycle)•................................... 1-9
Peripheral Cycle•... 1-10
Cycle Hold Timing Diagram•......•...•...•.•. 1-11
Fast Cycle with 12 Wait States•............•.......•........•........•..........................•.... 1-12
Peripheral Cycle with Six Wait States•.. 1-13

Cycle Hold with Three Wait States •.....••...........................•....•.•...........................•........ 1-14
Cycle Hold of a Peripheral Cycle•....................•..........•..............•......•........•..•.•.•. 1-15
Overriding WAITn Wait States .•..........•.............•......•.. 1-16

Connection Diagram•... 2-1
Clock Signals (a)•..........•..•. 2-2
Clock Signals (b) ..•.•.. 2-3
Control Inputs•.....•...•..........•................•.....................................•. 2-4
Control Outputs (Fast Cycle)•............•.. 2-5
Control Outputs (Peripheral Cycle) •.. 2-6
Control Outputs (TRI-STATE Timing)••..............................•...................................... 2-7
Cycle Hold•.......•..................................•........•.....................•........•.....• 2-8
Wait States (Fast Cycle)•....•..........•...............................•.........•.•.. 2-9
Wait States (Peripheral Cycle)•...•.......• 2-10
Synchronization Timing ..•.....................................•... 2-11

4-4

1.0 Functional Description
1.1 POWER AND GROUNDING

The NS32C201 requires a single + 5V power supply, ap­
plied to pin 24 (Vee>. See Electrical Characteristics. The
Logic Ground on pin 12 (GND), is the common pin for the
TCU.

A 0.1 p.F, ceramic decoupling capacitor must be connected
across Vee and GND, as close to the TCU as possible.

1.2 CRYSTAL OSCILLATOR CHARACTERISTICS

The NS32C201 has an internal oscillator that requires con­
nections of the crystal and bias components to XIN and
XOUT as shown in Figure 1-1. It is important that the crystal
and the RC components be mounted in close proximity to
the XIN, XOUT and Vee pins to keep printed circuit trace
lengths to an absolute minimum.

Typical Crystal Specifications:

Type ... At-Cut

Tolerance 0.005% at 25°C

Stability 0.01 % from 0° to 70°C

Resonance Fundamental (parallel)

Capacitance 20 pF

Maximum Series Resistance 500.

i Yee
CRYSTAL

B~'F FREQUENCY R
XOUT (MHz) (OHM) (14)

l00knC] 6-12 470
12-18 220

XIN 18-24 100 (13)

TL/EE/8524-3 24-30 47

FIGURE 1-1. Crystal Connection Diagram

Vee

r------------,
I I

1.3 CLOCKS

The NS32C201 TCU has four clock output pins. The PHI1
and PHI2 clocks are required by the Series 32000 CPUs.
These clocks are non-overlapping as shown in Figure 1-2.

PHIl

PHI2

TLlEE/8524-4

FIGURE 1.2. PHI1 and PHI2 Clock Signals

Each rising edge of PHI1 defines a transition in the timing
state of the CPU.

As the TCU generates the various clock signals with very
short transition timings, it is recommended that the conduc­
tors carrying PHI1 and PHI2 be kept as short as possible. It
is also recommended that only the Series 32000 CPU and, if
used, the MMU (Memory Management Unit) be connected
to the PHI1 and PHI2 clocks.

CTTL is a clock signal which runs at the same frequency as
PHI1 and is closely balanced with it.

FCLK is a clock, running at the frequency of XIN input. This
clock has a frequency that is twice the CTTL clock frequen­
cy. The exact phase relationship between PHI1, PHI2, CTTL
and FLCK can be found in Section 2.

NS32C201
TCU

NS32COI8
CPU

I RESET I>--il-+-~_+_-_+~ ---... RsTi RSTO I-----r-----I iiST/AEiT
I I

! : L.. _____________ .J

EXTERNAL RESET
(OPTIONAL)

RESET SWITCH
(OPTIONAL)

SYSTEM RESET

FIGURE 1-3a. Recommended Reset Connections (Non Memory-Managed System)

Vcc

r------------ ,

NS32C201
TCU

I I

: RESET I>-~I-+-~_i--~~----l RSTI RSrO
I
! I L _____________ .J

EXTERNAL RESET
(OPTIONAL)

RESET SWITCH
(OPTIONAL)

~ 50jLsec

NS32OII2
MMU

FIGURE 1-3b. Recommended Reset Connections (Memory-Managed System)

4-5

NS32COI6
CPU

TL/EE/8524-5

TLlEE/8524-6

z en w
N o
N o •
o
....... z en
w
N
o
N o
•

CJ1

~ ~--~
•

o
N
o
N
C"')
tJ)
Z

'" o •
o
N
o
N
C"')
tJ)
Z

1.0 Functional Description (Continued)

1.4 RESETTING

The NS32C201 TCU provides circuitry to meet the reset
requirements of the Series 32000 CPUs. If the Reset Input
line, RSTI is pulled low, the TCU asserts RSTO which resets
the Series 32000 CPU. This Reset Output may also be used
as a system reset signal. Figure 1-38 illustrates the reset
connections for a non Memory-Managed system. Figure
1-3b illustrates the reset connections for a Memory-Man­
aged system.

1.5 SYNCHRONIZING TWO OR MORE TCUs

During reset, (when RS'fO is low), one or more TCUs can
be synchronized with a reference (Master) TCU. The

lWlER/SYNC
(MultalLow
DurlngRHlt)

RWEN/SYNC input to the slave TCU(s) is used for synchro­
nization. The Slave TCU samples the RWEN/SYNC input
on the rising edge of XIN. When RSTO is low and CTIL is
high (see Figure 1-5), if RWEN/SYNC is sampled high, the
phase of CTIL of the Slave TCU is shifted by one XIN clock
cycle .

Two possible circuits for TCU synchronization are illustrated
in Figures 1-48 and 1-4b. It should be noted that when
RWEN/SYNC is high, the RD and WR signals will be TRI­
STATE on the slave TCU.
Note: RWEN/SYNC should not be kept constantly high during reset, other­
wise the clock will be stopped and the device will not exit reset when RS'fI is
deasserted.

TL/EE/B524-7

FIGURE 1·4a. Slave TCU Does Not Use RWEN During Normal Operation

lWlER/SYNC
(MultBILow
During RllIt)

RWEN>---+_----------+_~

FIGURE 1·4b. Slave TCU Uses Both SYNC and RWEN

TL/EE/B524-B

Note: When two or more TCUs are to be synchronized, the XIN of all the TCUs should be connected to an external clock source. For details on the external clock,
see Switching Specifications In Section 2.

XIN

CTIL(s) \'''''' __ ..11 : PHASE CHANGE: \ 1 \ ,-_ + + ""-_'--' ""--.-..I

-------~/~--~\ / \ / \ RWEN/SYNC • "', ___ -' "' ___ ", ~

RSTI~~ __ _

\~------------------------------ TL/EE/B524-9

FIGURE 1-5. Synchronizing Two TCUs

4-6

1.0 Functional Description (Continued)

~~LO~W~---

XIN

RWENISYNC ________________ ..11 \~------------------------------
crTL(s) \ __ 1

TL/EE/8524-10

FIGURE 1·6. Synchronizing One lCU to An External Pulse

In addition to synchronizing two or more TCUs, the RWENI
SYNC input can be used to "fix" the phase of one TCU to
an external pulse. The pulse to be used must be high for
only one rising edge of XIN. Independent of CTTL's state at
the XIN riSing edge, the CTTL state following the XIN rising
edge will be high. Figure 1-6 shows the timing of this se­
quence.

1.6 BUS CYCLES

In addition to providing all the necessary clock signals. the
NS32C201 TCU provides bus control signals to the system.
The TCU senses the ADS signal from the CPU or MMU to
start a bus cycle. The ODIN input signal is also sampled to
determine whether a Read or Write cycle is to be gener-

CPU STATES
TCU STATES

PHI1

AOS

TSO

ODIN

Viii

iii

DBE

ROY

T1
T1

T2
12

HIGH

T3
T3

T4
T4

FIGURE 1·7. Basic lCU Cycle (Fast Cycle)

4·7

ated. In addition to RD and WR, other signals are provided:
DBE and TSO. DBE is used to enable data buffers. The
leading edge of DBE is delayed a half clock period during
Read cycles to avoid bus conflicts between data buffers and
either the CPU or the MMU. This is shown in Figure 1-7.

The Timing State Output (TSO) is a general purpose signal
that may be used by external logic for synchronizing to a
System cycle. TSO is activated at the beginning of state T2
and returns to the high level at the beginning of state T 4 of
the CPU cycle. TSO can be used to gate the CWAIT signal
when continuous waits are required. Another application of
TSO is the control of interface circuitry for dynamic RAMs.

Notes:

1. The CPU and TCU view some tim­
ing states (T-states) differently.
For clarity. references to T-states
will sometimes be followed by
(TCU) or (CPU). (CPU) also im­
plies (MMU).

2. Arrows indicate when the TCU
samples the input.

3. RWEN is assumed low (AD and
WR enabled) unless specified dif­
ferently.

4. For clarity. T-states for both the
TCU and CPU are shown above
the diagrams. (See Note 1.)

TLlEE/8524-11

z
en
w
N o
N
o
..&. • ..&.
o
Z en
w
N o
N
o
..&. • ..&.
U1

an ... • ...
o
N
o
N
C")
en z
o
o
N
o
N
C")
en z

1.0 Functional Description (Continued)

1.7 BUS CYCLE EXTENSION

The NS32C201 TCU uses the Wait input signals to extend
normal bus cycles. A normal bus cycle consists of four PHil
clock cycles. Whenever one or more Wait inputs to the TCU
are activated, a bus cycle is extended by at least one PHil
clock cycle. The purpose is to allow the CPU to access slow
memories or peripherals. The TCU responds to the Wait
signals by pulling the ROY signal low as long as Wait States
are to be inserted in the Bus cycle.

CPU STATES Tl T2

TCU STATES Tl T2

PHil

There are three basic cycle extension modes provided by
the TCU, as described below.

1.7.1 Normal Walt States

This is a normal Wait State insertion mode. It is initiated by
pulling CWAIT or any of the WAITn lines low in the middle of
T2. Figure 1-8 shows the timing diagram of a bus cycle
when CWAIT is sampled high at the end of Tl and low in the
middle of T2.

T3 ••••••.•• T3 T3 T4

TCW •••••.• TCW T3 T4

TL/EE/B524-12

FIGURE 1·8. Walt State Insertion Using CWAIT (Fast Cycle)

4·8

1.0 Functional Description (Continued)

The ROY signal goes low during T2 and remains low until
CWAIT is sampled high by the TCU. ROY is pulled high by
the TCU during the same PHI1 cycle in which the CWAIT
line is sampled high.

If any of the WAITn signals are sampled low during T2 and

CPU STATES

TCU STATES

PHI1

T1 T2 T3

CWAIT is high during the entire bus cycle, then the ROY line
goes low for 1 to 15 clock cycles, depending on the binary
weighted value of WAITn. If, for example, WAIT1 and
WAIT4 are sampled low, then five wait states will be insert­
ed. This is shown in Figure 1-9.

T3 T3 T3 T4

-I--'"" , -+---.-.-+--.---~~-. __ . ..p.,';._- ----+.----.... -

TL/EE/8S24-13

FIGURE 1-9. Walt State Insertion Using WAITn (Fast Cycle)

4-9

z en w
~
o
~
Q
...&. .
...&.
Q
.......
Z en w
~
o
~
Q
...&.

• ...&.

en

it)
~ • ~
o
N
o
N
Cf)
(/)
Z
o
~ • ~
o
N
o
N
Cf)
(/)
Z

1.0 Functional Description (Continued)

1.7.2 Peripheral Cycle

This cycle is entered when the PER signal line is sampled
low at the. beginning of T2. The TCU adds five wait states
identified as TDO-TD4 into a normal bus cycle. The RD and

CPU STATES
TCU STATES

T1

T1

T2

T2

T3

TOO

T3

TD1

WR signals are also re-shaped so the setup and hold times
for address and data will be increased.

This may be necessary when slower peripherals must be
accessed .

Figure 1-10 shows the timing diagram of a peripheral cycle.

T3

TD2

T3

TD3

T3

TD4

T3

T3

T4

T4

TL/EE/8524-14

FIGURE 1-10. Peripheral Cycle

4-10

1.0 Functional Description (Continued)

1.7.3 Cycle Hold

If the CWAIT input is sampled low at the end of state T1, the
TCU will go into cycle hold mode and stay in this mode for
as long as CWAIT is kept low. During this mode the control
signals RD, WR, TSO and DBE are kept inactive; RDY is

T1 T2 T3 CPU STATES

TCU STATES T1 TH TH

pulled low, thus causing wait states to be inserted into the
bus cycle. The cycle hold feature can be used in applica­
tions involving dynamic RAMs. A timing diagram showing
the cycle hold feature is shown in Figure 1-11.

T3

T2

T3

T3

T4

T4

TL/EE/8524-15

FIGURE 1-11. Cycle Hold Timing Diagram

1.8 BUS CYCLE EXTENSION COMBINATIONS

Any combination of the TCU input signals used for extend­
ing a bus cycle can be activated at one time. The TCU will
honor all of the requests according to a certain priority
scheme. A cycle hold request is assigned top priority. It fol­
lows a peripheral cycle request, and then CWAIT and
WAITn respectively.

If, for example, all the input signals CWAIT, PER and WAITn
are asserted at the beginning of the cycle, the TCU will en­
ter the cycle hold mode. As soon as CWAIT goes high, the

4-11

input signal PER is sampled to determine whether a periph­
eral cycle is requested.

Next, the TCU samples CWAIT again and WAITn to check
whether additional wait states have to be inserted into the
bus cycle. This sampling point depends on whether PER
was sampled high or low. If PER was sampled high, then the
sampling point will be in the middle of the TCU state T2,
(Figure 1-14), otherwise it will occur three clock cycles later
(Figure 1-15). Figures 1-12 to 1-15 show the timing dia­
grams for different combinations of cycle extensions.

z en w
N
o
N
Q
..a. .
..a.
Q
.......
Z en w
N
o
N
Q
..a. • ..a.
en

II)
op-

I 1.0 Functional Description (Continued) op-

0
N
0

CPU STATES T1 T2 T3 T3 T3 T3 T3 T4 N
C")
tJ) TCU STATES Z
0
op- PHI1

I
op-

0
N
0
N

ADS C")
tJ)
Z

TSO

WR

ifiI

oBE

PER

CWAIT

WAIT1

WAIT2

WAIT4

WAITS

WAifri
11112 10102 value

sampled 1510 1010

ROY

TL/EE/8S24-16

FIGURE 1·12. Fast Cycle With 12 Walt States
(2 CWAITand WAIT10) (Read Cycle)

4-12

1.0 Functional Description (Continued)

CPU STATES Tl

PHil

ADS

TSD

WR

ifij

DBE

PER

CWAIT

WAITl

WAIT2

WAIT4

WAITS

wmn
value

sampled

ROY

T2 T3 T3 T3 T3 T3 T3

HIGH

LOW

HIGH

LOW

HIGH

0101 2
510

FIGURE 1-13. Peripheral Cycle with Six Walt States
(1 CWAITand WAIT5) (Write Cycle)

4-13

z
t/)
CJ.)
N
0
N

T3 T3 T3 Q
..a. • ..a.
Q

'" Z
t/)
CJ.)
N
0
N
Q
..a. • ..a.
U1

•
TL/EE/8524-17

II)
"P-

I
"P-
o
N
0
N
Cf)
(J)
Z
0
"P-

I
"P-
O
N
0
N
Cf)
(J)
Z

1.0 Functional Description (Continued)

CPU STATES T1

TCU STATES n

PHI1

ADS

TSO

WR

RD

oBE

PER

CWAIT

WAIT1

WAIT2

WAIT4

WAITS

WAITn

ROY

T2 T3 T3 T3 T3 T3

TH TH T2 TCW TW1 TW2

HIGH

LOW

HIGH

HIGH

FIGURE 1-14. Cycle Hold with Three Walt States
(1 CWAIT and WAIT2) (Read Cycle)

4-14

T3 T4

T3 T4

TL/EE/8S24-18

1.0 Functional Description (Continued)

CPU STATES T1 T2 T3 T3 T3 T3 T3 T3 T3 T3 T4

Teu STATES

PHil

\ l ___ ~._. __ .~, __ ._.~_._._~._, __ .~

ROY

TL/EE/8S24-19

FIGURE 1-15. Cycle Hold of a Peripheral Cycle

1.9 OVERRIDING WAITn WAIT STATES

The TCU handles the WAITn Wait States by means of an
internal counter that is reloaded with the binary value corre­
sponding to the state of the WAITn inputs each time CWAIT
is sampled low, and is decremented when CWAIT is high.

This allows to either extend a bus cycle of a predefined
number of clock cycles, or prematurely terminate it. To ter-

4-15

minate a bus cycle, for example, CWAIT must be asserted
for at least one clock cycle, and the WAITn inputs must be
forced to their inactive state.

At least one wait state is always inserted when using this
procedure as a result of CWAIT being sampled low. Figure
1-16 shows the timing diagram of a prematurely terminated
bus cycle where eleven wait states were being inserted.

z
en w
N
o
N
o
•
o
....... z
en
w
N o
N
o
U1

•

Lt)
•

o

'" o
'" C")

en z
o
o
'" o
'" C")

en
z

1.0 Functional Description (Continued)

CPU STATES

TCU STATES

WAITn
value

sampled

ROY

T1

T1

T2 T3

T2 TW1

T3

TW2

T3

TW3

00002

T3

TCW

FIGURE 1-16. Overriding WAITn Walt States
(Write Cycle)

4·16

T3

T3

T4

T4

TL/EE/8524-20

2.0 Device Specifications
2.1 PIN DESCRIPTIONS

The following is a description of all NS32C201 pins. The
descriptions reference portions of the Functional Descrip­
tion, Section 1.

2.1.1 Supplies

Power (Vee): + SV positive supply. Section 1.1.

Ground (GND): Power supply return. Section 1.1.

2.1.2 Input Signals

Reset Input (RSTI): Active low. Schmitt triggered, asyn­
chronous signal used to generate a system reset. Section
1.4.

Address Strobe (ADS): Active low. Identifies the first timing
state (T1) of a bus cycle.

Data Direction Input (ODIN): Active low. Indicates the di­
rection of the data transfer during a bus cycle. Implies a
Read when low and a Write when high.
Note: In Rev. A of the NS32C201 this signal Is CMOS compatible. In later

revisions it is TTL compatible.

Read/Write Enable and Synchronization (RWEN/
SYNC): TRI-STATE® the RD and the WR outputs when high
and enables them when low. Also used to synchronize the
phase of the TCU clock signals, when two or more TCUs
are used. Section 1.S.

Crystal or External Clock Source (XIN): Input from a crys­
tal or an external clock source. Section 1.3.

Continuous Walt (CWAln: Active low. Initiates a continu­
ous wait if sampled low in the middle of T2 during a Fast
cycle, or in the middle of TD2, during a peripheral cycle. If
CWAIT is low at the end of T1, it initiates a Cycle Hold.
Section 1.7.1.

Four-Bit Walt State Inputs (WAIT1, WAIT2, WAIT4 and
WAITS): Active low. These inputs, (collectively called
WAITn), allow from zero to fifteen wait states to be speci­
fied. They are binary weighted. Section 1.7.1.

Peripheral Cycle (PER): Active low. If active, causes the
TCU to insert five wait states into a normal bus cycle. It also
causes the Read and Write signals to be re-shaped to meet
the setup and hold timing requirement of slower MOS pe­
ripherals. Section 1.7.2.

4·17

2.1.3 Output Signals

Reset Output (RSTO): Active low. This signal becomes ac­
tive when RSTI is low, initiating a system reset. RSTO goes
high on the first rising edge of PHI1 after RSTI goes high.
Section 1.4.

Read Strobe (RD): (TRI-STATE) Active low. Identifies a
Read cycle. It is decoded from ODIN and TRI-STATE by
RWEN/SYNC. Section 1.6.

Write Strobe (WR): (TRI-STATE) Active low. Identifies a
Write cycle. It is decoded from ODIN and TRI-STATE by
RWEN/SYNC. Section 1.6.
Note: AD and WR are mutually exclusive in any cycle. Hence they are never

low at the same time.

Data Buffer Enable (DBE): Active low. This signal is used
to control the data bus buffers. It is low when the data buff­
ers are to be enabled. Section 1.6.

Timing State Output (TSO): Active low. The falling edge of
TSO signals the beginning of state T2 of a bus cycle. The
rising edge of TSO signals the beginning of state T4. Sec­
tion 1.6.

Ready (ROY): Active high. This signal will go low and re­
main low as long as wait states are to be inserted in a bus
cycle. It is normally connected to the RDY input of the CPU.
Section 1.7.

Fast Clock (FCLK): This is a clock running at the same
frequency as the crystal or the external source. Its frequen­
cy is twice that of the CPU clocks. Section 1.3.

CPU Clocks (PHI1 and PHI2): These outputs provide the
Series 32000 CPU with two phase, non-overlapping clock
signals. Their frequency is half that of the crystal or external
source. Section 1.3.

System Clock (CTTL): This is a system version of the PHI1
clock. Hence, it operates at the CPU clock frequency. Sec­
tion 1.3.

Crystal Output (XOUT): This line is used as the return path
for the crystal (if used). It must be left open when an exter­
nal clock source is used to drive XIN. Section 1.2.

z
C/)
W
N o
N
o
-I.

• -I.

o
'" Z
C/)
W
N
o
N
o
-I. .
-I.

U1

•

11) ,.... . ,....
o
N o
N
C")
(f)
Z o ,....
• ,....

o
N o
N
C")
(f)
Z

2.0 Device Specifications (Continued)

2.2 ABSOLUTE MAXIMUM RATINGS (Note 1) Note: Absolute maximum ratings indicate limits beyond

If Military/Aerospace specified devices are required, which permament damage may occur. Continuous opera-

please contact the National Semiconductor Sales tion at these limits is not intended; operation should be limit-

Office/Distributors for availability and specifications. ed to those conditions specified under Electrical Character-

Supply Voltage 7V
istics.

Input Voltages -0.5V to Vee + 0.5V

Output Voltages -0.5V to Vee + 0.5V

Storage Temperature - 65·C to + 150·C

Lead Temperature (Soldering, 10 sec.) 300·C

Continous Power Dissipation 1W

2.3 ELECTRICAL CHARACTERISTICS T A = -40·C to + 85·C, Vee = 5V ± 5%, GND = OV

Symbol Parameter Conditions Min Typ Max Units

VIL Input Low Voltage All Inputs Except RSTI & XIN 0.8 V

VIH Input High Voltage All Inputs Except RSTI & XIN 2.0 V

VT+ RSTI Rising Threshold Voltage Vee = 5.0V 2.5 3.5 V

VHYS RSTI Hysteresis Voltage Vee = 5.0V 0.8 1.9 V

VXL XIN Input Low Voltage 0.20 Vee V

VXH XIN Input High Voltage 0.80 Vee V

IlL Input Low Current VIN = OV -10 p.A

IIH Input High Current VIN = Vee 10 p.A

VOL
Output Low Voltage PHI1 & PHI2, I = 1 mA

0.10 Vee V
All Other Outputs Except XOUT, I = 2 mA

VOH
Output High Voltage All Outputs Except

0.90 Vee V
XOUT, 1= -1 mA

IL Leakage Current on RD/WR O.4V ~ VIN ~ Vee -20 +20 p.A

lec Supply Current fxin = 20 MHz 100 120 mA

Note 1: All typical values are for Vee = 5V and TA = 25°C.

Connection Diagram
Dual-ln-L1ne Package

r-v--:-
1iR- 1 24 ~VCe

RWEN/SYNC - 2 23 ~PEii

1m-3 22 ~CWAiT

Wii-4 21 ~WAIT1

DDiN- 5 20 ~WAlT2

ADS-& NS32C201 19 ~WAlT4

iilfl- 7 Teu 18 ~WAIT'

mD-8 17~m

RDY- 9 1& ~eTTL

PH12- 10 15 ~FeLK

PH11- 11 14 ~XOUT

GND- 12 13~XIN

TL/EE/8524-2

Top View

Order Number NS32C201D or NS32C201N
See NS Package Number D24C or N24A

FIGURE 2.1

4-18

2.0 Device Specifications (Continued)

2.4 SWITCHING CHARACTERISTICS 2.4.2 Output Loading

2.4.1 Definitions Capacitive loading on output pins for the NS32C201.

All the timing specifications given in this section refer to ROY, DBE, TSO•.......••........... 50 pF

2.0V on the rising or falling edges of the clock phases PHI1 RD, WR•................. 75pF

and PHI2; to 15% or 85% of Vee on all the CMOS output CTTL•....•.... 50+ 100 pF
signals, and to O.BV or 2.0V on all the TTL input signals, FCLK•............•..... 100pF
unless specifically stated otherwise.

PHI1, PHI2•...•...............•.......... 170 pF

ABBREVIATIONS

L.E.-Leading Edge

T.E.-Trailing Edge

R.E.-Rising Edge

F.E.-Falling Edge

2.4.3 Timing Tables

Symbol Figure Description Reference/Conditions
NS32C201·10 NS32C201·15 Units

Min Max Min Max

CLOCK·SIGNALS (XIN, FCLK, PHI1 & PHI2) TIMING

tcp 2.2 Clock Period PHI1 R.E. to Next
100 66 ns

PHI1 R.E.

tCLh 2.2 Clock High Time At 90% Vcc on PHI1 0.5tcp 0.5 tep 0.5 tep 0.5tcp
(Both Edges) -15ns -7ns -10 ns -3 ns

tCLl 2.2 Clock Low Time At 15% Vcc on PHI1 0.5 tep 0.5 tep 0.5tcp 0.5tep
-5ns +10 ns -5ns +6ns

teLw(1.2) 2.2 Clock Pulse Width At 2.0V on PHI1, PHI2 0.5tcp 0.5 tep 0.5tcp 0.5tcp
(Both Edges) -10ns -4ns -6ns -4ns

teLwas PHI1, PHI2 Asymmetry At 2.0V on PHI1, -5 5 -3 3 ns
(teLw (1) - tCLw (2)) PHI2

tCLR 2.2 Clock Rise Time 15% to 90% Vcc B 6 ns
on PHI1 R.E.

teLF 2.2 Clock Fall Time 90% to 15% Vcc 8 6 ns
on PHI1 F.E.

tnOVL(1.2) 2.2 Clock Non·Overlap Time At 15% Vcc on PHI1,
PHI2

-2 +2 -2 +2 ns

tnOVLas Non·Overlap Asymmetry At 15% Vccon PHI1, -4 4 -3 3 ns
(tnOVL (1) - tnovL (2)) PHI2

tXh 2.2 XIN High Time At 80% Vcc on XIN 16 10 ns
(External Input) (Both Edges)

tXI 2.2 XIN Low Time At 15% Vcc on XIN 16 10 ns
(External Input) (Both Edges)

tXFr 2.2 XIN to FCLK R.E. Delay 80% Vcc on XIN R.E. 6 29 6 25 ns
to FCLKR.E.

tXFf 2.2 XIN to FCLK F.E. Delay 15% Vee on XIN F.E. 6 29 6 25 ns
to FCLK F.E.

txcr 2.2 XIN to CTIL R.E. Delay 80% Vcc on XIN R.E. 6 34 6 25 ns
to CTILR.E.

tXPr 2.2 XIN to PHI1 R.E. Delay 80% Vcc on XIN R.E. 6 32 6 25 ns
to PHI1 R.E.

tFCr 2.2 FCLK to CTIL R.E. Delay FCLK R.E. to CTIL R.E. 0 6 0 6 ns

tFCf 2.2 FCLK to CTIL F.E. Delay FCLK R.E. to CTIL F.E. -3 4 -3 4 ns

tFPr 2.3 FCLK to PHI1 R.E. Delay FCLK R.E. to PHI1 R.E. -3 4 -3 4 ns

tFPf 2.3 FCLK to PHI1 F.E. Delay FCLK R.E. to PHI1 F.E. -5 2 -5 2 ns

tFw 2.3 FCLK Pulse Width At 50% Vcc on FCLK 0.25 tep 0.25 tep 0.25 lop 0.25 lop
with Crystal (Both Edges) -5ns +5ns -5ns +5ns

tpCf 2.3 PHI2 R.E.to CTIL PHI2 R.E. to CTIL F.E. -3 4 -3 3 ns
F.E. Delay

loTw 2.3 CTIL Pulse Width At 50% Vcc on CTIL 0.5tcp 0.5 lop 0.5 tep 0.5 lop
(Both Edges) -7ns +1 ns -5ns +1 ns

Note 1: tXCr. tFCr. tFCf. tpCf. teTh are measured with 100 pF load on CTTL.
Note 2: PHI1 and PHI2 are interchangeable for the following parameters: tep. telh. tell. telw. telA. telF. tnOVl. tXPr. tFPro tFPf'

4-19

z en w
N
o
N
C)
•

C)
....... z en
w
N
o
N
C)
•

U1

II) ,..
I ,..

C)
N
o
N
C")
U)
Z
C) ,..

I ,..
C)
N o
N
C")
U)
Z

2.0 Device Specifications (Continued)

2.4.3 Timing Tables (Continued)

Symbol Figure Description Reference/Conditions

CITL TIMING (CL = 50 pF)

tpcr 2.3 PHI1 to CTIL R.E. Delay PHI1 R.E. to CTIL R.E.

tcrR 2.3 CTIL Rise Time 10% to 90% Vee
onCTILR.E.

tcTF 2.3 CTILFallTime 90% to 10% Vee
onCTILF.E.

CITL TIMING (CL = 100 pF)

tpcr 2.3 PHI1 to CTIL R.E. Delay PHI1 R.E. to CTIL R.E.

tcTA 2.3 CTIL Rise Time 10% to 90% Vee
on CTILR.E.

tcTF 2.3 CTIL Fall Time 90% to 10% Vee
on CTILF.E.

CONTROL INPUTS (RST1, ADS, ODIN) TIMING

tRSTs 2.4 RSTI Setup Time Before PHI1 R.E.

tAOs 2.4 ADS Setup Time Before PHI1 R.E.

tADw 2.4 ADS Pulse Width ADS L.E. to ADS T.E.

tOOs 2.4 DDIN Setup Time Before PHI1 R.E.

CONTROL OUTPUTS (RSTO, TSO, RD, WR, DBE & RWEN/SYNC) TIMING

tRSTr 2.4 RSTO R.E. Delay After PHI1 R.E.

tTl 2.5 TSO L.E. Delay After PHI1 R.E.

tTr 2.5 TSO T.E. Delay After PHI1 R.E.

tRWf(F) 2.5 RD/WR L.E. Delay (Fast Cycle) After PHI1_R.E.

tRWf(S) 2.6 RD/WR L.E. Delay After PHI1 R.E.
(Peripheral Cycle)

tRWr 2.5/6 RD/WR T.E. Delay After PHI1 R.E.

tOBf(W) 2.5/6 DBE L.E. Delay (Write Cycle) After PHI1 R.E.

tOBI(R) 2.5/6 DBE L.E. Delay (Read Cycle) After PHI2 R.E.

tOBr 2.5/6 DBE T.E. Delay After PHI2 R.E.

tpLZ 2.7 RD,WR Low Level to TRI-STATE After RWEN/SYNC R.E.

tpHZ 2.7 RD,WR High Level to TRI-STATE After RWEN/SYNC R.E.

tpZL 2.7 RD,WR TRI-STATE to Low Level After RWEN/SYNC F.E.

tpZH 2.7 RD,WR TRI-STATE to High Level After RWEN/SYNC F.E.

WAIT STATES & CYCLE HOLD (CWAIT, WAITn, PER & ROY) TIMING

tcWs(H) 2.8 CWAIT Setup Time (Cycle Hold) Before PHI1 R.E.

tcwh(H) 2.8 CWAIT Hold Time (Cycle Hold) After PHI1 R.E.

tcWs(W) 2.8/9 CWAIT Setup Time (Wait States) Before PHI2 R.E.

tcwh(W) 2.9 CWAIT Hold Time (Wait States) After PHI2 R.E.

tws 2.9 WAITn Setup Time Before PHI2 R.E.

tWh 2.9 WAITn Hold Time After PHI2 R.E.

tps 2.10 PER Setup Time Before PHI1 R.E.

tph 2.10 PER Hold Time After PHI1 R.E.

tRd 2.8/9/10 RDY Delay After PHI2 R.E.

SYNCHRONIZATION (SYNC) TIMING

tSys 2.11 SYNC Setup Time Before XIN R.E.

tSyh 2.11 SYNC Hold Time After XIN R.E.

tcs 2.11 CTILISYNC Inversion Delay CTIL (master) to
RWEN/SYNC (slave)

4-20

NS32C201-10 NS32C201-15
Units

Min Max Min Max

-2 5 -2 3 ns

7 6 ns

7 6 ns

-2 6 -2 4 ns

8 7 ns

8 7 ns

20 15

25 20 ns

25 20 ns

15 13 ns

21 10 ns

12 8 ns

3 18 3 10 ns

30 21 ns

25 15 ns

3 20 3 15 ns

25 15 ns

20 11 ns

20 15 ns

25 20 ns

20 15 ns

25 18 ns

25 18 ns

30 20 ns

0 0 ns

10 6 ns

20 10 ns

7 6 ns

15 10 ns

7 5 ns

30 20 ns

25 12 ns

6 6 ns

5 5 ns

10 7 ns

~--. z
2.0 Device Specifications (Continued)

2.4.4 Timing Diagrams

X1N

FCLK

CTTL

PHI1

PHI2

FIGURE 2-2. Clocl(Signals (a)

XIN

FCLK

PHI1

PHI2

CTTL

FIGURE 2-3. Clocl, Signals (b)

T1
PHI1

RSTI

RSTO

ADS

ODIN

FIGURE 2-4. Control Inputs

4-21

TL/EE/8524-21

TL/EE/8524-22

T2

TL/EE/8524-23

en
w
II.)

o
II.)
C)
C)
........
z en
w
II.)

o
II.)
C)
•

U1

U) r--,
•

o
N
o
N
M
(1J
Z
o •
o
N o
N
M
(1J
Z

2.0 Device Specifications (Continued)

T1 T2 T3

PHil

PHI2

iW --+-----ok.
WR

FIGURE 2-5. Control Outputs (Fast Cycle)

T1 T2 TOO T01 T02 T03 T04

PH11

PH12

JIll

FIGURE 2-6. Control Outputs (Peripheral Cycle)

RWENISYNC

Whiffi

Wii&iiii

FIGURE 2-7. Control Outputs (TRI-STATE Timing)

4·22

T4

TL/EE/8524-24

T3 T4

TL/EE/8524-25

TLlEE/8524-28

2.0 Device Specifications (Continued)

11 TH 1 (FIRST) THn (LAST)

PHI1

PHI2

ROY

FIGURE 2·8. Cycle Hold

FIGURE 2·9. Walt State (Fast Cycle)

T1 T2 TOO TOI T02 T03

PHil

PHI2

CWAIT __ -++_+--+ __ ,-, ___ 1-\.

OR
WAITn

PER

ROY

FIGURE 2·10. Walt State (Peripheral Cycle)

4-23

T2

ROY REMAINS LOW
FOR SUBSEQUENT WAIT

T04 T3 T4

TLlEE/8524-27

TL/EE/8524-28

TL/EE/8524-29

z en
CAl
N
o
N
C
C z en
CAl
N
o
N
C
I

U'I

I •

It) ,....
I ,....

o
N o
N
C")
(/)
Z
o ,....

I ,....
o
N
o
N
C")
(/)
Z

2.0 Device Specifications (Continued)

CTn ltc,*- I ~
-------t-ISY,~l::~ .. ~---
--1 \ -4 _-

RWENfSYNC

XIN

TLlEE/8524-30

FIGURE 2·11. Synchronization Timing

4-24

~National
~ Semiconductor
NS32202-10 Interrupt Control Unit

General Description
The NS32202 Interrupt Control Unit (lCU) is the interrupt
controller for the Series 32000$ microprocessor family. It is
a support circuit that minimizes the software and real-time
overhead required to handle multi-level, prioritized inter­
rupts. A single NS32202 manages up to 16 interrupt sources,
resolves interrupt priorities, and supplies a single-byte interrupt
vector to the CPU.

The NS32202 can operate in either of two data bus modes:
16-bit or 8-bit. In the 16-bit mode, eight hardware and eight
software interrupt positions are available. In the 8-bit mode,
16 hardware interrupt positions are available, 8 of which can
be used as software interrupts. In this mode, up to 16 addi­
tional ICUs may be cascaded to handle a maximum of 256
interrupts.

Two 16-bit counters, which may be concatenated under pro­
gram control into a single 32-bit counter, are also available
for real-time applications.

Basic System Configuration

Features
• 16 maskable interrupt sources, cascadable to 256
• Programmable 8- or 16-bit data bus mode
• Edge or level triggering for each hardware interrupt with

individually selectable polarities

• 8 software interrupts
• Fixed or rotating priority modes
• Two 16-bit, DC to 10 MHz counters, that may be con-

catenated into a single 32-bit counter
• Optional 8-bit I/O port available in 8-bit data bus mode
• High-speed XMOSTM technology
• Single, + 5V supply
• 40-pin, dual in-line package

NS32018
CPU

GROUP

I+- iNf

MASTER
NS32202

ICU

:::) HON·CASCADED ..L. INTERRUPT SOURCES

I+-;- iNf .--.
I· · -

L-..-

4-25

CASCADED
NS32202

ICU

iNf

CASCADED
NS32202

ICU

.,!....

.--
+;-

.
.,!....

CASCADED
INTERRUPT
SOURCES

TLlEE/5117-1

z en
CJ,)
N
N o
N

I
o

C) ,---,
N
C)
C'I
C'I
Cf)
(/)
Z

Table of Contents
1.0 PRODUCT INTRODUCTION

1.1 I/O Buffers

1.2 Read/Write Logic and Decoders

1.3 Timing and Control

1.4 Priority Control

1.5 Counters

2.0 FUNCTIONAL DESCRIPTION

2.1 Reset

2.2 Initialization

2.3 Vectored Interrupt Handling

2.3.1 Non-Cascaded Operation

2.3.2 Cascade Operation

2.4 Internal ICU Operating Sequence

2.5 Interrupt Priority Modes

2.5.1 Fixed Priority Mode

2.5.2 Auto-Rotate Mode

2.5.3 Special Mask Mode

2.5.4 Polling Mode

3.0 ARCHITECTURAL DESCRIPTION

3.1 HVCT - Hardware Vector Register (RO)

3.2 SVCT - Software Vector Register (R1)

3.3 ELTG - Edge/Level Triggering Registers (R2, R3)

3.4 TPL - Triggering Polarity Registers (R4, R5)

3.5 IPND - Interrupt Pending Registers (RS, R7)

3.S ISRV - Interrupt In-Service Registers (RS, R9)

3.7 IMSK - Interrupt Mask Registers (R10, R11)

3.S CSRC - Cascaded Source Registers (R12, R13)

3.0 ARCHITECTURAL DESCRIPTION (Continued)

3.9 FPRT - First Priority Registers (R14, R15)

3.10 MCTL - Mode Control Register (R1S)

3.11 OSCASN - Output Clock Assignment (R17)

3.12 CIPTR - Counter Interrupt Pointer Register (R1S)

3.13 PDAT - Port Dada Register (R19)

3.14 IPS - Interrupt/Port Select Register (R20)

3.15 PDIR - Port Direction Register (R21)

3.1S CCTL - Counter Control Register (R22)

3.17 CICTL - Counter Interrupt Control Register (R23)

3.18 LCSV /HCSV - L-Counter Starting Value/H-Counter
Starting Value Registers (R24, R25, R2S, and R27)

3.19 LCCV /HCCV - L-Counter Current Value/H-Counter
Current Value Registers (R2S, R29, R30, and R31)

3.20 Register Initialization

4.0 DEVICE SPECIFICATIONS

4.1 NS32202 Pin Descriptions

4.1.1 Power Supply

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input/Output Signals

4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics

4.4 Switching Characteristics

4.4.1 Definitions

4.4.1.1 Timing Tables

4.4.1.2 Timing Diagrams

List of Illustrations
NS322021CU Block Diagram•...... ~ ..•. 1-1
Counter Output Signals in Pulsed Form and Square Waveform for Three Different Initial Values 1-2
Counter Configuration and Basic Operations ...•... 1-3

Interrupt Control Unit Connections in 1S-Bit Bus Mode .. 2-1
Interrupt Control Unit Connections in S-Bit Bus Mode ... 2-2

Cascaded Interrupt Control Unit Connections in S-Bit Bus Mode .. 2-3
CPU Interrupt Acknowledge Sequence .. 2-4
Interrupt Dispatch and Cascade Tables ... 2-5
CPU Return from Interrupt Sequence•... 2-S

ICU Interrupt Acknowledge Sequence•.. 2-7
ICU Return from Interrupt Sequence•..•....... 2-S
ICU Internal Registers ...•............................•........... 3-1

HVCT Register Data Coding•... 3-2
Recommended ICU's Initialization Sequence•.. 3-3
NS32202 ICU Connection Diagram•.............................•.. 4-1

Timing Specification Standard ... 4-2
READ/INTA Cycle ..•.......................................• 4-3
Write Cycle•............•... 4-4

Interrupt Timing in Edge Triggering Mode .. 4-5
Interrupt Timing in Level Triggering Mode ..•......................... .4-S
Externallnterrupt-Sampling-Clock to be Provided at Pin COUT /SCIN When in Test Mode "4-7
Internallnterrupt-Sampling-Clock to be Provided at Pin COUT /SCIN ..•....... 4-S

Relationship Between Clock Input at Pin CLK and Counter Output Signals at Pins COUT /SCIN or GO/RO-G3/RS,
in Both Pulsed Form and Square Waveform .. .4-9

4-2S

1.0 Product Introduction
The NS32202 ICU functions as an overall manager in an
interrupt-oriented system environment. Its many features
and options permit the design of sophisticated interrupt sys­
tems.

Figure 1-1 shows the internal organization of the NS32202.
As shown, the NS32202 is divided into five functional
blocks. These are described in the following paragraphs:

1.11/0 BUFFERS AND LATCHES

The I/O Buffers and Latches block is the interface with the
system data bus. It contains bidirectional buffers for the
data I/O pins. It also contains registers and logic circuits
that control the operation of pins GO/IRO, ... ,G7/IR14
when the ICU is in the S-bit bus mode.

1.2 READ/WRITE LOGIC AND DECODERS

The Read/Write Logic and Decoders manage all internal
and external data transfers for the ICU. These include Data,
Control, and Status Transfers. This circuit accepts inputs
from the CPU address and control buses. In turn, it issues
commands to access the internal registers of the ICU.

1.3 TIMING AND CONTROL

The Timing and Control Block contains status elements that
select the ICU operating mode. It also contains state ma­
chines that generate all the necessary sequencing and con­
trol signals.

GNo Vee ST1 IRT IRl

1.4 PRIORITY CONTROL

The Priority Control Block contains 16 units, one for each
interrupt position. These units provide the following func­
tions.

• Sensing the various forms of hardware interrupt sig­
nals e.g. level (high/low) or edge (rising/falling)

• Resolving priorities and generating an interrupt reo
quest to the CPU

• Handling cascaded arrangements
• Enabling software interrupts
• Providing for an automatic return from interrupt
• Enabling the assignment of any interrupt position to

the internal counters
• Providing for rearrangement of priorities by assigning

the first priority to any interrupt position
• Enabling automatic rotation of priorities

1.5 COUNTERS

This block contains two 16-bit counters, called the H·coun·
tar and the L-counter. These are down counters that count
from an initial value to zero. Both counters have a 16·bit
register (designated HCSV and LCSV) for loading their reo
starting values. They also have registers containing the cur·
rent count values (HCCV and LCCV). Both sets of registers
are fully described in Section 3.

IR3 IRS IR7 IR9 IRll IR13 IR15

I r~-------,
L...:; PRIORITY

.L.L
G7/1R14 +-+

G6/1R12 +-+
G5/1R1o +-+

G411R8 +-+
G3/1R6+-+
G2IIR4+-+

G1/1R2 +-+ 110 BUFFERS
GO/IRO +-+ AND .+---4

07 +-+ LATCHES

06+-+
05+-+
04+-+
03+-+
02+-+
01
00+-+

TIMING
AND

CONTROL

CONTROL

COUNTERS

i i 1
AD A1 A2 A3

FIGURE 1-1. NS322021CU Block Diagram

4-27

+-+ CooT ISCcN

CLK

A4
TL/EE/5117-2

z
en
w
I\)
I\)
o
~
o

I

II

1.0 Product Introduction (Continued)

The counters are under program control and can be used to
generate interrupts. When the count reaches zero, either
counter can generate an interrupt request to any of the 16
interrupt positions. The counter then reloads the start value
from the appropriate registers and resumes counting. Figure
1-2 shows typical counter output signals available from the
NS32202.

The maximum input clock frequency is 2.5 MHz.

A divide-by-four prescaler is also provided. When the pre­
scaler is used, the input clock frequency can be up to 10
MHz.

When intervals longer than provided by a 16-bit counter are
needed, the L- and H-counters can be concatenated to form
a 32-bit counter. In this case, both counters are controlled
by the H-counter control bits. Refer to the discussion of the
Counter Control Register in Section 3 for additional informa­
tion. Figure 1-3 summarizes counter read/write operations.

INPUT CLOCK

COUNTER
CONTENTS

(lNIT. VALUE = 2) .

OUTPUT IN
PULSED FORM

OUTPUT IN
SQUARE WAVEFORM

COUNTER
CONTENTS 1-

(IN IT. VAlUE=1)

OUTPUT IN
PULSED FORM

OUTPUT IN
SQUARE WAVEFORM

COUNTER
CONTENTS

(INIT. VAlUE .. O)

OUTPUT IN
PULSED FORM

OUTPUT IN
SQUARE WAVEFORM

u

2.0 Functional Description
2.1 RESET

The ICU is reset when a logic low signal is present on the
RST pin. At reset, most internal ICU registers are affected,
and the ICU becomes inactive.

2.2 INITIALIZATION

After reset, the CPU must initialize the NS32202 to establish
its configuration. Proper initialization requires knowledge of
the ICU register's formats. Therefore, a flowchart of a rec­
ommended initialization sequence is shown in (Figure 3-3)
after the discussion of the ICU registers.

The operation sequence shown in Figure 3-3 ensures that
all counter output pins remain inactive until the counters are
completely initialized.

2.3 VECTORED INTERRUPT HANDLING

For details on the operation of the vectored interrupt mode
for a particular Series 32000 CPU, refer to the data sheet for

u If
1..--___ 1

u If
L

TL/EE/5117-4

FIGURE 1-2. Counter Output Signals In Pulsed Form and Square Waveform for Three Different Initial Values

4-28

2.0 Functional Description (Continued)

that CPU. In this discussion, it is assumed that the NS32202
is working with a CPU in the vectored interrupt mode. Sever­
al ICU applications are discussed, including non-cascaded
and cascaded operation. Figures 2-1, 2-2, and 2-3 show
typical configurations of the ICU used with the NS32016
CPU.

A peripheral device issues an interrupt request by sending
the proper signal to one of the NS32202 interrupt inputs. If
the interrupt input is not masked, the ICU activates its Inter-

I STARTING VALUE
LCSV/HCSV

~,
COUNTER

FREEZE COUNTER READINGS I

I CURRENT VALUE
LCCV/HCCV

BASIC OPERATIONS:

WRITING TO LCSV IHCSV

READING LCSV/HCSV

WRITING TO LCCV IHCCV

rupt Output (INT) pin and generates an interrupt vector byte.
The interrupt vector byte identifies the interrupt source in its
four least significant bits. When the CPU detects a low level
on its Interrupt Input pin, it performs one or two interrupt
acknowledge cycles depending on whether the interrupt re­
quest is from the master ICU or a cascaded ICU. Figure 2-4
shows a flowchart of a typical CPU Interrupt Acknowledge
sequence.

........... fIIo.

0: '"

ED
co

en
::>
a:I

0: ~
~
<

~
:!:

0:
""C"";..--

TL/EE/5117-5

o ~ (lOB)

(only possible when counters are halted)

READING LCCV IHCCV

o ~ (lOB)

lID ~ (lOB)

© ~ (lOB)

© ~ (lOB)

(only possible when counter
readings are frozen)

COUNTER COUNTS AND READINGS ARE
NOT FROZEN

COUNTER RELOADS STARTING VALUE

(occurs on the clock cycle following
the one in which it reaches zero)

FIGURE 1-3. Counter Configuration and Basic Operations

4-29

z en
w
I\.)
I\.)
o
I\.)
o

•

o ,....
~ 2.0 Functional Description (Continued)
N
N
Cf)
U)
Z

All-A23 AO-A23
iiBr

LATCH I AD-A4
AD-A4

!'

....,
NS32018

I I
HBE IRIS

T CPU
m I ADDRESS r---+

DECODER Cs IR13

ST1 ITI IRll
jjjf INT

NS32202 IRI
DDiii ICU

BUFFEII
DO-DIS 1117

ADO-AD15 DO-D7 ,
00/1110-07/11114

PHil PHI2 1115

t t ,
PHil PHI2 ADS ODIN iiiji

1113

NS32201 -. AD
TCU WRI WR 1111

II'

DO-DIS

FIGURE 2-1. Interrupt Control Unit Connections In 16·Blt Bus Mode

All·A23 AO-A23

LATCH
I Al-AS ..

AD-A4 G7/1R14
....,

I NS3Z01.

T
GND~ HIE Ga/lR12

PHil

f
PHil

CPU .
m I ADDRESS r---+

DECODER Cs

STI STl
iNf iNr

iiiiiii
BUFFEII

DO-D7
ADO-AD1S DO-D7 .

PHI2

f ,
PHI2 ADS ODIN iiiji

NS32Z01 -.L
AD

TCU WRI Wi ,.
DO-D15

NOTE: In the a-Bit Bus Mode the Master ICU Registers appear at even
addresses (AO = 0) since the ICU communicates with the least sig­
nificant byte of the CPU data bus.

GS/IRID
0411111
G3/IRI
02/1R4

0111R2
NS3220Z GOIIRO

ICU IR15
I 11113

11111
1119
IR7
IR5
1113
1111

FIGURE 2-2. Interrupt Control Unit Connections In 8-Blt Bus Mode

4-30

~

+-

+-

+-

+-

+-

+-

+-

TLlEE/5117 -6

.....
+-+
~
+--.....
+--.....

TL/EE/5117-7

2.0 Functional Description (Continued)

Al-AS~
AO-M 67111114 f+-+ r

111/11112 f+-+
GND~ Hlf 05/1110 f+-+

G4/1111 f+-+
63/11111 +-+
G2/1R4 ::: CS CASCADED Gl/1R2

$Tl NS32202 GOIIIIO +-+
ICU IR15 .-

r--+ DO-D7 11113 ~
11111 ~ 1119

liD 11171.-
WR IR5~

11131+-

roo 11111.-

AI6-A23 AO-A23

I AI-AS

~ ~ 1+-+ LATCH AO-M G7111114
NS32018 ~ 06111112 1+-+ CPU r GND'-' Hlf 05/11110 ~ ADS I=:r G411111

CS 63I1R6 ~ G2/1114
$T1 ST1 MASTER 6111H2 +-+
lIfT 00 NS32202 ODIlIIO ~ ICU 1R15

DDlN J
BUFFER 1 1R13 ~ .1 DO-D7

ADO-AD15 DO-D7 11111 ~
Ptf" PtfI2

rl I 1119 +-
t t 1

1117 .-
1115 .-

PHl1 Ptfl2 ADS DDlN ,I Ro 1113 c= NS32201 ~[ViR IRI TCU WRJ .,.
IIO-D15

FIGURE 2-3. Cascaded Interrupt Control Unit Connections In 8·BIt Bus Mode

4-31

TL/EE/5117-B

z en
w
N
N o
N •
o

•

o S 2.0 Functional Description (Continued)
N
N
C")

en z

• Condo A is true if current instruction is terminated
or an interruptible point in a string instruction is
reached.

FIGURE 2-4. CPU Interrupt Acknowledge Sequence

4-32

TL/EE/5117 -9

2.0 Functional Description (Continued)

In general, vectored interrupts are serviced by interrupt rou­
tines stored in system memory. The Dispatch Table stores
up to 256 external procedure descriptors for the various
service procedures. The CPU INTBASE register points to
the top of the Dispatch Table. Figure 2-5 shows the layout
of the Dispatch Table. This figure also shows the layout of
the Cascade Table, which is discussed with ICU cascaded
operation.

2.3.1 Non-Cascaded Operation. Whenever an interrupt re­
quest from a peripheral device is issued directly to the mas­
ter ICU, a non-cascaded interrupt request to the CPU re­
sults. In a system using a single NS32202, up to 16 interrupt
requests can be prioritized. Upon receipt of an interrupt re­
quest on the INT pin, the CPU performs a Master Interrupt­
Acknowledge bus cycle, reading a vector byte from address
FFFE0016. This vector is then used as an index into the
dispatch table in order to find the External Procedure De­
scriptor for the proper interrupt service procedure. The serv­
ice procedure eventually returns via the Return-from-Inter­
rupt (REn instruction, which performs a Return-from-Inter­
rupt bus cycle, informing the ICU that it may re-prioritize any
interrupt requests still pending. Figure 2-6 shows a typical
CPU RETI sequence. In a system with only one ICU, the
vectors provided must be in the range of 0 through 127; this
can be ensured by writing OXXXXXXX into the SVCT regis­
ter. By providing a negative vector value, the master ICU
flags the interrupt source as a cascaded ICU (see below).

MEMORY

l
CASCADED ICU ADDRESS 0

CASCADE TABLE

2.3.2 Cascaded Operation. In cascaded operation, one or
more of the interrupt inputs of the master ICU are connect­
ed to the Interrupt Output pin of one or more cascaded
ICUs. Up to 16 cascaded ICUs may be used, giving a sys­
tem total of 256 interrupts.
Note: The number of cascaded ICUs Is practically limited to 15 because the

Dispatch Table for the NS32016 CPU is constructed with entries 1
through 15 either used for NMI and Trap descriptors, or reserved for
future use. Interrupt position 0 of the master ICU should not be cas­
caded, so it can be vectored through Dispatch Table entry 0, reserved
for non-vectored interrupts. In this case, the non-vectored interrupt
entry (entry 0) is also available for vectored interrupt operation, since
the CPU is operating in the vectored interrupt mode.

The address of the master ICU should be FFFE0016. (*)
Cascaded ICUs can be located at any system address. A list
of cascaded ICU addresses is maintained in the Cascade
Table as a series of sixteen 32-bit entries.
(')Note: The CPU status corresponding to both, master Interrupt acknowl­

edge and return from interrupt bus cycles, as well as address bit
AS, could be used to generate the chip select (CS) signal for ac­
cessing the master ICU during one of the above cycles. In this case
the master ICU can reside at any system address. The only limita­
tion is that the least significant 5 or 6 address bits (6 in the S-bit bus
mode) must be zero. The address bit AS must be decoded to pre­
vent an NMI bus cycle from reading the hardware vector register of
the ICU. This could happen, since the NS32016 CPU performs a
dummy read cycle from address FFFF0016, with the same status
as a master INTA cycle, when a non-maskable-interrupt is acknowl­
edged.

THESE ADDRESSES ARE
USED BY THE CPU DURING
THE SECOND CYCLE OF
AN INTAOR RETI
SEQUENCE TO GET THE
INTERRUPT VECTOR FROM
A CASCADED ICU.

CASCADED ICU ADDRESS 14

CASCADED ICU ADDRESS 15 (IN;S;:*~ASJADE-;B~D-;) ----..... --------1-- - - - ...!... - - - -

INTERRUPT
DISPATCH TABLE

(ADDRESS FI'FEOO!s)-

NVI DESCRIPTOR

NMI AND TRAP
DESCRIPTORS *

RESERVED*

INT. DESCRIPTOR 16

INT. DESCRIPTOR N

INT. DESCRIPTOR 255

MASTER ICU'S
HVCT REGISTER

I
(INTBASE+4* VECTOR)

- CPU READS THIS LOCATION DURING
RRST CYCLE OF INTA OR RETI
SEQUENCE TO GET EITHER
THE INTERRUPT VECTOR OR
A CASCADE TABLE INDEX FROM
THE MASTER ICU. TL/EE/5117-10

• Table entries 1 to 15 should not be used by the ICU since they contain NMI and Trap DeSCriptors
or are reserved for future use. (For more details refer to NS32016 data sheet.)

FIGURE 2-5. Interrupt Dispatch and Cascade Tables

4-33

z en
w
N
N
o
N • ~
o

o r---~ ,..
• N

o
N
N
C")
U)
Z

2.0 Functional Description (Continued)

EXECUTE CASCADED
ICU CYCLE AND READ

VECTDR FRDM
CASCADED ICU

TLlEE/5117-11

FIGURE 2-6. CPU Return from Interrupt Sequence

The master ICU maintains a list (in the CSRC register pair)
of its interrupt positions that are cascaded. It also provides a
4-bit (hidden) counter (in-service counter) for each interrupt
position to keep track of the number of interrupts being
serviced in the cascade ICUs. When a cascaded interrupt
input is active, the master ICU activates its interrupt output
and the CPU responds with a Master Interrupt Acknowledge
Cycle. However, instead of generating a positive interrupt
vector, the master ICU generates a negative Cascade Table
index.

The CPU interprets the negative number returned from the
master ICU as an index into the Cascade Table. The Cas­
cade Table is located in a negative direction from the Dis­
patch Table, and it contains the virtual addresses of the
hardware vector registers for any cascaded NS32202s in
the system. Thus, the Cascade Table index supplied by the
master ICU identifies the cascaded ICU that requested the
interrupt.

Once the cascaded ICU is identified, the CPU performs a
Cascaded Interrupt Acknowledge cycle. During this cycle,
the CPU reads the final vector value directly from the cas­
caded ICU, and uses it to access the Dispatch Table. Each

4-34

cascaded ICU, of course, has its own set of 16 unique inter­
rupt vectors, one vector for each of its 16 interrupt positions.

The CPU interprets the vector value read during a Cascad­
ed Interrupt Acknowledge cycle as an unsigned number.
Thus, this vector can be in the range 0 through 255.

When a cascaded interrupt service routine completes its
task, it must return control to the interrupted program with
the same RETI instruction used in non-cascaded interrupt
service routines. However, when the CPU performs a Mas­
ter Return From Interrupt cycle, the CPU accesses the mas­
ter ICU and reads the negative Cascade Table index identi­
fying the cascaded ICU that originally received the interrupt
request. Using the cascaded ICU address, the CPU now
performs a Cascaded Return From Interrupt cycle, informing
the cascaded ICU that the service routine is over. The byte
provided by the cascaded ICU during this cycle is ignored.

2.4 INTERNAL ICU OPERATING SEQUENCE

The NS32202 ICU accepts two interrupt types, software and
hardware.

Software interrupts are initiated when the CPU sets the
proper bit in the Interrupt Pending (IPND) registers (R6, R7),
located in the ICU. Bits are set and reset by writing the
proper byte to either R6 or R7. Software interrupts can be
masked, by setting the proper bit in the mask registers (R10,
R11).

Hardware interrupts can be either internal or external to the
ICU. InternallCU hardware interrupts are initiated by the on­
chip counter outputs. External hardware interrupts are initia­
ted by devices external to the ICU, that are connected to
any of the ICU interrupt input pins.

Hardware interrupts can be masked by setting the proper bit
in the mask registers (R10, R11). If the Freeze bit (FRZ),
located in the Mode Control Register (MCTL), is set, all in­
coming hardware interrupts are inhibited from setting their
corresponding bits in the IPND registers. This prevents the
ICU from recognizing any hardware interrupts.

Once the ICU is initialized, it is enabled to accept interrupts.
If an active interrupt is not masked, and has a higher priority
than any interrupt currently being serviced, the ICU acti­
vates its Interrupt Output (INT). Figure 2-7 is a flowchart
showing the ICU interrupt acknowledge sequence.

The CPU responds to the active INT line by performing an
Interrupt Acknowledge bus cycle. During this cycle, the ICU
clears the IPND bit corresponding to the active interrupt po­
sition and sets the corresponding bit in the Interrupt In-Serv­
ice Registers (lSRV). The 4-bit in-service counter in the
master ICU is also incremented by one if the fixed priority
mode is selected and the interrupt is from a cascaded ICU.
The ISRV bit remains set until the CPU performs a RETI bus
cycle and the 4-bit in-service counter is decremented to
zero. Figure 2-8 is a flowchart showing ICU operation dur­
ing a RETI bus cycle.

When the ISRV bit is set, the INT output is disabled. This
output remains inactive until a higher priority interrupt posi­
tion becomes active, or the ISRV bit is cleared.

An exception to the above occurs in the master ICU when
the fixed priority mode is selected, and the interrupt input is
connected to the INT output of a cascaded ICU. In this case
the ISRV bit does not inhibit an interrupt of the same priority.

This is to allow nesting of interrupts in a cascaded ICU.

~--'Z

2.0 Functional Description (Continued)

• Condo B is true If anyone of the following condi­
tions is satisfied.

1) No interrupt is being serviced

2) There is a pending unmasked interrupt with
priority higher than that of the interrupt being
serviced.

3) There is a pending unmasked interrupt from a
cascaded ICU with priority higher or same as that
of the highest priority interrupt position in the
master ICU with the ISRV bit set.

TL/EE/5117-12

FIGURE 2-7.ICU Interrupt Acknowledge Sequence

4-35

en
eN
II.)
II.)
«:)
II.) .
...A.
«:)

o
N o
N
N
C")
U)
Z

2.0 Functional Description (Continued)

~------~~------------~

RESET
INTERRUPT ISRV BIT
AND ASSIGN FIRST
PRIORITY TO NEXT

INTERRUPT POSITION

YES

RESET
INTERRUPT

ISRV BIT

FIGURE 2-8. leu Return from Interrupt Sequence

4-36

TLlEE/Sl17-13

2.0 Functional Description (Continued)

2.5 INTERRUPT PRIORITY MODES

The NS32202 ICU can operate in one of four interrupt priori­
ty modes: Fixed Priority; Auto-Rotate; Special Mask; and
Polling. Each mode is described below.

2.5.1 Fixed Priority Mode

In the Fixed Priority Mode (also called Fully Nested Mode),
each interrupt position is ranked in priority from 0 to 15, with
o being the highest priority. In this mode, the processing of
lower priority interrupts is nested with higher priority inter­
rupts. Thus, while an interrupt is being serviced, any other
interrupts of the same or lower priority are inhibited. The ICU
does, however, recognize higher priority interrupt requests.

When the interrupt service routine executes its RETI instruc­
tion, the corresponding ISRV bit is cleared. This allows any
lower priority interrupt request to be serviced by the CPU.

At reset, the default priority assignment gives interrupt IRO
priority 0 (highest priority), interrupt IR1 priority 1, and so
forth. Interrupt IR15 is, of course, assigned priority 15, the
lowest priority. The default priority assignment can be al­
tered by writing an appropriate value into register FPRT (L)
as explained in Section 3.9.
Note: When the ICU generates an interrupt request to the CPU for a higher

priority interrupt while a lower priority interrupt is still being serviced by
the CPU. the CPU responds to the interrupt request only if its internal
interrupt enable flag is set. Normally. this flag is reset at the beginning
of an interrupt acknowledge cycle and set during the RETI cycle. If the
CPU is to respond to higher priority interrupts during any interrupt
service routine. the service routine must set the internal CPU interrupt
enable flag. as soon during the service routine as desired.

2.5.2 Auto-Rotate Mode

The Auto Rotate Mode is selected when the NT AR bit is set
to 0, and is automatically entered after Reset. In this mode
an interrupt source position is automatically assigned lowest
priority after a request at that position has been serviced.
Highest priority then passes to the next lower priority posi­
tion. For example, when servicing of the interrupt request at
position 3 is completed (ISRV bit 3 is cleared), interrupt po­
sition 3 is assigned lowest priority and position 4 assumes
highest priority. The nesting of interrupts is inhibited, since
the interrupt being serviced always has the highest priority.

This mode is used when the interrupting devices have to be
assigned equal priority. A device requesting an interrupt, will
have to wait, in the worst case, until each of the 15 other
devices has been serviced at most once.

2.5.3 Special Mask Mode

The Special Mask Mode is used when it is necessary to
dynamically alter the ICU priority structure while an interrupt
is being serviced. For example, it may be desired in a partic­
ular interrupt service routine to enable lower priority inter­
rupts during a part of the routine. To do so, the ICU must be
programmed in fixed priority mode and the interrupt service
routine must control its own in-service bit in the ISRV regis­
ters.

4-37

The bits of the ISRV registers are changed with either the
Set 8it Interlocked or Clear 8it Interlocked instructions (S81-
TIW or C8ITIW). The in-service bit is cleared to enable low­
er priority interrupts and set to disable them.
Note: For proper operation of the ICU. an interrupt service routine must set

its ISRV bit before executing the RETI instruction. This prevents the
RETI cycle from clearing the wrong ISRV bit.

2.5.4 Polling Mode

The Polling Mode gives complete control of interrupt priority
to the system software. Either some or all of the interrupt
positions can be assigned to the polling mode. To assign all
interrupt positions to the polling mode, the CPU interrupt
enable flag is reset. To assign only some of the interrupt
positions to the polling mode, the desired interrupt positions
are masked in the Interrupt Mask registers (IMSK). In either
case, the polling operation consists of reading the Interrupt
Pending (lPND) registers.

If necessary, the IPND read can be synchronized by setting
the Freeze (FRZ) bit in the Mode Control register (MCTL).
This prevents any change in the IPND registers during the
read. The FRZ bit must be reset after the polling operation
so the IPND contents can be updated. If an edge-triggered
interrupt occurs while the IPND registers are frozen, the in­
terrupt request is latched, and transferred to the IPND regis­
ters as soon as FRZ is reset.

The polling mode is useful when a single routine is used to
service several interrupt levels.

3.0 Architectural Description
The NS32202 has thirty-two a-bit registers that can be ac­
cessed either individually or in pairs. In 1S-bit data bus
mode, register pairs can be accessed with the CPU word or
double-word reference instructions. Figure 3-1 shows the
ICU internal registers. This figure summarizes the name,
function, and offset address for each register.

8ecause some registers hold similar data, they are grouped
into functional pairs and assigned a single name. However,
if a single register in a pair is referenced, either an L or an H
is appended to the register name. The letters are placed in
parentheses and stand for the low order a bits (L) and the
high order a bits (H). For example, register RS, part of the
Interrupt Pending (lPND) register pair, is referred to individu­
ally as IPND(L).

The following paragraphs give detailed descriptions of the
registers shown in Figure 3-1.

3.1 HVCT - HARDWARE VECTOR REGISTER (RO)

The HVCT register is a single register that contains the in­
terrupt vector byte supplied to the CPU during an Interrupt
Acknowledge (lNTA) or Return From Interrupt (RETI) cycle .
The HVCT bit map is shown below:

7 S 5 4 3 2 0

8 8 8 8 V V V V

z en w
N
N o
N • -­o

•

C) • 3.0 Architectural Description (Continued) N
C)
N
N
C")
(/)
Z

REG. NUMBER AND REG. REG. FUNCTION
ADDRESS IN HEX. NAME

RO (0016) HVCT- HARDWARE VECTOR

R1 (0116) SVCT- SOFTWARE VECTOR

R3 (0316) R2 (0216) ELTG- EDGE/LEVEL TRIGGERING

R5 (0516) R4 (0416) TPL- TRIGGERING POLARITY

R7 (0716) R6 (0616) IPND- INTERRUPTS PENDING

R9 (0916) R8 (0816) ISRV- INTERRUPTS IN-SERVICE

R11 (0816) R10 (OA16) IMSK- INTERRUPT MASK

R13 (0016) R12(OC16) CSRC- CASCADED SOURCE

R15 (OF16) R14 (OE16) FPRT- FIRST PRIORITY

R16 (1016) MCTL- MODE CONTROL

R17(1116) OCASN- OUTPUT CLOCK ASSIGNMENT

R18 (1216) CIPTR- COUNTER INTERRUPT POINTER

R19 (1316) PDAT- PORT DATA

R20 (1416) IPS- INTERRUPT /PORT SELECT

R21 (1516) PDIR- PORT DIRECTION

R22 (1616) CCTL- COUNTER CONTROL

R23 (1716) CICTL- COUNTER INTERRUPT CONTROL

R25 (1916) R24 (1816) LCSV- L-COUNTER STARTING VALUE

R27 (1816) R26 (1A16) HCSV- H-COUNTER STARTING VALUE

R29 (1016) R28 (1C16) LCCV- L-COUNTER CURRENT VALUE

R31 (1F16) R30 (1E16) HCCV- H-COUNTER CURRENT VALUE

FIGURE 3-1.ICU Internal Registers

4-38

3.0 Architectural Description (Continued)

The BBBB field is the bias which is programmed by writing
BBBB00002 to the SVCT register (R1). The VVVV field iden­
tifies one of the 16 interrupt positions. The contents of the
HVCT register provide various information to the CPU, as
shown in Figure 3-2:
Note 1: The ICU always interprets a read of the HVCT register as either an

INTA or RETI cycle. Since these cycles cause internal changes to
the ICU, normal programs must never read the ICU HVCT register.

Note 2: If the HVCT register is read with ST1 = a (INTA cycle) and no
unmasked interrupt is pending, the binary value BBBB1111 is re­
turned and any pending edge-triggered interrupt in position 15 is
cleared.

If the auto-rotate priority mode is selected, the FPRT register is also
cleared, thus preventing any interrupt from being acknowledged. In
this case a re-intialization of the FPRT register is required for the
ICU to acknowledge interrupts again.

If a read of the HVCT register is performed with ST1 = 1 (RETI
cycle), the binary value BBBB 1111 is returned.

If the auto-rotate mode is selected, a priority rotation is also per­
formed.

3.2 SVCT - SOFTWARE VECTOR REGISTER (R1)

The SVCT register is a copy of the HVCT register. It allows
the programmer to read the contents of the HVCT register
without initiating a INTA or RETI cycle in the ICU. It also
allows a programmer to change the BBBB field of the HVCT
register. The bit map of the SVCT register is the same as for
the HVCT register.

During a write to SVCT, the four least significant bits are
unaffected while the four most significant bits are written
into both SVCT and HVCT (R1 and RO).

The SVCT register is updated dynamically by the ICU. The
four least significant bits always contain the vector value
that would be returned to the CPU if a INTA or RETI cycle
were executed. Therefore, when reading the SVCT register,
the state of the CPU ST1 pin is used to select either pend­
ing interrupt data or in-service interrupt data. For example, if
the SVCT register is read with ST1 = 0 (as for an INTA
cycle), the VVVV field contains the encoded value of the
highest priority pending interrupt. On the other hand, if the
SVCT register is read with ST1 = 1, the VVVV field contains
the encoded value of the highest priority in-service interrupt.
Note: If the CPU ST1 output is connected directly to the ICU ST1 input, the

vector read from SVCT is always the RETI vector. If both the INTA
and RETI vectors are desired, additional logic must be added to drive
the ICU ST1 input. A typical circuit is shown below. In this circuit, the
state of the ICU ST1 input is controlled by both the CPU ST1 output
and the selected address bit.

INTA CYCLE (ST1 = 0)

Highest priority pending interrupt is from:

BBBB
cascaded ICU I any other source

1111 1 programmed bias·

VVVV
encoded value of the highest
priority pending interrupt

ST1 _

CPU LA50RA6 'J ST1

-

3_3 ELTG - EDGE/LEVEL TRIGGERING
REGISTERS (R2, R3)

ICU

TLlEE/5117-14

The EL TG registers determine the input trigger mode for
each of the 16 interrupt inputs. Each input is assigned a bit
in this register pair. An interrupt input is level-triggered if its
bit in EL TG is set to 1. The input is edge-triggered if its bit is
cleared. At reset, all bits in EL TG are set to 1.

If odd-numbered interrupt positions must be used for soft­
ware interrupts, the edge triggering mode must be selected
and the corresponding interrupt inputs should be prevented
from changing state.

3.4 TPL - TRIGGERING POLARITY
REGISTERS (R4, R5)

The TPL registers determine the polarity of either the active
level or the active edge for each of the 16 interrupt inputs.
As with the EL TG registers, each input is assigned a bit.
Possible triggering modes for the various combinations of
EL TG and TPL bits are shown below.

EL TG BIT TPL BIT TRIGGERING MODE
o
o
1
1

o
1
o
1

Falling Edge
Rising Edge
Low Level
High Level

Software interrupt positions are not affected by their TPL
bits. At reset, all TPL bits are set to O.
Note 1: If edged-triggered interrupts are to be handled, the TPL register

should be programmed before the EL TG register.

This prevents spurious interrupt requests from being generated dur­
ing the ICU initialization from edge-triggered interrupt positions.

Note 2: Hardware interrupt inputs connected to cascaded ICUs must have
their TPL bits set to O.

3.5 IPND -INTERRUPT PENDING REGISTERS (RS, R7)

The IPND registers track interrupt requests that are pending
but not yet serviced. Each interrupt position is assigned a bit
in IPND. When an interrupt is pending, the corresponding bit
in IPND is set. The IPND data are used by the ICU to gener­
ate interrupts to the CPU. These data are also used in poll­
ing operations.

RETICYCLE(ST1=1)

Highest priority in-service interrupt was from:

cascaded ICU I any other source

1111 J programmed bias·

encoded value of the highest
priority in-service interrupt

"The Programmed bias for the master ICU must range from 0000 to 01112 because the CPU interprets a one In the most significant bit position as a Cascade Table
Index indicator for a cascaded ICU.

FIGURE 3-2. HVCT Register Data Coding

4-39

z en
Co)
I\)
I\)
o
I\)
o

•

C) r---~ ,...
~
C)
N
N
Cf)
tJ)
Z

3.0 Architectural Description (Continued)

The IPND registers are also used for requesting software
interrupts. This is done by writing specially formatted data
bytes to either IPND(L) or IPND(H). The formats differ for
registers R6 and R7. These formats are shown below:

IPND(L) (R6) - SOOOOPPP

IPND(H) (R7) - S0001 PPP

Where: S = Set (S = 1) or Clear (S = 0)

PPP = is a binary number identifying one of
eight bits

Note: The data read from either R6 or R7 are different from that written to
the register because the ICU returns the register contents, rather than
the formatted byte used to set the register bits.

The ICU automatically clears a set IPND bit when the pend­
ing interrupt request is serviced. All pending interrupts in a
register can be cleared by writing the pattern 'X1 XXXXXX'
to it (X = don't care). To avoid conflicts with asynchronous
hardware interrupt requests, the IPND registers should be
frozen before pending interrupts are cleared. Refer to the
Mode Control Register description for details on freezing
the IPND registers.

At reset, all IPND bits are set to O.
Note: The edge sensing mechanism used for hardware interrupts in the

NS32202 ICU Is a latching device that can be cleared only by ac­
knowledging the Interrupt or by changing the trigger mode to level
sensing. Therefore, before clearing pending interrupts in the IPND
registers, any edge-triggered interrupt inputs must first be switched to
the level·triggered mode. This clears the edge-triggered interrupts;
the remaining Interrupts can then be cleared in the manner described
above. This applies to clearing the interrupts only. Edge-triggered in­
terrupts can be set without changing the trigger mode.

3.6 ISRV -INTERRUPT IN-SERVICE
REGISTERS (R8, R9)

The ISRV registers track interrupt requests that are current­
ly being serviced. Each interrupt position is assigned a bit in
ISRV. When an interrupt request is serviced by the ICU, its
corresponding bit is set in the ISRV registers. Before gener­
ating an interrupt to the CPU, the ICU checks the ISRV reg­
isters to ensure that no higher priority interrupt is currently
being serviced.

Each time the CPU executes an RETI instruction, the ICU
clears the ISRV bit corresponding to the highest priority in­
terrupt in service. The ISRV registers can also be written
into by the CPU. This is done to implement the special mask
priority mode.

At reset, the ISRV registers are set to O.
Note: If the ICU initialization does not follow a hardware reset, the ISRV

register should be cleared during initialization by writing zeroes into It.

4-40

3.7 IMSK -INTERRUPT MASK REGISTERS (R10, R11)

Each NS32202 interrupt position can be individually
masked. A masked interrupt source is not acknowledged by
the ICU. The IMSK registers store a mask bit for each of the
ICU interrupt positions. If an interrupt position's IMSK bit is
set to 1, the position is masked.

The IMSK registers are controlled by the system software.
At reset, all IMSK bits are set to 1, disabling all interrupts.
Note: If an interrupt must be masked off, the CPU can do so by setting the

corresponding bit in the IMSK register. However, if an interrupt Is set
pending during the CPU instruction that masks off that interrupt, the
CPU may still perform an interrupt acknowledge cycle following that
instruction since it might have sampled the ll'ff line before the ICU
deasserted it. This could cause the ICU to provide an invalid vector.
To avoid this problem, the above operation should be performed with
the CPU interrupt disabled.

3.8 CSRC - CASCADED SOURCE
REGISTERS (R12, R13)

The CSRC registers track any cascaded interrupt positions.
Each interrupt position is assigned a bit in the CSRC regis­
ters. If an interrupt position's CSRC bit is set, that position is
connected to the INT output of another NS32202 ICU, i.e., it
is a cascaded interrupt.

At reset, the CSRC registers are set to O.
Note 1: If any cascaded ICU is used, the CSRC register should be cleared

during initialization (if the initialization does not follow a hardware
reset) by writing zeroes into it. This should be done before setting
the bits corresponding to the cascaded interrupt positions. This op­
eration ensures that the 4-bit in-service counters (associated with
each interrupt position to keep track of cascaded interrupts) always
get cleared when the ICU is re-initialized.

Note 2: Only the Master ICU should have any CSRC bits set. If CSRC bits
are set in a cascaded ICU, incorrect operation results.

3.9 FPRT - FIRST PRIORITY REGISTERS (R14, R1S)

The FPRT registers track the ICU interrupt position that cur­
rently holds first priority. Only one bit of the FPRT registers
is set at one time. The set bit indicates the interrupt position
with first (highest) priority.

The FPRT registers are automatically updated when the ICU
is in the auto-rotate mode. The first priority interrupt can be
determined by reading the FPRT registers. This operation
returns a 16-bit word with only one bit set. An interrupt posi­
tion can be assigned first priority by writing a formatted data
byte to the FPRT(L) register. The format is shown below:
76543210

X X X X F F F F

Where: XXXX = Don't Care

FFFF = A binary number from 0 to 15 indi­
cating the interrupt position as­
Signed first priority.

Note: The byte above is written only to the FPRT(L) register. Any data writ-
ten to FPRT(H) is ignored.

At reset the FFFF field is set to 0, thus giving interrupt posi­
tion 0 first priority.

3.10 MCTL- MODE CONTROL REGISTER (R16)

The contents of the MCTL set the operating mode of the
NS32202 ICU. The MCTL bit map is shown below.
76 543210

ICFRZIcoUTDIcoUTMlcLKMIFRziunusediNTARIT16NSI

3.0 Architectural Description (Continued)

CFRZ

COUTO

COUTM

CLKM

Determines whether or not the NS32202 coun·
ter readings are frozen. When frozen, the
counters continue counting but the LCCV and
HCCV registers are not updated. Reading of
the true value of LCCV and HCCV is possible
only while they are frozen.

CFRZ = 0 = > LCCV and HCCV Not Frozen

CFRZ = 1 = > LCCV and HCCV Frozen

Determines whether the COUT ISCIN pin is an
input or an output. COUT ISCIN should be
used as an input only for testing purposes. In
this case an external sampling clock must be
provided otherwise hardware interrupts will not
be recognized.

COUTO = 0 = > COUT ISCIN is Output

COUTO = 1 = > COUT ISCIN is Input

When the COUT ISCIN pin is programmed as
an output (COUTO = 0), this bit determines
whether the output signal is in pulsed form or in
square wave form.

COUTM = 0 = > Square Wave Form

COUTM = 1 = > Pulsed Form

Used only in the B·bit Bus Mode. This bit con·
trois the clock wave form on any of the pins
GO/IRO, ... ,G3/1R6 programmed as counter
output.

CLKM = 0 = > Square Wave Form

CLKM = 1 = > Pulsed Form

FRZ Freeze Bit. In order to allow a synchronous
reading of the interrupt pending registers
(IPND), their status may be frozen, causing the
ICU to ignore incoming requests. This is of spe·
cial importance if a polling method is used.

NTAR

T16NB

FRZ = 0 = > IPND Not Frozen

FRZ = 1 = > IPND Frozen

Determines whether the ICU is in the AUTO·
ROTATE or FIXED Priority Mode. In AUTO·
ROTATE mode, the interrupt source at the
highest priority position, after being serviced, is
assigned automatically lowest priority. In this
mode, the interrupt in service always has high·
est priority and nesting of interrupts is therefore
inhibited.

NT AR = 0 = > Auto·Rotate Mode

NT AR = 1 = > Fixed Mode

Controls the data bus mode of operation.

T16NB = 0 = > B·Bit Bus Mode

T16NB = 1 = > 16-Bit Bus Mode

At reset, all MCTL bits except COUTO, are reset to o.
COUTO is set to 1.

3.11 OCASN - OUTPUT CLOCK
ASSIGNMENT REGISTER (R17)

Used only in the B·bit Bus Mode. The four least significant
bits of this register control the output clock assignments on
pins GO/IRO, ... ,G3I1R6. If any of these bits is set to 1, the
clock generated by either the H·Counter or the H + L·Coun·
ter will be output to the corresponding pin. The four most
significant bits of OCASN are not used. At Reset the four
least significant bits are set to O.

Note: The Interrupt sensing mechanism on pins GOI/RO, ... ,G3/IRS Is not
disabled when any of these pins Is programmed as clock output.
Thus, to avoid spurious Interrupts, the corresponding bits In register
IPS should also be set to zero.

3.12 CIPTR - COUNTER INTERRUPT
POINTER REGISTER (R18)
The CIPTR register tracks the assignment of counter out·
puts to interrupt positions. A bit map of this register is shown
below.
765432 0

H H H H L L L L

Where: HHHH = A 4-bit binary number identifying the
interrupt position assigned to the H·
Counter (or the H + L·counter if the
counters are concatenated).

LLLL = A 4-bit binary number identifying the
interrupt position assigned to the L·
counter.

Note: Assignment of a counter output to an interrupt position also requires
control bits to be set in the CICTL register. If a counter output is
assigned to an interrupt position, external hardware interrupts at that
position are ignored.

At reset, all bits in the CIPTR are set to 1. (This means both
counters are assigned to interrupt position 15.)

3.13 PDAT - PORT DATA REGISTER (R19)
Used only in the B·bit Bus Mode. This register is used to
input or output data through any of the pins GOI
IRO, ... ,G7/1R14 programmed as 1/0 ports by the IPS reg·
ister. Any pin programmed as an output delivers the data
written into PDAT. The input pins ignore it. Reading PDAT
provides the logical value of all 1/0 pins, INPUT and OUT·
PUT.

3.14 IPS -INTERRUPT IPORT SELECT REGISTER (R20)
Used only in the B·bit Bus Mode. This register controls the
function of the pins GO/IRO, ... ,G7/IR14. Each of these
pins is individually programmed as an 1/0 port, if the corre·
sponding bit of IPS is 0; as an interrupt source, if the carre·
sponding bit is 1. The assignment of the H·Counter output
to GO/IRO, ... ,G3/1R6 by means of reg. OCASN overrides
the aSSignment to these pins as 1/0 ports or interrupt in·
puts.

At Reset, all the IPS bits are set to 1.
Note: Whenever a bit in the IPS register is set to zero, to program the

corresponding pin as an I/O port, any pending interrupt on the corre·
sponding interrupt position will be cleared.

3.15 PDIR - PORT DIRECTION REGISTER (R21)
Used only in the B·bit Bus Mode. This register determines
the direction of any of the pins GO/IRO, ... ,G7/1R14 pro·
grammed as I/O ports by the IPS register. A logic 1 indio
cates an input, while a logic 0 indicates an output.

At Reset, all the PDIR bits are set to 1.

3.16 CCTL - COUNTER CONTROL REGISTER (R22)
The CCTL register controls the operating modes of the
counters. A bit map of CCTL is shown below.
7654321 0

ICCONlcFNPsicOUT11cOUTOIcRUNHIcRUNLlcDCRHlcDCRLI

CCON

4-41

Determines whether the counters are indepen·
dent or concatenated to form a single 32-bit
counter (H + L·Counter). If a 32-bit counter is
selected, the bits corresponding to the H·

z en
w
N
N o
~
o

o .,..
• C"II o

C"II
C"II
Cf)
(/)
z

3.0 Architectural Description (Continued)

Counter will control the H + L-Counter, while
the bits corresponding to the L-Counter are not
used.

CFNPS

COUT1 &

COUTO

CRUNH

CRUNL

CDCRH

CDCRL

CCON = 0 = > Two 16-bit Counters

CCON = 1 = > One 32-bit Counter

Determines whether the external clock is
prescaled or not.

CFNPS = 0 = > Clock Prescaled (divided by 4)

CFNPS = 1 = > Clock Not Prescaled.

These bits are effective only when the COUT /
SCIN pin is programmed as an OUTPUT
(COUTO bit in reg. MCTL is 0). Their logic lev­
els are decoded to provide different outputs for
COUT /SCIN, as detailed in the table below:

COUT1 COUTO COUT /SCIN Output Signal

0 0 Internal Sampling Oscillator
0 1 Zero Detect Of L-Counter
1 0 Zero Detect Of H-Counter
1 1 Zero Detect Of H + L-Counter*

°If the H- and L-Counters are not concatenated and
COUT1/COUTO are both 1, the COUT/SCIN pin is active
when either counter reaches zero.

Determines the state of either the H-Counter or
the H + L-Counter, depending upon the status
of CCON.

CRUNH = 0 = > H-Counter or H + L-Counter
Halted

CRUNH = 1 = > H-Counter or H + L-Counter
Running

Effective only when CCON = O. This bit deter­
mines whether the L-Counter is running or halt-
ed.

CRUNL = 0 = > L-Counter Halted

CRUNL = 1 = > L-counter Running

Effective only when CRUNH = 0 (Counter Halt­
ed). This bit is the single cycle decrement sig-
nal for either the H-Counter or the H + L·Coun­
ter.

CDCRH = 0 = > No Effect

CDCRH = 1 = > Decrement H·Counter or
H + L-Counter

Effective only when CRUNL = 0 and CCON =
O. This bit is the single cycle decrement signal
for the L-Counter.

CDCRL = 0 = > No Effect

CDCRL = 1 = > Decrement L-Counter
Note: The bits CDCRL and CDCRH are set when a logic 1 is written into

them, but, they are automatically cleared after the end of the write
operation. This is needed to accomplish the decrement operation.
Therefore, these bits always contain 0 when read.

Reset does not affect the CCTL bits.

3.17 CICTL - COUNTER INTERRUPT
CONTROL REGISTER (R23)

The CICTL register controls the counter interrupts and rec­
ords counter interrupt status. Interrupts can be generated
from either of the 16-bit counters. When the counters are
concatenated, the interrupt control is through the H-Counter

4-42

control bits. In this case the CIEL bit should be set to zero to
avoid spurious interrupts from the L-Counter. A bit map of
the CICTL register is shown following.
76543210

I CERH I CIRH I CIEH I WENH I CERL I CIRL I CIEL I WENL I
CERH

CIRH

CIEH

WENH

CERL

CIRL

CIEL

WENL

H-Counter Error Flag. This bit is set (1) when a
second interrupt request from the H-Counter
(or H + L-Counter) occurs before the first re­
quest is acknowledged.

H-Counter Interrupt Request. It is set (1) when
an interrupt is pending from the H-Counter (or
H + L-Counter). It is automatically reset when
the interrupt is acknowledged.

H-Counter Interrupt Enable. When it is set, the
H-Counter (or H + L-Counter) interrupt is en­
abled.

H-Counter Control Write Enable. When WEHN
is set (1), bits CERH, CIRH, and CIEH can be
written.

L-Counter Error Flag. This bit is set (1) when a
second interrupt request from the L-Counter
occurs before the first request is acknowl­
edged.

L-Counter Interrupt Request. It is set (1) when
an interrupt is pending from the L-Counter. It is
automatically reset when the interrupt is ac­
knowledged.

L-Counter Interrupt Enable. When it is set (1),
the L-Counter interrupt is enabled.

L-Counter Control Write Enable. When WENL
is set (1), bits CERL, CIRL, and CIEL can be
written.

Note: Setting the write enable bits (WENH or WENL) and writing any of the
other CICTL bits are concurrent operations. That is, the ICU will ig­
nore any attempt to alter CICTL bits if the proper write enable bit is
not set in the data byte.

At reset, all CICTL bits are set to O. However, if the counters
are running, the bits CIRL, CERL, CIRH and CERH may be
set again after the reset Signal is removed.

3.18 LCSV/HCSV- L-COUNTER STARTING VALUEI
H-COUNTER STARTING VALUE REGISTERS
(R24, R25, R26, AND R27)

The LCSV and HCSV registers store the start values for the
L-Counter and H-Counter, respectively. Each time a counter
reaches zero, the start value is automatically reloaded from
either LCSV or HCSV, one clock cycle after zero count is
reached. Loading LCSV or HCSV from the CPU must be
synchronized to avoid writing the registers while the reload­
ing of the counters is occurring. One method is to halt the
counters while the registers are loaded.

When the 16·bit counters are concatenated, the LCSV and
HCSV registers hold the 32-bit start count, with the least
significant byte in R24 and the most significant byte in R27.

3.19 LCCV IHCCV - L-COUNTER CURRENT VALUEI
H-COUNTER CURRENT VALUE REGISTERS
(R28, R29, R30, AND R31)

The LCCV and HCCV registers hold the current value of the
counters. If the CFRZ bit in the MCTL register is reset (0),
these registers are updated on each clock cycle with the
current value of the counters. LCCV and HCCV can be read
only when the counter readings are frozen (CFRZ bit in the

~--.z

3.0 Architectural Description (Continued)

HALJ COUNTERS
BY CLEARING

BITS CRUNL AND
CRUNH IN
REO. CCTL

WRITE COUNTER'S
STARTING VALUES

INTD LCCV AND
HCCV TO AVDID
LONG INITIAL

COUNTS

o

RESET COUTO BIT
IN MCTL TO

PROGRAM toUT / St.N
PIN AS AN OUTPUT
AND ENABLE THE

INTERNAL INTERRUPT
SAMPlING CLOCK

START COUNTERS
BY amiNO BITS
CRUNL AND/OR

CRUNH IN REO. cen

FIGURE 3-3. Recommended ICU's Initialization Sequence

4·43

TL/EE/5117-15

en
w
N
N o
N •
o

•

C) r---~
N
C)
N
N
C")
(/)
Z

3.0 Architectural
Description (Continued)

MCTL register is 1). They can be written only when the
counters are halted (CRUNL and/or CRUNH bits in the
CCTL register are 0). This last feature allows new initial
count values to be loaded immediately into the counters,
and can be used during initialization to avoid long initial
counts.

When the 16-bit counters are concatenated, the LCCV and
HCCV registers hold the 32-bit current value, with the least
significant byte in R28 and the most significant byte in R31.

3.20 REGISTER INITIALIZATION

Figure 3-3 shows a recommended initialization procedure
for the ICU that sets up all the ICU registers for proper oper­
ation.

4.0 Device Specifications
4.1 NS32202 PIN DESCRIPTIONS

4.1.1 Power Supply
Power (Vee): + 5V DC Supply
Ground (GND): Power Supply Return

4.1.2 Input Signals
Reset (RSn: Active low. This signal initializes the ICU. (The
ICU initializes to the 8-bit bus mode.)
Chip Select (CS): Active low. This signal enables the ICU to
respond to address, data, and control signals from the CPU.
Addresses (AO through A4): Address lines used to select
the ICU internal registers for read/write operations.
High Byte Enable (HBE): Active low. Enables data trans­
fers on the most-significant byte of the Data Bus. If the ICU
is in the 8-bit Bus Mode, this signal is not used and should
be connected to either GND or Vee.
Read (RD): Active low. Enables data to be read from the
ICU's internal registers.
Write (WR): Active low. Enables data to be written into the
ICU's internal registers.

4-44

Status (ST1): Status signal from the CPU. When the Hard­
ware Vector Register is read, this signal differentiates an
INTA cycle from an RETI cycle. If ST1 =0 the ICU initiates
an INTA cycle. If ST1 = 1 an RETI cycle will result.
Interrupt Requests (IR1, IR3 •.• , IR15): These eight in­
puts are used for hardware interrupts. Each may be individu­
ally triggered in one of four modes: Rising Edge, Falling
Edge, Low Level, or High Level.
Counter Clock (ClK): External clock signal to drive the ICU
internal counters.

4.1.3 Output Signals
Interrupt Output (INT): Active low. This signal indicates
that an interrupt is pending.

4.1.4 Input/Output Signals
Data Bus 0-7 (DO through D7): Eight low-order data bus
lines used in both 8-bit and 16-bit bus modes.
General Purpose I/O lines (GOIIRO, G1/1R2, ••. ,G7I
IR14): These pins are the high-order data bits when the ICU
is in the 16-bit bus mode. When the ICU is in the 8-bit bus
mode, each of these can be individually assigned one of the
following functions:

• Additional Hardware Interrupt Input (IRO through
IR14)

• General Purpose Data Input
• General Purpose Data Output
• Clock Output from H-Counter (Pins GO/IRO through

G3/IR6 only)

It should be noted that, for maximum flexibility in assigning
interrupt priorities, the interrupt positions corresponding to
pins GO/IRO, ... ,G7/IR14 and IR1, ... ,IR15 are inter­
leaved.

Counter or Oscillator Output/Sampling Clock Input
(COUT /SCIN): As an output, this pin provides either a clock
signal generated by the ICU internal oscillator, or a zero
detect signal from one or both of the ICU counters. As an
input, it is used for an external clock, to override the internal
oscillator used for interrupt sampling. This is done only for
testing purposes.

4.0 Device Specifications (Continued)

4.2 ABSOLUTE MAXIMUM RATINGS

Temperature Under Bias

Storage Temperature

All Input or Output Voltages with

Respect to GND

Power Dissipation

4.3 ELECTRICAL CHARACTERISTICS

O°Cto + 70°C

-65°C to + 150°C

-0.5V to + 7.0V

1.5 Watt

TA = 0° to 70°C, Vee = +5V ± 5%, GND = OV

Symbol Parameter

Input Low Voltage

Input High Voltage

Output Low Voltage

Output High Voltage

Leakage Current
(Output and I/O Pins in TRI-STATE/lnput mode)

Input Load Current

ICC Power Supply Current

Connection Diagram

IA1S- 1

00-2
STl- 3

G7/IA14- 4
G6/IAI2- 5
GS/IA10- 6
G4/1R8- 7

G3/1A6- 8
G2IIA4- 9
Gl/IA2- 10
GO/IAO- 11

07- 12
06- 13

OS- 14
04- 15

D3- 16
02- 17

01- 18

00- 19

GND- 20

NS32202
leu

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

Conditions

IOl = 2mA

IOH = -400 IJ-A

0.4 ~ VIN ~ Vee

Yin = OtoVee

lout = 0, T = O°C

40 ~Vcc
39 --IA13
38 !-IR11
37 -lAg
36 -IR7
35 -lAS
34 -IA3
33 -IAl

32 -cue
31 ~Wii

30~iiIi

29 ~ touT I SCtN
28 ~HBE

27~m
26 ~A4
25 ~A3
24 ~A2
23 ~Al
22 i-- AD

21 ~e!

Min

2.0

2.4

-20

-20

Typ Max Units

0.8 V

V

0.45 V

V

20 IJ-A

20 IJ-A

300 rnA

Top View TLlEE/5117-3

Order Number NS32202D-6, NS32202D-10
See NS Package Number D40C

FIGURE 4-1

4-45

z en w
N
N o
N .
-a.
o

o
"P-

I
N o
N
N
C")
U)
Z

4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions
All the timing specifications given in this section refer to
O.SV or 2.0V on the input and output signals as illustrated in
Figure 1, unless specifically stated otherwise.

:x ~:: TEST POINTS TEST POINTS ~:: x::
TL/EE/5117-16

FIGURE 4-2. Timing Specification Standard

4.4.1.1 Timing Tables

Symbol Figure Description

READ CYCLE

tAhROia 4-3 Address Hold Time

tAsROa 4-3 Address Setup Time

tCShROia 4-3 CSHoldTime

tCSsROa 4-3 OS Setup Time

tOhROia 4-3 Data Hold Time

tROaOv 4-3 Data Valid

tRow 4-3 RD Pulse Width

tSsROa 4-3 ST1 Setup Time

tShROia 4-3 ST1 Hold Time

WRITE CYCLE

tAhWRia 4-4 Address Hold Time

tAsWRa 4-4 Address Setup Time

tCShWRia 4-4 CS Hold Time

tCSsWRa 4-4 CS Setup Time

tOhWRia 4-4 Data Hold Time

tOsWRia 4-4 Data Setup Time

tWRlaPf 4-4 Port Output Floating

tWRiaPv 4-4 Port Output Valid

tWRw 4-4 WR Pulse Width

Abbreviations:
L.E.-Ieading edge R.E.-rising edge
T.E.-trailing edge F.E.-falling edge

Reference/Conditions NS32202-10 Units
Min Max

After RD T.E. 10 ns

Before RD L.E. 35 ns

After RD T.E. 15 ns

Before RD L.E. 30 ns

After RD T.E. 5 50 ns

After RD L.E. 150 ns

At O.SV (Both Edges) 160 ns

Before RD L.E. 35 ns

After RD T.E. -30 ns

After WR T.E. 10 ns

Before WR L.E. 35 ns

After WR T.E. 15 ns

Before WR L.E. 30 ns

After WR T.E. 10 ns

Before WR T.E. 70 ns

After WR T.E. (To PDIR) 200 ns

After WR T.E. 200 ns

At O.SV (Both Edges) 160 ns

4-46

4.0 Device Specifications (Continued)

4.4.1.1 Timing Tables (Continued)

Symbol Figure Description Reference/Conditions
NS32202-10

Units
Min Max

OTHER TIMINGS

tCOUTI 4-B Internal Sampling Clock At O.BV (Both Edges)
50 low Time ns

tCOUTo 4-B Internal Sampling Clock Period 400 ns

tSCINh 4-7 External Sampling Clock High Time At 2.0V (Both Edges) 100 ns

tSCINI 4-7 External Sampling Clock low Time At O.BV (Both Edges) 100 ns

tSCINp 4-7 External Sampling Clock Period BOO ns

tCh 4-9 External Clock High Time At 2.0V (Both Edges)
100 (Without Prescaler) ns

tChp 4-9 External Clock High Time At 2.0V (Both Edges)
40 (With Prescaler) ns

tCI 4-9 External Clock low Time At O.BV (Both Edges)
100 (Without Prescaler) ns

tClp 4-9 External Clock low Time At O.BV (Both Edges)
40 (With Prescaler) ns

tCy 4-9 External Clock Period
400 (Without Prescaler) ns

tCyp 4-9 External Clock Period
100 (With Prescaler) ns

tGCOUTI 4-9 Counter Output Transition Delay After ClK F.E. 300 ns

tCOUTw 4-9 Counter Output Pulse At O.BV (Both Edges)
50 Width in Pulsed Form ns

tACKIR 4-5 Interrupt Request Delay After Previous Interrupt
500

Acknowledge
ns

tlRld 4-5 INT Output Delay After Interrupt
BOO Request Active ns

tlRw 4-5 Interrupt Request Pulse At O.BV (Both Edges)
50 Width in Edge Trigger ns

tRSTw RST Pulse Width At O.BV (Both Edges) 400 ns

4.4.1.2 Timing Diagrams

ADDRESS ~ K

ST1~
-IAIRDI- IShRDii -

es ~ICSIRDI- -IAARDiI-

-ISIRDI- IROw I -ICShRDiI-1

~
.. ,

.,~
~

IRDlDv
I

IDhRDiI -I ------------- :K:----DATA BUS DATA VALID

------------- ----
TLlEE/5117-17

FIGURE 4-3. READ/INTA Cycle

4-47

z en
eN
N
N
o
N • ~
o

o S 4.0 Device Specifications (Continued)
N
N
C")

t/) ADDRESS
Z

DATA BUS

DUTPUT PORT
DATA

-tcsIWRI-

DATAVAUD

__ --J

FIGURE 4-4. Write Cycle

• ~1-bRw1J
~I~----.j

eUNTA)

FIGURE 4-5. Interrupt Timing In Edge Triggering Mode

IR

Iiii(lNTA) \~_--JI
FIGURE 4-6. Interrupt Timing In Level Triggering Mode

4·48

TL/EE/5117-18

TL/EE/5117-19

TL/EE/5117-20

4.0 Device Specifications (Continued)

eLI(

TL/EE/5117-21

Note: Interrupts are sampled on the rising edge of elK.

FIGURE 4-7. Externallnterrupt-Sampllng-Clock to be Provided at Pin COUT ISCIN When In Test Mode

SCLl(

TL/EE/5117-22

FIGURE 4-8. Internallnterrupt-Sampllng-Clock Provided at Pin COUT ISCIN

ClK

COUNTER OUTPUT
IN SQUARE ----'i\.
WAVEFORM

TLlEE/5117-23

FIGURE 4-9. Relationship Between Clock Input at Pin ClK and Counter Output Signals at Pins COUT ISCIN or
GO/RO, .•• ,G3/R6, In Both Pulsed Form and Square Waveform

4-49

z en
CJ.)
I\)
I\)
o
I\) .
-'" o

•

o ,... .
C")
o
C\I
C\I
C")
tJ)
z

~National
~ Semiconductor

PRELIMINARY

NS32203-10 Direct Memory Access Controller

General Description
The NS32203 Direct Memory Access Controller (DMAC) is
a support chip for the Series 32000® microprocessor family
designed to relieve the CPU of data transfers between
memory and I/O devices. The device is capable of packing
data received from 8-bit peripherals into 16-bit words to re­
duce system bus loading. It can operate in local and remote
configurations. In the local configuration it is connected to
the multiplexed Series 32000 bus and shares with the CPU,
the bus control signals from the NS32201 Timing Control
Unit (TCU). In the remote configuration, the DMAC, in con­
junction with its own TCU, communicates with I/O devices
and/or memory through a dedicated bus, enabling rapid
transfers between memory and I/O devices. The DMAC
provides 4 16-bit I/O channels which may be configured as
two complementary pairs to support chaining.

Block Diagram

A16-A23

ADO-AD15

HBE

ODIN

ADS
(.)
(5

CS 0
...J

w
ROY (.)

~
ClK c::

~
BREQ ~

en
BGRT ::I

III

HOLD

HlDA
lORD

IOWR

iNT
RSi'/HlT

Features
• Direct or Indirect data transfers
• Memory to Memory, I/O to I/O or Memory to I/O

transfers

• Remote or Local configurations
• 8-Bit or 16-Bit transfers
• Transfer rates up to 5 Megabytes per second
• Command Chaining on complementary channels
• Wide range of channel commands

• Search capability
• Interrupt Vector generation
• Simple interface with the Series 32000 Family of

Microprocessors
• High Speed XMOSTM Technology

• Single + 5V Supply
• 48-Pin Dual-In-Line Package

REQO

ACKO

REQ1

ACK1

REQ2

ACK2

REQ3

ACK3

TL/EE/8701-1

4-50

1.0 PRODUCT INTRODUCTION
2.0 FUNCTIONAL DESCRIPTION

2.2 Data Transfer Operations
2.2.1 Indirect Data Transfers
2.2.2 Direct (FLYBY) Data Transfers

2.3 Local Configuration
2.4 Remote Configuration
2.5 Data Source (Destination) Attributes
2.6 Word Assembly/Disassembly
2.7 Auto Transfer
2.8 Search
2.9 Interrupts
2.10 Transfer Modes
2.11 Chaining
2.12 Channel Priorities

3.0 ARCHITECTURAL DESCRIPTION
3.1 Global Registers

3.1.1 CONF - Configuration Register
3.1.2 HVCT - Hardware Vector Register
3.1.3 SVCT - Software Vector Register
3.1.4 STAT - Status Register

3.2 Control Registers
3.2.1 COM - Command Register
3.2.2 SRCH - Search Register

Table of Contents
3.0 ARCHITECTURAL DESCRIPTION (Continued)

3.3 Parameter Registers
3.3.1 SRC - Source Address Register
3.3.2 DST - Destination Address Register
3.3.3 LNGT - Block Length Register

4.0 DEVICE SPECIFICATIONS
4.1 NS32203 Pin Descriptions

4.1.1 Supplies
4.1.2 Input Signals
4.1.3 Output Signals
4.1.4 Input/Output Signals

4.2 Absolute Maximum Ratings
4.3 Electrical Characteristics
4.4 Switching Characteristics

4.4.1 Definitions
4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation
Delays

4.4.2.2 Input Signal Requirements
4.4.2.3 Clocking Requirements

4.4.3 Timing Diagrams
Appendix A: Interfacing Suggestions

List of Illustrations
Power-on Reset Requirements ... 2-1
General Reset Timing .. ~•................... 2·2
Recommended Reset Connections•... 2-3
Indirect Read Cycle .. 2-4
Indirect Write Cycle (Single Transfer Mode) .. 2-5
Direct Memory-To-I/O Data Transfer (Single Transfer Mode) ... 2·6
Direct I/O-To-Memory Data Transfer (Single Transfer Mode) ... 2-7
NS32203 Interconnections•..•.. 2-8
Write to NS32203 Internal Registers ..•........•........•. 2-9
Read from NS322031nternai Registers••.. 2-10
NS 32203 Internal Registers ..•.... 3-1
NS32203 Connection Diagram ...•..................•.. 4-1
Timing Specification Standard (Signal Valid After Clock Edge) ...•.. 4-2
Timing Specification Standard (Signal Valid Before Clock Edge) .. 4-3
Write to DMAC Registers•..•..............••.•.•.. 4-4
Read From DMAC Registers ..•..•....••. 4-5
Clock Timing•......•................•....................•...•.. 4-6
Indirect Write Cycle•..•...........•........•..........•. 4-7
Indirect Read Cycle ..•.............•.....•... 4-8
Direct I/O-To-MemoryTransfer•........................•............................. 4-9
Direct Memory-To-I/O Transfer ..•...... 4-10
ROID/HOLDA Sequence Start•..•..•.•. 4-11
HOLD/HOLDA Sequence End•..•....•. 4-12
Bus Request/Grant Sequence Start ..•.................... 4-13
Bus Request/Grant Sequence End .. 4-14
Ready Sampling .. 4-15
REOn/ACKn Sequence (DMAC Initially Not Idle) .. 4-16
REOnl ACKn Sequence (DMAC Initially Idle) .. 4-17
Halted Cycle ... 4-1 8
Interrupt On Match/No Match .. 4-20
Interrupt On Halt .. 4-21
Power-on Reset .. 4-22
Non-Power-on Reset .. 4-23
NS32203 Interconnections in Remote Configuration .. A-1

4-51

z en w
N
N o
W • ~
o

•

Q
• C")

Q
C\I
C\I
C")
CJ)
Z

1.0 Product Introduction
The NS32203 Direct Memory Access Controller (DMAC) is
specifically designed to minimize the time required for high
speed data transfers in a Series 32000-based computer
system. It includes a wide variety of options and operating
modes to enhance data throughput and system optimiza­
tion, and to allow dynamic reconfiguration under program
control.

The NS32203 can operate in two basic system configura­
tions: local and remote. In the local configuration, the DMAC
and the CPU share the same bus (address, data and con­
trol) and only one of them can perform data transfers on the
bus at anyone time. In this configuration, the DMAC and the
CPU also share a Timing Control Unit (TCU) and a single set
of address latches. Since this configuration yields a mini­
mum part-count system, it offers a good cost/performance
trade-off in many situations.

The remote configuration is intended to minimize the CPU
bus use. In this configuration, the NS32203 110 devices and
optional buffer memory have their own dedicated bus (re­
mote bus) so that an 110 transfer may be performed without
loading the CPU bus (local bus).

Communication between the dedicated bus and the CPU
bus may be initiated at any time by either the CPU or the
NS32203. The DMAC accesses the CPU bus whenever a
data transfer tolfrom memory or any 110 device residing on
this bus is to be performed. The CPU, in turn, accesses the
dedicated bus for reading status data or for programming
either the DMAC or its 110 devices.

The NS32203 internal organization consists of seven func­
tional blocks as illustrated in the block diagram. Descrip­
tions of these blocks are given below.

DMA Channels. The NS32203 provides four channels.
Each channel accepts a request from a peripheral 110 de­
vice and informs it when data transfer cycles are about to

begin. A set of registers is provided for each channel to
control the type of operation for that channel.

Bus Interface Unit. The bus interface unit controls all data
transfers between peripheral 110 devices and memory
whenever the DMAC is in control of the bus. This unit also
controls the transfer of data between the CPU and the
DMAC internal registers.

Timing and Control Logic. This block generates all the
sequencing and control signals necessary for the operation
of the DMAC.

Priority Resolver. This block resolves contentions among
channels requesting service simultaneously.

2.0 Functional Description
2.1 RESETTING

The RST IHl T line serves both as a reset input for the on­
chip logic and as a DMAC HALT input. Resetting is accom­
plished by pulling RST IHl T low for at least 64 clock cycles.
Upon detecting a Reset, the DMAC terminates any Data
transfer in progress, resets its internal logic and enters an
inactive state. On application of power, RST IHl T must be
held low for at least 50 p.s after Vee is stable. This is to
ensure that all on-chip voltages are stable before operation.
Whenever reset is applied, the rising edge must occur while
the clock signal on the ClK pin is high (see Figure 2-1 and
2-2). The NS32201 TCU provides circuitry to meet the reset
requirements. Figure 2-3 shows the recommended connec­
tions. The HALT function is accomplished when RST IHl T
is activated for 1 or 2 clock cycles and then released. It can
be used to stop any data transfer in progress in case of a
bus error. As soon as HALT is acknowledged by the
NS32203, the current transfer operation is terminated. See
Figure 4-18.

V 4.5V~ ________ ~~;'~S ____ _
CC--/

elK s-fl-ll-
1-64 CLOCK CYC;'1

~-------~50~S------~--~
FIGURE 2-1. Power-On Reset Requirements

4-52

TL/EE/8701-2

2.0 Functional Description (Continued)

CLK nJW4s-fl-.rL
f--64 CLOCK CYCLES-.j

RSV~--~~~~~~~m~ 55 r-
TL/EE/8701-3

FIGURE 2·2. General Reset Timing

I
I_­
I RESET
I
I ._--------_.

EXTERNAL RESET
(OPTIONAL)

Vee

RESET SWITCH
(OPTIONAL)

NS32201
TCU

HALT
(OPTIONAL)

NS32203
Dt.fAC

TL/EE/8701-4

FIGURE 2·3. Recommended Reset Connections

2.2 DATA TRANSFER OPERATIONS

After the NS32203 has been initialized by software, it is
ready to transfer blocks of data, containing up to 64 kbytes,
between memory and I/O devices, without further interven­
tion required of the CPU. Upon receiving a transfer request
from an I/O device, the DMAC performs the following oper­
ations:

1) Acquires control of the bus

2) Acknowledge the requesting I/O device which is con­
nected to the highest priority channel.

3) Starts executing data transfer cycles according to the val­
ues stored into the control registers of the channel being
serviced.

4) Terminates data transfers and relinquishes control of the
bus as soon as one of the programmed conditions is met.

4-53

Each channel can be programmed for indirect or direct data
transfers. Detailed descriptions of these transfer types are
provided in the following sub-sections.

2.2.1 Indirect Data Transfers

In this mode of operation, each byte or word transfer be­
tween source and destination requires at least two bus cy­
cles. The data is first read into the DMAC and subsequently
it is written into the destination. The bus cycles in this case
are similar to the CPU bus cycles when the MMU is not
used. This mode is slower than the direct mode, but is the
only one that allows some data manipulation like Byte
Search or Word Assembly/Disassembly. Figure 2-4 and 2-5
show the read and write cycle timing diagrams related to
indirect data transfers. If a search operation is specified,
extra clock cycles may be added following each read cycle.

z en
w
N
N
o
W
o

2.0 Functional Description (Continued)

CLK[

T1 T1 T1 T2 T3 T4 I T1 OR T1 I

A16-23 [

ADO-IS [

ABS[

DDIN [

RBE[

RDY [

m[
m[
ACKn [

HOLD [

HLDA [

NS32201 SIGNALS

RB[~----~--~----k
TL/EE/8701-5

FIGURE 2-4. Indirect Read Cycle

4·54

2.0 Functional Description (Continued)

ClK [

n n Tl T2 T3 T4 I T1 OR n I

A16-23 [

ADO-15 [

Ai>S[

oorn[

HBE [

ROY [

IOWR [

ACKn [

HOLD [

HlDA [

WR[

FIGURE 2·5. Indirect Write Cycle (Single Transfer Mode)
Note: If burst mode is selected. HOLD is released at the end of the transfer operation.

4·55

TLlEE/8701-6

z en
CA)
N
N
C
CA)
C

•

Q ,.... .
Cf)
Q
N
N
Cf)
(/)
Z

2.0 Functional Description (Continued)

2.2.2 Direct (Flyby) Data Transfers

This mode of operation allows a very high data transfer rate
between source and destination. Each data byte or word to
be transferred requires only a single bus cycle instead of
two separate read and write cycles, which are typical of the
indirect mode. The DMAC accomplishes direct data trans­
fers by activating lORD, during memory write cycles, and
10WR, during memory read cycles.

An I/O device, in the direct mode, is usually enabled by the
proper acknowledge signal (ACKn) from the DMAC. No
search or word assembly/disassembly are possible during

n n T1

ClK [

A16-23

direct data transfers. Figures 2-6 and 2-7 show the timing
diagrams of direct memory-to-I/O and I/O-to-memory trans­
fers respectively.
Note 1: In the direct mode each channel can control only one lID device

because the 110 device is hardwired to the ACKn output of the
corresponding channel. in the indirect mode, a channel can control
multiple devices as long as each device is selected through its own
address rather than the ACKn output. However, the possiblity of
selecting a single 110 device by the ACKn output is maintained in
the indirect mode as well.

Note 2: Whenever the DMAC is either idle or is performing indirect transfers,
it generates the iORD and iOWA signals as a replica of RD and WR.
This simplifies the logic required to access 110 devices wired for
direct data transfers.

T2 T3 T4 I T1 OR n I

ROY [.7/flIJ7f!IlA7lIll!J.~7lIll!J.~rr1Vl~
lORD [

IOWR [

ACKn [

HOLD [~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~

HlOA [

RD[

FIGURE 2·6. Direct Memory-To-I/O Data Transfer (Single Transfer Mode)

4-56

TLlEE/8701-7

2.0 Functional Description (Continued)

2.3 LOCAL CONFIGURATION
As previously mentioned, in the local configuration the
DMAC shares with CPU and MMU the multiplexed addressl
data bus as well as the control signals from the NS32201
TCU. A typical local configuration is shown in Figure 2-8.
The DMAC, in the local configuration, must gain control of
the bus whenever a data transfer cycle is to be performed,

lORD [

IOWR[

ACKn [

n n T1

even though it is directed to an 110 device and is related to
an indirect data transfer. This causes the system to be quite
sensitive to the volume of data handled by the DMAC. Thus,
the overall system performance decreases as the volume of
data increases. A possible solution to this problem is to use
the remote configuration, described in the following section.
A significant advantage of the local configuration is its sim­
plicity.

T2

HOLD[.-r ~ ~ ~ ~ ~~

HL~[-r ~ ~ ~ ~ ~~ ~~-J

WR[
TL/EE/B701-B

FIGURE 2-7. Direct I/O-To-Memory Data Transfer (Single Transfer Mode)

4-57

z en w
I\)
I\)
o
w
o

I •

NIoII INT
A'f/SPC A'f/SPC

FlT FU
RST/ABT RST/ ABT

prs prs

N532016 U/S U/S NS32082
CPU ADS a:: ADS t.lIoIU

ST0-3 -:: STO-3
ROY ROY

HLOA r HLDAI
ODIN ODIN
PHil PHil
PHI2 PHI2 PAY -

HOLD HOLD
RSn

HBE r--- HLDAO DATA A

A16-23 DO-IS

L~ ~iJ~S
BUrrERS 'I

ua .;(. ~

A T
ADDRESS < I' LATCHES 'I

~ III' "' ~1J " II
(

.j:>.

en
co

'I

PW'c!J
lI __ 0 11 1ft ~J} L ~6-23DO-l~ j PHI2

HLDA HBE
DECODER ADDR 00-15

'--- HOLD CS ... 16-BIT I/O
NS32201 ADS ADS DEVICE

TCU RST RST ACKO L CS
ODIN "'- ODIN NS32203_

ROY Dt.lAC REOO REO
ROY
cm cm ACKI ~ iIDWR

ViR - +5V REOI

Ro
,.7kal ACK2

~ RE02

BREO ACK3 ~ RE03
lORD
IOWR

FIGURE 2-8. NS32203 Interconnections In Local Configuration
Note 1: The 16 Bit 1/0 device is wired for direct transfers.
Note 2: The data buffers should not be enabled during direct data transfers or CPU accesses to the DMAC registers.

HBE

~
: IoIEt.10RY

r+ ViR
ADDR 00-15

~..:; ~

~ 7 DO-1St..
)

..... ..: ~
If

..... AO-23 ...
)

J}
I'

ADDR 00-7

8-BIT I/O
DEVICE

-r- r+CS

REO RD ViR
I

NS32203-10

TUEE/8701-9

~

b
."
C
::::J
() -0"
::::J e.
C
CD
til
() ..,
-6" -0"
::::J
o o
;a.
:r
c:
a>
.e,

2.0 Functional Description (Continued)

2.4 REMOTE CONFIGURATION
The remote configuration is intended to minimize CPU Bus
usage. In this configuration, the DMAC, buffer memory and
I/O devices reside on a dedicated bus. Communication be­
tween the dedicated bus and the CPU bus is achieved by
means of TRI-STATE buffers. Whenever the CPU needs to
access the dedicated bus, it issues a bus request to the
NS32203 by activating the BREQ signal. As the dedicated
bus becomes idle, the DMAC pulls off the bus and acknowl­
edges the CPU request by activating BGRT. This output is
also used as a control signal for the interconnection logic of
the two buses.

WR[

The CPU can either be interrupted by BGRT or it can poll
BGRT to determine when the dedicated bus can be ac­
cessed. The DMAC, in turn, before accessing the CPU bus,
has to gain control of it. This is accomplished through the
usual request-acknowledge mechanism performed by
means of the HOLD and HLDA signals.

Figure A-1 in Appendix A shows an interconnection diagram
of a basic remote configuration. Both TCUs are clocked by
the same clock signal. They are synchronized during reset
by the RWEN/SYNC signal so that their output clocks are in
phase. Figures 2-9 and 2-10 show the timing diagrams for
read and write accesses to the NS32203 internal registers.

NS32201 SIGNALS

TL/EE/8701-10

FIGURE 2·9. Write to NS32203 Internal Registers

NS32201 SIGNALS

iffi[
TL/EE/8701-11

FIGURE 2·10. Read from NS32203 Internal Registers

4-59

z en
w
N
N
o
W .
-A.
o

o .,..
• Cf)

o
N
N
Cf)

tn
Z

2.0 Functional Description (Continued)

2.5 DATA SOURCE (DESTINATION) ATTRIBUTES

Two types of data source (destination) are recognized: 110
device and memory. If the source (destination) is an 110
device, its address register is not changed after a data
transfer; if it is memory, its address register is either incre­
mented or decremented after any data transfer, according
to the value of the corresponding direction bit. In the remote
configuration, any data source (destination) may reside ei·
ther on the CPU bus or on the dedicated bus. If it resides on
the dedicated bus, the NS32203 does not activate the
HOLD request line when an access to the source (destina­
tion) is performed, unless a direct transfer with a data desti­
nation (source) residing on the CPU bus is required.

Data can be transferred in either a bit or 16 bit units. The
DMAC always considers the memory to be 16 bits wide.
Thus, if an a bit transfer is specified, address bit AO will
determine the byte of the data-bus where the transfer takes
place. If AO = 0, the transfer occurs on the low order byte.
If AO = 1, it occurs on the high order byte. Different transfer
widths can be specified for source and destination. Howev­
er, some limitations exist in specifying these transfer widths
when certain operations must be performed. These limita­
tions are explained below.

1) If a transfer block has an odd number of bytes or is not
word aligned, an a bit width for source and destination
should be selected.

2) 16-bit 110 transfers can not be specified with a bit
memory transfers.

3) Memory to memory transfers should have the same
width.

Note 1: If source and destination are both memory, DMAC transfers can
only be performed in indirect mode.

Note 2: If source and destination are both I/O devices and direct mode is
being used, the source device is accessed by lORD and ACKn; the
destination device is accessed by WR (from the NS32201) and CS
(from the address decoder). This allows a one direction data trans­
fer only from one I/O device (source) to another. If data is to be
transferred in both directions in direct mode between two I/O devic­
es, two channels must be used (one for each direction of transfer),
and extra hardware is required to control the read and write signals
to the two I/O devices.

Note 3: When an a-bit transfer is related to an I/O device, the other half of
the 16-bit data bus is considered as DON'T CARE, and the FfEiE/
Signal may be activated.

2.6 WORD ASSEMBLY IDISASSEMBLY

This feature is automatically enabled when indirect transfers
are selected, with data transferred between an a·bit wide
I/O device and a 16·bit I/O device or memory. For every 16·
bit I/O device or memory access, the DMAC accesses the
a·bit I/O device twice, assembling two data bytes into a 16·
bit word or breaking a 16·bit word into two data bytes, de·
pending on the direction of transfer. The word assem·
blyldisassembly feature allows a significant increase in the
transfer speed and minimizes the CPU bus usage when the
transfer occurs between an a·bit 110 device residing on the
dedicated bus, and a 16·bit 110 device or memory residing
on the CPU bus. Word assemblyldisassembly is not possi·
ble during direct data transfers.
Note: Requests from other channels are not acknowledged in the middle of

a word assembly/disassembly. If this is unacceptable. a bit transfers
should be specified for both source and destination.

4-60

2.7 AUTO TRANSFER

The NS32203 initiates a data transfer as a result of a re­
quest from an 110 device. In some cases a data transfer
may be necessary without the corresponding request signal
being asserted. This can happen, for example, when a block
of data is to be moved from one memory region to another.
In such cases, the auto transfer mode can be selected by
setting an appropriate bit in the command register. The
DMAC will initiate a data transfer regardless of the REOn
signal for that channel.
Note: For proper operation, when auto transfer is required, the low order

byte of the command register (containing the auto-transfer enable bit)
should be written into after the other registers controlling the channel
operation have been initialized.

2.8 SEARCH

The NS32203 provides a search capability that can be used
to detect the occurrence of a certain data pattern. The
search is performed by comparing each data byte with the
search register, in conjunction with the mask register. An
appropriate bit in the command register indicates whether
the search continues 'UNTIL' a match occurs, or 'WHILE' a
match exists. The search operation does not necessarily
involve a data transfer. The DMAC allows a block of data to
be searched without requiring any data transfer between
source and destination. When performing a search, the user
can specify whether or not the matched byte will be trans­
ferred. If 'INCLUSIVE SEARCH' is specified (INC = 1), the
matched byte will be transferred, and the channel parame­
ters will be updated accordingly. In this case, if a 16 bit word
has been read from the data source and the search condi­
tion is satisfied by the low order byte, then the high order
byte is transferred as well. If 'EXCLUSIVE SEARCH' is
specified (INC = 0), the transfer will terminate with the last
byte before the search condition was satisfied, and the pa­
rameters will point to the last transferred byte.

Search is not possible during direct transfers.

2.9 INTERRUPTS

The NS32203 provides interrupt circuitry that can be used to
generate an interrupt whenever a data transfer is completed
or a search condition is met. If an NS32202 ICU is used, the
INT signal from the DMAC should be connected to an inter­
rupt input of the ICU. When an interrupt occurs and the
corresponding interrupt acknowledge (INTA) or return from
interrupt (RETI) cycle is executed by the CPU, the NS32203
supplies its own vector as if it were a cascaded ICU. For
such operation the virtual address of the interrupt vector
register should be placed in the ICU cascade table, de­
scribed in the NS32016 and NS32202 data sheets. See
section 3.1.2.

2.10 TRANSFER MODES
When the NS32203 is in the inactive state and a channel
requests service, the DMAC gains control of the bus and
enters the active state. It is in this state that the data trans­
fer takes place in one of the following modes:

SINGLE TRANSFER MODE

In single transfer mode, the NS32203 makes a single byte
or word transfer for each HOLD/HLDA handshake se­
quence.

In this case the request signal from the 110 device is edge
sensitive, that is, a single transfer is performed each time a

2.0 Functional Description (Continued)

falling edge on AEOn occurs. To perform multiple transfers,
it is therefore necessary to temporarily deassert AEOn after
each transfer is initiated. If auto transfer mode is selected,
the bus is released between two transfers for at least one
clock cycle.

BURST (DEMAND) TRANSFER MODE

In burst transfer mode the DMAC will continue making data
transfers until AEOn goes inactive. Thus, the I/O device
requesting service may suspend data transfer by bringing
AEOn inactive. Service may be resumed by asserting AEOn
again. If the auto transfer mode is selected, the DMAC will
perform a single burst of data transfers until the end-transfer
condition is reached.
Note 1: In either of the transfer modes described above, data transfers can

only occur as long as the byte count is not zero or a search condi·
tion is not met. Whenever any of these conditions occur, the
NS32203 terminates the current operation and releases the bus for
at least one clock cycle.

Note 2: Whenever the DMAC releases HOITl, it waits for HLDA to go inac­
tive for at least one clock cycle before reasserting ROiJ) again to
continue the transfer operation.

2.11 CHAINING

The NS32203 provides a chaining feature that allows the
four DMAC channels to be regarded as two complementary
pairs. Channels 0 and 1 form the first pair, while channels 2
and 3 form the second pair. Each pair is programmed inde­
pendently by setting the corresponding bit in the configura­
tion register. When two channels are complementary, only
the even channel can perform transfer operations, while the
odd one serves as temporary storage for the new control
values and parameters loaded for the chaining operation. If
an operation is being performed by the even channel of a
pair and an end-condition is reached, the channel is not
returned to the inactive state; rather, a new set of control
values with or without parameters is loaded from the com­
plementary channel and a new operation is started. During
the reload operation the bus is released for at least two
clock cycles. At the end of the second operation the chan­
nel returns to the inactive state, unless a new set of values
has been loaded into the complementary channel by the
CPU.

The chaining feature can be used to transfer blocks of data
to/from non-contiguous memory segments. For example,
the CPU can load channel 0 and 1 with control values and
parameters for the first two blocks. After the operation for
the first block is completed by channel 0, the control values
and parameters stored in channel 1 are transferred to chan­
nel 0, during an update cycle, and a second operation is
started. The CPU, being notified by an interrupt, can load
channel 1 registers with control values and parameters for
the third data block.
Note 1: Whenever a reload operation occurs, the register values of the com­

plementary channel are affected. Thus, the CPU must always load a
new set of values Into the complementary channel If another chain­
Ing operation Is required.

Note 2: When the chain option Is selected, the CPU must be given the op­
portunity to acquire the bus for enough time between DMAC opera­
tions, In order for the complementary channel to be updated.

2.12 CHANNEL PRIORITIES

The NS32203 has four I/O channels, each of which can be
connected to an I/O device. Since no dependency exists
between the different I/O devices, a priority level is as·
signed to each I/O channel, and a priority resolver is provid­
ed to resolve multiple requests activated simultaneously.

4-61

The priority resolver checks the priorities on every cycle. If a
channel is being serviced and a higher priority request is
received, the channel operation is suspended and control
passes to the higher priority channel, unless the lock bit for
the lower priority channel is set. If the lock bit is set, that
channel operation is continued until completion before con­
trol passes to the higher priority channel. The bus is always
released for at least two clock cycles when control passes
from one channel to another.

Two types of priority encodings are available as software
selectable options.

The first is fixed priority which fixes the channels in priority
order based on the decreasing values of their numbers.
Channel 3 has the lowest priority, while channel 0 has the
highest.

The second option is variable priority. The last channel that
receives service becomes the lowest priority channel
among all other channels with variable priority, while the
channels which previously had lower priority will get their
priorities increased. If variable priority is selected for all four
channels, any I/O device requesting service is guaranteed
to be acknowledged after no more than three higher priority
services have occurred. This prevents any channel from
monopolizing the system. Priority types can be intermixed
for different channels.

As an example, let channels 0, 2 and 3 have variable priority
and channel 1 fixed priority. Channel 2 receives service first,
followed by channel O. The priority levels among all chan­
nels will change as follows.

Priority Initial Order Next Order Final Order
High 3 ch.O ACK ~ ch.O ch.3

2 ch.1 ch.1 ch.1 ~ fixed priority
ACK ~ ch.2 ch.3 ch.2

Low 0 ch.3 ch.2 ch.O

Whenever the PT bit (priority type) in the command register
is changed, the priority levels of all the channels are reset to
the initial order. If only one channel has variable priority,
then no change in priority will occur from the initial order.
Note: If the lock bit is not set, three idle states are inserted between the

write cycle of a previous burst indirect transfer and the next read
cycle.

3.0 Architectural Description
The NS32203 has 12B B·bit registers that can be addressed
either individually or in pairs, using the 7 least significant bits
of the address bus and the high byte enable signal FiBE.
Seventy-one of these registers are reserved, while the rest
are accessible by the CPU for read/write operations. Figure
3-1 shows the NS32203 internal registers together with their
address offsets. Detailed descriptions of these registers are
given in the following sections.

3.1 GLOBAL REGISTERS

The global registers consist of one configuration, one status
and two interrupt vector registers. They are shared by all
channels, and they control the overall operation of the
NS32203.

3.1.1 CONF-Conflguratlon Register

This register controls the hardware configuration of the
NS32203 as well as the chaining feature.

z en
Co)
N
N
o
Co)

•
o

0

""'" • 3.0 Architectural Description (Continued) C")
0
N The CONF register format is shown below: CO = 0 = > Channels not complementary
N
C") 7 6 5 4 3 2 1 0 CO = 1 = > Channel 1 complementary to chan-
(/) I C1 I CO I z XXXXX CNF nel 0

CNF - Configuration Bit. Determines whether the C1- Chaining bit for channels 2 and 3. Determines

NS32203 is in local or remote configuration.
whether or not channels 2 and 3 are complemen-

CNF = 0 = > Local Configuration
tary.

C1 = 0 = > Channels not complementary
CNF = 1 = > Remote Configuration

C1 = 1 = > Channel 3 complementary to chan-
CO- Chaining bit for channels 0 and 1. Determines nel 2

whether or not channel 0 and 1 are complementa-
XXXXX - Reserved. These bits should be set to O. ry.
At reset, all CONF bits are reset to zero.
Note: The CNF bit should never be set by the software if the DMAC Is wired

for local configuration, otherwise bus conflicts will result.

{
23 16 15 8 7 0

COM (H) (0216) COM(M) (01 16) COM(L) (0016) Command
Channel 0
Control SRCH (0416) Search Pattern
Registers

MSK (0816) Search Mask

{
SRC(H) (OE16) SRC(M) (0016) SRC(L) (OC16) Source Address

Channel 0
Parameter DST(H) (1216) DST(M) (1116) DST(L) (1016) Destination Address
Registers

LNGT(H) (1516) LNGT(L) (1416) Block Length

{
COM (H) (2216) COM(M) (21 16) COM(L) (2016) Command

Channel 1
Control SRCH (2416) Search Pattern
Registers

MSK (2816) Search Mask

{
SRC(H) (2E16) SRC(M) (2016) SRC(L) (2C16) Source Address

Channel 1
Parameter DST(H) (3216) DST(M) (31 16) DST(L) (3016) Destination Address
Registers

LNGT(H) (3516) LNGT(L) (3416) Block Length

{
COM (H) (4216) COM(M) (41 16) COM(L) (4016) Command

Channel 2
Control SRCH (4416) Search Pattern
Registers

MSK (4816) Search Mask

{
SRC(H) (4E16) SRC(M) (4016) SRC(L) (4C16) Source Address

Channel 2
Parameters DST(H) (5216) DSC(M) 51 16) DST(L) (5016) Destination Address
Registers

LNGT(H) (5516) LNGT(L) (5416) Block Length

{
COM (H) (6216) COM(M) (61 16) COM(L) (6016) Command

Channel 3
Control SRCH (6416) Search Pattern
Registers

MSK (6816) Search Mask

{
SRC(H) (6E16) SRC(M) (6016) SRC(L) (6C16) Source Address

Channel 3
Parameter DST(H) (7216) DST(M) (71 16) DST(L) (7016) Destination Address
Registers

LNGT(H) (7516) LNGT(L) (7416) Block Length

I
CONF (7816) Configuration

Global SVCT (5C16) Software Vector

Registers HVCT (7C16) Hardware Vector

STAT(H) (7F16) STAT(L) (7E16) Status

FIGURE 3·1. NS322031nternai eglsters

4-62

3.0 Architectural Description (Continued)

3.1.2 HVCT - Hardware Vector Register

This register contains the interrupt vector byte that is sup­
plied to the CPU during an interrupt acknowledge (INTA) or
return from interrupt (RETI) cycle. The HVCT register format
is shown below.

7 6 5 4 3 2 o
BIAS E CN

CN - Channel number. Represents the number of the in­
terrupting channel

E - Error code. Determines whether a normal operation
completion or an error condition has occurred on
the interrupting channel.

E = 0 = > Normal Operation Completion

E = 1 = > A second interrupt was generated by
the same channel before the first inter­
rupt was serviced.

BIAS - Programmable bias. This field is programmed by
writing the pattern BBBBBOOO into the HVCT regis­
ter.

The NS32203 always interprets a read of the HVCT register
as either an interrupt acknowledge (INTA) cycle or a return
from interrupt (RETI) cycle. Since these cycles cause inter­
nal changes to the DMAC, normal programs should never
read the HVCT register (see next section). The DMAC dis­
tinguishes an INTA cycle from a RETI cycle by the state of
an internal flip-flop, called Interrupt Service Flip-Flop, that
toggles every time the HVCT register is read. This flip-flop is
cleared on reset or when the HVCT register is written into.
When an interrupt is acknowledged by the CPU, the INT
signal is deasserted unless another interrupt from a lower
priority channel is pending. In this case the INT signal is
deasserted when the acknowledge cycle for the second in­
terrupt is performed.

For this reason, if the INT signal is connected to an interrupt
input of the NS32202 ICU, the triggering mode of that inter­
rupt position should be 'low level'.

Furthermore, if that ICU interrupt input is programmed for
cascaded operation and nesting of interrupts from other de­
vices connected to the ICU is to be allowed, then the ICU
interrupt input connected to the DMAC should be masked
off during the interrupt service routine, before the CPU inter­
rupt is reenabled. This is because the DMAC does not pro­
vide interrupt nesting capability.

An interrupt from a certain channel can be acknowledged
only after the return from interrupt from a previously ac­
knowledged interrupt is performed.

3.1.3 SVCT - Software Vector Register

The SVCT register is an image of the HVCT register. It is a
read-only register used for diagnostics. It allows the pro­
grammer to read the interrupt vector without affecting the
interrupt logic of the NS32203. The format of the SVCT reg­
ister is the same as that of the HVCT register.

3.1.4 STAT - Status Register

The status register contains status information of the
NS32203, and can be used when the interrupts are not en­
abled. Each set bit is automatically cleared when a read
operation is performed. The format of this register is shown
in the following figure.

4-63

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMElcHIMNI TclMElcHIMNI TclMElcHIMNI TclMElcHIMNI Tcl
channel #3 channel #2 channel #1 channel #0

The status of each channel is defined in a four-bit field as
described below:

TC - Transfer Complete.

Indicates the completion of a channel operation, re­
gardless of the state of the length register or whether
a match/no match condition occurred.

MN - MatchlNo Match Bit.

This bit is set when a match/no match condition oc­
curs.

CH - Channel Halted.

Set when a channel operation is halted by pulling the
RST /HLT pin.

ME - Multiple events. This bit is set when more than one of
the above conditions have occurred.

Note: If an Interrupt is enabled, the corresponding bit In the status register Is
not cleared upon read, unless the Interrupt Is acknowledged.

3.2 CONTROL REGISTERS

Each of the four channels has three control registers, con­
sisting of a 24-bit command register, an a-bit search register
and an 8-bit mask register.

3.2.1 COM - Command Register

The command register controls the operation of the associ­
ated channel. It is divided into three separately addressable
parts: COM(L), COM(M) and COM (H). The format of each
part and bit functions are shown below.

COM(L) - Command Register (Low-Byte)
76543210

I AT I LK I PT I UW I INC I DI CC

CC - Command Code

CC = 00 = > Channel Disabled.

CC =01 = > Search

CC = 10 = > Data Transfer

CC = 11 = > Data Transfer and Search

DI - Directl/ndirect Transfers

DI = 0 = > Indirect Transfers

DI = 1 = > Direct Transfers

INC - Inclusive/Exclusive Search

INC = 0 = > Exclusive Search

INC = 1 = > Inclusive Search

UW - Search type

UW =0 = > Search UNTIL

UW = 1 = > Search WHILE

PT - Priority type

PT =0 = > Fixed

PT = 1 = > Variable

LK - Priority lock

LK = 0 = > Priority Unlocked

LK = 1 = > Priority Locked

z en
w
I\)
I\)
o
w . .-.
o

C) r---, ,...
• Cf)

C)
C'I
C'I
Cf)
en z

3.0 Architectural Description (Continued)

AT - Auto transfer

AT = 0 = > Auto Transfer Disabled

AT = 1 = > Auto Transfer Enabled

At Reset, the CC bits in COM(L) are cleared, disabling the
channel.
Note: The CC bits can be cleared by software during an Indirect data trans­

fer to stop the transfer. This, however, should not be done during
direct data transfers. See section 3.3.3.

COM(M) - Command Register (Middle-Byte)
76543210

I DO I OW I DL I DT I SO I sw I SL I ST I
ST - Source Type

ST =0 =>1/0 Device

ST = 1 = > Memory

SL - Source Location

(Effective only in the remote configuration)

SL =0 = > Local

SL = 1 = > Remote

SW - Source Width

SW = 0 = > a Bits

SW = 1 = > 16 Bits

SO - Source Direction

SO =0 =>Up

SO =1 = > Down

DT - Destination Type

DT =0 = > I/O Device

SO = 1 = > Memory

DL - Destination Location

(Effective only in the remote configuration)

DL =0 = > Local

DL = 1 = > Remote

OW - Destination Width

OW = 0 = > a Bits

OW = 1 = > 16 Bits

DO - Destination Direction.

DO =0 => Up

DO =1 =>Down

COM(H) - Command Register (High-Byte)
7 6 5 4 3 2 1 0

I HLiI MNd TCII AMN IATcl OM I X

X - Reserved. (Should be set to 0)

TM - Transfer Mode

OM = 0 = > Single Transfer

OM = 1 = > Burst Transfer

ATC - Action after Transfer Complete

ATC = 0 = > Disable Channel

ATC = 1 = > Load Control Values and Parame­
ters from Complementary Channel
and Continue

4-64

AMN - Action after Match/No Match

AMN = 00 = > Disable Channel

AMN = 01 = > Continue

AMN = 10 = > Load Control Values from Comple­
mentary Channel and Continue

AMN = 11 = > Load Control Values and Parame­
ters from Complementary Channel
and Continue

TCI- Interrupt Mask on "Transfer Complete"

TCI = 0 = > No Interrupt

TCI = 1 = > Interrupt

MNI- Interrupt Mask on "Match/No Match"

MNI = 0 = > No Interrupt

MNI = 1 = > Interrupt

HLI- Interrupt Mask on "Channel Halted"

HLI = 0 = > No Interrupt

HLI = 1 = > Interrupt

3.2.2 SRCH - Search Register

This a-bit register holds the value to be compared with the
data transferred during the channel operation.

3.2_3 MSK - Mask Register

The a-bit mask register determines which bits of the trans­
ferred data are compared with corresponding search regis­
ter bits. If a mask register bit is set to 0, the corresponding
search register bit is ignored in the compare operation. At
reset, all the MSK bits are set to O.

3.3 PARAMETER REGISTERS

Each channel has three parameter registers, consisting of a
24-bit source address register, a 24-bit destination address
register and a 16-bit block length register.

3.3.1 SRC - Source Address Register

The source address register points to the physical address
of the data source. When the data source is an I/O device,
the register does not change during the transfer operation.
When the data source is memory, the register is increment­
ed or decremented by either one or two after each transfer.

3.3.2 DST - Destination Address Register

The destination address register points to the physical ad­
dress of the data destination. When the data destination is
an I/O device, the register does not change during the
transfer operation. When the data destination is memory,
the register is incremented or decremented by either one or
two after each transfer.

3.3.3 LNGT - Block Length Register

The block length register holds the number of bytes in the
block to be transferred. It is decremented by either one or
two after each transfer.
Note: A direct data transfer can be stopped by writing zeroes into the LNGT

register. The number of bytes transferred can be determined in this
case, from the value of either the SRC or the DST register.

4.0 Device Specifications
4.1. NS32203 PIN DESCRIPTIONS

The following is a brief description of all NS32203 pins. The
descriptions reference portions of the Functional Descrip­
tion, Section 2.0.

Connection Diagram

A22

A2l

A20 Cs
A19 BREQ

A18 BGRT

A17 RST/im

A16 iNT
AD1S HOLD

AD14 HlDA

AD13 REQ3

AD12 ACK3

ADll REQ2

AD10 ACK2

AD9 REQl

AD8 ACKl

AD7 REQO

AD6 ACKO

ADS HBE

AD4 ODIN

AD3 lORD

AD2 IOWR

ADl ADS

ADO ROY

GND ClK

TL/EE/8701-12

Top View

FIGURE 4-1. NS32203 Dual-In-llne Package

Order Number NS32203D or NS32203N
See NS Package Number D48A or N48A

4.1.1 SUPPLIES

Power (Vee>: +5V positive supply.

Ground (GND): Ground reference for on-chip logic.

4.1.2 INPUT SIGNALS

Reset/Halt (RST/Hln: Active low. If held active for 1 or 2
clock cycles and released, this signal halts the DMAC oper­
ation on the active channel. If held longer, it resets the
DMAC. Section 2.1.

4-65

Chip Select (CS): When low, the device is selected, en­
abling CPU access to the DMAC internal registers.

Ready (ROY): Active high. When inactive, the DMA Control­
ler extends the current bus cycle for synchronization with
slow memory or peripherals. Upon detecting RDY active,
the DMAC terminates the bus cycle.

Channel Request 0-3 (REQO - REQ3): Active low. These
lines are used by peripheral devices to request DMAC serv-
ice.

Bus Request (BREQ): Used only in the remote configura­
tion. This signal, when asserted, forces the DMAC to stop
transferring data and to release the bus. It must be activated
by the CPU before any CPU access to the remote bus is
performed. In the local configuration this signal should be
connected to Vee via a 4.7k resistor. Section 2.4.

Hold Acknowledge (HlDA): Active low. When asserted,
indicates that control of the system bus has been relin­
quished by the current bus master and the DMAC can take
control of the bus.

Clock (ClK): Clock signal supplied by the CTIL output of
the NS32201 TCU.

4.1.3 OUTPUT SIGNALS

Address Bits 16-23 (A16-A23): Most significant B bits of
the address bus.

Hold Request (HOLD): Active low. Used by the DMAC to
request control of the system bus.

Channel Acknowledge 0-3 (ACKO - ACK3): These lines
indicate that a channel is active. When a channel's request
is honored, the corresponding acknowledge line is activated
to notify the peripheral device that it has been selected for a
transfer cycle. Section 2.2.2.

Bus Grant (BGRn: Used only in the remote configuration.
This signal is used by the DMAC to inform the CPU that the
remote bus has been relinquished by the DMAC and can be
accessed by the CPU. Section 2.4.

I/O Read (lORD): Active low. Enables data to be read from
a peripheral device. Section 2.2.2.

I/O Write (IOWR): Active low. Enables data to be written to
a peripheral device. Section 2.2.2.

Interrupt (INn: Active low. Used to generate an interrupt
request when a programmed condition has occurred. Sec­
tion 2.9.

4.1.4 INPUT/OUTPUT SIGNALS

Address/Data 0-15 (ADO-AD15): Multiplexed Address/
Data bus lines. Also used by the CPU to access the DMAC
internal registers.

High Byte Enable (HBE): Active low. Enables data trans­
fers on the most significant byte of the data bus.

Address Strobe (ADS): Active low. Controls address latch­
es and indicates the start of a bus cycle.

Data Direction In (ODIN): Active low. Status signal indicat­
ing the direction of data flow in the current bus cycle.

z
tJ)
W
N
N o
W • -" o

C) r--,
""'" ~
C)
C'I
C'I
C")
tJ)
z

4.0 Device Specifications (Continued)

4.2 ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

Temperature Under Bias

Storage Temperature

All Input or Output Voltages with
Respect to GND

O·Cto +70·C

-65·C to + 150·C

-0.5Vto +7V

Power Dissipation 1.1 Watt

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICALCHARACTERISTICSTA = 0 to +70·C, Vee = 5V±5%, GND = OV

Symbol Parameter

VIH High Level Input Voltage

VIL Low Level Input Voltage

VOH High Level Output Voltage

VOL Low Level Output Voltage

II Input Load Current

IL Leakage Current
Output and 110 Pins in TRI-STATE/lnput Mode

ICC Active Supply Current

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the timing specifications given in this section refer to
O.BV and 2.0V on all the input and output signals as illustrat­
ed in Figures 4-2 and 4-3, unless specifically stated other­
wise.

-CLK)I 2.0V _ O.8V

O.SV SIGI

~ "2!""!.O~V--
SIG2

TLlEE/8701-13

FIGURE 4·2. Timing Specification Standard
(Signal Valid after Clock Edge)

Conditions Min Typ Max

2.0 Vee + 0.5

-0.5 0.8

IOH = - 400 p.A 2.4

IOL = 2 rnA 0.45

0< VIN:S: Vee -20 20

0.4 :S: VIN :S: Vee -20 20

lOUT = 0, TA = 25·C 180 300

ABBREVIATIONS:

L.E. - leading edge R.E. - rising edge
T.E. - trailing edge F.E. - falling edge

LK 2.0V K-
C __ ~O~.8~V~~~

SIGI

SIG2

O.BV
tSIGlI \.:::::::::

tSIG2hr---

2.0V

Units

V

V

V

V

p.A

p.A

rnA

TL/EE/8701-14

FIGURE 4·3. Timing Specification Standard
(Signal Valid before Clock Edge)

4-66

4.0 Device Specifications (Continued)

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation Delays, NS32203-10
Maximum Times Assume Capacitive loading of 100 pF.

Name Figure Description

tALv 4·7 Address Bits 0-15 Valid

tALh 4·9 Address Bits 0-15
Hold Time

tAHv 4·7 Address Bits 16-23 Valid

tAHh 4·7 Address Bits 16-23 Hold

tALAOSs 4·8 Address Bits 0-15 Set Up

tAHAOSs 4·8 Address Bits 16-23 Set Up

tALAOSh 4·9 Address Bits 0-15
Hold Time

tAU 4·8 Address Bits 0-15 Floating

tov 4·7 Data Valid (Write Cycle)

tOh 4·7 Data Hold (Write Cycle)

toov 4·5 Data Valid (Reading
DMAC Registers)

tOOh 4·5 Data Hold (Reading
DMAC Registers)

tHBEv 4·7 HBE Signal Valid

tHBEh 4-7 HBE Signal Hold

tOOINv 4-8 DDIN Signal Valid

tOOINh 4-8 DDIN Signal Hold

tAOSa 4-7 ADS Signal Active

tAOSia 4-7 ADS Signal Inactive

tAOSw 4-7 ADS Pulse Width

tALz 4-12.4-13 ADO-AD15 Floating

tAHz 4-12,4-13 A 16-A23 Floating

tAOSz 4-12,4-13 ADS Floating

tHBEz 4-12,4-13 HBE Floating

tOOINz 4-12,4-13 DDIN Floating

tHLOa 4-11 HOLD Signal Active

tHLOia 4-12 HOLD Signal Inactive

tlNTa 4-19,4-21 INT Signal Active

tACKa 4-16,4-17,4-7 ACKn Signal Active

tACKia 4-16,4-17,4-7 ACKn Signal Inactive

4·67

Referencel
Conditions

After R.E., ClK T1

After R.E., ClK T2

After R.E., ClK T1

After R.E., ClK T1
orTi

Before ADS T.E.

Before ADS T.E.

After ADS T.E.

After R.E., ClK T2

After R.E., ClK T2

After R.E., ClK T1
orTi

After R.E., ClK T3

After R.E., ClK T4

After R.E., ClK T1

After R.E., ClK T1
orTi

After R.E., ClK T1

After R.E., ClK T1
orTi

After R.E., ClK T1

After R.E., ClK T1

atO.8V
(Both Edges)

After R.E., ClK Ti

After R.E., ClK Ti

After R.E., ClK Ti

After R.E., ClK Ti

After R.E., ClK Ti

After R.E., ClK Ti

After R.E., ClK Ti
orT4

After R.E., ClK Ti

After R.E., ClK T1

After F.E., ClK T4

NS32203-10

Min Max

50

5

50

5

25

25

15

25

50

0

50

10

50

0

65

0

35

40

30

55

55

55

55

55

50

50

40

50

35

Units

ns

ns

ns

ns

ns

ns

JLs

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

z en
w
N
N
o
W .
....&.

o

o ,..
• C")

Q
N
N
C")
tJ)
Z

4.0 Device Specifications (Continued)

Name Figure Description

tSGRTa 4-13 BGRT Signal Active

tSGRTia 4-14 BGRT Signal Inactive

tlOROa 4-8,4-9 lORD Active

tlOROia 4-8 lORD Inactive (During
Indirect Transfers)

tlOROia 4-9 lORD Inactive (During
Direct Transfers)

tlOWRa 4-7,4-10 IOWRActive

tlOWRia 4-7 IOWR Inactive (During
Indirect Transfers)

tlOWRdia 4-10 IOWR Inactive (During
Direct Transfers)

4.4.2.2 Input Signal Requirements: NS32203-10

tpWR 4-22 Power Stable to
RST/HlT R.E.

tRSTw 4-23 RST IHl T Pulse Width
(Resetting the DMAC)

tRSTs 4-24 RST IHl T Set Up Time
(Resetting the DMAC)

tHLTs 4-18 RST IHlT Setup Time
(Halting a DMAC Transfer)

tHLTh 4-19 RST IHl T Hold Time
(Halting a DMAC Transfer)

tOls 4-6 Data in Setup Time

tOlh 4-6 Data in Hold

tOls 4-6 Data in Setup Time
(Writing to DMAC Registers)

tOlh 4-6 Data in Hold
(Writing to DMAC Registers)

tHLOAs 4-11,4-12 HOLDA Setup Time

tHLOAh 4-11 HlDA Hold Time

tROYs 4-15 RDY Setup Time

tROYh 4-15 RDY Hold Time

tREOs 4-16,4-17 REOn Setup Time

tREOh 4-16,4-17 REOn Hold Time

tBREOs 4-13 BREQ Setup Time

Referencel NS32203-10
Units

Conditions Min Max

After R.E., ClK 65 ns

After R.E., ClK 65 ns

After R.E., ClK T2 40 ns

After R.E., ClK T4
40 ns

After F.E., ClK T4
40 ns

After R.E., ClK T2 40 ns

After R.E., ClK T4
40 ns

After F.E., ClK T3
40 ns

After Vee Reaches
50

4.75V I-'-s

at 0.8V (Both Edges)
64 tCp

Before F.E., ClK
15 ns

Before R.E., ClK T3
25 ns

After R.E., ClK T 4
10 ns

Before R.E., ClK T3 15 ns

After R.E., ClK T 4 3 ns

After R.E., ClK T3
15 ns

After R.E., ClK T4
3 ns

Before R.E., ClK 25 ns

After R.E., ClK 10 ns

Before R.E.,
20

ClKT2orT3
ns

After R.E., ClK T3 5 ns

Before R.E., ClK 50 ns

After R.E., ClK 10

Before R.E., ClK 25 ns

4-68

4.0 Device Specifications (Continued)

Name Figure Description
Referencel NS32203·10
Conditions Min Max

tBREQh 4·13 BREQ Hold Time After R.E .• ClK 10

tALAOSis 4·6 Address Bits 0-5 Setup Before ADS T.E. 20

tALAOSih 4·6 Address Bits 0-5 Hold After ADS T.E. 20

tHBEs 4·6 HBE Setup Time Before R.E .• ClK T1 10

tHBEih 4·6 HBE Hold Time After R.E .• ClK T4 40

tAOSs 4·6 ADS L.E. Setup Time Before R.E .• ClK T1 40

tAOSiw 4·6 ADS Pulse Width ADS L.E. to ADS T.E. 35

tCSs 4·6 CS Setup Time Before R.E.. ClK T1 15

tCSh 4·6 CS Hold Time After R.E.. ClK T4 40

tOOINs 4·6 DDIN Setup Time Before R.E.. ClK T2 30

tOOINh 4·6 DDIN Hold Time After R.E .• ClK T4 40

4.4.2.3 Clocking Requirements: NS32203-10

Name Figure Description
Referencel NS32203-10
Conditions Min Max

tClKh 4·4 Clock High Time At 2.0V (Both Edges) 42

tClK1 4·4 Clock low Time At O.BV (Both Edges) 42

tClKp 4·4 Clock Period R.E.. ClK to Next
100

R.E. ClK

4.4.3 Timing Diagrams

tcLKp

tCLKh

elK
2.0V

O.SV
tCLKI

TLlEE/8701-17

FIGURE 4-4. Clock Timing

4·69

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Units

ns

ns

ns

z en
w
N
N o
W •
o

•

o
""'" . C")
o
N
N
C")
C/)
Z

4.0 Device Specifications (Continued)

CLK[

ADS [

ADO-IS [

DDIN [

Tl T2 T3 T4

HBE[~,~ __ ~ __________ ~ ____ ~,~

cs[
FIGURE 4-5. Read from DMAC Registers

T1 T2 T3 T4 I Tl OR TI

DDIN [

HBE [~"'""' __ ~ _________ ~~ __ ~'" ,_

FIGURE 4-6. Write to DMAC Registers

4-70

TLlEE/B701-16

TL/EE/6701-15

4.0 Device Specifications (Continued)

FIGURE 4-7. Indirect Write Cycle

ROY [(HIGH)

I
IOWR [(HIGH)

lORD [

mn[
FIGURE 4-8. Indirect Read Cycle

4-71

TLlEE/6701-16

tlORDla

TL/EE/6701-19

z en w
I\)
I\)
o
w •
o

o
• Cf)

o
N
N
Cf)
tJ)
Z

4.0 Device Specifications (Continued)

ClK[

I T1 T2 T3 T4

ADO-IS [..... ----'1
AI6-23[~,~~~ __ V_Al_ID ___ ~~_+J~

ADS [

HBE[~,~_~ ____ V_Al_ID ____ +--+_~~

DDIN [

RDY [

lORD [

IOWR [

ACKn [

(HIGH)

(HIGH)

FIGURE 4-9. Direct 1/0 to Memory Transfer

ClK [

Tl T2 T3 14

ADO-IS [~r __ ~
A 16- 23 [~r~ __ ~ ____ VA_l_ID-+ __ +-____ ~~

HBE [-+,'-__ -+-____ V_Al_ID-4 __ +-___ ,..,~

RDY [(HIGH)

I
lORD [

tlOWRdla

IOWR [

AcKn[

FIGURE 4-10. Direct Memory to 1/0 Transfer

4-72

TL/EE/8701-20

TL/EE/8701-21

4.0 Device Specifications (Continued)

Note 1: DMAC In local configuration.

Tl T2 I n I n
ClK[~

tHlD~
HOLD [

n I n

HlDA [

ADO-IS [- ------~
I

A 16-23 [- ------< ADDRESS VALID

ADS [- ---- rvf-
HBE [- VALID

DDIN[- ---- ---- ---- VALID

ClK [

HOLD [

HlDA[

ADO-IS [

A 16-23[

ADS [

HBE[

DDIN [

FIGURE 4-11. HOLD/HOLDA Sequence Start

11 I T2 T3 I T4 n

tAu

,-_-+-_D_A_TA-+-__ +'I - - -1-----
tAHz

--+---+--+----+-'1 - - - t ----­
tADSz

---t-----
tHBEz

--+---+----+----+-'1 - - - t ----­
tOOINz

--+---+----+----+-'1 - - - t -----
FIGURE 4-12. HOLD/HOLDA Sequence End

Note 2: The FfO[D/HO[[)A sequence shown above is related to the single transfer mode.

In burst transfer mode FfO[D is deactivated two cycles later.

4·73

TL/EE/8701-22

TL/EE/8701-23

z en
Co)
N
N
o
Co)

•
o

•

o
~ 4.0 Device Specifications (Continued) o
N
N
~ I n I n I n I n
Z CLK[~J.L-rl-

~BREOs {BREOh

BREO[

BGRT [

ADO-15 [+ __ -+_""',,-+ __ -+'

A 16 -23 [-t----+--~_+_-.....;01
ADS [

HBE[+ __ ~_~~+-__ ~J

ODIN [+---+--~~-+----t"'
TL/EE/B701-24

FIGURE 4-13. Bus Request/Grant Sequence Start

n In n I n T1 T2

BREO [-+ __ -+---'

BGRT[~ __ -+ __ ~_-,

------~
I ------< ADDRESS VALID

~[. ---- ---------- ----~
HBE[- ---- ---- ---- ------< VALID

DDIN[- ---- ---- ---- ------< VALID

TL/EE/B701-25

FIGURE 4-14. Bus Request/Grant Sequence End
Note 1: DMAC In remote configuration.

Note 2: If ~ is asserted in the middle of a DMAC transfer, the transfer will always be completed.

4-74

4.0 Device Specifications (Continued)

[
I T1 I T2 I T3

CLK~
T3

~r'
RDY[I I ~\-Io-J

T3

FIGURE 4-15. Ready Sampling

T3 T4 I T1 T2 I T3

REOn [

ACKn [

ADS [

T4

T4

FIGURE 4-16. REQnl ACKn Sequence (DMAC Initially Not Idle)

[
In I n I T1

CLK~
tREQs

T2 I T3 T4

FIGURE 4-17. REQn/ACKn Sequence (DMAC Initially Idle)

4·75

TL/EE/8701-26

TL/EE/8701-27

TL/EE/8701-28

z
en w
N
N
o
W

I
o

o ,...
• C")

o
N
N
C")
(/)
Z

4.0 Device Specifications (Continued)

T1 T2 1 T3 114

ADS [

ODIN [

HOLD[~ ____ ~ ____ ~ ____ ~

FIGURE 4·18. Halted Cycle
Note 1: Halt may occur in previous T-States. It must be applied for 1 or 2 clock cycles.

Note 2: If l3REO is asserted in the middle of a DMAC transfer, the transfer will always be completed.

T1 T2 1 T3 1 T4 1 TI

IN{

1 TI

FIGURE 4-19. Interrupt on Transfer Complete

4·76

TL/EE/B701-29

TI

TLlEE/B701-30

4.0 Device Specifications (Continued)

T1 T2 I T3 I T4 I n n I n

ADS [

iID[

INT[

FIGURE 4·20. Interrupt on MatchlNo Match
Note: If inclusive search is specified a write cycle is perlormed before iNf is activated.

T1 T2 I T3 I T4 I n

FIGURE 4·21. Interrupt on Halt

Vee 4.SV

n CLK
---11--'"

RST/HLT

tPWR:J-
--------------- i

TL/EE/6701-33

n

tlNTa
• t.4ATCH ON
'.HIGH BYTE

TL/EE/6701-32

TL/EE/6701-31

TL/EE/6701-34

FIGURE 4·22. Power on Reset FIGURE 4·23. Non Power on Reset

4-77

z en
w
N
N o
W
o

.j>.

..!..J
(Xl

~

ADO-IS
1'1

1IS32016
CPU

A16-23
.t HBE

PHIl
PHIl
RDY
ADS

OOIN

HOlD HUlA RST/ABT

J
:~
I,
i,

h

~~

HOlD HUlA BREa BGRT

RST/HLT
00iN
ADS
a.K
ROY

NS32203
OIIAC

CS
.. REOO

ADO-IS
- ACKO I"

~ RE03

ACK3

A16-23
.t HBE

NS32203-10

DATA BUfTDIS

~:
ADO-IS

l.OCAI. DATA BUS J\. -'"
r ... ~

~ EN DIR

A16-23
.tiiiiE

l.OCAI. AIlIlRESS BUS J\.
)

~
... ..1 PHIl 1IS32201

pP ~
..1 PHl2ta/lSO
i AIlIlRESS SiJijjij5 RDY CWAIT

rmxo I ~ :[)o-p .1 ADS WR
DIlIH RD

_I RSTO iiiiEl--
RSll XII Clll

U ~ ~,tl::~'-- ~~~'--
~p ...::; ~gr ~ ro--r' ~> CK l...........+ '!p'/WP./ -r 0lB£ t'J

ooE!CWAIT l-

-;=; ~ ~!f"

r;1 r ~~ rp-~~ J~Q~~
~'9 ~ RWEii/SlNC

=.;~ ~ 11 ADS !!! RDlOTE
Clll RD AIlIlRESS _ _
RDY iiiiE DECOIlER EN DIR

~ ~-" 1-1. REIIOTE DATA BUS ... 7 ")

r "

~ ~oonm ... ~ AIlIlRESS .tH~ ~ REIIOTEAIlIlRESSBUS ... 7 -'"

»
"'C
"'C
(I)
::::J
C.
>C"

1>
::::J ...
(I)
""'II
D)"
(")

:i"
CC
en
c

CC
CC
(I)
tn ...
ci"
::::J
tn

TUEE/6701-35

FIGURE A-1. NS322031nterconnections in Remote Configuration.
Note: This logic does not support direct (flyby) DMAC transfers.

Section 5
Development Systems
and Software Tools

Section 5 Contents
SYS32/30 PC-Add-In Development Package.. 5-3
Series 32000 GENIX Native and Cross-Support (GNX) Development Tools (Version 3) 5-9
Series 32000 Ada Cross-Development System for SYS32/20 Host 5-14
Series 32000 Ada Cross-Development System for VAX/VMS Host. 5-18
Series 32000 GNX-Version 3 C Optimizing Compiler 5-23
Series 32000 GNX-Version 3 Fortran 77 Optimizing Compiler. 5-27
Series 32000 GNX-Version 3 Pascal Optimizing Compiler................................ 5-31

5-2

~ National Semiconductor

SVS32/30 PC Add-In
Development Package

• 15 MHz NS32332/NS323B2 Add-In board
for an IBM® PC/ AT® or compatible
system

• 2-3 MIP system performance
• No wait-state, on-board memory in 4-, B­

or 16-Mbyte configurations
• Operating system derived from AT&T's

UNIX® System V Release 3
• Multi-user support
• GENIXTM Native and Cross-Support

(GNXTM) language tools. Includes­
assembler, linker, libraries, debuggers

Product Overview
The SYS32TM 130 is a complete, high-performance
development package that converts an IBM PCI AT or
compatible computer into a powerful multi-user sys­
tem for developing applications that use National
Semiconductor Embedded System Processors™ or
Series 32000 microprocessor family components. The
SYS32/30 add-in processor board containing the Se­
ries 32000 device cluster with the NS32332 micro­
processor allows programs to run on a personal

5-3

TL/EE/9420-1

• Support for other Series 32000®
development products:
-SPLICE
- National's Series 32000 Development

Board family
- Optimizing Compilers: C,

FORTRAN 77, Pascal
• Easy-to-use DOS/UNIX interface

computer at speeds greater than those of a VAXTM
11/780. The chip cluster on the processor board in­
cludes the NS32332 Central Processing Unit,
NS32382 Memory Management Unit, NS32C201 Tim­
ing Control Unit and the NS32081 Floating-Point Unit.
Along with the processor board, the SYS32/30 pack­
age contains the OpUS5™ operating system which is
derived from GENIX V.3, National Semiconductor's

o r---.
C")

C\i Product Overview (Continued)
C")
en port of AT&T's UNIX System V Release 3. Specially
~ developed software is included to efficiently integrate

the NS32332 processor board and the host PCI AT
processor, allowing them to function as a complete
UNIX computer system. National's Series 32000 GE­
NIX Native and Cross-Support (GNX) language tools
are included in the SYS32/30 package to provide sta­
ble and effective tools for software development. Op­
tional compilers are available for FORTRAN 77, C,
and Pascal.

Functional Description
15 MHz ADD-IN PROCESSOR BOARD FOR AN IBM PC/AT
OR COMPATIBLE SYSTEM

The SYS32/30 development package contains a
processor board designed around the Series 32000
chip set. This chip set includes the NS32332 Central
Processing Unit, NS32382 Memory Management Unit,
NS32C201 Timing Control Unit, and the NS32081
Floating-Point Unit.

This processor board forms the high-performance
center of the computer system with the host PCI AT
processor. Peripherals are under the control of the
PCI AT's microprocessor and are located either on the
PCI AT motherboard or on other boards in the PCI AT
chassis. The PCI AT handles all direct access to de­
vices and serves as an integral dedicated lID proces­
sor.

SYS32/30

A

The SYS32/30 processor board plugs into the PCI AT
bus, uses the standard control and data signals, and
appears to the PCIAT as 16 bytes in the PCIAT In­
put/Output (lID) space. Communication between the
PCI AT and the board is accomplished via this ad­
dress space. This architecture allows the board to in­
terface to the PCI AT in the same manner as any other
PCI AT peripheral. The PCI AT processes 110 com­
mands while the SYS32/30 processor board contin­
ues with regular operation. lID is requested via inter­
rupt to the PCI AT, which then performs the data
transfer using Direct Memory Access (DMA). (See Fig­
ure 1).

The processor board requires two slots in the PCI AT
motherboard and plugs into a single long 16-bit bus
slot. The space of the second slot is needed to ac­
commodate the piggybacked memory board attached
to the processor board. No additional connections are
required.

2-3 MIPS SYSTEM PERFORMANCE

The NS32332 CPU and associated devices operating
at 15 MHz provide computing power greater than that
of a VAX 11/780. Sustained performance for the
NS32332 device cluster is 2-3 VAX MIPS (Million In­
structions Per Second). An example of relative per­
formance using the widely recognized Dhrystone
benchmark is shown in Figure 2.

DOS
UTILITIES

I\.

J

'I DATA v
A-fi "

1\
OPMON PROGRAM

-. DAh v SYS32/30 DRIVERS 1: 1': AND
CONTROL

PC lJt.--J\ PC
HARDWARE I'rv' flERIPHER-

ALS

UNIX ENVIRONMENT DOS ENVIRONMENT
TL/EE/9420-2

FIGURE 1

5-4

Functional Description (Continued)

..
i
~
rf. ..
~
-!
0::

DHRYSTONE 1.1

SYS32/30

VAX 11/780

TL/EE/9420-3

FIGURE 2. SYS32/30 Dhrystone Program
Complied with GNX Version 3 C Complier

VAX 11/780 Dhrystone Data Obtained from USENET

ON-BOARD MEMORY CONFIGURATIONS
OF 4, 8 OR 16 MBYTES

The processor board is configured with either 4, S, or
16 Mbytes of zero wait-state physical memory. It is
possible to upgrade the 4- or S-Mbyte configuration to
16 Mbytes through the purchase of an optional 16-
Mbyte memory card.

OPERATING SYSTEM

The SYS32/30 operating system is derived from
GENIX V.3, National Semiconductor's port of
AT&T's UNIX System V Release 3.

The UNIX operating system is a powerful, multi-user,
multitasking operating system that includes the follow­
ing key features:

Demand-Paged Virtual Memory
Hierarchical file system
Source Code Control System (SCCS)
UNIX to UNIX copy (uucp)
"make" utility
Menu-driven system administration

The UNIX operating system has a proven reputation
as an effective and productive environment for effi­
cient software development. UNIX allows multiple us­
ers to work simultaneously on the same computer and
project. The Source Code Control System (SCCS) au­
tomatically tracks program revisions as development
work progresses. The "make" software saves valu-

5-5

able time in regenerating complex software systems
after changes are made. The uucp software allows
users on different UNIX systems to communicate us­
ing electronic mail and to transfer files over dial-up or
serial communications links. Menu-driven system ad­
ministration is available for system setup, adding us­
ers, controlling communication lines, installing soft­
ware packages, changing passwords, and other ad­
ministrative functions.

ADDITIONAL SUPPORT UTILITIES

Many of the popular utilities from the Berkeley 4.3
UNIX operating system, not contained in AT&T's UNIX
System V Release 3, are supplied as part of the pack­
age. These utilities are listed in Table I.

TABLE I. Bsd 4.3 Utilities

CShell apply banner
bsu chsh clear
ctags expand factor
from head last
leave more primes
scrpt strings test
unexpand whereis which

The Tools for Documenters package, derived from the
AT&T Documenter's WorkbenchTM Utility, provides
the Series 32000 programmer with the tools to pre­
pare documentation. The major components of this
package are shown in Table II.

TABLE II. Tools for Documenters Utilities

Name Description

nroff A text formatter for line printers

troff A text formatter for typesetters

mm A macro package

mmt A macro package

eqn A troff preprocessor for typesetting
mathematics on a phototypesetter

neqn A troff preprocessor for typesetting
mathematics on a terminal

tbl A preprocessor for formatting tables

pic A preprocessor for graphic illustrations

col A filter to nroff for processing multicolumn
text output, as from tbl

NETWORKING CAPABILITY

The SYS32/30 based development system config­
ured to support networking using the TCPIIP protocol
allows project development using multiple systems, in­
cluding SYS32/30 based systems, VAX/VMSTM (us­
ing TCP/IP), SUN-3/SunOS™ and VAX/ULTRIX. The

(J)

-<
(J)
CN
N
CN
o

o r---,
Cf)
N
Cf)

~
Functional Description (Continued)

compatibility design of the GNX language tools allows
software modules developed on these networked sys­
tems to be linked together on a single system for exe­
cution as one program. Networking requires that addi­
tional hardware and software be installed in the sys­
tem. Third party products that enable networking are
listed in the SYS32/30 configuration guide.

MANUALS

A complete manual set for the operating system and
related software is included in the SYS32/30 pack­
age. This includes:
Installation instructions for the PC Add-in board
Installation instructions for software
UNIX System V.3 reference manuals and user guides
GNX Language Tools Manuals
Tools for Documenters Reference Manual
Berkeley Utilities Manual

MULTI-USER SUPPORT

The SYS32/30 operating system is an interactive,
multi-user; multitasking operating system. Many activi­
ties or jobs can be performed simultaneously when
serial ports are added to the host system. These addi­
tional serial ports are used for terminals, printers, mo­
dems, I/O-to-development boards, I/O-to-target hard­
ware, or for communication with National's SPLICE
debugging tool. Information about third party products
that provide additional serial ports is contained in the
SYS32/30 configuration guide.

GNX LANGUAGE TOOLS

The GENIX Native and Cross-Support (GNX) lan­
guage tools allow the user to compile, assemble, and
link user programs to create executable files. These
files can then be executed and debugged on a Series
32000 development board, target system· application
hardware, or a 32000/UNIX-based system such as
the SYS32/30.

The GNX language tools include the assembler, link­
er, debuggers, libraries, and the monitor software for
all Series 32000 development boards in both PROM
and source code form.

The Series 32000 GNX language tools are based on
AT&T's Common Object File Format (COFF). Under
COFF, object modules created by any of the GNX
compilers or the GNX assembler may be linked to
object modules of any other translator in the GNX
tools. Optimizing compilers are available for C,
FORTRAN 77, and Pascal.

The COFF file format also allows object modules that
have been created by the GNX tools on other devel-

5-6

opment hosts (VAX/VMS or VAX/ULTRIX, for exam­
ple) to be linked with modules created on the
SYS32/30 system. This flexibility is most valuable
where non-centralized software development is de­
sired and the systems are able to transfer or share
files via a common network. Information for configur­
ing the SYS32/30 for integration into a network is
contained in the configuration guide.

Compilers are available separately as optional soft­
ware to allow individual selection of the application
language. The C, FORTRAN 77 and Pascal compilers
are the result of National's optimizing compiler project
and reflect state-of-the-art compiler technology for op­
timizing execution speed. For additional details about
the GNX tools consult the GNX tools data sheet.

SUPPORT FOR AN INTEGRATED. DEVELOPMENT
ENVIRONMENT

The SYS32/30 contains the functionality and compati­
bility needed to utilize other tools available from Na­
tional Semiconductor for developing and debugging
Series 32000-based applications. These tools include
the SPLICE software debugger, NS32GG16-ISE, the
Series 32000 Development Board set, and National's
Embedded System Processor evaluation boards for
the NS32CG 16 and NS32GX32 processors.

The NS32CG16 ISE is a full featured emulator for de­
velopment of NS32CG16 based systems. Software is
developed on the SYS32/30, then transferred to the
DOS partition of the development system for down­
load by the ISE.

The SPLICE development tool provides a communica­
tion link between a Series 32000 target and a devel­
opment system host. This connection allows users to
download and map their software onto target memory
and then debug this software using National Semicon­
ductor's GNX debugger. Consult the SPLICE data
sheet for more information.

The GNX debugger also directly supports the Hewlett­
Packard HP64772 NS32532/NS32GX32 in-system
emulator. This combination provides powerful inte­
grated support for high-level source debugging and in­
system emulation of the NS32532 or NS32GX32 proc­
essors.
The Series 32000 development boards and Embed­
ded System Processor evaluation boards used with
the SYS32/30 are specifically designed to assist the
user in evaluating and developing hardware and soft­
ware for embedded systems and the Series 32000
family of CPUs.

~---.~

Functional Description (Continued)

DOS/UNIX INTEGRATION

The SYS32/30 PC add-in development package al­
lows easy transfer of data between DOS and the
UNIX operating system. A system console user can
switch between either operating system using only a
few keystrokes. A shell interface allows DOS com­
mands to be executed from the UNIX shell, UNIX
commands to be executed from DOS, and files to be
transferred between the UNIX and DOS partitions on
the system disk. In addition, the user can suspend the
SYS32/30 operation, enter DOS, run an application,
and then return to the SYS32/30 environment.

Series 32000 Application Development
The SYS32/30 with the PCI AT operates as a local
host computer system for integrating application soft­
ware into target prototype boards containing Series
32000 components. Programs can be written in as­
sembly language or in a higher level language. Option­
al compilers are available for C, FORTRAN 77, and
Pascal.

During compilation, the compilers generate assembly
code which is assembled by the GNX assembler. (See

Figure 3.) The output of the assembler is an object file
which can be linked to other object file and/or librar­
ies, resulting in an executable file.
Since the SYS32/30 provides a Series 32000 native
environment, the executable file may be run on the
host SYS32/30 system or loaded into RAM on either
a target system, an Embedded System Processor
evaluation board or one of the Series 32000 develop­
ment boards. The source-level software debuggers in
the GNX tools provide powerful facilities for debug­
ging software on the target system.

The GNX debugger is capable of downloading and
controlling the execution of software on the target sys­
tem. Executable monitor software is provided in
PROMs in the SYS32/30 package for the Series
32000 development boards and the Embedded Sys­
tem Processor evaluation boards. Monitor software is
also provided in source form in the GNX language
tools so application designers can modify and port the
monitor to suit the needs of their target system.

After debugging, the executable file created by linking
can also be converted to PROM format using the GNX
nburn utility.

TO
TARGET
SYSTEM,

SPLICE, OR
DB BOARD

TL/EE/9420-4

FIGURE 3

5-7

-<
~
W
N
W
o

Configuring a System
The SYS32/30 PC Add-In package supports a variety
of configurations. Based on developer needs, the final
configuration may need extra serial 1/0 ports, and/or
networking capability. A hard disk of sufficient size is
also an important part of the configuration. A configu­
ration guide that outlines available options and recom­
mended products for configuring the SYS32/30 devel­
opment system is available.

Host system elements required for SYS32/30 opera­
tion are:

- IBM PCI AT or compatible system

- Two full length slots in the motherboard

- 512 Kbytes of RAM

- PC-DOS 3.1 or later

- 1.2-Mbyte floppy disk drive

- Adequate hard disk storage (see the next section
on disk size)

Note: The SYS32/30 processor board actually plugs into a single slot.
The second slot is required to accommodate the space taken by
the piggybacked memory board attached to the NS32332 proces·
sor board.

The SYS32/30 PC/AT Add-In Development Package
runs on an IBM PCI AT or compatible computer. If an
IBM PCI AT is not used for the host system, it is impor­
tant to remember that compatibility can vary between
IBM PCI AT compatible systems. The SYS32/30 proc­
essor board may not be adequately supported by sys­
tems that lack full IBM PC/AT compatibility. The con­
figuration guide available contains a list of IBM PCI AT
compatible systems that have the required compatibil­
ity.

HARD DISK CAPACITY

Several factors influence the size selected for a hard
disk. Consideration should include the number of us­
ers for the system, space for user files, the size of the
application to be developed, and extra software pack­
ages and compilers that must reside on the system.

For example, a 50-Mbyte hard disk is the minimum
size recommended for a SYS32/30-based develop­
ment environment. This provides sufficient space for a
single-user account, the UNIX operating system and
utilities, the GNX tools, compiler software, basic DOS
software, and a moderate size application. Disk drives
with even greater capacity than the minimum sizes in­
dicated here should be considered for additional users
or software and to provide for growth of the system.

When selecting hard disk drives or other peripheral
devices, it is important that the device conform to the
industry-standard for peripheral devices designed for
use on the PCI AT bus.

5·8

Basic Kits
The SYS32/30 Add-In Development package is avail­
able in three basic kits:

NSS-SYS30-KIT1 For IBM-AT and compatible
systems

NSS-SYS30-KIT2

NSS-SYS30-KIT3

MEMORY UPGRADE

PC Add-In coprocessor board
with 4 Mbytes on-board memo­
ry
UNIX System V.3 based operat­
ing system
GNX Language Tools
Tools for Documenters
Berkeley Utilities
Installation instructions for the
PC Add-In board
Installation instructions for soft~
ware
UNIX System V.3 reference
manuals and user guides
GNX Language Tools Manuals
Tools For Documenters Refer­
ence Manuals
Berkeley Utilities Manual

Same as KIT1 except with
8 Mbytes of on-board memory

Same as KIT1 except with
16 Mbytes of on-board memory

To upgrade the memory size to 16 Mbytes after the
purchase of KIT1 or KIT2, the following 16-Mbyte
memory board must be purchased to replace the ex­
isting memory board:

NSS-SYS30-MEM16 16-Mbyte memory board.

Optional Software Packages
(A prerequisite for use is the purchase of one of the
above basic kits).

NSW-C-3-BHBF3 Optimizing C Compiler

NSW-F77-3-BHBF3 Optimizing FORTRAN 77 Com-
piler

NSW-PAS-3-BHBF3 Optimizing Pascal Compiler

NSW-NET-BHBF3 Networking software

NSP-SYS32/V3-MS Additional operating system
manual set

rs National Semiconductor

Series 32000® GENIXTM Native and
Cross-Support (GNX) Development Tools

(Version 3)

• Complete software development
environment for Series 32000

• Supports software development on
VAXTM, Sun-3®, and SVS32™
development hosts

• Supports Common Object File Format
(COFF)

• Includes versatile configuration
definition utility

Introduction
The Series 32000 GNX-Version 3 (GENIX Native and
Cross-Support) development tools consist of assem­
bler, linker, debuggers, monitors, basic //0 routines,
libraries, optional high-level language compilers, and
other tools to aid in the development of applications
for the Series 32000 microprocessor family. The GNX
tools allow users to compile, assemble, and link appli­
cation programs to create executable files. These files
can then be executed and debugged on Series 32000-
based development hosts,· such as the SYS32/20 and
SYS32/30, or on a Series 32000-based target board.
After debugging, the executable files can be convert-

5-9

TO
TARGET

TL/EE/l0418-1

iii Includes source code for board-level
monitors

III Includes complete floating-point unit
emulation software

• Supports optional C, FORTRAN 77, and
Pascal optimizing compilers

• Supports SPLICE development tool

ed to binary/hexedecimal files suitable as input to
PROM programmers for burning PROMs.
The Series 32000 GNX development tools are based
on the Common Object File Format (COFF), as devel­
oped by AT&T and enhanced by National Semicon­
ductor Corporation. This allows files developed on dif­
ferent hosts and in different high-level languages to
be easily integrated.

Supported Development Hosts
The Series 32000 GNX development tools are avail­
able hosted for cross-development on the VAX se-

en
CD ...
(i)'
(f)

(,)
N
o
o
o
C)
m z
><
z
D) -~.
D)
::J
C.
o a
(f)
(f)

en
c

"C
"C
o
::s.
Q
z
>< -c
CD
<
CD
0'

"C
3
CD
::J --I o
o
en
<:
CD
~ o·
::J

~

•

~r---~
C")

c
o
'~
Q)

> -en
'0
o
I--c
Q)

E
0.
o

Ci)
>
Q)

c
>< z
~ -... o
0.
0.
:l en
I

en
en o ...
o
'a
C
C'CS
Q)

> :;:
C'CS
Z

~
Z
W

" o o o
N
C")

en
Q)
'i:
Q)
en

Supported Development Hosts (Continued)

SYS32

ar
as
cc

dbg32
f77
gts
Id

lorder
monfix
nburn

nm
pc

size
strip

._---- ..
• libraries are maintained by AR.

TL/EE/10418-2

FIGURE 1. Sample Development Process

TABLE I. Commands for SVS32,
VAX/UNIX, and VAX/VMS

VAX/UNIX VAX/VMS

nar nar
nasm nasm
nmcc nmcc
ncmp ncmp
dbg32 dbg32
nf77 nf77
gts gts

nmeld nmeld
nlorder
monfix monfix
nburn nburn
nnm nnm
nmpc nmpc
nsize nsize
nstrip nstrip

5-10

ries of computers, running the VMSTM, UNIX® (bsd),
and ULTRIX operating systems and on a Sun-3 work­
station running SunOS™. Also supported are National
Semiconductor's SYS32/20 and SYS32/30 develop­
ment environments. Table I summarizes the GNX
commands for each environment.
The SYS32/20 and SYS32/30 PC-Add-In Develop­
ment Packages are complete, high-performance
packages that convert an IBM-PC/ATTM or compati­
ble computer into a powerful multi-user system for de­
veloping applications that use the Series 32000 fami­
ly. The SYS32 systems are based on the Series
32000 processor family; the SYS32/20 includes an
NS32032 Central Processing Unit, and the SYS32/30
is based on the NS32332 CPU. Both the SYS32/20
and SYS32/30 run a derivative of the AT&T System
V.3 UNIX operating system. Because these host sys­
tems are themselves based on the Series 32000 proc­
essor family, application code can be debugged on
the host system without down-loading to target hard­
ware.

Figure 1 illustrates a typical development process.

Tools Components
The GNX Development Tools comprise the following
utilities and support libraries:
Ar

This utility maintains groups of files combined into a
single archive file. Ar is used to create and update
library files as used by the GNX linker Id.
As

The GNX assembler, as, assembles Series 32000 as­
sembly language source programs and generates re­
locatable object modules. Relocatable object modules
must be linked to create executable load modules.
DBG32

DBG32 is an interactive symbolic debugger. It can be
used for remote debugging in conjunction with a host
and any target hardware that includes a Series 32000
GNX monitor. DBG32 allows source-level debugging
and includes an easy-to-use on-line help facility.
Floating-Point Enhancement and
Emulation (FPEE) Library

When a floating-point unit (FPU) is not present, the
floating-point enhancement and emulation (FPEE) li­
brary provides low-cost floating-point support by emu­
lating the Series 32000 FPU instructions. When an
FPU is present, FPEE enhances the FPU by providing
additional functionality as recommended by Draft 10
of the ANSI/IEEE Task 754 Proposal for Binary Float­
ing-Point Arithmetic (IEEE 754). FPEE meets the IEEE
754 standard for double-precision arithmetic.

The FPEE library is provided in source form and as a
binary library suitable for its particular GNX tool-set
environment. The source includes all support routines
necessary to build the FPEE library. The FPEE library

can be configured to enhance/emulate either the
NS32081 FPU or the NS32381 FPU.
GNX Target Setup (GTS)

The GNX tools support the full line of Series 32000
central processing units and peripheral devices,
based on user-defined parameters. The GNX Target
Setup (GTS) utility allows users to easily define the
characteristics of the target system at one time. This
information is saved in a file on the host system, which
is examined each time a GNX utility is invoked. These
parameters are used to tailor the application code to
characteristics of the particular hardware.
GTS operates both interactively and non-interactively
and includes an easy-to-use interface and on-line help
facility.
Ld

The GNX linker, Id, creates executable files by com­
bining object files, providing relocation, and resolving
external references. The linker also processes sym-
bolic debugging information. The linker includes a
powerful directives language, which allows the user to
precisely control the linking process.

Lorder
Lorder finds ordering relations for object libraries. The
input may be one or more object or library archive
(see ar) files. The output of lorder can be processed
to find an ordering of a library suitable for one-pass
access by the linker.

Math Libraries
The math libraries (libm.a and Iib381 m.a) contain stan­
dard math functions that support both the NS32081
and NS32381 floating-point units. These functions are
highly optimized for the Series 32000 architecture.

Table II contains a list of the available math functions.

TABLE II Available Math Functions

acos exp fdrem fmod fpow log1p
acosh exp2 fexp fneg fpstrpvctr log2
asin expm1 fexp2 fp-gmathenv frelation neg
asinh fabs fexpm1 fp-getexptn frem nextdouble
atan facos ffabs fp-getround frint nextfloat
atan2 facosh ffinite fp-gettrap fsin pi
atanh fasin ffloor fp-procentry fsinh pow
bessel fasinh ffmod fp-procexit fsqrt randomx
cabs fatan fhypot fp-smathenv ftan relation
cbrt fcabs finf fp-setexptn ftan2 rem
ceil fcbrt finite fp-setround ftanh rint
compound fceil flog fp-settrap gamma sin
copysign fcompound flog10 fp-testrap hypot sinh
cos fcopysign flog1p fp-tstexptn inf sqrt
cosh fcos flog2 fpgtrpvctrv log tan
drem fcosh floor fpi log10 tanh

Note: All math library functions are prOVided in Single and double precision versions.

5-11

en
CD ...
CD'
t/)

eN
N
o
o
o
G)
m z
><
z
0) -<'
CD
0)
::s
c.
o ...
o
t/)
t/)

en
c::
'C
'C
o ... -G)
Z
~
C
CD
<
CD
0'
'C
3
CD
::s --i
o
o
Ui"
<:
CD
Cil
0'
::s
~

c;)
c
o
"f
~
U)

"0
{!. -c
CD
E
a. o

~ c
>< z
CJ -t::
o a.
a.
::J

~
U)
o ..
(.)

"C
C ca
~
:;:
ca
Z
><
Z
w
CJ
o
o o
N
C")

U)
CD
"i:
CD
U)

Tools Components (Continued)

Monitors

Mon16, mon32, mon332, mon332b, mon532 and
mon32GX are PROM-based firmware monitors for use
on a Series 32000-based development board. The
monitors allow the user to load, execute, and debug
development board programs with the dbg32 debug­
ger running on a host computer system. The monitors
also provide run-time services, such as physical I/O,
interrupt handling, and error handling in the form of
supervisor calls.

Source to each monitor is provided so that it may be
modified, assembled, linked, and installed on other
Series-32000 based target boards.

Monfix

Monflx is a utility that creates a Series 32000 boot­
strap program by modifying a Series 32000 GNX exe­
cutable file.

Nburn

Nburn loads the specified bytes of a file to an EPROM
burner in one of several user-specified formats, includ­
ing ASCII-HEX and S-record.

Nm

The nm utility displays the symbol table of a Series
32000 GNX object file.

Size

The size utility displays size information for each sec­
tion and optional header information of a Series 32000
GNX object file.

Strip

The strip utility strips symbol and line number infor­
mation from a Series 32000 GNX object file.

Optional Compilers
A substantial amount of application code is developed
in a high-level language; therefore, the speed and effi­
ciency of the application are functions not only of
processor speed, but also of quality of code generat­
ed by the high-level language compiler. An inefficient
compiler can extract a significant performance penal­
ty. Likewise, a significant performance improvement
can be achieved for a much lower cost in software
rather than hardware. For this reason. National Semi­
conductor has developed a line of optimizing compil­
ers that generate extremely efficient code for the Se­
ries 32000 architecture.

Each of the optimizing compilers includes the state-of­
the-art GNX optimizer, based on advanced optimiza­
tion theory developed over the past 15 years. In addi­
tion, because all GNX-Version 3 optimizing compilers
use a standard calling sequence, internal intermediate

5-12

representation, and object file format, mixed-language
programming is greatly simplified, aiding in the porting
of existing applications to the Series 32000 architec­
ture.

C Optimizing Compiler
The GNX-Version 3 C Optimizing Compiler fully imple­
ments the C programming language, as defined in The
C Programming Language by B. Kernighan and D. Rit­
chie. The C Optimizing Compiler is also compatible
with the UNIX System V C compiler, derived from the
portable C compiler (pcc). Several features of the
draft ANSI C standard (X3J11) are supported.

FORTRAN 77 Optimizing Compiler

The GNX-Version 3 FORTRAN 77 Optimizing Compil­
er fully implements the FORTRAN 77 programming
language, as defined by the American Standard publi­
cation Programming Language FORTRAN (ANSI
X3.9-1978). In addition, a command-line option is pro­
vided that forces the compiler to accept as input only
programs that adhere to the FORTRAN 66 standard.

Pascal Optimizing Compiler

The GNX-Version 3 Pascal Optimizing Compiler fully
implements the Pascal programming language, as de-

fined by the International Standards Organization
(ISO) standard ISO dp7185 level 1. Several useful
extensions to the Pascal language are supported. A
command-line option is provided that forces the com­
piler to accept as input only programs that adhere to
the ISO standard.

SPLICE Support
The GNX development tools enable the use of the
SPLICE development tool, which can be used to de­
bug software/hardware on a Series 32000 target.
SPLICE provides a communication link between a Se­
ries 32000 target and a development system host that
allows users to down-load and map their software
onto target memory and debug this software using the
dbg32 debugger. The monitor resident on the SPLICE
communicates with dbg32 on the development host.

Source Products
The GNX development tools, as well as the optional
optimizing compilers, are available in source form for
use in porting to other potential development environ­
ments. Source code is provided on a VAX/UNIX bsd
tape. Contact Series 32000 Marketing for more infor­
mation regarding GNX source availability.

Licensing
All binary versions of the Series 32000 GNX develop­
ment tools require the execution of National Semicon­
ductor's binary user agreement. Because the GNX de­
velopment tools contain AT&T proprietary code, a
System V source license is prerequisite for obtaining a
source version of the GNX tools. Contact Series
32000 Marketing for more information regarding spe­
cific licensing issues.

Customer Support
National Semiconductor offers a full 90-day warranty
period. Extended warranty provisions can be arranged
by calling National Semiconductor's Technical Sup­
port Engineering Center at the toll-free number listed
below.

National Semiconductor's Technical Support Engi­
neering Center has highly trained technical specialists
available to assist customers over the telephone with
any product-related technical problems.

For more information, please call (800) 759-0105 (in
the United States and Canada). Outside North Ameri­
ca, please contact your local National Semiconductor
office.

Ordering Information
Supported Host Environments and Order Codes:

SYS32/20:
NSW-ASM-3-BHAF3 (included with SYS32/20 kit)

SYS32/30:
NSW-ASM-3-BHBF3 (included with SYS32/30 kit)

VAX/VMS:
NSW-ASM-3-BRVM

VAX/UL TRIX (UNIX bsd):
NSW-ASM-3-BRVX

Micro VAX/VMS:
NSW-ASM-3-BCVM

5-13

Micro VAX/ULTRIX:
NSW-ASM-3-BCVX

Sun-3:
NSW-ASM-3-BCSX

Each software package is delivered with one copy of
each appropriate manual. Additional manual sets may
be ordered using the following order codes:

NSP-ASM-NX3-MS:
Manual set included with NSW-ASM-3-BHAF3 and
NSW-ASM-3-BHBF3

NSP-ASM-X3-MS:
Manual set included with NSW-ASM-3-BRVX, NSW­
ASM-3-BCVX, and NSW-ASM-3-BCSX

NSP-ASM-M3-MS:
Manual set included with NSW-ASM-3-BRVM and
NSW-ASM-3-BCVM

NSP-C-V3-M:
Manual set delivered with Optimizing C compiler (all
hosts)

NSP-F77-V3-M:
Manual set delivered with Optimizing FORTRAN 77
compiler (all hosts)
NSP-PAS-V3-M:
Manual set delivered with Optimizing Pascal compiler
(all hosts)

For further information regarding National Semicon­
ductor's software development tools and develop­
ment hosts, please refer to the following datasheets:

GNX-Version 3 C Optimizing Compiler

GNX-Version 3 FORTRAN 77 Optimizing Compiler

GNX-Version 3 Pascal Optimizing Compiler

SYS32/20 PC-Add-In Development Package

SYS32/30 PC-Add-In Development Package

SPLICE Development Tool

en
CD
~

(D'
(/)

w
I\)
o
o
o
C)
m
z
><
z
Q) -<'
CD
Q)
::s
c..
o
~

o
(/)
(/) .
en
c
"0
"0
o
:::1-
ei z
>< -c
CD
<
CD
0'
"0
3
CD
::s -c}
o
en
<::
CD
UJ
0'
::s
~

- ~---. tn
o
X
o
N
N
C")

~ ...
o -E
G> -tn

~ -C
G>
E
Q.
o
Q)
i;
c .
tn
tn o ...
o
ca
"C
<
o
o o
N
C")

tn
G> . .:
G>
en

~ National Semiconductor

Series 32000®
Ada Cross-Development System

for SYS32™ 120 Host
SYS32/20 Host

SYS 32/20

Ada Complier

Ada

~

• Series 32000 cross-support development
environment for SYS32/20

• Validated under 1.8 ACVC
• Derived from the VERDIXTM Ada

Development System (VADSTM)
• Complier support for Ada Pragmas and

Representation Attributes
• Comprehensive Support Services

available from National

Product Overview
The Series 32000 Ada cross-compiler supports full
Ada language program development on National's
SYS32/20 host and is part of National's Validated
Ada Development Environment (NVADE). NVADE
provides a high performance Ada compiler that sup­
ports all required features of the Ada language and is

5-14

lHlS PRODUCT CONFORMS
TO ANSIjl.fl-STD';' 1815A AS

DEJIRMINED BY lHE AJPO
UNDER ITS CURRENT

1ES1tlG PROCEDURES

TL/GG/9307-2

• Generates GNXTM Common Object File
Format (COFF)

• Debugging Tools
• Program Generation Utilities
• SPLICE support
• Extensive Ada Library Management

Utilities
• Run-time system to support bare-board

environment
• Ada VRTX® Interface Package (Optional)
• Source to Ada Run-Time System

(Optional)

fully compliant with ANSI/MIL-STD-181 SA. NVADE
also provides a comprehensive set of tools specifical­
ly tailored to provide the optimum Ada Programming
Support Environment (APSE) for a host of application
development.

Product Overview (Continued)

The SYS32/20 Development system includes a high­
performance add-in card that converts an IBM-PCI AT
or compatible system into a Series 32000-based de­
velopment environment.

Once compiled, the Ada program will execute on ei­
ther a Series 32000 development board or a customer
target board. This "production quality" Ada compiler
focuses on high performance, and is intended for
large-scale development of real~time, embedded con­
trol, or training simulator software applications. The
Series 32000 Ada Cross-Development System in­
cludes the Ada compiler, program library utilities, pro­
gram generation utilities, library management and a
complete run-time system. This product directly inter-

faces with GNX language tools provided with the
SYS32/20 system, including GNX linker, DBG and
IDBG debuggers, library management tools and other
utility programs.

The Series 32000 Ada Cross-Development System
has been engineered and deSigned to run under
OPUS5, the SYS32/20 Operating System derived
from AT&T's UNIXTM System V. Therefore, rather
than learning a new operating system, the program­
mer can immediately concentrate on Ada program de­
velopment. To aid the user, complete on-line manual
entries are provided. These can be configured to use
either the UNIX man utility or a separate interactive
help command, supplied with the product.

Series 32000 Ada Cross-Development System for SYS32/20 Host

SYS32/20
Host

(IBM PC/AT)

DEBUGGING
TOOLS

TL/GG/9307-3

5-15

en
CD

'"' (D'
en
w
N
o
o
o
» c.
Co)

o
'"' o en en
6
CD
<
CD
0'
'C
3
CD
::s -en
~ -CD
3 -o
'"' en
Cii
w
N
N o
:c
o en -

•

_ r---~
til

~ NVADE Components
o
N
N
C")
U)

>
U) ...
o -E
Q) -til
~ -c
Q)

E
c.
o

CG
a>
c .
til
til

2
o
m

"C «
o o o
N
C")

til
Q)

".::
Q)
U)

Ada Complier

The Ada Compiler accepts as input Ada source and
generates Series 32000 code that can be downloaded
to, and executed on, a Series 32000-based target de­
velopment board .

The Series 32000 Ada Compiler supports the full Ada
language. Features include shared or unshared gener­
ics, separates, in-lines, bit representation, machine­
code insertion, monitor tasks and terminal 1/0. The
compiler generates GNX COFF (Common Object File
Format) object files that can be linked with object files
generated by other GNX compilers. The Ada compiler
performs several optimizations, including value-track­
ing global register allocation, register assignment for
commons and locals, common sub-expression remov­
al, branch and dead code analysis, some constraint
check removal, and local peephole optimizations. The
Ada compiler operates as a re-entrant shareable pro­
cess in the SYS32/20 host system, allowing the com­
piler to make full use of most operating system facili­
ties.

In addition, the Ada compiler provides features to aid
in the development of real-time, embedded control
and training simulator software applications. Some of
these include Ada Pragmas as specified in Chapter 13
of the Ada Language Reference Manual (LRM), such
as: Inline, Interface, Interface_Object, Pack, Page,
Priority, Share_Body, and Suppress. Also included is
a Machine Code Package which provides an interface
for handling machine code insertion and generics (Un­
checked_Deallocation and Unchecked_Conversion)
for controlling storage and type conversions.

Program Generation Utilities
An Ada make utility, similar in operation to that found
in the UNIX operating system, is provided to simplify
program compilation by maintaining program unit de­
pendancy information. This utility determines which
files must be recompiled to produce a current execut­
able file. This utility can also be used to ensure that
the named unit is up-to-date, recompiling dependen­
cies as necessary. Also provided is a source code for­
matter, easily configurable for individual Ada coding
standards.

Program Library Utilities
The Ada language imposes stringent requirements on
an Ada Program Library. While the language provides
for separate compilation of program units, each unit is
compiled in the "context" of previously compiled
units. The compiler must have access to this context,
and the context must be carefully organized in the
form of a Program Library. This library has been de­
signed to enhance the compiler performance. A set of
utilities is provided to manage, manipulate, and dis­
play Program Library information.

5-16

In addition, the Series 32000 Ada Cross-Development
System permits Ada Program Libraries to be hierarchi­
cally organized, so that units not local to one library
can be found in other libraries. Thus, programmers
can work without interference on local versions of indi­
vidual program units, while retrieving the remainder of
the program from higher-level libraries.

NVADE also uses DIANA (Descriptive Intermediate
Attributed Notation for Ada), which generates an inter­
mediated representation for each unit. DIANA pro­
vides a tree-structured representation of an Ada pro­
gram encoding the complete syntactic and semantic
information of each individual Ada unit. The presence
of DIANA as an integrated mechanism makes possi­
ble powerful editing, debugging and program query fa­
cilities, thus providing the means for simple and effi­
cient incremental compilation.

Oebuggers

The standard GNX debugger, DBG32, is used with the
Series 32000 Ada Cross-Development System.
DBG32 can be used to debug code on the SYS32/20
host andlor to download and remotely debug or exe­
cute code on a Series 32000 development board.
DBG32 supports the use of National's SPLICE soft­
ware debugging tool. Machine-level debug support is
provided by the debugger.

Linker

Ada object files are linked by the standard GNX linker,
which is called by the Ada compiler pre-linker. The
GNX linker resolves references between object files
and library routines and assigns relocated addresses
to produce Series 32000 executable code.

Ada Run-Time System

The Series 32000 Ada Run-time System provides
comprehensive support for tasking, debugging, excep­
tion handling and input! output.

The Run-time System is linked with the user's gener­
ated Ada program. To facilitate resource utilization ef­
ficiency, major portions of the Run-time System have
been optimized. Run-time source for customization is
also available.

Ada-VRTX Interface Package (Optional)

The Ada Run-time System includes a large, rich, and
elegant tasking system. VRTX (the Versatile Real­
Time Executive) provides a small, simple, compact
and fast tasking system and may be a preferred alter­
native to using the Ada Run-time System, particularly
for embedded microprocessor applications where
space and timing are critical. The Ada-VRTX interface
package (AVIP) offers Ada language users a conve­
nient means of interfacing with VRTX. AVIP allows
Ada programmers the ability to call any VRTX service
from their Ada program. (The exceptions are

~--~m

Program Library Utilities (Continued)

Series 32000 Ada Cross-Development System for SYS32/20 Host
NVADE Modules and Run-Time Environment

SERIES 32000
Ada CO~PILER

calls provided for the user-defined interrupt handlers
and partition create and extend.) The actual opera­
tions performed by VRTX are identical in both assem­
bly language and Ada. Thus, this package gives users
both the elegant features of the Ada language and
VRTX's unique tasking system.

Pre-Requisites

- SYS32/20 KIT (KIT 2 is recommended) installed
on an IBM PC/AT

- DB32000, DB332-PLUS target development sys­
tem board with power supply

- 60 mbyte hard disk capacity (minimum)

- IBM PCI AT with 1.2 mbyte floppy drive or IBM
PCI AT with Tape Cartridge Unit

- A minimum of one available serial port

Supported Hardware/Software

- SYS32/20 HOST

- SYS32/20 Operating System (OPUS5)
- DB32000, DB332-PLUS target development sys-

tem board with power supply

- In-System Emulator

- SPLICE"

5-17

TLIGG/9307-1

Shipping Package

- Series 32000 Installation Instructions and Release
Letter

- SYS32/20 Cartridge tape or high density floppy
diskettes

- Ada Language Reference Manual (ANSIIMIL-STD
1815A)

- Ada Compiler and support tools documentation

Ordering Information
- NSW-Ada-BHAF Ada Cross-Development System,

binary high density diskettes, SYS32/20
- NSW-Ada-BCAF Ada Cross-Development System,

binary cartridge tape, SYS32/20

- NSW-ARTS-SHAF Ada Run-time System, source,
high density diskettes, SYS32/20

- NSW-ARTS-SCAF Ada Run-time System, source,
cartridge, SYS32/20

- NSW-AVIP-BHAF Ada-VRTX-Interface Package,
Binary high density diskettes, SYS32/20

- NSW-AVIP-BCAF Ada-VRTX-Interface Package,
Binary Cartridge tape, SYS32/20

- NSP-Ada-MS Manual set for the Ada Development
System

(1) ...
(i)'
en
eN
~
o
o
o
»
Co
D)

o
a
en en
6
(1)

<
(1)

0"
'C
3
(1)
::s -m
~ -(1)

3 -o ...
m
-< m
eN
~
~ o
:t
o en -

_ r---~
U)
o
:t:
tJ)

::E
>
><
~ ...
o -E
CI) -U)

~ -c
CI)

E
C­
O
Q)

~
C .
U)
U)
o ...
o
ca

"CS
c:a::
o
o
o
N
C")

U)
CI)
'Ii:
CI)
tJ)

[I National Semiconductor

Series 32000®
Ada Cross-Development System

for V AX™ IVMSTM Host

VAX/VMS Host Environment

Ada Complier --­D

• Series 32000 cross-support development
environment for VAX/VMS host

• Validated under 1.8 ACVC

• Runs under VAX/VMS 4.4 Operating
Systems and future revisions of VMS

• Derived from the VERDIXTM Ada
Development System (VADSTM)

• Compiler Support for Ada Pragmas and
Representation Attributes

• Comprehensive Support Services
available from National

Product Overview
The Series 32000 Ada cross-compiler supports full
Ada language program development on Digital Equip­
ment Corporation's VAX/VMS hosts and is part of Na­
tional's Validated Ada Development Environment
(NVADE). NVADE provides a high performance Ada
compiler that supports all required features of the Ada

5-18

•
• • •
•
• • •

lHlS PRODUCT CONFORf.4S
TO ANSIfi,lIL-SlD-1815A AS

DETERf.4INED BY lHE AJPO
UNDER ITS CURRENT

lESllNG PROCEDURES

VAX 11/750-
89 XX

TLlGG/9364-1

Generates GNXTM Common Object File
Format (COFF)
Program Generation Utilities
SPLICE support
Extensive Ada Library Management
Utilities
Run-time system to support bare-board
environment
Debugging Tools
Ada VRTX® Interface Package (Optional)
Source to Ada Run-Time System
(Optional)

language and is fully compliant with ANSI/
MIL-STD-1815A. NVADE also provides a comprehen­
sive set of tools specifically tailored to provide the op­
timum Ada Programming Support Environment
(APSE) for host application development.

~--'W

Product Overview (Continued)

Once compiled, the Ada program will execute on ei­
ther a Series 32000 development board or a customer
target board. This "production quality" Ada compiler
focuses on high performance, and is intended for
large-scale development of Series 32000 real-time,
embedded control, or training simulator software ap­
plications. The VAX/VMS Ada Cross-Development
System includes the Ada compiler, program library
utilities, program generation utilities, library manage­
ment utilities and a complete run-time system. This

product directly interfaces with VAX/VMS GNX lan­
guage tools provided, including GNX linker, DBG and
IDBG debuggers, library management tools and other
utility programs.
The VAX/VMS Ada Cross-Development System has
been engineered and deSigned to run under VAX/
VMS 4.4 or later Operating Systems. Therefore, rather
than learning a new operating system, the program­
mer can immediately concentrate on Ada program de­
velopment.

Series 32000 Ada Cross-Development System for VAX/VMS Host

VAX/VMS
Host

DEBUGGING
TOOLS

TL/GG/9364-2

5-19

CD
(1)'
en
w
N
o
o
o
:t:­o.
D)

o
o
en
en
6
CD
<
CD
0'

"C
3
CD
::J -W
'< en -CD
3 -o
~
><
< s:
W
::I:
o
en -

-~--~----------------------------------~ en
o
::t:
(J)
::E
>
><
~ ...
o -E
Q)

~ -c
Q)

E
a. o

~
c
~ e
o
cu

"C
<I:
o
o
o
N
Cf)

(I)
Q)
'i:
Q)

tJ)

NVADE Components
Ada Complier

The Ada Compiler accepts as input Ada source and
generates Series 32000 code that can be downloaded
to, and executed on, a Series 32000-based target de­
velopment board.

The Series 32000 Ada Compiler supports the full Ada
language. Features include shared or unshared gener­
ics, separates, in-lines, bit representation, machine­
code insertion, interrupt tasks, monitor tasks and
terminal I/O. The compiler generates GNX COFF
(Common Object File Format) object files that can be
linked with object files generated by other GNX com­
pilers. The Ada compiler performs several optimiza­
tions, including value-tracking global register alloca­
tion, register assignment for commons and locals,
common sub-expression removal, branch and dead
code analysis, some constraint check removal, and
local peephole optimizations. The Ada compiler oper­
ates as a re-entrant shareable process in the VAX/
VMS host system, allowing the compiler to make full
use of most operating system facilities.

In addition, the Ada compiler provides features to aid
in the development of real-time, embedded control,
and training simulator software applications. Some of
these include Ada Pragmas as specified in Chapter 13
of the Ada Language Reference Manual (LRM), such
as: Inline, Interface, Interface_Object, Pack, Page,
Priority, Share_Body and Suppress. Also included is
a Machine Code Package which provides an interface
for handling machine code insertion and generics (Un­
checked_Dealiocation and Unchecked_Conversion)
for controlling storage and type conversions.

Program Generation Utilities

An Ada make utility, similar in operation to that found
in the UNIX® operating system, is provided to simplify
program compilation by maintaining program unit de­
pendency information. This utility determines which
files must be recompiled to produce a current execut­
able file. This utility can also be used to ensure that
the named unit is up-to-date, recompiling dependen­
cies as necessary. Also provided is a source code for­
matter, easily configurable for individual Ada coding
standards.

5-20

Program Library Utilities

The Ada Language imposes stringent requirements on
an Ada Program Library. While the language provides
for separate compilation of program units, each unit is
compiled in the "context" of previously compiled
units. The compiler must have access to this context,
and the context must be carefully organized in the
form of a Program Library. This library has been de­
Signed to enhance the compiler performance. A set of
utilities is provided to manage, manipulate, and dis­
play Program Library information.

In addition, the Series 32000 Ada Cross-Development
System permits Ada Program Libraries to be hierarchi­
cally organized, so that units not local to one library
can be found in other libraries. Thus, programmers
can work without interference on local versions of indi­
vidual program units, while retrieving the remainder of
the program from higher-level libraries.

NVADE also uses DIANA (Descriptive Intermediate
Attributed Notation for Ada), which generates an inter­
mediated representation for each unit. DIANA pro­
vides a tree-structured representation of an Ada pro­
gram encoding the complete syntactic and semantic
information of each individual Ada unit. The presence
of DIANA as an integrated mechanism makes possi­
ble powerful editing, debugging and program query fa­
cilities, thus providing the means for simple and effi­
cient incremental compilation.

Debuggers

The standard GNX debugger, DBG32, is used with the
Series 32000 Ada Cross-Development System.
DBG32 can be used to debug code on the VAX host
and/ or to download and remotely debug or execute
code on Series 32000 development board. DBG32
supports the use of National's SPLICE software de­
bugging tool. Full machine-level debug support is pro­
vided by the debugger.

Linker

Ada object files are linked with the standard GNX link­
er, which is called by the Ada compiler pre-linker. The
GNX linker resolves references between object files
and library routines and assigns relocated addresses
to produce Series 32000 executable code.

NVADE Components (Continued)

SerIes 32000 Ada Cross-Development System for VAX/VMS Host
NVADE Modules and Run-TIme EnvIronment

Ada Run-TIme System

SERIES 32000
Ada COMPILER

The Series 32000 Ada Run-Time System provides
comprehensive support for tasking, debugging, excep­
tion handling and input! output.

The Run-Time System is linked with the user's gener­
ated Ada program. To facilitate resource utilization ef­
ficiency, major portions of the Run-Time System have
been optimized. Run-Time source code for customiza­
tion is also available.

Ada-VRTX Interface Package (Optional)

The Ada Run-Time System consists of a large, rich
and elegant tasking system. VRTX (the Versatile Real­
Time Executive) provides a small, simple, compact
and fast tasking system and may be a preferred alter­
native to using the Ada Run-Time System, particulary
for embedded microprocessor applications where
space and timing are critical. This Ada-VRTX interface
package (AVIP) offers Ada language users a conve-

5-21

TL/GG/9364-3

nient means of interface with VRTX. AVIP allows Ada
programmers the ability to call any VRTX service from
their Ada program. (The only exceptions are the calls
provided for user-defined interrupt handlers and for
partition create and extend.) The actual operations
performed by VRTX are identical in both assembly
language and Ada. Thus, this package gives users
both the elegant features of the Ada language and
VRTX's unique tasking system.

PRE-REQUISITES

- VAX/VMS Host Computer 750-89XX

- VMS Operating System

- VAX/VMS GNX Assembler Package

Supported Hardware/Software

- All VAX/VMS computers

- 0832000, 08332-PLUS, VME532 target develop-
ment system board with power supply

en
(I) -.
CD'
en
~
N
o
o
o
l> c.
Q)

o -. o
en
en
6
(I)

<
(I)

0'
"C
3
(I)
::s -en
'< en -(I)

3 -o -.

~
><
.........
<
3: en
:I:
o
en -

II

~ r---~

o
::J:
(J)

:e
>
><
~ ...
o -E
Q)

~
~ -c
Q)

E
a. o
'i)
>
Q)

Q
I en en o ...

o
ca
'tI
<
o o o
N
('f)

en
Q)
'C
Q)

(J)

NV ADE Components (Continued)

Shipping Package

- Series 32000 Installation Instructions and Applica­
tions Notes

- 1600 bpi magnetic tape (9-track VMS copy format)
- Ada Language Reference Manual

(ANSI/MIL-STD 1815A)

- Ada Compiler and support tools documentation

Ordering Information
Part Number

NSW-Ada-BRVM-1

NSW-Ada-BRVM-2

NSW-Ada-BRVM-3

NSW-Ada-BRVM-4

NSW-Ada-BRVM-5

Binary Ada Cross Oev. System
Tape, Vax-11I7S0, 11/780,
82XX

Binary Ada Cross Oev. System
Tape, Vax-11178S, 83XX

Binary Ada Cross Dev. System
Tape, Vax-8500, 8530, 8600

Binary Ada Cross Dev. System
Tape, Vax-85S0, 8650,8700

Binary Ada Cross Dev. System
Tape, Vax-88XX, 89XX

NSW-AVIP-BRVM-1 Binary Ada VRTX Int. Pckg.
Tape, Vax-111750, 11/780,
82XX

5-22

NSW-AVIP-BRVM-2 Binary Ada VRTX Int. Pckg.
Tape, Vax-111785, 83XX

NSW-AVIP-BRVM-3 Binary Ada VRTX Int. Pckg.
Tape, Vax-8500, 8S30, 8600

NSW-AVIP-BRVM-4 Binary Ada VRTX Int. Pckg.
Tape, Vax-8550, 8650, 8700

NSW-AVIP-BRVM-S Binary Ada VRTX Int. Pckg.
Tape, Vax-88XX, 89XX

NSW-ARTS-SRVM-1 Source Ada RUNTIME SYS­
TEM Tape, Vax-11I7S0,
111780, 82XX

NSW-ARTS-SRVM-2 Source Ada RUNTIME SYS­
TEM Tape, Vax-111785, 83XX

NSW-ARTS-SRVM-3 Source Ada RUNTIME SYS­
TEM Tape, Vax-8500, 8530,
8600

NSW-ARTS-SRVM-4 Source Ada RUNTIME SYS­
TEM Tape, Vax-8550, 8650,
8700

NSW-ARTS-SRVM-S Source Ada RUNTIME SYS­
TEM Tape, Vax-88XX, 89XX

NSP-Ada-VMS Additional Manual Sets for
VAX/VMS Ada Development
System

~ National Semiconductor PRELIMINARY

Series 32000® GNX-Version 3
C Optimizing Compiler

C

EJ Generates high-quality code for the
Series 32000 architecture

iI Implements the C Language as defined
by B. Kernighan and D. Ritchie in The C
Programming Language

II Uses state-of-the-art optimization
techniques

1.0 Introduction
A substantial amount of application code is developed
in a high-level language. Therefore, the speed and ef­
ficiency of the application are functions not only of
processor speed, but also of quality of code generat­
ed by the high-level language compiler. An inefficient
compiler can extract a significant performance penal­
ty. Likewise, a significant performance improvement
can be achieved for much lower cost in software rath­
er than hardware. For this reason, National Semicon­
ductor has developed a line of optimizing compilers
that generate extremely efficient code for the Series
32000 architecture.

1.1 Product Overview

The Series 32000 GNX-Version 3 C Optimizing Com­
piler is a member of National Semiconductor's opti­
mizing compiler family, which also includes compilers
that support the Pascal and FORTRAN 77 program­
ming languages. Because all three optimizing compil­
ers use a standard calling sequence, internal interme­
diate representation, and object file format, mixed-lan­
guage programming is greatly simplified. The ability to
use mixed-language programming simplifies the port­
ing of pre-existing applications and code reuse. A de­
tailed discussion of mixed-language programming is
presented in the GNX-Version 3 C Optimizing Compil­
er Reference Manual.

The C Optimizing Compiler fully implements the C
Language, as defined by B. Kernighan and D. Ritchie.

5-23

Code
Generator

Assembly
Code

TL/EE/l0363-1

• Supports mixed-language programming
• Includes a complete run-time C library

and highly optimized math library
• Incorporates many draft-proposed ANSI

C standard (X3J11) features
• Compiles under UNIX®, ULTRIXTM, and

VMSTM operating systems

The C Optimizing Compiler is also compatible with the
UNIX SysUem V C compiler, derived from the fully por­
table C compiler (pcc). Several features of the draft
ANSI C standard (X3J11) are supported.

The input to the C Optimizing Compiler is a C lan­
guage source program. The output, controlled by
command-line options, is either a Series 32000 exe­
cutable module, a Series 32000 object module, or Se­
ries 32000 assembly code.

1.2 Native and Cross-Support

The GNX-Version 3 C Optimizing Compiler is available
hosted as a cross-support compiler on the VAXTM se­
ries of computers, running the VMS, UNIX (bsd), and
UL TRIX operating systems and on a Sun-3® worksta­
tion running SunOS™. Also supported are National
Semiconductor's SYS32TM/20 and SYS32/30 devel­
opment environments.

1.3 GNX Development Tools

The GNX-Version 3 C Optimizing Compiler is an inte­
gral component of the GNX Cross-Development tool
set. The GNX-Version 3 Assembler Package includes
the Series 32000 assembler, the GNX linker, debug­
gers, libraries, and development board monitors. The
GNX-Version 3 Assembler Package is a prerequisite
for the GNX-Version 3 C Optimizing Compiler. See the
GNX- Version 3 Development Tools Datasheet for
more information on the GNX Tools.

en
(1) ... C;;.
en
w
I\)
o
o
o
c;)
Z
~
~ ... en o·
::J
W
o
o
"C -3·
N·
s·

CQ

o o
3

"'2.
CD ...

~ ~--~
.!!:!
's,
E
o
o
CJ)
c
'N
'E .. c.. o
o
C")

c
o
'~

~
>< z
CJ
o
o o
N
C")

rn
Q)
'i:
Q)
U)

1.0 Introduction (Continued)

The SYS32/20 and SYS32/30 PC-Add-In Develop­
ment Packages are complete, high-performance
packages that convert an IBM®-PCTM/AT or compati­
ble computer into a powerful multi-user system for de­
veloping applications that use the Series 32000 fami­
ly. The SYS32 systems are based on the Series
32000 processor family; the SYS32/20 includes an
NS32032 Central Processing Unit, and the SYS32/30
is based on the NS32332 CPU. Both the SYS32/20
and SYS32/30 run a derivative of the UNIX System
V.3 operating system. Because these host systems
are themselves based on the Series 32000 processor
family, application code can be debugged on the host
system without down-loading to target hardware.

2,0 Compiler Structure
The C Optimizing Compiler is a modular language
processor consisting of five separate programs: the
driver, the macro preprocessor (cpp), the parser (front
end), the optimizer, and the code generator.

2.1 The Driver

The driver is a program that parses and interprets the
command line and, in turn, sequentially calls each of
the other programs, based on its input and the com­
mand-line options invoked. Under the UNIX operating
system, the assembler and linker are also automati­
cally invoked by the driver as required; under VMS,
the assembler is invoked by the driver, and linking is
done at the command line.

2.2 The Macro Preprocessor (cpp)

The macro preprocessor is the standard C preproces­
sor, known as cpp. The macro preprocessor's input is
the C source program with preprocessor macros; its
output is processed C code, with all preprocessor
commands expanded and transformed as necessary.
The macro preprocessor can be used to define con­
stants, insert text from another file, or conditionally
include or exclude source code from compilation
based on a testable condition.

2.3 The C Language Parser (front end)

The front end of the C Optimizing Compiler is derived
from the UNIX portable C compiler (pcc), with bug fix­
es and extensions included. The front end's input is C
source code; its output is an intermediate representa­
tion that can be passed either to the optimizer or the
code generator.
Among the extensions implemented in the front end
are:

• Unsigned constants

• Enumerated types
• Improved structure manipulation; structures can be

assigned, passed as parameters to functions, and
returned by functions. Structure and union member
names can be reused in other structures and un­
ions in the same module. No limit is imposed on the
size of structures.

5-24

• Void data type
• Signed and unsigned bitfields
• Volatile type; variables can be declared as type

volatile to make them inaccessible to the optimiz­
er. This is useful for mapping to external devices.

• Const keyword
The void, volatile, and const extensions conform to
ANSI C standard (X3J11) features.

The output of the front end is a proprietary intermedi­
ate representation that can be either used as input to
the optional optimizer phase or passed directly to the
code generator. This intermediate language, known
as IR32, is an attributed tree-structured representa­
tion. IR32 is completely high-level language indepen­
dent; all of the GNX optimizing compilers produce the
same internal representation. This allows a common
back end to be shared by all GNX optimizing compil­
ers.

2.4 The Optimizer

The state-of-the-art GNX optimizer is based on ad­
vanced optimization theory developed over the past
15 years. Depending on the compiler and application
code characteristics, the GNX optimizer improves
code performance from 15 to 200 percent beyond that
of other compilers.

The GNX-Version 3 C optimizer is the most innovative
component of the GNX Optimizing Compilers. The op­
timizer's input is an IR32 intermediate representation
file; its output is an optimized IR32 file. The optimiza­
tion pass is optional.

Unlike many other optimizers that are local in nature,
optimizations are performed across the whole pro­
gram by using sophisticated global-data-flow analysis.

The optimization process can be thought of as a five­
step sequence. The sequence of optimizations has
been carefully chosen to ensure that each optimiza­
tion is performed to maximum effect and to provide
more opportunities for later optimizations. These
steps are as follows:

Step One-Local Optimizations

The source program is read-in one procedure at a
time. A procedure is then partitioned into basic blocks:
sequences of code that have branches only at entry
or exit. Optimizations performed at this stage include:

• Value Propagation-replacing variables with their
most recent values

• Constant Folding-evaluating expressions that
consist solely of constants

• Redundant Assignment Elimination-eliminating
assignments that are not used or that are reas­
signed prior to use

2.0 Compiler Structure (Continued)

The relationships between the various optimizations
are illustrated as follows:

The program Sequence

a = 4;
if (a*8 < 0) b = 15;

else b = 20;

••• code which uses b but
not 8 •••

is translated by the compiler front end into the fol­
lowing intermediate code

a~4

if (a*8 >= 0) goto Ll
b~15

goto L2
Ll: b ~ 20

L2:
which is transformed by "value propagation" into

a~4

if (4*8 >= 0) goto Ll
b~15

goto L2
Ll: b ~ 20

L2:
which after "constant folding" becomes

a~4

if (true) goto Ll

b~15

goto L2
Ll: b~ 20

L2:
"dead code removal" results in

a~4

goto Ll

. Ll: b~20

L2:
which is transformed by another "flow optimiza­
tion" into

a~4

b~20

Since there is no further use of a, a ~ 4 is a "re­
dundant assignment:"

b~20

Step Two-Flow Optimizations

A flow graph is constructed. Each basic block is a
node in the graph, with "arrows" drawn to represent

5·25

program flow. Optimizations performed at this stage
include:

• Branch Elimination-branches to branches are
removed. Code may be reordered to eliminate
branches.

• Dead Code Removal-code that will never be ex­
ecuted is removed.

The following diagram is an example of a flow graph:

TL/EE/10363-2

Step Three-Global-Data-Flow Analysis

Global-data-flow analysis is a process that identifies
desirable global code transformations that can speed
code execution. Since studies have shown that most
programs spend 90 percent or more of their time in
loops, particular attention is paid to transformations
that allow loops to execute faster. This involves sever­
al techniques:

• Fully Redundant Expression Elimination-Ex­
pressions that are computed twice on the same
path are instead computed only once, with the re­
sult saved, usually in a register.

• Partially Redundant Expression Elimination-If
a path exists that contains a computation and a
path exists that does not contain a computation,
the computation is placed in each path. This makes
the expression fully redundant, allowing it to be
eliminated.

• Loop Invariant Code Motion-Values that are
computed repeatedly inside of a loop are instead
computed outside the loop and the result saved.

• Strength Reduction-Complex instructions are
replaced by simpler substitutes (i.e., multiplications
may be replaced with a sequence of additions).

• Induction Variable Elimination-Variables that
maintain a fixed relation to other variables are re­
placed.

Step Four-Register Allocation

Register allocation is the process of placing variables
in registers rather than main memory, allowing much
faster access times. Proper allocation of registers can
lead to significant improvement in execution speed.
Most optimizing compilers attempt register allocation
for local variables, to avoid problems caused by "ali­
asing," or referring to a variable in more than one way.
By using a sophisticated algorithm, the GNX-Version 3
C Optimizing Compiler considers nearly all variables
as candidates for register allocations.

en
CD
(D'
en
(,.)
N
o
o
o
G)
Z
~
<
CD en o·
::l
(,.)

o
o

"t:J -3'
N'
:;'
cc
o o
3
"2.
(j)

~ r---~
.!!!
"is.
E
o
o
C)
c
"N
"e
~ c. o
o
C")

c
o

"i?!
CI)

> • ><
Z

" o
o o
C\I
C")

en
CI)
"i:
CI)

en

2"0 Compiler Structure (Continued)

The algorithm used by the optimizer is called the col­
oring algorithm, derived from graph theory. The "live
range" of each variable is constructed. The live range
is the program path along which a variable has a val­
ue; assignment to a variable generally starts a new
live range, which terminates with the last use of that
value. Two variables that do not have intersecting live
ranges can share a register. More frequently used
variables are given priority for register allocation. In
this way, maximum usage can be made of the regis­
ters. Other optimizations performed at this stage are:
• Allocation Of Safe And Scratch Registers-By

convention, registers RO through R2 and FO
through F3 are considered "scratch" registers;
their values are not retained across procedure
calls. Usage of these registers can reduce over­
head of procedure calls.

• Register Parameter Allocation-For static rou­
tines, parameters are passed in registers whenever
possible.

Step Flve-Code Rewrite

Code is rewritten in IR32 to be passed to the code
generator. Code is reorganized where necessary to
increase performance.

2.5 The Code Generator

The code generator's input is an IR32 file; its output is
assembly code that can be assembled by the GNX
assembler into an object module.
The code generator matches expression trees with
optimal code sequences. Several "peephole" opti­
mizations are performed by the code generator: fur­
ther reduction of arithmetic identities, stack and frame
alignments, and strength reductions.
In addition, the target CPU and FPU are taken into
consideration when code is produced. Sequences of
code are chosen based on the characteristics of the

target processor specified by the user. This further in­
creases code efficiency.

3.0 Ordering Information
Supported Host Environments and Order Codes:

SYS32/20: MlcroVAX/VMS:
NSW-C-3-BHAF3 NSW-C-3-BCVM
SYS32/30: MlcroVAX/UL TRIX:
NSW-C-3-BHBF3 NSW-C-3-BCVX

VAX/VMS: Sun-3:
NSW-C-3-BRVM NSW-C-3-BCSX
VAX/ULTRIX (UNIX bsd):
NSW-C-3-BRVX

GNX-Version 3 Assembler and Cross-Development
tools (required for use with the Optimizing C Compil­
er):

SYS32/30:

SYS32/30:

VAX/VMS:
VAX/ULTRIX
(UNIX bsd:)

NSW-ASM-3-BHAF3 (provid­
ed with SYS32/20 system)
NSW-ASM-3-BHBF3 (provid­
ed with SYS32/30 system)
NSW-ASM-3-BRVM

NSW-ASM-3-BRVX
MicroVAX/VMS: NSW-ASM-3-BCVM
MicroVAX/UL TRIX: NSW-ASM-3-BCVX
Sun-3: NSW-ASM-3-BCSX

For further information regarding National Semicon­
ductor's software development tools and develop­
ment hosts, please refer to the following datasheets:

5-26

GNX-Version 3 Development Tools
GNX-Version 3 FORTRAN 77 Compiler
GNX-Version 3 Pascal Compiler
SYS32/20 PC-Add-In-Development Package
SYS32/30 PC-Add-In-Development Package

,--, m
~ National Semiconductor PRELIMINARY

Series 32000® GNX-Version 3
FORTRAN 77 Optimizing Compiler

FORTRAN 77

• Generates high-quality code for the
Series 32000 architecture

• Implements the FORTRAN 77 Language
as described by the American Standard
publication Programming Language
FORTRAN (ANSI X3.9-1978)

• Uses state-of-the-art optimization
techniques

1.0 Introduction
A substantial amount of application code is developed
in a high-level language. Therefore, the speed and ef­
ficiency of the application are functions not only of
processor speed, but also of quality of code generat­
ed by the high-level language compiler. An inefficient
compiler can extract a significant performance penal­
ty. Likewise, a significant performance improvement
can be achieved for much lower cost in software rath­
er than hardware. For this reason, National Semicon­
ductor has developed a line of optimizing compilers
that generate extremely efficient code for the Series
32000 architecture.

1.1 Product Overview

The Series 32000 GNX-Version 3 FORTRAN 77 Opti­
mizing Compiler is a member of National Semiconduc­
tor's optimizing compiler family, which also includes
compilers that support the C and Pascal programming
languages. Because all three optimizing compilers use
a standard calling sequence, internal intermediate
representation, and object file format, mixed-language
programming is greatly simplified. The ability to use
mixed-language programming simplifies the porting of
pre-existing applications and code reuse. A detailed
discussion of mixed-language programming is pre­
sented in the GNX-Version 3 FORTRAN 77 Optimiz­
ing Compiler Reference Manual.

The FORTRAN 77 Optimizing Compiler fully imple­
ments the FORTRAN 77 programming language, as

5-27

Code
Generator

Assembly
Code

TLlEE/10362-1

• Supports mixed-language programming
• Includes complete FORTRAN intrinsic

function and 1/0 libraries
• Implements many extensions to

standard FORTRAN 77
• Compiles under UNIX®, ULTRIXTM, and

VMSTM operating systems

defined by the American Standard publication Pro­
gramming Language FORTRAN (ANSI X3.9-1978). In
addition, a command-line option is provided that
forces the compiler to accept as input only programs
that adhere to the FORTRAN 66 standard.

The input to the FORTRAN 77 Optimizing Compiler is
a FORTRAN 77 language source program. The out­
put, controlled by command-line options, is either a
Series 32000 executable module, a Series 32000 ob­
ject module, or Series 32000 assembly code.

1.2 Native and Cross-support

The GNX-Version 3 FORTRAN 77 Optimizing Compil­
er is available hosted as a cross-support compiler on
the VAXTM series of computers, running the VMS,
UNIX (bsd), and ULTRIX operating systems. Also sup­
ported are National Semiconductor's SYS32TM/20
and SYS32/30 development environments.

1.3 GNX Development Tools

The GNX-Version 3 FORTRAN 77 Optimizing Compil­
er is an integral component of the GNX Cross-devel­
opment tool set. The GNX-Version 3 Assembler Pack­
age includes the Series 32000 assembler, the GNX
linker, debuggers, libraries, and development board
monitors. The GNX-Version 3 Assembler Package is a
prerequisite for the GNX-Version 3 FORTRAN 77 Op­
timizing Compiler. See the GNX- Version 3 Develop­
ment Tools Datasheet for more information on the
GNX Tools.

CD
~

CD·
en
w
I\)
o
o
o
G)
Z
>< <:
CD
Cil o·
:::J
W
"TI
o
:XJ
-I
:XJ
l> z
" " o

"'C -3·
N·
s·

c.c
o o
3
"2.
(j)
~

~ r---~
.!!:!
'is.
E
o
o
C)
c:::
'N
'E .. c.
o
.......
.......
Z
<2: a::
t­a::
o u.
C")

c:::
o

'Ci)
~
Q)

>
>< z
C!J
o
o o
N
C")

U)
CD
'~
CD

(J)

1.0 Introduction (Continued)

The SYS32/20 and SYS32/30 PC-Add-In Develop­
ment Packages are complete, high-performance
packages that convert an IBM®-PCTM/AT or compati­
ble computer into a powerful multi-user system for de­
veloping applications that use the Series 32000 fami­
ly. The SYS32 systems are based on the Series
32000 processor family; the SYS32/20 includes an
NS32032 Central Processing Unit, and the SYS32/30
is based on the NS32332 CPU. Both the SYS32/20
and SYS32/30 run a derivative of the UNIX System
V.3 operating system. Because these host systems
are themselves based on the Series 32000 processor
family, application code can be debugged on the host
system without down-loading to target hardware.

2,0 Compiler Structure
The FORTRAN 77 Optimizing Compiler is a modular
language processor consisting of five separate pro­
grams: the driver, the macro preprocessor (cpp), the
parser (front end), the optimizer, and the code genera­
tor.

2.1 The Driver

The driver is a program that parses and interprets the
command line and, in turn, sequentially calls each of
the other programs, based on its input and the com­
mand-line options invoked. Under the UNIX operating
system, the assembler and linker are also automati­
cally invoked by the driver as required; under VMS,
the assembler is invoked by the driver, and linking is
done at the command line.

2.2 The Macro Preprocessor (cpp)

The macro preprocessor is the standard C-Ianguage
preprocessor, known as cpp. Preprocessing is an op­
tional step and is performed only if macros are defined
in the FORTRAN 77 source code. The macro preproc­
essor's input is the FORTRAN 77 program with pre­
processor macros; its output is processed FORTRAN
77 code, with all preprocessor commands expanded
and transformed as necessary. The macro preproces­
sor can be used to define constants, insert text from
another file, or conditionally include or exclude source
code from compilation based on a testable condition.

2.3 FORTRAN 77 Language Parser (front end)

The FORTRAN 77 language parser, known as
f77-fe, takes as input a FORTRAN 77 program. The
output is an intermediate representation that can be
passed either to the optimizer or the code generator.
Several extensions to standard FORTRAN are imple­
mented in the FORTRAN 77 language parser.

Among the extensions implemented in the front end
are:

• Double Complex data type; each datum is repre­
sented by a pair of double-precision real variables.

• Short Integer data type; declarations of type
Integer*2 are accepted

5-28

• Hollerith (nh) notation
• Variable-length program lines

• unlimited identifier length and underscores in iden­
tifier names

• non-integer constants (binary, octal, and hexadeci­
mal)

• recursion; procedures may call themselves directly
or through a chain of other procedures

Note: A command-line option is provided that will force the compiler to
accept only code that conforms to the FORTRAN 77 (or
FORTRAN 66) standard (ANSI X3.9-1978).

The output of the front end is a proprietary intermedi­
ate representation that can be either used as input to
the optional optimizer phase or passed directly to the
code generator. This intermediate language, known
as IR32, is an attributed tree-structured representa­
tion. IR32 is completely high-level language indepen­
dent; all of the GNX optimizing compilers produce the
same internal representation. This allows a common
back end to be shared by all GNX optimizing compil­
ers.

2.4 The Optimizer

The state-of-the-art GNX optimizer is based on ad­
vanced optimization theory developed over the past
15 years. Depending on the compiler and application
code characteristics, the GNX optimizer improves
code performance from 15 to 200 percent beyond that
of other compilers.
The GNX-Version 3 FORTRAN 77 optimizer is the
most innovative component of the GNX Optimizing
Compilers. The optimizer's input is an IR32 intermedi­
ate representation file; its output is an optimized IR32
file. The optimization pass is optional.

Unlike many other optimizers that are local in nature,
optimizations are performed across the whole pro­
gram by using sophisticated global-data-flow analysis.

The optimization process can be throught of as a five­
step sequence. The sequence of optimizations has
been carefully chosen to ensure that each optimiza­
tion is performed to maximum effect and to provide
more opportunities for later optimizations. These
steps are as follows:

Step One-Local Optimizations

The source program is read-in one procedure at a
time. A procedure is then partitioned into basic
blocks: sequences of code that have branches only
at entry or exit. Optimizations performed at this stage
include:

• Value Propagation-replacing variables with their
most recent values

• Constant Folding-evaluating expressions that
consist solely of constants

• Redundant Assignment Elimination-eliminating
assignments that are not used or that are reas­
signed prior to use

2.0 Compiler Structure (Continued)

The relationships between the various optimizations
are illustrated as follows:

The program Sequence

a = 4
IF (a * 8 .LT. 0) THEN

b = 15

ELSE

b = 20

ENDIF

... code which uses b but not a ...

is translated by the Compiler front end into the fol­
lowing intermediate code

a~4

if (a * 8 > = 0) goto L 1
b~15

goto L2

L1: b ~ 20

L2: ...

which is transformed by "value propagation" into
a~4

if (4 * 8 > = 0) goto L 1

b~15

goto L2

L1: b ~ 20

L2: ...

which after "constant folding" becomes
a~4

if (true) goto L 1

b~15

goto L2

L1: b ~ 20

L2: ...

"dead code removal" results in
a~4

goto L 1

L1: b ~ 20

L2: ...

which is transformed by another "flow optimiza­
tion" into

a~4

b~20

Since there is no further use of a, a ~ 4 is a "re­
dundant assignment:"

b~20

Step Two-Flow Optimizations

A flow graph is constructed. Each basic block is a
node in the graph, with "arrows" drawn to represent

5-29

program flow. Optimizations performed at this stage
include:

• Branch elimination-branches to branches are
removed. Code may be reordered to eliminate
branches.

• Dead code removal-code that will never be exe­
cuted is removed.

The following diagram is an example of a flow graph:

TLlEE/10362-2

Step Three-Global-Data-Flow Analysis

Global-data-flow analysis is a process that identifies
desirable global code transformations that can speed
code execution. Since studies have shown that most
programs spend 90 percent or more of their time in
loops, particular attention is paid to transformations
that allow loops to execute faster. This involves sever­
al techniques:

• Fully redundant expression elimination-Ex­
pressions that are computed twice on the same
path are instead computed only once, with the re­
sult saved, usually in a register.

• Partially redundant expression elimination-If a
path exists that contains a computation and a path
exists that does not contain a computation, the
computation is placed in each path. This makes the
expression fully redundant, allowing it to be elimi­
nated.

• Loop invariant code motion-Values that are
computed repeatedly inside of a loop are instead
computed outside the loop and the result saved.

• Strength reduction-Complex instructions are re­
placed by simpler substitutes (i.e., multiplications
may be replaced with a sequence of additions).

• Induction variable elimination-Variables that
maintain a fixed relation to other variables are re­
placed.

Step Four-Register Allocation

Register allocation is the process of placing variables
in registers rather than main memory, allowing much
faster access times. Proper allocation of registers can
lead to significant improvement in execution speed.
Most optimizing compilers attempt register allocation
for local variables, to avoid problems caused by "ali­
asing," or referring to a variable in more than one way.
By using a sophisticated algorithm, the GNX-Version 3
FORTRAN 77 Optimizing Compiler considers nearly
all variables as candidates for register allocations.

en
CD ...
iii' en
CJ,)
N
o
o
o
G)
Z
><
~
U;
0'
::s
CJ,)

"TI
o :c
-I :c
l> z
......
......
o
"C -3'
N'
5'
ec
o
o
3
'2,
CD ...

•

~ ~---,
.!!!
'is.
E
o
o
en
c
'N
'E
= c. o
r-­
r--
Z
c:a:
0:
I-
0:
o
L&.
C"')

C
o
'Ui
~

CD
>
>< Z
CJ
o o o

'" C"')

en
CD
'i:
CD en

2.0 Compiler Structure (Continued)

The algorithm used by the optimizer is called the col­
oring algorithm, derived from graph theory. The "live
range" of each variable is constructed. The live range
is the program path along which a variable has a val­
ue; assignment to a variable generally starts a new
live range, which terminates with the last use of that
value. Two variables that do not have intersecting live
ranges can share a register. More frequently used
variables are given priority for register allocation. In
this way, maximum usage can be made of the regis­
ters. Other optimizations performed at this stage are:

• Allocation of safe and scratch registers-By
convention, registers RO through R2 and FO
through F3 are considered "scratch" registers;
their values are not retained across procedure
calls. Usage of these registers can reduce over­
head of procedure calls.

• Register Parameter Allocation-for static rou­
tines, parameters are passed in registers whenever
possible.

Step Flve-Code Rewrite

Code is rewritten in IR32 to be passed to the code
generator. Code is reorganized where necessary to
increase performance.

2.5 The Code Generator

The code generator's input is an IR32 file; its output is
assembly code that can be assembled by the GNX
assembler into an object module.
The code generator matches expression trees with
optimal code sequences. Several "peephole" opti­
mizations are performed by the code generator: fur­
ther reduction of arithmetic identities, stack and frame
alignments, and strength reductions.

In addition, the target CPU and FPU are taken into
consideration when code is produced. Sequences of
code are chosen based on the characteristics of the
target processor specified by the user. This further in­
creases code efficiency.

3.0 Ordering Information
Supported Host Environments and Order Codes:

SYS32/20: VAX/UL TRIX (UNIX bsd):
NSW-F77 -3-BHAF3 NSW-F77 -3-BRVX

SYS32/30: Micro VAX/VMS:
NSW-F77-3-BHBF3 NSW-F77 -3-BCVM

VAX/VMS: Micro VAX/UL TRIX:
NSW-F77 -3-BRVM NSW-F77 -3-BCVX

GNX-Version 3 Assembler and Cross-development
tools (required for use with the Optimizing FORTRAN
77 Compiler):

SYS32/30:

SYS32/30:

VAX/VMS:

NSW-ASM-3-BHAF3
(provided with SYS32/20
system)

NSW-ASM-3-BHBF3
(provided with SYS32/30
system)
NSW-ASM-3-BRVM

VAX/ULTRIX (UNIX bsd): NSW-ASM-3-BRVX

Micro VAX/VMS: NSW-ASM-3-BCVM

Micro VAX/ULTRIX: NSW-ASM-3-BCVX
For further information regarding National Semicon­
ductor's software development tools and develop­
ment hosts, please refer to the following datasheets:

5-30

GNX-Version 3 Development Tools
GNX-Version 3 C Compiler
GNX-Version 3 Pascal Compiler
SYS32/20 PC-Add-In-Development Package
SYS32/30 PC-Add-In-Development Package

~ National Semiconductor PRELIMINARY

Series 32000® GNX-Version 3 Pascal
Optimizing Compiler

Pascal

• Generates high-quality code for the
Series 32000 architecture

• Implements the Pascal Language as
described by the International Standards
Organization (ISO) standard ISO dp7185
level 1

II Uses state-of-the-art optimization
techniques

1.0 Introduction
A substantial amount of application code is developed
in a high-level language. Therefore, the speed and ef­
ficiency of the application are functions not only of
processor speed, but also of quality of code generat­
ed by the high-level language compiler. An inefficient
compiler can extract a significant performance penal­
ty. Likewise, a significant performance improvement
can be achieved for much lower cost in software rath­
er than hardware. For this reason, National Semicon­
ductor has developed a line of optimizing compilers
that generate extremely efficient code for the Series
32000 architecture.

1.1 Product Overview

The Series 32000 GNX-Version 3 Pascal Optimizing
Compiler is a member of National Semiconductor's
optimizing compiler family, which also includes compil­
ers that support the C and FORTRAN 77 program­
ming languages. Because all three optimizing compil­
ers use a standard calling sequence, internal interme­
diate representation, and object file format, mixed-lan­
guage programming is greatly simplified. The ability to
use mixed-language programming simplifies the port­
ing of pre-existing applications and code reuse. A de­
tailed discussion of mixed-language programming is
presented in the GNX- Version 3 Pascal Optimizing
Compiler Reference Manual.

5-31

Code
Generator

Assembly
Code

TL/EE/l0365-1

• Supports mixed-language programming
• Includes a complete Pascal run-time

library and highly optimized math library
• Implements many extensions to

standard Pascal
• Compiles under UNIX®, ULTRIXTM and

VMSTM operating systems

The Pascal Optimizing Compiler fully implements the
Pascal programming language, as defined by the In­
ternational Standards Organization (ISO) standard
ISO dp7185 level 1, with several useful extensions to
the compiler extensions found in the University of Cali­
fornia, Berkeley Pascal compiler (pc). In addition, a
command-line option is provided that forces the com­
piler to accept as input only programs that adhere to
the ISO standard.
The input to the Pascal Optimizing Compiler is a Pas­
cal language source program. The output, controlled
by command-line options, is either a Series 32000 ex­
ecutable module, a Series 32000 object module, or
Series 32000 assembly code.

1.2 Native and Cross-Support

The GNX-Version 3 Pascal Optimizing Compiler is
available hosted as a cross-support compiler on the
VAXTM series of computers, running the VMS, UNIX
(bsd), and UL TRIX operating systems. Also supported
are National Semiconductor's SYS32TM/20 and
SYS32/30 development environments.

1.3 GNX Development Tools

The GNX-Version 3 Pascal Optimizing Compiler is an
integral component of the GNX Cross-development
tool set. The GNX-Version 3 Assembler Package in­
cludes the Series 32000 assembler, the GNX linker,

en
CD ...
(D'
en
w
N
o
o
o
G)
Z
>< <:
CD ... en
0'
:::J
W
"'C
OJ en
(')

!!.
o
'C -3'
N'
5'
cc
o
o
3
'2,
(j) ...

~ ~--,
.!!
's.
E o

Co)

en c
'N
's ..
Q. o
ca
(,)
en ca
Il.
C")

C
o
'i!!
~
><
Z
c.:J
o
o o
N
C")

en
Q)
'Ii:
Q)
U)

1,0 Introduction (Continued)

debuggers, libraries, and development board moni­
tors. The GNX-Version 3 Assembler Package is a pre­
requisite for the GNX-Version 3 Pascal Optimizing
Compiler. See the GNX-Version 3 Development Tools
Datasheet for more information on the GNX Tools.

The SYS32/20 and SYS32/30 PC-Add-In Develop­
ment Packages are complete, high-performance
packages that convert an IBM-PCTM/AT or compati­
ble computer into a powerful multi-user system for de­
veloping applications that use the Series 32000 fami­
ly. The SYS32 systems are based on the Series
32000 processor family; the SYS32/20 includes an
NS32032 Central Processing Unit, and the SYS32/30
is based on the NS32332 CPU. Both the SYS32/20
and SYS32/30 run a derivative of the UNIX System
V.3 operating system. Because these host systems
are themselves based on the Series 32000 processor
family, application code can be debugged on the host
system without down-loading to target hardware.

2,0 Compiler Structure
The Pascal Optimizing Compiler is a modular lan­
guage processor consisting of five separate programs:
the driver, the macro preprocessor (cpp), the parser
(front end), the optimizer, and the code generator.

2.1 The Driver

The driver is a program that parses and interprets the
command line and, in turn, sequentially calls each of
the other programs, based on its input and the com­
mand-line options invoked. Under the UNIX operating
system, the assembler and linker are also automati­
cally invoked by the driver as required; under VMS,
the assembler is invoked by the driver, and linking is
done at the command line.

2.2 The Macro Preprocessor (cpp)

The macro preprocessor is the standard C-Ianguage
preprocessor, known as cpp. Preprocessing is an op­
tional step and is performed only if macros are defined
in the Pascal source code. The macro preprocessor's
input is the Pascal program with preprocessor macros;
its output is processed Pascal code, with all preproc­
essor commands expanded and transformed as nec­
essary. The macro preprocessor can be used to de­
fine constants, insert text from another file, or condi­
tionally include or exclude source code from compila­
tion based on a testable condition.

2.3 The Pascal Language Parser (front end)

The Pascal language parser, known as pas_fe, takes
as input a Pascal program. The output is an intermedi­
ate representation that can be passed either to the
optimizer or the code generator. Conform ant array pa­
rameters, as defined in the ISO level 1 Standard, are
fully supported. Several extensions to standard Pascal
are implemented in the Pascal language parser.

5-32

Among the extensions implemented in the front end
are:

• Separate compilation; programs can be divided into
a number of files that can be compiled separately

• Longreal data type; double-precision (64-bit) float-
ing point values

• String padding of constant strings with blanks

• Conversions of pointers to integers and vice versa

• Unlimited identifier length and underscores in iden­
tifier names

• Non-integer constants (binary, octal, and hexadeci­
mal)

• Constant expressions; constants can be defined in
terms of mathematical expressions

• predefined argc and argv functions; allows appli­
cation programs to easily accept and process com­
mand-line arguments

Note: A command-line option is provided that will force the compiler to
accept only code that conforms to the ISO Pascal standard ISO
dp7t85levelt.

The output of the front end is a proprietary intermedi­
ate representation that can be either used as input to
the optional optimizer phase or passed directly to the
code generator. This intermediate language, known
as IR32, is an attributed tree-structured representa­
tion. IR32 is completely high-level language indepen­
dent; all of the GNX optimizing compilers produce the
same internal representation. This allows a common
back end to be shared by all GNX optimizing compil­
ers.

2.4 The Optimizer

The state-of-the-art GNX optimizer is based on ad­
vanced optimization theory developed over the past
15 years. Depending on the compiler and application
code characteristics, the GNX optimizer improves
code performance from 15 to 200 percent beyond that
of other compilers.

The GNX-Version 3 Pascal optimizer is the most inno­
vative component of the GNX Optimizing Compilers.
The optimizer's input is an IR32 intermediate repre­
sentation file; its output is an optimized IR32 file. The
optimization pass is optional.

Unlike many other optimizers that are local in nature,
optimizations are performed across the whole pro­
gram by using sophisticated global-data-flow analysis.

The optimization process can be thought of as a five­
step sequence. The sequence of optimizations has
been carefully chosen to ensure that each optimize is
performed to maximum effect and to provide more op­
portunities for later optimizations. These steps are as
follows:

Step One-Local Optimizations

The source program is read-in one procedure at a
time. A procedure is then partitioned into basic
blocks: sequences of code that have branches only

2.0 Compiler Structure (Continued)

at entry or exit. Optimizations performed at this stage
include:

• Value Propagation-replacing variables with their
most recent values

• Constant Folding-evaluating expressions that
consist solely of constants

• Redundant Assignment Eliminatlon-eliminating
assignments that are not used or that are reas­
signed prior to use

Step Two-Flow Optimizations

A flow graph is constructed. Each basic block is a
node in the graph, with "arrows" drawn to represent
program flow. Optimizations performed at this stage
include:

• Branch elimination-branches to branches are
removed. Code may be reordered to eliminate
branches.

• Dead code removal-code that will never be exe­
cuted is removed.

The following diagram is an example of a flow graph:

TL/EE/l0365-2

Step Three-Global-Data-Flow Analysis

Global-data-flow analysis is a process that identifies
desirable global code transformations that can speed
code execution. Since studies have shown that most
programs spend 90 percent or more of their time in
loops, particular attention is paid to transformations
that allow loops to execute faster. This involves sever­
al techniques:

• Fully redundant expression elimination-Ex­
pressions that are computed twice on the same
path are instead computed only once, with the re­
sult saved, usually in a register.

• Partially redundant expression elimination-If a
path exists that contains a computation and a path
exists that does not contain a computation, the
computation is placed in each path. This makes the
expression fully redundant, allowing it to be elimi­
nated.

• Loop Invariant code motion-Values that are
computed repeatedly inside of a loop are instead
computed outside the loop and the result saved.

• Strength reductlon-Complex instructions are re­
placed by simpler substitutes (Le., multiplications
may be replaced with a sequence of additions).

• Induction variable elimination-Variables that
maintain a fixed relation to other variables are re­
placed.

5-33

The relationship between the various optimizations
are illustrated as follows:

The program sequence

a:= 4;
. if (a ,.. 8 < 0) then b : = 15;
b:= 20;
. . . code which uses b but not a ...

is translated by the Compiler front end into the fol­
lowing intermediate code

a~4

if (a ,.. 8 > = 0) goto L 1
b~15

goto L2
L1: b ~ 20
L2: ...

which is transformed by "value propagation" into
a~4

if (4 ,.. 8 > = 0) goto L 1
b~15

goto L2
L1: b ~ 20
L2: ...

which after "constant folding" becomes
a~4

if (true) goto L 1
b~15

goto L2
L1: b ~ 20
L2: ...

"dead code removal" results in
a~4

goto L 1
L1: b ~ 20
L2: ...

which is transformed by another "flow optimiza­
tion" into

a~4

b~20

Since there is no further use of a, a ~ 4 is a "re­
dundant assignment:"

b~20

Step Four-Register Allocation

Register allocation is the process of placing variables
in registers rather than main memory, allowing much
faster access times. Proper allocation of registers can
lead to significant improvement in execution speed.
Most optimizing compilers attempt register allocation
for local variables, to avoid problems caused by "ali­
asing," or referring to a variable in more than one way.
By using a sophisticated algorithm, the GNX-Version 3
Pascal Optimizing Compiler considers nearly all vari­
ables as candidates for register allocations.

en
CD
(i).
UJ
(,,)
N
o
o
o
Q
z
>< <:
CD
UJ o·
:::s
(,,)

"til
m
en
n
~
o
"C -3·
N·
s·
cc
o
o
3
'2.
(i)

•

~ ~---,
.!!:!
'is..
E
o o
C)
c
'N
'E
;:
c. o
'iii
(.)
U)
co c..
M
C
o

'Ci)
~
(1)

>
>< Z
CJ
o
o
o
C\I
M
U)
(1)
'~
(1)
t/)

2.0 Compiler Structure (Continued)
The algorithm used by the optimizer is called the col­
oring algorithm, derived from graph theory. The "live
range" of each variable is constructed. The live range
is the program path along which a variable has a val­
ue; assignment to a variable generally starts a new
live range, which terminates with the last use of that
value. Two variables that do not have intersecting live
ranges can share a register. More frequently used
variables are given priority for register allocation. In
this way, maximum usage can be made of the regis­
ters. Other optimizations performed at this stage are:

• Allocation of safe and scratch registers-By
convention, registers RO through R2 and FO
through F3 are considered "scratch" registers;
their values are not retained across procedure
calls. Usage of these registers can reduce over­
head of procedure calls.

• Register Parameter Allocation-For static rou­
tines, parameters are passed in registers whenever
possible.

Step-Five-Code Rewrite

Code is rewritten in IR32 to be passed to the code
generator. Code is reorganized where necessary to
increase performance.

2,5 The Code Generator

The code generator's input is an IR32 file; its output is
assembly code that can be assembled by the GNX
assembler into an object module.
The code generator matches expression trees with
optimal code sequences. Several "peephole" opti­
mizations are performed by the code generator: fur­
ther reduction of arithmetic identities, stack and frame
alignments, and strength reductions.

In addition, the target CPU and FPU are taken into
consideration when code is produced. Sequences of
code are chosen based on the characteristics of the
target processor specified by the user. This further in­
creases code efficiency.

5-34

3.0 Ordering Information
Supported Host Environments and Order Codes:

SYS32/20:
NSW-PAS-3-BHAF3

SYS32/30:
NSW-PAS-3-BHBF3
VAX/VMS:
NSW-PAS-3-BRVM
VAX/UL TRIX (UNIX bsd):
NSW-PAS-3-BRVX

Micro VAX/VMS:
NSW-PAS-3-BCVM
Micro VAX/ULTRIX:
NSW-PAS-3-BCVX
GNX-Version 3 Assembler and Cross-development
tools (required for use with the Optimizing Pascal
Compiler):
SYS32/20:

SYS32/30:

VAX/VMS:

VAX/ULTRIX
(UNIX bsd):

MicroVAX/VMS:

NSW-ASM-3-BHAF3 (provided
with SYS32/20 system)
NSW-ASM-3-BHBF3 (provided
with SYS32/30 system)

NSW-ASM-3-BRVM

NSW-ASM-3-BRVX
NSW-ASM-3-BCVM

MicroVAX/ULTRIX: NSW-ASM-3-BCVX

For further information regarding National Semicon­
ductor's software development tools and develop­
ment hosts, please refer to the following datasheets:

GNX-Version 3 Development Tools
GNX-Version 3 C Compiler

GNX-Version 3 FORTRAN 77 Compiler

SYS32/20 PC-Add-In Development Package
SYS32/30 PC-Add-In Development Package

Section 6
Application Notes

Section 6 Contents
AB-26 Instruction Execution Times of FPU NS32081 Considered for Stand-Alone

Configurations . 6-3
AB-27 Use of the NS32332 with the NS32082 and the NS32201 . 6-4
AB-40 PC Board Layout for Floating Point Units .. 6-6
AB-44 A Method for Efficient Task Switching Using the NS32381 FPU . 6-7
AN-383 Interfacing the NS32081 as a Floating-Point Peripheral. 6-8
AN-40S Using Dynamic RAM with Series 32000 CPUs . 6-16
AN-464 Effects of NS32082 Memory Management Unit on Processor Throughput 6-23
AN-S24 Introduction to Bresenham's Line Algorithm Using the SBIT Instruction; Series 32000

Note S .. 6-27
AN-S26 Block Move Optimization Techniques; Series 32000 Graphics Note 2 6-37
AN-S27 Clearing Memory with the 32000; Series 32000 Graphics Note 3. 6-40
AN-S28 Image Rotation Algorithm; Series 32000 Graphics Note 4. 6-44
AN-S29 80 x 86 to Series 32000 Translation; Series 32000 Graphics Note 6 6-S3
AN-S30 Bit Mirror Routine; Series 32000 Graphics Note 7 . 6-S9
AN-S83 Operating Theory of the Series 32000 GNX Version 3 Compiler Optimizer 6-61
AN-S90 Application Development Using Multiple Programming Languages. 6-67
AN-601 Portability Issues and the GNX Version 3 C Optimizing Compiler................... 6-76
AN-60S Using the GNX-Version 3 C Optimizing Compiler in the UNIX Environment.......... 6-84
AN-606 Using the GNX-Version 3 C Optimizing Compiler in the VMS Environment 6-91

6-2

I nstruction Execution
Times of FPU NS32081
Considered for
Stand-Alone Configurations

The table below gives execution timing information for the
FPU NS32081.

The number of clock cycles nClK is counted from the last
SPC pulse, strobing the last operation word or operand into
the FPU, and the Done-SPC pulse, which signals the CPU
that the result is available (see Figure 1). The values are
therefore independent of the operand's addressing modes
and do not include the CPU/FPU protocol time. This makes
it easy to determine the FPU execution times in stand-alone
configurations.

The values are derived from measurements, the worst case
is always assumed. The results are given in clock cycles
(ClK).

10 OPCODE OPERANDS

National Semiconductor
Application Brief 26
Systems & Applications Group

Operation

Add, Subtract

Multiply Float

Multiply long

Divide Float

Divide long

Compare

STATUS

FIGURE 1

6-3

Number of
Clock-Cycles

nClK

63

37

51

78

108

38

TLlEE/8760-1

l>
OJ .
N
0)

r--
~
~ Use of the NS32332 with

the NS32082 and the
NS32201

Care should be taken when the NS32332 is designed in a
system with the NS32201 and the NS32082. Two configura­
tions need to be considered, one with MMU and one with­
out.

In a configuration without an MMU, TCU and CPU both run a
four clock cycle bus (Figure 1). The ROY signal is the only
incompatible signal between the CPU and TCU and there­
fore the ROY output of the TCU should not be directly con­
nected to the ROY input of the NS32332. The NS32332
samples its ROY input in the middle of T3 while the
NS32201 asserts its ROY output shortly after the middle of
T2 and removes it shortly after the middle of T3, thus the
NS32332 ROY input hold time (tROYh) is not met. To meet
tRDYh, the ROY output of the NS32201 should be clocked
by the rising edge of the CTTL using a O-type flip-flop
(74AS74) and then taken to the NS32332. It should be not­
ed that the NS32332 outputs the data in a write cycle in T3
unless OT ISOONE pin is sampled low on the rising edge of
the reset in which case the data is output during T2. The
OT/SOONE pin is implemented as of revision B of the
NS32332.

TCU atates

NS32332 atatl'

PHil

PHI II
74AS74

NS32332 ADs output

WAIT STATES IF NEEDED-TCU ROY output

TCU ROY CLOCKED BY em (0)

TL/EE/8761-2 TCU TSO

TCU iID.iVR

TCU DBE

National Semiconductor
Application Brief 27
Systems Applications Group

In a configuration with MMU the NS32332 runs a four clock
cycle bus while the NS32082 runs a five cycle bus. Two
options can be exercised.

The first option is extending the NS32332 bus cycle to five
clocks by adding a blind wait state that bypasses the
NS32201 (Figure 2). This configuration generally requires
the minimum hardware modification for a 320xx based de­
sign to run the NS32332. Here the NS32201 output signals
can be used to interface the NS32332 and the NS32082 to
the memory or 1/0. Additional wait states can be inserted by
clocking the ROY output of the TCU.

The second option is to have the NS32332 run a four clock
cycle bus (Figure 3). In this configuration the NS32201 out­
put signals cannot be used to interface the NS32332 to
memory or 1/0; they can only be used to interface the
NS32082 to the memory. In this configuration a revision N
of the NS32082 should be used.

Tl

Tl

. .

T2 T3

T2 T3

, ,

T4

T4

] MEETS THE NS32332 SPEC

TL/EE/8761-1

FIGURE 1. NS32332, TCU Timing Diagram, No Walt State, No MMU

6-4

TCU oIat .. T1 T2 T3 T.

HS32082 WWU oIat •• T1 T2 T3 T.

HS32332 slat .. T1 T •• U T3 T3 T.

PHil

PHI II

HS32332;;os output

WWU PAY output

HS32332 ROY Input (blind waft)

TCU ROY output

TCU ROY CLOCKED BY CTTL

TCUTSOoutput

TCU RO, WR output.

TLlEE/8761-3

FIGURE 2. NS32332, MMU, TeU Timing Diagram when NS32332 Is Run with 1 Walt State
Similar to Timing Diagram of NS32332 Adapter to 0832000

TCU slat .. T1 T2 T3 T.

NS32D82 Roy N WWU slat .. Tl T.wu T2 T3 T.

NS32332 slat .. T1 Twwu T3 T4 (T1l

PHil

PHI n

NS32332 ADs

WWU PAY

WAIT STATES IF ANY

TCU .Ignal. TSO

DBE

TLlEE/8761-4

FIGURE 3. NS32332, MMU, TeU Timing Diagram with No Walt State

6-5

[II
,

0

~
~

National Semiconductor • PC Board Layout for III
Application Brief 40 cr:

Floating-Point Units Itzhak Nashelsky

For applications requiring floating-point capability, National Note: Since the NS32381's package is smaller than that of the NS32580,
Semiconductor offers two options: special care should be taken while inserting the NS32381 into the

NS32580's socket.
1. The NS32381: A low-cost floating-point unit (FPU) which Also, to prevent damage cause by "shifted" insertion, it is recom-

interfaces directly to the NS32532 microprocessor. mended that four keying-pins be installed in the NS32580 socket in
2. The Weitek W3164: A high-performance floating-point so- the center area (see Figure 3).

lution which uses the NS32580 floating-point controller
(FPC) to interface with the NS32532. I NS3~~32 H NS~22580 ~ This application brief briefly explains how to lay-out a print-

ed circuit (PC) board incorporating the NS32532 microproc- TLlEE/l0351-2
essor and either FPU option. The board design provides FIGURE 2. Option 2, Using the W3164 and NS32580 FPC
maximum flexibility and can be used for either option.
Note: For detailed information regarding either the NS32381 FPU or the

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NS32580 FPC, refer to their data sheets.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The two FPU options are presented in Figures 1 and 2. To 0 0 x x x x x x x x x x x 0 0
provide both floating-point options with minimal printed cir- 0 0 X X X X X X X X X X X 0 0
cuit board real estate, the NS32580's pin-out was designed

0 0 X X K K X X 0 0
to be fully compatible with that of the NS32381 FPU. Figure

0 0 X X X X 0 0
3 illustrates this pin compatibility and the location of the

0 0 X X X X 0 0
keying pins.

0 0 X X X X 0 0
As a result, the layout of the PC board can be prepared 0 0 X X X X 0 0
using Option 2, leaving the decision for the final floating- 0 0 X X X X 0 0
point configuration to the user. Users who prefer Option 1, 0 0 X X K K X X 0 0
will therefore be able to insert the NS32381 into the 0 0 X X X X X X X X X X X 0 0
NS32580's socket, leaving U3's socket unpopulated. This 0 0 X X X X X X X X X X X 0 0
method was implemented in the VME532 board deSigned 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
by National Semiconductor. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TL/EE/l0351-3

x = Pins common to both NS32580 and NS32381.
o = Pins belonging to the NS32580 only.

TL/EE/l0351-1 k = Keying pins for the NS32381.

FIGURE 1. Option 1, Using the NS32381 FPU FIGURE 3. NS32580/NS32381 Pin-Out Compatibility

6-6

A Method for Efficient
Task Switching Using
the NS32381 FPU

INTRODUCTION

Many microprocessor based embedded control systems are
built as real-time multitasking systems where different func­
tions of the system are control/ed by different tasks. The
multiple tasks in such a system have the appearance of all
executing simultaneously, when in reality only one task is
running on the processor at one time. (Readers not familiar
with the concepts of tasks and multitasking can find expla­
nations in most general textbooks about operating
systems.)

A task switch is when one task stops executing and another
begins executing. A task switch usually involves saving the
values of the processor's registers onto the stack. In sys­
tems where both a Central Processor Unit (CPU) and a
Floating Point Unit (FPU) are used, the registers of both
processors must be saved. However, if the FPU has not
been used during the execution of a task, saving its regis­
ters onto the stack is unnecessary and is an undesirable
waste of time. This application brief is for the software de­
signer of an embedded software system. It explains how to
detect when the FPU has not been used in a task so the
task switch time can be shortened by not saving the FPU
registers.

METHOD

The Floating Status Register (FRS) (Figure 1) of the
NS32381 has a Trap Type field (bits 0-2) that records any
exceptional conditions detected by a floating point instruc­
tion. The Trap Type field is loaded with zero whenever any
floating point instruction except LFSR (Load Floating Status
Register) or SFSR (Store Floating Status Register) com­
pletes without encountering an exception condition.

Seven Trap Type codes are used to signal the different con­
ditions (including the code "000" that is used to indicate
"no exception"). One code "111" is not used.

Loading the FSR at the beginning of every task with a value
that sets the Trap Type field to the unused code "111" lets
the FSR be used later to determine whether the NS32381
has been used in the task. If the Trap Type code at the end
of the task is still "111", it means that no floating pOint
instruction has been executed since the FSR was loaded.

The execution figures below refer to a system that uses the
NS32381 FPU with the National Semiconductor NS32GX32
CPU. This method also works with the NS32CG16 proces­
sor.
Saving the floating point registers onto the stack using rou­
tine 1 (Figure 2) described below takes 296 clock cycles. In

National Semiconductor
Application Brief 44
Dan Biran

cases where it is possible that the NS3281 has not been
referenced in the current task, routine 2 (Figure 3) can be
executed prior to saving the registers. This routine takes 43
cycles. In cases when the Floating Point Unit has not been
referenced, 253 clock cycles (85.5%) are saved. If the FPU
has been referenced, 43 cycles are added to the 296 cycles
of the normal routine (extra 14.5%)

These numbers indicate that whenever the probability of not
using the FPU is greater than 14.5% this method is efficient.

Routine #1
save_freg: sfsr tos

mov1 10, tos
mov1 11, tos
mov1 12, tos
mov1 13, tos
mov1 14, tos
movl 15, tos
mov1 16, tos
mov1 17, tos

FIGURE 2

Routine #2
sfsr tos
andb h'7, rO
cmpb h'7, rO
beq end

save_freg: sfsr tos
mov1 10, tos
mov1 11, tos
mov1 12, tos
mov1 13, tos
mov1 14, tos
mov1 15, tos
mov1 16, tos
mov1 17, tos

•
•
•

end:

FIGURE 3

NS32381 FPU Status Register (FSR)

15

SWF'

Trap Type
TL/EE/l0417-1

FIGURE 1

6-7

•

M co
M .
Z «

Interfacing the NS32081 as
a Floating-Point Peripheral

This note is a guide for users who wish to interface the
NS32081 Floating-Point Unit (FPU) as a peripheral unit to
CPUs other than those of the Series 32000 family. This is
not a particularly expensive procedure, but it requires some
in-depth information not all of which is available in the
NS32081 data sheet. Four basic topics will be covered here:

An overview of the architecture of the NS32081 as seen
in a stand-alone environment.

The protocol used to sequence it through the execution
of an instruction.

Special guidelines for connecting and programming the
NS32081 as a peripheral component.

A sample application of these guidelines in the form of a
circuit interfacing the NS32081 to the Motorola 68000
microprocessor.

References are made here to the NS32081 data sheet and
the Series 32000 Instruction Set Reference Manual (Publi­
cation #420010099-001). The reader should have both
these documents on hand.

1.0 Architecture Overview
1.1 REGISTER SET

The register set internal to the NS32081 FPU is shown in
Figure t. It consists of nine registers, each 32 bits in length:

FSR The Floating-Point Status Register. As given in the
data sheet, this register holds status and mode in­
formation for the FPU. It is loaded by executing the
LFSR instruction and examined using the SFSR in­
struction.

FO-F7 The Floating-Point Registers. Each can hold a sin­
gle 32-bit single-precision floating-point value. To
hold double-precision values, a register pair is refer­
enced using the even-numbered register of the pair.

~ 32 ~

~ 32 ~ FolL----____ ----'

I Floating Pt. Status I FSR F11
~=========:::::::::::

:::~============~
F41
~=========~

F51
~=========:::::::::::

F61
~=========~

F71L-_____ --'

FIGURE 1. FPU Registers

National Semiconductor
Application Note 383
Microprocessor Applications

Engineering

Floating-point operands need not be held in registers; they
may be supplied externally as part of the instruction se­
quence. Integer operands (appearing in conversion instruc­
tions) and values being transferred to or from the FSR must
be supplied externally; they cannot be held in Floating-Point
registers FO-F7.

1.2 INSTRUCTION SET AND ENCODING
The encodings used for NS32081 instructions are shown in
Figure 2. They fall within two formats, labeled from Series
32000 tradition "Format 9" and "Format 11". These for­
mats are distinguished by their least-significant byte (the "10
Byte"). Execution of an FPU instruction starts by passing
first the 10 Byte and then the rest of the instruction (the
"Operation Word") to the FPU.

Fields within an instruction are interpreted by the FPU in the
same manner as documented in Chapter 4 of the Series
32000 Instruction Set Reference Manual, with the exception
of the 5-bit General Addressing Mode fields (gent, gen2).
Since the FPU does not itself perform memory accesses, it
does not need to use these fields for addressing calcula­
tions. The only use it makes of these fields is to determine
for each operand whether the value is to be found internal
to the FPU (that is, within a register FO-F7, or whether it is
to be transferred to and/or from the FPU. See Figure 3. A
value of 0-7 in a gen field specifies one of the Floating­
Point registers FO-F7, respectively, as the location of the
corresponding operand. Any greater value specifies that the
operand's location is external to the FPU and that its value
will be transferred as part of the protocol. Any non-floating
operand is always handled by the FPU as external, regard­
less of the addressing mode specified in its gen field. It is
illegal to reference an odd-numbered register for a double­
precision operand. If an odd register is referenced, the re­
sults are unpredictable.

1.3 PINOUT
The FPU is packaged in a 24-pin DIP (see Figure 4). The pin
functions can be split into two groups: those that participate
in the communication protocol between the FPU and the
host system, and those that reflect the familiar requirements
of LSI components.

The protocol uses the following pins of the FPU:

6-8

00-015 The 16-bit data bus. The DO pin holds the
least-significant bit of data transferred on the
bus.

SPC A dual-purpose pin, low active. SPC is pulsed
low from the host system as the data strobe
for bus transfers. SPC is pulsed low by the
FPU to signal that it has completed the inter­
nal execution phase of an instruction.

1.0 Architecture Overview (Continued)

STO,ST1 The status code. This 2-bit value is sampled
by the FPU on the falling edge of SPC, and
informs it of the current protocol phase. STO
is the least-significant bit of the value. The
need filled by the status code is most rele­
vant to Series 32000-based systems, where it
serves to allow retry of aborted instructions
and to disambiguate the protocol when the
SPC signal is bussed among multiple slave
processors. In microprocessor-based periph­
eral applications, the status code can gener­
ally be provided from the CPU's address
lines.

OPERATION WORD ID BYTE

Format 9: lFSRISFSR/Conversions

OPERATION WORD ID BYTE

Format 11: Movement/Calculation

FIGURE 2. FPU Instruction Formats

16 BIT
DATA BUS

... ...
AID 0-15 00-15

SERIES STO
~ ~ STO NS320Bl

32000 STl S11 FPU
CPU SPC SPC rr RST r CLK

RST CTTL

NS32201
TCU

TL/EE/8388-1

The pins providing for standard requirements are:

ClK The clock input. This is a TTL-level square
wave which the FPU uses to sequence its in­
ternal calculations.

RST The reset input. This signal is used to reset
the FPU's internal logic.

VCC The 5-volt positive supply.

GNDB, GNDl The grounding pins. GNDB serves as ground
for the FPU's output buffers, and GNDl is
used for the rest of the on-chip logic.

FPU Internal Register: Fn, n=O ... 7
long Floating = Even Register Only

10111xlxlx\

11lxlxlxlx\
External to FPU

Note: All non-floating operands are always external.

FIGURE 3. FPU Addressing Modes

010 Vee

09 STO

DB STl

07 SPC

06 011

05 012

04 013

03 014

02 015

01 RST

DO ClK

GNOl GNOB

Top View
TL/EE/8388-2

FIGURE 4. NS32081 FPU Connections

6-9

l>
z

I
~
ClO
~

•

2.0 Protocol
The FPU requires a fixed sequence of transfers ("protocol")
in its communication with the outside world. Each step of
the protocol is identified by a status code (asserted to the
FPU on pins STO and ST1) and by its position in the se­
quence, as shown in Figure 5.

Status Combinations:
11: Write 10 Byte
01: Transfer Operation/Operand
10: Read Status Word

Step Status Action
1 11 CPU sends 10 Byte on least-significant

byte of bus.
2 01 CPU sends Operation Word, bytes

swapped on bus.
3 01 CPU sends required operands, gen t

first, least-significant word first.
4 xx FPU starts internal execution.
5 xx FPU pulses Si5C low.
6 10 CPU reads Status Word (Error/Com-

parison Result).
7 01 CPU reads result (if any), least-signifi-

cant word first.

FIGURE 5. FPU Instruction Protocol
Steps 1 and 2 transfer the instruction to the FPU. Step 1
transfers the first byte of the instruction (the 10 Byte) and
Step 2 transfers the rest of the instruction (the Operation
Word). In Step 2, the two bytes of the Operation Word must
be swapped on the bus; i.e. the most-significant byte of the
Operation Word must be presented on the least-significant
byte of the bus.

Step 3 is optional and repeatable depending on the instruc­
tion. It is used to transfer to the FPU any external operands
that are required by the instruction. The operand specified
by gent is sent first, least-significant word first, followed by
the operand specified by gen2. If an operand is only one
byte in length, it is transferred on the least-significant half of
the bus.

The FPU initiates Step 4 of the protocol, internal computa­
tion, upon receiving the last external operand word or, if
there are no external operands, upon receiving the Opera­
tion Word of the instruction. During this time, the data bus
may be used for any purpose by the rest of the system, as
long as the SPC pin is kept pulled up by a resistor and is not
actively driven.

Step 5 occurs when the FPU completes the instruction. The
FPU pulses the SPC pin low to acknowledge that it is ready
to continue the protocol. This pulse is called the "Done
pulse". The bus is not used during this step, and remains
floating.

In Step 6, the FPU is polled by reading a Status Word. This
word indicates whether an exception has been detected by
the FPU. In the Compare instruction (CMPf), it also displays
the relationship between the operands and serves as the
result. This transfer is mandatory, regardless of whether the
information presented by the FPU is intended to be used.
See Figure 3-6 of the data sheet.

6-10

Step 7 is, like Step 3, optional and repeatable depending on
the instruction. Any external result of an instruction is read
from the FPU in this step, least-significant word first. If the
result is a 1-byte value, it is presented by the FPU on the
least-significant half of the bus (00-07).

Note: If in Step 6 the FPU indicates that an error has oc­
curred, it is permissible, though not necessary, to con­
tinue the protocol through Step 7. No guarantee is
made regarding the validity of the value read, but con­
tinuing through Step 7 will not cause any protocol
problems.

If at any time within the protocol another 10 byte is sent
(ST = 11), the FPU will prepare itself internally to execute
another Instruction, throwing away the instruction that was
in progress. This Is done to support the Abort with Retry
feature of the Series 32000 family.

Because of this feature, however, there is an important con­
sideration when using the FPU in systems that support mul­
titasking: the operating system must not allow a task using
the FPU to be interrupted in the middle of an instruction
protocol and then transfer control to another task that is
also using the FPU. The partially-executed instruction would
be thrown away, leaving the first task with a garbage result
when it continues. This situation can be avoided easily in
software but, depending on the system, some cooperation
may be required from the user program. Other solutions in­
volving some additional hardware are also possible.

3.0 Interfacing Guidelines
There are some special interfacing considerations that are
required (see Figure 6):

1. The edges of the SPC pulse must have a fixed relation­
ship to the clock signal (ClK) presented to the FPU.
When writing information to the FPU, the pulse must start
shortly after a rising edge of ClK and end shortly after
the next rising edge of ClK. Failing to do so can cause
the FPU to fail, often by causing it to freeze and not gen­
erate the Done pulse. This synchronous generation of
SPC is also important when reading information from the
FPU, but the SPC pulse is allowed to be two clocks in
width. These requirements will be expressed in future
NS32081 data sheets as a minimum setup time require­
ment between each edge of the SPC pulse and the next
riSing edge of ClK, currently set at 40 nanoseconds on
the basis of preliminary characterization. The propagation
delay in generating SPC through a Schottky flip-flop (e.g.
74S74) and a low-power Schottky buffer (e.g. 74lS125A)
is therefore acceptable at 10 MHz. lS technology is rec­
ommended for the buffer to minimize undershoot when
driving SPC.

2. After the FPU generates the Done pulse, it is necessary
to leave the SPC pin high for an additional two cycles of
ClK before performing the Read Status Word transfer.

3. After performing the Read Status Word transfer, it is nec­
essary to wait for an additional three cycles of ClK be­
fore reading a result from the FPU.

4.0 An Interface to the MC68000
Microprocessor
4.1 HARDWARE

A block diagram of the circuitry required to interface the
MC68000 MPU to the NS32081 is shown in Figure 7.

First the easy part. Direct connections are possible on the
data bus, which is numbered compatibly (00-015 on both
parts), the status pins STO-ST1 (connected to address
lines A4-A5 from the 68000), and the clock (ClK on both).
The system reset signal (RESET to and/or from the
MC68000) should be synchronized with the clock before
presenting it as RST to the FPU.

All that remains to be done is to generate SPC pulses that
are within specifications whenever the 68000 accesses the
FPU, and to detect the Done pulse from the FPU in a man­
ner that will allow the 68000 to poll for it.

The approach selected for generating SPC pulses uses an
address decoder that recognizes two separate address
spaces; one to transfer information to or from the FPU
(XFER), and one to poll for the Done pulse (POll).

The 68000 signals AS (Address Strobe) and R/W (Read /
not Write) are used to generate SPC timing.

Figure 8 shows the timing generated when the 68000 is
writing to the FPU. The SPC pin is kept floating (held high by
a pullup resistor) until bus state S4, at which point it is pulled
low. On the next rising edge of ClK, SPC is actively pulled
high, and is set floating afterward. It is not simply allowed to
float high, as the resulting rise time can be unacceptable at
speeds above about 4 MHz. A timing chain, required due to
the 10-MHz 68000's treatment of its AS strobe, generates
the signals TA, TB and TC, from which the SPC signal's
state and enable are controlled.

Figure 9 shows the SPC timing for reading from the FPU.
The basic difference is that SPC remains active for two
clocks, so that the FPU holds data on the bus until it is
sampled by the 68000. Again, SPC is actively driven high
before being released.

Note: Although SPC must be driven high before being re­
leased, it must not be actively drive~r more than
two clocks after the trailing edge of SPC. This is be­
cause the FPU can respond as quickly as three
clocks after that edge with a Done pulse.

A simpler scheme in which the SPC pulse is identical for
both reading and writing (1-clock wide always, but starting
% clock later with ClK into the FPU inverted) was consid­
ered, but was rejected because the data hold time present­
ed by the 68000 on a Write cycle would be inadequate
at 10 MHz.

Any SPC pulse appearing while the XFER Select signal is
inactive is interpreted as a Done pulse, which is latched in a

6-11

flip-flop within the Done Detector block. When the 68000
performs a Read cycle from the address that generates the
POll select signal, the contents of the flip-flop are placed
on data bus bit 015. Since this is the sign bit of a 16-bit
value, the 68000 can perform a fast test of the bit using a
MOVE.w instruction and a conditional branch (BPl) to wait
for the FPU.

The schematic for the SPC generator and the Done pulse
detector is given in Figures 10a and 10b. The flip-flop la­
beled SPC generates the edges of the SPC pulse (on the
signal SPCn. The timing chain (TA, TB) provides the enable
control to the buffer driving SPC to the FPU, as well as the
signal to terminate the SPC pulse (either TB or TC, depend­
ing on the direction of the data transfer). Note that the tim­
ing chain assumes a full-speed memory cycle of four clocks
in accessing the FPU, and will fail otherwise. The circuit
generating the Data Acknowledge signal to the 68000
(DTACK, not shown) must guarantee this. In any system
that must use a longer access, some modification to the
timing chain will be necessary.

The flip-flop labeled DONE (Figure 10b) is the Done pulse
detector. It is cleared by performing a data transfer into the
FPU and is set by a Done pulse on SPC. A buffer, enabled
by the POll select signal, connects its output to data bus
bit 15.

4.2 SOFTWARE

Some notes on programming the FPU in a 68000 environ­
ment:

1. The byte addressing convention in the 68000 differs from
that of the Series 32000 family. In particular, a byte with
an even address is transferred on the most-significant
half of the bus by the 68000, but the FPU expects to see
it on the least-significant byte. When transferring a single
byte to or from the FPU, either do so with an odd address
specified, or transfer the byte as the least-significant half
of a 16-bit value at an even address.

2. The 68000 transfers 32-bit operands by sending the
most-significant 16 bits first. The FPU expects values to
be transferred in the opposite order. Make certain that
operands are transferred in the correct order (the 68000
SWAP instruction can be helpful for this).

A sample program that sequences the FPU through the exe­
cution of an ADDF instruction is listed in Figure 11. As this
example is intended for clarity rather than efficiency, im­
provements are possible. The XFER select is assumed to
be generated by addresses of the form 06xxxx (hex) and the
POll select is assumed to be generated by addresses of
the form 07xxxx.

>
Z

I
Co)
co
Co)

•

C")
co
C")

I

Z
<I:

ID OPCODE OPERANDS (DONE) STATUS RESULT

; I~::r ill SPC PULSE WIOTH : CRITICAL '--_____ ~j--'I ® AT LEAST 2 CLOCKS HERE
WHEN WRITING INTO FPU. MUST BE 1 CLOCK WIDE

@ AT LEAST 3 CLOCKS HERE

CLK ~~ ~ CD NO LONG DELAYS BETWEEN
SPC PULSES (> 10 MILLISEC.)

SPC I BUG IN REVISION D.

TL/EE/8388-3

FIGURE 6. Interfacing to FPU: Cautions

A A 4' 5 ..

~
STO, ST1

MC68000
r

DECODER NS32081 -
J..

XFER + FPU

A, • AZ3 Q ADDR. BUS r ~
_ POLL SPC ..

SPC
ADDR. STROBE

~ .. TIMING
AS GEN.

R/W
READ/WRITE

I OSC A ~

CLK .A
~ CLK r

RESET .. 1-
RST ~

LD
Q

Do' D'5
'-- ~" ~ ~ Do' D'5

..tt. :.....
" ..),

..tt. :.....

SYSTEM 4 "DONE"
RESET DETECTOR

r -ID,5
""I: >"'~

DATA BUS
,.

TL/EE/8388-4

FIGURE 7. 68000·32081 Interface Block Diagram

6·12

ClK

~ - 1$1
ADDR __ -< STn AND SELECT VALID r --
R/W

TA

T8

TC

DATA

_____J/ ,'----
-----~/ '­
--------------~/ '---------,'--_----'r-
-------------< VALID }-

FIGURE 9. 68000 Read from FPU

6·13

TL/EE/8388-8

C')
co
C') . z
cs: 74LS04

AS RST
+ +

74S00

AS
TB TC

Q Q
74S112 74S112

K TB TC
XFER ij

+

ClKln
RST RST

':'

R/W >---[><>"'-L-~

FIGURE 10a. Schematic: SPC Timing Generator

74lS04

SPC >----a.>---_"""
XFER >------"'"

DONE

R

it AS

POll~-----------------~~----L-~

74LS04
S

o Q
74S74

RST

74lS02

74LS125A

015
>---"'(BUS)

ii RST 1-..-.------... -------. (TO FPU) R - ..
ClK

+

SPC
(TO FPU)

Tl/EE/8388-7

~ ________________________ .CLK

(TO FPU) Tl/EE/8388-8

FIGURE 10b. Schematic: DONE Detector and RESET Synchronizer

6-14

Register Contents:

AO = 00070000
Al = 00060010
A2 = 00060020
A3 = 00060030

DO = OOOOOOBE
Dl = 00000184
D2 = 3F800000
D3 = 3F800000
D4
D5
D7

START MOVE.W DO, (A3)

POLL

MOVE.W Dl, (Al)
SWAP D2
MOVE.L D2, (Al)
SWAP D2
SWAP D3
MOVE.L D3, (Al)
SWAP D3

MOVE.W (AO),D7
BPL POLL

MOVE.W (A2),D4
MOVE.L (Al),D5
SWAP D5

Address of DONE flip-flop.
Address for ST=l transfer (Transfer Operand).
Address for ST=2 transfer (Read Status Word).
Address for ST=3 transfer (Broadcast ID).

ID byte for ADDF instruction.
Operation Word for ADDF. (Note bytes swapped.)
First operand = 1.0.
Second operand = 1.0.
Receives Status Word from FPU.
Receives result from FPU.
Scratch register (for DONE bit test).

Send ID byte.
Send Operation Word.
Send operands. The swapping
is included because the
FPU expects the least­
significant word first.
(Can be avoided, with care.)

Check the DONE flip-flop,
loop until FPU is finished.
(DONE bit is sign bit, tested
by the MOVE instruction.)

Read Status Word.
Read result.
Swap halves of result.

FIGURE 11. Single-Precision Addition (Demo Routine)

6-15

l>
Z .
(,.)
CD
(,.)

it)
o
"'I:t' • z
<I:

Using DynamiC RAM With
Series 32000® CPUs

Recent advances in semiconductor technology have led to
high-density, high-speed, low-cost dynamic random access
memories (DRAMs), making large high-performance memo­
ry systems practical. DRAMs have complex timing and re­
fresh requirements that can be met in different ways, de­
pending on the size, speed, and processor interface require­
ments of the memory being designed. For low or intermedi­
ate performance, off-the-shelf components like the DP8419
can be used with a small amount of random logic. For high­
er performance, specialized high-speed circuitry must be
designed

This application note presents the results of a timing analy­
sis, and describes a DRAM interface for the NS32016 opti­
mized for speed, simplicity and cost.

A future application note will discuss such features as error
detection and correction, scrubbing, page mode and/or nib­
ble mode support, in conjunction with future CPUs, such as
the NS32332.

TIMING ANALYSIS RESULTS

Figures 1 and 2 show the number of CPU wait states re­
quired during a DRAM access cycle, for different CPU clock
frequencies and DRAM access times.

Figure 1 is related to a DRAM interface using the DP8419
DRAM controller. Descriptions of the circuitry for use with
the DP8419 and related timing diagrams are omitted. See
the "DP8400 Memory Interface Family Applications" book
for details.

Figure 2 shows the same data for a DRAM interface using
standard TTL components, specially designed for the
NS32016.

The special-purpose interface requires fewer wait states
than the DP8419-based interface, especially at high fre­
quencies.

These results assume a minimum amount of buffering be­
tween DRAM and CPU.

The results do not apply when CPU and DRAM reside on
different circuit boards communicating through the system
bus, since extra wait states may be required to provide for
synchronization operations and extra levels of buffering.

INTERFACE DESCRIPTION

The DRAM interface presented here has been optimized for
overall access time, while requiring moderate speed
DRAMs, given the CPU clock frequency.

This may be significant when a relatively large DRAM array
must be designed since a substantial saving can be
achieved.

The result of these considerations has been the design of a
high-speed DRAM interface capable of working with a CPU
clock frequency of up to 15-MHz and 100-nsec DRAM
chips, without wait states.

The only assumption has been that the DRAM array is di­
rectly accessible through the CPU local bus.

National Semiconductor
Application Note 405
Microprocessor Applications
Engineering

RAM
Access
Time CPU Walt States Required
In nsec

250 0 1 2
200 0 0 2 2
150 0 0 0 0 1
120 0 0 0 0 0 1
100 0 0 0 0 0 0

6 7 8 9 10 11 12 13 CPU Clock
Frequency in MHz

FIGURE 1. Memory Speed vs. CPU Walt States When

RAM
Access
Time
In nsec

250
200
150
120
100

Using the DP8419 DRAM Controller

CPU Walt States Required

001
000 0 1 1
000 0 0 0
000 0 0 0 0 0 1 1
000 0 0 0 0 0 0 0

6 7 8 9 10 11 12 13 14 15 CPU Clock
Frequency in MHz

FIGURE 2. Memory Speed vs. CPU Walt States
When Using Random Logic

This configuration presents some speed advantages; for ex­
ample, the amount of buffering interposed between CPU
and DRAM array is minimal. This translates into shorter
propagation delays for address, data and other relevant sig­
nals.

Another advantage is that the interface can work in com­
plete synchronization with the CPU. This significantly im­
proves performance since no time is spent for synchroniza­
tion. Reliability also improves since the possibility of meta­
stable states in synchronizing flip-flops is eliminated.

A block diagram of the DRAM interface is shown in Figure 3.
Figures 4 through 7 show circuit diagrams and timing dia­
grams.

Interface operation details follow.

RAS AND CAS GENERATION

This is the most critical part of the entire interface circuit. To
avoid wait states during a CPU read cycle, the DRAM must
provide the data before the falling edge of clock phase
PH12 during state T3. This requires that the RAS signal be
generated early in the CPU bus cycle to meet the DRAM
access time. On the other hand, the RAS signal can be
asserted only after the row address is valid and the RAS
precharge time from a previous CPU access or refresh cycle
has elapsed.

6-16

The interface circuit shown in Figures 4 and 5 relies on two
advanced clock signals obtained from CTIL through a delay
line and some standard TIL gates.

The advanced clock signals, CTILA and CTILB, are used
to clock the circuit that arbitrates between CPU access re­
quests and refresh requests. The CTILB signal is also used
to enable an advanced RAS generation circuit, which caus­
es the RAS signal to be asserted earlier than the CPU ac­
cess-grant signal from the arbitration circuit. This speeds up
the RAS signal by about 10 ns by avoiding the time required
by the arbitration circuit to change state.

A different delay line is used to generate the CAS signal and
to switch the multiplexers for the column addresses. Note
that the CAS signal during write cycles is delayed until the
beginning of CPU state T3, to guarantee that the data being
written to the DRAM is valid at the time CAS is asserted.
The CAS signal is deasserted after the trailing edge of RAS
to guarantee the minimum pulse width requirement.

The timing diagrams in Figures 6 and 7 show the signal
sequences for both read and write cycles.

ADDRESS MULTIPLEXING
The multiplexing of the various addresses for the DRAM
chips is accomplished via four 74AS153 multiplexer chips in
addition to some standard TIL gates used to multiplex the
top two address bits needed for 256k DRAMs. The resulting
nine address lines are then buffered and sent to the DRAMs
through series damping resistors. The function of these re­
sistors is to minimize ringing.

REFRESH
The refresh circuitry includes an address counter, a timer
and a number of flip-flops used to generate the refresh cy­
cle and to latch the refresh request until the end of the
refresh cycle.

The address counter is an 8-bit counter implemented by
cascading the two 4-bit counters of a 74LS393 chip. This
counter provides up to 256 refresh addresses and is incre­
mented at the end of each refresh cycle.

The refresh timer is responsible for generating the refresh
request signal whenever a refresh cycle is needed. This ti-

6-17

mer is implemented by cascading two 4-bit counters. Both
counters are clocked by the CTILB signal; the first is a pre­
settable binary counter that divides the clock signal by a
specified value; the second can be either a BCD or a binary
counter depending on the CPU clock frequency.

With this arrangement, a refresh request is generated after
a fixed time interval from the previous request, regardless of
the CPU activity. A more sophisticated circuit that generates
requests when the CPU is idle could also be implemented.
However, such a circuit has not been considered here be­
cause the performance degradation due to the refresh is
relatively small (less than 3.3 percent), and the improve­
ment attainable by using a more sophisticated circuit would
not justify the extra hardware required.

CONCLUSIONS
The DRAM interface described in this application uses two
TIL-buffered delay lines to obtain speed advantages. One
delay line is used to time the CAS signal and to enable the
column address. The other is used to generate the ad­
vanced clock signals from CTIL.

Below 10 MHz, the advanced clocks might not be required,
and the related delay line can be eliminated. When this is
done, however, higher speed DRAMs must be used. If, on
the other hand, advanced clocks must be used for frequen­
cies lower than 10 MHz, a delay line with a larger delay (e.g.
DDU-7 J-1 00) might be needed.

Delay lines are extremely versatile for this kind of applica­
tion due to their accuracy and the fact that different delays
are easily available to accommodate different DRAM types.

The savings attainable by using slower DRAM chips, in addi­
tion to the reliability improvement and cleaner design, make
delay lines a valid alternative, even though their cost is rela­
tively high in comparison to standard TIL gates.

>
Z .
~
o
U1

AN-405

It-"'- -4- RDAT (0:15)

~ ~ DAT (0:15)
NS32000

CPU
GROUP COLSEL

l DI DO DI DO

~
CD

AD (0:15) ADDRESS

c~
RAM

LATCHES A (1:18) ADDRESS RAM RAM

A (16:23)
AND ~ BANK BANK

BUFFERS EVEN ODD

~ -I--~-t>-REFRESH REFRESH
REFRESH SEQUENCE ADDRESS ~ -<>1 I~ I~ I~ I~ I~ I~

TIMER LOGIC COUNTER
i '---r---t r 10-

1 -f 1 t f f
1 I I I

I ~ RFREQ RFRAS

RAS RFGNT CAS

~ BUFFERS BUFFERS

ARBITER NRAS
~ n>1 I DELAY UNE

~ +- r 1 11 1111
ADS/PAV'" ACCESS ADVRAS

REQUEST -1-"'.----,-
TSO ~

ADVANCED I-- ? ~ y' LOGIC RAS
- ... LOGIC .L~ RST,

l
CAS

CTTLB CLOCK ~ GEN.

CTTL; ADVANCE I CTTLA LOGIC

LOGIC

" " " DDiN AD HBE
TUEE/8517-1

FIGURE 3. DRAM Interface Block Diagram

~
<0

RASO

:0 'I RASl

CASl
D--

WE

A(1:23)
I>-

COLSEL
C--

FGNT

RAMINH
D-

AD (0:15)
0-

ODIN

DBE

I I T II I 111
~1:151~
f'=::jA7 ..--

F

IT_ IT_IT_IT_IT_ IT_ IT_ II
I T I I I I I I I I I I I T I I I I I I I I I I I I r rT I ITTI TIn

1:151~ II: 151~ 1:151~

~
Al
AD 0 c; g

_ CJ

CJ CJ \ \ \ \ \ \ \" ~\" ~\ \ \ \ \ \ \ :
,,,m! I [q q ! I I[I[~! ~I ~! ~I ! I I[I[II I[I[§! ~l ~ELLI II I l

Ala~74AS32 74ASOO 1 2!3 Wl

% LrJ1.'!..., A17 . t -_-_-I-t_ -, -T:r1 -t .. Vb I A8

L ___ .J

.....
rd:C

T I
1 - -

FIGURE 4. DRAM Interface Circuit Diagram (a)

iii

OAT

BODIN

~"" ~'"

TUEE/8S17-2

SOt'-NV

m
N
o

mL

RD (0:2)

ADS/PAY
I>-

RST

TSO

RAMSEL
[>-

BODIN
D-
HBE

AD

~-

• "Y<r-++5

.... -.
w.~~ 5~ CTTLa

7 _8

CrrLA
+5~ __

ACGNT ADYRAS

FIGURE 5. DRAM Interface Circuit Diagram (b)

+5

-"AAr-++5

AN·405

RFGNT

COLSEL
<>

220 RASl
~

220 RASO
<>

220 CASl
~

220 CASO
INtr---O
220 WE

CWAIT
-D

W7 WAIT1

0() 0 r:;;:::::
1 2 +5

TUEE/8517-3

~--. ~

CTTL

CIT LA

ATSD

LATSO

RQ (0:2)

NRAS

AOVRAS

RAS (0:1)

m(O:l)

A (0:8)

01 (0:15)

RFREO

RFONT

RFRAS

T1 T2 T3 T4 TI TI T1 T2 T3

- 1L-n-rL-1L-rL-IL-rL-fL-Jl-
r ~ -f-~rL-L--il-IL--r rt--~~ ---
L r-- I--- r-- r---

~r-L
r--- r-I-r--I- I-~ --- --- ""r- r- ,.... ~

- h~ ~

- ~IJ \

\ II

1\

-
-V 1\ ~

dL rtJ V V// '///// 'A

\

\ II

I

r-
1'-~

1\ \ f

I

\

I

~

ROW
X X COLUMN ADOR I I REFRESH AOOR I

AODRI

DATA VALID

I II I \

~ -
II \

TL/EE/8S17-4

FIGURE 6. Write Cycle Followed By a Refresh Cycle

6·21

z .
~
o
U1

it)
0
'III:t' .
Z TI TI T1 T2 T3 TW TW TW T4 nor T1
.:(

CTTL -1LII-rL-~ ~ rL-
CTTLA S rL-!"""- i....-r--LS :LJI~~~ ~Il.-r - :L..I -
CTTLB L Lr i--- rL LJL lL-l--- r----LJL - LrL I-- ~ ~ I- '--

ADS/PAV \~

DDIN \ ,--
TSO 1\ I]

CWAIT \

ATSO J 1\

LATSO II 1\

RQ(O:2) I

ACRED \

ACGNT I

NRAS I

ADVRAS r IL~

RAS (0:1) 1\ II 1\

COLSEL

RDCAS I

DELCAS t

WiiCAs II

CAS (0:1) 1\ ~

ROW
A (0:8) I REFRESH ADDR I COLUMN ADDR I

DO (0:15)
ADDj

I DATA VALID \.

I
RFREQ - ~ \

RFGNT

RFRAS II \

TL/EE/6517-5

FIGURE 7. Refresh Cycle Followed Bya Read Cycle

6-22

Effects of NS32082 Memory
Management Unit on
Processor Through Put

INTRODUCTION

The purpose of this application note is to give a satisfactory
answer to the question, "How great is the performance pen­
alty for using the NS32082 memory management unit?" To
arrive at a satisfactory answer a number of benchmarks
have been run on the OB32000 board using the NS32032
with and without the NS32082 as well as the NS32016 with
and without the NS32082. The benchmarks were compiled
on two different compilers to show the differing effects of
the MMU based on the degree of code optimization. The
results are tabulated in a table along with the percent per­
formance penalty.

The results show that the percentages vary over the wide
range of 6% to 18.5% with generally a greater MMU impact
with higher levels of code optimization in the compiler. The
Whetstone benchmark has also been included to show the
effects of the MMU on floating-point instructions. As can be
seen in the tables the effects are much smaller with longer
instructions such as the floating-point instructions. The last
section of this ap-note rationalizes the differences in per­
formance under varying conditions and gives some rules of
thumb to use in applying this data to a specific case.

THE TEST SET·UP

To run this set of tests the OB32000 board was used. This
board is a complete microprocessor system specifically de­
signed to assist the user in evaluating and developing hard­
ware and software for the NS32032 CPU, related slave
processors (NS32081 FPU and NS32082 MMU) and sup­
port devices. Through the use of on board multiplexers the
NS32016 and NS32008 CPU's can also be run on this
board. The configuration of this board used for these tests
consist of the NS32081 FPU (floating point unit), the
NS32202 ICU (interrupt control unit), 256K of dynamic RAM,
extensive ROM/EPROM capability, and two serial RS-232
ports as well as a parallel I/O port. See the OB32000 data
sheet for more detailed information.

The TOS monitor (shipped installed on the OB32000 board)
was then removed and replaced with MON32. This monitor

National Semiconductor
Application Note 464
Chris Siegl

is compatible with National's OBG16 debugger and allows
downloading of code from a host computer through the de­
bugger using an RS-232 link therefore allowing the host ma­
chine to be remote from the development environment. This
can even be done over a modem line to the host.

A timing routine using the counters in the ICU was linked to
the compiled benchmark programs before they were down­
loaded to the OB32000. A command to the debugger then
started the timing program executing which in turn called
the compiled benchmark after starting the ICU counters. Af­
ter the benchmark completes, it returns to the timing routine
where the counters are stopped and the execution time is
read from the registers. This set-up and the timing program
used are covered in detail in another application note titled
"Using the OB32000 Evaluation Board for Benchmarking".

The SYS-32 Multi-User development system was used as
the host. This system is based on the Series 32000 family,
runs GENIXTM (National's version of Berkley 4.1 UNIXTM)
operating system in a demand paged virtual memory envi­
ronment. The system supports up to eight simultaneous us­
ers, C and Pascal high level language compilers, a Series
32000 assembler, symbolic debugger and supports in-sys­
tem emulation for the 32000 family. The minimum system
configuration consists of 1.25 megabytes of RAM (expand­
able to 3.25 megabytes) 70 megabytes of hard disk (ex­
pandable to 490 megabytes) and a streamer tape drive for
backup. For more detailed information on the SYS-32,
please refer to the SYS-32 data sheet. The details of the
OBG16 symbolic debugger's usage for down loading and
execution of the benchmaks is covered in the ap-note "Us­
ing the OB32000 Evaluation Board for Benchmarks".

RESULTS

TABLES I, II and III show the results of running the bench­
marks under the four different part combinations. As can be
seen in tables the MMU penalty varies considerably from
benchmark to benchmark and especially from one compiler
to another. To set an understanding of why the variations
are so big, we must look at how the 32000 family of CPU's
operate in memory.

TABLE I
Benchmarks Executed on DB3200D-AII Processors Running

at 10 MHz with no Walt States using Genlx 4.1 C Complier

Benchmark
NS32032 NS32032 MMU NS32016 NS32016 MMU
WMMU W/OMMU Penalty WMMU W/OMMU Penalty

Ackerman. c 4.72 4.32 9.3% 6.03 5.27 14.4%

BenchE.c 8.89 8.12 9.5% 11.97 10.50 14.0%

Puzzle. c 20.59 19.10 7.8% 26.96 23.65 14.0%

Sieve.c 19.42 18.09 7.4% 22.15 19.62 12.9%

Fibonacci. c 22.13 20.28 9.1% 26.31 23.61 11.4%

Longsearch. c 7.36 6.71 9.7% 10.31 8.70 18.5%

6-23

•

-.:t
CD
-.:t • Z
<I:

TABLE II
Benchmarks Executed on DB3200D-AII Processors Running at 10 MHz

with no Walt States using Greenhill's C-32000 1.6.8 Complier

Benchmark
NS32032 NS32032 MMU NS32016 NS32016 MMU
WMMU W/OMMU Penalty WMMU W/OMMU Penalty

Ackerman. c 3.75 3.30 13.6% 5.06 4.37 15.8%

BenchE. c 4.44 4.00 11.0% 4.76 4.48 6.3%

Puzzle. c 7.82 7.09 10.3% 9.61 8.57 12.1%

Sieve. c 17.71 16.41 7.9% 19.65 17.89 9.9%

Fibonacci. c 18.34 16.47 11.4% 24.87 21.17 17.5%

Longsearch. c 6.77 5.97 13.4% 8.75 7.48 17.0%

TABLE III
Benchmarks Executed on DB3200D-AII Processors Running at 10 MHz

with no Walt States using Genlx 4.1 Pascal Complier

Benchmark
NS32032
WMMU

NS32032 MMU NS32016 NS32016 MMU
Penalty W/OMMU

Whetstone. P 5.08 4.83

Both the NS32032 and the NS32016 have an eight byte
queue for instruction prefetching. As a result of this queue
having an MMU in the system has little effect on instruction
fetching. An interesting test that helps in understanding this
is to add wait states only to the code segment while using
no waitstate RAM for the stacks and static data segments.
These tests show a performance degradation of only 2 or
3% per waitstate. Another approach to demonstrating the
same effect which is not dependent on a special hardware
setup (controlling the number of wait states on different ar­
eas of memory space is done in hardware) is to generate a
software loop which only uses the registers and immediate
data for holding operands. A short example of such a pro­
gram is shown in listing 1. Table IV shows the results ob­
tained from timing this program both with and without the
MMU. As can be seen from the times the penalty is very
small, much less than 1 %. This example clearly demon­
strates that the queue is doing a good job of minimizing the
effects of the MMU or waitstates on intruction fetching.

Penalty WMMU W/OMMU

5.2% 6.17 5.63 9.6%

6-24

This is why, even though the MMU lengthens each memory
cycle by 25% (memory cycle goes from 4 t-states to 5) the
net effect on performance is typically less than 10%. The
penalty comes primarily from the lengthening of operand
fetches. The NS32032 takes a much smaller penalty if the
operands are primarily 32 bits or more in length. In that case
the NS32032 is only doing half as many operand fetches as
the NS32016, which has to do two accesses to get 32 bit
operands. Another thing to note is that the performance
times between NS32032 and the NS32016 is less than 1 %
in our software program loop test (see Table IV). This is
because both processors are internally identical except in
the queue and bus interface. If the queue keeps up and
there are no stack or memory reference operations the exe­
cution time would be identical. The difference in time in this
test is due to the queue not quite keeping up and the branch
which purges the queue which the NS32032 reloads twice
as fast.

TABLE IV
Benchmarks Executed on DB3200D-AII Processors Running at 10 MHz with No Walt States

(times are In microseconds)

Benchmark
NS32032 NS32032
WMMU W/OMMU

Progloop.b.s 12622 12559

Progloop.w.s 13344 13291

Progloop.d.s 14988 14939

Tables I and II are the results of two different compilers
using the same source files for input but generating code at
different levels of optimization. The compiler in Table II opti­
mizes to a much greater degree resulting in a much smaller
ratio of instruction fetches to operand fetches while the ta­
ble one compiler generates more code to do the same work.
The number of operands does not decrease through opti­
mization but extraneous code is eliminated, driving down the
code to operand fetch ratio. As a result the penalty rises but
is still in the neighborhood of 10%. The greater the com­
plexity of the instruction the smaller the MMU penalty be­
cause the queue is more likely to keep up and a larger ratio
of execution time to operands fetched especially with the
NS32032. Table III gives the results of the Whetstone
benchmark which illustrates this. The Whetstone bench­
mark is primarily floating point, the big NS32032 advantage
comes from the operands being 32 or 64 bits in length. The
NS32016 is making two times as many operand memory
references as the NS32032 and therefore gets two times
the MMU penalty.

CONCLUSIONS

After studying the above tests we can see the major factor
effecting the performance penalty due to the MMU is the

LISTING 1

MMU NS32016 NS32016 MMU
Penalty WMMU W/OMMU Penalty

0.50% 12750 12668 0.65%

0.40% 13432 13350 0.61%

0.33% 15075 14992 0.55%

number of operand references and stack operations per unit
of time. If operands are typically longer than 16 bits or the
stack is heavily used, the NS32032 will show a much lower
MMU penalty than the NS32016. However, even for the
NS32016 the MMU penalty is seldom greater than 15% and
typically half that for the NS32032. This penalty being so
small makes a strong case for using the MMU even in sys­
tems not using a bulk memory device and benefiting from
the page replacement aspects. The MMU can be useful in
these non bulk memory applications for protection at the
page level as well as for system debugging and program
maintenance. If portions of the ROM based code require
changes only the ROM holding the effected page table
needs to be replaced with the new code being addable in
any available ROM socket. The MMU with the on board
breakpoint resistors and counter can often greatly simplify
isolating bugs in the field where system disassembly on an
ISE (In System Emulator) would be out of the question or
inconvenient.

In bulk memory based systems there is no question that the
performance improvements due to the MMU far outweigh
the performance lost due to a longer memory cycle. For
more details in this area see the technical note entitled "Se­
ries 32000 The Benefits of Demand Paged Virtual Memory".

i##
i INLINE CODE LOOP
i 12-10-85 by Chris Siegl
i all operands in registers
i##
i progloop.b.s =
i
i progloop.w.s =
i
i progloop.d.s =
i

.program
-main: :

movi O,rO
movi 9,r3
movi 9,r4
movi r3,rl
movi r3,r2
movi r3,r5
movi r3,r6

i's replaced by b at end of instructions
are bytes (8 bits)

i's replaced by w at end of instructions
are words (16 bits)

i's replaced by d at end of instructions
are double-words (32 bits)

iset loop counter to 0 for 256 loops
iput bcd values in r3 & r4

6-25

- operands

- operands

- operands

• CD loop: • • Z absi rl,r2
c(addi rl,r2

addci rl,r2
addpi r3,r4
subpi r3,r4
addqi 4,rl
ashi 4,rl
lshi 5,rl
rot! S,rl
andi r2,r5
comi r2,rl
ori r2,rl
xori r2,rl
nop
muli r5,rS
absi rl,r2
addi rl,r2
addci rl,r2
addpi r3,r4
subpi r3,r4
addqi 4,rl
ashi 4,rl
lshi 5,rl
rot! S,rl
andi r2,r5
comi r2,rl
ori r2,rl
xori r2,rl
nop
muli r5,rS
acbb 1,rO,loop
rxp 0
.endseg

6·26

Introduction to
8resenham's Line
Algorithm Using the S81T
Instruction; Series 32000®
Graphics Note 5

1.0 INTRODUCTION
Even with today's achievements in graphics technology, the
resolution of computer graphics systems will never reach
that of the real world. A true real line can never be drawn on
a laser printer or CRT screen. There is no method of accu­
rately printing all of the points on the continuous line
described by the equation y = mx + b. Similarly, circles,
ellipses and other geometrical shapes cannot truly be imple­
mented by their theoretical definitions because the graphics
system itself is discrete, not real or continuous. For that
reason, there has been a tremendous amount of research
and development in the area of discrete or raster mathemat­
ics. Many algorithms have been developed which "map"
real-world images into the discrete space of a raster device.
Bresenham's line-drawing algorithm (and its derivatives) is
one of the most commonly used algorithms today for de­
scribing a line on a raster device. The algorithm was first
published in Bresenham's 1965 article entitled "Algorithm
for Computer Control of a Digital Plotter". It is now widely
used in graphics and electronic printing systems. This appli­
cation note will describe the fundamental algorithm and
show an implementation .on National Semiconductor's Se­
ries 32000 microprocessor using the SBIT instruction, which
is particularly well-suited for such applications. A timing dia­
gram can be found in Figure 8 at the end of the application
note.

2.0 DESCRIPTION
Bresenham's line-drawing algorithm uses an iterative
scheme. A pixel is plotted at the starting coordinate of the
line, and each iteration of the algorithm increments the pixel
one unit along the major, or x-axis. The pixel is incremented
along the minor, or y-axis, only when a decision variable
(based on the slope of the line) changes sign. A key feature
of the algorithm is that it requires only integer data and sim­
ple arithmetic. This makes the algorithm very efficient and
fast.

Y-axIs HH--4-f.-+--I--I--I--+--t--I-.+-

YI+1 ... •• .. •
YI............ .. . c""

r.;;;;~ t t
: :

XI Xi+1
X-axIs

National Semiconductor
Application Note 524
Nancy Cossitt

The algorithm assumes the line has positive slope less than
one, but a simple change of variables can modify the algo­
rithm for any slope value. This will be detailed in section 2.2.

2.1 Bresenham's Algorithm for 0 < slope < 1

Figure 1 shows a line segment superimposed on a raster
grid with horizontal axis X and vertical axis Y. Note that Xi
and YI are the integer abscissa and ordinate respectively of
each pixel location on the grid.

Given (Xi. Yi) as the previously plotted pixel location for the
line segment, the next pixel to be plotted is either (XI + 1, Yi)
or (XI + 1, Yi + 1). Bresenham's algorithm determines
which of these two pixel locations is nearer to the actual line
by calculating the distance from each pixel to the line, and
plotting that pixel with the smaller distance. USing the famil­
iar equation of a straight line, y = mx + b, the y value
corresponding to XI + 1 is

Y = m(xi + 1) + b
The two distances are then calculated as:

d1 = y - YI
d1 = m(xi + 1) + b - YI

d2 = (Yi + 1) - Y

d2 = (Yi + 1) - m(xi + 1) - b
and,

d1 - d2 = m(xi + 1) + b - Yi - (Yi + 1) + m(xi + 1) + b
d1 - d2 = 2m(xi + 1) - 2Yi + 2b - 1

Multiplying this result by the constant dx, defined by the
slope of the line m = dy/dx, the equation becomes:

dx(d1-d2) = 2dY(Xi) - 2dx(Yi) + c
where c is the constant 2dy + 2dxb - dx. Of course, if d2
> d1, then (d1-d2) < 0, or conversely if d1 > d2, then (d1-
d2) > O. Therefore, a parameter Pi can be defined such that

Pi = dx(d1-d2)
Pi = 2dY(Xi) - 2dx(Yi) + c

TL/EE/9665-1 TUEE/9665-2

FIGURE 1 Distances d1 and d2 are compared.
The smaller distance marks next pixel to be plotted.

FIGURE 2

6-27

l>
Z .
U'I
N
~

~ r---~
N
It)
• z

<C

If Pi > 0, then d1 > d2 and Yi + 1 is chosen such that the
next plotted pixel is (Xi + 1, Yi). Otherwise, if Pi < 0, then d2
> d1 and (Xi + 1, Yi + 1) is plotted. (See Figure 2.)

Similarly, for the next iteration, Pi + 1 can be calculated and
compared with zero to determine the next pixel to plot. If
Pi + 1 < 0, then the next plotted pixel is at (Xi + 1 + 1,
Yi + 1); if Pi + 1 > 0, then the next point is (Xi + 1 + 1,
Yi + 1 + 1). Note that in the equation for Pi + 1, xi + 1 = Xi
+ 1.

Pi + 1 = 2dY(Xi + 1) - 2dx(Yi + 1) + c

Subtracting Pi from Pi + 1, we get the recursive equation:

Pi + 1 = Pi + 2dy - 2dx(Yi + 1 - Yi)

Note that the constant c has conveniently dropped out of
the formula. And, if Pi < 0 then Yi + 1 = Yi in the above
equation, so that:

Pi + 1 = Pi + 2dy

or, if Pi > 0 then Yi + 1 = Yi + 1, and

Pi + 1 = Pi + 2(dy-dx)

To further simplify the iterative algorithm, constants c1 and
c2 can be initialized at the beginning of the program such
that c1 = 2dy and c2 = 2(dy-dx). Thus, the actual meat of
the algorithm is a loop of length dx, containing only a few
integer additions and two compares (Figure 3).

2.2 For Slope < 0 and ISlopel > 1
The algorithm fails when the slope is negative or has abso­
lute value greater than one (Idyl > Idxl). The reason for this
is that the line will always be plotted with a positive slope if
xi and Yi are always incremented in the positive direction,
and the line will always be "shorted" if Idxl < Idyl since the
algorithm executes once for every X coordinate (Le., dx
times). However, a closer look at the algorithm must be tak­
en to reveal that a few simple changes of variables will take
care of these special cases.

For negative slopes, the change is simple. Instead of incre­
menting the pixel along the positive direction (+ 1) for each
iteration, the pixel is incremented in the negative direction.
The relationship between the starting point and the finishing
point of the line determines which axis is followed in the
negative direction, and which is in the positive. Figure 4
shows all the possible combinations for slopes and starting
points, and their respective incremental directions along the
X and V axis.

do while count < > dx

Another change of variables can be performed on the incre­
mental values to accommodate those lines with slopes
greater than 1 or less than -1. The coordinate system con­
taining the line is rotated 90 degrees so that the X-axis now
becomes the V-axis and vice versa. The algorithm is then
performed on the rotated line according to the sign of its
slope, as explained above. Whenever the current position is
incremented along the X-axis in the rotated space, it is actu­
ally incremented along the V-axis in the original coordinate
space. Similarly, an increment along the V-axis in the rotat­
ed space translates to an increment along the X-axis in the
original space. Figure 4a., g. and h. illustrates this transla­
tion process for both positive and negative lines with various
starting points.

3.0 IMPLEMENTATION IN C

Bresenham's algorithm is easily implemented in most pro­
gramming languages. However, C is commonly used for
many application programs today, especially in the graphics
area. The Appendix gives an implementation of Bresen­
ham's algorithm in C. The C program was written and exe­
cuted on a SVS32/20 system running UNIX on the
NS32032 processor from National. A driver program, also
written in C, passed to the function starting and ending
points for each line to be drawn. Figure 6 shows the output
on an HP laser jet of 160 unique lines of various slopes on a
bit map of 2,000 x 2,000 pixels. Each line starts and ends
exactly 25 pixels from the previous line.

The program uses the variable bit to keep track of the cur­
rent pixel position within the 2,000 x 2,000 bit map (A"gure
5). When the Bresenham algorithm requires the current po­
sition to be incremented along the X-axis, the variable bit is
incremented by either + 1 or -1, depending on the sign of
the slope. When the current position is incremented along
the V -axis (Le., when p > 0) the variable bit is incremented
by + warp or -warp, where warp is the vertical bit displace­
ment of the bit map. The constant last bit is compared with
bit during each iteration to determine if the line is complete.
This ensures that the line starts and finishes according to
the coordinates passed to the function by the driver pro­
gram.

if (p < 0) then p+ = cl
else

p+ = c2
next_y = prev_y + y_inc

next_x = prev_x + x_inc
plot (next_x,next_y)
count + = 1

/* PSEUDO CODE FOR BRESENHAM LOOP */

FIGURE 3

6-28

p2

m=lnf

pI

pI

start p1: x.....jnc = y'-.inc = 0
y-.inc = x'_inc = +1

start p2: x.....jnc = y' -.inc = 0
y-.inc = x'-.inc = - 1

a.

start p1: x.....jnc = + 1
y-.inc = -1

start p2: x.....jnc = -1
y-.inc = +1

p2

c.

TL/EE/9665-3

TL/EE/9665-5

start p1: x.....jnc = + 1
y-.inc = -1

p~ startP2:~nc=-1
~...JOO-+1

pI

-1<m<O p2

p2

TL/EE/9665-7

e.

start p1: x.....jnc = y'-.inc = + 1
y_inc = x' -.inc = -1

start p2: x.....jnc = y' -.inc = -1
y-.inc = x' -.inc = + 1

TLlEE/9665-9

g.

p1 p2

m=O

b.

p2

p1

d.

start p1: x.....jnc = + 1
y-.inc = 0

start p2: x.....jnc = -1
y-.inc = 0

TLlEE/9665-4

start p1: x.....jnc = + 1
y-.inc = +1

start p2: x-inc = -1
y-.inc = -1

p2

TLlEE/9665-6

start p1: x.....jnc = + 1
y-.inc = + 1

~
start p2: x.....jnc = -1

y-.inc = -1

pI

f.

m>1

pI

h.

TL/EE/9665-8

start p1: x.....jnc = y' -.incl = -1
y-.inc = x' -.inc = + 1

start p2: x.....jnc = y' -.inc = + 1
y-.inc = x' _inc = -1

TL/EE/9665-10

Note: a., g., and h. are rotated 90 degrees left and x' , y' refer to the original axis.

FIGURE 4

6-29

l>
z

I
U1
N
~

•

~ r---~
N an
:Z
CC blt=O

bIt = startIng
position --t-

--~

~
~~

~ ,
~ !If"

~
~ i'-r-..,

~ r-..,

~
tm\TI rI

~
,

Bit Map Is 500 kbytes, 2k x 2k Bits
Base Address of Bit Map Is 'BILMap'

FIGURES

6-30

~

-""'r---.

i'-

bIt = 1,999

> warp = 2,000

-..... bIt = current
posItIon

TL/EE/9665-11

Graphics Image (2000 x 2000 Pixels), 300 DPI

TL/EE/9665-12

FIGURE 6. Star-Burst Benchmark-This Star-Burst Image was done on a 2k x 2k pixel bit map.
Each line Is 2k pixels In length and passes through the center of the Image, bisecting

the square. The lines are 25 pixel units apart, and are drawn using the LINLDRAW.S routine. There
are a total of 160 lines. The total time for drawing this Star-Burst Is 2.9 sec on 10 MHz NS32C016 •

6·31

l>
z .
U1
N
0l:Io

•

"'1:1"
N
it)
• z

<C

4.0 IMPLEMENTATION IN SERIES 32000 ASSEMBLY:
THE SBIT INSTRUCTION
National's Series 32000 family of processors is well-suited
for the 8resenham's algorithm because of the 58 IT instruc­
tion. Figure 1 shows a portion of the assembly version of the
8resenham algorithm illustrating the use of the S81T instruc­
tion. The first part of. the loop, handles the algorithm for p <
o and .CASE2 handles the algorithm for p > O. The main
loop is unrolled in this manner to minimize unnecessary
branches (compare loop structure of Figure 1 to Figure 3).
The 58 IT instruction is used to plot the current pixel in the
line.

The S81T instruction uses bitJnap as a base address from
which it calculates the bit position to be set by adding the
offset bit contained in register r1. For example, if bit, or R 1,
contains 2,000·, then the instruction:

sbitd r1,@ bitJnap
will set the bit at position 2,000, given that bit-fl/ap is the
memory location starting at bit 0 of this grid. In actuality, if
base is a memory address, then the bit position set is:

offset MODS
within the memory byte whose address is:

base + (offset DIV S)
So, for the above example,

2,000 MOD S = 0

bit-fl/ap + 2,000 DIV S = bit-fl/ap + 250
Thus, bit 0 of byte (bit-fl/ap + 250) is set. This bit corre­
sponds to the first bit of the second row in Figure 5.

• All numbers are in decimal.

Main loop of Bresenbam algorithm
.LOOP: #P < 0: move in x direction only

cmpqd $O,r4
ble .CASE2
addd rO,r4
addd r5,rl
sbitd rl,@_bit_map
cmpd r3,rl
bne .LOOP
exit [r3,r4,r5,r6,r7]
ret $0
.align 4

.CASE2: #P > 0: move in x and y direction
addd r2,r4
addd r7,rl
addd r5,rl
sbitd rl,@_bit_map
cmpd rl,r3
bne .LOOP
exit [r3,r4,r5,r6,r7]
ret $0

The S81T instruction greatly increases the speed of the al­
gorithm. Notice the method of setting the pixel in the C pro­
gram given in the Appendix:

bit-fl/ap[bitIS] I = biLpos[(bit & 7)]

This line of code contains a costly division and several other
operations that are eliminated with the 58 IT instruction. The
S81T instruction helps optimize the performance of the pro­
gram. Notice also that the algorithm can be implemented
using· only 7 registers. This improves the speed perform­
ance by avoiding time-consuming memory accesses.

5.0 CONCLUSION
An optimized 8resenham line-drawing algorithm has been
presented using the SYS32/20 system. 80th Series 32000
assembly and C versions have been included. Figure 8
presents the various timing results of the algorithm. Most of
the optimization efforts have been concentrated in the main
loop of the program, so the reader may spot other ways to
optimize, especially in the set-up section of the algorithm.
Several variations of the 8resenham algorithm have been
developed. One particular variation from 8resenham himself
relies on "run-length" segments of the line for speed opti­
mization. The algorithm is based on the original 8resenham
algorithm, but uses the fact that typically the decision vari­
able p has one sign for several iterations, changing only
once in-between these "run-length" segments to make one
vertical step. Thus, most lines are composed of a series of
horizontal "run-lengths" separated by a single vertical jump.
(Consider the special cases where the slope of the line is
exactly 1, the slope is 0 or the slope is infinity.) This algo­
rithm will be explored in the NS32CG16 Graphics Note 5,
AN-522, "Line Drawing with the NS32CG16", where it will
be optimized using special instructions of the NS32CG16.

Register and Memory
Contents

rO = cl constant
rl = bit current

position
r2 = c2 constant
r3 = last_bit
r4 = p decision var
r5 = x_inc increment
r6 = unused register
r7 = y_inc increment
_bit_map = address of
first byte in bit map

FIGURE 7
Note: Instructions followed by the letter 'd' indicate "double word" operations.

6-32

Timing Performance
2k x 2k Bit Map

2k Pix/Vector 160 Lines per Star-Burst

Version NS32000 Assembly with SBIT

Parameter NS32C016-10 NS32C016-15

Set-up Time Per Vector 45,...s 30,...s

Vectors/Sec 54 82

Pixels/Sec 109,776 164,771

Total Time
2.9s

1.9s
Star-Burst Benchmark

FIGURE 8

6-33

Set-up time per line is measured from the start of
LlNLDRAW.S only. The overhead of calling the LlNL
DRAW routine, starting the timer and creating the endpoints
of the vector are not included in this time. Set-up time does
include all register set-up and branching for the Bresenham
algorithm up to the entry point of the main loop.

Vectors/Second is determined by measuring the number
of vectors per second the LlNLDRAW routine can draw,
not including the overhead of the DRIVER.C and START.C
routines, which start the timer and calculate the vector end­
points. All set-up of registers and branching for the Bresen­
ham algorithm are included.

Pixels/Second is measured by dividing the Vectors/Sec­
ond value by the number of pixels per line.

Total Time for the Star-Burst benchmark is measured from
start of benchmark to end. It does include all overhead of
START.C and DRIVER.C and all set-up for
LlNLDRAW.S. This number can be used to approximate
the number of pages per second for printing the whole Star­
Burst image.

l>
Z .
U1
N
0l:Io

National Semiconductor Corporation.
CTP version 2.4 -- line_draw.s --

.file "line draw.s"
.comm- bit map,49975~
.globl- _lIne_draw
.set WARP,2~~~
.align 4

line draw:
[r3,r4,r5,r6,r7],12
12(fp),r5
8(fp),r6
r5,r1
$ (WARP) ,r1
r6,r1
2~(fp),r4
r5,r4
r4,r3
16(fp),r2
r6,r2
r2,r6
r3,r6
.LL1

initialize

1/ r5-ys
1/ r6-xs
f initialize starting 'bit' * bit-warp*ys+xs * r1=bit
f r4=yf * r4-dy
: ~~:~~YI * r2=dx * r6=ldxl * branch if slope<l * must rotate axis for slope>l * if dy<.0 want x inc<.0

- enter
movd
movd
movd
muld
addd
movd
subd
absd
movd
subd
absd
cmpd
ble
cmpqd
bge
addr
br
.align

$(.0) ,r4
.LL2
WARP,r5
.LL3

* else x inc is pos
f x_inc-+/-warp because of rotate

.LL2:

.LL3:

.LL4:

.LL5:

.LL1:

.LL7:

.LL8:

.LL9:

.LL1~:

.LL6:

.LLll:

addr

cmpqd
bge
movqd
br
• align

movqd

movd
addd
subd
addr
movd
subd
movd
muld
addd
br
• align

cmpqd
bge
addr
br
. align

addr

cmpqd
bge
movqd
br
• align

movqd

addr
movd
subd
addd
movd
subd
movd
muld
addd

cmpqd
ble
addd
addd
sbitd
cmpd
bne
exit
ret
• align

addd
addd
addd
sbitd
cmpd
bne
exit
ret

-WARP,r5

$(~),r2
.LL4
$(I),r7
.LL5

$(-1),r7

r6,r~
r~,r~
r3,r6
~[r6:w],r2
r~,r4
r3,r4
2~(fp) ,r3
$ (WARP) ,r3
16(fp),r3
.LL6

$(~),r4
.LL7
WARP,r7
.LL8

-WARP,r7

$(J:'I),r2
.LL9
$(1),r5
.LL1J:'1

$(-1),r5

J:'I[r3:w],r~
r3,r2
r6,r2
r2,r2
r~,r4
r6,r4
2J:'1(fp),r3
$ (WARP) ,r3
16(fp),r3

$(J:'I) ,r4
.LL11
rJ:'l,r4
r5,r1
r1,@ bit_map
r3,rI
.LL6
$r3,r4,r5,r6,r7]

(.0)

r2,r4
r7,r1
r5,r1
r1,@_bit_map
r1,r3
.LL6
$r3,r4,r5,r6,r7]

(.0)

if dx<~ want y inc<~
else y_inc is pos
y_inc=+/-l becaue of rotate

calculate c1,c2 and p

r~=c1=2*ldxl because of rotate
r6=ldx-dyl r2=2*r6=c2
this muls r6 by 2 and puts in r2

r4-c2-ldyl-p in rotated
calculate last_bit

space

r3=last_bit

f slope<l use original axis • dy determines y_inc

• dy>~ then y_inc=+warp

• dy<~ then y_inc=-warp

f dx>~ then x_inc=+l

f dx<J:'I then x_inc=-l

calculate c1,C2,p
rJ:'l-2*r3-c1

f r2-2*ldy-dx l-C2

f
f

p-2*dy-dx-r4
calculate last_bit-r3

main loop for algorithm t
f check sign of p
f branch if pos
t add c1 to p
f inc bit by x_inc only
t plot bit
t end only if bit-last_bit

p>.0 then inc in y dir

: :~~ ~2i~~ ~o bit
add x-inc to bit
• plot Eit # end only when bit-last_bit

6-34

TL/EE/9665-13

TL/EE/9665-14

/* This program calculates points on a line using Bresenham's iterative */
/* method. */

'include<stdio.h>
'define xbytes 25P /* number of bytes along x-axis*/
'define warp xbytes * 8 /* number of bits along x_axis*/
'define maxy 1999 /* number of lines in y_axis*/
unsigned char bit_map[xbytes*maxy]; /* array contains bit map*/
static unsigned char bit-pos[]-(1, 2,4,8,16,32,64,128);

/* look-up table for setting bit */

line_draw(xs,ys,xf,yf} /* starting (s) and finishing (f) points */

int xs,ys,xf,yfl

int dX,dI'x inc,y_inc,
bit, as~_bit,
p,c1,c21

/* deltas and increments */
/* current and last bit positions */
1* decision variable p and constants *1

dx-xf-xs;

grt~f-~:~arp)+xs;
last_~it-(Yf*warp)+xfl 1* initialize bit to first bit pos *1

1* calculate last bit on line *1
if (abs(dy) > abs(dx»
(1* abs(slope»1 must rotate space *1

1* see Figure 5 a.,g.,and h. *1

}
else

if (dy>P)
x_inc-warp;

else
x_inc- -warp;

if (dx>P)
y_inc-l;

else

1* x_axis is now original y_axis *1

1* y_axis is now original x_axis *1
y inc- -1;

c1-2*abs(ax); 1* calculate Bresenham's constants *1
c2-2*(abs(dx)-abs(dy»;
p-2*abs(dx)-abs(dy); 1* p is decision variable now rotated *1

1* abs(slope)<1 use original axis */
if (dy>P)

y_inc-warpl 1* y_inc is +I-warp number of bits *1
else

y_inc- -warpl
if (dx>P)

x_inc-11 1* move forward one bit *1
else

x inc- -1; 1* or backward one bit *1
cl-2*abs(ay)I 1* calculate constants and p *1
c2-2*(abs(dy)-abs(dx»;
p-2*abs(dy)-abs(dx);

1* Bresenham's Algorithm *1
do 1* do once for each x increment, i.e. dx times *1
(

if (p<P) 1* no y movement if p<P *1
else

p+=c1;
1* move in y dir if p>p *1

p+-c2;
bit+-y_inc;

1* always increment x *1
1* bit is set by calculating bit MOD 8, which is *1

1* same as bit & 7, then looking up appropriate *1
1* bit in table bit-pos. This bit pos is then set *1
1* in byte bit/8 *1
bit map[bit/8] 1- bit-pos[(bit&7)]1

while (bi~lalast_bit)1

6·35

TLlEE/9665-15

TLlEE/9665-18

l>
z .
U1
N
~

/* Program driver.c feeds line vectors to LINE_DRAW.S forming star-Burst.

#include <stdio.h>
#define xbytes 25~
#define maxx 1999
#define maxy 1999

unsigned char bit_map[xbytes*maxy];

maine)

int i,count;

/* generate Star-Burst image */

for (count=1;count<=1~~~;test++)(

for (i=~;i<=maxy;i+=25)
line_draw(~,i,maxx,maxy-i);

for (ia~:i<=maxx:i+-25)
line_draw(i,maxy,maxx-i,~);

/* start timer and call main procedure of DRlVER.C to draw lines */

start() (
long *timer = (long *) ~x6~~;
timer - ~; / write a zero to timer location */

main(~,~); /* Show argc as zero, argv ->~ */
return(*timer); /* return, in r~, the current time */

6·36

*/

TL/EE/9665-17

TLlEE/9665-1 B

Block Move Optimization
Techniques Series 32000®
Graphics Note 2

1.0 INTRODUCTION
This application note discusses fast methods of moving
data in printer applications using the National Semiconduc­
tor Series 32000. Typically this data is moved to or from the
band of RAM representing a small portion (or slice) of the
total image. The length of data is fixed. The controller de­
sign may require moving data every few milliseconds to im­
age the page, until a total of 1 page has been moved. This
may be (at 300 OPI, for example) (8.5 x 300) x (11 x 300),
or 1,051,875 bytes. In current controller designs the width is
often rounded to a word boundary (usually 320 bytes at 300
OPI). This technique uses 1,056,000 bytes, or 528,000
words.

: Version 1.0 Sun Mar 29 12:57:20 1987

National Semiconductor
Application Note 526
Dave Rand

2.0 DESCRIPTION
The move string instructions (MOVSi) in the 32000 are very
powerful, however, when all that is needed is a string copy,
they may be overkill. The string instructions include string
translation, conditionals and byte/word/double sizes. If the
application needs only to move a block of data from one
location to another, and that data is a known size (or at least
a multiple of a known size), using unrolled MOVO instruc­
tions is a faster way of moving the data from A to B on the
NS32032 and NS32332.

3.0 IMPLEMENTATION
A code sample follows which makes use of a block size of
128 bytes. To move 256 bytes, for example, RO should con­
tain 2 on entry.

:A subroutine to move blocks of mermry. Uses a granularity of
:128 bytes.

Inputs:
rO = nLmber of 128 byte blocks to rove
r1 II source block address
r2 = destination block address

; List i ng cont 1 nues on fo 11 owl ng page

6-37

TL/EE/9696-1

» z
I

U'I
N
Q)

•

CD
N
II)
• Z OutputS:

II(
rO • 0
r1 • source block address + (128 '* blocks)
r2 • destination block address + (128 * blocks)

:Notes:
This algoritl'ln corresponds closely to the MOVSD instruction,
except that rO contains the nUlTber of 128 byte blocks, not
4 byte double words. The output values are the same as if a
MOVSD instruction were used.

movmern: anpqd O,rO : if no blocks to move
beq mvexit :exit now.
.a11gn 4

mvlp1: movd O(rl),O(r2) :move one block of data
movd 4(rl),4(r2)
movd 8(r1),8(r2)
movd 12(r1).12(r2)
movd 16(r1).l6(r2)
movd 20(rl) ,20(r2)
movd 24(rl) ,24(r2)
movd 28(rl) ,28(r2)
movd 32(r1) ,32(r2)
movd 36(rl),36(r2)
movd 40(rl),40(r2)
movd 44(r1) ,44(r2)
movd 48(r1) ,48(r2)
movd 52(r1) ,52(r2)
movd 56(rl),56(r2)
movd 60(r1),60(r2)
movd 64(r1) ,64(r2)
movd 68(r1) ,68(r2)
movd 72(r1),72(r2)
movd 76(r1) ,76(r2)
movd 80(rl) ,80(r2)
movd 84(r1) ,84(r2)
movd 88(r1) ,88(r2)
movd 92(rl) ,92(r2)
movd 96(r1) ,96(r2)
movd 100(r1) ,lOO(r2)
movd 104(r1) ,104(r2)
movd l08(r1) ,l08(r2)
movd 112(r1) ,112(r2)
movd US(r1) ,U6(r2)
movd 120(rl) ,120(r2)
movd 124(r1),124(r2)
addr 128(r1), rl :qu1ck way of adding 128
addr 128(r2),r2
acbd -I,rO,mvlp1 : loop for rest of blocks

mvexit: ret $0
TL/EE/9696-2

6·38

4.0 TIMING
All timing assumes word aligned data (double word aligned
for 32-bit bus). Unaligned data is permitted, but will reduce
the speed.

On the 32532 (no wait states, @ 30 MHz, 32-bit bus), this
code executes in 204 clocks, assuming burst mode access
is available. To move 256 bytes, this routine would take
13.6 J-Ls. The MOVSD instruction takes about 156 clocks to
move a 128-byte block. The MOVSD instruction is the best
choice, therefore, on the 32532.

On the 32332 (no wait states, @ 15 MHz, 32-bit bus), this
code executes in 458 clocks per 128-byte block. Thus, to
move 256 bytes, this algorithm takes 61.1 J-Ls. The loop
overhead (the ADDR and ACeD instructions) is about 10%.
Doubling the block size (to 256 bytes) would reduce the
loop overhead to 5%, and reducing the block size (to 64
bytes) would increase the loop overhead to 20%. In com­
parison, the 32332 MOVSD instruction takes about 721
clocks to move a 128-byte block.

On the 32032 (no wait states. @ 10 MHz, 32-bit bus), this
code executes in 634 clocks per 128-byte block. Thus, to

6-39

move 256 bytes, this algorithm takes 126.8 J-Ls. The loop
overhead (the ADDR and ACBD instructions) is about 5%.
Doubling the block size (to 256 bytes) would reduce the
loop overhead to 2.5%, and reducing the block size (to 64
bytes) would increase the loop overhead to 10%. In com­
parison, the 32032 MOVSD instruction takes about 690
clocks to move a 128-byte block.

On the 32016 (1 wait state. @ 10 MHz, 16-bit bus), this code
executes in 1150 clocks per 128-byte block. Thus, to move
256 bytes, this algorithm takes 230.0 J-Ls. The loop overhead
on the 32016 is about 2.5%. In comparison, the 32016
MOVSD instruction would take about 1,074 clocks. Thus,
the MOVSD instruction is faster, and makes better use of
the available bus bandwidth of the NS32016.

5.0 CONCLUSIONS
The MOVSi instructions on the NS32016 provide a very fast
memory block move capability, with variable size. On the
NS32332 and NS32032, however, unrolled MOVD instruc­
tions are faster due to the larger bus bandwidth of the
NS32332 and NS32032.

>
Z .
U1
N
0)

.....
N
Il)
• Z «

Clearing Memory with the
32000; Series 32000®
Graphics Note 3

1.0 INTRODUCTION

In printer applications, large amounts of RAM may need to
be initialized to a zero value. This application note describes
a fast method.

2.0 DESCRIPTION

While several different methods of initializing memory to all
zeros are available, here is one that works very well on the
Series 32000. While the current version clears memory only
in blocks of 128 bytes, other block sizes are possible by
extending the algorithm.

; Version 1.1 Sun Mar 29 10:22: 19 1987

National Semiconductor
Application Note 527
Dave Rand

3.0 IMPLEMENTATION

This routine is written to clear blocks of 128 bytes. This
provides an optimal tradeoff between loop size (granularity)
and loop overhead. This can be modified to use a different
size. For example, to use a block size of 64 bytes, simply
delete 16 of the MOVQD O,TOS instructions from the listing.
As well, since the value of r1 is now the number of 64 byte
groups, one of the ADDD R2,R2 instructions (prior to the
loading of the stack pointer) must be removed. Since the
32000 has two stacks, interrupts will be handled properly
using this code. If only a fixed buffer size needs to be
cleared, the code can be further unrolled to clear that area
(i.e., increase the number of MOVQD O,TOS instructions.)

;Subroutine to clear a block of memory. The granularity of this
;algorittm is 128 bytes, to reduce the looping overhead.

Inputs:
rO = start of block
rl = number of 128-byte groups to clear

Outputs:
All reg; sters preserved.

;List;ng continues on following page

TL/EE/9697 -1

6-40

l>
Z

cl ram: cmpqd O,rl ;any blocks to clear? U,
beq clex;t:w ;no, exit now. N

......
save [rO, rl, r2] ;save our working registers
rrovd rl,r2 ;here we set rO • rO + (rl * 128) + 4
addd r2,r2 ;length *. 2
addd r2,r2 ;*4
addd r2,r2 ;*8
addd r2,r2 ;*16
addr 4(rO) [r2:q], rO ;get starting point + 4
sprd sp,r2 ;save current stack
lprd sp,rO ;move to last double
.align 4

c12: rrovqd 0, tos ;clear a double
rrovqd O,tos
rrovqd 0, tos
rrovqd 0, tos
rrovqd O,tos
movqd 0, tos
movqd O,tos
movqd O,tos
rrovqd 0, tos
movqd 0, tos
rrovqd 0, tos
movqd 0, tos
rrovqd 0, tos
rrovqd 0, tos
movqd 0, tos
movqd 0, tos
rrovqd 0, tos
rrovqd 0, tos
rrovqd 0, tos
rrovqd D,tos
rrovqd 0, tos
rrovqd 0, tos
rrovqd 0, tos
rrovqd 0, tos
movqd 0, tos
rrovqd 0, tos
movqd 0, tos
movqd 0, tos
rrovqd 0, tos
rrovqd 0, tos
movqd O,tos
movqd O,tos
acbd -l,rl,c12
lprd sp,r2 ; restore stack poi nter
restore [rD, rl, r2] ; restore our saved reg; sters

clex;t: ret 0
TL/EE/9697-2

FIGURE 1 •
6·41

......
'" II) clram: cmpqd O.rl ;any blocks to clear? .
Z beq clexit:w ;no, exi t now. e(

.align 4
c12: movqd O,OO(rO) :clear a double

movqd O,04(rO)
movqd O,08(rO)
movqd O,12(rO)
movqd O,16(rO)
movqd O,20(rO)
movqd O,24(rO)
movqd O,28(rO)
movqd O,32(rO)
movqd O,36(rO)
movqd O,40(rO)
movqd O,44(rO)
movqd 0,48(rO)
movqd O.52(rO)
movqd O,56(rO)
movqd O,60(rO)
movqd 0,64(rO)
movqd O,68(rO)
movqd O.72(rO)
movqd O.76(rO)
movqd O,80(rO)
movqd O,84(rO)
movqd O,88(rO)
movqd O,92(rO)
movqd O,96(rO)
movqd O,lOO(rO)
movqd O.104(rO)
movqd O,108(rO)
movqd O,U2(rO)
movqd O,1l6(rO)
movqd O,120(rO)
movqd O,124(rO)
addd $128.rO
acbd -l,rl,c12

clexit: ret 0
TL/EE/9697-3

FIGURE 2

6-42

~------------------~------------------------------------I~
4.0 TIMING RESULTS
On the NS32016, NS32032 and NS32332, 4 clock cycles
per write are required. To clear one page of 300 DPI
8% x 11 (1,056,000 bytes), for example, requires 264,000
double words to be written. The optimal time for this, using
100% of the bus bandwidth on a 16 bit bus, would be
528,000 • 400 ns, or 211.2 ms, @ 10 MHz. All timing data
assumes word aligned data (double word aligned for 32 bit
bus). Unaligned data is permitted, but will reduce the speed
somewhat.

On the NS32332 (no wait states. @15 MHz, 32 bit bus), this
code clears the full page image in 178 ms.

On the NS32032 (no wait states. @10 MHz, 32 bit bus), this
code clears the full page image in 324 ms.

On the NS32016 (1 wait state. @10 MHz, 16 bit bus), this
code clears the full page image in 509 ms.

Doubling the block size (to 256 bytes) would increase the
speed by 1 %-2%, on the code sample.

On the NS32532, a better approach is to use the register
indirect method of referencing memory, as is shown in Fig­
ure 2. With this approach, the page memory can be cleared
in 19 ms, assuming a no wait state 30 MHz system, with a
32 bit bus. The optimal time, using 100% of the bus band­
width of the NS32532 (2 clock bus cycle) would be 264,000
• 66.6 ns, or 17.6 ms.

6-43

Z • U1
I\)

Image Rotation Algorithm
Series 32000® Graphics
Note 4

1.0 INTRODUCTION

Fast image rotation of 90 and 270 degrees is important in
printer applications, since both Portrait and Landscape ori­
entation printing may be desired. With a fast image rotation
algorithm, only the Portrait orientation fonts need to be
stored. This minimizes ROM storage requirements.

This application note shows a fast image rotation algorithm
that may be used to rotate an 8 pixel by 8 line image. Larger
image sizes may be rotated by successive application of the
rotation primitive.

2.0 DESCRIPTION

This Rotate Image algorithm (developed by the Electronic
Imaging Group at National Semiconductor) does a very fast
8 by 8 (64 bit) rotation of font data. Note also that this algo­
rithm does not exclusively deal with fonts, but any 64 bit
image. Larger images can be rotated by breaking the image
down into 8 x 8 segments, and using a 'source warp' con­
stant to index into the source data.

The source data is pointed to by RO on entry. A 'source
warp' is contained in R1, and is added to RO after each read
of the source font. This allows the rotation of 16 by 16, 32
by 32 and larger fonts.

ROTIMG deals with the 8 by 8 destination character as 8
sequential bytes in two registers (R2 and R3), as follows:

Destination Font Matrix

Low Address

2

3

4

5

6

7

8

High Address

= R2

= R3

4 3 2

8 7 6 5

ROTIMG uses an external table (a pointer to the start of the
table is located in register R4) to speed the rotation and to
minimize the code. This table consists of 256 64 bit entries,
or a total of 2,048 bytes. The table may be located code
(PC) or data (SB) relative. The complete table is at the end
of this document (see Figure 1). A few entries of the table
are reproduced above.

National Semiconductor
Application Note 528
Dave Rand

Entry Definition

0 OxOOOOOOOO 00000000
OxOOOOOOOO 00000001

2 OxOOOOOOOO 00000100
3 OxOOOOOOOO 00000101

253 Ox0101010101010001
254 Ox0101010101010100
255 Ox0101010101010101

The bytes in the table are standard LSB to MSB format.
Since there is no quad-byte assembler pseudo-op (other
than LONG, which is floating point), we must reverse the
'double' declaration to get the correct byte ordering, as is
shown below:

Entry Definition

o double 0,0
double 1,0

2 double 256,0
3 double 257,0

253 double 16842753,16843009
254 double Ox01 01 01 00,Ox01 01 01 01
255 double Ox01010101 ,Ox01010101

Each byte within each eight byte table entry represents one
bit of output data. By indexing into the table, and ORing the
table's contents with R2 and R3, we set the destination byte
if the corresponding source bit is set. In this manner, the
character is rotated.

3.0 IMPLEMENTATION

What we are doing is setting the LS Bit of the destination
byte if the source bit corresponding to that byte is set. We
then shift the entire 64 bit destination left one bit, and repeat
this process until we have set all eight bits, and processed
all eight bytes of source information.

The source data for an 8 by 8 character .. >" appears be­
low:

Character Table for' >'
Bit Number Hex Value
01234567

Byte 001000000 02
100100000 04
200010000 08
300001000 10
400001000 10
500010000 08
600100000 04
701000000 02

6-44

The ROTIMG algorithm, expressed in 32000 code, appears below: , ,
'Rotate Image snulatlon code ,
I Inputs:
, RO • Source font address
I R1 • Source font warp
I R4 .. Rotate tabl e address ,
, Outputs:

I R2 .. Destination font low 4 bytes (lsb->msb, 0 - 3)
I R3 II Destination font high 4 bytes (lsb-:>msb, 4 - 7) ,
ROTII~: save [rO,r5,r6,r7] Isave regl sters we wi 11 use

movqd O,r2 Iclear destination font
movd r2,r3 Iclear high bits of dest.
movd r2,r5 Iclear high bits of tsnp.
addr a,r6 Ideal wi th a bytes of src.

rotlp: movb 0(rO),r5 Iget a byte of source
addd rl,rO ladd source warp
addd r2,r2 Ishlft destination left one bit
addd r3.r3 Itop 32 bl ts too
addrd r4[r5:q] ,r7 Iget pointer to table
ord O(r7), r2 lor I n low bits
ord 4(r7).r3 lor In high bits
acbd -1. r6, rotl p land back for more
restore [rO, rS,r6, r7] Irestore regi sters
ret $0 land return

Now, let's look at what happens to the data, given the example font of '>'.
Loop # Source Font R3 R2

0 00000000 00000000
02 hex 00000000 00000100

2 04 00000000 00010200
3 08 00000000 01020400
4 10 00000001 02040800
5 10 00000003 04081000
6 08 00000006 09102000
7 04 OOOOOOOC 12214000
8 02 00000018 24428100

Now, arranging this in the appropriate order gives us:

TL/EE/969B-1

;0 destination
;first bits in
;next bits in
;and so on

;Iast iteration

Destination Character Table for' >'. 90 degree Destination Character Table for' >'. 270 degree

Bit Number Hex Value Bit Number Hex Value
01234567 01234567

Byte 000000000 00 Byte 000000000 00
110000001 81 100000000 00
201000010 42 200000000 00
300100100 24 300011000 18
400011000 18 400100100 24
500000000 00 501000010 42
600000000 00 610000001 81

.700000000 00 700000000 00

Note that by re-ordering the output data, we may rotate 90 or 270 degrees. This may also be accomplished by using a different
table (see Figure 2).

6-45

•

co
N
&I)
• Z

CC

4.0 TIMING

With unrolled 32000 code, the time for this algorithm is about 588 clocks on the 32016. Subtracting the font read time from this
(about 113 clocks), the actual time for rotation is 475 clocks. On the 32332, the time is about 388 clocks. On the 32532, the
unrolled loop time is 120-180 clocks, depending on burst mode availability. Repetition of the character data also affects the
32532, due to the data cache. See Figure 3 for an unrolled code listing.

This table is used for the ROTIMG code. It is 256 entries of 64 bits each (8 bytes • 256 = 2048 bytes). There are two entries per
line. This table is used for 90· rotation.

rottab1: .double 0x00000000,0x00000000,0x00000001,0x00000000 ;0,1
.double 0x000001OO,0x00000000,0x0000010l,0x00000000 ;2,3
.double 0x0001OOOO,0x00000000,0x0001OOO1,0x00000000 ;4,5
.double 0x000101OO,0x00000000,0x0001010l,0x00000000 ;6,7
.double 0x01OOOOOO,0x00000000,0x01OOOOO1,0x00000000 ; ...
. double 0x01OOO1OO,OxOOOOOOOO,0x01OOO10l,OxOOOOOOOO
.double 0x0101OOOO,OxOOOOOOOO,0x0101OOO1,0x00000000
.double 0x010101OO,OxOOOOOOOO,0x0101010l,OxOOOOOOOO
.double 0x00000000,0x00000001,0x00000001,0x00000001
.double 0x000001OO,0x00000001,0x0000010l,OxOOOOOOOl
.double 0x0001OOOO,0x00000001,0x0001OOO1,0x00000001
.double 0x000101OO,0x00000001,0x0001010l,OxOOOOOOOl
.double 0x01OOOOOO,0x00000001,0x01OOOOO1,0x00000001
.double 0x01OOO1OO,0x00000001,0x01OOO10l,OxOOOOOOOl
.double 0x0101OOOO,0x00000001,0x0101OOO1,0x00000001
.double 0x010101OO,0x00000001,0x0101010l,OxOOOOOOOl
.double 0x00000000,0x000001OO,0x00000001,0x000001OO
.double 0x000001OO,OxOOOOOlOO,OxOOOOOlOl,0x000001OO
.double 0x0001OOOO,OxOOOOOlOO,0x0001OOOl,OxOOOOOlOO
.double 0x000101OO,0x000001OO,0x00010lOl,0x000001OO
.double OxOlOOOOOO,OxOOOOOlOO,OxOlOOOOOl,OxOOOOOlOO
.double 0x01OOO1OO,0x000001OO,0x01OOOlOl,0x000001OO
.double 0x010lOOOO,OxOOOOOlOO,0x0101OOOl,OxOOOOOlOO
.double OxOl0101OO,0x000001OO,0x01010lOl,OxOOOOOlOO
.double OxOOOOOOOO,OxOOOOOlOl,OxOOOOOOOl,OxOOOOOlOl
.double 0x000001OO,0x0000010l,OxOOOOOlOl,OxOOOOOlOl
.double OxOOOlooOO,0x0000010l,0x0001OOO1,0x00000101
.double 0x00010lOO,OxOOOOOlOl,0x00010lOl,OxOOOOOlOl
.double 0x01OOOOOO,OxOOOOOlOl,OxOlOOOOOl,OxOOOOOlOl
.double OxOlOOO1OO,0x0000010l,OxOlOOO10l,OxOOOOOlOl
.double 0x0101OOOO,OxOOOOOlOl,OxOl01OOOl,0x0000010l
.double OxOlOlOlOO,OxOOOOOlOl,OxOlOl010l,OxOOOOOlOl
.double 0x00000000,0x0001OOOO,OxOOOOOO}1,OxOOOlOOOO
.double 0x000001OO,OxOOOlOOOO,0x0000010l,OxOOOlOOOO
.double 0x0001OOOO,0x0001OOOO,0x0001OOOl,OxOOOlOOOO
.double 0x00010lOO,0x0001OOOO,OxOOOlOlOl,0x0001OOOO
.double 0x01OOOOOO,0x0001OOOO,0x01OOOOOl,0x0001OOOO
.double 0x01OOOlOO,OxOOOlOOOO,OxOlOOOlOl,OxOOOlOOOO
.double 0x010lOOOO,OxOOOlOOOO,0x0101OOOl,0x0001OOOO
.double 0x010101OO,0x0001OOOO,OxOl010lOl,OxOOOlOOOO
.double 0x00000000,0x0001OOO1,OxOOOOOOOl,0x0001OOOl
.double OxOOOOOlOO,OxOOOlOOO1,OxOOOOOlOl,OxOOOlOOOl
.double OxOOOlOOOO,OxOOOlOOO1,0x0001OOO1,OxOOOlOOOl
.double 0x000101OO,0x0001OOO1,OxOOOl010l,OxOOOlOOOl
.double 0x01OOOOOO,OxOOOlOOO1,0x01OOOOO1,OxOOOlOOOl
.double 0x01OOO1OO,OxOOOlOOO1,OxOlOOO101,OxOOOlOOOl
.double 0x0101OOOO,0x0001OOO1,0x010lOOO1,0x0001OOOl
.double 0x01010lOO,OxOOOlOOO1,0x010lOlOl,OxOOOlOOOl
.double 0x00000000,0x00010lOO,0x00000001,OxOOOl01OO

FIGURE 1

6·46

TL/EE/9698-2

·double OxOOOOOlOO,OxOOOlO100,OxOOOOOlO1,OxOOOlO100
.double OxOOOlOOOO,OxOOOlOlOO,OxOOOlOOOl,OxOOOlOlOO
.double OxOOOlOlOO,OxOOOlOlOO,OxOOOlOlOl,OxOOOlOlOO
.double OxOlOOOOOO,OxOOOlOlOO,OxOlOOOOOl,OxOOOlOlOO
.double OxOlOOOlOO,OxOOOlOlOO,OxOlOOOlOl,OxOOOlOlOO
.double OxOlOlOOOO,OxOOOlOlOO,OxOlOlOOOl,OxOOOlOlOO
.double OxOlOlOlOO,OxOOOlOlOO,OxOlOlOlOl,OxOOOlOlOO
.double OxOOOOOOOO,OxOOOlOlOl,OxOOOOOOOl,OxOOOlOlOl
.double OxOOOOOlOO,OxOOOlOlOl,OxOOOOOlOl,OxOOOlOlOl
.double OxOOOlOOOO,OxOOOlOlOl,OxOOOlOOOl,OxOOOlOlOl
.double OxOOOlOlOO,OxOOOlOlOl,OxOOOlOlOl,OxOOOlOlOl
.double OxOlOOOOOO,OxOOOlOlOl,OxOlOOOOOl,OxOOOlOlOl
.double OxOlOOOlOO,OxOOOlOlO1,OxOlOOOlOl,OxOOOlOlOl
.double OxOlOlOOOO,OxOOOlOlOl,OxOlOlOOOl,OxOOOlOlOl
.double OxOlOlOlOO,OxOOOlOlOl,OxOlOlOlOl,OxOOOlOlOl
.double OxOOOOOOOO,OxOlOOOOOO,OxOOOOOOOl,OxOlOOOOOO
.double OxOOOOOlOO,OxOlOOOOOO,OxOOOOOlOl,OxOlOOOOOO
.double OxOOOlOOOO,OxOlOOOOOO,OxOOOlOOOl,OxOlOOOOOO
.double OxOOOlOlOO,OxOlOOOOOO,OxOOOlOlOl,OxOlOOOOOO
.double OxOlOOOOOO,OxOlOOOOOO,OxOlOOOOOl,OxOlOOOOOO
.double OxOlOOOlOO,OxOlOOOOOO,OxOlOOOlOl,OxOlOOOOOO
.double OxOlOlOOOO,OxOlOOOOOO,OxOlOlOOOl,OxOlOOOOOO
.double OxOlOlOlOO,OxOlOOOOOO,OxOlOlOlOl,OxOlOOOOOO
.double OxOOOOOOOO,OxOlOOOOOl,OxOOOOOOOl,OxOlOOOOOl
.double OxOOOOOlOO,OxOlOOOOOl,OxOOOOOlOl,OxOlOOOOOl
.double OxOOOlOOOO,OxOlOOOOOl,OxOOOlOOOl,OxOlOOOOOl
.double 0x00010100,OxOlOOOOOl,OxOOOlOlOl,OxOlOOOOOl
.double OxOlOOOOOO,OxOlOOOOOl,OxOlOOOOOl,OxOlOOOOOl
.double OxOlOOOlOO,OxOlOOOOOl,OxOlOOOlOl,OxOlOOOOOl
.double OxOlOlOOOO,OxOlOOOOOl,OxOlOlOOOl,OxOlOOOOOl
.double 0x01010100,OxOlOOOOOl,OxOlO10101,OxOlOOOOOl
.double OxOOOOOOOO,OxOlOOOlOO,OxOOOOOOOl,OxOlOOOlOO
.double OxOOOOOlOO,OxOlOOOlOO,OxOOOOOlOl,OxOlOOOlOO
.double OxOOOlOOOO,OxOlOOOlOO,OxOOOlOOOl,OxOlOOOlOO
.double OxOOOlOlOO,OxOlOOOlOO,OxOOOlOlOl,OxOlOOOlOO
.double OxOlOOOOOO,OxOlOOOlOO,OxOlOOOOOl,OxOlOOOlOO
.double OxOlOOOlOO,OxOlOOOlOO,OxOlOOOlOl,OxOlOOOlOO
.double OxOlOlOOOO,OxOlOOOlOO,OxOlOlOOOl,OxOlOOOlOO
.double OxOlOlOlOO,OxOlOOOlOO,OxOlOlOlOl,OxOlOOOlOO
.double 0x00000000,OxOlOOOlOl,OxOOOOOOOl,OxOlOOO101
.double OxOOOOOlOO,OxOlOOOlOl,OxOOOOOlOl,OxOlOOOlOl
.double OxOOOlOOOO,OxOlOOOlOl,OxOOOlOOOl,OxOlOOOlOl
.double 0x00010100,OxOlOOOlOl,0x00010101,OxOlOOOlO1
.double OxOlOOOOOO,OxOlOOOlOl,OxOlOOOOOl,OxOlOOOlOl
.double OxOlOOOlOO,OxOlOOOlOl,OxOlOOOlOl,OxOlOOOlOl
.double 0x01010000,OxOlOOO101,OxOlOlOOOl,OxOlOOOlOl
.double 0x01010100,OxOlOOO101,OxOlOlOlOl,OxOlOOOlOl
.double OxOOOOOOOO,OxOlOlOOOO,OxOOOOOOOl,OxOlOlOOOO
.double OxOOOOOlOO,0x01010000,OxOOOOOlOl,OxOlOlOOOO
.double OxOOOlOOOO,OxOlOlOOOO,OxOOOlOOOl,OxOlOlOOOO
.double OxOOOlOlOO,0x01OlOOOO,0x00010101,OxOlOlOOOO
.double OxOlOOOOOO,OxOlOlOOOO,OxOlOOOOOl,OxOlOlOOOO
.double OxOlOOOlOO,OxOlOlOOOO,OxOlOOOlOl,OxOlOlOOOO
.double OxOlOlOOOO,OxOlOlOOOO,OxOlOlOOOl,OxOlOlOOOO
.double 0x01010100,OxOlOlOOOO,OxOlOlO101,OxOlOlOOOO

FIGURE 1 (Continued)

6-47

TL/EE/9698-3

» z . en
N
Q)

co ,--,
N
f.t)

Z
III(

.double OxOOOOOOOO,OxOlOlOOOl,OxOOOOOOOl,OxOlOlOOOl

.double OxOOOOOlOO,OxOlOlOOO1,0x0000010l,0x0101OOOl

.double 0x0001OOOO,0x010lOOOl,0x0001OOO1,0x0101OOOl

.double 0x000101OO,OxOl010001,0x0001010l,0x0101OOOl

.double 0x01OOOOOO,0x0101OOO1,0x01OOOOO1,0x0101OOOl

.double 0x01OOO1OO,0x0101OOO1,OxOlOOO10l,OxOl01OOOl

.double 0x0101OOOO,0x0101OOO1,0x0101OOO1,OxOl01OOOl

.double OxOlOlOlOO,OxOlOlOOOl,OxOlOlOlOl,Ox01010001

.double OxOOOOOOOO,0x010101OO,0x00000001,0x010101OO

.double 0x000001OO,0x010l0100,0x0000010l,0x010101OO

.double 0x0001OOOO,OxOl0101OO,0x0001OOO1,0x010101OO

.double 0x000101OO,OxOl0101OO,0x0001010l,0x010101OO

.double 0x01OOOOOO,0x010101OO,0x01OOOOO1,0x010101OO

.double 0x01OOO1OO,0x010101OO,0x01OOO10l,0x010101OO

.double 0x010lOOOO,OxOl0101OO,0x0101OOO1,0x010101OO

.double 0x010101OO,0x010101OO,0x01010l01,0x010101OO

.double OxOOOOOOOO,0x0101010l,OxOOOOOOOl,OxOlOlOlOl

.double 0x00000100,0x0101010l,0x0000010l,0x01010101

.double 0x0001OOOO,0x0101010l,0x0001OOO1,0x0101010l

.double 0x000101OO,0x0101010l,0x00010101,0x01010101

.double OxOlOOOOOO,OxOl010lOl,OxOlOOOOOl,OxOlOlO101

.double 0x01OOO1OO,0x0101010l,0x01OOO101,OxOl01010l ;250,251

.double 0x0101OOOO,0x0101010l,0x0101OOO1,0x01010101 ;252,253

.double 0x010101OO,0x01010101,0x01010101,0x01010101 ;254,255

FIGURE 1 (Continued)
TL/EE/969B-4

This table is used for the ROTIMG code. It is 256 entries of 64 bits each (8 bytes • 256 = 2048 bytes). There are two entries per
line. This gives a 270· rotation.

rottab2: .double OxOOOOOOOO,OxOOOOOOOO,OxOOOOOOOO,0x01OOOOOO
.double OxOOOOOOOO,0x0001OOOO,OxOOOOOOOO,0x0101OOOO
.double OxOOOOOOOO,0x000001OO,OxOOOOOOOO,0x01OOO1OO
.double OxOOOOOOOO,0x000101OO,OxOOOOOOOO,0x010101OO
.double OxOOOOOOOO,0x00000001,OxOOOOOOOO,0x01OOOOOl
.double OxOOOOOOOO,0x0001OOO1,OxOOOOOOOO,0x0101OOOl
.double OxOOOOOOOO,0x0000010l,OxOOOOOOOO,0x01OOOlOl
.double OxOOOOOOOO,0x0001010l,OxOOOOOOOO,0x0101010l
.double 0x01OOOOOO,OxOOOOOOOO,0x01OOOOOO,0x01OOOOOO
.double 0x01OOOOOO,0x0001OOOO,0x01OOOOOO,0x0101OOOO
.double OxOlOOOOOO,OxOOOOOlOO,OxOlOOOOOO,OxOlOOOlOO
.double 0x01OOOOOO,0x000101OO,0x01OOOOOO,0x010101OO
.double 0x01OOOOOO,0x00000001,0x01OOOOOO,0x01OOOOOl
.double OxOlOOOOOO,0x0001OOOl,OxOlOOOOOO,0x010lOOOl
.double 0x01OOOOOO,0x0000010l,OxOlOOOOOO,OxOlOOO10l
.double OxOlOOOOOO,OxOOOlOlOl,OxOlOOOOOO,OxOlOlOlOl
.double OxOOOlOOOO,OxOOOOOOOO,0x0001OOOO,0x01OOOOOO
.double 0x0001OOOO,OxOOOlOOOO,0x0001OOOO,OxOl01OOOO
.double 0x0001OOOO,OxOOOOOlOO,0x0001OOOO,0x01OOO1OO
.double 0x0001OOOO,0x000101OO,OxOOOlOOOO,0x010101OO
.double 0x0001OOOO,0x00000001,0x0001OOOO,OxOlOOOOOl
.double 0x0001OOOO,0x0001OOO1,0x0001OOOO,0x0101OOOl
.double 0x0001OOOO,0x0000010l,0x0001OOOO,0x01OOO10l
.double 0x0001OOOO,OxOOOl010l,0x0001OOOO,0x01010lOl

FIGURE 2

6-48

TL/EE/969B-5

.double OxOlOlOOOO,OxOOOOOOOO,OxOlOlOOOO,OxOlOOOOOO

.double OxOlOlOOOO,OxOOOlOOOO,OxOlOlOOOO,OxOlOlOOOO

.double OxOlOlOOOO,OxOOOOOlOO,OxOlOlOOOO,OxOlOOOlOO

.double OxOlOlOOOO,OxOOOlOlOO,OxOlOlOOOO,OxOlOlOlOO

.double OxOlOlOOOO,OxOOOOOOOl,OxOlOlOOOO,OxOlOOOOOl

.double OxOlOlOOOO,OxOOOlOOOl,OxOlOlOOOO,OxOlOlOOOl

.double OxOlOlOOOO,OxOOOOOlOl,OxOlOlOOOO,OxOlOOOlOl

.double OxOlOlOOOO,OxOOOlOlOl,OxOlOlOOOO,OxOlOlOlOl

.double OxOOOOOlOO,OxOOOOOOOO,OxOOOOOlOO,OxOlOOOOOO

.double OxOOOOOlOO,OxOOOlOOOO,OxOOOOOlOO,OxOlOlOOOO

.double OxOOOOOlOO,OxOOOOOlOO,OxOOOOOlOO,OxOlOOOlOO

.double OxOOOOOlOO,OxOOOlOlOO,OxOOOOOlOO,OxOlOlOlOO

.double OxOOOOOlOO,OxOOOOOOOl,OxOOOOOlOO,OxOlOOOOOl

.double OxOOOOOlOO,OxOOOlOOOl,OxOOOOOlOO,OxOlOlOOOl

.double OxOOOOOlOO,OxOOOOOlOl,OxOOOOOlOO,OxOlOOOlOl

.double OxOOOOOlOO,OxOOOlOlOl,OxOOOOOlOO,OxOlOlOlOl

.double OxOlOOOlOO,OxOOOOOOOO,OxOlOOOlOO,OxOlOOOOOO

.double OxOlOOOlOO,OxOOOlOOOO,OxOlOOOlOO,OxOlOlOOOO

.double OxOlOOOlOO,OxOOOOOlOO,OxOlOOOlOO,OxOlOOOlOO

.double OxOlOOOlOO,OxOOOlOlOO,OxOlOOOlOO,OxOlOlOlOO

.double OxOlOOOlOO,OxOOOOOOOl,OxOlOOOlOO,OxOlOOOOOl

.double OxOlOOOlOO,OxOOOlOOOl,OxOlOOOlOO,OxOlOlOOOl

.double OxOlOOOlOO,OxOOOOOlOl,OxOlOOOlOO,OxOlOOOlOl

.double OxOlOOOlOO,OxOOOlOlOl,OxOlOOOlOO,OxOlOlOlOl

.double 0x00010100,OxOOOOOOOO,OxOOOlOlOO,OxOlOOOOOO

.double OxOOOlOlOO,OxOOOlOOOO,OxOOO10100,OxOlOlOOOO

.double OxOOOlOlOO,OxOOOOOlOO,OxOOOlOlOO,OxOlOOOlOO

.double OxOOOlOlOO,OxOOOlOlOO,OxOOOlOlOO,OxOlOlOlOO

.double OxOOOlOlOO,OxOOOOOOOl,OxOOOlOlOO,OxOlOOOOOl

.double OxOOOlOlOO,OxOOOlOOOl,OxOOOlOlOO,OxOlOlOOOl

.double 0x00010100,OxOOOOOlOl,OxOOOlOlOO,OxOlOOOlOl

.double OxOOOlOlOO,OxOOOlOlOl,OxOOOlOlOO,OxOlOlOlOl

.double OxOlOlOlOO,OxOOOOOOOO,OxOlOlOlOO,OxOlOOOOOO

.double OxOlOlOlOO,OxOOOlOOOO,OxOlOlOlOO,OxOlOlOOOO

.double OxOlOlOlOO,OxOOOOOlOO,OxOlOlOlOO,OxOlOOOlOO

.double OxOlOlOlOO,OxOOOlOlOO,OxOlO10100,OxOl010100

.double OxOlOlOlOO,OxOOOOOOOl,OxOlOlOlOO,OxOlOOOOOl

.double OxOlOlOlOO,OxOOOlOOOl,OxOlOlOlOO,OxOlOlOOOl

.double OxOlOlOlOO,OxOOOOOlOl,OxOlOlOlOO,OxOlOOOlOl

.double 0x01OlOlOO,OxOOOlOlOl,OxOl010100,OxOlOlOlOl

.double OxOOOOOOOl,OxOOOOOOOO,OxOOOOOOOl,OxOlOOOOOO

.double OxOOOOOOOl,OxOOOlOOOO,OxOOOOOOOl,OxOlOlOOOO

.double OxOOOOOOOl,OxOOOOOlOO,OxOOOOOOOl,OxOlOOOlOO

.double OxOOOOOOOl,OxOOOlOlOO,OxOOOOOOOl,OxOlOlOlOO

.double OxOOOOOOOl,OxOOOOOOOl,OxOOOOOOOl,OxOlOOOOOl

.double OxOOOOOOOl,OxOOOlOOOl,OxOOOOOOOl,OxOlOlOOOl

.double OxOOOOOOOl,OxOOOOOlOl,OxOOOOOOOl,OxOlOOOlOl

.double OxOOOOOOOl,OxOOOlOlOl,OxOOOOOOOl,OxOlOlOlOl

.double OxOlOOOOOl,OxOOOOOOOO,OxOlOOOOOl,OxOlOOOOOO

.double OxOlOOOOOl,OxOOOlOOOO,OxOlOOOOOl,OxOlOlOOOO

.double OxOlOOOOOl,OxOOOOOlOO,OxOlOOOOOl,OxOlOOOlOO

.double OxOlOOOOOl,OxOOOlOlOO,OxOlOOOOOl,OxOlOlOlOO

.double OxOlOOOOOl,OxOOOOOOOl,OxOlOOOOOl,OxOlOOOOOl

.double OxOlOOOOOl,OxOOOlOOOl,OxOlOOOOOl,OxOlO10001

.double OxOlOOOOOl,OxOOOOOlOl,OxOlOOOOOl,OxOlOOOlOl

FIGURE 2 (Continued)

6-49

TL/EE/9698-6

» z . en
N
CD

• I

co r--,
('I
II)
• z

cc
.double 0x01OOOOO1,0x0001010l,0x01OOOOO1,0x0101010l
.double 0x0001OOO1,0x00000000,0x0001OOO1,0x01OOOOOO
.double 0x0001OOO1,0x0001OOOO,0x0001OOO1,0x0101OOOO
.double 0x0001OOO1,0x000001OO,0x0001OOO1,0x01OOO1OO
.double 0x0001OOO1,0x000101OO,0x0001OOO1,0x010101OO
.double 0x0001OOO1,0x00000001,0x0001OOO1,0x01OOOOOl
.double 0x0001OOO1,0x0001OOO1,0x0001OOO1,0x0101OOOl
.double 0x0001OOO1,0x0000010l,0x0001OOO1,0x01OOO10l
.double 0x0001OOO1,0x0001010l,0x0001OOO1,0x0101010l
.double 0x0101OOO1,0x00000000,0x0101OOO1,0x01OOOOOO
.double 0x0101OOO1,0x0001OOOO,0x0101OOO1,0x0101OOOO
.double 0x0101OOO1,0x000001OO,0x0101OOO1,0x01OOO1OO
.double 0x0101OOO1,0x000101OO,0x0101OOO1,0x010101OO
.double 0x0101OOO1,0x00000001,0x0101OOO1,0x01OOOOOl
.double 0x0101OOO1,0x0001OOO1,0x0101OOO1,0x0101OOOl
.double 0x0101OOO1,0x0000010l,0x0101OOO1,0x01OOO10l
.double 0x0101OOO1,0x0001010l,0x0101OOO1,0x0101010l
.double OxOOOOOlOl,OxOOOOOOOO,OxOOOOOlOl,OxOlOOOOOO
.double 0x0000010l,OxOOOlOOOO,0x0000010l,0x0101OOOO
.double OxOOOOOlOl,0x000001OO,0x0000010l,0x01OOOlOO
.double 0x0000010l,OxOOOl01OO,0x0000010l,0x010l01OO
.double OxOOOOOlOl,0x00000001,OxOOOOOlOl,0x01OOOOOl
.double 0x0000010l,OxOOOlOOOl,0x0000010l,OxOl01OOOl
.double OxOOOOOlOl,0x0000010l,OxOOOOOlOl,0x01OOOlOl
.double 0x0000010l,OxOOOl010l,OxOOOOOlOl,OxOlOlOlOl
.double 0x01OOO10l,0x00000000,0x01OOO10l,OxOlOOOOOO
.double 0x01OOOlOl,OxOOOlOOOO,OxOlOOO10l,OxOlOlOOOO
.double 0x01OOO10l,0x000001OO,0x01OOO10l,0x01OOO1OO
.double 0x01OOOlOl,0x00010lOO,OxOlOOOlOl,0x01010100
.double OxOlOOOlOl,OxOOOOOOOl,0x01OOOlOl,0x01OOOOOl
.double OxOlOOOlOl,0x0001OOO1,0x01OOO10l,0x0101OOOl
.double 0x01OOO10l,OxOOOOOlOl,0x01OOO10l,0x01OOO10l
.double 0x01OOOlOl,OxOOOl010l,0x01OOO10l,OxOl010lOl
.double OxOOOl010l,0x00000000,OxOOOlOlOl,0x01OOOOOO
.double 0x0001010l,0x0001OOOO,0x0001010l,0x0101OOOO
.double 0x0001010l,OxOOOOOlOO,OxOOOlOlOl,OxOlOOOlOO
.double 0x0001010l,OxOOOl01OO,0x0001010l,0x01010lOO
.double 0x00010lOl,OxOOOOOOOl,0x00010lOl,0x01OOOOOl
.double 0x00010lOl,0x0001OOOl,OxOOOlOlOl,0x010lOOOl
.double OxOOOlOlOl,OxOOOOOlOl,OxOOOlOlO1,OxOlOOOlOl
.double 0x0001010l,0x0001010l,0x0001010l,0x0101010l
.double 0x0101010l,0x00000000,0x0101010l,0x01OOOOOO
.double 0x0101010l,0x0001OOOO,0x01010101,0x0101OOOO
.double OxOl01010l,0x000001OO,0x01010lOl,0x01OOO1OO
.double 0x01010lOl,0x000101OO,OxOlOl010l,OxOl010lOO
.double OxOlOl010l,OxOOOOOOOl,0x01010lOl,OxOlOOOOOl
.double 0x0101010l,0x0001OOOl,0x01010lOl,0x0101OOOl
.double 0x0101010l,0x0000010l,0x0101010l,0x01OOO10l
.double OxOlOl010l,0x00010lOl,0x01010101,0x0101010l

FIGURE 2 (Continued)

6-50

TL/EE/9698-7

The following is an unrolled version of the rotate image algorithm. For the NS32532, the address computation, currently
done with a separate addr instruction, may be done with the ORO instruction. This makes the execution time slightly faster.

I
I
IRotate image emulation code
I
I Inputs:

I RO • Source font address
I Rl • Source font warp
I R4 • Rotate table address
I
I Outputs:
I R2 II Destination font low 4 bytes (1sb->msb, 0 - 3)
, R3 II Destination font high 4 bytes (lsb->msb, 4 - 7) ,
ROTIMG:

IOOvqd O,r2 'clear destination font
IOOvd r2,r3 'clear high bits of dest.
IOOvd r2,r5 'clear high bits of temp.
IOOvb O(rO), r5 'get a byte of source
addd rl,rO ladd source warp
addd r2,r2 Ishift destination left one bit
addd r3,r3 Itop 32 bi ts too
addr r4[r5:q] ,r6 Iget pointer to table
ord O(r6), r2 lor in low bits
ord 4(r6),r3 lor in high bits
IOOvb O(rO),r5 Iget a byte of source
addd rl,rO ladd source warp
addd r2,r2 Ishift destination left one bit
addd r3,r3 Itop 32 bi ts too
addr r4[r5:q] ,r6 Iget pointer to table
ord O(r6), r2 lor in low bits
ord 4(r6),r3 lor in high bits
IOOvb O(rO), r5 Iget a byte of source
addd rl,rO ladd source warp
addd r2,r2 Ishift destination left one bit
addd r3,r3 Itop 32 bi ts too
addr r4[r5:q] ,r6 Iget poi nter to table
ord O(r6),r2 lor in low bits
ord 4(r6),r3 lor in high bits

IOOvb O(rO),r5 Iget a byte of source
addd rl,rO ladd source warp
addd r2,r2 Ishift destination left one bit
addd r3,r3 Itop 32 bi ts too
addr r4 [r5:q] , r6 Iget pointer to table
ord O(r6),r2 lor in low bits
ord 4(r6),r3 lor in high bits
IOOvb O(rO),r5 Iget a byte of source
addd rl,rO ladd source warp

FIGURE 3

6·51

TL/EE/9698-8 •

co
'" In

:Z addd r2,r2 #Shift destination left one bit
c(

addd r3,r3 'top 32 bi ts too
addr r4[rS:q] ,r6 'get pointer to table
ord 0(r6),r2 'or in low bits
ord 4(r6), r3 'or in high bits
roovb O(rO), rS 'get a byte of source
addd rl,rO ladd source warp
addd r2,r2 #Shift destination left one bit
addd r3,r3 Itop 32 bits too
addr r4[r5:q] ,r6 Iget poi nter to table
ord 0(rS),r2 'or in low bits
ord 4(r6).r3 lor in high bits
roovb O(rO),rS 'get a byte of source
addd rl,rO ladd source warp
addd r2,r2 Ishift destination left one bit
addd r3,r3 'top 32 bi ts too
addr r4[rS:q] ,rS 'get pointer to table
ord 0(rS),r2 lor in low bits
ord 4(r6),r3 lor in high bits
roovb O(rO). rS 'get a byte of source
addd rlorO 'add source warp
addd r2,r2 'shift destination left one bit
addd r3,r3 'top 32 bi ts too
addr r4 [rS:q] • rS 'get poi nter to table
ord 0(r6),r2 'or in low bits
ord 4(rS),r3 lor in high bits
ret $0 'and return

TL/EE/9698-9

FIGURE 3 (Continued)

6·52

80x86 to Series 32000®
Translation; Series 32000
Graphics Note 6

1.0 INTRODUCTION

This application note discusses the conversion of Intel
8088, 8086, 80188 and 80186 (referred to here as 80x86)
source assembly language to Series 32000 source code. As
this is not intended to be a tutorial on Series 32000 assem·
bly language, please see the Series 32000 Programmers
Reference Manual for more information on instructions and
addressing modes.

2.0 DESCRIPTION

The 80x86 model has 6 general purpose registers (AX, BX,
CX, OX, SI, 01), each 16 bits wide. 4 of these registers can
be further addressed as 8-bit registers (Al, AH, Bl, BH, Cl,
CH, Dl, DH). Series 32000 has 8 general purpose registers
(RO-R7), each 32 bits wide. Each Series 32000 register
may be accessed as an 8-, 16- or 32-bit register. Two spe·
cial purpose registers on the 80x86, SP and BP, are 16-bit
stack and base pointers. These are represented in Series
32000 with the SP and FP registers, each 32-bit.

The 80x86 model is capable of addressing up to 1 Mega·
byte of memory. Since the 16-bit register pointers are only
capable of addressing 64 kbytes, 4 segment registers (CS,
OS, ES, SS) are used in combination with the basic registers
to point to memory. Series 32000 registers and addressing
modes are all full 32-bit, and may point anywhere in the
16 Megabyte (or 4 Gigabyte, depending on processor mod·
el) addressing range.

80x86

ADD AX,1234 Immediate
ADD AX,LAB1 Direct
ADD AX,16[SI] Direct Indexed
ADD AX,[SI] Implied
ADD AX, [BX] Base Relative

National Semiconductor
Application Note 529
Dave Rand

Device ports are given their own 16·bit address on the
80x86, and there is a complement of instructions to handle
input and output to these ports. Device ports on Series
32000 are memory mapped, and all instructions are avail·
able for port manipulation.

There are 6 addressing modes for data memory on the
80x86: Immediate, Direct, Direct indexed, Implied, Base rei·
ative and Stack. There are 9 addressing modes on Series
32000: Register, Immediate, Absolute, Register·relative,
Memory space, External, Top·of·stack and Scaled index.
Scaled index may be applied to any of the addressing
modes (except scaled index) to create more addressing
modes. The following figure shows the 80x86 addressing
modes, and their Series 32000 counterparts.

Series 32000 assembly code reads left·to·right, meaning
source is on the left, destination on the right. As you can
see, most of the 80x86 addressing modes fall into the regis·
ter·relative class of Series 32000. Also note that the ADDW
could have been AD DO, performing a 32-bit add instead of
only a 16-bit.

Series 32000 also permits memory·to·memory (two ad·
dress) operation. A common operation like adding two vari·
abies is easier in Series 32000. Series 32000 has the same
form for all math operations (multiply, divide, subtract), as
well as all logical operators.

Series 32000

ADDW $1234,RO
ADDW LAB1,RO
ADDW 16(R6),RO
ADDW 0(R6),RO
ADDW 0(R1),RO

ADD AX, [BX + SI] Base Relative Implied ADDW R1 [R6:B],RO
ADD AX,12[BX + SI] Base Relative Implied Indexed ADDW 12(R1)[R6:B],RO
ADD AX,4[BP] Stack (Relative) ADDW 4(FP),RO
PUSH AX Stack MOVWRO,TOS

80x86 Series 32000

MOVAl,LAB1 ADDB LAB1,LAB2 8-Bit Add Operation
ADDLAB2,Al

MOVAX,LAB3 ADDW LAB3,LAB4 16-Bit Add Operation
ADDLAB4,AX

MOV AX,LAB5l ADDD LAB5,LAB6 32-Bit Add Operation
ADD LAB6l,AX
MOV AX,LAB5H
ADDC LAB6H,AX

6-53

en ,--,
'" ~ z
cC

Most BOxB6 instructions have direct Series 32000 equiva­
lents-with a major difference. Most BOxB6 instructions af­
fect the flags. Most Series 32000 instructions do not affect
the flags in the same manner. For example, the BOxB6 ADD
instruction affects the Overflow, Carry, Arithmetic, Zero,
Sign and Parity flags. The Series 32000 ADD instruction af­
fects the Overflow and Carry flags. Programs that rely on
side-effects of instructions which set flags must be changed
in order to work correctly on Series 32000.

Table I gives a general guideline of instruction correlation
between BOxB6 and Series 32000. Many of the common

subroutines in BOxB6 may be replaced by a single instruction
in Series 32000 (for example, 32-bit multiply and divide rou­
tines). Many special purpose instructions exist in Series
32000, and these instructions may help to optimize various
algorithms.

3.0 IMPLEMENTATION

As an example, we will show some small BOxB6 programs
which we wish to convert to Series 32000. The first program
reads a number of bytes from a port, waiting for status infor­
mation. Below is the program in BOxB6 assembly language:

; This program reads count bytes from port i oport, wa it i ng for bi t 7 of
;statport to be active (1) before reading each byte.

xor bx,bx izero checkslJ11
moy cx.count ;get count of bytes
moy es.bufseg ;get buffer segnent
lea di .buffer i poi nt to buffer offset

11: mov dx. sta tport ;get status port address
12: in al.dx ; read status port

rcl al.1 ;move bi t 7 to carry
jnc 12 ;loop unttl status available
moy dx,ioport ;poi nt to data port
in al.dx ;read port
stosb ;store byte
xor ah.ah ;zero high part of ax
add bX,ax ;add to checksum
loop 11 ;loop for all bytes
ret

TLlEE/9699-1

A direct translation of this program to Series 32000 using Table I, appears below. Note that this program will not work directly,
due to the side effect of the rcl instruction being used.

'This program reads count bytes from port loport. waiting for bit 7 of
'statport to be act; ve (1) before read; ng each byte. ,
, Before optimization

xord rl.rl , zero checksum
movw $count. r2 # get count of bytes
addr buffer. rS , point to buffer

111: addr stat port • r3 , get status port address
112: movb 0(r3).rO , read status port

rotb $l,rO , move bit 7 to carry «- does not work
bec 112 , branch if carry clear
addr ioport,r3 , poi nt to data port
movb 0(r3),rO # read port
movb rO,O(rS) , store byte
adclqd 1,r5
moyzbw rO,rO # zero high part of ax
addw rO.rl # add to checksum
acbw -1. r2,l11 , loop for all bytes
ret $0

6-54

TL/EE/9699-2

By using some of the special Series 32000 instructions, we
can make this program much faster. The ROTB wil not work
to test status, so we will replace that with a TBITB instruc­
tion. Since TBITB can directly address the port, there is no
need to read the status port value at all. We will remove the
read status port line, and the register load of r3. Reading

the 10 port as well can be done directly now, and we use a
zero extension to ensure the high bits are cleared in prepa­
ration for the checksum addition. Note that it is easy to do a
32-bit checksum instead of only a 16-bit. Below is the 'opti­
mized' code:

'This program reads count bytes fran port iopert. waiting for bit 7 of
'statport to be active (1) before reading each byte. ,
, After optimization

xord rl.rl , zero checksum
movw $count. r2 , get count of bytes

addr buffer. rS , point to buffer

111 :
112: tbitb $7.statport I is bi t 7 of status port val i d?

bfc 112 I no. loop until it is
movzbd loport. rO , read I a port

movb rO.O(r5) , store in buffer
addqd 1,rS
adct;t rO.rl , add to check.sum

acbw -1.r2.111 # loop for a 11 bytes
ret $0

TUEE/9699-3

A second program shows, in 80x86 assembler, a method to copy and convert a string from mixed case ASCII to all upper case
ASCII. This program is shown below:

: Thl s program translates a null terml nated ASC II strl ng to uppercase

mov ds,buflseg ; poi nt to Input segnent
lea sl.bufl ;polnt to Input string

mov es.buf2seg :poi nt to output segment

lea dl.buf2 :polnt to output string

c1d ;clear direction flag (Increasing add)
11: lodsb ;get a byte

cmp al,'a' ;Is the char less than
,
a'?

jb 12 ;yes, branch out
cmp al,'z' ;is the char greater than 'z'?
ja 12 ;yes, branch out

and al,5fh ;and with Sf to make uppercase

12: stosb ;store the character
or al.a1 ; I s thi s the 1 ast char?
jnz 11 ;no, loop for more

ret ;yes, exit
TUEE/9699-4

6-55

m
~ A direct translation to Series 32000 works fine, as is shown below: • Z
III(#Thi s program trans1 ates a null termi nate ASCII stri ng to uppercase

, Before optimization

addr bufl, r4

addr buf2, r5

111: movb 0(r4), rO

addqd l,rO
cmpb $'a' ,rO

b10 112
cmpb $'z' ,rO

bhi 112

an db $Ox5f, rO

112: movb rO,O(r5)

addqd 1, r5

cmpqb O,rO

bne 111

ret $0

This program allows us to exploit another Series 32000 in­
struction, the MOVST (Move and String Translate). With a
256 byte external table, we can translate any byte to any
other byte. In this example, we simply use the full range of
ASCII values in the translation table, with the lower case
entries containing uppercase values.

Watch for other optimization opportunities, especially with
multiply and add sequences (the INDEXi instruction could
be used), and possible memory to memory sequence
changes. When optimizing Series 32000 code, it is impor­
tant to fully utilize the Complex Instruction Set. Allow the

poi nt to input stri ng
, point to output string
, get a byte

Is the char less than 'a '?

yes, branch out
is the char greater than 'z'?

yes, branch out

and wi th 5f to make uppercase

store the character

, is thi s the 1 ast char?
, no, loop for more

TLlEE/9699-5

TL/EE/9699-6

fewest number of instructions possible to do the work. Use
the advanced addressing modes where possible. Try to em­
ploy larger data types in programs (Series 32000 takes the
same number of clocks to add Bytes, Words or Double
words).

4.0 CONCLUSION

Series 32000 assembly language offers a much richer com­
plement of instructions when compared to the BOxB6 as­
sembly language. Translation from BOxB6 to Series 32000 is
made much easier by this full instruction set.

'This program translates a null terminate ASCII string to uppercase ,
, After optimization

movqd -l,rO , number of bytes in string max.

addr bufl, rl II point to input string

addr buf2, r2 # poi nt to output stri ng

addr ctable,r3 , address of conversion tabl e

movqd 0, r4 , match on a zero

movst u # move string, translate, unti 1 0
movqb O,O(r2) # move a zero to output stri ng

ret $0
TLlEE/9699-7

6-56

TABLE I
The following is a conversion table from 80x86 mnemonics to Series 32000. Note that many of the conversions are not
exact, as the 80x86 instructions may affect flags that Series 32000 instructions do not. A * marks those instructions that may
be affected most by this change in flags. The i in the Series 32000 instructions refers to the size of the data to be operated
on. It may be B for Byte, W for Word or D for Double. Most arithmetic instructions also support F for single-precision Floating
Point, and L for double-precision Floating-Point.

80x86 Series 32000

AM
MD
MM
MS
ADC
ADD
AND
BOUND
CALL
CBW
CLC
CLD
CLI
CMC
CMP
CMPS
CWD
DM
DAS
DEC
DIV
ENTER
ESC
HLT
IDIV
IMUL
IN
INC
INS
INT
INTO
IRET
JAlJNBE
JAE/JNB
JB/JNAE
JBE/JNA
JCXZ
JE/JZ
JG/JNLE
JGE/JNL
JLlJNGE
JLE/JNG
JMP
JNE/JNZ
JNO
JNP
JNS
JO
JP
JPE
JPO
JS
LAHF
LDS
LEA
LEAVE
LES
LOCK
LODS
LOOP

ADDCi
ADDi
ANDi
CHECKi
BSR/JSR
MOVXBW
BICPSRB $1

BICPSRW $Ox800

CMPi
CMPSi
MOVXWD

ADDQi-1*
DIVi
ENTER [reg list] ,d

WAIT
DIVilQUOi
MULi

ADDQi 1*

SVC
FLAG
RETI$O
BHI
BHS
BLT
BLS

BEQ
BGT
BGE
BLT
BLE
BR/JUMP
BNE

ADDR
EXIT[reglist]

MOVilADDQD
ACBi-1

Comments

Suggest changing algorithm to use ADD~i
Suggest changing algorithm to use ADDPi/SUBPi

Suggest changing algorithm to use SUBPi

You may directly sign-extend data while moving
Usually not required
Direction encoded within string instructions
Supervisor mode instruction
Usually not required

Many options available
You may directly sign-extend data while moving
Suggest changing algorithm to use ADDPi
Suggest changing algorithm to use SUBPi
Watch for flag usage
Note: Series 32000 uses signed division
Builds stack frame, saves regs, allocates stack space
Usually used for Floating Point-see Series 32000 FP instructions

DIVi rounds towards -infinity, QUOi to zero

Series 32000 uses memory-mapped 110
Watch for flag usage
Series 32000 uses memory mapped 110
Not exact conversion, but usually used to call O/S
Trap on overflow
Causes Interrupt Acknowledge cycle
UnSigned comparison
UnSigned comparison
UnSigned comparison
UnSigned comparison
Use CMPQi 0, followed by BEQ
Equal comparison
Signed comparison
Signed comparison
Signed comparison
Signed comparison

Not Equal comparison
Subroutines should be used for these instructions
as most Series 32000 code will not need these
operations.

SPRB UPSR,xxx may be useful
Segment registers not required on Series 32000

Restores regs, unallocates frame and stack
Segment registers not required
SBlTli, CBITIi interlocked instructions
MOV instruction followed by address increment
ACBi may use memory or register

6-57

» z .
U1
N
CD

G)
N

TABLE I (Continued) In .
Z 80x86 Series 32000 Comments <

LOOPE BEQ followed by ACBi may be used
LOOPNE BNE followed by ACBi may be used
LOOPNZ BNE followed by ACBi may be used
LOOPZ BEQ followed by ACBi may be used
MOV MOVi
MOVS MOVSi Many options available
MUL MULi Series 32000 uses signed multiplication
NEG NEGi Two's complement
NOP NOP
NOT COMi One's complement
OR ORi
OUT Series 32000 uses memory mapped I/O
OUTS Series 32000 uses memory mapped I/O
POP MOViTOS, TOS addressing mode auto increments/decrements SP
POPA RESTORE [rO,r1 .. r7] Restores list of registers
POPF LPRB UPSR,TOS User mode loads 8 bits, supervisor 16 bits of PSR
PUSH MOVixx,TOS Any data may be moved to TOS
PUSHA SAVE [rO,r1 .. r7] Saves list of registers
PUSHF SPRB UPSR,TOS User mode stores 8 bits, supervisor 16 bits of PSR
RCL ROTi* Does not rotate through carry
RCR ROTi* Does not rotate through carry
REP Series 32000 string instructions use 32·bit counts
RET RET
ROL ROTi
ROR ROTi Rotates work in both directions
SAHF LPRB UPSR,xx may be useful
SAL ASHi Arithmetic shift
SAR ASHi Arithmetic shift works both directions
SBB SUBCi
SCAS SKPSi Many options available
SHL LSHi Logical shift
SHR LSHi Logical shift works both directions
STC BISPSRB $1
STD Direction is encoded in string instructions
STI BISPSRW $Ox800 Supervisor mode instruction
STOS MOVi/ADDQD MOV instruction followed by address increment
SUB SUBi
TEST TBITi may be used as a substitute
WAIT
XCHG MOVi x,temp; MOVi y,x; MOVi temp,y
XLAT MOVi x[RO:b], Scaled index addressing mode
XOR XORi

6·58

Bit Mirror Routine;
Series 32000® Graphics
Note 7

1.0 INTRODUCTION

National Semiconductor
Application Note 530
Dave Rand

The bit mirror routine is designed to reorder the bits in an image. The bits are swapped around a fixed point, that being one
half of the size of the data, as is shown for the byte mirror below. These routines can be used for conversion of 68000 based
data.

2.0 DESCRIPTION
Hex

Bit Number Value
7 6 5 4 3 2 0

Source 1 0 1 1 0 0 1 0 B2
Result of Mirror 0 1 0 0 1 1 0 1 4D

The "mirror", in this case, is between bits 3 and 4.
Several different algorithms are available for the mirror operation. The best algorithm to mirror a byte takes 20 clocks on a
NS32016 (about 2.5 clocks per bit), and uses a 256 byte table to do the mirror operation. The table is reproduced at the end
of this document. To perform a byte mirror, the following code may be used. The byte to be mirrored is in RO, and the
destination is to be R1.

HOVS ml rtab [rO: b], r 1 IHi rror a byte
TL/EE/9700-1

An extension of this algorithm is used to mirror larger amounts of data. To mirror a 32·bit block of data from one location to
another, the following code may be used. Register RO points to the source block, register R1 points to the destination. R2 is
used as a temporary value.

HOVZBD O(rO),r2 Iget fi rst byte
HOVB mirtab[r2:b) ,3(rl) Istore In last place
HOVB l(rO), r2 Iget next byte
HOVS mi rtab [r2: b] ,2(rl) Istore I n next place
HOVB 2(rO),r2 Iget the thi rd byte
MOVS mirtab[r2:b] ,1(rl) Istore in next place
HOVS 3(rO),r2 Iget the 1 ast byte
MOVB mlrtab[r2:b) ,O(rl) Iflrst place

TUEE/9700-2

This code uses 33 bytes of memory, and just 169 clocks to execute. Larger blocks of data can be mirrored with this method
as well, with each additional byte taking about 40 clocks.
Registers can also be mirrored with this method, with just a few more instructions. To mirror RO to R1, for example, the
following code could be used. R2 is used as a temporary variable.

HOVZBD
HOVS
lSHD
lSHD
HOVS
HOVS
lSHO
lSHD
HOVS
HOVS
lSHD
lSHD
HOVS
HOVS

rO, r2 Iget 1 sbyte
mi rtab [r2: b] ,rl Imi rror the byte
$S,rl Imove into higher byte of destination
$-S, rO 'and of source
rO, r2 'get lsbyte
mi rtab [r2: b], rl Imi rror the byte
$S,rl Imove into higher byte of destination
$-S, rO land of source
rO, r2 'get lsbyte
ml rtab [r2: b] , rl Iml rror the byte
$S,rl Imove into higher byte of destination
$-S, rO 'and of source
rO,r2 'get lsbyte
mlrtab[r2:b] ,rl Imlrror the byte

6·59

TL/EE/9700-3

~
Z .
U'I
W
<:)

This code occupies 49 bytes, and executes in 286 clocks on an NS32016.

If space is at a premium, a shorter table may be used, at the expense of time. Each nibble (4 bits) instead of each byte is
processed. This means that the table only requires 16 entries. To mirror a byte in AO to A1, the following code can be used. A2
is used as a temporary variable.

MOVB rO,r2 Iget lsbyte
ANDD $lS, r2 #mask to get 1s nibble
MOVB mirtb16[r2:b] ,rl Imi rror the ni bb 1 e
LSHD $4,rl Ihigh nibble of destination
LSHD $-4, rO land of source
MOVB rO,r2 Iget lsbyte
ANDD $lS, r2 #mask to get ls nibble
ORB mi rtb16[r2:b], rl #mirror the nibble

TL/EE/9700-4

This code requires 32 bytes of memory, and executes in 125 clock cycles on an NS32016. A slightly faster time (100 clocks)
may be obtained by adding a second table for the high nibble, and eliminating the LSHD 4,r1 instruction.

TABLES
MIATAB is a table of all possible mirror values of 8 bits, or 256 bytes. MIATB16 is a table of all possible mirror values of 4 bits, or
16 bytes. These tables should be aligned for best performance. They may reside in code (PC relative), or data (SB relative)
space.

mirtab:

mirtb16:

• byte OxOO,Ox80, Ox40,OxcO, Ox20,OxaO, Ox60,OxeO, OxlO,Ox90, OxSO
• byte OxdO,Ox30, OxbO,Ox70,OxfO
• byte Ox08,Ox88, Ox48,Oxc8, Ox28 ,Oxa8, Ox68 ,Oxe8, Oxl8 ,Ox98, Ox58
• byte OxdB,Ox38,OxbS,Ox78,Oxf8
• byte Ox04 ,Ox84, Ox44 ,Oxc4,Ox24 ,Oxa4, Ox64, Oxe4, Ox14, Ox94, Ox54
• byte Oxd4,Ox34,Oxb4,Ox74,Oxf4
• byte OXOC ,Ox8c, Ox4c ,Oxcc, Ox2c, Oxac, Ox6c ,Oxec, Oxlc ,Ox9c, Ox5c
• byte Oxdc, Ox3c, Oxbc, Ox7c, Oxfe
• byte OX02, Ox82 , Ox42 ,Oxe2, Ox22 ,Oxa2, Ox62 , Oxe2, Ox12, Ox92 , OxS2
. byte Oxd2,Ox32,Oxb2,Ox72,Oxf2
• byte OxOa, Ox8a, Ox4a, Oxea, Ox2a, Oxaa, Ox6a ,Oxea, Oxla, Ox9a, OxSa
• byte Oxda , Ox3a , Oxba , Ox7 a, Oxf a
• byte Ox06,Ox86, Ox46,Oxc6, Ox26,Oxa6,Ox66,Oxe6, Oxl6, Ox96, Ox56
. byte Oxd6,Ox36,Oxb6,Ox76,Oxf6
• byte OxOe,Ox8e, Ox4e,Oxee, Ox2e,Oxae, Ox6e,Oxee, Oxle,Oxge, Ox5e
• byte Oxde , Ox3e , Oxbe , Ox7 e, Oxfe
• byte OxOl,Ox8l; Ox4l,Oxel,Ox2l,Oxal,0x6l,Oxel,Oxll,Ox9l,Ox5l
• byte Oxdl, Ox3l, Oxbl. Ox71, Oxfl
• byte Ox 09 , Ox89 , Ox49 , Oxe9, Ox29 , Oxa9, Ox69, Oxe9, Oxl9, Ox99 , Ox59
• byte Oxd9, Ox39, Oxb9 ,Ox79, Oxf9
• byte Ox05,Ox8S, Ox4S, OxeS, Ox2S,Oxa5,Ox65 ,Oxe5, Oxl5, Ox95, Ox55
• byte OxdS,Ox3S,OxbS,Ox7S,OxfS
• byte OxOd, Ox8d, Ox4d, Oxed, Ox2d, Oxad, OxSd, Oxed, Oxld, Ox9d, OxSd
• byte Oxdd,Ox3d,Oxbd,Ox7d,Oxfd
• byte OX03, Ox83 , Ox43 , Oxc3, Ox23 , Oxa3, Ox63 ,Oxe3, Ox13, Ox93, OxS3
• byte Oxd3,Ox33,Oxb3,Ox73,Oxf3
• byte OxOb, Ox8b, Ox4b, Oxcb, Ox2b, Oxab, Ox6b, Oxeb, Oxlb, Ox9b, Ox5b
• byte Oxdb,Ox3b,Oxbb,Ox7b,Oxfb
• byte OX07 ,Ox87 ,Ox47 ,Oxe7 ,Ox27 ,Oxa7 ,Ox67 ,Oxe7, Od7 ,Ox97, OxS7
• byte Oxd7 ,Ox37 ,Oxb7 ,Ox77 ,Oxf7
• byte OxOf ,Ox8f ,Ox4f ,Oxef, Ox2f ,Oxaf,Ox6f ,Oxef, Oxlf ,Ox9f, OxSf
• byte Oxdf ,Ox3f, Oxbf ,Ox7f, Oxff

• byte
• byte

OxO, Ox8, Ox4, Oxe, Ox2, Oxa, Ox6, Oxe, Od,Ox9,OxS
Oxd,0x3, Oxb,Ox7, Oxf

6-60

TLlEE/9700-5

Operating Theory of the
Series 32000® GNX™
Version 3
Compiler Optimizer

1.0 INTRODUCTION

The main difference between the GNX-Version 3 compilers
and other compilers is the optimizer. Recompiling and opti­
mizing with a GNX-Version 3 compiler will result in a 10% to
200% speedup for most programs, with an average im­
provement of over 30%. This chapter describes some of the
advanced optimization techniques used by the compiler to
improve speed or save space. The most important tech­
niques are:

• Value propagation

• Constant folding

• Redundant-assignment elimination

• Partial-redundancy elimination

• Common-subexpression elimination

• Flow optimizations

• Dead-code removal

• Loop-invariant code motion

• Strength reduction

• Induction variable elimination

• Register-allocation by coloring

• Peephole optimizations

• Memory-layout optimizations

• Fixed frame

The following sections describe these techniques in more
detail.

2.0 THE OPTIMIZER

The optimizer, shared by all the GNX-Version 3 compilers, is
based on advanced optimization theory developed over the
past 15 years. Central to the optimizer is an innovative glob­
al-data-flow-analysis technique which simplifies the optimiz­
er's implementation. It allows the optimizer to perform some
unique optimizations in addition to all the standard optimiza­
tions found in other compilers. Optimizations are performed
globally on the code of a whole procedure at a time and not
just in a local context.

National Semiconductor
Application Note 583
Series 32000 Applications

The optimizer is implemented as a multi-step process. Each
step performs its particular optimizations and provides new
opportunities for the optimizations of the next step.

2.1 STEP ONE

The first step in the optimization process is to read in the
source program one procedure at a time and to partition this
procedure into basic blocks. A basic block is a straight line
sequence of code with a branch only at the entry or exit.
Some of the optimizations performed during this step are:

• Value Propagation

Value propagation (or copy propagation) is the attempt
to replace a variable with the most recent value that has
been assigned to it. This optimization is primarily useful
in the special case of constant propagation. It is impor­
tant because it creates opportunities for other optimiza­
tions. Value propagation can be turned off by the
ICODLMOTION optimization flag (-Om on UNIX®
systems).

• Constant Folding

If an expression or condition consists of constants only,
it is evaluated by the optimizer into one constant, there­
by avoiding this computation at run·time. The optimizer,
using algebraic properties such as the commutative, as­
sociative and distributive law, sometimes rearranges ex­
pressions to allow constant folding of part of an expres­
sion.

The GNX-Version 3 C compiler also folds floating-point
constant expressions. This feature can be turned off us­
ing the INOFLOAT_FOLD option (-Oc on UNIX sys­
tems) of the optimizer.

• Redundant-Assignment Elimination

The optimizer detects and eliminates assignments to
variables which are not used later in the program or
which are assigned again before being used. This opti­
mization can often be applied as a result of value propa­
gation.

Value propagation, constant folding, and redundant as­
signment elimination are illustrated in Figure 1.

6-61

~ ~--~ co
Ln

Z
c(

The program sequence
a = 4;
if' (a*8 < 0) b = 15;
else b = 20;
••• code which uses b but not a •••

is translated by the GNX-Version 3 C compiler front end into the following intermediate code
a ~ 4
if' (a*8 ~ 0) goto Ll
b ~ 15
goto L2

Ll: B ~ 20
L2: •••

which is transformed by "value propagation" into
a ~ 4
if' (4*8 ~ 0) goto Ll
b ~ 5
goto L2

Ll: b ~ 20
L2: •••

which after "constant folding" becomes
a ~ 4
if' (true) goto Ll
b ~ 15
goto L2

Ll: b ~ 20
L2: •••

"dead code removal" results in
a ~ 4
goto Ll

Ll: b ~ 20
L2: •••

which is transformed by another "flow optimization" into
a ~ 4
b ~ 20

Since there is no further use of a, a ~ 4 is a "redundant assignment:"
b ~ 20

FIGURE 1. Relationship between Various Optimizations

6-62

2.2 STEP TWO

The second step in the optimization process is the construc­
tion of the program's "flow graph." This is a graph in which
each node represents a basic block. A basic block is a lin­
ear segment of code with only one entry point and one exit
point. If there is a path in the program that leads from one
basic block to another, then an "arrow" is drawn in the
graph to represent this path. Figure 2 illustrates a flow
graph, representing an "if-then-else" sequence.

TLlEE/10344-1

FIGURE 2. Flow Graph

During the construction of the flow graph, additional opti­
mizations can be performed:

• Flow Optimizations

Flow optimizations reduce the number of branches per­
formed in the program. One example is to replace a
branch whose target is another branch with a direct
branch to the ultimate target. This often makes the sec­
ond branch redundant. At other times, code is reordered
to eliminate unnecessary branches. Branches to "re­
turn" are replaced by the return-sequence itself.

• Dead Code Removal

Flow optimizations are also designed to help the opti­
mizer discover code which will never actually be execut­
ed. Removal of this code, called "dead code removal",
results in smaller object programs.

6-63

2.3 STEP THREE

Step three of the optimization process is called "global­
data-flow-analysis". It identifies desirable global code trans­
formations which speed program execution. Many of these
concentrate on speeding up loop execution, since most pro­
grams spend 90% or more of their time in loops. Global­
data-flow-analysis is the computation of a large number of
properties for each expression in the procedure.

Unlike most optimizers, which employ unrelated and sepa­
rate techniques, the optimizer centers around one innova­
tive technique which involves the recognition of a situation
called "partial redundancy". This technique is so powerful
that many other optimizations turn out to be special cases.
The central idea is that it is wasteful to compute an expres­
sion, say a • b, twice on the same path; it is often faster to
save the result of the first computation and then replace the
fully redundant second computation with the saved value.
More common, however, is the case in which an expression
is partially redundant; there is one path to an expression,
which already contains a computation of that expression,
but another path to that same expression does not.

The following optimizations are performed by a common
technique:

• Elimination of Fully Redundant Expressions

This optimization is often called "Common Subexpres­
sion Elimination". It is relatively simple to avoid the re­
computation of fully redundant expressions. The opti­
mizer saves the result of the first computation (usually in
a register variable) and uses the saved value in place of
the second computation. Performance-conscious pro­
grammers sometimes do this themselves, but many
cases, such as array index and record number calcula­
tions, are recognized only by the optimizer.

• Partial Redundancy Elimination

A partially redundant expression can be eliminated in
two steps. First, insert the expression on the paths in
which it previously did not occur; this makes the expres­
sion fully redundant. Second, save the first computa­
tions and use the saved value to replace the redundant
computation. An example of this optimization is shown
in Figure 3.

Partial redundancy elimination sometimes results in
slightly larger code, but execution is not harmed, since
all inserted expressions are in parallel and only one is
actually executed.

l>
Z .
U1
Q)
W

C")
CD
Lt)

• z
III(

• Loop Invariant Code Motion

If an expression occurs within a loop and Its value does
not change throughout that loop, it is called "loop invari­
ant". Loop invariant expressions are also partially re­
dundant. This can be understood by realizing that there
are two paths into the loop body: one is through the loop
entry (the first time the loop is executed), and the other
is from the end of the loop,. while the exit condition is
false. Loop invariant computations are, therefore, re­
moved from the loop in the same way: the expression is
first inserted on the entry path to the loop, and then the
expression is saved on the entry path in a register, while
the redundant computation in the loop is replaced by
that register.

• Strength Reduction
This optimization globally replaces complex operations
by simpler ones. This is primarily useful for reducing
complex array-subscript computations (involving multi­
plication into simpler additions).

for (1 = 0; 1 < 15; 1+ = 0)

a [1] = 0;
is transformed into:

for (1 = 0, p = a; 1 < 15; 1+ = 1, p+ = 4)

*p = 0;
• Induction Variable Elimination

Induction variables are variables that maintain a fixed
relation to other variables. The use of such variables
can often be replaced by a simple transformation. For
instance, the example given for strength reduction can
be reduced to the following:

for (p = a; p < a + 60; p+= 4)

*p = 0;

In the following code, a·b is "partially redundant" (computed twice only if C is true):

11' (e)
x = a*b;

else
b = b + 10

y = a*b;
It is first transformed into a "fully redundant" expression

He=l
x +- a*b

else

b +- b + 10

temp +- a*b

y +- a*b

Then, as in the simple case of "redundant expression elimination," this is reduced to

11' e = 1
temp +- a*b
x +- temp

else
b +- b + 10
temp +- a*b

y +- temp

Now, the expression a*b is computed only once on any path.
FIGURE 3. Example of Partial Redundancy Elimination

6·64

2.4 STEP FOUR

The fourth optimization step performed by the optimizer,
and possibly the most profitable, is the "register allocation"
phase. Register allocation places variables in machine reg­
isters instead of main memory. References to a register are
always much faster and use less code space than respec­
tive memory references.

The algorithm used by the optimizer is called the "coloring
algorithm". First, global-flow-analysis is performed to deter­
mine the different live ranges of variables within the proce­
dure. A live range is the program path along which a vari­
able has a particular value. Generally, an assignment to a
variable starts a new live range; this live range terminates
with the last use of that assigned value.

The optimizer subsequently constructs a graph as follows:
each node represents a live range; two nodes are connect­
ed if there exists a point in the program in which the two live
ranges intersect. The allocation of registers to live ranges is
now the same as coloring the nodes of the graph so that
two connected nodes have different colors. This is a classic
problem from graph theory, for which good solutions exist. If
there are not enough registers, more frequently used vari­
ables have higher priority than less frequently used ones.
Loop nesting is taken into account when calculating the fre­
quency of use, meaning that variables used inside of loops
have higher priority than those that are not.

Most optimizing compilers attempt register allocation only
for true local variables, for which there is no danger of "ali­
asing." An alias occurs when there are two different ways to
access a variable. This can happen when a global variable
is passed as reference parameter; the variable can be ac­
cessed through its global name, or through the parameter
alias. A common case in C is when the address of a variable
is assigned to a pointer.

The optimizer takes a more general approach by consider­
ing all variables with appropriate data types as candidates
for register allocation, including global variables, variables
whose addresses have been taken, array elements, and
items pointed to by pointers. These special candidates can­
not reside in registers across procedure calls and pointer
references and, therefore, normally have lower priority than
local variables. However, instead of completely disqualifying
the special candidates in advance, the decision is made by
the coloring algorithm.

Additional important optimizations performed by the register
allocator are:

• Use of Safe and Scratch Registers

The Series 32000 machine registers are, by convention,
divided into two groups: registers RO through R2 and FO
through F3, the so-called "scratch" registers which can
be used as temporaries but whose values may be
changed by a procedure call, and the "safe" registers
(R3 through R7 and F4 through F7) which are guaran­
teed to retain their value across procedure calls. The
register allocator spends a special effort to maximize
the use of scratch registers, since it is not necessary to
save these upon entry or restore them upon exit from

the current procedure. The use of scratch registers,
therefore, reduces the overhead of procedure calls.

• Register Parameter Allocation

The register allocator attempts to detect routines,
whose parameters can be passed in registers. This is
possible for static routines only, since by definition all
the calls to such routines are visible to the optimizer.
Calls to other (externally callable) routines are subject to
the standard Series 32000 calling sequence. Passing
parameters in registers in another way to reduce the
overhead of procedure calls.

2.5 STEP FIVE

The last optimization step consolidates the results of all pre­
vious steps by writing out the optimized procedure in inter­
mediate form for the separate code generator. Some reor­
ganizations take place during this step. Local variables
which have been allocated in registers are removed from
the procedure's activation record (frame), which is reor­
dered to minimize overall frame size.

3.0 THE CODE GENERATOR

The back end (code generator) attempts to match expres­
sion trees with optimal code sequences. It applies standard
techniques to minimize the use of temporary registers,
which are necessary for the computation of the subexpres­
sions of a tree. The main strength of the code generator lies
in the number of "peephole optimizations" it performs.

Peephole optimizations are machine-dependent code trans­
formations that are performed by the code generator on
small sequences of machine code just before emitting the
code. Some of the most important peephole transforma­
tions are listed below:

• The code for maintaining the frame of routines which
have no local variables, or whose variables are all allo­
cated in registers, is removed.

• Switch statements are optimized into binary search, lin­
ear search or table-indexed code (using the Series
32000 CASE instruction), in order to obtain optimal code
in each situation.

• The stack and frame areas are always aligned for mini­
mal data fetches.

• Reduction of arithmetic identities, i.e., x*1 = x, x+O =
x, etc.

• Use of the ADDR instruction instead of ADD of three
operands.

• Some optimizations performed in the optimizer, such as
the application of the distributive law of algebra, Le.,
(10+i)*4 = 40+4*i, provide additional opportunities to
the code generator to fully exploit the Series 32000's
addressing modes.

• Use of ADDR instead of MOVZBD of small constant.

• Strength Reduction Optimizations. Use of MOVD instead
of MOVF from memory to memory; use of index address­
ing mode instead of multiplication by 2, 4 or 8; use of
combinations of ADDR instructions or shift and ADD se­
quences instead of multiplication by other constants up
to 200.

6-65

• Fixed Frame Optimization. An important contribution of
the code generator is its ability to precompute the stack
requirements of a procedure in advance. This allows the
generation of code which does not use (nor update) the
FP (frame pointer), resulting in cheaper calling se­
quences.

This optimization is most useful when the procedure con­
tains many procedure calls because it is not necessary
to execute code to adjust the stack after every call. Pa­
rameters are moved to the pre-allocated space instead
of pushing them on to the stack using the top-of-stack
addressing mode. Note that when using this optimiza­
tion, the run-time stack pointer stays the same through­
out the procedure, and all references to local variables
are relative to it and not the FP. Also note that the evalu­
ation order of parameters is unpredictable because pa­
rameters that take more space to evaluate are treated
first to save space.

While most optimizations are beneficial for both speed and
space, some optimizations favor one over the other. The
default setting of the optimizer switch favors speed over
space in trade-off situations. The following optimiza-

tions are trade-off situations which are affected by an opti­
mization flag.

• Code is not aligned after branches.

• All returns within the code are replaced by a jump to a
common return sequence.

• Certain space-expensive peephole transformations are
not performed.

4.0 MEMORY LAYOUT OPTIMIZATIONS
The following memory layout optimizations are performed
by the GNX-Version 3 C compiler:

6-66

• Frame variables that are allocated in registers are re­
moved from the frame.

• Internal, static routines whose parameters are passed in
registers have smaller frames.

• The stack alignment is always maintained. Stack param­
eters are passed in aligned positions.

• Frame variables are allocated in aligned positions. The
compiler reorders these variables to save overall frame
space.

• Code is aligned after every unconditional jump.

Application Development National Semiconductor

~ Application Note 590

Using Multiple
Programming Languages

INTRODUCTION WRITING MIXED-LANGUAGE PROGRAMS

National Semiconductor provides optimizing compilers for The mixed-language programmer should be aware of the
software development for Series 32000 based designs. following topics:
GNX-Version 3 is the name of the software tools family that • Name Sharing-Potential conflicts including permitted
includes the optimizing compilers. Languages supported in name-lengths, legal characters in identifiers, compiler
GNX-Version 3 include compilers that support C, Pascal, case sensitivity, and high-level to assembly-level name
FORTRAN-n, and Modula-2. Each of the optimizing com- transformations.
pilers share a common optimizer and code generator and

• Calling Convention-The way parameters are passed to
intermediate representation. This greatly simplifies the pro-

functions, which registers must be saved, and how val-
cess of mixed-language programming, or combining mod-

ues are returned from functions. The application note
ules written in different high-level languages in the same Portability Issues and the GNX-Version 3 C Optimizing
application. The ability to use mixed-language programming Compiler contains a description of parameter passing.
simplifies the porting of pre-existing applications and code This information is also contained in Appendix A of the
reuse. GNX-Version 3 compiler reference manuals.
Mixed-language programs are frequently used for a two rea-

• Declaration Conventions-The demands that different
sons. First, one language may be more convenient than an-

languages impose when referring to an outside symbol
other for certain tasks. Second, code sections, already writ-

(be it a function or a variable) that is not defined locally in
ten in another language (e.g., an already existing library

the referring source file. Note that this is also true of
function), can be reused by simply making a call to them. references to an outside symbol that is not in the same
A programmer who wishes to mix several programming lan- language as that of the referring source file.
guages needs to be aware of subtle differences between

To help the programmer avoid these potential problems, a
the compilation of the various languages. The following sec- set of rules for writing mixed-language programs has been
tions describe the issues the user needs to be aware of

devised. Each rule consists of a short mnemonic name (for
when writing mixed-language programs and then compiling

easy reference), the audience of interest for the rule, and a
and linking such programs successfully.

brief description of the rule.

Table I summarizes all of the rules in the context of each
possible cross-language pair.

TABLE I. Cross-Language Pairs

Modula-2
Series 32000

C Pascal FORTRAN 77
Assembly

Series 32000 "_" prefix "_" prefix "_" prefix "_" prefix
Assembly include ext "_" suffix DEF&IMPORT

case sensitivity ref args initcode
case sensitivity

Modula-2 DEF&IMPORT DEF&IMPORT "_" suffix "_" prefix
init code init code DEF&IMPORT DEF&IMPORT

include ext init code initcode
case sensitivity ref args

case sensitivity

FORTRAN 77 "_" suffix "_" suffix "_" suffix "_" prefix
ref args include ext DEF&IMPORT "_" suffix

case sensitivity ref args init code ref args
ref args case sensitivity
case sensitivity

Pascal include ext "_" suffix DEF&IMPORT "_" prefix
case sensitivity include ext initcode include ext

ref args include ext case sensitivity
case sensitivity

C include ext "_" suffix DEF&IMPORT "_" prefix
case sensitivity ref args init code

case sensitivity

6-67

l>
Z . en co
o

o r---~
0')
Lt)

z
c(

RULE 1 case sensitivity
This rule is of interest to every programmer who mixes pro­
gramming languages.

Modula-2, C, and Series 32000 assembly are case sensitive
while FORTRAN 77 and Pascal are not (at least according
to the standard). Programmers who share identifiers be­
tween these two groups of languages must take this into
account. To avoid problems with case sensitivity, the pro­
grammer can:

1. Take case to use case-identical identifiers in all sources
and compile FORTRAN 77 and Pascal sources using the
case-sensitive option (CASLSENSITIVE on VMS, -d on
UNIX).

2. Use only lower-case letters for identifiers which are
shared with FORTRAN 77 or Pascal, since the FOR­
TRAN 77 and Pascal compilers fold all identifiers to low­
er-case if not given the case-sensitive option.

RULE 2 "_" prefix
This rule is of interest to those who mix high-level languages
with assembly code.

All compilers map high-level identifier names into assembly
symbols by prepending these names with an underscore.
This ensures that user-defined names are never identical to
assembly reserved words. For example, a high-level symbol
NAME, which can be a function name, a procedure name,
or a global variable name, generates the assembly symbol
_NAME.

Assembly written code which refers to a name defined in
any high-level language should, therefore, prepend an un­
derscore to the high-level name. Stated from a high-level
language user viewpoint, assembly symbols are not acces­
sible from high-level code unless they start with an under­
score.

RULE 3 "_" suffix
This rule is of interest to those who mix FORTRAN 77 with
C, Pascal, Modula-2, or assembly code.

The FORTRAN 77 compiler appends an underscore to each
high-level identifier name (in addition to the action described
in RULE 1). The reason for an appended underscore is to
avoid clashes with standard-library functions that are con­
sidered part of the language, e.g., the FORTRAN 77 WRITE
instruction. For example, a FORTRAN 77 identifier NAME is
mapped into the assembly symbol _NAML.

Therefore, a C, Pascal, Modula-2, or assembly program that
refers to a FORTRAN 77 identifier name should append an
underscore to that name. Stated from a FORTRAN 77 user
viewpoint, it is impossible to refer to an existing C, Pascal,
Modula-2, or assembly symbol from FORTRAN 77 unless
the symbol terminates with an underscore.

RULE 4 ref args
This rule is of interest to those who mix FORTRAN 77 with
other languages.

Any language which passes an argument to a FORTRAN 77
routine must pass its address. This is because a FORTRAN
77 argument is always passed by reference, i.e., a routine
written in FORTRAN 77 always expects addresses as argu­
ments.

Routines not written in FORTRAN 77 cannot be called from
a FORTRAN 77 program if the called routines expect any of

6-68

their arguments to be passed by value. Only routines which
expect all their arguments to be passed by reference can be
called from FORTRAN 77.

Pascal and Modula-2 programs must declare all FORTRAN
77 routine arguments using var. C programs must prepend
the address operator & to FORTRAN 77 routine arguments
in the call.

The C, Pascal, or Modula-2 programmer who wants to pass
an unaddressable expression (such as a constant) to a
FORTRAN 77 routine, must assign the expression to a vari­
able and pass the variable, by reference, as the argument.

RULE 5 Include ext
This rule is of interest to Pascal programmers who want to
share variables between different source files which mayor
may not be written in Pascal.

Pascal sources which share global variables must define
these variables exactly once in an external header (include)
file. The external header file has to be included in all Pascal
source files which access the shared global variable, and its
name must have a .h extension.

RULE 6 DEF and IMPORT
This rule is of interest to those who mix Modula-2 with other
languages.

Modula-2 modules which access external symbols must im­
port external symbols. If external symbols are not defined in
Modula-2 modules but defined in other languages, the pro­
grammer must export these symbols to conform with the
strict checks of the Modula-2 compiler.

External symbols can be exported by writing a "dummy"
DEFINITION MODULE which exports all of the foreign lan­
guage symbols, making them available to Modula-2 pro­
grams.

This export must be nonqualified to prevent the module
name from being prepended to the symbol name.

RULE 7 Inlt code
This rule is of interest to those who mix Modula-2 with other
languages.

Modula-2 modules which import from external modules acti­
vate the initialization code of the imported modules before
they start executing. The initialization code entry-point is
identical to the imported module name.

To avoid getting an "Undefined symbol" message from the
linker, the programmer should define a possibly empty, ini­
tialization function for every imported module. This is in case
the implementation part of that module is not written in Mod­
ula-2. It should be noted that the initialization code is not
necessarily called during run-time. Initialization code is exe­
cuted if, and only if, the following two conditions hold true:

1. The main program code is written in Modula-2.

2. The Modula-2 routines which are supposed to activate
the initialization part are not called indirectly through
some non-Modula-2 code.

In addition to these rules, a few points should be noted.
First, GNX Version 3 FORTRAN 77 allows identifiers longer
than the six character maximum of traditional FORTRAN
compilers. Second, the family of GNX Version 3 compilers
allows the use of underscores in identifiers. Both of these
enhancements simplify name sharing.

IMPORTING ROUTINES AND VARIABLES

The general conventions of all languages must be kept in
mixed-language programs. In particular, externals must be
declared in those program sections which import them. The
following are examples of declarations of external (import­
ed) functions/procedures and external (imported) variables
in each language. The examples are in the form:

Caller Language: external (imported) functions/procedures
or external (imported) variables

C: extern int func_ ();
or
extern int var_name_;

Note that the strict reference C model (draft-proposed ANSI
C standard) is assumed. If the model is relaxed, then the
external declarations are not mandatory.

FORTRAN 77: INTEGER func
or

COMMON /var_name/ local_name
Pascal: function func_: integer;

external;
procedure proc_: external;

or
#include "var_def.h"

where the file var_def.h contains the following declaration:

var
var_name_: integer;

as explained in RULE 5 (include ext).

Modula-2: FROM modula_name IMPORT func_
or

FROM module_name IMPORT
var_name_

Series 32000: .globl _func_
assembly or

.globl _var_name_

USING THE ASM KEYWORD

The keyword asm is recognized to enable insertion of as­
sembly instructions directly into the assembly file generated.
The syntax of its use is

asm (constant-string);

where constant-string is a double-quoted character string.

Asm can be used inside of functions as a statement and out
of functions in the scope of global declarations. A newline
character will be appended to the given string in the assem­
bly code.

Example: if for the C source:

i++;
j+ = 2:

the assembly code generated is:

addqd $1, _i
addqd $2, _j

then the assembly code generated for:

i++;

will be:

asm ("movd _i, rO");
j+ = 2:

addqd $1, _i
movd _i, rO
addqd $2, _j

Note: The word asm is a reserved keyword. Using asm as an identifier is a
syntax error. Existing programs using such identifiers must be modi­
fied.

In support of mixed-language programming, the compiler
also recognizes and compiles appropriate files written in
other programming languages. Files with a .s suffix are as­
sembly source programs and may be assembled (to pro­
duce .0 files) and linked. Pascal, FORTRAN 77, and
Modula-2 source files are also recognized, and compile ap­
propriately if your system includes the National Semicon­
ductor GNX Version 3 compiler for those languages. The
suffixes for these files are listed in Table II.

TABLE II. Filename Conventions

File Name
File Type

Suffix

.c C Source File

.i Preprocessed C Source File

.f, .for FORTRAN 77 Source File

.F,.FOR FORTRAN 77 Source with cpp Directives

.m,.mod Modula-2 Source File
.M,.MOD Modula-2 Source with cpp Directives

.def Modula-2 Definition Module Source File
.DEF Modula-2 Definition Module Source with cpp Directives

.p, .pas Pascal Source File
.P, .PAS Pascal Source with cpp Directives

.s Assembly Source File

.0 Object Code

.a Library Archive File

6-69

» z
I

UI
co
o

o
Q)
U')

:Z
c(

COMPILING MIXED-LANGUAGE PROGRAMS

After writing different program parts in different languages,
keeping in mind the rules previously mentioned, the mixed­
language programmer must still link and load these parts to
make them run successfully. Three points should be men­
tioned in conjunction with the successful linking and loading
of programs. These are as follows:

• External library (standard or nonstandard) routines must
be bound with the user-written code that calls them.

• Initialization code which arranges to pass program pa­
rameters to the main program and then calls the main
program, sometimes has to be bound with user-written
code.

• The entry point of the code, i.e., the location where the
program starts executing, should be determined.

In some cases, a standard is not so widely accepted as with
Modula-2. In these cases, the user must be aware of the
libraries that are available and the calling conventions of the
main program used by the operating system.

LIBRARIES

Table III lists libraries associated with each compiler. When
programming with mixed-languages, the libraries associated
with the languages used must be bound with the program
during the link phase of compilation.

TABLE III. Compliers and their Associated Libraries

Complier (Driver)
Libraries

Name

cc (Cross nmcc) libc
f77 (Cross nm77) IibF77,libl77,libm,libc
pc (Cross nmpc) libpas, libm, libc
m2c (Cross nm2c) libmod2. libm, libc

INITIALIZATION CODE AND ENTRY-POINTS

Normally, the entry point of the final executable file is called
start. The code that follows this entry-point is initialization
code that prepares the run-time environment and arranges
parameters to be passed to the user-written main program.
The initialization object file which contains start is linked in
by default is called ertO.o. The ertO.o file always calls main.

The assembly-symbol that starts the user main program in
the C language is _main (the underscore is prepended by
the C compiler) and is called _MAIN __ in Pascal, FOR­
TRAN 77, or Modula-2 programs.

Note that the last three compilers completely ignore the us­
er's main program name. Therefore, in C, the user-written
code is called directly from ertO.o. In Pascal, FORTRAN 77,
and Modula-2, _main is located in the respective standard
library which performs additional initializations before calling
the user entry-point _MAIN __ .

COMPILATION ON UNIX OPERATING SYSTEMS

National Semiconductor's GNX tools (assembler, linker,
etc.,) on systems relieve a user's concern about external
libraries, initialization code, and entry-points. This is due to
the coherency and consistency of the GNX-Version 3 com­
pilers and their integration through the use of a common
driver.

When using a GNX Version 3 compiler on a UNIX system,
the user does not directly call the compiler front end, opti-

6-70

mizer, code generator, assembler or linker. Instead, the
calls are indirectly made through the driver program.

The driver program accepts a variable number of filename
arguments and options and knows how to identify language­
specific options. The driver also identifies the languages in
which its filename arguments are written by the names of
these arguments. Therefore, the driver can arrange to com­
pile and bind the programs with the needed libraries in order
to run the program successfully.

As mentioned earlier, the driver program used by C, Pascal,
FORTRAN 77, and Modula-2 programmers is exactly the
same program on UNIX systems. The respective driver
names are cc, pc, f77, and m2c on native systems such as
the SYS32/20 or SYS32/30 and nmcc, nmpc, nf77, and
nm2c on cross-support systems such as VAXIVMS or a
VAX running Berkley UNIX.

The driver program looks at its own name in order to deter­
mine the libraries that are bound with the program. In addi­
tion, the driver links additional libraries according to the
name extensions of any of its filename arguments. For in­
stance, cc also links libm and libpas when one of the file­
name arguments is a Pascal source (recognized by the .p
extension).

The -v (verbose) option of the driver verbosely outputs all
driver actions. With this option,the interested user can track
problems that might arise (such as undefined symbols from
the linker).

As mentioned in the previous section, different languages
use different initialization code that resides in language-spe­
cific standard libraries. It is necessary that the correct lan­
guage initialization code be linked with a mixed-language
program. The driver program helps do this, but it needs to
know in which language the main program is written.

To ensure that the correct initialization code is linked with a
mixed-language program, the user should call the driver that
corresponds to the language of the main program module
within the mixed-language program.

For example, suppose there are five source modules written
in five different languages (c_utils.c written in C, f_utils.f
written in FORTRAN 77, p_tuils.p written in Pascal, m_
utils.m written in Modula-2, and s_utils.s written in assem­
bly), and there is a sixth module that has already been com­
piled separately (obj.o, an object module). Assuming there
is a main program written in FORTRAN 77, the f77 driver
should be used.

f77 maln.f c_utlls.c f_utlls.f p_utlls.p m_utlls.m
s_utlls.s obJ.o

If the main program is written in C, cc is used, and so on.

COMPILATION ON VMS OPERATING SYSTEMS

When using the GNX tools on VMS systems, the linking
phase is separate from the compilation phase; therefore, it
demands separate actions from the user.

The interested user should refer to the language tools man­
uals (assembler, linker, etc.) for a complete description of
how to use them on VMS systems.

COMPILING A MIXED-LANGUAGE EXAMPLE

The example listed in Appendix A consists of a number of
program modules written in languages different from the
main program, which is written in C.

COMPILING THE EXAMPLE ON A UNIX SYSTEM
To compile the program modules on a Berkeley UNIX sys­
tem, type the command:

nmcc c_main.c\
c_tun.c dmod_tun.det dummy.det
t77_tun.t\
imod_tun.m pas_tun.p asm_tun.s

6-71

This assumes that all the program modules are in the same
directory. If the program compiles and links successfully,
the result is an executable file that, when run on a Series
32000 CPU, prints the line "Passed OK!"".

l>
Z .
U1
CD
C

•

o
0)

~ APPENDIXA
~ PROGRAM MODULE LISTINGS

The different program modules are listed in this section.

c_main.c

/*--
* Example of a C program which communicates with C, Pascal,
* Fortran 77, Modula-2 and Assembly external functions, via
* direct calls as well as via a global variable.
* Parameter passing by reference is accomplished by passing the
* addresses of the characters variables "a', "b', "c', "d' and "e'.

--/
char str_[] = "Passed OK!!!\n"; /* global ('exported') string*/
main () {

char a, b, c, d, e;
int three = 3; /* FORTRAN must get its parameters by reference

*So we put this constant into a variable
*/

if (c_func (&a, 0) && /* in C arrays start with 0*/
pas_func (&b,2) && /* in Pascal they start at 1*/
f77_func_(&c,&three)&& /*in f77, at 1*/
mod_func (&d, 3) && /* in Modula-2, at 0*/
asm_func (&e, 4)) /*in assembly, at 0*/
printf ("%c%c%c%c%c%s", a, b, c, d, e, str_ +5) ;
/*Should print "Passed OK!!!"*/

/* dummy initialization function for Modula-2*/
dummy ()
{

I

/*
* Declaration of the public character string 'str[]' and definition
* of the C function 'c_func()'.
* Note the appending of an underscore to the external symbol 'str_'
* which is shared with FORTRAN 77.
*/
extern char str_[];

int c_func (c_ptr, index)
char *c_ptr;
int index;
{

*c_ptr = str_[index];
return 1;

6-72

C
C The FORTRAN 77 function:
C
C All parameters are passed by reference
C The COMMON statement aliases the external array 'str' as 'text'
C

LOGICAL FUNCTION f77_func(c. index)
CHARACTER c
INTEGER index
COMMON /str/text
CHARACTER text(15)
c = text (index)
f77_func = .TRUE.
RETURN
END

dmod_fun.def
DEFINITION MODULE mfunc_module;

EXPORT mod_func;
PROCEDURE mod_func(VAR c: CHAR; index: INTEGER): BOOLEAN;

END mfunc_module.
dummy.def

(*
* This definition module was written in order to 'satisfy' Modula-2
* strict conformance checks regarding the foreign language functions
* and in order to define the global character array 'str[]'.
* The external functions are called from the Modula-2 main program.
* so they must be exported from somewhere • • •
*)

DEFINITION MODULE dummy;
EXPORT
str_. c_func. pas_func. f77_func_. asm_func;

(*external function declarations*)
PROCEDURE c_func (VAR c: CHAR; index: INTEGER): BOOLEAN;
PROCEDURE pas_func (VAR a: CHAR; index: INTEGER): BOOLEAN;
PROCEDURE f77_func (VAR a: CHAR; VAR index: INTEGER): BOOLEAN;
PROCEDURE asm_funa (VAR a: CHAR; index: INTEGER): BOOLEAN;
VAR
str_: ARRAY [0 •• 14] OF CHAR;
END dummy.

6·73

» z .
CJ1
co
Q

II
I

o
CJ)
In

Z
<I:

(*
* Definition of the Modula-2 function 'mod_func ()'
*)

IMPLEMENTATION MODULE mfunc_module;
FROM dummy IMPORT str_;
PROCEDURE mod_func(VAR c: CHAR; index: INTEGER): BOOLEAN;
BEGIN
c: = str_[index];
RETURN (TRUE) ;

END mod_func;
END mfunc_module.

pas_fun.p
(*
* The Pascal function 'pas_func ()'
*)

(* 'str[] character-array declaration *)
#include 'str_pas.h"; .
(* make this function visible to outsiders ('export')*)
function pas_func(var c: char; index: integer): boolean; external;

function pas_func ();
begin

c: = str_[index];
pas_func: = TRUE;

end;
str_pas.h

(* 'str[]' character-array declaration for Pascal*)
var

str_: packed array [1 •• 15] of char;

6-74

The 32000 Assembly Language Function 'asm_func'

The function includes an artificial use of r7, to demonstrate the
need to save it upon entry and restore upon exit, as opposed to
rO, rl and r2; fO, fl, f2 and f3 which can be used freely without
saving or restoring. This is according to the Series 32000
standard calling convention.
The function return value is placed in rO, also according to the
standard calling convention.

.globl _str_ #Import the global str[] array •
• globl _asm_func #Export (make visible) the assembly function •
• align 4

_asm_func:
enter [r7],O #Set frame, demonstrate saving of r7
movb _str_+0(12(fp)) ,0 (8 (fp)) # argument_l ~ str[argument_2]
movqd $(1), r7 #artifioial use of r7
movd r7, rO #return_value ~ TRUE
exit [r7] #Unwind frame, restore r7
ret $(0) #Return to oaller

6-75

l>
Z .
U1
CD
<:) /

•

....
o
~
Z
<

Portability Issues
and the GNXTM Version 3
C Optimizing Compiler

INTRODUCTION

This application note describes compiler implementation as­
pects which may differ between those of the GNX-Version 3
C Optimizing compiler and other compilers and which may
affect code portability. Portability issues are recognized by
the C standard as issues that may differ from one compiler
implementation to another.

The GNX-Version 3 C Optimizing Compiler is one of a family
of compatible optimizing compilers targeted to the Series
32000® architecture. The compiler fully implements the C
Language as defined in The C Programming Language by B.
Kernighan and D. Ritchie. The C Optimizing Compiler is also
compatible with the UNIX® System V Compiler(pcc).

This Application Note contains three sections:

1.0 Implementation Aspects

2.0 Standard Calling Conventions

3.0 Undefined Behavior

1.0 IMPLEMENTATION ASPECTS

This section describes aspects of the implementation of the
GNX-Version 3 C compiler of which one should be knowl­
edgeable in order to write portable programs or to port pro­
grams written for compilation using other C compilers.

The topics addressed are:

1.1 Memory Representation of Data Types

1.2 External Linkage Considerations

1.3 Data Types and Conversions

1.4 Variable and Structure Memory Alignment

1.5 Functions that Return a Structure

1.6 Mixed-Language Programming

1.7 Order of Evaluation of Parameters

1.8 Order of Allocation of Memory

1.9 Register Variables

1.10 Floating-Point Arithmetic

1.1 MEMORY REPRESENTATION OF DATA TYPES

The representation of the various C types in this compiler
are:

CType
Series 32000

Data Type

int 32-Bit Double-Word
long 32-Bit Double-Word
short 16-BitWord
char 8-Bit Byte
float 32-Bit Single-Precision Floating-Point

double 64-Bit Double-Precision Floating-Point

National Semiconductor
Application Note 601
Series 32000 Applications

• The set of values stored in a char object is signed.

• The padding and alignment of members of structures as
described in Section 1.4.

• A field of a structure can generally straddle storage unit
boundaries.

• While signed bitfields are implemented, it is not recom­
mended to use them since their implementation is slow.
Bitfields are not allowed to straddle a double-word
boundary.

1.2 EXTERNAL LINKAGE CONSIDERATIONS

• There is no limit to the number of characters in external
names.

• Case distinctions are significant in an identifier with exter­
nal linkage.

1.3 DATA TYPES AND CONVERSIONS

• A right shift of a signed integral type is arithmetic, i.e., the
sign is maintained.

• When a negative floating-point number is converted to
an integer, it is truncated to the nearest integer that is
less than or equal to it in absolute value. The result is
returned as a signed integer.

• When a double-precision entity is converted to a single­
precision entity, it is converted to the nearest representa­
tion that will fit in a float with default rounding performed
to the nearest value.

• The presence of a float operand in an operation not con­
taining double-operands causes a conversion of the oth­
er operand to float and the use of single-precision arith­
metic. If double-operands are present, conversion to
double occurs.

1.4 VARIABLE AND STRUCTURE MEMORY ALIGNMENT

The alignment of entities in a program is a trade-off issue.
Most Series 32000 CPUs are more efficient when dealing
with entities aligned to a double-word boundary. This nor­
mally makes it necessary to have some amount of padding
added to a program. This padding represents an overhead
in storage space.

The GNX-Version 3 C compiler allows the user to tailor the
alignment of structures/unions and their members and, in­
dependently, the alignment of other variables. Function pa­
rameters are always double-word aligned. This allows the
calling of functions across modules without dealing with
alignment issues.

1.4.1 Alignment of Variables

Extern, static, and auto variables are aligned in memory
according to their size and the buswidth setting. Table I lists
variable size, buswidth, and the alignment determined by
these two parameters.

6-76

TABLE I. Variable Alignment

Bus Width
Variable Size (Bytes)

1 2 ~4

1 byte byte byte

2 byte word word

4 byte word double-word

Variables of size 1 are of the C type char, variables of size 2
are of the C type short, and variables of size 4 or greater
are of the C types Int, long, float, and double (size 8).

A buswidth setting of 1 means "align to 1 byte". Variables
start on a byte boundary, in other words, there is no align­
ment and no padding. When allocating storage for variables,
bytes are allocated sequentially with no padding between
bytes.

Note that to align s2 to a word boundary, padding space of
one byte is needed after c. This padding does not exist with
a buswidth of 1.

Example: The arrangement of

char c; int i;
with a buswidth of 4 is

A buswidth setting of 2 means "align to an even byte." Vari­
ables that are larger than 1 byte start on a word boundary.
This means that there may be padding of single bytes.

A buswidth setting of 4 means "align to a double-word
boundary" (a byte whose address is divisible by four). Vari­
ables that are 2 bytes long start on a word boundary; vari­
ables that are 4 bytes or larger in size start on a double­
word boundary. This means that there may be padding of up
to three bytes.

Arrays are aligned as the alignment of their element type.
Structures are aligned according to the alignment of the
largest structure members. This is affected by the -J
(I ALIGN) option. See "Structure/Union Alignment" and
"Allocation of Bit-Fields" for more details.

Example: The arrangement of

Int Ij short s1j char Cj short s2j

with a buswidth of 2 or 4 is

TLlEE/10345-1

byte
number: 0 2 3 4 5 7

Fc::vJ1Nl/N/lJ-· -+--- ----1---1·1
With a buswidth of 2, the arrangement is

byte
number: 0 3 4 5

r---Fc~3Zr--r:V,r-7"'1?1~. ~---r-----r----"I

With a buswidth of 1, there is no padding.

6-77

TL/EE/10345-2

TL/EE/10345-3

>
Z
0,
o

•

...
o
CD

Z
<C

It is important to note that the order in memory is the same
as the declaration order only for extern and static vari­
ables. The optimizer may reorder auto variables in order to
minimize padding space.

Fastest code is achieved by setting the default alignment to
that of the data buswidth .of the CPU (4 for all but the
NS32008, the NS32CG16, and the NS32016). This can be
accomplished by setting the BUS parameter in the target
specification file, or by overwriting that file on the command
line with the -KB (/TARGEn option.

1.4.2 Structure/Union Alignment

Structure members are aligned within the structure, relative
to the beginning of the structure, in the same way that vari­
ables are aligned in memory. In order to maintain the align­
ment of the members relative to memory, the structure itself
is aligned in memory according to the alignment of its larg­
est members. This alignment may be controlled by putting
.J (I ALIGN) on the command line.

In addition, the total size of a structure is such that it also
ends on an alignment boundary of its largest member. This
maintains the alignment of individual members in arrays of
structures. This is illustrated in the FILE struct example at
the end of this section.

For unions, there is no padding. The alignment of the un­
ion's largest members determine the alignment of the union
itself.

1.4.3 Allocation of Blt·Flelds

To understand the way bit-fields are handled, think of the
situation where a field is fetched from memory. The number
of bits fetched is determined by buswidth. For instance, if a
bus is 2-bytes wide, then 2 bytes are fetched, even if only
the first few bits are needed. For convenience, the number
of bits fetched is called the "fetching unit".

The arrangement of a's fields in memory will be:

Note that for the purpose of structure member alignment,
the align switch value (1 byte, 2 bytes or 4 bytes) is taken as
a "virtual buswidth," even if it is different from the actual
buswidth.

A complication exists when allocating bit-fields. The compli­
cation arises from the fact that different base types for bit­
fields (char short, and Int) are supported. The maximum
length of a bit-field is the size of its base type; therefore,
there may be times when a bit-field is larger than the
buswidth. When the size of the base type is larger than the
buswidth, the size of the fetching unit is considered to be
the base-type size.

The precise rules for determining the start of the fetching
unit are quite complicated. In general, it is determined by the
current position in the allocation of structure members and
by the base-type of the first bit-field in a group of consecu­
tive bit-fields.

An attempt is made to pack consecutive bit-fields as much
as possible, as long as the bit-fields remain in the same
fetching unit. As soon as a field "spills over" into the next
fetching unit, the alignment is set to the next memory unit
(byte, word, or double-word, according to the align switch
value and the base type of the field). A hole of padding bits
remains, and the beginning of the spill-over field determines
the start of a new fetching unit for following bit-fields. Using
this method, bit-fields are packed as much as possible while
still maintaining the alignment.

If, because of the bit-fields, the structure as a whole does
not terminate on a byte boundary, padding bits are added to
it to fill up to the end of the last byte it occupies. Additional
padding bytes may be needed to fill to the alignment bound­
ary of the largest structure member. This is seen in Figure 1.
The bit-field does not quite reach the byte boundary; there­
fore, padding bits are added until the byte boundary is
reached. Additional padding bytes are added to fill to the
alignment boundary of the double-word structure member.
See Figure 1.

Example:

struct A
int i;
unsigned bitfield: 4;
I a;

b~ number 111111111122222222223333333333444444444455555555556666
0123456789012345678901234567890123456789012345678901234567890123

I I
[-~;fl:~-Ipa~~ngl-------------f-~~ddt~;b;~;-l-------------------------1
~------~-------------~------------~------------------------_. TL/EE/1034S-4

FIGURE 1. Bltfleld Padding

6-78

Figure 2 is an example of the alignment on bit· fields given
the different align switch settings. To summarize, the -J
(I ALIGN) switch affects:

• the total storage alocated to a structure by determining if,
and how many, padding bytes will be added after its last
field.

• the alignment and padding used for structure members
and the alignment of variables of the structure type.

Example: struct X (
char c,d,e;
int i: 24;

ALIGN = 4

bit number 111111111122222222223333333333404404404444455555555556666
0123456789012345678901234567890123456789012345678901234567890123

I I d I VIl!I1 I I VlZZI1
o 2 3 4 5 6 7

byte number

ALIGN = 2/1
bit number 111111111122222222223333333333444444444455555555556666
0123456789012345678901234567890123456789012345678901234567890123

I I d I I I I I I I I I I
o 2 3 4 5 6

byte number

FIGURE 2. Alignment on Bltflelds

6·79

TLlEE/l0345-5

TLlEE/l0345-6

l> z . en
c

•

,....
C)
CD .
Z
ct

CAUTION

The user must make sure that all parts of the program, in­
cluding library routines, use the same alignment for the
same structures; otherwise, problems result. The following
example illustrates this point.

Suppose the example program includes < stdlo.h >. The
file <stdlo.h> contains the following definitions.

extern FILE_lob [_NFILE];
typedef struct {

Int cnt;

FILE;

unsigned
unsigned
char
char

char *_ptr;
char *_base;
_flag;
_file;

Note that FILE has two char members at its end. If align =

4, any variable declared to be of type FILE will have two
padding bytes added at its end in order to make it occupy an
integral number of double-words. When align = 1 or align
= 2, no padding is performed.

If a module using <stdio.h> is compiled with align = 4 and
later linked with a module compiled with align = 1 or align
= 2 that tries to use iob[n] when n > 0, the result will be
wrong. This is because the two modules disagree on the
size of the elements in the array. This situation actually does
arise if a user module, compiled with align = 1 or align = 2,
is linked with the default library libc, which is compiled with
align = 4.

The solution to this problem is to make sure all modules are
compiled using either the same alignment setting, including
all include files and libraries, or a revised header file that has
been made insensitive to the setting of the alignment
switch. This is performed by including the necessary pad­
ding to enforce equal sizes and offsets. If the latter solution
is chosen, FILE is revised to look like:

typedef struct {

I FILE;

int cnt;
unsigned char *_ptr;
unsigned char *_base;
char _flag;
char _file;
/*padding*/ int:16;

No padding is added by the compiler, and the size of the
structure is the same for all switch settings.

1.5 FUNCTIONS THAT RETURN A STRUCTURE

In the GNX-Version 3 C compiler, structure returning func­
tions have a hidden argument which is the address of an
area the size of the returned structure. This area is allocated
by the caller and its address is passed as a first argument to
the structure returning function. Structure returning func­
tions are, therefore, re-entrant and interruptible.
Note: At the optimizer's discretion, small structures (less than 5 bytes) may

be passed and/or returned in a register.

1.6 MIXED·LANGUAGE PROGRAMMING

Mixed-language programs are frequently used for two rea­
sons. First, one language may be more convenient than

6-80

another for certain tasks. Second, code sections already
written in another language (e.g., an already existing library
function) can be reused simply by calling them.

A programmer who wishes to mix several programming lan­
guages needs to be· aware of subtle differences between
the compilation of the various languages. An Application
Note is available that describes the issues one needs to be
aware of when writing mixed-language programs and com­
piling and linking such programs successfully.

1.7 ORDER OF EVALUATION OF PARAMETERS

The evaluation order of expressions and actual parameters
in theGNX·Version 3 C compiler may differ from those of
other compilers. Therefore, programs that rely on a specific
order of evaluation may not run correctly when compiled. In
particular, the following orders of evaluation are unspecified:

• The order in which expressions are evaluated.

• The order in which function arguments are evaluated.

• The order in which side effects take place. For instance,
aU + +] = I may be evaluated as

or as

a[l] = 1;
1++

t = i;
i++
a[t] = i;

1.8 ORDER OF ALLOCATION OF MEMORY

The order of allocation of local variables in memory is com­
piler-dependent. After the optimizer of the GNX-Version 3 C
compiler performs register allocation, it reorders the local
variables left in memory. This reordering reduces memory
space requirements and minimizes displacement length.
User programs that rely on any order of allocation of local
variables may not run correctly.

1.9 REGISTER VARIABLES

By default, register variables, as well as other local vari­
ables, are equal candidates for register allocation. When
given complete freedom, the programmer generally per­
forms a better job of register allocation than when forced to
follow the allocation. For programs which make assump­
tions about variables which reside in specific registers, an
optimization flag (-Ou or -0 -Fu on UNIX and USER_
REGISTERS on VMSTM) is available to enforce the pee al­
location scheme for register variables of scalar types and of
type double.

1.10 FLOATING·POINT ARITHMETIC

The floating-point arithmetic conversion rules of the GNX­
Version 3 C compiler differ from most other C compilers.

In an operation not containing double-operands, if one of
two operands is of type float, the other operand is convert­
ed to type float and single-precision arithmetic is used. The
result of the operation is of type float. This behavior differs
from previous compilers which perform such operations in
double precision.

In old C compilers, the result of float-returning functions was
actually returned in double-format and placed in the FO-F1
register pair. When compiled by the GNX-Version 3 C com­
piler, such functions return the return value result in float
format and place the result in the FO register. Note that
assembly programs that interface with float-returning func­
tions may now incorrectly expect a double precision result.

Float parameters, however, are passed as double because
the C language semantics do not require type identity be­
tween actual and formal parameters. Code is generated in
the called function to convert these actual double values
back to float if necessary.

Floating-point constants are of type double, unless they are
typecast to float or are suffixed by the letter f or F. By
preference, constants of type float should be used in float
expressions to avoid the unnecessary casting of other oper­
ands to double precision. For example,

fmax+ = 17 .5f;
is more efficient than

fmax+ = 17.5;
The following examples are of double constants and float
constants.

Example: Double Constants Float Constants
14.5 e6 14.5e6f
14.5 (float) 14.5

2.0 SERIES 32000 STANDARD CALLING CONVENTIONS

The main goal of standard calling conventions is to enable
the routines of one program to communicate with different
modules, even when written in multiple-programming lan­
guages. The standard calling conventions support various
special language features (such as the ability to pass a vari­
able number of arguments, which is allowed in C), by using
the different calling mechanisms of the Series 32000 archi­
tecture. These conventions are employed only to call exter­
nally visible routines. Calls to internal routines may employ
even faster calling sequences by passing arguments in reg­
isters, for instance.

The standard Series 32000 calling conventions are used by
the C compiler for calls to external routines of all languages.
It is, therefore, unnecessary to use the fortran keyword in C
programs, (if present, the keyword is ignored). However, lo­
calor internal routines (functions which in C are preceded
by the static keyword) are called by more efficient calling
sequences.

Basically, the calling sequence pushes arguments on top of
the stack, executes a call instruction, and then pops the
stack while using the fewest possible instructions to execute
at the maximum speed. The following sections discuss the
various aspects of the Series 32000 standard calling con­
ventions.

2.1 CALLING CONVENTION ELEMENTS

Elements of the standard calling sequence are as follows:

2.1.1 The Argument Stack

Arguments are pushed on the stack from right to left; there­
fore, the leftmost argument is pushed last. Consequently,
the leftmost arguments are always at the same offset from

6-81

the frame pointer, regardless of how many arguments are
actually passed. This allows functions with a variable num­
ber of arguments to be used.
Note: This does not imply that the actual parameters are always evaluated

from right to left. Programs cannot rely on the order of parameter
evaluation.

The run-time stack must be aligned to a full double-word
boundary. Argument lists always use a whole number of
double-words; pointer and integer values use a double-word
(by extension, if necessary), floating-point values use eight
bytes and are represented as long values; structures (rec­
ords) use a multiple of double-words.
Note: Stack alignment is maintained by all GNX-Version 3 compilers

through aligned allocation and de-allocation of local variables. Inter­
rupt routines and other assembly-written interface routines are ad­
vised to maintain this double-word alignment.

The caller routine must pop the arguments off the stack
upon return from the called routine.
Note: The compiler uses a more efficient organization of the stack frame if

the FIXEDJRAME (-OF) optimization is enabled. In that case, pro­
grams should not rely on the organization of the stack frame.

2.1.2 Saving Registers

General registers RO, R1, and R2 and floating registers FO,
F1, F2, and F3 are temporary or scratch registers whose
values may be changed by a called routine. Also included in
this list of scratch registers is the long register L 1 of the
NS32381 FPU. It is not necessary to save these registers
on procedure entry or restore them before exit. If the other
registers (R3 through R7, F4 through F7, and L3 through L7
of the NS32381) are used, their values should be saved
(onto the stack or in temps) by the called routine immediate­
ly upon procedure entry and restored just before executing
the return instruction. This should be performed because
the caller routine may rely on the values in these registers
not changing.
Note: Interrupt and trap service routines are required to save/restore all

registers that they use.

2.1.3 Return Value

An integer or a pointer value that returns from a function,
returns in (part of) register RO.

A long floating-point value that returns from a function, re­
turns in register pair FO-F1. A float-returning function returns
the value in register FO.

If a function returns a structure, the calling function passes
an additional argument at the beginning of the argument list.
This argument points to where the called function returns
the structure. The called function copies the structure into
the specified location during execution of the return state­
ment. Note that functions that return structures must be cor­
rectly declared as such, even if the return value is ignored.

l>
z a,
c

......
o
CD • Z
cC

Example: int ig10b;
m()
{

int loc;
a = if unc(loc) ;

I
if unc(p1)
int p1;
I

I

int i, j, k;
j = 0;
for (i = 1; i ~ p1; i++)

j = j + f(i) ;
return(j) ;

The compiler may generate the following code:

_m:
enter [],4 #Allocate local variable
movd -4(fp),tos #Push argument
bsr _if unc
adjspb $(-4) #Pop argument off stack
movd rO,_iglob #Save return value
exit []
ret $(0)

_ifunc:
enter [r3, r4, r5],O #Save safe registers
movd 8(fp),r5 #Load argument to temp register
movqd $(0) ,r4 #Ini tialize j
cmpqd $(1) ,r5
bgt .LL1
movqd $(1) ,r3 #Ini tialize i

.LL2:
movd r3,tos #Push argument
bsr _f

- adj spb $(-4) #Pop argument off stack
addd rO,r4 #Add return value to j
addqd $(1) ,r3 #Increment i
cmpd r3,r5
ble .LL2

.LL1:
movd r4,rO #Return value
exit [r3,r4,r5] #Restore safe registers
ret $(0)

6-82

After the enter instruction is executed by ifunc(), the stack
will look like this:

HIGH MEMORY

loc caller's stack frame

value of loc callee's stack frame

return address

savedfp ~ fp

saved R3

saved R4

saved R5
~ sp

LOW MEMORY

3.0 UNDEFINED BEHAVIOR
In the following cases, the behavior of the GNX-Version 3 C
compiler is undefined:

6-83

• The value of a floating-point or integer constant is not
representable.

• An arithmetic conversion produces a result that cannot
be represented in the space provided.

• A volatile object is referred to by means of a pointer to a
type without the volatile attribute.

• An arithmetic operation is invalid, such as division by 0,
or produces a result that cannot be represented in the
space provided, such as overflow or underflow.

• A member of a union object is accessed using a member
of a different type.

• An object is assigned to an overlapping object.

• The value of a register variable has been changed be­
tween a setJmp call and a longJmp call.

» z .
0')
o

II)
o
CD • Z
~

Using the GNX-Version 3
C Optimizing Compiler in
the UNIX® Environment

1.0 INTRODUCTION

To optimize the performance of systems built around Na­
tional's Embedded System Processors™ and Series
32000® microprocessors, National has developed a set of
advanced optimizing compilers. Four compilers are avail­
able to support the C, Pascal, FORTRAN 77, and Modula 2
languages. They are offered with Release 3.0 of the GE­
NIXTM Native and Cross-Support (GNXTM) Language Tools.
By generating high-quality code specifically tailored to the
Series 32000 architecture, these compilers allow Series
32000 microprocessors to achieve their full performance
potential.

National's optimizing compilers use advanced optimization
techniques to improve speed or save space. When code
size is critical, the compilers can produce code that is more
compact than code generated by other compilers. When
speed is important, they can produce code that is 30%-
200% faster.

Figure 1-1 shows the compilation process performed by Na­
tional's optimizing compilers. When a program is compiled,
the compiler performs syntactic and semantic verification of
the source code and then translates it into a unique interme­
diate language called IR32.

Next, the IR32 code is passed to a dedicated optimizer. The
optimizer performs four optimization steps to tailor the code
to the processor architecture.

The first step is local optimization. During this step, the IR32
code is partitioned into basic blocks. Each basic block con­
sists of a straight sequence of code. The only branches
allowed in a basic block are at the entry or exit of the se­
quence. Some of the local optimizations performed include
constant folding, value propagation, and the elimination of
redundant assignments.

The second optimization step is flow optimization. During
this step, a flow graph is constructed in which each basic
block of code is represented by a node. Optimizations of the
flow and elimination of dead code are performed during this
step.

National Semiconductor
Application Note 605

The third optimization step is global optimization. During this
step, global code transformations are performed to speed
program execution. Optimizations performed include loop­
invariant code motion and the elimination of fully and partial­
ly redundant expressions.

Register allocation is the fourth optimization step performed
by the optimizer. During this step, variables are placed in
registers instead of main memory. The use of volatile regis­
ters and the allocation of register parameters are also opti­
mized.

After the IR32 code has been optimized by the optimizer, it
is passed to the code generator. The code generator further
optimizes the code by selecting optimal code sequences,
performing peephole optimizations, aligning the code and
data, and performing frame optimizations. It then translates
the optimized IR32 code into assembly code.

Finally, an assembler generates object files from the assem­
bly code, and a linker links the files together for execution.

This application note presents guidelines for using the GNX­
Version 3 C Optimizing Compiler. However, much of the in­
formation presented here also applies to the optimizing
compilers for Pascal, FORTRAN 77, and Modula 2. Topics
presented here include:

• Optimization options for UNIX systems.

• UNIX command-line optimization options.

• Porting existing C programs to the GNX-Version 3 C
Optimizing Compiler.

• Debugging optimized code.

• Additional techniques to improve code quality.

• Time requirements for compilation.

• Specifying a target machine.

Execulabl.
Program

FIGURE 1·1. The Compilation Process

6-84

2.0 OPTIMIZATION OPTIONS

Table 2-1 lists all of the optimization options for the GNX­
Version 3 C Optimizing Compiler. Different combinations of
optimization flags can be used to tailor the optimizations for
specific applications. For example, some applications must
be optimized for speed, while others require smaller code
size.

TABLE 2-1. Optimization Options

UNIX Description

0 Does not invoke the optimizer phase.

c Does not compute floating-point constant
expressions at compile time.

C Performs floating-point constant folding.

F Uses fixed frame references, avoids use of the
FP register or the ENTER/EXIT instruction.

f Compiles for debugging: uses slower FP and
TOS addressing modes.

I Applies all optimizations to all variables
(including global variables).

i Compiles system code: assumes that all global
and static memory variables and pointer
dereferences are volatile.

L Assumes use of standard run-time library.

I Assumes that all routines have corrupting side
effects.

M Performs global code motion optimizations.

m Does not perform global code motion
optimizations.

U Ignores user register declarations.

u Allocates user-declared register variables in
registers as done by pc.

R Performs the register allocation pass of the
optimizer.

r Does not perform the register allocation pass of
the optimizer.

S Optimizes for speed only.

s Does not waste space in favor of speed.

1-9 Maximal memory/swap-space available is 1
through 9 Mbytes (default: 4 Mbytes)

3.0 UNIX COMMAND-LINE OPTIONS

Specifying the -0 option on the command line enables the
optimizer. This results in the fastest possible code based on
the default settings listed in Table 2-2. Specifying the opti­
mizer pass is equivalent to entering:

-OCFILMRSU

In special cases, such as when compiling operating-system
code, it may be necessary to change the optimization set­
tings from their default values. This can be done by specify­
ing optimization flags. Individual optimization flags can be
specified either by using the -F option, or by simply append­
ing them to -0. Table 3-1 suggests situations in which turn­
ing off an optimization option may be desirable.

6-85

Note that specifying the compiler debug option -g on the
command line automatically turns off the optimizer's fixed­
frame flag -OF, unless otherwise specified on the command
line.

Also note that using the compiler target option -KB1 favors
space over speed by saving alignment holes normally pro­
duced when the buswidth is the default (4 bytes).

By not specifying the -0 option on the command line, the
optimizer pass can be omitted. However, even when the
optimizer pass is omitted, some optimizations are performed
by the code generator. As a result, bypassing the optimizer
is equivalent to entering:

-OocfllmrSu

TABLE 3-1. Reasons to Turn off Optimization Options

Option Reason for Turning
off Option

-Of To debug the program or to compile
non portable programs that assume
knowledge of the runtime stack.

-Oi To compile system programs, such as
device drivers, which contain variables
that change or are referenced
spontaneously.

-01 To compile programs which
reimplement standard functions, in a
way which does not agree with the
optimizer's assumptions (i.e., have
side effects).

-Oc To compile programs whose correct
execution depends on the order in
which floating-point expressions are
evaluated.

-Om To compile programs which contain
huge functions, which are a drain on
the system's resources and are time
consuming to optimize.

-Ou To compile programs which rely on the
register allocation scheme of pcc.

-Or To run programs that cease to work
when performing register allocation.

-Os To compile programs which must fit as
tightly as possible in memory.

-00 or use When the optimizer phase is not
-Fflags required and another flag needs to be
without turned off as well. For instance, -OoF

giving -0 turns fixed frame on without running
the optimizer, while -Of turns off fixed
frame but runs the optimizer.

4.0 PORTING EXISTING C PROGRAMS

Almost every program that runs when compiled by other C
compilers, will compile and run under the GNX-Version 3 C
compiler without any changes in the source code. Occa­
sionally, however, a program may operate differently than
before. Other programs may work when compiled without
the optimizer, but will not work when the code is optimized.
Possible causes for these problems are described in the
following sections.

l>
z
~
o
U1

~ r---~
C)
CD
:Z
ct

4.1 Undetected Program Errors
The single most common reason for a nonfunctioning pro­
gram is an undetected program error. These errors become
apparent when a different compiler is used or when the
code is optimized. Many of these errors result from compil­
er-specific code in non-portable programs. The following
lists some of the most common problems:

• Unitialized local variables.

The memory and register allocation algorithms of the GNX­
Version 3 C Optimizing Compiler are very different from
those of other compilers. As a result, a local variable may
end up in a completely different place than expected. Be­
cause of this, there is no guarantee that local variables will
contain zero when the program is started. Therefore, all lo­
cal variables should be initialized from within the program.

• Relying on memory allocation.

If two variables are declared in a certain order there is no
guarantee that they will actually be allocated in that order.
Therefore, a program, which uses address calculations to
proceed from one declared variable to another declared
variable may not work.

• Failing to declare a function.
A char returning function will return a value in the low-order
byte of RO, without affecting the other bytes. A failure to
declare that function where it is used may result in an error.
For instance, assuming that geLcode() is defined to re­
turn a char, then:

main() (
int i;
if ((i = get_code()) = 17)

do_something ();

may never execute do_something, even if geLcode re­
turns 17. This is because the whole register is compared to
17, not just the low-order byte.

A similar problem exists for functions which return short or
float, or those which return a structure.

4.2 Compiling System Code

System code is distinguished from general "high-level"
code by the fact that it is machine-dependent, often con­
tains real-time aspects and interspersed asm statements,
and is often driven by asynchronous events, such as inter­
rupts. Examples of system code are interrupt routines, de­
vice handlers, and kernel code.

To the optimizer, ordinary-looking global variables can actu­
ally be semaphores or memory-mapped I/O that can be af­
fected by external events not under the optimizer's control.
Even so, it is still possible to optimize such code by taking
some precaution and by activating some special optimiza­
tion flags. Some of these issues are discussed in the follow­
ing sections.

• Volatile variables.
Volatile variables are variables that may be used or
changed by asynchronous events, such as I/O or interrupts.
The volatile flag -Oi treats all global variables, static vari­
ables, and pointer dereferences as volatile. This means that

6-86

they are not subject to any optimizations. As a result, the
number and nature of memory references to them will not
change.
Note: Individual identifiers can be declared as volatile by using the volatile

type modifier.

The following examples demonstrate the consequences of
volatile variables and pointer dereferences.

Examples: 1. x = 17; x = 18;

If x is volatile, both of the two assignments to x
are executed even though the first one seems
redundant.

2. x = 9;
Y = x + 1;

If x is volatile, this program segment is not op­
timized to y = 10.

3. *p = b + c;

If *p is volatile, then this results in

movd b, REG
addd c, REG
movd REG, O(p)

and not

movd b, O(p)

addd c, O(p)

The difference stems from the fact that
the second sequence, though faster,
makes two references to O(p) when the
programmer may have wanted only one.

4.3 Timing Assumptions

Optimizing a program changes the timing of various con­
structs. In particular, delay-loops may now run faster than
before.

4.4 Low-Level Interface

• Relying on register order
A program that relies on the fact that a given register vari­
able resides in a specific register must be compiled with the
user-registers flag -Ou turned on. (See Section 6.7.)

• Relying on frame structure.
A program that relies on a specific frame structure must be
compiled with the fixed-frame flag -Of turned off. This in­
cludes, in particular, programs that use the standard
alloca() function that allocates space on the user's frame.

Referring to variables on the frame of a different function
(such as the caller of this function) by complex pointer arith­
metic may also cease to work.

• Using asm statements.
The code inserted by asm statements may cease to work
because the surrounding code produced by the GNX-Ver­
sion 3 C compiler will normally differ from another compil­
er's code. (See Section 6.6.)

4.5 Using Non-Standard Library Routines

The GNX-Version 3 C compiler assumes by default that all
the C standard mathematical library routines listed in Table
4-1 are available as a standard run-time library. These li­
brary routines have absolutely no access to global vari­
ables. Therefore, calls to these routines are specially recog­
nized and marked as calls that do not disturb optimizations

of global variables. This is normally a safe assumption since
it is unusual for a program to redefine (and thereby hide)
these standard routines. In addition, the functions abs, tabs,
and ffabs actually compile into in-line code and do not gen­
erate a procedure call at all.

The compiler generates a warning message whenever it
compiles a program which does redefine one of these rou­
tines. In this case, the user must decide whether the rede­
fined behavior of the routine is consistent with the assump­
tion of the optimizer that it will not affect the optimization of
global variables. If it does affect global-variable optimiza­
tions, the user has the choice of:

• renaming the redefined routine (so that calls to it are not
specially recognized), or

• using the no-standard-libraries flag -0 -FI to turn off the
recognition of all library routines.

TABLE 4-1. Recognized Library Routines

abs erf fceil fhypot fsinh jn sqrt
acos erfc fcos flog fsqrt Idexp tan
asin exp fcosh flog10 ftan log tanh
atan fabs ferf fmod ftanh log10 yO
atan2 facos ferfc fmodf gamma modf y1
cabs fasin fexp fpow hypot pow yn
ceil fatan ffabs frexp jO sin
cos fatan2 ffmod fsin j1 sinh
cosh fcabs ffmodf

4.6 Reliance on Naive Algebraic Relations

The optimizer performs floating-point constant folding. That
is, it rearranges expressions to evaluate constant subex­
pressions at compile time. As a result, some naive algebraic
expressions are folded away.

Example: do (
a = a*2;

while «a + 1.0) - 1.0 == a) ;
is optimized to

do (
a = a*2;

while (1);
which was not the programmer's intention.

To maintain the program and keep the programmer's origi­
nal intention, the programmer should use the nofloat-fold
flag -Oc to suppress the folding optimization.

5.0 DEBUGGING OF OPTIMIZED CODE

Most of the time, the user should not need to debug an
optimized program. The majority of all bugs can be found
before optimization is turned on. However, there are some
very rare bugs which make their appearance only when the
optimizer is introduced. These bugs are difficult to find with­
out a debugger.

The problem is that code motion optimizations and register
allocation make most of the symbolic debugging information
generated by the compiler obsolete. With this in mind, spe­
cial care must be used when reviewing assembly code gen­
erated by the compiler. The following "rules of thumb" can

6-87

be employed when using symbolic debug information to­
gether with the optimizer:

• Line number information is correct, but the code per­
formed at the specified lines may be different from non­
optimized code. This is a result of various code motion
optimizations, such as moving loop invariant expressions
out of loops.

• Symbolic information for global variables is normally cor­
rect, since global variables are rarely put in registers. In
particular, if a global variable is not referenced within the
current procedure, the value in memory is valid and the
symbolic information is correct.

• Symbolic information for parameters is correct except in
the following two cases:

1. When a parameter is allocated a register and there is
an assignment to that parameter, the symbolic infor­
mation is incorrect.

2. When a parameter of a local procedure is passed in a
register as a result of an optimization, the symbolic
information is incorrect. In this case, the symbolic in­
formation of all other paramaters is incorrect because
their offset within the procedure's frame has been
changed.

• Symbolic information of local variables is likely to be in­
correct because most of the local variables are put in
registers; the rest of the local variables are reordered
into new frame locations.

• Note that if symbolic information is requested, then
slightly different code is generated. This happens be­
cause the fixed-frame flag -Of is automatically disabled
when the debug qualifier -g is used. Specifically, the EN­
TER instruction is always generated at the entry of pro­
cedures, and frame variables are referenced by FP-rela­
tive rather than SP-relative addressing mode. Without
disabling this flag, symbolic debugging is almost impossi­
ble.

It is helpful to have an assembly listing of the program in
question which has been compiled with the -S and the -n
qualifiers. Such a listing contains comments from the opti­
mizer regarding its actions.

6.0 ADDITIONAL GUIDELINES FOR IMPROVING CODE
QUALITY

The following programming guidelines take advantage of
the GNX-Version 3 C compiler optimizations to further im­
prove the quality of compiled code.

6.1 Static Functions

It is not only good software engineering practice, but also
good optimization practice to declare all functions not called
from outside the file as "static". This allows the optimizer to
use a more efficient internal calling sequence to call such
routines. This internal calling sequence uses the BSR in­
struction iJlstead of the JSR or CXP instruction and also
passes parameters in registers rather than on the stack.
Note: If a program consists of a single file, and compilation and linking is

indicated in one step, then all functions within that file are automati­
cally considered as static by the compiler.

6.2 Integer Variables

Many operators, including index calculations, are defined in
C to operate on integers and imply a conversion when given

>
Z a,
o
U1

non-integer operands. Therefore, to avoid frequent run-time
conversions from char or short to Int, integer variables
should be defined as type Int and not short or char. This is
particularly important for integer variables that serve as
array indices.

6_3 Local Variables

Since local variables have a better chance of being placed
in registers, they should be used as much as possible, par­
ticularly when they are employed as loop counters or array
indices.

6_4 Floating-Point Computations

In programs which do not require double-precision floating­
point computations, a significant run-time improvement can
be achieved by using the following guidelines:

• All functions should be defined as returning type float,
not double.

• All constants should be defined to be float using the f
suffix or cast expressions explicitly to float.

• The single-precision version of the standard floating­
point routines should be used. For example, ffabs()
should be used instead of abs(), fsin() instead of sin(),
etc.

6.5 Using Pointers

6.5.1 Terminology

The following terms are used throughout this section.

• Potential definition
A statement potentially defines a memory location if the
execution of the statement may change the contents of
that memory location.

Example: A call to a function potentially defines all glob­
al variables because their values may change
during the execution of that function. Imagine
the following code fragment:

extern int *p, *q:

•
•

*p = 8;

•
•

The assignment statement potentially defines
the memory location *q because q may point
to the same memory location as p. The loca­
tion *p is defined (Le., given a new value) by
the assignment. Location *q may be changed;
therefore, it has the potential definition.

• Potential use
A statement· "potentially uses" a memory location if it
may reference (read from) that memory location.

• Address taken variable
A vaiable is considered "address taken" if th~ address
operator (&) is applied to it within the file or if the variable
is a global variable that is visible by other files.

6-88

• Voltatile/nonvolatile registers
By convention, the registers are divided into volatile reg­
isters (registers RO through R2 and FO through F3) and
nonvolatile registers (registers R3 through R7 and F4
through F7). Volatile registers may be changed by a pro­
cedure call, whereas nonvolatile registers are guaran­
teed to retain their value across procedure calls. There­
fore, all nonvolatile registers used within a procedure
must be saved at the entry and restored at the exit of that
procedure.

6_5.2 Potential Difference Assumptions

The optimizer does not keep track of the contents of point­
ers. Therefore, it cannot tell, for any given location in the
program, where each pointer is pointing. Since a pointer can
point to any memory location, the optimizer makes the fol­
lowing assumptions concerning pointer usage:

1. Every assignment to a pointer dereference (the location
pointed to by a pointer) potentially defines all other point­
er dereferences and all address-taken variables.

2. Every use of a pointer dereference (Le., a value read
through a pointer) potentially uses all other pointer dere­
ferences and all address-taken variables. This is be­
cause any accessible memory location is potentially
read.

3. Every function call potentially defines and potentially
uses all pointer de references, all address taken-vari­
ables, and all global variables. Therefore, using pointers,
the function's code may read and/or write any accessi­
ble memory location. Of course, any global variable may
be used and/or changed.

When working with pointers, these assumptions should be
considered. For example, using arrays is preferable to using
pointers. The following example illustrates this point. As­
sume a is an array of char and p is a pointer to char. The
two program segments perform the same function.

Example: program segment 1

for (i = 0 ; i != 10 ; i++)
a[i] = g1oba1_var;
a[i+1] = globa1_var + 1;

program segment 2
for (p = &a[O] ; p != &a[10] ; P++)

*p = globa1_var;
* (p+1) = g10baLvar + 1;

In program segment 1, global_var can be put in a register.
In program segment 2, however, p may point to global_var.
The first statement (*p = global_var) potentially defines
global_var; therefore, it cannot be put in a register.

6.5.3 Common Subexpresslons

Another aspect of this same issue is that of common
subexpressions. The optimizer normally recognizes multiple

uses of the same expression and saves that expression in a
temporary variable (usually a register). This cannot be per­
formed when worst-case assumptions are made about po­
tential definition of expressions (as described above). Ex­
pressions that contain pointer dereferences or global vari­
ables are vulnerable. Therefore, if many uses of the same
expression span across procedure calls, it is advisable to
save them in local variables. Consider the example:

fo01 (p -+ x);

fo02(p -+ x);

Here, the expression p-+ x cannot be recognized by the
optimizer as a common subexpression because fo01 () may
change its value. In this case, the following hand optimiza­
tion may help:

t = P -+ x; 1* t is local, therefore • /

fo01 (t); I*not potentially defined by fo01 () • /

fo02(t); I*so its value is still valid for fo02() • /

The programmer can make this optimization by using the
knowledge that p -+ x is not changed by fo01 (). The opti­
mizer cannot do the same because it assumes the worst
case.

6.6 asm Statements

The keyword asm is recognized to enable insertion of as­
sembly instructions directly into the assembly file generated.
The syntax for its use is:

asm(constant-string);

where constant-string is a double-quoted character string.

Extreme care should be taken if asm statements are used.
The following guidelines should be observed:

• The optimizer is not aware of the contents of an asm
statement. Therefore, it assumes that an asm statement
potentially defines and potentially uses all of the vari­
ables (including local variables). This means that no
common subexpressions can be recognized across an
asm statement.

• In order to allow an asm statement to use a specific
register (e.g., asm ("save [rO,r1 ,r2]");), the optimizer de­
allocates all the registers.

• The compiler usually generates code which differs from
the code generated by other compilers. This applies par­
ticularly to allocation of local variables and parameters of
static procedures.

• The code surrounding the asm statement may change as
a result of changes in other parts of the procedure.

• An asm statement that contains a branch instruction or a
branch target (label) may cause the optimizer to gener­
ate wrong code.

Note: For these reasons, looking at the generated assembly code is strong·
Iy recommended before and after inserting asm statements into a
program.

6.7 Register Allocation

The C language is unique in that it allows the programmer to
specify (or rather, recommend) that some variables be allo­
cated to machine registers. The optimizer normally ignores
these recommendations, since in most cases the optimiz­
er's own register allocation algorithms are as good as or
superior to the programmer's recommendations. There are
several reasons for this:

6-89

• The user can use a register for one variable only. The
optimizer, however, allocates a register along live ranges
of variables, making it possible for several variables with
non-conflicting live ranges to use the same register.

• The user can declare as a register only local variables
whose addresses are not taken; whereas, the optimizer
allocates global variables as well as variables whose ad­
dresses are taken (where possible).

• The user can allocate variables in safe registers only.
Therefore, every register used must be saved/restored
at the entry/exit of the procedure. The optimizer allo­
cates variables that do not live across procedure calls in
unsafe registers. Therefore, these registers need not be
saved/restored.

• Because of code motion optimizations, the number of
references of variables may be changed. Therefore, the
choice of register variables may not be optimal. This is
illustrated in the following example:

Example: int j ;
register int i;
i = j;
if (i == 3 II i == 4 II i == 5)

In this example, undesired effects result if optimized with the
user-registers flag -Ou. The reason is that j is copy-propa­
gated and replaces all occurences of i. As a result, i occu­
pies a register but is not used. If the ordinary register alloca­
tion of the optimizer is not invoked, or if there are no regis­
ters left, j will be placed in memory.

6.8 setjmp()

Calls to setjmp() are specially recognized by the compiler.
Procedures that contain calls to setjmp() are only partially
optimized because procedure calls may end up in a call to
longjmp(). Code motion optimizations are performed only
within linear code sequences (those sequences not contain­
ing branches or branch targets). Register allocation is limit­
ed to optimizer-generated temporary variables, register-de­
clared variables, and variables whose live ranges do not
contain function calls.

6.9 Optimizing for Space

The default behavior of the GNX-Version 3 C compiler is to
optimize for optimal speed. However, there are several
things that can be done to improve code density:

• Optimize with the no-speed-over-space flag -Os turned
on.

• Squeeze the data area by using -KB1 for smaller align-
ment between variables.

• Squeeze all record definitions by using the -J1 switch.

7.0 COMPILATION TIME REQUIREMENTS

Using the optimizer slows down the compilation process.
Therefore, it is recommended that the optimizer be used
only on final production versions of a program. The amounts
of resources (time and memory) vary strongly from program
to program and actually depend on the size of the routines
in the compiled program file. The larger a routine, the more
time and memory needed to optimize it. This behavior is

l>
Z a,
o
en

~ ,---,
o
CD
Z
c(

more or less quadratic. That is, the optimizer needs about
four times the resources to optimize a routine of 1000 lines
than to optimize a routine of 500 lines.

If time or memory requirements are unacceptable and rou­
tines cannot be reduced to a reasonable size of about 500
lines, it is possible to turn off some optimizations using the
no-code-motion -Om and/or the no-register-allocation -Or
flags.

On UNIX host systems, an optimization flag is available to
set an upper limit on the memory requirements of the opti­
mizer to a certain number of megabytes. This can be useful
on host systems with a limited swap-space configuration. If
necessary, the optimizer then skips certain optimizations on
huge routines only, in order to stay under the chosen limit. In
such cases, an appropriate message is given. This flag is
only necessary when compiling modules with extremely
large procedures (over 500 lines in a single procedure), a
case when the optimizer may need a larger swap space
than the one currently available. For example, the option:

-02
limits the optimizer to 2 megabytes of swap space.

An alternate method for setting an upper limit on memory
requirements is to use the environment variable
AVAIL-SWAP. This sets the maximum swap space re­
quirement of the optimizer in megabyte units. This environ­
ment variable should be set to the number of megabytes to
be used. The user can choose from 1 Mbyte to 16 Mbytes. If
the user's choice is outside of these parameters, the default
value of 4 Mbytes is chosen. For example,

setenv AVAIL_SWAP 2
makes 2 Mbytes of swap space the default. This can be
overridden using the -0 number option previously described.

6-90

8.0 TARGET MACHINE SPECIFICATION

The GNX-Version 3 C Optimizing Compiler provides a way
to tune the code for a specific target machine by specifying
its CPU, FPU, and buswidth. The values for the CPU and
FPU can either be the complete device name (e.g.,
NS32332 or NS32081) or the last three digits of the device
name (e.g., 332 or 081). The buswidth is specified in bytes.
This tuning is performed by specifying compiler target option
-K on the command line. Table 8-1 lists the flags and the
possible settings.

Example: The following example specifies an NS32332
CPU, an NS32081 FPU, and a buswidth of 4
bytes.

cc -KC332 -KF081 -KB4 temp.c

or for cross-support,

nmcc -KC332 -KF081 -KB4 temp.c

TABLE 8·1. Target Selection Parameters

CPU (C) FPU (F) Buswldth (B)

[NS32] 008 [NS32]081 1
[NS32]016 [NS32]381 2
[NS32]cg16 [NS32]580 4
[NS32]032
[NS32]332
[NS32]532

Using the GNX-Version 3
C Optimizing Compiler in
the VMS Environment

1.0 INTRODUCTION

To optimize the performance of systems built around Na­
tional's Embedded System Processor™ and Series 32000@
microprocessors, National has developed a set of advanced
optimizing compilers. Four compilers are available to sup­
port the C, Pascal, FORTRAN 77, and Modula 2 high-level
languages. They are offered with Release 3.0 of the GE­
NIXTM Native and Cross-Support (GNXTM) Language Tools.
By generating high-quality code specifically tailored to the
Series 32000 architecture, these compilers allow Series
32000 microprocessors to achieve their full performance
potential.

National's optimizing compilers use advanced optimization
techniques to improve speed or save space. When code
size is critical, the compilers can produce code that is more
compact than code generated by other compilers. When
speed is important, they can produce code that is 30%-
200% faster.

Figure 1-1 shows the compilation process performed by Na­
tional's optimizing compilers. When a program is compiled,
the compiler performs syntactic and semantic verification of
the source code and then translates it into a unique interme­
diate language called IR32.

Next, the IR32 code is passed to a dedicated optimizer. The
optimizer performs four optimization steps to tailor the code
to the processor architecture.

The first step is local optimization. During this step, the IR32
code is partitioned into basic blocks. Each basic block con­
sists of a straight sequence of code. The only branches
allowed in a basic block are at the entry or exit of the se­
quence. Some of the local optimizations performed include
constant folding, value propagation, and the elimination of
redundant assignments.

The second optimization step is flow optimization. During
this step, a flow graph is constructed in which each basic

National Semiconductor
Application Note 606

block of code is represented by a node. Optimizations of the
flow and elimination of dead code are performed during this
step.

The third optimization step is global optimization. During this
step, global code transformations are performed to speed
program execution. Optimizations performed include loop­
invariant code motion and the elimination of fully and partial­
ly redundant expressions.

Register allocation is the fourth optimization step performed
by the optimizer. During this step, variables are placed in
registers instead of main memory. The use of volatile regis­
ters and the allocation of register parameters are also opti­
mized.

After the IR32 code has been optimized by the optimizer, it
is passed to the code generator. The code generator further
optimizes the code by selecting optimal code sequences,
performing peephole optimizations, aligning the code and
data, and performing frame optimizations. It then translates
the optimized IR32 code into assembly code.

Finally, an assembler generates object files from the assem­
bly code, and a linker links the files together for execution.

This application note presents guidelines for using the GNX­
Version 3 C Optimizing Compiler. However, much of the in­
formation presented here also applies to the optimizing
compilers for Pascal, FORTRAN 77, and Modula 2. Topics
presented here include:

• Optimization options for VMS systems.

• VMS command-line optimization options.

• Porting existing C programs to the GNX-Version 3 C
Optimizing Compiler.

• Debugging optimized code.

• Additional techniques to improve code quality.

• TIme requirements for compilation.

• Specifying a target machine.

Executable
Progl1lm

FIGURE 1-1. The Compilation Process

6-91

:t­
Z . en
o
en

CD o
CD .
z
<C

2.0 OPTIMIZATION OPTIONS

Table 2-1 lists all of the optimization options for the GNX­
Version 3 C Optimizing Compiler. Different combinations of
optimization flags can be used to tailor the optimizations for
specific applications. For example, some applications must
be optimized for speed, while others require smaller code
size.

3.0 VMS COMMAND-LINE OPTIONS

The fastest possible code is generated by specifying 10PTI­
MIZE on the command line. This is equivalent to entering:

10PTIMIZE = (FIXED_FRAME, COD~MOTION,

REGISTER....ALLOCATION, FLOAT_FOLD,

SPEED_OVER_SPACE, NOVOLATILE,

STANDARD_LIBRARIES, NOUSER_REGISTERS)

In special cases, such as when compiling operating-system
code, it may be necessary to change some of the optimiza­
tion flags from their default settings. Table 3-1 suggests sit­
uations in which turning off an optimization option may be
desirable.

Note that specifying the compiler debug option (/DEBUG)
on the command line automatically turns off the optimizer
fixed-frame option (/FIXED_FRAME) unless otherwise
specified by the user.

Also note that using the compiler option IT ARGET =
(BUSWIDTH = 1) favors space over speed by saving align­
ment holes normally produced when the buswidth is the de­
fault (n = 4).

Even when the optimizer pass is omitted, some optimiza­
tions are performed by the code generator. Therefore, spec­
ifying INOOPTIMIZE (the default for this qualifier) is equiva­
lent to entering:

10PTIMIZE = (NOOPT, NOFIXED_FRAME,

NOCOD~MOTION, NOREGISTER....ALLOCATION,

NOFLOAT _FOLD, SPEED_OVER_SPACE,

NOVOLATILE, NOSTANDARD_LlBRARIES,

USE~REGISTERS)

4.0 PORTING EXISTING C PROGRAMS

Almost every program that runs when compiled by other C
compilers, will compile and run under the GNX-Version 3 C
compiler without any changes in the source code. Occa­
sionally, however, a program may operate differently than

TABLE 2-1. Optimization Options

VMS Description

NOOPT does not invoke the optimizer phase.

NOFLOAT FOLD does not compute floating-point constant expressions at compile time.

FLOAT FOLD performs floating-point constant folding.

FIXED_FRAME uses fixed frame references, avoids use of the FP register or the ENTER/EXIT
instruction.

NOFIXED_FRAME compiles for debugging: uses slower FP and TOS addressing modes.

NOVOLATILE applies all optimizations to all variables (including global variables).

VOLATILE compiles system code: assumes that all global and static memory variables and pointer
dereferences are volatile.

STANDARD_LIBRARIES assumes use of standard run-time library.

NO STANDARD_LIBRARIES assumes that all routines have corrupting side effects.

COD~MOTION performs global code motion optimizations.

NOCOD~MOTION does not perform global code motion optimizations.

NOUSE~REGISTERS ignores user register declarations.

USER_REGISTERS allocates user-declared register variables in registers as done by pc.

REGISTE~LLOCATION performs the register allocation pass of the optimizer.

NOREGISTE~LLOCATION does not perform the register allocation pass of the optimizer.

SPEED_OVER_SPACE optimizes for speed only.

NOSPEED_OVER_SPACE does not waste space in favor of speed.

6-92

TABLE 3-1. Reasons to Turn Off Optimization Options

VMS Description

NOFIXED_FRAME to debug the program or to compile non-portable programs that assume knowledge of
the run-time stack.

VOLATILE to compile system programs, such as device drivers, which contain variables that change
or are referenced spontaneously.

NO_STANDARD_LlBRARIES to compile programs which reimplement standard functions, in a way which does not
agree with the optimizers assumptions (i.e., have side effects).

NOFLOAT_FOLD to compile programs whose correct execution depends on the order in which floating-
point expressions are evaluated.

NOCODLMOTION to compile programs which contain huge functions, which are a drain on the system's
resources and are time consuming to optimiz~.

USER_REGISTERS to compile programs which rely on the register allocation scheme of pcc.

NOREGISTEFLALLOCATION to run programs that cease to work when performing register allocation.

NOSPEED_OVER_SPACE to compile programs which must fit as tightly as possible in memory.

NOOPT when the optimizer phase is not required and another flag needs to be turned off as well.

before. Other programs may work when compiled without
the optimizer, but will not work when the code is optimized.
Possible causes for these problems are described in the
following sections.

4.1 Undetected Program Errors

The single most common reason for a nonfunctioning pro­
gram is an undetected program error. These errors become
apparent when a different compiler is used or when the
code is optimized. Many of these errors result from compil­
er-specific code in non-portable programs. The following
lists some of the most common problems:

• Uninitialized local variables.

The memory and register allocation algorithms of the GNX­
Version 3 C Optimizing Compiler are very different from
those of other compilers. As a result, a local variable may
end up in a completely different place than expected. Be­
cause of this, there is no guarantee that local variables will
contain zero when the program is started. Therefore, all lo­
cal variables should be initialized from within the program.

• Relying on memory allocation.

If two variables are declared in a certain order there is no
guarantee that they will actually be allocated in that order.
Therefore, a program, which uses address calculations to
proceed from one declared variable to another declared
variable may not work.

• Failing to declare a function.

A char returning function will return a value in the low-order
byte of RO, without affecting the other bytes. A failure to
declare that function where it is used may result in an error.
For instance, assuming that geLcode () is defined to re­
turn a char, then:

main() {
int i;
if ((i = get_code(» = 17)

do_something();

6-93

may never execute do_something, even if geLcode re­
turns 17. This is because the whole register is compared to
17, not just the low·order byte.

A similar problem exists for functions which return short or
float, or those which return a structure.

4.2 Compiling System Code

System code is distinguished from general "high-level"
code by the fact that it is machine-dependent, often con­
tains real-time aspects and interspersed asm statements,
and is often driven by asynchronous events, such as inter­
rupts. Examples of system code are interrupt routines, de­
vice handlers, and kernel code.

To the optimizer, ordinary-looking global variables can actu­
ally be semaphores or memory-mapped 1/0 that can be af­
fected by external events not under the optimizer's control.
Even so, it is still possible to optimize such code by taking
some precaution and by activating some special optimiza­
tion flags. Some of these issues are discussed in the follow­
ing sections.

• Volatile variables

Volatile variables are variables that may be used or
changed by asynchronous events, such as lID or interrupts.
The !VOLATILE flag treats all global variables, static vari­
ables, and pointer dereferences as volatile. This means that
they are not subject to any optimizations. As a result, the
number and nature of memory references to them will not
change. (Note: Individual identifiers can be declared as vol­
atile by using the volatile type modifier.) The following exam­
ples demonstrate the consequences of volatile variables
and pointer dereferences.

> z m
o
0)

•

Examples: 1. x = 17; x = 18;

If x is volatile, both of the two assignments to x
are executed even though the first one seems
redundant.

2. x = 9;

Y = x + 1;

If x is volatile, this program segment is not op­
timized to y = 10.

3. *p = b + c;

If *p is volatile, then this results in

movd b, REG

addd c, REG

movd REG, O(p)

and not

movd b, O(p)

addd c, O(p)

The difference stems from the fact that
the second sequence, though faster,
makes two references to O(p) when the
programmer may have wanted only one.

4.3 Timing Assumptions

Optimizing a program changes the timing of various con­
structs. In particular, delay-loops may now run faster than
before.

4.4 Low-Level Interface

• Relying on register order

A program that relies on the fact that a given register vari­
able resides in a specific register must be compiled with the
IUSER_REGISTERS flag turned on. (See section 6.7.)

• Relying on frame structure

A program that relies on a specific frame structure must be
compiled with the IFIXED_FRAME flag turned off. This in­
cludes, in particular, programs that use the standard
alloca() function that allocates space on the user's frame.

Referring to variables on the frame of a different function
(such as the caller of this function) by complex pointer arith­
metic may also cease to work.

• Using asm statements

The code inserted by asm statements may cease to work
because the surrounding code produced by the GNX-Ver­
sion 3 C compiler will normally differ from another compil­
er's code. (See section 6.6.)

4.5 Using Non-Standard Library Routines

The GNX-Version 3 C compiler assumes by default that all
the C standard mathematical library routines listed in Table
4-1 are available as a standard run-time library. These li­
brary routines have absolutely no access to global vari­
ables. Therefore, calls to these routines are specially recog­
nized and marked as calls that do not disturb optimizations
of global variables. This is normally a safe assumption since
it is unusual for a program to redefine (and thereby hide)
these standard routines. In addition, the functions abs, fabs,
and ffabs actually compile into in-line code and do not gen­
erate a procedure call at all.

The compiler generates a warning message whenever it
compiles a program which does redefine one of these rou­
tines. In this case, the user must decide whether the rede­
fined behavior of the routine is consistent with the assump-

6-94

tion of the optimizer that it will not affect the optimization of
global variables. If it does affect global-variable optimiza­
tions, the user has the choice of:

• renaming the redefined routine (so that calls to it are not
specially recognized), or

• using the INOSTANDARD_LlBRARY flag to turn off the
recognition of all library routines.

TABLE 4-1. Recognized Library Routines

abs ert fceil fhypot fsinh jn sqrt
acos ertc fcos flog fsqrt Idexp tan
asin exp fcosh flog10 ftan log tanh
atan fabs fert fmod ftanh log10 yO
atan2 facos fertc fmodf gamma modf y1
cabs fasin fexp fpow hypot pow yn
ceil fatan ffabs frexp jO sin
cos fatan2 ffmod fsin j1 sinh
cosh fcabs ffmodf

4.6 Reliance on Naive Algebraic Relations

The optimizer pertorms floating-point constant folding. That
is, it rearranges expressions to evaluate constant subex­
pressions at compile time. As a result, some naive algebraic
expressions are folded away.

Example: do {
a = a*2;

while ((a + 1.0) - 1.0 = a) ;
is optimized to

do {
a = a*2;

while (1);
which was not the programmer's intention.

To maintain the program and keep the programmer's
original intention, the programmer should use the
INOFLOAT_FOLD flag to suppress the folding optimiza­
tion.

5.0 DEBUGGING OF OPTIMIZED CODE

Most of the time, the user should not need to debug an
optimized program. The majority of all bugs can be found
before optimization is turned on. However, there are some
very rare bugs which make their appearance only when the
optimizer is introduced. These bugs are difficult to find with­
out a debugger.

The problem is that code motion optimizations and register
allocation make most of the symbolic debugging information
generated by the compiler obsolete. With this in mind, spe­
cial care must be used when reviewing assembly code gen­
erated by the compiler. The following "rules of thumb" can
be employed when using symbolic debug information to­
gether with the optimizer:

• Line number information is correct, but the code per­
formed at the specified lines may be different from non­
optimized code. This is a result of various code motion
optimizations, such as moving loop invariant expressions
out of loops.

• Symbolic information for global variables is normally cor­
rect, since global variables are rarely put in registers. In
particular, if a global variable is not referenced within the
current procedure, the value in memory is valid and the
symbolic information is correct.

• Symbolic information for parameters is correct except in
the following two cases:

1. When a parameter is allocated a register and there is
an assignment to that parameter, the symbolic infor­
mation is incorrect.

2. When a parameter of a local procedure is passed in a
register as a result of an optimization, the symbolic in­
formation is incorrect. In this case, the symbolic infor­
mation of all other parameters is incorrect because
their offset within the procedure's frame has been
changed.

• Symbolic information of local variables is likely to be in­
correct because most of the local variables are put in
registers; the rest of the local variables are reordered
into new frame locations.

• Note that if symbolic information is requested, then
slightly different code is generated. This happens be­
cause the /FIXED_FRAME optimizing flag is automati­
cally disabled when the /DEBUG qualifier is used. Spe­
cifically, the ENTER instruction is always generated at
the entry of procedures, and frame variables are refer­
enced by FP-relative rather than SP-relative addressing
mode. Without disabling this flag, symbolic debugging is
almost impossible.

It is helpful to have an assembly listing of the program in
question which has been compiled with the / ASM and the
/ANNOTATE qualifiers. Such a listing contains comments
from the optimizer regarding its actions.

6.0 ADDITIONAL GUIDELINES FOR
IMPROVING CODE QUALITY

The following programming guidelines take advantage of
the GNX-Version 3 C compiler optimizations to further im­
prove the quality of compiled code.

6.1 Static Functions

It is not only good software engineering practice, but also
good optimization practice to declare all functions not called
from outside the file as "static." This allows the optimizer to
use a more efficient internal calling sequence to call such
routines. This internal calling sequence uses the JSR in­
struction instead of the HSR or CXP instruction and also
passes parameters in registers rather than on the stack.
Note: If a program consists of a single file, and compilation and linking is

indicated in one step, then all functions within that file are automati­
cally considered as static by the compiler.

6.2 Integer Variables

Many operators, including index calculations, are defined in
C to operate on integers and imply a conversion when given
non-integer operands. Therefore, to avoid frequent run-time
conversions from char or short to Int, integer variables
should be defined as type int and not short or char. This is
particularly important for integer variables that serve as
array indices.

6.3 Local Variables

Since local variables have a better chance of being placed
in registers, they should be used as much as possible, par­
ticularly when they are employed as loop counters or array
indices.

6-95

6.4 Floating-Point Computations

In programs which do not require double-precision floating­
point computations, a significant run-time improvement can
be achieved by using the following guidelines:

• All functions should be defined as returning type, float
not double.

• All constants should be defined to be float using the f
suffix or cast expressions explicitly to float.

• The single-precision version of the standard floating­
point routines should be used. For example, ffabs()
should be used instead of abs(), fsin() instead of
sine), etc.

6.5 Using Pointers

6.5.1 Terminology

The following terms are used throughout this section.

• Potential definition

A statement potentially defines a memory location if the ex­
ecution of the statement may change the contents of that
memory location.

Example: A call to a function potentially defines all global
variables because their values may change dur­
ing the execution of that function. Imagine the
following code fragment:

extern int *p, *q;

*p = 8;

The assignment statement potentially defines the
memory location *q because q may point to the
same memory location as p. The location *p is
defined (Le., given a new value) by the assign­
ment. Location 0q may be changed; therefore, it
has the potential definition.

• Potential use_

A statement "potentially uses" a memory location if it may
reference (read from) that memory location.

• Address taken variable.

A variable is considered "address taken" if the address op­
erator (&) is applied to it within the file or if the variable is a
global variable that is visible by other files.

• Volatile/nonvolatile registers.

By convention, the registers are divided into volatile regis­
ters (registers RO through R2 and FO through F3) and non­
volatile registers (registers R3 through R7 and F4 through
F7). Volatile registers may be changed by a procedure call,
whereas nonvolatile registers are guaranteed to retain their
value across procedure calls. Therefore, all nonvolatile reg­
isters used within a procedure must be saved at the entry
and restored at the exit of that procedure.

l>
Z . en
o
en

6.5.2 Potential Difference Assumptions

The optimizer does not keep track of the contents of point­
ers. Therefore, it cannot tell, for any given location in the
program, where each pointer is pointing. Since a pointer can
point to any memory location, the optimizer makes the fol­
lowing assumptions concerning pointer usage:

1. Every assignment to a pointer dereference (the location
pointed to by a pointer) potentially defines all other point­
er dereferences and all address-taken variables.

2. Every use of a pointer dereference (Le., a value read
through a pointer) potentially uses all other pointer dere­
ferences and all address-taken variables. This is because
any accessible memory location is potentially read.

3. Every function call potentially defines and potentially
uses all pointer dereferences, all address taken-vari­
ables, and all global variables. Therefore, using pointers,
the function's code may read and/or write any accessible
memory location. Of course, any global variable may be
used and/or changed.

When working with pointers, these assumptions should be
considered. For example, using arrays is preferable to using
pointers. The following example illustrates this point. As­
sume a is an array of char and p is a pOinter to char. The
two program segments perform the same function.
Example: program segment 1

for (i = 0; i != 10; i++){
a[i] = globa1_var;
a[i+1] = globa1_var + 1;

program segment 2
for (p = &a[O]; p != &a[10]; p++) I

*p = globa1_var;
*(p+1) = globa1_var + 1;

In program segment 1, global_var can be put in a register.
In program segment 2, however, p may point to global_var.
The first statement (*p = global_var) potentially defines
global_var; therefore, it cannot be put in a register.

6.5.3 Common Subexpresslons

Another aspect of this same issue is that of common subex­
pressions. The optimizer normally recognizes multiple uses
of the same expression and saves that expression in a tem­
porary variable (usually a register). This cannot be per­
formed when worst-case assumptions are made about po­
tential definition of expressions (as described above). Ex­
pressions that contain pointer dereferences or global vari­
ables are vulnerable. Therefore, if many uses of the same
expression span across procedure calls, it is advisable to
save them in local variables. Consider the example:

fo01(p ~ x);
fo02(p ~ x);

Here, the expression p ~ x cannot be recognized by the
optimizer as a common subexpression because fo01 ()
may change its value. In this case, the following hand opti­
mization may help:

t = P ~ x; /* t is local, therefore * /

fo01(t); /* not potentially defined by fo01() */

fo02(t); /* so its value is still valid for fo02() * /

The programmer can make this optimization by using the
knowledge that p ~ x is not changed by fo01 (). The
optimizer cannot do the same because it assumes the worst
case.

6-96

6.6 asm Statements

The keyword asm is recognized to enable insertion of as­
sembly instructions directly into the assembly file generated.
The syntax for its use is:

asm (constant-string);

where constant-string is a double-quoted character string.

Extreme care should be taken if asm statements are used.
The following guidelines should be observed:

• The optimizer is not aware of the contents of an asm
statement. Therefore, it assumes that an asm statement
potentially defines and potentially uses all of the vari­
ables (including local variables). This means that no
common subexpressions can be recognized across an
asm statement.

• In order to allow an asm statement to use a specific
register (e.g., asm ("save [rO, r1, r2]");), the optimizer
de-allocates all the registers.

• The compiler usually generates code which differs from
the code generated by other compilers. This applies par­
ticularly to allocation of local variables and parameters of
static procedures.

• The code surrounding the asm statement may change as
a result of changes in other parts of the procedure.

• An asm statement that contains a branch instruction or a
branch target (label) may cause the optimizer to gener­
ate wrong code.

Note: For these reasons, looking at the generated assembly code is strong·
Iy recommended before and aiter inserting 8sm statements into a
program.

6.7 Register Allocation

The C language is unique in that it allows the programmer to
specify (or rather, recommend) that some variables be allo­
cated to machine registers. The optimizer normally ignores
these recommendations, since in most cases the optimiz­
er's own register allocation algorithms are as good as or
superior to the programmer's recommendations. There are
several reasons for this:

• The user can use a register for one variable only. The
optimizer, however, allocates a register along live ranges
of variables, making it possible for several variables with
non-conflicting live ranges to use the same register.

• The user can declare as a register only local variables
whose addresses are not taken; whereas, the optimizer
allocates global variables as well as variables whose ad­
dresses are taken (where possible).

• The user can allocate variables in safe registers only.
Therefore, every register used has to be saved/restored
at the entry/exit of the procedure. The optimizer allo­
cates variables that do not live across procedure calls in
unsafe registers. Therefore, these registers need not be
saved/restored.

• Because of code motion optimizations, the number of
references of variables may be changed. Therefore, the
choice of register variables may not be optimal. This is
illustrated in the following example:

Example: int j;
register int i;
i = j;
if (i == 3 II i == 4 II i -- 5)

~---.~

In this example, undesired effects result if optimized with the
IUSER_REGISTERS flag. The reason is that j is copy­
propagated and replaces all occurrences of i. As a result, i
occupies a register but is not used. If the ordinary register
allocation of the optimizer is not invoked, or if there are no
registers left, j will be placed in memory.

6.8 setjmp()

Calls to setjmp() are specially recognized by the compiler.
Procedures that contain calls to setjmp() are only partially
optimized because procedure calls may end up in a call to
longjmp(). Code motion optimizations are performed only
within linear code sequences (those sequences not contain­
ing branches or branch targets). Register allocation is limit­
ed to optimizer-generated temporary variables, register-de­
clared variables, and variables whose live ranges do not
contain function calls.

6.9 Optimizing for Space

The default behavior of the GNX-Version 3 C compiler opti­
mizes for optimal speed. However, there are several things
that can be done to improve code density:

• Optimize with the INOSPEED_OVER_SPACE turned
on.

• Squeeze the data area by using /TARGET = (BUS = 1)
for smaller alignment between variables.

• Squeeze all record definitions by using the / ALIGN = 1
switch.

7.0 COMPILATION TIME REQUIREMENTS

Using the optimizer slows down the compilation process.
Therefore, it is recommended that the optimizer be used
only on final production versions of a program. The amounts
of resources (time and memory) vary strongly from program
to program and actually depend on the size of the routines
in the compiled program file. The larger a routine, the more
time and memory needed to optimize it. This behavior is

6-97

more or less quadratic. That is, the optimizer needs about
four times the resources to optimize a routine of 1000 lines
than to optimize a routine of 500 lines.

If time or memory requirements are unacceptable and
routines cannot be reduced to a reasonable size of
about 500 lines, it is possible to turn off some optimi­
zations using the /NOCODLMOTION and/or the
INOREGISTERJLLOCATION flags.

8.0 TARGET MACHINE SPECIFICATION

The GNX-Version 3 C Optimizing Compiler provides a way
to tune the code for a specific target machine by specifying
its CPU, FPU, and buswidth. The values for the CPU and
FPU can either be the complete device name (e.g.,
NS32332 or NS32081) or the last three digits of the device
name (e.g., 332 or 081). The buswidth is specified in bytes.
This tuning is performed by specifying ITARGET on the
command line. Table 8-1 lists the flags and the possible
settings.

Example: The following example specifies an NS32332
CPU, an NS32081 FPU, and a buswidth of 4
bytes.

NMCC /TARGET = (CPU = 332, FPU = 081,
BUS = 4) TEMP.C

TABLE 8·1. Target Selection Parameters

CPU (C) FPU (F) Buswldth (8)

[NS32]008 [NS32]081 1
[NS32]016 [NS32]381 2
[NS32]cg16 [NS32]580 4
[NS32]032
[NS32]332
[NS32]532

z
m
o
en

Section 7
NSC800

Section 7 Contents
NSC800 High-Performance Low-Power CMOS Microprocessor. 7-3
NSC810A RAM-I/O-Timer... 7-76
NSC831 Parallel I/O . 7 -97
NSC858 Universal Asynchronous Receiver/Transmitter. .. 7-111
NSC888 NSC800 Evaluation Board .. 7 -130
Comparison Study NSC800 vs. 8085/80C85/Z80/Z80 CMOS............................ 7-134
Software Comparison NSC800 vs. 8085, Z80 .. 7 -137
AN-612 NSC800 Applications System: ROM Monitor and System Board......... 7-139
AN-613 NSC800 Applications System: NS16550A UART 8237A DMA Controller Interface... 7-162

7·2

~National
~ Semiconductor

microCMOS

NSC800™ High-Performance
Low-Power CMOS Microprocessor

General Description
The NSC800 is an 8-bit CMOS microprocessor that func­
tions as the central processing unit (CPU) in National Semi­
conductor's NSC800 microcomputer family. National's
microCMOS technology used to fabricate this device pro­
vides system designers with performance equivalent to
comparable NMOS products, but with the low power advan­
tage of CMOS. Some of the many system functions incorpo­
rated on the device, are vectored priority interrupts, refresh
control, power-save feature and interrupt acknowledge. The
NSC800 is available in dual-in-line and surface mounted
chip carrier packages.

The system designer can choose not only from the dedicat­
ed CMOS peripherals that allow direct interfacing to the
NSC800 but from the full line of National's CMOS products
to allow a low-power system solution. The dedicated periph­
erals include NSC810A RAM 1/0 Timer, NSC858 UART,
and NSC831 1/0.

All devices are available in commercial, industrial and mili­
tary temperature ranges along with two added reliability
flows. The first is an extended burn in test and the second is
the military class C screening in accordance with Method
5004 of MIL-STD-883.

Block Diagram

CLK
OUT iiFSH WAIT iiD

XIN --+

XDUT

Features
• Fully compatible with Z80® instruction set:

Powerful set of 158 instructions
10 addressing modes
22 internal registers

• Low power: 50 mW at 5V Vee
• Unique power-save feature
• Multiplexed bus structure

• Schmitt trigger input on reset
• On-chip bus controller and clock generator
• Variable power supply 2.4V-6.0V
• On-Chip 8-bit dynamic RAM refresh circuitry

• Speed: 1.0 J.Ls instruction cycle at 4.0 MHz
NSC800-4 4.0 MHz
NSC800-35 3.5 MHz
NSC800-3 2.5 MHz
NSC800-1 1.0 MHz

• Capable of addressing 64k bytes of memory and 256
1/0 devices

• Five interrupt request lines on-chip

F' (8)

l' (8)

E' (8)

C' (8)

A (8) F (8)

H (8) 18)

a (8) (8)

8 (8) C (8) REGISTER
ARRAY

(16)

(16)

R (8)

t
Wi! ALE ~ SO S1 101M me BAfi(RESET RESET ADDRESS 8US ADDRESSIDATA 8US

ill OUT

TlIC/5171 -73

7-3

z en
o
Q)
o
o

• I

o r---~ o
CO o en z

Table of Contents

1.0 ABSOLUTE MAXIMUM RATINGS

2.0 OPERATING CONDITIONS

3.0 DC ELECTRICAL CHARACTERISTICS

4.0 AC ELECTRICAL CHARACTERISTICS

5.0 TIMING WAVEFORMS

NSCBOO HARDWARE

6.0 PIN DESCRIPTIONS

6.1 Input Signals

6.2 Output Signals

6.3 Input/Output Signals

7.0 CONNECTION DIAGRAMS

B.O FUNCTIONAL DESCRIPTION

8.1 Register Array

8.2 Dedicated Registers

8.2.1 Program Counter

8.2.2 Stack Pointer

8.2.3 Index Register

8.2.4 Interrupt Register

8.2.5 Refresh Register

8.3 CPU Working and Alternate Register Sets

8.3.1 CPU Working Registers

8.3.2 Alternate Registers

8.4 Register Functions

8.4.1 Accumulator

8.4.2 F Register-Flags

8.4.3 Carry (C)

8.4.4 Adds/Subtract (N)

8.4.5 Parity/Overflow (P/Y)

8.4.6 Half Carry (H)

8.4.7 Zero Flag (Z)

8.4.8 Sign Flag (S)

8.4.9 Additional General Purpose Registers

8.4.10 Alternate Configurations

8.5 Arithmetic Logic Unit (ALU)

8.6 Instruction Register and Decoder

9.0 TIMING AND CONTROL

9.1 Internal Clock Generator

9.2 CPU Timing

9.3 Initialization

9.4 Power Save Feature

7·4

9.0 TIMING AND CONTROL

9.5 Bus Access Control

9.6 Interrupt Control

NSC800 SOFTWARE

10.0 INTRODUCTION

11.0 ADDRESSING MODES

11.1 Register

11.2 Implied

11.3 Immediate

11.4 Immediate Extended

11.5 Direct Addressing

11.6 Register Indirect

11.7 Indexed

11.8 Relative

11.9 Modified Page Zero

11.10 Bit

12.0 INSTRUCTION SET

12.1 Instruction Set Index/Alphabetical

12.2 Instruction Set Mnemonic Notation

12.3 Assembled Object Code Notation

12.4 8-Bit Loads

12.5 16-Bit Loads

12.6 8-Bit Arithmetic

12.7 16-Bit Arithmetic

12.8 Bit Set, Reset, and Test

12.9 Rotate and Shift

12.1 0 Exchanges

12.11 Memory Block Moves and Searches

12.12 Input/Output

12.13 CPU Control

12.14 Program Control

12.15 I nstruction Set: Alphabetical Order

12.16 Instruction Set: Numerical Order

13.0 DATA ACQUISITION SYSTEM

14.0 NSC800M/883B MIL STD 883/CLASS C
SCREENING

15.0 BURN·IN CIRCUITS

16.0 ORDERING INFORMATION

17.0 RELIABILITY INFORMATION

1.0 Absolute Maximum Ratings (Note 1) 2.0 Operating Conditions
If Military/Aerospace specified devices are required, NSC800-1 -+ TA = O'C to +70'C
please contact the National Semiconductor Sales TA = -40'C to +85'C
Office/Distributors for availability and specifications. NSC800-3 -+ TA = O'C to +70'C
Storage Temperature - 65'C to + 150'C TA = -40'C to +85'C
Voltage on Any Pin T A = - 55'C to + 125'C

with Respect to Ground -0.3V to Vee +0.3V
NSC800-35/883C -+ T A = - 55'C to + 125'C

Maximum Vee 7V

Power Dissipation 1W
NSC800-4 -+ TA = O'C to +70'C

Lead Temp. (Soldering, 10 seconds) 300'C
TA = -40'C to +85'C

NSC800-4MIL -+ TA = -55'C to +90'C

3.0 DC Electrical Characteristics Vee = 5V ± 10%, GND = OV, unless otherwise specified.

Symbol Parameter Conditions Min Typ Max Units

VIH Logical 1 Input Voltage 0.8 Vee Vee V

VIL Logical 0 Input Voltage 0 0.2 Vee V

VHY Hysteresis at RESET IN input Vee = 5V 0.25 0.5 V

VOH1 Logical 1 Output Voltage lOUT = -1.0 rnA 2.4 V

VOH2 Logical 1 Output Voltage lOUT = -10 /-LA Vee -0.5 V

VOL1 Logical 0 Output Voltage lOUT = 2 rnA 0 0.4 V

VOL2 Logical 0 Output Voltage lOUT = 10 /-LA 0 0.1 V

IlL Input Leakage Current o 5: VIN 5: Vee -10.0 10.0 /-LA

IOL Output Leakage Current o 5: VIN 5: Vee -10.0 10.0 /-LA

lee Active Supply Current lOUT = 0, f(XIN) = 2 MHz, T A = 25'C 8 11 rnA

lee Active Supply Current lOUT = 0, f(XIN) = 5 MHz, T A = 25'C 10 15 rnA

lee Active Supply Current lOUT = 0, f(XIN) = 7 MHz, 15 21 rnA
TA = 25'C

lee Active Supply Current lOUT = 0, f(XIN) = 8 MHz, T A = 25'C 15 21 rnA

10 Quiescent Current lOUT = 0, PS = 0, VIN = 0 orVIN = Vee 2 5 rnA
f(XIN) = 0 MHz, T A = 25'C, XIN = 0, CLK = 1

Ips Power-Save Current lOUT = 0, PS = 0, VIN = 0 orVIN = Vee 5 7 rnA
f(XIN) = 5.0 MHz, T A = 25'

CIN Input Capacitance 6 10 pF

COUT Output Capacitance 8 12 pF

Vee Power Supply Voltage (Note 2) 2.4 5 6 V

Note 1: Absolute Maximum Ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended and should be
limited to those conditions specified under DC Electrical Characteristics.
Note 2: CPU operation at lower voltages will reduce the maximum operating speed. Operation at voltages other than 5V ± 10% is guaranteed by deSign, not
tested.

7-5

z en o
Q)
o
o

•

o o
CO
o
U)
z

4.0 AC Electrical Characteristics VCC = 5V ± 10%, GND = OV, unless otherwise specified

Symbol Parameter
NSC800-1 NSC800-3 NSC800-35 NSC800-4

Units Notes
Min Max Min Max Min Max Min Max

tx Period at XIN and XOUT 500 3333 200 3333 142 3333 125 3333 ns
Pins

T Period at Clock Output 1000 6667 400 6667 284 6667 250 6667 ns
(=2tx)

tR Clock Rise Time 110 110 90 80 ns Measured from
10%-90% of signal

tF Clock Fall Time 70 60 55 50 ns Measured from
10%-90% of signal

tL Clock Low Time 435 150 90 80 ns 50% duty cycle, square
wave input on XIN

tH Clock High Time 450 145 85 75 ns 50% duty cycle, square
wave input on XIN

tACC(OP) ALE to Valid Data 1340 490 340 300 ns Add t for each WAIT STATE

tACC(MR) ALE to Valid Data 1875 620 405 360 ns Add t for each WAIT STATE

tAFR AD(O-7) Float after 0 0 0 0 ns
RD Falling

tBABE BACK Rising to Bus 1000 400 300 250 ns
Enable

tBABF BACK Falling to 50 50 50 50 ns
Bus Float

tBACL BACK Fall to CLK 425 125 60 55 ns
Falling

tBRH BREQ Hold Time 0 0 0 0 ns

tBRS BREQ Set-Up Time 100 50 50 45 ns

tCAF Clock Falling ALE 0 70 0 65 0 60 0 55 ns
Falling

tCAR Clock Rising to ALE 0 100 0 100 0 90 0 80 ns
Rising

tCRO Clock Rising to 100 90 90 80 ns
Read Rising

tCRF Clock Rising to 80 70 70 65 ns
Refresh Falling

tOAI ALE Falling to INTA 445 160 95 85 ns
Falling

tOAR ALE Falling to 400 575 160 250 100 180 90 160 ns
RD Falling

tOAW ALE Falling to 900 1010 350 420 225 300 200 265 ns
WR Falling

to(BACK)1 ALE Falling to BACK 2460 975 635 560 ns Add t for each WAIT state
Falling Add t for opcode fetch cycles

to(BACK)2 BREQ Rising to BACK 500 1610 200 700 140 540 125 475 ns
Rising

to(I) ALE Falling to INTR, 1360 475 284 250 ns Add t for each WAIT state
NMI, RSTA-C, PS, Add t for opcode fetch cycles
BREQ, Inputs Valid

tOPA Rising PSto 500 1685 200 760 140 580 125 510 ns See Figure 14 also
Falling ALE

to(WAIT) ALE Falling to 550 250 170 125 ns
WAIT Input Valid

op- Opcode Fetch
MR- Memory Read

7-6

4.0 AC Electrical Characteristics Vcc = 5V ± 10%, GND = OV, unless otherwise specified (Continued)

Symbol Parameter
NSC800-1 NSC800-3 NSC800-35 NSC800-4

Units Notes
Min Max Min Max Min Max Min Max

TH(ADH)1 A(8-15) Hold Time During 0 0 0 0 ns
Opcode Fetch

TH(ADH)2 A(8-15) Hold Time During 400 100 85 60 ns
Memory or 10, RD and WR

TH(ADLl AD(0-7) Hold Time 100 60 35 30 ns

TH(WD) Write Data Hold Time 400 100 85 75 ns

tlNH Interrupt Hold Time 0 0 0 0 ns

tiNS Interrupt Set-Up Time 100 50 50 45 ns

tNMI Width of NMllnput 50 30 25 20 ns

tRDH Data Hold after Read 0 0 0 0 ns

tRFLF RFSH Rising to ALE 60 50 45 40 ns
Falling

tRL(MR) RD Rising to ALE Rising 390 100 50 45 ns
(Memory Read)

tS(ADl AD(0-7) Set-Up Time 300 45 45 40 ns

tS(ALE) A(8-15), SO, SI,IO/M 350 70 55 50 ns
Set-UpTime

tS(WD) Write Data Set-Up Time 385 75 35 30 ns

tW(ALEl ALE Width 430 130 115 100 ns

tWH WAIT Hold Time 0 0 0 0 ns

tW(I) Width of INTR, RSTA-C, 500 200 140 125 ns
PS, BREQ

tW(INTA) INT A Strobe Width 1000 400 225 200 ns Add two t states for first
INT A of each interrupt
response string Add t for
each WAIT state

tWL WR RiSing to ALE Rising 450 130 70 70 ns

tW(RD) Read Strobe Width During 960 360 210 185 ns Add t for each WAIT
Opcode Fetch State Add tl2 for Memory

Read Cycles

tW(RFSHl Refresh Strobe Width 1925 725 450 395 ns

tws WAIT Set-Up Time 100 70 60 55 ns

tW(wAITI WAIT Input Width 550 250 195 175 ns

tW(WR) Write Strobe Width 985 370 250 220 ns Add t for each WAIT state

tXCF XIN to Clock Falling 25 100 15 85 5 90 5 80 ns

tXCR XIN to Clock Rising 25 85 15 85 5 90 5 80 ns

Note 1: Test conditions: t = 1000 ns for NSC800-1, 400 ns for NSC800, 285 ns for NSCBOO·35, 250 ns for NSC800·4.
Note 2: Output timings are measured with a purely capacitive load of 100 pF.

7-7

z
en o
CO
o
o

•

o o
CO
o
tJ)
z

5.0 Timing Waveforms
Opcode Fetch Cycle

~------------------------Ml------------------------~
--""",*>---12 ---+/4---T3 ----/4---T-4-

XIN

ClK

ALE

A(8-1S) ______ ~----~--~~~~----_+~,~--~--------------------------+__

f4-------- tW(RFSH) ---------~

IO/M.50.51 ____ ...rl'-_+-____ -l ____ .;.;.;. __ ;.... ________________ _

WAIT .~--~.~---__________ ~--__ J~

Memory Read and Write Cycle

ClK

ALE

A(8-1S) -----~----+------+--~----,;.........;..------------~f' .. -----

AD(0-7)------~r---------~~--~--------------------~I~~-----­

(WR~)------~--~----__ ~--r-------------------~~+_----......

WAIT __________ ~-----J~

2R~~
INTA.R5T AC

jig.

101M. 50. 51 IO/W = O. so =~ ~. SI = ~ ~
_____ JT~ ______________________________ _J

7-8

TL/C/5171-3

TL/C/5171-4

5.0 Timing Waveforms (Continued)

Interrupt-Power-Save Cycle

Note 1: This t state Is the last t state of the last M cycle of any Instruction.

Note 2: Response to INTR Input.

Note 3: Response to PS Input.

Bus Acknowledge Cycle

ANY M CYClE--!+---- BUS AVAILABLE STATES ---+I

ClK

AD (0 - 7) t:1I-_t_BA_BE __ _

A(8-15) ___ -+-______ +_~ ----------------~~ ____ _

101M. RD. WR 1

ALE·

·Waveform not drawn to proportion. Use only for specifying test pOints.

AC Testing Input/Output Waveform AC Testing Load Circuit

===><: 0 .• Vee TEST 0 •• Vee x:=
0.2 Vee POINTS 0.2 Vee

TL/C/S171-7

TL/C/S171-S

TL/C/S171-6

TL/C/S171-8

7·9

z en
o
(X)
«:)
«:)

o r---~
o
CC)

o en
z

NSC800 HARDWARE

6.0 Pin Descriptions
6.1 INPUT SIGNALS

Reset Input (RESET IN): Active low. Sets A (8-15) and AD
(0-7) to TRI-STATE@ (high impedance). Clears the con­
tents of PC, I and R registers, disables interrupts, and acti­
vates reset out.

Bus Request (BREQ): Active low. Used when another de­
vice requests the system bus. The NSC800 recognizes
BREQ at the end of the current machine cycle, and sets
A(8-15), AD(0-7), 10lM, RD, and WR to the high imped­
ance state. RFSH is high during a bus request cycle. The
CPU acknowledges the bus request via the BACK output
signal.

Non-Maskable Interrupt (NMI): Active low. The non-mask­
able interrupt, generated by the peripheral device(s), is the
highest priority interrupt. The edge sensitive interrupt re­
quires only a pulse to set an internal flip-flop which gener­
ates the internal interrupt request. The NMI flip-flop is moni­
tored on the same clock edge as the other interrupts. It
must also meet the minimum set-up time spec for the inter­
rupt to be accepted in the current machine instruction.
When the processor accepts the interrupt the flip-flop resets
automatically. Interrupt execution is independent of the in­
terrupt enable flip-flop. NMI execution results in saving the
PC on the stack and automatic branching to restart address
X'0066 in memory.

Restart Interrupts, A, B, C (RSTA, RSTB, RSTC): Active
low level sensitive. The CPU recognizes restarts generated
by the peripherals at the end of the current instruction, if
their respective interrupt enable and master enable bits are
set. Execution is identical to NMI except the interrupts vec­
tor to the following restart addresses:

Name

NMI
RSTA
RSTB
RSTC
INTR (Mode 1)

Restart
Address (X')

0066
003C
0034
002C
0038

The order of priority is fixed. The list above starts with the
highest priority.

Interrupt Request (INTR): Active low, level sensitive. The
CPU recognizes an interrupt request at the end of the cur­
rent instruction provided that the interrupt enable and mas­
ter interrupt enable bits are set. INTR is the lowest priority
interrupt. Program control selects one of three response
modes which determines the method of servicing INTR in
conjunction with INTA. See Interrupt Control.

Walt (WAIT): Active low. When set low during RD, WR or
INTA machine cycles (during the WR machine cycle, wait
must be valid prior to write going active) the CPU extends its
machine cycle in increments of t (wait) states. The wait ma­
chine cycle continues until the WAIT input returns high.

The wait strobe input will be accepted only during machine
cycles that have RD, WR or INTA strobes and during the
machine cycle immediately after an interrupt has been ac­
cepted by the CPU. The later cycle has its RD strobe sup­
pressed but it will still accept the wait.

Power-Save (PS): Active low. PS is sampled during the last
t state of the current instruction cycle. When PS is low, the

7-10

CPU stops executing at the end of current instruction and
keeps itself in the low-power mode. Normal operation re­
sumes when PS returns high (see Power Save Feature de­
scription).

CRYSTAL (XIN, XOUT): XIN can be used as an external
clock input. A crystal can be connected across XIN and
XOUT to provide a source for the system clock.

6.2 OUTPUT SIGNALS

Bus Acknowledge (BACK): Active low. BACK indicates to
the bus requesting device that the CPU bus and its control
signals are in the TRI-STATE mode. The requesting device
then commands the bus and its control signals.

Address Bits 8-15 [A(8-15»): Active high. These are the
most significant 8 bits of the memory address during a
memory instruction. During an I/O instruction, the port ad­
dress on the lower 8 address bits gets duplicated onto A(8-
15). During a BREQ/BACK cycle, the A(8-15) bus is in the
TRI-STATE mode.

Reset Out (RESET OUT): Active high. When RESET OUT
is high, it indicates the CPU is being reset. This signal is
normally used to reset the peripheral devices.

Input/OutputlMemory (101M): An active high on the 10lM
output signifies that the current machine cycle is an input!
output cycle. An active low on the 101M output signifies that
the current machine cycle is a memory cycle. It is TRI­
STATE during BREQ/BACK cycles.

Refresh (RFSH): Active low. The refresh output indicates
that the dynamic RAM refresh cycle is in progress. RFSH
goes low during T3 and T 4 states of all M 1 cycles. During
the refresh cycle, AD(0-7) has the refresh address and
A(8-15) indicates the interrupt vector register data. RFSH is
high during BREQ/BACK cycles.

Address latch Enable (ALE): Active high. ALE is active
only during the T1 state of any M cycle and also T3 state of
the M1 cycle. The high to low transition of ALE indicates
that a valid memory, 1/0 or refresh address is available on
the AD(O-7) lines.

Read Strobe (RD): Active low. The CPU receives data via
the AD(0-7) lines on the trailing edge of the RD strobe. The
RD line is in the TRI-STATE mode during BREQ/BACK cy­
cles.

Write Strobe (WR): Active low. The CPU sends data via the
AD(0-7) lines while the WR strobe is low. The WR line is in
the TRI-STATE mode during BREQ/BACK cycles.

Clock (ClK): ClK is the output provided for use as a sys­
tem clock. The ClK output is a square wave at one half the
input frequency.

Interrupt Acknowledge (INTA): Active low. This signal
strobes the interrupt response vector from the interrupting
peripheral devices onto the AD(0-7) lines. INTA is active
during the M1 cycle immediately following the t state where
the CPU recognized the INTR interrupt request.

Two of the three interrupt request modes use INT A. In
mode 0 one to four INTA signals strobe a one to four byte
instruction onto the AD(0-7) lines. In mode 2 one INTA sig­
nal strobes the lower byte of an interrupt response vector
onto the bus. In mode 1, INTA is inactive and the CPU re­
sponse to INTR is the same as for an NMI or restart inter­
rupt.

6.0 Pin Descriptions (Continued)

Status (SO, 51): Bus status outputs provide encoded infor­
mation regarding the current M cycle as follows:

Machine Cycle
Status Control

SO 51 10/M RD WR

Opcode Fetch 1 1 0 0 1
Memory Read 0 1 0 0 1
Memory Write 1 0 0 1 0
I/O Read 0 1 1 0 1
I/O Write 1 0 1 1 0
Halt* 0 0 0 0 1
Internal Operation· 0 1 0 1 1
Acknowledge of Int* * 1 1 0 1 1

• ALE is not suppressed In this cycle.

• ·This Is the cycle that occurs Immediately after the CPU accepts an inter­
rupt (RSTA. RSiB. RS'fC. INTR. NMi).
Note 1: During halt, CPU continues to do dummy opcode fetch from location
following the halt Instruction with a halt status. This is so CPU can continue
to do Its dynamic RAM refresh.

Note 2: No early status Is provided for Interrupt or hardware restarts.

7.0 Connection Diagrams

Dual·ln·Llne Package

A8 vee
A9 PS

A10 WAIf
A11 RESET OUT
A12 BiiEQ

A13 BACK
A14 101M
A15 RESET IN
ClK iii)

XOUT Wii
XIN ALE

ADO SO
AD1 RFSH
AD2 S1
AD3 INTA

AD4 INTR

AD5 RSfE
AD6 iiS'fii
AD7 RSTA
GND Nm

Top View
TL/C/5171-10

Order Number NSC800D or N
See NS Package D40C or N40A

7·11

6.3 INPUT 10UTPUT SIGNALS

Multiplexed Address/Data [AD(O-7)): Active high
At RD Time: Input data to CPU.
At WR Time: Output data from CPU.
At Falling Edge Least significant byte of address
of ALE Time: during memory reference cycle. 8-bit

port address during I/O reference
cycle.

During BREQ/ High impedance.
BACK Cycle:

Chip Carrier Package

RESET
A12 A11 A10 A9 A8 Vee liS WAIT OUT BRED

\
A13 7 6 5 4 3 2 1 44 43 42 414~9 BACK
A14 8 38 101M
A15 9 37 RESET IN
ClK 10 36 iii)

XOUT 11 35 \VA
NC 12 NSC800 34 HC
XIN 13 33 ALE

ADO 14 32 SO
A01 15 31 RFSH
AD2 16 30 S1
AD3 17 29

181920 2122232425262728
INTA

/ NCt \
AD4 AD5 AD6 AD7 GND NMI iiS'fAiiSfB RSTC INTR

Top View TUC/5171-11

Order Number NSC800E or V
See NS Package E44B or V44A

z en o
Q)
o
o

o o
l3 en z

8.0 Functional Description
This section reviews the CPU architecture shown below, fo­
cusing on the functional aspects from a hardware perspec­
tive, including timing details.

{~\1 POWER CC
SUPPLY (20)

........ GND

(11)
XIN

XOUT
(10)

CLK
OUT iiFS1l WAif iiii
(9) (2B) (38) (32)

As illustrated in Figure 1, the NSCaOO is an a-bit parallel
device. The major functional blocks are: the ALU, register
array, interrupt control, timing and control logic. These areas
are connected via the a-bit internal data bus. Detailed de­
scriptions of these blocks ae provided in the following sec­
tions.

A' (8) F' (8)
H' (B) L' (B)
D' (B) E' (8)
B' (B) C' (8)

(B) F (B)
(B) L (8)

D (8) (8)
B (8) (8) REGISTER

ARRAY

IX

Wli ALE P! SO Sl 10/M iiiEQ 8m(iiEffi RESET A(B-15) AD(0-7)
~) ~ ~ ~ ~ ~ ~ ~ m M

(33) (37)

Note: Applicable pinout for 40-pln
dual-In-line package within parentheses

ADDRESS BUS ADDRESS/DATA BUS

FIGURE 1. NSC800 CPU Functional Block Diagram

7-12

TUC/5171-9

8.0 Functional Description (Continued)

8.1 REGISTER ARRAV

The NSCaOO register array is divided into two parts: the
dedicated registers and the working registers, as shown in
Figure 2.

Main F!.eg. Set Alternate Reg. Set
r \, \

Accumulator Flags Accumulator Flags

A F A'

8 C 8'

D E D'

H L H'

Interrupt I Memory
Vector I Refresh R

Index Register IX

Index Register IV

Stack Pointer SP

Program Counter PC

F'

C'

E'

L'
)

Working
Registers

Dedicated
Registers

FIGURE 2. NSC800 Register Array

8.2 DEDICATED REGISTERS

There are 6 dedicated registers in the NSCaOO: two 8-bit
and four 16-bit registers (see Figure 3).

Although their contents are under program control, the pro­
gram has no control over their operational functions, unlike
the CPU working registers. The function of each dedicated
register is described as follows:

CPU Dedicated Registers
Program Counter PC (16)
Stack Pointer SP (16)
Index Register IX (16)
Index Register IV (16)
Interrupt Vector Register I (a)
Memory Refresh Register R (8)

FIGURE 3. Dedicated Registers

8.2.1 Program Counter (PC)

The program counter contains the 16-bit address of the cur­
rent instruction being fetched from memory. The PC incre­
ments after its contents have been transferred to the ad­
dress lines. When a program jump occurs, the PC receives
the new address which overrides the incrementer.

There are many conditional and unconditional jumps, calls,
and return instructions in the NSCaOO's instruction reper­
toire that allow easy manipulation of this register in control­
ling the program execution (i.e. JP NZ nn. JR Zd2, CALL
NC, nn).

7-13

8.2.2 Stack Pointer (SP)

The 16-bit stack pointer contains the address of the current
top of stack that is located in external system RAM. The
stack is organized in a last-in, first-out (LIFO) structure. The
pointer decrements before data is pushed onto the stack,
and increments after data is popped from the stack.

Various operations store or retrieve, data on the stack. This,
along with the usage of subroutine calls and interrupts, al­
lows simple implementation of subroutine and interrupt
nesting as well as alleviating many problems of data manip­
ulation.

8.2.3 Index Register (IX and IV)

The NSCaOO contains two index registers to hold Indepen­
dent, 16-bit base addresses used in the indexed addressing
mode. In this mode, an index register, either IX or IV, con­
tains a base address of an area in memory making it a point­
er for data tables.

In all instructions employing indexed modes of operation,
another byte acts as a signed two's complement displace­
ment. This addressing mode enables easy data table ma­
nipulations.

8.2.4 Interrupt Register (I)

When the NSCaOO provides a Mode 2 response to INTR,
the action taken is an indirect call to the memory location
containing the service routine address. The pOinter to the
address of the service routine is formed by two bytes, the
high-byte is from the I Register and the low-byte is from the
interrupting peripheral. The peripheral always provides an
even address for the lower byte (LS8 = 0). When the proc­
essor receives the lower byte from the peripheral it concate­
nates it in the following manner:

I I Reglsler I External byte

a bits

i
The LSB of the external byte must be zero.

FIGURE 4a. Interrupt Register

The even memory location contains the low-order byte, the
next consecutive location contains the high-order byte of
the pointer to the beginning address of the interrupt service
routine.

8.2.5 Refresh Register (R)

For systems that use dynamic memories rather than static
RAM's, the NSCaOO provides an integral a-bit memory re­
fresh counter. The contents of the register are incremented
after each opcode fetch and are sent out on the lower por­
tion of the address bus, along with a refresh control signal.
This provides a totally transparent refresh cycle and does
not slow down CPU operation.

The program can read and write to the R register, although
this is usually done only for test purposes.

z en o
ClO o
o

o o
CO
(.)
en z

8.0 Functional Description (Continued)

8.3 CPU WORKING AND ALTERNATE REGISTER SETS

8.3.1 CPU Working Registers

The portion of the register array shown in Figure 4b repre­
sents the CPU working registers. These sixteen 8-bit regis­
ters are general-purpose registers because they perform a
multitude of functions, depending on the instruction being
executed. They are grouped together also due to the types
of instructions that use them, particularly alternate set oper­
ations.

The F (flag) register is a special-purpose register because
its contents are more a result of machine status rather than
program data. The F register is included because of its inter­
action with the A register, and its manipulations in the alter­
nate register set operations.

8.3.2 Alternate Registers

The NSC800 registers designated as CPU working registers
have one common feature: the existence of a duplicate reg­
ister in an alternate register set. This architectural concept
simplifies programming during operations such as interrupt
response, when the machine status represented by the con­
tents of the registers must be saved.

The alternate register concept makes one set of registers
available to the programmer at any given time. Two instruc­
tions (EX AF, A'F' and EXX), exchange the current working
set of registers with their alternate set. One exchange be­
tween the A and F registers and their respective duplicates
(A' and F') saves the primary status information contained in
the accumulator and the flag register. The second exchange
instruction performs the exchange between the remaining
registers, B, C, 0, E, H, and L, and their respective alter­
nates B', C', 0', E', H', and L'. This essentially saves the
contents of the original complement of registers while pro­
viding the programmer with a usable alternate set.

CPU Main Working Register Set
Accumulator A (8) Flags F (8)
Register B (8) Register C (8)
Register 0 (8) Register E (8)
Register H (8) Register L (8)

CPU Alternate Working Register Set
Accumulator A' (8) Flags F'
Register B' (8) Register C'
Register 0' (8) Register E'
Register H' (8) Register L'

(8)
(8)
(8)

(8)

FIGURE 4b. CPU Working and Alternate Registers

7-14

8.4 REGISTER FUNCTIONS

8.4.1 Accumulator (A Register)

The A register serves as a source or destination register for
data manipulation instructions. In addition, it serves as the
accumulator for the results of 8-bit arithmetic and logic op­
erations.

The A register also has a special status in some types of
operations; that is, certain addressing modes are reserved
for the A register only, although the function is available for
all the other registers. For example, any register can be
loaded by immediate, register indirect, or indexed address­
ing modes. The A register, however, can also be loaded via
an additional register indirect addressing.

Another special feature of the A register is that it produces
more efficient memory coding than equivalent instruction
functions directed to other registers. Any register can be
rotated; however, while it requires a two-byte instruction to
normally rotate any register, a single-byte instruction is
available for rotating the contents of the accumulator (A reg­
ister).

8.4.2 F Register - Flags

The NSC800 flag register consists of six status bits that
contain information regarding the results of previous CPU
operations. The register can be read by pushing the con­
tents onto the stack and then reading it, however, it cannot
be written to. It is classified as a register because of its
affiliation with the accumulator and the existence of a dupli­
cate register for use in exchange instructions with the accu­
mulator.

Of the six flags shown in Figure 5, only four can be directly
tested by the programmer via conditional jump, call, and
return instructions. They are the Sign (S), Zero (Z), Parity/
Overflow (PIV), and Carry (C) flags. The Half Carry (H) and
Add/Subtract (N) flags are used for internal operations re­
lated to BCD arithmetic.

CARRY

ADD/SUBTRACT
..... _--PARITY OVERFLOW

'---------HALF CARRY
..... ----------ZERO

..... -----------SIGN

TL/C/5171-23

FIGURE 5. Flag Register

8.0 Functional Description (Continued)

8.4.3 Carry (C)

A carry from the highest order bit of the accumulator during
an add instruction, or a borrow generated during a subtrac­
tion instruction sets the carry flag. Specific shift and rotate
instructions also affect this bit.

Two specific instructions in the NSC800 instruction reper­
toire set (SCF) or complement (CCF) the carry flag.

Other operations that affect the C flag are as follows:

• Adds
Subtracts

Logic Operations (always resets C flag)

Rotate Accumulator

• Rotate and Shifts

• Decimal Adjust

• Negation of Accumulator

Other operations do not affect the C flag.

8.4.4 Adds/Subtract (N)

This flag is used in conjunction with the H flag to ensure that
the proper BCD correction algorithm is used during the deci­
mal adjust instruction (OM). The correction algorithm de­
pends on whether an add or subtract was previously done
with BCD operands.

The operations that set the N flag are:

• Subtractions

Decrements (8-bit)

• Complementing of the Accumulator

• Block I/O

• Block Searches

• Negation of the Accumulator

The operations that reset the N flag are:

• Adds

• Increments

• Logic Operations

• Rotates

• Set and Complement Carry

• Input Register Indirect

• Block Transfers

• Load of the I or R Registers

• Bit Tests

Other operations do not affect the N flag.

8.4.5 Parity/Overflow (P/V)

The Parity/Overflow flag is a dual-purpose flag that indi­
cates results of logic and arithmetic operations. In logic op­
erations, the PIV flag indicates the parity of the result; the
flag is set (high) if the result is even, reset (low) if the result
is odd. In arithmetic operations, it represents an overflow
condition when the result, interpreted as signed two's com­
plement arithmetic, is out of range for the eight-bit accumu­
lator (Le. -128 to + 127).

7-15

The following operations affect the P IV flag according to
the parity of the result of the operation:

• Logic Operations

• Rotate and Shift

• Rotate Digits

Decimal Adjust

• Input Register Indirect

The following operations affect the P IV flag according to
the overflow result of the operation.

• Adds (16 bit with carry, 8-bit with/without carry)

• Subtracts (16 bit with carry, 8-bit with/without carry)

• Increments and Decrements

• Negation of Accumulator

The P IV flag has no significance immediately after the fol­
lowing operations.

• Block I/O

• Bit Tests
In block transfers and compares, the PlY flag indicates the
status of the BC register, always ending in the reset state
after an auto repeat of a block move. Other operations do
not affect the PIV flag.

8.4.6 Half Carry (H)

This flag indicates a BCD carry, or borrow, result from the
low-order four bits of operation. It can be used to correct the
results of a previously packed decimal add, or subtract, op­
eration by use of the Decimal Adjust Instruction (DAA).

The following operations affect the H flag:

• Adds (8-bit)

• Subtracts (8-bit)

• Increments and Decrements

• Decimal Adjust

• Negation of Accumulator

• Always Set by: Logic AND

Complement Accumulator

Bit Testing

• Always Reset By: Logic OR's and XOR's

Rotates and Shifts

Set Carry

Input Register Indirect

Block Transfers

Loads of I and R Registers

The H flag has no significance immediately after the follow­
ing operations.

• 16-bit Adds with/without carry

• 16-Bit Subtracts with carry

• Complement of the carry

• Block I/O

• Block Searches

Other operations do not affect the H flag.

z
tJ)
o
(X)
o
o

•

o o
CO o
tJ)
z

8.0 Functional Description (Continued)

8.4.7 Zero Flag (Z)

Loading a zero in the accumulator or when a zero results
from an operation sets the zero flag.

The following operations affect the zero flag.

• Adds (16-bit with carry, 8-bit with/without carry)

• Subtracts (16-bit with carry, 6-bit with/without carry)

• Logic Operations

• Increments and Decrements

• Rotate and Shifts

• Rotate Digits

• Decimal Adjust

• Input Register Indirect

• Block I/O (always set after auto repeat block I/O)

• Block Searches

• Load of I and R Registers

• Bit Tests

• Negation of Accumulator

The Z flag has no signficance immediately after the follow­
ing operations:

• Block Transfers

Other operations do not affect the zero flag.

8.4.8 Sign Flag (S)

The sign flag stores the state of bit 7 (the most-signifi­
cant bit and sign bit) of the accumulator following an arith­
metic operation. This flag is of use when dealing with signed
numbers.

The sign flag is affected by the following operation accord­
ing to the result:

• Adds (16-bit with carry, 8-bit with/without carry)

• Subtracts (16-bit with carry, 8-bit with/without carry)

• Logic Operations

• Increments and Decrements

• Rotate and Shifts

• Rotate Digits

• Decimal Adjust

• Input Register Indirect

• Block Search

• Load of I and R Registers

• Negation of Accumulator

The S flag has no significance immediately after the follow­
ing operations:

• Block I/O

• Block Transfers

• Bit Tests
Other operations do not affect the sign bit.

7-16

8.4.9 Additional General-Purpose Registers

The other general-purpose registers are the B, C, D, E, H
and L registers and their alternate register set, B', C', D', E',
H' and L'. The general-purpose registers can be used inter­
changeably.

In addition, the Band C registers perform special functions
in the NSC800 expanded I/O capabilities, particularly block
I/O operations. In these functions, the C register can ad­
dress I/O ports; the B register provides a counter function
when used in the register indirect address mode.

When used with the special condition jump instruction
(DJNZ) the B register again provides the counter function.

8.4.10 Alternate Configurations

The six 8-bit general purpose registers (B,C,D,E,H,L) will
combine to form three 16-bit registers. This occurs by con­
catenating the Band C registers to form the BC register, the
D and E registers form the DE register, and the Hand L
registers form the HL register.

Having these 16-bit registers allows 16-bit data handling,
thereby expanding the number of 16-bit registers available
for memory addressing modes. The HL register typically
provides the pointer address for use in register indirect ad­
dressing of the memory.

The DE register provides a second memory pointer register
for the NSC800's powerful block transfer operations. The
BC register also provides an assist to the block transfer
operations by acting as a byte-counter for these operations.

8.5 ARITHMETIC-LOGIC UNIT (ALU)

The arithmetic, logic and rotate instructions are performed
by the ALU. The ALU internally communicates with the reg­
isters and data buffer on the 6-bit internal data bus.

8.6 INSTRUCTION REGISTER AND DECODER

During an opcode fetch, the first byte of an instruction is
transferred from the data buffer (i.e. its on the internal data
bus) to the instruction register. The instruction register feeds
the instruction decoder, which gated by timing signals, gen­
erates the control Signals that read or write data from or to
the registers, control the ALU and provide all required exter­
nal control signals.

9.0 Timing and Control
9.1 INTERNAL CLOCK GENERATOR

An inverter oscillator contained on the NSC800 chip pro­
vides all necessary timing signals. The chip operation fre­
quency is equal to one half of the frequency of this oscilla­
tor.

The oscillator frequency can be controlled by one of the
following methods:

1. leaving the XOUT pin unterminated and driving the XIN
pin with an externally generated clock as shown in Figure
6. When driving XIN with a square wave, the minimum
duty cycle is 30% high.

liN
EXTERNAL

CLOCK
XIN ClK

XOUT

JIXIN]
2

TL/C/5171-13

FIGURE 6. Use of External Clock

2. Connecting a crystal with the proper biasing network be­
tween XIN and XOUT as shown in Figure 7. Recommend­
ed crystal is a parallel resonance AT cut crystal.
Note 1: If the crystal frequency is between 1 MHz and 2 MHz a series

resistor. RS. (470n to 15000) should be connected between
XOUT and R. XTAL and Cz. Additionally. the capacitance of C1
and C2 should be increased by 2 to 3 times the recommended
value. For crystallrequencies less than 1 MHz higher values of
C1 and C2 may be required. Crystal parameters will also affect
the capacitive loading requirements.

NSC800 (PIN 9)
CLOCK OUT

5K

+5V

FIGURE 7. Use Of Crystal

H
f(XTAL)

2M z<-2-

R=lMn

C1=20 pF

C2=34 pF

(Recommended)

TLlC/5171-14

The CPU has a minimum clock frequency input (@ XIN) of
300 kHz, which results in 150 kHz system clock speed. All
registers internal to the chip are static, however there is
dynamic logic which limits the minimum clock speed. The
input clock can be stopped without fear of losing any data or
damaging the part. You stop it in the phase of the clock that
has XIN low and ClK OUT high. When restarting the CPU,
precautions must be taken so that the input clock meets
these minimum specification. Once started, the CPU will
continue operation from the same location at which it was
stopped. During DC operation of the CPU, typical current
drain will be 2 mAo This current drain can be reduced by
placing the CPU in a wait state during an opcode fetch cycle
then stopping the clock. For clock stop circuit, see Figure 8.

82K

TO NSC800
XIN

TL/C/5171-36

FIGURE 8. Clock Stop Circuit

7-17

z en
o
0)
o o

gr---~

co
o
U)
z

9.0 Timing and Control (Continued)

9.2 CPU TIMING

The NSC800 uses a multiplexed bus for data and address­
es. The 16-bit address bus is divided into a high-order 8-bit
address bus that handles bits 8-15 of the address, and a
low-order 8-bit multiplexed address/data bus that handles
bits 0-7 of the address and bits 0-7 of the data. Strobe
outputs from the NSC800 (ALE, RD and WR) indicate when
a valid address or data is present on the bus. 10/M indi­
cates whether the ensuing cycle accesses memory or 110.

During an input or output instruction, the CPU duplicates the
lower half of the address [AD(0-7)] onto the upper address
bus [A(8-15)]. The eight bits of address will stay on A(8-
15) for the entire machine cycle and can be used for chip
selection directly.

Figure 9 illustrates the timing relationship for opcode fetch
cycles with and without a wait state.

TL/C/5171-15

FIGURE 9a. Opcode Fetch Cycles without WAIT States

TL/C/5171-16

FIGURE 9b. Opcode Fetch Cycles with WAIT States

7-18

9.0 Timing and Control (Continued)

During the opcode fetch. the CPU places the contents of
the PC on the address bus. The falling edge of ALE indio
cates a valid address on the AD(O-7) lines. The WAIT input
is sampled during t2 and if active causes the NSC800 to
insert a wait state (tw). WAIT is sampled again during tw so

eLK

ALE

AD(0·71

AD(0.71

A(S·lS1
101M. SO. Sl

that when it goes inactive. the CPU continues its opcode
fetch by latching in the data on the rising edge of AD from
the AD(O-7) lines. During t3. AFSH goes active and AD(O-
7) has the dynamic AAM refresh address from register A
and A(8-15) the interrupt vector from register I.

TL/C/5171-17

FIGURE 10a. Memory Read/Write Cycles without WAIT States

TL/C/5171-18

FIGURE 10b. Memory Read and Write with WAIT States

7·19

z en o
CD
«:)
«:)

o o
CD
o
U'J z

9.0 Timing and Control (Continued)

Figure 10 shows the timing for memory read (other than
opcode fetchs) and write cycles with and without a wait

state. The RD stobe is widened by ~ (half the machine

state) for memory reads so that the actual latching of the
input data occurs later.

Figure 11 shows the timing for input and output cycles with
and without wait states. The CPU automatically inserts one
wait state into each 110 instruction to allow sufficient time
for an 110 port to decode the address.

TL/C/5171-19

FIGURE 11a.lnput and Output Cycles without WAIT States·

TL/C/5171-20

"WAIT state automatically Inserted during 10 operation.
FIGURE 11b. Input and Output Cycles with WAIT States

7·20

9.0 Timing and Control (Continued)

9.3 INITIALIZATION

RESET IN initializes the NSC800; RESET OUT initializes the
peripheral components. The Schmitt trigger at the RESET
TN input facilitates using an R-C network reset scheme dur­
ing power up (see Figure 12).

To ensure proper power-up conditions for the NSC800, the
following power-up and initialization procedure is recom·
mended:

1. Apply power (Vee and GND) and set RESET IN active
(low). Allow sufficient time (approximately 30 ms if a crys­
tal is used) for the oscillator and internal clocks to stabi­
lize. RESET IN must remain low for at least 3t state (ClK)
times. RESET OUT goes high as soon as the active
RESET IN signal is clocked into the first flip-flop after the
on-chip Schmitt trigger. RESET OUT signal is available to
reset the peripherals.

2. Set RESET IN high. RESET OUT then goes low as the
inactive RESET IN signal is clocked into the first flip-flop
after the on-chip Schmitt trigger. Following this the CPU
initiates the first opcode fetch cycle.

Note: The NSC800 initialization includes: Clear PC to
X'OOOO (the first opcode fetch, therefore, is from memory
location X'OOOO). Clear registers I (Interrupt Vector Base)
and R (Refresh Counter) to X'OO. Clear interrupt control reg­
ister bits lEA, IEB and IEC. The interrupt control bit lEI is set
to 1 to maintain INS8080A/Z80A compatibility (see INTER­
RUPTS for more details). The CPU disables maskable inter­
rupts and enters INTR Mode O. While RESET IN is active
(low), the A(8-15) and AD(0-7) lines go to high impedance
(TRI-STATE) and all CPU strobes go to the inactive state
(see Figure 13).

POWER-ON RESET ACTIVE

Vee

RESET iN --1-++-----+011--

RESET OUT

RESET (INTERNAL) __ -+-"'

R
10k

Vee

NSCBOO

iiESEfi'N RESET OUT

GND

INDICATES WHEN CPU
IS BEING RESET

TLIC/5171-21

FIGURE 12. Power-On Reset

9.4 POWER-SAVE FEATURE

The NSC800 provides a unique power-save mode by the
means of the PS pin. PS input is sampled at the last t state
of the last M cycle of an instruction. After recognizing an
active (low) level on PS, The NSC800 stops its internal
clocks, thereby reducing its power dissipation to one half.of
operating power, yet maintaining all register values and in­

ternal control status. The NSC800 keeps its oscillator run­
ning, and makes the ClK signal available to the system.
When in power-save the ALE strobe will be stopped high
and the address lines [AD(0-7), A(8-15)] will indicate the
next machine address. When PS returns high, the opcode
fetch (or M1 cycle) of the CPU begins in a normal manner.
Note this M1 cycle could also be an interrupt acknowledge
cycle if the NSC800 was interrupted simultaneously with PS
(Le. PS has priority over a simultaneously occurring inter­
rupt). However, interrupts are not accepted during power
save. Figure 14 illustrates the power save timing.

I.lANUAL RESET ACTIVE

CPU OUTPUT ~~~~~~L'I---+---i<s~==~.~====i---l---i~===

:: ~11-=====~====~~~k;G!222=~:::;====}---t----t<E~er:= BUS~;'
RISIN~R~lo~~~&f -l

TL/C/5171-74

FIGURE 13. NSC800 Signals During Power-On and Manual Reset

7-21

z en
(")
CD
o
o

•

o
o
CO
o
(IJ
z

9.0 Timing and Control (Continued)

elK

AD(0-7)----_+----_r~ ,--~-+------+---_+_r----_ir_----t_---

so, S~~O~~ ____ +----_+_ ,,--j-+-----+----+.:=I:::;:~== r----t_---
ALE

TL/C/5171-28

FIGURE 14. NSC800 Power-Save

.1------ BUS AVAILABLE STATES,------I

eLK

AD(O-7)--+------+------;-""'\.
A(B-15)

Iiii, Wii-_+-----+------t--
ALE

SO, Sl

TL/C/5171-22

'50,51 during J:iREO will Indicate same machine cycle as during the cycle when ~ was accepted.

Iz=time states during which bus and control signals are in high impedance mode.

FIGURE 15. Bus Acknowledge Cycle

In the event BREa is asserted (low) at the end of an instruc­
tion cycle and PS is active simultaneously, the following oc­
curs:

1. The NSC800 will go into BACK cycle.

2. Upon completion of BACK cycle if PS is still active the
CPU will go into power-save mode.

9.5 BUS ACCESS CONTROL

Figure 15 illustrates bus access control in the NSC800. The
external device controller produces an active BREa signal
that requests the bus. When the CPU responds with BACK
then the bus and related control strobes go to high imped­
ance (TRI-STATE) and the RFSH signal remains high. It
should be noted that (1) BREa is sampled at the last t state
of any M machine cycle only. (2) The NSC800 will not ac­
knowledge any interrupt/restart requests, and will not pe­
form any dynamic RAM refresh functions until after BREa
Input signal is inactive high. (3) BREa signal has priority
over all interrupt request signals, should BREQ and interrupt
request become active simultaneously. Therefore, interrupts
latched at the end of the instruction cycle will be serviced
after a simultaneously occurring BREQ. NMI is latched dur­
ing an active BREQ.

7-22

9.6 INTERRUPT CONTROL

The NSC800 has five interrupt/restart inputs, four are mask­
able (RSTA, RSTB, RSTC, and INTR) and one is non-mask­
able (NMI). NMI has the highest priority of all interrupts; the
user cannot disable NMI. After recognizing an active input
on NMI, the CPU stops before the next instruction, pushes
the PC onto the stack, and jumps to address X'0066, where
the user's interrupt service routine is located (Le., restart to
memory location X'0066). NMI is intended for interrupts re­
quiring immediate attention, such as power-down, control
panel, etc.

RST A, RSTB and RSTC are restart inputs, which, if enabled,
execute a restart to memory location X'003C, X'0034, and
X'002C, respectively. Note that the CPU response to the
NMI and RST (A, S, C) request input is basically identical,
except for the restored memory location. Unlike NMI, how­
ever, restart request inputs must be enabled.

Figure 16 illustrates NMI and RST interrupt machine cycles.
M1 cycle will be a dummy opcode fetch cycle followed by
M2 and M3 which are stack push operations. The following
instruction then starts from the interrupts restart location.
Note: RD does not go low during this dummy opcode fetch. A unique indica-

tion of INTA can be decoded using 2 ALEs and RD.

9.0 Timing and Control (Continued)

~+--------------------Ml------------------~

ClK

ALE

AD(O-7) ___ +-___ +-',......,;;......~

__ PUSH

OF THE
-- PROGRAM

COUNTER
ONTO

"-+-___ -+ ____ +-_ ~~I~~ACK

A(B-1S) ----t----+"'----+-----f"'---+----+-----f"-
WAIT - - - --(NOTE 1) ____ _

IOliA.SO.Sl ----+o-----I''----+-----...,..------+----+-----f''''-
TlIC/5171-24

Note 1: This is the only machine cycle that does not have an RD, WR, or INTA strobe but will accept a wait strobe.

FIGURE 16. Non-Maskable and Restart Interrupt Machine Cycle

The NSC800 also provides one more general purpose inter­
rupt request input, INTR. When enabled, the CPU responds
to INTR in one of the three modes defined by instruction
IMO, IM1, and 1M2 for modes 0,1, and 2, respectively. Fol­
lowing reset, the CPU automatically enables mode O.

Interrupt (INTR) Mode 0: The CPU responds to an interrupt
request by providing an INTA (interrupt acknowledge)
strobe, which can be used to gate an instruction from a
peripheral onto the data bus. The CPU inserts two wait
states during the first INTA cycle to allow the interrupting
device (or its controller) ample time to gate the instruction
and determine external priorities (Figure 18). This can be
any instruction from one to four bytes. The most popular
instruction is one-byte call (restart instruction) or a three­
byte call (CAll NN instruction). If it is a three-byte ca", the
CPU issues a total of three INTA strobes. The last two
(which do not include wait states) read NN.
Note: If the instruction stored in the ICU doesn't require the PC to be

pushed onto the stack (eq. JP nn), then the PC will not be pushed.

Interrupt (INTR) Mode 1: Similar to restart interrupts ex­
cept the restart location is X'0038 (Figure 18).

Interrupt (INTR) Mode 2: With this mode. the programmer
maintains a table that contains the 16-bit starting address of
every interrupt service routine. This table can be located
anywhere in memory. When the CPU accepts a Mode 2
interrupt (Figure 17), it forms a 16-bit pointer to obtain the
desired interrupt service routine starting address from the
table. The upper 8 bits of this pointer are from the contents
of the I register. The lower 8 bits of the pointer are supplied
by the interrupting device with the lSB forced to zero. The
programmer must load the interrupt vector prior to the inter­
rupt occurring. The CPU uses the pointer to get the two
adjacent bytes from the interrupt service routine starting ad­
dress table to complete 16-bit service routine starting ad-

7-23

dress. The first byte of each entry in the table is the least
significant (low-order) portion of the address. The program­
mer must obviously fill this table with the desired addresses
before any interrupts are to be accepted.

Note that the programmer can change this table at any time
to allow peripherals to be serviced by different service rou­
tines. Once the interrupting device supplies the lower por­
tion of the pointer, the CPU automatically pushes the pro­
gram counter onto the stack, obtains the starting address
from the table and does a jump to this address.

The interrupts have fixed priorities built into the NSC800 as:
NMI 0066 (Highest Priority)
RSTA 003C
RSTB 0034

002C
0038 (lowest Priority)

In~t'rrupt Enable, Interrupt Disable. The NSC800 has two
typ'3S of interrupt inputs, a non-maskable interrupt and four
software maskable interrupts. The non-maskable interrupt
(NMI) cannot be disabled by the programmer and wi" be
accepted whenever a peripheral device requests an inter­
rupt. The NMI is usually reserved for important functions
that must be serviced when they occur, such as imminent
power failure. The programmer can selectively enable or
disable maskable interrupts (INT, RSTA, RSTB and RSTC).
This selectivity allows the programmer to disable the mask­
able interrupts during periods when timing constraints don't
allow program interruption.

There are two interrupt enable flip-flops (IFF1 and IFF2) on
the NSC800. Two instructions control these flip-flops. En­
able Interrupt (EI) and Disable Interrupt (01). The state of
IFF1 determines the enabling or disabling of the maskable
interrupts, while IFF2 is used as a temporary storage loca­
tion for the state of IFF1.

z
en o
co
o
o

•

o o eo o
U)
z

9.0 Timing and Control (Continued)

A reset to the CPU will force both IFF1 and IFF2 to the reset
state disabling maskable interrupts. They can be enabled by
an EI instruction at any time by the programmer. When an EI
instruction is executed, any pending interrupt requests will
not be accepted until after the instruction following EI has
been executed. This single instruction delay is necessary in
situations where the following instruction is a return instruc­
tion and interrupts must not be allowed until the return has
been completed. The EI instruction sets both IFF1 and IFF2

to the enable state. When the CPU accepts an interrupt,
both IFF1 and IFF2 are automatically reset, inhibiting further
interrupts until the programmer wishes to issue a new EI
instruction. Note that for all the previous cases, IFF1 and
IFF2 are always equal.

The function of IFF2 is to retain the status of IFF1 when a
non-maskable interrupt occurs. When a non-maskable inter­
rupt is accepted, IFF1 is reset to prevent further interrupts
until reenabled by the programmer. Thus, after a non-mask­
able interrupt has been accepted, maskable interrupts are
disabled but the previous state of IFF1 is saved by IFF2

TL/C/5171-27

FIGURE 17. Interrupt Mode 2

7-24

eLK

iNl

ALE

AD{0-7)

A(B-15)

.....,

.u INTA
U1

RFSH

WAIT

1D/1l. SO. Sl

iii

I

°tw is the CPU generated WArT state in response to an interrupt request

Note 1: t5 will only occur in mode 1 and mode 2. During t5 the stack pointer is decremented

Note 2: A jump to the appropriate address occurs here in mode 1 and mode 2. The CPU continues gathering data from the interrupting peripheral in mode 0 for a total of 2-4
machine cycles. In mode 0 cycles M2-M4 have only 1 wait state.

FIGURE 18. Interrupt Acknowledge Machine Cycle

NOTE 2

CD
b
-t
~:
~

(Q

D)
~
C-
O
o
~ -.... 2-
o o
3-
S·
c
(!)

.s

TUC/5171-25

008:lSN

0
0
CO 9.0 Timing and Control (Continued) (.)
C/) so that the complete state of the CPU just prior to the non- Operation IFF1 IFF2 Comment Z

maskable interrupt may be restored. The method of restor- Initialize 0 0 Interrupt Disabled
ing the status of IFF1 is through the execution of a Return • Non-Maskable Interrupt (RETN) instruction. Since this in-

• struction indicates that the non-maskable interrupt service
routine is completed, the contents of IFF2 are now copied •
back into IFF1, so that the status of IFF1 just prior to the EI Interrupt Enabled after
acceptance of the non-maskable interrupt will be automati- • next instruction
cally restored. •
Figure 19 depicts the status of the flip flops during a sample •
series of interrupt instructions. INTR 0 0 Interrupt Disable and INTR
Interrupt Control Register. The interrupt control register Being Serviced
(ICR) is a 4-bit, write only register that provides the program- •
mer with a second level of maskable control over the four •
maskable interrupt inputs. •
The ICR is internal to the NSC800 CPU, but is addressed EI Interrupt Enabled after
through the I/O space at I/O address port X'BB. Each bit in next instruction
the register controls a mask bit dedicated to each maskable

RET Interrupt Enabled
interrupt, RSTA, RSTB, RSTC and INTR. For an interrupt
request to be accepted on any of these inputs, the corre- •
sponding mask bit in the ICR must be set (= 1) and IFF1
and IFF2 must be set. This provides the programmer with •
control over individual interrupt inputs rather than just a sys- NMI 0 Interrupt Disabled
tem wide enable or disable. •

•
•

lEA IEB lEe lEI RETN Interrupt Enabled

•
TL/C/5171-26

INTR 0 0 Interrupt Disabled
Bit Name Function •
0 lEI Interrupt Enable for INTR

IEC Interrupt Enable for RSTC •
2 IEB Interrupt Enable for RSTB NMI 0 0 Interrupt Disabled and NMI
3 lEA Interrupt Enable for RSTA • Being Serviced

For example: In order to enable RSTB, CPU interrupts must •
be enabled and IEB must be set. •
At reset, lEI bit is set and other mask bits lEA, IEB, IEC are RETN 0 0 Interrupt Disabled and INTR

cleared. This maintains the software compatibility between • Being Serviced

NSC800 and Z80A. •
Execution of an I/O block move instruction will not affect •
the state of the interrupt control bits. The only two instruc- EI Interrupt Enabled after

tions that will modify this write only register are OUT (C), r next instruction
and OUT (N), A. RET Interrupt Enabled

•
•
•

FIGURE 19. IFF1 and IFF2 States Immediately after the
Operation has been Completed

7-26

NSC800 SOFTWARE

10.0 Introduction
This chapter provides the reader with a detailed description
of the NSC800 software. Each NSC800 instruction is de­
scribed in terms of opcode, function, flags affected, timing,
and addressing mode.

11.0 Addressing Modes
The following sections describe the addressing modes sup­
ported by the NSC800. Note that particular addressing
modes are often restricted to certain types of instructions.
Examples of instructions used in the particular addressing
modes follow each mode description.

The 10 addressing modes and 158 instructions provide a
flexible and powerful instruction set.

11.1 REGISTER

The most basic addressing mode is that which addresses
data in the various CPU registers. In these cases, bits in the
opcode select specific registers that are to be addressed by
the instruction.

Example:

Instruction: Load register B from register C

Mnemonic: LD B,C

Opcode:

1 0t1l 0, 0, 01 0, 0, 1 1 f + ---Selects register C
I.--------Selects register B

~-------------------Deflnesopcode

TL/C/5171-50

In this instruction, both the Band C registers are addressed
by opcode bits.

11.2 IMPLIED

The implied addressing mode is an extension to the register
addressing mode. In this mode, a specific register, the accu­
mulator, is used in the execution of the instruction. In partic­
ular, arithmetic operations employ implied addressing, since
the A register is assumed to be the destination register for
the result without being specifically referenced in the op­
code.

Example:

Instruction: Subtract the contents of register 0 from the
Accumulator (A register)

Mnemonic: SUB 0

Opcode:

1,0,0,1,010,1,01

f tL..--_ _ - Selects register 0
..... --------Oeflnes opcode

TLIC/5171-51

In this instruction, the 0 register is addressed with register
addressing, while the use of the A register is implied by the
opcode.

7-27

11.3 IMMEDIATE

The most straightforward way of introducing data to the
CPU registers is via immediate addressing, where the data
is contained in an additional byte of multi-byte instructions.

Example:

Instruction: Load the E register with the constant value

X'7C.

Mnemonic: LD

Opcode:

E,X'7C

1 0 , 0 1 0 , 1 , 1 11 , 1 , 0 ~ First Byte ..
--------Selects register E

1 0 , 1 , 1 , 1 , 1 , 1 , 0 ,OJ-- Second Byte
i .. ---------X'7C

TL/C/5171-52

In this instruction, the E register is addressed with register
addressing, while the constant X'7C is immediate data in the
second byte of the instruction.

11.4 IMMEDIATE EXTENDED

As immediate addressing allows 8 bits of data to be sup­
plied by the operand, immediate extended addressing al­
lows 16 bits of data to be supplied by the operand. These
are in two additional bytes of the instruction.

Example:

Instruction: Load the 16-bit IX register with the constant

value X'ABCD.

Mnemonic: LD IX,X'ABCD

Opcode:

11 , 1 1 0 11 , 1 , 1 , 0 , 1 ~ Defines opcode t (First Byte)
..... -------Selects I X register

1 0 , 0, 1 , 0 , 0 , 0 , 0, 1 ~ Defines opcode
(Second Byte)

11 , 1 , 0, 0 , 1 , 1 , 0, 1 ~ Constant CD
(Third Byte)

11 ,0, 1 , 0 , 1 , 0 , 1 , 1 ~ Constant AB
(Fourth Byte)

TL/C/5171-53

In this instruction, register addressing selects the IX regis­
ter, while the 16-bit quanity X'ABCD is immediate data sup­
plied as immediate extended format.

z
en o
C)
o
o

•

o o
CO o
til
Z

11.0 Addressing Modes (Continued)

11.5 DIRECT ADDRESSING

Direct addressing is the most straightforward way of ad­
dressing supplies a location in the memory space. Direct
addressing, 16-bits of memory address information in two
bytes of data as part of the instruction. The memory address
could be either data, source of destination, or a location for
program execution, as in program control instructions.

Example:

Instruction: Jump to location X'0377

Mnemonic: JP X'0377

Opcode:

11 , 1 , ° , ° , ° , ° , 1 , 1 I -Defines Jump opcode

1 ° , 1 , 1 , 1 , ° , 1 , 1 , 1 I] -Constant X'0377

10,0,0,0,0,0,1,11

This instruction loads the Program Counter (PC) is loaded
with the constant in the second and third bytes of the in­
struction. The program counter contents are transferred via
direct addressing.

11.6 REGISTER INDIRECT

Next to direct addressing, register indirect addressing pro­
vides the second most straightforward means of addressing
memory. In register indirect addressing, a specified register
pair contains the address of the desired memory location.
The instruction references the register pair and the register
contents define the memory location of the operand.

Example:

Instruction: Add the contents of memory location X'0254 to
the A register. The HL register contains X'0254.

Mnemonic: ADD A,(HL)

Opcode

11,0,0,0,0,1,1,01

This instruction uses implied addressing of the A and HL
registers and register indirect addressing to access the data
pointed to by the HL register.

11.7 INDEXED

The most flexible mode of memory addressing is the in­
dexed mode. This is similar to the register indirect mode of
addressing because one of the two index registers (IX or IY)
contains the base memory address. In addition, a byte of
data included in the instruction acts as a displacement to
the address in the index register.

7-28

Indexed addressing is particularly useful in dealing with lists
of data.

Example:

Instruction: Increment the data in memory location X'1020.

The IY register contains X'1000.

Mnemonic: INC (lY + X'20)

Opcode:

r--------Selects I Y regIster

o

o o 0
Oeflneslncrernent
opcode

I 0, 0, 1 , 0 , 0, 0 , 0 , 0 I-Olsplacernentto I Y
Index regIster
(ThIrd Byte)

TL/C/5171-54

The indexed addressing mode uses the contents of index
registers IX or IY along with the displacement to form a
pointer to memory.

11.8 RELATIVE

Certain instructions allow memory locations to be ad­
dressed as a position relative to the PC register. These in­
structions allow jumps to memory locations which are off­
sets around the program counter. The offset, together with
the current program location, is determined through a dis­
placement byte included in the instruction. The formation of
this displacement byte is explained more fully in the "In­
structions Set" section.

Example:

Instruction: Jump to a memory location 7 bytes beyond the
current location.

Mnemonic: JR $+7
Opcode:

1 ° , ° , ° , 1 , 1 , ° , ° , ° I-Defines relative Jump
opcode

1 ° , ° , ° , ° , ° , 1 , ° , 1 I-DlsPlacementto be
applied to the PC

The program will continue at a location seven locations past
the current PC.

11.0 Addressing Modes (Continued)

11.9 MODIFIED PAGE ZERO

A subset of NSC800 instructions (the Restart instructions)
provides a code-efficient single-byte instruction that allows
CALLs to be performed to anyone of eight dedicated loca­
tions in page zero (locations X'OOOO to X'OOFF). Normally, a
CALL is a 3-byte instruction employing direct memory ad­
dressing.

Example:

Instruction: Perform a restart call to location X'0028.

Mnemonic: RST X'28

Opcode:

,I, I Defines restart operation
~ I I

11,111,0,111,1,11
I I

t ------Selects one of eight
restart locations

TL/C/5171-55

1 p 1 OOH 1 08H 1 10H 1 18H 1 20H 1 28H 1 30H 1 38H 1

1 t 1 000 1 001 1 010 1 011 1100 1101 11101111 1

7-29

Program execution continues at location X'0028 after exe­
cution of a single-byte call employing modified page zero
addressing.

11.10 BIT

The NSC800 allows setting, resetting, and testing of individ­
ual bits in registers and memory data bytes.

Example:

Operation: Set bit 2 in the L register

Mnemonic: SET 2,L

Opcode:

11 , 1 , 0, 0, 1 , 0, 1 , 1 I-Defines set bit
opcode

11,110,1,011,0,11 t t Selects L register
..... _-Selects bit 2 of selected byte

TLlC/5171-56

Bit addressing allows the selection of bit 2 in the L register
selected by register addressing.

z en
o
Q)
o
o

C) r---,
C)
co
o en z

12.0 Instruction Set
This section details the entire NSC800 instruction set in
terms of

The instructions are grouped in order under the following
functional headings:

• Opcode • 8-Bit Loads

• Instruction • 16-Bit Loads

• Function • 8-Bit Arithmetic

• Timing • 16-Bit Arithmetic

• Addressing Mode • Bit Set, Reset, and Test

• Rotate and Shift

• Exchanges

• Memory Block Moves and Searches

• Input/Output

• CPU Control

• Program Control

12.1 Instruction Set Index
Alphabetical

Assembly
Mnemonic

ADCA,m1
ADCA,n

ADCA,r
ADCHL,pp

ADDA,m1
ADDA,n
ADDA,r

ADDHL,pp

ADDIX,pp
ADDIV,pp

ADDss,pp

ANDm1
ANDn

ANDr

BITb,m1
BITb,r

CALLcc,nn
CALL nn

CCF

CPm1
CPn

CPr
CPD
CPDR

CPI
CPIR

CPL

DAA
DECm1
DEer
DECrr

Operation

Add, with carry, memory location contents to Accumulator
Add, with carry, immediate data n to Accumulator
Add, with carry, register r contents to Accumulator
Add, with carry, register pair pp to HL

Add memory location contents to Accumulator
Add immediate data n to Accumulator
Add register r contents to Accumulator
Add register pair pp to HL
Add register pair pp to IX
Add register pair pp to IV

Add register pair pp to contents of register pair ss

Logical 'AND' memory contents to Accumulator
Logical 'AND' immediate data to Accumulator
Logical 'AND' register r contents to Accumulator

Test bit b of location m1
Test bit b of register r

Call subroutine at location nn if condition cc is true

Unconditional call to subroutine at location nn
Complement carry flag

Compare memory contents with Accumulator
Compare immediate data n with Accumulator
Compare register r to contents with Accumulator
Compare location (HL) and Accumulator, decrement HL and BC
Compare location (HL) and Accumulator, decrement HL and Be;

repeat until Be = 0

Compare location (HL) and Accumulator, increment HL, decrement Be
Compare location (HL) and Accumulator, increment HL, decrement Be;

repeat until BC = 0

Complement Accumulator (1 's complement)

Decimal adjust Accumulator

Decrement data in memory location m1
Decrement register r contents
Decrement register pair rr contents

7-30

12.1 Instruction Set Index (Continued)

Alphabetical
Assembly
Mnemonic

DI
DJNZ,d

EI
EX (SP),ss
EXAF,A'F'
EXDE,HL
EXX

HALT

IMO
1M 1
1M2
INA,(n)
INr,(C)
INCm1
INCr
INCrr
IND
INDR
INI
INIR

JP cC,nn
JPnn
JP(ss)
JRd
JR kk,d

LDA,I
LDA,m2
LDA,R
LDI,A
LDm1,n
LD m1.r
LD m2,A
LD (nn),rr
LDr,m1
LDr,n
LDR,A
LD rd,rs
LD rr,(nn)
LD rr,nn
LDSP,ss
LDD
LDDR
LDI
LDIR

NEG
NOP

Operation

Disable interrupts
Decrement B and jump relative B =1= 0

Enable interrupts
Exchange the location (SP) with register ss
Exchange the contents of AF and A'F'
Exchange the contents of DE and HL
Exchange the contents of BC, DE and HL with the contents

of B'C, D'E' and H'L', respectively

Halt (wait for interrupt or reset)

Set interrupt mode 0
Set interrupt mode 1
Set interrupt mode 2
Load Accumulator with input from device (n)
Load register r with input from device (C)
Increment data in memory location m1
Increment register r
Increment contents of register pair rr
Load location (HL) with input from port (C), decrement HL and B
Load location (HL) with input from port (C), decrement HL and B; repeat until B = 0
Load location (HL) with input from port (C), increment HL, decrement B
Load location (HL) with input from port (C), increment HL, decrement B;

repeat until B = 0

Jump to location nn, if condition cc is true
Unconditional jump to location nn
Unconditional jump to location (ss)
Unconditional jump relative to PC + d
Jump relative to PC + d, if kk true

Load Accumulator with register I contents
Load Accumulator from location m2
Load Accumulator with register R contents
Load register I with Accumulator contents
Load memory with immediate data n
Load memory from register r
Load memory from Accumulator
Load memory location nn with register pair rr
Load register r from memory
Load register with immediate data n
Load register R from Accumulator
Load destination register r d from source register r s
Load register pair rr from memory location nn
Load register pair rr with immediate data nn
Load SP from register pair ss
Load location (DE) with location (HL), decrement DE, HL and BC
Load location (DE) with location (HL), decrement DE, HL and BC; repeat until BC = 0
Load location (DE) with location (HL), increment DE and HL, decrement BC
Load location (DE) with location (HL), increment DE and HL, decrement BC;

repeat until BC = 0

Negate Accumulator (2's complement)
No operation

7-31

z
en o
0)
C)
C)

,.

C) .-------------------~---.
C)
co o
U)
z

12.1 Instruction Set Index (Continued)

Alphabetical
Assembly
Mnemonic

ORm1
ORn
ORr

OTDR
OTIR

OUT (C),r

OUT (n),A
OUTD
OUTI

POPqq
PUSHqq

RESb,m1
RES b,r
RET

RETcc
RETI

RETN

RLm1
RLr
RLA

RLCm1
RLCr

RLCA
RLD

RRm1
RRr
RRA

RRCm1
RRCr

RRCA
RRD

RSTP

SBCA,m1
SBCA,n

SBCA,r
SBCHL,pp

SCF

SETb,m1
SETb,r

SLAm1
SLAr

SRAm1
SRAr

SRLm1
SRLr

SUBm1
SUBn
SUBr

XORm1
XORn
XORr

Operation

Logical 'OR' of memory location contents and accumulator
Logical 'OR' of immediate data n and Accumulator
Logical 'OR' of register r and Accumulator
Load output port (C) with location (HL), decrement HL and B; repeat until B = 0

Load output port (C) with location (HL), increment HL, decrement B;
repeat until B = 0

Load output port (C) with register r
Load output port (n) with Accumulator
Load output port (C) with location (HL), decrement HL and B
Load output port (C) with location (HL), increment HL, decrement B

Load register pair qq with top of stack
Load top of stack with register pair qq

Reset bit b of memory location m1
Reset bit b of register r
Unconditional return from subroutine
Return from subroutine, if cc true
Unconditional return from interrupt
Unconditional return from non-maskable interrupt
Rotate memory contents left through carry
Rotate register r left through carry
Rotate Accumulator left through carry
Rotate memory contents left circular
Rotate register r left circular
Rotate Accumulator left circular
Rotate digit left and right between Accumulator and memory (HL)
Rotate memory contents right through carry
Rotate register r right through carry
Rotate Accumulator right through carry
Rotate memory contents right circular
Rotate register r right circular
Rotate Accumulator right circular
Rotate digit right and left between Accumulator and memory (HL)
Restart to location P

Subtract, with carry, memory contents from Accumulator

Subtract, with carry, immediate data n from Accumulator
Subtract, with carry, register r from Accumulator
Subtract, with carry, register pair pp from HL
Set carry flag

Set bit b in memory location m1 contents

Set bit b in register r

Shift memory contents left, arithmetic
Shift register r left, arithmetic
Shift memory contents right, arithmetic

Shift register r right, arithmetic

Shift memory contents right, logical
Shift register r right, logical
Subtract memory contents from Accumulator
Subtract immediate data n from Accumulator
Subtract register r from Accumulator

Exclusive 'OR' memory contents and Accumulator
Exclusive 'OR' immediate data n and Accumulator
Exclusive 'OR' register r and Accumulator

7-32

12.0 Instruction Set (Continued)

12.2 INSTRUCTION SET MNEMONIC NOTATION

In the following instruction set listing, the notations used are
shown below.

b: Designates one bit in a register or memory location.
Bit address mode uses this indicator.

cc: Designates condition codes used in conditional
Jumps, Calls, and Return instruction; may be:

NZ = Non-Zero (Z flag = 0)

Z = Zero (Z flag= 1)

NC = Non-Carry (C flag = 0)

C = Carry (C fJag= 1)

PO = Parity Odd or No Overflow (PIV=O)

PE = Parity Even or Overflow (PIV= 1)

P = Positive (S = 0)

M = Negative (S = 1)

d: Designates an 8-bit signed complement displace­
ment. Relative or indexed address modes use this
indicator.

kk: Subset of cc condition codes used in conjunction with
conditional relative jumps; may be NZ, Z, NC or C.

m1: DeSignates (HL), (IX + d) or (IY + d). Register indirect
or indexed address modes use this indicator.

m2: DeSignates (BC), (DE) or (nn). Register indirect or di-
rect address modes use this indicator.

n: Any 8-bit binary number.

nn: Any 16-bit binary number.

p: Designates restart vectors and may be the hex values
0, 8, 10, 18, 20, 28, 30 or 38. Restart instructions
employing the modified page zero addressing mode
use this indicator.

pp: Designates the BC, DE, SP or any 16-bit register used
as a destination operand in 16-bit arithmetic opera­
tions employing the register address mode.

qq: Designates BC, DE, HL, A, F, IX, or IY during opera­
tions employing register address mode.

r: Designates A, B, C, D, E, H or L. Register addressing
modes use this indicator.

rr: Designates BC, DE, HL, SP, IX or IY. Register ad­
dressing modes use this indicator.

ss: DeSignates HL, IX or IY. Register addressing modes
use this indicator.

XL: Subscript L indicates the lower-order byte of a 16-bit
register.

XH: Subscript H indicates the high-order byte of a 16-bit
register.

(): parentheses indicate the contents are considered a
pointer address to a memory or 1/0 location.

7-33

z en
0
0)

12.3 ASSEMBLED OBJECT CODE NOTATION 0
0

Register Codes:
r Register rp Register rs Register

000 B 00 BC 00 BC
001 C 01 DE 01 DE
010 D 10 HL 10 HL
011 E 11 5P 11 AF

100 H pp Register qq Register
101 L 00 BC 00 BC
111 A 01 DE 01 DE

10 IX 10 HL
11 5P 11 AF

Conditions Codes:
cc Mnemonic True Flag Condition

000 NZ Z=O
001 Z Z=1
010 NC C=O

011 C C=1

100 PO PIV=O
101 PE PIV=1
110 P 5=0
111 M 5=1

kk Mnemonic True Flag Condition
00 NZ Z=O
01 Z Z=1
10 NC C=O
11 C C=1

Restart Addresses:
t T

000 X'OO
001 X'08
010 X'10
011 X'18
100 X'20
101 X'28
110 X'30
111 X'38

fII

g r---~
co o
tJ)
z

12.4 a-Bit Loads
REGISTER TO REGISTER

LO rd, rs
Load register r d with r s:

r d ~ r s No flags affected
76543210

10 , 1 I ,rd, , rs ,

Timing: M cycles-1

T states-4

Addressing Mode: Register

LO A,I

Load Accumulator with the contents of the I register.

A ~ I S: Set if negative result

Z: Set if zero result

H: Reset

PIV: Set according to IFF2 (zero if
interrupt occurs during opera­
tion)

N: Reset

C: Not affected
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

10,1,0,1,0,1,1,11

Timing: M cycles - 2

T states -'- 9 (4, 5)

Addressing Mode: Register

LO I,A

Load Interrupt vector register (I) with the contents of A.

I ~ A No flags affected
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

10,1,0,0,0,1,1,11

Timing: M cycles - 2
T states - 9 (4, 5)

Addressing Mode: Register

LO A,R
Load Accumulator with contents of R register.

A ~ R S: Set if negative result

Z: Set if zero result

H: Reset

PIV: Set according to IFF2 (zero if
interrupt occurs during opera­
tion)

N: Reset

C: Not affected

7-34

7 6 5 4 321 0

11,1,1,0,1,1,0,11

10,1,0,1,1,1,1,11

Timing: M cycles - 2

T states - 9 (4, 5)

Addressing Mode: Register

LO R,A
Load Refresh register (R) with contents of the Accumulator.

R ~ A No flags affected
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

10,1,0,0,1,1,1,11

Timing: M cycles - 2
T states - 9 (4, 5)

Addressing Mode: Register

LO r,n
Load register r with immediate data n.

r ~ n No flags affected
7 6 5 4 3 2 1 0

10,01 ,r, 11,1,01

I n

Timing:

Addressing Mode:

REGISTER TO MEMORY

LO m1, r

M cycles- 2

T states - 7 (4, 3)

Source - Immediate

Destination - Register

Load memory from reigster r.

m1 ~ r No flags affected
7 6 5 4 3 2 1 0

I 0 , 1 , 1 , 1 , 0 I r, 1 LD (HL), r

Timing:

Addressing Mode:

M cycles - 2
T states - 7 (4,3)

Source - Register

Destination - Register Indirect
76543210

I
LD (IX + d), r(for Nx = 0)

1 1 Nx 1 1 1 0 1 I , , , , , , 'LD (IY + d), r(for Nx = 1)

10, 1 , , 1 ,01 ,r ,

d

Timing:

Addressing Mode:

M cycles- 2

T states - 19 (4, 4, 3, 5, 3)

Source - Register

Destination -Indexed

12.4 8-Bit Loads (Continued)

LD m2,A
Load memory from the Accumulator.

m2 ~ A No flags affected
7 6 5 432 1 0

1 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 1 LD (BC), A

1 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 1 LD (DE), A .

Timing: M cycles- 2

T states - 7 (4, 3)
Addressing Mode: Source - Register (Implied)

Destination - Register Indirect
7 6 5 432 1 0

1 0 , 0 , 1 , 1 , 0 , 0 , 1 , 0 I LD (nn), A

n (low-order byte)

n (high-order byte)

Timing: M cycles - 4

Addressing Mode:

LD m1,n

T states - 3 (4, 3, 3, 3)

Source - Register (Implied)

Destination - Direct

Load memory with immediate data.

m1 ~ n No flags affected
765 432 1 0

1 0 , 0 , 1 , 1 I 0 I 1 I 1 I 0 1 LD(HL), n

n

Timing:

Addressing Mode:

M cycles-3

T states-10 (4, 3, 3)

Source-Immediate

Destination-Register Indirect

7 6 5 4 3 2 1 0 LD (IX + d), n(for Nx = 0)

11 I 1 , Nx I 1 I 1 , 1 I 0 , 1 I LD (IY + d), n(for Nx = 1)

d

n

Timing:

Addressing Mode:

M cycles-5

T states-19 (4, 4, 3, 5, 3)

Source-Immediate

Destination-Indexed

7-35

MEMORY TO REGISTER

LD r, m1

Load register r from memory location m1.

r ~ m1 No flags affected
765 4 3 2 1 0

1 0 , 1 1 r I 11 I 1 , 0 1 LD R, (HL)

Timing:

Addressing Mode:

M cycles-2

T states-7 (4, 3)

Source-Register Indirect

Destination-Register

7 6 5 4 3 2 1 0 LDr,(IX + d)(forNx=O)

11 I 1 , Nx I 1 I 1 , 1 , 0 , 1 1 LD r, (IY + d)(for Nx= 1)

I r I 11 I 1 I 0 1

d

Timing:

Addressing Mode:

LD A,m2

M cycles-5

T states-19 (4, 4, 3, 5,3)

Source-Indexed

Destination-Register

Load the Accumulator from memory location m2.

A ~ m2 No flags affected

7 6 5 4 3 2 1 0 LD A, (BC)

10,0,0,0,1,0,1,01

1 0 , 0 I 0 , 1 I 1 I 0 I 1 I 0 1 LD A, (DE)

Timing: M cycles-2

T states-7 (4,3)

Addressing Mode: Source-Register Indirect
Destination-Register (Implied)

7 6 5 4 3 2 1 0

1 0 , 0 , 1 , 1 I 1 , 0 , 1 , 0 1 LD A, (nn)

n (low-order byte)

n (high-order byte)

Timing:

Addressing Mode:

M cycles-4

T states-13 (4, 3, 3, 3)

Source-Immediate Extended
Destination-Register (Implied)

z en o
Q)
o
o

•

o o
CO
o
U)
z

12.5 16-Bit Loads
REGISTER TO REGISTER

LD rr, nn
Load 16-bit register pair with immediate data.

rr, ~ nn No flags affected
7 6 5 4 3 2 1 0 LD BC, nn

I ° , ° I rp I ° , ° , ° , 1 I LD DE, nn
LD HL, nn

n (low-order byte)

n (high-order byte)

Timing:

Addressing Mode:

LD SP, nn

M cycles-3

T states-10 (4, 3, 3)

Source-Immediate Extended

Destination-Register
7 6 5 4 3 2 1 0 LD IX, nn (for Nx = 0)
1 , 1 , Nx , 1 , 1 , 1 , ° , 1 LD IY, nn (for NX = 1)

n (low-order byte)

n (high-order byte)

Timing:

Addressing Mode:

LD SP,ss

M cycles-4

T states-14 (4, 4, 3, 3)

Source-Immediate Extended
Destination-Register

Load the SP from 16-bit register ss.

SP ~ ss No flags affected
7 6 5 4 3 2 1 0

11 , 1 , 1 , 1 , 1 , ° , ° , 1 1 LD SP, HL

Timing: M cycles-1

Tstates-6

Addressing Mode: Source-Register

Destination-Register (Implied)

7 6 5 4 3 2 1 0 LD SP, IX (for Nx = 0)

11 , 1 , Nx , 1 , 1 , 1 , ° , 1 1 LD SP, IY (for Nx = 1)

Timing:

Addressing Mode:

M cycles-2
T states-10 (4, 6)

Source-Register
Destination-Register (Implied)

7·36

REGISTER TO MEMORY

LD (nn), rr
Load memory location nn with contents of 16-bit register, rr.

(nn) ~ rrL No flags affected

(nn + 1) ~ rrH
7 6 5 4 321 0

LD (nn), HL
10,0,1,0,0,0,1,01 (note an alternate

opcode below)
n (low-order byte)

n (high-order byte)

Timing: M cycles-5

T states-16 (4, 3, 3, 3, 3)

Addressing Mode: Source-Register

Destination-Direct
7 6 5 4 3 2 1 0 LD (nn), BC

1 , 1 , 1 , ° , 1 , 1 , ° , 1 I LD (nn), DE
LD (nn), HL

° , 1 I rp I ° , ° , 1 , 1 I LD (nn), SP

n (low-order byte)

n (high-order byte)

Timing: M cycles-6
T states-20 (4, 4, 3, 3, 3, 3)

Addressing Mode: Source-Register

Destination-Direct
7 6 5 43210

LD (nn), IX (for Nx = 0)
1 , 1 , Nx , 1 , 1 , 1 , ° , 1 LD (nn) IY (for Nx = 1)

n (low-order byte)

n (high-order byte)

Timing: M cycles-6
T states-20 (4, 4, 3, 3, 3, 3)

Addressing Mode: Source-Register

Destination-Direct

12.5 16-Bit Loads (Continued)

PUSH qq
Push the contents of register pair qq onto the memory
stack.

(SP - 1) ~ qqH No flags affected

(SP-2) ~qqL

SP ~ SP - 2
7 6 5 4 3 2 1 0 PUSH BC

I ~ 1 I rs I 0 1 0 1 I PUSH DE
. I . I . I I I . PUSH HL

Timing:

Addressing Mode:

PUSH AF

M cycles-3

T states-11 (5, 3, 3)

Source-Register

Destination-Register Indirect

(Stack)
76543210

PUSH IX (for NX = 0)

11 I 1 I Nx I 1 I 1 I 1 I 0 I 1 1 PUSH IY (for NX = 1)

Timing:

Addressing Mode:

MEMORY TO REGISTER

LD rr, (nn)

M cycles-3

T states-15 (4, 5,3,3)

Source-Register

Destination-Register Indirect

(Stack)

Load 16-bit register from memory location nn.

rrL ~ (nn) No flags affected

rrH ~ (nn + 1)
7 6 543 2 1 0

LD HL, (nn)
1 0 I 0 I 1 I 0 I 1 I 0 I 1 I 0 1 (note an alternate

opcode below)
n (low-order byte)

n (high-order byte)

Timing:

Addressing Mode:

M cycles-5

T states-16 (4, 3, 3, 3, 3)

Source-Direct

Destination-Register

7-37

7 6 5 4 3 2 1 0 LD BC, (nn)

n (low-order byte)

n (high-order byte)

Timing:

Addressing Mode:

LD DE, (nn)

LD HL, (nn)

LD SP, (nn)

M cycles-6

T states-20 (4, 4, 3, 3, 3, 3)

Source-Direct

Destination-Register
7 6 5 43210

LD IX, (nn)(for Nx = 0)
1 I 1 I Nx I 1 I 1 I 1 I 0 I 1 LD IY, (nn) (for NX = 1)

n (low-order byte)

n (high-order byte)

Timing: M cycles-6

Addressing Mode:

POP qq

T states-20 (4, 4, 3, 3, 3, 3)

Source-Direct

Destination-Register

Pop the contents of the memory stack to register qq.

qqL ~ (SP) No flags affected

qqH ~ (SP + 1)

SP ~ SP + 2
7 6 5 4 3 2 1 0 POP BC

11 1 1 r,s 1 0 0 0 1 1 POP DE
. I . . . I I I . POP HL

Timing:

Addressing Mode:

POPAF

M cycles-3

T states-10 (4, 3, 3)

Source-Register Indirect
(Stack)

Destination-Register
7 6 5 43210

POP IX (for Nx = 0)
11 I 1 I Nx I 1 I 1 I 1 I 0 I 1 1 POP IY (for Nx= 1)

Timing:

Addressing Mode:

M cycles-4

T states-14 (4, 4, 3, 3)

Source-Register Indirect
(Stack)

Destination-Register

z en o
co
o
o

•

0
0
CO
0
tJ)
Z

12.6 8-Bit Arithmetic
REGISTER ADDRESSING ARITHMETIC

Hex Hex
Value Value Number

C H C
Op Before

In
Before

In Added After
Upper Lower To

DAA
Digit

DAA
Digit Byte

(Bits 7-4) (Bits 3-0)

0 O-g 0 O-g 00
0 0-8 0 A-F 06
0 O-g 0-3 06

ADD 0 A-F 0 O-g 60
ADC 0 9-F 0 A-F 66
INC 0 A-F 0-3 66

0-2 0 O-g 60
0-2 0 A-F 66
0-3 0-3 66

SUS 0 O-g 0 O-g 00
SSC 0 0-8 1 6-F FA
DEC 7-F 0 O-g AO
NEG 6-F 6-F 9A

ADD A,r

Add contents of register r to the
Accumulator.

A ~ A + r S: Set if negative result

Z: Set if zero result

H: Set if carry from bit 3

PlY: Set according to overflow
condition

N: Reset

C: Set if carry from bit 7
765 432 1 0

\1,0,0,0,0\ ,r,

Timing:

Addressing Mode:

ADC A,r

M cycles-1

T states-4

Source-Register

Destination-Implied

DAA

0
0
0

0
0

Add contents of register r, plus the carry flag, to the Accu­
mulator.

A ~ A + r + CY S: Set if negative result

Z: Set if zero result

H: Set if carry from bit 3

PlY: Set if result exceeds 2's com­
plement range

N: Reset

C: Set if carry from bit 7

7-38

7 6 543 2 1 0

\1,0,0,0,1\ ,r, I
Timing:

Addressing Mode:

SUB r

M cycles-1

T states-4

Source-Register

Destination-Implied

Subtract the contents of register r from the Accumulator.

A ~ A - r S: Set if result is negative

Z: Set if result is zero

H: Set if borrow from bit 4

PlY: Set if result exceeds 8-bit 2's
complement range

N: Set

C: Set according to borrow
7 6 543 2 1 0

\1,0,0,1,0\ r,

Timing:

Addressing Mode:

SBC A,r

M cycles-1

T states-4

Source-Register

Destination-Implied

Subtract contents of register r and the carry bit C from the
Accumulator.

A ~ A - r - CY S: Set if result is negative

Z: Set if result is zero

H: Set if borrow from bit 4

PlY: Set if result exceeds 8-bit 2's
complement range

N: Set

C: Set according to borrow
7 6 5 4 3 2 1 0

\1,0,0,1,1\ ,r,

Timing:

Addressing Mode:

AND r

M cycles-1

T states-4

Source-Register

Destination-Implied

Logically AND the contents of the r register and the Accu­
mulator.

A ~ A 1\ r S: Set if result is negative

Z: Set if result is zero

H: Set

PlY: Set if result parity is even

N: Reset

C: Reset

12.6 8-Bit Arithmetic (Continued)
7 6 543 2 1 0

11,0,1,0,01 r,

Timing:

Addressing Mode:

OR r

M cycles-1

T states-4

Source-Register

Destination-Implied

Logically OR the contents of the r register and the Accumu·
lator.

A+-AVr 5: Set if result is negative

Z: Set if result is zero

H: Reset

PIV: Set if result parity is even

N: Reset

C: Reset
7 6 543 2 1 0

11,0,1,1,01 r,

Timing:

Addressing Mode:

XOR r

M cycles-1

T states-4

Source-Register

Destination-Implied

Logically exclusively OR the contents of the r register with
the Accumulator.

5: Set if result is negative

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Reset
7 6 543 2 1 0

r ,

Timing: M cycles-1

T states-4

Addressing Mode: Source-Register

Destination-Implied

INC r
Increment register r.

r +- r + 1 5: Set if result is negative

Z: Set if result is zero

H: Set if carry from bit 3

P IV: Set only if r was X'7F before
operation

N: Reset

C:N/A

7·39

7 6 5 4 3 2 1 0

10,01 r, 11,0,01

Timing:

Addressing Mode:

CP r

M cycles-1

T states-4

Source-Register

Destination-Register

Compare the contents of register r with the Accumulator
and set the flags accordingly.

A - r 5: Set if result is negative

Z: Set if result is zero

H: Set if borrow from bit 4

P IV: Set if result exceeds S·bit 2's
complement range

N: Set

C: Set according to borrow
7 6 5 4 3 2 1 0

11,0,1,1,1 r,

Timing:

Addressing Mode:

DEC

M cycles-1

T states-4

Source-Register

Destination-Implied

Decrement the contents of register r.

r+-r-1 5: Set if result is negative

Z: Set if result is zero

H: Set according to a borrow from
bit 4

PIV: Set only if r was X'SO prior to
operation

N: Set

C:N/A
765 432 1 0

10,01 r, 11,0,11

Timing:

Addressing Mode:

CPL

M cycles-1

T states-4

Source-Register

Destination-Register

Complement the Accumulator (1's complement).

A +- A S:N/A
Z:N/A
H: Set

PIV: N/A
N: Set

C:N/A

z
(J)
o
co o
o

C) r--
C)
co
o
U)
z

12.6 8-Bit Arithmetic (Continued)
7 6 5 4 321 0

10,0,1,0,1,1,1,11

Timing: M cycles-1

T states-4

Addressing Mode: Implied

NEG
Negate the Accumulator (2's complement).

A+-O - A S: Set if result is negative

Z: Set if result is zero

H: Set according to borrow from
bit 4

PIV: Set only if Accumulator was
X'BO prior to operation

N: Set

C: Set only if Accumulator was not
X'OO prior to operation

7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

10,1,0,0,0,1,0,01

Timing: M cycles-2

T states-8 (4, 4)

Addressing Mode: Implied

CCF
Complement the carry flag.

CY +- CY S: N/A
Z:N/A

H: Previous carry

PIV:N/A
N: Reset

C: Complement of previous carry
7 6 5 4 3 2 1 0

10,0,1,1,1,1,1,11

Timing: M cycles-1

T states-4

Addressing Mode:

SCF
Set the carry flag.

CY +- 1

Implied

S:N/A
Z:N/A
H: Reset

PIV:N/A
N: Reset

C: Set
7 6 5 432 1 0

10,0,1,1,0,1,1,11

Timing: M cycles-1

T states-4

Addressing Mode: Implied

7-40

DAA
Adjust the Accumulator for BCD addition and subtraction
operations. To be executed after BCD data has been oper­
ated upon the standard binary ADD, ADC, INC, SUB, SBC,
DEC or NEG instructions (see "Register Addressing Arith­
metic" table).

S: Set according to bit 7 of result

Z: Set if result is zero

H: Set according to instructions

P IV: Set according to parity of result

N: N/A
C: Set according to instructions

7 6 5 4 3 2 1 0

10,0,1,0,0,1,1,11

Timing: M cycles-1

T states-4

Addressing Mode: Implied

IMMEDIATELY ADDRESSED ARITHMETIC

ADD A,n
Add the immediate data n to the Accumulator.

A+-A+n S: Set if result is negative

Z: Set if result is zero

H: Set if carry from bit 3

PIV: Set if result exceeds B-bit 2's
complement range

N: Reset

C: Set if carry from bit 7
7 6 5 4 3 2 1 0

n

Timing:

Addressing Mode:

ADC A,n

M cycles-2

T states-7 (4, 3)

Source-Immediate

Destination-Implied

Add, with carry, the immediate data n and the Accumulator.

A +- A + n + CY S: Set if result is negative

Z: Set if result is zero

H: Set if carry from bit 3

PIV: Set if result exceeds B-bit 2's
complement range

N: Reset

C: Set according to carry from bit
7

12.6 8-Bit Arithmetic (Continued)
765 4 3 2 1 0

11,1,0,0,1,1,1,01

n

Timing:

Addressing Mode:

SUB n

M cycles-2

T states-7 (4, 3)

Source-Immediate

Destination-Implied

Subtract the immediate data n from the Accumulator.
A ~ A - n S: Set if result is negative

Z: Set if result is zero

H: Set if borrow from bit 4

PIV: Set if result exceeds B-bit 2's
complement range

N: Set

C: Set according to borrow
condition

765 4 3 2 1 0

11,1,0,1,0,1,1,01

n

Timing:

Addressing Mode:

SBC A,n

M cycles-2

T states-7 (4, 3)

Source-Immediate

Destination-Implied

Subtract, with carry, the immediate data n from the Accumu­
lator.

A ~ A - n - CY S: Set if result is negative

Z: Set if result is zero

H: Set if borrow from bit 4

PIV: Set if result exceeds B-bit 2's
complement range

N: Set

C: Set according to borrow
condition

76543 2 1 0

11 , 1 , 0, 1 , 1 , 1 , 1 , 0 1

n

Timing:

Addressing Mode:

M cycles-2

T states-7 (4, 3)

Source-Immediate

Destination-Implied

7-41

AND n
The immediate data n is logically AND'ed to the Accumula­
tor.

A ~ A 1\ n S: Set if result is negative

Z: Set if result is zero

H: Set

P IV: Set if result parity is even

N: Reset

C: Reset
7 6 5 4 3 2 1 0

11,1,1,0,0,1,1,01

n

Timing:

Addressing Mode:

OR n

M cycles-2

T states-7 (4, 3)

Source-Immediate

Destination-Implied

The immediate data n is logically OR'ed to the contents of
the Accumulator.

A ~ A V s S: Set if result is negative

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Reset
7 6 5 4 3 2 1 0

11,1,1,1,0,1,1,01

n

Timing:

Addressing Mode:

XOR n

M cycles-2

T states-7 (4, 3)

Source-Immediate

Destination-Implied

The immediate data n is exclusively OR'ed with the Accu­
mulator.

A ~ A ED n S: Set if result is negative

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Reset

z en
o
CD
o
o

•

o o
CO o en z

12.6 a-Bit Arithmetic (Continued)
7 6 5 4 3 2 1 0

11,1,1,0,1,1,1,01

n

Timing:

Addressing Mode:

CP n

M cycles-2

T states-7 (4, 3)

Source-Immediate

Destination-Implied

Compare the immediate data n with the contents of the Ac­
cumulator via subtraction and return the appropriate flags.
The contents of the Accumulator are not affected.

A - n S: Set if result is negative

Z: Set if result is zero

H: Set if borrow from bit 4

P IV: Set if result exceeds 8-bit 2's
complement range

N: Set

C: Set according to borrow condi­
tion

765 432 1 0

11,1,1,1,1,1,1,01

n 1

Timing:

Addressing Mode:

M cycles-2

T states-7 (4, 3)

Immediate

MEMORY ADDRESSED ARITHMETIC

ADD A,m1

Add the contents of the memory location m1 to the Accumu­
lator.

S: Set if result is negative

Z: Set if result is zero

H: Set if carry from bit 3

P IV: Set if result exceeds 8-bit 2's
complement range

N: Reset

C: Set according to carry from bit
7

765 432 1 0

11 , 0 , 0 , 0 , 0 , 1 , 1 , 0 1 ADD A, (HL)

Timing: M cycles-2

Addressing Mode:

T states-7 (4, 3)

Source-Register Indirect

Destination-Implied

7-42

7 6 5 4 3 2 1 0 ADD A, (IX + d) (for Nx = 0)

11 , 1 , Nx , 1 , 1 , 1 , 0 , 1 1 ADD A, (lY + d) (for Nx = 1)

11,0,0,0,0,1,1,01

d

Timing:

Addressing Mode:

ADC A,m1

M cycles-5

T state5-19 (4, 4, 3, 5, 3)

Source-Indexed

Destination-Implied

Add the contents of the memory location m1 plus the carry
to the Accumulator.

A ~ A + m1 + CY S: Set if result is negative

Z: Set if result is zero

H: Set if carry from bit 3

PIV: Set if result exceeds 8-bit 2's
complement range

N: Reset

C: Set according to carry from bit
7

7 6 5 4 3 2 1 0

11 , 0 , 0 , 0 , 1 , 1 , 1 , 0 1 ADC A, (HL)

Timing: M cycles-2

Addressing Mode:

T states-7 (4, 3)

Source-Register Indirect

Destination-Implied
76543210

11 , 1 , Nx , 1 , 1 , 1 , 0 , 1 1
ADC A, (IX + d) (for Nx = 0)

ADC A, (IY + d) (for Nx= 1)

11,0,0,0,1,1,1,01

d

Timing:

Addressing Mode:

SUB m1

M cycles-5

T states-19 (4, 4, 3, 5, 3)

Source-Indexed

Destination-Implied

Subtract the contents of memory location m1 from the Ac­
cumulator.

A ~ A - m1 S: Set if result is negative

Z: Set if result is zero

H: Set if borrow from bit 4

P IV: Set if result exceeds 8-bit 2's
complement range

N: Set

C: Set according to borrow condi­
tion

12.6 a-Bit Arithmetic (Continued)
7 6 5 4 3 2 1 0

\1 , 0 , 0 , 1 , 0 , 1 , 1 , 0 1 SUB (HL)

Timing: M cycles-2

T states-7 (4, 3)

Addressing Mode: Source-Register Indirect

Destination-Implied
7 6 5 43210

SUB (IX + d) (for NX=O)
\1 , 1 , NX , 1 , 1 , 1 , 0 , 1 1

\1,0,0,1,0,1,1,01

SUB (lY + d)(for NX= 1)

d

Timing:

Addressing Mode:

sec A,m1

M cycles-5

T states-19 (4, 4, 3, 5, 3)

Source-Indexed

Destination-Implied

Subtract, with carry, the contents of memory location m1
from the Accumulator.

A +- A - m1 - CY S: Set if result is negative

Z: Set if result is zero

H: Set if carry from bit 3

P IV: Set if result exceeds 8-bit 2's
complement range

N:Set

C: Set according to borrow
condition

7 6 5 4 3 2 1 0

11 , 0 , 0 , 1 , 1 , 1 , 1 , 0 I SBC A, (HL)

Timing: M cycles-2

Addressing Mode:

76543210

11 , 1 , Nx , 1 , 1 , 1 , 0 , 1 I
11,0,0,1,1,1,1,01

d

Timing:

Addressing Mode:

T states-7 (4, 3)

Source-Register Indirect

Destination-Implied

SBC A, (IX + d) (for Nx = 0)

SBC A, (IY + d) (for Nx= 1)

M cycles-5

T states-19 (4, 4, 3, 5, 3)

Source-I ndexed

Destination-Implied

7-43

AND m1
The data in memory location m1 is logically AND'ed to the
Accumulator.

A +- A 1\ m1 S: Set if result is negative

Z: Set if result is zero

H: Set

P IV: Set if result parity is even

N: Reset

C: Reset
7 6 5 4 3 2 1 0

\1 I 0 , 1 , 0 I 0 , 1 , 1 , OlAND (HL)

Timing: M cycles-2

Addressing Mode:

T states-7 (4, 3)

Source-Register Indirect

Destination-Implied
7 6 5 43210

AND (IX + d) (for Nx = 0)

AND (IY + d)(for Nx= 1)
\1 , 1 , Nx , 1 I 1 , 1 , 0 , 1 I

d

Timing:

Addressing Mode:

OR m1

M cycles-5

T states-19 (4, 4, 3, 5, 3)

Source-Indexed

Destination-Implied

The data in memory location m1 is logically OR'ed with the
Accumulator.

A +- A V m1 S: Set if result is negative

Z: Set if result is zero

H: Reset

PIV: Set if result parity is even

N: Reset

C: Reset
7 6 5 4 3 2 1 0

\1 , 0 , 1 , 1 I 0 , 1 I 1 , 0 1 OR (HL)

Timing: M cycles-2

T states-7 (4,3)

Addressing Mode: Source-Register Indexed

Destination-Implied
7 6 5 43210

OR (IX + d) (for Nx = 0)

d

Timing:

Addressing Mode:

OR (IY + d)(for Nx = 1)

M cycles-5

T states-19 (4, 4, 3, 5, 3)

Source-Indexed

Destination-Implied

z
(J)
o
co
o
o

•

Q
Q
co
o en z

12.6 8-Bit Arithmetic (Continued)

XOR m1

The data in memory location m1 is exclusively OR'ed with
the data in the Accumulator.

A ~ A ED m1 S: Set if result is negative

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Reset
7 6 5 432 1 0

11 , 0 , 1 , 0 , 1 , 1 , 1 , 0 I XOR (HL)

Timing:

Addressing Mode:

M cycles-2

T states-7 (4, 3)

Source-Register Indexed

Destination-Implied
7 6 5 43210

XOR (IX + d) (for Nx = 0)

XOR (IY + d) (for Nx= 1)
11 , 1 I Nx , 1 , 1 , 1 , 0 , 1 I

d

Timing:

Addressing Mode:

CP m1

M cycles-5

T states-19 (4, 4, 3, 5, 3)

Source-Indexed

Destination-Implied

Compare the data in memory location m1 with the data in
the Accumulator via subtraction.

A - m1 S: Set if result is negative

Z: Set if result is zero

H: Set if borrow from bit 4

PIV: Set if result exceeds 8-bit 2's
complement range

N:Set

C: Set according to borrow
condition

7 6 5 4 3 2 1 0

11 , 0 , 1 , 1 , 1 , 1 , 1 I 0 I CP (HL)

Timing: M cycles-2

T states-7 (4, 3)

Addressing Mode: Source-Register Indirect

Destination-Implied
43210 7 6 5

CP (IX + d) (for Nx = 0)
11 , 1 , Nx , 1 , 1 , 1 , 0 , 1 I

CP (IY + d) (for Nx= 1)

d

7-44

Timing:

Addressing Mode:

INC m1

M cycles-5

T states-19 (4,4,3,5,3)

Source-Indexed

Destination-Implied

Increment data in memory location m1'

m1 ~ m1 + 1 S: Set if result is negative

Z: Set if result is zero

H: Set according to carry from bit
3

P IV: Set if data was X'7F before op­
eration

N: Reset

C:N/A
7 6 5 4 3 2 1 0

I 0 , 0 , 1 , 1 , 0 , 1 , 0 , 0 I INC (HL)

Timing: M cycles-3

T states-11 (4,4,3)

Addressing Mode: Source-Register Indexed

Destination-Register Indexed
7 6 5 43210

I NC (IX + d)(for Nx = 0)

INC (IY + d)(for Nx= 1)
11 ! 1 ! Nx I 1 , 1 , 1 ! 0 , 1 1

,1,0,1,0,01

d

Timing:

Addressing Mode:

DEC

M cycles-6

T states-23 (4, 4, 3, 5, 4, 3)

Source-Indexed

Destination-Indexed

Decrement data in memory location m1.

m1 ~ m1 - 1 S: Set if result is negative

Z: Set if result is zero

H: Set according to borrow from
bit 4

PIV: Set only if m1 was X'80 before
operation

N: Set

C:N/A

~--~z

12.6 a-Bit Arithmetic (Continued)
7 6 5 4 3 2 1 0

1 0 , 0 , 1 , 1 , 0 , 1 , 0 , 1 1 DEC (HL)

Timing: M cycles - 3

Addressing Mode:

T states - 11 (4, 4, 3)

Source - Register Indexed

Destination - Register In·
dexed

7 6 5 43210
DEC (IX + d) (for NX = 0)

DEC (IY + d) (for Nx = 1)
11 , 1 , Nx , 1 , 1 , 1 , 0 , 1 1

10,0, ,1,0,1,0,11

d

Timing: M cycles - 6

Addressing Mode:

T states - 23 (4, 4, 3, 5, 4, 3)

Source -Indexed

Destination - Indexed

12.7 16-Bit Arithmetic
ADD 88, pp
Add the contents of the 16·bit register rp or pp to the con·
tents of the 16·bit register ss.

ss +- ss + rp S: N/A
or Z:N/A

ss +- ss + pp H: Set if carry from bit 11

PIV:N/A

N: Reset

C: Set if carry from bit 15
7 6 5 4 3 2 1 0

1 0 , 0 1 rp 11, 0 , 0 , 1 1 ADD HL, rp

Timing:

Addressing Mode:

M cycles- 3

T states - 11 (4, 4, 3)

Source - Register

Destination - Register
7 6 5 4 3 2 1 0

ADD IX, pp (for Nx = 0)
11 , 1 , Nx , 1 , 1 , 1 , 0 , 1 1

ADD IY, pp (for Nx = 1)

1 0 , 0 1 pp 11, 0 , 0 , 1 1

Timing:

Addressing Mode:

ADC HL,pp

M cycles - 4

T states - 15 (4, 4, 4, 3)

Source - Register

Destination - Register

The contents of the 16·bit register pp are added, with the
carry bit, to the HL register.

HL +- HL + pp + CY

S: Set if result is negative

Z: Set if result is zero

H: Set according to carry out of bit
11

7·45

P IV: Set if result exceeds 16·bit 2's
complement range

N: Reset

C: Set if carry out of bit 15
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

1 0 , 1 1 pp 11, 0 , 1 , 0 1

Timing:

Addressing Mode:

sec HL, pp

M cycles- 4
T states - 15 (4, 4, 4, 3)

Source - Register

Destination - Register

Subtract, with carry, the contents of the 16·bit pp register
from the 16·bit HL register.

HL +- HL - pp - CY

S: Set if result is negative

Z: Set if result is zero

H: Set according to borrow from
bit 12

PIV: Set if result exceeds 16·bit 2's
complement range

N: Set

C: Set according to borrow condi·
tion

7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

1 0 , 1 1 pp 1 0 , 0 , 1 , 0 I
Timing:

Addressing Mode:

INC rr

M cycles- 4
T states - 15 (4, 4, 4, 3)

Source - Register

Destination - Register

Increment the contents of the 16·bit register rr.

rr +- rr + 1 No flags affected
7 6 5 4 3 2 1 0 INC BC

I 0 0 1 rp I 0 0 1 1 I INC DE
. , . _ . , , , . INC HL

Timing:

INCSP

M cycles-1

T states - 6

Addressing Mode: Register
76543210

11 , 1 , Nx , 1 , 1 , 1 , 0 , 1 I
INC IX (for Nx=O)

INC IY (for Nx= 1)

Timing: M cycles-2

T states - 10 (4, 6)

Addressing Mode: Register

en
o
(X)
o
o

fII

Q r---~
Q
co
o
U)
z

12.7 16-Bit Arithmetic (Continued)

DEC rr
Decrement the contents of the 16·bit register rr.

rr +- rr - 1 No flags affected
7 6 5 4 3 2 1 0 DEC BC

1
0 0 1 ~p 11 0 1 1 1 DEC DE _ , _ _ _ , , , _ DEC HL

Timing:

DECSP

M cycles-1

T states-6

Addressing Mode: Register
76543210

DEC IX (for Nx= 0)
11 , 1 , Nx , 1 , 1 , 1 , 0 , 1 1

- - - - DEC IY (for Nx = 1)

Timing: M cycles - 2

T states -10 (4, 6)

Addressing Mode: Register

12.8 Bit Set, Reset, and Test
REGISTER

SET b, r

Bit b in register r is set.

Rb +- 1 No flags affected
7 6 5 4 3 2 1 0

11,1,0,0,1,0,1,11

Timing:

Addressing Mode:

RES b, r

r ,

M cycles-2

T states - 8 (4, 4)

Bit/Register

Bit b in register r is reset.

rb +- 0 No flags affected
7 654 3 2 1 0

11,1,0,0,1,0,1,11

Timing:

Addressing Mode:

BIT b,r

r ,

M cycles- 2

T states - 8 (4, 4)

Bit/Register

Bit b in register r is tested with the result put in the Z flag.

Z +- rb S: Undefined

Z: Inverse of tested bit

H: Set

PlY: Undefined

N: Reset

C:N/A

7·46

7 6 5 432 1 0

11,1,0,0,1,0,1,11

10 , 1 1 ,b, r ,

Timing:

Addressing Mode:

MEMORY

SET b,m1

M cycles- 2

T states - 8 (4, 4)

Bit/Register

Bit b in memory location m1 is set.

m1b +- 1 No flags affected
7 6 5 432 1 0

11 , 1 , 0 , 0 , 1 , 0 , 1 , 1 1 SET b, (HL)

Timing: M cycles- 4

T states - 15 (4, 4, 4, 3)

Addressing Mode: Bit/Register Indirect
76543210

1 , 1 , Nx , 1 , 1 , 1 , 0 , 1

d

Timing:

Addressing Mode:

RES b, m1

SET b, (IX + d) (for Nx = 0)

SET b, (IY+d) (for Nx= 1)

M cycles- 6

T states - 23 (4, 4, 3, 5, 4, 3)

Bit/Indexed

Bit b in memory location m1 is reset.

m1b +- 0 No flags affected
765 4 3 2 1 0

11 , 1 , 0 , 0, ,0, ,1 1 RES b, (HL)

11 , 0 1 ,b, , 0 1

Timing: M cycles- 4

T states - 15 (4, 4, 4, 3)

Addressing Mode: Bit/Register Indirect
76543210

11 , 1 , Nx , 1 , 1 , 1 , 0 , 1

d

Timing:

Addressing Mode:

RES b, (IX + d) (for Nx = 0)

RES b, (IY+d) (for Nx= 1)

M cycles- 6

T states - 23 (4, 4, 3, 5, 4, 3)

Bitllndexed

12.8 Bit Set, Reset, and Test (Continued)

BIT B,m1
Bit b in memory location m1 is tested via the Z flag.

Z ~ m1b S: Undefined

Z: Inverse of tested bit

H: Set

PIV: Undefined

N: Reset

C:N/A
7 6 5 4 3 2 1 0

11 , 1 , 0 , 0 , 1 , 0 , 1 , 1 1 BIT b, (HL)

10,11 ,b, 11,1,01

Timing: M cycles - 3

T states - 12 (4, 4, 4)

Addressing Mode: Bit/Register Indirect
76543210

BIT b, (IX + d) (for Nx = 0)
1 , 1 , Nx , 1 , 1 , 1 , 0 , 1

BIT b, (IY+d) (for Nx= 1)

d

o , 1 1

Timing: M cycles- 5

Tstates - 20 (4, 4, 3,5,4)---

Addressing Mode: Bit/Indexed

12.9 Rotate and Shift
REGISTER

RLC r

Rotate register r left circular.

~-7-4------------0~
r

TL/C/5171-57

S: Set if result is negative

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Set according to bit 7 of r
7 6 5 432 1 0

11 , 1 , 0 , 0 , 1 , 0 , 1 , 1 1 RLe r

I 0 , 0 , 0 , 0 , 0 , I (Note alternate for
L....--1---L---L_.L...-....L----J...---I--.I A register below)

Timing: M cycles- 2

T states - 8 (4, 4)

Addressing Mode: Register

7-47

7 6 5 4 3 2 1 0

1 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 1 RLCA

Timing: M cycles - 1

T states - 4
Addressing Mode: Implied

(Note RLCA does not affect S, Z, or PIV flags.)

RL r
Rotate register r left through carry.

~~7-4------------0~
r

TL/C/5171-5B

S: Set if result is negative

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Set according to bit 7 of r
765 4 3 2 1 0

11 , 1 , 0 , 0 , 1 , 0 , 1 , 1 1 RL r

I 0 , 0 , 0 , 1 , 0 1 r, 1 (Note alternate for
L....-..L--'---'----'----''---'-....L....-' A register below)

Timing: M cycles-2

T states - 8 (4, 4)

Addressing Mode: Register
7 6 5 4 3 2 1 0

10,0,0,1,0,1,1,1 1 R~
Timing: M cycles - 1

T states - 4

Addressing Mode: Implied

(Note R~ does not affect S, Z, or PIV flags.)

RRC r
Rotate register r right circular.

~~7-----------.-0~~
r

TL/C/5171-59

S: Set if result is negative

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Set according to bit 0 of r

z
en o
0)
o
o

•

o o
CO
o
U)
z

12.9 Rotate and Shift (Continued)
7 6 5 4 3 2 1 0

11 , 1 , 0 , 0 , 1 , 0 , 1 , 1 RRC r

r ,

Timing:

(Note alternate for
A register below)

M cycles-2

T states - 8 (4, 4)

Addressing Mode: Register
7 6 5 4 321 0

1 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 1 RRCA

Timing: M cycles-1

T states - 4
Addressing Mode: Implied

(Note RRCA does not affect S, Z, or PlY flags.)

RR r
Rotate register r right through carry.

~~7-----------.---0~
r

TLIC/5171-60

S: Set if result is negative

Z: Set if result is zero

H: Reset

PlY: Set if result parity is even

N: Reset

C: Set according to bit 0 of r
7 6 5 4 3 2 1 0

o 0

000

Timing:

o 0 RRr

(Note alternate for
A register below)

M cycles- 2

T states - 8 (4, 4)

Addressing Mode: Register
7 6 5 4 3 2 1 0

1 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 I RRA

Timing: M cycles-1

T states - 4
Addressing Mode: Implied

(Note RRA does not affect S, Z, or PlY flags.)

SLA r
Shift register r left arithmetric.

~ 7.'4----- 01+-- 0
r

TLlC/5171-61

S: Set if result is negative

Z: Set if result is zero

H: Reset

7-48

PlY: Set if result parity is even

N: Reset

C: Set according to bit 7 of r
7 6 543 2 1 0

11,1,0,0,1,0,1,1

10,0,1,0,01 r ,

Timing: M cycles- 2

T states - 8 (4, 4)

Addressing Mode: Register

SRA r
Shift register r right arithmetic.

~-----r----~--O~
TL/C/5171-62

S: Set if result is negative

Z: Set if result is zero

H: Reset

PlY: Set if result parity is even

N: Reset

C: Set according to bit 0 of r
7 6 5 4 321 0

11,1,0,0,1,0,1,11

r ,

Timing:

Addressing Mode:

SRL r

M cycles- 2

T states - 8 (4, 4)

Register

Shift register r right logical.

r

s: Reset

Z: Set if result is zero

H: Reset

TL/C/5171-63

PlY: Set if result parity is even

N: Reset

C: Set according to bit 0 of r
7 6 5 4 3 2 1 0

11,1,0,0,1,0,1,11

r ,

Timing:

Addressing Mode:

M cycles-2

T states - 8 (4, 4)

Register

12.9 Rotate and Shift (Continued)

MEMORY

RLC m1

Rotate date in memory location m1 left circular.

~~7-.------------o-i:=J
m,

TL/C/5171-64

S: Set if result is negative
Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Set according to bit 7 of m1
7 6 543 2 1 0

11 , 1 , ° , ° , 1 , ° , 1 , 1 I RLC (HL)

10,0,0,0,0,1,1,01

Timing: M cycles - 4

T states - 15 (4, 4, 4, 3)

Addressing Mode: Register indirect
76543210

RLC (IX + d) (for Nx = 0)
1 , 1 , Nx , 1 , 1 , 1 , ° , 1 1

1,1, ° ,0,1,0,1,11

RLC (IY + d) (for Nx= 1)

d

Timing:

Addressing Mode:

RL m1

M cycles - 6

T states - 23 (4, 4, 3, 5, 4, 3)

Indexed

Rotate the data in memory location m1 left though carry.

~~7-.-------------0~
m,

TL/C/5171-65

S: Set if result is negative

Z: Set if result is zero

H: Reset

PIV: Set if result parity is even

N: Reset

C: Set according to bit 7 of m1

7-49

7 6 5 4 321 0

11 , 1 , ° , ° , 1 , ° , 1 , 1 I RL (HL)

10,0,0,1,0,1,1,01

Timing: M cycles - 4
T states - 15 (4, 4, 4, 3)

Addressing Mode: Register Indirect
76543210

1 , 1 , Nx , 1 , 1 , 1 , ° , 1 1

1,1, ° ,0,1,0,1,11

d

RL (IX+d) (for Nx=O)

RL (IY+d) (for NX= 1)

Timing: M cycles- 6

Addressing Mode:

RRC m1

T states - 23 (4, 4, 3, 5, 4, 3)

Indexed

Rotate the data in memory location m1 right circular.

~~7-4------------0~
TL/C/5171-66

S: Set if result is negative

Z: Set if result is zero

H: Reset

PIV: Set if result parity is even

N: Reset

C: Set according to bit ° of m1
7 6 5 4 3 2 1 0

11 , 1 , ° , ° , 1 , ° , 1 , 1 I RRC (HL)

10,0,0,0,1,1,1,01

Timing: M cycles - 4

T states - 15 (4, 4, 4, 3)

Addressing Mode: Register Indirect
76543210

RRC (IX + d) (for Nx = 0)

11 , 1 , Nx , 1 , 1 , 1 , ° ,1 RRC (IY + d) (for Nx = 1)

11 1 1 1 ° 1°1 1 1°1 1 11

1 d

10 1 ° 1 ° 1°1 1 11 11 1°
Timing:

Addressing Mode:

M cycles- 6

T states - 23 (4, 4, 3, 5, 4, 3)

Indexed

z
en
o
co
o o

•

Q
Q
co
o
U)
z

12.9 Rotate and Shift (Continued)

RR m1

Rotate the data in memory location m1 right through the
carry.

~~7-----------~~O~
TL/C/5171-67

S: Set if result is negative

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Set according to bit ° of m1
7 6 5 4 3 2 1 0

11,1,0,0,1,0,1,,1

10,0,0,',',1,1,01

RR(HL)

Timing: M cycles-4

T states - 15 (4, 4, 4, 3)

Addressing Mode: Register Indirect
76543210
,.--------......, RR (IX + d) (for Nx = 0)

1 , 1 , Nx , 1 , 1 , 1 , ° , 1 I RR (IY + d) (for Nx = 1)

1,1, 0,0,1,0,1,11

d

Timing:

Addressing Mode:

SLA m1

M cycles- 6

T states - 23 (4, 4, 3, 5, 4, 3)

Indexed

Shift the data in memory location m1 left arithmetic.

~7 •• ---------0~O

TL/C/5171-68

S: Set if result is negative

Z: Set if result is zero

H: Reset

PIV: Set if result parity is even

N: Reset

C: Set according to bit 7 of m1
7 6 5 4 3 2 1 0

SLA(HL)

Addressing Mode: Register Indirect

7-50

76543210

11 , 1 , Nx , 1 , 1 , 1 , ° , 1 1

11,1, ° ,0,1,0,1,11

SLA (IX + d) (for Nx = 0)

SLA (IY + d) (for Nx = 1)

I d

10,0,

Timing: M cycles- 6

T states - 23 (4, 4, 3, 5, 4, 3)

Addressing Mode: Indexed

SRA m1

Shift the data in memory location m1 right arithmetic.

r-i7 _________________ ~_O~
LJ m,

S: Set if result is negative

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Set according to bit ° of m1
7 6 5 4 3 2 1 0

SRA(HL)

10,0,1,0,1,1,1,01

Timing: M cycles - 4

TL/C/5171-69

T states - 15 (4, 4, 4, 3)

Addressing Mode: Register Indirect
76543210

SRA (IX + d) (for Nx = 0)
11 , 1 , Nx , 1 , 1 , 1 , ° , 1 SRA (IY + d) (for Nx = 1)

11,1, ° ,0,1,0,1,1

I d

10,0, ,0,1,1,1,0

Timing: M cycles - 6

T states - 23 (4, 4, 3, 5, 4, 3)

Addressing Mode: Indexed

SRL m1

Shift right logical the data in memory location m1.

S: Reset

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Set according to bit ° of m1

TLlC/5171-70

12.9 Rotate and Shift (Continued)
7 6 5 4 3 2 1 0

11,1,0,0,1,0,1,11

10,0,1,1,1,1,1,01

SRL(HL)

Timing: M cycles- 4
T states - 15 (4, 4, 4, 3)

Addressing Mode: Register Indirect
76543210

SRL (IX + d) (for Nx = 0)
1 , 1 , Nx , 1 , 1 , 1 , 0 , 1

SRL (IY + d) (for Nx = 1)

d

0,0,

Timing:

Addressing Mode:

REGISTER/MEMORY

RLD

M cycles-6

T states - 23 (4, 4, 3, 5, 4, 3)

Indexed

Rotate digit left and right between the Accumulator and
memory (HL).

17- 4 13fo I ACC 17@O I (HL)

TlIC/5171-71

S: Set if result is negative

Z: Set if result is zero

H: Reset

PIV: Set if result parity is even

N: Reset

C:N/A
76543 2 1 0

11,1,1,0,1,1,0,1

10,1,1,0,1,1,1,1

Timing:

Addressing Mode:

M cycles - 5
T states - 18 (4, 4, 3, 4, 3)

Implied/Register Indirect

7-51

RRD

Rotate digit right and left between the Accumulator and
memory (HL).

17- 4 13fo I ACC ,lD§o I (HL)

TL/C/5171-72

S: Set if result is negative
Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C:N/A
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,1

10,1,1,0,0,1,1,1

Timing:

Addressing Mode:

M cycles - 5

T states - 18 (4, 4, 3, 4, 3)

Implied/Register Indirect

12.10 Exchanges
REGISTER/REGISTER

EX DE, HL
Exchange the contents of the 16-bit register pairs DE and
HL.
DE ~ HL No flags affected
7 6 5 4 3 2 1 0

11,1,1,0,1,0,1,11

Timing:

Addressing Mode:

EX AF,A'F'

M cycles-1

T states- 4
Register

The contents of the Accumulator and flag register are ex­
changed with their corresponding alternate registers. that is
A and F are exchanged with A' and F'.

A ~ A' No flags affected

F ~ F'
765 432 1 0

10,0,0,0,1,0,0,01

Timing: M cycles - 1

T states - 4
Addressing Mode: Register

z en o
(X)
o
o

o o
CO
(.)
U)
z

12.10 Exchanges (Continued)

EXX

Exchange the contents of the BC, DE, and HL registers with
their corresponding alternate register.

BC +-+ B'C' No flags affected

DE +-+ D'E'

HL +-+ H'L'
765 4 321 0

11,1,0,1,1,0,0,11

Timing:

Addressing Mode:

REGISTER/MEMORY

EX (SP), ss

M cycles-1

T states- 4

Implied

Exchange the two bytes at the top of the external memory
stack with the 16-bit register ss.

(SP) +-+ SSL No flags affected

(SP + 1) +-+ SSH
7654320

11 , 1 , 1 , ° , ° , ° , 1 , 1 1 EX (SP), HL

Timing: M cycles - 5
T states - 19 (4, 3, 4, 3, 5)

Addressing Mode: Register/Register Indirect
76543210

EX (SP), IX (for Nx = 0)
11 , 1 , Nx , 1 , 1 , 1 , ° , 1 1

EX (SP),IY (for Nx = 1)

Timing:

Addressing Mode:

M cycles- 6

T states - 23 (4, 4, 3, 4, 3, 5)

Register/Register Indirect

12.11 Memory Block Moves and
Searches
SINGLE OPERATIONS

LOI

Move data from memory location (HL) to memory location
(DE), increment memory pointers, and decrement byte
counter BC.

(DE) ..-- (HL) S: N/ A

DE ..-- DE + 1

HL ..-- HL + 1
BC ..-- BC - 1

Z:N/A

H: Reset

PIV: Set if BC -1 =1=0, other­
wise reset

N: Reset

C:N/A
765 432 1 0

11,1,1,0,1,1,0,11

11,0,1,0,0,0,0,01

Timing: M cycles - 4

T states - 16 (4, 4, 3, 5)

Addressing Mode: Register Indirect

7-52

LOO
Move data from memory location (HL) to memory location
(DE), and decrement memory pointer and byte counter BC.

(DE) ..-- (HL) S: N/ A

DE ..-- DE - 1

HL ..-- HL - 1

BC ..-- BC - 1

Z: N/A

H: Reset

P IV: Set if BC -1 oF 0, other­
wise reset

N: Reset

C: N/A
7 6 5 432 1 0

11,1,1,0,1,1,0,11

11,0,1,0,1,0,0,01

Timing:

Addressing Mode:

CPI

M cycles- 4

T states - 16 (4, 4, 3, 5)

Register Indirect

Compare data in memory location (HL) to the Accumulator,
increment the memory pointer, and decrement the byte
counter. The Z flag is set if the comparison is equal.

A - (HL) S: Set if result of comparison sub-
HL ..-- HL + 1 tract is negative

BC ..-- BC - 1 Z: Set if result of comparison is
Z"--1

if A = (HL)
zero

H: Set according to borrow from
bit 4

P IV: Set if BC - 1 oF 0, otherwise
reset

N: Set

C:N/A
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,1

11,0,1,0,0,0,0,1

Timing:

Addressing Mode:

CPO

M cycles - 4

T states - 16 (4, 4, 3, 5)

Register Indirect

Compare data in memory location (HL) to the Accumulator,
and decrement the memory pointer and byte counter. The Z
flag is set if the comparison is equal.

A - (HL) S: Set if result is negative

HL ..-- HL - 1

BC ..-- BC - 1

Z"--1
if A = (HL)

Z: Set if result of comparison is
zero

H: Set according to borrow from
bit 4

P IV: Set if BC - 1 =1= 0, otherwise
reset

N: Set

C:N/A

12.11 Memory Block Moves and Searches (Continued)
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,1

11,0,1,0,1,0,0,1

Timing:

Addressing Mode:

M cycles-4

T states - 16 (4, 4, 3, 5)

Register Indirect

REPEAT OPERATIONS

LDIR

Move data from memory location (HL) to memory location
(DE), increment memory pointers, decrement byte counter
BC, and repeat until BC = O.

(DE) ~ (HL) 5: N/A
DE ~ DE + 1

HL ~ HL + 1

BC ~ BC - 1

Repeat until

BC = 0

Z:N/A
H: Reset

PIV: Reset

N: Reset

C:N/A
7 6 5 4 321 0

11,1,1,0,1,1,0,11

11,0,1,1,0,0,0,01

Timing: For BC*O M cycles - 5
T states - 21 (4, 4, 3, 5, 5)

For BC=O M cycles - 4

T states - 16 (4, 4, 3, 5)

Addressing Mode: Register Indirect

(Note that each repeat is accomplished by a decrement of

the BC, so that refresh, etc. continues for each cycle.)

LDDR

Move data from memory location (HL) to memory location
(DE), decrement memory pointers and byte counter BC, and
repeat until BC = O.

(DE) ~ (HL) 5: NI A

DE ~ DE - 1

HL ~ HL - 1

BC ~ BC - 1
Repeat until

BC = 0

Z:N/A
H: Reset

PIV: Reset

N: Reset

C:N/A
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

11,0,1,1,1,0,0,01

Timing: For BC*O M cycles - 5
T states - 21 (4, 4, 3, 5, 5)

For BC=O M cycles - 4

T states - 16 (4, 4, 3, 5)

Addressing Mode: Register Indirect

(Note that each repeat is accomplished by a decrement of

the BC, so that refresh, etc. continues for each cycle.)

7-53

CPIR

Compare data in memory location (HL) to the Accumulator,
increment the memory, decrement the byte counter BC, and
repeat until BC = 0 or (HL) equals A.

A - (HL) 5: Set if sign of subtraction per-
HL ~ HL + 1 formed for comparison is nega­

BC ~ BC - 1

Repeat until BC = 0

or A = (HL)

tive

Z: Set if A = (HL), otherwise reset

H: Set according to borrow from
bit 4

P IV: Set if BC - 1 * 0, otherwise
reset

N: Set

C:N/A
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,1

11,0,1,1,0,0,0,1

Timing: ForBC * 0 M cycles- 5

T states - 21 (4, 4, 3, 5, 5)

ForBC = 0 M cycles- 4
T states - 16 (4, 4, 3, 5)

Addressing Mode: Register Indirect

(Note that each repeat is accomplished by a decrement of
the PC, so that refresh, etc. continues for each cycle.)

CPDR

Compare data in memory location (HL) to the contents of
the Accumulator, decrement the memory pointer and byte
counter BC, and repeat until BC = 0, or until (HL) equals
the Accumulator.

A - (HL)

HL ~ HL - 1
BC ~ BC - 1

Repeat until BC = 0

or A = (HL)

5: Set if sign of subtraction per­
formed for comparison is nega­
tive

Z: Set according to equality of A
and (HL), set if true

H: Set according to borrow from
bit 4

PIV: Set if BC - 1 * 0, otherwise
reset

N: Set

C:N/A
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

11,0,1,1,1,0,0,11

Timing: ForBC * 0

For BC = 0

Addressing Mode:

M cycles- 5

T states - 21 (4, 4, 3, 5, 5)
M cycles- 4

T states - 16 (4, 4, 3, 5)

Register Indirect

(Note that each repeat is accomplished by a decrement of
the BC, so that refresh, etc. continues for each cycle.)

z
en o
00
C)
C)

gr---~

co o en z
12.12 Input/Output
IN A, (n)

Input data to the Accumulator from the I/O device at ad­
dress N.

A +- (n) No flags affected
7 6 5 432 1 0

11,1,0,1,1,0,1,11

n

Timing:

Addressing Mode:

IN r, (C)

M cycles-3

T states - 11 (4, 3, 4)

Source - Direct

Destination - Register

Input data to register r from the I/O device addressed by the
contents of register e. If r= 110 only flags are affected.

r +- (e) S: Set if result is negative

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

e:N/A
7 6 5 432 1 0

11 , 1 , 1 , 0 , 1 , 1 , 0, 1 1

Timing:

Addressing Mode:

OUT (C),r

M cycles-3

T states - 12 (4, 4, 4)

Source - Register Indirect

Destination - Register

Output register r to the I/O device addressed by the con­
tents of register e.

(e) +- r No flags affected
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

Timing:

Addressing Mode:

INI

M cycles-3

T states - 12 (4, 4, 4)

Source - Register

Destination - Register Indirect

Input data from the I/O device addressed by the contents of
register e to the memory location pointed to by the contents
of the HL register. The HL pointer is incremented and the
byte counter B is decremented.

(HL) +- (e) S: Undefined

B +- B-1 Z: Set if B-1 = 0, otherwise reset

HL +- HL + 1 H: Undefined

7-54

PIV: Undefined

N:Set

e:N/A
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

11,0,1,0,0,0,1,01

Timing: M cycles - 4

T states - 16 (4, 5, 3, 4)

Addressing Mode: Implied/Source - Register In­
direct

Destination - Register Indirect

OUTI
Output data from memory location (HL) to the I/O device at
port address (e), increment the memory pointer, and decre­
ment the byte counter 8.
(e) +- (HL) S: Undefined

8+-8-1

HL +- HL + 1

Z: Set if 8 -1 = 0, otherwise reset

H: Undefined

PIV: Undefined

N:Set

e:N/A
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

11,0,1,0,0,0,1,11

Timing: M cycles - 4

Addressing Mode:

INO

T states - 16 (4, 5, 3, 4)

Implied/Source - Register In­
direct

Destination - Register Indirect

Input data from I/O device at port address (e) to memory
location (HL), and decrement HL memory pointer and byte
counter 8.
(HL) +- (e)

HL +- HL - 1
8+-8-1

S: Undefined

Z: Set if 8 -1 = 0, otherwise reset

H: Undefined

PIV: Undefined

N: Set

e:N/A
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

11,0,1,0,1,0,1,01

Timing: M cycles - 4

Addressing Mode:

T states - 16 (4, 5, 3, 4)

Implied/Source - Register In­
direct

Destination - Register Indirect

~--, z
12.12 Input/Output (Continued)

aUT (n),A

Output the Accumulator to the I/O. device at address n.

(n) ~ A No flags affected
7 6 5 432 1 0

11,1,0,1,0,0,1,11

n

Timing:

Addressing Mode:

aUTO

M cycles - 3

T states - 11 (4, 3, 4)

Source - Register

Destination - Direct

Data is output from memory location (HL) to the I/O device
at port address (C), and the HL memory pointer and byte
counter B are decremented.

(C) ~ (HL) S: Undefined

B ~ B-1 Z: Set if B-1 = 0, otherwise reset

HL ~ HL - 1 H: Undefined

P IV: Undefined

N:Set

C:N/A
7 6 5 432 1 0

11,1,1,0,1,1,0,11

11,0,1,0,1,0,1,11

Timing: M cycles - 4

Addressing Mode:

INIR

T states - 16 (4, 5, 3, 4)

Implied/Source - Register In­
direct

Destination - Register Indirect

Data is input from the I/O device at port address (C) to
memory location (HL), the HL memory pointer is increment­
ed, and the byte counter B is decremented. The cycle is
repeated until B = O.

(Note that B is tested for zero after it is decremented. By
loading B initially with zero, 256 data transfers will take
place.)

(HL) ~ (C)

HL ~ HL + 1

S: Undefined

Z:Set

B ~ B-1 H: Undefined

Repeat until B = 0 PIV: Undefined

N:Set

C:N/A

7-55

7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

11,0,1,1,0,0,1,01

Timing: For B oF 0 M cycles - 5

For B = 0

Addressing Mode:

T states - 21 (4, 5, 3, 4, 5)

M cycles-4

T states - 16 (4, 5, 3, 4)

Implied/Source - Register In­
direct

Destination - Register Indirect

(Note that at the end of each data transfer cycle, interrupts
may be recognized and two refresh cycles will be per­
formed.)

aTIR
Data is output to the I/O device at port address (C) from
memory location (HL), the HL memory pointer is increment­
ed, and the byte counter B is decremented. The cycles are
repeated until B = O.

(Note that B is tested for zero after it is decremented. By
loading B initially with zero, 256 data transfers will take
place.)

(C) ~ (HL) S: Undefined

HL ~ HL + 1

B ~ B-1

H: Undefined

Z: Set

Repeat until B = 0 PIV: Undefined

N: Set

C:N/A
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

11,0,1,1,0,0,1,11

Timing: For B oF 0 M cycles - 5

For B = 0

Addressing Mode:

. T states - 21 (4, 5, 3, 4, 5)

M cycles- 4
T states - 16 (4,5,3,4)

Implied/Source - Register In­
direct

Destination - Register Indirect

(Note that at the end of each data transfer cycle, interrupts
may be recognized and two refresh cycles will be per­
formed.)

en o
0)
o
o

o o
CO
o
(IJ
z

12.12 Input/Output (Continued)

INOR
Data is input from the I/O device at address (C) to memory
location (HL), then the HL memory pointer is byte counter 8
are decremented. The cycle is repeated until 8 = o.
(Note that 8 is tested for zero after it is decremented. 8y
loading 8 initially with zero, 256 data transfers will take
place.)

(HL) ...- (C)

HL ...- HL - 1

8...-8-1

S: Undefined

Z: Set

H: Undefined

Repeat until 8 = 0 P/V: Undefined

N: Set

C:N/A
7 6 5 4 321 0

11,1,1,0,1,1,0,11

11,0,1,1,0,0,1

Timing: For 8 =1= 0

For 8 = 0

Addressing Mode:

,0 1

M cycles - 5

T states - 21 (4, 5, 3, 4, 5)

M cycles - 4

T states - 16 (4, 5, 3, 4)

Implied/Source - Register In­
direct

Destination - Register Indirect

(Note that after each data transfer cycle, interrupts may be
recognized and two refresh cycles are performed.)

OTOR
Data is output from memory location (HL) to the I/O device
at port address (C), then the HL memory pointer and byte
counter 8 are decremented. The cycle is repeated until 8 =
o.
(Note that 8 is tested for zero after it is decremented. 8y
loading 8 initially with zero, 256 data transfers will take
place.)

(C) ...- (HL)

HL ...- HL - 1

S: Undefined

Z: Set

8 ...- 8 - 1 H: Undefined

Repeat until 8 = 0 P/V: Undefined

N: Set

C:N/A
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

11,0,1,1,1,0,1,11

Timing: For 8 =1= 0 M cycles - 5

For 8 = 0

Addressing Mode:

T states - 21 (4, 5, 3, 4, 5)

M cycles-4

T states - 16 (4, 5, 3, 4)

Implied/Source - Register In­
direct

Destination - Register Indirect

(Note that after each data transfer cycle the NSC800 will
accept interrupts and perform two refresh cycles.)

7-56

12. 13 CPU Control
NOP
The CPU performs no operation.

No flags affected
765 4 3 2 1 0

10,0,0,0,0,0,0,01

Timing: M cycles - 1

T states - 4

Addressing Mode: N/A

HALT
The CPU halts execution of the program. Dummy op-code
fetches are performed from the next memory location to
keep the refresh circuits active until the CPU is interrupted
or reset from the halted state.

No flags affected
7 6 5 4 3 2 1 0

10,1,1,1,0,1,1,01

Timing:

Addressing Mode:

01

M cycles-1

T states - 4

N/A

Disable system level interrupts.

IFF1 ...- 0 No flags affected

IFF2 ...- 0
7 6 5 4 3 2 1 0

11,1,1,1,0,0,1,11

Timing:

Addressing Mode:

EI

M cycles-1

T states - 4

N/A

The system level interrupts are enabled. During execution of
this instruction, and the next one, the maskable interrupts
will be disabled.

IFF1 ...- 1 No flags affected

IFF2 ...- 1
7 6 5 4 3 2 1 0

11,1,1,1,1,0,1,11

Timing: M cycles - 1

T states - 4

Addressing Mode: N/A

1M 0
The CPU is placed in interrupt mode o.

No flags affected
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

10,1,0,0,0,1,1,01

Timing: M cycles - 2

T states - 8 (4, 4)

Addressing Mode: N/ A

12.13 CPU Control (Continued)

1M
The CPU is placed in interrupt mode 1.

No flags affected
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,1\

10,1,0,1,0,1,1,01

Timing: M cycles - 2

T states - B (4. 4)

Addressing Mode: Nt A

1M 2
The CPU is placed in interrupt mode 2.

No flags affected
7 6 5 432 1 0

11,1,1,0,1,1,0,1\

10,1,0,1,1,1,1,01

Timing: M cycles - 2

T states - B (4. 4)

Addressing Mode: Nt A

12.14 Program Control
JUMPS

JP nn
Unconditional jump to program location nn.

PC +- nn No flags affected
7 6 5 432 1 0

11,1,0,0,0,0,1,1\

n (low-order byte)

n (high-order byte)

Timing:

Addressing Mode:

JP (88)

M cycles- 3

T states - 10 (4, 3, 3)

Direct

Unconditional jump to program location pointed to by regis­
ter ss.

PC +- ss No flags affected
7 6 5 4 3 2 1 0

11 , 1 , 1 , 0 , 1 , 0 , 0 , 1 \ JP (HL)

Timing: M cycles - 1

Addressing Mode:

T states- 4

Register Indirect

7-57

76543210

11 , 1 , Nx , 1 , 1 , 1 , 0 , 1 \
JP (IX) (for Nx = 0)

JP (IV) (for Nx = 1)

Timing:

Addressing Mode:

JP CC, nn

M cycles-2

T states - 8 (4. 4)

Register Indirect

Conditionally Jump to program location nn based on testable
flag states.

If cc true. No flags affected

PC +- nn.

otherwise continue
76543210

11 , 1 I ,cc, I 0 , 1 , 0 \

I n (low-order byte)

I n (high-order byte)

Timing:

Addressing Mode:

JR d

M cycles-3

T states - 10 (4, 3. 3)

Direct

Unconditional Jump to program location calculated with re­
spect to the program counter and the displacement d.

PC +- PC + d No flags affected
7 6 5 4 3 2 1 0

10,0,0,1,1,0,0,0\

d-2

Timing:

Addressing Mode:

JR kk, d

M cycles- 3

T states - 12 (4, 3, 5)

PC Relative

Conditionally jump to program location calculated with re­
spect to the program counter and the displacement d.
based on limited testable flag states.

If kk true, No flags affected

PC +- PC + d.

otherwise continue
765 432 1 0

I 0 0 1 I kk I 0 0 0 I
. ' I . I . I I .

I d - 2 1

Timing: if kk met

(true)

M cycles- 3

T states - 12 (4. 3. 5)

if kk not met M cycles - 2

(not true) T states - 7 (4, 3)

Addressing Mode: PC Relative

z en o
CD o
o

o o
CO o
(J)
z

12.14 Program Control (Continued)

DJNZ d

Decrement the B register and conditionally jump to program
location calculated with respect to the program counter and
the displacement d, based on the contents of the B register.

B +- B-1 No flags affected

If B = 0 continue,

else PC +- PC + d
765 4 3 2 1 0

10,0,0,1,0,0,0,01

d-2

Timing: If B =1= 0

IfB = 0

Addressing Mode:

CALLS

CALL nn

M cycles - 3

T states - 13 (5, 3, 5)

M cycles-2

T states - 8 (5, 3)

PC Relative

Unconditional call to subroutine at location nn.

(SP - 1) +- PCH No flags affected

(SP - 2) +- PCL

SP +- SP - 2

PC +- nn
765 4 321 0

11,1,0,0,1,1,0,11

n (low-order byte)

n (high-order byte)

Timing:

Addressing Mode:

CALL ee,n"

M Cycles- 5
T states - 17 (4, 3, 4, 3, 3)

Direct

Conditional call to subroutine at location nn based on test­
able flag stages.

If cc true,

(SP - 1) +- PCH

(SP - 2) +- PCL

SP +- SP - 2

No flags affected

PC +- nn,

else continue
7 6 5 4 321 0

n (low-order byte)

n (high-order byte)

Timing: If cc true M cycles - 5

T states 17 (4, 3, 4, 3, 3)

If cc not true M cycles - 3

T states - 10 (4,3,3)

Addressing Mode: Direct

7-58

RETURNS

RET
Unconditional return from subroutine or other return to pro­
gram location pointed to by the top of the stack.

PCL +- (SP) No flags affected

PCH +- (SP + 1)

SP +- SP + 2
765 432 1 0

11,1,0,0,1,0,0,11
Timing: M cycles - 3

T states - 10 (4, 3, 3)

Addressing Mode: Register Indirect

RET cc
Conditional return from subroutine or other return to pro­
gram location pointed to by the top of the stack.

If cc true, No flags affected

PCL +- (SP)

PCH +- (SP + 1)

SP +- SP + 2,

else continue
7 6 543 2 1 0

11,11,cc, 10,0,01
Timing: If cc true M cycles - 3

T states - 11 (5, 3, 3)

If cc not true M cycles - 1

T states - 5
Addressing Mode: Register Indirect

RETI
Unconditional return from interrupt handling subroutine.
Functionally identical to RET instruction. Unique opcode al­
lows monitoring by external hardware.

PCL +- (SP) No flags affected

PCH +- (SP + 1)

SP +- SP + 2
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

10,1,0,0,1,1,0,11
Timing: M cycles - 4

T states - 14 (4, 4, 3, 3)

Addressing Mode: Register Indirect

12.14 Program Control (Continued)

RETN
Unconditional return from non-maskable interrupt handling
subroutine. Functionally similar to RET instruction, except
interrupt enable state is restored to that prior to non-mask­
able interrupt.

PCl +- (SP) No flags affected

PCH +- (SP + 1)

SP +- SP + 2

IFF1 +- IFF2
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

10,1,0,0,0,1,0,11
Timing: M cycles - 4

T states - 14 (4, 4, 3, 3)

Addressing Mode: Register Indirect

7-59

RESTARTS

RST P
The present contents of the PC are pushed onto the memo­
ry stack and the PC is loaded with dedicated program loca­
tions as determined by the specific restart executed.

(SP - 1) +- PCH No flags affected

(SP - 2) +- PCl

SP +- SP - 2

PCH +- °
PCl +- P

7 6 5 4 3 2 1 0

11,11 11,1,11
Timing: M cycles- 3

T states - 11 (5, 3, 3)

Addressing Mode: Modified Page Zero

z en
o
Q)
o
o

Q
Q
co 12.15 Instruction Set: Alphabetical Order 0
UJ

ADC A,(HL) 8E BIT O,B CB40 Z
ADC A,(IX+d) DD8Ed BIT O,C CB41
ADC A,(IY+d) FD8Ed BIT 0,0 CB42
ADC A,A 8F BIT O,E CB43
ADC A,B 88 BIT O,H CB44
ADC A,C 89 BIT O,L CB45
ADC A,D 8A BIT 1, (HL) CB4E
ADC A,E 8B BIT 1, (IX+d) DDCBd4E
ADC A,H 8C BIT 1, (lY+d) FDCBd4E
ADC A,L 80 BIT 1,A CB4F
ADC A,n CEn BIT 1, B CB48
ADC HL,BC ED4A BIT 1, C CB49
ADC HL,DE ED5A BIT 1,0 CB4A
ADC HL,HL ED6A BIT 1, E CB4B
ADC HL,SP ED7A BIT 1, H CB4C
ADD A,(HL) 86 BIT 1, L CB4D
ADD A,(IX+d) DD86d BIT 2, (HL) CB56
ADD A,(lY+d) FD86d BIT 2, (IX+d) DDCBd56
ADD A,A 87 BIT 2,(IY+d) FDCBd56
ADD A,B 80 BIT 2,A CB57
ADD A,C 81 BIT 2,B CB50
ADD A,D 82 BIT 2,C CB 51
ADD A,E 83 BIT 2,0 CB52
ADD A,H 84 BIT 2,E CB53
ADD A, L 85 BIT 2,H CB54
ADD A,n C6n BIT 2,L CB55
ADD HL,BC 09 BIT 3,(HL) CB5E
ADD HL,DE 19 BIT 3,(lX+d) DDCBd5E
ADD HL,HL 29 BIT 3,(IY+d) FDCBd5E
ADD HL,SP 39 BIT 3,A CB5F
ADD IX,BC 0009 BIT 3,B CB58
ADD IX,DE 0019 BIT 3,C CB59
ADD IX,IX 0029 BIT 3,0 CB5A
ADD IX,SP 0039 BIT 3,E CB5B
ADD IY,BC FD09 BIT 3,H CB5C
ADD IY,DE FD19 BIT 3,L CB5D
ADD IY,IY FD29 BIT 4, (HL) CB66
ADD IY,SP FD39 BIT 4,(IX+d) DDCBd66
AND (HL) A6 BIT 4,(IY+d) FDCBd66
AND (IX+d) DDA6d BIT 4,A CB67
AND (IY+d) FDA6d BIT 4,B CB60
AND A A7 BIT 4,C CB61
AND B AO BIT 4,0 CB62
AND C A1 BIT 4,E CB63
AND 0 A2 BIT 4,H CB64
AND E A3 BIT 4,L CB65
AND H A4 BIT 5, (HL) CB6E
AND L A5 BIT 5,(IX+d) DDCBd6E
AND n E6 n BIT 5,(IY+d) FDCBd6E
BIT 0, (HL) CB46 BIT 5,A CB6F
BIT O,(IX+d) DDCBd46 BIT 5,B CB68
BIT O,(IY+d) FDCBd46 BIT 5,C CB69
BIT O,A CB47 BIT 5,0 CB6A

(nn) = address of memory location d = signed displacement

nn=Data (16 bit) d2=d-2

n = Data (8 bit)

7-60

z
12.15 Instruction Set: Alphabetical Order (Continued)

en
0
Q)

BIT 5,E CB6B DEC A 3D 0
0

BIT 5,H CB6C DEC B 05
BIT 5,L CB6D DEC BC OB
BIT 6, (HL) CB76 DEC C OD
BIT 6,(lX+d) DDCBd76 DEC D 15
BIT 6,(IY+d) FDCBd76 DEC DE 1B
BIT 6,A CB77 DEC E 1D
BIT 6,B CB70 DEC H 25
BIT 6,C CB 71 DEC HL 2B
BIT 6,D CB72 DEC IX DD2B
BIT 6,E CB73 DEC IY FD2B
BIT 6,H CB74 DEC L 2D
BIT 6,L CB75 DEC SP 3B
BIT 7, (HL) CB7E DI F3
BIT 7,(lX+d) DDCBd7E DJNZ d2 10 d2
BIT 7,(IY+d) FDCBd7E EI FB
BIT 7,A CB7F EX (SP),HL E3
BIT 7,B CB78 EX (SP),IX DDE3
BIT 7,C CB79 EX (SP),IY FDE3
BIT 7,D CB7A EX AF,A'F' 08
BIT 7,E CB7B EX DE,HL EB
BIT 7,H CB7C EXX D9
BIT 7,L CB7D HALT 76
CALL C,nn DCnn 1M 0 ED46
CALL M,nn FCnn 1M ED56
CALL NC,nn D4nn 1M 2 ED5E
CALL nn CDnn IN A, (C) ED78
CALL NZ, nn C4nn IN A,(n) DBn
CALL P,nn F4nn IN B, (C) ED 40
CALL PE, nn ECnn IN C, (C) ED48
CALL PO,nn E4nn IN D, (C) ED50
CALL Z,nn CCnn IN E,(C) ED58
CCF 3F IN H, (C) ED60
CP (HL) BE IN L,(C) ED68
CP (lX+d) DDBEd INC (HL) 34
CP (IY+d) FDBEd INC (IX+d) DD34d
CP A BF INC (IY+d) FD34d
CP B B8 INC A 3C
CP C B9 INC B 04
CP D BA INC BC 03
CP E BB INC C OC
CP H BC INC D 14
CP L BD INC DE 13
CP n FEn INC E 1C
CPD EDA9 INC H 24
CPDR EDB9 INC HL 23
CPI EDA1 INC IX DD23
CPIR ED B1 INC IY FD23
CPL 2F INC L 2C
DM 27 INC SP 33
DEC (HL) 35 IND EDM
DEC (IX+d) DD35d INDR EDBA
DEC (lY+d) FD35d INI EDA2

(nn) = Address of memory location d = signed displacement • nn=Data (16 bit) d2=d-2

n = Data (8 bit)

7-61

0
0
CD 12.15 Instruction Set: Alphabetical Order (Continued) to)
U)

INIR EDB2 LD A,(HL) 7E z
JP (HL) E9 LD A,(IX+d) DD7Ed
JP (IX) DDE9 LD A, (IY+d) FD7Ed
JP (IY) FDE9 LD A,(nn) 3Ann
JP C,nn DAnn LD A,A 7F
JP M,nn FAnn LD A,B 78
JP NC,nn D2nn LD A,C 79
JP nn C3nn LD A,D 7A
JP NZ, nn C2nn LD A,E 7B
JP P,nn F2nn LD A,H 7C
JP PE,nn EAnn LD A,I ED57
JP PO,nn E2nn LD A,L 7D
JP Z,nn CAnn LD A,n 3E n
JR C,d2 38d2 LD B,(HL) 46
JR d2 18 d2 LD B,(IX+d) DD46d
JR NC,d2 30d2 LD B,(IY+d) FD46d
JR NZ,d2 20d2 LD B,A 47
JR Z,d2 28d2 LD B,B 40
LD (BC),A 02 LD B,C 41
LD (DE), A 12 LD B,D 42
LD (HL),A 77 LD B,E 43
LD (HL),B 70 LD B,H 44
LD (HL),C 71 LD B,L 45
LD (HL),D 72 LD B,n 06n
LD (HL), E 73 LD BC, (nn) ED4B
LD (HL),H 74 LD BC, nn 01nn
LD (HL), L 75 LD C,(HL) 4E
LD (HL),n 36 n LD C,(IX+d) DD4Ed
LD (IX+d),A DD77d LD C,(IY+d) FD4Ed
LD (IX+d),B DD70d LD C,A 4F
LD (lX+d),C DD71d LD C,B 48
LD (lX+d),D DD72d LD C,C 49
LD (lX+d),E DD73d LD C,D 4A
LD (IX+d),H DD74d LD C,E 4B
LD (lX+d),L DD75d LD C,H 4C
LD (lX+d),n DD36dn LD C,L 4D
LD (IY+d),A FD77d LD C,n OEn
LD (IY+d),B FD70d LD D,(HL) 56
LD (IY+d),C FD71d LD D,(IX+d) DD56d
LD (IY+d),D FD72d LD D,(IY+d) FD56d
LD (lY+d),E FD73d LD D,A 57
LD (IY+d),H FD74d LD D,B 50
LD (IY+d),L FD75d LD D,C 51
LD (IY+d),n FD36dn LD D,D 52
LD (nn),A 32nn LD D,E 53
LD (nn), BC ED 43nn LD D,H 54
LD (nn), DE ED 53nn LD D,L 55
LD (nn), HL 22nn LD D,n 16 n
LD (nn),IX DD22nn LD DE,(nn) ED 5Bnn
LD (nn),IY FD22nn LD DE,nn 11nn
LD (nn),SP ED 73nn LD E, (HL) 5E
LD A,(BC) OA LD E,(IX+d) DD5Ed
LD A,(DE) 1A LD E,(IY+d) FD5Ed

(nn) = Address of memory location d = signed displacement

nn=Data (16 bit) d2=d-2

n= Data (8 bit)

7-62

z
12.15 Instruction Set: Alphabetical Order (Continued)

en
(")
CD

LD E,A 5F OR C 81 0
0

LD E,8 5B OR D 82
LD E,C 59 OR E 83
LD E,D 5A OR H 84
LD E,E 58 OR L 85
LD E,H 5C OR n F6 n
LD E,L 5D OTDR EDBB
LD E,n 1E n OTIR EDB3
LD H,(HL) 66 OUT (C),A ED79
LD H,(IX+d) DD66d OUT (C),B ED41
LD H,(IY+d) FD66d OUT (C),C ED49
LD H,A 67 OUT (C), D ED51
LD H,B 60 OUT (C),E ED59
LD H,C 61 OUT (C),H ED61
LD H,D 62 OUT (C), L ED69
LD H,E 63 OUT n,A D3 n
LD H,H 64 OUTD EDAB
LD H,L 65 OUTI EDA3
LD H,n 26 n POP AF F1
LD HL, (nn) 2Ann POP BC C1
LD HL, nn 21nn POP DE D1
LD I,A ED47 POP HL E1
LD IX, (nn) DD2Ann POP IX DDE1
LD IX, nn DD21nn POP IY FDE1
LD IY, (nn) FD2Ann PUSH AF F5
LD IY, nn FD 21nn PUSH BC C5
LD L, (HL) 6E PUSH DE D5
LD L,(IX+d) DD6Ed PUSH HL E5
LD L,(IY+d) FD6Ed PUSH IX DDE5
LD L,A 6F PUSH IY FDE5
LD L,B 6B RES 0, (HL) CBB6
LD L,C 69 RES 0, (IX+d) DDCBdB6
LD L,D 6A RES 0, (IY+d) FDCBdB6
LD L,E 6B RES O,A CBB7
LD L,H 6C RES O,B CBBO
LD L,L 6D RES O,C CBB1
LD L, n 2E n RES O,D CBB2
LD SP, (nn) ED 7Bnn RES O,E CBB3
LD SP,HL F9 RES O,H CBB4
LD SP,IX DDF9 RES O,L CBB5
LD SP,IY FDF9 RES 1, (HL) CBBE
LD SP,nn 31nn RES 1, (IX+d) DDCBdBE
LDD EDAB RES 1, (IY+d) FDCBdBE
LDDR EDBB RES 1,A CBBF
LDI EDAO RES 1, B CBBB
LDIR EDBO RES 1,C CBB9
NEG EDn RES 1, D CSBA
NOP 00 RES 1, E CBBB
OR (HL) B6 RES 1, H CBBC
OR (IX+d) DDB6d RES 1, L CBBD
OR (IY+d) FDB6d RES 2, (HL) CB96
OR A B7 RES 2, (IX+d) DDCBd96
OR B BO RES 2,(IY+d) FDCBd96

(nn) = Address of memory location d = signed displacement • nn=Data (16 bit) d2=d-2

n = Data (8 bit)

7-63

Q
Q
co 12.15 Instruction Set: Alphabetical Order (Continued) 0
CJ)

RES 2,A CB97 RES 7,D CBBA Z
RES 2,B CB90 RES 7,E CBBB
RES 2,C CB91 RES 7,H CBBC
RES 2, D CB92 RES 7,L CBBD
RES 2,E CB93 RET C9
RES 2,H CB94 RET C DB
RES 2,L CB95 RET M FB
RES 3, (HL) CB9E RET NC DO
RES 3, (lX+d) DDCBd9E RET NZ CO
RES 3, (IY+d) FDCBd9E RET P FO
RES 3,A CB9F RET PE EB
RES 3,B CB9B RET PO EO
RES 3,C CB99 RET Z CB
RES 3,D CB9A RETI ED4D
RES 3,E CB9B RETN ED45
RES 3,H CB9C RL (HL) CB16
RES 3,L CB9D RL (IX+d) DD CBd16
RES 4, (HL) CBA6 RL (IY+d) FD CBd16
RES 4, (IX+d) DDCBdA6 RL A CB17
RES 4, (IY+d) FDCBdA6 RL B CB10
RES 4,A CBA7 RL C CB 11
RES 4,B CBAO RL D CB12
RES 4,C CBA1 RL E CB13
RES 4,D CBA2 RL H CB14
RES 4,E CBA3 RL L CB15
RES 4,H CBA4 RLA 17
RES 4,L CBA5 RLC (HL) CB06
RES 5, (HL) CBAE RLC (IX+d) DDCBd06
RES 5, (IX+d) DDCBdAE RLC (IY+d) FDCBd06
RES 5, (IY+d) FDCBdAE RLC A CB07
RES 5,A CBAF RLC B CBOO
RES 5,B CBAB RLC C CB01
RES 5,C CBA9 RLC D CB02
RES 5,D CBAA RLC E CB03
RES 5,E CBAB RLC H CB04
RES 5,H CBAC RLC L CB05
RES 5,L CBAD RLCA 07
RES 6, (HL) CBB6 RLD ED6F
RES 6, (IX+d) DDCBdB6 RR (HL) CB1E
RES 6, (IY+d) FDCBdB6 RR (IX+d) DDCBd1E
RES 6,A CBB7 RR (IY+d) FDCBd1E
RES 6,B CBBO RR A CB1F
RES 6,C CB B1 RR B CB1B
RES 6,D CBB2 RR C CB19
RES 6,E CBB3 RR D CB1A
RES 6,H CBB4 RR E CB1B
RES 6,L CBB5 RR H CB1C
RES 7, (HL) CBBE RR L CB1D
RES 7, (lX+d) DDCBdBE RRA 1F
RES 7, (lY+d) FDCBdBE RRC (HL) CBOE
RES 7,A CBBF RRC (IX+d) DDCBdOE
RES 7,B CBBB RRC (IY+d) FDCBdOE
RES 7,C CBB9 RRC A CBOF

(nn) = Address of memory location d = signed displacement

nn=Data (16 bit) d2=d-2

n=Data (8 bit)

7·64

z
12.15 Instruction Set: Alphabetical Order (Continued)

en
(")
CO

RRC B CBOB SET 2, (lX+d) DDCBdD6 0
0

RRC C CB09 SET 2,(lY+d) FDCBdD6
RRC D CBOA SET 2,A CSD7
RRC E CBOB SET 2,B CSDO
RRC H CBOC SET 2,C CSD1
RRC L CBOD SET 2,D CSD2
RRCA OF SET 2,E CSD3
RRD ED67 SET 2,H CSD4
RST 0 C7 SET 2,L CSD5
RST OBH CF SET 3, (HL) CSDE
RST 10H D7 SET 3,(lX+d) DDCBdDE
RST 1BH DF SET 3,(IY+d) FDCBdDE
RST 20H E7 SET 3,A CSDF
RST 2BH EF SET 3,B CBD8
RST 30H F7 SET 3,C CBD9
RST 3BH FF SET 3,D CBDA
SBC A,(HL) 9E SET 3,E CBDB
SBC A,(IX+d) DD9Ed SET 3,H CBDC
SBC A,(lY+d) FD9Ed SET 3,L CBDD
SBC A,A 9F SET 4,(HL) CBE6
SSC A,B 98 SET 4,(lX+d) DDCBdE6
SBC A,C 99 SET 4,(IY+d) FDCBdE6
SBC A,D 9A SET 4,A CBE7
SBC A,E 9B SET 4,B CBEO
SBC A,H 9C SET 4,C CBE1
SSC A, L 9D SET 4,D CBE2
SBC A, n DEn SET 4,E CBE3
SBC HL,BC ED42 SET 4,H CBE4
SBC HL,DE ED52 SET 4,L CBE5
SBC HL,HL ED62 SET 5, (HL) CBEE
SBC HL,SP ED72 SET 5,(IX+d) DDCBdEE
SCF 37 SET 5,(IY+d) FDCBdEE
SET 0, (HL) CBC6 SET 5,A CBEF
SET 0, (IX+d) DDCBdC6 SET 5,B CBE8
SET O,(IY+d) FDCBdC6 SET 5,C CBE9
SET O,A CBC7 SET 5,D CBEA
SET O,B CBCO SET 5,E CBEB
SET O,C CBC1 SET 5,H CBEC
SET O,D CBC2 SET 5,L CBED
SET O,E CBC3 SET 6, (HL) CBF6
SET O,H CBC4 SET 6,(lX+d) DDCBdF6
SET O,L CBC5 SET 6,(IY+d) FDCBdF6
SET 1, (HL) CBCE SET 6,A CBF7
SET 1, (lX+d) DDCBdCE SET 6,B CBFO
SET 1,(IY+d) FDCBdCE SET 6,C CB F1
SET 1,A CBCF SET 6, D CBF2
SET 1, B CBC8 SET 6,E CBF3
SET 1,C CBC9 SET 6,H CBF4
SET 1, D CBCA SET 6,L CBF5
SET 1, E CBCB SET 7, (HL) CBFE
SET 1, H CBCC SET 7,(IX+d) DDCBdFE
SET 1, L CBCD SET 7,(lY+d) FDCBdFE
SET 2,(HL) CBD6 SET 7,A CBFF

(nn) = Address of memory location d = displacement • nn=Data (16 bit) d2=d-2

n = Data (8 bit)

7-65

0
0
Q) 12.15 Instruction Set: Alphabetical Order (Continued) 0
(/)

SET 7,B CBF8 SRL A CB3F Z
SET 7,C CBF9 SRL B CB38
SET 7,D CBFA SRL C CB39
SET 7,E CBFB SRL D CB3A
SET 7,H CBFC SRL E CB3B
SET 7,L CBFD SRL H CB3C
SLA (HL) CB26 SRL L CB3D
SLA (IX+d) DDCBd26 SUB (HL) 96
SLA (IY+d) FDCBd26 SUB (IX+d) DD96d
SLA A CB27 SUB (IY+d) FD96d
SLA B CB20 SUB A 97
SLA C CB21 SUB B 90
SLA D CB22 SUB C 91
SLA E CB23 SUB D 92
SLA H CB24 SUB E 93
SLA L CB25 SUB H 94
SRA (HL) CB2E SUB L 95
SRA (lX+d) DDCBd2E SUB n D6n
SRA (IY+d) FDCBd2E XOR (HL) AE
SRA A CB2F XOR (IX+d) DDAEd
SRA B CB28 XOR (IY+d) FDAEd
SRA C CB29 XOR A AF
SRA D CB2A XOR B A8
SRA E CB2B XOR C A9
SRA H CB2C XOR D AA
SRA L CB2D XOR E AB
SRL (HL) CB3E XOR H AC
SRL (IX+d) DDCBd3E XOR L AD
SRL (lY+d) FDCBd3E XOR n EEn

12.16 Instruction Set: Numerical Order
OpCode Mnemonic OpCode Mnemonic OpCode Mnemonic

00 NOP 15 DECD 2Ann LD HL,(nn)
01nn LD BC,nn 16n LDD,n 2B DECHL
02 LD (BC),A 17 RLA 2C INCL
03 INCBC 18d2 JRd2 2D DECL
04 INCB 19 ADDHL,DE 2En LDL,n
05 DECB 1A LDA,(DE) 2F CPL
06n LDB,n 1B DEC DE 30d2 JR NC,d2
07 RLCA 1C INCE 31nn LDSP,nn
08 EXAF,A'F' 1D DECE 32nn LD (nn),A
09 ADDHL,BC 1En LDE,n 33 INCSP
OA LDA,(BC) 1F RRA 34 INC (HL)
OB DECBC 20d2 JR NZ,d2 35 DEC (HL)
OC INCC 21nn LD HL,nn 36n LD (HL),n
OD DECC 22nn LD (nn),HL 37 SCF
OEn LDC,n 23 INCHL 38 JR C,d2
OF RRCA 24 INCH 39 ADD HL,SP
10d2 DJNZd2 25 DECH 3Ann LDA,(nn)
11 nn LD DE,nn 26n LDH,n 3B DECSP
12 LD (DE),A 27 DM 3C INCA
13 INC DE 28d2 JR Z,d2 3D DECA
14 INCD 29 ADD HL,HL 3En LDA,n

(nn) = Address of memory location d = displacement

nn = Data (16 bit) d2=d-2

n = Data (8 bit)

7·66

z
12.16 Instruction Set: Numerical Order (Continued)

tn
0
co

OpCode Mnemonic OpCode Mnemonic OpCode Mnemonic 0
0

3F CCF 74 LD(HL),H A9 XORC
40 LDB,B 75 LD (HL),L AA XORD
41 LDB,C 76 HALT AB XORE
42 LDB,D 77 LD(HL),A AC XORH
43 LDB,E 78 LDA,B AD XORL
44 LDB,H 79 LDA,C AE XOR (HL)
45 LDB,L 7A LDA,D AF XORA
46 LDB,(HL) 7B LDA,E BO ORB
47 LDB,A 7C LDA,H B1 ORC
48 LDC,B 70 LDA,L B2 ORO
49 LDC,C 7E LDA,(HL) B3 ORE
4A LDC,D 7F LDA,A B4 ORH
4B LDC,E 80 ADDA,B B5 ORL
4C LDC,H 81 ADDA,C B6 OR (HL)
40 LDC,L 82 ADDA,D B7 ORA
4E LDC,(HL) 83 ADDA,E B8 CPB
4F LDC,A 84 ADDA,H B9 CPC
50 LDD,B 85 ADDA,L BA CPO
51 LDD,C 86 ADDA,(HL) BB CPE
52 LDD,D 87 ADDA,A BC CPH
53 LDD,E 88 ADCA,B BD CPL
54 LDD,H 89 ADCA,C BE CP (HL)
55 LDD,L 8A ADCA,D BF CPA
56 LD D,(HL) 8B ADCA,E CO RETNZ
57 LDD,A 8C ADCA,H C1 POPBC
58 LDE,B 80 ADCA,L C2nn JP NZ,nn
59 LDE,C 8E ADCA,(HL) C3nn JPnn
5A LDE,D 8F ADCA,A C4nn CALL NZ,nn
5B LDE,E 90 SUBB C5 PUSH BC
5C LDE,H 91 SUBC C6n ADDA,n
50 LDE,L 92 SUBD C7 RSTO
5E LD E,(HL) 93 SUBE C8 RETZ
5F LDE,A 94 SUBH C9 RET
60 LDH,B 95 SUBL CAnn JP Z,nn
61 LDH,C 96 SUB (HL) CBOO RLCB
62 LDH,D 97 SUBA CB01 RLCC
63 LDH,E 98 SBCA,B CB02 RLCD
64 LDH,H 99 SBCA,C CB03 RLCE
65 LDH,L 9A SBCA,D CB04 RLCH
66 LDH,(HL) 9B SBCA,E CB05 RLCL
67 LDH,A 9C SBCA,H CBOS RLC(HL)
68 LDL,B 90 SBCA,L CB07 RLCA
69 LDL,C 9E SBCA,(HL) CBOa RRCB
6A LDL,D 9F SBCA,A CB09 RRCC
6B LDL,E AO ANDB CBOA RRCD
6C LDL,H A1 ANDC CBOB RRCE
60 LDL,L A2 ANDD CBOC RRCH
6E LDL,(HL) A3 ANDE CBOD RRCL
6F LDL,A A4 ANDH CBOE RRC(HL)
70 LD(HL),B A5 ANDL CBOF RRCA
71 LD (HL),C AS AND (HL) CB10 RLB
72 LD(HL),D A7 ANDA CB11 RLC
73 LD(HL),E A8 XORB CB12 RLD • (nn) = Address of memory location d = displacement

nn=Data (16 bit) d2=d-2

n = Data (S·bit)

7-67

0
0
CC) 12.16 Instruction Set: Numerical Order (Continued) 0 en

OpCode Mnemonic Z OpCode Mnemonic OpCode Mnemonic

CB13 RLE CB4F BIT1,A CB83 RESO,E
CB14 RLH CB50 BIT2,B CB84 RESO,H
CB15 RL L CB51 BIT2,C CB85 RESO,L
CB16 RL(HL) CB52 BIT2,D CB86 RESO,(HL)
CB17 RLA CB53 BIT2,E CB87 RESO,A
CB18 RRB CB54 BIT2,H CB88 RES 1,B
CB19 RRC CB55 BIT2,L CB89 RES 1,C
CB1A RRD CB56 BIT2,(HL) CB8A RES 1,D
CB1B RRE CB57 BIT2,A CB8B RES 1,E
CB1C RRH CB58 BIT3,B CB8C RES 1,H
CB1D RRL CB59 BIT3,C CB8D RES 1,L
CB1E RR(HL) CB5A BIT3,D CB8E RES 1,(HL)
CB1F RRA CB5B BIT3,E CB8F RES 1,A
CB20 SLAB CB5C BIT3,H CB90 RES2,B
CB21 SLAC CB5D BIT3,L CB91 RES2,C
CB22 SLAD CB5E BIT3,(HL) CB92 RES2,D
CB23 SLAE CB5F BIT3,A CB93 RES2,E
CB24 SLAH CB60 BIT4,B CB94 RES2,H
CB25 SLAL CB61 BIT4,C CB95 RES2,L
CB26 SLA(HL) CB62 BIT4,D CB96 RES2,(HL)
CB27 SLAA CB63 BIT4,E CB97 RES2,A
CB28 SRAB CB64 BIT4,H CB98 RES3,B
CB29 SRAC CB65 BIT4,L CB99 RES3,C
CB2A SRAD CB66 BIT4,(HL) CB9A RES3,D
CB2B SRAE CB67 BIT4,A CB9B RES3,E
CB2C SRAH CB68 BIT5,B CB9C RES3,H
CB2D SRAL CB69 BIT5,C CB9D RES3,L
CB2E SRA(HL) CB6A BIT5,D CB9E RES3,(HL)
CB2F SRAA CB6B BIT5,E CB9F RES3,A
CB38 SRLB CB6C BIT5,H CBAO RES4,B
CB39 SRLC CB6D BIT5,L CBA1 RES4,C
CB3A SRLD CB6E BIT5,(HL) CBA2 RES4,D
CB3B SRLE CB6F BIT5,A CBA3 RES4,E
CB3C SRLH CB70 BIT6,B CBA4 RES4,H
CB3D SRLL CB71 BIT6,C CBA5 RES4,L
CB3E SRL(HL) CB72 BIT6,D CBA6 RES4,(HL)
CB3F SRLA CB73 BIT6,E CBA7 RES4,A
CB40 BITO,B CB74 BIT6,H CBA8 RES5,B
CB41 BITO,C CB75 BIT6,L CBA9 RES5,C
CB42 BITO,D CB76 BIT6,(HL) CBAA RES5,D
CB43 BITO,E CB77 BIT6,A CBAB RES5,E
CB44 BITO,H CB78 BIT7,B CBAC RES5,H
CB45 BITO,L CB79 BIT7,C CBAD RES5,L
CB46 BITO,(HL) CB7A BIT7,D CBAE RES5,(HL)
CB47 BITO,A CB7B BIT7,E CBAF RES5,A
CB48 BIT 1,B CB7C BIT7,H CBBO RES6,B
CB49 BIT1,C CB7D BIT7,L CBB1 RES6,C
CB4A BIT1,D CB7E BIT7,(HL) CBB2 RES6,D
CB4B BIT 1,E CB7F BIT7,A CBB3 RES6,E
CB4C BIT 1,H CB80 RESO,B CBB4 RES6,H
CB4D BIT 1,L CB81 RESO,C CBB5 RES6,L
CB4E BIT 1,(HL) CB82 RESO,D CBB6 RES6,(HL)

(nn) = Address of memory location d = displacement

nn=Data (16 bit) d2=d-2

n = Data (S-blt)

7-68

z
12.16 Instruction Set: Numerical Order (Continued)

en
0
CQ

OpCode Mnemonic OpCode Mnemonic OpCode Mnemonic
«:)
«:)

CBB7 RES6,A CBEC SET5,H DD66d LD H,(IX+d)
CBBS RES7,B CBED SET5,L DD6Ed LD L,(IX+d)
CBB9 RES 7,C CBEE SET5,(HL) DD70d LD(IX+d),B
CBBA RES 7,0 CBEF SET5,A DD71d LD (lX+d),C
CBBB RES7,E CBFO SET6,B DD72d LD (lX+d),O
CBBC RES7,H CBF1 SET6,C DD73d LD(IX+d),E
CBBD RES7,L CBF2 SET6,O DD74d LD(IX+d),H
CBBE RES7,(HL) CBF3 SET6,E DD75d LD(lX+d),L
CBBF RES 7,A CBF4 SET6,H DD77d LD(lX+d),A
CBca SETO,B CBF5 SET6,L DD7Ed LDA,(IX+d)
CBC1 SETO,C CBF6 SET6,(HL) DDS6d ADDA,(lX+d)
CBC2 SET 0,0 CBF7 SET6,A DOSEd ADCA,(lX+d)
CBC3 SETO,E CBFS SET7,B DD96d SUB (IX+d)
CBC4 SETO,H CBF9 SET7,C DD9Ed SBC A,(IX + d)
CBC5 SETO,L CBFA SET 7,0 DDA6d AND (IX+d)
CBC6 SETO,(HL) CBFB SET7,E DDAEd XOR (IX+d)
CBC7 SETO,A CBFC SET7,H DDB6d OR (IX + d)
CBCS SET 1,B CBFD SET7,L DDBEd CP (IX+d)
CBC9 SET 1,C CBFE SET7,(HL) DDCBd06 RLC(IX+d)
CBCA SET 1,0 CBFF SET7,A DDCBdOE RRC(IX+d)
CBCB SET 1,E CCnn CALLZ,nn DDCBd16 RL(lX+d)
CBCC SET 1,H COnn CALLnn DDCBd1E RR (IX+d)
CBCD SET 1,L CEn ADCA,n DDCBd26 SLA (lX+d)
CBCE SET 1,(HL) CF RSTS DDCBd2E SRA(IX+d)
CBCF SET 1,A DO RETNC DDCBd3E SRL(lX+d)
CBDa SET2,B 01 POP DE DDCBd46 BITO,(lX+d)
CBD1 SET2,C D2nn JP NC,nn DDCBd4E BIT 1 ,(IX + d)
CBD2 SET 2,0 D3n OUT (n),A DDCBd56 BIT 2,(IX + d)
CBD3 SET2,E D4nn CALL NC,nn DDCBd5E BIT 3,(IX + d)
CBD4 SET2,H 05 PUSH DE DDCBd66 BIT 4,(IX + d)
CBDS SET2,L D6n SUBn DDCBd6E BIT 5,(IX + d)
CBD6 SET2,(HL) 07 RST10H DDCBd76 BIT6,(lX+d)
CBD7 SET2,A OS RETC DDCBd7E BIT7,(lX+d)
CBDS SET3,B 09 EXX DDCBdS6 RESO,(lX+d)
CBD9 SET3,C DAnn JP,C,nn DDCBdSE RES 1,(lX+d)
CBDA SET 3,0 DBn INA,(n) DDCBd96 RES 2,(IX + d)
CBDB SET3,E DCnn CALLC,nn DDCBd9E RES 3,(IX + d)
CBDC SET3,H 0009 ADDIX,BC DDCBdA6 RES 4,(IX+d)
CBDD SET3,L 0019 ADDIX,DE DDCBdAE RES 5,(IX+d)
CBDE SET3,(HL) DD21nn LD IX,nn DDCBdB6 RES6,(lX+d)
CBDF SET3,A DD22nn LD (nn),IX DDCBdBE RES 7,(IX + d)
CBEO SET4,B 0023 INC IX DDCBdC6 SET O,(IX + d)
CBE1 SET4,C 0029 ADDIX,IX DDCBdCE SET 1 ,(IX + d)
CBE2 SET 4,0 DD2Ann LD IX,(nn) DDCBdD6 SET 2,(IX + d)
CBE3 SET4,E DD2B DEC IX DDCBdDE SET3,(lX+d)
CBE4 SET4,H DD34d INC (IX+d) DDCBdE6 SET 4,(IX + d)
CBE5 SET4,L DD35d DEC (lX+d) DDCBdEE SET5,(lX+d)
CBE6 SET4,(HL) DD36dn LD (lX+d),n DDCBdF6 SET 6,(IX + d)
CBE7 SET4,A 0039 ADDIX,SP DDCBdFE SET7,(lX+d)
CBES SET5,B DD46d LD B,(IX+d) DDE1 POP IX
CBE9 SET5,C DD4Ed LDC,(IX+d) DDE3 EX (SP),IX
CBEA SET 5,0 DD56d LOO,(IX+d) DDE5 PUSH IX
CBEB SET5,E DD5Ed LD E,(IX+d) DDE9 JP(lX) • (nn) = Address of memory location d = displacement

nn=Data (16 bit) d2=d-2

n = Data (S-bit)

7-69

0
0
CO 12.16 Instruction Set: Numerical Order (Continued) 0 en OpCode Mnemonic OpCode Mnemonic OpCode Mnemonic Z

DDF9 LDSP,IX ED7Bnn LD SP,(nn) FD73d LD(IY+d),E
DEn SCBA,n EDAO LDI FD74d LD(IY+d),H
DF RST18H EDA1 CPI FD75d LD (IY+d),L
EO RET PO EDA2 INI FD77d LD (lY+d),A
E1 POPHL EDA3 OUTI FD7Ed LDA,(IY+d)
E2nn JP PO,nn EDA8 LDD FD86d ADD A,(IY + d)
E3 EX (SP),HL EDA9 CPD FD8Ed ADC A,(IY + d)
E4nn CALLPO,nn EDAA IND FD96d SUB (lY+d)
E5 PUSH HL EDAB OUTD FD9Ed SBC A,(IY + d)
E6n ANDn EDBO LDIR FDA6d AND (lY+d)
E7 RST20H EDB1 CPIR FDAEd XOR(IY+d)
E8 RETPE EDB2 INIR FDB6d OR (IY+d)
E9 JP(HL) EDB3 OTIR FDBEd CP (lY+d)
EAnn JP PE,nn EDB8 LDDR FDE1 POPIY
EB EXDE,HL EDB9 CPDR FDE3 EX (SP), IY
ECnn CALLPE,nn EDBA INDR FDE5 PUSH IY
ED40 INB,(C) EDBB OTDR FDE9 JP(IY)
ED41 OUT (C),B EEn XORn FDF9 LDSP,IY
ED42 SBCHL,BC EF RST28H FDCBd06 RLC(IY+d)
ED43nn LD(nn),BC FO RETP FDCBdOE RRC(IY+d)
ED44 NEG F1 POPAF FDCBd16 RL(IY+d)
ED45 RETN F2nn JP P,nn FDCBd1E RR(lY+d)
ED46 IMO F3 DI FDCBd26 SLA(IY+d)
ED47 LDI,A F4nn CALLP,nn FDCBd2E SRA(lY+d)
ED48 INC,(C) F5 PUSHAF FDCBd3E SRL(IY+d)
ED49 OUT (C),C F6n ORn FDCBd46 BITO,(lY+d)
ED4A ADCHL,BC F7 RST30H FDCBd4E BIT 1,(IY+d)
ED4Bnn LD BC,(nn) F8 RETM FDCBd56 BIT 2,(IY + d)
ED4D RETI F9 LDSP,HL FDCBd5E BIT3,(IY+d)
ED50 IND,(C) FAnn JP M,nn FDCBd66 BIT4,(lY+d)
ED51 OUT (C),D FB EI FDCBd6E BIT5,(lY+d)
ED52 SBCHL,DE FCnn CALLM,nn FDCBd76 BIT 6,(IY + d)
ED53nn LD (nn),DE FD09 ADDIY,BC FDCBd7E BIT 7,(IY+d)
ED56 1M 1 FD19 ADDIY,DE FDCBd86 RESO,(lY+d)
ED57 LDA,I FD21nn LD IY,nn FDCBd8E RES 1,(IY+d)
ED58 INE,(C) FD22nn LD(nn),IY FDCBd96 RES2,(lY+d)
ED59 OUT(C), E FD23 INCIY FDCBd9E RES 3,(IY + d)
ED5A ADCHL,DE FD29 ADDIY,IY FDCBdA6 RES4,(lY+d)
ED5Bnn LD DE,(nn) FD2Ann LD IY,(nn) FDCBdAE RES5,(lY+d)
ED5E 1M2 FD2B DECIY FDCBdB6 RES 6,(IY + d)
ED60 INH,(C) FD34d INC (IY+d) FDCBdBE RES 7,(IY+d)
ED61 OUT (C),H FD35d DEC (lY+d) FDCBdC6 SET O,(IY + d)
ED62 SBCHL,HL FD36dn LD(IY+d),n FDCBdCE SET 1,(IY + d)
ED67 RRD FD39 ADDIY,SP FDCBdD6 SET 2,(IY + d)
ED68 INL,(C) FD46d LDB,(IY+d) FDCBdDE SET 3,(IY + d)
ED69 OUT (C),L FD4Ed LDC,(IY+d) FDCBdE6 SET4,(lY+d)
ED6A ADCHL,HL FD56d LDD,(IY+d) FDCBdEE SET 5,(IY + d)
ED6F RLD FD5Ed LDE,(lY+d) FDCBdF6 SET 6,(IY + d)
ED72 SBCHL,SP FD66d LDH,(IY+d) FDCBdFE SET7,(IY+d)
ED73nn LD (nn),SP FD6Ed LD L,(IY+d) FEn CPn
ED78 INA,(C) FD70d LD(IY+d),B FF RST38H
ED79 OUT (C),A FD71d LD(IY+d),C
ED7A ADCHL,SP FD72d LD(lY+d),D

(nn) = Address of memory location d = displacement

nn = Data (16 bit) d2=d-2

n = Data (a-bit)

7-70

13.0 Data Acquisition System
A natural application for the NSC800 is one that requires
remote operation. Since power consumption is low if the
system consists of only CMOS components, the entire
package can conceivably operate from only a battery power
source. In the application described herein, the only source
of power will be from a battery pack composed of a stacked
array of NiCad batteries (see Figure 20).

The application is that of a remote data acquisition system.
Extensive use is made of some of the other LSI CMOS com­
ponents manufactured by National: notably the ADC0816
and MM58167. The ADC0816 is a 16-channel analog-to­
digital converter which operates from a 5V source. The
MM58167 is a microprocessor-compatible real-time clock
(RTC). The schematic for this system is shown in Figure 20.
All the necessary features of the system are contained in six
integrated circuits: NSC800, NSC810A, NSC831, HN6136P,
ADC0816, and MM58167. Some other small scale integra­
tion CMOS components are used for normal interface re­
quirements. To reduce component count, linear selection
techniques are used to generate chip selects for the
NSC810A and NSC831. Included also is a current loop com­
munication link to enable the remote system to transfer data
collected to a host system.

In order to keep component count low and maximize effec­
tiveness, many of the features of the NSC800 family have
been utilized. The RAM section of the NSC810A is used as
a data buffer to store intermediate measurements and as
scratch pad memory for calculations. Both timers contained
in the NSC810A are used to produce the clocks required by
the AID converter and the RTC. The Power-Save feature of
the NSC800 makes it possible to reduce system power con­
sumption when it is not necessary to collect any data. One
of the analog input channels of the AID is connected to the
battery pack to enable the CPU to monitor its own voltage
supply and notify the host that a battery change is needed.

In operation, the NSC800 makes readings on various input
conditions through the ADC0816. The type of devices con­
nected to the A/D input depends on the nature of the re­
mote environment. For example, the duties of the remote
system might be to monitor temperature variations in a large
building. In this case, the analog inputs would be connected
to temperature transducers. If the system is situated in a
process control environment, it might be monitoring fluid
flow, temperatures, fluid levels, etc. In either case, operation
would be necessary even if a power failure occurred, thus

7-71

the need for battery operation or at least battery backup. At
some fixed times or at some particular time durations, the
system takes readings by selecting one of the analog input
channels, commands the A/D to perform a conversion,
reads the data, and then formats it for transmission; or, the
system checks the readings against set points and trans­
mits a warning if the set points are exceeded. With the addi­
tion of the RTC, the host need not command the remote
system to take these readings each time it is necessary.
The NSC800 could simply set up the RTC to interrupt it at a
previously defined time and when the interrupt occurs, make
the readings. The resultant values could be stored in the
NSC810A for later correlation. In the example of tempera­
ture monitoring in a building, it might be desired to know the
high and low temperatures for a 12-hour period. After com­
piling the information, the system could dump the data to
the host over the communications link. Note from the sche­
matic that the current for the communication link is supplied
by the host to remove the constant current drain from the
battery supply.

The required clocks for the two peripheral devices are gen­
erated by the two timers in the NSC810A. Through the use
of various divisors, the master clock generated by the
NSC800 is divided down to produce the clocks. Four exam­
ples are shown in the table following Figure 20.

All the crystal frequencies are standard frequencies. The
various divisors listed are selected to produce, from the
master clock frequency of the NSC800, an exact 32,768 Hz
clock for the MM58167 and a clock within the operating
range of the AID converter.

The MM58167 is a programmable real·time clock that is
microprocessor compatible. Its data format is BCD. It allows
the system to program its interrupt register to produce an
interrupt output either on a time of day match (which in­
cludes the day of the week, the date and month) and/or
every month, week, day, hour, minute, second, or tenth of a
second. With this capability added to the system, precise
time of day measurements are possible without having the
CPU do timekeeping. The interrupt output can be connect­
ed, through the use of one port bit of the NSC810A, to put
the CPU in the power-save mode and reenable it at a preset
time. The interrupt output is also connected to one of the
hardware restart inputs (RSTB) to enable time duration
measurements. This power-down mode of operation would
not be possible if the NSC800 had the duties of timekeep-

z en o
Q)
o
o

•

-=-

~I 6O
p
r-!-

w , • Vee
olIO

AID

Nl

A9
A9

loB
loB

A12 CSO
AI3 CS1

PA(O-7}

RSTA
ALE

iii PCO
XIN

SEE TEXT rOR I A(11-I5)
FREQUENCIES

NSC800

AD(0-7}

XOUT

iiii PC3

~
I.5K I iiii

iii
iiii
iii

ALE ALE

IO/W IOT/W

a:x AD(0-7)

NSC810A

Vee
EXPAND a:-.. tt

1 I;
COIIIION
COIIPARATOR

If
1111 IID(o-7}

QJ(

OSCII

D(0-7)

.. 1158167

Vee

15
ANALOG

OWINElS

VIlAI

-=-

RUDIENCE
CDIDIATOR

(SEE ADC0816
DATA SlIm)

---20mA

---20mA

AD(0-7) 74HC373
Vee

PO

.... 74HC04
• AI3 Ics

PCl PCO TOIII

cs
iiii
Wi

L-__ ~~ __________________ ~~ ______ ~IM~

L-----------------II ~ IPOWlR DOWN

.. W74HC04

FIGURE 20. Remote Data Acquisition

AD(0-7)

~Vee

HN6136P

------ -110m

AI5 cs

-=- TUC/5171-34

NSC800

-&.
(,)

(:)

C
I» ..
I»
~
n
,g
c
in
:::;: o·
:::J
en
'<
(I) ..
(I)

3
:9
3-:r
c
m
S::

13.0 Data Acquisition System (Continued)

ing. When in the power-save mode, the system power re­
quirements are decreased by about 50%, thus extending
battery life.

Communication with the peripheral devices (MM58167 and
ADC0816) is accomplished through the 1/0 ports of the
NSC81 OA and NSC831. The peripheral devices are not con­
nected to the bus of the NSC800 as they are not directly
compatible with a multiplexed bus structure. Therefore, ad­
ditional components would be required to place them on the
microprocessor bus. Writing data into the MM58167 is per­
formed by first putting the desired data on Port A, followed
by selecting the address of the internal register and applying
the chip select through the use of Port 8. A bit set and clear
operation is performed to emulate a pulse on the bit of Port
8 connected to the WR input of the MM58167. For a read
operation, the same sequence of operations is performed
except that Port A is set for the input mode of operation and
the RD line is pulsed. Similar techniques are used to read
converted data from the AID converter. When a conversion
is desired, the CPU selects a channel and commands the
ADC0816 to start a conversion. When the conversion is
complete, the converter will produce an End-of-Conversion

signal which is connected to the RST A interrupt input of the
NSC800.

When operating, the system shown consumes about 125
mw. When in the power-save mode, power consumption is
decreased to about 70 mw. If, as is likely, the system is in
the power-save mode most of the time, battery life can be
quite long depending on the amp-hour rating of the batteries
incorporated into the system. For example, if the battery
pack is rated at 5 amp-hours, the system should be able to
operate for about 400-500 hours before a battery charge or
change is required.

As shown in the schematic (refer to Figure 2{}), analog input
INO is connected to the battery source. In this way, the CPU
can monitor its own power source and notify the host that it
needs a battery replacement or charge. Since the battery
source shown is a stacked array of 7 NiCads producing
8.4V, the converter input is connected in the middle so that
it can take a reading on two or three of the cells. Since
NiCad batteries have a relatively constant voltage output
until very nearly discharged, the CPU can sense that the
"knee" of the discharge curve has been reached and notify
the host.

Typical Timer Output Frequencies

Crystal Frequency CPU Clock Output Timer 0 Output Timer 1 Output

2.097152 MHz 1.048576 MHz 262.144 kHz 32.768 kHz
divisor = 4 divisor = 8

3.276800 MHz 1.638400 MHz 327.680 kHz 32.768 kHz
divisor = 5 divisor = 10

4.194304 MHz 2.097152 MHz 262.144 kHz 32.768 kHz
divisor = 8 divisor = 8

4.915200 MHz 2.457600 MHz 491.520 kHz 32.768 kHz
divisor = 5 divisor = 15

7-73

z en o
CD
o
o

,.

o o
~ 14.0 NSC800M/883B MIL-STD-833
~ Class C Screening

National Semiconductor offers the NSC800D and NSC800E
with full class B screening per MIL-STD-883 for Military/
Aerospace programs requiring high reliability. In addition,
this screening is available for all of the key NSC800 periph­
eral devices.

Electrical testing is performed in accordance with
RESTS800X, which tests or guarantees all of the electrical
performance characteristics of the NSC800 data sheet. A
copy of the current revision of RETS800X is available upon
request.

Test

Internal Visual
Stabilization Bake
Temperature Cycling

Constant Acceleration
Fine Leak
Gross Leak

Burn-In

Final Electrical

PDA

QA Acceptance
Quality Conformance
External Visual

15.0 Burn-In Circuits

100% Screening Flow

MIL-STD-883 Method/Condition Requirement

2010B 100%
1008 C 24 Hrs. @ + 150°C 100%

1010 C 10 Cycles - 65°C/ + 150°C 100%

2001 E 30,000 G's, Y1 Axis 100%

1014AorB 100%

1014C 100%

1015 160 Hrs. @ + 125°C (using 100%
burn-in circuits shown below)

+ 25°C DC per RETS800X 100%

10% Max

+ 125°C AC and DC per RETS800X 100%

-55°C AC and DC per RETS800X 100%

+ 25°C AC per RETS800X 100%
5005 Sample Per

Method 5005
2009 100%

5240HR
NSC800D/883B (Dual-ln-L1ne)

5241HR
NSC800E/883B (Lead less Chip Carrier)

1
Z
3

• a
I
7
I
I

100 kHz 51 NC""","*

(NOTE 2) 12
13
14

15
18
17
11

11

r

40

~
37
38
35
3.
33
32
31
30
21
2.
27
28
25
2.
23
22
21

Top View

10

51

TL/C/5171-32

100kHz
(NDTEZ)

All resistors 2.7 kn unless marked otherwise.

10

NC~
51 NC~

14

15
11

17

Note 1: All resistors are YeW ± 5% unless otherwise specified.

uv

10

44·PlN LEADLESS
PACKAGE

Note 2: All clocks OV to 3V, 50% duty cycle, In phase with < 1 ,...s rise and fall time.

Note 3: Device to be cooled down under power after burn-In.

7-74

~:~~ 5::.:,01 """'-++O~N~:~~)
35

~NC
32
31
30

TL/C/5171-33

16.0 Ordering Information
NSC800 X X

-:- -r-
x

T I, A + = A + Reliability Screening

~'883 = MIL-STD-883 Screening (Note 1)

I = Industrial Temperature (-40°C to + 85°C)
'--_____ -fM = Military Temperature (-55°C to + 125°C)

MIL = Special Temperature (- 55°C to + 90°C)

No Designation = Commercial Temperature (O·C to + 70°C)

-4 = 4 MHz Clock

L--________ -l-35 = 3.5 MHz Clock Output
- 3 = 2.5 MHz Clock Output
- 1 = 1 MHz Clock Output

D = Ceramic Package
"--___________ ---1N = Plastic Package

E = Ceramic Leadless Chip Carrier (LCC)
V = Plastic Leaded Chip Carrier (PCC)

Note 1: Do not specify a temperature option; all parts are screened to military temperature.

17.0 Reliability Information
Gate Count 2750

Transistor Count 11,000

7-75

z en
o
Q)
«:)
«:)

<C o
B ~National
~ ~ Semiconductor

NSC810A RAM-I/O-Timer

General Description
The NSC810A, the lUxury model of our NSC800™ peripher­
al line, sports triple ported lID, dual 16-bit timers and a
1024-bit static storage area. The three ports can be com­
bined for a total of 22 general purpose 110 lines. In addition,
port A has several strobed mode operations. Note the sin­
gle instruction 1/0 bit operations for quick and efficient data
handling from the ports. The timers feature 6 modes of op­
eration and prescalers for those complicated timing tasks.
The NSC810A comes in two models: the Dual-In-Line (DIP)
and the surface mount chip carrier (LCC). It also comes in
three exciting temperature ranges (Commercial, Industrial,
and Military) and two reliability flows (extended burn-in and
military class B in accordance with Method 5004 of MIL­
STD-883). This is brought to you through the microCMOS
silicon gate technology of National Semiconductor.

NSC810A Connection Diagram

181

181

Vee ~"""" .. - ... 1ImTlR

Features
• Three programmable 110 ports
• Dual 16-bit programmable counterltimers
• 2.4V-6.0V power supply
• Very low power consumption
• Fully static operation
• Single-instruction 110 bit operations
• Timer operation-DC to 5 MHz
• Bus compatible with NSC800TM family
• Speed: compatible with NSC800

NSC810A-4 ~ NSC800-4 @ 4.0 MHz

NSC810A-3 ~ NSC800 @ 2.5 MHz

NSC810A-1 ~ NSC800-1 @ 1.0 MHz

A13
CE NSC8l0A

RI!
RAM
110

WR
TIMER

ALE

10TlM

RESET

7-76

PORTA
8 BITS

PORTB
B BITS

TL/C/5517-l

Table of Contents
1.0 ABSOLUTE MAXIMUM RATINGS

2.0 OPERATING CONDITIONS

3.0 DC ELECTRICAL CHARACTERISTICS

4.0 AC ELECTRICAL CHARACTERISTICS

5.0 TIMER AC ELECTRICAL CHARACTERISTICS

6.0 TIMING WAVEFORMS

7.0 PIN DESCRIPTIONS

7.1 Input Signals
7.2 Output Signals
7.3 Power Supply Signals
7.4 Input/Output Signals

8.0 CONNECTION DIAGRAMS

7-77

9.0 FUNCTIONAL DESCRIPTION

9.1 Random Access Memory (RAM)
9.2 Detailed Block Diagram
9.3 1/0 Ports

9.3.1 Registers
9.3.2 Modes

9.4 Timers

9.4.1 Registers
9.4.2 Timer Pins
9.4.3 Timer Modes
9.4.4 Timer Programming

10.0 NSC810/883 MIL-STD-883/CLASS B SCREENING

11.0 BURN-IN CIRCUIT

12.0 TIMING DIAGRAM

13.0 ORDERING INFORMATION

14.0 RELIABILITY INFORMATION

z en o
CD
~

•

oCt o
co
o en
z

1.0 Absolute Maximum Ratings
(Note 1)

2.0 Operating Conditions
Vee = 5V ± 10%

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

Storage Temperature Range - 65°C to + 150°C

Voltage at Any Pin with Respect
to Ground

Vee
Power Dissipation

-0.3V to Vee + 0.3V

7V

Lead Temperature (Soldering, 10 seconds)

1W

300°C

NSC810A-1 --+ O°C to +70°C
- 40°C to + 85°C

NSC810A-3 --+ O°C to + 70°C
-40°C to +85°C
- 55°C to + 125°C

NSC810A-4 --+ O°C to + 70°C
- 40°C to + 85°C
- 55°C to + 125°C

3.0 DC Electrical Characteristics Vee = 5V ± 10%, GND=OV, unless otherwise specified.

Symbol Parameter

VIH Logical 1 Input Voltage

VIL Logical 0 Input Voltage

VOH Logical 1 Output Voltage

VOL Logical 0 Output Voltage

IlL Input Leakage Current

IOL Output Leakage Current

lee Active Supply Current

IQ Quiescent Current

CIN Input Capacitance

COUT Output Capacitance

Vee Power Supply Voltage

VDRV Data Retention Voltage

IOH = -1.0 mA

lOUT = - 10 I1A

IOL = 2 mA
lOUT = 10 I1A

Conditions

lOUT = 0, Timer = Mode 1, TOIN = T11N = 2.5 Mhz,
twey = 750 ns, T A = 25°C

No Input Switching, T A = 25°C,
RESET = 0, IO/M = 1, RD = 1, WR = 1, ALE = 1,
VIN = Vee, tiN = 0 Hz, tOUT = 0

(Note 2)

Min Typ

0.8 Vee

0

2.4
Vee- 0.5

0
0

-10.0

-10.0

8

10

4

6

2.4 5

1.8

Max Units

Vee V

0.2 Vee V

V
V

0.4 V
0.1 V

10.0 I1A

10.0 I1A

10 mA

100 I1A

7 pF

10 pF

6 V

V

Note 1: Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. Continuous operation at these limits is not
intended; operation should be limited to those conditions specified under DC Electrical Characteristics.

Note 2: Operation at lower power supply voltages will reduce the maximum operating speed. Operation at voltages other than 5V ± 10% is guaranteed by design.
not tested.

ICC vsSpeed
10--...-----r----.--.......,.

MAXI~

h2::

4500 3000 1500 1000 750

twey (ns)

o 1 2 3 4

NSC800 CLOCK SPEED* (MHz)
TL/C/5517-2

·When NSC810A is used with NSC800

7-78

4.0 AC Electrical Characteristics Vcc=5V ±10%, GND=OV

Symbol Parameter Conditions
NSC810A-1 NSC810A-3 NSC810-4

Units
Min Max Min Max Min Max

tACC Access Time from ALE CL = 150 pF 1000 400 300 ns

tAH ADO-7, CE, lOT 1M Hold Time 100 60 30 ns

tALE ALE Strobe Width (High) 200 125 100 ns

tARW ALE to RD or WR Strobe 150 120 75 ns

tAS ADO-7, CE, 10TIM Set-Up Time 100 45 25 ns

tOH Data Hold Time 150 90 40 ns

too Port Data Output Valid 350 310 300 ns

tos Data Set-Up Time 100 80 50 ns

tpE Peripheral Bus Enable 320 200 200 ns

tpH Peripheral Data Hold Time 150 125 100 ns

tps Peripheral Data Set-Up Time 100 75 50 ns

tpz Peripheral Bus Disable (TRI-STATE®) 150 150 150 ns

tRB RD to BF Invalid 300 300 300 ns

tRO Read Strobe Width 400 320 185 ns

tROD Data Bus Disable 0 100 0 100 0 75 ns

tRI RD to INTR Output 320 320 300 ns

tRWA RD or WR to Next ALE 125 100 75 ns

tSB STB to BF Valid 300 300 300 ns

tSH Peripheral Data Hold with Respect to STB 150 125 100 ns

tSI STB to INTR Output 300 300 300 ns

tss Peripheral Data Set-Up with Respect to STB 100 75 50 ns

tsw STBWidth 400 320 220 ns

tWB WR to BF Output 340 340 300 ns

tWI WR to INTR Output 320 320 300 ns

tWR WR Strobe Width 400 320 220 ns

twCY Width of Machine Cycle 3000 1200 750 ns

Note: Test conditions: twCY = 3000 ns for NSCB10A-1, 1200 ns for NSCB10A-3, 750 ns for NSCB10A-4

5.0 Timer AC Electrical Characteristics
Symbol Parameter Conditions Min Typ Max Units

Fc Clock Frequency DC 2.5 MHz

Fcp Clock Frequency Prescale Selected DC 5.0 MHz

tcw Clock Pulse Width 150 ns

tcwp Clock Pulse Width Prescale Selected 75 ns

tGS Gate Set-Up Time With Respect to Negative Clock Edge 100 ns

tGH Gate Hold Time With Respect to Negative Clock Edge 250 ns

tco Clock to Output Delay CL = 100 pF 350 ns

AC TESTING INPUT IOUTPUT WAVEFORM AC TESTING LOAD CIRCUIT

=::X0
•
8VCC O.8ve~ I DEVICE

a.2Vee a.2Ve
UNDER

TL/C/5517-3 TEST *' 100pF

TL/C/5517-4

7-79

z
en
C')
C):)
o
l>

•

6.0 Timing Waveforms
Timer Waveforms

GATE

OUTPUT ------------.... ~
(ACTIVE LOW)

Read Cycle (Read from RAM, Port or Timer)

IOTlM
CE

AD (0-7)

ALE

Rl!

PERIPHERAL
(PORT) BUS

Note: Diagonal lines indicate interval of invalid data.

Note: Diagonal lines indicate Interval of invalid data.

Write Cycle (Write to RAM, Port or Timer)

7·80

TL/C/5517-5

TL/C/5517-6

TL/C/5517-7

6.0 Timing Waveforms (Continued)

PERIPHERAL
(PORT A) BUS

BF

lOT/til
CE

ALE

Strobed Mode Input

PORT ,,'-------+---­
""""""""""""""",,,,,,,,,,,,,,,,,,,,,~,,,,,,,,,,,,,,~,,,",,,,,,,,",",,.,,,,m,.,;;ADDRESS VALID

AD (0-7) -

Note: Diagonal lines indicate interval of invalid data.

Strobed Mode Output

AD (0-7) DC PORT A ADDR ~ __ D_AT_A_IN __

TLIC/5517-B

ALE \~--------~c~ ___________ _
WI!

rnn------------------------------~J
BF

m
ACTIVE (MODE 2) ! OWDA ..

PORT A BUS tpe I--
TRI-STATE (MODE 3) II!---------~
--------------------tf.~ ---oiiiI(

TL/C/5517-9

Note: Diagonal lines indicate interval of Invalid data.

7-81

z en
o
Q)
o
:I>

I •

c:t o ,....
CO o en z

7.0 Pin Descriptions
The function and mnemonic for the NSC810A signals are
described below:

7.1 INPUT SIGNALS

Reset {RESEn: RESET is an active-high input that resets
all registers to 0 (low). The RAM contents remain unaltered.

Input/Output Timer or RAM Select (lOT /M): lOT 1M is an
I/O memory select input line. A logic 1 (high) input selects
the I/O-timer portion of the chip; a logic 0 (low) input selects
the RAM portion of the chip. lOT /M is latched at the falling
edge of ALE.

Chip Enable (CE): CE is an active-high input that allows
access to the NSC810A. CE is latched at the falling edge of
ALE.

Read (RD): The RD is an active-low input that enables a
read operation of the RAM or I/O-timer location.

Write (WR): The WR is an active-low input that enables a
write operation to RAM or I/O-timer locations.

Address Latch Enable (ALE): The falling edge of the ALE
input latches ADO-AD7, CE and lOT /M inputs to form the
address for RAM, I/O or timer.

Timer 0 Input (TOIN): TOIN is the clock input for timer O.

7.2 OUTPUT SIGNALS

Timer 0 Output {TOO Un: TOOUT is the programmable out­
put of timer o. After reset, TOOUT is set high.

7.3 POWER SUPPLY SIGNALS

Positive DC Voltage (Vee): Vee is the 5V supply pin.

Ground (GND): Ground reference pin.

8.0 Connection Diagrams
Dual·ln·Llne Package

PC3ITB 40
PC41T11N

TDIN PCl/BF
RESET PCD/mTII

PC51T10UT PB7
TDDUT PB6
IOT/M PB5

CE PB4
RII PB3

WR PB2
ALE PBl
ADD PBD
AD1 PA7
ADZ PA6
AD3 PA5
AD4 PA4

PA3
PA2
PAl
PAD

TL/C/5517-10

Top View

Order Number NSC810AD or NSC810AN
See NS Package Number D40C or N40A

7-82

7.4 INPUT/OUTPUT SIGNALS

Address/Data Bus (ADO-AD7): The multiplexed bidirec­
tional address/data bus; ADO-AD7 pins, are in the high im­
pedance state when the NSC810A is not selected.
ADO-AD7 will latch address inputs at the falling edge of
ALE. The address will designate a location in RAM, I/O or
timer. WR input enables 8-bit data to be written into the
addressed location. RD input enables 8-bit data to be read
from the addressed location. The RD or WR inputs occur
while ALE is low.

Port A, 0-7 (PAO-PA7): Port A is an 8-bit basic mode in­
put/output port, also capable of strobed mode I/O utilizing
three control signals from port C. Strobed mode of opera­
tion on port A has three different modes; strobed input,
strobed output with active peripheral bus, strobed output
with TRI-STATE peripheral bus.

Port B, 0-7 (PBO-PB7): Port B is an 8-bit basic mode in­
put/ output port.

Port C, 0-5 (PCO-PCS): Port C is a 6-bit basic mode I/O
port. Each pin has a programmable second function, as fol­
lows:

PCOIINTR: INTR is an active-low, strobed mode interrupt
request to the Central Processor Unit (CPU).

PC1/BF: BF is an active-high, strobed mode, buffer full
output to peripheral devices.

PC2/STB: STB is an active-low, strobed mode input from
peripheral devices.

PC3/TG: TG is the timer gating signal.

PC4/T1IN: T11N is the clock input for timer 1.

PCS/T10UT: T10UT is the programmable output of tim­
er 1.

Chip Carrier

PC31
PC5 IT1 OUT TOIN TG Vee PC1/BF

~~\IN 1 N~C ! i'~B7
6 5 4 3 2 1 44 43 42 41 40

TDOUT 7 • 39 PB6
IOT/M 8 38 PB5

CE 9 37 PB4
~10 ~ m

WJi 11 35 PB2
NC 12 NSC810A 34 NC

ALE 13 33 PBl
ADO 14 32 PBD
AD1 15 31 PA7
AD2 16 30 PA6
AD3 17 29 PA5

18 1920 21 22 23 24 25 26 27 28

,//11 f i , \\~'"
AD4 AD5 AD6 AD7 GND NC PAD PAl PAZ PA3 PA4

TL/C/5517-11

Top View
NC=no connect

Order Number NSC810AE or NSC810AV
See NS Package Number E44B or V44A

9.0 Functional Description
Figure 1 is a detailed block diagram of the NSC810A. The
functional description that follows describes the RAM, liD
and TIMER sections.

9.1 RANDOM ACCESS MEMORY (RAM)
The memory portion of the RAM-liD-timer is accessed by a
7 -bit address input to pins ADO through AD6. The lOT /M"

9.2 DETAILED BLOCK DIAGRAM

ADO-AD7

B
CE--.

WJI~

1m.!.... CONTROL

10T/M...!..
LOGIC

11
ALE~

RESET ..!...,..

RAM
1024 BITS
(128xB)

ADDRESS I
.JI. 12-19 ... DATA
~ ,. BUFFERS AND

LATCHES

TIMER MODE I
REGISTERS

3
TOIN--+

Vee...!...
20

GND--'

T1 COMMAND

TO COMMAND

I

I
TO PRESCALE

PRESCALE

...t
~

~

~

~

.....
~

.....

INTERNAL
DATA
BUS

~

~

.tl
....

~

"
.JI..
....

... ..

... ~ ,.

... ~

~

....
...oil
....

....
".

...
".

.... ...

.... ,..

... ..

... ..

...
" ~ ..

T1
T1

input must be low (RAM select) and the CE input must be
high at the falling edge of ALE to address the RAM. Address
bit AD7 is a "don't care" for RAM addressing. Timing for
RAM read and write operations is shown in the timing dia­
grams. The RAM is 128 x 8.

MDR

l
HANDSHAKE r. LOGIC

... ~ 21-2B ..
PORT A ,.

~ "
PAO-PA7

DDR r. A

... ,.
PORT B

~ 29-36 ...

~ ,. PBO-PB7

DDR r. B

... ..
37-39. 1. 2. 5

PORT C
.JI. ...
..... " PCO-PCS

DDR r. HANDSHAKE
C AND TIMER

FUNCTIONS

1
HIGH -DRDER

LOW +-IT1 I ORDER PRESCALE

+ !
TO HIGH ..!..,. TOOUT

ORDER

TD LOW
ORDER

TL/C/5517-12

FIGURE 1

7-83

z en
o
Q)
-" o
l>

<C
o ,..
CO
o en z

9.0 Functional Description (Continued)

9.3 110 PORTS

The three 1/0 ports, labeled A, B, and C, can be pro­
grammed to be almost any combination of Input and Output
bits. Ports A and B are configured as 8 bits wide, while port
C is 6 bits. There are four different modes of operation for
the ports. Three of the modes are for timed transfer of data
between the peripheral and the NSC810A, this is called
strobed 1/0. The fourth mode is for direct transfer without
handshaking with the peripheral.

The NSC810A can be programmed to operate in four differ­
ent modes. One of these modes (Basic 1/0) allows direct
transfer of 1/0 data without any handshaking between the
NSC810A and the peripheral. The other three modes
(Strobed 1/0) provide for timed transfers of 1/0 data with
handshaking between the NSC810A and the peripheral.

The determination of the mode, data direction and data is
done by five registers which are, handily, under program
control. The Mode Definition Register (MDR), oddly enough,
determines which mode the device will operate in, while the
Data Direction Register (DDR) establishes the direction of
the data transfer. The Data register contains the data that is
being sent or has been received. The other two registers
(bit-set, bit-clear) allow the individual bits in the data register
to be set or cleared without affecting the other bits. Each
port has its own set of these registers, except the MDR
which affects ports A and Conly.

In the strobed 1/0 modes, port C bits 0, 1 and 2 function as
INTR (for the processor), BF, and STB respectively.

9.3.1 Registers

As can be seen in Table I, all the registers affecting 1/0
transfer are grouped at the lower address locations, this
allows quicker handling and more maneuverability in tight
data transfers. Also note in Table I that the NSC810A uses
23 1/0 addresses out of a block of 26. The upper three bits
of the address are determined by the chip enable address.

• Mode Definition Register (MDR)

As noted above this register defines the operating mode for
ports A and C (port B is always in the basic 1/0 mode). The
upper 3 bits of port C will also be in the basic 1/0 mode
even when the lower 3 bits are being used for handshaking.

The four modes are as follows:

Mode O-Basic 1/0 (Input or Output)

Mode 1-Strobed Mode Input

Mode 2-Strobed Mode Output (Active Peripheral Bus)

Mode 3-Strobed Mode Output (TRI-STATE Peripheral
Bus)

The address assignment of the MDR is xxx00111 as shown
in Table I. Table II specifies the data that must be loaded
into the MDR to select the mode.

• Data Direction Registers (DDR)

Each port has a DDR that determines whether an individual
port bit will be an input or an output. This can be considered
the traffic light for the transfer of data between the CPU and
the peripheral. Each port bit has a corresponding bit in this
register. If the DDR bit is set (1) the port bit is an output; if it
is cleared (0) the port bit is an input. The DDR bits cannot
be written to individually. The register as a whole must be
set to be consistent with all desired port bit directions.

7-84

TABLE I. 1/0 and Timer Address Designations

8·Blt Address Field
Bits

7 6 5 4 3 2

x x x 0 0 0
x x x 0 0 0
x x x 0 0 0
x x x 0 0 0
x x x 0 0 1
x x x 0 0 1
x x x 0 0 1
x x x 0 0 1
x x x 0 1 0
x x x 0 1 0
x x x 0 1 0
x x x 0 1 0
x x x 0 1 1
x x x 0 1 1
x x x 0 1 1
x x x 0 1 1

x x x 1 0 0
x x x 1 0 0
x x x 1 0 0
x x x 1 0 0
x x x 1 0 1
x x x 1 0 1
x x x 1 0 1
x x x 1 0 1
x x x 1 1 0
x x x 1 1 0

x x x 1 1 0
x x x 1 1 0
x x x 1 1 1
x x x 1 1 1
x x x 1 1 1
x x x 1 1 1

x = don't care

LB = low·order byte

HB = high·order byte

1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
0
1
1
0
0
1
1
0
0

1
1
0
0
1
1

Designation R (Read)

0
1/0 Port, Timer, etc. W{Wrlte)

0 Port A (Data) R/W
1 Port B (Data) R/W
0 Port C (Data) R/W
1 Not Used ..
0 DDR· PortA W
1 DDR· Port B W
0 DDR - PortC W
1 Mode Definition Reg. W
0 Port A - Bit-Clear W
1 Port B - Bit-Clear W
0 Port C - Bit-Clear W
1 Not Used ..
0 Port A - Bit-Set W
1 Port B - Bit-Set W
0 Port C - Bit-Set W
1 Not Used ..
0 Timer 0 (LB) · 1 Timer 0 (HB) · 0 Timer 1 (LB) · 1 Timer 1 (HB) · 0 STOP Timer 0 W
1 START Timer 0 W
0 STOP Timer 1 W
1 START Timer 1 W
0 Timer 0 Mode R/W
1 Timer 1 Mode R/W

0 Not Used .'"
1 Not Used .'"
0 Not Used "'*
1 Not Used .*
0 Not Used **
1 Not Used **

• A write accesses the modulus register, a read the read buffer .

•• A read from an unused location reads invalid data, a write does not affect
any operation of NSCB10A.

TABLE II. Mode Definition Register Bit Assignments

Mode
Bit

7 6 5 4 3 2 1 0

0 x x x x x x x 0
1 x x x x x x 0 1
2 x x x x x 0 1 1
3 x x x x x 1 1 1

9.0 Functional Description (Continued)

Any write or read to the port bits contradicting the direction
established by the DDR will not affect the port bits output or
input. However, a write to a port bit, defined as an input, will
modify the output latch and a read to a port bit, defined as
an output, will read this output latch. See Figure 2.

• Data Registers
These registers contain the actual data being transferred
between the CPU and the peripheral. In Basic 110, data
presented by the peripheral (read cycle) will be latched on
the falling edge of RD. Data presented by the CPU (write
cycle) will be valid after the rising edge of WR (see AC char­
acteristics for exact timing).

During Strobed liD, data presented by the peripheral must
be valid on the rising edge of STB. Data received by the
peripheral will be valid on the rising edge of STB. Data
latched by the port on the rising edge of STB will be pre­
served until the next CPU read or STB signal.

• Bit Set-Clear Registers
The liD features of the RAM-liD-timer allow modification of
a single bit or several bits of a port with the Bit-Set and Bit­
Clear commands. The address selected indicates whether a
Bit-Set or Clear will take place. The incoming data on the
addressldata bus is latched at the trailing edge of the WR
strobe and is treated as a mask. All bits containing 1 swill
cause the indicated operation to be performed on the corre­
sponding port bit. All bits of the mask with Os cause the
corresponding port bits to remain unchanged. Three sample
operations are shown in Table III using port B as an ex­
ample.

INTERNAL
DATA BUS

MODE

WRISET)

TABLE III. Bit-Set and Clear Examples

Operation
SetB7

Clear 82 SetB4, B3
PortB andBO and B1

Address xxx01101 xxx01001 xxx01101

Data 10000000 00000101 00011010

Port Pins
Prior State 00001111 10001111 10001010
Next State 10001111 10001010 10011010

9.3.2 Modes

Two data transfer modes are implemented: Basic liD and
Strobed liD. Strobed liD can be further subdivided into
three categories: Strobed Input, Strobed Output (active pe­
ripheral bus) and Strobed Output (TRI-STATE peripheral
bus). The following descriptions detail the functions of these
categories.

• Basic I/O
Basic liD mode uses the RD and WR CPU bus signals to
latch data at the peripheral bus. This mode is the permanent
mode of operation for ports Band C. Port A is in this mode if
the MDR is set to mode O. Read and write byte operations
and bit operations can be done in Basic 110. Timing for
these modes is shown in the AC Characteristics Table and
described with the data register definitions.

When the NSC810A is reset, all registers are cleared to
zero. This results in the basic mode of operation being se­
lected, all port bits are made inputs and the output latch for
each port bit is cleared to zero. The NSC810A, at this point,
can read data from any peripheral port without further set­
up. If outputs are desired, the CPU merely has to program
the appropriate DDR and then send data to the data ports.

TUC/5517-13

FIGURE 2

7-85

z en
o co
C)

l>

oCt o
co
o en z

9.0 Functional Description (Continued)

• Strobed I/O

Strobed I/O Mode uses the STB, BF and INTR signals to
latch the data and indicate that new data is available for
transfer. Port A is used for the transfer of data when in any
of the Strobed modes. Port B can still be used for Basic I/O
and the lower 3-bits of port C are now the three handshake
signals for Strobed I/O. Timing for this mode is shown in the
AC Characteristic Tables.

Initializing the NSC810A for Strobed I/O Mode is done by
loading the data shown in Table IV Into the specified regis­
ter. The registers should be loaded in the order (left to right)
that they appear in Table IV.

TABLE IV. Mode Definition Register Configurations

DDR DDR
PortC

Mode MDR
PortA PortC

Output
Latch

Basic I/O xxxxxxxO Port bit directions are
determined by the bits of

each port's DDR

Strobed Input xxxxxx01 00000000 xxx011 xxx 1 xx

Strobed Output xxxxx011 11111111 xxx011 xxx1xx
(Active)

Strobed Output xxxxx111 11111111 xxx011 xxx 1 xx
(TRI-STATE)

• Strobed Input (Mode 1)

During strobed input operations, an external device can load
data into port A with the STB signal. Data is input to the

Example Mode 1 (Strobed Input):

Action Taken INTR BF

INITIALIZATION

Reset NSC810A H L
Load 01 'H into H L

MDR

Load OO'H into H L
DDRA

Load 03'H into H L
DDRC

Load 04'H into H L
Port C Bit-Set
Register

OPERATION

STB pulses low L H

CPU reads Port A H L

PAO-7 input latches on the leading (negative) edge of STB,
causing BF to go high (true). On the trailing (positive) edge
of STB the data is latched and the interrupt signal, INTR,
becomes valid indicating to the CPU that new data is avail­
able. INTR becomes valid only if the interrupt is enabled,
that is the output data latch for PC2 is set to 1.

When the CPU reads port A, address x'OO, the trailing edge
of the RD strobe causes BF and INTR to become inactive,
indicating that the strobed input cycle has been completed.

• Strobed Output-Active (Mode 2)

During strobed output operations, an external device can
read data from port A using the STB signal. Data is initially
loaded into port A by the CPU writing to I/O address x'OO.
On the trailing edge of WR, INTR is set inactive and BF
becomes valid indicating new data is available for the exter­
nal device. When the external device is ready to accept the
data in port A it pulses the STB signal. The rising edge of
STB resets BF and activates the INTR signal. INTR be­
comes valid only if the interrupt is enabled, that is the output
latch for PC2 is set to 1. INTR in this mode indicates a
condition that requires CPU intervention (the output of the
next byte of data).

• Strobed Output-TRI·ST ATE (Mode 3)

The Strobed Output TRI-STATE Mode and the Strobed Out­
put active (peripheral) bus mode function in a similar man­
ner with one exception. The exception is that the data sig­
nals on PAO-7 assume the high impedance state at all
times except when accessed by the STB signal. Strobed
Mode 3 is identical to Strobed Mode 2, except as indicated
above.

Results of Action

Basic input mode all ports.
Strobed input mode entered; no byte loads to port C
after this step; bit-set and clear commands to INTR
and BF no longer work.
Sets data direction register for port A to input;
data from port A peripheral bus is available
to the CPU if the STB signal is used, other
handshake signals aren't initialized, yet.
Sets data direction register of port C; buffer full
signal works after this step and it is unaffected
by the bit-set and clear registers.
Sets output latch (PC2) to enable INTR; INTR will
latch active whenever STB goes low; INTR can be
disabled by a bit-clear to PC2. *

Data on peripheral bus is latched into port A;
INTR is cleared by a CPU read of port A or a
bit-clear of STB.
CPU gets data from port A; INTR is cleared;
peripheral is signalled to send next byte via
an inactive BF signal. Repeat last two steps until
EDT at which time CPU sends bit-clear to the
output latch (PC2) .

• Port C can be read by the CPU at anytime, allowing polled operation instead of interrupt driven operation.

7·86

9.0 Functional Description (Continued)

Example Mode 2 (Strobed Output-active peripheral bus):

Action Taken INTR BF

INITIALIZE

Reset NSC810A H L
Load 03'H into H L

MDR

Load FF'H into H L
DDRA

Load 03'H into H L
DDRC

Load 04'H into L L
Port C Bit-Set
Register

OPERATION

CPU writes to H H
PortA

STB pulses low L L

Results of Action

basic input mode all ports.
strobed output mode entered; no byte loads to
port C after this step; bit-set and clear
commands to INTR and BF no longer work.
Sets data direction register for port A to output;
data from port A is available to the peripheral
if the STB signal is used other handshake
signals aren't initialized, yet.
Sets data direction register of port C; buffer
full signal works after this step and it is
unaffected by the bit-set and clear registers
Sets output latch (PC2) to enable INTR;
active INTR indicates that CPU
should send data; INTR becomes inactive
whenever the CPU loads port A; INTR can
be disabled by a bit-clear to STB. *

Data on CPU bus is latched into port A;
INTR is set by the CPU write to port A; active
BF indicates to peripheral that
data is valid; Peripheral gets data from port A;
INTR is reset active; The active INTR signals the
CPU to send the next byte. Repeat last two
steps until EOT at which time CPU sends
bit-clear to the output latch (PC2).

·Port C can be read by the CPU at any time, allowing polled operation instead of interrupt driven operation.

In addition to its timing function, STB enables port A outputs
to active logic levels. This Mode 3 operation allows other
data sources, in addition to the NSC810A, to access the
peripheral bus.

• Handshaking Signals

In the Strobed mode of operation, the lower 3-bits of port C
transmit/receive the handshake signals (PCO = INTR,
PC1 =BF, PC2=STB).

INTR (Strobe Mode Interrupt) is an active-low interrupt from
the NSC810A to the CPU. In strobed input mode, the
CPU reads the valid data at port A to clear the inter­
rupt. In strobed output mode, the CPU clears the inter­
rupt by writing data to port A.

The INTR output can be enabled or disabled, thus
giving it the ability to control strobed data transfer. It is
enabled or disabled, respectively, by setting or clear­
ing bit 2 of the port C output data latch (STB).

PC2 is always an input during strobed mode of opera­
tion, its output data latch is not needed. Therefore,
during strobed mode of operation it is internally gated
with the interrupt signal to generate the INTR output.
Reset clears this bit to zero, so it must be set to one to
enable the INTR pin for strobed operation.

Once the strobed mode of operation is programmed,
the only way to change the output data latch of PC2 is
by using the Bit-Set and Clear registers. The port C
byte write command will not alter the output data latch
of PC2 during the strobed mode of operation.

7-87

STB (Strobe) is an active low input from the peripheral de­
vice, signalling a data transfer. The NSC810A latches
data on the rising edge of STB if the port bit is an input
and the peripheral should latch data on the rising
edge of STB if the port bit is an output.

BF (Buffer Full) is a high active output from the NSC810A.
For input port bits, it indicates that new data has been
received from the peripheral. For output port bits, it
indicates that new data is available for the peripheral.

Note: In either input or output mode the BF may be
cleared by rewriting the MDR.

9.4 TIMERS

The NSC810A has two timers. These are independently
programmable, 16-bit binary down-counters. Full count is
reached at n + 1, where n is the count loaded into the modu­
lus registers. Timer outputs provide six distinct modes of
operation and allow the CPU to check the present count at
anytime. Each timer has an independent clock input and
output. Start and stop words from the CPU can individually
start and stop the timers in any of the modes. A common
gate signal can start and stop both timers in three of the six
modes. Timer 0 has three possible input clock prescalers
-;- 1, -;- 2 and -;- 64. Timer 1 has two possible input clock
prescalers -;- 1 and -;- 2.

Primary components of one timer are shown in Figure 3.
The timer mode register is a read/write register providing

z
en
o
ClO
~

o »

~r---~
o
CO
o en z

9.0 Functional Description (Continued)

the primary characterization of the timer output. The start/
stop logic and prescaler block divides the clock input by the
prescale factor, passing the output (INTCLK) to the binary
down-counter. This block also gates the clock input signal
(TIN) with the timer gate signal (TG). The timer block loads
the modulus from the modulus register and uses (lNTCLK)
to count to zero. It loads the current count into the read
buffer block where the CPU can access it at anytime. This
timer block also indicates to the output control logic when
the modulus is loaded (or reloaded) and when the count
reaches O. The output control logic block drives the output
pins according to the timer mode register and the timer
block. The output of the timer block (Figure 3) (terminal
count) is related to the input TIN by:

. TIN
termmal count = []

p 2(m + 1)

where:

TIN = the input frequency

p = the programmed prescale

m = the modulus

This relationship can be seen directly (TOUn in Mode 5
(square wave) as it is not masked by the subsequent output
logic.

9.4.1 Registers

There are five control registers for each timer. These are
shown in the second group of Table I. They determine all
timer functions and outputs.

• Modulus Registers and Read Buffer

There are two modulus registers per timer (low byte, high
byte). These are write only registers, and the two 8-bit val­
ues loaded by the CPU are combined into a 16·bit modulus
for the timer's down counter.

When the CPU reads from the modulus register addresses,
it actually accesses the read buffers. These contain the low
and high byte of the decremented modulus. This count is
constantly updated by the timer block on the falling edge of

1m

WI!

TlN(CLKI
TG(GATEI

WI!

WII

CONTROL

INTCLK

INTCLK and can be read without stopping the timers (see
single/double precision).

• Timer Mode Register
The timer mode register determines the operating configu­
ration and the active input and output signal levels. Each
timer has its own timer mode register, allowing independent
operation.

The timer mode register (TMR) may be written or read at
any time; however, to assure accurate timing it is important
to modify the mode only when the timer is stopped (see
Timer Programming). The timer mode is selected from one
of six modes by TMR bits 0, 1, and 2 (see Table V). Bits 3
and 4 select the prescale value if the prescaler is to be
used. Bits 5, 6 and 7 select the modulus width (8- or 16-
bits), gate input polarity, and timer output polarity (active­
high or low), respectively. The bit functions of the TMR are
illustrated in Figure 4.

Bit

TIMER

(161

TERMINAL
COUNT

OUTPUT
CONTROL

TMR 7 6 5 4 3 2 1 0

2

0
0
0
0
1
1
1
1

§~~TIMINGMOOE ~ PRESCALE VALUE
SINGLE I DOUBLE PRECISION
GATE INPUT POLARITY
TIMER OUTPUT POLARITY

TLlC/5517-15

FIGURE 4. Timer Mode Register

TABLE V. Mode Selection

1 0 - Timer Function

0 0 - Timer Stopped and Reset
0 1 - Event Counter
1 0 - Event Timer (Stopwatch)
1 1 - Event Timer (Resetting)
0 0 - One Shot
0 1 - Square Wave
1 0 - Pulse Generator
1 1 - Timer Stopped and Reset

READ BUFFER

16

LOGIC TOUT

CONTROL
TL/C/5517-14

FIGURE 3. Timer Internal Block Diagram (One of Two Timers)

7-88

9.0 Functional Description (Continued)

- Timer Prescaler

There is a prescale function associated with each timer. It
serves as an additional divisor to lengthen the counts for
each timer circuit. The value of the divisor is fixed and se­
lectable in each TMR, as shown below.

Bits
TMRO 4 3 Prescale

o 0 +1
o +2

+64

The +64 is not available on timer 1; TMR1 bit 4 is a "don't
care."

Bits
TMR1 4 3 Prescale

x 0 +1
x +2

The timer prescale divides the input clock (TIN) and pro­
vides the output (INTCLK) to the drive the timer block (Fig­
ure 3).

- Single/Double Precision

Bit 5 of the TMR determines whether a single or double byte
can be accurately read from the read buffer. This option
does not affect the use of the modulus registers by the timer
block (i.e., the modulus used is always a double byte regard­
less of the precision mode selected).

The read buffer keeps track of the count and is constantly
being updated by the timer block. In order to allow the CPU
to read the read buffer, the NSC810A must discontinue up­
dates to this buffer during the read. The precision bit deter­
mines whether one or two bytes in the read buffer will be
frozen during the read process. In double precision mode,
the NSC810A freezes high and low bytes in the read buffer
for two consecutive read cycles. In the single precision
mode, the NSC810A freezes the read buffer for only one
read cycle. Read accesses should be done as follows.

When the TMR bit 5 is:

0- (double byte) read or write the low byte first, then
the high byte to maintain proper read/write com­
munications.

1- (single byte) In this mode either the high or low byte
of the count can be read at any given instant but
not both bytes consecutively. Always write the low
byte first, then the high byte to load the modulus.

The following example illustrates this point. If the read buffer
had a value of 0200 when the low byte was read and the
down-counter decremented to 01 FF before the high byte
was read, then in the double precision mode the CPU would
have read 00 and 02, respectively. In the single precision
mode the CPU would have read 00 and 01.
NOTE: In the double precision mode, the high byte should be read immedi­

ately after the low byte. Do not access any other registers or unused
address locations between the reads.

- Gate Input Polarity

In modes 2, 3 and 4, the TG input is the common hardware
control for starting and stopping the timers.

The polarity of the gate input may be selected by the con­
tents of bit 6 of the TMR. If bit 6 equals 0, the gate signal will
be active-high or positive edge for mode 4; if bit 6 equals 1,
the gate polarity will be active-low or negative edge for
mode 4. Modes 2 and 3 are level sensitive. Mode 4 is edge
sensitive.

7-89

- Timer Output Polarity

Like the gating function, the polarity of the output signal is
programmable via bit 7 of the TMR. A zero will cause an
active-low output; a one will generate an active-high output.

The output for T1 is multiplexed with port C, bit 5. (Similarly
T11N is multiplexed with port C, bit 4.) When any timer mode
other than 0 or 7 is specified for T1, or when mode 2, mode
3, or mode 4 is specified for TO, the three port C pins, bit 3,
bit 4, and bit 5, become TG, T11N and T10UT, respectively.

• Start and Stop Registers
This is the software start and stop for the timers. There is
one start and one stop register for each timer. Writing any
data to the start register of a timer starts that timer or trans­
fers start and stop control to TG (in the gated modes 2, 3
and 4). Writing any data to the stop register stops the timer
and removes start and stop control from TG (in the gated
modes 2, 3 and 4). Restarting the timers causes the modu­
lus to be reloaded for all gated timer modes (2, 3 and 4).

During software restarts of the timers (write to the STOP
register and then to the START register) the modulus will be
reloaded only if the internal clock signal (lNTCLK) is in the
high level or makes at least one transition to the high level
between the time that the STOP and START registers are
written. If INTCLK doesn't meet one of these criteria then
the modulus will not be reloaded and the timer will continue
to count down from where it was stopped.·

Since it is difficult, if not impossible, to know the level of
INTCLK in non-gated modes the recommended practice for
restart operation is to reload the modulus after stopping the
timer using the 4 step programming procedure in the Timer
Programming section of this datasheet. In gated modes
INTCLK always stops high.
·NOTE: INTCLK is coupled via the prescaler to TIN and reacts to the TIN

clock input regardless of whether the timer is started or stopped.

- Start/Stop Timing

Figure 5 shows the relationships between the WR signal
(start register), TIN and INTCLK for both the non-gated and
gated modes. The TG signal is only sampled during the pos­
itive half of the TIN cycle. This means that when the gated
modes are used the internal clock (INTCLK) is never
stopped in the low state. Hence, when TG goes active high
INTCLK is restarted on the next high-te-Iow transition of
TIN. When TG goes inactive low INTCLK will stop as soon
as TIN is high.

9.4.2 Timer Pins

TIN, TOUT, and TG

Timer 0 has dedicated pins for its clock, TOIN, and its out­
put, TOOUT. Timer 1 must borrow its input and output pins
from port C. This is accomplished by writing to the TMR for
timer 1. If mode 1, 2, 3, 4, 5 or 6 is specified in TMR1, the
pins from port C (PC3, PC4 and PC5) are automatically
made available to the timer(s) for gating (TG), T11N and
T10UT, respectively. These pins are also taken from port C
any time timer 0 is in mode 2, 3, 4, so that it has a TG pin. In
order to change pins PC3, PC4 and PC5 back to their origi­
nal configuration as Basic 110, the timer mode registers
must be reset by selecting mode 0 or 7.

TG (PC3), the timer gate, is used for hardware control to
start/stop (or trigger) the timers. The timer gate may be
used individually by either timer or simultaneously by both
timers.

For modes 2 and 3, the timer starts on the gate-active tran­
sition assuming the start address was previously written. If

z
(J)
o
Q)
o
l>

.......
cO
o

nN

ii

ADDRESS

INltLXFOR
NON-GATED

MODES (I, 5, 61

TG
(TMRhOI ,

INlCLXFOR
GATED MODES (2, 3, 41

FIGURE 5. Start/Stop Timing

Note: Diagonal lines indicate interval of invalid data.

For mode 4 (one shot). only start-timing applies.

tws~WR set-up for starting timer 150 ns.

twsp-WR set-up for stopping timer 150 ns.

fGs-r-TG (gate) set-up for starting timer 100 ns.

fGsp-TG (gate) set-up for stopping timer 100 ns.

NSC810A

CD
b
."
C
::::J
(') .. o·
::::J
a!.
c
C'D en
(') ... -So o·
::::J
o o ;a
5'
c
CD
S:

TLIC/5517-16

-..j

~

..

II

INTCLK

Wi! ---------
START REGISTER

~--+-----------------~
READ BUFFER

(ACTI~~~1----------------------------""'"

FIGURE 6a. Event Counter Mode (Mode 1)

INTCLK

Wii -------~
START REGISTER

~----------------~---------------------~--------~~
RaDBUFFER

GATE
(ACTIVE-HIGH) _________ ..

OU~UT ----------------------~., (ACTIVE-LOW

FIGURE 6b. Accumulative Timer (Mode 2)

INTCLK

Wi!
START REGISTER

~ --------------+---------------------------~---------+~
READ BUFFER

GATE
(ACTIVE-HIGH) ____________ ..

OUTPUT
(ACTIVE-LOW)

FIGURE 6c. Restartable Timing

TUC/5517-17

TUC/5517-1B

TUC/5517-19

CD
b
"T1
C
::l
(') .. o·
::l
~
C
(I)
tn
(') ..,
-6 . .. o·
::l
o o
~
S·
c:
CD
S

\fO~80SN

<
C)
CO
0
tJ)
Z

9.0 Functional Description (Continued)

TABLE VI. Timer Programming Selection Example

Mode Register Bit Timer Timer
(TMR) Output Gate

Mode Description

Polarity Polarity
7 6 5 4 3 2 1 0 Active Active

L/H L/H

TIMERO

x x x x x 0 0 0 x x
0 x 0 0 0 0 0 1 L x
1 x 0 1 1 1 1 0 H x
1 0 0 0 1 1 0 0 H H
0 1 1 0 0 0 1 0 L L

TIMER 1

x
0
1
0

x x x x 1 1 1 x x
x 0 x 0 0 0 1 L x
0 1 x 1 1 0 1 H H
1 0 x 0 0 1 1 L L

the timer gate makes an active transition prior to a write to
the start register's address, the trailing edge of the WR
strobe starts the timer. However, for mode 4 the timer al­
ways waits for an active gate edge following a write to the
start address before it begins counting.

The DDR for port C must be programmed with the correct
1/0 direction for TG, T11N and T1 OUT of timer 1. See Table
VI for programming examples.

9.4.3 Timer Modes
The low-order three bits (bits 0, 1, 2) of the timer mode
registers (TMR) define the mode of operation for the timers.
Each TMR may be written to, or read from, at any time.
However, to ensure accurate timing, it is important to modify
the mode of the timer only when the timer is stopped. Inputs
of 000 or 111 define a NOP (no operation) mode. In either of
these modes (0 or 7) the timer is stopped, INTCLK is high,
and the output is inactive. Inputs of 001 through 110 will
select one of six distinct timer functions.

In the explanations that follow, assume that the modulus
register for the timer was loaded with the appropriate value
(0004) by writing to the low and high bytes of each timer
modulus register. Assume also, that the prescale is + 1.

• Event Counter (mode 1 TMR bits = 001)

In this non-gated mode the count is decremented for each
clock period (INTCLK) input to the timer block (see Figure
6a). When the count reaches zero, the output goes valid
and remains valid, until the read buffer is read by the CPU or
the timer stop register is written.

At the terminal count (0) the modulus is reloaded into the
timer block and the count continues even when the output is
valid. This mode can be used to cause periodic interrupts to
the CPU.

Single/Double Prescale Timing PortC DDR
Precision Value Mode 543210

7-92

SID

x x 0 x x x x x
D +1 1 x x x x x
D +64 6 x x x x x
D +2 4 1 0 0 x x
S +1 2 1 0 0 x x

x x 7 x x x x x
D +1 1 1 0 0 x x
S +2 5 1 0 0 x x
D +1 3 1 0 0 x x

• Accumulative Timer (mode 2, TMR bits = 010)

In this gated mode, the counter will decrement only when
the gate input is active (see Figure 6b). If the gate becomes
inactive, the counter will hold at its present value and con­
tinue to decrement when the gate again becomes active.
When the count decrements to zero, the output becomes
valid and remains valid until the count is read by the CPU or
the timer is stopped.

At the terminal count the timer is reloaded and the count
continues as long as the gate is active.
This mode can be used to time processor independent
events and to interrupt the CPU when they occur. The pre­
scale and modulus need to be longer than the expected
event duration and the gate should go inactive at the event,
to preserve the read buffer count for the CPU.

• Restartable Timer (mode 3, TMR bits = 011)
In this gated mode, the counter will decrement only when
the gate input is active. If the gate becomes inactive, the
counter will reload the modulus and hold this value until the
gate again becomes active (see Figure 6e). If the timer is
read when the gate is inactive, you will always read the
value the timer has counted down to, not the value the timer
has been reloaded with.

x
x
x
x
x

x
x
x
x

At terminal count the output becomes valid and the timer is
reloaded. The timer will continue to run as normal, the only
difference is the output is valid. The output remains valid
until the count is read by the CPU or the timer stop register
is written.
NOTE: The gate inactive time must be longer than the high time of the

internal clock (INTCLK) on the chip. Therefore, with +64 prescale
selected the gate inactive time must be 33 input clocks or greater.

"" cO
c,.)

INTCLK

Wii -----.
START REGISTER

GATE
(ACTIVE-HIGH) 'c

OUTPUT) C
(ACTIVE-lOW)

INTCLK

Wii
START REGISTER

OUTPUT
(ACTIVE lOW)

INTCLK

Wii
START REGISTER

FIGURE 6d. One Shot (Mode 4)

FIGURE 6e. Square Wave (Mode 5)

OUTPUT I ,I
(ACTIVE lOW)

FIGURE 6f. Pulse Generator (Mode 6)

TUC/5517-20

TUC/5517-21

TUC/5517-22

U)

b
."
c:
::::J
(') ... o·
::::J
e!-
O
CD
tJ)
(') ... -6 o·
::::J
()
o
~ s·
c: m
.B

"O~80SN

oct o
CO
o
CJ)
z

9.0 Functional Description (Continued)

• One Shot Mode (mode 4, TMR bits = 100)
In this gated mode, the timer holds the modulus count until
the active gate edge (see Figure 6d). The output immedi­
ately becomes valid and remains valid as the counter decre­
ments. The gating signal may go inactive without affecting
the count. If TG (the gate) becomes inactive and returns
active prior to the terminal count, the modulus will be reload­
ed, retriggering the one shot period. When the timer reach­
es the terminal count, the output becomes inactive (see
NOTE). The gate, in this mode, is edge sensitive; the active
edge is defined by the TMR.
NOTE: The one shot cannot be retriggered during its last internal count

(INTCLK) regardless of prescaler selected. Therefore, using the di­
vide by 1 prescaler, it cannot be retriggered during the last clock
(TIN), using the divide by 2 prescaler during the last two clocks (TIN)
and using the divide by 64 prescaler during the last 64 clocks (TIN).

• Square Wave Mode (mode 5, TMR bits = 101)
In this non-gated mode, the output will go active as soon as
the timer is started. The counter decrements for each clock
period (INTCLK) and complements its output when zero is
reached (see Figure 6e). The modulus is then reloaded and
counting continues. Assuming a regular clock input, the out­
put will then be a square wave with a period equal to twice
the prescale value times the value loaded into the modulus
+ 1 (see equation Timer section intro.). Therefore, varying
the modulus will vary the period of the square wave.

• Pulse Generator (mode 6, TMR bits = 110)

In this non-gated mode, the counter decrements for each
period of INTCLK (see Figure 6f). When the terminal count
is reached the output becomes valid for % of the TIN clock
width for a prescale of -;- 1, for one full TIN clock width for a
pre scale of -;- 2 and for 32 TIN clock widths for a prescale of
-;- 64. The modulus is then reloaded and the sequence is
repeated. Varying the prescale and modulus varies the fre­
quency of the pulse.

9.4.4 Timer Programming

The following is the proper sequence to program the timer
and should always be used:

1. Write timer mode register selecting mode 0 or 7. This
stops the timer, resets the prescaler, and sets internal
clock high.

7-94

2. Write timer mode register again, this time loading it for
your requirements.

3. Write the modulus values, low byte first, high byte
second.

4. Start the timers.

The timer read buffer is only updated when the internal tim­
er clock (INTCLK) makes a negative-going transition. There­
fore, enough input clock cycles (TIN) must occur to cause a
transition of INTCLK given the programmed pre-scaler. Af­
ter the first transition, the new modulus will be loaded into
the read buffer and it can then be read by the CPU.

To guarantee the integrity of the data during a read opera­
tion, updates to the timer read buffer are blocked out. If an
update is blocked out due to a read, the read buffer will not
be updated until the next active transition of INTCLK. Thus,
it would appear as if a count was skipped between reads.
For example, if the output latches were FF when a block out
(read) occurred, the next update could occur at FD, thereby
giving an appearance that the count FE was skipped. In
actuality the correct number of clocks has occurred for the
read buffer to hold FD.

Writing the modulus value when the timer is running does
not update the timer immediately. The new value written will
get into the timer when the timer reaches its terminal count
and reloads its value. If the timer is stopped and a modulus
is written the new modulus value will get into the timer when
the internal clock is high during the modulus write or on the
next low to high internal clock transition. The next time the
timer reaches its terminal count it will load the new modulus
into the timer. One way to guarantee the new modulus will
get into the timer is to follow steps 1 through 4. Although
this procedure guarantees that the data will get into the tim­
er you will not be able to read it back until you get a nega­
tive-going transition on the internal clock.

Rewriting modulus does not reset the prescaler. The only
way to reset the prescaler is to write the mode register and
have the internal clock signal be high for some period be­
tween the write of the mode register and the start of the
timer. Once again, steps 1 through 4 will reset the prescaler.

10.0 NSC810A/883 MIL-STD-883 Class B Screening

National Semiconductor offers the NSC810AD and
NSC810AE with full class B screening per MIL-STD-883 for
Military! Aerospace programs requiring high reliability. In ad­
dition, this screening is available for all of the key NSC800
peripheral devices.

Electrical testing is performed in accordance with
RETS810AX, which tests or guarantees all of the electrical
performance characteristics of the NSC810A data sheet. A
copy of the current revision of RETS810AX is available
upon request. The following table is the MIL-STD-883 flow
as of the date of publication.

Test MI L-STD-883 Method/Condition Requirement

Internal Visual 2010 B 100%
Stabilization Bake 1008 C 24 Hrs. @ + 150°C 100%
Temperature Cycling 1010 C 10 Cycles - 65°C! + 150°C 100%
Constant Acceleration 2001 E 30,000 G's, Y1 Axis 100%
Fine Leak 1014AorB 100%
Gross Leak 1014 C 100%
Burn-In 1015 160 Hrs. @ + 125°C (using 100%

burn-in circuits shown below)
Final Electrical + 25°C DC per RETS810AX 100%
PDA 5% Max

+ 125°C AC and DC per RETS810AX 100%
-55°C AC and DC per RETS810AX 100%
+ 25°C AC per RETS810AX 100%

QA Acceptance 5005 Sample per
Quality Conformance 5056 Method 5005
External Visual 2009 100%

11.0 Burn-In Circuit 12.0 Timing Diagram

CLOCK 1

CLDCK3

CLDCK 2

5242HR
NSC810AD/883B (Dual-In-Llne)

51

51

10
51

11
12
13

14
15

16
17

18
19

20

':'

40

39~"""

38.-"""
37
36
35
34
33

32
31
30
29
28
27

261-"~-.
25
24~"""
23
22
21

TL/C/5517-23

7-95

Input Clocks

TL/C/5517-24

Note 1: All resistors ±50/0, y. watt unless otherwise designated, 125°C op­
erating life circuit.

Note 2: E package burn-in circuit 5244HR is functionally identical to the D
package.

Note 3: All resistors 2.7 kG unless marked otherwise.

Note 4: All clocks OV to 4.5V.

Note 5: Device to be cooled down under power alter burn-in.

z
'en
o
CO
...a.
o
l>

< o
CO
o en z

13.0 Ordering Information

NSC810A~ ~ x X 1 T :/A+ =A+ Reliability Screening
1883= MIL·STD·883 Screening (Note 1)

I = Industrial Temperature (- 40°C to + 85°C)
M = Military Temperature (- 55°C to + 125°C)
No Designation = Commercial Temperature (O°C to 70°C)

1-1 = 1 MHz Clock Output
L----------I,-3= 2.5 MHz Clock Output

- 4 = 4 M Hz Cloc~ Output

D = Ceramic Package

L------------t N = Plastic Package
E = Ceramic Leadless Chip Carrier (LCC)
V = Plastic Leaded Chip Carrier (PCC)

TLlC/5517-25

Note 1: Do not specify a temperature option; all parts are screened to military temperature.

14.0 Reliability Information
Gate Count

Transistor Count

4000

14,000

7·96

~National
D Semiconductor
NSC831 Parallel 1/0

General Description
The NSC831 is an lID device which is fabricated using
microCMOS silicon gate technology, functioning as an in­
put/output peripheral interface device. It consists of 20 pro­
grammable input/output bits arranged as three separate
ports, with each bit individually definable as an input or out­
put. The port bits can be set or cleared individually and can
be written to or read from in bytes. Several types of strobed
mode operations are available through Port A.

For military applications the NSC831 is available with class
B screening in accordance with methods 5004 of MIL-STD-
883.

Microcomputer Family Block Diagram

NMI
INTA
SO

Sl
RFSH Nscaoo
BRED CPU
BACK 101M

WAIT RESET OUT
PS

microCMOS

Features
• Three programmable lID ports
• Single 5V Power Supply
• Very low power consumption
• Fully static operation
• Single-instruction lID bit operations
• Directly compatible with NSC800 family
• Strobed modes available on Port A

PORT A
B BITS

PORT B
B BITS

PORT C
6 BITS

TIMER 0 IN

TIMER 0 OUT

PORT A
B BITS

A"13
~ NSC831 PORT B A12
CST 110 B BITS

Rii
Wii PORT C
ALE 4 BITS

RESET

TLlC/5594-1

7-97

z
en o
(X)
w

~ ,--,
C")
co
o
tJ)
z 1.0 ABSOLUTE MAXIMUM RATINGS

2.0 OPERATING RANGE

3.0 DC ELECTRICAL CHARACTERISTICS

4.0 AC ELECTRICAL CHARACTERISTICS

5.0 TIMING WAVEFORMS

6.0 PIN DESCRIPTIONS

6.1 Input Signals

6.2 Input/Output Signals

7.0 CONNECTION DIAGRAMS

Table of Contents

7·98

8.0 FUNCTIONAL DESCRIPTION

8.1 Block Diagram

8.2 1/0 Ports

8.3 Registers

8.4 Modes

9.0 NSC831INSC883B MIL·STD·883/CLASS B
SCREENING

10.0 BURN·IN CIRCUIT

11.0 TIMING DIAGRAM

12.0 ORDERING INFORMATION

13.0 RELIABILITY INFORMATION

1.0 Absolute Maximum Ratings 2.0 Operating Range Vee = 5V ±10%

If Military/Aerospace specified devices are required, NSC831-1: O°C to +70°C
please contact the National Semiconductor Sales -40°C to +85°C
Office/Distributors for availability and specifications. NSC831-3: -40°C to +85°C
Storage Temperature Range - 65°C to + 150°C - 55°C to + 125°C

Voltage at Any Pin With NSC831-4: O°C to +70°C
Respect to Ground -0.3V to Vee + 0.3V -40°C to +85°C

Vee 7V - 55°C to + 125°C

Lead Temp. (Soldering, 10 seconds) 300°C

Power Dissipation 1W

Note: Absolute maximum ratings are those values beyond
which the safety of the device cannot be guaranteed. Con-
tinuous operation at these limits is not intended; operation
should be limited to those conditions specified under DC
Electrical Characteristics.

3.0 DC Electrical Characteristics Vee = 5V ± 10%, GND = OV, unless otherwise specified

Symbol Parameter Test Conditions Min Typ Max Units

VIH Logical 1 Input Voltage 0.8 Vee Vee V

VIL Logical 0 Input Voltage 0 0.2 Vee V

IOH = -1.0 mA 2.4 V
VOH Logical 1 Output Voltage

lOUT = -10 JJ-A 4.0V V

IOL = 2 mA 0 0.4 V
VOL Logical 0 Output Voltage

lOUT = 10 JJ-A 0 0.1 V

IlL Input Leakage Current o ~ VIN ~ Vee -10.0 10.0 JJ-A

IOL Output Leakage Current o ~ VIN ~ Vee -10.0 10.0 JJ-A

lee Active Supply Current lOUT = 0, twey = 750 ns 15 20 rnA

10 Quiescent Current RESET =0, RD = 1, WR = 1,
CE = 1, ADO-7 = 0, ALE = 1,

VIN = 0, orVIN = Vee 10 100 /LA
Vee = 5.5V, GND = OV,
PAO-7 = 1, PBO-7 = 1, PCO-7 = 1
No Input Switching, T A = 25°C

CIN Input Capacitance 4 7 pF

COUT Output Capacitance 6 10 pF

Vee Power Supply Voltage (Note 1) 2.4 5 6 V

Note 1: Operation at lower power supply voltages will reduce the maximum operating speed. Operation at voltages other than 5V ± 1 0% is guaranteed by design,
not tested.

ICC vs. SPEED
10 ..tv::
5

~t2:
I V

.V
4500 3000 1500 1000 750

lwcy(nsl

0 1 2 3 4

NSC 800 CLOCK SPEED' (MHz)
TL/C/5594-2

·When NSC831 Is used with NSC800

7-99

z en
(')
CO
W
-&.

•

.....
C"')
co
o
en z

4.0 AC Electrical Characteristics Vee '= 5V ± 10%, GND = OV

Test NSC831-1 NSC831-3 NSC831-4
Symbol Parameter

Conditions
Units

Min Max Min Max Min Max

tAce Access Time from ALE CL = 150 pF 1000 400 250 ns

tAH ADO-AD7, CE, lolM Hold Time 100 60 30 ns

tALE ALE Strobe Width (High) 200 130 90 ns

tARW ALE to RD or WR Strobe 150 120 120 ns

tAS ADO-AD7, CE, IO/M Setup Time 100 45 40 ns

tOH Data Hold Time 150 90 40 ns

too Port Data Output Valid 350 320 300 ns

tos Data Setup Time 100 80 50 ns

tpE Peripheral Bus Enable 320 200 200 ns

tpH Peripheral Data Hold Time 150 125 100 ns

tps Peripheral Data Setup Time 100 75 50 ns

tpz Peripheral Bus Disable (TRI-STATE®) 150 150 150 ns

tAB RD to BF Output 300 300 300 ns

tAD Read Strobe Width 400 320 220 ns

tADO Data Bus Disable 0 100 0 85 0 85 ns

tAl RD to INTR Output 320 300 300 ns

tAWA RD or WR to Next ALE 125 100 80 ns

tSB STB to BF Valid 300 300 300 ns

tSH Peripheral Data Hold With Respect to STB 150 125 100 ns

tSI STB to INTR Output 300 300 300 ns

tss Peripheral Data Setup With Respect to STB 100 75 50 ns

tsw STBWidth 400 320 220 ns

tWB WR to BF Output 340 300 300 ns

tWI WR to INTR Output 320 300 300 ns

tWR WR Strobe Width 400 320 220 ns

twCY Width of Machine Cycle 3000 1200 750 ns

Note: Test conditions: twCY = 3000 ns for NSC831-1, 1200 ns for NSC831-3, 750 ns for NSC831-4

AC TESTING INPUT/OUTPUT WAVEFORM AC TESTING LOAD CIRCUIT

==>e O.B Vee o'BVCCX= I DEVICE
0.2 Vee 0.2 Vee UNDER

TEST
TL/C/5594-3 l' 100pF

TL/C/5594-4

7-100

5.0 Timing Waveforms

101M
CE

AD (0·7)

ALE

iiii

PERIPHERAL
(PORT) BUS

Note: Diagonal lines Indicate interval of Invalid data.

101M
CE

AD (0·7)

ALE

PERIPHERAL
(PORT) BUS

Note: Diagonal lines Indicate Interval of Invalid data.

Read Cycle (Read from Port)

Write Cycle (Write to Port)

7-101

TL/C/5594-5

TL/C/5594-6

z en
o
Q)
Cot)

•

y- r---,
C")

~ 5.0 Timing Waveforms (Continued)
en z Strobed Mode Input

PERIPHERAL
(PORT A) BUS

BF

INTR

101M
CE

ALE

AD (0-7)

RD

Note: Diagonal lines indicate interval of invalid data.

101M '!J'!!/J////JJJ
CE If/f//////IfII

PORT A

-

TLIC/5594-7

Strobed Mode Output

AD (0-7) E< PORT A ADDR __ DATA IN

ALE \ ~~:--------------------------

BF

-~-:L-+------+----.x NEW DATA

ACTIVE (MODE 2)

~mBUS(_~~~.~~ ___ ::'_ --------~-_i~~ __ -~~);-----
Note: Diagonal lines indicate interval of invalid data.

TLlC/5594-B

7-102

6.0 Pin Descriptions
The following describes the function of all NSC831 input!
output pins. Some of these descriptions reference internal
circuits.

6.1 INPUT SIGNALS

Master Reset (RESET): An active·high input on the RESET
pin initializes the chip causing the three I/O ports (A, Band
C) to revert to the input mode. The three ports, the three
data direction registers and the mode definition register are
reset to low (0).

Chip Enable (CEQ, CE1): The CE inputs must be active at
the falling edge of ALE. At ALE time, the CE inputs are
latched to provide access to the NSC831.

Read (RD): when the RD input is an active low, data is read
from the ADO-AD7 bus.

Write (WR): When the CE inputs are active an active low
WR input causes the selected output port to be written with
the data from the ADO-AD7 bus.

Address Latch Enable (ALE): The trailing edge (high to
low transition) of the ALE input signal latches the address/
data present on the ADO-AD7 bus, plus the input control
signals on CEo and CE1.

Power (Vee): 5V power supply.

Ground (Vss): Ground reference.

6.2 INPUT/OUTPUT SIGNALS

Bidirectional Address/Data Bus ADO-AD7: The lower 8
bits of the I/O address are applied to these pins, and
latched by the trailing edge of ALE. During read operations,
8 bits are present on these pins, and are read when RD is
low. During an I/O write cycle, Port A, B, or C is written with
the data present on this bus at the trailing edge of the WR
strobe.

Ports A, B, C (PAO-PA7, PBO-PB7, PCO-PC3): These are
general purpose I/O pins. Their input/output direction is de·
termined by the contents of the Data Direction Register
(DDRs).

7-103

7.0 Connection Diagrams

PAD

RESET

CSli
Vee

'CST

Dual-In-Llne Package

NSC831

Top View
°Tie pins 2, 3, and 4 to either Vcc or Vss.

Order Number NSC831D or N

TLIC/5594-9

See NS Package Number D40C or N40A

Leadless Chip Carrier

RESET 0 • • PAD NC Vee PAl PAZ PA3 PA4

cso PA5

Vee PA6

CST PA7
Rii PCD/INTR

WR PC1/BF
NC NC

ALE PC2/STB
ADO PC3

ADl PBD
AD2 PBl

AD3 PB2

AD4 AD5 AD6 AD7 Vss NC PB7 PB6 PB5 PB4 PB3

NC = NO CONNECT

Top View

Order Number NSC831E
See NS Package Number E44A

TLIC/5594-10

z
en
o
Q)
w

•

~ r---~
Cf)
c:o
(,)
en z

8.0 Functional Description
Refer to Figure 1 for a detailed block diagram of the
NSC831, while reading the following paragraphs.

InputlOutput (1/0): The I/O of the NSC831 contains three
sets called Ports. There are two ports (A and B) which con­
tain 8 bits each and one port (Port C) which has 4 bits. Any
bit or combination of bits in a port may be addressed with
Set or Clear commands. A port can also be addressed as an

8.1 BLOCK DIAGRAM

(6)
~~
m--nor-+
WR~
1m ---:::--+

CONTROL
LOGIC

ID/M~
ALE~

RESET ~ ___1

(2-4) ..

A8-A10 •••• ~,.

ADO-AD7 ••• iI~

ADDRESS
BUFFERS

ADDRESSI
DATA

BUFFERS
AND

LATCHES

INTERNAL
DATA
BUS

Note: Applicable pinout for 40 pin dual-ln-Iine package within parentheses.

8-bit word (4 bits for Port C). When reading Port C, bits 4-7
will be read as ones. All ports share common functions of
Read, Write, Bit-Set and Bit-Clear. Additionally, Port A is
programmable for strobed (handshake mode input or out­
put. Port C has a programmable second function for each
bit associated with strobed modes. Table I defines the ad­
dress location of the ports and control registers.

TL/C/5594-11

FIGURE 1

7-104

8.0 Functional Description (Continued)

8.2 1/0 PORTS

There are three I/O ports (labeled A, B and C) on the
NSC831. Ports A and Bare 8-bits wide; port Cis 4-bits wide.
These ports transfer data between the CPU bus and the
peripheral bus and vice versa. The way in which these trans­
fers are handled depends upon the currently programmed
operating mode.

The NSC831 can be programmed to operate in four differ­
ent modes. One of these modes (Basic 1/0) allows direct
transfer of 1/0 data without any handshaking between the
NSC831 and the peripheral. The other three modes
(Strobed 1/0) provide for timed transfers of 1/0 data with
handshaking between the NSC831 and the peripheral.

Determination of the NSC831 port's mode, data direction
and data is done by five registers which are under program
control. The Mode Definition Register determines in which
of the four 1/0 modes the chip will operate. Another register
(Data Direction Register) establishes the data direction for
each bit in that port. The Data Register holds data to be
transferred or that which was received. The final two regis­
ters per port allow individual data register bits to be cleared
(Bit-Clear Register) or data register bits to be set (Bit-Set
Register).

Operation during Strobed 1/0 utilizes two of the port C pins
for handshaking and one port C pin to interrupt the CPU.

8.3 REGISTERS

As indicated in the overview, programmable registers con­
trol the flow of data through the ports. Table I shows the
registers of the NSC831. All registers affecting 1/0 transfers
are in the first grouping of this table.

• Mode Definition Register (MDR)

The MDR determines the operating mode for port A and
whether or not the lower 3-bits of port C will be used for
handshaking (Strobed I/O). Port B always transfers data via
the Basic 1/0 mode, regardless of how the MDR is pro­
grammed.

The four modes are as follows:

Mode O-Basic 1/0 (Input or Output)

Mode 1-Strobed Mode Input

Mode 2-Strobed Mode Output (Active Peripheral Bus)

Mode 3-Strobed Mode Output (TRI-STATE Peripheral
Bus)

7-105

The address assignment of the MDR is xxx00111 as shown
in Table I. The upper 3 "don't care" bits are determined by
the users decode logic (chip enable address). Table II speci­
fies the data that must be loaded into the MDR to select the
mode.

• Data Direction Registers (DDR)
Each port has a DDR that determines whether an individual
port bit will be an input or an output. If DDR for the port bit is
set to a 1, then that port bit is an output. If its DDR is reset to
a 0, then it is an input. The DDR bits cannot be individually
written to; the entire DDR register is affected by a write to
the DDR. Thus, all data bits written must be consistent for
all desired port bit directions.

TABLE 1.1/0 and Timer Address Designations

8-Blt Address Field
Bits

7 6 5 4 3 2

x x x x 0 0
x x x x 0 0
x x x x 0 0
x x x x 0 0
x x x x 0 1
x x· x x 0 1
x x x x 0 1
x x x x 0 1
x x x x 1 0
x x x x 1 0
x x x x 1 0
x x x x 1 0
x x x x 1 1
x x x x 1 1
x x x x 1 1
x x x x 1 1

x = don't care

LB = low-order byte

HB = high-order byte

1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

Designation R (Read)

0
1/0 Port, Timer, etc. W (Write)

0 Port A (Data) R/W
1 Port B (Data) R/W
0 Port C (Data) R/W
1 Not Used ..
0 DDR - Port A W
1 DDR - Port B W
0 DDR - Port C W
1 Mode Definition Reg. W
0 Port A - Bit-Clear W
1 Port B - Bit-Clear W
0 Port C - Bit-Clear W
1 Not Used ..
0 Port A - Bit-Set W
1 Port B - Bit-Set W
0 Port C - Bit-Set W
1 Not Used ..

• A write accesses the modulus register, a read the read buffer.

•• A read from an unused location reads invalid data, a write does not affect
any operation of NSC831.

TABLE II. Mode Definition Register Bit Assignments

Mode
Bit

7 6 5 4 3 2 1 0

0 x x x x x x x 0
1 x x x x x x 0 1
2 x x x x x 0 1 1
3 x x x x x 1 1 1

z
en o
Q)
w

•

~ r---~

co
o
(J)
z

8.0 Functional;!Description (Continued)

Any write or read to the port bits contradicting the direction
established by the DDR will not affect the port bits output or
input. However, a write to a port bit, defined as an input, will
modify the output latch and a read to a port bit, defined as
an output, will read this output latch. See Figure 2.

• Data Registers
These registers contain the actual data being transferred
between the CPU and the peripheral. In Basic I/O, data
presented by the peripheral (read cycle) will be latched on
the falling edge of RD. Data presented by the CPU (write
cycle) will be valid after the rising edge of WR (see AC char·
acteristics for exact timing).

During Strobed 1/0, data presented by the peripheral must
be valid on the rising edge of STB. Data received by the
peripheral will be valid on the rising edge of STB. Data
latched by the port on the rising edge of STB will be pre·
served until the next CPU read or STB signal.

• Bit Set-Clear Registers

The 1/0 features of the RAM·I/O·timer allow modification of
a single bit or several bits of a port with the Bit-Set and Bit·
Clear commands. The address selected indicates whether a
Bit·Set or Clear will take place. The incoming data on the
addressldata bus is latched at the trailing edge of the WR
strobe and is treated as a mask. All bits containing 1 swill
cause the indicated operation to be performed on the corre·
sponding port bit. All bits of the mask with Os cause the
corresponding port bits to remain unchanged. Three sample
operations are shown in Table III using port B as an exam·
pie. .

, INTERNAL
DATA BUS

MODE

WR(SETI

TABLE III. Bit-Set and Clear Examples

Operation SetB7 CiearB2 Set B4,B3
PortB andBO and B1

Address xxx01101 xxx01001 xxx01101

Data 10000000 00000101 00011010

Port Pins
Prior State 00001111 10001111 10001010
Next State 10001111 10001010 10011010

8.4 MODES

Two data transfer modes are implemented: Basic 1/0 and
Strobed 1/0. Strobed 1/0 can be further subdivided into
three categories: Strobed Input, Strobed Output (active pe­
ripheral bus) and Strobed Output (TRI·ST ATE peripheral
bus). The following descriptions detail the functions of these
categories.

• Basic I/O
Basic 1/0 mode uses the RD and WR CPU bus Signals to
latch data at the peripheral bus. This mode is the permanent
mode of operation for ports Band C. Port A is in this mode if
the MDR is set to mode o. Read and write byte operations
and bit operations can be done in Basic 1/0. Timing for
these modes is shown in the AC Characteristics Table and
described with the data register definitions.

When the NSC831 is reset, all registers are cleared to zero.
This results in the basic mode of operation being selected,
all port bits are made inputs and the output latch for each
port bit is cleared to zero. The NSC831, at this point, can
read data from any peripheral port without further set·up. If
outputs are desired, the CPU merely has to program the
appropriate DDR and then send data to the data ports.

TLlC/5594-12

FIGURE 2

7·106

8.0 Functional Description (Continued)

• Strobed 1/0
Strobed 1/0 Mode uses the STB, BF and INTR signals to
latch the data and indicate that new data is available for
transfer. Port A is used for the transfer of data when in any
of the Strobed modes. Port B can still be used for Basic 1/0
and the lower 3·bits of port C are now the three handshake
signals for Strobed 1/0. Timing for this mode is shown in the
AC Characteristic Tables.

causing BF to go high (true). On the trailing (positive) edge
of STB the data is latched and the interrupt signal, INTR,
becomes valid indicating to the CPU that new data is avail·
able. INTR becomes valid only if the interrupt is enabled,
that is the output data latch for PC2 is set to 1.

When the CPU reads port A, address x'OO, the trailing edge
of the RD strobe causes BF and INTR to become inactive,
indicating that the strobed input cycle has been completed.

Initializing the NSC831 for Strobed 1/0 Mode is done by
loading the data shown in Table IV into the specified regis·
ter. The registers should be loaded in the order (left to right)
that they appear in Table IV.

• Strobed Output-Active (Mode 2)

During strobed output operations, an external device can
read data from port A using the STB signal. Data is initially
loaded into port A by the CPU writing to I/O address x'OO.
On the trailing edge of WR, INTR is set inactive and BF
becomes valid indicating new data is available for the exter·
nal device. When the external device is ready to accept the
data in port A it pulses the STB signal. The rising edge of
STB resets BF and activates the INTR signal. INTR be·
comes valid only if the interrupt is enabled, that is the output
latch for PC2 is set to 1. INTR in this mode indicates a
condition that requires CPU intervention (the output of the
next byte of data).

TABLE IV. Mode Definition Register Configurations

DDR DDR
PortC

Mode MDR
PortA PortC

Output
Latch

Basic 1/0 xxxxxxxO Port bit directions are
determined by the bits of

each port's DDR

Strobed Input xxxxxx01 00000000 xxx011 xxx 1 xx

Strobed Output xxxxx011 11111111 xxx011 xxx 1 xx
• Strobed Output-TRI-STATE (Mode 3)

(Active)

Strobed Output xxxxx111 11111111 xxx011 xxx 1 xx
(TRI·STATE)

• Strobed Input (Mode 1)

The Strobed Output TRI·STATE Mode and the Strobed Out­
put active (peripheral) bus mode function in a similar man­
ner with one exception. The exception is that the data sig·
nals on PAO-7 assume the high impedance state at all
times except when accessed by the STB signal. Thus, in
addition to its timing function, STB enables port A outputs to
active logic levels. This Mode 3 operation allows other data
sources, in addition to the NSC831, to access the peripheral
bus. Strobed Mode 3 is identical to Strobed Mode 2, except
as indicated above.

During strobed input operations, an external device can load
data into port A with the STB signal. Data is input to the
PAO-7 input latches on the leading (negative) edge of STB,

Example Mode 1 (Strobed Input):

Action Taken INTR BF Results of Action

INITIALIZATION

Reset NSC831 H L Basic input mode all ports.
Load 01 'H into H L Strobed input mode entered; no byte loads to port C

MDR after this step; bit·set and clear commands to INTR
and BF no longer work.

Load OO'H into H L Sets data direction register for port A to input;
DORA data from port A peripheral bus is available

to the CPU if the STB signal is used, other
handshake signals aren't initialized, yet.

Load 03'H into H L Sets data direction register of port C; buffer full
DDRC signal works after this step and it is unaffected

by the bit-set and clear registers.
Load 04'H into H L Sets output latch (PC2) to enable INTR; INTR will

Port C Bit·Set latch active whenever STB goes low; INTR can be
Register disabled by a bit·clear to PC2. *

OPERATION

STB pulses low L H Data on peripheral bus is latched into port A;
INTR is cleared by a CPU read of port A or a
bit·clear of STB.

CPU reads Port A H L CPU gets data from port A; INTR is cleared;
peripheral is signalled to send next byte via
an inactive BF signal. Repeat last two steps until
EOT at which time CPU sends bit·clear to the
output latch (PC2).

·Port C can be read by the CPU at anytime, allowing polled operation Instead of Interrupt driven operation.

7·107

~ r---~
Cf)

~ 8.0 Functional Description (Continued)

~ Example Mode 2 (Strobed Output-actlve peripheral bus):

Action Taken INTR BF Results of Action

INITIALIZE

Reset NSC831 H L Basic input mode all ports.
Load 03'H into H L Strobed output mode entered; no byte loads to

MDR port C after this step; bit-set and clear
commands to INTR and BF no longer work.

Load FF'H into H L Sets data direction register for port A to output;
DORA data from port A is available to the peripheral if

the STB signal is used other handshake Signals
aren't initialized, yet.

Load 03'H into H L Sets data direction register of port C; buffer full
DDRC signal works after this step and it is unaffected

by the bit-set and clear registers
Load 04'H into L L Sets output latch (PC2) to enable INTR; active

Port C Bit-Set INTR indicates that CPU should send data;
Register INTR becomes inactive whenever the CPU

loads port A; INTR can be disabled by a bit-clear
to SfB.*

OPERATION

CPU writes to H H Data on CPU bus is latched into port A; INTR is
PortA set by the CPU write to port A; active BF

STB pulses low L L indicates to peripheral that data is valid;
Peripheral gets data from port A; INTR is reset
active; The active INTR signals the CPU to send
the next byte. Repeat last two steps until EOT at
which time CPU sends bit-clear to the output
latch (PC2).

'Port C can be read by the CPU at any time. allowing polled operation Instead of Interrupt driven operation.

• Handshaking Signals

In the Strobed mode of operation, the lower 3-bits of port C
transmit/receive the handshake signals (PCO= INTR,
PC1 = BF, PC2 = SfB).

INTR (Strobe Mode Interrupt) is an active-low interrupt from
the NSC831 to the CPU. In strobed input mode, the
CPU reads the valid data at port A to clear the inter­
rupt. In strobed output mode, the CPU clears the inter­
rupt by writing data to port A.

The INTR output can be enabled or disabled, thus
giving it the ability to control strobed data transfer. It is
enabled or disabled, respectively, by setting or clear­
ing bit 2 of the port C output data latch (SfB).

PC2 is always an input during strobed mode of opera­
tion, its output data latch is not needed. Therefore,
during strobed mode of operation it is internally gated
with the interrupt Signal to generate the INTR output.
Reset clears this bit to zero, so it must be set to one to
enable the INTR pin for strobed operation.

7-108

Once the strobed mode of operation is programmed,
the only way to change the output data latch of PC2 is
by using the Bit-Set and Clear registers. The port C
byte write command will not alter the output data latch
of PC2 during the strobed mode of operation.

STB (Strobe) is an active low input from the peripheral de­
vice, signalling a data transfer. The NSC831 latches
data on the rising edge of STB if the port bit is an input
and the peripheral should latch data on the rising
edge of STB if the port bit is an output.

BF (Buffer Full) is a high active output from the NSC831.
For input port bits, it indicates that new data has been
received from the peripheral. For output port bits, it
indicates that new data is available for the peripheral.

Note: In either Input or output mode the BF may be cleared by rewriting the
MDR.

9.0 NSC831/883B MIL-STD-883 Class B Screening

National Semiconductor offers the NSC831 D and NSC831 E
with full class B screening per MIL-STD-883 for Militaryl
Aerospace programs requiring high reliability. In addition,
this screening is available for all of the key NSC800 periph­
eral devices.

Electrical testing is performed in accordance with
RETS831x, which tests or guarantees all of the electrical
performance characteristics of the NSC831 data sheet. A
copy of the current revision of RETS831X is available upon
request. The following table is the MIL-STD-883 flow as of
the date of publication.

Test

Internal Visual
Stabilization Bake
Temperature Cycling
Constant Acceleration
Fine Leak
Gross Leak
Burn-In

Final Electrical
PDA

QA Acceptance
Quality Conformance
External Visual

10.0 Burn-In Circuit
5242HR

NSC831AD/883B (Dual-In-Llne)

100% Screening Flow

MI L·STD-883 Method/Condition Requirement

2010B 100%
1008C 24 Hrs. @ + 1S0·C 100%
1010C 10 Cycles -6S·CI + 1S0·C 100%
2001 E 30,000 Gs, Y1 Axis 100%
1014AorB 100%

1014C 100%
101S160 Hrs. @ + 12S·C (using 100%
burn-in circuits shown below)
+ 2S·C DC per RETS831X 100%
S%Max
+ 12S·C AC and DC per RETS831X 100%
-SS·C AC and DC per RETS831X 100%
+ 2S·C AC per RETS831X 100%
SOOS Sample per

Method SOOS
2009 100%

11.0 Timing Diagram
Input Clocks

2,.1 I·"" 8,.1 I I 2,.-
4.5V - -n 5.5 Voc

10

r:vv- 1 40 -"> CLOCK 1 OV ---.J I n
2 39

CLOCK 1

£
3 38

51 4 37 .. 5 36 "' ...
6 35

7 34

51
8 33
9

.... £ ..
32

'" 10 31
51£ 11 30 '"

12 29

CLOCK 2

CLOCK 3

'" 13 28

14 27

15 26

16 25
"' .. '" 17 24

."'''' 18 23
19 22

20 21

~

"''''''' .. "'''''''
"'''''''

~ '" '" '"
"''''
"''''

"'''''''
...

'"
::'"
... "': .. '"
"'''''''

... "' ... "' .. '"
'"

......
"'''''''
"'''''''
"'''' ..
"'''''''
"'''''''

TL/C/5594-13

7-109

t2,.s'-'!'I'-'I-' --8,. ·1 ... ·1-· -1-21'-'
4.5V -- --n rL

CLOCK 2
OV --+--..1

3,.IH 1--31'1-++-71"---1

aDCK3 •. :-- t;;~-Y .~1~ L
101'$

TL/C/5594-14

Note 1: All resistors ±S%. Y4 watt unless otherwise designated. 12SoC op­
erating life circuit.

Note 2: E package burn-in circuit S244HR is functionally identical to the D
package.

Note 3: All resistors 2.7 kn unless marked otherwise.

Note 4: All clocks OV to 4.SV.

Note 5: Device to be cooled down under power after burn-in .

z
U)
o
Q)
w --

•

.....
C"')
CI)

o
til
Z

12.0 Ordering Information

NSC831 X.x i T i/A + =A+ Reliability Screening .
1883 = MIL-STD-883 Screening (Note 1)

I = Industrial Temperature (-40°C to + 85°C)
M = Military Temperature (-55°C to = + 125°C)
No Designation = Commercial Temperature (OOC to + 70°C)

I -1 = 1 MHz Clock Output
L....----I

1

- 3 = 2.5 MHz Clock Output
-4 = 4 MHz Clock Output

I D = Ceramic Package
1...-----1 N = Plastic Package I E = Ceramic Leadless Chip Carrier (LCC)

TL/C/5594-15

Note 1: Do not specify a temperature option: all parts are screened to military temperature.

13.0 Reliability Information (NSC831)
Gate Count 1900
Transistor Count 7400

7-110

~National
~ Semiconductor

microCMOS
NSC858 Universal Asynchronous
Receiver ITransmitter
General Description
The NSC858 is a CMOS programmable Universal Asynchro­
nous Receiver/Transmitter (UARD. It has an on chip pro­
grammable baud rate generator. The UART, which is fabri­
cated using microCMOS silicon gate technology, functions
as a serial receiver/transmitter interface for your microcom­
puter system.

The transmitter converts parallel data from the CPU to serial
form and shifts it out in the standard asynchronous commu­
nication data format. Appropriate start, parity, and stop bits
are added to the outgoing serial stream. Incoming serial
data is converted to parallel form by the receiver. The re­
ceiver checks incoming data for errors (parity, overrun,
framing or break interrupt) and then converts it from serial
to parallel for transfer to the CPU. Five pins on the chip
are available for modem control functions or general
purpose 110.

The NSC858 has a programmable baud generator that is
capable of dividing the timing reference clock input by divi­
sors of 1 to (216_1), and producing a 1X, 16X, 32X, 64X
clock for driving the transmitter and/or receiver logic. Both
the transmitter and receiver can either be driven by an ex­
ternal clock or the internal baud rate generator. The
NSC858 has an interrupt system that can be tailored to
the user's requirements. In addition to the CMOS power
consumption levels there are hardware and software
power down modes which further reduce power consump­
tion levels.

System Configuration

Features
• Maximum baud rate 256k BPS (16X), 1 M BPS (1 X)
• Programmable baud rate generator
• Double buffered receiver and transmitter
• Independently configured receiver and transmitter

- 5-,6-, 7-, 8-bit characters
- Odd, even, force high, force low, or no parity
-1,1%,2 stop bits

• Five bits modem 110 or general purpose 110 (3 input, 2
output)

• Programmable auto enables for CTS and DCD
• Local and remote loopback diagnostics
• False start bit detection
• Break condition detection and generation
• Program polled, or interrupt driven operation

- 8 maskable status conditions for receiver and trans­
mitter interrupt

- 4 maskable status conditions for modem interrupt
• Variable power supply (2.4V-6.0V)
• Low power consumption with software and hardware

power down modes
iii 8-bit multiplexed address/data bus directly compatible

with NSC800TM

+5V

ADO-AD7

RSTA "'--";;;;"-4
RESET OUT t;.:..--......:.t~

NSC800 A13 t!-!---~~
RDE---~~
WR~--~~
ALE~--~~

CLK

PS -+~~I

16

r----
1 1M

POWER DOWN
CIRCUITRY

1
1
I
IT TI
1-= -=1
1 OPTIONAL I
L.!!~~S~.J

7-111

RxD

TxD

jjCfi

RTS
iffij

CTS
DSR

GND
14

-=

20

21 } RECEIVER

18

19 1 TRANSMITTER

23
24
25

26

1
MODEM CONTROL
OR GENERAL

-.=;:;.....___ PURPOSE 110
427 I~':"'----

TL/C/5593-1

z en o
0)
U1
0)

•

~ ~--~ an
~

&J z
Table of Contents

1.0 ABSOLUTE MAXIMUM RATINGS

2.0 OPERATING CONDITIONS

3.0 DC ELECTRICAL CHARACTERISTICS

4.0 AC ELECTRICAL CHARACTERISTICS

5.0 TIMING WAVEFORMS

6.0 CONNECTION DIAGRAMS

7.0 PIN DESCRIPTIONS

7.1 Input Signals
7.2 Output Signals
7.3 Input/Output Signals

8.0 BLOCK DIAGRAM

9.0 REGISTERS

9.1 Receiver and Transmitter Holding Register
9.2 Receiver Mode Register
9.3 Transmitter Mode Register
9.4 Global Mode Register
9.5 Command Register

7-112

9.0 REGISTERS (Continued)

9.6 RT Status Register
9.7 RT Status Mask Register
9.B Modem Status
9.9 Modem Mask Register
9.10 Power Down Register
9.11 Master Reset Register
9.12 Baud Rate Generator Divisor Latch

10.0 FUNCTIONAL DESCRIPTION

10.1 Programmable Baud Generator
10.2 Receiver and Transmitter Operation
10.3 Transmitter Operation
10.4 Typical Clock Circuits
10.5 Receiver Operation
10.6 Programming the NSC858
10.7 Diagnostic Capabilities

11.0 ORDERING INFORMATION

12.0 RELIABILITY INFORMATION

1.0 Absolute Maximum Ratings 2.0 Operating Conditions Vee=5V±10%
(Note 1) Ambient Temperature
If Military/Aerospace specified devices are required, Industrial -40·C to + a5·C
please contact the National Semiconductor Sales Commercial O·Cto +70·C
Office/Distributors for availability and specifications.
Storage Temperature - 65·C to + 150·C

Voltage on Any Pin with
Respect to Ground -0.3V to Vee +0.3V

Maximum Vee 7V

Power Dissipation 1W

Lead Temp. (Soldering, 10 seconds) 300·C

3.0 DC Electrical Characteristics Vee = 5V± 10%, GND = OV, unless otherwise specified.

Symbol Parameter Conditions Min Typ Max Units

VIH Logical 1 Input Voltage o.aVee Vee V

VIL Logical 0 Input Voltage 0 0.2 Vee V

VHY Hysteresis at RESET IN Input Vee=5V 0.25 0.5 V

VOH1 Logical 1 Output Voltage IOUT= -1.0 mA 2.4 V

VOH2 Logical 1 Output Voltage IOUT= -10,...A Vee- 0.5 V

Vou Logical 0 Output Voltage IOL = 2 mA except XOUT 0 0.4 V

VOL2 Logical 0 Output Voltage IOUT= 10,...A 0 0.1 V

IlL Input Leakage Current O::;:VIN::;:Vee -10.0 10.0 ,...A

IOL Output Leakage Current O::;:VIN::;:Vee -10.0 10.0 ,...A

Icc Active Supply Current TA = 25·C 2 10 rnA

IHPD Current Hardware Power Down Pin PD=O, No Resistive Output Loads, 100 ,...A
VIN = OV or VIN = Vee, T A = 25·C

ISPD Current Software Power Down Power Down Reg Bit 0 = 1, 300 ,...A
No Resistive Output Loads,
VIN=OVorVIN=Vee, TA = 25·C

CIN Input Capacitance 6 10 pF

COUT Output Capacitance a 12 pF

Vee Power Supply Voltage (Note 2) 2.4 5 6 V

Note 1: Absolute Maximum Ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended and should be
limited to those conditions specified under DC Electrical Characteristics.
Note 2: Operation at lower power supply voltages will reduce the maximum operating speed. Operation at voltages other than 5V ± 1 0% is guaranteed by design,
not tested.

AC Testing Input/Output Waveform AC Testing Load Circuit

:::x: 0.8 Vee TEST 0.8 veeC I DEVICE
POINTS 0.2 Vee UNDER 0.2 Vee

TEST
TL/C/5593-2 ~ CL-l00pF

TL/C/5593-3

7-113

z en
o
CD
UI
CD

•

co
I.t)
co
o en z

4.0 AC Electrical Characteristics Vee = 5V ± 10%, GND = OV, CL = 100 pF

Symbol I Parameter I Test Conditions I Min I
BUS

tAS Address 0-7 Set-Up Time 40

tAH Address 0-7 Hold Time 30

tALE ALE Strobe Width (High) 100

tARW ALE to Read or Write Strobe 75

tCRW Chip Enable to Read or Write 110

tRD Read Strobe Width 250

tDDR Data Delay from Read

tRDD Data Bus Disable

tcH
Chip Enable Hold After Read

60
or Write

tRWA Read or Write to Next ALE 45

tWR· Write Strobe Width 200

tos Data Set-Up Time 100

tOH Data Hold Time 75

MODEM

tMD
WR Command Reg. to Modem
Outputs Delay

tSIM
Delay to Set Interrupt from
Modem Input

tRIM
Delay to Reset Modem Status
Interrupt from RD

tSMI
WR to Status Mask Reg., Delay
toRTI

POWER DOWN

tpcs
Power Down to All Clocks
Stopped

tpCR
Power Down Removed to Clocks
Running

tpxs
Power Down Removed to XT AL When Using On Chip Inverter for
Oscillator Stable Oscillator Circuit

tpSE
Power Down Set-Up to RD 160
orWR Edge

tEPI
WR or RD Edge Following PO to

Enable or Disable
Internal Signals

BAUD GENERATOR

tXH XTALln High 100

tXL XTAL In Low 100

fSRC
Baud Rate Clock Input
Frequency

tSD1 Baud Out Delay ..;- 1

tS02 Baud Out Delay ..;- 2

tS03 Baud Out Delay ..;- 3

tSON Baud Out Delay ..;- N > 3

txc Baud Clock Cycle
1

txc =--
fSRC

243

7-114

Typ I Max I Units

ns

ns

ns

ns

ns

ns

180 200 ns

75 ns

ns

ns

250 ns

ns

ns

180 ns

200 ns

240 ns

230 ns

1 2 tSIT+tXC

1 2 tSIT+txe

100 ms

260 ns

100 ns

ns

ns

4.1 MHz

160 ns

200 ns

200 ns

200 ns

ns

4.0 AC Electrical Characteristics (Continued)

Symbol Parameter Test Conditions

TRANSMITTER

tTCD TxD Delay from TxC
External Clock

Internal Clock

tTXC Cycle Time TxC
16X, 32X, 64X Clock Factor

1 X Clock Factor

tTCH TxC High

tTCL TxC Low

tHAI WR TxHR to Reset TxBE RTI

tHTS WR TxHR to TxD Start

tTSI Skew Start Bit to RTI

tETS Enable Tx to Start Bit

1X

tSIT1 One Bit Time
16X

32X

64X

RECEIVER

tAS RxD Set-Up 1X Clock Factor

tAH RxD Hold 1 X Clock Factor

tAXC Cycle time RxC
16X, 32X, 64X Clock Factor

1 X Clock Factor

tACH RxC High

tACL RxC Low

tAAI RD to Reset RTI

1X

tSIT1 One Bit Time
16X

32X

64X

tEAS
Enable Rx to Correctly Detect

All Clock Factors
Start Bit

tANO
Read RxHR Before Next Data;

NoDE

tSI RxC, Break to RTI

tAEI Receiver Error Int

tADI Receiver Ready Int

tASI RxCto RTI

RESET TIMING

tMA MR Pulse Width

tAA
MR to ALE if Valid WR or

RDCycie

Note 1:tSIT = trxc x Clock Factor (1,16,32,64), transmitter
tSIT = tRXC x Clock Factor (1, 16,32,64), receiver

1
tSIT=~

7-115

Min Typ

275

140

243

1000

100

100

260

2 3

-100 +20

3 4

1000

3.88

7.77

15.55

160

100

243

1000

100

100

300

1000

3.88

7.77

15.55

2 3

240

340

% Clock
Factor

tAEI+ 1

300

100

100

Max

4

+120

5

4

Units

ns

ns

ns

ns

ns

ns

ns

tSIT

ns

tSIT

ns

,..,s

,..,s

,..,s

ns

ns

ns

ns

ns

ns

ns

ns

,..,s

,..,s

,..,s

tAXC

ns

tAXC

tAXC

ns

ns

ns

z en o
CD
U1
CD

co
it)

~ 5.0 Timing Waveforms
U)
z

Read and Write Cycles

ALE ---""

READ !ADO

OAD7 _____ -+ ____ -+-__ ~
iii)

WRITE !ADO

OAD7 --------------1
Viii

Viii (WRITE TO
COMMAND REG)

DTR. RTI

Note: The Internal write is made Inactive by either the next ALE or CE going invalid

Modem Timing

\4f_tMD

_

TUC/5593-5

CTS. DeD. DSR Y
---::r"" tSIM

'1m (STATUS ------,,1
MASK BITS

ENABLED FOR l1)

iffi (READ MODEM
STATUS REG)

TL/C/5593-4

TL/C/5593-6

Viii (CLEAR
MASK BIT)

RTI (ASSUME
STATUS BIT sm

Wii (SET
MASK Bm Y I,,, \""---

TL/C/5593-7 TUC/5593-8

7·116

5.0 Timing Waveforms (Continued)

Pii----_
(OR)

\Vii (WRITE SOFTWARE
POWER DOWN REG)

Power Down Timing

Ipcs-I ALL CLOCKS
STOPPED

(OATAIIIItt)

14---IPCII .1 CLOCK RUNNING

I---Ipxs---U • I XTALOSC

STABLE
TLIC/5593-9

jijj (HARDWARE ONLY)----~ -----c .. NOTE: IF SETUP IS MISSED ~ ___ _
iiiiORWR----.. \ --

\
'---

NEXT 1m OR WIllS USED \

SHUTOFF INTERNAL
ALE. CE. ADDRESS. DATA

Baud Out Timing

7-117

\._---

RESTORE
INTERNAL SIGNALS

TLIC/5593-10

TL/C/5593-11

z en o
CD
U1
CD

co r--,
Lt)

~ 5.0 Timing Waveforms (Continued)
(/)
Z

Viii (WRITE
TO TxHR)

iffi (lxBE)

TxD

MR

ALE

Transmitter Timing

TxD

TL/C/5593-12

~ ~ ~;:.::j 1- I-

A-X..J STDP\::A..

1
ISIT = BAUO RATE = ITxCX CLOCK FACTOR (1. 16. 32. 64)

TL/C/5593-13

Note: The AC Timing Spec for RTl due to TXU or T8K will be published in the next data sheet.

AUTO CTS
ENABLED DR CTS

(WRITE TO
COMMAND REG.

SET TxE = 1) Wii

(ASSUME TxHR
ALREADY LOADED)

TxD

IETS------<J ,....... ,-

~
TLlC/5593-14

Reset Timing

~----------------~~-------------I_------
IHi OR Wii \-----1

TL/C/5593-15

7-118

5.0 Timing Waveforms (Continued)

Receiver Timing

TL/C/5593-16

1
ISIY"BAUD RATE "IR,CxCLDCK FACTDR (1,16,32,64)

~11~~r
RID~,

RiC (lX)

iffi (PE OR DE)

(OR)

iffi (FE OR RIRDY)

------------_ ~----------_P------------
RID (161, 321, 641)

iffi (PE, FE. OR DE)

(OR)

RTi (RIRDY)

iiii (READ R·T STATUS OR
READ RIHR TO CLEAR INn

RlI

STOP \ IDLE DR START

~----------

\::i-
7·119

TLlC/5593-17

TLlC/5593-18

TL/C/5593-19

z en o
Q)
U1
Q)

•

eo
Ln eo o en z

5.0 Timing Waveforms (Continued)

Receiver Timing (Continued)

Wi! (WRITE TO COMMAND
REG SET RxE = 1)

(OR)

DCD (AUTO
DCD ENABLED) -------~

RxD

iiii (READ RxHR,
PREVIOUS DATA)

------~~ ~---+----~-----------RxD (16X, 32X, 66X)

(OR)

RxD (1X)

iili (RxRDY)
(AVOID DE) ----

MIDDLE OF 111 '0' STOP BIT

START BREAK CHARACTER

RiC (16x, 32x, 64x) I

STOP ,

I ~-------~----- 'k1B11

BREAK TERMINATE

_ __ J-IBI

RTI(~BRK) ~

------V-IR1M
RD (READ MODEM • ._------

STATUS REG)

----I\j\[' ~ RxC(1X) I

RTi(•• RK]~, , .~ ..
RD (AEAD MDDEM --=:]-i-~

STATUS REG) ~

7-120

TL/C/5593-20

TL/C/5593-21

(BRK = D)

TL/C/5593-22

6.0 Connection Diagrams
Dual·ln·Llne Package

MR

ALE

ADD

AD1

ADZ

AD3

TL/C/5593-23

Top View

Order Number NSC858D or N
See NS Package D28C or N28B

NC

ALE

ADO

ADI

AD2

NC

AD3

AD04

AD5

NC

NC

Leadless Chip Carrier

6 5 04 3 2 1 «043 042 041 040
7 39

38

37

10 36

11 35

12 NSC858E 304

13 33

104 32

15 31

16 30

17 29
18 19 20 21 22 23 204 25 26 27 28

Top View

Order Number NSC858E
See NS Package Number E44A

7.0 Pin Descriptions
7.1 INPUT SIGNALS

NC

DTR
ffi
DCD

iffi
NC

RxD

RxC/BRGOUT

TxD

TxC/BRGOUT

NC

TL/C/5593-24

Master Reset (MR): active high, Pin 1. This Schmitt trigger
input has a O.5V typical hysteresis. When high, the following
registers are cleared: receiver mode, transmitter mode,
global mode, R·T status (except for TxBE which is set to
one), R·T status mask, modem mask, command (which dis·
abies receiver "Rx" and the transmitter "Tx"), power down,
and receiver holding. In the modem status register, aCTS,
aDCD, aDSR, BRK and aBRK are cleared.

7·121

NC

ALE

ADO

ADI

AD2

NC

AD3

AD04

AD5

NC

NC

Plastic Chip Carrier

6 5 04 3 2 1 « 043 042 041 040
7 39

38

37

10 36

11 35

12 NSC858V 304

13 33

104 32

15 31

16 30

17 29
18 19 20 21 22 23 204 25 26 27 28

Top View

Order Number NSC858V
See NS Package Number V44A

NC

DTR
ffi
DCD

iffi
NC

RxD

RxC/BRGOUT

TxD

TxC/BRGOUT

NC

TLlC/5593-25

Chip Enable (CE): active low, Pin 2. Chip enable must be
low during a valid read or write pulse in order to select the
device. Chip enable is not latched.

Read (RD): active low, Pin 3. While the chip is enabled the
CPU latches data from the selected register on the rising
edge of RD.

Write (WR): active low, Pin 4. While the chip is enabled it
latches data from the CPU on the rising edge of WR.

Address Latch Enable (ALE): negative edge sensitive, Pin
5. The negative edge (high to low) of ALE latches the ad·
dress for the register select during a read or write operation.

z
(f)
(")
(X)
U'I
(X)

•

~ r---~
II)
~ o
tJ)
z

7.0 Pin Descriptions (Continued)

Power Down (PD): active low, Pin 17. When active it dis­
ables all internal clocks, shuts off the oscillator, clears RxE,
TxE, and break control bits in the command register. All
other registers retain their data. Unlike software power
down, PO also disables the internal ALE, CE, RD, WR, ad­
dress and data paths for minimum power consumption.
Registers cannot be accessed in hardware power down;
they may be in software power down.

Receiver Data (RxD): Pin 21. This accepts serial data input
from the communications link (peripheral device, modem, or
data set). Serial data is received least significant bit (LSB)
first. "Mark" is high (1), "space" is low (0).

Data Carrier Detect (DC D): active low, Pin 23. Can be used
as a modem or general purpose input. When this modem
input is low it indicates that the data carrier has been detect­
ed by the modem or data set. The DCD signal is a modem
control function input whose complement value can be test­
ed by the CPU by reading bit 5 (DCD) of the modem status
register. Bit 1 (~DCD) of the modem status register indicat­
ed whether the DCD input has changed state since the pre­
vious reading of the modem status register. DCD can also
be programmed to become an auto enable for the receiver.
NOTE: Whenever the DCD bit of the modem status register changes state,

an interrupt is generated if the aDCD mask and the DSCHG mask
bits are set.

Clear to Send (CTS): active low, Pin 26. Can be used as a .
modem or a general purpose input. The CTS inputs comple­
ment can be tested by the CPU by reading bit 4 (CTS) of the
modem status register. Bit 0 (~CTS) of the modem status
register indicates whether the CTS input has changed state
since the previous reading of the modem status register.
CTS can be programmed to automatically enable the trans­
mitter. Note: Whenever the CTS bit of the modem status
register changes state, an interrupt is generated if the ~CTS
mask and the DSCHG mask bits are set.

Data Set Ready (DSR): active low, Pin 27. Can be used as
a modem or a general purpose input. When this modem
input is low it indicates that the modem or data set is ready
to establish the communication link and transfer data with
the NSC858. The DSR is a modem-control function input
whose complement value can be tested by the. CPU by
reading bit 6 (DSR) of the modem status register. Bit 2
(~DSR) of the modem status register indicates whether the
(DSR) input has changed state since the previous reading of
the modem status register.
NOTE: Whenever the DSR bit of the modem status register changes state,

an interrupt is generated if aDSR mask and the DSCHG mask bits
are set.

Power (Vee): Pin 28. + 5V supply.

Ground (GND): Pin 14. Ground (OV) supply.

7.2 OUTPUT SIGNALS

Transmit Data (TxD): Pin 19: Composite serial data output
to the communication link (peripheral, modem or data set)
least significant bit first. The TxD signal is set to the marking
(logic 1) state upon a master reset. In hardware or software
power down this pin will always be a one.

Receiver-Transmitter Interrupt (RTI): active low, Pin 22.
Goes low when any R-T status register bit and its corre­
sponding mask bit are set. This bit can change states during
either hardware or software power down due to a change in
modem status information.

7-122

Request to Send (RTS): active low, Pin 24. Can be used as
a modem or a general purpose output. When this modem
output is low it informs the modem or data set that the
NSC858 is ready to transmit data. The RTS output or gener­
al purpose output signal can be set to an active low by
programming bit 6 of the command register with a 1. The
RTS signal is set high upon a master reset operation. During
remote loopback RTS signal reflects the complement of bit
6 of the command register. During local loopback the RTS
signal is forced to its inactive state (high). RTS cannot
change states during hardware power down; it can during
software power down.

Data Terminal Ready (DTR): active low, Pin 25. Can be
used as a modem or general purpose output. When this
modem output is low it informs the modem or data set that
the NSC858 is ready to communicate. The DTR output or
the general purpose output signal can be set to an active
low by programming bit 7 of the command register with a 1.
The DTR signal is set high upon a master reset operation.
During remote loopback DTR signal reflects the comple­
ment of bit 7 of the command register. During local loop­
back the DTR signal is forced to its inactive state (high).
DTR signal cannot change state during hardware power
down; it can during software power down.

7.3 INPUT/OUTPUT SIGNALS

Address/Data Bus (ADO-AD7): Pins 6-13. The multi­
plexed bidirectional address/data bus, ADO-AD7 pins, are
in the high impedance state when the NSC858 is not select­
ed or whenever it is in hardware power down. ADO-AD3 are
latched on the trailing edge of ALE, providing the four ad­
dress inputs. The rising edge of the WR input enables 8 bits
to be written in, through ADO-AD7, to the addressed regis­
ter. RD input enables 8 bits to be read from a register out
through ADO-AD7.

Transmitter Clock/Baud Rate Generator Output (TxC/
BRGOUn: Pin 18. If the transmitter is programmed for an
external clock, TxC is an input. If the transmitter is pro­
grammed for an internal clock, then the Baud Rate Genera­
tor is used for the transmitter, and it is output at TxC/
BRGOUT. In either case, TxC/BRGOUT signal is running at
1 X, 16X, 32X, 64X the data rate, as selected by the clock
factor. If this pin is used as an output it will be set to a zero
(0) in both hardware and software power down.

Receiver Clock/Baud Rate Generator Output (RxC/
BRGOUn: Pin 20. If the receiver is programmed for an ex­
ternal clock, RxC is an input. If the receiver is programmed
for an internal clock, the Baud Rate Generator is used for
the receiver, and it is output at RxC/BRGOUT. In either
case, RxC/BRGOUT signal is running at 1 X, 16X, 32X, 64X,
the data rate as selected by the clock factor. If this pin is
programmed as an output it will be set to one (1) in both
hardware and software power down.

Crystal (XIN, XOUT): Pins 15, 16. These two pins connect
the main timing reference. A crystal network can be con­
nected across these two pins, or a square wave can be
driven into XIN with XOUT left floating. In hardware and
software power down XOUT is set to a 1. Ground XIN when
using both RxC and TxC to supply external clocks to the
UART.

8.0 Block Diagram
INTERNAL REGISTERS lOGIC
DATA BUS (22) iffi

CPU INTERFACE

ADO-AD7 (6-13)

Ce~
iiii~ SELECT
-(4) AND
WR""(5)+ CONTROL
ALE? LOGIC +-+ Rx MODE iiiCiBRGOUT
MR..-...

Vee oJ!!!-

GROUNo~

FIGURE 1. NSC858 Functional Block Diagram

9.0 Registers
The system programmer may access control of any of the
NSC858 registers summarized in Table I via the CPU. These
8-bit registers are used to control NSC858 operation and to
transmit and receive data.

TABLE I. Register Address Designations

Address
Register Read/

A3 A2 A1 Ao
Write

0 0 0 0 Rx Holding R
0 0 0 0 Tx Holding W
0 0 0 1 Receiver Mode R/W
0 0 1 0 Transmitter Mode R/W
0 0 1 1 Global Mode R/W
0 1 0 0 Command R/W
0 1 0 1 Baud Rate Generator Divisor

Latch (Lower) R/W
0 1 1 0 Baud Rate Generator Divisor

Latch (Upper) R/W
0 1 1 1 R-T Status Mask R/W
1 0 0 0 R-T Status R
1 0 0 1 Modem Status Mask R/W
1 0 1 0 Modem Status R
1 0 1 1 Power Down R/W
1 1 0 0 Master Reset W

Note: Offset address 00, OE. OF are unused.

7-123

9.1 RECEIVER AND TRANSMITTER HOLDING REGIS­
TER

A read to offset location 00 will access the Receiver holding
register; a write will access the Transmitter holding register.

9.2 RECEIVER MODE REGISTER

The system programmer specifies the data format of the
receiver (which may differ from the transmitter) by program­
ming the Receiver mode register at offset location "01."
This read/write register programs the parity, bits/character,
auto enable option, and clock source. When bit 6 of this
register is set high the receiver will be enabled any time the
DCD signal input is low (provided CRO = 1). When bit 7 is
set to a "1" the receiver clock source is the internal baud
rate generator and RxC is then an output. After reset this
register is set to "00."

TABLE II. Receiver Mode Register (Address "01")
(Bits RMO-7)

7 8 5 4 3 2 1 0

10101010101010 I 01 m~~~~d~
, " ~ = R/W. RESERVED FOR I FUTURE USE

= 000 NO PARITY
= 100 EVEN PARITY
= 101 ODD PARITY
= 010 FORCE LOW
= 011 FORCE HIGH
= 00 5 BITS/CHAR .
= 01 6 BITS/CHAR.
= 10 7 BITS/CHAR.
= 11 8 BITS/CHAR.

L...-________ = 1 AUTO ENABLE OCO

'------------ =- 1 RxC INTERNAL
= 0 RxC EXTERNAL

TL/C/5593-27

z
en
0
Q)
U1
Q)

•

co r---~
II)
co
(,)
U)
z

9.0 Registers (Continued)

9.3 TRANSMITTER MODE REGISTER

The system programmer specifies the data format of the
transmitter (which may differ from the receiver) by program­
ming the transmitter mode register at offset location "02."

TABLE III. Transmit Mode Register (Address "02")
(Bits TMO-7)

~~~~~~~~~ 
nS8tconfiguralion 

L
TRANSMIT ABORT END CONDITION (TAEC} 
= "I" STOPON 

TRANSMITTER HOLDING REGISTER 
EMPTY 

= "0" STOP ON TRANSMITTER SHIFT 
REGISTER EMPTY 

= 000 NO PARITY 
• 100 EVEN PARITY 
= 101 DOD PARITY 
.. 010 FORCE LOW 
= 011 FORCE HIGH 

'-------.. 00 5 BITs/CHAR. 
= 01 6 BITs/CHAR. 
= 10 7 BITs/CHAR. 
.. 11 8 BITs/CHAR. 

'------------= 1 AUTO ENABLE ill 
'----------= 1 TxC. INTERNAL 

= 0 TxC = EXTERNAL 

TL/C/5593-28 

The transmitter mode register is similar in operation to the 
receiver mode register except for the addition of the Trans­
mit Abort End Condition (TAEC). If this bit is set to a one 
when a request to disable the transmitter or send a break is 
pending then the data in the shift register and holding regis­
ter will be transmitted prior to such action occurring. If TAEC 
equals 0 then the action will take place after the shift regis­
ter has been emptied. When bit 6 of this register is set high 
the transmitter will be enabled any time the CTS signal is 
low (provided CR1 = 1). When bit 7 is set to a "1" the trans­
mitter clock source is the internal baud rate generator, and 
TxC is then an output. After reset this register is set to "00." 

9.4 GLOBAL MODE REGISTER 

This register is used to program the number of stop bits and 
the clock factor for both the receiver and transmitter. Only 
the lower four bits of this register are used, the upper four 
can be programmed as don't cares and they will be read 
back as zeros. Programming the number of stop bits is for 
the transmitter only; the receiver always checks for one stop 
bit. If a 1 X clock factor with 1.5 stop bits is selected for the 
transmitter the number of stop bits will default to 1. After 
reset this register is set to "00." 
Note: Selecting the 1 x clock requires that the clock Signal be sent or re­

ceived along with the data. 

TABLE IV. Global Mode Register (Address "03") 
(Bits GMO-3) 

3 2 1 

BITS I 0 I 0 I 0 I 0 I reset configuration 

, I '-I~ CL'CK """ = DO lX 
= 01 16X 
= 10 32X 
= 11 64X 
STOP BITS 
= DO 1 STOP BIT 
= 01 1.5 STOP BITS 
= 10 2 STOP BITS 
= 11 INVALID 

Bits 4-7 are don't care, read as Os. 

TL/C/5593-29 

7-124 

9.5 COMMAND REGISTER 

The Command register is an eight bit read/write register 
which is accessed at offset location "04." After reset the 
command register equals "00." 

TABLE V. Command Register (Address "04") 
(Bits CRO-7) 

RECEIVER ENABLE 
TRANSMITTER ENABLE 

'-------- LOOPBACK OPERATION 
= 1 REMOTE LOOPBACK 
= 0 LOCAL LOOPBACK 

'------- ENABLE LOOPBACK 

'-------- BREAK CONTRDL 
= 00 NO BREAK 
= 01 4·CHAR. LENGTH BREAK 
= 10 lS·CHAR. LENGTH BREAK 
= 11 BREAK CONTINUOUSLY 

'----------- RTS (COMPLEMENT OF RTS PINI 
'------------ DTR (COMPLEMENT OF DTR PINI 

TL/C/5593-30 

Bit 0: Receive Enable, when set to a one the receiver is 
enabled. If auto enable for the receiver has been pro­
grammed then in addition to CRO = 1, the OCO input must 
be low to enable receiver. 

Bit 1: Transmitter Enable, when set to a one the transmitter 
is enabled. If auto enable for the transmitter is programmed 
then in addition to CR1 = 1, the CTS input must be low to 
enable transmitter. 

Bit 2: A zero selects local loopback and a one selects re­
mote loopback. 

Bit 3: A one enables either of the diagnostic modes select­
ed in bit 2 of the command register. 

Bits 4 and 5: Bits 4 and 5 of the command register are used 
to program the length of a transmitted break condition. A 
continuous break must be terminated by the CPU, but the 4 
and 16 character length breaks are self clearing. (At the 
beginning of the last break character bits 4 and 5 will auto­
matically be reset to 0.) Break commands affect the status 
of bit 6 (TBK) of the R-T Status register (see R-T Status 
register). Break control bits are cleared by software or hard­
ware power down. 

Bits 6 and 7: These two bits control the status of the output 
pins RTS (pin 24) and OTR (pin 25) respectively. They may 
be used as modem control functions or be used as general 
purpose outputs. The output pins will always reflect the 
complement of the register bits. 

9.6 R-T STATUS REGISTER 

This 8-bit register contains status information of the 
NSC858 and therefore is a read only register at offset loca­
tion "08." Each bit in this register can generate an interrupt 
(RTI). If any bit goes active high and its associated mask bit 
is set then the RTI will go low. RTI will be cleared when all 
unmasked R-T Status bits are cleared. Bits 0 and 1, receiver 
ready and transmitter empty are cleared by reading the re­
ceiver holding register or writing the transmitter holding reg­
ister respectively. Bits 2 through 5, transmit underrun, re­
ceiver overrun, framing error, parity error are cleared by 
reading the R-T Status register. Bit two, transmitter under­
run will occur when both the transmit holding register and 
the transmit shift register are empty. 



9.0 Registers (Continued) 

Bit three, overrun error, will occur when the CPU does not 
read a character before the next one becomes available. 
The OE bit informs the programmer or CPU that RXHR data 
has been overrun or overwritten. The byte in the shift regis­
ter is always transferred to the holding register, even after 
an overrun occurs. If an OE occurs, it is standard protocol to 
request a re-transmission of that block of data. A read of 
RXHR, when a subsequent read of R-T status shows that 
no OE is present, indicates current receiver data is avail­
able. Bit four, framing error, occurs when a valid stop bit is 
not detected. Bit 5 is set when a parity error is detected. Bits 
three, four and five are affected by the receiver only. 

Bit 6, Transmit Break (TBK) is set at the beginning of each 
break character during a break continuously command, or at 
the beginning of the final break character in a 4 or 16 char­
acter programmed break length. It is cleared by reading the 
R-T Status register. Bit 7, Data Set Change (DSCHG) will be 
set whenever any of the bits 0-3 of the Modem Status reg­
ister and their associated mask bit are set. Data Set Change 
bit is cleared by reading the Modem Status register or is 
masked off by writing "0" to all modem register bits. After 
reset the R-T Status register equals '02', i.e. all bits except 
TxBE are reset to zero. 

TABLE VI. R-T Status Register (Address "08") 
(Bits SRO-7) 

reset configuration 

RxRDY (RECEIVER DATA READY) 
1 = FULL 
0= EMPTY 
TxBE (TRANSMITIER BUFFER EMPTy) 
1 = EMPTY 
0= FULL 
TxU (TRANSMITIER UNDERRUN 
1 = ERROR 
0= NO ERROR 

L--____ OE (RECEIVER OVERRUN ERROR) 
1 = ERROR 
0= NO ERROR 

'------- FE (RECEIVER FRAMING ERROR) 
1 = ERROR 
0= NO ERROR 

'-------- PE (RECEIVER PARITY ERROR) 
1 = ERROR 
0= NO ERROR 

'---------- TBK (TRANSMITIER BREAK) 
1 = BREAK 
0= NO BREAK 

'----------- DSCHG (DATA SET CHANGE) 
1 = CHANGE 
0= NO CHANGE 

9.7 R-T STATUS MASK REGISTER (SMO-7) 

TLIC/5593-31 

This register is used in conjunction with the R-T Status reg­
ister to enable or disable conditional interrupts A one in any 
bit unmasks its associated bit in the R-T Status register, and 
allows it to generate an interrupt out through RTI. The mask 
affects only the interrupt and not the R-T Status bits. This 
eight bit register is both read and writable at offset location 
"07." After reset it is set to "0" which disables all interrupts. 
Each bit in the R-T Status mask register is associated with 
that bit in the R-T Status register (e.g., SMO is SRO's mask). 

9.8 MODEM STATUS 

This eight bit read only register which is addressed at offset 
location "OA" contains modem or general purpose input 
and receiver break information. 

7-125 

TABLE VII. Modem Status Register (Address "OA") 
(Bits MSO-7) 

~CTS 

.lOCO 
L-----.lDSR 

'-------.lBRK 
I..-------CTS 

1..-_______ OCD 

1.----------DSR 
I..-----------BRK 

TL/C/5593-32 

Each of the four status signals in this register also have an 
associated delta bit in this register. Each delta bit (bits 
MSO-3) will be set when its corresponding bit changes 
states. These four delta bits are cleared when the Modem 
Status register is read. If any of these four delta bits and 
associated mask bits are set they will force DSCHG (bit 7) 
of the R-T Status register high. Bits 4-6, CTS, DCD, DSR 
can be used as modem signals or general purpose inputs. In 
either case the value in the register represents the comple­
ments of the input pins CTS (pin 26), DCD (pin 23), and DSR 
(Pin 27). Bit 7 (BRK) when set to a one indicates that the 
receiver has detected a break condition. It is cleared when 
break terminates. After reset ~CTS, ~DCD, ~DSR, ~BRK 
and BRK are cleared. 

9.9 MODEM MASK REGISTER (MMO-3) 

This 4-bit read/write register, which is addressed at offset 
location "09," contains mask bits for the four delta bits of 
the Modem Status register (MSO-3). A one ("1") in any of 
three bits and a one in the associated delta bit of the Mo­
dem Status register will set the DSCHG bit of the R-T Status 
register. Modem Mask bit 0 is associated with Modem 
Status bit 0, etc. The four (4) most significant bits of this 
register will read as zeros. After reset the register equals 
'00'. 

9.10 POWER DOWN REGISTER (PDO) 

This one bit register can both be read and written at offset 
location "OB." When bit zero is set to a one the NSC858 will 
be put into software power down. This disables the receiver 
and transmitter clocks, shuts off the baud rate generator 
and crystal oscillator, and clears the RxE, TxE, and break 
control bits in the command register. Registers on chip can 
still be accessed by the CPU during software power down. 
Bits 1 through 7 will always read as o. 
9.11 MASTER RESET REGISTER 

This write only register is addressed at offset location "OC." 
When writing to this register the data can be any value 
(don't cares). Resetting the NSC858 by way of the reset 
register is functionally identical to resetting it by the MR pin. 

9.12 BAUD RATE GENERATOR DIVISOR LATCH 

These two 8-bit read/write registers which are accessed at 
offset locations "05" (lower) and "06" (upper) are used to 
program the baud rate divisor. These registers are not af­
fected by the reset function and are powered up in a ran­
dom state. 

z en 
o co 
U1 
co 

• 



co .------------------------------------------------------------------------------------, 
II) 
co o en 
z 

10.0 Functional Description 
10.1 PROGRAMMABLE BAUD GENERATOR 
The NSC858 contains a programmable Baud Generator that 
is capable of taking any clock input (DC to 4.1 MHz) and 
dividing it by any divisor from 1 to (216-1). The output fre· 
quency of the Baud Generator (available at TxC/BRGOUT 
or RxC/BRGOUT, if internal TxC or RxC is selected) is 
equal to the clock factor (1X, 16X, 32X, 64X) times the baud 
rate. The divisor number is determined by the following 
equation: 

divisor # = Frequency Input (fSRC> 
[Baud Rate x Clock Factor (1, 16, 32, 64)] 

Two 8-bit latches store the divisor in a 16-bit binary format. 
These Divisor Latches must be loaded during initialization in 
order to ensure desired operation of the Baud Generator. 
Upon loading either of the Divisor Latches, a 16-bit Baud 
counter is immediately loaded. This prevents long counts on 
initial load. 
Tables VIII and IX illustrate the use of the Baud Generator 
with crystal frequencies of 1.8432 MHz and 3.072 MHz re­
spectively. For baud rates of 38400 and below, the error 
obtained is minimal. The accuracy of the desired baud rate 
is dep~ndent on the crystal frequency chosen. 

TABLE VIII. Baud Rates Using 1.8432 MHz Crystal 

Desired Divisor Used Percent Error 

Baud Rate To Generate Difference Between 
16 x Clock Desired and Actual 

50 2304 -
75 1536 -
110 1047 0.026 

134.5 857 0.058 
150 768 -
300 384 -
600 192 -
1200 96 -
1800 64 -
2000 58 0.69 
2400 48 -
3600 32 -
4800 24 -
7200 16 -
9600 12 -
19200 6 -
38400 3 -
56000 2 2.86 

TABLE IX. Baud Rates Using 3.072 MHz Crystal 

Desired Divisor Used Percent Error 

Baud Rate To Generate Difference Between 
16 x Clock Desired and Actual 

50 3840 -
75 2560 -
110 1745 0.026 

134.5 1428 0.034 
150 1280 -
300 640 -
600 320 -
1200 160 -
1800 107 0.317 
2000 96 -
2400 80 -
3600 53 0.628 
4800 40 -
7200 27 1.23 
9600 20 -
19200 10 -
38400 5 -

7-126 

10.2 RECEIVER AND TRANSMITTER OPERATION 

The NSC858 transmits and receives data in an asynchro­
nous communications mode. The CPU must set up the ap­
propriate mode of operation, number of bits per character, 
parity, number of stop bits, etc. Separate mode registers 
exist for the independent specification of receiver and trans­
mitter operation. These independent specifications include 
parity, character length, and internal or external clock 
source. Only the Global Mode Register, which controls the 
number of stop bits and the clock factor, exercises common 
control over the receiver and transmitter (receiver looks for 
only one stop bit). 

10.3 TRANSMITTER OPERATION 

The Transmitter Holding register is loaded by the CPU. To 
enable the transmitter, TxE must be set in the Command 
register. CTS must be low if the auto enable is set in the Tx 
Mode register. The Transmitter Holding register is then par­
allel loaded into the Transmitter Shift register, and the start 
bit, parity bit and the specified number of stop bits are in­
serted. This serialized data is available at the TxD output 
pad, and changes on the rising edge of TxC, or equivalently 
the falling edge of TxC. The TxD output remains in a mark 
("1 ") condition when no data is being transmitted, with the 
exception of sending a break ("0"). 

A break condition is initiated by writing either a continuous 
or specified length break request to the Command Register. 
A finite break specification of either 4 or 16 character 
lengths can be extended by re-writing the break command 
before the specified break length is completed. Each break 
character is transmitted as a start bit, logical zero data, logi­
cal zero parity (if specified) and logical zero stop bit(s). The 
number of data and stop bits, plus the presence of a parity 
bit are determined by the Transmitter and Global Mode reg­
isters. Thus, the total number of (all zero) bits in a break 
character is the same as that for data. The break is termi­
nated by writing "00" to the Break Control bits in the Com­
mand Register. The Set Break bits in the Command register 
are always reset to "00" after the termination of the speci­
fied break transmission or if the transmitter is disabled dur­
ing a break transmission. The TxD output will always return 
to a mark condition for at least one bit time before transmit­
ting a character after a break condition. Data in the Trans­
mitter Holding register, whether loaded before (on 
T AEC = 0) or during the break will be transmitted after the 
break is terminated. 



~------------------------------------------------------------------------. z 
10.0 Functional Description (Continued) 

10.4 TYPICAL CLOCK CIRCUITS 

IVER DR 

EXTERNAL -t> XIN 
CLOCK 

OPTIONAL 

OPTIONAL 
CLOCK --0 

OUTPUT 

DRIVER 
XOUT 

XIN 

Rp CRYSTAL 

I:::::J 

~ fRDM 
+-CONTROL 

LOGIC 

OSC. CLOCK TD 
BAUD GEN. LOGIC 

OSC. CLOCK TO 
r--_ ..... __ ..... ;.;;XO;.;UT~I-____ .... B+AUD GEN. LOGIC 

TUC/5593-33 

CRYSTAL Rp C1 C2 

3.1 MHz 1 Mn 10-30 pF 40-60 pF 

1.8 MHz 1 Mn 10-30 pF 40-60 pF 

FIGURE 2. Typical Crystal Oscillator Network 

10.5 RECEIVER OPERATION 

The NSC858 receives serial data on the RxD input. To en­
able the receiver, DCD must be low if the DCD Auto Enable 
bit in the Receiver Mode register is set ("1"). RxE must be 
set in the Command register. RxD is sampled on the falling 
edge of RxC or equivalently on the rising edge of RxC. If a 
high ("1") to low ("0") transition of RxD is detected, RxD is 
sampled again, for all except the 1 X clock factor, at % of a 
bit time later. If RxD is still low, then a valid start bit has 
been received and character assembly proceeds. If RxD 
has returned high, then a valid start bit has not been re­
ceived, and the search for a valid start bit continues. When 
a character has been assembled in the Receiver Shift Reg­
ister and transferred to the Receiver Holding Register, the 
RxRDY bit (and any error bits that may have occurred) in the 
R-T Status register will be set and RTI will go low (if the 
proper mask bits are set). After the CPU reads the Receiver 
Holding register, the RxRDY will go low and the RTI will go 
inactive (" 1"). 

The receiver will detect a break condition on RxD if an all 
zero character with zero parity bit (if parity is specified) and 
a zero stop bit is received. For the break condition to termi­
nate, RxD must be high for one half a bit time. If a break 

7-127 

TRANSMITTER OUTPUT 

TRANSMISSION FORMAT 

PROGRAMMED 
CHARACTER 

LENGTH 

GENERATED 
BY NSC858 

CPU BYTE (5-8 BITS/CHAR) 

DATA CHARACTER 

ASSEMBLED SERIAL DATA OUTPUT (TxD) 

ST;-) 
BITS L 

START DATA CHARACTER STOP J 
L-~B~IT __ L-____ .. ~ ____ ~~~~B~IT~S 

RECEIVE FORMAT 

SERIAL DATA INPUT (RxD) 

DATA CHARACTER STOP J 
BITS 

~--~------~---~~--~~ 
CPU BYTE (5-8 BITS/CHAR)· 

DATA CH~R.A_CT_ER __ .. 

TL/C/5593-34 

Note: If character length is defined as 5, 6 or 7 bits, the unused bits are set 
to "0"). 

FIGURE 3 

condition is detected, bits 3 and 7 in the Modem Status 
register (~BRK and BRK respectively) will be set. Bit 3 
(~BRK) will then cause bit 7 (DSCHG) in the R-T Status 
register to be set which in turn forces RTI to an asserted 
state ("0"). These interrupts will occur only if the appropri­
ate mask bits are set for the registers in question. 

When the 1 x clock factor is selected: 

The RxC pin on the NSC858 should be connected to the 
clock signal of the incoming data stream and bit 7 of the 
receiver mode register should be cleared to AO. 

The TxC output of the NSC858 does not have to be sent to 
the remote receiver unless the receiver is using a 1 x clock 
factor. 

10.6 PROGRAMMING THE NSC858 

There are two distinct steps in programming the 858. During 
initialization, the modes, clocks, masks and commands are 
set up. Then, in operation, Modem 110 takes place, status is 
monitored, the receiver and transmitter are run as needed. 

To initialize the 858, first pulse the MR line or write to the 
Master Reset register. Then, write to the following registers 
in any order, except for enabling the Rx and Tx, which must 

en o 
Q) 
U1 
Q) 



co r-------------------------------------------------------------------------------------------, 
Ln 
co o 
U) 
z 

10.0 Functional Description (Continued) 

be at the end of the set up procedure. The Global, Receiver 
and Transmitter Mode registers determine the modes for 
the Rx and Tx. These latter two registers often will have the 
same data byte written to them, but are kept independent 
for flexibility. If the mode registers indicate that the receiver 
and/or the transmitter use an internal clock, then data (de­
termined by the crystal frequency and desired bit time and 
clock factor) should be written to the upper and lower Baud 
Rate Generator Divisor Latches. The Modem Status Mask 
register enables Data Set change in R-T Status. If interrupts 
are required, the R-T Status Mask register allows RTI to 
occur. Write to the Command register to enable the receiver 
and/or transmitter only when all else is set up. 

In operation, the 858 can transmit, receive and handle I/O 
simultaneously. Modem outputs are written to at the Com­
mand register, while the inputs are read at the Modem 
Status register. Data flow and errors are read at the R-T 
Status register. When serial data has been shifted in and 
assembled, the receiver is ready, and the word can be read 
at the Rx Holding register. When the transmitter buffer is 
empty, the Tx Holding register can be written to, and the 
word will be shifted out as serial asynchronous data. 

Once the 858 is running, several options may be exercised. 
Masks can be changed at any time. The Rx and Tx are 
disabled or enabled, as needed, by writing to the Command 
register, or toggling the auto enable modem inputs (if used). 
Both the Rx and Tx should be disabled before either altering 
any mode or engaging a loopback diagnostic, and they can 
be re-enabled then or at a later time. Power down is allowed 
at any time except during loop back, although data may be 
lost if PD occurs in the middle of a word. 

Thus, software for the NSC858 is of two types. The initiali­
zation routine is performed once. The operation routines, 
usually incorporating polling or interrupts, are then run con­
tinuously or on demand, depending upon the system or 
application. 

10.7 DIAGNOSTIC CAPABILITIES 

The NSC858 offers both remote and local loop back diag­
nostic capabilities. These features are selected through the 
Command register. 

Local Loopback Mode (see Figure 4) 

1. The transmitter output is internally connected to the re­
ceiver input. 

2. DTR is internally connected to DCD, and RTS is inter­
nally connected to CTS. 

3. TxC is internally connected to RxC. 

4. The DSR is internally held low (inactive). 

YDO-AD7> 

NSC800 
CPU 

iiD 
Wii 0 RxD 
ALE 

5. The TxD, DTR and RTS outputs are held high. 

6. The CTS, DCD, DSR and RxD inputs are ignored. 

7. Except as noted, all other Status, Mode and Command 
Register bits and interrupts retain their functions and 
settings. 

FIGURE 4. Local Loopback 

Remote Loopback Mode (see Figure 5) 

TL/C/5593-35 

1. The contents of the Receiver Holding Register, when 
RxRDY = 1 indicates it is full, are transferred to the Trans­
mitter Holding register, when TxBE= 1 indicates it is emp­
ty. After this action, both RxRDY and TxBE are cleared. 

2. RxC is connected internally to TxC. 

3. Setting the Remote Loopback Mode places all receiver 
and transmitter flags under control of the remote loop­
back sequencer. RxRDY and TxBE can be monitored to 
follow automatic remote loopback data flow, while DE 
and TxU can indicate system problems. 

4. The CPU can read the Receiver Holding register if de­
sired, but this is not necessary. The CPU cannot load the 
Transmitter Holding Register. 

5. Modem Status, all Mode and Command register bits re-
tain their functions and interrupts are generated. 

Under certain conditions entering the remote loopback 
mode causes a character in the receiver or transmitter hold­
ing registers to be sent, even though, the transmitter is dis­
abled. 

1. If the UART enters the remote loopback mode immedi­
ately after receiving a break character in the normal 
receive mode, it will then automatically transmit that 
character. 

2. If the UART enters the remote loopback mode before 
the CPU has read the latest character in the receiver 
holding register, it will then automatically transmit that 
character. 

3. If the UART enters the remote loopback mode before 
the last character written to the transmitter holding reg­
ister is transmitted, then it will automatically transmit 
this character. 

TL/C/5593-36 

FIGURE 5_ Remote Loopback 

7-128 



11.0 Ordering Information 
NSC858XX 

II i IA+ = A+ Reliability Screening 
D = Ceramic Package 
N = Plastic Package 
E = Ceramic Leadless Chip Carrier (LCC) 
V = Plastic Leaded Chip Carrier (PCC) (Availability to be announced) 

12.0 Reliability Information 
Gate Count 4280 

Transistor Count 8450 

7·129 

TLIC/5593-37 

z en o 
co 
U1 
co 

• 



co 

~ ~ National Semiconductor 
(f) 
z 

NSC888 
NSC800™ Evaluation Board 

microCMOS 

• Nscaoo a-Bit microCMOS CPU 
• Executes zao® Instruction Set 
• 20 programmable parallel I/O lines 
• Two 16-Bit programmable 

counters/timers 
• Powerful 2k x a monitor program 
• Five levels of vectored prioritized 

Interrupts 
• RS232 Interface 

Product Overview 
The NSC888 is a self-contained microprocessor 
board which enables the user to quickly evaluate the 
performance and features of the NSC800 product 
family. This fully assembled, tested board requires 
only the addition of a ± 5V supply and an RS232 inter­
face cable to the user's terminal to begin NSC800 
evaluation. 
A powerful system monitor is provided on the board 
which controls serial communications via the RS232 
port. The monitor also includes command functions to 
load, execute and debug NSC800 programs. 

TL/C/8533-1 

• 1 k x a microCMOS RAM with sockets for 
up to 4k x a RAM 

• Socket for additional 2k x a, 2716 
compatible memory component 

• Wire wrap area 
• Edge connectors for system expansion 
• Single-step operation mode 
• Fully assembled and tested 

The board includes an NSC800 CPU plus RAM, 
EPROM, lID, Timers and interface components yet 
draws only 30 rnA from the + 5V supply and 3 rnA 
from the - 5V supply. 
Although designed primarily as an assessment vehi­
cle, the NSC888 can be readily programmed and 
adapted to a variety of uses. Wire wrap area is provid­
ed on-board for the user to build up additional circuitry 
or interfaces, thus tailoring this high-performance, low­
power microprocessor board to meet individual needs. 

7-130 



Functional Description 
Figure 1 and Figure 2 provide information on the orga­
nization of the NSC888 board. Please refer to these 
figures for the following discussion. 

Central Processor 

The powerful NSC800 is the central processor for the 
NSC888. It provides bus control, clock generation and 
extensive interrupt capability. Featuring a multiplicity 
of programmable registers and sophisticated address­
ing modes, the NSC800 executes the Z80 instruction 
set. 

Memory 

• 128 bytes of RAM are provided by the NC810A 
RAM-liD-Timer and are used by the monitor pro­
gram for the system stack. 

• 1024 bytes of RAM are provided by two 1 k x 4 
NMC6514's. Sockets are provided for six additional 
NMC6514's, for a total of 4k bytes of RAM. 

• A 2k byte EPROM system monitor is provided on­
board which includes facilities to load, execute and 
debug a users program. 

Block Diagram 

EXTERNAL 
CONTROL 

BUS 

NSCBOO 
CPU 

iffi 

SINGLE 
STEP 
MODE 

AIB·1S) 

• An additional EPROM socket is also on-board which 
accepts a 2k byte 2716 compatible memory compo­
nent. 

Input/Output 

• Parallel I/O 
The NSC888 provides 20 programmable parallel 110 
lines implemented using the liD ports of the 
NSC810A RAM-liD-Timer. The port bits may be in­
dividually defined as input or output, and can also be 
written to or read from in bytes. The liD lines are 
conveniently brought to a 50 contact edge connec­
tor for user interface . 

• Serial I/O 
An RS232 connector and accompanying support cir­
cuitry are provided on-board. Two liD lines from the 
NSC810A RAM-liD-Timer are used for the serial 
communications function, which is controlled exclu­
sively by software. The baud rate is determined 
upon system initialization by the character bit rate 
from the users terminal. The maximum baud rate is 
2400 baud. 

ADIO·7) 

R/W 
MEMORY 
4K x 8 

DEMUL· 
TlPLEXER 
82PCt2 

COMMUNI· 
CATION 

INTERFACE 

4K 
READ 
ONLY 

MEMORY 

DATA 
RECEIVE 

t-

__ DA_T_A _ } S~~~AL 
XMIT 

TL/C/8533-2 

FIGURE 1 

7-131 

z 
en o 
CD 
CD 
CD 

• 



co co 
l3 Functional Description (Continued) 

~ Timers 

The NSC888 provides two fully programmable binary 
16·bit counters/timers utilizing the NSC810A RAM-I/ 
O-Timer. These signals are also brought to the paral­
lel liD connector. Each timer may operate in any of 
six different modes: 

• Event Counter 
• Accumulative Timer 
• Restartable Timer 
• One Shot 
• Square Wave 
• Pulse Generator 

Connectors 

• Parallel I/O 

The parallel I/O lines and timer lines from the 
NSC810A RAM-I/O-Timer, plus interrupt lines from 
the CPU are brought to this 50 contact edge con­
nector. 

• System Bus 

All NSC800 CPU lines except XIN are brought to this 
86 contact edge connector. In addition, the -5V line 
is also brought to the system bus connector. 

• RS232 

This connector is provided for system interface to 
the users terminal. 

Interrupts 

The NSC888 utilizes the powerful interrupt processing 
capability of the NSC800 CPU. Interrupts are routed 
via a jumper matrix to the five interrupt inputs of· the 
NSC800. Each input, which may be from the 
NSC810A I/O ports, NSC810A timers or off board via 
the system bus connector, generates a unique memo­
ry address (see Table I). All interrupts with the excep­
tion of NMI can be masked via software. Interrupt 
lines are also brought to the parallel I/O connector. 

TABLE I. 

Interrupt Memory 
Type Priority 

Input Address 

NMI 0066H Non-maskable Highest 
RSTA 003CH Maskable 
RSTB 0034H Maskable 
RSTC 002CH Maskable 
INTR 0038H* Maskable Lowest 

"mode 1 

NSC888 Firmware 

The NSC888 system monitor is provided by a prepro­
grammed EPROM. This comprehensive monitor in­
cludes facilities to load, execute and debug programs. 
The monitor allows the user to examine and modify 
any RAM memory location or CPU register. It permits 
the insertion of break points to facilitate debugging. 
Programs can be executed starting at any location. 

The commands supported by the NSC888 system 
monitor are as follows: 

• B - Select a new baud rate 

• D - Display memory 

• F - Fill memory between ranges 
• G - Execute program with break points 

• H - Hexadecimal math routine 

• J - Non-destructive memory test 
• K - Store 16-bit value in memory 

• M - Move a block of data 

• P - Put ASCII characters in memory 

• Q - Query I/O ports 

• S - Substitute and/or. examine memory 

• T - Type memory contents in ASCII 

• V - Verify two blocks of data 
• X - Examine or modify CPU registers 

• Y - Memory search for string 
These commands are fully explained in the NSC888 
Hardware/Software Users Manual. 

Single Step/Power Save 

The NSC888 provides a unique single-step mode, uti­
lizing the Power Save input of the NSC800 CPU. This 
input, when activated, reduces CPU power consump­
tion from 50 mW to only 25 mW. It also allows the user 
to single-step through a program, checking and modi­
fying code. This function is controlled via a switch on 
the board. 

Specifications 
Microprocessor 

CPU-

Data Word­

Instruction Word­

Cycle Time-

System Clock­

Registers-

Number of 
I nstructions-

Address 
Capability-

Memory 

RAM-

ROM/EPROM-

Access Time-

7-132 

NSC800 

8 bits 

8, 16, 24, 32 bits 

2.00 J.Ls (minimum instruction 
time) 

2.00 MHz 

14 general purpose (8-bit) 

2 index registers (16-bit) 

1 stack pointer (16-bit) 

1 program counter (16-bit) 

158 

64k bytes 

1152 bytes on-board plus 
sockets for an additional 3k 
bytes 

Sockets for 4k bytes 
on-board 

625 ns for opcode fetch 

875 ns for memory read 



Specifications (Continued) 

Connectors 

System Bus 

Parallel I/O 

Serial I/O 
Power 

Physical 

Height 
Width 

86-pin double-sided card 
cage edge connector on 
0.156 inch centers 
50-pin double-sided edge 
connector on 0.1 inch centers 
Recommended mating 
connector: 
3M 3415-0001 
AMP 2-86792-3 
Standard RS232 connector 
+ 5V 30 mA (27C16 EPROM 
monitor) or 90 mA (2716 
EPROM monitor) 
-5V3 mA 

6.75 (17.15 cm) 
7.85 (19.94 cm) 

Order Information 
NSC888 

Documentation 

FIGURE 2. NSC888 Evaluation Board 

7-133 

Includes CPU, 1152 bytes of 
RAM, sockets for additional 
3k bytes of RAM, 2k byte 
monitor with additional socket 
for 2k byte ROM/EPROM, 20 
1/0 lines, RS232 interface, 
wire wrap area. 

The NSC888 Hardware/ 
Software Users Manual and 
NSC800 Microprocessor 
Family Handbook are shipped 
with the NSC888 Evaluation 
Board 

TLIC/8533-3 

z en o 
(X) 
(X) 
(X) 

• 



(J) 
o 
:E 
o 
o 
CX) 

N 
........ o 
CX) 

N 
Ln 
CX) 

o 
o 
CX) 
........ 
Ln 
CX) 
o 
CX) 

g! 
o 
o 
CX) 

o 
(J) 
z 
>­

"C = en 
c 
o 
U) 

.Ii: 
CO 
CL 
E 
o o 

Comparison Study NSC800 vs. 
8085/80C85 Z80® IZ80 CMOS 

Introduction 
The NSC800 is an 8-bit parallel processor with a Z80 com­
patible instruction set manufactured using National's micro­
CMOS process. This process combines the speed of silicon 
gate NMOS with the low power inherent to CMOS. 

The NSC800 has a 16-bit address bus which consists of the 
upper eight address bits (A8-A15) and the lower eight ad­
dress bits (ADO-AD7). Address bits AO-A? are time mUlti­
plexed on the 8-bit bidirectional address/data bus (ADO­
AD7). 

There are several advantages to using a multiplexed ad­
dress/data bus. Multiplexing frees pins on the CPU and pe­
ripheral packages for other purposes, such as status out­
puts, DMA control lines, and multiple interrupts. This can 
reduce system component count. Fewer bus signal lines are 
required for device interconnections in most applications 
(16 lines for multiplexed bus systems vs. 24 lines for non­
multiplexed systems). This reduces PC board complexity. 

Peripherals of the NSC800 Family include: 

NSC810A RAM I/O Timer 

NSC831 I/O 

NSC858 UART 

In addition to the above parts, a complete family of low pow­
er speed compatible logic and interface parts is also avail­
able. 

NSC800 vs. 8085 
In terms of bus structure, the NSC800 is similar to the 8085. 
Both processors utilize a multiplexed bus and timing rela­
tionships are approximately the same. The 8085 does not 
guarantee that output data on ADO-AD7 are valid on both 
the leading and trailing edges of WR. For the NSC800, data 
are valid on both the leading and trailing edges of WR. 

Both the NSC800 and the 8085 use ALE, SO, S1, and 10/M 
to indicate status. The lower eight address bits are guaran­
teed to be valid on the data bus at the trailing edge (high to 
low transition) of ALE (Address Latch Enable). This signal is 
used by the external system components to separate the 
address and data buses. When the only components uti­
lized in the system are members of the NSC800 family 
(which contain on-chip demultiplexers), ALE needs only to 
be connected to the enable inputs. If non-NSC800 family 
components are used, ALE can be used to enable an 8-bit 
latch to perform the function of bus separation. 

Decoding status bits SO and S1, in conjunction with 10/M, 
notifies the external system of the type of the ensuing M 
cycle. TABLE I shows a truth table of the encoded informa­
tion. During a halt status the NSC800 will continue to refresh 
dynamic RAM. 

7-134 

TABLE I. 
Machine Cycle Status· NSC800 and 8085 

SO S1 101M Status 

1 0 0 Memory Write 
0 1 0 Memory Read 
1 0 1 I/O Write 
0 1 1 I/O Read 
1 1 0 Opcode Fetch 
0 1 0 Bus Idle· 
0 0 0 Halt 

• ALE not suppressed during Bus Idle 

Direct Memory Access (DMA) control signals BREQ and 
BACK of the NSC800 perform the same functions as HOLD 
and HLDA on the 8085. The NSC800 allows simple wire 
ORing by using active low states for the DMA control sig­
nals. An active low on the BREQ (Bus Request) line, tested 
during the last T state of the current M cycle, initiates a 
DMA condition. The NSC800 will then respond with an ac­
tive low BACK (Bus Acknowledge) signal causing the ad­
dress, data and control buses (TRI-STATE® circuits) to go 
to the high impedance state, and notifies the interrupting 
device that the system bus is available for use. There is a 
difference in the timing relationship between these functions 
for the two processors. The 8085 responds with HLDA, one­
half T state after it recognizes HOLD. The NSC800 re­
sponds with BACK, one T state after it recognizes BREQ. 

During Input/Output cycles for peripherals, the NSC800 au­
tomatically inserts one wait state. This reduces the external 
hardware required for slow peripherals. The 8085 does not 
insert its own wait state during these I/O cycles. When they 
are needed, the 8085 user must design his system to con­
tain the additional hardware required to do the wait state 
insertion. When more than one wait state is required, addi­
tional wait states can be added to the I/O cycles in a similar 
way on both the NSC800 and the 8085. On the NSC800, 
this is accomplished by bringing the WAIT control signal 
active low during T2 of an I/O or memory cycle. The 8085 is 
controlled in the same way through the use of the READY 
line. 

The NSC800 instruction set is Z80 compatible and more 
powerful than the 8085's. The NSC800 does not support 
the RIM and SIM instructions of the 8085 (RIM and SIM can 
be emulated with I/O instructions), but has an improved in­
struction set for enhanced system performance. The 
NSC800 has two functions, RFSH and PS, instead of the 
two serial I/O lines SOD and SID. RFSH (Refresh) is a 
status signal which indicates that an eight bit refresh ad­
dress is present on the address/data bus (ADO-AD7). The 
refresh address occurs during T3 of each M1 (opcode fetch) 
cycle. The internal refresh counter is incremented after 



each instruction cycle. This counter output can be employed 
by the user's dynamic RAM refresh circuits. The PS (Power 
Save) control input, when active, causes the CPU to stop all 
internal clocks at the end of the current instruction, which 
reduces power consumption. The on-chip oscillator and 
ClK remain active for any required external timing. The 
NSCaOO leaves all buses unchanged during this time, which 
has the effect of reducing power consumption on other 

CMOS parts in the system since the buses are not changing 
states. All internal registers and status conditions are main­
tained, and when PS subsequently goes high, the opcode 
fetch cycle begins in a normal fashion. 

TABLE II indicates the major differences between the 
NSCaOO and the aoa5 presented in tabular form for quick 
reference. 

TABLE II. 
NSCaOO vs. aOa5/aOCa5 Comparison 

Item NSCaOO 

Power Consumption 50mW@5V 
Bus Drive Capacity 1 std. TTL 

(100 pF) 
Dynamic RAM Refresh Counter Yes, a-bit 
Automatic WAIT State on I/O Yes 
Number of instruction types 15a 
Number of Programmer 

Accessible Registers 22 
Block I/O and Search Yes 

Nscaoo vs. zao/zao CMOS 
The Nscaoo contains the same complement of internal reg­
isters as the zao and maintains instruction set and opcode 
compatibility. 

Machine cycle timing for the standard speed version of the 
NSCaOO compares directly with the zao. Although the soft­
ware execution speeds are comparable, the NSCaOO offers 
architectural advantages. 

The bus structures of the NSCaOO and the zao are quite 
different. The NSCaOO uses a multiplexed address/data 
bus. The zao has separate address and data buses. As 
stated earlier, the separate bus structure requires additional 
signal lines for interconnection and gives up some package 
pins which could be used for other purposes. 

The main differences between the NSCaOO and the zao, in 
addition to the bus structures, are the refresh counter, on­
chip clock generation, and the interrupt capability. 

1. The NSCaOO contains an a-bit refresh counter as op­
posed to a 7 -bit refresh counter in the zao. (This enables 
refresh of a 64K dynamic RAM system memory). The re­
fresh timing of the NSCaOO is functionally identical to that 
of the zao. 

2. The on-chip clock generation reduces the system compo­
nent count. In place of an external clock generator chip, 
the NSCaOO needs only a crystal or RC circuit to produce 
the system clock. 

aOa5 aOCa5 

a50mW@5V 50mW@5V 
1 std. TTL 1 std. TTL 
(100 pF) (150 pF) 

No No 
No No 
ao ao 

10 10 
No No 

3. The Nscaoo provides three interrupts that are not avail­
able on the zao: RST A, RSTB, RSTC. This gives the 
NSCaOO five levels of vectored, prioritized interrupts with 
no external logic. The general purpose interrupt (INTR) 
and Non-maskable Interrupt (NMI) are identical to the 
zao. INTR has the same three modes of operation in 
both processors: Modes 0, 1, and 2. Upon initialization, 
the NSCaOO is in mode 0 to maintain aoao code compati­
bility. NMI, when active, causes a restart to location X'66 
as is the case with the zao. Being a non-maskable inter­
rupt, NMI cannot be disabled. The additional interrupts 
RST A, RSTB, and RSTC cause restarts to locations 
X'3C, X'34, and X'2C respectively. The priority levels of 
the five interrupts are: NMI (highest), RSTA, RSTB, 
RSTC, and INTR (lowest). For the NSCaOO, Interrupt ac­
knowledge (lNTA) is provided on a dedicated output pin 
and need not be decoded externally, as is the case with 
the zao. With the status outputs (SO, S1, 10/M), early 
read/write information is obtainable. This is impossible to 
derive from the zao. 

Refer to TABLE III for comparison of the major differenc­
es between the NSCaOO and the zao. 

TABLE III. 

Item 

Power Consumption 
Instruction Execution 
(Minimum) 
On-Chip Clock Generator 
Number of On-Chip Vectored 
Interrupts 
Early Read/Write Status 
Dynamic RAM Refresh Counter 

NscaOO vs. zao/zao CMOS Comparison 

Nscaoo zao 

50mW@5V 

1 p.s 

Yes 

5 
Yes 

Yes, a-bit 

7-135 

750mW@5V 

1 p.s 

No 

2 
No 

Yes,7-bit 

zaoCMOS 

75mW@5V 

1 p's 

No 

2 
No 

Yes,7-bit 

o o 
3 
"C 
Q) ... 
Cii· 
o 
::s 
en -c 
C. 
'< 
Z en o 
(X) 
o 
o 
< sn 
(X) 
o 
(X) 
U1 ...... 
(X) 
o 
o 
(X) 
U1 
N 
(X) 
o ...... 
N 
(X) 
o 
o 
3: 
o en 

• 



rn o 
:is 
o 
o 
~ ...... o 
~ 
Lt) 
CO 
o o 
CO ...... 
Lt) 
CO o 
CO 

~ 
o o 
CO 
o rn z 
~ 
"D 
:::s 
en 
c 
o en 
'i: ca 
C. 
E 
o 
o 

NSC800 Family Devices 
(microCMOS) 

MM82PC08 8-Bit Bidirectional Transceiver 

MM82PC12 Input/Output Port 
Note: The above devices are pin for pin and function compatible with the 

standard TIL, CMOS or NMOS versions currently available. 

7-136 

SUMMARY 
National's NSC800 has a Z80 compatible instruction set, 
which is more powerful than the 8085. NSC800 external 
hardware requirements are less because of on-chip auto­
matic wait state insertion, clock generation and five levels of 
vectored prioritized interrupts. 

The 8085 and the NSC800 have similar bus structures, and 
timing. The key advantages of the NSC800 over the 8085 
are the larger instruction set, more registers accessible to 
programmers, low power consumption, and a dynamic RAM 
refresh counter. 

The main advantages of the NSC800 compared to the Z80 
are the multiplexed address/data bus, an 8-blt refresh coun­
ter for dynamic RAMs, on-chip clock generation, and five 
Interrupts. The speed of the NSC800 and Z80 is the same 
but, the NSC800 has very low power consumption. 



Software Comparison NSC800 vs. 8085, Z80® 

Introduction 
The NSC800 is an 8-bit parallel microprocessor fabricated 
using National's microCMOS process. This process allows 
fabrication of a microprocessor family that has the perform­
ance of silicon gate NMOS along with the low power inher­
ent to CMOS. The NSC800 instruction set is a superset of 
the 8080's instruction set. It comprises over 900 operation 
codes falling into 158 instruction types. The instruction cate­
gories are: 

• Load and Exchange 
• Arithmetic and Logic 
• Rotate and Shift 
• Jump and Call 
• Input/Output 
• Bit manipulation (set, test, reset) 
• Block Transfer and Search 

• CPU control 
The load instructions allow the movement of data into and 
out of the CPU, between internal registers, plus the capabili­
ty to load immediate data into internal registers. The ex­
change instructions allow swapping of data between two 
registers. 

The arithmetic and logic instructions operate on the data in 
the accumulator (primary working register) and in the other 
registers. Status flags are set or reset depending on the 
result of the particular operation executed. This group in­
cludes 8-bit and 16-bit operations. 

The rotate and shift instructions allow any register or memo­
ry location to be rotated or shifted, left or right, with or with­
out carry. These can be either an arithmetic or logic type. 

The jump and call group includes several different types: 
one byte calls, two byte relative jumps, conditional branch­
ing, and three byte calls and jumps, which can reach any 
location in memory. Calls push the current contents of the 
Program Counter onto the stack before branching to the 
new program address to facilitate subroutine execution. 

Input/Output instructions allow communications between 
the NSC800 and external peripheral devices. There are 255 
(location X'BB is used for an interrupt mask) unique periph­
eral I/O locations available to the NSC800. I/O instructions 
can move data between any memory location or internal 

7-137 

register and any I/O location. There are also block I/O in­
structions which allow moving data blocks of up to 256 
bytes directly from memory to any peripheral location or 
from any peripheral location to a block of memory. 

Bit manipulation instructions can set, test or reset any bit in 
the accumulator, any general purpose register or any mem­
ory location. 

The block transfer instructions allow a single instruction to 
move any size block of memory to any other location in 
memory. Through the use of the block search instructions, 
any size block of memory can be searched for a particular 
byte of data. 

Finally, the CPU control group allows user control over the 
various modes of CPU operation, such as enabling and dis­
abling interrupts or setting modes of interrupt response. 

The following sections will compare the instruction set of 
the NSC800 with those of the 8085 and the Z80. 

NSC800 vs. 8085 
The 8085 instruction set consists of 246 op codes falling 
into 80 instruction types. With the exception of RIM and 
SIM, the NSC800 is instruction and op code compatible with 
the 8085. The RIM and SIM instructions are not supported 
because the NSC800 does not have the SID and SOD serial 
I/O lines. The interrupt mask on the NSC800 is accessible 
by writing the mask word to I/O location X'BB. The bit posi­
tions for the interrupt enables are shown below: 

Location X'BB Bit Assignments 
Bit Interrupt Enable for 
7 N/A 
6 
5 
4 
3 
2 

o 
N/ A = not used: a don't care bit. 

N/A 
N/A 
N/A 

RSTA 
RSTB 
RSTC 
INTR 

en 
o -i 
D) 
~ 

CD 
o 
o 
3 
"0 
D) 
~ 

Cii" 
o 
::::J 
Z en o 
Q) 
o o 
< sn 
Q) 
o 
Q) 
U1 
N 
Q) 
o 

• 



o 
CO 
N 
an 
CO 
o 
CO 

~ 
o o 
CO o en z 
c 
o en 

'':::: 
CU 
Co 
E 
o o 
~ 

i o 
en 

As an example, to enable interrupts on the RST A input, a 
logic '1' is written into bit 3 of I/O location X'BB. If the mas­
ter interrupt enable has been set by executing the Enable 
Interrupt (EI) instruction, interrupts will now be accepted on 
RSTA only. 

Other than the method of enabling and disabling individual 
interrupts and the RIM and SIM instructions themselves, the 
NSC800 instruction set is a superset of the 8085's instruc­
tion set. 

The following benchmark demonstrates the code reduction 
and throughtput improvement obtained by using one of the 
special NSC800 instructions over the same function imple­
mented with the limited 8085 instruction set. The function is 
to move a 512-byte block of data from one section of mem­
ory to another. 

8085 

Bytes Mnemonics Cycles 
3 LXI H,SOURCE 10 
3 LXI D,DEST 10 
3 LXI B,COUNT 10 
1 LOOP: MOV A,M 7 
1 STAX D 7 
1 INX H 6 

INX D 6 
DCX B 6 

1 MOV A,C 4 
1 ORA B 4 
3 JNZ LOOP 10 

Total: 19 Total: 80 

NSC800 

Bytes Mnemonics Cycles 
3 LD HL,SOURCE 10 
3 LD DE,DEST 10 
3 LD BC,COUNT 10 
2 LDIR 21 

Total: 11 Total; 51 

The use of the LDIR instruction of the NSC800 results in a 
47.5% increase in throughput and a 42% decrease in the 
number of bytes required to implement the function when 
compared with the 8085 implementation. The time required 
to make the move is approximately 2.69 ms for the NSC800 
and approximately 5.12 ms for the 8085. Note that even 
though the 8085 runs at a faster cycle time (200 ns vs. 250 
ns), the improved instruction set of the NSC800 produces 
an increase in system performance. 

The NSC800 includes all 8085 flags plus some additional 
flags. The flag formats for the NSC800 and 8085 are: 

NSC800 Flags (Z80 Flags) 

8085 Flags 

CY I : I ~ I ~ I A~ I ~ I ! I : I o 

7-138 

The differences between the flag registers on the NSC800 
and the 8085 are identified below: 

1. Bit position D1 (additional on the NSC800) contains an 
add/subtract flag that is used internally for proper operation 
of BCD instructions. 

2. In the NSC800, the PIV flag will not match the 8085's P 
flag after an 8-bit arithmetic operation, since it acts as an 
overflow bit for the NSC800, but acts as a parity bit for these 
operations in the 8085. 

3. Bit position D2 (changed for the NSC800) is a dual pur­
pose flag; it indicates the parity of the result in the accumu­
lator when logical operations are performed and also repre­
sents overflow when signed two's complement arithmetic 
operations are performed. An overflow occurs when the re­
sult of a two's complement operation within the accumulator 
is out of range. 

4. For general Compare operations, the NSC800 uses the 
PIV flag as an overflow bit, while the 8085 uses the P flag 
for parity. 

5. The H flag (bit position D4) on the NSC800 is functionally 
the same as the auxiliary carry on the 8085. 

6. For Double Precision Addition, the NSC800 leaves the H 
flag undefined, while the 8085 does not affect the AC flag 
for this operation (DAD). 

7. For Rotate operations, the NSC800 resets the H flag, 
while the 8085 leaves the AC flag unaffected for these oper­
ations. 

8. When Complementing the Accumulator, the NSC800 sets 
the H flag (H = 1), while the 8085 leaves the AC flag unaf­
fected. 

9. When. Complementing Carry, the NSC800 leaves the H 
flag undefined, while the 8085 leaves the AC flag unaffect­
ed. 

10. When Setting the Carry, the NSC800 clears the H flag 
(H = 0), while the 8085 leaves the AC flag unaffected. 

Nscaoo Vs. zao 
The instruction set and op codes of the NSC800 are identi­
cal to those of the Z80. Software written for the Z80 will run 
on the NSC800 without change, unless I/O location X'BB is 
used. Another location should be assigned since location 
X'BB is an on-chip write-only register used for the interrupt 
mask. Since the NSC800 executes code at the same cycle 
time as the Z80, any software timing loops will also remain 
the same, and no change is necessary. The NSC800 ex­
panded interrupt capability is transparent to the user unless 
specifically evoked by the user software. 

The NSC800 has 8-bit refresh rather than the 7 -bit refresh 
scheme of the Z80. Therefore, the state of the 8th bit will be 
indeterminate since it is part of the R Register and so includ­
ed in refresh operations. 

The status flags on the NSC800 are identical to those on 
the Z80. There is no difference between the positions of the 
individual bits in the flag register, nor in the manner in which 
the flags are set or reset due to an arithmetic or logical 
operation. Testing of the flags is also the same. 



NSC800™ Applications 
System: ROM Monitor and 
System Board 

ABSTRACT 

This document describes a NSCBOO-based microcomputer 
system and ROM monitor software that can be tailored to fit 
a variety of applications, and can be used with the IBM PC 
and several off-the-shelf NSCBOO development products 
currently available for fast software development. Included 
are system schematics, a system user's manual and a list of 
some vendors of NSCBOO/ZBO development products. Ad­
ditional documentation and program listings are available 
through National's Dial-A-Helper on-line information system. 
(See Appendix F). 

SECTION 1.0 OVERVIEW 

1_1 Introduction 

The NSCBOO Applications System is a general-purpose, B­
bit microcomputer and ROM monitor program, MONBOO, 
that can easily be configured and reconfigured to fit a wide 
variety of applications. The main purpose of the NSCBOO 
Applications System is to allow the system designer to 
quickly and efficiently develop application programs using 
the IBM PC and available off-the-shelf development tools 
for the NSCBOO microprocessor. 

The MONBOO monitor program allows the user to perform 
such tasks as program downloads, program editing, pro­
gram execution, defining breakpoints, register manipulation, 
and on-line assembly. Also included are several handy mon­
itor 1/0 calls and math routines that can be called from user 
programs. MONBOO is a powerful debugging tool that allows 
the programmer to develop NSCBOO code on any PC or 
other host system, download the code to the NSCBOO sys­
tem, and debug it using MONBOO's command set. 

The NSCBOO Applications System can run stand-alone, and 
needs only the addition of a suitable power supply and RS-
232 compatible terminal to operate. The design of the sys­
tem is extremely simple, and the parts count is low. The 
NSCBOO series peripheral devices provide the system with 
such functions as parallel 1/0, RAM, programmable timers, 
and serial 110. Most of the system signals are accessible to 
the user by means of wire-wrap jumper blocks. Thus, addi­
tion of other types of devices is simple. With these headers, 
the system interrupts, timers, and ports can be configured 
and reconfigured to fit various applications. The core de­
sign, however, remains consistent, and it can serve as a 
core design for more specific applications. The NSCBOO Ap­
plications System provides a powerful solution for a multi­
tude of educational, industrial, and communications needs. 

1_2 Features 
• Fully compatible with the ZBO instruction set and archi­

tecture 
- 15B instructions 
- 22 internal registers 
- 10 addressing modes 

National Semiconductor 
Application Note 612 
Louis W. Shay 

• Fabricated in National's microCMOS technology. 
NSCBOO family devices have a very low power con­
sumption. The NSCBOO also has a unique power-save 
feature. 

• Multiplexed bus structure 
• Five prioritized interrupts on-chip, with support for addi-

tion of off-chip interrupt control circuitry 
• Operation at speeds from 150 kHz to 4 MHz 
• Six programmable, parallel 1/0 ports (up to 44 lines) 
• Four 16-bit, programmable timers, each having six pos­

sible modes of operation 
• Two programmable Universal Asynchronous Receiverl 

Transmitters (UARTs) for serial 1/0, with RS232 stan­
dard CMOS line drivers 

• B kbytes of static RAM for user programs, expandable 
to 40 kbytes 

• ROM monitor program, MONBOO 
- 1 B commands including a file downloader, memory 

manipulation, program execution with up to five 
breakpoints, CPU register manipulation, and more 

- Monitor service routines available to user programs 
that perform various 1/0 and math functions 

- Source code is provided. The monitor may be modi-
fied to fit specific applications. 

1.3 Setup and Operation 

Once the NSCBOO Applications System has been assem­
bled using the schematics provided, it requires only the ad­
dition of a suitable power supply and VT100-type terminal to 
operate. The system runs stand-alone, and needs no other 
host computer or software to operate. However, it is possi­
ble to use a PC as the terminal device by means of the PC's 
serial port and a VT100 terminal emulation program such as 
KERMIT. In this way the PC can be used to assemble and 
link programs, download them to the NSCBOO target sys­
tem, then run the program under MONBOO's control. The 
terminal attaches to connector J1, which is the main serial 
1/0 port. This connector is RS-232 and DCE configured. 
The baud rate is controlled by the setting of the DIP switch 
on the system board. Switch settings are listed in Appendix 
B. 
Power supply requirements are as follows: 

• +5.0V ±5% 

• +12.0V ±10% 

• -12.0V ±10% 
Power is applied to connector J6. Connector pin assign­
ments are listed in Appendix A . 

On power-up, the monitor will output a sign-on message to 
the terminal on the main 1/0 port and prompt for a com­
mand. If the message does not appear, then verify the cir­
cuit connections, power supply, switch settings, and termi­
nal setup and power the board on again. 

7-139 

l> 
Z . 
en 
~ 

N 

,. 



N r-------------------------------------------------------------------~ .... 
cop 
Z 
cC 

1.4 Document Organization 
The remainder of this document describes the hardware 
and software of the NSC800 Applications System. Section 2 
describes the system hardware and architecture. Section 3 
describes the MON800 program operation and command 
set. Appendices A, Band C detail system connector pin­
outs, and switch AND Jumper configuration options. Appen­
dix D describes the Intel Hex file format used by MON800 
when downloading files from a remote host. Appendix E is 
an example for using the MS-KERMIT program (Columbia 
University) to Interface the NSC800 Applications System to 

NSCBOO 
CPU 

EPROt.l 
8k 

RAM 
40k 

DECODE I-... ....t 

NSC858 
UART 

NSC858 
UART 

the IBM PC/AT. Appendix F is a MON800 program listing. 
Appendix G contains system schematics, suggested board 
layout, and a parts list. Appendix H Is a list of vendors that 
offer support products for the NSC800. 

SECTION 2. HARDWARE DESCRIPTION 
Figure 1 is a block diagram of the NSC800 Applications Sys­
tem. Following are descriptions of each element in the sys­
tem. For detailed descriptions of NSC800 series compo­
nents, refer to the Series 32000 Microprocessors Data­
book (1987). 

J3. 

PARALLEL 
I/O 
ACCESS 

OS14C88/89 

OS14C88/89 

J1. 
MAIN 
SERIAL 
PORT 
(OB-25) 

J2. 
AUX. 
SERIAL 
PORT 
(OB-25) 

J4. CPU BUS ACCESS J5. UART ACCESS 
TL/C/l0435-1 

FIGURE 1. NSC800 Applications System Block Diagram 

7-140 



2.1 CPU 

The NSCSOO microprocessor is the heart of the NSCSOO 
Applications System. The NSCSOO is completely code-com­
patible with the ZSO microprocessor, and will run programs 
written for the ZSO. The external hardware is different, how­
ever. The NSCSOO uses a multiplexed address/data bus. 
There are five prioritized hardware interrupts, including one 
non-maskable interrupt, and one that supports the addition 
of an off-chip interrupt controller circuit. All necessary bus 
timing and control signals are also generated on-chip, in­
cluding DMA support and DRAM refresh functions. The 
CPU can address 64 kbytes of memory and 256 I/O ports. 
Operating speeds can be as low as 150 kHz for low-power 
applications, or as fast as 4 MHz. The NSCSOO also has a 
unique power·save feature, that allows a remote source to 
place the NSCSOO in a minimum power state, or "sleep 
mode". 

2.2 RAM·I/O·Tlmers 

The NSCS10A RAM-I/O-Timer modules integrate several 
system functions onto one chip. The chip features three 
programmable parallel I/O ports. The port lines are bi-direc­
tional and individually controlled. One of the ports supports 
strobed-mode I/O, interrupt-mode operation, and can be 
placed in TRI-STATEIBl mode. 

The chip also contains two 16-bit programmable timers. 
Each timer has six modes of operation, including pulsed out­
put, square wave output, and gated modes that allow the 
timers to be started and stopped via an external signal. 

12S bytes of RAM are on-chip for storage of system data. 
The RAM can retain data at voltages below 2V. The RAM is 
suitable for battery-backed storage of critical system data. 

2.3 Serial 110 
Serial I/O is implemented with the NSC858 UART. These 
devices feature programmable baud rates to 256k baud, in­
dependent transmitter and receiver functions, modem con­
trol functions, polled or interrupt-mode operation, and soft­
ware or hardware power-down options. 

The EI.A. line drivers used for the RS232 interface are Na­
tional's DS14C88 and DS14C89 CMOS line driver and re­
ceiver chips. For more information on these devices, refer to 
National's Interface Databook (1986). 

There are two serial ports in the system. One port is dedi­
cated to communication with the host terminal. This is the 
main serial port. It is permanently configured as a DCE port. 
The second UART is the auxiliary port, and can be used for 
target applications. 

2.4 Switches and Jumper Options 

There are two push switches, S1 and S2, that can be used 
to generate a hardware reset or non-maskable interrupt, re­
spectively. The a-position DIP switch on the board is read at 
reset time, and that value controls the main serial channel 
baud rate, data bits, etc. The DIP switch can also be read by 
user programs. 

Pin jumpers are provided to allow configuration of hardware 
signals. W1 and W2 select external input or switch options 
for RESET and NMI signals. W3 and W4 control serial 110 
port options. Jumper settings are listed in Appendix C. 

7-141 

2.5 Hardware Interface 

There are six connectors on the NSC800 Applications Sys­
tem board. J 1 and J2 are the main and auxiliary serial port 
connectors. These connectors are standard DB-25 connec­
tors and the pinouts are as per the RS232 standard. J3 is 
the parallel port header. J4 is the CPU bus access header, 
from which most of the system signals such as address, 
data, and control signals can be accessed. J5 is the UART 
access header. Auxiliary port I/O signals are accessed 
here. J6 is the power connector. All connector pin functions 
are listed in Appendix A. 

Configuring the system is very simple because of the wire­
wrap headers J3, J4, and J5. For example, if the deSigner 
wishes to use the ClK signal from the NSCSOO to drive 
Timer # 1 of one of the NSCS10A chips, all that needs to be 
done is to run a wire from the ClK pin on J4 to the T11N line 
of J3. Now, if the designer wants to use the timer output to 
drive the RST A line of the NSC800, just connect the two 
signals together using another wire. To reconfigure the sys­
tem to fit another application, remove the wires and start 
over. 

2.6 System Architecture 

Tables 2.1 and 2.2 list the memory and I/O space configura­
tion for the NSCSOO Applications System. MONSOO uses 
256 bytes of RAM in address range FFOOH to FFFFH for 
storage of monitor data. Detailed usage of this reserved 
space is described in Section 3. 

TABLE 2.1. Memory Configuration 

Hex Address Function 

0OOO-1FFF MON800 EPROM (NMC27C64 8k x 8) 
2000-207F NSCS10A #1 RAM (128 Bytes) 
2080-3FFF Invalid-Do Not Use 
4000-407F NSCS10A #2 RAM (128 Bytes) 
4080-5FFF Invalid-Do Not Use 
6000-7FFF User RAM # 5 (8k)-Decode Provided 
8000-9FFF User RAM #4 (Sk)-Decode Provided 
AOOO-BFFF User RAM # 3 (Sk)-Decode Provided 
COOO-DFFF User RAM # 2 (Sk)-Decode Provided 
EOOO-FFEF User RAM #1 
FFOO-FFFF Reserved for MONSOO Use 

TABLE 2.1.1/0 Configuration 

Hex Address Function 

00-1F 8-Bit DIP Switch Input latch 
20-3F NSC810A #1 Ports & Timers 
40-5F NSC810A #1 Ports & Timers 
60-7F User I/O-Decode Provided 
80-9F User I/O-Decode Provided 
AO-BF User I/O-Decode Provided 

** Do Not Use I/O Address BBh ... 
CO-CF NSC85S Auxiliary Serial Port 
DO-DF Invalid-Do Not Use 
EO-EF NSCS58 Main Serial Port 
FO-FF Invalid-Do Not Use 

> 
Z • Q) ...... 
N 

• I 



N 

""'" CD . 
Z 
< 

SECTION 3. MON800 MONITOR 

3.1 Overview: MON800 

The primary purpose of the NSC800 Applications System 
and MON800 firmware is to provide the system designer 
with an efficient and cost-effective way to develop applica­
tions using the NSC800 series devices. Keeping this in 
mind, the system was designed to be used with a variety of 
hardware and software packages currently on the shelf. The 
IBM PC can function as a complete software development 
station using available software. Assembled and linked 
code can be downloaded from the PC to the NSC800 sys­
tem in Intel Hex file format using DOS commands and the 
PC's serial port. Other software can be used to emulate a 
VT100 terminal through the PC's serial port so that com­
mands can be issued to the monitor from the PC. One such 
package is the KERMIT shareware program. An example for 
interfacing the NSC800 Applications System to the IBM PC 
is given in Appendix E. 

The rest of this section describes the organization and oper­
ation of the MON800 program, system interrupts, command 
set, service calls, and examples for each. 

MON800's command set is very useful for debugging user 
programs. A command summary is given below. 

1. Memory manipulation commands 
- Assemble an NSC800 instruction and place it in 

memory 
- Examine/Change a single location, or several 
- Display a block of memory 
- Move a block of memory 
- Fill a block of memory 

2. Register manipulation commands 
- Display all user CPU registers 
- Examine/modify one register, or several 

3. Program execution commands 
- Execute user program from address xxxx 
- Set a breakpoint at address xxxx (up to five total) 
- List active breakpoints 
- Kill a breakpoint (1 or all) 

4. I/O commands 
- Input byte from a specified port 
- Output a byte to a specified port 

5. Miscellaneous Commands 
- Download a file from the main or auxiliary port 
- Verify the success of the download operation 
- Configure the auxiliary port 
- Show a list of commands 
- Calculate an address offset: offset = yyyy - xxxx 
- Convert Hex-to-Decimal, Decimal-to-Hex 

In addition to the command set are several monitor service 
routines that can be called from user programs. These rou­
tines include: 

- Text string output 
- Text string input 
- Output a hex input byte as two ASCII characters 
- Output a hex byte to the serial port 

7-142 

- Input to the accumulator from the serial port 
- Convert a Hex nibble to an ASCII byte 
- Convert an ASCII byte to a hex nibble 
- 16-bit unsigned comparison 
- 8-bit unsigned multiply 
- 16-bit unsigned multiply 

Note: 110 calls use the main serial channel. 

3.2 MON800 Organization and Operation 

For detailed monitor functions and structure, refer to the 
MON800 listing file that is available on Dial-A-Helper. (See 
Appendix F). The MON800 program is organized in the fol­
lowing sections: 

A. System reset/initialization routine 

B. Monitor command interpreter loop "GETCOM" 
- Individual command programs 

C. Monitor Restart/Interrupt Routines 

D. Monitor Subroutines 

E. Data Tables 

The MON800 program uses RAM during its operation. 256 
bytes are reserved at addresses FFOOh to FFFFh. User pro­
grams should not use this area, and the monitor will not 
allow the user to write these locations when in monitor com­
mand mode. A memory map of the monitor's RAM space is 
listed in Table 3.1. 

TABLE 3.1. MON800 RAM Usage 

Hex Address Function 

FFOO Default User Stack Base (Initial Value) 

FFOO-FF60 Monitor Stack Area (Base = FF60) 

FF64-FF7D User CPU Register Set Storage 
FF7E-FF96 MON800 Flags, Break Addresses, etc. 
FF97-FFB7 Interrupt Vector Table (11 Vectors) 

FFB8-FFFF I/O Buffer, 72 Bytes 

3.2.1 System Initialization 

Upon power-up or reset, the system will initialize itself. The 
first thing it does is initialize its own RAM data. The stack 
pointer is loaded, user breakpoints are cleared, status flags 
are initialized, the Interrupt Vector Table is loaded with 
MON800's default vector set, and the user CPU registers 
are set for a default reentry to the monitor command loop. 
The serial ports are then initialized. A sign-on message is 
sent to the main serial port when the initialization is com­
plete. 

3.2.2 The "GETCOM" Loop 

Once the system is initialized, control passes to the com­
mand interpreter loop, labeled "GETCOM" on the list file. 
This routine sends a prompt to the terminal and waits for 
input. When the carriage return is typed, the routine looks in 
the I/O buffer for the first non-space character. This charac­
ter must be a capital A-Z, or an "INVALID COMMAND" 
message will display. If the first letter is valid, the routine 
then passes control to the command routine specified. 
Some of the letters A-Z have no function, and these will 
also result in an error message. When the command routine 
has completed execution, control passes back to "GET­
COM". This is the starting point for all monitor operations. 



3.2.3 Interrupts and Restarts 

When the NSC800 encounters an interrupt or restart from 
either the hardware inputs or by a "RST xx" instruction, the 
current Program Counter (PC) register value is pushed onto 
the stack, and the PC is loaded with a predefined value, or 
vector, that is the entry point for the corresponding interrupt 
request. Since these hard vectors are in ROM at the start, 
MON800 routes interrupt requests through a second set of 
vectors located in MON800's reserved RAM space. These 
are soft vectors, and can be modified by user programs. 

The Interrupt Vector Table is located in RAM at addresses 
FF97h to FFB7h. At reset or power-on, this table is loaded 
with MON800's default interrupt vector set. The table has 
eleven entries, one for each interrupt source except reset. 
The vector entry is simply a "JP xxxx" instruction that points 
to a service routine in MON800 ROM. The user can change 
the jump address to another location, most likely the entry 
point to a user's own interrupt service routine. One way to 
do this is to use a block move instruction to load a user's 
vector set into the table. Table 3.2 lists the Interrupt Vector 
Entries and default functions. 

Note that some of the default functions are critical for prop­
er monitor operation. For example, breakpoints use the RST 
30 vector. If it is changed, breakpoints will no longer func­
tion. 

7-143 

TABLE 3.2. MONBOO Interrupt Vector Table 

Hex Address Interrupt Default Function 

FF97 RST08 Re-enter the Monitor 
FF9A RST10 Monitor Service Call 
FF9D RST18 No Function 
FFAO RST20 No Function 
FFA3 RST28 No Function 
FFA6 RSTC No Function 
FFA9 RST30 Monitor Breakpoint Trap 
FFAC RSTB No Function 
FFAF RST38,INTR No Function 
FFB2 RSTA No Function 
FFB5 NMI Re-enter the Monitor 

» z . 
0') 
-10 
N 

• 



N ..... 
CD • z 
<C 

Example: Modifying an interrupt vector. 

The vector is an opcode for a "JP xxxx" Instruction. Its format is "C3 aabb", where C3 is the opcode, aa is the low byte of the 
address, and bb is the high byte. If the vector to be modified is RST 20, the new address should be loaded at address FFA 1. 
This can be done with the following code: 

LO HL, U_NTRY ;GET THE USER ENTRY POINT ADDRESS xxxx 
LO (FFA1H), HL ; MODIFY THE VECTOR 
Note: Use of breakpoints In Interrupt routines may produce unpredictable results If the Interrupts are still active when the monitor Is re-entered. The monitor 

breakpoints were not Intended for real-time use. Rather, use the register manipulation commands to load CPU registers with simulated data values, and use 
the breakpoints to debug the logical flow of the code before running It In real-time. 

3,3 MON800 Command Descriptions and Examples 

The following sections describe the individual MON800 commands and their usage. All MON800 commands are Identified by the 
capital letters A-Z. All alphabetic entries must be in upper case. Each term In the command line should be separated by at least 
one space. 

3.3.1 A-Assemble NSC800 Instruction 

Syntax: A xxxx Where: xxxx = load address 

Description 
This command invokes a line assembler routine which prompts the user for a NSC800 instruction in mnemonic form, assembles 
the instruction, and loads the opcode at address xxxx. The prompt Issued by the line assembler is the address at which the 
opcode will be loaded at. If there are no assembly errors, the routine will prompt for another instruction at the next sequential 
address. To exit the routine, type the return key <CR> twice. 

Example: 
>A 8000<CR> 
8000 :LO C,B<CR> 
8001:AOD A, (IX+6) <CR> 
8004: CP 055 < CR> 
8006 :JP M,D1F2<CR> 
8009 :SET 7, (HL) <CR> 
800B:<CR> 
> 
Assembler Rules 

1. All alphabetic text must be capitals. 

2. All numeric entries are interpreted as hex values. 

3. Immediate values must be preceded by a zero if the operand can also be a register. For example, the assembler will not 
know the difference between "CP B" and "CP B7". To be correct, use "CP OB7". 

4. Blank characters are allowed before the mnemonic and after, but not in the operand string or after. 

3.3.2 B-Set Monitor Breakpoint 

Syntax: B xxxx 

Description 
This command will cause a monitor breakpoint to be placed at address xxxx. The address must be in hexidecimal format. When 
the CPU fetches an opcode from this address, the current CPU state is saved in monitor RAM space and control of the system is 
returned to the monitor. 

Example: 
> B 4000 
This will cause a breakpoint to be placed at hex address 4000. 

Restrictions and Considerations 

1. The break address must be in valid RAM space. 

2. A maximum of five active breakpoints are allowed at anyone time. 

3. The address must be the location of the first opcode byte of an instruction. Breakpoints at any other locations will not be 
recognized and will result in a F7H byte being inserted into the instruction stream at that location. 

4. Upon recognition of a breakpoint, the value of the PC register will be pushed onto the user's stack. The stack pointer will be 
restored once the user PC value has been removed by the monitor. If user programs modify the SP register, care should be 
taken to insure that the SP is in valid RAM space at the time of the break. 

5. When a breakpoint is encountered, system interrupts are not disabled. Use caution when using breakpoints in an interrupt­
driven system. 

7-144 



3.3.3 C-Convert Hex to Decimal/Decimal to Hex 
Syntax: C <D or H> [value] 

Description 
This command will convert a hex value (OOOO-FFFF) to decimal, or a decimal value (0-65535) to hex. "0" specifies decimal 
output, In which case the Input, [value], should be hex. "H" specifies hex output, In which case [value] should be decimal. If 
nothing Is specified for [value], the monitor will prompt for Input. 

Examples: 

1. > C D 10 
2. > C D 

INPUT HEX VALUE: 10 
Both (1) and (2) result in the output: = 00016 

3. > C H 16 
4. > C H 

INPUT DECIMAL VALUE: 16 
Both (3) and (4) result in the output: = 0001 a 
3.3.4 D-Download Intel Hex File 

Syntax: D < 1 or 2> 

Description 
This command will cause the monitor to download an Intel Hex file via the main serial port, specified by "1", or via the auxiliary 
serial port. When the command is issued, the monitor will "listen" to the specified port for the incoming file. The file must then be 
manually transmitted from the remote system. There is no handshaking between the NSC800 system and the remote system. 

When the file is completely received, the monitor verifies the checksum and will output a status message indicating success or 
failure to the main port. If there is a break in transmission, or invalid characters are received, the download is aborted and a 
message issued. The status of the download operation can also be viewed by the "V" command. 

Example: 
> D 2 
This will cause the monitor to listen to the auxiliary serial port for incoming data. The ASCII character ":" signifies the start of a 
record. The monitor will ignore all input unit! it gets ":". When all records are received, including the end-of-file record, the 
checksum is verified. If the checksum is good, the message "DOWNLOAD SUCCESSFUL" will be output to the main port. The 
download will be aborted if errors occur. A list of possible failure messages follows: 

"FAILED-NON-HEX CHAR" -indicates an illegal character found. 

"FAILED-BAD LOAD ADDRESS" -data address is not in user RAM space. 

"FAILED-CHECKSUM ERROR" -indicates a checksum error. 

"FAILED-BAD RECORD TYPE" -only record types 0 and 1 are allowed. 

"FAILED-VERIFY FAILED" -data load to RAM failed. 

For a description of the Intel Hex file format, see Appendix D. 

Usage Considerations 
Downloads to the main serial channel may require more steps to complete the operation. There will be four main steps in the 
process. 

Step 1. With the RS232 terminal at the main port, issue the command "D 1". 

Step 2. Remove the terminal from the main port, and attach the device which will be sending the file. An alternative to this would 
be for the remote system, say a PC, to use a terminal emulation program to complete Step 1, then switch from the 
terminal emulator to DOS or some other mode that allows the file to be transmitted via the PC's serial port. (See 
Appendix E for an example of how the KERMIT program is used to communicate with MON800 from an IBM PC/AT.) 

Step 3. Send the file from the remote device. On a PC/ AT the DOS command. 

> oopy file.hex oom1: 
can be used, provided that the port called com1: is attached to the NSC800 system at the main port. 

Step 4. When the file has been sent, reattach the terminal to the main port and use the "V" command to check the status of the 
download. 

7-145 

l> 
Z 
~ ... 
N 

• 



N .... 
CD • Z 
< 

3.3.5 E-Examlne/Modlfy a Single Memory Location 
Syntax: E xxxx 

Description 
This command allows the user to examine or change a memory location specified by hex address xxxx. 

Example: 
> E 2000 
<ESC> TO EXIT 
2000 5F - 00 < CR> 
2001 5F - < CR> 
2002 5F - 00 < CR> 
2003 5F - <ESC> 
> 
This entry will cause the monitor to display the contents of address 2000H. The monitor then prompts the user for input with" -". 
The contents can be changed by entering the new data and hitting return <CR>. The monitor then displays the next address 
and prompts again. If the user types <CR> without entering any data, the monitor will move to the next location without 
changing the contents of the current location. Hitting the escape < ESC> key causes an immediate exit from the routine. The 
above sequence will affect the memory in the following way. 

Restrictions 

Address Old Data 
2000 5F 
2001 
2002 
2003 

5F 
5F 
5F 

New Data 
00 
5F 
00 
5F 

This command may only be used to modify address locations that are in user RAM space. Attempts to write reserved RAM 
locations are not allowed. 

3.3.6 F-FIII Memory Block 

Syntax: F xxxx yyyy zz 

Description 
This command will cause hex memory locations xxxx to yyyy to be filled with hex data zz. 

Example: 
> F 2000 20AO 5A 
The result of this command will be the hex data value 5A being written to memory addresses 2000 through 20AO. 

Restrictions 
1. Both start and end addresses must be in user RAM. 

2. The block end address, yyyy, must be the same or higher than the block start address, xxxx. 

3. Attempts to fill reserved RAM locations are not allowed. 

3.3.7 G-Go. Begin User Program Execution 
Syntax: G [xxxx] 

Description 
The "G" command will load the NSC800 CPU registers from reserved RAM locations where the user's CPU state has been 
saved, and begin execution. A hex start address, xxxx, may be specified, and program execution will begin at that location. If no 
start address is specified, the PC value that was saved at the time the last breakpoint was encountered will be used. 

Examples: 

1. > G 2000 
This will cause the CPU to execute code at address 2000. 

2. > G 
This will cause the CPU to execute code at the current user program's PC location that was saved at the time of the last 
breakpoint. If no breakpoint was encountered prior to this, the monitor will be re-entered by default. 

3.3.8 H-Help. Display List of Commands 
Syntax: H 

Description 
This command will cause a command menu to be displayed on the terminal. 

3.3.9 I-Input from I/O Port 

Syntax: I xx 

Description 
The monitor will read the 1/0 port location specified by hex value xx, and display its contents to the screen. 

7-146 



3.3.10 J-Calculate Jump Offset 
Syntax: J xxxx yyyy 
Description 
This command provides the user with a quick way of determining the hex offset between two hex addresses xxxx and yyyy. The 
monitor calculates the difference yyyy - xxxx and displays the result to the screen. The hex values are treated as unsigned 
integers. This is especially handy when computing negative offsets. 

Example: 
> J AAAB AAAA 
The monitor will display the result FFFF, which is an offset of negative one. 

3.3.11 K-KIII, or Delete, Monitor Breakpolnt(s) 
Syntax: K [xxxxl 
Description 
This command will delete a breakpoint at hex location xxxx. If no address is specified, all breakpoints are deleted. 

3.3.12 L-Llst Monitor Breakpolnt(s) 
Syntax: L 

Description 
Using this command, the user can view the current breakpoint addresses. 

Example: 
If breakpoints exist at locations 2000, 2002, and 2004, then the following sequence of commands will produce the following 
output. 
>L 
2000 20002 20004 
>K 20002 
>L 
2000 2004 
>B 2002 
>L 
2000 2002 2004 
>K 
>L 

> 
This shows how the B, K, and L commands can be used to set, delete, and list monitor breakpoints. 

3.3.13 M-Dlsplay Memory Block 
Syntax: M xxxx yyyy 
Description 
The contents of the memory locations between hex addresses xxxx and yyyy can be displayed to the screen using this 
command. Addresses that are specified are rounded to 16-byte blocks when displayed. 

Example: 
> M 4005 4015 
This entry will produce the following output: 

o 1 2 3 4 5 6 7 8 9 ABC D E F ASCII 
4000 00 FF 00 FA 00 55 03 02 01 OC CO BB FF 55 66 77 ••••• U ••••••• Uf. 
4010 00 00 00 00 00 CC DD DC BB 00 55 AA FF D3 F6 75 •••••••••• U ••••• 
> 

3.3.14 o-output Byte to I/O Port 
Syntax: 0 xx dd 

Description 
This command will cause the hex data byte dd to be output to I/O port location xx (hex). 

Example: 
> 0 21 55 

This will cause the data 55H to be written to I/O port location 21 H. 

7-147 

> 
Z . en 
-A. 
N 

• 



~ .-----------------------------------------------------------------------------------------~ .... 
CfJ z 
~ 

3.3.15 P-Conflgure Auxiliary Port 

Syntax: P modulus mode stop 

Description 
This command can be used to initialize the NSC858 UART for the auxiliary serial port in the following way. 

modulus -is a 16-bit hex value that will be loaded into the baud rate divisor latches of the NSC858 UART. 

mode -is an 8-bit hex value that will be written to both TxMODE and RxMODE registers of the NSC858 UART. 

stop -a 2-bit hex value indicating the number of stop bits to use. 0 = 1 stop bit, 1 = 1.5 stop bits, 2 = 2 stop bits. 

Example: 
> P OC B8 2 
The NSC858 registers will be loaded as follows: 

Register Name 1/0 Address Contents 

Receiver Mode 21H B8H 

Transmitter Mode 22H B8H 

Global Mode 23H 09H 

Command 24H C3H 

Baud Rate Divisor (LSB) 25H OCH 

Baud Rate Divisor (MSB) 26H OOH 

This command provides the user with a quick way to configure the auxiliary serial port. 

3.3.16 R-Examlne/Modlfy User CPU Registers 
Syntax: R [specifier] 
Where: [specifier] = A, B, C, 0, E, F, H, L, A', B' , C', 0', E' , F', H', L' , I, IX, IY, SP or PC. 

Description 

Comments 

RxC Int., 8 Data, Even Pty. 

TxC Int., 8 Data, Even Pty. 

2 Stop, 16X Clock Factor 

'" Default '" 

9600 Baud (1.84 MHz) 

The user CPU registers can be examined or modified using this command. An individual register may be specified with an 
optional specifier term. If no specifier is given, the monitor will display all user CPU register values. To modify a particular 
register's contents, a specifier must be given. 

Examples: 

1. 
> R 
A F BCD E H L A' F' B' C' D' E' H'L' I IX IY SP PC 
00 OC 55 23 45 66 77 A4 D2 00 00 00 00 00 00 00 45 1234 5678 ABCD 2000 

> 
2. 
> R A 
<ESC> TO EXIT 
A 00 - 33 <CR> 
F OC - <CR> 
B 55 - <ESC> 
> 
In Example 1, all register values, with the exception of the R register, will be displayed. When a specifier is given as in (2), a 
register can be modified by typing in the new value and hitting carriage return, <CR>. A return by itself will display the next 
register without modifying the previous one. Typing escape, <ESC>, will exit the program immediately. 

7-148 



3.3.17 T -Move a Block of Memory 

Syntax: T xxxx yyyy zzzz 
Where: xxxx = block start address 

yyyy = block end address 
zzzz = destination address 

Description 
This command copies the contents of memory between and 
including start address xxxx and end address yyyy to the 
destination address ZZZZ. The source block can be any­
where in the memory space, including ROM. 

Rules 

1. The block end address yyyy must be equal to or larger 
than the block start address xxxx. If not, the message 
"ILLEGAL ADDRESS" will display. 

2. There must be enough room in the user RAM area to 
store the destination block, or the message "TOO 
LARGE" will display. 

3.3.18 V-Verify Download Status 

Syntax: V 
Description 
This allows the. user to verify the status of the most recent 
file download operation. It is useful when using the main 
serial port to download files. When a download to the main 
port is complete, or an abort has occurred, a status mes­
sage is sent back to the main port. If the terminal is not 
ready to receive this message, the user can verify the status 
by this command, which will repeat the status message one 
time for every download. 

3.4 MON800 Service Calls 

MON800 includes a set of handy utility routines that can be 
called by user programs. These include terminal I/O rou­
tines, data conversion routines, and math routines. To call a 
service routine from a user program, the "A" register is 
loaded with the call number, the necessary registers are 
loaded with appropriate input values, and the "RST 1 OHIO 
instruction is issued. Note that the default RAM vector for 
RST 10 (addresses E003-4) must not be altered, or the 
service call routine will not be entered correctly. If the call 
number is illegal, an error message is displayed and control 
returns to the monitor. The monitor service routines are de­
scribed In the remainder of this section. 

3.4.1 Text String Output Utility 

Inputs: A = 00 
HL = Address of first byte of ASCII string 

Outputs: None 

Description 
This routine will output an ASCII character string to the ter­
minal via the main serial channel. The HL register contains 
the address of the first byte in the ASCII string (lowest ad­
dress). The string should terminate with NULL (00) byte. 
The routine will output characters to the main port until a 00 
byte is encountered In the data string. 

3.4.2 Text String Input Utility 

Inputs: A = 01 
HL = Starting address of input buffer space 
8C = Max. buffer size, in bytes 

Outputs: 8C = M8X.....-size-8ytes_buffered 

7-149 

Description 
This routine allows text to be input from the terminal via the 
main serial channel to a buffer area in RAM. The HL register 
specifies the starting address of the input buffer. The 8C 
register specifies the maximum size, in bytes, of this buffer. 
The routine will ignore input after the maximum size has 
been reached. The program returns to the caller when a 
carriage return (ODH) is detected. HL is unaffected. BC will 
equal the input value minus the number of bytes buffered. 

3.4.3 Output ASCII Hex Byte 

Inputs: A = 02 
B = Output byte 

Outputs: None 

Description 
The contents of register 8 are converted to two ASCII bytes 
which represent the hex byte in that register. The ASCII 
characters are then sent to the main serial port. The con­
tents of the B register are unaffected. 

3.4.4 Output Hex Register Contents 

Inputs: A = 03 
8 = Output byte 

Outputs: None 

Description 
The binary contents of register B are sent directly to the 
main serial port. The contents of B are not affected. 

3.4.5 Input Hex Byte to Accumulator A 

Inputs: A = 04 
Outputs: A = Input byte 

Description 
This routine polls the main serial channel for input. The first 
byte received is loaded into register A and is returned to the 
caller. 

3.4.6 Convert Hex Nibble In Register B to ASCII Byte In 
A 

Inputs: A = 05 
8 = Hex Nibble Input (least significant nibble) 

Outputs: A = ASCII byte output 

Description 
This program will convert the binary value of the least signif­
icant nibble of register 8 to a ASCII hex character O-F. The 
ASCII byte is returned in A. 8 is unchanged. 

3.4.7 Convert ASCII Byte In B to Hex Nibble In A 

Inputs: A = 06 
8 = ASCII input 

Outputs: A = Ox, where x = hex nibble 
= FF, if 8 = non-hex ASCII character 

Description 
The contents of register 8 will be converted to a four-bit hex 
representation. This nibble is returned in A. If the ASCII in­
put is a character other than the characters 0, 1, 2, 3, 4, 5, 6, 
7, 8, 9, A, 8, C, 0, E or F (no lower case letters), the A 
register will be loaded with FFH. 



3.4.816-Blt Unsigned Compare HL-DE 

Inputs: A = 07 
HL = 16-bit input value 
DE = 16-bit input value 

Outputs: A = 00, if HL > DE 
A = FO, if HL = DE 
A = FF, if HL < DE 

Description 
This program performs a non-destructive, unsigned compar­
ison of the 16-bit values in the HL and DE registers. The 
result of the compare operation is returned in register A. 

3,4.9 8-Blt Unsigned Multiply: HL = D • E 

Inputs: A = 08 
o = 8-bit multiplier 
E = 8-bit multiplicand 

Outputs: HL = 16-bit product 

Description 
This program multiplies the contents of the 0 and E regis­
ters and places the result in the HL register. The contents of 
D are destroyed. 
Note: The execution speed of this program Is affected by the service call 

decoder execution. To multiply more effectively, use the "MUL T08" 
subroutine found in the MON800 program listing. This code segment 
can be included in the user program to increase execution speed. 

3.4.10 16-Blt Unsigned Multiply 

Inputs: A = 09 
HL = 16-bit multiplicand 
DE = 16-bit multiplier 

Outputs: IX = 32-bit product (lower half) 
IV = 32-bit product (upper half) 

Description 
The contents of HL and DE are multiplied, and the result is 
placed in the IX and IV registers. The contents of HL, DE 
and BC are destroyed. 
Note: The execution speed of this routine is affected by the service call 

decoder program. To multiply more efficiently, place the "MULT16" 
code segment from the MON800 listing in the user program. This will 
greatly increase the execution speed. 

APPENDIX A. CONNECTOR PIN DESCRIPTIONS 

The following tables list pin descriptions and pin assign­
ments for the interface connectors/headers in the NSC800 
Applications System. Refer to the kit schematic and the 
NSC800 series datasheets for detailed operation of each 
signal. 

Signal Access Headers 
Tables A-2, A-3 and A-4 show the individual pin functions of 
the interface headers J3, J4 and J5, respectively. The signal 
mnemonics listed correspond to signal names in the 
NSC800 Applications System schematic. For specific func­
tions of each signal, refer to the schematic and data sheets. 

TABLE A-1. Pin Assignments and Signal Directions 

Connector 

J1 (DCE) 
J2 (DCE) 

J2 (DTE) 

for Serial Connectors J1 and J21 (E.I.A. Standard RS232C) 

Pin Mnemonic Description 

1 PG Protective Ground 
2 RXD Received Data 
3 TXD Transmitted Data 
4 CTS Clear to Send 
5 RTS Request to Send 
6 DTR Data Terminal Ready 
7 SG Signal Ground 

8-19 - Not Used 
20 DSR Data Set Ready 

21-25 - Not Used 

1 PG Protective Ground 
2 TXD Transmitted Data 
3 RXD Received Data 
4 RTS Request to Send 
5 CTS Clear to Send 
6 DSR Data Set Ready 
7 SG Signal Ground 
8 DCD Data Carrier Detect 

9-19 - Not Used 
20 DTR Data Terminal Ready 

21-25 - Not Used 

7-150 

Direction 

Ground 
Out 
In 
Out 
In 
In 
Ground 

Out 

Ground 
Out 
In 
Out 
In 
In 
Ground 
In 

Out 



TABLE A-2. Parallel 1/0-Timer Access Header-J3 

Pin Mnemonic Pin Mnemonic 

A1 1PAO 81 2PAO 

A2 1PA1 82 2PA1 

A3 1PA2 83 2PA2 

A4 1PA3 84 2PA3 

A5 1PA4 85 2PA4 

A6 1PA5 86 2PA5 

A7 1PA6 87 2PA6 

AS 1PA7 8S 2PA7 

A9 1P80 89 2P80 

A10 1P81 810 2P81 

A11 1P82 811 2P82 

A12 1P83 812 2P83 

A13 1P84 813 2P84 

A14 1P85 814 2P85 

A15 1P86 815 2P86 

A16 1P87 816 2P87 

A17 1PCO 817 2PCO 

A18 1PC1 818 2PC1 

A19 1PC2 819 2PC2 

A20 1PC3 820 2PC3 

A21 1PC4 821 2PC4 

A22 1PC5 822 2PC5 

A23 HOIN 823 2TOIN 

A24 1TOOUT 824 2TOOUT 

7-151 

» z 
ch ..... 
N 

,. 
I 



N ..... 
CD 

:2: 
oCt 

TABLE A-3. CPU Bus Signal Access Header-J4 

Pin Mnemonic Pin Mnemonic 

A1 ADO 81 AO 

A2 AD1 82 A1 

A3 AD2 83 A2 

A4 AD3 84 A3 

A5 AD4 85 A4 

A6 AD5 86 A5 

A7 AD6 87 A6 

A8 AD7 88 A7 

A9 ALE 89 A8 

A10 RD 810 A9 

A11 WR 811 A10 

A12 10lM 812 A11 

A13 RES OUT 813 A12 

A14 PS 814 A13 

A15 WAIT 815 A14 

A16 8REQ 816 A15 

A17 INTR 817 INTA 

A18 RSTC 818 RFSH 

A19 RST8 819 SO 

A20 RSTA 820 S1 

A21 8ACK 821 ClK 

A22 RAM5 822 101 

A23 RAM4 823 102 

A24 RAM3 824 103 

A25 RAM2 825 Not Used 

A26 XFfESTN 826 XNMI 

TABLE A-4. UART Signal Access Header-J5 

Pin Mnemonic Pin Mnemonic 

A1 1RTI 81 2RXD 

A2 1RXC 82 2TXD 

A3 1TXC 83 2C'i'S 

A4 2RTI 84 2RTS 

A5 2RXC 85 2DSR 

A6 2TXC 86 2DTR 

A7 Not Used 87 2DCD 

Note: 00 not drive UART Input lines 81, 83, 85 or 87 unless the 0514C89 
receiver IC (U5) has been removed or disconnected. 

7·152 



APPENDIX B. SERIAL PORT CONFIGURATION SETTINGS 

Table B-1 lists the switch settings that control the serial channel initialization at power-up or reset. DS3 is read by the NSC800 
via Port A of NSC810A # (U2). The switch's data is gated onto the Port A data bus by setting Port C, bit 1 (PC1) of the same 
NSC810A to a low level (logic 0). Thus, the switch may also be accessed by user programs, and unused switch positions S5-S8 
may have custom functions assigned to them. In order to use Port A for any other purpose, the programmer must be sure to set 
PC1 to a high (logic 1) level). For applications that use the strobed 1/0 function of the NSC810A, use NSC81 OA # 2 (U3) for this 
purpose. 

TABLE B·1. Serial Channel Initialization Settlngs-DS3 

Function 51 52 

Baud = 1200 x x 
Baud = 2400 x x 
Baud = 4800 x x 
Baud = 9600 x x 
Data Bits = 7 x On 
Data Bits = 8 x Off 
Stop Bits = 1 On x 
Stop Bits = 2 Off x 

APPENDIX C. JUMPER OPTIONS AND SETTINGS 

W1-Reset Input 

W1-INMllnput 

Main Serial Channel-RS232 

W3-RS232 Chassis Ground (J1-Pin1). 

Auxiliary Serial Channel-RS232 Interface Only 

W4.1-RS232 Chassis Ground (J2-Pin1). 

Aux. Port Configuration Settings 

W4.2-TXD/RXD 

W4.3-CTS/RTS 

W4.4-DSR/DTR 

W4.5-DCD 

53 54 55 

Off Off x 
Off On x 
On Off x 
On On x 
x x x 
x x x 
x x x 
x x x 

On Board Switch (S1): 
Remote Input (J4-A26): 

On Board Switch (S2) : 
Remote Input (J4-B26): 

Isolation: 
System Ground: 

Isolation: 
System Ground: 

7-153 

56 

x 
x 
x 
x 
x 
x 
x 
x 

DTE 

1 t02 
3t04 

1 to 2 
3 t04 

1 t02 
3t04 

1 t02 

57 

x 
x 
x 
x 
x 
x 
x 
x 

58 

x 
x 
x 
x 
x 
x 
x 
x 

1 to 2 
2t03 

1 t02 
2t03 

Open 
1 to 2 

Open 
1 to 2 

DCE 

1 to 3 
2t04 

1 to 3 
2t04 

1 to 3 
2t04 

1 to 3 
2t04 

> 
Z 
ch ...... 
N 

• 



~ r-------------------------------------------------------------------------------------------, .... 
CD • Z 
<C 

APPENDIX D. INTEL HEX FILE FORMAT 

This section describes the file transfer format that is used 
when downloading linked executable code modules to the 
NSC800 Applications System using the MON800 "0" com­
mand. The program information is contained in groups of 
ASCII characters called load-records. An Intel load-record 
has the following general format: 

: nn aaaa tt dd ... dd cc 
where: 

is the start-of-record mark (hex 3A). 

nn is the record length field. Two ASCII characters 
represent the number of data bytes (in hex) that 
are in the load-record. A zero value here indi­
cates an end-of-file record. 

aaaa is the load address field. Four ASCII characters 
represent the starting hexadecimal load address 
for the data In the record. The data is loaded in 
successive addresses. 

tt is· the record type field. Two ASCII characters 
represent the record type: 00 = data record, 
01 = end-of-file record, 02 = extended address 
record, 03 = start address record. Only record 
types 0 and 1 are accepted by MON800. 

dd ••• dd is the data field. Each byte of data in the record is 
represented by two ASCII characters that indi­
cate its hex value. 

cc is the checksum field. The checksum is calculat­
ed by taking the hexadecimal sum of the fields 
nn, aaaa, tt, dd ... dd and cc. The final sum, 
taken modulo 2, should be zero. Thus, cc is the 
negative sum of the hex bytes in the record. 

Example. Here is an example data load-record followed by 
an end-of-file record. 

:OC2030000422CFED430622ED430422CF32 
:OOOOOOOlFF 

APPENDIX E. EXAMPLE INTERFACE: IBM AT·NSC800 
APPLICATIONS SYSTEM 

This is an example of how off-the-shelf software can be 
used to create a direct interface from the IBM PC/AT to the 
NSC800 Applications System. The interface is simple, fairly 
easy to use, and will allow the PC to function as a software 
development tool for the NSC800. The example setup is as 
follows: 

• IBM PC/AT with serial port 

• NSC800 Applications System microcomputer and power 
supply 

• MS DOS version 3.0 or higher 

• KERMIT serial I/O program (Columbia University, public 
domain software) 

• NSC800 or Z80 cross-assembler and linker package, C 
cross-compiler, etc. (Intel Hex output is a must) 

Operation 

1. The NSC800 system is connected to the AT serial port 
through its main serial channel. The AT port is assumed 
to be DTE. The critical signals needed are Transmitted 
Data (pin 2), Received data (pin 3), and ground (pin 7). 

. 2. NSCBOO programs can be coded, assembled, and linked 
using the PC-resident software. For this example, a pro­
gram called testBOO.asm is created using a text editor. Its 
assembled and linked Intel hex output file is called 
testBOO.hex. This is the program to be downloaded to the 
NSCBOO system for debugging. 

7-154 

3. The NSCBOO system is configured to meet the RS232 
requirements of the PC's serial port. 

4. On the PC, the KERMIT program is run. KERMIT will 
emulate a VT100 compatible terminal at the PC comm 
port. The NSC800 system is powered on, and a MON800 
sign-on message should appear on the PC screen. 

5. MON800 commands can now be issued to the NSC800 
system directly from the PC. To download the example 
program, test800.hex, the MONBOO command "0 1" is 
given. 

6. To download a file from the PC, the KERMIT program is 
exited to DOS, and the DOS command 

"copy \<pathname>\testBOO.hex com1:" 

is given. The file should be sent to the serial port. 

7. After the file is sent, the KERMIT program is again run so 
that MON800 commands can be issued to the system. 
The "V" command is used to find out any error mes­
sages associated with the file download. A "M xxxx 
yyyy" command will display the program information that 
was loaded into RAM. Once the file is in RAM, MON800 
can be used to debug the user program. 

APPENDIX F. MON800 PROGRAM LISTING 

A complete assembler list file of the MON800 program, 
MON800.LST includes four files. 
They are: 

MONBOOA.ASM - ASCII source code for MONBOO rev A 

MON800A.OBJ - Relocatable object code (binary) 

MON800AHEX - Linked executable code module (Intel 
hex format) 

MON800ALST - Assembler list file 

The user may make changes to the ASCII source code to 
customize MON800 to fit individual system requirements. 
System address assignments and constants are configured 
by means of the equate statements at the beginning of the 
assembly program. 

The MONBOO program occupies approximately 8k bytes of 
ROM, and, if unmodified, this program will fit in any 8k by 8 
EPROM such as National's NMC27C64Q-250 CMOS 
EPROM. National Semiconductor does not guarantee this 
software. All program changes are made at the user's own 
risk. 

The code described in this App Note is available on Dial-A­
Helper. 

Dial-A-Helper is a service provided by the Microcontroller 
Applications Group. The Dial-A-Helper system provides ac­
cess to an automated information storage and retrieval sys­
tem that may be accessed over standard dial-up telephone 
lines 24 hours a day. The system capabilities include a 
MESSAGE SECTION (electronic mail) for communicating to 
and from the Microcontroller Applications Group and a FILE 
SECTION mode that can be used to search out and retrieve 
application data about NSC Microcontrollers. The minimum 



system requirement is a dumb terminal, 300 or 1200 baud 
modem, and a telephone. With a communications package 
and a PC, the code detailed in this App Note can be down 
loaded from the FILE SECTION to disk for later use. The 
Dial-A-Helper telephone lines are: 

Modem (408) 739-1162 
Voice (408) 721-7264 

For Additional Information, Please Contact the Factory 

7-155 

APPENDIX G. NSC800 APPLICATIONS 
SYSTEM SCHEMATICS 

The schematics for the NSC800 are provided on the follow­
ing pages. Also included is a suggested chip layout for a 
wire-wrapped or PC board and a component list. 



~ 
U1 
a> 

+5 

UIO 
NSC800N 

2345-6-;89 

Y1 

~Dt--
RI 

-'- CI 

1. 
-'-C2 

1. 
SEE TABLE FOR OSC. 
COIlPONENT VAlUES 

~/PS 
36 /WAIT 
25 /BREO 
24 jImI 
23 /RSTC 
22 /RSTB 
3S /RSTA 
26 jBAr::I. 
28 /001. 
29 /RFSH 
27 SO 
9 SI 
IIQ.J( 
10 XIN 
33 XOUT 
21 IRES IN 

...-__ -"'37 .• /NIII 
RES OUT 

+5 

I IO' H:914 

IIO}&F 

~LS ~ -SPST - I SElECT SWITCH 
- PUSH 2 OR EXTD!IW. 

~ 
3 RESETSOURCE 

EXT. RfSET IN 
J4-A26 

+5 
r---" 

~ I~~ 
MH 15 3 

SElECT SWITCH 
OR EXTD!IW. 

<Em NIII SOURCE 
EXT. NIIIIN 

r , 

+5 

-= 

MlO-AD7. 2,3 

I ~A7. 2,3 I , A8-AI5~ 
,2.3 

+5 

I 

UI2 
NIIC6I64 
r---

ALE 

AN-612 

,. "'" 
~2'3 NWR 2,3 
.- I 2,3 

~<">L,~2,3 
NPS 2,3 

US 
74HCIS4 
r---

19 ICSI 
ICS2 f1

8 

=:11 
NWISEl 

Recommended OSC. Components 

XTAL(MHz) R1 R2 C1 C2 

1.00 1M 1.5k 100pF 150pF 

2.00 1M 470 68pF 100pF 

4.00 1M 0 33pF 47pF 
8.00 1M 0 22pF 33pF 

I 

U3 
74HCOO 

9 

ru U3 
74HCOO 

12 
131 

II 

3 

RIOTI, 2 

RIOT2 , 2 

NRAtl4SEl i J4-~~ ~ 
~1I5SEl1 J4-~~ ~ 

::~~;~ ~~R 
....oIPSWITCH ... 2 

NIOSEll
1 

J4-~~~ ~ 
NIOSEl2 i J4-~~. ~ 
NIOSEl3 
""!,,,!T2 J J4-.,. > 
-uARJTI: ~ 

TUC/10435-2 



1.3 
... ADO-MJ7 

1.3 
:. AG-A7 

:. Aa-AI5 

MJO-MJ7 ... 1,3 

AG-A7 :. 
~ ............ -t ................................................ -t"""""""""1.3 

Aa-AI5 :. 
1.3 
~ 

I. 3 ALE 
~RD 

I. 3 
~WR 

1.3 
IO/~ 1,3 E OU I. 3 RIOT I 101 I 

~ 
~ 
~ 
~ 

'---+ '-'----4-7 
I 
9 

II 

un 
NSC8I0AN 

AOO 
MJI 
MJ2 
MJ3 
MJ4 
MJ5 
MJ6 
MJ7 

CE 
RESET 
IOT/II 

+5 

T 

PAO 
PAl 
PAl 
PA3 
PA4 
PA5 
PA6 
PA7 
PBO 
PBI 
PB2 
PB3 
PB4 
PB5 
PBS 
PB7 

PCO/INT 
WR p~1s~ RD 
ALE PCl/TG 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

5 
36 
37 
38 
39 
I 

p~~~I~ 
To1°~ 16 

~ 
I J3-A3 
J3-A. 

I J3-A5 
J3-A6 

I ~3:~8 
IJ3- A9 
J3-AIO 

I J3-AII 
J3-A12 
J3-A13 

~ J3-A15 

~ J3-A17 

~ J3-A19 

~ J3-A21 

~ J3-A23 
~ 

7-157 

UU 
NSC8I0AN 

'--'- C£ 
-+RESET 

L:==:I~~j ~r' 
II ~E 

,1,3 

ALE 1.3 
~RD 1,3 
~WR 1.3 
IO~ 1.3 

RES OUT 1.3 

TL/C/10435-3 



~ 
<.n 
()) 

..... -- ---
1.2 

. ~ AD-A7 
1.2 

1.2 

1. 
1 
1 
1 
1 

~ AS-AIS , 
, ALE 
, ~RO 

~WR 

10101 
RESET OUT 

I 
RIOT1 

I '- ~UART2 

... ~UARTI 

U7 
NSC858N 

~ ADO 
21 

RXD 
i'-f- ADI TXD 

19 

~ AD2 /CTS 26 

~ AD3 /RTS 
2. 

T, AD. /OSR 
27 

'-H- ADS /DTR 
25 
23 r'-it" AD6 /OCD 

~ AD7 22 
AlE /RTI 3 ~ 4 /RD RXC/BRG 
/WR TXC/BRG fl.L-1 

17 I.tR 
XOUT~ 2 /PD 

ICE XIN 1 
RS ...-
1101 ,. 
Y2 

1.843211 

r---;D~ 

i ~pF 1 ~PF 
-= 

U6 
NSC8S8N 

~ 1.00 RXD 
21 

~ ADI TXD 
19 

t± AD2 /CTS 26 

1.03 /RTS 
2. 

l'-¥!- AD. /OSR 
27 

I'-JJ- 25 

~ 
ADS /DTR 23 
1.06 /OCD 

'-'f- 1.07 
'----4- ALE /RTI f¥.-~ 3 

/RD ~I-• RXC/BRG 

1 /WR TXC/BRG 

17 t.tR 
~NC 2 /PD XOUT 

ICE XIN jlL.. 

AN-612 

ADD-AD7 

""'III 
AD-A7 

A8-A15 

ALE -fJE[:) ~RO 

~WR ~ 
10101 mID RESET OUT J.4-AI2 

J2 - OB25 ~ 

US RS232 CONNECTOR 

OSI4C89 (All OTHER PINS 

3_ 1 W4.2 NO~ l' :~ fjH1 
~ U. 1 2_ ~ ~I~:~ 

OSI4C88 3 • ~ 
2 3 

~1J.4-A4 
~IJ4-A5 

6 US • W •• 3 ~IJ4-A6 - ~ 
~IJ4-A7 -- U. I 2 -...2QL.~ 

• 6 ~ 3 • 
5 AD m:B1 

US 
Al 

8 10 W4.. I J4-B2 

-DEC) 
A2 

""" U. 1 2 A3 ~ 

9 ~ A4 
J.4-B4 

10 
8 3 • AS ~ 

11 US W •• 5 
A6 ~ 

13 A7 I J4-B7 - ~~1 
J2-8 A8 I J4-B8 

3 • 
A9 I J4-B9 

m AID I J4-Bl0 

"-~ 
All ~ 

~ 2 J2-1 A12 ~ 
- J5-B2 EIb -:JS-B3' ~ C:S~IS GROUND 

A13 
AI. 

L--I~~:::. AIS I J4-BIS C 

I J5-B6 
~ 

I JS-B7' J. -

1Ts:Ir J5 - UART INTERFACE CPU BUS INTERFACE 

I~~~ HEADER HEADER 

~ • 00 NOT DRIVE THESE 

I JS-A2 I 
PINS UNlESS 14C89 (US) 

~ 
IS REIotOVED 

U2 
OSI4C89 

3_ 1 

~ --- Ul 
OS14C88 ~> Jl - DB25 

~ 
2 

3 I ~> RS232 CONNECTOR 

I ~::~O (All OTHER PINS 
6 U2 - • I JI-6 

NO CONNECT) 

--- Ul 

• ~ 
6 JI-7 

5 h.:r~ 8 U2 - 10 W3 
""V" 

Ul -= CHASSIS GROUND 
9 8 

,~ 
11 U2 13 -- . 

TL/C/l0435-4 



Place filter caps near IC's 
U3 U6 U7 U8 U9 
C9 ClO Cll Cl2 Cl3 

IC Power & Ground Connections 
IC +5 +12 

U1 14 

U2 14 

U3 14 

U4 14 

U5 14 

U6 28 

U7 28 

U8 24 

U9 20 

U10 40 

U11 28 

U12 28 

U13 40 

U14 40 

U16 20 

J6 - 4-PIN 
t.lOLEX 
POWER JACK 

UlO Ull 
Cl4 Cl5 

-12 

+12 -12 +5 

C9-CI9 FILTER CAPS 
C7 0.1 ~F FOR IC'S 
33~F 

C8 
33~F 

TUC/10435-5 

Ul2 Ul3 Ul4 Ul6 
Cl6 Cl7 Cl8 Cl9 

GND No Connect 

2,5,9,12 

7 

7 

2,5,9,12 

14 

14 

12 

10 

20 

14 

14 

20 

20 

10 

NSC800 Designer Kit Suggested Chip Layout for Wire-Wrapped or PC Board 

Jl 

Wire-Wrap Area 

0000000 
0000000 

J5 

J2 mm J6 

C o-CJ-o 100001 

o 0 000 C o-CJ-o o-C]-oc 
C CDR R RR C C 

U15 RA2 00-0 

Rt g ~~ !1 ~~~!2 
00-0 00-0 

01 Ul0 

100 
U13 U14 

0 

D' 
U16 

00000000000000000000000000 
00000000000000000000000000 

0000000000000000000000000 
0000000000000000000000000 

J4 J3 
TL/C/l0435-6 

7-159 

• 



N r---------------------------------------------------------------------------------, ,.. 
U) 

Z 
< 

NSC800 Designer Kit: Component List 

Description I Ref. I Qty. 

1.IC'S 

NSC800N-4 U1 1 

NSC810AN-4 U8,U9 '2 

NSC858N U5,6 2 

MM74HC154N U2 1 

MM74HC373N U3 1 

MM74HC245N U7 1 

MM74HCOON U11 1 

DS14C88N U12,U14 2 

DS14C89AN U13,U15 2 

NMC27C64Q250 U4 1 

NMC6164AN-70 U10 1 

2. DISCREET COMPONENTS 

10 kfl 5% R3-R6 4 

10k SIP (9 Resistors) RP1, RP2 2 

1 Mfl5% R1, R7 2 

1N914 Diode 01 1 

33ILF C1-C3 3 

0.01 ILF C4-C15 12 

10 ILF C18 1 

22pF C19 1 

47pF C20 1 

1.8432 MHz Crystal-

AT cut, Parallel Y2 1 

3. MISCELLANEOUS HARDWARE 

DB25-Female Connector J1,J2 2 

Wire-Wrap Headers: 
2x26 Pin J3 1 
2x25 Pin J4 1 
2x 7 Pin J5 1 

MOLEX 4-Pin SIP (Male) J6 1 

8-Position DIP Switch DS1 1 

Push Switch (Momentary) S1 1 

SPOT (On-Momentary) S2 1 

4. NSC800 OSCILLATOR NETWORK: Component Values 
for Various Crystal Speeds. Y1 = AT Cut, Parallel Resonant 
Crystal. 

Y1 (MHz) R1 R2 C1 C2 

8.00 1M 0 22pF 33 pF 
4.00 1M 0 33pF 47pF 
2.00 1M 1.5k 68pF 100pF 
1.00 1M 1.5k 100pF 150pF 

7-160 



APPENDIX H. DEVELOPMENT SUPPORT PRODUCTS FOR THE NSCBOO 

The following is a list of vendors who offer products that support hardware and software development for NSC800 microproces­
sors. The companies, products, and approximate price (where available) for each are listed. 
Note to Vendors: If your company offers a related product that Is not Included on this list, let us tell our customers about your products. Send your company 

name, phone number, product information, and price ranges to the following address: 

NSC800 Applications Engineering 
Mail Stop E2-55 
National Semiconductor Corporation 
2900 Semiconductor Drive 
P.O. Box 58090 
Santa Clara, CA 95052-8090 

Company 

Applied Microsystems 

Corporation 
(800) 426-3925 

Avocet Systems, Inc. 

(207) 236-8227 

Digital Research, Inc. 
(408) 649-3896 

Ecosoft, Inc 
(317) 255-6476 

Huntsville 
Microsystems,lnc. 
(205) 881-6000 

Manx Software Systems 
(800) 221-0440 

Microcomputer Tools 

(415) 825-4200 

Northwest Instrument 
Systems, Inc. 

(800) 547-4445 

Orion Instruments 
(415) 361-8883 

Softech Microsystems 
(718) 851-3100 

2500 A.D. Software,lnc. 
(719) 395-8683 

Product Approximate Price 

NS800 Emulator EM-800 

-16k RAM stand-alone $2995 

-64k RAM + PC driver $3995 

Z80 "c" cross-compiler 
-MS-DOS host $895 

Z80 "c" native compiler $295 

Z80 macro assembler 
-MS-DOS host $349 

Z80 macro assembler 
-MS-DOS host $200 

Z80 "c" compiler 
-Native (CP/M host) $100 

NSC800 emulator IDP-800 
-Emulator, power supply, 
x-assembler (MS-DOS) $3195 

Aztec C cross-compiler 
-MS-DOS $750 
-VAX/ULTRIX $3000 
-CP/M-SO $349 

Z80 macro-assembler 

-MS-DOS host $150 

Microtek MICE 2 + emulators 

64k RAM + PC-based 
debugger software $5950 

Unilab 8620 Analyzer/ $3500 to 
Emulator (PC-based) $5000 

"c" cross-compiler 
-MS-DOS host $300 

Z80 macro assembler 
-MS-DOS host $80 

Z80 C x-compiler and 

macro assembler (MS-DOS) $500 
Z80 macro assembler only $200 

7-161 

> 
Z . en 
...r. 
N 

• 



NSC800 Applications 
System: 
NS16550A UART 
8237 A DMA Controller 
Interface 

INTRODUCTION 
This document describes a system which utilizes the DMA 
control signals and FIFOs of the NS16550A UART in con· 
junction with the 8237 A DMA Controller and the NSC800 
CPU. Included is an operation overview section and descrip. 
tions of hardware requirements, software used and system 
timing considerations. 

OPERATION OVERVIEW 
The system used is an NSC800 Application System with all 
software written in NSC800 assembly code. DMA request 
signals from the 16550A to an 8237 A DMA controller cause 
direct data transfers to be made from on board RAM to the 
16550A transmitter FIFO or from the receiver FIFO to RAM. 
Simultaneous memory and I/O read/write signals from the 
8237 A produce single cycle data transfers between the 
UART and memory. This results in high speed file upload 
and download operations independent of the system CPU. 

HARDWARE REQUIREMENTS 
The system requires an NSC800 based board running a 
ROM based MON800 (Version 1.0) monitor program, at 
least 8K RAM, two RS-232 serial ports (one controlled by an 
NSC858 UART and the other by an NS16550A), an 
NSC810A RAM-I/O·Timer, an 8237A DMA controller and 
various interface logic components. 

DMA Request/Bus Access Control 
The RXRDY and TXRDY DMA signals from the 16550A are 
connected to 8237 A device request inputs DREQO and 
DREQ2 and indicate a full receiver FIFO and empty trans· 
mitter FIFO respectively. Upon receiving a device request, 
the 8237 A asserts a hold request signal which is connected 
to the NSC800's bus request input. After completing execu· 
tion of its current instruction, the CPU will TRI·STATE® its 
buses and asserts a bus acknowledge signal. The 8237 re­
ceives this signal in its hold acknowledge input and immedi­
ately performs its programmed DMA operation. 

Read/Write/Chip Select 
An LS257 Data Selector generates separate memory and 
I/O read and write signals from the CPU read and write 
outputs. AEN, a signal from the 8237A asserted during DMA 
cycles, is connected to the output enable pin of the LS257. 
Thus during DMA cycles, the LS257 will TRI·ST ATE its out­
puts and all memory and I/O read/write strobes are gener­
ated by the 8237 A. The chip select signal for the 16550A is 
produced by ORing 8237 A device acknowledge signals 
(DACKO and DACK2) with the output of the system address 
decoder. This allows selection of the UART by the CPU 
during normal bus cycles and by the 8237 A during DMA 
cycles. The chip selects for the 8237 A and system RAM are 
generated by the system address decoder. Note that there 
are two 8k x 8 RAM chips in the system schematics. The 
extra RAM was used during software development, it is not 
necessary in a minimal system. 

National Semiconductor 
Application Note 613 
Greg DeJager 

Address/Data Buses 
The 8237 A provides a low address bus which is common 
with the system's lower address bus. The 8237A also has 
an 8·bit multiplexed bus which outputs upper address bits 
and data. This bus is common with the system data bus. An 
LS373 is used to latch the upper address byte onto the 
system upper address bus. The AEN signal is used to en· 
able the latch and disable the system's LS373 during DMA 
cycles. 

During DMA cycles, the 8237 A outputs a 16·bit memory ad· 
dress but no I/O address. Register and FIFO addresses for 
the 16550A are generated instead by an LS157 multiplexer 
which outputs the receiver or transmitter FIFO address 
(000) during DMA cycles and system address signals A2-
AO during CPU bus cycles. 

Hardware Interrupts 
NSC800 interrupts RST A and RSTB are used to facilitate 
and terminate the file upload and download processes. The 
hardware connections and purpose of the interrupts is ex­
plained in the SOFTWARE DESCRIPTION AND DMA OP­
ERATIONS section of this document. 

SOFTWARE DESCRIPTION AND DMA OPERATIONS 
The two programs included in this package, DMAWR.ASM 
and DMARD.ASM, are NSC800 assembly listings for file 
download and upload operations respectively. The following 
includes a description of serial port initialization and full de­
scriptions of DMAWR.ASM and DMARD.ASM programs and 
their associated interrupt service routines. 

Serial Port Initialization 
Both programs initialize the NS16550A to 9600 bau~bits, 
1 stop, no parity. Modem control outputs RTS and DSR are 
asserted to support communication with a terminal. FIFO's 
are enabled and programmed for DMA mode 1. In 
DMAWR.ASM, the receiver FIFO interrupt trigger level is set 
to 14 bytes in order to maximize the efficiency of the down· 
load operation. 

DMAWR.ASM Description 
DMAWR.ASM performs a file download operation by trans· 
ferring bytes received in the serial port to RAM. After initial· 
izing the system, the CPU enters a NOP loop and, unless 
servicing interrupts, remains there until the file transfer is 
complete. 

The program first prompts the user for a destination address 
for the incoming file and programs the 8237 A with this 16·bit 
value. The 8237 A is then programmed to accept a device 
service request (RXRDY) through channel 0 and to perform 
I/O read/memory write transfers in the demand mode. In 
this mode, the controller executes single byte transfers as 
long as the device request remains asserted. In this system, 
the controller begins reading bytes from the FIFO when the 
trigger level is reached (RXRDY goes active) and stops 
reading when the FIFO empties (RXRDY goes inactive). 

7·162 



Throughout the file transfer process, the DMA controller au­
tomatically empties the receiver FIFO into RAM each time 
the trigger level is reached. 

The end of a file is indicated to the CPU by an NSC810 timer 
which produces a timeout signal which interrupts the CPU 
through RSTB if no characters have been received for a 2.5 
second period of time. The 810A is programmed as are­
startable timer with the greatest possible timeout period 
(maximum prescaler (64) and modulus (FFFFH). The timer 
counts down only when RXRDY is inactive and resets itself 
each time RXRDY becomes active. Thus the timer output is 
asserted if RXRDY remains inactive (no characters received 
into serial port) for more than 2.5 seconds. 

DMAWR.ASM must be started before any characters arrive 
in the serial port. Since the user must start transmission of a 
file on some other machine, there is an indeterminable 
amount of time before the first characters are received. The 
RXRDY signal remains inactive during this time and until the 
first 14 characters arrive and RXRDY is asserted, the 810A 
will interrupt the CPU every 2.5 seconds. 

RSTB Service Routine 

The interrupt service routine handles this "false" interrupt 
by first checking if any characters have been received yet. If 
not, the CPU reinitializes the timer and the interrupt and 
exits the routine. The maximum possible timeout period of 
2.5 seconds is used to minimize these initial false interrupts. 
When a "true" interrupt has been received (bytes had been 
received but none have arrived during the last 2.5 seconds 
signifying the end of the file), the interrupt service routine 
stops the timer, outputs a termination message and exits to 
the MON800 monitor. 

DMARD.ASM Description 

DMARD.ASM performs a file upload operation by transfer­
ring bytes from RAM to the serial port transmit FIFO. After 
initializing the system, the CPU enters a NOP loop and, un­
less servicing interrupts, remains there until the file transfer 
is complete. 

The program first prompts the user for the starting and end­
ing address of the data to be transmitted. The 8237 A 16-bit 
address register is programmed with the starting address. 
The total number of bytes in the file is also calculated. This 
number is used by the RSTA interrupt service routine. The 
8237 A is then set up to accept a device service request 
(TXRDY) through channel 2 and to perform memory readl 
1/0 write transfers in the block mode. In this mode, a device 
request causes the controller to transfer a block of data with 
the block size being programmed into its transfer count reg­
ister. With exception of the first and last block transfer of the 
file being uploaded, a block size of 16 is programmed into 
the count register so that an active TXRDY signal (empty 
FIFO) will result in the 8237 A filling the Transmit FIFO. The 
RST A Service Routine section describes how the count for 
each block is determined and how the end of the file is 
recognized. 

It is necessary to use block mode because the NS16550A 
does not deassert TXRDY quickly enough to stop a demand 
mode transfer when the transmitter FIFO becomes full. 
TXRDY goes inactive upon receiving the trailing edge of the 
write pulse of the byte which fills the FIFO. This is to late 
stop the controller from performing one additional transfer 
which will overflow the FIFO. This is different from RXRDY 

7-163 

which goes inactive upon receiving the leading edge of the 
final read pulse allowing enough time to prevent another 
transfer. Because the 8237 A must have its transfer count 
register reinitialized after each block transfer, the CPU must 
be interrupted each time the transmit FIFO is refilled. This is 
done by latching the End of Process (EOP) signal into the 
RSTA interrupt of the NSC800. The EOP is generated by 
the 8237 A at the end of a block transfer. 

RST A Service Routine 

The RST A interrupt service routine performs three opera­
tions: calculation of the size of the next block to be trans­
ferred (16 or less), programming the 8237 A transfer count 
register with this value and reenabling the RST A interrupt. 
The routine maintains a count of the number of bytes of the 
file already transferred. It uses this number along with the 
total number of bytes in the file (calculated in the main pro­
gram) to determine the number of remaining bytes. If great­
er or equal to 16, a block size of 16 is programmed into the 
8237 A transfer count register. If there is less than 16 bytes 
left, the number remaining is programmed into the count 
register. When there are 0 bytes left, the upload operation is 
complete and the program exits to the MON800 monitor. 
Note: The main program initially programs the count register to 1. This is 

done because it is assumed that a file contains at least one byte but 
that the file could be less than 16 bytes. Thus upon starting the file 
transfer, a one byte block is transferred and, if there are at least 16 
more bytes in the file, the RST A service routine programs the next 
transfer to be 16 bytes. 

TIMING CONSIDERATIONS AND OPERATING SPEED 

DMARD.ASM 

The 8237 A used in this application has a maximum operat­
ing frequency of 5 MHz (8237A-5). The 8237A in normal 
timing mode can transfer characters from 120 ns RAM to 
the 16550A FIFO at this maximum speed. The 8237A can 
also operate in a compressed timing mode in which bytes 
are transferred to sequential addresses in two clock periods 
instead of three. This is done by shortening the read pulse 
from two clocks to one. However, at 5 MHz the access time 
for the RAM is too long to meet the data set up time (tcJs) for 
writing to the 16550A. The maximum operating frequency 
which meets RAM read/16550A write timing specs is calcu­
lated to be 3.57 MHz. At this lower frequency, character 
transfers still occur faster in the compressed mode: 560 ns 
per character (two clocks at 3.57 MHz) for compressed 
mode versus 600 ns (three clocks at 5 MHz) for normal 
timing. Since the maximum speed of the NSC800 CPU used 
is 4 MHz, the system was not tested at 5 MHz. It was tested 
at 4 MHz, however, and both normal and compressed timing 
modes did run properly, even though data set up time for 
the 16550A was not met in compressed mode. 

DMAWR.ASM 

When operating in the demand mode, the 8237 A requires 
that its device request input, RXRDY in this case, be deas­
serted before the final clock period of the last character's 
transfer cycle. However, when the 8237 A reads the last 
character in the receiver FIFO, there is a delay before the 
16550A deasserts RXRDY. This creates the bottleneck for 
the 16550A to memory transfer process. The maximum op­
erating frequency which will allow RXRDY to be deasserted 
in time is calculated to be 3.125 MHz. However, the system 
was found to run at 4 MHz without failure as the RXRDY 
signal was found to go inactive sooner than is specified. 

l> z . en .... 
w 



DMAWR.ASM Flowchart 

TLlC/l0436-1 

RSTB Service Routine Flowchart 

TL/C/l0436-2 

7-164 



DMARD. ASM Flowchart RSTA Service Routine Flowchart 

TL/C/l0436-3 TL/C/l0436-4 

7-165 

l> 
Z 

I 
0) ...... 
w 

• 



~ I' :~ 
':' PUSH 3 

~oo: 
.u- 6 +5 :Srr SOURCE 

1 
'2 

U3 
7.cHCOO 

Recommended OSC. Components 
XTAL (MHz) Rl R2 

1.00 1M 1.5k 
2.00 1M 470 
4.00 1M 0 
8.00 1M 0 

Cl 
lOOpF 
68pF 
33pF 
22pF 

C2 
150pF 
lOOpF 
47pF 
33pF 

AN·613 

TLIC/10436-5 



~ 
0> 
--.j 

I 

1,3,5 

:. AD-A7 
1,3,5 

1,3,5 
:. A8-A15 , 

1,3,5 
1,3,5 
1,3,5 
1,3,5 
1,3,5 

ALE 
lOR 
lOW 

10/1.4 
RESET OUT 

RIOT1 

~ 
~ 
~ 
~ 
~ 
~ 
~ -.......!i 

~ 4 
7 

10 
9 

11 

UI6 
74HC245 

r1H AI 

AD2 4 A2 

AD3 5 A3 

AD4 6 A4 

AD5 7 AS 

AD6 8 A6 

~ 
A7 
A8 

A-B 

~ 
U14 
NSC810AN 

PAO 14----' 
PAl ~ 

ADO PA2 ~ 
ADI PA3 ~ 
AD2 PA4 ~ 
AD3 PAS ~ 
AD4 PA6 ~ 
ADS PA7 ~ 
AD6 PBO 29 

AD7 PBI ~ 
PB2 ~ 
PB3 r¥.-
PB4 #.-
PBS r# 

CE PB6 ~ 
RESET PB7 ~ 
10T/1A PCO/INT 

37 

~ WR PCI/BF 
RD PC2/STB ~ 
ALE PC3/TG 

1 

PC4/TIIN +-
PCS/Tl0UT +-

TOIN 3 
6 TOOUT 

+5 

II I.~~ ___ ---~!--------. 
I 

I I 
I I 
I I 
I I ., '2' 

3 4 5 6 7 8 9 10 

BI 18 I 1 
2 2 B2 17 
3 3 B3 16 
4 4 B4 15 
5 5 B5 14 
6 6 B6 13 
7 7 B7 12 
8 8 B8 11 

EN 

19 

UI5 
16 

~ r;s-
~ t'jT 

_r r"jT' 

-~ ~ 
-~ ~ ~ r;o 

;:::;:L 

-== 

---- .-_. ..... 
AO-A7 :. 

A8-A15 :. , 
ALE 
lOR <-

llOW <-
IOU 

RESET OUT ( , 

PBO 

IRXRDY 
ClK ) 

IRSTB ... '" , 

1,3,5 

1,3,5 

1,3,5 

1,3,5 
1,3,5 
1,3,5 
1,3,5 
1,3,5 

TUC/l0436-6 

&~9·N\f 



~ 
m 
OJ 

1.2.5 

1.2, 
1.2. 
1.2, 
1.2. 
1.2, 

... ~-- ~-. , 
ALE 
IIOR 
IIOW 
101M 
RESET OUT 
IPS 

" /UART1 , 

U6 
NSC858N 

~ ADO 
'-+- AD1 
~ AD2 

~ AD3 

'-IT- AD4 

'it- ADS 

"it- AD6 

'-T" AD7 
ALE 

3 
4 IRD 

1 /WR 
t.4R 

17 
2 IPD 

ICE 

21 
RXD 

19 
RXD 26 I 

ICTS 
IRTS 

24 

I 27 
IDSR 25 
IDTR 23 
/OCD 

~ /RTI 
RXC/BRG ~ 
TXC/BRG .ll. 

~ XOUT 
XIN ~ 

R5 
1t.4 .. .. 
Y2 

1.8432t.4 

~Dr-
__ C4 _'- C5 I 22pF I 47pF 

U2 
DS14C89 

3_ 1 .... 
U1 
DS14C88 

2 3 

I 6 U2 4 -.... U1 
4 ~6 

~ 8 U2 10 .... .... 
U1 

9 _8 
10 

"_U2 13 -

~~.-,1 
Al.[ 

1 
IIOR 
IIOW 

1 

101M 1 

RESET OUT 1 
1 

~> 
~> 
~> 
J1-5 > 
~> 
-#=h> 
~> 
J1-7 > 

B~~' W3 -= CHASSIS GROUND 

2,5 

,2,5 
,2,5 
,2,5 
,2,5 
,2,5 

J1 - DB25 
RS232 CONNECTOR 
(All ornER PINS 
NO CONNECT) 

XOUT '-
XIN_( , 

5 
5 

AN·613 

TUC/10436-7 



JS - 4-PIN 
\,tOlEX 
POWER JACK 

6-

+12 -12 +5 

IC 

U1 
U2 
U3 
U4 
U5 
U6 
U8 
U9 
U10 
U11 
U12 
U13 
U14 
U16 
U17 
U18 
U19 
U20 
U21 
U22 
U23 

FilTER CAPS 
FOR IC'S 

TLlC/l0436-6 

Place Filter Caps Near IC's 
U3U6 U7 U8 U9 U10U11 U12U13U14U16U17U19U20 
C9C10C11 C12C13C14C15C16C17C1BC19C20C21 C22 

IC Power and Ground Connections 
+5 +12 -12 GND No Connect 

14 7 
14 7 2,5,9,12 
14 7 

14 7 
14 7 2,5,9,12 
28 14 
24 12 
20 10 
40 20 
28 14 
28 14 
16 8 
40 20 
20 10 
31 20 
20 10 
28 14 
40 20 
16 8 
14 7 
14 7 

7-169 

> 
Z 
ch ..... 
w 

• I 



~ ..... 
o 

1,2,3~5 
1,2,3) AtJ-A7 

1,2,3) ArXrIJJ7 • 
U22 

._ RI 

'''I'~ I~~~<:A I ~ 

1~7 
1~ 

1~ 
1 (/DRE

Q 

-

+5 

j. R4 
~ 10k 

L-

U23 
741.S08 

120 11 
13. ---

1,2,3 , R£SET 0UT1 

~/16550 

-:!:-

AN-613 

I ~ 
• "'\ 

U17 r 
82371. 

I 

~ 
741.S08 741.S08 ~
23 U23 

; 3 ~ 6 

f~ ~~~ 
+5 +5 

TUC/10436-9 



DMARD - MEMORY TO SERIAL PORT UPLOAD ROUTINE FOR NSC800 DESIGNER KIT 
LAST REVISION: 12/1/88 BY G.D. 

THIS SOFTWARE UTILIZES AN INTERFACE BETWEEN THE NSC800 MICROPROCESSOR, 
8237 DMA CONTROLLER, NS16550A UART AND RAM MEMORY. THE USER IS PROMPTED 
FOR THE STARTING AND ENDING ADDRESS OF THE MEMORY BLOCK TO BE UPLOADED. 
A TRANSMITTER FIFO EMPTY INDICATION (/TXRDY) FROM THE 16550 UART CAUSES 
THE 8237 TO ASSUME CONTROL OF THE BUS AND TRANSFER DATA FROM RAM TO THE 
16550 TRANSMITTER FIFO. THE TRANSFERS CONTINUE UNTIL THE USER ENTERED 
ENDING ADDRESS IS REACHED. THE SOFTWARE INCLUDES INITIALIZATION ROUTINES 
FOR THE 16550, 8237, NSC810 PARALLEL PORT AND NSC800 INTERRUPTS. AN 
INTERRUPT SERVICE ROUTINE RELOADS THE 8237 AFTER EACH FILL OF THE 16550 
FIFO. THE CPU PERFORMS A NOP LOOP BETWEEN DMA ACCESSES AND INTERRUPT 
SERVICES. 

: HARDWARE EQUATES 
UART EQU 60H 
DLL EQU UART+O 
DLM EQU UART+1 
FCR EQU UART+2 
LCR EQU UART+3 
MCR EQU UART+4 

DMA EQU 
CH2ADDR EQU 
CH2WRD EQU 
COMM EQU 
MASK EQU 
MODE EQU 

40H 
DMA+4 
DMA+5 
DMA+8 
DMA+10 
DMA+ll 

;PORT ADDRESS OF 16550 UART 
iBAUD DIVISOR LSB 
:BAUD DIVISOR MSB 
:FIFO CONTROL 
:LINE CONTROL 
:MODE CONTROL 

iPORT ADDRESS OF 8237 DMA CONTROLLER 
iCHANNEL 2 STARTING MEMORY ADDRESS 
:CHANNEL 2 CURRENT WORD 
iCOMMAND 
iCHANNEL MASK 
iMODE 

PORT EQU COH iPORT ADDRESS OF.S10A PARALLEL PORT 
MDR EQU 
PBDDR EQU 
PBCLR EQU 
PBSET EQU 

ORG OOH 

PORT+7 iPORT MODE 
PORT+5 ;PORT B DIRECTION 
PORT+9 i CLEAR PORT BITS 
PORT+13 iSET PORT BITS 

:***** HARDWARE RESTART A (/RSTA) SERVICE ROUTINE VECTOR RELOCATION ******* 
LD A,C3H :OPCODE FOR 'JP' INSTRUCTION 
LD (BF9BH),A :PLACE OPCODE AT MONITOR LOCATION 
LD HL,BCOOH ;ADDRESS FOR NEW ROUTINE 
LD (BF9CH),HL iLOAD NEW ADDRESS 

:*********************** 16550 INITIALIZATION *************************** 
LD A,80H 
OUT (LCR),A :DLAB 
LD A,OCH 
OUT (DLL),A :9600 BAUD 
LD A,OOH 
OUT (DLM),A 
LD A,03H 
OUT (LCR),A :8,1,N 
LD A,Ol 
OUT (FCR),A :ENABLE FIFOS 
LD A,03H 
OUT (FCR),A :RESET FIFOS 
LD A,09H 
OUT (FCR),A :SET DMA MODE TO 1 
LD A,03H 
OUT (MCR),A iSET /RTS AND /DSR ACTIVE (FOR USE BY TERMINAL) 

7-171 

TL/C/l0436-10 

• I 



~ .-----------------------------------------------------------------------------------~ --~ ;************ 8l0A INITIALIZATION FOR INTERRUPT LATCH CONTROL ************* 
Z LD A,O 
<C OUT (MDR),A ;PORT B - MODE ° (BASIC I/O) 

LD A,l 
OUT (PBDDR),A ;SET PBO DIRECTION AS OUTPUT 
OUT (PBSET),A ;SET PBO HIGH (/RSTA INACTIVE) 

.****************** INITIALIZE CPU INTERRUPT /RSTA ************************ 
I EI ;ENABLE CPU INTERRUPTS 

LD A, 08H 
OUT (BBH),A ;UNMASK /RSTA INTERRUPT 

;******* INPUT STARTING 
LD HL,MESGO 
CALL GETWORD 
PUSH DE 
LD HL,MESGl 
CALL GETWORD 
PUSH DE 
POP HL 
POP DE 

LD A,E 

AND ENDING ADDRESS OF BLOCK TO BE UPLOADED ******** 
;PROMPT FOR STARTING ADDRESS 
;RETURNS STARTING ADDRESS IN DE 

;PROMPT FOR ENDING ADDRESS 
;RETURNS ENDING ADDRESS 

;HL CONTAINS ENDING ADDRESS 
;DE CONTAINS STARTING ADDRESS 

OUT (CH2ADDR),A ;LOAD 8237 WITH LSB OF STARTING ADDRESS 
LD A,D 
OUT (CH2ADDR),A ;LOAD MSB OF STARTING ADDRESS 

XOR A 
SBC HL,DE 
PUSH HL 
POP DE 
INC DE 

; CLEAR CARRY 
;SUBTR. ADDRESSES TO GET # OF BYTES TO BE TRANS 

;DE REGISTER PAIR CONTAINS BLOCK SIZE 

;************************** INITIALIZE 8237 ****************************** 
LD A,48H 
OUT (COMM),A ;COMMAND REG: MEM TO MEM DISABLE, CONTROLLER ENABLE, 

;COMPRESSED TIMING, FIXED PRIORITY, LATE WRITE, 
;ACTIVE LOW DREQ, ACTIVE LOW DACK 

LD A,8AH 
OUT (MODE),A 

LD A,OOH 
OUT (CH2WRD),A 
OUT (CH2WRD),A 
LD H,O 
LD L,l 
LD B,OO 
LD C,lOH 
LD A,02H 
OUT (MASK), A 

;MODE REG: CH2, READ TRANSFERS (MEM TO PORT), 
;NO AUTOINITIALIZATION, INC ADDRESS, BLOCK MODE 

;LSB OF BYTE COUNT OF 8237 
;START WITH 1 BYTE BLOCK 
;MSB 

;CURRENT COUNT = 1 

;BC = 16 (CONSTANT) 

;UNMASK CHANNEL 2 

;************************ NOP WAIT LOOP FOR CPU ****************************** 
WAIT NOP ;NOP LOOP WAITING FOR DMA ACCESSES AND INTERRUPTS 

JR WAIT 

;********************* PROCEDURE GETWORD ************************************* 
GETWORD LD A,O ;ROUTINE INPUTS WORD FROM PORT 

RST 10H ;OUTPUT PROMPT FOR ADDRESS 
CALL GETBYT 
LD D,C ;MSB OF ADDRESS 

CALL GETBYT 
LD E,C ; LSB OF ADDRESS 

7-172 

TLlC/10436-11 



RET 

• ************************* PROCEDURE GETBYTE **************************** 
GETBYT LD C,O :ROUTINE TO INPUT BYTE FROM PORT 

CALL INNIB 
SLA A 
SLA A 
SLA A 
SLA A 
LD C,A :MOST SIGNIFICANT NIBBLE 
CALL INNIB 
OR C :LEAST SIGNIFICANT NIBBLE 
LD C,A 
RET 

:*********************** PROCEDURE INNIB ****************************** 
INNIB LD A,04H :ROUTINE TO INPUT, ECHO AND CONVERT NIBBLE 

RST lOH :INPUT HEX BYTE FROM PORT 
LD B,A 
LD A,3 
RST lOH :ECHO BYTE TO SCREEN 
LD A,06H 
RST lOH :CONVERT TO HEX NIBBLE (ACC Ox) 
RET 

:************ /RSTA INTERRUPT SERVICE ROUTINE **************** 
ORG lOOH :START OF INTERRUPT ROUTINE 

LD A,l 
OUT (PBCLR), A 
OUT (PBSET),A 
LD A,07H 
RST 10H 

CP FOH 
JP Z,DONE 

PUSH HL 
ADD HL,BC 
LD A,07H 
RST 10H 
CP FFH 
JP Z,NEED_16 

XOR A 
SBC HL,DE 
LD B,L 
LD A,lOH 

:CLEAR PBO TO SET /RSTA LATCH OUTPUT 
:SET PBO AGAIN 

:16 BIT COMPARE OF HL (# TRANSFERRED) 
:AND DE (TOTAL TO BE TRANSF) 
:COMPARE ROUTINE RETURNS ACC=FOH IF HL=DE 

:SAVE COUNT 
;ADD 16 TO COUNT 

;16 BIT COMPARE ROUTINE 

:COUNT+16 IS LESS THAN TOTAL SO SEND BLOCK OF 16 
;ELSE DETERMINE FRACTION OF 16 TO BE SENT 
; CLEAR CARRY 
:LOAD 8237 WITH BYTE COUNT REMAINING (COUNT < 16) 

SUB A,B 
DEC A 
JP CONT 

;BYTE COUNT=16-(HL-DE)-1 (COUNT MUST BE # TRANSF.- 1) 

NEED 16 LD A,OFH 
CONT- POP HL 

LD C,A :LD SIZE OF BLOCK TO BE TRANSMITTED INTO BC 
INC C 
LD B,O 
ADC HL,BC :ADD BLOCK SIZE TO TOTAL 
OUT (CH2WRD),A :LSB 
LD A,O 
OUT (CH2WRD),A :MSB 

EI 
LD A,02H 
OUT (MASK),A 
RETI 

RST OSH 

;REENABLE CPU INTERRUPTS 

:UNMASK CHANNEL 2 

;EXIT MONITOR DONE 

MESGO 
MESGl 

DB l3,10,'ENTER STARTING ADDR OF MEMORY BLOCK TO BE UPLOADED: ',13,10,0 
DB 13,lO,'ENTER ENDING ADDR OF MEMORY BLOCK:',13,lO,O 

TL/C/10436-12 

7-173 

l> 
Z , 
Q) ..... 
W 

,. 
I 



TITLE DMA WRITE TRANSFER 
LIST ON 
PL 58 

****************************************************************************** 
DMAWR - SERIAL PORT TO MEMORY DOWNLOAD ROUTINE FOR NSC800 DESIGNER KIT * 
LAST REVISION: 12/2/88 BY G. D. * 

* THIS SOFTWARE UTILIZES AN INTERFACE BETWEEN THE NSC800 MICROPROCESSOR, * 
8237 DMA CONTROLLER, NS16550A UART, NSC810A TIMER AND RAM MEMORY. DATA * 
RECEIVED BY THE 16550 UART FILLS ITS INTERNAL FIFO UNTIL A PROGRAMMED TRIGGER* 
LEVEL IS REACHED. THIS ACTIVATES /RXRDY, A DMA REQUEST SIGNAL TO THE 8237. * 
THE 8237 THEN ASSUMES CONTROL OF THE SYSTEM BUS AND EMPTIES THE FIFO BY * 
TRANSFERRING DATA DIRECTLY TO RAM. THE DOWNLOAD PROCESS IS TERMINATED BY A * 
TIMEOUT SIGNAL FROM THE NSC810A. * 
****************************************************************************** 

; HARDWARE EQUATES 
UART EQU 60H 
DLL EQU UART+O 
DLM EQU UART+l 
FCR EQU UART+2 
LCR EQU UART+3 
MCR EQU UART+4 

DMA EQU 
CHOADDR EQU 
CHOWRD EQU 
COMM EQU 
MASK EQU 
MODE EQU 

TIMR 
LMOD 
HMOD 
TMRMOD 
START 
STOP 
DDRC 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

ORG OOH 

40H 
DMA+O 
DMA+l 
DMA+8 
DMA+10 
DMA+ll 

COH 
TIMR+16 
TIMR+17 
TIMR+24 
TIMR+21 
TIMR+20 
TIMR+6 

;PORT ADDRESS OF 16550 UART 
iBAUD DIVISOR LSB 
iBAUD DIVISOR MSB 
iFIFO CONTROL 
iLINE CONTROL 
iMODEM CONTROL 

iPORT ADDRESS OF 8237 DMA CONTROLLER 
iCHANNEL 0 STARTING MEMORY ADDRESS 
iCHANNEL 0 CURRENT WORD COUNT 
iCOMMAND REGISTER 
iCHANNEL MASK REGISTER 
iCONTROLLER MODE REGISTER 

iPORT ADDRESS OF 810A TIMER 
;LSB OF MODULUS 
iMSB OF MODULUS 
;TIMER 0 MODE 
iTIMER 0 START 
;TIMER 0 STOP 
iPORT C DIRECTION REGISTER 

i******** HARDWARE RESTART B (/RSTB) SERVICE ROUTINE VECTOR RELOCATION ******* 
LD A,C3H iOPCODE FOR IJPI INSTRUCTION 
LD (BF95H),A iPLACE OPCODE IN MONITOR JUMP TABLE 
LD HL,BEOOH iADDRESS FOR NEW ROUTINE 
LD (BF96H),HL iLOAD NEW ADDRESS 

i***************** INPUT DOWNLOAD DESTINATION ADDRESS ************************ 
LD HL,MESGO iPROMPT FOR ADDRESS 
LD A,O 
RST 10H 
CALL GETBYT 
LD D,C 
CALL GETBYT 
LD E,C 
LD (ADDR),DE 
LD HL,MESGl 
LD A,O 
RST 10H 

iSERVICE ROUTINE TO OUTPUT STRING 

iMSB OF ADDRESS 

iLSB OF ADDRESS 
iSTORE STARTING ADDRESS 
iOUTPUT STATUS MESSAGE 

i******************* INITIALIZATION OF 16550 UART **************************** 
LD A,80H 
OUT (LCR) ,A iDLAB 
LD A,OCH 

TLIC/10436-13 

7·174 



OUT (DLL),A 
LD A,OOH 
OUT (DLM) ,A 
LD A,03H 
OUT (LCR) ,A 
LD A,OlH 
OUT (FCR),A 
LD A,03H 
OUT (FCR) ,A 
LD A,C9H 
OUT (FCR),A 
LD A,03H 
OUT (MCR) ,A 

;9600 BAUD 

i8,1,N 

iENABLE FIFOS 

iRESET FIFOS 

iSET TRIGGER LEVEL TO 14, SET DMA MODE TO 1 

iSET /RTS AND /DSR ACTIVE (FOR USE BY TERMINAL) 

i******************** INITIALIZATION OF 810A TIMER *************************** 
LD A,O 
OUT (DDRC),A ;SET PORT C (TIMER GATE PIN) TO BE INPUTS 
OUT (TMRMOD),A iTIMER ° RESET 
LD A,lBH 
OUT (TMRMOD),A iMODE: RESTARTABLE TIMER 
LD A,FFH 
OUT (LMOD),A ;LSB OF MODULUS 
OUT (HMOD),A iMSB OF MODULUS 

i******************** INITIALIZATION OF CPU INTERRUPTS *********************** 
EI iENABLE CPU INTERRUPTS 
LD A,04H 
OUT (BBH),A iUNMASK /RSTB INTERRUPT 

i************************ INITIALIZATION OF 8237 ***************************** 
LD IX,ADDR 
LD A, (IX+O) 
OUT (CHOADDR),A ;LSB OF STARTING MEMORY ADDRESS 
LD A, (IX+l) 
OUT (CHOADDR),A iMSB OF STARTING MEMORY ADDRESS 
LD A,FFH 
OUT (CHOWRD),A iLSB OF WORD COUNT 

LD A,FFH 
OUT (CHOWRD) ,A 
LD A,40H 
OUT (COMM) ,A 

LD A,04H 
OUT (MODE),A 

LD A,OOH 
OUT (MASK), A 
OUT (START) ,A 

;MAXlMUM # OF TRANSFERS = 64k 

iMSB OF WORD COUNT 

iCOMMAND REG: MEM TO MEM DISABLE, CONTROLLER ENABLE, 
;NORMAL TIMING, FIXED PRIORITY, LATE WRITE, ACTIVE 
;LOW DREQ, ACTIVE LOW DACK 

iMODE REG: CHO, WRITE TRANSFERS (PORT TO MEM) , 
iNO AUTOINITIALIZATION, INC ADDRESS, DEMAND MODE 

;UNMASK CHANNEL ° 
iSTART 810 TIMER 

i**************************** CPU WAIT LOOP ********************************** 
WAIT NOP iALLOW PORT TO MEMORY TRANSFERS UNTIL 810A TIMEOUT 

JR WAIT 
;***************************************************************************** 

i************************** PROCEDURE GETBYT ********************************* 
GETBYT LD C,O 

CALL INNIB ;INPUTS ASCII BYTE FROM PORT AND CONVERTS TO HEX NIB 
SLA A 
SLA A 
SLA A 
SLA A 
LD C,A iMOST SIGNIFICANT NIBBLE 

TL/C/l0436-14 

7-175 

• 



CALL INNIB 
OR C 
LD C,A 
RET 

:RETURN BYTE IN REG C 

:************************* PROCEDURE INNIB ********************************** 
INNIB LD A,04H 

RST lOH ;INPUT ASCII BYTE FROM SERIAL PORT 
LD B,A 
LD A,3 
RST lOH ;ECHO BYTE TO SCREEN 
LD A,06H 
RST lOH ;CONVERT ASCII BYTE TO HEX NIBBLE (ACC Ox) 
RET 

ORG OlOOH 
;******************* IRSTB INTERRUPT SERVICE ROUTINE ************************* 

IN A, (CHOADDR) ;READ LSB OF DMA CURRENT MEMORY ADDRESS 

END 

ADDR 
MESGO 
MESGl 
MESG2 

LD C,A 
IN A, (CHOADDR) ;READ MSB OF CURRENT ADDRESS 
LD B,A 
LD IX,ADDR 
LD A, (IX) 
CP C 
JP NZ,END 
LD A, (IX+l) 
CP B 

;GET LSB OF STARTING DMA ADDRESS 

;BYTES WERE TRANSFERRED BEFORE TIMEOUT SO STOP 
;GET MSB OF STARTING ADDRESS 

JP NZ,END ;BYTES WERE TRANSFERRED SO STOP 
LD A,O :ELSE RESTART TIMER 
OUT (TMRMOD),A :RESET 
LD A,lBH 
OUT (TMRMOD),A ;LOAD MODE 
LD A,FFH 
OUT (LMOD),A 
OUT (HMOD),A 
OUT (START), A 
EI 
RETI 

; LSB OF MODULUS 
:MSB OF MODULUS 
;RESTART TIMER 
;REENABLE INTERRUPT 

OUT (STOP),A 
LD HL,MESG2 
LD A,O 

;VALID TIMEOUT SO STOP TIMER AND SET OUTPUT INACTIVE 
;VALID TIMEOUT SO OUTPUT MESG AND STOP 

RST 10H ;OUTPUT TERMINATION MESSAGE 
RST OSH ;RETURN TO DEBUGGER 

DW OOH 
DB 13,10, 'ENTER 16 BIT DESTINATION ADDRESS: ',0 
DB 13,10, 'DOWNLOADING ••• ',13,10,0 
DB 13,10, 'PORT RECEIVER TIMEOUT. DOWNLOAD COMPLETE. ',13,10,0 

The source code for DMARD, DMAWR and the monitor program (MONSOO V1.ASM) are 
available on Dial-A-Helper. The files are located in the \F11 00\NSC800 directory. 

Dial-A-Helper is a service provided by the Microcontroller Applications Group. The Dial-A­
Helper system provides access to an automated information storage and retrieval system 
that may be accessed over standard dial-up telephone lines 24 hours a day. The system 
capabilities include a MESSAGE SECTION (electronic mail) for communicating to and 
from the Microcontroller Applications Group and a FILE SECTION mode that can be used 
to search out and retrieve application data about NSC Microcontrollers. The minimum 
system requirement is a dumb terminal, 300 or 1200 baud modem, and a telephone. 

With a communications package and a PC, the code detailed in this App Note can be 
down loaded from the FILE SECTION to disk for later use. The Dial-A-Helper telephone 
lines are: 

Modem (408) 739-1162 
Voice (408) 721-5582 

For Additional Information, Please Contact Factory 

7-176 

TL/C/10436-15 



Section 8 
Physical Dimensionsl 
Appendices 



Section 8 Contents 
Glossary of Terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 
Physical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 
Bookshelf 
Distributors 

8-2 



Glossary 
In our efforts to be concise and precise, we often invent new words or acronyms to use as shorthand representations of "things" 
that require much longer names if the jargon is not used. Being humans, we then become very impressed with our ability to 
exclude those not in "the know" and another "in" group is formed. This glossary has been developed to help bridge this 
language gap. We know it will help. We hope you will use it. 

Abort-The first step of recovery when an instruction or its operand(s) is not available in main memory. An Abort is initiated by 
the Memory Management Unit (MMU) and handled by the CPU. 

Absolute Address-An address that is permanently assigned to a fixed location in main memory. In assembly code, a pattern 
of characters that identifies a fixed storage location. 

Access Time-The time interval between when a request for information is made and the instant this information is available. 

Access Class-The five Series 32000 access classes are memory read, memory write, memory read-modify-write, memory 
address, and register address. The access class informs the Series 32000 CPU how to interpret a reference to a general 
operand. Each instruction assigns an access class to each of it two operands, which in turn fully defines the action of any 
addressing mode in referencing that operand. 

Accumulator-A register which stores the result of an ALU operation. 

Ada-A high level language designed for the Department of Defense. It gives preference to full English words. It is meant to be 
the standard military language. 

Address-An expression, usually numerical, which designates a specific location in a storage or memory device. 

Address-Data Reglster-A register which may contain either address or data, sometimes referred to as a general-purpose 
register. 

Address Strobe-Control signal used to tell external devices when the address is valid on the external address bus. 

Address Translation-The process by which a logical address emanating from the CPU is transformed into a physical address 
to main memory. This is performed by the Memory Management Unit (MMU) in Series 32000 systems. Logical address to 
Physical address mapping is established by the operating system when it brings pages into main memory. 

Addressing Mode-The manner in which an operand is accessed. Series 32000 CPUs have nine addressing modes: Register, 
Register Relative, Memory Relative, Immediate, Absolute, External, Top-of Stack, Memory Space, and Scaled Indexing. 

Algorithm-A set of procedures to which a given result is obtained. 

Alignment-The issue of whether an instruction must begin on a byte, double byte, or quad byte address boundary. 

ALU-Arithmetic Logic Unit. A computational subsystem which performs the arithmetic and logical operations of a digital 
system. 

Array-A structured data type consisting of a number of elements, all of the same data type, such that each data element can 
be individually identified by an integer index. Arrays represent a basic storag~ data type used in all high-level languages. 

ASCII-(American National Standard Code for Information Interchange, 1968). This standard code uses a character set gener­
ally coded as 7 -bit characters (8-bits when using parity check). Originally defined to allow human readable information to be 
passed to a terminal, it is used for information interchange among data processing systems, communication systems, and 
associated equipment. The ASCII set consists of alphabetic, numeric, and control characters. Synonymous with USASCII. 

Assemble-To prepare a machine language program (also called machine code or object code) from a symbolic language 
program by substituting absolute operation codes for symbolic operation codes and absolute or relocatable addresses for 
symbolic addresses. Machine code is a series of ones and zeros which a computer "understands". 

Assembler-This program changes the programmer's source program (written in English assembly language and understand­
able to the programmer) to the 1's and O's that the machine "understands". In particular, the Assembler converts assembly 
language to machine code. This machine code output is called the OBJECT file. 

Assembly Language-A step up in the language chain. This is a set of instructions which is made up of alpha numeric 
characters which, with study, are understandable to the programmer. Different type of machines have different assembly 
languages, so the assembly language programmer must learn a different set of instructions each time s/he changes machine. 

Associative Cache-A dual storage area where each data entry has an associated "tag" entry. The tags are simultaneously 
compared to the input value (a logical address) in the case of the MMU, and if a matching tag is found, the associated data entry 
is output. An associative cache is present within the MMU in Series 32000 systems to provide logical-to-physical address 
translation. 

Asynchronous Devlce-A device in which the speed of operation is not related to any frequency in the system to which it is 
connected. 

BASIC-This acronym stands for Beginner's All-purpose Symbolic Instruction Code. BASIC is one of the most "English like" of 
the high level languages and is usually the first programming language learned. 

Baud Rate-Data transfer rate. For most serial transmission protocols, this is synonymous with bits-per-second (bps). 

BCD-Binary Coded Decimal. A binary numbering system for coding decimal numbers. A 4-bit grouping provides a binary value 
range from 0000 to 1001, and codes the decimal digits "0" through "9". To count to 9 requires a single 4-bit grouping; to count 
to 99 takes two groupings of 4 bits; to count to 999 takes three groupings of 4 bits, etc. 

Benchmark-In terms of computers, this refers to a software program designed to perform some task which will demonstrate 
the relative processing speed of one computer versus another. 

8-3 



I 

I 

! 

Glossary (Continued) 

Bit-An abbreviation of "binary digit". It is a unit of information represented by either a one or a zero. 

Bit Fleld-A group of bits addressable as a single entity. A bit field is fully specified by the location of its least significant bit and 
its length in bits. In Series 32000 systems, bit fields may be from one to 32 bits in length. 

Branch-A nonsequential flow in a software instruction stream. 

Breakpolnt-A place in a routine specified by an instruction, instruction digit, or other condition, where the software program 
flow will be interrupted by external intervention or by a monitor routine. 

Buffer-An isolating circuit used to avoid reaction of a driven circuit on the corresponding driver circuit. Buffers also supply 
increased current drive capacity. 

Bus-A group of conductors used for transmitting signals or power. 

Bus Cycle-The time necessary to complete one transfer of information requiring the use of external address, data and control 
buses. 

Byte-Eight bits. 

Byte Enable-BEO to BE3. CPU control signals which activate memory banks, each bank providing one byte of data per 
address. 

C-A highly structured high level language developed by Bell Laboratories to optimize the size and efficiency of the program. 
This language has gained much popularity because it allows the programmer to get close to the hardware (low level) as well as 
being a high level language. Before C, the programmer who had to address the hardware had to use assembly language or 
machine code. 

Cache-See Associative Cache. 

Cache Hit-In the MMU, logical-to-physical address translation takes place via the associative cache. For this to happen, the 
addressed page must be resident in physical memory such that a logical address tag is present in the MMU's translation cache. 

Cache Miss-When a logical address is presented to the MMU, and no physical address translation entry is found in the MMU's 
associative cache. 

Cascaded-Stringing together of units to expand the operation of the unit. Interrupt Control Units present in a Series 32000 
system which are in addition the Master ICU are referred to as "cascaded" ICUs; i.e., interrupts cascade from a second-level 
ICU through the master ICU to the CPU. 

Clock-A device that generates a periodic signal used for synchronization. 

Clock Cycle-After making a low-to-high transition, the clock will have completed one cycle when it is about to make another 
low-to-high transition. This time is equal to 1 If where f = the clock frequency. 

COBOL-This acronym stands for "Common Business Oriented Language". It is a language especially good for bookkeeping 
and accounting. 

COFF-COMMON OBJECT FILE FORMAT is a standard way of constructing files developed by AT&T for the express purpose of 
making all files similar. This will help reduce the situation where large files developed by one organization won't run on another 
organization's equipment simply because the software interfaces are different. It provides a great potential for savings in both 
time and money. 

Compile-To take a program written in a High-Level Language such as C, Pascal, or FORTRAN and convert it into an object­
code format which can be loaded into a computer's main memory. During compilation, symbolic HLL statements, called source 
code, are converted into one or more machine instructions which the CPU "understands". A compiler also calls the assemble 
function. 

Complier-The program that converts from Source to Machine Code. The conversion is from a particular high level language to 
machine code. For example, the C compiler will convert a C source program written by a programmer to machine code. This 
machine code output is in the same format as that of the assembler and is also called an OBJECT file. 

CPU-Central Processing Unit. The portion of a computer system that contains the arithmetic logic unit, register file, and other 
control oriented subsystems. It performs arithmetic operations, controls instruction processing, and provides timing signals and 
other housekeeping operations. 

Cross Support-The alternative to using a "Native" development like SYS32 to develop your programs is to use Cross Support 
software. "Native" means that the CPU in the development system is the same as the CPU in the system being developed. 
Cross support software is all of the necessary programs for development that operate on one CPU, but generate code for 
another CPU. Use of the VAX to generate Series 32000 code is a good example of cross support. 

Demand-Paged Virtual Memory-A virtual memory method in which memory is divided into blocks of equal size which are 
referred to as pages. These pages are then moved back and forth between main memory and secondary storage as required by 
the CPU. Demand paging reduces the problem of memory fragmentation which results in unused memory space. 

Dispatch Table-In Series 32000 systems, this is an area of memory which contains interrupt descriptors for all possible 
hardware interrupts and software traps. The interrupt descriptor directs the CPU to the module descriptor for the procedure 
which is designed to handle that particular interrupt. 

Dlsplacement-A numerical offset from a known point of reference. Displacements are used in programming to facilitate 
pOSition independent code, such that a given program can be loaded anywhere in memory. In Series 32000 processors, a 
displacement is contained in the instruction itself. 

8-4 



Glossary (Continued) 

DMA-Direct Memory Access. A method that uses a small processor (DMA Controller) whose sole task is that of controlling 
input-output or data movement. With DMA, data is moved into or out of the system without CPU intervention once the DMA 
controller has been initialized by the CPU and activated. 

Double-Preclslon-With reference to 32000 floating-point arithmetic, a double-precision number has a 52-bit fraction field, 11-
bit exponent field and a sign bit (64-bits total). 

Double Word-Two words, i.e., 32 bits. 

Edltor-A program which allows a person to write and modify text. This program can be as complicated as the situation 
requires, from the very simple line editor to the most complicated word processor. Letters, numbers and unprintable control 
characters are stored in memory so that they can be recalled for modification or printing. The programmer uses this device to 
enter the program into the computer. At this stage, the program is recognizable to both the programmer and the computer as 
lines of English text. This English version of the program is known as the SOURCE. 

Emulate-To imitate one system with another, such that the imitating system accepts the same data, executes the same 
programs, and achieves the same results as the imitated system. 

Exception-An occurrence which must be resolved through CPU intervention. An exception results in the suspension of normal 
program flow. In Series 32000 systems, exceptions occur as a result of a hardware reset, interrupt or software traps. Execution 
of floating-point instructions may also result in occurrences which must be resolved through CPU intervention. 

Exponent-In scientific notation, a numeral that indicates the power to which the base is raised. 

EXEC2-NSC's Real Time Executive for Series 32000. 

FIFO-First-in first-out. A FIFO device is one from which data can be read out only in the same order as it was entered, but not 
necessarily at the same rate. 

Floatlng-Polnt-A method by which computers deal with numbers having a fractional component. In general, it pertains to a 
system in which the location of the decimal/binary point does not remain fixed with respect to one end of numerical expressions, 
but is regularly recalculated. The location of the point is usually given by expressing a power of the base. 

FORTRAN-A high level language written for the scientific community. It makes heavy use of algebraic expressions and 
arithmetic statements. 

FP-Frame Pointer. CPU register which points to a dynamically allocated data area crepted at the beginning of a procedure by 
the ENTER instruction. 

FPU-Floating-Point Unit is a slave processor in Series 32000 systems which implements in hardware all calculations needed to 
support floating-point arithmetic, which otherwise would have to be implemented in software. The NS32081 FPU provides high­
speed floating point instructions for single (32-bit) and double (64-bit) precision. Supports IEEE standard for binary floating point 
arithmetic. Compatible with NS32032, NS32C032, NS32016, NS32C016 and NS3200B CPUs. 

Fragmented-The term used to describe the presence of small, unused blocks of memory. The problem is especially common 
in segmented memory systems, and results in inefficient use of memory storage. 

Frame-A block of memory on the stack that provides local storage for parameters in the current procedure. 

GENIX-The NSC version of the UNIX operating system, ported to work with the Series 32000. It also has all of the necessary 
utilities added so that program development can be accomplished. 

Hardware-Physical equipment, e.g., mechanical, magnetic, electrical, or electronic devices, as opposed to the software 
programs or method in which the hardware is used. 

High Level Language&-These are languages which are not dependent on the type of computer on which they run. A program 
written in a high level language will generally run on any computer for which there is a compiler for that language. This feature 
makes high level languages "Portable", i.e., the same program will run on many different types of computers. A HLL requires a 
compiler or interpreter that translates each HLL statement into a series of machine language instructions for a particular 
machine. 

ICU-Interrupt Control Unit. A memory-mapped microprocessor support chip in Series 32000 systems which handles external 
interrupts as well as additional software traps. The ICU provides a vector to the CPU to identify the servicing software procedure. 

Indexing-In computers, a method of address modification that is by means of index registers. 

Index Reglster-A register whose contents may be added to or subtracted from the operand address. 

Indirect Addressing-Programming method where the initial address is the storage location of a word which is the actual 
address. This Indirect address is the location of the data to be operated upon. 

Instructlon-A statement that specifies an operation and the values or locations of its operands, i.e., it tells the CPU what to do 
and to what. 

Instruction Cycle-The period of time during which a programmed system executes a particular instruction. 

Instruction Fetch-The action of accessing the next instruction from memory, often overlapped by its partial execution. 

Instruction Queue-With Series 32000 CPUs, this is a small area of RAM organized as a FIFO buffer which stores prefetched 
instructions until the CPU is ready to execute them. 

Interpreter-A program which translates HLL statements into machine instructions at run time, i.e., while the program is 
executing, and is co-resident with the user program. 

8-5 • 



~ 
m Glossary (Continued) en o Interrupt-To signal the CPU to stop a software program in such a way that it can be resumed and branch to another section of 
c:; code. Interrupts can be caused by events external or internal to the CPU, and by either software or hardware. 

INTBASE-Interrupt Base Register. In the Series 32000, a 32-bit CPU register which holds the address of the dispatch table 
containing addresses for interrupts and traps. 

ISE-In-System Emulator. A computer system which imitates the operation of another in terms of software execution. In 
microprocessor system development, the ISE takes the place of the microprocessor by means of a connector at the end of an 
umbilical cable. Not only does the ISE perform all the functions of the microprocessor, but it also allows the engineer to debug 
his system by setting breakpoints on various conditions, permits tracing of program flow, and provides substitution memory 
which may be used in place of actual target system memory. 

ISV-Independent Software Vendor. A vendor, independent from National Semiconductor, who ports or develops software for 
Series 32000 components. They in turn sell this software to our customers who are designing Series 32000 based products. 

Kernel-This is the name given to the core of the operating system. Other programs are added to the kernel to provide the 
features of the operating system. The kernel provides control and synchronization. 

Language-A set of characters and symbols and the rules for using them. In our context, it is the "English like" format of the 
instructions which are understood by both the programmer and the computer. 

Library-High level languages as well as assembly language contain many routines which are used over and over again. To 
prevent the programmer from having to write the routine every time it is needed, these routines are stored in libraries to be 
referenced each time they are needed. These libraries are also OBJECT files. 

Linear Address Space-An address space where addresses start at location zero and proceed in a linear fashion (i.e., with no 
holes or breaks) to the upper limit imposed by the total number of bits in a logical address. 

Link Base-In the Series 32000, Module Descriptor entry which points to a table in memory containing entries which reference 
variables or entry points in Modules external to the one presently executing. 

Linker-Large programs are generally broken down to component parts and farmed out to several programmers. Each one of 
these parts is called a MODULE. Each programmer will develop the module using either high level or assembly language, then 
"assemble" assembly language modules or "compile" high level language modules. A programmer tells the linker how to 
connect these modules to make the program run. The linker makes these connections, resolves all questions about data 
needed by one module, but contained in another, finds all library routines, and cleans up any other loose ends. The output from 
the linker is called BINARY file and is the file that will run on the computer. 

Logical Address Space-The range of addresses which a programmer can assign in a software program. This range is 
determined by the length of the computer's address registers. 

LSB-Least Significant Bit. The bit in a string of bits representing the lowest value. 

Machine Code-The code that a computer recognizes. Specifies internal register files and operations that directly control the 
computer's internal hardware. 

Machine Language-The ones and zeros which are "understood" by the machine. This is often called "Binary Code." The 
programmer must be able to understand the bit patterns to be able to decipher the language. Each machine has a unique 
machine language. 

Main Memory-The program and data storage area in a computer system which is physically addressed by the microprocessor 
or MMU address lines. 

Mantissa-In a floating-point number, this is the fractional component. 

Mapping-The process whereby the operating system assigns physical addresses in main memory to the logical addresses 
assigned by the software. 

Memory-Mapped-Referring to peripheral hardware devices which are addressed as if they were part of the computer's 
memory space. They are accessed in the same manner as main memory, i.e., through memory read/write operations. 

Mlcrocode-A sequence of primitive instructions that control the internal hardware of a computer. Their execution is initiated by 
the decoding of a software instruction. Microcode is maintained in special storage and often used in place of hardwired logic. 

Mlcrocomputer-A computer system whose Central Processing Unit is a Microprocessor. Generally refers to a board-level 
product. 

Mlnlcomputer-A "box-level" computer with system capabilities generally between that of a microcomputer and a mainframe. 

MMU-Memory Management Unit. This is a slave processor in Series 32000 which aids in the implementation of demand-paged 
virtual memory. It provides logical to physical address translation and initiates an instruction abort to the CPU when a desired 
memory location is not in main memory. 

MOD-Mod Register. In the Series 32000, a 1S-bit CPU register which holds the address of the Module Descriptor of the 
currently executing software module. 

Module-An independent subprogram that performs a specific function and is usually part of a task, i.e., part of a larger 
program. 

Module Descriptor-In the Series 32000, a set of four 32-bit entries found in main memory. Three are currently defined and 
point to the static data area, link table, and first instruction of the module it describes. The fourth is reserved. 

8-S 



Glossary (Continued) 

Modularlty-A software concept which provides a means of overcoming natural human limitations for dealing with programming 
complexity by specifying the subdivision of large and complex programming tasks into smaller and simpler subprograms, or 
modules, each of which performs some well-defined portion of the complete processing task. 

MSB-Most Significant Bit. The bit in a string of bits representing the highest value. 

NET -Short for NETWORK and describes a number of computers connected to each other via phone or high speed links. A net 
is convenient for exchanging common information in the form of "mail" as well as for data exchange. 

NMI-Nonmaskable Interrupt. A hardware interrupt which cannot be disabled by software. It is generally the highest priority 
interrupt. 

Object Code-Output from a compiler or assembler which is itself executable machine code (or is suitable for processing to 
produce executable machine code). 

Operand-In a computer, a datum which is processed by the CPU. It is referenced by the address part of an instruction. 

Operating System-A collection of integrated service routines used by the computer to control the sequence of programs. The 
operating system consists of software which controls the execution of computer programs and which may provide storage 
assignment, input/output control, scheduling, data management, accounting, debugging, editing, and related services. Their 
sophistication varies from small monitor systems, like those used on boards, to the large, complex systems used on main 
frames. 

Operating System Mode-In this mode, the CPU can execute all instructions in the instruction set, access all bits in the 
Processor Status Register, and access any memory location available to the processor. 

Operator-In the description of an instruction, it is the action to be performed on operands. 

Page Fault-A hardware generated trap used to tell the operating system to bring the missing page in from secondary storage. 

Page Swap-The exchange of a page of software in secondary storage with another page located in main memory. The 
operating system supervises this operation, which is executed by the CPU and involves external devices such as disk and DMA 
controllers. 

Page Table-A 1 K-byte area in main memory containing 256 entries which describe the location and attributes of all pointer 
tables, i.e., a list of pointer table addresses. 

Perlpheral-A device which is part of the computer system and operates under the supervision of the CPU. Peripheral devices 
are often physically separated from the CPU. 

Pascal-A high level language designed originally to teach structured programming. It has become popular in the software 
community and has been expanded to be a versatile language in industry. 

Physical Address-The address presented to main memory, either by the CPU or MMU. 

Pointer Table-A 512-byte page located either in main memory or secondary storage containing 128 entries. Each entry 
describes an individual page of the software program. Each page of the software program may reside in main memory or in 
secondary storage. 

Pop-To read a datum from the top of a stack. 

PORT-To port an operating system is to cause that particular operating system to operate with a defined hardware package. 
GENIX is the NSC version of UNIX which has been ported to SYS32. The operating system for other Series 32000 based 
systems will differ in some degree from SYS32 and the NSC GENIX binary will not operate. It is now necessary to modify GENIX 
to fit the situation caused by the new hardware. The GENIX SOURCE is used because this is the program that is most readily 
understood by the programmer. The source is changed, compiled, and linked to get a new binary for that particular machine. 

Primitive Data Type-A data type which can be directly manipulated by the hardware. With Series 32000, these are integers, 
floating-point numbers, Booleans, BCD digits, and bit fields. 

Procedure-A subprogram which performs a particular function required by a module, i.e., by a larger program; an ordered set 
of instructions that have a general or frequent use. 

Process-A task. 

Program Base-Module Descriptor entry which points to the first instruction in the module being described. 

Program Counter-CPU register which specifies the logical address of the currently executing instruction. 

Protection-The process of restricting a software program's access to certain portions of memory using hardware mecha­
nisms. Typically done at the operating system and page level. 

PSR-Processor Status Register. A 16-bit register on Series 32000 CPU's which contains bits used by the software to make 
decisions and determine program flow. 

Push-to write a datum to the top of a stack. 

Quad word-Four words, i.e., 64 bits. 

Queue-A First-In-First-Out data storage area, in which the data may be removed at a rate different from that at which it was 
stored. 

Real Time-The actual time in human terms, related to a process. In a UNIX system, real time is total elapsed time, CPU time is 
the percent of time a process is actually in the CPU. Sys time is the time spent in system mode, and user time is the time spent in 
user mode. 

8-7 



~ !! Glossary (Continued) 

o Real Time Operating Systems-An operating system which operates with a known and predictable response time limit, so that 
S it can control a physical event. 

Record-A structured data type with multiple elements, each of which may be of a different data type, e.g., strings, arrays, 
bytes, etc. 

Reglster-A temporary storage location, usually in the CPU, which holds digital data. 

Relative Address-The number that specifies the difference between the base address and the absolute address. 

Relocatable-In reference to software programs, this is code which can be loaded into any location in main memory without 
affecting the operation of the program. 

Return Address-The address to which a subroutine call, interrupt or trap subroutine will return after it is finished executing. 

Routlne-A procedure. 

Royalty-Royalty is money paid to the inventor for each item of product sold. A good analogy to use is the music business. Any 
time a song is used, the songwriter is paid a royalty. Think of UNIX as a song and GENIX or SYSTEM V as special arrangements. 
For each shipment of GENIX or SYSTEM V, the customer pays a royalty to NSC who, in turn, pays a royalty to AT&T. 

S8-ln the Series 32000 Static Base Register. Points to the start of the static data area for the currently executing module. 

Secondary Storage-This is generally slow-access, nonvolatile memory such as a hard-disk which is used to store the pages 
of software programs not currently needed by the CPU. 

Segmented Address Space-Term used to describe the division of allocatable memory space into blocks of segments of 
variable size. 

Setup Time-The minimum amount of time that data must be present at an input to ensure data acceptance when the device is 
clocked. 

Slave Processor-A processor which cooperates with the main microprocessor in executing certain instructions from the 
instruction stream. A slave processor generally accelerates certain functions which increases overall system throughput. Exam­
ples of slave processors are the FPU and MMU of Series 32000. 

Software-Programs or data structures that execute instructions or cause instructions to be executed and that will cause the 
computer to do work. 

Software Llcense-NSC does not sell software. Rather, we license the right to use our software. A software license is required 
for all Series 32000 software. We use the license to protect NSC's interests and to assist in honoring our commitment to AT&T. 
The license is also the vehicle which we use to track customers so that updates can be issued in a timely manner. 

Software QI A-It is the charter of the Quality Assurance people to ensure that when a software product reaches the customer 
that it is "bug" free. In the real world, it is impossible to test every combination of functions, so some bugs do get through. The 
QI A engineer develops test programs which rigorously test the product prior to its introduction to the market place. 

SP1-ln the Series 32000, User Stack Pointer. Points to the top of the User Stack and is selected for all stack operations while 
in User Mode. 

SPO-In the Series 32000, Interrupt Stack Pointer. Points to the top of the interrupt stack. It is used by the operating system 
whenever an interrupt or trap occurs. 

Stack-A one-dimensional data structure in which values are entered and removed one datum at a time from a location called 
the Top-of-Stack. To the programmer, it appears as a block of memory and a variable called the Stack Pointer (which points to 
the top of the stack). 

Stack Polnter-CPU register which points to the top of a stack. 

Static Base Reglster-A 32-bit CPU register which points to the beginning of the static data area for the currently executing 
module. 

String-An array of integers, all of the same length. The integers may be bytes, words, or double words. The integers may be 
interpreted in various ways (see ASCII). 

Subroutlne-A self-contained program which is part of a procedure. 

Symmetry-A computer architecture is said to be symmetrical when any instruction can specify any operand length (byte, word 
or double word) and make use of any address-data register or memory location while using any addressing mode. 

Synchronous-Refers to two or more things made to happen in a system at the same time, by means of a common clock 
signal. 

Tag-A label appended to some data entry used In a look-up process whereby the desired datum can be identified by Its tag. 

Task-The highest-level subdivision of a user software program. The largest program entity that a computer's hardware directly 
deals with. 

TeU-Timing Control Unit. A device used to provide system clocks, bus control signals and bus cycle extension capability for 
Series 32000. 

Trap-An internally generated interrupt request caused as a direct and immediate result of the encounter of an event. 

T·State-One clock period. If the system clock frequency is 10 MHz, one T-State will take 100 ns to complete. Operations 
internal and external to the CPU are synchronized to the beginning and middle of the T-States. There are four T-States in a 
normal Series 32000 CPU bus cycle. 

8-8 



Glossary (Continued) 
UNIXTM-An operating system developed at Bell Laboratories in the early 1970s. Software programs that run under UNIX are 
written in the high-level language C, making them highly portable. UNIX systems do not distinguish user programs from operat­
ing system programs in either capability or usage, and they allow users to route the output of one program directly into the input 
of another. This operating is unique and is becoming very popular in the microcomputer world. 

USENET-A net to which UNIX systems in the United States connect. Some systems in Europe and Australia also use this net 
for the purpose of passing information. 
User-A software program. The total set of tasks (instructions) that accomplish a desired result. Tasks are managed by the 
operating system. 

User Mode-Machine state in which the executing procedure has limited use of the instruction set and limited access to 
memory and the PSR. 

uucp-Software which allows UNIX computers to pass information to other UNIX systems. 

Varlable-A parameter that can assume any of a given set of values. 
Vector-Byte provided by the ICU (Interrupt Control Unit) which tells the CPU where within the Descriptor table the descriptor is 
located for the interrupt it has just requested. 

Virtual Address-Address generated by the user to the available address space which is translated by the computer and 
operating system to a physical address of available memory. 
Virtual Memory-The storage space that may be regarded as addressable main storage by the system. The operating system 
maps Virtual addresses into physical (main memory) addresses. The size of virtual memory is limited by the method of memory 
management employed and by the amount of secondary storage available, not by the actual number of main storage locations, 
so that the user does not have to worry about real memory size or allocation. 
VMS-This is the operating system designed by Digital Equipment Corporation for their VAX series of computers. The original 
Series 32000 software was developed on a VAX which was being controlled by the VMS Operating System. 

Walt·State-An additional clock period added to a CPU memory cycle which gives an external memory device additional time to 
provide the CPU with data. Also used by bus arbitration circuitry to hold the CPU in an idle state until access to a shared 
resource is gained. 
Wlnchester-Small, hard-disk media commonly found in personal computers. 

Word-A character string or bit string considered as the primary data entity. For historical reasons, a word is a group of 16 bits 
in Series 32000 systems. 

8-9 • 



en c o 
'iii 
c 
Q) 

E 
is 
1j 

~National 
D Semiconductor All dimensions are in inches (millimeters) 

'~ 24 Lead Hermetic Dual-In-Line Package (D) 
f. NS Package Number D24C 

f--------(~;~~:)--------l 
MAX 

0.568-0.605 

NO.110ENT 
--1~~~r=T""';:;:::;;::;:::;::;:;:::;::;:;:::;;:;:;:::~-r.::'r-r.":T"'"T~JWJ 

0.008-0.015 
(0.203-0.381) -

0.050 ± 0.005 0.165 
(4.191) 
MAX 

0.020-0.060 r (0.508-1.524) 

t 

~ ~
YP 

0.590-0.620 
/14.99-15.75) 

0.005 
(0.127)­

MIN 

0.100 to.Ol0 _I 
(2.540 to.254) 

TVP 

0.150 

/3.810) 
MIN 

~-
(2.489) 

MAX TYP 

0.125-0.200 
/3.175-5.080) 

28 Lead Hermetic Dual-In-Line Package (D) 
NS Package Number D28C 

(36.32) • 

---1 1_._----- 1
.
430 

MAX --------..,~I 
II !! II 25 24 23 zz 21 20 ,. ,. 17 ,. 15 

0.520 MAX 
-- (13.208) SQUARE-

) 
0.605 

(15.37) 

PIN NO. I ~;"'c:::r--=--=~;::;:;::;:;=C;::C;:~~:r""'I:::::r-"I:=-~JMAX IDENT~ 
I 

1 Z 3 4 Ii • 7 • 9 10 11 lZ 13 14 

0.165 
0.050 /4.191) 

TVP (1.270) MAX 

~ II i,~:~::,~ 
I-/~:'~:)REF-I ---1 ~ --j~ 

O.IOOtO.OIO 0.015-0.023 
(2.540 to.254) /0.381-0.584) 

TVP 

8·10 

0.125 
(3.175) 

MIN 

02.C\REV G) 

0.020-0.060 
(0.508-1.524) 

D2&C (REV E) 



40 Lead Hermetic Dual-In-Line Package (D) 
NS Package Number D40C 

1.008 
1-(25.60)---1 
I MAX I 

0.Bl0 
(15.49) 

PIN NO.1 I;:;: ..... ".,.... ....... ~ ..... ".,....~::;::;;:;:::::;:;;::::;:;:::;::;:::;;:;:;::::;:;;;:::;:;;:::;;::;::::;:;;;....,.,.",...,,.,,,....,.,,,...,..,.,,....~JMAX IDENT ., 

0.200 
(5.080) 
MAX r- 0.045 

(1.143) 
MAXTVP ...-------....c========:::::::1===;;;:::==:::;;;;;===:±:±:;;;;;;;;;::--r 0.020-0.0BO 

0.008-0.015 

\

0.203-0.381) 
0.590-0.620 TVP 

1--(14.99-15.75) -/ - ~~~~!~!~TICAL 
REF OUTWARD TVP 

SEATING 
PLANE 

48 Lead Hermetic Dual-In-Line Package (D) 
NS Package Number D48A 

I. 
2.434 

(61.12) MAX 

Cl 41 41 .. 4l 41 41 40 31 ~37 38 36 34 33 U 31 3D 28 21 

D 
jPlN NO. IIDENT 

27 21 25 

• I. 11 12 13 14 11 I. 17 11 1. 20 11 2Z 23 24 

0.110-0.200 

I--.!!!!.. MAX--l (2.794-5.060) 
1 (17.011) 1-1 

8-11 

11 
0.580 0.610 

(14.73) (15.49) 

~ 

0.125 
(3.175) 

MIN 

D<OC(AEVH) 

LEADS 
VERTICAL 
TO U'MAX 
OUTWARD 
TVP 

II 



en 
c o 
'en c 
Q) 

E 
C 
ca 
(.) 

'~ 
.c 
D.. 

44 Leadless Chip Carrier, Type C 
NS Package Number E44A 

~ 45° (REF) (0.508) x 
0.065-0.076 

~>I"'V"'V"' __ ",",,.(1,,,'6,,,51"'-1r1,")l r 
~D 

BonOM VIEW 

68 Leadless Chip Carrier, Type B 
NS Package Number E68B 

TOP VIEW 

0.040 

i1.01ii 
x45'TYP 

J 

8·12 

TOP VIEW SIDE 
VIEW 

I-- 0.050 11 (1~~) 
0.038±0.OO3 

1r-~t 
-'ULII II II 

PIN NO.1 INOEX 

1_ 0.OB5tO.010 
(2.159±0.254) 

t 
0.008 

(0.203) 
HAD 68 PLe's 

BonOM VIEW 

t 
0.050 ± O.OOB 

(1.270±0.203) 
TYP 

JL~ 
(1.905±0.254) 

TYP 

E44A (REV C) 

SlOE 
VIEW 

E68BIAEVCI 



24 Lead Molded Dual-In-Line Package (N) 
NS Package Number N24A 

95"i5" 

f-- 0.625 ~:~: _ .-1 

(IS 875 +O.635)~ 
. -0.381 

0.062 
(1.675) 

RAD 

PIN NO. IIDENT 

1.243-1.270 
t-------(31.57_32.26)--------l 

, 2 

DOTIED OUTLINES 
REFLECT ALTERNATE 

MOLDED BODY CONFIGURATION 

0.030 

0.009-0.015 ~ 
(0.229-0.311) 

0.075 ±0.015 

(1.905 ±0.3all I--

28 Lead Molded Dual-In-Line Package (N) 
NS Package Number N28B 

PIN NO. I 10ENT 

0.160 ±O.OOS 

N24A. (REV E) 

1+-______ 1.393-I.UO ______ -.1 
(35.38 - 38.07) 

0.145-0.210 

.... _ .. ". ··"'S_I'334) 

(0.229-0.381) 
O.050±O.OII 

(1.270±0.381) 

8-13 • 



U) 
c 
o 

"iii 
c 
Q) 

E 
i:3 
co 
(.) 

"~ 
.c 
c.. 

40 Lead Molded Dual-In-Line Package (N) 
NS Package Number N40A 

I-------------(~;~::=:z~~~)-----------~·I 
%1 

0.062 
(1.575) 

RAD 
1 C±) e 0.550 ±0.005 

~~~~~~~~=r.rT~~~~~~~~~~~~-r~~~~~::Jl·'UJ PIN NO. 110ENT 

95't5'

I--- 0.625~:~~: ---l 0.075tO.015

- (15.875 ~:~:~) (1.905 to.381)

48 Lead Molded Dual-In-Line Package (N)
NS Package Number N48A .

~
95'±L' 0.580 114.73) MIN

0.009-0.015
~

0.625 ~:::~~
(15.66~:::)

8-14

N40AIAEVE)

68 Pin Grid Array, Cavity Down
NS Package Number U68D

~[
1.112

,-----+-------+lI
CHIP

CAPACITDlI
1ru:1

84 Pin Grid Array, Ceramic, Cavity Down
NS Package Number U84C

I~

I.DOI
iD.iiZi WHO.

WIATOR
MOUNTINQ

'AD

8-15

1---- I~U:::~~I----J
0.5&7

.--'jii.'iO)~
MAX
1.&34

-illTai
MAX

@)@)@)@)@)@)@)@)@)
K@)@®@)@)@)@)@)@@@)

@)@) @)@)
@)@) @)@)
@)@) @)@)
@)@) @)@)

O.laD 12.MOI
TVP

0.!90
IIUIlI

MAX

om
IIUTI

MAX

~~J . r~o~
@) @) =@)=@)=F==------L

I@)@@)@)@)@)@)@)@)@
@)@)@)@)@)@)@)@)@)

1 I 3 4 I I T I I II

~-------I~~::::I-----~

@)o
• @) (0 0

L@)@) @)@)

K@)@) D @)@) J @)@) @)@)
K@)@) @)@)
a @@ @@ (~~~)
F@)@) @)@)
E@)@) @)@)
O@)@) @)@)
c@)@)o @)@)
1@)0@)@)@)@)@)@)@)@)@0@)

@)@)@@@)@@@ @@
1 I 3

ORIEHTATlOHPtH

0.074-0.091
11.1711-2.4311

!

0.111-0.151
13.122-3.1351

1111

0.011-1.020

~

•

en
c
o

"iii
c
Q)

E
C
'ii
Co)

"iii
>­.c
Q.

125 Pin Grid Array, Cavity Up
NS Package Number U 125A

I--(~'~!:~}I-

f4-i~7'~!::~:'I--

0.1:10 r(~::11
3.1101 IPLCS

TYI' ~

~
I

!
LOlo

'r·
Z541

1.'3 1010
(-'0 .• --

'r·Z541

~I ~ CHI,cmCITO!

I
TY

'
IPLCS

(:::!::~I -l f--
ZPLCS

172 Pin Grid Array, Cavity Down
NS Package Number U 1728

UOOtO
(35.&UD.

mNDOFFPlN

D.m
iiii71
MAl

'PLCS '-""""::~-!t-=~-=I-*--=-=-:!!:-=-=-"""" @@@@@@@@@@@@
I @ 0 @@@@@@@@@@@@ ORIEICTATION~N
C@@ @@@@@@@@o@@

D@@@D

III

@@@ E @@@ @@@) 01:10

F @@@ @@)@ (1~1

G@@@ @@@
H@@@ @@)@
J@@@ @@)@
l@@@ @@@
l@@@ @@@
M@@ @)@@@@@@)@ @)@
N@@@@@@@@@@@@)@O

@@@@@@@@@@@O
,. 1312 11 10 I I 7 • I

I--------I~·:=~~:I ,:i'lth·U,------I
-~-- &.;'"

.. eK.!m!.
11.1011
'PLe.

D
CHIP_Clm
'PLeI

0.'01-1.1.
1Z -UZl)

~ t

--5 ~ ~T~ ~ TI ~ ~ ~ rr~ H~
- -I~:=I ~

.PLel

All1111U

8·16

1 I I •• I , I 111 11 11 11 ,. "

175 Pin Grid Array, Cavity Down (Type A)
NS Package Number U 175A

[Fr.&&i

M"3J ~.u
..1!!!.
12l.IU,IIlU-'"

~ ~
~II==========~II==~~~ D ==t=n,=::''',=-I::...t..'' MU

.5·)(I:.~:)

a 165:t1DM

(4 .. t:=nr--~--~==========~~~~~~-L

JI_I:~:
~ .. ~~

44 Lead Plastic Chip Carrier (V)
NS Package Number V44A

8·17

---(2· ... ~1·.u

_--~.AI

I @@@@@@@@@@@@@@@@
• @@@~@@@@@@@@~@@@
, @@@~@@@@@@@@~@@@
• @@@~@@@@@@@@~@@@
M @@@
L @@@
, @@@
, @@@
• @@@
• @@@
, @@@
I @@@
D@@ @ ~@=:@=:=:=:@=:@=:=:=:@=:@=:=:=:@=:@=:=:=:@=:@~'@~o ~@~@~o 9=~-.l.
c @@@@@@@@@@@@@@@o
• @@@@@@@@@@@@@@@@
.@@@@@@@@@@@@@@@

~-----(~~!!.~I------I

V44A(AEVHI

en c o
'iii
c
Q)

E
is
ca
(.)

'~
.c
a.

68 Lead Plastic Chip Carrier (V)
NS Package Number V6SA

TU

•

0.826 Q (20.181

Hl'" .. '"
(6.362)

DIAHOM
PEDESTAL

C4 •. ~

43

~.I--___ 0.828 ___ --.
(20.181

NOM

0.020
iD.5Oii

MIN

8-18

0.950
(24.13)
REF sa

0.985-0.995
(25.02-25.27)

saUARE

Ve3AIREVGI

~National
~ Semiconductor
Bookshelf of Technical Support Information
National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical
literature.

This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and
section contents for each book.

Please contact your local National sales office for possible complimentary copies. A listing of sales offices follows this
bookshelf.

We are interested in your comments on our technical literature and your suggestions for improvement.

Please send them to:

Technical Communications Dept. M/S 16300
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, CA 95052-8090

ALS/AS LOGIC DATABOOK-1987
Introduction to Bipolar Logic • Advanced Low Power Schottky • Advanced Schottky

ASIC DESIGN MANUAL/GATE ARRAYS & STANDARD CELLS-1987
SSI/MSI Functions • Peripheral Functions. LSIIVLSI Functions • Design Guidelines • Packaging

CMOS LOGIC DATABOOK-1988
CMOS AC Switching Test Circuits and Timing Waveforms. CMOS Application Notes. MM54HC/MM74HC
MM54HCT/MM74HCT· CD4XXX. MM54CXXX/MM74CXXX. Surface Mount

DATA ACQUISITION LINEAR DEVICES-1989
Active Filters • Analog Switches/Multiplexers. Analog-to-Digital Converters. Digital-to-Analog Converters
Sample and Hold • Temperature Sensors • Voltage Regulators • Surface Mount

DATA COMMUNICATION/LAN/UART DATABOOK-1989
LAN IEEE 802.3· High Speed Serial/IBM Data Communications • ISDN Components. UARTs
Modems. Transmission Line Drivers/Receivers

DISCRETE SEMICONDUCTOR PRODUCTS DATABOOK-1989
Selection Guide and Cross Reference Guides • Diodes • Bipolar NPN Transistors
Bipolar PNP Transistors • JFET Transistors. Surface Mount Products. Pro-Electron Series
Consumer Series • Power Components • Transistor Datasheets • Process Characteristics

DRAM MANAGEMENT HANDBOOK-1989
Dynamic Memory Control • Error Detection and Correction. Microprocessor Applications for the
DP8408A109A/17118/19/28/29. Microprocessor Applications for the DP8420Al21A122A
Microprocessor Applications for the NS32CG821

EMBEDDED SYSTEM PROCESSOR DATABOOK-1989
Embedded System Processor Overview • Central Processing Units. Slave Processors. Peripherals
Development Systems and Software Tools

F100K DATABOOK-1989
Family Overview • F1 OOK Datasheets • 11 C Datasheets • 10K and 1 OOK Memory Datasheets
Design Guide • Circuit Basics • Logic Design. Transmission Line Concepts. System Considerations
Power Distribution and Thermal Considerations. Testing Techniques. Quality Assurance and Reliability

FACTTM ADVANCED CMOS LOGIC DATABOOK-1989
Description and Family Characteristics • Ratings, Specifications and Waveforms
Design Considerations • 54AC17 4ACXXX • 54ACT 17 4ACTXXX

FAST® ADVANCED SCHOTTKY TTL LOGIC DATABOOK-Rev. 1-1988
Circuit Characteristics. Ratings, Specifications and Waveforms. Design Considerations • 54F174FXXX

FAST® APPLICATIONS HANDBOOK-REPRINT
Reprint of 1987 Fairchild FAST Applications Handbook
Contains application information on the FAST family: Introduction • Multiplexers. Decoders. Encoders
Operators. FIFOs. Counters. TTL Small Scale Integration. Line Driving and System Design
FAST Characteristics and Testing • Packaging Characteristics. Index

GENERAL PURPOSE LINEAR DEVICES DATABOOK-1989
Continuous Voltage Regulators • Switching Voltage Regulators • Operational Amplifiers • Buffers • Voltage Comparators
Instrumentation Amplifiers • Surface Mount

GRAPHICS HANDBOOK-1989
Advanced Graphics Chipset. DP8500 Development Tools. Application Notes

INTERFACE DATABOOK-1988
Transmission Line Drivers/Receivers • Bus Transceivers • Peripheral Power Drivers • Display Drivers
Memory Support • Microprocessor Support • Level Translators and Buffers. Frequency Synthesis • Hi-Rei Interface

LINEAR APPLICATIONS HANDBOOK-1986
The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuit
applications using both monolithic and hybrid circuits from National Semiconductor.
Individual application notes are normally written to explain the operation and use of one particular device or to detail various
methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by
keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index.

LS/S/TTL DATABOOK-1989
Contains former Fairchild Products
Introduction to Bipolar Logic • Low Power Schottky • Schottky • TTL • TTL-Low Power

MASS STORAGE HANDBOOK-1989
Rigid Disk Pulse Detectors • Rigid Disk Data Separators/Synchronizers and ENDECs
Rigid Disk Data Controller. SCSI Bus Interface Circuits • Floppy Disk Controllers. Disk Drive Interface Circuits
Rigid Disk Preamplifiers and Servo Control Circuits • Rigid Disk Microcontroller Circuits • Disk Interface Design Guide

MEMORY DATABOOK-1988
PROMs, EPROMs, EEPROMs • Flash EPROMs and EEPROMs • TTL I/O SRAMs
ECL I/O SRAMs • ECL I/O Memory Modules

MICROCONTROLLER DATABOOK-1989
COP400 Family • COP800 Family • COPS Applications • HPC Family • HPC Applications
MICROWIRE and MICROWIRE/PLUS Peripherals • Microcontroller Development Tools

MICROPROCESSOR DATABOOK-1989
Series 32000 Overview • Central Processing Units • Slave Processors • Peripherals
Development Systems and Software Tools • Application Notes • NSC800 Family

PROGRAMMABLE LOGIC DATABOOK & DESIGN MANUAL-1989
Product Line Overview • Datasheets • Designing with PLDs • PLD Design Methodology • PLD Design Development Tools
Fabrication of Programmable Logic • Application Examples

REAL TIME CLOCK HANDBOOK-1989
Real Time Clocks and Timer Clock Peripherals • Application Notes

RELIABILITY HANDBOOK-1986
Reliability and the Die • Internal Construction. Finished Package. MIL-STD-883. MIL-M-38510
The Specification Development Process • Reliability and the Hybrid Device • VLSIIVHSIC Devices
Radiation Environment • Electrostatic Discharge • Discrete Device. Standardization
Quality Assurance and Reliability Engineering • Reliability and Documentation • Commercial Grade Device
European Reliability Programs • Reliability and the Cost of Semiconductor Ownership
Reliability Testing at National Semiconductor. The Total Militaryl Aerospace Standardization Program
883B/RETSTM Products. MILS/RETSTM Products. 883/RETSTM Hybrids. MIL-M-38510 Class B Products
Radiation Hardened Technology. Wafer Fabrication. Semiconductor Assembly and Packaging
Semiconductor Packages. Glossary of Terms. Key Government Agencies. ANI Numbers and Acronyms
Bibliography. MIL-M-38510 and DESC Drawing Cross Listing

SPECIAL PURPOSE LINEAR DEVICES DATABOOK-1989
Audio Circuits. Radio Circuits • Video Circuits • Motion Control Circuits • Special Function Circuits
Surface Mount

TELECOMMUNICATIONS-1987
Line Card Components • Integrated Services Digital Network Components • Modems
Analog Telephone Components • Application Notes

NOTES

NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS
ALABAMA Sunnyvale GEORGIA MASSACHUSETTS

Huntsville Arrow Electronics Norcross Andover
Arrow Electronics (408) 745-6600 Arrow Electronics Bell Industries
(205) 837-6955 Bell Industries (404) 449-8252 (508) 474-8880
Bell Industries (408) 734-8570 Bell Industries Lexington
(205) 837-1074 Hamilton/ Avnet (404) 662-0923 Pioneer Standard
Hamilton/ Avnet (408) 743-3355 Hamilton/ Avnet (617) 861-9200
(205) 837-7210 Time Electronics (404) 447-7500 Zeus Components
Pioneer Technology (408) 734-9888 Pioneer Technology (617) 863-8800
(205) 837-9300 Thousand Oaks (404) 448-1711 Norwood

ARIZONA Bell Industries ILLINOIS Gerber Electronics
Chandler (805) 499-6821 Addison (617) 769-6000

Hamilton/ Avnet Torrance Pioneer Electronics Peabody
(602) 231-5100 Time Electronics (312) 437-9680 Hamilton/ Avnet

Phoenix (213) 320-0880 Bensenville (508) 531-7430

Arrow Electronics Tustin Hamilton/ Avnet Time Electronics
(602) 437-0750 Arrow Electronics (312) 860-7780 (508) 532-6200

Tempe (714) 838-5422 Elk Grove Village Wilmington
Anthem Electronics Yorba Linda Anthem Electronics Anthem Electronics
(602) 966-6600 Zeus Components (312) 640-6066 (508) 657-5170

Bell Industries (714) 921-9000 Bell Industries Arrow Electronics
(602) 966-7800 COLORADO (312) 640-1910 (508) 658-0900

CALIFORNIA Englewood Itasca MICHIGAN
Agora Hills Anthem Electronics Arrow Electronics Ann Arbor

Zeus Components (303) 790-4500 (312) 250-0500 Arrow Electronics
(818) 889-3838 Arrow Electronics Urbana (313) 971-8220

Anaheim (303) 790-4444 Bell Industries Bell Industries
Time Electronics Hamilton/Avnet (217) 328-1077 (313) 971-9093

(714) 934-0911 (303) 799-7800 Wood Dale Grand Rapids
Chatsworth Wheatridge Time Electronics Arrow Electronics

Anthem Electronics Bell Industries (312) 350-0610 (616) 243-0912

(818) 700-1000 (303) 424-1985 INDIANA Hamilton/ Avnet
Arrow Electronics CONNECTICUT Carmel (616) 243-8805

(818) 701-7500 Cheshire Hamilton/ Avnet Pioneer Standard
Hamilton Electro Sales Time Electronics (317) 844-9333 (616) 698-1800

(818) 700-6500 (203) 271-3200 Fort Wayne Livonia
Time Electronics Danbury Bell Industries Pioneer Standard
(818) 998-7200 Hamilton/ Avnet (219) 423-3422 (313) 525-1800

Costa Mesa (203) 797-2800 Indianapolis Novi
Avnet Electronics Meriden Advent Electronics Inc. Hamilton/ Avnet
(714) 754-6050 Anthem Electronics (317) 872-4910 (313) 347-4720

Hamilton Electro Sales (203) 237-2282 Arrow Electronics Wyoming
(714) 641-4159 Norwalk (317) 243-9353 R. M. Electronics. Inc.

Garden Grove Pioneer Standard Bell Industries (616) 531-9300

Bell Industries (203) 853-1515 (317) 634-8200 MINNESOTA
(714) 895-7801 Wallingford Pioneer Standard Eden Prairie

Gardena Arrow Electronics (317) 849-7300 Anthem Electronics
Bell Industries (203) 265-7741 IOWA (612) 944-5454
(213) 515-1800 FLORIDA Cedar Rapids Pioneer Standard
Hamilton/ Avnet Altamonte Springs Advent Electronics (612) 944-3355
(213) 217-6751 Bell Industries (319) 363-0221 Edina

Irvine (407) 339-0078 Arrow Electronics Arrow Electronics
Anthem Electronics Pioneer Technology (319) 395-7230 (612) 830-1800
(714) 768-4444 (407) 834-9090 Bell Industries Minnetonka

Ontario Clearwater (319) 395-0730 Hamilton/ Avnet
Hamilton/ Avnet Pioneer Technology Hamilton/ Avnet (612) 932-0600
(714) 989-4602 (813) 536-0445 (319) 362-4757 MISSOURI

Rocklin Deerfield Beach Chesterfield
Anthem Electronics KANSAS
(916) 624-9744

Arrow Electronics Lenexa Hamllton/ Avnet
(305) 429-8200 Arrow Electronics (314) 537-1600

Bell Industries Bell Industries SI. Louis
(916) 652-0414 (305) 421-1997

(913) 541-9542
Arrow Electronics

Sacramento Hamilton/ Avnet

Hamilton/ Avnet
Pioneer Technology (913) 888-8900 (314) 567-6888

(916) 925-2216
(305) 428-8877 Pioneer Standard Time Electronics

Fort Lauderdale (913) 492-0500 (314) 391-6444
San Diego Hamilton/ Avnet

Anthem Electronics (305) 971-2900 MARYLAND NEW HAMPSHIRE
(619) 453-9005 Lake Mary Columbia Hudson
Arrow Electronics Arrow Electronics Anthem Electronics Bell Industries
(619) 565-4800 (407) 333-9300 (301) 995-6640 (603) 882-1133

Hamilton/ Avnet Largo Arrow Electronics Manchester

(619) 571-7510 (301) 995-0003 Arrow Electronics
Bell Industries (603) 668-6968 Time Electronics (813) 541-4434 Hamilton/ Avnet

(619) 586-1331 (301) 995-3500 Hamilton/ Avnet
Oviedo (603) 624-9400 San Jose Zeus Components Time Electronics

Anthem Electronics (407) 365-3000 (301) 964-3090
(408) 453-1200 SI. Petersburg Zeus Components
Pioneer Technology Hamilton/ Avnet (301) 997-1118
(408) 954-9100 (813) 576-3930 Gaithersburg
Zeus Components Winter Park Pioneer Technology
(408) 998-5121 Hamilton/ Avnet (301) 921-0660

(407) 628-3888

NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS (Continued)

NEW JERSEY NORTH CAROLINA Pittsburgh WISCONSIN
Cherry Hili Charlotte Hamilton! Avnet Brookfield

Hamilton! Avnet Pioneer Technology (412) 281·4150 Arrow Electronics
(609) 424·0100 (704) 527·8188 Pioneer (414)792·0150

Fairfield Time Electronics (412) 782·2300 Mequon
Anthem Electronics (704) 522·7600 TEXAS Taylor Electric
(201) 227·7960 Durham Austin (414) 241·4321
Hamilton! Avnet Pioneer Technology Arrow Electronics Waukesha
(201) 575·3390 (919) 544·5400 (512) 835·4180 Bell Industries

Marlton Raleigh Hamilton! Avnet (414) 547·8879
Arrow Electronics Arrow Electronics (512) 837·8911 Hamilton!Avnet
(609) 596·8000 (919) 876·3132 Pioneer Standard (414) 784-4516

Parsippany Hamilton! Avnet (512) 835·4000 CANADA
Arrow Electronics (919) 878·0810 Time Electronics WESTERN PROVINCES
(201) 538·0900 Winston·Salem (512) 399·3051 Burnaby

Pine Brook Arrow Electronics Carrollton Hamilton! Avnet
Nu Horizons Electronics (919) 725·8711 Arrow Electronics (604) 437·6667
(201) 882·8300 OHIO (214) 380·6464 Semad Electronics
Pioneer Standard Centerville Time Electronics (604) 420·9889
(201) 575·3510 Arrow Electronics (214) 241·7441 Calgary
Time Electronics (513) 435·5563 Dallas Hamilton! Avnet
(201) 882·4611 Bell Industries Hamilton! Avnet (403) 250·9380

NEW MEXICO (513) 435·8660 (214) 404·9906 Semad Electronics
Albuquerque Bell Industries·Military Pioneer Standard (403) 252·5664

Alliance Electronics Inc. (513) 434·8231 (214) 386·7300 Zentronics
(505) 292·3360 Cleveland Houston (403) 272·1021
Arrow Electronics Pioneer Arrow Electronics Edmonton
(505) 243-4566 (216) 587·3600 (713) 530·4700 Zentronics
Bell Industries Dayton Pioneer Standard (403) 468·9306
(505) 292·2700 Hamilton! Avnet (713) 988·5555 Richmond
Hamilton! Avnet (513) 439·6700 Richardson Zentronics
(505) 765·1500 Pioneer Standard Anthem Electronics (604) 273·5575

NEW YORK (513) 236·9900 (214) 238·7100 Saskatoon
Amityville Zeus Components Zeus Components Zentronics

Nu Horizons Electronics (914) 937·7400 (214) 783·7010 (306) 955·2207

(516) 226·6000 Solon Stafford Winnipeg

Binghamton Arrow Electronics Hamilton! Avnet Zentronics

Pioneer (216) 248·3990 (713) 240-7733 (204) 694·1957

(607) 722·9300 Hamilton! Avnet UTAH EASTERN PROVINCES
Buffalo (216) 831·3500 Midvale Brampton

Summit Electronics Westerville Bell Industries Zentronics
(716) 887·2800 Hamilton! Avnet (801) 255·9611 (416) 451·9600

Fairport (614) 882-7004 Salt Lake City Mississauga
Pioneer Standard OKLAHOMA Anthem Electronics Hamilton! Avnet
(716) 381·7070 Tulsa (801) 973·8555 (416) 677-7432
Time Electronics Arrow Electronics Arrow Electronics Nepean
(716) 383·8853 (918) 252·7537 (801) 973-6913 Hamilton! Avnet

Hauppauge Hamilton! Avnet Hamilton! Avnet (613) 226·1700
Anthem Electronics (918) 252·7297 (801) 972-4300 Zentronics
(516) 273·1660 Radio Inc. West Valley (613) 226·8840
Arrow Electronics (918) 587-9123 Time Electronics Ottawa
(516) 231·1000 OREGON (801) 973·8181 Semad Electronics
Hamilton! Avnet Beaverton WASHINGTON (613) 727·8325
(516) 434·7413 Almac-Stroum Electronics Bellevue Pointe Claire
Time Electronics (503) 629·8090 Almac·Stroum Electronics Semad Electronics
(516) 273·0100 Anthem Electronics (206) 643·9992 (514) 694·0860

Port Chester (503) 643·1114 Bothell SI. Laurent
Zeus Components Arrow Electronics Anthem Electronics Hamilton! Avnet
(914) 937-7400 (503) 645·6456 (206) 483·1700 (514) 335-1000

Rochester Hamilton! Avnet Kent Zentronics
Arrow Electronics (503) 627-0201 Arrow Electronics (514) 737·9700
(716) 427-0300 Lake Oswego (206) 575·4420 Willowdale
Hamilton! Avnet Bell Industries Redmond ElectroSonic Inc.
(716) 475·9130 (503) 635·6500 Hamilton! Avnet (416) 494-1666
Summit Electronics

PENNSYLVANIA (206) 881·6697
(716) 334-8110

Ronkonkoma Horsham

Zeus Components Anthem Electronics

(516) 737-4500 (215) 443-5150

Syracuse Pioneer Technology

Hamilton! Avnet (215) 674·4000

(315) 437-2641 King of Prussia

Time Electronics Time Electronics

(315) 432·0355 (215) 337·0900

Westbury Monroeville

Hamilton! Avnet Export Div. Arrow Electronics

(516) 997-6868 (412) 856·7000

Woodbury
Pioneer Electronics
(516) 921-8700

SALES OFFICES

ALABAMA FLORIDA MICHIGAN ONTARIO
Huntsville Boca Raton Grand Rapids Mississauga

(205) 721-9367 (407) 997-8133 (616) 940-0588 (416) 678-2920

ARIZONA Orlando W. Bloomfield Nepean

Tempe (305) 629-1720 (313) 855-0166 (613) 596-0411

(602) 966-4563 SI. Petersburg MINNESOTA OREGON

CALIFORNIA
(813) 577-1380 Bloomington Portland

Inglewood GEORGIA (612) 854-8200 (503) 639-5442

(213) 645-4226 Norcross NEW JERSEY PENNSYLVANIA
Roseville (404) 441-2740 Paramus Horsham

(916) 766-5577 ILLINOIS (201) 599-0955 (215) 672-6767
San Diego Schaumburg NEW MEXICO PUERTO RICO

(619) 567-0666 (312) 397-8777 Albuquerque Rio Piedras
Santa Clara INDIANA (505) 884-5601 (809) 758-9211

(408) 562-5900 Carmel NEW YORK QUEBEC Tustin (317) 843-7160 Lachine (714) 259-8880 Fairport
Fort Wayne (716) 223-7700 (514) 636-8525 Woodland Hills (219) 484-0722

(818) 668-2602 Liverpool TEXAS
IOWA (315) 451-9091 Austin COLORADO Cedar Rapids Melville (512) 346-3990 Boulder (319) 395-0090 (516) 351-1000

(303) 440-3400 Houston

Colorado Springs KANSAS Wappinger Falls (713) 771-3547

(303) 578-3319 Overland Park (914) 298-0680 Richardson

Englewood (913) 451-4402 NORTH CAROLINA (214) 234-3811

(303) 790-8090 MARYLAND Cary UTAH

CONNECTICUT Hanover (919) 481-4311 Salt Lake City

Hamden (301) 796-8900 OHIO (801) 322-4747

(203) 268-1560 MASSACHUSETTS Dayton WASHINGTON
Burlington (513) 435-6886 Bellevue

(617) 273-3170 Dublin (206) 453-9944
(614) 766-3679

WISCONSIN Independence
Brookfield (216) 524-5577

(414) 782-1818

~National
~ Semiconductor

~National
~ Semiconductor

