National

Semiconductor

Embedded
System
Processor
Databook

I BELL INDUSTRIES
Electronic Distribution Group

1161 N. Fairoaks Avenue
Sunnyvale, California 94089
(408) 734-8570
“‘ FAX NO. (408) 734-8875

A Corporate Dedication to
Quality and Reliability

National Semiconductor is an industry leader in the
manufacture of high quality, high reliability integrated
circuits. We have been the leading proponent of driv-
ing down IC defects and extending product lifetimes.
From raw material through product design, manufac-
turing and shipping, our quality and reliability is second
to none. : .
We are proud of our success . . . it sets a standard for
others to achieve. Yet, our quest for perfection is on-
going so that you, our customer, can continue to rely
on National Semiconductor Corporation to produce
high quality products for your design systems.

Adgd

Charles E. Sporck
President, Chief Executive Officer
National Semiconductor Corporation

Wir filhlen uns zu Qualitat und
Zuverléassigkeit verpflichtet

National Semiconductor Corporation ist flihrend bei der Her-
stellung von integrierten Schaltungen hoher Qualitét und
hoher Zuverléssigkeit. National Semiconductor war schon
immer Vorreiter, wenn es galt, die Zahl von IC Ausfallen zu
verringern und die Lebensdauern von Produkten zu verbes-
sern. Vom Rohmaterial Gber Entwurf und Herstellung bis zur
Auslieferung, die Qualitdt und die Zuverlassigkeit der Pro-
dukte von National Semiconductor sind uniibertroffen.

Wir sind stolz auf unseren Erfolg, der Standards setzt, die
fir andere erstrebenswert sind. Auch ihre Anspriiche steig-
en stindig. Sie als unser Kunde kénnen sich auch weiterhin
auf National Semiconductor verlassen.

La Qualité et La Fiabilité:

Une Vocation Commune Chez National
Semiconductor Corporation

National Semiconductor Corporation est un des leaders in-
dustriels qui fabrique des circuits intégrés d’une trés grande
qualité et d’une fiabilité exceptionelle. National a &té le pre-
mier & vouloir faire chuter le nombre de circuits intégrés
défectusux et a augmenter la durée de vie des produits.
Depuis les matiéres premiéres, en passant par la concep-
tion du produit sa fabrication et son expédition, partout la
qualité et la fiabilité chez National sont sans équivalents.

Nous sommes fiers de notre succés et le standard ainsi
défini devrait devenir I'objectif 4 atteindre par les autres so-
ciétés. Et nous continuons & vouloir faire progresser notre
recherche de la perfection; il en résulte que vous, qui étes
notre client, pouvez toujours faire confiance & National
Semiconductor Corporation, en produisant des systémes
d'une trés grande qualité standard.

Un Impegno Societario di Qualita e
Affidabilita

National Semiconductor Corporation & un’industria al ver-
tice nella costruzione di circuiti integrati di alta qualita ed
affidabilitd. National & stata il principale promotore per I'ab-
battimento della difettosita dei circuiti integrati e per I'allun-
gamento della vita dei prodotti. Dal materiale grezzo attra-
verso tutte le fasi di progettazione, costruzione e spedi-
zione, la qualita e affidabilitd National non & seconda a nes-
suno.

Noi siamo orgogliosi del nostro successo che fissa per gli
altri un traguardo da raggiungere. Il nostro desiderio di per-
fezione & d'altra parte illimitato e pertanto tu, nostro clients,
puoi continuare ad affidarti a National Semiconductor Cor-
poration per la produzione dei tuoi sistemi con elevati livelli
di qualita.

A bpd

Charles E. Sporck

President, Chief Executive Officer
National Semiconductor Corporation

Embedded
System
Processor

Databook

1989 Edition

Embedded System Processor
Overview

CPU—Central Processing Units
Slave Processors

Peripherals

Development Systems and
Software Tools

Physical Dimensions/Appendices

HEEENE

TRADEMARKS

Following is the most current list of National Semiconductor Corporation’s trademarks and registered trademarks.

Abuseable™
Anadig™
ANS-R-TRANT™
APPSTM
ASPECT™
Auto-Chem Deflasher™
BCP™™
BI-FET™
BI-FET lIT™
BI-LINE™™
BIPLANTM
BLC™
BLX™
Brite-Lite™
BTL™
CheckTrack™
CIM™
CIMBUS™
CLASIC™
Clocks’Chek™
COMBO™
COMBO I™
COMBO II™™
COPS™ microcontrollers
Datachecker®
DENSPAKT™
DIB™
Digitalker®
DISCERNTM
DISTILL™
DNR®
DPVMTM™
ELSTAR™
Embedded System
Processor™
E-Z-LINK™
FACT™

FAIRCAD™
Fairtech™
FAST®

5-Star Service™
GENIX™
GNX™
HAMR™
HandiScan™
HEX 3000™
HPC™™

13L®

ICM™
INFOCHEX™
Integral ISET™™
Intelisplay™
ISET™

ISE/06™
ISE/08™™
ISE/16™™
ISE32™
ISOPLANART™
ISOPLANAR-Z™™
KeyScan™
LMCMOS™
M2CMOS™
Macrobus™
Macrocomponent™
MAXI-ROM®
MeatwChek™
MenuMaster™
Microbus™ data bus
MICRO-DAC™
ptalker™
Microtalker™
MICROWIRE™

MICROWIRE/PLUS™

MOLE™

MST™
Naked-8T™
National®
National Semiconductor®
National Semiconductor
Corp.®
NAX 800™
Nitride Plus™
Nitride Plus Oxide™
NML™
NOBUS™
NSC800™
NSCISE™
NSX-16™
NS-XC-16™
NTERCOMTM
NURAMT™™
OXISS™
P2CMOS™
PC Master™
Perfect Watch™
PharmawsChek™
PLAN™
PLANARTM
Plus-2™
Polycraft™™
POSilink™
POSitalker™
Power + Control™
POWERplanar™
QUAD3000™
QUIKLOOK™
RAT™™
RTX16™
SABR™™
ScriptwrChek™
SCX™

SERIES/800™
Series 900™
Series 3000T™
Series 32000®
ShelfirChek™
SofChek™™
SPIRE™
Staggered Refresh™
STAR™
Starlink™
STARPLEXT™
Super-Block™™
SuperChip™
SuperScript™
SYS32™
TapePak®
TDS™
TeleGate™
The National Anthem®
TimewrChek™
TINA™

TLC™
Trapezoidal™
TRI-CODE™
TRI-POLY™
TRI-SAFE™
TRI-STATE®
TURBOTRANSCEIVERT™
VIP™

VR32™
WATCHDOG™
XMOS™
XPUT™M

Z STAR™
883B/RETS™
883S/RETS™

IBM®, PC®, and AT® are registered trademarks of International Business Machines, Inc.

MULTIBUS® is a registered trademark of Intel Corporation.

Sun-3® Workstation is a registered trademark of Sun Microsystems, Inc.
UNIX® and DWB® are registered trademarks of AT&T.
Z809 is a registered trademark of Zilog Corporation.
CCS-Page™ is a trademark of Control-C Software, Inc.
CP/M™™ is a trademark of Digital Research Corporation.
Documenter’s Workbench™ is a trademark of AT&T.

Laserjet™ and PCL™ are trademarks of Hewlett Packard.

Model 19™ is a trademark of DATA 1/0 Corporation.
Opus5™ is a trademark of Opus Systems.

PAL® and PALASMTM are trademarks of and are used under license from Monolithic Memories, Inc.

Postscript™ is a trademark of Adobe Systems, Inc.
SunOS™ is a trademark of Sun Microsystems.

VAXTM, VMS™, DECT™, PDP-11TM, RSX-11™ and ULTRIX™ are trademarks of Digital Equipment Corporation.
VisiCalc™ is a trademark of Visi Corporation.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR COR-
PORATION. As used herein:

1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and whose failure to per-
form, when properly used in accordance with instructions
for use provided in the labeling, can be reasonably ex-

pected to result in a significant injury to the user.

National Semiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 (408) 721-5000

TWX (910) 339-9240

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time

without notice, to change said circuitry or specifications.

2. A critical component is any component of a life support
device or system whose failure to perform can be reason-
ably expected to cause the failure of the life support de-

vice or system, or to affect its safety or effectiveness.

National

Semiconductor

Definition of Terms

Product Status Definitions

Data Sheet Identification Product Status Definition
Advance Information | Formative or This data sheet contains the design specifications for product
. In Design development. Specifications may change in any manner without notice.
First This data sheet contains preliminary data, and supplementary data will
Production be published at a later date. National Semiconductor Corporation
reserves the right to make changes at any time without notice in order
to improve design and supply the best possible product.
Full This data sheet contains final specifications. National Semiconductor
Production Corporation reserves the right to make changes at any time without

notice in order to improve design and supply the best possible product.

National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to
improve reliability, function or design. National does not assume any liability arising out of the application or use of any product
or circuit described hersin; neither does it convey any license under its patent rights, nor the rights of others.

suopulyaQ SNJEIS 1ONPoId

Table of Contents

AlphanumeriC INAeX. . ..ottt ittt et i it eereenernaenennenanssanes

Section 1 Embedded System Processor Overview
INtrodUCHIONo e i i e e e
Key Features of National’'s Embedded System Processorscooiivuune..
Component DesCriptioNSvoieirri ittt ierieiiaterrternerereanensenes
Hardware Chartttt ittt ittt ettt ieiisiisessantaaannsaenas
Systemsand Software Chartcoiiiiiiiiiiiiii it ittt
SUPPOIt DBVICES . ¢ v vttt ittt it i i e

Section2 CPU—Central Processing Units

NS32GX32-20, NS32GX32-25, NS32GX32-30 High-Performance 32-Bit Embedded
SYStOM ProCESSOrS . oot v vttt et iie sttt
NS32CG16-10, NS32CG16-15 High-Performance Printer/Display Processors

Section 3 Slave Processors

NS32381-15, NS32381-20, NS32381-25, NS32381-30 Floating-Point Units
NS32081-10, NS§32081-15 Floating-Point Unitsovieiiiiiiiinin i,

Section 4 Peripherals

NS32202-10 Interrupt Control Unito ittt ittt iieenaniansraenan
NS32203-10 Direct Memory Access Controllerooviiiiiiiieiiiiiineennnns
NS32CG821 microCMOS Programmable 1M Dynamic RAM Controller/Driver
HPC16083/HPC26083/HPC36083/HPC46083/HPC16003/HPC26003/HPC36003/
HPC46003 High-Performance Microcontrollerscovviviviniiiinnenn.,
DP8510 BITBLT ProcessingUnitcoviiiriiiiiiiiiiiniiiiiiiiieinnenenss
DP8511 BITBLT ProcessingUnit (BPU)........ccovviiiiiiiiiiiiiiiiiiiiiiiinnnn,

Section 5 Development Systems and Software Tools

NS32CG16 ISEDevelopment TOOL. .. .ottt iiiiii i iiiiiiei it ieniiiaaeeannas
SYS32/30 PC-Add-In DevelopmentPackage..........ccooviiiiiiiiiiiii i,
Series 32000 GENIX Native and Cross-Support (GNX) Development Tools (Version 3)
Series 32000 GNX-Version 3 C Optimizing Compilerc.oovviiiiiiiiinnn
Series 32000 GNX-Version 3 Fortran 77 Optimizing Compiler.......................
Series 32000 GNX-Version 3 Pascal Optimizing Compilercoooviiiiiin,
Section 6 Physical Dimensions/Appendices

GlOSSArY Of TOIMS + ottt ittt et rsanaerrsooronanasnrossoseenssassss
Physical DIMeNSIONS ittt et it e et s
Bookshelf

Distributors

vi

Alpha-Numeric Index

DP8510 BITBLT ProcessingUnitcouiiuiiiiniiiiiiiiiiiiiiiiiiiiniiianineeanannns 4-59
DP8511 BITBLT Processing Unit (BPU)t vvirireetiiianerttrernnneesosnoceasonnnnnns 4-60
HPC16003 High-Performance Microcontrolleroovviiiiiiiiiiiiiiiiineinnieiernnaennns 4-58
HPC16083 High-Performance Microcontrollerc.viiiiiieitriiierrneerrneeerennnnnnns 4-58
HPC26003 High-Performance Microcontrollerc.oiitiiiiiiiiiieiniiiiieenreennnnnss 4-58
HPC26083 High-Performance Microcontrollercouvvuiiininneiiinniennenrinrennenns 4-58
HPC36003 High-Performance Microcontroller ...t iiiiiiiiiiiiiiiienererereeennnes 4-58
HPC36083 High-Performance Microcontrollercouiiniiiiennereeeniiersneeranenneenns 4-58
HPC46003 High-Performance Microcontrollerooviiiiiiiiiiiiiiiiiiiiiiiriineenss 4-58
HPC46083 High-Performance Microcontrollerooviiii ittt innneeees 4-58
NS32CG16 ISE Development TOOl.uiiieeeiiiee i retrnernanstaiaroneaenronencnonnns 5-3
NS32CG16-10 High-Performance Printer/Display Processorcovviviiiiineiiiinenens. 2-96
NS32CG16-15 High-Performance Printer/Display Processorc.ccvviiviierennnrnennnnnns 2-96
NS32CG821 microCMOS Programmable 1M Dynamic RAM Controller/Driver 4-57
NS32GX32-20 High-Performance 32-Bit Embedded System Processorcoovvviviiunenenn, 2-3
NS32GX32-25 High-Performance 32-Bit Embedded System Processorvvovvuviiueennnnn, 2-3
NS32GX32-30 High-Performance 32-Bit Embedded System Processorc.cvvveevvennnnnnn.. 2-3
NS32081-10 Floating-Point Unitouiiittiiniiiiir ittt iiierentenererneaanenns 3-32
NS32081-15 Floating-Point Unitottt ittt iie it renetentsnaananes 3-32
NS32202-10 Interrupt Control Unitvene ettt it re et eatennneenaeeannss 4-3
NS32203-10 Direct Memory ACCeSS CONtrOller .. .ovvvii ettt ittt iiinereenneeenreannn 4-28
NS32381-15 Floating-Point Unito.iiiniiiiiiii ittt eeiieiarennnaennnns 3-3
NS32381-20 Floating-Point Unitooviiieiii ittt ittt i eeiitaetennnensnns 3-3
NS32381-25 Floating-Point Unitcoooineiiiiiiii it ittt 3-3
NS32381-30 Floating-Point Unitoviineiii it it it iennenienarsrnannrnnns 3-3
Series 32000 GENIX Native and Cross-Support (GNX) Development Tools (Version3) 5-16
Series 32000 GNX-Version 3 C Optimizing Compilercovviitieiriirreererinrerseinnnnnns 5-21
Series 32000 GNX-Version 3 Pascal Optimizing Compilerccoviiiiiiiiiiiiiieiiin 5-29
Series 32000 GNX-Version 3 Fortran 77 Optimizing Compiler.c.ccvvivierinnernennans 5-25
SYS32/30 PC-Add-In Development Packageeiuiiiieniiniiiarinirnenneneeennanns 5-10

vii

Section 1

Embedded System
Processor Overview

Section 1 Contents
Introduction...............

...

Key Features of National’'s Embedded System Processors...........coovviiiiiiiiininn,

Component Descriptions ...
HardwareChart
Systems and Software Chart
Support Devices

...

...

...

1-2

National
Semiconductor

Introduction

National’s Embedded System Processor™ family offers the
most complete solution to your 32-bit embedded processor
needs via CPUs, slave processors, system peripherals,
evaluation/development tools and software.

We at National Semiconductor firmly believe that it takes a
total family of Embedded System Processors to effectively
mest the needs of an embedded system designer.

This Databook presents technical descriptions of our 32-bit
Embedded System Processors, slave processors, peripher-
als, software and development tools. It is designed to be
updated frequently so that our customers can have the lat-
est technical information on the Embedded System Proces-
SOr.

When we at National Semiconductor began designing the
Embedded System Processor family, we decided to support
an architecture that addressed the needs of embedded de-
sign. We chose to take the time to design it properly so that
optimal system cost/performance, high system integration,
and total system solutions were addressed. Working from
the top down, we analyzed the issues and anticipated the
embedded computing needs. The result is an advanced and
efficient family of Embedded System Processors.

Software productivity has become a major issue in embed-
ded system product development. In embedded systems
this issue centers around the capability of the processor to
maximize the utility of software relative to shorter develop-
ment cycles, under the constraints of lower cost and higher
performance.

In short, the degree to which the processor can maximize
software utility directly affects the cost of a product, its reli-
ability, and time to market. It also affects future software
modification for product enhancement or rapid advances in
hardware technology.

Our approach has been to define an architecture address-
ing these software issues most effectively. National Semi-
conductor's Embedded System Processor family combines
32-bit performance with efficient management of a large ad-
dress space. It facilitates high-level language program de-
velopment and efficient instruction execution. Floating-point
is integrated into the architecture.

But we didn't stop there. Advanced architecture isn’t
enough. Our total product system solution approach in-
cludes the hardware, software, and development support
products necessary for your design. The evaluation board,
in-system emulator, software development tools, and third
party software are available now for your evaluation and
development.

The Embedded System Processor is a solid foundation from
which National Semiconductor can build solutions for your
future designs while satisfying your needs today.

For further information please contact your local sales of-
fice.

uononpouu|

Key Features of National’'s Embedded System Processors

National
Semiconductor

Key Features of National’s
Embedded System Processors™

Some of the features that set the Embedded System Proc-
essor family apart as the best choice for 32-bit designs are
as follows:

FAMILY OF EMBEDDED SYSTEM PROCESSORS

Embedded System Processors are more than just a single
chip set, it is a family of chip sets. By mixing and matching
CPUs with compatible slave processors and support chips,
an embedded system designer has an unprecedented de-
gree of flexibility in matching price/performance to the end
product.)

CLEANEST 32-BIT OPTIMIZED ARCHITECTURE

The Embedded System Processor was designed around a
32-bit architecture from the beginning. It has a fully symmet-
rical instruction set so that all addressing modes and all
data types can be operated on by all instructions. This
makes it easy to learn the architecture, easy to program in
assembly language, and easy to write code-efficient, high-
level language compilers.

APPLICATION-SPECIFIC SLAVE PROCESSORS

Embedded System Processor architecture allows users to
design their own application-specific slave processors to
interface with the existing chip set. These processors can
be used to increase the overall system performance by

accelerating customized CPU instructions that would other-
wise be implemented in software. At the same time, soft-
ware compatibility is maintained, i.e., it is always possible to
substitute lower-cost software modules in place of the slave
processor.

FLOATING-POINT SUPPORT

National offers a complete set of floating-point solutions.
This includes the NS32081 Floating-Point Unit, and the
NS32381 Floating-Point Unit. The NS32081 provides high-
speed arithmetic computation with high precision and accu-
racy at low cost. The NS32381 provides low power con-
sumption and even greater performance than the NS32081
while maintaining high-precision and accuracy.

HIGH-LEVEL LANGUAGE SUPPORT

National's Embedded System Processor has special fea-
tures that support high-level languages, thus improving soft-
ware productivity and reducing development costs. For ex-
ample, there are special instructions that help the compiler
deal with structured data types such as Arrays, Strings, Rec-
ords, and Stacks. Also, modular programming is supported
by special hardware registers, software instructions, an ex-
ternal addressing mode, and architecturally supported link
tables.

Component Descriptions
Bus Width
Device Description External Process Package
Internal Type
Address | Data
CENTRAL PROCESSING UNITS (CPU’s)
NS32GX32 | High-Performance 32-Bit Embedded System Processor 32 32 32 M2CMOS | 175-pin PGA
NS32CG16 | High-Performance Printer/Display Processor 32 24 16 CMOS 68-pin PCC
SLAVE PROCESSORS
NS32081 Floating-Point Unit 64 —_— 16 XMOS 24-pin DIP
Dual-In-Line
Package
NS32381 Floating-Point Unit 64 — 16 CMOS 68-pin PGA
PERIPHERALS
NS32202 Interrupt Control Unit 32 _ 16 XMOS 40-pin DIP
(NMOS) Dual-In-Line
Package
NS32203 Direct Memory Access Controller —_ - 16 XMOS 48-pin DIP
(NMOS) | Dual-In-Line
Package

1-5

suonduasaq juauodwo?

Hardware Chart

National
Semiconductor

Hardware Chart

SLAVE
PROCESSORS PROCESSORS PERIPHERALS
NS326X32
NS32381 NS32202
Embaih Porformance Floating Point Unlt nterrupt Control Unit
Er ystem Processor

| | 1

NS320G16 N$32C081 NS32203

High Performance le
L/ CMOS Floating Point Unlt DMA Oo.ntrol r

] |

NS32081 NS16552

Floating Point Unit DUART

|]

NS16550

CUSTOM UART

|

NS16450

UART with FIFO

|

NS320G821

microCMOS Programmable
IM DRAM Controfier

TL/XX/0164-1

National
Semiconductor

Systems and Software Chart

HOST

BOARD LEVEL DEVELOPMENT
PRODUCTS SOFTWARE EMULATORS ENVIRONMENTS
NS326x32 GNX™ LANGUAGE TOOLS SYS32/30 PC ADD-IN

EVALUATION. BOARD INCLUDES ASSEMBLER, C16-ISE DEVELOPMENT SYSTEM

DEBUGGERS SYSTEM V.3 UNIX
1 1 | I

NS32CG16 COMPILERS FOR Hwhg;;g;fzkARD VAX ssmssm

C, PASCAL, FORTRAN 77 VMS, ULTRIX
EVALUATION BOARD s
1 EMULATION SUPPORT 1
i SUN-=3 HORKSIATION

REAL=TIME 0. Sun

TL/XX/0165-1

Heyo alemyjos pue swalsAs

Support Devices Chart

National
Semiconductor

Support Devices Chart

SUPPORT
DEVICES
High P Hrl;c DP8451 DP8400~2
erformance 16-Bit E2C2 Expandable Error
s Controllers Disk Data Synchronizer Checker/Corrector
] | |
DP8390 DP8455 -B e o
LAN Interface Controller Disk Data Synchronizer Detector And Corrector (EDAC
| |]
DP8417/18/19
Seral Netyrk Interface Disk Data Separat 256K High Speed DRAM
S . Separator Controller/Driver
| | |
DPe392 n Syra ! Magabit High Speed DRAM
Disk Data Synchronizer ega igh Spee
COAX Transcelver Interface For 2,7 RLL Code Controller/Driver (32=Bit Systems)
| |
DP8340 DP8463B DP8429
1BM® 3270 Biphase Serial Disk 2,7 RLL Code 1 Megabit High Spesd DRAM
Encoder/Transmitter Encoder/Dscoder Controller/Driver (16=Bit Systems)
|
DP8341
DPB464B
'B"Doff;"er‘}'g:‘::‘:e?”“' Disk Pulse Detector
] |
DP8342
DP8465
thgmgfiﬁm;ﬁ?f“ Disk Data Separator
]]
DP8343
DP8466
i shaed Disk Data Controller
| |
BIT-MAPPED Puise b8 nd
GRAPHICS Embedded Servo
]
DP8470
Floppy Data Separator &
Write Precompensation
|
DP8472/74
Floppy Disk Controller/
Data Separator

TL/XX/0166-1

Section 2

CPU—Central
Processing Units

Section 2 Contents

NS32GX32-20, NS32GX32-25, NS32GX32-30 High-Performance 32-Bit Embedded System
oLt T £
NS32CG16-10, NS32CG16-15 High-Performance Printer/Display Processors

2-2

National
Semiconductor

PRELIMINARY

NS32GX32-20/NS32GX32-25/NS32GX32-30
High-Performance 32-Bit Embedded System Processor

General Description

The NS32GX32 is a high-performance 32-bit embedded
system processor in the Series 320009 family. It is software
compatible with the previous microprocessors in the family
but with a greatly enhanced internal implementation.

The NS32GX32 integrates more than 320,000 transistors
fabricated in a 1.25 pm double-metal CMOS technology.
The advanced technology and mainframe-like design of the
device enable it to achieve peak performance of 15 million
instructions per second.

The high-performance specifications are the result of a four-
stage instruction pipeline, on-chip instruction and data
caches, and a significantly increased clock frequency. In ad-
dition, the system interface provides optimal support for ap-
plications spanning a wide range, from low-cost, real-time
controllers to highly sophisticated, embedded systems.

In addition to generally improved performance, the
NS32GX32 offers much faster interrupt service and task
switching for real-time applications.

Features

Software compatible with the Series 32000 family
32-bit architecture and implementation
4-GByte uniform addressing space
4-Stage instruction pipeline

512-Byte on-chip instruction cache
1024-Byte on-chip data cache
High-performance bus

— Separate 32-bit address and data lines
— Burst mode memory accessing

— Dynamic bus sizing

Floating-point support via the NS32381
1.25 um double-metal CMOS technology
175-pin PGA package

Block Diagram

4= STAGE
INSTRUCTION PIPELINE

1 I
1~ 1
! (4 |
V| e Losoer . i <? <::>°°NTR°L
| , ()
' o [l
: l : 7Y
1]
! > Aol?:ﬁss N i
: e B Nzzz7778——) rovss
' : ARBITER <:3 C:>’
1]
1 t
X ! BUS
' ' INTERFACE
' X UNIT
X X (1Y)
! ! >
X : DATA
REGISTER CACHE
X ¢ FILE ' (oc)
1 1]
1)
S
! [
! [
1 4. L
’ hl 'r
' | EXECUTION ¢ DATA INTERFACE
! UNIT ! <~
U < ; >///////////// < 7777777 <:>Dm
' |

TL/EE/10253-1

FIGURE 1

2-3

0€-2EXDZESN/GC-CEXDTESN/02-2EXDCESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

Table of Contents

1.0 PRODUCT INTRODUCTION
2.0 ARCHITECTURAL DESCRIPTION
2.1 Register Set

2.1.1 General Purpose Registers
2.1.2 Address Registers

2.1.3 Processor Status Register
2.1.4 Configuration Register
2.1.5 Debug Registers

2.2 Memory Organization
2.2.1 Address Mapping
2.3 Modular Software Support

2.4 Instruction Set

2.4.1 Genera! Instruction Format
2.4.2 Addressing Modes
2.4.3 Instruction Set Summary

3.0 FUNCTIONAL DESCRIPTION

3.1 Instruction Execution
3.1.1 Operating States
3.1.2 Instruction Endings
3.1.2.1 Completed Instructions
3.1.2.2 Suspended Instructions
3.1.2.3 Terminated Instructions
3.1.2.4 Partially Completed Instructions

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.1.3 Instruction Pipeline
3.1.3.1 Branch Prediction
3.1.3.2 Memory Mapped I/0
3.1.3.3 Serializing Operations
3.1.4 Slave Processor Instructions
3.1.4.1 Slave Instruction Protocol
3.1.4.2 Floating-Point Instructions
3.1.4.3 Custom Slave Instructions

3.2 Exception Processing

3.2.1 Exception Acknowledge Sequence
3.2.2 Returning from an Exception Service Procedure
3.2.3 Maskable Interrupts
3.2.3.1 Non-Vectored Mode
3.2.3.2 Vectored Mode: Non-Cascaded Case
3.2.3.3 Vectored Mode: Cascaded Case
3.2.4 Non-Maskable Interrupt
3.2.5 Traps
3.2.6 Bus Errors
3.2.7 Priority Among Exceptions
3.2.8 Exception Acknowledge Sequences:
Detailed Flow
3.2.8.1 Maskable/Non-Maskable Interrupt
Sequence
3.2.8.2 Restartable Bus Error Sequence
3.2.8.3 SLAVE/ILL/SVC/DVZ/FLG/BPT/UND
Trap Sequence
3.2.8.4 Trace Trap Sequence

2.4

Table of Contents (Continued)

3.0 FUNCTIONAL DESCRIPTION (Continued)
3.285 Integer-Overﬂow Trap Sequence
3.2.8.6 Debug Trap Sequence
3.2.8.7 Non-Restartable Bus Error Sequence

3.3 Debugging Support
3.3.1 Instruction Tracing
3.3.2 Debug Trap Capability
3.4 On-Chip Caches
3.4.1 Instruction Cache (IC)
3.4.2 Data Cache (DC)
3.4.3 Cache Coherence Support
3.5 System Interface
3.5.1 Power and Grounding
3.5.2 Clocking
3.5.3 Resetting
3.5.4 Bus Cycles
3.5.4.1 Bus Status
3.5.4.2 Basic Read and Write Cycles
3.5.4.3 Burst Cycles
3.5.4.4 Cycle Extension
3.5.4.5 Interlocked Bus Cycles
3.5.4.6 Interrupt Control Cycles
3.5.4.7 Slave Processor Bus Cycles
3.5.5 Bus Exceptions
3.5.6 Dynamic Bus Configuration
3.5.6.1 Instruction Fetch Sequences
3.5.6.2 Data Read Sequences
3.5.6.3 Data Write Sequences
3.5.7 Bus Access Control
3.5.8 Interfacing Memory-Mapped |/O Devices
3.5.9 Interrupt and Debug Trap Requests
3.5.10 Internal Status

4.0 DEVICE SPECIFICATIONS

4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input/Output Signals
4.2 Absolute Maximum Ratings
4.3 Electrical Characteristics
4.4 Switching Characteristics

4.0 DEVICE SPECIFICATIONS (Continued)
4.4.1 Definitions
4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation
Delays

4.4.2.2 Input Signa! Requirements
4.4.3 Timing Diagrams

APPENDIX A: INSTRUCTION FORMATS

B: COMPATIBILITY ISSUES
B.1 Restrictions on Compatibility
B.2 Architecture Extensions
B.3 Integer-Overflow Trap
B.4 Self-Modifying Code
B.5 Memory-Mapped /0

C: INSTRUCTION SET EXTENSIONS
C.1 Processor Service Instructions
C.2 Instruction Definitions

D: INSTRUCTION EXECUTION TIMES
D.1 Internal Organization and Instruction
Execution
D.2 Basic Execution Times
D.2.1 Loader Timing
D.2.2 Address Unit Timing
D.2.3 Execution Unit Timing
D.3 Instruction Dependencies
D.3.1 Data Dependencies
D.3.1.1 Register Interlocks
D.3.1.2 Memory Interlocks
D.3.2 Control Dependencies
D.4 Storage Delays
D.4.1 Instruction Cache Misses
D.4.2 Data Cache Misses
D.4.3 Instruction and Operand Alignment
D.5 Execution Time Calculations
D.5.1 Definitions
D.5.2 Notes on Table Use
D.5.3 Teff Evaluation
D.5.4 Instruction Timing Example
D.5.5 Execution Timing Tables
D.5.5.1 Basic and Memory
Management Instructions
D.5.5.2 Floating-Point Instructions,
CPU Portion

0€-2EXDCESN/GC-CEXDTESN/0C-CEXDZESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

List of lllustrations

CPU Block Diagramc.cceevevnrnennnnnns @ e e et |
NS32GX32 INternal REgIStErS . . .o v ittt ittt e ittt ettt eeneneeeenrensnsarerosensannnss

Processor Status Register (PSR)
Configuration RegiSter (CFG) ...ttt ittt ittt et eeteasennteesenneeanssuasonsenoeeseeenssesesneensonaoonnes
Debug Condition Register (DCR)
Debug Status Register (DSR) cvtttttitte et tieteeeatteaeenseeneeaneresenneanesaseesessenaennesnaeennesns
NS32GX32 AdAreSS MaPPING . .ot v vt tttteetit ettt tteeeesstsetonaneeneeeneessssaosussesiomenesuaronesoseasesss
NS32GX32 Run-Time Environment et ee s e ee et et e ee s e te et s et et e e e eieetareeressaten
General INStruCON FOrMAt . ..ot ittt e et i e te it s taeneaeantnenasnensenenns
INAEX BYte FOrmMat ..ottt ittt ettt ettt ettt et e et iaen
Displacement Encodings
OperatingStatesovvvvunen.
NS32GX32 Internal Instruction Pipeline
Memory References for Consecutive Instructions
Memory References after Serializationoiiiiii i e
Slave Instruction Protocol: CPU ACHIONSttt ittt ittt tieti e e erenssierattenenneeneenesnnss PO
ID AN OPEIAION WOIA ...ttt ettt ettt et et e e et et e et e e e ettt e e e et e e
Slave Processor StatUS WOTT . ..o e vn ettt ettt ettt e et e e st e et tat it eneaneteareanneaannens
INterrupt DisSPatCh Tablettt et e ittt ettt ettt eas ettt iesna e
Exception Acknowledge Sequence: Direct-Exception Mode Disabled R PR
Exception Acknowledge Sequence: Direct-Exception Mode Enabledcoeiiiiiiiiiiiiiniiiiiiiinennene
Return From Trap (RETTn) Instruction Flow: Direct-Exception Mode Disabled
Return From Interrupt (RETI) Instruction Flow: Direct-Exception Mode Disabled .
Exception Processing FIOWChart it et i i
SEIVICE SBQUENCE .ttt ittt ettt ettt ettt e e et e et e et e e
Instruction Cache SIrUCtUre int it ittt it rraeeneredonsernesneruonnnss N
Data Cache SITUCIUFEttt e ettt e e e et e e e e e e e e e IO
Power and Ground CONNECHONSt vttt ittt reteeneneieensneantnesiosrenenennsnennnns
Bus CloCK SYNCRIONIZAtION .. vv vttt ettt ittt ittt e et eate et et saaeiansnsaasossonersnsenncons
Power-On ReSet ReQUINEIMENTSt iutet et eetentenrees e tonaerasennessseenoeeeeneseseneonsoonsensonaesns
General Reset Timing |
BasicRead CyClevvrriiriiiiiiii it

R 1 G- 0] - N

BUISE REAA CYCIES . oottt ittt et e e e e
Cycle Extension of a Basic Read Cycle
SlaVE PrOCESSOr WIS Gyl o vttt t ittt ettt ettt et eneen et onaenseenarneeonsoessonssneoneensnsennesnesones
S1ave Processor REAU CYCIBttt ittt et ettt et et ettt it
Bus Retry DuringaBasic Read CyCleiuiiririiiiiiiii ittt ettt eennnenens
Basic Interface for 32-Bit MeMOMIESo.ii it i i ettt et ittt as
Basic Interface for 16-Bit Memories ...
Hold Acknowledge: (Bus Initially Idle) ..
TYPICAl |/O DEVICE INBITACE .+ . v vttt erttetet vt eestenteeeaeeeasenasnasneasssensoteseassoosanenaneson N

List of [llustrations (continued)

NS32GX32 Interface Signals
175-PIN PGA PACKAGE ...ttt e i e i i e i e e
Output Signals Specification Standard
Input Signals Specification Standarduvei i e it i e e e e e
Basic REAA CYCIo TIMING v v i ntvtetttt ittt ittt itet e sate s e tieettnenensesonesasnouesnsnsenieonssnsonensns
LG X @3 e =T T 1T o PN
Interlocked Read and Writ@ CYCIES ... vvuut ittt ittt iit ittt it ar et enntonaaanness
BUIStREAU CYClES ...t .et ittt ittt et et it e e e
External Termination of Burst Cycles
Bus Error or Retry During BurstCyclesoov0.

Extended Retry TiMiNGvuuin ittt ittt ittt iteitineairent i ennranennns
HOLD Timing (Bus INIially 1A18) ... evvvtine et teeenanesennneeearsineeeeriierresnnenes
HOLD Acknowledge Timing (Bus Initially Not Idle)
Slave Processor REAA TIMING .« . vvvuttuetutenteaneeusenasenteetonesoneenssuesseeiseeneenassuesonsitonaessnssnes
Slave Processor Wt TiMINGo vvvrtin ettt iietetet et taetiuessoeueenesassnonesonsseneenesssioneasessnnan
S1ave ProCESSOIDONG ...ttt ittt ittt ittt et ettt it e e
LSESST 2T T T U I 111 T S
TNT and NMT SIgnals SamMPIiNG « ... ee ettt et e et ettt e eaetneeettnenseeaanneteassierenroneseosioeeos
Debug TrapRequestccoviviviiiiiiiiniinn,

PFS Signal Timing
ISF Signal Timing
Break Point Signal Timing
L0 oo Y= T 1
Bus Clock SYNCRIrONIZAtIoN vu ettt ittt ittt ettt s et taeeineranennastornaonsens
POWEr-On RESOEttt i e i e e e e i
NON-POWET-ONRESET ..\ttt ittt e ittt ittt et a e
LPRIi/SPRI InStruction FOMmMatsttt et et i et e e e
CINV INSIUCHON FOMMAL ... ov ettt ittt ettt e et e ettt et eae e eiaeneanenenes

ACCESS ProteCHiON LEVEIS .. .v ittt ittt ittt ittt et e e ettt ettt et i et
NS32GX32 Addressing MOdes iuuiiiiit ittt it i i e e i i i i
NS32GX32 Instruction Set SUMMAIYttt ittt it i ittt a e tet i eniatenaeaneenns
Floating-Point INStruction ProtoCo!lvuvuiitit ittt it ittt i it ienaenes
Custom Slave INStruction ProtoColSttt i e e et it e e e e,
Summary of EXCEOPtION ProCESSING .. vvvitvinttietittiietnnteansnnstteiaennersentonaesnsesaeenaniessnessassnnns
Interrupt Sequences

Cacheable/Non-Cacheable Instruction Fetches from a 32-Bit Bus
Cacheable/Non-Cacheable Instruction Fetches from a 16-Bit Bus
Cacheable/Non-Cacheable Instruction Fetches from an 8-Bit Bus
Cacheable/Non-Cacheable Data Reads from a32-BitBUSciiiuiiiiieieiieieiiiiriioreraneorenennsnenns
Cacheable/Non-Cacheable Data Reads froma 16-Bit BUSouiiuiiniiieiiiiiiiiiiiii ittt iienneennens
Cacheable/Non-Cacheable Data Reads from an 8-Bit BUSouiiuiiniiiriieiiiiiiineiineeneiieoneeanennns
Data Writes 10 @ 32-Bit BUSt itti i i i et ittt e et i e e
DataWritesS t0 @ 16-Bit BUS . ..o ieiitti ittt ittt it ittt iie ot enaeneeteentonasonneiseaneennranns
Data Writes 10 @n B-Bit BUSo ottt i it ettt e e e e e

LPRi/SPRi New ‘Short’ Field ENCOTINGS ... uvvtutnntettitte ettt ieaentstreteneearenenenrseonensenas
Additional Address Unit Processing Time for Complex AddressingModesciieiiiiiiiiiiiiiiiiiieieiiinennes D-1

2-7

0€-2EXDCESN/GZ-ZEXDCESN/0C-CEXDCESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

1.0 Product Introduction

The NS32GX32 is an extremely sophisticated microproces-
sor in the Series 32000 family with a full 32-bit architecture
and implementation optimized for high-performance appli-
cations.

By employing a number of mainframe-like features, the de-
vice can deliver 15 MIPS peaks performance with no wait
states at a frequency of 30 MHz.

The NS32GX32 is fully software compatible will all the other
Series 32000 CPUs. The architectural features of the Series
32000 family and particularly the NS32GX32 CPU, are de-
scribed briefly below.

Powerful Addressing Modes. Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types. The architecture provides for numerous data
types, such as byte, word, doubleword, and BCD, which may
be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case
instructions that compilers can’t use, the Series 32000 ar-
chitecture incorporates powerful instructions for control op-
erations, such as array indexing and external procedure
calls, which save considerable space and time for compiled
code.

Memory-to-Memory Operations. The Series 32000 CPUs
represent two-address machines. This means that each op-
erand can be referenced by any one of the addressing
modes provided.

This powerful memory-to-memory architecture permits
memory locations to be treated as registers for all usefull
operations. This is important for temporary operands as well
as for context switching.

Large, Uniform Addressing. The NS32GX32 has 32-bit
address pointers that can address up to 4 gigabytes without
requiring any segmentation.

Modular Software Support. Any software package for the
Series 32000 family can be developed independent of all
other packages, without regard to individual addressing. In
addition, ROM code is totally relocatable and easy to ac-
cess, which allows a significant reduction in hardware and
software costs.

Software Processor Concept. The Series 32000 architec-
ture allows future expansions of the instruction set that can
be executed by special slave processors, acting as exten-
sions to the CPU. This concept of slave processors is
unique to the Series 32000 family. It allows software com-
patibility even for future components because the slave
hardware is transparent to the software. With future ad-
vances in semiconductor technology, the slaves can be
physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro-
vide three primary performance advantages and character-
istics:

® High-level language support

* Easy future growth path

® Application flexibility

2.0 Architectural Description

2.1 REGISTER SET

The NS32GX32 CPU has 21 internal registers grouped ac-
cording to functions as follows: 8 general purpose, 7 ad-
dress, 1 processor status, 1 configuration, and 4 debug. All
registers are 32 bits wide except for the module and proces-
sor status, which are each 16 bits wide. Figure 2-1 shows
the NS32GX32 internal registers.

Address General Purpose
<« 32Bits — <« 32Bits —
PC RO
SPO R1
SP1 R2
FP B R3
SB R4
INTBASE R5
| MOD R6
R7
Processor Status
Debug
DCR
DSR
CAR
BPC

Configuration
[CFG

FIGURE 2-1. NS32GX32 Internal Registers

2.0 Architectural Description (continued)

2.1.1 General Purpose Registers

There are eight registers (RO-R7) used for satisfying the
high speed general storage requirements, such as holding
temporary variables and addresses. The general purpose
registers are free for any use by the programmer. They are
32 bits in length. If a general purpose register is specified for
an operand that is eight or 16 bits long, only the low part of
the register is used; the high part is not referenced or modi-
fied.

2.1.2 Address Registers

The seven address registers are used by the processor to
implement specific address functions. A description of them
follows.

PC—Program Counter. The PC register is a pointer to the
first byte of the instruction currently being executed. The PC
is used to reference memory in the program section.

SP0, SP1—Stack Pointers. The SPO register points to the
lowest address of the last item stored on the INTERRUPT
STACK. This stack is normally used only by the operating
system. It is used primarily for storing temporary data, and
holding return information for operating system subroutines
and interrupt and trap service routines. The SP1 register
points to the lowest address of the last item stored on the
USER STACK. This stack is used by normal user programs
to hold temporary data and subroutine return information.

When a reference is made to the selected Stack Pointer
(see PSR S-bit), the terms ‘SP Register’ or ‘SP’ are used.
SP refers to either SPO or SP1, depending on the setting of
the S bit in the PSR register. If the S bit in the PSR is 0, SP
refers to SPO. If the S bit in the PSR is 1 then SP refers to
SP1.

The NS32GX32 also allows the SP1 register to be directly
loaded and stored using privileged forms of the LPRi and
SPRi instructions, regardless of the setting of the PSR S-bit.
When SP1 is accessed in this manner, it is referred to as
‘USP Register’ or simply ‘USP".

Stacks in the Series 32000 family grow downward in memo-
ry. A Push operation pre-decrements the Stack Pointer by
the operand length. A Pop operation post-increments the
Stack Pointer by the operand length.

FP—Frame Polinter. The FP register is used by a procedure
to access parameters and local variables on the stack. The
FP register is set up on procedure entry with the ENTER
instruction and restored on procedure termination with the
EXIT instruction.

The frame pointer holds the address in memory occupied by
the old contents of the frame pointer.

SB-—Statlc Base. The SB register points to the global vari-
ables of a software module. This register is used to support
relocatable global variables for software modules. The SB
register holds the lowest address in memory occupied by
the global variables of a module.

15 8|7

INTBASE—Interrupt Base. The INTBASE register holds
the address of the dispatch table for interrupts and traps
(Section 3.2.1).

MOD—Module. The MOD register holds the address of the
module descriptor of the currently executing software mod-
ule. The MOD register is 16 bits long, therefore the module
table must be contained within the first 64 kbytes of memo-
ry.

2.1.3 Processor Status Register

The Processor Status Register (PSR) holds status informa-
tion for the microprocessor.

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all pro-
grams, but the high order eight bits are accessible only to
programs executing in Supervisor Mode.

C The C bitindicates that a carry or borrow occurred after
an addition or subtraction instruction. It can be used
with the ADDC and SUBC instructions to perform multi-
ple-precision integer arithmetic calculations. It may
have a setting of 0 (no carry or borrow) or 1 (carry or
borrow).

T The T bit causes program tracing. If this bitis setto 1, a
TRC trap is executed after every instruction (Section
3.3.1).

L The L bit is altered by comparison instructions. In a
comparison instruction the L bit is set to 1" if the sec-
ond operand is less than the first operand, when both
operands are interpreted as unsigned integers. Other-
wise, it is set to “‘0". In Floating-Point comparisons, this
bit is always cleared.

V The V-bit enables generation of a trap (OVF) when an
integer arithmetic operation overflows.

F The F bit is a general condition flag, which is altered by
many instructions (e.g., integer arithmetic instructions
use it to indicate overflow).

Z The Z bit is altered by comparison instructions. In a
comparison instruction the Z bit is set to *“1” if the sec-
ond operand is equal to the first operand; otherwise it is
set to 0",

N The N bit is altered by comparison instructions. In a
comparison instruction the N bit is set to 1" if the sec-
ond operand is less than the first operand, when both
operands are interpreted as signed integers. Otherwise,
it is set to “0".

U If the U bitis “1” no privileged instructions may be exe-
cuted. If the U bit is ““0” then all instructions may be
executed. When U = 0 the processor is said to be in
Supervisor Mode; when U = 1 the processor is said to

| I [T fefsu

FIGURE 2-2. Processor Status Register (PSR)

0€-2EXDCESN/SC-CEXDCESN/02-2EXOCESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

2.0 Architectural Description (continued)

be in User Mode. A User Mode program is restricted
from executing certain instructions and accessing cer-
tain registers which could interfere with the operating
system. For example, a User Mode program is prevent-

Interrupt vectoring. This bit controls whether maska-
ble interrupts are handled in nonvectored (I=0) or
vectored (1= 1) mode. Refer to Section 3.2.3 for more
information.

ed from changing the setting of the flag used to indicate F Floating-point instruction set. This bit indicates
its own privilege mode. A Supervisor Mode program is whether a floating-point unit (FPU) is present to exe-
assumed to be a trusted part of the operating system, cute floating-point instructions. If this bit is 0 when the
hence it has no such restrictions. CPU executes a floating-point instruction, a Trap
S The S bit specifies whether the SPO register or SP1 (UND) occurs. If this bit is 1, then the CPU transfers
register is used as the Stack Pointer. The bit is automat- the instruction and any necessary operands to the
ically cleared on interrupts and traps. It may have a FPU using the slave-processor protocol described in
setting of 0 (use the SPO register) or 1 (use the SP1 Section 3.1.4.1.
register). [Custom instruction set. This bit indicates whether a
P The P bit prevents a TRC trap from occuring more than custom slave processor is present to execute custom
once for an instruction (Section 3.3.1). It may have a instructions. If this bit is 0 when the CPU executes a
setting of 0 (no trace pending) or 1 (trace pending). custom instruction, a Trap (UND) occurs. If this bit is
1 If | = 1, then all interrupts will be accepted. If | = 0, 1, the CPU transfers the instruction and any neces-
only the NMI interrupt is accepted. Trap enables are not sary operands to the custom slave processor using
affected by this bit. the slave-processor protocol described in Section
3.1.4.1.
214 Configuration Reglster DE Direct-Exception mode enable. This bit enables the
The Configuration Register (CFG) is 32 bits wide, of which Direct-Exception mode for processing exceptions.
ten bits are implemented. The implemented bits enable vari- When this mode is selected, the CPU response time
ous operating modes for the CPU, including vectoring of to interrupts and other exceptions is significantly im-
interrupts, execution of slave instructions, and control of the proved. Refer to Section 3.2.1 for more information.
on-phlp caches. In the NS32332 b't.s 4 through. 7 of the CFG DC Data Cache enable. This bit enables the on-chip Data
register selected between the 16-bit and 32-bit slave proto- c p
. ache to be accessed for data reads and writes. Re-
cols and between 512-byte and 4-Kbyte page sizes. The fer to Section 3.4.2 for more information
NS32GX32 supports only the 32-bit slave protocol and no T :
memory management: consequently these bits are forced LDC Lock Data Cache. This bit controls whether the con-
to 1. tents of the on-chip Data Cache are locked to fixed
When the CFG register is loaded using the LPRi instruction, memory locations (LDC=1), or updated when a data
bit 2 and bits 13 through 31 should be set to 0. Bits 4 read is .mlssmg from the cach? (LPC_O)‘
through 7 are ignored during loading, and are always re- IC Instruction Cache enable. This bit enables the on-
turned as 1's when CFG is stored via the SPRi instruction. chip Instruction Cache to be accessed for instruction
When the SETCFG instruction is executed, the contents of fetches. Refer to Section 3.4.1 for more information.
the CFG register bits 0 through 3 are loaded from the in- LIC Lock Instruction Cache. This bit controls whether the
struction’s short field, bits 4 through 7 are ignored and bits 8 contents of the on-chip Instruction Cache are locked
through 12 are forced to 0. Bit 2 must be set to 0. to fixed memory locations (LIC=1), or updated when
The format of the CFG register is shown in Figure 2-3. The an instruction fetch is missing from the cache
various control bits are described below. (LIC=0).
31 12 8|7 0
Reseved | UC | Ic Jwc | bc [o[1+ [1+ [1+ [1 [c|rs| F | 1

FIGURE 2-3. Configuration Register (CFG) Bits 13 to 31 are Reserved; Bits 4 to 7 are Forced to 1

2.0 Architectural Description (continued)

2.1.5 Debug Registers

The NS32GX32 contains 4 registers dedicated for debug-
ging functions.

These registers are accessed using privileged forms of the
LPRi and SPRi instructions.

DCR—Debug Condition Register. The DCR Register en-

The following 2 bits control testing features that can be
used during initial system debugging. These features are
unique to the NS32GX32 implementation of the Series
32000 architecture; as such, they may not be supported in
future implementations. For normal operation these 2 bits
should be set to 0.

ables detection of debug conditions. The format of the DCR St finf"?:':‘.z?:‘s’ctﬂg" me°:"’ ‘?:ab":'.;':irs ct:.i"n‘f‘;h:"eie‘
is shown in Figure 2-4; the various bits are described below. ti%n’ inhibi overiapping ot instructio xecu-
A debug condition is enabled when the related bit is set to 1. BCP B) h Gondition Prediction disable. When this bit i
CBEO Compare Byte Enable 0; when set, BYTEO of an ranch Londition .re. iction lsg e._ .en IS bitis
aligned double-word is included in the address com- L th? branch prediction mechanism is disabled. See
parison Section 3.1.3.1.
. DSR—Debug Status Register. The DSR Register indicates
CBE1 Compare Byte Enable 1; when set, BYTE1 of an s
aligned double-word is included in the address com- debug conditions that have beeﬂ det.ected. When the CPU
arison deteqts an enabled debyg condition, it sets the correspond-
P ing bit (BC, BEX, BCA) in the DSR to 1. When an address-
CBE2 Compare Byte Enable 2; when set, BYTE2 of an compare condition is detected, then the RD-bit is loaded to
aligned double-word is included in the address com- indicate whether a read or write reference was performed.
parison Software must clear all the bits in the DSR when appropri-
CBE3 Compare Byte Enable 3; when set, BYTE3 of an ate. The format of the DSR is shown in Figure 2-5; the vari-
aligned double-word is included in the address com- ous fields are described below.
parison RD Indicates whether the last address-compare condi-
CWR Address-compare enable for write references tion was for a read (RD = 1) or write (RD = 0)
CRD Address-compare enable for read references reference
CAE Address-compare enable BPC PC-match condition detected
TR Enable Trap (DBG) when a debug condition is de- BEX External condition detected
tected BCA Address-compare condition detected
PCE PC-match enable Note: If an address compare is detected for a read and write for the same
UD Enable debug conditions in User-Mode cm'fg“m"' ne RA"::W'” e °'I"at" The GAR Redist
i . ompare ress Register. The egister
Sp Enable debug condft!ons in Suparvisor Mode contains the address that is compared to operand reference
DEN Enable debug conditions addresses to detect an address-compare condition. The ad-
‘ dress must be double-word aligned; that is, the two least-
significant bits must be 0. The CAR is 32 bits wide.
15 8|7 0
Reserved CAE | CRD | CWR | Res |CBE3 | CBE2| CBE1 |CBEO
31 24| 23 16
Reserved DEN I 8D | ub I PCE | TR [BCP I Sl | Res
FIGURE 2-4. Debug Condition Register (DCR)
31 28|27 0

RD | BPC | BEX | BCA

Reserved

FIGURE 2-5. Debug Status Register (DSR)

0€-2EXDCESN/GC-CEXDCESN/02-2EXDZESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

2.0 Architectural Description (continued)
BPC—Breakpoint Program Counter. The BPC Register

contains the address that is compared with the PC contents

to detect a PC-match condition. The BPC Register is 32 bits

wide.

2.2 MEMORY ORGANIZATION

The NS32GX32 implements full 32-bit addresses. This al-
lows the CPU to access up to 4 Gbytes of memory. The
memory is a uniform linear address space. Memory loca-
tions are numbered sequentially starting at zero and ending
at 232—1. The number specifying a memory location is
called an address. The contents of each memory location is
a byte consisting of eight bits. Unless otherwise noted, dia-
grams in this document show data stored in memory with
the lowest address on the right and the highest address on
the left. Also, when data is shown vertically, the lowest ad-
dress is at the top of a diagram and the highest address at
the bottom of the diagram. When bits are numbered in a
diagram, the least significant bit is given the number zero,
and is shown at the right of the diagram. Bits are numbered
in increasing significance and toward the left.

7 0

Byte at Address A

Two contiguous bytes are called a word. Except where not-
ed, the least significant byte of a word is stored at the lower
address, and the most significant byte of the word is stored
at the next higher address. In memory, the address of a
word is the address of its least significant byte, and a word
may start at any address.

15 8|7 0
A+1 A
MSB LSB
Word at Address A

Two contiguous words are called a double-word. Except
where noted, the least significant word of a double-word is

stored at the lowest address and the most significant word
of the double-word is stored at the address two higher. In
memory, the address of a double-word is the address of its
least significant byte, and a double-word may start at any
address.

31 24|23 16(15 8|7 0
A+3 A+2 A+1 A
MSB LsSB

Double-Word at Address A

Although memory is addressed as bytes, it is actually orga-
nized as double-words. Note that access time to a word or a
double-word depends upon its address, e.g. double-words
that are aligned to start at addresses that are multiples of
four will be accessed more quickly than those not so
aligned. This also applies to words that cross a double-word
boundary.

2.2.1 Address Mapping
Figure 2-6 shows the NS32GX32 address mapping.

The NS32GX32 supports the use of memory-mapped pe-
ripheral devices and coprocessors. Such memory-mapped
devices can be located at arbitrary locations in the address
space except for the upper 8 Mbytes of memory (addresses
between FF800000 (hex) and FFFFFFFF (hex), inclusive),
which are reserved by National Semiconductor Corporation.
Nevertheless, it is recommended that high-performance pe-
ripheral devices and coprocessors be located in a specific 8
Mbyte region of memory (addresses between FF000000
(hex) and FF7FFFFF (hex), inclusive), that is dedicated for
memory-mapped 1/0. This is because the NS32GX32 de-
tects references to the dedicated locations and serializes
reads and writes. See Section 3.1.3.3. When making 1/0
references to addresses outside the dedicated region, ex-
ternal hardware must indicate to the NS32GX32 that special
handling is required.

In this case a small performance degradation will also re-
sult. Refer to Section 3.1.3.2 for more information on memo-
ry-mapped 1/0.

Address (Hex)
00000000

Memory and 1/0
FF000000

Memory-Mapped I/0
FF800000

Reserved by NSC
FFFFFEQO

Interrupt Control
FFFFFFFF

FIGURE 2-6. NS32GX32 Address Mapping

2.0 Architectural Description (continued)
2.3 MODULAR SOFTWARE SUPPORT

The NS32GX32 provides special support for software mod-
ules and modular programs.

Each module in a NS32GX32 software environment con-
sists of three components:

1. Program Code Segment.

This secment contains the module’s code and constant
data.

2. Static Data Segment.

Used to store variables and data that may be accessed
by all procedures within the module.

3. Link Table.

This component contains two types of entries: Absolute
Addresses and Procedure Descriptors.

An Absolute Address is used in the external addressing
mode, in conjunction with a displacement and the current
MOD Register contents to compute the effective address
of an external variable belonging to another module.

The Procedure Descriptor is used in the call external pro-
cedure (CXP) instruction to compute the address of an
external procedure.

Normally, the linker program specifies the locations of the
three components. The Static Data and Link Table typically
reside in RAM; the code component can be either in RAM or
in ROM. The three components can be mapped into non-
contiguous locations in memory, and each can be indepen-
dently relocated. Since the Link Table contains the absolute
addresses of external variables, the linker need not assign
absolute memory addresses for these in the module itself;
they may be assigned at load time.

To handle the transfer of control from one module to anoth-
er, the NS32GX32 uses a module table in memory and two
registers in the CPU.

{
]

3y MODULE TABLE 6

STATIC BASE
M%ﬂgtg LINK TABLE BASE
ENTRY PROGRAM BASE
RESERVED

1
[y
b
€

SB REGISTER

The Module Table is located within the first 64 kbytes of
memory. This table contains a Module Descriptor (also
called a Module Table Entry) for each module in the ad-
dress space of the program. A Module Descriptor has four
32-bit entries corresponding to each component of a mod-
ule:

* The Static Base entry contains the address of the begin-

ning of the module’s static data segment.

® The Link Table Base points to the beginning of the mod-
ule’s Link Table.

* The Program Base is the address of the beginning of the
code and constant data for the module.

e A fourth entry is currently unused but reserved.

The MOD Register in the CPU contains the address of the
Module Descriptor for the currently executing module.

The Static Base Register (SB) contains a copy of the Static
Base entry in the Module Descriptor of the currently execut-
ing module, i.e., it points to the beginning of the current
module’s static data area.

This register is implemented in the CPU for efficiency pur-
poses. By having a copy of the static base entry or chip, the
CPU can avoid reading it from memory each time a data
item in the static data segment is accessed.

In an NS32GX32 software environment modules need not
be linked together prior to loading. As modules are loaded,
a linking loader simply updates the Module Table and fills
the Link Table entries with the appropriate values. No modi-
fication of a module's code is required. Thus, modules may
be stored in read-only memory and may be added to a sys-
tem independently of each other, without regard to their in-
dividual addressing. Figure 2-7 shows a typical NS32GX32
run-time environment.

STATIC DATA
SEGMENT

Disp

LINK TABLE

leccccaaced

orrssr--->®<--

DISP1 x 4

PROGRAM CODE
SEGMENT

»{ ABSOLUTE ADDRESS
ABSOLUTE ADDRESS
OFFSET | MODULE
ABSOLUTE ADDRESS

~ ~

EXTERNAL MODULE

N
PC REGISTER

EXT. VARIABLE |«

TL/EE/10253-2

Note: Dashed lines indicate information copied to registers during transfer of control between modules.

FIGURE 2-7. NS32GX32 Run-Time Environment

0€-CEXDZESN/GC-CEXDZESN/02-CEXOCESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

2.0 Architectural Description (continued)

OPTIONAL BASIC
EXTENSIONS INSTRUCTION
r N— A A
0DISP2|DISP1 mspzloxsm
WMPLIED INDEX | INDEX Jriss GEN
olgsﬂmﬂis) DISP DiSP BYTE BYTE M(:DE ':Dggg OPCODE
MM (1]
TL/EE/10253-5
FIGURE 2-8. General Instructlon Format
7 3|2 0
GEN. ADDR. MODE REG. NO.
TL/EE/10253-6
FIGURE 2-9. Index Byte Format ’
2.4 INSTRUCTION SET Byte Displacement: Range —64 to +63

2.4.1 General Instruction Format

Figure 2-8 shows the general format of a Series 32000 in-
struction. The Basic Instruction is one to three bytes long
and contains the Opcode and up to two 5-bit General Ad-
dressing Mode (“‘Gen") fields. Following the Basic Instruc-
tion field is a set of optional extensions, which may appear
depending on the instruction and the addressing modes se-
lected.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index-
ing. See Figure 2-9.

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select-
ed addressing modes. Each Disp/Imm field may contain
one or two displacements, or one immediate value. The size
of a Displacement field is encoded with the top bits of that
field, as shown in Figure 2-10, with the remaining bits inter-
preted as a signed (two’s complement) value. The size of an
immediate value is determined from the Opcode field. Both
Displacement and Immediate fields are stored most signifi-
cant byte first. Note that this is different from the memory
representation of data (Section 2.2).

Some instructions require additional, ‘implied” immediates
and/or displacements, apart from those associated with ad-
dressing modes. Any such extensions appear at the end of
the instruction, in the order that they appear within the list of
operands in the instruction definition (Section 2.4.3).

2.4.2 Addressing Modes

The CPU generally accesses an operand by calculating its
Effective Address based on information available when the
operand is to be accessed. The method to be used in per-
forming this calculation is specified by the programmer as
an “addressing mode.”

0 SIGNED DISPLACEMENT

Word Displacement: Range —8192 to +8191

[} cﬁ“g\“

o

Double Word Displacement:
Range —(229 — 224) to + (229 — 1)*

5
ol
&&o

«©
‘99‘\

TL/EE/10253-7
FIGURE 2-10. Displacement Encodings

*Note: The pattern “11100000" for the most significant byte of the disptace-
ment is reserved by National for future enhancements. Therefore, it
should never be used by the user program. This causes the lower
limit of the displacement range to be —(229—224) instead of —229,

2-14

2.0 Architectural Description (continued)

Addressing modes are designed to optimally support high-
level language accesses to variables. In nearly all cases, a
variable access requires only one addressing mode, within
the instruction that acts upon that variable. Extraneous data
movement is therefore minimized.

Addressing Modes fall into nine basic types:

Reglster: The operand is available in one of the eight Gen-
eral Purpose Registers. In certain Slave Processor instruc-
tions, an auxiliary set of eight registers may be referenced
instead.

Register Relative: A General Purpose Register contains an
address to which is added a displacement value from the
instruction, yielding the Effective Address of the operand in
memory.

Memory Space: Identical to Register Relative above, ex-
cept that the register used is one of the dedicated registers
PC, SP, SB or FP. These registers point to data areas gen-
erally needed by high-level languages.

Memory Relative: A pointer variable is found within the
memory space pointed to by the SP, SB or FP register. A
displacement is added to that pointer to generate the Effec-
tive Address of the operand.

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written.

Absolute: The address of the operand is specified by a
displacement field in the instruction.

External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis-
placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SPO or
SP1) specifies the location of the operand. The operand is
pushed or popped, depending on whether it is written or
read.

Scaled Index: Although encoded as an addressing mode,
Scaled Indexing is an option on any addressing mode ex-
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen-

eral Purpose Register by 1, 2, 4 or 8 and adding it into the
total, yielding the final Effective Address of the operand.
Table 2-2 is a brief summary of the addressing modes. For a
complete description of their actions, see the Instruction Set
Reference Manual.

2.4.3 Instruction Set Summary

Table 2-3 presents a brief description of the NS32GX32 in-
struction set. The Format column refers to the Instruction
Format tables (Appendix A). The Instruction column gives
the instruction as coded in assembly language, and the De-
scription column provides a short description of the function
provided by that instruction. Further details of the exact op-
erations performed by each instruction may be found in the
Instruction Set Reference Manual.

Notatlons:
i = Integer length suffix: B = Byte

W = Word

D = Double Word
f = Floating Point length suffix: F = Standard Floating

L = Long Floating

gen = General operand. Any addressing mode can be
specified.
short = A 4-bit value encoded within the Basic Instruction
(see Appendix A for encodings).

imm = Implied immediate operand. An 8-bit value append-
ed after any addressing extensions.

disp = Displacement (addressing constant): 8, 16 or 32
bits. All three lengths legal.

reg = Any General Purpose Register: RO-R7.

areg = Any Processor Register: Address, Debug, Status,
Configuration.

creg = A Custom Slave Processor Register (Implementa-
tion Dependent).

cond = Any condition code, encoded as a 4-bit field within
the Basic Instruction (see Appendix A for encodings).

0€-2EXOCESN/GT-CEXDZESN/02-CEXDTESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

2.0 Architectural Description (continued)
TABLE 2-2. NS32GX32 Addressing Modes

ENCODING
Reglster
00000
00001
00010
00011
00100
00101
00110
00111
Register Relative
01000
01001
01010
01011
01100
01101
01110
01111
Memory Relative
10000
10001
10010
Reserved
10011
Immediate
10100

Absolute
10101
External
10110

Top of Stack
10111

Memory Space
11000

11001

11010

11011

Scaled Index
11100

11101

11110

11111

MODE

Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7

Register 0 relative
Register 1 relative
Register 2 relative
Register 3 relative
Register 4 relative
Register 5 relative
Register 6 relative
Register 7 relative

Frame memory relative
Stack memory relative
Static memory relative

(Reserved for Future Uss)

Immediate

Absolute

"External

Top of stack

Frame memory
Stack memory
Static memory
Program memory

Index, bytes

Index, words

Index, double words
Index, quad words

ASSEMBLER SYNTAX

RO, FO, LO
R1,F1, L1
R2,F2, L2
R3, F3, L3
R4,F4,L4
RS, F5, L5
R6, F6, L6
R7,F7,L7

disp(R0)
disp(R1)
disp(R2)
disp(R3)
disp(R4)
disp(R5)
disp(R6)
disp(R7)

disp2(disp1(FP))
disp2(disp1(SP))
disp2(disp1(SB))

value

@disp

EXT(dispt) + disp2

TOS

disp(FP)
disp(SP)
disp(SB)
*+disp

mode[Rn:B]
mode[Rn:W]
mode[Rn:D]
mode[Rn:Q)

EFFECTIVE ADDRESS

None: Operand is in the
specified register.

Disp + Register.

Disp2 + Pointer; Pointer found at

address Disp1 + Register. “SP" is either

SPO or SP1, as selected in PSR.

None. Operand is input from
instruction queue.

Disp.

Disp2 + Pointer; Pointer is found
at Link Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Disp + Register; “‘SP” is either
SPO or SP1, as selected in PSR.

EA (mode) + Rn.

EA (mode) + 2 X Rn.

EA (mode) + 4 X Rn.

EA (mode) + 8 X Rn.

“Mode’ and ‘n’ are contained
within the Index Byte.

EA (mode) denotes the effective
address generated using mode.

2-16

2.0 Architectural Description (continued)
TABLE 2-3. NS32GX32 Instruction Set Summary

MOVES
Format Operation Operands
4 MOVi gen,gen
2 MOVQi short,gen
7 MOVMi gen,gen,disp
7 MOvVZBW gen,gen
7 MOVZiD gen,gen
7 MOVXBW gen,gen
7 MOVXiD gen,gen
4 ADDR gen,gen
INTEGER ARITHMETIC
Format Operation Operands
4 ADDI gen,gen
2 ADDQi short,gen
4 ADDCi gen,gen
4 SUBI gen,gen
4 SUBCi gen,gen
6 NEGi gen,gen
6 ABSI gen,gen
7 MULI gen,gen
7 QUOI gen,gen
7 REMi gen,gen
7 DIvi gen,gen
7 MODi gen,gen
7 MEIi gen,gen
7 DEli gen,gen

PACKED DECIMAL (BCD) ARITHMETIC

Format Operation Operands

6 ADDPi gen,gen
6 SUBPI gen,gen
INTEGER COMPARISON
Format Operation Operands
4 CMPi gen,gen
2 CMPQi short,gen
7 CMPMi gen,gen,disp
LOGICAL AND BOOLEAN
Format Operation Operands
4 ANDi gen,gen
4 ORi gen,gen
4 BICi gen,gen
4 XORi gen,gen
6 COMi gen,gen
6 NOTi gen,gen
2 Scondi gen
SHIFTS
Format Operatlon Operands
6 LSHi gen,gen
6 ASHi gen,gen
6 ROTi gen,gen

Description

Move a value.

Extend and move a signed 4-bit constant.
Move Multiple: disp bytes (1 to 16).

Move with zero extension.

Move with zero extension.

Move with sign extension.

Move with sign extension.

Move Effective Address.

Description

Add.

Add signed 4-bit constant.
Add with carry.

Subtract.

Subtract with carry (borrow).
Negate (2's complement).
Take absolute value.
Multiply.

Divide, rounding toward zero.
Remainder from QUO.
Divide, rounding down.
Remainder from DIV (Modulus).
Multiply to Extended Integer.
Divide Extended Integer.

Description
Add Packed.
Subtract Packed.

Description

Compare.

Compare to signed 4-bit constant.
Compare Multiple: disp bytes (1 to 16).

Description

Logical AND.

Logical OR.

Clear selected bits.

Logical Exclusive OR.

Complement all bits.

Boolean complement: LSB only.

Save condition code (cond) as a Boolean variable of sizei.

Description

Logical Shift, left or right.
Arithmetic Shift, left or right.
Rotate, left or right.

2-17

0€-2EXODTESN/GC-CEXDCESN/02-CEXDTESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

2.0 Architectural Description (continued)
TABLE 2-3. NS32GX32 Instruction Set Summary (Continued)

BITS
Format Operation Operands Description
4 TBITi gen,gen Test bit.
6 SBITi gen,gen Test and set bit.
6 SBITli gen,gen Test and set bit, interlocked.
6 CBITi gen,gen Test and clear bit.
6 CBITIi gen,gen Test and clear bit, interlocked.
6 IBITi gen,gen Test and invert bit.
8 FFSi gen,gen Find first set bit.
BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records used in
Pascal. “Extract” instructions read and align a bit field. “‘Insert” instructions write a bit field from an aligned source.

Format Operation Operands Description
8 EXTi reg,gen,gen,disp Extract bit field (array oriented).
8 INSi reg,gen,gen,disp Insert bit field (array oriented).
7 EXTSi gen,gen,imm,imm Extract bit field (short form).
7 INSSi gen,gen,imm,imm Insert bit field (short form).
8 CVTP reg,gen,gen Convert to Bit Field Pointer.
ARRAYS
Format Operation Operands Description
8 CHECK:i reg,gen,gen Index bounds check.
8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays.
STRINGS
String instructions assign specific functions to Options on all string instructions are:
the General Purpose Registers: B (Backward): Decrement string pointers after each step
R4 - Comparison Value rather than incrementing.
R3 - Translation Table Pointer U (Untilmatch): End instruction if String 1 entry
R2 - String 2 Pointer matches R4.
R1 - String 1 Pointer W (While match): End instruction if String 1 entry
RO - Limit Count does not match R4.
All string instructions end when RO decrements to zero.
Format Operation Operands Description
5 MOVSi options Move String 1 to String 2.
MOVST options Move string, translating bytes.
5 CMPSi options Compare String 1 to String 2.
CMPST options Compare translating, String 1 bytes.
5 SKPSi options Skip over String 1 entries.
SKPST options Skip, translating bytes for Until/While.

2-18

2.0 Architectural Description (continued)

TABLE 2-3. NS32GX32 Instruction Set Summary (Continued)

Operands Description
gen Jump.
disp Branch (PC Relative).
disp Conditional branch.
gen Multiway branch.
short,gen,disp Add 4-bit constant and branch if non-zero.
gen Jump to subroutine.
disp Branch to subroutine.
disp Call external procedure.
gen Call external procedure using descriptor.
Supervisor Call.
Flag Trap.
Breakpoint Trap.
[reg list] disp Save registers and allocate stack frame (Enter Procedure).
[reg list] Restore registers and reclaim stack frame (Exit Procedure).
disp Return from subroutine.
disp Return from external procedure call.
disp Return from trap. (Privileged)

Return from interrupt. (Privileged)

JUMPS AND LINKAGE
Format Operation

3 JUMP

0 BR

0 Beond

3 CASEi

2 ACBiI

3 JSR

1 BSR

1 CXP

3 CXPD

1 SVC

1 FLAG

1 BPT

1 ENTER

1 EXIT

1 RET

1 RXP

1 RETT

1 RETI
CPU REGISTER MANIPULATION
Format Operation

1 SAVE

1 RESTORE

2 LPRi

2 SPRi

3 ADJSPi

3 BISPSRi

3 BICPSRi

5 SETCFG
FLOATING POINT
Format Operation

11 MOV

9 MOVLF

9 MOVFL

9 MOVit

9 ROUNDfi

9 TRUNCi

9 FLOORfi

1 ADDf

11 SUBf

11 MULf

11 Divf

11 CMPf

1 NEGf

1 ABSf

12 POLYf

12 DOTt

12 SCALBf

12 LOGBf

9 LFSR

9 SFSR

Operands Description

[reg list] Save General Purpose Registers.

[reg list] Restore General Purpose Registers.

areg,gen Load Processor Register. (Privileged if PSR, INTBASE, USP, CFG
or Debug Registers).

areg,gen Store Processor Register. (Privileged if PSR, INTBASE, USP, CFG
or Debug Registers).

gen Adjust Stack Pointer.

gen Set selected bits in PSR. (Privileged if not Byte length)

gen Clear selected bits in PSR. (Privileged if not Byte length)

[option list} Set Configuration Register. (Privileged)

Operands Description

gen,gen Move a Floating Point value.

gen,gen Move and shorten a Long value to Standard.

gen,gen Move and lengthen a Standard valus to Long.

gen,gen Convert any integer to Standard or Long Floating.

gen,gen Convert to integer by rounding.

gen,gen Convert to integer by truncating, toward zero.

gen,gen Convert to largest integer less than or equal to valus.

gen,gen Add.

gen,gen Subtract.

gen,gen Multiply.

gen,gen Divide.

gen,gen Compare.

gen,gen Negate.

gen,gen Take absolute value.

gen,gen Polynomial Step.

gen,gen Dot Product.

gen,gen Binary Scale.

gen,gen Binary Log.

gen Load FSR.

gen Store FSR.

2-19

0€-2EXDTESN/SCT-CEXDCESN/0Z-CEXDTESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

2.0 Architectural Description (continued)
TABLE 2-3. NS32GX32 Instruction Set Summary (Continued)

MISCELLANEOUS
Format Operation
1 NOP
1 WAIT
1 DIA
14 CINV
8 MOVSUi
8 MOVUSI
CUSTOM SLAVE
Format Operation
15.5 CCALOc
15.5 CCAL1c
- 155 CCAL2c
15.5 CCALBc
15.5 CMOVOc
15.5 CMOV1ic
15.5 CMOV2c
15.5 CMOV3c
15.5 CCMPOc
15.5 CCMP1c
15.1 CCVOci
15.1 CCVici
15.1 CCvaci
15.1 CCV3ic
15.1 CCcv4DQ
15.1 CccvsabD
15.1 LCSR
15.1 SCSR
15.0 LCR
15.0 SCR

Operands

options,gen
gen,gen

gen,gen

Operands
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen

gen
creg,gen
creg,gen

Description

No Operation.

Wait for interrupt.

Diagnose. Single-byte ““Branch to Self” for hardware
breakpointing. Not for use in programming.

Cache Invalidate. (Privileged)

Move a value from Supervisor

Space to User Space. (Privileged)

Move a value from User Space

to Supervisor Space. (Privileged)

Description
Custom Calculate.

Custom Move.

Custom Compare.

Custom Convert.

Load Custom Status Register.
Store Custom Status Register.
Load Custom Register. (Privileged)
Store Custom Register. (Privileged)

2-20

3.0 Functional Description

This chapter provides details on the functional characteris-
tics of the NS32GX32 microprocessor.

The chapter is divided into five main sections:

Instruction Execution, Exception Processing, Debugging,
On-Chip Caches and System Interface.

3.1 INSTRUCTION EXECUTION

To execute an instruction, the NS32GX32 performs the fol-
lowing operations:

¢ Fetch the instruction

¢ Read source operands, if any (1)
¢ Calculate results

o Write result operands, if any

* Modify flags, if necessary

¢ Update the program counter

Under most circumstances, the CPU can be conceived to
execute instructions by completing the operations above in
strict sequence for one instruction and then beginning the
sequence of operations for the next instruction. However,
due to the internal instruction pipelining, as well as the oc-
currence of exceptions, the sequence of operations per-
formed during the execution of an instruction may be al-
tered. Furthermore, exceptions also break the sequentiality
of the instructions executed by the CPU.

Details on the effects of the internal pipelining, as well as
the occurrence of exceptions on the instruction execution,
are provided in the following sections.

Note: 1 In this and following sections, memory locations read by the CPU to
calculate effective addresses for Memory-Relative and External ad-
dressing modes are considered like source operands, even if the
effective address is being calculated for an operand with access
class of write.

3.1.1 Operating States

The CPU has five operating states regarding the execution
of instructions and the processing of exceptions: Reset, Ex-
ecuting Instructions, Processing An Exception, Waiting-For-
An-Interrupt, and Halted. The various states and transitions
between them are shown in Figure 3-1.

Whenever the RST signal is asserted, the CPU enters the
reset state. The CPU remains in the reset state until the
RST signal is driven inactive, at which time it enters the
Executing-Instructions state. In the Reset state the contents
of certain registers are initialized. Refer to Section 3.5.3 for
details.

In the Executing-Instructions state, the CPU executes in-
structions. It will exit this state when an exception is recog-
nized or a WAIT instruction is encountered. At which time it
enters the Processing-An-Exception state or the Waiting-
For-An-Interrupt state respectively.

While in the Processing-An-Exception state, the CPU saves
the PC, PSR and MOD register contents on the stack and
reads the new PC and module linkage information to begin
execution of the exception service procedure (see note).
Following the completion of all data references required to
process an exception, the CPU enters the Executing-In-
structions state.

In the Waiting-For-An-Interrupt state, the CPU is idle. A spe-
cial status identifying this state is presented on the system
interface (Section 3.5). When an interrupt or a debug condi-

RST ACTIVE

RST INACTIVE
BUS ERROR, INTERRUPT
OR TRAP

PROCESSING
AN
EXCEPTION

SERVICE CALL
COMPLETE

BUS ERROR

INTERRUPT
OR DEBUG
CONDITION

WAIT
INSTRUCTION
EXECUTED

WAITING
FOR AN
INTERRUPT

TL/EE/10253-8

FIGURE 3-1. Operating States

tion is detected, the CPU enters the Processing-An-Excep-
tion state.

The CPU enters the Halted state when a bus error is detect-
ed while the CPU is processing an exception, thereby pre-
venting the transfer of control to an appropriate exception
service procedure. The CPU remains in the Halted state
until reset occurs. A special status identifying this state is
presented on the system interface.

Note: When the Direct-Exception mode is enabled, the CPU does not save
the MOD Register contsnts nor does it read the module linkage infor-
mation for the exception service procedure. Refer to Section 3.2 for
details.

3.1.2 Instruction Endings

The NS32GX32 checks for exceptions at various points
while executing instructions. Certain exceptions, like inter-
rupts, are in most cases recognized between instructions.
Other exceptions, like Divide-By-Zero Trap, are recognized
during execution of an instruction. When an exception is
recognized during execution of an instruction, the instruction
ends in one of four possible ways: completed, suspended,
terminated, or partially completed. Each type of exception
causes a particular ending, as specified in Section 3.2.

3.1.2.1 Completed Instructions

When an exception is recognized after an instruction is
completed, the CPU has performed all of the operations for
that instruction and for all other instructions executed since
the last exception occurred. Result operands have been
written, flags have been modified, and the PC saved on the
Interrupt Stack contains the address of the next instruction
to execute. The exception service procedure can, at its con-
clusion, execute the RETT instruction (or the RETI instruc-
tion for vectored interrupts), and the CPU will begin execut-
ing the instruction following the completed instruction.

2-21

0€-2EXDTESN/SG2-CEXDZESN/0C-CEXDCESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

3.0 Functional Description (continued)
3.1.2.2 Suspended Instructions

An instruction is suspended when one of several trap condi-
tions or a restartable bus error is detected during execution
of the instruction. A suspended instruction has not been
completed, but all other instructions executed since the last
exception occurred have been completed. Result operands
and flags due to be affected by the instruction may have
been modified, but only modifications that allow the instruc-
tion to be executed again and completed can occur. For
certain exceptions (Trap (UND), Trap (ILL), and bus errors)
the CPU clears the P-flag in the PSR before saving the copy
that is pushed on the Interrupt Stack. The PC saved on the
Interrupt Stack contains the address of the suspended in-
struction.

For example, the RESTORE Instruction pops up to 8 gener-
al-purpose registers from the stack. If an invalid page table
entry is detected on one of the references to the stack, then
the Instruction is suspended. The general-purpose registers
dus to be loaded by the instruction may have been modified,
but the stack pointer still holds the same value that it did
when the instruction began.

To complete a suspended instruction, the exception service
procedure takes either of two actions:

1. The service procedure can simulate the suspended in-
struction’s execution. After calculating and writing the in-
struction’s results, the flags in the PSR copy saved on the
Interrupt Stack should be modified, and the PC saved on
the Interrupt Stack should be updated to point to the next
instruction to execute. The service procedure can then
execute the RETT instruction, and the CPU begins exe-
cuting the instruction following the suspended instruction.
This is the action taken when floating-point instructions
are simulated by software in systems without a hardware
floating-point unit.

2. The suspended instruction can be executed again after
the service procedure has eliminated the trap condition
that caused the instruction to be suspended. The service
procedure should execute the RETT instruction at its con-
clusion; then the CPU begins executing the suspended
instruction again. This is the action taken by a debugger
when it encounters a BPT instruction that was temporarily
placed in another instruction’s location in order to set a
breakpoint.

Note 1: Although the NS32GX32 allows a suspended instruction to be exe-
cuted again and completed, the CPU may have read a source oper-
and for the instruction from a memory-mapped peripheral port be-
fore the exception was recognized. In such a cass, the characteris-
tics of the peripheral device may prevent correct reexecution of the
instruction.

Note 2: It may be necessary for the exception service procedure to alter the
P-flag in the PSR copy saved on the Interrupt Stack: If the exception
service procedure simulates the suspended instruction and the P-
flag was cleared by the CPU before saving the PSR copy, then the
saved T-flag must be copied to the saved P-flag (like the floating-
point instruction simulation described above). Or if the exception
service procedure executes the suspended instruction again and
the P-flag was not cleared by the CPU before saving the PSR copy,
then the saved P-flag must be cleared (like the breakpoint trap de-
scribed above). Otherwise, no alteration to the saved P-flag is nec-
essary.

3.1.2.3 Terminated Instructions

An instruction being executed is terminated when reset or a
nonrestartable bus error occurs. Any result operands and
flags due to be affected by the instruction are undefined, as

is the contents of the PC. The result operands of other in-
structions executed since the last serializing operation may
not have been written to memory. A terminated instruction
cannot be completed.

3.1.2.4 Partially Completed Instructions

When a restartable bus error, interrupt, or debug condition is
recognized during exscution of a string instruction, the in-
struction is said to be partially completed. A partially com-
pleted instruction has not completed, but all other instruc-
tions executed since the last exception occurred have been
completed. Result operands and flags due to be affected by
the instruction may have been modified, but the values
stored in the string pointers and other general-purpose reg-
isters used during the instruction’s execution allow the in-
struction to be exscuted again and completed.

The CPU clears the P-flag in the PSR before saving the
copy that is pushed on the Interrupt Stack. The PC saved on
the Interrupt Stack contains the address of the partially
completed instruction. The exception service procedure
can, at its conclusion, simply execute the RETT instruction
(or the RETI instruction for vectored interrupts), and the
CPU will resume exscuting the partially completed instruc-
tion.

3.1.3 Instruction Plpeline

The NS32GX32 exscutes instructions in a heavily pipelined
fashion. This allows a significant performance enhancemsent
since the operations of several instructions are performed
simultaneously rather than in a strictly sequential manner.
The CPU provides a four-stage internal instruction pipsline.
As shown in Figure 3-2, a write buffer, that can hold up to
two operands, is also provided to allow write operations to
be performed off-line.

I Fetch Instruction I Stage 1
H 8 Byte Queus i Buffer
.-------I-------‘
I Decode Instruction I Stage 2
: 1 Decoded Instruction : Buffer
O-------I-------‘
Calculate Addresses Stage 3
Read Source Operands
Calculate Results Stege 4
Write Destination Operands
H 2 Memory Results } Buffer

toowevcocssssanvewd
TL/EE/10253-9
FIGURE 3-2. NS32GX32 Internal Instruction Pipeline
Due to the pipelining, operations like fetching one instruc-
tion, reading the source operands of a second instruction,
calculating the results of a third instruction and storing the
results of a fourth instruction, can all occur in parallel.

2-22

3.0 Functional Description (continued)

The order of memory references performed by the CPU may
also differ from that related to a strictly sequential instruc-
tion execution. In fact, when an instruction is being execut-
ed, some of the source operands may be read from memory
before the instruction is completely fetched. For example,
the CPU may read the first source operand for an instruction
before it has fetched a displacement used in calculating the
address of the second source operand. The CPU, however,
always completes fetching an instruction and reading its
source operands before writing its results. When more than
one source operand must be read from memory to execute
an instruction, the operands may be read in any order. Simi-
larly, when more than one result operand is written to mem-
ory to execute an instruction, the operands may be written
in any order.

An instruction is fetched only after all previous instructions
have been completely fetched. However, the CPU may be-
gin fetching an instruction before all of the source operands
have been read and results written for previous instructions.

The source operands for an instruction are read only after
all previous instructions have been fetched and their source
operands read. A source operand for an instruction may be
read before all results of previous instructions have been
written, except when the source operand's value depends
on a result not yet written. The CPU compares the address
and length of a source operand with those of any results not
yet written, and delays reading the source operand until af-
ter writing all results on which the source operand depends.
Also, the CPU ensures that the interlocked read and write
references to execute an SBITli or CBITli instruction occur
after writing all results of previous instructions and before
reading any source operands for subsequent instructions.

The result operands for an instruction are written after all
results of previous instructions have been written.

The description above is summarized in Figure 3-3, which
shows the precedence of memory references for two con-
secutive instructions.

INSTRUCTION N
INSTRUCTION FETCH s INSTRUCTION FETCH

\

INSTRUCTION N+ 1

DATA READ DATA READ

DATA WRITE » DATA WRITE
TL/EE/10253-10
FIGURE 3-3. Memory References for
Consecutive Instructions
(An arrow from one reference to another Indicates that

the first reference always precedes the second.)

Another consequence of overlapping the operations for sev-
eral instructions, is that the CPU may fetch an instruction
and read its source operands, even though the instruction is
not executed (e.g., due to the occurrence of an exception).

Special care is needed in the handling of memory-mapped
170 devices. The CPU provides special mechanisms to en-
sure that the references to these devices are always per-
formed in the order implied by the program. Refer to Section
3.1.3.2 for details.

1t is also to be noted that the CPU does not check for de-
pendencies between the fetching of an instruction and the
writing of previous instructions’ results. Therefore, special
care is required when executing self-modifying code.

3.1.3.1 Branch Prediction

One problem inherent to all pipelined machines is what is
called “Pipeline Breakage™.

This occurs every time the sequentiality of the instructions is
broken, due to the execution of certain instructions or the
occurrence of exceptions.

The result of a pipeline breakage is a performance degrada-
tion, due to the fact that a certain portion of the pipeline
must be flushed and new data must be brought in.

The NS32GX32 provides a special mechanism, called
branch prediction, that helps minimize this performance
penalty.

When a conditional branch instruction is decoded in the ear-
ly stages of the pipeline, a prediction on the execution of the
instruction is performed.

More precisely, the prediction mechanism predicts back-
ward branches as taken and forward branches as not taken,
except for the branch instructions BLE and BNE that are
always predicted as taken.

Thus, the resulting probability of correct prediction is fairly
high, especially for branch instructions placed at the end of
loops.

The sequence of operations performed by the loader and
execution units in the CPU is given below:

e Loader detects branches and calculates destination ad-
dresses

® | oader uses branch opcode and direction to select be-
tween sequential and non-sequential streams

® | oader saves address for alternate stream
® Execution unit resolves branch decision

Due to the branch predicition, some special care is required
when writing self-modifying code. Refer to the appropriate
section in Appendix B for more information on this subject.

3.1.3.2 Memory-Mapped 1/0

The characteristics of certain peripheral devices and the
overlapping of instruction execution in the pipeline of the
NS32GX32 require that special handling be applied to mem-
ory-mapped 1/O references. 1/0 references differ from
memory references in two significant ways, imposing the
following requirements:

1. Reading from a peripheral port can alter the value read
on the next reference to the same port or another port in
the same device. (A characteristic called here ‘‘destruc-
tive-reading”.) Serial communication controllers and
FIFO buffers commonly operate in this manner. As ex-
plained in “Instruction Pipeline” above, the NS32GX32
can read the source operands for one instruction while
the previous instruction is executing. Because the previ-
ous instruction may cause a trap, an interrupt may be
recognized, or the flow of control may be otherwise al-
tered, it is a requirement that destructive-reading of
source operands before the execution of an instruction
be avoided.

2-23

0€-ZEXDTESN/SC-2EXDZESN/0C-CEXDZESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

3.0 Functional Description (continued)

2. Writing to a peripheral port can alter the value read from
another port of the same device. (A characteristic called
here “side-effects of writing”). For example, before read-
ing the counter’s value from the NS32202 Interrupt Con-
trol Unit it is first necessary to freeze the value by writing
to another control register.

However, as mentioned above, the NS32GX32 can read the
source operands for one instruction before writing the re-
sults of previous instructions unless the addresses indicate
a dependency between the read and write references. Con-
sequently, it is a requirement that read and write references
to peripheral that exhibit side-effects of writing must occur in
the order dictated by the instructions.

The NS32GX32 supports 2 methods for handling memory-
mapped 1/0. The first method is more general; it satisfies
both requirements listed above and places no restriction on
the location of memory-mapped peripheral devices. The
second method satisfies only the requirement for side ef-
fects of writing, and it restricts the location of memory-
mapped |/0 devicss, but it is more efficient for devices that
do not have destructive-read ports.

The first method for handling memory-mapped |/0 uses two
signals: IOINH and IODEC. When the NS32GX32 generates
a read bus cycle, it asserts the output signal TOINH if either
of the 170 requirements listed above is not satisfied. That is,
I0INH is asserted during a read bus cycle when (1) the read
reference is for an instruction that may not be executed or
(2) the read reference occurs while a write reference is
pending for a previous instruction. When the read reference
is to a peripheral device that implements ports with destruc-
tive-reading or side-effects of writing, the input signal
{ODEC must be asserted; in addition, the device must not
be selected if IOINH is active. When the CPU detects that
the TODEC input signal is active while the TOINH output sig-
nal is also active, it discards the data read during the bus
cycle and serializes instruction execution. See the next sec-
tion for details on serializing operations. The CPU then gen-
erates the read bus cycle again, this time satisfying the re-
quirements for I/O and driving TOINH inactive.

The second method for handling memory-mapped 1/0 uses
a dedicated region of memory. The NS32GX32 treats all
references to the memory range from address FF000000 to
address FFFFFFFF inclusive in a special manner.

While a write to a location in this range is pending, reads
from locations in the same range are delayed. However,
reads from locations with addresses lower than FFO00000
may occur. Similarly, reads from locations in the above
range may occur while writes to locations outside of the
range are pending.

Itis to be noted that the CPU may assert IOINH even when
the reference is within the dedicated region. Refer to Sec-
tion 3.5.8 for more information on the handling of 1/0 devic-
es.

3.1.3.3 Serlalizing Operations

After executing certain instructions or processing an excep-
tion, the CPU serializes instruction execution. Serializing in-

struction execution means that the CPU completes writing
all previous instructions’ results to memory, then begins
fetching and executing the next instruction.

For example, when a new value is loaded into the PSR by
executing an LPRW instruction, the pipeline is flushed and a
serializing operation takes place. This is necessary since
the privilege level might have changed and the instructions
following the LPRW instruction must be fetched again with
the new privilege level.

The CPU serializes instruction execution after executing one
of the following instructions: BICPSRW, BISPSRW, BPT,
CINV, DIA, FLAG (trap taken), LPR (CFG, INTBASE, PSR,
UPSR, DCR, BPC, DSR, and CAR only), RETT, RETI, and
SVC. Figure 3-4 shows the memory references after seriali-
zation.

Note 1: LPRB UPSR can be executed in User Mode to serialize instruction

execution.

Note 2: After an instruction that writes a result to memory is executed, the
updating of the result's memory location may be delayed until the
next serializing operation.

Note 3: When reset or a nonrestartable bus error exception occurs, the CPU
discards any results that have not yet been written to memory.

INSTRUCTION N INSTRUCTION N+ 1
INSTRUCTION FETCH INSTRUCTION FETCH
DATA READ DATA READ
DATA WRITE DATA WRITE

TL/EE/10253-11
FIGURE 3-4. Memory References after Serialization

3.1.4 Slave Processor Instructions

The NS32GX32 recognizes two groups of instructions being
executable by external slave processors:

o Floating Point Instructions
¢ Custom Slave Instructions

Each Slave Instruction Set is enabled by a bit in the Configu-
ration Register (Section 2.1.4). Any Slave Instruction which
does not have its corresponding Configuration Register bit
set will trap as undefined, without any Slave Processor com-
munication attempted by the CPU. This allows software sim-
ulation of a non-existent Slave Processor.

3.1.4.1 Stave Instruction Protocol

Slave Processor-instructions have a three-byte Basic In-

struction field, consisting of an ID Byte followed by an Oper-

ation Word. The ID Byte has three functions:

1) It identifies the instruction as being a Slave Processor
instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Operation Word
of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi-

ates the sequence outlined in Figure 3-5. While applying

Status code 11111 (Broadcast ID Section 3.5.4.1), the CPU

transfers the ID Byte on bits D24-D31, the operation

2-24

3.0 Functional Description (continued)

START

BROADCAST
ID AND OPERATION WORD
(BUS STATUS = 11111)

'y

SEND OPERAND
(BUS STATUS = 11101)

TO SEND
?

READ RESULT
(BUS STATUS = 11101)

READ SLAVE STATUS
(BUS STATUS = 11110)

UPDATE
N, Z,L FLAGS

PROCESS
TRAP (SLAVE)

A 4

PROCESS
TRAP (UND)

ala
L

A
END

FIGURE 3-5. Slave Instruction Protocol: CPU Actions

TL/EE/10253-12

2-25

0€-Z2EXDZESN/SC-TEXDTESN/0C-TEXDZESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

3.0 Functional Description (continued)

31 0
IDBYTE | OPGODE(LOW) | OPCODE (HIGH) | XXXXXXXX
FIGURE 3-6. ID and Operation Word
3 15 7 0

ZERO |ts| zero [n[z|o]ofo]lL]o]a

FIGURE 3-7. Slave Processor Status Word

word on bits D8-D23 in a swapped order of bytes and a
non-used byte XXXXXXXX (X = don't care) on bits DO-D7
(Figure 3-6).

All slave processors observe the bus cycle and inspect the
identification code. The slave selected by the identification
code continues with the protocol; other slaves wait for the
next slave instruction to be broadcast.

After transferring the slave instruction, the CPU sends to the
slave any source operands that are located in memory or
the General-Purpose registers. The CPU then waits for the
slave to assert SDN or FSSR. While the CPU is waiting, it
can perform bus cycles to fetch instructions and read
source operands for instructions that follow the slave in-
struction being executed. If there are no bus cycles to per-
form, the CPU is idle with a special Status indicating that it is
waiting for a slave processor. After the slave asserts SDN or
FSSR, the CPU follows one of the two sequences described
below.

If the slave asserts SDN, then the CPU checks whether the
instruction stores any results to memory or the General-Pur-
pose registers. The CPU reads any such results from the
slave by means of 1 or 2 bus cycles and updates the desti-
nation. .

If the slave asserts FSSR, then the NS32GX32 reads a 32-
bit status word from the slave. The CPU checks bit O in the
slave’s status word to determine whether to update the PSR
flags or to process an exception. Figure 3-7 shows the for-
mat of the slave’s status word.

If the Q bit in the status word is 0, the CPU updates the N, Z
and L flags in the PSR.

If the Q bit in the status word is set to 1, the CPU processes
either a Trap (UND) if TS is 1 or a Trap (SLAVE) if TS is 0.

Note 1: Only the floating-point and custom compare instructions are allowed
to return a value of 0 for the Q bit when the FSSR signal is activat-
ed. All other instructions must always set the Q bit to 1 (to signal a
Trap), when activating FSSR.

Note 2: While executing CINV instruction, the CPU displays the operation
code and source operand using slave processor write bus cycles, as
described in the protocol above. Nevertheless, the CPU does not
walt for SDN or FSSR to be asserted while executing these instruc-
tions. This information can be used to monitor the contents of the
on-chip Instruction Cache, and Data Cache.

Note 3: The slave processor must be ready to accept new slave instruction
at any time, even while the slave is executing another instruction or
walting for the CPU to read results.

2-26

3.0 Functional Description (continued)
3.1.4.2 Floating Point Instructions

Table 3-1 gives the protocols followed for each Floating
Point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Appendix A.

The Operand class columns give the Access Class for each
general operand, defining how the addressing modes are
interpreted (see Instruction Set Reference Manual).

The Operand Issued columns show the sizes of the oper-
ands issued to the Floating Point Unit by the CPU. “D” indi-
cates a 32-bit Double Word. “i” indicates that the instruction
specifies an integer size for the operand (B = Byte, W =
Word, D = Double Word). “f" indicates that the instruction
specifies a Floating Point size for the operand (F = 32-bit
Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR-Bits-Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-7).

Any operand indicated as being of type “f” will not cause a
transfer if the Register addressing mode is specified. This is
because the Floating Point Registers are physically on the
Floating Point Unit and are therefore available without CPU
assistance.

3.1.4.3 Custom Slave Instructions

Provided in the NS32GX32 is the capability of communicat-
ing with a user-defined, “Custom’ Slave Processor. The in-
struction set provided for a Custom Slave Processor defines
the instruction formats, the operand classes and the com-
munication protocol. Left to the user are the interpretations
of the Op Code fields, the programming model of the Cus-
tom Slave and the actual types of data transferred. The pro-
tocol specifies only the size of an operand, not its data type.
Table 3-2 lists the relevant information for the Custom Slave
instruction set. The designation “c” is used to represent an
operand which can be a 32-bit (“D"") or 64-bit ("‘Q") quantity

in any format; the size is determined by the suffix on the
mnemonic. Similarly, an “i"” indicates an integer size (Byte,
Word, Double Word) selected by the corresponding mne-
monic suffix.

Any operand indicated as being of type *‘c’’ will not cause a
transfer if the register addressing mode is specified. It is
assumed in this case that the slave processor is already
holding the operand internally.

For the instruction encodings, see Appendix A.

3.2 EXCEPTION PROCESSING

Exceptions are special events that alter the sequence of
instruction execution. The CPU recognizes three basic types
of exceptions: interrupts, traps and bus errors.

An interrupt occurs in response to an event signalled by
activating the NMi or INT input signals. Interrupts are typi-
cally requested by peripheral devices that require the CPU’s
attention.

Traps occur as a result either of exceptional conditions
(e.g., attempted division by zero) or of specific instructions
whose purpose is to cause a trap to occur (e.g., supervisor
call instruction).

A bus error exception occurs when the BER signal is acti-
vated during an instruction fetch or data transfer required by
the CPU to execute an instruction.

When an exception is recognized, the CPU saves the PC,
PSR and optionally the MOD register contents on the inter-
rupt stack and then it transfers control to an exception serv-
ice procedure.

Details on the operations performed in the various cases by
the CPU to enter and exit the exception service procedure
are given in the following sections.

It is to be noted that the reset operation is not treated here
as an exception. Even though, like any exception, it alters
the instruction execution sequence.

The reason being that the CPU handles reset in a signifi-
cantly different way than it does for exceptions.

Refer to Section 3.5.3 for details on the reset operation.

2-27

0€-CEXDTESN/GT-CEXDZESN/0Z-CEXDTESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

3.0 Functional Description (continued)
TABLE 3-1. Floating Point Instruction Protocols

Mnemonic Operand 1 Operand 2 Operand 1 Operand 2
Class Class Issued Issued
ADDf read.f rmw.f f f
SuBf read.f rmw.f f f
MULf read.f rmw.f f f
Divf read.f rmw.f f f
MOvf read.f write.f f N/A
ABSf read.f write.f f N/A
NEGf read.f write.f f N/A
CMPf read.f read.f f f
FLOORfi read.f write.i f N/A
TRUNCHi read.f write.i f N/A
ROUNDfi read.f write.i f N/A
MOVFL read.F write.L F N/A
MOVLF read.L write.F L N/A
MOVif read.i write.f i N/A
LFSR read.D N/A D N/A
SFSR N/A write.D N/A N/A
POLY{ read.f read.f f f
DOTt read.f read.f f f
SCALBf read.f rmw.f f f
LOGBf read.f write.f f N/A
TABLE 3-2. Custom Slave Instruction Protocols
Mnemonic Operand 1 Operand 2 Operand 1 Operand 2
Class Class Issued Issued
CCALOc read.c rmw.c c c
CCAL1c read.c rmw.c c c
CCAL2c read.c rmw.c c c
CCAL3c read.c rmw.c c c
CMOVoOc read.c write.c c N/A
CMOV1ic read.c write.c c N/A
CMOV2c read.c write.c c N/A
CMOV3c read.c write.c c N/A
CCMPOc read.c read.c c c
CCMP1c read.c read.c c c
CCVOci read.c write.i c N/A
CCV1ci read.c write.i c N/A
CCVaci read.c write.i c N/A
CCV3ic read.i write.c i N/A
CCv4bQ read.D write.Q D N/A
CCV5QD read.Q write.D Q N/A
LCSR read.D N/A D N/A
SCSR N/A write.D N/A N/A
LCR* read.D N/A D N/A
SCR* write.D N/A N/A N/A
Note:

D = Double Word

i = Integer size (B,W,D) specified in mnemonic.

¢ = Custom size (D:32 bits or Q:64 bits) specified in mnemonic.
* = Privileged instruction: will trap if CPU is in User Mode.

N/A = Not Applicable to this instruction.

Returned Value
Type and Dest.
ftoOp.2
ftoOp.2
ftoOp.2
ftoOp.2
ftoOp.2
ftoOp.2
ftoOp.2
N/A
itoOp.2
itoOp.2
itoOp.2
LtoOp.2
F to Op.2
ftoOp.2
N/A
DtoOp.2
fto FO
fto FO
ftoOp.2
fto Op.2

Returned Value
Type and Dest.
ctoOp.2
ctoOp.2
ctoOp.2
ctoOp.2
ctoOp.2
ctoOp.2
ctoOp.2
ctoOp.2
N/A
N/A
itoOp.2
itoOp.2
itoOp.2
ctoOp.2
QtoOp.2
DtoOp.2
N/A
D to Op.2
N/A
D to Op.1

PSR Bits
Affected
none
none
none
none
none
none
none
N,Z L
none
none
none
none
none
none
none
none
none
none
none
none

PSR Bits
Affected
none
none
none
none
none
none
none
none
N,Z,L
N,Z,L
none
none
none
none
none
none
none
none
none
none

2-28

3.0 Functional Description (continued)
3.2.1 Exception Acknowledge Sequence

When an exception is recognized, the CPU goes through

three major steps:

1) Adjustment of Registers. Depending on the source of the
exception, the CPU may restore and/or adjust the con-
tents of the Program Counter (PC), the Processor Status
Register (PSR} and the currently-selected Stack Pointer
(SP). A copy of the PSR is made, and the PSR is then set
to reflect Supervisor Mode and selection of the Interrupt
Stack. Trap (TRC) and Trap (OVF) are always disabled.
Maskable interrupts are also disabled if the exception is
caused by an interrupt, Trap (DBG), Trap (ABT) or bus
error.

2) Vector Acquisition. A vector is either obtained from the
data bus or is supplied internally by defauit.

3) Service Call. The CPU performs one of two sequences
common to all exceptions to complete the acknowledge
process and enter the appropriate service procedure.
The selection between the two sequences depends on
whether the Direct-Exception mode is disabled or en-
abled.

Direct-Exception Mode Disabled

The Direct-Exception mode is disabled while the DE bit in
the CFG register is 0 (Section 2.1.4). In this case the CPU
first pushes the saved PSR copy along with the contents of
the MOD and PC registers on the interrupt stack. Then it

reads the double-word entry from the Interrupt Dispatch ta-
ble at address ‘INTBASE + vector X 4'. See Figures 3-8
and 3-9. The CPU uses this entry to call the exception serv-
ice procedurs, interpreting the entry as an external proce-
dure descriptor.

A new module number is loaded into the MOD register from
the least-significant word of the descriptor, and the static-
base pointer for the new module is read from memory and
loaded into the SB register. Then the program-base pointer
for the new module is read from memory and added to the
most-significant word of the module descriptor, which is in-
terpreted as an unsigned value. Finally, the result is loaded
into the PC register.

Direct-Exception Mode Enabled

The Direct-Exception mode is enabled when the DE bit in
the CFG register is set to 1. In this case the CPU first
pushes the saved PSR copy along with the contents of the
PC register on the Interrupt Stack. The word stored on the
Interrupt Stack between the saved PSR and PC register is
reserved for future use; its contents are undefined. The CPU
then reads the double-word entry from the Interrupt Dis-
patch Table at address ‘INTBASE + vector X 4. The CPU
uses this entry to call the exception service procedure, inter-
preting the entry as an absolute address that is simply load-
ed into the PC register. Figure 3-10 provides a pictorial of
the acknowledge sequence. It is to be noted that while the

T s
MEMORY i r Ti1 o
NVI NON-VECTORED INTERRUPT
CASCADE ADDR 0
NMI NON-MASKABLE INTERRUPT
CASCADETABLE S~ M 2
h RESERVED
CASCADE ADOR 14 SLAVE SLAVE PROCESSOR TRAP
INTERRUPT BASE CASCADE ADDR 15 w ILLEGAL OPERATION TRAP
REGISTER 2 FIXEDINTERRUPTS s| sve SUPERVISOR CALL TRAP
ANDTRAPS ™~ DisPATCH TABLE
A VECTORED L s| ovz DIVIDE BY ZERO TRAP
~ INTERRUPTS >
7| Ra FLAG TRAP
o -’
s| BPT BREAKPOINT TRAP
9| TRe TRACE TRAP
10| UND UNDEFINED INSTRUCTION TRAP
11| meE RESTARTABLE BUS ERROR
12| NBE NON-RESTARTABLE BUS ERROR
13| ovr INTEGER OVERFLOW TRAP
14| osa DEBUG TRAP

15 | RESERVED

16 VECTORED
’ INTERRUPTS L
r'L ~

TL/EE/10253-13

FIGURE 3-8. Interrupt Dispatch Table

0€-2EXDTESN/GZ-CEXDTESN/02-CEXDTESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

3.0 Functional Description (continued)

LOWER
22BITS ADDRESSES
(PUSH)
RETURN ADDRESS e
STATUS MODULE PSR MOD
(PUSH)
PSR L INTERRUPT
STACK HIGHER
ADDRESSES
[
CASCADE TABLE
INTBASE REGISTER
l INTERRUPTBASE | DISPATCH
TABLE
VECTOR G O]
DESCRIPTOR (32 BITS)
DESCRIPTOR
1 1
OFFSET MODULE
MOD REGISTER MODULE TABLE
MODULE TABLE ENTAY
MODULE TABLE ENTRY
STATIC BASE POINTER
LINK BASE POINTER
D} PROGRAM BASE POINTER
(RESERVED)
PROGRAM COUNTER $B REGISTER
;-i: ENTRY POINT ADDRESS NEW STATIC BASE

FIGURE 3-9. Exception Acknowledge Sequence.
Direct-Exception Mode Disabled.

TL/EE/10253-14

TL/EE/10253-15

2-30

3.0 Functional Description (continusd)

RETURN ADDRESS

{PUSH)

T wowen
ADDRESSES

32BITS

STATUS

(PUSH)

PSR

INTBASE REGISTER

INTERRUPT

STACK HIGHER
] ADDRESSES

TL/EE/10253-16

CASCADE TABLE

I INTERRUPT BASE |

VECTOR x4 D

DISPATCH
TABLE

ABSOLUTE ADDRESS

J

PROGRAM COUNTER

ENTRY POINT ADDRESS

TL/EE/10253-17

FIGURE 3-10. Exception Acknowledge Sequence.
Direct-Exception Mode Enabled.

direct-exception mode is enabled, the CPU can respond
more quickly to interrupts and other exceptions because
fewer memory references are required to process an excep-
tion. The MOD and SB registers, however, are not initialized
before the CPU transfers control to the service procedure.
Consequently, the service procedure is restricted from exe-
cuting any instructions, such as CXP, that use the contents
of the MOD or SB registers in effective address calcula-
tions.

3.2.2 Returning from an Exception Service Procedure
To return control to an interrupted program, one of two in-
structions can be used: RETT (Return from Trap) and RETI
(Return from Interrupt).

RETT is used to return from any trap, non-maskable inter-
rupt or bus error service procedure. Since some traps are
often used deliberately as a call mechanism for supervisor

mode procedures, RETT can also adjust the Stack Pointer
(SP) to discard a specified number of bytes from the original
stack as surplus parameter space.

RET! is used to return from a maskable interrupt service
procedure. A difference of RETT, RETI also informs any
external interrupt control units that interrupt service has
completed. Since interrupts are generally asynchronous ex-
ternal events, RETI does not discard parameters from the
stack.

Both of the above instructions always restore the Program
Counter (PC) and the Processor Status Register from the
interrupt stack. If the Direct-Exception mode is disabled,
they also restore the MOD and SB register contents. Fig-
ures 3-11 and 3-12 show the RETT and RETI instruction
flows when the Direct-Exception mode is disabled.

2-31

0€-2EXDCESN/S2-ZEXDTESN/02-CEXDTESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

3.0 Functional Description (continued)

T Lowen
22817TS ADDRESSES
PROGRAM COUNTER
(POP)
RETURN ADDRESS PC
(POP)
STATUS MODULE PSR MoD
PSR MOD HIGHER
L INTERRUPT | ADDRESSES
STACK
0
MODULE
TABLE
—! MODULE TABLE ENTRY
J
MODULE TABLE ENTRY
STATIC BASEPOINTER ~ —|
LINK BASE POINTER
LOWER
PROGRAM BASE POINTER ADDRESSES
(RESERVED)
PARAMETERS
n
BYTES
SB REGISTER
| STATIC BASE STACK SELECTED
INNEWLY-
POPPED PSR. HIGHER
JL | ADDRESSES
POP AND
DISCARD

TL/EE/10253-18
FIGURE 3-11. Return from Trap (RETT n) Instruction Flow.

Direct-Exception Mode Disabled.

3.2.3 Maskable Interrupts

The INT pin is a level-sensitive input. A continuous low level
is allowed for generating multiple interrupt requests. The in-
put is maskable, and is therefore enabled to generate inter-
rupt requests only while the Processor Status Register | bit
is set. The | bit is automatically cleared during service of an
INT, NMi, Trap (DBG), or Bus Error request, and is restored
to its original setting upon return from the interrupt service
routine via the RETT or RETI instruction.

The TNT pin may be configured via the SETCFG instruction
as either Non-Vectored (CFG Register bit | = 0) or Vec-
tored (bit1 = 1).

3.2.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT
pin will cause an Interrupt Acknowledge bus cycle, but the
CPU will ignore any value read from the bus and use instead
a default vector of zero. This mode is useful for small sys-
tems in which hardware interrupt prioritization is unneces-
sary.

3.2.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control
Unit (ICU) to prioritize many interrupt requests. Upon receipt
of an interrupt request on the INT pin, the CPU performs an
“Interrupt Acknowledge, Master” bus cycle (Section
3.5.4.6) reading a vector value from the low-order byte of
the Data Bus. This vector is then used as an index into the
Dispatch Table in order to find the External Procedure De-
scriptor for the proper interrupt service procedure. The serv-
ice procedure eventually returns via the Return from Inter-
rupt (RETI) instruction, which performs an End of Interrupt
bus cycle, informing the ICU that it may re-prioritize any in-
terrupt requests still pending. The ICU provides the vector
number again, which the CPU uses to determine whether it
needs also to inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127; that
is, they must be positive numbers in eight bits. By providing

2-32

3.0 Functional Description (continued)

“END OF INTERRUPT"

BUS CYCLE
INTERRUPT
CONTROL
UNIT
328ITS
PROGRAM COUNTER
1 (POP)
| RETURN ADDRESS i P
N (POP)
L STATUS I MODULE T PSR MOD
PSR MOD
INTERRUPT
STACK
0
MODULE
TABLE
MODULE TABLE ENTRY
J
MODULE TABLE ENTRY
STATIC BASE POINTER -
LINK BASE POINTER
PROGRAM BASE POINTER
(RESERVED)
| STATIC BASE
SB REGISTER

FIGURE 3-12. Return from Interrupt (RETI) Instruction Flow.
Direct-Exception Mode Disabled.

T Lower

ADDRESSES

HIGHER

1 ADDRESSES

TL/EE/10253-19

2-33

0€-2EXDTESN/GZ-2EXDTESN/02-CEXDTESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

3.0 Functional Description (continued)

a negative vector number, an ICU flags the interrupt source
as being a Cascaded ICU (see below).

3.2.3.3 Vectored Mode: Cascaded Case

In order to allow more levels of interrupt, provision is made
in the CPU to transparently support cascading. Note that
the Interrupt output from a Cascaded ICU goes to an Inter-
rupt Request input of the Master ICU, which is the only ICU
which drives the CPU INT pin. Refer to the ICU data sheet
for details.

In a system which uses cascading, two tasks must be per-
formed upon initialization:

1) For each Cascaded ICU in the system, the Master ICU
must be informed of the line number on which it receives
the cascaded requests.

2) A Cascade Table must be established in memory. The
Cascade Table is located in a NEGATIVE direction from
the location indicated by the CPU Interrupt Base (INT-
BASE) Register. Its entries are 32-bit addresses, pointing
to the Vector Registers of each of up to 16 Cascaded
ICUs.

Figure 3-9 illustrates the position of the Cascade Table. To
find the Cascade Table entry for a Cascaded ICU, take its
Master ICU line number (0 to 15) and subtract 16 from it,
giving an index in the range —16 to —1. Multiply this value
by 4, and add the resulting negative number to the contents
of the INTBASE Register. The 32-bit entry at this address
must be set to the address of the Hardware Vector Register
of the Cascaded ICU. This is referred to as the ““Cascade
Address.”

Upon receipt of an interrupt request from a Cascaded ICU,
the Master ICU interrupts the CPU and provides the nega-
tive Cascade Table index instead of a (positive) vector num-
ber. The CPU, seeing the negative value, uses it as an index
into the Cascade Table and reads the Cascade Address
from the referenced entry. Applying this address, the CPU
performs an “Interrupt Acknowledge, Cascaded’ bus cycle,
reading the final vector value. This vector is interpreted by
the CPU as an unsigned byte, and can therefore be in the
range of 0 through 255.

In returning from a Cascaded interrupt, the service proce-
dure executes the Return from Interrupt (RETI) instruction,
as it would for any Maskable Interrupt. The CPU performs
an “End of Interrupt, Master” bus cycle, whereupon the
Master ICU again provides the negative Cascade Table in-
dex. The CPU, seeing a negative value, uses it to find the
corresponding Cascade Address from the Cascade Table.
Applying this address, it performs an “End of Interrupt, Cas-
caded” bus cycle, informing the Cascaded ICU of the com-
pletion of the service routine. The byte read from the Cas-
caded ICU is discarded.

Note: If an interrupt must be masked off, the CPU can do so by setting the

corresponding bit in the interrupt mask register of the interrupt con-
troller,

However, if an interrupt is set pending during the CPU instruction that
masks off that interrupt, the CPU may still perform an interrupt ac-
knowledge cycle following that instruction since it might have sampled
the INT line before the ICU deasserted it. This could cause the ICU to
provide an invalid vector. To avoid this problem the above operation
should be performed with the CPU interrupt disabled.

3.2.4 Non-Maskable Interrupt

The Non-Maskable Interrupt is triggered whenever a falling
edge is detected on the NMI pin. The CPU performs an
“Interrupt Acknowledge, Master” bus cycle (Section
3.5.4.6) when processing of this interrupt actually begins.
The Interrupt Acknowledge cycle differs from that provided
for Maskable Interrupts in that the address presented is
FFFFFF0046. The vector value used for the Non-Maskable
Interrupt is taken as 1, regardless of the value read from the
bus.

The service procedure returns from the Non-Maskable In-
terrupt using the Return from Trap (RETT) instruction. No
special bus cycles occur on return.

3.2.5 Traps

Traps are processing exceptions that are generated as di-
rect results of the execution of an instruction.

The return address saved on the stack by any trap except
Trap (TRC) and Trap (DBG) is the address of the first bye of
the instruction during which the trap occurred.

When a trap is recognized, maskable interrupts are not dis-
abled except for the case of Trap (DBG).

There are 10 trap conditions recognized by the NS32GX32
as described below.

Trap (SLAVE): An exceptional condition was detected by
the Floating Point Unit or another Slave Processor during
the execution of a Slave Instruction. This trap is requested
via the Status Word returned as part of the Slave Processor
Protocol (Section 3.1.4.1).

Trap (ILL): lllegal operation. A privileged operation was at-
tempted while the CPU was in User Mode (PSR bit U = 1).
Trap (SVC): The Supervisor Call (SVC) instruction was exe-
cuted.

Trap (DVZ): An attempt was made to divide an integer by
zero. (The FPU trap is used for Floating Point division by
zero.)

Trap (FLG): The FLAG instruction detected a “1” in the
PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut-
ed.

Trap (TRC): The instruction just completed is being traced.

Refer to Section 3.3.1 for details.

Trap (UND): An Undefined-Instruction trap occurs when an

attempt to execute an instruction is made and one or more

of the following conditions is detected:

1. The instruction is undefined. Refer to Appendix A for a
description of the codes that the CPU recognizes to be
undefined.

. The instruction is a floating point instruction and the F-bit
in the CFG register is 0.

. The instruction is a custom slave instruction and the C-bit
in the CFG register is 0.

4. The reserved general adressing mode encoding (10011)

is used.

5. Immediate addressing mode is used for an operand that

has access class different from read.

n

w

2-34

3.0 Functional Description (continued)

6. Scaled Indexing is used and the basemode is also Scaled
Indexing.

7. The instruction is a floating-point or custom slave instruc-
tion that the FPU or custom slave detects to be unde-
fined. Refer to Section 3.1.4.1 for more information.

Trap (OVF): An Integer-Overflow trap occurs when the V-bit
in the PSR register is set to 1 and an Integer-Overflow con-
dition is detected during the execution of an instruction. An
Integer-Overflow condition is detected in the following cas-
es:
1. The F-flag is 1 following execution of an ADDi, ADDQi,
ADDCi, SUBI, SUBCI, NEGi, ABSi, or CHECK:i instruction.
2. The product resulting from a MULI instruction cannot be
represented exactly in the destination operand's location.

. The quotient resulting from a DEIi, DIVi, or QUOi instruc-
tion cannot be represented exactly in the destination op-
erand’s location.

4. The result of an ASHi instruction cannot be represented

exactly in the destination operand’s location.

The sum of the ‘INC’ value and the ‘INDEX’ operand for
an ACBi instruction cannot be represented exactly in the
index operand’s location.

Trap (DBG): A debug trap occurs when one or more of the

conditions selected by the settings of the bits in the DCR

register is detected. This trap can also be requested by acti-

vating the input signal DBG. Refer to Section 3.3.2 for more

information.

Note 1: Following execution of the WAIT instruction, then a Trap (DBG) can
be pending for a PC-match condition. In such an event, the Trap
(DBG) is processed immediately.

Note 2: If an attempt is made to exscute a privileged custom instruction
while in User-Mode and the C-bit in the CFG register is 0, then Trap
(UND) occurs.

Note 3: While operating in User-Mode, if an attempt is made to execute a
privileged instruction with an undefined use of a general addressing
mode (either the reserved encoding is used or else scaled-index or
immediate modes are incorrectly used), the Trap (UND) occurs.

Note 4: If an undefined instruction or illegal operation is detected, then no
data references are performed for the instruction.

Note 5: For certain i ions that are relatively long to such as
DEID, the CPU checks for pending interrupts during execution of the
instruction. In order to reduce interrupt latency, the NS2532 can
suspend executing the instruction and process the interrupt. Refer
to Section B.5 in Appendix B for more information about recognizing
interrupts in this manner.

3.2.6 Bus Errors

A bus error exception occurs when the BER signal is assert-
ed in response to an instruction fetch or data transfer that is
required to execute an instruction.

Two types of bus errors are recognized: Restartable and
Non-Restartable. Restartable bus errors are recognized dur-
ing read bus cycles. All other bus errors are non-restartable.

The CPU responds to restartable bus errors by suspending
the instruction that it was executing. When a non-restartable
bus error is detected, the CPU responds immediately and
the instruction being executed is terminated.

w

o

In this case, any results that have not yet been written to
memory are discarded, and any pending traps other than
Trap (DBG) for external condition, are eliminated. The PC
value saved on the stack is undefined.

The NS32GX32 does not respond to bus errors indicated
for instructions that are not executed. For example, no bus
error exception occurs in response to asserting the BER
signal during a bus cycle to prefetch an instruction that is
not executed because the previous instruction caused a
trap.

If a bus error is detected during a data transfer required for
the processing of another exception or during the ICU read
cycle of a RETI instruction, then the CPU considers it as a
fatal bus error and enters the ‘HALTED' state.

Note 1: If the address and control signals associated with the last bus cycle
that caused a bus error are latched by external hardware, then the
information they provide can be used by the service procedure for
restartable bus errors to analyze and resolve the exception recog-
nized by the CPU. This can be accomplished because upon detect-
ing a restartable bus error, the NS32GX32 stops making memory
references for subsequent instructions until it determines whether
the instruction that caused the bus error is executed and the excep-
tion is processed.

Note 2: When a non-restartable bus error is recognized, the service proce-
dure must execute the CINV instruction to invalidate the on-chip
caches. This is necessary to maintain coherence between them and
external memory.

3.2.7 Priority Among Exceptions

The CPU checks for specific exceptions at various points
while executing an instruction. It is possible that several ex-
ceptions occur simultaneously. In that event, the CPU re-
sponds to the exception with highest priority.

Figure 3-13 shows an exception processing flowchart. A
non-restartable bus error is assigned highest priority and is
serviced immediately regardless of the execution state of
the GPU.

Before executing an instruction, the CPU checks for pend-
ing Trap (DBG), interrupts, and Trap (TRC), in that order. If a
Trap (DBG) is pending, then the CPU processes that excep-
tion, otherwise the CPU checks for pending interrupts. At
this point, the CPU responds to any pending interrupt re-
quests; nonmaskable interrupts are recongized with higher
priority than maskable interrupts. If no interrupts are pend-
ing, then the CPU checks the P-flag in the PSR to determine
whether a Trap (TRC) is pending. If the P-flag is 1, a Trap
(TRC) is processed. If no Trap (DBG), interrupt or Trap
(TRC) is pending, the CPU begins executing the instruction.
While executing an instruction, the CPU may recognize up
to three exceptions:
1. restartable bus error
2. trap (DBG) or interrupt, if the instruction is interruptible
3. one of 7 mutually exclusive traps: SLAVE, ILL, SVC, DVZ,
FLG, BPT, UND
If no exception is detected while the instruction is executing,
then the instruction is completed and the PC is updated to
point to the next instruction. If a Trap (OVF) is detected,
then it is processed at this time.

2-35

0€-2EXDTESN/S2-ZEXDTESN/0C-CEXDCESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

3.0 Functional Description (continued)

INITIALIZE

TRAP (DBG) ~YES

NON=RESTARTABLE
BUS ERROR

TERMINATE
INSTRUCTION
EXECUTION

PENDING
2

INTERRUPT

PENDING
2

A 4

P=-0

BEGIN
INSTRUCTION
EXECUTION

RESTARTABLE YES

BUS ERROR
?

TRAP (ILL YES

OR TRAP (UND)

YES TRAP (DBG)

":Jg?gﬂgygbg OR INTERRUPT
PENDING

o

SLAVE, SVC,

A4

DVZ, FLG, BPT
TRAP

A 4

COMPLETE
INSTRUCTION
EXECUTION

SUSPEND
INSTRUCTION
EXECUTION

v

UPDATE PC

v

TRAP (OVF)

2
NO

PROCESS
EXCEPTION

FIGURE 3-13. Exception Processing Flowchart

TL/EE/10253-20

2-36

3.0 Functional Description (continued)

While executing the instruction, the CPU checks for enabled
debug conditions. If an enabled debug condition is met, a
Trap (DBG) is held pending until after the instruction is com-
pleted (see Note 3). If another exception is detected before
the instruction is completed, the pending Trap (DBG) is re-
moved and the DSR register is not updated.

Note 1: Trap (DBG) can be detected simultaneously with Trap (OVF). In this
event, the Trap (OVF) is processed before the Trap (DBG).

Note 2: An address-compare debug condition can be detected while pro-
cessing a bus error, interrupt, or trap. In this event, the Trap (DBG)
is held pending until after the CPU has processed the first excep-
tion.

Note 3: Between operations of a string instruction, the CPU responds to
pending operand address compare and external debug conditions
as well as interrupts. If a PC-match debug condition is detected
while executing a string instruction, then Trap (DBG) is held pending
until the instruction has completed.

3.2.8 Exception Acknowledge Sequences: Detailed Flow
For purposes of the following detailed discussion of excep-
tion acknowledge sequences, a single sequence called
“service” is defined in Figure 3-14.

Upon detecting any interrupt request, trap or bus error con-
dition, the CPU first performs a sequence dependent upon
the type of exception. This sequence will include saving a
copy of the Processor Status Register and establishing a
vector and a return address. The CPU then performs the
service sequence.

3.2.8.1 Maskable/Non-Maskable Interrupt Sequence

This sequence is performed by the CPU when the NMI pin
receives a falling edge, or the INT pin becomes active with
the PSR | bit set. The interrupt sequence begins either at
the next instruction boundary or, in the case of an interrupt-
ible instruction (e.g., string instruction), at the next interrupt-
ible point during its execution.
1. If an interruptible instruction was interrupted and not yet
completed:
a. Clear the Processor Status Register P bit.
b. Set “Return Address” to the address of the first byte of
the interrupted instruction.
Otherwise, set “Return Address” to the address of the
next instruction.
2. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits T, V, U, S, P and I
3. If the interrupt is Non-Maskable:
a.Read a byte from address FFFFFF004g, applying
Status Code 00100 (Interrupt Acknowledge, Master).
Discard the byte read.
b. Set “Vector” to 1.
c. Go to Step 8.
4. If the interrupt is Non-Vectored:
a.Read a byte from address FFFFFEQ0O4g, applying
Status Code 00100 (Interrupt Acknowledge, Master).
Discard the byte read.
b. Set “Vector” to 0.
¢. Go to Step 8.
. Here the interrupt is Vectored. Read “Byte” from address
FFFFFEQO46, applying Status Code 00100 (Interrupt Ac-
knowledge, Master).

. If “Byte” = 0, then set “Vector” to “Byte” and go to Step
8.

(9]

[=2]

7. If “Byte” is in the range —16 through —1, then the inter-
rupt source is Cascaded. (More negative values are re-
served for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory. The
address is calculated as INTBASE + 4* Byte.

b. Read “Vector,” applying the Cascade Address just
read and Status Code 00101 (Interrupt Acknowledge,
Cascaded).

8. Perform Service (Vector, Return Address), Figure 3-14.

3.2.8.2 Restartable Bus Error Sequence

1. Suspend instruction and restore the currently selected
Stack Pointer to its original contents at the beginning of
the instruction.

2. Clear the PSR P bit.

3. Copy the PSR into a temmporary register, then clear PSR
bits T, V, U, S and I.

4. Set “Vector” to 11.

5. Set “Return Address” to the address of the first byte of
the suspended instruction.

6. Perform Service (Vector, Return Address), Figure 3-14.

3.2.8.3 SLAVE/ILL/SVC/DVZ/FLG/BPT/UND Trap

Sequence

1. Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction.

2. Set “Vector” to the value corresponding to the trap type.
SLAVE: Vector = 3.
ILL: Vector = 4.
SVC: Vector = 5.
DvZ: Vector = 6.
FLG: Vector = 7.
BPT: Vector = 8.
UND: Vector = 10.

3. If Trap (ILL) or Trap (UND)
a. Clear the Processor Status Register P bit.

4. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits T, V, U, S and P.

5. Set “Return Address” to the address of the first byte of
the trapped instruction.

6. Perform Service (Vector, Return Address), Figure 3-14.

3.2.8.4 Trace Trap Sequence
1. In the Processor Status Register (PSR), clear the P bit.

2. Copy the PSR into a temporary register, then clear PSR
bits T, V, U and S.

3. Set “Vector” to 9.

4. Set “Return Address” to the address of the next instruc-
tion.

5. Perform Service (Vector, Return Address), Figure 3-14.

3.2.8.5 Integer-Overflow Trap Sequence

1. Copy the PSR into a temporary register, then clear PSR
bits T, V, U, S and P.

2. Set “Vector” to 13.

2-37

0€-2EXDCESN/GC-CEXDTESN/0C-CEXDZESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

3.0 Functional Description (continued)

3. Set “Return Address” to the address of the next instruc- 3.3 DEBUGGING SUPPORT

tion. The NS32GX32 provides serveral features to assist in pro-
4. Perform Service (Vector, Return Address), Figure 3-14. gram debugging.
3.2.8.6 Debug Trap Sequence Besides the Breakpoint (BPT) instruction that can be used

to generate soft breaks, the CPU also provides instruction
tracing as well as debug trap (or hardware breakpoints) ca-
pabilities. Details on these features are provided in the fol-
lowing sub-sections.

A debug condition can be recognized either at the next in-
struction boundary or, in the case of an interruptible instruc-
tion, at the next interruptible point during its execution.
1. If PC-match condition, then go to Step 3. . i
2.If a String instruction was interrupted and not yet com- 3.31 In§truct|?n Tracmg

pleted: Instruction tracing is a very useful feature that can be used
during debugging to single-step through selected portions of

a. Clear the Processor Status Register P bit. a program. Tracing is enabled by setting the T-bit in the PSR

b. Set f‘Returr} Address™ to the address of the first byte of Register. When enabled, the CPU generates a Trace Trap
the instruction. (TRC) after the execution of each instruction.

¢. Go to Step 4. At the beginning of each instruction, the T bit is copied into

3. Set “Return Address” to the address of the next instruc- the PSR P (Trace “Pending”) bit. If the P bit is set at the end

tion. of an instruction, then the Trace Trap is activated. If any

4. Set “Vector” to 14. other trap or interrupt request is made during a traced in-

struction, its entire service procedure is allowed to complete
before the Trace Trap occurs. Each interrupt and trap se-
quence handles the P bit for proper tracing, guaranteeing
only one Trace Trap per instruction, and guaranteeing that

5. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits T, V, U, S, P and I.
6. Perform Service (Vector, Return Address), Figure 3-14.

3.2.8.7 Non-Restartable Bus Error Sequence the Return Address pushed during a Trace Trap is always
1. Set “Vector” to 12 the address of the next instruction to be traced.
2. Set “Return Address” to “Undefined” Due to the fact that some instructions can clear the T and P

. . bits in the PSR, in some cases a Trace Trap may not occur
3. Copy the Processor Status Register (PSR) into a tempo- at the end of the instruction. This happens when one of the

rary register, then clear PSR bits T, V, U, S, P and I. privileged instructions BICPSRW or LFRW PSR is executed.
4, Perform a dummy read of the Slave Status Word to reset
the Slave Processor.

5. Perform Service (Vector, Return Address), Figure 3-14.
TABLE 3-3. Summary of Exception Processing

Instruction Cleared Before Cleared After
Exception Ending Saving PSR Saving PSR

Restartable Bus Error Suspended P TVUSI

Nonrestartable Bus Error Terminated Undefined . TVUSPI
Interrupt Before Instruction None/P* TVUSPI
ILL, UND Suspended P TVUS

SLAVE, SVC, DVZ, FLG, BPT Suspended None TVUSP
OVF Completed None TVUSP
TRC Before Instruction P TVUS

DBG Before Instruction None/P* TVUSPI

*Note: The P bit of the saved PSR is cleared in case the exception is acknowledged before the instruction is completed (e.g., interrupted string instruction). This is
to avoid a mid-instruction trace trap upon return from the Exception Service Routine.

Service (Vector, Return Address):
1) Push the PSR copy onto the Interrupt Stack as a 16-bit value.
2) If Direct-| ption mode is sell d, then go to step 4.
3) Push MOD Register Into the Interrupt Stack as a 16-bit value.
4) Read 32-bit Interrupt Dispatch Table (IDT) entry at address ‘INTBASE + vector X 4'.
5) It Direct-Exception mode Is sel d, then go to Step 10.
6) Move the L.S. word of the IDT entry (Module Field) into the MOD register.

7) Read the Program Base pointer from memory address ‘MOD + 8',and add to it the M.S. word of the IDT entry (Offset Field), placing the resultin the
Program Counter.

8) Read the new Static Base pointer from the memory address contained in MOD, placing it into the SB Register.
9) Go to Step 11.

10) Place IDT entry in the Program Counter.

11) Push the Return Address onto the Interrupt Stack as a 32-bit quantity.

12) Serialize: Non-sequentially fetch first instruction of Exception Service Routine.

Note: Some of the Memory Accesses indicated in the service sequence may be performed in an order different from the one shown.

FIGURE 3-14. Service Sequence

2-38

3.0 Functional Description (continued)

In other cases, it is still possible to guarantee that a Trace
Trap occurs at the end of the instruction, provided that spe-
cial care is taken before returning from the Trace Trap Serv-
ice Procedure. In case a BICPSRB instruction has been ex-
ecuted, the service procedure should make sure that the T
bit in the PSR copy saved on the Interrupt Stack is set be-
fore executing the RETT instruction to return to the program
begin traced. If the RETT or RETI instructions have to be
traced, the Trace Trap Service Procedure should set the P
and T bits in the PSR copy on the Interrupt Stack that is
going to be restored in the execution of such instructions.

Note: If instruction tracing is enabled while the WAIT instruction is executed,
the Trap (TRC) occurs after the next interrupt, when the interrupt
service procedure has returned.

3.3.2 Debug Trap Capability

The CPU recognizes three different conditions to generate a
Debug Trap:

1) Address Compare
2) PC Match
3) External

These conditions can be enabled and monitored through
the CPU Debug Registers.

An address-compare condition is detected when certain
memory locations are either read or written. The double-
word address used for the comparison is specified in the
CAR Register. The address-compare condition can be sep-
arately enabled for each of the bytes in the specified dou-
ble-word, under control of the CBE bits of the DCR Register.
The VNP bit in the DCR controls whether virtual or physical
addresses are compared. The CRD and CWR bits in the
DCR separatsly enable the address compare condition for
read and write references; the CAE bit in the DCR can be
used to disable the compare-address condition indepen-
dently from the other control bits. The CPU examines the
address compare condition for all data reads and writes,
reads of memory locations for effective address calcula-
tions, Interrupt-Acknowledge and End-of-Interrupt bus cy-
cles, and memory references for exception processing.

The PC-match condition is detected when the address of
the instruction equals the value specified in the BPC regis-
ter. The PC-match condition is enabled by the PCE bit in the
DCR.

Detection of address-compare and PC-match conditions is
enabled for User and Supervisor Modes by the UD and SD
bits in the DCR. The DEN-bit can be used to disable detec-
tion of these two conditions independently from the other
control bits.

An external condition is recognized whenever the DBG sig-
nal is activated.

When the CPU detects an address-compare or PC-match
condition while executing an instruction or processing an
exception, then Trap (DBG) occurs if the TR bit in the DCR
is 1. When an external debug condition is detected, Trap
(DBG) occurs regardless of the TR bit. The cause of the
Trap (DBG) is indicated in the DSR Register.

When an address-compare or PC-match condition is detect-
ed while executing an instruction, the CPU asserts the BP

signal at the beginning of the next instruction, synchronous-

ly with PFS. If the instruction is not completed because a

higher priority trap is detected, the BP signal may or may not

be asserted.

Note 1: The assertion of BP is not affected by the setting of the TR bit in the
DCR register.

Note 2: While executing the MOVUS and MOVSU instructions, the com-
pare-address condition is enabled for the User space memory refer-
ence under control of the UD-bit in the DCR.

Note 3: When the LPRi instruction is executed to load a new value into the
BPC, CAR or DCR, it is undefined whether the address-compare
and PC-match conditions, in effect while executing the instruction,
are detected under control of the old or new contents of the loaded
register. Therefors, any LPRi instruction that alters the control of the
address-compare or PC-match conditions should use register or im-
mediate addressing mode for the source operand.

3.4 ON-CHIP CACHES

The NS32GX32 provides two on-chip caches: the Instruc-
tion Cache (IC) and the Data Cache (DC).

These are used to hold the contents of frequently used
memory locations.

The IC and DC can be individually enabled by setting appro-
priate bits in the CFG Register (See Section 2.1.4).

The CPU also provides a locking feature that allows the
contents of the IC and DC to be locked to specific memory
locations. This is accomplished by setting the LIC and LDC
bits in the CFG register.

Cache locking can be successfully used in real-time applica-
tions to guarantee fast access to critical instruction and data
areas.

Details on the organization and function of each of the
caches are provided in the following sections.

Note: The size and organization of the on-chip caches may change in future
Series 32000 microprocessors. This however, will not affect software
compatibility.

3.4.1 Instruction Cache (IC)

The basic structure of the instruction cache (IC) is shown in
Figure 3-15.

The IC stores 512 bytes of code in a direct-mapped organi-
zation with 32 sets. Direct-mapped means that each set
contains only one block, thus each memory location can be
loaded into the IC in only one place.

Each block contains a 23-bit tag, which holds the most-sig-
nificant bits of the physical address for the locations stored
in the block, along with 4 double-words and 4 validity bits
(one for each double-word).

A 4-double-word instruction buffer is also provided, which is
loaded either from a selected cache block or from external
memory. Instructions are read from this buffer by the loader
unit and transferred to an 8-byte instruction queue.

The IC may or may not be enabled to cache an instruction
being fetched by the CPU. It is enabled when the IC bit in
the CFG Register is set to 1.

If the IC is disabled, the CPU bypasses it during the instruc-
tion fetch and its contents are not affected. The instruction
is read directly from external memory into the instruction
buffer.

2-39

0€-2EXDTESN/ST-2EXDCESN/02-CEXDTESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

3.0 Functional Description (continued)

L | 1

31 98 4321
INSTRUCTION ADDRESS

When the IC is enabled, the instruction address bits 4 to 8
are used to select the IC set where the instruction may be
stored. The tag corresponding to the single block in the set
is compared with the 23 most-significant bits of the instruc-
tion’s physical address. The 4 double-words in this block are
loaded into the instruction buffer and the 4 validity bits are
also retrieved. Bits 2 and 3 of the instruction’s physical ad-
dress select one of these double-words and the associated
validity bit.

If the tag matches and the selected double-word is valid, a
cache ‘hit’ occurs and the double-word is directly trans-
ferred to the instruction queue for decoding; otherwise a
cache ‘miss’ will result.

In the latter case, if the cache is not locked, the CPU will
take the following actions.

First, if the tag of the selected block does not match, the tag
is loaded with the 23 most-significant bits of the instruction
address and all the validity bits are cleared. Then, the in-
struction is read from external memory into the instruction
buffer.

If the CIIN input signal is not active during the fetching of the
missing instruction, then the IC is updated and the instruc-
tion double-words fetched from memory are stored into it
with the validity bits set.

If the cache is locked, its contents are not affected, as the
CPU reads the missing instruction from external memory.

Whenever the CPU accesses external memory, whether or
not the IC is enabled, it always fetches instruction double-
words in a non-wrap-around fashion. Refer to Sections
3.5.4.3 and 3.5.6 for more information.

The contents of the instruction cache can be invalidated by
software through the CINV instruction. Refer to Section
3.4.3 for details. Clearing the IC bit in the CFG Register also
invalidates the instruction cache. Refer to Section C.2 for
information on loading the CFG register.

o

—
D
. £
TAG 32 1 ¢ |32 INSTRUCTION 32 | vawn
MEMORY N 0 e MEMORY BITS
0
£
3
&m i4
23
| te-semsmucionevrrer | | wen |
A 4
THe
COMPARE
- 5
P

INSTRUCTION DOUBLE-WORD

FIGURE 3-15. Instruction Cache Structure

TL/EE/10253-21

Note: If the IC is enabled for a certain instruction and a ‘miss’ occurs due to
a tag mismatch, the CPU will clear all the validity bits of the selected
tag before fetching the instruction from external memory. If the CIIN
input signal is activated during the fetching of that instruction, the
validity bits are not set and the IC is not updated.

3.4.2 Data Cache (DC)

The Data Cache (DC) stores 1,024 bytes of data in a two-
way set associative organization as shown in Figure 3-16.

Each of the 32 sets has 2 cache blocks. Each block con-
tains a 23-bit tag, which holds the most-significant bits of
the address for the locations stored in the block, along with
4 double-words and 4 validity bits (one for each double-
word).

The DC is enabled for a data read when all of the following
conditions are satisfied.

e The DC bit in the CFG Register is set to 1.

* The reference is not an interlocked read resulting from
executing a CBITI or SBIT! instruction.

If the DC is disabled, the CPU bypasses it during the data
read and its contents are not affected. The data is read
directly from external memory. The DC is also bypassed for
Interrupt-Acknowledge and End-of-Interrupt bus cycles.

When the DC is enabled for a data read, the address bits 4
to 8 are used to select the DC set where the data may be
stored.

The tags corresponding to the two blocks in the set are
compared to the 23 most-significant bits of the address. Bits
2 and 3 of the address select one double-word in each
block and the associated validity bit.

If one of the tag matches and the selected double-word in
the corresponding block is valid, a cache ‘hit' occurs and
the data is used to execute the instruction; otherwise a
cache ‘miss’ will result. In the latter case, if the cache is not
locked, the CPU will take the following actions.

2-40

3.0 Functional Description (continued)

32 52
ne le—| me <] ocoe Feal o || oam | e 1 e
MEMORY MEMORY MEMORY MEMORY]
0 1 0 1 0 1
~
128 128 4 4
23 23 A 4 A A 4 A
—> seweer | seweer] seecr - seweer |
4
2 52
TAG A 4 Y A 4 A 4
K|
COMPARE M saeor ! SELECT |
2
-~ 5 2 A 4
ALIGN
2
32
3 58 43 271 0
DATA ADDRESS DATA

TL/EE/10253-22

FIGURE 3-16. Data Cache Structure

First, if the tag of either block in the set matches the data
address, that block is selected for updating. Otherwise, if
neither tag matches, then the least recently used block is
selected; its tag is loaded with the 23 most-significant bits of
the data address, and all the validity bits are cleared.

Then, the data is read from external memory; up to 4 dou-
ble-word bits are read into the cache in a wrap-around fash-
ion. Refer to Sections 3.5.4.3 and 3.5.6 for more informa-
tion.

If the CIIN and IODEC input signals are both inactive during
the bus cycles performed to read the missing data, then the
DC is updated, as each double-word is read from memory,
and the corresponding validity bit is set. If the cache is
locked, its contents are not affected, as the CPU reads the
missing data from external memory.

The DC is enabled for a data write whenever the DC bit in
the CFG Register is set to 1, including interlocked writes
resulting from executing the CBITI and SBITI instructions.

The DC does not use write allocation. This means that, dur-
ing a write, if a cache 'hit' occurs, the DC is updated, other-
wise it is unaffected. The data is always written through to
external memory.

The contents of the data cache can be invalidated by soft-
ware through the CINV instruction. Clearing the DC bit in the
CFG Register also invalidates the data cache. Refer to Sec-
tion C.2 for information on loading the CFG register.

Note: If the DC Is enabled for a certain data reference and a “miss" occurs
due to tag mismatch, the CPU will clear all the validity bits for the least
recently used tag before reading the data from external memory. If
either CIIN or TODEC are activated during the data read bus cycles,
the validity bits are not set and the DC is not updated.

3.4.3 Cache Coherence Support

The NS32GX32 provides means for maintaining coherence
between the on-chip caches and external memory. The
CINV instruction can be executed to invalidate the Instruc-
tion Cache and/or Data Cache; the CINV instruction can
also be executed to invalidate a single 16-byte block in ei-
ther or both caches.

In hardware, the use of the caches can be inhibited for indi-
vidual locations using the CIIN input signal.

Whenever a CINV instruction is executed, the operation
code and operand appear on the system interface using
slave processor bus cycles. Thus, invalidations of the on-
chip caches by software can be monitored externally.

Note, however, that the software is responsible for commu-
nicating to the external circuitry the values of the cache en-
able and lock bits in the CFG Register, since the CPU does
not generate any special cycle (e.g., Slave Cycle) when the
CFG Register is loaded.

3.5 SYSTEM INTERFACE

This section provides general information on the NS32GX32
interface to the external world. Descriptions of the CPU re-
quirements as well as the various bus characteristics are
provided here. Details on other device characteristics in-
cluding timing are given in Chapter 4.

2-41

0€-2EXDCESN/GC-2EXDCESN/02-CEXDCESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

3.0 Functional Description (continued)

3.5.1 Power and Grounding

The NS32GX32 requires a single 5-volt power supply, ap-
plied on 21 pins. The logic voltage pins (VCCL1 to VCCLS6)
supply the power to the on-chip logic. The buffer voltage
pins (VCCB1 to VCCB14) supply the power to the output
drivers of the chip. The bus clock power pin (VCCCLK) is
the power supply for the on-chip clock drivers. All the volt-
age pins should be connected together by a power (VCC)
plane on the printed circuit board.

The NS32GX32 grounding connections are made on 20
pins. The logic ground pins (GNDL1 to GNDL6) are the
ground pins for the on-chip logic. The buffer ground pins
(GNDB1 to GNDB13) are the ground pins for the output
drivers of the chip. The bus clock ground pin (GNDCLK) is
the ground connection for the on-chip clock drivers. All the
ground pins should be connected together by a ground
plane on the printed circuit board.

Both power and ground connections are shown in Figure
3-17.

+5V
1<)
(¥4
VecLt-6 7
14 7
Veest =14 7
OTHER Vo
Vecotk ¥ CONNECTIONS
(Vo PLANE)
NS326X32
CcPU
GNDL1 = 6 ‘%
GNDBt = 13 1"’/
OTHER GROUND
GNDCLK » CONNECTIONS
(GND PLANE)

TL/EE/10253~-24
FIGURE 3-17. Power and Ground Connections

SYNC

3.5.2 Clocking

The NS32GX32 requires a single-phase input clock signal
(CLK) with frequency twice the CPU’s operating frequency.

This clock signal is internally divided by two to generate two
non-overlapping phases PHI1 and PHI2. One single-phase
clock signal BCLK in phase with PHI1 and its complement
BCLK, are also generated and output by the CPU for timing
reference.

Following power-on, the phase relationship between BCLK
and CLK is undefined. Nevertheless, in some systems it
may be necessary to synchronize the CPU bus timing to an
external reference. The SYNC input signal can be used to
initialize the phase relationship between CLK and BCLK.
SYNC can also be used to stretch BCLK (Low) while CLK is
toggling.

SYNC is sampled on each rising edge of CLK. As shown in
Figure 3-18, whenever SYNC is sampled low, BCLK stops
toggling and stays low. On the first rising edge that SYNC is
sampled high, BCLK is driven high and then toggles on each
subsequent rising edge of CLK.

Every rising edge of BCLK defines a transition in the timing
state (“T-State”) of the CPU.

One T-State represents the execution of one microinstruc-
tion within the CPU and/or one step of an external bus
transfer.

Note: The CPU requirement on the maximum period of BCLK must be satis-
fied when SYNC is asserted at times other than reset.

3.5.3 Resetting

The RST input pin is used to reset the NS32GX32. The CPU
samples RST synchronously on the rising edge of BCLK.
Whenever a low level is detected, the CPU responds imme-
diately. Any instruction being executed is terminated; any
results that have not yet been written to memory are dis-
carded; and any pending bus errors, interrupts, and traps
are eliminated. The internal latches for the edge-sensitive
NMI and DBG signals are cleared.

BCLK \ / \

/ /1 I\

TL/EE/10253-25

FIGURE 3-18. Bus Clock Synchronization

3.0 Functional Description (continued)

The CPU stores the PC contents in the RO Register and the
PSR contents in the least-significant word of R1, leaving the
most-significant word undefined. The PC is then cleared to 0
and so are all the implemented bits in the PSR, MSR, MCR
and CFG registers. The DEN-bit in the DCR Register is also
cleared to 0. After reset, the remaining implemented bits in
DCR and the contents of all other registers are undefined.
The CPU begins executing the instruction at Address 0.

On application of power, RST must be held low for at least
50 us after Vg is stable. This is to ensure that all on-chip
voltages are completely stable before operation. Whenever
a Reset is applied, it must also remain active for not less
than 64 BCLK cycles. See Figures 3-19 and 3-20.

While in the Reset state, the CPU drives the signals ADS,

BEO-3, BMT, CONF and HLDA inactive. The data bus is

floated and the state of all other output signals is undefined.

Note 1: If HOLD Is active at the time R3T is deasserted, the CPU acknowl-
edges HOLD before performing any bus cycle.

Note 2: It SYNC is asserted while the CPU is belng reset, then BCLK does

not toggle. Consequently, SYNC must be high for at least 128 CLK
cycles while RST Is low.

£C

Vee 4.5V 3
BCLK l | I | I | I I
2 64 CLOCK
_ CYCLES pere————
RST .
el
=50 us

TL/EE/10253-26
FIGURE 3-19. Power-On Reset Requirements

[ML

= 64 CLOCK
CYCLES
RST [N
13

TL/EE/10253-27
FIGURE 3-20. General Reset Timing

3.5.4 Bus Cycles

The NS32GX32 CPU will perform bus cycles for one of the
following reasons:

1. To fetch instructions from memory.

2. To write or read data to or from memory or peripheral
devices. Peripheral input and output are memory mapped
in the Series 32000 family.

3. To acknowledge an interrupt and allow external circuitry
to provide a vector number, or to acknowledge comple-
tion of an interrupt service routine.

4. To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 4 above are identi-

cal. For timing specifications, see Section 4. The only exter-

nal difference between them is the 5-bit code ptaced on the

Bus Status pins (STO-ST4). Slave Processor cycles differ in

that separate control signals are applied (Section 3.5.4.7).

3.5.4.1 Bus Status

The CPU presents five bits of Bus Status information on
pins STO-ST4. The various combinations on these pins in-
dicate why the CPU is performing a bus cycle, or, if it is idle
on the bus, then why is it idle.

The Bus Status pins are interpreted as a five-bit value, with
STO the least significant bit. Their values decode as follows:
00000 The bus is idle because the CPU doss not yst need
to access the bus.

The bus is idle because the CPU is waiting for an
interrupt following execution of the WAIT instruc-
tion.

The bus is idle because the CPU has halted after
detecting a bus error while processing an excep-
tion.

The bus is idle because the CPU is waiting for a
Slave Processor to complete executing an instruc-
tion.

Interrupt Acknowledge, Master.

The CPU is reading an interrupt vector to acknow!-
edge an interrupt request.

Interrupt Acknowledge, Cascaded.

The CPU is reading an interrupt vector to acknowl-
edge a maskable interrupt request from a Cascad-
ed Interrupt Control Unit.

End of Interrupt, Master.

The CPU is performing a read cycle to indicate that
it is executing a Return from Interrupt (RETI) in-
struction at the completion of an interrupt’s service
procedure.

End of Interrupt, Cascaded.

The CPU is performing a read cycle from a Cascad-
ed Interrupt Control Unit to indicate that it is execut-
ing a Return from Interrupt (RETI) instruction at the
completion of an interrupt’s service procedure.
Sequential Instruction Fetch.

The CPU is fetching the next double-word in se-
quence from the instruction stream.
Non-Sequential Instruction Fetch.

The CPU is fetching the first double-word of a new
sequence of instruction. This will occur as a result
of any JUMP or BRANCH, any exception, or after
the execution of certain instructions.

Data Transfer.

The CPU is reading or writing an operand for an
instruction, or it is referring to memory while pro-
cessing an exception.

Read RMW Class Operand.

The CPU is reading an operand with access class
of read-modify-write.

Read for Effective Address Calculation.

The CPU is reading a pointer from memory in order
to calculate an effective address for Memory Rela-
tive or External addressing modes.

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

2-43

0€-2EXDZESN/SZ-CEXDTESN/02-CEXDTESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

3.0 Functional Description (continued)
11101 Transfer Slave Processor Operand.

The CPU is transferring an operand to or from a
Slave Processor.

11110 Read Slave Processor Status.

The CPU is reading a status word from a slave
processor after the slave processor has activated
the FSSR signal.

11111 Broadcast Slave Processor ID + OPCODE.

The CPU is initiating the execution of a Slave In-
struction by transferring the first 3 bytes of the in-
struction, which specify the Slave Processor identi-
fication and operation.

3.5.4.2 Basic Read and Write Cycles

The sequence of events occurring during a basic CPU ac-
cess to either memory or peripheral device is shown in Fig-
ure 3-21 for a read cycle, and Figure 3-22 for a write cycle.

The cases shown assume that the selected memory or pe-
ripheral device is capable of communicating with the CPU at
full speed. If not, then cycle extension may be requested
through the RDY line. See Section 3.5.4.4,

A full speed bus cycle is performed in two cycles of the
BCLK clock, labeled T1 and T2. For both read and write bus
cycles the CPU asserts ADS during the first half of T1 indi-
cating the beginning of the bus cycle. From the beginning of
T1 until the completion of the bus cycle the CPU drives the
Address Bus and other relevant control signals as indicated
in the timing diagrams. For cacheable data read cycles the
CPU also drives the CASEC signal to indicate the block in
the DC set where the data will be stored. If the bus cycle is
not cancelled (e.g., state T2 is entered in the next clock
cycle), the confirm signal (CONF) is asserted in the middle
of T1. Note that due to a bus cycle cancellation, the BMT
signal may be asserted at the beginning of T1, and then
deasserted before the time in which it is guaranteed valid
(see Section 4.4.2).

A confirmed bus cycle is completed at the end of T2, unless
a cycle extension is requested. Following state T2 is either
state T1 of the next bus cycle, or an idle T-state, if the CPU
has no bus cycle to perform.

In case of a read cycle the CPU samples the data bus at the
end of state T2.

If a bus exception is detected, the data is ignored.

For write bus cycles, valid data is output from the middle of
T1 until the end of the cycle. When a write bus cycle is
immediately followed by another write cycle, the CPU keeps
driving the bus with the data related to the previous cycle
until the middle of state T1 of the second bus cycle.

The CPU always inserts an idle state before a write cycle

when the write immediately follows a confirmed read cycle.

Note: The CPU can initiate a bus cycle with a T1-state and then cancel the
cycle, such as when a Cache hit occurs. In such a case, the CONF
signal remains High and the BMT signal is driven High; the T1-state is
followed by another T1-state or an idle T-state.

ANY

|T=STATE; T T2 | TIORT

BCLK

A0-31 r_:>(X X

vo=31| /Y//X/ /D ===~ = IN:>—-----

DOIN

ADS

A\

N\
[

o / I\

]
=

iy

—['/// TN

o]
3

il

|7z

E|

1/ 4

[

_¢

|
4

G

CllN

LTI ITITTIIX ORI,

BEO=-3,ST0-4,

I

&l
[ZzZz7Iz.
=)

u/s, ONH [::X X

XX

CASEC [X

X

FIGURE 3-21. Basic Read Cycle

TL/EE/10253-28

244

3.0 Functional Description (continued)

ANY

IT=STATEy T | 72 | TTORT

BCLK

A0~ 31

X

X
vo-31| 2272077 o)

o 7 N
VAN I v
m ¢ /
oo | 7N\ /TN

Rov | AL TN,
Y1111 1//4

Vi

BRT

N\,

N

Y

= | 2T

Bout

SIS
7 XX
X A

TL/EE/10253-29
FIGURE 3-22. Write Cycle

gwo-1] 7,

(L

BEO =3,
ST0-4,U/5

3.5.4.3 Burst Cycles

The NS32GX32 is capable of performing burst cycles in or-
der to increase the bus transfer rate. Burst is only available
in instruction fetch cycles and data read cycle from 32-bit
wide memories. Burst is not supported in operand write cy-
cles or slave cycles.

The sequence of events for burst cycles is shown in Figure
3-23. The case shown assumes that the selected memory is
capable of communicating with the CPU at full speed. If not,
then cycle extension can be requested through the RDY
line. See Section 3.5.4.4.

A Burst cycle is composed of two parts. The first part is a
regular cycle (opening cycle), in which the CPU outputs the
new status and asserts all the other relevant control signals.
In addition, the Burst Out Signal (BOUT) is activated by the
CPU indicating that the CPU can perform Burst cycles. If the
selected memory allows Burst cycles, it will notify the CPU
by activating the burst in signal (BIN). BIN is sampled by the
CPU in the middle of T2 on the falling edge of BCLK. If the
memory does not allow burst (BIN high), the cycle will termi-
nate at the end of T2 and BOUT will go inactive immediate-
ly. If the memory allows burst (BIN low), and the CPU has
not deasserted BOUT, the second part of the Burst cycle
will be performed and BOUT will remain active until termina-
tion of the Burst.

The second part consists of up to 3 nibbles, labeled T2B. In
each of them a data item is read by the CPU. For each
nibble in the burst sequence the CPU forces the 2 least-sig-
nificant bits of the address to 0 and increments address bits
2 and 3 to select the next double-word; all the byte enable
signals (BE0-3) are activated.

As shown in Figures 3-23 and 4-8 (in Section 4), the CPU
samples RDY at the end of each nibble. It extends the ac-
cess time for the burst transfer if RDY is inactive.

The CPU initiates burst read cycles in the following cases.

1. An instruction must be fetched (Status = 01000 or
01001), and the instruction address does not fall within
the last double-word in an aligned 16-byte block (e.g.,
address bits 2 and 3 are not both equal to 1).

2. A data item must be read (Status = 01010, 01011 or
01100), and both of the following conditions are met.

* The data cache is enabled and not locked. (DC = 1
and LDC = 0 in the CFG register.)

® The bus cycle is not an interlocked data access per-
formed while executing a CBITI or SBITI instruction.

The Burst sequence will be terminated when one of the
following events occurs.

1. The last instruction double-word in an aligned 16-byte
block has been fetched.

. The CPU detects that the instructions being prefetched
are no longer needed due to an alteration of the flow of
control. This happens, for example, when a Branch in-
struction is executed or an exception occurs.

. 4 double-words of data have been read by the CPU. The
double-words are transferred within an aligned 16-byte
block in a wrap-around order. For example, if a source
operand is located at address 104, then the burst read
cycle transfers the double-words at 104, 108, 112, and
100, in that order.

n

w

2-45

0€-2EXDZESN/GC-CEXDZESN/02-TEXDCESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

3.0 Functional Description (continued)

ANY

" _ IT-STATE} T | T2 | T28 | T2B | T2B TIORT
20-31 X
wo-31| 77277 GO
e \
i Ny
s | TG / 7
v \
el Vi L7777
-3 \
| 277777077 77T
s \
s | ZZZLTITTITT <G 77,
= | LTI LT 7,
s | I O T
-l
axsee| TIX X

FIGURE 3-23. Burst Read Cycles

TL/EE/10253-30

2-46

3.0 Functional Description (continued)
4. The BIN signal is deasserted.
5. BRT is asserted to signal a bus retry.

6. IODEC is asserted or the BWO0-1 signals indicate a bus
width other than 32-bits. The CPU samples these signals
during state T2 of the opening cycle. During T2B-states
BWO0-1 are ignored and IODEC must be kept HIGH.

The CPU uses only the values of the above signals sampled
during the last state of the transfer when the cycle is ex-
tended. See Section 3.5.4.4.

Note: A burst sequence is not stopped by the assertion of either BER or
CliN. See Note 3 in Section 3.5.5.

3.5.4.4 Cycle Extension

To allow sufficient access time for any speed of memory or
peripheral device, the NS32GX32 provides for extension of
a bus cycle. Any type of bus cycle except a slave processor
cycle can be extended.

A bus cycle can be extended by causing state T2 for a
normal cycle or state T2B for a Burst cycle to be repeated.

At the end of each T2 or T2B state, on the rising edge of
BCLK, the RDY line is sampled by the CPU. If RDY is active,
then the transfer cycle will be completed. If RDY is inactive,
then the bus cycle is extended by repeating the T-state for
another clock cycle. These additional T-states inserted by
the CPU in this manner are called ‘WAIT’ states.

During a transfer the CPU samples the input control signals
BIN, BER, BRT, BW0-1, CIIN and I{ODEC.

When wait states are inserted, only the values of these sig-
nals sampled during the last wait state are significant.

Figure 3-24 illustrates a normal read cycle with wait states
added through the RDY pin.

Note: If RST is asserted during a bus cycle, then the cycle is terminated
without regard of RDY.

3.5.4.5 Interlocked Bus Cycles

The NS32GX32 supports indivisible read-modify-write trans-
actions by asserting the ILO signal during consecutive read
and write operations. See Figure 4-7 in Section 4.

Interlocked transactions are always preceded and followed
by one or more idle T-states.

The TLO signal is asserted in the middle of the idle T-state
preceding state T1 of the read operation, and is deasserted
in the middle of one of the idle T-states following completion
of the write operation, including any retried bus cycles.

No other bus operations (e.g., instruction fetches) will occur
while an interlocked transaction is taking place.

Interlocked transactions are required in multiprocessor sys-
tems to handle shared resources. The CPU uses them to
reference data while executing a CBITli or SBITIi instruction,
during which a single byte of data is read and written.

The TLO signal is always released for one or more clock
cycles in the middle of two consecutive interlocked transac-
tions.

Note 1: If a bus error is detected during an interlocked read cycle, the sub-

sequent interlocked write cycle will not be performed, and TLO is
deasserted before the next bus cycle begins.

3.5.4.6 Interrupt Control Cycles

The CPU generates Interrupt-Acknowledge bus cycles in re-
sponse to non-maskable interrupt and enabled maskable
interrupt requests.

The CPU also generates one or two End-of-Interrupt bus
cycles during execution of the Return-from-Interrupt (RETI)
instruction.

The timing for the interrupt control cycles is the same as for
the basic memory read cycle shown in Figure 3-21; only the
status presented on pins ST0-4 is different. These cycles
are single-byte read cycles, and they always bypass the
data cache.

Table 3-4 shows the interrupt control sequences associated
with each interrupt and with the return from its service pro-
cedure.

3.5.4.7 Slave Processor Bus Cycles

The NS32GX32 performs bus cycles to transfer information
to or from slave processors while executing floating-point or
custom-slave instructions.

The CPU uses slave write bus cycles to broadcast the iden-
tification and operation codes of a slave instruction as well
as to transfer operands from memory or general purpose
registers to a slave.

Figure 3-25 shows the timing for a slave write bus cycle.
The CPU asserts SPC during T1; the status is valid during
T1 and T2. The operation code or operand is output on the
data bus from the middle of T1 until the end of T2.

The CPU uses a slave read bus cycle to transfer a result
operand from a slave to either memory or a general purpose
register. A slave read cycle is also used to read a status
word when the FSSR signal is asserted. Figure 3-26 shows
the timing for a slave read bus cycle.

During T1 and T2 the CPU drives the status lines and as-
serts SPC. The data from the slave is sampled at the end of
T2.

The CPU will never perform another slave cycle immediately
following a slave read cycle. In fact, the T-state following
state T2 of a slave read cycle is either an idle T-state or the
T1 state of a memory cycle.

Slave processor data transfers are always 32 bits wide. If
the operand is a single byts, then it is transferred on DO
through D7. If it is a word, then it is transferred on DO
through D15.

When two operands are transferred, operand 1 is trans-
ferred before operand 2. For double-precision operands, the
least-significant double-word is transferred before the most-
significant double-word.

During a slave bus cycle the output signals BE0O-3 are un-
defined while the input signals BW0O-1 and RDY are ig-
nored.

BER and BR

must be kept high.

2-47

0€-2EXOCESN/S2-2EXDTESN/0C-CEXDCESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

3.0 Functional Description (Continued)

BCLK

A0~ 31

Do - 31

BRT

BER

BIN

awo=1,["
CIN, /ODEC |

BEG-3,5T0- 4, [
U/, iOWH |

DDIN

ADS

BOUT

ANY

_ IT=STATE; T | T2 | T2(W) | TIORT
XX X
ZTITTy - -1 =40 £ £ =+
/
\V \/ \/
7 / 7
7T\ A\
T YO T
Vi g i
Vit i v gaa i
7
| I T
T IX ORI 707,
XTIX X
XX XX

CASEC

3-24. Cycle Extension of a Basic Read Cycle

TL/EE/10253~31

2-48

3.0 Functional Description (continued)
TABLE 3-4. Interrupt Sequences

Dati Bus
4 N\
Cycle Status Address DDIN BE3 BE2 BE1 BE0 Byte3 Byte2 Byte1 Byte 0
A. Non-Maskable Interrupt Control Sequences
Interrupt Acknowledge
1 00100 FFFFFF004g 0 1 1 1 0 X X X X
Interrupt Return
None: Performed through Return from Trap (RETT) instruction.
B. Non-Vectored Interrupt Control Sequences
Interrupt Acknowledge
1 00100 FFFFFEQ0¢g 0 1 1 1 0 X X X X
Interrupt Return
1 00110 FFFFFE004g 0 1 1 1 0 X X X X
C. Vectored Interrupt Sequences: Non-Cascaded
Interrupt Acknowledge
1 00100 FFFFFEQO4g 1] 1 1 1 0 X X X Vector:
Range: 0-127
Interrupt Return
1 00110 FFFFFEQO4g 0 1 1 1 0 X X X Vector: Same as
in Previous Int.
Ack. Cycle
D. Vectored Interrupt Sequences: Cascaded
Interrupt Acknowledge
1 00100 FFFFFEOO4g 0 1 1 1 0 X X X Cascade Index:

range —16to —1
(The CPU here uses the Cascade Index to find the Cascade Address)

2 001101 Cascade 0 See Note Vector, range 16-255; on appropriate byte of
Address data bus.
Interrupt Return '

1 00110 FFFFFEOQO4¢ 0 1 1 1 0 X X X Cascade Index:
Same as in
previous Int.
Ack. Cycle

(The CPU here uses the Cascade Index to find the Cascade Address)
2 00111 Cascade 0 See Note X X X X
Address
X = Don’t Care

Note: BEG-BES signals will be activated according to the cascaded ICU address

2-49

0€-2EXDTESN/G2-CEXDTESN/02-CEXDZESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

3.0 Functional Description (continued)

ANY

IT=STATE) T | T2 1 TlorTi

BCLK

SPC

/

po-31|)-J-(DATA| out|)
\
/

DDIN

\
)4

ST0-4 X

TL/EE/10253-32
FIGURE 3-25. Slave Processor Write Cycle

3.5.5 Bus Exceptions

The NS32GX32 has the capability of handling errors occur-
ring during the execution of a bus cycle. These errors can
be either correctable or incorrectable, and the CPU can be
notified of their occurrence through the input signals BRT
and/or BER.

Bus Retry

If a bus error can be corrected, the CPU may be requested
to repeat the erroneous bus cycle. The request is done by
asserting the BRT signal. BRT is sampled at the end of
state T2 or T2B.

When the CPU detects that BRT is active, it completes the
bus cycle normally, but ignores the data read in case of a
read cycle, and maintains a copy of the data to be written in
case of a write cycle. Then, after a delay of two clock cy-
cles, it will start executing the bus cycle again.

If the transfer cycle is multiple (e.g., for non-aligned data),
only the problematic part will be repeated.

For instance, if a non-aligned double-word is being trans-
ferred and the second half of the transfer fails, only the
second part will be repeated.

The same applies for a retry during a burst sequence. The
repeated cycle will begin where the read operation failed
(rather than the first address of the burst) and will finish the
original burst.

Figures 3-27 and 4-10 (in Section 4) show the BRT timing
for a basic access cycle and for burst cycles respectively.
The CPU always waits for BRT to be HIGH before repeating
the bus cycle. While BRT is LOW, the CPU places all the
output signals shown in Figure 4-11 in a TRI-STATE® condi-
tion.

Bus Error

If a bus error is incorrectable the CPU may be requested to
interrupt the current process and branch to an appropriate
procedure to handle the error. The request is performed by
activating the BER signal. BER is sampled by the CPU at
the end of state T2 or T2B on the rising edge of BCLK.

ANY
)T = STATE ™ 1 T2 1 TlorTi
BCLK
\ / \
00-31[), DATA IN

N

OO A\

ST0-4 X X

TL/EE/10253-33
FIGURE 3-26. Slave Processor Read Cycle

When BER is sampled active, the CPU completes the bus
cycle normally. If a bus error occurs during a bus cycle for a
reference required to execute an instruction, then a bus er-
ror exception is recognized. However, if an error occurs dur-
ing an acknowledge cycle of another exception or during
the ICU read cycle of a RETI instruction, the CPU interprets
the event as a fatal bus error and enters the ‘halted’ state.

In this state the CPU floats its address and data buses and
places a special status code on the ST0-4 lines. The CPU
can exit this condition only through a hardware reset. Refer
to Section 3.2.6 for more details on bus error.

Note 1: If the erroneous bus cycle is extended by means of wait states, then

the CPU uses the values of BRT and/or BER sampled during the
last wait state.

Note 2: If the CPU samples both BRT and BER active, BRT has higher
priority. The bus error indication is ignored, and the bus cycle is
repeated.

Note 3: If BER is asserted during a bus cycle of a multi-cycle data transfer,
the CPU completes the entire transfer normally, but the data will be
ignored. The CPU also ignores any subsequent assertion of BER
during the same data transfer. :

Note 4: Neither BRT nor BER should be asserted during the T2 state of a
slave processor bus cycle.

3.5.6 Dynamic Bus Configuration

The NS32GX32 is tuned to operate with 32-bit wide memory
and peripheral devices. The bus also supports 8-bit and
16-bit data widths, but at reduced efficiency. The CPU can
switch from one bus width to another dynamically; the only
restriction is that the bus width cannot change for locations
within an aligned 16-byte block.

The CPU determines the bus width in effect for a bus cycle
by using the values of the BWO and BW1 signals sampled
during the last T2 state. Values of BWO and BW1 sampled
before the last T2 state or during T2B states are ignored.
Whenever a bus width other than 32-bit is detected by the
CPU, two idle states are inserted before the next bus cycle
is initiated. These idle states are only inserted once during
an operand access, even if more than two bus cycles are
needed to complete the access.

2-50

3.0 Functional Description (continued)

TSSWEL T m moRT, T T T Termy
"
Y o) XD
00- 31 :'/////b-" -.@}-----..-J----..--@}.---
oo \
=TT /T T W/
s | T R/ 7
L - \ N
w | 227N | 7717771707070 LTTT
s | 221N | LT T,
s | 2T T
aovt | 7 ‘
o | 27 T T LT LT T
ot [2N XL T T T X X
s C XXX X
= X XXX X

FIGURE 3-27. Bus Retry During a Basic Read Cycle

TL/EE/10253-34

2-51

0€-2EXDZESN/G2-2EXDTESN/02-2EXDZESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

3.0 Functional Description (continued)

The various combinations for BWO and BW1 are shown be-
low.

BW1 BWO
0 0 Reserved
0 1 8-Bit Bus
1 0 16-Bit Bus
1 1 32-Bit Bus

The bus width is always 32 bits during slave cycles (See
Section 3.5.4.7). An important feature of the NS32GX32 is
that it does not impose any restrictions on the data align-
ment, regardless of the bus width.

Bus accesses are performed in double-word units. Access-
es of data operands that cross double-word boundaries are
decomposed into two or more aligned double-word access- -
es.

The CPU provides four byte enable signals (BE0-3) which
facilitate individual byte accessing on either a 32-bit or a
16-bit bus.

Figures 3-28 and 3-29 show the basic interfaces for 32-bit
and 16-bit memories. An 8-bit memory interface (not shown)
is even simpler since it does not use any of the BEO-3
signals and its single bank is always enabled whenever the
memory is selected. Each byte location in this case is se-
lected by address bits AO-31.

The NS32GX32 does not keep track of the bus width used
in previous instruction fetches or data accesses. At the be-
ginning of every memory transaction, the CPU always as-
sumes that the bus is 32-bit wide and the BE0-3 signals are
activated accordingly.

The BOUT signal is also asserted during instruction fetches
or data reads if the conditions for bursting are satisfied. If
the bus is other than 32-bit wide, the BIN signal is ignored
and BOUT is deasserted at the beginning of the T state
following T2, since burst cycles are not allowed for 8-bit or
16-bit buses.
BE3 BE2 BET BED

CAcH ol | |

(NOTE)

8 BITS 8 BITS 8 BITS 8 BITS

A2-31

BYTE BYTE BYTE BYTE
#3 #2 # #0
00-31¢_

TL/EE/10253-35

FIGURE 3-28. Basic Interface for 32-Bit Memories
Note: The CACH signal must be asserted during cacheable read accesses.

The following subsections provide detailed descriptions of

the access sequences performed in the various cases.

Note: Although the NS32GX32 ignores the BIN signal for 8-bit and 16-bit
bus widths, it is recommended that BIN be asserted only if the system
supports burst transfers. This is to ensure compatibility with future
versions of the CPU that might support burst transfers for 8-bit and

16-bit buses.
A0
BE3
BE1
TACH
8BTS | 8BTS

Al=-31

x % n X

B | [oviE

#0

00- 15

TL/EE/10253-36
FIGURE 3-29. Basic Interface for 16-Bit Memories

3.5.6.1 Instruction Fetch Sequences

The CPU performs two types of instruction fetch cycles: se-
quential and non-sequential. These can be distinguished
from each other by the differing status combinations on pins
ST0-4. For non-sequential instruction fetches the CPU
presents on the address bus the exact byte address of the
first instruction in the instruction stream that is about to be-
gin; for sequential instruction fetches, the address of the
next aligned instruction double-word is presented on the ad-
dress bus. The CPU always activates all byte enable signals
(BE0-3) for both sequential and non-sequential fetches.
BOUT is also asserted during T2 if the addressed double-
word is not the last in an aligned 16-byte block. Tables 3-5
to 3-7 show the fetch sequence for the various bus widths.
32-Bit Bus Width

The CPU reads the entire double-word present on the data
bus into its internal instruction buffer.

If BOUT and BIN are both active, the CPU reads up to 3
consecutive double-words using burst cycles. Burst cycles
are used for instruction fetches regardiess of whether the
accesses are cacheable.

2-52

3.0 Functional Description (continued)

Example: JUMP @5

© The CPU performs a fetch cycle at address 5 with BEO-3
all active.

 Two burst cycles are then performed and addresses 8 and
12 are output while BEO-3 are kept active.

16-Bit Bus Width

The word on the least-significant half of the data bus is read

by the CPU. This is either the even or the odd word within

the required instruction double-word, as determined by ad-

dress bit 1.

The CPU then complements address bit 1, clears address

bit 0 and initiates a bus cycle to read the other word, while

keeping all the BEO-3 signals active.

These two words are then assembled into a double-word

and transferred into the instruction buffer.

In case of a non-sequential fetch, if the access is not cache-

able and the instruction address selects the odd word within

the instruction double-word, the even word is not fetched.

Example JUMP @6

¢ A fetch cycle is performed at address 6 with BEO-3 all
active.

* The word at address 4 is then fetched if the access is
cacheable.

8-Bit Bus Width

The instruction byte on the bus lines D0-7 is fetched. The
CPU performs three consecutive cycles to read the remain-
ing bytes within the required double-word, while keeping
BEO0-3 all active. The 4 bytes are then assembled into a
double-word and transferred into the instruction buffer. For
a non-sequential fetch, if the access is not cacheable, the
CPU will only read the upper bytes within the instruction
double-word starting with the byte at the instruction ad-
dress.

Example: JUMP @7

* The CPU performs a fetch cycle at address 7 with BE0-3
all active.)

® Bytes at addresses 4, 5 and 6 are then fetched consecu-
tively if the access is cacheable.

TABLE 3-5. Cacheable/Non-Cacheable Instruction Fetches from a 32-Bit Bus
1. In a burst access four bytes are fetched with the L.S. bits of the address set to 00.

2. A‘C’ on the data bus refers to cacheable fetches and indicates that the byte is placed in the instruction cache. An ‘I’ refers
to non-cacheable fetches and indicates that the byte is ignored.

Number Address Address —
- DataB
of Bytes LSB Bytes to be Fetched Bus BEO-3 ata Bus
1 1 BO — — —_ A LLLL BO G/l C/\ C/1
2 10 B1 BO —_ —_ A LLLL B1 BO C/1 C/I
3 01 B2 B1 BO - A LLLL B2 B1 BO C/1
4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO
TABLE 3-6. Cacheable/Noh-Cacheable Instruction Fetches from a 16-Bit Bus
1. A bus access marked with ‘*’ in the ‘Address Bus’ column is performed only if the fetch is cacheable.
Number Address Address =)
of Bytes LSB Bytes to be Fetched Bus BEO-3 Data Bus
1 1 BO — — — A LLLL — — BO C/1
*A—3 LLLL — — C C
2 10 B1 BO — — A LLLL — - B1 BO
*A-2 LLLL — — C (o]
3 01 B2 B1 BO — A LLLL —_ - BO C/1
A+1 LLLL — — B2 B1
4 00 B3 B2 B1 BO A LLLL — — B1 BO
A+2 LLLL — — B3 B2

2-53

0€-2EXDTESN/SC-CEXDTESN/02-CEXDZESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

3.0 Functional Description (continued)
TABLE 3-7. Cacheable/Non-Cacheable Instruction Fetches from an 8-Bit Bus

Number Address Address ==
of Bytes LSB ‘Bytes to be Fetched Bus BEO-3 Data Bus
1 11 BO — - - A LLLL — — BO
*A-3 LLLL - — Cc
*A-2 LLLL - — C
*A—1 LLLL — — Cc
2 10 B1 BO — — A LLLL — — BO
A+1 LLLL — — B1
*A-2 LLLL —_ —_ o]
*A-1 LLLL - — C
3 01 B2 B1 BO — A LLLL - - BO
A+1 LLLL — — B1
A+2 LLLL —_ — B2
*A—-1 LLLL — — (o]
4 00 B3 B2 B1 BO A LLLL — — BO
A+1 LLLL — — B1
A+2 LLLL — — B2
A+3 LLLL — - B3

3.5.6.2 Data Read Sequences

The CPU starts a data read access by placing the exact
address of the operand on the address bus. The byte en-
able lines are activated to select only the bytes required by
the instruction being executed. This prevents spurious ac-
cesses to peripheral devices that might be sensitive to read
accesses, such as those which exhibit the characteristic of
destructive reading. If the on-chip data cache is internally
enabled for the read access, the BOUT signal is asserted at
the beginning of state T2. BOUT will be deasserted if the
data cache is externally inhibited (through CIIN or TODEC),
or the bus width is other than 32 bits. During cacheable
accesses the CPU always reads all the bytes in the double-
word, whether or not they are needed to execute the in-
struction, and stores them into the data cache. The external
memory, in this case, must place the data on the bus re-
gardless of the state of the byte enable signals.

If the data cache is either internally or externally inhibited
during the access, the GPU ignores the bytes not selected
by the BEO-3 signals. Data read sequences for the various
bus widths are shown in tables 3-8 to 3-10.

32-Bit Bus Width

The entire double-word present on the bus is read by the
CPU. If the access is cacheable and the memory allows
burst accesses, the CPU reads up to 3 additional double-
words within the aligned 16-byte block containing the first
byte of the operand. These burst accesses are performed in
a wrap-around fashion within the 16-byte block.

Example: MOVW @5, RO

® The CPU reads a double-word at address 5 while keeping
BE1 and BE2 active.

o If the access is not-cacheable, BOUT is deasserted and
the data bytes 0 and 3 are ignored.

¢ If the access is cacheable, the CPU performs burst cycles
with BEO-3 all active, to read the double-words at ad-
dresses 8, 12, and 0.

16-Bit Bus Width

The word on the least-significant half of the data bus is read

by the CPU. The CPU can then perform another access

cycle with address bit 1 complemented and address bit 0

cleared to read the other word within the addressed double-

word.

If the access is cacheable, the entire double-word is read

and stored into the cache.

If the access is not cacheabls, the CPU ignores the bytes in

the double-word not selected by BEO-3. In this case, the

second access cycle is not performed, unless selected

bytes are contained in the second word.

Example: MOVB @5, RO

* The CPU reads a word at address 5 while keeping BE1
active.

¢ |f the access is not cacheabls, the CPU ignores byte 0.

® If the access is cacheable, the CPU performs another ac-
cess cycle, with BEO-3 all active, to read the word at
address 6.

8-Bit Bus Width

The data byte on the bus lines DO-7 is read by the CPU.

The CPU can then perform up to 3 access cycles to read

the remaining bytes in the double-word.

If the access is cacheable, the entire double-word is read

and stored into the cache.

If the access is not cacheable, the CPU will only perform

those access cycles needed to read the selected bytes.

Example: MOVW @5, RO

® The CPU reads the byte at address 5 while keeping BE1
and BE2 active.

® If the access is not cacheable, the CPU activates BE2 and
reads the byte at address 6.

o If the access is cacheable, the CPU performs three bus
cycles with BEO-3 all active, to read the bytes at address-
es 6, 7 and 4.

254

3.0 Functional Description (continued)

TABLE 3-8. Cacheable/Non-Cacheable Data Reads from a 32-Bit Bus
1. In a burst access four bytes are read with the L.S. bits of the address set to 00.

2. A'C’onthe data bus refers to cacheable reads and indicates that the byte is placed in the data cache. An ‘I' refers to non-
cacheable reads and indicates that the byte is ignored.

:fu;‘y I::; Ad:g;ss Bytes to be Read Ad;l::ss BE0-3 Data Bus
1 00 — — — BO A HHHL c/l C/\ C/l BO
1 01 —_ — BO _ A HHLH c/l C/l BO C/
1 10 — BO —_ —_ A HLHH C/1 BO C/1 C/
1 11 BO — —_ _ A LHHH BO C/ C/1 C/I
2 00 — —_ B1 BO . A HHLL (7]} C/l B1 BO
2 01 - B1 BO — A HLLH C/I B1 BO C/l
2 10 B1 BO — — A LLHH B1 BO C/1 C/l
3 00 —_ B2 B1 BO A HLLL c/ B2 B1 BO
3 01 B2 B1 BO —_ A LLLH B2 B1 BO C/
4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO

TABLE 3-9. Cacheable/Non-Cacheable Data Reads from a 16-Bit Bus
1. A bus access marked with **’ in the ‘Address Bus’ column is performed only if the read is cacheable.

Number Address Data to be Read Address BE0-3 Data Bus
of Bytes LsB Bus Cach. Non Cach.

1 00 — — — BO A HHHL HHHL — — C/1 BO
*A+2 LLLL — — (o] C
1 01 — — BO — A HHLH HHLH — — BO (7]}
*A+1 LLLL — - o] C
1 10 — BO —_ — A HLHH HLHH — — C/i BO
*A-2 LLLL —_ —_ (o} o]
1 11 BO — — - A LHHH LHHH — —_ BO c/
*A—-3 LLLL — — C C
2 00 —_ _ B1 BO A HHLL HHLL — —_ B1 BO
*At+2 LLLt — — C (¢}
.2 01 —_ B1 BO — A HLLH HLLH — — BO C/l
A+1 LLLL HLHH — — C/l B1
2 10 B1 BO — — A LLHH LLHH — — B1 BO
*A-2 LLLL — — C C
3 00 — B2 B1 BO A HLLL HLLL — — B1 BO
A+2 LLLL HLHH - — G/l B2
3 01 B2 B1 BO —_ A LLLH LLLH — — BO C/l
A+1 LLLL LLHH — —_ B2 B1
4 00 B3 B2 B1 BO A LLLL LLLL —_ — B1 BO
A+2 LLLL LLHH - — B3 B2

2-55

0€-CEXDTESN/SGZ-2EXDTESN/0Z-CEXDTESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

3.0 Functional Description (continued)

TABLE 3-10. Cacheable/Non-Cacheable Data Reads from an 8-Bit Bus D8-12

Number Address Data to be Read Address Eo-a Data Bus
- of Bytes LsB Bus Cach. Non Cach.
1 00 — T— —_ BO A HHHL HHHL —_ —_— BO
*A+1 LLLL —_ —_ (o}
*A+2 LLLL —_ _— o]
) *A+ 3 LLLL —_ —_ (o}
1 01 -—_— — BO -—_ A HHLH HHLH — — BO
*A+1 LLLL —_ — Cc
*A+2 LLLL - — (o}
*A—-1 LLLL —_ — C
1 10 - BO — —_— A HLHH HLHH —_ —_ BO
*A+1 LLLL —_ — C
*A-2 LLLL — — (o}
*A—~-1 LLLL — - C
1 11 BO _ —_ —_ A LHHH LHHH — — BO
*A -3 LLLL —_ —_ C
*A-2 LLLL —_ —_ C
*A—-1 LLLL — —_ C
2 00 —_ —_ B1 BO A HHLL HHLL — —_ BO
A+1 LLLL HHLH —_ —_ B1
*A+ 2 LLLL —_ —_ C
*A+3 LLLL —_ —_ (o}
2 01 — B1 BO —_ A HLLH HLLH —_ — BO
A+1 LLLL HLHH — - B1
*A+ 2 LLLL — — (o]
*A -1 LLLL —_ —_ C
2 10 B1 BO —_— — A LLHH LLHH — — BO
A+1 LLLL LHHH - —_ B1
*A—-2 LLLL —_ — C
*A—-1 LLLL —_— —_ C
3 00 —_— B2 B1 BO A HLLL HLLL — — BO
A+1 LLLL HLLH — — B1
A+ 2 LLLL HLHH — — B2
*A+3 LLLL - - c
3 01 B2 B1 BO — A LLLH LLLH — — BO
A+ 1 LLLL LLHH — _— B1
A+ 2 LLLL LHHH — — B2
*A—-1 LLLL —_ —_ (o]
4 00 B3 B2 B1 BO A LLLL LLLL — —_ BO
A+1 LLLL LLLH _ — B1
A+2 LLLL LLHH — —_ B2
A+3 LLLL LHHH —_ — B3

3.5.6.3 Data Write Sequences

In a write access the CPU outputs the operand address and
asserts only the byte enable lines needed to select the spe-
cific bytes to be written.

In addition, the CPU duplicates the data to be written on the
appropriate bytes of the data bus in order to handle 8-bit
and 16-bit buses.

The various access sequences as well as the duplication of
data are summarized in tables 3-11 to 3-13.

32-Bit Bus Width

The CPU performs only one access cycle to write the se-

lected bytes within the addressed double-word.

Example: MOVB RO, @6

* The CPU duplicates byte 2 of the data bus into byte 0 and
performs a write cycle at address 6 with BE2 active.

16-Bit Bus Width

Up to two access cycles are needed to complete the write
operation.

2-56

3.0 Functional Description (continued)

Example: MOVW RO, @5

® The CPU duplicates byte 1 of the data bus into byte 0 and
performs a write cycle at address 5 with BE1 and BE2
active.

® A write at address 6 is then performed with BE2 active
and the original byte 2 of the data bus placed on byte 0.

8-Bit Bus Width

Up to 4 access cycles are needed in this case to complete

the write operation.

Example: MOVB RO, @7

* The CPU duplicates byte 3 of the data bus into bytes 0

and 1, and then performs a write cycle at address 7 with
BES3 active.

3.5.7 Bus Access Control

The NS32GX32 has the capability of relinquishing its control
of the bus upon request from a DMA device or another CPU.
This capability is implemented with the HOLD and HLDA

signals. By asserting HOLD, an external device requests ac-
cess to the bus. On receipt of HLDA from the CPU, the
device may perform bus cycles, as the CPU at this point has
placed all the output signals shown in Figure 3-30 into the
TRI-STATE condition.

To return control of the bus to the CPU, the external device
sets HOLD inactive, and the CPU acknowledges return of
the bus by setting HLDA inactive.

. The CPU samples HOLD in the middle of each T-state on

the falling edge of BCLK. if HOLD is asserted when the bus
is idle between access sequencss, then the bus is granted
immediately (see Figure 3-29). If HOLD is asserted during
an access sequence, then the bus is granted immediately
after the access sequence, including any retried bus cycles,
has completed (see Figure 4-13). Note that an access se-
quence can be composed of several bus cycles if the bus
width is 8 or 16 bits.

TABLE 3-11. Data Writes to a 32-Bit Bus

1. Bytes on the data bus marked with ‘e’ are undefined.

:fua";;:; Ad:;;” Data to be Written Ad:;:” BE0-3 Data Bus
1 00 — — — BO A HHHL .]] BO
1 01 —_ —_ BO — A HHLH . . BO BO
1 10 —_ BO — — A HLHH . BO L] BO
1 1 BO —_ — — A LHHH BO . BO BO
2 00 —_ —_ B1 BO A HHLL . . B1 BO
2 01 — B1 BO —_— A HLLH . B1 BO BO
2 10 B1 BO —_ —_ A LLHH B1 BO B1 BO
3 00 — B2 B1 BO A HLLL . B2 B1 BO
3 01 B2 B1 BO —_ A LLLH B2 B1 BO BO
4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO
TABLE 3-12, Data Writes to a 16-Bit Bus
:fu;ny l::; Ad:sr;ss Data to be Written Ad::;:‘s BE0-3 Data Bus

1 00 —_ —_ - BO A HHHL . . . 80
1 01 — — BO —_ A HHLH . . BO BO
1 10 — BO - _ A HLHH . BO . BO
1 1 BO — —_ — A LHHH BO L BO BO
2 00 —_ —_ Bt BO A HHLL . . B1 BO
2 01 - B1 BO — A HLLH . B1 BO BO
A+1 HLHH U . [B1

2 10 B1 BO — — A LLHH B1 BO B1 BO
00 — B2 B1 BO A HLLL] B2 B1 BO

A+2 HLHH] L L] B2

3 01 B2 B1 BO — A LLLH B2 B1 BO BO
A+1 LLHH] . B2 B1

4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO
A+2 LLHH] . B3 B2

2-57

0€-2EXDTESN/SC-CEXDZESN/0C-CEXDCESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

3.0 Functional Description (continued)

TABLE 3-13. Data Writes to an 8-Bit Bus

Number Address Address
of Bytes LSB Data to be Written Bus BEO-3 Data Bus
1 00 — — — BO A HHHL L] . L] BO
1 01 —_ —_ BO - A HHLH L] L] BO BO
1 10 —_ BO —_ —_ A HLHH . BO] BO
1 11 BO —_ — —_ A LHHH B0 . BO BO
2 00 —_ — B1 BO A HHLL .] B1 BO
A+1 HHLH L] . L] B1
2 01 — B1 BO — A HLLH L] B1 BO BO
A+1 HLHH . . . B1
2 10 B1 BO - — —_ A LLHH B1 BO B1 BO
A+1 LHHH (] (] L] B1
3 00 — B2 B1 BO A HLLL L] B2 B1 BO
A+1 HLLH . [. B1
A+2 HLHH (] . . B2
3 01 B2 B1 BO — A LLLH B2 B1 BO BO
A+1 LLHH . . B1
At+2 LHHH . J B2
4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO
A+1 LLLH . . . B1
A+2 LLHH (] . . B2
A+3 LHHH . . . B3

2-58

3.0 Functional Description (continued)

L

bedeafkaddbbradsd

bfedeckagdptadd

T TE ToerTh)

»e---

-1 X

-.-.45..-.----..(---..

-r=a4s -1 DT

Y N O ¢ O A

(N

ol 1/

bedeaheddpbadd

I N I O A

P PR R { Sy

)

AN

£C

oo T T T

AO-SI:
00 - 31 -:}------ e
T

Ws- =
BW- A\
e | \
m \
rm \!
s \
é‘:ﬁ-s: >
aasee| >
st0-4]

' A
LC

e3)

TL/EE/10253-37

FIGURE 3-30. Hold Acknowledge. (Bus Initially Idle.)

Note: The status indicates ‘IDLE’ while the bus is granted. If the cause of the IDLE changes (e.g., CPU starts waiting for an interrupt), the status also changes.

The CPU will never grant the bus between interlocked read
and write bus cycles.
Note: If an external device requires a very short latency to get control of the

bus, the bus retry signal (BRT) can be used instead of hold. See
Section 3.5.5.

3.5.8 Interfacing Memory-Mapped 1/0 Devices

In Section 3.1.3.2 it was mentioned that some special pre-
cautions are needed when interfacing 1/0 devices to the
NS32GX32 due to its internal pipelined implementation.
Two special signals are provided for this purpose: IOINH
and IODEC. The CPU asserts IOINH during a read bus cycle
to indicate that the bus cycle should be ignored if an 1/0
device is selected. The system responds by asserting
IODEC to indicate to the CPU that an /O device has been
selected. |ODEC is sampled by the CPU in the middle of

state T2. If the cycle is extended, then the CPU uses the
IODEC value sampled during the last wait state. If a bus
error or a bus retry occurs, the sampled IODEC value is
ignored. IODEC must be kept high during burst transfer cy-
cles.

When |ODEC is active during a bus cycle for which IOINH is
asserted, the CPU discards the data and applies the special
handling required for 1/0 devices. Figure 3-31 shows a pos-
sible implementation of an I/O device interface where the
address mapping of the I/0 devices is fixed.

In an open system configuration, IODEC could be generated
by the decoding logic of each 1/0 device subsystem.

Note 1: When IODEC is active in response to a read bus cycle, the CPU
treats the reference as noncacheable.

Note 2: 10INH is kept inactive during write cycles.

2-59

0€-2EXDTESN/SZ-ZEXDZESN/0C-CEXDZESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

3.0 Functional Description (continued)

O cHP
SLLL Dc seeer | 1/0
DEVICE
Ns326x32 | ADDRESS
CcPU DECODE
 o0EC

<

TL/EE/10253-38
FIGURE 3-31. Typlcal 1/0 Device Interface

3.5.9 Interrupt and Debug Trép Requests

Three signals are provided by the CPU to externally request
interrupts and/or a debug trap. INT and NMI are for maska-
ble and non-maskable interrupts respectively. DBG is used
for requesting an external debug trap.

The CPU samples INT and NMI on every other rising edge
of BCLK, starting with the second rising edge of BCLK after
RST goes high.

NMI is edge-sensitive; a high-to-low transition on it is detect-
ed by the CPU and stored in an internal latch, so that there
is no need to keep it asserted until it is acknowledged.

INT is level-sensitive and, as such, once asserted, it must
be kept asserted until it is acknowledged.

The DBG signal, like NMI, is edge-sensitive; it differs from
NMI in that the CPU samples it on each rising edge of
BCLK. DBG can be asserted asynchronously to the CPU
clock, but it should be at least 1.5 clock cycles wide in order
to be recognized. ‘

If DBG meets the specified setup and hold times, it will be
recognized on the rising edge of BCLK deterministically.

Refer to Figures 4-19 and 4-20 for more details on the tim-

ing of the above signals.

Note: If the NMI signal is pulsed to request a non-maskable interrupt, it may
be necessary to keep it asserted for a minimum of two clock cycles to
guarantes its detection, unless extra logic ensures that the pulse oc-
curs around the BCLK sampling edge.

3.5.10 Internal Status

The NS32GX32 provides information on the system inter-
face concerning its internal activity.

The U/S signal will indicate the state of the U bit in the PSR
except in the following cases:

While executing a MOVUS instruction it will be ‘1’ during the
source read.

While executing a MOVSU instruction it will be ‘1’ during the
destination write.

The PFS signal is asserted for one BCLK cycle when the
CPU begins executing a new instruction. The ISF signal is
driven High along with PFS if the new instruction does not
follow the previous instruction in sequence. More specifical-
ly, ISF is High along with PFS after processing an exception
or after executing one of the following instructions: ACB
(branch taken), Bcond (branch taken), BR, BSR, CASE,
CXP, CXPD, DIA, JSR, JUMP, RET, RETT, RETI, and RXP.

The BP signal is asserted for one BCLK cycle when an ad-
dress-compare or PC-match condition is detected. If the BP
signal is asserted one BCLK cycle after PFS, it indicates
that an address-compare debug condition has been detect-
ed. If BP is asserted at any other time, it indicates that a PC-
Match debug condition has been detected.

While executing a CINV instruction, the CPU displays the
operation code and source operand using slave processor
write bus cycles.

During idle bus cycles, the signals STO-ST4 indicate wheth-
er the CPU is waiting for an interrupt, waiting for a Slave
Processor to complete executing an instruction or halted.

2-60

4.0 Device Specifications

CLOCKING

BUS ACCESS [meereeetpd HOLD
CONTROL { <4———] DA

RESET ——>]RST

—
“Reauest| ——|™
—

4 FFS

INTERNAL | 4———]iSF
STATUS | gmmmamt /5
P

CACHE CONTROL { RN “":EC

NS326X32

A0~ 31‘ﬂ ADDRESS
DO~ :m(:> DATA
STo=4 :M
BEO-3 :>
BUS TIMING AND
ADS j=——2p [CONTROL OUTPUTS
BMT |——>
CONF f——p
DOINp——>
L0 freamm> |
@ | —
BRTf——— |{ BUS CONTROL
BWO = {j¢=——— [INPUTS
ROY j=———
BOUT
Bl } BURST CONTROL
:%i > sLave TG
_SONJ— ¢ \D CONTROL
FSSR
JELT > } 1/0 CONTROL
TODEC

TL/EE/10253-39

FIGURE 4-1. NS32GX32 Interface Signals

4.1 NS32GX32 PIN DESCRIPTIONS
Descriptions of the NS32GX32 pins are given in the follow-

ing sections.

Included are also references to portions of the functional
description, Section 3.

Figure 4-1 shows the NS32GX32 interface signals grouped
according to related functions.

Note: An asterisk next to the signal name indicates a TRI-STATE condition
for that signat when HOLD is acknowledged or during an extended

retry.

4.1.1 Supplies

VCCL1-6

vcCB1-14

VCCCLK

GNDL1-6

GNDB1-13

GNDCLK

Logic Power.
+5V positive supplies for on-chip logic.
Buffers Power.

+5V positive supplies for on-chip output
buffers.

Bus Clock Power.

+5V positive supply for on-chip clock driv-
ers.

Logic Ground.

Ground references for on-chip logic.
Buffers Ground.

Ground references for on-chip output buffers.
Bus Clock Ground.

Ground reference for on-chip clock drivers.

4.1.2 Input Signals

CLK

2
=

Clock.

Input Clock used to derive all CPU Timing.
Synchronize.

When SYNC is active, BCLK will stop tog-
gling. This signal can be used to synchronize
two or more CPUs (Section 3.5.2).

Hold Request.

When active, causes the CPU to release the
bus for DMA or multiprocessing purposes
(Section 3.5.7).

Note:

If the HOLD signal is generated asynchronously, its set
up and hold times may be violated. In this case it is rec-
ommended to synchronize it with the falling edge of
BCLK to minimize the possibility of metastable states.

The CPU provides only one synchronization stage to min-
imize the HLDA tatency. This is to avoid speed degrada-
tions in cases of heavy HOLD activity (i.e. DMA controller
cycles interleaved with CPU cycles).

Reset.

When RST is active, the CPU is initialized to
a known state (Section 3.5.3).

Interrupt.

A low level on this signal requests a maska-
ble interrupt (Section 3.5.9).

Nonmaskable Interrupt.

A High-to-Low transition of this signal re-
quests a nonmaskable interrupt (Section
3.5.9).

2-61

0€-2EXDCESN/GC-CEXDCESN/0Z-CEXDTESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

4.0 Device Specifications (continued)

DBG

CIIN

IODEC

(7]
(=)
Z|

2|
=]
<

BWO0-1

Debug Trap Request. :

A High-to-Low transition of this signal re-
quests a debug trap (Section 3.5.9).

Cache Inhibit in.

When active, indicates that the location refer-
enced in the current bus cycle is not cache-
able. CIIN must not change within an aligned
16-byte block.

170 Decode.

Indicates to the CPU that a peripheral device
is addressed by the current bus cycle. The
value of IODEC must not change within an
aligned 16-byte block (Section 3.5.8).

Force Slave Status Read.

When asserted, indicates that the.slave
status word should be read by the CPU (Sec-
tion 3.1.4.1). An external 10 kQ resistor
should be connected between FSSR and
Vce.

Slave Done.

Used by a slave processor to signal the com-
pletion of a slave instruction (Section
3.1.4.1). An external 10 k2 resistor should be
connected between SDN and Vcc.

Burst In.

When active, indicates to the CPU that the
memory supports burst cycles (Section
3.5.4.3).

Ready.

While this signal is not active, the CPU ex-
tends the current bus cycle to support a slow
memory or peripheral device.)
Bus Width.

These lines define the bus width (8, 16 or 32
bits) for each data transfer; BWO is the least
significant bit. The bus width must not
change within an aligned 16-byte block—en-
codings are:

00—Reserved

01—38 Bits

10—16 Bits

11—32 Bits

Bus Retry.

When active, the CPU will reexecute the last
bus cycle (Section 3.5.5).

Bus Error.

When active, indicates that an error occurred
during a bus cycle. It is treated by the CPU as
the highest priority exception after reset.

4.1.3 Output Signals

BCLK -

CLK

LDA

Il

o
i
(7}

n

CASEC

g
=
Il

[72]
0
O

Bus Clock.

Output clock for bus timing (Section 3.5.2).
Bus Clock Inverse.

inverted output clock.

Hold Acknowledge.

Activated by the CPU in response to the
HOLD input to indicate that the CPU has re-
leased the bus.

Program Flow Status.

A pulse on this signal indicates the beginning
of execution for each instruction (Section
3.5.10).

Internal Sequential Fetch.

Indicates along with PFS that the instruction
beginning execution is sequential (ISF Low)
or non-sequential (ISF High).
User/Supervisor.

User or supervisor mode status (Section
3.5.10).

Break Point.

This signal is activated when the CPU de-
tects a PC or operand-address match debug
condition (Section 3.3.2).

*Cache Section.

For cacheable data read bus cycles indicates
the Section of the on-chip Data Cache where
the data will be placed; undefined for other
bus cycles.

170 Inhibit.

‘Indicates that the current bus cycle should

be ignored if a peripheral device is ad-

. dressed.

Slave Processor Control. . -
Data strobe for slave processor transfers.
*Burst Out.

When active, indicates that the CPU is re-
questing to perform burst cycles.

Interlocked Operation.

When active, indicates that interiocked cy-
cles are being performed (Section 3.5.4.5).

*Data Direction.

Indicates the direction of a data transfer. It is
low for reads and high for writes.

*Confirm Bus Cycle.

When active, indicates that a bus cycle initia-
ted by ADS is valid; that is, the bus cycle has
not been cancelled (Section 3.5.4.2).

2-62

4.0 Device Specifications (continued)
BMT *Begin Memory Transaction.
When Stable Low indicates that the current

bus cycle is valid; that is, the bus cycle has
not been cancelled (Section 3.5.4.2).

ADS *Address Strobe.
When active, indicates that a bus cycle has

begun and a valid address Is on the address
bus.

BE0-3 *Byte Enables.
Used to selectively enable data transfers on
bytes 0-3 of the data bus.

STo-4 Status.

Bus cycle status code; STO is the least signif-
icant. Encodings are:

00000—Idle: CPU Inactive on Bus.
00001—Idle: WAIT Instruction.
00010—ldle: Halted.

00011—Idle: The bus is idle while the slave
processor is executing an instruction.

00100—Interrupt Acknowledge, Master.
00101—Interrupt Acknowledge, Cascaded.
00110—End of Interrupt, Master.
00111—End of Interrupt, Cascaded.

4.2 ABSOLUTE MAXIMUM RATINGS

If Mllitary/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

Case Temperature Under Bias 0°Cto +95°C
Storage Temperature —65°Cto +150°C

01000—Sequential Instruction Fetch.
01001—Non-Sequential Instruction Fetch.
01010—Data Transfer.

01011—Read Read-Modify-Write Operand.
01100—Read for Effective Address.

01101

L]

] Reserved.

L]

11100

11101—Transfer Slave Operand.
11110—Read Slave Status Word.
11111—Broadcast Slave ID.
*Address Bus.

Used by the CPU to output a 32-bit address
at the beginning of a bus cycle. A0 is the
least significant.

A0-31

4.1.4 Input/Output Signals
D0-31 *Data Bus.

Used by the CPU to input or output data dur-
ing a read or write cycle respectively.

All Input or Output Voltages with

Respect to GND —0.5Vto +7V
Power Dissipation a4 W
Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS NS32GX32-20, 25: Tease = 0° to +95°C, Vo = 5V £10%, GND = 0V
NS32GX32-30: Tcase = 0° to +95°C, Veg = 5V £5%, GND = OV.

Symbol Parameter Conditions Min Typ Max Units
ViH High Level Input Voltage 2.0 Vec + 0.5 \
ViL Low Level Input Voltage —-0.5 0.8 \
VoH High Level Output Voltage loH = —400 pA 2.4 \
VoL Low Level Output Voltage
A0-11, D0-31, DDIN loL = 4mA 0.45 Vv
CONF, BMT loL = 6mA 0.45 \
BCLK, BCLK loL = 16 MA 0.45 v
All Other Outputs loL =2mA 0.45 \"
L Input Load Current 0<VIN< Voo —-20 20 BA
I Leakage Current (Output and 04 < VN € Ve —20 20 nA
1/0 pins in TRI-STATE/Input Mode)
CiN CLK Input Capacitance 10 pF
Icc Active Supply Current loutr = 0,Tp = 25°C 700 @ 30 MHz | 800 @ 30 MHz
Vec = 5V 600 @ 25 MHz | 700 @ 25 MHz mA
470 @ 20 MHz | 575 @ 20 MHz

0€-2EXDTESN/SC-CEXDTESN/0C-CEXDCESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

4.0 Device Specifications (continued)
Connection Diagram

H crererrrrrrRrRrrRerrIo)
RIPPOPEPOROOOOROOEE
1 (OXCXOONOXONOJOXOJOJOROXOXOOXO]
l{oloJoJoJoJoYoXoJoJeroloxoxorexe
MIRE © @Oe®
LeG @O®
e O (OXOXO]
‘o6 NS326X32 OJORO)
HEE @ ®e 0O
J[oXoXo) ROJOXC
FIOE ® (0XOXO)
3[oJoXo) [oJoXO)
[cXoXoIOXOXOXOXOJOXOXOXOXOXOXOXO)
4 [0JoXOXoXOXOXOXOXOXOXOJOXOXOXOXO)
] [OJOXOXOXOXOXOXOXOXOXOXOJOJOXOXO]
MOPOPEPOBOEEPOEOOEEE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
TL/EE/10253-40
Bottom View
FIGURE 4-2. 175-Pin PGA Package
NS32GX32 Pinout Descriptions
Desc Pin Desc Pin Desc Pin Desc Pin Desc Pin | Desc Pin
Reserved A1 | D26 B16 | GNDB13 | D14 GNDL6 | J14 | GNDLS N9 | Ao R6
Reserved A2 |-Reserved C1 [veceBi4 | D15 VCCL5 J15 | CONF N10 | VCCB9 R7
Reserved A3 | Reserved C2 | D23 D16 D13 J16 | RDY N11 | Reserved | R8
BP A4 | vcelLe C3 | TOINA E1 VCCB6 K1 | HOLD N12 | SPC R9
ISF A5 | Reserved c4 |TLO E2 A23 K2 | vCcCB11 | N13 | BE3 R10
RST A6 | PFS C5 |GNDB3 | E3 GNDL4 K3 | GNDB10 | N14 | vCCB10 | R11
NMI A7 | SDN C6 | D24 E14 GNDB11 | K14 | D4 N15 | ADS R12
GNDB1 A8 | Reserved C7 | D22 E15 D11 K15 | D6 N16 | BW1 R13
Reserved A9 | BCIK c8 | D20 E16 D12 K16 | A16 P1 | BER R14
VCCB2 A10 | VCCCLK Co [A30 F1 A22 L1 | vces? P2 | CIN R15
Reserved (2) | A11 | SYNC C10|CASEC | F2 A21 L2 | GNDB6 P3 | D2 R16
Reserved (1) [A12 | Reserved (2) | C11 | Reserved | F3 VCCL3 L3 | A10 P4 | A13 S1
Reserved (2) | A13 | Reserved (2) | C12 | D21 F14 D8 L14 | A6 P5 | A8 S2
Reserved (2) | A14 | VCCL6 C13| D19 F15 D9 L15 | A2 P6 | A5 S3
VCCB1 A15 | D29 C14 [D18 F16 D10 L16 | ST3 P7 | A3 S4
Reserved B1 | D27 C15 | A28 G1 A20 M1 | GNDB8 P8 | A1 S5
VCCB4 B2 | D25 C16 | A31 G2 GNDB5 | M2 | vCCL4 P9 | ST2 S6
Reserved B3 |U/S D1 |vCCB5 | G3 A17 M3 | BE1 P10 | ST1 s7
Reserved B4 | Reserved D2 | GNDB12 | G14 D5 M14 | GNDB9 P11 | STO S8
VCCB3 B5 | Reserved D3 | D17 G15 D7 M15 | BWO P12 | BOUT S9
FSSR B6 | GNDL3 D4 | D16 G16 VCCB12 | M16 | BIN P13 | DDIN S10
INT B7 | GNDB2 D5 | A27 H1 A18 N1 | Reserved | P14 | BE2 Ss11
VCCL1 B8 | DBG D6 | A28 H2 A18 N2 | DO P15 | BEO S12
GNDL2 B9 | Reserved D7 |GNDB4 | H3 Al4 N3 | D3 P16 | BMT S13
Reserved (2) | B10 | BCLK D8 | VCCB13 | H14 Al N4 | A15 R1 | BRAT S14
Reserved (2) [B11 | GNDCLK D9 (D15 H15 VCCB8 N5 | A12 R2 | IODEC S15
Reserved (2) | B12 | CLK D10 | D14 H16 GNDB7 N6 | A9 R3 | D1 S16
Reserved (2) | B13 | Reserved (2) | D11 | A26 J1 ST4 N7 | A7 R4
D30 B14 | D31 Di2| A25 J2 HLDA N8 | A4 RS
D28 B15 | GNDL1 D13 | A24 J3 Note 1: This pin should be grounded.

Note 2: This pin should be connected to fogical high.

All other reserved pins should be left open.

4.0 Device Specifications (continued)
4.4 SWITCHING CHARACTERISTICS
4.4.1 Deflinitions

All the timing specifications given in this section refer to
0.8V or 2.0V on all the signals as illustrated in Figures 4-3
and 4-4, unless specifically stated otherwise.

L 2.0v
BCLK
\C 0.8V
) R 2.4V
—siGth 2.0v
SIGt .‘SI‘GI v 0.8V
0.45V
[f5‘(;2V 2.0V 2.4V
S162 t
[‘tsic2n 0.8V
[N , B S 0.45V

TL/EE/10253-41

FIGURE 4-3. Output Signals Specification Standard

ABBREVIATIONS:
L.E.—leading edge R.E.—ising edge

T.E.—training edge F.E.—falling edge
£ 2.0v
BCLK
(O.BV
2.4V
SiGt _siots tsigin |/
0.8V N i 0.8v

N R 24
20v [2.0v

si62 T s tsean 1\ ,
045V

TL/EE/10253-42
FIGURE 4-4. Input Signals Specification Standard

2-65

0€-2EXDZESN/SC-ZEXDTESN/0Z-CEXDTESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

4.0 Device Specifications (continued)
4.4.2 Timing Tables ’

4.4.2.1 Output Signals: Internal Propagation Delays, NS32GX32-20, NS32GX32-25, NS32GX32-30
* Maximum times assume capacitive loading of 100 pF on the clock signals and 50 pF on all the other signals. A minimum
capacitance load of 50 pF on BCLK and BCLK is also assumed.
® The output to input timings (e.g., Address to RDY, Address to BER, etc.) are at least 2 ns better than the worst case values
calculated from the output valid and input setup times relative to BCLK or BCLK.

NS32GX32-20

NS32GX32-25

NS32GX32-30

Name Figure Description Reference/Conditions Units
Min Max Min Max' Min Max
tec, 4-24 Bus Clock Period | R.E., BCLK to Next
P RE. BCLK 50 100 40 100 33.3 100 ns
tacy 4-24 BCLK High Time [At2.0VonBCLK
(Both Edges) 20 16 13
1B 4-24 BCLK Low Time | At 0.8V on BCLK
(Both Edges) 20 16 13
tsc 4-24 BCLK Rise Time [0.8Vto2.0Von
(Note 1) RE. BCLK 5 4 8 | ms
tacy 4-24 BCLK Fall Time |2.0Vt00.8Von '
(Note 1) F.E., BCLK 5 4 8 | s
tNBey 4-24 BCLK High Time | At 2.0V on BCLK
(Both Edges) 20 16 18
tNBC 4-24 BCLK Low Time | At0.8V on BCLK 20 16 13
(Both Edges)
tNBG, 4-24 BCLK Rise Time | 0.8V to 2.0V on 5 4 3 ns
(Note 1) R.E., BCLK
tNBCf 4-24 BCLK Fall Time 2.0Vt0 0.8V on 5 4 3 ns
(Note 1) F.E.,BCLK
tceey 4-24 CLK to BCLK 20VonR.E.,,CLK to
' R.E. Delay 2.0V on R.E., BCLK 20 7 15 | ns
teey 4-24 CLK to BCLK 2.0VonR.E, CLKto
F.E. Delay 0.8V on F.E., BCLK 20 17 15 | ns
tenBoy 4-24 |CLK to BCLK 2.0VonR.E., CLK to
' R.E. Delay 0.8V on REE., BCLK 20 7 15 | ns
tCNBCdf 4-24 CLK to BCLK 2.0vonR.E,CLK to
F.E. Delay 0.8V on F.E., BOLK 20 7 1’ | ns
tBCNBC, 4-24 Bus Clocks Skew [2.0VonR.E., BCLK to _ _ _
(Note 1), 0.8V on F.E., BOLK 2| *2 2| *2 2 | 2 s
tBCNBC;, 4-24 Bus Clocks Skew | 0.8V on F.E., BCLK to _ _ _
(Note 1) 2.0V on R.E., BCLK 2 | 2 2| *2 2 | +2 | ns
tAv 4-5,4-6 Adc:iress Bits 0-31 | After R.E., BCLK T1 1 9 8 ns
Valid
tap 4-5,4-6 | Address Bits 0-31 | After R.E., BCLK T1 or Ti 0 0 0 ns
Hold
tAf 4-11, 4-12 | Address Bits 0-31 | After F.E., BCLK Ti 21 17 13 ns
Floating
tang 4-11,4-12| Address Bits 0-31 | After F.E., BCLK Ti 0 0 0 ns
Not Floating

Note 1: Guaranteed by characterization. Due to tester conditions, this parameter is not 100% tested.

2-66

4.0 Device Specifications (continued)
4.4.2.1 Output Signals: Internal Propagation Delays, NS32GX32-20, NS32GX32-25, NS32GX32-30 (Continued)

NS32GX32-20

NS32GX32-25

NS32GX32-30

Name Figure Description Reference/Conditions Units
Min Max Min Max Min Max

tas, 4-8 Adqress Bits A2, A3 |After R.E.,BCLK T2B 1 9 8 ns
Valid (Burst Cycle)

tasp 4-8 Address Bits A2, A3 | After R.E., BCLK T2B 0 0 0 ns
Hold (Burst Cycle)

tpo, | 4-6,4-15 |Data Out Valid After R.E., BCLK T1 0.5tgc, 0.55c, 0518C| g

+13 +12 +11

tbop, 4-6, 4-15 | Data Out Hold AfterR.E.,BCLKT1orTi 0 0 0 ns

tDOspc 4-15 Data Out .Setup Before SPCT.E. 8 6 5 ns
(Slave Write)

too; 4-7 Data Bus Floating After Fl..E., BCLK 21 17 13 ns

TlorTi

tpop 4-7 Data Bus‘ After F.E., BCLK T1 0 0 0 ns
Not Floating

temt, | 4-5,4-7 [BMT Signal Valid After R.E., BCLK T1 32 27 23 ns

temt, | 4-5,4-7 |BMT Signal Hold After R.E., BCLK T2 0 0 0 ns

temry |4-11, 4-12|BMT Signal Floating |After F.E., BCLK Ti 21 17 13 ns

temTy |4-11, 4-12|BMT Signal After F.E., BCLK Ti 0 0 0 ns
Not Floating

tconF, | 4-5,4-8 [CONF Signal Active |After R.E., BCLK T1 0.5tgc, 0.5 tgc, 0.5 tgc,

a 0.5 tBCp +11 Pl0.5 tBCp +9 P05 tBCp +8 Pl ns
tconFi;| 4-5.4-8 [CONF Signal Inactive | After R.E., BCLK T1 or Ti 1 9 8 ns
tconrF; |4-11,4-12|CONF Signal Floating| After F.E., BCLK Ti 21 17 13 ns
tCONFp,;|4-11, 4-12| CONF Signal After F.E., BCLK Ti 0 0 0 ns

Not Floating
taps, 4-5,4-8 | ADS Signal Active After R.E., BCLK T1 11 8 ns
taps, | 4-5.4-8 ADS Signal Inactive | After F.E., BCLK T1 11 8 | ns
tADSy 4-6 ADS Pulse Width At 0.8V (Both Edges) 15 12 9 ns
taps; |4-11,4-12|ADS Signal Floating |After F.E., BCLK Ti 21 17 13 ns
tapsys [4~11,4-12 ADS Signal After F.E., BCLK Ti 0 0 0 ns
Not Floating
tBE, 4-6,4-8 |BE, Signals Valid After R.E., BCLK T1 11 9 8 ns
teE, 4-6,4-8 |BEp Signals Hold A_fter R.E.,BCLKT1, 0 0 0 ns
TiorT2B
tBE; 4-11, 4-12 | BE,, Signals Floating | After F.E., BCLK Ti 21 17 13 ns
tgey |4-11,4-12 BEj Sign'als After F.E., BCLK Ti 0 0 0 ns
Not Floating
tooin, | 4-5,4-6 [DDIN Signal Valid After R.E., BCLK T1 1 9 8 ns
tooiN, | 4-5.4-6 [DDIN Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns
toping |4-11,4-12| DDIN Signal Floating | After F.E., BCLK Ti 21 17 13 ns
tDDINgs |4-11,4-12|DDIN Sig!'lal After F.E., BCLKTi 0 0 0 ns
Not Floating
tspc, |4~14,4-15|SPC Signal Active After R.E., BCLK T1 19 15 12 ns

2-67

0€-2EXDTESN/SC-2EXDZESN/02-CEXDZESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

4.0 Device Specifications (continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32GX32-20, NS32GX32-25, NS32GX32-30 (Continued)

NS32GX32-20

NS32GX32-25

NS32GX32-30

Name Figure Description Reference/Conditions Units
Min | Max | Min [Max | Min | Max

tspcj, |4-14,4-15 SPC Signal Inactive After R.E., BCLKTi, T1 or T2 19 15 12 ns
tppspPc 4-14 @ Valid to Before SPC L.E. 0 0 0 ns
(Note 1) SPC Active

tHLDA, |4-12, 4-13|HLDA Signal Active After F.E., BCLKTi 15 11 10 ns
tHLDAja 4-12 |HLDA Signal Inactive |After F.E., BCLK Ti 15 11 10 ns
tgTy 4-5,4-14 |Status (ST0-4) Valid |After R.E., BCLK T1 Ll 9 8 ns
tsTh 4-5,4-14 |Status (STO-4) Hold |After R.E.,BCLK T1 or Ti 0. 0 0 ns
tsouT, | 4-8,4-9 BOUT Signal Active After R.E., BCLK T2 15 12 11 ns
tgourj, | 4-8,4-9 |BOUT Signal Inactive f::{%gfﬁcol}'(n 15 12 1 ns
tgouty |4-11,4-12 BOUT Signal Floating | After F.E., BCLK Ti 21 17 13 ns
taouTy [4-11,4-12 WSignal After F.E., BCLK Ti 0 0 0 ns

Not Floating
tiLo, 4-7 Interlock Signal Active | After F.E., BCLK Ti 1 9 8 ns
YL0ja 4-7 Interlock Signal Inactive | After F.E., BCLK Ti 11 9 ns
trrs, 4-21 PFS Signal Active After F.E., BCLK 15 11 10 ns
1pFS; 4-21 PFS Signal Inactive After F.E., Next BCLK 15 11 10 ns
tisF, 4-22 |SF Signal Active After F.E., BCLK 15 11 10 ns
sk, 4-22 [ISF Signal Inactive After F.E., Next BCLK 15 1 10 ns
tap, 4-23 | BP Signal Active After F.E., BCLK 15 11 10 | ns
8P, 4-23 BP Signal Inactive After F.E., Next BCLK 15 1 10 | ns
tus, 4-5 U/S Signal Valid After R.E., BCLK T1 11 9 8 ns
tusy 4-5 U/S Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns
tcas, 4-5 CASEC Signal Valid After F.E., BCLK T1 15 11 10 ns
tcasy, 4-5 CASEC Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns
toag; [4-11,4-12 CASEC Signal Floating | After F.E., BCLK Ti 21 17 13 ns
tcasys |4-11,4-12|CASEC §igna| After F.E., BCLK Ti 0 0 0 ns
Not Floating

tiol, 4-5 1OINH Signal Valid After R.E., BCLK T1 15 11 10 ns
tiol, 4-5 TOINH Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns

Note 1: Guaranteed by characterization. Due to tester conditions, this parameter is not 100% tested.

2-68

4.0 Device Specifications (continued)

4.4.2.2 Input Signal Requirements: NS32GX32-20, NS32GX32-25, NS32GX32-30

Name | Figure Description Reference/Conditions | Noo20x02:20 | NS32GX32-25 | NS32GX32-30 | s
Min | Max | Min | Max | Min | Max
tcp 4-24 Input Clock Period EE: gll:E to Next 25 50 20 50 16.6 50 ns
tc, 4-24 |CLK High Time At2.0V on CLK 051, 051, 051tc,
(Both Edges) —5ns -5ns —4ns
tg, 4-24 |CLK Low Time At0.8V on CLK 051, 051, 051,
(Both Edges) —5ns —5ns —4ns
:ﬁro o) 4-24 CLK Rise Time 0.8Vto 2.0VonR.E, CLK 5 4 3 ns
:ﬁfote) 4-24 |CLKFall Time 2.0Vto0.8VonF.E, CLK 5 4 3 ns
tpig 4-5,4-14 | Data In Setup Before R.E., BCLK T1 or Ti 13 1 9 ns
toiy, 4-5,4-14 | Data In Hold After R.E.,, BCLK T1 or Ti 1 1 1 ns
tRDY, 4-5 RDY Setup Time Before B.E., BCLK T2(W), 22 18 15 ns
T1orTi
tRDY, 4-5 RDY Hold Time Ater R.E.. BCLK T2(W), 1 1 ; s
TiorTi
taw, 4-5 BWO-1 Setup Time | Before F.E., BCLK T2 or T2(W)| 21 17 14 ns
taw, 4-5 BWO-1 Hold Time |After F.E., BCLK T2 or T2(W) 1 1 1 ns
tHoLpg [4-12,4-13 HOLD Setup Time |Before F.E., BCLK 21 17 14 ns
tHOLDp, 4-12 |HOLD Hold Time |After F.E., BCLK 1 1 1 ns
tBINg 4-8 BIN Setup Time Before F.E., BCLK T2 or T2(W)| 21 17 14 ns
tBINg 4-8 BIN Hold Time After F.E., BCLK T2 or T2(W) 1 1 1 ns
tBER, 4-6,4-8 |BER Setup Time Before R.E., BCLK T1 or Ti 21 17 14 ns
tBERN, 4-6,4-8 |BER Hold Time After R.E., BCLK T1 or Ti 1 1 1 ns
tBRT 4-6,4-8 |BRT Setup Time Before R.E., BCLK T1 or Ti 21 17 14 ns
tsRT, 4-6,4-8 |BRT Hold Time After R.E., BCLK T1 or Ti 1 1 1 ns
tioD, 4-5 TODEC Setup Time |Before F.E., BCLK T2 or T2(W)| 21 17 14 ns
tiopy, 4-5 TODEC Hold Time | After F.E., BCLK T2 or T2(W) 1 1 1 ns
:imqe) 4-26 ;?g‘:f S|_:‘t_;_;l-)rle to After VCC Reaches 4.5V 50 40 30 us
tRsT, 4-27 |RSTSetupTime |Before R.E., BCLK 14 12 11 ns
tRST, 4-27 |RST Pulse Width | At 0.8V (Both Edges) 64 64 64 tac,

Note 1: Due to tester conditions, this parameter is not 100% tested.

2-69

0€-2EXDTESN/SZ-CZEXDZESN/02-CEXDZESN

4.0 Device Specifications (continued)
4.4.2.2 Input Signal Requirements: NS32GX32-20, NS32GX32-25, NS32GX32-30 (Continued)

NS32GX32-20/NS32GX32-25/NS32GX32-30

Name | Figure Description | Reference/Conditions NS32GX32-20 | NS32GX32-25 | NS32GX32-30 | ;e
Min Max Min Max Min Max
teiig 4-5 CIIN Setup Time Before F.E., BCLK T2 21 17 14 ns
tai, 4-5 CIIN Hold Time After F.E., BCLK T2 1 1 1 ns
tiINTg 4-19 | TNT Setup Time Before R.E., BCLK 14 12 11 ns
HNTH 4-19 | TNT Hold Time After R.E., BCLK 1 1 1 ns
tNMIg 4-19 | NMi Setup Time Before R.E., BCLK 20 17 16 ns
tNMI, 4-19 | NMI Hold Time After R.E., BCLK 1 1 1 ns
tspg 4-16 | SDN Setup Time Before R.E., BCLK 14 12 1 ns
tsop 4-16 | SDN Hold Time After R.E., BCLK 1 1 1 ns
trssRg | 4-17 | FSSR Setup Time | Before R.E., BCLK 14 12 11 ns
trssm, | 4-17 | FSSRHold Time | After R.E., BCLK 1 1 1 ns
tsyncg | 4-25 | SYNC Setup Time | Before R.E., CLK 10 . 8 7 ns
tsync, | 4-25 | SYNCHold Time | After R.E., CLK 1 1 1 ns
tpBGg 4-20 | DBG Setup Time Before R.E., BCLK 14 12 11 ns
tosg, | 4-20 | DBG Hold Time After R.E., BCLK 1 1 A ns

2-70

4.0 Device Specifications (continued)

4.4.3 Timing Dlagrams

A0-31[

ANY
) T=STATE; T1 | T2 | T2(W) |TIORT
BCLK[I | I I I I | | I I I
- et —{ o= tan
XX X
== tois

DO-31[

) [+ toony | F=on
DDIN J '
- - Lt
] 'ADSQ—’ l‘ 'ADSla —] Ic—- DOINh
s |/ 7
- ~+{ f={tBuTh
| tewve -
Bt 4 /
L T |
} - - tcoNFa —~ t=tconmia
CONF / \J:
b I
r-{RDYs
ROV / \q L
] o=) Lt
BWO =1 :K
) —{ lettown
BED-3 X
. -~ s - t+{sth
ST0-4
b ! X
. -~ elusy -~ 1=-tysh
/s X
) ' R
CIIN :E
i ~ toas, | 7] Ml
CASEC X X
. Qlongk‘——» l"QCASh
foDEC
- 4 t|o'|3h—>:K 4
- o+ = — = tion
ioRA | X X
' 1

FIGURE 4-5. Basic Read Cycle Timing

TL/EE/10253-43

2-71

0€-2EXDCESN/SZ-C2EXDCESN/02-CEXDCESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

4.0 Device Specifications (continued)

BCLK

A0=31

DDIN

ADS

BWO =1

BEO-3

ANY
|IT=STATE; Tt | T2 | TIORT
bl gt
X X
tpoy I~ — |=toon

DATA QUT

h‘nnmh

BRTs

taers

‘\,._t* 2 K]
17"
3

teern

) 4 A

A) 4

Note: An Idle State is always inserted before a Write Cycle when the
Write Immediately follows a confirmed Read Cycle. A0-31, DDIN,
BE0-3, ST0-4 remain unchanged during this idie state.

FIGURE 4-6. Write Cycle Timing

TL/EE/10253-44

2-72

4.0 Device Specifications (continueq)

A0-31 [X
= [+toont == [* ot
D= 31 [) D) E DATA OUT j’ll‘
) — [toomv | = | tooink
[Ny
) \/
| teunv] F‘““"‘
Bt . /
" [tconFa > I - et toonre
CoNF / \ /
IS — \Jj Yoa -~ /‘; tiLoim
- o
' tsw’ _"‘_l"‘ tﬂwh
BWO- 1 [:)CP(:
- e ~ e
BEO-3 [X)ﬂl“
BT [/ /\
| 7T\ A\
sT0-4 [X
u/s X X

FIGURE 4-7. Interlocked Read and Write Cycles

TL/EE/10253-45

2-73

0€-2EXDTESN/SZ-2EXDTESN/02-CEXDCESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

4.0 Device Specifications (continued)

|T-ASNTT\TE| M T2 | T2 | 728 | T2B |TIORT
BCLK[
| peftav] b =t] = tsn
A0-31[)§ .
et [T dN}@}@}@
oo \ /

: taosa—>] 1< r—tm“

o N (N \
BNT i -

) - =~ tcoNra toonFia—~1 |+
O | V4 \[/
RoY }“/ /NN

_ tawss] = | o

BWO~ 1 . k
: - I"QBEV -1 taey
BEO-3 . \J: /

) [

| 'J{: N\{/NY

taouta | = fonn tBouTia
o] { 3
r e P L |
ZiLVA A VA

i} toers > = BRTH} .
| ANV
CIIN :)Cb(

e XX

FIGURE 4-8. Burst Read Cycles

TL/EE/10253-46

2-74

4.0 Device Specifications (continued)

ANY
)T=STATE; T | T2

128

1 T2B(W) | T orTi |

S ipiinipipiniiniis

X

a0=31] | X X
N\ & ram\
o0-31[) @ G

ADS

\V

CONF

N\

N

/

LI

Y/

*amsl—-|

11N

/74

tgouta = {

tgiNh—

I,

~

tsou

/

FIGURE 4-9. External Termination of Burst Cycles

ANY

(T=STATE; T | T2

IpEpEpEREREy

BCLK

1 128

1 TorT |

A0=31 [:)(X

X

o\ \/ \/
oo [/7 T\ /
: taiNs e
o | 72772777777 | /7 J///////A
- Y| =] et tsouma

tgouta -+
gouT

e

|-4-
A

terTh

// /// /// /// /////

/4

///

/
[+ toern

8eR | LU

74

i/

FIGURE 4-10. Bus Error or Retry During Burst Cycles

Note: Two idle state are always inserted by the CPU following the assertion of BRT.

TL/EE/10253-47

TL/EE/10253-48

0€-2EXDZESN/GC-2EXDTESN/02-2EXDZESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

4.0 Device Specifications (continued)

BCLK

A0 =31

DDIN

CONF

CASEC

u/s

ST0=-4

L nomeniw o m o n o n oL w
. JLLIL
il L 1

I »retodemlatadaaddrloaraaa- J----
Aam =Nl ane
ERE\VARLENRRE)

SRRC apichanEl Sl
7TV r

: XXM XX

77700 L7 NV 277777
: N das L A

: Yemmp [NV B2V

: XTIXIX X
-

FIGURE 4-11. Extended Retry Timing

TL/EE/10253-49

2-76

4.0 Device Specifications (continued)

BCLK

AO=31

DO~ 31

DDIN

BMT.

CASEC

u/s

ST0-4

Ti

Ty T T Ty T TerT

Hpnt

Nl IE

) KD A g L e e &

tooing - t0DINnf
LS

taost 1 1= tapsnt
b edodadgr b=

- ‘L‘ taure -»! t=|taMTnt

PP R A i { A Ay

=
2
L £
-
[
¢
N

; - I\'ouwl 14 'F‘oum
] --".-W-;S"-“ __
_ - teast J - eteasns
W O e ¥
| XX

FIGURE 4-12. Hold Timing (Bus Initially Idle)

TL/EE/10253-50

0€-CEXDTESN/SC-CEXDTESN/0Z-2EXDZESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

4.0 Device Specifications (continued)

ANY
(T=STATE; T, T2 | T | ™
BCLK

A0=31 -:% X_:,ﬁ‘.“.-----
- |=tapst
sl TN | AT

- [*toLps

} tHLoAs >
HLDA

TL/EE/10253-51
FIGURE 4-13. HOLD Acknowledge Timing

(Bus Initially Not Idle)
ANY
\T=STATE; T | T2 TlorTh
acu([I | | | I I I | I
- = toov| — = toon
D0-31[={ |DATA OUT
At tpospe

tspca—=)
o

— tspcia

o | 7 X

ST0-4[X X

TL/EE/10253-53
FIGURE 4-15. Slave Processor Write Timing

ANY
IT=STATE; T | T2 | TlorTi
BCLK
_ l = tpig b=
00 - 31) DATA N
- toih

-~

l [—
. | tspca— -+ <;lspca
=[] | f
|
- DDSPC i
5N /

= s = [*!sth

ST0- 4 X
1

TL/EE/10253-52
FIGURE 4-14. Slave Processor Read Timing

=igligigh

tsps l ' l
[| SDh
TL/EE/10253-54
FIGURE 4-16. Slave Processor Done

T

= iglininh

N |
FSSRs 4
R

FSSR [' '
TL/EE/10253-55

FIGURE 4-17. FSSR Signal Timing

2-78

4.0 Device Specifications (continued)

thuin
NMis ; - Uiy

TL/EE/10253-57
FIGURE 4-18. INT and NMI Signals Sampling
Note 1: INT and NMI are sampled on every other rising edge of BCLK, starting with the second rising edge of BCLK after RST goes high.
Note 2: INT is level sensitive, and once asserted, it should not be deasserted until it is acknowledged.

T

togon
1

T |

TL/EE/10253-58 ‘ o TL/EE/10253-59
FIGURE 4-19. Debug Trap Request FIGURE 4-20. PFS Signal Timing

I | | |
tisra I I tepa | l
| [—l—*nsqa tepia
ATTTDTT el

- TL/EE/10253-60 TL/EE/10253-61
FIGURE 4-21. ISF Signal Timing FIGURE 4-22. Break Point Signal Timing

2-79

0€-2EXDTESN/SC-ZEXDLESN/02-CEXDZESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

4.0 Device Specifications (continued)

t t ‘c' tc'
. ‘e ‘n to
ak| A __/
- etepcar ~| j=—tact | te—1tgcr
line teacat tach [Fp—
em—
BeLK N
) . tacp
tI!\‘:NB(:fr e tBeNBCrT
tenpedr — — e—tonscat —f r—*uscr ot | tuper
-r fo—— tNpet —
BCLK tngen
tnecp

FIGURE 4-23. Clock Waveforms

SYNC

b= tsven

TL/EE/10253-62

BCLK

(44

BCLK

RST

=L
S\

3y

FIGURE 4-24. Bus Clock Synchronization

£C

4.5v

7

ML

£
3

» d

FIGURE 4-25. Power-On Reset

trsTw

LC

2

FIGURE 4-26. Non-Power-On Reset

/__

TL/EE/10263-63

TL/EE/10253-64

TL/EE/10253-65

2-80

Appendix A: Instruction Formats
NOTATIONS:
i = Integer Type Field
B = 00 (Byte)
W = 01 (Word)
D = 11 (Double Word)
f = Floating Point Type Field
F = 1 (Std. Floating: 32 bits)
L = 0 (Long Floating: 64 bits)
¢ = Custom Type Field
D = 1 (Double Word)
Q = 0 (Quad Word)
op = Operation Code
Valid encodings shown with each format.
gen, gen 1, gen 2= General Addressing Mode Field
See Section 2.2 for encodings.
reg = General Purpose Register Number
cond = Condition Code Field
0000 = EQual: Z = 1
0001 = Not Equal: Z = 0
0010 = Carry Set: C = 1
0011 = Carry Clear: C = 0
0100 = Higher: L = 1
0101 = Lower or Same: L = 0
0110 = Greater Than: N = 1
0111 = Lessor Equal: N = 0
1000 = Flag Set: F = 1
1001 = Flag Clear: F = 0
1010 = LOwer: L = 0andZ = 0
1011 = Higher or Same: L = 1orZ = 1
1100 = Less Than: N = OandZ = 0
1101 = Greateror Equal: N = 1orZ = 1
1110 = (Unconditionally True)
1111 = (Unconditionally False)
short = Short Immediate value. May contain:
quick: Signed 4-bit value, in MOVQ, ADDQ,
CMPQ, ACB.
cond: Condition Code (above), in Scond.
areg: CPU Dedicated Register, in LPR, SPR.

[}

0000 = US

0001 = DCR
0010 = BPC
0011 = DSR
0100 = CAR
0101-0111 = (Reserved)
1000 = FP

1001 = SP

1010 = SB

1011 = USP
1100 = CFG
1101 = PSR
1110 = INTBASE
1111 = MOD

Options: in String Instructions

T = Translated

B = Backward

U/W = 00: None
01: While Match
11: Until Match

Configuration bits, in SETCFG Instruction:

LiJ a1l 1] c]ms | r]| 1]

Note: Reserved bit must be set to 0 when executing SETCFG.

7 0

cond [1010

Format 0
Bcond (BR)
7 0
Format 1
BSR -0000 ENTER -1000
RET -0001 EXIT -1001
CXP -0010 NOP -1010
RXP -0011 WAIT -1011
RETT -0100 DIA -1100
RETI -0101 FLAG -1101
SAVE -0110 SVC -1110
RESTORE <0111 BPT -1111
15 8 I 7 0
T T T T T T T T T T T
gen | short | op l 11 | i |
Format 2
ADDQ -000 ACB -100
CMPQ -001 MovQ -101
SPR -010 LPR -110
Scond 011

2-81

0€-CEXDTESN/GC-CEXDCESN/02-CEXDZESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

Appendix A: Instruction Formats (continued)

15 8|7 1}
LI L LI LI L T
| gen | op |11111]i I
Format 3
CXPD -0000 ADJSP -1010
BICPSR -0010 JSR -1100
JUMP -0100 CASE -1110
BISPSR -0110
Trap (UND) on XXX1, 1000
15 8|7 0
LI 1T T LR T
gen 1 | gen 2 | op | i I
Format 4
ADD -0000 SuB <1000
CMP -0001 ADDR -1001
BIC -0010 AND -1010
ADDC -0100 SUBC -1100
MOV -0101 TBIT -1101
OR -0110 XOR -1110
23 16| 15 8|7 0
L R R | LI T T 1 T L L L L
|00000 short|0| op Ii00001110
Format 5
MOVS -0000 SETCFG -0010
CMPS -0001 SKPS -0011
Trap (UND) on 1XXX, 01XX
23 16| 15 8({7 0
T 171 LR L T 171 1 UL L
|gen1Jgen2| op |i01001110
Format 6
ROT -0000 NEG -1000
ASH -0001 NOT -1001
CBIT -0010 Trap (UND) -1010
CBITI -0011 SUBP -1011
Trap (UND) -0100 ABS -1100
LSH -0101 COM -1101
SBIT -0110 1BIT -1110
SBIT! -0111 ADDP -1111
23 16| 15 8|7 0
LI AL L] T 17 1 T LR L L L
lgen1 |gen2| op |l11001110
Format7
MOVM -0000 MUL -1000
CMPM -0001 MEI -1001
INSS -0010 Trap (UND) -1010
EXTS -0011 DEl -1011
MOVXBW -0100 Quo -1100
MOvZBW -0101 REM -1101
MOVZiD -0110 MOD -1110
MOVXiD -0111 DIV -1111

23 16]15 8|7
TT T T [T T 1T T17T U L L AL
gen 1 gen 2 | reg i 101110
op”
TL/EE/10253-66
Format 8
EXT -000 INDEX -100
CVTP -001 FFS -101
INS -010
CHECK -0 11
MOVSU -110, reg = 001
MOVUS -110,reg = 011
23 16| 15 8|7 0
LR L L DL L T 1 1] T 1T T T 1T
rrgem l gen2 op Ifli 00111110
Format 9
MOVif -000 ROUND -100
LFSR -001 TRUNC -101
MOVLF -010 SFSR -110
MOVFL -011 FLOOR =111
- - 7 0.
01111110
TL/EE/10253-67
Format 10
Trap (UND) Always
23 16| 15 - 817 0
T T L] T T T T LI 17T LB L
| gen 1 | gen2 I op Olf1011111a
Format 11
ADDf -0000 Divf -1000
MOVf -0001 Note 1 -1001
CMPf -0010 Note 3 -1010
Note 3 -0011 Note 1 -1011
susf -0100 MULf -1100
NEGf -0101 ABSf -1101
Note 2 -0110 Note 2 -1110
Note 1 -0111 Note 1 1111

2-82

Appendix A: Instruction Formats (continued)

Format 15.1
CCv3 -000 CCv2 -100
LCSR -001 ccvi -101
CCvV5 -010 SCSR -110
CCv4 -011 CCVo -1
23 16| 15 8
LI L T T
101 geni I gen 2 I op |x|c
Format 15.5
CCALO -0000 CCAL3 -1000
CMoVvo -0001 CMOV3 -1001
CCMPO -0010 Note 3 -1010
CCMP1 -0011 Note 1 <1011
CCAL1 -0100 CCAL2 -1100
CMov2 -0101 CMOV1 -1101
Note 2 -0110 Note 2 -1110
Note 1 -0111 Note 1 1111
23 16| 15 8
LI LI I B | UL
111 gen1i | gen2 | op |x c
Format 15.7
Note 2 -0000 Note 2 -1000
Note 1 -0001 Note 1 -1001
Note 3 -0010 Note 3 -1010
Note 3 -0011 Note 1 -1011
Note 2 -0100 Note 2 -1100
Note 1 -0101 Note 1 -1101
Note 2 -0110 Note 2 -1110
Note 1 -0111 Note 1 1111

If nnn = 010, 011, 100, 110 then Trap (UND) Always.

Trap (UND) Always

Format 16

o

TL/EE/10253-69

o

23 16|15 8|7 0
T 1 1 1] T L L] T T T T 1 1 T T 1 L]
| gen1i | gen2 | op |0|f11111110
Format 12
Note 2 -0000 Note 2 -1000
Note 1 -0001 Note 1 -1001
POLY{ -0010 Note 3 -1010
DOTf -0011 Note 1 -1011
SCALBf -0100 Note 2 -1100
LOGBf -0101 Note 1 -1101
Note 2 -0110 Note 2 -1110
Note 1 <0111 Note 1 -1111

7 0
- TL/EE/10253-68
Format 13
Trap (UND) Always
23 16| 15 8|7 0
1 1 13] T T i T T T T T T T T T 1] T
I gen1i |short ‘Ol op |i00011110
Format 14
CINV —1001
Trap (UND) on 00XX, 01XX, 1000, 101X, 11XX
23 16| 15 8|7 [1]
1] T T 1 1 T
nnn10110
Operation Word D Byte
Format 15
(Custom Slave)
nnn Operation Word Format
23 16' 15 8
T i T T 1 1 L] LI]
000 gen1i l short [x| op I i
Format 15.0
LCR -0010
SCR -0011
Trap (UND) on all others
23 16!15 8
T =TT T 1 L L L
001 gen1 I gen 2 I op |c| i

TL/EE/10253-70

Format 17
Trap (UND) Always

7]

10001110

TL/EE/10253-71

2-83

0€-ZEXDCESN/GC-CEXDCESN/02-CEXDZESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

Appendix A: Instruction
Formats (continued)

Format 18
Trap (UND) Always

TL/EE/10263-72

Format 19
Trap (UND) Always
Implied Immediate Encodings:
7 0

r7lr6|r5|r4|mlr2|r1|m

Register Mark, Appended to SAVE, ENTER

7 0
T T T T T T T
0) r r2 | r3 A r4 | 5 A (5] | 7
Register Mark, Appended to RESTORE, EXIT
7 0
T T T T T T
| offset | | Ieng}h -1

Offset/Length Modifier Appended to INSS, EXTS

Note 1: Opcode not dsfined; CPU treats like MOV or CMOV,. First operand
has access class of read; second operand has access class of write; f or ¢
field selects 32- or 64-bit data.

Note 2: Opcode not defined; CPU treats like ADDy or CCAL. First operand
has access class of read;, second operand has access class of read-modify-
write; f or ¢ field selects 32- or 64-bit data.

Note 3: Opcode not defined; CPU treats like CMP; or CCMP,. First operand
has access class of read;, second operand has access class of read; f or ¢
field selects 32- or 64-bit data.

Appendix B. Compatibility Issues

The NS32GX32 is compatible with the Series 32000 archi-
tecture implemented by the NS32532, NS32032, NS32332,
and previous microprocessors in the family. Compatibility
means that within certain limited constraints, programs that
execute on one of the earlier Series 32000 microprocessors
will produce identical results when executed on the
NS32GX32. Compatibility applies to privileged operating
systems programs, as well as to non-privileged applications
programs. This appendix explains both the restrictions on
compatibility with previous Series 32000 microprocessors
and the extensions to the architecture that are implemented
by the NS32GX32.

B.1 RESTRICTIONS ON COMPATIBILITY

If the following restrictions are observed, then a program

that executes on an earlier Series 32000 microprocessor

will produce identical results when executed on the

NS32GX32 in an appropriately configured system:

1. The program is not time-dependent. For example, the
program should not use instruction loops to control real-
time delays. -

2. The program does not use any encodings of instruc-
tions, operands, addresses, or control fields identified to

be reserved or undefined. For example, if the count op-
erand’s value for an LSHi instruction is not within the
range specified by the Series 32000 Instruction Set Ref-
erence Manual, then the results produced by the
NS32GX32 may differ from those of the NS32032.

3. The program does not depend on the use of a Memory
Management Unit (MMU).

4. The program does not depend on the detection of bus
errors according to the implementation of the NS32332.
For example, the NS32GX32 distinguishes between re-
startable and nonrestartable bus errors by transferring
control to the appropriate bus-error exception service
procedure through one of two distinct entries in the In-
terrupt Dispatch Table. In contrast, the NS32332 uses a
single entry in the Interrupt Dispatch Table for all bus
errors.

5. The program does not modify itself. Refer to Section B.4
for more information.

6.. The program does not depend on the execution of cer-
tain complex instructions to be non-interruptible. Refer
to Section B.5 on. “Memory-Mapped /0" for more in-
formation.

7. The program does not use the custom slave instructions
CATSTO and CATST1, as they are not supported by the
NS32GX32 and will result in a Trap (UND) when their
execution is attempted.

B.2 ARCHITECTURE EXTENSIONS

The NS32GX32 implements the following extensions of the
Series 32000 architecture using previously reserved control
bits, instruction encodings, and memory locations. Exten-
sions implemented earlier in the NS32332, such as 32-bit
addressing, are not listed.

1. The DC, LDC, IC, and LIC bits in the CFG register have
been defined to control the on-chip Instruction and Data
Caches. The DE-bit in the CFG register has been de-
fined to enable Direct-Exception Mode.

2. The V-flag in the PSR register has been defined to en-
able the Integer-Overflow Trap.

3. The DCR, BPC, DSR, and CAR registers have been de-
fined to control debugging features. Access to these
registers has been added to the definition of the LPR
and SPR instructions.

4, Access to the CFG and SP1 registers has been added
to the definition of the LPR and SPR instructions.

5. The CINV instruction has been defined to invalidate
control of the on-chip Instruction and Data Caches.

6. Direct-Exception Mode has been added to support fast-
er interrupt service time and systems without module
tables.

7. A new entry has been added to the Interrupt Dispatch
Table for supporting vectors to distinguish between re-
startable and nonrestartable bus errors. Two additional
entries support Trap (OVF) and Trap (DBG).

B.3 INTEGER OVERFLOW TRAP

A new trap condition is recognized for integer arithmetic
overflow. Trap (OVF) is enabled by the V-flag in the PSR.
This new trap is important because detection of integer
overflow conditions is required for certain programming lan-
guages, such as ADA, and the PSR flags do not indicate the
occurrence of overflow for ASHi, DIVi and MULi instructions.

Appendix B. Compatibility Issues (continued)

More details on integer overflow are given in Section 3.2.5,
where a description of all the cases in which an overflow
condition is detected is also provided.

INTEGER ARITHMETIC

The V-flag in the PSR enables Trap (OVF) to occur following
execution of an integer arithmetic instruction whose result
cannot be represented exactly in the destination operand’s
location. i

If the number of bits required to represent the resulting quo-
tient of a DE! instruction exceeds half the number of bits of
the destination, then the contents of both the quotient and
remainder stored in the destination are undefined.

The ADDR instruction can be used in place of integer arith-
metic instructions to perform certain calculations. In this
case however, integer overflow is not detected by the CPU.

LOGICAL INSTRUCTIONS

The V-flag in the PSR enables Trap (OVF) to occur following
execution of an ASHi instruction whose result cannot be
represented exactly in the destination operand's location.

ARRAY INSTRUCTIONS

The V-flag in the PSR enables Trap (OVF) to occur following
execution of a GHECK:i instruction whose source operand is
out of bounds.

PROCESSOR CONTROL INSTRUCTIONS

The V-flag in the PSR enables Trap (OVF) to occur following
execution of an ACBi instruction if the sum of the “inc” val-
ue and the “index’" operand cannot be represented exactly
in the “index"” operand’s location.

B.4 SELF-MODIFYING CODE

The Series 32000 architecture does not have special provi-

sions to optimally support self-modifying programs.

Nevertheless, on the NS32332 and previous Series 32000

microprocessors it is possible to execute self-modifying

code according to the following sequence:

1. Modify the appropriate instruction.

2. Execute a JUMP instruction or other instruction that
causes the microprocessor’s instruction queue to be
flushed.

3. Execute the modified instruction.

For example, an interactive debugger may follow the se-
quence above after reaching a breakpoint in a program be-
ing monitored.

The same program may not produce identical results when
executed on the NS32GX32 due to effects of the Instruction
Cache and branch prediction. In order to execute self-modi-
fying code on the NS32GX32 it is necessary to do the fol-
lowing:

1. Modify the appropriate instruction.

2. If the modified instruction is on a cacheable page, exe-
cute CINV to invalidate the contents of the Instruction
Cache.

3. Execute an instruction that causes a serializing opera-
tion. See Section 3.1.3.3.

4. Execute the modified instruction.

B.5 MEMORY-MAPPED I/0

As was mentioned in Section 3.1.3.2, certain peripheral de-
vices exhibit characteristics identified as “destructive-read-
ing” and “side-effects of writing” that impose requirements
for special handling of memory-mapped |I/O references.
The NS32GX32 supports two methods to use on references
to memory-mapped peripheral devices that exhibit either or
both of these characteristics.

For peripheral devices that exhibit only side-effects of writ-
ing, correct operation can be ensured either by locating the
device between addresses FF000000 (hex) and FF7FFFFF

(hex) in the address space or by observing the first 2 restric-

tions listed below. For peripheral devices that exhibit de-

structive-reading, all the following restrictions must be ob-
served to ensure correct operation:

1. References to the device must be inhibited while the
CPU asserts the output signai TOINH.

2. The input signal IODEC must be asserted by the system
on references to the device.

3. The device cannot be used for instruction fetches, reads
of effective addresses.

4. If an instruction that reads a source operand from the
device crosses a page boundary, then no Trap (ABT) or
restartable bus error can occur during fetches from the
page with higher addresses.

5. The device can be used as a source operand only for
instructions in the list below.

ABSi CBITi MOVMi SBITli
ADDi CBITIi MOVXi SUBi
ADDCi CMPi MOVZi SUBCi
ADDPi CMPQi NEGi SUBPI
ADDQi COMi NOTi TBITI
ANDi IBITi ORi XORi
ASHi LSHi ROTi

BICi MOVi SBITi

This restriction arises because the CPU can respond to
interrupt requests during the execution of complex in-
struction in order to reduce interrupt latency. Thus, the
CPU may read the source operands for a DEID instruc-
tion (extended-precision divide), begin calculating the in-
struction’s results, and then respond to an interrupt re-
quest before completing the instruction. In such an
avent, the instruction can be executed again and com-
pleted correctly after the interrupt service procedure re-
turns unless one of the source operands was altered by
destructive-reading.

Appendix C. Instruction Set

Extensions

The following sections describe the differences and ex-
tensions to the Series 32000 instruction set (as present-
ed in the “Series 32000 Instruction Set Reference Man-
ual”) implemented by the NS32GX32.

No changes or additions have been made to the user-
mode instruction set, and only a few privileged instruc-
tions have been added.

2-85

0€-2EXOCESN/S2-CEXDTESN/0C-CEXDCESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

Appendix C. Instruction Set Extensions (continued)

C.1 PROCESSOR SERVICE INSTRUCTIONS

The CFG register, User Stack Pointer (SP1), and Debug
Registers can be loaded and stored using privileged forms
of the LPRi and SPRi instructions.

When the SETCFG instruction is executed, the CFG register
bits 0 through 3 are loaded from the instruction’s short field,
bits 4 through 7 are forced to 1, and bits 8 through 12 are
forced to 0.

The contents of the on-chip Instruction Cache and Data
Cache can be invalidated by executing the privileged in-
struction CINV. While executing the CINV instruction, the
CPU generates 2 slave bus cycles on the system interface
to display the first 3 bytes of the instruction and the source
operand.

C.2 INSTRUCTION DEFINITIONS

This section provides a description of the operations and
encodings of the new NS32GX32 privileged instructions.

Load and Store Processor Registers

Syntax: LPRI procreg, src
short ‘gen
read.i
"SPRI procreg dest
short gen
write.i

The LPRi and SPRi instructions can be used to load and
store the User Stack Pointer (USP or SP1), the Configura-
tion Register (CFG) and the Debug Registers in addition to
the Processor Registers supported by the previous Series
32000 CPUs. Access to these registers is privileged.

Figure C-1 and Table C-1 show the instruction formats and
the new ‘short’ field encodings for LPRi and SPRi.

Flags Affected: No flags affected by loading or storing the
USP, CFG, or Debug Registers.

legal Instruction Trap (ILL) occurs if an

attempt is made to load or store the USP,
CFG or Debug Registers while the U-flag

Traps:

is 1.
15 8|7 0
T T T 7T T 1 T T 17 T
gen I short |1 101 1l i
src procreg LPRi
15 8|7 0
L 1T 1 v 1 T
gen I short |0 101 1| i
dest procreg SPRi

FIGURE C-1. LPRI/SPRI Instruction Formats

TABLE C-1. LPRi/SPRi New ‘Short’ Field Encodings

Register procreg | short field
Debug Condition Register DCR 0001
Breakpoint Program Counter BPC 0010
Debug Status Register DSR 0011
Compare Address Register CAR 0100
User Stack Pointer USP 1011
Configuration Register CFG 1100
Cache Invalidate
Syntax: CINV optlons, src
gen
read. D

The CINV instruction invalidates the contents of locations in
the on-chip Instruction Cache and Data Cache. The instruc-
tion can be used to invalidate either the entire contents of
the on-chip caches or only a 16-byte block. In the latter
case, the 28 most-significant bits of the source operand
specify the physical address of the aligned 16-byte block;
the 4 least-significant bits of the source operand are ig-
nored. If the specified block is not located in the on-chip
caches, then the instruction has no effect. If the entire
cache contents is to be invalidated, then the source oper-
and is read, but its value is ignored.
Options are specified by listing the letters A (invalidate All), |
(Instruction Cache), and D (Data Cache). If neither the I nor
D option is specified, the instruction has no effect.
In the instruction encoding, the options are represented in
the A, |, and D fields as follows:
A: O—invalidate only a 16-byte block

1—invalidate the entire cache
I: 0—do not affect the Instruction Cache

1—invalidate the Instruction Cache
D: 0—do not affect the Data Cache

1—invalidate the Data Cache
Flags Affected: None

Traps: lllegal Operation Trap (ILL) occurs if an at-
tempt is made to execute this instruction
while the U-flag is 1.

Examples:

1.CINVA,D,I,R3 1EA7 1B

2.CINV],R3 1E 27 19

Example 1 invalidates the entire Instruction Cache and Data
Cache.

Example 2 invalidates the 16-byte block whose physical ad-
dress in the Instruction Cache is contained in R3.

2-86

Appendix C. Instruction Set
Extensions (continued)

23 15 8|7 0

T 1 1 7T L T 1 T 1T 1T
gen |0|A|ID|010011100011110
sre options CINV

FIGURE C-2. CINV Instruction Format

Appendix D. Instruction

Execution Times

The NS32GX32 achieves its performance by using an ad-
vanced implementation incorporating a 4-stage Instruction
Pipeline, an Instruction Cache and a Data Cache into a sin-
gle integrated circuit.

As a consequence of this advanced implementation, the
performance evaluation for the NS32GX32 is more complex
than for the previous microprocessors in the Series 32000
family. In fact, it is no longer possible to determine the exe-
cution time for an instruction using only a set of tables for
operations and addressing modes. Rather, it is necessary to
consider dependencies between the various instructions ex-
ecuting in the pipeline, as well as the occurrence of misses
for the on-chip caches.

The following sections explain the method to evaluate the.

performance of the NS32GX32 by calculating various timing
parameters for an instruction sequence. Due to the high
degree of parallelism in the NS32GX32, the evaluation tech-
niques presented here include some simplifications and ap-
proximations.

D.1 INTERNAL ORGANIZATION
AND INSTRUCTION EXECUTION

The NS32GX32 is organized internally as 8 functional units
as shown in Figure 1. The functional units operate in parallel
to execute instructions in the 4-stage pipeline. The structure
of this pipeline is shown in Figure 3-2. The Instruction Fetch
and Instruction Decode pipeline stages are implemented in
the loader along with the 8-byte instruction queue and the
buffer for a decoded instruction. The Address Calculation
pipeline stage is implemented in the address unit. The Exe-
cute pipeline stage is implemented in the Execution Unit
along with the write data buffer that holds up to two results
directed to memory.

The Address Unit and Execution Unit can process instruc-
tions at a peak rate of 2 clock cycles per instruction, en-
abling a sustained pipeline throughput at 30 MHz of
15 MIPS (million instructions per second) for sequences of
register-to-register, immediate-to-register, memory-to-regis-
ter instructions and register-to-memory. Nevertheless, the
execution of instructions in the pipeline is reduced from the
peak throughput of 2 cycles by the following causes of de-
lay:

1. Complex operations, like division, require more than 2 cy-
cles in the Execution Unit, and complex addressing
modes, like memory relative, require more than 2 cycles
in the Address Unit.

2. Dependencies between instructions can limit the flow
through the pipeline. A data dependency can arise when
the result of one instruction is the source of a following
instruction. Control dependencies arise when branching
instructions are executed. Section D.3 describes the
types of instruction dependencies that impact perform-
ance and explains how to calculate the pipeline delays.

3. Cache misses can cause the flow of instructions through
the pipeline to be delayed, as can non-aligned refer-
ences. Section D.4 explains the performance impact for
these forms of storage delays.

The effective time Te¢ needed to execute an instruction is
given by the following formula:

Teti=Te+ Tg+ Tg
Te is the execution time in the pipeline in the absence of
data dependencies between instructions and storage de-
lays, Tq is the delay due to data dependencies, and Tg is the
effect of storage delays.

D.2 BASIC EXECUTION TIMES

Instruction flow in sequence through the pipeline stages im-
plemented by the Loader, Address Unit, and Execution Unit.
In almost all cases, the Loader is at least as fast at decod-
ing an instruction as the Address Unit is at processing the
instruction. Consequently, the effects of the Loader can be
ignored when analyzing the smooth flow of instructions in
the pipeline, and it is only necessary to consider the times
for the Address Unit and Execution Unit. The time required
by the Loader to fetch and decode instructions is significant
only when there are control dependencies between instruc-
tions or Instruction Cache misses, both of which are ex-
plained later.

The time for the pipeline to advance from one instruction to
the next is typically determined by the maximum time of the
Address Unit and Execution Unit to complete processing of
the instruction on which they are operating. For example, if
the Execution Unit is completing instruction n in 2 cycles
and the Address Unit is completing instruction n+ 7 in 4
cycles, then the pipeline will advance in 4 cycles. For certain
instructions, such as RESTORE, the Address Unit waits until
the Execution Unit has completed the instruction before
proceeding to the next instruction. When such an instruction
is in the Execution Unit, the time for the pipeline to advance
is equal to the sum of the time for the Execution Unit to
complete instruction 7 and the time for the Address Unit to
complete instruction n+ 1. The processing times for the
Loader, Address Unit, and Execution Unit are explained be-
low.

D.2.1 Loader Timing

The Loader can process an instruction field on each clock
cycle, where a field is one of the following:

® An opcode of 1 to 3 bytes including addressing mode
specifiers.

® Up to 2 index bytes, if scaled index addressing mode is
used.

® A displacement.

® An immediate value of 8, 16 or 32 bits.

The Loader requires additional time in the following cases:

* 1 additional cycle when 2 consecutive double-word fields
begin at an odd address.

® 2 cycles in total to process a double-precision floating-
point immediate value.

2-87

0€-2EXDCESN/GC-CEXDTESN/0Z-2EXDZESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

Appendix D. Instruction Execution Times (continued)

D.2.2 Address Unit Timing

The processing time of the Address Unit depends on the
instruction’s operation and the number and type of its gen-
eral addressing modes. The basic time for most instructions
is 2 cycles. A relatively small number of instructions require
an additional address unit time, as shown in the timing ta-
bles in Section D.5.5. Floating-point instructions as well as
Custom-Slave instructions require an additional 3 cycles
plus 2 cycles for each quad-word operand in memory.

For instructions with 2 general addressing modes, 2 addi-
tional cycles are required when both addressing modes re-
fer to memory. Certain general addressing modes require an
additional processing time, as shown in Table D-1. For ex-
ample, the instruction MOVD 4(8(FP)), TOS requires 7 cy-
cles in the Address Unit; 2 cycles for the basic time, an
additional 2 cycles because both modes refer to memory,
and an additional 3 cycles for Memory Relative addressing
mode.

TABLE D-1. Additional Address Unit Processing
Time for Complex Addressing Modes

Mode Additional
Cycles
‘Memory Relative 3
External 8
Scaled Indexing 2

D.2.3 Execution Unit Timing

The Execution Unit processing times for the various
NS32GX32 instructions are provided in Section D.5.5. Cer-
tain operations cause a break in the instruction flow through
the pipeline.

Some of these operation simply stop the Address Unit,
while others flush the instruction queue as well. The infor-
mation on how to evaluate the penalty resulting from in-
struction flow breaks is provided in the following sections.

D.3 INSTRUCTION DEPENDENCIES

Interactions between instructions in the pipeline can cause
delays. Two types of interactions can' arise, as described
below.

D.3.1 Data Dependencies

In certain circumstances the flow of instructions in the pipe-
line will be delayed when the result of an instruction is used
as the source of a succeeding instruction. Such interlocks
are automatically detected by the microprocessor and han-
dled with complete transparency to software.

D.3.1.1 Register Interlocks

When an instruction uses a base register that is the destina-
tion of either of the previous 2 instructions, a delay occurs.
Modifications of the Stack Pointer resulting from the use of
TOS addressing mode do not cause any delay. Also, there
is no delay for a data dependency when the instruction that
modifies the register is one for which the Address Unit
stops. The delay is 3 cycles when, as in the following exam-
ple, the base register is modified by the immediately preced-
ing instruction.

n: ADDD R1,RO
n+l: MOVD 4(R0),R2

modify RO
RO is base register,
delay 3 cycles
The delay is 1 cycle when the register is modified 2 instruc-
tions before its use as a base register, as shown in this
example.

n: ADDD R1,RO s modify RO
n+l: MOVD 4(SP),R3 ; RO not used
n+2: MOVD 4(R0O),R2 ; RO is base register,

delay 1 cycle

When an instruction uses an index register that is the desti-
nation of the previous instruction, a delay of 1 cycle occurs,
as shown in the example below. If the register is modified 2
or more instructions prior to its use as an index register,
then no delay occurs.

n: ADDD R1,RO ; modify RO
n+l: MOVD 4(SP)[RO:B],R2

s RO is index register
delay 1 cycle

Bypass circuitry in the Execution Unit generally avoids delay
when a register modified by one instruction is used as the
source operand of the following instruction, as in the follow-
ing example.

.e ws

n: ADDD R1,RO s modify RO
n+l: MOVD RO,R2 s RO is source register,
no delay

For the uncommon case where the operand in the source
register is larger than the destination of the previous instruc-
tion, a delay of 2 cycles occurs. Here is an example.

n: ADDB R1l,RO ; modify byte in RO
n+l: MOVD RO,R2 3 RO dw source operand,

2 cycle delay

Note: The Address Unit does not make any differentiation between CPU
and FPU registers. Therefore, register interlocks can occur between
integer and floating-point instructions.

D.3.1.2 Memory Interlocks

When an instruction reads a source operand (or address for
effective address calculation) from memory that depends on
the destination of either of the previous 2 instructions, a
delay occurs. The CPU detects a dependency between a
read and a write reference in the following cases, which
include some false dependencies in addition to all actual
dependencies:

o Either reference crosses a double-word boundary

e Address bits 0 through 11 are equal

o Address bits 2 through 11 are equal and either reference
is for a word

e Address bits 2 through 11 are equal and either reference
is for a double-word

The delay for a memeory interlock is 4 cycles when, as in
the following example, the memory location is modified by
the immediately preceding instruction.

n: ADDQD 1,4(SP) ; modify 4(SP)
n+l: CMPD 10,4(SP) ; read, 4(SP),
4 cycle delay

2-88

Appendix D. Instruction Execution Times (Continued)

The delay is 2 cycles when the memory location is modified
2 instructions before its use as a source operand or effec-
tive address, as shown in this example.

n: ADDQD 1,4(SP) ; modify 4(SP)
n+l: MOVD RO,Rl s no reference to 4(SP)
n+2: CMPD 10, 4(SP); read 4(SP),

2 cycles delay

Certain sequences of read and write references can cause
a delay of 1 cycle although there is no data dependency
between the references. This arises because the Data
Cache is occupied for 2 cycles on write references. In the
absence of data dependencies, read references are given
priority over write references. Therefore, this delay only oc-
curs when an instruction with destination in memory is fol-
lowed 2 instructions later by an instruction that refers to
memory (read or write) and 3 instructions later by an instruc-
tion that reads from memory. Here is an example:

n: MOVD R0O,4(SP) ; memory write
n+l: MOVD R6,R7 s any instruction
n+2: MOVD 8(SP),R0 ; memory read or write
n+3: MOVD 12(SP),Rl; memory read
delayed 1 cycle

D.3.2 Control Dependencles

The flow of instructions through the pipeline is delayed
when the address from which to fetch an instruction de-
pends on a previous instruction, such as when a conditional
branch is excuted. The Loader includes special circuitry to
handle branch instructions (ACB, BR, Bcond, and BSR) that
serves to reduce such delays. When a branch instruction is
decoded, the Loader calculates the destination address and
selects between the sequential and non-sequential instruc-
tion streams. The non-sequential stream is selected for un-
conditional branches. For conditional branches the selec-
tion is based on the branch’s direction (forward or back-
ward) as well as the tested condition. The branch is predict-
ed taken in any of the following cases.

® The branch is backward.
¢ The tested condition is either NE or LE.

Measurements have shown that the correct stream is se-
lected for 64% of conditional branches and 71% of total
branches.

If the Loader selects the non-sequential stream, then the
destination address is transferred to the Instruction Cache.
For conditional branches, the Loader saves the address of
the alternate stream (the one not selected). When a condi-
tional branch instruction reaches the Execution Unit, the
condition is resolved, and the Execution Unit signals the
Loader whether or not the branch was taken. If the branch
had been incorrectly predicted, the Instruction Cache be-
gins fetching instructions from the correct stream.

The delay for handling a branch instruction depends on
whether the branch is taken and whether it is predicted cor-
rectly. Unconditional branches have the same delay as cor-
rectly predicted, taken conditional branches.

Another form of delay occurs when 2 consecutive condition-
al branch instructions are executed. This delay of 2 cycles
arises from contention for the register that holds the alter-
nate stream address in the Loader.

Control dependencies also arise when JUMP, RET, and oth-

er non-branch instructions alter the sequential execution of
instructions.

D.4 STORAGE DELAYS

The flow of instructions in the pipeline can be delayed by
off-chip memory references that result from misses in the
on-chip storage buffers and by misalignment of instructions
and operands. These considerations are explained in the
following sections. The delays reported assume no wait
states on the external bus and no interference between in-
struction and data references.

D.4.1 Instruction Cache Misses

An Instruction Cache miss causes a 5 cycle gap in the fetch-
ing of instructions. When the miss occurs for a non-sequen-
tial instruction fetch, the pipeline is idle for the entire gap, so
the delay is 5 cycles. When the miss occurs for a sequential
fetch, the pipeline is not idle for the entire gap because
instructions that have been prefetched ahead and buffered
can be executed. The delay for misses on non-sequential
instruction fetches can be estimated to be approximately
half the gap, or 2.5 cycles.

D.4.2 Data Cache Misses

A Data Cache miss causes a delay of 2 cycles. When a
burst read cycle is used to fill the cache block, then 3 addi-
tional cycles are required to update the Data Cache. In case
a burst cycle is used and either of the 2 instructions follow-
ing the instruction that caused the miss also reads from
memory, then an additional delay occurs: 3 cycle delay
when the instruction that reads from memory immediately
follows the miss, and 2 cycle delay when the memory read
occurs 2 instructions after the miss.

D.4.3 Instruction and Operand Alignment

When a data reference (either read or write) crosses a dou-
ble-word boundary, there is a delay of 2 cycles.

When the opcode for a non-sequential instruction crosses a
double-word boundary, there is a delay of 1 cycle. No delay
occurs in the same situation for a sequential instruction.
There is also a delay of 2 cycles when an instruction fetch is
located on a different page from the previous fetch and
there is a hit in the Instruction Cache. This delay, which is
due to the time required to translate the new page’s ad-
dress, also occurs following any serializing operation.

D.5 EXECUTION TIME CALCULATIONS

This section provides the necessary information to calculate

the T, portion of the effective time required by the CPU to

execute an instruction.

The effects of data dependencies and storage delays are

not taken into account in the evaluation of Tg, rather, they

should be separately evaluated through a careful examina-
tion of the instruction sequence.

The following assumptions are made:

— The entire instruction, with displacements and immedi-
ate operands, is present in the instruction queue when
needed.

— All memory operands are available to the Execution Unit
and Address Unit when needed.

— Memory writes are performed at full speed through the
write buffer.

— Where possible, the values of operands are taken into
consideration when they affect instruction timing, and a
range of times is given. When this is not done, the worst
case is assumed.

2-89

0€-2EXDZESN/SZ-ZEXDTESN/0C-CEXDCZESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

Appendix D. Instruction Execution Times (Continued)

D.5.1 Definitions

Teu Time required by the Execution Unit to execute an
instruction.

Tau Total processing time in the Address Unit.

Tad Extra time needed by the Address Unit, in addition
to the basic time, to process more complex cases.
Tad can be evaluated as follows:

Tad = Tx + Ty1 + Ty2
Ty = 2if the instruction has two general operands
and both of them are in memory.
0 otherwise.

Tyt and Typ are related to operands 1 and 2 re-
spectively. Their values are given below.
Ty(1, 2) = 3 if Memory Relative =

8 if External

2 if Scaled Indexing

0 if any other addressing mode

The following paramseters are only used for floating-point

exacution time calculations.

Tenp Additional Address Unit time needed to process
floating-point instructions (Section D.2.2). Tanp can
be calculated as follows:

Tanp = 3 + 2* (Number of 64-bit operands in
memory)

Ttes Time required to transfer ID and Opcode, if no op-
erand needs to be transferred to the slave. Other-
wise, it is the time needed to transfer the last 32
bits of operand data to the slave. In the latter case
the transfer of ID and Opcode as well as any oper-
and data except the last 32 bits is included in the
Execution Unit timing.

Tisc Time required by the CPU to complete the floating-
point instruction upon receiving the DONE signal
from the slave. This includes the time to process
the DONE signal itself in addition to the time need-
ed to read the result (if any) from the slave.

| This parameter is related to the floating-point oper-
and size as follows:

Standard floating (32 bits): | = 0
Long floating (64 bits): =1

D.5.2 Notes on Table Use
1. In the Tgy column the notation n1 —> n2 means n1 mini-
mum, n2 maximum.

2. In the notes column, notations held within angle brackets
<> indicate alternatives in the operand addressing
modes which affect the execution time. A table entry
which is affected by the operand addressing may have
multiple values, corresponding to the alternatives. This
addressing notations are:
<I> Immediate
<R> CPU register
<M> Memory
<F> FPU register, either 32 or 64 bits

<m> Memory, except Top of Stack

<T> Top of Stack

<x> Any addressing mode

<ab> aand b represent the addressing modes of oper-
ands 1 and 2 respectively. Both of them can be
any addressing mode. (e.g, <MR> means
memory to CPU register).

3. The notation ‘Break K' provides pipeline status informa-
tion after exscuting the instruction to which ‘Break K’ ap-
plies. The value of K is interpreted as follows:

K = 0 The Address Unit was stopped by the instruction
but the pipeline was not flushed. The Address
Unit can start processing the next instruction im-
mediately.

K > 0 The pipeline was flushed by the instruction. The
Address Unit must wait for K cycles before it can
start processing the next instruction.

K <0 The Address Unit was stopped at the beginning
of the Instruction but it was restarted |K| cycles
before the end of it. The Address Unit can start
processing the next instruction |K| cycles before
the end of the instruction to which ‘Break K’ ap-
plies.

4. Some instructions must wait for pending writes to com-
plete before being able to execute. The number of cycles
that these instructions must wait for, is between 6 and 7
for the first operand in the write buffer and 2 for the sec-
ond operand, if any.

5. The CBITIli and SBITIi instructions will execute a RMW
access after waiting for pending writes. The extra time
required for the RMW access is only 3 cycles since the
read portion is overlapped with the time in the Execution
Unit.

6. The keyword defined for the Bcond instruction have the
following meaning:

BTPC Branch Taken, Predicted Correctly

BTPI Branch Taken, Predicted Incorrectly
BNTPC Branch Not Taken, Predicted Correctly
BNTPI Branch Not Taken, Predicted Incorrectly

D.5.3 Teyt Evaluation

The T portion of the effective execution time for a certain

instruction in an instruction sequence is obtained by per-

forming the following steps:

1. Label the current and previous instruction in the se-
quence with n and n—1 respectively.

2. Obtain from the tables the values of Tgy and Ty, for in-
struction n and Tg, for instruction n—1.

3. For floating-point instructions, obtain the values of Ticg
and Tige-

4. Use the following formula to determine the execution time
Te-
Te = func (Tay(n), Teu(n—1), Ta(n—1),

Break (n—1)) + Teu(n) + Te(n)

2-90

Appendix D. Instruction Execution Times (continued)

func provides the amount of processing time in the Address
Unit that cannot be hidden. Its definition is given below.

0 if Tay(n) < (Teu(n—1) + Ty (N—1))
AND NOT Break (n—1)
if Tau(n) > (Teu(n—1) + Tr(n—1))
AND NOT Break (n—1)
if (Tau(n) + Ky >0
AND Break (n—1)
0 it (Tau(n) + Ky <0
AND Break (n—1)
K is the value associated with Break (n—1).

Tau(n) — Tey(n—1)

Tau(n) + K

Tyt only applies to floating-point instructions and is al-
ways 0 for other instructions. It is evaluated as follows:

Tt = tes + Tise + Tfpu
Tipu is the execution time in the Floating-Point Unit.

5. Calculate the total execution time Tg1 by using the follow-
ing formula:
Tetf = Te+ Tg+ Tg
Where T4 and Ts are dependent on the instruction se-
quence, and can be obtained using the information pro-
vided in Section D.4.

~fib: movd r3,tos s 2 cycles
movd r4,tos s 2 cycles
movd rl,r3d ;s 2 cycles
cmpqd $(2),r3 ; 2 cycles
bge Ll 3 2 cycles,
movd r3,rl s 2 cycles
“addqd $(-2),rl ; 2 cycles
bsr -fib s 3 cycles
movd r0,r4 2
movd r3,rl s 2 cycles
addqd $(-1),rl ; 2 cycles
bsr _fib s 3 cycles
addd r4,r0 H]
movd tos,r4 s 2 cycles
movd tos,r3d s 2 cycles
ret $(0) ; 4 cycles, break 4
.align 4

-Ll: movqd $(1),r0 HE
movd tos,r4 3 2 cycles
movd tos,r3 s 2 cyecles
ret $(0) s 4 cycles, Break 4

D.5.4 Instruction Timing Example

This section presents a simple instruction timing example
for a procedure that recursively evaluates the Fibonacci
function. In this example there are no data dependencies or
storage buffer misses; only the basic instruction execution
times in the pipeline, control dependencies, and instruction
alignment are considered.

The following is the source of the procedure in C.

unsigned fib(x)
int X3
{
if (x > 2)
return (fib(x-1) + f£ib(x-2));
else

return(l) ;

}

The assembly code for the procedure with comments indi-
cating the execution time is shown below. The procedure
requires 26 cycles to execute when the actual parameter is
less than or equal to 2 (branch taken) and 99 cycles when
the actual parameter is equal to 3 (recursive calls).

Break 2 If Branch Taken

cycles + 4 Cycles due to RET

cycles + 1 cycle alignment + 4 cycles due to RET

cycles + 4 cycles due to BGE

2-91

0€-2EXDZESN/SC-CEXDTESN/0Z-CEXDTESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

Appendix D. Instruction Execution Times (continued)

D.5.5 Execution Timing Tables

The following tables provide the execution timing information for all the NS32GX32 instructions. The table for the floating-point
instructions provides only the CPU portion of the total execution time. The FPU execution times can be found in the NS32381

datasheet.
D.5.5.1 Baslic Instructions

Mnemonic | Tey Tau Notes Mnemonic Teu Tau Notes
ABSI 5 2 + Tag CINV 10 2 + Taq | Wait for
ACBi § |2+ Taq | Ifincorrect prediction f”;i't‘:'s”g
: : then Break 1 Break 5
ADDI 2 2% Tad CMPi 2 2 + Tag
ADDCi 2 2+ Tag n = number
ADDPi 9 2+ Tag of elements.
- CMPMi 6+8*n Break 0
ADDQiI 2 2+ Tag
CMPQi 2 2+ Tag
ADDR 2 4 + Tag
- - CMPSi 7+13*n 2+ Tad |n = number
ADJSPi 5 2+ Tad|i=B,W Break 0 of elements.
3 2+ Tad i=D Break 0 Break 0
ANDi 2 2+ Tad CMPST 6+20*n 2 + Taq | n = number
ASHi 9 2+ Tag ' of elements.
: Break 0
Bcono |2—3| 2 |BTPC ‘ o8
2 2 | BTPI Break 2 CoMi 2 2+ Tog
2 2 | BNTPC CVTP 5 4+ Tag
2 2 BNTPI Break 2
(see Note 5in CXP 17 13 Break 5
Section D.5.2) CXPD 21 11 + Taq | Break 5
BICi 2 2+ Tad DEli 28 + 4% 54 Tag |i = 0/4/12
BICPSRi 6 |2+ Taq [Wait for pending writes. for B/W/D.
Break 0
Break 5
BISPSRi 6 2 + Taq | Wait for pending writes. DIA 8 2 Break 5
Break 5 DIVi (B0—>40) + 4*i| 2+ Taq |i = 0/4/12
BPT 30 2 | Modular ‘ for B/W/D
21 2 Direct ENTER 15+ 2*n 3 n = number
‘ of registers
Break 5 saved.
BR 2—3 2 Break 0
BSR 233+ Tgq EXIT 8+2*n 2 = number
CASEi 7 |2+ Tag| Breaks ofregisters
restored
o :g : +T :':/1>> Break 0 EXTi 12 8 |<R>
ad 13 8+ Tog | <M>
CBITIi 18 |2+ Tagq | <M>
Wait for pending writes. Break —3
Execute interlocked EXSi 11 6 <R>
RMW access. Break 5 14 6 + Tag | <M>
CHECKi 10 |2+ Taq | Break —3. _
If SRC is out of bounds Break —3
and the V bitin the PSR FFSi 11 +3*i 2 + Taq |i = number
is set, then add trap of bytes
time.

2-92

Appendix D. Instruction Execution Times (Continued)
D.5.5.1 Baslc Instructions (Continued)

Mnemonic Teu Tau Notes Mnemonic Teu Tau Notes
FLAG 4 2 No trap MOVSVi 9 2 + Tag|Wait for
32 2 Trap, Modular pending writes.
21 2 Trap, Direct Break 5
e ton: MOVUSi 11 |2 + Taq|Wait for
waitfor pending writes.
pending writes; Break 5
Break 5) MOVXi 2 2+ T
IBITI 10 2 | <R> . + Tag
14 24 Tag| <M> MOVZii 2 2+ Tag
If <M> MULI 13+ 2%i|2 + Tyg|i = 0/4/12
then Break 0 for B/W/D.
INDEXi 43 [5+ Tag T ﬁﬂ‘j{%cafj&
INSi 15 8 |<R> 24 |2+ Tad MO AN
18 8 + Tag| <M>
INSSi 14 6 |<R> NEGI 2 12+ Tag
19 |6+ Tag| <M> NoP 2 2
o
ISR 8 {9+ Tog)Broaks Qulo ST PR Yy
JUMP 3 4 + Taq|Break 5 ! (+ 4%) ad fO_;B/W/D
LPRi 6 2 + Taq| CPUReg = FP, : + =
SP, USP, SP, MOD. REMI (@2 => 4212 + Tag)i = 0/4/12
Break 0
5 2 + Taq| CPUReg = CFG, RESTORE (7 +2*n (2 n = number
INTBASE, DSR, of registers
BPC, UPSR. restored.
Wait for pending Break 0
writes. RET 4 3 Break 4
Break 5 RET! 19 5 [Noncascaded, Modular
7 2 + Tqg | CPU Reg = DCR, 13 5 |Noncascaded, Direct
PSR CAR. Wait for 29 5 |Cascaded, Modular
pending writes. 22 5 |Cascaded, Direct
Break 5 ’
LSHi 3 2+ Tad Wai; for .
MEIi 18+ 2% |5+ Tag|i = 074712 penaing writes.
for B/W/D. Break 5
. Break 0 RETT 14 5 M.Odulal'
MODi (34— 49)|2 + Tag|i = 0/4/12 8 5 |Direct
+ 4% for B/W/D Wait for
MOVi 2 2+ Toq pending writes.
- " — Break 5
MOVMi 5+4*n |2+ Tag|n = number -
of elements. ROTi 7 2+ Tad
Break 0 RXP 8 5 Break 5
MOVQi 2 2+ Tag SCONDiI 3 2+ Tad
MOVSi n = number SAVE 8+2*n| 2 |n=number
of elerr_ments. of registers.
12+ 4*n|2 + Taq| No options. Break 0
*
14+8*n|2+ Tgg B,vyamyoru SBIT 10 2 <R>
Options in effect. 14 2 4 Tugl <M>
Break 0 ad
Break 0
MOVST 16 + 9*n|2 + Tgg[n = number
of elements.
Break 0

2-93

0€-2EXDTESN/ST-2EXDCESN/0Z-2EXDTESN

NS32GX32-20/NS32GX32-25/NS32GX32-30

Appendix D. Instruction Execution Times (continued)
D.5.5.1 Basic Instructions (Continued)

Mnemonic Tou Tau Notes Mnemonic | Tey Tau Notes
SBITIi 10 2 <R> SUBI 2 2 + Tag
18 2+ Tag| <M> SUBCI 2 | 2+ Tag
Wait for pending SUBPi 6 | 24+ Tag
writes. Execute sVC 32 2 Modular
interiocked RMW 29 2 Direct
access.
Break § Wait for
SETCFG 6 2 Break 5 pending writes.
" Break 5
SKPSi 8+ 6*n |2+ Taq|n = number of -
elements. TBITi 8 2 <R>
Break 0 1 2+ Tag | <M>
<M>
SKPST |6+ 20°n|2 + Taq| n = number of If <M> then break 0
elements. WAIT 3 2 Wait for pending
Break 0 writes. Wait
SPRi 5 |2+ Taa|CPUReg = : for interrupt
PSR, CAR XORi 2 |2+ Tu
3 2 + Taq| CPUReg =
all others

2-94

Appendix D. Instruction Execution Times (continued)
D.5.5.2 Floating-Polint Instructions, CPU Portion

Mnemonlc Teu Tau Ties Ttse Notes
MOV1, NEGH, 2 2+ Tanp 2 1 <FF>
ABSf, LOGBf 4+3*I 2+ Tanp + Tad 2 1 <MF>
6+3*I 24 Tanp 2 1 <IF>
6+3*I 2+ Tanp 2 1 <TF>
11+ 4% 2+ Tanp + Tad 2 3+2*1 <FM> Break — (1 + |)
183+ 7*! 2+ Tanp + Tad 2 3+2*1 <MM>, <IM> Break — (1 +)
ADDf, SUBf, 2 2+ Tanp 2 1 <FF>
MULS, DIVf, 4+3*I 2+ Tanp 2 1 <MF>
SCALBf 6+ 3" 2+ Tanp 2 1 <IF> .
6+3*| 2+ Tanp 2 1 <TF>
17+ 7*1 2+ Tapp + Tad 2 3+2*| <FM> Break — (1 + I)
19+ 10*1 2+ Tanp + Tad 2 3+ 2+ <MM>, <IM> Break — (1 + I)
ROUNDfi, TRUNCHi, 11 2+ Tanp 2 3+2*1 <FR> Break — 1
FLOORfi 11+ 4°] 2+ Tanp + Tad 2 3+2*1 <FM> Break — (1 + I
13 2+ Tanp + Tad 2 3+2*I <MR>, <IR> Break — 1
183+ 7" 2 + Tanp + Tad 2 3+2*I <MM>, <IM> Break — (1 + 1)
CMPt 18 2 + Tanp 2 <FF>
20+ 3" 2+ Tanp + Tad 2 <MF>
23+3*1 2+ Tanp + Ted 2 <FM>
25+ 6" 2 + Tanp + Tad 2 <MM>, <IM>, <MI>, <II>
Break 3
POLYf, DOTf 2 2 + Tanp 2 1 <FF>
4+ 3" 2 + Tanp + Tad 2 1 <MF>
6+3*I 2+ Tanp 2 1 <IF>, <TF>
11+ 4% 2+ Tanp + Tad 2 1 <FM> Break — (1 + 1)
13+ 7% 2+ Tanp + Tad 2 1 <MM>, <MI>, <IM>, <II>
- Break — (1 +)
MOVif 6 2 + Tapp 2 1 <RF>
13 2+ Tanp + Tad 2 <RM> Break — 1
6+3*I 2+ Tanp + Tad 2 1 <MF>, <IF>, <TF>
183+7*1 2+ Tanp + Tad 2 <MM>, <IM>
Break — (1 +)
LFSR 6 2+ Tanp 2 1 <R>
6+3*I 2+ Tanp + Tad 2 1 <M>
6+3*I 2+ Tanp 2 1 <I>
6+3*I 2 + Tanp 2 1 <T>
SFSR 1 2+ Tanp + Tad 2 3 Break — 1
MOVFL 4 2+ Tanp 2 1 <FF>
6 2+ Tanp + Tad 2 1 <MF>, <IF>, <TF>
15 2+ Tanp + Tad 2 <FM> Break 0
17 2+ Tanp + Tag 2 <MM>, <IM> Break 0
MOVLF 4 2+ Tanp 2 1 <FF>
9 2+ Tanp + Tad 2 1 <MF>, <IF>, <TF>
15 2 + Tanp + Tad 2 <FM> Break 0
20 2 + Tanp + Tad 2 <MM>, <IM> Break 0

2-95

0€-2EXDTESN/ST-CEXOTESN/0C-TEXDZESN

NS32CG16-10/NS32CG16-15

National
Semiconductor

NS32CG16-10/NS32CG16-15

PRELIMINARY

High-Performance Printer/Display Processor

General Description

The NS32CG16 is a 32-bit microprocessor in the Series
32000® family that provides special features for graphics
applications. It is specifically designed to support page ori-
ented printing technologies such as Laser, LCS, LED, lon-
Deposition and InkJet.

The NS32CG16 provides a 16 Mbyte linear address space
and a 16-bit external data bus. It also has a 32-bit ALU, an
eight-byte prefetch queue, and a slave processor interface.
The capabilities of the NS32CG16 can be expanded by us-
ing an external floating point unit which interfaces to the
NS32CG16 as a slave processor. This combination pro-
vides optimal support for outline character fonts.

The NS32CG16’s highly efficient architecture, in addition to
the built-in capabilities for supporting BITBLT (BIT-aligned
BLock Transfer) operations and other special graphics func-

tions, make the device the ideal choice to handle a variety:

of page description languages such as Postscript™ and
PCL™. ‘

Features
m Software compatible with the Series 32000 family
m 32-bit architecture and implementation
® 16 Mbyte linear address space
m Special support for imaging applications such as print-
ers, faxes and scanners
— 18 graphics instructions
— Binary compression/expansion capability for font
storage using RLL encoding
— Pattern magnification for Epson and HP LaserJet™
emulations
— 6 BITBLT instructions on chip
— Interface to an external BITBLT processing unit for
very fast BITBLT operations (optional)
m Floating point support via the NS32081 or the NS32381
for outline fonts, scaling and rotation
m On-chip clock generator
m Optimal interface to large memory arrays via the
DP84xx family of DRAM controllers
B Power save mode
m High-speed CMOS technology
® 68-pin plastic PCC package

Block Diagram

ADD/DATA CONTROLS & STATUS
.is REGISTER SET
RECISTER SET
X
DNA PIPELINED
CONTROL <—_:|75us INTERFACE CONTROL 1 MIGROCODE ROM GRAPHES jﬁlg
o6
PROGRAMMABLE CONTROL LOGIC Leciten
—] R INSTRUCTIONS Lw
E1 ook 3 [N
T ceneraTor
8-BYTE
WORKING
QUEvE REGISTERS El
PIPELINED
18] INSTRUCTION sh 1
DECODER '
i J 1]
FIPELINED PP
DISPLACEMENT AND
IWMEDIATE EXTRACTOR
v A4 A 4 A4 A L

32 BIT INTERNAL BUS

TL/EE/9424-1

2-96

1.0 Product Introduction

The NS32CG16 is a high speed CMOS microprocessor in
the Series 32000 family. It is software compatible with all
the other CPUs in the family. The device incorporates all of
the Series 32000 advanced architectural features, with the
exception of the virtual memory capability.

Brief descriptions of the NS32CG16 features that are
shared with other members of the family are provided be-
low:

Powerful Addressing Modes. Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types. The architecture provides for numerous data
types, such as byte, word, doubleword, and BCD, which may
be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case
instructions that compilers can't use, the Series 32000 fami-
ly incorporates powerful instructions for control operations,
such as array indexing and external procedure calls, which
save considerable space and time for compiled code.

Memory-to-Memory Operations. The Series 32000 CPUs
represent two-address machines. This means that each op-
erand can be referenced by any one of the addressing
modes provided.

This powerful memory-to-memory architecture permits
memory locations to be treated as registers for all useful
operations. This is important for temporary operands as well
as for context switching.

Large, Uniform Addressing. The NS32CG16 has 24-bit
address pointers that can address up to 16 megabytes with-
out any segmentation; this addressing scheme provides
flexible memory management without added-on expense.

Modular Software Support. Any software package for the
Series 32000 family can be developed independent of all
other packages, without regard to individual addressing. In
addition, ROM code is totally relocatable and easy to ac-
cess, which allows a significant reduction in hardware and
software cost.

Software Processor Concept. The Series 32000 architec-
ture allows future expansions of the instruction set that can
be executed by special slave processors, acting as exten-
sions to the CPU. This concept of slave processors is
unique to the Series 32000 family. It allows software com-
patibility even for future components because the slave
hardware is transparent to the software. With future ad-
vances in semiconductor technology, the slaves can be
physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro-
vide three primary performance advantages and character-
istics:

* High-Level Language Support

e Easy Future Growth Path

e Application Flexibility

2-97

S1-91D0CESN/0L-91DIZESN

NS32CG16-10/NS32CG16-15

Table of Contents

1.0 PRODUCT INTRODUCTION
1.1 NS32CG 16 Special Features

2.0 ARCHITECTURAL DESCRIPTION
2.1 Register Set
2.1.1 General Purpose Registers
2.1.2 Address Registers
2.1.3 Processor Status Register
2.1.4 Configuration Register
2.2 Memory Organization
2.2.1 Dedicated Tables
2.3 Instruction Set
2.3.1 General Instruction Format
2.3.2 Addressing Modes
2.3.3 Instruction Set Summary
2.4 Graphics Support
2.4.1 Frame Buffer Addressing
2.4.2 BITBLT Fundamentals
2.4.2.1 Frame Buffer Architecutre
2.4.2.2 BIT Alignment
2.4.2.3 Block Boundaries and Destination Masks
2.4.2.4 BITBLT Directions
2.4.2.5 BITBLT Variations
2.4.3 Graphics Support Instructions
2.4.3.1 BITBLT (Bit-aligned BLock Transfer)
2.4.3.2 Pattern Fill
2.4.3.3 Data Compression, Expansion and
Magnify
2.4.3.3.1 Magnifying Compressed Data

3.0 FUNCTIONAL DESCRIPTION
3.1 Power and Grounding
3.2 Clocking
3.2.1 Power Save Mode
3.3 Resetting
3.4 Bus Cycles
3.4.1 Bus Status
3.4.2 Basic Read and Write Cycles
3.4.3 Cycle Extension
3.4.4 Data Access Sequences
3.4.4.1 Bit Accesses
3.4.4.2 Bit Field Accesses
3.4.4.3 Extending Multiple Accesses
3.4.5 Instruction Fetches
3.4.6 Interrupt Control Cycles

3.0 FUNCTIONAL DESCRIPTION (Continued)
3.4.7 Slave Processor Communication
3.4.7.1 Slave Processor Bus Cycles
3.4.7.2 Slave Operand Transfer Sequences
3.5 Bus Access Control
3.6 Instruction Status
3.7 Exception Processing
3.7.1 Exception Acknowledge Sequence
3.7.2 Returning from an Exception Service Procedure
3.7.3 Maskable Interrupts
3.7.3.1 Non-Vectored Mode
3.7.3.2 Vectored Mode: Non-Cascaded Case
3.7.3.3 Vectored Mode: Cascaded Case
3.7.4 Non-Maskable Interrupt
3.7.5 Traps
3.7.6 Instruction Tracing
3.7.7 Priority Among Exceptions

3.7.8 Exception Acknowledge Sequences: Detailed
Flow

3.7.8.1 Maskabie/Non-Maskable Interrupt
Sequence

3.7.8.2 Trap Sequence: Traps Other Than Trace
3.7.8.3 Trace Trap Sequence
3.8 Slave Processor Instructions
3.8.1 Slave Processor Protocol
3.8.2 Floating Point Instructions

4.0 DEVICE SPECIFICATIONS

4.1 NS32CG16 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input-Output Signals
4.2 Absolute Maximum Ratings
4.3 Electrical Characteristics
4.4 Switching Characteristics

4.4.1 Definitions

4.4.2 Device Testing

4.4.3 Timing Tables

4.4.3.1 Output Signals: Internal Propagation
Delays

4.4.3.2 Input Signal Requirements
4.4.4 Timing Diagrams

Appendix A: INSTRUCTION FORMATS

2-98

List of lllustrations
NSB2CG 16 INtOrNal ROGISIONS ...t vit ittt ittt ittt ettt aetsaetetssereensenetsereenarnosensnensnens
Processor Status Registar (PSR) uiu ettt et ettt e
Configuration REGISIEr (CFG) ..o vt ent it it eteentet et eteaeneasnaenensensaseassssoononestonensnsneansssenoos
Module DesCriptor FOMMAL.ottt ettt ettt ettt et e et et e e ettt
A SAMPIE LMK TADIE 4 et itte ittt i ettt teeeeneneeasasnensoaeueneanenesnsosensnssssssoeneonassnsasonssans
General INSUCHON FOMMAL . . o\ u vttt i i it it ittt e et o it anettsieeneenroasenasonnns
Index Byte Format
Displacement Encodings
Correspondence between Linear and Cartesian Addressing
32-Pixel by 32-Scan Ling Frame BUfer.ottt ittt ettt taaenietetesaaaorosuoenesneoisrnsrsssansess
[0 =T F=T o] ot ol = T =] o Yo (-
B BINStUCHONS FOMMAL . . oottt it sttt ettt ettt e eenstiosarnesesnenetonsnsonosossnennsans
BITWT INStruction FOrMat . ..o v vttt ettt ettt et e e et et e e e nieennerasssssnesacanssnnnenns
EXTBLT INStruction FOMMAt .« .\ v ottt ettt ittt teeeeeteanontsenesinseneenesensenasonssaeenuonesroenessassons
MOVMPI INSHUCHON FOMMAL « o« vttt ettt ettt et ettt ettt ees e neee e taeensesatneioenenssesusosseraansons
TBITS INStruction FOMMAL ... v ittt ittt ettt ittt et eeneanetsanenaeraesnnenntosenasaneenesoness
SBITS INSIUCHON FOMMAE &0\ttt tttt et ittt ittt s e et et ettt eneaseueanonsnasosnsesosatrnseesssneenencns
SBITPS Instruction Format
Bus Activity for a Simple BITBLT Operation
Power and Ground Connections
(0757 €= [T =T T3 T=T o 1o o -
Power-On Reset Requirements
General BeSet TIMINGSttt ittt et e ettt ettt ettt e e et e eat e e et saeaenenentaeantnarananss
L= 1T O] 4 =T T4
L= T Ot T 11 o
R L 03 L= T 111 T
Cycle Extension of aRead CyCleottt i i e e ittt it e e
L LT T T L1 = ot
Slave Processor Connections
Slave Processor Read Cycle
Slave Processor Wt CyClB. v vttt ittt ettt ettt ettt e et aeatesanesesaseaneesasussnennocenasnnes
HOLD Timing, BUs INally 1018 . .+« v\ et ettt et teee e ettt eeeette st ateeeesneeannnseeenenareeasnonasesnnares
HOLD Timing, Bus INitially NOTIGIEo evtttt ettt ettt ette ettt e eteneneaanr e ennsaneeennsranressnronnennnces
Interrupt Dispatch and Cascade Tablesvuueutet ettt tenetetentieanesaneeenesnoosnsnnsenseesnsonassans
Exception ACKNOWIBAge SEQUENCE . . .ttt vttt ittt et enettssatenaanseennerustsiosutsossneesserooesasenns
Return from Trap (RETTN) INStruction FIOW . . .o v vt ettt ittt i e ittt et ieonenaeanertnarenanennns
Return from Interrupt (RETI) Instruction Flow
Interrupt Control Unit Connections (16 Levels)
Cascaded Interrupt Control Unit Connections

Service Sequence

S1aVe ProCeSSOr PrOtOCO! & o vt u ittt vttt e e e etees ot tseensateneneaeestorossesenesnsntsasssosnsnnsas veen3-22
Slave Processor Status WOrd FOIMaE o.vuvutvtinnnn e iet st iienesnsstonessonesesernsissresroesacnesns 3-23
7T Tt (Lo gl B o - T N 441
Timing Specification Standard (CMOS OUtPUL SIGNAIS) + ..o v v vttt ierirerecnsirernenerontnreneronsestersnonns 4-2
Timing Specification Standard (TTL Input Signals)ovviiiiiiiiniiiiiiiiiniiiiinsienens e R 2}
Test Loading Configuration.............. st e TS 4-4
Read Cycle

Write Cycle

HOLD Acknowledge Timing (Bus Initially Not idle)

HOLD Timing (Bus INItially 1A18) .. v v vt tvteeeetrereernninereerrneerssieeeesieenes e

DMAC INItIAtad BUS CYCIB « 1o vt v e ittt ittt ittt te ettt iasttsaonsnnsnrenensenenessessnenennansononsns

2-99

S1-91LDOCESN/0L-91DIZESN

NS32CG16-10/NS32CG16-15

List of lllustrations (continued)

Slave Processor Write TimiNg. ve ittt ittt ittt ien v reeeataeneneansnsarenioseneneonenens

Slave ProcessorRead Timingovvvvviveieninensns

SPCTIMING « e vttt etiee e etiieeeerieeeeeeneeeennnes

Relationship of PFS to Clock Cycles

Relationship between Last Data Transfer of an Instruction and PFS Pulse of Next Instructionc...ccvveerinnnnn. 4-14

Guaranteed Delay, PFS to NON-Sequential FEICNevvteeetrttiiirieeeteeeeeeeeereeaneneaenenaaaeeeeneenens 4-15

Guaranteed Delay, Non-Sequential Fetch to PFS.vuvtiiiiiii ettt ettt ieraeianaaaaas 4-16

Relationship of ILO to First Operand Cycle of an Interlocked Instruction e ree e Cereeeie e 4-17

Relationship of ILO to Last Operand Cycle of an Interlocked INSrUCHON v vvveiieeeseeerereeeeeanennriirareeaans 4-18

Relationship 0f TLO to ANy CIOCK CYCI8 .. vvvvvreerereereereeernrniniereeereennes i, e, 4-19

ClockWaveformsc.oiviiiiiiiienniiinenennnnenn.

Power-OnReset

Non-Power-On Reset

TNT Interrupt Signal Detection e e e e e 4-23

NMIIREITUDE SIGNEAI TIMING .+ 2 v vt ete e eeee et et ee ettt eeeeentneaaeesaesesnerneesesannnnnnsanaaesaeeennnsnnnnnns 4-24
List of Tables o

NS32CG16 AdAreSSING MOTBSo e i ur ittt ettt eenestasenanenenssscssneasnnsaessosnsesarasassnsses

NS32CG16 Instruction Set Summary e

‘OP and ‘I' Field ENCOTINGS ... vuiiniiiiiit it ittt ittt ittt a e et e enanstsanssensnensosnsnsass

External Oscillator Specifications. R e, N 3-1

BUS Gy CatOgOMES . . o vttt e ettt eentteteenennvaeereoensueensossoanesensnsessssnoesnsnnensansneonsnseesanos 3-2

ACCESS Sequencesviun Cereeieas R e [N F N fevesrecnnien cerern3-8

InterruptSequences.......................: .. 3-4

Floating Point Instruction Protocols.......... RN Creeeriereens e e e e 3-5

Test Loading Characteristics

2-100

1.0 Product Information (continued)
1.1 NS32CG16 SPECIAL FEATURES

In addition to the above Series 32000 features, the
NS32CG16 provides features that make the device ex-
tremely attractive for a wide range of applications where
graphics support, low chip count, and low power consump-
tion are required.

The most relevant of these features are the graphics sup-
port capabilities, that can be used in applications such as
printers, CRT terminals, and other varisties of display sys-
tems, where text and graphics are to be handled.

Graphics support is provided by eighteen instructions that
allow operations such as BITBLT, data compression/expan-
sion, fills, and line drawing, to be performed very efficiently.
In addition, the device can be easily interfaced to an exter-
nal BITBLT Processing Unit (BPU) for high BITBLT perform-
ance.

The NS32CG16 allows systems to be built with a relatively
small amount of random logic. The bus is highly optimized
to allow simple interfacing to a large variety of DRAMs and
peripheral devices. All the relevant bus access signals and
clock signals are generated on-chip. The cycle extension
logic is also incorporated on-chip.

The devics is fabricated in a low-power, double-poly, single
metal, CMOS technology. It also includes a power-save fea-
ture that allows the clock to be slowed down under software
control, thus minimizing the power consumption. This fea-
ture can be used in those applications where power saving
during periods of low performance demand is highly desir-
able.

The bus characteristics and the power save feature are de-
scribed in the "Functional Description” section. A general
overview of BITBLT operations and a description of the
graphics support instructions is provided in Section 2.4. De-
tails on all the NS32CG16 instructions can be found in the
NS32CG16 Printer/Display Processor Programmer’s Refer-
ence Supplement and the related NS32CG16 supplement.

Below is a summary of the instructions that are directly ap-
plicable to graphics along with their intended use.

Instruction Application

BBAND The BitBIt group of instructions provide a

BBOR method of quickly imaging characters, creating

BBFOR patterns, windowing and other block oriented

BBXOR effects.

BBSTOD

BITWT

EXTBLT

MOVMP Move Multiple Pattern is a very fast instruction
for clearing memory and drawing patterns and
lines.

TBITS Test Bit String will measure the length of 1's or

0’s in an image, supporting many data
compression methods (RLL), TBITS may also
be used to test for boundaries of images.

Instruction Application

SBITS Set'Bit String is a very fast instruction for filling
objects, outline characters and drawing
horizontal lines.

The TBITS and SBITS instructions support
Group 3 and Group 4 CCITT communications
(FAX).

Set Bit Perpendicular String is a very fast
instruction for drawing vertical, horizontal and
45° lines.

In printing applications SBITS and SBITPS may
be used to express portrait and landscape
respectively from the same compressed font

SBITPS

data. The size of the character may be scaled as

itis drawn.
SBIT
CBIT
TBIT
IBIT
INDEX

anywhere in memory to be set, cleared, tested
or inverted.

The INDEX instruction combines a multiply-add

sequence into a single instruction. This provides

a fast translation of an X-Y address to a pixel
relative address.

2.0 Architectural Description

2.1 REGISTER SET

The NS32CG16 CPU has 17 internal registers grouped ac-
cording to functions as follows: 8 general purpose, 7 ad-
dress, 1 processor status and 1 configuration. Figure 2-1
shows the NS32CG16 internal registers.

Address General Purpose

<« 32Bits — <« 32Bits —
PC RO
SPO R1
SP1 R2
FP R3
SB R4
INTBASE R5
[wmop R6
R7

Processor Status Configuration

FIGURE 2-1. NS32CG16 Internal Registers

2.1.1 General Purpose Registers

There are eight registers (R0-R7) used for satisfying the
high speed general storage requirements, such as holding
temporary variables and addresses. The general purpose
registers are free for any use by the programmer. They are
32 bits in length. If a general purpose register is specified for

The Bit group of instructions enable single pixels

2-101

G1-91D0CESN/0L-91DIZESN

NS32CG16-10/NS32CG16-15

2.0 Architectural Description (continued)

an operand that is 8 or 16 bits long, only the low part of the
register is used; the high part is not referenced or modified.

2.1.2 Address Registers

The seven address registers are used by the processor to
implement specific address functions. Except for the MOD
register that is 16 bits wide, all the others are 32 bits. In the
NS32CG16 only the lower 24 bits are implemented in the six
32-bit address registers. The top 8 bits are always zero. A
description of the address registers follows.

PC—Program Counter. The PC register is a pointer to the
first byte of the instruction currently being executed. The PC
is used to reference memory in the program section.

SPO, SP1-—Stack Pointers. The SPO register points to the
lowest address of the last item stored on the INTERRUPT
STACK. This stack is normally used only by the operating
system. It is used primarily for storing temporary data, and
holding return information for operating system subroutines
and interrupt and trap service routines. The SP1 register
points to the lowest address of the last item stored on the
USER STACK. This stack is used by normal user programs
to hold temporary data and subroutine return information.

When a reference is made to the selected Stack Pointer
(see PSR S-bit), the terms ‘'SP Register’ or ‘SP’ are used.
SP refers to either SPO or SP1, depending on the setting of
the S bit in the PSR register. If the S bit in the PSR is 0, SP
refers to SPO. If the S bit in the PSR is 1 then SP refers to
SP1.

Stacks in the Series 32000 family grow downward in memo-
ry. A Push operation pre-decrements the Stack Pointer by
the operand length. A Pop operation post-increments the
Stack Pointer by the operand length.

FP—Frame Pointer. The FP register is used by a procedure
to access parameters and local variables on the stack. The
FP register is set up on procedure entry with the ENTER
instruction and restored on procedure termination with the
EXIT instruction.

The frame pointer holds the address in memory occupied by
the old contents of the frame pointer.

SB—Static Base. The SB register points to the global vari-
ables of a software module. This register is used to support
relocatable global variables for software modules. The SB
register holds the lowest address in memory occupied by
the global variables of a module.

INTBASE—Interrupt Base. The INTBASE register holds
the address of the dispatch table for interrupts and traps
(Section 3.2.1).

MOD—Module. The MOD register holds the address of the
module descriptor of the currently executing software mod-
ule. The MOD register is 16 bits long, therefore the module
table must be contained within the first 64 kbytes of memo-
ry.

2.1.3 Processor Status Register

The Processor Status Register (PSR) holds status informa-
tion for the microprocessor.

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all pro-
grams, but the high order eight bits are accessible only to
programs executing in Supervisor Mode.

15 8|7 0

o] [[[1]e[s[uln[z[r[u[k][c]r]c

FIGURE 2-2. Processor Status Register (PSR)

C The C bit indicates that a carry or borrow occurred after
an addition or subtraction instruction. It can be used with
the ADDC and SUBC instructions to perform multiple-
precision integer arithmetic calculations. It may have a
setting of O (no carry or borrow) or 1 (carry or borrow).

T The T bit causes program tracing. If this bitis setto 1, a
TRC trap is executed after every instruction (Section
3.7.6).

L The L bitis altered by comparison instructions. In a com-
parison instruction the L bit is set to “1” if the second
operand is less than the first operand, when both oper-
ands are interpreted as unsigned integers. Otherwise, it
is set to “0". In Floating-Point comparisons, this bit is
always cleared.

K Reserved for use by the CPU.

Reserved for use by the CPU.

F The F bit is a general condition flag, which is altered by
many instructions (e.g., integer arithmetic instructions
use it to indicate overflow).

Z The Z bitis altered by comparison instructions. In a com-
parison instruction the Z bit is set to “1” if the second
operand is equal to the first operand; otherwise it is set
to “0".

N The N bit is altered by comparison instructions. In a
comparison instruction the N bit is set to “1” if the sec-
ond operand is less than the first operand, when both
operands are interpreted as signed integers. Otherwise,
it is set to “0".

U If the U bitis 1" no privileged instructions may be exe-
cuted. If the U bit is “0” then all instructions may be
executed. When U=0 the processor is said to be in Su-
pervisor Mode; when U= 1 the processor is said to be in
User Mode. A User Mode program is restricted from exe-
cuting certain instructions and accessing certain regis-
ters which could interfere with the operating system. For
example, a User Mode program is prevented from
changing the setting of the flag used to indicate its own
privilege mode. A Supervisor Mode program is assumed
to be a trusted part of the operating system, hence it has
no such restrictions.

S The S bit specifies whether the SPO register or SP1 reg-
ister is used as the Stack Pointer. The bit is automatical-
ly cleared on interrupts and traps. It may have a setting
of 0 (use the SPO register) or 1 (use the SP1 register).

P The P bit prevents a TRC trap from occurring more than
once for an instruction (Section 3.7.6). It may have a
setting of 0 (no trace pending) or 1 (trace pending).

I If I=1, then all interrupts will be accepted. If I=0, only
the NMI interrupt is accepted. Trap enables are not af-
fected by this bit.

~

2-102

2.0 Architectural Description (continued)

B Reserved for use by the CPU. This bit is set to 1 during
the execution of the EXTBLT instruction and causes the
BPU signal to become active. Upon reset, B is set to
zero and the BPU signal is set high.

Note 1: When an interrupt is acknowledged, the B, |, P, S and U bits are set
to zero and the BPU signal Is set high. A return from interrupt will
restore the original values from the copy of the PSR register saved
in the interrupt stack.

Note 2: If BITBLT (BB) instructions are executed in an interrupt routine, the
PSR bits J and K must be cleared first.

2.1.4 Configuration Register

The Configuration Register (CFG) is 8 bits wide, of which
four bits are implemented. The implemented bits are used to
declare the presence of certain external devices and to se-
lect the clock scaling factor. CFG is programmed by the
SETCFG instruction. The format of CFG is shown in Figure
2-3. The various control bits are described below.

7 0

| [| [efm[e[i

FIGURE 2-3. Configuration Register (CFG)

I Interrupt vectoring. This bit controls whether maskable
interrupts are handled in nonvectored (I =0) or vectored
(1= 1) mode. Refer to Section 3.2.3 for more information.

F Floating-point instruction set. This bit indicates whether
a floating-point unit (FPU) is present to execute floating-
point instructions. If this bit is 0 when the CPU executes
a floating-point instruction, a Trap (UND) occurs. If this
bit is 1, then the CPU transfers the instruction and any
necessary operands to the FPU using the slave-proces-
sor protocol described in Section 3.1.4.1.

M Clock scaling. This bit is used in conjuction with the C bit
to select the clock scaling factor.

C Clock scalfng. Same as the M bit above. Refer to Sec-
tion 3.2.1 on ““Power Save Mode” for details.

2.2 MEMORY ORGANIZATION

The main memory of the NS32CG16 is a uniform linear ad-
dress space. Memory locations are numbered sequentially
starting at zero and ending at 224—1. The number specify-
ing a memory location is called an address. The contents of
each memory location is a byte consisting of eight bits. Un-
less otherwise noted, diagrams in this document show data
stored in memory with the lowest address on the right and
the highest address on the left. Also, when data is shown
vertically, the lowest address is at the top of a diagram and
the highest address at the bottom of the diagram. When bits
are numbered in a diagram, the least significant bit is given
the number zero, and is shown at the right of the diagram.
Bits are numbered in increasing significance and toward the
left.

Byte at Address A

Two contiguous bytes are called a word. Except where not-
ed, the least significant byte of a word is stored at the lower
address, and the most significant byte of the word is stored
at the next higher address. In memory, the address of a
word is the address of its least significant byte, and a word
may start at any address.

15 8|7 0

A+1 A

MsB LSB
Word at Address A

Two contiguous words are called a double-word. Except
where noted, the least significant word of a double-word is
stored at the lowest address and the most significant word
of the double-word is stored at the address two higher. In
memory, the address of a double-word is the address of its
least significant byte, and a double-word may start at any
address.

31 24
A+3

23 16
A+2

15 8|7 0
A+1 A

MsB LsB

Double Word at Address A

Although memory is addressed as bytes, it is actually orga-
nized as words. Therefore, words and double-words that are
aligned to start at even addresses (multiples of two) are
accessed more quickly than words and double-words that
are not so aligned.

2.2.1 Dedicated Tables

Two of the NS32CG16 dedicated registers (MOD and INT-
BASE) serve as pointers to dedicated tables in memory.

The INTBASE register points to the Interrupt Dispatch and
Cascade tables. These are described in Section 3.8.

The MOD register contains a pointer into the Module Table,
whose entries are called Module Descriptors. A Module De-
scriptor contains four pointers, three of which are used by
the NS32CG16. The MOD register contains the address of
the Module Descriptor for the currently running module. It is
automatically updated by the Call External Procedure in-
structions (CXP and CXPD).

The format of a Module Descriptor is shown in Figure 2-4.
The Static Base entry contains the address of static data
assigned to the running module. It is loaded into the CPU
Static Base register by the CXP and CXPD instructions. The
Program Base entry contains the address of the first byte of
instruction code in the module. Since a module may have
multiple entry points, the Program Base pointer serves only
as a reference to find them.

15 0

a |

STATIC BASE

LINK TABLE ADDRESS

PROGRAM BASE

RESERVED

TL/EE/9424-2
FIGURE 2-4. Module Descriptor Format

2-103

GE-919JZESN/01-91DIZESN

NS32CG16-10/NS32CG16-15

2.0 Architectural Description (continued)

The Link Table Address points to the Link Table for the Following Index Bytes come any displacements (addressing
currently running module. The Link Table provides the infor- constants) or immediate values associated with the select-
mation needed for: ed addressing modes. Each Disp/Imm field may contain
1) Sharing variables between modules. Such variables one of two displacements, or one immediate value. The size
are accessed through the Link Table via the External of a Displacement field is encoded within the top bits of that
addressing mode. field, as shown in Figure 2-8, with the remaining bits inter-

preted as a signed (two's complement) value. The size of an
immediate value is determined from the Opcode field. Both
Displacement and Immediate fields are stored most-signifi-
cant byte first. Note that this is different from the memory
representation of data (Section 2.2).

Some instructions require additional “implied” immediates
and/or displacements, apart from those associated with ad-
dressing modes. Any such extensions appear at the end of
the instruction, in the order that they appear within the list of
operands in the instruction definition (Section 2.3.3).

2) Transferring control from one module to another. This
is done via the Call External Procedure (CXP) instruc-
tion.

The format of a Link Table is given in Figure 2-5. A Link
Table Entry for an external variable contains the 32-bit ad-
dress of that variable. An entry for an external procedure
contains two 16-bit fields: Module and Offset. The Module
field contains the new MOD register contents for the mod-
ule being entered. The Offset field is an unsigned number
giving the position of the entry point relative to the new

module’s Program Base pointer. 7 3|2 0
For further details of the functions of these tables, see the
Series 32000 Instruction Set Reference Manual. GEN. ADDR. MODE REG. NO.
ENTRY |31 l TL/EE/9424-5
0 ABSOLUTE ADDRESS (VARIABLE) FIGURE 2-7. Index Byte Format
1 ABSOLUTE ADDRESS (VARIABLE) 2.3:2 Addressing Modes
The NS32CG16 CPU generally accesses an operand by cal-
2 OFFSET MODULE PRO culating its Effective Address based on information avail-
(PROCEDURE) able when the operand is to be accessed. The method to be
[N e used in performing this calculation is specified by the pro-
TL/EE/9424-3 grammer as an “addressing mode.”
FIGURE 2-5. A Sample Link Table Addressing modes in the NS32CG16 are designed to opti-
2.3 INSTRUCTION SET mally support high-level language accesses to variables. In
nearly all cases, a variable access requires only one ad-
2.3.1 General Instruction Format dressing mode, within the instruction that acts upon that
Figure 2-6 shows the general format of a Series 32000 in- variable. Extraneous data movement is therefore minimized.
struction. The Basic Instruction is one to three bytes long NS32CG16 Addressing Modes fall into nine basic types:

and contains the Opcode and up to two 5-bit General Ad-
dressing Mode (“Gen”) fields. Following the Basic Instruc-
tion field is a set of optional extensions, which may appear
depending on the instruction and the addressing modes se-
lected.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies

Reglster: The operand is available in one of the eight Gen-
eral Purpose Registers. In certain Slave Processor instruc-
tions, an auxiliary set of eight registers may be referenced
instead.

Register Relative: A General Purpose Register contains an
address to which is added a displacement value from the
instruction, yielding the Effective Address of the operand in

: " - mory.
which General Purpose Register to use as the index, and memory
which addressing mode calculation to perform before index-
ing. See Figure 2-7.
OPTIONAL BASIC
EXTENSIONS INSTRUCTION
A : A
'd N \
DISP2 IDISP1 olspzlmsm
IMPLIED INDEX INDEX GEN GEN
IMMEDIATE pISP DISP ADDR ADDR OPCODE
OPERAND(S) BYTE BYTE Moo MoE
IMM MM
t —
J

TL/EE/9424-4
FIGURE 2-6. General Instruction Format

2-104

2.0 Architectural Description (continued)

Memory Space: |dentical to Register Relative above, ex-
cept that the register used is one of the dedicated registers
PC, SP, SB or FP. These registers point to data areas gen-
erally needed by high-leve! languages.

Memory Relative: A pointer variable is found within the
memory space pointed to by the SP, SB or FP register. A
displacement is added to that pointer to generate the Effec-
tive Address of the operand.

Byte Displacement: Range —64 to +63

0 SIGNED DISPLACEMENT

Word Displacement: Range —8192 to +8191

|
L w‘”’a“

5

1

Double Word Displacement:
Range (Entire Addressing Space)

o

Sl

©)
0\
&
o

TL/EE/9424-6
FIGURE 2-8. Displacement Encodings

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written.

Absolute: The address of the operand is specified by a
displacement field in the instruction.

External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis-
placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SPO or
SP1) specifies the location of the operand. The operand is
pushed or popped, depending on whether it is written or
read.

Scaled Index: Although encoded as an addressing mode,
Scaled Indexing is an option on any addressing mode ex-
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen-
eral Purpose Register by 1, 2, 4 or 8 and adding into the
total, yielding the final Effective Address of the operand.
Table 2-1 is a brief summary of the addressing modes. For a
complete description of their actions, see the Series 32000
Instruction Set Reference Manual.

In addition to the general modes, Register-Indirect with
auto-increment/decrement and warps or pitch are available
on several of the graphics instructions.

2-105

S1-91DJCESN/0L-91DIZESN

NS32CG16-10/NS32CG16-15

ENCODING
Register
00000
00001
00010
00011
00100
00101
00110
00111
Register Relative
01000
01001
01010
01011
01100
01101
01110
01111
Memory Relative
10000
10001
10010

Reserved
10011
Immediate
10100

Absolute
10101
External
10110

Top Of Stack
10111

Memory Space
11000

11001

11010

11011

Scaled Index
11100

11101

11110

11111

MODE

Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7

Register 0 relative
Register 1 relative
Register 2 relative
Register 3 relative
Register 4 relative
Register 5 relative
Register 6 relative
Register 7 relative

Frame memory relative
Stack memory relative
Static memory relative

(Reserved for Future Use)

Immediate

Absolute

External

Top of stack

Frame memory
Stack memory
Static memory
Program memory

Index, bytes

Index, words

Index, double words
Index, quad words

2.0 Architectural Description (continued)
TABLE 2-1. NS32CG 16 Addressing Modes

ASSEMBLER SYNTAX

RO or FO
R1orF1
R2orF2
R3orF3
R4 or F4
R5 or F5
R6 or F6
R6 or F7

disp(R0)
disp(R1)
disp(R2)
disp(R3)
,disp(R4)
disp(R5)
disp(R6)
disp(R7)

disp2(disp1 (FP))
disp2(disp1 (SP))
disp2(disp1 (SB))

value

@disp

EXT (disp1) + disp2

TOS

disp(FP)
disp(SP)
disp(SB)
*+ disp

mode[Rn:B]
mode[Rn:W]
mode[Rn:D]
mode[Rn:Q]

EFFECTIVE ADDRESS

None: Operand is in the specified
register.

Disp + Register.

Disp2 + Pointer; Pointer found at
address Disp 1 + Register. “SP”
is either SPO or SP1, as selected

in PSR.

None: Operand is input from
instruction queue.

Disp.

Disp2 + Pointer; Pointer is found
at Link Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Disp + Register; “SP” is either
SPO or SP1, as selected in PSR.

EA (mode) + Rn.

EA (mode) + 2XRn.

EA (mode) + 4XRn.

EA (mode) + 8 XRn.

“Mode" and “n" are contained
within the Index Byte.

EA (modse) denotes the effective
address generated using mode.

2-106

2.0 Architectural Description (continued)

2.3.3 Instruction Set Summary

Table 2-2 presents a brief description of the NS32CG16
instruction set. The Format column refers to the Instruction
Format tables (Appendix A). The Instruction column gives
the instruction as coded in assembly language, and the De-
scription column provides a short description of the function
provided by that instruction. Further details of the exact op-
erations performed by each instruction may be found in the
Series 32000 Instruction Set Reference Manual and the
NS32CG16 Printer/Display Processor Programmer's Refer-
ence.
Notations:
i=Integer length suffix: B = Byte

W= Word

D = Double Word
f="Floating Point length suffix: F = Standard Floating

L=Long Floating

gen= General operand. Any addressing mode can be speci-
fied.

short=A 4-bit value encoded within the Basic Instruction
(see Appendix A for encodings).

imm=Implied immediate operand. An 8-bit value appended
after any addressing extensions.

disp = Displacement (addressing constant): 8, 16 or 32 bits.
All three lengths legal.

reg=Any General Purpose Register: R0-R7.

areg=Any Processor Register: SP, SB, FP, INTBASE,
MOD, PSR, US (bottom 8 PSR bits).

cond=Any condition codse, encoded as a 4-bit field within
the Basic Instruction (see Appendix A for encodings).

TABLE 2-2. NS32CG 16 Instruction Set Summary

MOVES
Format Operation Operands Description
4 MOVi gen,gen Move a value.
2 MOVQi short,gen Extend and move a signed 4-bit constant.
7 MOVMi gen,gen,disp Move multiple: disp bytes (1 to 16).
7 MOVZBW gen,gen Move with zero extension.
7 MOVZID gen,gen Move with zero extension.
7 MOVXBW gen,gen Move with sign extension.
7 MOVXID gen,gen Move with sign extension.
4 ADDR gen,gen Move effective address.
INTEGER ARITHMETIC
Format Operation Operands Description
4 ADDi gen,gen Add.
2 ADDQi short,gen Add signed 4-bit constant.
4 ADDCi gen,gen Add with carry.
4 SUBI gen,gen Subtract.
4 SUBCGI gen,gen Subtract with carry (borrow).
6 NEGi gen,gen Negate (2’s complement).
6 ABSi gen,gen Take absolute value.
7 MULi gen,gen Multiply.
7 QUOI gen,gen Divide, rounding toward zero.
7 REMi gen,gen Remainder from QUO.
7 DIvi gen,gen Divide, rounding down.
7 MODi gen,gen Remainder from DIV (Modulus).
7 MEIi gen,gen Multiply to extended integer.
7 DEIli gen,gen Divide extended integer.
PACKED DECIMAL (BCD) ARITHMETIC
Format Operation Operands Description
6 ADDPi gen,gen Add packed.
6 SUBPI gen,gen Subtract packed.

S1-91DJCESN/0L-91DICESN

NS32CG16-10/NS32CG16-15

2.0 Architectural Description (continued)

TABLE 2-2. NS32CG16 Instruction Set Summary (Continued)

INTEGER COMPARISON
Format Operation Operands Description
4 CMPi gen,gen Compare.
2 CMPQi short,gen Compare to signed 4-bit constant.
7 CMPMi gen,gen,disp Compare multiple: disp bytes (1 to 16).
LOGICAL AND BOOLEAN
Format Operation Operands Description
4 ANDi gen,gen Logical AND.
4 ORi gen,gen Logical OR.
4 BICi gen,gen Clear selected bits.
4 XORi gen,gen Logicat exclusive OR.
6 COMi gen,gen Complement all bits.
6 NOTi gen,gen Boolean complement: LSB only.
2 Scondi gen Save condition code (cond) as a Boolean variable of size i.
SHIFTS
Format Operation Operands Description
6 LSHi gen,gen Logical shift, left or right.
6 ASHi gen,gen Arithmetic shift, left or right.
6 ROTi gen,gen Rotate, left or right.
BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records used in
Pascal. “Extract” instructions read and align a bit field. “Insert” instructions write a bit field from an aligned source.

Format Operation Operands Description
8 EXTi reg,gen,gen,disp Extract bit field (array oriented).
8 INSI reg,gen,gen,disp Insert bit field (array oriented).
7 EXTSi gen,gen,imm,imm Extract bit field (short form).
7 INSSi gen,gen,imm,imm Insert bit field (short form).
8 CVTP reg,gen,gen Convert to bit field pointer.

ARRAYS

Format Operation Operands Description
8 CHECKIi reg,gen,gen Index bounds check.
8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays.

2-108

2.0 Architectural Description (continued)

TABLE 2-2. NS32CG16 Instruction Set Summary (Continued)

STRINGS

String instructions assign specific functions to the General Options on ali string instructions are:

Purpose Registers: B (Backward): Decrement string pointers after each
R4 — Comparison Value step rather than incrementing.

R3 — Translation Table Pointer U (Until match): End instruction if String 1 entry matches
R2 — String 2 Pointer R4.

R1 — String 1 Pointer W (While match): End instruction if String 1 entry does not

match R4.
All string instructions end when RO decrements to zero.

RO — Limit Count

Format Operation Operands Description
5 MOVSi options Move string 1 to string 2.
MOVST options Move string, translating bytes.
5 CMPSi options Compare string 1 to string 2.
CMPST options Compare, translating string 1 bytes.
5 SKPSi options Skip over string 1 entries.
SKPST options Skip, translating bytes for until/while.
JUMPS AND LINKAGE
Format Operation Operands Description
3 JUMP gen Jump.
0 BR disp Branch (PC Relative).
0 Bcond disp Conditional branch.
3 CASEi gen Multiway branch.
2 ACBI short,gen,disp Add 4-bit constant and branch if non-zero.
3 JSR gen Jump to subroutine.
1 BSR disp Branch to subroutine.
1 CXP disp Call external procedure
3 CXPD gen Call external procedure using descriptor.
1 SvC Supervisor call.
1 FLAG Flag trap.
1 BPT Breakpoint trap.
1 ENTER [reg list], disp Save registers and allocate stack frame (Enter Procedure).
1 EXIT [reg list] Restore registers and reclaim stack frame (Exit Procedure).
1 RET disp Return from subroutine.
1 RXP disp Return from external procedure call.
1 RETT disp Return from trap. (Privileged)
1 RETI Return from interrupt. (Privileged)

CPU REGISTER MANIPULATION

Format Operation Operands Description
1 SAVE [reg list] Save general purpose registers.
1 RESTORE [reg list] Restore general purpose registers.
2 LPRi areg,gen Load dedicated register. (Privileged if PSR or INTBASE)
2 SPRi areg,gen Store dedicated register. (Privileged if PSR or INTBASE)
3 ADJSPi gen Adjust stack pointer.
3 BISPSRI gen Set selected bits in PSR. (Privileged if not Byte length)
3 BICPSRi gen Clear selected bits in PSR. (Privileged if not Byte length)
5 SETCFG [option list] Set configuration register. (Privileged)

2-109

G1-91LDIZESN/0L-91LDICESN

NS32CG16-10/NS32CG 16-15

2.0 Architectural Description (continued)

FLOATING POINT
Format

12
12
12
12
MISCELLANEOUS
Format
1
1
1

GRAPHICS
Format

oo otono;

BITS
Format

[s- BB e B R B

TABLE 2-2. NS32CG16 Instruction Set Summary (Continued)

Operation Operands Description

MOVf gen,gen Move a floating point value.

MOVLF gen,gen Move and shorten a long value to standard.

MOVFL gen,gen Move and lengthen a standard value to long.

MOVif gen,gen Convert any integer to standard or long floating.

ROUNDfi gen,gen Convert to integer by rounding.

TRUNCHi gen,gen Convert to integer by truncating, toward zero.

FLOORfi gen,gen Convert to largest integer less than or equal to value.

ADDf gen,gen Add.

SuBf gen,gen Subtract.

MULf gen,gen Multiply.

DiIvf gen,gen Divide.

CMPf gen,gen Compare.

NEGf gen,gen Negate.

ABSf gen,gen Take absolute value.

LFSR gen Load FSR.

SFSR gen Store FSR.

POLYf gen,gen Polynomial Step.

DOTf gen,gen Dot Product.

SCALBf gen,gen Binary Scale.

LOGBf gen,gen Binary Log.

Operation Operands Description

NOP No operation.

WAIT Wait for interrupt.

DIA Diagnose. Single-byte “Branch to Self"” for hardware
breakpointing. Not for use in programming.

Operation Operands Description

BBOR options* Bit-aligned block transfer ‘OR’.

BBAND options Bit-aligned block transfer ‘AND’.

BBFOR Bit-aligned block transfer fast ‘OR’.

BBXOR options Bit-aligned block transfer ‘XOR'.

BBSTOD options Bit-aligned block source to destination.

BITWT Bit-aligned word transfer.

EXTBLT options External bit-aligned block transfer.

MOVMPi Move multiple pattern.

TBITS options Test bit string.

SBITS Set bit string.

SBITPS Set bit perpendicular string.

Operation Operands Description

TBITi gen,gen Test bit.

SBITi gen,gen Test and set bit.

SBITIi gen,gen Test and set bit, interlocked.

CBITi gen,gen Test and clear bit.

CBITIi gen,gen Test and clear bit, interlocked.

IBITi gen,gen Test and invert bit.

FFSi gen,gen Find first set bit.

*Note: Options are controlled by fields of the instruction, PSR status bits, or dedicated register values.

2-110

2.0 Architectural Description (continued)
2.4 GRAPHICS SUPPORT

The following sections provide a brief description of the
NS32CG16 graphics support capabilities. Basic discussions
on frame buffer addressing and BITBLT operations are also
provided. More detailed information on the NS32CG16
graphics support instructions can be found in the
NS32CG16 Printer/Display Processor Programmer’s Refer-
ence.

2.4.1 Frame Buffer Addressing

There are two basic addressing schemes for referencing
pixels within the frame buffer: Linear and Cartesian (or x-y).
Linear addressing associates a single number to each pixel
representing the physical address of the corresponding bit
in memory. Cartesian addressing associates two numbers
to each pixel representing the x and y coordinates of the
pixel relative to a point in the Cartesian space taken as the
origin. The Cartesian space is generally defined as having
the origin in the upper left. A movement to the right increas-
es the x coordinate; a movement downward increases the y
coordinate.

The correspondence between the location of a pixel in the
Cartesian space and the physical (BIT) address in memory
is shown in Figure 2-9. The origin of the Cartesian space
(x=0, y=0) corresponds to the bit address ‘ORG’". Incre-
menting the x coordinate increments the bit address by one.
Incrementing the y coordinate increments the bit address by
an amount representing the warp (or pitch) of the Cartesian
space. Thus, the linear address of a pixel at location (x, y) in
the Cartesian space can be found by the following expres-
sion.
ADDR = ORG + y * WARP + x

Warp is the distance (in bits) in the physical memory space
between two vertically adjacent bits in the Cartesian space.
Example 1 below shows two NS32CG16 instruction se-
quences to set a single pixel given the x and y coordinates.
Example 2 shows how to create a fat pixel by setting four
adjacent bits in the Cartesian space.

Example 1: Set pixel at location (x, y)
Setup: RO x coordinate
R1 y coordinate

Instruction Sequence 1:

MULD WARP, Rl s Y*WARP

ADDD RO, R1 s + X = BIT OFFSET
SBITD R1, ORG s SET PIXEL

Instruction Sequence 2:

INDEXD R1l, (WARP-1), RO ; Y*WARP + X
SBITD Rl, ORG 3 SET PIXEL

Example 2: Create fat pixel by setting bits at locations
(x, ¥), (x+1,y), (x, y+1) and (x+1, y-+1).

Setup: RO x coordinate
R1 y coordinate

Instruction Sequence:

INDEXD R1, (WARP-1), RO BIT ADDRESS

.. we

SBITD 41, ORG SET FIRST PIXEL
ADDQD 1, Rl s (X+1, Y)
SBITD Rl, ORG ; SECOND PIXEL
ADDD (WARP-1), Rl ; (X, Y+1)
SBITD Rl1, ORG s THIRD PIXEL
ADDQD 1, R1 s (X+1, Y+1)
SBITD Rl, ORG s LAST PIXEL
ORG ORG+1 ORG+2
vy ;
J <4— ORG+ WARP
<4— ORG+ 2*WARP
¢
[® (X))
ORG + Y*WARP + X
<
Y A 4

TL/EE/9424-61

FIGURE 2-9. Correspondence between Linear and
Carteslan Addressing

2.4.2 BITBLT Fundamentals

BITBLT, BIT-aligned BLock Transfer, is a general opera-
tor that provides a mechanism to move an arbitrary size
rectangle of an image from one part of the frame buffer
to another. During the data transfer process a bitwise
logical operation can be performed between the source
and the destination data. BITBLT is also called Raster-
Op: operations on rasters. It defines two rectangular ar-
eas, source and destination, and performs a logical oper-
ation (e.g., AND, OR, XOR) between these two areas and
stores the result back to the destination. it can be ex-
pressed in simple notation as:

Source op Destination — Destination
op: AND, OR, XOR, etc.

G1-91DICESN/0L-91DIZESN

NS32CG16-10/NS32CG16-15

2.0 Architectural Description (continued)
2.4.2.1 Frame Buffer Architecture

There are two basic types of frame buffer architectures:
plane-oriented or pixel-oriented. BITBLT takes advantage of
the plane-oriented frame buffer architecture’s attribute of
multiple, adjacent pixels-per-word, facilitating the movement
of large blocks of data. The source and destination starting
addresses are expressed as pixel addresses. The width and
height of the block to be moved are expressed in terms of
pixels and scan lines. The source block may start and end
at any bit position of any word, and the same applies for the
destination block.

2.4.2.2 Bit Alignment

Before a logical operation can be performed between the
source and the destination data, the source data must first
be bit aligned to the destination data. In Figure 2-10, the
source data needs to be shifted three bits to the right in
order to align the first pixel (i.e., the pixel at the top left
corner) in the source data block to the first pixel in the desti-
nation data block.

2.4.2.3 Block Boundaries and Destination Masks

Each BITBLT destination scan line may start and end at any
bit position in any data word. The neighboring bits (bits shar-
ing the same word address with any words in the destination
data block, but not a part of the BITBLT rectangle) of the
BITBLT destination scan line must remain unchanged after
the BITBLT operation.

l— WORD BOUNDARIES 1

Due to the plane-oriented frame buffer architecture, all
memory operations must be word-aligned. In order to pre-
serve the neighboring bits surrounding the BITBLT destina-
tion block, both a left mask and a right mask are needed for
all the leftmost and all the rightmost data words of the desti-
nation block. The left mask and the right mask both remain
the same during a BITBLT operation.

The following example illustrates the bit alignment require-
ments. In this example, the memory data path is 16 bits
wide. Figure 2-10 shows a 32 pixel by 32 scan line frame
buffer which is organized as a long bit stream which wraps
around every two words (32 bits). The origin (top left corner)
of the frame buffer starts from the lowest word in memory
(word address 00 (hex)).

Each word in the memory contains 16 bits, D0~D15. The
least significant bit of a memory word, DO, is defined as the
first displayed pixel in a word. In this example, BITBLT ad-
dresses are expressed as pixel addresses relative to the
origin of the frame buffer. The source block starting address
is 021 (hex) (the second pixel in the third word). The desti-
nation block starting address is 204 (hex) (the fifth pixel in
the 33rd word). The block width is 13 (hex), and the height is
06 (hex) (corresponding to 6 scan lines). The shift value is 3.

PIXEL NUMBERS
WITHIN WORDS

0123456789ABCDEF0123456789ABCDEF

WORD
ADDRESSES

FIGURE 2-10. 32-Pixel by 32-Scan Line Frame Buffer

S$SS555555555555555SSS
$555555555555555S58S8S
S§55555555555585555S8S
SSSSSSSSSSSSSSSSSSSS
S$SSS55555555555S5S58SS
S$SSSSSS5S5SSSSSSSSSSS

DDDDDDDDDDDDDDDDDDDD
pbpppooDODODDDDDDDDDD
DDDDDDODDDDDPDDDDDDDDD
DDDDDODDDDODDDDDDDDD
pooooDDDDDDDDDDDOODDD
ppoopDDDDDDDODDDDDODD

TL/EE/9424-62

2-112

2.0 Architectural Description (continued)

{
1 SCAN LINE
DESTINATION t —
¢ \
[l ’(A) SOURCE
)LD ~ -
SOURCE 1 PIXEL DESTINATION
I)T
b L/
TL/EE/9424-63 TL/EE/9424-64
(a) (b)
FIGURE 2-11. Overlapping BITBLT Blocks
The left mask and the right mask are 0000,1111,1111,1111 UNTIL done horizontally
and 1111,1111,0000,0000 respectively. UNTIL done vertically
Note 1: Zeros in either the Ieft mask or the right mask indicate the destina- RETURN (from BITBLT)

tion bits which will not be modified.

Note 2: The BB(function) and EXTBLT instructions use different set up pa-
rameters, and techniques.

2.4.2,2 BITBLT Directions

A BITBLT operation moves a rectangular block of data in a
frame buffer. The operation itself can be considered as a
subroutine with two nested loops. The loops are preceeded
by setup operations. In the outer loop the source and desti-
nation starting addresses are calculated, and the test for
completion is performed. In the inner loop the actual data
movement for a single scan line takes place. The length of
the inner loop is the number of (aligned) words spanned by
each scan line. The length of the outer loop is equal to the
height (number of scan lines) of the block to be moved. A
skeleton of the subroutine representing the BITBLT opera-
tion follows.
BITBLT: calculate BITBLT setup parameters;
(once per BITBLT operation).

such as

width, height

bit misalignment (shift number)
left, right masks

horizontal, vertical directions

etc

L]

L .

calculate source, dest addresses;
(once per scanline).

move data, (logical operation) and incre-
ment addresses;
(once per word).

OUTERLOOP:

INNERLOOP:

Note: In the NS32CG16 only the setup operations must be done by the

programmer. The inner and outer loops are automatically executed

by the BITBLT instructions.

Each loop can be executed in one of two directions: the
inner loop from left to right or right to left, the outer loop
from top to bottom (down) or bottom to top (up).

The ability to move data starting from any corner of the
BITBLT rectangle is necessary to avoid destroying the
BITBLT source data as a result of destination writes when
the source and destination are overlapped (i.e., when they
share pixels). This situation is routinely encountered while
panning or scrolling.

A determination of the correct execution directions of the
BITBLT must be performed whenever the source and desti-
nation rectangles overlap. Any overlap will result in the de-
struction of source data (from a destination write) if the cor-
rect vertical direction is not used. Horizontal BITBLT direc-
tion is of concern only in certain cases of overlap, as will be
explained below.

Figures 2-11(a) and (b) illustrate two cases of overlap. Here,
the BITBLT rectangles are three pixels wide by five scan
lines high; they overtap by a single pixel in (a) and a single
column of pixels in (b). For purposes of illustration, the
BITBLT is assumed to be carried out pixel-by-pixel. This
convention does not affect the conclusions.

In Figure 2-11(a), if the BITBLT is performed in the UP direc-
tion (bottom-to-top) one of the transfers of the bottom scan
line of the source will write to the circled pixel of the destina-
tion. Due to the overlap, this pixel is also part of the upper-
most scan line of the source rectangle. Thus, data needed
later is destroyed. Therefore, this BITBLT must be per-
formed in the DOWN direction. Another example of this oc-

2-113

G1-91DICESN/01-91DICESN

NS32CG16-10/NS32CG16-15

2.0 Architectural Description (continued)

curs any time the screen is moved in a purely vertical direc-
tion, as in scrolling text. It should be noted that, in both of
these cases, the choice of horizontal BITBLT direction may
be made arbitrarily.

Figure 2-11(b) demonstrates a case in which the horizontal
BITBLT direction may not be chosen arbitrarily. This is an
instance of purely horizontal movement of data (panning).
Because the movement from source to destination involves
data within the same scan line, the incorrect direction of
movement will overwrite data which will be needed later. In
this example, the correct direction is from right to left.

24.2.5 BITBLT Variations

The ‘classical’ definition of BITBLT, as described in “Small-
talk-80 The Language and its Implementation”, by Adele
Goldberg and David Robson, provides for three operands:
source, destination and mask/texture. This third operand is
commonly used in monochrome systems to incorporate a
stipple pattern into an area. These stipple patterns provide
the appearance of multiple shades of gray in single-bit-per-
pixel systems, in a manner similar to the ‘halftone’ process
used in printing.
Texture op1 Source op2 Destination —> Destination

While the NS32CG16 and the external BPU (if used) are
essentially two-operand devices, three-operand BITBLT op-
erations can be implemented quite flexibly and efficiently by
performing the two operations serially.

2.4.3 GRAPHICS SUPPORT INSTRUCTIONS

The NS32CG16 provides eleven instructions for supporting
graphics oriented applications. These instructions are divid-
ed into three groups according to the operations they per-
form. General descriptions for each of them and the related
formats are provided in the following sections.

2.4.3.1 BITBLT (BIT-aligned BLock Transfer)

This group includes seven instructions. They are used to
move characters and objects into the frame buffer which will
be printed or displayed. One of the instructions works in
conjunction with an external BITBLT Processing Unit (BPU)
to maximize performance. The other six are executed by the
NS32CG16.

BIT-aligned BLock Transfer
Syntax: BB(function) Options

Setup: RO base address, source data
R1 base address, destination data
R2 shift value
R3 height (in lines)
R4 first mask
R5 second mask
R6 source warp (adjusted)
R7 destination warp (adjusted)
0(SP) width (in words)

Function: AND, OR, XOR, FOR, STOD

Options: 1A Increasing Address (default option).
When |A is selected, scan lines are
transferred in the increasing BIT/BYTE
order.

DA Decreasing Address.
S True Source (default option).

—8 Inverted Source.

These five instructions perform standard BITBLT operations
between source and destination blocks. The operations
available include the following:

BBAND: src AND dst
—src AND dst
BBOR: src OR dst
—-src OR dst
BBXOR: src XOR dst
—src XOR dst
BBFOR: src OR dst

BBSTOD: src TO dst
—-src TO dst

‘src’ and ‘—src’ stand for ‘True Source’ and ‘Inverted

Source’ respectively; ‘dst’ stands for ‘Destination’.

Note 1: For speed reasons, the BB instructions require the masks to be
specified with respect to the source block. In Figure 2-10 masking
was defined relative to the destination block.

Note 2: The options —S and DA are not available for the BBFOR instruc-
tion.

Note 3: BBFOR performs the same operation as BBOR with IA and S op-
tions.

Note 4: IA and DA are mutually exclusive and so are S and —~S.

Note 5: The width is defined as the number of words of source data to read.

Note 6: An odd number of bytes can be specified for the source warp.
Howaever, word alignment of source scan lines will result in faster
execution.

The horizontal and vertical directions of the BITBLT opera-
tions performed by the above instructions, with the excep-
tion of BBFOR, are both programmable. The horizontal di-
rection is controlled by the IA and DA options. The vertical
direction is controlled by the sign of the source and destina-
tion warps. Figure 2-12 and Table 2-3 show the format of
the BB instructions and the encodings for the ‘op’ and
fields.

23 16|15 8(7 0

000000DXSO0 i|/00001110

T T 17T LB I T T T

* D is set when the DA option is selected
* S is set when the —S option is selected
® X is set for BBAND, and it is clear for all other BB instructions

FIGURE 2-12. BB Instructions Format
TABLE 2-3. ‘op’ and ‘I’ Field Encodings

Instruction Options ‘op’ Field ‘P Field
BBAND Yes 1010 11
BBOR Yes 0110 01
BBXOR Yes 1110 01
BBFOR No 1100 01
BBSTOD Yes 0100 01

BIT-aligned Word Transfer
Syntax: BITWT

Setup: RO Base address, source word
R1 Base address, destination double word
R2 Shift value
The BITWT instruction performs a fast logical OR operation
between a source word and a destination double word,
stores the result into the destination double word and incre-
ments registers RO and R1 by two. Before performing the
OR operation, the source word is shifted left (i.e., in the
direction of increasing bit numbers) by the value in register
R2.

2.0 Architectural Description (continued)

This instruction can be used within the inner loop of a block
OR operation. Its use assumes that the source data is
‘clean’ and does not need masking. The BITWT format is
shown in Figure 2-13.

23 1615 8|7 0
T T T T T T T T

000000000010000100001110

FIGURE 2-13. BITWT Instruction Format

External BITBLT
Syntax: EXTBLT

Setup: RO base addresses, source data
R1 base address, destination data
R2 width (in bytes)
R3 height (in lines)
R4 horizontal increment/decrement
R5 temporary register (current width)
R6 source warp (adjusted)
R7 destination warp (adjusted)

Note 1: RO and R1 are updated after execution to point to the last source
and destination addresses plus related warps. R2, R3 and R5 will
be modified. R4, R6, and R7 are returned unchanged.

Note 2: Source and destination pointers should point to word-aligned oper-

ands to maximize speed and minimize external interface logic.
This instruction performs an entire BITBLT operation in con-
junction with an external BITBLT Processing Unit (BPU).
The external BPU Control Register should be loaded by the
software before the instruction is executed (refer to the
DP8510 or DP8511 data shests for more information on the
BPU). The NS32CG16 generates a series of source read,
destination read and destination write bus cycles until the
entire data block has been transferred. The BITBLT opera-
tion can be performed in either horizontal direction. As con-
trolled by the sign of the contents of register R4,

Depending on the relative alignment of the source and des-
tination blocks, an extra source read may be required at the
beginning of each scan line, to load the pipeline register in
the external BPU. The L bit in the PSR register determines
whether the extra source read is performed. If L is 1, no
extra read is performed. The instructions CMPQB 2,1 or
CMPQB 1,2 could be executed to provide the right setting
for the L bit just before executing EXTBLT. Figure 2-14
shows the EXTBLT format. The bus activity for a simple
BITBLT operation is shown in Figure 2-19.

23 15 8(7 0
T

This instruction stores the pattern in register R3 into the
destination area whose address is in register RO. The pat-
tern count is specified in register R2. After each store oper-
ation the destination address is changed by the contents of
register R1. This allows the pattern to be stored in rows, in
columns, and in any direction, depending on the value and
sign of R1. The MOVMPi instruction format is shown in Fig-
ure 2-15.

23 15 8|7 0

T rrtrr 1y r oo TrT 1 LN R SR S B B |

00000000000111[100001110

rTrrrrrrrr T r T e r ot v T d

000000000001011100001110

FIGURE 2-14. EXTBLT Instruction Format

B.3.2 Pattern Fill

Only one instruction is in this group. It is usually used for
clearing RAM and drawing patterns and lines.
Move Muitiple Pattern
Syntax: MOVMPI
Setup: RO base address of the destination
R1 pointer increment (in bytes)
R2 number of pattern moves
R3 source pattern

Note: R1 and R3 are not modified by the instruction. R2 will always be
returned as zero. RO is modified to reflect the last address into which
a pattern was written.

FIGURE 2-15. MOVMPI Instruction Format

B.3.3 Data COmpresglon, Expansion and Magnity

The three instructions in this group can be used to com-
press data and resfore data from compression. A com-
pressed character set may require from 30% to 50% less
memory space for its storage.

The compression ratio possible can be 50:1 or higher de-
pending on the data and algorithm used. TBITS can also be
used to find boundaries of an object. As a character is need-
ed, the data is expanded and stored in a RAM buffer. The
expand instructions (SBITS, SBITPS) can also function as
line drawing instructions.

Test Bit String
Syntax: TBITS option
Setup: RO base address, source (byte address)

R1 starting source bit offset

R2 destination run length limited code
R3 maximum value run length limit
R4 maximum source bit offset

Option: 1 count set bits until a clear bit is found

0 count clear bits until a set bit is found
Note: RO, R3 and R4 are not modified by the instruction execution. R1

reflects the new bit offset. R2 holds the resuit.

This instruction starts at the base address, adds a bit offset,
and tests the bit for clear if “option” = 0 (and for set if
“option” = 1). If clear (or set), the instruction increments to
the next higher bit and tests for clear (or set). This testing
for clear proceeds through memory until a set bit is found or
until the maximum source bit offset or maximum run length
value is reached. The total number of clear bits is stored in
the destination as a run length value.

When TBITS finds a set bit and terminates, the bit offset is
adjusted to reflect the current bit address. Offset is then
ready for the next TBITS instruction with “option™ = 0. After
the instruction is executed, the F flag is set to the value of
the bit previous to the bit currently being pointed to (i.e., the
value of the bit on which the instruction completed execu-
tion). In the case of a starting bit offset exceeding the maxi-
mum bit offset (R1 = R4), the F flag is set if the option was
1 and clear if the option was 0. The L flag is set when the
desired bit is found, or if the run length equalled the maxi-
mum run length value and the bit was not found. Itis cleared
otherwise. Figure 2-16 shows the TBITS instruction format.

23 15 8|7 0
T

| JN S B S ED B S B D S RN B N A RN B N B N A |

00000000S010011100001110

e S is set for ‘TBITS 1" and clear for ‘TBITS 0"

FIGURE 2-16. TBITS Instruction Format

2-115

S1-919IZESN/0L-91LDIZESN

NS32CG16-10/NS32CG16-15

2.0 Architectural Description (continued)
Set Bit String

Syntax: SBITS
Setup: RO base address of the destination
' R1 starting bit offset (signed)
R2 number of bits to set (unsigned)
R3 address of string look-up table

Note: When the instruction terminates, the registers are returned un-
changed.

SBITS sets a number of contiguous bits in memory to 1, and
is typically used for data expansion operations. The instruc-
tion draws the number of ones specified by the value in R2,
starting at the bit address provided by registers R0 and R1.
In order to maximize speed and allow drawing of patterned
lines, an external 1k byte lookup table is used. The lookup
table is specified in the NS32CG16 Printer/Display Proces-
sor Programmer’s Reference Supplement.

When SBITS begins executing, it compares the value in R2
with 25. If the value in R2 is less than or equal to 25, the F
flag is cleared and the appropriate number of bits are set in
memory. If R2 is greater than 25, the F flag is set and no
other action is performed. This allows the software to use a
faster algorithm to set longer strings of bits. Figure 2-17
shows the SBITS instruction format.

15

LI D B BN B BN B N S |

T
000000000011011

8|7 0

T T TV T TT

100001110

23
T

FIGURE 2-17. SBITS Instruction Format

Set BIT Perpendicular String

Syntax: SBITPS

Setup: RO base address, destination (byte address)
R1 starting bit offset
R2 number of bits to set
R3 destination warp (signed value, in bits)

Note: When the instruction terminates, the RO and R3 registers are re-

turned unchanged. R1 becomes the final bit offset. R2 is zero.
The SBITPS can be used to set a string of bits in any direc-
tion. This allows a font to be expanded with a 90 or 270
degree rotation, as may be required in a printer application.
SBITPS sets a string of bits starting at the bit address speci-
fied in registers RO and R1. The number of bits in the string
is specified in R2. After the first bit is set, the destination
warp is added to the bit address and the next bit is set. The
process is repeated until all the bits have been set. A nega-
tive raster warp offset value leads to a 90 degree rotation. A
positive raster warp value leads to a 270 degree rotation. If
the R3 value is = (space warp +1 or —1), then the resultis
a 45 degree line. If the R3 value is +1 or —1, a horizontal
line results.

SBITS and SBITPS allow expansion on any 90 degree an-
gle, giving portrait, landscape and mirror images from one
font. Figure 2-18 shows the SBITPS instruction format.

23 15 8|7 0

LI | L L L L L UL L

000000000010111100001110

FIGURE 2-18. SBITPS Instruction Format

READ SOURCE READ SOURCE READ SOURCE READ SOURCE
READ DESTINATION READ DESTINATION READ DESTINATION READ DESTINATION
10 DESTIATN 10 GESTAATON 10 DESTRATON 10 DESTRATON
12341234123 4112341234123 4(123412341234/123412341234
e JHUULIL AR ARRRRARTRARARRATRATAL
w T B

[m

il

L

WORD 1 (12 CLOCKS)

o

WORD 2 (12 CLOCKS)

WORD 3 (12 CLOCKS)

FIGURE 2-19. Bus Activity for a Simple BITBLT Operation
Note 1: This example is for a block 4 words wide and 1 line high.
Note 2: The sequence is common with all logical operations of the DP8510/DP8511 BPU.
Note 3: Mask values, shift values and number of bit planes do not affect the performance.
Note 4: Zero wait states are assumed throughout the BITBLT operation.
Note 5: The extra read is performed when the BPU pipeline register needs to be preloaded.

WORD 4 (12 CLOCKS)

TL/EE/9424-66

2-116

2.0 Architectural Description (continued)

B.3.3.1 Magnifying Compressed Data

Restoring data is just one application of the SBITS and
SBITPS instructions. Multiplying the “length” operand used
by the SBITS and SBITPS instructions causes the resuiting
pattern to be wider, or a multiple of “length”.

As the pattern of data is expanded, it can be magnified by
2x, 3x, 4x, ..., 10x and so on. This creates several sizes of
the same style of character, or changes the size of a logo. A
magnify in both dimensions X and Y can be accomplished
by drawing a single line, then using the MOVS (Move String)
or the BB instructions to duplicate the line, maintaining an
equal aspect ratio.

More information on this subject is provided in the
NS32CG16 Printer/Display Processor Programmer’s Refer-
ence Supplement.

3.0 Functional Description

3.1 POWER AND GROUNDING

The NS32CG16 requires a single 5-Volt power supply, ap-
plied on 5 pins. The logic voltage pin (Vccp) supplies the
power to the on-chip logic. The buffer voltage pins
VCCCTTL, VCCFCLK, VCCAD, and VCCIO supply the pow-
er to the on-chip output drivers.

Grounding connections are made on 6 pins. The Logic
Ground Pin (VSSL) provides the ground connection to the
on-chip logic. The buffer ground pins VSSFCLK, VSSNTSO,
VSSHAD, VSSLAD, VSSIO are the ground pins for the on-
chip output drivers.

For optimal noise immunity, the power and ground pins
should be connected to Vg and ground planes respective-
ly. If Vcc and ground planes are not used, single conductors
should be run directly from each V¢g pin to a power point,
and from each GND pin to a ground point. Daisy-chained
connections should be avoided.

Decoupling capacitors should also be used to keep the
noise level to a minimum. Standard 0.1 uF ceramic capaci-
tors can be used for this purpose. In addition, a 1.0 pF
tantalum capacitor should be connected between Vg and
ground. They should attach to Vgg, Vgs pairs as close as
possible to the NS32CG16.

During prototype using wire-wrap or similar methods, the
capacitors should be soldered directly to the power pins of
the NS32CG16 socket, or as close as possible, with very
short leads.

Recommended bypass for production in printed circuit
boards:

+5 Ground Capacitors
VCCL VSSL 0.1 uF Disk Ceramic
1.0 pF Tantulum
VCCIO VSSIO 0.1 pF
VCCCTTL VSSNTSO 0.1 pF
VCCAD VSSLAD 0.1 pF
VCCAD VSSHAD None

VCCFCLK VSSFCLK 0.1 uF

VCCL-VSSL bypass requires a very short lead length and
low inductance on the 0.1 uF capacitor.

Design Notes

When constructing a board using high frequency clocks with
multiple lines switching, special care should be taken to

avoid resonances on signal lines. A separate power and
ground layer is recommended. This is true when designing
boards for the NS32CG16. Switching times of under 5 ns on

~some lines are possible. Resonant frequencies should be

maintained well above the 200 MHz frequency range on
signal paths by keeping traces short and inductance low.
Loading capacitance at the end of a transmission line con-
tributes to the resonant frequency and should be minimized
if possible. Capacitors should be located as close as possi-
ble across each power and ground pair near the
NS32CG16.

Power and ground connections are shown in Figure 3-1.

+5V
veeL
4, OTHER VCC
VCCCTTL, |—y » CONNECTIONS
VCCFCLK, (VCC PLANE)
VCCAD,
veelo
NS32C616
CPU
vsst
) L OTHER GROUND
VSSFCLK, CONNECTIONS
VSSNTSO, (GND PLANE)
VSSHAD,
VSSLAD,
VsSI0

TL/EE/9424-7
FIGURE 3-1. Power and Ground Connections

3.2 CLOCKING

The NS32CG16 provides an internal oscillator that interacts
with an external clock source through two signals; OSCIN
and OSCOUT.

Either an external single-phase clock signal or a crystal can
be used as the clock source. If a single-phase clock source
is used, only the connection on OSCIN is required;
OSCOUT should be left unconnected or loaded with no
more than 5 pF of stray capacitance. The voltage level re-
quirements specified in Section 4.3 must also be met for
proper operation.

When operation with a crystal is desired, a fundamental
mode crystal should be used. In this case, special care
should be taken to minimize stray capacitances and induc-
tances, especially when operating at a crystal frequency of
30 MHz. The crystal, as well as the external RC compo-
nents, should be placed in close proximity to the OSCIN and
OSCOUT pins to keep the printed circuit trace lengths to an
absolute minimum. Figure 3-2 shows the external crystal
interconnections. Table 3-1 provides the crystal characteris-
tics and the values of the RC components, including stray
capacitance, required for various frequencies.

N
> 0SCIN

i
czg éxm Sw

< oscour
$ a R
TL/EE/9424-8

FIGURE 3-2. Crystal Interconnections

2

2-117

G1-9LDIZESN/0L-91DIZESN

NS32CG16-10/NS32CG16-15

3.0 Functional Description (continued)
TABLE 3-1. External Oscillator Specifications
Crystal Characteristics

L/ 1= TSP At-Cut
Tolerancevvveveeiiieiii e 0.005% at 25°C
Stability.oooiiiii 0.01% from 0°C to 70°C
Resonance RPN Fundamental (parallel)
Capacitance
Maximum Series Resistance.............oovveinenn 500
R and C Values
Frequency R1 R2 c1 c2
(MHz) (k) (1)) (pF) (PF)
12 470 120 20 20
16 360 100 20 20
20 270 75 20 20
25 220 68 20 20
30 180 51 20 20

3.2.1 Power Save Mode

The NS32CG16 provides a power save feature that can be
used to significantly reduce the power consumption at times
when the computational demand decreases. The device
uses the clock signal at the OSCIN pin to derive the internal
clock as well as the external signals PHI1, PHI2, CTTL and
FCLK. The frequency of all these clock signals is affected
by the clock scaling factor. Scaling factors of 1, 2, 4 or 8 can
be selected by properly setting the C and M bits in the CFG
register. The power save mode should not be used to re-
duce the clock frequency below the minimum frequency re-
quired by the CPU.

Upon reset, both C and M are set to zero, thus maximum
clock rate is selected.

Due to the fact that the C and M bits are programmed by the
SETCFG instruction, the power save feature can only be
controlled by programs running in supervisor mode.

The following table shows the C and M bit settings for the
various scaling factors, and the resulting supply current for a
crystal frequency of 30 MHz.

Clock Scaling Factor vs Supply Current

c M Scaling CPU Clock Typical lgc
Factor Frequency at +5V

o 0 1 15 MHz 140 mA

0 1 2 7.5 MHz 76 mA

1 0 4 3.75 MHz 42mA

1 1 8 1.88 MHz 25mA

EXTERNAL RESET !
(OPTIONAL) V=
]

RESET SWITCH
(OPTIONAL)

3.3 RESETTING

The RSTI input pin is used to reset the NS32CG16. The
CPU samples RSTI on the falling edge of CTTL.

Whenever a low level is detected, the CPU responds imme-
diately. Any instruction being executed is terminated; any
results that have not yet been written to memory are dis-
carded; and any pending interrupts and traps are eliminated.
The internal latch for the edge-sensitive NMI signal is
cleared.

On application of power, RSTI must be held low for at least
50 us after Vg is stable. This is to ensure that all on-chip
voltages are completely stable before operation. Whenever
a Reset is applied, it must also remain active for not less
than 64 CTTL cycles. See Figures 3-3 and 3-4.

While in the Reset state, the CPU drives the signals ADS,
RD, WR, DBE, TS0, BPU, and DDIN inactive. ADO~AD15,
A16-A23 and SPC are floated, and the state of all other
output signals is undefined.

The internal CPU clock, PHI1, PHI2 and CTTL all run at half
the frequency of the signal on the OSCIN pin. FCLK runs at
the same frequency of OSCIN.

The HOLD signal must be kept inactive. After the RSTI sig-
nal is driven high, the CPU will stay in the reset condition for
approximately 8 clock cycles and then it will begin execution
at address 0.

The PSR is reset to 0. The CFG C and M bits are reset to 0.
NMI is enabled to allow Non-Maskable Interrupts. The fol-
lowing conditions are present after reset due to the PSR
being reset to 0:

Tracing is disabled.

Supervisor mode is enabled.

Supervisor stack space is used when the TOS addressing
mode is indicated.

No trace traps are pending.

Only NMI is enabled. INT is not enabled.

BPU is inactive high.

The Clock Scaling Factor is set to 1, refer to Section 3.2.1.
Note that vector/non-vectored interrupts have not been se-
lected. While interrupts are disabled, a SETCFG [I] instruc-
tion must be executed to declare the presence of the
NS32202 if vectored interrupts are desired. If non-vectored
interrupts are required, a SETCFG without the [I] must be
executed.

The presence/absence of the NS32081 or NS32381 has
also not been declared. If there is a Floating Point Unit, a
SETCFG [F] instruction must be executed. If there is no
floating point unit, a SETCFG without the [F] must be exe-
cuted.

NS32CG16

STl RSTO

System RESET

>50us

TL/EE/9424-67

FIGURE 3-2a. Recommended Reset Connections

3.0 Functional Description (continued)

In general, a SETCFG instruction must be executed in the
reset routine, in order to properly configure the CPU. The
options should be combined, and executed in a single in-
struction. For example, to declare vectored interrupts, a
Floating Point unit installed, and full CPU clock rate, execute
a SETCFG [F, 1] instruction. To declare non-vectored inter-
rupts, no FPU, and full CPU clock rate, execute a
SETCFG [] instruction.

¢

4.5 2},
Vcc[/

cm.[I | I | l l I I
= 64 CLOCK
[CYCLES

I's
3

[——

250us
TL/EE/9424-9
FIGURE 3-3. Power-On Reset Requirements

= 64 CLOCK
CYCLES
R_S"[‘

3T

TL/EE/9424-10
FIGURE 3-4. General Reset Timing

3.4 BUS CYCLES

The CPU will perform a bus cycle for one of the following

reasons:

1) To write or read data, to or from memory or peripheral
devices. Peripheral input and output are memory-
mapped in the Series 32000 family.

2) To fetch instructions into the eight-byte instruction
queue. This happens whenever the bus would otherwise
be idle and the queue is not already full.

3) To acknowledge an interrupt and allow external circuitry
to provide a vector number, or to acknowledge comple-
tion of an interrupt service routine.

4) To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 3 above are identi-

cal. For timing specifications, see Section 4. The only exter-

nal difference between them is the four-bit code placed on
the Bus Status pins (STO-ST3). Slave Processor cycles dif-
fer in that separate control signals are applied (Section

3.4.7).

3.4.1 Bus Status

The NS32CG16 CPU presents four bits of Bus Status infor-
mation on pins STO-ST3. The various combinations on
these pins indicate why the CPU is performing a bus cycle,
or, if it is idle on the bus, then why it is idle.

The Bus Status pins are interpreted as a four-bit value, with
STO the least significant bit. Their values decode as follows:

0000 — The bus is idle because the CPU does not need
to perform a bus access.

0001~ The bus is idle because the CPU is executing
the WAIT instruction.

0010 — (Reserved for future use.)

0011 —

0100 —

0101 —

0110 —

0111 —

1000 —

1001 —

1010 —

1011 —

1100 —

1101 —

1110 —

1111—

The bus is idle because the CPU is waiting for a
Slave Processor to complete an instruction.

Interrupt Acknowledge, Master.

The CPU is performing a Read cycle to ac-
knowledge an interrupt request. See Section
3.46.

Interrupt Acknowledge, Cascaded.

The CPU is reading an interrupt vector to ac-
knowledge a maskable interrupt request from a
Cascaded Interrupt Control Unit.

End of Interrupt, Master.

The CPU is performing a Read cycle to indicate
that it is executing a Return from Interrupt
(RET]I) instruction at the completion of an inter-
rupt's service procedure.

End of Interrupt, Cascaded.

The CPU is performing a read cycle from a Cas-
caded Interrupt Contro! Unit to indicate that it is
executing a Return from Interrupt (RET!) in-
struction at the completion of an interrupt's
service procedure.

Sequential Instruction Fetch.

The CPU is reading the next sequential word
from the instruction stream into the Instruction
Queue. It will do so whenever the bus would
otherwise be idle and the queue is not already
full.

Non-Sequential Instruction Fetch.

The CPU is performing the first fetch of instruc-
tion code after the Instruction Queue is purged.
This will occur as a result of any jump or branch,
any interrupt or trap, or execution of certain in-
structions.

Data Transfer.

The CPU is reading or writing an operand of an
instruction.

Read RMW Operand.

The CPU is reading an operand which will sub-
sequently be modified and rewritten. The write
cycle of RMW will have a “write” status.

Read for Effective Address Calculation.

The CPU is reading information from memory in
order to determine the Effective Address of an
operand. This will occur whenever an instruc-
tion uses the Memory Relative or External ad-
dressing mode.

Transfer Slave Processor Operand.

The CPU is either transferring an instruction op-
arand to or from a Slave Processor, or it is issu-
ing the Operation Word of a Slave Processor
instruction. See Section 3.9.1.

Read Slave Processor Status.

The CPU is reading a Status Word from a Slave
Processor after the Slave Processor has sig-
nalled completion of an instruction.

Broadcast Slave ID.

The CPU is initiating the execution of a Slave
Processor instruction by transferring the first
byte of the instruction, which represents the
slave processor indentification.

2-119

G1-91DICESN/0L-91DICESN

NS32CG16-10/NS32CG16-15

3.0 Functional Description (continued)

3.4.2 Basic Read and Write Cycles

The sequence of events occurring during a CPU access to
either memory or peripheral device is shown in Figure 3-6
for a read cycle, and Figure 3-7 for a write cycle.

The cases shown assume that the selected memory or pe-
ripheral device is capable of communicating with the CPU at
full speed. If not, then cycle extension may be requested
through CWAIT and/or WAIT1-2.

A full-speed bus cycle is performed In four cycles of the
CTTL clock signal, labeled T1 through T4. Clock cycles not
associated with a bus cycle are designated Ti (for “Idle”).

DDIN

During T1, the CPU applies an address on pins ADO-AD15
and A16-A23. it also provides a low-going pulse on the
ADS pin, which serves the dual purpose of informing exter-
nal circuitry that a bus cycle is starting and of providing con-
trol to an external latch for demultiplexing Address bits 0-
15 from the ADO-AD15 pins. See Figure 3-5. During this
time also the status signals DDIN, indicating the difection of
the transfer, and HBE, indicating whether the high byte
(AD8-AD15) is to be referenced, become valid.

During T2 the CPU switches the Data Bus, ADO-AD15, to
either accept or present data. Note that the signals A16-
A23 remain valid, and need not be latched.

ADO-AD15

N$32CG16

DATA

-

BUFFER

cTTL

cTTL
AD

RD
WA

WR
T80

TS0

TL/EE/9424-11

FIGURE 3-5. Bus Connections

3.0 Functional Description (continued)

[4)(8

A16=-A23

ADQ=AD15

ST0=ST3

DDIN

WAIT1=2

TS0

T4ORTI n 12 13 4 TIORTI
- I
;j ADDRESS VALID NEXT ADDR
7 ADDRESS'__ —do
%(s > @ DATA N) -< NEXT ADDR
STATUS VALID X NEXT STATUS .
-

A

e

VALID

NG

%

N

\
U §

/

\l\'\\\

’

FIGURE 3-6. Read Cycle Timing

TL/EE/98424-12

2-121

S1-91LDICESN/0L-91DIZESN

NS32CG16-10/NS32CG16-15

3.0 Functional Description (continued)

A16=A23

ADO=AD1S

ADS

ST0=ST3

WAIT1=2

T4 ORTi T 2 1+ 4 TORT
ADDRESS VALID X NEXT ADDR
'ADDRESS
%(oRES X DATA oUT XNEXT ADDR
%(STATUS VALID X NEXT STATUS
/ \ NEXT
% VALID X next

NN

\

/

SRR

\

/

FIGURE 3-7. Write Cycle Timing

TL/EE/9424-13

2-122

3.0 Functional Description (continued)
At this time the signals TSO (Timing State Output), DBE
(Data Buffer Enable) and either RD (Read Strobe) or WR
(Write Strobe) will also be activated.

The T3 state provides for access time requirements, and it
occurs at least once in a bus cycle. At the end of T2, on the
rising edge of CTTL, the CWAIT and WAIT1-2 signals are
sampled to determine whether the bus cycle will be extend-
ed. See Section 3.4.3.

If the CPU is performing a read cycle, the data bus
(AD0-AD15) is sampled at the beginning of T4 on the rising
edge of CTTL. Data must, however, be held a little longer to
meet the data hold time requirements. The RD signal is
guaranteed not to go inactive before this time, so its rising
edge can be safely used to disable the device providing the
input data. .

The T4 state finishes the bus cycle. At the beginning of T4,
the RD or WR, and TSO signals go inactive, and on the
falling edge of CTTL, DBE goes inactive, having provided for
necessary data hold times. Data during Write cycles re-
mains valid from the CPU throughout T4. Note that the Bus
Status lines (ST0O-ST3) change at the beginning of T4, an-
ticipating the following bus cycle (if any).

3.4.3 Cycle Extension

To allow sufficient access time for any speed of memory or
peripheral device, the NS32CG16 provides for extension of
a bus cycle. Any type of bus cycle except a Slave Processor
cycle can be extended.

In Figures 3-6 and 3-7, note that during T3 all bus control
signals from the CPU are flat. Therefore, a bus cycle can be
cleanly extended by causing the T3 state to be repeated.
This is the purpose of the WAIT1-2 and CWAIT input sig-
nals.

At the end of state T2, on the rising edge of CTTL, WAIT1-
2 and CWAIT are sampled.

If any of these signals are active, the bus cycle will be ex-
tended by at least one clock cycle. Thus, one or more addi-
tional T3 state (also called wait state) will be inserted after
the next T-State. Any combination of the above signals can
be activated at one time. However, the WAIT1-2 inputs are
only sampled by the CPU at the end of state T2. They are
ignored at all other times.

The WAIT1-2 inputs are binary weighted, and can be used
to insert up to 3 wait states, according to the following table.

. — Number of
WAIT2 WAIT1 Wait States
HIGH HIGH 0
HIGH LOW 1
LOW HIGH 2
Low LOW 3

CWAIT causes wait states to be inserted continuously as
long as it is sampled active. It is normally used when the
number of wait states to be inserted in the CPU bus cycle is
not known in advance.

The following sequence shows the CPU response to the
WAIT1-2 and CWAIT inputs.

1. Start bus cycle.

2. Sample WAIT1-2 and CWAIT at the end of state T2.

3. If the WAIT1-2 inputs are both inactive, then go to step
6.

4. Insert the number of wait states selected by WAIT1-2,
5. Sample CWAIT again.

6. If CWAIT is not active, then go to step 8.

7. Insert one wait state and then go to step 5.

8. Complete bus cycle.

Figure 3-8 shows a bus cycle extended by three wait states,
two of which are due to WAIT2, and one is due to CWAIT.

3.4.4 Data Access Sequences

The 24-bit address provided by the NS32CG16 is a byte
address; that is, it uniquely identifies one of up to
16,777,216 eight-bit memory locations. An important feature
of the NS32CG16 is that the presence of a 16-bit data bus
imposes no restrictions on data alignment; any data item,
regardless of size, may be placed starting at any memory
address. The NS32CG16 provides a special control signal,
High Byte Enable (HBE), which facilitates individual byte ad-
dressing on a 16-bit bus.

Memory is organized as two eight-bit banks, each bank re-
ceiving the word address (A1-A23) in parallel. One bank,
connected to Data Bus pins ADO-AD?7, is enabled to re-
spond to even byte addresses; i.e., when the least signifi-
cant address bit (A0) is low. The other bank, connected to
Data Bus pins AD8-AD15, is enabled when HBE is low. See
Figure 3-9.

HBE AN(LBE)
8IS 8BITS

A1-A23

1{y
Ly
\
3
\

16 BITS DATA

TL/EE/8424-15

FIGURE 3-9. Memory Interface

Any bus cycle falls into one of three categories: Even Byte
Access, Odd Byte Access, and Even Word Access. All ac-
cesses to any data type are made up of sequences of these
cycles. Table 3-2 gives the state of A0 and HBE for each
category.

TABLE 3-2. Bus Cycle Categories

Category HBE A0
Even Byte 1 0
Odd Byte 0 1
Even Word 0 [}

2-123

G1-91DICESN/01-91DIZESN

NS32CG16-10/NS32CG16-15

3.0 Functional Description (continusd)

A16-A23

ADO=-AD15

DOIN

HBE

WAIT2

WAIT1

CWAIT

3l

FIGURE 3-8. Cycle Extension of a Read Cycle

X X
DX~ (D
) \/
N /
X X_

4 W

7 0

X NI 0

\ ST

TL/EE/9424-14

2-124

3.0 Functional Description (continued)

Accesses of operands requiring more than one bus cycle
are performed sequentially, with no idle T-States separating
them. The number of bus cycles required to transfer an op-
erand depends on its size and its alignment (i.e., whether it
starts on an even byte address or an odd byte address).
Table 3-3 lists the bus cycle performed for each situation.
For the timing of A0 and HBE, see Section 3.4.2.

3.4.4.1 Bt Accesses

The Bit Instructions perform byte accesses to the byte con-
taining the designated bit. The Test and Set Bit instruction
(SBIT), for example, reads a byte, alters it, and rewrites it,
having changed the contents of one bit.

3.4.4.2 Bit Field Accesses

An access to a Bit Field in memory always generates a Dou-
ble-Word transfer at the address containing the least signifi-
cant bit of the field. The Double Word is read by an Extract
instruction; an Insert instruction reads a Double Word, modi-
fies it, and rewrites it.

3.4.4.3 Extending Multiply Accesses

The Multiply Extended Integer (MEI) instruction will return a
result which is twice the size in bytes of the operand it
reads. If the multiplicand is in memory, the most-significant
half of the result is written first (at the higher address), then
the least-significant half.

3.4.5 Instruction Fetches

Instructions for the NS32CG16 CPU are “prefetched”; that
is, they are input before being needed into the next available
entry of the eight-byte Instruction Queue. The CPU performs

two types of Instruction Fetch cycles: Sequential and Non-
Sequential. These can be distinguished from each other by
their differing status combinations on pins STO-ST3 (Sec-
tion 3.4.1).

A Sequential Fetch will be performed by the CPU whenever
the Data Bus would otherwise be idle and the Instruction
Queus is not currently full. Sequential Fetches are always
Even Word Read cycles (Table 3-2).

A Non-Sequential Fetch occurs as a result of any break in
the normally sequential flow of a program. Any jump or
branch instruction, a trap or an interrupt will cause the next
Instruction Fetch cycle to be Non-Sequential. In addition,
certain instructions flush the instruction queus, causing the
next instruction fetch to display Non-Sequential status. Only
the first bus cycle after a break displays Non-Sequential
status, and that cycle is either an Even Word Read or an
Odd Byte Read, depending on whether the destination ad-
dress is even or odd.

3.4.6 Interrupt Control Cycles

Activating the INT or NMI pin on the CPU will initiate one or
more bus cycles whose purpose is interrupt control rather
than the transfer of instructions or data. Execution of the
Return from Interrupt instruction (RETI) will also cause Inter-
rupt Control bus cycles. These differ from instruction or data
transfers only in the status presented on pins STO-ST3. All
Interrupt Control cycles are single-byte Read cycles.

Table 3-4 shows the Interrupt Control sequences associat-
ed with each interrupt and with the return from its service
routine. For full details of the NS32CG16 interrupt structure,
see Section 3.8.

2-125

G1-91DICESN/0L-9EDIZESN

NS32CG16-10/NS32CG16-15

3.0 Functional Description (continued)

TABLE 3-3. Access Sequences

Cycle Type Address BE A0 High Bus Low Bus
A. Odd Word Access Sequence
BYTE1 | BYTEO |
1 Odd Byte A 0 1 Byte 0 Don’t Care
2 Even Byte A+1 1 0 Don't Care Byte 1
B. Even Double-Word Access Sequence
BYTE 3 BYTE 2 BYTE 1 BYTEO
1 Even Word A 0 0o Byte 1 Byte O
2 Even Word A+2 0 0 Byte 3 Byte 2
C. 0dd Double-Word Access Sequence
BYTE3 | BYTE2 | BYTE1 | BYTEO |
1 Odd Byte A 0 1 Byte 0 Don’t Care
2 Even Word A+1 0 0 Byte 2 Byte 1
3 Even Byte A+3 1 0 Don’t Care Byte 3
D. Even Quad-Word Access Sequence
BYTE 7 | BYTE 6 BYTE § BYTE 4 BYTE 3 BYTE 2 BYTE 1 BYTE 0
1 Even Word A 0 0 Byte 1 Byte 0
2 Even Word A+2 0 0 Byte 3 Byte 2
Other bus cycles (instruction prefetch or slave) can occur here.
3 Even Word A+4 0 0 Byte 5 Byte 4
4 Even Word A+6] 0 Byte 7 Byte 6
E. Odd Quad-Word Access Sequence
BYTE 7 BYTE 6 BYTE 5 BYTE 4 BYTE 3 BYTE 2 BYTE 1 I BYTE OJ
1 Odd Byte A 0 1 Byte O Don’t Care
2 Even Word A+1 0 0 Byte 2 Byte 1
3 Even Byte A+3 1 0 Don’t Care Byte 3
Other bus cycles (instruction prefetch or slave) can occur here.
4 Odd Byte A+4 0 1 Byte 4 Don't Care
5 Even Word A+5 0 Byte 6 Byte 5
6 Even Byte A+7 1 0 Don’t Care Byte 7

2-126

3.0 Functional Description (continued)
TABLE 3-4. Interrupt Sequences
Cycle Status Address DDIN HBE A0 High Bus Low Bus

A. Non-Maskable Interrupt Control Sequence

Interrupt Acknowledge
1 0100 FFFF004¢ 0 1 0 Don’t Care Don't Care

Interrupt Return

G1-91DIZESN/0L-9LDIZESN

None: Performed through Return from Trap (RETT) instruction.

B. Non-Vectored Interrupt Control Sequence

Interrupt Acknowledge
1 0100 FFFEQ0O4g 0 1 0 Don't Care Don't Care

Interrupt Return

None: Performed through Return from Trap (RETT) instruction.

C. Vectored Interrupt Sequence: Non-Cascaded

Interrupt Acknowledge
1 0100 FFFEQ0O046 0 1 0 Don't Care Vector:
Range: 0-127
Interrupt Return
1 0110 FFFE0O1g 0 1 0 Don't Care Vector: Same as
in Previous Int.
D. Vectored Interrupt Sequence: Cascaded Ack. Cycle

Interrupt Acknowledge
1 0100 FFFE0016 0 1 0 Don’t Care Cascade Index:
range —16to —1

(The CPU here uses the Cascade Index to find the Cascade Address.)

2 0101 Cascade 0 1or Oor Vector, range 0-255; on appropriate
Address o* 1* half of Data Bus for even/odd address
Interrupt Return
1 0110 FFFEQO1g 0 1 0 Don’t Care Cascade Index:
same as in
previous Int.
Ack. Cycle

(The CPU here uses the Cascade Index to find the Cascade Address.)
2 0111 Cascade 0 1or Oor Don’t Care Don't Care
Address 0* 1*

* If the Cascaded ICU Address is Even (A0 is low), then the CPU applies HBE high and reads the vector number from bits 0-7 of the Data Bus.

If the address is Odd (A0 is high), then the CPU applies HBE low and reads the vector number from bits 8—15 of the Data Bus. The vector number
may be in the range 0-255.

2-127

NS32CG16-10/NS32CG16-15

3.0 Functional Description (continued)

3.4.7 Slave Processor Communication

The SPC pin is used as the data strobe for Slave Processor
transfers. In a Slave Processor bus cycle, data is transferred
on the Data Bus (ADO-AD15), and the status lines STO-
ST3 are monitored by the Slave Processor in order to deter-
mine the type of transfer being performed. SPC is bidirec-
tional, but is driven by the CPU during all Slave Processor
bus cycles. See Section 3.8 for full protocol sequences.

v
9|
Ol

ADD=AD15

STO-ST3

DS

DOIN

/

7 VALID
» 4%

L/

PREV. CYCLE
T4O0RTI)

AD{(0-15) <:> D(0-15)

SPC SPC
NS32CG16 SLAVE
CcPU PROCESSOR
ST0-ST3 ST0-ST3

TL/EE/9424-16

FIGURE 3-10. Slave Processor Connections

NEXT
T4 TIORT

CYCLE

-
EHE

X NEXT STATUS

/ NEXT

*Note: CPU samples Data Bus here.
FIGURE 3-11. Slave Processor Read Cycle

TL/EE/9424-17

2-128

3.0 Functional Description (continued)

3.4.7.1 Slave Processor Bus Cycles

A Slave Processor bus cycle always takes exactly two clock
cycles, labeled T1 and T4 (see Figures 3-11 and 3-12).
During a Read cycle SPC is active from the beginning of T1
to the beginning of T4, and the data is sampled at the end of
T1. The Cycle Status pins lead the cycle by one clock peri-
od, and are sampled at the leading edge of SPC. During a
Write cycle, the CPU applies data and activates SPC at T1,
removing SPC at T4. The Slave Processor latches status on
the leading edge of SPC and latches data on the trailing
edge.

The CPU does not pulse the Address Strobe {ADS), and no
bus signals are generated. The direction of a transfer is de-
termined by the sequence (“protocol”) established by the
instruction under execution; but the CPU indicates the direc-
tion on the DDIN pin for hardware debugging purposes.

PREV. CYCLE
TAORT m

3.4.7.2 Slave Operand Transfer Sequences

A Slave Processor operand is transferred in one or more
Slave bus cycles. A Byte operand is transferred on the
least-significant byte of the Data Bus (AD0-AD7), and a
Word operand is transferred on the entire bus. A Double
Word is transferred in a consecutive pair of bus cycles,
least-significant word first. A Quad Word is transferred in
two pairs of Slave cycles, with other bus cycles possibly
occurring between them. The word order is from least-signif-
icant word to most-significant.

3.5 BUS ACCESS CONTROL

The NS32CG16 CPU has the capability of relinquishing its
access to the bus upon request from a DMA controller or
another CPU. This capability is implemented on the HOLD
(Hold Request) and HLDA (Hold Acknowledge) pins. By as-

NEXT CYCLE
T4 TTORTH

CITLL_

=L/ N [\

DATA OUT X NEXT

X NEXT STATUS

ADO=AD15
— 7%(
STO-ST3 L ﬁ VALID
A0S
pom /
ABE

NEXT

NEXT

=
S

= |/

*Note: Slave Processor samples Data Bus here.

TL/EE/9424-18

FIGURE 3-12. Slave Processor Write Cycle

2-129

G1-91DJ2ESN/0L-91DIZESN

NS32CG16-10/NS32CG16-15

3.0 Functional Description (continued)

serting HOLD low, an external device requests access to
the bus. On receipt of HLDA from the CPU, the device may
perform bus cycles, as the CPU at this point has set ADO-
AD15, A16~A23 and HBE to the TRI-STATE® condition and
has switched ADS and DDIN to the input mode. The CPU
now monitors ADS and DDIN from the external device to
generate the relevant strobe signals (i.e., TSO, DBE, RD or
WR). To return control of the bus to the CPU, the device
sets HOLD inactive, and the CPU acknowledges return of
the bus by setting HLDA inactive.

How quickly the CPU releases the bus depends on whether
it is idle on the bus at the time the HOLD request is mads,
as the CPU must always complete the current bus cycle.
Figure 3-13 shows the timing sequence when the CPU is

L0,

m e o0

Nisiniuipigiginiin
-\

idle. In this case, the GPU grants the bus during the immedi-
ately following clock cycle. Figure 3-14 shows the sequence
if the CPU is using the bus at the time that the HOLD re-
quest is made. If the request is made during or before the
clock cycle shown (two clock cycles before T4), the CPU
will release the bus during the clock cycle following T4. I
the request occurs closer to T4, the CPU may already have
decided to initiate another bus cycle. In that case it will not
grant the bus until after the next T4 state. Note that this
situation will also occur if the CPU is idle on the bus but has
initiated a bus cycle internally.

Note 1: During DMA cycles the WAIT1-2 signals should be kept inactive,

unless they are also monitored by the DMA controller. If wait states
are required, CWAIT should be used.

Note 2: The logic value of the status pins, ST0-ST3, is undefined during
DMA activity.

T T TiOR T4 TORTH

=)

HLDA \
L e

5 | QI PO

AFFECTED SIGNALS

SR V4

ceeed/

oW cceddfeana Y NEXT
HBE \---. ;}----------/ * NEXT
ADO=AD15 %---.ﬂ.---.-----..-----.-----.-< NEXT ADDR
A16=A23 -aad “---------.-----.(NEXT ADDR
h— A
.."u!f
ST0-573 PREVIOUS W NEXT STATUS

7/

TL/EE/9424-19

FIGURE 3-13. HOLD Timing, Bus Initially Idle

3.0 Functional Description (Continued)

T2 0R T3 3 T4] LA T T T TTORTI
- I—
CTIL
HoLD \ /
g4
17
=4
AFFECTED SIGNALS
03 \....-... .;;.__-..-_---/
DD VALID >....._- .;s.-_-..___--./ Y NEXT
FigE VALID >_--. .;5.---..-----(XNEXT
ADO-AD15 ==t < NExT aDDR
A16=A23 VALID >.-----.§s.-_- S L -<
¢ ¢
STO=ST3 VALID NEXT STATUS
&
TL/EE/9424-20
FIGURE 3-14. HOLD Timing, Bus Initially Not Idle
3.6 INSTRUCTION STATUS PFS (Program Flow Status) is pulsed low as each instruction

In addition to the four bits of Bus Cycle status (STO-ST3),
the NS32CG16 CPU also presents Instruction Status infor-
mation on three separate pins. These pins differ from STO-
ST3 in that they are synchronous to the CPU’s internal in-
struction execution section rather than to its bus interface

section.

begins execution. It is intended for debugging purposes.

U/S originates from the U bit of the Processor Status Regis-
ter, and indicates whether the CPU is currently running in
User or Supervisor mode. Although it is not synchronous to
bus cycles, there are guarantees on its validity during any
given bus cycle. See the Timing Specifications in Section 4.

2-131

G1-91DJZESN/0L-9LDIZESN

NS32CG16-10/NS32CG16-15

3.0 Functional Description (continued)

TLO (Interlocked Operation) is activated during an SBITI (Set
Bit, Interlocked) or CBITI (Clear Bit, Interlocked) instruction.
It is made available to external bus arbitration circuitry in
order to allow these instructions to implement the sema-
phore primitive operations for multi-processor communica-
tion and resource sharing. ILO is guaranteed to be active
during the operand accesses performed by the interlocked
instructions.

Note: The acknowledge o@ is on a cycle by cycle basis. Therefore, it
is possible to have HLDA active when an interlocked operation is in
progress. In this case, ILO remains low and the interlocked instruction
continues only after HOLD is de-asserted.

3.7 EXCEPTION PROCESSING

Exceptions are special events that alter the sequence of
instruction execution. The CPU recognizes two basic types
of exceptions: interrupts and traps.

An interrupt occurs in response to an event signalled by
activating the NMI or INT input signals. Interrupts are typi-
cally requested by peripheral devices that require the CPU'’s
attention.

Traps occur as a result either of exceptional conditions
(e.g., attempted division by zero) or of specific instructions
whose purpose is to cause a trap to occur (e.g., supervisor
call instruction).

When an exception is recognized, the CPU saves the PC,
PSR and the MOD register contents on the interrupt stack
and then it transfers control to an exception service proce-
dure.

Details on the operations performed in the various cases by
the CPU to enter and exit the exception service procedure
are given in the following sections.

It is to be noted that the reset operation is not treated here
as an exception. Even though, like any exception, it alters
the instruction execution sequence.

The reason being that the CPU handles reset in a signifi-
cantly different way than it does for exceptions.

Refer to Section for details on the reset operation.

3.7.1 Exception Acknowledge Sequence

When an exception is recognized, the CPU goes through
three major steps:

1) Adjustment of Registers.

Depending on the source of the exception, the CPU may
restore and/or adjust the contents of the Program Coun-
ter (PC), the Processor Status Register (PSR) and the
currently-selected Stack Pointer (SP). A copy of the PSR
is made, and the PSR is then set to reflect Supervisor
Mode and selection of the Interrupt Stack.

2) Vector Acquisition.

A Vector is either obtained from the Data Bus or is sup-
plied by default.

3) Service Call.

The Vector is used as an index into the Interrupt Dis-
patch Table, whose base address is taken from the CPU
Interrupt Base (INTBASE) Register. See Figure 3-15. A
32-bit External Procedure Descriptor is read from the ta-
ble entry, and an External Procedure Call is performed
using it. The MOD Register (16 bits) and Program Coun-
ter (32 bits) are pushed on the Interrupt Stack.

A
r MEMORY { 154 o
NVI NON-VECTORI
CASCADE ADDRO ON-VECTORED INTERRUPT
NMI NON-MASKABLE INTERRUPT
CASCADE TABLE A% o
RESERVED
CASCADE ADDR 14
SLAVE SLAVE PROCESSOR TRAP
INTERRUPT BASE CASCADE ADDR 15 ILL ILLEGAL OPERATION TRAP
REGISTER
j A_ FIXEDINTERRUPTS 5
- AND TRAPS ~ sve SUPERVISOR CALL TRAP
L VECTORED | DISPATCHTABLE 6| pyz DIVIDE BY ZERO TRAP
INTERRUPTS a° N .
C A
8| BPT BREAKPOINT TRAP
81 TRC TRACE TRAP
10] unp UNDEFINED INSTRUCTION TRAP
11-15 2 RESERVED ~

VECTORED
INTERRUPTS

TL/EE/9424-21

FIGURE 3-15. Interrupt Dispatch and Cascade Tables

3.0 Functional Description (continued)

This process is illustrated in Figure 3-16, from the viewpoint Details on the sequences of events in processing interrupts
of the programmer. and traps are given in the following sections.
(PUSH)
RETURN ADDRESS 32817
STATUS MODULE 3281TS
(PUSH)
PSR Moo INTERRUPT
STACK

TL/EE/9424-22

______ —————————
CASCADE TABLE
INTBASE REGISTER
I INTERRUPT BASE DISPATCH
TABLE

VECTOR

DESCRIPTOR (32 BITS)

J

DESCRIPTOR
16 16

OFFSET MODULE

MOD REGISTER MODULE TABLE

NEW MODULE

MODULE TABLE ENTRY

J

MODULE TABLE ENTRY

STATIC BASE POINTER —

LINK BASE POINTER

® PROGRAM BASE POINTER

(RESERVED)

PROGRAM COUNTER SB REGISTER
;l—b ENTRY POINT ADDRESS J NEW STATIC BASE

FIGURE 3-16. Exception Acknowledge Sequence

TL/EE/8424-23

2-133

S1-91D02ESN/0L-91DICESN

NS32CG16-10/NS32CG16-15

3.0 Functional Description (continued)

3.7.2 Returning from an Exception Service Procedure

To return control to an interrupted program, one of two in-
structions can be used: RETT (Return from Trap) and RETI
(Return from Interrupt).

RETT is used to return from any trap or a non-maskable
interrupt service procedure. Since some traps are often
used deliberately as a call mechanism for supervisor mode
procedures, RETT can also adjust the Stack Pointer (SP) to
discard a specified number of bytes from the original stack
as surplus parameter space.

RETI is used to return from a maskable interrupt service
procedure. A difference of RETT, RETI also informs any
external interrupt control units that interrupt service has
completed. Since interrupts are generally asynchronous ex-
ternal events, RET| does not discard parameters from the
stack.

Both of the above instructions always restore the PSR,
MOD, PC and SB registers to their previous contents.

3.7.3 Maskable Interrupts

The INT pin is a level-sensitive input. A continuous low level
is allowed for generating multiple interrupt requests. The in-
put is maskable, and is therefore enabled to generate inter-
rupt requests only while the Processor Status Register | bit
is set. The | bit is automatically cleared during service of an
INT or NMI request, and is restored to its original setting
upon return from the interrupt service routine via the RETT
or RETI instruction.

The INT pin may be configured via the SETCFG instruction .
as either Non-Vectored (CFG Register bit 1=0) or Vectored
(bit 1=1).

3.7.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT
pin will cause an Interrupt Acknowledge bus cycle, but the
CPU will ignore any value read from the bus and use instead
a default vector of zero. This mode is useful for small sys-
tems in which hardware interrupt prioritization is unneces-

sary.
PROGRAM COUNTER
(POP)
RETURN ADDRESS 32BITS
(POP)
STATUS MODULE 32BITS
PSR Moo INTERRUPT
M STACK :
N .
0
MODULE
TABLE
MODULE TABLE ENTRY
J
MODULE TABLE ENTRY
STATICBASEPOINTER ~ —
LINK BASE POINTER
PROGRAM BASE POINTER
(RESERVED)
PARAMETERS
n
BYTES
SBREGISTER
STATIC BASE STACK SELECTED
INNEWLY-
POPPED PSR.
L]
. L]
. L]
POP AND
DISCARD

TL/EE/9424-24
FIGURE 3-17. Return from Trap (RETT n) Instruction Flow

2-134

3.0 Functional Description (continued)

“END OF INTERRUPT"

BUSCYCLE
INTERRUPT
CONTROL
UNIT
PROGRAM COUNTER
(POP)
‘ RETURN ADDRESS !
]
] (POP)
l STATUS MODULE —
PSR MOD
INTERRUPT
STACK
.
. .
.
0
MODULE
TABLE
MODULE TABLE ENTRY
{ J
MODULE TABLE ENTRY
STATIC BASE POINTER -
LINK BASE POINTER
PROGRAM BASE POINTER
(RESERVED)
STATIC BASE
SB REGISTER

TL/EE/9424-25

FIGURE 3-18. Return from Interrupt (RETI) Instruction Flow

3.7.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control
Unit (ICU) to prioritize up to 16 interrupt requests. Upon re-
ceipt of an interrupt request on the INT pin, the CPU per-
forms an “Interrupt Acknowledge, Master” bus cycle read-
ing a vector value from the low-order byte of the Data Bus.
This vector is then used as an index into the Dispatch Table
in order to find the External Procedure Descriptor for the
proper interrupt service procedure. The service procedure
eventually returns via the Return from Interrupt (RETI) in-
struction, which performs an End of Interrupt bus cycle, in-
forming the ICU that it may re-prioritize any interrupt re-

quests still pending. The ICU provides the vector number
again, which the CPU uses to determine whether it needs
also to inform a Cascaded ICU.

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127; that
is, they must be positive numbers in eight bits. By providing
a negative vector number, an ICU flags the interrupt source
as being a Cascaded ICU (see below).

3.7.3.3 Vectored Mode: Cascaded Case

In order to allow up to 256 levels of interrupt, provision is
made both in the CPU and in the NS32202 Interrupt Control

2-135

S1-91D02ESN/0L-91DIZESN

NS32CG16-10/NS32CG16-15

3.0 Functional Description (continued)

Unit (ICU) to transparently support cascading. Figure 3-20

shows a typical cascaded configuration. Note that the Inter-

rupt output from a Cascaded ICU goes to an Interrupt Re-

quest input of the Master ICU, which is the only ICU which

drives the CPU INT pin.

In a system which uses cascading, two tasks must be per-

formed upon initialization:

1) For each Cascaded ICU in the system, the Mater ICU
must be informed of the line number (0 to 15) on which it
receives the cascaded requests.

2) A Cascade Table must be established in memory. The
Cascads Table is located in a NEGATIVE direction from
the location indicated by the CPU Interrupt Base (INT-
BASE) Register. Its entries are 32-bit addresses, pointing
to the Vector Registers of each of up to 16 Cascaded
ICUs.

Figure 3-15 illustrates the position of the Cascade Table. To
find the Cascade Table entry for a Cascaded ICU, take its
Master ICU line number (0 to 15) and subtract 16 from it,
giving an index in the range —16 to —1. Multiply this value
by 4, and add the resulting negative number to the contents
of the INTBASE Register. The 32-bit entry at this address
must be set to the address of the Hardware Vector Register
of the Cascaded ICU. This is referred to as the “Cascade
Address.”

Upon receipt of an interrupt request from a Cascaded ICU,
the Master ICU interrupts the CPU and provides the neg-

ative Cascade Table index instead of a (positive) vector
number. The CPU, seeing the negative value, uses it as an
index into the Cascade Table and reads the Cascade Ad-
dress from the referenced entry. Applying this address, the
CPU performs an “Interrupt Acknowledge, Cascaded” bus
cycle, reading the final vector value. This vector is interpret-
ed by the CPU as an unsigned byte, and can therefore be in
the range of 0 through 255.

In returning from a Cascaded interrupt, the service proce-
dure executes the Return from Interrupt (RETI) instruction,
as it would for any Maskable Interrupt. The GPU performs
an “End of Interrupt, Master” bus cycle, whereupon the

Master ICU again provides the negative Cascaded Table

index. The CPU, seeing a negative value, uses it to find the

corresponding Cascade Address from the Cascade Table.

Applying this address, it performs an “End of Interrupt, Cas-

caded” bus cycle, informing the Cascaded ICU of the com-

pletion of the service routine. The byte read from the Cas-
caded ICU is discarded.

Note: If an interrupt must be masked off, the CPU can do so by setting the
corresponding bit in the Interrupt Mask Register of the Interrupt Con-
troller. However, if an interrupt is set pending during the CPU instruc-
tion that masks off that interrupt, the CPU may still perform an inter-
rupt acknowledge cycle following that instruction since it might have
sampled the TNT line before the ICU deasserted it. This could cause
the ICU to provide an invalid vector. To avoid this problem the above
operation should be performed with the CPU interrupt disabled.

[DATA
®)
CONTROL
ADDR 5 BITS
NS32CG16
CPU
GROUP
STATUS 1
INT

FROM —

ADDRESS ——=

OECODER

NS32202
Icu

f=— IR1

=—oIR3

~=—1IRS

HARDWARE

INTERRUPTS
OR

CASCADED
CONTROLLERS

(~—IR7

t=—oIR9
[=—R11
[~=—IR13

~—R15
= GO/IRD)
= G1/IR2
- G2/IR4
= G3/IRS
e G4/IR8
= G5/IR10
= GB/IR12
e G7IIR14

INTERRUPTS,
CASCADED,
OR

BITIVO

TL/EE/9424-26

FIGURE 3-19. Interrupt Control Unit Connections (16 Levels)

3.0 Functional Description (continued)

DATA

le—IR1
l—IR3
CONTROL [~—1IRS

DATA

CONTROL

ADDR 5BITS

HARDWARE

[~—IR?
CASCADED INTERRUPTS

Ns32202 [~ IR9
IcU le—1IR11

~—1IR13

f=—1|R15
STATUS 1

[~ GO/IRO 'w
=== G1/IR2
[~e==—-G2/IR4
[~ GJ/IR8
= G4/IR8
[GS5/IR10
[==-G8/IR12
[~ G7/IR14 |

FROM —
ADDRESS —{ CS

INTERRUPTS
DECODER o

BITI/O
iNT

ju— IR1
l— [R3

[~—IRS

NS32CG16
CPU
GROUP

ADDR

STATUS 1

|~=—IR7

MASTER

NS§32202
(]

=—|R9

F=—{R11 =
~+—IR13
=—1R15

== G0/|R0

INT

> G1/1R2
iNT

FROM
ADDRESS ——=1
DECODER

|e—G2/IR4
[==G3/IR6
(== G4/IR8
[~=—GS5/IR10
[==—G6/IR12
= G7/IR14

TL/EE/9424-27

FIGURE 3-20. Cascaded Interrupt Control Unit Connections

3.7.4 Non-Maskable Interrupt

The Non-Maskable Interrupt is triggered whenever a falling
edge is detected on the NMI pin. The CPU performs an
“Interrupt Acknowledge, Master” bus cycle when process-
ing of this interrupt actually begins. The Interrupt Acknowl-
edge cycle differs from that provided for Maskable Inter-
rupts in that the address presented is FFFF0044. The vector
value used for the Non-Maskable Interrupt is taken as 1,
regardless of the value read from the bus.

The service procedure returns from the Non-Maskable In-
terrupt using the Return from Trap (RETT) instruction. No
special bus cycles occur on return.

For the full sequence of events in processing the Non-
Maskable Interrupt, see Section 3.7.7.1.

3.7.5 Traps

Traps are processing exceptions that are generated as di-
rect results of the execution of an instruction. The Return
Address pushed by any trap except Trap (TRC) is the ad-
dress of the first byte of the instruction during which the trap
occurred. Traps do not disable interrupts, as they are not
associated with external events. Traps recognized by
NS32CG16 CPU are:

Trap (SLAVE): An exceptional condition was detected by
the Floating Point Unit during the execution of a Slave In-
struction. This trap is requested via the Status Word re-
turned as part of the Slave Processor Protocol (Section
3.8.1). i

2-137

G1-91DJCESN/0L-91DICESN

NS32CG16-10/NS32CG16-15

3.0 Functional Description (continued)
Trap (ILL): lllegal operation. A privileged operation was at-
tempted while the CPU was in User Mode (PSR bit U=1).
Trap (SVC): The Supervisor Call (SVC) instruction was exe-
cuted.

Trap (DVZ): An attempt was made to divide an integer by
zero. (The SLAVE trap is used for Floating Point division by
zero.)

Trap (FLG): The FLAG instruction detected a “1” in the
CPU PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut-
ed.

Trap (TRC): The instruction just completed is being traced.
See Section 3.7.6.

Trap (UND): An undefined opcode was encountered by the
CPU.

3.7.6 Instruction Tracing

Instruction tracing is a feature that can be used during de-
bugging to single-step through selected portions of a pro-
gram. Tracing is enabled by setting the T-bit in the PSR
Register. When enabled, the CPU generates a Trace Trap
(TRC) after the execution of each instruction.

At the beginning of each instruction, the T bit is copied into
the PSR P (Trace “Pending™) bit. If the P bit is set at the end
of an instruction, then the Trace Trap is activated. If any
other trap or interrupt request is made during a traced in-
struction, its entire service procedure is allowed to complete
before the Trace Trap occurs. Each interrupt and trap se-
quence handles the P bit for proper tracing, guaranteeing
only one Trace Trap per instruction, and guaranteeing that
the Return Address pushed during a Trace Trap is always
the address of the next instruction to be traced.

Due to the fact that some instructions can clear the T and P
bits in the PSR, in some cases a Trace Trap may not occur
at the end of the instruction. This happens when one of the
privileged instructions BICPSRW or LPRW PSR is executed.

In other cases, it is still possible to guarantee that a Trace
Trap occurs at the end of the instruction, provided that spe-
cial care is taken before returning from the Trace Trap Serv-
ice Procedure. In case a BICPSRB instruction has been ex-
ecuted, the service procedure should make sure that the T
bit in the PSR copy saved on the Interrupt Stack is set be-
fore executing the RETT instruction to return to the program
begin traced. If the RETT or RETI instructions have to be
traced, the Trace Trap Service Procedure should set the P
and T bits in the PSR copy on the Interrupt Stack that is
going to be restored in the execution of such instructions.

While debugging the NS32CG16 instructions which have in-
terior loops (BBOR, BBXOR, BBAND, BBFOR, EXTBLT,
MOVMP, SBITPS, TBITS), special care must be taken with
the single-step trap. If an interrupt occurs during a single-
step of one of the graphics instructions, the interrupt will be
serviced. Upon return from the interrupt service routine, the
new NS32CG16 instruction will not be re-entered, due to a
single-step trap. Both the NMI and INT interrupts will cause
this behavior. Another single-step operation (S command in
DBG16/MONCG) will resume from where the instruction
was interrupted. There are no side effects from this early
termination, and the instruction will complete normally.

For all other Series 32000 instructions, a single-step opera-
tion will complete the entire instruction before trapping back

to the debugger. On the instructions mentioned above, sev-
eral single-step commands may be required to complete the
instruction, ONLY when interrupts are occurring.

There are some methods to give the appearance of single-
stepping for these NS32CG16 instructions.

1. MON16/MONCG monitors the return from single-step
trap vector, PC value. If the PC has not changed since the
last single-step command was issued, the single-step oper-
ation is repeated. It is also advisable to ensure that one of
the NS32CG16 instructions is being single-stepped, by in-
specting the first byte of the address pointed to by the PC
register. If it is OXOE, then the instruction is an NS32CG16-
specific instruction.

2. A breakpoint following the instruction would also trap af-
ter the instruction had completed.

Note: If instruction tracing is enabled while the WAIT instruction is executed,

the Trap (TRC) occurs after the next interrupt, when the interrupt
service procedure has returned.

3.7.7 Priority Among Exceptions

The NS32CG16 CPU internally prioritizes simultaneous in-
terrupt and trap requests as follows:

1) Traps other than Trace (Highest priority)
2) Non-Maskable Interrupt

3) Maskable Interrupts

4) Trace Trap (Lowest priority)

3.7.8 Exception Acknowledge Sequences: Detail Flow
For purposes of the following detailed discussion of inter-
rupt and trap acknowledge sequences, a single sequence
called “Service” is defined in Figure 3-21. Upon detecting
any interrupt request or trap condition, the CPU first per-
forms a sequence dependent upon the type of interrupt or
trap. This sequence will include pushing the Processor
Status Register and establishing a Vector and a Return Ad-
dress. The CPU then performs the Service sequence.

3.7.8.1 Maskable/Non-Maskable Interrupt Sequence
This sequence is performed by the CPU when the NMI pin
receives a falling edge, or the INT pin becomes active with
the PSR | bit set. The interrupt sequence begins either at
the next instruction boundary or, in the case of the String
instructions, or Graphics instructions which have interior
loops (BBOR, BBXOR, BBAND, BBFOR, EXTBLT, MOVMP,
SBITPS, TBITS), at the next interruptible point during its ex-
ecution. The graphics instructions are interruptible.
1. If a String instruction was interrupted and not yet com-
pleted:
a. Clear the Processor Status Register P bit.
b. Set “Return Address” to the address of the first byte
of the interrupted instruction.
Otherwise, set “Return Address” to the address of the
next instruction.
2. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits S, U, T, P and I.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFF004g, applying Status
Code 0100 (Interrupt Acknowledge, Master: Section
3.4.1). Discard the byte read.

b. Set “Vector” to 1.
c. Go to Step 8.

2-138

3.0 Functional Description (continued)

4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFEQ04¢, applying Status
Code 0100 (Interrupt Acknowledge, Master: Section
3.4.1). Discard the byte read.

b. Set “Vector” to 0.

c. Go to Step 8.

5. Here the interrupt is Vectored. Read *‘Byte” from ad-
dress FFFE004g, applying Status Code 0100 (Interrupt
Acknowledge, Master: Section 3.4.1).

6. If “Byte" = 0, then set “Vector” to “Byte” and go to
Step 8.

7. If “Byte” is in the range — 16 through —1, then the inter-
rupt source is Cascaded. (More negative values are re-
served for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory. The
address is calculated as INTBASE + 4* Byte.

b. Read "Vector”, applying the Cascade Address just
read and Status Code 0101 (Interrupt Acknowledgs,
Cascaded: Section 3.4.1).

8. Push the PSR copy (from Step 2) onto the Interrupt
Stack as a 16-bit value.

9. Perform Service (Vector, Return Address), Figure 3-21.

Service (Vector, Return Address):

1) Read the 32-bit External Procedure Descriptor from the
Interrupt Dispatch Table: address is
Vector*4+ INTBASE Register contents.

2) Move the Module field of the Descriptor into the tempo-
rary MOD Register.

3) Read the Program Base pointer from memory address
MOD + 8, and add to it the Offset field from the Descrip-
tor, placing the result in the Program Counter.

4) Read the new Static Base pointer from the memory ad-
dress contained in MOD, placing it into the SB Register.

5) Flush Queue: Non-sequentially fetch first instruction of
Interrupt Routine.

6) Push MOD Register onto the Interrupt Stack as a 16-bit
value. (The PSR has already been pushed as a 16-bit
value.)

7) Push the Return Address onto the Interrupt Stack as a
32-bit quantity.

8) Copy temporary MOD Register to MOD Register.

FIGURE 3-21. Service Sequence
Invoked during All Interrupt/Trap Sequences

3.7.8.2 Trap Sequence: Traps Other Than Trace

1) Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction.

2) Set “Vector” to the value corresponding to the trap type.

SLAVE: Vector=3.
ILL: Vector=4.
SVC: Vector=5.
pvz: Vector=6.
FLG: Vector=7.
BPT: Vector=8.
UND: Vector=10.

3) Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits S, U, P and T.

4) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

5) Set “Return Address” to the address of the first byte of
the trapped instruction.

6) Perform Service (Vector, Return Address), Figure 3-21.

3.7.8.3 Trace Trap Sequence
1) In the Processor Status Register (PSR), clear the P bit.

2) Copy the PSR into a temporary register, then clear PSR
bits S, U and T.

3) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

4) Set “Vector” to 9.

5) Set “Return Address” to the address of the next instruc-
tion.

6) Perform Service (Vector, Return Address), Figure 3-21.

3.8 SLAVE PROCESSOR INSTRUCTIONS

The NS32CG16 supports only one group of instructions, the
floating point instruction set, as being executable by a slave
processor. The floating point instruction set is validated by
the F bit in the CFG register.

If a floating-point instruction is encountered and the F bit in
the CFG register is not set, a Trap(UND) will result, without
any slave processor communication attempted by the CPU.
This allows software emulation in case an external floating
point unit (FPU) is not used.

3.8.1 Slave Processor Protocol

Slave Processor instructions have a three-byte Basic In-
struction field, consisting of an ID Byte followed by an Oper-
ation Word. The ID Byte has three functions:

1) It identifies the instruction as being a Slave Processor
instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Operation Word
of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi-
ates the sequence outlined in Figure 3-22. While applying
Status Code 1111 (Broadcast ID, Section 3.4.1), the CPU
transfers the ID Byte on the least-significant half of the Data
Bus (AD0O-AD7). All Slave Processors input this byte and
decode it. The Slave Processor selected by the ID Byte is
activated, and from this point the CPU is communicating
only with it. If any other slave protocol was in progress (e.g.,
an aborted Slave instruction), this transfer cancels it.

The CPU next sends the Operation Word while applying
Status Code 1101 (Transfer Slave Operand, Section 3.4.1).
Upon receiving it, the Slave Processor decodes it, and at
this point both the CPU and the Slave Processor are aware
of the number of operands to be transferred and their sizes.
The Operation Word is swapped on the Data Bus; that is,
bits 0-7 appear on pins AD8~AD15 and bits 8~15 appear
on pins AD0O-AD7.

2-139

G1-919JZESN/0L-91DIZESN

NS32CG16-10/NS32CG16-15

3.0 Functional Description (continued)

Using the Addressing Mode fields within the Operation
Word, the CPU starts fetching operands and issuing them to
the Slave Processor. To do so, it references any Addressing
Mode extensions which may be appended to the Slave
Processor instruction. Since the CPU is solely responsible
for memory accesses, these extensions are not sent to the
Slave Processor. The Status Code applied is 1101 (Transfer
Slave Processor Operand, Section 3.4.1).

Status Combinations:

Send ID (ID): Code 1111

Xfer Operand (OP): Code 1101
Read Status (ST): Code 1110

Step Status Action

1 ID CPU Sends ID Byte.

2 OoP CPU Sends Operation Word.

3 OP CPU Sends Required Operands.

4 — Slave Starts Execution. CPU Pre-
Fetches.

5 — Slave Pulses SPC Low.

6 ST CPU Reads Status Word. (Trap? Alter
Flags?)

7 oP CPU Reads Results (If Any).

FIGURE 3-22. Slave Processor Protocol
After the CPU has issued the last operand, the Slave Proc-
essor starts the actual execution of the instruction. Upon
completion, it will signal the CPU by pulsing SPC low.

While the Slave Processor is executing the instruction, the
CPU is free to prefetch instructions into its queue. If it fills
the queuse before the Slave Processor finishes, the CPU will
wait, applying Status Code 0011 (Waiting for Slave).

Upon receiving the pulse on SPC, the CPU uses SPC to
read a Status Word from the Slave Processor, applying
Status Code 1110 (Read Slave Status). This word has the
format shown in Figure 3-23. If the Q bit (“Quit”, Bit 0) is set,
this indicates that an error was detected by the Slave Proc-
essor. The CPU will not continue the protocol, but will imme-
diately trap through the Slave vector in the Interrupt Table.
Certain Slave Processor instructions cause CPU PSR bits to
be loaded from the Status Word.

The last step in the protocol is for the CPU to read a resuit,
if any, and transfer it to the destination. The Read cycles
from the Slave Processor are performed by the CPU while
applying Status Code 1101 (Transfer Slave Operand).

3.8.2 Floating Point Instructions

Table 3-5 gives the protocols followed for each Floating
Point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Appendix A.

TABLE 3-5. Floating Point Instruction Protocols

Operand 1 Operand 2 Operand 1
Mnemonic Class Class Issued
ADDf read.f rmw.f f
suBf read.f rmw.f f
MULf read.f rmw.f f
DIvf read.f rmw.f f
MOVf read.f write.f f
ABSf read.f write.f f
NEGf read.f write.f f
CMPf read.f read.f f
FLOORfi read.f write.i f
TRUNCHi read.f write.i f
ROUNDfi read.f write.i f
MOVFL read.F write.L F
MOVLF read.L write.F L
MOVif read.i write.f i
LFSR read.D N/A D
SFSR N/A write.D N/A
POLYf read.f read.f f
DOTf read.f read.f f
SCALBf read.f rmw.f f
LOGBf read.f write.f f
Note:

D = Double Word

i = integer size (B,W,D) specified in mnemonic.

f = Floating Point type (F,L) specified in mnemonic.
N/A = Not Applicable to this instruction.

Operand 2 Returned Value PSR Bits
Issued Type and Dest. Affected
f ftoOp. 2 none
f ftoOp.2 none
f ftoOp.2 none
f ftoOp.2 none
N/A ftoOp.2 none
N/A ftoOp.2 none
N/A ftoOp. 2 none
f N/A N,Z,L
N/A itoOp.2 none
N/A itoOp.2 none
N/A itoOp.2 none
N/A LtoOp.2 none
N/A FtoOp.2 none
N/A fto Op.2 none
N/A N/A none
N/A DtoOp.2 none
f fto FO none
f ftoFO none
f ftoOp.2 none
N/A ftoOp.2 none

2-140

3.0 Functional Description (continued)

The Operand class columns give the Access Class for each
general operand, defining how the addressing modes are
interpreted (see Series 32000 Instruction Set Reference
Manual).

The Operand Issued columns show the sizes of the oper-
ands issued to the Floating Point Unit by the CPU. “D"" indi-
cates a 32-bit Double Word. “i” indicates that the instruction
specifies an integer size for the operand (B=Byte,
W=Word, D=Double Word). "’ indicates that the instruc-
tion specifies a Floating Point size for the operand (F=32-
bit Standard Floating, L==64-bit Long Floating).
The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR Bits Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-23).

15 87 0

00000000 |N2F00Logl

New PSR Bit Value(s)M/ }

“Quit": Terminate Protocol, Trap(FPU).

TL/EE/9424-28
FIGURE 3-23. Slave Processor Status Word Format
Any operand indicated as being of type “f"’ will not cause a
transfer if the Register addressing mode is specified. This is
because the Floating Point Registers are physically on the
Floating Point Unit and are therefore available without CPU

assistance.

4.0 Device Specifications

4.1 NS32CG16 PIN DESCRIPTIONS
The following is a brief description of all NS32CG16 pins.
The descriptions reference portions of the Functional De-
scription, Section 3.
Unless otherwise indicated, reserved pins should be left
open.
Note: An asterisk next to the signal name indicates a TRI-STATE condition

for that signal during HOLD acknowledge.
4.1.1 Supplies
Veoo Logic Power.

+ 5V positive supply for on-chip logic.

VCCCTTL, Buffers Power.
VCCFCLK, +5V positive supplies for on-chip output

VCCAD, buffers.
vCccClo
VSSL Logic Ground.

Ground reference for on-chip logic.
VSSFCLK, Buffers Ground.
VSSNTSC, Ground reference for on-chip output buffers.
VSSHAD,
VSSLAD,
VSSIO

4.1.2 Input Signals

RSTI Reset Input.
Schmitt triggered, asynchronous signal used to
generate a CPU reset. See Section 3.3.

Note:
The reset signal is a true asynchronous input. Therefors, no
external synchronizing circuit is needed.

When RSTI changes right before the falling edge of CTTL,
and meets the specified set-up tims, it will be recognized on
that falling edge. Otherwise it will be recognized on the fall-
ing edge of CTTL in the following clock cycle.

Hold Request.

When active, causes the CPU to release the
bus for DMA or multiprocessing purposes. See
Section 3.5.

Note:

If the HOLD signal is generated asynchronously, its set up
and hold times may be violated. In this case, it is recom-
mended to synchronize it with CTTL to minimize the possibili-
ty of metastable states.

The CPU provides only one synchronization stage to mini-
mize the HLDA latency. This is to avoid speed degradations
in cases of heavy HOLD activity (i.e., DMA controller cycles
interleaved with CPU cycles).

Interrupt.

A low level on this pin requests a maskable in-
terrupt. INT must be kept asserted until the in-
terrupt is acknowledged.

Non-Maskable Interrupt.
A High-to-Low transition on this signal requests
a non-maskable interrupt

Continuous Wait.

Causes the CPU to insert continuous wait
states if sampled low at the end of T2 and each
following T-State. See Section 3.4.3.

Two-Bit Wait State Inputs.

These inputs, collectively called WAIT1-2, al-

low from zero to three wait states to be speci-

fied. They are binary weighted. See Section

3.43.

Note: During a DMA cycle, WAIT 1-2 should be kept inactive
unless they are also monitored by the DMA Controller.
Wait states, in this case, should be generated through
CWAIT.

Crystal/External Clock Input.

Input from a crystal or an external clock source.

See Section 3.2.

4.1.3 Output Signals

HOLD

=
S

Z|
£

CWAIT

OSCIN

A16-A23 *High-Order Address Bits.
These are the most significant 8 bits of the
memory address bus.

HBE *High Byte Enable.

Status signal used to enable data transfers on
the most significant byte of the data bus.

2-141

GE-9190CESN/01-91DITESN

NS32CG16-10/NS32CG16-15

4.0 Device Specifications (continued)
ST0-3 Status.

Bus cycle status code; STO is the least significant.
Encodings are:

0000—Idle: CPU Inactive on Bus.
0001—Idle: WAIT Instruction.
0010—(Reserved)

0011—Idle: Waiting for Slave.
0100—Interrupt Acknowledge, Master.
0101—Interrupt Acknowledge, Cascaded.
0110—End of Interrupt, Master.
0111—End of Interrupt, Cascaded.

1000—Sequential Instruction Fetch.
1001—Non-Sequential Instruction Fetch.
1010—Data Transfer.

1011—Read Read-Modify-Write Operand.
1100—Read for Effective Address.
1101—Transfer Slave Operand.
1110—Read Slave Status Word.
1111—Broadcast Slave ID.

User/Supervisor.
User or Supervisor Mode status. High indicates
User Mode; low indicates Supervisor Mode.

Interlocked Operation.
When active, indicates that an interlocked oper-
ation is being executed.

Hold Acknowledge.

Activated by the CPU in response to the HOLD
input to indicate that the CPU has released the
bus.

Program Flow Status.
A pulse on this signal indicates the beginning of
execution of an instruction.

BPU Cycle.

This signal is activated during a bus cycle to
enable an external BITBLT processing unit. The
EXTBLT instruction activates this signal.*

Reset Output.
This signal becomes active when RSTI is low,
initiating a system reset.

Read Strobe.

Activated during CPU or DMAC read cycles to
enable reading of data from memory or periph-
erals. See Section 3.4.2.

Write Strobe.

Activated during CPU or DMAC write cycles to

enable writing of data to memory or peripherals.

*Note: BPU is low (Active) only during bus cycles involving
pre-fetching instructions and execution of EXTBLT
operands. It is recommended that BPU, ADS and
status lines (STO-ST3) be used to qualify BPU bus
cycles. If a DMA circuit exists in the system, the
HLDA signal should be used to further qualify BPU
cycles. BPU may become active during T4 of a non-
BPU bus cycle, and may become inactive during T4
of a BPU bus cycle. BPU must be qualified by ADS
and status lines (ST0-ST3) to be used as an exter-
nal gating signal.

TSO Timing State Output.
The falling edge of TSO identifies the beginning
of state T2 of a bus cycle. The rising edge iden-
tifies the beginning of state T4.

Data Buffers Enable.
Used to control external data buffers. It is active
when the data buffers are to be enabled.

OSCOUT Crystal Output.
This line is used as the return path for the crys-
tal (if used). When an external clock source is
used, OSCOUT should be left unconnected or
loaded with no more than 5 pF of stray capaci-
tance.

FCLK Fast Clock.
This clock is derived from the clock waveform
on OSCIN. Its frequency is either the same as
OSCIN or is lower, depending upon the scale
factor programmed into the CFG register. See
Section 3.2.1.

PHI1, PHI2 Two-Phase Clock.
These outputs provide a two-phase clock with
frequency half that of FCLK. They can be used
to clock the DP8510/DP8511 BPU. The trace
lengths of PHI1 and PHI2 should be shorter
than 4 inches (10 centimeters) when connected
to the BPU.

CTTL System Clock.
This clock is similar to PHI1 but has a much
higher driving capability. The skew between its
rising edge and PHI1 rising edge is kept to a
minimum.

4.1.4 Input-Output Signals

AD0-15 *Address/Data Bus.
Multiplexed Address/Data information. Bit 0 is
the least significant bit of each.

Slave Processor Control.

Used by the CPU as the data strobe output for
slave processor transfers; used by a slave proc-
essor to acknowledge completion of a slave in-
struction. See Section 3.4.7.1.

*Data Direction.

Status signal indicating the direction of the data
transfer during a bus cycle. During HOLD ac-
knowledge this signal becomes an input and
determines the activation of RD or WR.

*Address Strobe

Controls address latches; signals the beginning
of a bus cycle. During HOLD acknowledge this
signal becomes an input and the CPU monitors
it to detect the beginning of a DMA cycle and
generate the relevant strobe signals. When a
DMA is used, ADS should be pulled up to Vog
through a 10 kQ resistor.

[»/
[o1]
m

(]
9|
Ol

g
9
Z

>
O
w

2-142

4.0 Device Specifications (continued)

4.2 ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availabllity and specifications.

Temperature Under Bias 0°Cto +70°C
Storage Temperature —65°Cto +150°C

All Input or Output Voltages with

Respect to GND —0.5Vto +7V
Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS: T4 = 0°Cto +70°C, Voc = 5V £5%, GND = OV

Symbol Parameter Conditions Min Typ Max Units
ViH High Level Input Voltage {Note 4) 2.0 Vec + 0.5 v
ViL Low Level Input Voltage (Note 3) -0.5 0.8 \
VT4 RSTI Rising Threshold Voltage Vee = 5.0V (Note 5) 25 35 \
VHys RSTI Hysteresis Voltage Vee = 5.0V (Note 5) 0.8 1.8 v
VxiL OSCIN Input Low Voltage 0.5 \
VxH OSCIN Input High Voltage 4.5 \
VoH High Level Output Voltage loq = —400 pA (Note 6) 2.4 \
VoL Low Level Output Voltage loL = 4 mA (Note 6) 0.45 v
liLs SPC Input Current (low) Vin = 0.4V, SPC in Input Mode 0.05 1.0 mA
I Input Load Current 0 < VN < Ve, All Inputs except SPC -20 20 MA
IL Leakage Current 0.4 < Vourt £ Vce

Output and I/0 Pins in —20 20 pA

TRI-STATE Input Mode
lcc Active Supply Current lout = 0, TaA = 25°C (Note 2) 140 200 mA
VPH PHI1, 2 High Level Output Voltage | loy = —400 pA 0.9 Vce \
VpL PHI1, 2 Low Level Output Voltage | loL = 4 mA 0.1 Veo \

Note 1: Care should be taken by designers to provide a minimum inductance path between the Vgg pins and system ground in order to minimize naise.
Note 2: Icc is affected by the clock scaling factor selected by the C and M bits in the CFG register, sse Section 3.2.1.

Note 3: V| min—in the range of —0.5V to —1.5V, the pulse must be < 20 ns, and the period between pulses > 120 ns.

Note 4: V|4 max—in the range of Vg + 0.5V to Vg + 2.0V, the pulse must be < 25 ns, and the period between pulses = 120 ns.

Note 5: Not 100% tested.
Note 6: All outputs except PHI1 and PHI2.

2-143

S1-91DOCESN/0L-91DIZESN

NS32CG16-10/NS32CG16-15

4.0 Device Specifications (continued)

68-Pin PCC Package
o gE 2
BreeEESRO08895828
| O N N OO T N O O I O I T O
/10 11 12 13 14 15 16 17 1B 19 20 21 22 23 24 25 26
sT2=9 27— A18
ST3 =48 28 = A17
Prs =17 ' 29f=at6
DDIN =1 & 30 |- vccap
ADS =15 31} aD15
SPC =14 32— AD14
VCCI0 =43 33— AD13
HBE—2 34— AD12
HOLDA =1 NS320616 35 = AD11
HOLD —{ 68 36 }= AD10
RSTO =4 67 37 |= AD9
WATT1—{ 66 38— AD8
WAIT2 4 65 39 [= VSSLAD
CWAIT —{ 64 . 40 = AD7
vssL — 63 41}~ ADs
0SCIN = 62 42— AD5
RSTI —1 61 431— AD4
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44
FrervrrereverTr 1T 1 _I_ [
glalﬁaggg@géggéssaa
8 2 & B8

TL/EE/9424-29
Bottom View

FIGURE 4-1. Connection Diagram
4.4 SWITCHING CHARACTERISTICS }

2.0V
4.4.1 Definitions : crL [>§ 0.8Y

All the timing specifications given in this section refer to
0.8V or 2.0V on the rising or falling edges of CTTL when the [R PR Y1,
SIG1

capacitive loading of CTTL is 100 pF, unless specifically \ 0.8V

stated otherwise. The timing specifications refer to 0.8 or tsen et
2.0V on the TTL output and input signals as illustrated in tsic2n
Figures 4-2 and 4-3 unless specifically stated otherwise. ey T——
sm[S
P el L4

TL/EE/9424-30
FIGURE 4-2. Timing Speclfication Standard
(TTL Output Signals)

2-144

4.0 Device Specifications (continued)

ABBREVIATIONS:

L.E. — leading edge

T.E. — trailing edge

R.E. —rising edge
F.E. —falling edge

[

2.0V
0.8V

tsigii—=

SIG1 [
SI62 [

FIGURE 4-3. Timing Specification Standard

2.0v

O.BV\

tsi62h ~—

4.4.2 DEVICE TESTING
- _TEST EQUIPMENT

TL/EE/9424-31

(TTL Input Signals)

P ———————————

-

PRECISION DIGITAL
VOLTMETER

PROGRAMMABLE
CURRENT
SOURCE/SINK

e o SIGNAL
UNDER TEST
CAPACITIVE

|

. : | LOADING
| =
]

TL/EE/9424-65

FIGURE 4.4. Test Loading Configuration

TABLE 4-1. Test Loading Characteristics

Capacitive High Level LowLevel Input Load High Level Low Level
Signal Name Loading Output Voltage Output Voltage Current Input Voltage Input Voltage
(lon = —400 uA) (loL = 4mA) (0 < Vin < Vee)
HBE, ST0-3, U/5, 50 pF
L0, HLDA, PFS,
BPU, RSTO, RD, 2.0VSVou<Veg+0.5V | —0.5VsVp <0.8V | —20 pA<(|S20 pA | 20VSViy<Ve+0.5V | —0.5V<V) <045V
WR, TSO, DEE,
FCLK, DDIN, ADS
RSTI, HOLD, INT, 50 pF —20 pAS<20 pA | 20VSViu<Vee+05Y | —0.5V<V) <0.8V
NMI, CWAIT, WAIT1-2
OSCIN 50 pF —20 pA<IS20 pA | 4BVSVIHSVoo+05V | —0.5V<V) <0.5V
ADO-15, A16-23, 100 pF 2.0V<VousVoc+05V | —0.5V<Vo 0.8V | —20 pA<<20 pA | 2.4VSV|y<Vce+0.8V | —0.5V<V) <0.45V
CTTL
PHI1, PHI2 30 pF (Note 2) (Note 2)
SpC 30 pF 2.0VSVoHsVoe+0.5V | —0.5V<Vp 0.8V | 50 pA<|i<1.0mA | 20VSViy<Vee+0.5V [—0.5V<V) 0.4V
0scouT seeTable | 2.0V<VousVec+05V | —0.5V<Vp <0.8V
(Note 1) 3-1

Note 1: The maximum capacitive loading of OSCOUT s given in Table 3-1 when the NS32CG16's oscillator is driven with a crystal. If a single phase clock source is
used, OSCOUT should be left unconnscted or loaded with no more than 5 pF of stray capacitance.

Note 2: As stated in Table 4.4.3.

2-145

S1-91DJCESN/0L-91DIZESN

NS32CG16-10/NS32CG16-15

4.0 Device Specifications (continued)

4.4.3 Timing Tables
4.4.3.1 Output Signals: Internal Propagation Delays, NS32CG 16-10 and NS32CG 16-15
NS32CG16-15
Name Figure Description Reference/Conditions NS32CG16-10 (Note 3) Units
Min Max Min Max
tctp 4-20 | CTTL Clock Period R.E.,CTTL to Next R.E., CTTL 100 1000 66 1000 ns
tcth 4-20 | CTTL High Time 25 pF-100 pF Capacitive Load
At 1.5V (Both Edges) 0.40 0.57 0.46 0.58 tctp
(see Note 1)
ten 4-20 | CTTL Low Time At 0.8V :

25 pF-100 pF CapacitiveLoad | 042 | 056 | 040 | 053 | torp
toTr 4-20 | CTTL Rise Time 0.8V to2.0VVcconR.E., CTTL ns
toTs 4-20 | CTTL Fall Time 2.0Vt00.8VVcconF.E,CTTL ns
toLw(1,2) 4-20 | PHH, PHI2 Pulse Width At 2.0V on PHI1, PHI2

(Both Edges) 0.35 0.55 0.32 0.53 tcrp
tcLh 4-20 | Clock High Time At 90% Ve on PHI, PHI2

(Both Edges) 0.22 0.50 0.28 0.50 tetp
thovi(t,2) | 420 | PHI1, PHI2, Non-Overlap | At50% Vg on PHI1, PHI2 2 2 ns

Time
txFr 4-20 | OSCIN to FCLK 80% Vg on R.E., OSCIN
R.E. Delay to RE., FCLK 2 2 2 S
trcr 4-20 | FCLKto CTTL R.E., FCLK to R.E., CTTL 2 10 P 10 ns
R.E. Delay
trct 4-20 | FCLKto CTTL R.E.,FCLKto F.E.,CTTL -2 10 -2 10 ns
F.E. Dslay
tecr 4-20 | CTTLand PHI1 Skew R.E., CTTLto R.E., PHI1 —4 4 -4 4 ns
taLy 4-5 | AddressBits 0-15 Valid | after R.E.,CTTL T1 40 4 30 ns
taLh 4-5 Address Bits 0-15 Hold | after R.E., CTTL T2 5 5 ns
tAHY 4-5 | Address Bits 16-23 Valid | after R.E., CTTL T1 40 0 30 ns
tAHR 4-5 | Address Bits 16-23 Hold | after R.E., CTTL Next T1 or Ti 0 0 ns
tALfr 4-5 | Address Bits 0-15 after R.E., CTTL T2 5 a8 5 28 ns
floating (during read)
tALnfr 4.5 | ADO-AD15
Floating (Note 2) 4 36 4 26 ns

Note 1: Device testing is performed using the Test Loading Characteristics in Table 4.1. Additional timing data for CTTL with various capacitive loads is not 100%

tested.

Note 2: ta n, is address bits 0-15 floating or not active after R.E. CTTL T1. This is only valid if the previous CPU cycle was a read (Figure 4.5). A previous write
may have “data” active into T1 of the next cycle which then becomes “address” during T1.

Note 3: 15 MHz specifications are only guaranteed when tctp = 66 ns.

2-146

4.0 Device Specifications (continued)
4.4.3.1 Output Signals: Internal Propagation Delays, NS32CG16-10 and NS32CG 16-15 (Continued)

NS32CG16-10 NS32CG16-15
Name Figure Description Reference/Conditions Units
Min Max Min Max
taLs 4.7 ADO-AD?15 Floating after R.E., CTTL Ti 25 18 ns
(Caused by HOLD)
taHt 4-7 A16-A23 Floating after R.E.,CTTL Ti 25 18 ns
tALnt 4-5,4-8 | Address i.3its 0-15 after R.E., CTTL T1 4 a6 4 26 ns
Not Floating
tAHNt 4-8 Address Qits 16-23 after R.E., CTTL T4 4 36 4 26 ns
Not Floating
tov 4-6, 4-10 | Data Valid (Write Cycle) after R.E., CTTL T2 or T1 50 38 ns
ton 4-6, 4-10 | Data Hold after R.E.,, CTTL Next T1 or Ti ns
taDSa 4-5 | ADS Signal Active after R.E.,, CTTL T1 35 26 ns
tADSIa 4-5 ADS Signal Inactive after F.E., CTTL T1 35 25 ns
tADSw 4-6 ADS Pulse Width at 15% V¢ (Both Edges) 30 25 ns
taDst 4-7 | ADS Floating after R.E., CTTL Ti 55 40 ns
tADSK 4-8 ADS Return from Floating | after R.E., CTTL Ti 55 40 ns
tALADSS 4-6 Address Bits 0-15 Setup | before ADS T.E. 25 20 ns
tAHADSS 4.6 | Address Bits 16-23 Setup | before ADS T.E. 25 20 ns
tALADSh 4.5 Address Bits 0-15 Hold after ADS T.E. 12 12 ns
tHBEY 4-5 | HBE Signal Valid after R.E., CTTL T1 60 38 ns
tHBER 4-5 HBE Signal Hold after R.E., CTTL Next T1 or Ti 0 0 ns
tHBES 4-7 HBE Signal Floating after R.E., CTTLTi 55 40 ns
tHBEr 4-8 HBE Return from Floating | after R.E., CTTL Ti 55 40 ns
toDINV 4-5 DDIN Signa! Valid after R.E., CTTL T1 65 38 ns
tbpINn 4-5 DDIN Signal Hold after R.E., CTTL Next T1 or Ti 0 0 ns
topint 4-7 DDIN Floating after R.E., CTTL Ti 55 40 ns
oINS 4-8 DDIN Return from Floating | after R.E., CTTL Ti 55 40 ns
tspca 4-10 SPC Output Active after R.E., CTTLT1 35 5 26 ns
tspCia 4-10 SPC Output Inactive after R.E.,CTTL T4 35 5 26 ns
tspent 4-12 SPC Output Non-Forcing | after F.E., CTTL T4 tetp + 10 tctp + 8| ns
(Note 2)
tHLDAa 4.7 | HLDA Signal Active after R.E, CTTLTi 50 26 ns
tHLDAIa 4-8 | HLDA Signal Inactive after R.E., CTTL Ti 50 26 ns
tsTv 4-5 Status STO-ST3 Valid after R.E., CTTL T4 45 a8 ns
(before T1, see Note 1)
tsth 4-5 Status STO-ST3 Hold after R.E., CTTL T4 0 0 ns
tspuv 4-5 BPU Signal Valid after R.E., CTTL T4 45 30 ns
tspun 4-5 BPU Signal Hold after R.E., CTTL T4 5 5 ns
Note 1: Every memory cycle starts with T4, during which Cycle Status is applied. If the CPU was idling, the sequence will be: ... Ti, T4, T1 If the CPU was
not idling, the sequence willbe: ... T4, T1...".

Note 2: if the CPU is connected directly to the FPU and the CTTL loading is not violated, the CPU and FPU will function correctly together. The CPU and FPU
connect directly without buffers. They should be located less than 4 inches (10 centimeters) apart. tgpca and tgpcia will track each other on all CPU’s and therefore
itis not possible to have a minimum tgpcia and a maximum tgpc, value. The pulse width minimum, tspcw, of the FPU will not be violated by the NS32CG16 when
connected directly to the FPU.

2-147

G1-9LDJZESN/0L-9LDIZESN

NS32CG16-10/NS32CG16-15

4.0 Device Specifications (continued)
4.4.3.1 Output Signals: Internal Propagation Delays, NS32CG16-10 and NS32CG 16-15 (Continued)

Name Figure Description Reference/Conditions NS32CG16-10 NS320G16-15 Units
Min Max Min Max
trsoa 4-5 TSO Signal Active after R.E., CTTL T2 15 2 12 ns
t1s0ia 4-5 TSO Signal Inactive after R.E., CTTL T4 15 0 10 ns
tRDa 4-5 RD Signal Active after R.E., CTTL T2 20 15 ns
tRDIa 4.5 RD Signal Inactive after R.E., CTTL T4 20 0 15 ns
twRa 4-6 WR Signal Active after R.E.,CTTL T2 20 15 ns
twRia 4-6 WR Signal Inactive after R.E., CTTL T4 20 0 15 ns
tDBEa(R) 4-5 DBE Active (Read Cycle) | after F.E., CTTL T2 21 15 ns
tpeeaw) | 4-6 | DBE Active (Write Cycle) | after R.E., CTTL T2 28 15 ns
tDBEa 4-5,4-6 | DBE Inactive after F.E., CTTL T4 23 15 ns
tusv 4-5 U/S Signal Valid after R.E.,CTTL T4 40 30 ns
tush 4-5 U/S Signal Hold after R.E., CTTL T4 5 1. 5 ns
tpEsa 4-13 | PFS Signal Active after F.E., CTTL 50 38 ns
tPESia 4-13 | PFS Signal Inactive after F.E., CTTL 50 38 ns
tPESW 4-13 | PFS Pulse Width at 15% Vg (Both Edges) 70 45 ns
tNsPE 4-16 Nonseqfiﬁal Fetch after R.E.,CTTLT1 4 4 toTp
to Next PFS Clock Cycle
trENS 4-15 E_FS_ Clock Cycle t.o before R.E., CTTL T1 4 4 tTp
ext Nonsequential Fetch
tLxPF 4-14 Last Operand Transfer before R.E., CTTL T1 of
of an@ruction to First Bus Cycle of Transfer 0 0 tcrp
Next PFS Clock Cycle
tiLos 4-17 | TLO Signal Setup b<.efore R.E.,CTTLT1 of 30 30 ns
First Interlocked Read Cycle
tiLon 4-18 ILO Signal Hold after R.E., CTTL T3 of Last 5 5 ns
Intertocked Write Cycle
tiLoa 4-19 | TLO Signal Active after R.E., CTTL 55 35 ns
YLoia 4-19 | ILO Signal Inactive after R.E., CTTL 55 35 ns
trsTOa 4-22 | RSTO Signal Active after R.E., CTTL 21 15 ns
tRsTOIa 4-22 | RSTO Signal Inactive after R.E.,CTTL 21 15 ns
trTO! 4-22 Reset to Idle after F.E. of RSTO 10 10 tetp
tRTOF 4-22 Reset to Fetch after R.E. of RSTO 8 8 teTp

2-148

4.0 Device Specifications (continued)
4.4.3.2 Input Signal Requirements: NS32CG16-10 and NS32CG16-15

NS32CG16-10

NS32CG16-15

Name Figure Description Reference/Conditions Units
Min Max Min Max
txp 4-20 OSCIN Clock Period R.E., OSCIN to Next R.E., OSCIN 50 500 33 500 ns
txh 4-20 OSCIN High Time at 4.2V (Both Edges)
16 11 ns
(External Clock)
txi 4-20 OSCIN Low Time at 1.0V (Both Edges) 16 1 ns
tois 4-5,4-11 | Data In Setup before R.E., CTTL T4 18 15 ns
toin 4-5,4-11 | DataIn Hold after R.E.,CTTL T4
7 7 ns
(see Note 1)
tcws 4-5,4-6 (CWAIT Signal Setup before R.E., CTTL T3 or T3(w) 20 20 ns
tcwh 4-5,4-6 | CWAIT Signal Hold after R.E., CTTL T3 or T3(w) 5 5 ns
tws 4-5,4-6 | WAITn Signals Setup before R.E., CTTL T3 or T3(w) 20 20 ns
twh 4-5,4-6 | WAITn Signals Hold after R.E., CTTL T3 or T3(w) 5 5 ns
tHLDs 4-7,4-8 | HOLD Setup Time before R.E., CTTL TX2 or Ti 30 22 ns
tHLDh 4-7,4-8 | HOLD Hold Time after R.E., CTTL Ti 0 0 ns
trwR 4-21 Power Stable to RSTI R.E. | after Vo Reaches 4.5V 50 33 us
trsTs | 4-21,4-22 | RSTI Signal Setup before F.E., CTTL 20 20 ns
tRSTwW 4-22 RSTI Pulse Width at 0.8V (Both Edges) 64 64 tetp
tspch 4-12 SPC Hold Time after R.E., CTTL
0 0 ns
(see Note 3)
tiNTh 4-23 INT Signal Hold after Interrupt Acknowledge 8 8 tcp
tNMIw 4-24 NMI Pulse Width at 0.8V (Both Edges) 70 50 ns
tspcd 4-12 SPC Pulse Delay after F.E., CTTL T4
2 2 tcTp
from Slave
tspcs 4-12 SPC Input Setup before F.E., CTTL 37 30 ns
taDss 4-9 ADS Input Setup before F.E., CTTL 15 10 ns
tADSh 4-9 ADS Input Hold after F.E., CTTL T1 10 10 ns
(see Note 2)
tpDINS 4-9 DDIN Input Setup before F.E., CTTL 15 10 ns
tDDINh 4-9 DDIN Input Hold after R.E., CTTL T4 7 5 ns

Note 1: tp, is always less than or equal 1o trpja.
Note 2: ADS must be deasserted before state T4 of the DMA controller cycle.
Note 3: Not tested, guaranteed by design.

2-149

S1-91D0CESN/0L-91DIZESN

NS32CG16-10/NS32CG16-15

4.0 Device Specifications (continued)

4.4.4 TIMING DIAGRAMS

Spipll

ST0-ST3

/3

CWAIT

WAT1~2

T4ORT

n 2 ™

t
ALnfr
Yy —p .—> [tun tos [€— | > lG/—__
A e
ADDRESS
DATA IN
| vauD ¥ |\
_J] | le-tae -
tany tom | —» tath
ADDRESS X
t
tapse —p] = Yraosh
—»l taosia
tugey —p —>

tobiy —pf \[~ —-4 topiNn
| |
> tsty tsth —p
—» sy tusn —| e
— ety | terun —»]
trs0a —, trsois —p =
troa — ’ tapin ;
topera

—> toBEa(R) —»

—p tewn
s —PI [|
—> twn

FIGURE 4-5. Read Cycle

TL/EE/9424-32

2-150

4.0 Device Specifications (continued)

cm

ADO=-AD15

A16-A23

05

DOIN

ST0~ST3

CWAIT

TAORT n 7] 3 T3(W) T3(W) i T ORTI

—> tov —» ton
cqececa- - DATA OUT %

44— taLapss

4— taapss

[— taDsw

—> e toow —» Iﬁ— tooiNn
X X
- N
X X
- \
X X
N
-
twRa —b| Yy)=
toaea(w) —» > }t— toeEia
tews [—
Z {
| town
(% j
[
% %
" e twn

FIGURE 4-6. Write Cycle

TL/EE/9424-33

2-151

SE-91DJZESN/0L-91DI2ESN

NS32CG16-10/NS32CG16-15

4.0 Device Specifications (continued)

™1 ™2 T4 T 1) i

thios

tuLon

tHLpAa
HLDA
— tuper
tapst
tooing
ADS "
HBE -l - - - - -
DDIN (FLOATING)
—g tas :
ADO=AD15 ——bremecbhcae -
L (FLOATING)

A16-A23) --L---- L-----
b (FLOATING)

FIGURE 4-7. HOLD Acknowledge Timing (Bus Initlally Not Idle)

Note: When the bus is not idle, FOLD must be asserted before the rising edge of CTTL of the timing state that precedes state T4 in order for the request to be
acknowledged.

3
5

TL/EE/9424-34

2-152

4.0 Device Specifications (continued)

T4 OR Ti T m m m T TAORT | TIORT
CTTL L
L e
thips thips
« —
o —» ’17 tuLon
h— l e ‘
1 ¥
T tuon, HLDATa
—>
HLDA
h— £
tapst v tapsr
—» —»
ADS Y Y { 2% S
tgEs tuper
— —>
FEE X Py SRV { S IONpEpEpY X
tooing tooine
— —»
DOIN / --..--..;5...-_____ \
B taLnt
-
ADO=ADIS -..____-.>_..-- cemmdeccdpb et ——————
YAt
—»
A16=A23 -..-----.}.---,---_- FRRRIPROE { 2 NG RAY [UIMpp | X

TL/EE/9424-35
FIGURE 4-8. HOLD Timing (Bus Initially Idle)

2-153

S1-9LDIZESN/0L-9LDIZESN

NS32CG16-10/NS32CG16-15

4.0 Device Specifications (continued)

CPU STATES kil T T T Ti Ll T
DMAC STATES T i T2 T3 T3(W) T4 TTORTI
CTiL

HLDA \ /
—» ~ tapsh
tapss 4—'—‘_
ADS \ ’
— . tooinh
DDINS
‘_ - |
o[TIX (X

[\J

WATH=2 (HIGH)

TL/EE/9424-36
FIGURE 4-9. DMAC Initiated Bus Cycle
Note 1: ADS must be deactivated before state T4 of the DMA controller cycle.

Note 2: During a DMA cycle WAIT1-2 must be kept inactive unless they are monitored by the DMA Controller. A DMA cycle is similar to a CPU cycle. The
NS32CG 16 generates TSO, RD, WH and DBE. The DMAC drives the address/data lines HBE, ADS and DDIN.

Note 3: During a DMA cycle, if the ADS signal is pulsed in order to initiate a bus cycle, the HOLD signal must remain asserted until state T4 of the DMAC cycle.

2-154

4.0 Device Specifications (continued)

T T4 T T4
cTiL L CTIL
7 7 —»! le—ton
— ton tois [4—p
ADO=15 ——< DATA OUT ADO=15 ——'< VALID >——
Tt e - DATA (FROM SLAVE)

SFC SPC \ /

—p|tspca ~p{tspcia

ST0-ST3 STATUS VALID X NEXT SYeLE ST0-5T3 STATUS VALID X NEXT STATUS
ADS B (HiGH) 05 L (HIGH)
TL/EE/9424-37
TL/EE/9424-38
FIGURE 4-10. Slave Processor Write Timing FIGURE 4-11. Slave Processor Read Timing
| T | T4 | | | | |

|
em | L L Lt L_J L_J
= — *s:Pcm——-!

SPC
(FROM CPU)

tspcd

Sc.
(FROM FPU)

TL/EE/9424-39
FIGURE 4-12. SPC Timing

After transferring the last operand to the FPU, the CPU turns OFF the
output driver and holds SPC high with an internal 5 k2 pullup.
torsa tprsia
| | tersw

- [
[T T

FIGURE 4-13. Relationship of PFS to Clock Cycles

TL/EE/9424-40

2-155

S1-91D0CESN/0L-91DIZTESN

NS32CG16-10/NS32CG16-15

4.0 Device Specifications (Continued)

T T2 n T4 TiorTi l
em[L LML LI
s T W,
[W B

TL/EE/9424-41
Note: In a transfer of a Read-Modify-Write type operand, this is the Read transfer, displaying RMW Status (Code 1011).

FIGURE 4-14. Relationship Between Last Data Transfer of an Instruction and PFS Pulse of Next Instruction

I

g I I I A S |
=T ..
s Y o

FIGURE 4-15. Guaranteed Delay, PFS to Non-Sequential Fetch

TL/EE/9424-42

cm[i | ,J—l__, | |
=[_/ -

sm[Co0E 1001

= ! _/

. TL/EE/9424-43
FIGURE 4-16. Guaranteed Delay, Non-Sequential Fetch to PFS

TL/EE/9424-44
FIGURE 4-17. Relationship of ILO to First Operand Cycle of an Interlocked Instruction

2-156

4.0 Device Specifications (continued)

T3ORTI T40RTi m \ T2 ’

-

(]] LU

| va
<

tiLon

FIGURE 4-18. Relationship of ILO to Last Operand Cycle

o] | L
W[TN

S { —

TL/EE/9424-45
of an Interlocked Instruction

L L

tiLoa

YiLoia
TL/EE/9424-46

FIGURE 4-19. Relationship of ILO to Any Clock Cycle

tp tyn t

OSCIN

PHI2

teLw(2)

thovi(2)

thovi(r)

TL/EE/9424-47

FIGURE 4-20. Clock Waveforms

2-157

G1-91DIZESN/0L-91DITESN

NS32CG16-10/NS32CG16-15

4.0 Device Specifications (continued)

—

4.5V =),
vce /

FIGURE 4-21. Power-On Reset

~L LU L

trsToia

TL/EE/9424-48

trsTw

[T
=

ADO=15, [
Al 6-&
SPC
FIGURE 4-22. Non-Power-On Reset
Note 1: During Reset the HOLD signal must be kept high.
Note 2: After RSTI is deasserted the first bus cycle will be an instruction fetch at address zero.

-

‘¢

TL/EE/9424~49

LU LU LI

el

UNTh
rd

s

FIGURE 4-23. INT Interrupt Signal Detection
Note 1: Once INT is asserted, it must remain asserted until it Is acknowledged.
Note 2: INTA is the Interrupt Acknowledge bus cycle (not a CPU signal). Refer to Section 3.4.1 and Table 3.4.

4

FIGURE 4-24. NMI Interrupt Signal Timing

INMIw

edy

TL/EE/9424-50

TL/EE/9424-51

2-158

Appendix A: Instruction Formats

NOTATIONS
i = Integer Type Field
B8 = 00 (Byte)
W = 01 (Word)
D = 11 (Double Word)
f = Floating Point Type Field
F = 1 (Std. Floating: 32 bits)
L = 0 (Long Floating: 64 bits)
op = Operation Code
Valid encodings shown with sach format.
gen, gen 1, gen 2=General Addressing Mode Field
See Sec. 2.3.2 for encodings.
reg = General Purpose Register Number
cond = Condition Code Field
0000 = EQual: Z = 1
0001 = NotEqual: Z = 0
0010 = Carry Set: C = 1
0011 = Carry Clear: C = 0

0100 = Higher: L = 1

0101 = Lower or Same: L = 0

0110 = Greater Than: N = 1

0111 = Lessor Equal: N = 0

1000 = Flag Set: F = 1

1001 = Flag Clear: F = 0

1010 = LOwer: L =0andZ = 0

1011 = Higheror Same:L =10rZ = 1
1100 = Less Than:N =0and Z = 0
1101 = Greater or Equal: N = 1orZ = 1

1110 = (Unconditionally True)
1111 = (Unconditionally False)
short = Short Immediate value. May contain

quick: Signed 4-bit value, in MOVQ, ADDQ, CMPQ,
ACB.

cond: Condition Code (above), in Scond.
areg: CPU Dedicated Register, in LPR, SPR.

0000 = UPSR

0001 — 0111 = (Reserved)
1000 = FP

1001 = SP

1010 = SB

1011 = (Reserved)
1100 = (Reserved)

1101 = PSR
1110 = INTBASE
1111 = MOD

Options: in String Instructions

[uw []T]

T = Translated
B = Backward
U/W = 00: None
01: While Match
11: Until Match

Configuration bits in SETCFG instruction:

lofmlel]

-~
o

Format 0
Beond (BR)
7 0
o Jo019
Format 1
BSR —0000 ENTER —~1000
RET —0001 EXIT —1001
CXP —0010 NOP -1010
RXP —0011 WAIT —1011
RETT —-0100 DIA —-1100
RETI —0101 FLAG -1101
SAVE —-0110 SvVC -1110
RESTORE —-0111 BPT —1111
15 e|7 0
T 1 1 T T 1 1 T T T T
(gen (short | op |1 1| i |
Format 2
ADDQ —000 ACB —100
CMPQ —001 MovQ -101
SPR —-010 LPR -110
Scond -0
15 8|7
T T] T LI 1 T T T)
| gen Iop |11111|i
Format 3
CXPD —0000 ADJSP -1010
BICPSR -0010 JSR -1100
JUMP —0100 CASE -1110
BISPSR -0110

Trap (UND) on XXX1, 1000

ADD
CMP
BIC
ADDC
MoV
OR

15 8| 7
LB LR L LI 1
I gen1 I gen 2 | op I |J
Format 4
—0000 suB —1000
—0001 ADDR —1001
—0010 AND —-1010
-0100 SuUBC —-1100
—0101 TBIT —-1101
—-0110 XOR -1110

2-159

G1-91DIZESN/0L-91DIZESN

NS32CG16-10/NS32CG16-15

Appendix A: Instruction Formats (continued)

23 1s|15 8|7 0 23 1s|15 8|7 0
R T T T T T T 1 1 T 1 T ¥ T T 7T T T T i T T 1 T T T L T 1 T T 1
OOOOJ'shon—[0| oin oooo117;| l gen 1 l gen2 opFli 0011111;|
Format 5 Format 9
MOVS 0000 BITWT —1000 MoVvif —000 ROUND —100
CMPS —0001 TBITS —1001 LFSR —001 TRUNG —10
SETCFG —0010 BBAND —1010 MOWLF —010 SFSR —110
SKPS —0011 SBITPS —1011 MOVFL —ou FLOOR —-m
BBSTOD —0100 BBFOR —1100
EXTBLT —0101 SBITS -1101 —ul 0
BBOR —0110 BBXOR —1110
MOVMP —0111 TL/EE/9424-53
No Operation on 1111
Format 10
- 16|15 sl7 B Trap (UND) Always
T 1 T T T T T T T 1 T T T T T T T T
| gen1 | gen2 I op il0100111 0| 23 16|15 8|7 0
L T T T] T T T T T T 1 T T T
4Format6 gen 1 I gen2 op lolf 101111 1?‘
ROT —-0000 NEG —1000 Format 11
ASH —0001 NOT —1001 ADDf —0000 DIvi —1000
cBIT —0010 Trap (UND) —1010 MOVF —0001 . (Note 1) —1001
CBITI —0011 susp —1011 CMPf —-0010 Trap (UND) —-1010
Trap (UND) —0100 ABS —1100 (Note 3) —0011 Trap (UND) —1011
LSH —0101 COM —1101 SUBf ~0100 MULF -1100
SBIT —-0110 IBIT -1110 NEGf —0101 ABSf —~1101
SBITI =011 ADDP =111 Trap (UND) —-0110 Trap (UND) —1110
Trap (UND) —0111 Trap (UND) —-1111
23 1e|15 8|7 0
T T T T T T T T 1 1 1 1 T T T T T
gent | gen2 | op | i|11001110) 2 weps el o
| gen1] gen2] op |0|f11 1 111?:]
Format 7
MOVM —~0000 MUL ~1000 Format 12
CMPM —0001 MEI ~-1001 (Note 2) —0000 (Note 2) —-1000
INSS ~0010 Trap (UND) —1010 {Note 1) —0001 (Note 1) —1001
EXTS —0011 DEI —1011 POLYf —0010 Trap (UND) -1010
MOVXBW —-0100 Quo -1100 DOTt —0011 Trap (UND) ~1011
MOVZBW —0101 REM -1101 SCALBf —0100 (Note 2) —1100
MOVZiD -0110 MOD -1110 LOGBf ~0101 (Note 1) —1101
MOVXiD —-0111 DIV —-1111 Trap (UND) —-0110 Trap (UND) -1110
Trap (UND) -0111 Trap (UND) —1111
23 16]15 817 0 *Instructions with Format 12 are available only when the NS32381 is used.
UL L B T T T T
[gen 1 gen 2 rng l i 1011 1':1 7 0
e ARG
TL/EE/9424-52 _._
Format 8 TL/EE/9424-54
Format 13
EXT -000 INDEX —-100 Trap (UND) Always
CVTP —001 FFS -101
INS —010 --

Trap(UND)on —110and —1 11

TL/EE/9424-55

2-160

Appendix A: Instruction Formats (continued)

Trap (UND)

Trap (UND)

Trap (UND)

Trap (UND)

Trap (UND)

Format 14
Always
TL/EE/9424-56
Format 15
Always

~
o

TL/EE/9424-57

Format 16
Always
TL/EE/9424-58
Format 17
Always
7 o
TL/EE/9424-59
Format 18
Always

TL/EE/9424-60

Format 19

Trap (UND) Always

Implied Immediate Encodings:
7 0

T T T T T I T
7 6 5 r4 r3 r2 r 0

1 1 1 1
Register Mask, appended to SAVE, ENTER

T T T T T T ¥

ro r re r3 r4 5 6 r7

L 1 L ! 1 Il 1

Register Mask, appended to RESTORE, EXIT

offset length—1

1 1 1 1
Offset/Length Modifier appended to INSS, EXTS

Note 1: Opcode not defined; CPU treats like MOVA. First operand has access class of read; second operand has access class of write; f-field selects 32-bit or

64-bit data.

Note 2: Opcode not defined; CPU treats like ADDf. First operand has access class of read; second operand has access class of read-modify-write. f-field selects
32-bit or 64-bit data.

Note 3: Opcode not defined; CPU treats like CMPH. First operand has access class of read; second operand has access class of read. f-field selects 32-bit or 64-bit

data.

2-161

G1-91DOCESN/0L-9EDIZESN

Section 3
Slave Processors

Section 3 Contents

NS32381-15, NS32381-20, NS32381-25, NS32381-30 Floating-Point Units
NS32081-10, NS32081-15 Floating-Point Unitscooiiii it

3-2

National
Semiconductor

PRELIMINARY

NS32381-15/NS32381-20/NS32381-25/NS32381-30

Floating-Point Unit

General Description

The NS32381 is a second generation, CMOS, floating-point
slave processor that is fully software compatible with its
forerunner, the NS32081 FPU. The NS32381 FPU functions
with National's Embedded System Processors™, the
NS32GX32 and the NS32CG 16, and with any Series 32000
CPU, from the NS32008 to the NS32532, in a tightly cou-
pled slave configuration. The performance of the NS32381
has been increased over the NS32081 by architecture im-
provements, hardware enhancements, and higher clock fre-
quencies. Key improvements include the addition of a 32-bit
slave protocol, an early done algorithm to increase CPU/
FPU parallelism, an expanded register set, an automatic
power down feature, expanded math hardware, and addi-
tional instructions.

The NS32381 FPU contains eight 64-bit data registers and
a Floating-Point Status Register (FSR). The FPU executes
20 instructions, and operates on both single and double-
precision operands. Three separate processors in the
NS32381 manipulate the mantissa, sign, and exponent.
The CPU and NS32381 FPU form a tightly coupled comput-
er cluster, which appears to the user as a single processing
unit. The CPU and FPU communication is handled automati-
cally, and is user transparent.

The FPU is fabricated with National’s advanced double-met-
al CMOS process. It is available in a 68-pin Pin Grid Array
(PGA) package or 68-pin Plastic package.

Features

m Compatible with NS32008, NS32016, NS32C016,
NS32032, NS32C032, NS32332, NS32532, NS32CG16
and NS32GX32 microprocessors

Selectable 16-bit or 32-bit Slave Protocol

Format compatible with IEEE Standard 754-1985 for
binary floating point arithmetic

Early done algorithm

Single (32-bit) and double (64-bit) precision operations
Eight on-chip (64-bit) data registers

Automatic power down mode

Full upward compatibility with existing 32000 software

m High speed double-metal CMOS design

@ 68-pin PGA package

E 68-pin plastic package

FPU Block Diagram

NANO P MICRO PN ENTRY < gEggDDE Control
SEQUENCER | ¢ ROM &= FONT] Unit
STORE GENERATOR |+ REGISTER
A
Condition | t Initiate
and v__| Command Sequence
Completi T
Vi3 71
EXPONENT MANTISSA SIGN Execution
PROCESSOR PROCESSOR PROCESSOR Unit
7'y 7Y A
i1 154 1i
v Internal A 4
Data Bus 4
14
164 16+ 755>
v v * v v 32
REGISTER DATA SLAVE 1/0 ’a Interface
FILE QUEUE SEQUENCER BUFFERS and
Storage Unit
A A 4
L,
T 42 PB2oamsusy
v CONTROL BUS
TL/EE/9157-1
FIGURE 1-1

3-3

02-18ECESN/SI-18EZESN

NS32381-15/NS32381-20

Table of Contents

1.0 PRODUCT INTRODUCTION

1.1 |EEE Features Supported-Standard 754-1985
1.2 Operand Formats

1.2.1 Normalized Numbers

1.2.2 Zero .

1.2.3 Reserved Operands

1.2.4 Integers

1.2.5 Memory Representations

2.0 ARCHITECTURAL DESCRIPTION

2.1 Programming Model
2.1.1 Floating-Point Registers
2.1.2 Floating-Point Status Register (FSR)
2.1.2.1 FSR Mode Control Fields
2.1.2.2 FSR Status Fields
2.1.2.3 FSR Software Fields (SWF)
2.2 Instruction Set
2.3 Exceptions

3.0 FUNCTIONAL DESCRIPTION

3.1 Power and Grounding
3.2 Automatic Power Down Mode
3.3 Clocking
3.4 Resetting
3.5 Bus Operation
3.5.1 Bus Cycles
3.5.2 Operand Transfer Sequences
3.6 Instruction Protocols
3.6.1 General Protocol Sequence
3.6.2 Early Done Algorithm
3.6.3 Floating-Point Protocols

4.0 DEVICE SPECIFICATIONS

4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input/Output Signals
4.2 Absolute Maximum Ratings
4.3 Electrical Characteristics
4.4 Switching Characteristics

4.4.1 Definitions

4.4.2 Timing Tables

4.4.2.1 Output Signal Propagation Delays for all
CPUs

4.4.2.2 Output Signal Propagation Delays for the
NS32008, NS32016, NS32032 CPUs

4.4.2.3 Output Signal Propagation Delays for the
32-Bit Slave Protocol NS32332 CPU

4.4.2.4 Output Signal Propagation Delays for the
32-Bit Slave Protocol NS32532 CPU

4.4.2.5 Input Signal Requirements for all CPUs

4.4.2.6 Input Signal Requirements for the
NS32008, NS32016, NS32032 CPUs

4.4.2.7 Input Signal Requirements for the 32-Bit
Slave Protocol NS32332 CPU

4.4.2.8 Input Signal Requirements for the 32-Bit
Slave Protocol NS32532 CPU

4.4.2.9 Clocking Requirements for all CPUs
APPENDIX A: NS32381 PERFORMANCE ANALYSIS

3-4

List of lllustrations

L U 2oL I V[T
Floating-Point Operand FOMMAESo.iuuieiein ittt nt it enttteeneeneneensntonentenessoronesisersenseoscnsns
L) =T T=T gl o 1=
LT T [(=
The Floating-Point Status Registeruiuuiietiiiitiiiei ittt tttenerateantentenneantoiosnessneeinasns
Floating-Point INStruction FOMMAatso out ittt ie it et ettt ionatenatesestreasnneannsennns
Recommended Supply Connections
Power-On Reset Requirements

General Reset TIMINGvvviiiiiiiiiiiiii et eeiennaes
System Connection Diagram with the NS32532 CPU
System Connection Diagram with the NS32332 CPU

System Connection Diagram with the NS32008, NS32016 0r NS32032 CPUvviininininiiiiiiieeiiniiniiiaeannnses 3-4c
System Connection Diagram with the NS32CGT16 CPU c.iutietn it i ier it iet e an it reanaaeeaes 3-4d
Slave Processor Read Cycle (NS32008, NS32016, NS32032 and NS32332 CPUS) .. vuvvverinrrneeanriorenronnnosnnsnns 3-5
Slave Processor Read Cycle (NS32532 CPU) ... vvtieiinetitiitiaeetitineanenstteneateenersnseiseneennassneens

Slave Processor Write Cycle (NS32008, NS32016, NS32032 and NS32332 CPUs)
Slave Processor Write Cycle (NS32532 CPU)
ID and Opcode Format 16-Bit Slave Protocol
ID and Opcode Format 32-Bit Slave Protocol
FPU Status WOrd FOMMAtvvuutiutintittteittanstteetsoutonnenesseesaosueenosnssesseneesnesossnsssonsonss
16-Bit General Slave Instruction Protocol: FPU ACHONSvuuiineniitii ittt iiuenntniitineeaneenns
32-Bit General Slave Instruction Protocol: FPU ACHONS ... ouviutiietnniertiiurnteenentotoiureeiniiitennesensonns
B8-PINPGA PACKAGE ..ot vt ttttetttetteeseeenanansesosentoenesseeetssseatensesusosssssesnsosrontoenseonssans
Timing Specification Standard (Signal Valid After CIock EAGe) . ..o v e in ittt
Timing Specification Standard (Signal Valid Before Clock Edge)
[T TS 114 11T PO
Power-OnReset

Non-Power-On Reset
LTS 2 =3 1= V=N 1Yo T S
Read Cycle from FPU (NS32008, NS32016, NS32032 CPUs)
Write Cycle to FPU (NS32008, NS32016, NS32032 CPUS) . « ottt vt ettt ttteneaetaeasttoteneeneantitotiseneanasenasns
Read Cycle from FPU (NS32832 CPU) . ..t te it ettatteeenteneeiuaneesateaeeaesseesotesseseeennoessonernroenesns
Write Cycle to FPU (NS32332 CPU) ...itteettiititeee e e et e et taaeesnttten e seseeetaesatinnsiraneassennes
SDNB3Z TiMING (NSB2332 CPU) .\ttt ettt ettt e et e e et ie e e et e e et e e e e e e ae et e e aa e e arenens
SDN332 (TRAP) Timing (NS32332 CPU)
Read Cycle from FPU (NS32532 CPU)........

Write Cycle from FPU (NS32532 CPU)

SDN532 Timing (NS32532CPU)

FOSR TIMING (NS32532 CPU) .« . vttt et ettt et et et ie e aae ettt tas e e e e e eetanaeeenaneaneanaeennse
SPC PUISE fTOM FPU .ottt tttt ettt et et et ettt et et e e e e e ettt e e e e e ie e e e ie et e e e e arneannas

3-5

02-18ECESN/S1-1 8ECESN

NS32381-15/NS32381-20

List of Tables
BT Ty (=l = oL
BT 1o 1= B S =1«
Normalized NUMDEr RaNgesottt it ittt i et ittt e oanaeertaaenns
16-Bit General Slave Instruction Protocol.vve ittt it i i
32-Bit General Slave INStruCtion PrOtOCO] vt ettt ittt ettt ittt et a st tie e neeanranenans
Floating-Point InStruction Protocolso u it i i e i e e e

1.0 Product Introduction

The NS32381 Floating-Point Unit (FPU) provides high
speed floating-point operations for the Series 32000 family,
and is fabricated using National high-speed CMOS technol-
ogy. It operates as a slave processor for transparent expan-
sion of the Series 32000 CPU's basic instruction set. The
FPU can also be used with other microprocessors as a pe-
ripheral device by using additional TTL and CMOS interface
logic. The NS32381 is compatible with the IEEE Floating-
Point Formats.

1.1 IEEE FEATURES SUPPORTED-STANDARD 754-1985

a) Basic floating-point number formats

b) Add, subtract, multiply, divide and compare operations

c) Conversions between different floating-point formats

d) Conversions between floating-point and integer formats

e) Round floating-point number to integer (round to near-
est, round toward negative infinity and round toward
zero, in double or single-precision)

f) Exception signaling and handling (invalid operation, di-
vide by zero, overflow, underflow and inexact)

1.2 OPERAND FORMATS

The N32381 FPU operates on two floating-point data
types—single precision (32 bits) and double precision (64
bits). Floating-point instruction mnemonics use the suffix F
(Floating) to select the single precision data type, and the
suffix L (Long Floating) to select the double precision data
type.

A floating-point number is divided into three fields, as shown
in Figure 1-2.

The F field is the fractional portion of the represented num-
ber. In Normalized numbers (Section 1.2.1), the binary point
is assumed to be immediately to the left of the most signifi-
cant bit of the F field, with an implied 1 bit to the left of the
binary point. Thus, the F field represents values in the range
1.0 <x <20

TABLE 1-1, Sample F Flelds
F Fleld Blnary Value Decimal Value
000...0 1.000...0 1.000...0
010...0 1.010...0 1.250...0
100...0 1.100...0 1.500...0
110...0 1.110...0 1.750...0
)
Implied Bit

The E field contains an unsigned number that gives the bi-
nary exponent of the represented number. The value in the
E field is biased; that is, a constant bias value must be sub-
tracted from the E field value in order to obtain the true

exponent. The bias value is 011 ... 113, which is either 127
(single precision) or 1023 (double precision). Thus, the true
exponent can be either positive or negative, as shown in
Table 1-2.

TABLE 1-2. Sample E Flelds
E Field F Field Represented Value
011...110 100...0 1.5%x2-1=0.75
o1t1...111 100...0 1.5x20 = 1.50
100...000 100...0 1.5%x21 = 3.00

Two values of the E field are not exponents. 11... 11 sig-
nals a reserved operand (Section 1.2.3). 00...00 repre-
sents the number zero if the F field is also all zeroes, other-
wise it signals a reserved operand.

The S bit indicates the sign of the operand. It is 0 for posi-
tive and 1 for negative. Floating-point numbers are in sign-
magnitude form, that is, only the S bit is complemented in
order to change the sign of the represented number.

1.2.1 Normalized Numbers
Normalized numbers are numbers which can be expressed
as floating-point operands, as described above, where the E
field is neither all zeroes nor all ones.
The value of a Normalized number can be derived by the
formula:

(—1)S x 2(E-Bias) X (1 + F)
The range of Normalized numbers is given in Table 1-3.

1.2.2 Zero

There are two representations for zero—positive and nega-
tive. Positive zero has all-zero F and E fields, and the S bit is
zero. Negative zero also has all-zero F and E fields, butits S
bit is one.

1.2.3 Reserved Operands

The IEEE Standard for Binary Floating-Point Arithmetic pro-
vides for certain exceptional forms of floating-point oper-
ands. The NS32381 FPU treats these forms as reserved
operands. The reserved operands are:

* Positive and negative infinity

® Not-a-Number (NaN) values

® Denormalized numbers

Both Infinity and NaN values have all ones in their E fields.
Denormalized numbers have all zeroes in their E fields and
non-zero values in their F fields.

The NS32381 FPU causes an Invalid Operation trap (Sec-
tion 2.1.2.2) if it receives a reserved operand, unless the
operation is simply a move (without conversion). The FPU
does not generate reserved operands as results.

Single Precision

3130 2322 0
[s] e | :]
1 8 23
Double Precision
63 62 52 51 0
ls| e [: |
1 11 52

FIGURE 1-2. Floating-Point Operand Formats

3-7

02-18E2ESN/GL-18ECESN

NS32381-15/NS32381-20

1.0 Product Introduction (continued)

TABLE 1-3. Normalized Number Ranges

Single Precision

Most Positive 2127 x (2 — 2—23)
= 3.40282346 X 1038
Least Positive 2—-126

= 1.17549436 X 10—38

Least Negative —(2-126)

= —1.17549436 x 1038

Most Negative —2127 x (2 — 2-23)

= —3.40282346 X 1038
Note: The values given are extended one full digit beyond their represented accuracy to help in generating rounding and conversion algorithms.

1.2.4 Integers

In addition to performing floating-point arithmetic, the
NS32381 FPU performs conversions between integer and
floating-point data types. Integers are accepted or generat-
ed by the FPU as two’s complement values of byte (8 bits),
word (16 bits) or double word (32 bits) length.

See Figure 1-3 for the Integer Format and Table 1-4 for the
Integer Fields.

n—-1 n-2 0
s | !
FIGURE 1-3. integer Format
TABLE 1-4. Integer Fields

Value Name
0 | Positive Integer
1 |—2n Negative Integer

Note: n represents the number of bits in the word, 8 for byte, 16 for word
and 32 for double-word.

1.2.5 Memory Representations

The NS32381 FPU does not directly access memory. How-
ever, it is cooperatively involved in the execution of a set of
two-address instructions with its Series 32000 Family CPU.
The CPU determines the representation of operands in
memory.

In the Series 32000 family of CPUs, operands are stored in
memory with the least significant byte at the lowest byte

570

LSDW —p least significant double word

MSDW—P most significant double word
FIGURE 2-1. Register Set

31 17 16 15

Double Precision
21023 x (2 — 2—52)
= 1.7976931348623157 X 10308
21022
= 2.2250738585072014 X 10—308
—(2-1022)
= —2.2250738585072014 X 10—308

—21023 x (2 — 2-52)
= —1.7976931348623157 X 10308

address. The only exception to this rule is the Immediate
addressing mode, where the operand is held (within the in-
struction format) with the most significant byte at the lowest
address.

2.0 Architectural Description

2.1 PROGRAMMING MODEL

The Series 32000 architecture includes nine registers that
are implemented on the NS32381 Floating-Point Unit (FPU).

2.1.1 Floating-Point Registers

There are eight registers (LO-L7) on the NS32381 FPU for
providing high-speed access to floating-point operands.
Each is 64 bits long. A floating-point register is referenced
whenever a floating-point instruction uses the Register ad-
dressing mode (Section 2.2.2) for a floating-point operand.
All other Register mode usages (i.e., integer operands) refer
to the General Purpose Registers (R0-R7) of the CPU, and
the FPU transfers the operand as if it were in memory.
Note: These registers are all upward compatible with the 32-bit N§32081
registers, (FO-F7), such that when the Register addressing mode is
specified for a double precision (64-bit) operand, a pair of 32-bit reg-
isters holds the operand. The programmer specifies the even register
of the pair which contains the least significant half of the operand and
the next consecutive register contains the most significant half.

2.1.2 Floating-Point Status Register (FSR)

The Floating-Point Status Register (FSR) selects operating
modes and records any exceptional conditions encountered
during exscution of a floating-point operation. Figure 2-2
shows the format of the FSR.

fe——— 64
-—sz———-———sz:

F1 /L0 MSDW | FO /LO LSDW
MSDW L1 LSDW
MSDW | F2 /L2 LSDW
MSDW L3 LSDW
F5 /L4 MSOW | F4 /L4 LSDW

L5 MSDW L5 LSDW
F7 /L6 MSDW | F6 /L6 LSOW
L7 MSDW L7 LSOW

TL/EE/9157-36

76543210

[RoservedrMBl LS UM ||rilzu|ur|u:N| |

TL/EE/9157-37

FIGURE 2-2. The Floating-Point Status Register

2.0 Architectural Description (continued)

2.1.2.1 FSR Mode Control Fields

The FSR mode control fields select FPU operation modes.
The meanings of the FSR mode control bits are given be-
low.

Rounding Mode (RM): Bits 7 and 8. This field selects the
rounding method. Floating-point results are rounded when-
ever they cannot be exactly represented. The rounding
modes are:

00 Round to nearest value. The value which is nearest to
the exact result is returned. If the result is exactly half-
way between the two nearest values the even value
(LSB=0) is returned.

01 Round toward zero. The nearest value which is closer
to zero or equal to the exact result is returned.

10 Round toward positive infinity. The nearest value which
is greater than or equal to the exact result is returned.

11 Round toward negative infinity. The nearest value
which is less than or equal to the exact result is re-
turned.

Underflow Trap Enable (UEN): Bit 3. If this bit is set, the
FPU requests a trap whenever a result is too small in abso-
lute value to be represented as a normalized number. If it is
not set, any underflow condition returns a result of exactly
zero.

Inexact Result Trap Enable (IEN): Bit 5. If this bit is set,
the FPU requests a trap whenever the result of an operation
cannot be represented exactly in the operand format of the
destination. If it is not set, the result is rounded according to
the selected rounding mode.

2.1.2.2 FSR Status Fields

The FSR Status Fields record exceptional conditions en-
countered during floating-point data processing. The mean-
ings of the FSR status bits are given below:

Trap Type (TT): bits 0-2. This 3-bit field records any excep-
tional condition detected by a floating-point instruction. The
TT field is loaded with zero whenever any floating-point in-
struction except LFSR or SFSR completes without encoun-
tering an exceptional condition. It is also set to zero by a
hardware reset or by writing zero into it with the Load FSR
(LFSR) instruction. Underflow and Inexact Result are always
reported in the TT field, regardless of the settings of the
UEN and IEN bits.

000 No exceptional condition occurred.

001 Underflow. A non-zero floating-point result is too small
in magnitude to be represented as a normalized float-
ing-point number in the format of the destination oper-
and. This condition is always reported in the TT field
and UF bit, but causes a trap only if the UEN bit is set.
If the UEN bit is not set, a result of Positive Zero is
produced, and no trap occurs.

010 Overflow. A result (either floating-point or integer) of a
floating-point instruction is too great in magnitude to
be held in the format of the destination operand. Note
that rounding, as well as calculations, can cause this
condition.

Divide by zero. An attempt has been made to divide a

.non-zero floating-point number by zero. Dividing zero
by zero is considered an Invalid Operation instead
(below).
llegal Instruction. Any instruction forms not included
in the NS32381 Instruction Set are detected by the
FPU as being illegal.

Invalid Operation. One of the floating-point operands
of a floating-point instruction is a Reserved operand,
or an attempt has been made to divide zero by zero
using the DIVf instruction.

Inexact Result. The result (either floating-point or inte-
ger) of a floating-point instruction cannot be repre-
sented exactly in the format of the destination oper-
and, and a rounding step must alter it to fit. This condi-
tion is always reported in the TT field and IF bit unless
any other exceptional condition has occurred in the
same instruction. In this case, the TT field always con-
tains the code for the other exception and the IF bit is
not altered. A trap is caused by this condition only if
the IEN bit is set; otherwise the result is rounded and
delivered, and no trap occurs.

111 (Reserved for future use.)

Underflow Flag (UF): Bit 4. This bit is set by the FPU when-
ever aresult is too small in absolute value to be represented
as a normalized number. Its function is not affected by the
state of the UEN bit. The UF bit is cleared only by writing a
zero into it with the Load FSR instruction or by a hardware
reset.

Inexact Result Flag (IF): Bit 6. This bit is set by the FPU
whenever the result of an operation must be rounded to fit
within the destination format. The IF bit is set only if no other
error has occurred. It is cleared only by writing a zero into it
with the Load FSR instruction or by a hardware reset.

Register Modify Bit (RMB): Bit 16. This bit is set by the
FPU whenever writing to a floating point data register. The
RMB bit is cleared only by writing a zero with the LFSR
instruction or by a hardware reset. This bit can be used in
context switching to determine whether the FPU registers
should be saved.

2.1.2.3 FSR Software Fleld (SWF)

Bits 9-15 of the FSR hold and display any information writ-
ten to them (using the LFSR and SFSR instructions), but are
not otherwise used by FPU hardware. They are reserved for
use with NSC floating-point extension software.

011

100

101

110

0¢2-18E2ESN/S1-18ECESN

NS32381-15/NS32381-20

2.0 Architectural Description (continued)
2.2 INSTRUCTION SET

2.2.1 Floating-Point Instruction Set

This section describes the floating-point instructions execut-
ed by the FPU in conjunction with the CPU. These instruc-
tions form a subset of the Series 32000@ instruction set and
take 9, 11, and 12 encoding formats. A list of all the Series
32000 instructions as well as details on their formats and
addressing modes can be found in the appropriate CPU
data sheets.

Certain notations in the following instruction description ta-
bles serve to relate the assembly language form of each
instruction to its binary format in Figure 2-3.

Format 9
23 Bl7 0
T I_I I l LRI T rTT1T T T 71T
gent gen2 op lil 00111110
OPERATION WORD 1D BYTE
TL/EE/9157-5
Format 11
23 7 0
LILALEL l‘! I I T I T T T 1T T 1T
rgem] gen2 l I||1u11111u
OPERATION WORD D BYTE
TL/EE/9157-6
Format 12
23 16]15 8|7 0
UL LU LN LU
l gen 1 | gen 2 [op |D|fl1|11|lﬂ

TL/EE/9157-7

FIGURE 2-3. Floating-Point Instruction Formats

The Format column indicates which of the three formats in
Figure 2-3 represents each instruction.

The Op column indicates the binary pattern for the field
called “op” in the applicable format.

The Instruction column gives the form of each instruction as
it appears in assembly language. The form consists of an
instruction mnemonic in upper case, with one or more suffix-
es (i or f) indicating data types, followed by a list of oper-
ands (gen1, gen2).

Ani suffix on an instruction mnemonic indicates a choice of
integer data types. This choice affects the binary pattern in
thei field of the corresponding instruction format as follows:

Suffix i Data Type i Field
B Byte 00
w Word 01
D Double Word 11

An f suffix on an instruction mnemonic indicates a choice of
floating-point data types. This choice affects the setting of
the f bit of the corresponding instruction format as follows:

Suffix f Data Type f Bit
F Single Precision 1
L Double Precision (Long) 0

An operand designation (gen1, gen2) indicates a choice of
addressing mode expressions. This choice affects the bina-
ry pattern in the corresponding gen1 or gen2 field of the
instruction format. Refer to Table 2-1 for the options avail-
able and their patterns.

Further details of the exact operations performed by each
instruction are found in the Series 32000 Instruction Set
Reference Manual.

Movement and Conversion
The following instructions move the gen1 operand to the
gen2 operand, leaving the gen1 operand intact.

Instruction
gent, gen2

Format Op
11 0001 MOV

Description
Move without
conversion

Move, converting
from double
precision to
single precision.
Move, converting
from single
precision to
double

precision.

Move, converting
from any integer
type to any
floating-point
type.

Move, converting
from floating-
point to the
nearest integer.

Move, converting
from floating-
point to the
nearestinteger
closer to zero.

Move, converting
from floating-
point to the
largest integer
less than or
equal toits
value.
Note: The MOVLF instruction f bit must be 1 and the i field must be 10.
The MOVFL instruction f bit must be 0 and the i field must be 11.

9 010 MOVLF gen1,gen2

MOVFL gent, gen2

9 000 MOVif geni, gen2

9 100 ROUNDfi gen1, gen2

9 101 TRUNCfi gen1, gen2

FLOORfi gent, gen2

Arithmetic Operations
The following instructions perform floating-point arithmetic
operations on the gen1 and gen2 operands, leaving the re-
sult in the gen2 operand.
Note: POLY and DOT use the additional third implied operand.

POLY and DOT put their result to LO/FO register and not to GEN2.

Format Op Instruction Description
1 0000 ADDf geni,gen2 Addgent togen2.
11 0100 SUBf gen1,gen2 Subtractgeni
from gen2.
ih! 1100 MULf gent,gen2 Multiply gen2 by
gent.

2.0 Architectural Description (continued)
Format Op Instruction Description
11 1000 DIVf gen1, gen2 Divide gen2 by gen1.
11 0101 NEGf gent, gen2 Move negative of
gen1togen2.
gen1, gen2 Move absolute value
' of gent to gen2.
0100 SCALBf gen1, gen2 Move gen2*2g9en to
gen2, for integral
values of gen1
without computing
2gent,
0101 LOGBf gen1, gen2 Move the unbiased
exponent of gen1 to
gen2.

11 1101 ABSf

(N) 12

N) 12

(N) 12 0011 DOTf gent, gen2 Move (gen1*gen2)
+ LOto LO.(*)
(N) 12 0010 POLYf gen1,gen2 Move (LO*gent) +

gen2to LO.(*)
Notes:
(N): Indicates NEW instruction.

(*)The third impled operand used by these instructions can be either FO or
LO depending on whether ‘floating’ or ‘long’ data type is specified in the
opcode.

Comparison

The Compare instruction compares two floating-point val-
ues, sending the result to the CPU PSR Z and N bits for use
as condition codes. See Figure 3-11. The Z bit is set if the
gen1 and gen2 operands are equal; it is cleared otherwise.
The N bit is set if the gen1 operand is greater than the gen2
operand; it is cleared otherwise. The CPU PSR L bit is un-
conditionally cleared. Positive and negative zero are consid-
ered equal.

Format Op Instruction Description
11 0010 CMPf geni,gen2 Compare gent
to gen2.

Floating-Point Status Register Access

The following instructions load and store the FSR as a 32-
bit integer.

Format Op Instruction Description
9 001 LFSR geni Load FSR
9 110 SFSR gen2 Store FSR

Note: All instructions support all of the NS32000 family data formats (for
external operands) and all addressing modes are supported.

+5Y

o

NS32381

se0 0000000 =

TL/EE/9157-8

PGA Package

Rounding

The FPU supports all IEEE rounding options: Round toward
nearest value or even significant if a tie. Round toward zero,
Round toward positive infinity and Round toward negative
infinity.

2.3 EXCEPTIONS

The FPU supports five types of exceptions: Invalid opera-
tion, Division by zero, Overflow, Underflow and Inexact Re-
sult. When an exception occurs, the FPU may or may not
generate a trap depending upon the bit setting in the FSR
Register. The user can disable the Inexact Result and the
Underflow traps. If an undefined Floating-Point instruction is
passed to the FPU an lllegal Instruction trap will occur. The
user can't disable trap on lllegal Instruction.

Upon detecting an exceptional condition in executing a
floating-point instruction, the FPU requests a TRAP by puls-
ing the SPC line for one clock cycle, pulsing the SDN332
line for two and a half clock cycles and pulsing the FSSR
line for one clock cycle. (The user will connect the correct
lines according to the CPU being used).

In addition, the FPU sets the Q bit in the status word regis-
ter. The CPU responds by reading the status word register
(refer to Section 3.6.1 for its format) while applying status
h'E (transferring status word) on the status lines. A trapped
instruction returns no result (even if the destination is FPU
register) and does not affect the CPU PSR. The FPU rec-
ords exceptional cause in the trap type (TT) field of the FSR.
If an illegal opcode is detected, the FPU sets the TS bit in
the slave processor status word register, indicating a trap
(UND).

3.0 Functional Description

3.1 POWER AND GROUNDING

The NS32381 requires a single 5V power supply, applied on
the Vg pins. These pins should be connected together by
a power (Vgc) plane on the printed circuit board. See Figure
3-1.

The grounding connections are made on the GND pins.
These pins should be connected together by a ground
(GND) plane on the printed circuit board. See Figure 3-1.

+5V
=] Vel 8
GND * 115
L] * =
. o |5
. * |z
° L]
o NS32381 e |36
. *
. b ﬁ.
. 14
- . —
. e |59
: vee [67
GND ":r"

TL/EE/9157-43
PLCC Package

FIGURE 3-1. Recommended Supply Connections

3-11

02-18ECESN/S1-18ECESN

NS32381-15/NS32381-20

3.0 Functional Description (continued)

N 4

4.5V
f

Vcc_;

CLK

L2

RST

I__ > 64 CLOCK
CYCLES
i

I'e

p

230 uS

TL/EE/9157-9

FIGURE 3-2. Power-On Reset Requirements

3.2 AUTOMATIC POWER DOWN MODE

The NS32381 supports a power down mode in which the
device consumes only 10% of its original power at 30 MHz.
The NS32381 enters the power down mode (internal clocks
are stopped with phase two high) if it does not receive an
SPC pulse from the CPU within 256 clocks.

The FPU exits the power down mode and returns to normal
operation after it receives an SPC from the CPU. There is no
extra delay caused by the FPU being in the power down
mode.

3.3 CLOCKING

The NS32381 FPU requires a single-phase TTL clock input
onits CLK pin (pin A8). Different Clock sources can be used
to provide the CLK signal depending on the application. For
example, it can come from the BCLK of the NS32532 CPU.
It can also come from the CTTL pin of the N§32C201 Tim-
ing Control Unit, if it is required.

3.4 RESETTING

The RST pin serves as a reset for on-chip logic. The FPU
may be reset at any time by pulling the RST pin low for at
least 64 clock cycles. Upon detecting a reset, the FPU ter-
minates instruction processing, resets its internal logic, and
clears the FSR to all zeroes.

On application of power, RST must be held low for at least
30 us after Vg is stable. This ensures that all on-chip volt-

ages are completely stable before operation. See Figures
3-2 and 3-3.

=64 CLOCK
CYCLES |
ST ’

TL/EE/9157-10
FIGURE 3-3. General Reset Timing

3.5 BUS OPERATION

Instructions and operands are passed to the NS32381 FPU
with slave processor bus cycles. Each bus cycle transfers

either one byte (8 bits), one word (16 bits) or one double
word (32 bits) to or from the FPU. During all bus cycles, the
SPC line is driven by the CPU as an active low data strobe,
and the FPU monitors pins STO-ST3 to keep track of the
sequence (protocol) established for the instruction being ex-
ecuted. This is necessary in a virtual memory environment,
allowing the FPU to retry an aborted instruction.

3.5.1 Bus Cycles

A bus cycle is initiated by the CPU, which asserts the proper
status on (STO~-ST3) and pulses SPC low. The status lines
are sampled by the FPU on the leading (falling) edge of the
SPC pulse except for the 32532 CPU. When used with the
32532 CPU, the status lines are sampled on the rising edge
of CLK in the T2 state. If the transfer is from the FPU (a
slave processor read cycle), the FPU asserts data on the
data bus for the duration of the SPC pulse. If the transfer is
to the FPU (a slave processor write cycle), the FPU latches
data from the data bus on the trailing (rising) edge of the
SPC pulse. Figures 3-5, 3-6, 3-7 and 3-8 illustrate these
sequences.

The direction of the transfer and the role of the bidirectional
SPC line are determined by the instruction protocol being
performed. SPC is always driven by the CPU during slave
processor bus cycles. Protocol sequences for each instruc-
tion are given in Section 3.6.

3.5.2 Operand Transfer Sequences

An operand is transferred in one or more bus cycles. For the
16-Bit Slave Protoco! a 1-byte operand is transferred on the
least significant byte of the data bus (D0-D7). A 2-byte op-
erand is transferred on the entire bus. A 4-byte or 8-byte
operand is transferred in consecutive bus cycles, least sig-
nificant word first.

For the 32-Bit Slave Protocol a 4-byte operand is trans-
ferred on the entire data bus in a single bus cycle and an
8-byte ‘operand is transferred in two consecutive bus cycles
with the most significant byte transferred on data bits (DO-
D7). The complete operand transfer of bytes BO-B7 where
B0 is the least significant byte would appear on the data bus
as B4, B5, B6, B7 followed by BO, B1, B2, B3 in the second
bus cycle.

3-12

3.0 Functional Description (continued)

+5V
—O+5V
S 1ok ‘&wk Sk Stk Sk
$s P S P
A\ 4 A 4 v
NOE PSO PS1
SPC »{ SPC
DDIN »{ DDIN
32-BIT
DO=D31 < DATA BUS > DO-D31
(NS32532) STO » sT0 (Ns32381)
CPU ST p sTi FPU
s12 » s12
ST4 » 513
SON ¢ SDN532
- o Resrvep PAL2
FSSR |e= FSSR B9
RESERVED
BCLK » cik By
. . - RESERVED
RSTY »{ RST »{ RST
TL/EE/9157-38
FIGURE 3-4a. System Connection Dlagram with the NS32532 CPU
+5Y +5V +5Y
{
S 10k 1% 1k
>
1
NOE PSO PSt
SPC »] SPC
32-BIT
ADD=-AD31 < DATA BUS > D0-D31
(Ns32332) STO —p] ST0 (NS32381)
CPU st » ST FPU
sT2 »] s12
ST3 » s13
_ ReseRvED FA1S
D7/SDONE |« SDN332 89
o = RESERVED
RST/ABT |¢ | RST
/et RESERVED |21
I———> CLK $
RST0. cmL
> |
NS32€201
ToU

FIGURE 3-4b. System Connection Diagram with the NS32332 CPU

TL/EE/9167-39

3-13

02-18EZESN/SI-18E2ESN

NS32381-15/NS32381-20

3.0 Functional Description (continued)

+5V
10k
NOE PO pst | =
/576 fe—b RES
16-BIT
ADO-AD15 < DATA BUS > 00-D15
(Ns32032) SO p{sT0 (Ns32381)
(NS32016) STH » st FPU
(NS32008) —| 512
cPU
» s13
— ReserveD AL
_ - RESERVED |22
RST/ABT |« » /5
RESERVED JEL
l———b‘cu(
RSTO CcmL
s> o m
NS32€201
Tcu

TL/EE/9157-40
FIGURE 3-4c. System Connection Diagram with the NS32008, NS32016 or NS32032 CPU

+5v 5V
10k 1k
NOE PSO PSt | =
SPC |« »] 5PC
16-BIT
ADO-AD15 < DATA BUS > 00-D15
570 » st
(NS326616) STH Ms (ussazei)
cPU —{sn2 FPU
—{ 513
— RESERVED JALC
REsERveD J2—q
7S e NS 81
RESERVED
cmm » ik |
SYSTEM
RESET

TL/EE/9157-41
FIGURE 3-4d. System Connection Diagram with the NS32CG16 CPU

3.0 Functional Description (continued)

(NOTE 1)

D0-D15 e comes e e s s e s oo G —(VALID FROM FPU)— -— —

Note 1: FPU samples CPU status here.
FIGURE 3-5. Slave Processor Read Cycle (NS32008, NS32016, NS32032 and NS32332 CPUs)

TL/EE/9157-12

T 17—
o B I .

{ (vore)
so-su /[[/ L[/ RULLLLLL
w //[[LLLLIN AT
e \ /

C ——

TL/EE/9157-13

D0 =D31

Note 1: FPU samples CPU status here.
FIGURE 3-6. Slave Processor Read Cycle (N532532 CPU)

02-18ECESN/SL-18ECESN

NS32381-15/NS32381-20

3.0 Functional Description (continued)

§10, ST1 W VALID W ////////////////////

(NOTE 1)

o S

(NOTE 2)

00-D15 == am cnm s e = -(VALID FROM CPU }-——-

Note 1: FPU samples CPU status here.
Note 2: FPU samples data bus here.

FIGURE 3-7. Slave Processor Write Cycle (NS32008, NS32016, NS32032 and NS32332 CPU)

TL/EE/8157-14

m T2

CLK

{ (NotE1)

w-su [/ L/ [L/TIK XL
w L/ L

_—/r(nom)
/"_L_\

N/

Note 1: FPU samples CPU status here,
Note 2: FPU samples data bus here.

FIGURE 3-8. Slave Processor Write Cycle (NS32532 CPU)

SPC

DO = D31

TL/EE/9167-16

3-16

3.0 Functional Description (continued)
3.6 INSTRUCTION PROTOCOLS

3.6.1 General Protocol Sequences

The NS32381 supports both the 16-bit and 32-bit General
Slave protocol sequences. See Tables 3-1, 3-2 and Figures
3-12, 3-13 respectively.

Slave Processor instructions have a three-byte Basic In-
struction field, consisting of an ID byte followed by an Oper-
ation Word. See Figure 3-9 for the ID and Opcode format
16-bit Slave Protocol and Figure 3-10 for the ID and Opcode
Format 32-bit Slave Protocol. The ID Byte has three func-
tions:

1) It identifies the instruction to the CPU as being a Slave
Processor instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Operation Word
of the instruction.

Upon receiving a slave processor instruction, the CPU initi-
ates a sequence outlined in either Table 3-1 or 3-2, depend-
ing on the PSO and PS1, to allow for the 16-bit or 32-bit
slave protocol. The NS32008, NS32016, NS32C016,
NS32032, NS32C032 and NS32CG 16 all communicate with
the NS32381 using the 16-bit Slave Protocol. The NS32332,
NS32532 and NS32GX32 CPUs communicate with the
NS32381 using a 32-bit Slave Protocol; a different version is
provided for each CPU.

TABLE 3-1. 16-Bit General Slave Instruction Protocol

Step Status Action
1 ID(1111) CPU sends ID Byte
2 OP (1101) CPU sends Operation Word
3 OP (1101) CPU sends required operands (if any)
4 — Slaves starts execution (CPU prefetches)
5 —_ Slave pulses SPC low
6 ST (1110) CPU Reads Status Word
7 OP (1101) CPU Reads Result (if destination is

memory and if no TRAP occurred)

TABLE 3-2, 32-Bit General Slave Instruction Protocol

Step Status Action

1 ID(1111) CPU sends ID and Operation Word

2 OP (1101) CPU sends required operands (if any)

3 — Slaves starts execution (CPU prefetches)

4 —_ Slave signals DONE or TRAP or CMPf

5 ST (1110) CPU Reads Status Word (If TRAP was signaled

or a CMPf instruction was executed)
6 OP (1101) CPU Reads Result (if destination is memory and
if no TRAP occurred)
TABLE 3-3. Floating-Point Instruction Protocols
Mnemonic Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits
Class Class Issued Issued Type and Destination Affected

ADDf read.f rmw.f f f ftoOp.2 none
SuUBf read.f rmw.f f f fto Op. 2 none
MULf read.f rmw.f f f ftoOp.2 none
DIvf read.f rmw.f f f ftoOp.2 none
MOVf read.f write.f f N/A ftoOp.2 none
ABSf read.f write.f f N/A ftoOp.2 none
NEGf read.f write.f f N/A ftoOp. 2 none
CMPt read.f read.f f f N/A N,Z,L
FLOORfi read.f write.i f N/A itoOp. 2 none
TRUNCi read.f write.i f N/A itoOp. 2 none
ROUNDfi read.f write.i f N/A itoOp. 2 none
MOVFL read.F write.L F N/A LtoOp.2 none
MOVLF read.L write.F L N/A FtoOp.2 none
MOVif read.i write.f i N/A ftoOp. 2 none
LFSR read.D N/A D N/A N/A none
SFSR N/A write.D N/A N/A DtoOp. 2 none
SCALBf read.f rmw.f f f fto Op.2 none
LOGBf read.f write.f f N/A ftoOp.2 none
DOTf read.f read.f f f *fto FO/LO none
POLYf read.f read.f f f *fto FO/LO none

D = Double Word

i = Integer size (B, W, D) specified in mnemonic.

f = Floating-Point type (F, L} specified in mnemonic.
N/A = Not Applicable to this instruction.

*The "returned value” can go to either FO or LO depending on the “f” bit in the opcods, i.e., whether “floating” or *“long” data type is used.

02-18ECESN/G1-1 8ETESN

NS32381-15/NS32381-20

3.0 Functional Description (continued)

7 0
| |
ID Byte
15 7 0
| oPcoDE (ow) OPCODE (high) |
Byte 1 Byte 0
Operation Word

FIGURE 3-9. ID and OPCODE Format
16-Bit Slave Protocol

31 23 15 7 0
ID OPCODE (Iow){OPCODE (high)] XXXXXXXX

Byte 3 Byte 2 Byte 1 Byte 0
FIGURE 3-10. ID and OPCODE Format
32-Bit Slave Protocol

For the 16-bit Slave Protocol the CPU applies Status Code
1111 (Broadcast ID), and sends the ID Byte on the least
significant half of the Data Bus (D0-D7). The CPU next
sends the Operation Word while applying Status Code 1101
(Transfer Slave Operand). The Operation Word is swapped
on the Data Bus; that is, bits 0-7 appear on pins D8-D15,
and bits 8-15 appear on pins DO-D7.

For the 32-bit Slave Protocol the CPU applies Status Code
1111 and sends the ID Byte (different ID for each format) in
byte 3 (D24~D31) and the Operation Word in bytes 1 and 2
in a single double word transfer. The Operation Word is
swapped such that OPCODE low appears on byte 2 (D16—
D23) and OPCODE high appears on byte 1 (D8-D15). Byte
0 (D0-D7) is not used.

All Slave Processors input and decode the data from these
transfers. The Slave Processor selected by the ID Byte is
activated and from this point on the CPU is communicating
with it only. If any other slave protocol is in progress (e.g., an
aborted Slave instruction), this transfer cancels it. Both the
CPU and FPU are aware of the number and size of the
operands at this point.

Using the Addressing Mode fields within the Operation
Word, the CPU starts fetching operands and issuing them to
the FPU. To do so, it references any Addressing Mode ex-
tensions appended to the FPU instruction. Since the CPU is
solely responsible for memory accesses, these extensions
are not sent to the Slave Processor. The Status Code ap-
plied is 1101 (Transfer Slave Processor Operand).

After the CPU has issued the last operand, the FPU starts
the actual execution of the instruction. A one clock cycle
SPC pulse is used to indicate the completion of the instruc-

tion and for the CPU to continue with the 16-Bit Slave Proto-
col by reading the FPU’s Status Word Register.

For the 32-bit Slave Protocol, upon completion of the in-
struction, the FPU will signal the CPU by pulsing either
SDNXXX or FSSR (Force Slave Status Read).

A half clock cycle SDN332 pulse with a NS32332 CPU, or a
one clock cycle SDN532 pulse with a NS32532 or
NS32GX32 CPU, indicates a valid completion of the instruc-
tion and that there is no need for the CPU to read its Status
Word Register.

But if there is a need for the CPU to read FPU's Status Word
Register, a two and a half clock cycle SDN332 (from
NS32332) or a one clock cycle FSSR pulse (from NS32532
or NS§32GX32) will be issued instead.

In all cases for both the 16-Bit and 32-Bit Slave Protocols
the CPU will use SPC to read the Status Word from the
FPU, while applying status code (1110). This word has the
format shown in Figure 3-11. If the Q bit (*Quit"”, Bit 0) is set,
this indicates that an error (TRAP) has been detected by the
FPU. The CPU will not continue the protocol, but will imme-
diately trap through the Slave vector in the Interrupt Table. If
the instruction being performed is CMPf (Section 2.2.3) and
the Q bit is not set, the CPU loads Processor Status Regis-
ter (PSR) bits N, Z and L from the corresponding bits in the
FPU Status Word. The FPU always sets the L bit to zero.

The last step will be for the CPU to read the result, provided
there are no errors and the results destination is in memory.
Here again the CPU uses SPC to read the result from the
FPU and transfer it to its destination. These Read cycles
from the FPU are performed by the CPU while applying
Status Code 1101 (Transfer Slave Operand).

31 15 7 0
ZERO |TS ZERO |N|z|0]0|o||_|o|o
Bit Description

(0) Q: Setto“1”ifan FPU TRAP (error) occurred.
Cleared to ‘0” by a valid CMPf.

(2 L Clearedto “0” by the FPU.

(6) Z: Setto "1”if the second operand is equal to
the first operand. Otherwise it is cleared to
wgr,

(7) N: Setto 1" if the second operand is less than
the first operand. Otherwise it is cleared to
won,

(15) TS: Setto“1”if the TRAP is (UND) and cleared to

“0” if the TRAP is (FPU).
FIGURE 3-11. FPU Status Word Format

3-18

3.0 Functional Description (continued)

READ AND DECODE

1D BYTE
(BUS STATUS =1111)

¥

READ AND DECODE
OPERATION WORD
(BUS STATUS = 1101)

READ OPERAND
(BUS STATUS =1101)

Pulse Active
SPC for 1 clock

v

WRITE STATUS WORD

EXECUTION
COMPLETE

o (BUS STATUS=1110)
MORE
XFER RESULT Y
RESULT OPERANDS
(BUS STATUS = 1101) 10 XFER
2
N

TL/EE/9157-16
FIGURE 3-12. 16-Bit General Slave Instruction Protocol: FPU Actions

READ AND DECODE
ID AND OPERATION WORD
(BUS STATUS =1111)

READ OPERAND
(BUS STATUS =1101)

Pulse Active
SON332 for 2§ clocks

INSTR.
EXECUTION
COMPLETE
?

—
>
A

___ or
FSSR for 1 clock
(TRAP or CMPf)

A 4

WRITE STATUS WORD
(BUS STATUS =1110)

Pulse Active

MORE

02-18EZESN/SI-18ECESN

SONE3Z for § clock
or
SDN532 for 1 clock (DONE)

RESULT OPERANDS
JO TRANSFER
?

TRANSFER RESULT
(BUS STATUS =1101)

FIGURE 3-13. 32-BIit General Slave Instruction Protocol: FPU Actions

TL/EE/9157-17

3-19

NS32381-15/NS32381-20

3.0 Functional Description (continued)
3.6.2 Early Done Algorithm

The NS32381 has the ability to modify the General Slave
protocol sequences and to boost the performance of the
FPU by 20% to 40%. This is called the Early Done Algo-
rithm.

Early Done is defined by the fact that the destination of an
instruction is an FPU register and that the instruction and
range of operands cannot generate a TRAP (error). When
these conditions are met the FPU will send a SDNXXX or
SPC pulse after receiving all of the operands from the CPU
and before executing the instruction. Hence this becomes
an early done as compared to the General Slave Protocols.

In the case of the 16-bit Slave Protocol in which the CPU
always reads the slave status word, the FPU will force all
zeroes to be read. The CPU can then send the next instruc-
tion to the FPU and save the general protocol overhead.
The FPU will start the new instruction immediately after fin-
ishing the previous instruction.

SFSR, CMPF and CMPL do not generate an Early Done.

3.6.3 Floating-Point Protocols

Table 3-3 gives the protocols followed for each floating-
point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
section 2.2.3.

The Operand Class columns give the Access Classes for
each general operand, defining how the addressing modes
are interpreted by the CPU (see Series 32000 Instruction
Set Reference Manual).

The Operand Issued columns show the sizes of the oper-
ands issued to the Floating-Point Unit by the CPU. “D” indi-
cates a 32-bit Double Word. “i"” indicates that the instruction
specifies an integer size for the operand (B = Byte, W =
Word, D = Double Word). “f” indicates that the instruction
specifies a floating-point size for the operand (F = 32-bit
Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR Bits Affected column indicates which PSR bits, if any,
are updated from the FPU Status Word (Figure 3-11).

Any operand indicated as being of type “f" will not cause a
transfer if the Register addressing mode is specified, be-
cause the Floating-Point Registers are physically on the
Floating-Point Unit and are therefore available without CPU
assistance.

4.0 Device Specifications
4.1 PIN DESCRIPTIONS

4.1.1Supplies
The following is a brief description of all NS32381 pins.
Vee Power: + 5V positive supply.

GND Ground: Ground reference for both on-chip log-
ic and drivers connected to output pins.

4.1.2 Input Signals

CLK Clock: TTL-level clock signal.

*DDIN Data Direction In: Active low. Status signal indi-
cating the direction of data transfers during a
bus cycle.

Status: Bus cycle status code from CPU. STO is
the least significant and rightmost bit.

1100— Reserved

1101— Transferring Operation Word or Oper-
and

1110— Reading Status Word

1111— Broadcasting Slave ID

Note: The NS32332 generates four status lines and the
NS32532 generates five. The user should connect the
status lines as shown below:

NS32381 NS32332
ST0 ST0
ST1 ST1
ST2 ST2 S§T2
ST3 ST3 ST4

Reset: Active low. Resets the last operation
and clears the FSR register.

New Opcode Enable: Active high. This signal
enables the -new opcodes available in the
NS32381.

Protocol Select: Selects the slave protocol to
be used. PSO0 is the least significant and right-
most bit.

00—Selects 16-bit protocol.

01—Selects 32-bit protocol for NS32332.

10—Reserved.

11—Selects 32-bit protocol for NS32532.

4.1.3 Output Signals

SDN332 Slave Done 332: Active low. This signal is for
use with the NS32332 CPU only. If held active
for a half clock cycle and released this pin indi-
cates the successful completion of a floating-
point instruction by the FPU. Holding this pin
active for two and a half clock cycles indicates
TRAP or that the CMPf instruction has been ex-
ecuted.

Slave Done 532: Active low. This signal is for
use with the NS32532 CPU only. When active it
indicates successful completion of a floating-
point instruction by the FPU.

Force Slave Status Read: Active low. This sig-
nal is for use with the NS32532 CPU only.
When active it indicates TRAP or that the CMPf
instruction has been executed.

STO-ST3

NS32532
S§T0
ST1

l

|
)|
|

PS0, PS1

4.1.4 Input/Output Signals

*D0-D31 Data Bus: These are the 32 signal lines which
carry data between the NS32381 and the CPU.
SPC Slave Processor Control: Active low. This is the

data strobe signal for slave transfers. For the
32-bit protocol, SPC is only an input signal.

*For the 16-bit Slave Protocol the upper sixteen data input signals (D16-
D31) and DDIN should be left floating.

3-20

4.0 Device Specifications (continued)

Connection Diagrams

> O O M7 OI X r

\

(ONCNCNONCNONCNC)

[CXO)
® O
© ©
[ONC)
© O

[ONC)]
©0©

NS32381

[ORCNCRONONCRON o NG

PPPOOOOOOO
©O0POOOOOO

PPOOOOOOO
POEEOOO®OO |

1

2 3 456 7 8 91011
Bottom View

Order Number NS32381
See NS Package Number U68D

FIGURE 4-1. 68-Pin PGA Package
NS32381 Pinout Descriptions

TL/EE/9157-18

Desc Pin Desc Pin
Vee A2 D28 F10
D1 A3 GND F11
Do A4 GND G1
PS1 (Note 1) A5 D21 G2
GND A6 D12 G10
GND A7 D27 G11
CLK A8 D6 H1
RST A9 D22 H2
Reserved (Note 2) A10 D11 H10
Reserved (Note 2) B1 SDN332 H11
D2 B2 D7 J1
D17 B3 D23 J2
D16 B4 SPC J10
PSO (Note 1) B5 SDN532 J1
GND B6 Vee K1
NOE (Note 1) B7 D8 K2
Reserved (Note 3) B8 GND K3
Reserved (Nots 2) B9 D26 K4
Vee B10 GND K5
D15 B11 Veo K6
D18 C1 Reserved (Note 3) K7
D3 c2 STO K8
D31 C10 ST1 K9
D14 C11 Reserved (Note 3) K10
D19 D1 GND K11
Vee D2 D24 L2
D30 D10 D25 L3
Vee D11 D9 L4
D4 E1 D10 L5
D20 E2 DDIN L6
D13 E10 Vee L7
D29 E11 ST2 L8
Reserved (Note 3) F1 ST3 L9
D5 F2 FSSR L10

Note 1: CMOS input; never float.
Note 2: Pin should be grounded.
Note 3: Pin should be left floating.

3-21

02-18ECESN/SL-18ECESN

NS32381-15/NS32381-20

4.0 Device Specifications (continued)
Connection Diagrams (Continued)

g
=
Sx8s588n5220sy 88
H[E|N|N]|EN|E| RN NN RE]E
D24 2} vee
D8 D17
025 E D1
Vee 1 ot1s
GND 0o
09 E PSO
D26 st
010] ono
GND Ns32s81] woe
DO] vee
Vee)
sT2] reservep NOTE 1
STO d o
ST3 [ReserveD NoTE 2
ST] &st
FSSR] vee
GND [431 RESERVED NOTE 2
[] HiNRINEININIRNNN
eSREE58888 8582882
o =]
I (2]

Bottom View

Order Number NS32381V-15, NS32381V-20, NS32381V-25 or NS32381V-30
See NS Package Number V68

FIGURE 4-2. 68-Pin Plastic Chip Carrier Package

Note 1: All these pins should be left open.
Note 2: All these pins should be grounded.

TL/EE/9157-42

3-22

4.0 Device Specifications (continued)

4.2 ABSOLUTE MAXIMUM RATINGS All Input or Output Voltages

If Military/Aerospace specified devices are required, with Respect to GND —0.5Vto +7.0V
please contact the Natlonal Semiconductor Sales ESD Rating 2000V (in human body model)
Office/Distributors for avallability and specifications. Note: Absolute maximum ratings indicate limits beyond
Maximum Case Temperature 95°C which permanent damage may occur. Continuous operation
Storage Temperature —65°Cto +150°C at these limits is not intended;; operation should be limited to

those conditions specified under Electrical Characteristics.

02-18E2ESN/SL-18ETESN

4.3 ELECTRICAL CHARACTERISTICS Tp = 0°Cto 70°C, Vc¢ = 5V £5%, GND = 0V

Symbol Parameter Conditions Min Typ Max Units
ViH High Level Input Voltage* 2.0 Vce +0.5 \
ViL Low Level Input Voltage* —-0.5 0.8 \
VoH High Level Output Voltage loq = —400 pA 2.4 \"
VoL Low Level Output Voltage loL = 2mA 0.4 \"
I Input Load Current* 0<ViN<Vco —10.0 10.0 pA
K
s | v
| e 0o |
IL Leakage Current 0.4 < Vout < 24V

(Output and 170 Pins -20.0 20.0 nA

in TRI-STATE®/Input Mode)
%) Active Supply Current lout = 0, Ta = 25°C, Vg = 5V 300 mA
Icc Power Down Current lout = 0, Ta = 25°C, Vgc = 5V 60 mA

*Except PS0, PS1, NOE and Reserved pins.
Note: PSO, PS1 NOE pins have to be connected to either GND or Vg (possible via resistor) as it is shown in Figure 3-4a, 3-4b, 3-4¢, and 3-40.

4.4 SWITCHING CHARACTERISTICS ABBREVIATIONS
4.4.1 Definitions L.E. — Leading Edge R.E. — Rising Edge
All the Timing Specifications given in this section refer to T.E. — Trailing Edge F.E. — Falling Edge
0.8V and 2.0V on all the input and output signals as illustrat- 20V
ed in Figures 4.3 and 4.4, unless specifically stated other- ’ 1‘
wise. cLx
0.8V 4
/ 20v
cLx b e — 24V
N SIG1
tsiG1l
r ————24V 0.45V
SIG1
tSiG11 24V
L °~°‘6 sV 2.0 tS1G2h
r 2.4V siG2
1S1G2h 20v —_— — 0.45V
’ TL/EE/9157-20
SIG2 FIGURE 4-4. Timing Specification Standard
.\ - 0.45V (Signal Valid before Clock Edge)

TL/EE/9157-19
FIGURE 4-3. Timing Specification Standard
(Signal Valid after Clock Edge)

3-23

NS32381-15/NS32381-20

4.0 Device Specifications (continued)
4.4.2 Timing Tables (Maximum times assume temperature range 0°C to 70°C)

4.4.2.1 Output Signal Propagation Delays for all CPUs (16-Bit Slave Protocol)
(Maximum times assume capacitive loading of 100 pF)

Symbol|Figure| Description | Reference/ NS32381-15 NS32381-20 NS32381-25 |
Conditions
Min Max Min Max Min Max
tspcr,, | 4-18 |SPCPulse Width |At0.8V _ B _
from FPU (Both Edges) tCLKp 10 tCLKp + 10 tCLKp 10 tCLKp + 10 'CLKp 10 tCLKp + 10| ns
tspor, | 4-18 [SPC Output Active |After CLKR.E. 17 17 15 ns
tsPCFiy | 4-18 [SPC Output Inactive |After CLK R.E. 38 33 25 ns
tspcr(1)| 4-18 (SPC Output Floating|After CLK F.E. 35 30 25 ns
4.4.2.2 Output Signal Propagation Delays for the NS32008, NS32016 and NS32032 CPUs
Maximum times assumes capacitive loading of 100 pF
symbol | Figure Description Reference/ | NS32381-15 | NS32381-20 | NS3238125 | .
Conditions Min | Max | Min | Max | Min | Max
tp, 4-8 Data Valid (D0-D15) After SPC L.E. 30 18 ns
th(1) 4-8 DO0-D15 Floating After SPCT.E. 30 30 ns
4.4.2.3 Output Signal Propagation Delays for the 32-Bit Slave Protocol NS32332 CPU
Maximum times assume capacitive loading of 100 pF unless otherwise specified
NS32381-15
Symbol Figure Description Reference/ Units
Conditions Min Max
to, 4-10 Data Valid After SPCLE.;
. 25 ns
75 pF Cap. Loading
ton 4-10 Data Hold After SPFC T.E. 8 ns
oD 4-10 Data Floating After SPC T.E. 30 ns
tSDN, 4-12,13 Slave Done Active After CLK F.E. 3 28 ns
SDNp, 4-13 Slave Done Hold After CLK R.E. 33 ns
tSDNy 4-12 Slave Done At 0.8V 1 _ ’

Pulse Width (Both Edges) VeloLkp =10 VeloLip 10 ns
tsong! 4-12,13 Stave Done Floating After CLKR. E. 30 ns
tSTRP, 4-13 Slave Done (TRAP) At 0.8V . _ \

Pulse Width (Both Edges) Z%lcLp=10 | 2%etoLky 10 ns

Note 1: Not 100% tested.

3-24

4.0 Device Specifications (continued)

4.4.2.4 Output Signal Propagation Delays for the 32-Bit Slave Protocol NS32532 CPU
Maximum times assume capacitive loading of 50 pF

NS32381-
Reference/
Symbol Figure Description Conditions 20 25 30 Units
Min Max Min Max Min Max
to, 4-14 Data Valid After SPC L.E. 35 35 35 ns
toh 4-14 Data Hold After CLK R.E. 3 3 3 ns
tpiD 4-14 Data Floating After SPCT.E. 30 30 30 ns
tsD, 4-16 Slave Done Active After CLK R.E. 35 25 20 ns
tspp 4-16 Slave Done Hold After CLK R.E. 2 33 2 25 2 20 ns
tspg") 4-16 Slave Done Floating | After CLKR.E. 30 30 30 ns
trssh, 417 Forced S!ave Status After CLK R.E. a5 25 20 ns
Read Active
trssRy 4-17 Forced Slave Status After CLK R.E. 5 a3 2 25 2 20 ns
Read Hold
1 R
thSRf() 4-17 Forced Slaye Status After CLK R.E. 30 20 20 ns
Read Floating
4.4.2.5 Input Signal Requirements with all CPUs
NS32381-
Reference/
Symbol | Figure Description Conditions 15 20 25 30 Units
Min | Max | Min | Max | Min | Max | Min | Max
tpwR 4-5 Power-On Reset Duration | After CLK R.E. 30 30 30 30 ns
tpsTy, 4-6 | Reset Pulse Width At 0.8V (Both Edges) | 64 64 64 64 tCLKp
tRsT, 4-7 Reset Setup Time Before CLK R.E. 10 14 12 1 ns
tRsTy, 4-7 Reset Hold After CLKR.E. 0 0 0 0 ns
4.4.2.6 Input Signal Requirements with the NS32008, NS32016, NS32032 CPUs
Symbol | Figure Description Fé?:;let:\::s/ NS32381-15 NS32381-20 NS32381-25 Units
Min Max Min Max Min Max
tsg 4-8 Status (STO-ST1) Setup | Before SPC L.E. 20 20 15 ns
tsy, 4-8 Status (STO-ST1) Hold | After SPC L.E. 20 20 17 ns
tDg 4-9 Data Setup (DO-D15) Before SPC T.E. 25 20 15 ns
toy, 4-9 Data Hold (D0-D15) After SPC T.E. 20 20 15 ns
tsPcy, 4-8 SPC Pulse Width At 0.8V
28
from CPU (Both Edges) % % ns

Note 1: Not 100% tested.

3-25

02-18E2ESN/SL-18ECESN

NS32381-15/NS32381-20

4.0 Device Specifications (continued)
4.4.2.7 Input Signal Requirements with the 32-Bit Slave Protocol NS32332 CPU

Symbol Figure Description Reference/ NS32381-15 Units
Conditions Min Max

tsTg 411 Status Setup Before SPC L.E. 20 ns

tsT, 4-11 Status Hold After SPC L.E. 20 ns

to, 4-11 Data Setup Before SPC T.E. 20 ns

toy 4-11 Data Hold After SPC T.E. 20 ns

tspcy, 4-11 SPC Pulse Width At 0.8V (Both Edges) 35 ns

4.4.2.8 Input Signal Requirements with the 32-Bit Slave Protocol NS32532 CPU
NS32381
Symbol Figure Description Zif:;;?::s/ 20 25 30 Units
Min | Max | Min | Max | Min | Max
tsTg 4-15 Status Setup Before CLK (T2) R.E. 25 20 20 ns
sTh 4-15 Status Hold After CLK (T2) R.E. 20 10 10 ns
toDINg 4-15 Data Direction In Setup | Before SPC L.E. 0 0 0 ns
toDINg, 4-15 Data Direction In Hold After SPCT.E. 10 10 10 ns
tog 4-15 Data Setup Before SPC T.E. 6 6 4 ns
top 4-15 Data Hold After SPC T.E. 20 10 10 ns
tSPC, 4-14,15 | SPC Setup Before CLK R.E. 20 20 20 ns
tspcy, 4-14,15 | SPCHold After CLK R.E. 0 0 0 ns
4.4.2.9 Clocking Requirements with all CPUs
NS32381
Symbol | Figure Description 2‘:::;;?::3’ 15 20 25 30 Units
Min | Max | Min | Max | Min | Max | Min | Max

toLKy, 4-4 | Clock High Time | At2.0V (Both Edges) 25 | 1000 | 20 | 1000 | 16 | 1000 | 13 | 1000 | ns
toLk) 4-4 | Clock Low Time | At0.8V (Both Edges) 25 | DC | 20 | bDC | 16 | DC | 13 | DC ns
ter, () 4-4 | Clock Rise Time | Between 0.8V and 2.0V 7 5 4 3 ns
torgM 4-4 | Clock Fall Time | Between 2.0V and 0.8V 7 5 4 3 ns
toLi 4-4 | Clock Period CLKR.E.toNextCLKRE. | 66 | DC | 50 | DC | 40 | DC |33.3) DC ns

Note 1: Not 100% tested.

3-26

4.0 Device Specifications (continued)
4.4.3 Timing Diagrams

CLK

TL/EE/9157-21

FIGURE 4-5. Clock Timing

45V
Vee

CLK r-l I—L

re— 230 us

Towr
= Vi

FIGURE 4-6. Power-On Reset

| tRST: |

FIGURE 4-7. Non-Power-On Reset

TL/EE/9157-22

TL/EE/9167-23

CLK

f—trsts——
o trsth
RST /
FIGURE 4-8. RST Release Timing
Note: The rising edge of RST must occur while CLK is high, as shown.

TL/EE/9157-24

cLK I | [| r
sto, st /7/X____vaw 777777777

N e e VALID FROM FPU -
TL/EE/9157-25

FIGURE 4-9. Read Cycle from FPU (NS32008, NS32016, NS32032 CPUs)

3-27

02-18ECESN/S1-1 8ECESN

NS32381-15/NS32381-20

4.0 Device Specifications (continued)

CLK

L[

s10, 511 ///) i

I“tSs"'i
SPC \

e——tsh —=|
"'—‘spw—'|) o—

" —

——

VALID FROM CPU)Q

TL/EE/9157-26

FIGURE 4-10. Write Cycle to FPU (NS32008, NS32016, NS32032 CPUs)

CLK

SPC

DO = D31

CLK

' T
|

T4

w-sa| /77777777X XL

)
tor
tDV bt ft— th

y &

{ vap

TL/EE/91567-27

FIGURE 4-11. Read Cycle from FPU (NS32332 CPU)

Ll

T4

DO =D31

t

tsth

X LLL L

s ZZ77TTTT7X

<-*sn’cw--‘

/

tos

ton
F—.

" DATA VALID
)r _‘l.

TL/EE/9157-28

FIGURE 4-12. Write Cycle to FPU (NS32332 CPU)

3-28

4.0 Device Specifications (Continued)

CLK

o [

-

tsNa —-
§DN332 [

——I fa—tsont

tsDrw

TL/EE/9157-29

FIGURE 4-13. SDN332 Timing (NS32332 CPU)

SON332 [\

CLK

ST0=-ST4

(2]
o
(2]

DO~ D3t

tsoNa— o

tsoN —+

|— — r—*snm

—

tsTRPW

TL/EE/9157-30

FIGURE 4-14. SDN332 (TRAP) Timing (NS32332 CPU)

777777777 XZZ77777
s 77777777 KIT77777
7\ o

TL/EE/9157-31

FIGURE 4-15. Read Cycle from FPU (NS32532 CPU)

3-29

02-18E2ESN/G1-18ECESN

NS32381-15/NS32381-20

4.0 Device Specifications (continued)

m T2 i

CLK

]
om- /////////X 7(////////////

- ///////(@ j/////////

TL/EE/9157-32
FIGURE 4-16. Write Cycle to FPU (NS32532 CPU)

of r

pe—tsot

TL/EE/9157-33

FIGURE 4-17. SDN532 Timing (NS32532 CPU)

TL/EE/9157-84
FIGURE 4-18. FSSR Timing (NS32532 CPU)

‘spcra—j I-— —-‘ r—*spcna

CLK |

—'1 = tspert

tspcrw
FIGURE 4-19. SPC Pulse from FPU

TL/EE/S8157-35

3-30

Appendix A

NS32381 PERFORMANCE ANALYSIS

The following performance numbers were taken from simu-
lations using the 381 SIMPLE model. The timing terms have
been designed to provide performance numbers which are
CPU independent. Numbers were obtained from SIMPLE
simulations, taking the average execution times using ‘typi-
cal’ operands.

Listed below are definitions of the timing terms:

EXT — (EXecution Time) This is the time from the last data
sent to the FPU, until the early DONE is issued.
(FPU Pipe is empty)

EDD — (Early Done Delta) This is the time from when the
early DONE is issued until the execution of the next
instruction may start.

Provided that the CPU can transfer the ID/OPCODE and

any operands to the FPU during the EDD time, the average

system execution time for an instruction (keeping the FPU
pipe filled) is: EXT + EDD.

The system execution time for a single FPU instruction with

FPU register destination and early done is: EXT plus the

protocol time. (FPU pipe is initially empty)

Instruction EXT* EDD* Total*
LFSR any,reg 5 8 13
MOVF any, reg 5 6 1
MOVL any, reg 5 8 13
MOVif any, reg 5 45 50
MOVFL any, reg 9 6 15
ADDF any, reg 11 31 42
ADDL any, reg 11 31 42
SUBF any, reg 1 31 42
SUBL any, reg 1 31 42
MULF any, reg 1 20 31
MULL any, reg 11 27 38
DIVF any,reg 1 45 56
DIVL any, reg 1 59 70
POLYF any, any 15 46 61
POLYL any, any 15 53 68
DOTF any, any 15 46 61
DOTL any, any 15 53 68

*Measured in the number of clock cycles.

NS32381 PERFORMANCE ANALYSIS

The following instructions do not generate an early done. In
this case, EXT is the time from the last data sent to the FPU,
unti! the normal DONE is issued. (FPU Pipe is empty)

Instruction EXT
SFSR reg, mem 7
MOVLF any, any 18
ROUNDfi any, mem 46
FLOOR(i any, mem 46
TRUNCi any, mem 46
CMPF any, any 17
CMPL any, any 17
ABSf any, any 9
NEGf any, any 9
SCALBf any, any 49
LOGBf any, any 36

3-31

02-18€ZESN/SI-18ECESN

NS32081-10/NS32081-15

National
Semiconductor

NS32081-10/NS32081-15 Floating-Point Units

General Description

The NS32081 Floating-Point Unit functions as a slave proc-
essor in National Semiconductor's Series 32000® micro-
processor family. It provides a high-speed floating-point in-
struction set for any Series 32000 family CPU, while remain-
ing architecturally consistent with the full two-address archi-
tecture and powerful addressing modes of the Series 32000
micro-processor family.

Features

m Eight on-chip data registers

W 32-bit and 64-bit operations

m Supports proposed |IEEE standard for binary floating-
point arithmetic, Task P754

® Directly compatible with NS32016, NS32008 and
NS32032 CPUs

m High-speed XMOS™ technology

B Single 5V supply.

W 24-pin dual in-line package

Block Diagram

'_ -— e e e e e e e e en e w e mTR?]TUNm
| I |
MICRO q MICRO ENTRY
ROM POINT ﬁ
' SEQUENCER STORE GENERATOR '
Inifiate

' Sequence I
-—-F - ==} - -=-=-- — s

ommand
' Condition and '

Completion

| |
l EXPONENT FRACTION FRACTION SIGN ‘ I
| PROCESSOR PROCESSOR SEQUENCER | PROCESSOR l
l 11 55 1 l
(MR (U U () I P [e it
l Internal Data Bus STORAGE UNIT |

64 64
| |
' REGISTER DATA SLAVE '
FILE QUEUE SEQUENCER

I DataBus 16 .
l e H
U |

TL/EE/5234-1

3-32

1.0 PRODUCT INTRODUCTION
1.1 Operand Formats
1.1.1 Normalized Numbers
1.1.2 Zero
1.1.3 Reserved Operands
1.1.4 Integers
1.1.5 Memory Representations

2.0 ARCHITECTURAL DESCRIPTION
2.1 Programming Model
2.1.1 Floating-Point Registers
2.1.2 Floating-Point Status Register (FSR)
2.1.2.1 FSR Mode Control Fields
2.1.2.2 FSR Status Fields
2.1.2.3 FSR Software Field (SWF)
2.2 Instruction Set
2.2.1 General Instruction Format
2.2.2 Addressing Modes
2.2.3 Floating-Point Instruction Set
2.3 Traps

3.0 FUNCTIONAL DESCRIPTION
3.1 Power and Grounding
3.2 Clocking
3.3 Resetting

Table of Contents

3.0 FUNCTIONAL DESCRIPTION (Continued)
3.4 Bus Operation
3.4.1 Bus Cycles
3.4.2 Operand Transfer Sequences
3.5 Instruction Protocols
3.5.1 General Protocol Sequence
3.5.2 Floating-Point Protocols

4.0 DEVICE SPECIFICATIONS
4.1 Pin Descriptions
4.1.1 Supplies
4.1.2 Input Signals
4.1.3 Input/Output Signals
4.2 Absolute Maximum Ratings
4.3 Electrical Characteristics
4.4 Switching Characteristics
4.4.1 Definitions
4.4.2 Timing Tables
4.4.2.1 Output Signals: Internal Propagation De-
lays
4.4.2.2 Input Signals Requirements
4.4.2.3 Clocking Requirements
4.4.3 Timing Diagrams

3-33

G1-1802ESN/0L-1802ESN

NS32081-10/NS32081-15

List of lllustrations
Floating-Point Operand FOMMAtSo.ututintteentete it enteeneaneraeeaneroeesetonssonsensonssareneseesanasons
L =T (= = S
The Floating-Point Status Registeroviiui ittt e it ettt e e enee ot eraeiieennernnes
General InstructionFormatcooviinnne.
IndexByteFormatoovirviiiiiiiiinenn
DisplacementEncodings..........coovviviiieninnnnn
Floating-Point Instruction Formatst i i e e ittt e e
Recommended Supply Connections
Power-On Reset ReqUITEMENESttt i ettt ettt it et ssna s onna et rannanens
GEneral ReSOt TImMING .ttt t ittt ettt etes e eoan et sananessanaeeseaasesonssssnnessneeesannneens
System Connection DIagramottt ittt it it i e i
Slave ProCesSOr REad Gy Clo. . .. vv vttt ittt it ittt ettt e e e e traae s saaeeeseaneseraneeasaaeessasesnsnesenaneenss
Slave ProcessorWrite Cycleoovveveviiennneennes
FPU Protocol Status Word Format
Dual-In-Line Package.......... B P R
Timing Specification Standard (Signal Valid After Clock Edge)
Timing Specification Standard (Signal Valid Before CIock Edge)ovviiiiiiiiiiiii i iiiiiiiiieii i 4-3
L0 T 114 T 4-4
o] 0 o 1= 4-5
NON-POWET-ON-RESOE. . . .ottt ittt it ettt i ettt iaesataaeraeanetaeeaterneens 4-6
Read Cycle FrOM FPU . ..ottt ittt ittt et i etaeiasesttaneraennernosnneanesns 4-7
Write Cycle To FPU
SPC Pulse from FPU
RST Release Timing

L LT = 1= o
BT Lo ol =YL
Normalized NUMbDEr RANGESo vttt ettt e ettt et raaea et enaeineraennienns
Series 32000 Family Addressing Modes
General Instruction Protocolcouvuven.

Floating-Point INStruction ProtoColSo ie i i i i e it e i e

334

1.0 Product Introduction

The NS32081 Floating-Point Unit (FPU) provides high
speed floating-point operations for the Series 32000 family,
and is fabricated using National high-speed XMOS technol-
ogy. It operates as a slave processor for transparent expan-
sion of the Series 32000 CPU’s basic instruction set. The
FPU can also be used with other microprocessors as a pe-
ripheral device by using additional TTL interface logic. The
NS32081 is compatible with the IEEE Floating-Point For-
mats by means of its hardware and software features.

1.1 OPERAND FORMATS

The NS32081 FPU operates on two floating-point data
types—single precision (32 bits) and double precision (64
bits). Floating-point instruction mnemonics use the suffix F
(Floating) to select the single precision data type, and the
suffix L (Long Floating) to select the double precision data
type.

A floating-point number is divided into three fields, as shown
in Figure 1-1.

The F field is the fractional portion of the represented num-
ber. In Normalized numbers (Section 1.1.1), the binary point
is assumed to be immediately to the left of the most signifi-
cant bit of the F field, with an implied 1 bit to the left of the
binary point. Thus, the F field represents values in the range
1.0 < x <20.

TABLE 1-1. Sample F Fields

F Field Binary Value Decimal Value
000...0 1.000...0 1.000...0
010...0 1.010...0 1.250...0
100...0 1.100...0 1.500...0
110...0 1.110...0 1.750...0
T
Implied Bit

The E field contains an unsigned number that gives the bi-
nary exponent of the represented number. The value in the
E field is biased; that is, a constant bias value must be sub-
tracted from the E field value in order to obtain the true
exponent. The bias value is 011. .. 115, which is either 127
(single precision) or 1023 (double precision). Thus, the true
exponent can be either positive or negative, as shown in
Table 1-2.

31 30

TABLE 1-2. Sample E Fields

E Fleld F Fleld Represented Value
011...110 100...0 1.5x2~1 =075
011...111 100...0 1.5%x20 = 1.50
100...000 100...0 1.5x21 = 3.00

Two values of the E field are not exponents. 11... 11 sig-
nals a reserved operand (Section 2.1.3). 00...00 repre-
sents the number zero if the F field is also all zeroes, other-
wise it signals a reserved operand.

The S bit indicates the sign of the operand. It is 0 for posi-
tive and 1 for negative. Floating-point numbers are in sign-
magnitude form, that is, only the S bit is complemented in
order to change the sign of the represented number.

1.1.1 Normalized Numbers
Normalized numbers are numbers which can be expressed
as floating-point operands, as described above, where the E
field is neither all zeroes nor all ones.
The value of a Normalized number can be derived by the
formula:

(—1)S x 2(E-Bias) x (1 + F)
The range of Normalized numbers is given in Table 1-3.

1.1.2 Zero
There are two representations for zero—positive and nega-
tive. Positive zero has all-zero F and E fields, and the S bit is
zero. Negative zero also has all-zero F and E fields, but its S
bit is one.

1.1.3 Reserved Operands

The proposed IEEE Standard for Binary Floating-Point Arith-
metic (Task P754) provides for certain exceptional forms of
floating-point operands. The NS32081 FPU treats these
forms as reserved operands. The reserved operands are:

® Positive and negative infinity

e Not-a-Number (NaN) values

e Denormalized numbers

Both Infinity and NaN values have all ones in their E fields.
Denormalized numbers have all zeroes in their E fields and
non-zero values in their F fields.

The NS32081 FPU causes an Invalid Operation trap (Sec-
tion 2.1.2.2) if it receives a reserved operand, unless the
operation is simply a move (without conversion). The FPU
does not generate reserved operands as results.

Single Precision

23 22 0

[s| e |
1 8

23

Double Precision

6362 52 51 0
ls[e | :
11 52

FIGURE 1-1. Floating-Point Operand Formats

G1-1802ESN/0L-1 80ZESN

NS32081-10/NS32081-15

1.0 Product Introduction (continued)

TABLE 1-3. Normalized Number Ranges

Single Precision
2127 (2—2-23)

Most Positive

Double Precision
21023 (2—2-52)

=3.40282346 1038 =1.7976931348623157 x 10308
Least Positive 2-126 2—1022

=1.,17549436X 1038 =2.2250738585072014 < 10308
Least Negative —(2—128) —(2—1022)

=—1.17549436X10—38 = —2.,2250738585072014 X 10—308
Most Negative —2127x(2—2-23) —21023x(2—2-52)

= —3.40282346 X 1038

= —1.7976931348623157 x 10308

Note: The values given are extended one full digit beyond their represented accuracy to help in generating rounding and conversion algorithms.

1.1.4 Integers

In addition to performing floating-point arithmetic, the
NS32081 FPU performs conversions between integer and
floating-point data types. Integers are accepted or generat-
ed by the FPU as two’s complement values of byte (8 bits),
word (16 bits) or double word (32 bits) length.

1.1.5 Memory Representations

The NS32081 FPU does not directly access memory. How-
ever, it is cooperatively involved in the execution of a set of
two-address instructions with its Series 32000 Family CPU.
The CPU determines the representation of operands in
memory.

In the Series 32000 family of CPUs, operands are stored in
memory with the least significant byte at the lowest byte
address. The only exception to this rule is the Immediate
addressing mode, where the operand is held (within the in-
struction format) with the most significant byte at the lowest
address.

2.0 Architectural Description

2.1 PROGRAMMING MODEL

The Series 32000 architecture includes nine registers that
are implemented on the NS32081 Floating-Point Unit (FPU).

DEDICATED DATA
32 32
| FSR 1 r|]

Y —
o E—
Y —
o —
Y —
Y —
o —

TL/EE/5234-4
FIGURE 2-1. Register Set

2.1.1 Floating-Point Registers

There are eight registers (FO-F7) on the NS32081 FPU for
providing high-speed access to floating-point operands.
Each is 32 bits long. A floating-point register is referenced
whenever a floating-point instruction uses the Register ad-
dressing mode (Section 2.2.2) for a floating-point operand.
All other Register mode usages (i.e., integer operands) refer
to the General Purpose Registers (R0-R7) of the CPU, and
the FPU transfers the operand as if it were in memory.
When the Register addressing mode is specified for a dou-
ble precision (64-bit) operand, a pair of registers holds the
operand. The programmer must specify the even register of
the pair. The even register contains the least significant half
of the operand and the next consecutive register contains
the most significant half.

2.1.2 Floating-Point Status Register (FSR)

The Floating-Point Status Register (FSR) selects operating
modes and records any exceptional conditions encountered
during execution of a floating-point operation. Figure 2-2
shows the format of the FSR.

31 16 15
"ee
| Reserved |
e
TL/EE/5234-5

FIGURE 2-2. The Floating-Point Status Register

2.1.2.1 FSR Mode Control Fields

The FSR mode control fields select FPU operation modes.
The meanings of the FSR mode control bits are given be-
low.

Rounding Mode (RM): Bits 7 and 8. This field selects the
rounding method. Floating-point results are rounded when-
ever they cannot be exactly represented. The rounding
modes are:

00 Round to nearest value. The value which is nearest to
the exact result is returned. If the result is exactly half-
way between the two nearest values the even value
(LSB=0) is returned.

01 Round toward zero. The nearest value which is closer to
zero or equal to the exact result is returned.

8 7 6 543 210
I AM lIF ||5Nlurlum| |

SWF
I

3-36

2.0 Architectural Description (continued)

10 Round toward positive infinity. The nearest value which
is greater than or equal to the exact result is returned.

11 Round toward negative infinity. The nearest value which
is less than or equal to the exact result is returned.

Underflow Trap Enable (UEN): Bit 3. If this bit is set, the
FPU requests a trap whenever a result is too small in abso-
lute value to be represented as a normalized number. If it is
not set, any underflow condition returns a result of exactly
Zero.

Inexact Result Trap Enable (IEN): Bit 5. If this bit is set,
the FPU requests a trap whenever the result of an operation
cannot be represented exactly in the operand format of the
destination. If it is not set, the result is rounded according to
the selected rounding mode.

2.1.2.2 FSR Status Fields

The FSR Status Fields record exceptional conditions en-
countered during floating-point data processing. The mean-
ings of the FSR status bits are given below:

Trap Type (TT): bits 0-2. This 3-bit field records any excep-
tional condition detected by a floating-point instruction. The
TT field is loaded with zero whenever any floating-point in-
struction except LFSR or SFSR completes without encoun-
tering an exceptional condition. It is also set to zero by a
hardware reset or by writing zero into it with the Load FSR
(LFSRY) instruction. Underflow and Inexact Result are always
reported in the TT field, regardless of the settings of the
UEN and |EN bits.

000 No exceptional condition occurred.
001 Underflow. A non-zero floating-point result is too small

100 lllegal Instruction. Two undefined floating-point instruc-
tion forms are detected by the FPU as being illegal. The
binary formats causing this trap are:

Xx0000xxxx0011xx10111110
30000000 1001xx10111110

101 Invalid Operation. One of the floating-point operands of
a floating-point instruction is a Reserved operand, or an
attempt has been made to divide zero by zero using the
DIVf instruction. ’

110 Inexact Result. The result (either floating-point or inte-
ger) of a floating-point instruction cannot be represent-
ed exactly in the format of the destination operand, and
a rounding step must alter it to fit. This condition is al-
ways reported in the TT field and IF bit unless any other
exceptional condition has occurred in the same instruc-
tion. In this case, the TT field always contains the code
for the other exception and the IF bit is not altered. A
trap is caused by this condition only if the IEN bit is set;
otherwise the result is rounded and delivered, and no
trap occurs.

111 (Reserved for future use.)

Underflow Flag (UF): Bit 4. This bit is set by the FPU when-

ever a result is too small in absolute value to be represented

as a normalized number. Its function is not affected by the

state of the UEN bit. The UF bit is cleared only by writing a

zero into it with the Load FSR instruction or by a hardware

reset.

Inexact Result Flag (IF): Bit 6. This bit is set by the FPU

whenever the result of an operation must be rounded to fit

within the destination format. The IF bitis set only if no other

GI-1802ESN/0L-180CESN

in magnitude to be represented as a normalized float-
ing-point number in the format of the destination oper-
and. This condition is always reported in the TT field
and UF bit, but causes a trap only if the UEN bit is set. If
the UEN bit is not set, a result of Positive Zero is pro-
duced, and no trap occurs.

010 Overflow. A result (either floating-point or integer) of a

floating-point instruction is too great in magnitude to be
held in the format of the destination operand. Note that
rounding, as well as calculations, can cause this condi-
tion.

011 Divide by zero. An attempt has been made to divide a

non-zero floating-point number by zero. Dividing zero by
zero is considered an Invalid Operation instead (below).

error has occurred. It is cleared only by writing a zero into it
with the Load FSR instruction or by a hardware reset.
2.1.2.3 FSR Software Field (SWF)

Bits 9-15 of the FSR hold and display any information writ-
ten to them (using the LFSR and SFSR instructions), but are
not otherwise used by FPU hardware. They are reserved for
use with NSC floating-point extension software.

2.2 INSTRUCTION SET

2.2,1 General Instruction Format

Figure 2-3 shows the general format of an Series 32000
instruction. The Basic Instruction is one to three bytes long

OPTIONAL BASIC
. EXTENSIONS INSTRUCTION
AN AN
4 ' I\
mspzlmsm Dlspzlmsm
GEN GEN
IMPLIED INDEX
IMMEDIATE DISP DISP ':3% BYTE i‘ug%g ADDR OPCODE
OPERAND(S) ot u%os
IMM IMM
\.

TL/EE/5234-6

FIGURE 2-3. General Instruction Format

3-37

NS32081-10/NS32081-15

2.0 Architectural Description (continued)

and contains the opcode and up to two 5-bit General Ad-
dressing Mode (Gen) fields. Following the Basic Instruction
field is a set of optional extensions, which may appear de-
pending on the instruction and the addressing modes se-
lected.

The only form of extension issued to the NS32081 FPU is
an Immediate operand. Other extensions are used only by
the CPU to reference memory operands needed by the
FPU.) i

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index-
ing. See Figure 2-4.

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select-
ed addressing modes. Each Disp/Imm field may contain
one or two displacements, or one immediate value. The size
of a Displacement field is encoded within the top bits of that
field, as shown in Figure 2-5, with the remaining bits inter-
preted as a signed (two’s complement) value. The size of an
immediate value is determined from the Opcode field. Both
Displacement and Immediate fields are stored most signifi-
cant byte first.

Some non-FPU instructions require additional, “‘implied” im-
mediates and/or displacements, apart from those associat-
ed with addressing modes. Any such extensions appear at
the end of the instruction, in the order that they appear with-
in the list of operands in the instruction definition.

2.2.2 Addressing Modes

The Series 32000 Family CPUs generally access an oper-
and by calculating its Effective Address based on informa-
tion available when the operand is to be accessed. The
method to be used in performing this calculation is specified
by the programmer as an “addressing mode.”

Addressing modes in the Series 32000 family are designed
to optimally support high-level language accesses to vari-
ables. In nearly all cases, a variable access requires only
one addressing mode within the instruction which acts upon
that variable. Extraneous data movement is therefore mini-
mized. : ’

Series 32000 Addressing Modes fall into nine basic types:
Register: In floating-point instructions, these addressing
modes refer to a Floating-Point Register (FO-F7) if the op-
erand is of a floating-point type. Otherwise, a CPU General
Purpose Register (R0-R7) is referenced. See Section 2,1.1.
Register Relative: A CPU General Purpose Register con-
tains an address to which is added a displacement value
from the instruction, yielding the Effective Address of the
operand in memory.

7 312]
GEN. ADDR. MODE REG. NO.

TL/EE/5234-7

FIGURE 2-4. Index Byte Format

Memory Space: Identical to Register Relative above, ex-
cept that the register used is one of the dedicated CPU
registers PC, SP, SB or FP. These registers point to data
areas generally needed by high-level languages.

Memory Relative: A pointer variable is found within the
memory space pointed to by the CPU SP, SB or FP register.
A displacement is added to that pointer to generate the Ef-
fective Address of the operand.

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written. Floating-point operands as well as integer operands
may be specified using Immediate mode.

Absolute: The address of the operand is specified by a
Displacement field in the instruction.

External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis-
placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected CPU Stack Pointer
(SPO or SP1) specifies the location of the operand. The op-
erand is pushed or popped, depending on whether it is writ-
ten or read. '

Scaled Index: Although encoded as an addressing mode,
Scaled Indexing is an option on any addressing mode ex-
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen-
eral Purpose Register by 1, 2, 4 or 8 and adding it into the
total, yielding the final Effective Address of the operand.

The following table, Table 2-1, is a brief summary of the
addressing modes. For a complete description of their ac-
tions, see the Series 32000 Instruction Set Reference Man-
ual.

7 0
0 SIGNED DISPLACEMENT
7 0
|
1.0 Nt
cen

pe i
7 0
1 1

WeN
pos? &
QN

TL/EE/5234-10

FIGURE 2-5. Displacement Encodings

2.0 Architectural Description (Continued)
TABLE 2-1, Series 32000 Family Addressing Modes

Encoding Mode
REGISTER

00000 Register 0

00001 Register 1

00010 Register 2

00011 Register 3

00100 Register 4

00101 Register 5

00110 Register 6

00111 Register 7
REGISTER RELATIVE

01000 Register 0 relative
01001 Register 1 relative
01010 Register 2 relative
01011 Register 3 relative
01100 Register 4 relative
01101 Register 5 relative
01110 Register 6 relative
01111 Register 7 relative
MEMORY SPACE

11000 Frame memory
11001 Stack memory
11010 Static memory
11011 Program memory
MEMORY RELATIVE

10000 Frame memory relative
10001 Stack memory relative
10010 Static memory relative
IMMEDIATE

10100 Immediate
ABSOLUTE

10101 Absolute
EXTERNAL

10110 External

TOP OF STACK

10111 Top of Stack
SCALED INDEX

11100 Index, bytes

11101 Index, words
11110 Index, double words
11111 Index, quad words
10011 (Reserved for Future Use)

Assembler Syntax

RO or FO
R1or F1
R2 or F2
R3 or F3
R4 orF4
R5 or F5
R6 or F6
R7orF7

disp(R0)
disp(R1)
disp(R2)
disp(R3)
disp(R4)
disp(R5)
disp(R6)
disp(R7)

disp(FP)
disp(SP)
disp(SB)
* +disp

disp2(disp1(FP))
disp2(disp1(SP))
disp2(disp1(SB))

value

@disp

EXT (disp1) +disp2

TOS

mode[Rn:B]
mode[Rn:W]
mode[Rn:D]
mode[Rn:Q]

Effective Address

None: Operand is in the specified register.

Disp + Register.

Disp + Register; “SP" is either
SPO or SP1, as selected in PSR.

Disp2 + Pointer; Pointer found at
address Disp1 + Register. “SP" is
either SPO or SP1, as selected in PSR.

None: Operand is issued from
CPU instruction queue.

Disp.

Disp2+ Pointer; Pointer is found
at Link Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Mode + Rn.

Mode + 2 X Rn.

Mode + 4 X Rn.

Mode + 8 X Rn.

“Mode” and “n” are contained
within the Index Byte.

3-39

G1-180CESN/0L-180CESN

NS32081-10/NS32081-15

2.0 Architectural Description (continued)
2.2.3 Floating-Point Instruction Set

The NS32081 FPU instructions occupy formats 9 and 11 of

the Series 32000 Family instruction set (Figure 2-6). A list

of all Series 32000 family instruction formats is found in the

applicable CPU data sheet.

Certain notations in the following instruction description ta-

bles serve to relate the assembly language form of each

instruction to its binary format in Figure 2-6.

Format 9
23 16 15 0
I'I 1T T T T | l T T T T T 1T

gent gen2 1![0 00111110
<
OPERATION WORD 10 BYTE
TL/EE/5234-11
Format 11

7 0
I LIRRLABLI i I I I] I ¥ T T 1
gent | gen2 I [—ll 1 01 1111 ll
OPERATION WORD 1D BYTE
TL/EE/5234-12

FIGURE 2-6. Floating-Point instruction Formats

The Format column indicates which of the two formats in
Figure 2-6 represents each instruction.

The Op column indicates the binary pattern for the field
called “op” in the applicable format.

The Instruction column gives the form of each instruction as
it appears in assembly language. The form consists of an
instruction mnemonic in upper case, with one or more suffix-
es (i or f) indicating data types, followed by a list of oper-
ands (gen1, gen2).

An i suffix on an instruction mnemonic indicates a choice of
integer data types. This choice affects the binary pattern in
theifield of the correspondinginstruction format (Figure 2-6')
as follows:

Suffix | Data Type 1 Fleld
B Byte 00
w Word 01
D Double Word 1

An f suffix on an Instruction mnemonic indicates a choice of
floating-point data types. This choice affects the setting of
the f bit of the corresponding instruction format (Figure 2-6)
as follows:

Suffix t Data Type f Bt
F Single Precision 1
L Double Precision (Long) 0

An operand designation (gen1, gen2) indicates a choice of
addressing mode expressions. This choice affects the bina-
ry pattern in the corresponding gen1 or gen2 field of the
instruction format (Figure 2-6). Refer to Table 2-1 for the
options available and their patterns.

Further details of the exact operations performed by each
instruction are found in the Series 32000 Instruction Set
Reference Manual.

Movement and Conversion

The following instructions move the gen1 operand to the
gen2 operand, leaving the gen1 operand intact.

Instruction
gent, gen2

Format Op
11 0001 MOVf

Description
Move without
conversion

9 010 MOVLF geni,gen2 Move, converting
from double
precision to
single precision.
Move, converting
from single
precision to
double

precision.

Move, converting
from any integer
type to any
floating-point
type.

Move, converting
from floating-
point to the
nearestinteger.

Move, converting
from floating-
point to the
nearestinteger
closer to zero.

Move, converting
from floating-
point to the
largest integer
less than or
equal to its
value.

9 011 MOVFL geni, gen2

9 000 MOVif gen1, gen2

9 100 ROUNDfi gen1, gen2

9 101 TRUNCfi gent,gen2

9 111 FLOORfi gen1, gen2

Note: The MOVLF instruction f bit must be 1 and the | field must be 10.
The MOVFL instruction f bit must be 0 and the | field must be 11.

Arlthmetic Operations
The following instructions perform floating-point arithmetic

operations on the gen1 and gen2 operands, leaving the re-
sult in the gen2 operand.

Format Op Instruction Description
11 0000 ADDf geni,gen2 Addgen1togen2.
11 0100 SUBf geni,gen2 Subtractgeni
from gen2.

1 1100 MULf gen1,gen2 Multiply gen2 by
gent.

1 1000 DIVf gen1,gen2 Divide gen2 by
gent.

11 0101 NEGf geni,gen2 Move negative of
geni to gen2.

1 1101 ABSf geni,gen2 Move absolute

value of gen1 to
gen2.

3-40

2.0 Architectural Description (continued)
Comparlson

The Compare instruction compares two floating-point val-
ues, sending the result to the CPU PSR Z and N bits for use
as condition codes. See Figure 3-7. The Z bit is set if the
gen1 and gen2 operands are equal; it is cleared otherwise.
The N bitis set if the gen1 operand is greater than the gen2
operand; it is cleared otherwise. The CPU PSR L bit is un-
conditionally cleared. Positive and negative zero are consid-
ered equal.

Format Op Instruction Description
1 0010 CMPf gen1,gen2 Compare gent
to gen2.

Floating-Point Status Register Access

The following instructions load and store the FSR as a 32-
bit integer.

Format Op Instruction Description
9 001 LFSR geni Load FSR
9 110 SFSR gen2 Store FSR
2.3 TRAPS

Upon detecting an exceptional condition in executing a
floating-point instruction, the NS32081 FPU requests a trap
by setting the Q bit of the status word transferred during the
slave protocol (Section 3.5). The CPU responds by perform-
ing a trap using a default vector value of 3. See the Series
32000 Instruction Set Reference Manual and the applicable
CPU data sheet for trap service details.

A trapped floating-point instruction returns no result, and
does not affect the CPU Processor Status Register (PSR).
The FPU displays the reason for the trap in the Trap Type
(TT) field of the FSR (Section 2.1.2.2).

3.0 Functional Description

3.1 POWER AND GROUNDING

The NS32081 requires a single 5V power supply, applied on
pin 24 (Vcc). See DC Electrical Characteristics table.

Grounding connections are made on two pins. Logic Ground
(GNDL, pin 12) is the common pin for on-chip logic, and
Buffer Ground (GNDB, pin 13) is the common pin for the
output drivers. For optimal noise immunity, it is recommend-
ed that GNDL be attached through a single conductor di-
rectly to GNDB, and that all other grounding connections be
made only to GNDB, as shown below (Figure 3-1).

+5V
24
Vee
N$32081
FPU
12 13 OTHER
GNDL GNDB % GROUND
l— .l. CONNECTIONS

TL/EE/5234-13

FIGURE 3-1. Recommended Supply Connections

3.2 CLOCKING

The NS32081 FPU requires a single-phase TTL clock input
on its CLK pin (pin 14). When the FPU is connected to a
Series 32000 CPU, the CLK signal is provided from the
CTTL pin of the NS32201 Timing Control Unit.

3.3 RESETTING

The RST pin serves as a reset for on-chip logic. The FPU
may be reset at any time by pulling the RST pin low for at
least 64 clock cycles. Upon detecting a reset, the FPU ter-
minates instruction processing, resets its internal logic, and
clears the FSR to all zeroes.

On application of power, RST must be held low for at least
50 ps after Vg is stable. This ensures that all on-chip volt-
ages are completely stable before operation. See Figures 3-2
and 3-3.

Ve 4.5VT
LK I

=64 CLOCK
CYCLES

T _

[LI1IL

250 us

TL/EE/5234-14
FIGURE 3-2. Power-On Reset Requirements

CiK

| =64 (LOCK |

CYCLES |

RST ’
TL/EE/5234-15

FIGURE 3-3. General Reset Timing

3.4 BUS OPERATION

Instructions and operands are passed to the NS32081 FPU
with slave processor bus cycles. Each bus cycle transfers
either one byte (8 bits) or one word (16 bits) to or from the
FPU. During all bus cycles, the SPC line is driven by the
CPU as an active low data strobe, and the FPU monitors

10kﬂ.%
spcle SPC N

< -»1SPC
16-BIT
A/D 0-15 | (] 1 0-15
SeReES DATA BUS
32000 STO S0l s10 ngggm
cPU STH :_;lT sT1
RST
I-—> CLK
RST CmL
NS32201
Tcu

TL/EE/5234-2
FIGURE 3-4. System Connection Diagram

S1-180CESN/0L-180CESN

NS32081-10/NS32081-15

3.0 Functional Description (continued)

pins STO and ST1 to keep track of the sequence (protocol)
established for the instruction being executed. This is nec-
essary in a virtual memory environment, allowing the FPU to
retry an aborted instruction.

3.4.1 Bus Cycles)

A bus cycle is initiated by the CPU, which asserts the proper
status on STO and ST1 and pulses SPC low. STO and ST1
are sampled by the FPU on the leading (falling) edge of the
SPC pulse. If the transfer is from the FPU (a slave processor
read cycle), the FPU asserts data on the data bus for the
duration of the SPC pulse. If the transfer is to the FPU (a
slave processor write cycle), the FPU latches data from the
data bus on the trailing (rising) edge of the SPC pulse. Fig-
ures 3-5 and 3-6 illustrate these sequences.

The direction of the transfer and the role of the bidirectional
SPC line are determined by the instruction protocol being
performed. SPC is always driven by the CPU during slave
processor bus cycles. Protocol sequences for each instruc-
tion are given in Section 3.5.

3.4.2 Operand Transfer Sequences

An operand is transferred in one or more bus cycles. A 1-
byte operand is transferred on the least significant byte of
the data bus (D0-D7). A 2-byte operand is transferred on
the entire bus. A 4-byte or 8-byte operand is transferred in
consecutive bus cycles, least significant word first.

3.5 INSTRUCTION PROTOCOLS

3.5.1 General Protocol Sequence

Slave Processor instructions have a three-byte Basic In-
struction field, consisting of an |D byte followed by an Oper-
ation Word. See Section 2.2.3 for FPU instruction encod-
ings. The ID Byte has three functions:

1) It identifies the instruction to the CPU as being a Slave
Processor instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Operation Word
of the instruction.

Upon receiving a Slave Processor instruction, the GPU initi-
ates the sequence outlined in Table 3-2. While applying
Status Code 11 (Broadcast ID. Table 3-1), the CPU trans-
fers the ID Byte on the least significant half of the Data Bus
(D0-D?7). All Slave Processors input this byte and decode it.
The Slave Processor selected by the ID Byte is activated,
and from this point the CPU is communicating only with it. If
any other slave protocol was in progress (e.g., an aborted
Slave instruction), this transfer cancels it.

The CPU next sends the Operation Word while applying
Status Code 01 (Transfer Slave Operand, Table 3-1). Upon
receiving it, the FPU decodes it, and at this point both the
CPU and the FPU are aware of the number of operands to
be transferred and their sizes. The Operation Word is
swapped on the Data Bus; that is, bits 0-7 appear on pins
D8-D15, and bits 8-15 appear on pins D0-D7.

VALID

(NOTE 1)

§PC

D0-D15

—

— —{ VALID FROM FPU } ——

Note 1: FPU samples CPU status here.

TL/EE/5234-16

FIGURE 3-5. Slave Processor Read Cycle

VALID

/i

m.

(NOTE 1)

2

——

(NOTE 2)

00-015 -__..___(

VALID FROM CPU

J...._.

Note 1: FPU samples CPU status here.

Note 2: FPU samples data bus here.

TL/EE/5234-17

FIGURE 3-6. Slave Processor Write Cycle

3-42

3.0 Functional Description (continued)

Using the Addressing Mode fields within the Operation
Word, the CPU starts fetching operands and issuing them to
the FPU. To do so, it references any Addressing Mode ex-
tensions appended to the FPU instruction. Since the CPU is
solely responsible for memory accesses, these extensions
are not sent to the Stave Processor. The Status Code ap-
plied is 01 (Transfer Slave Processor Operand, Table 3-1).

After the CPU has issued the last operand, the FPU starts
the actual execution of the instruction. Upon completion, it
will signal the CPU by pulsing SPC low. To allow for this, the
CPU releases the SPC signal, causing it to float. SPC must
be held high by an external pull-up resistor.

Upon receiving the pulse on SPC, the CPU uses SPC to
read a Status Word from the FPU, applying Status Code 10.
This word has the format shown in Figure 3-7. If the Q bit
(“Quit”, Bit 0) is set, this indicates that an error has been
detected by the FPU. The CPU will not continue the proto-
col, but will immediately trap through the Slave vector in the
Interrupt Table. If the instruction being performed is CMPf
(Section 2.2.3) and the Q bit is not set, the CPU loads Proc-
essor Status Register (PSR) bits N, Z and L from the corre-
sponding bits in the Status Word. The NS32081 FPU always
sets the L bit to zero.

15 8 7 0
IOODOUUOUINZUOOLm

NEW PSR BIT VALUE(S)
““QUIT"": TERMINATE PROTOCOL, TRAP (FPU).
TL/EE/5234-18
FIGURE 3-7. FPU Protocol Status Word Format

The last step in the protocol is for the CPU to read a result,
if any, and transfer it to the destination. The Read cycles
from the FPU are performed by the CPU while applying
Status Code 01 (Section 4.1.2).

TABLE 3-1. General Instruction Protocol

Step Status Action
1 11 CPU sends ID Byte.
2 01 CPU sends Operation Word.
3 01 CPU sends required operands.
4 XX FPU starts execution.
5 XX FPU pulses SPC low.
6 10 CPU reads Status Word.
7 01 CPU reads result (if any).

3.5.2 Floating-Point Protocols

Table 3-2 gives the protocols followed for each floating-
point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Section 2.2.3.

The Operand Class columns give the Access Classes for
each general operand, defining how the addressing modes
are interpreted by the CPU (see Series 32000 Instruction
Set Reference Manual).

The Operand Issued columns show the sizes of the oper-
ands issued to the Floating-Point Unit by the CPU. “D” indi-
cates a 32-bit Double Word. “i"” indicates that the instruction
specifies an integer size for the operand (B = Byte, W =
Word, D = Double Word). “f” indicates that the instruction
specifies a floating-point size for the operand (F = 32-bit
Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR Bits Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-7).

Any operand indicated as being of type “f”” will not cause a
transfer if the Register addressing mode is specified, be-
cause the Floating-Point Registers are physically on the
Floating-Point Unit and are therefore available without CPU
assistance.

TABLE 3-2. Floating Point Instruction Protocols

M Operand 1 Operand 2 Operand 1
nemonic

Class Class Issued
ADDf read.f rmw.f f
SuBf read.f rmw.f f
MULf read.f rmw.f f
DIV read.f rmw.f f
MOVt read.f write.f f
ABSf read.f write.f f
NEGf read.f write.f f
CMPf read.f read.f f
FLOORfi read.f write.i f
TRUNCHi read.f write.i f
ROUNDfi read.f write.i f
MOVFL read.F write.L F
MOVLF read.L write.F L
MOVif read.i write.f i
LFSR read.D N/A D
SFSR N/A write.D N/A

D = Double Word

i = Integer size (B, W, D) specified in mnemonic.

f = Floating-Point type (F, L) specified in mnemonic.
N/A = Not Applicable to this instruction.

Operand 2 Returned Value PSR Bits
Issued Type and Dest. Affected
f ftoOp. 2 none
f ftoOp. 2 none
f ftoOp. 2 none
f ftoOp.2 none
N/A ftoOp. 2 none
N/A ftoOp.2 none
N/A ftoOp.2 none
f N/A N,Z,L
N/A itoOp.2 none
N/A itoOp.2 none
N/A itoOp.2 none
N/A LtoOp.2 none
N/A FtoOp.2 none
N/A ftoOp.2 none
N/A N/A none
N/A DtoOp.2 none

3-43

G1-1802ESN/0L-180CESN

NS32081-10/NS32081-15

4.0 Device Specifications

4.1 PIN DESCRIPTIONS

The following are brief descriptions of all NS32081 FPU
pins. The descriptions reference the relevant portions of the
Functional Description, Section 3.

Dual-In-Line Package

=—q1@® \J 24 foee Vo
[H 23 =570
08—43 22=—sT1
07—44 21 = SFC
D6 —1 5 20{—011
0515 N o
D4 o=t 7 18 }—D13
D318 17 =014
p2—{s 16 f~=D15
D1 =—=110 15 =T8T
00— 11 BT S T
GNDL —{ 12 13 }—GNOB
TL/EE/5234~-3
Top View

FIGURE 4-1. Connection Dlagram

Order Number NS32081D-10 or NS32081D-15
See NS Package Number D24C

Order Number NS32081N-10 or NS32081N-15
See NS Package Number N24A

4.2 ABSOLUTE MAXIMUM RATINGS

Temperature Under Bias 0°Cto +70°C

Storage Temperature —65°Cto +150°C
All Input or Output Voltages

with Respect to GND —0.5Vto +7.0V
Power Dissipation 1.5W

4.1.1 Supplies

Power (Vgg): +5V positive supply. Section 3.1.

Logic Ground (GNDL): Ground reference for on-chip logic.
Section 3.1.

Buffer Ground (GNDB): Ground reference for on-chip driv-
ers connected to output pins. Section 3.1.

4.1.2 Input Signals
Clock (CLK): TTL-level clock signal.
Reset (RST): Active low. Initiates a Reset, Section 3.3.

Status (STO, ST1): Input from CPU. STO is the least signifi-
cant bit. Section 3.4 encodings are:
00—(Reserved)
01—Transferring Operation Word or Operand
10—Reading Status Word
11—Broadcasting Slave ID

4.1.3 Input/Output Signals

Slave Processor Control (SPC): Active low. Driven by the
CPU as the data strobe for bus transfers to and from the
NS32081 FPU, Section 3.4. Driven by the FPU to signal
completion of an operation, Section 3.5.1. Must be held high
with an external pull-up resistor while floating.

Data Bus (D0-D15): 16-bit bus for data transfer. DO is the
least significant bit. Section 3.4.

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for avallability and specifications.

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS Tp = 0°Cto 70°C, Vcc = 5V +£5%, GND = 0V

Symbol Parameter Conditions Min Typ Max Units
Vin HIGH Level Input Voltage 2.0 Ve +0.5 v
ViL LOW Level Input Voltage -0.5 0.8 v
VOoH HIGH Level Output Voitage loy = —400 pA 24 \%
VoL LOW Level Output Voltage loL = 4mA 0.45 v
Iy Input Load Current 0<V|N<Vce -10.0 10.0 pA
IL Leakage Current 045 < VN < 2.4V
Output and I/0 Pins in —20.0 20.0 BA
TRI-STATE/Input Mode
lcc Active Supply Current loutr = 0, Tp = 25°C 200 300 mA

3-44

4.0 Device Specifications (continued)

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitlons

All the Timing Specifications given in this section refer to 0.8V
and 2.0V on all the input and output signals as illustrated in
Figures 4.2 and 4.3, unless specifically stated otherwise.

{ 20v
CLK
0.
(8V
r ————24V
sia1
{ 151G 11 o8V
~ 0.45V
24V
sIG2h
SIG2
b— 0.45V

TL/EE/5234-26
FIGURE 4-2. Timing Specification Standard
(Slgnal Valid After Clock Edge)

ABBREVIATIONS
L.E. — Leading Edge
T.E. — Trailing Edge

R.E. — Rising Edge
F.E. — Falling Edge

2.0V
CLK
0.8V
- —— 24V
SIG1
SIG11
L 0.45V
- 24V
2.0V 1 1siG2h
SIG2 L
—_— — 0.45V

TL/EE/5234-27
FIGURE 4-3. Timing Specification Standard
(Signal Valid Before Clock Edge)

3.45

G1-180ZESN/0L-1802ESN

NS32081-10/NS32081-15

4.0 Device Specifications (continued)
4.4.2 Timing Tables
4.4.2.1 Output Signal Propagation Delays

Maximum times assume capacitive loading of 100 pF.

NS32081-10 NS32081-15
Name | Figure Description Reference/ Units
Conditions Min Max Min Max
tov 4.7 Data Valid After SPC L.E. 45 30 ns
tpt 4-7 | Dg-Dys Floating After SPC T.E. 50 2 35 ns
tspoFw 4-9 SPC Pulse Width At 0.8V
—_— + —
from FPU (Both Edges) tcikp — 50 | toLkp + 50 | toikp — 40 | tolkp + 40 ns
tspcFI 4-9 SPC Output Active After CLK R.E. 55 38 ns
tSPCFh 4-9 SPC Output Inactive | After CLK R.E. 55 38 ns
tSPCEnf 4-9 SPC Out‘put After CLKF.E. 45 a5 ns
Nonforcing
4.4.2.2 Input Signal Requirements
Name | Figure Description Reference/ Min Max Min Max Units
Conditlons
trwR 4.5 Power Stable to After Voo
RSTRE. Reaches 4.5V 50 50 ke
tRSTW 4-6 RST Pulse Width At0.8V
6 t
(Both Edges) 64 4 CLKp
tss 4-7 | Status (ST0-ST1) Before SPCL.E. 50 33 ns
Setup
tsh 4-7 Status (ST0-ST1) After SPC L.E. 40 35 ns
Hold
tos 4-8 D0-D15 Setup Time | Before SPCT.E. 40 30 ns
ton 4.8 | DO-D15Hold Time | After SPCTE. 50 35 ns
tspow 4-7 SPC Pulse Width At0.8V
from CPU (Both Edges) I %0 ns
tspcs 4-7 SPC Input Active Before CLK R.E. 40 35 ns
tspch 47 | SPC Input Inactive After CLK R.E. 0 0 ns
tRsTs 4-10 RST Setup Before CLK F.E. 10 10 ns
tRsTh 4-10 RST R.E. Delay After CLK R.E. 0 0 ns
4.4.2.3 Clocking Requirements
Name | Figure Description Refen'ar'we/ Min Max Min Max Units
Conditions
tcLkn 4-4 Clock High Time At 2.0V
0
(Both Edges) 42 1000 27 100 ns
toLk 4-4 Clock Low Time At0.8V .
0
(Both Edges) 42 1000 27 100 ns
toLkp 4-4 Clock Period CLK R.E. to Next
CLK RE. 100 2000 66 ns

3-46

4.0 Device Specifications (continued)
4.4.3 Timing Dlagrams

4.5V
totxp Vee /
tewkn

CLK

[n I » B
S |

0.8v

fouxl

TL/EE/5234-19
FIGURE 4-4. Clock Timing

TL/EE/5234-20

FIGURE 4-5. Power-On Reset

TL/EE/5234-21

FIGURE 4-6. Non-Power-On Reset

fspen |
L e iseonte —Toroe]

s*ro.an v Y
betsg—f [e——tgp—sl

S ——"spow—

«'m——' 4—'0,-1
D0-D15 < VALID FROM FPU >‘""

TL/EE/5234-22

FIGURE 4-7. Read Cycle from FPU

Note: SPC pulse must be (nominally) 1 clock wide when writing into FPU.

| r tspch
L'spch - Yspes tspes

ST0,5T1 W VALID Y UHNHA

e S

5PC re——"tspcw ——]
I s —tph—
m-olsm(VALID FROM CPU

FIGURE 4-8. Write Cycle to FPU
Note: SPC pulse may also be 2 clocks wide, but its edges must meet the tgpcs and tspch requirements with respect to CLK.

TL/EE/5234-23

3-47

G1-1802ESN/0L-1802ESN

NS32081-10/NS32081-15

4.0 Device Specifications (continued)

——| tsPCFI I-— ——I '-—tsrcrn
ClK

—]

|<— tspernt

.

FIGURE 4-9. SPC Pulse from FPU

”_.J 'nsr.v—r-

RST

FIGURE 4-10. RST Release Timing
Note: The rising edge of RST must occur while CLK is high, as shown.

TL/EE/5234-25

TL/EE/5234-24

3-48

Section 4
Peripherals

Section 4 Contents

NS32202-10 Interrupt Control Unitttt ees 4-3
NS32203-10 Direct Memory Access Controllervvriiiiiieiiiiinienienaanenenes 4-28
NS32CG821 microCMOS Programmable 1M Dynamic RAM Controller/Driver 4-57
HPC16083/HPC26083/HPC36083/HPC46083/HPC16003/HPC26003/HPC36003/

HPC46003 High-Performance Microcontrollerscooiiiiiiiiiiiiinas, 4-58
DP8510 BITBLT Processing Unitouveeeeiinneniiieetiiiniernnnineeeesannnnns 4-59
DP8511 BITBLT ProcessingUnit (BPU)t 4-60

4-2

National
Semiconductor

NS32202-10 Interrupt Control Unit

General Description

The NS32202 Interrupt Control Unit (ICU) is the interrupt
controller for the Series 320009 microprocessor family. It is
a support circuit that minimizes the software and real-time
overhead required to handle multi-level, prioritized inter-
rupts. A single NS32202 manages up to 16 interrupt sources,
resolvesinterrupt priorities,and suppliesasingle-byteinterrupt
vector to the CPU.

The NS32202 can operate in either of two data bus modes:
16-bit or 8-bit. In the 16-bit mode, eight hardware and eight
software interrupt positions are available. In the 8-bit mode,
16 hardware interrupt positions are available, 8 of which can
be used as software interrupts. In this mode, up to 16 addi-
tional ICUs may be cascaded to handle a maximum of 256
interrupts.

Two 16-bit counters, which may be concatenated under pro-
gram control into a single 32-bit counter, are also available
for real-time applications.

Features

m 16 maskable interrupt sources, cascadable to 256

m Programmable 8- or 16-bit data bus mode

m Edge or level triggering for each hardware interrupt with
individually selectable polarities

m 8 software interrupts

m Fixed or rotating priority modes

m Two 16-bit, DC to 10 MHz counters, that may be con-
catenated into a single 32-bit counter

m Optional 8-bit 1/0 port available in 8-bit data bus mode

m High-speed XMOS™ technology

m Single, + 5V supply

m 40-pin, dual in-line package

Basic System Configuration

=] INT

NS32016 MASTER
CPU N§32202
GROUP Icu

NON-CASCADED
INTERRUPT SOURCES

AT

INT

CASCADED
N§32202
Icy

==

- CASCADED
. INTERRUPT
- SOURCES

iNt
CASCAOED

N§32202
icu

R

TL/EE/5117-1

4.3

01-20C2ESN

NS32202-10

Table of Contents
1.0 PRODUCT INTRODUCTION 3.0 ARCHITECTURAL DESCRIPTION (Continued)
1.11/0 Buffers 3.9 FPRT - First Priority Registers (R14, R15)
1.2 Read/Write Logic and Decoders 3.10 MCTL - Mode Control Register (R16)
1.3 Timing and Control 3.11 OSCASN - Output Clock Assignment (R17)
1.4 Priority Control 3.12 CIPTR - Counter Interrupt Pointer Register (R18)
1.5 Counters 3.13 PDAT - Port Dada Register (R19)

3.14 IPS - Interrupt/Port Select Register (R20)

2.0 FUNCTIONAL DESCRIPTION 3.15 PDIR - Port Direction Register (R21)

2.1 Roset 3.16 CCTL - Counter Control Register (R22)

2.2 Initialization 3.17 CICTL - Counter Interrupt Control Register (R23)

2.3 Vectored Interrupt Handling 3.18 LCSV/HCSV - L-Counter Starting Value/H-Counter
2.3.1 Non-Cascaded Operation Starting Value Registers (R24, R25, R26, and R27)
2.3.2 Cascade Operation 3.19 LCCV/HCCV - L-Counter Current Value/H-Counter

Current Value Registers (R28, R29, R30, and R31)

2.4 Internal ICU Operating Sequence
perating Sequenc 3.20 Register Initialization

2.5 Interrupt Priority Modes

2.5.1 Fixed Priority Mode 4.0 DEVICE SPECIFICATIONS
2.5.2 Auto-Rotate Mode 4.1 NS32202 Pin Descriptions
2.5.3 Special Mask Mode 4.1.1 Power Supply
2.5.4 Polling Mode 4.1.2 Input Signals

4.1.3 Output Signals

3.0 ARCHITECTURAL DESCRIPTION
3.1 HVCT - Hardware Vector Régister (RO)
3.2 SVCT - Software Vector Register (R1)
3.3 ELTG - Edge/Level Triggering Registers (R2, R3)
3.4 TPL - Triggering Polarity Registers (R4, R5)

4.1.4 Input/Output Signals
4.2 Absolute Maximum Ratings
4.3 Electrical Characteristics
4.4 Switching Characteristics

3.5 IPND - Interrupt Pending Registers (R6, R7) 4.4.1 Dofinitions
3.6 ISRV - Interrupt In-Service Registers (R8, R9) 4411 Tfmfng T.ables
3.7 IMSK - Interrupt Mask Registers (R10, R11) 4.4.1.2 Timing Diagrams

3.8 CSRC - Cascaded Source Registers (R12, R13)

List of lllustrations

NS32202 ICU BIOCK DIQGIAM &« v vt ettt etntsesetuestensenesnensatesssssssasnssseosssssesasnsonsnsnonesrsnssenens 1-1
Counter Output Signals in Pulsed Form and Square Waveform for Three Different Initial Values..................oooveun 1-2
Counter Configuration and Basic Operationsouveueiit ittt estiisetneteiesnnsesucssnsarsenesenesnens eeeeaeans 1-3
Interrupt Control Unit Connections in 16-Bit BUSMODEottt ittt 2-1
Interrupt Contro! Unit Connections in 8-Bit BUSMOMEeiuiniuiiiieiiiiii it iiiieniieeenrrarenenenees 2-2
Cascaded Interrupt Control Unit Connectionsin 8-BitBus Modecoiiieiii i 2-3
CPU Interrupt ACKNOWIBAgE SBQUENCE v vttt ittt eeett e eteneaesneneintenresesncansnenesrensnencnsss 2-4
Interrupt Dispatch and Cascade TaDIBS .. .vvueiuvuereenvnierenieesasnrasseenonesotsossssnenenssnenessenssssasnenns 2-5
CPU Return from INterrupt SEQUENCE vvvint ittt it einsiee et enattenenaennraenesacsesnsneeronsseneasnnens 2-6
ICU Interrupt ACKNOWIEAgE SEQUENCE ..\ vutvritttn ittt eetsnvasetiaonssesassaeonsosssiasssssesesernsssnenssns 2-7
ICU Return from Interrupt SeqUeNCeovvvriireriienrerreeneneransronensanses Ceereesreaenas e rreeeiee e 2-8
ICU INtErNal ROGISIONS .+ . v et ittt et entaeneisasseraonensosenossnsasseronessuenssssssoessusnsesensnsnocns
HVCT RegiSter Data CotiNg .. v v v eentntnruentutneneeeesoaeasuasssnssesessioseesssssusnsssasaesssnosasssssssosses
Recommended ICU’s Initialization SEQUENCEc.utniniiritenettineernntieensososesrrosiesasasssrssasnsneans
NS32202 ICU Connection DIagram .. oo v vvuetinttnnenutoetensonaeiuoeesseanssusssiossotssssssstonsssaessosasssonnes
Timing Specification STANANdu.vnttitt ettt eetieenneieasonetteansseausaestenessonenestosoasseans
READ/INTA GYCIO « .ttt i ie ettt ete e e et ensueaaerensennasssnssnsnns

L1 G103 P

Interrupt Timing in Edge TriggeringModevviiviieii ittt iieeaeanens

Interrupt Timing in Level TriggenngModeoiueiiiitenent et ie et iatanriiensnettenanennsnaasnenes
External Interrupt-Sampling-Clock to be Provided at Pin COUT/SCIN When in Test Mode
Internal Interrupt-Sampling-Clock to be Provided at PIn COUT/SCINo ettt ittt i et e i cieiiieeiaenns

Relationship Between Clock Input at Pin CLK and Counter Output Signals at Pins COUT/SCIN or G0/R0~G3/RS6,
in Both Pulsed Form and Square Waveformiuiiiiintnietiiiii i iiet sttt st eiantestsonsstneassnssonsns 4-9

4-4

1.0 Product Introduction

The NS32202 iCU functions as an overall manager in an
interrupt-oriented system environment. Its many features
and options permit the design of sophisticated interrupt sys-
tems.

Figure 1-1 shows the internal organization of the NS32202.
As shown, the NS32202 is divided into five functional
blocks. These are described in the following paragraphs:

1.11/0 BUFFERS AND LATCHES

The 1/0 Buffers and Latches block is the interface with the
system data bus. It contains bidirectional buffers for the
data 170 pins. It also contains registers and logic circuits
that control the operation of pins GO/IRO,...,G7/IR14
when the ICU is in the 8-bit bus mode.

1.2 READ/WRITE LOGIC AND DECODERS

The Read/Write Logic and Decoders manage all internal
and external data transfers for the ICU. These include Data,
Control, and Status Transfers. This circuit accepts inputs
from the CPU address and control buses. in turn, it issues
commands to access the internal registers of the ICU.

1.3 TIMING AND CONTROL

The Timing and Control Block contains status elements that
select the ICU operating mode. It also contains state ma-
chines that generate all the necessary sequencing and con-
trol signals.

1.4 PRIORITY CONTROL

The Priority Control Block contains 16 units, one for each
interrupt position. These units provide the following func-
tions.
e Sensing the various forms of hardware interrupt sig-
nals e.g. level (high/low) or edge (rising/falling)
e Resolving priorities and generating an interrupt re-
quest to the CPU
e Handling cascaded arrangements
¢ Enabling software interrupts
® Providing for an automatic return from interrupt
¢ Enabling the assignment of any interrupt position to
the internal counters
e Providing for rearrangement of priorities by assigning
the first priority to any interrupt position
¢ Enabling automatic rotation of priorities

1.5 COUNTERS

This block contains two 16-bit counters, called the H-coun-
ter and the L-counter. These are down counters that count
from an initial value to zero. Both counters have a 16-bit
register (designated HCSV and LCSV) for loading their re-
starting values. They also have registers containing the cur-
rent count values (HCCV and LCCV). Both sets of registers
are fully described in Section 3.

GND Ve s WT IR IR3 IRS IRT IR9 IR IR13 IR1S
G1/1R14 4~ ORITY
1ORY
G6/IR1Z 4P| CONTROL
G5/IR10 4P| >
G4/1RB 4= Y - yY
G3/IR6 4= W
G2/IR4 =
GV/IR2 4—P| |0 BuFreRs TIMING 4= Cour/SCi
60/1R0 €/ AND < AND #{ COUNTERS
07 4¢P LATCHES CONTROL le— C1x
06 4P -
05 ¢ 1
04 ¢/
03 ¢, READ/WRITE LOGIC
02 4= - AND DECODERS
0 4—p)
2 T TTI 11111
RST A0 WA &3 FBE A0 A1 A2 A3 M

TL/EE/5117-2

FIGURE 1-1. NS32202 ICU Block Diagram

45

01-2022ESN

NS32202-10

1.0 Product Introduction (continued)

The counters are under program control and can be used to
generate interrupts. When the count reaches zero, either
counter can generate an interrupt request to any of the 16
interrupt positions. The counter then reloads the start value
from the appropriate registers and resumes counting. Figure
7-2 shows typical counter output signals available from the
NS32202.

The maximum input clock frequency is 2.5 MHz.

A divide-by-four prescaler is also provided. When the pre-
scaler is used, the input clock frequency can be up to 10
MHz.

When intervals longer than provided by a 16-bit counter are
needed, the L- and H-counters can be concatenated to form
a 32-bit counter. In this case, both counters are controlled
by the H-counter control bits. Refer to the discussion of the
Counter Control Register in Section 3 for additional informa-
tion. Figure 1-3 summarizes counter read/write operations.

2.0 Functional Description

2.1 RESET ‘

The ICU is reset when a logic low signal is present on the
RST pin. At reset, most internal ICU registers are affected,
and the ICU becomes inactive.

2.2 INITIALIZATION :

After reset, the CPU must initialize the NS32202 to establish
its configuration. Proper initialization requires knowledge of
the ICU register’s formats. Therefore, a flowchart of a rec-
ommended initialization sequence is shown in (Figure 3-3)
after the discussion of the ICU registers.

The operation sequence shown in Figure 3-3 ensures that
all counter output pins remain inactive until the counters are
completely initialized.

2,3 VECTORED INTERRUPT HANDLING

For details on the operation of the vectored interrupt mode
for a particular Series 32000 CPU, refer to the data sheet for

INPUT CLOCK I l I | | | I l I | | | |

COUNTER
CONTENTS 2 1
(INIT. VALUE=2) -

OUTPUT IN
PULSED FORM

OUTPUT IN
SQUARE WAVEFORM

COUNTER
CONTENTS 1 0
(INIT. VALUE=1)

QUTPUT IN
PULSED FORM

OUTPUT IN
SQUARE WAVEFORM

COUNTER
CONTENTS] 0
(INIT. VALUE=0)

OUTPUT IN
PULSED FORM

OUTPUT IN
SQUARE WAVEFORM

-
I

TL/EE/5117~4

FIGURE 1-2. Counter Output Signals in Pulsed Form and Square Waveform for Three Different Initial Values

2.0 Functional Description (continued)

that CPU. In this discussion, it is assumed that the NS32202
is working with a CPU in the vectored interrupt mode. Sever-
al ICU applications are discussed, including non-cascaded
and cascaded operation. Figures 2-1, 2-2, and 2-3 show
typical configurations of the ICU used with the NS32016

rupt Output (INT) pin and generates an interrupt vector byte.
The interrupt vector byte identifies the interrupt source in its
four least significant bits. When the CPU detects a low level
on its Interrupt Input pin, it performs one or two interrupt
acknowledge cycles depending on whether the interrupt re-

CPU. quest is from the master ICU or a cascaded ICU. Figure 2-4
A peripheral device issues an interrupt request by sending shows a flowchart of a typical CPU Interrupt Acknowledge
the proper signal to one of the NS32202 interrupt inputs. If sequence.
the interrupt input is not masked, the ICU activates its Inter-
Ve S
STARTING VALUE
LCSV/HCSV —
ZERO DETECT 4 g
' 2
o)
hJ g
| COUNTER =
=
2
FREEZE COUNTER READINGS £
| =
CURRENT VALUE
LCCV/HCCV A
~
TL/EE/5117-5
BASIC OPERATIONS:
WRITING TO LCSV/HCSV <« (IDB)
READING LCSV/HCSV — (IDB)
WRITING TO LCCV/HCCV <« (IDB)
(only possible when counters are halted) <« (IDB)
READING LCCV/HCCV - (IDB)

(only possible when counter
readings are frozen)

COUNTER COUNTS AND READINGS ARE
NOT FROZEN

COUNTER RELOADS STARTING VALUE

(occurs on the clock cycle following
the one in which it reaches zero)

FIGURE 1-3. Counter Configuration and Basic Operations

4-7

01-2022ESN

NS32202-10

2.0 Functional Description (continued)

rrrrrrtd

A16-A23 % P A0-A23
B i v
pumm)] LATCH
N§32018 18
o T
ADDRESS
ios DECODER 13
sn "N
e
N§32202 IR9
5 . icu
ool | e | 20:015 , | 0.0 8 A7
¢) ¢ P 60/1R0-67/1R14
PHIT PHIZ s
-L._.T_LL_ 13
PHIL PHIZ ADS DOIN 5 »|
N§32201 i | i st
e wR l' P WA 1

00-D15

FIGURE 2-1. Interrupt Control Unit Connections in 16-Bit Bus Mode

A15-A23 p——— P A0-A23
A1-AS
P LATCH] A0-A4 G7/IR14 {4
NS32016] oo—> HEE 66/1R12 {4—>
o T 65/IR10 fe—p
3 ADDRESS =
Ao l DECODER I-—b‘cs GA/IRE [4—>
G3/iR6 | ¢—>
s —p| 5T G2/1R4 | 4—
inT | iNT G1/1R2 je—>
NS32202 GO/IRO f@——p
DOIN > v IR15 { =
BUFFER 00-07 IR13 j—
ADO-AD1S {4 | D0-D7 IR11 | g
PHIY PHI2 IR9 J—
4 A7 {—
e RS | €=
o mlfismoiws oo 7 | »| i 183 f—
o WR >| Wi A1 |4
00-D15
NOTE: In the 8-Bit Bus Mode the Master ICU Registers appear at even

addresses (A0 =0) since the ICU communicates with the least sig-

nificant byte of the CPU data bus.

FIGURE 2-2. Interrupt Control Unit Connections in 8-Bit Bus Mode

TL/EE/$5117-6

TL/EE/5117-7

2.0 Functional Description (continued)

A1-AS

GND P

g2 al

1

00-07

67/

oAz

8s/1n10

G4/1n8

G3/1R8

62/1M4
cAscApep 61/12
NS32202 GO/IRO
[T
13

"1

"9

"

ths

183

"

TITTTetsesitidy

=

8

8
K]

L
LA J

00-015

G7/1R14
G8/IR12
GS/IR10
G4/1R8

G3/1R6

G2/1k4

MAsTer G1/WR2
N§32202 GO/IRO
o " 111
"3

(1))

IR9

W7

RS

L]

L 3]

RRERRRRNEEREERY

FIGURE 2-3. Cascaded Interrupt Control Unit Connections in 8-Bit Bus Mode

TL/EE/5117-8

01-2022E€SN

NS32202-10

2.0 Functional Description (continued)

COND. A*
TRUE?

YES
INTERRUPTS
ENABLED ?

YES

SUSPEND
INSTRUCTION EXECUTION

v

| osssiewreravers |

v

EXECUTE MASTER INTA
CYCLE AND READ VECTOR
FROM ADORESS FFFEO015

OBTAIN CASCADED ICU ADDRESS
FROM CASCADE TABLE

+

EXECUTE CASCADED INTA
CYCLE AND READ VECTOR
FROM CASCADED ICU

OBTAIN EXTERNAL PROCEDURE
DESCRIPTOR FROM
INTERRUPT DISPATCH TABLE

v

OBTAIN SERVICE ROUTINE
ENTRY POINT

v

SAVE PROGRAM COUNTER,
MOD REGISTER AND
CPU STATUS ON
INTERRUPT STACK

v

RESUME INSTRUCTION
EXECUTION AT SERVICE
ROUTINE ENTRY POINT

14____‘

L+

* Cond. A is true if current instruction is terminated
or an interruptible point in a string instruction is
reached.

FIGURE 2-~4. CPU Interrupt Acknowledge Sequence

TL/EE/5117-9

4-10

2.0 Functional Description (continued)

In general, vectored interrupts are serviced by interrupt rou-
tines stored in system memory. The Dispatch Table stores
up to 256 external procedure descriptors for the various
service procedures. The CPU INTBASE register points to
the top of the Dispatch Table. Figure 2-5 shows the layout
of the Dispatch Table. This figure also shows the layout of
the Cascade Table, which is discussed with ICU cascaded
operation.

2.3.1 Non-Cascaded Operatlon. Whenever an interrupt re-
quest from a peripheral device is issued directly to the mas-
ter ICU, a non-cascaded interrupt request to the CPU re-
sults. In a system using a single NS32202, up to 16 interrupt
requests can be prioritized. Upon receipt of an interrupt re-
quest on the INT pin, the CPU performs a Master Interrupt-
Acknowledge bus cycle, reading a vector byte from address
FFFEO0O4g. This vector is then used as an index into the
dispatch table in order to find the External Procedure De-
scriptor for the proper interrupt service procedure. The serv-
ice procedure eventually returns via the Return-from-Inter-
rupt (RET) instruction, which performs a Return-from-Inter-
rupt bus cycle, informing the ICU that it may re-prioritize any
interrupt requests still pending. Figure 2-6 shows a typical
CPU RET!I sequence. In a system with only one ICU, the
vectors provided must be in the range of 0 through 127; this
can be ensured by writing 0XXXXXXX into the SVCT regis-

2.3.2 Cascaded Operation. In cascaded operation, one or
more of the interrupt inputs of the master ICU are connect-
ed to the Interrupt Output pin of one or more cascaded
ICUs. Up to 16 cascaded ICUs may be used, giving a sys-
tem total of 256 interrupts.

Note: The number of cascaded ICUs is practically limited to 15 because the
Dispatch Table for the NS32016 CPU is constructed with entries 1
through 15 either used for NMI and Trap descriptors, or reserved for
{uture use. Interrupt position 0 of the master ICU should not be cas-
caded, so it can be vectored through Dispatch Table entry 0, reserved
for non-vectored interrupts. In this case, the non-vectored Interrupt
entry (entry 0} is also ilable for vectored i pt operation, since
the CPU is operating in the vectored interrupt mode.

The address of the master ICU should be FFFEQO4e. (*)
Cascaded ICUs can be located at any system address. A list
of cascaded ICU addresses is maintained in the Cascade
Table as a series of sixteen 32-bit entries.

(*)Note: The CPU status corresponding to both, master interrupt acknowl-
edge and return from interrupt bus cycles, as well as address bit
A8, could be used to generate the chip select (CS) signal for ac-
cessing the master ICU during one of the above cycles. In this case
the master ICU can reside at any system address. The only limita-
tion is that the least significant 5 or 6 address bits (6 in the 8-bit bus
mode) must be zero. The address bit AB must be decoded to pre-
vent an NMI bus cycle from reading the hardware vector register of
the ICU. This could happen, since the NS32016 CPU performs a
dummy read cycle from address FFFF004g, with the same status
as a master INTA cycle, when a non-maskable-interrupt is acknow!-

ter. By providing a negative vector valus, the master ICU edged.
flags the interrupt source as a cascaded ICU (see below).
MEMORY
THESE ADDRESSES ARE
USED BY THE CPU DURING
(INTBASE-84)—————>1 CASCADED ICU ADDRESS 0 THE SECOND CYCLE OF
AN INTA OR RETI
SEQUENCE TO GET THE
INTERRUPT VECTOR FROM
CASCADE TABLE A CASCADED ICU.
CASCADED ICU ADDRESS 14 e — — o ——
INTBASE CASCADED ICU ADDRESS 15 (INTBASE —4* ICAS?;DE TABLE INDEX|)
REGISTER NVI DESCRIPTOR
NM1 AND TRAP
} DESCRIPTORS* I
RESERVED*
(INTBASE+-4+ VECTOR)
INT. DESCRIPTOR 16
INTERRUPT
DISPATCH TABLE
INT. DESCRIPTOR N - — — — —— — - ——
INT. DESCRIPTOR 255
(ADDRESS FFFEQO15) ———= MASTER ICU’S |<—————— CPU READS THIS LOCATION DURING
RVCT REGISTER FIRST CYCLE OF INTA OR REYI
SEQUENCE T0 GET EITHER
THE INTERRUPT VECTOR OR
A CASCADE TABLE INDEX FROM
THE MASTER ICU. TL/EE/5117-10

* Table entries 1 to 15 should not be used by the ICU since they contain NMI and Trap Descriptors

or are reserved for future use. (For more details refer to NS32016 data shest.)

FIGURE 2-5. Interrupt Dispatch and Cascade Tables

4-11

01-2022€SN

NS32202-10

2.0 Functional Description (continued)

&

v

EXECUTE MASTER RETI CYCLE
AND READ VECTOR
FROM ADDRESS FFFEQQ:s

¥

OBTAIN CASCADED ICU
ADDRESS FROM CASCADE
TABLE

T

EXECUTE CASCADED
ICU CYCLE AND READ
VECTOR FROM
CASCADED ICU

RESTORE CPU STATUS,
MOD REGISTER AND
RETURN ADDRESS FROM
INTERRUPT STACK

v

RESUME INSTRUCTION
EXECUTION AT
RESTORED ADDRESS

v

EXIT

TL/EE/5117-11
FIGURE 2-6. CPU Return from Interrupt Sequence

The master ICU maintains a list (in the CSRC register pair)
of its interrupt positions that are cascaded. It also provides a
4-bit (hidden) counter (in-service counter) for each interrupt
position to keep track of the number of interrupts being
serviced in the cascade ICUs. When a cascaded interrupt
input is active, the master ICU activates its interrupt output
and the CPU responds with a Master Interrupt Acknowledge
Cycle. However, instead of generating a positive interrupt
vector, the master ICU generates a negative Cascade Table
index.

The CPU interprets the negative number returned from the
master ICU as an index into the Cascade Table. The Cas-
cade Table is located in a negative direction from the Dis-
patch Table, and it contains the virtual addresses of the
hardware vector registers for any cascaded NS32202s in
the system. Thus, the Cascade Table index supplied by the
master ICU identifies the cascaded ICU that requested the
interrupt.

Once the cascaded ICU is identified, the CPU performs a
Cascaded Interrupt Acknowledge cycle. During this cycle,
the CPU reads the final vector value directly from the cas-
caded ICU, and uses it to access the Dispatch Table. Each

cascaded ICU, of course, has its own set of 16 unique inter-
rupt vectors, one vector for each of its 16 interrupt positions.

The CPU interprets the vector value read during a Cascad-
ed Interrupt Acknowledge cycle as an unsigned number.
Thus, this vector can be in the range 0 through 255.

When a cascaded interrupt service routine completes its
task, it must return control to the interrupted program with
the same RETI instruction used in non-cascaded interrupt
service routines. However, when the CPU performs a Mas-
ter Return From Interrupt cycle, the CPU accesses the mas-
ter ICU and reads the negative Cascade Table index identi-
fying the cascaded ICU that originally received the interrupt
request. Using the cascaded ICU address, the CPU now
performs a Cascaded Return From Interrupt cycle, informing
the cascaded ICU that the service routine is over. The byte
provided by the cascaded ICU during this cycle is ignored.

2.4 INTERNAL ICU OPERATING SEQUENCE

The NS32202 ICU accepts two interrupt types, software and
hardware.

Software interrupts are initiated when the CPU sets the
proper bit in the Interrupt Pending (IPND) registers (R6, R7),
located in the ICU. Bits are set and reset by writing the
proper byte to either R6 or R7. Software interrupts can be
masked, by setting the proper bit in the mask registers (R10,
R11).

Hardware interrupts can be either internal or external to the
ICU. Internal ICU hardware interrupts are initiated by the on-
chip counter outputs. External hardware interrupts are initia-
ted by devices external to the ICU, that are connected to
any of the ICU interrupt input pins.

Hardware interrupts can be masked by setting the proper bit
in the mask registers (R10, R11). If the Freeze bit (FRZ),
located in the Mode Control Register (MCTL), is set, all in-
coming hardware interrupts are inhibited from setting their
corresponding bits in the IPND registers. This prevents the
ICU from recognizing any hardware interrupts.

Once the ICU is initialized, it is enabled to accept interrupts.
If an active interrupt is not masked, and has a higher priority
than any interrupt currently being serviced, the ICU acti-
vates its Interrupt Output (INT). Figure 2-7 is a flowchart
showing the ICU interrupt acknowledge sequence.

The CPU responds to the active INT line by performing an
Interrupt Acknowledge bus cycle. During this cycle, the ICU
clears the IPND bit corresponding to the active interrupt po-
sition and sets the corresponding bit in the Interrupt In-Serv-
ice Registers (ISRV). The 4-bit in-service counter in the
master ICU is also incremented by one if the fixed priority
mode is selected and the interrupt is from a cascaded ICU.
The ISRV bit remains set until the CPU performs a RETI bus
cycle and the 4-bit in-service counter is decremented to
zero. Figure 2-8 is a flowchart showing ICU operation dur-
ing a RETI bus cycle.

When the ISRV bit is set, the INT output is disabled. This
output remains inactive until a higher priority interrupt posi-
tion becomes active, or the ISRV bit is cleared.

An exception to the above occurs in the master ICU when
the fixed priority mode is selected, and the interrupt input is
connected to the INT output of a cascaded ICU. In this case
the ISRV bit does not inhibit an interrupt of the same priority.
This is to allow nesting of interrupts in a cascaded ICU.

4-12

2.0 Functional Description (continued)

7

NO

INTERRUPT REQUEST
PENDING?

ANY UNMASKED

18
AUTOROTATE
MODE
SELECTED?

SET INT ACTIVE

s ACKNOWLEDGE
HIGHEST PRIORITY
«— L] oo REQUEST
EXECUTED? T
ASSIGN FIRST PRIORITY
10 CORRESPONDING
: INTERRUPT POSITION
ACKNOWLEDGE
WIGHEST PRICRITY
REQUEST

INCREMENT
IN-SERVICE
COUNTER

»le

i

SETISRVSIT
RESET IPNO BIT
SET INT INACTIVE

* Cond. B is true if any one of the following condi-
tions is satisfied.
1) No interrupt is being serviced
2) There is a pending unmasked Interrupt with
priority higher than that of the interrupt being
serviced.
3) There is a pending unmasked interrupt from a
cascaded ICU with priority higher or same as that
of the highest priority interrupt position in the

b v master ICU with the ISRV bit set.
OUTPUT INTERRUPT OUTPUT CASCADE TABLE
VECTON (B83BVYVY) INDEX (1111YVWV)
ON DATA 8US ON DATA 8US

¥

3

FIGURE 2-7.1CU Interrupt Acknowledge Sequence

TL/EE/5117-12

413

01-C0Z2ESN

NS32202-10

2.0 Functional Description (Continued)

‘ RESET ’

QUTPUT
CASCADE TABLE
k INDEX

>
b

RETI
CYCLE
EXECUTED?

IS
INTERRUPT
BEING SERVICED
FROM A
CASCADED

1ICU?

ouTPUT
INTERRUPT
VECTOR

RESET
INTERRUPT ISRV BIT
AND ASSIGN FIRST
PRIORITY TO NEXY
INTERRUPT POSITION

AUTOROTATE
MODE
SELECTED?

INTERRUPT
BEING SERVICED
FROM A
CASCADED
ICU?

DECREMENT
IN-SERVICE
COUNTER

IS
IN-SERVICE
COUNTER
=07

RESET
INTERRUPT
ISRV BIT

FIGURE 2-8. ICU Return from Interrupt Sequence

TL/EE/5117-13

4-14

2.0 Functional Description (continued)

2.5 INTERRUPT PRIORITY MODES

The NS32202 ICU can operate in one of four interrupt priori-
ty modes: Fixed Priority; Auto-Rotate; Special Mask; and
Polling. Each mode is described below.

2.5.1 Fixed Priority Mode

In the Fixed Priority Mode (also called Fully Nested Mode),
each interrupt position is ranked in priority from 0 to 15, with
0 being the highest priority. In this mode, the processing of
lower priority interrupts is nested with higher priority inter-
rupts. Thus, while an interrupt is being serviced, any other
interrupts of the same or lower priority are inhibited. The ICU
does, however, recognize higher priority interrupt requests.
When the interrupt service routine executes its RETI instruc-
tion, the corresponding ISRV bit is cleared. This allows any
lower priority interrupt request to be serviced by the CPU.

At reset, the default priority assignment gives interrupt IRO

priority O (highest priority), interrupt IR1 priority 1, and so

forth. Interrupt IR15 is, of course, assigned priority 15, the
lowest priority. The default priority assignment can be al-

tered by writing an appropriate value into register FPRT (L)

as explained in Section 3.9.

Note: When the ICU generates an interrupt request to the CPU for a higher
priority interrupt while a lower pricrity interrupt is still being serviced by
the CPU, the CPU responds to the interrupt request only if its internal
interrupt enable flag is set. Normally, this flag is reset at the beginning
of an interrupt acknowledge cycle and set during the RETI cycle. If the
CPU is to respond to higher priority interrupts during any interrupt
service routine, the service routine must set the internal CPU interrupt
enable flag, as soon during the service routine as desired.

2.5.2 Auto-Rotate Mode

The Auto Rotate Mode is selected when the NTAR bit is set
to 0, and is automatically entered after Reset. In this mode
an interrupt source position is automatically assigned lowest
priority after a request at that position has been serviced.
Highest priority then passes to the next lower priority posi-
tion. For example, when servicing of the interrupt request at
position 3 is completed (ISRV bit 3 is cleared), interrupt po-
sition 3 is assigned lowest priority and position 4 assumes
highest priority. The nesting of interrupts is inhibited, since
the interrupt being serviced always has the highest priority.

This mode is used when the interrupting devices have to be
assigned equal priority. A device requesting an interrupt, will
have to wait, in the worst case, until each of the 15 other
devices has been serviced at most once.

2.5.3 Special Mask Mode

The Special Mask Mode is used when it is necessary to
dynamically alter the ICU priority structure while an interrupt
is being serviced. For example, it may be desired in a partic-
ular interrupt service routine to enable lower priority inter-
rupts during a part of the routine. To do so, the ICU must be
programmed in fixed priority mode and the interrupt service
routine must control its own in-service bit in the ISRV regis-
ters.

The bits of the ISRV registers are changed with either the
Set Bit Interlocked or Clear Bit Interlocked instructions (SBI-
TIW or CBITIW). The in-service bit is cleared to enable low-
er priority interrupts and set to disable them.

Note: For proper operation of the ICU, an interrupt service routine must set
its ISRV bit before executing the RET! instruction. This prevents the
RETI cycle from clearing the wrong ISRV bit.

2.5.4 Polling Mode

The Polling Mode gives complete control of interrupt priority
to the system software. Either some or all of the interrupt
positions can be assigned to the polling mode. To assign all
interrupt positions to the polling mode, the CPU interrupt
enable flag is reset. To assign only some of the interrupt
positions to the polling mode, the desired interrupt positions
are masked in the Interrupt Mask registers (IMSK). In either
case, the polling operation consists of reading the Interrupt
Pending (IPND) registers.

If necessary, the IPND read can be synchronized by setting
the Freeze (FRZ) bit in the Mode Control register (MCTL).
This prevents any change in the IPND registers during the
read. The FRZ bit must be reset after the polling operation
so the IPND contents can be updated. If an edge-triggered
interrupt occurs while the IPND registers are frozen, the in-
terrupt request is latched, and transferred to the IPND regis-
ters as soon as FRZ is reset.

The polling mode is useful when a single routine is used to
service several interrupt levels.

3.0 Architectural Description

The NS32202 has thirty-two 8-bit registers that can be ac-
cessed either individually or in pairs. In 16-bit data bus
mode, register pairs can be accessed with the CPU word or
double-word reference instructions. Figure 3-1 shows the
ICU internal registers. This figure summarizes the name,
function, and offset address for each register.

Because some registers hold similar data, they are grouped
into functional pairs and assigned a single name. However,
if a single register in a pair is referenced, either an L or an H
is appended to the register name. The letters are placed in
parentheses and stand for the low order 8 bits (L) and the
high order 8 bits (H). For example, register R6, part of the
Interrupt Pending (IPND) register pair, is referred to individu-
ally as IPND(L).

The following paragraphs give detailed descriptions of the
registers shown in Figure 3-1.

3.1 HVCT —HARDWARE VECTOR REGISTER (R0)
The HVCT register is a single register that contains the in-
terrupt vector byte supplied to the CPU during an Interrupt
Acknowledge (INTA) or Return From Interrupt (RETI) cycle.
The HVCT bit map is shown below:

7 6 5 4 3 2 1 0

le[sfelefv]v]v]v]

4-15

01-202CESN

NS32202-10

3.0 Architectural Description (continued)

REG. NUMBER AND
ADDRESS IN HEX.

RO (004¢)

R1 (0116)
R3(03)	R2(0240)
R5(05:6)	R4(0416)
R7(0710)	R6(0616)
_Ro (0916)	
[R11(0B1e) | R10(0Ag) |

RB (081¢) |

R16 (1046)
R17 (1116)
R18 (1246)
R19 (1346)
R20 (1416)
R21 (1516)
R22 (1616)

R23 (174¢)

0
N
o
—_
=
©
oy
(=2
<
el
N
ES
—
=
o
=
fo2)
<

[R27 (184¢) | R26 (1A1g) |

REG.
NAME

HVCT —
SVCT—
ELTG —
TPL—
IPND—
ISRV —
IMSK —
CSRC—
FPRT—
MCTL —
OCASN—
CIPTR—
PDAT —
IPS —
PDIR—
CCTL—
CICTL—
LCSV —
HCSV —
Lcov —

HCCV —

REG. FUNCTION

HARDWARE VECTOR
SOFTWARE VECTOR
EDGE/LEVEL TRIGGERING
TRIGGERING POLARITY
INTERRUPTS PENDING
INTERRUPTS IN-SERVICE
INTERRUPT MASK

CASCADED SOURCE

FIRST PRIORITY

MODE CONTROL

OUTPUT CLOCK ASSIGNMENT
COUNTER INTERRUPT POINTER
PORT DATA

INTERRUPT/PORT SELECT
PORT DIRECTION

COUNTER CONTROL

COUNTER INTERRUPT CONTROL
L-COUNTER STARTING VALUE
H-COUNTER STARTING VALUE
L-COUNTER CURRENT VALUE

H-COUNTER CURRENT VALUE

FIGURE 3-1. ICU Internal Registers

4-16

3.0 Architectural Description (continued)

The BBBB field is the bias which is programmed by writing

BBBB0000; to the SVCT register (R1). The VVVV field iden-

tifies one of the 16 interrupt positions. The contents of the

HVCT register provide various information to the CPU, as

shown in Figure 3-2:

Note 1: The ICU always interprets a read of the HVCT register as either an
INTA or RETI cycle. Since these cycles cause internal changes to
the ICU, normal programs must never read the ICU HVCT register.

Note 2: If the HVCT register is read with ST1 = 0 (INTA cycle) and no

d i pt is pending, the binary value BBBB1111 is re-
turned and any pending edge-triggered interrupt in position 15 is
cleared.

If the auto-rotate priority mode is selected, the FPRT register is also
cleared, thus preventing any interrupt from being acknowledged. In
this case a re-intialization of the FPRT register is required for the
ICU to acknowledge interrupts again.

If a read of the HVCT register is performed with ST1 = 1 (RETI
cycle}, the binary value BBBB1111 is returned.

If the auto-rotate mode is selected, a priority rotation is also per-
formed.

3.2 SVCT — SOFTWARE VECTOR REGISTER (R1)

The SVCT register is a copy of the HVCT register. It allows
the programmer to read the contents of the HVCT register
without initiating a INTA or RETI cycle in the ICU. It also
allows a programmer to change the BBBB field of the HVCT
register. The bit map of the SVCT register is the same as for
the HVCT register.

During a write to SVCT, the four least significant bits are
unaffected while the four most significant bits are written
into both SVCT and HVCT (R1 and RO0).

The SVCT register is updated dynamically by the ICU. The
four least significant bits always contain the vector value
that would be returned to the CPU if a INTA or RETI cycle
were executed. Therefore, when reading the SVCT register,
the state of the CPU ST1 pin is used to select either pend-
ing interrupt data or in-service interrupt data. For example, if
the SVCT register is read with ST1 = 0 (as for an INTA
cycle), the VVVV field contains the encoded value of the
highest priority pending interrupt. On the other hand, if the
SVCT register is read with ST1 = 1, the VVVYV field contains
the encoded value of the highest priority in-service interrupt.
Note: If the CPU ST1 output is connected directly to the ICU ST1 input, the
vector read from SVCT is always the RETI vector. If both the INTA
and RETI vectors are desired, additional logic must be added to drive
the ICU ST1 input. A typical circuit is shown below. In this circuit, the
state of the ICU ST1 input is contralled by both the CPU ST1 output
and the selected address bit.

ST
ST
CPU [ASORAB icy

TL/EE/S5117-14

3.3 ELTG — EDGE/LEVEL TRIGGERING

REGISTERS (R2, R3)

The ELTG registers determine the input trigger mode for
each of the 16 interrupt inputs. Each input is assigned a bit
in this register pair. An interrupt input is level-triggered if its
bitin ELTG is set to 1. The input is edge-triggered if its bit is
cleared. At reset, all bits in ELTG are set to 1.

If odd-numbered interrupt positions must be used for soft-
ware interrupts, the edge triggering mode must be selected
and the corresponding interrupt inputs should be prevented
from changing state.

3.4 TPL — TRIGGERING POLARITY

REGISTERS (R4, R5)

The TPL registers determine the polarity of either the active
level or the active edge for each of the 16 interrupt inputs.
As with the ELTG registers, each input is assigned a bit.
Possible triggering modes for the various combinations of
ELTG and TPL bits are shown below.

ELTG BIT TPLBIT TRIGGERING MODE
0 0 Falling Edge
0 1 Rising Edge
1 0 Low Level
1 1 High Level

Software interrupt positions are not affected by their TPL
bits. At reset, all TPL bits are set to 0.

Note 1: !f edged-triggered interrupts are to be handled, the TPL register
should be programmed before the ELTG register.

This prevents spurious interrupt requests from being generated dur-
ing the ICU initialization from edge-triggered interrupt positions.

Note 2: Hardware interrupt inputs connected to cascaded ICUs must have
their TPL bits set to 0.

3.5 IPND — INTERRUPT PENDING REGISTERS (R6, R7)

The IPND registers track interrupt requests that are pending
but not yet serviced. Each interrupt position is assigned a bit
in IPND. When an interrupt is pending, the corresponding bit
in IPND is set. The IPND data are used by the ICU to gener-
ate interrupts to the CPU. These data are also used in poil-
ing operations.

INTA CYCLE (ST1=0)

RETI CYCLE (ST1=1)

Highest priority pending interrupt is from:

Highest priority in-service interrupt was from:

BBBB cascaded ICU any other source cascaded ICU any other source
1111 programmed bias* 1111 programmed bias*
] - R
VW encoded value of the highest encoded value of the highes

priority pending interrupt

priority in-service interrupt

*The Programmed bias for the master ICU must range from 0000 to 0111, because the CPU interprets a one in the most

Index indicator for a cascaded ICU.

de Table

1t bit position as a C

FIGURE 3-2. HVCT Register Data Coding

4-17

01-2022ESN

NS32202-10

3.0 Architectural Description (continued)

The IPND registers are also used for requesting software
interrupts. This is done by writing specially formatted data
bytes to either IPND(L) or IPND(H). The formats differ for
registers R6 and R7. These formats are shown below:
IPND(L) (R6) — S0000PPP
IPND(H) (R7) — S0001PPP
Where: S = Set (S = 1) or Clear (S = 0)
PPP = is a binary number identifying one of
eight bits
Note: The data read from either R6 or R7 are different from that written to
the register because the ICU returns the register contents, rather than
the formatted byte used to set the register bits.
The ICU automatically clears a set IPND bit when the pend-
ing interrupt request is serviced. All pending interrupts in a
register can be cleared by writing the pattern ‘X1XXXXXX'
to it (X = don’t care). To avoid conflicts with asynchronous
hardware interrupt requests, the IPND registers should be
frozen before pending interrupts are cleared. Refer to the
Mode Control Register description for details on freezing
the IPND registers.
At reset, all IPND bits are set to 0.

Note: The edge sensing mechanism used for hardware interrupts in the
NS32202 ICU is a latching device that can be cleared only by ac-
knowledging the interrupt or by changing the trigger mode to level
sensing. Therefore, before clearing pending interrupts in the IPND
registers, any edge-triggered interrupt inputs must first be switched to
the level-triggered mode. This clears the edge-triggered interrupts;
the remaining interrupts can then be cleared in the manner described
above. This applies to clearing the interrupts only. Edge-triggered in-
terrupts can be set without changing the trigger mode.

3.6 ISRV — INTERRUPT IN-SERVICE
REGISTERS (RS, R9)

The ISRV registers track interrupt requests that are current-
ly being serviced. Each interrupt position is assigned a bit in
ISRV. When an interrupt request is serviced by the ICU, its
corresponding bit is set in the ISRV registers. Before gener-
ating an interrupt to the CPU, the ICU checks the ISRV reg-
isters to ensure that no higher priority interrupt is currently
being serviced.

Each time the CPU executes an RETI instruction, the ICU
clears the ISRV bit corresponding to the highest priority in-
terrupt in service. The ISRV registers can also be written
into by the CPU. This is done to implement the special mask
priority mode.

At reset, the ISRV registers are set to 0.

Note: If the ICU initialization does not follow a hardware reset, the ISRV
register should be cleared during initialization by writing zeroes into it.

3.7 IMSK — INTERRUPT MASK REGISTERS (R10, R11)

Each NS32202 interrupt position can be individually
masked. A masked interrupt source is not acknowledged by
the ICU. The IMSK registers store a mask bit for each of the
ICU interrupt positions. If an interrupt position’s IMSK bit is
set to 1, the position is masked.

The IMSK registers are controlled by the system software.
At reset, all IMSK bits are set to 1, disabling all interrupts.

Note: If an interrupt must be masked off, the CPU can do so by setting the
corresponding bit in the IMSK register. However, if an interrupt is set
pending during the CPU instruction that masks off that interrupt, the
CPU may still perform an interrupt acknowledge cycle following that
instruction since it might have sampled the INT line before the ICU
deasserted it. This could cause the ICU to provide an invalid vector.
To avoid this problem, the above operation should be performed with
the CPU interrupt disabled.

3.8 CSRC — CASCADED SOURCE
REGISTERS (R12, R13)

The CSRC registers track any cascaded interrupt positions.
Each interrupt position is assigned a bit in the CSRC regis-
ters. If an interrupt position’s CSRC bit is set, that position is
connected to the INT output of another NS32202 ICU, i.e., it
is a cascaded interrupt.

At reset, the CSRC registers are set to 0.

Note 1: If any cascaded ICU is used, the CSRC register should be cleared
during initialization (if the Initialization does not follow a hardware
reset) by writing zeroes Into it. This should be done befors setting
the bits corresponding to the cascaded interrupt positions. This op-
eration ensures that the 4-bit in-service counters (associated with
each interrupt position to keep track of cascaded interrupts) always
get cleared when the ICU s re-initialized.

Note 2: Only the Master ICU should have any CSRC bits set. If CSRC bits
are set in a cascaded ICU, incorrect operation results.

3.9 FPRT — FIRST PRIORITY REGISTERS (R14, R15)

The FPRT registers track the ICU interrupt position that cur-
rently holds first priority. Only one bit of the FPRT registers
is set at one time. The set bit indicates the interrupt position
with first (highest) priority.

The FPRT registers are automatically updated when the ICU
is in the auto-rotate mode. The first priority interrupt can be
determined by reading the FPRT registers. This operation
returns a 16-bit word with only one bit set. An interrupt posi-
tion can be assigned first priority by writing a formatted data
byte to the FPRT(L) register. The format is shown below:

7 6 5 4 3 2 1 0
[(x [x{x[x[rlrf[Fr[F]
Where: XXXX = Don’t Care
FFFF = A binary number from 0 to 15 indi-
cating the interrupt position as-
signed first priority.

Note: The byte above is written only to the FPRT(L) register. Any data writ-
ten to FPRT(H) is ignored.

At reset the FFFF field is set to 0, thus giving interrupt posi-
tion O first priority.
3.10 MCTL — MODE CONTROL REGISTER (R16)

The contents of the MCTL set the operating mode of the
NS32202 ICU. The MCTL bit map is shown below.
7 6 5 4 3 2 1 0

[crRz]coutp]coutm|cLkm|FRz|unused|NTAR[T16NE]

3.0 Architectural Description (continued)

CFRZ Determines whether or not the NS32202 coun-
ter readings are frozen. When frozen, the
counters continue counting but the LCCV and
HCCV registers are not updated. Reading of
the true value of LCCV and HCCV is possible
only while they are frozen.

CFRZ = 0 => LCCV and HCCV Not Frozen
CFRZ = 1 => LCCV and HCCV Frozen
Determines whether the COUT/SCIN pin is an
input or an output. COUT/SCIN should be
used as an input only for testing purposes. In
this case an external sampling clock must be
provided otherwise hardware interrupts will not
be recognized.

COUTD = 0 => COUT/SCIN is Output
COUTD = 1 => COUT/SCIN is Input

When the COUT/SCIN pin is programmed as
an output (COUTD=0), this bit determines
whether the output signal is in pulsed form orin
square wave form.

COUTM = 0 => Square Wave Form
COUTM = 1 => Pulsed Form

Used only in the 8-bit Bus Mode. This bit con-
trols the clock wave form on any of the pins
GO/IRO, ... ,G3/IR6 programmed as counter
output.

CLKM = 0 => Square Wave Form

CLKM = 1 => Pulsed Form

Freeze Bit. In order to allow a synchronous
reading of the interrupt pending registers
(IPND), their status may be frozen, causing the
ICU to ignore incoming requests. This is of spe-
cial importance if a polling method is used.
FRZ = 0 => IPND Not Frozen

FRZ = 1 => IPND Frozen

Determines whether the ICU is in the AUTO-
ROTATE or FIXED Priority Mode. In AUTO-
ROTATE mode, the interrupt source at the
highest priority position, after being serviced, is
assigned automatically lowest priority. In this
mode, the interrupt in service always has high-
est priority and nesting of interrupts is therefore
inhibited.

NTAR = 0 => Auto-Rotate Mode

NTAR = 1 => Fixed Mode

Controls the data bus mode of operation.
T16N8 = 0 => 8-Bit Bus Mode

T16N8 = 1 => 16-Bit Bus Mode

At reset, all MCTL bits except COUTD, are reset to 0.
COUTD is set to 1.

3.11 OCASN — OUTPUT CLOCK
ASSIGNMENT REGISTER (R17)

Used only in the 8-bit Bus Mode. The four least significant
bits of this register control the output clock assignments on
pins G0/IRO, . . . ,G3/IR6. If any of these bits is set to 1, the
clock generated by either the H-Counter or the H + L-Coun-
ter will be output to the corresponding pin. The four most
significant bits of OCASN are not used. At Reset the four
least significant bits are set to 0.

CouTD

COUTM

CLKM

FRZ

NTAR

T16N8

Note: The interrupt sensing mechanism on pins G0/IR0, ... ,G3/IR6 is not
disabled when any of these pins is programmed as clock output.
Thus, to avoid spurious interrupts, the corresponding bits in register
IPS should also be set to zero.

3.12 CIPTR — COUNTER INTERRUPT
POINTER REGISTER (R18)
The CIPTR register tracks the assignment of counter out-
puts to interrupt positions. A bit map of this register is shown
below.

7 6 5 4 3 2 1 0
(nlwlwf[w[oefoefolo]

Where: HHHH =

A 4-bit binary number identifying the
interrupt position assigned to the H-
Counter (or the H+ L-counter if the
counters are concatenated).

A 4-bit binary number identifying the

interrupt position assigned to the L-

counter.

Note: Assignment of a counter output to an interrupt position also requires
control bits to be set in the CICTL register. If a counter output is
assigned to an interrupt position, external hardware interrupts at that
position are ignored.

At reset, all bits in the CIPTR are set to 1. (This means both

counters are assigned to interrupt position 15.)

3.13 PDAT — PORT DATA REGISTER (R19)

Used only in the 8-bit Bus Mode. This register is used to
input or output data through any of the pins GO/
IR0, ...,G7/IR14 programmed as I/0 ports by the IPS reg-
ister. Any pin programmed as an output delivers the data
written into PDAT. The input pins ignore it. Reading PDAT
provides the logical value of all 170 pins, INPUT and OUT-
PUT.

3.14 IPS — INTERRUPT/PORT SELECT REGISTER (R20)

Used only in the 8-bit Bus Mode. This register controls the
function of the pins GO/IRO,...,G7/IR14. Each of these
pins is individually programmed as an 1/0 port, if the corre-
sponding bit of IPS is 0; as an interrupt source, if the corre-
sponding bit is 1. The assignment of the H-Counter output
to GO/IRO, ... ,G3/IR6 by means of reg. OCASN overrides
the assignment to these pins as 1/0 ports or interrupt in-
puts.

At Reset, all the IPS bits are set to 1.

Note: Whenever a bit in the IPS register is set to zero, to program the
corresponding pin as an I/0 port, any pending interrupt on the corre-
sponding interrupt position will be cleared.

3.15 PDIR — PORT DIRECTION REGISTER (R21)

Used only in the 8-bit Bus Mode. This register determines
the direction of any of the pins GO/IRO, ... ,G7/IR14 pro-
grammed as 1/0 ports by the IPS register. A logic 1 indi-
cates an input, while a logic 0 indicates an output.

At Reset, all the PDIR bits are set to 1.

3.16 CCTL — COUNTER CONTROL REGISTER (R22)

The CCTL register controls the operating modes of the
counters. A bit map of CCTL is shown below.
7 6 5 4 3 2 1 0

LLLL =

[cconjernps|couTifcoutolcrRunHcrUNLcDCRH{CDCRL]

CCON Determines whether the counters are indepen-
dent or concatenated to form a single 32-bit
counter (H+L-Counter). If a 32-bit counter is

selected, the bits corresponding to the H-

4-19

01-2022€SN

NS32202-10

3.0 Architectural Description (continued)

Counter will control the H+ L-Counter, while
the bits corresponding to the L-Counter are not
used.

CCON = 0 => Two 16-bit Counters
CCON = 1 => One 32-bit Counter

Determines whether the external clock is
prescaled or not.

CFNPS = 0 = > Clock Prescaled (divided by 4)
CFNPS = 1 => Clock Not Prescaled.

CFNPS

COUT1 &
COuUTOo These bits are effective only when the COUT/
SCIN pin is programmed as an OUTPUT
(COUTD bit in reg. MCTL is 0). Their logic lev-
els are decoded to provide different outputs for
COUT/SCIN, as detailed in the table below:

ICOUT1|COUTO| COUT/SCIN Output Signal

0 0 (Internal Sampling Oscillator

0 1 |Zero Detect Of L-Counter

1 0 |Zero Detect Of H-Counter

1 1 |Zero Detect Of H+ L-Counter*

*If the H- and L-Counters are not concatenated and
COUT1/COUTO are both 1, the COUT/SCIN pin is active
when either counter reaches zero.

Determines the state of either the H-Counter or
the H+L-Counter, depending upon the status
of CCON.

CRUNH = 0 => H-Counter or H+L-Counter
Halted ’
CRUNH = 1 => H-Counter or H-+ L-Counter
Running

Effective only when CCON = 0. This bit deter-
mines whether the L-Counter is running or hait-
ed.

CRUNL = 0 => L-Counter Halted

CRUNL = 1 => L-counter Running
Effective only when CRUNH =0 (Counter Halt-
ed). This bit is the single cycle decrement sig-
nal for either the H-Counter or the H+ L-Coun-
ter.

CDCRH = 0 => No Effect

CDCRH = 1 => Decrement H-Counter or
H+ L-Counter

Effective only when CRUNL = 0 and CCON =
0. This bit is the single cycle decrement signal
for the L-Counter.

CDCRL = 0 => No Effect

CDCRL = 1 => Decrement L-Counter

Note: The bits CDCRL and CDCRH are set when a logic 1 is written into
them, but, they are automatically cleared after the end of the write
operation. This is needed to accomplish the decrement operation.
Therefors, these bits always contain 0 when read.

Reset does not affect the CCTL bits.

3.17 CICTL — COUNTER INTERRUPT

CONTROL REGISTER (R23)

The CICTL register controls the counter interrupts and rec-
ords counter interrupt status. Interrupts can be generated
from either of the 16-bit counters. When the counters are
concatenated, the interrupt control is through the H-Counter

CRUNH

CRUNL

CDCRH

CDCRL

control bits. In this case the CIEL bit should be set to zero to
avoid spurious interrupts from the L-Counter. A bit map of
the CICTL register is shown following.

7 6 5 4 3 2 1 0

|cern | cirn | cien | wenn | cerL | circ | cier | wend |
CERH

H-Counter Error Flag. This bit is set (1) when a
second interrupt request from the H-Counter
(or H+L-Counter) occurs before the first re-
quest is acknowledged.

H-Counter Interrupt Request. It is set (1) when
an interrupt is pending from the H-Counter (or
H+L-Counter). It is automatically reset when
the interrupt is acknowledged.

H-Counter Interrupt Enable. When it is set, the
H-Counter (or H+L-Counter) interrupt is en-
abled.

H-Counter Control Write Enable. When WEHN
is set (1), bits CERH, CIRH, and CIEH can be
written.

L-Counter Error Flag. This bit is set (1) when a
second interrupt request from the L-Counter
occurs before the first request is acknowl-
edged.

L-Counter Interrupt Request. It is set (1) when
an interrupt is pending from the L-Counter. It is
automatically reset when the interrupt is ac-
knowledged.

L-Counter Interrupt Enable. When it is set (1),
the L-Counter interrupt is enabled.

L-Counter Control Write Enable. When WENL
is set (1), bits CERL, CIRL, and CIEL can be
written.

Note: Setting the write enable bits (WENH or WENL) and writing any of the
other CICTL bits are concurrent operations. That is, the ICU will ig-
nore any attempt to alter CICTL bits if the proper write enable bit is
not set in the data byte.

At reset, all CICTL bits are set to 0. However, if the counters

are running, the bits CIRL, CERL, CIRH and CERH may be

set again after the reset signal is removed.

3.18 LCSV/HCSV — L-COUNTER STARTING VALUE/
H-COUNTER STARTING VALUE REGISTERS
(R24, R25, R26, AND R27)

The LGSV and HCSV registers store the start values for the
L-Counter and H-Counter, respectively. Each time a counter
reaches zero, the start value is automatically reloaded from
either LCSV or HCSV, one clock cycle after zero count is
reached. Loading LGSV or HCSV from the CPU must be
synchronized to avoid writing the registers while the reload-
ing of the counters is occurring. One method is to halt the
counters while the registers are loaded.

When the 16-bit counters are concatenated, the LCSV and
HCSV registers hold the 32-bit start count, with the least
significant byte in R24 and the most significant byte in R27.

3.19 LCCV/HCCV — L-COUNTER CURRENT VALUE/
H-COUNTER CURRENT VALUE REGISTERS

(R28, R29, R30, AND R31)

The LCCV and HCCV registers hold the current value of the
counters. If the CFRZ bit in the MCTL register is reset (0),
these registers are updated on each clock cycle with the
current value of the counters. LCCV and HCCV can be read
only when the counter readings are frozen (CFRZ bit in the

CIRH

CIEH

WENH

CERL

CIRL

CIEL

WENL

4-20

3.0 Architectural Description (continued)

INITIALIZE MCTL
LEAVING COUTD
BIT AT LOGIC 1

v

HALY COUNTERS
8Y CLEARING
BITS CRUNL AND
CRUNH IN
REG. CCTL

COUNTERS
USED?

INITIALIZE
LCSV, HCSV
AND CIPTR

v

WRITE COUNTER'S
STARTING VALUES
INTO LCCV AND
HCCV TO AVOID
LONG INITIAL
COUNTS

INITIAUZE
CiCTL

8-8IT
BUS MODE
SELECTED?

INITIALIZE
IPS, PDIR, OCASN,
POAT

CLEAR
ISRV, CSRC

!
©

E—

INITIALIZE CSRC

INITIALIZE SVCT,
FPRT, TPL

INITIALIZE ELTG

RESET COUTD BIT
IN MCTLTO
PROGRAM Coyt/SCiN
PIN AS AN OUTPUT
AND ENABLE THE
INTERNAL INTERRUPT

SAMPUING CLOCK

re
<

COUNTERS
USED?

START COUNTERS
BY SETTING BITS
CRUNL AND/OR
CRUNH IN REG. CCTL

&

<

v
INITIALIZE IMSX

FIGURE 3-3. Recommended ICU’s Initialization Sequence

TL/EE/5117-15

01-2022ESN

NS32202-10

3.0 Architectural

Description (Continued)

MCTL register is 1). They can be written only when the
counters are halted (CRUNL and/or CRUNH bits in the
CCTL register are 0). This last feature allows new initial
count values to be loaded immediately into the counters,
and can be used during initialization to avoid long initial
counts.

When the 16-bit counters are concatenated, the LCCV and
HCCV registers hold the 32-bit current value, with the least
significant byte in R28 and the most significant byte in R31.

3.20 REGISTER INITIALIZATION

Figure 3-3 shows a recommended initialization procedure
for the ICU that sets up all the ICU registers for proper oper-
ation.

4.0 Device Specifications
4.1NS32202 PIN DESCRIPTIONS

4.1.1 Power Supply
Power (Vgg): +5V DC Supply
Ground (GND): Power Supply Return

4.1.2 Input Signals

Reset (RST): Active low. This signal initializes the ICU. (The
ICU initializes to the 8-bit bus mode.)

Chip Select (CS): Active low. This signal enables the ICU to
respond to address, data, and control signals from the CPU.
Addresses (A0 through A4): Address lines used to select
the ICU internal registers for read/write operations.

High Byte Enable (HBE): Active low. Enables data trans-
fers on the most-significant byte of the Data Bus. If the ICU
is in the 8-bit Bus Mode, this signal is not used and should
be connected to either GND or Veg.

Read (RD): Active low. Enables data to be read from the
ICU’s internal registers.

Write (WR): Active low. Enables data to be written into the
ICU’s internal registers.

Status (ST1): Status signal from the CPU. When the Hard-
ware Vector Register is read, this signal differentiates an
INTA cycle from an RETI cycle. If ST1=0 the ICU initiates
an INTA cycle. If ST1=1 an RETI cycle will result.
Interrupt Requests (IR1, IR3..., IR15): These eight in-
puts are used for hardware interrupts. Each may be individu-
ally triggered in one of four modes: Rising Edge, Falling
Edge, Low Level, or High Level.

Counter Clock (CLK): External clock signal to drive the ICU
internal counters.

4.1.3 Output Signals
Interrupt Output (INT): Active low. This signal indicates
that an interrupt is pending.

4.1.4 Input/Output Signals
Data Bus 0-7 (DO through D7): Eight low-order data bus
lines used in both 8-bit and 16-bit bus modes.
General Purpose I/0 Lines (G0/IR0, G1/IR2,...,G7/
IR14): These pins are the high-order data bits when the ICU
is in the 16-bit bus mode. When the ICU is in the 8-bit bus
mode, each of these can be individually assigned one of the
following functions:
e Additional Hardware Interrupt Input (IRO through
IR14)
¢ General Purpose Data Input
¢ General Purpose Data Output
e Clock Output from H-Counter (Pins GO/IRO through
G3/IR6 only)

It should be noted that, for maximum flexibility in assigning
interrupt priorities, the interrupt positions corresponding to
pins GO/IRO,...,G7/IR14 and IR1,...,|IR15 are inter-
leaved.

Counter or Osclllator Output/Sampling Clock Input
(COUT/SCIN): As an output, this pin provides either a clock
signal generated by the ICU internal oscillator, or a zero
detect signal from one or both of the ICU counters. As an
input, it is used for an external clock, to override the internal
oscillator used for interrupt sampling. This is done only for
testing purposes.

4-22

4.0 Device Specifications (continued)
4.2 ABSOLUTE MAXIMUM RATINGS

Temperature Under Bias 0°Cto +70°C

Storage Temperature —65°Cto +150°C
All Input or Output Voltages with

Respect to GND —0.5Vto +7.0V
Power Dissipation 1.5 Watt

4.3 ELECTRICAL CHARACTERISTICS
Ta = 0°t0 70°C, Vo = +5V + 5%, GND = OV

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

Symbol Parameter Conditions Min Typ Max Units
ViL Input Low Voltage 0.8 \"
ViH Input High Voltage 20 v
VoL Output Low Voltage loL=2mA 0.45 \
VoH Output High Voltage lon = —400 uA 2.4 v
IL Leakage Current 0.4 < VN £ Ve —20 20 A
(Output and 1/0 Pins in TRI-STATE/Input mode) i
I Input Load Current Vin = 0to Voo —20 20 pA
lcc Power Supply Current lout=0,T =0°C 300 mA
Connection Diagram
\>4
1R15 = 1 40 = Vcc
INT— 2 39 p—IR13
sti—3 38 f—ir11
G7/IRt4 — 4 37— 1Ry
G6/1R12—{ 5 36— 187
65/1R10—{ 6 35 }—=IRS
Ge/1Re— 7 34— 1R3
G3/IR6— 8 33—
G2/1R4——{ 9 "‘I::’lf‘” 32 f— o
61/1R2—f 10 3 —WR
60/1R0—— 11 30 p D
07— 12 28 |— Cout/SCiv
06— 13 28 — RBE
DS—~——{ 14 27 p—AST
D4— 15 26—
D3 16 25 fem A3
p2— 17 2 f— A2
01— 18 23—
D0~ 19 22 }—AD
GND — 20 N p—{3
Top View TL/EE/5117-3

Order Number NS32202D-6, NS32202D-10
See NS Package Number D40C

FIGURE 4-1

01-2022ESN

NS32202-10

4.0 Device Specifications (continued)
4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the timing specifications given in this section refer to
0.8V or 2.0V on the input and output signals as illustrated in
Figure 1, unless specifically stated otherwise.

20 2.0
g 08 TEST POINTS TEST POINTS 08 g

TL/EE/5117-16
FIGURE 4-2. Timing Specification Standard

4.4.1.1 Timing Tables

Abbreviations:

L.E.—leading edge
T.E.—trailing edge

R.E.—ising edge
F.E.—~falling edge

Symbol Figure Description Reference/Conditions NS32202-10 Units
Min Max
READ CYCLE
tAhRDia 4-3 Address Hold Time After RD T.E. 10 ns
tAsRDa 4-3 Address Setup Time Before RD L.E. 35 ns
tCShRDIa 4-3 CS Hold Time After RD T.E. 15 ns
tcssRDa 4.3 CS Setup Time Before RD L.E. 30 ns
tDhRDia 4-3 Data Hold Time After RD T.E. 5 50 ns
tRDaDy 4-3 Data Valid After RD L.E. 150 ns
tRDw 4-3 RD Pulse Width At 0.8V (Both Edges) 160 ns
tssRDa 4.3 ST1 Setup Time Before RD L.E. 35 ns
tshRDia 4-3 8T1 Hold Time After RD T.E. —30 ns
WRITE CYCLE
tAhWRia 4-4 Address Hold Time After WR T.E. 10 ns
tAsWRa 4-4 Address Setup Time Before WR L.E. 35 ns
tcsShwRia 4-4 CS Hold Time After WR T.E. 15 ns
tcssWRa 4-4 CS Setup Time Before WR L.E. 30 ns
tDhWRia 4-4 Data Hold Time After WR T.E. 10 ns
tDsWRia 4-4 Data Setup Time Before WR T.E. 70 ns
twRiaPt 4-4 Port Output Floating After WR T.E. (To PDIR) 200 ns
twRiaPv 4-4 Port Output Valid After WR T.E. 200 ns
twRw 4-4 WR Pulse Width At 0.8V (Both Edges) 160 ns

4-24

4.0 Device Specifications (continued)
4.4.1.1 Timing Tables (Continued)

Symbol Figure Description Reference/Conditions NS$32202-10 Units
Min Max
OTHER TIMINGS
tcouT 4-8 Internal Sampling Clock At 0.8V (Both Edges) 50 ns
Low Time
tcoutp 4-8 Internal Sampling Clock Period 400 ns
tSCINh 4-7 External Sampling Clock High Time At 2.0V (Both Edges) 100 ns
tscin 4-7 External Sampling Clock Low Time At 0.8V (Both Edges) 100 ns
tsciNp 4-7 External Sampling Clock Period 800 ns
tch 4-9 External Clock High Time At 2.0V (Both Edges) 100 ns
(Without Prescaler)
tchp 4-9 External Clock High Time At 2.0V (Both Edges) 40 ns
(With Prescaler)
tcl 4.9 External Clock Low Time At 0.8V (Both Edges) 100 ns
(Without Prescaler)
tcip 4-9 External Clock Low Time At 0.8V (Both Edges) 40 ns
(With Prescaler)
toy 4-9 External Clock Period
(Without Prescaler) 400 ns
toyp 4-9 External Clock Period
(With Prescaler) 100 ns
tacouT 4-9 Counter Output Transition Delay After CLK F.E. 300 ns
tcouTw 4-9 Counter Output Pulse At 0.8V (Both Edges) 50 ns
Width in Pulsed Form
tACKIR 4-5 Interrupt Request Delay After Previous Interrupt 500 ns
Acknowledge
tiRid 4.5 INT Output Delay After Interrupt 800 ns
Request Active
tirw 4-5 Interrupt Request Pulse At 0.8V (Both Edges) 50 ns
Width in Edge Trigger
tRSTW RST Pulse Width At 0.8V (Both Edges) 400 ns
4.4.1.2 Timing Dlagrams
s X X
o b 4
[tAshoa — tsnRDia ~—»]
o —_-\t N e tose—e. /_
| +———— tssr0s —— tRow [tcsnRon —|
" \ /

DATA BUS

o RO Dy~

DATA VALID

FIGURE 4-3. READ/INTA Cycle

TL/EE/5117-17

01-2022ESN

NS32202-10

4.0 Device Specifications (continued)

[=— tcsswha —=| -hnm*l

&3 !
[Wy —— tww [«— tosnwhis —>
- /
| e——— tosWhe ————| tonwnie
- - e San wme == - — — -
DATA BUS DATA VALID
R ppp—— - —-
[twhaty —=|
OUTPUT PORT
DATA

FIGURE 4-4. Write Cycle

"\ _Jr___,'

——————
KD (INTA) \ 7

FIGURE 4-5. Interrupt Timing in Edge Triggering Mode

S [~

1,
Yimg

- ‘_—/_

FIGURE 4-6. Interrupt Timing in Level Triggering Mode

TL/EE/5117-18

TL/EE/5117-19

TL/EE/5117-20

4-26

4.0 Device Specifications (continued)

Note: Interrupts are sampled on the rising edge of CLK.

TL/EE/S117-21

FIGURE 4-7. External Interrupt-Sampling-Clock to be Provided at Pln COUT/SCIN When in Test Mode

=

TL/EE/5117-22

FIGURE 4-8. Internal Interrupt-Sampling-Clock Provided at Pin COUT/SCIN

o tcy
OR OR

tgcoum —»
COUNTER OUTPUT

IN PULSED FORM

COUNTER OUTPUT tcoune

N SOUARE
WAVEFORM /

A

TL/EE/5117-23

FIGURE 4-9. Relationship Between Clock Input at Pin CLK and Counter Output Signals at Pins COUT/SCIN or

GO/RO,...,G3/R6, in Both Pulsed Form and Square Waveform

4-27

01-202CESN

NS32203-10

National PRELIMINARY
Semiconductor

NS32203-10 Direct Memory Access Controller

General Description Features

The NS32203 Direct Memory Access Controller (DMAC) is 8 Direct or Indirect data transfers

a support chip for the Series 32000® microprocessor family ~® Memory to Memory, 1/0 to 1/0 or Memory to 1/0
designed to relieve the CPU of data transfers between transfers

memory and |/O devices. The device is capable of packing m Remote or Local configurations

data received from 8-bit peripherals into 16-bit words to re- g 8.Bit or 16-Bit transfers
onfigrations. In the otal confguraion 1 s connacted 1o % 1/&nSrrates Up to 5 Megabytes per second
the multiplexed Series 32000 bus and shares with the CPU, - Cgmmand Chaining on complementary channels
the bus control signals from the NS32201 Timing Control ™ Wide range of channel commands

Unit (TCU). In the remote configuration, the DMAC, in con- ™ Search capability

junction with its own TCU, communicates with 1/0 devices B Interrupt Vector generation

and/or memory through a dedicated bus, enabling rapid # Simple interface with the Series 32000 Family of

transfers between memory and 1/0 devices. The DMAC Microprocessors
provides 4 16-bit I/0 channels which may be configured as m High Speed XMOS™ Technology
two complementary pairs to support chaining. m Single +5V Supply

m 48-Pin Dual-In-Line Package

Block Diagram
A16-A23 <:: < > — REQD
PRIORITY CHANNEL
RESOLVER ¢ __
o-irs () | [k fomm
HBE ¢—>}
DDIN =] e
on —p] ¢— REQT
A0S +—>] § CHANNEL
o] & K) kL
— i
1)) C— ‘g \—
ok——p] &
BRi)——-V E | | —] [¢— REQ2Z
BRi¢—— 3 CHANNEL
HOLD 4—— TIMING <::> L -
ALDA ——») AND
7] oy
JOWR €] —pt l¢— REQ3
INF i CHANNEL
RST/ AT ——p <:> LA N

TL/EE/B701-1

4-28

Table of Contents

1.0 PRODUCT INTRODUCTION 3.0 ARCHITECTURAL DESCRIPTION (Continued)
2.0 FUNCTIONAL DESCRIPTION 3.3 Parameter Registers
2.2 Data Transfer Operations 3.3.1 SRC - Source Address Register
2.2.1 Indirect Data Transfers 3.3.2 DST - Destination Address Register
2.2.2 Direct (FLYBY) Data Transfers 3.3.3 LNGT - Block Length Register
2.3 Local Configuration 4.0 DEVICE SPECIFICATIONS
2.4 Remote Configuration 4.1 NS32203 Pin Descriptions
2.5 Data Source (Destination) Attributes 4.1.1 Supplies
2.6 Word Assembly/Disassembly 4.1.2 Input Signals
2.7 Auto Transfer 4.1.3 Output Signals
2.8 Search 4.1.4 Input/Output Signals
2.9 Interrupts 4.2 Absolute Maximum Ratings
2.10 Transfer Modes 4.3 Electrical Characteristics
2.11 Chaining 4.4 Switching Characteristics
2.12 Channel Priorities 4.4.1 Definitions
3.0 ARCHITECTURAL DESCRIPTION 4.4.2 Timing Tables
3.1 Global Registers 4.4.2.1 Output Signals: Internal Propagation
3.1.1 CONF - Configuration Register Delays
3.1.2 HVCT - Hardware Vector Register 4.4.2.2 Input Signal Requirements
3.1.3 SVCT - Software Vector Register 4.4.2.3 Clocking Requirements
3.1.4 STAT - Status Register 4.4.3 Timing Diagrams
3.2 Control Registers Appendix A: Interfacing Suggestions

3.2.1 COM - Command Register
3.2.2 SRCH - Search Register

List of lllustrations

Power-on Reset ROqUIrBMENTS. . ..\ttt ittt et ii et en e easnernasensnenoneons 2-1
GONETAERESEE TIMING ot v vetttetet ittt ettt ete e teeeneeuenenssasneneraensosaseneasnassososenessoensnasrarnnens 2-2
Recommended REset CONNECHIONSttt ittt ettt et tatettentateasaneronenseenreossans 2-3
Indirect Read Cycle

Indirect Write Cycle (Single Transfer MOdE) c v iiiini ettt ittt e ettt et tenaoenteesassonesanes
Direct Memory-To-1/0 Data Transfer (Single Transfer Mode)
Direct I/O-To-Memory Data Transfer (Single Transfer Mods)
INS32203 INtBrCOMNECHONS . . .o v ettt ittt ittt et e ettt ae et et e e st e tate e neeaneneneneanaereanesnsanencnns
Write to NS32203 Internal Registersovuivui ittt it it i aeans
Read from NS32203 Internal Registers
NS 32203 Internal Registerso o.vue ittt ittt e e e e e
NS32203 CoONNECHON DIAGIAM . .« ot vttt ettt sttt e tettaeesneaensaesneuonsonsssssueansseeeessonenssosonessss
Timing Specification Standard (Signal Valid After Clock Edge)
Timing Specification Standard (Signal Vatid Before Clock Edge)
WHtE 10 DMAC ROGIStOrS . . ot vttt ettt ittt et et ettt e e i
Read From DMAC Registers
L0710 o7 1311 T«
LT oo T Yo - P
Indirect ReadCycle

Direct I/0-To-Memory Transfer
Direct Memory-To-1/0 Transfer RPN v e, P e ..4-10
HOLD/HOLDA Sequence Start
HOLD/HOLDA Sequence ENdovvverrrvnreeennnn, et e e e e 4-12
Bus Request/Grant Sequence Start
Bus Request/Grant Sequence End. ...
REAMY SAMPING - ¢ttt vttt ittt st te et e it e eaanttstseioasesassstnsnositsreesissreroreressnss
REQn/ACKn Sequence (DMAC Initially Not Idie)
REQN/ACKn Sequence (DMAC Initially Id16) . o+ o v evvvneernnnneennnn.

L =13 =T 1T R
Interrupt ON MatCh/NO MaLCH .. ute ittt i et et een s eanieenanrasnesesasaaessneasssenessenesnsnenns 4-20
Interrupt On Halt
Power-on Reset

0L-€022ESN

NS32203-10

1.0 Product Introduction

The NS32203 Direct Memory Access Controller (DMAC) is
specifically designed to minimize the time required for high
speed data transfers in a Series 32000-based computer
system. It includes a wide variety of options and operating
modes to enhance data throughput and system optimiza-
tion, and to allow dynamic reconfiguration under program
control.

The NS32203 can operate in two basic system configura-
tions: local and remote. In the local configuration, the DMAC
and the CPU share the same bus (address; data and con-
trol) and only one of them can perform data transfers on the
bus at any one time. In this configuration, the DMAC and the
CPU also share a Timing Control Unit (TCU) and a single set
of address latches. Since this configuration yields a mini-
mum part-count system, it offers a good cost/performance
trade-off in many situations.

The remote configuration is intended to minimize the CPU
bus use. In this configuration, the NS32203 I/0 devices and
optional buffer memory have their own dedicated bus (re-
mote bus) so that an /0 transfer may be performed without
loading the CPU bus (local bus).

Communication between the dedicated bus and the CPU
bus may be initiated at any time by either the CPU or the
NS32203. The DMAC accesses the CPU bus whenever a
data transfer to/from memory or any I/0 device residing on
this bus is to be performed. The CPU, in turn, accesses the
dedicated bus for reading status data or for programming
either the DMAC or its 1/0 devices.

The NS32203 internal organization consists of seven func-
tional blocks as illustrated in the block diagram. Descrip-
tions of these blocks are given below.

DMA Channels. The NS32203 provides four channels.
Each channel accepts a request from a peripheral I/0 de-
vice and informs it when data transfer cycles are about to

4.5V

begin. A set of registers is provided for each channel to
control the type of operation for that channel.

Bus Interface Unit. The bus interface unit controls all data
transfers between peripheral 1/0 devices and memory
whenever the DMAC is in control of the bus. This unit also
controls the transfer of data between the CPU and the
DMAC internal registers.

Timing and Control Logic. This block generates all the
sequencing and control signals necessary for the operation
of the DMAC.

Priority Resolver. This block resolves contentions among
channels requesting service simultaneously.

2.0 Functional Description

2.1 RESETTING

The RST/HLT line serves both as a reset input for the on-
chip logic and as a DMAC HALT input. Resetting is accom-
plished by pulling RST/HLT low for at least 64 clock cycles.
Upon detecting a Reset, the DMAGC terminates any Data
transfer in progress, resets its internal logic and enters an
inactive state. On application of power, RST/HLT must be
held low for at least 50 us after Vg is stable. This is to
ensure that all on-chip voltages are stable before operation.
Whenever reset is applied, the rising edge must occur while
the clock signal on the CLK pin is high (see Figure 2-1 and
2-2). The NS32201 TCU provides circuitry to meet the reset
requirements. Figure 2-3 shows the recommended connec-
tions. The HALT function is accomplished when RST/HLT
is activated for 1 or 2 clock cycles and then released. It can
be used to stop any data transfer in progress in case of a
bus error. As soon as HALT is acknowledged by the
NS32203, the current transfer operation is terminated. See
Figure 4-18.

LG

Vee

CLK

RST/HLT

l«—64 CLOCK CYCLES -1

T

—

55—

250 us

TL/EE/8701-2

FIGURE 2-1. Power-On Reset Requirements

4-30

2.0 Functional Description (continued)

CLK

RST/ ALY

|~—84 cLock cycLES—

. /[~

25
TL/EE/8701-3

FIGURE 2-2. General Reset Timing

Vec

rremcccmenay <

NS32201 NS$32203
Tcu DMAC
RSTI RSTO

EXTERNAL RESET
(OPTIONAL) '

RESET SWITCH
(OPTIONAL)

NEET IEAN

250 us

SYSTEM RESET
1

HALT
(0PTIONAL)>

TL/EE/8701-4

FIGURE 2-3. Recommended Reset Connections

2.2 DATA TRANSFER OPERATIONS
After the NS32203 has been initialized by software, it is
ready to transfer blocks of data, containing up to 64 kbytes,
between memory and |/O devices, without further interven-
tion required of the CPU. Upon receiving a transfer request
from an /O device, the DMAC performs the following oper-
ations:

1) Acquires control of the bus

2) Acknowledge the requesting 1/0 device which is con-
nected to the highest priority channel.

3) Starts executing data transfer cycles according to the val-
ues stored into the control registers of the channel being
serviced.

4) Terminates data transfers and relinquishes control of the
bus as soon as one of the programmed conditions is met.

Each channel can be programmed for indirect or direct data
transfers. Detailed descriptions of these transfer types are
provided in the following sub-sections.

2.2.1 Indirect Data Transfers

In this mode of operation, each byte or word transfer be-
tween source and destination requires at least two bus cy-
cles. The data is first read into the DMAC and subsequently
it is written into the destination. The bus cycles in this case
are simitar to the CPU bus cycles when the MMU is not
used. This mode is slower than the direct mode, but is the
only one that allows some data manipulation like Byte
Search or Word Assembly/Disassembly. Figure 2-4 and 2-5
show the read and write cycle timing diagrams related to
indirect data transfers. If a search operation is specified,
extra clock cycles may be added following each read cycle.

4-31

01-€022ESN

NS32203-10

2.0 Functional Description (continued)

| T T 2 | 713 T4 |TIORT
oK [.I_Uf"l_JI—L_JI"L_r'L.JI"lu
we~2s | JTAIITTIK | soweess wao
oy - -+
|/

oom [77T T
vt | 7 0000TID VAD

wor | 7T ///////////////// NI
o [I
|
g \ /
[
[T\

RD = j

TL/EE/8701-5
FIGURE 2-4. Indirect Read Cycle

4-32

2.0 Functional Description (continued)

o[
[j///////////////////)(TR
SO AR ouT

ol \/

o]

molon | 12 | 13 | 14 [miorml

RBE [VALID
'
ROY [E T A T
o \ /

ACKn

]
]
foms | /
[
]

HLDA

NS32201 SIGNALS

\

WR

TL/EE/8701-6
FIGURE 2-5. Indirect Write Cycle (Single Transfer Mode)

Note: If burst mode is selected, HOLD is released at the end of the transfer operation.

4-33

01-E022ESN

NS32203-10

2.0 Functional Description (continued)

2.2.2 Direct (Flyby) Data Transfers

This mode of operation allows a very high data transfer rate
between source and destination. Each data byte or word to
be transferred requires only a single bus cycle instead of
two separate read and write cycles, which are typical of the
indirect mode. The DMAC accomplishes direct data trans-
fers by activating IORD, during memory write cycles, and
IOWR, during memory read cycles.

An /0 device, in the direct mode, is usually enabled by the
proper acknowledge signal (ACKn) from the DMAC. No
search or word assembly/disassembly are possible during

ax [L L L

direct data transfers. Figures 2-6 and 2-7 show the timing
diagrams of direct memory-to-1/0 and I/O-to-memory trans-
fers respectively.

Note 1: In the direct mode each channel can control only one 1/0 device
because the 170 device is hardwired to the ACKn output of the
corresponding channel. in the indirect mode, a channel can control
multiple devices as long as each device is selected through its own
address rather than the ACKn output. However, the possiblity of
selecting a single 170 device by the ACKn output is maintained in
the indirect mode as well.

Note 2: Whenever the DMAC is either idle or is performing indirect transfers,
it generates the TORD and TOWR signals as a replica of RD and WR.
This simplifies the logic required to access I/O devices wired for
direct data transfers.

12 | 13 | 14 |TMORTI

| |

ADDRESS VALID

w23 | TN

soo-15 | LTI oo

-

B

T,
.

NN

II
a
™|

i,

VALID

x[Elllx

g
g

i

i

TG

=
<]
o

x
g
>

t
.

—

NS32201 SIGNALS

3l

Ol
=]
3

\

/

TL/EE/8701-7

FIGURE 2-6. Direct Memory-To-1/0 Data Transfer (Single Transfer Mode)

4-34

2.0 Functional Description (continued)

2.3 LOCAL CONFIGURATION even though it is directed to an 1/0 device and is related to
As previously mentioned, in the local configuration the an indirect data transter. This causes the system to be quite
DMAG shareg with CPU and MMU the multiplex%d address/ sensitive to the volume of data handled by the DMAC. Thus,
data bus as well as the control signals from the NS32201 the overall system performance decreases as the volume of
TCU. A typical local configuration is shown in Figure 2-8. data increases. A possible solution to this problem is to use
The DMAC, in the local configuration, must gain control o% the remote configuration, described in the following section.
the bus whenever a data transfer cyc'le is to be performed A significant advantage of the local configuration is its sim-
’ plicity.
fbon om Lom o122) 13| 14 Imnorm|
cLK[JTl_lI_L_r_l_IF"L_!_LJI_LITl_lf'
A16-23 [7/ Y ADDRESS VALID X

soo- s JH TN ooy > <
] \/ o
om | 7 ' —
H—sz[f X vAl_u) X
| C

\ /

RDY

IORD

IOWR

]
I
]
m[/
I
I

HOLD

HLDA

NS32201 SIGNALS

an[| /

TL/EE/8701-8
FIGURE 2-7. Direct 1/0-To-Memory Data Transfer (Single Transfer Mode)

4-35

01-€022ESN

9e-¥

NS32203-10

£

NI | iNT
AT/ SFC ¢ » AT/ 57C
T [¢ fir
RSt/ ABT ¢ RST/ ABT
PFs PP
LA PIY/S ns3z082 ‘F—
CPU AD§ > ;Ir): s MMU »1HBE
ST0= ﬁ - -l
O e (B e MEMORY
DR > o (i
DDIN >] DDIN ADDR DO=15
PHI1 ¢] PHit _ N
PHI2 ¢ > PHIZ PAV
HOLD |« #| HOLD
P{RST
A16=23 D0-1a - HLMG 23 DO-15 ag#:ksﬁ 00-15>
th 14
1 ADDRESS
<:7 LATCHES
@ @ﬁ K L) 0-23 >
1 P | LD U0
ADDRESS
:::; — _M6=23D0=15__ DECODER
N v fieE | - ADDR DO-15 ADDR DO-7
HOLD CSle 16-BIT 1/0 8-81T I/0
NS32201 jpele NI o DEVICE DEVICE
™o o 7= ACKD L & NS
oo Le < »] DO NS32203 _
¢ DMAC REQO | REQ
ROY »{ ROY i P I
a ACKi f——> RD_WR REQ RD _WR
CcrL q KU — 3 A 7 S
WR +5Y REQT [—
] ACK2 f——>
47ka %_ REQ2 [¢——
T AT ——>
BREQ REQS f¢——s
IORD
OWR

Note 2: The data buffers should not be enabled during direct data transfers or CPU accesses to the DMAC registers.

FIGURE 2-8. NS32203 Interconnections In Local Configuration
Note 1: The 16 Bit /O device is wired for direct transfers.

(penunuoo) yopydiiosaq jeuonouny o'z

TL/EE/8701-9

2.0 Functional Description (continued)

2.4 REMOTE CONFIGURATION

The remote configuration is intended to minimize CPU Bus
usage. In this configuration, the DMAC, buffer memory and
1/0 devices reside on a dedicated bus. Communication be-
tween the dedicated bus and the CPU bus is achieved by
means of TRI-STATE buffers. Whenever the CPU needs to
access the dedicated bus, it issues a bus request to the
NS32203 by activating the BREQ signal. As the dedicated
bus becomes idle, the DMAG pulls off the bus and acknowl-
edges the CPU request by activating BGRT. This output is
also used as a contro! signal for the interconnection logic of
the two buses.

The CPU can either be interrupted by BGRT or it can poll
BGRT to determine when the dedicated bus can be ac-
cessed. The DMAC, in turn, before accessing the CPU bus,
has to gain control of it. This is accomplished through the
usual request-acknowledge mechanism performed by
means of the HOLD and HLDA signals,

Figure A-1in Appendix A shows an interconnection diagram
of a basic remote configuration. Both TCUs are clocked by
the same clock signal. They are synchronized during reset
by the RWEN/SYNC signal so that their output clocks are in
phase. Figures 2-9 and 2-10 show the timing diagrams for
read and write accesses to the N$32203 internal registers.

| 1 | 14 ITMorRT|

v/

e —F——

DATA N

VALID

i

/

w_R[\

NS32201 SIGNALS

/

TL/EE/8701-10

FIGURE 2-9. Write to NS32203 Internal Registers

| 1 | 1™ Innorml|

ADDR. } = = = = { DATA OUT ===

EE

VALID

/

of

NS32201 SIGNALS

J

TL/EE/B701~11

FIGURE 2-10. Read from NS32203 Internal Registers

4-37

01-E02CESN

NS32203-10

2.0 Functional Description (Continued)

2.5 DATA SOURCE (DESTINATION) ATTRIBUTES

Two types of data source (destination) are recognized: I/0O
device and memory. If the source (destination) is an |/O
device, its address register is not changed after a data
transfer; if it is memory, its address register is either incre-
mented or decremented after any data transfer, according
to the value of the corresponding direction bit. In the remote
configuration, any data source (destination) may reside ei-
ther on the CPU bus or on the dedicated bus. If it resides on
the dedicated bus, the NS32203 does not activate the
HOLD request line when an access to the source (destina-
tion) is performed, unless a direct transfer with a data desti-
nation (source) residing on the CPU bus is required.

Data can be transferred in either 8 bit or 16 bit units. The
DMAC always considers the memory to be 16 bits wide.
Thus, if an 8 bit transfer is specified, address bit A0 will
determine the byte of the data-bus where the transfer takes
place. If AO = 0, the transfer occurs on the low order byte.
If AO = 1, it occurs on the high order byte. Different transfer
widths can be specified for source and destination. Howev-
er, some limitations exist in specifying these transfer widths
when certain operations must be performed. These limita-
tions are explained below.

1) If a transfer block has an odd number of bytes or is not
word aligned, an 8 bit width for source and destination
should be selected.

2) 16-bit 1/0 transfers can not be specified with 8 bit
memory transfers.

3) Memory to memory transfers should have the same
width. .

Note 1: If source and destination are both memory, DMAC transfers can
only be performed in indirect mode.

Note 2: If source and destination are both 1/0 devices and direct mode is
being used, the source device is accessed by IORD and ACKn; the
destination device is accessed by WR (from the NS32201) and CS
(from the address decoder). This allows a one direction data trans-
fer only from one 1/0 device (source) to another. If data is to be
transferred in both directions in direct mode between two 1/0 devic-
es, two channels must be used (one for each direction of transfer),
and extra hardware is required to control the read and write signals
to the two 1/0 devices.

Note 3: When an 8-bit transfer is related to an 1/0 device, the other half of
the 16-bit data bus is considered as DON'T CARE, and the HBE/
signal may be activated.

2.6 WORD ASSEMBLY/DISASSEMBLY

This feature is automatically enabled when indirect transfers
are selected, with data transferred between an 8-bit wide
1/0 device and a 16-bit I/0 device or memory. For every 16-
bit 170 device or memory access, the DMAC accesses the
8-bit I/0 device twice, assembling two data bytes into a 16-
bit word or breaking a 16-bit word into two data bytes, de-
pending on the direction of transfer. The word assem-
bly/disassembly feature allows a significant increase in the
transfer speed and minimizes the CPU bus usage when the
transfer occurs between an 8-bit I/0 device residing on the
dedicated bus, and a 16-bit I/0 device or memory residing
on the CPU bus. Word assembly/disassembly is not possi-
ble during direct data transfers.

Note: Requests from other channels are not acknowledged in the middle of

a word assembly/disassembly. If this is unacceptable, 8 bit transfers
should be specified for both source and destination.

2.7 AUTO TRANSFER

The NS32203 initiates a data transfer as a result of a re-
quest from an 1/0 device. In some cases a data transfer
may be necessary without the corresponding request signal
being asserted. This can happen, for example, when a block
of data is to be moved from one memory region to another.
In such cases, the auto transfer mode can be selected by
setting an appropriate bit in the command register. The
DMAC will initiate a data transfer regardless of the REQn
signal for that channel.
Note: For proper operation, when auto transfer is required, the low order
byte of the command register (containing the auto-transter enable bit)

should be written into after the other registers controlling the channel
operation have been initialized.

2.8 SEARCH

The NS32203 provides a search capability that can be used
to detect the occurrence of a certain data pattern. The
search is performed by comparing each data byte with the
search register, in conjunction with the mask register. An
appropriate bit in the command register indicates whether
the search continues ‘UNTIL’ a match occurs, or ‘WHILE' a
match exists. The search operation does not necessarily
involve a data transfer. The DMAC allows a block of data to
be searched without requiring any data transfer between
source and destination. When performing a search, the user
can specify whether or not the matched byte will be trans-
ferred. If ‘INCLUSIVE SEARCH' is specified (INC = 1), the
matched byte will be transferred, and the channel parame-
ters will be updated accordingly. In this case, if a 16 bit word
has been read from the data source and the search condi-
tion is satisfied by the low order byte, then the high order
byte is transferred as well. If ‘EXCLUSIVE SEARCH’ is
specified (INC = 0), the transfer will terminate with the last
byte before the search condition was satisfied, and the pa-
rameters will point to the last transferred byte.

Search is not possible during direct transfers.

2.9 INTERRUPTS

The NS32203 provides interrupt circuitry that can be used to
generate an interrupt whenever a data transfer is completed
or a search condition is met. If an N§32202 ICU is used, the
TNT signal from the DMAC should be connected to an inter-
rupt input of the ICU. When an interrupt occurs and the
corresponding interrupt acknowledge (INTA) or return from
interrupt (RETI) cycle is executed by the CPU, the NS32203
supplies its own vector as if it were a cascaded ICU. For
such operation the virtual address of the interrupt vector
register should be placed in the ICU cascade table, de-
scribed in the NS32016 and NS32202 data sheets. See
section 3.1.2.

2.10 TRANSFER MODES

When the NS32203 is in the inactive state and a channel
requests service, the DMAC gains control of the bus and
enters the active state. It is in this state that the data trans-
fer takes place in one of the following modes:

SINGLE TRANSFER MODE

In single transfer mode, the NS32203 makes a single byte
or word transfer for each HOLD/HLDA handshake se-
quence.

In this case the request signal from the I/0 device is edge
sensitive, that is, a single transfer is performed each time a

4-38

2.0 Functional Description (continued)

falling edge on REQn occurs. To perform multiple transfers,
itis therefore necessary to temporarily deassert REQn after
each transfer is initiated. If auto transfer mode is selected,
the bus is released between two transfers for at least one
clock cycle.

BURST (DEMAND) TRANSFER MODE

In burst transfer mode the DMAC will continue making data

transfers until REQn goes inactive. Thus, the 1/0 device

requesting service may suspend data transfer by bringing

REQn inactive. Service may be resumed by asserting REQn

again. If the auto transfer mode is selected, the DMAC will

perform a single burst of data transfers until the end-transfer
condition is reached.

Note 1: In either of the transfer modes described above, data transfers can
only occur as long as the byte count is not zero or a search condi-
tion is not met. Whenever any of these conditions occur, the
NS32203 terminates the current operation and releases the bus for
at least one clock cycle.

Note 2: Whenever the DMAC releases HOLD, it waits for HLDA to go inac-
tive for at least one clock cycle before reasserting HOLD again to
continue the transfer operation.

2.11 CHAINING

The NS32203 provides a chaining feature that allows the
four DMAC channels to be regarded as two complementary
pairs. Channels 0 and 1 form the first pair, while channels 2
and 3 form the second pair. Each pair is programmed inde-
pendently by setting the corresponding bit in the configura-
tion register. When two channels are complementary, only
the even channel can perform transfer operations, while the
odd one serves as temporary storage for the new control
values and parameters loaded for the chaining operation. If
an operation is being performed by the even channel of a
pair and an end-condition is reached, the channel is not
returned to the inactive state; rather, a new set of control
values with or without parameters is loaded from the com-
plementary channel and a new operation is started. During
- the reload operation the bus is released for at least two
clock cycles. At the end of the second operation the chan-
nel returns to the inactive state, unless a new set of values
has been loaded into the complementary channel by the
CPU.

The chaining feature can be used to transfer blocks of data
to/from non-contiguous memory segments. For example,
the CPU can load channel 0 and 1 with control values and
parameters for the first two blocks. After the operation for
the first block is completed by channel 0, the control values
and parameters stored in channel 1 are transferred to chan-
nel 0, during an update cycle, and a second operation is
started. The CPU, being notified by an interrupt, can load
channel 1 registers with control values and parameters for
the third data block.

Note 1: Whenever a reload operation occurs, the register values of the com-
plementary channel are affected. Thus, the CPU must always load a
new set of values into the complementary channel if another chain-
ing operation is required.

Note 2: When the chain option is selected, the CPU must be given the op-
portunity to acquire the bus for enough time between DMAC opera-
tions, in order for the complementary channel to be updated.

2.12 CHANNEL PRIORITIES

The NS32203 has four I/0 channels, each of which can be
connected to an 1/0 device. Since no dependency exists
between the different 1/0 devices, a priority level is as-
signed to each I/0 channel, and a priority resolver is provid-
ed to resolve multiple requests activated simultaneously.

The priority resolver checks the priorities on every cycle. If a
channel is being serviced and a higher priority request is
received, the channel operation is suspended and control
passes to the higher priority channel, unless the lock bit for
the lower priority channel is set. If the lock bit is set, that
channel operation is continued until completion before con-
trol passes to the higher priority channel. The bus is always
released for at least two clock cycles when control passes
from one channel to another.

Two types of priority encodings are available as software
selectable options.

The first is fixed priority which fixes the channels in priority
order based on the decreasing values of their numbers.
Channel 3 has the lowest priority, while channel 0 has the
highest.

The second option is variable priority. The last channel that
receives service becomes the lowest priority channel
among all other channels with variable priority, while the
channels which previously had lower priority will get their
priorities increased. If variable priority is selected for all four
channels, any 1/0 device requesting service is guaranteed
to be acknowledged after no more than three higher priority
services have occurred. This prevents any channel from
monopolizing the system. Priority types can be intermixed
for different channels.

As an example, let channels 0, 2 and 3 have variable priority
and channel 1 fixed priority. Channel 2 receives service first,
followed by channel 0. The priority levels among all chan-
nels will change as follows.

Priority Initial Order NextOrder Final Order

High 3 ch.0 ACK — ch.0 ch.3
2 ch. ch.1 ch.1 — fixed priority
1 ACK—> ch.2 ch.3 ch.2

Low 0 ch.3 ch.2 ch.0

Whenever the PT bit (priority type) in the command register
is changed, the priority levels of all the channels are reset to
the initial order. If only one channel has variable priority,
then no change in priority will occur from the initial order.

Note: If the lock bit is not set, three idle states are inserted between the
write cycle of a previous burst indirect transfer and the next read
cycle.

3.0 Architectural Description

The NS32203 has 128 8-bit registers that can be addressed
either individually or in pairs, using the 7 least significant bits
of the address bus and the high byte enable signal HBE.
Seventy-one of these registers are reserved, while the rest
are accessible by the CPU for read/write operations. Figure
3-1 shows the NS32203 internal registers together with their
address offsets. Detailed descriptions of these registers are
given in the following sections.

3.1 GLOBAL REGISTERS

The global registers consist of one configuration, one status
and two interrupt vector registers. They are shared by all
channels, and they control the overall operation of the
NS32203.

3.1.1 CONF—Configuration Register

This register controls the hardware configuration of the
NS32203 as well as the chaining feature.

4-39

01-E022ESN

NS32203-10

3.0 Architectural Description (continued)
The CONF register format is shown below:
7 6 5 4 3 2 1 [}

[XXX [o1] co] onr |
CNF — Configuration Bit. Determines whether the
NS32203 is in local or remote configuration.

CNF = 0 = > Local Configuration
CNF = 1 = > Remote Configuration

CO0— Chaining bit for channels 0 and 1. Determines
whether or not channel 0 and 1 are complementa-

CO = 0 = > Channels not complementary
CO0 = 1 = > Channel 1 complementary to chan-
nel 0

C1— Chaining bit for channels 2 and 3. Determines

whether or not channels 2 and 3 are complemen-

tary.

C1 = 0 = > Channels not complementary

C1 = 1 = > Channel 3 complementary to chan-
nel 2

1y. XXXXX — Reserved. These bits should be set to 0.
At reset, all CONF bits are reset to zero.
Note: The CNF bit should never be set by the software if the DMAC is wired
for local configuration, otherwise bus conflicts will result.
) 23 18 15 8 7 0
Chanmal | coMH) (02:) | COMM) (0149) | COMIL) (0019) | Command
Control] | SRCH (0416) | Search Pattern
Registers
{ | Msk (081) | Search Mask
Channalo J [SRC(H) (0Ese) | SROM) (0Dsg) | SRCL) (0Cig) | Source Address
Parameter | DSTH) (1219) | DSTM) (11490 | DSTI) (1049) Destination Address
Registers
F ‘ [INGTH) (1519 | LNGT(L) (1419) | BlockLength
Channal [comH) (2219 | cOMM) @119 | COML) (2019 | Command
Control] | SRCH (2416) I Search Pattern
Registers
([msk (2816) | SearchMask
Channel 1 [_SRC(H) (2E+g) I SRC(M) (2D1g) | SRC(L) (2C16) l Source Address
Parameter] DST(H) (3216) I DST(M) (314¢) | DST(L) (304g) I Destination Address
Registers L
y [INGT(H) (351¢) | LNGT() (3415) | Block Length
channel 2 [coMH) (4216) | cOMM) (4119 | COMIL (404e) Command
Control] | SRCH (4416) Search Pattern
Registers
9 L [msk (4815) | Search Mask
Channel 2 | SRC(H) (4Ese) | SRC(M) (4Dse) | SRC(L) (4Cie) | Source Address
Parameters 1 LDST(H) (521g) | DSC(M) 5115) ! DST(L) (5016) I Destination Address
Registers
(| LNGT(H) (851¢) | LNGTQ) (541¢) | Block Length
Channel3 [coMH) (6210) | COMM) (6116) | COM() (6016) | Command
Control 1 LSRCH (6446) | Search Pattern
Registers {
9 | msk (681s) | SearchMask
Channel3 | SRC(H) (6Esg) | SRCM) (6D1g) | SRC) (6Cie) | Source Address
gargn:eter 1 [Dsty (7216 | DSTOM) (7149 | DST(L) (7046) | Destination Address
egisters
g L LNGT(H) (7510) | LNGT(L) (741¢) | Block Length
)
| CoNF (7819) | Configuration
Global) [SVCT (5C1e) l Software Vector
Registers [HVCT (7C16) Hardware Vector
L [STAT(H) (7F1e) | STAT) (7Eye) | Status

FIGURE 3-1. NS32203 Internal Registers

4-40

3.0 Architectural Description (continued)

3.1.2 HVCT — Hardware Vector Register

This register contains the interrupt vector byte that is sup-
plied to the CPU during an interrupt acknowledge (INTA) or
return from interrupt (RET!) cycle. The HVCT register format

is shown below.
2
[e |

7 6 5 4

1.0
oN]

BIAS
CN— Channel number. Represents the number of the in-
terrupting channel
E— Error code. Determines whether a normal operation

completion or an error condition has occurred on
the interrupting channel.

E =0 => Normal Operation Completion

E =1 => A second interrupt was generated by
the same channel before the first inter-
rupt was serviced.

BIAS — Programmable bias. This field is programmed by
writing the pattern BBBBBO00O into the HVCT regis-
ter.

The NS32203 always interprets a read of the HVCT register
as either an interrupt acknowledge (INTA) cycle or a return
from interrupt (RETI) cycle. Since these cycles cause inter-
nal changes to the DMAC, normal programs should never
read the HVCT register (see next section). The DMAC dis-
tinguishes an INTA cycle from a RETI cycle by the state of
an internal flip-flop, called Interrupt Service Flip-Flop, that
toggles every time the HVCT register is read. This flip-flop is
cleared on reset or when the HVCT register is written into.
When an interrupt is acknowledged by the CPU, the INT
signal is deasserted unless another interrupt from a lower
priority channel is pending. In this case the INT signal is
deasserted when the acknowledge cycle for the second in-
terrupt is performed.

For this reason, if the INT signal is connected to an interrupt
input of the NS32202 ICU, the triggering mode of that inter-
rupt position should be ‘low level'.

Furthermore, if that ICU interrupt input is programmed for
cascaded operation and nesting of interrupts from other de-
vices connected to the ICU is to be allowed, then the ICU
interrupt input connected to the DMAC should be masked
off during the interrupt service routine, before the CPU inter-
rupt is reenabled. This is because the DMAC does not pro-
vide interrupt nesting capability.

An interrupt from a certain channel can be acknowledged
only after the return from interrupt from a previously ac-
knowledged interrupt is performed.

3.1.3 SVCT — Software Vector Register

The SVCT register is an image of the HVCT register. It is a
read-only register used for diagnostics. It allows the pro-
grammer to read the interrupt vector without affecting the
interrupt logic of the NS32203. The format of the SVCT reg-
ister is the same as that of the HVCT register.

3.1.4 STAT — Status Register

The status register contains status information of the
NS32203, and can be used when the interrupts are not en-
abled. Each set bit is automatically cleared when a read
operation is performed. The format of this register is shown
in the following figure.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
IETCHWmIHCHIMTTcIMEIcJMNImEICHIMNI@
channel #3 channel #2 channel #1 channel #0

The status of each channel is defined in a four-bit field as
described below:

TC — Transfer Complete.

Indicates the completion of a channel operation, re-
gardless of the state of the length register or whether
a match/no match condition occurred.

MN — Match/No Match Bit.

This bit is set when a match/no match condition oc-
curs.

CH — Channel Halted.
Set when a channel operation is halted by pulling the
RST/HLT pin.

ME — Multiple events. This bit is set when more than one of
the above conditions have occurred.

Note: If an interrupt is enabled, the corresponding bit in the status register is
not cleared upon read, unless the interrupt is acknowledged.

3.2 CONTROL REGISTERS

Each of the four channels has three control registers, con-
sisting of a 24-bit command register, an 8-bit search register
and an 8-bit mask register.

3.2.1 COM — Command Register

The command register controls the operation of the associ-
ated channel. It is divided into three separately addressable
parts: COM(L), COM(M) and COM(H). The format of each
part and bit functions are shown below.

COM(L) — Command Register (Low-Byte)
7 6 5 4 3 2 1 0

[ar[w]pr{uw][mnc]o] cc |

CC — Command Code
CC =00 = >Channel Disabled.
CC =01 = >Search
CC =10 = >Data Transfer
CC =11 = >Data Transfer and Search
Direct/Indirect Transfers
DI =0 = >Indirect Transfers
DI =1 = >Direct Transfers
INC — Inclusive/Exclusive Search
INC =0 = > Exclusive Search
INC =1 = > Inclusive Search
UW — Search type
UW =0 =>Search UNTIL
UW =1 =>Search WHILE
PT — Priority type
PT =0 = >Fixed
PT =1 =>Variable
LK — Priority lock
LK =0 => Priority Unlocked
LK =1 => Priority Locked

DI —

4-41

0L-€022ESN

NS32203-10

3.0 Architectural Description (continued)

AT — Auto transfer
AT =0 = > Auto Transfer Disabled
AT =1 => Auto Transfer Enabled

At Reset, the CC bits in COM(L) are cleared, disabling the
channel.

Note: The CC bits can be cleared by software during an indirect data trans-
fer to stop the transfer. This, however, should not be done during
direct data transfers. See section 3.3.3.

COM(M) - Command Register (Middle-Byte)
7 6 5 4 3 2 1 0
oo | ow|oL|or|so|sw]|sL]|sT|
ST — Source Type
ST =0 =>1/0 Device
ST =1 =>Memory
SL— Source Location
(Effective only in the remote configuration)
SL =0 =>Local
SL =1 =>Remote
SW — Source Width
SW =0 => 8 Bits
SW =1 =>16 Bits
SD— Source Direction
SD =0 =>Up
SD =1 =>Down
DT — Destination Type
DT =0 => 1/0 Device
SD =1 => Memory
DL — Destination Location
(Effective only in the remote configuration)
DL =0 =>Local
DL =1 =>Remote
DW — Destination Width
DW =0 => 8 Bits
DW =1 => 16 Bits
DD — Destination Direction.
DD =0 => Up
DD =1 =>Down

COM(H) - Command Register (High-Byte)
7 6 5 4 3 2 1 0
[Hu (v e | amne Jatc]om | x |
X — Reserved. (Should be set to 0)
TM — Transfer Mode
DM =0 => Single Transfer
DM =1 => Burst Transfer
ATC — Action after Transfer Complete
ATC =0 = > Disable Channel

ATC =1 => Load Control Values and Parame-
ters from Complementary Channel
and Continue

AMN — Action after Match/No Match
AMN =00 = > Disable Channel
AMN =01 = > Continue
AMN =10 = > Load Control Values from Comple-
mentary Channel and Continue

AMN =11 => Load Control Values and Parame-
ters from Complementary Channel
and Continue

TCl— Interrupt Mask on “Transfer Complete”
TCl =0 => No Interrupt
TCl =1 => Interrupt

MNI— Interrupt Mask on “Match/No Match”
MNI =0 => No Interrupt
MNI =1 => Interrupt

HLIi— Interrupt Mask on “Channel Halted”

HLI =0 => No Interrupt
HLI =1 => Interrupt

3.2.2 SRCH — Search Register

This 8-bit register holds the value to be compared with the
data transferred during the channel operation.

3.2.3 MSK -~ Mask Register

The 8-bit mask register determines which bits of the trans-
ferred data are compared with corresponding search regis-
ter bits. If a mask register bit is set to 0, the corresponding
search register bit is ignored in the compare operation. At
reset, all the MSK bits are set to 0.

3.3 PARAMETER REGISTERS

Each channel has three parameter registers, consisting of a
24-bit source address register, a 24-bit destination address
register and a 16-bit block length register.

3.3.1 SRC — Source Address Register

The source address register points to the physical address
of the data source. When the data source is an 1/0 device,
the register does not change during the transfer operation.
When the data source is memory, the register is increment-
ed or decremented by either one or two after each transfer.

3.3.2 DST — Destination Address Register

The destination address register points to the physical ad-
dress of the data destination. When the data destination is
an 1/0 device, the register does not change during the
transfer operation. When the data destination is memory,
the register is incremented or decremented by either one or

two after each transfer. '

3.3.3 LNGT — Block Length Register

The block length register holds the number of bytes in the

block to be transferred. It is decremented by either one or

two after each transfer.

Note: A direct data transfer can be stopped by writing zeroes into the LNGT
register. The number of bytes transferred can be determined in this
case, from the value of either the SRC or the DST register.

4-42

4.0 Device Specifications

4.1. NS32203 PIN DESCRIPTIONS

The following is a brief description of all NS32203 pins. The
descriptions reference portions of the Functional Descrip-
tion, Section 2.0.

Connection Diagram

\/
A2} 48PV
A102 470423
A20C]3 46[Cs
A9)4 45 1 BREQ
A18]5 44 [ABGRT
AM76 43 RST/ ALY
As]7 42Nt
ADI5C]8 41 [1AOLD
AD14]9 40 CIHLDA
AD13C]10 39 [IREQ3
AD12[] 11 38 [1ACK3
AD11 12 37 [QReQ2
AD10CJ13 36 [ACK2
ADS] 14 35 [REQT
A8 15 34) ACKT
AD7C] 16 33 [AREQD
ADs C}17 32 71 ACKO
ADS] 18 31 [JHBE
ADAC] 19 30 [DOIN
AD3C] 10 29 [Ji0RD
AD2] 21 28 [Ji0OWR
AD1] 22 27 A1ADS
ADO] 23 26 [FIRDY
GND] 24 25[cLK
TL/EE/8701-12
Top View

FIGURE 4-1. N532203 Dual-In-Line Package
Order Number NS32203D or NS32203N
See NS Package Number D48A or N48A
4.1.1 SUPPLIES
Power (Vge): +5V positive supply.
Ground (GND): Ground reference for on-chip logic.
4.1.2 INPUT SIGNALS

Reset/Halt (RST/HLT): Active low. If held active for 1 or 2
clock cycles and released, this signal halts the DMAC oper-
ation on the active channel. If held longer, it resets the
DMAC. Section 2.1.

Chip Select (CS): When low, the device is selected, en-
abling CPU access to the DMAC internal registers.

Ready (RDY): Active high. When inactive, the DMA Control-
ler extends the current bus cycle for synchronization with
slow memory or peripherals. Upon detecting RDY active,
the DMAC terminates the bus cycle.

Channel Request 0-3 (REQO - REQ3): Active low. These
lines are used by peripheral devices to request DMAC serv-
ice.

Bus Request (BREQ): Used only in the remote configura-
tion. This signal, when asserted, forces the DMAC to stop
transferring data and to release the bus. It must be activated
by the CPU before any CPU access to the remote bus is
performed. In the local configuration this signal should be
connected to Vg via a 4.7k resistor. Section 2.4,

Hold Acknowledge (HLDA): Active low. When asserted,
indicates that control of the system bus has been relin-
quished by the current bus master and the DMAC can take
control of the bus.

Clock (CLK): Clock signal supplied by the GTTL output of
the NS32201 TCU.

4.1.3 OUTPUT SIGNALS

Address Bits 16-23 (A16-A23): Most significant 8 bits of
the address bus.

Hold Request (HOLD): Active low. Used by the DMAC to
request control of the system bus.

Channel Acknowledge 0-3 (ACKO - ACK3): These lines
indicate that a channel is active. When a channel's request
is honored, the corresponding acknowledge line is activated
to notify the peripheral device that it has been selected for a
transfer cycle. Section 2.2.2,

Bus Grant (BGRT): Used only in the remote configuration.
This signal is used by the DMAC to inform the CPU that the
remote bus has been relinquished by the DMAC and can be
accessed by the CPU. Section 2.4.

170 Read (IORD): Active low. Enables data to be read from
a peripheral device. Section 2.2.2.

170 Write (IOWR): Active low. Enables data to be written to
a peripheral device. Section 2.2.2.

Interrupt (INT): Active low. Used to generate an interrupt
request when.a programmed condition has occurred. Sec-
tion 2.9.

4.1.4 INPUT/OUTPUT SIGNALS

Address/Data 0-15 (ADO-AD15): Multiplexed Address/
Data bus lines. Also used by the CPU to access the DMAC
internal registers.

High Byte Enable (HBE): Active low. Enables data trans-
fers on the most significant byte of the data bus.

Address Strobe (ADS): Active low. Controls address latch-
es and indicates the start of a bus cycle.

Data Direction in (DDIN): Active low. Status signal indicat-
ing the direction of data flow in the current bus cycle.

4-43

01-€022ESN

NS32203-10

4.0 Device Specifications (Continued)

4.2 ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

Temperature Under Bias 0°Cto +70°C

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to

those conditions specified under Electrical Characteristics.

Storage Temperature —-65°Cto +150°C
All Input or Output Voltages with
Respect to GND —0.5Vto +7V

Power Dissipation 1.1 Watt

4.3 ELECTRICAL CHARACTERISTICS Tp = 0 to +70°C, Vgg = 5V 5%, GND = 0V
Symbol Parameter Conditions Min Typ Max Units
Vi High Level Input Voltage 2.0 Vee + 0.5 \i
ViL Low Level Input Voltage —0.5 0.8 \
VoH High Level Output Voltage loq = —400 pA 2.4 \
VoL Low Level Output Voltage loL = 2mA 0.45 \
Iy Input Load Current 0 < VN < Voo —-20 20 MA
IL Leakage Current. . 04 <V|N £ Voo —20 20 wA

Output and 170 Pins in TRI-STATE/Input Mode
lcc Active Supply Current louTr = 0, Ta = 25°C 180 300 mA

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the timing specifications given in this section refer to
0.8V and 2.0V on all the input and output signals as illustrat-
ed in Figures 4-2 and 4-3, unless specifically stated other-
wise.

]
CLK 3o
le——1s1611
SiGt tsicon 0.8Y
Si62 2.0V

TL/EE/B701-13
FIGURE 4-2. Timing Specification Standard
(Signal Valid after Clock Edge)

ABBREVIATIONS:
L.E. — leading edge
T.E. — trailing edge

R.E. — rising edge
F.E. — falling edge

—_—
CLK ov [<:
SIGY 0.8V

tsiG1

ts162h
si62 2.0V

FIGURE 4-3. Timing Specification Standard

TL/EE/8701-14

(Signal Valid before Clock Edge)

4-44

4.0 Device Specifications (continued)

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation Delays, NS32203-10

Maximum Times Assume Capacitive Loading of 100 pF.

Name Figure Description Reference/ NS32203-10 Units
Conditions Min Max
taLy 4-7 Address Bits 0-15 Valid After R.E.,CLKT1 50 ns
tA 4-9 Address Bits 0-15 After R.E., CLK T2
Lh 5 ns
Hold Time
tAHV 4-7 Address Bits 16-23 Valid After R.E.,CLKT1 50 ns
tAHR 4-7 Address Bits 16-23 Hold After R.E., CLK T1
5 ns
orTi
tALADSs 4-8 Address Bits 0-15 Set Up Before ADS T.E. 25 ns
tAHADSs 4-8 Address Bits 16-23 Set Up Before ADS T.E. 25 ns
tALADSh 4-9 Address Bits 0-15 After ADS T.E. 15 s
Hold Time »
taLt 4-8 Address Bits 0-15 Floating After R.E., CLK T2 25 ns
tov 4-7 Data Valid (Write Cycle) After R.E., CLK T2 50 ns
toh 4-7 Data Hold (Write Cycle) After R.E., CLK T1 0 ns
or Ti
tpov 45 Data Valid (Reading After R.E., CLK T3 50
DMAC Registers)
tpon 45 Data Hold (Reading After R.E., CLK T4 10
DMAC Registers)
tHBEV 4-7 HBE Signal Valid After R.E.,CLKT1 50 ns
tHBER 4-7 HBE Signal Hold After R.E., CLK T1 0 ns
orTi
{DDINV 4-8 DDIN Signal Valid After R.E., CLK T1 65 ns
tDDIND 4-8 DDIN Signal Hold After R.E., CLK T1 0 ns
orTi
tADSa 4-7 ADS Signal Active After R.E., CLK T1 35 ns
tADSia 4-7 ADS Signal Inactive After R.E., CLK T1 40 ns
tADSW 4-7 ADS Pulse Width at0.8v a0 ns
(Both Edges)
tALz 4-12.4-13 ADO-AD15 Floating After R.E., CLK Ti 55 ns
tAHz 4-12,4-13 A16-A23 Floating After R.E.,CLKTi 55 ns
tADSz 412,413 ADS Floating After R.E., CLK Ti 55 ns
tHBEZ 4-12,4-13 HBE Floating After R.E., CLKTi 55 ns
tpDINZ 4-12,4-13 DDIN Floating After R.E., CLK Ti 55 ns
tHLDa 4-11 HOLD Signal Active After R.E., CLKTi 50 ns
tHLDIa 4-12 HOLD Signal Inactive After R.E., CLK Ti 50 ns
orT4
tINTa 4-19, 4-21 TNT Signal Active After R.E.,CLK Ti 40 ns
tACKa 4-16, 4-17,4-7 ACKn Signal Active After R.E., CLK T1 50 ns
tACKia 4-16,4-17,4-7 ACKn Signal Inactive After F.E., CLK T4 35 ns

4-45

01-E0ZZESN

NS32203-10

4.0 Device Specifications (continued)

Name Figure Description Igefe;::lce/ NS32203-10 Units
onditions Min Max
tBGRTa 4-13 BGRT Signal Active After R.E., CLK 65 ns
tBGRTia 4-14 BGRT Signal Inactive After R.E.,, CLK 65 ns
tioRDa 4-8,4-9 IORD Active After R.E., CLK T2 40 ns
tioRDia 4-8 IORD Inactive (During After R.E., CLK T4
. 40 ns
Indirect Transfers)
tioRDia 4-9 10ORD Inactive (During After F.E.,CLK T4
I . 40 ns
Direct Transfers)
tiowRa 4-7,4-10 IOWR Active After R.E., CLK T2 40 ns
tiowRia 4-7 IOWR Inactive (During After R.E., CLK T4
A 40 ns
Indirect Transfers)
tiowRdia 4-10 IOWR Inactive (During After F.E., CLK T3
. 40 ns
Direct Transfers)
4.4.2.2 Input Signal Requirements: NS32203-10
tpwR 4-22 Power Stable to After Vo Reaches 50 s
BST/ALT RE. 475V K
tRSTW 4-23 RST/HLT Pulse Width at 0.8V (Both Edges) 64 ©
(Resetting the DMAC) P
tRsTs 4-24 RST/HLT Set Up Time Before F.E., CLK 15 ns
(Resetting the DMAC)
tHLTs 4-18 RST/HLT Setup Time Before R.E., CLK T3 25 ns
(Halting a DMAC Transfer)
tHLTh 4-19 RST/HLT Hold Time After R.E., CLK T4 10 ns
(Halting a DMAC Transfer)
tois 4-6 Data in Setup Time Before R.E., CLK T3 15 ns
toih 4-6 Data in Hold After R.E., CLK T4 3 ns
tois 4-6 Data in Setup Time After R.E., CLK T3 15 ns
(Writing to DMAC Registers)
toih 4-6 Data in Hold After R.E., CLK T4 3 ns
(Writing to DMAC Registers)
tHLDAS 4-11,4-12 HOLDA Setup Time Before R.E., CLK 25 ns
tHLDAR 4-11 HLDA Hold Time After R.E., CLK 10 ns
tRDYs 4-15 RDY Setup Time Before R.E., 20 ns
CLKT20rT3
tRDYh 4-15 RDY Hold Time After R.E., CLK T3 5 ns
tREQs 4-16, 4-17 REQn Setup Time Before R.E., CLK 50 ns
tREQR 4-16,4-17 REQn Hold Time After R.E., CLK 10
tBREQs 4-13 BREQ Setup Time Before R.E., CLK 25 ns

4.0 Device Specifications (continued)

Name Figure Description Fc‘:f:;;:‘::s/ NS32203-10 Units
Min Max
tBREQN 4-13 BREQ Hold Time After R.E., CLK 10 ns
tALADSIs 4-6 Address Bits 0-5 Setup Before ADS T.E. 20 ns
tALADSIh 4-6 Address Bits 0-5 Hold After ADS T.E. 20 ns
tHBEs 4-6 HBE Setup Time Before R.E., CLK T1 10 ns
tHBEih 4-6 HBE Hold Time After R.E., CLK T4 40 ns
tADSs 4-6 ADS L.E. Setup Time Before R.E., CLK T1 40 ns
tADSIW 4-6 ADS Pulse Width ADS L.E.to ADST.E. 35 ns
tcss 4-6 CS Setup Time Before R.E., CLK T1 15 ns
tesh 4-6 CS Hold Time After R.E.,CLK T4 40 ns
tDDINS 4-6 DDIN Setup Time Before R.E., CLK T2 30 ns
tDDINK 4-6 DDIN Hold Time After R.E., CLK T4 40 ns
4.4.2.3 Clocking Requirements: NS32203-10
Name Figure Description Z::«::i?::s/ NS32203-10 Units
Min Max

tcLkh 4-4 Clock High Time At 2.0V (Both Edges) 42 ns

toLk1 4-4 Clock Low Time At 0.8V (Both Edges) 42 ns

tcikp 4-4 Clock Period EE. éZLL}i(to Next 100 ns

4.4.3 Timing Diagrams

CLK

TL/EE/8701-17

FIGURE 4-4. Clock Timing

4-47

01-€02CESN

NS32203-10

4.0 Device Specifications (continued)

ADO- 15 |: (AR,) === == LDATA OUT

L T~ T - T .

B e B B

ADS [
toon

SN

tooy]
= tooiNs
DOIN [toonn | =
T
ABE I: 1) VALID
=

FIGURE 4-5. Read from DMAC Registers

| TIORT

) 12 | 13 | T4
w[LML LML L
—> tass |
=
[~ taLapsin \
ALADS!s | toin
~15| =+ ADDR. p====lL DATAIN Ppoedeane
 tpy e
ww [T —
+ s [+ theen | [
HBE I::) VALID X:
[tess
& ['_q L o e | [
: T !

FIGURE 4-6. Write to DMAC Registers

TL/EE/8701-16

TL/EE/8701-15

4-48

4.0 Device Specifications (continued)

L T T v T T - T O T |
a LML LT
e || |
ADO =15 l: ADDRESS DATA OUT
'AHV—— b [e—={ Dy ch—.- e
A16-23 [VALID | K:
e |4— tabsia Yasin =]t
'‘ADSw
ADS [* lp
— taosa tiBEn —» |-
FBE [| VALID
ol |- tygev |
o [17 \
ROY [(HiGH)
—> tiowra - |<- towRia
oWR [
o | HIGH)
tacka
tackia
i |

FIGURE 4-7. Indirect Write Cycle

CLK [

ADO-15[

A16-23 [

X
15 ["_J
e
o [TV

LR - 7|

tart = tois
ADDRESS J ===t =§ DATA IN ----<:

+—taLApss —| |=tom

VALID

v toDING —

ST

o

(HIGH)

o

tioRoG -1

(HIGH)

[~ ~ = tiorDia

m_ko[

| T\

T

FIGURE 4-8. Indirect Read Cycle

TL/EE/8701-18

TL/EE/8701-19

4-49

01-€022ESN

NS32203-10

ADo-15|::hDR:ss }--i(DATA | P
At6-23 [:l VALID x

' ROY I: (HIGH)

ADO-15|: XADDRESS >--- ----.C

A16-23|:

4.0 Device Specifications (continued)

I T - I - T .

w[LML
1T |

N

taLADSh

[T
HBE [::X VALID (
wn [17 \

tiorDa — : tiorDdio =
m[\

OWR [(HIGH)

T\ B

FIGURE 4-9. Direct i/0 to Memory Transfer

CLK []} L]

molon | 3] 1 |

VALID x

[
=[]
m['

VALID K

X
\/
X
A\

RDY |: (HIGH)
iORD I: (HIGH)
towre—~{ = | - - tiowRdia

o | \ T
= [T\ T

FIGURE 4-10. Direct Memory to I/0 Transfer

TL/EE/8701-20

TL/EE/8701-21

4-50

4.0 Device Specifications (continued)

Note 1: DMAC in local configuration.

]
[
[
[
[

gﬂ
.

f pB) |

- tHLDAR

‘HLDAsq]
{C
PR

R e s e e i)

ﬂ_

LR R R R I PR) VALID

E R LY R ERE Y LR VALID

FIGURE 4-11. HOLD/HOLDA Sequence Start

| o |2 | @ | | un |

[O I I O I O
- = tHLDIa

[
foms |) §
te—YHLDAS

CLK

ADO-15 [::XADDREssX DATA ceefecaa.
Ais-zs[::x

—| [+ tosz
v o

=[TX
[X

FIGURE 4-12. HOLD/HOLDA Sequence End

Note 2: The HOLD/HOUDA sequence shown above is related to the single transfer mode.
In burst transfer mode HOLD is deactivated two cycles later.

TL/EE/8701-22

TL/EE/8701-23

4-51

01-E022ESN

NS32203-10

4.0 Device Specifications (continued)

4
.
.
=

S
oreas S [TBREGH
REOI: q)
J
s BORTa
B er: ’
—| taz
55 [
ADO=15 ot .-
ol — tanz
g4
PR
MS-ZSI: o Yooo-
ot — thosz
E[i Neee.
e — theez
— E2d
BE[»)
o —| r—‘oomz
—— 27
opm[o)---.
d

TL/EE/8701-24
FIGURE 4-13. Bus Request/Grant Sequence Start

| |n | n | n | nn | mn

—-I [+— BREQs
f

- ‘— BGRTia

5

BREQ

BGRT

A16=23

ADS

HBE

oo -----------------< VALID
- ------------------< YALID

!
FIGURE 4-14. Bus Request/Grant Sequence End

DOIN

I
[
[
oot
[
[
[
[

TL/EE/8701-25

Note 1: DMAC in remote configuration.
Note 2: If BREQ is asserted in the middle of a DMAC transfer, the transfer will always be completed.

4.52

4.0 Device Specifications (Continued)

I m | 12 | w | 13 | 13 | 14 |
CLK

L e
I |*mm 'Rovs-—l ‘<— _,I Hqu |
“*E—L\ | I

FIGURE 4-15. Ready Sampling

- 7 R O R - T L T

a LML L LML

tegs+| f | o trean
=il 1)
' -] tacka - tackia
= { —

xsgl: __/

FIGURE 4-16. REQn/ACKn Sequence (DMAC Initlally Not Idle)

| n | n |In |12 |13 | 14 |

I e PP e o 6y

1
tRegs~ [~ —| = treoh
REQn I: o

e

tacka e tackia
L
ACKn [i

£

FIGURE 4-17. REQn/ACKn Sequence (DMAC Initially Idle)

TL/EE/8701-26

TL/EE/8701-27

TL/EE/8701-28

4-53

01-£02CESN

NS32203-10

4.0 Device Specifications (continued)

[2 |3 | |m

o [J_L_I[_l_f_L_l_l_l—I_

m[' | \..

‘HLTSQ tam

| X)--

HOLD I:

Es?/m[

r TL/EE/8701-29
FIGURE 4-18. Halted Cycle
Note 1: Halt may occur in previous T-States. It must be applied for 1 or 2 clock cycles.
Note 2: If BREQ is asserted in the middle of a DMAC transfer, the transfer will always be completed.

M | 12 |1 |14 | n | m

Sigligliplplplnl
s T_/
W[\ [

— tNTa
i

FIGURE 4-19. Interrupt on Transfer Complete

TL/EE/8701-30

4.54

4.0 Device Specifications (continued)

' I w2 |w | % | #n | #w | n | =

e L LML L L L L
=T\

Gl \ U

— tiNTa
_ = =<4« MATCH ON
|N'l[MATCH ON \HIGH BYTE
LOW BYTE

TL/EE/8701-31
FIGURE 4-20. Interrupt on Match/No Match
Note: If inclusive search is specified a write cycle is performed before INT is activated.

| m | 12 |3 | 14 |71

[LI LI LILITL
w [T\
wo/wR | \ 1
R/ |/
]

YiNTa —]

TL/EE/8701-32
FIGURE 4-21. Interrupt on Halt

¢
2R

N o[LT

towr RST/HCF [———\1 e
RST/ HLT SJ tpsty —

e
TL/EE/8701-34

9

TL/EE/B701-33
FIGURE 4-22. Power on Reset FIGURE 4-23. Non Power on Reset

4-55

01-£022ESN

96-v

NS32203-10

LOCAL DATA BUS

o
B

DATA BUFFERS

321 §
il
E;z
aamﬂ§a§
%)
v
=
g
d

suol}sabbng Bujoeyiaju) "y xipuaddy

ROY
05 05 SAC
[[
7o05 ik RS/ AT (=
o s | I N [
1
RS > 1 4
CLOCK D
BREQ > I ?
BREQ > — le——Cowan
N wam —
rour fe—eomr L |
—] o f—pEWm
T 1 |
=
143
HOLD HLDA BREQ BGRT
ST/ LT |
DOIN >
s SIES
ax REMOTE
ROY f¢ ADDRESS
DECODER [l
NS32203 >
G & [N REMOTE DATA BUS
EO ADO=15
GO N
. REMOTE
Feos ADORESS DATA BUFTERS A16=23
L o [] tATCHES -
REMOTE ADORESS BUS N
A16=23)
& HBE 1 4
TL/EE/8701-35

FIGURE A-1. NS32203 Interconnections in Remote Configuration.
Note: This logic does not support direct (flyby) DMAC transfers.

National
Semiconductor

PRELIMINARY

NS32CG821 microCMOS Programmable
1M Dynamic RAM Controlier/Driver

General Description

The NS32CG821 dynamic RAM controller provides a low
cost, single chip interface between dynamic RAM and the
NS32CG16. The NS32CG821 generates all the required ac-
cess control signal timing for DRAMs. An on-chip refresh
request clock is used to automatically refresh the DRAM
array. Refreshes and accesses are arbitrated on chip. If
necessary, a WAIT output inserts wait states into memory
access cycles, including burst mode accesses. RAS low
time during refreshes and RAS precharge time after refresh-
es and back to back accesses are guaranteed through the
insertion of wait states. Separate on-chip precharge coun-
ters for each RAS output can be used for memory interleav-
ing to avoid delayed back to back accesses because of
precharge.

Features

m Allows zero wait state operation

m On chip high precision delay line to guarantee critical
DRAM access timing parameters

m microCMOS process for low power

m High capacitance drivers for RAS, CAS, WE and DRAM
address on chip

m On chip support for page and static column DRAMs

m Byte enable signals on chip allow byte writing with no
external logic

m Selection of controller speeds: 20 MHz and 25 MHz

m On board access refresh arbitration logic

m Direct interface to the NS32CG 16 microprocessor

® 4 RAS and 4 CAS drivers (the RAS and CAS configura-
tion is programmable)

" Largest Direct Drive
Control #(::gg;s # %f::d:::ss DRAM Memory
P Possible Capacity
NS32CG821 68 10 1 Mbit 8 Mbytes

Block Diagram

NS32CG821 DRAM Controller

2
BANK ADDRESS IN -

D
_, o]
0 ADDRESS LATCH e ADDRESS
ROW ADDRESS IN 10 | (Row, coLun & Bank) | 10 | MUK v ou
COLUMN ADDRESS IN > b 5
F 3 S
JL M
MODE LOAD > REFRESH
PROGRAMMING ROW
REGISTERS COUNTER
CONTROL INPUTS __ ARBITER AND WAIT P WAIT
LOGIC FOR MEMORY
ACCESS AND REFRESH
] —
SYSTEM CLOCK — MEMORY CYCLE _
GENERATOR, voy 4
DELAY LINE, — GENERATOR > D |—s—) RASO=-3
»| BANK SELECT LOGIC ! R
| 4 —
Y p=—r—p CASO=3
CAS K
ceneraTor [&
> S b——p WE

TL/F/10126-1

FIGURE 1

4-57

128DICESN

HPC16083/HPC26083/HPC36083/HPC46083/HPC16003/HPC26003/HPC36003/HPC46003

National
Semiconductor

PRELIMINARY

HPC16083/HPC26083/HPC36083/HPC46083/
HPC16003/HPC26003/HPC36003/HPC46003
High-Performance microControllers

General Description

The HPC16083 and HPC16003 are members of the HPC™
family of High Performance microControllers. Each member
of the family has the same core CPU with a unique memory
and I/0 configuration to suit specific applications. The
HPC16083 has 8k bytes of on-chip ROM. The HPC16003
has no on-chip ROM and is intended for use with external
direct memory. Each part is fabricated in National's ad-
vanced microCMOS technology. This process combined
with an advanced architecture provides fast, flexible 1/0
control, efficient data manipulation, and high speed compu-
tation.

The HPC devices are complete microcomputers on a single
chip. All system timing, internal logic, ROM, RAM, and I/0
are provided on the chip to produce a cost effective solution
for high performance applications. On-chip functions such
as UART, up to eight 16-bit timers with 4 input capture regis-
ters, vectored interrupts, WATCHDOG™ logic and MICRO-
WIRE/PLUS™ provide a high level of system integration.
The ability to address up to 64k bytes of external memory
enables the HPC to be used in powerful applications typical-
ly performed by microprocessors and expensive peripheral
chips. The term “HPC16083” is used throughout this data-
sheet to refer to the HPC16083 and HPC16003 devices un-
less otherwise specified.

The microCMOS process results in very low current drain
and enables the user to select the optimum speed/power
product for his system. The IDLE and HALT modes provide
further current savings. The HPC is available in 68-pin
PLCC, LCC, LDCC, PGA and 84-Pin TapePak® packages.

Features
m HPC family—core features:
— 16-bit architecture, both byte and word
— 16-bit data bus, ALU, and registers
— 64k bytes of external direct memory addressing
— FAST—200 ns for fastest instruction when using
20.0 MHz clock, 134 ns at 30 MHz
— High code efficiency—most instructions are single
byte
— 16 x 16 multiply and 32 x 16 divide
— Eight vectored interrupt sources
— Four 16-bit timer/counters with 4 synchronous out-
puts and WATCHDOG logic
— MICROWIRE/PLUS serial I/0 interface
— CMOS—very low power with two power save modes:
IDLE and HALT
m UART—full duplex, programmable baud rate
Four additional 16-bit timer/counters with pulse width
modulated outputs
Four input capture registers
52 general purpose I/0 lines (memory mapped)
8k bytes of ROM, 256 bytes of RAM on chip
ROMiless version available (HPC16003)
Commercial (0°C to +70°C), industrial (—40°C to
+85°C), automotive (—40°C to +105°C) and military
(—55°C to +125°C) temperature ranges

Block Diagram (Hrc16083 with 8k ROM shown)

ROY/HLD RESET STATUS XM WO

bt

|
E

INTERRUPY

TIMERS (3)

CKI CKO CK2
URE
REGISTERS-3

e |
Ea
} 5

PORTD
4]

BUS

MICROWIRE
LIS

Pl

SIS0 $K

8 | wer
A

X

[TTTI1

3=

MICROCODE
ROM

CORE CPU

PORT1

1
=
TIMERS

Ealiiol
P
g U A

PORT A PORTB

TL/DD/8801-1

4-58

National
Semiconductor

DP8510 BITBLT Processing Unit

General Description

The DP8510 BITBLT Processing Unit (BPU) is a high-per-
formance microCMOS device designed for use in raster
graphics applications. It implements, in high-speed pipelined
logic, the data operations which are fundamental to BITBLT
(BIT boundary Block Transfer) graphics: shifting, masking
and bitwise logic operations. Under control of external hard-
ware such as a state machine or a general-purpose micro-
processor, it provides all necessary data path operations,
easing the implementation of a wide variety of BITBLT sys-
tems. A number of input pins control the proper data flow in
the BPU. A simple handshake scheme is used to interface
the CPU, the BPU and the memory system.

The BPU has two modes, BITBLT and line drawing. The
mode is set by the B/L pin. The line-drawing mode can be
treated as a special case BITBLT with height and width
equal to one.

In order to perform a BITBLT operation, the BPU's control
register must first be loaded with four parameters: the shift
number, left and right masks and the function select code, a
total of 16 bits. BITBLT can then proceed, as directed by an
external processor or state machine. It is the responsibility
of the controller to generate appropriate addresses for the
BITBLT, to interface with the frame buffer's memory control
circuitry, and to control the BPU itself.

Features

B Supports all 16 classical BITBLT functions

W Pipelined data input for high system throughput

MW Flexible architecture allows BPU to be used with a
state machine or processor

B Multiple BPUs can be used for multiple bitplane/color
applications

m Line drawing support

m Compatible with static or dynamic RAMs, including
Video DRAMs

m Compatible with page mode, nibble mode and static
column RAMs

m 32-bit to 16-bit barrel shifter

M 16-bit data port

m 16-word FIFO

W 16-bit logic operations

B 20 MHz operation

m Single +5 volt supply

m All inputs and outputs TTL-compatible

® Packaged in a 44-pin PCC (commercial) or 44-pin PGA
(MIL)

| Single-bit pixel I/0 port

m A member of National's Advanced Graphics Chip Set

m microCMOS technology

Block Diagram

DQO~15 PDQn

l

CRE DLE

CR

PDLE
oL] —bi PIL |

R

Fs SN LM Rm

PAO_LME
PA1_RME
PA2FWR —>]
PA3 FRD ————p}

16,

Dos

POE

DQO-15 PDQn

TL/F/8672-22

4-59

0Lssda

DP8511

National
Semiconductor

DP8511 BITBLT Processing Unit (BPU)

General Description

The DP8511 BITBLT Processing Unit (BPU), a member of
National Semiconductor's Advanced Graphics Chip Set
(AGCS), is a high performance microCMOS device intended
for use in raster graphics applications. Specifically designed
to complement the DP8500 Raster Graphics Processor
(RGP), the BPU performs data operations that are elemen-
tary to BITBLT (BIT boundary Block Transfer) graphics:
Shift, mask, and bitwise logical manipulation of memory. Un-
der the control of the RGP, the BPU performs the necessary
BITBLT data path operations at pipelined hardware speeds.
A simple set of control lines interfaces the BPU to the RGP
and to the system memory.

The BPU has two modes of operation: BITBLT and Line
Drawing. BITBLT performs shift and logical operations on
blocks of 16-bit data words. Line drawing performs similar
operations on single-bit pixel data by utilizing a single bit
pixel port (PDn). This port allows data read and read-modify-
write operations on single pixels across a number of bit-
planes, giving access to pixel depth. The BPU provides both
pixel level processing commonly used in image processing
applications and extremely fast planar operations used
most frequently in color graphics.

The BPU’s operation is controlled by the values loaded to
the Control Register (CR) and the Function Select Register
(FSRY). This dual register configuration of the DP8511 allows
for high throughput in multi-plane systems that incorporate a
BPU per plane. This performance advantage is achieved by
allowing the flexibility of changing the FSR's contents inde-

pendent of the CR, so that multiple bitplanes can be updat-
ed simultaneously while each BPU performs different logical
operations on its own destination data.

Features

m Interfaces directly to the DP8500 Raster Graphics
Processor or any general purpose controller

| 20 MHz operation

| Supports all 16 classical BITBLT functions

m Pipelined data input for high system throughput

B Provides performance independent of the number of
bitplanes

®u Line Drawing support

Compatible with static, dynamic RAMs, and Video

RAMs

Compatible with page mode, nibble mode and static

column RAMs

32-bit to 16-bit barrel shifter

16-bit data port, single bit pixel port

16-word FIFO

16-bit logic operations

Single +5V supply

All inputs and outputs TTL compatible

2 micron microCMOS technology

Packaged in a 44-pin PCC (commercial) or 44-pin PGA

(MIL)

Connection Diagrams

44-Pin Plastic Chip Carrier (PCC)

S8MUKIEEES Y
[FEEREESEY
/6 5 4 3 2 1 444342 4140
o6 =7 39p-09
ps—{8 38f-b10
Lvec =9 37 |- BGND2
p4—{10 36 | LGND
BGND3 —{ 11 35-pi1
03 =112 34}=Bvect
BvCCO =113 33}-012
n2={14 32 |~ BGND!
BGNDO =4 15 31f=013
p1=416 30f-Di4
Do —{17 29f=D15
18 19 20 21 22 23 24 25 26 27 28
U
SBSSFERBER S
NN S
8x R
TL/F/9337-1
N.C. = No Connection
Top View
Order Number DP8511V

See NS Package Number V44A

4-60

Section 5

Development Systems

and Software Tools

Section 5 Contents

NS32CG16 ISE Development TOO!vureriiiieirrieereenennannnanenononnanns 5-3
SYS32/30 PC-Add-In DevelopmentPackagecooiieiiiiiiiiiinnninennn.. 5-10
Series 32000 GENIX Native and Cross-Support (GNX) Development Tools (Version 3) 5-16
Series 32000 GNX-Version 3 C OptimizingCompilerccoiviiiiiiiiiiiiiiienne.. 5-21
Series 32000 GNX-Version 3 Fortran 77 Optimizing Compiler..............covvivvinan. 5-25
Series 32000 GNX-Version 3 Pascal OptimizingCompiler.............ccoiiiiiiiiiiann.. 5-29

5-2

7 National Semiconductor

NS32CG16 ISE Development Tool

m NS32CG16 emulator for software and
hardware development and debugging

B 512 kbytes of mappable memory for
emulation

m 15 MHz, 0 wait state access to emulation
memory

m Sixteen definable events—match on
address and data, no match on address
and data and match on status conditions
(address fetch, data read/write, slave
cycle and interrupt acknowledge)

m Thirty-six software breakpoints using
NS32CG16’s BPT instruction

TL/EE/10334-4

m Two hardware breakpoints based on
events

m 2k deep, event triggered, real time, trace
display in mnemonic and machine
formats

m Execution time measurement with 1 us
resolution

® On screen menu for command selection

m FPU (Floating Point Unit) and BPU (Bit
Aligned Block Transfer Processing Unit)
support

m Software support via GNX™ tools

m Includes PC interface board and cable

1.0 Product Overview

The NS32CG16 ISE is a full featured emulator for the
development of NS32CG 16 based systems. The emu-
lator works with SYS32/20 and SYS32/30 hosts. Up
to 512 kbytes of memory may be mapped onto the
target, allowing users to download their software into
mapped (or emulation) memory. The emulator sup-
ports single stepping, 36 software breakpoints and 2
hardware breakpoints based on any of sixteen pre-

defined events. Events may be defined as match on
address & data, no match on address & data and
match on status conditions (address fetch, data read/
write, slave cycle and interrupt acknowledge). A 2k
deep real time trace may be triggered by any of the
sixteen pre-defined events and displayed in mnemon-
ic or machine formats. The emulator supports execu-
tion time measurement with a resolution of 1 us.

5-3

3S191DITESN

NS32CG16 ISE

1.0. Product Overview (Continued)

The emulator connects to a high speed parallel inter-
face board on the development system host. The em-
ulator connects to the target system via a probe unit
and target cable. An IC plug at the end of the target
cable fits into the CPU socket on the target board. The
probe unit contains an NS32CG16 microprocessor for
emulation.
The emulator software resides in a DOS environment
on the host. The emulator runs from a DOS environ-
ment on the host. An on-screen menu enables com-
mand selection.
Commands supported by the emulator include:

Program down-loading

Assembly language debugging

Symbolic access to program variables

Modification of CPU registers and Memory locations

FPU and BPU slave processor support

Single stepping and software breakpoints

Trace display

On-screen command prompting facility
Full software support is provided by National’s GNX
tools in the UNIX® environment of the SYS32/20 or
8SYS32/30 host. The object files produced by the
compilation (or assembly) and linking process in the
UNIX environment may be converted into DOS-format
files and loaded into the emulator.

2.0 Description of Features

The NS32CG16 ISE consists of a main emulator unit,
a probe unit with target cable and IC plug, an interface
cable and PC interface board that resides on the host.
Figure 1 shows a pictorial view of the emulator.

| No. | ltems
P.%%m
TBM=FC/AT
Display
Target system
Probe unit
Main unit
nterface board
Interface cable
Power cable
Probe cable
Target cable
IC plug

TL/EE/10334-1

FIGURE 1. NS32CG 16 Emulator System

2.0 Description of Features (Continued)

2.1 NS32CG 16 ISE System Configuration

Figure 2 shows the NS32CG16 ISE system configura-
tion.

2.2 Description of the System

The development system consists of the SYS32/20 or
8§YS32/30 host computer with the emulator interface
board, the emulator and probe units and the IC plug
(located at the end of the target cable) which fits into
the CPU socket on the target board. The emulator
SCSI interface board enables high speed parallel
communication between the emulator and the host.
The probe unit contains an NS32CG16 microproces-
sor for emulation.

The emulator unit consists of Controller, Memory,
Trace and Breakpoint and Probe Interface boards.
The Controller board communicates with the SCSI in-
terface on the host and with all other boards in the
emulator unit. The Probe Interface board communi-
cates with the probe unit.

The Memory Board provides 512 kbytes of emulation
memory, with 0-wait state access at 15 MHz. Sixteen
memory partitions may be mapped in 4 kbyte blocks
with write protection capability. 4 kbytes of the avail-
able memory is used by the emulator’s monitor, and
the remaining memory may be used for emulation.

The Trace and Breakpoint board supports trace and
breakpoint capabilities. The 2k deep trace of address,
data and status may be displayed in mnemonic or ma-
chine formats, and may be triggered by any of 16 pre-
defined events. Two hardware breakpoints (based on
any of the 16 predefined events) and 36 software
breakpoints are supported.

Execution time measurement is accomplished with a
resolution of 1 us, and may be measured between two
instruction execution addresses or between the occur-
rence of any two of the 16 predefined events.

Sixteen events may be defined based on the follow-
ing:
match on address and data
no match on address and data
match on status conditions (address fetch, data
read/write, slave cycle and interrupt acknowledge)

In specifying the formats for the address and data, for
example, any combination of 0s, 1s or Xs (don’t cares)
may be used. For example FFX0 or XXFF (in hexade-
cimal) are valid formats for specifying address and
data.

All symbolic information in the source program is re-
tained during debugging.

The emulator software resides in a DOS environment
on the system host. The emulator runs from the DOS
environment and may be invoked from the DOS direc-
tory in which the emulator software resides and com-
mands may then be issued to control the operating
mode of the emulator. An on-screen menu enables
selection of commands with prompting facility. Com-
mands are provided to download, execute and debug
programs. The command structure supports symbolic
access to program variables.

Software support is provided by National's GNX tools
in the UNIX environment on the SYS32 host. A user
program may be edited, compiled and linked in this
environment to obtain an executable object file. The
object file may then be converted into DOS-format

and copied into the DOS environment, by using the

udcp (UNIX to DOS copy) utility in the UNIX environ-
ment. This resulting DOS-format file may be directly
loaded into emulation memory by emulator com-
mands. The ducp (DOS to UNIX copy) utility may be
used (in the UNIX environment) to convert files in the
DOS-format (in the DOS environment) to UNIX-format
(in the UNIX environment). Both udep and ducp also
support conversion of ASCI! files.

sYs™32/20
Target System
BM=PC/AT Emulator 3206168
or Interface Emulator
Compatible
Others

TL/EE/10334-2

FIGURE 2. NS32CG 16 ISE System Configuration

5-5

3S191DJZESN

NS32CG16 ISE

2.0 Description of Features (Continued)

2.3 The Development Process
Figure 3 shows the development process in the different environments.

DOS
Emulator Software

dos QUTE ¢ unix

UNIX
Edit, Compile/Assemble &
Link => Object file
udcp, ducp utilities

exit f ‘ dos

DOS
Emulator Software

exit f v emul

EMULATOR
Program Loading
Program Execution

Program Debug

exit f ‘ dos

DOS
Emulator Software

TL/EE/10334-3
FIGURE 3. The Development Process

2.4 Command Summary
The following is a summary of the commands supported by the emulator.

CONFIGURATION COMMANDS

Mapping address Thru address Rom|RAm|TArget|Locked

Maps 4 kbyte memory blocks in the specified address range as ROM, RAM, Target or Locked memory space.
MOnitor address

This command maps a single 4 kbyte memory block at specified address for use by the monitor.

Interrupt Enable|Disable Nmi|int

Enables or Disables the selected interrupt NMI or INT.

DMa Enable|Disable

Enables or Disables DMA transfers when the CPU is not accessing the bus.

Break Enable|Disable Monltorlnom write

Enables or Disables a break in program execution when an access to Monitor address space or a write to the
ROM address space occurs.

Load Coﬂleorm file Offset

Loads a specified file in COFF or Motorola S formats into memory at a specified offset from address 0.
Store file From address Thru address

Stores the program data in the specified address range in memory into the specified file in Motorola S format.
Clear

Clears all the symbols used in the program.

5-6

2.0 Description of Features (Continued)
2.4 Command Summary (Continued)
The following is a summary of the commands supported by the emulator.

DISPLAY COMMANDS

Display Configuration

Displays the current configuration of the emulator.

Display Register Format General|Slngle|Double

Displays CPU registers in the specified format.

Display Memory address Format Byte|Word|Dword|Qword|Mnemonic|Single|Double
Displays memory contents starting at specified address in the specified format.

Display Trace Trigger|TOp|Bottom|line Mnemonic|MAchine

Displays results of the trace with the specified display position and display format.

The display position may be specified at the Trigger point or the top of the trace or the bottom of the trace or a
specified line number on the trace.

The display format may be specified to be in mnemonic or machine formats.
Display SWbreak

Displays all the software breakpoints.

Display Event

Displays all the pre-defined events.

DATA MAN!PULATION COMMANDS

Register Format General|Single|Double

Specifies the display and change formats for register commands.

MOdify reg To data

Modifies the specified register to the specified data.

Memory address Format Byte| Word|Dword|Qword|Mnemonic|Single|DOuble
Specifies the display and change formats for memory commands.

MOQOdify address Thru address To data

Modifies the memory locations in the specified address range to the specified data.

EVENT SETUP COMMANDS

Event
Initiates the event definition process.
Add Address =|# address Data =|# data Status Off|Fetch|Data|DRead|DWrite|Intack|Slave

Adds an event with specified address match or nomatch, with specified data match or nomatch, and specified
status conditions.

Replace number Address =|# address Data
=|# data Status Off|Fetch|Data|DRead|DWrite|Intack|Slave

Replaces the event with the specified event number with the new event defined with the specified address
match or nomatch, with specified data match or nomatch, and specified status conditions.

DELete Alljnumber
Deletes all currently defined events or the event with the specified event number.

57

3S191DIZESN

NS32CG16 ISE

2.0 Description of Features (Continued)
2.4 Command Summary (Continued)
The following is a summary of the commands supported by the emulator.

SOFTWARE BREAKPOINT COMMANDS

SWbreak

Initiates the setup of software breakpoints.

Add address

Adds a software breakpoint at specified address.
Replace number To address '

Replaces the breakpoint address of a pre-defined breakpoint (referenced by the specified number) with the
new specified address.

DELete Alllnumber
Deletes all the pre-defined software breakpoints or the pre-defined breakpoint with the specified number.
Set Enable|Disable Alljnumber

Enables or disables the state of all pre-defined software breakpoints or the pre-defined software breakpoint
(referenced by the specified number).

PROGRAM EXECUTION COMMANDS

RESet
Resets the CPU. .
Go From address Until address1|Event# Or address2|Event# Times number

Executes program from specified address until a match occurs on the specified address (address1) or on the
specified event (hardware breakpoint # 1), or until a match occurs on the specified address (address2) or on
the specified event (hardware breakpoint #2). A specified number of times a specified match occurs may also
be used to control program execution. If the hardware breakpoint conditions are omitted, then program execu-
tion breaks on the software breakpoints that may be set and enabled.

Step From address
Executes one instruction from the specified address.
Trace From address Trigger address1|Event# Or address2|Event#

Enables the trace from the specified address, with the trigger points being defined by address1 or a specified
event or by address2 and a specified event.

MEAsure From address Start address1|Event# End address2|Event#

Enables program execution from specified address with execution time being measured from specified start
address1 or event until the specified end address2 or event.

Quit
Forces a break in program execution and stops the CPU.

EMULATOR CONTROL COMMANDS

CANcel

Resets the emulator to its initial state at start-up.

EXIT

Exits from the emulator environment to the DOS environment.

DOS

Suspends temporarily to the DOS environment from the emulator environment.
MAcro file

Executes command lines stored in the specified macro file in text format.

5-8

3.0 Specifications

Environment The NS32CG16 ISE is designed to op-
erate in a laboratory environment. The
emulator unit may be mounted horizon-
tally (flat) or vertically.

Temperature Operative: +15°C to +50°C
Storage: —40 °C to +60°C

Humidity 10% to 90% relative, non-condensing
Altitude Operative 15000 feet
Power NS32CG16 ISE requires a standard

Requirements AC power outlet (125V AC).

4.0 Ordering Information
NSS-ISE-CG16 NS32CG16 Emulator.

5-9

3S1919IZESN

S§YS32/30

Z National Semiconductor

SYS32/30 PC Add-In
Development Package

N
N

TL/EE/9420-1

m 15 MHz NS32332/NS32382 Add-In board W Support for other Series 32000®
for an IBM® PC/AT® or compatible development products:
system — SPLICE
m 2-3 MIP system performance — National’s Series 32000 Development
m No wait-state, on-board memory in 4-, 8- Board family
or 16-Mbyte configurations — Optimizing Compilers: C,
m Operating system derived from AT&T’s FORTRAN 77, Pascal
UNIX® System V Release 3 m Easy-to-use DOS/UNIX interface
m Multi-user support
m GENIX™ Native and Cross-Support
(GNXTM) language tools. Includes—
assembiler, linker, libraries, debuggers
Product Overview

The SYS32T™/30 is a complete, high-performance
development package that converts an IBM PC/AT or
compatible computer into a powerful multi-user sys-
tem for developing applications that use National
Semiconductor Embedded System Processors™ or
Series 32000 microprocessor family components. The
SYS832/30 add-in processor board containing the Se-
ries 32000 device cluster with the NS32332 micro-
processor allows programs to run on a personal

computer at speeds greater than those of a VAX™
11/780. The chip cluster on the processor board in-
cludes the NS32332 Central Processing Unit,
NS32382 Memory Management Unit, NS32C201 Tim-
ing Control Unit and the NS32081 Floating-Point Unit.
Along with the processor board, the SYS32/30 pack-
age contains the Opus5™ operating system which is
derived from GENIX V.3, National Semiconductor’s

5-10

Product Overview (Continued)

port of AT&T’s UNIX System V Release 3. Specially
developed software is included to efficiently integrate
the NS32332 processor board and the host PC/AT
processor, allowing them to function as a complete
UNIX computer system. National’'s Series 32000 GE-
NIX Native and Cross-Support (GNX) language tools
are included in the SYS32/30 package to provide sta-
ble and effective tools for software development. Op-
tional compilers are available for FORTRAN 77, C,
and Pascal.

Functional Description

15 MHz ADD-IN PROCESSOR BOARD FOR AN IBM PC/AT
OR COMPATIBLE SYSTEM

The SYS32/30 development package contains a
processor board designed around the Series 32000
chip set. This chip set includes the NS32332 Central
Processing Unit, NS32382 Memory Management Unit,
NS32C201 Timing Control Unit, and the NS32081
Floating-Point Unit.

This processor board forms the high-performance
center of the computer system with the host PC/AT
processor. Peripherals are under the control of the
PC/AT'’s microprocessor and are located either on the
PC/AT motherboard or on other boards in the PC/AT
chassis. The PC/AT handles all direct access to de-
vices and serves as an integral dedicated 1/0 proces-
sor.

The SYS32/30 processor board plugs into the PC/AT
bus, uses the standard control and data signals, and
appears to the PC/AT as 16 bytes in the PC/AT In-
put/Output (I/0) space. Communication between the
PC/AT and the board is accomplished via this ad-
dress space. This architecture allows the board to in-
terface to the PC/AT in the same manner as any other
PC/AT peripheral. The PC/AT processes |/O com-
mands while the SYS32/30 processor board contin-
ues with regular operation. 1/0 is requested via inter-
rupt to the PC/AT, which then performs the data
transfer using Direct Memory Access (DMA). (See Fig-
ure 7).

The processor board requires two slots in the PC/AT
motherboard and plugs into a single long 16-bit bus
slot. The space of the second slot is needed to ac-
commodate the piggybacked memory board attached
to the processor board. No additional connections are
required.

2-3 MIPS SYSTEM PERFORMANCE

The NS32332 CPU and associated devices operating
at 15 MHz provide computing power greater than that
of a VAX 11/780. Sustained performance for the
NS32332 device cluster is 2-3 VAX MIPS (Million In-
structions Per Second). An example of relative per-
formance using the widely recognized Dhrystone
benchmark is shown in Figure 2.

SY$32/30

DOS
UTILITIES

RS
A

SYS32/30 DRIVERS

UNIX ENVIRONMENT

=
—

A
CONTROL

OPMON PROGRAM

PC PC
HARDWARE <___> PERIPHER=
ALS

DOS ENVIRONMENT

TL/EE/9420-2

FIGURE 1

0E/ZESAS

SYS32/30

Functional Description (Continued)

DHRYSTONE 1.1

$YS32/30

VAX 11/780

Relative Performance

TL/EE/9420-3
FIGURE 2. SY$32/30 Dhrystone Program
Compiled with GNX Version 3 C Compiler
VAX 11/780 Dhrystone Data Obtained from USENET

ON-BOARD MEMORY CONFIGURATIONS

OF 4,8 OR 16 MBYTES

The processor board is configured with either 4, 8, or
16 Mbytes of zero wait-state physical memory. It is
possible to upgrade the 4- or 8-Mbyte configuration to
16 Mbytes through the purchase of an optional 16-
Mbyte memory card.

OPERATING SYSTEM

The SYS32/30 operating system is derived from
GENIX V.3, National Semiconductor's port of
AT&T’s UNIX System V Release 3.

The UNIX operating system is a powerful, multi-user,
multitasking operating system that includes the follow-
ing key features:

Demand-Paged Virtual Memory

Hierarchical file system

Source Code Control System (SCCS)

UNIX to UNIX copy (uucp)

“make” utility

Menu-driven system administration

The UNIX operating system has a proven reputation
as an effective and productive environment for effi-
cient software development. UNIX allows multiple us-
ers to work simultaneously on the same computer and
project. The Source Code Control System (SCCS) au-
tomatically tracks program revisions as development
work progresses. The “make” software saves valu-

able time in regenerating complex software systems
after changes are made. The wucp software allows
users on different UNIX systems to communicate us-
ing electronic mail and to transfer files over dial-up or
serial communications links. Menu-driven system ad-
ministration is available for system setup, adding us-
ers, controlling communication lines, installing soft-
ware packages, changing passwords, and other ad-
ministrative functions.

ADDITIONAL SUPPORT UTILITIES

Many of the popular utilities from the Berkeley 4.3
UNIX operating system, not contained in AT&T’s UNIX
System V Release 3, are supplied as part of the pack-
age. These utilities are listed in Table I.

TABLE |. Bsd 4.3 Utilities

C Shell apply banner
bsu chsh " clear
ctags expand factor
from head last
leave more primes
scrpt strings test
unexpand whereis which

The Tools for Documenters package, derived from the
AT&T Documenter's Workbench™ Utility, provides
the Series 32000 programmer with the tools to pre-
pare documentation. The major components of this
package are shown in Table II.

TABLE [l. Tools for Documenters Utilities

Name Description

nroff A text formatter for line printers

troff A text formatter for typesetters

mm A macro package

mmt A macro package

eqn A troff preprocessor for typesetting
mathematics on a phototypesetter

neqgn A troff preprocessor for typesetting
mathematics on a terminal

tbl A preprocessor for formatting tables

pic A preprocessor for graphic illustrations

col A filter to nroff for processing multicolumn
text output, as from tbl

NETWORKING CAPABILITY

The SYS32/30 based development system config-
ured to support networking using the TCP/IP protocol
allows project development using multiple systems, in-
cluding SYS32/30 based systems, VAX/VMS™ (us-
ing TCP/IP), SUN-3/SunOS™ and VAX/ULTRIX. The

Functional Description (Continued)

compatibility design of the GNX language tools allows
software modules developed on these networked sys-
tems to be linked together on a single system for exe-
cution as one program. Networking requires that addi-
tional hardware and software be installed in the sys-
tem. Third party products that enable networking are
listed in the SYS32/30 configuration guide.

MANUALS

A complete manual set for the operating system and
related software is included in the SYS32/30 pack-
age. This includes:

Installation instructions for the PC Add-in board
Installation instructions for software

UNIX System V.3 reference manuals and user guides
GNX Language Tools Manuals

Tools for Documenters Reference Manual

Berkeley Utilities Manual

MULTI-USER SUPPORT

The SYS32/30 operating system is an interactive,
multi-user, multitasking operating system. Many activi-
ties or jobs can be performed simultaneously when
serial ports are added to the host system. These addi-
tional serial ports are used for terminals, printers, mo-
dems, I/0O-to-development boards, 1/0-to-target hard-
ware, or for communication with National's SPLICE
debugging tool. Information about third party products
that provide additional serial ports is contained in the
SYS32/30 configuration guide.

GNX LANGUAGE TOOLS

The GENIX Native and Cross-Support (GNX) lan-
guage tools allow the user to compile, assemble, and
link user programs to create executable files. These
files can then be executed and debugged on a Series
32000 development board, target system application
hardware, or a 32000/UNIX-based system such as
the SYS32/30.

The GNX language tools include the assembler, link-
er, debuggers, libraries, and the monitor software for
all Series 32000 development boards in both PROM
and source code form.

The Series 32000 GNX language tools are based on
AT&T’s Common Object File Format (COFF). Under
COFF, object modules created by any of the GNX
compilers or the GNX assembler may be linked to
object modules of any other translator in the GNX
tools. Optimizing compilers are available for C,
FORTRAN 77, and Pascal.

The COFF file format also allows object modules that
have been created by the GNX tools on other devel-

opment hosts (VAX/VMS or VAX/ULTRIX, for exam-
ple) to be linked with modules created on the
8YS32/30 system. This flexibility is most valuable
where non-centralized software development is de-
sired and the systems are able to transfer or share
files via a common network. Information for configur-
ing the SYS32/30 for integration into a network is
contained in the configuration guide.

Compilers are available separately as optional soft-
ware to allow individual selection of the application
language. The C, FORTRAN 77 and Pascal compilers
are the result of National’s optimizing compiler project
and reflect state-of-the-art compiler technology for op-
timizing execution speed. For additional details about
the GNX tools consult the GNX tools data sheet.

SUPPORT FOR AN INTEGRATED DEVELOPMENT
ENVIRONMENT

The SYS32/30 contains the functionality and compati-
bility needed to utilize other tools available from Na-
tional Semiconductor for developing and debugging
Series 32000-based applications. These tools include
the SPLICE software debugger, NS32GG16-ISE, the
Series 32000 Development Board set, and National’s
Embedded System Processor evaluation boards for
the NS32CG16 and NS32GX32 processors.

The NS32CG16 ISE is a full featured emulator for de-
velopment of NS32CG16 based systems. Software is
developed on the SYS32/30, then transferred to the
DOS partition of the development system for down-
load by the ISE.

The SPLICE development tool provides a communica-
tion link between a Series 32000 target and a devel-
opment system host. This connection allows users to
download and map their software onto target memory
and then debug this software using National Semicon-
ductor's GNX debugger. Consult the SPLICE data
sheet for more information.

The GNX debugger also directly supports the Hewlett-
Packard HP64772 NS32532/NS32GX32 in-system
emulator. This combination provides powerful inte-
grated support for high-level source debugging and in-
system emulation of the NS32532 or NS32GX32 proc-
essors.

The Series 32000 development boards and Embed-
ded System Processor evaluation boards used with
the SYS32/30 are specifically designed to assist the
user in evaluating and developing hardware and soft-
ware for embedded systems and the Series 32000
family of CPUs.

5-13

0€/2ESAS

SYS32/30

Functional Description (Continued)
DOS/UNIX INTEGRATION

The SYS32/30 PC add-in development package al-
lows easy transfer of data between DOS and the
UNIX operating system. A system console user can
switch between either operating system using only a
few keystrokes. A shell interface allows DOS com-
mands to be executed from the UNIX shell, UNIX
commands to be executed from DOS, and files to be
transferred between the UNIX and DOS partitions on
the system disk. In addition, the user can suspend the
SYS32/30 operation, enter DOS, run an application,
and then return to the SYS32/30 environment.

Series 32000 Application Development

The SYS32/30 with the PC/AT operates as a local
host computer system for integrating application soft-
ware into target prototype boards containing Series
32000 components. Programs can be written in as-
sembly language or in a higher level language. Option-
al compilers are available for C, FORTRAN 77, and
Pascal.

During compilation, the compilers generate assembly
code which is assembled by the GNX assembler. (See

¢
soagcz COMPILER
F77
SOURCE
(FORTRAN) COMPILER
v v
ASSEMBLY ASSEM=
SOURCE BLER
F N
PASCAL
SOURCE
(PasoaD) COMPILER
SOURCE
(ASSEMBLY)

Figure 3.) The output of the assembler is an object file
which can be linked to other object file and/or librar-
ies, resulting in an executable file.

Since the SYS32/30 provides a Series 32000 native
environment, the executable file may be run on the
host SYS32/30 system or loaded into RAM on either
a target system, an Embedded System Processor
evaluation board or one of the Series 32000 develop-
ment boards. The source-level software debuggers in
the GNX tools provide powerful facilities for debug-
ging software on the target system.

The GNX debugger is capable of downloading and
controlling the execution of software on the target sys-
tem. Executable monitor software is provided in
PROMs in the SYS32/30 package for the Series
32000 development boards and the Embedded Sys-
tem Processor evaluation boards. Monitor software is
also provided in source form in the GNX language
tools so application designers can modify and port the
monitor to suit the needs of their target system.

After debugging, the executable file created by linking
can also be converted to PROM format using the GNX
nburn utility.

OBJECT
MODULE

EXECUTABLE
MODULE

(&)

- SOURCE
DEBUGGER,

LIBRARY T0
OBJECT TARGET
FILES SYSTEM,

SPLICE, OR

DB BOARD

TL/EE/9420-4

FIGURE 3

Configuring a System

The SYS32/30 PC Add-In package supports a variety
of configurations. Based on developer needs, the final
configuration may need extra serial |/0 ports, and/or
networking capability. A hard disk of sufficient size is
also an important part of the configuration. A configu-
ration guide that outlines available options and recom-
mended products for configuring the SYS32/30 devel-
opment system is available.

Host system elements required for SYS32/30 opera-

tion are:

— IBM PC/AT or compatible system

— Two full length slots in the motherboard

~— 512 Kbytes of RAM

— PC-DOS 3.1 or later

— 1.2-Mbyte floppy disk drive

— Adequate hard disk storage (see the next section

on disk size)

Note: The SYS32/30 processor board actually plugs into a single slot.
The second slot is required to accommodate the space taken by
the piggybacked memory board attached to the NS32332 proces-
sor board.

The SYS32/30 PC/AT Add-In Development Package
runs on an IBM PC/AT or compatible computer. If an
IBM PC/AT is not used for the host system, it is impor-
tant to remember that compatibility can vary between
IBM PC/AT compatible systems. The SYS32/30 proc-
essor board may not be adequately supported by sys-
tems that lack full IBM PC/AT compatibility. The con-
figuration guide available contains a list of IBM PC/AT
compatible systems that have the required compatibil-
ity.

HARD DISK CAPACITY

Several factors influence the size selected for a hard

disk. Consideration should include the number of us-

ers for the system, space for user files, the size of the
application to be developed, and extra software pack-
ages and compilers that must reside on the system.

For example, a 50-Mbyte hard disk is the minimum
size recommended for a SYS32/30-based develop-
ment environment. This provides sufficient space for a
single-user account, the UNIX operating system and
utilities, the GNX tools, compiler software, basic DOS
software, and a moderate size application. Disk drives
with even greater capacity than the minimum sizes in-
dicated here should be considered for additional users
or software and to provide for growth of the system.

When selecting hard disk drives or other peripheral
devices, it is important that the device conform to the
industry-standard for peripheral devices designed for
use on the PC/AT bus.

Basic Kits

The SYS32/30 Add-In Development package is avail-
able in three basic kits:

NSS-8YS30-KIT1 For IBM-AT and compatible
systems

PC Add-In coprocessor board
with 4 Mbytes on-board memo-
ry

UNIX System V.3 based operat-
ing system

GNX Language Tools

Tools for Documenters
Berkeley Utilities

Installation instructions for the
PC Add-In board

Installation instructions for soft-
ware

UNIX System V.3 reference
manuals and user guides

GNX Language Tools Manuals
Tools For Documenters Refer-
ence Manuals

Berkeley Utilities Manual

Same as KIT1 except with
8 Mbytes of on-board memory
Same as KIT1 except with
16 Mbytes of on-board memory

NSS-SYS30-KIT2

NSS-SYS30-KIT3

MEMORY UPGRADE

To upgrade the memory size to 16 Mbytes after the
purchase of KIT1 or KIT2, the following 16-Mbyte
memory board must be purchased to replace the ex-
isting memory board:

NSS-SYS30-MEM16 16-Mbyte memory board.

Optional Software Packages

(A prerequisite for use is the purchase of one of the
above basic kits).

NSW-C-3-BHBF3 Optimizing C Compiler

NSW-F77-3-BHBF3 Optimizing FORTRAN 77 Com-
piler

NSW-PAS-3-BHBF3 Optimizing Pascal Compiler

NSW-NET-BHBF3 Networking software

NSP-SYS32/V3-MS Additional operating system
manual set

5-15

0E/CESAS

Series 32000 GENIX Native and Cross-Support (GNX) Development Tools (Version 3)

National Semiconductor

Series 32000® GENIX™ Native and
Cross-Support (GNX) Development Tools
(Version 3)

souRce coupiLsR
()
F77
(roi%lzjmim COMPILER v
ASSEMBLY OBJECT EXECUTABLE
SOURCE MODULE MODULE DEBUGGER
Soumet, coupLR
LIBRARY
LIBRARIAN OBJECT TO
FILES TARGET
SYSTEM
SOURCE
(ASSEMBLY)
TL/EE/10418-1
m Complete software development m Includes source code for board-level
environment for Series 32000 monitors
m Supports software development on B Includes complete floating-point unit
VAXTM, Sun-3®, and SYS32™ emulation software
development hosts m Supports optional C, FORTRAN 77, and
m Supports Common Object File Format Pascal optimizing compilers
(COFF) m Supports SPLICE development tool

m Includes versatile configuration
definition utility

Introduction

The Series 32000 GNX-Version 3 (GENIX Native and
Cross-Support) development tools consist of assem-
bler, linker, debuggers, monitors, basic 1/0 routines,
libraries, optional high-level language compilers, and
other tools to aid in the development of applications
for the Series 32000 microprocessor family. The GNX
tools allow users to compile, assemble, and link appli-
cation programs to create executable files. These files
can then be executed and debugged on Series 32000-
based development hosts, such as the SYS32/20 and
SYS32/30, or on a Series 32000-based target board.
After debugging, the executable files can be convert-

ed to binary/hexedecimal files suitable as input to
PROM programmers for burning PROMs.

The Series 32000 GNX development tools are based
on the Common Object File Format (COFF), as devel-
oped by AT&T and enhanced by National Semicon-
ductor Corporation. This allows files developed on dif-
ferent hosts and in different high-level languages to
be easily integrated.

Supported Development Hosts

The Series 32000 GNX development tools are avail-
able hosted for cross-development on the VAX se-

5-16

Supported Development Hosts (Continued)

[g e e ettt

4
'

................................... .
— — - iy il ="
SOURCE SOURCE T SOURCE SOURCE '
FILE FILE FILE FILE '
FILE.P FILEF FILE.S FILE.C '
]
¥ v v X
COMPILER COMPILER | COMPILER :
PC F77 A cc '
)
ASSEMBLER
v v AS v '
ASSEMBLER ASSEMBLER ASSEMBLER '
AS AS AS :
[}
* * h 4 * :
0BJECT OBJECT OBJECT OBJECT .
FILE FILE FILE FILE ‘
FILE.O FILE.O FILE.O FILE.O '
e — — — b v '
[}
]
]
v 1
LINKER '
2 < LIBRARY FILE(S)* i
OBJECT N '
i ,L '
]
FREQ EXECUTABLE HOST SYSTEM '
FILE R L E T TR .
AOUT :
v v :
NBURN oesUGeER [17| Meoieon || tiear
$ F N :
TTUTTNLTT Yy spuce | o[userss
PROM) HARDWARE [€] TARGET .
1 PROGRAMMER o | TERMINAL
boooocawd

* Libraries are maintained by AR.
TL/EE/10418-2

FIGURE 1. Sample Development Process

TABLE I. Commands for SYS32,
VAX/UNIX, and VAX/VMS

SYS32 VAX/UNIX VAX/VMS
ar nar nar
as nasm nasm
cc nmcc nmcc

ncmp ncmp
dbg32 dbg32 dbg32
77 nf77 nf77
gts gts gts
Id nmeld nmeld
lorder nlorder
monfix monfix monfix
nburn nburn nburn
nm nnm nnm
pc nmpc nmpc
size nsize nsize
strip nstrip nstrip

ries of computers, running the VMS™, UNIX® (bsd),
and ULTRIX operating systems and on a Sun-3 work-
station running SunOST™, Also supported are National
Semiconductor’s SYS32/20 and SYS32/30 develop-
ment environments. Table | summarizes the GNX
commands for each environment.

The SYS32/20 and SYS32/30 PC-Add-In Develop-
ment Packages are complete, high-performance
packages that convert an IBM-PC/AT™ or compati-
ble computer into a powerful multi-user system for de-
veloping applications that use the Series 32000 fami-
ly. The SYS32 systems are based on the Series
32000 processor family; the SYS32/20 includes an
NS32032 Central Processing Unit, and the SYS32/30
is based on the NS32332 CPU. Both the SYS32/20
and SYS32/30 run a derivative of the AT&T System
V.3 UNIX operating system. Because these host sys-
tems are themselves based on the Series 32000 proc-
essor family, application code can be debugged on
the host system without down-loading to target hard-
ware.

Figure 1 illustrates a typical development process.

(¢ uoisiap) sjoo wewdojanad (XNH) 1doddng-sso1 pue aaieN XINID 0002€ SaliaS

Series 32000 GENIX Native and Cross-Support (GNX) Development Tools (Version 3)

Tools Components

The GNX Development Tools comprise the following
utilities and support libraries:

Ar

This utility maintains groups of files combined into a
single archive file. Ar is used to create and update
library files as used by the GNX linker Id.

As

The GNX assembler, as, assembles Series 32000 as-
sembly language source programs and generates re-
locatable object modules. Relocatable object modules
must be linked to create executable load modules.

DBG32

DBG32 is an interactive symbolic debugger. It can be
used for remote debugging in conjunction with a host
and any target hardware that includes a Series 32000
GNX monitor. DBG32 allows source-level debugging
and includes an easy-to-use on-line help facility.

Floating-Point Enhancement and
Emulation (FPEE) Library

When a floating-point unit (FPU) is not present, the
floating-point enhancement and emulation (FPEE) li-
brary provides low-cost floating-point support by emu-
lating the Series 32000 FPU instructions. When an
FPU is present, FPEE enhances the FPU by providing
additional functionality as recommended by Draft 10
of the ANSI/IEEE Task 754 Proposal for Binary Float-
ing-Point Arithmetic (IEEE 754). FPEE meets the IEEE
754 standard for double-precision arithmetic.

The FPEE library is provided in source form and as a
binary library suitable for its particular GNX tool-set
environment. The source includes all support routines
necessary to build the FPEE library. The FPEE library

can be configured to enhance/emulate either the
NS32081 FPU or the NS32381 FPU.

GNX Target Setup (GTS)

The GNX tools support the full line of Series 32000
central processing units and peripheral devices,
based on user-defined parameters. The GNX Target
Setup (GTS) utility allows users to easily define the
characteristics of the target system at one time. This
information is saved in a file on the host system, which
is examined each time a GNX utility is invoked. These
parameters are used to tailor the application code to
characteristics of the particular hardware.

GTS operates both interactively and non-interactively
and includes an easy-to-use interface and on-line help
facility.

Ld

The GNX linker, Id, creates executable files by com-
bining object files, providing relocation, and resolving
external references. The linker also processes sym-
bolic debugging information. The linker includes a
powerful directives language, which allows the user to
precisely control the linking process.

Lorder

Lorder finds ordering relations for object libraries. The
input may be one or more object or library archive
(see ar) files. The output of lorder can be processed
to find an ordering of a library suitable for one-pass
access by the linker.

Math Libraries

The math libraries (libm.a and lib381m.a) contain stan-
dard math functions that support both the NS32081
and NS32381 floating-point units. These functions are
highly optimized for the Series 32000 architecture.

Table Il contains a list of the available math functions.

TABLE Il. Available Math Functlons

acos exp fdrem
acosh exp2 fexp
asin expm1 fexp2
asinh fabs fexpm1
atan facos ffabs
atan2 facosh ffinite
atanh fasin ffloor
bessel fasinh ffmod
cabs fatan fhypot
cbrt fcabs finf
ceil fcbrt finite
compound fceil flog
copysign fcompound flog10
cos fcopysign flogip
cosh fcos flog2
drem fcosh floor

fmod fpow logip
fneg fpstrpvetr log2
fp—gmathenv frelation neg
fp—getexptn frem nextdouble
fp—getround frint nextfloat
fp—gettrap fsin pi
fp—procentry fsinh pow
fp—procexit fsqrt randomx
fp—smathenv ftan relation
fp—setexptn ftan2 rem
fp—setround ftanh rint
fp—settrap gamma sin
fp—testrap hypot ‘ sinh
fp—tstexptn inf sqrt
fpgtrpvetrv log tan

fpi log10 tanh

Note: All math library functions are provided in single and double precision versions.

5-18

Tools Components (Continued)
Monitors

Mon16, mon32, mon332, mon332b, mon532 and
mon32GX are PROM-based firmware monitors for use
on a Series 32000-based development board. The
monitors allow the user to load, execute, and debug
development board programs with the dbg32 debug-
ger running on a host computer system. The monitors
also provide run-time services, such as physical 1/0,
interrupt handling, and error handling in the form of
supervisor calls.

Source to each monitor is provided so that it may be
modified, assembled, linked, and installed on other
Series-32000 based target boards.

Monfix

Monfix is a utility that creates a Series 32000 boot-
strap program by modifying a Series 32000 GNX exe-
cutable file.

Nburn

Nburn loads the specified bytes of a file to an EPROM
burner in one of several user-specified formats, includ-
ing ASCII-HEX and S-record.

Nm

The nm utility displays the symbol table of a Series
32000 GNX object file.

Size
The size utility displays size information for each sec-

tion and optional header information of a Series 32000
GNX object file.

Strip

The strip utility strips symbol and line number infor-
mation from a Series 32000 GNX object file.

Optional Compilers

A substantial amount of application code is developed
in a high-level language; therefore, the speed and effi-
ciency of the application are functions not only of
processor speed, but also of quality of code generat-
ed by the high-level language compiler. An inefficient
compiler can extract a significant performance penal-
ty. Likewise, a significant performance improvement
can be achieved for a much lower cost in software
rather than hardware. For this reason. National Semi-
conductor has developed a line of optimizing compil-
ers that generate extremely efficient code for the Se-
ries 32000 architecture.

Each of the optimizing compilers includes the state-of-
the-art GNX optimizer, based on advanced optimiza-
tion theory developed over the past 15 years. In addi-
tion, because all GNX-Version 3 optimizing compilers
use a standard calling sequencs, internal intermediate

representation, and object file format, mixed-language
programming is greatly simplified, aiding in the porting
of existing applications to the Series 32000 architec-
ture.

C Optimizing Compiler

The GNX-Version 3 C Optimizing Compiler fully imple-
ments the C programming language, as defined in The
C Programming Language by B. Kernighan and D. Rit-
chie. The C Optimizing Compiler is also compatible
with the UNIX System V C compiler, derived from the
portable C compiler (pcc). Several features of the
draft ANSI C standard (X3J11) are supported.

FORTRAN 77 Optimizing Compiler

The GNX-Version 3 FORTRAN 77 Optimizing Compil-
er fully implements the FORTRAN 77 programming
language, as defined by the American Standard publi-
cation Programming Language FORTHAN (ANS/
X3.9-1978). In addition, a command-iine option is pro-
vided that forces the compiler to accept as input only
programs that adhere to the FORTRAN 66 standard.

Pascal Optimizing Compiler

The GNX-Version 3 Pascal Optimizing Compiler fully
implements the Pascal programming language, as de-

fined by the International Standards Organization
(ISO) standard 1SO dp7185 level 1. Several useful
extensions to the Pascal language are supported. A
command-line option is provided that forces the com-
piler to accept as input only programs that adhere to
the 1SO standard.

SPLICE Support

The GNX development tools enable the use of the
SPLICE development tool, which can be used to de-
bug software/hardware on a Series 32000 target.
SPLICE provides a communication link between a Se-
ries 32000 target and a development system host that
allows users to down-load and map their software
onto target memory and debug this software using the
dbg32 debugger. The monitor resident on the SPLICE
communicates with dbg32 on the development host.

Source Products

The GNX development tools, as well as the optional
optimizing compilers, are available in source form for
use in porting to other potential development environ-
ments. Source code is provided on a VAX/UNIX bsd
tape. Contact Series 32000 Marketing for more infor-
mation regarding GNX source availability.

5-19

(¢ uoissap) sjoo Juawdojanaq (XNY) Hoddng-ss01d pue aAleN XINID 0002€ SaUas

Series 32000 GENIX Native and Cross-Support (GNX) Development Tools (Version 3)

Licensing

All binary versions of the Series 32000 GNX develop-
ment tools require the execution of National Semicon-
ductor’s binary user agreement. Because the GNX de-
velopment tools contain AT&T proprietary code, a
System V source license is prerequisite for obtaining a
source version of the GNX tools. Contact Series
32000 Marketing for more information regarding spe-
cific licensing issues.

Customer Support

National Semiconductor offers a full 90-day warranty
period. Extended warranty provisions can be arranged
by calling National Semiconductor’s Technical Sup-
port Engineering Center at the toll-free number listed
below.

National Semiconductor's Technical Support Engi-
neering Center has highly trained technical specialists
available to assist customers over the telephone with
any product-related technical problems.

For more information, please call (800) 759-0105 (in
the United States and Canada). Outside North Ameri-
ca, please contact your local National Semiconductor
office.

Ordering Information

Supported Host Environments and Order Codes:
SYS32/20:)

NSW-ASM-3-BHAF3 (included with SYS32/20 kit)
SYS32/30:

NSW-ASM-3-BHBF3 (included with SYS32/30 kit)
VAX/VMS:

NSW-ASM-3-BRVM

VAX/ULTRIX (UNIX bsd):

NSW-ASM-3-BRVX

Micro VAX/VMS:

NSW-ASM-3-BCVM

Micro VAX/ULTRIX:
NSW-ASM-3-BCVX
Sun-3:
NSW-ASM-3-BCSX

Each software package is delivered with one copy of
each appropriate manual. Additional manual sets may
be ordered using the following order codes:
NSP-ASM-NX3-MS: '

Manual set included with NSW-ASM-3-BHAF3 and
NSW-ASM-3-BHBF3

NSP-ASM-X3-MS:

Manual set included with NSW-ASM-3-BRVX, NSW-
ASM-3-BCVX, and NSW-ASM-3-BCSX
NSP-ASM-M3-MS:

Manual set included with NSW-ASM-3-BRVM and
NSW-ASM-3-BCVM

NSP-C-V3-M:

Manual set delivered with Optimizing C compiler (all
hosts)

NSP-F77-V3-M:

Manual set delivered with Optimizing FORTRAN 77
compiler (all hosts)

NSP-PAS-V3-M:

Manual set delivered with Optimizing Pascal compiler
(all hosts)

For further information regarding National Semicon-
ductor’'s software development tools and develop-
ment hosts, please refer to the following datasheets:
GNX-Version 3 C Optimizing Compiler

GNX-Version 3 FORTRAN 77 Optimizing Compiler
GNX-Version 3 Pascal Optimizing Compiler
SYS32/20 PC-Add-In Development Package
SYS32/30 PC-Add-In Development Package

SPLICE Development Tool

5-20

7 National Semiconductor

PRELIMINARY

Series 32000® GNX-Version 3
C Optimizing Compiler

m Generates high-quality code for the
Series 32000 architecture

m Implements the C Language as defined
by B. Kernighan and D. Ritchie in The C
Programming Language

M Uses state-of-the-art optimization
techniques

C ‘

§ Code
Generator

Supports mixed-language programming
Includes a complete run-time C library
and highly optimized math library
Incorporates many draft-proposed ANSI
C standard (X3J11) features

Compiles under UNIX®, ULTRIX™, and
VMSTM operating systems

TL/EE/10363-1

1.0 Introduction

A substantial amount of application code is developed
in a high-level language. Therefore, the speed and ef-
ficiency of the application are functions not only of
processor speed, but also of quality of code generat-
ed by the high-level language compiler. An inefficient
compiler can extract a significant performance penal-
ty. Likewise, a significant performance improvement
can be achieved for much lower cost in software rath-
er than hardware. For this reason, National Semicon-
ductor has developed a line of optimizing compilers
that generate extremely efficient code for the Series
32000 architecture.

1.1 Product Overview

The Series 32000 GNX-Version 3 C Optimizing Com-
piler is a member of National Semiconductor’s opti-
mizing compiler family, which also includes compilers
that support the Pascal and FORTRAN 77 program-
ming languages. Because all three optimizing compil-
ers use a standard calling sequence, internal interme-
diate representation, and object file format, mixed-lan-
guage programming is greatly simplified. The ability to
use mixed-language programming simplifies the port-
ing of pre-existing applications and code reuse. A de-
tailed discussion of mixed-language programming is
presented in the GNX-Version 3 C Optimizing Compil-
er Reference Manual.

The G Optimizing Compiler fully implements the C
Language, as defined by B. Kernighan and D. Ritchie.

The C Optimizing Compiler is also compatible with the
UNIX Systtem V C compiler, derived from the fully por-
table C compiler (pcc). Several features of the draft
ANSI C standard (X3J11) are supported.

The input to the C Optimizing Compiler is a C lan-
guage source program. The output, controlled by
command-line options, is either a Series 32000 exe-
cutable module, a Series 32000 object module, or Se-
ries 32000 assembly code.

1.2 Native and Cross-Support

The GNX-Version 3 C Optimizing Compiler is available
hosted as a cross-support compiler on the VAXTM se-
ries of computers, running the VMS, UNIX (bsd), and
ULTRIX operating systems and on a Sun-3® worksta-
tion running SunOS™, Also supported are National
Semiconductor’'s SYS32TM/20 and SYS32/30 devel-
opment environments.

1.3 GNX Development Tools

The GNX-Version 3 C Optimizing Compiler is an inte-
gral component of the GNX Cross-Development tool
set. The GNX-Version 3 Assembler Package includes
the Series 32000 assembler, the GNX linker, debug-
gers, libraries, and development board monitors. The
GNX-Version 3 Assembler Package is a prerequisite
for the GNX-Version 3 C Optimizing Compiler. See the
GNX-Version 3 Development Tools Datasheet for
more information on the GNX Tools.

5-21

Jajidwo) Bujziwndo J € UOISISA-XND 0002€ Salas

Series 32000 GNX-Version 3 C Optimizing Compiler

1.0 Introduction (Continued)

The SYS32/20 and SYS32/30 PC-Add-In Develop-
ment Packages are complets, high-performance
packages that convert an IBM®-PCTM/AT or compati-
ble computer into a powerful multi-user system for de-
veloping applications that use the Series 32000 fami-
ly. The SYS32 systems are based on the Series
32000 processor family; the SYS32/20 includes an
NS32032 Central Processing Unit, and the SYS32/30
is based on the NS32332 CPU. Both the SYS32/20
and SYS32/30 run a derivative of the UNIX System
V.3 operating system. Because these host systems
are themselves based on the Series 32000 processor
family, application code can be debugged on the host
system without down-loading to target hardware.

2.0 Compiler Structure

The C Optimizing Compiler is a modular language
processor consisting of five separate programs: the
driver, the macro preprocessor (cpp), the parser (front
end), the optimizer, and the code generator.

2.1 The Driver

The driver is a program that parses and interprets the
command line and, in turn, sequentially calls each of
the other programs, based on its input and the com-
mand-line options invoked. Under the UNIX operating
system, the assembler and linker are also automati-
cally invoked by the driver as required; under VMS,
the assembler is invoked by the driver, and linking is
done at the command line.

2.2 'i‘he Macro Preprocessor (cpp)

The macro preprocessor is the standard C preproces-
sor, known as cpp. The macro preprocessor’s input is
the C source program with preprocessor macros; its
output is processed C code, with all preprocessor
commands expanded and transformed as necessary.
The macro preprocessor can be used to define con-
stants, insert text from another file, or conditionally
include or exclude source code from compilation
based on a testable condition.

2.3 The C Language Parser (front end)

The front end of the C Optimizing Compiler is derived
from the UNIX portable C compiler (pcc), with bug fix-
es and extensions included. The front end’s input is C
source code; its output is an intermediate representa-
tion that can be passed either to the optimizer or the
code generator.

Among the extensions implemented in the front end
are:

® Unsigned constants
® Enumerated types

* Improved structure manipulation; structures can be
assigned, passed as parameters to functions, and
returned by functions. Structure and union member
names can be reused in other structures and un-
ions in the same module. No limit is imposed on the
size of structures.

* Void data type
® Signed and unsigned bitfields

* Volatile type; variables can be declared as type
volatile to make them inaccessible to the optimiz-
er. This is useful for mapping to external devices.

e Const keyword

The void, volatile, and const extensions conform to
ANSI C standard (X3J11) features.

The output of the front end is a proprietary intermedi-
ate representation that can be either used as input to
the optional optimizer phase or passed directly to the
code generator. This intermediate language, known
as IR32, is an attributed tree-structured representa-
tion. IR32 is completely high-level language indepen-
dent; all of the GNX optimizing compilers produce the
same internal representation. This allows a common
back end to be shared by all GNX optimizing compil-
ers.

2.4 The Optimizer

The state-of-the-art GNX optimizer is based on ad-
vanced optimization theory developed over the past
15 years. Depending on the compiler and application
code characteristics, the GNX optimizer improves
code performance from 15 to 200 percent beyond that
of other compilers.

The GNX-Version 3 C optimizer is the most innovative
component of the GNX Optimizing Compilers. The op-
timizer’s input is an IR32 intermediate representation
file; its output is an optimized IR32 file. The optimiza-
tion pass is optional.

Unlike many other optimizers that are local in nature,
optimizations are performed across the whole pro-
gram by using sophisticated global-data-flow analysis.
The optimization process can be thought of as a five-
step sequence. The sequence of optimizations has
been carefully chosen to ensure that each optimiza-
tion is performed to maximum effect and to provide
more opportunities for later optimizations. These
steps are as follows:

Step One—L.ocal Optimizations

The source program is read-in one procedure at a

time. A procedure is then partitioned into basic blocks:

sequences of code that have branches only at entry

or exit. Optimizations performed at this stage include:

® Value Propagation—replacing variables with their
most recent values

e Constant Folding—evaluating expressions that
consist solely of constants

* Redundant Assignment Elimination—eliminating
assignments that are not used or that are reas-
signed prior to use

5.22

2.0 Compiler Structure (Continued)

The relationships between the various optimizations
are illustrated as follows:

The program Sequence

a=4;

if (a*8 < 0) b = 15;

else b = 20;

«es code which uses b but

not a ...

is translated by the compiler front end into the fol-
lowing intermediate code

a< 4
if (a*8 >= 0) goto Ll
b€« 15
goto L2
Ll: b« 20
L2: ...
which is transformed by “value propagation” into
a4
if (4*8 >= 0) goto Ll
b < 15
goto L2
Ll: b« 20
L2: ...
which after “constant folding” becomes
a4
if (true) goto Ll
b« 15
goto L2
Ll: b« 20
L2: ...
“dead code removal” results in
a<4
goto L1
Ll: b« 20
L2: ..o

which is transformed by another “flow optimiza-
tion” into

a<4

b« 20

Since there is no further use of a, a «— 4 is a "re-
dundant assignment:”

b «— 20

LY

Step Two—Flow Optimizations

A flow graph is constructed. Each basic block is a
node in the graph, with “arrows’ drawn to represent

program flow. Optimizations performed at this stage

include: .

e Branch Elimination—branches to branches are
removed. Code may be reordered to eliminate
branches.

* Dead Code Removal—code that will never be ex-
ecuted is removed.

The following diagram is an example of a flow graph:

bb #1
if ..

T;u/ \Ql‘se

| bb #2 l bb #3
\ /

Step Three—Global-Data-Flow Analysis

Global-data-flow analysis is a process that identifies
desirable global code transformations that can speed
code execution. Since studies have shown that most
programs spend 90 percent or more of their time in
loops, particular attention is paid to transformations
that allow loops to execute faster. This involves sever-
al techniques:

¢ Fully Redundant Expression Elimination—Ex-
pressions that are computed twice on the same
path are instead computed only once, with the re-
sult saved, usually in a register.

* Partially Redundant Expression Elimination—If
a path exists that contains a computation and a
path exists that does not contain a computation,
the computation is placed in each path. This makes
the expression fully redundant, allowing it to be
eliminated.

e Loop Invariant Code Motion—Values that are
computed repeatedly inside of a loop are instead
computed outside the loop and the result saved.

¢ Strength Reduction—Complex instructions are
replaced by simpler substitutes (i.e., multiplications
may be replaced with a sequence of additions).

® Induction Variable Elimination—Variables that
maintain a fixed relation to other variables are re-
placed.

TL/EE/10363-2

Step Four—Register Allocation

Register allocation is the process of placing variables
in registers rather than main memory, allowing much
faster access times. Proper allocation of registers can
lead to significant improvement in execution speed.
Most optimizing compilers attempt register allocation
for local variables, to avoid problems caused by “ali-
asing,” or referring to a variable in more than one way.
By using a sophisticated algorithm, the GNX-Version 3
C Optimizing Compiler considers nearly all variables
as candidates for register allocations.

5-23

Jajidwo? bujziwndo 9 € uoisIdaA-XND 000Z€ Sal9S

Series 32000 GNX-Version 3 C Optimizing Compiler

2.0 Compiler Structure (Continued)

The algorithm used by the optimizer is called the col-
oring algorithm, derived from graph theory. The “live
range” of each variable is constructed. The live range
is the program path along which a variable has a val-
ue; assignment to a variable generally starts a new
live range, which terminates with the last use of that
value. Two variables that do not have intersecting live
ranges can share a register. More frequently used
variables are given priority for register allocation. In
this way, maximum usage can be made of the regis-
ters. Other optimizations performed at this stage are:

¢ Allocation Of Safe And Scratch Registers—By
convention, registers RO through R2 and FO
through F3 are considered ‘‘scratch” registers;
their values are not retained across procedure
calls. Usage of these registers can reduce over-
head of procedure calls.

¢ Register Parameter Allocation—For static rou-
tines, parameters are passed in registers whenever
possible.

Step Five—Code Rewrite
Code is rewritten in IR32 to be passed to the code
generator. Code is reorganized where necessary to
increase performance.

2.5 The Code Generator

The code generator’s input is an IR32 file; its output is
assembly code that can be assembled by the GNX
assembler into an object module.

The code generator matches expression trees with
optimal code sequences. Several “peephole” opti-
mizations are performed by the code generator: fur-
ther reduction of arithmetic identities, stack and frame
alignments, and strength reductions.

In addition, the target CPU and FPU are taken into
consideration when code is produced. Sequences of
code are chosen based on the characteristics of the

target processor specified by the user. This further in-
creases code efficiency.

3.0 Ordering Information
Supported Host Environments and Order Codes:

SYS32/20: MicroVAX/VMS:
NSW-C-3-BHAF3 NSW-C-3-BCVM
SYS32/30: MicroVAX/ULTRIX:
NSW-C-3-BHBF3 NSW-C-3-BCVX
VAX/VMS: Sun-3:
NSW-C-3-BRVM NSW-C-3-BCSX
VAX/ULTRIX (UNIX bsd):

NSW-C-3-BRVX

GNX-Version 3 Assembler and Cross-Development
tools (required for use with the Optimizing C Compil-
er):

SYS32/30: NSW-ASM-3-BHAF3 (provid-
ed with 8YS32/20 system)

SYS32/30: NSW-ASM-3-BHBF3 (provid-
ed with SYS32/30 system)

VAX/VMS: NSW-ASM-3-BRVM

VAX/ULTRIX

(UNIX bsd:) NSW-ASM-3-BRVX

MicroVAX/VMS: NSW-ASM-3-BCVM

MicroVAX/ULTRIX: NSW-ASM-3-BCVX

Sun-3: NSW-ASM-3-BCSX

For further information regarding National Semicon-
ductor's software development tools and develop-
ment hosts, please refer to the following datasheets:
GNX-Version 3 Development Tools
GNX-Version 3 FORTRAN 77 Compiler
GNX-Version 3 Pascal Compiler
SYS32/20 PC-Add-In-Development Package
SYS32/30 PC-Add-In-Development Package

5-24

7 National Semiconductor

PRELIMINARY

Series 32000® GNX-Version 3
FORTRAN 77 Optimizing Compiler

FORTRAN 77

m Generates high-quality code for the
Series 32000 architecture

m Implements the FORTRAN 77 Language
as described by the American Standard
publication Programming Language
FORTRAN (ANS/ X3.9-1978)

W Uses state-of-the-art optimization
techniques

Generator

TL/EE/10362-1

Supports mixed-language programming
Includes complete FORTRAN intrinsic
function and 1/0 libraries

Implements many extensions to
standard FORTRAN 77

Compiles under UNIX®, ULTRIX™, and
VMST™ operating systems

1.0 Introduction

A substantial amount of application code is developed
in a high-level language. Therefore, the speed and ef-
ficiency of the application are functions not only of
processor speed, but also of quality of code generat-
ed by the high-level language compiler. An inefficient
compiler can extract a significant performance penal-
ty. Likewise, a significant performance improvement
can be achieved for much lower cost in software rath-
er than hardware. For this reason, National Semicon-
ductor has developed a line of optimizing compilers
that generate extremely efficient code for the Series
32000 architecture.

1.1 Product Overview

The Series 32000 GNX-Version 3 FORTRAN 77 Opti-
mizing Compiler is a member of National Semiconduc-
tor's optimizing compiler family, which also includes
compilers that support the C and Pascal programming
languages. Because all three optimizing compilers use
a standard calling sequence, internal intermediate
representation, and object file format, mixed-language
programming is greatly simplified. The ability to use
mixed-language programming simplifies the porting of
pre-existing applications and code reuse. A detailed
discussion of mixed-language programming is pre-
sented in the GNX-Version 3 FORTRAN 77 Optimiz-
ing Compiler Reference Manual.

The FORTRAN 77 Optimizing Compiler fully imple-
ments the FORTRAN 77 programming language, as

defined by the American Standard publication Pro-
gramming Language FORTRAN (ANS/ X3.9-1978). In
addition, a command-line option is provided that
forces the compiler to accept as input only programs
that adhere to the FORTRAN 66 standard.

The input to the FORTRAN 77 Optimizing Compiler is
a FORTRAN 77 language source program. The out-
put, controlled by command-line options, is either a
Series 32000 executable module, a Series 32000 ob-
ject module, or Series 32000 assembly code.

1.2 Native and Cross-support

The GNX-Version 3 FORTRAN 77 Optimizing Compil-
er is available hosted as a cross-support compiler on
the VAX™ series of computers, running the VMS,
UNIX (bsd), and ULTRIX operating systems. Also sup-
ported are National Semiconductor's SYS32T™™/20
and SYS32/30 development environments.

1.3 GNX Development Tools

The GNX-Version 3 FORTRAN 77 Optimizing Compil-
er is an integral component of the GNX Cross-devel-
opment tool set. The GNX-Version 3 Assembler Pack-
age includes the Series 32000 assembler, the GNX
linker, debuggers, libraries, and development board
monitors. The GNX-Version 3 Assembler Package is a
prerequisite for the GNX-Version 3 FORTRAN 77 Op-
timizing Compiler. See the GNX-Version 3 Develop-
ment Tools Datasheet for more information on the
GNX Tools.

5.25

Jajidwo Buiziwndo 22 NVHLHO4 € UOISISA-XND 0002€ SaMas

Series 32000 GNX-Version 3 FORTRAN 77 Optimizing Compiler

1.0 Introduction (Continued)

The SYS32/20 and SYS32/30 PC-Add-In Develop-
ment Packages are complete, high-performance
packages that convert an IBM®-PCT™M/AT or compati-
ble computer into a powerful multi-user system for de-
veloping applications that use the Series 32000 fami-
ly. The SYS32 systems are based on the Series
32000 processor family; the SYS32/20 includes an
NS32032 Central Processing Unit, and the SYS32/30
is based on the NS32332 CPU. Both the SYS32/20
and SYS32/30 run a derivative of the UNIX System
V.3 operating system. Because these host systems
are themselves based on the Series 32000 processor
family, application code can be debugged on the host
system without down-loading to target hardware.

2.0 Compiler Structure

The FORTRAN 77 Optimizing Compiler is a modular
language processor consisting of five separate pro-
grams: the driver, the macro preprocessor (cpp), the
parser (front end), the optimizer, and the code genera-
tor.

2.1 The Driver

The driver is a program that parses and interprets the
command line and, in turn, sequentially calls each of
the other programs, based on its input and the com-
mand-line options invoked. Under the UNIX operating
system, the assembler and linker are also automati-
cally invoked by the driver as required; under VMS,
the assembler is invoked by the driver, and linking is
done at the command line.

2.2 The Macro Preprocessor (cpp)

The macro preprocessor is the standard C-language
preprocessor, known as cpp. Preprocessing is an op-
tional step and is performed only if macros are defined
in the FORTRAN 77 source code. The macro preproc-
essor’s input is the FORTRAN 77 program with pre-
processor macros; its output is processed FORTRAN
77 code, with all preprocessor commands expanded
and transformed as necessary. The macro preproces-
sor can be used to define constants, insert text from
another file, or conditionally include or exclude source
code from compilation based on a testable condition.

2.3 FORTRAN 77 Language Parser (front end)

The FORTRAN 77 language parser, known as
f77—fe, takes as input a FORTRAN 77 program. The
output is an intermediate representation that can be
passed either to the optimizer or the code generator.
Several extensions to standard FORTRAN are imple-
mented in the FORTRAN 77 language parser.

Among the extensions implemented in the front end

are:

® Double Complex data type; each datum is repre-
sented by a pair of double-precision real variables.

® Short Integer data type; declarations of type
Integer*2 are accepted

o Hollerith (nh) notation
® Variable-length program lines

e unlimited identifier length and underscores in iden-
tifier names
® non-integer constants (binary, octal, and hexadeci-
mal)
e recursion; procedures may call themselves directly
or through a chain of other procedures
Note: A command-line option is provided that will force the compiler to
accept only code that conforms to the FORTRAN 77 (or
FORTRAN 66) standard (ANS| X3.9-1978).
The output of the front end is a proprietary intermedi-
ate representation that can be either used as input to
the optional optimizer phase or passed directly to the
code generator. This intermediate language, known
as IR32, is an attributed tree-structured representa-
tion. IR32 is completely high-level language indepen-
dent; all of the GNX optimizing compilers produce the
same internal representation. This allows a common
back end to be shared by all GNX optimizing compil-
ers.

2.4 The Optimizer

The state-of-the-art GNX optimizer is based on ad-
vanced optimization theory developed over the past
15 years. Depending on the compiler and application
code characteristics, the GNX optimizer improves
code performance from 15 to 200 percent beyond that
of other compilers.

The GNX-Version 3 FORTRAN 77 optimizer is the
most innovative component of the GNX Optimizing
Compilers. The optimizer’s input is an IR32 intermedi-
ate representation file; its output is an optimized IR32
file. The optimization pass is optional.

Unlike many other optimizers that are local in nature,
optimizations are performed across the whole pro-
gram by using sophisticated global-data-flow analysis.

The optimization process can be throught of as a five-
step sequence. The sequence of optimizations has
been carefully chosen to ensure that each optimiza-
tion is performed to maximum effect and to provide
more opportunities for later optimizations. These
steps are as follows:

Step One—Local Optimizations

The source program is read-in one procedure at a

time. A procedure is then partitioned into basic

blocks: sequences of code that have branches only

at entry or exit. Optimizations performed at this stage

include:

¢ Value Propagation—replacing variables with their
most recent values

¢ Constant Folding—evaluating expressions that
consist solely of constants

¢ Redundant Assignment Elimination—seliminating
assignments that are not used or that are reas-
signed prior to use

5-26

2.0 Compiler Structure (Continued)

The relationships between the various optimizations
are illustrated as follows:

The program Sequence
a=4
IF (a*8.LT.0) THEN
b=15
ELSE
b =20
ENDIF
... code which uses b butnota. ..

is transtated by the Compiler front end into the fol-
lowing intermediate code

a<4
if (a* 8 >= 0) goto L1
b« 15
goto L2
L1:b<«20
L2: ...
which is transformed by ‘‘value propagation” into
a<4
if (4 *8 >= 0) goto L1
b« 15
goto L2
L1:b <20
L2: ...
which after “constant folding” becomes
a<4
if (true) goto L1
b« 15
goto L2
L1:b <« 20
L2: ...
“dead code removal” results in
a<4
goto L1
L1:b<20
L2: ...
which is transformed by another “flow optimiza-
tion” into
a<4
b« 20

Since there is no further use of a, a «— 4 is a “re-
dundant assignment:”

b <20

Step Two—Flow Optimizations

A flow graph is constructed. Each basic block is a
node in the graph, with “arrows” drawn to represent

program flow. Optimizations performed at this stage

include:

* Branch ellmination—branches to branches are
removed. Code may be reordered to eliminate
branches.

¢ Dead code removal—code that will never be exe-
cuted is removed.

The following diagram is an example of a flow graph:

bb #1
e

Step Three—-Global-Data-Flow Analysis

Global-data-flow analysis is a process that identifies
desirable global code transformations that can speed
code execution. Since studies have shown that most
programs spend 90 percent or more of their time in
loops, particular attention is paid to transformations
that allow loops to execute faster. This involves sever-
al techniques:

¢ Fully redundant expression elimination—Ex-
pressions that are computed twice on the same
path are instead computed only once, with the re-
sult saved, usually in a register.

¢ Partially redundant expression elimination—If a
path exists that contains a computation and a path
exists that does not contain a computation, the
computation is placed in each path. This makes the
expression fully redundant, allowing it to be elimi-
nated.

e Loop invariant code motion—Values that are
computed repeatedly inside of a loop are instead
computed outside the loop and the result saved.

¢ Strength reduction—Complex instructions are re-
placed by simpler substitutes (i.e., multiplications
may be replaced with a sequence of additions).

® Induction variable elimination—Variables that
maintain a fixed relation to other variables are re-
placed.

TL/EE/10362-2

Step Four—Register Allocation

Register allocation is the process of placing variables
in registers rather than main memory, allowing much
faster access times. Proper allocation of registers can
lead to significant improvement in execution speed.
Most optimizing compilers attempt register allocation
for local variables, to avoid problems caused by “ali-
asing,” or referring to a variable in more than one way.
By using a sophisticated algorithm, the GNX-Version 3
FORTRAN 77 Optimizing Compiler considers nearly
all variables as candidates for register allocations.

5-27

lapdwog buiziwndo 22 NVHLHOL € UOISISA-XND 0002€ SaHas

Series 32000 GNX-Version 3 FORTRAN 77 Optimizing Compiler

2.0 Compiler Structure (Continued)

The algorithm used by the optimizer is called the col-
oring algorithm, derived from graph theory. The “live
range” of each variable is constructed. The live range
is the program path along which a variable has a val-
ue; assignment to a variable generally starts a new
live range, which terminates with the last use of that
value. Two variables that do not have intersecting live
ranges can share a register. More frequently used
variables are given priority for register allocation. In
this way, maximum usage can be made of the regis-
ters. Other optimizations performed at this stage are:

e Allocation of safe and scratch registers—By
convention, registers RO through R2 and FO
through F3 are considered ‘“‘scratch” registers;
their values are not retained across procedure
calls. Usage of these registers can reduce over-
head of procedure calls.

® Register Parameter Allocation—for static rou-
tines, parameters are passed in registers whenever
possible.

Step Five—Code Rewrite

Code is rewritten in IR32 to be passed to the code
generator. Code is reorganized where necessary to
increase performance.

2.5 The Code Generator

The code generator’s input is an IR32 file; its output is
assembly code that can be assembled by the GNX
assembler into an object module.

The code generator matches expression trees with
optimal code sequences. Several “peephole” opti-
mizations are performed by the code generator: fur-
ther reduction of arithmetic identities, stack and frame
alignments, and strength reductions.

In addition, the target CPU and FPU are taken into
consideration when code is produced. Sequences of
code are chosen based on the characteristics of the
target processor specified by the user. This further in-
creases code efficiency.

3.0 Ordering Information
Supported Host Environments and Order Codes:

SYS32/20: VAX/ULTRIX (UNIX bsd):
NSW-F77-3-BHAF3 NSW-F77-3-BRVX
SYS32/30: Micro VAX/VMS:
NSW-F77-3-BHBF3 NSW-F77-3-BCVM
VAX/VMS: Micro VAX/ULTRIX:

NSW-F77-3-BRVM NSW-F77-3-BCVX
GNX-Version 3 Assembler and Cross-development
tools (required for use with the Optimizing FORTRAN
77 Compiler):

SYS32/30: NSW-ASM-3-BHAF3
(provided with SYS32/20
system)
NSW-ASM-3-BHBF3
(provided with SYS32/30
system)

VAX/VMS: NSW-ASM-3-BRVM

VAX/ULTRIX (UNIX bsd): NSW-ASM-3-BRVX

Micro VAX/VMS: NSW-ASM-3-BCVM

Micro VAX/ULTRIX: NSW-ASM-3-BCVX
For further information regarding National Semicon-
ductor’s software development tools and develop-
ment hosts, please refer to the following datasheets:

GNX-Version 3 Development Tools

GNX-Version 3 C Compiler

GNX-Version 3 Pascal Compiler

8YS32/20 PC-Add-In-Development Package

SYS32/30 PC-Add-In-Development Package

SYS32/30:

5-28

7 National Semiconductor

PRELIMINARY

Series 32000® GNX-Version 3 Pascal
Optimizing Compiler

Pascal

m Generates high-quality code for the
Series 32000 architecture

m Implements the Pascal Language as
described by the International Standards
Organization (ISO) standard /SO dp7185
level 1

m Uses state-of-the-art optimization
techniques

Code
Generator

Supports mixed-language programming
Includes a complete Pascal run-time
library and highly optimized math library
Implements many extensions to
standard Pascal

Compiles under UNIX®, ULTRIX™ and
VMSTM operating systems

TL/EE/10365-1

1.0 Introduction

A substantial amount of application code is developed
in a high-level language. Therefore, the speed and ef-
ficiency of the application are functions not only of
processor speed, but also of quality of code generat-
ed by the high-level language compiler. An inefficient
compiler can extract a significant performance penal-
ty. Likewise, a significant performance improvement
can be achieved for much lower cost in software rath-
er than hardware. For this reason, National Semicon-
ductor has developed a line of optimizing compilers
that generate extremely efficient code for the Series
32000 architecture.

1.1 Product Overview

The Series 32000 GNX-Version 3 Pascal Optimizing
Compiler is a member of National Semiconductor’s
optimizing compiler family, which also includes compil-
ers that support the C and FORTRAN 77 program-
ming languages. Because all three optimizing compil-
ers use a standard calling sequence, internal interme-
diate representation, and object file format, mixed-lan-
guage programming is greatly simplified. The ability to
use mixed-language programming simplifies the port-
ing of pre-existing applications and code reuse. A de-
tailed discussion of mixed-language programming is
presented in the GNX-Version 3 Pascal Optimizing
Compiler Reference Manual.

The Pascal Optimizing Compiler fully implements the
Pascal programming language, as defined by the In-
ternational Standards Organization (ISO) standard
ISO dp7185 level 1, with several useful extensions to
the compiler extensions found in the University of Cali-
fornia, Berkeley Pascal compiler (pe). In addition, a
command-line option is provided that forces the com-
piler to accept as input only programs that adhere to
the ISO standard.

The input to the Pascal Optimizing Compiler is a Pas-
cal language source program. The output, controlled
by command-line options, is either a Series 32000 ex-
ecutable module, a Series 32000 object module, or
Series 32000 assembly code.

1.2 Native and Cross-Support

The GNX-Version 3 Pascal Optimizing Compiler is
available hosted as a cross-support compiler on the
VAXTM series of computers, running the VMS, UNIX
(bsd), and ULTRIX operating systems. Also supported
are National Semiconductor's SYS32™/20 and
SYS32/30 development environments.

1.3 GNX Development Tools

The GNX-Version 3 Pascal Optimizing Compiler is an
integral component of the GNX Cross-development
tool set. The GNX-Version 3 Assembler Package in-
cludes the Series 32000 assembler, the GNX linker,

5-29

Jajidwo) Buiziwndo |eased ¢ UOISIDA-XND 0002€ SaMaS

Series 32000 GNX-Version 3 Pascal Optimizing Compiler

1.0 Introduction (Continued)

debuggers, libraries, and development board moni-
tors. The GNX-Version 3 Assembler Package is a pre-
requisite for the GNX-Version 3 Pascal Optimizing
Compiler. See the GNX-Version 3 Development Tools
Datasheet for more information on the GNX Tools.

The SYS32/20 and SYS32/30 PC-Add-In Develop-
ment Packages are complete, high-performance
packages that convert an IBM-PCTM/AT or compati-
ble computer into a powerful multi-user system for de-
veloping applications that use the Series 32000 fami-
ly. The SYS32 systems are based on the Series
32000 processor family; the SYS32/20 includes an
NS32032 Central Processing Unit, and the SYS32/30
is based on the NS32332 CPU. Both the SYS32/20
and SYS32/30 run a derivative of the UNIX System
V.3 operating system. Because these host systems
are themselves based on the Series 32000 processor
family, application code can be debugged on the host
system without down-loading to target hardware.

2.0 Compiler Structure

The Pascal Optimizing Compiler is a modular lan-
guage processor consisting of five separate programs:
the driver, the macro preprocessor (cpp), the parser
(front end), the optimizer, and the code generator.

2.1 The Driver

The driver is a program that parses and interprets the
command line and, in turn, sequentially calls each of
the other programs, based on its input and the com-
mand-line options invoked. Under the UNIX operating
system, the assembler and linker are also automati-
cally invoked by the driver as required; under VMS,
the assembler is invoked by the driver, and linking is
done at the command line.

2.2 The Macro Preprocessor (cpp)

The macro preprocessor is the standard C-language
preprocessor, known as cpp. Preprocessing is an op-
tional step and is performed only if macros are defined
in the Pascal source code. The macro preprocessor’s
input is the Pascal program with preprocessor macros;
its output is processed Pascal code, with all preproc-
essor commands expanded and transformed as nec-
essary. The macro preprocessor can be used to de-
fine constants, insert text from another file, or condi-
tionally include or exclude source code from compila-
tion based on a testable condition.

2.3 The Pascal Language Parser (front end)

The Pascal language parser, known as pas._fe, takes
as input a Pascal program. The output is an intermedi-
ate representation that can be passed either to the
optimizer or the code generator. Conformant array pa-
rameters, as defined in the ISO level 1 Standard, are
fully supported. Several extensions to standard Pascal
are implemented in the Pascal language parser.

Among the extensions implemented in the front end
are:

e Separate compilation; programs can be divided into
a number of files that can be compiled separately

e |ongreal data type; double-precision (64-bit) float-
ing point values

e String padding of constant strings with blanks
® Conversions of pointers to integers and vice versa

e Unlimited identifier length and underscores in iden-
tifier names

¢ Non-integer constants (binary, octal, and hexadeci-
mal)

o Constant expressions; constants can be defined in
terms of mathematical expressions

* predefined argc and argv functions; allows appli-
cation programs to easily accept and process com-
mand-line arguments

Note: A command-line option is provided that will force the compiler to

accept only code that conforms to the ISO Pascal standard /SO
dp7185 level 1.

The output of the front end is a proprietary intermedi-
ate representation that can be either used as input to
the optional optimizer phase or passed directly to the
code generator. This intermediate language, known
as IR32, is an attributed tree-structured representa-
tion. IR32 is completely high-level language indepen-
dent; all of the GNX optimizing compilers produce the
same internal representation. This allows a common
back end to be shared by all GNX optimizing compil-
ers.

2.4 The Optimizer

The state-of-the-art GNX optimizer is based on ad-
vanced optimization theory developed over the past
15 years. Depending on the compiler and application
code characteristics, the GNX optimizer improves
code performance from 15 to 200 percent beyond that
of other compilers.

The GNX-Version 3 Pascal optimizer is the most inno-
vative component of the GNX Optimizing Compilers.
The optimizer’s input is an IR32 intermediate repre-
sentation file; its output is an optimized IR32 file. The
optimization pass is optional.

Unlike many other optimizers that are local in nature,
optimizations are performed across the whole pro-
gram by using sophisticated global-data-flow analysis.
The optimization process can be thought of as a five-
step sequence. The sequence of optimizations has
been carefully chosen to ensure that each optimize is
performed to maximum effect and to provide more op-
portunities for later optimizations. These steps are as
follows:

Step One—Local Optimizations

The source program is read-in one procedure at a
time. A procedure is then partitioned into basic
blocks: sequences of code that have branches only

5-30

2.0 Compiler Structure (Continued)

at entry or exit. Optimizations performed at this stage

include:

® Value Propagation—replacing variables with their
most recent values

* Constant Folding—evaluating expressions that
consist solely of constants

* Redundant Assignment Elimination—eliminating
assignments that are not used or that are reas-
signed prior to use

Step Two—Flow Optimizations

A flow graph is constructed. Each basic block is a

node in the graph, with “arrows” drawn to represent

program flow. Optimizations performed at this stage

include:

¢ Branch elimination—branches to branches are
removed. Code may be reordered to eliminate
branches.

¢ Dead code removal—code that will never be exe-
cuted is removed.

The following diagram is an example of a flow graph:

bb #1
If..

Ty \lee
N

Step Three—Global-Data-Flow Analysis

Global-data-flow analysis is a process that identifies
desirable global code transformations that can speed
code execution. Since studies have shown that most
programs spend 90 percent or more of their time in
loops, particular attention is paid to transtormations
that allow loops to execute faster. This involves sever-
al techniques:

e Fully redundant expression elimination—Ex-
pressions that are computed twice on the same
path are instead computed only once, with the re-
sult saved, usually in a register.

¢ Partially redundant expression elimination—If a
path exists that contains a computation and a path
exists that does not contain a computation, the
computation is placed in each path. This makes the
expression fully redundant, allowing it to be elimi-
nated.

e Loop invariant code motion—Values that are
computed repeatedly inside of a loop are instead
computed outside the loop and the result saved.

¢ Strength reduction—Complex instructions are re-
placed by simpler substitutes (i.e., multiplications
may be replaced with a sequence of additions).

¢ Induction variable elimination—Variables that
maintain a fixed relation to other variables are re-
placed.

TL/EE/10365-2

The relationship between the various optimizations
are illustrated as follows:

The program sequence

a:= 4;
if(a*8 <0)thenb:= 15;
b:= 20;

... code which uses b butnota...

is translated by the Compiler front end into the fol-
lowing intermediate code
a<e4
if (@* 8 >= 0) goto L1
b« 15
goto L2
L1: b« 20
L2:...
which is transformed by *value propagation” into
a<4
if (48 >=0)goto L1
b« 15
goto L2
L1:b<«20
L2:...
which after “constant folding” becomes
a4
if (true) goto L1
b« 15
goto L2
L1: b« 20
La:...
“dead code removal” results in
a<4
goto L1
L1:b<«20
L2:...
which is transformed by another "flow optimiza-
tion” into
a4
b« 20

Since there is no further use of a, a «— 4 is a “re-
dundant assignment:”

b« 20

Step Four—Register Allocation

Register allocation is the process of placing variables
in registers rather than main memory, allowing much
faster access times. Proper allocation of registers can
lead to significant improvement in execution speed.
Most optimizing compilers attempt register allocation
for local variables, to avoid problems caused by “ali-
asing,” or referring to a variable in more than one way.
By using a sophisticated algorithm, the GNX-Version 3
Pascal Optimizing Compiler considers nearly all vari-
ables as candidates for register allocations.

5-31

saidwo) Buiziundo [eosed € UOISIBA-XND 0002€ SalIas

Series 32000 GNX-Version 3 Pascal Optimizing Compiler

2.0 Compiler Structure (Continued)

The algorithm used by the optimizer is called the col-
oring algorithm, derived from graph theory. The “live
range” of each variable is constructed. The live range
is the program path along which a variable has a val-
ue; assignment to a variable generally starts a new
live range, which terminates with the last use of that
value. Two variables that do not have intersecting live
ranges can share a register. More frequently used
variables are given priority for register allocation. In
this way, maximum usage can be made of the regis-
ters. Other optimizations performed at this stage are:

¢ Allocation of safe and scratch registers—By
convention, registers RO through R2 and FO
through F3 are considered “scratch” registers;
their values are not retained across procedure
calls. Usage of these registers can reduce over-
head of procedure calls.

e Register Parameter Allocation—For static rou-
tines, parameters are passed in registers whenever
possible.

Step-Five—Code Rewrite

Code is rewritten in IR32 to be passed to the code
generator. Code is reorganized where necessary to
increase performance.

2.5 The Code Generator

The code generator’s input is an IR32 file; its output is
assembly code that can be assembled by the GNX
assembler into an object module.

The code generator matches expression trees with
optimal code sequences. Several “peephole” opti-
mizations are performed by the code generator: fur-
ther reduction of arithmetic identities, stack and frame
alignments, and strength reductions.

In addition, the target CPU and FPU are taken into
consideration when code is produced. Sequences of
code are chosen based on the characteristics of the
target processor specified by the user. This further in-
creases code efficiency.

3.0 Ordering Information

Supported Host Environments and Order Codes:
SYS32/20:

NSW-PAS-3-BHAF3

SYS32/30:

NSW-PAS-3-BHBF3

VAX/VMS:

NSW-PAS-3-BRVM

VAX/ULTRIX (UNIX bsd):

NSW-PAS-3-BRVX

Micro VAX/VMS:

NSW-PAS-3-BCVM

Micro VAX/ULTRIX:

NSW-PAS-3-BCVX

GNX-Version 3 Assembler and Cross-development
tools (required for use with the Optimizing Pascal

Compiler):

SYS32/20: NSW-ASM-3-BHAF3 (provided
with SYS32/20 system)

SYS32/30: NSW-ASM-3-BHBF3 (provided
with SYS32/30 system)

VAX/VMS: NSW-ASM-3-BRVM

VAX/ULTRIX

(UNIX bsd): NSW-ASM-3-BRVX

MicroVAX/VMS: NSW-ASM-3-BCVM

MicroVAX/ULTRIX: NSW-ASM-3-BCVX

For further information regarding National Semicon-
ductor’s software development tools and develop-
ment hosts, please refer to the following datasheets:

GNX-Version 3 Development Tools
GNX-Version 3 C Compiler

GNX-Version 3 FORTRAN 77 Compiler
SYS32/20 PC-Add-In Development Package
SYS32/30 PC-Add-In Development Package

5-32

Section 6

Physical Dimensions/
Appendices

Section 6 Contents
L€ oL oV o =T 3T P
PhYSiCal DiMENSIONS . . . vttt ettt ettt ettt e e
Bookshelf
Distributors

Glossary

In our efforts to be concise and precise, we often invent new words or acronyms to use as shorthand representations of *things”
that require much longer names if the Jargon is not used. Being humans, we then become very impressed with our ability to
exclude those not in “the know” and another “in" group is formed. This glossary has been developed to help bridge this
language gap. We know it will help. We hope you will use it.

Abort—The first step of recovery when an instruction or its operand(s) is not available in main memory. An Abort is initiated by
the Memory Management Unit (MMU) and handled by the CPU.

Absolute Address—An address that is permanently assigned to a fixed location in main memory. In assembly code, a pattern
of characters that identifies a fixed storage location.

Access Time—The time interval between when a request for information is made and the instant this information is available.
Access Class—The five Series 32000 access classes are memory read, memory write, memory read-modify-write, memory
address, and register address. The access class informs the Series 32000 CPU how to interpret a reference to a general
operand. Each instruction assigns an access class to each of it two operands, which in turn fully defines the action of any
addressing mode in referencing that operand.

Accumulator—A register which stores the result of an ALU operation.

Ada—A high level language designed for the Department of Defense. It gives preference to full English words. It is meant to be
the standard military language.

Address—An expression, usually numerical, which designates a specific location in a storage or memory device.

Address-Data Register—A register which may contain either address or data, sometimes referred to as a general-purpose
register.

Address Strobe—Control signal used to tell external devices when the address is valid on the external address bus.
Address Translation—The process by which a logical address emanating from the CPU is transformed into a physical address
to main memory. This is performed by the Memory Management Unit (MMU) in Series 32000 systems. Logical address to
Physical address mapping is established by the operating system when it brings pages into main memory.

Addressing Mode—The manner in which an operand is accessed. Series 32000 CPUs have nine addressing modes: Register,
Register Relative, Memory Relative, Immediate, Absolute, External, Top-of Stack, Memory Space, and Scaled Indexing.
Algorithm—A set of procedures to which a given result is obtained.

Alignment—The issue of whether an instruction must begin on a byte, double byte, or quad byte address boundary.
ALU—Arithmetic Logic Unit. A computational subsystem which performs the arithmetic and logical operations of a digital
system. .

Array—A structured data type consisting of a number of elements, all of the same data type, such that each data element can
be individually identified by an integer index. Arrays represent a basic storage data type used in all high-level languages.
ASCIll—(American National Standard Code for Information Interchange, 1968). This standard code uses a character set gener-
ally coded as 7-bit characters (8-bits when using parity check). Originally defined to allow human readable information to be
passed to a terminal, it is used for information interchange among data processing systems, communication systems, and
associated equipment. The ASCIi set consists of alphabetic, numeric, and control characters. Synonymous with USASCII.
Assemble—To prepare a machine language program (also called machine code or object code) from a symbolic language
program by substituting absolute operation codes for symbolic operation codes and absolute or relocatable addresses for
symbolic addresses. Machine code is a series of ones and zeros which a computer “understands”.

Assembler—This program changes the programmer’s source program (written in English assembly language and understand-
able to the programmer) to the 1's and 0’s that the machine “‘understands”. In particular, the Assembler converts assembly
language to machine code. This machine code output is called the OBJECT file.

Assembly Language—A step up in the language chain. This is a set of instructions which is made up of alpha numeric
characters which, with study, are understandable to the programmer. Different type of machines have different assembly
languages, so the assembly language programmer must learn a different set of instructions each time s/he changes machine.
Assoclative Cache—A dual storage area where each data entry has an associated “tag"” entry. The tags are simultaneously
compared to the input value (a logical address) in the case of the MMU, and if a matching tag is found, the associated data entry
is output. An associative cache is present within the MMU in Series 32000 systems to provide logical-to-physical address
translation.

Asynchronous Device—A device in which the speed of operation is not related to any frequency in the system to which it is
connected.

BASIC—This acronym stands for Beginner's All-purpose Symbolic Instruction Code. BASIC is one of the most “‘English like” of
the high level languages and is usually the first programming language learned.

Baud Rate—Data transter rate. For most serial transmission protocols, this is synonymous with bits-per-second (bps).

BCD—Binary Coded Decimal. A binary numbering system for coding decimal numbers. A 4-bit grouping provides a binary value
range from 0000 to 1001, and codes the decimal digits “0" through "“9". To count to 9 requires a single 4-bit grouping; to count
to 99 takes two groupings of 4 bits; to count to 999 takes three groupings of 4 bits, etc.

Benchmark—In terms of computers, this refers to a software program designed to perform some task which will demonstrate
the relative processing speed of one computer versus another.

Aessojn

Glossary

Glossary (continued)
BIt—An abbreviation of “binary digit”. It is a unit of information represented by either a one or a zero.

Bit Field—A group of bits addressable as a single entity. A bit field is fully specified by the location of its least significant bit and
its length in bits. In Series 32000 systems, bit fields may be from one to 32 bits in length.

Branch—A nonsequential flow in a software instruction stream.

Breakpoint—A place in a routine specified by an instruction, instruction digit, or other condition, where the software program
flow will be interrupted by external intervention or by a monitor routine.

Buffer—An isolating circuit used to avoid reaction of a driven circuit on the corresponding driver circuit. Buffers also supply
increased current drive capacity.

Bus—A group of conductors used for transmitting signals or power.

Bus Cycle—The time necessary to complete one transfer of information requiring the use of external address, data and control
buses.

Byte—Eight bits.

Byte Enable—BEO to BE3. CPU control signals which activate memory banks, each bank providing one byte of data per
address.

C—A highly structured high level language developed by Bell Laboratories to optimize the size and efficiency of the program.
This language has gained much popularity because it allows the programmer to get close to the hardware (low level) as well as
being a high level language. Before C, the programmer who had to address the hardware had to use assembly language or
machine code.

Cache—See Assaciative Cache.

Cache Hit—In the MMU, logical-to-physical address translation takes place via the associative cache. For this to happen, the
addressed page must be resident in physical memory such that a logical address tag is present in the MMU’s translation cache.

Cache Miss—When a logical address is presented to the MMU, and no physical address translation entry is found in the MMU’s
associative cache.

Cascaded—Stringing together of units to expand the operation of the unit. Interrupt Control Units present in a Series 32000
system which are in addition the Master ICU are referred to as ‘“‘cascaded’ ICUs; i.e., interrupts cascade from a second-level
ICU through the master ICU to the CPU.

Clock—A device that generates a periodic signal used for synchronization.

Clock Cycle—After making a low-to-high transition, the clock will have completed one cycle when it is about to make another
low-to-high transition. This time is equal to 1/f where f = the clock frequency.

COBOL—This acronym stands for “Common Business Oriented Language”. It is a language especially good for bookkesping
and accounting.

COFF-COMMON OBJECT FILE FORMAT is a standard way of constructing files developed by AT&T for the express purpose of
making all files similar. This will help reduce the situation where large files developed by one organization won’t run on another
organization's equipment simply because the software interfaces are different. It provides a great potential for savings in both
time and money.

Complle—To take a program written in a High-Level Language such as C, Pascal, or FORTRAN and convert it into an object-
code format which can be loaded into a computer’s main memory. During compilation, symbolic HLL statements, called source
code, are converted into one or more machine instructions which the CPU “‘understands”. A compiler also calls the assemble
function.

Compller—The program that converts from Source to Machine Code. The conversion is from a particular high level language to
machine code. For example, the C compiler will convert a C source program written by a programmer to machine code. This
machine code output is in the same format as that of the assembler and is also called an OBJECT file.

CPU--Central Processing Unit. The portion of a computer system that contains the arithmetic logic unit, register file, and other
control oriented subsystems. It performs arithmetic operations, controls instruction processing, and provides timing signals and
other housekeeping operations.

Cross Support—The alternative to using a “Native” development like SYS32 to develop your programs is to use Cross Support
software. “Native” means that the CPU in the development system is the same as the CPU in the system being developed.
Cross support software is all of the necessary programs for development that operate on one CPU, but generate code for
another CPU. Use of the VAX to generate Series 32000 code is a good example of cross support.

Demand-Paged Virtual Memory—aA virtual memory method in which memory is divided into blocks of equal size which are
referred to as pages. These pages are then moved back and forth between main memory and secondary storage as required by
the CPU. Demand paging reduces the problem of memory fragmentation which results in unused memory space.

Dispatch Table—In Series 32000 systems, this is an area of memory which contains interrupt descriptors for all possible
hardware interrupts and software traps. The interrupt descriptor directs the CPU to the module descriptor for the procedure
which is designed to handle that particular interrupt.

Displacement—A numerical offset from a known point of reference. Displacements are used in programming to facilitate
position independent code, such that a given program can be loaded anywhere in memory. In Series 32000 processors, a
displacement is contained in the instruction itself.

Glossary (Continued)

DMA—Direct Memory Access. A method that uses a small processor (DMA Controller) whose sole task is that of controlling
input-output or data movement. With DMA, data is moved into or out of the system without CPU intervention once the DMA
controller has been initialized by the CPU and activated.

Double-Precision—With reference to 32000 floating-point arithmetic, a double-precision number has a 52-bit fraction field, 11-
bit exponent field and a sign bit (64-bits total).

Double Word—Two words, i.e., 32 bits.

Editor—A program which allows a person to write and modify text. This program can be as complicated as the situation
requires, from the very simple line editor to the most complicated word processor. Letters, numbers and unprintable control
characters are stored in memory so that they can be recalled for modification or printing. The programmer uses this device to
enter the program into the computer. At this stage, the program is recognizable to both the programmer and the computer as
lines of English text. This English version of the program is known as the SOURCE.

Emulate—To imitate one system with another, such that the imitating system accepts the same data, executes the same
programs, and achieves the same results as the imitated system.

Exception—An occurrence which must be resolved through CPU intervention. An exception results in the suspension of normal
program flow. In Series 32000 systems, exceptions occur as a result of a hardware reset, interrupt or software traps. Execution
of floating-point instructions may also result in occurrences which must be resolved through CPU intervention.

Exponent—In scientific notation, a numeral that indicates the power to which the base is raised.

EXEC2—NSC's Real Time Executive for Series 32000.

FIFO—First-in first-out. A FIFO device is one from which data can be read out only in the same order as it was entered, but not
necessarily at the same rate.

Floating-Point—A method by which computers deal with numbers having a fractional component. In general, it pertains to a
system in which the location of the decimal/binary point does not remain fixed with respect to one end of numerical expressions,
but is regularly recalculated. The location of the point is usually given by expressing a power of the base.

FORTRAN—A high level language written for the scientific community. It makes heavy use of algebraic expressions and
arithmetic statements.

FP—Frame Pointer. CPU register which points to a dynamically allocated data area created at the beginning of a procedure by
the ENTER instruction.

FPU—Floating-Point Unit is a slave processor in Series 32000 systems which implements in hardware all calculations needed to
support floating-point arithmetic, which otherwise would have to be implemented in software. The NS32081 FPU provides high-
speed floating point instructions for single (32-bit) and double (64-bit) precision. Supports IEEE standard for binary floating point
arithmetic. Compatible with NS32032, NS32C032, NS32016, NS32C016 and NS32008 CPUs.

Fragmented—The term used to describe the presence of small, unused blocks of memory. The problem is especially common
in segmented memory systems, and results in inefficient use of memory storage.

Frame—A block of memory on the stack that provides local storage for parameters in the current procedure.

GENIX—The NSC version of the UNIX operating system, ported to work with the Series 32000. It also has all of the necessary
utitities added so that program development can be accomplished.

Hardware—Physical equipment, e.g., mechanical, magnetic, electrical, or electronic devices, as opposed to the software
programs or method in which the hardware is used.

High Level Languages—These are languages which are not dependent on the type of computer on which they run. A program
written in a high level language will generally run on any computer for which there is a compiler for that language. This feature
makes high level languages “Portable”, i.e., the same program will run on many different types of computers. A HLL requires a
compiter or interpreter that translates each HLL statement into a series of machine language instructions for a particular
machine.

1ICU—Interrupt Control Unit. A memory-mapped microprocessor support chip in Series 32000 systems which handles external
interrupts as well as additional software traps. The ICU provides a vector to the CPU to identify the servicing software procedure.

Indexing—In computers, a method of address modification that is by means of index registers.
Index Register—A register whose contents may be added to or subtracted from the operand address.

Indirect Addressing—Programming method where the initial address is the storage location of a word which is the actual
address. This indirect address is the location of the data to be operated upon.

Instruction—A statement that specifies an operation and the values or locations of its operands, i.e., it tells the CPU what to do
and to what.

Instruction Cycle—The period of time during which a programmed system executes a particular instruction.

Instruction Fetch—The action of accessing the next instruction from memory, often overlapped by its partial execution.
Instruction Queue—With Series 32000 CPUs, this is a small area of RAM organized as a FIFO buffer which stores prefetched
instructions until the CPU is ready to execute them.

Interpreter—A program which translates HLL statements into machine instructions at run time, i.e., while the program is
executing, and is co-resident with the user program.

Aiessojn

Glossary

Glossary (continued)

Interrupt—To signal the CPU to stop a software program in such a way that it can be resumed and branch to another section of
code. Interrupts can be caused by events external or internal to the CPU, and by either software or hardware.
INTBASE—Interrupt Base Register. In the Series 32000, a 32-bit CPU register which holds the address of the dispatch table
containing addresses for interrupts and traps.

ISE—In-System Emulator. A computer system which imitates the operation of another in terms of software execution. In
microprocessor system development, the ISE takes the place of the microprocessor by means of a connector at the end of an
umbilical cable. Not only does the ISE perform all the functions of the microprocessor, but it also allows the engineer to debug
his system by setting breakpoints on various conditions, permits tracing of program flow, and provides substitution memory
which may be used in place of actual target system memory.

ISV—Independent Software Vendor. A vendor, independent from National Semiconductor, who ports or develops software for
Series 32000 components. They in turn sell this software to our customers who are designing Series 32000 based products.
Kernel—This is the name given to the core of the operating system. Other programs are added to the kernel to provide the
features of the operating system. The kernel provides control and synchronization.

Language—A set of characters and symbols and the rules for using them. In our context, it is the "“English like” format of the
instructions which are understood by both the programmer and the computer.

Library—High level languages as well as assembly language contain many routines which are used over and over again. To
prevent the programmer from having to write the routine every time it is needed, these routines are stored in libraries to be
referenced each time they are needed. These libraries are also OBJECT files.

Linear Address Space—An address space where addresses start at location zero and proceed in a linear fashion (i.e., with no
holes or breaks) to the upper limit imposed by the total number of bits in a logical address.

Link Base—In the Series 32000, Module Descriptor entry which points to a table in memory containing entries which reference
variables or entry points in Modules external to the one presently executing.

Linker—Large programs are generally broken down to component parts and farmed out to several programmers. Each one of
these parts is called a MODULE. Each programmer will develop the module using either high level or assembly language, then
“assemble” assembly language modules or “compile” high level language modules. A programmer tells the linker how to
connect these modules to make the program run. The linker makes these connections, resolves all questions about data
needed by one module, but contained in another, finds all library routines, and cleans up any other loose ends. The output from
the linker is called BINARY file and is the file that will run on the computer.

Logical Address Space—The range of addresses which a programmer can assign in a software program. This range is
determined by the length of the computer’s address registers.

LSB—Least Significant Bit. The bit in a string of bits representing the lowest value.

Machine Code—The code that a computer recognizes. Specifies internal register files and operations that directly control the
computer’s internal hardware.

Machine Language—The ones and zeros which are “understood” by the machine. This is often called “Binary Code.” The
programmer must be able to understand the bit patterns to be able to decipher the language. Each machine has a unique
machine language.

Main Memory—The program and data storage area in a computer system which is physically addressed by the microprocessor
or MMU address lines.

Mantissa—In a floating-point number, this is the fractional component.

Mapping—The process whereby the operating system assigns physical addresses in main memory to the logical addresses
assigned by the software.

Memory-Mapped—Referring to peripheral hardware devices which are addressed as if they were part of the computer’s
memory space. They are accessed in the same manner as main memory, i.e., through memory read/write operations.
Microcode—A sequence of primitive instructions that control the internal hardware of a computer. Their execution is initiated by
the decoding of a software instruction. Microcode is maintained in special storage and often used in place of hardwired logic.
Microcomputer—A computer system whose Central Processing Unit.is a Microprocessor. Generally refers to a board-level
product.

Minicomputer—A “box-level” computer with system capabilities generally between that of a microcomputer and a mainframe.
MMU-—Memory Management Unit. This is a slave processor in Series 32000 which aids in the implementation of demand-paged
virtual memory. It provides logical to physical address translation and initiates an instruction abort to the CPU when a desired
memory location is not in main memory.

MOD—Mod Register. In the Series 32000, a 16-bit CPU register which holds the address of the Module Descriptor of the
currently executing software module. .

Module—An independent subprogram that performs a specific function and is usually part of a task, i.e., part of a larger
program. .

Module Descriptor—In the Series 32000, a set of four 32-bit entries found in main memory. Three are currently defined and
point to the static data area, link table, and first instruction of the module it describes. The fourth is reserved.

Glossary (continued)

Modularity—A software concept which provides a means of overcoming natural human limitations for dealing with programming
complexity by specifying the subdivision of large and complex programming tasks into smaller and simpler subprograms, or
modules, each of which performs some well-defined portion of the complete processing task.

MSB—Most Significant Bit. The bit in a string of bits representing the highest value.

NET—Short for NETWORK and describes a number of computers connected to each other via phone or high speed links. A net
is convenient for exchanging common information in the form of “mail” as well as for data exchange.

NMI—Nonmaskable Interrupt. A hardware interrupt which cannot be disabled by software. It is generally the highest priority
interrupt.

Object Code—Output from a compiler or assembler which is itself executable machine code (or is suitable for processing to
produce executable machine code).

Operand—In a computer, a datum which is processed by the CPU. It is referenced by the address part of an instruction.
Operating System—A collection of integrated service routines used by the computer to control the sequence of programs. The
operating system consists of software which controls the execution of computer programs and which may provide storage
assignment, input/output control, scheduling, data management, accounting, debugging, editing, and related services. Their
sophistication varies from small monitor systems, like those used on boards, to the large, complex systems used on main
frames.

Operating System Mode—In this mode, the CPU can execute all instructions in the instruction set, access all bits in the
Processor Status Register, and access any memory location available to the processor.

Operator—In the description of an instruction, it is the action to be performed on operands.

Page Fault—A hardware generated trap used to tell the operating system to bring the missing page in from secondary storage.
Page Swap—The exchange of a page of software in secondary storage with another page located in main memory. The
operating system supervises this operation, which is executed by the CPU and involves external devices such as disk and DMA
controllers.

Page Table—A 1K-byte area in main memory containing 256 entries which describe the location and attributes of all pointer
tables, i.e., a list of pointer table addresses.

Peripheral—A device which is part of the computer system and operates under the supervision of the CPU. Peripheral devices
are often physically separated from the CPU.

Pascal—A high level language designed originally to teach structured programming. It has become popular in the software
community and has been expanded to be a versatile language in industry.

Physical Address—The address presented to main memory, either by the CPU or MMU.

Pointer Table—A 512-byte page located either in main memory or secondary storage containing 128 entries. Each entry
describes an individual page of the software program. Each page of the software program may reside in main memory or in
secondary storage.

Pop—To read a datum from the top of a stack.

PORT—To port an operating system is to cause that particular operating system to operate with a defined hardware package.
GENIX is the NSC version of UNIX which has been ported to SYS32. The operating system for other Series 32000 based
systems will differ in some degree from SYS32 and the NSC GENI!X binary will not operate. It is now necessary to modify GENIX
to fit the situation caused by the new hardware. The GENIX SOURCE is used because this is the program that is most readily
understood by the programmer. The source is changed, compiled, and linked to get a new binary for that particular machine.
Primitive Data Type—A data type which can be directly manipulated by the hardware. With Series 32000, these are integers,
floating-point numbers, Booleans, BCD digits, and bit fields.

Procedure—A subprogram which performs a particular function required by a module, i.e., by a larger program; an ordered set
of instructions that have a general or frequent use.

Process—A task.

Program Base—Module Descriptor entry which points to the first instruction in the module being described.

Program Counter—CPU register which specifies the logical address of the currently executing instruction.

Protection—The process of restricting a software program’s access to certain portions of memory using hardware mecha-
nisms. Typically done at the operating system and page level.

PSR—Processor Status Register. A 16-bit register on Series 32000 CPU's which contains bits used by the software to make
decisions and determine program flow.

Push—to write a datum to the top of a stack.

Quad word—Four words, i.e., 64 bits.

Queue—A First-In-First-Out data storage area, in which the data may be removed at a rate different from that at which it was
stored.

Real Time—The actual time in human terms, related to a process. In a UNIX system, real time is total elapsed time, CPU time is
the percent of time a process is actually in the CPU. Sys time is the time spent in system mode, and user time is the time spent in
user mode.

6-7

Aiessojr)

Glossary

Glossary (Continued)

Real Time Operating Systems—An operating system which operates with a known and predictable response time limit, so that
it can control a physical event.

Record—A structured data type with multiple elements, each of which may be of a different data type, e.g., strings, arrays,
bytes, etc.

Register—A temporary storage location, usually in the CPU, which holds digital data.

Relative Address—The number that specifies the difference between the base address and the absolute address.

Relocatable—In reference to software programs, this is code which can be loaded into any location in main memory without
affecting the operation of the program.

Return Address—The address to which a subroutine call, interrupt or trap subroutine will return after it is finished executing.
Routine—A procedure.

Royalty—Royalty is money paid to the inventor for each item of product sold. A good analogy to use is the music business. Any
time a song is used, the songwriter is paid a royalty. Think of UNIX as a song and GENIX or SYSTEM V as special arrangements.
For each shipment of GENIX or SYSTEM V, the customer pays a royalty to NSC who, in turn, pays a royalty to AT&T.
SB—In the Series 32000 Static Base Register. Points to the start of the static data area for the currently executing module.

Secondary Storage—This is generally slow-access, nonvolatile memory such as a hard-disk which is used to store the pages
of software programs not currently needed by the CPU.

Segmented Address Space—Term used to describe the division of allocatable memory space into blocks of segments of
variable size.

Setup Time—The minimum amount of time that data must be present at an input to ensure data acceptance when the device is
clocked.

Slave Processor—A processor which cooperates with the main microprocessor in executing certain instructions from the
instruction stream. A slave processor generally accelerates certain functions which increases overall system throughput. Exam-
ples of slave processors are the FPU and MMU of Series 32000.

Software—Programs or data structures that execute instructions or cause instructions to be executed and that will cause the
computer to do work.

Software License—NSC does not sell software. Rather, we license the right to use our software. A software license is required
for all Series 32000 software. We use the license to protect NSC’s interests and to assist in honoring our commitment to AT&T.
The license is also the vehicle which we use to track customers so that updates can be issued in a timely manner.

Software Q/A—It is the charter of the Quality Assurance people to ensure that when a software product reaches the customer
that it is “bug” free. In the real world, it is impossible to test every combination of functions, so some bugs do get through. The
Q/A engineer develops test programs which rigorously test the product prior to its introduction to the market place.

SP1—in the Series 32000, User Stack Pointer. Points to the top of the User Stack and is selected for all stack operations while
in User Mode.

SP0—In the Series 32000, Interrupt Stack Pointer. Points to the top of the interrupt stack. It is used by the operating system
whenever an interrupt or trap occurs.

Stack—A one-dimensional data structure in which values are entered and removed one datum at a time from a location called
the Top-of-Stack. To the programmer, it appears as a block of memory and a variable called the Stack Pointer (which points to
the top of the stack).

Stack Pointer—CPU register which points to the top of a stack.

Static Base Register—A 32-bit CPU register which points to the beginning of the static data area for the currently executing
module.)

String—An array of integers, all of the same length. The integers may be bytes, words, or double words. The integers may be
interpreted in various ways (see ASCII).

Subroutine—A self-contained program which is part of a procedure.

Symmetry—A computer architecture is said to be symmetrical when any instruction can specify any operand length (byte, word
or double word) and make use of any address-data register or memory location while using any addressing mode.

Synchronous—Refers to two or more things made to happen in a system at the same time, by means of a common clock
signal.

Tag—A label appended to some data entry used in a look-up process whereby the desired datum can be identified by its tag.
Task—The highest-level subdivision of a user software program. The largest program entity that a computer’s hardware directly
deals with.

TCU~—Timing Control Unit. A device used to provide system clocks, bus control signals and bus cycle extension capability for
Series 32000.

Trap—An internally generated interrupt request caused as a direct and immediate result of the encounter of an event.
T-State—One clock period. If the system clock frequency is 10 MHz, one T-State will take 100 ns to complete. Operations
internal and external to the CPU are synchronized to the beginning and middle of the T-States. There are four T-States in a
normal Series 32000 CPU bus cycle.

Glossary (continued)

UNIXT™—AR operating system developed at Bell Laboratories in the early 1970s. Software programs that run under UNIX are
written in the high-level language C, making them highly portable. UNIX systems do not distinguish user programs from operat-
ing system programs in either capability or usage, and they allow users to route the output of one program directly into the input
of another. This operating is unique and is becoming very popular in the microcomputer world.

USENET—A net to which UNIX systems in the United States connect. Some systems in Europe and Australia also use this net
for the purpose of passing information.

User—A software program. The total set of tasks (instructions) that accomplish a desired resuit. Tasks are managed by the
operating system.

User Mode—Machine state in which the executing procedure has limited use of the instruction set and limited access to
memory and the PSR.

uucp—Software which allows UNIX computers to pass information to other UNIX systems.

Varlable—A parameter that can assume any of a given set of values.

Vector—Byte provided by the ICU (Interrupt Control Unit) which tells the CPU where within the Descriptor table the descriptor is
located for the interrupt it has just requested.

Virtual Address—Address generated by the user to the available address space which is translated by the computer and
operating system to a physical address of available memory.

Virtual Memory—The storage space that may be regarded as addressable main storage by the system. The operating system
maps Virtual addresses into physical (main memory) addresses. The size of virtual memory is limited by the method of memory
management employed and by the amount of secondary storage available, not by the actual number of main storage locations,
so that the user does not have to worry about real memory size or allocation.

VMS—This is the operating system designed by Digital Equipment Corporation for their VAX series of computers. The original
Series 32000 software was developed on a VAX which was being controlled by the VMS Operating System.

Walt-State—An additional clock period added to a CPU memory cycle which gives an external memory device additional time to
provide the CPU with data. Also used by bus arbitration circuitry to hold the CPU in an idle state untit access to a shared
resource is gained.

Winchester—Small, hard-disk media commonly found in personal computers.

Word—A character string or bit string considered as the primary data entity. For historical reasons, a word is a group of 16 bits
in Series 32000 systems.

6-9

Kiessojn

Physical Dimensions

National
Semiconductor

24 Lead Hermetic Dual-In-Line Package (D)

NS Package Number D24C

1.230

All dimensions are in inches (millimeters)

(31.29)
MAX

[[[7 F 6 6 6

0.568--0.605
(14.43-15.37)

NO.1IDENT —

TN O W W&

0.050 £0.005 0.555 LAL)
(1270 £0.127) (14.10) (4.191)
TYP MAX SQUARE MAX
L 1 I 0.020-0.060
I I { {0.508-1.523)
0.005 ﬁ
0.008-0.015 - 0127} P
{0.203-0.381) MIN
TYP 0.005
0.530-0.620 o T ae0s00m 0.015-0.023 0150
f {14.99-15.75) I ‘MIN {2580 :0.258) (n 381 0588) | (3810
MIN
TYP
0088 0.125-0.200
pazisn {3.175-5.080)
D24C (REV G)

40 Lead Hermetic Dual-In-Line Package (D)

NS Package Number D40C

PINNG.1

WENT L.

40] |39] [38] f[37] f[3s} [35] [34] f33] |32]

31| 3] |29)

21

27 [6] [7] (@] [=] [71]

(:‘f_:g) 0510
; {1549
MAX I

I 5 Y Y 3 32 3)) 0 R) R T O T

. 0.045
— —_
(1.143)
MAX TYP

0200
0.050

—_— {6.080)
[.270)"'| l" MAX
TYP 0.020-0.080

0.008-0.015

e
10.203-0.381)
TYP

0.580-0.620
(14.99-15.75)
REF

OUTWARD TYP

\~—LEADS VERTICAL SEATING
T0 15° MAX PLANE

0.100£0.010
{2,680 £0.254) "l I“
TYP

{0.508-1.524)

A N
0.015-0.023 ﬂ.i;ﬁ
. (Il.!!l-ll.m) -—I l‘_ (3.175)
MIN
DA40C (REV H)

6-10

48 Lead Hermetic Dual-In-Line Package (D)

NS Package Number D48A
244
(5|.IZ)MAX
% 47 'l_l‘ A5 .4_4‘ 'l_l‘ 42 “ 4 'i_l' 'J_l‘ '!_1‘ 38 36 .141 '!_3‘ '3_1| ‘1-1‘ jll. 'l_l‘ k1] 17 % 28
V-
0580 0810
) (14.23} {15.49)
MAX MAX
/ PIN NO. 1 IDENT
T 7 3 4 F & 7T 3 3 omM momou oW wwmom W w ononm B
0.110-0.200 0.045
LTI 2754-5.080) iy WX TP
I DR | 0030-0.050
— - (0.752-1.528) ([
@) @)
' 0.008-8.015
‘-J 3 i eamam vEATEAL
0.036-0.055 0.100 16.010 0.015-0.023 0.580-0.620 T0 15° MAX
0.809-1.387) 25 0350) _'I wan-ose SEATING PLANE AL (1895-15.75) v
TYP (1175) REF
D48A (REY Dy
24 Lead Molded Dual-in-Line Package (N)
NS Package Number N24A
12431270
{31,57-3226)
[f3 2] [3] Rl] [l [[is] [ie] [is] [13]
1
| 1
0.062 1 :
“3753 I| 0540+0.005
: {13716 :0.127)
PINNO. 1 oENT—_| !
e \
O T2 31 [0 5 (eT 2 ToJ [eJ Dof [of [x2]
DOTTED OUTLINES
REFLECT ALTERNATE
0580 MOLOED BODY CONFIGURATION
(1a73) 0
MIN (:722) 0075
0.600-0.620 MAX o 0060 (_‘1%) 0.160:0.005
{1524-15.748) & i 1520 ~m,"| [‘ {4,088 <0.127) ‘
a [k 0.170-0.210
f t I] {ia318-5334)
15°s5" 0.008-0.045 oot
0525 10025 {0229-0.381) TP ¥ odts
i 075 20, 0.018 0.003
-0.015 0.075 :0.015 ‘__ __H__ 0125 2120 0381
(15075755 1.905 10.381) 0100 20000 (0457 20076) 35 3 555) 355 M
-0.381
{2540 :0258)

N24A (REV E)

suolsuawiq jesisAud

Physical Dimensions

48 Lead Molded Dual-In-Line Package (N)

NS Package Number N48A

23240

05500008 _0.062__ |
(3srioazn) (1674

42 141 4

(60.78 - 61.98)

®

nnlv:,:.":___.
[ﬂz:tlo1lnwn|zuu1swn|sw 21 24 [23 {2
(:?E:i 0.125-0.185 0.145-0.200
i e
\\wxa')] “T.'"‘.
\\}‘—ﬁ] - F—peiaon pmamn Ll sesem i
[':%':fg;—f;_”_ ‘(::175:‘;:;:; o
i)
68 Pin Grid Array, Cavity Down
NS Package Number U68D
1.000+0.015
(25.40£0.381)
0867
| (14.40) >
MAX
e +' |-z 540
MAX TP
() (leocoeocoo ||
fay |oocloeoc0ePe®
Jeoe | —©:0
HEONO)] (ONO;
JEOXO)] @@
] e e @@ | tn W
L | @ © (OXO]
NONO] @@
| ® @C//‘L__—_"‘—@’@'
=) 1| QO@OEPOOOEOEO
- o ! @@@@@@@@)@@\ S
L § 10.432-0.508)
/ _/g T 2 3 4 S5 6 1 &8 9 W N “:,n
wmc::]l: INDEX MARK: 45° x (OTW) e
2mces

0.175-0.185
{4.445 - 4.699)

|
{

AR

{0.203) 1zm) tam {2:667-3.556)
ATYP ™ e

U880 (REV A)

6-12

175 Pin‘Grid Array, Cavity Down (Type A)

NS Package Number U175A
AT g
(o)
g A5 |
] [(ovebooreoeeereoo)
Cr—m —=) L @@@@@@@@@@@@Q@@@
=y sy 10ee0e0rer0000006
| | l NoJolo)oJoloJoJoXoJoJoJoJoJooX0]
LI NOXOXO)] [o)oXC]
e [oJol0]
OO [0JOJO)
ooz e [0JOJO] TY .
W |eee OYOXoN I L
Az OO [oYoXo) ﬁﬁ%»""
J¥oJolc] [oJoJO)
HEEO OJOXO)
NEREREPERERPPPERPEEE
K 0000000000006
() o NOOPEOROREPPOREOE O©®® N_smux
A |000000000000000 [| "™
50 x %:—% _En'x:cgmclm INDEX MARK 45" x H—-::, e s e u:un'ms wowoww “—»lls :-';‘_—;‘:‘% Twe
[810£0.381)
RADIATOR 212040018
NI (3.048£0.381)
- /‘unum 6240
4.181£0.127)
L 14
IglUrrrrerrriiet—l
h] | 2050 .z "
68 Lead Plastic Chip Carrier
NS Package Number V68A
0.020
0.050=0.800 {0.508) ™|
{1.270=20.32) MIN ﬂ 0.045
0.050 ' 16 SPACES AT ‘ 0.104-0.118 _J 1143
(1’%2‘;0) (2.602—2.997) ¥
1 10 —p [
Y ids
1.143)
0.013-0.018 0950
0826 0.050.-0.800 0.910-0.930 |(0'mﬁ: 451) g’s‘l:-‘s’&
T8 {iz0=20.32) i 0.985-0.995
NOM 16 SPACES AT CONTACT {25.02-25.27)
DIMENSION “ j\ SQUARE
0.050 o
3 (= SR
- ﬁE 3 m-rn 032
25— == Py
[P
2.032-0080
(6.813—1.016)
| 0.165-0.180
0.005-0.015 w191-4572)
(0.127-10.381)

VB8A (REV G)

6-13

suoisuawiq jedisAyd

National
Semiconductor

Bookshelf of Technical Support Information

National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical
literature.

This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and
section contents for each book.

Please contact your local National sales office for possible complimentary copies. A listing of sales offices follows this
bookshelf.

We are interested in your comments on our technical literature and your suggestions for improvement.
Please send them to:

Technical Communications Dept. M/S 16300
2900 Semiconductor Drive

P.O. Box 58090

Santa Clara, CA 95052-8090

ALS/AS LOGIC DATABOOK—1987

Introduction to Bipolar Logic ® Advanced Low Power Schottky ¢ Advanced Schottky

ASIC DESIGN MANUAL/GATE ARRAYS & STANDARD CELLS—1987

SSI/MSI Functions e Peripheral Functions ® LSI/VLSI Functions ® Design Guidelines ® Packaging

CMOS LOGIC DATABOOK—1988

CMOS AC Switching Test Circuits and Timing Waveforms ¢ CMOS Application Notes ¢ MM54HC/MM74HC
MMS54HCT/MM74HCT @ CD4XXX ® MM54CXXX/MM74CXXX e Surface Mount

DATA ACQUISITION LINEAR DEVICES—1989

Active Filters ® Analog Switches/Multiplexers ® Analog-to-Digital Converters ® Digital-to-Analog Converters
Sample and Hold ® Temperature Sensors ® Voltage Regulators ® Surface Mount

DATA COMMUNICATION/LAN/UART DATABOOK—1989

LAN IEEE 802.3 ® High Speed Serial/IBM Data Communications ® ISDN Components ® UARTs
Modems ® Transmission Line Drivers/Receivers

DISCRETE SEMICONDUCTOR PRODUCTS DATABOOK—1989

Selection Guide and Cross Reference Guides ¢ Diodes e Bipolar NPN Transistors
Bipolar PNP Transistors ® JFET Transistors ® Surface Mount Products ® Pro-Electron Series
Consumer Series ® Power Components e Transistor Datasheets ® Process Characteristics

DRAM MANAGEMENT HANDBOOK-—1989

Dynamic Memory Control Error Detection and Correction ® Microprocessor Applications for the
DP8408A/09A/17/18/19/28/29 ® Microprocessor Applications for the DP8420A/21A/22A
Microprocessor Applications for the NS32CG821

EMBEDDED SYSTEM PROCESSOR DATABOOK—1989

Embedded System Processor Overview ¢ Central Processing Units ® Slave Processors ® Peripherals
Development Systems and Software Tools

F100K DATABOOK—1989

Family Overview ¢ F100K Datasheets ® 11C Datasheets ® 10K and 100K Memory Datasheets

Design Guide e Circuit Basics ® Logic Design ® Transmission Line Concepts ® System Considerations
Power Distribution and Thermal Considerations ® Testing Techniques ® Quality Assurance and Reliability

FACT™ ADVANCED CMOS LOGIC DATABOOK—1989

Description and Family Characteristics ¢ Ratings, Specifications and Waveforms
Design Considerations ® 54AC/74ACXXX e 54ACT/74ACTXXX

FAST® ADVANCED SCHOTTKY TTL LOGIC DATABOOK—Rev. 1—1988

Circuit Characteristics ® Ratings, Specifications and Waveforms ¢ Design Considerations ® 54F/74FXXX

FAST® APPLICATIONS HANDBOOK—REPRINT

Reprint of 1987 Fairchild FAST Applications Handbook

Contains application information on the FAST family: Introduction ® Multiplexers ® Decoders ® Encoders
Operators ® FIFOs ® Counters ® TTL Small Scale Integration Line Driving and System Design

FAST Characteristics and Testing ® Packaging Characteristics ® Index

GENERAL PURPOSE LINEAR DEVICES DATABOOK—1989

Continuous Voltage Regulators ® Switching Voltage Regulators ¢ Operational Amplifiers ¢ Buffers @ Voltage Comparators
Instrumentation Amplifiers ® Surface Mount

GRAPHICS HANDBOOK—1989

Advanced Graphics Chipset ¢ DP8500 Development Tools ® Application Notes

INTERFACE DATABOOK—1988

Transmission Line Drivers/Receivers ® Bus Transceivers ¢ Peripheral Power Drivers @ Display Drivers
Memory Support ® Microprocessor Support ® Level Translators and Buffers ® Frequency Synthesis ® Hi-Rel Interface

LINEAR APPLICATIONS HANDBOOK—1986

The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuit
applications using both monolithic and hybrid circuits from National Semiconductor.

Individual application notes are normally written to explain the operation and use of one particular device or to detail various
methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by
keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index.

LS/S/TTL DATABOOK—1989

Contains former Fairchild Products
Introduction to Bipolar Logic ® Low Power Schottky ® Schottky ® TTL ® TTL—Low Power

MASS STORAGE HANDBOOK—1989

Rigid Disk Pulse Detectors Rigid Disk Data Separators/Synchronizers and ENDECs
Rigid Disk Data Controller ® SCS| Bus Interface Circuits ® Floppy Disk Controllers ® Disk Drive Interface Circuits
Rigid Disk Preamplifiers and Servo Control Circuits ® Rigid Disk Microcontroller Circuits Disk Interface Design Guide

MEMORY DATABOOK—1988

PROMs, EPROMSs, EEPROMs ® Flash EPROMs and EEPROMs ® TTL I/0 SRAMs
ECL 1/0 SRAMSs ¢ ECL I/0O Memory Modules

MICROCONTROLLER DATABOOK—1989

COP400 Family ¢ COP800 Family ¢ COPS Applications ® HPC Family ® HPC Applications
MICROWIRE and MICROWIRE/PLUS Peripherals ® Microcontroller Development Tools

MICROPROCESSOR DATABOOK—1989

Series 32000 Overview ® Central Processing Units ® Slave Processors Peripherals
Development Systems and Software Tools ® Application Notes ®« NSC800 Family

PROGRAMMABLE LOGIC DATABOOK & DESIGN MANUAL—1989

Product Line Overview ® Datasheets ® Designing with PLDs ¢ PLD Design Methodology e PLD Design Development Tools
Fabrication of Programmable Logic ® Application Examples

REAL TIME CLOCK HANDBOOK—1989

Real Time Clocks and Timer Clock Peripherals ® Application Notes

RELIABILITY HANDBOOK—1986

Reliability and the Die ® Internal Construction e Finished Package ® MIL-STD-883 ¢ MIL-M-38510

The Specification Development Process ® Reliability and the Hybrid Device ® VLSI/VHSIC Devices
Radiation Environment e Electrostatic Discharge e Discrete Device ® Standardization

Quality Assurance and Reliability Engineering ¢ Reliability and Documentation ¢ Commercial Grade Device
European Reliability Programs e Reliability and the Cost of Semiconductor Ownership

Reliability Testing at National Semiconductor ® The Total Military/Aerospace Standardization Program
883B/RETS™ Products ® MILS/RETS™ Products ® 883/RETS™ Hybrids ® MIL-M-38510 Class B Products
Radiation Hardened Technology ® Wafer Fabrication ® Semiconductor Assembly and Packaging
Semiconductor Packages ® Glossary of Terms ® Key Government Agencies ® AN/ Numbers and Acronyms
Bibliography ® MIL-M-38510 and DESC Drawing Cross Listing

SPECIAL PURPOSE LINEAR DEVICES DATABOOK—1’989

Audio Circuits ® Radio Circuits ® Video Circuits ® Motion Control Circuits ® Special Function Circuits
Surface Mount

TELECOMMUNICATIONS—1987

Line Card Components ¢ Integrated Services Digital Network Components ® Modems
Analog Telephone Components ® Application Notes

NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS

ALABAMA

Huntsville
Arrow Electronics
(205) 837-6955
Bell Industries
(205) 837-1074
Hamilton/Avnet
(205) 837-7210
Pioneer Technology
(205) 837-9300

ARIZONA

Chandler
Hamilton/Avnet
(602) 231-5100

Phoenix
Arrow Electronics
(602) 437-0750

Tempe
Anthem Electronics
(602) 966-6600
Bell Industries
(602) 966-7800

CALIFORNIA

Agora Hills
Zeus Components
(818) 889-3838
Anaheim
Time Electronics
(714) 934-0911
Chatsworth
Anthem Electronics
(818) 700-1000
Arrow Electronics
(818) 701-7500
Hamilton Electro Sales
(818) 700-6500
Time Electronics
(818) 998-7200
Costa Mesa
Avnet Electronics
(714) 754-6050
Hamiiton Electro Sales
(714) 641-4159
Garden Grove
Bell Industries
(714) 895-7801
Gardena
Bell Industries
(213) 515-1800
Hamilton/Avnet
(213) 217-6751
Irvine
Anthem Electronics
(714) 768-4444
Ontario
Hamilton/Avnet
(714) 989-4602
Rocklin
Anthem Electronics
(916) 624-9744
Bell Industries
(916) 652-0414
Sacramento
Hamilton/Avnet
(916) 925-2216
San Diego
Anthem Electronics
(619) 453-9005
Arrow Electronics
(619) 565-4800
Hamilton/Avnet
(619) 571.7510
Time Electronics
(619) 586-1331
San Jose
Anthem Electronics
(408) 453-1200
Pioneer Technology
(408) 954-9100
Zeus Components
(408) 998-5121

Sunnyvale
Arrow Electronics
(408) 745-6600
Bell Industries
(408) 734-8570
Hamilton/Avnet
(408) 743-3355
Time Electronics
(408) 734-9888
Thousand Oaks
Bell Industries
(805) 499-6821
Torrance
Time Electronics
(213) 320-0880
Tustin
Arrow Electronics
(714) 838-5422
Yorba Linda
Zeus Components
(714) 921-9000

COLORADO

Englewood

Anthem Electronics

(303) 790-4500

Arrow Electronics

(303) 790-4444

Hamilton/Avnet

(303) 799-7800
Wheatridge

Bell Industries

(303) 424-1985

CONNECTICUT

Cheshire

Time Electronics

(203) 271-3200
Danbury

Hamilton/Avnet

(203) 797-2800
Meriden

Anthem Electronics

(203) 237-2282
Norwalk

Pioneer Standard

(203) 853-1515
Wallingford

Arrow Electronics

(203) 265-7741

FLORIDA
Altamonte Springs
Bell Industries
(407) 339-0078
Pioneer Technology
(407) 834-9090
Clearwater
Pioneer Technology
(813) 536-0445
Deerfield Beach
Arrow Electronics
(305) 429-8200
Bell Industries
(305) 421-1997
Pioneer Technology
(305) 428-8877
Fort Lauderdale
Hamilton/Avnet
(305) 971-2900
Lake Mary
Arrow Electronics
(407) 333-9300
Largo
Bel! Industries
(813) 541-4434
Oviedo
Zeus Components
(407) 365-3000
St. Petersburg
Hamilton/Avnet
(813) 576-3930
Winter Park
Hamilton/Avnet
(407) 628-3888

GEORGIA
Norcross
Arrow Electronics
(404) 449-8252
Bell Industries
(404) 662-0923
Hamilton/Avnet
(404) 447-7500
Pioneer Technology
(404) 448-1711
ILLINOIS
Addison
Pioneer Electronics
(312) 437-9680
Bensenville
Hamilton/Avnet
(312) 860-7780
Elk Grove Village
Anthem Electronics
(312) 640-6066
Bell Industries
(312) 640-1910
Itasca
Arrow Electronics
(312) 250-0500
Urbana
Bell Industries
(217) 328-1077
Wood Dale
Time Electronics
(312) 350-0610
INDIANA
Carmel
Hamilton/Avnet
(317) 844-9333
Fort Wayne
Bell Industries
(219) 423-3422
Indianapolis

Advent Electronics Inc.

(317) 872-4910
Arrow Electronics
(317) 243-9353
Bell Industries
(317) 634-8200
Pioneer Standard
(317) 849-7300

IOWA

Cedar Rapids

Advent Electronics
(319) 363-0221
Arrow Electronics
(319) 395-7230
Bell Industries
(319) 395-0730
Hamilton/Avnet
(319) 362-4757

KANSAS

Lenexa
Arrow Electronics
(913) 541-9542
Hamilton/Avnet
{913) 888-8900
Pioneer Standard
(913) 492-0500

MARYLAND

Columbia
Anthem Electronics
(301) 995-6640
Arrow Electronics
(301) 995-0003
Hamilton/Avnet
(301) 895-3500
Time Electronics
(301) 964-3090
Zeus Components
(301) 897-1118

Gaithersburg
Pioneer Technology
(301) 921-0660

MASSACHUSETTS
Andover
Bell Industries
(508) 474-8880
Lexington
Pioneer Standard
(617) 861-9200
Zeus Components
(617) 863-8800
Norwood
Gerber Electronics
(817) 769-6000
Peabody
Hamilton/Avnet
(508) 531-7430
Time Electronics
{508) 532-6200
Wilmington
Anthem Electronics
(508) 657-5170
Arrow Electronics
(508) 658-0900
MICHIGAN
Ann Arbor
Arrow Electronics
(313) 971-8220
Bell Industries
(3138) 971-8093
Grand Rapids
Arrow Electronics
(616) 243-0912
Hamilton/Avnet
(616) 243-8805
Pioneer Standard
(616) 698-1800
Livonia
Pioneer Standard
(313) 525-1800
Novi
Hamilton/Avnet
(313) 347-4720
Wyoming

R. M. Electronics, Inc.

(616) 531-9300
MINNESOTA
Eden Prairie
Anthem Electronics
(612) 944-5454
Pioneer Standard
(612) 944-3355
Edina
Arrow Electronics
(612) 830-1800
Minnetonka
Hamilton/Avnet
(612) 932-0600

MISSOURI

Chesterfield
Hamilton/Avnet
(314) 537-1600

St. Louis
Arrow Electronics
(314) 567-6888
Time Electronics
(314) 391-6444

NEW HAMPSHIRE
Hudson
Bell Industries
(603) 882-1133
Manchester
Arrow Electronics
(603) 668-6968
Hamilton/Avnet
(603) 624-9400

NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS (Continued)

NEW JERSEY
Cherry Hill
Hamilton/Avnet
(609) 424-0100
Fairfield
Anthem Electronics
(201) 227-7960
Hamilton/Avnet
(201) 575-3390
Marlton
Arrow Electronics
(609) 596-8000
Parsippany
Arrow Electronics
(201) 538-0900
Pine Brook
Nu Horizons Electronics
(201) 882-8300
Pioneer Standard
(201) 575-3510
Time Electronics
(201) 882-4611

NEW MEXICO
Albuquerque
Alliance Electronics Inc.
(505) 292-3360
Arrow Electronics
(505) 243-4566
Bell Industries
(505) 292-2700
Hamilton/Avnet
(505) 765-1500
NEW YORK
Amityville
Nu Horizons Electronics
(516) 226-6000
Binghamton
Pioneer
(607) 722-9300
Buffalo
Summit Electronics
(716) 887-2800
Fairport
Pioneer Standard
(716) 381-7070
Time Electronics
(716) 383-8853
Hauppauge
Anthem Electronics
(516) 273-1660
Arrow Electronics
(516) 231-1000
Hamilton/Avnet
(516) 434-7413
Time Electronics
(516) 273-0100
Port Chester
Zeus Components
(914) 937-7400
Rochester
Arrow Electronics
(716) 427-0300
Hamilton/Avnet
(716) 475-9130
Summit Electronics
(716) 334-8110
Ronkonkoma
Zeus Components
(516) 737-4500
Syracuse
Hamilton/Avnet
(315) 437-2641
Time Electronics
(315) 432-0355
Woestbury
Hamilton/Avnet Export Div.
(516) 997-6868
Woodbury
Pioneer Electronics
(516) 921-8700

NORTH CAROLINA
Charlotte
Pioneer Technology
(704) 527-8188
Time Electronics
(704) 522-7600
Durham
Pioneer Technology
(919) 544-5400
Raleigh
Arrow Electronics
(919) 876-3132
Hamilton/Avnet
(919) 878-0810
Winston-Salem
Arrow Electronics
(919) 725-8711
OHIO
Centerville
Arrow Electronics
{513) 435-5563
Bell Industries
(513) 435-8660
Bell Industries-Mititary
(513) 434-8231
Cleveland
Pioneer
{216) 587-3600
Dayton
Hamilton/Avnet
(513) 439-6700
Pioneer Standard
(513) 236-9900
Zeus Components
(914) 837-7400
Solon
Arrow Electronics
(216) 248-3990
Hamilton/Avnet
(216) 831-3500
Westerville
Hamilton/Avnet
(614) 882-7004
OKLAHOMA
Tulsa
Arrow Electronics
(918) 252-7537
Hamilton/Avnet
(918) 252-7297
Radio Inc.
(918) 587-9123
OREGON
Beaverton

Almac-Stroum Electronics

(503) 629-8090
Anthem Electronics
(503) 643-1114
Arrow Electronics
(503) 645-6456
Hamilton/Avnet
(503) 627-0201
Lake Oswego
Bell Industries
(503) 635-6500
PENNSYLVANIA
Horsham
Anthem Electronics
(215) 443-5150
Pioneer Technology
(215) 674-4000
King of Prussia
Time Electronics
(215) 337-0900
Monroeville
Arrow Electronics
(412) 856-7000

Pittsburgh
Hamilton/Avnet
(412) 281-4150
Pioneer
(412) 782-2300

TEXAS

Austin
Arrow Electronics
(512) 835-4180
Hamilton/Avnet
(512) 837-8911
Pioneer Standard
(512) 835-4000
Time Electronics
(512) 399-3051

Carroliton
Arrow Electronics
(214) 380-6464
Time Electronics
(214) 241-7441

Dallas
Hamilton/Avnet
(214) 404-9906
Pioneer Standard
(214) 386-7300

Houston
Arrow Electronics
(713) 530-4700
Pioneer Standard
(713) 988-5555

Richardson
Anthem Electronics
(214) 238-7100
Zeus Components
(214) 783-7010

Stafford
Hamilton/Avnet
(713) 240-7733

UTAH
Midvale
Bell Industries
(801) 255-9611
Salt Lake City
Anthem Electronics
(801) 873-8555
Arrow Electronics
(801) 973-6913
Hamilton/Avnet
(801) 872-4300
West Valley
Time Electronics
(801) 973-8181
WASHINGTON
Bellevue

Almac-Stroum Electronics

(206) 643-9992
Bothell

Anthem Electronics

(206) 483-1700
Kent

Arrow Electronics

(206) 575-4420
Redmond

Hamilton/Avnet

(206) 881-6697

WISCONSIN
Brookfield
Arrow Electronics
(414) 792-0150
Mequon
Taylor Electric
(414) 241-4321
Waukesha
Bell Industries
(414) 547-8879
Hamilton/Avnet
(414) 784-4516

CANADA
WESTERN PROVINCES
Burnaby
Hamilton/Avnet
(604) 437-6667
Semad Electronics
(604) 420-9889
Calgary
Hamilton/Avnet
(403) 250-9380
Semad Electronics
(403) 252-5664
Zentronics
(403) 272-1021
Edmonton
Zentronics
(403) 468-9306
Richmond
Zentronics
(604) 273-5575
Saskatoon
Zentronics
(306) 955-2207
Winnipeg
Zentronics
(204) 694-1957

EASTERN PROVINCES
Brampton
Zentronics
(416) 451-9600
Mississauga
Hamilton/Avnet
(416) 677-7432
Nepean
Hamilton/Avnet
(613) 226-1700
Zentronics
(613) 226-8840
Ottawa
Semad Electronics
(613) 727-8325
Pointe Claire
Semad Electronics
(514) 694-0860
St. Laurent
Hamilton/Avnet
(514) 335-1000
Zentronics
(514) 737-9700
Willowdale
ElectroSonic Inc.
(416) 494-1666

SALES OFFICES

ALABAMA
Huntsville
(205) 721-9367

ARIZONA
Tempe
(602) 966-4563
CALIFORNIA
Inglewood
(213) 645-4226
Roseville
{916) 786-5577
San Diego
(619) 587-0666
Santa Clara
(408) 562-5900
Tustin
(714) 259-8880
Woodland Hills
(818) 888-2602
COLORADO
Boulder
(303) 440-3400
Colorado Springs
(303) 578-3319
Englewood
(303) 790-8090

CONNECTICUT
Hamden
(203) 288-1560

FLORIDA
Boca Raton
(407) 997-8133
Orlando
(305) 629-1720
St. Petersburg
(813) 577-1380
GEORGIA
Norcross
(404) 441-2740
ILLINOIS
Schaumburg
(312) 397-8777
INDIANA
Carmel
(317) 843-7160
Fort Wayne
(219) 484-0722
IOWA
Cedar Rapids
(319) 395-0090
KANSAS
Overland Park
(913) 451-4402
MARYLAND
Hanover
(301) 796-8900
MASSACHUSETTS
Burlington
(617) 273-3170

MICHIGAN
Grand Rapids
(616) 940-0588
W. Bloomfield
(313) 855-0166

MINNESOTA
Bloomington
(612) 854-8200
NEW JERSEY
Paramus
(201) 599-0955

NEW MEXICO
Albuquerque
(505) 884-5601
NEW YORK
Fairport
(716) 223-7700
Liverpool
(315) 451-9091
Melville
(516) 351-1000
Wappinger Falls
(914) 298-0680
NORTH CAROLINA
Cary
(919) 481-4311
OHIO
Dayton
(513) 435-6886
Dublin
(614) 766-3679
Independence
(216) 524-5577

ONTARIO
Mississauga
(416) 678-2920
Nepean
(613) 596-0411
OREGON
Portland
(503) 639-5442

PENNSYLVANIA
Horsham
(215) 672-6767
PUERTO RICO
Rio Piedras
(809) 758-9211

QUEBEC
Lachine
(514) 636-8525

TEXAS
Austin
(512) 346-3990
Houston
(713) 771-3547
Richardson
(214) 234-3811
UTAH
Salt Lake City
(801) 322-4747
WASHINGTON
Bellevue
{206) 453-9944
WISCONSIN

Brookfield
(414) 782-1818

AT N e

Ve AT K e
3 Y aen -
ALt 1
N H)

N i
el

UL

ot

gauctoaren|
GOV EN

lefs.

INLEHNAUONAT
OREIGES
VALTARIE AN

EHORIST O

Nibgels e

pavent
RARE 3
Mzbome eUPIBET Nzdgiae
BB AR Al
[INAHONRES EMICSUITAIER)
fenifepilvalifs

4 B I 5 IR B RN TR K
IO S R A TN S HERE T
NAUSTS LSS MICONUTEIO R bt

(RENPSTHITS

KESRL

I
S ENTIH

feeisiainnites

taoration

SOIHFICIES (rmmnmien)

INAHIBEALE
SER
T IERIY
“Soinit)

A ahdepnde
[NACOUARE ST

e B
RN B, CAPTYES
[IaN

HRRUE I

VR Syl ystel DR ol

(U 2

ivresy

RO B PN EI L F S 2 T A R TH PR AN TPt HEN S Y

Sesdde iz Mo e
SENNITANR

Sl

BRI IR O

SFziizpe lerriwe
NGl AL

RWITZRTINY
s bty

Tangifzgee oot

AT I E TR T IT]

Toh {wegaskiie apar

Mz e v

[NAUORS LS SHICOIUUCION

Bld

“aifzy wd

Ratial]

DAY

RE

RSUSHAIESRIESATURIDE
HEnR e T
I

Smavees
EERE

RRIRTEETY

AV,

IR

P NG LA
PR P N AT R R

PREN

B Te e B 3hpes il Getnieslems

S Tdeing

HETNTR T

[H S TRUTH
NERRPS

Vel deintz0 301

7
4
\

National

Semiconductor

National Semiconductor Corporation
2900 Semiconductor Drive

P.O. Box 58090

Santa Clara, CA 95052-8090

Tel: (408) 721-5000

TWX: (910) 339-9240

SALES OFFICES (continued)

INTERNATIONAL National Semiconductor S.A
OFFICES (ires-L'a Bour ’
de Mexico SA
118-2
Mexico

¥]

National Semicondutores
Do Brasil Ltda.
S

Tel. (55

Fax: (55

National Semiconductor GmbH Fax: (01) 69-55-89
triestrasse 1C

National Semiconductor S.p.A.
Furstenteldbruck

Strada 7, Palazzo R/3
20089 Rozz

Milanofior

The Maple. Kembrey

Swindon, Wiltshire SN2 6UT

Cararagglo, 10
47 Rome

Fax: (06) 5-

NRslonAl S‘EATHICOFIUUCIOI EEHEINK National Semiconductor (UK) Ltd
& P.O. Box 29

321 Stabekk

rway

Tel: (2)

Fax: (2) 1

National Semiconductor AB

en 13

rholmen

19C

National Semiconductor
Calle Agustin de Foxa, 27

National Semiconductor
Switzerland
Alte Winte

Postfach 567

Wallse!

National Semiconductor
Postbus 90

do Bldg

4-15 Nishi Shinjuku

rthurerstrasse 53

National Semiconductor
Hong Kong Ltd.

Suite 513, 5th Floor

m Golden Plaza

sui East

SSEA HX

National Semiconductor
(Australia) PTY, Ltd.

1st Floor. 441 St. Kilda Rd

Melbourne, 3004

National Semiconductor (PTE),
Ltd

200 Cantonment Road 13-01

National Semiconductor (Far East)
Ltd

Taiwan Branch

P.0. Box 68-332 Taipe

7th Floor, I

302 Min (

22
NSTW TAIP

National Semiconductor (Far East)
Ltd
Korea Branch

oor, Dai Han Life Insurance

