400071

Semiconductor

Microprocessor
Databook

National
\
|
\
|

* Series 32000
* NSC800 Family

Electronic Distribution Group
1161 N. Fairoaks Avenue
Sunnyvale, California 94089
(408) 734-8570
_“ FAX NO. (408) 734-8875

." BELL INDUSTRIES

A Corporate Dedication to
Quality and Reliability

National Semiconductor is an industry leader in the
manufacture of high quality, high reliability integrated
circuits. We have been the leading proponent of driv-
ing down IC defects and extending product lifetimes.
From raw material through product design, manufac-
turing and shipping, our quality and reliability is second
to none.

We are proud of our success . . . it sets a standard for
others to achieve. Yet, our quest for perfection is on-
going so that you, our customer, can continue to rely
on National Semiconductor Corporation to produce
high quality products for your design systems.

o,

Charles E. Sporck
President, Chief Executive Officer
National Semiconductor Corporation

Wir fiihlen uns zu Qualitat und
Zuverldssigkeit verpflichtet

National Semiconductor Corporation ist fihrend bei der Her-
stellung von integrierten Schaltungen hoher Qualitdt und
hoher Zuverldssigkeit. National Semiconductor war schon
immer Vorreiter, wenn es galt, die Zahl von IC Ausféllen zu
verringern und die Lebensdauern von Produkten zu verbes-
sern. Vom Rohmaterial iber Entwurf und Herstellung bis zur
Auslieferung, die Qualitdt und die Zuverl&ssigkeit der Pro-
dukte von National Semiconductor sind untibertroffen.

Wir sind stolz auf unseren Erfolg, der Standards setzt, die
fiir andere erstrebenswert sind. Auch ihre Anspriiche steig-
en stédndig. Sie als unser Kunde kénnen sich auch weiterhin
auf National Semiconductor verlassen.

La Qualité et La Fiabilité:

Une Vocation Commune Chez National
Semiconductor Corporation

National Semiconductor Corporation est un des leaders in-
dustriels qui fabrique des circuits intégrés d’une trés grande
qualité et d’une fiabilité exceptionelle. National a été le pre-
mier & vouloir faire chuter le nombre de circuits intégrés
défectueux et a augmenter la durée de vie des produits.
Depuis les matiéres premiéres, en passant par la concep-
tion du produit sa fabrication et son expédition, partout la
qualité et la fiabilité chez National sont sans équivalents.

Nous sommes fiers de notre succés et le standard ainsi
défini devrait devenir I'objectif & atteindre par les autres so-
ciétés. Et nous continuons & vouloir faire progresser notre
recherche de la perfection; il en résulte que vous, qui étes
notre client, pouvez toujours faire confiance & National
Semiconductor Corporation, en produisant des systémes
d’une trés grande qualité standard.

Un Impegno Societario di Qualita e
Affidabilita

National Semiconductor Corporation & un’industria al ver-
tice nella costruzione di circuiti integrati di alta qualita ed
affidabilita. National & stata il principale promotore per I'ab-
battimento della difettosita dei circuiti integrati e per I'allun-
gamento della vita dei prodotti. Dal materiale grezzo attra-
verso tutte le fasi di progettazione, costruzione e spedi-
zione, la qualita e affidabilita National non é seconda a nes-
suno.

Noi siamo orgogliosi del nostro successo che fissa per gli
altri un traguardo da raggiungere. Il nostro desiderio di per-
fezione & d'altra parte illimitato e pertanto tu, nostro cliente,
puoi continuare ad affidarti a National Semiconductor Cor-
poration per la produzione dei tuoi sistemi con elevati livelli
di qualita.

A dgd

Charles E. Sporck

President, Chief Executive Officer
National Semiconductor Corporation

MICROPROCESSOR
DATABOOK

® Series 32000
e NSC800

1989 Edition

Series 32000 Overview
CPU—Central Processing Units
Slave Processors

Peripherals

Development Systems and
Software Tools

Application Notes
NSC800

ENEEEENERE

Physical Dimensions/Appendices

TRADEMARKS

Following is the most current list of National Semiconductor Corporation’s trademarks and registered trademarks.

Abuseable™
Anadig™
ANS-R-TRANTM
APPST™™
ASPECT™
Auto-Chem Deflasher™
BCP™
BI-FET™
BI-FET II™
BI-LINET™
BIPLANTM
BLC™™
BLX™™
Brite-Lite™
BTL™
CheckTrack™
CIM™
CIMBUS™
CLASIC™
Clocks»Chek™
COMBO™
COMBO I™
COMBO IITm
COPST™ microcontrollers
Datachecker®
DENSPAK™™
DIB™
Digitalker®
DISCERN™
DISTILL™
DNR®
DPYM™
ELSTART™™
Embedded System
Processor™
E-Z-LINKT™
FACT™™

FAIRCAD™
Fairtech™
FAST®

5-Star Service™
GENIX™
GNXT™
HAMR™
HandiScan™
HEX 3000™™
HPC™™

13L®

ICM™
INFOCHEX™™
Integral ISET™
Intelisplay™
ISE™

ISE/06T™
ISE/08™
ISE/16™
ISE32™
ISOPLANARTM
ISOPLANAR-Z™
KeyScan™
LMCMOS™
M2CMOST™
Macrobus™
Macrocomponent™
MAXI-ROM@®
Meats”Chek™
MenuMaster™
Microbus™ data bus
MICRO-DAC™
ptalker™
Microtalker™
MICROWIRE™

MICROWIRE/PLUS™

MOLE™

MST™
Naked-8™
National®
National Semiconductor®
National Semiconductor
Corp.®
NAX 800T™
Nitride Plus™
Nitride Plus Oxide™
NML™
NOBUS™
NSC800™™
NSCISE™
NSX-16™
NS-XC-16™™
NTERCOM™
NURAM™
OXISS™
P2CMOS™
PC Master™
Perfect Watch™
Pharmas#Chek™
PLANTM
PLANAR™™
Plus-2™
Polycraft™
POSilink™
POSitalker™
Power + Control™
POWERplanar™
QUAD3000™
QUIKLOOKT™™
RATTM
RTX16™
SABRT™
ScriptrChek™
SCX™™

SERIES/800™
Series 900™
Series 3000™
Series 32000®
ShelfirChek™
SofChek™
SPIRE™
Staggered Refresh™
STAR™
StarlinkT™
STARPLEX™
Super-Block™
SuperChip™
SuperScript™
SYS32™
TapePak®
TDS™
TeleGate™
The National Anthem®
TimesChek™
TINATM

TLC™
Trapezoidal™
TRI-CODE™
TRI-POLY™
TRI-SAFE™
TRI-STATE®
TURBOTRANSCEIVER™
VIP™

VR32™
WATCHDOG™
XMOS™
XPUTM

Z STAR™™
883B/RETS™
883S/RETS™

IBM®, PC®, and AT® are registered trademarks of International Business Machines, Inc.

MULTIBUS® is a registered trademark of Intel Corporation.

Sun-3® Workstation is a registered trademark of Sun Microsystems, Inc.
UNIX® and DWB® are registered trademarks of AT&T.
Z80%® is a registered trademark of Zilog Corporation.
CCS-Page™ is a trademark of Control-C Software, Inc.
CP/M™ is a trademark of Digita! Research Corporation.
Documenter’s Workbench™ is a trademark of AT&T.
Model 19™ is a trademark of DATA 1/0O Corporation.
Opus5T™ is a trademark of Opus Systems.

PAL® and PALASM™ are trademarks of and are used under license from Monolithic Memories, Inc.

SunOS™ is a trademark of Sun Microsystems.
VAXTM, VMST™M, DEC™, PDP-117, RSX-11™ and ULTRIX™ are trademarks of Digital Equipment Corporation.
VisiCalc™ is a trademark of Visi Corporation.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR COR-
PORATION. As used herein:

1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and whose failure to per-
form, when properly used in accordance with instructions
for use provided in the labeling, can be reasonably ex-

pected to result in a significant injury to the user.

National Semiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 (408) 721-5000

TWX (910) 339-9240

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time

without notice, to change said circuitry or specifications.

2. A critical component is any component of a life support
device or system whose failure to perform can be reason-
ably expected to cause the failure of the life support de-

vice or system, or to affect its safety or effectiveness.

National
Semiconductor

Product Status Definitions

Definition of Terms

Data Sheet Identification Product Status Definition
. Advance Information = | Formative or This data sheet contains the design specifications for product

In Design development. Specifications may change in any manner without notice.

First This data sheet contains preliminary data, and supplementary data will

Production be published at a later date. National Semiconductor Corporation
reserves the right to make changes at any time without notice in order
to improve design and supply the best possible product.

Full This data sheet contains final specifications. National Semiconductor

Production Corporation reserves the right to make changes at any time without

notice in order to improve design and supply the best possible product.

National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to
improve reliability, function or design. National does not assume any liability arising out of the application or use of any product
or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

suoniulaQ SNeIS 19Npold

Table of Contents

AlPhanUMENC INAEX. . .t vttt et et et eeeernaneereneneirensneeessnnannes viii

Section 1 Series 32000 Overview
oo (0703 1o o 10 S 1
Key Features of Series 32000 . ..o vivuetiiiiiertiiniiettoninieeerinncseronns 1
Series 32000 Component Descriptionsovvviuiririiiviiieiiiiiiiiireiiineens 1-
Hardware Chartvviuuiiiinniieniniisennieeeesionineeeisnranerionsssosons 1
SUPPOI DOVICES .« vttt eitt i teentesssnnnesssannnssosossnasesesnnnesnnrinnoes 1
Military Aerospace Programoveiviiitivriiiuieesioinnsesinisanersnnasroons 1
Section2 CPU—Central Processing Units
NS32532-20, NS32532-25, NS32532-30 High-Performance 32-Bit Microprocessors. . . 2-3

NS32332-15 32-Bit Advanced MiCroprocessoroveierriiiivvnieninenneenns 2-104
NS32C032-10, NS32C032-15 High-Performance Microprocessorsov.u 2-178
NS32C016-10, NS32C016-15 High-Performance Microprocessorsovvvvvvnnn 2-243
Section 3 Slave Processors
NS32382-10, NS32382-15 Memory Management Units (MMU)00 3-3
NS32082-10 Memory Management Unit (MMU)coviiiiiiiiniiiiinn 3-42
NS32381-15, NS32381-20, NS32381-25, NS32381-30 Floating-Point Units 3-81
NS32081-10, NS32081-15 Floating-PointUnitsovevviiiiiiiiiiiiiiennnen, 3-110
NS32580-20, NS32580-25, NS32580-30 Floatlng -Point Controllers 3-127
Section 4 Peripherals
NS32C201-10, NS32C201-15 Timing Control Unitsocvviviiiiiiiiinnt, 4-3
NS32202-10 Interrupt Control Unit . ..o ittt i 4-25
NS32203-10 Direct Memory Access Controlleroovvviiiiiiieniriiiiiienenns 4-50
Section 5 Development Systems and Software Tools
SYS32/30 PC-Add-In Development Package.oovvvvviininieeeennieeirennns 5-3
Series 32000 GENIX Native and Cross-Support (GNX) Development Tools (Version 3) 5-9
Series 32000 Ada Cross-Development System for SYS32/20 Host.................. 5-14
Series 32000 Ada Cross-Development System for VAX/VMSHost 5-18
Series 32000 GNX-Version 3 C Optimizing Compilercooivieiviiiiiiinn. 5-23
Series 32000 GNX-Version 3 Fortran 77 Optimizing Compiler....................... 5-27
Series 32000 GNX-Version 3 Pascal Optimizing Compileroovevvi... 5-31

Section 6 Application Notes
AB-26 Instruction Execution Times of FPU NS32081 Considered for Stand-Alone

(0o 10U - 11701 oL 6-3
AB-27 Use of the NS32332 with the NS32082 and the NS32201 6-4
AB-40 PC Board Layout for Floating PointUnitsccooviiiiiina.n. 6-6
AB-44 A Method for Efficient Task Switching Using the NS32381 FPU 6-7
AN-383 Interfacing the NS32081 as a Floating-Point Peripheral 6-8
AN-405 Using Dynamic RAM with Series 32000 CPUScovviiiineiiiinnnen, 6-16
AN-464 Effects of NS32082 Memory Management Unit on Processor Throughput. 6-23
AN-524 Introduction to Bresenham’s Line Algorithm Using the SBIT Instruction; Series

32000 NOtE 5 ..ttt tettit ettt e 6-27
AN-526 Block Move Optimization Techniques; Series 32000 Graphics Note 2 6-37
AN-527 Clearing Memory with the 32000; Series 32000 Graphics Note 3............. 6-40
AN-528 Image Rotation Algorithm; Series 32000 Graphics Note4................... 6-44
AN-529 80 x 86 to Series 32000 Translation; Series 32000 Graphics Note6.......... 6-53
AN-530 Bit Mirror Routine; Series 32000 GraphicsNote 7c.oout, 6-59
AN-583 Operating Theory of the Series 32000 GNX Version 3 Compiler Optimizer 6-61
AN-590 Application Development Using Multiple Programming Languages 6-67
AN-601 Portability Issues and the GNX Version 3 C Optimizing Compiler 6-76

vi

Table Of contents (Continued)

Section 6 Application Notes (Continued)

AN-805 Using the GNX-Version 3 C Optimizing Compiler in the UNIX Environment 6-84

AN-606 Using the GNX-Version 3 C Optimizing Compiler in the VMS Environment. 6-91
Section 7 NSC800

NSCB800 High-Performance Low-Power CMOS MiCroprocessorc...ovvvuvenn. 7-3

NSCB10A RAM-1/O-TIMEE . . et e ittt ettt e eiee e s aiieeesrnnneesrannnneenns 7-76

NSCB3T Parallel /0 ... i i i e e i et et i 7-97

NSCB858 Universal Asynchronous Receiver/Transmitterccovvvveennn. 7-111

NSC888 NSC800 EvaluationBoardoovriiiieniiiieriaiieieannneeenns 7-130

Comparison Study NSC800 vs. 8085/80C85/280/Z80CMOS............covvvvennn. 7-134

Software Comparison NSCB00vs. 8085, Z80cvtviiiinnrernainnnennnnnn. 7-137

AN-612 NSC800 Applications System: ROM Monitor and SystemBoard 7-139

AN-613 NSCB800 Applications System: NS16550A UART 8237A DMA Controller

111 C=Y o =T = P 7-162

Section 8 Physical Dimensions/Appendices

GloSSary Of TEIMS ..o ittt ettt ettt eanaaas 8-3

PhySiCal DIMENSIONS & vttt teeaeeeeneaneeaceseeeeeeeesensens 8-10

Bookshelf

Distributors

vii

Alpha-Numeric Index

AB-26 Instruction Execution Times of FPU NS32081 Considered for Stand-Alone Configurations. 6-3
AB-27 Use of the NS32332 with the NS32082 and the NS32201ccoiiiiiiiiiiiint, 6-4
AB-40 PC Board Layout for Floating Point Units. . ..ot ees 6-6
AB-44 A Method for Efficient Task Switching Usingthe NS32381 FPUccoiviiiiinn., 6-7
AN-383 Interfacing the NS32081 as a Floating-Point Peripheralccooiiiiiiiiiiiiianen, 6-8
AN-405 Using Dynamic RAM with Series 32000 CPUSt viitiiiiiiiiiiee i eananns 6-16
AN-464 Effects of NS32082 Memory Management Unit on Processor Throughput 6-23
AN-524 Introduction to Bresenham’s Line Algorithm Using the SBIT Instruction; Series 32000

O B . e e e 6-27
AN-526 Block Move Optimization Techniques; Series 32000 GraphicsNote2 6-37
AN-527 Clearing Memory with the 32000; Series 32000 GraphicsNote 3...............ccvvvuen.. 6-40
AN-528 Image Rotation Algorithm; Series 32000 GraphicsNote 4............coviiieiiinnne... 6-44
AN-529 80 x 86 to Series 32000 Translation; Series 32000 GraphicsNote 6cvuu.... 6-53
AN-530 Bit Mirror Routine; Series 32000 GraphiCsS NOte 7. .. .o iviiiiiii it ieianeeeanns 6-59
AN-583 Operating Theory of the Series 32000 GNX Version 3 Compiler Optimizer 6-61
AN-590 Application Development Using Multiple Programming Languagescc.cvvevvnn... 6-67
AN-601 Portability Issues and the GNX Version 3 C Optimizing Compiler 6-76
AN-605 Using the GNX-Version 3 C Optimizing Compiler in the UNIX Environment 6-84
AN-606 Using the GNX-Version 3 C Optimizing Compiler in the VMS Environment................. 6-91
AN-612 NSC800 Applications System: ROM Monitor and SystemBoardccovunt. 7-139
AN-613 NSCB800 Applications System: NS16550A UART 8237A DMA Controller Interface 7-162
Comparison Study NSC800 vs. 8085/80C85/Z80/ZB0CMOSvviriirreiiiirnneennnenns 7-134
NS32C016-10 High-Performance MiCTOPrOCESSOTvvuvtvneeenennerenennnronenrnennnnnns 2-243
NS32C016-15 High-Performance MIiCroproCessorouuviiiirenneiieernreennernneanens 2-243
NS32C032-10 High-Performance MiCrOproCESSOr .. v.vvuvrerrreeernrrnernrraroneruenneanss 2-178
NS32C032-15 High-Performance MiCroproCeSSOorvuuut e een et eniinaeeaneeann 2-178
NS32C201-10 Timing Comtrol UNitvuettie ittt et e e e reeennenraranns 4-3
NS32C201-15 Timing Control Unito.iit i e e e 4-3
NS32081-10 Floating-Point Unitottt i e e e ennenrrneeneanns 3-110
NS32081-15 Floating-Point Unitttt ittt ie e r e iieanenens 3-110
NS32082-10 Memory Management Unit (MMU)cciiiiiiiiiiii it ieniineeneanianns 3-42
NS32202-10 Interrupt Control Unit vir et ittt i ereeannennnans 4-25
NS32203-10 Direct Memory Access Controllerc.ovvneiiinnieentrirnnneeneernneeneess 4-50
NS32332-15 32-Bit Advanced MiCTOPIrOCESSOr . .. v. et ee it reeeeeeeeeeneannrennnennnnnns 2-104
NS32381-15 Floating-Point Unitoitiiii it i ittt ei e ieaanans 3-81
NS32381-20 Floating-Point Unit cooutierii it e i eieeeanans 3-81
NS32381-25 Floating-Point Unitottt et ettt eanans 3-81
NS32381-30 Floating-Point Unitoointiit i e e e v nneee 3-81
NS32382-10 Memory Management Unit (MMU) iiitiiniiiiiii ittt iiier i ennanns 3-3
NS32382-15 Memory Management Unit (MMU)cooiniiiiiiiiiiiiiiiiiniie i eennennes 3-3
NS32532-20 High-Performance 32-Bit Microprocessorcveiiiiiiiiin i inenninns, 2-3
NS32532-25 High-Performance 32-Bit MiCrOPrOCESSOr « . vvvvvvevitre e ineianeneeanenernennss 2-3
NS32532-30 High-Performance 32-Bit MiCIOPrOCESSOr ...ttt ieeiii it erenieneraeernneans 2-3
NS32580-20 Floating-Point Controller.veeiiietrire i e ieteerenerirenernens 3-127
NS32580-25 Floating-Point Controller.c.ouiuiitiii it it 3-127
NS32580-30 Floating-Point Controller.cvvereiii et iiae i eeenrenerneannreens 3-127
NSC800 High-Performance Low-Power CMOS MiCroprocessorvovvvrtirvineininnenenninne. 7-3
NSCB10A RAM-I/O-TIMEE vttt ittt ettt ettt ittt i ne et arsnnaneneaeennenes 7-76
N 10 i I - T 1= N PN 7-97
NSC858 Universal Asynchronous Receiver/Transmittercovuivieveeiinenernernranennens 7-111
NSC888 NSCB800 Evaluation Boardovueineinien i e eeienneneeneranrneennsnernnas 7-130

viii

Alpha'N Umeric |ndeX (Continued)

Series 32000 Ada Cross-Development System for VAX/VMS Hostooovvviiiiiiiinon, 5-18
Series 32000 Ada Cross-Development System for SYS32/20Host........coviviiviiiiiininnnn.. 5-14
Series 32000 GENIX Native and Cross-Support (GNX) Development Tools (Version3).............. 5-9
Series 32000 GNX-Version 3 Pascal OptimizingCompilercoviiiiiiiiiiiiiiiinnan 5-31
Series 32000 GNX-Version 3 Fortran 77 Optimizing Compiler................ooovia, e 5-27
Series 32000 GNX-Version 3 C OptimizingCompilercoiviiiiiiiiiiiiiiiiiiiinnnns 5-23
Software Comparison NSC800 vs. 8085, Z80vviiiiniteernnaeetiaanteeetineneenns 7-137
SYS32/30 PC-Add-In Development Packageouevt ittt iiiiiiiiiniiianneennns 5-3

Section 1
Series 32000 Overview

Section 1 Contents
Introduction..............

..

Key Features of Series 32000cvviiittteererriersiveonossnesssesaeesesonsseananns
Series 32000 Component DesCriptioNSv vttt it i e

Hardware Chart
Support Devices
Military Aerospace Program

..

..

A N]
obuddhbhbd

1-2

Introduction

Series 32000 offers the most complete solution to your 32-bit micro-
processor needs via CPUs, slave processors, system peripherals,
evaluation/development tools and software.

We at National Semiconductor firmly believe that it takes a total family
of microprocessors to effectively meet the needs of a system design-
er.

This Series 32000 Databook presents technical descriptions of Series
32000 8-, 16- and 32-bit microprocessors, slave processors, peripher-
als, software and development tools. It is designed to be updated
frequently so that our customers can have the latest technical infor-
mation on the Series 32000.

Series 32000 leads the way in state-of-the-art microprocessor de-
signs because of its advanced architecture, which includes:

¢ 32-Bit Architecture

® Demand Paged Virtual Memory
¢ Fast Floating-Point Capability

® High-Level Language Support
* Symmetrical Architecture

When we at National Semiconductor began the design of the Series
32000 microprocessor family, we decided to take a radical departure
from popular trends in architectural design that dated back more than
a decade. We chose to take the time to design it properly.

Working from the top down, we analyzed the issues and anticipated
the computing needs of the 80’s and 90's. The result is an advanced
and efficient family of microprocessor hardware and software prod-
ucts.

Clearly, software productivity has become a major issue in computer-
related product development. In microprocessor-based systems this
issue centers around the capability of the microprocessor to maximize
the utility of software relative to shorter development cycles, im-
proved software reliability and extended software life cycles.

In short, the degree to which the microprocessor can maximize soft-
ware utility directly affects the cost of a product, its reliability, and time
to market. It also affects future software modification for product en-
hancement or rapid advances in hardware technology.

Our approach has been to define an architecture addressing these
software issues most effectively. Series 32000 combines 32-bit per-
formance with efficient management of large address space. It facili-
tates high-level language program development and efficient instruc-
tion execution. Floating-point is integrated into the architecture.

This combination gives the user large system computing power at two
orders of magnitude less cost.

But we didn't stop there. Advanced architecture isn’t enough. Our top-
down approach includes the hardware, software, and development
support products necessary for your design. The evaluation board, in-
system emulator, software development tools, including a VAX-11
cross-software package, and third party software are also available
now for your evaluation and development.

The Series 32000 is a solid foundation from which National Semicon-
ductor can build solutions for your future designs while satisfying your
needs today.

For further information please contact your local sales office.

Key Features of Series 32000

National
Semiconductor

Key Features of Series 32000

Some of the features that set the Series 32000 family apart
as the best choice for 32-bit designs are as follows:

FAMILY OF MICROPROCESSORS

Series 32000 is more than just a single chip set, it is a family
of chip sets. By mixing and matching Series 32000 CPUs
with compatible slave processors and support chips, a sys-
tem designer has an unprecedented degree of flexibility in
matching price/performance to the end product.

CLEANEST 32-BIT ARCHITECTURE

Series 32000 was designed around a 32-bit architecture
from the beginning. it has a fully symmetrical instruction set
so that all addressing modes and all data types can be oper-
ated on by all instructions. This makes it easy to learn the
architecture, easy to program in assembly language, and
easy to write code-efficient, high-level language compilers.

APPLICATION-SPECIFIC SLAVE PROCESSORS

Series 32000 architecture allows users to design their own
application-specific slave processors to interface with the
existing chip set. These processors can be used to increase
the overall system performance by accelerating customized
CPU instructions that would otherwise be implemented in
software. At the same time, software compatibility is main-
tained, i.e., it is always possible to substitute lower-cost soft-
ware modules in place of the slave processor.

FLOATING-POINT SUPPORT

The Series 32000 offers a complete set of floating-point
solutions. This includes the NS32081 Floating-Point Unit,
the NS32381 Floating-Point Unit and the NS32580 Floating-
Point Controller. The NS32081 provides high-speed arith-
metic computation with high precision and accuracy at low
cost. The NS32381 provides low power consumption and
even greater performance than the NS32081 while main-
taining high-precision and accuracy.

The NS32580 is a floating-point controller that provides a
direct interface between the Weitek WTL 3164 Floating-
Point Data Path and the NS32532 CPU. This two chip com-
bination, NS32580/WTL3164, provides optimum perform-
ance for speed critical floating-point applications.

HIGH-LEVEL LANGUAGE SUPPORT

Series 32000 has special features that support high-level
languages, thus improving software productivity and reduc-
ing development costs. For example, there are special in-
structions that help the compiler deal with structured data
types such as Arrays, Strings, Records, and Stacks.

National

Semiconductor

Series 32000® Component Descriptions

Bus Width
Package
Device Description External Process
P Internal Type
Address Data
CENTRAL PROCESSING UNITS (CPU’s)
NS32532 High-Performance 32-Bit Microprocessor 32 32 32 M2CMOS 175-pin PGA
NS32332 32-Bit Advanced Microprocessor 32 32 32 XMOS 84-pin PGA
(NMOS)
NS32C032 High-Performance Microprocessor 32 24 32 CMOS 68-pin LCC
Leadless
Chip Carrier
NS32C016 High-Performance Microprocessor 32 24 16 CMOS 48-pin DIP
Dual-In-Line
Package
SLAVE PROCESSORS
NS32382 Memory Management Unit 32 32 32 XMOS PGA
(NMOS)
NS§32082 Memory Management Unit 32 24 16 XMOS 48-pin DIP
(NMOS) Package
NS32081 Floating-Point Unlt 64 — 16 XMOS 24-pin DIP
Dual-In-Line
Package
NS32381 Floating-Point Unit 64 — 16 CMOS 68-pin PGA
NS32580 Floating-Point Controller 64 — 16 or 32 CMOS 172-pin PGA
PERIPHERALS
NS32C201 CMOS Timing Control Unit - — — CMCS 24-pin DIP
Dual-In-Line
Package
NS32202 Interrupt Control Unit 32 —_ 16 XMOS 40-pin DIP
(NMOS) Dual-In-Line
Package
NS32203 Direct Memory Access Controller — — 16 XMOS 48-pin DIP
(NMOS) Dual-In-Line
Package

1-5

suonduosaq Jusuodwo?) 000ze SaMeS

Hardware Chart

National
Semiconductor

Hardware Chart

SLAVE
PROCESSORS PROCESSORS PERIPHERALS
NS32532 NS32382 NS32C204
Advanced 32-Bit CMOS CPU Advanced 32-Bit Memory ¢
with MMU Management Unit CMOS Timing Control Unit
| | |
NS32082 NS32202

NS32332
32-Bit Data Bus/32-Bit CPU

Memory Management Unit

Interrupt Control Unit

NS32C032 NS32381 NS32203
CMOS NsS32032 Floating Point Unit DMA Controller
]] I
NS320016 NS32C081 NS16550

CMOS NS32016 CMOS Floating Point Unit UART
]]
NS32081 NS16450
Floating Point Unit UART with FIFO

NS32580 with
WTL 3164 Floating Point
Controller

CUSTOM

TL/XX/0084-1

1-6

National
Semiconductor

Support Devices Chart

ueys saoinag woddng

SUPPORT
DEVICES
HPC DPB451 DP8400~2
High Performance 16~Bit E2C2 Expandable Error
Controllers Disk Data Synchronizer Checker /W“
] |]
DPB390 DPB4SS $2-5t O Eer
LAN Interface Controller Disk Data Synchronizer Detector And Corrector (EDAC)
|] |
OPB391 DPB46! DPBA7 /1819
Serial Network Interface Disk Data Separator 256Conl§ollesrp/°[;river
| | |
DP8392 DPg462 b b d DRA!
Disk Data Synchronizer 1 Megabit High Spee M
COAX Transcelver Interface For 2,7 RLL Code Controller/Driver (32-Bit Systems
] | |
DP8340 DP84638 DP8429
1BM® 3270 Biphase Serial Disk 2,7 RLL Code 1 Megabit High Speed DRAM
Encoder/Transmitter Encoder/Decoder Controller/Driver (16=Bit Systems)
! |
DP8341
1BM® 3270 Biphase Serial DP84648
Decoder/Recelver Disk Pulse Detector
]]
DP8342
. DP8465
High Speed Serial Manchester
Encoder/Transmitter Disk Data Separator
] |
DP8343
. DP8466
High Speed Manchester
Decoder /Receiver Disk Data Controller
|]
BIT-MAPPED. Puiss el
GRAPHICS Embedded Sarvo
]
DP8470
Floppy Data Separator &
Write Precompensation
|
DPB472/74
Floppy Disk Controlier/
1 Data Separator

TL/XX/0166-~1

Military/Aerospace Programs from National Semiconductor

National
Semiconductor

Military/Aerospace Programs
from National Semiconductor

This section is intended to provide a brief overview of mili-
tary Series 32000 products available from National Semi-
conductor.

-883

Although originally intended to establish uniform test meth-
ods and procedures, MIL-STD-883 has also become the
general specification for non-JAN military product. Revision
C of this document defines minimum requirements for a de-
vice to be marked and advertised as 883-compliant. Includ-
ed are design and construction criteria, documentation con-
trols, electrical and mechanical screening requirements,
and quality control procedures. Details can be found in par-
agraph 1.2.1 of MIL-STD-883.

National offers both 883 Class B and 883 Class S product.
The screening requirements for both classes of product are
outlined in Table I.

As with DESC specifications, a manufacturer is allowed to
use his standard electrical tests provided that all critical pa-
rameters are tested. Also, the electrical test parameters,
test conditions, test limits, and test temperatures must be
clearly documented. At National Semiconductor, this infor-
mation is avallable via our RETS (Rellabllity Electrical Test
Specification) program. The RETS document Is a complete

description of the electrical tests performed and is con-
trolled by our QA department. Individual copies are available
upon request.

-MIL

Some of National's older products are not completely com-
pliant with MIL-STD-883, but are still required for use in mili-
tary systems. These devices are screened to the same
stringent requirements as 883 product but are marked
HLMil,

-MSP

National's Military Screening Program (MSP) was devel-
oped to make screened versions of advanced products
such as gate arrays and microprocessors available more
quickly than is possible for JAN and 883 devices. Through
this program, screened product is made available for proto-
types and brassboards prior to or during the JAN or 883
qualification activities. MSP products receive the 100%
screening of Table |, but are not subjected to group C and D
quality conformance testing. Other criteria such as electrical
testing and temperature range will vary depending upon in-
dividual device status and capabllity,

TABLE i. 100% Screening Requirements

Screen Class S Class B
Method Reqmt Method Reqmt
1. Wafer Lot Acceptance 5007 All Lots
2. Nondestructive 2023
Bond Pull 100%
3. Internal Visual (Note 1) 2010, Condition A 100% 2010, Condition B 100%
4. Stabilization Bake 1008, Condition C, o 1008, Condition C, o
Min, 24 Hrs. Min 100% Min, 24 Hrs. Min 100%
5. Temp. Cycling (Note 2) 1010, Condition C 100% 1010, Condition C 100%
6. Constant Acceleration 2001, Condition E (Min) 100% 2001, Condition E (Min) 100%
Y4 Orientation Only ° Y4 Orientation Only
7. Visual Inspection (Note 3) 100% 100%
8. Particle Impact Noise 2020, Condition A 100%
Detection (PIND) (Note 4) °
9. Serialization (Note 5) 100%
10. Interim (Pre-Burn-In) Per Applicable Device 100% Per Applicable Device
Electrical Parameters Specification (Note 13) ° Specification (Note 6)
11. Burn-In Test 1015 240 Hrs. at 125°C o 1015, 160 Hrs. at 125°C Min o
Min (Cond. F Not Allowed) 100% 100%

TABLE I. 100% Screening Requirements (Continued)

Class S Class B
Screen
Method Regmt Method Reqmt
12. Interim (Post-Burn-In) Per Applicable Device 100%
Electrical Parameters Specification (Note 13) °
13. Reverse Bias Burn-In 1015; Test Condition A, C,
(Note 7) 72 Hrs. at 150°C Min 100%
(Cond. F Not Allowed)
14, Interim (Post-Burn-In) Per Applicable Device 100% Per Applicable Device 100%
Electrical Parameters Specification (Note 13) ° Specification °
. o] o :
15. PDA Calculation 5% Paran)etrlc (Note 14) Al Lots 5% Parametric (Note 14) All Lots
3% Functional — 25°C
16. Final Electrical Test Per Applicable Device Per Applicable Device
a) Static Tests Specification Specification
1) 25°C (Subgroup 1, . 100% 100%
Table |, 5005)
2) Max & Min Rated 100% 100%
Operating Temp
(Subgroups 2, 3,
Table |, 5005)
b) Dynamic Tests & 100% 100%
Switching Tests,
25°C (Subgroups 4, 9,
Table |, 5005)
¢) Functional Test, 100% 100%
25°C (Subgroup 7,
Table |, 5005)
17. Seal Fine, Gross 1014 100% 1014 100%
(Note 8) (Note 9)
18. Radiographic (Note 10) 2012 Two Views 100%
19, Qualification or Quality (Note 11) (Note 11)
Conformance Inspection Samp. Samp.
Test Sample Selection
20. External Visual 2009 o o
(Note 12) 100% 100%

Note 1: Unless otherwise specified, at the manufacturer's option, test samples for Group B, bond strength (Method 5005) may be randomly selected prior to or
following internal visual (Method 5004), prior to sealing provided all other specification requirements are satisfied (e.g. bond strength requirements shall apply to
each inspection lot, bond failures shall be counted even if the bond would have failed internal visual).

Note 2: For Class B devices, this test may be replaced with thermal shock method 1011, test condition A, minimum.

Note 3: At the manufacturer's option, visual inspection for castastrophic failures may be conducted after each of the thermal/mechanical screens, after the
sequence or after seal test. Catastrophic failures are defined as missing leads, broken packages or lids off.

Note 4: The PIND test may be performed in any sequence after step 9 and prior to step 16. See MIL-M-38510, paragraph 4.6.3.
Note §: Class S devices shall be serialized prior to interim electrical parameter measurements.
Note 6: When specified, all devices shall be tested for those parameters requiring delta calculations.

Note 7: Reverse bias burn-in is a requirement only when specified in the applicable device specification. The order of performing burn-in and reverse bias burn-in
may be inverted.

Note 8: For Class S devices, the seal test may be performed in any sequence between step 16 and step 19, but it shall be performed after all shearing and forming
operations on the terminals.

Note 9: For Class B devices, the fine and gross seal tests shall be performed separate or together in any sequence and order between step 6 and step 20 except
that they shall be performed after all shearing and forming operations on the terminals. When 100% seal screen cannot be performed after shearing and forming
(e.g. flatpacks and chip carriers) the seal screen shall be done 100% prior to those operations and a sample test (LTPD = 5) shall be performed on each
inspection lot following these operations. If the sample fails, 100% rescreening shall be required.

Note 10: The radiographic screen may be performed in any sequence after step 9.

Note 11: Samples shall be selected for testing in accordance with the specific device class and lot requirements of Method 5005.

Note 12: External visual shall be performed on the lot any time after step 19 and prior to shipment.

Note 13: Read and Record when post burn-in data measurements are specified.

Note 14: PDA shall apply to all static, dynamic, functional and switching measurements at either 25°C or maximum rated operating temperature.

10}9NpuodIWag [eUONEN WO} swelbold asedsosay /AelIN

Section 2

CPU—Central
Processing Units

Section 2 Contents

NS32532-20, NS32532-25, NS32532-30 High-Performance 32-Bit Microprocessors......... 2-3
NS32332-15 32-Bit Advanced MiCroproCeSSOrottt rennrteninueeeernnnnneeeernnns 2-104
NS32C032-10, NS32C032-15 High-Performance MiCroprocessorsovvvuinueeeennnn 2-178
NS32C016-10, NS32C016-15 High-Performance Microprocessorsc.ccovvveeevnnn. 2-243

2-2

National
Semiconductor

NS32532-20/NS32532-25/NS32532-30
High-Performance 32-Bit Microprocessor

General Description Features
The NS32532 is a high-performance 32-bit microprocessor W Software compatible with the Series 32000 family
in the Series 32000® family. It is software compatible with m 32-bit architecture and implementation
the previous microprocessors in the family but with a greatly m 4-GByte uniform addressing space
enhanced internal implementation. m On-chip memory management unit with 64-entry
The high-performance specifications are the result of a four- translation look-aside buffer
stage instruction pipeline, on-chip instruction and data m 4-Stage instruction pipeline
caches, on-chip memory management unit and a signifi- m 512-Byte on-chip instruction cache
cantly increased clock frequency. In addition, the system g 1024-Byte on-chip data cache
inte.rface provides optimal support fpr applications span.ning m High-performance bus
o e et ocanec o) — Sepree 3201 aross and dat s

P ! g purp P y. : — Burst mode memory accessing
The NS32532 integrates more than 370,000 transistors fab- — Dynamic bus sizing
ricated in a 1.25 um double-metal CMOS technology. The
advanced technology and mainframe-like design of the de-
vice enable it to achieve more than 10 times the throughput
of the NS32032 in typical applications.

In addition to generally improved performance, the
NS32532 offers much faster interrupt service and task
switching for real-time applications.

Extensive multiprocessing support

Floating-point support via the NS32381 or NS32580
1.25 pm double-metal CMOS technology

175-pin PGA package

Block Diagram

4 = STAGE
INSTRUCTION PIPELINE

...............

|

A—I: INSTRUCTION

le—] Loaper ' CACHE ¢:> CONTROL
— (ic)

l T j\
MEMORY L
[> MANﬁfﬁ;AENT 11111 ADDRESS
& RET T

“—> ADDRESS
UNIT

v

e e e e e e e e e e e e e m e e e e m m e m— mmm—mmm— — ==

'
1
|
I
|
1
1
'
|
1
! BUS
! INTERFACE
! UNIT
X (81U
' o
: &
REGISTER HE
1 e ' (oc)
)
ﬁ :
< ::
EXECUTION U DATA INTERFACE
4 o ! NZ.
By mm— 17/7/7.1/71/1/12/; Sm—" 1711717, Gy
| I
fTTTTTTToTTToms ‘ TL/EE/9354-1
FIGURE 1

2-3

0€-2EG2ESN/GC-CESCESN/02-CESTESN

NS32532-20/NS32532-25/NS32532-30

Table of Contents

1.0 PRODUCT INTRODUCTION
2.0 ARCHITECTURAL DESCRIPTION
2.1 Register Set

2.1.1 General Purpose Registers
2.1.2 Address Registers

2.1.3 Processor Status Register
2.1.4 Configuration Register

2.1.5 Memory Management Registers
2.1.6 Debug Registers

2.2 Memory Organization
2.2.1 Address Mapping
2.3 Modular Software Support

2.4 Memory Management

2.4.1 Page Tables Structure

2.4.2 Virtual Address Spaces

2.4.3 Page Table Entry Formats
2.4.4 Physical Address Generation
2.4.5 Address Translation Algorithm

2.5 Instruction Set

2.5.1 General Instruction Format
2.5.2 Addressing Modes
2.5.3 Instruction Set Summary

3.0 FUNCTIONAL DESCRIPTION

3.1 Instruction Execution
3.1.1 Operating States
3.1.2 Instruction Endings
3.1.2.1 Completed Instructions
3.1.2.2 Suspended Instructions
3.1.2.3 Terminated Instructions
3.1.2.4 Partially Gompleted Instructions

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.1.3 Instruction Pipeline
3.1.3.1 Branch Prediction
3.1.3.2 Memory Mapped |I/0
3.1.3.3 Serializing Operations

3.1.4 Slave Processor Instructions
3.1.4.1 Regular Slave Instruction Protocol
3.1.4.2 Pipelined Slave Instruction Protocol
3.1.4.3 Instruction Flow and Exceptions
3.1.4.4 Floating-Point Instructions
3.1.4.5 Custom Slave Instructions

3.2 Exception Processing

3.2.1 Exception Acknowledge Sequence
3.2.2 Returning from an Exception Service Procedure
3.2.3 Maskable Interrupts
+3.2.3.1 Non-Vectored Mode
3.2.3.2 Vectored Mode: Non-Cascaded Case
3.2.3.3 Vectored Mode: Cascaded Case
3.2.4 Non-Maskable Interrupt
3.2.5 Traps
3.2.6 Bus Errors
3.2.7 Priority Among Exceptions

3.2.8 Exception Acknowledge Sequences:
Detailed Flow

3.2.8.1 Maskable/Non-Maskable Interrupt
Sequence

3.2.8.2 Abort/Restartable Bus Error Sequence

3.2.8.3 SLAVE/ILL/SVG/DVZ/FLG/BPT/UND
Trap Sequence

3.2.8.4 Trace Trap Sequence

Table of Contents (continued)

3.0 FUNCTIONAL DESCRIPTION (Continued)
3.2.8.5 Integer-Overflow Trap Sequence
3.2.8.6 Debug Trap Sequence
3.2.8.7 Non-Restartable Bus Error Sequence

3.3 Debugging Support
3.3.1 Instruction Tracing
3.3.2 Debug Trap Capability
3.4 On-Chip Caches
3.4.1 Instruction Cache (IC)
3.4.2 Data Cache (DC)
3.4.3 Cache Coherence Support
3.4.4 Translation Look-aside Buffer (TLB)
3.5 System Interface
3.5.1 Power and Grounding
3.5.2 Clocking
3.5.3 Resetting
3.5.4 Bus Cycles
3.5.4.1 Bus Status
3.5.4.2 Basic Read and Write Cycles
3.5.4.3 Burst Cycles
3.5.4.4 Cycle Extension
3.5.4.5 Interlocked Bus Cycles
3.5.4.6 Interrupt Control Cycles
3.5.4.7 Slave Processor Bus Cycles
3.5.5 Bus Exceptions
3.5.6 Dynamic Bus Configuration
3.5.6.1 Instruction Fetch Sequences
3.5.6.2 Data Read Sequences
3.5.6.3 Data Write Sequences
3.5.7 Bus Access Control
3.5.8 Interfacing Memory-Mapped 1/0 Devices
3.5.9 Interrupt and Debug Trap Requests
3.5.10 Cache Invalidation Requests
3.5.11 Internal Status

4.0 DEVICE SPECIFICATIONS
4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input/Qutput Signals

4.2 Absolute Maximum Ratings
4.3 Electrical Characteristics
4.4 Switching Characteristics

4.0 DEVICE SPECIFICATIONS (Continued)
4.4.1 Definitions
4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation
Delays

4.4.2.2 Input Signal Requirements
4.4.3 Timing Diagrams

APPENDIX A: INSTRUCTION FORMATS

B: COMPATIBILITY ISSUES
B.1 Restrictions on Compatibility
B.2 Architecture Extensions
B.3 Integer-Overflow Trap
B.4 Self-Modifying Code
B.5 Memory-Mapped I/0

C: INSTRUCTION SET EXTENSIONS
C.1 Processor Service Instructions
C.2 Memory Management Instructions
C.3 Instruction Definitions

D: INSTRUCTION EXECUTION TIMES
D.1 Internal Organization and Instruction
Execution
D.2 Basic Execution Times
D.2.1 Loader Timing
D.2.2 Address Unit Timing
D.2.3 Execution Unit Timing
D.3 Instruction Dependencies
D.3.1 Data Dependencies
D.3.1.1 Register Interlocks
D.3.1.2 Memory Interlocks
D.3.2 Control Dependencies
D.4 Storage Delays
D.4.1 Instruction Cache Misses
D.4.2 Data Cache Misses
D.4.3 TLB Misses
D.4.4 Instruction and Operand Alignment
D.5 Execution Time Calculations
D.5.1 Definitions
D.5.2 Notes on Table Use
D.5.3 Tt Evaluation
D.5.4 Instruction Timing Example
D.5.5 Execution Timing Tables
D.5.5.1 Basic and Memory
Management Instructions

D.5.5.2 Floating-Point Instructions,
CPU Portion

0€-CEGCESN/G2-2€S2ESN/02-2ESTESN

NS32532-20/NS32532-25/NS32532-30

List of lllustrations

CPU BIOCK DIAGIAM vttt it ettt enttee e e aeetnaetaeaeeteraeeneenessesussnsensenessesnsseneenssonsonsoneenanns 1
NSB2532 INternNal REGIStEIS ...ttt t ittt ittt ettt tetettetateeaeatetastaennenaenneeneesosonssneesnsnssnnen
Processor Status Register (PSR)uuvetii it te et ittt ettt e rea et ieanera et eatateneeans
Configuration Register (CFG)cviiiiiiiiii it iiiiiinennens

Page Table Base Registers (PTBN)cvviiniiiiiiiiiiiiiiiiiiiiiins

Memory Management Control Register (MCR)cviiiiiiiiiiiiininnn,

Memory Management Status Register (MSR)oiuiiiuinitiii it it e ca it aeas
Debug Condition Register (DCR)uvuiitiittitt ettt e eetetasaeat et enereesiioiesoeroneenrsnen
Debug Status Register (DSR) . ..o vviiiitii ittt i i ittt st ae ittt ae et it eenenaranes
NS32532 AdAress Mapping ... ouvntiit ittt ittt ittt it a ittt e e
NS32532 Run-TiMe ENVIFONMENTttt ittt it a it i e aneas
TWO-LeVel Page Tablesvviut ittt e ettt e ettt et ity
Page Table ENtries (PTE’S) .+« .o vvtietiettteetnetteteenesaetossoneesoenesueeasonessosanssnsoateanesnernssnnss
Virtual to Physical Address Translation
General Instruction Format

LT 1= =3 G o7 1 1 - |G
Displacement ENCOAINGSo vttt e et e e e e e
(O 1= £= L o S €= (=
NS32532 Internal Instruction PIpelingvutuiiiin i i i e e e i e s
Memory References for Consecutive INStrUCtIONS ... vev ittt i it it ittt enaes
Memory References after Serializationoiuiinto i i e i e e s
Regular Slave Instruction Protocol: CPU Actions
IDand Operation WOTAueiii ittt ie st ee ittt et e etteteneonennssaesateateeaesuesnneonesuennoensonns
Slave Processor Status Word
Instruction Flow in Pipelined Floating-Point Mode
Interrupt DispatCh Table i e it e i e e i i s
Exception Acknowledge Sequence: Direct-ExceptionMode Disabled ...
Exception Acknowledge Sequence: Direct-ExceptionMode Enabledcovviiiiiiiiiiiiiiii i
Return From Trap (RETTn) Instruction Flow: Direct-Exception Mode Disabledcooviiiiiiiiiiiiiiiniinnn
Return From Interrupt (RETI) Instruction Flow: Direct-Exception Mode Disabled
Exception Processing FIOWCNArtouiuuiietittiiiiitt ittt tneeneitieneninerneeieeneonaennens
SOIVICE SOQUENCE ..ottt ettt ittt ittt ittt et itieeetiae e saineesaaesiaaetonssesonasseisansssasnecsnseens
Instruction Cache Structure
DataCache Structureooviiiiiii i
TLB MOl . .inenitii ittt s
Power and Ground Connections
Bus Clock Synchronizationoiuiiiiiiiii it i i eceeesnensaneaieas
Power-On Reset Requirements
GENEral RESOt TIMING .+ vt itttittt ettt ittt ettt tetntttena et enentaestonenenesatseeeasanonsnessonenennns
2 ol ST To 1= P
L = 1
Burst Readcyclescouet

Cycle Extension of a Basic Read Cycle
Slave Processor Write Cycle
Slave Processor Read Cycle
Bus Retry During @ Basic Read CyCleviuiuiit ittt ettt e e a et eian ey
Basic Interface for 32-Bit MBMOTIESvut ittt ittt ittt it e it et
Basic Interface for 16-Bit MOMONESve ittt ettt ettt ittt it iit it it ianeaneairearerasoiarnsenns
Hold Acknowledge: (Bus Initially Id18)evuineieniiiein ittt eier it eiiaerenreieransieiaaaes
Typical /O DeVICE INtBrfaCE vv ettt ittt i et i ettt i it et i e

2-6

List of Hlustrations (continued)

NS32532 INtErfac SIGNAIS ... v evveereneneneerrneereseneaeorenenenenensosonessnsasassosssonsons e, 441
I T 2 2 T - Vo - 4-2
Output Signals Specification Standardoouiuiuiiiiiiiiiiin ittt ittt it it e 4-3
Input Signals Specification Standard e, ettt e e 4-4
Basic Read Cycle Timing e

Write CyCle TimiNgG vvvvvvntieeerrenereroneereonsosnesnaansronsensonss

Interlocked Read and Write CyCIBS .. uvvvuvrietnsinenninensisounnrnsnrsensssentisessrsasnassonesns .

BUISt RO CYCIOS 1t v tetvteeiniarnseenonssasnsoasnossenssenssossassosssnsnsereesnsssensanss e rreer e 4-8
External Termination of Burst Cycles Chereraeaes eeeirereaiaes e aees b eeeaee i 4-9
Bus Error or Retry During Burst Cycles veres

Extended Retry Timing N e
HOLD Timing (Bus Initially ldle)
HOLD Acknowledge Timing (Bus Initially Not Idle) .
Slave Processor Read Timing

Slave Processor Write Timingovvvvnenns Cereeesaes Creresrraeeraiaes e,
Slave ProcessorDOoNgvviviiiiiiiiiiniiriesiiiiinrsriisiiersiiies .
FSSRSignal Timing +.vvvevvvveennnnnnns et ettt er e e h et e e e e e e et a e e

Cache Invalidation Request e PN .
TNT and NMT SIGNals SAMPING vt ettt eeistatttenteete st iennteassseinaneeaeseeserttesisianteseseseeeeens

Debug Trap Request

PFS Signal Timing

TSF Signal Timing

Break Point Signal Timing

Clock Waveforms e

Bus Clock Synchronization P

Power-OnReset RPN

INON-POWEI-ON ROSOE « oottt itiiitittietiitentsineianeeessiesstsunensenssssssssssesnennesstssasasnnns e 4927

LPRi/SPRi Instruction Formats et e e e et e e ettt e C1

CINV Instruction FOrmativuiiuieiiiiieiirtennsnnerntsiiensriosnsensiasonssnes e ee e c-2

LMR/SMR INStruCtion FOMMALS ... vvinttitetenenesnenneneneaaensasasosneneeeensoseesacsnsarsssasosasseencnens C-3
List of Tables

ACCOSS ProteCtion LeVveISciuiieiiiitii ittt ettt tinenaeeetieeneeneeureesesneoanssssatonsecsneinsens 2-1

NS32532 AdAresSiNGMOTES ... vvvuiereiinetieiueniseenessasesesessessseesesensnensosasesassersssnenssonenss 2-2

NS32532 INStrUCON SBt SUMMAIY .. i\ttt ittettitteeneretoisteaeneenssosensonsesusessenrosssssnssosssssnssanes 2-3

Floating-Point INStruction ProtoColovvutit ittt iiiie ittt ir ittt et eeeetoneararnanaenennsns 341

Custom S1ave INStruCtion ProtoCOIS vuus ittt ittt ettt iiit s ianaesinstasesetoosnnnnssrnssessnascenns 3-2

Summary of EXCEPON ProCESSING ...t uvvuttnneinttieenietueieeenesaseseestsstanneentsseoasssssottonsesnoesaens 3-3

Interrupt SequUENCeSsviivirir it i S 3-4

Cacheable/Non-Cacheable Instruction Fetches from a 32-Bit Bus
Cacheable/Non-Cacheable Instruction Fetches from a 16-BitBus
Cacheable/Non-Cacheable Instruction Fetches from an 8-BitBus
Cacheable/Non-Cacheable Data Reads froma 32-BitBus
Cacheable/Non-Cacheable Data Reads froma 16-Bit BUScciuieeninininiruoninireiiriieeneirenisannoneeass
Cacheable/Non-Cacheable Data Reads froman 8-BitBuscoiviiiiniiiiiiiiiiiiiiiii it
Data Writes to @ B2-Bit BUSvuuiieiitiitii ittt iiiiiteteean s tiuesutieesestonsesnnessrnsenseosnenns
Data WHteS t0 @ 16-Bit BUS ...\vuutiiittiitttetenttteeneetteeneiossnsonssseonstaasansenaesaneonssnossstsunenns
DataWritesS to @n B-Bit BUS .. .uvvvtiuiitiiitttttiettietentoiueeneenssstonssusesesssseroenusessssssassensonneans

LPRi/SPRi New 'Short’ Field ENCOAINGSouvniiutniitiiiiititiiit ittt iitiietintteatenctansasensnnnnen
LMR/SMR ‘Short’ Field ENCOINGS « .t vvvvnentnetiuinnineitietiiiieuienersasenonoseroserseessasansresisnenenonnes
Additional Address Unit Processing Time for Complex AddressingModesouvuiiiiiiiiiiiiiiiiiiieiinninennns D-1

2-7

0€-2ESZESN/S2-CESZESN/0Z-CESCESN

NS32532-20/NS32532-25/NS32532-30

1.0 Product Introduction

The NS32532 is an extremely sophisticated microprocessor
in the Series 32000 family with a full 32-bit architecture and
implementation optimized for high-performance applica-
tions.

By employing a number of mainframe-like features, the de-
vice can deliver 15 MIPS peaks performance with no wait
states at a frequency of 30 MHz.

The NS32532 is fully software compatible will all the other
Series 32000 CPUs. The architectural features of the Series
32000 family and particularly the NS32532 CPU, are de-
scribed briefly below.

Powerful Addressing Modes. Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types. The architecture provides for numerous data
types, such as byte, word, doubleword, and BCD, which may
be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case
instructions that compilers can't use, the Series 32000 ar-
chitecture incorporates powerful instructions for control op-
erations, such as array indexing and external procedure
calls, which save considerable space and time for compiled
code.

Memory-to-Memory Operations. The Series 32000 CPUs
represent two-address machines. This means that each op-
erand can be referenced by any one of the addressing
modes provided.

This powerful memory-to-memory architecture permits
memory locations to be treated as registers for all usefull
operations. This is important for temporary operands as well
as for context switching.

Memory Management. The NS32532 on-chip memory
management unit provides advanced operating system sup-
port functions, including dynamic address translation, virtual
memory management, and memory protection.

Large, Uniform Addressing. The NS32532 has 32-bit ad-
dress pointers that can address up to 4 gigabytes without
requiring any segmentation; this addressing scheme pro-
vides flexible memory management without added-on ex-
pense.

Modular Software Support. Any software package for the
Series 32000 family can be developed independent of all
other packages, without regard to individual addressing. In
addition, ROM code is totally relocatable and easy to ac-
cess, which allows a significant reduction in hardware and
software costs.

Software Processor Concept. The Series 32000 architec-
ture allows future expansions of the instruction set that can
be executed by special slave processors, acting as exten-
sions to the CPU. This concept of slave processors is
unique to the Series 32000 family. It allows software com-
patibility even for future components because the slave
hardware is transparent to the software. With future ad-
vances in semiconductor technology, the slaves can be
physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro-
vide three primary performance advantages and character-
istics:

* High-level language support

e Easy future growth path

o Application flexibility

2.0 Architectural Description

2.1 REGISTER SET

The NS32532 CPU has 28 internal registers grouped ac-
cording to functions as follows: 8 general purpose, 7 ad-
dress, 1 processor status, 1 configuration, 7 memory man-
agement and 4 debug. All registers are 32 bits wide except
for the module and processor status, which are each 16 bits
wide. Figure 2-1 shows the NS32532 internal registers.

Address General Purpose
<« 32Bits — <« 32Bits —
PC RO
SPO R1
SP1 R2
FP R3
SB R4
INTBASE RS
[MOD R6
R7
Processor Status
PSR
Debug
Memory Management DCR
PTBO DSR :
PTB1 CAR
IVARO BPC
IVAR1
TEAR
MCR Configuration
MSR | CFG

FIGURE 2-1. NS32532 Internal Registers

2.0 Architectural Description (continued)

2.1.1 General Purpose Registers

There are eight registers (R0-R7) used for satisfying the
high speed general storage requirements, such as holding
temporary variables and addresses. The general purpose
registers are free for any use by the programmer. They are
32 bits in length. If a general purpose register is specified for
an operand that is eight or 16 bits long, only the low part of
the register is used; the high part is not referenced or modi-
fied.

2.1.2 Address Registers

The seven address registers are used by the processor to
implement specific address functions. A description of them
follows.

PC—Program Counter. The PC register is a pointer to the
first byte of the instruction currently being executed. The PC
is used to reference memory in the program section.

SP0, SP1—Stack Pointers. The SPO register points to the
lowest address of the last item stored on the INTERRUPT
STACK. This stack is normally used only by the operating
system. It is used primarily for storing temporary data, and
holding return information for operating system subroutines
and interrupt and trap service routines. The SP1 register
points to the lowest address of the last item stored on the
USER STACK. This stack is used by normal user programs
to hold temporary data and subroutine return information.

When a reference is made to the selected Stack Pointer
(see PSR S-bit), the terms ‘SP Register’ or ‘SP’ are used.
SP refers to either SPO or SP1, depending on the setting of
the S bit in the PSR register. If the S bit in the PSR is 0, SP
refers to SPO. If the S bit in the PSR is 1 then SP refers to
SP1.

The NS32532 also allows the SP1 register to be directly
loaded and stored using privileged forms of the LPRi and
SPRi instructions, regardless of the setting of the PSR S-bit.
When SP1 is accessed in this manner, it is referred to as
‘USP Register’ or simply ‘USP".

Stacks in the Series 32000 family grow downward in memo-
ry. A Push operation pre-decrements the Stack Pointer by
the operand length. A Pop operation post-increments the
Stack Pointer by the operand length.

FP—Frame Pointer. The FP register is used by a procedure
to access parameters and local variables on the stack. The
FP register is set up on procedure entry with the ENTER
instruction and restored on procedure termination with the
EXIT instruction.

The frame pointer holds the address in memory occupied by
the old contents of the frame pointer.

SB—Static Base. The SB register points to the global vari-
ables of a software module. This register is used to support
relocatable global variables for software modules. The SB
register holds the lowest address in memory occupied by
the global variables of a module.

15

8|7

INTBASE—Interrupt Base. The INTBASE register holds
the address of the dispatch table for interrupts and traps
(Section 3.2.1).

MOD—Module. The MOD register holds the address of the
module descriptor of the currently executing software mod-
ule. The MOD register is 16 bits long, therefore the module
table must be contained within the first 64 kbytes of memo-
ry.

2.1.3 Processor Status Register

The Processor Status Register (PSR) holds status informa-
tion for the microprocessor.

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all pro-
grams, but the high order eight bits are accessible only to
programs exscuting in Supervisor Mode.

C The C bitindicates that a carry or borrow occurred after
an addition or subtraction instruction. It can be used
with the ADDC and SUBC instructions to perform multi-
ple-precision integer arithmetic calculations. It may
have a setting of 0 (no carry or borrow) or 1 (carry or
borrow).

T The T bit causes program tracing. If this bitis setto 1, a
TRC trap is executed after every instruction (Section
3.3.1).

L The L bit is altered by comparison instructions. In a
comparison instruction the L bit is set to *“1” if the sec-
ond operand is less than the first operand, when both
operands are interpreted as unsigned integers. Other-
wise, it is set to “‘0”. In Floating-Point comparisons, this
bit is always cleared.

V The V-bit enables generation of a trap (OVF) when an
integer arithmetic operation overflows.

F The F bitis a general condition flag, which is altered by
many instructions (e.g., integer arithmetic instructions
use it to indicate overflow).

Z The Z bit is altered by comparison instructions. In a
comparison instruction the Z bit is set to “1"" if the sec-
ond operand is equal to the first operand; otherwise it is
set to “0”.

N The N bit is altered by comparison instructions. In a
comparison instruction the N bit is set to 1" if the sec-
ond operand is less than the first operand, when both
operands are interpreted as signed integers. Otherwise,
it is set to “0".

U If the U bitis ““1” no privileged instructions may be exe-
cuted. If the U bit is “0” then all instructions may be
executed. When U = 0 the processor is said to be in
Supervisor Mode; when U = 1 the processor is said to

[+l e[s]u

FIGURE 2-2. Processor Status Register (PSR)

0€-2EGCESN/S2-2ESTESN/0C-CEGCESN

NS32532-20/NS32532-25/NS32532-30

2.0 Architectural Description (continued)

be in User Mode. A User Mode program is restricted F Floating-point instruction set. This bit indicates
from executing certain instructions and accessing cer- whether a floating-point unit (FPU) is present to exe-
tain registers which could interfere with the operating cute floating-point instructions. If this bit is 0 when the
system. For example, a User Mode program is prevent- CPU executes a floating-point instruction, a Trap
ed from changing the setting of the flag used to indicate (UND) occurs. If this bit is 1, then the CPU transfers
its own privilege mode. A Supervisor Mode program is the instruction and any necessary operands to the
assumed to be a trusted part of the operating system, FPU using the slave-processor protocol described in
hence it has no such restrictions. Section 3.1.4.1.

S The S bit specifies whether the SPO register or SP1 M Memory management instruction set. This bit en-
register is used as the Stack Pointer. The bit is automat- ables the execution of memory management instruc-
ically cleared on interrupts and traps. it may have a tions. If this bit is 0 when the CPU executes an LMR,
setting of 0 (use the SPO register) or 1 (use the SP1 SMR, RDVAL, or WRVAL instruction, a Trap (UND)
register). occurs. If this bit is 1, the CPU executes LMR, SMR,

P The P bit prevents a TRC trap from occuring more than RDVAL, and WRVAL Instructions using the on-chip
once for an instruction (Section 3.3.1). It may have a MMU.
setting of 0 (no trace pending) or 1 (trace pending). [+ Custom instruction set. This bit indicates whether a

| If | = 1, then all interrupts will be accepted. If | = 0, custom slave processor is present to execute custom
only the NM! interrupt is accepted. Trap enables are not instructions. If this bit is 0 when the CPU executes a
affected by this bit. custom instruction, a Trap (UND) occurs, If this bit is

1, the CPU transfers the instruction and any nsces-

2.1.4 Contfiguration Reglster sary operands to the custom slave processor using

The Configuration Register (CFG) is 32 bits wide, of which the slave-processor protocol described in Section

ten bits are implemented. The implemented bits enable vari- 3.1.4.1.

ous operating modes for the CPU, including vectoring of DE Direct-Exception mode enable. This bit enables the

|nterrgpts, execution of slave mstrgcﬂons, and control of the Direct-Exception mode for processing exceptions.

on-chip caches. In the NS32332 bits 4 through 7 of the CFG When this mode is selected, the CPU response time

register selected between the 16-bit and 32-bit slave proto- to interrupts and other exceptions is significantly im-

;‘22285';"2 betweerr; 512-|bytteh ang;l;[:bﬁle page ?lzesl- Th: proved. Refer to Section 3.2.1 for more information.

supports only the Jz-bit slave protocol an DC Data Cache enable. This bit enables the on-chip Data
4-Kbyte page snze.'consequently th?se bits are forced t? 1. Cache to be accessed for data reads and writes. Re-

\:'/the&“:: CFC; T;Q'S:ff f;'gadedt l:SIBQ g“te Iﬂ:r(\i inst;u(_:,tlon, fer to Section 3.4.2 for more information.

; s rqug Shouid be set 1o O. Bits roug, are LDC Lock Data Cache. This bit controls whether the con-

g;g?: :;‘(')':23 I\z:d"rr:eg’;ggiﬁ;i;:ﬁ%ﬁ'%ﬁgﬁdt:: 1327@:2 tents of the on-chip Data Cache are locked to fixed

: o ¥ " R memory locations (LDC= 1), or updated when a data

instruction is executed, the contents of the CFG register bits read is missing from the cache (LDG=0)

0 through 3 are loaded from the instruction’s short field, bits) o)

4 through 7 are ignored and bits 8 through 13 are forced to IC Instruction Cache enable. This bit enables the on-

0. chip Instruction Cache to be accessed for instruction

The format of the CFG register is shown in Figure 2-3. The fetches. Flefe‘r to Section 3‘.4.1. for more information.

various control bits are described below. LIC Lock Instruction Cache. This bit controls whether the

| Interrupt vectoring. This bit controls whether maska- contents of the on-chip Instruction Cache are locked
ble interrupts are .handled in nonvectored (1=0) or to fixed memory locations (LIC=1), or updated when
) y an instruction fetch is missing from the cache
vectored (I=1) mode. Refer to Section 3.2.3 for more (LIC=0)
information. . ‘
PF Pipelined Floating-point execution. This bit indicates
whether the floating-point unit uses the pipelined
slave protocol. When PF is 1 the pipelined protocol is
selected. PF is ignored if the F bit is 0. Refer to Sec-
tion 3.1.4.2 for more information.
31 14|13 8|7 0
Reseved | PF [Lic | 1c [wec|oc || 1 [+]+] 1+ cwm] e[

FIGURE 2-3. Configuration Register (CFG) Bits
13 to 31 are Reserved; Bits 4 to 7 are Forced to 1.

2.0 Architectural Description (continued)
2.1.5 Memory Management Registers

The NS32532 provides 7 registers to support memory man-
agement functions. They are accessed by means of the
LMR and SMR instructions. All of them can be read and
written except IVARO and IVAR1 that are write-only. A de-
scription of the memory management registers is given in
the following sections.

PTBO, PTB1—Page Table Base Pointers. The PTBn regis-
ters hold the physical addresses of the level-1 page tables
used in address translation. The least significant 12 bits are
permanently zero, so that each register always points to a
4-Kbyte boundary in memory.

When either PTBO or PTB1 is loaded by executing an LMR
instruction, the MMU automatically invalidates all entries in
the TLB that had been translated using the old value in the
selected PTBn register.

The format of the PTBn registers is shown in Figure 2-4.

31 12|11 0
000000000000
FIGURE 2-4. Page Table Base Registers (PTBn)

Base Address

IVARO, IVAR1—Invalidate Virtual Address. The Invalidate
Virtual Address registers are write-only registers. When a
virtual address is written to IVARO or IVAR1 using the LMR
instruction, the translation for that virtual address is purged,
if present, from the TLB. This must be done whenever a
Page Table Entry has been changed in memory, since the
TLB might otherwise contain an incorrect translation value.

Another technique for purging TLB entries is to load a PTBn
register. Turning off translation (clearing the MCR TU and/
or TS bits) does not purge any entries from the TLB.

TEAR—Translation Exception Address Register. The
TEAR register is loaded by the on-chip MMU when a trans-
lation exception occurs. It contains the 32-bit virtual address
that caused the translation exception.

TEAR is not updated if a page fault is detected while pre-
fetching an instruction that is not executed because the pre-
vious instruction caused a trap.

MCR—Memory Management Control. The MCR register
controls the operation of the MMU. Only four bits are imple-
mented. Bits 4 to 31 are reserved for future use and must be
loaded with zeroes.

When MCR is read as a 32-bit word, bits 4 to 31 are re-
turned as zeroes. The format of MCR is shown in Figure 2-5.
Details on the control bits are given below.

TU Translate User. While this bit is 1, address translation
is enabled for User-Mode memory references. While
this bit is 0, address translations is disabled for User-
Mode memory references.

Translate Supervisor. While this bit is 1, address trans-
lation is enabled for Supervisor Mode memory refer-
ences. While this bit is 0, address translation is dis-
abled for Supervisor-Mode memory references.

TS

DS Dual Space. While this bit is 1, then PTB1 contains the
level-1 page table base address of all addresses spec-
ified in User-Mode, and PTBO contains the level-1
page table base address of all addresses specified in
Supervisor Mode. While this bit is 0, then PTBO con-
tains the level-1 page table base address of all ad-
dresses specified in both User and Supervisor Modes.

Access Level Override. When this bit is set to 1, User-
Mode accesses are given Supervisor Mode privilege.

AO

31 4|3 0

Reserved

aolps|s|tu

FIGURE 2-5. Memory Management
Control Register (MCR)

MSR—Memory Management Status. The MSR register
provides status information related to the occurrence of a
translation exception. Only eight bits are implemented. Bits
8 to 31 are ignored when MSR is loaded and are returned
as zeroes when it is read as a 32-bit word. MSR is only
updated by the MMU when a protection violation or page
fault is detected while translating an address for a reference
required to execute an instruction. it is not updated if a page
fault is detected during either an operand or an instruction
prefetch, if the data being prefetched is not needed due to a
change in the instruction execution sequence. The format of
MSR is shown in Figure 2-6. Details on the function of each
bit are given below.

TEX Translation Exception. This two-bit field specifies the
cause of the current address translation exception.
(Trap(ABT)). Combinations appearing in this field
are summarized below.

00 No Translation Exception

01 First Level PTE Invalid

10 Second Level PTE Invalid

11 Protection Violation

During address translation, if a protection violation
and an invalid PTE are detected at the same time,
the TEX field is set to indicate a protection violation.
Data Direction. This bit indicates the direction of the
transfer that the. CPU was attempting when the
translation exception occurred.

DDT = 0 => Read Cycle

DDT = 1 => Wirite Cycle

User/Supervisor. This bit indicates whether the
Translation Exception was caused by a User-Mode
or Supervisor Mode reference. If UST is 1, then the
exception was caused by a User-Mode reference;
otherwise it was caused by a Supervisor Mode refer-
ence.

DDT

usT

2-11

0€-CEGCESN/GC-CESCESN/02-CESTESN

NS32532-20/NS32532-25/NS32532-30

2.0 Architectural Description (continued)
31 8(7

Reserved

T
| S'II'T | UST | DDT TIIEX

FIGURE 2-6. Memory Management Status Register (MSR)

STT CPU Status. This four bit field is set on an address
translation exception according to the following en-
codings.

1000 Sequential Instruction Fetch

1001 Non-Sequential Instruction Fetch

1010 Data Transfer

1011 Read Read-Modify-Write Operand

1100 Read for Effective Address

If a reference for an Interrupt-Acknowledge or End-
of-Interrupt bus cycle (either Master of Cascaded)
causes a Translation Exception, then the value of
the STT-field is undefined.

2.1.6 Débug Registers

The NS32532 contains 4 registers dedicated for debugging
functions.

These registers are accessed using privileged forms of the
LPRi and SPRi instructions.

DCR—Debug Condition Register. The DCR Register en-
ables detection of debug conditions. The format of the DCR
is shown in Figure 2-7; the various bits are described below.
A debug condition is enabled when the related bit is set to 1.

PCE PC-match enable

ub Enable debug conditions in User-Mode

SD Enable debug conditions in Supervisor Mode
DEN Enable debug conditions

The following 2 bits control testing features that can be
used during initial system debugging. These features are
unique to the NS32532 implementation of the Series 32000
architecture; as such, they may not be supported in future
implementations. For normal operation these 2 bits should
be set to 0.)

] Single-Instruction mode enable. This bit, when set
to 1, inhibits the overlapping of instruction’s execu-
tion.

Branch Condition Prediction disable. When this bit is
1, the branch prediction mechanism is disabled. See
Section 3.1.3.1.

DSR—Debug Status Register. The DSR Register indicates
debug conditions that have been detected. When the CPU
detects an enabled debug condition, it sets the correspond-
ing bit (BC, BEX, BCA) in the DSR to 1. When an address-
compare condition is detected, then the RD-bit is loaded to
indicate whether a read or write reference was performed.

BCP

CBEO Compare Byte Enable 0; when set, BYTEO of an Software must clear all the bits in the DSR when appropri-
aligned double-word is included in the address com- ate. The format of the DSR is shown in Figure 2-8; the vari-
parison ous fields are described below.

CBE1 Compare Byte Enable 1; when set, BYTE1 of an RD Indicates whether the last address-compare condi-
aligned double-word is included in the address com- tion was for a read (RD = 1) or write (RD = 0)
parison reference

CBE2 Compare Byte Enable 2; when set, BYTE2 of an BPC PC-match condition detected
aligned double-word is included in the address com- BEX External condition detected
parison BCA Address-compare condition detected

CBE3 Compare Byte Enable 3; when set, BYTE3 of an Note 1: The content of the DSR register is not defined if a debug condition
aligned double-word is included in the address com- was detected on a floating-point instruction in pipelined mode and a
parison trap was generated by a previous floating-point instruction.

" _ . Note 2: If an address compare is detected on a read and a write for the

VNP gr.;mg?{/eN\srtEagaddress (VNP = 1) or physical ad- same instruction then the RD-bit will remain clear.

S) § CAR-—Compare Address Register. The CAR Register

CWR Address-compare enable for write references contains the address that is compared to operand reference

CRD Address-compare enable for read references addresses to detect an address-compare condition. The ad-

CAE Address-compare enable dress must be double-word aligned; that is, the two least-

TR Enable Trap (DBG) when a debug condition is de- significant bits must be 0. The CAR is 32 bits wide.
tected

15 ' 8|7 0
Reserved CAE | CRD | CWR I VNP ICBES | CBE2 | CBE1 | CBEO
31 24| 23 16
Reserved DEN | SD l ub LPCE | TR | BCP I S| | Res
FIGURE 2-7. Debug Condition Register (DCR)
3 28|27 0
RD | BPC | BEX | BCA Reserved

FIGURE 2-8. Debug Status Register (DSR)

2-12

2.0 Architectural Description (continued)
BPC—Breakpoint Program Counter. The BPC Register
contains the address that is compared with the PC contents
to detect a PC-match condition. The BPC Register is 32 bits
wide.

2.2 MEMORY ORGANIZATION

The NS32532 implements full 32-bit virtual addresses. This
allows the CPU to access up to 4 Gbytes of virtual memory.
The memory is a uniform linear address space. Memory lo-
cations are numbered sequentially starting at zero and end-
ing at 232—1. The number specifying a memory location is
called an address. The contents of each memory location is
a byte consisting of eight bits. Unless otherwise noted, dia-
grams in this document show data stored in memory with
the lowest address on the right and the highest address on
the left. Also, when data is shown vertically, the lowest ad-
dress is at the top of a diagram and the highest address at
the bottom of the diagram. When bits are numbered in a
diagram, the least significant bit is given the number zero,
and is shown at the right of the diagram. Bits are numbered
in increasing significance and toward the left.

7 0

Byte at Address A

Two contiguous bytes are called a word. Except where not-
ed, the least significant byte of a word is stored at the lower
address, and the most significant byte of the word is stored
at the next higher address. In memory, the address of a
word is the address of its least significant byte, and a word
may start at any address.

15 8(7 0
A+1 A
MSB LSB
Word at Address A

Two contiguous words are called a double-word. Except
where noted, the least significant word of a double-word is

stored at the lowest address and the most significant word
of the double-word is stored at the address two higher. In
memory, the address of a double-word is the address of its
least significant byte, and a double-word may start at any
address.

31 24)23 16|15 8|7 0

A+3 A+2 A+1 A

MSB LsSB

Double-Word at Address A

Although memory is addressed as bytes, it is actually orga-
nized as double-words. Note that access time to a word or a
double-word depends upon its address, e.g. double-words
that are aligned to start at addresses that are multiples of
four will be accessed more quickly than those not so
aligned. This also applies to words that cross a double-word
boundary.

2.2.1 Address Mapping
Figure 2-9 shows the NS32532 address mapping.

The NS32532 supports the use of memory-mapped periph-
eral devices and coprocessors. Such memory-mapped de-
vices can be located at arbitrary locations in the address
space except for the upper 8 Mbytes of virtual memory (ad-
dresses between FF800000 (hex) and FFFFFFFF (hex), in-
clusive), which are reserved by National Semiconductor
Corporation. Nevertheless, it is recommended that high-per-
formance peripheral devices and coprocessors be located
in a specific 8 Mbyte region of virtual memory (addresses
between FFO00000 (hex) and FF7FFFFF (hex), inclusive),
that is dedicated for memory-mapped I/0. This is because
the NS32532 detects references to the dedicated locations
and serializes reads and writes. See Section 3.1.3.3. When
making /0 references to addresses outside the dedicated
region, external hardware must indicate to the NS32532
that special handling is required.

In this case a small performance degradation will also re-

sult. Refer to Section 3.1.3.2 for more information on memo-

ry-mapped 1/0.

Address (Hex)
00000000

Memory and I/0
FF0O00000

Memory-Mapped I/0
FF800000

Reserved by NSC
FFFFFEOO

Interrupt Control
FFFFFFFF

FIGURE 2-9. NS§32532 Address Mapping

0€-2ESCESN/S2-2EGZESN/02-2ESTESN

NS32532-20/NS32532-25/NS32532-30

2.0 Architectural Description (continued)
2.3 MODULAR SOFTWARE SUPPORT

The NS32532 provides special support for software mod-
ules and modular programs.

Each module in a NS32532 software environment consists
of three components:

1. Program Code Segment.

This segment contains the module’s code and constant
data.

2. Static Data Segment.

Used to store variables and data that may be accessed
by all procedures within the module.

3. Link Table.

This component contains two types of entries: Absolute
Addresses and Procedure Descriptors.

An Absolute Address is used in the external addressing
mode, in conjunction with a displacement and the current
MOD Register contents to compute the effective address
of an external variable belonging to another module. -

The Procedure Descriptor is used in the call external pro-
cedure (CXP) instruction to compute the address of an
external procedure.

Normally, the linker program specifies the locations of the
three components. The Static Data and Link Table typically
reside in RAM; the code component can be either in RAM or
in ROM. The three components can be mapped into non-
contiguous locations in memory, and each can be indepen-
dently relocated. Since the Link Table contains the absolute
addresses of external variables, the linker need not assign
absolute memory addresses for these in the module itself;
they may be assigned at load time.

To handle the transfer of control from one module to anoth-
er, the NS32532 uses a module table in memory and two
registers in the CPU.

The Module Table is located within the first 64 kbytes of
virtual memory. This table contains a Module Descriptor
(also called a Module Table Entry) for each module in the
address space of the program. A Module Descriptor has
four 32-bit entries corresponding to each component of a
module:

* The Static Base entry contains the address of the begin-
ning of the module’s static data segment.

® The Link Table Base points to the beginning of the mod-
ule’s Link Table.

* The Program Base is the address of the beginning of the
code and constant data for the module.

* A fourth entry is currently unused but reserved.

The MOD Register in the CPU contains the address of the
Module Descriptor for the currently executing module.

The Static Base Register (SB) contains a copy of the Static
Base entry in the Module Descriptor of the currently execut-
ing module, i.e., it points to the beginning of the current
module’s static data area.

This register is implemented in the CPU for efflcnency pur-
poses. By having a copy of the static base entry or chip, the
CPU can avoid reading it from memory each time a data
item in the static data segment is accessed.

In an NS§32532 software environment modules need not be
linked together prior to loading. As modules are loaded, a
linking loader simply updates the Module Table and fills the
Link Table entries with the appropriate values. No modifica-
tion of a module’s code is required. Thus, modules may be
stored in read-only memory and may be added to a system
independently of each other, without regard to their individu-
al addressing. Figure 2-10 shows a typical NS32532 run-
time environment.

1y, MODULE TABLE s STATIC DATA
31 0 SEGMENT
STATIC BASE |} =========~ 3] SB REGISTER
Mgﬁgtg LINK TABLE BASE
entry | | PROGRAM BASE [T DisP
RESERVED !
4 4 LINK TABLE
)
: »{ ABSOLUTE ADDRESS
: ABSOLUTE ADDRESS
owsn---»@d--- OFFSET | MODULE
T DISP1x4 ABSOLUTE ADDRESS
]
1 L A
[]
! PROGRAM CODE G)q— DISP2
' L’ SEGMENT EXTERNAL MODULE
]
]
EXT. VARIABLE |4

PC REGISTER

TL/EE/9354-2

Note: Dashed lines indicate information copied to registers during transfer of control between modules.

FIGURE 2-10. NS32532 Run-Time Environment

2.0 Architectural Description (continued)
2.4 MEMORY MANAGEMENT

The Memory Mangement Unit of the NS32532 provides
support for demand-paged virtual memory. The MMU trans-
lates 32-bit virtual addresses into 32-bit physical addresses.
The page size is 4096 bytes.

The mapping from virtual to physical addresses is defined
by means of sets of tables in physical memory. These tables
are found by the MMU using one of its two Page Table Base
registers: PTBO or PTB1. Which register is used depends on
the currently selected address space. See Section 2.4.2.

Translation efficiency is improved by means of an on-chip
64-entry translation look-aside buffer (TLB). Refer to Sec-
tion 3.4.4 for details.

If the MMU detects a protection violation or page fault while
translating an address for a reference required to execute
an instruction, a translation exception (Trap (ABT)) will re-
sult.

2.4.1 Page Tables Structure

The page tables are arranged in a two-level structure, as
shown in Figure 2-11. Each of the MMU’s PTBn registers
may point to a Level-1 page table. Each entry of the Level-1
page table may in turn point to a Level-2 page table. Each
Level-2 page table entry contains translation information for
one page of the virtual space.

The Level-1 page table must remain in physical memory
while the PTBn register contains its address and translation
is enabled. Level-2 Page Tables need not reside in physical
memory permanently, but may be swapped into physical
memory on demand as is done with the pages of the virtual
space.

The Level-1 Page Table contains 1024 32-bit Page Table
Entries (PTE’s) and therefore occupies 4 Kbytes. Each entry
of the Level-1 Page Table contains a field used to construct
the physical base address of a Level-2 Page Table. This
field is a 20-bit PFN field, providing bits 12-31 of the physi-
cal address. The remaining bits (0-11) are assumed zero,
placing a Level-2 Page Table always on a 4-Kbyte (page)
boundary.

«~—— 32 BITS—

1024
ERTRIES

LEVEL-1
PAGE TABLE

Level-2 Page Tables contain 1024 32-bit Page Table en-
tries, and so occupy 4 Kbytes (1 page). Each Level-2 Page
Table Entry points to a final 4-Kbyte physical page frame. In
other words, its PFN provides the Page Frame Number por-
tion (bits 12-31) of the translated address (Figure 2-13).
The OFFSET field of the translated address is taken directly
from the corresponding field of the virtual address.

2.4.2 Virtual Address Spaces

When the Dual Space option is selected for address transla-

tion in the MCR (Section 2.1.5) the on-chip MMU uses two

maps: one for translating addresses presented to it in Su-
pervisor Mode and another for User Mode addresses. Each
map is referenced by the MMU using one of the two Page

Table Base registers: PTBO or PTB1. The MMU determines

the map to be used by applying the following rules.

1) While the CPU is in Supervisor Mode (U/S pin = 0), the
CPU is said to be generating virtual addresses belonging
to Address Space 0, and the MMU uses the PTBO regis-
ter as its reference for looking up translations from mem-
ory.

2) While the CPU is in User Mode (U/S pin = 1), and the
MCR DS bit is set to enable Dual Space translation, the
CPU is said to be generating virtual addresses belonging
to Address Space 1, and the MMU uses the PTB1 regis-
ter to look up translations.

3) If Dual Space translation is not selected in the MCR,
there is no Adress Space 1, and all virtual addresses gen-
erated in both Supervisor and User modes are consid-
ered by the MMU to be in Address Space 0. The privilege
level of the CPU is used then only for access level check-
ing.

Note: When the CPU executes a Dual-Space Move instruction (MOVUSi or
MOVSUi), it temporarily enters User Mode by switching the state of
the U/S pin. Accesses made by the CPU during this time are treated
by the MMU as User-Mode accesses for both mapping and access
level checking. It is possible, however, to force the MMU to assume

Supervisor Mode privilege on such accesses by setting the Access
Override (AO) bit in the MCR (Section 2.1.5).

<—— 32 BITS —

4K BYTES

1024
ENTRIES

A

MEMORY

LEVEL-2
PAGE TABLES

TL/EE/9354-3

FIGURE 2-11. Two-Level Page Tables

2-15

0€-2ES2ESN/GC-CESTESN/0C-CESTESN

NS32532-20/NS32532-25/NS32532-30

2.0 Architectural Description (continued)

2.4.3 Page Table Entry Formats R Referenced. This is a status bit, set by the MMU and
Figure 2-12 shows the formats of Level-1 and Level-2 Page cleared by the operating system, that indicates
Table Entries (PTE's). whether the page mapped by this PTE has been ref-
. . : erenced within a period of time determined by the
The b'ts. are defmefj ‘as follows: operating system. It is intended to assist in imple-
V Valid. The V bit is set and cleared only by software. menting memory allocation strategies. In a Level-1
V =1=> The PTE is valid and may be used for PTE, the R bit indicates only that the Level-2 Page
translation by the MMU.) Table has been referenced for a translation, without
V = 0 => The PTE does not represent a valid trans- necessarily implying that the translation was suc-
lation. Any attempt to use this PTE to trans- cessful. In a Level-2 PTE, it indicates that the page
late and address will cause the MMU to mapped by the PTE has been sucessfully referenced.
generate an Abort trap. R = 1 => The page has been referenced since the
PL Protection Level. This two-bit field establishes the R bit was last cleared.
types of accesses permitted for the page in both User R = 0 => The page has not been referenced since
Mode and Supervisor Mode, as shown in Table 2-1. the R bit was last cleared.
The PL field is modified only by software. In a Level-1 M Modified. This is a status bit, set by the MMU when-
PTE, it limits the maximum access level allowed for all ever a write cycle is successfully performed to the
pages mapped through that PTE. page mapped by this PTE. It is initialized to zero by
the operating system when the page is brought into
TABLE 2-1. Access Protection Levels physical memory.
Mode u/s Protection Level Bits (PL) M = 1 => The page has been modified since it was
00 01 10 11 last brought into physical memory.' .
M = 0 => The page has not been modified since it
User 1 no no read full was last brought into physical memory.
access | access | only | access In Level-1 Page Table Entries, this bit po-
Supervisor | 0 read full full full sition is undefined, and is unaltered.
only | access | access | access USR User bits. These bits are ignored by the MMU and
_ , their values are not changed.
NU Not Used. These bits are reserved by National for They can be used by the user software
future enhancements. Their values should be set to Y cal y the us - c .
zero. PFN Page Frame Number. This 20-bit field provides bits
Cl Cache Inhibit. This bit appears only in Level-2 PTE's. 12-31 of the physical address. See Figure 2-13.
It is used to specify non-cacheable pages.
31 12|11 9|8 0
T I I T T T
PFN USR NU R NU : PL v
]]]]]]
First Level PTE
31 12|11 8 9 0
i 4 1 I i
PFN USR M R Cl NU PL \'
]]] | |
Second Level PTE

FIGURE 2-12. Page Table Entries (PTE’s)

2.0 Architectural Description (continued)

VIRTUAL ADDRESS
21 121 0

kAl
I INDEX 1 I INDEX 2 | OFFSET
| | FTBn I—v

LEVEL-1 PAGE TABLE

LEVEL-1 PTE

I PTBn INDEX 1 I 00 I—b PFN I USR l NU IR,NUIPLIV -
A 171 21 0 KAl 0
(1) SELECT 1ST PTE
IF 0S =0 THEN
n=0

ELSE
n=1FOR USER MODE
n=0 FOR SUPV MODE

PFN INDEX 2

000000000000 > LEVEL-2 PAGE TABLE _

LEVEL-2 PTE

1 121 21 0
(2) SELECT 2ND PTE

PHYSICAL ADDRESS m OFFSET

N 121 0
(3) GENERATE PHYSICAL
ADDRESS

TL/EE/9354-4

FIGURE 2-13. Virtual to Physical Address Translation

2.4.4 Physical Address Generation

When a virtual address is presented to the MMU and the
translation information is not in the TLB, the MMU performs
a page table lookup in order to generate the physical ad-
dress.

The Page Table structure is traversed by the MMU using
fields taken from the virtual address. This sequence is dia-
grammed in Figure 2-13.

Bits 12—31 of the virtual address hold the 20-bit Page Num-
ber, which in the course of the translation is replaced with
the 20-bit Page Frame Number of the physical address. The
virtual Page Number field is further divided into two fields,
INDEX 1 and INDEX 2.

Bits 0-11 constitute the OFFSET field, which identifies a
byte’s position within the accessed page. Since the byte
position within a page does not change with translation, this
value is not used, and is simply echoed by the MMU as bits
0-11 of the final physical address.

The 10-bit INDEX 1 field of the virtual address is used as an
index into the Level-1 Page Table, selecting one of its 1024
entries. The address of the entry is computed by adding
INDEX 1 (scaled by 4) to the contents of the current Page
Table Base register. The PFN field of that entry gives the
base address of the selected Level-2 Page Table.

The INDEX 2 field of the virtual address (10 bits) is used as
the index into the Level-2 Page Table, by adding it (scaled

by 4) to the base address taken from the Level-1 Page Ta-
ble Entry. The PFN field of the selected entry provides the
entire Page Frame Number of the translated address.

The offset field of the virtual address is then appended to
this frame number to generate the final physical address.
2.4.5. Address Translation Algorithm

The MMU either translates the 32-bit virtual address to a 32-
bit physical address or generates an abort trap to report a
translation error. The algorithm used by the MMU to perform
the translation is compatible with that of the NS32382. Re-
fer to Appendix C for differences between the two MMUs.

In the description that follows, the symbol ‘U’ takes the val-
ue 1 for a User-Mode memory reference. A reference is a
User-Mode reference in the following cases:

1. The reference is performed while executing in User-
Mode.

2. The reference is for the source operand of a MOVUS
instruction.

3. The reference is for the destination operand of a MOVSU
instruction.

The following notations are used in the algorithm.

e A||lB — A concatenated with B

* AB — B is a field inside register A

¢ (A) — object pointed to by address A

¢ (A).B — B field of the object pointed to by address A

2-17

0€-2EGCESN/S2-2ESCESN/0C-CESCESN

NS32532-20/NS32532-25/NS32532-30

2.0 Architectural Description (continued)
Each access is associated with one of two Address Spaces
(AS), defined as follows:

AS = U AND MCR.DS

If AS = 1, Page Table Base Register 1 (PTB1) is used to
select the first-level page table. If AS = 0, PTBO is used to
select the first-level page table.

The access-level is a 2-bit value used to specify the privi-
lege level of an access. It is determined as follows:

e BIT1 = U AND (NOT(MCR.A0))
® BITO = 1 for write, or read with ‘RMW’ status
0 otherwise
START TRANSLATION:
If (U= 0ANDMCR.TS = 00R U = 1 AND MCR.TU = 0)
then

/* address translation disabled */

(physical address <— virtual address; CIOUT pin = 0);
/* Note: CIOUT = 0 in all MMU generated accesses */
else BEGIN /* (see also Figure 2-13) */

1. Select PTB:

¢ If (MCR.DS = 1 AND U = 1) then
— PTB = PTB{1,

— AS = 1;

® else (PTB = PTBO, AS = 0);

2. Fetch first level PTE:

* PTE Pointer = PTB.BASE ADDRESS]|INDEX1(|00;
® PTE <« (PTE Pointer); /* Fetch PTE1 */
o Effective PL «— PTE.PL

3. Validate First Level PTE:

o |f (PTE.PL < access level) then

® /* Protection Exception */

— TEAR < virtual address,

— clock MSR with MSR.TEX = 11,

— terminate translation;

e If (PTE.V = 0) then

e /* PTE1 Invalid */

— TEAR < virtual address,

— clock MSR with MSR.TEX = 01,

— terminate translation;

e If (PTE.R = 0) then

— Write a Byte (PTE Pointer) .R = 1;

o Effective PL <— PTE.PL

4, Fetch second level PTE:

* PTE Pointer = PTE.PFN||INDEX2||00;
e PTE <« (PTE Pointer); /* Fetch PTE2 */
o If (PTE.PL < effective PL) then

— Effective PL «— PTE.PL;

5. Validate Second Level PTE:

® If (PTE.PL < access level) then

* /* Protection Exception */

— TEAR <« virtual address,

— clock MSR with MSR.TEX = 11,

— terminate translation;

e If (PFTE.V = 0) then

e /* PTE2 Invalid */

— TEAR < virtual address,

— clock MSR with MSR.TEX = 10,

— terminate translation;

o |f ((read AND NOT interlocked) AND PTE.R = 0) then
Read-Modify-Write a double-word interlocked (PTE
Pointer).R = 1;

o |f ((write OR interlocked read) AND (PTE.R = 0 OR
PTE.M = 0) then Read-Modify-Write a double-word in-
terlocked (PTE Pointer).R = 1, (PTE Pointer).M = 1;

6. Generate Physical address:

e physical address <— PTE.PFN||OFFSET

e CIOUT pin «— PTE.CI

7. Update Translation Buffer:

e Select entry for replacement;

® TLB. Virtual Page Number <— INDEX1|| INDEX2;

¢ TLB.AS « AS;

e TLB. Physical Frame Number <— PTE.PFN

e TLB.PL <« Effective PL

e TLB.Cl <« PTE.CI

e TLB.M <« (PTE Pointer) .M

e Enable entry

END

Note 1: The TEAR and MSR are only updated when a Trap (ABT) occurs. It
is possible that the MMU detects a page fault or protection violation
on a reference for an instruction that is not executed, for example
on a prefetch. In that event, Trap (ABT) does not occur, and the
TEAR and MSR are not updated.

Note 2: If the MMU is translating a virtual address to check protection while
executing a RDVAL or WRVAL instruction, then Trap (ABT) occurs
only if the level-1 PTE is invalid and the access is permitted by the
PL-field. These instructions will not generate an abort if the F bit
value can be determined from Level-1 PTE.

2.5 INSTRUCTION SET

2.5.1 General Instruction Format

Figure 2-14 shows the general format of a Series 32000
instruction. The Basic Instruction is one to three bytes long
and contains the Opcode and up to two 5-bit General Ad-
dressing Mode (“Gen”) fields. Following the Basic Instruc-
tion field is a set of optional extensions, which may appear
depending on the instruction and the addressing modes se-
lected.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index-
ing. See Figure 2-15.

2-18

2.0 Architectural Description (continued)

OPTIONAL BASIC
EXTENSIONS INSTRUCTION
N A
s Y N
1
olsvzlolsm mspz]msm i
GEN | GEN
IMPLIED INDEX INDEX ADBR |
IMMEDIATE oIsSP DISP BYTE ADDR OPCODE
OPERAND(S) eviE Mt:DE i ugoe
MM MM i
.
TL/EE/9354-5
FIGURE 2-14. General Instruction Format
7 3|2 0

GEN. ADDR. MODE

REG. NO.

TL/EE/9354-6

FIGURE 2-15. Index Byte Format

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select-
ed addressing modes. Each Disp/Imm field may contain
one or two displacements, or one immediate value. The size
of a Displacement field is encoded with the top bits of that
field, as shown in Figure 2-16, with the remaining bits inter-
preted as a signed (two’s complement) value. The size of an
immediate value is determined from the Opcode field. Both
Displacement and Immediate fields are stored most signifi-
cant byte first. Note that this is different from the memory
representation of data (Section 2.2).

Some instructions require additional, ‘implied” immediates
and/or displacements, apart from those associated with ad-
dressing modes. Any such extensions appear at the end of
the instruction, in the order that they appear within the list of
operands in the instruction definition (Section 2.5.3).

2.5.2 Addressing Modes

The CPU generally accesses an operand by calculating its
Effective Address based on information available when the
operand is to be accessed. The method to be used in per-
forming this calculation is specified by the programmer as
an “addressing mode."”

Addressing modes are designed to optimally support high-
level language accesses to variables. In nearly all cases, a
variable access requires only one addressing mods, within
the instruction that acts upon that variable. Extraneous data
movement is therefore minimized.

Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight Gen-
oral Purpose Registers. In certain Slave Processor instruc-
tions, an auxiliary set of eight registers may be referenced
instead.

Register Relative: A General Purpose Register contains an
address to which is added a displacement value from the
instruction, yielding the Effective Address of the operand in
memory.

Memory Space: Identical to Register Relative above, ex-
cept that the register used is one of the dedicated registers

PC, SP, SB or FP. These registers point to data areas gen-
erally needed by high-level languages.

Byte Displacement: Range —64 to +63

0 SIGNED DISPLACEMENT

Word Displacement: Range —8192 to +8191

1 ! 0 v\,cﬁ“e“

e°°‘5

Double Word Displacement:
Range —(229 — 228)to + (229 — 1)*

5
o
)

&‘@&"’

TL/EE/9354-7
FIGURE 2-16. Displacement Encodings
*Note: The pattern 11100000 for the most significant byte of the displace-
ment is reserved by National for future enhancements. Therefores, it
should never be used by the user program. This causes the lower
limit of the displacement range to be —(229—224) instead of —229,

2-19

0€-2ESCESN/G2-CESCESN/02-CESCESN

NS32532-20/NS32532-25/NS32532-30

2.0 Architectural Description (continued)

Memory Relative: A pointer variable is found within the
memory space pointed to by the SP, SB or FP register. A
displacement is added to that pointer to generate the Effec-
tive Address of the operand.

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written.

Absolute: The address of the operand is specified by a
displacement field in the instruction.

External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis-
placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SPO or
SP1) specifies the location of the operand. The operand is
pushed or popped, depending on whether it is written or
read.

Scaled Index: Although encoded as an addressing mode,
Scaled Indexing is an option on any addressing mode ex-
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen-
eral Purpose Register by 1, 2, 4 or 8 and adding it into the
total, yielding the final Effective Address of the operand.
Table 2-2 is a brief summary of the addressing modes. For a
complete description of their actions, see the Instruction Set
Reference Manual.

2.5.3 Instruction Set Summary

Table 2-3 presents a brief description of the NS32532 in-
struction set. The Format column refers to the Instruction

Format tables (Appendix A). The Instruction column gives
the instruction as coded in assembly language, and the De-
scription column provides a short description of the function
provided by that instruction. Further details of the exact op-
erations performed by each instruction may be found in the
Instruction Set Reference Manual.
Notations:
i = Integer length suffix: B = Byte

W = Word

D = Double Word
f = Floating Point length suffix: F = Standard Floating

L = Long Floating

gen = General operand. Any addressing mode can be
specified.
short = A 4-bit value encoded within the Basic Instruction
(see Appendix A for encodings).

imm = Implied immediate operand. An 8-bit value append-
ed after any addressing extensions.

disp = Displacement (addressing constant): 8, 16 or 32
bits. All three lengths legal.

reg = Any General Purpose Register: RO-R7.

areg = Any Processor Register: Address, Debug, Status,
Configuration.

mreg = Any Memory Management Register.

creg = A Custom Slave Processor Register (Implementa-
tion Dependent).

cond = Any condition code, encoded as a 4-bit field within
the Basic Instruction (see Appendix A for encodings).

2-20

2.0 Architectural Description (continued)
TABLE 2-2. NS32532 Addressing Modes

ENCODING
Register
00000
00001
00010
00011
00100
00101
00110
00111
Register Relative
01000
01001
01010
01011
01100
01101
01110
01111
Memory Relative
10000
10001
10010
Reserved
10011
Immediate
10100

Absolute
10101
External
10110

Top of Stack
10111

Memory Space
11000

11001

11010

11011

Scaled Index
11100

11101

11110

11111

MODE

Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7

Register O relative
Register 1 relative
Register 2 relative
Register 3 relative
Register 4 relative
Register 5 relative
Register 6 relative
Register 7 relative

Frame memory relative
Stack memory relative
Static memory relative

(Reserved for Future Use)

Immediate

Absolute

External

Top of stack

Frame memory
Stack memory
Static memory
Program memory

Index, bytes

Index, words

Index, double words
Index, quad words

ASSEMBLER SYNTAX

RO, FO, LO
R1,F1, L1
R2,F2,L2
R3,F3,L3
R4,F4,L4
RS, F5, L5
R6, F6, L6
R7,F7,L7

disp(R0)
disp(R1)
disp(R2)
disp(R3)
disp(R4)
disp(R5)
disp(R6)
disp(R7)

disp2(disp1(FP))
disp2(disp1(SP))
disp2(disp1(SB))

value

@disp

EXT(disp1) + disp2

TOS

disp(FP)
disp(SP)
disp(SB)
* +disp

mode[Rn:B]
mode[Rn:W]
mode[Rn:D]
mode[Rn:Q]

EFFECTIVE ADDRESS

None: Operand is in the
specified register.

Disp + Register.

Disp2 + Pointer; Pointer found at

address Disp1 + Register. “SP” is either

SPO or SP1, as selected in PSR.

None. Operand is input from
instruction queue.

Disp.

Disp2 + Pointer; Pointer is found

at Link Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Disp + Register; “SP" is either
SPO or SP1, as selected in PSR.

EA (mode) + Rn.

EA (mode) + 2 X Rn.

EA (mode) + 4 X Rn.

EA (mode) + 8 X Rn.

“Mode’ and ‘n’ are contained
within the Index Byte.

EA (mode) denotes the effective
address generated using mode.

2-21

0€-2EGCESN/SZ-2ESCESN/02-CESTESN

NS32532-20/NS32532-25/NS32532-30

2.0 Architectural Description (continued)
TABLE 2-3. N§32532 Instruction Set Summary

MOVES
Format Operation Operands
4 MOVi gen,gen
2 MOvQi short,gen
7 MOVMi gen,gen,disp
7 MOvVZBW gen,gen
7 MOVZiD gen,gen
7 MOVXBW gen,gen
7 MOVXID gen,gen
4 ADDR gen,gen
INTEGER ARITHMETIC
Format Operation Operands
4 ADDI gen,gen
2 ADDQi short,gen
4 ADDCi gen,gen
4 SUBI gen,gen
4 SUBCi gen,gen
6 NEGi gen,gen
6 ABSi gen,gen
7 MULi gen,gen
7 QUOI gen,gen
7 REMi gen,gen
7 DIVi gen,gen
7 MODi gen,gen
7 MEIi gen,gen
7 DEli gen,gen
PACKED DECIMAL (BCD) ARITHMETIC
Format Operation Operands
6 ADDPI gen,gen
6 SUBPi gen,gen
INTEGER COMPARISON
Format Operation Operands
4 CMPi gen,gen
2 CMPQi short,gen
7 CMPMi gen,gen,disp
LOGICAL AND BOOLEAN
Format Operation Operands
4 ANDi gen,gen
4 ORi gen,gen
4 BICi gen,gen
4 XORi gen,gen
6 COMi gen,gen
6 NOTI gen,gen
2 Scondi gen
SHIFTS
Format Operation Operands
6 LSHi gen,gen
6 ASHi gen,gen
6 ROTi gen,gen

Description

Move a value.

Extend and move a signed 4-bit constant.
Move Multiple: disp bytes (1 to 16).

Move with zero extension.

Move with zero extension.

Move with sign extension.

Move with sign extension.

Move Effective Address.

Description

Add.

Add signed 4-bit constant.
Add with carry.

Subtract.

Subtract with carry (borrow).
Negate (2's complement).
Take absolute value.
Multiply.

Divide, rounding toward zero.
Remainder from QUO.
Divide, rounding down.
Remainder from DIV (Modulus).
Multiply to Extended Integer.
Divide Extended Integer.

Description
Add Packed.
Subtract Packed.

Description

Compare.

Compare to signed 4-bit constant.
Compare Multiple: disp bytes (1 to 16).

Description

Logical AND.

Logical OR.

Clear selected bits.

Logical Exclusive OR.

Complement all bits.

Boolean complement: LSB only.

Save condition code (cond) as a Boolean variable of size i.

Description

Logical Shift, left or right.
Arithmetic Shift, left or right.
Rotate, left or right.

2-22

2.0 Architectural Description (continued)
TABLE 2-3. NS32532 Instruction Set Summary (Continued)

BITS
Format Operation Operands Description
4 TBITi gen,gen Test bit.
6 SBITi gen,gen Test and set bit.
6 SBITIi gen,gen Test and set bit, interlocked.
6 CBITi gen,gen Test and clear bit.
6 CBITli gen,gen Test and clear bit, interlocked.
6 IBITi gen,gen Test and invert bit.
8 FFSi gen,gen Find first set bit.
BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records used in
Pascal. “Extract” instructions read and align a bit field. ““Insert” instructions write a bit field from an aligned source.

0€-2ESCESN/SC-CESCESN/02-CEGCESN

Format Operation Operands Description
8 EXTi reg,gen,gen,disp Extract bit field (array oriented).
8 INSi reg,gen,gen,disp Insert bit field (array oriented).
7 EXTSi gen,gen,imm,imm Extract bit field (short form).
7 INSSI gen,gen,imm,imm Insert bit field (short form).
8 CVTP reg,gen,gen Convert to Bit Field Pointer.
ARRAYS
Format Operation Operands Description
8 CHECKI reg,gen,gen Index bounds check.
8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays.
STRINGS
String instructions assign specific functions to Options on all string instructions are:
the General Purpose Registers: B (Backward): Decrement string pointers after each step
R4 - Comparison Value rather than incrementing.
R3 - Translation Table Pointer U (Until match): End instruction if String 1 entry
R2 - String 2 Pointer ' matches R4.
R1 - String 1 Pointer W (While match): End instruction if String 1 entry
RO - Limit Count does not match R4.
All string instructions end when RO decrements to zero.
Format Operation Operands Description
5 MOVSI options Move String 1 to String 2.
MOVST options Move string, translating bytes.
5 CMPSi options Compare String 1 to String 2.
CMPST options Compare translating, String 1 bytes.
5 SKPSi options Skip over String 1 entries.
SKPST options Skip, translating bytes for Until/While.

2-23

NS32532-20/NS32532-25/NS32532-30

2.0 Architectural Description (continued)
TABLE 2-3. N$32532 Instruction Set Summary (Continued)

Operands
gen

disp

disp

gen
short,gen,disp
gen

disp

disp

gen

[reg list] disp
[reg list]
disp

disp

disp

Operands
[reg list]
[reg list]
areg,gen

areg,gen

gen
gen
gen
[option list]

Operands
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen

JUMPS AND LINKAGE
Format Operation
3 JUMP
0 BR
0 Beond
3 CASEi
2 ACBi
3 JSR
1 BSR
1 CXP
3 CXPD
1 SvC
1 FLAG
1 BPT
1 ENTER
1 EXIT
1 RET
1 RXP
1 RETT
1 RETI
CPU REGISTER MANIPULATION
Format Operation
1 SAVE
1 RESTORE
2 LPRi
2 SPRi
3 ADJSPi
3 BISPSRIi
3 BICPSRi
5 SETCFG
FLOATING POINT
Format Operation
11 MOVf
9 MOVLF
9 MOVFL
9 MOVif
9 ROUNDfi
9 TRUNCHi
9 FLOOR(i
1 ADDf
1" SuBf
1 MULf
1 Divf
11 CMPf
1 NEGf
1 ABSf
12 POLYf
12 DOTf
12 SCALBf
12 LOGBf
12 SQRTf
12 MACE
9 LFSR
9 SFSR

gen

Description

Jump.

Branch (PC Relative).

Conditional branch.

Multiway branch.

Add 4-bit constant and branch if non-zero.

Jump to subroutine.

Branch to subroutine.

Call external procedure.

Call external procedure using descriptor.

Supervisor Call.

Flag Trap.

Breakpoint Trap.

Save registers and allocate stack frame (Enter Procedure).
Restore registers and reclaim stack frame (Exit Procedure).
Return from subroutine.

Return from external procedure call.

Return from trap. (Privileged)

Return from interrupt. (Privileged)

Description

Save General Purpose Registers.

Restore General Purpose Registers.

Load Processor Register. (Privileged if PSR, INTBASE, USP, CFG
or Debug Registers).

Store Processor Register. (Privileged if PSR, INTBASE, USP, CFG
or Debug Registers).

Adjust Stack Pointer.

Set selected bits in PSR. (Privileged if not Byte length)

Clear selected bits in PSR. (Privileged if not Byte length)

Set Configuration Register. (Privileged)

Description

Move a Floating Point value.

Move and shorten a Long value to Standard.
Move and lengthen a Standard value to Long.
Convert any integer to Standard or Long Floating.
Convert to integer by rounding.

Convert to integer by truncating, toward zero.
Convert to largest integer less than or equal to value.
Add.

Subtract.

Multiply.

Divide.

Compare.

Negate.

Take absolute value.

Polynomial Step.

Dot Product.

Binary Scale.

Binary Log.

Square Root

Multiply and Accumulate

Load FSR.

Store FSR.

2-24

=
2.0 Architectural Description (ontinued) 4
TABLE 2-3. NS32532 Instruction Set Summary (Continued) §
MEMORY MANAGEMENT N
Format Operation Operands Description 2
14 LMR mreg,gen Load Memory Management Register. (Privileged) c%
14 SMR mreg,gen Store Memory Management Register. (Privileged) @
14 RDVAL gen Validate address for reading. (Privileged) a
14 WRVAL gen Validate address for writing. (Privileged) S
8 MOVSUi gen,gen Move a value from Supervisor n
Space to User Space. (Privileged) c\n
8 MOVUSI gen,gen Move a value from User Space 5
to Supervisor Space. (Privileged) ‘,3
MISCELLANEOUS a
Format Operatlon Operands Description n
1 NOP No Operation. g
1 WAIT Wait for interrupt.
1 DIA Diagnoss. Single-byte “Branch to Self” for hardware
breakpointing. Not for use in programming.
14 CINV options,gen Cache Invalidats. (Privileged)
CUSTOM SLAVE)
Format Operation Operands Description
15.5 CCALOc gen,gen Custom Calculate.
15.5 CCAL1c gen,gen
15.5 CCAL2c gen,gen
15.5 CCAL3c gen,gen
15.5 CMOVOc gen,gen Custom Move.
15.5 CMOV1ic gen,gen
155 CMOVac gen,gen
15.5 CMOV3c gen,gen
15.5 CCMPOc gen,gen Custom Compare.
15.5 CCMP1c gen,gen
15.1 CCVOci gen,gen Custom Convert.
15.1 CCV1ici gen,gen
15.4 CCVZaci gen,gen
151 CCVaic gen,gen
15.1 CCv4DQ gen,gen
15.1 CCvs5QD gen,gen
15.1 LCSR gen Load Custom Status Register.
15.1 SCSR gen Store Custom Status Register.
15.0 LCR creg,gen Load Custom Register. (Privileged)
15.0 SCR creg,gen Store Custom Register. (Privileged)
|

2-25

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description

This chapter provides details on the functional characteris-
tics of the NS32532 microprocessor.

The chapter is divided into five main sections:

Instruction Execution, Exception Processing, Debugging,
On-Chip Caches and System Interface.

3.1INSTRUCTION EXECUTION

To execute an instruction, the NS32532 performs the fol-
lowing operations:

® Fetch the instruction

® Read source operands, if any (1)
® Calculate results

o Write result operands, if any

* Modify flags, if necessary

* Update the program counter

Under most circumstances, the CPU can be conceived to
execute instructions by completing the operations above in
strict sequence for one instruction and then beginning the
sequence of operations for the next instruction. However,
due to the internal instruction pipelining, as well as the oc-
currence of exceptions, the sequence of operations per-
formed during the execution of an instruction may be al-
tered. Furthermore, exceptions also break the sequentiality
of the instructions executed by the CPU.

Details on the effects of the internal pipelining, as well as

the occurrence of exceptions on the instruction execution,

are provided in the following sections.

Note: 1 In this and following sections, memory locations read by the CPU to
calculate effective addresses for Memory-Relative and External ad-
dressing modes are considered like source operands, even if the

effective address is being calculated for an operand with access
class of write.

3.1.1 Operating States

The CPU has five operating states regarding the execution
of instructions and the processing of exceptions: Reset, Ex-
ecuting Instructions, Processing An Exception, Waiting-For-
An-Interrupt, and Halted. The various states and transitions
between them are shown in Figure 3-1.

Whenever the RST signal is asserted, the CPU enters the
reset state. The CPU remains in the reset state until the
RST signal is driven inactive, at which time it enters the
Executing-Instructions state. In the Reset state the contents
of certain registers are initialized. Refer to Section 3.5.3 for
details.

In the Executing-Instructions state, the CPU executes in-
structions. It will exit this state when an exception is recog-
nized or a WAIT instruction is encountered. At which time it
enters the Processing-An-Exception state or the Waiting-
For-An-Interrupt state respectively.

While in the Processing-An-Exception state, the CPU saves
the PC, PSR and MOD register contents on the stack and
reads the new PC and module linkage information to begin
execution of the exception service procedure (ses note).
Following the completion of all data references required to
process an exception, the CPU enters the Executing-In-
structions state.

In the Waiting-For-An-Interrupt state, the CPU Is idle. A spe-
cial status identifying this state Is presented on the system
interface (Section 3.5). When an interrupt or a debug condi-

RST ACTIVE

RST INACTIVE

BUS ERROR, INTERRUPT
OR TRAP

PROCESSING
AN
EXCEPTION

SERVICE CALL
COMPLETE

BUS ERROR
OR ABORT

WAIT INTERRUPT
INSTRUCTION OR DEBUG
EXECUTED CONDITION

WAITING
FOR AN
INTERRUPT

TL/EE/9354-8

FIGURE 3-1. Operating States

tion is detected, the CPU enters the Processing-An-Excep-
tion state.

The CPU enters the Halted state when a bus error or abort
is detected while the CPU is processing an exception, there-
by preventing the transfer of control to an appropriate ex-
ception service procedure. The CPU remains in the Halted
state until reset occurs. A special status identifying this state
is presented on the system interface.

Note: When the Direct-Exception mode is enabled, the CPU does not save
the MOD Register contents nor does it read the module linkage infor-
mation for the exception service procedure. Refer to Section 3.2 for
details.

3.1.2 Instruction Endings

The NS32532 checks for exceptions at various points while
executing instructions. Certain exceptions, like interrupts,
are in most cases recognized between instructions. Other
exceptions, like Divide-By-Zero Trap, are recognized during
execution of an instruction. When an exception is recog-
nized during execution of an instruction, the instruction ends
in one of four possible ways: completed, suspended, termi-
nated, or partially completed. Each type of exception caus-
os a particular ending, as specified in Section 3.2.

3.1.2.1 Completed Instructions

When an exception is recognized after an instruction is
completed, the CPU has performed all of the operations for
that instruction and for all other instructions executed since
the last exception occurred. Result operands have been
written, flags have been modified, and the PC saved on the
Interrupt Stack contains the address of the next instruction
to execute. The exception service procedure can, at its con-
clusion, execute the RETT instruction (or the RETI instruc-
tion for vectored interrupts), and the CPU will begin exscut-
ing the instruction following the completed instruction.

2-26

3.0 Functional Description (continued)
3.1.2.2 Suspended Instructions

An instruction is suspended when one of several trap condi-
tions or a restartable bus error is detected during execution
of the instruction. A suspended instruction has not been
completed, but all other instructions executed since the last
exception occurred have been completed. Result operands
and flags due to be affected by the instruction may have
been modified, but only modifications that allow the instruc-
tion to be executed again and completed can occur. For
certain exceptions (Trap (ABT), Trap (UND), Trap (ILL}), and
bus errors) the CPU clears the P-flag in the PSR before
saving the copy that is pushed on the Interrupt Stack. The
PC saved on the Interrupt Stack contains the address of the
suspended instruction.

For example, the RESTORE instruction pops up to 8 gener-
al-purpose registers from the stack. If an invalid page table
entry is detected on one of the references to the stack, then
the instruction is suspended. The general-purpose registers
due to be loaded by the instruction may have been modified,
but the stack pointer still holds the same value that it did
when the instruction began.

To complete a suspended instruction, the exception service
procedure takes either of two actions:

1. The service procedure can simulate the suspended in-
struction’s execution. After calculating and writing the in-
struction’s results, the flags in the PSR copy saved on the
Interrupt Stack should be modified, and the PC saved on
the Interrupt Stack should be updated to point to the next
instruction to execute. The service procedure can then
execute the RETT instruction, and the CPU begins exe-
cuting the instruction following the suspended instruction.
This is the action taken when floating-point instructions
are simulated by software in systems without a hardware
floating-point unit.

2. The suspended instruction can be executed again after
the service procedure has eliminated the trap condition
that caused the instruction to be suspended. The service
procedure should execute the RETT instruction at its con-
clusion; then the CPU begins executing the suspended
instruction again. This is the action taken by a debugger
when it encounters a BPT instruction that was temporarily
placed in another instruction’s location in order to set a
breakpoint.

Note 1: Although the NS32532 allows a suspended instruction to be execut-
ed again and completed, the CPU may have read a source operand
for the instruction from a memory-mapped peripheral port before
the exception was recognized. In such a case, the characteristics of
the peripheral device may prevent correct reexecution of the in-
struction.

Note 2: It may be necessary for the exception service procedure to alter the
P-flag in the PSR copy saved on the Interrupt Stack: If the exception
sarvice procedure simulates the suspended instruction and the P-
flag was cleared by the CPU before saving the PSR copy, then the
saved T-flag must be copied to the saved P-flag (like the floating-
point instruction simulation described above). Or if the exception
service procedure executes the suspended instruction again and
the P-flag was not cleared by the CPU before saving the PSR copy,
then the saved P-flag must be cleared (like the breakpoint trap de-
scribed above). Otherwise, no alteration to the saved P-flag is nec-
essary.

3.1.2.3 Terminated Instructions

An instruction being executed is terminated when reset or a
nonrestartable bus error occurs. Any result operands and
flags due to be affected by the instruction are undefined, as

are the contents of the Stack Pointers. The result operands
of other instructions executed since the last serializing oper-
ation may not have been written to memory. A terminated
instruction cannot be completed.

3.1.2.4 Partially Completed Instructions

When a restartable bus error, interrupt, abort, or debug con-
dition is recognized during execution of a string instruction,
the instruction is said to be partially completed. A partially
completed instruction has not completed, but all other in-
structions executed since the last exception occurred have
been completed. Result operands and flags due to be af-
fected by the instruction may have been modified, but the
values stored in the string pointers and other general-pur-
pose registers used during the instruction’s execution allow
the instruction to be executed again and completed.

The CPU clears the P-flag in the PSR before saving the
copy that is pushed on the Interrupt Stack. The PC saved on
the Interrupt Stack contains the address of the partially
completed instruction. The exception service procedure
can, at its conclusion, simply execute the RETT instruction
(or the RETI instruction for vectored interrupts), and the
CPU will resume executing the partially completed instruc-
tion.

3.1.3 Instruction Pipellne

The NS32532 executes instructions in a heavily pipelined
fashion. This allows a significant performance enhancement
since the operations of several instructions are performed
simultaneously rather than in a strictly sequential manner.

The CPU provides a four-stage internal instruction pipeline.
As shown in Figure 3-2, a write buffer, that can hold up to
two operands, is also provided to allow write operations to
be performed off-line.

I Fetch Instruction Stage 1
H 8 Byte Queue \ Buffer
Q-------I-------‘
I Decode Instruction I Stage 2
! 1 Decoded Instruction | Buffer
b-------I-------‘
Calculate Addresses Stage 3
Read Source Operands
Calculate Results Stage 4
Write Destination Operands
1 2 Memory Results V Buffer

tomcoceceecseeeseceesd
TL/EE/9354-9
FIGURE 3-2. NS32532 Internal Instruction Pipeline
Due to the pipelining, operations like fetching one instruc-
tion, reading the source operands of a second instruction,
calculating the results of a third instruction and storing the
results of a fourth instruction, can all occur in parallel.

2-27

0€-2E€GCESN/S2-CESCESN/0C-CESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

The order of memory references performed by the CPU may
also differ from that related to a strictly sequential instruc-
tion execution. In fact, when an instruction is being execut-
ed, some of the source operands may be read from memory
before the instruction is completely fetched. For example,
the CPU may read the first source operand for an instruction
before it has fetched a displacement used in calculating the
address of the second source operand. The CPU, however,
always completes fetching an instruction and reading its
source operands before writing its results. When more than
one source operand must be read from memory to execute
an instruction, the operands may be read in any order. Simi-
larly, when more than one result operand is written to mem-
ory to execute an instruction, the operands may be written
in any order.

An instruction is fetched only after all previous instructions
have been completely fetched. However, the CPU may be-
gin fetching an instruction before all of the source operands
have been read and results written for previous instructions.

The source operands for an instruction are read only after
all previous instructions have been fetched and their source
operands read. A source operand for an instruction may be
read before all results of previous instructions have been
written, except when the source operand’s value depends
on a result not yet written. The CPU compares the physical
address and length of a source operand with those of any
results not yet written, and delays reading the source oper-
and until after writing all results on which the source oper-
and depends. Also, the CPU ensures that the interlocked
read and write references to execute an SBITli or CBITIi
instruction occur after writing all results of previous instruc-
tions and before reading any source operands for subse-
quent instructions.

The result operands for an instruction are written after all
results of previous instructions have been written.

The description above is summarized in Figure 3-3, which
shows the precedence of memory references for two con-
secutive instructions.

INSTRUCTION N INSTRUCTION N+ 1
INSTRUCTION FETCH s [NSTRUCTION FETCH

\

DATA READ » DATA READ

DATA WRITE

% DATA WRITE
TL/EE/9354~10
FIGURE 3-3. Memory References for
Consecutive Instructions
(An arrow from one reference to another indicates that
the first reference always precedes the second.)

Another consequence of overlapping the operations for sev-
eral instructions, is that the CPU may fetch an instruction
and read its source operands, even though the instruction is
not executed (e.g., due to the occurrence of an exception).
In such a case, the MMU may update the R-bit in Page
Table Entries used in referring to the fetched instruction and
its source operands.

Special care is needed in the handling of memory-mapped
1/0 devices. The CPU provides special mechanisms to en-
sure that the references to these devices are always per-

formed in the order implied by the program. Refer to Section
3.1.3.2 for details.

It is also to be noted that the CPU does not check for de-
pendencies between the fetching of an instruction and the
writing of previous instructions’ results. Therefore, special
care is required when executing self-modifying code.

3.1.3.1 Branch Prediction

One problem inherent to all pipelined machines is what is
called “Pipeline Breakage”.

This occurs every time the sequentiality of the instructions is
broken, due to the execution of certain instructions or the
occurrence of exceptions.

The result of a pipeline breakage is a performance degrada-
tion, due to the fact that a certain portion of the pipeline
must be flushed and new data must be brought in.

The NS32532 provides a special mechanism, called branch
prediction, that helps minimize this performance penalty.
When a conditional branch instruction is decoded in the ear-
ly stages of the pipeline, a prediction on the execution of the
instruction is performed.

More precisely, the prediction mechanism predicts back-
ward branches as taken and forward branches as not taken,
except for the branch instructions BLE and BNE that are
always predicted as taken.

Thus, the resulting probability of correct prediction is fairly
high, especially for branch instructions placed at the end of
loops.

The sequence of operations performed by the loader and
execution units in the CPU is given below:

® Loader detects branches and calculates destination ad-
dresses

® | oader uses branch opcode and direction to select be-
tween sequential and non-sequential streams

¢ Loader saves address for alternate stream
* Execution unit resolves branch decision

Due to the branch predicition, some special care is required
when writing self-modifying code. Refer to the appropriate
section in Appendix B for more information on this subject.

3.1.3.2 Memory-Mapped I/0

The characteristics of certain peripheral devices and the

overlapping of instruction execution in the pipeline of the

NS32532 require that special handling be applied to memo-

ry-mapped 1/0 references. 1/0 references differ from mem-

ory references in two significant ways, imposing the follow-
ing requirements:

1. Reading from a peripheral port can alter the value read
on the next reference to the same port or another port in
the same device. (A characteristic called here “destruc-
tive-reading”.) Serial communication controllers and
FIFO buffers commonly operate in this manner. As ex-
plained in “Instruction Pipeline” above, the NS32532 can
read the source operands for one instruction while the
previous instruction is executing. Because the previous
instruction may cause a trap, an interrupt may be recog-
nized, or the flow of control may be otherwise altered, it is
a requirement that destructive-reading of source oper-
ands before the execution of an instruction be avoided.

2-28

3.0 Functional Description (continued)

2. Writing to a peripheral port can alter the value read from
another port of the same device. (A characteristic called
here “side-effects of writing""). For example, before read-
ing the counter’s value from the NS32202 Interrupt Con-
trol Unit it is first necessary to freeze the value by writing
to another control register.

However, as mentioned above, the NS32532 can read the
source operands for one instruction before writing the re-
sults of previous instructions unless the addresses indicate
a dependency between the read and write references. Con-
sequently, it is a requirement that read and write references
to peripheral that exhibit side-effects of writing must occur in
the order dictated by the instructions.

The NS32532 supports 2 methods for handling memory-
mapped I/0. The first method is more general; it satisfies
both requirements listed above and places no restriction on
the location of memory-mapped peripheral devices. The
second method satisfies only the requirement for side ef-
fects of writing, and it restricts the location of memory-
mapped 1/0 devices, but it is more efficient for devices that
do not have destructive-read ports.

The first method for handling memory-mapped 1/0 uses two
signals: IOINH and IODEC. When the NS32532 generates a
read bus cycle, it asserts the output signal I0INH if either of
the 1/0 requirements listed above is not satisfied. That is,
IOINH is asserted during a read bus cycle when (1) the read
reference is for an instruction that may not be executed or
(2) the read reference occurs while a write reference is
pending for a previous instruction. When the read reference
is to a peripheral device that implements ports with destruc-
tive-reading or side-effects of writing, the input signal
IODEC must be asserted; in addition, the device must not
be selected if IOINH is active. When the CPU detects that
the IODEC input signal is active while the IOINH output sig-
nal is also active, it discards the data read during the bus
cycle and serializes instruction execution. See the next sec-
tion for details on serializing operations. The CPU then gen-
erates the read bus cycle again, this time satisfying the re-
quirements for 1/0 and driving IOINH inactive.

The second method for handling memory-mapped /0 uses
a dedicated region of virtual memory. The NS32532 treats
all references to the memory range from address FFO00000
to address FFFFFFFF inclusive in a special manner.

While a write to a location in this range is pending, reads
from locations in the same range are delayed. However,
reads from locations with addresses lower than FFO00000
may occur. Similarly, reads from locations in the above
range may occur while writes to locations outside of the
range are pending.

1t is to be noted that the CPU may assert IOINH even when
the reference is within the dedicated region. Refer to Sec-
tion 3.5.8 for more information on the handling of 1/0 devic-
es.

3.1.3.3 Serializing Operations

After executing certain instructions or processing an excep-
tion, the CPU serializes instruction execution. Serializing in-
struction execution means that the CPU completes writing
all previous instructions’ results to memory, then begins
fetching and executing the next instruction.

For example, when a new value is loaded into the PSR by
executing an LPRW instruction, the pipeline is flushed and a

serializing operation takes place. This is necessary since
the privilege level might have changed and the instructions
following the LPRW instruction must be fetched again with
the new privilege level and possibly with a different MMU
mapping. See Section 2.4.2.

The CPU serializes instruction execution after executing one
of the following instructions: BICPSRW, BISPSRW, BPT,
CINV, DIA, FLAG (trap taken), LMR, LPR (CFG, INTBASE,
PSR, UPSR, DCR, BPC, DSR, and CAR only), RETT, RETI,
and SVC. Figure 3-4 shows the memory references after
serialization.

Note 1: LPRB UPSR can be executed in User Mode to serialize instruction
exacution.

Note 2: After an instruction that writes a result to memory is executed, the
updating of the result's memory location may be delayed until the
next serializing operation.

Note 3: When resst or a nonrestartable bus error exception occurs, the CPU
discards any results that have not yet been written to memory.

INSTRUCTION N

INSTRUCTION FETCH
DATA READ

INSTRUCTION N+ 1
INSTRUCTION FETCH
DATA READ

DATA WRITE DATA WRITE
TL/EE/9354-11

FIGURE 3-4. Memory References after Serialization

3.1.4 Slave Processor Instructions

The NS32532 recognizes two groups of instructions being
executable by external slave processors:

® Floating Point Instructions

e Custom Slave Instructions

Each Slave Instruction Set is enabled by a bit in the Configu-
ration Register (Section 2.1.4). Any Slave Instruction which
does not have its corresponding Configuration Register bit
set will trap as undefined, without any Slave Processor com-
munication attempted by the CPU. This allows software sim-
ulation of a non-existent Slave Processor.

Note that the Memory Management Instructions, like Float-
ing Point and Custom Slave Instructions, have to be en-
abled through an appropriate bit in the configuration register
in order to be executable.

However, they are not considered here as Slave Instruc-
tions, since the NS32532 integrates the MMU on-chip and
the execution of them does not follow the protocol of the
Slave Instructions.

3.1.4.1 Regular Slave Instruction Protocol

Slave Processor instructions have a three-byte Basic In-

struction field, consisting of an ID Byte followed by an Oper-

ation Word. The |D Byte has three functions:

1) It identifies the instruction as being a Slave Processor
instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Operation Word
of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi-

ates the sequence outlined in Figure 3-5. While applying

Status code 11111 (Broadcast ID Section 3.5.4.1), the CPU

transfers the ID Byte on bits D24-D31, the operation

2-29

0€-2E€GCESN/ST-2ESTESN/02-2EGCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

START

BROADCAST
ID AND OPERATION WORD
(BUS STATUS = 11111)

A

SEND OPERAND
(BUS STATUS = 11101)

TO SEND
?

READ RESULT
(BUS STATUS = 11101)

READ SLAVE STATUS
(BUS STATUS = 11110)

UPDATE
N, Z,L FLAGS

PROCESS
RAP (sLave) [~

PROCESS
TRAP (UND)

ale
L

Yy

END

FIGURE 3-5. Regular Slave Instruction Protocol: CPU Actions

TL/EE/9354-12

2-30

3.0 Functional Description (continued)

31 0
IDBYTE | OPCODE(LOW) | OPCODE (HIGH) | XXXXXXXX
FIGURE 3-6. ID and Operation Word
31 15 7 0

ZERO |7s| zero [n]z]olo]Jo]L]o]a

FIGURE 3-7. Slave Processor Status Word

word on bits D8-D23 in a swapped order of bytes and a
non-used byte XXXXXXXX (X = don't care) on bits DO-D7
(Figure 3-6).

All slave processors observe the bus cycle and inspect the
identification code. The slave selected by the identification
code continues with the protocol; other slaves wait for the
next slave instruction to be broadcast.

After transferring the slave instruction, the CPU sends to the
slave any source operands that are located in memory or
the General-Purpose registers. The CPU then waits for the
slave to assert SDN or FSSR. While the CPU is waiting, it
can perform bus cycles to fetch instructions and read
source operands for instructions that follow the slave in-
struction being executed. If there are no bus cycles to per-
form, the CPU is idle with a special Status indicating that itis
waiting for a slave processor. After the slave asserts SDN or
FSSR, the CPU follows one of the two sequences described
below.

If the slave asserts SDN, then the CPU checks whether the
instruction stores any results to memory or the General-Pur-
pose registers. The CPU reads any such results from the
slave by means of 1 or 2 bus cycles and updates the desti-
nation.

If the slave asserts FSSR, then the NS32532 reads a 32-bit
status word from the slave. The CPU checks bit 0 in the
slave’s status word to determine whether to update the PSR
flags or to process an exception. Figure 3-7 shows the for-
mat of the slave’s status word.

If the Q bit in the status word is 0, the CPU updates the N, Z
and L flags in the PSR.

If the Q bit in the status word is set to 1, the CPU processes
either a Trap (UND) if TS is 1 or a Trap (SLAVE) if TS is 0.

Note 1: Only the floating-point and custom compare instructions are allowed
to return a value of 0 for the Q bit when the FSSR signal is activat-
ed. All other instructions must always set the Q bit to 1 {to signal a
Trap), when activating FSSR.

Note 2: While executing an LMR or CINV instruction, the CPU displays the
operation code and source operand using slave processor write bus
cycles, as described in the protocol above. Nevertheless, the CPU
does not wait for SDN or FSSR to be asserted while executing
these instructions. This information can be used to monitor the con-
tents of the on-chip TLB, Instruction Cache, and Data Cache.

Note 3: The slave processor must be ready to accept new slave instruction
at any time, even while the slave s exscuting another instruction or
walting for the CPU to read results. For example, the CPU may
terminate an instruction being executed by a slave because a non-
restartable bus error Is detected while the MMU Is updating a Page
Table Entry for an instruction being prefetched.

Note 4:If a slave Instruction stores a result to memory, the CPU checks
whather Trap (ABT) would occur on the stors operation before read-
Ing the result from the slave. For quad-word destination operands,
the CPU checks that both double-words of the destination can be
stored without an abort before reading either double-word of the
result from the slave.

3.1.4.2 Pipelined Slave Instruction Protocol

In order to increase performance of floating-point instruc-
tions while maintaining full software compatibility with the
Series 32000 architecture, the NS32532 incorporates a
pipelined floating-point protocol. This protocol is designed
to operate in conjunction with the NS32580 FPC, or any
other floating-point slave which conforms to the protocol
and the Series 32000 architecture. The protocol is enabled
by the PF bit in the CFG register.

The basic methods of transferring data and control informa-
tion between the CPU and the FPC, are the same as in the
regular slave protocol.

However, in pipelined mode, the CPU may send a new float-
ing-point instruction to the FPC before the previous instruc-
tion has been completed.

Although the CPU can advance as many as four floating-
point instructions before receiving a completion pulse on
SDN for the first instruction, full exception recovery is as-
sured. This is accomplished through a FIFO mechanism
which maintains the addresses of all the floating-point in-
structions sent to the FPC for execution.

Pipelined execution can occur only for instructions which do
not require a result to be read from the FPC.

In cases where a result is to be read back, the CPU will wait
for instruction completion before issuing the next instruc-
tion. Floating-point instructions can be divided into two
groups, depending on the amount of pipelining permitted.
Group A. Fully-Pipelined Instructions

Instructions in this group can be sent to the FPC before
previous group A instructions are completed. No instruction
completion indication from the FPC is required in order to
continue to another group A or group B instruction.

Group A contains floating-point instructions satisfying all of
the following conditions.

1. The destination operand is in a floating-point register.

2. The source operand is not of type TOS or IMM.

3. The instruction format is either 11 or 12.

Group B. Half-Pipelined Instructions

Group B instructions can begin execution before previous

group A instructions are completed. However, they cannot

complete before the FPC signals completion of all the previ-

ous floating-point instructions.

Group B contains floating-point instructions satisfying at

least one of the following conditions.

1. The destination operand Is either in memory or in a CPU
register (this includes the CMPf instruction which modifies
the PSR register).

2. The source operand is of type TOS or IMM.
3. The instruction format is 9.

2-31

0€-CEGCESN/SC-2ESCESN/02-CESZESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

REMOVE
INSTRUCTION
ADDRESS
FROM FIFO

Y
TRAP PROCESS
INDICATION INSTRUCTION PROCESS TRAP
? SET
INSTRUCTION
$ ADDRESS
FROM FIFO
INSTRUCTION
COMPLETED FLUSH FIFO
? S
A 4
REMOVE
INSTRUCTION
ADDRESS
SEND
FROM FIFO OPERAND
GROUP A
INSTRUCTION
A 2 REMOVE
PUSH N INSTRUCTION
INSTRUCTION N ADDRESS
ADDRESS FROM FIFO
INTO FIFO FFON
EMPTY >
?
y M TRAP INSTRUCTION
< INDICATION COMPLETED
PROCESS TRAP ?
SET
INSTRUCTION
ADDRESS
FROM FIFO !

I FLUSH FIFO I

INSTRUCTION
COMPLETED

> Y PROCESS TRAP
v SET

A 4 INSTRUCTION
READ ADDRESS
RESULT FROM FIFO

FROM SLAVE

FIGURE 3-8. Instruction Flow In Pipelined Floating-Point Mode

TL/EE/9354~73

2-32

3.0 Functional Description (continued)

Note: Non-floating-point instructions cannot be pipelined. They can begin
exacution only after all ather instructions have been completed. The
CPU cannot procsed to other instructions before their execution is
completed.

3.1.4.3 Instruction Flow and Exceptions

When operating in pipelined mode, the CPU will push the
address of group A instructions into a five-entry FIFO after
the ID, opcode and source operands have been sent to the
FPC. The address will be pushed into the FIFO only if no
exception is detected during the transfer of the source oper-
ands needed for the execution of the instruction.

Group A instructions are only stalled when the FIFO is full,
in which case the CPU will wait before sending the next
instruction. Group B instructions can begin execution while
some entries are still in the FIFO, but cannot complete be-
fore the FIFO is empty (i.e., before all previous instructions
are completed). Non-floating-point instructions cannot begin
execution until the FIFO is empty. When a normal comple-
tion indication is received, the instruction address at the bot-
tom of the FIFO is dropped. If a trap indication is received
and the FIFO is not empty, the instruction address at the
bottom of the FIFO is copied to the PC register and the
floating-point exception is serviced. The remaining entries in
the FIFO are discarded.

A floating-point exception may be received and serviced at
any time after the CPU has sent the ID and opcode for the
first instruction and until the FPC has signalled completion
for the last instruction.

Other exceptions may occur while the FIFO is not empty.
This may be the case when an interrupt is received or a
translation exception is detected in the access of an oper-
and needed for the execution of the next floating-point in-
struction. These exceptions will be processed as soon as
the FIFO becomes empty, and after any floating-point ex-
ception has been acknowledged.

In the event of a non-restartable bus error, the acknowledge
will occur immediately. The CPU will flush the internal FIFO
and will reset the FPC by performing a dummy read of the
slave status word. This operation is performed for both the
regular and pipelined floating-point protocol and regardless
of whether any floating-point instruction is pending in the
FPC instruction queue.

The CPU may cancel the last instruction sent to the FPC by
sending another ID and opcode, before the last source op-
erand for that instruction has been sent. Figure 3-8 shows
the instruction flow in pipelined floating-point mode.

3.1.4.4 Floating Point Instructions

Table 3-1 gives the protocols followed for each Floating
Point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Appendix A.

The Operand class columns give the Access Class for each
general operand, defining how the addressing modes are
interpreted (see Instruction Set Reference Manual).

The Operand Issued columns show the sizes of the oper-
ands issued to the Floating Point Unit by the CPU. “D" indi-
cates a 32-bit Double Word. “i"” indicates that the instruction
specifies an integer size for the operand (B = Byte, W =
Word, D = Double Word). “f" indicates that the instruction
specifies a Floating Point size for the operand (F = 32-bit
Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR-Bits-Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-7).

Any operand indicated as being of type “f"" will not cause a
transfer if the Register addressing mode is specified. This is
because the Floating Point Registers are physically on the
Floating Point Unit and are therefore available without CPU
assistance.

3.1.4.5 Custom Slave Instructions

Provided in the NS32532 is the capability of communicating
with a user-defined, “Custom” Slave Processor. The in-
struction set provided for a Custom Slave Processor defines
the instruction formats, the operand classes and the com-
munication protocol. Left to the user are the interpretations
of the Op Code fields, the programming mode! of the Cus-
tom Slave and the actual types of data transferred. The pro-
tocol specifies only the size of an operand, not its data type.

Table 3-2 lists the relevant information for the Custom Slave
instruction set. The designation ““c” is used to represent an
operand which can be a 32-bit (“D") or 64-bit (“Q"") quantity
in any format; the size is determined by the suffix on the
mnemonic. Similarly, an “i” indicates an integer size (Byte,
Word, Double Word) selected by the corresponding mne-
monic suffix.

Any operand indicated as being of type ‘¢’ will not cause a
transfer if the register addressing mode is specified. It is
assumed in this case that the slave processor is already
holding the operand internally.

For the instruction encodings, see Appendix A.

3.2 EXCEPTION PROCESSING

Exceptions are special events that alter the sequence of
instruction execution. The CPU recognizes three basic types
of exceptions: interrupts, traps and bus errors.

An interrupt occurs in response to an event signalled by
activating the NMI or TNT input signals. Interrupts are typi-
cally requested by peripheral devices that require the CPU’s
attention.

Traps occur as a result either of exceptional conditions
(e.g., attempted division by zero) or of specific instructions
whose purpose is to cause a trap to occur (e.g., supervisor
call instruction).

A bus error exception occurs when the BER signal is acti-
vated during an instruction fetch or data transfer required by
the CPU to execute an instruction.

When an exception is recognized, the CPU saves the PC,
PSR and optionally the MOD register contents on the inter-
rupt stack and then it transfers control to an exception serv-
ice procedure.

Details on the operations performed in the various cases by
the CPU to enter and exit the exception service procedure
are given in the following sections.

It is to be noted that the reset operation is not treated here
as an exception. Even though, like any exception, it alters
the instruction execution sequence.

The reason being that the CPU handles reset in a signifi-
cantly different way than it does for exceptions.

Refer to Section 3.5.3 for details on the reset operation.

2-33

0€-2€GCESN/52-2€SCESN/02-CESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)
TABLE 3-1. Floating Point Instruction Protocols

Mnemonic Operand 1
Class
ADDf read.f
SuBf read.f
MULF read.f
Divf read.f
MOVf read.f
ABSf read.f
NEGf read.f
CMPf read.f
FLOORfi read.f
TRUNCHi read.f
ROUND(i read.f
MOVFL read.F
MOVLF read.L
MOVif read.i
LFSR read.D
SFSR N/A
POLYf read.f
DOTf read.f
SCALBf read.f
LOGBf read.f
SQRTf read.f
MACf read.f
Operand 1
Mnemonic Class
CCALOc read.c
CCAL1c read.c
CCAL2c read.c
CCAL3c read.c
CMOVOoc read.c
CMOV1ic read.c
CMOVac read.c
CMOV3c read.c
CCMPOc read.c
CCMP1c read.c
- CCVOci read.c
CCV1ci read.c
CCvaci read.c
CCV3ic read.i
CCv4DQ read.D
CCV5QD read.Q
LCSR read.D
SCSR N/A
LCR* read.D
SCR* write.D
Note:

D = Double Word
| = Integer size (B,W,D) specified In mnemonic.

Operand 2 Operand 1

Class
rmw.f
rmw.f
rmw.f
rmw.f
write.f
write.f
write.f
read.f
write.i
write.i
write.i
write.L.
write.F
write.f
N/A
write.D
read.f
read.f
rmw.f
write.f
write.f
read.f

Issued

Z
BN S w B ol | e T T T T SR PN
>

Operand 2
Issued

N/A

N/A
N/A
f

TABLE 3-2. Custom Slave Instruction Protocols

Operand 2 Operand 1

Class
rmw.c
rmw.c
mw.c
rmw.c
write.c
write.c
write.c
write.c
read.c
read.c
write.i
write.i
write.i
write.c
write.Q
write.D
N/A
write.D
N/A
N/A

¢ = Custom size (D:32 bits or Q:64 bits) specified in mnemonic.
¢ = Privileged instruction: will trap If CPU Is In User Mode.

N/A = Not Applicable to this Instruction.

Issued
c

ODU—-000000O0O0O0O0O0O

P4
~
>

2o

Operand 2
Issued

N/A
N/A
N/A
N/A
N/A
N/A

Returned Value
Type and Dest.
ftoOp.2
ftoOp.2
ftoOp.2
ftoOp.2
ftoOp.2
fto Op.2
fto Op.2
N/A
itoOp.2
itoOp.2
itoOp.2
L.toOp.2
FtoOp.2
ftoOp.2
N/A
DtoOp.2
ftoFO
fto FO
ftoOp.2
ftoOp.2
fto Op.2
ftoF1

Returned Value
Type and Dest.
ctoOp.2
ctoOp.2
ctoOp.2
ctoOp.2
ctoOp.2
ctoOp.2
ctoOp.2
ctoOp.2
N/A

" N/A
itoOp.2
itoOp.2
itoOp.2
ctoOp.2
QtoOp.2
DtoOp.2
N/A
DtoOp.2
N/A
Dto Op.1

PSR Bits
Affected
none
none
none
none
none
none
none
N, Z L
none
none
none
none
none
none
none
none
none
none
none
none
none
none

PSR Bits
Affected
none
none
none
none
none
none
none
none
N,Z,L
N,ZL
none
none
none
none
none
none
none
none
none
none

2-34

3.0 Functional Description (continued)
3.2.1 Exception Acknowledge Sequence

When an exception is recognized, the CPU goes through
three major steps:

1) Adjustment of Registers. Depending on the source of the
exception, the CPU may restore and/or adjust the con-
tents of the Program Counter (PC), the Processor Status
Register (PSR) and the currently-selected Stack Pointer
(SP). A copy of the PSR is made, and the PSR is then set
to reflect Supervisor Mode and selection of the Interrupt
Stack. Trap (TRC) and Trap (OVF) are always disabled.
Maskable interrupts are also disabled if the exception is
caused by an interrupt, Trap (DBG), Trap (ABT) or bus
error.

2) Vector Acquisition. A vector is either obtained from the
data bus or is supplied internally by default.

3) Service Call. The CPU performs one of two sequences
common to all exceptions to complete the acknowledge
process and enter the appropriate service procedure.
The selection between the two sequences depends on
whether the Direct-Exception mode is disabled or en-
abled.

Direct-Exception Mode Disabled

The Direct-Exception mode is disabled while the DE bit in
the CFG register is 0 (Section 2.1.4). In this case the CPU
first pushes the saved PSR copy along with the contents of
the MOD and PC registers on the interrupt stack. Then it

reads the double-word entry from the Interrupt Dispatch ta-
ble at address ‘INTBASE + vector X 4'. See Figures 3-9
and 3-70. The CPU uses this entry to call the exception
service procedure, interpreting the entry as an external pro-
cedure descriptor.

A new module number is loaded into the MOD register from
the least-significant word of the descriptor, and the static-
base pointer for the new module is read from memory and
loaded into the SB register. Then the program-base pointer
for the new module is read from memory and added to the
most-significant word of the module descriptor, which is in-
terpreted as an unsigned value. Finally, the result is loaded
into the PC register.

Direct-Exception Mode Enabled

The Direct-Exception mode is enabled when the DE bit in
the CFG register is set to 1. In this case the CPU first
pushes the saved PSR copy along with the contents of the
PC register on the Interrupt Stack. The word stored on the
Interrupt Stack between the saved PSR and PC register is
reserved for future use; its contents are undefined. The CPU
then reads the double-word entry from the Interrupt Dis-
patch Table at address ‘INTBASE + vector X 4'. The CPU
uses this entry to call the exception service procedurs, inter-
preting the entry as an absolute address that is simply load-
ed into the PC register. Figure 3-11 provides a pictorial of
the acknowledge sequence. It is to be noted that while the

la od N
MEMORY * o]”
NON-VECTORED INTERRUPT
CASCADE ADDRO
. NON-MASKABLE INTERRUPT
CASCADETABLE A< . A
2 ABORT
CASCADE ADDR 14 SLAVE PROCESSOR TRAP
INTERRUPT BASE CASCADE ADDR 15 ILLEGAL OPERATION TRAP
it
REGISTER AL FXEDINTERRUPTS |, 5| sve SUPERVISOR CALL TRAP
> AND TRAPS e
DISPATCH TABL
A VECTORED A 6| pbvz DIVIDE BY ZERO TRAP
- INTERRUPTS ~
C —1 7| Ra FLAG TRAP
8| epr BREAKPOINT TRAP
.8| TRe TRACE TRAP
10| uND UNDEFINED INSTRUCTION TRAP
11| RBE RESTARTABLE BUS ERROR
12| NBE NON-RESTARTABLE BUS ERROR
13| ovf INTEGER OVERFLOW TRAP
14| DBG DEBUG TRAP
15 | RESERVED
1 VECTORED
INTERRUPTS
~ e

TL/EE/9354-13

FIGURE 3-9. Interrupt Dispatch Table

2-35

0€-2ESCESN/G2-CESCZESN/02-2ESCESN

NS32532-20/NS32532-25/NS532532-30

3.0 Functional Description (continued)

LOWER
s2BITS ADDRESSES
(PUSH)
RETURN ADDRESS pc
STATUS MODULE PSR MOD
: . (PUSH)
PSR Moo INTERRUPT
STACK HIGHER
I ADDRESSES
—————————— ——
CASCADE TABLE
INTBASE REGISTER
|
INTERRUPT BASE f DISPATCH
TABLE
VECTOR D D
DESCRIPTOR (32 BITS)
—
DESCRIPTOR
16 16
OFFSET MODULE
— o
MOD REGISTER MODULE TABLE
NEW MODULE
MODULE TABLE ENTRY
MODULE TABLE ENTRY
STATIC BASE POINTER
LINK BASE POINTER
ﬁ)- : PROGRAM BASE POINTER
(RESERVED)
PROGRAM COUNTER SB REGISTER
;[—— ENTRY POINT ADDRESS NEW STATIC BASE

FIGURE 3-10. Exception Acknowledge Sequence.
Direct-Exception Mode Disabled.

TL/EE/9354-14

TL/EE/9354-15

2-36

3.0 Functional Description (continued)

T Lower

32BITS ADDRESSES
RETURN ADDRE: (PUSH)
ss e
N
STATUS PSR \\\\\
PUSH, \
() \\
PeR INTERRUPT
STACK HIGHER
| ADDRESSES
TL/EE/9354-16
e—————————————
CASCADE TABLE
INTBASE REGISTER
I NTERRUPTBASE — DISPATCH
TABLE
VECTOR
ABSOLUTE ADDRESS
PROGRAM COUNTER
ENTRY POINT ADDRESS

TL/EE/9354-17

FIGURE 3-11. Exception Acknowledge Sequence.
Direct-Exception Mode Enabled.

direct-exception mode is enabled, the CPU can respond
more quickly to interrupts and other exceptions because
fewer memory references are required to process an excep-
tion. The MOD and SB registers, however, are not initialized
before the CPU transfers control to the service procedure.
Consequently, the service procedure is restricted from exe-
cuting any instructions, such as CXP, that use the contents
of the MOD or SB registers in effective address calcula-
tions.

3.2.2 Returning from an Exception Service Procedure
To return control to an interrupted program, one of two in-
structions can be used: RETT (Return from Trap) and RETI
(Return from Interrupt).

RETT is used to return from any trap, non-maskable inter-
rupt or bus error service procedure. Since some traps are
often used deliberately as a call mechanism for supervisor

mode procedures, RETT can also adjust the Stack Pointer
(SP) to discard a specified number of bytes from the original
stack as surplus parameter space.

RETI is used to return from a maskable interrupt service
procedure. A difference of RETT, RETI also informs any
external interrupt control units that interrupt service has
completed. Since interrupts are generally asynchronous ex-
ternal events, RETI does not discard parameters from the
stack.

Both of the above instructions always restore the Program
Counter (PC) and the Processor Status Register from the
interrupt stack. If the Direct-Exception mode is disabled,
they also restore the MOD and SB register contents. Fig-
ures 3-12 and 3-13 show the RETT and RETI instruction
flows when the Direct-Exception mode is disabled.

2-37

0€-2€GCESN/SC-CESCESN/02-CESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

1 LOWER
32B/Ts ——] ADDRESSES
PROGRAM COUNTER
(POP)
RETURN ADDRESS PC
(POP)
STATUS MODULE PSR MOD
PSR MOD HIGHER
INTERRUPT L ADDRESSES
STACK
[
MODULE
TABLE
MODULE TABLE ENTRY
J
MODULE TABLE ENTRY
STATICBASEPOINTER ~ —|
LINK BASE POINTER
[LOWER
PROGRAM BASE POINTER ADDRESSES
(RESERVED)
PARAMETERS
n
BYTES
SBREGISTER
[STATIC BASE STACK SELECTED
IN NEWLY-
POPPED PSR. HIGHER
L | ADDRESSES
POP AND
DISCARD

TL/EE/9354-18

FIGURE 3-12. Return from Trap (RETT n) Instruction Flow.
Direct-Exception Mode Disabled.

3.2.3 Maskable Interrupts

The INT pin is a level-sensitive input. A continuous low level
is allowed for generating multiple interrupt requests. The in-
put is maskabls, and is therefore enabled to generate inter-
rupt requests only while the Processor Status Register | bit
is set. The | bit is automatically cleared during service of an
INT, NMiI, Trap (DBG), Trap (ABT) or Bus Error request, and
is restored to its original setting upon return from the inter-
rupt service routine via the RETT or RET! instruction.

The INT pin may be configured via the SETCFG instruction
as either Non-Vectored (CFG Register bit | = 0) or Vec-
tored (bit | = 1).

3.2.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT
pin will cause an Interrupt Acknowledge bus cycle, but the
CPU will ignore any value read from the bus and use instead
a default vector of zero. This mode is useful for small sys-
tems in which hardware interrupt prioritization is unneces-
sary.

3.2.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control
Unit (ICU) to prioritize many interrupt requests. Upon receipt
of an interrupt request on the INT pin, the CPU performs an
“Interrupt Acknowledge, Master” bus cycle (Section
3.5.4.6) reading a vector value from the low-order byte of
the Data Bus. This vector is then used as an index into the
Dispatch Table in order to find the External Procedure De-
scriptor for the proper interrupt service procedure. The serv-
ice procedure eventually returns via the Return from Inter-
rupt (RETI) instruction, which performs an End of Interrupt
bus cycle, informing the ICU that it may re-prioritize any in-
terrupt requests still pending. The ICU provides the vector
number again, which the CPU uses to determine whether it
needs also to inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127; that
is, they must be positive numbers in eight bits. By providing

2-38

3.0 Functional Description (continued)

“END OF INTERRUPT"
BUSCYCLE
INTERRUPT
CONTROL
UNIT
T LOWER
PROGRAM COUNTER 3z2BITS AopResses
1 (POP)
L RETURN ADDRESS | PC
] (POP)
L STATUS MODULE I PSR MOD
PSR MOD
INTERRUPT
HIGHER
L STACK A1 ADDRESSES
0
MODULE
TABLE
MODULE TABLE ENTRY
{ J
MODULE TABLE ENTRY
STATIC BASE POINTER 1
LINK BASE POINTER
PROGRAM BASE POINTER
(RESERVED)
l STATIC BASE
SBREGISTER

FIGURE 3-13. Return from Interrupt (RETI) Instruction Fiow.
Direct-Exception Mode Disabled.

TL/EE/9354~19

2-39

0€-cESCESN/GC-CEGCESN/02-CESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

a negative vector number, an ICU flags the interrupt source
as being a Cascaded ICU (see below).

3.2.3.3 Vectored Mode: Cascaded Case

In order to allow more levels of interrupt, provision is made
in the CPU to transparently support cascading. Note that
the Interrupt output from a Cascaded ICU goes to an Inter-
rupt Request input of the Master ICU, which is the only ICU
which drives the CPU INT pin. Refer to the ICU data sheet
for details.

In a system which uses cascading, two tasks must be per-
formed upon initialization:

1) For each Cascaded ICU in the system, the Master ICU
must be informed of the line number on which it receives
the cascaded requests.

2) A Cascade Table must be established in memory. The
Cascade Table is located in a NEGATIVE direction from
the location indicated by the CPU Interrupt Base (INT-
BASE) Register. Its entries are 32-bit addresses, pointing
to the Vector Registers of each of up to 16 Cascaded
ICUs.

Figure 3-9 illustrates the position of the Cascade Table. To
find the Cascade Table entry for a Cascaded ICU, take its
Master ICU fine number (0 to 15) and subtract 16 from it,
giving an index in the range —16 to —1. Multiply this value
by 4, and add the resulting negative number to the contents
of the INTBASE Register. The 32-bit entry at this address
must be set to the address of the Hardware Vector Register
of the Cascaded ICU. This is referred to as the “Cascade
Address.”

Upon receipt of an interrupt request from a Cascaded ICU,
the Master ICU interrupts the CPU and provides the nega-
tive Cascade Table index instead of a (positive) vector num-
ber. The CPU, seeing the negative value, uses it as an index
into the Cascade Table and reads the Cascade Address
from the referenced entry. Applying this address, the CPU
performs an “Interrupt Acknowledge, Cascaded” bus cycle,
reading the final vector value. This vector is interpreted by
the CPU as an unsigned byte, and can therefore be in the
range of 0 through 255.

In returning from a Cascaded interrupt, the service proce-
dure executes the Return from Interrupt (RETI) instruction,
as it would for any Maskable Interrupt. The CPU performs
an “End of Interrupt, Master” bus cycle, whereupon the

Master ICU again provides the negative Cascade Table in-

dex. The CPU, seeing a negative value, uses it to find the

corresponding Cascade Address from the Cascade Table.

Applying this address, it performs an “End of Interrupt, Cas-

caded” bus cycle, informing the Cascaded ICU of the com-

pletion of the service routine. The byte read from the Cas-
caded ICU is discarded.

Note: If an interrupt must be masked off, the CPU can do so by setting the

corresponding bit in the interrupt mask register of the interrupt con-
troller.
However, if an interrupt is set pending during the CPU instruction that
masks off that interrupt, the CPU may still perform an interrupt ac-
knowledge cycle following that instruction since it might have sampled
the INT line before the ICU deasserted it. This could cause the ICU to
provide an invalid vector. To avoid this problem the above operation
should be performed with the CPU interrupt disabled.

3.2.4 Non-Maskable Interrupt

The Non-Maskable Interrupt is triggered whenever a falling
edge is detected on the NMI pin. The CPU performs an
“Interrupt Acknowledge, Master” bus cycle (Section

3.5.4.6) when processing of this interrupt actually begins.
The Interrupt Acknowledge cycle differs from that provided
for Maskable Interrupts in that the address presented is
FFFFFF0046. The vector value used for the Non-Maskable
Interrupt is taken as 1, regardless of the value read from the
bus.

The service procedure returns from the Non-Maskable In-
terrupt using the Return from Trap (RETT) instruction. No
special bus cycles occur on return.

3.2.5 Traps

Traps are processing exceptions that are generated as di-

rect results of the execution of an instruction.

The return address saved on the stack by any trap except

Trap (TRC) and Trap (DBG) is the address of the first bye of

the instruction during which the trap occurred.

When a trap is recognized, maskable interrupts are not dis-

abled except for the case of Trap (ABT) and Trap (DBG).

There are 11 trap conditions recognized by the NS32532 as

described below.

Trap (ABT): An abort trap occurs when an invalid page ta-

ble entry or a protection level violation is detected for any of

the memory references required to execute an instruction.

Trap (SLAVE): An exceptional condition was detected by

the Floating Point Unit or another Slave Processor during

the execution of a Slave Instruction. This trap is requested
via the Status Word returned as part of the Slave Processor

Protocol (Section 3.1.4.1).

Trap (ILL): lllegal operation. A privileged operation was at-

tempted while the CPU was in User Mode (PSR bit U = 1).

Trap (SVC): The Supervisor Call (SVC) instruction was exe-

cuted.

Trap (DVZ): An attempt was made to divide an integer by

zero. {The FPU trap is used for Floating Point division by

zero.)

Trap (FLG): The FLAG instruction detected a ““1” in the

PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut-

ed.

Trap (TRC): The instruction just completed is being traced.

Refer to Section 3.3.1 for details.

Trap (UND): An Undefined-Instruction trap occurs when an

attempt to execute an instruction is made and one or more

of the following conditions is detected:

1. The instruction is undefined. Refer to Appendix A for a
description of the codes that the CPU recognizes to be
undefined.

2. The instruction is a floating point instruction and the F-bit
in the CFG register is 0.

3. The instruction is a custom slave instruction and the C-bit
in the CFG register is 0.

4. The instruction is a memory-management instruction and

the M-bit in the CFG register is 0.

. An LMR or SMR instruction is executed while the U-flag
in the PSR is 0 and the most significant bit of the instruc-
tion’s short field is 0.

6. The reserved general adressing mode encoding (10011)
is used.

7. Immediate addressing mode is used for an operand that
has access class different from read.

o

2-40

3.0 Functional Description (continued)

8. Scaled Indexing is used and the basemode is also Scaled
Indexing.

9. The instruction is a floating-point or custom slave instruc-
tion that the FPU or custom slave detects to be unde-
fined. Refer to Section 3.1.4.1 for more information.

Trap (OVF): An Integer-Overflow trap occurs when the V-bit
in the PSR register is set to 1 and an Integer-Overflow con-
dition is detected during the execution of an instruction. An
Integer-Overflow condition is detected in the following cas-
es:

1. The F-flag is 1 following execution of an ADDi, ADDQi,
ADDCi, SUBi, SUBCi, NEGi, ABSi, or CHECKi instruction.

2. The product resulting from a MULI instruction cannot be
represented exactly in the destination operand's location.

. The quotient resulting from a DEIi, DIVi, or QUOi instruc-
tion cannot be represented exactly in the destination op-
erand’s location.

. The result of an ASHi instruction cannot be represented
exactly in the destination operand’s location.

5. The sum of the ‘INC’ value and the ‘INDEX’ operand for
an ACBi instruction cannot be represented exactly in the
index operand'’s location.

Trap (DBG): A debug trap occurs when one or more of the
conditions selected by the settings of the bits in the DCR
register is detected. This trap can also be requested by acti-
vating the input signal DBG. Refer to Section 3.3.2 for more
information.

Note 1: Following execution of the WAIT instruction, then a Trap (DBG) can

be pending for a PC-match condition. In such an event, the Trap
(DBG) is processed immediately.

Note 2: if an attempt is made to a memory-mar tinstruction
while in User-Mode and the M-bit in the CFG register is 0, then Trap
(UND) occurs.

Note 3: If an attempt is made to execute a privileged custom instruction
while in User-Mode and the C-bit in the CFG register is 0, then Trap
(UND) occurs.

Note 4: While operating in User-Mode, if an attempt is made to executs a
privileged instruction with an undefined use of a general addressing
mode (either the reserved encoding is used or else scaled-index or
immediate modes are incorrectly used), the Trap (UND) océurs.

Note 5: If an undefined instruction or illegal operation is detected, then no
data references are performed for the instruction.

Note 6: For certain instructions that are relatively long to execute, such as
DEID, the CPU checks tor pending interrupts during execution of the
instruction. [n order to reduce interrupt latency, the NS2532 can
suspend executing the instruction and process the interrupt. Refer
to Section B.5 in Appendix B for more information about recognizing
interrupts in this manner.

3.2.6 Bus Errors

A bus error exception occurs when the BER signal is assert-
ed in response to an instruction fetch or data transfer that is
required to execute an instruction.

Two types of bus errors are recognized: Restartable and
Non-Restartable. Restartable bus errors are recognized dur-
ing read bus cycles, except for MMU read cycles (from Page
Tables) needed to translate the address of a result being
stored into memory. All other bus errors are non-restartable.

The CPU responds to restartable bus errors by suspending
the instruction that it was executing. When a non-restartable
bus error is detected, the CPU responds immediately and
the instruction being executed is terminated. See Section
3.1.2.3.

w

E-N

The PC value saved on the stack is undefined.

The NS32532 does not respond to bus errors indicated for
instructions that are not executed. For example, no bus er-
ror exception occurs in response to asserting the BER sig-
nal during a bus cycle to prefetch an instruction that is not
executed because the previous instruction caused a trap.

An exception to this rule occurs if the bus error is detected
during an MMU write cycle to update the R-bit in a page
table entry.

In this case the CPU recognizes the bus error and considers
it as non-restartable even though the bus cycle that caused
it belongs to a non-executed instruction.

If a bus error is detected during a data transfer required for
the processing of another exception or during the ICU read
cycle of a RETI instruction, then the CPU considers it as a
fatal bus error and enters the ‘HALTED' state.

Note 1: If the address and control signals associated with the last bus cycle
that caused a bus error are latched by external hardware, then the
information they provide can be used by the service procedure for
restartable bus errors to analyze and resolve the exception recog-
nized by the CPU. This can be accomplished because upon detect-
ing a restartable bus error, the NS32532 stops making memory ref-
arences for subsequent instructions until it determines whether the
instruction that caused the bus error is executed and the exception
is processed.

Note 2: When a non-restartable bus error is recognized, the service proce-
dure must execute the CINV and LMR instructions to invalidate the
on-chip caches and TLB. This is necessary to maintain coherence
between them and external memory.

3.2.7 Priority Among Exceptions

The CPU checks for specific exceptions at various points
while executing an instruction. It is possible that several ex-
ceptions occur simultaneously. In that event, the CPU re-
sponds to the exception with highest priority.

Figure 3-14 shows an exception processing flowchart. A
non-restartable bus error is assigned highest priority and is
serviced immediately regardiess of the execution state of
the CPU.

Before executing an instruction, the CPU checks for pend-
ing Trap (DBG), interrupts, and Trap (TRC), in that order. If a
Trap (DBG) is pending, then the CPU processes that excep-
tion, otherwise the CPU checks for pending interrupts. At
this point, the CPU responds to any pending interrupt re-
quests; nonmaskable interrupts are recongized with higher
priority than maskable interrupts. If no interrupts are pend-
ing, then the CPU checks the P-flag in the PSR to determine
whether a Trap (TRC) is pending. If the P-flag is 1, a Trap
(TRC) is processed. If no Trap (DBG), interrupt or Trap
(TRC) is pending, the CPU begins executing the instruction.

While executing an instruction, the CPU may recognize up

to four exceptions:

1. trap (ABT)

2. restartable bus error

3. trap (DBG) or interrupt, if the instruction is interruptible

4. one of 7 mutually exclusive traps: SLAVE, ILL, SVC, DVZ,
FLG, BPT, UND

Trap (ABT) and restartable bus error have equal priority; the

CPU responds to the first one detected.

If no exception is detected while the instruction is executing,
then the instruction is completed and the PC is updated to
point to the next instruction. If a Trap (OVF) is detected,
then it is processed at this time.

2-41

0€-2€52ESN/G2-CESCESN/02-CESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

INITIALIZE

A 4

TRAP (DBG) ~YES

NON=RESTARTABLE
BUS ERROR

TERMINATE
INSTRUCTION
EXECUTION

A4

PENDING
2

INTERRUPT YES

PENDING
2

P<0

A4

v

BEGIN
INSTRUCTION
EXECUTION

¥

P=T

R B
(a8t)

RESTARTABLE

INTERRUPTIBLE “\JYES TRAP (0BG)

INSTRll.:gTION OR INTERRUPT
PENDING

o

SLAVE, SVC,

YES

A4

DVZ, FLG, BPT
TRAP

COMPLETE
INSTRUCTION
EXECUTION

v

UPDATE PC

YES
TRAP (OVF)

A 4

SUSPEND
INSTRUCTION
EXECUTION

2
NO

PROCESS
EXCEPTION

FIGURE 3-14. Exception Processing Flowchart

TL/EE/9354-20

2-42

3.0 Functional Description (continued)

While executing the instruction, the CPU checks for enabled
debug conditions. If an enabled debug condition is met, a
Trap (DBG) is held pending until after the instruction is com-
pleted (see Note 3). If another exception is detected before
the instruction is completed, the pending Trap (DBG) is re-
moved and the DSR register is not updated.

Note 1: Trap (DBG) can be detected simultaneously with Trap (OVF). In this
event, the Trap (OVF) is processed before the Trap (DBG).

Note 2: An address-compare debug condition can be detected while pro-
cessing a bus error, interrupt, or trap. {n this event, the Trap (DBG)
is held pending until after the CPU has processed the first excep-
tion.

Note 3: Between operations of a string instruction, the CPU responds to
pending operand address compare and external debug conditions
as well as interrupts. If a PC-match debug condition is detected
while executing a string instruction, then Trap (DBG) is held pending
until the instruction has completed.

3.2.8 Exception Acknowledge Sequences: Detailed Flow

For purposes of the following detailed discussion of excep-
tion acknowledge sequences, a single sequence called
'service” is defined in Figure 3-15.

Upon detecting any interrupt request, trap or bus error con-
dition, the CPU first performs a sequence dependent upon
the type of exception. This sequence will include saving a
copy of the Processor Status Register and establishing a
vector and a return address. The CPU then performs the
service sequence.

3.2.8.1 Maskable/Non-Maskable Interrupt Sequence
This sequence is performed by the CPU when the NMi pin
receives a falling edge, or the INT pin becomes active with
the PSR | bit set. The interrupt sequence begins either at
the next instruction boundary or, in the case of an interrupt-
ible instruction (e.g., string instruction), at the next interrupt-
ible point during its execution.

1. If an interruptible instruction was interrupted and not yet
completed:

a. Clear the Processor Status Register P bit.

b. Set “Return Address” to the address of the first byte of
the interrupted instruction.

Otherwise, set “Return Address” to the address of the

next instruction.

2. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits T, V, U, S, P and 1.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFFFF004g, applying
Status Code 00100 (interrupt Acknowledge, Master).
Discard the byte read.

b. Set “Vector” to 1.

¢. Go to Step 8.

4. If the interrupt is Non-Vectored:
a.Read a byte from address FFFFFE00g, applying

Status Code 00100 (Interrupt Acknowledge, Master).
Discard the byte read.

b. Set “Vector” to 0.

¢. Go to Step 8.

5. Here the interrupt is Vectored. Read “Byte’ from address
FFFFFEOO4g, applying Status Code 00100 (Interrupt Ac-
knowledge, Master).

6. If “Byte” = 0, then set *Vector” to “Byte” and go to Step
8.

7. If “Byte” is in the range —16 through —1, then the inter-
rupt source is Cascaded. (More negative values are re-
served for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory. The
address is calculated as INTBASE + 4* Byte.

b. Read “Vector,” applying the Cascade Address just
read and Status Code 00101 (Interrupt Acknowledge,
Cascaded).

8. Perform Service (Vector, Return Address), Figure 3-15.

3.2.8.2 Abort/Restartable Bus Error Sequence

1. Suspend instruction and restore the currently selected
Stack Pointer to its original contents at the beginning of
the instruction.

2. Clear the PSR P bit.

3. Copy the PSR into a temmporary register, then clear PSR
bits T, V, U, S and I.

4. Set “Vector” to the value corresponding to the exception
type:
Abort: Vector = 2
Restartable Bus Error: Vector = 11

5. Set “Return Address” to the address of the first byte of
the suspended instruction.

6. Perform Service (Vector, Return Address), Figure 3-15.

3.2.8.3 SLAVE/ILL/SVC/DVZ/FLG/BPT/UND Trap

Sequence

1. Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction.

2. Set “Vector” to the value corresponding to the trap type.
SLAVE: Vector = 3.

ILL: Vector = 4,
SVC: Vector = 5.
DvZ: Vector = 6.
FLG: Vector=7.
BPT: Vector = 8.
UND: Vector = 10.

3. If Trap (ILL) or Trap (UND)
a. Clear the Processor Status Register P bit.

4. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits T, V, U, S and P.

5. Set "“Return Address” to the address of the first byte of
the trapped instruction.

6. Perform Service (Vector, Return Address), Figure 3-15.
3.2.8.4 Trace Trap Sequence
1. In the Processor Status Register (PSR), clear the P bit.

2. Copy the PSR into a temporary register, then clear PSR
bits T, V, U and S.

3. Set “Vector” to 9.

4. Set "“Return Address” to the address of the next instruc-
tion.

5. Perform Service (Vector, Return Address), Figure 3-15.
3.2.8.5 Integer-Overflow Trap Sequence

1. Copy the PSR into a temporary register, then clear PSR
bits T, V, U, S and P.

2. Set “Vector” to 13.

3. Set “Return Address” to the address of the next instruc-
tion.

2-43

0€-2ESCESN/G2-2ESCESN/0C-CESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)
4. Perform Service (Vector, Return Address), Figure 3-15.

3.2.8.6 Debug Trap Sequence
A debug condition can be recognized either at the next in-
struction boundary or, in the case of an interruptible instruc-
tion, at the next interruptible point during its execution.
1. Iif PC-match condition, then go to Step 3.
2. If a String instruction was interrupted and not yet com-
pleted:
a. Clear the Processor Status Register P bit.
b. Set *'Return Address” to the address of the first byte of
the instruction.
¢. Go to Step 4.
3. Set “Return Address” to the address of the next instruc-
tion.
4, Set “Vector” to 14.
5. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits T, V, U, S, P and 1.
6. Perform Service (Vector, Return Address), Figure 3-15.
Note: In case of PC-match or address-compare on write, the Trap (DBG)

3.3 DEBUGGING SUPPORT

The NS32532 provides serveral features to assist in pro-
gram debugging.

Besides the Breakpoint (BPT) instruction that can be used
to generate soft breaks, the CPU also provides instruction
tracing as well as debug trap (or hardware breakpoints) ca-
pabilities. Details on these features are provided in the fol-
lowing sub-sections.

3.3.1 Instruction Tracing

Instruction tracing is a very useful feature that can be used
during debugging to single-step through selected portions of
a program. Tracing is enabled by setting the T-bit in the PSR
Register. When enabled, the CPU generates a Trace Trap
(TRC) after the execution of each instruction.

At the beginning of each instruction, the T bit is copied into
the PSR P (Trace “Pending”) bit. If the P bit is set at the end
of an instruction, then the Trace Trap is activated. If any
other trap or interrupt request is made during a traced in-
struction, its entire service procedure is allowed to complete
before the Trace Trap occurs. Each interrupt and trap se-

quence handles the P bit for proper tracing, guaranteeing
only one Trace Trap per instruction, and guaranteeing that
the Return Address pushed during a Trace Trap is always
the address of the next instruction to be traced.

Due to the fact that some instructions can clear the T and P
bits in the PSR, in some cases a Trace Trap may not occur
at the end of the instruction. This happens when one of the
privileged instructions BICPSRW or LPRW PSR is executed.

may occur before the instruction is executed.

3.2.8.7 Non-Restartable Bus Error Sequence
1. Set “Vector” to 12.
2. Set “Return Address” to “Undefined”.

3. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits T, V, U, S, P and I

4. Perform a dummy read of the Slave Status Word to reset
the Slave Processor.

5. Perform Service (Vector, Return Address), Figure 3-15.

TABLE 3-3. Summary of Exception Processing

Instruction Cleared Before Cleared After
Exception Ending Saving PSR Saving PSR
Restartable Bus Error Suspended P TVUSI
Nonrestartable Bus Error Terminated Undefined TVUS
Interrupt Before Instruction None/P* TVUSPI
ABT Suspended P TVUSI
ILL, UND Suspended P TVUS
SLAVE, SVC, DVZ, FLG, BPT Suspended None TVUSP
OVF Completed None TVUSP
TRC Before Instruction P TVUS
DBG Before Instruction None/P* TVUSPI

*Note: The P bit of the saved PSR is cleared in case the exception is acknowledged before the instruction is completed (e.g., interrupted string instruction). This is
to avoid a mid-instruction trace trap upon return from the Exception Service Routine.
Service (Vector, Return Address):

1) Push the PSR copy onto the Interrupt Stack as a 16-bit value.

2) If Direct-! p mode is d, then go to step 4.

3) Push MOD Register Into the Interrupt Stack as a 16-bit value.

4) Read 32-bit Interrupt Dispatch Table (IDT) entry at address ‘INTBASE + vector X 4'.

5) It Direct-Excep mode Is d, then go to Step 10.

6) Move the L.S. word of the IDT entry (Module Field) Into the MOD register.

7) Read the Program Base pointer from memory address ‘MOD + 8’, and add to it the M.S. word of the IDT entry (Offset Field), placing the result in the
Program Counter.

8) Read the new Static Base polnter from the memory address contained in MOD, placing It into the SB Register.
9) Go to Step 11.

10) Place IDT entry in the Program Counter.

11) Push the Return Address onto the Interrupt Stack as a 32-bit quantity.

12) Serlalize: Non-sequentlally fetch first instruction of Exception Service Routine.

Note: Some of the Memory Accesses indicated in the service sequence may be performed in an order different from the one shown.

FIGURE 3-15, Service Sequence

2-44

3.0 Functional Description (continued)

In other cases, it is still possible to guarantee that a Trace
Trap occurs at the end of the instruction, provided that spe-
cial care is taken before returning from the Trace Trap Serv-
ice Procedure. In case a BICPSRB instruction has been ex-
ecuted, the service procedure should make sure that the T
bit in the PSR copy saved on the Interrupt Stack is set be-
fore executing the RETT instruction to return to the program
begin traced. If the RETT or RETI instructions have to be
traced, the Trace Trap Service Procedure should set the P
and T bits in the PSR copy on the Interrupt Stack that is
going to be restored in the execution of such instructions.

Note: If instruction tracing is enabled while the WAIT instruction is executed,
the Trap (TRC) occurs after the next interrupt, when the interrupt
service procedure has returned.

3.3.2 Debug Trap Capability

The CPU recognizes three different conditions to generate a
Debug Trap:

1) Address Compare
2) PC Match
3) External

These conditions can be enabled and monitored through
the CPU Debug Registers.

An address-compare condition is detected when certain
memory locations are either read or written. The double-
word address used for the comparison is specified in the
CAR Register. The address-compare condition can be sep-
arately enabled for each of the bytes in the specified dou-
ble-word, under control of the CBE bits of the DCR Register.
The VNP bit in the DCR controls whether virtual or physical
addresses are compared. The CRD and CWR bits in the
DCR separately enable the address compare condition for
read and write references; the CAE bit in the DCR can be
used to disable the compare-address condition indepen-
dently from the other control bits. The CPU examines the
address compare condition for all data reads and writes,
reads of memory locations for effective address calcula-
tions, Interrupt-Acknowledge and End-of-Interrupt bus cy-
cles, and memory references for exception processing. An
address-compare condition is not detected for MMU refer-
ences to Page Table Entries.

The PC-match condition is detected when the address of
the instruction equals the value specified in the BPC regis-
ter. The PC-match condition is enabled by the PCE bit in the
DCR.

Detection of address-compare and PC-match conditions is
enabled for User and Supervisor Modes by the UD and SD
bits in the DCR. The DEN-bit can be used to disable detec-
tion of these two conditions independently from the other
control bits.

An external condition is recognized whenever the DBG sig-
nal is activated.

When the CPU detects an address-compare or PC-match
condition while executing an instruction or processing an
exception, then Trap (DBG) occurs if the TR bit in the DCR
is 1. When an external debug condition is detected, Trap
(DBG) occurs regardless of the TR bit. The cause of the
Trap (DBG) is indicated in the DSR Register.

When an address-compare or PC-match condition is detect-
ed while executing an instruction, the CPU asserts the BP
signal at the beginning of the next instruction, synchronous-
ly with PFS. If the instruction is not completed because a

higher priority trap (i.e., ABORT) is detected, the BP signal

may or may not be asserted.

Note 1: The assertion of BP is not affected by the setting of the TR bit in the
DCR register.

Note 2: While executing the MOVUS and MOVSU instructions, the com-
pare-address condition is enabled for the User space memory refer-
ence under control of the UD-bit in the DCR.

Note 3: When the LPRi instruction is executed to load a new value into the
BPC, CAR or DCR, it is undefined whether the address-compare
and PC-match conditions, in effect while executing the instruction,
are detected under control of the old or new contents of the loaded
register. Therefore, any LPRi instruction that alters the control of the
address-compare or PC-match conditions should use register or im-
mediate addressing mode for the source operand.

3.4 ON-CHIP CACHES

The NS32532 provides three on-chip caches: the Instruc-
tion Cache (IC), the Data Cache (DC) and the Translation
Look-aside Buffer (TLB).

The first two are used to hold the contents of frequently
used memory locations, while the TLB holds address-trans-
lation information. ’

The IC and DC can be individually enabled by setting appro-
priate bits in the CFG Register (See Section 2.1.4); the TLB
is automatically enabled when address-translation is en-
abled.

The CPU also provides a locking feature that allows the
contents of the IC and DC to be locked to specific memory
locations. This is accomplished by setting the LIC and LDC
bits in the CFG register.

Cache locking can be successfully used in real-time applica-
tions to guarantee fast access to critical instruction and data
areas.

Details on the organization and function of each of the

caches are provided in the following sections.

Note: The size and organization of the on-chip caches may change in future
Series 32000 microprocessors. This however, will not affect software
compatibility.

3.4.1 Instruction Cache (IC)

The basic structure of the instruction cache (IC) is shown in
Figure 3-16.

The IC stores 512 bytes of code in a direct-mapped organi-
zation with 32 sets. Direct-mapped means that each set
contains only one block, thus each memory location can be
loaded into the IC in only one piace.

Each block contains a 23-bit tag, which holds the most-sig-
nificant bits of the physical address for the locations stored
in the block, along with 4 double-words and 4 validity bits
(one for each double-word).

A 4-double-word instruction buffer is also provided, which is
loaded either from a selected cache block or from external
memory. Instructions are read from this buffer by the loader
unit and transferred to an 8-byte instruction queue.

The IC may or may not be enabled to cache an instruction
being fetched by the CPU. It is enabled when the IC bit in
the CFG Register is set to 1 and either the address transla-
tion is disabled or the Cl bit in the Level-2 PTE used to
translate the virtual address of the instruction is set to 0.

If the IC is disabled, the CPU bypasses it during the instruc-
tion fetch and its contents are not affected. The instruction
is read directly from external memory into the instruction
buffer.

2-45

0€-2€GCESN/G2-2€G2ESN/02-2ESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

))
£ 3
TAG 2.1 ¢ |52 INSTRUCTION 32 | vaup |52 | ¢
MEMORY N 0 ? MEMORY " oems € 0
D D
£ £
{m &4
23

| 16-8rme wsteucron surrer |

| uen |

tl 28 il
CACHE

TAG) I
COMPARE

SELECT I > I SELECT l INVALIDATE

23

3 98 43210
INSTRUCTION ADDRESS

l ADDRESS

INSTRUCTION DOUBLE=WORD

TL/EE/9354-21

FIGURE 3-16. Instruction Cache Structure

When the IC is enabled, the instruction address bits 4 to 8
are used to select the IC set where the instruction may be
stored. The tag corresponding to the single block in the set
is compared with the 23 most-significant bits of the instruc-
tion’s physical address. The 4 double-words in this block are
loaded into the instruction buffer and the 4 validity bits are
also retrieved. Bits 2 and 3 of the instruction’s physical ad-
dress select one of these double-words and the associated
validity bit.

If the tag matches and the selected double-word is valid, a
cache ‘hit' occurs and the double-word is directly trans-
ferred to the instruction queue for decoding; otherwise a
cache ‘miss’ will result.

In the latter case, if the cache is not locked, the CPU will
take the following actions.

First, if the tag of the selected block does not match, the tag
is loaded with the 23 most-significant bits of the instruction
address and all the validity bits are cleared. Then, the in-
struction is read from external memory into the instruction
buffer.

If the CIIN input signal is not active during the fetching of the
missing instruction, then the IC is updated and the instruc-
tion double-words fetched from memory are stored into it
with the validity bits set.

If the cache is locked, its contents are not affected, as the
CPU reads the missing instruction from external memory.

Whenever the CPU accesses external memory, whether or
not the IC is enabled, it always fetches instruction double-
words in a non-wrap-around fashion. Refer to Sections
3.5.4.3 and 3.5.6 for more information.

The contents of the instruction cache can be invalidated by

software through the CINV instruction or by hardware

through the appropriate cache invalidation input signals.

Clearing the IC bit in the CFG Register also invalidates the

instruction cache. Refer to Sections 3.5.10 and C.3 for de-

tails.

Note: If the IC is enabled for a certain instruction and a ‘miss’ occurs due to
a tag mismatch, the CPU will clear all the validity bits of the selected
tag before fetching the instruction from external memory. If the CIIN
input signal is activated during the fetching of that instruction, the
validity bits are not set and the IC is not updated.

3.4.2 Data Cache (DC)

The Data Cache (DC) stores 1,024 bytes of data in a two-
way set associative organization as shown in Figure 3-17.
Each of the 32 sets has 2 cache blocks. Each block con-
tains a 23-bit tag, which holds the most-significant bits of
the physical address for the locations stored in the block,
along with 4 double-words and 4 validity bits (one for each
double-word).

The DC is enabled for a data read when all of the following
conditions are satisfied.

® The DC bit in the CFG Register is set to 1.

o Either the address translation is disabled or the CI bit in
the Level-2 PTE used to translate the virtual address of
the data reference is set to 0.

¢ The reference is not an interlocked read resulting from
executing a CBITI or SBITI instruction.

If the DC is disabled, the CPU bypasses it during the data
read and its contents are not affected. The data is read
directly from external memory. The DC is also bypassed for
MMU reads from Page Table entries during address transla-
tion and for Interrupt-Acknowledge and End-of-Interrupt bus
cycles.

When the DC is enabled for a data read, the address bits 4
to 8 are used to select the DC set where the data may be
stored.

The tags corresponding to the two blocks in the set are
compared to the 23 most-significant bits of the physical ad-
dress. Bits 2 and 3 of the address select one double-word in
each block and the associated validity bit.

If one of the tag matches and the selected double-word in
the corresponding block is valid, a cache ‘hit’ occurs and
the data is used to execute the instruction; otherwise a
cache ‘miss’ will result. In the latter case, if the cache is not
locked, the CPU will take the following actions.

2-46

3.0 Functional Description (ontinued)

32 32 32
7o le— 16 e oeconk [<p] oara f—p) ot |—p VLD » VLo e becone
MEMORY MEMORY MEMORY MEMORY [
0 1 o 1 0 1
3 h
128 128 4 4 5
23 23 v A 4 A\ 4 A
—»| seeet | seecr] seecr | seecr |
A 4 A 4
32 32
e A4) 4 h 4 L 4 CACHE
g INVALIDATE
COMPARE | SELECT 1 SELECT | ADDRESS
32 l
A 5 2 A4
2 ALIGN
23
32
3] 38 435270
DATA ADDRESS DATA

TL/EE/9354-22

FIGURE 3-17. Data Cache Structure

First, if the tag of either block in the set matches the data
address, that block is selected for updating. Otherwise, if
neither tag matches, then the least recently used block is
selected,; its tag is loaded with the 23 most-significant bits of
the data address, and all the validity bits are cleared.

Then, the data is read from external memory; up to 4 dou-
ble-word bits are read into the cache in a wrap-around fash-
ion. Refer to Sections 3.5.4.3 and 3.5.6 for more informa-
tion.

If the CIIN and IODEC input signals are both inactive during
the bus cycles performed to read the missing data, then the
DC is updated, as each double-word is read from memory,
and the corresponding validity bit is set. If the cache is
locked, its contents are not affected, as the CPU reads the
missing data from external memory.

The DC is enabled for a data write whenever the DC bit in
the CFG Register is set to 1, including interlocked writes
resulting from executing the CBITI and SBIT! instructions,
and MMU writes to Page Table entries during address trans-
lation.

The DC does not use write allocation. This means that, dur-
ing a write, if a cache ‘hit’ occurs, the DC is updated, other-
wise it is unaffected. The data is always written through to
external memory.

The contents of the data cache can be invalidated by soft-

ware through the CINV instruction or by hardware through

the appropriate cache invalidation input signals. Clearing
the DC bit in the CFG Register also invalidates the data
cache. Refer to Sections 3.5.10 and C.3 for details.

Note: If the DC is enabled for a certain data reference and a “miss” occurs
due to tag mismatch, the CPU will clear all the validity bits for the least
recently used tag before reading the data from external memory. If
either CIIN or TODEC are activated during the data read bus cycles,
the validity bits are not set and the DC is not updated.

3.4.3 Cache Coherence Support

The NS32532 provides several mechanisms for maintaining
coherence between the on-chip caches and external mem-
ory. In software, the use of caches can be inhibited for indi-

vidual pages using the Cl-bit in the level-2 Page Table En-
tries. The CINV instruction can be executed to invalidate
entriely the Instruction Cache and/or Data Cache; the CINV
instruction can also be executed to invalidate a single
16-byte block in either or both caches.

In hardware, the use of the caches can be inhibited for indi-
vidual locations using the CIIN input signal. A cache invali-
dation request can cause the entire Instruction Cache and/
or Data Cache to be invalidated; a cache invalidation re-
quest can also cause invalidation of a single set in either or
both caches. Refer to Section 3.5.7 for more information.

An external “Bus Watcher” circuit can also be used to help
maintain cache coherence. The Bus Watcher observes the
CPU’s bus cycles to maintain a copy of the on-chip cache
tags while also monitoring writes to main memory by DMA
controllers and other microprocessors in the system. When
the Bus Watcher detects that a location in one of the on-
chip caches has been modified in main memory, it issues an
invalidation request to the CPU. The GPU provides the nec-
essary information on the system interface to help maintain
an external copy of the on-chip tags.

The status codes differentiate between instruction fetches
and data reads.

The set, affected during the bus access (if CIOUT is low), as
well as the tag can be determined from the address bits A4
through A8 and A9 through A31 respectively.

During a data read the CPU also indicates, by means of the
CASEGC signal, which block in the set is being updated.

Whenever a CINV instruction is executed, the operation
code and operand appear on the system interface using
slave processor bus cycles. Thus, invalidations of the on-
chip caches by software can be monitored externally.
Note, however, that the software is responsible for commu-
nicating to the external circuitry the values of the cache en-
able and lock bits in the CFG Register, since the CPU does
not generate any special cycle (e.g., Slave Cycle) when the
CFG Register is loaded.

2-47

0€-2EGCESN/G2-2EGCESN/02-CESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)
3.4.4 Translation Look-aside Buffer (TLB)

The Translation Look-aside Buffer is an on-chip fully asso-
ciative memory. It provides direct virtual to physical mapping
for 64 pages, thus minimizing the time needed to perform
the address translation.

The efficiency of the on-chip MMU is greatly increased by
the TLB, which bypasses the much longer Page Table look-
up in over 99% of the accesses made by the CPU.

Entries in the TLB are allocated and replaced automatically;
the operating system is not involved. The TLB entries can-
not be read or written by software; however, they can be
purged from it under program control.

Figure 3-18 shows a model of the TLB. Information is
placed into the TLB whenever a Page Table lookup is per-
formed. If the retrieved mapping is valid (V = 1 in both
levels of the Page Tables), and the access attempted is
permitted by the protection level, an entry of the TLB is
loaded from the information retrieved from memory.

The on-chip MMU places the Virtual Page Number (VPN)
and the Address Space qualifier (AS) into the tag portion of
the TLB entry.

The value portion of the entry is loaded from the Page Ta-
bles as follows:

* The PFN field (20 bits) as well as the Cl and M bits are
loaded from the Level-2 Page Table Entry (PTE2).

* The PL field (2 bits) is loaded to reflect the most restric-
tive of the protection levels imposed by the PL fields of
the Level-1 and Level-2 Page Table Entries (PTE1 and
PTE2).

Not shown in the figure is an additional bit associated with
each TLB entry which indicates whether the entry is valid.

Address translation can be either enabled or disabled for a
memory reference. If translation is disabled, then the TLB is
bypassed and the physical address is identical to the virtual
address.

When translation is enabled and a virtual address needs to
be translated, the high-order 20 bits (VPN) and the Address
Space qualifier are compared associatively to the corre-
sponding fields in all entries of the TLB.

For a read reference, if the tag portion of a valid TLB entry,
completely matches the input values, then the value portion
of the entry is used to complete the address translation and
protection checking.

For a write reference, if a valid entry with a matching tag is
present in the TLB, then the M bit is examined. If the M bit is
1, the value portion of the entry is used to complete the
address translation and protection checking. If the M bit is O,
the entry is invalidated.

In either case, if a protection level violation is detected, a
translation exception (Trap (ABT)) is generated. When no
matching entry is found or a matching entry is invalidated
because the M bit is 0 in a write reference, a Page Table
lookup is performed. The virtual address is translated ac-
cording to the algorithm given in Section 2.4.5 and the
translation information is loaded into the TLB.

The recipient entry is selected by an on-chip circuit that im-
plements a First-In-First-Out (FIFO) algorithm.

Note that for a translation to be loaded into the TLB it is
necessary that the Level-1 and Level-2 Page Table Entries
be valid (V bit = 1). Also, it is guaranteed that in the pro-
cess of loading a TLB entry (during a Page Table lookup)
the Level-1 and Level-2 R bits will be set in memory if they

were not already set. For these reasons, there is no need to
replicate either the V bit or the R bit in the TLB entries.

Whenever a Page Table Entry in memory is altered by soft-
ware, it is necessary to purge any matching entry from the
TLB, otherwise the corresponding addresses would be
translated according to obsolete information. TLB entries
may be selectively purged by writing a virtual address to one
of the IVARN registers using the LMR instruction. The TLB
entry (if any) that matches that virtual address is then
purged, and its space is made available for another transla-
tion. Purging is also performed whenever an address space
is remapped by altering the contents of the PTBO or PTB1
register. When this is done, all the TLB entries correspond-
ing to the address space mapped by that register are
purged. Turning translation on or off (via the MCR TU and
TS bits) does not affect the contents of the TLB.

It is possible to maintain an external copy of the valid con-
tents of the on-chip TLB by observing the CPU’s system
interface during the replacement and invalidation of TLB en-
tries. Whenever the CPU replaces a TLB entry, the page
tables are accessed in external memory using bus cycles
with a special Status. Because a FIFO replacement algo-
rithm is used, it is possible to determine which entry is being
replaced by using a 6-bit counter that is incremented when-
ever a Level-1 PTE is accessed. The contents of the new
entry can be found as follows:

* VPN appears on A2 through A11 during the PTE1 and
PTE2 accesses. The most-significant 10 bits appear dur-
ing the PTE1 access, and the least-significant 10 bits
appear during the PTE2 access.

¢ AS can be determined from the U/S signal during the
PTE1 access.

® PFN, M and Cl can be determined from the PTE2 value
read on the Data Bus. PL can be determined from the
most restrictive of the PTE1 and PTE2 values read on
the Data Bus.

Whenever a LMR instruction is executed, the operation
code and operand appear on the system interface using
slave processor bus cycles. Thus, the information is avail-
able externally to determine the translation modes con-
trolled by the MCR and to identify that a TLB entry has been
invalidated.

When the PTBO register is loaded by executing the ‘LMR
PTBO src’ instruction, the internal FIFO pointer is also reset
to point to the first TLB entry.

Note that the contents of the TLB maintained externally in-
clude copies of all valid entries in the on-chip TLB, but the
external copy may include some entries that are invalid in
the on-chip TLB. For example, when the TLB is searched
for a write reference and a matching entry is found with the
M bit clear, then the on-chip entry is invalidated and a miss
is processed. It is not possible to detect externally that the
old matching entry on-chip has been invalidated.

3.5 SYSTEM INTERFACE

This section provides general information on the NS32532
interface to the external world. Descriptions of the CPU re-
quirements as well as the various bus characteristics are
provided here. Details on other device characteristics in-
cluding timing are given in Chapter 4.

3.5.1 Power and Grounding

The NS32532 requires a single 5-volt power supply, applied
on 21 pins. The logic voltage pins (VCCL1 to VCCL6) supply

2-48

3.0 Functional Description (continued)

TAG VALUE
AS*| vPN (20 BITS)| PL | M | ¢ | PFN (20 BITS)
VIRTUAL 0 XXX 11]0]0 mmm TRANSLATED
ADDRESS ADDRESS
(u/s, 222) 1 yyy 1mjo]o nnn (PPP)
————= COMPARISON
0 222 1M1 1 PPP
1 www 0] 1 0 qqq
TL/EE/9354~23
*AS represents the virtual address space qualifier.
FIGURE 3-18. TLB Model
the power to the on-chip logic. The buffer voltage pins 3.5.2 Clocking

(VCCB1 to VCCB14) supply the power to the output drivers
of the chip. The bus clock power pin (VCCCLK) is the power
supply for the on-chip clock drivers. All the voltage pins
should be connected together by a power (VCC) plane on
the printed circuit board.

The NS32532 grounding connections are made on 20 pins.
The logic ground pins (GNDL1 to GNDLS6) are the ground
pins for the on-chip logic. The buffer ground pins (GNDB1 to
GNDB13) are the ground pins for the output drivers of the
chip. The bus clock ground pin (GNDCLK) is the ground
connection for the on-chip clock drivers. All the ground pins
should be connected together by a ground plane on the
printed circuit board.

Both power and ground connections are shown in Figure
3-19.

+5v
(<)
§/
VocL1=6 7
14
Vet = 14 7
OTHER Vg
Vecok » CONNECTIONS
(Voe PLANE)
NS32532
cPU
GNDL1 =6 6/
GNDB1 =13 1"'/
OTHER GROUND
GNDCLK » CONNECTIONS
(GND PLANE)

TL/EE/9354-24
FIGURE 3-19. Power and Ground Connections

The NS32532 requires a single-phase input clock signal
(CLK) with frequency twice the CPU’s operating frequency.

This clock signal is internally divided by two to generate two
non-overlapping phases PHI1 and PHI2. One single-phase
clock signal BCLK in phase with PHI1 and its complement
BCLK, are also generated and output by the CPU for timing
reference.

Following power-on, the phase relationship between BCLK
and CLK is undefined. Nevertheless, in some systems it
may be necessary to synchronize the CPU bus timing to an
external reference. The SYNC input signal can be used to
initialize the phase relationship between CLK and BCLK.
SYNC can also be used to stretch BCLK (Low) while CLK is
toggling.

SYNC is sampled on each rising edge of CLK. As shown in
Figure 3-20, whenever SYNC is sampled low, BCLK stops
toggling and stays low. On the first rising edge that SYNC is
sampled high, BCLK is driven high and then toggles on each
subsequent rising edge of CLK.

Every rising edge of BCLK defines a transition in the timing
state (“T-State”) of the CPU.

One T-State represents the execution of one microinstruc-
tion within the CPU and/or one step of an external bus
transfer.

Note: The CPU requirement on the maximum period of BCLK must be satis-
fied when SYNC is asserted at times other than reset.

3.5.3 Resetting

The RST input pin is used to reset the NS32532. The CPU
samples RST synchronously on the rising edge of BCLK.
Whenever a low level is detected, the CPU responds imme-
diately. Any instruction being executed is terminated; any
results that have not yet been written to memory are dis-
carded; and any pending bus errors, interrupts, and traps
are eliminated. The internal latches for the edge-sensitive

NMI and DBG signals are cleared.

|

N

BOLK \ / N\

/

TL/EE/9354-25

FIGURE 3-20. Bus Clock Synchronization

2-49

0€-2€S2ESN/G2-CESCESN/0C-C2ESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

The CPU stores the PC contents in the RO Register and the
PSR contents in the least-significant word of R1, leaving the
most-significant word undefined. The PC is then cleared to 0
and so are all the implemented bits in the PSR, MSR, MCR
and CFG registers. The DEN-bit in the DCR Register is also
cleared to 0. After reset, the remaining implemented bits in
DCR and the contents of all other registers are undefined.
The CPU begins executing the instruction at Address 0.

On application of power, RST must be held low for at least
50 pus after Vg is stable. This is to ensure that all on-chip
voltages are completely stable before operation. Whenever
a Reset is applied, it must also remain active for not less
than 64 BCLK cycles. See Figures 3-21 and 3-22.

While in the Reset state, the CPU drives the signals ADS,

BE0-3, BMT, CONF and HLDA inactive. The data bus is

floated and the state of all other output signals is undefined.

Note 1: If HOLD is active at the time RST is deasserted, the CPU acknowl-
edges HOLD before performing any bus cycle.

Note 2: If SYNC is asserted while the CPU is being reset, then BCLK does
not toggle. Consequently, SYNC must be high for at least 128 CLK
cycles while RST is low.

- LC

45V 3

BCLK

RST

=50 us
TL/EE/9354-26
FIGURE 3-21. Power-On Reset Requirements

BCLK[IlIlIlIlIl
= 100 CLOCK
CYCLES

ﬁ[¢
37

TL/EE/9354-27
FIGURE 3-22. General Reset Timing

3.5.4 Bus Cycles

The NS32532 CPU will perform bus cycles for one of the
following reasons:

1. To fetch instructions from memory.

2. To write or read data to or from memory or peripheral
devices. Peripheral input and output are memory mapped
in the Series 32000 family.

3. To read and update Page Table Entries in memory to
perform memory management functions.

4. To acknowledge an interrupt and allow external circuitry
to provide a vector number, or to acknowledge comple-
tion of an interrupt service routine.

5. To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 4 above are identi-

cal. For timing specifications, see Section 4. The only exter-

nal difference between them is the 5-bit code placed on the

Bus Status pins (ST0-ST4). Slave Processor cycles differ in

that separate control signals are applied (Section 3.5.4.7).

3.5.4.1 Bus Status

The CPU presents five bits of Bus Status information on
pins STO-ST4. The various combinations on these pins in-
dicate why the CPU is performing a bus cycle, or, if it is idle
on the bus, then why is it idle.

The Bus Status pins are interpreted as a five-bit value, with
STO the least significant bit. Their values decode as follows:
00000 The bus is idle because the CPU does not yet need
to access the bus.

The bus is idle because the CPU is waiting for an
interrupt following execution of the WAIT instruc-
tion.

The bus is idle because the CPU has halted after
detecting an abort or bus error while processing an
exception.

The bus is idle because the CPU is waiting for a
Slave Processor to complete executing an instruc-
tion.

Interrupt Acknowledge, Master.

The CPU is reading an interrupt vector to acknowl-
edge an interrupt request.

Interrupt Acknowledge, Cascaded.

The CPU is reading an interrupt vector to acknowl-
edge a maskable interrupt request from a Cascad-
ed Interrupt Control Unit.

End of Interrupt, Master.

The CPU is performing a read cycle to indicate that
it is executing a Return from Interrupt (RETI) in-
struction at the completion of an interrupt’s service
procedure.

End of Interrupt, Cascaded.

The CPU is performing a read cycle from a Cascad-
ed Interrupt Control Unit to indicate that it is execut-
ing a Return from Interrupt (RETI) instruction at the
completion of an interrupt’s service procedure.
Sequential Instruction Fetch.

The CPU is fetching the next double-word in se-
quence from the instruction stream.
Non-Sequential Instruction Fetch.

The CPU is fetching the first double-word of a new
sequence of instruction. This will occur as a result
of any JUMP or BRANCH, any exception, or after
the execution of certain instructions.

Data Transfer.

The CPU is reading or writing an operand for an
instruction, or it is referring to memory while pro-
cessing an exception.

Read RMW Class Operand.

The CPU is reading an operand with access class
of read-modify-write.

Read for Effective Address Calculation.

The CPU is reading a pointer from memory in order
to calculate an effective address for Memory Rela-
tive or External addressing modes.

Access PTE1 by MMU.

The CPU is reading or writing a Level-1 Page Table
Entry while the on-chip MMU is translating virtual
address.

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

2-50

3.0 Functional Description (continued)

01110 Access PTE2 by MMU. ANY
The CPU Is reading or writing a Level-2 Page Table L IT-STATE} T T2 1 TIORT
Entry while the on-chip MMU Is translating a virtual BCLK
address. |
11101 Transfer Slave Processor Operand. -_J
The CPU s transferring an operand to or from a A0= 3 _>(X

Slave Processor. -

X
11110 Read Slave Processor Status.
- 00- 31| ZZZZITT0 =|= =/ = K)= = 4 = -

The CPU Is reading a status word from a slave
processor after the slave processor has activated

0€-2ESCESN/S2-2ESTESN/0C-CESCESN

the FSSR signal. O \ /
11111 Broadcast Slave Processor ID + OPCODE. L

The CPU is initiating the execution of a Slave In- -

struction by transferring the first 3 bytes of the in- ADS

struction, which specify the Slave Processor identi- L \'/ \"/ \'

fication and operation. -

Vi 4

3.5.4.2 Basic Read and Write Cycles BMT /

The sequence of events occurring during a basic CPU ac-
cess to either memory or peripheral device is shown in Fig- W / \ /
ure 3-23 for a read cycle, and Figure 3-24 for a write cycle.

The cases shown assume that the selected memory or pe-
ripheral device is capable of communicating with the CPU at [/ // // //////////ox ////////
Vi g i

full speed. If not, then cycle extension may be requested
['///////////////A’ N

x
.(

through the RDY line. See Section 3.5.4.4.

A full speed bus cycle is performed in two cycles of the
BCLK clock, labeled T1 and T2. For both read and write bus
cycles the CPU asserts ADS during the first half of T1 indi-
cating the beginning of the bus cycle. From the beginning of
T1 until the completion of the bus cycle the CPU drives the
Address Bus and other relevant control signals as indicated
in the timing diagrams. For cacheable data read cycles the
CPU also drives the CASEC signal to indicate the block in
the DC set where the data will be stored. If the bus cycle is
not cancelled (e.g., state T2 is entered in the next clock
cycle), the confirm signal (CONF) is asserted in the middle
of T1. Note that due to a bus cycle cancellation, the BMT
signal may be asserted at the beginning of T1, and then BWO -

deasserted before the time in which it is guaranteed valid CIIN, IODEC Z // // // // OCDQI//// //A
(see Section 4.4.2).

A confirmed bus cycle is completed at the end of T2, unless BEO~3,5T0-4, —':X X X X:
a cycle extension is requested. Following state T2 is either U/S, clouT, ioINH | —

state T1 of the next bus cycle, or an idle T-state, if the CPU

@
43

R

[o-]
-

El

O
S

l

|
=z

ol
[/////////A N
i
1

has no bus cycle to perform. CASEC [X b(

In case of a read cycle the CPU samples the data bus at the

end of state T2. TL/EE/9354-28
If a bus exception is detected, the data is ignored. FIGURE 3-23. Basic Read Cycle

For write bus cycles, valid data is output from the middle of
T1 until the end of the cycle. When a write bus cycle is
immediately followed by another write cycle, the CPU keeps
driving the bus with the data related to the previous cycle
until the middle of state T1 of the second bus cycle.

The CPU always inserts an idle state before a write cycle

when the write immediately follows a confirmed read cycle.

Note: The CPU can initiate a bus cycle with a T1-state and then cancel the
cycle, such as when a TLB miss or a Cache hit occurs. In such a case,
the CONF signal remains High and the BMT signal is driven High; the
T1-state is followed by another T1-state or an idle T-state.

2-51

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

ANY

|T=STATEy T | T2 | TTORTH

BCLK

A0-31

<

vo-31|/¥//1//) DATA OUT

N

DDIN

C N T S
A A
N

B / /

ConF / |\ / |\

o | L7 77077

R | ZULIiii | Nl

o= | 277777

<

i

[2z
|2 T

BIN
-1

i

BEO-3,
s10-4,U/5

XX) 4

TL/EE/9354-29

FIGURE 3-24. Write Cycle

3.5.4.3 Burst Cycles

The NS32532 is capable of performing burst cycles in order
to increase the bus transfer rate. Burst is only available in
instruction fetch cycles and data read cycle from 32-bit wide
memories. Burst is not supported in operand write cycles or
slave cycles.

The sequence of events for burst cycles is shown in Figure
3-25. The case shown assumes that the selected memory is
capable of communicating with the CPU at full speed. If not,
then cycle extension can be requested through the RDY
line. See Section 3.5.4.4.

A Burst cycle is composed of two parts. The first part is a
regular cycle (opening cycle), in which the CPU outputs the
new status and asserts all the other relevant control signals.
In addition, the Burst Out Signal (BOUT) is activated by the
CPU indicating that the CPU can perform Burst cycles. If the
selected memory allows Burst cycles, it will notify the CPU
by activating the burst in signal (BIN). BIN is sampled by the
CPU in the middle of T2 on the falling edge of BCLK. If the
memory does not allow burst (BIN high), the cycle will termi-
nate at the end of T2 and BOUT will go inactive immediate-
ly. If the memory allows burst (BIN low), and the CPU has
not deasserted BOUT, the second part of the Burst cycle
will be performed and BOUT wilt remain active until termina-
tion of the Burst.

The second part consists of up to 3 nibbles, labeled T2B. In
each of them a data item is read by the CPU. For each
nibble in the burst sequence the CPU forces the 2 least-sig-
nificant bits of the address to 0 and increments address bits
2 and 3 to select the next double-word; all the byte enable
signals (BE0-3) are activated.

As shown in Figures 3-25 and 4-8 (in Section 4), the CPU
samples RDY at the end of each nibble and extends the
access time for the burst transfer if RDY is inactive.

The CPU initiates burst read cycles in the following cases.

1. An instruction must be fetched (Status = 01000 or
01001), and the instruction address does not fall within
the last double-word in an aligned 16-byte block (e.g.,
address bits 2 and 3 are not both equal to 1).

2. A data item must be read (Status = 01010, 01011 or
01100), and all of the following conditions are met.

* The data cache is enabled and not locked. (DC = 1
and LDC = 0 in the CFG register.)

® The addressed page is cacheable as indicated in the
Level-2 Page Table Entry.

* The bus cycle is not an interlocked data access per-
formed while executing a CBIT! or SBITI instruction.

The Burst sequence will be terminated when one of the

following events occurs.

1. The last instruction double-word in an aligned 16-byte
block has been fetched.

2. The CPU detects that the instructions being prefetched
are no longer needed due to an alteration of the flow of
control. This happens, for example, when a Branch in-
struction is executed or an exception occurs.

3. 4 double-words of data have been read by the CPU. The
double-words are transferred within an aligned 16-byte
block in a wrap-around order. For example, if a source
operand is located at address 104, then the burst read
cycle transfers the double-words at 104, 108, 112, and
100, in that order.

2.52

=
3.0 Functional Description (continued) 4
ANY g
|T=STATE; T) T2 | T2 | T2B | T2B | TIORT| ?
BCLK 8
=
(7]
A0 31[X X X §
S
e[DD KD §
=
- [72]
oom \ / 8
- S
05 \/ L/ 8
o | / / /
e 71\ /N
| ZZZ7ZTITTIN | L0\ LN L7N | 777777,
gi-s X \ /

| 22777 //J»\ LI\ T

|2z TRy TRy T T
= | 222777 T T T UL
o [20T T ORI T T T,

ST0-4,U/5
CIOUT, I0INH

TL/EE/9354-30
FIGURE 3-25. Burst Read Cycles

2-53

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

4.The BIN signal is deasserted.

5. BRT is asserted to signal a bus retry.

6. |ODEC is asserted or the BW0-1 signals indicate a bus
width other than 32-bits. The CPU samples these signals
during state T2 of the opening cycle. During T2B-states
BWO-1 are ignored and IODEC must be kept HIGH.

The CPU uses only the values of the above signals sampled

during the last state of the transfer when the cycle is ex-

tended. See Section 3.5.4.4.

Note: A burst sequence is not stopped by the assertion of either BER or
CIlIN. See Note 3 in Section 3.5.5.

3.5.4.4 Cycle Extension

To allow sufficient access time for any speed of memory or
peripheral device, the NS32532 provides for extension of a
bus cycle. Any type of bus cycle except a slave processor
cycle can be extended.

A bus cycle can be extended by causing state T2 for a
normal cycle or state T2B for a Burst cycle to be repeated.

At the end of each T2 or T2B state, on the rising edge of
BCLK, the RDY line is sampled by the CPU. If RDY is active,
then the transfer cycle will be completed. If RDY is inactive,
then the bus cycle is extended by repeating the T-state for
another clock cycle. These additional T-states inserted by
the CPU in this manner are called ‘WAIT’ states.

During a transfer the CPU samples the input control signals
BIN, BER, BRT, BW0-1, CIIN and IODEC.

When wait states are inserted, only the values of these sig-
nals sampled during the last wait state are significant.
Figures 3-26 and 4-8 (in Section 4) illustrate both a normal
read cycle and a Burst cycle with wait states added through
the RDY pin.

Note: It RST is asserted during a bus cycle, then the cycle s terminated
without regard of RDY.

3.5.4.5 Interlocked Bus Cycles

The NS32532 supports indivisible read-modify-write trans-
actions by asserting the ILO signal during consecutive read
and write operations. See Figure 4-7 in Section 4.

Interlocked transactions are always preceded and followed
by one or more idle T-states.

The ILO signal is asserted in the middle of the idle T-state
preceding state T1 of the read operation, and is deasserted
in the middle of one of the idle T-states following completion
of the write operation, including any retried bus cycles.

No other bus operations (e.g., instruction fetches) will occur
while an interlocked transaction is taking place.

Interlocked transactions are required in multiprocessor sys-
tems to handle shared resources. The CPU uses them to
reference data while executing a CBIT!i or SBITIi instruction,
during which a single byte of data is read and written. They
are also used when the on-chip MMU is updating a Level-2
Page Table Entry during a Page Table Lookup.

In this case a double-word is read and written. If the Level-2
Page Tables are located in a memory area whose width is
other than 32 bits, multiple interlocked reads followed by
multiple interlocked writes will result. The TLO signal is al-
ways released for one or more clock cycles in the middle of
two consecutive interlocked transactions.

Note 1: If a bus error is detected during an interlocked read cycle, the sub-

sequent interlocked write cycle will not be performed, and TLO is
deasserted before the next bus cycle begins.

Note 2: The CPU may assert ILO before a read cycle that is cancelled (for
example, due to a TLB miss). In such a case, the CPU deasserts
1LO before performing any additional bus cycles.

3.5.4.6 Interrupt Control Cycles

The CPU generates Interrupt-Acknowledge bus cycles in re-
sponse to non-maskable interrupt and enabled maskable
interrupt requests.

The CPU also generates one or two End-of-interrupt bus
cycles during execution of the Return-from-Interrupt (RETI)
instruction.

The timing for the interrupt control cycles is the same as for
the basic memory read cycle shown in Figure 3-23; only the
status presented on pins ST0-4 is different. These cycles
are single-byte read cycles, and they always bypass the
data cache.

Table 3-4 shows the interrupt control sequences associated
with each interrupt and with the return from its service pro-
cedure.

3.5.4.7 Slave Processor Bus Cycles

The NS32532 performs bus cycles to transfer information to
or from slave processors while executing floating-point or
custom-slave instructions.

The CPU uses slave write bus cycles to broadcast the iden-
tification and operation codes of a slave instruction as well
as to transfer operands from memory or general purpose
registers to a slave.

Figure 3-27 shows the timing for a slave write bus cycle.
The CPU asserts SPC during T1; the status is valid during
T1 and T2. The operation code or operand is output on the
data bus from the middle of T1 until the end of T2.

The CPU uses a slave read bus cycle to transfer a result
operand from a slave to either memory or a general purpose
register. A slave read cycle is also used to read a status
word when the FSSR signal is asserted. Figure 3-28 shows
the timing for a slave read bus cycle.

During T1 and T2 the CPU drives the status lines and as-
serts SPC. The data from the slave is sampled at the end of
T2.

The CPU will never perform another slave cycle immediately
following a slave read cycle. In fact, the T-state following
state T2 of a slave read cycle is either an idle T-state or the
T1 state of a memory cycle.

Slave processor data transfers are always 32 bits wide. If
the operand is a single byte, then it is transferred on DO
through D7. If it is a word, then it is transferred on DO
through D15.

When two operands are transferred, operand 1 is trans-
ferred before operand 2. For double-precision operands, the
least-significant double-word is transferred before the most-
significant double-word.

During a slave bus cycle the output signals BEO-3 are un-
defined while the input signals BW0O-1 and RDY are ig-
nored.

BER and BRT must be kept high.

2-54

3.0 Functional Description (continued)

ANY
_ (T=STATE; T1 | T2 ¢ T2(W) [TIORT

BCLK

A0 =31 _x
L7/, S R S Ve S R

DDIN

e
N

0€-CESCESN/SC-CESCESN/02-2ESCESN

o | 7 1\ \
w1 | 20077 s | LI,

BRT :7/ LU | N

= | 22T | ATz

gouT 7

ww | 02T T T T,

st | LTI TTIT T T ORTTITIL.

BED-~3,5T0-4, "':x
U/S. CIOUT, IOINH | —

CASEC - X X p(

3-26. Cycle Extension of a Basic Read Cycle

TL/EE/9354-31

2-55

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)
TABLE 3-4. Interrupt Sequences

Dati Bus
r N\
Cycle Status Address DDIN BE3 BE2Z2 BE1 BE0O Byte3 Byte2 Byted Byte 0
A. Non-Maskable Interrupt Control Sequences
Interrupt Acknowledge
1 00100 FFFFFF0046 0 1 1 1 0 X X X X
Interrupt Return
None: Performed through Return from Trap (RETT) instruction.
B. Non-Vectored Interrupt Control Sequences
Interrupt Acknowledge
1 00100 FFFFFEQO4¢ 0 1 1 1 0 X X X X
Interrupt Return
1 00110 FFFFFEQO4g 0 1 1 1 0 X X X X
C. Vectored Interrupt Sequences: Non-Cascaded
Interrupt Acknowledge
1 00100 FFFFFEO004g 0 1 1 1 0 X X X Vector:
Range: 0-127
Interrupt Return
1 00110 FFFFFE0046 0 1 1 1 0 X X X Vector: Same as
in Previous Int.
Ack. Cycle
D. Vectored Interrupt Sequences: Cascaded
Interrupt Acknowledge
1 00100 FFFFFEO00+g 0 1 1 1 0 X X X Cascade Index:

range —16to —1
(The CPU here uses the Cascade Index to find the Cascade Address)

2 001101 Cascade 0 See Note Vector, range 16-255; on appropriate byte of
Address data bus.
Interrupt Return
1 00110 FFFFFEOO+g 0 1 1 1 0 X X X Cascade Index:
Same asin
previous Int.
Ack. Cycle
(The CPU here uses the Cascade Index to find the Cascade Address)
2 00111 Cascade 0 See Note X X X X
Address
X = Don’t Care

Note: BEO-BES signals will be activated according to the cascaded ICU address

2-56

3.0 Functional Description (continued)

ANY
IT=STATE;, 71 1 T2 4 TlorTi
BCLK[
|

DO-31[< Joata out|)
| \|_/

oo 7 \}
sro-4[X

TL/EE/9354~32
FIGURE 3-27. Slave Processor Write Cycle

3.5.5 Bus Exceptions

The NS32532 has the capability of handling errors occurring
during the execution of a bus cycle. These errors can be
either correctable or incorrectable, and the CPU can be no-
tified of their occurrence through the input signals BRT and/
or BER.

Bus Retry

If a bus error can be corrected, the CPU may be requested
to repeat the erroneous bus cycle. The request is done by
asserting the BRT signal. BRT is sampled at the end of
state T2 or T2B.

When the CPU detects that BRT is active, it completes the
bus cycle normally, but ignores the data read in case of a
read cycle, and maintains a copy of the data to be written in
case of a write cycle. Then, after a delay of two clock cy-
cles, it will start executing the bus cycle again.

If the transfer cycle is multiple (e.g., for non-aligned data),
only the problematic part will be repeated.

For instance, if a non-aligned double-word is being trans-
ferred and the second half of the transfer fails, only the
second part will be repeated.

The same applies for a retry during a burst sequence. The
repeated cycle will begin where the read operation failed
(rather than the first address of the burst) and will finish the
original burst.

Figures 3-29 and 4-10 (in Section 4) show the BRT timing
for a basic access cycle and for burst cycles respectively.

The CPU always waits for BRT to be HIGH before repeating
the bus cycle. While BRT is LOW, the CPU places all the
output signals shown in Figure 4-17in a TRI-STATE® condi-
tion.

Bus Error

If a bus error is incorrectable the CPU may be requested to
interrupt the current process and branch to an appropriate
procedure to handle the error. The request is performed by
activating the BER signal. BER is sampled by the CPU at
the end of state T2 or T2B on the rising edge of BCLK.

ANY

IT=STATE; T | 72 TlorT

BCLK

DO =31 JDATA IN)

$PC \

N

bOR A\
X

X

ST0-4

TL/EE/9354-33
FIGURE 3-28. Slave Processor Read Cycle

When BER is sampled active, the CPU completes the bus
cycle normally. If a bus error occurs during a bus cycle for a
reference required to execute an instruction, then a bus er-
ror exception is recognized. However, if an error occurs dur-
ing an acknowledge cycle of another exception or during
the ICU read cycle of a RETI instruction, the CPU interprets
the event as a fatal bus error and enters the ‘halted’ state.

In this state the CPU floats its address and data buses and
places a special status code on the ST0-4 lines. The CPU
can exit this condition only through a hardware reset. Refer
to Section 3.2.6 for more details on bus error.

Note 1: If the erroneous bus cycle is extended by means of wait states, then
the CPU uses the values of BRT and/or BER sampled during the
last wait state.

Note 2:If the CPU samples both BAT and BER active, BRT has higher
priority. The bus error indication is ignored, and the bus cycle is
repeated.

Note 3: If BER is asserted during a bus cycle of a multi-cycle data transfer,
the CPU completes the entire transfer normally, but the data will be
ignored. The CPU also ignores any subsequent assertion of BER
during the same data transfer.

Note 4: Neither BRT nor BER should be asserted during the T2 state of a
slave processor bus cycle.

3.5.6 Dynamic Bus Configuration

The NS32532 is tuned to operate with 32-bit wide memory
and peripheral devices. The bus also supports 8-bit and
16-bit data widths, but at reduced efficiency. The CPU can
switch from one bus width to another dynamically; the only
restriction is that the bus width cannot change for locations
within an aligned 16-byte block.

The CPU determines the bus width in effect for a bus cycle
by using the values of the BW0O and BW1 signals sampled
during the last T2 state. Values of BWO and BW1 sampled
before the last T2 state or during T2B states are ignored.
Whenever a bus width other than 32-bit is detected by the
CPU, two idle states are inserted before the next bus cycle
is initiated. These idle states are only inserted once during
an operand access, even if more than two bus cycles are
needed to complete the access.

2-57

0€-2ESZESN/G2-CESTESN/02-CESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

CTSSWEL T MORT, T M T Tl
s0-31[21X XTIXD-1< X
oo-u['///////;------@>---F~-----+--~--q@----
mL /
= NN\ \U/TT 7
| / / /
WL / N\ \ ﬁ_
w | 220N L7777 77T 0N | L7777,
s | Z77707777 70700 | L7777 G
Vi G AN 1A
s 7
s | T T T T T T T
ottt | LT TITT X ORI XTI
- 3,sm0-4 [T\ T X X

U/S, clout, IOINK LT

CASEC [

X DXUZZTZZX

FIGURE 3-29. Bus Retry During a Basic Read Cycle

TL/EE/9354-34

2.58

3.0 Functional Description (continued)

The various combinations for BWO and BW1 are shown be-
low.

BW1 BWO
0 0 Reserved
0 1 8-Bit Bus
1 0 16-Bit Bus
1 1 32-Bit Bus

The bus width must always be 32 bits during slave cycles.
An important feature of the NS32532 is that it does not
impose any restrictions on the data alignment, regardless of
the bus width.

Bus accesses are performed in double-word units. Access-
es of data operands that cross double-word boundaries are
decomposed into two or more aligned double-word access-
es.

The CPU provides four byte enable signals (BE0-3) which
facilitate individual byte accessing on either a 32-bit or a
16-bit bus.

Figures 3-30 and 3-37 show the basic interfaces for 32-bit
and 16-bit memories. An 8-bit memory interface (not shown)
is even simpler since it does not use any of the BEO-3
signals and its single bank is always enabled whenever the
memory is selected. Each byte location in this case is se-
lected by address bits A0O-31.

The NS32532 does not keep track of the bus width used in
pravious instruction fetches or data accesses. At the begin-
ning of every memory transaction, the CPU always assumes
that the bus is 32-bit wide and the BE0-3 signals are acti-
vated accordingly.
The BOUT signal is also asserted during instruction fetches
or data reads if the conditions for bursting are satisfied. If
the bus is other than 32-bit wide, the BIN signal is ignored
and BOUT is deasserted at the beginning of the T state
following T2, since burst cycles are not allowed for 8-bit or
16-bit buses.
BE3 BE. BET BEO
] | | |
(NOTE)

A2=31

37
]
£¢
J
(s
p)
pd}

i iBYTE i iEYTE i iBYTE I ‘ YTE
#3 #2 #1 #0
DO-Sl< J

TL/EE/9354-35
FIGURE 3-30. Basic Interface for 32-Bit Memorles
Note: The CACH signal must be asserted during cacheable read accesses.

The following subsections provide detailed descriptions of

the access sequences performed in the various cases.

Note: Although the NS32532 ignores the BIN signal for 8-bit and 16-bit bus
widths, it is recommended that BIN be asserted only if the system
supports burst transfers. This is to ensure compatibility with future
versions of the CPU that might support burst transfers for 8-bit and

16-bit buses.
_AD
BE3 ==
BE1
CACH
8 BITS 8 BITS
Al=31
BYTE BYTE
#1 #0
D0=15

TL/EE/9354-36
FIGURE 3-31. Baslc Interface for 16-Bit Memorles

3.5.6.1 Instruction Fetch Sequences

The CPU performs two types of instruction fetch cycles: se-
quential and non-sequential. These can be distinguished
from each other by the differing status combinations on pins
ST0-4. For non-sequential instruction fetches the CPU
presents on the address bus the exact byte address of the
first instruction in the instruction stream that is about to be-
gin; for sequential instruction fetches, the address of the
next aligned instruction double-word is presented on the ad-
dress bus. The CPU always activates all byte enable signals
(BE0-3) for both sequential and non-sequential fetches.
BOUT is also asserted during T2 if the addressed double-
word is not the last in an aligned 16-byte block. Tables 3-5
to 3-7 show the fetch sequence for the various bus widths.
32-Bit Bus Width

The CPU reads the entire double-word present on the data
bus into its internal instruction buffer.

If BOUT and BIN are both active, the CPU reads up to 3
consecutive double-words using burst cycles. Burst cycles
are used for instruction fetches regardless of whether the
accesses are cacheable.

2-59

0€-2EGCESN/SZ-2ESTESN/0C-CESTESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

Example: JUMP @5

* The CPU performs a fetch cycle at address 5 with BEO-3
all active.

¢ Two burst cycles are then performed and addresses 8 and
12 are output while BEO-3 are kept active.

16-Bit Bus Width

The word on the least-significant half of the data bus is read

by the CPU. This is either the even or the odd word within

the required instruction double-word, as determined by ad-

dress bit 1.

The CPU then complements address bit 1, clears address

bit 0 and initiates a bus cycle to read the other word, while

keeping all the BEO-3 signals active.

These two words are then assembled into a double-word

and transferred into the instruction buffer.

In case of a non-sequential fetch, if the access is not cache-

able and the instruction address selects the odd word within

the instruction double-word, the even word is not fetched.

Example JUMP @6

o A fetch cycle is performed at address 6 with BEO-3 all
active.

* The word at address 4 is then fetched if the access is
cacheable.

8-Bit Bus Width

The instruction byte on the bus lines DO-7 is fetched. The

CPU performs three consecutive cycles to read the remain-

ing bytes within the required double-word, while keeping

BEO-3 all active. The 4 bytes are then assembled into'a

double-word and transferred into the instruction buffer. For

a non-sequential fetch, if the access is not cacheable, the

CPU will only read the upper bytes within the instruction

double-word starting with the byte at the instruction ad-

dress.

Example: JUMP @7

® The CPU performs a fetch cycle at address 7 with BEO-3
all active.

® Bytes at addresses 4, 5 and 6 are then fetched consecu-
tively if the access is cacheable.

TABLE 3-5. Cacheable/Non-Cacheable Instruction Fetches from a 32-Bit Bus
1. In a burst access four bytes are fetched with the L.S. bits of the address set to 00.

2. A '‘C’ on the data bus refers to cacheable fetches and indicates that the byte is placed in the instruction cache. An ‘I’ refers
to non-cacheable fetches and indicates that the byte is ignored.

:'u;‘y '::; Ad:sr;ss Bytes to be Fetched Ad;;:ss BE0-3 Data Bus
1 1 BO —_ — — A LLLL BO (o7]] C/l C/1
2 10 B1 BO — — A LLLL B1 BO C/l C/1
3 01 B2 B1 BO — A LLLL B2 B1 BO C/1
4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO

TABLE 3-6. Cacheable/Non-Cacheable Instruction Fetches from a 16-Bit Bus

1. A bus access marked with **’ in the ‘Address Bus’ column is performed only if the fetch is cacheable.

Number Address Address ==

of Bytes LSB Bytes to be Fetched Bus BE0-3 Data Bus
1 11 BO — — — A LLLL — — BO C/1
*A—3 LLLL — — C o]
2 10 B1 BO — — A LLLL — —_ B1 BO
*A -2 LLLL - — c C
3 o1 B2 B1 BO — A LLLL - — BO G/l
A+1 LLLL — —_ B2 B1
4 00 B3 B2 B1 BO A LLLL — —_ B1 BO
A+ 2 LLLL — — B3 B2

2-60

3.0 Functional Description (continued)

TABLE 3-7. Cacheable/Non-Cacheable Instruction Fetches from an 8-Bit Bus

Number Address Address ==
of Bytes LSB Bytes to be Fetched Bus BEO-3 Data Bus
1 11 BO — —_ — A LLLL — — — BO
*A-3 LLLL —_ — — C
*A-2 LLLL —_ — — C
*A—1 LLLL — — — o]
2 10 B1 BO — — A LLLL — — — BO
A+1 LLLL — — — B1
*A-2 LLLL — — — C
*A—1 LLLL — —_ — o]
3 01 B2 B1 BO — A LLLL — — — BO
A+1 LLLL — — — B1
A+2 LLLL — — — B2
*A-1 LLLL - — — C
4 00 B3 B2 B1 BO A LLLL — — — BO
A+1 LLLL —_ — — B1
A+2 LLLL — — — B2
A+3 LLLL — — —_ B3
3.5.6.2 Data Read Sequences 16-Bit Bus Width

The CPU starts a data read access by placing the exact
address of the operand on the address bus. The byte en-
able lines are activated to select only the bytes required by
the instruction being executed. This prevents spurious ac-
cesses to peripheral devices that might be sensitive to read
accesses, such as those which exhibit the characteristic of
destructive reading. If the on-chip data cache is internally
enabled for the read access, the BOUT signal is asserted at
the beginning of state T2. BOUT will be deasserted if the
data cache is externally inhibited (through CIIN or IODEC),
or the bus width is other than 32 bits. During cacheable
accesses the CPU always reads all the bytes in the double-
word, whether or not they are needed to execute the in-
struction, and stores them into the data cache. The external
memory, in this case, must place the data on the bus re-
gardless of the state of the byte enable signals.

If the data cache is either internally or externally inhibited
during the access, the CPU ignores the bytes not selected
by the BEO-3 signals. Data read sequences for the various
bus widths are shown in tables 3-8 to 3-10.

32-Bit Bus Width

The entire double-word present on the bus is read by the
CPU. If the access is cacheable and the memory allows
burst accesses, the CPU reads up to 3 additional double-
words within the aligned 16-byte block containing the first
byte of the operand. These burst accesses are performed in
a wrap-around fashion within the 16-byte block.

Example: MOVW @5, RO

® The CPU reads a double-word at address 5 while keeping
BE1 and BE2 active.

o If the access is not-cacheable, BOUT is deasserted and
the data bytes 0 and 3 are ignored.

¢ If the access is cacheable, the CPU performs burst cycles
with BEO-3 all active, to read the double-words at ad-
dresses 8, 12, and 0.

The word on the least-significant half of the data bus is read
by the CPU. The CPU can then perform another access
cycle with address bit 1 complemented and address bit 0
cleared to read the other word within the addressed double-
word.

If the access is cacheable, the entire double-word is read

and stored into the cache.

If the access is not cacheable, the CPU ignores the bytes in

the double-word not selected by BEQ-3. In this case, the

second access cycle is not performed, unless selected
bytes are contained in the second word.

Example: MOVB @5, RO

® The CPU reads a word at address 5 while keeping BE1
active.

o |f the access is not cacheable, the CPU ignores byte 0.

* If the access is cacheable, the CPU performs another ac-
cess cycle, with BEO-3 all active, to read the word at
address 6.

8-Bit Bus Width

The data byte on the bus lines DO-7 is read by the CPU.

The CPU can then perform up to 3 access cycles to read

the remaining bytes in the double-word.

If the access is cacheable, the entire double-word is read

and stored into the cache.

If the access is not cacheable, the CPU will only perform

those access cycles needed to read the selected bytes.

Example: MOVW @5, RO

® The CPU reads the byte at address 5 while keeping BE1
and BE2 active.

o If the access is not cacheable, the CPU activates BE2 and
reads the byte at address 6.

o |f the accesiis cacheable, the CPU performs three bus
cycles with BEO-3 all active, to read the bytes at address-
es 6, 7 and 4.

2-61

0€-2ESCESN/GC-CESCESN/02-2ESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

TABLE 3-8. Cacheable/Non-Cacheable Data Reads from a 32-Bit Bus
1. In a burst access four bytes are read with the L.S. bits of the address set to 00.

2. A'C'on the data bus refers to cacheable reads and indicates that the byte is placed in the data cache. An ‘I’ refers to non-

cacheable reads and indicates that the byte is ignored.

Number Address Address ==
of Bytes LSB Bytes to be Read Bus BE0-3 Data Bus
1 00 — — — BO A HHHL C/1 C/1 C/I BO
1 01 —_ — BO —_ A HHLH C/1 (7]} BO C/1
1 10 — BO — —_ A HLHH (o7]] BO C/1 C/1
1 11 BO - — — A LHHH BO G/l G/l C/1
2 00 -_ — B1 BO A HHLL C/1 C/1 B1 BO
2 01 —_ B1 BO — A HLLH C/1 B1 BO C/1
2 10 B1 BO — — A LLHH B1 BO C/I C/1
3 00 —_ B2 B1 BO A HLLL (o7]] B2 Bt BO
3 01 B2 B1 BO — A LLLH B2 B1 BO G/l
4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO
TABLE 3-9. Cacheable/Non-Cacheable Data Reads from a 16-Bit Bus
1. A bus access marked with '*’ in the ‘Address Bus' column is performed only if the read is cacheable.
Number Address Data to be Read Address BE0-3 Data Bus
of Bytes LsB Bus Cach. Non Cach.
1 00 - — — BO A HHHL HHHL — —_ C/I BO
*A+2 LLLL —_ — (¢} Cc
1 01 — — BO —_ A HHLH HHLH — — BO c/l
*A+1 LLLL - — C (o]
1 10 —_ BO — — A HLHH HLHH — — (o7]] BO
*A-2 LLLL — — o]]
1 11 BO — — - A LHHH LHHH — — BO C/l
*A-3 LLLL - — C C
2 00 - - B1 BO A HHLL HHLL — — B1 BO
*A+2 LLLL — — C C
2 01 - B1 BO — A HLLH HLLH — — BO C/1
A+1 LLLL HLHH —_ — (o7]] B1
2 10 B1 BO — — A LLHH LLHH — — B1 BO
*A-2 LLLL — - C C
3 00 - B2 B1 BO A HLLL HLLL —_ —_ B1 BO
A+ 2 LLLL HLHH — —_ (o7]] B2
3 01 B2 B1 BO - A LLLH LLLH — — BO c/
A+1 LLLL LLHH — — B2 B1
4 00 B3 B2 B1 BO A LLLL LLLL — —_ B1 BO
A+2 LLLL LLHH — —_ B3 B2

2-62

=z
. T [72]
3.0 Functional Description (continued) @
[
TABLE 3-10. Cacheable/Non-Cacheable Data Reads from an 8-Bit Bus D8-12 ‘,S
U
BEO- N
Number Address Data to be Read Address BE0-3 Data Bus Q
of Bytes LS8 Bus Cach. Non Cach. =
[72]
1 00 — — — BO A HHHL HHHL — — — BO <4
A+ 1 LLLL — — - c ‘w"
*‘A+2 LLLL — — — o] »
*A+38 LLLL - — — _Cc 1IN
~
1 01 — — BO — A HHLH HHLH — — — BO =
A+ 1 LLLL - — — ¢ |&
*A+ 2 LLLL - - - ¢ |»
A -1 LLLL — — — C .%
1 10 — BO — — A HLHH HLHH — — — BO g
*A+1 LLLL — — — (o}
*A-2 LLLL — — - C
*A—-1 LLLL — — — Cc
1 11 BO — — — A LHHH LHHH — — —_ B0
*A—3 LLLL — — — Cc
*A-—-2 LLLL — — — C
A—1 LLLL — — — C
2 00 — — B1 BO A HHLL HHLL — — — B0
A+1 LLLL HHLH — — — B1
*A+2 LLLL — — — C
*A+ 3 LLLL — — — C
2 01 — B1 BO — A HLLH HLLH — — — BO
A+1 LLLL HLHH — — — B1
*A+2 LLLL — — — C
*A -1 LLLL — — — C
2 10 B1 BO — — A LLHH LLHH — — — BO
A+1 LLLL LHHH — — — B1
*A—-2 LLLL — — — C
*A -1 LLLL — — — (o]
3 00 — B2 B1 BO A HLLL HLLL — - — BO
A+1 LLLL HLLH -— — — B1
A+2 LLLL HLHH — — — B2
*A+3 LLLL — — — C
3 01 B2 B1 BO — A LLLH LLLH — — — BO
A+1 LLLL LLHH — — — B1
A+2 LLLL LHHH — — — B2
*A-1 LLLL — — — C
4 00 B3 B2 B1 BO A LLLL LLLL — — — BO
A+1 LLLL LLLH — — — B1
A+2 LLLL LLHH - — - B2
A+3 LLLL LHHH — — — B3
3.5.6.3 Data Write Sequences 32-Bit Bus Width
In a write access the CPU outputs the operand address and The CPU performs only one access cycle to write the se-
asserts only the byte enable lines needed to select the spe- lected bytes within the addressed double-word.
cific bytes to be written. Example: MOVB RO, @6
In addition, the CPU duplicates the data to be written on the © The CPU duplicates byte 2 of the data bus into byte 0 and
appropriate bytes of the data bus in order to handle 8-bit performs a write cycle at address 6 with BE2 active.
and 16-bit buses. 16-Bit Bus Width
The various access sequences as well as the duplication of .
data are summarized in tables 3-11 to 3-13. ggetrc;t};v: access cycles are needed to complete the write

2-63

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

Example: MOVW RO, @5

* The CPU duplicates byte 1 of the data bus into byte 0 and
performs a write cycle at address 5 with BE1 and BE2
active.

® A write at address 6 is then performed with BE2 active
and the original byte 2 of the data bus placed on byte 0.

8-Bit Bus Width

Up to 4 access cycles are needed in this case to complete

the write operation.

Example: MOVB RO, @7

® The CPU duplicates byte 3 of the data bus into bytes 0

a_\g_d 1, and then performs a write cycle at address 7 with
BE3 active.

3.5.7 Bus Access Control

The NS32532 has the capability of relinquishing its control
of the bus upon request from a DMA device or another CPU.
This capability is implemented with the HOLD and HLDA

signals. By asserting HOLD, an external device requests ac-
cess to the bus. On receipt of HLDA from the CPU, the
device may perform bus cycles, as the CPU at this point has
placed all the output signals shown in Figure 3-32 into the
TRI-STATE condition.

To return control of the bus to the CPU, the external device
sets HOLD inactive, and the CPU acknowledges return of
the bus by setting HLDA inactive.

The CPU samples HOLD in the middle of each T-state on
the falling edge of BCLK. If HOLD is asserted when the bus
is idle between access sequences, then the bus is granted
immediately (see Figure 3-31). If HOLD is asserted during
an access sequence, then the bus is granted immediately
after the access sequence, including any retried bus cycles,
has completed (see Figure 4-13). Note that an access se-
quence can be composed of several bus cycles if the bus
width is 8 or 16 bits.

TABLE 3-11. Data Writes to a 32-Bit Bus

1. Bytes on the data bus marked with ‘®’ are undefined.

:"gf::; Adfs'gss Data to be Written Ad:‘::ss BE0-3 Data Bus
1 00 - — — B A HHHL . . . BO
1 01 - — B0 - A HHLH . . BO BO
1 10 — B0 — - A HLHH . B0 . BO
1 11 BO - = @ — A LHHH | BO . BO BO
2 00 - — B BO A HHLL . . BA BO
2 01 — Bl B0 — A HLLH . B1 BO BO
2 10 Bl B0 — @ — A LLHH | B1 B0 Bt BO
3 00 — B2 Bl BO A HLLL . B2 B! BO
3 01 B2 BI B0 — A LLLH B2 Bi BO B0
4 00 B3 B2 Bi BO A LLLL B3 B2 B BO
TABLE 3-12. Data Writes to a 16-Bit Bus
:f“; '::; Adl_ds';ss Data to be Written Ad:l::ss BE0-3 Data Bus

1 00 — — — BO A HHHL . . . BO
1 01 - — B0 - A HHLH . . BO BO
1 10 — B0 = - A HLHH . BO . BO
1 11 B0 @— = - A LHHH | BO . BO BO
00 — — B BO A HHLL . . Bl B0

01 — Bl B — A HLLH . Bi BO BO

A+1 HLHH . . . B1

2 10 Bl B0 — — A LLHH | Bt BO B1 BO
3 00 — B2 B BO A HLLL . B2 Bl BO
A+2 HLHH . . . B2

3 01 B2 B1 B0 — A LLLH B2 B1 BO BO
A+1 LLHH . . B2 B

4 00 B3 B2 B B0 A LLLL B3 B2 BI BO
A+2 LLHH . . B3 B2

2-64

=
. . 7]
3.0 Functional Description (continued) @
[32]
TABLE 3-13. Data Writes to an 8-Bit Bus f:;
U
N
Number Address Data to be Written Address BE0-3 Data Bus e
of Bytes LSB Bus =
1 00 - - — BO A HHHL . . . Bo |9
N
1 01 - - BO — A HHLH . . B0 BO (&
1 10 — BO — — A HLHH . BO . BO g
1 1 BO — — — A LHHH BO . BO BO §
2 00 - - B1 BO A HHLL o o B1 B0 | D
A+1 HHLH . o o B1 »
2 01 - B1 BO — A HLLH . B1 BO B0 | &
A+1 HLHH D o . B1 g
2 10 B1 BO - - A LLHH B1 BO B1 BO
A+1 LHHH o o o B1
3 00 — B2 B1 BO A HLLL o B2 B1 BO
A+1 HLLH . . o B1
A+2 HLHH . . o B2
3 01 B2 B1 BO - A LLLH B2 B1 BO BO
A+1 LLHH . o o B1
A+2 LHHH o o o B2
4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO
A+1 LLLH . o . B1
A+2 LLHH . . . B2
A+3 LHHH . o o B3

2-65

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

T T T T T T MorTiy
AO-SI:)7----.-Tg.;-1<:x
DO-SlL:}------L-----"----""ﬁ'r'-'-""('--F'
= R le e
,Ws: \rodecbeasst -1/ N

Eﬁ- “tedeahaadfradd /
W: Mbodeckaddfbadd

| i/

W’- mbhedecheadfpredd _
| S RN

CASEc: »roqecbeddt -

A

TL/EE/9354-37

FIGURE 3-32. Hold Acknowledge. (Bus Initially Idle.)
Note: The status indicates 'IDLE’ while the bus is granted. If the cause of the IDLE changes (e.g., CPU starts waiting for an interrupt), the status also changes.

The CPU will never grant the bus between interlocked read
and write bus cycles.
Note: If an external device requires a very short latency to get control of the

bus, the bus retry signal (BRT) can be used instead of hold. See
Section 3.5.5.

3.5.8 Interfacing Memory-Mapped 1/0 Devices

In Section 3.1.3.2 it was mentioned that some special pre-
cautions are needed when interfacing 1/0 devices to the
NS32532 due to its internal pipelined implementation. Two
special signals are provided for this purpose: TOINH and
IODEC. The CPU asserts TOINH during a read bus cycle to
indicate that the bus cycle should be ignored if an 170 de-
vice is selected. The system responds by asserting IODEC
to indicate to the CPU that an 1/0 device has been select-
ed. IODEC is sampled by the CPU in the middle of state T2.
If the cycle is extended, then the CPU uses the TODEC val-
ue sampled during the last wait state. If a bus error or a bus
retry occurs, the sampled 10DEC value is ignored. TODEC
must be kept high during burst transfer cycles.

When TODEC is active during a bus cycle for which IOINH is
asserted, the CPU discards the data and applies the special
handling required for 1/0 devices. Figure 3-33 shows a pos-
sible implementation of an 1/0 device interface where the
address mapping of the 1/0 devices is fixed.

In an open system configuration, TODEC could be generated
by the decoding logic of each 1/0 device subsystem.
When the on-chip MMU is enabled, the CIOUT signal could
also be used for this purpose, since 1/0 devices are located
in noncacheable areas. In this case however, a small per-
formance degradation could result, due to the fact that the
special I/0 handling is also applied on references to non-
cacheable program and/or data areas.

Note 1: When TODEC is active in response to a read bus cycle, the CPU
treats the reference as noncacheable.

Note 2: TOINH is kept inactive during write cycles.

2-66

3.0 Functional Description (continued)

o CHIP
oW
H seteet | 1/0
DEVICE
Ns32532 | ApDRESS
CPY DECODE
| OBEC

TL/EE/9354-38
FIGURE 3-33. Typical I/0 Device Interface

3.5.9 Interrupt and Debug Trap Requests

Three signals are provided by the CPU to externally request
interrupts and/or a debug trap. INT and NMI are for maska-
ble and non-maskable interrupts respectively. DBG is used
for requesting an external debug trap.

The CPU samples INT and NMi on every other rising edge
of BCLK, starting with the second rising edge of BCLK after
RST goes high.

NMI is edge-sensitive; a high-to-low transition on it is detect-
ed by the CPU and stored in an internal latch, so that there
is no need to keep it asserted until it is acknowledged.

INT is level-sensitive and, as such, once asserted, it must
be kept asserted until it is acknowledged.

The DBG signal, like NMI, is edge-sensitive; it differs from
NMI in that the CPU samples it on each rising edge of
BCLK. DBG can be asserted asynchronously to the CPU
clock, but it should be at Ieast 1.5 clock cycles wide in order
to be recognized.

If DBG meets the specified setup and hold times, it will be
recognized on the rising edge of BCLK deterministically.

Refer to Figures 4-19 and 4-20 for more details on the tim-

ing of the above signals.

Note: If the NMi signal is pulsed to request a non-maskable interrupt, it may
be necessary to keep it asserted for a minimum of two clock cycles to
guarantes its detection, unless extra logic ensures that the pulse oc-
curs around the BCLK sampling edge.

3.5.10 Cache Invalidation Requests

The contents of the on-chip Instruction and Data Caches
can be invalidated by external requests from the system. It
is possible to invalidate a single set or all sets in the Instruc-
tion Cache, Data Cache or both. The input signals INVIC
and INVDC request invalidation of the Instruction Cache
and Data Cache respectively. The input signal INVSET indi-
cates whether the invalidation applies to a single set (16
bytes for the Instruction Cache and 32 bytes for the Data
Cache) or to the entire cache. When only a single set is
invalidated, the set number is specified on CIA0O-CIAS.

INVIC, INVDC, INVSET and CIAO-CIA6 are all sampled
synchronously by the CPU on the rising edge of BCLK. The
CPU can respond to cache invalidation requests at a rate of
one per BCLK cycle.

As shown in Figures 3-16 and 3-17, the validity bits of the
on-chip caches are dual-ported. One port is used for ac-
cessing and updating the caches, while the other port is
used independently for invalidation requests. Consequently,
invalidation of the on-chip caches occurs with no interfer-
ence to on-going cache accesses or bus cycles.

A cache invalidation request can occur during a read bus
cycle for a location affected by the invalidation. In such a
case, the data will be invalid in the cache if the invalidation
request occurs after the T2- or T2B-state of the bus cycle.
Note: In the case of the Data Cache, the cache location will also be invali-
dated if the invalidation occurs during T2 or T2B of the read cycle.

Refer to Figure 4-18 in Section 4 for timing details.

3.5.11 Internal Status

The NS32532 provides information on the system interface
concerning its internal activity.

The U/S signal indicates the Address Space for a memory
reference (See Section 2.4.2).

Note that U/S does not necessarily reflect the value of the
U bit in the PSR register. For example, U/S is high during
the memory access used to store the destination operand of
a MOVSU instruction.

The PFS signal is asserted for one BCLK cycle when the
CPU begins executing a new instruction. The ISF signal is
driven High along with PFS if the new instruction does not
follow the previous instruction in sequence. More specifical-
ly, ISF is High along with PFS after processing an exception
or after executing one of the following instructions: ACB
(branch taken), Becond (branch taken), BR, BSR, CASE,
CXP, CXPD, DIA, JSR, JUMP, RET, RETT, RETI, and RXP.

The BP signal is asserted for one BCLK cycle when an ad-
dress-compare or PC-match condition is detected. If the BP
signal is asserted one BCLK cycle after PFS, it indicates
that an address-compare debug condition has been detect-
ed. If BP is asserted at any other time, itindicates that a PC-
Match debug condition has been detected.

While executing an LMR or CINV instruction, the CPU dis-
plays the operation code and source operand using slave
processor write bus cycles. This information can be used to
monitor the contents of the on-chip TLB, Instruction Cache
and Data Cache.

During idle bus cycles, the signals STO-ST4 indicate wheth-
er the CPU is waiting for an interrupt, waiting for a Slave
Processor to complete executing an instruction or halted.

2-67

0€-2EGCESN/G2-2€G2ESN/0C-CESCESN

NS32532-20/NS32532-25/NS32532-30

4.0 Device Specifications

——Pp1CLK

—>p|sTNC

CLOCKING : HBCLK
BCIK

BUS ACCESS [—————p] FOLD
CONTROL{ <———1 DA

RESET ~ ————p{RST

—|N
gt
>} DBG

+——]FS
INTERNAL | et iSF

STATUS | €———qu/5 Ns32532
8F

—]

Tjcuo-6

=] INVSET
—>|iNVDC
—>|iNVIC
4———]CASEC
<+———ciout
——>{CIN

CACHE CONTROL

AO=31 :> ADDRESS

DO~ 31 DATA

BUS TIMING AND
CONTROL OUTPUTS

fI:b
—
s

@ l¢——

BRT j¢——— | BUS CONTROL
BWO = {}g=——— [INPUTS

RDY j¢=—v

BOUT ——>
ol } BURST CONTROL

P> srave TG
AND CONTROL

1/0 CONTROL

>
le———

TL/EE/9354-39

FIGURE 4-1. NS32532 Interface Signals

4.1 NS32532 PIN DESCRIPTIONS
Descriptions of the NS32532 pins are given in the foliowing

sections.

Included are also references to portions of the functional
description, Section 3.

Figure 4-1 shows the NS32532 interface signals grouped
according to related functions.

Note: An asterisk next to the signal name indicates a TRI-STATE condition
for that signal when HOLD is acknowledged or during an extended

retry.

4.1.1 Supplies

VCCL1-6

VCCB1-14

VCCCLK

GNDL1-6

GNDB1-13

GNDCLK

Logic Power.
+ 5V positive supplies for on-chip logic.
Buffers Power.

+5V positive supplies for on-chip output
buffers.

Bus Clock Power.

+5V positive supply for on-chip clock driv-
ers.

Logic Ground.

Ground references for on-chip logic.
Buffers Ground.

Ground references for on-chip output buffers.
Bus Clock Ground.

Ground reference for on-chip clock drivers.

4.1.2 Input Signals

CLK Clock.
Input Clock used to derive all CPU Timing.
SYNC Synchronize.

When SYNC is active, BCLK will stop tog-
gling. This signal can be used to synchronize
two or more CPUs (Section 3.5.2).

HOLD Hold Request.

When active, causes the CPU to release the
bus for DMA or multiprocessing purposes
(Section 3.5.7).

Note:

If the HOLD signal is generated asynchronously, its set
up and hold times may be violated. In this case it is rec-
ommended to synchronize it with the falling edge of
BCLK to minimize the possibility of metastable states.

The CPU provides only one synchronization stage to min-
imize the HLDA latency. This is to avoid speed degrada-
tions in cases of heavy HOLD activity (i.e. DMA controller
cycles interleaved with CPU cycles).

ST Reset.

When RST is active, the CPU is initialized to
a known state (Section 3.5.3).

INT Interrupt.
A low level on this signal requests a maska-
ble interrupt (Section 3.5.9).

NMI Nonmaskable Interrupt.

A High-to-Low transition of this signal re-
quests a nonmaskable interrupt (Section
3.5.9).

2-68

4.0 Device Specifications (continued)

DBG

CIA0-6

CIIN

]
=)
Z|

BWO-1

Debug Trap Request.

A High-to-Low transition of this signal re-
quests a debug trap (Section 3.5.9).

Cache Invalidation Address Bus.

Bits 0 through 4 specify the set address to
invalidate in the on-chip caches. CIAQ is the
least significant. Bits 5 and 6 are reserved
(Section 3.5.10).

Invalidate Set.

When Low, only a set in the on-chip cache(s)
is invalidated; when High, the entire cache(s)
is (are) invalidated.

Invalidate Data Cache.

When Low, the Data Cache contents are in-
validated. INVSET determines whether a sin-
gle set or the entire Data Cache is invalidat-
ed.

Invalidate Instruction Cache.

When Low, the Instruction Cache contents
are invalidated. INVSET determines whether
a single set or the entire Instruction Cache is
invalidated.

Cache Inhibit In.

When active, indicates that the location refer-
enced in the current bus cycle is not cache-
able. CIIN must not change within an aligned
16-byte block.

170 Decode.

Indicates to the CPU that a peripheral device
is addressed by the current bus cycle. The
value of IODEC must not change within an
aligned 16-byte block (Section 3.5.8).

Force Slave Status Read.

When asserted, indicates that the slave
status word should be read by the CPU (Sec-
tion 3.1.4.1). An external 10 kQ resistor
should be connected between FSSR and
Vce.

Slave Done.

Used by a slave processor to signal the com-
pletion of a slave instruction (Section
3.1.4.1). An external 10 kQ2 resistor should be
connected between SDN and V.

Burst In.

When active, indicates to the CPU that the
memory supports burst cycles (Section
3.5.4.3).

Ready.

While this signal is not active, the CPU ex-
tends the current bus cycle to support a slow
memory or peripheral device.

Bus Width.

These lines define the bus width (8, 16 or 32
bits) for each data transfer; BWO is the least
significant bit. The bus width must not
change within an aligned 16-byte block—en-
codings are:

00—Reserved

01—8 Bits

|

W
m
]

10—16 Bits

11—32 Bits

Bus Retry.

When active, the CPU will reexecute the last
bus cycle (Section 3.5.5).

Bus Error.

When active, indicates that an error occurred
during a bus cycle. It is treated by the CPU as
the highest priority exception after reset.

4.1.3 Output Signals

BCLK

CASEC

clouT

Bus Clock.

Output clock for bus timing (Section 3.5.2).
Bus Clock Inverse.

Inverted output clock.

Hold Acknowledge.

Activated by the CPU in response to the
HOLD input to indicate that the CPU has re-
leased the bus.

Program Flow Status.

A pulse on this signal indicates the beginning
of execution for each instruction (Section
3.5.11).

Internal Sequential Fetch.

Indicates along with PFS that the instruction
beginning execution is sequential (ISF Low)
or non-sequential (ISF High).
User/Supervisor.

User or supervisor mode status.

Break Point.

This signal is activated when the CPU de-
tects a PC or operand-address match debug
condition (Section 3.3.2).

*Cache Section.

For cacheable data read bus cycles indicates
the Section of the on-chip Data Cache where
the data will be placed; undefined for other
bus cycles. This signal can be used for exter-
nal monitoring of the data cache contents.
Cache Inhibit Out.

This signal reflects the state of the Cl bit in
the second level page table entry (PTE). Itis
used to specify non-cacheable pages. It is
held low while address translation is disabled
and for MMU references to page table en-
tries.

1/0 Inhibit.

Indicates that the current bus cycle should
be ignored if a peripheral device is ad-
dressed.

Slave Processor Control.

Data strobe for slave processor transfers.
*Burst Out.

When active, indicates that the CPU is re-
questing to perform burst cycles.
Interlocked Operation.

When active, indicates that interlocked cy-
cles are being performed (Section 3.5.4.5).

2-69

0€-2652ESN/G2-2ESCESN/02-2EGCESN

NS32532-20/NS32532-25/NS32532-30

4.0 Device Specifications (continued)
DDIN *Data Directlon.

Indicates the direction of a data transfer. It is
low for reads and high for writes.

*Confirm Bus Cycle.

When active, Indicates that a bus cycle Initia-
ted by ADS Is valid; that is, the bus cycle has
not been cancelled (Section 3.5.4.2).

*Begin Memory Transaction.

When Stable Low indicates that the current
bus cycle is valid; that is, the bus cycle has
not been cancelled (Section 3.5.4.2).

*Address Strobe.

When active, indicates that a bus cycle has
begun and a valid address is on the address
bus.

*Byte Enables. :

Used to selectively enable data transfers ol
bytes 0-3 of the data bus.

Status.

Bus cycle status code; STO is the least signif-
icant. Encodings are:

00000—Idle: CPU Inactive on Bus.
00001—Idle: WAIT Instruction.
00010—Idle: Halted.

00011—Idle: The bus is idle while the slave
processor is executing an instruction.

00100—Interrupt Acknowledge, Master.

CONF

|
=

>
o
7]

BE0-3

ST0-4

4.2 ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required,
please contact the Natlonal Semiconductor Sales
Office/Distributors for avallabllity and specifications.

Case Temperature Under Bias 0°Cto +95°C
Storage Temperature —65°Cto +150°C

00101—Interrupt Acknowledge, Cascaded.
00110—End of Interrupt, Master.
00111—End of Interrupt, Cascaded.
01000—Sequential Instruction Fetch.
01001—Non-Sequential Instruction Fetch.
01010—Data Transfer.

01011—Read Read-Modify-Write Operand.
01100—Read for Effective Address.
01101—Access PTE1 by MMU.
01110—Access PTE2 by MMU.

01111

L]

] Reserved.

L]

11100

11101—Transfer Slave Operand.
11110—Read Slave Status Word.
11111—Broadcast Slave ID.

*Address Bus.

Used by the CPU to output a 32-bit address
at the beginning of a bus cycle. A0 is the
least significant.

4.1.4 Input/Output Signals

D0-31 *Data Bus.

Used by the CPU to input or output data dur-
ing a read or write cycle respectively.

A0-31

All Input or Output Voltages with

Respectto GND —0.5Vto +7V
Power Dissipation 4W
Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS Tcase = 0° to +95°C, Vg = 5V 5%, GND = 0V

Symbol Parameter Conditions Min Typ Max Units
ViH High Level Input Voltage 2.0) Vee + 0.5 \
ViL Low Level Input Voltage -0.5 0.8 \
VoH High Level Output Voltage loH = —400 pA 2.4 \
VoL Low Level Output Voltage
A0-11, D0-31, DDIN loL = 4 mA 0.4 \
CONF, BMT loL = 6 mA 0.4 \
BCLK, BCLK loL = 16 mA 0.4 \Y
All Other Outputs loL=2mA 0.4 \"
I Input Load Current 0 < V)N <Vco —-20 20 pA
IL Leakage Current (Output and 0.4 < V|N < Voo -20 20 pA
170 pins in TRI-STATE/Input Mode)
CiN CLK Input Capacitance 10 pF
lcc Active Supply Current lout = 0, Ta = 25°C, 650 @ 30 MHz | 800 @ 30 MHz
Vee = 5V 550 @ 25 MHz | 675 @ 25 MHz mA
450 @ 20 MHz | 575 @ 20 MHz

=
. cgs . wn
4.0 Device Specifications (continued) @
[3]
Connection Diagram 0
N
o
JerereerrerrrrrrererIe >
] [OXOXOXOXOXOJOXOROXOXOXOXOXOXOXO) 3
4 [OXOXOXOXOXOXOXOXOXOJOXOXOXOXOKO) »
J [CJOXOJOXOJOXOXOXOXOXOXOXOXOXOKC 0
MOE O (OJOXC; n
d [OJOXO) @O0 =
K|I®E © @O0 %
J
O 6 NS32532 ©e0 a
HE O ® @O0 3
(@B O ®O0 o
FIGG O @O
3(0JOXO)] ©@O0
1 [OXOXOXOXOXOXOXOXOXOROXOXOXOXOXO)
4 [0XOROROXOXOXOXOJOXCXOXOROXOOXO)]
] [OXOXOROXCROIOXOXOXOXOXOXOXOXOXO)
MOPRPEPEPRERPPROBE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
TL/EE/9354~40
Bottom View
FIGURE 4-2. 175-Pin PGA Package
NS32532 Pinout Descriptions
Desc Pin Desc Pin Desc Pin Desc Pin Desc Pin | Desc Pin
Reserved A1 | D26 B16 | GNDB13 | D14 GNDL6 J14 | GNDL5 N9 | A0 R6
Reserved A2 | Reserved | C1 | VCCB14 | D15 VCCL5 J15 | CONF N10 | VCCB9 R7
Reserved A3 | Reserved | C2 | D23 D16 D13 J16 | RDY N11 | CIOUT R8
BP A4 | VCCL2 C3 | IOINH E1 VCCB6 K1 HOLD N12 | SPC R9
ISF A5 | Reserved | C4 | TLO E2 A23 K2 | VCCB11 N13 | BE3 R10
RST A6 | PFS C5 | GNDB3 E3 GNDL4 K3 | GNDB10 | N14 | VCCB10 | R11
NMI A7 | SDN Cé6 | D24 E14 GNDB11 | K14 | D4 N15 | ADS R12
GNDB1 A8 | Reserved | C7 | D22 E15 D11 K15 | D6 N16 | BW1 R13
Reserved A9 | BCLK Cc8 | D20 E16 D12 K16 | A16 P1 | BER R14
vCCB2 A10 | VCCCLK | C9 | A30 F1 A22 L1 VCCB7 P2 | CIIN R15
INVIC A11 | SYNC C10 | CASEC F2 A21 L2 | GNDB6 P3 | D2 R16
Reserved (1) | A12 | CIAO C11 | Reserved | F3 VCCL3 L3 A10 P4 | A13 S1
CIA1 A13 | CIA6 C12 | D21 F14 D8 L14 | A6 P5 | A8 S2
ClA4 A14 | VCCL6 C13 | D19 F15 D9 L15 | A2 P6 | A5 83
VCCB1 A15 | D29 C14 | D18 F16 D10 L16 | ST3 P7 | A3 S4
Reserved B1 | D27 C15 | A29 G1 A20 M1 | GNDB8 P8 | A1 S5
VCCB4 B2 | D25 C16 | A31 G2 GNDBS M2 | vCCL4 P9 | ST2 S6
Reserved B3 | U/S D1 | VCCB5 G3 A17 M3 | BEt1 P10 | ST1 S7
Reserved B4 | Reserved | D2 | GNDB12 | G14 D5 M14 | GNDB9 P11 | STO S8
VCCB3 B5 | Reserved | D3 | D17 G15 D7 M15 | BWO P12 | BOUT S9
FSSR B6 | GNDL3 D4 | D16 G16 VCCB12 | M16 | BIN P13 | DDIN S10
INT B7 | GNDB2 D5 | A27 H1 A19 N1 Reserved | P14 | BE2 S11
VCCL1 B8 | DBG D6 | A28 H2 A18 N2 | DO P15 | BEO S12
GNDL2 B9 | Reserved | D7 | GNDB4 H3 A4 N3 | D3 P16 | BMT S13
INVSET B10 | BCLK D8 | VCCB13 | H14 Al N4 | A15 R1 | BRT S14
INVDC B11 | GNDCLK | D9 | D15 H15 VvCCB8 N5 | A12 R2 | IODEC S15
CIA3 B12 | CLK D10 | D14 H16 GNDB7 N6 | A9 R3 | D1 S16
CIA5 B13 | CIA2 D11 | A26 J1 ST4 N7 | A7 R4
D30 B14 | D31 D12 | A25 J2 HLDA N8 | A4 R5
D28 B15 | GNDL1 D13 | A24 43 Note 1: This pin should be grounded.
All other reserved pins should be left open.

2-71

NS32532-20/NS32532-25/NS32532-30

4.0 Device Specifications (continued)
4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the timing specifications given in this section refer to
0.8V or 2.0V on all the signals as illustrated in Figures 4-3
and 4-4, unless specifically stated otherwise.

Y 2.0v
- 0.8V

—siGih
161y

2 2.4V
Sic2v 20V
tstozh 08V

N 0.4y

BCLK

SIG1

SIG2

TL/EE/9354-41
FIGURE 4-3. Output Signals Specification Standard

ABBREVIATIONS:
L.E.—leading edge R.E.—rising edge
T.E.—training edge F.E.—falling edge
lgmv
BCLK
£ 08V
B 2.4V
SiG1 _tsiots tsgin Y/
0.8V 0.8
L N A 0.45V
[| e— e e 2,47
20v)= X 2.0
sic2 / tsic2s tsio2n]\
L 0.45V

TL/EE/9354-42

FIGURE 4-4. Input Signals Specification Standard

2-72

4.0 Device Specifications (continued)
4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation Delays, NS32532-20, NS32532-25, NS32532-30

* Maximum times assume capacitive loading of 100 pF on the clock signals and 50 pF on all the other signals. A minimum
capacitance load of 50 pF on BCLK and BCLK is also assumed.

NS32532-20

NS32532-25

NS32532-30

Name Figure Description Reference/Conditions Units
Min Max Min Max Min Max
tsc, 4-24 Bus Clock Period | R.E., BCLK to Next
P R.E. BCLK 50 100 40 100 33.3 100 ns
tBc, 4-24 BCLK High Time At 2.0V on BCLK
(Both Edges) 20 16 13
tBgy 4-24 BCLK Low Time At 0.8V on BCLK
(Both Edges) 20 16 13
tgc,(V 4-24 BCLK Rise Time | 0.8V to 2.0V on
" R.E., BCLK 5 4 3 | e
taci 4-24 BCLK Fall Time 2.0Vto 0.8Von
F.E., BCLK 5 4 8 | ns
tNBCh 4-24 BCLK High Time [At2.0V on BCLK 20 16 13
(Both Edges)
NG 4-24 BCLK Low Time At 0.8V on BCLK 20 16 13
(Both Edges)
tnse (1 4-24 BCLK Rise Time | 0.8Vt02.0Von
' R.E., BCLK 5 4 8 | ms
tnee ! 4-24 BCLK Fall Time 2.0Vto0 0.8V on
F.E., BCIK 5 4 8 | ms
teacy 4-24 CLK to BCLK 2.0VonR.E,, CLK to
' R.E. Delay 2.0V on R.E., BCLK 20 7 1’ | ns
tcacy 4-24 | CLKtoBCLK 2.0VonRE., CLKto
F.E. Delay 0.8V on F.E., BCLK 20 17 1B | ns
tonBey 4-24 CLK to BCLK 2.0VonR.E,CLK to
' R.E. Delay 0.8V on R.E., BCLK 20 i 15 | ns
tcnee, 4-24 CLK to BCLK 2.0VonR.E., CLK to
ot F.E. Delay 0.8V on F.E., BCLK 20 7 15 | ns
tBCNBC 4-24 Bus Clocks Skew | 2.0VonR.E., BCLK to _ _ _
0.8V on F.E., BCLK O e e T L B L
tBCNBC; 4-24 Bus Clocks Skew | 0.8V onF.E., BCLK to _ _ _
' 2.0V on RE., BCLK 2| f2 | =2 | 42 1 41 ons
ta, 4-5,4-6 | Address Bits 0-31 | After R.E., BCLK T1 1 9 8 ns
Valid
ta, 4-5,4-6 | Address Bits 0-31 | After R.E., BCLK T1 or Ti 0 0 0 ns
Hold
tag 4-11,4-12 | Address Bits 0-31 | After F.E., BCLK Ti 21 17 13 ns
Floating
tan; 4-11,4-12 | Address Bits 0-31 | After F.E., BCLK Ti 0 0 0 ns
Not Floating
Note 1: G d by ch Dus to tester conditions this parameter is not 100% tested.

2-73

0€-2ESCESN/G2-2EGTESN/02-CESCESN

NS32532-20/NS32532-25/NS32532-30

4.0 Device Specifications (continued)
4.4,2.1 Output Signals: Internal Propagation Delays, NS32532-20, NS32532-25, NS32532-30 (Continued)

Name | Figure Description Reference/Conditions |__oo2092-20 NS32532-25 NS32532-30 |ynits
Min Max Min Max Min Max

tas, 4-8 Address Bits A2, A3 |After R.E., BCLK T2B 11 9 8 ns
Valid (Burst Cycle)

tasy, 4-8 Address Bits A2, A3 |After R.E., BCLK T2B 0 0 0 ns
Hold (Burst Cycle)

tpo, 4-86, 4-15 Data Out Valid After R.E., BCLK T1 0.5tscp 0.5tgcp 0.5tgcp| ns

+ 13ns +12ns +11ns

tooy, 4-6, 4-15 [Data Out Hold After R.E.,,BCLKT1orTi| O 0 0 ns

tDOspc 4-15 |Data Out §elup Before SPC T.E. 12 10 8 ns
(Slave Write)

too; 4-7 Data Bus Floating After R:E., BCLK 21 17 13 ns

T1orTi

D0 4-7 Data Bus. After F.E., BCLK T1 0 0 0 ns
Not Floating

tsmT, | 4-5,4-7 |BMT Signal Valid After R.E., BCLK T1 30 25 21 ns

tamT, | 4-5,4-7 [BMT Signal Hold After R.E., BCLK T2 0 0 0 ns

temry [4-11,4-12|BMT Signal Floating |After F.E., BCLK Ti 21 17 13 ns

tamTy |4-11,4-12/BMT Slgqal After F.E., BCLKTi o0 0 0 ns
Not Floating

tconF, | 4-5,4-8 |CONF Signal Active |After R.E., BCLK T1 0.5tgc 0.5tgc, 0.5tgc,| ns

a 0.5 tBCp + 119 0.5 tBCp +9 P(0.5 thp +8 P

1CONF;y| 4~5,4-8 [CONF Signal Inactive [After R.E., BCLK T1 or Ti 11 9 8 ns

tconr; |4-11, 4-12|CONF Signal Floating | After F.E., BCLK Ti 21 17 13 ns

tCONF|4-11, 4-12|CONF Signal After F.E., BCLK Ti 0 0 0 ns
Not Floating

taDS, 4-5,4-8 |ADS Signal Active After R.E., BCLK T1 1 9 8 ns

taDs;, | 4-5,4-8 |ADS Signallnactive |After F.E., BCLKT1 1 9 8 ns

taDs,, 4-6 ADS Pulse Width At 0.8V (Both Edges) 15 12 10 ns

taps; [4-11,4-12|ADS Signal Floating |After F.E., BCLK Ti 21 17 13 ns

tapgy |4-11,4-12|ADS Sign.al After F.E., BCLK Ti 0 0 0 ns
Not Floating

tBE, 4-6,4-8 |BEj, Signals Valid After R.E., BCLK T1 11 9 8 ns

t8E; 4-6,4-8 |BE, Signals Hold After R.E., BCLKT1, 0 0 0 ns

TiorT2B

tBE; 4-11, 4-12 | BE,, Signals Floating |After F.E., BCLK Ti 21 17 13 ns

tge, |4-11,4-12|BE, Signgls After F.E., BCLK Ti 0 0 0 ns
Not Floating

tooin, | 4-5,4-6 |DDIN Signal Valid After R.E., BCLK T1 11 9 8 ns

tooin,, | 4-5,4-6 |DDIN Signal Hold After R.E,,BCLK T1 or Ti 0 0 0 ns

tooi; |[4-11,4-12|DDIN Signal Floating | After F.E., BCLK Ti 21 17 13 ns

tODINGs [4-11,4-12|DDIN Sigpal After F.E.,, BCLK Ti 0 0 0 ns
Not Floating

tspc, (4-14,4-15|SPC Signal Active After R.E., BCLK T1 19 15 12 ns

2-74

=

4.0 Device Specificatlons (contnued) 8

4.4.2.1 Output Signals: Internal Propagation Delays, NS32532-20, NS32532-26, NS32532-30 (Continued) §

)

Name | Figure Description Reference/Conditions | -Noo2002-20 | N832632-26 | N832632-30 |) g §

Min | Max | Min | Max | Min | Max =

tsPCja 4-14, 4-15| SPC Signal Inactive After R.E.,BCLKTI, Tt or T2 19 15 12 ns §

topspc(! 4-14 | DDIN Valid to Before SPC L.E. 0 0 0 ns §

8PC Active 'a

tHLDA, | 4-12, 4-13 | FILDA Signal Active After F.E., BCLK Ti 15 1 10 | ns |3

tHLD A 4-12 HLDA Signal Inactive | After F.E., BCLK T 15 1 10 ns §

tsTy 4-5,4-14 | Status (ST0-4) Valid After R.E., BCLK T1 11 9 8 ns ‘é’

tsT, 4-5,4-14 | Status (STO-4)Hold | After R.E., BCLK T1 or Ti 0 0 0 ns g
tBouT, 4-8,4-9 |BOUT Signal Active After R.E., BCLK T2 15 12 11 ns
tBouTiy 4-8,4-9 |BOUT Signal Inactive /L\;t;rgg:._r!ic;lfn 15 12 1| ns
tsout; | 4-11,4~12|BOUT Signal Floating | After F.E., BCLK Ti 21 17 13 | ns
touTy | 4-11,4-12|BOUT Signal After F.E., BCLK Ti 0 0 0 ns

Not Floating
YO 4-7 Interlock Signal Active | After F.E., BCLK Ti 11 9 ns
Lo, 4-7 Interlock Signal Inactive | After F.E., BCLK Ti 1" 9 ns
tprs, 4-21 PFS Signal Active After F.E., BCLK 15 11 10 ns
tPFsi, 4-21 PFS Signal Inactive After F.E., Next BCLK 15 11 10 ns
tisF, 4-22 ISF Signal Active After F.E., BCLK 15 11 10 ns
YiSFia 4-22 ISF Signal Inactive After F.E., Next BCLK 15 1 10 ns
tBp, 4-23 BP Signal Active After F.E., BCLK 15 11 10 ns
tBP;, 4-23 BP Signal Inactive After F.E., Next BCLK 15 11 10 ns
tus, 4-5 U/S Signal Valid After R.E., BCLK T1 11 9 8 ns
tusy, 4-5 U/S Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns
tcasy 4-5 CASEC Signal Valid After F.E., BCLK T1 15 11 10 | ns
tcasy, 4-5 CASEC Signal Hold After R.E.,BCLK T1 or Ti 0 0 0 ns
tcAs 4-11,4~12 | CASEC Signal Floating | After F.E., BCLK Ti 21 17 13 | ns
tcASys 4-11,4-12| CASEC Sjgnal After F.E., BCLK Ti 0 0 0 ns
Not Floating

tcio, 4-5 CIOUT Signal Valid After R.E., BCLK T1 15 1 10 ns
tciop, 4-5 CIOUT Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns
tiol, 4-5 | TOINH Signal Valid After R.E., BCLK T1 15 1 10 | ns
tiot, 4-5 TOINH Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns

2-75

NS32532-20/NS32532-25/NS32532-30

4.0 Device Specifications (continued)
4.4.2.2 Input Signal Requirements: NS32532-20, NS32532-25, N$32532-30

NS32532-20

NS32532-25

NS32532-30

Name Figure Description Reference/Conditions Units
Min | Max | Min | Max | Min | Max
lcp 4-24 Input Clock Period | R.E., CLK to Next 25 50 20 50 16.6 50 ns
R.E., CLK
tcy 4-24 CLK High Time At 2.0V on CLK 0.5 tcp 0.5 tcp 0.5 tc,
(Both Edges) -5ns —5ns —4ns
tc) 4-24 CLK Low Time At 0.8V on CLK 0.5 tep 0.5 tcp 0.5 tcp
(Both Edges) -5ns —5ns —4ns
tc, (1) 4-24 CLK Rise Time 0.8Vto 2.0VonR.E., CLK 5 4 3 ns
te (D 4-24 CLK Fall Time 2.0Vt00.8VonF.E., CLK 5 4 3 ns
tDig 4-5,4-14 | Data In Setup Before R.E., BCLK T1 or Ti 12 10 8 ns
toiy, 4-5,4-14 | DataIn Hold After R.E.,BCLKT1orTi 1 1 1 ns
tRDY 4-5 RDY Setup Time Before B.E., BCLK T2(W), 19 15 12 ns
TiorTi
tRDY, 4-5 RDY Hold Time Ater R.!E., BCLK T2(W), ’ ; ’ ns
TiorTi
tawg 4-5 BWO0-1 Setup Time | Before F.E., BCLK T2or T2(W) | 19 15 12 ns
tawy, 4-5 BWO-1 Hold Time | After F.E., BCLK T2 or T2(W) 1 1 1 ns
tHopg |4-12,4-13 HOLD Setup Time | Before F.E., BCLK 19 15 12 ns
tHoLDy, 4-12 HOLD Hold Time After F.E., BCLK 1 1 1 ns
taiNg 4-8 BIN Setup Time Before F.E,BCLK T2 or T2(W) | 18 14 11 ns
tBINR 4-8 BIN Hold Time After F.E., BCLK T2 or T2(W) 1 1 1 ns
tBER, 4-6,4-8 | BER Setup Time Before R.E., BCLK T1 or Ti 19 15 12 ns
tBERY, 4-6,4~8. | BER Hold Time After R.E., BCLK T1 or Ti 1 1 1 ns
BRT, 4-6,4-8 | BRT Setup Time Before R.E., BCLK T1 or Ti 19 15 12 ns
t8RT), 4-6,4-8 | BRT Hold Time After R.E., BCLK T1 or Ti 1 1 1 ns
tioD, 4-5 TODEC Setup Time | Before F.E., BCLK T2or T2(W) | 18 14 11 ns
tiopy, 4-5 TODEC Hold Time | After F.E., BCLK T2 or T2(W) 1 1 1 ns
tewr (1) 4-26 ;f)georfitisl_arle to After VCC Reaches 4.5V 50 40 30 s
tRST, 4-27 RST Setup Time Before R.E., BCLK 14 12 11 ns
tAsT, 4-27 RST Pulse Width [At 0.8V (Both Edges) 64 64 64 18,

Note 1: Guaranteed by characterization. Due to tester conditions this paramster is not 100% tested.

2-76

4.0 Device Specifications (continued)
4.4.2.2 Input Signal Requirements: NS32532-20, NS32532-25, NS32532-30 (Continued)

NS32532-20

NS32532-25

NS32532-30

Name | Figure Description Reference/Conditions Units
Min Max Min Max Min Max
feilg 4-5 CIIN Setup Time Before F.E., BCLK T2 19 15 12 ns
tail, 4-5 | CIIN Hold Time After F.E., BCLK T2 1 1 1 ns
INTg 4-19 | INT Setup Time Before R.E., BCLK 12 10 9 ns
tiNT}, 4-19 | INT Hold Time After R.E., BCLK 1 1 1 ns
tNMIg 4-19 | NMI Setup Time Before R.E., BCLK 18 15 14 ns
INMIp 4-19 | NMIiHold Time After R.E., BCLK 1 1 1 ns
tsDg 4-16 | SDN Setup Time Before R.E., BCLK 12 10 9 ns
tspp 4-16 | SDN Hold Time After R.E., BCLK 1 1 1 ns
tFssRy | 4-17 | FSSR Setup Time Before R.E., BCLK 12 10 9 ns
tessR, | 4-17 | FSSR Hold Time After R.E., BCLK 1 1 1 ns
tsyncg | 4-25 | SYNC Setup Time Before R.E., CLK 10 8 7 ns
tsync, | 4-26 | SYNC Hold Time After R.E., CLK 1 1 1 ns
tciag 4-18 | CIA0-6 Setup Time | Before R.E., BCLK 12 10 9 ns
tciap 4-18 | CIA0-6 Hold Time After R.E., BCLK 1 1 1 ns
tinvsg | 4-18 | INVSET Setup Time | Before R.E., BCLK 12 11 9 ns
tinvsy, | 4-18 [INVSET Hold Time | After R.E., BCLK 1 1 1 ns
tiNvig 4-18 | INVIC Setup Time Before R.E., BCLK 12 10 9 ns
tiNviy, 4-18 | INVIC Hold Time After R.E., BCLK 1 1 1 ns
tinvvog | 4-18 | INVDC Setup Time | Before R.E., BCLK 12 10 9 ns
tiwvp, | 4-18 | INVDCHoldTime | After R.E., BCLK 1 1 1 ns
1DBG, 4-20 | DBG Setup Time Before R.E., BCLK 12 10 9 ns
tpga, | 4-20 | DBG Hold Time After R.E., BCLK 1 1 1 ns

2-77

0€-CESTESN/GC-CESTESN/02-CESCESN

NS32532-20/NS32532-25/NS32532-30

4.0 Device Specifications (continued)

4.4.3 Timing Dlagrams
ANY
|T=STATE; Tt T2 | T2(W)) TIORT
BOLK
: e) —] po—tan
A0 =31
XX .
- T ‘-tols
DO =31 cloescnlcabaad N I--.-.
) — toDiNy -~ =ton
5O 4 Vi
-]
| hosael 12 [T tapsia - b= topmmy
ADS _V \[j 8 _ _/
- |y — =t
R
BMT 4 /
L | 1
_ - - tcoNFa - t=tconria
CoNF / \f
N |
_ =—tRoYs
ROV / I\
= (L ¥
_ ae] |t
BWO =1 :K
) e tawn
BEG-3 X
_ -~ | -+ 1«tsm
ST0-4 X | L X
L) o 1
. -~ erluse = (+tush
s X
B ' tens -~ |
CIN :K
- t
- Iq- tClOV - (.:llh
clout [X X
I
(.
_ — e teasy tcion—~ |
CASEC { X
e) 1] _‘
_ to0s e l“iCASh
fODEC %
L T
C] tovs] et PP e tom
fOINA X

FIGURE 4-5. Basic Read Cycle Timing

TL/EE/9354-43

2-78

4.0 Device Specifications (continued)

ANY
IT=STATE;, T | T2 (TIORT,
BCLK [
i] j=-tan
A0-31 X X
QDov—b = — “tDOh
00-31) DATA OUT
toiny — H
oo 7 X
‘aDsw -+ fetoniNn
m N \L/
T 4 / /
CoNF / '\ / [\
ROV \/
BWO -1 X:
tBEv> o] -~ |=t8En
BEG-3 X X
) 1
[
BRTs -I *—I
;
T
oeRe fo] | |]
BER /
— taerh
sT0-4 X X
v/5 X X
TL/EE/9354-44
Note: An Idle State is always inserted before a Write Cycle when the Write i diately follows a confirmed Read Cycle.

FIGURE 4-6. Write Cycle Timing

2-79

0€-2EGCESN/SGC-CESCESN/02-2ESCESN

NS32532-20/NS32532-25/NS32532-30

4.0 Device Specifications (continued)

AO-M[X X
~toons | [toor
D0=-31 [), @E{,\ E DATA OUT)!‘
_ =1 [*ttoomy | —=| [*tooinn
SN T
w[T T\ \/
| et _’J;i“"'
i ‘Qu /
: ‘eomlra-’ i [ortconra
=N LN
R U, - ; Yot
iLo
: I tows -—"l‘— ovn
v NTK XTX
- = fteer - fetaen
BE0-3),)§ X
) 7T\ 7
| 7T\ 7
sro-4: X
U/§: X

FIGURE 4-7. Interlocked Read and Write Cycles

TL/EE/9354~45

2-80

4.0 Device Specifications (continued)

=

(2]

@

(]

o

@

ANY N

)T=STATE} T | T2 | 728) T2B | 7128 §yTIORTi) l\cl

S~

BCLK Z

| pebta] tbvs] ek o o tasn 5

Q)

-1 X XX IXIX &

I) ’?

&

. \ Var -\ g

o1 [T K-GO GO 2

]

- Y 83
DDIN

»

2]

=}

BuT R/ /
- > <~ tconra toonFia > |+
e va A\
| NVANVANYANY
: tow 1 tawn
BWO - 1 kj(
o | X \r /
- tong—sf [|
aw QJ VAANYAANYA
] tgouTa — oot b fonn teoutia—= |=
o N }

BER /

WX
L

e XTX

FIGURE 4-8. Burst Read Cycles

TL/EE/9354-46

NS32532-20/NS32532-25/NS32532-30

4.0 Device Specifications (continued)

ANY
_)T=STATE, T (T2 | T2B | T2B(W) (TlorT
BCLK
A0=31 -:X X
w31 T O G0
= NV \/ \L/
o / I\ / 1\
ROV | JALLLLALLLLN N LT | N LA
- 'amal—-‘ -—
AT/ 17/, NY /74 Tf’/////f///
_ 0uTa > \J.‘ o1 /F taouTa
BouT
FIGURE 4-9. External Termination of Burst Cycles
ANY
_ AT=STATE; T 4 T2) 2B | TlorT
BCLK
A0-31 ‘:X X X X
m[TN\ <7
e 7T\ /
: tans 1. teinn
sw | 22170070 | L0 VT,
- ta0uTa -+ =~ [jteouma
50T \J.‘ /
: ' ‘ams-;’~<—'mh
wRT | LWLy | NOX L
: tagm L leern
wR| LY/ "
a |

Note: Two idle state are always inserted by the CPU following the assertion of BRT.

TL/EE/9354-47

TL/EE/2354-48

FIGURE 4-10. Bus Error or Retry During Burst Cycles

2-82

4.0 Device Specifications (continued)

BCLK

A0-31

D0=-31

pON

ADS

CONF

BEO~3

BRT

CASEC

/s

ST0=-4

T2

1 TorTi | Ti

XL 1
)RR EE EE R T P L ATPY P P b e
X 1

v ISRy
7 . 4;-:-F ™ /

N -;}-:r*oouga

XX Mg
11NV VAN,

. =5 -—-F -

X st 1

X IXTX X

X IXC X LT IX

FIGURE 4-11. Extended Retry Timing

TL/EE/9354-49

2-83

0€-2ESTESN/GC-CEGTESN/02-CESCESN

NS32532-20/NS32532-25/NS32532-30

4.0 Device Specifications (continued)

o T T T T T TE TerT
BCLK I | I | I | I | I I
- - [t - tant
a0-31) ,).‘--..-.--.;;.-J.E:X
DO~=31 :}. - """'““"""5‘""""("""
: - < toot - {ODINNf
: 1 [« taost -1 = |tapsnt
ATsL {.-..-.--.;;..-..F
- o= taurs > == |taurnt
BT[. {--1----.4}---r /
] > e teonrs -1 | [tconFnt
) P B o
- mallark: - 1= toEnt
BEO-3 ;----- -dpp- %
i N = Yowos thoLps > =
| t,
= N |
. ~ b ok tHioaa = [+
’TDA ﬂ ¢ 4
- - |'oUTf -1 [*[toutnt
BOUT --.-.--.;}.-..AF __
: > 1 teast -+ t=toasn
CASEC ;--.-.--.;;.--.E X
u/s X X X
sm-4L X X X ;; X

FIGURE 4-12. Hold Timing (Bus Initially Idle)

TL/EE/9354-50

2-84

4.0 Device Specifications (continued)

ANY ANY
IT=STATE; T T2 Tt) T _ (T=STATEL T | T2 TlorT

BCLK I I I | l | I | I I I BCLK
Ly :

o e _ I - tois |+~

A0= 31 _x N E P DO- 31 DATA N

- e taost 3 | toh —]

msl N\l \L/ 8 P Y o[QST" { -'/|- tspeia
. *{‘conn L . L-
CONF / I\ /' IR I r nospcq Y

et L T

HOLDs

I _ — |-— {STV — |<— ‘STh

HoLD A

5 cte=p] STO-4 X
1

b
'HLDA2 ™ L I
.
TL/EE/9354-52

i FIGURE 4-14. Slave Processor Read Timing

N

0€-2ESZESN/G2-CESZESN/02-CESTESN

TL/EE/9354-51
FIGURE 4-13. HOLD Acknowledge Timing
(Bus Initially Not Idie)

ANY | | |

igiiginiiniin |

' |
tsps
_ — “‘tD0v| — e 'DOh [' oh
1
D0-31 DATA 0UT])= m[
3 \ | tposee
SPCa—"])
= = TL/EE/9354-54
SPC

FIGURE 4-16. Slave Processor Done

tspcla

g
N
/

ST0-4 trSsRe ||

L
TL/EE/9354-53 FSSR [
FIGURE 4-15. Slave Processor Write Timing

TL/EE/9354-55
FIGURE 4-17. FSSR Signal Timing

2-85

NS32532-20/NS32532-25/NS32532-30

4.0 Device Specifications (continued)
| |

Sigipigiy

‘CIIAs : 1‘-"- ‘ClAh
ClIA0=6 [j(
4
thyss - Tt NVSD
'] [|
| - t
INVIR
tvig i e {
-
| t=tinvoh
Ly My

INVDC [

~

TL/EE/8354-56
FIGURE 4-18. Cache Invalidation Request
Note 1: CIA0-6 and INVSET are only relevant when INVIC and/or INVDC are asserted.

BCLK I I I I I | I l I l I l I
_ [1] |
RST / ~
L YiNTs 7
o~
- tNMth
NMis | ~ tuMiw
NMi

TL/EE/9354-57
FIGURE 4-19. INT and NMI Signals Sampling
Note 1: INT and NMI are sampled on every other rising edge of BCLK, starting with the second rising edge of BCLK after RST goes high.
Note 2: INT is level sensitive, and once asserted, It should not be deasserted until it is acknowledged.

T

“[TT
TL/EE/8354-58 o TL/EE/9354-59
FIGURE 4-20. Debug Trap Request FIGURE 4-21. PFS Signal Timing

| |
Ysra |
T e

"7 |
. TL/EE/9354-60 TL/EE/9354-61
FIGURE 4-22, ISF Signal Timing FIGURE 4-23, Break Point Signal Timing

2-86

4.0 Device Specifications (continued)

_ tep ten r _.I *::?'
CLK] _/‘_\ . ‘L m

N

e ‘cacdr < tac tec:r

™ tegcat tach tge) —
BCLK N\

B tB(:p

‘ —taenpert
tenacdr — r—‘cnaoar =~ tnger Lty
r— el - !
BCIK NBCh \
tnecp

TL/EE/9354-62
FIGURE 4-24. Clock Waveforms

- | R e I—-| - tsvcs |
SYNC 1" tsmen | Vi
—

L ! | 3

BCLK \ e VARl

L eda

TL/EE/9354-63
FIGURE 4-25. Bus Clock Synchronization

— G

Voc[j “
“ M

trsTs I

ol B

3

TL/EE/9354-84
FIGURE 4-26. Power-On Reset

w LML

t
(RSTW RSTs
S [AN o
3d

FIGURE 4-27. Non-Power-On Reset

TL/EE/9354-65

2-87

0€-ZESCESN/GC-CESTESN/02-CESCESN

NS32532-20/NS32532-25/NS32532-30

Appendix A: Instruction Formats
NOTATIONS:
i = Integer Type Field
B = 00 (Byte)
W = 01 (Word)
D = 11 (Double Word)
f = Floating Point Type Field
F = 1 (Std. Floating: 32 bits)
L = 0 (Long Floating: 64 bits)
¢ = Custom Typs Field
D = 1 (Double Word)
Q = 0 (Quad Word)
op = Operation Code
Valid encodings shown with each format.
gen, gen 1, gen 2= General Addressing Mode Field
See Section 2.2 for encodings.
reg = General Purpose Register Number
cond = Condition Code Field
0000 = EQual: Z = 1
0001 = NotEqual: Z = 0
0010 = Carry Set: C = 1
0011 = Carry Clear: C = 0
0100 = Higher: L = 1
0101 = Lower or Same: L = 0

0110 = Greater Than: N = 1
0111 = Less or Equal: N = 0
1000 = Flag Set: F = 1

1001 = Flag Clear: F = 0

1010 = LOwer: L = 0andZ = 0

1011 = Higheror Same:L = 1orZ = 1
1100 = Less Than:N = 0andZ = 0
1101 = GreaterorEqual N =10orZ = 1

1110 = (Unconditionally True)
1111 = (Unconditionally False)
short = Short Immediate value. May contain:
quick: Signed 4-bit value, in MOVQ, ADDQ,
CMPQ, ACB.
cond: Condition Code (above), in Scond.
areg: CPU Dedicated Register, in LPR, SPR.

0000 = UPSR
0001 = DCR
0010 = BPC
0011 = DSR
0100 = CAR
0101-0111 = (Reserved)
1000 = FP

1001 = SP

1010 = SB

1011 = USP
1100 = CFG
1101 = PSR
1110 = INTBASE
1111 = MOD

Options: in String Instructions

T = Translated

B = Backward

U/W = 00: None
01: While Match
11: Until Match’

Configuration bits, in SETCFG Instruction:

Le [+ [+ [sfc[m]e]]

mreg: MMU Register number, in LMR, SMR.

0000 =
L]
[Trap (UND)
L]
o111 =
1000 = Reserved
1001 = MCR
1010 = MSR
1011 = TEAR
1100 = PTBO
1101 = PTB1
1110 = IVARO
1111 = IVAR1
7 0
[cond 1010
Format 0
Bcond (BR)
7 0
Format 1
BSR -0000 ENTER -1000
RET -0001 EXIT -1001
CXP -0010 NOP -1010
RXP -0011 WAIT -1011
RETT -0100 DIA -1100
RETI -0101 FLAG -1101
SAVE -0110 SVC -1110
RESTORE -0111 BPT -1111
15 8 | 7 0
T] T T T T T T T T T
gen l short l op |11| i |
Format 2
ADDQ -000 ACB -100
CMPQ -001 MovQ -101
SPR -010 LPR -110
Scond -011

2-88

Appendix A: Instruction Formats (continuea)

15 8|7 0
1 T 1 1 T T T 1 T T
[gen [op h 1111 iJ
Format 3
CXPD -0000 ADJSP -1010
BICPSR -0010 JSR -1100
JUMP -0100 CASE -1110
BISPSR -0110
Trap (UND) on XXX1, 1000
15 s|7 0
LI B | 1 T1 1T T
| gen1 I gen2 op Li J
Format 4
ADD -0000 SuB -1000
CMP -0001 ADDR -1001
BIC -0010 AND -1010
ADDC -0100 sSuBC -1100
MoV -0101 TBIT -1101
OR -0110 XOR -1110
23 16| 15 8|7 0
L L L I | LI LI T L L L L
EOOOO shortio oin00001110J
Format 5§
MOVS -0000 SETCFG -0010
CMPS -0001 SKPS -0011
Trap (UND) on 1XXX, 01XX
23 7 1]
0100111 OI
Format 6
ROT -0000 NEG -1000
ASH -0001 NOT -1001
CBIT -0010 Trap (UND) -1010
CBITI -0011 SUBP -1011
Trap (UND) -0100 ABS -1100
LSH -0101 COM -1101
SBIT -0110 1BIT -1110
SBITI -0111 ADDP 1111
23 16| 15 8(7 [1]
LI T U 7T L S SR A] v T 17T 1T T
gen1 gen2 op li11001110
Format7
MOVM -0000 MUL -1000
CMPM -0001 MEI -1001
INSS -0010 Trap (UND) -1010
EXTS -0011 DEI -1011
MOVXBW -0100 QuO -1100
MOvVZBW -0101 REM -1101
MOVZiD -0110 MOD -1110
MOVXiD -0111 DIV -1111

23 16[15 8|7
TT T T T T 11 L L LB
gen1 | gen 2 | reg i 101110
X op-/
TL/EE/9354-66
Format 8
EXT -000 INDEX -100
CVTP -001 FFS -101
INS -010
CHECK 011
MOVSU -110, reg = 001
MOVUS -110,reg = 011
23 16| 15 8|7 0
LI L LI B B) L T LI L
gen 1 gen2 lop—|;|i0011111q
Format 9
MOVvit -000 ROUND -100
LFSR -001 TRUNC -101
MOVLF -010 SFSR -110
MOVFL -011 FLOOR -111
7 0

|O|111I|0

TL/EE/9354-67

Format 10
Trap (UND) Always
23 16'15 8(7 0
1T 17 1 IR T 1T T 1 1T 1T 17T
gen 1 | gen 2 op 0|f10111110
Format 11
ADDf -0000 DIvf -1000
MOVf -0001 Note 1 -1001
CMPf -0010 Note 3 -1010
Note 3 -0011 Note 1 -1011
SUBf -0100 MULf -1100
NEGf -0101 ABSf -1101
Note 2 0110 Note 2 -1110
Note 1 -0111 Note 1 -1111

2-89

0€-2€GCESN/S2-CESTESN/0C-CESCESN

NS32532-20/NS32532-25/NS32532-30

Appendix A: Instruction Formats (continued)

23 16(15 817 0
gen1 gen2 op 0f11111110|
Format 12
Note 2 -0000 Note 2 -1000
SQRTf -0001 Note 1 -1001
POLYf -0010 MACH -1010
DOTf -0011 Note 1 -1011
SCALBf -0100 Note 2 -1100
LOGBf -0101 Note 1 -1101
Note 2 -0110 Note 2 -1110
Note 1 -0111 Note 1 1111
7 0
- TL/EE/9354-68
Format 13
Trap (UND) Always

23 8|7

0

00011110|

Format 14
RDVAL -0000 LMR -0010
WRVAL -0001 SMR -0011
CINV -1001
Trap (UND) on 01XX, 1000, 101X, 11XX
23 16|15 8|7 0
L
nnn10110
Operation Word ID Byte
Format 15
(Custom Slave)
nnn Operation Word Format
23 16! 15 8
T T 1T LI | L T 1
000 gen1 l short IXL op I i
Format 15.0
LCR -0010
SCR -0011
Trap (UND) on all others
23 16| 15 8
T T 1770 L L L L
001 geni | gen2 op |cf i

Format 15.1
CCV3 -000 CGCv2 -100
LCSR -001 CCV1 -101
CCV5 -010 SCSR -110
CCv4 -011 CCVo -111
23 16| 15 8
LA T 1 L] 1 T
101 gen1 l gen ZJ op i(ﬁ
Format 15.5
CCALO -0000 CCAL3 -1000
CMOV0o -0001 CMOV3 -1001
CCMPO -0010 Note 3 -1010
CCMP1 -0011 Note 1 -1011
CCAL1 -0100 CCAL2 -1100
CMOv2 -0101 CMOV1 -1101
Note 2 -0110 Note 2 -1110
Note 1 -0111 Note 1 -1111
23 16| 15 8
T 17 T 7 1 T 7T L
111 gen1 gen2 | op lec
Format 15.7
Note 2 -0000 Note 2 -1000
Note 1 -0001 Note 1 -1001
Note 3 -0010 Note 3 -1010
Note 3 -0011 Note 1 -1011
Note 2 -0100 Note 2 -1100
Note 1 -0101 Note 1 -1101
Note 2 -0110 Note 2 -1110
Note 1 -0111 Note 1 -1111
If nnn = 010, 011, 100, 110 then Trap (UND) Always.
7]

TL/EE/9354-69

Format 16
Trap (UND) Always
- 7 o
TL/EE/9354-70
Format 17

Trap (UND) Always

7 0

10001110

TL/EE/9354-T1

2-90

Appendix A: Instruction
Formats (continued)

Format 18
Trap (UND) Always
7 0
TL/EE/9354-72
Format 19
Trap (UND) Always
Implied Immediate Encodings:
7 0

1 I I I T T T

r7|r6'r5|r4|r3|r2|r1|r0

Register Mark, Appended to SAVE, ENTER
7 0
T T T T

rOIr1|r2|r3|r4|r5|r6]r7

Register Mark, Appended to RESTORE, EXIT

1 I I T T T

| offset | | leng}h -1
Offset/Length Modifler Appended to INSS, EXTS

Note 1: Opcode not defined; CPU treats like MOV¢ or CMOV,. First operand
has access class of read; second operand has access class of write; f or ¢
field selects 32- or 64-bit data.

Note 2: Opcode not defined; CPU treats like ADD; or CCAL. First operand
has access class of read;, second operand has access class of read-modify-
write; f or ¢ field selects 32- or 84-bit data.

Note 3: Opcode not defined; CPU treats like CMPy or CCMPe. First operand
has access class of read;, second operand has access class of read; f or ¢
field selects 32- or 64-bit data.

Appendix B. Compatibility Issues

The NS32532 Is compatible with the Series 32000 architec-
ture implemented by the NS32032, NS32332, and previous
microprocessors in the family. Compatibility means that
within certain limited constraints, programs that execute on
one of the earlier Series 32000 microprocessors will pro-
duce identical results when executed on the NS32532.
Compatibility applies to privileged operating systems pro-
grams, as well as to non-privileged applications programs.
This appendix explains both the restrictions on compatibility
with previous Series 32000 microprocessors and the exten-
sions to the architecture that are implemented by the
NS32532.

B.1 RESTRICTIONS ON COMPATIBILITY

If the following restrictions are observed, then a program
that executes on an earlier Series 32000 microprocessor
will produce identical results when executed on the
NS32532 in an appropriately configured system:

1. The program is not time-dependent. For example, the
program should not uss instruction loops to control real-
time delays.

2. The program does not use any encodings of instruc-
tions, operands, addresses, or control fields identified to
be reserved or undefined. For example, if the count op-
erand’s value for an LSHi instruction is not within the
range specified by the Series 32000 Instruction Set Rel-

erence Manual, then the results produced by the
NS32532 may differ from those of the NS32032.

3. Either the program does not depend on the use of a
Memory Management Unit (MMU), or it is written for op-
eration with the NS32382 MMU and does not use the
bus-error or debugging features of the NS32382.

4. The program does not depend on the detection of bus
errors according to the implementation of the NS32332.
For example, the NS32532 distinguishes between re-
startable and nonrestartable bus errors by transferring
control to the appropriate bus-error exception service
procedure through one of two distinct entries in the In-
terrupt Dispatch Table. In contrast, the NS32332 uses a
single entry in the Interrupt Dispatch Table for all bus
errors.

5. The program does not modify itself. Refer to Section B.4
for more information.

6. The program does not depend on the execution of cer-
tain complex instructions to be non-interruptible. Refer
to Section B.5 on. *Memory-Mapped 1/0” for more in-
formation.

7. The program does not use the custom slave instructions
CATSTO and CATSTH1, as they are not supported by the
NS32532 and will result in a Trap (UND) when their exe-
cution is attempted.

B.2 ARCHITECTURE EXTENSIONS

The NS32532 implements the following extensions of the
Series 32000 architecture using previously reserved control
bits, instruction encodings, and memory locations. Exten-
sions implemented earlier in the NS32332, such as 32-bit
addressing, are not listed.

1. The DG, LDC, IC, and LIC bits in the CFG register have
been defined to control the on-chip Instruction and Data
Caches. The DE-bit in the CFG register has been de-
fined to enable Direct-Exception Mode.

2. The V-flag in the PSR register has been defined to en-
able the Integer-Overflow Trap.

3. The DCR, BPC, DSR, and CAR registers have been de-
fined to control debugging features. Access to these
registers has been added to the definition of the LPR
and SPR instructions.

4. Access to the CFG and SP1 registers has been added
to the definition of the LPR and SPR instructions.

5. The CINV instruction has been defined to invalidate
control of the on-chip Instruction and Data Caches.

6. Direct-Exception Mode has been added to support fast-
er interrupt service time and systems without module
tables.

7. A new entry has been added to the Interrupt Dispatch
Table for supporting vectors to distinguish between re-
startable and nonrestartable bus etrors. Two additional
entries support Trap (OVF) and Trap (DBG).

8. Restrictions have been eliminated for recovery from
Trap (ABT) for operands with access class of write that
cross page boundaries. Restrictions still exist however,
for the operands of the MOVMi instruction.

B.3 INTEGER OVERFLOW TRAP

A new trap condition is recognized for integer arithmetic
overflow. Trap (OVF) is enabled by the V-flag in the PSR.
This new trap is important because detection of integer
overflow conditions is required for certain programming lan-
guages, such as ADA, and the PSR flags do not indicate the
occurrence of overflow for ASHi, DIVi and MULI instructions.

2-91

0€-2EGCESN/SZ-2ESCESN/02-CESCESN

NS32532-20/NS32532-25/NS32532-30

Appendix B. Compatibility Issues (continued)

More details on integer overflow are given in Section 3.2.5,
where a description of all the cases in which an overflow
condition is detected is also provided.

INTEGER ARITHMETIC

The V-flag in the PSR enables Trap (OVF) to occur following
execution of an integer arithmetic instruction whose result
cannot be represented exactly in the destination operand’s
location.

If the number of bits required to represent the resulting quo-
tient of a DEI instruction exceeds half the number of bits of
the destination, then the contents of both the quotient and
remainder stored in the destination are undefined.

The ADDR instruction can be used in place of integer arith-
metic instructions to perform certain calculations. In this
case however, integer overflow is not detected by the CPU.

LOGICAL INSTRUCTIONS

The V-flag in the PSR enables Trap (OVF) to occur following
execution of an ASHi instruction whose result cannot be
represented exactly in the destination operand’s location.

ARRAY INSTRUCTIONS

The V-flag in the PSR enables Trap (OVF) to occur following
execution of a CHECKIi instruction whose source operand is
out of bounds.

PROCESSOR CONTROL INSTRUCTIONS

The V-flag in the PSR enables Trap (OVF) to occur following
execution of an ACBi instruction if the sum of the “inc” val-
ue and the “index” operand cannot be represented exactly
in the “index”” operand’s location.

B.4 SELF-MODIFYING CODE

The Series 32000 architecture does not have special provi-
sions to optimally support self-modifying programs.
Nevertheless, on the NS32332 and previous Series 32000
microprocessors it is possible to execute self-modifying
code according to the following sequence:

1. Modify the appropriate instruction.

2. Execute a JUMP instruction or other instruction that
causes the microprocessor's instruction queue to be
flushed.

3. Execute the modified instruction.

For example, an interactive debugger may follow the se-

quence above after reaching a breakpoint in a program be-

ing monitored.

The same program may not produce identical results when

executed on the NS32532 due to effects of the Instruction

Cache and branch prediction. In order to execute self-modi-

fying code on the NS32532 it is necessary to do the follow-

ing:

1. Modify the appropriate instruction.

2. If the modified instruction is on a cacheable page, exe-
cute CINV to invalidate the contents of the Instruction
Cache.

3. Execute an instruction that causes a serializing opera-
tion. See Section 3.1.3.3.

4. Execute the modified instruction.
B.5 MEMORY-MAPPED I/0

As was mentioned in Section 3.1.3.2, certain peripheral de-
vices exhibit characteristics identified as “destructive-read-

ing” and “side-effects of writing” that impose requirements
for special handling of memory-mapped 1/0 references.
The NS32532 supports two methods to use on references
to memory-mapped peripheral devices that exhibit either or
both of these characteristics.

For peripheral devices that exhibit only side-effects of writ-
ing, correct operation can be ensured either by locating the
device between addresses FF000000 (hex) and FF7FFFFF
(hex) in the virtual address space or by observing the first 2
restrictions listed below. For peripheral devices that exhibit
destructive-reading, all the following restrictions must be ob-
served to ensure correct operation:

1. References to the device must be inhibited while the
CPU asserts the output signal IOINH.

2. The input signal IODEC must be asserted by the system
on references to the device.

3. The device cannot be used for instruction fetches, reads
of effective addresses, or Page Table Entries.

4. If an instruction that reads a source operand from the
device crosses a page boundary, then no Trap (ABT) or
restartable bus error can occur during fetches from the
page with higher addresses.

5. No Trap (ABT) for a data reference or other exception
can occur during execution of an instruction that reads a
source operand from the device. (Exceptions that are
recognized after completion of an instruction, like Trap
(OVF) and Trap (DBG), cause no problem.)

6. The device can be used as a source operand only for
instructions in the list below.

ABSiI CBITi MOVMi SBITIi
ADDi CBITli MOVXi SUBI
ADDCGi CMPi MOVZi SUBCI
ADDPi CMPQi NEGi SUBPi
ADDQi COMi NOTi TBITi
ANDi IBITi ORi XORi
ASHi LSHi ROTi

BIGi MOVi SBITi

This restriction arises because the CPU can respond to
interrupt requests during the execution of complex in-
struction in order to reduce interrupt latency. Thus, the
CPU may read the source operands for a DEID instruc-
tion (extended-precision divide), begin calculating the in-
struction’s results, and then respond to an interrupt re-
quest before completing the instruction. In such an
event, the instruction can be executed again and com-
pleted correctly after the interrupt service procedure re-
turns unless one of the source operands was altered by
destructive-reading.

Appendix C. Instruction Set

Extensions

The following sections describe the differences and ex-
tensions to the Series 32000 instruction set (as present-
ed in the “Series 32000 Instruction Set Reference Man-
ual”) implemented by the NS32352.

No changes or additions have been made to the user-
mode instruction set, and only a few privileged instruc-
tions have been added.

2-92

Appendix C. Instruction Set Extensions (continued)

C.1 PROCESSOR SERVICE INSTRUCTIONS

The CFG register, User Stack Pointer (SP1), and Debug
Registers can be loaded and stored using privileged forms
of the LPRi and SPRi instructions.

When the SETCFG instruction is executed, the CFG register
bits 0 through 3 are loaded from the instruction’s short field,
bits 4 through 7 are forced to 1, and bits 8 through 12 are
forced to 0.

The contents of the on-chip Instruction Cache and Data
Cache can be invalidated by executing the privileged in-
struction CINV. While executing the CINV instruction, the
CPU generates 2 slave bus cycles on the system interface
to display the first 3 bytes of the instruction and the source
operand. External circuitry can thereby detect the execution
of the CINV instruction for use in monitoring the contents of
the on-chip caches.

C.2 MEMORY MANAGEMENT INSTRUCTIONS

The NS32532 on-chip MMU does not implement the BAR,
BDR, BEAR, and BMR registers of the NS32382. These
registers are used in the NS32382 to support bus error and
debugging features. When an attempt is made to access
one of these 4 registers by executing an LMR or SMR in-
struction, a Trap (UND) occurs. More generally, a Trap
(UND) occurs whenever an attempt is made to execute an
LMR or SMR instruction and the most-significant bit of the
short-field is 0.

While executing an LMR instruction, the CPU generates 2
slave bus cycles on the system interface to display the first
3 bytes of the instruction and the source operand. External
circuitry can thereby detect the execution of an LMR in-
struction for use in monitoring the contents of the on-chip
Translation Lookaside Buffer.

Like the NS32382 MMU, the F-flag in the PSR is set and no
Trap (ABT) occurs when a RDVAL or WRVAL instruction is
executed and the Protection Level in the Level-1 Page Ta-
ble Entry indicates that the access is not allowed. In the
NS32082 MMU, an abort occurs when the Level-1 PTE is
invalid, regardless of the Protection Level.

C.3 INSTRUCTION DEFINITIONS

This section provides a description of the operations and
encodings of the new NS32532 privileged instructions.

Load and Store Processor Registers

Syntax: LPRi procreg, src
short gen
read.i
SPRI procreg dest
short gen
write.i

The LPRi and SPRi instructions can be used to load and
store the User Stack Pointer (USP or SP1), the Configura-
tion Register (CFG) and the Debug Registers in addition to
the Processor Registers supported by the previous Series
32000 CPUs. Access to these registers is privileged.
Figure C-1 and Table C-1 show the instruction formats and
the new ‘short’ field encodings for LPRi and SPRi.

Flags Affected: No flags affected by loading or storing the
USP, CFG, or Debug Registers.

lilegal Instruction Trap (ILL) occurs if an
attempt is made to load or store the USP,
CFG or Debug Registers while the U-flag
is 1.

Traps:

15 87 0

L T T LI T
gen l short |1 101 1' i
src procreg LPRi

15 8|7 0

T T 171 T 1 1 1T T7T T
gen l short IO 101 1| i
dest procreg SPRi

FIGURE C-1. LPRI/SPRI Instruction Formats

TABLE C-1. LPRi/SPRi New ‘Short’ Field Encodings

Register procreg | shortfield
Debug Condition Register DCR 0001
Breakpoint Program Counter BPC 0010
Debug Status Register DSR 0011
Compare Address Register CAR 0100
User Stack Pointer uspP 1011
Configuration Register CFG 1100

Cache Invalidate

Syntax: CINV options, src

gen
read.D

The CINV instruction invalidates the contents of locations in
the on-chip Instruction Cache and Data Cache. The instruc-
tion can be used to invalidate either the entire contents of
the on-chip caches or only a 16-byte block. In the latter
case, the 28 most-significant bits of the source operand
specify the physical address of the aligned 16-byte block;
the 4 least-significant bits of the source operand are ig-
nored. If the specified block is not located in the on-chip
caches, then the instruction has no effect. If the entire
cache contents is to be invalidated, then the source oper-
and is read, but its value is ignored.
Options are specified by listing the letters A (invalidate All), |
(Instruction Cache), and D (Data Cache). If neither the | nor
D option is specified, the instruction has no effect.
In the instruction encoding, the options are represented in
the A, |, and D fields as follows:
A: O—invalidate only a 16-byte block

1—invalidate the entire cache
I: 0—do not affect the Instruction Cache

1—invalidate the Instruction Cache
D: 0—do not affect the Data Cache

1—invalidate the Data Cache
Flags Affected: None

Traps: lllegal Operation Trap (ILL) occurs if an at-
tempt is made to execute this instruction
while the U-flag is 1.

Examples:

1.CINVA,D,I,R3 1E A7 1B

2.CINVI,R3 1E 27 19

Example 1 invalidates the entire Instruction Cache and Data
Cache.

Example 2 invalidates the 16-byte block whose physical ad-
dress in the Instruction Cache is contained in R3.

2-93

0€-2€S2ESN/GC-CESCESN/02-2ESCESN

NS32532-20/NS32532-25/NS32532-30

Appendix C. Instruction Set Extensions (Continued)

23 15 8|7 0
L T 1T 1T 17T 177 UL L
gen I0|A||D|o1oo111ooo1111o
src options CINV

FIGURE C-2. CINV Instruction Format

Load and Store Memory Management Register

Syntax: LMR mmreg, src
short gen
read.D
SMR mmureg, dest
short gen
write.D

The LMR and SMR instruction load and store the on-chip
MMU registers as 32-bit quantities to and from any general
operand. For reasons of system security, these instructions
are privileged. In order to be exscutable, they must also be
enabled by setting the M bit in the CFG register.
The instruction formats as well as the ‘short’ field encodings
are shown in Figure C-3 and Table C-2 respectively.
It is to be noted that the IVARO and IVAR1 registers are
write-only, and as such, they can only be loaded by the LMR
instruction.
Flags Affected: none
Traps: Undefined Instruction Trap (UND) occurs if
an attempt is made to execute this instruc-
tion while either of the following conditions
is true:
1. The M-bit in the CFG register is 0.

2.The U-Flag in the PSR is 0 and the

most-significant bit of the short field is 0.
lilegal Instruction Trap (ILL) occurs if an at-
tempt is made to execute this instruction
while the M-bit in the CFG register and the
U-flag in the PSR are both 1.

TABLE C-2. LMR/SMR ‘Short’ Fleld Encodings

Register mmureg short field
Memory Management MCR 1001
Control Reg
Memory Management MSR 1010
Status Reg
Translation Exception TEAR 1011
Address Reg
Page Table Base PTBO 1100
Register 0
Page Table Base PTB1 1101
Register 1
Invalidate Virtual IVARO 1110
Address 0
Invalidate Virtual IVAR1 1111
Address 1

23 16[15 8|7 0
LI L LI L
gen short|000111100011110
dest mmureg SMR
FIGURE C-3. LMR/SMR Instruction Formats
23 16[15 8|7 0
T T T 7T T T 1 T T T 1771 L L
gen short|000101100011110
src mmureg LMR

Appendix D. Instruction

Execution Times

The NS32532 achieves its performance by using an ad-
vanced implementation incorporating a 4-stage Instruction
Pipeline, a Memory Management Unit, an Instruction Cache
and a Data Cache into a single integrated circuit.

As a consequence of this advanced implementation, the
performance evaluation for the NS32532 is more complex
than for the previous microprocessors in the Series 32000
family. In fact, it is no longer possible to determine the exe-
cution time for an instruction using only a set of tables for
operations and addressing modes. Rather, itis necessary to
consider dependencies between the various instructions ex-
ecuting in the pipeline, as well as the occurrence of misses
for the on-chip caches.

The following sections explain the method to evaluate the
performance of the NS32532 by calculating various timing
parameters for an instruction sequence. Due to the high
degree of parallelism in the NS32532, the evaluation tech-
niques presented here include some simplifications and ap-
proximations. ’

D.1 INTERNAL ORGANIZATION
AND INSTRUCTION EXECUTION

The NS32532 is organized internally as 8 functional units as
shown In Figure 1. The functional units operate in parallel to
execute instructions in the 4-stage pipeline. The structure of
this pipeline is shown in Figure 3-2. The Instruction Fetch
and Instruction Decode pipeline stages are implemented in
the loader along with the 8-byte instruction queue and the
buffer for a decoded instruction. The Address Calculation
pipeline stage is implemented in the address unit. The Exe-
cute pipeline stage is implemented in the Execution Unit
along with the write data buffer that holds up to two results
directed to memory.

The Address Unit and Execution Unit can process instruc-
tions at a peak rate of 2 clock cycles per instruction, en-
abling a sustained pipeline throughput at 30 MHz of
15 MIPS (million instructions per second) for sequences of
register-to-register, immediate-to-register, register-to-mem-
ory and memory-to-register instructions. Nevertheless, the
execution of instructions in the pipeline is reduced from the
peak throughput of 2 cycles by the following causes of de-
lay:

1. Complex operations, like division, require more than 2 cy-
cles in the Execution Unit, and complex addressing
modes, like memory relative, require more than 2 cycles
in the Address Unit.

2-94

Appendix D. Instruction Execution Times (Continued)

2. Dependencies between instructions can limit the flow
through the pipeline. A data dependency can arise when
the result of one instruction is the source of a following
instruction. Control dependencies arise when branching
instructions are executed. Section D.3 describes the
types of instruction dependencies that impact perform-
ance and explains how to calculate the pipeline delays.

. Cache and TLB misses can cause the flow of instructions
through the pipeline to be delayed, as can non-aligned
references. Section D.4 explains the performance impact
for these forms of storage delays.

The effective time Tegf needed to execute an instruction is

given by the following formula:

Tetf =Te+ Tqg + Ts
Te is the execution time in the pipeline in the absence of
data dependencies between instructions and storage de-

lays, T4 is the delay due to data dependencies, and Ts is the
effect of storage delays.

D.2 BASIC EXECUTION TIMES

Instruction flow in sequence through the pipeline stages im-
plemented by the Loader, Address Unit, and Execution Unit.
In almost all cases, the Loader is at least as fast at decod-
ing an instruction as the Address Unit is at processing the
instruction. Consequently, the effects of the Loader can be
ignored when analyzing the smooth flow of instructions in
the pipeline, and it is only necessary to consider the times
for the Address Unit and Execution Unit. The time required
by the Loader to fetch and decode instructions is significant
only when there are control dependencies between instruc-
tions or Instruction Cache misses, both of which are ex-
plained later.

The time for the pipeline to advance from one instruction to
the next is typically determined by the maximum time of the
Address Unit and Execution Unit to complete processing of
the instruction on which they are operating. For example, if
the Execution Unit is completing instruction n in 2 cycles
and the Address Unit is completing instruction n+7 in 4
cycles, then the pipeline will advance in 4 cycles. For certain
instructions, such as RESTORE, the Address Unit waits until
the Execution Unit has completed the instruction before
proceeding to the next instruction. When such an instruction
is in the Execution Unit, the time for the pipeline to advance
is equal to the sum of the time for the Execution Unit to
complete instruction n and the time for the Address Unit to
complete instruction n+ 7. The processing times for the
Loader, Address Unit, and Execution Unit are explained be-
low.

D.2.1 Loader Timing

The Loader can process an instruction field on each clock
cycle, where a field is one of the following:

® An opcode of 1 to 3 bytes including addressing mode
specifiers.

* Up to 2 index bytes, if scaled index addressing mode is
used.

e A displacement.
® An immediate value of 8, 16 or 32 bits.
The Loader requires additional time in the following cases:

¢ 1 additional cycle when 2 consecutive double-word fields
begin at an odd address.

w

e 2 cycles in total to process a double-precision floating-
point immediate value.

D.2.2 Address Unit Timing

The processing time of the Address Unit depends on the
instruction’s operation and the number and type of its gen-
eral addressing modes. The basic time for most instructions

is 2 cycles. A relatively small number of instructions require
an additional address unit time, as shown in the timing ta-
bles in Section D.5.5. Non-pipelined floating-point instruc-
tions as well as Custom-Slave instructions require an addi-
tional 3 cycles plus 2 cycles for each quad-word operand in
memory.

For instructions with 2 general addressing modes, 2 addi-
tional cycles are required when both addressing modes re-
fer to memory. Certain general addressing modes require an
additional processing time, as shown in Table D-1. For ex-
ample, the instruction MOVD 4(8(FP)), TOS requires 7 cy-
cles in the Address Unit; 2 cycles for the basic time, an
additional 2 cycles because both modes refer to memory,
and an additional 3 cycles for Memory Relative addressing
mode.

TABLE D-1. Additional Address Unit Processing
Time for Complex Addressing Modes

Mode Additional
Cycles
Memory Relative 3
External 8
Scaled Indexing 2
D.2.3 Execution Unit Timing

The Execution Unit processing times for the various
NS32532 instructions are provided in Section D.5.5. Certain
operations cause a break in the instruction flow through the
pipeline.

Some of these operation simply stop the Address Unit,
while others flush the instruction queue as well. The infor-
mation on how to evaluate the penalty resulting from in-
struction flow breaks is provided in the following sections.

D.3 INSTRUCTION DEPENDENCIES

Interactions between instructions in the pipeline can cause
delays. Two types of interactions can arise, as described
below.

D.3.1 Data Dependencies

In certain circumstances the flow of instructions in the pipe-
line will be delayed when the result of an instruction is used
as the source of a succeeding instruction. Such interlocks
are automatically detected by the microprocessor and han-
dled with complete transparency to software.

D.3.1.1 Register Interlocks

When an instruction uses a base register that is the destina-
tion of either of the previous 2 instructions, a delay occurs.
The delay is 3 cycles when, as in the following example, the
base register is modified by the immediately preceding in-
struction. Modifications of the Stack Pointer resulting from
the use of TOS addressing mode do not cause any delay.
Also, there is no delay for a data dependency when the
instruction that modifies the register is one for which the
Address Unit stops.

2-95

0€-2€52ESN/G2-2EGCESN/0C-CESTESN

NS32532-20/NS32532-25/NS32532-30

Appendix D. Instruction Execution Times (continued)

modify RO
RO is base register,
delay 3 cycles

The delay is 1 cycle when the register is modified 2 instruc-
tions before its use as a base register, as shown in this
example.

n: ADDD R1,RO
n+l: MOVD 4(SP),R3
n+2: MOVD 4(RO),R2

n: ADDD R1,RO H
n+l: MOVD 4(RO),R2 ;

modify RO

RO not used

RO is base register,
delay 1 cycle

When an instruction uses an index register that is the desti-
nation of the previous instruction, a delay of 1 cycle occurs,
as shown in the example below. If the register is modified 2
or more instructions prior to its use as an index register,
then no delay occurs.

n: ADDD R1,RO ;s modify RO
n+l: MOVD 4(SP)[RO:B],R2
s+ RO is index register,
delay 1 cycle

Bypass circuitry in the Execution Unit generally avoids delay
when a register modified by one instruction is used as the
source operand of the following instruction, as in the follow-
ing example.

n: ADDD R1l,R0O s modify RO
n+l: MOVD RO,R2 ;s RO is source register,
no delay

For the uncommon case where the operand in the source
register is larger than the destination of the previous instruc-
tion, a delay of 2 cycles occurs. Here is an example.
n: ADDB R1,R0O s modify byte in RO
n+l: MOVD RO,R2 s+ RO dw source operand,
2 cycle delay

Note: The Address Unit does not make any ditferentiation between CPU
and FPU registers. Therefore, register interlocks can occur between
integer and floating-point instructions.

D.3.1.2 Memory Interlocks

When an instruction reads a source operand (or address for
effective address calculation) from memory that depends on
the destination of either of the previous 2 instructions, a
delay occurs. The CPU detects a dependency between a
read and a write reference in the following cases, which
include some false dependencies in addition to all actual
dependencies:

¢ Either reference crosses a double-word boundary

* Address bits 0 through 11 are equal

® Address bits 2 through 11 are equal and sither reference
is for a word

® Address bits 2 through 11 are equal and either reference
is for a double-word

The delay for a memeory interlock is 4 cycles when, as in
the following example, the memory location is modified by
the immediately preceding instruction.

n: ADDQD 1,4(SP) ; modify 4(SP)
n+l: CMPD 10,4(SP) ; read, 4(SP),
4 cycle delay

The delay is 2 cycles when the memory location is modified
2 instructions before its use as a source operand or effec-
tive address, as shown in this example.

n: ADDQD 1,4(SP) ; modify 4(SP)
n+l: MOVD RO,R1 s no reference to 4(SP)
n+2: CMPD 10, 4(SP); read 4(SP),
2 cycles delay

Certain sequences of read and write references can cause
a delay of 1 cycle although there is no data dependency
between the references. This arises because the Data
Cache is occupied for 2 cycles on write references. In the
absence of data dependencies, read references are given
priority over write references. Therefore, this delay only oc-
curs when an instruction with destination in memory is fol-
lowed 2 instructions later by an instruction that refers to
memory (read or write) and 3 instructions later by an instruc-
tion that reads from memory. Here is an example:

n: MOVD RO,4(SP) ; memory write
n+l: MOVD R6,R7 ; any instruction
n+2: MOVD 8(SP),RO ; memory read or write
n+3: MOVD 12(SP),Rl; memory read
delayed 1 cycle

D.3.2 Control Dependencles

The flow of instructions through the pipeline is delayed
when the address from which to fetch an instruction de-
pends on a previous instruction, such as when a conditionat
branch is excuted. The Loader includes special circuitry to
handle branch instructions (ACB, BR, Bcond, and BSR) that
serves to reduce such delays. When a branch instruction is
decoded, the Loader calculates the destination address and
selects between the sequential and non-sequential instruc-
tion streams. The non-sequential stream is selected for un-
conditional branches. For conditional branches the selec-
tion is based on the branch’s direction (forward or back-
ward) as well as the tested condition. The branch is predict-
ed taken in any of the following cases.

® The branch is backward.
® The tested condition is either NE or LE.

Measurements have shown that the correct stream is se-
lected for 64% of conditional branches and 71% of total
branches.

If the Loader selects the non-sequential stream, then the
destination address is transferred to the Instruction Cache.
For conditional branches, the Loader saves the address of
the alternate stream (the one not selected). When a condi-
tional branch instruction reaches the Execution Unit, the
condition is resolved, and the Execution Unit signals the
Loader whether or not the branch was taken. If the branch
had been incorrectly predicted, the Instruction Cache be-
gins fetching instructions from the correct stream.

The delay for handling a branch instruction depends on
whether the branch is taken and whether it is predicted cor-
rectly. Unconditional branches have the same delay as cor-
rectly predicted, taken conditional branches.

Another form of delay occurs when 2 consecutive condition-
al branch instructions are executed. This delay of 2 cycles
arises from contention for the register that holds the alter-
nate stream address in the Loader.

Control dependencies also arise when JUMP, RET, and oth-

er non-branch instructions alter the sequential execution of
instructions.

2-96

Appendix D. Instruction Execution Times (continued)

D.4 STORAGE DELAYS

The flow of instructions in the pipeline can be delayed by
off-chip memory references that result from misses in the
on-chip storage buffers and by misalignment of instructions
and operands. These considerations are explained in the
following sections. The delays reported assume no wait
states on the external bus and no interference between in-
struction and data references.

D.4.1 Instruction Cache Misses

An Instruction Cache miss causes a 5 cycle gap in the fetch-
ing of instructions. When the miss occurs for a non-sequen-
tial instruction fetch, the pipeline is idle for the entire gap, so
the delay is 5 cycles. When the miss occurs for a sequential
fetch, the pipeline is not idle for the entire gap because
instructions that have been prefetched ahead and buffered
can be executed. The delay for misses on non-sequential
instruction fetches can be estimated to be approximately
half the gap, or 2.5 cycles.

D.4.2 Data Cache Misses

A Data Cache miss causes a delay of 2 cycles. When a
burst read cycle is used to fill the cache block, then 3 addi-
tional cycles are required to update the Data Cache. In case
a burst cycle is used and either of the 2 instructions follow-
ing the instruction that caused the miss also reads from
memory, then an additional delay occurs: 3 cycle delay
when the instruction that reads from memory immediately
follows the miss, and 2 cycle delay when the memory read
occurs 2 instructions after the miss.

D.4.3 TLB Misses

There is a delay for the MMU to translate a virtual address
whenever there is a TLB miss for an instruction fetch, data
read or data write and whenever the M-bit in the Page Table
Entry (PTE) must be set for a data write that hits in the TLB.
The delay for the MMU to handle a TLB miss is 15 cycles
when no update to the PTEs is necessary. When only the
Level-1 PTE must be updated, the delay is 17 cycles; when
only the Level-2 PTE must be updated, the delay is 22 cy-
cles. When both PTEs must be updated, the delay is 24
cycles.

D.4.4 Instruction and Operand Alignment

When a data reference (either read or write) crosses a dou-
ble-word boundary, there is a delay of 2 cycles.

When the opcode for a non-sequential instruction crosses a
double-word boundary, there is a delay of 1 cycle. No delay
occurs in the same situation for a sequential instruction.
There is also a delay of 2 cycles when an instruction fetch is
located on a different page from the previous fetch and
there is a hit in the Instruction Cache. This delay, which is
due to the time required to translate the new page’s ad-
dress, also occurs following any serializing operation.

D.5 EXECUTION TIME CALCULATIONS

This section provides the necessary information to calculate
the Te portion of the effective time required by the CPU to
execute an instruction.

The effects of data dependencies and storage delays are
not taken into account in the evaluation of Tg, rather, they

should be separately evaluated through a careful examina-

tion of the instruction sequence.

The following assumptions are made:

— The entire instruction, with displacements and immedi-
ate operands, is present in the instruction queue when
needed.

— All memory operands are available to the Execution Unit
and Address Unit when needed.

— Memory writes are performed at full speed through the
write buffer.

— Where possible, the values of operands are taken into
consideration when they affect instruction timing, and a
range of times is given. When this is not done, the worst
case is assumed.

D.5.1 Definitions

Teu Time required by the Execution Unit to execute an
instruction.

Tau Total processing time in the Address Unit.

Tad Extra time needed by the Address Unit, in addition

to the basic time, to process more complex cases.
Tad can be evaluated as follows:
Tad = Tx + Ty + Ty2
Tx = 2if the instruction has two general operands
and both of them are in memory.
0 otherwise.

Ty1 and Ty are related to operands 1 and 2 re-
spectively. Their values are given below.
Ty(1,2) = 3 if Memory Relative

8 if External

2 if Scaled Indexing

0 if any other addressing mode

The following parameters are only used for floating-point
execution time calculations.

Additional Address Unit time needed to process
floating-point instructions in non-pipelined mode.
(Section D.2.2).
Tanp May be totally hidden for pipelined instruc-
tions. For non-pipelined instructions it can be cal-
culated as follows:
Tanp = 3 + 2* (Number of 64-bit operands in
memory)
Time required to transfer ID and Opcode, if no op-
erand needs to be transferred to the slave. Other-
wise, it is the time needed to transfer the last 32
bits of operand data to the slave. In the latter case
the transfer of ID and Opcode as well as any oper-
and data except the last 32 bits is included in the
Execution Unit timing.
Time required by the CPU to complete the floating-
point instruction upon receiving the DONE signal
from the slave. This includes the time to process
the DONE signal itself in addition to the time need-
ed to read the result (if any) from the slave.

Tanp

Tes

Tise

2-97

0€-2EGCESN/G2-2EGCESN/0C-CESCESN

NS32532-20/NS32532-25/NS32532-30

Appendix D. Instruction Execution Times (continued)

| This parameter is related to the floating-point oper-
and size as follows:

Standard floating (32 bits): |
Long floating (64 bits): |

D.5.2 Notes on Table Use

1. In the Tgy, column the notation n1 — n2 means n1 mini-
mum, n2 maximum.

2. In the notes column, notations held within angle brackets
<> indicate alternatives in the operand addressing
modes which affect the execution time. A table entry
which is affected by the operand addressing may have
multiple values, corresponding to the alternatives. This
addressing notations are:

]

0
1

<I> Immediate

<R> CPU register

<M> Memory

<F> FPU register, either 32 or 64 bits

<m> Memory, except Top of Stack

<T> Top of Stack

<x> Any addressing mode

<ab> aand b represent the addressing modes of oper-

ands 1 and 2 respectively. Both of them can be
any addressing mode. (e.g, <MR> means
memory to CPU register).
3. The notation ‘Break K’ provides pipeline status informa-
tion after executing the instruction to which ‘Break K’ ap-
plies. The value of K is interpreted as follows:

K =0 The Address Unit was stopped by the instruction
but the pipeline was not flushed. The Address
Unit can start processing the next instruction im-
mediately.

The pipeline was flushed by the instruction. The
Address Unit must wait for K cycles before it can
start processing the next instruction.

The Address Unit was stopped at the beginning
of the instruction but it was restarted |K| cycles
before the end of it. The Address Unit can start
processing the next instruction |K| cycles before
the end of the instruction to which ‘Break K' ap-
plies.

4. Some instructions must wait for pending writes to com-
plete before being able to execute. The number of cycles
that these instructions must wait for, is between 6 and 7
for the first operand in the write buffer and 2 for the sec-
ond operand, if any.

5. The CBITIli and SBITIi instructions will execute a RMW
access after waiting for pending writes. The extra time
required for the RMW access is only 3 cycles since the
read portion is overlapped with the time in the Execution
Unit.

K>0

K<0

6. The keyword defined for the Bcond instruction have the
following meaning:

BTPC Branch Taken, Predicted Correctly

BTPI Branch Taken, Predicted Incorrectly
BNTPC Branch Not Taken, Predicted Correctly
BNTPI Branch Not Taken, Predicted Incorrectly

D.5.3 Tets Evaluation

The Tg portion of the effective execution time for a certain
instruction in an instruction sequence is obtained by per-
forming the following steps:

1. Label the current and previous instruction in the se-
quence with n and n—1 respectively.

2. Obtain from the tables the values of Tgy and Tgy for in-
struction n and Tg, for instruction n—1.

3. For floating-point instructions, obtain the values of Ticg
and Tysc.

4. Use the following formula to determine the execution time
Te.
Te = Typi(n} + func (Tay(n), Teu(n—1), Tae(n—1),

Break (n—1)) + Teyu(n) + Ti(n)

Tgpt is the delay incurred before an instruction can begin
execution. It must be considered only when the floating-
point pipelined mode is enabled.

For a non-floating-point instruction, it represents the time
needed to complete all the instructions in the FIFO. For a
floating-point instruction, it is only relevant if the FIFO is
full, and represents the time to complete the first instruc-
tion in the FIFO.

func provides the amount of processing time in the Ad-

dress Unit that cannot be hidden. Its definition is given

below.

func =0 if Tay(n) < (Teu(n—1)

+ Tat (n—1))

AND NOT Break (n—1)

if Tau(n) > (Teu(n—1)

+ Ti(n—1))

AND NOT Break (n—1)

if (Tau(n) + K) > 0

AND Break (n—1)

0 if (Tau(n) + K) <0
AND Break (n—1)

K is the value associated with Break (n—1).

Tau(n) — Teu(n—1)

Tau(n) + K

2-98

Appendix D. Instruction Execution Times (continued)

Tir only applies to floating-point instructions and is al-
ways 0 for other instructions. It is evaluated as follows:

if pipelined mode is disabled, then
Tit = tes + Tise + Thpu
else
Tit =0 if group A instruction.
max (Tprys Ttes) + Ttse if group B instruction.
Tipu is the execution time in the Floating-Point
Unit. Ty is the time needed by the CPU and FPU
to complete all the floating-point instructions in the
FIFO.
5. Calculate the total execution time Tgt by using the follow-
ing formula:
Teff = Tg + Tg+ Tg
Where Ty and Tg are dependent on the instruction se-
quence, and can be obtained using the information pro-
vided in Section D.4.
D.5.4 Instruction Timing Example

This section presents a simple instruction timing example
for a procedure that recursively evaluates the Fibonacci

~fib: movd r3,tos s 2 cycles
movd r4,tos s 2 cycles
movd rl,r3 3 2 cycles
cmpqd $(2),r3 s 2 cycles
bge Ll s 2 cycles,
movd r3,rl 3 2 cycles
addqd $(-2),r1 ; 2 cycles
bsr ~f£ib s 3 ocycles
movd r0,r4 HEY
movd r3,rl s 2 cycles
addqd $(-1),r1 ; 2 oyocles
bsr fib s 3 cyocles
addd r4,r0 ;4
movd tos,r4 s 2 cycles
movd tos,r3 s 2 cycles
ret $(0) s 4 cycles, break 4
.align 4

~Dl: movqd $(1),r0 s 4
movd tos,r4 s 2 cycles
movd tos,r3d 3 2 cycles
ret $(0) ; 4 cycles, Break 4

function. In this example there are no data dependencies or
storage buffer misses; only the basic instruction execution
times in the pipeline, control dependencies, and instruction
alignment are considered.

The following is the source of the procedure in C.

unsigned fib(x)
int X3
{
if (x > 2)
return (fib(x-1) + fib(x-2));
else

return(l) ;

}

The assembly code for the procedure with comments indi-
cating the execution time is shown below. The procedure
requires 26 cycles to execute when the actual parameter is
less than or equal to 2 (branch taken) and 99 cycles when
the actual parameter is equal to 3 (recursive calls).

Break 4 If Branch Taken

cycles + 4 Cycles due to RET

cycles + 1 oycle alignment + 4 cycles due to RET

cycles + 4 cycles due to BGE

2-99

0€-2€SZESN/G2-2EGCESN/02-2€SZESN

NS32532-20/NS32532-25/NS32532-30

Appendix D. Instruction Execution Times (continued)

D.5.5 Execution Timing Tables

The following tables provide the execution timing information for all the NS32532 instructions. The table for the floating-point
instructions provides only the CPU portion of the total execution time. The FPU execution times can be found in the NS32381
and NS32580 datasheets.

D.5.5.1 Basic and Memory Management Instructions

Mnemonic | Tey Tau Notes Mnemonic Teu Tau Notes
ABSI 5 2+ Taq CHECK:i 10 2 + Taq |Break —3.
ACBi 5 2 + Taq | Ifincorrect prediction It SRC1s out
then Break 1 of bounds and
- the V bitin the
ADDi 2 |2+ Ty PSRis set,
ADDGi 2 2+ Tag then add trap
time.
ADDPi 9 2+ Tag
- CINV 10 2+ Tyg | Wait for
ADDQi 2 2+ Tag pending
ADDR 2 |4+ Ty writes.
ADJSPi 5 |2+ Tyli=BW Break 0 Break S
3 |2+ Tyl|i=D Break 0 CMPi 2 2+ Ty
ANDi 2 2+ Tag CMPMi 6+8*n n = number
N of elements.
ASHi 9 2+ Tag Break 0
Bconp 2—3 2 BTPC MPQi T
2 2 |BTPI Break 2 cMPai 2 2+ Tad
2 2 BNTPC CMPSi 7+13*n 2+ Taq |n = number
2 2 | BNTPI Break 2 of elements.
(see Note 5in Break 0
Section D.5.2) CMPST 6+20*n 2 + Taq | n = number
BIGi 2 2+ Tag of elements.
2 Break 0
BICPSRi 6 2 + Taq | Wait for pending writes. -
Break 5 COMi 2 2+ Taqg
BISPSRi 6 2 + Taq | Wait for pending writes. ovrp 5 4+ Tad
Break 5 CXP 17 13 Break 5
BPT 30 2 Modular CXPD 21 11 + Taq|Break 5
2 2 | Direct DEIi 28 +4%1 |5+ Tag |i = 0/4/12for
Break 5 B/W/D.
BR 2—3 2 Break 0
BSR 233+ Ty DIA 3 2 Break 5
CASEi 7 2+ Taq | Breaks DIVi (B0—>40) + 4*i} 2+ Tag |i = 0/4/12
. for B/W/D
CBITi 10 (2 <R>
14 |2+ Tag | <M> Breako ENTER 15+ 2*n 3 n = number
- 8 of registers
CBITIi 18 |2+ Taq | <M> saved.
Wait for pending writes. Break 0
Execute interlocked
RMW access. Break 5 EXIT 8+2*n 2 n = number
of registers
restored
EXTi 12 8 <R>
13 8 + Tag | <M>
Break —3
EXSi 11 6 <R>
14 6 + Tag | <M>
Break —3

2-100

Appendix D. Instruction Execution Times (continued)

D.5.5.1 Basic and Memory Management Instructions (Continued)

Mnemonic Teu Tau Notes Mnemonic Teu Tau Notes
FFSi 11+ 3*i |2+ Taq|i = number MOVSVi 9 2 + Tgaq|Wait for
of bytes pending writes.
FLAG 4 2 [Notrap Break 5
32 2 Trap, Modular MOVUSI 11 2 + Taq|Wait for
21 2 Trap, Direct pending writes.
If trap then: Break 5
waltfor MOVXii 2 |2+ Ta
pending writes; —
Break 5} MOVZii 2 2+ Tag
IBITi 10 2 <R> MULi 13+ 2*i|2 + Tqq|i = 0/4/12
14 |2+ Tag| <M> Break0 fG°f B/WI/D-

- eneral case.
INDEXi 43 |5+ Tad 24 |2 + Tag|lfMULD and
INSi 15 8 <R> 0 < SRC < 255

18 [8+ Tag| <M> NEGi 2 |2+ Tag
INSSi 14 6 <R>
19 6 + Taq| <M> NOP, 2 2
Break 0 NOTi 3 2+ Tag
JSR 3 |9+T Break 5 oAl 212+ Ted
ad j ored QUOI (30 — 40)|2 + Taq|i = 074712
JUMP 3 4 + Taq | Break 5 + 4% for B/W/D
LMR " 2 + Tag | Waitfor RDVAL 10 |2 + Tag[Wait for
pending writes. pending writes.
Break § Break 5
LPRi 6 2 + Tad | CPU Reg = FP, REMi (32 —> 42)[2 + Taq|i = 074712
SP, USP, SP, MOD. + 4% for B/W/D
Break 0 RES " —
5 2 + Tad CPU Reg = CFG, TORE|7+2*n |2 n= n_umber
INTBASE, DSR, of registers
BPC, UPSR. restored.
Wait for pending Break 0
writes. RET 4 3 Break 4
Break 5 RETI 19 5 |Noncascaded, Modular
7 2+ Tag| CPU Reg = DCR, 13 5 [Noncascaded, Direct
PSR CAR. Wait for 29 5 |Cascaded, Modular
pending writes. 22 5 |Cascaded, Direct
Break 5 Wait{
- ait for
LSHi 3 2 + Tag pending writes.
MEli 13+ 2*i |5+ Taq|i=0/4/12 Break 5
fBor Bﬁ\gl D. RETT 14 5 |Modular
rea 8 5 Direct
MODi (34 — 49) | 2 + Toq|i = 074712 .
+4%i for B/W/D Waitfor
pending writes.
MOVi 2 2+ Tag Break 5
MOVMi 5+4*n |2+ Tag|n = number ROTi 7 2+ Tad
of elements.
Break 0 RXP : 8 5 Break 5
MOVGQGi 2 2+ Tag SCONDI 3 2+ Taq
- p—
MOVSi n = number SAVE 8+2*n 2 nf— n.u;nber
of elements. g reglg(lsaers.
12+ 4*n |2 + T,q| No options. rea
14+ 8*n |2+ Taq|B,Wand/orU SBITi 10 2 <R>
Options in effect. 14 2 + Tag| <M>
Break 0 Break 0
MOVST 16 + 9*n|2 + Tag|n = number
of elements.
Break 0

2-101

0€-2ESCESN/GC-CESTESN/0C-CESCESN

NS32532-20/NS32532-25/NS32532-30

Appendix D. Instruction Execution Times (Continued)
D.5.5.1 Basic and Memory Management Instructions (Continued)

Mnemonic Teu Tau Notes Mnemonic | Tey| Tau Notes
SBITIi 10 2 <R> SPRi 5 | 2 + Taq | CPU Reg = PSR, CAR
18 2 + Taq| <M> 3 [2 + Taq | CPU Reg = all others
Wait for pending SUBI 2 |2+ Tag
writes. Execute SUBCi 2 (24 Tag
interlocked RMW -
access. SUBPi 6 |2+ Tag
Break 5 SVC 32 2 Modular
SETCFG 6 2 Break 5 21 2 Direct
SKPSi 84+ 6*n |2+ Taq|n = number of Waitfor
elements. pending writes.
Break 0 Break 5
SKPST |6+ 20*n|2+ Taq|n = number of TBITi 8 2 | <R>
elements. 11 | 2 + Taq | <M> Break 0
Break 0 WAIT 3 2 Wait for pending
SMR 7 2 + Taq | Wait for writes. Wait
pending writes. for interrupt
Break 5 WRVAL 10 | 2 + Taq | Wait for
pending writes.
Break 5
XORi 2 |2+ Tog

2-102

Appendix D. Instruction Execution Times (Continued)
D.5.5.2 Floating-Point Instructions, CPU Portion

Mnemonic Teu Tau Ties Tisc Group Notes
MOV1, NEG, 2 2 + Tanp 2 |1 A <FF>
ABSf, SQRTf, 44+3*| 2+ Tanp + Tad 2 1 A <MF>
LOGBf 6+3*I 2+ Tanp 2 1 B <IF>
6+3*1 2+ Tanp 2 1 B <TF>
11+ 4+ 2+ Tanp + Tad 2 3+2*| B <FM> Break — (1 + 1)
183+ 7*1 2+ Tanp + Tad 2 3+2*| B <MM>, <IM> Break — (1 + I)
ADDf, SUB{, 2 2+ Tanp 2 1 A <FF>
MULS, DIVf, 4+3°1 2+ Tanp 2 1 A <MF>
SCALBf 6+3*| 2+ Tenp 2 1 B <IF>
6+3°I 2+ Tanp 2 1 B <TF>
17+7%1 | 2+ Tanp+Tag | 2 | 3+2°1 B <FM> Break — (1 + I)
19+10*1 | 2+ Tapp + Tad 2 3+ 2" B <MM>, <IM> Break — (1 + I)
ROUND(I, TRUNCSi, | 11 2 + Tanp 2 3+ 21 B <FR> Break — 1
FLOORYi 11+4* 2+ Tanp + Tad 2 3+ 2" B <FM> Break — (1 + I)
13 2 + Tanp + Tad 2 3+ 2+ B <MR>, <IR> Break - 1
13+ 7% 2 + Tanp + Tad 2 3+2*I B <MM>, <IM> Break — (1 + I)
CMPf 18 2+ Tanp 2 B <FF>
20+ 3*1I 2+ Tanp + Tad 2 B <MF>
283+ 3*| 2 + Tanp + Tad 2 B <FM>
25+ 6" 2+ Tanp + Tad 2 B <MM>, <IM>, <MI>, <II>
Break 3
POLYf, DOTf, 2 2 + Tanp 2 1 A <FF>
MACH 4+3*1 2+ Tanp + Tad 2 1 A <MF>
6+3*1 2 + Tap 2 1 B <IF>, <TF>
11+ 4% 2+ Tanp + Tad 2 1 A <FM> Break — (1 + I)
1834+ 7*1 2+ Tanp + Tad 2 1 B <MM>, <MI>, <IM>, <IlI>
Break — (1 +)
MOVif 6 2+ Tanp 2 1 B <RF>
13 2+ Tap+Tad | 2 B <RM> Break — 1
6+3*1 24 Tanp+ Tad | 2 | 1 B <MF>, <IF>, <TF>
13+ 7*I 2 + Tanp + Tad 2 B <MM>, <IM> Break — (1 + I)
LFSR 6 2+ Tanp 2 |1 B <R>
6+3*1 2 + Tanp + Tad 2 1 B <M>
6+3*1 2+ Tanp 2 1 B <>
6+3*1 2+ Tanp 2 |1 B <T>
SFSR 11 2+ Tanp + Tag 2 3 B Break — 1
MOVFL 4 2+ Tanp 2 1 B <FF>
6 24 Tap+Tag | 2 |1 B <MF>, <IF>, <TF>
15 2+ Togp+Tag | 2 B <FM> Break 0
17 2+ Togp+Tag | 2 B <MM>, <IM> Break 0
MOVLF 4 2 + Tanp 2 1 B <FF>
9 24 Tanp+Taa | 2 | 1 B <MF>, <IF>, <TF>
15 24+ Tanp+ Tag | 2 B <FM> Break 0
20 2+ Tanp+Tag | 2 B <MM>, <IM> Break 0

2-103

0€-2€S2ESN/G2-2ESTESN/0C-CESTESN

NS32332-10/NS32332-15

National PRELIMINARY
Semiconductor |

NS32332-10/NS32332-15
32-Bit Advanced Microprocessors

General Description Features
The NS32332 is a 32-bit, virtual memory microprocessor 32-bit architecture and implementation
with 4 GByte addressing and an enhanced internal imple- 4 Gbyte uniform addressing space

n
mentation. It is fully object code compatible with other Se- m Software compatible with the Series 32000 Family
ries 32000® microprocessors, and it has the added features g powerful instruction set

of 32-bit addressing, higher instruction execution through- — General 2-address capability
put, cache support, and expanded bus handling capabilities. — Very high degree of symmetry
The new bus features include bus error and retry support, — Address modes optimized for high level languages

dynamic bus sizing, burst mode memory accessing, anden- g

o : Supports both 16- and 32-bit Slave Processor Protocol
hanced slave processor communication protocol. The high-

— Memory management support via NS32082 or

er clock frequency and added features of the NS32332 en- NS32382

able it to deliver 2 to 3 times the performance of the — Floating point support via NS32081 or NS32381
NS32032. . . m Extensive bus feature

The NS32332 microprocessor is designed to work with both — Burst mode memory accessing

the 16- and 32-bit slave processors of the Series 32000 — Cache memory support

family. — Dynamic bus configuration (8-, 16-, 32-b|ts)

— Fast bus protocol
m High speed XMOS™ technology
® 84 Pin grid array package

Block Diagram

ADD/DATA CONTROLS & STATUS

7,BUS INTERFACE

I CONTROL

e
_ INTERNAL BUS
R i 'Y 7' I
% INTBASE
RKING
ADDRESS SHIFTER SB ;E’gm e

% ®

20-BYTE P

QUEUE T 0

7L

[

R

32 B2
R3 |
INSTRUCTION 32 R4 I

> DECODER ADDRESS REG RS
RG |

328IT § =
oD |
DISPLACEMENT AND Mlcnoggge ROM e |

MM R
EDIATE EXTRACTO > CONTROL LOGIC |
| I Le—e——1
CFG REGISTER

TL/EE/8673-1

FIGURE 1

*Shaded areas indicate enhancements from the NS32032.

2-104

Table of Contents

1.0 PRODUCT INTRODUCTION
1.1 NS32332 Key Features

2.0 ARCHITECTURAL DESCRIPTION

2.1 Programming Model
2.1.1 General Purpose Registers
2.1.2 Dedicated Registers
2.1.3 The Configuration Register (CFG)
2.1.4 Memory Organization
2.1.5 Dedicated Tables

2.2 Instruction Set

2.2.1 General Instruction Format
2.2.2 Addressing Modes
2.2.3 Instruction Set Summary

3.0 FUNCTIONAL DESCRIPTION

3.1 Power and Grounding
3.3 Clocking

3.3 Resetting

3.4 Bus Cycles

3.4.1 Cycle Extension
3.4.2 Burst Cycles
3.4.3 Bus Status
3.4.4 Data Access Sequences
3.4.4.1 Bit Accesses
3.4.4.2 Bit Field Accesses
3.4.4.3 Extending Multiple Accesses
3.4.5 Instruction Fetches
3.4.6 Interrupt Control Cycles
3.4.7 Dynamic Bus Configuration
3.4.8 Bus Exceptions
3.4.8.1 Bus Retry
3.4.8.2 Bus Error
3.4.8.3 Fatal Bus Error
3.4.9 Slave Processor Communication
3.4.9.1 Slave Processor Bus Cycles
3.4.9.2 Slave Operand Transfer Sequence
3.5 Memory Management Option
3.5.1 The FLT (Float) Pin
3.5.2 Aborting Bus Cycles
3.5.2.1 Instruction Abort
3.5.2.2 Hardware Considerations

3.0 FUNCTIONAL DESCRIPTION (Continued)
3.6 Bus Access Control
3.7 Instruction Status
3.8 NS32332 Interrupt Structure

3.8.1 General Interrupt/Trap Sequence
3.8.2 Interrupt/Trap Return
3.8.3 Maskable Interrupts (The INT Pin)
3.8.3.1 Non-Vectored Mode
3.8.3.2 Vectored Mode: Non-Cascaded Case
3.8.3.3 Vectored Mode: Cascaded Case
3.8.4 Non-Maskable Interrupt (The NMI Pin)
3.8.5 Traps
3.8.6 Prioritization
3.8.7 Interrupt/Trap Sequences: Detailed Flow

3.8.7.1 Maskable/Non-Maskable Interrupt
Sequence

3.8.7.2 Trap Sequence: Traps Other than Trace
3.8.7.3 Trace Trap Sequence
3.8.7.4 Abort Sequence

3.9 Slave Processor Instructions

3.9.1 16-Bit Slave Processor Protocol
3.9.2 32-Bit Fast Slave Protocol

3.9.3 Floating Point Instructions

3.9.4 Memory Management Instructions
3.9.5 Custom Slave Instructions

4.0 DEVICE SPECIFICATIONS

4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input-Output Signals
4.2 Absolute Maximum Ratings
4.3 Electrical Characteristics
4.4 Switching Characteristics

4.4.1 Definitions

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation
Delays

4.4.2.2 Clocking Requirements
4.4.2.3 Input Signal Requirements
4.4.3 Timing Diagrams

Appendix A: Instruction Formats
B: Interfacing Suggestions

2-105

G1-CEECESN/OL-ZEETESN

NS32332-10/NS32332-15

List of lllustrations

CPUBIOCK DIAGIAM & . v vttt vt teeesie et taeenseseneenesosnsesnssnasonseasesassseenaenssnsonssuesusenseineesssnnes 1
The General and Dedicated RegiStersouiuiiniiiiii ittt it i iii it et eiienneennnes 21
PrOCESSOr StatUS REGISHOr. . o vttt ittt ettt e e i e 2-2
[T T 1 1= N 2-3
Module DesCriptor FOTMAt. v vttt ittt ittt et a et e atenrtonsnenontsnensironcens 2-4
A SaMPIO LINK TADIO .t i vttt tetttttit it te st taseaeenssesansonnennesosssnenssssessoestssessssassnesnns 2-5
General Instruction Format ovviiii it i i e e e e P -]
IndexByte Formatvveiiviiniiiiieniieniiiiiinins

DisplacemMent ENCOTINGS . v v e vvtvn ettt iiastiisasa st tienteneaesnsaesssnssosnsasssieesenrssnsasiosssnsnsans
Recommended SUPPIY CONNBCHONS + . ..t v vvtvtnerrneentnensatsessoniononssnoasonsssnsnesasnsosssassrenssnssass
Clock TImINg RelatIONSNIPS . oottt tt vt ii ettt ie ettt a et e eitsaertrensnensinenenssnsas
Power-on Resset Requirements.............. e Ceeaes

L=t =T = o T=T T G o1 T
Recommended Reset Connections, Non-Memory Managed System

Recommended Reset Connections, Memory Managed Systemcvvviiviiiiiiiiiniiinnns

Read-cycle TIMING +.vuvvrirvtiriironiriennnenineisienininnonenses

WItE-CYCIB TIMIMG v vttt titeent i eeeutieenn et e tonesneeneenstsasossoonesnnsonssnssasesssssensnssanssnsssssins
Bus CoNNBCHIONS . . v\ vvveviinniieninninnnnininanss R

L 10 10111
EXtended CyCl8 EXAMPIO &t tvtetittnentiaensienensnstesensnsnsensnesesnsnesnsenensassosssssnersesnsnesnsosess 3-10
Burst Cycles; Normal Termination Of BUISE ...\ ...vut it eitiiiiit i eiitreateneiratenesnernesstosssnsnssenesnsses
Burst Cycles; External Termination of BUISt. ... ouuuvu ittt ittt iiis it en i iieneiraereanraenresannns -
BOUT Timing Resulting from a Bus WidthChange.................

Memory interface PN

Bus Width Changes

Bus Cycle Retry; Bus CyCle NOt Retriadottt ittt i ri e ittt a et nanennes
Bus Cycle Retry; Bus Cycle Retriedciuiiiuit ittt i i i ie i e it i i iinennes
Bus Error During Read Or Write CyCleo ottt ittt ettt ettt ittt i i e ena s eensenans
Slave Processor CONNECHONSututint ettt ittt ins it ttaeeinesneanroreinesnesnisnsersenssnnens
CPU Read from Slave Processor
CPU WIIte 10 SIaVE PrOCESSOr & . vttt ittt tttiestteneeteenesneenesonsensssnssnseruseusensoiesaesusssosueennsunees
Read (Write) Cycle with Address Translation
T2 P
HOLD Timing, Bus InitiallyIdleccovveriiinnnans

HOLD Timing, Bus Initially Notldlec..veevivvnnnn.ns

TEOTIMING « e vt eeie e et iee e eee i eeeneeninaans

Non-Aligned Write Cycle—MC/EXS Timing
Interrupt DiSpatCh Tableottt i it e et it s i r it es
Interrupt/Trap Service Routine Calling Sequence
Return from Trap (RETTN) INSrUCHON FIOWt v vt i ittt ittt i ettt e it i cnaeenans
Return from Interrupt (RETI) Instruction Flow
SOIVICE SEQUBNCE .+ttt ttt ettt teteateeaesneeaesaeensonessaeenesiaesasenaeeussassuseneeneeneaneonnennenns
Slave Processor Protocol
Fast SIave ProtOCOlo veinit ittt ittt et i e e,
ID and Opcode Format for Fast Slave Protocol
Slave Processor Status Word Format

2-106

List of lllustrations (continued)

Connection Diagram, Pin Grid Array PaCKago «...vvueuert e tnrnereneroeseneesosensnsonensstssossssesessnsensasens 4-1
Timing Specification Standard (Signal Valid After Clock Edgs). . .

Timing Specification Standard (Signal Valid Before Clock Edge)4-3
NS32332 Read Cycle Timingovvvireitenneennerneineenns ...4-4
NS32332 Write Cycle TImiNg «...ovvvniveniiiininininrnrens .45
NS32332Burst Cycle Timingcovvriieniennnnnrennennn ... 4-6
External Termination of BurstCyclecoevvvninns B Y 4

NS32332 Bus Retry During Normal BUS CyCle. v ettt it isietesnsaesertannenenonruesssneasuensass 4-8
BRT Activated, but NoBusRetryoovviineiieninenenns ...49

Bus Retry During Burst BusCycleccovvvevniiiiennenns ..4-10
BRT Activated During Burst Bus Cycle, but NOBUS Retrycovvvvvieiiniiiiiiniiennienns . S|

Bus Error DUring NOrmMal BUS CyClB. . ..o v ittt ittt teeeteten et ttettneneanonsnsarsnsssonesssarneasenonssnsas 4-12
Bus Error During Burst BUS CYCl8 ...ovvvvniiiiiiiiiiiiiiinvniiiisiiassiiesnsnsnanesas e, ...4-13

Timing of Interlocked Bus Transactions .. e ettt ie s eaaens 4-14
Floating by HOLD Timing (CPU not Idie INitially) .. .vvveeevrueesereennneerennnnens erererenes 4-15
Floating by HOLD Timing (Burst Cycle Ended by HOLD ASSOIION)« cvvuresseeenireeeeessnnrnnnanennineeeeeeanes 4-16
Floating by HOLD Timing (CPU Initially 1d18)eovvveeeeieteeennineeeeeeannnnans P 417

R o R e 1T T O Y 4-18
FLT Initiated Cycle Timing......eovvvevvnnnn. N 4-19
Release from FLT Timing (CPUWIItE CYCIB) -t u ittt ettt e e e et ee e e e e e e e ttaessnarareeaennes 4-20
Slave Processor Write TimiNg. . ..o vvvuen it iiiiiiitiiieeiis it eiensieeneneesesransseoneaessrasarns ..4-21
Slave Processor Read Timing 4.22
DT/SDONE Timing (32-Bit Slave Protocol) e Ceerereeas ..4-23
SPC Timing (16-Bit SIAVE PrOtOCON) « « .+ v vt vvtetvete e e st eereeesesraeeeessasassssanarereessesnsssrensnns ..4-24
Clock Waveformsccvvvenenn e Ceveann .. i ..4-25
Relationship of PFS 10 Clock CyCles . .. vvvvveeerreeerriineeresnnererennnonnns et tere e, ..4-28
Guaranteed Delay, PFS 10 NON-Sequential FEtCh vvvveeerrvreeereennueererrnnnsernnesenninassnes ..4-27
Guaranteed Delay, Non-Sequential Fetch to PFS. .. 4-28
Abort Timing, FLT Not Appliedcovvvunt. ..4-29
Abort Timing, FLT Applied....... 4-30
POWEr-ON RBSOE ...\ttt ettt ittt etaetiteentneesonerossntonsssassasosassnasansonns ..4-31
Non-Power-onResetc.cviviiiiniiininnennnnns [P ..4-32
U/S Relationship to Any Bus Cycle, Guaranteed ValidIntervalcvivuiiiiiiiiiiieiniiiiennann, ..4-33
INT Interrupt Signal Detection ..4-34
M INEEITUPE SIGNAI THMING . e« e e v vttt e eeaneetsreeernnsseessonneesesssnesessanssessnsesssussosessnssessnnns 4-35
System Connection Diagram (32332, 32081 & 32082)vvuerrentinenseseorsosasensssnsssssostssasssssssssssonss B-1
System Connection Diagram (32332, 32381 & 323B2) uvvveetieveeresenrasstrasessesnsosasnesesneissssssssssanes B-2
List of Tables

NS32332 AddressiNg MOOS .. v.vvvneniuiiienenriseiesuinrnissssesioarsnessssnosssorssses

Series 32000 Instruction Set Summary

BUSACCOSS TYPOS +ovvivveneereenrrensnnrennennnss i reerer e PR [N -
ACCOSS SOQUBMCES . . o et etetteetnansstssteaassasenanenonsanessasssssanonnnnsnseonsssssssssssosiossssasssannens
INterrupt SEQUENCES . .. v vv vttt iiiieriiireen i eeenineananeas et earereeseieeaas Cereeereiea [P 3-3

2-107

G1-CEETESN/OL-CEETESN

NS32332-10/NS32332-15

1.0 Product Introduction

The Series 32000 Microprocessor family is a new genera-
tion of devices using National’s XMOS and CMOS technolo-
gies. By combining state-of-the-art MOS technology with a
very advanced architectural design philosophy, this family
brings mainframe computer processing power to VLSI proc-
©ss0rs.

The Series 32000 family supports a variety of system con-
figurations, extending from a minimum low-cost system to a
powerful 4 gigabyte system. The architecture provides com-
plete upward compatibility from one family member to an-
other. The family consists of a selection of CPUs supported
by a set of peripherals and slave processors that provide
sophisticated interrupt and memory management facilities
as well as high-speed floating-point operations. The archi-
tectural features of the Series 32000 family are described
briefly below:

Powerful Addressing Modes. Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types. The architecture provides for numerous data
types, such as byte, word, doubleword, and BCD, which may
be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case
instructions that compilers can’t use, the Series 32000 fami-
ly incorporates powerful instructions for control operations,
such as array indexing and external procedure calls, which
save considerable space and time for compiled code.

Memory-to-Memory Operatlons. The Series 32000 CPUs
represent two-address machines. This means that each op-
erand can be referenced by any one of the addressing
modes provided. This powerful memory-to-memory archi-
tecture permits memory locations to be treated as registers
for all useful operations. This is important for temporary op-
erands as well as for context switching.

Memory Management. Either the NS32382 or the
NS32082 Memory Management Unit may be added to the
system to provide advanced operating system support func-
tions, including dynamic address translation, virtual memory
management, and memory protection.

Large, Uniform Addressing. The NS32332 has 32-bit ad-
dress pointers that can address up to 4 gigabytes without
requiring any segmentation; this addressing scheme pro-
vides flexible memory management without added-on ex-
pense.

Modular Software Support. Any software package for the
Series 32000 family can be developed independent of all
other packages, without regard to individual addressing. In
addition, ROM code is totally relocatable and easy to ac-
cess, which allows a significant reduction in hardware and
software cost.

Software Processor Concept. The Series 32000 architec-
ture allows future expansions of the instruction set that can
be executed by special slave processors, acting as exten-
sions to the CPU. This concept of slave processors is
unique to the Series 32000 family. It allows software com-
patibility even for future components because the slave
hardware is transparent to the software. With future ad-
vances in semiconductor technology, the slaves can be
physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro-
vide three primary performance advantages and character-
istics:

¢ High-Level Language Support
e Easy Future Growth Path
® Application Flexibility

1.1 NS32332 KEY FEATURES

The N832332 is a 32-bit CPU in the Series 32000 family. It
is totally software compatible with the NS32032, NS32016,
and NS32008 CPUs but with an enhanced internal imple-
mentation.

The NS32332 design goals were to achieve two to three
times the throughput of the NS32032 and to provide the full
32-bit addressing inherent in the architecture.

The basic approaches to higher throughput were: fewer
clock cycles per instruction, better bus use, and higher
clock frequency.

An examination of the block diagram of the NS32332 shows
it to be identical to that of the NS32032, except for en-
hanced bus interface control, a 20-byte (rather than 8-byte)
instruction prefetch queuse, and special hardware in the ad-
dress unit. The new addressing hardware consists of a high-
speed ALU, a barrel shifter on one of its inputs, and an
address register. Of the throughput improvement not due to
increased clock frequency, about 15% is derived from the
new address unit hardware, 15% from the bus enhance-
ments, 10% from the larger prefetch queus, and 60% from
microcode improvements.

Other important aspects of the enhanced bus interface cir-
cuitry of the NS32332 are a burst access mods, designed to
work with nibble and static column RAMs, read and write
timing designed to support caches, and support for bus er-
ror processing.

An enhanced slave processor communication protocol is
designed to achieve improved performance with the
NS32382 MMU and NS32381 FPU, while still working di-
rectly with the previous NS32082 MMU and NS32081 FPU.

2.0 Architectural Description

2.1 PROGRAMMING MODEL

The Series 32000 architecture has 8 general purpose and 8
dedicated registers. All registers are 32 bits wide except the
STATUS and MODULE register. These two registers are
each 16 bits wide.

2.1.1 General Purpose Registers

There are eight registers for meeting high speed general
storage requirements, such as holding temporary variables
and addresses. The general purpose registers are free for
any use by the programmer. They are thirty-two bits in
length. If a general register is specified for an operand that
is eight or sixteen bits long, only the low part of the register
is used; the high part is not referenced or modified.

2.1.2 Dedicated Registers

The eight dedicated registers of the processor are assigned
specific functions.

PC: The PROGRAM COUNTER register is a pointer to the
first byte of the instruction currently being executed. The PC
is used to reference memory in the program section.

SPO0, SP1: The SPO register points to the lowest address of
the last item stored on the INTERRUPT STACK. This stack
is normally used only by the operating system. It is used

2-108

2.0 Architectural Description (continued)

DEDICATED
32

PROGRAMCOUNTER | PC

STATICBASE | sB

FRAME POINTER | FP

USER STACK PTR. | SP1

b

INTERRUPT BASE | INTBASE
Mo
MODULE |

INTERRUPT STACK PTR.J SPO

L
I
I
I
L
I

PSR
[smws |

GENERAL
32

o | ——
A | i t |
A2 | i ‘. |
Ry | : i |
As | i L]
Rs | | ! |

|

R | : :
R7 | ! ' |

TL/EE/8673-2

FIGURE 2-1. The General and Dedicated Registers

primarily for storing temporary data, and holding return infor-
mation for operating system subroutines and interrupt and
trap service routines. The SP1 register points to the lowest
address of the last item stored on the USER STACK. This
stack is used by normal user programs to hold temporary
data and subroutine return information.

In this document, reference is made to the SP register. The
terms “SP register” or “SP” refer to either SPO or SP1,
depending on the setting of the S bit in the PSR register. If
the S bit in the PSR is 0 the SP refers to SPO. If the S bit in
the PSR is 1 then SP refers to SP1.

Stacks in the Series 32000 family grow downward in memo-
ry. A Push operation pre-decrements the Stack Pointer by
the operand length. A Pop operation post-increments the
Stack Pointer by the operand length.

FP: The FRAME POINTER register is used by a procedure
to access parameters and local variables on the stack. The
FP register is set up on procedure entry with the ENTER
instruction and restored on procedure termination with the
EXIT instruction.

The frame pointer holds the address in memory occupied by
the old contents of the frame pointer.

SB: The STATIC BASE register points to the global vari-
ables of a software module. This register is used to support
relocatable global variables for software modules. The SB
register holds the lowest address in memory occupied by
the global variables of a module.

INTBASE: The INTERRUPT BASE register holds the ad-
dress of the dispatch table for interrupts and traps (Sec.
3.8). The INTBASE register holds the lowest address in
memory occupied by the dispatch table.

MOD: The MODULE register holds the address of the mod-
ule descriptor of the currently executing software module.
The MOD register is sixteen bits long, therefore the module
table must be contained within the first 64K bytes of memo-
ry.

PSR: The PROCESSOR STATUS REGISTER (PSR) holds
the status codes for the microprocessor.

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all pro-
15 8{7 0

PAXIXIX] 1 [e]sTul N[z e DD L[] c]
TL/EE/8673-3
FIGURE 2-2. Processor Status Register

grams, but the high order eight bits are accessible only to
programs executing in Supervisor Mode.

C: The C bit indicates that a carry or borrow occurred
after an addition or subtraction instruction. It can be
used with the ADDC and SUBC instructions to perform
multiple-precision integer arithmetic calculations. It may
have a setting of 0 (no carry or borrow) or 1 (carry or
borrow).

T: The T bit causes program tracing. If this bitisa 1, a
TRC trap is executed after every instruction (Sec. 3.8.5).

L: The L bit is altered by comparison instructions. In a
comparison instruction the L bit is set to “1” if the sec-
ond operand is less than the first operand, when both
operands are interpreted as unsigned integers. Other-
wise, it is set to “‘0”. In Floating Point comparisons, this
bit is always cleared.

F: The F bit is a general condition flag, which is altered
by many instructions (e.g., integer arithmetic instructions
use it to indicate overflow).

Z: The Z bit is altered by comparison instructions. In a
comparison instruction the Z bit is set to 1" if the sec-
ond operand is equal to the first operand; otherwise it is
set to “‘0”.

N: The N bit is altered by comparison instructions. In a
comparison instruction the N bit is set to “1” if the sec-
ond operand is less than the first operand, when both
operands are interpreted as signed integers. Otherwise,
it is set to “0".

U: If the U bit is *“1"* no privileged instructions may be
executed. If the U bit is *‘0” then all instructions may be
executed. When U = 0 the processor is said to be in
Supervisor Mode; when U = 1 the processor is said to
be in User Mode. A User Mode program is restricted
from executing certain instructions and accessing cer-
tain registers which could interfere with the operating
system. For example, a User Mode program is prevent-
ed from changing the setting of the flag used to indicate
its own privilege mode. A Supervisor Mode program is
assumed to be a trusted part of the operating system,
hence it has no such restrictions.

S: The S bit specifies whether the SPO register or SP1
register is used as the stack pointer. The bit is automati-
cally cleared on interrupts and traps. it may have a set-
ting of 0 (use the SPO register) or 1 (use the SP1 regis-
ter).

2-109

G1-2EECESN/0L-ZEETESN

NS32332-10/NS32332-15

2.0 Architectural Description (continued)

P: The P bit prevents a TRC trap from occurring more
than once for an instruction (Sec. 3.8.5.). It may have a
setting of 0 (no trace pending) or 1 (trace pending).

I: If | = 1, then all interrupts will be accepted (Sec. 3.8.).
If 1 = 0, only the NMI interrupt is accepted. Trap en-
ables are not affected by this bit.

2.1.3 The Configuration Register (CFG)*

Within the Control section of the CPU is the CFG Register,
which declares the presence and type of external devices. It
is referenced by only one instruction, SETCFG, which is in-
tended to be executed only as part of system initialization
after reset. The format of the CFG Register is shown in
Figure 2-3.

*The NS32332 CPU has four new bits in the CFG Register, namely P, FC,
FM and FF,

7 0
[plrc]rmler]cm]F] 1]
FIGURE 2-3. CFG Register

The CFG | bit declares the presence of external interrupt
vectoring circuitry (specifically, the Interrupt Control Unit). 1
the CFG | bit is set, interrupts requested through the INT pin
are “‘Vectored.” If it is clear, these interrupts are *‘Non-Vec-
tored.” See Sec. 3.8.

The F, M and C bits declare the presence of the FPU, MMU
and Custom Slave Processors. If these bits are not sst, the
corresponding instructions are trapped as being undefined.

The FF, FM, FC bits define the Slave Communication Proto-
col to be used in FPU, MMU and Custom Slave instructions
(Sec. 3.4.9). If these bits are not set, the corresponding in-
structions will use the 16-bit protocol (32032 compatible). If
these bits are set, the corresponding instructions will use
the new (fast) 32-bit protocol.

The P bit improves the efficiency of the Write Validation
Buffer in the CPU. It is set if the Virtual Memory has page
size(s) larger than or equal to 4 Kbytes. It is reset otherwise.
In Systems where the MMU is not present, the P bit is not
used.

2.1.4 Memory Organization

The main memory is a uniform linear address space. Memo-
ry locations are numbered sequentially starting at zero and
ending at 232 - 1. The number specifying a memory location
is called an address. The contents of each memory location
is a byte consisting of eight bits. Unless otherwise noted,
diagrams in this document show data stored in memory with
the lowest address on the right and the highest address on
the left. Also, when data is shown vertically, the lowest ad-
dress is at the top of a diagram and the highest address at
the bottom of the diagram. When bits are numbered in a
diagram, the least significant bit is given the number zero,
and is shown at the right of the diagram. Bits are numbered
in increasing significance and toward the left.

A
Byte at Address A

Two contiguous bytes are called a word. Except where not-
ed (Sec. 2.2.1), the least significant byte of a word is stored
at the lower address, and the most significant byte of the
word is stored at the next higher address. In memory, the
address of a word is the address of its least significant byte,
and a word may start at any address.

|15 MsB's 8|7 LsB's 0

A+1 A
Word at Address A

Two contiguous words are called a double word. Except
where noted (Sec. 2.2.1), the least significant word of a dou-
ble word is stored at the lowest address and the most signif-
icant word of the double word is stored at the address two
greater. In memory, the address of a double word is the
address of its least significant byte, and a double word may
start at any address.

| 3imseed|23 16]15 8|7 Lse's o

A+3 A+2 A+1 A
Double Word at Address A

Although memory is addressed as bytes, it is actually orga-
nized as double-words. Note that access time to a word or a
double-word depends upon its address, e.g. double-words
that are aligned to start at addresses that are multiples of
four will be accessed more quickly than those not so
aligned. This also applies to words that cross a double-word
boundary.

2.1.5 Dedlcated Tables

Two of the dedicated registers (MOD and INTBASE) serve
as pointers to dedicated tables in memory.

The INTBASE register points to the Interrupt Dispatch and
Cascade tables.

The MOD register contains a pointer into the Module Table,
whose entries are called Module Descriptors. A Module De-
scriptor contains four pointers. The MOD register contains
the address of the Module Descriptor for the currently run-
ning module. It is automatically up-dated by the Call Exter-
nal Procedure instructions (CXP and CXPD).

15 0

31

STATIC BASE

LINK TABLE ADDRESS

PROGRAM BASE

RESERVED

TL/EE/8673-4
FIGURE 2-4. Module Descriptor Format

The format of a Module Descriptor is shown in Figure 2-4.
The Static Base entry contains the address of static data
assigned to the running module. It is loaded into the CPU
Static Base register by the CXP and CXPD instructions. The
Program Base entry contains the address of the first byte of
instruction code in the module. Since a module may have
multiple entry points, the Program Base pointer serves only
as a reference to find them.

2-110

=

s - (7]

2.0 Architectural Description (continued) «
The Link Table Address points to the Link Table for the 7 al2 0 I
currently running module. The Link Table provides the infor- n
mation needed for: GEN. ADDR. MODE REG. NO. =
1) Sharing variables between modules. Such variables are E
accessed through the Link Table via the External ad- TL/EE/8673~7 177}
dressing mode. FIGURE 2-7. Index Byte Format s

2) Transferring control from one module to another. This is ed address modes. Each Disp/Imm field may contain one or 9
done via the Call External Procedure (CXP) instruction. two displacements, or one immediate value. The size of a (Y
The format of a Link Table is given in Figure 25, A Link Displacement field is encoded with the top bits of that field, a

Table Entry for an external variable contains the 32-bit ad- as shgwn in Hgf”e 2-6, with the remaining pits inter;_)reted
dress of that variable. An entry for an external procedure asa signed '(two scomplement) value. The size ofan imme-
contains two 16-bit fields: Module and Offset. The Module ~ Giate value is determined from the Opcode field. Both Dis-
field contains the new MOD register contents for the mod- placement and Immediate fields are stored most significant
ule being entered. The Offset field is an unsigned number byte ﬁ.rSt' Note that this is different from the memory repre-
giving the position of the entry point relative to the new sentation of data (Sec. 2.1.4).

module’s Program Base pointer. Some instructions require additional, “implied” immediates
For further details of the functions of these tables, see the and/or displacements, apart from those associated with ad-

: ; dressing modes. Any such extensions appear at the end of
Series 32000 Instruction Set Reference Manual. the instruction, in the order that they appear within the list of

ENTRY |3 7] operands in the instruction definition (Sec. 2.2.3).
0 ABSOLUTE ADDRESS (VARIABLE) 2.2.2 Addressing Modes
; ABSOLUTE ADDRESS (ARASLE) The CPU generally accesses an operand by calculating its

Effective Address based on information available when the

operand is to be accessed. The method to be used in per-

2 OFF8ET MopuLE (PROCEDURE) forming this calculation is specified by the programmer as
J 1. an “addressing mode."”

TL/EE/8673-5 Addressing modes are designed to optimally support high-

FIGURE 2-5. A Sample LIink Table level language accesses to variables. In nearly all cases, a

variable access requires only one addressing mode, within

2.2INSTRUCTION SET the instruction that acts upon that variable. Extraneous data

2.2.1 General Instruction Format movement is therefore minimized.

Figure 2-6 shows the general format of a Series 32000 in- Addressing Modes fall into nine basic types:

struction. The Basic Instruction is one to thr.ee bytes long Reglster: The operand is available in one of the eight Gen-

and contains the Opcode and up to two 5-bit General Ad- eral Purpose Registers. In certain Slave Processor instruc-

dressing Mode (“Gen”) fields. Following the Basic Instruc- tions, an auxiliary set of eight registers may be referenced

tion field is a set of optional extensions, which may appear instead.

;:i;:sgdmg on tha instruction and the addressing modes se- Reglster Relative: A General Purpose Register contains an
. address to which is added a displacement value from the

Index Bytes appear when either or both Gen fields specify instruction, yielding the Effective Address of the operand in

Scaled Index. In this case, the Gen field specifies only the memory.

Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index-
ing. See Figure 2-7.

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select-

Memory Space. Identical to Register Relative above, ex-
cept that the register used is one of the dedicated registers
PC, SP, SB or FP. These registers point to data areas gen-
erally needed by high-level languages.

OPTIONAL BASIC
EXTENSIONS INSTRUCTION
Y
4 Y \
nlspzlmsm mspz]msm

IMPLIED INDEX INDEX GEN GEN
IMMEDIATE DISP DISP ADDR ADDR OPCODE
OPERANDY(S) BYTE 8YTe "“:05 M%"E

MM MM
—

TL/EE/8673-6
FIGURE 2-6. General Instruction Format

2111

NS32332-10/NS32332-15

2.0 Architectural Description (continued)

BYTE DISPLACEMENT: RANGE —64 TO +63
7 0

0 SIGNED DISPLACEMENT

WORD DISPLACEMENT: RANGE —8192 TO +8191
7 0

el
0
] Mww

DOUBLE WORD DISPLACEMENT:
RANGE —(229—224) to +(229—1)*

<

M

o

TL/EE/8673-8
FIGURE 2-8. Displacement Encodings

*Note: The pattern *“11100000” for the most significant byte of the dis-
placement is reserved by National for future enhancements.
Theretore, it should never be used by the user program. This
causes the lower limit of the displacement range to be
—(229-224) instead of —229,

Memory Relative: A pointer variable is found within the

memory space pointed to by the SP, SB or FP register. A

displacement is added to that pointer to generate the Effec-

tive Address of the operand.

Immediate: The operand is encoded within the instruction.

This addressing mode is not allowed if the operand is to be

written.

Absolute: The address of the operand is specified by a

displacement field in the instruction.

External: A pointer value is read from a specified entry of

the current Link Table. To this pointer value is added a dis-

placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SPO or
SP1) specifies the location of the operand. The operand is
pushed or popped, depending on whether it is written or
read.

Scaled Index: Although encoded as an addressing mode.
Scaled Indexing is an option on any addressing mode ex-
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen-
eral Purpose Register by 1, 2, 4 or 8 and adding it into the
total, yielding the final Effective Address of the operand.
Table 2-1 is a brief summary of the addressing modes. For a
complete description of their actions, see the Instruction Set
Reference Manual.

2.2.3 Instruction Set Summary
Table 2-2 presents a brief description of the Series 32000
instruction set. The Format column refers to the Instruction
Format tables (Appendix A). The Instruction column gives
the instruction as coded in assembly language, and the De-
scription column provides a short description of the function
provided by that instruction. Further details of the exact op-
erations performed by each instruction may be found in the
Instruction Set Reference Manual.
Notations:
i = Integer length suffix. B = Byte

W = Word

D = Double Word
f = Floating Point length suffix: F = Standard Floating

= Long Floating

gen = General operand. Any addressing mode can be
specified.
short = A 4-bit value encoded within the Basic Instruction
(see Appendix A for encodings).
imm = Implied immediate operand. An 8-bit value append-
ed after any addressing extensions.
disp = Displacement (addressing constant): 8, 16 or 32
bits. All three lengths legal.
reg = Any General Purpose Register: RO-R7.
areg = Any Dedicated/Address Register: SP, SB, FP,
MOD, INTBASE, PSR, US (bottom 8 PSR bits).
mreg = Any Memory Management Status/Control Regis-
ter.
creg = A Custom Slave Processor Register (Implementa-
tion Dependent).
cond = Any condition code, encoded as a 4-bit field within
the Basic Instruction (see Appendix A for encodings).

2-112

ENCODING
Reglster
00000
00001
00010
00011
00100
00101
00110
00111
Register Relative
01000
01001
01010
01011
01100
01101
01110
01111
Memory Relative
10000
10001
10010

Reserved
10011
Immediate
10100

Absolute
10101
External
10110

Top of Stack
10111

Memory Space
11000

11001

11010

11011

Scaled Index
11100

11101

11110

11111

2.0 Architectural Description (continued)

TABLE 2-1

NS32332 Addressing Modes

MODE

Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7

Register 0 relative
Register 1 relative
Register 2 relative
Register 3 relative
Register 4 relative
Register 5 relative
Register 6 relative
Register 7 relative

Frame memory relative
Stack memory relative
Static memory relative

(Reserved for Future Use)

Immediate

Absolute

External

Top of stack

Frame memory
Stack memory
Static memory
Program memory

Index, bytes

Index, words

Index, double words
Index, quad words

ASSEMBLER SYNTAX

RO or FO
R1orF1
R2orF2
R3 or F3
R4 or F4
R5 or F5
R6 or F6
R7 or F7

disp(R0)
disp(R1)
disp(R2)
disp(R3)
disp(R4)
disp(R5)
disp(R6)
disp(R7)

disp2(disp1(FP))
disp2(disp1(SP))
disp2(disp1(SB))

value

@disp

EXT (disp1) + disp2

TOS

disp(FP)
disp(SP)
disp(SB)
*+disp

mode[Rn:B]
mode[Rn:W]
mode[Rn:D]
mode[Rn:Q]

EFFECTIVE ADDRESS

None: Operand is in the specified
register

Disp + Register.

Disp2 + Pointer; Pointer found at
address Disp1 + Register. “SP”
is either SPO or SP1, as selected
in PSR.

None: Operand is input from
instruction queue.

Disp.

Disp2 + Pointer; Pointer is found

at Link Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Disp + Register; ““SP” is either
SPO or SP1, as selected in PSR.

EA (mode) + Rn.

EA (mode) + 2X Rn.

EA (mode) + 4X Rn.

EA (mode) + 8 X Rn.

‘Mode’ and ‘n’ are contained
within the Index Byte.

EA (mode) denotes the effective
address generated using mode.

2-113

G1-2EECESN/01-ZEECESN

NS32332-10/NS32332-15

2.0 Architectural Description (continued)

TABLE 2-2

Serles 32000 Instruction Set Summary

Operands
gen,gen
short,gen

. gen,gen,disp

gen,gen
gen,gen
gen,gen
gen,gen
gen,gen

Operands

gen,gen
short,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen

Operands

gen,gen
gen,gen

Operands

gen,gen
short,gen
gen,gen,disp

Operands

gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen

MOVES
Format Operation

4 MOVi

2 MovaQi

7 MOVMi

7 MOvzZBW

7 MovziD

7 MOVXBW

7 MOVXiD

4 ADDR
INTEGER ARITHMETIC
Format Operation

4 ADDI

2 ADDQiI

4 ADDCi

4 SUBI

4 SUBCi

6 NEGi

6 ABSi

7 MULi

7 QUOI

7 REMi

7 DIvi

7 MODi

7 MElIi

7 DEIi
PACKED DECIMAL (BCD) ARITHMETIC
Format Operation

6 ADDPI

6 SUBPI
INTEGER COMPARISON
Format Operation

4 CMPi

2 CMPQi

7 CMPMi
LOGICAL AND BOOLEAN
Format Operation

4 ANDi .

4 ORi

4 BICi

4 XORi

6 COMi

6 NOTi

2 Scondi

gen

Description

Move a value.

Extend and move a signed 4-bit constant.
Move Multiple: disp bytes (1 to 16).

Move with zero extension.

Move with zero extension.

Move with sign extension.

Move with sign extension.

Move Effective Address.

Description

Add.

Add signed 4-bit constant.
Add with carry.

Subtract.

Subtract with carry (borrow).
Negate (2's complement).
Take absolute value.

Multiply

Divide, rounding toward zero.
Remainder from QUO.
Divide, rounding down.
Remainder from DIV (Modulus).
Multiply to Extended Integer.
Divide Extended Integer.

Description

Add Packed.
Subtract Packed.

Description

Compare.
Compare to signed 4-bit constant.
Compare Multiple: disp bytes (1 to 16).

Description

Logical AND.

Logical OR.

Clear selected bits.

Logical Exclusive OR.

Complement all bits.

Boolean complement: LSB only.

Save condition code (cond) as a Boolean variable of size i.

2-114

=
. T wn
2.0 Architectural Description (continued) @
[x}
w
SHIFTS N
Format Operation Operands Description §
6 LSHi gen,gen Logical Shift, left or right. =
6 ASHi gen,gen Arithmetic Shift, left or right. 3
6 ROTi gen,gen Rotate, left or right. N
BITS g
Format Operation Operands Description 5.“
4 TBITi gen,gen . Test bit.
6 SBITi gen,gen Test and set bit.
6 SBITIi gen,gen Test and set bit, interlocked
6 CBITi gen,gen Test and clear bit.
6 CBITIi gen,gen Test and clear bit, interlocked.
6 IBITi gen,gen Test and invert bit.
8 FFSi gen,gen -Find first set bit
BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records
used in Pascal. “Extract” instructions read and align a bit field. ““Insert” instructions write a bit field from an aligned
source.

Format Operation Operands Description
8 EXTi reg,gen,gen,disp Extract bit field (array oriented).
8 INSI reg,gen,gen,disp Insert bit field (array oriented).
7 EXTSi gen,gen,imm,imm Extract bit field (short form).
7 INSSi gen,gen,imm,imm Insert bit field (short form).
8 CVTP reg,gen,gen Convert to Bit Field Pointer.
ARRAYS
Format Operation Operands Description
8 CHECKi reg,gen,gen Index bounds check.
8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays.
STRINGS
String instructions assign specific functions to the Gen- Options on all string instructions are:
eral Purpose Registers: B (Backward): Decrement string pointers after each step
R4 - Comparison Value rather than incrementing.
R3 - Translation Table Pointer U (Until match): End instruction if String 1 entry matches
R2 - String 2 Pointer R4.
R1 - String 1 Pointer W (While match): End instruction if String 1 entry does not

match R4.
All string instructions end when RO decrements to zero.

RO - Limit Count

Format Operation Operands Descriptions
5 MOVSi options Move String 1 to String 2.
MOVST options Move string, translating bytes.
5 CMPSi options Compare String 1 to String 2.
CMPST options Compare translating, String 1 bytes.
5 SKPSi options Skip over String 1 entries
SKPST options Skip, translating bytes for Until/While.

2-115

NS32332-10/NS32332-15

2.0 Architectural Description (continued)

Operands
gen

disp

disp

gen
short,gen,disp
gen

disp

disp

gen

[reg list],disp
[reg list]

disp

disp

disp

Operands

[reg list]
[reg list]
areg,gen
areg,gen
gen

gen

gen
[option list]

Operands

gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen

JUMPS AND LINKAGE
Format Operation
3 JUMP
0 BR
0 Becond
3 CASEi
2 ACBi
3 JSR
1 BSR
1 CXP
3 CXPD
1 SvC
1 FLAG
1 BPT
1 ENTER
1 EXIT
1 RET
1 RXP
1 RETT
1 RETI
CPU REGISTER MANIPULATION
Format Operation
1 SAVE
1 RESTORE
2 LPRi
2 SPRi
3 ADJSPi
3 BISPSRI
3 BICPSRi
5 SETCFG
FLOATING POINT
Format Operation
11 MOV
9 MOVLF
9 MOVFL
9 MOvif
9 ROUNDfi
9 TRUNCHi
9 FLOORfi
1 ADDf
11 SuBf
1 MULf
1" DIVt
1 CMPf
1 NEGf
1 ABSf
12 POLYf
12 DOTf
12 SCALBf
12 LOGBf
9 LFSR
9 SFSR

gen

Description

Jump.

Branch (PC Relative).

Conditional branch.

Multiway branch.

Add 4-bit constant and branch if non-zero.

Jump to subroutine.

Branch to subroutine.

Call external procedure.

Call external procedure using descriptor.

Supervisor Call.

Flag Trap.

Breakpoint Trap.

Save registers and allocate stack frame (Enter Procedure).
Restore registers and reclaim stack frame (Exit Procedure).
Return from subroutine.

Return from external procedure call.

Return from trap. (Privileged)

Return from interrupt. (Privileged)

Description

Save General Purpose Registers.

Restore General Purpose Registers.

Load Dedicated Register. (Privileged if PSR or INTBASE)
Store Dedicated Register. (Privileged if PSR or INTBASE)
Adjust Stack Pointer.

Set selected bits in PSR. (Privileged if not Byte length)
Clear selected bits in PSR. (Privileged if not Byte length)
Set Configuration Register. (Privileged)

Description

Move a Floating Point value.

Move and shorten a Long value to Standard.
Move and lengthen a Standard value to Long.
Convert any integer to Standard or Long Floating.
Convert to integer by rounding.

Convert to integer by truncating, toward zero.
Convert to largest integer less than or equal to value.
Add.

Subtract.

Multiply.

Divide.

Compare.

Negate.

Take absolute value.

Polynomial Step.

Dot Product.

Binary Scale.

Binary Log.

Load FSR.

Store FSR.

2-116

=
. . ae w
2.0 Architectural Description (continued) 8
W
W
MEMORY MANAGEMENT N
Format Operation Operands Description 3
=
14 LMR mreg,gen Load Memory Management Register. (Privileged) =
14 SMR mreg,gen Store Memory Management Register. (Privileged) 8
14 RDVAL gen Validate address for reading. (Privileged) B
14 WRVAL gen Validate address for writing. (Privileged) S
8 MOVSUi gen,gen Move a value from Supervisor 4
Space to User Space. (Privileged) o
8 MOVUSI gen,gen Move a value from User Space
to Supervisor Space. (Privileged)
MISCELLANEOUS
Format Operation Operands Description
1 NOP No Operation.
1 WAIT Wait for interrupt.
1 DIA Diagnose. Single-byte “Branch to Self” for hardware
breakpointing. Not for use in programming.
CUSTOM SLAVE
Format Operation Operands Description
15.5 CCALOc gen,gen Custom Calculate.
16.5 CCAL1c gen,gen
15.5 CCAL2¢ gen,gen
15.5 CCAL3c gen,gen
155 CMOVO0c gen,gen Custom Move.
15.5 CMOVic gen,gen
15.5 CMOVac gen,gen
15.5 CMOV3c gen,gen
15.5 CCMPOc gen,gen Custom Compare.
15.5 CCMP1ic gen,gen
15.1 CCVoci gen,gen - Custom Convert.
15.1 CCV1ici gen,gen
15.1 CCVaci gen,gen
161 CCVaic gen,gen
15.1 CCv4DQ gen,gen
15.1 CCcvsQb gen,gen
15.1 LCSR gen Load Custom Status Register.
15.1 SCSR gen Store Custom Status Register.
15.0 CATSTO gen Custom Address/Test. (Privileged)
15.0 CATST1 gen (Privileged)
15.0 LCR creg,gen Load Custom Register. (Privileged)
15.0 SCR creg,gen Store Custom Register. (Privileged)

2-117

NS32332-10/NS32332-15

3.0 Functional Description

The following is a functional description of the NS32332
CPU.

3.1 POWER AND GROUNDING

The NS32332 requires a single 5-volt power supply, applied
on 7 pins. The Logic Voltage pins (VocL1 and Vgcl2) sup-
ply the power to the on-chip logic. The Buffer Voltage pins
(Vceai to Vecas) supply the power to the output drivers of
the chip. The Logic Voltage pins and the Buffer Voltage pins
should be connected togsther by a power (Vcc) plane on
the printed circuit board.

The NS32332 grounding connections are made on 8 pins.
The Logic Ground pins (GNDL1 and GNDL2) are the ground
pins for the on-chip logic. The Buffer Ground pins (GNDB1
to GNDB6) are the ground pins for the output drivers of the
chip. The Logic Ground pins and the Buffer Ground pins
should be connected together by a ground plane on the
printed circuit board.

In addition to Vgg and Ground, the NS32332 CPU uses an
internally-generated negative voltage. It is necessary to filter
this voltage externally by attaching a pair of capacitors (Fig-
ure 3.1) from the BBG pin to Ground.

Recommended values for these are:

C1: 1 uF, Tantalum

C2: 1000 pF, Low inductance. This should be either a disc
or monolithic capacitor.

+5V
2
Veeut, Veet2
5 OTHER Vg
Veess-Veess | CONNECTIONS
(Vcc PLANE)
N$32332
i = sy
i i i
GNDL1, GNDL2 A
-l OTHER GROUND
GNDB1-GNDBG =@~ » CONNECTIONS
(GND PLANE)

TL/EE/8673-11
FIGURE 3-1. Recommended Supply Connections

3.2 CLOCKING

The NS32332 inputs clocking signals from the Timing Con-
trol Unit (TCU), which presents two non-overlapping phases
of a single clock frequency. These phases are called PHI1
(pin A7) and PHI2 (pin BB). Their relationship to each other
is shown in Figure 3-2.

Each rising edge of PHI1 defines a transition in the timing
state (“T-State”) of the CPU. One T-State represents the
execution of one microinstruction within the CPU, and/or
one step of an external bus transfer. See Sec. 4 for com-
plete specifications of PHI1 and PHI2.

[~=-ONE T-STATE'-{

MU
- DN

T !
\Non-ov:numna /

TL/EE/B673-9

FIGURE 3-2. Clock Timing Relationships

As the TCU presents signals with very fast transitions, it is
recommended that the conductors carrying PHI1 and PHI2
be kept as short as possible, and that they not be connect-
ed anywhere except from the TCU to the CPU and, if pres-
ent, the MMU. A TTL Clock signal (CTTL) is provided by the
TCU for all other clocking.

3.3 RESETTING

The RST/ABT pin serves both as a Reset for on-chip logic
and as the Abort input for Memory-Managed systems. For
its use as the Abort Command, see Sec. 3.5.2.

The DT/SDONE pin is sampled on the rising edge of PHI1,
one cycle before the reset signal is deasserted to select the
data timing during write cycles. If DT/SDONE is sampled
high, ADO-AD31 are floated during state T2 and the data is
output during state T3. This mode must be selected if an
MMU is used (Section 3.5). If DT/SDONE is sampled low,
the data is output during state T2. See Figure 3-7.

The CPU may be reset at any time by pulling the RST/ABT
pin low for at least 64 clock cycles. Upon detecting a reset,
the CPU terminates instruction processing, resets its inter-
nal logic, and clears the Program Counter (PC) and Proces-
sor Status Register (PSR) to all zeroes.

On application of power, RST/ABT must be held low for at
least 50 usec after Vg is stable. This is to ensure that all

(4

45V e

vee

"

LI LI

l B4CLOCK ___ |
CYCLES

REY/ABY

i

250 usec

TL/EE/8673-10

FIGURE 3-3. Power-on Reset Requirements

2-118

3.0 Functional Description (continued)

on-chip voltages are completely stable before operation.
Whenever a Reset is applied, it must also remain active for
not less than 64 clock cycles. See Figures 3-3 and 3-4.

The Timing Control Unit (TCU) provides circuitry to meet the
Resst requirements of the NS32332 CPU. Figure 3-5a
shows the recommended connections for a non-Memory-
Managed system. Figure 3-5b shows the connections for a
Memory-Managed system.

'G—- Z 64 CLOCK ————=|
CYCLES

TL/EE/8673-12
FIGURE 3-4. General Reset Timing

o
v

Vee
TCcu cPU
r-—-----——-——ﬁ l’
| b
| FESET >__D : E- : N ASTi ASTO RST/RBT
] [é R
R 4 ‘i |
EXTERNAL RESET ! j_ ! I
(OPTIONAL) } = ! = 2 50 usec
| I
RESET SWITCH SYSTEM RESET
(OPTIONAL)

TL/EE/8673-13

FIGURE 3-5a. Recommended Reset Connections, Non-Memory-Managed System

\/

i

C
TCU MMU CPU
Fe——————————— - ::
]] b3
[[ahatt | \ | . [o
| RESET > l’:; — ; RSTI ASTO ASTI RST/ABT RST/ABT
] . ,|$ A
| S S d | |
EXTERNAL RESET ! !
(OPTIONAL) { = | = = 50 usec
|
| W |
RESET SWITCH
(OPTIONAL)
TL/EE/8673-14
FIGURE 3-5b. Recommended Reset Connections, Memory-Managed System
3.4 BUS CYCLES difference between them is the 4-bit code placed on the Bus

The NS32332 CPU will perform Bus cycles for one of the
following reasons:

1) To write or read data to or from memory or peripheral
interface device. Peripheral input and output are memory
mapped in the Series 32000 family.

2) To fetch instructions into the 20-byte instruction queue.
This happens whenever the bus would otherwise be idle
and the queue is not already full.

3) To acknowledge an interrupt and allow external circuitry
to provide a vector number, or to acknowledge comple-
tion of an interrupt service routine.

4) To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 3 above are identi-

cal. For timing specifications, see Sec. 4. The only external

Status pins (STO-ST3). Slave Processor cycles differ in that
separate control signals are applied (Sec. 3.4.6).

For case 1 (only Read) and case 2, the NS32332 supports
Burst cycles which are suitable for memories that can han-
dle “nibble mode” accesses. (Sec. 3.4.2).

The sequence of events in a non-Slave, non-Burst Bus cy-
cle is shown in Figure 3-6 for a Read cycle, and Figure 3-7
for a Write cycle. The cases shown assume that the select-
ed memory or interface device is capable of communicating
with the CPU at full speed. If it is not, then cycle extension
may be requested through the RDY line (Sec. 3.4.1).

A full speed Bus cycle is performed in four cycles of the
PHI1 clock, labeled T1 through T4. Clock cycles not associ-
ated with a Bus cycle are designated Ti (for idle).

2-119

G1-2EECESN/0L-CEETESN

NS32332-10/NS32332-15

3.0 Functional Description (continued)

ADO-AD31

>
(72

STO-ST3

DDIN

BWO-BW1

ROY

-

NS32332 CPU BUS SIGNALS

3

T40RTi I T I T2 | T I T4 I TIORTI I

sl

[T

[]

L

ADDRES!
VALID

[\

b

—< NEXT ADC

\/

STA

TUS VALID

EXT STATUS

\

[T

|1 XZX

VALID

X

7

(VALID
/

| 72222722272

FIGURE 3-6. Read Cycle Timing

2

v

NNNY

TL/EE/8673-15

2-120

3.0 Functional Description (continued)

NS32332 CPU BUS SIGNALS

| T4ORT6| T | T2 I n I T4 | TIORTI l

PHI1

=TT T

r r
ADDRESS Y/ x
ADO-AD31 X VALID X —_——— DATA OUT NEXT ADDR
-
STO-ST3 STATUS VALID X NEXT STATUS

- =l
N =N 2 o)

VALID

G1-2EECZESN/OL-ZEETESN

BW0-BW1

| — |

FIGURE 3-7. Write Cycle Timing

TL/EE/8673-16

2-121

NS32332-10/NS32332-15

3.0 Functional Description (continued)
During T4 or Ti which preceed T1 of the current Bus cycle,
the CPU applies a Status Code on pins ST0-ST3. It also
provides a low-going pulse on the STS pin to indicate that
the status code is valid.

The ADS signal has the dual purpose of informing the exter-
nal circuitry that a Bus cycle is starting and of providing
control to an external latch for demultiplexing address bits
0-31 from ADO-AD31 pins. (See Figure 3-8.)

During this time, the control signal DDIN, which indicates
the direction of the transfer, and BEO-BE3 which indicate
which of the four bus bytes to be referenced, become valid.
Note that during Instruction Fetch cycles BEO-BE3 are all
active, but in operand Read or Write cycles they indicate the
byte(s) to be referenced.
Note: If a burst cycle occurs during an operand read, all the memory banks
should be enabled, during the burst cycle, regardless of BEn. The
CPU BEn lines, in this case, are valid in the middle of T3 of the burst
cycle—thus, there may not be enough time to selectively enable the
different memory banks, unless a WAIT state is added. See Figure
4-6.
During T2 the CPU floats ADO-AD31 lines unless
DT/SDONE is sampled low on the rising edge of reset and
the bus cycle is a write cycle. T2 is a time window to be
used for virtual to physical address translation by the Memo-
ry Management Unit, if virtual memory is used in the system.

The T3 state provides for access time requirements and it
occurs at least once in a bus cycle. In the middle of T3 on
the falling edge of PHI1, the RDY line is sampled to deter-
mine whether the bus cycle will be extended (Sec. 3.4.1).

If the CPU is performing a Read cycle, the Data Bus (ADO-
AD31) is sampled on the falling edge of PHI2 of the last T3
state. See Sec. 4. Data must, however, be held at least until
the beginning of T4. The T4 state finishes the Bus cycle.
Data from the CPU during Write cycles remains valid
throughout T4. Note that the Bus Status lines (ST0O-ST3)
change at the beginning of T4, anticipating the following bus
cycle (if any).

3.4.1 Cycle Extension

To allow sufficient strobe widths and access times for any
speed of memory or peripheral device, the NS32332 pro-
vides for extension of a bus cycle. Any type of bus cycle
except a Slave Processor cycle can be extended.

In Figures 3-7 and 3-8, note that during T3 all bus control
signals from the CPU and TCU are flat. Therefore, a bus
cycle can be cleanly extended by causing the T3 state to be
repeated. This is the purpose of the RDY (Ready) pin.

In the middie of T3 on the falling edge of PHI1, the RDY line
is sampled by the CPU. If RDY is high, the next T-state will
be T4, ending the bus cycle. If RDY is low, then another T3
state will be inserted and the RDY line wiil again be sampled
on the falling edge of PHI1. Each additional T3 state after
the first is referred to as a “WAIT STATE”. See Figure 3-9.

Figure 3-10 illustrates a typical Read cycle, with two WAIT
states requested through the RDY pin.

DOIN
D0-D31
ADO-AD31 BUFFER
NS32332
s BE0-BE3
BEG-BE3 +-
ADS

A2-A31

LATCH

TL/EE/8673-17

FIGURE 3-8. Bus Connections

3.0 Functional Description (continued)

T | T2 | (w?m | T3 I T4 I

~ LU
e | T LML

- |
7//{///// | 7

NEXT NEXT
STATE: STATE:
T3 T4

|
G1-CEETESN/OL-CEETESN

TL/EE/8673-18
FIGURE 3-9. RDY Pin Timing

NS32332 CPU BUS SIGNALS
PREV.CYCLE NEXT CYCLE

“oAT| T | T | wam | wam | ™ | T4 |TioRm|

o [[] LT LTS
~rlrrininin FLL
]) o S B 7 8 V7
[\ W
a
[T\ feT
- "
ol \

FIGURE 3-10. Extended Cycle Example

TL/EE/8673-19

2-123

NS32332-10/NS32332-15

3.0 Functional Description (continued)
3.4.2 Burst Cycles

The NS32332 is capable of performing Burst cycles in order
to increase the bus throughput. Burst is available in instruc-
tion Fetch cycles and operand Read cycles only. Burst is
not supported in operand Write cycles or Slave cycles.

The sequence of events for Burst cycles is shown in Figure
3-11. The cases shown assume that the selected memory is
capable of communicating with the CPU at full speed. If it is

| w il T2/Tmmu i3 i\

=L
1T

L
LT

not, then cycle extension may be requested through the
RDY line (Sec. 3.4.1).

A Burst cycle is composed of two parts. The first part is a
regular cycle (i.e. T1 through T4), in which the CPU outputs
the new status and asserts all the other relevant control
signals discussed in Sec. 3.4. In addition, the Burst Out Sig-
nal (BOUT) is activated by the CPU indicating that the CPU
can perform Burst cycles. If the selected memory allows

3 7] <] wo| o owmo| om|

-

[
SpEpEpEpEEENE
\J/

| \

m A\

NIBBLE # 1

T

AD0-AD31 [

DDt

3 4

TL/EE/8673-20

(a) Normal Termination of Burst

m T2/Tmmu l T3

~JLILIL

Ryl
W LALLM

[l

T3 T4 l'l’l oTi

1TLTL

\/

s \

\/

| \

NIBBLE #

AD0-AD31 [

- -.C;).-..-.CD,_T(::

TL/EE/8673-21

(b) External Termination of Burst
FIGURE 3-11. Burst Cycles (For Read Only)

2-124

3.0 Functional Description (continued)

Burst cycles, it will notify the CPU by activating the burst in
signal (BIN). BIN is sampled by the CPU in the middle of T3
on the falling edge of PHI1. If the memory does not allow
burst (BIN high), the cycle will terminate through T4 and
BOUT will go inactive immediately. If the memory allows
burst (BIN low), and the CPU has not deasserted BOUT, the
second part of the Burst cycle will be performed (see Figure
3-17) and BOUT will remain active until termination of the
Burst.

The second part consists of up to 3 nibbles. In each nibble,
a data item is read by the CPU. The duration of each nibble
is 2 clock cycles labeled T3 and T4.

The Burst chain will be terminated in the following cases:

1. The CPU has reached a 16 byte boundary i.e. the byte
address of the current nibble is x...x1111 (binary).

2. The CPU detects that the instructions being prefetched
(in Burst Mode) are no longer needed due to an alteration
of the flow of control. This happens, for example, when a
branch instruction is executed or an exception occurs.

Note: In 16-bit bus systems (see Sec. 3.4.7) the Burst chain will be terminat-
ed by the CPU on an B-byte boundary i.e. address x..x111 (binary) and
in 8-bit bus system on a 4-byte boundary i.e. address x...x11 (binary).

| m | 2 [3

3. The data operand has been completely read. This applies
to burst read cycles for non-aligned operands or when
the bus width is either 8 or 16 bits.

4, BIN, sampled in the current nibble’s last T3, is not active
any more. (See Figure 3.11b).

5. Bus Error or Bus Retry occurs (see Sec. 3.4.8).

6. A HOLD Request occurs.

Any nibble's T3 may be extended with WAIT states using

the RDY line as described in Sec. 3.4.2.

The control signals BOUT, ST0O-ST3, and DDIN remain sta-

ble during the Burst chain.

BEO-BES are adjusted for every nibble in operand cycles.

BOUT is initially set by the CPU according to the known bus

width. Its state may change in a subsequent T3 as a result

of a change in the bus width. Figure 3-12 shows the resuit-
ing BOUT timing.

Note: If the sel d memory is of handling burst transfers, it

should activate BIN regardless of the state of BOUT.

The reason is that BOUT may be activated by the CPU after the BIN
sampling time. The BOUT signal indicates when the CPU is going to
burst, and should not be interpreted as a ‘Burst Request’ signal.

| 13 | 13 | T4

|.IIII|I|_|.

4 1N I e N

2 1 | |

w [T\

(1)m[\

(z)m[

Note 1: CPU deasserts BOUT.
Note 2: CPU asserts BOUT.

TL/EE/8673-88

FIGURE 3-12. BOUT Timing Resulting from a Bus Width Change

2-125

G1-CEETESN/OL-CEETESN

NS32332-10/NS32332-15

3.0 Functional Description (continued)
3.4.3 Bus Status

The NS32332 CPU presents four bits of Bus Status informa-
tion on pins STO-ST3. The various combinations on these
pins indicate why the CPU is performing a bus cycle, or, if it
is idle on the bus, then why is it idle.

Referring to Figures 3-6 and 3-7, note that Bus Status leads
the corresponding Bus Cycle, going valid one clock cycle
before T1, and changing to the next state at T4. This allows
the system designer to fully decode the Bus Status and, if
desired, latch the decoded signals before ADS initiates the
Bus Cycle.
The Bus Status pins are interpreted as a four-bit value, with
STO the least significant bit. Their values decode as follows:
0000 - The bus is idle because the CPU does not yet
need to perform a bus access.

0001 - The bus is idle because the CPU is executing the
WAIT Instruction.

0010 - (Reserved for future use.)

0011 - The bus is idle because the CPU is waiting for a
Slave Processor to complete an instruction.

Interrupt Acknowledge, Master.

The CPU is performing a Read cycle. To ac-
knowledge receipt of a Non-Maskable Interrupt
(on NMI) it will read from address FFFFFF004g,
but will ignore any data provided. ’

To acknowledge receipt of a Maskable Interrupt
(on INT) it will read from address FFFFFE004g,
expecting a vector number to be provided from
the Master Interrupt Control Unit. if the vectoring
mode selected by the last SETCFG instruction
was Non-Vectored, then the CPU will ignore the
value it has read and will use a default vector
instead. See Sec. 3.4.5.

Interrupt Acknowledge, Cascaded.
The CPU is reading a vector number from a Cas-
caded Interrupt Control Unit. The address provid-

ed is the address of ICU’s Hardware Vector regis-
ter. See Sec. 3.4.6.

End of Interrupt, Master.

The CPU is performing a Read cycle to indicate
that it is executing a Return from Interrupt (RETI)
instruction. See Sec. 3.4.6.

End of Interrupt, Cascaded.

The CPU is reading from a Cascaded Interrupt
Control Unit to indicate that it is returning
(through RETI) from an interrupt service routine
requested by that unit. See Sec. 3.4.6.

0100 -

0101 -

0110 -

0111 -

1000 -

1001 -

1010 -

1011 -

1100 -

1101 -

1110 -

1111 -

Sequential Instruction Fetch.

The CPU is reading the next sequential word
from the instruction stream into the Instruction
Queue. It will do so whenever the bus would oth-
erwise be idle and the queus is not already full.

Non-Sequential Instruction Fetch.

The CPU is performing the first fetch of instruc-
tion code after the Instruction Queue is purged.
This will occur as a resuit of any jump or branch,
or any interrupt or trap, or execution of certain
instructions.

Data Transfer.

The CPU is reading or writing an operand of an
instruction.

Read RMW Operand.

The CPU is reading an operand which will subse-
quently be modified and rewritten. If memory pro-
tection circuitry would not allow the following
Write cycle, it must abort this cycle.

Read for Effective Address Calculation.

The CPU is reading information from memory in
order to determine the Effective Address of an
operand. This will occur whenever an instruction
uses the Memory Relative or External addressing
mode.

Transfer Slave Processor Operand.

The CPU is either transferring an instruction op-
erand to or from a Slave Processor, or it is issu-
ing the Operation Word of a Slave Processor in-
struction. See Sec. 3.9.1.

Read Slave Processor Status.

The CPU is reading a Status Word from a Slave
Processor. This occurs after the Slave Processor
has signalled completion of an instruction. The
transferred word tells the CPU whether a trap
should be taken, and in some instructions it pre-
sents new values for the CPU Processor Status
Register bits N, Z, L or F. See Sec. 3.9.1.
Broadcast Slave ID.

The CPU is initiating the execution of a Slave
Processor instruction. The ID Byte (first byte of
the instruction) is sent to all Slave Processors,
one of which will recognize it. From this point the
CPU is communicating with only one Slave Proc-
essor. See Sec. 3.9.1.

2-126

3.0 Functional Description (continued)
3.4.4 Data Access Sequences

The 32-bit address provided by the NS32332 is a byte ad-
dress; that is, it uniquely identifies one of up to 4 billion
eight-bit memory locations. An important feature of the
NS32332 is that the presence of a 32-bit data bus imposes
no restrictions on data alignment; any data item, regardless
of size, may be placed starting at any memory address. The
NS32332 provides special control signals. Byte Enable
(BEO-BEB3) which facilitate individual byte accessing on a
32-bit bus.

Memory is organized as four eight-bit banks, each bank re-
ceiving the double-word address (A2-A31) in parallel. One
bank, connected to Data Bus pins AD0O-AD7 is enabled
when BED is low. The second bank, connected to data bus
pins AD8-AD15 is enabled when BET is low. The third and
fourth banks are enabled by BEZ and BES, respectively.
See Figure 3-13.

BE3 BE2 BE1 BEO
8BITs | sBits | sBits | 8BITS

A2-A31

TL/EE/8673-22
FIGURE 3-13. Memory Interface

Since operands do not need to be aligned with respect to
the double-word bus access performed by the CPU, a given
double-word access can contain one, two, three, or four
bytes of the operand being addressed, and these bytes can
begin at various positions, as determined by A1, AO. Table
3-1 lists the 10 resulting access types.

TABLE 3-1

Bus Access Types

Type Bytes Accessed A1,A0 BE3

1 1 00 1

01
10
1
00
01
10
00
01
00

|

o_no_&_‘o_&_&_xog

BEZ2
1
1
0
1
1
0
0
0
0
0

COWONO GO A WN
BOWNDON = = 2
OO 4 O 2 O =
ooo-soo-n-no-am‘
ey

-y

Accesses of operands requiring more than one bus cycle
are performed sequentially, with no idle T-States separating
them. The number of bus cycles required to transfer an op-
erand depends on its size and its alignment. Table 3-2 lists
the bus cycles performed for each situation.

3.4.4.1 Bit Accesses

The Bit Instructions perform byte accesses to the byte con-
taining the designated bit. The Test and Set Bit instruction
(SBIT), for example, reads a byte, alters it, and rewrites it,
having changed the contents of one bit.

3.4.4.2 Bit Field Accesses

An access to a Bit Field in memory always generates a Dou-
ble-Word transfer at the address containing the least signifi-
cant bit of the field. The Double Word is read by an Extract
instruction; an Insert instruction reads a Double Word, modi-
fies it, and rewrites it.

3.4.4.3 Extending Multiple Accesses

The Extending Multiply Instruction (MEI) will return a result
which is twice the size in bytes of the operand it reads. If the
multiplicand is in memory, the most-significant half of the
result is written first (at the higher address), then the least-
significant half. This is done in order to support retry if this
instruction is aborted.

3.4.5 Instruction Fetches

Instructions for the NS32332 CPU are “prefetched”; that is,
they are input before being needed into the next available
entry of the twenty-byte Instruction Queue. The CPU per-
forms two types of Instruction Fetch cycles: Sequential and
Non-Sequential. These can be distinguished from each oth-
er by their differing status combinations on pins ST0-ST3
(Sec. 3.4.3).

A Sequential Fetch will be performed by the CPU whenever
the Data Bus would otherwise be idle and the Instruction
Queue is not currently full. Sequential Fetches are always
type 10 Read cycles (Table 3-1).

A Non-Sequential Fetch occurs as a result of any break in
the normally sequential flow of a program. Any jump or
branch instruction, a trap or an interrupt will cause the next
Instruction Fetch cycle to be Non-Sequential. In addition,
certain instructions flush the instruction queue, causing the
next instruction fetch to display Non-Sequential stetus. Only
the first bus cycle after a break displays Non-Sequential
status, and that cycle depends on the destination address.
If a non-sequential fetch is followed by additional sequential
fetches which are burst continuation of the non-sequential
fetch, then the Status Bus (ST0-ST3) remains the same.

Note 1: During instruction fetch cycles, BEO-BES are all active regardless
of the alignment.

Note 2: During Operand Access cycles BEO-BE3 are activated as if the bus
is 32 bits wide, regardless of the real width.

3.4.6 Interrupt Control Cycles

Activating the INT or NMI pin on the CPU will initiate one or
more bus cycles whose purpose is interrupt control rather
than the transfer of instructions or data. Execution of the
Return from Interrupt instruction (RETI) will also cause Inter-
rupt Control bus cycles. These differ from instruction or data
transfers only in the status presented on pins STO-ST3. All
Interrupt Contro! cycles are single-byte Read cycles.

This section describes only the Interrupt Control sequences
associated with each interrupt and with the return from its
service routine.

2-127

G1-CEETESN/0L-CEECESN

NS32332-10/NS32332-15

3.0 Functional Description (continued)

Cycle Type Address E3
A. Word at address ending with 11

1. 4 A 0
2 1 A+1 1

B. Double word at address ending with 01

1. 9 A 0
2, 1 A+3 1

C. Double word at address ending with 10

1. 7 A 0
2, 5 A+2 1

D. Double word at address ending with 11

1. 4 A 0
2. 8 A+1 1

E. Quad word at address ending with 00
1 10 A 0

Other bus cycles (instruction prefetch or slave) can occur here.

2. 10 A+4 0

F. Quad word at address ending with 01

TABLE 3-2
Access Sequences
Data Bus
o s N
E2 E{ BEO Byte 3 Byte 2 Byte 1 Byte 0
BYTE 1[BYTEO| « A
1 1 Byte 0 X X X
1 1 0 X X X Byte 1
leyTe 3[BYTE 2|BYTE 1]BYTEO| « A
0 0 1 Byte2 Byte1 Byte0 X
1 1 0 X X X Byte3
[eyTe 3|BYTE 2|BYTE 1{BYTEO| A
1 1 Byte1 Byte0 X X
1 0 0 X X Byte3 Byte2
leyTE 3|BYTE 2|BYTE 1]BYTEO| « A
1 1 1 Byte 0 X X X
0 0 0 X Byte3 Byte2 Bytet

|svTe 7|YTE 6|BYTE 5{BYTE 4| BYTE 3|BYTE 2|BYTE 1|BYTEO| « A
Byte 2

0 0 0 Byte 3 Byte 1 Byte 0

0 0 0 Byte 7 Byte 6 Byte 5 Byte 4

[BYTE 7[BYTE 6|BYTE 5]BYTE 4]BYTE 3|BYTE 2[BYTE 1]BYTEO| « A

1. 9 A 0 [¢] 0 1 Byte 2 Byte 1 Byte 0 X
2. 1 A+3 1 1 1 0 X X X Byte 3
Other bus cycles (instruction prefetch or slave) can occur here.

3. 9 A+4 0 0 0 1 Byte 6 Byte 5 Byte 4 X

4. 1 A+7 1 1 1 0 X X X Byte 7

G. Quad word at address ending with 10

[BvTE 7]BYTE 6|BYTE 5{BYTE 4|BYTE 3]BYTE 2|BYTE 1]BYTEO| « A

1. 7 A 0 0 1 1 Byte 1 Byte 0 X X

2. 5 A+2 1 1 0 0 X X Byte 3 Byte 2
Other bus cycles (instruction prefetch or slave) can occur here.

3. 7 A+4 0 0 1 1 Byte 5 Byte 4 X X
4. 5 A+6 1 1 0 0 X X Byte 7 Byto 6

H. Quad word at address ending with 11

[ByTe 7]BYTE 6|BYTE 5[BYTE 4|BYTE 3]BYTE 2]BYTE1]BYTEO| « A

1. 4 A 0 1 1 1 Byte 0 X X X

2. 8 A+1 1 0 0 0 X Byte 3 Byte 2 Byte 1

Other bus cycles (instruction prefetch or slave) can occur here.

1. 4 At+4 0 1 1 1 Byte 4 X X X

2. 8 A+5 1 0 1] 0 X Byte 7 Byte 6 Byte 5
X = Don’t Care

2-128

3.0 Functional Description (continued)

TABLE 3-3
Interrupt Sequences
Data Bus
4 N
Cycle Status Address DDIN BE3 BE2 BE1 BE0O Byte3 Byte2 Bytet Byte 0
A. Non-Maskable Interrupt Control Sequences
Interrupt Acknowledge
1 0100 FFFFFFO004g 0 1 1 1 0 X X X X
Interrupt Return
None: Performed through Return from Trap (RETT) instruction.
B. Non-Vectored Interrupt Control Sequences
Interrupt Acknowledge
1 0100 FFFFFEQO46 1] 1 1 1 0 X X X X
Interrupt Return
1 0110 FFFFFEQCO46 0 1 1 1 0 X X X X
C. Vectored Interrupt Sequences: Non-Cascaded.
Interrupt Acknowledge
1 0100 FFFFFEQ0O4¢ 0 1 1 1 0 X X X Vector:
Range: 0-127
Interrupt Return
1 0110 FFFFFEQ0O4g 0 1 1 1 0 X X X Vector: Same as
in Previous Int.
Ack. Cycle
D. Vectored Interrupt Sequences: Cascaded
Interrupt Acknowledge
1 0100 FFFFFEOO4g 0 1 1 1 0 X X X Cascade Index:
range —16to —1
(The CPU here uses the Cascade Index to find the Cascade Address.)
2 0101 Cascade 0 See Note Vector, range 9-255; on appropriate byte of
Address data bus.
Interrupt Return
1 0110 FFFFFEO0O4g 0 1 1 1 0 X X X Cascade Index:
Same asin
previous Int.
Ack. Cycle
(The CPU here uses the Cascade Index to find the Cascade Address)
2 0111 Cascade 0 See Note X X X X
Address
X = Don't Care

Note: BEO-BES signals will be activated according to the cascaded ICU address. The cycle type can be 1, 2, 3 or 4, when reading the interrupt vector. The vector

value can be in the range 0-255.

2-129

GL-2EETESN/0L-CEECESN

NS32332-10/NS32332-15

3.0 Functional Description (continued)
3.4.7 Dynamic Bus Configuration

The NS32332 interfaces to external data buses with 3 differ-
ent widths: 8-bit, 16-bit and 32-bit. The NS32332 can switch
from one bus width to another dynamically i.e. on a cycle by
cycle basis.

This feature allows the user to include in his system differ-
ent bus sizes for different purposes, like 8-bit bus for boot-
strap ROM and 32-bit bus for cache memory, etc.

In each memory cycle, the bus width is determined by the
inputs BWO and BW1.

Four combinations exist:

BW1 BWO
0 0 reserved
0 1 8-bit bus
1 0 16-bit bus
1 1 32-bit bus

The dynamic bus configuration is not applicable for slave
cycles (see Sec. 3.4.1).

The BWO-BW1 lines are sampled by the CPU in T3 with the
falling edge of PHI1 (see Figure 3-14).

| n |Tllemu| T3 I

|
Siglglgligip]

If the bus width didn’t change from the previous memory

cycle, the CPU terminates the cycle normally.

If the bus width of the current cycle is different from the bus

width of the previous cycle, then two WAIT states (see Sec.

3.4.1) must be inserted in order to let the CPU switch to the

new width.

The additional 2 WAIT states count from the moment BWO

BW1 change. This can be overlapped with the wait states

due to slow memories.

Note: BWO-BWH1 can only be changed during the first T3 state of a memory
access cycle. They should be externally latched and should not be
changed at any other time.

In write cycles, the appropriate data will be present on the

appropriate data lines. The CPU presents the data during T3

in a way that would fit any bus width.

If the operand being written is a byte, it will be duplicated on

the 4 bytes ADO-AD31 depending on the operand address:

AddressAO-1= 00 XX XX XX OP
01 XX XX OP OP
10 XX OP XX OP
11 OP XX OP OP

| , T2/Tmmu | 13 I

~(117 r

=[T\/

E
_r_r_rlLr
\/

TL/EE/8673~-23

FIGURE 3-14. Bus width changes. Two wait states are required after the signals BW0-BW1 change.

2-130

3.0 Functional Description (continued)

If the operand being written is a word, 4 cases exist. The
operand address can be x...x00 (binary) or x...x01 (binary) or
x..x10 or x...x11 (binary).

See the duplications for each case:

OPERAND STARTS HERE ——

op 0P
XX wen | wow
w0 o 00

oP opP opP
Low Low

1 10 01 00

op op oP 0P

HIGH | Low | HGH | Low
1 10 0 00
T—-
L N R U
) HIGH Low Low | Low
R
A1 AD 1 10 01 00
TL/EE/8673-25
OPERAND STARTS HERE ——
op op oP op
HIGH2 | HIBH1 | Low2 | Low
-
| op op op 0P oP
| HGH2 | HiGH1 | Low2 | tow1 | Low1
[N I
p 0P | op 0P op op oP
JHIGHZ | HGHT] Low2 | Low1 | Low2 | Lowd
U NP R
Tm=q==T---
1 0P | O OP oP X op oP
L HIGH2 | HIGH1 | LOW2 | LOW1 Low1 | Low1
—emdhmamden -
A1A0 1 10 0 00

TL/EE/8673-26
If the operand being written is a double word 4 cases exist:
The operand address can be x...x00 (binary) or x...x01 (bina-
ry) or x..x10 (binary) or x...x11 (binary).

See the duplications for each case:

Note that the organization of the operand described applies
to the initial part of the operand cycle. For instance, if the

CPU writes a double word operand to a 16-bit bus and the
operand address is x...x11 (binary) it needs three memory
cycles.

The description above applies to the first cycle. In the other
2 memory cycles belonging to the same operand, the data
will be presented on the data bus lines to fit 16-bit bus width
and take into account the operand length.

Example:

The CPU has to write a double word DDCCBBAA to address
HEX 987653 which is in a 16-bit bus area. In the first cycle,
the CPU does not know the width until T3 so it generates a
cycle to address 987653 which activates the BES line and
puts on the data bus AA XX AA AA (X = don't care). After
this cycle, the CPU knows it has a 16-bit bus and it gener-
ates a cycle to address 987654 which activates the BEO,
BE1 and BE2 lines and puts on the data bus XX XX CC BB.
The last cycle will address 987656, activate BE2, and put on
the data bus XX XX XX DD. The BEO~BE3 lines are always
activated as if the bus is 32-bit wide, regardless of BWO-
BW1 state.

The CPU does not support a change of the bus width during
a sequence of several memory references belonging to the
same operand e.g. nonaligned double word. In other words,
any operand should not be split between two memory
spaces having different bus widths.

Instruction Fetches do not fall in this category and an In-
struction Fetch can have its own bus width regardless of the
bus width in the previous cycle.

3.4.8 Bus Exceptions

Any bus cycle may have a bus error during its execution.
The error may be corrected during the current cycle or may
be incorrectable. The NS32332 can handle both types of
errors by means of BUS RETRY and BUS ERROR.

3.4.8.1 Bus Retry

If a bus error can be corrected, the CPU may be requested
to repeat the erroneous bus cycle. The request is done by
asserting the BRT (Bus Retry) signal.

The CPU response to Bus Retry depends on the cycle type:

Instruction Fetch Cycle—If the RETRY occurs during an
instruction fetch, the fetch cycle will be retried as soon as
possible. If the RETRY is requested during a burst chain,
the burst is stopped and the fetch is retried. The only delay
in retrying the instruction fetch may result from pending op-
erand requests (and, of course, from hold or wait requests).
The fetch cycle will be retried only if there are no more than
four bytes in the queus.

Operand Read Cycle—If the RETRY occurs on an operand
read, the bus cycle is inmediately repeated. !f the data read
Is “multiple” e.g. non-aligned, only the problematic part will
be repeated. For instance, if the cycle is a non-aligned dou-
ble word and the second half failed, only the second part
will be repeated. The same applies for a RETRY occurring
during a burst chain. The repeated cycle will begin where
the read operand failed (rather than the first address of the
burst) and will finish the original burst.

2-131

GI-CEEZESN/OL-CEECESN

NS32332-10/NS32332-15

3.0 Functional Description (continued)

Operand Write Cycle—If the RETRY occurs on a write, the
bus cycle is immediately repeated. If the operand write is
“multiple” e.g. non-aligned, only the problematic part will be
repeated. For instance, if the cycle is a non-aligned double
word and the second half failed, only the second part will be
repeated.

A Bus Retry is requested by activating the BRT line (see
Figure 3-15). BRT is sampled by the CPU during T3 on the
falling edge of PHI. If BRT is inactive, the cycle will be
terminated in a regular way. In this case BRT must also be
kept inactive during T4. If BRT is active, BRT will be sam-
pled again during T4 on the falling edge of PHI1. If BRT is
inactive, the cycle will be terminated in a regular way. If BRT
is active, T4 will be followed by an idle state and the

| 1 | n

|

| 127em | W@ | T

cycle will be repeated, i.e. a new T4 for setting the Status
Bus and issuing STS and then T1 through T4 will be per-
formed.

Although the decision about Retry is taken by the CPU on
T4, BRT must have an early activation in T3 as described
above in order to prevent the internal pipeline to advance.
Holding the pipeline allows the repeated cycle to override
the original one. If BRT is activated only in T3 and not in T4,
there might be one cycle penalty in the performance of the
execution unit in operand read cycles.

Retry is applicable for regular memory cycles and burst cy-
cles, but not for Slave cycles.

| mioam |

|

LTIt
\/

\/

o T\

\/

TL/EE/8673-27

(a) Bus Cycle Not Retried

I T4 I T | T2/Tmmu | T3 | T4 I T I TA l n l T2/Tmmu |

|

(LI L

RETRIED CYCLE

iy
\Y;

sTs[T

|

ol

\/

TL/EE/8673-28

(b) Bus Cycle Retried
FIGURE 3-15. Bus Cycle Retry

2-132

3.0 Functional Description (continued)
3.4.8.2 Bus Error

If a Bus Error is incorrectable the CPU may be requested to
abort the current process and branch to an appropriate rou-
tine to handle the error. The request is performed by activat-
ing the BER signal.

BER is sampled by the CPU during T4 on the falling edge of
PHI1. If BER is active the bus will go to Tidle after T4 and
the CPU will jump to the Bus Error handler (see Sec. 3.8).

The CPU response to Bus Error depends on the cycle type:

Instruction Fetch Cycles—If the bus error occurs on an
instruction fetch, additional fetches are inhibited including
the one which failed. If, after inhibiting instruction fetches,
some operand cycles are still pending within the CPU, they
are executed normally, delaying the access to the bus error
exception. If and when the internal instruction queus be-
comes empty, the CPU will enter the BUS ERROR excep-
tion. This arrangement enables the CPU to ignore bus errors
which belong to fetch ahead cycles if these fetches are not
to be used as a result of a jump.

Operand Read Cycles—If the bus error occurs on an oper-

and read, the bus error is immediately accepted, and the
CPU enters the BUS ERROR exception.

Operand Write Cycles—If the bus error occurs on an oper-
and write, the exception is immediately accepted.

Note 1: When a bus error occurs, the instruction that caused the error s
generally not re-executable.

The process that was being executed should either be aborted or
should be restarted from the last checkpoint.

Note 2: Bus error has top priority and is accepted even during the acknow!-
edge sequence of another CPU exception (i.e. Abort, Interrupt, etc.).

1t is the responsibility of the user software to detect such an occur-
ence and to take the appropriate corrective actions.
3.4.8.3 Fatal Bus Error

As previously mentioned, the CPU response to a bus error is
to interrupt the current activity and enter the error routine.
An exception to this rule occurs when a bus error is sig-
nalled to the CPU during the acknowledge of a previous bus
error. In this case the second error is interpreted by the CPU
as a fatal bus error.

The CPU will respond to this event by halting execution and

floating ADS, BEO-BES, DDIN, STS and AD0O-AD31.

The Halt condition is indicated by the setting of STO-ST3 to
zero and by the assertion of MC/EXS for more than one
clock cycle (see Sec. 4.1.3).

The CPU can exit this condition only through a hardware
reset.

’ T4 | T | T2/Tmmu I T3 | T4 ' Ti Ti I

o LT

L

UL

=iily
\/

n
/

T\

/

TL/EE/8673~30

FIGURE 3-16. Bus Error During Read or Write Cycle

G1-2EECESN/0L-CEECESN

NS32332-10/NS32332-15

3.0 Functional Description (continued)

3.4.9 Slave Processor Communication

The SPC pin is used as the data strobe for Slave Processor
transfers. In this role, it is referred to as Slave Processor
Control (SPC). In a Slave Processor bus cycle, data is trans-
ferred on the Data Bus and the status lines (STO-ST3) are
monitored by each Slave Processor in order to determine
the type of transfer being performed. SPC is bidirectional,
but is driven by the CPU during all Slave Processor bus
cycles. See Sec. 3.9 for full protocol sequences.

PREV. CYCLE
l TaorTi kA

w [T

3

ADO-AD31 <,::> bo-n31
sPc SPC
SLAVE
ng:?fz PROCESSOR
ST0-ST3 ST0-$T3
7 /SO0NE SOONE

TL/EE/8673-31

FIGURE 3-17. Slave Processor Connections

NEXT CYCLE
TIORTI |

alis

e (LTI

[]

(72

PC i / \L

/

1)

ADO-AD31 i 2%4#~<DATA IN

t)]

NEXT

AT

ST0-ST3 :Z% VALID

x NEXT STATUS

\/

= [
BV 7%

\/
=t

Notes:
(1) CPU samples Data Bus here.
(2) Slave Processor samples CPU Status here.

FIGURE 3-18. CPU Read from Slave Processor

TL/EE/8673-32

2-134

3.0 Functional Description (continued)
3.4.9.1 Slave Processor Bus Cycles

A Slave Processor bus cycle always takes exactly two clock
cycles, labeled T1 and T4 (see Figures 3-18 and 3-19). Dur-
ing a Read cycle, SPC is active from the beginning of T1 to
the beginning of T4, and the data is sampled at the end of
T1. The Cycle Status pins lead the cycle by one clock peri-
od, and are sampled at the leading edge of SPC. During a
Wirite cycle, the CPU applies data and activates SPC at T1,
removing SPC at T4. The Slave Processor latches status on
the leading edge of SPC and latches data on the trailing
edge.

The CPU does not pulse the address (ADS) and status
(8T3) strobes during a slave protocol. The direction of a
transfer is determined by the sequence (“protocol”) estab-
lished by the Instruction under execution; but the CPU indi-
cates the direction on the DDIN pin for hardware debugging
purposes.

3.4.9.2 Slave Operand Transfer Sequences

A Slave Processor operand is transferred in one or more
slave operand cycles. The NS32332 supports two slave
protocols which can be selected by the configuration regis-
ter (CFQ).

PREV.CYCLE

| TaomT T

w [T

1. The regular Slave protocol is fully compatible with
NS32032, NS32016 and NS32008 slave protocols.

In this protocol the NS32332 uses only the two least sig-
nificant bytes of the data bus for slave cycles. This allows
the NS32332 CPU to work with the current slaves (like
NS32082, NS32081 etc.)

A byte operand is transferred on the least significant byte
of the data bus (AD0O-AD15).

A double word is transferred in a consecutive pair of bus
cycles least significant word first. A quadword is trans-
ferred in two pairs of slave cycles.

2. The fast slave protocol is unique to the NS32332 CPU. In

this protocol the NS32332 uses the full width of the data
bus (ADO-AD31) for slave cycles.
A byte operand Is transferred on the least significant byte
of the data bus (ADO-AD7), a word operand is trans-
ferred on bits ADO-AD15 and a double word operand is
transferred on bits AD0-AD31. A quad word Is trans-
ferred in two pairs of slave cycles with other bus cycles
possibly occurring between them.

NEXT CYCLE
TIORTI |

LT

sPc /

)f__

(1)
X NEXT

DATA OUT

X NEXT STATUS

\/

o001 | S,
i jo
ST0-ST3 Z% VALID
r
STS
T
ADS

Note:
(1) Arrows indicate points at which the Slave Processor samples.

W}
Nz

TL/EE/8673-33

FIGURE 3-19. CPU Write to Slave Processor

2-135

G1-2EEZESN/OL-CEECESN

NS32332-10/NS32332-15

3.0 Functional Description (continued)
3.5 MEMORY MANAGEMENT OPTION

The NS32332 CPU, in conjunction with the Memory Man-
agement Unit (MMU), provides full support for address
translation, memory protection, and memory allocation
techniques up to and including Virtual Memory.

When an MMU is used, the states T2 and TMMU are over-

lapped. During this time the CPU places AD0O-AD31 into the

TRI-STATE mode, allowing the MMU to assert the translat-

ed address and issue the physical address strobe PAV. Fig-

ure 3-20 shows the Bus Cycle timing with address transla-
tion.

Note 1: If an NS32382 MMU is used, the CPU can be selected to output
data during write cycles in state T2, by forcing DT/SDONE low dur-
ing reset. This can be done because the NS32382 uses a separate
physical address bus.

However, if a write cycle causes an MMU page table lookup, the
CPU data will be valid in state T3. After FLT is deasserted, regard-
less of the data timing selected.

DT/SDONE must always be forced high during reset if an NS32082
MMU is used sincs, in this case, no separate physical address bus
is provided.

Note 2: If an NS32082 MMU is used, in order for it to operate properly, it
must be set to the 32-Bit mode by forcing a A24/HBF low during
reset. In this mode the bus lines AD16-AD24 are floated after the
MMU address has been latched, since they are used by the CPU to
transfer data.

3.5.1 The FLT (Float) Pin

The FLT signal is used by the CPU for address translation
support. Activating FLT during Tmmu causes the CPU to
wait longer than Tmmu for address translation and valida-
tion. This feature is used occasionally by the MMU in order
to update its Translation Lookaside Buffer (TLB) from page
tables in memory, or to update certain status bits within
them.

Figure 3-21 shows the effect of FLT. Upon sampling FLT

low, late in Tmmu, the CPU enters idle T-States (Tf) during
which it:

1) Sets AD0-AD31, and DDIN to the TRI-STATE condition
(“floating”).

2) Suspends further internal processing of the current in-
struction. This ensures that the current instruction re-
mains abortable with retry. (See RST/ABT description.)

The above conditions remain in effect until FLT again goes

high. See Sec. 4.

3.5.2 Aborting Bus Cycles

The RST/ABT pin, apart from its Reset function (Sec. 3.3),

also serves as the means to “abort”, or cancel, a bus cycle

and the instruction, if any, which initiated it. An Abort re-

quest is distinguished from a Reset in that the RST/ABT pin

is held active for only one clock cycle.

If RST/ABT is pulled low during Tmmu or Tf, this signals

that the cycle must be aborted. Since it is the MMU PAV

signal which triggers a physical cycle, the rest of the system

remains unaware that a cycle was started.

The MMU will abort a bus cycle for either of two reasons:

1) The CPU is attempting to access a virtual address which
is not currently resident in physical memory. The refer-
enced page must be brought into physical memory from
mass storage to make it accessible to the CPU.

2) The CPU is attempting to perform an access which is not
allowed by the protection level assigned to that page.

When a bus cycle is aborted by the MMU, the instruction
that caused it to occur is also aborted in such a manner that
it is guaranteed re-executable later.

Note: To guarantes correct instruction reexecution, Bit M in the CFG Regis-

ter must be set.
n T2/Tmmu] 4 TIOR T

| LT
L TULTUL T
Sl Y S CY N

= T\/

O

~

TL/EE/8673-87
FIGURE 3-20. Read (Write) Cycle with
Address Translation

3.5.2.1 Instruction Abort

Upon aborting an instruction, the CPU immediately inter-
rupts the instruction and performs an abort acknowledge
using the ABT vector in the Interrupt Table (see Sec. 3.8).
The Return Address pushed on the Interrupt Stack is the
address of the aborted instruction, so that a Return from
Trap (RETT) instruction will automatically retry it.

The one exception to this sequence occurs if the aborted
bus cycle was an instruction prefetch. If so, it is not yet
certain that the aborted prefetched code is to be executed.
Instead of causing an interrupt, the CPU only aborts the bus
cycle, and stops prefetching. If the information in the In-
struction Queue runs out, meaning that the instruction will
actually be executed, the Abort will occur, in effect aborting
the instruction that was being fetched.

3.5.2.2 Hardware Considerations

In order to guarantee instruction retry, certain rules must be

followed in applying an Abort to the CPU. These rules are

followed by the Memory Management Unit.

1) If FLT has not been applied to the CPU, the Abort pulse
must occur during Tmmu.

3.0 Functional Description (continued)

2) If FLT has been applied to the CPU, the Abort pulse must
be applied before the T-State in which FLT goes inactive.
The CPU will not actually respond to the Abort command
until FLT is removed.

3) The Write half of a Read-Modify-Write operand access
may not be aborted. The CPU guarantees that this will
never be necessary for Memory Management functions
by applying a special RMW status (Status Code 1011)
during the Read half of the access. When the CPU pres-
ents RMW status, that cycle must be aborted if it would
be illegal to write to any of the accessed addresses.

If RST/ABT is pulsed at any time other than as indicated
above, it will abort either the instruction currently under exe-
cution or the next instruction and will act as a very high-pri-
ority interrupt. However, the program that was running at the
time is not guaranteed recoverable.

3.6 BUS ACCESS CONTROL

The NS32332 CPU has the capability of relinquishing its
access to the bus upon request from a DMA device or an-
other CPU. This capability is implemented on the HOLD
(Hold Request) and HLDA (Hold Acknowledge) pins. By as-
serting HOLD low, an external device requests access to
the bus. On receipt of HLDA from the CPU, the device may
perform bus cycles, as the CPU at this point has set the

LT LT
e RER MM
ADO-AD31* [Z@>----------------._--- _

o |

'~

|\
77077

FT

—{
JJ

)

VALID

VALID

]
=]
z

VALID

[
[
[

NN
>

)_____‘

----- I

VALID

BEO-BE3

VALID

*See MMU data sheet for details on physical address timing and MMU initiated Bus cycles.

TL/EE/8673-34

FIGURE 3-21. FLT Timing

2-137

GL-¢EECESN/0L-CEECESN

NS32332-10/NS32332-15

3.0 Functional Description (continued)

ADO-AD31, ADS, STS, DDIN and BEO-BES pins to the
TRI-STATE condition. To return control of the bus to the
CPU, the device sets HOLD inactive, and the CPU acknowl-
edges return of the bus by setting HLDA inactive.

How quickly the CPU releases the bus depends on whether
it is idle on the bus at the time the HOLD request is made,
as the CPU must always complete the current bus cycle.
Figure 3-22 shows the timing sequence when the CPU is
idle. In this cass, the CPU grants the bus during the immedi-
ately following clock cycle. Figure 3-23 shows the sequence
if the CPU is using the bus at the time that the HOLD re-

i

Ti

R
UL

]

quest is made. If the request is made during or before the
clock cycle shown (two clock cycles before T4), the CPU
will release the bus during the clock cycle following T4. If
the request occurs closer to T4, the CPU may already have
decided to initiate another bus cycle. In that case it will not
grant the bus until after the next T4 state. Note that this
situation will also occur if the CPU is idle on the bus but has
initiated a bus cycle internally.

In a Memory-Managed system, the HLDA signal is connect-
ed in a daisy-chain through the MMU, so that the MMU can
release the bus if it is using it.

T | Ti ' TIOI'ITlI TIORTY I

L L

1

glipily

HOLD

[
]
|

p

P\ N
T\

HLDA

DDIN

AFFECTED SIGNALS

PREVIOUS

[
[
[

//////A %V//////V// NEXT STATUS

TL/EE/8673-35

FIGURE 3-22. HOLD Timing, Bus Initially Idle

2-138

3.0 Functional Description (continued)
3.7 INSTRUCTION STATUS

In addition to the four bits of Bus Cycle status (ST0-ST3),
the NS32332 CPU also presents Instruction Status informa-
tion on four separate pins. These pins differ from ST0O-ST3
in that they are synchronous to the CPU's internal instruc-
tion execution section rather than to its bus interface sec-
tion.

PFS (Program Flow Status) is pulsed low as each instruction
begins execution. It is intended for debugging purposes.
U/S originates from the U bit of the Processor Status Regis-
ter, and indicates whether the CPU Is currently running in

mapping, protection, and debugging purposes. U/S line Is
updated every T4.

TLO (Interlocked Operation) is activated during an SBITI (Set
Bit, Interlocked) or CBITI (Clear Bit, Interlocked) instruction.
It is made available to external bus arbitration circuitry in
order to allow these instructions to implement the sema-
phore primitive operations for multi-processor communica-
tion and resource sharing.

While TLO is active, the CPU inhibits instruction fetches. In
order to prevent MMU cycles during ILO, the CPU executes
a dummy Read cycle with status code 1011 (RMW) prior to

S1-C2EEZESN/0L-CEECTESN

activating ILO. Thereafter, ILO is activated and the Read is
performed again but with status code 1010 (operand trans-
fer). Refer to Figure 3-24.

User or Supervisor mode. It is sampled by the MMU for

l T2ORT3 | n | T4 | Ti Ti ' Ti | TIORT4 | TIORTY |

[LT

LT T T P P P
ma T\ |/

HLDA
\ ;

[

)
AFFECTED SIGNALS
57 --_-,;g.__..____..___../\ /
oS = S A | _/

VALID)—--—---“‘———‘J-—___.W____ L/

L

[

[\ e
=2 o

L

[

N /bl
VM e s e e R

G\

AN

TL/EE/8673-38
FIGURE 3-23. HOLD Timing, Bus Initially Not Idle

2-139

NS32332-10/NS32332-15

3.0 Functional Description (continued)

MC/EXS (Multiple Cycle/Exception Status) is activated dur- MC/EXS is also activated during the first non-sequential in-
ing the access of the first part of an operand that crosses a struction fetch (status code 1001) following an abort, and
double-word address boundary. The activation of this signal when the CPU enters the idle state (Status Code 0000) fol-
is independent of the selected bus width. Its timing is shown lowing a fatal bus error.

in Figure 3-25. The MMU or other external circuitry can use
it as an early indication of a CPU access to an operand that
crosses a page boundary.

| IZITmmu TZ/Tmmu

WL L n
S i s
o\ LY,
T\ Y

READ INTERLOCKED WRITE INTERLOCKED

=T\
«T\ T

TL/EE/8673-37

FIGURE 3-24.1LO Timing

|T1|Tz|rs

| MMM AL N

-
ry

|n

[T
L

457

nnnnmnnn
m[_ _/ |
SV \/ \J/
- e | T T

I TL/EE/8673-38
FIGURE 3-25. Non-aligned Write Cycle—MC/EXS Timing

2-140

3.0 Functional Description (continued)

3.8 NS32332 INTERRUPT STRUCTURE Counter (PC), the Processor Status Register (PSR) and
TNT, on which maskable interrupts may be requested, the currently-selected Stack Pointer (SP). A copé of the
= . N PSR is made, and the PSR is then set to reflect Supervi-
ggﬂ Iégg which non-maskable interrupts may be request sor Mode and selection of the Interrupt Stack.

I X 2) Vector Acquisition.
HST/ABT'. Wh'c!’ may l?e used to abort a bus cycle and A Vector is either obtained from the Data Bus or is sup-
any associated instruction. See Sec. 3.5.2.

.) plied by default.
In addition there is a set of internally-generated “traps”

GL-2EECESN/OL-CEECESN

h X . 3) Service Call.

which cause interrupt service to be performed as a result X X . X

either of exceptional conditions (e.g., attempted division by The Vector is used as an index into the Interrupt Dispatch

zero) or of specific instructions whose purpose is to cause a Table, whose base address is taken from the CPU Inter-

trap to occur (e.g., the Supervisor Call instruction). rupt Base (INTBASE) Register. See Figure 3-26. A 32-bit
External Procedure Descriptor is read from the table en-

3.8.1 General Interrupt/Trap Sequence try, and an External Procedure Call is performed using it.

Upon receipt of an interrupt or trap request, the CPU goes The MOD Register (16 bits) and Program Counter (32

through three major steps: bits) are pushed on the Interrupt Stack.

1) Adjustment of Registers.

Depending on the source of the interrupt or trap, the CPU
may restore and/or adjust the contents of the Program

la 4
MEMORY | of”
NVI NON-VECTORED INTERRUPT
CASCADE ADDR 0
= NMI NON-MASKABLE INTERRUPT
CASCADE TABLE ﬁ:: .
2 ABT ABORT
CASCADE ADDR 14 SLAVE SLAVE PROCESSOR TRAP
INTERRUPT BASE CASCADE ADDR 15 ILL ILLEGAL OPERATION TRAP
REGISTER L FIXEDINTERRUPTS L, 5| sve SUPERVISOR CALL TRAP
> AND TRAPS N~
L VECTORED | DISPATCHTABLE 41 ovz " | ovioe BY zErRO TRAR
DTERRLPTS T 7| FLG FLAG TRAP
A
8| BPY BREAKPOINT TRAP
9 TRC TRACE TRAP
10{ UND UNDEFINEDINSTRUCTION TRAP
11| RESERVED
12| BER BUS ERROR
13-15 A RESERVED -
16 VECTORED
INTERRUPTS
A

TL/EE/8673-39
FIGURE 3-26. Interrupt Dispatch Table

2-141

NS32332-10/NS32332-15

3.0 Functional Description (continued)

This process is illustrated in Figure 3-27, from the viewpoint of the programmer.

(PUSH)
RETURN ADDRESS a2 BITS
STATUS MODULE 32BITS
(PUSH)
PSR MoD INTERRUPT
STACK
.
: :
: :
A —
CASCADE TABLE
INTBASE REGISTER
I INTERRUPT BASE 1| DISPATCH
TABLE
[t —@—¢
DESCRIPTOR (32 BITS)
-
DESCRIPTOR
16 16
OFFSET MODULE
0
MOD REGISTER MODULE TABLE
NEW MODULE
MODULE TABLE ENTRY
MODULE TABLE ENTRY
32
STATIC BASE POINTER —
LINK BASE POINTER
® PROGRAM BASE POINTER
(RESERVED)
PROGRAM COUNTER SBREGISTER
;—l_.. ENTRY POINT ADDRESS J NEW STATIC BASE

FIGURE 3-27. Interrupt/Trap Service Routine Calling Sequence

TL/EE/8673-40

TL/EE/8673-41

2-142

3.0 Functional Description (continued)
3.8.2 Interrupt/Trap Return

To return control to an interrupted program, one of two in-
structions is used. The RETT (Return from Trap) instruction
(Figure 3-28) restores the PSR, MOD, PC and SB registers
to their previous contents and, since traps are often used
deliberately as a call mechanism for Supervisor Mode pro-
cedures, it also discards a specified number of bytes from
the original stack as surplus parameter space. RETT is used
to return from any trap or interrupt except the Maskable
Interrupt. For this, the RETI (Return from Interrupt) instruc-
tion is used, which also informs any external Interrupt Con-
trol Units that interrupt service has completed. Since inter-
rupts are generally asynchronous external events, RETI
does not pop parameters. See Figure 3-29.

3.8.3 Maskable iInterrupts (The INT Pin)
The INT pin is a level-sensitive input. A continuous low level

put is maskable, and is therefore enabled to generate inter-
rupt requests only while the Processor Status Register | bit
is set. The | bit is automatically cleared during service of an
INT, NMI or Abort request, and is restored to its original
setting upon return from the interrupt service routine via the
RETT or RETI instruction.

The INT pin may be configured via the SETCFG instruction
as either Non-Vectored (CFG Register bit | = 0) or Vec-
tored (bit | = 1).

3.8.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT
pin will cause an Interrupt Acknowledge bus cycle, but the
CPU will ignore any value read from the bus and use instead
a default vector of zero. This mode is useful for small sys-
tems in which hardware interrupt prioritization is unneces-

G1-C2EETESN/OL-2EECESN

| s S1inp v sary.
is allowed for generating multiple interrupt requests. The in-
PROGRAM COUNTER
{POP)
RETURN ADDRESS 32BITS
(POP)
STATUS MODULE 32B1TS
PSR Mop INTERRUPT
H STACK H
. L]
°
MODULE
TABLE
MODULE TABLE ENTRY
7
MODULE TABLE ENTRY
STATICBASEPOINTER ~ —
LINK BASE POINTER
PROGRAM BASE POINTER
(RESERVED)
PARAMETERS
n
BYTES
SB REGISTER
| STATIC BASE STACK SELECTED
IN NEWLY-
POPPED PSR.
H H
. .
. .
POP AND
DISCARD

TL/EE/8673-42
FIGURE 3-28. Return from Trap (RETT n) Instruction Flow

2-143

NS32332-10/NS32332-15

3.0 Functional Description (continued)

“END OF INTERRUPT"

BUSCYCLE
INTERRUPT
CONTROL
UNIT
PROGRAM COUNTER
1 (POP)
L RETURN ADDRESS |
] (POP)
L STATUS I MODULE |
PSR MOD
INTERRUPT
STACK
.
. .
L L]
]
MODULE
TABLE
MODULE TABLE ENTRY|
J
MODULE TABLE ENTRY
STATIC BASE POINTER =
LINK BASE POINTER
PROGRAM BASE POINTER
(RESERVED)
STATIC BASE
SBREGISTER

TL/EE/B673-43

FIGURE 3-29. Return from Interrupt (RETI) Instruction Flow

2-144

3.0 Functional Description (continued)

3.8.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control
Unit (ICU) to prioritize many interrupt requests. Upon receipt
of an interrupt request on the INT pin, the CPU performs an
“Interrupt Acknowledge, Master” bus cycle (Sec. 3.4.3)
reading a vector value from the low-order byte of the Data
Bus. This vector is then used as an index into the Dispatch
Table in order to find the External Procedure Descriptor for
the proper interrupt service procedure. The service proce-
dure eventually returns via the Return from Interrupt (RETI)
instruction, which performs an End of Interrupt bus cycle,
informing the ICU that it may re-prioritize any interrupt re-
quests still pending. The ICU provides the vector number
again, which the CPU uses to determine whether it needs
also to inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127; that
is, they must be positive numbers in eight bits. By providing
a negative vector number, an ICU flags the interrupt source
as being a Cascaded ICU (see below).

3.8.3.3 Vectored Mode: Cascaded Case

In order to allow more levels of interrupt, provision is made
in the CPU to transparently support cascading. Note that
the Interrupt output from a Cascaded ICU goes to an Inter-
rupt Request input of the Master ICU, which is the only ICU
which drives the CPU INT pin. Refer to the ICU data sheet
for details.

In a system which uses cascading, two tasks must be per-

formed upon initialization:

1) For each Cascaded ICU in the system, the Master ICU
must be informed of the line number on which it receives
the cascaded requests.

2) A Cascade Table must be established in memory. The
Cascade Table is located in a NEGATIVE direction from
the location indicated by the CPU Interrupt Base (INT-
BASE) Register. Its entries are 32-bit addresses, pointing
to the Vector Registers of each of up to 16 Cascaded
ICUs.

Figure 3-26 illustrates the position of the Cascade Table. To
find the Cascade Table entry for a Cascaded ICU, take its
Master ICU line number (0 to 15) and subtract 16 from it,
giving an index in the range —16 to —1. Multiply this value
by 4, and add the resulting negative number to the contents
of the INTBASE Register. The 32-bit entry at this address
must be set to the address of the Hardware Vector Register
of the Cascaded ICU. This is referred to as the “Cascade
Address.”

Upon receipt of an interrupt request from a Cascaded ICU,
the Master ICU interrupts the CPU and provides the nega-
tive Cascade Table index instead of a (positive) vector num-
ber. The CPU, seeing the negative value, uses it as an index
into the Cascade Table and reads the Cascade Address
from the referenced entry. Applying this address, the CPU
performs an “Interrupt Acknowledge, Cascaded” bus cycle
(Sec. 3.4.3), reading the final vector value. This vector is
interpreted by the CPU as an unsigned byte, and can there-
fore be in the range of 0 through 255.

In returning from a Cascaded interrupt, the service proce-
dure executes the Return from Interrupt (RETI) instruction,
as it would for any Maskable Interrupt. The CPU performs
an “End of Interrupt, Master” bus cycle (Sec. 3.4.3), where-
upon the Master ICU again provides the negative Cascade

Table index. The CPU, seeing a negative value, uses it to
find the corresponding Cascade Address from the Cascade
Table. Applying this address, it performs an “End of Inter-
rupt, Cascaded” bus cycle (Sec. 3.4.3), informing the Cas-
caded ICU of the completion of the service routine. The byte
read from the Cascaded ICU is discarded.

Note: If an interrupt must be masked off, the CPU can do so by setting the
corresponding bit in the interrupt mask register of the interrupt con-
troller.

However, if an interrupt is set pending during the CPU instruction that
masks off that interrupt, the CPU may still perform an interrupt ac-
knowledge cycle following that instruction since it might have sampled
the INT line before the ICU deasserted it. This could cause the ICU to
provide an invalid vector. To avoid this problem the above operation
should be performed with the CPU interrupt disabled.

3.8.4 Non-Maskable Interrupt (The NMI Pin)

The Non-Maskable Interrupt is triggered whenever a falling
edge is detected on the NMI pin. The CPU performs an
“Interrupt Acknowledge, Master” bus cycle (Sec. 3.4.3)
when processing of this interrupt actually begins. The inter-
rupt Acknowledge cycle differs from that provided for Mask-
able |Interrupts in that the address presented is
FFFFFF0046. The vector value used for the Non-Maskable
Interrupt is taken as 1, regardless of the value read from the
bus.

The service procedure returns from the Non-Maskable In-
terrupt using the Return from Trap (RETT) instruction. No
special bus cycles occur on return.

For the full sequence of events in processing the Non-
Maskable Interrupt, see Sec. 3.8.7.1.

3.8.5 Traps

A trap is an internally-generated interrupt request caused as
a direct and immediate result of the execution of an instruc-
tion. The Return Address pushed by any trap except Trap
(TRC) is the address of the first byte of the instruction during
which the trap occurred. Traps do not disable interrupts, as
they are not associated with external events. Traps recog-
nized by the NS32332 CPU are:

Trap (SLAVE): An exceptional condition was detected by
the Floating Point Unit or another Slave Processor during
the execution of a Slave Instruction. This trap is requested
via the Status Word returned as part of the Slave Processor
Protocol (Sec. 3.9.1).

Trap (ILL): lllegal operation. A privileged operation was at-
tempted while the CPU was in User Mode (PSR bit U = 1).
Trap (SVC): The Supervisor Call (SVC) instruction was exe-
cuted.

Trap (DVZ): An attempt was made to divide an integer by
zero. (The Slave trap is used for Floating Point division by
zero.)

Trap (FLG): The FLAG instruction detected a “1” in the
CPU PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut-
ed.

Trap (TRC): The instruction just completed is being traced.
See below.

Trap (UND): An undefined opcode was encountered by the
CPU.

2-145

G1-2€E2ESN/0L-CEECESN

NS32332-10/NS32332-15

3.0 Functional Description (continued)

A special case is the Trace Trap (TRC), which is enabled by
setting the T bit in the Processor Status Register (PSR). At
the beginning of each instruction, the T bit is copied into the
PSR P (Trace “Pending') bit. If the P bit is set at the end of
an instruction, then the Trace Trap is activated. If any other
trap or interrupt request is made during a traced instruction,
its entire service procedure is allowed to complete before
the Trace Trap occurs. Each interrupt and trap sequence
handles the P bit for proper tracing, guaranteeing one and
only one Trace Trap per instruction, and guaranteeing that
the Return Address pushed during a Trace Trap is always
the address of the next instruction to be traced.

Note: A slight difference exists between the NS32332 and previous Series
32000 CPUs when tracing is enabled.

The NS32332 always clears the P bit in the PSR before pushing the
PSR on the stack. Previous CPUs do not clear it when a trap (ILL)
oceurs.

The result is that an instruction that causes a trap (ILL) exception Is
traced by previous Series 32000 CPUs, but is never traced by the
NS32332.

3.8.6 Prioritization

The NS32332 CPU internally prioritizes simultaneous inter-
rupt and trap requests as follows:

1) Traps other than Trace
2) Abort

3) Bus Error

4) Non-Maskable Interrupt
5) Maskable Interrupts

6) Trace Trap

(Highest priority)

(Lowest priority)

3.8.7 Interrupt/Trap Sequences: Detalled Flow

For purposes of the following detailed discussion of inter-
rupt and trap service sequences, a single sequence called
“Service” is defined in Figure 3-30. Upon detecting any in-
terrupt request or trap condition, the CPU first performs a
sequence dependent upon the type of interrupt or trap. This
sequence will include pushing the Processor Status Regis-
ter and establishing a Vector and a Return Address. The
CPU then performs the Service sequence.

For the sequence followed in processing either Maskable or
Non-Maskable interrupts (on the TNT or NMi pins, respec-
tively), see Sec. 3.8.7.1 For Abort Interrupts, see Sec.
3.8.7.4. For the Trace Trap, see Sec. 3.8.7.3, and for all
other traps see Sec. 3.8.7.2.

3.8.7.1 Maskable/Non-Maskable Interrupt Sequence
This sequence is performed by the CPU when the NMI pin
receives a falling edge, or the INT pin becomes active with
the PSR | bit set. The interrupt sequence begins either at
the next instruction boundary or, in the case of the String
instructions, at the next interruptible point during its execu-
tion.

1. If a String instruction was interrupted and not yet com-

pleted:

a. Clear the Processor Status Register P bit.

b. Set “Return Address" to the address of the first byte of
the interrupted instruction.

Otherwise, set “Return Address” to the address of the

next instruction.

2. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits S, U, T, P and I.

3. If the interrupt is Non-Maskable:

a.Read a byte from address FFFFFF0016, applying
Status Code 0100 (Interrupt Acknowledge, Master,
Sec. 3.4.3). Discard the byte read.

b. Set “Vector” to 1.

c. Go to Step 8.

4. If the interrupt is Non-Vectored:
a.Read a byte from address FFFFFE00yg, applying

Status Code 0100 (Interrupt Acknowledge, Master:
Sec. 3.4.3). Discard the byte read.

b. Set “Vector” to 0.

¢. Go to Step 8.

5. Here the interrupt is Vectored. Read “Byte” from address
FFFFFEQ0O4g, applying Status Code 0100 (Interrupt Ac-
knowledge, Master: Sec. 3.4.3).

6. If “Byte” > 0, then set “Vector” to “Byte” and go to Step
8.

7. If “Byte” is in the range —16 through —1, then the inter-
rupt source is Cascaded. (More negative values are re-
served for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory. The
address is calculated as INTBASE +4* Byte.

b. Read “Vector,” applying the Cascade Address just
read and Status Code 0101 (Interrupt Acknowledge,
Cascaded: Sec. 3.4.3).

8. Perform Service (Vector, Return Address), Figure 3-30.

Service (Vector, Return Address):

1) Read the 32-bit Externa! Procedure Descriptor from the Interrupt
Dispatch Table: address is Vector* 4 + INTBASE Register contents.

2) Move the Module field of the Descriptor Into the MOD Register.

3) Read the Program Base pointer from memory address MOD + 8,
and add to it the Offset field from the Descriptor, placing the result
In the Program Counter.

4) Read the new Static Base pointer from the memory address con-
talned In MOD, placing it into the SB Register.

5) Flush queue: Non-sequentially fetch first instruction of Interrupt
routine.

6) Push the PSR copy onto the Interrupt Stack as a 16-bit value.
7) Push MOD Register Into the Interrupt Stack as a 16-bit value.
8) Push the Return Address onto the Interrupt Stack as a 32-bit quantl-
ty.
FIGURE 3-30. Service Sequence
Invoked during all interrupt/trap sequences.

3.8.7.2 Trap Sequence: Traps Other Than Trace

1) Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction.

2) Set “Vector" to the valus corresponding to the trap type.

SLAVE: Vector = 3.
ILL: Vector = 4.
SVC: Vector = 5.
DvZ: Vector = 6.
FLG: Vector = 7.
BPT: Vector = 8.
UND: Vector = 10.

3) Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits S, U, P and T.

2-146

3.0 Functional Description (continued)

4) Set “‘Return Address” to the address of the first byte of
the trapped instruction.

5) Perform Service (Vector, Return Address), Figure 3-30.

3.8.7.3 Trace Trap Sequence
1) In the Processor Status Register (PSR), clear the P bit.

2) Copy the PSR into a temporary register, then clear PSR
bits S, Uand T.

3) Set “Vector” to 9.

4) Set “Return Address" to the address of the next instruc-
tion.

5) Perform Service (Vector, Return Address), Figure 3-30.

3.8.7.4 Abort Sequence

1) Restore the currently selected Stack Pointer to its original
contents at the beginning of the aborted instruction.

2) Clear the PSR P bit.

3) Copy the PSR into a temporary register, then clear PSR
bits S, U, T and I.

4) Set “Vector” to 2.

5) Set “Return Address™ to the address of the first byte of
the aborted instruction.

6) Perform Service (Vector, Return Address), Figure 3-30.

3.8.7.5 Bus Error Sequence
1) The same as Abort sequence above, but set vector to 12.

3.9 SLAVE PROCESSOR INSTRUCTIONS

The NS32332 CPU recognizes three groups of instructions
being executable by external Slave Processor:

Floating Point Instruction Set

Memory Management Instruction Set
Custom Instruction Set

Each Slave Instruction Set is validated by a bit in the Config-
uration Register (Sec. 2.1.3). Any Slave Instruction which
does not have its corresponding Configuration Register bit
set will trap as undefined, without any Slave Processor com-
munication attempted by the CPU. This allows software sim-
ulation of a non-existent Slave Processor.

In addition, each slave instruction will be performed either
through the regular (32032 compatible) slave protocol or
through a fast slave protoco! according to the relevent bit in
the configuration register (Sec. 2.1.3).

A combination of one slave communicating with an old pro-
tocol and another with a new protocol is allowed, e.g. 16-bit
FPU (32081) and 32-bit MMU (32382) or vice versa.

3.9.1 16-BIt Slave Processor Protocol

(32032 Compatible)

Slave Processor instructions have a three-byte Basic In-

struction field, consisting of an ID Byte followed by an Oper-

ation Word. The ID Byte has three functions:

1) It identifies the instruction as being a Slave Processor
instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Operation Word
of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi-
ates the sequence outlined in Figure 3-31. While applying
Status Code 1111 (Broadcast ID, Sec. 3.4.3), the CPU
transfers the ID Byte on bits ADO-AD7 and a non-used byte
xoooxx! (x = don't care) on bits AD24-AD31. All Slave
Processors input this byte and decode it. The Slave Proces-
sor selected by the ID Byte is activated, and from this point
the CPU is communicating only with it. If any other slave
protocol was in progress (e.g., an aborted Slave instruction),
this transfer cancels it.

The CPU next sends the Operation Word while applying
Status Code 1101 (Transfer Slave Operand, Sec. 3.4.3).
Upon recsiving it, the Slave Processor decodses it, and at
this point both the CPU and the Slave Processor are aware
of the number of operands to be transferred and their sizes.
The operation Word is swapped on the Data Bus, that is,
bits 0-7 appear on pins AD8-AD15 and bits 8-15 appear
on pins AD0-AD?7.

Using the Address Mode fields within the Operation Word,
the CPU starts fetching operand and issuing them to the
Slave Processor. To do so, it references any Addressing
Mode extensions which may be appended to the Slave
Processor instruction. Since the CPU is solely responsible
for memory accesses, these extensions are not sent to the
Slave processor. The Status Code applied is 1101 (Transfer
Slave Processor Operand, Sec. 3.4.3).

After the CPU has issued the last operand, the Slave Proc-
essor starts the actual execution of the instruction. Upon
completion, it will signal the CPU by pulsing SPC low. To
allow for this SPC is normally held high only by an internal
puil-up device of approximately 5 ke2.

While the Slave Processor is executing the instruction, the
CPU is free to prefetch instructions into its queue. If it fills
the queue before the Slave Processor finishes, the CPU will
wait, applying Status Code 0011 (Waiting for Slave, Sec.
3.4.3).

Upon receiving the pulse on SPC, the CPU uses SPC to
read a Status Word from the Slave Processor, applying
Status Code 1110 (Read Slave Status, Sec. 3.4.3). This
word has the format shown in Figure 3-34. If the Q bit
(“Quit”, Bit 0) is set, this indicates that an error was detect-
ed by the Slave Processor. The CPU will not continue the
protocol, but willimmediately trap through the SLAVE vector
in the Interrupt Table. Certain Slave Processor instructions
cause CPU PSR bits to be loaded from the Status Word.

The last step in the protocol is for the CPU to read a result,
if any, and transfer it to the destination. The Read cycles
from the Slave Processor are performed by the CPU while
applying Status Code 1101 (Transfer Slave Operand, Sec.
3.4.3).

An exception to the protocol above is the LMR (Load Mem-
ory Management Register) instruction, and a corresponding
Custom Slave instruction (LCR: Load Custom Register). In
executing these instructions, the protocol ends after the
CPU has issued the last operand. The CPU does not wait for
an acknowledgement from the Slave Processor, and it does
not read status.

2-147

G1-CEECESN/OL-CEECESN

NS32332-10/NS32332-15

3.0 Functional Description (continued)

Status Combinations:

Send ID (ID): Code 1111

Xfer Operand (OP): Code 1101
Read Status (ST): Code 1110

Step Status Action
1 D CPU Send ID Byte.
2 OP CPU Sends Operaton Word.
3 OP CPU Sends Required Operands
4 — Stave Starts Execution. CPU Pre-fetches.
5 — Slave Pulses SPC Low.
6 ST CPU Reads Status Word. (Trap? Alter Flags?)
7 oP CPU Reads Results (If Any).

Status Combinations:

Send 1D (ID): Code 1111

Xter Operand (OP): Code 1101
Read Status (ST): Code 1110

Step Status Action
1 D CPU sends ID and Operation Word.
2 OP CPU sends required operands (if any).
3 — Slave starts execution (CPU prefetches).*
4 — Slave pulses SDONE or SPC low.
5 ST CPU Reads Status word (only if SDONE or SPC
pulse is two clock cycles wide).
6 OP CPU Reads Results (if any).

FIGURE 3-31. 16-Bit Slave Processor Protocol

3.9.2 32-Bit Fast Slave Protocol

Upon receiving a Slave Processor instruction, the CPU initi-
ates the sequence outlined in Figure 3-32. While applying
Status code 1111 (Broadcast ID Sec. 3.4.2), the CPU trans-
fers the ID Byte on bits AD24-AD31, the operation word on
bits AD8-AD23 in a swapped order of bytes and a non-used
byte XXXXXXX1 (X = don't care) on bits ADO-AD7 (Figure
3-33).
Using the addressing mode fislds within the Operation word,
the CPU fetches operands and sends them to the Slave
Processor. Since the GPU is solely responsible for memory
accesses, addressing mode extensions are not sent to the
Slave Processor. The Status Code applied is 1101 (Transfer
Slave Processor Operand Sec. 3.4.2). After the CPU has
issued the last operand, the Slave Processor starts the ac-
tual execution of the instruction. Upon completion, it will sig-
nal the CPU by pulsing SDONE or SPC low for one clock
cycle.
Unlike the old protocol, the SLAVE may request the CPU to
read the status by activating the SDONE or SPC line for two
clock cycles instead of one. The CPU will then read the
slave status word and update the PSR Register, unless a
trap is signalled. If this happens, the CPU will immediately
abort the protocol and start a trap sequence using either the
SLAVE or the UND vector in the interrupt table as specified
in the Status Word.
Note: The PSR update is presently restricted to three instructions: CMPf,
RDVAL, WRVAL and their custom sfave equivalents.
While the Slave Processor is executing the instruction, the
CPU is free to prefetch instructions into its queue. If it fills its
queue before the Slave Processor finishes, the CPU will
wait applying status code 0011 (waiting for Slave, Sec.
3.4.2).
Upon receiving the pulse on either SDONE or SPC, the CPU
uses SPC to read the result from the Slave Processor and
transfer it to the destination. The Read cycles from the
Slave Processor are performed by the CPU while applying
Status Code 1101 (Transfer Slave Operand, Sec. 3.4.2).

FIGURE 3-32. 32-Bit Fast Slave Protocol

Certain Slave Processor instructions affect CPU PSR. For
these instructions only the CPU will perform a Read Slave
status cycle as described in 3.9.1.1 before reading the re-
sult. The relevent PSR bits will be loaded from the status
word.

byte 3

L]

ID OPCODE low OPCODE high

FIGURE 3-33. ID and Opcode Format
for Fast Slave Protocol

byte 2 byte 1 byte 0

Don't Care

3.9.3 Floating Point Instructions

Table 3-4 gives the protocols followed for each Floating
Point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Appendix A.

The Operand class columns give the Access Class for each
general operand, defining how the addressing modes are
interpreted (see Instruction Set Reference Manual).

The Operand Issued columns show the sizes of the oper-
ands issued to the Floating Point Unit by the CPU. “D” indi-
cates a 32-bit Double Word. i” indicates that the instruction
specifies an integer size for the operand (B = Byte, W =
Word, D = Double Word). “f” indicates that the instruction
specifies a Floating Point size for the operand (F = 32-bit
Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR Bits Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-34).

2-148

3.0 Functional Description (continued)

TABLE 3-4
Floating Point Instruction Protocols.
Mnemonic Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits
Class Class Issued Issued Type and Dest. Affected
ADDf read.f rmw.f f f ftoOp. 2 none
SUBf read.f rmw.f f f ftoOp.2 none
MULf read.f rmw.f f f ftoOp.2 none
DIVf read.f rmw.f f f ftoOp. 2 none
MOVf read.f write.f f N/A ftoOp. 2 none
ABSf read.f write.f f N/A ftoOp.2 none
NEGf read.f write.f f N/A fto Op. 2 none
CMPf read.f read.f f f N/A N,ZL
FLOORfi read.f write.i f N/A itoOp.2 none
TRUNCHi read.f write.i f N/A ito Op. 2 none
ROUNDfi read.f write.i f N/A itoOp.2 none
MOVFL read.F write.L F N/A LtoOp. 2 none
MOVLF read.L write.F L N/A FtoOp. 2 none
MOVif read.i write.f i N/A ftoOp. 2 none
POLYf read.f read.f f f fto FO none
DOTf read.f read.f f f fto FO none
SCALBf read.f rmw.f f f fto Op.2 none
LOGBf read.f write.f f N/A fto Op.2 none
LFSR read.D N/A D N/A N/A none
SFSR N/A write.D N/A N/A DtoOp.2 none
Note 1:

D = Double Word

i = Integer size (B,W,D) specified in mnemonic.

f = Floating Point type (F,L) specified in mnemonic.
N/A = Not Applicable to this instruction.

Any operand indicated as being of type “f”” will not cause a
transfer if the Register addressing mode is specified. This is
because the Floating Point Registers are physically on the
Floating Point Unit and are therefore available without CPU
assistance.

15 87 0

LTSOOODOOO INZFODLMH—’ﬂ

New PSR Bit Value(s)

TL/EE/8673-44
FIGURE 3-34. Slave Processor Status Word Format
Note 1: Q is the Trap Bit. It is set to 1 by the Slave whenever a trap is
requested.
Note 2: TS is the Trap Select Bit. When a trap is requested (Q = 1), TS tells
the CPU whether a SLAVE or an UND trap is to be generated. TS is
0 for a slave trap and 1 for an UND trap.
Note 3: M/F should be set for a RDVAL, WRVAL, or Custom Slave Equiva-
lent instruction. It should be cleared for CMPf and CCMPOc and
CCMPc. When M/F is cleared, the F bit should also be cleared.

3.9.4 Memory Management Instructions

Table 3-5 gives the protocols for Memory Management in-
structions. Encodings for these instructions may be found in
Appendix A.

In executing the RDVAL and WRVAL instructions, the CPU
calculates and issues the 32-bit Effective Address of the
single operand. The CPU then performs a single-byte Read
cycle from that address, allowing the MMU to safely abort
the instruction if the necessary information is not currently in
physical memory. Upon seeing the memory cycle complete,
the MMU continues the protocol, and returns the validation
result in the F bit of the Slave Status Word.

The size of a Memory Management operand is always a 32-
bit Double Word. For further details of the Memory Manage-
ment Instruction set, see the Instruction Set Reference
Manual and the MMU Data Sheet.

2-149

G1-2EECESN/0L-CEECESN

NS32332-10/NS32332-15

3.0 Functional Description (continued)

Memory Management Instruction Protocols.

Operand 2 Returned Value PSR Bits
Issued Type and Dest. Affected
N/A N/A F
N/A N/A F
N/A N/A none
N/A DtoOp. 1 none

TABLE 3-5
Operand 1 Operand 2 Operand 1

Mnemonic Class Class Issued
RDVAL* addr N/A D
WRVAL* addr N/A D

LMR* read.D N/A D

SMR* write.D N/A N/A

Note:

In the RDVAL and WRVAL instructions, the CPU issues the address as a Double Word, and performs a single-byte Read cycle from that memory address. For
details, see the Instruction Set Reference Manual and the Memory Management Unit Data Sheet.

D = Double Word
* = Privileged Instruction: will trap if CPU is in User Mode.
N/A = Not Applicable to this instruction.

3.9.5 Custom Slave Instructions

Provided in the NS32332 is the capability of communicating
with a user-defined, “Custom” Slave Processor. The in-
struction set provided for a Custom Slave Processor defines
the instruction formats, the operand classes and the com-
munication protocol. Left to the user are the interpretations
of the Op Code fields, the programming model of the Cus-
tom Slave and the actual types of data transferred. The pro-
tocol specifies only the size of an operand, not its data type.
Table 3-6 lists the relevant information for the Custom Slave
instruction set. The designation “‘c” is used to represent an

operand which can be a 32-bit (“‘D") or 64-bit (“Q"") quantity
in any format; the size is determined by the suffix on the
mnemonic. Similarly, an “i”” indicates an integer size (Byte,
Word, Double Word) selected by the corresponding mne-
monic suffix.

Any operand indicated as being of type “c” will not cause a
transfer if the register addressing mode is specified. It is
assumed in this case that the slave processor is already
holding the operand internally.

For the instruction encodings, see Appendix A.

2-150

3.0 Functional Description (continued)

Operand 1

Mnemonic Class
CCALOc read.c
CCAL1c read.c
CCAL2c read.c
CCAL3c read.c
CMOVO0c read.c
CMOVic read.c
CMOvace read.c
CMOV3c read.c
CCMPOc read.c
CCMP1c read.c
CCVOci read.c
CCV1ci read.c
CCvaci read.c
CCV3ic read.i
CCcv4DQ read.D
CCvs5QD read.Q
LCSR read.D
SCSR N/A

CATSTO* addr

CATST1* addr

LCR* read.D
SCR* write.D

Note:
D = Double Word

i = Integer size (B,W,D) specified in mnemonic.

TABLE 3-6

Custom Slave Instruction Protocols.

Operand 2
Class
rmw.c
rmw.c
rmw.c
rmw.c
write.c
write.c
write.c
write.c
read.c
read.c
write.i
write.i
write.i
write.c
write.Q
write.D

N/A
write.D
N/A
N/A
N/A
N/A

¢ = Custom size (D:32 bits or Q:64 bits) specified in mnemonic.
* = Privileged instruction: will trap if CPU is in User Mode.

N/A = Not Applicable to this instruction.

Operand 1
Issued

UUU§000-oonocoooo o0 o0o0

Z
S
>

Operand 2
Issued

Returned Value
Type and Dest.
ctoOp.2
ctoOp.2
ctoOp.2
ctoOp.2
ctoOp.2
ctoOp. 2
ctoOp.2
ctoOp.2
N/A
N/A
itoOp. 2
itoOp. 2
itoOp.2
ctoOp.2
QtoOp. 2
DtoOp. 2
N/A
DtoOP. 2
N/A
N/A
N/A
D to Op.1

PSR Bits
Affected
none
none
none
none
none
none
none
none
N,Z,L
N,Z,L
none
none
none
none
none
none
none
none
F
F

none
none

2-151

G1-CEEZESN/O0L-CEECESN

NS32332-10/NS32332-15

4.0 Device Specifications

4.1 NS32332 PIN DESCRIPTIONS

The following is a brief description of all NS32332 pins. The
descriptions reference portions of the Functional Descrip-
tion, Section 3.

Unless otherwise indicated, reserved pins should be left
open.

4.1.1 Supplies

Logic Power (VeeLy, 2): +5V positive supply.

Buffers Power (Vcep, 2, 3, 4, 5); +5V positive supply.
Logic Ground (GNDL1, GNDL2): Ground reference for on-
chip logic.

Buffer Grounds (GNDB1, GNDB2, GNDB3, GNDB4,
GNDBS5, GNDB6): Ground references for on-chip drivers.

Back Bias Generator (BBG): Output of on-chip substrate
voltage generator.

4.1.2 Input Signals

Clocks (PHI1, PHI2): Two-phase clocking signais.

Ready (RDY): Active high. While RDY is not active, the CPU
adds wait cycles to the current bus cycle. Not applicable for
slave cycles.

Hold Request (HOLD): Active low. Causes the CPU to re-
lease the bus for DMA or multiprocessing purposes.

Note: If the HOLD signal is generated asynchronously, it's set up and hold
times may be violated. In this case it is recommended to synchronize
it with CTTL to minimize the possibility of metastable states.

The CPU provides only one synchronization stage to minimize the
HEDA latency. This is to avoid speed degradations in cases of heavy
HOLD activity (i.e. DMA controller cycles interleaved with CPU
cycles.)

Interrupt (INT): Active low. Maskable Interrupt request.
Non-Maskable Interrupt (NM): Active low. Non-Maskable
Interrupt request.

Reset/Abort (RST/ABT): Active low. If held active for one
clock cycle and released, this pin causes an ABORT. If held
longer, it is interpreted as RESET.

Bus Error (BER): Active low. When active, indicates that an
error occurred during a bus cycle. It is treated by the CPU as
the highest priority exception after RESET. Not applicable
for slave cycles.

Bus Retry (BRT): Active low. When active, the CPU will re-
execute the last bus cycle. Not applicable for slave cycles.
Bus Width (BW1, BWO0): Define the bus width (8, 16, 32) in
every bus cycle. 01-8 bits, 10-16 bits, 11-32 bits. 00 is a
reserved combination. Not applicable for slave cycles.
Burst in (BIN): Active low. When active, the CPU may per-
form burst cycles.

Float (FLT): Active low. Float command input. In non-
memory managed systems, this pin should be tied to Voo
through a 10 kQ resistor.

Data Timing/Slave Done (DT/SDONE): Active low. Used
by a 32-bit slave processor to acknowledge the completion
of an instruction and/or indicate that the slave status should
be read (Section 3.9.2). Sampled during reset to select the
data timing during write cycles (Section 3.3).

4.1.3 Output Signals

Address Strobe (ADS): Active low. Controls address latch-
es, indicates the start of a bus cycle.

Data Direction in (DDIN): Active low. Indicates the direc-
tions of data transfers.

Byte Enables (BEO-BE3): Active low. Enable the access of
bytes 0-3 in a 32 bit system.

Status (ST0-ST3): Bus cycle status code, STO least signifi-
cant. Encodings are:

0000 — Idle: CPU Inactive on Bus.

0001 — Idle: WAIT Instruction.

0010 — (Reserved).

0011 — Idle: Waiting for Slave.

0100 — Interrupt Acknowledge, Master.
0101 — Interrupt Acknowledge, Cascaded.
0110 — End of Interrupt, Master.

0111 — End of Interrupt, Cascaded.

1000 — Sequential Instruction Fetch.

1001 — Non-Sequential Instruction Fetch.
1010 — Data Transfer.

1011 — Read Read-Modify-Write Operand.
1100 — Read for Effective Address.

1101 — Transfer Slave Operand.

1110 — Read Slave Status Word.

1111 — Broadcast Slave ID.

Status Strobe (STS): Active low. Indicates that a new
status (STO-ST3) is valid. Not applicable for slave cycles.
Multiple Cycle/Exception Status (MC/EXS): Active low.
This signal is activated during the access of the first part of
an operand that crosses a double word address boundary.
It is also activated in conjunction with status codes 1001
and 0000 during Abort Acknowledge and when a fatal bus
error oceurs.

Note: MC/EXS indicates a fatal bus error only when it has been active for
more than one clock cycle.

Hold Acknowledge (HLDA): Active low. Activated by the
CPU in response to HOLD input. Indicates that the CPU has
released the bus.

User/Supervisor (U/S): User or Supervisor Mode status.
Interlocked Operation (ILO): Active low. Indicates that an
interlocked cycle is being performed.

Program Flow Status (PFS): Active low. A pulse that indi-
cates the beginning of an instruction execution.

Burst Out (BOUT): Active low. When active, indicates that
the CPU will perform burst cycles.

4.1.4 Input/Output Signals

Address/Data 0-31 (AD0-AD31): Multiplexed address
and data lines.

Slave Processor Control (SPC): Active low. Used by the
CPU as a data strobe output for slave processor transfers.
Used by a 16-bit slave processor to acknowledge the com-
pletion of an instruction.

2-152

4.0 Device Specifications (continued)

If Military/Aerospace specified devices are required, All Input or Output Voltages with

please contact the National Semiconductor Sales Respect to GND —0.5Vto +7V
Office/Distributors for availability and specifications. Power Dissipation 3 Watt
4.2 ABSOLUTE MAXIMUM RATINGS Note: Absolute maximum ratings indicate limits beyond
Temperature Under Bias 0°C to +70°C which permanent damage may occur. Continuous operation
Storage Temperature —65°C 1o +150°C at these limits is not intended; operation should be limited to

those conditions specified under Electrical Characteristics.
4.3 ELECTRICAL CHARACTERISTICS Tp = 0° to +70°C, Vgg = 5V £5%, GND = 0V

G1-2€ECESN/0L-2EEZESN

Symbol Parameter Conditions Min Typ Max Units
ViH High Level Input Voltage 2.0 Vec +0.5 \
ViL Low Level Input Voltage -0.5 0.8 \
VcH High Level Clock Voltage PHI1, PHI2 pins only Veg —0.5 Vce +0.5 \"
VoL Low Level Clock Voltage PHI1, PHI2 pins only —-0.5 0.3 \
VeRt Clock Input Ringing Tolerance PHI1, PHI2 pins only -0.5 0.5 \
VoH High Level Output Voltage loH = —400 pA 24 \
VoL Low Level Output Voltage loL = 2mA 0.45 \
ILs SPC and DT/SDONE ViN = 0.4V, SPCin input mode 005 10 mA
Input Current (low)
I Input Load Current g j:’/wag‘v%‘/lsnng;éns except _20 20 A
IL Leak?ge‘Cunent (Output and 04 <V|y < Vee _80 80 A
170 pins in TRI-STATE/Input Mode)
lcc Active Supply Current lour = 0,TA = 25°C 450 600 mA

Connection Diagram*
NS32332 Pinout Descriptions

84 Pin Grid Arra

n(© @ @ @ @ © @ @ @ © @ Desc Pin Desc Pin y Desc Pin
GNDB1~ B1 AD29 N BOUT E12
MOEOEEPEEEOEEOE®| s s aw ve S 15
AD? c1 AD31 N7 MC/EXS D12
RIOXO) © O ADB c2 Vool M7 vooss c13
AD9 D1 vooL2 N8 ci2
S [OXO; (OXO) Aoto oz INT M8 GNDBG B13
AD11 €1 NMI No DDIN A12
i@ @ © @ GNDB2 E2 RESERVED M9 BED B12
AD12 F1 RESERVED Nto BEi A
W@ © © @ AD13 F2 RESERVED M10 BEZ B11
AD14 GI RESERVED Ni1 BE3 A10
e|@ @ NS32332 ©® © ADI5 G2 D M1 FIDA B10
® O ®@| w6 t s s eov 80

F
AD17 J sm2 M12 DT/SDONE AB
AD18 J2 sm L3 PHI2 B8
(10 © ©O AD19 ki sTo L2 PHI1 A7
GNDB3 K2 ST K13 BBG B7
3 IOXC) ©0O AD20 L1 GNDBS K12 GNDL2 A6
AD21 L2 PFS J13 GNDL1 86
4 OO ®© Aoz Wi US J2 vecet A5
AD23 N2 BWI Hi3 ADO 85
’ ©©@@©@@©©@@ veces Mz Mo Hi2 AD1 A4
AD24 N3 B G183 AD2 B4
00000000000) & BB &% D
AD25 N4 / F13 AD4 83
1 2 3 4 5 6 7 8 9 10 1N 12 13 ol f13 Ao pes
TL/EE/8673-45 GNDB4 N5 BER E13 POSITIONPIN C3

Bottom View AD28 M5

Order Number NS32332U-10 or NS32332U-15
See NS Package Number U84C
FIGURE 4-1. Pin Grid Array Package

*AMP sockets are recommended for use with NS32332 CPU. AMP sockets are manufactured by AMP INCORPORATED, Harrisburg PA.

2-153

NS32332-10/NS32332-15

4.0 Device Specifications (continued)
4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the timing specifications given in this section refer to
2.0V on the rising or falling edges of the clock phases PHI1
and PHI2 and 0.8V or 2.0V on all other signals as illustrated
below, unless specifically stated otherwise.

PHIn 2.0V -

r ————————— - 24V
sia1
tsig 1l

SIG2

TL/EE/8673-46
FIGURE 4-2, Timing Specification Standard
(Signal Valid After Clock Edge)

4.4.2 Timing Tables

ABBREVIATIONS:
L.E. — leading edge
T.E. — trailing edge

R.E. — rising edge
F.E. — falling edge

PHIn 20v
L
- —— 2.4V
SIG1
tsig11
- —0.45V
- —24V
2.0V tsiG2h
SIG2 L
—_ — 045V

'TL/EE/8673-47

FIGURE 4-3. Timing Specification Standard
(Signal Valid Before Clock Edge)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32332-10, NS32332-15

Maximum times assume capacitive loading of 100 pF.

ADO0-31, ADS and BOUT timings are defined with a capacitive loading of 75 pF.

Reference/ NS32332-10 NS32332-15
Symbol | Figure Description Units
Conditions Min Max Min Max
taLy 4-5 Address bits 0-31 valid after R.E., PHI1 T1 30 20 ns
taLh 4-5 Address bits 0-31 hold after R.E., PHI1 T2/Tmmu 10 6 ns
tov 4-5 Data valid (write cycle) after R.E., PHI1 T3 or T2 50 38 ns
ton 4-5 Data hold (write cycle) after R.E., 0 0 ns
PHI1 next T1 or Ti
tALADSs 4-4 Address bits 0-31 setup before ADS T.E. 25 20 ns
tALADSh 4-18 Address bits 0-31 hold after ADS T.E. 10 10 ns
taLs 4-4 Address bits 0~31 after R.E., PHI1 T2/Tmmu 25 24 ns
floating (no MMU)
taLmt 4-18 Address bits 0-31 after R.E., PHI1 Tf 40 40 ns
floating (by FLT line)
tsTsa 4-3,4-5 | STS signal active (low) after R.E., PHI1 T4 of 35 25 ns
previous bus cycle or Ti
tsTsia 4-3,4-5 | STS signal inactive after R.E., PHI2 T4 of 45 30 ns
previous bus cycle or Ti
tsTsw 4-3 STS pulse width at 0.8V (both edges) 35 24 ns
tgENy 4-4,4-6 | BEn signals valid after R.E., PHI2, T4 or Ti 140 95 ns
(Operand Read Cycles Only)
teev 4.5,4-6 | BEn signals valid after R.E., PHI2, T4 or Ti 85 58 ns
tgEh 4-4 BEn signals hold after R.E., PHI2, T4 0 0 ns

2-154

4.0 Device Specifications (continuea)

4.4.2.1 Output Signals: Internal Propagation Delays, N$32332-10, NS32332-15 (Continued)

Reference/ NS32332-10 NS32332-15
Symbol | Figure Description Units
Conditions Min Max Min | Max
tstv 4-5 Status (STO-ST3) valid after R.E., PHI1 T4 50 35 ns
(before T1, see note)
tsTSTSs 4.5 Status Signals Setup Before STS T.E. 10 6 ns
tsTh 4-5 Status (STO-ST3) hold after R.E., PHI1 T4 (after T1) 0 0 ns
toDINY 4-4 DDIN signal valid after R.E., PHI1 T1 35 25 ns
tDDIND 4-4 DDIN signal hold after R.E., PHI1 next T1 or Ti 0 0 ns
tADSa 4-5 ADS signal active (low) after R.E., PHI1 T1 25 17 ns
tADSIa 4-5 ADS signal inactive after R.E., PHI2 T1 45 29 ns
tADSwW 4-5 ADS pulse width at 0.8V (both edges) 35 24 ns
tMca 4-4,4-5 | MC signal active (low) after R.E., PHI1 T1 70 50 ns
tmcia 4-4,4-5 | MC signal inactive after R.E., PHI1 T1 70 50 ns
or T3 (burst)
taLs 4-15 ADO-AD31 floating after R.E., PHI1 T1 25 24 ns
(caused by HOLD)
taDsf 4-15, ADS floating after R.E., PHI1 Ti 55 40 ns
417 (caused by HOLD)
tsEt 4-15, BEn floatin after R.E., PHI1 Ti 55 40 ns
417 | (caused by HOLD)
toDINg 4-15, DDIN floatin: after R.E., PHI1 Ti 55 45 ns
417 | (caused by HOLD)
tHLDAa 4-15, HLDA signal active (low) after R.E., PHI1 T4 60 45 ns
4-16
tHLDAIa 4-18 HLDA signal inactive after R.E., PHI1 Ti 60 45 ns
taDsr 4-18 ADS signal returns from after R.E., PHI1 Ti 55 40 ns
floating (caused by HOLD)
tBEr 4.18 | BEn signals return from after R.E., PH!1 Ti 55 40 ns
floating (caused by HOLD)
toDINr 4-18 DDIN signal returns from after R.E., PHI1 Ti 55 40 ns
floating (caused by HOLD)
tDDING 4-19 DDIN signal floating after FLT F.E. 50 45 ns
(caused by FLT)
topINT 4-20 DDIN signal returns from after FLT R.E. 40 28 ns
floating (caused by FLT)
tspCa 4-21 SPC output active (low) after R.E., PHI1 T1 30 21 ns
tspcia 4-21 SPC output inactive after R.E., PHI1 T4 2 35 2 26 ns
tsPCnt 4-24 SPC output nonforcing after R.E., PHI2 T4 10 8 ns
tov 4-21 Data valid (slave after R.E., PHI1 T1 50 38 ns
processor write)
toh 4-21 Data hold (slave after R.E., PHI1 0 0 ns
processor write) nextT1orTi
tPESw 4-26 PFS pulse width at 0.8V (both edges) 70 45 ns
tpFSa 4-26 PFS pulse active (low) after R.E., PHI2 50 38 ns
tPFSia 4-26 PFS pulse inactive after R.E., PHI2 50 38 ns
tusv 4-33 U/S signal valid after R.E., PHI1 T4 48 35 ns
tush 4-33 U/S signal hold after R.E., PHI1 T4 10 6 ns
tNsPF 4-28 Nonsequential fetch to after R.E., PHI1 T1 4 4 4
next PFS clock cycle Cp

2-155

GL-CEECESN/0L-ZEECESN

NS32332-10/NS32332-15

4.0 Device Specifications (continued)
4.4.2.1 Output Signals: Internal Propagation Delays, NS32332-10, NS32332-15 (Continued)

Reference/ NS32332-10 NS32332-15
Symbol Figure Description Units
Conditions Min Max Min Max
tPENS 4.27 PFS clock cycle to next before R.E., PHI1 T1
A 4 4 tcp
non-sequential fetch
tsTst 111 56. STS floating (HOLD) after R.E., PHI1 Ti 55 44 ns
tstsr 4-18 STS not floating (HOLD) after R.E., PHI Ti, T4 55 40 ns
tBOUTa Z.f(:) BOUT output active after R.E., PHI2 Tmmu 100 66 ns
teoUTIa 4-6, BOUT output inactive after R.E., PHI2 75 40 ns
4-10 T3orT4
tiLoa 4-14 ILO signal active after R.E., PHI1 T4 50 38 ns
tiL0ia 4-14 1LO signal inactive after R.E., PHI1 Ti 50 38 ns
Note: Every memory cycle starts with T4, during which Cycle Status is applied. If the CPU was Idling, the sequence will be: . . . Ti, T4, T1. . .". If the CPU was
not idling, the sequence willbe: . . . T4, T1. . "
4.4.2.2 Input Signal Requirements: NS32332-10, NS32332-15
Reference/ NS32332-10 NS32332-15
Symbol Figure Description Units
Conditions Min Max Min Max
tPWR 4-31 Power stable to after Vo
RSTRE. reaches 4.5V 50 33 ps
tois 4-4 Data in setup before F.E., PHI2 T3 12 10 ns
(read cycle)
toih 4-4 Data in hold after R.E., PHI1 T4 3 3 ns
(read cycle)
tHLDa 4-15 HOLD active setup before F.E., PHI2 25 17 ns
4-16, time T2/Tmmuor T3 or Ti
tHLDia 4-18 HOLD inactive setup before F.E., PHI2 Ti 25 17
time ns
tHLDh 4-15, 4-17, HOLD hold time after R.E., PHI1 0 0 ns
4-18 Tior T3
tFLTa 4-19 FLT ac}ive (low) before F.E., PHI2 25 17 ns
.setup time Tmmu
tFLTia 4-20 IfLT inactive setup before F.E., PHI2 T3 25 17 ns
time
tRDYs 4-41,_2-5, RDY setup time before F.E., PHI1 T3 20 12 ns
tRDYh 4-4,4-5, RDY hold time after R.E., PHI2 T3
4-6 4 3 ns
tABTs 4-29 ABT setup time before F.E., PHI2 20 13 ns
(FLT inactive) T2/Tmmu
tABTS 4-30 ABT setup time before F.E., PHI2 Tf
(FLT active) 20 13 ns
tABTh 4-29, ABT hold time after R.E., PHI1 T3
0 0 ns
4-30
tRSTs 4-31, 4-32 RST setup time before F.E., PHI1 20 13 ns
tRSTwW 4-31,4-32 RST pulse width at 0.8V (both edges) 64 64 tcp
tiNTs 4-34 INT setup time before F.E., PHI2 20 13 ns
tMiw 4-35 NMI pulse width at 0.8V (both edges) 40 27 ns

2-156

=
. ags . [72]
4.0 Device Specifications (continued) @
4.4.2.2 Input Signal Requirements: N§32332-10, NS32332-15 (Continued) §
Reference/ NS32332-10 NS32332-15 L
Symbol Figure Description Units | ©
Conditions Min | Max | Min | Max =
tois 4-24 Data setup (slave before F.E., PHI2 T1 12 10 ns g,’
read cycle) cN;:
toih 4-24 Data hold (slave after R.E., PHI1 T4 @
read cycle) 3 3 ns B
toTs 4-31 DT setup time before F.E., PHI1 0 0 ns o
toTh 4-31 DT hold time after R.E., PHI1 0 0 ns
tspcd 4-24 SPC pulse delay after R.E., PHI2 T4 10 8
ns
from slave
tspcs 4-24 SPC setup time before F.E., PHI1 25 15 ns
tspcw 4-24 SPC pulse width at 0.8V (both edges) 20 100 13 66 ns
tsSpNd 4-23 SDONE pulse delay after R.E., PHI2 T4
10 8 ns
from slave
tSDNs 4-23 SDONE setup time before F.E., PHI1 25 15 ns
tSDNw 4-23 SDONE pulse width at 0.8V (both edges) 20 100 13 66 ns
tSDNSTW 4-23 SDONE pulse width at 0.8V (both edges)
(to force CPU to ’ 175 275 115 200 ns
read slave status)
tBws 4-1,. ;-5 BW 0-1 setup time before F.E., PHI1 T3 25 13 ns
tswh 4-6 BWO-1 hold time after R.E., PHI1 T3 0 0 ns
of Next Memory
Access Cycle
tBINS 4-6,4-7 BIN setup time (for before F.E., PHI1 T3 25 12 ns
each cycle of the burst)
taINh 4-8,4-7 | BIN hold time after R.E., PHI1 T4 0 0 ns
tBERS 4-12,4-13 | BER setup time before F.E., PHI1 T4 25 14 ns
tBERK 4-12,4-13 BER hold time (see note) after R.E., PHI1 Ti 0 0 ns
tBRTs 4-8, 4-9, BRT setup time before F.E., PHI1
410, 4-11 T3and T4 25 14 ns
tBRTh 4-8,4-9, BRT hold time after R.E., PHI1 0 0 ns
4-10 T4orTi
Note: A Ti state follows T4 when BER is asserted. BER should be deasserted at the latest in the beginning of the cycle following this Ti state.
4.4.2.3 Clocking Requirements: NS32332-10, NS32332-15
Reference/ NS32332-10 NS32332-15
Symbol Figure Description Units
Conditions Min Max Min Max
tcp 4-25 Clock period R.E., PHI1, PHI2 to next
RE. PHIT PHI2 100 250 66 250 ns
teLw(1,2) 4-25 PHI1, PHI2 Pulse Width | At2.0V on PHI1, PHI2 0.5tep 0.5t
(Both Edges) —10ns —6ns
tcLh(1,2) 4-25 PHI1, PHI2 high time AtVce-0.9Von 0.5tcp 0.5tcp
PHI1, PHI2 (Both Edges) —15ns —10ns
toul 4-25 PHI1, PHI2 low time At 0.8V on 0.5tcp 0.5t
PHI1, PHI2 (Both Edges) —5ns —-5ns
thovL(1,2) 4-25 Non-overlap time 0.8VonF.E., PHI1, PHI2 to 2 2 5 2 ns
0.8V on R.E., PHI2, PHI1
thovLas Non-overlap asymmetry | At0.8V on PHI1, PHI2 _3 3 -3 3 ns
(thovi(1) —thovi(2)
tCLhas PHI1, PHI2 asymmetry AtVcc-0.9V on PHI, PHI2
-5 5 -3 3 ns
(toLht) —toLh@)

2-157

NS32332-10/NS32332-15

4.0 Device Specifications (continued)

4.4.3 Timing Dlagrams

{1

| » | v |wwom| w | oW | o |
W TLALLL
ShLLinhhy
 tstse e R TS0)))
"\ W
— [—— tsTSW
$10-3 [STATUS VALID NEXT STATUS
- TALADS
ol v,
VIRTUAL e o —g) |1
ADO-31 [el SR —(nm: N e = -< NEXT ADDR
ooy - —-I tois |~-— —{ | toDiNK
oo [{ NEXT
thovs—] [e—[* " thom I
RDY [/ % W
—_] —tows
BWO-1 [)
ot — I-—-lazn
(2) BF0-3 [VALID NEXT
tmea r—l : Ic-—lucu
) NT/ERS [“L f
—— e o —— v — o o
o0t [(HIGH)

TL/EE/86873-48

Note 1: Asserted (low) when the bus transaction crosses a double-word boundary (address bits AO-1 wrap around during the transaction).
Note 2: BEO-BES are all active during instruction fetch cycles.

FIGURE 4-4. NS32332 Read Cycle Timing

2-158

4.0 Device Specifications (continued)

|

o o
JEEEE

TZITmmul T3 l T3 I T4 lTHmTll

L

PHI 2 [|
ts1ss—>| [l'_m ¥
q
.1 15TSTSs |‘-tm
$10-3 [STATUS VALID NEXT STATUS
tstv osasl 1o r—un:n
w | W/
tADSw — -
—] tov e t
= i —— -
ABO-31 [“\’,‘;':_f:s —_ DATA OUT NEXT ADDR
— | S
tay | —> tach
)
DDIN = tROYs N NEXT
—_—] ‘RDYh — emn
m%-
RDY /
[Z - Z / /
tBws——1
BWO-1 [)
|+—taev—+] — l*—- teen
BE0-3 [% VALID %
|
—]

r— tuca — I——- tuca

mmx's[‘L F4
— e e e
m[(HIGH)

Note: If DT/SDONE Is sampled low during reset, the CPU outputs the data during T2/TMMU (see Section 3.3).
FIGURE 4-5. NS32332 Write Cycle Timing

TL/EE/8673~49

2-159

G1-CEETESN/0L-TEEZESN

NS32332-10/NS32332-15

4.0 Device Specifications (continued)

T2/

T2/

| 18 T | Tmmy | T3) W a | BB M| T4 | Tmmy | 7 T4 | 13 | T4 |MORT|
ol LT N [
LU g e e in
sro-a[STATUS VALID TATYS VALID x
s I \-/ NIBBLE 1 NIBBLE 2 NIBBLE 3 NIBBLE 4
Ao0-31 | x H—— 4 —_——— - < e - =
VIRT ADDR DATA DATA DATA DATA VIRT ADDR DATA DATA NEXTADDA
o I VALID |r N N N VALID W N I ;-
DIN 4 NEXT
e~ p— tHca-el j—
m/EYsI ‘L_ ____l___/‘
— taouta ~1 —tsouta
s { f T
tiNg b BN -
!Tr]' q —| [t — |—thon / /_
| tRovs — b—|
anvl q }
T tawh
Bwn-l')
— t8Ev — — oy — ey

FIGURE 4-6. NS32332 Burst Cycle Timing
(Instruction fetches followed by Operand Reads)

| I i |T2/l'mmul n

LML

1T

1

||
[1

13 T4

gigipigiy
Ln

ThorTi

-1
\/

|

T\ —7
| A\ 1F

| ViNEG
S) S G G O o

FIGURE 4-7. External Termination of Burst Cycle

TL/EE/8673-50

TL/EE/8673-94

2-160

4.0 Device Specifications (continued)

l T4 | T | T2/Tmmu | T3 I T4 \ Ti I T4 | T | T2/Tmmu]

PHII[

{1

——
|

—

LT

RETRIED CYCLE

< 5

e
\/

\/

|

\/

|

[+— tBATs —> tBRTh
HEIRY

\/

I

FIGURE 4-8. Bus Retry During Normal Bus Cycle

L1

m 12/Tmmu| T3 T4 T T2/Tmmu

JEIEEER

[LT LT

NEXT BUS CYCLE

TL/EE/8673-51

\/

\/

taRTs- L— ——“-—*am:

/

e l~—

FIGURE 4-9. BRT Activated, but no Bus Retry

TL/EE/8673-52

2-161

G1-2EETESN/0L-2EE2ESN

NS32332-10/NS32332-15

4.0 Device Specifications (continued)

| w | n ltz/tmmu|n|u|n|u|nlul

=T
LML
| \

tears -—— - 1BRTH
— - ;‘ RETRY t
BRT [; l

— | toum —-I |-teoum

NIBBLE 1 NIBBLE 2

RETRIED CYCLE

TU/EE/8673-53
FIGURE 4-10. Bus Retry During Burst Bus Cycle

‘ I T4 l m ln/Tmmul

Wl T LML LT LT
\/

lj_n
Syl gyl
v \/

m[\-/ thans e o e tomr
] A
ol \ /

NIBBLE 1 NIBBLE 2

l T4 I m | T2/Tmmu I T

TL/EE/8673-54
FIGURE 4-11. BRT Activated During Burst Bus Cycle, but no Bus Retry

2-162

4.0 Device Specifications (continued)

I T4 I n I T2/Tmmu l T3 | T4 I T l Tl l l |

| LML LML LT
ipSp g NpNplpiyh
T\ 7
AT\

— teeRn
tBERs fe—
ﬁ[

FIGURE 4-12. Bus Error During Normal Bus Cycle

G1-CEECESN/OL-CEETESN

TL/EE/8673-55

' T4 I " ! T2/Tmmu I T3 I T4 | T3] T4 [Ti I

sy gigigighy
LML
\/

\J/

E

— {=—taERn
tBeRs fe—

| \ /

NIBBLE 1 NIBBLE 2

TL/EE/8673-56
FIGURE 4-13. Bus Error During Burst Bus Cycle

2-163

NS32332-10/NS32332-15

4.0 Device Specifications (continued)

w1

JEIEEEEN
LI

il I T2/Tmmy | LK) | T4 | T [T ‘ m l T2/Tmmy , T3 I T4 I T |

LML
SN EEEEEpERE]

-
al
T\ \/
s T\ a
— tioa — tLoia
o
*End of Dummy Read cycle with the address of the interlocked operand. TL/EE/8673-57
FIGURE 4-14. Timing of Interlocked Bus Transactions
| T2ATmmuOR | T3 T4 Ti | Ti | Ti

[[T

—

[

-

HLDa

———1 tHLDh

-—'{le.: Aa

taDst
o |
(FLO

tBEt

BE0-BE3 [

ADO-AD23 [

i

FIGURE 4-15. Floating by HOLD Timing (CPU Not Idle Initially)

ATING) ~

TL/EE/8673-58

Note: Whenever the CPU is not idling (not in Ti), the HOLD signal must be active before the falling edge of PHI2 of the clock cycle that appears two clock cycles
before T4 (TX1) and stay low until after the rising edge of PHI1 of the clock cycle that precedes T4 (TX2) for the request to be acknowledged.

2-164

4.0 Device Specifications (Continued)

TIORT4 T1 T2 T3 T4

- JFL_JF'I_JH_IH_JFI_ITIB—I_‘—'}E

PHIZ [1 _rL_J"I_,_If_l,Jnrﬂl-n] fetsrsr

s NS {- -
X

| t=tpsr

m[T\ LT

Aoo-sl[/ADDR, ----.-) | A O

. T taouta > {— - tsouTia
aour[}

tHLoa e
" tuLoas —]

TL/EE/8673-80
FIGURE 4-16. Floating by HOLD Timing (Burst Cycle Ended by HOLD Assertion)

2-165

G1-2EECESN/OL-CEETESN

NS32332-10/NS32332-15

4.0 Device Specifications (continued)

| T | n T
P [__| 1 T | |
PHI 2 [I I I I I I l I
thioh
o | \
tHLDa -L———l |—tHLoAs —|
ALOA [Q
| thost
tooint
53, 00N [;. (FLOATING)_
togy
o S' (FLOATING)
BED-BE3 [— e e—
(FLOATING)
ADO-AD31 [1

st—s[

tsTst
(FLOATING)
- ——

FIGURE 4-17. Floating by HOLD Timing (CPU Initially idle)

T T Tior T4

LTI

1

TiorT1

I Tt

[

hidia —-| I—- tHLon

=|_|_/

LAl
HLDA [/

tooINe

— DSt

FLOATING
m,m[_ o JEOATNG) L e e _/
- taer
[(FLOATING) X
BE“_BEa D GEEAD IS GEED GED MNP SENS GUED . e
— 1Aty

(FLOATING) (FLOATING)

m[----.—_-._-_-_.—_—

— l‘— tstsr

(FLOATING)

FIGURE 4-18. Release from HOLD

TL/EE/8673-59

TL/EE/8873-60

2-166

4.0 Device Specifications (continued)

CPU STATES
MMU STATES

PHI1

PHIZ

]
[

T
T1

T2/Tmmu
Tmmu

T
| T4

1

Tt
T

=

m[

ADO-31 T _|
(CPU)

2 [T\
(CPU)

ADDRESS (CPU)

ﬁ@tum
(FLOATING) T

tALADSh

o

tDDINt

fo o -t e we — w

BE0-BE3 [

X

TL/EE/8673-61

Note: The bus lines ADO-31 are temporarily driven in T2/TMMU and Ty when FLT is asserted only if DT/SDONE is sampled low during reset (see Section 3.3).

CPU STATES

MMU STATES

wl]

|

FT

(MMU) ___/ ([

ADO-AD3t
(CPV)

]
(CPU) [

ADS
(cPU)

L2)

FIGURE 4-19, FLT Initiated Cycle Timing

Tt

Tmmu

T3

=

T4

—

TiORT1

1

-

|

1

'rwm

_<

DATA OUT

X

oy

tDDINY

_/

X

X

TL/EE/8673-62

FIGURE 4-20. Release from FLT Timing (CPU Write Cycle)

Note: When FLT is deasserted the CPU restarts driving DDIN betore the MMU releases it. This, however, does not cause any conflict, since both CPU and MMU

force DDIN to the same logic level.

2-167

G1-CEECESN/OL-ZEECESN

NS32332-10/NS32332-15

4.0 Device Specifications (continued)

T l Ta
PHIt [|
PHI2 [I I | |
L
| |- tph
ADO-31 [* _ | DATA
(ADO-15) _<2‘Dv
e [7 ﬂ‘
SPCa tSPCia
DDIN [/
NEXT CYCLE
ST0-3 [STATUS VALID >< g@jg
DS [(HIGH) |

TL/EE/8673-64
FIGURE 4-21. Slave Processor Write Timing

- LI

T4

T T4
PHI1 [| |
.
| |-=—tpIh
PHI2 [
1Dis =
ADO-31
ADeD) [- VALID -
_ DATA (FROM SLAVE)
SPC [1
(CPU)
DOIN [—\
ST0-3 [STATUS VALID XNEXT STATUS
ADS [(RIGH)

TL/EE/8673-65

FIGURE 4-22, Slave Processor Read Timing

w| L LT

SPC
(FROM CPU)

Nig—

soone [~
(FROM SLAVE)

FIGURE 4-23, DT/SDONE Timing (32-Bit Slave Protocol)

wl LT

n

J+—tspeat

—]

tsoNd
1s0Ns

1SDNw
/

-
te—1SONSTW

w1

SPC
(FROM CPU) [

7.

—
(FROM SLAVE)

=

tsped

tspes

1sPew

=

—

1

FIGURE 4-24, SPC Timing (16-Bit Slave Protocol)

Note: After transferring last operand 1o a Slave Processor, CPU turns OFF driver and holds SPC high with internal 5 k2 pullup.

[L
)

TL/EE/8673-63

LI
1

TL/EE/8673-66

2-168

4.0 Device Specifications (continued)

teLw(1)

M\

~thovL(2)

teu(2)

thov(1)
FIGURE 4-25. Clock Waveforms

TL/EE/8673-91

PHI2 [

t
'PFsa PFSla tPFSw

| N

A A

- TL/EE/8673-68
FIGURE 4-26. Relationship of PFS to Clock Cycles

WL L]

87103 [X CODE 1001

FIGURE 4-27. Guaranteed Delay, PFS to Non-Sequential Fetch

TL/EE/8673-69

l Tt | T2 LI) I I |
LML T
PHI1
- — (L
55 '\—/ —))
§710-3 CODE 1001
- {
— W \ [
PFS
. INSPF

- TL/EE/8673-70
FIGURE 4-28. Guaranteed Delay, Non-Sequential Fetch to PFS

2-169

G1-2EECESN/0L-CEECESN

NS32332-10/NS32332-15

4.0 Device Specifications (continued)

taBTs tABTh

FIGURE 4-29. Abort Timing, FL

Tt T b

=nplplly

TL/EE/8673-T1

H

Not Applied

bl Ti T

L L

=11

gy
/

taBTe tABTh
ABT

TL/EE/8673-72

FIGURE 4-30. Abort Timing, FLT Applied

L

LT

'ns'r-H

™ ‘,_j——
1
]

TL/EE/8673-73

FIGURE 4-31. Power-On Reset

2-170

4.0 Device Specifications (continued)

PHI1 I | I | £ I I r-l r_l I L
‘ > betpsrs
RSTw
S0 N fF
73
) . —>| ‘-tDTl —] Q—'m-h
07 /SDONE :D[/
9
I TL/EE/8873-92
FIGURE 4-32. Non-Power-On Reset
rmonﬂ I'raon'n ‘ T l 7 | ¢} | T4 ‘

LI LT LT

ST\ "
u,s[m i @Z

TL/EE/8873-75
FIGURE 4-33. U/S Relatlonship to Any Bus Cycle — Guaranteed Valld Interval

m L
mf[!‘{m m[__—\ - /_

. TL/EE/8673-76 TL/EE/8673-77
FIGURE 4-34. INT Interrupt Signal Detection FIGURE 4-35. NMI Interrupt Signal Timing

2-171

SE-CEECESN/OL-CEECESN

NS32332-10/NS32332-15

Appendix A: Instruction Formats

NOTATIONS
i= Integer Type Field
B = 00 (Byte)
W = 01 (Word)
D = 11 (Double Word)
f= Floating Point Type Field
F = 1 (Std. Floating: 32 bits)
L = 0 (Long Floating: 64 bits)
c= Custom Type Field
= 1 (Double Word)
Q = 0 (Quad Word)
op= Operation Code
Valid encodings shown with each format.
gen, gen 1, gen 2= General Addressing Mode Field
See Sec. 2.2 for encodings.
reg= General Purpose Register Number
cond= Condition Code Field
0000 = EQual: Z = 1
0001 = Not Equal: Z = 0
0010 = Carry Set: C = 1
0011 = Carry Clear: C = 0
0100 = Higher: L = 1
0101 = Lower or Same: L = 0
0110 = Greater Than: N = 1
0111 = Less or Equal: N = 0
1000 = Flag Set: F = 1
1001 = Flag Clear: F = 0

1010 = LOwer: L = 0andZ = 0
1011 = Higher or Same: L = 1orZ = 1
1100 = Less Than:N = 0andZ = 0

1101 = Greateror Equal: N = 1 orZ = 1
1110 = (Unconditionally True)
1111 = (Unconditionally False)

short= Short Immediate value. May contain
quick: Signed 4-bit value, in MOVQ, ADDQ,

CMPQ, ACB.

cond: Condition Code (above), in Scond.
areg: CPU Dedicated Register, in LPR, SPR.

0000 = US
0001 — 0111 = (Reserved)
1000 = FP
1001 = SP
1010 = SB

1011 = (Reserved)
1100 = (Reserved)

1101 = PSR
1110 = INTBASE
1111 = MOD

Options: in String Instructions

7]
T = Translated
B = Backward
U/W = 00: None
01: While Match
11: Until Match

Configuration bits in SETCFG Instruction:
telrc|em|{rFr|c|m|F|1]
mreg: NS32382 Register number, in LMR, SMR.

0000 = BAR
-0001 = (Reserved)
0010 = BMR

0011 = BDR
0100 = (Reserved)
0101 = (Reserved)
0110 = BEAR

0111 = (Reserved)
1000 = (Reserved)

1001 = MCR
1010 = MSR
1011 = TEAR
1100 = PTBO
1101 = PTB1
1110 = IVARO
1111 = IVAR1
7 0
Format 0
Beond (BR)
7 0
Format 1
BSR -0000 ENTER -1000
RET -0001 EXIT -1001
CXP -0010 NOP -1010
RXP -0011 WAIT -1011
RETT -0100 DIA -1100
RETI -0101 FLAG -1101
SAVE -0110 SvC -1110
RESTORE -0111 BPT -1111
15 8 | 7 0
T T 1 T T 1 T T T L T
gen short ' op |1 1 i]
Format 2
ADDQ -000 ACB -100
CMPQ -001 Mova -101
SPR -010 LPR -110
Scond 011

2-172

b
. . n
Appendix A: Instruction Formats (continued) @
w
15 8|7 23 18] 15 8|7 0| R
T 1 T 1 LR LI 7 T 1 1T 1 17T B S B T 1T 1 1 1 1° T -
[gen op 11111i| gen1lgen2 op|i11001110Q
=
wn
Format 3 pAo
Format 7 Pt
CXPD -0000 ADJSP -1010 MOVM 10000 . q000 | 8
BICPSR -0010 JSR -1100 @
JUMP -0100 CASE -1110 CMPM -0001 MEI -1001 Y
INSS -0010 Trap (UND) 41010 | &
BISPSR 0110
A, EXTS -0011 DEI -1011
rap (UND) on XXX1, 100 MOVXBW -0100 Quo -1100
MOVZBW 0101 REM -1101
15 8L7 0 MOVZiD -0110 MOD -1110
rrrrpr Tttt MOVXIiD 0111 DIV 1111
gen 1 gen2 op i
Format 4 23 1615 8|7 0
LI LI T TTTTTTTd
ADD -0000 suB -1000 gen 1 r[gen2 ren | 10111
CMP -0001 ADDR -1001 op
BIC -0010 AND -1010 TL/EE/8673-78
ADDC -0100 SUBC -1100 Format 8
MoV -0101 TBIT -1101 EXT <000 INDEX -100
OR -01 10 XOR 1110 CvTP -001 FFS -101
INS 010
23 8|7 0 CHECK 01
T 1) 1] T I) 1] T T i T] T 1 T
. MOVSU -110, reg = 001
|0| short1 | short l l I 00001110 MOVUS 110, reg = 011
Format 5 15 |15 8|7 0
MOVS -0000 SETCFG* -0010 L T T T T T T T T T
CMPS -0001 SKPS -0011 gen 1 gen2 op fri 0011111 0]
1XXX, 01XX
Trap (UND) on 1XXX, 01X Format 9
23 16| 15 8|7 (] MOVif -000 ROUND -100
[""(' L '| """'J LFSR -001 TRUNC -101
gen1 gen2 op 01001110 MOVLF 010 SFSR -110
MOVFL 011 FLOOR 111
Format 6
ROT -0000 NEG -1000 sl 0
ASH o0t NoT 001
CBIT -0010 Trap (UND) -1010 .
CBITI -0011 SUBP -1011 Format 10 TL/BE/B6TS-TO
Trap (UND) -0100 ABS -1100
LSH .0101 COM -1101 Trap (UND) Always
SBIT 0110 1BIT -1110
SBITI 0111 ADDP 1114
*Short 1 in format 5 applies only for SETCFG instruction. In other instruc-
tions this field is 0.

2-173

NS32332-10/NS32332-15

Appendix A: Instruction Formats (continued)

23 1615 8(7 0 |23 16] 15 8|7 0
L LR UL) T 1 T 1 T 1) T 1 L 1 1 T
gen 1 gen2| J|f10111110 nnn10110
Operation Word ID Byte
Format 11
ADDf -0000 DIVf -1000 Format 15
MOVf -0001 Note 1 -1001 (Custom Slave)
CMPt -0010 Trap (UND) -1010 nnn Operation Word Format
Note 3 -0011 Trap (UND) -1011
suBf -0100 MULf -1100 23 16 15 8
NEGf -0101 ABSf -1101 T T T T T™TT T
Trap (UND) -0110 Trap (UND) -1110 000 geni short l l l
Trap (UND) -0111 Trap (UND) -1111
Format 15.0
23 18]15 8|7 0 CATSTO -0000 LCR -0010
T T T ™77 T T T T T T CATST1 -0001 SCR -0011
[gen1]gen2| Tlf11111110
Trap (UND) on all others
Format 12 23 16' 15 8
1 T L L L L
Note 2 -0000 Note 2 -1000 001 gen 1 gen2 | op T‘i !
Note 1 -0001 Note 1 -1001
POLYf -0010 Trap (UND) -1010 Format 15.1
DOTY 0011 Trap (UND) -1011 cova 000 cova 400
SCALBt -0100 Note 2 -1100
LCSR -001 CCV1 -101
LOGBf -0101 Note 1 -1101
CCVs -010 SCSR -110
Trap (UND) -0110 Trap (UND) -1110 oova 011 oovo 11
Trap (UND) -0111 Trap (UND) -1111
, o 23 16/ 15
- T 0 T T I LR | T 7
= T om [Tl
TL/EE/8873-81
Format 13 Format 15.5
Trap (UND) Always CCALO -0000 CCAL3 -1000
23 16 15 8l7 o CMOVo -0001 CcMOv3 -1001
T T T T T LI S B B B CCMPO -0010 Trap (UND) -1010
gen1 ' short | l] 00011110 ccmPt -0011 Trap (UND) -1011
CCAL1 -0100 CCAL2 -1100
Trap (UND) -0110 Trap (UND) -1110
RDVAL -0000 LMR -0010 Trap (UND) 0111 Trap (UND) 1111
WRVAL -0001 SMR -0011

Trap (UND) on 01XX, 1XXX

2-174

Appendix A: Instruction Formats (continued)

23 161 15 8
T 1 T 7T T 1 1 T 1T
111 gen1 | gen 2 | op 1x|c
Format 15.7
Note 2 -0000 Note 2 -1000
Note 1 -0001 Note 1 -1001
Note 3 -0010 Trap (UND) -1010
Note 3 -0011 Trap (UND) -1011
Note 2 -0100 Note 2 -1100
Note 1 -0101 Note 1 -1101
Trap (UND) -0110 Trap (UND) -1110
Trap (UND) -0111 Trap (UND) 1111
If nnn = 010, 011, 100, 110 then Trap (UND) Always.
7 0

TL/EE/8673-~82

Format 16
Trap (UND) Always

~
-]

TL/EE/8673-83

Note 1: Opcode not defined; CPU treats like MOV} or CMOV,. First operand
has access class of read; second operand has access class of write; f or ¢
field selects 32- or 64-bit data.

Note 2: Opcode not defined; CPU treats like ADDy or CCAL,. First operand
has access class of read; second operand has access class of read-modify-
write; f or c field selects 32- or 64-bit data.

Note 3: Opcode not defined; CPU treats like CMP; or CCMP,. First operand
has access class of read; second operand has access class of read; f or ¢
field selects 32- or 64-bit data.

Format 17
Trap (UND) Always

Format 18
Trap (UND) Always

Format 19
Trap (UND) Always

Implied Immedlate Encodings:
7

-
o

10001110

TL/EE/8673-84

~
o

TL/EE/8673-85

7 ré 5 r4 3
| |]

r2 r 0
] L 1

7

Register Mark, appended to SAVE, ENTER

T T T T

ro r r2 r3 r4
|] | |

L T T

5 ré r7
|]]

7

Regilster Mark, appended to RESTORE, EXIT

offset
| | |

Ieng}h -1

Offset/Length Modifier appended to INSS, EXTS

2-175

G1-2EECESN/OL-CEECESN

NS32332-10/NS32332-15

g Xipuaddy

9l1-2

| xout
T
1
RESET NSJ'I;IW
s
s 80, -
I {1
_ 5 =3
RSTO CTTL +5V BE2 -
3 | BE3y (1]
> 1*
W2y 3Y ey 0
S T4ALS2ST G o
RDY My 18_2B 38 4B 1A 2A JA 4A LA
ROY CPY f J =
W (=]
+5v v m
| HOLD [»]
)

ROY PH1 PHI2 BED « - - - - BE3 IO oo m.-.-
DT/SOONE HOLD RDY PR —
BRT T o

—|BER =3
o ®»
mws‘[d = o o0, T "
ALDAL I STROBE
- o flems P @9 | DRESS| A0-A23
NC N!cmzm e = N$S32082 ADO-AD23 LATCH/
s s ™) BUFFER
BN 05 ADS
DOW| T DO m
sTo-sT3 ST0-ST3 j——> RD
RST/ABT | n RST/ABT A2UHBF DATA BUFFERS
BWO PC| SPC | —
ADQ-AD31 J ADO-AD23 ASTI EN 16 sUs
10k 03 oW
32 QJW\,_J | I CONTROL WR
M (32) ADO-AD1S — LoGIC
ADDR/DATA BUS
06) 1| I
l & ACK
00-015 ¢ L
NS32081 STO-STH| & DR 00-D31
[— S
RST
[e
(32) ADG-AD31
DATA BUFFERS
DOIN
ST0-ST3
owo
BW1
~» 80UT
[

TL/EE/8673-86

FIGURE B-1. System Connection Diagram (32332, 32081 & 32082)

=
. . . [72]
Appendix B: Interfacing Suggestions (continued) @
©
W
— _ »
CWATT >— > CWAIT) » RD -
WA > | warmi W » WR 2
Wanz > I WATZ Bus 50 » 750 %
M= conrol s ©
PIBRST "\ogc DBE »- DBE N
»| BRSTO 705 |¢ a
18] 74AL5257 _ N
G __ Ror 1A 1Y}—>BE0 -
RST CLK ODIN 2A o o
A 1; A 3A 2Yp=———p BEI
4A
1B 3Yj——>BE2
28
38 4Y|—P BES
48
J—— S G
BED BE1BE2 BES R‘D'Y > > 0K
FOUT « gout o] » w5 ROY e L—D——NLO
JLTI® FLT
i >—tp| B __ DDl [« —>4—>| 00N __
< RST/ABT |« RST/ABT HLDAO » HLDAD
_ U/S »|u/s
BWO > BWO HLDA »] HLDAI __ —_
- PAV > PAV
BW1 D] BW1 J— N = L AN—
NS32332 ADS PIADS \s32382 >
. CPU BER | »| 5t MU CINH » CINH
PFS «———] PFs w7 le S
— DT/SDONE |4 SDONE PAO-M— PAO=31
iNT S>——p] iRT sFc »|5c
HOLD [« 1 HOLD
Nl S>——>1 i sT0-3 —----T--——}ism-s WADS sV
PHI fe— | » PHI1
ADO~31 PHI2 [~ PIPHZ po-31
BER > i ADS
BRT > 1 5V _
OLD > » RST
- L 2 > Do-31
L4
+5 4— Jv‘v‘v
| 10k0
p
D0-31 PHI1 PHI2
+54—t NOE SDN332 RSTO
PSO SPC [4—
5‘ Pst sro-sh
NS32381 r=zle N$32C201
FPU RST [« Tcu "
CLK [« cm 1
| a
DOIN |« . wour —T
»| RSTH
RESET >—
TL/EE/8673-93
FIGURE B-2. System Connection Dlagram (32332, 32381 & 32382)

2-177

NS32C032-10/NS32C032-15

National
Semiconductor

NS32C032-10/NS32C032-15

High-Performance Microprocessors

General Description

The NS32C032 is a 32-bit, virtual memory microprocessor
with a 16-MByte linear address space and a 32-bit external
data bus. It has a 32-bit ALU, eight 32-bit general purpose
registers, an eight-byte prefetch queus, and a slave proces-
sor interface. The NS32C032 is fabricated with National
Semiconductor’s advanced CMOS process, and is fully ob-
ject code compatible with other Series 32000® processors.
The Series 32000 instruction set is optimized for modular,
high-level languages (HLL). The set is very symmetric, it has
a two address format, and it incorporates HLL oriented ad-
dressing modes. The capabilities of the NS32C032 can be
expanded with the use of the NS32081 floating point unit
(FPU), and the NS32082 demand-paged virtual memory
management unit (MMU). Both devices interface to the
NS32C032 as slave processors. The NS32C032 is a gener-
al purpose microprocessor that is ideal for a wide range of
computational intensive applications.

Features

B 32-bit architecture and implementation

MW Virtual memory support

m 16-MByte linear address space

W 32-bit data bus
m Powerful instruction set

— General 2-address capability
— Very high degree of symmetry

— Addressing modes optimized for high-level

languages

m Series 32000 slave processor support
| High-speed CMOS technology

m 68-pin leadless chip carrier

Block Diagram

ADD/DATA CONTROLS & STATUS

| DaTA
BUS INTERFACE CONTROL
INSTRUCTIONS | 32
MICROCODE ROM
eBYTE CONTROL LOGIC
QUEVE
| insTRUCTION
F'- DECODER
2
DISPLACEMENT AND 2
IMMEDIATE EXTRACTOR % CFG REGISTER
REGISTER SET §
INTBASE
53 WORKING
= 1 REGISTERS
5P
SPO
PC
RO
X
R2
R3
A i
5 !
= |
A7 !
T _wob |
Cesa |
|
J

FIGURE 1

TL/EE/9160-1

2-178

Table of Contents

1.0 PRODUCT INTRODUCTION 3.0 FUNCTIONAL DESCRIPTION (Continued)
2.0 ARCHITECTURAL DESCRIPTION 3.8 NS32C032 Interrupt Structure
2.1 Programming Model 3.8.1 General Interrupt/Trap Sequence

3.8.2 Interrupt/Trap Return
3.8.3 Maskable Interrupts (The INT Pin)
. . . 3.8.3.1 Non-Vectored Mode
;12 ;Z;g?;‘g;?;::;tg:QISter (CFG) 3.8.3.2 Vectored Mode: Non-Cascaded Case
2.1.5 Dedicated Tables 3.8.3.3 Vectored Mode: Cascaded Case

; 3.8.4 Non-Maskable Interrupt (The NMI Pin)
2.2 Instruction Set 3.8.5 Traps

2.2.1 General Instruction Format 3.8.6 Prioritization
2.2.2 Addressing Modes 3.8.7 Interrupt/Trap Sequences Detailed Flow
2.2.3 Instruction Set Summary 3.8.7.1 Maskable/Non-Maskable Interrupt

3.0 FUNCTIONAL DESCRIPTION 3872$r°q”;"°° c6: Traps Other Than Trace
3.1 Power and Grounding .7+ [1ap Sequence: Traps Liner Than Ir

2.1.1 General Purpose Registers
2.1.2 Dedicated Registers

. 3.8.7.3 Trace Trap Sequence
3.2 Clocking 3.8.7.4 Abort Sequence
3.3 Resetting .
3.4 Bus Cycles 3.9 Slave Processor Instructions
3.4.1 Cycle Extension 3.9.1 Slavg Proce'ssor Protc'»col
3.4.2 Bus Status 3.9.2 Fioating Point Instructions
3.4.3 Data Access Sequences 3.9.3 Memory Managementhlnstruc!ions
3.4.3.1 Bit Accesses 3.9.4 Custom Slave Instructions
3.4.3.2 Bit Field Accesses 4.0 DEVICE SPECIFICATIONS

3.4.3.3 Extending Multiply Accesses

3.4.4 Instruction Fetches

3.4.5 Interrupt Control Cycles

3.4.6 Slave Processor Communication
3.4.6.1 Slave Processor Bus Cycles
3.4.6.2 Slave Operand Transfer Sequences

3.5 Memory Management Option

3.5.1 Address Translation Strap

3.5.2 Translated Bus Timing

3.5.3 The FLT (Float) Pin

4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1,3 Output Signals

4.1.4 Input/Output Signals
4.2 Absolute Maximum Ratings
4.3 Electrical Characteristics
4.4 Switching Characteristics

4.4.1 Definitions

. 4.4.2 Timing Tables
3.5.4 Aborting Bus Cycles 4.4.2.1 Output Signals: Internal Propagation
3.5.4.1 The Abort Interrupt Delays
3.5.4.2 Hardware Considerations 4.4.2.2 Input Signals Requirements
3.6 Bus Access Control 4.4.2.3 Clocking Requirements
3.7 Instruction Status 4.4.3 Timing Diagrams

Appendix A: Instruction Formats
Appendix B: Interfacing Suggestions

List of lllustrations

L0 U =T 0 Ve - T 1-1
The General and Dedicated Registers
Processor Status Register
CFGRegister.............
Module Descriptor Format
A Sample Link Tabaleottt i it i e e e e e i e e et a e
General Instruction Format
IndexByteFormatcoviviiviiiininnn,
Displacement Encodings
Recommended SUPPlY CONMBCHONSt .uun et ittt ti e ee et e aee ittt eatenaseaneenaeasesnsnssensnsannsennnenns
Clock Timing RelatioNShiPS . o v vttt ittt ittt e ieneteeeeeneneteaanesesassnesesenasesneessonsenansnennn
Power-On Reset Requirements
General RESEt TIMING ..o uuvittett ettt ittt ettt ene ettt eeaeeeneaneneeaananesessnesnenseransasnsnanes
Recommended Reset Connections, Non-Memory-Managed System C
Recommended Reset Connections, Memory-Managed Systemc.oiiniiininiiiiiiiiiiiiiiiiiiiiieraenennnes

2-179

§1-2€002ESN/0}1-2€002ESN

NS32C032-10/NS32C032-15

List of lllustrations (continued)
BUS CONNE O IONS . . ¢ v ettt vttt tenetseensteaeteneneeannsatssesasneuensesensssesesensnseseneessneneensneenss
Read Cycle Timing
R G 3= I 11T A
L2100 g T 1011 PR e
Extended Cycle Example
Memory Interface
Slave Processor Connections
CPU Read from Slave Processor
CPU WIite 10 S1aVO PrOCESSOT &« v vttttettetetienueesnsaeessnoosenesesansonenssosasnesosnssonesuonanseananeans
Read Cycle with Address Translation (CPU Action) R
Write Cycle with Address Translation (CPU Action)
Memory-Managed Read CyCle.cvuviiiininnineniennanenennns
MemOory-Managed WHtE CyClBv vttt it in ittt ettt tttenestansnesasnssonsatasansasansesessnnanannns
1 N
HOLD Timing, Bus Initially 118 evverereeiienenenernrannnnns
HOLD Timing, Bus Initially Notldlec.vuiiiiiiiiiiiaenreeans
Interrupt Dispatch and Cascade Tablesc.covvnivenniiinnnnnnen
Interrupt/Trap Service Routine Calling Sequence
Return from Trap (RETT N) INStrUCtiON FIOW ... uuiuititintnisieeneer st enenreseneseerensuensacansssenoneeusnenes
Return from Interrupt (RET) Instruction Flow Y 3-25
Interrupt Control ConNectioNS (16 18VEIS) . ..o vt ivinre e ereteineneaeneeruerarsenenenesnenennennns
Cascaded Interrupt Control Unit Connectionscovvviues
SOIVICO SOOUBMEE ..ttt ittitttteteterestsaetnenetansnseasnssasasesensosensnsuesssnesesonseosonsnsenanenes
Slave ProCeSSOr ProtOCO] . ..o .u ettt ittt tintetentenasenoasnssonssssonsonoonssasossonssonsessssnnsonas

NS32C032 Connection Diagramcccovvveninieninennn.
Timing Specification Standard (Signal Valid After Clock Edge)
Timing Specification Standard (Signal Valid Before CIOCKEAgE) . ..o ovvvrtnnieitniitiieiiererinernrneneeneanenens
B LG 03 - P
3 15T Lo 03 A P

Floating by HOLD Timing (CPU Not Initially Idle)
Floating by HOLD Timing (CPU Initially Idle)

[R5 EeT o 4T o L
FLT Initiated FIOAt CYCIO THTING . « - « vt e evt e e e ae e e e e s e e eeeaeenaennaarseaeaseeraenenenaeannenseeseseesannnns
Release from FLT TiMiNg +.vvevvrererrrnnnrerernninreernnnnes

Ready Sampling (CPU Initially READY)covviiiineinnne.

Ready Sampling (CPU Initially NOT READY)
Slave Processor WHte Timingo vvntiten e ttte ettt tee e eseeneeueneenaesnaasoneneneesessasasoseenensonaneann
Slave Processor Read TiminNguu ettt ittt titaataeetaneneneaesasnseresensenenenerocanans
L0111 T U
Reset Configuration TimiNg. . ..o .vnvn ittt e ittt ittt e et sonaasssensesnenaenoansnenns
ClockWaveformsoovviiiniiiiriiierneenerieenneennss
Relationship of PFS 10 Clock Cycles ... vvvververnnieerenrnnnens
Guaranteed Delay, PFS t0 NON-Sequential Foteuvueeieirtet ettt et tieeeiiteetatereneareereanneenns
Guaranteed Delay, Non-Sequential Fetch 1o PESviettiveeeinetttiiieeerrieeerrenireeeerrnneeesnenes R
Relationship of ILO to First Operand of an Interlocked Instruction
Relationship of ILO to Last Operand of an Interlocked Instruction
Relationship of TLO t0 ANy CIOCK CYCI@ .+ . uuveeevineeeerrnneeennnrrernerenanneernnnnnnes
U/S Relationship to any Bus Cycle — Guaranteed Valid Interval. . .
Abort Timing, FLT Not Applied S 4
ADOTE TIMING, FLT APPHOH . « ettt et ttee ettt et ea et tannseatuneeeaanassssasnasessennnsessonesesneesenen
Power-OnReset

Non-Power-On Resst
NT Interrupt Signal Detection
N IO ErTUDE SIgNEE TIMING. + 2 vt eeeeteteeeettteeeeeteennetereeeeenneassnnnsarteeereseeeseesnnnnnnnesensenes
Relationship Between Last Data Transfer of an Instruction and PFS Pulse of Next Instructionoevvvvevnineens 4-29
Processor Systom Connection DIagramvvurenineenutnenenssenesensoonsssosssinsessosseseosseosarsnsssonacs B-1

2-180

List of Tables
NS32C032 AddressingModesovvuues e ettt e e iae et et e e e e e 241

] =T 1] o) STl (T3 ToT- T N
Floating Point Instruction Protocols

Memory Management Instruction Protocols
Custom Slave INStruction PrOtOCOISt vv vttt vttt ittt ate i ent e esareesinenereasainnersnsansnns

2-181

G1-2€0JZESN/0L-CE0JCESN

NS32C032-10/NS32C032-15

1.0 Product Introduction

The Series 32000 microprocessor family is a new genera-
tion of devices using National’s XMOS and CMOS technolo-
gies. By combining state-of-the-art MOS technology with a
very advanced architectural design philosophy, this family
brings mainframe computer processing power to VLSI proc-
essors.

The Series 32000 family supports a variety of system con-
figurations, extending from a minimum low-cost system to a
powerful 4 gigabyte system. The architecture provides com-
plete upward compatibility from one family member to an-
other. The family consists of a selection of CPUs supported
by a set of peripherals and slave processors that provide
sophisticated interrupt and memory management facilities
as well as high-speed floating-point operations. The archi-
tectural features of the Series 32000 family are described
briefly below:

Powerful Addressing Modes. Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types. The architecture provides for numerous data
types, such as byte, word, doubleword, and BCD, which may
be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case
instructions that compilers can’t use, the Series 32000 fami-
ly incorporates powerful instructions for control operations,
such as array indexing and external procedure calls, which
save considerable space and time for compiled code.

Memory-to-Memory Operations. The Series 32000 CPUs
represent two-address machines. This means that each op-
erand can be referenced by any one of the addressing
modes provided. This powerful memory-to-memory archi-
tecture permits memory locations to be treated as registers
for all useful operations. This is important for temporary op-
erands as well as for context switching.

Memory Management. Either the NS32382 or the
NS32082 Memory Management Unit may be added to the
system to provide advanced operating system support func-
tions, including dynamic address translation, virtual memory
management, and memory protection.

Large, Uniform Addressing. The NS32C032 has 24-bit ad-
dress pointers that can address up to 16 megabytes without
requiring any segmentation; this addressing scheme pro-
vides flexible memory management without added-on ex-
pense.

Modular Software Support. Any software package for the
Series 32000 family can be developed independent of all
other packages, without regard to individual addressing. In
addition, ROM code is totally relocatable and easy to ac-
cess, which allows a significant reduction in hardware and
software cost.

Software Processor Concept. The Series 32000 architec-
ture allows future expansions of the instruction set that can
be executed by special slave processors, acting as exten-
sions to the CPU. This concept of slave processors is
unique to the Series 32000 family. It allows software com-
patibility even for future components because the slave
hardware is transparent to the software. With future ad-
vances in semiconductor technology, the slaves can be
physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro-

vide three primary performance advantages and character-
istics:

¢ High-Level Language Support
e Easy Future Growth Path
e Application Flexibility

2.0 Architectural Description

2.1 PROGRAMMING MODEL

The Series 32000 architecture includes 16 registers on the
N832C032 CPU.

2.1.1 General Purpose Registers

There are eight registers for meeting high speed general
storage requirements, such as holding temporary variables
and addresses. The general purpose registers are free for
any use by the programmer. They are thirty-two bits in
length. If a general register is specified for an operand that
is eight or sixteen bits long, only the low part of the register
is used; the high part is not referenced or modified.

2.1.2 Dedicated Registers

The eight dedicated registers of the NS32C032 are as-
signed specific functions.
PC: The PROGRAM COUNTER register is a pointer to
the first byte of the instruction currently being executed.
The PC is used to reference memory in the program
section. (In the NS32C032 the upper eight bits of this
register are always zero.)

SP0, SP1: The SPO register points to the lowest address
of the last item stored on the INTERRUPT STACK. This
stack is normally used only by the operating system. It is
used primarily for storing temporary data, and holding
return information for operating system subroutines and
interrupt and trap service routines. The SP1 register
points to the lowest address of the last item stored on
the USER STACK. This stack is used by normal user
programs to hold temporary data and subroutine return
information.

In this document, reference is made to the SP register.
The terms *“SP register” or “SP” refer to either SP0O or
SP1, depending on the setting of the S bit in the PSR
register. If the S bit in the PSR is 0 the SP refers to SPO.
If the S bit in the PSR is 1 then SP refers to SP1. (In the
NS32C032 the upper eight bits of these registers are
always zero).

Stacks in the Series 32000 family grow downward in
memory. A Push operation pre-decrements the Stack
Pointer by the operand length. A Pop operation post-in-
crements the Stack Pointer by the operand length.

FP: The FRAME POINTER register is used by a proce-
dure to access parameters and local variables on the
stack. The FP register is set up on procedure entry with
the ENTER instruction and restored on procedure termi-
nation with the EXIT instruction.

The frame pointer holds the address in memory occu-
pied by the old contents of the frame pointer. (In the
NS32C032 the upper eight bits of this register are al-
ways zero.)

SB: The STATIC BASE register points to the global vari-
ables of a software module. This register is used to sup-
port relocatable global variables for software modules.

2-182

2.0 Architectural Description (continued)

=
wn
@
]
8
GENERAL
]
DEDI(;:TED %2 [
A T T =
L o] PROGRAM COUNTER | PC ° | : ' 1 g
T : I]]
| o | STATIC BASE | 88 @
Rz [| :]]
| o | FRAME POINTER | FP Q
, .
[0] USER STACK PTR.] SP1 | ' I B
sp r [' ; | &
| o | wrerrupTstackem, | spo o
rs [i '. J
| o | INTERRUPT BASE | INTBASE
PSR MoD R | : : il
[smwws T wooue] R7 | ; ! J

TL/EE/9160-3

FIGURE 2-1. The General and Dedicated Registers

The SB register holds the lowest address in memory
occupied by the global variables of a module. (In the
NS32C032 the upper eight bits of this register are al-
ways zero.)

INTBASE: The INTERRUPT BASE register holds the
address of the dispatch table for interrupts and traps
(Sec. 3.8). The INTBASE register holds the lowest ad-
dress in memory occupied by the dispatch table. (In the
NS32C032 the upper eight bits of this register are al-
ways zero.)

MOD: The MODULE register holds the address of the
module descriptor of the currently executing software
module. The MOD register is sixteen bits long, therefore
the module table must be contained within the first 64K
bytes of memory.

PSR: The PROCESSOR STATUS REGISTER (PSR)
holds the status codes for the NS32C032 microproces-
sor.

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all
programs, but the high order eight bits are accessible
only to programs executing in Supervisor Mode.

15 8|7 0
DDA 1 TelsTulnzTe DT L [T]¢c]
TL/EE/9160-4
FIGURE 2-2. Processor Status Register
C: The C bit indicates that a carry or borrow occurred
after an addition or subtraction instruction. It can be
used with the ADDC and SUBC instructions to perform
multiple-precision integer arithmetic calculations. It may
have a setting of 0 (no carry or borrow) or 1 (carry or

Z: The Z bit is altered by comparison instructions. In a
comparison instruction the Z bit is set to ““1” if the sec-
ond operand is equal to the first operand; otherwise it is
set to “0".

N: The N bit is altered by comparison instructions. In a
comparison instruction the N bit is set to “1” if the sec-
ond operand is less than the first operand, when both
operands are interpreted as signed integers. Otherwise,
it is set to “0”.

U: If the U bit is “1"” no privileged instructions may be
executed. If the U bit is “0” then all instructions may be
executed. When U = 0 the NS32C032 is said to be in
Supervisor Mode; when U = 1 the NS32C032 is said to
be in User Mode. A User Mode program is restricted
from executing certain instructions and accessing cer-
tain registers which could interfere with the operating
system. For example, a User Mode program is prevent-
ed from changing the setting of the flag used to indicate
its own privilege mode. A Supervisor Mode program is
assumed to be a trusted part of the operating system,
hence it has no such restrictions.

S: The S bit specifies whether the SPO register or SP1
register is used as the stack pointer. The bit is automati-
cally cleared on interrupts and traps. It may have a set-
ting of 0 (use the SPO register) or 1 (use the SP1 regis-
ter).

P: The P bit prevents a TRC trap from occurring more
than once for an instruction (Sec. 3.8.5.). It may have a
setting of 0 (no trace pending) or 1 (trace pending).

1:1f | = 1, then all interrupts will be accepted (Sec. 3.8.).
If 1 = 0, only the NM! interrupt is accepted. Trap en-
ables are not affected by this bit.

borrow). 2.1.3 The Configuration Register (CFG)

T: The T bit causes program tracing. If this bitis a 1, a Within the Control section of the NS32C032 CPU is the four-
TRC trap is executed after every instruction (Sec. 3.8.5). bit CFG Register, which declares the presence of certain
L: The L bit is altered by comparison instructions. In a external devices. It is referenced by only one instruction,
comparison instruction the L bit is set to “1” if the sec- SETCFG, which is intended to be executed only as part of
ond operand is less than the first operand, when both system initialization after reset. The format of the CFG Reg-
operands are interpreted as unsigned integers. Other- ister is shown in Figure 2-3.

wise, it is set to “0"”. In Floating Point comparisons, this

bit is always cleared. [C | M I F I | 1

F: The F bit is a general condition flag, which is altered

by many instructions (e.g., integer arithmetic instructions FIGURE 2-3. CFG Register

use it to indicate overflow).

2-183

NS32C032-10/NS32C032-15

2.0 Architectural Description (continued)

The CFG | bit declares the presence of external interrupt
vectoring circuitry (specifically, the NS32202 Interrupt Con-
trol Unit). If the CFG | bit is set, interrupts requested through
the TNT pin are “Vectored.” If it is clear, these interrupts are
“‘Non-Vectored.” See Sec. 3.8.

The F, M and C bits declare the presence of the FPU, MMU
and Custom Slave Processors. If these bits are not set, the
corresponding instructions are trapped as being undefined.

2.1.4 Memory Organization

The main memory of the NS32C032 is a uniform linear ad-
dress space. Memory locations are numbered sequentially
starting at zero and ending at 224 - 1. The number specify-
ing a memory location is called an address. The contents of
each memory location is a byte consisting of eight bits. Un-
less otherwise noted, diagrams in this document show data
stored in memory with the lowest address on the right and
the highest address on the left. Also, when data is shown
vertically, the lowest address is at the top of a diagram and
the highest address at the bottom of the diagram. When bits
are numbered in a diagram, the least significant bit is given
the number zero, and is shown at the right of the diagram.
Bits are numbered in increasing significance and toward the

left.

A
Byte at Address A

Two contiguous bytes are called a word. Except where not-
ed (Sec. 2.2.1), the least significant byte of a word is stored
at the lower address, and the most significant byte of the
word is stored at the next higher address. In memory, the
address of a word is the address of its least significant byte,
and a word may start at any address.

[15 mse's 8]7 Lse's o

A+1 A
Word at Address A

Two contiguous words are called a double word. Except
where noted (Sec. 2.2.1), the least significant word of a dou-
ble word is stored at the lowest address and the most signif-
icant word of the double word is stored at the address two
greater. In memory, the address of a double word is the
address of its least significant byte, and a double word may
start at any address.

16

A+2 A+1 A

Double Word at Address A

Although memory is addressed as bytes, it is actually orga-
nized as double-words. Note that access time to a word or a
double-word depends upon its address, e.g. double-words
that are aligned to start at addresses that are multiples of
four will be accessed more quickly than those not so
afigned. This also applies to words that cross a double-word
boundary.

2.1.5 Dedicated Tables

Two of the NS32C032 dedicated registers (MOD and INT-
BASE) serve as pointers to dedicated tables in memory.

The INTBASE register points to the Interrupt Dispatch and
Cascade tables. These are described in Sec. 3.8.

| simses|2s 15

A+3

8|7 Lse's o]

The MOD register contains a pointer into the Module Table,
whose entries are called Module Descriptors. A Module De-
scriptor contains four pointers, three of which are used by
NS32C032. The MOD register contains the address of the
Module Descriptor for the currently running module. It is au-
tomatically up-dated by the Call External Procedure instruc-
tions (CXP and CXPD).

The format of a Module Descriptor is shown in Figure 2-4.
The Static Base entry contains the address of static data
assigned to the running module. It is loaded into the CPU
Static Base register by the CXP and CXPD instructions. The
Program Base entry contains the address of the first byte of
instruction code in the module. Since a module may have
multiple entry points, the Program Base pointer serves only
as a reference to find them.

15 0

N (:r
STATIC BASE
LINK TABLE ADDRESS
PROGRAM BASE
RESERVED

TL/EE/9160-5
FIGURE 2-4. Module Descriptor Format

The Link Table Address points to the Link Table for the
currently running module. The Link Table provides the infor-
mation needed for:

1) Sharing variables between modules. Such variables are
accessed through the Link Table via the External ad-
dressing mode.

2) Transferring control from one module to another. This is
done via the Call External Procedure (CXP) instruction.

The format of a Link Table is given in Figure 2-5. A Link
Table Entry for an external variable contains the 32-bit ad-
dress of that variable. An entry for an external procedure
contains two 16-bit fields: Module and Offset. The Module
field contains the new MOD register contents for the mod-
ule being entered. The Offset field is an unsigned number
giving the position of the entry point relative to the new
module’s Program Base pointer.

For further details of the functions of these tables, see the
Series 32000 Instruction Set Reference Manual.

-t~ —r~
ENTRY |31 0
0 ABSOLUTE ADDRESS (VARIABLE)
1 ABSOLUTE ADDRESS (VARIABLE)
2 OFFSET MODULE (PROCEDURE)
X .

TL/EE/9160-8
FIGURE 2-5. A Sample Link Table

2-184

2.0 Architectural Description (continued)
2.2 INSTRUCTION SET

2.2.1 General Instruction Format

Figure 2-6 shows the general format of a Series 32000 in-
struction. The Basic Instruction is one to three bytes long
and contains the Opcode and up to two 5-bit General Ad-
dressing Mode (“‘Gen”) fields. Following the Basic Instruc-
tion field is a set of optional extensions, which may appear
depending on the instruction and the addressing modes se-
lected.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index-
ing. See Figure 2-7.

GEN. ADDR. MODE REG. NO.

TL/EE/9160-8
FIGURE 2-7. Index Byte Format

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select-
ed address modes. Each Disp/Imm field may contain one or
two displacements, or one immediate value. The size of a
Displacement field is encoded with the top bits of that field,
as shown in Figure 2-8, with the remaining bits interpreted
as a signed (two’s complement) value. The size of an imme-
diate value is determined from the Opcode field. Both Dis-
placement and Immediate fields are stored most significant
byte first. Note that this is different from the memory repre-
sentation of data (Sec. 2.1.4).

Some instructions require additional, “implied” immediates
and/or displacements, apart from those associated with ad-
dressing modes. Any such extensions appear at the end of
the instruction, in the order that they appear within the list of
operands in the instruction definition (Sec. 2.2.3).

Byte Displacement: Range —64 to +63

0 SIGNED DISPLACEMENT

Word Displacement: Range —8192 to + 8191

1 l 0 \ﬁ‘“
| 5
ga'ﬁ"w

Double Word Displacement:
Range (Entire Addressing Space)

o
o

°

TL/EE/9160-11
FIGURE 2-8. Displacement Encodings

2.2.2 Addressing Modes

The NS32C032 CPU generally accesses an operand by cal-
culating its Effective Address based on information avail-
able when the operand is to be accessed. The method to be
used in performing this calculation is specified by the pro-
grammer as an “addressing mode."”

OPTIONAL BASIC
EXTENSIONS INSTRUCTION
'd \/ N\
1
Dnsnl&sm mspzlmsm i
]
IMPLIED INDEX INDEX GEN ¢ GEN
IMMEDIATE DISP DISP ADDR t ADDR OPCODE
OPERAND(S) BYTE eYTE MODE | MODE
A ¢ B
)
i

E__J,

TL/EE/9160-7

FIGURE 2-6. General Instruction Format

2-185

G1-2€002ESN/0L-2E0DZESN

NS32C032-10/NS32C032-15

2.0 Architectural Description (continued)
Addressing modes in the NS32C032 are designed to opti-
mally support high-level language accesses to variables. In
nearly all cases, a variable access requires only one ad-
dressing mode, within the instruction that acts upon that
variable. Extraneous data movement is therefore minimized.
NS32C032 Addressing Modes fall into nine basic types:

Reglster: The operand is available in one of the eight Gen-
eral Purpose Registers. In certain Slave Processor instruc-
tions, an auxiliary set of eight registers may be referenced
instead.

Register Relative: A General Purpose Register contains an
address to which is added a displacement value from the
instruction, yielding the Effective Address of the operand in
memory.

Memory Space. ldentical to Register Relative above, ex-
cept that the register used is one of the dedicated registers
PC, SP, SB or FP. These registers point to data areas gen-
erally needed by high-level languages.

Memory Relative: A pointer variable is found within the
memory space pointed to by the SP, SB or FP register. A
displacement is added to that pointer to generate the Effec-
tive Address of the operand.

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written.

Absolute: The address of the operand is specified by a
displacement field in the instruction.

External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis-
placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SPO or
SP1) specifies the location of the operand. The operand is
pushed or popped, depending on whether it is written or
read.

Scaled Index: Although encoded as an addressing mode.
Scaled Indexing is an option on any addressing mode ex-
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen-
eral Purpose Register by 1, 2, 4 or 8 and adding it into the
total, yielding the final Effective Address of the operand.

Table 2-1 is a brief summary of the addressing modes. For a
complete description of their actions, see the Instruction Set
Reference Manual.

2.2.3 Instruction Set Summary
Table 2-2 presents a brief description of the NS32C032 in-
struction set. The Format column refers to the Instruction
Format tables (Appendix A). The Instruction column gives
the instruction as coded in assembly language, and the De-
scription column provides a short description of the function
provided by that instruction. Further details of the exact op-
erations performed by each instruction may be found in the
Instruction Set Reference Manual.
Notations:
i = Integer length suffix: B = Byte

W = Word

D = Double Word
f = Floating Point length suffix: F = Standard Floating

L = Long Floating

gen = General operand. Any addressing mode can be
specified.
short = A 4-bit value encoded within the Basic Instruction
(see Appendix A for encodings).
imm = Implied immediate operand. An 8-bit value append-
ed after any addressing extensions.
disp = Displacement (addressing constant): 8, 16 or 32
bits. All three lengths legal.
reg = Any General Purpose Register: RO-R7.
areg = Any Dedicated/Address Register: SP, SB, FP,
MOD, INTBASE, PSR, US (bottom 8 PSR bits).
mreg = Any Memory Management Status/Control Regis-
ter.
creg = A Custom Slave Processor Register (Implementa-
tion Dependent).
cond = Any condition code, encoded as a 4-bit field within
the Basic Instruction (see Appendix A for encodings).

2-186

2.0 Architectural Description (continued)

TABLE 2-1
NS32C032 Addressing Modes

G1-C2€00CESN/0L-ZE0DZESN

ENCODING MODE ASSEMBLER SYNTAX EFFECTIVE ADDRESS

Reglster

00000 Register 0 RO or FO None: Operand is in the specified

00001 Register 1 R1orF1 register

00010 Register 2 R2orF2

00011 Register 3 R3 or F3

00100 Register 4 R4 orF4

00101 Register 5 R5 orF5

00110 Register 6 R6 or F6

00111 Register 7 R7 orF7

Register Relative

01000 Register 0 relative disp(R0) Disp + Register.

01001 Register 1 relative disp(R1)

01010 Register 2 relative disp(R2)

01011 Register 3 relative disp(R3)

01100 Register 4 relative disp(R4)

01101 Register 5 relative disp(R5)

01110 Register 6 relative disp(R6)

01111 Register 7 relative disp(R7)

Memory Relative

10000 Frame memory relative disp2(disp1(FP)) Disp2 + Pointer; Pointer found at

10001 Stack memory relative disp2(disp1(SP)) address Disp1 + Register. “SP”

10010 Static memory relative disp2(disp1(SB)) is either SPO or SP1, as selected
in PSR.

Reserved

10011 (Reserved for Future Use)

Immediate

10100 Immediate value None: Operand is input from
instruction queue.

Absolute

10101 Absolute @disp Disp.

External

10110 External EXT (disp1) + disp2 Disp2 + Pointer; Pointer is found
at Link Table Entry number Disp1.

Top of Stack

10111 Top of stack TOS Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Memory Space [

11000 Frame memory disp(FP) Disp + Register; ""SP” is either

11001 Stack memory disp(SP) SPO or SP1, as selected in PSR.

11010 Static memory disp(SB)

11011 Program memory * +disp

Scaled Index

11100 Index, bytes mode[Rn:B] EA (mode) + Rn.

11101 Index, words mode[Rn:W] EA (mode) + 2X Rn.

11110 Index, double words mode[Rn:D] EA (mode) + 4X Rn.

11111 Index, quad words mode[Rn:Q] EA (mode) + 8 X Rn.

‘Mode’ and ‘n’ are contained
within the Index Byte.

EA (mode) denotes the effective
address generated using mode.

2-187

NS32C032-10/NS32C032-15

2.0 Architectural Description (continued)

TABLE 2-2

NS32C032 Instruction Set Summary

MOVES
Format Operation Operands
4 MOVi -gen,gen
2 MOVQi short,gen
7 MOVMi gen,gen,disp
7 MOVZBW gen,gen
7 MOVZiD gen,gen
7 MOVXBW gen,gen
7 MOVXiD gen,gen
4 ADDR gen,gen
INTEGER ARITHMETIC
Format Operation Operands
4 ADDI gen,gen
2 ADDQi short,gen
4 ADDCi gen,gen
4 SUBi gen,gen
4 SUBCI gen,gen
6 NEGi gen,gen
6 ABSi gen,gen
7 MULI gen,gen
7 QUOI gen,gen
7 REMi gen,gen
7 DIvi gen,gen
7 MODi gen,gen
7 MEli gen,gen
7 DEIi gen,gen
PACKED DECIMAL (BCD) ARITHMETIC
Format Operation Operands
6 ADDPi gen,gen
6 SUBPi gen,gen
INTEGER COMPARISON
Format Operation Operands
4 CMPi gen,gen
2 CMPQi short,gen
7 CMPMi gen,gen,disp
LOGICAL AND BOOLEAN
Format Operation Operands
4 ANDi) gen,gen
4 ORi gen,gen
4 BICi gen,gen
4 XORi gen,gen
6 COMi gen,gen
6 NOTi gen,gen
2 Scondi gen

Description

Move a value.

Extend and move a signed 4-bit constant.
Move Multiple: disp bytes (1 to 16).

Move with zero extension.

Move with zero extension.

Move with sign extension.

Move with sign extension.

Move Effective Address.

Description

Add.

Add signed 4-bit constant.

Add with carry.

Subtract.

Subtract with carry (borrow).
Negate (2's complement).
Take absolute value.

Multiply

Divide, rounding toward zero.
Remainder from QUO.

Divide, rounding down.
Remainder from DIV (Modulus).
Multiply to Extended Integer. -
Divide Extended Integer.

Description

Add Packed.
Subtract Packed.

Description

Compare.
Compare to signed 4-bit constant.
Compare Multiple: disp bytes (1 to 16).

Description

Logical AND.

Logical OR.

Clear selected bits.

Logical Exclusive OR.

Complement all bits.

Boolean complement: LSB only.

Save condition code (cond) as a Boolean variable of size i.

2-188

=
2.0 Architectural Description (continued) ‘é
TABLE 2-2 (Continued) g
NS32C032 Instruction Set Summary (Continued) [
SHIFTS E
Format Operation Operands Description e
6 LSHi gen,gen Logical Shift, left or right. 5
6 ASHiI gen,gen Arithmetic Shift, left or right. 3
6 ROTi gen,gen Rotate, left or right. g
BITS ‘l}";
Format Operation Operands Description a
4 TBITi gen,gen Test bit,
6 SBITi gen,gen Test and set bit.
6 SBITli gen,gen Test and set bit, interlocked
6 CBITi gen,gen Test and clear bit.
6 CBITIi gen,gen Test and clear bit, interlocked.
6 IBITi gen,gen Test and invert bit.
8 FFSi gen,gen Find first set bit
BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records
used in Pascal. “Extract” instructions read and align a bit field. “Insert” instructions write a bit field from an aligned
source.

Format Operation Operands Description
8 EXTi reg,gen,gen,disp Extract bit field (array oriented).
8 INSi reg,gen,gen,disp Insert bit field (array oriented).
7 EXTSi gen,gen,imm,imm Extract bit field (short form).
7 INSSI gen,gen,imm,imm Insert bit field (short form).
8 CVTP reg,gen,gen Convert to Bit Field Pointer.
ARRAYS
Format Operation Operands Description
8 CHECK:i reg,gen,gen Index bounds check.
8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays.
STRINGS
String instructions assign specific functions to the Gen- Options on ali string instructions are:
eral Purpose Registers: B (Backward): Decrement string pointers after each step
R4 - Comparison Value rather than incrementing.
R3 - Translation Table Pointer U (Until match): End instruction if String 1 entry matches
R2 - String 2 Pointer R4.
R1 - String 1 Pointer W (While) _
RO - Limit Count match): End instruction if String 1 entry does not

match R4.
All string instructions end when RO decrements to zero.

Format Operation Operands Descriptions
5 MOVSI options Move String 1 to String 2.
MOVST options Move string, translating bytes.
5 CMPSI options Compare String 1 to String 2.
CMPST options Compare translating, String 1 bytes.
5 SKPSi options Skip over String 1 entries
SKPST options Skip, translating bytes for Until/While.

2-189

NS32C032-10/NS32C032-15

2.0 Architectural Description (continued)

TABLE 2-2 (Continued)
NS32C032 Instruction Set Summary (Continued)

JUMPS AND LINKAGE
Format Operation Operands Description
3 JUMP gen Jump.
0 BR disp Branch (PC Relative).
0 Beond disp Conditional branch.
3 CASEi gen Multiway branch.
2 ACBI short,gen,disp Add 4-bit constant and branch if non-zero.
3 JSR gen Jump to subroutine.
1 BSR disp Branch to subroutine.
1 CXP disp Call external procedure.
3 CXPD gen Call external procedure using descriptor.
1 SvC Supervisor Call.
1 FLAG Flag Trap.
1 BPT Breakpoint Trap.
1 ENTER [reg list],disp Save registers and allocate stack frame (Enter Procedurs).
1 EXIT [reg list] Restore registers and reclaim stack frame (Exit Procedure).
1 RET disp Return from subroutine.
1 RXP disp Return from external procedure call.
1 RETT disp Return from trap. (Privileged)
1 RETI Return from interrupt. (Privileged)
CPU REGISTER MANIPULATION
Format Operation Operands Description
1 SAVE [reg list] Save General Purpose Registers.
1 RESTORE [reg list] Restore General Purpose Registers.
2 LPRi areg,gen Load Dedicated Register. (Privileged if PSR or INTBASE)
2 SPRi areg,gen Store Dedicated Register. (Privileged if PSR or INTBASE)
3 ADJSPi gen Adjust Stack Pointer.
3 BISPSRi gen Set selected bits in PSR. (Privileged if not Byte length)
3 BICPSRi gen Clear selected bits in PSR. (Privileged if not Byte length)
5 SETCFG [option list] Set Configuration Register. (Privileged)
FLOATING POINT
Format Operation Operands Description
11 MOVf gen,gen Move a Floating Point value.
9 MOVLF gen,gen Move and shorten a Long value to Standard.
9 MOVFL gen,gen Move and lengthen a Standard value to Long.
9 MOVif gen,gen Convert any integer to Standard or Long Floating.
9 ROUNDfi gen,gen Convert to integer by rounding.
9 TRUNCHi gen,gen Convert to integer by truncating, toward zero.
9 FLOORfi gen,gen Convert to largest integer less than or equal to value.
1 ADDf gen,gen Add.
1 SUBf gen,gen Subtract.
1 MULf gen,gen Multiply.
11 DIvf gen,gen Divide.
1 CMPf gen,gen Compare.
1 NEGf gen,gen Negate.
11 ABSf gen,gen Take absolute value.
9 LFSR gen Load FSR.
9 SFSR gen Store FSR.
MEMORY MANAGEMENT
Format Operation Operands Description
14 LMR mreg,gen Load Memory Management Register. (Privileged)
14 SMR mreg,gen Store Memory Management Register. (Privileged)
14 RDVAL gen Validate address for reading. (Privileged)
14 WRVAL gen Validate address for writing. (Privileged)
8 MOVSUi gen,gen Move a value from Supervisor
Space to User Space. (Privileged)
8 MOVUSI gen,gen Move a value from User Space

to Supervisor Space. (Privileged)

2-190

=
. . ar [
2.0 Architectural Description (continued) @
TABLE 2-2 (Continued) Q
NS32C032 Instruction Set Summary (Continued) w
MISCELLANEOUS w
Format Operation Operands Description Q
1 NOP No Operation. =2
1 WAIT Wait for interrupt. [
1 DIA Diagnose. Single-byte “Branch to Self” for hardware 8
breakpointing. Not for use in programming. 8
CUSTOM SLAVE n
b
Format Operation Operands Description a
15.5 CCALOc gen,gen Custom Calculate.
155 CCAL1c gen,gen
15.5 CCAL2c gen,gen
15.5 CCAL3c gen,gen
15.5 CMOVOc gen,gen Custom Move.
15.5 CMOV1c gen,gen
15.5 CMOV2c gen,gen
15.5 CMOV3c gen,gen
15.5 CCMPOc gen,gen Custom Compare.
15.5 CCMP1c gen,gen
151 CCVOci gen,gen Custom Convert.
151 CCV1ici gen,gen
151 CCVaci gen,gen
15.1 CCV3ic gen,gen
151 ccv4DQ gen,gen
15.1 CCv5QD gen,gen
151 LCSR gen Load Custom Status Register.
15.1 SCSR gen Store Custom Status Register.
15.0 CATSTO gen Custom Address/Test. (Privileged)
15.0 CATST1 gen (Privileged)
15.0 LCR creg,gen Load Custom Register. (Privileged)
15.0 SCR creg,gen Store Custom Register. (Privileged)

2-191

NS32C032-10/NS32C032-15

3.0 Functional Description

3.1 POWER AND GROUNDING

The NS32C032 requires a single 5-volt power supply, ap-
plied on 4 pins. The Logic Voltage pins (VcclL1 and Vogl2)
supply the power to the on-chip logic. The Buffer Voltage
pins (Vcea1 and Voeaz) supply the power to the output driv-
ers of the chip. The Logic Voltage pins and the Buffer Volt-
age pins should be connected together by a power (Vcc)
plane on the printed circuit board.

The NS32C032 grounding connections are made on 5 pins.
The Logic Ground pins (GNDL1 and GNDL2) are the ground
pins for the on-chip logic. The Buffer Ground pins (GNDB1
to GNDBB3) are the ground pins for the output drivers of the
chip. The Logic Ground pins and the Buffer Ground pins
should be connected together by a ground plane on the
printed circuit board.

Both power and ground connections are shown below (Fig-
ure 3-1).

+5V
Veewi-Veoz
OTHER Ve
Veesi-Vecs? | CONNECTIONS
(Vce PLANE)
NS32C032
cPU
2
GNDL1, GNDL2
OTHER GROUND
GNDB1-GNDBS3 | CONNECTIONS
(GND PLANE)

TL/EE/9160-12
FIGURE 3-1. Recommended Supply Connections

3.2 CLOCKING

The NS32C032 inputs clocking signals from the Timing
Control Unit (TCU), which presents two non-overlapping
phases of a single clock frequency. These phases are
called PHI1 (pin 26) and PHI2 (pin 27). Their relationship to
each other is shown in Figure 3-2.

Each rising edge of PHI1 defines a transition in the timing
state (“T-State”) of the CPU. One T-State represents the
execution of one microinstruction within the CPU, and/or
one step of an external bus transfer. See Section 4 for com-

plete specifications of PHI1 and PHI2.
|==-ONE T-STATE -]
PHI1 J \ ! \ ’ \
S - "\
/

TL/EE/9160-13
FIGURE 3-2. Clock Timing Relationships

As the TCU presents signals with very fast transitions, it is
recommended that the conductors carmrying PHI1 and PHI2
be kept as short as possible, and that they not be connect-
ed anywhere except from the TCU to the CPU and, if pres-
ent, the MMU. A TTL Clock signal (CTTL) is provided by the
TCU for all other clocking.

3.3 RESETTING

The RST/ABT pin serves both as a Reset for on-chip logic
and as the Abort input for Memory-Managed systems. For
its use as the Abort Command, see Sec. 3.5.4.

The CPU may be reset at any time by pulling the RST/ABT
pin low for at least 64 clock cycles. Upon detecting a reset,
the CPU terminates instruction processing, resets its inter-
nal logic, and clears the Program Counter (PC) and Proces-
sor Status Register (PSR) to all zeroes.

On application of power, RST/ABT must be held low for at
least 50 psec after Vg is stable. This is to ensure that all
on-chip voltages are completely stable before operation.
Whenever a Reset is applied, it must also remain

\ T T

NON-OVERLAPPING

{C

45V e

vee —/
PHi1 | |

"

RST/ABT

L

£64CLOCK

Jrap g

CYCLES

] - 1T D m——

— g

TL/EE/9160~14

FIGURE 3-3. Power-on Reset Requirements

2-192

3.0 Functional Description (continued)

active for not less than 64 clock cycles. The rising edge
must occur while PHI1 is high. See Figures 3-3 and 3-4.
The NS32C201 Timing Control Unit (TCU) provides circuitry
to meet the Reset requirements of the NS32C032 CPU. Fig-
ure 3-5a shows the recommended connections for a non-
Memory-Managed system. Figure 3-5b shows the connec-
tions for a Memory-Managed system.

I— 264 CLOCK }
CYCLES
RST/ABT N ’
{(
—r

TL/EE/8160-15
FIGURE 3-4. General Reset Timing

Py Ns3zc201 NS32032
? o CPU
o ————— ———— P 4
! b pmeen
| RESET > '| > ! {. : \ RSTI ASTO
! [|
1 o * i d
D T LT T Tepeyp—— 4]
EXTERNAL RESET ! |
(OPTIONAL) = = ! = = 50 usac
Lae-J
RESET SWITCH —
(OPTIONAL) SYSTEMRESET

TL/EE/9160-16

FIGURE 3-5a. Recommended Reset Connections, Non-Memory-Managed System

v
¢ NS320201 N832082 NS32C032
? TCU MMU [2]
po=—————————— B 3
I 1 S
| e L I =
| RESET > 1’) — l : ASTI ASTO BST RST/ABT AST/ABT
! -: : i : .
L L L L L | i
EXTERNAL RESET t !
(OPTIONAL) : = ! = = 50 usec
L
RESET SWITCH
(OPTIONAL)

TL/EE/9160-17

FIGURE 3-5b. Recommended Reset Connections, Memory-Managed System

3.4BUS CYCLES

The NS32C032 CPU has a strap option which defines the

Bus Timing Mode as either With or Without Address Trans-

lation. This section describes only bus cycles under the No

Address Translation option. For details of the use of the

strap and of bus cycles with address translation, see Sec.

3.5.

The CPU will perform a bus cycle for one of the following

reasons:

1) To write or read data, to or from memory or a peripheral
interface device. Peripheral input and output are memory-
mapped in the Series 32000 family.

2) To fetch instructions into the eight-byte instruction queus.
This happens whenever the bus would otherwise be idle
and the queue is not already full.

3) To acknowledge an interrupt and allow external circuitry
to provide a vector number, or to acknowledge comple-
tion of an interrupt service routine.

4) To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 3 above are identi-
cal. For timing specifications, see Sec. 4. The only external
difference between them is the four-bit code placed on the
Bus Status pins (STO-ST3). Slave Processor cycles differ in
that separate control signals are applied (Sec. 3.4.6).

The sequence of events in a non-Slave bus cycle is shown
below in Figure 3-7 for a Read cycle and Figure 3-8 for a
Write cycle. The cases shown assume that the selected
memory or interface device is capable of communicating
with the CPU at full speed. If it is not, then cycle extension
may be requested through the RDY line (Sec. 3.4.1).

2-193

G1-2E002ESN/01-CE0D2ESN

NS32C032-10/NS32C032-15

3.0 Functional Description (continued)

A full-speed bus cycle is performed in four cycles of the
PHI1 clock signal, labeled T1 through T4. Clock cycles not
associated with a bus cycle are designated Ti (for “Idle”).

During T1, the CPU applies an address on pins ADO-AD23.
It also provides a low-going pulse on the ADS pin, which
serves the dual purpose of informing external circuitry that a
bus cycle is starting and of providing control to an external
latch for demultiplexing Address bits 0-23 from the ADO-
AD23 pins. See Figure 3-6. During this time also the status
signals DDIN, indicating the direction of the transfer, and
BEO-BES, indicating which of the four bus bytes are to be
referenced, become valid.

During T2 the CPU switches the Data Bus, ADO-AD31 to
either accept or present data. It also starts the data strobe
(DS), signalling the beginning of the data transfer. Associat-
ed signals from the NS32C201 Timing Control Unit are also
activated at this time: RD (Read Strobe) or WR (Write
Strobe), TSO (Timing State Output, indicating that T2 has
been reached) and DBE (Data Buffer Enable).

The T3 state provides for access time requirements, and it
occurs at least once in a bus cycle. At the end of T2 or T3,
on the falling edge of the PHI2 clock, the RDY (Ready) line
is sampled to determine whether the bus cycle will be ex-
tended (Sec. 3.4.1).

If the CPU is performing a Read cycle, the Data Bus (ADO-
AD31) is sampled at the falling edge of PHI2 of the last T3
state. See Section 4. Data must, however, be held at least
until the beginning of T4. DS and RD are guaranteed not to
go inactive before this point, so the rising edge of either of
them may safely be used to disable the device providing the
input data.

The T4 state finishes the bus cycle. At the beginning of T4,
the DS, RD or WR, and TSO signals go inactive, and at the
rising edge of PHI2, DBE goes inactive, having provided for
necessary data hold times. Data during Write cycles re-
mains valid from the CPU throughout T4. Note that the Bus
Status lines (STO-ST3) change at the beginning of T4, an-
ticipating the following bus cycle (if any).

PHI1 PHI2 DS/FLT

DOIN 1
| 00-D31
ADO-AD23 BUFFER ~
N$320032
4 BEG-BE3
BE0-BE3
ADS j
A0
. .
Al

l

LaTCH A2-A23

DS
PHI1 PHI2 ADS —
ADS DDIN _ B
RD
— WR
N$32€201 W
— Ts0
750

TL/EE/9160-18

FIGURE 3-6. Bus Connections

2-194

3.0 Functional Description (continued)
N$32C032 CPU BUS SIGNALS

TA0RTI I Tt | T2 l T3

T4 I TIORTI

S L

LT T

[

TS

DATA N‘>----- (‘(NEXTADI

0000 =

R\\N

[
[
wnns [270K 8 -4
[
[

§T0-8T3 :Z% STATUS VALID NEXT STATUS
= | 2 o |
BE0-BEY :Z% VALID ‘X NEXT

=1/ \ /

NN

N$S32C201 TCU BUS SIGNALS

\ /

|=]
@
m

5l

b+

| | | | | o | | a— |
|

/
/
|/ \
/

g

FIGURE 3-7. Read Cycle Timing

TL/EE/9160-20

2-195

G1-CE00ZESN/0L-2E0DZESN

NS32C032-10/NS32C032-15

3.0 Functional Description (continued)
NS32C032 CPU BYS SIGNALS

TAORTI l m l T2 AE] T4 I TIORTI |

il laNa NNl

[T T T
weson [2K wm k|| o vext Ao

N

= [92 oo
= [/ \ /
(722222 | 2277

NS32C201 TCU BUS SIGNALS

é
NN

g
3
Y

ANN

RDY

k\V

= |/

/
=1 /] N\ /
/

TL/EE/9160-19
FIGURE 3-8. Write Cycle Timing

2-196

3.0 Functional Description (continued)

3.4.1 Cycle Extension

To allow sufficient strobe widths and access times for any
speed of memory or peripheral device, the NS32C032 pro-
vides for extension of a bus cycle. Any type of bus cycle
except a Slave Processor cycle can be extended.

In Figures 3-7 and 3-8, note that during T3 all bus control
signals from the CPU and TCU are flat. Therefore, a bus
cycle can be cleanly extended by causing the T3 state to be
repeated. This is the purpose of the RDY (Ready) pin.

At the end of T2 on the falling edge of PHI2, the RDY line is
sampled by the CPU. If RDY is high, the next T-states will be
T3 and then T4, ending the bus cycle. If RDY is low, then
another T3 state will be inserted after the next T-state and
the RDY line will again be sampled on the falling edge of
PHI2. Each additional T3 state after the first is referred to as
a "WAIT STATE". See Figure 3-9.

PHI 1 I

-

The RDY pin is driven by the NS32C201 Timing Control
Unit, which applies WAIT States to the CPU as requested
on three sets of pin:

1) CWAIT (Continuous WAIT), which holds the CPU in WAIT
states until removed.

2) WAIT1, WATT2, WAIT4, WAIT8 (Collectively WAITN),
which may be given a four-bit binary value requesting a
specific number of WAIT States from 0 to 15.

3) PER (Peripheral), which inserts five additional WAIT
states and causes the TCU to reshape the RD and WR
strobes. This provides the setup and hold times required
by most MOS peripheral interface devices.

Combinations of these various WAIT requests are both legal

and useful. For details of their use, see the NS32C201 Data

Sheet.

Figure 3-10 illustrates a typical Read cycle, with two WAIT
states requested through the TCU WAITn pins.

T3
T3 I (WAIT) ' T4 |

LU

| I

LTI

VAN 77

T3

N
STATE:

NEXT
STATE:
T4

TL/EE/9160-21

FIGURE 3-9. RDY Pin Timing

3.4.2 Bus Status
The NS32C032 CPU presents four bits of Bus Status infor-
mation on pins STO-ST3. The various combinations on
these pins indicate why the CPU is performing a bus cycle,
or, ifitis idle on the bus, then why is it idle.
Referring to Figures 3-7 and 3-8, note that Bus Status leads
the corresponding Bus Cycle, going valid one clock cycle
before T1, and changing to the next state at T4. This allows
the system designer to fully decode the Bus Status and, if
desired, latch the decoded signals before ADS initiates the
Bus Cycle.
The Bus Status pins are interpreted as a four-bit value, with
STO the least significant bit. Their values decode as follows:
0000 - The bus is idle because the CPU does not need to
perform a bus access.
0001 - The bus is idle because the CPU is executing the
WAIT instruction.

0010 - (Reserved for future use.)

0011 ~ The bus is idle because the CPU is waiting for a
Slave Processor to complete an instruction.
0100 - Interrupt Acknowledge, Master.
The CPU is performing a Read cycle. To acknowl-
edge receipt of a Non-Maskable Interrupt (on
NMI) it will read from address FFFF004g, but will
ignore any data provided.

To acknowledge receipt of a Maskable Interrupt
(on INT) it will read from address FFFE004g, ©X-
pecting a vector number to be provided from the
Master NS32202 Interrupt Control Unit. If the vec-
toring mode selected by the last SETCFG instruc-
tion was Non-Vectored, then the CPU will ignore
the value it has read and will use a default vector
instead, having assumed that no NS32202 is
present. See Sec. 3.4.5.
0101 - Interrupt Acknowledge, Cascaded.

The CPU is reading a vector number from a Cas-
caded NS32202 Interrupt Control Unit. The ad-
dress provided is the address of the NS32202
Hardware Vector register. See Sec. 3.4.5.

0110 - End of Interrupt, Master.
The CPU is performing a Read cycle to indicate
that it is executing a Return from Interrupt (RETI)
instruction. See Sec. 3.4.5.

0111 - End of Interrupt, Cascaded.
The CPU is reading from a Cascaded Interrupt
Control Unit to indicate that it is returning (through
RETI) from an interrupt service routine requested
by that unit. See Sec. 3.4.5.

1000 ~ Sequential Instruction Fetch.

The CPU is reading the next sequential word from
the instruction stream into the Instruction

2-197

G1-26002ESN/0L-CE0JTESN

NS32C032-10/NS32C032-15

3.0 Functional Description (continued)

PREV.CYC

PHI 2 [

LE

[

T4ORTi | T

w T

NS$32C032 CPU BUS SIGNALS

T3 13
T2 A | (WAT) | (WAIT)

JEpEREREN.
[T

.

NEXT CYCLE
Ta | TIORTI |

LILT
LTI

AD0-AD23 [%

v

ADDR\. _
VALID

N o

N
N
NN

024-031 [z

W,

.

-

-

m[

s [ZC

\/

STATUS VALID

a'm-u[f

000

=

VALID

NEXT

wl_

/

\

/

N$32C201 TCU CYCLE EXTENSION SIGNALS

CWAIT

N

Y,

A

N\Y

0000 %

N

,

A

NI

(0007

NN

H
E]

.

7/// 101

|
I,

AN

L %

g
[puann | r— 1
N

RDY
{TCUTOCPUL)

/

NS32C201 TCU BUS SIGNAL!

B

\

wa[_ﬁ

=[

m[

/
/
-/
/

FIGURE 3-10. Extended Cycle Example
Note: Arrows on CWAIT, PER, WATTh indicate points at which the TCU samples. Arrows on ADO-AD16 and RDY indicate points at which the CPU samples.

IN)-----('EXT‘DDR

NEXT STATUS

TL/EE/9160-22

2-198

3.0 Functional Description (continued)

Queue. It will do so whenever the bus would oth-
erwise be idle and the queue is not already full.

1001 - Non-Sequential Instruction Fetch.

The CPU is performing the first fetch of instruction
code after the Instruction Queue is purged. This
will occur as a result of any jump or branch, or any
interrupt or trap, or execution of certain instruc-
tions.

1010 - Data Transfer.

The CPU is reading or writing an operand of an
instruction.

1011 - Read RMW Operand.

The CPU is reading an operand which will subse-
quently be modified and rewritten. If memory pro-
tection circuitry would not allow the following
Write cycle, it must abort this cycle.

1100 - Read for Effective Address Calculation.

The CPU is reading information from memory in
order to determine the Effective Address of an
operand. This will occur whenever an instruction
uses the Memory Relative or External addressing
mode.

1101 - Transfer Slave Processor Operand.

The CPU is either transferring an instruction oper-
and to or from a Slave Processor, or it is issuing
the Operation Word of a Slave Processor instruc-
tion. See Sec. 3.9.1.

1110 - Read Slave Processor Status.

The CPU is reading a Status Word from a Slave
Processor. This occurs after the Slave Processor
has signalled completion of an instruction. The
transferred word tells the CPU whether a trap
should be taken, and in some instructions it pre-
sents new values for the CPU Processor Status
Register bits N, Z, L or F. See Sec. 3.9.1.

1111 - Broadcast Slave ID.

The CPU is initiating the execution of a Slave
Processor instruction. The ID Byte (first byte of
the instruction) is sent to all Slave Processors,
one of which will recognize it. From this point the
CPU is communicating with only one Slave Proc-
essor. See Sec. 3.9.1.

3.4.3 Data Access Sequences

The 24-bit address provided by the NS32C032 is a byte
address; that is, it uniquely identifies one of up to
16,777,216 eight-bit memory locations. An important feature
of the NS32C032 is that the presence of a 32-bit data bus
imposes no restrictions on data alignment; any data item,
regardless of size, may be placed starting at any memory
address. The NS32C032 provides special control signals.
Byte Enable (BEO-BE3) which facilitate individual byte ac-
cessing on a 32-bit bus.

Memory is organized as four eight-bit banks, each bank re-
ceiving the double-word address (A2-A23) in parallel. One
bank, connected to Data Bus pins ADO-AD? is enabled

when BED is low. The second bank, connected to data bus
pins AD8-AD15 is enabled when BET is low. The third and
fourth banks are enabled by BEZ2 and BES3, respectively.
See Figure 3-11.

BEO

)

8 BITS

BE3 BE2 BEl

8 BITS 8 BITS 8 BITS

A2-A23

TL/EE/9160-23

FIGURE 3-11. Memory Interface

Since operands do not need to be aligned with respect to
the double-word bus access performed by the CPU, a given
double-word access can contain one, two, thres, or four
bytes of the operand being addressed, and these bytes can
begin at various positions, as determined by A1, AO. Table ,
3-1 lists the 10 resulting access types.

TABLE 3-1

Bus Access Types

Type Bytes Accessed A1,A0 BE3

1 1 00 1

01
10
11
00
01
10
00
03]
00

2

O 4 0O =% 2O =% aa0m
(=]

OOO—‘OO—‘—‘O—‘"’II
-t

BE.
1
1
0
1
1
0
(o}
0
0
0

C OWONOOOM~WN
B WWONONON = -
OO = O = =2 O =

e

Accesses of operands requiring more than one bus cycle
are performed sequentially, with no idle T-States separating
them. The number of bus cycles required to transfer an op-
erand depends on its size and its alignment. Table 3-2 lists
the bus cycles performed for each situation.

2-199

G1-2€0DZESN/0L-CE0DZESN

NS32C032-10/NS32C032-15

3.0 Functional Description (continued)

Cycle Type Address E3
A. Word at address ending with 11

1. 4 A []
2. 1 A+1 1

B. Double word at address ending with 01

1. 9 A 0
2. 1 A+3 1

C. Double word at address ending with 10

1. 7 A 0
2, 5 A+2 1

D. Double word at address ending with 11

1. 4 A 0
2. 8 A+1 1

E. Quad word at address ending with 00
1. 10 A 0

TABLE 3-2
Access Sequences
Data Bus
- o N
BE2 BE1 EO Byte 3 Byte 2 Byte 1 Byte 0
BYTE 1]BYTEO| « A
1 1 1 Byte 0 X X X
1 1 0 X X X Byte 1
|eYTE 3|BYTE 2|BYTE 1]BYTEO| « A
1 Byte2 Bytel ByteO X
1 1 0 X X X Byte 3
[BYTE 3[BYTE 2[BYTE 1|BYTEO| A
1 1 Bytel Byte0 X X
1 0 0 X X Byte3 Byte2
|BYTE 3|BYTE 2|BYTE 1]BYTEO| « A
1 1 1 Byte 0 X X X
0 0 0 X Byte3 Byte2 Byted

[BYTE 7|BYTE 6|BYTE 5|BYTE 4|BYTE 3|BYTE 2|BYTE 1]BYTEO] A

0 0 0 Byte 3 Byte 2 Byte 1 Byte 0

Other bus cycles (instruction prefetch or slave) can occur here.

2. 10 A+4 0

F. Quad word at address ending with 01

0 0 0 Byte 7 Byte 6 Byte 5 Byte 4

|BYTE 7|BYTE 6|BYTE 5|BYTE 4|BYTE 3|BYTE 2|BYTE 1]BYTEO| « A

1. 9 A 0 0 0 1 Byte 2 Byte 1 Byte O X
2. 1 A+3 1 1 1 0 X X X Byte 3
Other bus cycles (instruction prefetch or slave) can occur here.

3. 9 A+4 0 0 0 1 Byte 6 Byte 5 Byte 4 X
4. 1 A+7 1 1 1 0 X X X Byte 7

G. Quad word at address ending with 10

|BYTE 7|BYTE 6|BYTE 5|BYTE 4|BYTE 3|BYTE 2[BYTE 1]BYTEO| « A

1. 7 A 0 0 1 1 Byte 1 Byte 0 X X

2. 5 A+2 1 1 0 0 X X Byte 3 Byte 2
Other bus cycles (instruction prefetch or slave) can occur here.

3. 7 A+4 0 0 1 1 Byte & Byte 4 X X
4. 5 A+6 1 1 0 0 X X Byte 7 Byte 6

H. Quad word at address ending with 11

|eYTe 7|BYTE 6|BYTE 5|BYTE 4|BYTE 3|BYTE 2|BYTE 1BYTEO| « A

1. 4 A 0 1 1 1 Byte 0 X X X

2. 8 A+1 1 0 0 0 X Byte 3 Byte 2 Byte 1

Other bus cycles (instruction prefetch or slave) can occur here.

1. 4 A+ 4 0 1 1 1 Byte 4 X X X

2. 8 A+5 1 0 0 0 X Byte 7 Byte 6 Byte 5
X = Don't Care

2-200

3.0 Functional Description (continued)

3.4.3.1 Bit Accesses

The Bit Instructions perform byte accesses to the byte con-
taining the designated bit. The Test and Set Bit instruction
(SBIT), for example, reads a byte, alters it, and rewrites it,
having changed the contents of one bit.

3.4.3.2 Bit Field Accesses

An access to a Bit Field in memory always generates a Dou-
ble-Word transfer at the address containing the least signifi-
cant bit of the field. The Double Word is read by an Extract
instruction; an Insert instruction reads a Double Word, modi-
fies it, and rewrites it.

3.4.3.3 Extending Multiply Accesses

The Extending Multiply Instruction (MEI) will return a result
which is twice the size in bytes of the operand it reads. If the
multiplicand is in memory, the most-significant half of the
result is written first (at the higher address), then the least-
significant half. This is done in order to support retry if this
instruction is aborted.

3.4.4 Instruction Fetches

Instructions for the NS32C032 CPU are “prefetched”; that
is, they are input before being needed into the next available
entry of the eight-byte Instruction Queue. The CPU performs
two types of Instruction Fetch cycles: Sequential and Non-
Sequential. These can be distinguished from each other by
their differing status combinations on pins STO-ST3 (Sec.
3.4.2).

A Sequential Fetch will be performed by the CPU whenever
the Data Bus would otherwise be idle and the Instruction
Queue is not currently full. Sequential Fetches are always
type 10 Read cycles (Table 3-1).

A Non-Sequential Fetch occurs as a result of any break in
the normally sequential flow of a program. Any jump or
branch instruction, a trap or an interrupt will cause the next
Instruction Fetch cycle to be Non-Sequential. In addition,
certain instructions flush the instruction queue, causing the
next instruction fetch to display Non-Sequential status. Only
the first bus cycle after a break displays Non-Sequential
status, and that cycle depends on the destination address.

Note: During non-sequential fetches, BEO-BES are all active regardless of
the alignment.

3.4.5 Interrupt Control Cycles

Activating the INT or NMI pin on the CPU will initiate one or
more bus cycles whose purpose is interrupt control rather
than the transfer of instructions or data. Execution of the
Return from Interrupt instruction (RET!) will also cause Inter-
rupt Control bus cycles. These differ from instruction or data
transfers only in the status pesented on pins ST0-ST3. All
Interrupt Control cycles are single-byte Read cycles.

This section describes only the Interrupt Control sequences
associated with each interrupt and with the return from its
service routine. For full details of the NS32C032 interrupt
structure, see Sec. 3.8.

2-201

S1-2€00CESN/0L-2E00CESN

NS32C032-10/NS32C032-15

3.0 Functional Description (continued)

TABLE 3-3
Interrupt Sequences
Data Bus
& N\
Cycle Status Address DDIN BE3 BEZ BE1 BE0O Byte3 Byte2 Bytel Byte 0
A. Non-Maskable Interrupt Control Sequences

Interrupt Acknowledge

1 0100 FFFF004¢ 0 1 1 1 0 X X X X
Interrupt Return
None: Performed through Return from Trap (RETT) instruction.

B. Non-Vectored Interrupt Control Sequences

Interrupt Acknowledge

1 0100 FFFE0045 0 1 1 1 0 X X X X
Interrupt Return }

1 0110 FFFE0O4g 0 1 1 1 0 X X X X

C. Vectored Interrupt Sequences: Non-Cascaded.

Interrupt Acknowledge

1 0100 FFFEQO4¢ 0 1 1 1 0 X X X Vector:

. Range: 0-127

Interrupt Return '

1 0110 FFFEQ04¢ 0 1 1 1 0 X X X Vector: Same as

in Previous Int.
Ack. Cycle
D. Vectored Interrupt Sequences: Cascaded

Interrupt Acknowledge

1 0100 FFFEQO4¢ 0 1 1 1 0 X X X Cascade Index:

(The CPU here uses the Cascade Index to find the Cascade Address.)

range —16to —1

2 0101 Cascade 0 See Note Vector, range 9-255; on appropriate byte of
Address data bus.
Interrupt Return
1 0110 FFFEQO4¢ 0 1 1 1 0 X X X Cascade Index:
Same asin
previous Int.
Ack. Cycle
(The CPU here uses the Cascade Index to find the Cascade Address)
2 0111 Cascade 0 See Note X X X X
Address
X = Don’t Care

Note: BEO-BES signals will be activated according to the cascaded ICU address. The cycle type can be 1, 2, 3 or 4, when reading the interrupt vector. The vector

value can be in the range 0-255.

2-202

3.0 Functional Description (continued)

3.4.6 Slave Processor Communication

In addition to its use as the Address Translation strap (Sec.
3.5.1), the AT/SPC pin is used as the data strobe for Slave
Processor transfers. In this role, it is referred to as Slave
Processor Control (SPC). In a Slave Processor bus cycle,
data is transferred on the Data Bus (AD0-AD15), and the
status lines (STO-ST3) are monitored by each Slave Proc-
essor in order to determine the type of transfer being per-
formed. SPC is bidirectional, but is driven by the CPU during
all Slave Processor bus cycles. See Sec. 3.9 for full protocol
sequences.

PREV.CYCLE

| Taorm] |

~ [

ane1s) K= oo
/5P s
SLAVE
NS%ZPCJ):‘Z PROCESSOR
8T0-ST3 870-8T3

TL/EE/9160-24

FIGURE 3-12. Slave Processor Connections

™ TIORTI

w [LT

il

NEXTCYCLE

/

3]

ADO-AD18

E).--_.- NEXT

(][] A

A

NEXT STATUS

7
aT0-873 [2% VALID

w [927

of 7

Note:
(1) CPU samples Data Bus here.

TL/EE/9160-25

(2) DBE and all other NS32C201 TCU bus signals remain inactive because no ADS pulse Is received from the CPU.

FIGURE 3-13. CPU Read from Slave Processor

2-203

G1-2€0DCESN/0L-CE0DCESN

NS32C032-10/NS32C032-15

3.0 Functional Description (continued)

3.4.6.1 Slave Processor Bus Cycles

A Slave Processor bus cycle always takes exactly two clock
cycles, labeled T1 and T4 (see Figures 3-13 and 3-14). Dur-
ing a Read cycle SPC is active from the beginning of T1 to
the beginning of T4, and the data is sampled at the end of
T1. The Cycle Status pins lead the cycle by one clock peri-
od, and are sampled at the leading edge of SPC. During a
Write cycle, the CPU applies data and activates SPC at T1,
removing SPC at T4. The Slave Processor latches status on
the leading edge of SPC and latches data on the trailing
edge.

Since the CPU does not pulse the Address Strobe (ADS),
no bus signals are generated by the NS32C201 Timing Con-
trol Unit. The direction of a transfer is determined by the
sequence (“protocol”) established by the instruction under
execution; but the CPU indicates the direction on the DDIN
pin for hardware debugging purposes.

3.4.6.2 Slave Operand Transfer Sequences

A Slave Processor operand is transferred in one or more
Slave bus cycles. A Byte operand is transferred on the
least-significant byte of the Data Bus (AD0-AD7), and a
Word operand is transferred on bits ADO-AD15. A Double
Word is transferred in a consecutive pair of bus cycles,
least-significant word first. A Quad Word is transferred in
two pairs of Slave cycles, with other bus cycles possibly
occurring between them. The word order is from least-signif-
icant word to most-significant.

Note that the NS32C032 uses only the two least significant

bytes of the data bus for slave cycles. This is to maintain
compatibility with existing slave processors.

PREV.CYCLE NEXT CYCLE
| T40RTI T T TI0RT
plialplal}
=177 N L
] o
ADo-01s | 27//// DATA OUT X NEXT
870-8T3 : Z% VALID NEXT STATUS

ADS

\/

= | 222

Note:
(1) Slave Processor samples Data Bus here.

TL/EE/9160-26

(2) DBE, being provided by the NS32C201 TCU, remains inactive due to the fact that no pulse is presented on ADS. TCU signals RD, WR and TSO also remain

inactive.

FIGURE 3-14. CPU Write to Slave Processor

2-204

3.0 Functional Description (continued)

3.5 MEMORY MANAGEMENT OPTION

The NS32C032 CPU, in conjunction with the NS32082
Memory Management Unit (MMU), provides full support for
address translation, memory protection, and memory alloca-
tion techniques up to and including Virtual Memory.

3.5.1 Address Translation Strap

The Bus Interface Control section of the NS32C032 CPU
has two bus timing modes: With or Without Address Trans-
lation. The mode of operation is selected by the CPU by
sampling the AT/SPC (Address Translation/Slave Proces-
sor Control) pin on the rising edge of the RST (Reset) pulss.

| T4ORTI I T | Tmmu , T2

PHI1

JT LT

L L]

1§ AT/SPC is sampled as high, the bus timing is as previous-

ly described in Sec. 3.4. If it is sampled as low, two changes

occur:

1) An extra clock cycle, Tmmu, is inserted into al! bus cycles
except Slave Processor transfers.

2) The DS/FLT pin changes in function from a Data Strobe
output (DS) to a Float Command input (FLT).

The NS32082 MMU will itself pull the CPU AT/SPC pin low

when it is reset. In non-Memory-Managed systems this pin

should be pulled up to Vg through a 10 kS resistor.

Note that the Address Translation strap does not specifical-

| T3 T4 | TIORTI |

PHI 2

LT

AD0-AD23

S\N

AN,) -1

| 1

O

DN\

022722777

0

AW

N\
o
]
»
Z

ADS

\/

[
[
[
[
[

- (1070 | O

TL/EE/9160-27

FIGURE 3-15. Read Cycle with Address Translation (CPU Action)

2-205

G1-2€00CESN/0L-CE0JCESN

NS32C032-10/NS32C032-15

3.0 Functional Description (continued)

ly declare the presence of an NS32082 MMU, but only the
presence of external address translation circuitry. MMU in-
structions will still trap as being undefined unless the
SETCFG (Set Configuration) instruction is executed to de-
clare the MMU instruction set valid. See Sec. 2.1.3.

3.5.2 Translated Bus Timing

Figures 3-15 and 3-16 illustrate the CPU activity during a
Read cycle and a Write cycle in Address Translation mode.
The additional T-State, Tmmu, is inserted between T1 and
T2. During this time the CPU places ADO-AD23 into the
TRI-STATE® mode, allowing the MMU to assert the trans-
lated address and issue the physical address strobe PAV.
T2 through T4 of the cycle are identical to their counterparts

T4ORTI | T | Tmmu

PHI 1

without Address Translation. Note that in order for the
NS32082 MMU to operate correctly it must be set to the
32032 mode by forcing A24/HBF low during reset. In this
mode the bus lines AD16-AD23 are floated after the MMU
address has been latched, since they are used by the CPU
to transfer data.

Figures 3-17 and 3-18 show a Read cycle and a Write cycle
as generated by the 32C032/32082/32C201 group. Note
that with the CPU ADS signal going only to the MMU, and
with the MMU PAV signal substituting for ADS everywhere
else, Tmmu through T4 look exactly like T1 through T4 in a
non-Memory-Managed system. For the connection diagram,
see Appendix B.

T2 T3 T4 l TIORTI |

JL LT L

PHI 2

LT

BRI

AD0-AD23

z%ms}----w -(DATA OUT XNEXT ADDR

DATA OUT

NN

ADS

8§T0-ST3

[
[
[
[
[

7
é STATUS VALID X NEXT STATUS

=

— — [7
BE0-BE3 i é%

VALID X NEXT

TL/EE/9160-28

FIGURE 3-16. Write Cycle with Address Translation (CPU Action)

2-206

3.0 Functional Description (continued)

| TlORTII Tmmuy I T2 I T3 I T4 | T'ORYil

[] i F"IJ—I LI L
I 1 | O [

VIRTUAL PHYSICAL
(NEXT AD!

Y gl
W

G1-2€00CESN/0L-CE0JCESN

S
>
2
;‘-—
z

NS\ EJ1BE!

N\
8
bt
z

XN

N

ST0-ST3 Z% STATUS VALID X NEXT STATUS
DOIN //VA///A / NExT B
BE0-BE3 27// VALID NEXT

N

N\

@

32C201 TCU BUS SIGNALS

=/ \ /

=17 ||/
=[]

TL/EE/9160-29
FIGURE 3-17. Memory-Managed Read Cycle

2-207

NS32C032-10/NS32C032-15

3.0 Functional Description (continued)

Iuonnl T |‘I’mmu| 2 | 1 | T |T10R'l’l|

INRENINE Ny [

VIRTUAL PHYSICAL

ADO-AD23 2% ABDRES X‘\%‘if_ﬁf DATA OUT anxuom

KN

\/

S$70-ST3 éx STATUS VALID X NEXT STATUS

0 X =
D000 7007

NS32C201 TCU BUS SIGNALS

TL/EE/9160-30
FIGURE 3-18. Memory-Managed Write Cycle

2-208

3.0 Functional Description (continued)

3,5.3 The FLT (Float) Pin

The FLT pin is used by the CPU for address translation
support. Activating FLT during Tmmu causes the CPU to
wait longer than Tmmu for address translation and valida-
tion. This feature is used occasionally by the NS32082 MMU
in order to update its translation look-aside buffer (TLB)
from page tables in memory, or to update certain status bits
within them.

Figure 3-19 shows the effect of FLT. Upon sampling FLT

low, late in Tmmu, the CPU enters idle T-States (Tf) during
which it:

1) Sets AD0O-AD23, D24-D31 and DDIN to the TRI-STATE
condition (“floating”).

2) Suspends further internal processing of the current in-
struction. This ensures that the current instruction re-
mains abortable with retry. (See RST/ABT description,
Sec. 3.5.4)

Note that the ADO~AD23 pins may be briefly asserted dur-

ing the first idle T-State. The above conditions remain in

effect until FLT again goes high. See the Timing Specifica-

tions, Sec. 4.

T LA T T2

LU
LT

.

TABLE PHYSICAL
ADDRESS ADDRES!

{L

P

w [LT
i LT T
i | DN -

. -_-_@.-_

= [\

4

NN

/T N\

ST0-ST3 [VALID VALID
= [72X -t X
DDIN VALID ————t VALID ALID
4
BEO-BE3 [vaLD vaLo
! . TL/EE/9160-31
FIGURE 3-19. FLT Timing

2-209

G1-C€00CESN/0L-CE00CESN

NS32C032-10/NS32C032-15

3.0 Functional Description (continued)

3.5.4 Aborting Bus Cycles

The RST/ABT pin, apart from its Reset function (Sec. 3.3),
also serves as the means to “abort”, or cancel, a bus cycle
and the instruction, if any, which initiated it. An Abort re-
quest is distinguished from a Reset in that the RST/ABT pin
is held active for only one clock cycle.

If RST/ABT is pulled low during Tmmu or Tf, this signals
that the cycle must be aborted. The CPU itself will enter T2
and then Ti, thereby terminating the cycle. Sincs it Is the
MMU PAV signal which triggers a physical cycle, the rest of
the system remains unaware that a cycle was started.

The NS32082 MMU will abort a bus cycle for either of two
reasons:

1) The CPU is attempting to access a virtual address which
is not currently resident in physical memory. The refer-
enced page must be brought into physical memory from
mass storage to make it accessible to the CPU.

2) The CPU is attempting to perform an access which is not
allowed by the protection level assigned to that page.

When a bus cycle is aborted by the MMU, the instruction
that caused it to occur is also aborted in such a manner that
it is guaranteed re-executable later. The information that is
changed irrecoverably by such a partly-executed instruction
does not affect its re-execution.

3.5.4.1 The Abort Interrupt

Upon aborting an instruction, the CPU immediately performs
an interrupt through the ABT vector in the Interrupt Table
(see Sec. 3.8). The Return Address pushed on the Interrupt
Stack is the address of the aborted instruction, so that a
Return from Trap (RETT) instruction will automatically retry
it.

The one exception to this sequence occurs if the aborted
bus cycle was an instruction prefetch. If so, it is not yet
certain that the aborted prefetched code is to be executed.
Instead of causing an interrupt, the CPU only aborts the bus
cycle, and stops prefetching. If the information in the In-
struction Queue runs out, meaning that the instruction will
actually be executed, the ABT interrupt will occur, in effect
aborting the instruction that was being fetched.

3.5.4.2 Hardware Considerations

In order to guarantee instruction retry, certain rules must be
followed in applying an Abort to the CPU. These rules are
followed by the NS32082 Memory Management Unit.

1) If FLT has not been applied to the CPU, the Abort pulse
must occur during or before Tmmu. See the Timing Spec-
ifications, Figure 4-22,

2) I FLT has been applied to the CPU, the Abort pulse must
be applied before the T-State in which FLT goes inactive.
The CPU will not actually respond to the Abort command
until FLT is removed. See Figure 4-25.

3) The Write half of a Read-Modify-Write operand access
may not be aborted. The CPU guarantees that this will
never be necessary for Memory Management functions
by applying a special RMW status (Status Code 1011)
during the Read half of the access. When the CPU pres-
ents RMW status, that cycle must be aborted if it would
be illegal to write to any of the accessed addresses.

If RST/ABT is pulsed at any time other than as indicated
above, it will abort either the instruction currently under exe-
cution or the next instruction and will act as a very high-pri-
ority interrupt. However, the program that was running at the
time is not guaranteed recoverable.

3.6 BUS ACCESS CONTROL

The NS32C032 CPU has the capability of relinquishing its
access to the bus upon request from a DMA device or an-
other CPU. This capability is implemented on the HOLD
(Hold Request) and HLDA (Hold Acknowledge) pins. By as-
serting HOLD low, an external device requests access to
the bus. On receipt of HLDA from the CPU, the device may
perform bus cycles, as the CPU at this point has set the
AD0-AD23, D24-D31, ADS, DDIN and BEO-BES3 pins to
the TRI-STATE condition. To return control of the bus to the

- CPU, the device sets HOLD inactive, and the CPU acknowl-

edges return of the bus by setting HLDA inactive.

How quickly the CPU releases the bus depends on whether
it is idle on the bus at the time the HOLD request is made,
as the CPU must always complete the current bus cycle.
Figure 3-20 shows the timing sequence when the CPU is
idle. In this case, the CPU grants the bus during the immedi-
ately following clock cycle. Figure 3-21 shows the sequence
if the CPU is using the bus at the time that the HOLD re-
quest is made. If the request is made during or before the
clock cycle shown (two clock cycles before T4), the CPU
will release the bus during the clock cycle following T4. If
the request occurs closer to T4, the CPU may already have
decided to initiate another bus cycle. In that case it will not
grant the bus until after the next T4 state. Note that this
situation will also occur if the CPU is idle on the bus but has
initiated a bus cycle internally.

In a Memory-Managed system, the HLDA signal is connect-
ed in a daisy-chain through the NS32082, so that the MMU
can release the bus if it is using it.

2-210

3.0 Functional Description (continuea)

o e e e |
LT e rer

e [P P PP LT T T
=[T\ Ay,
m: _4‘ /

AFFECTED SIGNALS

R L R / \/

Ti l Ti l Ti I TIORT4 | TiORT1

G1-2€0D2ESN/01-CE0IZESN

A

[

l

= N PR N oy e 51
| S A

[

¥

[

AD0-AD23

\\\\

///%7/// ----- TSR U AU SR S (ol
e S - .

TL/EE/9160-32

D24-D31

\\

ST0-ST3

FIGURE 3-20. HOLD Timing, Bus Initially Idle

2-211

NS32C032-10/NS32C032-15

3.0 Functional Description (continued)
‘ T2O0RT3 l T3 ! Ta

| o Lieelw Lo Lo o] o
g NN EN
1

iy Nyily iy Ny g gyl

[T\ ﬁ

N

mz[_J_;l /

}

AFFECTED SIGNALS

C

LN g S P s

)
e N ™R) S N Vg

S e e T -
N T . — S

z
z
] % z
x = m
4 >
b3 -«
o

IR A

wl T oo DN 0

FIGURE 3-21. HOLD Timing, Bus Initially Not Idle

2-212

3.0 Functional Description (continued)

3.7 INSTRUCTION STATUS

In addition to the four bits of Bus Cycle status (ST0O-ST3),
the NS32C032 CPU also presents Instruction Status infor-
mation on three separate pins. These pins differ from ST0-
ST3 inthat they are synchronous to the CPU’s internal in-
struction execution section rather than to its bus interface
section,

PFS (Program Flow Status) is pulsed low as each instruction
begins execution. It is intended for debugging purposes, and
is used that way by the NS32082 Memory Management
Unit.

U/S originates from the U bit of the Processor Status Regis-
ter, and indicates whether the CPU is currently running in
User or Supervisor mode. It is sampled by the MMU for
mapping, protection, and debugging purposes. Although it is
not synchronous to bus cycles, there are guarantees on its
validity during any given bus cycle. See the Timing Specifi-
cations, Figure 4-21.

TLO (Interlocked Operation) is activated during an SBITI (Set
Bit, Interlocked) or CBITI (Clear Bit, Interlocked) instruction.
It is made available to external bus arbitration circuitry in
order to allow these instructions to implement the sema-

phore primitive operations for multi-processor communica-

tion and resource sharing. As with the U/S pin, there are
guarantees on its validity during the operand accesses per-
formed by the instructions. See the Timing Specification
Section, Figure 4-19.
3.8 NS32C032 INTERRUPT STRUCTURE
INT, on which maskable interrupts may be requested,
NMI, on which non-maskable interrupts may be request-
ed, and

RST/ABT, which may be used to abort a bus cycle and
any associated instruction. See Sec. 3.5.4.

la d

In addition there is a set of internally-generated “traps”
which cause interrupt service to be performed as a result
either of exceptional conditions (e.g., attempted division by
zero) or of specific instructions whose purpose is to cause a
trap to occur (e.g., the Supervisor Call instruction).

3.8.1 General Interrupt/Trap Sequence

Upon receipt of an interrupt or trap request, the CPU goes

through three major steps:

1) Adjustment of Registers.
Depending on the source of the interrupt or trap, the CPU
may restore and/or adjust the contents of the Program
Counter (PC), the Processor Status Register (PSR) and
the currently-selected Stack Pointer (SP). A copy of the
PSR is made, and the PSR is then set to reflect Supervi-
sor Mode and selection of the Interrupt Stack.

2) Vector Acquisition.

A Vector is either obtained from the Data Bus or is sup-
plied by default.
3) Service Call.

The Vector is used as an index into the Interrupt Dispatch
Table, whose base address is taken from the CPU Inter-
rupt Base (INTBASE) Register. See Figure 3-22. A 32-bit
External Procedure Descriptor is read from the table en-
try, and an External Procedure Call is performed using it.
The MOD Register (16 bits) and Program Counter (32
bits) are pushed on the Interrupt Stack.

» ot
MEMORY ’ 31 [
NI NON-VECTORED INTERRUPT
CASCADE ADDR 0
NMI NON-MASKABLE INTERRUPT
CASCADETABLE A% .
2 ABT ABORT
CASCADE ADDR 14 SLAVE SLAVE PROCESSOR TRAP
INTERRUPT BASE CASCADE ADDR 15 L ILLEGAL OPERATION TRAP
REGISTER 2 FIXED INTERRUPTS | 5| svc SUPERVISOR CALL TRAP
~ AND TRAPS ~
A VECTORED L DISPATCHTABLE 6| ovz DIVIDE BY ZERO TRAP
= INTERRUPTS >
p 7] FLG FLAG TRAP
8| BPT BREAKPOINT TRAP
9| TRC TRACE TRAP
10| UND UNDEFINED INSTRUCTION TRAP

11182 REseRvED A

18 VECTORED
INTERRUPTS

~

TL/EE/9160-34

FIGURE 3-22. Interrupt Dispatch and Cascade Tables

G1-2€0JZESN/0L-2E0JZESN

NS32C032-10/NS32C032-15

3.0 Functional Description (continued)
This process is lllustrated in Figure 3-23, from the viewpoint of the programmer.

(PUSH)

RETURN ADDRESS 328BITS

STATUS MODULE 328ITS
(PUSH)

PSR MOD INTERRUPT
STACK
Y L]
° TL/EE/9180-35
e e -
CASCADE TABLE
INTBASE REGISTER
[INTERRUPT BASE IL DISPATCH
TABLE

[o
DESCRIPTOR (32BITS)

),

DESCRIPTOR
16 16

OFFSET MODULE

MOD REGISTER
NEW MODULE

MODULE TABLE

MODULE TABLE ENTRY

J

MODULE TABLE ENTRY
32

STATIC BASE POINTER -

LINK BASE POINTER

® PROGRAM BASE POINTER

(RESERVED)

PROGRAM COUNTER SB REGISTER
;t ENTRY POINT ADDRESS J NEW STATIC BASE

FIGURE 3-23. Interrupt/Trap Service Routine Calling Sequence

TL/EE/9160-36

2-214

3.0 Functional Description (continued)

3.8.2 Interrupt/Trap Return

To return control to an interrupted program, one of two in-
structions is used. The RETT (Return from Trap) instruction
(Figure 3-24) restores the PSR, MOD, PC and SB registers
to their previous contents and, since traps are often used
deliberately as a call mechanism for Supervisor Mode pro-
cedures, it also discards a specified number of bytes from
the original stack as surplus parameter space. RETT is used
to return from any trap or interrupt except the Maskable
Interrupt. For this, the RETI (Return from Interrupt) instruc-
tion is used, which also informs any external Interrupt Con-
trol Units that interrupt service has completed. Since inter-
rupts are generally asynchronous external events, RETI
does not pop parameters. See Figure 3-25.

3.8.3 Maskable Interrupts (The INT Pin)

The input is maskable, and is therefore enabled to generate
interrupt requests only while the Processor Status Register |
bit is set. The | bit is automatically cleared during service of
an INT, NMI or Abort request, and is restored to its original
setting upon return from the interrupt service routine via the
RETT or RETI instruction.

The INT pin may be configured via the SETCFG instruction
as either Non-Vectored (CFG Register bit | = C) or Vec-
tored (bit| = 1).

3.8.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT
pin will cause an Interrupt Acknowledge bus cycle, but the
CPU will ignore any value read from the bus and use instead
a default vector of zero. This mode is useful for small sys-
tems in which hardware interrupt prioritization is unneces-

§1-2€002ESN/01-2€0DCESN

The INT pin is a level-sensitive input. A continuous low level sary.
is allowed for generating multiple interrupt requests.
PROGRAM COUNTER
] (POP)
RETURN ADDRESS i 32BITS
(POP)
STATUS MODULE 32BITS
PSR Moo INTERRUPT
M STACK H
H .
0
MODULE
TABLE
MODULE TABLE ENTRY
_J
MODULE TABLE ENTRY
STATICBASE POINTER —]
LINK BASE POINTER
PROGRAM BASE POINTER
(RESERVED)
PARAMETERS
n
BYTES
SB REGISTER
STATIC BASE STACK SELECTED
INNEWLY-
POPPED PSR.
L]
. .
. .
POP AND
DISCARD

TL/EE/9160-37
FIGURE 3-24. Return from Trap (RETT n) Instruction Flow

2-215

NS32C032-10/NS32C032-15

3.0 Functional Description (continued)

“END OF INTERRUPT"

BUSCYCLE
INTERRUPT
CONTROL
UNIT
PROGRAM COUNTER
] (POP)
| RETURN ADDRESS I
L STATUS J ™] (PoR)
TU ODULE
I
PSR MOD
INTERRUPT
STACK
.
[] L]
. L]
0
MODULE
TABLE
MODULE TABLE ENTRY!
/ 3
MODULE TABLE ENTRY
STATICBASEPOINTER
LINK BASE POINTER
PROGRAM BASE POINTER
(RESERVED)
STATIC BASE
SBREGISTER

FIGURE 3-25. Return from Interrupt (RETI) Instruction Flow

TL/EE/9160-39

2-216

3.0 Functional Description (continued)

3.8.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control
Unit (ICU) to prioritize up to 16 interrupt requests. Upon re-
ceipt of an interrupt request on the INT pin, the CPU per-
forms an “Interrupt Acknowledge, Master” bus cycle (Sec.
3.4.2) reading a vector value from the low-order byte of the
Data Bus. This vector is then used as an index into the
Dispatch Table in order to find the External Procedure De-
scriptor for the proper interrupt service procedure. The serv-
ice procedure eventually returns via the Return from Inter-
rupt (RET]I) instruction, which performs an End of Interrupt
bus cycle, informing the ICU that it may re-prioritize any in-
terrupt requests still pending. The ICU provides the vector
number again, which the CPU uses to determine whether it
needs also to inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127; that
is, they must be positive numbers in eight bits. By providing
a negative vector number, an ICU flags the interrupt source
as being a Cascaded ICU (see below).

3.8.3.3 Vectored Mode: Cascaded Case

In order to allow up to 256 levels of interrupt, provision is
made both in the CPU and in the NS32202 Interrupt Control
Unit (ICU) to transparently support cascading. Figure 3-27,
shows a typical cascaded configuration. Note that the Inter-
rupt output from a Cascaded ICU goes to an Interrupt Re-
quest input of the Master ICU, which is the only ICU which
drives the CPU INT pin.

In a system which uses cascading, two tasks must be per-

formed upon initialization:

1) For each Cascaded ICU in the system, the Master ICU
must be informed of the line number (0 to 15) on which it
receives the cascaded requests.

2) A Cascade Table must be established in memory. The
Cascade Table is located in a NEGATIVE direction from
the location indicated by the CPU Interrupt Base (INT-
BASE) Register. Its entries are 32-bit addresses, pointing
to the Vector Registers of each of up to 16 Cascaded

Figure 3-22 llustrates the position of the Cascade Table. To
find the Cascade Table entry for a Cascaded ICU, take its
Master ICU line number (0 to 15) and subtract 16 from it,
giving an index in the range —16 to —1. Multiply this value
by 4, and add the resulting negative number to the contents
of the INTBASE Register. The 32-bit entry at this address
must be set to the address of the Hardware Vector Register
of the Cascaded ICU. This is referred to as the “Cascade
Address.”

Upon receipt of an interrupt request from a Cascaded ICU,
the Master ICU interrupts the CPU and provides the nega-
tive Cascade Table index instead of a (positive) vector num-
ber. The CPU, seeing the negative valuse, uses it as an index
into the Cascade Table and reads the Cascade Address
from the referenced entry. Applying this address, the CPU
performs an “Interrupt Acknowledge, Cascaded” bus cycle
(Sec. 3.4.2), reading the final vector value. This vector is
interpreted by the CPU as an unsigned byte, and can there-
fore be in the range of 0 through 255.

In returning from a Cascaded interrupt, the service proce-
dure executes the Return from Interrupt (RETI) instruction,
as it would for any Maskable Interrupt. The CPU performs
an “End of Interrupt, Master” bus cycle (Sec. 3.4.2), where-
upon the Master ICU again provides the negative Cascade
Table index. The CPU, seeing a negative value, uses it to
find the corresponding Cascade Address from the Cascade
Table. Applying this address, it performs an “End of Inter-
rupt, Cascaded” bus cycle (Sec. 3.4.2), informing the Cas-
caded ICU of the completion of the service routine. The byte
read from the Cascaded ICU is discarded.

Note: If an interrupt must be masked off, the CPU can do so by setting the

corresponding bit in the Interrupt Mask Register of the Interrupt Con-
troller.

However, if an interrupt is set pending during the CPU instruction that
masks off that interrupt, the CPU may still perform an interrupt ac-
knowledge cycle following that instruction since it might have sampled
the INT line before the ICU deasserted it. This could cause the ICU to
provide an invalid vector. To avoid this problem the above operation
should be performed with the CPU interrupt disabled.

ICUs.
0 DATA
®) fat— |R3
~—a RS
CONTROL HARDWARE
e IR? INTERRUPTS
- IRO CASCADED
Nsazcos2 | ADORsems | Nsizz02 : CONTROLLERS
cPU (138
~—IR15
STATUS 1
e GO/IRO
e G1/IR2
Nt INF e G2IIR4

e | TS
[-e G4/IR8 aeno
- G5/IR10

FROM _ o= QE/IR12

ADDRESS —{ €S

DECODER | G7IIR14)

TL/EE/9160-40

FIGURE 3-26. Interrupt Control Unit Connections (16 Levels)

2-217

G1-2€00ZESN/01-2E0DCESN

NS32C032-10/NS32C032-15

3.0 Functional Description (continued)

DATA

le—1R1
l=—IR3

CONTROL [~—IRS

CONTROL

ADDR § BITS

HARDWARE

~—IR7
CASCADED INTERRUPTS

NS32202 [~—IR9
€U la—iR1Y
l=—IR13

STATUS 1 A5

FROM —
ADDRESS —= CS
DECODER

o GO/IRO "\
s G1/IR2
== G2/1R4
== G3/IRE
s G4/IRS
|=> G5/IR10
[==G8/IR12
= G7/IR14 |

INTERRUPTS
OR
BITIVO

|=— IR1
ea— |R3

=—IRS

N$32C032
ADDR

STATUS 1

|=—IR7

MASTER
N§32202

icu ja—|R1Y ~——
le—iR13
[=—1R15

[GO/1IRO

[G1/IR2

FROM -_—
ADDRESS ——={ CS
DECODER

INT [-=—G2/IR4
==G3/IRS
== G4/IR8
== GS/IR10
[~s>-GB/IR12

[==G7/IR14

TL/EE/9180-41

FIGURE 3-27. Cascaded Interrupt Control Unit Connections

3.8.4 Non-Maskable Interrupt (The NMI Pin)

The Non-Maskable Interrupt is triggered whenever a falling
edge is detected on the NMI pin. The CPU performs an
“Interrupt Acknowledge, Master” bus cycle (Sec. 3.4.2)
when processing of this interrupt actually begins. The Inter-
rupt Acknowledge cycle differs from that provided for Mask-
able Interrupts in that the address presented is FFFF004g.
The vector value used for the Non-Maskable Interrupt is
taken as 1, regardless of the value read from the bus.

The service procedure returns from the Non-Maskable In-
terrupt using the Return from Trap (RETT) instruction. No
special bus cycles occur on return.

For the full sequence of events in processing the Non-
Maskable Interrupt, see Sec. 3.8.7.1.

3.8.5 Traps

A trap is an internally-generated interrupt request caused as
a direct and immediate result of the execution of an instruc-
tion. The Return Address pushed by any trap except Trap
(TRC) is the address of the first byte of the instruction during
which the trap occurred. Traps do not disable interrupts, as
they are not associated with external events. Traps recog-
nized by the NS32C032 CPU are:

Trap (SLAVE): An exceptional condition was detected by
the Floating Point Unit or another Slave Processor during
the execution of a Slave Instruction. This trap is requested
via the Status Word returned as part of the Slave Processor
Protocol (Sec. 3.9.1).

2-218

3.0 Functional Description (continued)

Trap (ILL): lilegal operation. A privileged operation was at-
tempted while the CPU was in User Mode (PSR bit U = 1).

Trap (SVC): The Supervisor Call (SVC) instruction was exe-
cuted.

Trap (DVZ): An attempt was made to divide an integer by
zero. (The FPU trap is used for Floating Point division by
zero.)

Trap (FLG): The FLAG instruction detected a “1" in the
CPU PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut-
ed.

Trap (TRC): The instruction just completed is being traced.
See below.

Trap (UND): An undefined opcode was encountered by the
CPU.

A special case is the Trace Trap (TRC), which is enabled by
setting the T bit in the Processor Status Register (PSR). At
the beginning of each instruction, the T bit is copied into the
PSR P (Trace "Pending"”) bit. If the P bit is set at the end of
an instruction, then the Trace Trap is activated. If any other
trap or interrupt request is made during a traced instruction,
its entire service procedure is allowed to complete before
the Trace Trap occurs. Each interrupt and trap sequence
handles the P bit for proper tracing, guarantesing one and
only one Trace Trap per instruction, and guaranteeing that
the Return Address pushed during a Trace Trap is always
the address of the next instruction to be traced.

3.8.6 Prioritization

The NS32016 CPU internally prioritizes simultaneous inter-
rupt and trap requests as follows:

1) Traps other than Trace (Highest priority)
2) Abort

3) Non-Maskable Interrupt

4) Maskable interrupts

5) Trace Trap (Lowest priority)

3.8.7 Interrupt/Trap Sequences: Detailed Flow

For purposes of the following detailed discussion of inter-
rupt and trap service sequences, a single sequence called
“Service" is defined in Figure 3-28. Upon detecting any in-
terrupt request or trap condition, the CPU first performs a
sequence dependent upon the type of interrupt or trap. This
sequence will include pushing the Processor Status Regis-
ter and establishing a Vector and a Return Address. The
CPU then performs the Service sequence.

For the sequence followed in processing either Maskable or
Non-Maskable interrupts (on the TNT or NMI pins, respec-
tively), see Sec. 3.8.7.1 For Abort Interrupts, see Sec.
3.8.7.4. For the Trace Trap, see Sec. 3.8.7.3, and for all
other traps see Sec. 3.8.7.2.

3.8.7.1 Maskable/Non-Maskable Interrupt Sequence

This sequence is performed by the CPU when the NMI pin
receives a falling edge, or the INT pin becomes active with
the PSR | bit set. The interrupt sequence begins either at
the next instruction boundary or, in the case of the String
instructions, at the next interruptible point during its execu-
tion.

-

. If a String instruction was interrupted and not yet com-
pleted:

a. Clear the Processor Status Register P bit.

b. Set “Return Address” to the address of the first byte of
the interrupted instruction.

Otherwise, set ‘“Return Address’ to the address of the
next instruction.

2. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits S, U, T, P and I.

. If the interrupt is Non-Maskable:

a. Read a byte from address FFFF004g, applying Status
Code 0100 (Interrupt Acknowledge, Master, Sec.
3.4.2). Discard the byte read.

b. Set “Vector” to 1.

c. Go to Step 8.

. If the interrupt is Non-Vectored:

a. Read a byte from address FFFF001g, applying Status
Code 0100 (Interrupt Acknowledge, Master: Sec.
3.4.2). Discard the byte read.

b. Set “Vector” to 0.

c. Go to Step 8.

5. Here the interrupt is Vectored. Read ‘‘Byte” from address
FFFE0O+1g, applying Status Code 0100 (interrupt Ac-
knowledge, Master: Sec. 3.4.2).

6. If “Byte” = 0, then set “Vector” to “Byte" and go to Step
8.

7.1t “Byte” is in the range —16 through —1, then the inter-
rupt source is Cascaded. (More negative values are re-
served for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory. The
address is calculated as INTBASE +4* Byte.

b. Read “Vector,” applying the Cascade Address just
read and Status Code 0101 (Interrupt Acknowledge,
Cascaded: Sec. 3.4.2).

8. Push the PSR copy (from Step 2) onto the Interrupt Stack
as a 16-bit value.

9. Perform Service (Vector, Return Address), Figure 3-28.

w

kN

Service (Vector, Return Address):

1) Read the 32-bit External Procedure Descriptor from the Interrupt
Dispatch Table: address Is Vector* 4 + INTBASE Register contents.

2) Move the Module fleld of the Descriptor into the MOD Reglster.

3) Read the new Static Base pointer from the memory address con-
talned in MOD, placing It into the SB Register.

4) Read the Program Base pointer from memory address MOD + 8,
and add to it the Otffset fleld from the Descriptor, placing the result
In the Program Counter.

5) Flush queue: Non-sequentially fetch first Instruction of Interrupt
routine.

6) Push MOD Register into the Interrupt Stack as a 16-bit value. (The
PSR has already been pushed as a 16-bit value.)

7) Push the Return Address onto the Interrupt Stack as a 32-bit quanti-
ty.
FIGURE 3-28. Service Sequence
Invoked during all interrupt/trap sequences.

2-219

G1-2€002ESN/0L-2E0DZESN

NS32C032-10/NS32C032-15

3.0 Functional Description (continued)

3.8.7.2 Trap Sequence: Traps Other Than Trace

1) Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction.

2) Set “Vector” to the value corresponding to the trap type.

SLAVE: Vector = 3.
ILL: Vector = 4,
SVC: Vector = 5.
DVZ: Vector =

FLG: Vector = 7.
BPT: Vector = 8.
UND: Vector = 10.

3) Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits S, U, P and T.

4) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

5) Set “Return Address” to the address of the first byte of
the trapped instruction.

6) Perform Service (Vector, Return Address), Figure 3-28.

3.8.7.3 Trace Trap Sequence
1) In the Processor Status Register (PSR), clear the P bit.

2) Copy the PSR into a temporary register, then clear PSR
bits S, U and T.

3) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

4) Set “Vector” to 9.

5) Set “Return Address” to the address of the next instruc-
tion.

6) Perform Service (Vector, Return Address), Figure 3-28.

3.8.7.4 Abort Sequence

1) Restore the currently selected Stack Pointer to its original
contents at the beginning of the aborted instruction.

2) Clear the PSR P bit.

3) Copy the PSR into a temporary register, then clear PSR
bits S, U, Tand 1.

4) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

5) Set “Vector” to 2.

6) Set “Return Address” to the address of the first byte of
the aborted instruction.

7) Perform Service (Vector, Return Address), Figure 3-28.

3.9 SLAVE PROCESSOR INSTRUCTIONS

The NS32C032 CPU recognizes three groups of instructions
being executable by external Slave Processor:

Floating Point Instruction Set

Memory Management Instruction Set
Custom Instruction Set

Each Slave Instruction Set is validated by a bit in the Config-
uration Register (Sec. 2.1.3). Any Slave Instruction which
does not have its corresponding Configuration Register bit
set will trap as undefined, without any Slave Processor com-
munication attempted by the CPU. This allows software sim-
ulation of a non-existent Slave Processor.

3.9.1 Slave Processor Protocol

Slave Processor instructions have a three-byte Basic In-
struction field, consisting of an ID Byte followed by an Oper-
ation Word. The ID Byte has three functions:

1) It identifies the instruction as being a Slave Proc-
essor instruction,

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Opera-
tion Word of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi-
ates the sequence outlined in Figure 3-29. While applying
Status Code 1111 (Broadcast ID, Sec. 3.4.2), the CPU
transfers the ID Byte on the least-significant byte of the
Data Bus (ADO-AD?7). All Slave Processors input this byte
and decode it. The Slave Processor selected by the ID Byte
is activated, and from this point the CPU is communicating
only with it. If any other slave protocol was in progress (e.g.,
an aborted Slave instruction), this transfer cancels it.

The CPU next sends the Operation Word while applying
Status Code 1101 (Transfer Slave Operand, Sec. 3.4.2).
Upon receiving it, the Slave Processor decodes it, and at
this point both the CPU and the Slave Processor are aware
of the number of operands to be transferred and their sizes.
The operation Word is swapped on the Data Bus, that is,
bits 0-7 appear on pins AD8-AD15 and bits 8-15 appear
on pins AD0O-AD7.

Using the Address Mode fields within the Operation Word,
the CPU starts fetching operand and issuing them to the
Slave Processor. To do so, it references any Addressing
Mode extensions which may be appended to the Slave
Processor instruction. Since the CPU is solely responsible

Status Combinatlions:

Send ID (ID): Code 1111

Xter Operand (OP): Code 1101
Read Status (ST): Code 1110

Step Status Actlon
1 D CPU Send ID Byte.
2 oP CPU Sends Operaton Word.
3 OP CPY Sends Required Operands
4 — Slave Starts Execution. CPU Pre-fetches.
5 — Slave Pulses SPC Low.
6 ST CPU Reads Status Word. (Trap? Alter Flags?)
7 OP CPU Reads Results (if Any).

FIGURE 3-29. Slave Processor Protocol

2-220

3.0 Functional Description (Continued)

for memory accesses, these extensions are not sent to the
Slave processor. The Status Code applied is 1101 (Transfer
Slave Processor Operand, Sec. 3.4.2).

After the CPU has issued the last operand, the Slave Proc-
essor starts the actual execution of the instruction. Upon
completion, it will signal the CPU by pulsing SPC low. To
allow for this, and for the Address Translation strap func-
tion, AT/SPC is normally held high only by an internal pull-
up device of approximately 5 k€.

While the Slave Processor is executing the instruction, the
CPU is free to prefetch instructions into its queue, If it fills
the queue before the Slave Processor finishes, the CPU will
wait, applying Status Code 0011 (Waiting for Slave, Sec.
3.4.2).

Upon receiving the pulse on SPC, the CPU uses SPC to
read a Status Word from the Slave Processor, applying
Status Code 1110 (Read Slave Status, Sec. 3.4.2). This
word has the format shown in Figure 3-30. If the Q bit
(“Quit”, Bit 0) is set, this indicates that an error was detect-
ed by the Slave Processor. The CPU will not continue the
protocol, but will immediately trap through the Slave vector
in the Interrupt Table. Certain Slave Processor instructions
cause CPU PSR bits to be loaded from the Status Word.

The last step in the protocol is for the CPU to read a result,
if any, and transfer it to the destination. The Read cycles
from the Slave Processor are performed by the CPU while
applying Status Code 1101 (Transfer Slave Operand, Sec.
3.4.2).

An exception to the protocol above is the LMR (Load Mem-
ory Management Register) instruction, and a corresponding
Custom Slave instruction (LCR: Load Custom Register). In
executing these instructions, the protocol ends after the
CPU has issued the last operand. The CPU does not wait for
an acknowledgement from the Slave Processor, and it does
not read status.

3.9.2 Floating Point Instructions

Table 3-4 gives the protocols followed for each Floating
Point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Appendix A.

The Operand class columns give the Access Class for each
general operand, defining how the addressing modes are
interpreted (see Instruction Set Reference Manual).

The Operand Issued columns show the sizes of the oper-
ands issued to the Floating Point Unit by the CPU. ‘D" indi-
cates a 32-bit Double Word. “i" indicates that the instruction
specifies an integer size for the operand (B = Byte, W =
Word, D = Double Word). “f” indicates that the instruction
specifies a Floating Point size for the operand (F = 32-bit
Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR Bits Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-30).

TABLE 3-4
Floating Point Instruction Protocols.
Mnemonic Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits
Class Class Issued Issued Type and Dest. Affected
ADDf read.f rmw.f f f ftoOp. 2 none
SuUBf read.f rmw.f f f ftoOp. 2 none
MULf read.f rmw.f f f ftoOp. 2 none
Divf read.f rmw.f f f ftoOp.2 none
MOvVi read.f write.f f N/A ftoOp. 2 none
ABSf read.f write.f f N/A ftoOp.2 none
NEGf read.f write.f f N/A ftoOp.2 none
CMPf read.f read.f f f N/A N,Z,L
FLOORYi read.f write.i f N/A itoOp.2 none
TRUNCHi read.f write.i f N/A itoOp.2 none
ROUNDfi read.f write.i f N/A itoOp.2 none
MOVFL read.F write.L F N/A LtoOp.2 none
MOVLF read.L write.F L N/A FtoOp. 2 none
MOvif read.i write.f i N/A ftoOp.2 none
LFSR read.D N/A D N/A N/A none
SFSR N/A write.D N/A N/A DtoOp. 2 none
Note:

D = Double Word

i = Integer size (B,W,D) specified in mnemonic.

f = Floating Point type (F,L) specified in mnemonic.
N/A = Not Applicable to this instruction.

2-221

G1-¢€002ESN/01-CE0DCESN

NS32C032-10/NS32C032-15

3.0 Functional Description (continued)
3.9.3 Memory Management Instructions

15 87 0 Table 3-5 gives the protocols for Memory Management in-
structions. Encodings for these instructions may be found in
[°°°°°°°° INZF°°L°°J Appendix A.

New PSR Bit v-luo(n)ﬂ/ In executing the RDVAL and WRVAL instructions, the CPU
“Quit": Terminate Protocol, Trap(FPU). calculates and issues the 32-bit Effective Address of the
TL/EE/9160-42 single operand. The CPU then performs a single-byte Read
FIGURE 3-30. Slave Processor Status Word Format cycle from that address, allowing the MMU to safely abort
Any operand indicated as being of type “f” will not cause a the instruction if the necessary information is not currently in
transfer if the Register addressing mode is specified. This is physical memory. Upon seeing the memory cycle complete,
because the Floating Point Registers are physically on the the MMU continues the protocol, and returns the validation

Floating Point Unit and are therefore available without CPU result in the F bit of the Slave Status Word.
assistance. The size of a Memory Management operand is always a 32-

bit Double Word. For further details of the Memory Manage-
ment Instruction set, see the Instruction Set Reference
Manual and the NS32082 MMU Data Sheet.

TABLE 3-5
Memory Management Instruction Protocols.
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits

Mnemonic Class Class lssued Issued Type and Dest. Affected

RDVAL* addr N/A D N/A N/A F

WRVAL* addr N/A D N/A N/A F

LMR* read.D N/A D N/A N/A none

SMR* write.D N/A N/A N/A DtoOp. 1 none
Note:

In the RDVAL and WRVAL instructions, the CPU issues the address as a Double Word, and performs a single-byte Read cycle from that memory address. For
detalls, see the Instruction Set Reference Manual and the NS32082 Memory Management Unit Data Sheet.

D = Double Word
* = Privileged Instruction: will trap if CPU is in User Mode.
N/A = Not Applicable to this instruction.

2-222

3.0 Functional Description (continued)

3.9.4 Custom Slave Instructions

Provided in the NS32C032 is the capability of communicat-
ing with a user-defined, *'‘Custom” Slave Processor. The in-
struction set provided for a Custom Slave Processor defines
the instruction formats, the operand classes and the com-
munication protocol. Left to the user are the interpretations
of the Op Code fields, the programming model of the Cus-
tom Slave and the actual types of data transferred. The pro-
tocol specifies only the size of an operand, not its data type.

Table 3-6 lists the relevant information for the Custom Slave
instruction set. The designation *‘c” is used to represent an
operand which can be a 32-bit (**D") or 64-bit (*Q’") quantity
in any format; the size is determined by the suffix on the
mnemonic. Similarly, an “i” indicates an integer size