
~National
D Semiconductor

BELL INDUSTRIES
Electronic Distribution Group

1161 N. Fairoaks A1:'enue

Sunnyvale, California 94089

(408) 734-8570

FAX NO. (408) 734-8875

400016

A Corporate Dedication to
Quality and Reliability

National Semiconductor is an industry leader in the
manufacture of high quality, high reliability integrated
circuits. We have been the leading proponent of driv­
ing down IC defects and extending product lifetimes.
From raw material through product design, manufac­
turing and shipping, our quality and reliability is second
to none.
We are proud of our success ... it sets a standard for
others to achieve. Yet, our quest for perfection is on­
going so that you, our customer, can continue to rely
on National Semiconductor Corporation to produce
high quality products for your design systems.

Charles E. Sporck
President, Chief Executive Officer
National Semiconductor Corporation

Wir fChlen uns zu Qualitat und
Zuverlasslgkeit verpflichtet

National Semiconductor Corporation ist fUhrend bei der Her­
stellung von integrierten Schaltungen hoher QualiUit und
hoher Zuverlassigkeit. National Semiconductor war schon
immer Vorreiter, wenn es galt, die Zahl von IC Ausfallen zu
verringern und die Lebensdauern von Produkten zu verbes­
sern. Vom Rohmaterial uber Entwurf und Herstellung bis zur
Auslieferung, die Qualitat und die Zuverlassigkeit der Pro­
dukte von National Semiconductor sind unubertroffen.

Wir sind stolz auf unseren Erfolg, der Standards setzt, die
fur andere erstrebenswert sind. Auch ihre Anspruche steig­
en standig. Sie als unser Kunde konnen sich auch weiterhin
auf National Semiconductor verlassen.

La Qualite et La Fiabilite:
Une Vocation Commune Chez National
Semiconductor Corporation

National Semiconductor Corporation est un des leaders in­
dustriels qui fabrique des circuits integres d'une tres grande
qualite et d'une fiabilite exceptionelle. National a ete Ie pre­
mier a vouloir faire chuter Ie nombre de circuits integres
defectueux et a augmenter la duree de vie des produits.
Depuis les matieres premieres, en passant par la concep­
tion du produit sa fabrication et son expedition, partout la
qualite et la fiabilite chez National sont sans equivalents.

Nous sommes fiers de notre succes et Ie standard ainsi
defini devrait devenir I'objectif a atteindre par les autres so­
cietes. Et nous continuons a vouloir faire progresser notre
recherche de la perfection; iI en resulte que vous, qui 6tes
notre client, pouvez toujours faire confiance a National
Semiconductor Corporation, en produisant des systemes
d'une tres grande qualite standard.

Charles E. Sporck

Un Impegno Societario di Qualita e
Affidabillta

National Semiconductor Corporation e un'industria al ver­
tice nella costruzione di circuiti integrati di alta qualita ed
affidabilita. National e stata iI principale promotore per I'ab­
battimento della difettosita dei circuiti integrati e per I'allun­
gamento della vita dei prodotti. Dal materiale grezzo attra­
verso tutte Ie fasi di progettazione, costruzione e spedi­
zione, la qualita e affidabilita National non e seconda a nes­
suno.

Noi siamo orgogliosi del nostro successo che fissa per gli
altri un traguardo da raggiungere. II nostro desiderio di per­
fezione e d'altra parte illimitato e pertanto tu, nostro cliente,
puoi continuare ad affidarti a National Semiconductor Cor­
poration per la produzione dei tuoi sistemi con elevati livelli
di qualita.

President, Chief Executive Officer

National Semiconductor Corporation

Embedded
System
Processor

Databook

1989 Edition

Embedded System Processor II
Overview

CPU-Central Processing Units •

Slave Processors II
Peripherals II
Development Systems and ,.
Software Tools ~

Physical Dimensionsl Appendices [I
iii

TRADEMARKS

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

Abuseable™ FAIRCADTM MSTTM SERIES/800TM
AnadigTM FairtechTM Naked-8™ Series 900TM
ANS-R-TRANTM FAST@ National@ Series 3000TM
APPSTM 5-Star Service™ National Semiconductor@ Series 32000@
ASPECTTM GENIXTM National Semiconductor Shelf,..,ChekTM
Auto-Chem DeflasherTM GNXTM Corp.@ SofChekTM
BCPTM HAMRTM NAX800TM SPIRETM
BI-FETTM HandiScan™ Nitride PIUS™ Staggered RefreshTM
BI-FET IITM HEX3000TM Nitride Plus Oxide™ STARTM
BI-LiNETM HPCTM NMLTM StarlinkTM
BIPLANTM 13L@ NOBUSTM STARPLEXTM
BLCTM ICMTM NSC800TM Super-BlockTM
BLXTM INFOCHEXTM NSCISETM SuperChipTM
Brite-Lite™ IntegrallSETM NSX-16TM SuperScriptTM
BTLTM IntelisplayTM NS-XC-16TM SYS32TM
CheckTrackTM ISETM NTERCOMTM TapePak@
CIMTM ISE/06TM NURAMTM TDSTM
CIMBUSTM ISE/08TM OXISSTM TeleGate™
CLASICTM ISE/16TM P2CMOSTM The National Anthem@
Cloc~ChekTM ISE32TM PC Master™ Time,..,ChekTM
COMBOTM ISOPLANARTM Perfect WatchTM TINATM
COMBO ITM ISOPLANAR-ZTM Pharm~ChekTM TLCTM
COMBO IITM KeyScanTM PLANTM Trapezoidal™
COPSTM microcontrollers LMCMOSTM PLANARTM TRI-CODETM
Datachecker@ M2CMOSTM Plus-2TM TRI-POLYTM
DENSPAKTM Macrobus™ Polycraft™ TRI-SAFETM
DIBTM Macrocomponent™ POSilinkTM TRI-STATE@
Digitalker@ MAXI-ROM@ POSitalker™ TURBOTRANSCEIVERTM
DISCERNTM Mea~ChekTM Power + ControlTM VIPTM
DISTILLTM MenuMaster™ POWERplanar™ VR32TM
DNR@ Microbus™ data bus QUAD3000TM WATCHDOGTM
DPVMTM MICRO-DACTM QUIKLOOKTM XMOSTM
ELSTARTM JJ.talker™ RATTM XPUTM
Embedded System Microtalker™ RTX16TM Z STARTM

Processor™ MICROWIRETM SABRTM 883B/RETSTM
E-Z-L1NKTM MICROWIRE/PLUSTM Scrip~ChekTM 883S/RETSTM
FACTTM MOLETM SCXTM

IBM@, PC@, and AT@ are registered trademarks of International Business Machines, Inc.
MUL TIBUS@ is a registered trademark of Intel Corporation.
Sun-3@ Workstation is a registered trademark of Sun Microsystems, Inc.
UNIX@ and DWB@ are registered trademarks of AT&T.
Z801!!> is a registered trademark of Zilog Corporation.
CCS-Page™ is a trademark of Control-C Software, Inc.
CP/MTM is a trademark of Digital Research Corporation.
Documenter's WorkbenchTM is a trademark of AT&T.
laserjetTM and PCl TM are trademarks of Hewlett Packard.
Model 19TM is a trademark of DATA 1/0 Corporation.
OpUS5™ is a trademark of Opus Systems.
PAl@ and PALASMTM are trademarks of and are used under license from Monolithic Memories, Inc.
PostscriptTM is a trademark of Adobe Systems, Inc.
SunOS™ is a trademark of Sun Microsystems.
VAXTM, VMSTM, DECTM, PDP-11™, RSX-11TM and UlTRIXTM are trademarks of Digital Equipment Corporation.
VisiCalc™ is a trademark of Visi Corporation.

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR COR-
PORATION. As used herein:

1. Life support devices or systems are devices or systems 2. A critical component is any component of a life support
which, (a) are intended for surgical implant into the body, device or system whose failure to perform can be reason-
or (b) support or sustain life, and whose failure to per- ably expected to cause the failure of the life support de-
form, when properly used in accordance with instructions vice or system, or to affect its safety or effectiveness.
for use provided in the labeling, can be reasonably ex-
pected to result in a significant injury to the user.

National Semiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 (408) 721-5000
TWX (910) 339-9240
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time
without notice, to change said circuitry or specifications.

iv

~National
~ Semiconductor

Definition of Terms

Data Sheet Identification

•. Advance Information
..

I, Preliminary

i

•.... No .'

Identification
•. Noted , ...

. .' .

,.

Product Status Definitions

Product Status

Formative or
In Design

First
Production

Full
Production

Definition

This data sheet contains the design specifications for product
development. Specifications may change in any manner without notice .

This data sheet contains preliminary data, and supplementary data will
be published at a later date. National Semiconductor Corporation
reserves the right to make changes at any time without notice in order
to improve design and supply the best possible product.

This data sheet contains final specifications. National Semiconductor
Corporation reserves the right to make changes at any time without
notice in order to improve design and supply the best possible product.

National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to
improve reliability, function or design. National does not assume any liability arising out of the application or use of any product
or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

v

" ...
o
Co
c
(') -(J) -Q) -C
fn

C
CD -s·
;::::;:
o·
:l
fn

Table of Contents
Alphanumeric Index. vii

Section 1 Embedded System Processor Overview
Introduction. 1-3
Key Features of National's Embedded System Processors. 1-4
Component Descriptions .. 1-5
Hardware Chart . 1-6
Systems and Software Chart . 1-7
Support Devices. 1-8

Section 2 CPU-Central Processing Units
NS32GX32-20, NS32GX32-25, NS32GX32-30 High-Performance 32-Bit Embedded

System Processors . 2-3
NS32CG 16-10, NS32CG 16-15 High-Performance Printer/Display Processors 2-96

Section 3 Slave Processors
NS32381-15, NS32381-20, NS32381-25, NS32381-30 Floating-Point Units.......... 3-3
NS32081-10, NS32081-15 Floating-Point Units................................... 3-32

Section 4 Peripherals
NS32202-10 Interrupt Control Unit............................... 4-3
NS32203-10 Direct Memory Access Controller 4-28
NS32CG821 microCMOS Programmable 1 M Dynamic RAM Controller/Driver........ 4-57
HPC16083/HPC26083/HPC36083/HPC46083/HPC16003/HPC26003/HPC36003/

HPC46003 High-Performance Microcontrollers . 4-58
DP8510 BITBL T Processing Unit ... 4-59
DP8511 BITBL T Processing Unit (BPU). 4-60

Section 5 Development Systems and Software Tools
NS32CG16 ISE Development Tool. 5-3
SYS32/30 PC-Add-I n Development Package. 5-10
Series 32000 GENIX Native and Cross-Support (GNX) Development Tools (Version 3) 5-16
Series 32000 GNX-Version 3 C Optimizing Compiler 5-21
Series 32000 GNX-Version 3 Fortran 77 Optimizing Compiler. 5-25
Series 32000 GNX-Version 3 Pascal Optimizing Compiler. 5-29

Section 6 Physical Dimensions/Appendices
Glossary of Terms. .. 6-3
Physical Dimensions . 6-1 0
Bookshelf
Distributors

vi

Alpha-Numeric Index
DP8510 BITBLT Processing Unit ... 4-59
DP8511 BITBLT Processing Unit (BPU)•.. 4-60
HPC16003 High-Performance Microcontroller•.•...................................•..... 4-58
HPC16083 High-Performance Microcontroller ..•.•. 4-58
HPC26003 High-Performance Microcontroller .. 4-58
HPC26083 High-Performance Microcontroller•........•..............•............... 4-58
HPC36003 High-Performance Microcontroller .. 4-58
HPC36083 High-Performance Microcontroller•.....•......•....... 4-58
HPC46003 High-Performance Microcontroller•... 4-58
HPC46083 High-Performance Microcontroller .. 4-58
NS32CG161SE Development Tool ... 5-3
NS32CG16-10 High-Performance Printer/Display Processor 2-96
NS32CG16-15 High-Performance Printer/Display Processor•........................... 2-96
NS32CG821 microCMOS Programmable 1 M Dynamic RAM Controller/Driver 4-57
NS32GX32-20 High-Performance 32-Bit Embedded System Processor 2-3
NS32GX32-25 High-Performance 32-Bit Embedded System Processor 2-3
NS32GX32-30 High-Performance 32-Bit Embedded System Processor 2-3
NS32081-10 Floating-Point Unit .. 3-32
NS32081-15 Floating-Point Unit .. 3-32
NS32202-10 Interrupt Control Unit ... 4-3
NS32203-10 Direct Memory Access Controller ... 4-28
NS32381-15 Floating-Point Unit ... 3-3
NS32381-20 Floating-Point Unit•............................ 3-3
NS32381-25 Floating-Point Unit•......•.......•................... 3-3
NS32381-30 Floating-Point Unit .•...........•....................•.......................... 3-3
Series 32000 GENIX Native and Cross-Support (GNX) Development Tools (Version 3) 5-16
Series 32000 GNX-Version 3 C Optimizing Compiler .. 5-21
Series 32000 GNX-Version 3 Pascal Optimizing Compiler 5-29
Series 32000 GNX-Version 3 Fortran 77 Optimizing Compiler 5-25
SYS32/30 PC-Add-In Development Package .. 5-10

vii

Section 1
Embedded System
Processor Overview

II

Section 1 Contents
Introduction. 1-3
Key Features of National's Embedded System Processors. 1-4
Component Descriptions . 1-5
Hardware Chart . 1-6
Systems and Software Chart. 1-7
Support Devices ... 1-8

1-2

~National
~ Semiconductor

Introduction

National's Embedded System Processor™ family offers the
most complete solution to your 32-bit embedded processor
needs via CPUs, slave processors, system peripherals,
evaluation/development tools and software.

We at National Semiconductor firmly believe that it takes a
total family of Embedded System Processors to effectively
meet the needs of an embedded system designer.

This Databook presents technical descriptions of our 32-bit
Embedded System Processors, slave processors, peripher­
als, software and development tools. It is designed to be
updated frequently so that our customers can have the lat­
est technical information on the Embedded System Proces­
sor.

When we at National Semiconductor began designing the
Embedded System Processor family, we decided to support
an architecture that addressed the needs of embedded de­
sign. We chose to take the time to design it properly so that
optimal system cost/performance, high system integration,
and total system solutions were addressed. Working from
the top down, we analyzed the issues and anticipated the
embedded computing needs. The result is an advanced and
efficient family of Embedded System Processors.

Software productivity has become a major issue in embed­
ded system product development. In embedded systems
this issue centers around the capability of the processor to
maximize the utility of software relative to shorter develop­
ment cycles, under the constraints of lower cost and higher
performance.

1-3

In short, the degree to which the processor can maximize
software utility directly affects the cost of a product, its reli­
ability, and time to market. It also affects future software
modification for product enhancement or rapid advances in
hardware technology.

Our approach has been to define an architecture address­
ing these software issues most effectively. National Semi­
conductor's Embedded System Processor family combines
32-bit performance with efficient management of a large ad­
dress space. It facilitates high-level language program de­
velopment and efficient instruction execution. Floating-point
is integrated into the architecture.

But we didn't stop there. Advanced architecture isn't
enough. Our total product system solution approach in­
cludes the hardware, software, and development support
products necessary for your design. The evaluation board,
in-system emulator, software development tools, and third
party software are available now for your evaluation and
development.

The Embedded System Processor is a solid foundation from
which National Semiconductor can build solutions for your
future designs while satisfying your needs today.

For further information please contact your local sales of­
fice.

S" -... o
a.
c
n -O·
:s

II

l!! o en en
CD
u e
D.

E
CD -~
tJ)

'tS
CD
'tS
'tS
CD .c
E
w
~en

'iii
c
o
:;
z -o
en e
::s
1U
CD u.
~
~

~National
~ Semiconductor

Key Features of National's
Embedded System Processors™

Some of the features that set the Embedded System Proc­
essor family apart as the best choice for 32-bit designs are
as follows:

FAMILY OF EMBEDDED SYSTEM PROCESSORS
Embedded System Processors are more than just a single
chip set, it is a family of chip sets. By mixing and matching
CPUs with compatible slave processors and support chips,
an embedded system designer has an unprecedented de­
gree of flexibility in matching price/performance to the end
product.

CLEANEST 32-BIT OPTIMIZED ARCHITECTURE
The Embedded System Processor was designed around a
32-bit architecture from the beginning. It has a fully symmet­
rical instruction set so that all addressing modes and all
data types can be operated on by all instructions. This
makes it easy to learn the architecture, easy to program in
assembly language, and easy to write code-efficient, high­
level language compilers.

APPLICATION-SPECIFIC SLAVE PROCESSORS
Embedded System Processor architecture allows users to
design their own application-specific slave processors to
interface with the existing chip set. These processors can
be used to increase the overall system performance by

1-4

accelerating customized CPU instructions that would other­
wise be implemented in software. At the same time, soft­
ware compatibility is maintained, i.e., it is always possible to
substitute lower-cost software modules in place of the slave
processor.

FLOATING-POINT SUPPORT
National offers a complete set of floating-point solutions.
This includes the NS32081 Floating-Point Unit, and the
NS32381 Floating-Point Unit. The NS32081 provides high­
speed arithmetic computation with high precision and accu­
racy at low cost. The NS32381 provides low power con­
sumption and even greater performance than the NS32081
while maintaining high-precision and accuracy.

HIGH-LEVEL LANGUAGE SUPPORT
National's Embedded System Processor has special fea­
tures that support high-level languages, thus improving soft­
ware productivity and reducing development costs. For ex­
ample, there are special instructions that help the compiler
deal with structured data types such as Arrays, Strings, Rec­
ords, and Stacks. Also, modular programming is supported
by special hardware registers, software instructions, an ex­
ternal addressing mode, and architecturally supported link
tables.

~NatiOnal
Semiconductor

Component Descriptions

Bus Width

Device Description External
Internal

Address Data

CENTRAL PROCESSING UNITS (CPU's)

NS32GX32 High-Performance 32-Bit Embedded System Processor 32 32 32

NS32CG16 High-Performance Printer/Display Processor 32 24 16

SLAVE PROCESSORS

NS320S1 Floating-Point Unit 64 - 16

NS32381 Floating-Point Unit 64 - 16

PERIPHERALS

NS32202 Interrupt Control Unit 32 - 16

NS32203 Direct Memory Access Controller - - 16

1-5

Process

M2CMOS

CMOS

XMOS

CMOS

XMOS
(NMOS)

XMOS
(NMOS)

Package
Type

175-pin PGA

68-pin PCC

24-pin DIP
Dual-In-Line

Package

6S-pin PGA

40-pin DIP
Dual-In-Line

Package

4S-pin DIP
Dual-In-Line

Package

o
o
3
"a
o
:::I
CD
:::I -C
CD en
n ...
-6' -0'
:::I en

II

~National
D Semiconductor

Hardware Chart

SLAVE
PROCESSORS

1-6

PERIPHERALS

TL/XX/0164-1

~National
D Semiconductor

Systems and Software Chart

BOARD LEVEL
PRODUCTS SOFlWARE EMULATORS

1-7

HOST
DEVELOPMENT
ENVIRONMENTS

TL/XX/0165-1

~ -CD
3
fit
Q)
:s
a.
(J)
o -i
Q) ...
CD
o
::T
Q)

:l

I

1:::
co
.c
o
en
CD
Co)

':;
CD
C
1.::
o
c.
C.
::::J en

~National
~ Semiconductor

Support Devices Chart

SUPPORT
DEVICES

1·8

TL/XX/0166-1

Section 2
CPU-Central
Processing Units

Section 2 Contents
NS32GX32-20, NS32GX32-25, NS32GX32-30 High-Performance 32-Bit Embedded System

Processors . 2-3
NS32CG16-10, NS32CG16-15 High-Performance Printer/Display Processors. 2-96

2-2

~National
~ Semiconductor

PRELIMINARY

NS32GX32-20/NS32GX32-25/NS32GX32-30
High-Performance 32-Bit Embedded System Processor

General Description Features
The NS32GX32 is a high-performance 32-bit embedded
system processor in the Series 32000® family. It is software
compatible with the previous microprocessors in the family
but with a greatly enhanced internal implementation.

• Software compatible with the Series 32000 family

The NS32GX32 integrates more than 320,000 transistors
fabricated in a 1.25 J.Lm double-metal CMOS technology.
The advanced technology and mainframe-like design of the
device enable it to achieve peak performance of 15 million
instructions per second.

The high-performance specifications are the result of a four­
stage instruction pipeline, on-chip instruction and data
caches, and a significantly increased clock frequency. In ad­
dition, the system interface provides optimal support for ap­
plications spanning a wide range, from low-cost, real-time
controllers to highly sophisticated, embedded systems.

In addition to generally improved performance, the
NS32GX32 offers much faster interrupt service and task
switching for real-time applications.

Block Diagram
4- STAGE

INSTRUCTION PIPELINE

DATA
CACHE

(DC)

• 32-bit architecture and implementation
• 4-GByte uniform addressing space
• 4-Stage instruction pipeline
• 512-Byte on-chip instruction cache
• 1024-Byte on-chip data cache
• High-performance bus

- Separate 32-bit address and data lines
- Burst mode memory accessing
- Dynamic bus sizing

• Floating-point support via the NS32381
• 1.25 J.Lm double-metal CMOS technology
• 175-pin PGA package

CONTROL

,..----,/r-LI..<r..L.J.'..LI.-4--.-,/ ADDRESS

BUS
INTERFACE

UNIT
(BIU)

1'\.,--.--....,J'U.LLLI..<r..L.J.'..LI..LL~F-I\.,..--....."Ir--r..L.J.'..LI..LLLI\ • ...---,.I DATA
"'----...I

FIGURE 1

2-3

TLlEE/l0253-1

z
en w
I'll
G)
><
W
I'll • I'll o
"'" Z
en w
I'll
G)
><
W
I'll · I'll
U1

"'" Z
en
w
I'll
G)
><
W
I'll · W
o

o
M · N
M
><
G
N
M en
Z ,
ll)
N · N
M
><
G
N
M en
Z ,
o
N · N
M
><
G
N
M en
Z

Table of Contents

1.0 PRODUCT INTRODUCTION

2.0 ARCHITECTURAL DESCRIPTION

2.1 Register Set

2.1.1 General Purpose Registers

2.1.2 Address Registers

2.1.3 Processor Status Register

2.1.4 Configuration Register

2.1.5 Debug Registers

2.2 Memory Organization

2.2.1 Address Mapping

2.3 Modular Software Support

2.4 Instruction Set

2.4.1 General Instruction Format

2.4.2 Addressing Modes

2.4.3 Instruction Set Summary

3.0 FUNCTIONAL DESCRIPTION

3.1 Instruction Execution

3.1.1 Operating States

3.1.2 Instruction Endings

3.1.2.1 Completed Instructions

3.1.2.2 Suspended Instructions

3.1.2.3 Terminated Instructions

3.1.2.4 Partially Completed Instructions

2-4

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.1.3 Instruction Pipeline

3.1.3.1 Branch Prediction

3.1.3.2 Memory Mapped 1/0

3.1.3.3 Serializing Operations

3.1.4 Slave Processor Instructions

3.1.4.1 Slave Instruction Protocol

3.1.4.2 Floating-Point Instructions

3.1.4.3 Custom Slave Instructions

3.2 Exception Processing

3.2.1 Exception Acknowledge Sequence

3.2.2 Returning from an Exception Service Procedure

3.2.3 Maskable Interrupts

3.2.3.1 Non-Vectored Mode

3.2.3.2 Vectored Mode: Non-Cascaded Case

3.2.3.3 Vectored Mode: Cascaded Case

3.2.4 Non-Maskable Interrupt

3.2.5 Traps

3.2.6 Bus Errors

3.2.7 Priority Among Exceptions

3.2.8 Exception Acknowledge Sequences:
Detailed Flow

3.2.8.1 MaskablelNon-Maskable Interrupt
Sequence

3.2.8.2 Restartable Bus Error Sequence

3.2.8.3 SLAVE/ILLlSVC/DVZ/FLG/BPT lUND
Trap Sequence

3.2.8.4 Trace Trap Sequence

Table of Contents (Continued)

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.2.8.5 Integer-Overflow Trap Sequence

3.2.8.6 Debug Trap Sequence

3.2.8.7 Non-Restartable Bus Error Sequence

3.3 Debugging Support

3.3.1 Instruction Tracing

3.3.2 Debug Trap Capability

3.4 On-Chip Caches

3.4.1 Instruction Cache (IC)

3.4.2 Data Cache (DC)

3.4.3 Cache Coherence Support

3.5 System Interface

3.5.1 Power and Grounding

3.5.2 Clocking

3.5.3 Resetting

3.5.4 Bus Cycles

3.5.4.1 Bus Status

3.5.4.2 Basic Read and Write Cycles

3.5.4.3 Burst Cycles

3.5.4.4 Cycle Extension

3.5.4.5 Interlocked Bus Cycles

3.5.4.6 Interrupt Control Cycles

3.5.4.7 Slave Processor Bus Cycles

3.5.5 Bus Exceptions

3.5.6 Dynamic Bus Configuration

3.5.6.1 Instruction Fetch Sequences

3.5.6.2 Data Read Sequences

3.5.6.3 Data Write Sequences

3.5.7 Bus Access Control

3.5.8 Interfacing Memory-Mapped I/O Devices

3.5.9 Interrupt and Debug Trap Requests

3.5.10 Internal Status

4.0 DEVICE SPECIFICATIONS

4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input/Output Signals

4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics

4.4 Switching Characteristics

2-5

4.0 DEVICE SPECIFICATIONS (Continued)

4.4.1 Definitions

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation
Delays

4.4.2.2 Input Signal Requirements

4.4.3 Timing Diagrams

APPENDIX A: INSTRUCTION FORMATS

B: COMPATIBILITY ISSUES

B.1 Restrictions on Compatibility

B.2 Architecture Extensions

B.3 Integer-Overflow Trap

B.4 Self-Modifying Code

B.5 Memory-Mapped I/O

C: INSTRUCTION SET EXTENSIONS

C.1 Processor Service Instructions

C.2 Instruction Definitions

D: INSTRUCTION EXECUTION TIMES

0.1 Internal Organization and Instruction
Execution

0.2 Basic Execution Times

0.2.1 Loader Timing

0.2.2 Address Unit Timing

0.2.3 Execution Unit Timing

0.3 Instruction Dependencies

0.3.1 Data Dependencies

0.3.1.1 Register Interlocks

0.3.1.2 Memory Interlocks

0.3.2 Control Dependencies

0.4 Storage Delays

0.4.1 Instruction Cache Misses

0.4.2 Data Cache Misses

0.4.3 Instruction and Operand Alignment

0.5 Execution Time Calculations

0.5.1 Definitions

0.5.2 Notes on Table Use

0.5.3 T eft Evaluation

0.5.4 Instruction Timing Example

0.5.5 Execution Timing Tables

0.5.5.1 Basic and Memory
Management Instructions

0.5.5.2 Floating-Point Instructions,
CPU Portion

z en
w
N
G)
><
W
N
I

N
o
Z en
w
N
G)
><
W
N
I

N
CJ1
Z en w
N
G)
><
W
N
I

W
o

C) r---~
C")

N List of Illustrations
C")

><
~ CPU Block Diagram ..•.........................•.. 1

~ NS32GX32 Internal Registers ..•................•....... 2-1

2: Processor Status Register (PSR) .. 2-2

~ Configuration Register (CFG) '•...•.......• 2-3

N Debug Condition Register (OCR)•.. 2-4

Q Debug Status Register (DSR) ... 2-5

~ NS32GX32 Address Mapping ..•..•....... 2-6

~ NS32GX32 Run-Time Environment ... " '•................................. 2-7

Z General Instruction Format•..............................•..........•........... 2-8
~ Index Byte Format ..•......................•.......... 2-9

N Displacement Encodings .. 2-10

Q Operating States•..............................•....................... 3-1

~ NS32GX32 Internal Instruction Pipeline .. 3-2

~ Memory References for Consecutive Instructions•........................•............................... 3-3

Z Memory References after Serialization .. ~ 3-4

Slave Instruction Protocol: CPU Actions ...•.......... 3-5

10 and Operation Word ..•....... 3-6

Slave Processor Status Word ... 3-7

Interrupt Dispatch Table ... 3-8

Exception Acknowledge Sequence: Direct-Exception Mode Disabled .. 3-9

Exception Acknowledge Sequence: Direct-Exception Mode Enabled .. 3-10

Return From Trap (RETTn) Instruction Flow: Direct-Exception Mode Disabled .. 3-11

Return From Interrupt (RETI) Instruction Flow: Direct-Exception Mode Disabled 3-12

Exception Processing Flowchart .•... 3-13

Service Sequence ...•................... 3-14

Instruction Cache Structure .. ' 3-15

Data Cache Structure .. ' 3-16

Power and Ground Connections ... 3-17

Bus Clock Synchronization .. 3-18

Power-On Reset Requirements•...............•.....•.............................. 3-19

General Reset Timing ... '•...•..•...... 3-20

Basic Read Cycle .. 3-21

Write Cycle ..•.....................•..................... 3-22

Burst Read cycles ... ' .. ' 3-23

Cycle Extension of a Basic Read Cycle•.. 3-24

Slave Processor Write Cycle ... 3-25

Slave Processor Read Cycle .. 3-26

Bus Retry During a Basic Read Cycle ... 3-27

Basic Interface for 32-Bit Memories ...•...... 3-28

Basic Interface for 16-Bit Memories•..•..... 3-29

Hold Acknowledge: (Bus Initially Idle)•..•..... 3-30

Typical 1/0 Device Interface ...•................................. ' 3-31

2-6

List of Illustrations (Continued)

NS32GX32 Interface Signals ... 4-1

175-Pin PGA Package ... 4-2

Output Signals Specification Standard•... 4-3

Input Signals Specification Standard4-4

Basic Read Cycle Timing ...•......................•.............................•.............................. 4-5

Write Cycle Timing•..•.............................. 4-6

Interlocked Read and Write Cycles•.. 4-7

Burst Read Cycles .. 4-8

External Termination of Burst Cycles .. 4-9

Bus Error or Retry During Burst Cycles .. 4-10

Extended Retry Timing ...•....................................... 4-11

HOLD Timing (Bus Initially Idle) .. 4-12

HOLD Acknowledge Timing (Bus Initially Not Idle) •.................................•............................. 4-13

Slave Processor Read Timing ..•.............. 4-14

Slave Processor Write Timing .. 4-15

Slave Processor Done ..•...•....................................... 4-16

FSSR Signal Timing•.. 4-17

INT and NMI Signals Sampling ...•....................................... 4-18

Debug Trap Request ..•..•....................................... 4-19

PFS Signal Timing ...•....................................... 4-20

ISF Signal Timing•...•....................................... 4-21

Break Point Signal Timing ... 4-22

Clock Waveforms .. 4-23

Bus Clock Synchronization .. 4-24

Power-On Reset•... 4-25

Non-Power-On Reset ...•... 4-26

LPRi/SPRi Instruction Formats ... C-1

CINV Instruction Format ...•............... C-2

List of Tables
Access Protection Levels .. 2-1

NS32GX32 Addressing Modes .. 2-2

NS32GX32 Instruction Set Summary .. 2-3

Floating-Point Instruction Protocol•... 3-1

Custom Slave Instruction Protocols .. 3-2

Summary of Exception Processing .. 3-3

Interrupt Sequences ... 3-4

Cacheable/Non-Cacheable Instruction Fetches from a 32-Bit Bus ... 3-5

Cacheable/Non-Cacheable Instruction Fetches from a 16-Bit Bus•.....................•.................. 3-6

CacheablelNon-Cacheable Instruction Fetches from an 8-Bit Bus ... 3-7

CacheablelNon-Cacheable Data Reads from a 32-Bit Bus•.. 3-8

Cacheable/Non-Cacheable Data Reads from a 16-Bit Bus ... 3-9

Cacheable/Non-Cacheable Data Reads from an 8-Bit Bus .. 3-10

Data Writes to a 32-Bit Bus .. 3-11

Data Writes to a 16-Bit Bus .. 3-12

Data Writes to an 8-Bit Bus•... 3-13

LPRilSPRi New 'Short' Field Encodings ... C-1

Additional Address Unit Processing Time for Complex Addressing Modes ... D-1

2-7

z
en w
N
G)
><
W
N
I

N o
Z
en w
N
G)
><
W
N

I
N
U1
Z
en
w
N
G)
><
W
N
W
o

o
Cf)

I
N
Cf)

><
~
N
Cf)

en z
........
1.1')
N

I
N
Cf)

><
~
N
Cf)

en
z
........
o
N
N
Cf)

><
~
N
Cf)

en
z

1.0 Product Introduction
The NS32GX32 is an extremely sophisticated microproces­
sorin the Series 32000 family with a full 32-bit architecture
and implementation optimized for high-performance appli­
cations.

By employing a number of mainframe-like features, the de­
vice can deliver 15 MIPS peaks performance with no wait
states at a frequency of 30 MHz.

The NS32GX32 is fully software compatible will all the other
Series 32000 CPUs. The architectural features of the Series
32000 family and particularly the NS32GX32 CPU, are de­
scribed briefly below.

Powerful Addressing Modes. Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types. The architecture provides for numerous data
types, such as byte, word, doubleword. and BCD, which may
be arranged into a wide variety of data structures.

SymmetriC Instruction Set. While avoiding special case
instructions that compilers can't use, the Series 32000 ar­
chitecture incorporates powerful instructions for control op­
erations, such as array indexing and external procedure
calls, which save considerable space and time for compiled
code.

Memory-to-Memory Operations. The Series 32000 CPUs
represent two-address machines. This means that each op­
erand can be referenced by anyone of the addressing
modes provided.

This powerful memory-to-memory architecture permits
memory locations to be treated as registers for all usefull
operations. This is important for temporary operands as well
as for context switching.

Address
~ 3281ts ~

PC

SPO
SP1 -
FP
SB

INTBASE

I MOD

Processor Status
PSR

Large, Uniform Addressing. The NS32GX32 has 32-bit
address pointers that can address up to 4 gigabytes without
requiring any segmentation.

Modular Software Support. Any software package for the
Series 32000 family can be developed independent of all
other packages, without regard to individual addressing. In
addition, ROM code is totally relocatable and easy to ac­
cess, which allows a significant reduction in hardware and
software costs.

Software Processor Concept. The Series 32000 architec­
ture allows future expansions of the instruction set that can
be executed by special slave processors, acting as exten­
sions to the CPU. This concept of slave processors is
unique to the Series 32000 family. It allows software com­
patibility even for future components because the slave
hardware is transparent to the software. With future ad­
vances in semiconductor technology, the slaves can be
physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro­
vide three primary performance advantages and character­
istics:

• High-level language support

• Easy future growth path

• Application flexibility

2.0 Architectural Description
2.1 REGISTER SET

The NS32GX32 CPU has 21 internal registers grouped ac­
cording to functions as follows: 8 general purpose, 7 ad­
dress, 1 processor status, 1 configuration, and 4 debug. All
registers are 32 bits wide except for the module and proces­
sor status, which are each 16 bits wide. Figure 2-1 shows
the NS32GX32 internal registers.

General Purpose
~ 3281ts ~

RO
R1
R2
R3
R4

R5
R6
R7

Debug

OCR
DSR
CAR

BPC

Configuration
CFG

FIGURE 2-1. NS32GX32 Internal Registers

2-8

2.0 Architectural Description (Continued)

2.1.1 General Purpose Registers

There are eight registers (RO-R7) used for satisfying the
high speed general storage requirements, such as holding
temporary variables and addresses. The general purpose
registers are free for any use by the programmer. They are
32 bits in length. If a general purpose register is specified for
an operand that is eight or 16 bits long, only the low part of
the register is used; the high part is not referenced or modi­
fied.

2.1.2 Address Registers

The seven address registers are used by the processor to
implement specific address functions. A description of them
follows.

PC-Program Counter. The PC register is a pointer to the
first byte of the instruction currently being executed. The PC
is used to reference memory in the program section.

sPa, SP1-Stack Pointers. The SPO register points to the
lowest address of the last item stored on the INTERRUPT
STACK. This stack is normally used only by the operating
system. It is used primarily for storing temporary data, and
holding return information for operating system subroutines
and interrupt and trap service routines. The SP1 register
points to the lowest address of the last item stored on the
USER STACK. This stack is used by normal user programs
to hold temporary data and subroutine return information.

When a reference is made to the selected Stack Pointer
(see PSR S-bit), the terms 'SP Register' or 'SP' are used.
SP refers to either SPO or SP1, depending on the setting of
the S bit in the PSR register. If the S bit in the PSR is 0, SP
refers to SPO. If the S bit in the PSR is 1 then SP refers to
SP1.

The NS32GX32 also allows the SP1 register to be directly
loaded and stored using privileged forms of the LPRi and
SPRi instructions, regardless of the setting of the PSR S-bit.
When SP1 is accessed in this manner, it is referred to as
'USP Register' or simply 'USP'.

Stacks in the Series 32000 family grow downward in memo­
ry. A Push operation pre-decrements the Stack Pointer by
the operand length. A Pop operation post-increments the
Stack Pointer by the operand length.

FP-Frame Pointer. The FP regist~r is used by a procedure
to access parameters and local variables on the stack. The
FP register is set up on procedure entry with the ENTER
instruction and restored on procedure termination with the
EXIT instruction.

The frame pOinter holds the address in memory occupied by
the old contents of the frame pointer.

SB-Statlc Base. The S8 register points to the global vari­
ables of a software module. This register is used to support
relocatable global variables for software modules. The S8
register holds the lowest address in memory occupied by
the global variables of a module.

P S

INTBASE-Interrupt Base. The INTBASE register holds
the address of the dispatch table for interrupts and traps
(Section 3.2.1).

MOD-Module. The MOD register holds the address of the
module descriptor of the currently executing software mod­
ule. The MOD register is 16 bits long, therefore the module
table must be contained within the first 64 kbytes of memo­
ry.

2.1.3 Processor Status Register

The Processor Status Register (PSR) holds status informa­
tion for the microprocessor.

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all pro­
grams, but the high order eight bits are accessible only to
programs executing in Supervisor Mode.

C The C bit indicates that a carry or borrow occurred after
an addition or subtraction instruction. It can be used
with the AD DC and SU8C instructions to perform multi­
ple-precision integer arithmetic calculations. It may
have a setting of 0 (no carry or borrow) or 1 (carry or
borrow).

T The T bit causes program tracing. If this bit is set to 1, a
TRC trap is executed after every instruction (Section
3.3.1).

L The L bit is altered by comparison instructions. In a
comparison instruction the L bit is set to "1" if the sec­
ond operand is less than the first operand, when both
operands are interpreted as unsigned integers. Other­
wise, it is set to "0". In Floating-Point comparisons, this
bit is always cleared.

V The V-bit enables generation of a trap (OVF) when an
integer arithmetic operation overflows.

F The F bit is a general condition flag, which is altered by
many instructions (e.g., integer arithmetic instructions
use it to indicate overflow).

Z The Z bit is altered by comparison instructions. In a
comparison instruction the Z bit is set to "1" if the sec­
ond operand is equal to the first operand; otherwise it is
set to "0".

N The N bit is altered by comparison instructions. In a
comparison instruction the N bit is set to "1" if the sec­
ond operand is less than the first operand, when both
operands are interpreted as signed integers. Otherwise,
it is set to "0".

U If the U bit is "1" no privileged instructions may be exe­
cuted. If the U bit is "0" then all instructions may be
executed. When U = 0 the processor is said to be in
Supervisor Mode; when U = 1 the processor is said to

Z F V L T

FIGURE 2·2. Processor Status Register (PSR)

2-9

z en
w
N
G)
><
W
N .
N
o
Z en
w
N
G)
><
W
N

I
N
U1
Z en w
N
G)
><
W
N .
W
o

o
C") .
N
C")

><
" N
C")

en
z
.......
Lt)
N .
N
C")

><

" N
C")

en
z
o
N
N
C")

><

" N
C")

en
z

2.0 Architectural Description (Continued)

be in User Mode. A User Mode program is restricted
from executing certain instructions and accessing cer­
tain registers which could interfere with the operating
system. For example, a User Mode program is prevent­
ed from changing the setting of the flag used to indicate
its own privilege mode. A Supervisor Mode program is
assumed to be a trusted part of the operating system,
hence it has no such restrictions.

S The S bit specifies whether the SPO register or SP1
register is used as the Stack Pointer. The bit is automat­
ically cleared on interrupts and traps. It may have a
setting of 0 (use the SPO register) or 1 (use the SP1
register).

P The P bit prevents a TRC trap from occuring more than
once for an instruction (Section 3.3.1). It may have a
setting of 0 (no trace pending) or 1 (trace pending).

If I = 1, then all interrupts will be accepted. If I = 0,
only the NMI interrupt is accepted. Trap enables are not
affected by this bit.

2.1.4 Configuration Register

The Configuration Register (CFG) is 32 bits wide, of which
ten bits are implemented. The implemented bits enable vari­
ous operating modes for the CPU, including vectoring of
interrupts, execution of slave instructions, and control of the
on·chip caches. In the NS32332 bits 4 through 7 of the CFG
register selected between the 16-bit and 32-bit slave proto­
cols and between 512-byte and 4-Kbyte page sizes. The
NS32GX32 supports only the 32-bit slave protocol and no
memory management: consequently these bits are forced
to 1.

When the CFG register is loaded using the LPRi instruction,
bit 2 and bits 13 through 31 should be set to O. Bits 4
through 7 are ignored during loading, and are always re­
turned as 1's when CFG is stored via the SPRi instruction.
When the SETCFG instruction is executed, the contents of
the CFG register bits 0 through 3 are loaded from the in­
struction's short field, bits 4 through 7 are ignored and bits 8
through 12 are forced to o. Bit 2 must be set to O.

The format of the CFG register is shown in Figure 2-3. The
various control bits are described below.

I Reserved I L1C I IC I LDC I DC I DE I

F

C

Interrupt vectoring. This bit controls whether maska­
ble interrupts are handled in nonvectored (I = 0) or
vectored (I = 1) mode. Refer to Section 3.2.3 for more
information.

Floating-point instruction set. This bit indicates
whether a floating-point unit (FPU) is present to exe­
cute floating-point instructions. If this bit is 0 when the
CPU executes a floating-point instruction, a Trap
(UNO) occurs. If this bit is 1, then the CPU transfers
the instruction and any necessary operands to the
FPU using the slave-processor protocol described in
Section 3.1.4.1.

Custom instruction set. This bit indicates whether a
custom slave processor is present to execute custom
instructions. If this bit is 0 when the CPU executes a
custom instruction, a Trap (UNO) occurs. If this bit is
1, the CPU transfers the instruction and any neces­
sary operands to the custom slave processor using
the slave-processor protocol described in Section
3.1.4.1.

DE Direct-Exception mode enable. This bit enables the
Direct-Exception mode for processing exceptions.
When this mode is selected, the CPU response time
to interrupts and other exceptions is significantly im­
proved. Refer to Section 3.2.1 for more information.

DC Data Cache enable. This bit enables the on-chip Data
Cache to be accessed for data reads and writes. Re­
fer to Section 3.4.2 for more information.

LDC Lock Data Cache. This bit controls whether the con­
tents of the on-chip Data Cache are locked to fixed
memory locations (LDC= 1), or updated when a data
read is missing from the cache (LDC = 0).

IC Instruction Cache enable. This bit enables the on­
chip Instruction Cache to be accessed for instruction
fetches. Refer to Section 3.4.1 for more information.

LIC Lock Instruction Cache. This bit controls whether the
contents of the on-chip Instruction Cache are locked
to fixed memory locations (L1C= 1), or updated when
an instruction fetch is missing from the cache
(L1C=O).

01
I I I I C I Res I F J I

FIGURE 2·3. Configuration Register (CFG) Bits 13 to 31 are Reservedj Bits 4 to 7 are Forced to 1

2-10

2.0 Architectural Description (Continued)

2.1.5 Debug Registers

The NS32GX32 contains 4 registers dedicated for debug­
ging functions.

These registers are accessed using privileged forms of the
LPRi and SPRi instructions.

OCR-Debug Condition Register. The DCR Register en­
ables detection of debug conditions. The format of the DCR
is shown in Figure 2-4,' the various bits are described below.
A debug condition is enabled when the related bit is set to 1.

CBEO Compare Byte Enable 0; when set, BYTEO of an
aligned double·word is included in the address com·
parison

CBE1 Compare Byte Enable 1; when set, BYTE1 of an
aligned double·word is included in the address com·
parison

CBE2 Compare Byte Enable 2; when set, BYTE2 of an
aligned double·word is included in the address com­
parison

CBE3 Compare Byte Enable 3; when set, BYTE3 of an
aligned double-word is included in the address com·
parison

CWR Address-compare enable for write references

CRD Address-compare enable for read references

CAE Address-compare enable

TR Enable Trap (DBG) when a debug condition is de·
tected

PCE PC-match enable

UD Enable debug conditions in User-Mode

SO Enable debug conditions in Supervisor Mode

DEN Enable debug conditions

15

Reserved

31

Reserved

24

The following 2 bits control testing features that can be
used during initial system debugging. These features are
unique to the NS32GX32 implementation of the Series
32000 architecture; as such, they may not be supported in
future implementations. For normal operation these 2 bits
should be set to O.

SI Single-Instruction mode enable. This bit, when set
to 1, inhibits the overlapping of instruction's execu­
tion.

BCP Branch Condition Prediction disable. When this bit is
1, the branch prediction mechanism is disabled. See
Section 3.1.3.1.

DSR-Debug Status Register. The DSR Register indicates
debug conditions that have been detected. When the CPU
detects an enabled debug condition, it sets the correspond­
ing bit (BC, BEX, BCA) in the DSR to 1. When an address­
compare condition is detected, then the RD-bit is loaded to
indicate whether a read or write reference was performed.
Software must clear all the bits in the DSR when appropri­
ate. The format of the DSR is shown in Figure 2-5,' the vari­
ous fields are described below.

RD Indicates whether the last address-compare condi­
tion was for a read (RD = 1) or write (RD = 0)
reference

BPC PC-match condition detected

BEX External condition detected

BCA Address-compare condition detected
Note: If an address compare is detected for a read and write for the same

Instruction, the RD bit will remain clear.

CAR--Compare Address Register. The CAR Register
contains the address that is compared to operand reference
addresses to detect an address-compare condition. The ad­
dress must be double-word aligned; that is, the two least­
significant bits must be O. The CAR is 32 bits wide.

FIGURE 2·4. Debug Condition Register (OCR)

13~D BPC BEX

28

1
27

BCA Reserved °1
FIGURE 2·5. Debug Status Register (DSR)

2-11

z
en w
N
G)
><
W
N

I
N
o
Z
en
w
N
G)
><
W
N

I
N
CJ1
Z
en
w
N
C)
><
W
N
I

W o

o
C")

I
N
C")

><
CJ
N
C")

en
z
It)
N

I
N
C")

><
CJ
N
C")

en
z
o
N

I
N
C")

><
CJ
N
C")

en
z

2.0 Architectural Description (Continued)
BPC-Breakpolnt Program Counter. The BPC Register
contains the address that is compared with the PC contents
to detect a PC-match condition. The BPC Register is 32 bits
wide.

2.2 MEMORY ORGANIZATION

The NS32GX32 implements full 32-bit addresses. This al­
lows the CPU to access up to 4 Gbytes of memory. The
memory is a uniform linear address space. Memory loca­
tions are numbered sequentially starting at zero and ending
at 232 -1. The number specifying a memory location is
called an address. The contents of each memory location is
a byte consisting of eight bits. Unless otherwise noted, dia­
grams in this document show data stored in memory with
the lowest address on the right and the highest address on
the left. Also, when data is shown vertically, the lowest ad­
dress is at the top of a diagram and the highest address at
the bottom of the diagram. When bits are numbered in a
diagram, the least significant bit is given the number zero,
and is shown at the right of the diagram. Bits are numbered
in increasing significance and toward the left.

A

Byte at Address A

Two contiguous bytes are called a word. Except where not­
ed, the least significant byte of a word is stored at the lower
address, and the most significant byte of the word is stored
at the next higher address. In memory, the address of a
word is the address of its least significant byte, and a word
may start at any address.

A+1 A

MSB LSB

Word at Address A

Two contiguous words are called a double-word. Except
where noted, the least significant word of a double-word is

Address (Hex)

00000000

FFOOOOOO

FF800000

FFFFFEOO

FFFFFFFF

stored at the lowest address and the most significant word
of the double-word is stored at the address two higher. In
memory, the address of a double-word is the address of its
least significant byte, and a double-word may start at any
address.

24123 16
1

15

A+3 A+2 A+1 A

MSB LSB

Double-Word at Address A

Although memory is addressed as bytes, it is actually orga­
nized as double-words. Note that access time to a word or a
double-word depends upon its address, e.g. double-words
that are aligned to start at addresses that are multiples of
four will be accessed more quickly than those not so
aligned. This also applies to words that cross a double-word
boundary.

2.2.1 Address Mapping

Figure 2-6 shows the NS32GX32 address mapping.

The NS32GX32 supports the use of memory-mapped pe­
ripheral devices and coprocessors. Such memory-mapped
devices can be located at arbitrary locations in the address
space except for the upper 8 Mbytes of memory (addresses
between FF800000 (hex) and FFFFFFFF (hex), inclusive),
which are reserved by National Semiconductor Corporation.
Nevertheless, it is recommended that high-performance pe­
ripheral devices and coprocessors be located in a specific 8
Mbyte region of memory (addresses between FFOOOOOO
(hex) and FF7FFFFF (hex), inclusive), that is dedicated for
memory-mapped I/O. This is because the NS32GX32 de­
tects references to the dedicated locations and serializes
reads and writes. See Section 3.1.3.3. When making I/O
references to addresses outside the'dedicated region, ex­
ternal hardware must indicate to the NS32GX32 that special
handling is required.

In this case a small performance degradation will also re­
sult. Refer to Section 3.1.3.2 for more information on memo­
ry-mapped I/O.

Memory and I/O

Memory-Mapped I/O

Reserved by NSC

Interrupt Control

FIGURE 2-6. NS32GX32 Address Mapping

2-12

2.0 Architectural Description (Continued)

2.3 MODULAR SOFTWARE SUPPORT

The NS32GX32 provides special support for software mod­
ules and modular programs.

Each module in a NS32GX32 software environment con­
sists of three components:

1. Program Code Segment.

This se~ment contains the module's code and constant
data.

2. Static Data Segment.

Used to store variables and data that may be accessed
by all procedures within the module.

3. Link Table.

This component contains two types of entries: Absolute
Addresses and Procedure Descriptors.

An Absolute Address is used in the external addressing
mode, in conjunction with a displacement and the current
MOD Register contents to compute the effective address
of an external variable belonging to another module.

The Procedure Descriptor is used in the call external pro­
cedure (CXP) instruction to compute the address of an
external procedure.

Normally, the linker program specifies the locations of the
three components. The Static Data and Link Table typically
reside in RAM; the code component can be either in RAM or
in ROM. The three components can be mapped into non­
contiguous locations in memory, and each can be indepen­
dently relocated. Since the Link Table contains the absolute
addresses of external variables, the linker need not assign
absolute memory addresses for these in the module itself;
they may be assigned at load time.

To handle the transfer of control from one module to anoth­
er, the NS32GX32 uses a module table in memory and two
registers in the CPU.

The Module Table is located within the first 64 kbytes of
memory. This table contains a Module Descriptor (also
called a Module Table Entry) for each module in the ad­
dress space of the program. A Module Descriptor has four
32-bit entries corresponding to each component of a mod­
ule:

• The Static Base entry contains the address of the begin­
ning of the module's static data segment.

• The Link Table Base points to the beginning of the mod­
ule's Link Table.

• The Program Base is the address of the beginning of the
code and constant data for the module.

• A fourth entry is currently unused but reserved.

The MOD Register in the CPU contains the address of the
Module Descriptor for the currently executing module.

The Static Base Register (SB) contains a copy of the Static
Base entry in the Module Descriptor of the currently execut­
ing module, i.e., it points to the beginning of the current
module's static data area.

This register is implemented in the CPU for efficiency pur­
poses. By having a copy of the static base entry or chip, the
CPU can avoid reading it from memory each time a data
item in the static data segment is accessed.

In an NS32GX32 software environment modules need not
be linked together prior to loading. As modules are loaded,
a linking loader simply updates the Module Table and fills
the Link Table entries with the appropriate values. No modi­
fication of a module's code is required. Thus, modules may
be stored in read-only memory and may be added to a sys­
tem independently of each other, without regard to their in­
dividual addressing. Figure 2-7 shows a typical NS32GX32
run-time environment.

STATIC DATA
SEGMENT

SB REGISTER

I
I
I
I
I

OFFSET - - +<;)+ -~
I
I
I
I
I
I
I
I
I

DISPI x4

PROGRAM CODE
SEGMENT

DISP

31 LINK TABLE 0

DISP2

EXT. VARIABLE

TL/EE/l0253-2

Note: Dashed lines indicate information copied to registers during transfer of control between modules.

FIGURE 2-7. NS32GX32 Run-Time Environment

2-13

z
en w
N
G)
><
W
N · N
o
Z
en
w
N
G)
><
W
N · N
U1
Z en
w
N
G)
><
W
N · W
o

EI

o
C")

I
N
C")

><
CJ
N
C")

en z
.......
lI)
N

I
N
C")

><
CJ
N
C")

en z
....... o
N

I
N
C")

><
CJ
N
C")

en z

2.0 Architectural Description (Continued)

OPnONAL BA~
EXTENSIONS INSTRUCTION

r~------------------~A~------------------~\(~--------~~

DISPZ DISP1 DISP2/DISP1
I ;
I I

I
GEN I GEN I

.. PLIED INDEX INDEX I I

DISP DISP ADDR I ADDR I oPCODE I EDIATE BYTE BYTE I
OPEAAHD(S) MODE I MODE I

1 I 2 I
I I

IMM IMM 1 I
I

t ~ ~ j

TLlEE/10253-5

FIGURE 2-8. General Instruction Format

I' REO. NO.
D I OEN. AD DR • MODE

TL/EE/10253-6

FIGURE 2-9. Index Byte Format

2.4 INSTRUCTION SET

2.4.1 General Instruction Format

Figure 2-8 shows the general format of a Series 32000 in­
struction. The Basic Instruction is one to three bytes long
and contains the Opcode and up to two 5-bit General Ad­
dressing Mode (liGen") fields. Following the Basic Instruc­
tion field is a set of optional extensions, which may appear
depending on the instruction and the addressing modes se­
lected.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index­
ing. See Figure 2-9.

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select­
ed addressing modes. Each Disp/lmm field may contain
one or two displacements, or one immediate value. The size
of a Displacement field is encoded with the top bits of that
field, as shown in Figure 2-10, with the remaining bits inter­
preted as a signed (two's complement) value. The size of an
immediate value is determined from the Opcode field. Both
Displacement and Immediate fields are stored most signifi­
cant byte first. Note that this is different from the memory
representation of data (Section 2.2).

Some instructions require additional, 'implied" immediates
and/or displacements, apart from those associated with ad­
dressing modes. Any such extensions appear at the end of
the instruction, in the order that they appear within the list of
operands in the instruction definition (Section 2.4.3).

2.4.2 Addressing Modes

The CPU generally accesses an operand by calculating its
Effective Address based on information available when the
operand is to be accessed. The method to be used in per­
forming this calculation is specified by the programmer as
an "addressing mode."

2-14

7

1

Byte Displacement: Range - 64 to + 63

SIGNED DISPLACEMENT D I
Word Displacement: Range -8192 to + 8191

I
I

o

Double Word Displacement:
Range -(229 - 224)to + (229 - 1)*

0

1 I
~#'

rt"-G
cf-

~~o
-~~

TL/EE/10253-7

FIGURE 2-10. Displacement Encodlngs
'Note: The pattern "11100000" for the most significant byte of the displace­

ment is reserved by National for future enhancements. Therefore. It
should never be used by the user program. This causes the lower
limit of the displacement range to be -(229 -224) instead of -229.

2.0 Architectural Description (Continued)

Addressing modes are designed to optimally support hlgh­
level language accesses to variables. In nearly all cases, a
variable access requires only one addressing mode, within
the instruction that acts upon that variable. Extraneous data
movement is therefore minimized.

Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight Gen­
eral Purpose Registers. In certain Slave Processor instruc­
tions, an auxiliary set of eight registers may be referenced
instead.

Register Relative: A General Purpose Register contains an
address to which is added a displacement value from the
instruction, yielding the Effective Address of the operand in
memory.

Memory Space: Identical to Register Relative above, ex­
cept that the register used is one of the dedicated registers
PC, SP, SB or FP. These registers point to data areas gen­
erally needed by high-level languages.

Memory Relative: A pointer variable is found within the
memory space pointed to by the SP, SB or FP register. A
displacement is added to that pointer to generate the Effec­
tive Address of the operand.

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written.

Absolute: The address of the operand is specified by a
displacement field in the instruction.

External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis­
placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SPO or
SP1) specifies the location of the operand. The operand is
pushed or popped, depending on whether it is written or
read.

Scaled Index: Although encoded as an addressing mode,
Scaled Indexing is an option on any addressing mode ex­
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen-

2-15

eral Purpose Register by 1, 2, 4 or B and adding it into the
total, yielding the final Effective Address of the operand.

Table 2-2 is a brief summary of the addressing modes. For a
complete description of their actions, see the Instruction Set
Reference Manual.

2.4.3 Instruction Set Summary

Table 2-3 presents a brief description of the NS32GX32 in­
struction set. The Format column refers to the Instruction
Format tables (Appendix A). The Instruction column gives
the instruction as coded in assembly language, and the De­
scription column provides a short description of the function
provided by that instruction. Further details of the exact op­
erations performed by each instruction may be found in the
Instruction Set Reference Manual.

Notations:

i = Integer length suffix: B = Byte

W = Word

D = Double Word

f = Floating Point length suffix: F = Standard Floating

L = Long Floating

gen = General operand. Any addressing mode can be
specified.

short = A 4-bit value encoded within the Basic Instruction
(see Appendix A for encodings).

imm = Implied immediate operand. An B-bit value append­
ed after any addressing extensions.

disp = Displacement (addressing constant): 8, 16 or 32
bits. All three lengths legal.

reg = Any General Purpose Register: RO-R7.

areg = Any Processor Register: Address, Debug, Status,
Configuration.

creg = A Custom Slave Processor Register (Implementa­
tion Dependent).

cond = Any condition code, encoded as a 4-bit field within
the Basic Instruction (see Appendix A for encodings).

z en
CN
I\)
G')

><
CN
I\)
• I\)

Q

'" Z
en
CN
I\)
G')

><
CN
I\)

N
<II

'" Z en
CN
I\)
G')

><
CN
I\)

• CN
Q

fI

0
C")
• 2.0 Architectural Description (Continued) <"I

C")

>< TABLE 2-2. NS32GX32 Addressing Modes C!J
<"I
C") ENCODING MODE ASSEMBLER SYNTAX U)
Z Register

00000 Register 0 RO, FO, LO '" <"I
00001 Register 1 R1,F1,L1 • <"I

C") 00010 Register 2 R2, F2, L2 >< 00011 Register 3 R3, F3, L3 C!J
<"I 00100 Register 4 R4, F4, L4 C")
U) 00101 RegisterS RS, FS, LS
Z 00110 Register 6 R6, F6, L6
0 00111 Register 7 R7, F7, L7 <"I • Register Relative <"I
C")

>< 01000 Register 0 relative disp(RO)
C!J 01001 Register 1 relative disp(R1) <"I
C") 01010 Register 2 relative disp(R2)
U)
Z 01011 Register 3 relative disp(R3)

01100 Register 4 relative disp(R4)
01101 Register S relative disp(RS)
01110 Register 6 relative disp(R6)
01111 Register 7 relative disp(R7)

Memory Relative
10000 Frame memory relative disp2(disp1 (FP»
10001 Stack memory relative disp2(disp1 (SP»
10010 Static memory relative disp2(disp1 (S8»

Reserved
10011 (Reserved for Future Use)

Immediate
10100 Immediate value

Absolute
10101 Absolute @disp

External
10110 . External EXT(disp1) + disp2

Top of Stack
10111 Top of stack TOS

Memory Space
11000 Frame memory disp(FP)
11001 Stack memory disp(SP)
11010 Static memory disp(S8)
11011 Program memory ·+disp

Scaled Index
11100 Index, bytes mode[Rn:8]
11101 Index, words mode[Rn:W]
11110 Index, double words mode[Rn:D]
11111 Index, quad words mode[Rn:Q]

2-16

EFFECTIVE ADDRESS

None: Operand is in the
specified register.

Disp + Register.

Disp2 + Pointer; Pointer found at
address Disp1 + Register. "SP" is either
SPO or SP1, as selected in PSR.

None. Operand is input from
instruction queue.

Disp.

Disp2 + Pointer; Pointer Is found
at Link Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Disp + Register; "SP" is either
SPO or SP1, as selected in PSR.

EA (mode) + Rn.
EA (mode) + 2 x Rn.
EA (mode) + 4 x Rn.
EA (mode) + 8 x Rn.
"Mode' and 'n' are contained
within the Index 8yte.
EA (mode) denotes the effective
address generated using mode.

z
2.0 Architectural Description (Continued)

en w
N

TABLE 2·3. NS32GX32 Instruction Set Summary
G)
><

MOVES w
N

Format Operation Operands Description • N
4 MOVi gen,gen Move a value. 0
2 MOVQi short,gen Extend and move a signed 4-bit constant. Z en
7 MOVMi gen,gen,disp Move Multiple: disp bytes (1 to 16). W

N 7 MOVZBW gen,gen Move with zero extension. G)
7 MOVZiD gen,gen Move with zero extension. >< w
7 MOVXBW gen,gen Move with sign extension. N · 7 MOVXiD gen,gen Move with sign extension. N

U1
4 ADDR gen,gen Move Effective Address.

Z
INTEGER ARITHMETIC en w
Format Operation Operands Description N

4 ADDI gen,gen Add.
G)
><

2 ADDQi short,gen Add signed 4-bit constant. w
N

4 ADDCi gen,gen Add with carry. • w
4 SUBi gen,gen Subtract. 0

4 SUBCi gen,gen Subtract with carry (borrow).
6 NEGi gen,gen Negate (2's complement).
6 ABSi gen,gen Take absolute value.
7 MULi gen,gen Multiply.
7 QUOi gen,gen Divide, rounding toward zero.
7 REMi gen,gen Remainder from QUO.
7 DIVi gen,gen Divide, rounding down.
7 MODi gen,gen Remainder from DIV (Modulus).
7 MEIi gen,gen Multiply to Extended Integer.
7 DEli gen,gen Divide Extended Integer.

PACKED DECIMAL (BCD) ARITHMETIC
Format Operation Operands Description

6 ADDPi gen,gen Add Packed.
6 SUBPi gen,gen Subtract Packed.

INTEGER COMPARISON
Format Operation Operands Description

4 CMPi gen,gen Compare.
2 CMPQi short,gen Compare to signed 4-bit constant.
7 CMPMi gen,gen,disp Compare Multiple: disp bytes (1 to 16).

LOGICAL AND BOOLEAN
Format Operation Operands Description

4 ANDi gen,gen Logical AND.
4 ORi gen,gen Logical OR.
4 BICi gen,gen Clear selected bits.
4 XORi gen,gen Logical Exclusive OR.
6 COMi gen,gen Complement all bits.
6 NOTi gen,gen Boolean complement: LSB only.
2 Scondi gen Save condition code (cond) as a Boolean variable of size i.

SHIFTS
Format Operation Operands Description

6 LSHi gen,gen Logical Shift, left or right.
6 ASHi gen,gen Arithmetic Shift, left or right.
6 ROTi gen,gen Rotate, left or right.

2-17

Q
Cf)

~ 2.0 Architectural Description (Continued)
Cf)

~ TABLE 2-3. NS32GX32 Instruction Set Summary (Continued)
N
Cf)
U)
Z
LI)
N
~
Cf)

><
~
N
Cf)
U)
Z
Q

BITS
Format

4
6
6
6
6
6
8

BIT FIELDS

Operation
TBITi
SBITi
SBITIi
CBITi
CBITIi
IBITi
FFSi

Operands Description
gen,gen Test bit.
gen,gen Test and set bit.
gen,gen Test and set bit, interlocked.
gen,gen Test and clear bit.
gen,gen Test and clear bit, interlocked.
gen,gen Test and invert bit.
gen,gen Find first set bit.

~ Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records used in
Cf) Pascal. "Extract" instructions read and align a bit field. "Insert" instructions write a bit field from an aligned source.
~ Format Operation Operands Description
~ 8 EXTi reg,gen,gen,disp Extract bit field (array oriented).
U) 8 INSi reg,gen,gen,disp Insert bit field (array oriented).
Z 7 EXTSi gen,gen,imm,imm Extract bit field (short form).

7 INSSi gen,gen,imm,imm Insert bit field (short form).
8 CVTP reg,gen,gen Convert to Bit Field Pointer.

ARRAYS
Format

8
8

STRINGS

Operation
CHECKi
INDEXi

Operands
reg,gen,gen
reg,gen,gen

String instructions assign specific functions to
the General Purpose Registers:
R4 - Comparison Value
R3 - Translation Table Pointer
R2 - String 2 Pointer
R1 - String 1 Pointer
RO - Limit Count

Format Operation Operands
5 MOVSi options

MOVST options
5 CMPSi options

CMPST options
5 SKPSi options

SKPST options

Description
Index bounds check.
Recursive indexing step for multiple-dimensional arrays.

Options on all string instructions are:
B (Backward): Decrement string pointers after each step

rather than incrementing.
U (Until match): End instruction if String 1 entry

matches R4.
W (While match): End instruction if String 1 entry

does not match R4.
All string instructions end when RO decrements to zero.
Description
Move String 1 to String 2.
Move string, translating bytes.
Compare String 1 to String 2.
Compare translating, String 1 bytes.
Skip over String 1 entries.
Skip, translating bytes for Until/While.

2-18

z
2.0 Architectural Description (Continued)

en w
~

TABLE 2·3. NS32GX32 Instruction Set Summary (Continued)
G)
><

JUMPS AND LINKAGE w
~

Format Operation Operands Description • ~
3 JUMP gen Jump. 0
0 BR disp Branch (PC Relative). Z

en
0 Bcond disp Conditional branch. w

~
3 CASEI gen Multiway branch. G)
2 ACBI short,gen,disp Add 4·bit constant and branch If non·zero. >< w
3 JSR gen Jump to subroutine. ~ • BSR disp Branch to subroutine. ~ c.n

CXP dlsp Call external procedure.
Z

3 CXPD gen Call external procedure using descriptor. en
SVC Supervisor Call. w

~

FLAG Flag Trap. G)
>< BPT Breakpoint Trap. w

ENTER [reg list),disp Save registers and allocate stack frame (Enter Procedure). ~ • w
EXIT [reg list) Restore registers and reclaim stack frame (Exit Procedure). 0

RET disp Return from subroutine.
RXP disp Return from external procedure call.
RETT disp Return from trap. (Privileged)
RETI Return from Interrupt. (Privileged)

CPU REGISTER MANIPULATION
Format Operation Operands Description

1 SAVE [reg list] Save General Purpose Registers.
RESTORE [reg list) Restore General Purpose Registers.

2 LPRi areg,gen Load Processor Register. (Privileged if PSR, INTBASE, USP, CFG
or Debug Registers).

2 SPRi areg,gen Store Processor Register. (Privileged if PSR, INTBASE, USP, CFG
or Debug Registers).

3 ADJSPi gen Adjust Stack Pointer.
3 BISPSRi gen Set selected bits in PSR. (Privileged if not Byte length)
3 BICPSRi gen Clear selected bits in PSR. (Privileged if not Byte length)
5 SETCFG [option list] Set Configuration Register. (Privileged)

FLOATING POINT
Format Operation Operands Description

11 MOVf gen,gen Move a Floating Point value.
9 MOVLF gen,gen Move and shorten a Long value to Standard.
9 MOVFL gen,gen Move and lengthen a Standard value to Long.
9 MOVif gen,gen Convert any integer to Standard or Long Floating.
9 ROUNDfi gen,gen Convert to integer by rounding.
9 TRUNCfi gen,gen Convert to integer by truncating, toward zero.
9 FLOORfi gen,gen Convert to largest integer less than or equal to value.
11 ADDf gen,gen Add.
11 SUBf gen,gen Subtract.
11 MULf gen,gen Multiply.
11 DIVf gen,gen Divide.
11 CMPf gen,gen Compare.
11 NEGf gen,gen Negate.
11 ABSf gen,gen Take absolute value.
12 POLYf gen,gen Polynomial Step.
12 DOTf gen,gen Dot Product.
12 SCALBf gen,gen Binary Scale.
12 LOGBf gen,gen Binary Log.
9 LFSR gen Load FSR.
9 SFSR gen Store FSR.

2·19

0
(f')
• 2.0 Architectural Description (Continued) N

(f')

>< TABLE 2-3. NS32GX32 Instruction Set Summary (Continued) CJ
N MISCELLANEOUS
(f')

en Format Operation Operands Description
Z 1 NOP No Operation.
II)

WAIT Wait for interrupt. N • DIA Diagnose. Single-byte "Branch to Self" for hardware N
(f')

breakpointing. Not for use in programming. ><
CJ 14 CINV options,gen Cache Invalidate. (Privileged)
N
(f') 8 MOVSUi gen,gen Move a value from Supervisor en Space to User Space. (Privileged) Z 8 MOVUSi gen,gen Move a value from User Space 0
N to Supervisor Space. (Privileged) • N

CUSTOM SLAVE (f')

>< Format Operation Operands Description CJ
N 15.5 CCALOc gen,gen Custom Calculate.
(f')

en 15.5 CCAL1c gen,gen
Z 15.5 CCAL2c gen,gen

15.5 CCAL3c gen,gen
15.5 CMOVOc gen,gen Custom Move.
15.5 CMOV1c gen,gen
15.5 CMOV2c gen,gen
15.5 CMOV3c gen,gen
15.5 CCMPOc gen,gen Custom Compare.
15.5 CCMP1c gen,gen

15.1 CCVOci gen,gen Custom Convert.
15.1 CCV1ci gen,gen
15.1 CCV2ci gen,gen

15.1 CCV3ic gen,gen

15.1 CCV4DQ gen,gen
15.1 CCV5QD gen,gen
15.1 LCSR gen Load Custom Status Register.
15.1 SCSR gen Store Custom Status Register.
15.0 LCR creg,gen Load Custom Register. (Privileged)
15.0 SCR creg,gen Store Custom Register. (Privileged)

2-20

3.0 Functional Description
This chapter provides details on the functional characteris­
tics of the NS32GX32 microprocessor.

The chapter is divided into five main sections:

Instruction Execution, Exception Processing, Debugging,
On-Chip Caches and System Interface.

3.1 INSTRUCTION EXECUTION

To execute an instruction, the NS32GX32 performs the fol­
lowing operations:

• Fetch the instruction

• Read source operands, if any (1)

• Calculate results
• Write result operands, if any

• Modify flags, if necessary

• Update the program counter

Under most circumstances, the CPU can be conceived to
execute instructions by completing the operations above in
strict sequence for one instruction and then beginning the
sequence of operations for the next instruction. However,
due to the internal instruction pipelining, as well as the oc­
currence of exceptions, the sequence of operations per­
formed during the execution of an instruction may be al­
tered. Furthermore, exceptions also break the sequentiality
of the instructions executed by the CPU.

Details on the effects of the internal pipelining, as well as
the occurrence of exceptions on the instruction execution,
are provided in the following sections.
Note: 1 In this and following sections, memory locations read by the CPU to

calculate effective addresses for Memory·Relative and External ad·
dressing modes are considered like source operands, even if the
effective address is being calculated for an operand with access
class of write.

3.1.1 Operating States

The CPU has five operating states regarding the execution
of instructions and the processing of exceptions: Reset, Ex­
ecuting Instructions, Processing An Exception, Waiting-For­
An-Interrupt, and Halted. The various states and transitions
between them are shown in Figure 3-1.

Whenever the RST signal is asserted, the CPU enters the
reset state. The CPU remains in the reset state until the
RST signal is driven inactive, at which time it enters the
Executing-Instructions state. In the Reset state the contents
of certain registers are initialized. Refer to Section 3.5.3 for
details.

In the Executing-Instructions state, the CPU executes in­
structions. It will exit this state when an exception is recog­
nized or a WAIT instruction is encountered. At which time it
enters the Processing-An-Exception state or the Waiting­
For-An-Interrupt state respectively.

While in the Processing-An-Exception state, the CPU saves
the PC, PSR and MOD register contents on the stack and
reads the new PC and module linkage information to begin
execution of the exception service procedure (see note).

Following the completion of all data references required to
process an exception, the CPU enters the Executing-In­
structions state.

In the Waiting-For-An-Interrupt state, the CPU is idle. A spe­
cial status identifying this state is presented on the system
interface (Section 3.5). When an interrupt or a debug condi-

2-21

RST ACTIVE

TL/EE/10253-8

FIGURE 3-1. Operating States

tion is detected, the CPU enters the Processing-An-Excep­
tion state.

The CPU enters the Halted state when a bus error is detect­
ed while the CPU is processing an exception, thereby pre­
venting the transfer of control to an appropriate exception
service procedure. The CPU remains in the Halted state
until reset occurs. A special status identifying this state is
presented on the system interface.
Note: When the Direct·Exception mode is enabled, the CPU does not save

the MOD Register contents nor does it read the module linkage infor­
mation for the exception service procedure. Refer to Section 3.2 for
details.

3.1.2 Instruction Endings

The NS32GX32 checks for exceptions at various points
while executing instructions. Certain exceptions, like inter­
rupts, are in most cases recognized between instructions.
Other exceptions, like Divide-By-Zero Trap, are recognized
during execution of an instruction. When an exception is
recognized during execution of an instruction, the instruction
ends in one of four possible ways: completed, suspended,
terminated, or partially completed. Each type of exception
causes a particular ending, as specified in Section 3.2.

3.1.2.1 Completed Instructions

When an exception is recognized after an instruction is
completed, the CPU has performed all of the operations for
that instruction and for all other instructions executed since
the last exception occurred. Result operands have been
written, flags have been modified, and the PC saved on the
Interrupt Stack contains the address of the next instruction
to execute. The exception service procedure can, at its con­
clusion, execute the RETT instruction (or the RETI instruc­
tion for vectored interrupts), and the CPU will begin execut­
ing the instruction following the completed instruction.

z en
eN
N
C)
><
eN
N · N o
Z en
eN
N
C)
><
eN
N · N
U1
Z en
eN
N
C)
><
eN
N • eN
o

3.0 Functional Description (Continued)

3.1.2.2 Suspended Instructions

An instruction is suspended when one of several trap condi­
tions or a restartable bus error is detected during execution
of the instruction. A suspended instruction has not been
completed, but all other instructions executed since the last
exception occurred have been completed. Result operands
and flags due to be affected by the instruction may have
been modified, but only modifications that allow the instruc­
tion to be executed again and completed can occur. For
certain exceptions (Trap (UND), Trap (ILL), and bus errors)
the CPU clears the P-flag in the PSR before saving the copy
that is pushed on the Interrupt Stack. The PC saved on the
Interrupt Stack contains the address of the suspended in­
struction.

For example, the RESTORE Instruction pops up to 8 gener­
al-purpose registers from the stack. If an invalid page table
entry is detected on one of the references to the stack, then
the Instruction is suspended. The general-purpose registers
due to be loaded by the instruction may have been modified,
but the stack pointer still holds the same. value that it did
when the instruction began.

To complete a suspended instruction, the exception service
procedure takes either of two actions:

1. The service procedure can simulate the suspended in­
struction's execution. After calculating and writing the in­
struction's results, the flags in the PSR copy saved on the
Interrupt Stack should be modified, and the PC saved on
the Interrupt Stack should be updated to point to the next
instruction to execute. The service procedure can then
execute the RETT instruction, and the CPU begins exe­
cuting the instruction following the suspended instruction.
This is the action taken when floating-point instructions
are simulated by software in systems without a hardware
floating-point unit.

2. The suspended instruction can be executed again after
the service procedure has eliminated the trap condition
that caused the instruction to be suspended. The service
procedure should execute the RETT instruction at its con­
clusion; then the CPU begins executing the suspended
instruction again. This is the action taken by a debugger
when it encounters a BPT instruction that was temporarily
placed in another instruction's location in order to set a
breakpoint.

Note 1: Although the NS32GX32 allows a suspended instruction to be exe·
cuted again and completed, the CPU may have read a source oper­
and for the instruction from a memory-mapped peripheral port be­
fore the exception was recognized. In such a case, the characteris­
tics of the peripheral device may prevent correct reexecution of the
Instruction.

Note 2: It may be necessary for the exception service procedure to alter the
P-flag in the PSR copy saved on the Interrupt Stack: If the exception
service procedure simulates the suspended instruction and the P­
flag was cleared by the CPU before saving the PSR copy, then the
saved T-flag must be copied to the saved P-flag (like the floating­
point Instruction simulation described above). Or if the exception
service procedure executes the suspended instruction again and
the P-flag was not cleared by the CPU before saving the PSR copy,
then the saved P-flag must be cleared (like the breakpoint trap de­
scribed above). Otherwise, no alteration to the saved P-f1ag is nec­
essary.

3.1.2.3 Terminated Instructions

An instruction being executed is terminated when reset or a
nonrestartable bus error occurs. Any result operands and
flags due to be affected by the instruction are undefined, as

2-22

is the contents of the PC. The result operands of other in­
structions executed since the last serializing operation may
not have been written to memory. A terminated instruction
cannot be completed.

3.1.2.4 Partially Completed Instructions

When a restartable bus error, interrupt, or debug condition is
recognized during execution of a string instruction, the in­
struction is said to be partially completed. A partially com­
pleted instruction has not completed, but all other instruc­
tions executed since the last exception occurred have been
completed. Result operands and flags due to be affected by
the instruction may have been modified, but the values
stored in the string pointers and other general-purpose reg­
isters used during the instruction's execution allow the in­
struction to be executed again and completed.

The CPU clears the P-flag in the PSR before saving the
copy that is pushed on the Interrupt Stack. The PC saved on
the Interrupt Stack contains the address of the partially
completed instruction. The exception service procedure
can, at its conclusion, simply execute the RETT instruction
(or the RETI instruction for vectored interrupts), and the
CPU will resume executing the partially completed instruc­
tion.

3.1.3 Instruction Pipeline
The NS32GX32 executes instructions in a heavily pipelined
fashion. This allows a significant performance enhancement
since the operations of several instructions are performed
simultaneously rather than in a strictly sequential manner.

The CPU provides a four-stage internal instruction pipeline.
As shown in Figure 3-2, a write buffer, that can hold up to
two operands, is also provided to allow write operations to
be performed off-line.

Stage 1

Buffer

Stage 2

Buffer

Stage 3

Stage 4

p------- -------.
: 2 Memory Results : Buffer ._-------------_.

TL/EE/10253-9

FIGURE 3-2. NS32GX32 Internal Instruction Pipeline

Due to the pipelining, operations like fetching one instruc­
tion, reading the source operands of a second instruction,
calculating the results of a third instruction and storing the
results of a fourth instruction, can all occur in parallel.

3.0 Functional Description (Continued)

The order of memory references performed by the CPU may
also differ from that related to a strictly sequential instruc­
tion execution. In fact, when an instruction is being execut­
ed, some of the source operands may be read from memory
before the instruction is completely fetched. For example,
the CPU may read the first source operand for an instruction
before it has fetched a displacement used in calculating the
address of the second source operand. The CPU, however,
always completes fetching an instruction and reading its
source operands before writing its results. When more than
one source operand must be read from memory to execute
an instruction, the operands may be read in any order. Simi­
larly, when more than one result operand is written to mem­
ory to execute an instruction, the operands may be written
in any order.

An instruction is fetched only after all previous instructions
have been completely fetched. However, the CPU may be­
gin fetching an instruction before all of the source operands
have been read and results written for previous instructions.

The source operands for an instruction are read only after
all previous instructions have been fetched and their source
operands read. A source operand for an instruction may be
read before all results of previous instructions have been
written, except when the source operand's value depends
on a result not yet written. The CPU compares the address
and length of a source operand with those of any results not
yet written, and delays reading the source operand until af­
ter writing all results on which the source operand depends.
Also, the CPU ensures that the interlocked read and write
references to execute an SBITli or CBITIi instruction occur
after writing all results of previous instructions and before
reading any source operands for subsequent instructions.

The result operands for an instruction are written after all
results of previous instructions have been written.

The description above is summarized in Figure 3-3, which
shows the precedence of memory references for two con­
secutive instructions.

INSTRUCTION N INSTRUCTION N + 1

INSTRUCTION rETCH ~UCTION fETCH

\ ~\,~D ~ ~TA\ 1
DATA WRITE ~ DATA WRITE

TL/EE/l0253-10

FIGURE 3-3. Memory References for
Consecutive Instructions

(An arrow from one reference to another Indicates that
the first reference always precedes the second.)

Another consequence of overlapping the operations for sev­
eral instructions, is that the CPU may fetch an instruction
and read its source operands, even though the instruction is
not executed (e.g., due to the occurrence of an exception).

Special care is needed in the handling of memory-mapped
liD devices. The CPU provides special mechanisms to en­
sure that the references to these devices are always per­
formed in the order implied by the program. Refer to Section
3.1.3.2 for details.

2-23

It is also to be noted that the CPU does not check for de­
pendencies between the fetching of an instruction and the
writing of previous instructions' results. Therefore, special
care is required when executing self-modifying code.

3.1.3.1 Branch Prediction

One problem inherent to all pipelined machines is what is
called "Pipeline Breakage".

This occurs every time the sequentiality of the instructions is
broken, due to the execution of certain instructions or the
occurrence of exceptions.

The result of a pipeline breakage is a performance degrada­
tion, due to the fact that a certain portion of the pipeline
must be flushed and new data must be brought in.

The NS32GX32 provides a special mechanism, called
branch prediction, that helps minimize this performance
penalty.

When a conditional branch instruction is decoded in the ear­
ly stages of the pipeline, a prediction on the execution of the
instruction is performed.

More precisely, the prediction mechanism predicts back­
ward branches as taken and forward branches as not taken,
except for the branch instructions BLE and BNE that are
always predicted as taken.

Thus, the resulting probability of correct prediction is fairly
high, especially for branch instructions placed at the end of
loops.

The sequence of operations performed by the loader and
execution units in the CPU is given below:

• Loader detects branches and calculates destination ad­
dresses

• Loader uses branch opcode and direction to select be-
tween sequential and non-sequential streams

• Loader saves address for alternate stream

• Execution unit resolves branch decision

Due to the branch predicition, some special care is required
when writing self-modifying code. Refer to the appropriate
section in Appendix B for more information on this subject.

3.1.3.2 Memory-Mapped I/O

The characteristics of certain peripheral devices and the
overlapping of instruction execution in the pipeline of the
NS32GX32 require that special handling be applied to mem­
ory-mapped liD references. liD references differ from
memory references in two significant ways, imposing the
following requirements:

1. Reading from a peripheral port can alter the value read
on the next reference to the same port or another port in
the same device. (A characteristic called here "destruc­
tive-reading".) Serial communication controllers and
FIFO buffers commonly operate in this manner. As ex­
plained in "Instruction Pipeline" above, the NS32GX32
can read the source operands for one instruction while
the previous instruction is executing. Because the previ­
ous instruction may cause a trap, an interrupt may be
recognized, or the flow of control may be otherwise al­
tered, it is a requirement that destructive-reading of
source operands before the execution of an instruction
be avoided.

z en
w
N
G)
><
W
N • N o
Z en w
N
G)
><
W
N · N
U1
Z en w
N
G)
><
W
N · W
o

EI

o
C")

N
C")

><
CJ
N
C")
(/)
Z
"­In
N
N
C")

><
CJ
N
C")
(/)
Z
"­o
N
N
C")

><
CJ
N
C")
(/)
Z

3.0 Functional Description (Continued)

2. Writing to a peripheral port can alter the value read from
another port of the same device. (A characteristic called
here "side-effects of writing"). For example, before read­
ing the counter's value from the NS32202 Interrupt Con­
trol Unit it is first necessary to freeze the value by writing
to another control register.

However, as mentioned above, the NS32GX32 can read the
source operands for one instruction before writing the re­
sults of previous instructions unless the addresses indicate
a dependency between the read and write references. Con­
sequently, it is a requirement that read and write references
to peripheral that exhibit side-effects of writing must occur in
the order dictated by the instructions.

The NS32GX32 supports 2 methods for handling memory­
mapped 110. The first method is more general; it satisfies
both requirements listed above and places no restriction on
the location of memory-mapped peripheral devices. The
second method satisfies only the requirement for side ef­
fects of writing, and it restricts the location of memory­
mapped 110 devices, but it is more efficient for devices that
do not have destructive-read ports.

The first method for handling memory-mapped 110 uses two
signals: 10lNH and 100EC. When the NS32GX32 generates
a read bus cycle, it asserts the output signal IOINH if either
of the 110 requirements listed above is not satisfied. That is,
10lNH is asserted during a read bus cycle when (1) the read
reference is for an instruction that may not be executed or
(2) the read reference occurs while a write reference is
pending for a previous instruction. When the read reference
is to a peripheral device that implements ports with destruc­
tive-reading or side-effects of writing, the input signal
10DEC must be asserted; in addition, the device must not
be selected if IOINH is active. When the CPU detects that
the 100EC input signal is active while the IOINH output sig­
nal is also active, it discards the data read during the bus
cycle and serializes instruction execution. See the next sec­
tion for details on serializing operations. The CPU then gen­
erates the read bus cycle again, this time satisfying the re­
quirements for 1/0 and driving IOINH Inactive.

The second method for handling memory-mapped 1/0 uses
a dedicated region of memory. The NS32GX32 treats all
references to the memory range from address FFOOOOOO to
address FFFFFFFF inclusive in a special manner.

While a write to a location in this range is pending, reads
from locations in the same range are delayed. However,
reads from locations with addresses lower than FFOOOOOO
may occur. Similarly, reads from locations in the above
range may occur while writes to locations outside of the
range are pending.

It is to be noted that the CPU may assert IOINH even when
the reference is within the dedicated region. Refer to Sec­
tion 3.5.8 for more information on the handling of 110 devic­
es.

3.1,3.3 Serializing Operations

After executing certain instructions or processing an excep­
tion, the CPU serializes instruction execution. Serializing in-

2-24

struction execution means that the CPU completes writing
all previous instructions' results to memory, then begins
fetching and executing the next instruction.

For example, when a new value is loaded into the PSR by
executing an LPRW instruction, the pipeline is flushed and a
serializing operation takes place. This is necessary since
the privilege level might have changed and the instructions
following the LPRW instruction must be fetched again with
the new privilege level.

The CPU serializes instruction execution after executing one
of the following instructions: BICPSRW, BISPSRW, BPT,
CINV, OIA, FLAG (trap taken), LPR (CFG, INTBASE, PSR,
UPSR, OCR, BPC, OSR, and CAR only), RETT, RETI, and
SVC. Figure 3-4 shows the memory references after seriali­
zation.
Note 1: LPRB UPSR can be executed in User Mode to serialize instruction

execution.

Note 2: After an instruction that writes a result to memory is executed, the
updating of the result's memory location may be delayed until the
next serializing operation.

Note 3: When reset or a nonrestartable bus error exception occurs, the CPU
discards any results that have not yet been written to memory.

INSTRUCTION N INSTRUCTION N + 1

INSTRUCTION rETCH INSTRUCTION rETCH

~\ /~\
DATA WRITE DATA WRITE

TL/EE/10253-11

FIGURE 3·4. Memory References after Serialization

3.1.4 Slave Processor Instructions

The NS32GX32 recognizes two groups of instructions being
executable by external slave processors:

• Floating Point Instructions

• Custom Slave Instructions

Each Slave Instruction Set is enabled by a bit in the Configu­
ration Register (Section 2.1.4). Any Slave Instruction which
does not have its corresponding Configuration Register bit
set will trap as undefined, without any Slave Processor com­
munication attempted by the CPU. This allows software sim­
ulation of a non-existent Slave Processor.

3.1.4.1 Slave Instruction Protocol

Slave Processor instructions have a three-byte Basic In­
struction field, consisting of an 10 Byte followed by an Oper­
ation Word. The 10 Byte has three functions:

1) It identifies the instruction as being a Slave Processor
instruction.

2) Ifspecifies which Slave Processor will execute It.

3) It determines the format of the following Operation Word
of the instruction.

Upon receiving a Slave Processor Instruction, the CPU initi­
ates the sequence outlined in Figure 3-5. While applying
Status code 11111 (Broadcast 10 Section 3.5.4.1), the CPU
transfers the 10 Byte on bits 024-031, the operation

~---.z

3.0 Functional Description (Continued)

READ SLAVE STATUS
(BUS STATUS = 11110)

SEND OPERAND
(BUS STATUS = 11101)

READ RESULT
(BUS STATUS = 11101)

FIGURE 3·5. Slave Instruction Protocol: CPU Actions

2-25

TL/EE/l02S3-12

en
(,,)
N
G)
><
(,,)
N · N o
Z en
(,,)
N
G)
><
(,,)
N • N
U1
Z en
(,,)
N
G)
><
(,,)
N · (,,)
o

PI

o
Cf) · N
Cf)

><
" N
Cf)
U)
Z
.......
it)
N · N
Cf)

><
" N
Cf)
U)
Z
o
N · N
Cf)

><
" N
Cf)
U)
Z

3.0 Functional Description (Continued)

31

10 BYTE OPCOOE (LOW)

o
OPCOOE (HIGH) XXXXXXXX

FIGURE 3-6. 10 and Operation Word

31 15 7 o
ZERO TS ZERO N Z o o o L o Q

FIGURE 3-7. Slave Processor Status Word

word on bits 08-023 in a swapped order of bytes and a
non-used byte XXXXXXXX (X = don't care) on bits 00-07
(Figure 3-6).

All slave processors observe the bus cycle and inspect the
identification code. The slave selected by the identification
code continues with the protocol; other slaves wait for the
next slave instruction to be broadcast.

After transferring the slave instruction, the CPU sends to the
slave any source operands that are located in memory or
the General-Purpose registers. The CPU then waits for the
slave to assert SON or FSSR. While the CPU is waiting, it
can perform bus cycles to fetch instructions and read
source operands for instructions that follow the slave in­
struction being executed. If there are no bus cycles to per­
form, the CPU is idle with a special Status indicating that it is
waiting for a slave processor. After the slave asserts SON or
FSSR, the CPU follows one of the two sequences described
below.

If the slave asserts SDf'j, then the CPU checks whether the
instruction stores any results to memory or the General-Pur­
pose registers. The CPU reads any such results from the
slave by means of 1 or 2 bus cycles and updates the desti­
nation.

2-26

If the slave asserts FSSR, then the NS32GX32 reads a 32-
bit status word from the slave. The CPU checks bit 0 in the
slave's status word to determine whether to update the PSR
flags or to process an exception. Figure 3-7 shows the for­
mat of the slave's status word.

If the Q bit in the status word is 0, the CPU updates the N, Z
and L flags in the PSR.

If the Q bit in the status word is set to 1, the CPU processes
either a Trap (UNO) if TS is 1 or a Trap (SLAVE) if TS is O.
Note 1: Only the floating·point and custom compare instructions are allowed

to return a value of 0 for the Q bit when the FSSR signal is activat·
ed. All other instructions must always set the Q bit to 1 (to signal a
Trap), when activating FSSR.

Note 2: While executing CINV instruction, the CPU displays the operation
code and source operand using slave processor write bus cycles, as
described in the protocol above. Nevertheless, the CPU does not
wait for SON or FSSR to be asserted while executing these Instruc·
tions. This Information can be used to monitor the contents of the
on·chlp Instruction Cache, and Data Cache.

Note 3: The slave processor must be ready to accept new slave Instruction
at any time, even while the slave Is executing another instruction or
waiting for the CPU to read results.

3.0 Functional Description (Continued)
3.1.4.2 Floating Point Instructions

Table 3-1 gives the protocols followed for each Floating
Point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Appendix A.

The Operand class columns give the Access Class for each
general operand, defining how the addressing modes are
interpreted (see Instruction Set Reference Manual).

The Operand Issued columns show the sizes of the oper­
ands issued to the Floating Point Unit by the CPU. liD" indi­
cates a 32-bit Double Word. "i" indicates that the instruction
specifies an integer size for the operand (B = Byte, W =

Word, D = Double Word). "f" indicates that the instruction
specifies a Floating Point size for the operand (F = 32-bit
Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR-Bits-Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-7).

Any operand indicated as being of type "f" will not cause a
transfer if the Register addressing mode is specified. This is
because the Floating Point Registers are physically on the
Floating Point Unit and are therefore available without CPU
assistance.

3.1.4.3 Custom Slave Instructions

Provided in the NS32GX32 is the capability of communicat­
ing with a user-defined, "Custom" Slave Processor. The in­
struction set provided for a Custom Slave Processor defines
the instruction formats, the operand classes and the com­
munication protocol. Left to the user are the interpretations
of the Op Code fields, the programming model of the Cus­
tom Slave and the actual types of data transferred. The pro­
tocol specifies only the size of an operand, not its data type.

Table 3-2 lists the relevant information for the Custom Slave
instruction set. The designation "c" is used to represent an
operand which can be a 32-bit (liD") or 64-bit ("Q") quantity

2-27

in any format; the size is determined by the suffix on the
mnemonic. Similarly, an "i" indicates an integer size (Byte,
Word, Double Word) selected by the corresponding mne­
monic suffix.

Any operand indicated as being of type "c" will not cause a
transfer if the register addressing mode is specified. It is
assumed in this case that the slave processor is already
holding the operand internally.

For the instruction encodings, see Appendix A.

3.2 EXCEPTION PROCESSING

Exceptions are special events that alter the sequence of
instruction execution. The CPU recognizes three basic types
of exceptions: interrupts, traps and bus errors.

An interrupt occurs in response to an event signalled by
activating the NMI or INT input signals. Interrupts are typi­
cally requested by peripheral devices that require the CPU's
attention.

Traps occur as a result either of exceptional conditions
(e.g., attempted division by zero) or of specific instructions
whose purpose is to cause a trap to occur (e.g., supervisor
call instruction).

A bus error exception occurs when the BER signal is acti­
vated during an instruction fetch or data transfer required by
the CPU to execute an instruction.

When an exception is recognized, the CPU saves the PC,
PSR and optionally the MOD register contents on the inter­
rupt stack and then it transfers control to an exception serv­
ice procedure.

Details on the operations performed in the various cases by
the CPU to enter and exit the exception service procedure
are given in the following sections.

It is to be noted that the reset operation is not treated here
as an exception. Even though, like any exception, it alters
the instruction execution sequence.

The reason being that the CPU handles reset in a signifi­
cantly different way than it does for exceptions.

Refer to Section 3.5.3 for details on the reset operation.

z en
w
I\)
C)
>< w
I\)
• I\)
o
z
en
w
I\)
C)
>< w
I\) .
I\)
U1
z en
w
I\)
C)
>< w
~ w
o

0
C")
• 3.0 Functional Description (Continued) N

C")

>< TABLE 3·1. Floating Point Instruction Protocols CJ
N

Operand 1 C")
Mnemonic

Operand 1 Operand 2 Operand 2 Returned Value PSR Bits
(J)

Class Class Issued Issued Type and Dest. Affected Z ADDf read.f rmw.f f f ftoOp.2 none It)
N SUSf read.f rmw.f f ftoOp.2 none • N MULf read.f rmw.f ftoOp.2 none C")

>< DIVf read.f rmw.f fto Op.2 none
CJ
N MOVf read.f write.f N/A fto Op.2 none
C")

ASSf read.f write.f N/A fto Op.2 none (J)
Z NEGf read.f write.f N/A fto Op.2 none
0 CMPf read.f read.f N/A N,Z,L
N · FLOORfi read.f write.i N/A itoOp.2 none N
C") TRUNCfi read.f write.i N/A itoOp.2 none ><
CJ ROUNDfi read.f write.i N/A itoOp.2 none
N MOVFL read.F write.L F N/A L to Op.2 none C")
(J) MOVLF read.L write.F L N/A FtoOp.2 none
Z

MOVif read.i write.f i N/A fto Op.2 none
LFSR read.D N/A D N/A N/A none
SFSR N/A write.D N/A N/A DtoOp.2 none
POLYf read.f read.f f fto FO none
DOTf read.f read.f fto FO none
SCALSf read.f rmw.f ftoOp.2 none
LOGSf read.f write.f N/A ftoOp.2 none

TABLE 3·2. Custom Slave Instruction Protocols

Mnemonic
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits

Class Class Issued Issued Type and Dest. Affected
CCALOc read.c rmw.c c c ctoOp.2 none
CCAL1c read.c rmw.c c c ctoOp.2 none
CCAL2c read.c rmw.c c c ctoOp.2 none
CCAL3c read.c rmw.c c c cto Op.2 none
CMOVOc read.c write.c c N/A ctoOp.2 none
CMOV1c read.c write.c c N/A ctoOp.2 none
CMOV2c read.c write.c c N/A ctoOp.2 none
CMOV3c read.c write.c c N/A ctoOp.2 none
CCMPOc read.c read.c c c N/A N,Z,L
CCMP1c read.c read.c c c N/A N,Z,L
CCVOci read.c write.i c N/A itoOp.2 none
CCV1ci read.c write.i c N/A itoOp.2 none
CCV2ci read.c write.i c N/A itoOp.2 none
CCV3ic read.i write.c i N/A ctoOp.2 none
CCV4DQ read.D write.Q D N/A QtoOp.2 none
CCV5QD read.Q write.D Q N/A DtoOp.2 none
LCSR read.D N/A D N/A N/A none
SCSR N/A write.D N/A N/A DtoOp.2 none
LCR· read.D N/A D N/A N/A none
SCR· write.D N/A N/A N/A D to Op.1 none

Note:
o = Double Word
I = Integer size (B,W,D) specified in mnemonic.
c = Custom size (0:32 bits or Q:64 bits) specified in mnemonic.
• = Privileged Instruction: will trap if CPU is in User Mode.
NI A = Not Applicable to this instruction.

2·28

3.0 Functional Description (Continued)
3.2.1 Exception Acknowledge Sequence

When an exception is recognized, the CPU goes through
three major steps:

1) Adjustment of Registers. Depending on the source of the
exception, the CPU may restore and/or adjust the con·
tents of the Program Counter (PC), the Processor Status
Register (PSR) and the currently·selected Stack Pointer
(SP). A copy of the PSR is made, and the PSR is then set
to reflect Supervisor Mode and selection of the Interrupt
Stack. Trap (TRC) and Trap (OVF) are always disabled.
Maskable interrupts are also disabled if the exception is
caused by an interrupt, Trap (DBG), Trap (ABT) or bus
error.

2) Vector Acquisition. A vector is either obtained from the
data bus or is supplied internally by default.

3) Service Call. The CPU performs one of two sequences
common to all exceptions to complete the acknowledge
process and enter the appropriate service procedure.
The selection between the two sequences depends on
whether the Direct·Exception mode is disabled or en·
abled.

Direct-Exception Mode Disabled

The Direct·Exception mode is disabled while the DE bit in
the CFG register is 0 (Section 2.1.4). In this case the CPU
first pushes the saved PSR copy along with the contents of
the MOD and PC registers on the interrupt stack. Then it

MEMORY ~
,.~

CASCADE AD DR 0

• /~~ · ~~ ·
CASCADE ADDR 14

CASCADE ADDR 15

FIXED INTERRUPTS
AND TRAPS

CASCADE TABLE ;::::::

I
",,"AUPT •• s~~---------I

reads the double·word entry from the Interrupt Dispatch tao
ble at address 'INTBASE + vector x 4'. See Figures 3·8
and 3·9. The CPU uses this entry to call the exception servo
ice procedure, interpreting the entry as an external proce·
dure descriptor.

A new module number is loaded into the MOD register from
the least·significant word of the descriptor, and the static·
base pointer for the new module is read from memory and
loaded into the SB register. Then the program·base pointer
for the new module is read from memory and added to the
most·significant word of the module descriptor, which is in·
terpreted as an unsigned value. Finally, the result is loaded
into the PC register.

Direct-Exception Mode Enabled

The Direct·Exception mode is enabled when the DE bit in
the CFG register is set to 1. In this case the CPU first
pushes the saved PSR copy along with the contents of the
PC register on the Interrupt Stack. The word stored on the
Interrupt Stack between the saved PSR and PC register is
reserved for future use; its contents are undefined. The CPU
then reads the double·word entry from the Interrupt Dis·
patch Table at address 'INTBASE + vector x 4'. The CPU
uses this entry to call the exception service procedure, inter·
preting the entry as an absolute address that is simply load·
ed into the PC register. Figure 3·10 provides a pictorial of
the acknowledge sequence. It is to be noted that while the

"~1 0'"
0 NVI NON-VECTORED INTERRUPT

1 NUl NO~ASKABLEINTERRUPT

2 RESERVED

3 SLAVE SLAVE PROCESSOR TRAP

4 ILL ILLEGAL OPERATION TRAP

5 SVC SUPERVISOR CALL TRAP

AEGISTER J 1"":-----------1 i DISPATCH TABLE 1 DVZ DIVIDE BY ZERO TRAP
VECTORED

INTERRUPTS :t 7 FLG FLAG TRAP r
1 BPT BREAKPOINT TRAP

8 TRC TRACE TRAP

10 UND UNDEFINED INSTRUCTION TRAP

11 RBE RESTARTABLE BUS ERROR

12 NBE NON-RESTARTABLE BUS ERROR

13 OVF INTEGER OVERFLOW TRAP

14 DBG DEBUG TRAP

15 RESERVED

11 VECTORED
INTERRUPTS

1"1." I"~

TL/EE/10253-13

FIGURE 3-8. Interrupt Dispatch Table

2·29

z en w
~
Ci)

>< w
~ · ~ o
........
z en
w
~
Ci)

>< w
~ • ~
(J1
........
z en
w
~
Ci)

>< w
~ · w
o

fJ

o
C"')

N
C"')

><
CJ
N
C"')

til
Z
II)
N
N
C"')

><
CJ
N
C"')

til
Z
o
N
N
C"')

><
CJ
N
C"')

til
Z

3.0 Functional Description (Continued)

RETURN ADDRESS

STATUS MODULE

PSR MOD

INTBASE REGISTER

DESCRIPTOR

32BITS_

(PUSH)
PC

~----------~~PSR MOD
(PUSH)

INTERRUPT
STACK

r-------------l
I CASCADE TABLE I
I I
I I

DISPATCH
TABLE

DESCRIPTOR (32 BITS)

1_--111---r-a l---111---1
OFFSET MODULE

1 0

MOD REGISTER ~ MODULE TABLE

I NEW MODULE

I MODULE TABLE ENTRY

j

MODULE TABLE ENTRY
32

STATIC BASE POINTER - r-----,
UNK BASE POINTER

~
i'

PROGRAM BASE POINTER

(RESERVED)

LOWER
ADDRESSES

HIGHER
ADDRESSES

PROGRAM COUNTER SBREGISTER

I ENTRY POINT ADDRESS 4 NEW STATIC BASE I I -
FIGURE 3-9. Exception Acknowledge Sequence.

Direct-Exception Mode Disabled.

2-30

TLlEE/l0253-14

TL/EE/l0253-15

3.0 Functional Description (Continued)

RETURN ADDRESS (PUSH)

LOWER
ADDRESSES

STATUS ~------------------------1--PSR
(PUSH)

PSR

INTBASE REGISTER

I INTERRUPT BASE L
I

I VECTOR x4 +

I
I

INTERRUPT

STACK HIGHER
ADDRESSES

r-------------1
I CASCADE TABLE I
I

I I
I I

DISPATCH

TABLE

ABSOLUTE ADDRESS

)

PROGRAM COUNTER

ENTRY POINT ADDRESS I

TL/EE/l0253-16

TL/EE/l0253-17

FIGURE 3-10. Exception Acknowledge Sequence.
Direct-Exception Mode Enabled.

direct-exception mode is enabled, the CPU can respond
more quickly to interrupts and other exceptions because
fewer memory references are required to process an excep­
tion. The MOD and S8 registers, however, are not initialized
before the CPU transfers control to the service procedure.
Consequently, the service procedure is restricted from exe­
cuting any instructions, such as CXP, that use the contents
of the MOD or S8 registers in effective address calcula­
tions.

3.2.2 Returning from an Exception Service Procedure

To return control to an interrupted program, one of two in­
structions can be used: RETT (Return from Trap) and RETI
(Return from Interrupt).

RETT is used to return from any trap, non-maskable inter­
rupt or bus error service procedure. Since some traps are
often used deliberately as a call mechanism for supervisor

2-31

mode procedures, RETT can also adjust the Stack Pointer
(SP) to discard a specified number of bytes from the original
stack as surplus parameter space.

RETI is used to return from a maskable interrupt service
procedure. A difference of RETT, RETI also informs any
external interrupt control units that interrupt service has
completed. Since interrupts are generally asynchronous ex­
ternal events, RETI does not discard parameters from the
stack.

80th of the above instructions always restore the Program
Counter (PC) and the Processor Status Register from the
interrupt stack. If the Direct-Exception mode is disabled,
they also restore the MOD and S8 register contents. Fig­
ures 3-11 and 3-12 show the RETT and RETI instruction
flows when the Direct-Exception mode is disabled.

z en
w
I\)
G)
><
W
I\) · I\)
o
z en
w
I\)
G)
><
W
I\) · I\)
(II
z en
CAl
I\)
G)
><
W
I\) · W
o

PI

o
M • N
M
><
CJ
N
M
(J)
Z
It)
N • N
M
><
CJ
N
M
(J)
Z
o
N • N
M
><
CJ
N
M
(J)
Z

3.0 Functional Description (Continued)

PROGRAM COUNTER

LOWER
1+---32 BITS _ ADDRESSES

I I ~O~
~ETURN ADDRESS --li----------I---

~------~----~

PC

I STATUS I MODULE +-__ <P_O_P_) ----t--PSR I MOD

PSR MOD

t
MODULE TABLE ENTRY

STATIC BASE POINTER - """"

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

SBREGISTER

STATIC BASE

POP AND

DISCARD

n
BYTES

INTERRUPT

STACK

MODULE

TABLE

MODULE TABLE ENTRY

~~------------~

PARAMETERS

STACK SELECTED

IN NEWLY·

POPPEDPSR.

HIGHER
ADDRESSES

LOWER
ADDRESSES

HIGHER
ADDRESSES

TLlEE/10253-18

FIGURE 3-11. Return from Trap (RETT n) Instruction Flow.
Direct-Exception Mode Disabled.

3.2.3 Maskable Interrupts

The INT pin is a level-sensitive input. A continuous low level
is allowed for generating multiple interrupt requests. The in­
put is maskable, and is therefore enabled to generate inter­
rupt requests only while the Processor Status Register I bit
is set. The I bit is automatically cleared during service of an
INT, NMI, Trap (DBG), or Bus Error request, and is restored
to its original setting upon return from the interrupt service
routine via the RETT or RETI instruction.

The INT pin may be configured via the SETCFG instruction
as either Non-Vectored (CFG Register bit I = 0) or Vec­
tored (bit I = 1).

3.2.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT
pin will cause an Interrupt Acknowledge bus cycle, but the
CPU will ignore any value read from the bus and use instead
a default vector of zero. This mode is useful for small sys­
tems in which hardware interrupt prioritization is unneces­
sary.

2-32

3.2.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control
Unit (ICU) to prioritize many interrupt requests. Upon receipt
of an interrupt request on the INT pin, the CPU performs an
"Interrupt Acknowledge, Master" bus cycle (Section
3.5.4.6) reading a vector value from the low-order byte of
the Data Bus. This vector is then used as an index into the
Dispatch Table in order to find the External Procedure De­
scriptor for the proper interrupt service procedure. The serv­
ice procedure eventually returns via the Return from Inter­
rupt (RETI) instruction, which performs an End of Interrupt
bus cycle, informing the ICU that it may re-prioritize any in­
terrupt requests still pending. The ICU provides the vector
number again, which the CPU uses to determine whether it
needs also to inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127; that
is, they must be positive numbers in eight bits. By providing

3.0 Functional Description (Continued)

"END OF INTERRUPT"

BUS CYCLE

INTERRUPT
CONTROl

UNIT

PROGRAM COUNTER

LOWER
I---32 BITS --t ADDRESSES

(POP)
I RETURN ADDRESS PC I

STATUS I MODULI! ~:r-____ (P_OP) ____ -t- PSR I MOD

PaR MOD
INTERRUPT

STACK

MODULE
TABLE

L..-----------.-jMOOULE TABLE ENTRY

J ,
MODULE TABLI! ENTRY

STATIC BASI! POINTER - ~

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

STATICBUE

SBREGISTER

FIGURE 3-12. Return from Interrupt (RETI) Instruction Flow.
Direct-Exception Mode Disabled.

2-33

HIGHER
ADDRESSES

TL/EE/l0253-19

z
en
w
N
C)
><
W
N · N o
Z en w
N
C)
><
W
N · N
C11
Z en
w
N
C)

><
W
N · W
o

o
('I) · N
('I)

><
C!J
N
('I)
t/)
Z
.......
In
N · N
('I)

><
C!J
N
('I)
t/)
Z
o
N • N
('I)

><
C!J
N
('I)
t/)
Z

3.0 Functional Description (Continued)

a negative vector number, an ICU flags the interrupt source
as being a Cascaded ICU (see below).

3.2.3.3 Vectored Mode: Cascaded Case

In order to allow more levels of interrupt, provision is made
in the CPU to transparently support cascading. Note that
the Interrupt output from a Cascaded ICU goes to an Inter­
rupt Request input of the Master ICU, which is the only ICU
which drives the CPU INT pin. Refer to the ICU data sheet
for details.

In a system which uses cascading, two tasks must be per­
formed upon initialization:

1) For each Cascaded ICU in the system, the Master ICU
must be informed of the line number on which it receives
the cascaded requests.

2) A Cascade Table must be established in memory. The
Cascade Table is located in a NEGATIVE direction from
the location indicated by the CPU Interrupt Base (INT­
BASE) Register. Its entries are 32-bit addresses, pointing
to the Vector Registers of each of up to 16 Cascaded
ICUs.

Figure 3-9 illustrates the position of the Cascade Table. To
find the Cascade Table entry for a Cascaded ICU, take its
Master ICU line number (0 to 15) and subtract 16 from it,
giving an index in the range -16 to -1. Multiply this value
by 4, and add the resulting negative number to the contents
of the INTBASE Register. The 32-bit entry at this address
must be set to the address of the Hardware Vector Register
of the Cascaded ICU. This is referred to as the "Cascade
Address."

Upon receipt of an interrupt request from a Cascaded ICU,
the Master ICU interrupts the CPU and provides the nega­
tive Cascade Table index instead of a (positive) vector num­
ber. The CPU, seeing the negative value, uses it as an index
into the Cascade Table and reads the Cascade Address
from the referenced entry. Applying this address, the CPU
performs an "Interrupt Acknowledge, Cascaded" bus cycle,
reading the final vector value. This vector is interpreted by
the CPU as an unsigned byte, and can therefore be in the
range of 0 through 255.

In returning from a Cascaded interrupt, the service proce­
dure executes the Return from Interrupt (RETI) instruction,
as it would for any Maskable Interrupt. The CPU performs
an "End of Interrupt, Master" bus cycle, whereupon the
Master ICU again provides the negative Cascade Table in­
dex. The CPU, seeing a negative value, uses it to find the
corresponding Cascade Address from the Cascade Table.
Applying this address, it performs an "End of Interrupt, Cas­
caded" bus cycle, informing the Cascaded ICU of the com­
pletion of the service routine. The byte read from the Cas­
caded ICU is discarded.
Note: If an interrupt must be masked off, the CPU can do so by setting the

corresponding bit In the interrupt mask register of the interrupt con­
troller.

However, if an interrupt Is set pending during the CPU Instruction that
masks off that interrupt, the CPU may still perform an interrupt ac·
knowledge cycle following that instruction since it might have sampled
the iNT line before the ICU deasserted it. This could cause the ICU to
provide an invalid vector. To avoid this problem the above operation
should be performed with the CPU Interrupt disabled.

2-34

3.2.4 Non-Maskable Interrupt

The Non-Maskable Interrupt is triggered whenever a falling
edge is detected on the NMI pin. The CPU performs an
"Interrupt Acknowledge, Master" bus cycle (Section
3.5.4.6) when processing of this interrupt actually begins.
The Interrupt Acknowledge cycle differs from that provided
for Maskable Interrupts in that the address presented is
FFFFFF0016. The vector value used for the Non-Maskable
Interrupt is taken as 1, regardless of the value read from the
bus.

The service procedure returns from the Non-Maskable In­
terrupt using the Return from Trap (RETI) instruction. No
special bus cycles occur on return.

3.2.5 Traps

Traps are processing exceptions that are generated as di­
rect results of the execution of an instruction.

The return address saved on the stack by any trap except
Trap (TRC) and Trap (OBG) is the address of the first bye of
the instruction during which the trap occurred.

When a trap is recognized, maskable interrupts are not dis­
abled except for the case of Trap (OBG).

There are 10 trap conditions recognized by the NS32GX32
as described below.

Trap (SLAVE): An exceptional condition was detected by
the Floating Point Unit or another Slave Processor during
the execution of a Slave Instruction. This trap is requested
via the Status Word returned as part of the Slave Processor
Protocol (Section 3.1.4.1).

Trap (ILL): Illegal operation. A privileged operation was at­
tempted while the CPU was in User Mode (PSR bit U = 1).

Trap (SVC): The Supervisor Call (SVC) instruction was exe­
cuted.

Trap (OVZ): An attempt was made to divide an integer by
zero. (The FPU trap is used for Floating Point division by
zero.)

Trap (FLG): The FLAG instruction detected a "1" in the
PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut­
ed.

Trap (TRC): The instruction just completed is being traced.

Refer to Section 3.3.1 for details.

Trap (UNO): An Undefined-Instruction trap occurs when an
attempt to execute an instruction is made and one or more
of the following conditions is detected:

1. The instruction is undefined. Refer to Appendix A for a
description of the codes that the CPU recognizes to be
undefined.

2. The instruction is a floating point instruction and the F-bit
in the CFG register is O.

3. The instruction is a custom slave instruction and the C-bit
in the CFG register is O.

4. The reserved general adressing mode encoding (10011)
is used.

5. Immediate addressing mode is used for an operand that
has access class different from read.

3.0 Functional Description (Continued)

6. Scaled Indexing is used and the basemode is also Scaled
Indexing.

7. The instruction is a floating-point or custom slave instruc­
tion that the FPU or custom slave detects to be unde­
fined. Refer to Section 3.1.4.1 for more information.

Trap (OVF): An Integer-Overflow trap occurs when the V-bit
in the PSR register is set to 1 and an Integer-Overflow con­
dition is detected during the execution of an instruction. An
Integer-Overflow condition is detected in the following cas­
es:

1. The F-flag is 1 following execution of an ADDi, ADDQi,
ADDCi, SUBi, SUBCi, NEGi, ABSi, or CHECKi instruction.

2. The product resulting from a MULi instruction cannot be
represented exactly in the destination operand's location.

3. The quotient resulting from a DEli, DIVi, or QUOi instruc­
tion cannot be represented exactly in the destination op­
erand's location.

4. The result of an ASHi instruction cannot be represented
exactly in the destination operand's location.

5. The sum of the 'INC' value and the 'INDEX' operand for
an ACBi instruction cannot be represented exactly in the
index operand's location.

Trap (DB G): A debug trap occurs when one or more of the
conditions selected by the settings of the bits in the DCR
register is detected. This trap can also be requested by acti­
vating the input signal DBG. Refer to Section 3.3.2 for more
information.
Note 1: Following execution of the WAIT instruction, then a Trap (OBG) can

be pending for a PC-match condition. In such an event, the Trap
(OBG) is processed immediately.

Note 2: If an attempt is made to execute a privileged custom instruction
while in User-Mode and the C-bit in the CFG register is 0, then Trap
(UNO) occurs.

Note 3: While operating in User-Mode, if an attempt is made to execute a
privileged instruction with an undefined use of a general addressing
mode (either the reserved encoding is used or else scaled-index or
immediate modes are incorrectly used), the Trap (UNO) occurs.

Note 4: If an undefined instruction or illegal operation is detected, then no
data references are performed for the instruction.

Note 5: For certain instructions that are relatively long to execute, such as
OEIO, the CPU checks for pending interrupts during execution of the
instruction. In order to reduce interrupt latency, the NS2532 can
suspend executing the instruction and process the interrupt. Refer
to Section B.5 in Appendix B for more information about recognizing
interrupts in this manner.

3.2.6 Bus Errors

A bus error exception occurs when the BER signal is assert­
ed in response to an instruction fetch or data transfer that is
required to execute an instruction.

Two types of bus errors are recognized: Restartable and
Non-Restartable. Restartable bus errors are recognized dur­
ing read bus cycles. All other bus errors are non-restartable.

The CPU responds to restartable bus errors by suspending
the instruction that it was executing. When a non-restartable
bus error is detected, the CPU responds immediately and
the instruction being executed is terminated.

2-35

In this case, any results that have not yet been written to
memory are discarded, and any pending traps other than
Trap (DBG) for external condition, are eliminated. The PC
value saved on the stack is undefined.

The NS32GX32 does not respond to bus errors indicated
for instructions that are not executed. For example, no bus
error exception occurs in response to asserting the BER
signal during a bus cycle to prefetch an instruction that is
not executed because the previous instruction caused a
trap.

If a bus error is detected during a data transfer required for
the processing of another exception or during the ICU read
cycle of a RETI instruction, then the CPU considers it as a
fatal bus error and enters the 'HALTED' state.
Note 1: If the address and control signals associated with the last bus cycle

that caused a bus error are latched by external hardware, then the
information they provide can be used by the service procedure for
restartable bus errors to analyze and resolve the exception recog­
nized by the CPU. This can be accomplished because upon detect­
ing a restartable bus error, the NS32GX32 stops making memory
references for subsequent instructions until it determines whether
the instruction that caused the bus error is executed and the excep­
tion is processed.

Note 2: When a non-restartable bus error is recognized, the service proce­
dure must execute the CINV instruction to invalidate the on-chip
caches. This is necessary to maintain coherence between them and
external memory.

3.2.7 Priority Among Exceptions

The CPU checks for specific exceptions at various pOints
while executing an instruction. It is possible that several ex­
ceptions occur simultaneously. In that event, the CPU re­
sponds to the exception with highest priority.

Figure 3-13 shows an exception processing flowchart. A
non-restartable bus error is assigned highest priority and is
serviced immediately regardless of the execution state of
the CPU.

Before executing an instruction, the CPU checks for pend­
ing Trap (DBG), interrupts, and Trap (TRC), in that order. If a
Trap (DBG) is pending, then the CPU processes that excep­
tion, otherwise the CPU checks for pending interrupts. At
this point, the CPU responds to any pending interrupt re­
quests; nonmaskable interrupts are recongized with higher
priority than maskable interrupts. If no interrupts are pend­
ing, then the CPU checks the P-flag in the PSR to determine
whether a Trap (TRC) is pending. If the P-flag is 1, a Trap
(TRC) is processed. If no Trap (DBG), interrupt or Trap
(TRC) is pending, the CPU begins executing the instruction.

While executing an instruction, the CPU may recognize up
to three exceptions:

1. restartable bus error

2. trap (DBG) or interrupt, if the instruction is interruptible

3. one of 7 mutually exclusive traps: SLAVE, ILL, SVC, DVZ,
FLG, BPT, UND

If no exception is detected while the instruction is executing,
then the instruction is completed and the PC is updated to
point to the next instruction. If a Trap (OVF) is detected,
then it is processed at this time.

z
en
w
N
G)
><
W
N · N
o
Z
en
w
N
G)
><
W
N • N
U1
Z
en
w
N
G)
><
W
N · W
o

o
('t)

N 3.0 Functional Description (Continued)
('t)

><
CJ
N
('t)

en
z
........
Lt)
N .
N
('t)

><
CJ
N
('t)

en
z
........
o
N .
N
('t)

><
CJ
N
('t)

en z

FIGURE 3·13. Exception Processing Flowchart

2·36

TL/EE/10253-20

3.0 Functional Description (Continued)

While executing the instruction, the CPU checks for enabled
debug conditions. If an enabled debug condition is met, a
Trap (DBG) is held pending until after the instruction is com­
pleted (see Note 3). If another exception is detected before
the instruction is completed, the pending Trap (DBG) is re­
moved and the DSR register is not updated.
Note 1: Trap (DBG) can be detected simultaneously with Trap (OVF). In this

event, the Trap (OVF) is processed before the Trap (DBG).

Note 2: An address·compare debug condition can be detected while pro­
cessing a bus error, interrupt, or trap. In this event, the Trap (DBG)
is held pending until after the CPU has processed the first excep­
tion.

Note 3: Between operations of a string instruction, the CPU responds to
pending operand address compare and external debug conditions
as well as interrupts. If a PC-match debug condition is detected
while executing a string instruction, then Trap (DBG) is held pending
until the instruction has completed.

3.2.8 Exception Acknowledge Sequences: Detailed Flow

For purposes of the following detailed discussion of excep­
tion acknowledge sequences, a single sequence called
"service" is defined in Figure 3-14.

Upon detecting any interrupt request, trap or bus error con­
dition, the CPU first performs a sequence dependent upon
the type of exception. This sequence will include saving a
copy of the Processor Status Register and establishing a
vector and a return address. The CPU then performs the
service sequence.

3.2.8.1 Maskable/Non-Maskable Interrupt Sequence

This sequence is performed by the CPU when the NMI pin
receives a falling edge, or the INT pin becomes active with
the PSR I bit set. The interrupt sequence begins either at
the next instruction boundary or, in the case of an interrupt­
ible instruction (e.g., string instruction), at the next interrupt­
ible point during its execution.

1. If an interruptible instruction was interrupted and not yet
completed:

a. Clear the Processor Status Register P bit.

b. Set "Return Address" to the address of the first byte of
the interrupted instruction.

Otherwise, set "Return Address" to the address of the
next instruction.

2. Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits T, V, U, S, P and I.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFFFF0016, applying
Status Code 00100 (Interrupt Acknowledge, Master).
Discard the byte read.

b. Set "Vector" to 1.

c. Go to Step 8.

4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFFFE0016, applying
Status Code 00100 (Interrupt Acknowledge, Master).
Discard the byte read.

b. Set "Vector" to O.

c. Go to Step 8.

5. Here the interrupt is Vectored. Read "Byte" from address
FFFFFE0016, applying Status Code 00100 (Interrupt Ac­
knowledge, Master).

6. If "Byte" ~ 0, then set "Vector" to "Byte" and go to Step
8.

2-37

7. If "Byte" is in the range -16 through -1, then the inter­
rupt source is Cascaded. (More negative values are re­
served for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory. The
address is calculated as INTBASE + 4* Byte.

b. Read "Vector," applying the Cascade Address just
read and Status Code 00101 (Interrupt Acknowledge,
Cascaded).

8. Perform Service (Vector, Return Address), Figure 3-14.

3.2.8.2 Restartable Bus Error Sequence

1. Suspend instruction and restore the currently selected
Stack Pointer to its original contents at the beginning of
the instruction.

2. Clear the PSR P bit.

3. Copy the PSR into a temmporary register, then clear PSR
bits T, V, U, S and I.

4. Set "Vector" to 11.

5. Set "Return Address" to the address of the first byte of
the suspended instruction.

6. Perform Service (Vector, Return Address), Figure 3-14.

3.2.8.3 SLAVE/ILL/SVC/DVZ/FLG/BPT lUND Trap
Sequence

1. Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction.

2. Set "Vector" to the value corresponding to the trap type.

SLAVE: Vector = 3.
ILL: Vector = 4.
SVC: Vector = 5.
DVZ: Vector = 6.
FLG: Vector = 7.
BPT: Vector = 8.
UND: Vector = 10.

3. If Trap (ILL) or Trap (UND)

a. Clear the Processor Status Register P bit.

4. Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits T, V, U, Sand P.

5. Set "Return Address" to the address of the first byte of
the trapped instruction.

6. Perform Service (Vector, Return Address), Figure 3-14.

3.2.8.4 Trace Trap Sequence

1. In the Processor Status Register (PSR), clear the P bit.

2. Copy the PSR into a temporary register, then clear PSR
bits T, V, U and S.

3. Set "Vector" to 9.

4. Set "Return Address" to the address of the next instruc-
tion.

5. Perform Service (Vector, Return Address), Figure 3-14.

3.2.8.5 Integer-Overflow Trap Sequence

1. Copy the PSR into a temporary register, then clear PSR
bits T, V, U, Sand P.

2. Set "Vector" to 13.

z
en
w
N
G)
><
W
N
N
o
z en
w
N
G)
><
W
N

I
N
(J1
.......
Z en
w
N
G)
><
W
N
W
o

o
C") .
C\I
C")

><
CJ
C\I
C")

en
z
Lt)
C\I .
C\I
C")

><
CJ
C\I
C")

en
z
o
C\I
N
C")

><
CJ
C'\I
C")

en
z

3.0 Functional Description (Continued)

3. Set "Return Address" to the address of the next instruc-
tion.

4. Perform Service (Vector, Return Address), Figure 3-14.

3.2.8.6 Debug Trap Sequence

A debug condition can be recognized either at the next in­
struction boundary or, in the case of an interruptible instruc­
tion, at the next interruptible point during its execution.

1. If PC-match condition, then go to Step 3.

2. If a String instruction was interrupted and not yet com­
pleted:

a. Clear the Processor Status Register P bit.

b. Set "Return Address" to the address of the first byte of
the instruction.

c. Go to Step 4.

3. Set "Return Address" to the address of the next instruc­
tion.

4. Set "Vector" to 14.

5. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits T, V, U, S, P and I.

6. Perform Service (Vector, Return Address), Figure 3-14.

3.2.8.7 Non-Restartable Bus Error Sequence

1. Set "Vector" to 12.

2. Set "Return Address" to "Undefined".

3. Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits T, V, U, S, P and I.

4. Perform a dummy read of the Slave Status Word to reset
the Slave Processor.

5. Perform Service (Vector, Return Address), Figure 3-14.

3.3 DEBUGGING SUPPORT

The NS32GX32 provides serveral features to assist in pro·
gram debugging.

Besides the Breakpoint (BPT) instruction that can be used
to generate soft breaks, the CPU also provides instruction
tracing as well as debug trap (or hardware breakpoints) ca·
pabilities. Details on these features are provided in the fol·
lowing sub-sections.

3.3.1 Instruction Tracing

Instruction tracing is a very useful feature that can be used
during debugging to single-step through selected portions of
a program. Tracing is enabled by setting the T-bit in the PSR
Register. When enabled, the CPU generates a Trace Trap
(TRG) after the execution of each instruction.

At the beginning of each instruction, the T bit is copied into
the PSR P (Trace "Pending") bit. If the P bit is set at the end
of an instruction, then the Trace Trap is activated. If any
other trap or interrupt request is made during a traced in·
struction, its entire service procedure is allowed to complete
before the Trace Trap occurs. Each interrupt and trap se·
quence handles the P bit for proper tracing, guaranteeing
only one Trace Trap per instruction, and guaranteeing that
the Return Address pushed during a Trace Trap is always
the address of the next instruction to be traced.

Due to the fact that some instructions can clear the T and P
bits in the PSR, in some cases a Trace Trap may not occur
at the end of the instruction. This happens when one of the
privileged instructions BICPSRW or LPRW PSR is executed.

TABLE 3-3. Summary of Exception Processing

Exception
Instruction Cleared Before Cleared After

Ending Saving PSR Saving PSR

Restartable Bus Error Suspended P TVUSI
Nonrestartable Bus Error Terminated Undefined TVUSPI

Interrupt Before Instruction None/P* TVUSPI

ILL, UNO Suspended P TVUS
SLAVE,SVC, DVZ, FLG,BPT Suspended None TVUSP
OVF Completed None TVUSP
TRC Before Instruction P TVUS
DBG Before Instruction None/P* TVUSPI

'Note: The P bit of the saved PSR is cleared in case the exception is acknowledged before the instruction is completed (e.g., interrupted string instruction). This is
to avoid a mid-instruction trace trap upon return from the Exception Service Routine.

Service (Vector, Return Address):

1) Push the PSR copy onto the Interrupt Stack as a 16-blt value.

2) If Direct-Exception mode Is selected, then go to step 4.

3) Push MOD Register Into the Interrupt Stack as a 16-blt value.

4) Read 32-blt Interrupt Dispatch Table (lOT) entry at address 'INTBASE + vector x 4'.

5) If Direct-Exception mode Is selected, then go to Step 10.

6) Move the L.S. word of the lOT entry (Module Field) Into the MOD register.

7) Read the Program Base pOinter from memory address 'MOD + S',and add to It the M.S. word of the lOT entry (Offset Field), placing the result In the
Program counter.

S) Read the new Static Base pOinter from the memory address contained In MOD, plaCing It Into the SB Register.

9) Go to Step 11.

10) Place lOT entry In the Program Counter.

11) Push the Return Address onto the Interrupt Stack as a 32-blt quantity.

12) Serialize: Non-sequentially fetch first Instruction of Exception Service Routine.

Note: Some of the Memory Accesses indicated in the service sequence may be performed in an order different from the one shown.

FIGURE 3-14. Service Sequence

2-38

3.0 Functional Description (Continued)

In other cases, it is still possible to guarantee that a Trace
Trap occurs at the end of the instruction, provided that spe­
cial care is taken before returning from the Trace Trap Serv­
ice Procedure. In case a BICPSRB instruction has been ex­
ecuted, the service procedure should make sure that the T
bit in the PSR copy saved on the Interrupt Stack is set be­
fore executing the RETT instruction to return to the program
begin traced. If the RETT or RETI instructions have to be
traced, the Trace Trap Service Procedure should set the P
and T bits in the PSR copy on the Interrupt Stack that is
going to be restored in the execution of such instructions.
Note: If instruction tracing is enabled while the WAIT instruction is executed,

the Trap (TRG) occurs after the next interrupt, when the interrupt
service procedure has returned.

3.3.2 Debug Trap Capability

The CPU recognizes three different conditions to generate a
Debug Trap:

1) Address Compare

2) PC Match

3) External

These conditions can be enabled and monitored through
the CPU Debug Registers.

An address-compare condition is detected when certain
memory locations are either read or written. The double­
word address used for the comparison is specified in the
CAR Register. The address-compare condition can be sep­
arately enabled for each of the bytes in the specified dou­
ble-word, under control of the CBE bits of the OCR Register.
The VNP bit in the DCR controls whether virtual or physical
addresses are compared, The CRD and CWR bits in the
DCR separately enable the address compare condition for
read and write references; the CAE bit in the DCR can be
used to disable the compare-address condition indepen­
dently from the other control bits. The CPU examines the
address compare condition for all data reads and writes,
reads of memory locations for effective address calcula­
tions, Interrupt-Acknowledge and End-of-Interrupt bus cy­
cles, and memory references for exception processing.

The PC-match condition is detected when the address of
the instruction equals the value specified in the BPC regis­
ter. The PC-match condition is enabled by the PCE bit in the
DCR.

Detection of address-compare and PC-match conditions is
enabled for User and Supervisor Modes by the UD and SO
bits in the OCR. The DEN-bit can be used to disable detec­
tion of these two conditions independently from the other
control bits,

An external condition is recognized whenever the DBG sig­
nal is activated.

When the CPU detects an address-compare or PC-match
condition while executing an instruction or processing an
exception, then Trap (DBG) occurs if the TR bit in the OCR
is 1, When an external debug condition is detected, Trap
(DBG) occurs regardless of the TR bit. The cause of the
Trap (DBG) is indicated in the DSR Register.

When an address-compare or PC-match condition is detect­
ed while executing an instruction, the CPU asserts the BP

2-39

signal at the beginning of the next instruction, synchronous­
ly with PFS. If the instruction is not completed because a
higher priority trap is detected, the BP signal mayor may not
be asserted.
Note 1: The assertion of BP is not affected by the setting of the TR bit in the

DCR register.

Note 2: While executing the MOVUS and MOVSU instructions, the com·
pare·address condition is enabled for the User space memory refer·
ence under control of the UD·bit in the DCR.

Note 3: When the LPRi instruction is executed to load a new value into the
BPC, CAR or DCR, it is undefined whether the address·compare
and PC-match conditions, in effect while executing the instruction,
are detected under control of the old or new contents of the loaded
register. Therefore, any LPRi instruction that alters the control of the
address-compare or PC-match conditions should use register or im­
mediate addressing mode for the source operand.

3.4 ON-CHIP CACHES

The NS32GX32 provides two on-chip caches: the Instruc­
tion Cache (IC) and the Data Cache (DC).

These are used to hold the contents of frequently used
memory locations.

The IC and DC can be individually enabled by setting appro­
priate bits in the CFG Register (See Section 2.1.4).

The CPU also provides a locking feature that allows the
contents of the IC and DC to be locked to specific memory
locations. This is accomplished by setting the LlC and LDC
bits in the CFG register.

Cache locking can be successfully used in real-time applica­
tions to guarantee fast access to critical instruction and data
areas.

Details on the organization and function of each of the
caches are provided in the following sections.
Note: The size and organization of the on-chip caches may change In future

Series 32000 microprocessors. This however, will not affect software
compatibility.

3.4.1 Instruction Cache (IC)

The basic structure of the instruction cache (IC) is shown in
Figure 3-15.

The IC stores 512 bytes of code in a direct-mapped organi­
zation with 32 sets. Direct-mapped means that each set
contains only one block, thus each memory location can be
loaded into the IC in only one place.

Each block contains a 23-bit tag, which holds the most-sig­
nificant bits of the physical address for the locations stored
in the block, along with 4 double-words and 4 validity bits
(one for each double-word).

A 4-double-word instruction buffer is also provided, which is
loaded either from a selected cache block or from external
memory. Instructions are read from this buffer by the loader
unit and transferred to an a-byte instruction queue.

The IC mayor may not be enabled to cache an instruction
being fetched by the CPU. It is enabled when the IC bit in
the CFG Register is set to 1.
If the IC is disabled, the CPU bypasses it during the instruc­
tion fetch and its contents are not affected. The instruction
is read directly from external memory into the instruction
buffer.

z
en
w
N
G)

><
W
N
I

N
o
Z
en w
N
G)
><
W
N

I
N
CJ1
Z en
w
N
G)
><
W
N
W
o

o
('t)

I
C'\I
('t)

><
c:J
C'\I
('t)

en
z
it)
C'\I

I
C'\I
('t)

><
c:J
C'\I
('t)

en
z
o
C'\I
N
('t)

><
c:J
C'\I
('t)

en
z

3.0 Functional Description (Continued)

TAG
MEMORY

23

TAG
COMPARE

23

31 98
INSTRUCTION ADDRESS

32

INSTRUCTION DOUBLE-WORD
TLlEE/10253-21

FIGURE 3-15. Instruction Cache Structure

When the IC is enabled, the instruction address bits 4 to 8
are used to select the IC set where the instruction may be
stored. The tag corresponding to the single block in the set
is compared with the 23 most-significant bits of the instruc­
tion's physical address. The 4 double-words in this block are
loaded into the instruction buffer and the 4 validity bits are
also retrieved. Bits 2 and 3 of the instruction's physical ad­
dress select one of these double-words and the associated
validity bit.

If the tag matches and the selected double-word is valid, a
cache 'hit' occurs and the double-word is directly trans­
ferred to the instruction queue for decoding; otherwise a
cache 'miss' will result.

In the latter case, if the cache is not locked, the CPU will
take the following actions.

First, if the tag of the selected block does not match, the tag
is loaded with the 23 most-significant bits of the instruction
address and all the validity bits are cleared. Then, the in­
struction is read from external memory into the instruction
buffer.

If the CIIN input signal is not active during the fetching of the
missing instruction, then the IC is updated and the instruc­
tion double-words fetched from memory are stored into it
with the validity bits set.

If the cache is locked, its contents are not affected, as the
CPU reads the missing instruction from external memory.

Whenever the CPU accesses external memory, whether or
not the IC is enabled, it always fetches instruction double­
words in a non-wrap-around fashion. Refer to Sections
3.5.4.3 and 3.5.6 for more information.

The contents of the instruction cache can be invalidated by
software through the CINV instruction. Refer to Section
3.4.3 for details. Clearing the IC bit in the CFG Register also
invalidates the instruction cache. Refer to Section C.2 for
information on loading the CFG register.

2-40

Note: If the IC is enabled for a certain instruction and a 'miss' occurs due to
a tag mismatch, the CPU will clear all the validity bits of the selected
tag before fetching the instruction from external memory. If the CIIN
input signal is activated during the fetching of that instruction, the
validity bits are not set and the IC is not updated.

3.4.2 Data Cache (DC)

The Data Cache (DC) stores 1,024 bytes of data in a two­
way set associative organization as shown in Figure 3-16.

Each of the 32 sets has 2 cache blocks. Each block con­
tains a 23-bit tag, which holds the most-significant bits of
the address for the locations stored in the block, along with
4 double-words and 4 validity bits (one for each double­
word).

The DC is enabled for a data read when all of the following
conditions are satisfied.

• The DC bit in the CFG Register is set to 1.

• The reference is not an interlocked read resulting from
executing a CBITI or SBITI instruction.

If the DC is disabled, the CPU bypasses it during the data
read and its contents are not affected. The data is read
directly from external memory. The DC is also bypassed for
Interrupt-Acknowledge and End-of-Interrupt bus cycles.

When the DC is enabled for a data read, the address bits 4
to 8 are used to select the DC set where the data may be
stored.

The tags corresponding to the two blocks in the set are
compared to the 23 most-significant bits of the address. Bits
2 and 3 of the address select one double-word in each
block and the associated validity bit.

If one of the tag matches and the selected double-word in
the corresponding block is valid, a cache 'hit' occurs and
the data is used to execute the instruction; otherwise a
cache 'miss' will result. In the latter case, if the cache is not
locked, the CPU will take the following actions.

3.0 Functional Description (Continued)

DATA ADDRESS DATA
TL/EE/l0253-22

FIGURE 3-16. Data Cache Structure

First, if the tag of either block in the set matches the data
address, that block is selected for updating. Otherwise, if
neither tag matches, then the least recently used block is
selected; its tag is loaded with the 23 most-significant bits of
the data address, and all the validity bits are cleared.

Then, the data is read from external memory; up to 4 dou­
ble-word bits are read into the cache in a wrap-around fash­
ion. Refer to Sections 3.5.4.3 and 3.5.6 for more informa­
tion.

If the CIIN and IODEC input signals are both inactive during
the bus cycles performed to read the missing data, then the
DC is updated, as each double-word is read from memory,
and the corresponding validity bit is set. If the cache is
locked, its contents are not affected, as the CPU reads the
missing data from external memory.

The DC is enabled for a data write whenever the DC bit in
the CFG Register is set to 1, including interlocked writes
resulting from executing the C81TI and S81T1 instructions.

The DC does not use write allocation. This means that, dur­
ing a write, if a cache 'hit' occurs, the DC is updated, other­
wise it is unaffected. The data is always written through to
external memory.

The contents of the data cache can be invalidated by soft­
ware through the CINV instruction. Clearing the DC bit in the
CFG Register also invalidates the data cache. Refer to Sec­
tion C.2 for information on loading the CFG register.
Note: If the DC Is enabled for a certain data reference and a "miss" occurs

due to tag mismatch. the CPU will clear all the validity bits for the least
recently used tag before reading the data from external memory. II
either CIIN or 'fODEC are activated during the data read bus cycles.
the validity bits are not set and the DC is not updated.

2-41

3.4.3 Cache Coherence Support

The NS32GX32 provides means for maintaining coherence
between the on-chip caches and external memory. The
CINV instruction can be executed to invalidate the Instruc­
tion Cache and/or Data Cache; the CINV instruction can
also be executed to invalidate a single 16-byte block in ei­
ther or both caches.

In hardware, the use of the caches can be inhibited for indi­
vidual locations using the CIIN input signal.

Whenever a CINV instruction is executed, the operation
code and operand appear on the system interface using
slave processor bus cycles. Thus, invalidations of the on­
chip caches by software can be monitored externally.

Note, however, that the software is responsible for commu­
nicating to the external circuitry the values of the cache en­
able and lock bits in the CFG Register, since the CPU does
not generate any special cycle (e.g., Slave Cycle) when the
CFG Register is loaded.

3.5 SYSTEM INTERFACE

This section provides general information on the NS32GX32
interface to the external world. Descriptions of the CPU re­
quirements as well as the various bus characteristics are
provided here. Details on other device characteristics in­
cluding timing are given in Chapter 4.

z
en
w
I\)
G)
>< w
I\)

I
I\)
C
z
en
w
I\)
G)
>< w
I\)
I

I\)
U1
z
en w
I\)
G)
>< w
I\)
I

W
C

o
C")

• N
C")

><
CJ
N
C")

en
z
.......
Lt)
N · N
C")

><
CJ
N
C")

en
z
o
N · N
C")

><
CJ
N
C")

en
z

3.0 Functional Description (Continued)

3.5.1 Power and Grounding

The NS32GX32 requires a single 5-volt power supply, ap­
plied on 21 pins. The logic voltage pins (VCCl1 to VCCl6)
supply the power to the on-chip logic. The buffer voltage
pins (VCCB1 to VCCB14) supply the power to the output
drivers of the chip. The bus clock power pin (VCCClK) is
the power supply for the on-chip clock drivers. All the volt­
age pins should be connected together by a power (VCC)
plane on the printed circuit board.

The NS32GX32 grounding connections are made on 20
pins. The logic ground pins (GNDl1 to GNDl6) are the
ground pins for the on-chip logic. The buffer ground pins
(GNDB1 to GNDB13) are the ground pins for the output
drivers of the chip. The bus clock ground pin (GNDClK) is
the ground connection for the on-chip clock drivers. All the
ground pins should be connected together by a ground
plane on the printed circuit board.

Both power and ground connections are shown in Figure
3-17.

+5V

VCCL1 - 6

VCCB1 -14
OTHER VCC

VCCClK 1--..... CONNECTIONS
(Vee PLANE)

NS32GX32
CPU

GNDL1 - 6

GNDBI-13
OTHER GROUND

GNDCLK J--....... CONNECTIONS
(GND PLANE)

TLlEE/10253-24

FIGURE 3·17. Power and Ground Connections

3.5.2 Clocking

The NS32GX32 requires a single-phase input clock signal
(ClK) with frequency twice the CPU's operating frequency.

This clock signal is internally divided by two to generate two
non-overlapping phases PHI1 and PHI2. One single-phase
clock signal BClK in phase with PHI1 and its complement
BClK, are also generated and output by the CPU for timing
reference.

Following power-on, the phase relationship between BClK
and ClK is undefined. Nevertheless, in some systems it
may be necessary to synchronize the CPU bus timing to an
external reference. The SYNC input signal can be used to
initialize the phase relationship between ClK and BClK.
SYNC can also be used to stretch BClK (low) while ClK is
toggling.

SYNC is sampled on each rising edge of ClK. As shown in
Figure 3-18, whenever SYNC is sampled low, BClK stops
toggling and stays low. On the first rising edge that SYNC is
sampled high, BClK is driven high and then toggles on each
subsequent rising edge of ClK.

Every rising edge of BClK defines a transition in the timing
state ("T-State") of the CPU.

One T-State represents the execution of one microinstruc­
tion within the CPU and/or one step of an external bus
transfer.
Note: The CPU requirement on the maximum period of BCLK must be satis·

fied when SYNC is asserted at times other than reset.

3.5.3 Resetting

The RST input pin is used to reset the NS32GX32. The CPU
samples RST synchronously on the rising edge of BClK.
Whenever a low level is detected, the CPU responds imme­
diately. Any instruction being executed is terminated; any
results that have not yet been written to memory are dis­
carded; and any pending bus errors, interrupts, and traps
are eliminated. The internal latches for the edge-sensitive
NMI and DBG signals are cleared.

elK [

I I I I I I I I I I

:::~mtml \ I \j m
TLlEE/10253-25

FIGURE 3·18. Bus Clock Synchronization

2-42

3.0 Functional Description (Continued)

The CPU stores the PC contents in the RO Register and the
PSR contents in the least-significant word of R1, leaving the
most-significant word undefined. The PC is then cleared to 0
and so are all the implemented bits in the PSR, MSR, MCR
and CFG registers. The DEN-bit in the OCR Register is also
cleared to O. After reset, the remaining implemented bits in
OCR and the contents of all other registers are undefined.
The CPU begins executing the instruction at Address O.

On application of power, RST must be held low for at least
50 tJ.s after Vee is stable. This is to ensure that all on-chip
voltages are completely stable before operation. Whenever
a Reset is applied, it must also remain active for not less
than 64 BCLK cycles. See Figures 3-19 and 3-20.
While in the Reset state, the CPU drives the signals ADS,
BEO-3, BMT, CC5f\JF and HLDA inactive. The data bus is
floated and the state of all other output signals is undefined.
Note 1: II fmIIj Is active at the time m Is de asserted, the CPU acknowl-

edges ~ belore performing any bus cycle.

Note 2: II S'Y'ffi': Is asserted while the CPU Is being reset, then BClK does
not toggle. Consequently, S'Y'ffi': must be high lor at least 126 ClK
cycles while ~ Is low.

Vcc[j

BCLK[._-+--, JLSL
I.- ~ 64 CLo;aCK

RST [
CYCLES _

f-+---- ~ 50)J.s

TL/EE/10253-26

FIGURE 3-19. Power-On Reset Requirements

C
~ 64:=r-CLOCK .

[---~~r-\ CYCLES
RST \\\~ ~

TL/EE/10253-27

FIGURE 3-20. General Reset Timing

3.5.4 Bus Cycles

The NS32GX32 CPU will perform bus cycles for one of the
following reasons:

1. To fetch instructions from memory.

2. To write or read data to or from memory or peripheral
devices. Peripheral input and output are memory mapped
in the Series 32000 family.

3. To acknowledge an interrupt and allow external circuitry
to provide a vector number, or to acknowledge comple­
tion of an interrupt service routine.

4. To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 4 above are identi­
cal. For timing specifications, see Section 4. The only exter­
nal difference between them is the 5-bit code placed on the
Bus Status pins (STO-ST4). Slave Processor cycles differ in
that separate control signals are applied (Section 3.5.4.7).

2-43

3.5.4.1 Bus Status

The CPU presents five bits of Bus Status information on
pins STO-ST 4. The various combinations on these pins in­
dicate why the CPU is performing a bus cycle. or, if it is idle
on the bus, then why is it idle.

The Bus Status pins are interpreted as a five-bit value, with
STO the least significant bit. Their values decode as follows:

00000 The bus is idle because the CPU does not yet need
to access the bu s.

00001 The bus is idle because the CPU is waiting for an
interrupt following execution of the WAIT instruc­
tion.

00010 The bus is idle because the CPU has halted after
detecting a bus error while processing an excep­
tion.

00011 The bus is idle because the CPU is waiting for a
Slave Processor to complete executing an instruc­
tion.

00100 Interrupt Acknowledge. Master.

The CPU is reading an interrupt vector to acknowl­
edge an interrupt request.

00101 Interrupt Acknowledge, Cascaded.

The CPU is reading an interrupt vector to acknowl­
edge a maskable interrupt request from a Cascad­
ed Interrupt Control Unit.

00110 End of Interrupt, Master.

The CPU is performing a read cycle to indicate that
it is executing a Return from Interrupt (RETI) in­
struction at the completion of an interrupt's service
procedure.

00111 End of Interrupt, Cascaded.

The CPU is performing a read cycle from a Cascad­
ed Interrupt Control Unit to indicate that it is execut­
ing a Return from Interrupt (RETI) instruction at the
completion of an interrupt's service procedure.

01000 Sequential Instruction Fetch.

The CPU is fetching the next double-word in se­
quence from the instruction stream.

01001 Non-Sequential Instruction Fetch.

The CPU is fetching the first double-word of a new
sequence of instruction. This will occur as a result
of any JUMP or BRANCH, any exception, or after
the execution of certain instructions.

01010 Data Transfer.

The CPU is reading or writing an operand for an
instruction, or it is referring to memory while pro­
cessing an exception.

01011 Read RMW Class Operand.

The CPU is reading an operand with access class
of read-modify-write.

01100 Read for Effective Address Calculation.

The CPU is reading a pointer from memory in order
to calculate an effective address for Memory Rela­
tive or External addressing modes.

z en w
N
C)
><
W
N
I

N
o
Z en w
N
C)
><
W
N

I
N
CJ'1
Z en w
N
C)
><
W
N
I

W o

o
C")

I
N
C")

><
CJ
N
C")

en z
"" Lt)
N

I
N
C")

><
CJ
N
C")

en
z
"" o
N

I
N
C")

><
CJ
N
C")

en
z

3.0 Functional Description (Continued)

11101 Transfer Slave Processor Operand.

The CPU is transferring an operand to or from a
Slave Processor.

11110 Read Slave Processor Status.

The CPU is reading a status word from a slave
processor after the slave processor has activated
the FSSR signal.

11111 Broadcast Slave Processor I D + OPCODE.

The CPU is initiating the execution of a Slave In­
struction by transferring the first 3 bytes of the in­
struction, which specify the Slave Processor identi­
fication and operation.

3.5.4.2 Basic Read and Write Cycles

The sequence of events occurring during a basic CPU ac­
cess to either memory or peripheral device is shown in Fig­
ure 3-21 for a read cycle, and Figure 3-22 for a write cycle.

The cases shown assume that the selected memory or pe­
ripheral device is capable of communicating with the CPU at
full speed. If not, then cycle extension may be requested
through the RDY line. See Section 3.5.4.4.

A full speed bus cycle is performed in two cycles of the
BCLK clock, labeled T1 and T2. For both read and write bus
cycles the CPU asserts ADS during the first half of T1 indi­
cating the beginning of the bus cycle. From the beginning of
T1 until the completion of the bus cycle the CPU drives the
Address Bus and other relevant control signals as indicated
in the timing diagrams. For cacheable data read cycles the
CPU also drives the CASEC signal to indicate the block in
the DC set where the data will be stored. If the bus cycle is
not cancelled (e.g., state T2 is entered in the next clock
cycle), the confirm signal (CONF) is asserted in the middle
of T1. Note that due to a bus cycle cancellation, the BMT
signal may be asserted at the beginning of T1, and then
deasserted before the time in which it is guaranteed valid
(see Section 4.4.2).

A confirmed bus cycle is completed at the end of T2, unless
a cycle extension is requested. Following state T2 is either
state T1 of the next bus cycle, or an idle T-state, if the CPU
has no bus cycle to perform.

In case of a read cycle the CPU samples the data bus at the
end of state T2.

If a bus exception is detected, the data is ignored.

For write bus cycles, valid data is output from the middle of
T1 until the end of the cycle. When a write bus cycle is
immediately followed by another write cycle, the CPU keeps
driving the bus with the data related to the previous cycle
until the middle of state T1 of the second bus cycle.

The CPU always inserts an idle state before a write cycle
when the write immediately follows a confirmed read cycle.
Note: The CPU can initiate a bus cycle with a Tl·state and then cancel the

cycle, such as when a Cache hit occurs. In such a case, the CONF
signal remains High and the BMT signal is driven High; the Tl-state is
followed by another T1-state or an idle T-state.

2-44

ANY

BCLK [

I T- STATE I Tl

AO-31 [

DO-3{

ODIN [

ADS [

BMT [

-
-~
~

~

Z V/~ fj~

\.. /

'0

~ V;~ V;~

~ V/~ V/~

X
~-

~

\..

I~

/

Ifh

Ifh

CONf [

ROY [

BRT [

BER [h rih 'Iii 'Iii

BOUT [/

--

/

-

IIfh

rih

Vii

T2 I T1 OR n I

-- -G)- 1-- ~-.

/

\. ~

V i0
/

IIfh ~ /J /11 /1/

If,!h 'I " Ifh Ifh

,/1/ ~ Vh Vh

em[iJ '1h '1h VII ,/11 ,/11 Vh VII 'III 'III

BWO-l, [
CIIN,IODEC 'l.

-BEO-3, STO- 4, [
UjS, IOINH

~-

-
-CASEC [

III VI} VII

~
~ X -

~ x: -I--- -

II} ~ ex '1~ Ilh 'I/,

X - DC ~

~ ~ K I--I--

TL/EE/l0253-28

FIGURE 3·21. Basic Read Cycle

3.0 Functional Description (Continued)

ANY

BCLK [

IT-STATE I Tl

AO-3{

DO-3{

ODIN [

ADS [

Bt,tT [

Z

CONr[

ROY [

BRT [

BER [

BOUT [

BiN [

'l.

'l.

h

iJ

'/

-
BWO-{

BEO-3, [
STO- 4, U/S .-

Ifh

\.

'0

Vlh

Vfh

Vii

VII

VI;

tx:

'Ih ~ K

/

/ \.. V

I~ I--

/

II/, II/, If//,

'1h 'Ih lIfil

Vii 'Iii '/il

/

Vii '/il ,/1,

VII Vlj Vlj

~ tx ~

T2 I T1 OR n I

DATA OUT ~

'\

\. .I

/ ~ ---V
1/ \.. -

'I/, Ih /J /11 /1/

(Iii 'I ~ Ifh 'I;j

VI/ 'V VII ,/11

VII ,/1, ,/11 VII VII

~ ex Vh I//h Ifll,

TL/EE/l0253-29

FIGURE 3-22. Write Cycle

3.5.4.3 Burst Cycles

The NS32GX32 is capable of performing burst cycles in or­
der to increase the bus transfer rate. Burst is only available
in instruction fetch cycles and data read cycle from 32-bit
wide memories. Burst is not supported in operand write cy­
cles or slave cycles.

2-45

The sequence of events for burst cycles is shown in Figure
3-23. The case shown assumes that the selected memory is
capable of communicating with the CPU at full speed. If not,
then cycle extension can be requested through the ROY
line. See Section 3.5.4.4.

A Burst cycle is composed of two parts. The first part is a
regular cycle (opening cycle), in which the CPU outputs the
new status and asserts all the other relevant control signals.
In addition, the Burst Out Signal (BOUT) is activated by the
CPU indicating that the CPU can perform Burst cycles. If the
selected memory allows Burst cycles, it will notify the CPU
by activating the burst in signal (BIN). BIN is sampled by the
CPU in the middle of T2 on the falling edge of BCLK. If the
memory does not allow burst (BIN high), the cycle will termi­
nate at the end of T2 and BOUT will go inactive immediate­
ly. If the memory allows burst (BIN low), and the CPU has
not deasserted BOUT, the second part of the Burst cycle
will be performed and BOUT will remain active until termina­
tion of the Burst.

The second part consists of up to 3 nibbles, labeled T2B. In
each of them a data item is read by the CPU. For each
nibble in the burst sequence the CPU forces the 2 least-sig­
nificant bits of the address to 0 and increments address bits
2 and 3 to select the next double-word; all the byte enable
signals (BEO-3) are activated.

As shown in Figures 3-23 and 4-8 (in Section 4), the CPU
samples ROY at the end of each nibble. It extends the ac­
cess time for the burst transfer if ROY is inactive.

The CPU initiates burst read cycles in the following cases.

1. An instruction must be fetched (Status = 01000 or
01001), and the instruction address does not fall within
the last double-word in an aligned 16-byte block (e.g.,
address bits 2 and 3 are not both equal to 1).

2. A data item must be read (Status = 01010, 01011 or
01100), and both of the following conditions are met.

• The data cache is enabled and not locked. (OC = 1
and LOC = 0 in the CFG register.)

• The bus cycle is not an interlocked data access per-
formed while executing a CBITI or SBITI instruction.

The Burst sequence will be terminated when one of the
following events occurs.

1. The last instruction double-word in an aligned 16-byte
block has been fetched.

2. The CPU detects that the instructions being prefetched
are no longer needed due to an alteration of the flow of
control. This happens, for example, when a Branch in­
struction is executed or an exception occurs.

3. 4 double-words of data have been read by the CPU. The
double-words are transferred within an aligned 16-byte
block in a wrap-around order. For example, if a source
operand is located at address 104, then the burst read
cycle transfers the double-words at 104, 108, 112, and
100, in that order.

z
en
w
I\)

G>
>< w
I\)

I
I\)
o
z en
w
I\)

G>
>< w
I\)

I
I\)
U1 z en w
I\)

G>
>< w
I\)

W
o

PI

3.0 Functional Description (Continued)

ANY

8CLK [

I T- STATE I Tl I T2 I T28 I T28 I T28 I T1 OR n I

AO-3{

00-31 [

ODIN [

ADS [

8t.4T [

"

CONF [

ROY [

8EO- 3 [

~

BiN [

80UT [

8RT [

8ER [

8WO-l, [
CIIN,IOOEC

STO-4,U/S [
IOINH

"
'j

'l.

'J

VII VI/,~

\.

\.

~~ I~

I

Vfh Vh Vh

Vh VII Vh

'II. 'III 'III

/Ih '1h ,/11

VII VII 11/

X

--1--0 10-

V

10-

Vh

V,lj

Vh

'II)

III

CASEC [- 1--0 ~ 1--0 ~

V

VII

VA

VII

VII

OC

x - DC
~ DC - D< - ~ -

~t)--(!~ Kit)--(!NJ

/

I\. V

I~ ~ V

I\: I--
VA Jj ~ Jj t:\ Jj ~ /) V/,I Vh

I\, I

Jj PA /1 k'A fl VfL VII. Vfh t'lh tiL

l/

VI ~ {/ ~ V ~ (f '<I '1/ 'It

VI ~ {f ~ V '<G (/ ~ ,/1 'LL

~ rlh 1/11. /11. VI; VI; VI) III VI; Vt

DC

~ OC
10-

I--

FIGURE 3·23. Burst Read Cycles

2-46

TL/EE/10253-30

3.0 Functional Description (Continued)

4. The BIN signal is deasserted.

5. BRT is asserted to signal a bus retry.

6. IODEC is asserted or the BWO-1 signals indicate a bus
width other than 32·bits. The CPU samples these signals
during state T2 of the opening cycle. During T2B·states
BWO-1 are ignored and IODEC must be kept HIGH.

The CPU uses only the values of the above signals sampled
during the last state of the transfer when the cycle is ex·
tended. See Section 3.5.4.4.
Note: A burst sequence is not stopped by the assertion of either SER or

CIIN. See Note 3 in Section 3.5.5.

3.5.4.4 Cycle Extension

To allow sufficient access time for any speed of memory or
peripheral device, the NS32GX32 provides for extension of
a bus cycle. Any type of bus cycle except a slave processor
cycle can be extended.

A bus cycle can be extended by causing state T2 for a
normal cycle or state T2B for a Burst cycle to be repeated.

At the end of each T2 or T2B state, on the rising edge of
BClK, the RDY line is sampled by the CPU. If RDY is active,
then the transfer cycle will be completed. If RDY is inactive,
then the bus cycle is extended by repeating the T·state for
another clock cycle. These additional T ·states inserted by
the CPU in this manner are called 'WAIT' states.

During a transfer the CPU samples the input control signals
BIN, BER, BRT, BWO-1, CIIN and IODEC.

When wait states are inserted, only the values of these sig·
nals sampled during the last wait state are significant.

Figure 3·24 illustrates a normal read cycle with wait states
added through the RDY pin.
Note: If RST is asserted during a bus cycle, then the cycle is terminated

without regard of ROY.

3.5.4.5 Interlocked Bus Cycles

The NS32GX32 supports indivisible read·modify·write trans·
actions by asserting the IlO signal during consecutive read
and write operations. See Figure 4·7 in Section 4.

Interlocked transactions are always preceded and followed
by one or more idle T·states.

The IlO signal is asserted in the middle of the idle T·state
preceding state T1 of the read operation, and is deasserted
in the middle of one of the idle T·states following completion
of the write operation, including any retried bus cycles.

No other bus operations (e.g., instruction fetches) will occur
while an interlocked transaction is taking place.

Interlocked transactions are required in multiprocessor sys·
tems to handle shared resources. The CPU uses them to
reference data while executing a CBITIi or SBITIi instruction,
during which a single by1e of data is read and written.

The IlO signal is always released for one or more clock
cycles in the middle of two consecutive interlocked transac·
tions.
Note 1: If a bus error is detected during an interlocked read cycle, the sub·

sequent interlocked write cycle will not be performed, and iTI5 is
deasserted before the next bus cycle begins.

2·47

3.5.4.6 Interrupt Control Cycles

The CPU generates Interrupt·Acknowledge bus cycles in reo
sponse to non·maskable interrupt and enabled maskable
interrupt requests.

The CPU also generates one or two End·of·lnterrupt bus
cycles during execution of the Return·from·lnterrupt (RETI)
instruction.

The timing for the interrupt control cycles is the same as for
the basic memory read cycle shown in Figure 3·21; only the
status presented on pins STO-4 is different. These cycles
are single·byte read cycles, and they always bypass the
data cache.

Table 3·4 shows the interrupt control sequences associated
with each interrupt and with the return from its service pro·
cedure.

3.5.4.7 Slave Processor Bus Cycles

The NS32GX32 performs bus cycles to transfer information
to or from slave processors while executing floating·point or
custom·slave instructions.

The CPU uses slave write bus cycles to broadcast the iden·
tification and operation codes of a slave instruction as well
as to transfer operands from memory or general purpose
registers to a slave.

Figure 3·25 shows the timing for a slave write bus cycle.
The CPU asserts SPC during T1; the status is valid during
T1 and T2. The operation code or operand is output on the
data bus from the middle of T1 until the end of T2.

The CPU uses a slave read bus cycle to transfer a result
operand from a slave to either memory or a general purpose
register. A slave read cycle is also used to read a status
word when the FSSR signal is asserted. Figure 3·26 shows
the timing for a slave read bus cycle.

During T1 and T2 the CPU drives the status lines and as·
serts SPC. The data from the slave is sampled at the end of
T2.

The CPU will never perform another slave cycle immediately
following a slave read cycle. In fact, the T·state following
state T2 of a slave read cycle is either an idle T ·state or the
T1 state of a memory cycle.

Slave processor data transfers are always 32 bits wide. If
the operand is a single byte, then it is transferred on DO
through D7. If it is a word, then it is transferred on DO
through D15.

When two operands are transferred, operand 1 is trans·
ferred before operand 2. For double·precision operands, the
least·significant double·word is transferred before the most·
significant double·word.

During a slave bus cycle the output signals BEO-3 are un·
defined while the input signals BWO-1 and RDY are ig·
nored.

BER and BRT must be kept high.

z en w
N
Ci)

><
W
N • N o
.......
Z en
w
N
Ci)

><
W
N · N
U1
Z en
w
N
Ci)

><
W
N · W o

Q
C")

N
C")

><
CJ
C\I
C")

en z
Il)
C\I .
C\I
C")

><
CJ
C\I
C")

en
z
Q

~
C\I
C")

><
CJ
C\I
C")

en z

3.0 Functional Description (Continued)

ANY

BCLK [

IT-STATE I T1 I T2 I T2(W) ITI ORTII

-.-AO-3{

DO-3{

ODIN [

ADS [

Bt.lT [

'I.

'I.

Z

CONF [

RDY [

BRT [

BER ['L

BOUT [

BiN ['1

BWO-I,
CIIN, IODEC

BEO- 3, STO - 4,
U/S,IOINH

CASEC

[Q

[:
[:

DC
'II.

\.

I~

If/I

"fh

IfLL

/1/

1//

X
I"'"-

l"'"-

I--

~ I--

"/1. ?--

~

V I\.

I~

1/

1/1. 'II.

~ rLh

VLL rfh

I

Vb /11

V/} ILL

I"'"-

D< I--

DC
I"'"-

I--

lX.

--. -- -- --~
/

t/ I\.

I--V ~

II

'1/1. If/h '1/ ~ t}.. /J

"Ih ~h Vii Vh r/ '<

ifj I. Vfl. Vlh ~1.1f '<;

/11 III VI} VII 1/1 1//

11/ 1// Vlj ~ ~ 'Ih

~ Xi
~

3·24. Cycle Extension of a Basic Read Cycle

2-48

I--
. _.

V

I--V

\. -
Vh '///

VLL rLl

rill V/I

IfLL I!fLt

'1h 'lfh

~ I--

~ ,.....
TL/EE/10253-31

3.0 Functional Description (Continued)

TABLE 3-4. Interrupt Sequences
Data Bus

A r
Cycle Status Address ODIN BE3 BE2 BE1 BED Byte 3 Byte 2 Byte 1

A. Non-Maskable Interrupt Control Sequences
Interrupt Acknowledge

1 00100 FFFFFF0016 0 0 X X X
Interrupt Return
None: Performed through Return from Trap (RETT) instruction.

B. Non-Vectored Interrupt Control Sequences
Interrupt Acknowledge

1 00100 FFFFFE0016 0 0 X X X
Interrupt Return

1 00110 FFFFFE0016 0 0 X X X
C. Vectored Interrupt Sequences: Non-Cascaded

Interrupt Acknowledge
1 00100 FFFFFE0016 0 0 X X X

Interrupt Return
1 00110 FFFFFE0016 0 0 X X X

D. Vectored Interrupt Sequences: Cascaded
Interrupt Acknowledge

1 00100 FFFFFE0016 o o X X X

(The CPU here uses the Cascade Index to find the Cascade Address)

'\
Byte 0

X

X

X

Vector:
Range: 0-127

Vector: Same as
in Previous Int.
Ack. Cycle

Cascade Index:
range -16 to -1

2 001101 Cascade 0 See Note
Address

Vector, range 16-255; on appropriate byte of
data bus.

Interrupt Return
1 00110 FFFFFE0016 o

(The CPU here uses the Cascade Index to find the Cascade Address)
2 00111 Cascade 0 See Note

Address
X = Don't Care

Not.: SEO-'E3E3 signals will be activated according to the cascaded leu address

2·49

o X X

X X

X

X

Cascade Index:
Same as in
previous Int.
Ack. Cycle

X

z
(J)
W
N
G')

><
W
N • N
Q

'" Z
(J)
W
N
G')

><
W
N • N
U1

'" Z
(J)
W
N
G')

><
W
N • W
Q

fI

o r---~
C")
• N

C")

><
" N
C")

en z
II)
N • N
C")

><
" N
C")

en z o
N · N
C")

><
" N
C")

en z

3.0 Functional Description (Continued)

BCLK [

00-31 [

SPC [

ODIN [

STO-4[

ANY
IT- STATE I T1

}-K

"-~
/

T2 I T1 or Ti I

I
DATA OUT -"

I

/

\.

TLlEE/10253-32

FIGURE 3-25. Slave Processor Write Cycle

3.5.5 Bus Exceptions

The NS32GX32 has the capability of handling errors occur­
ring during the execution of a bus cycle. These errors can
be either correctable or incorrectable, and the CPU can be
notified of their occurrence through the input signals SRT
and/or SER.

Bus Retry

If a bus error can be corrected, the CPU may be requested
to repeat the erroneous bus cycle. The request is done by
asserting the SRT signal. SRT is sampled at the end of
state T2 or T2S.

When the CPU detects that SRT is active, it completes the
bus cycle normally, but ignores the data read in case of a
read cycle, and maintains a copy of the data to be written in
case of a write cycle. Then, after a delay of two clock cy­
cles, it will start executing the bus cycle again.

If the transfer cycle is multiple (e.g., for non-aligned data),
only the problematic part will be repeated.

For instance, if a non-aligned double-word is being trans­
ferred and the second half of the transfer fails, only the
second part will be repeated.

The same applies for a retry during a burst sequence. The
repeated cycle will begin where the read operation failed
(rather than the first address of the burst) and will finish the
original burst.

Figures 3-27 and 4-10 (in Section 4) show the SRT timing
for a basic access cycle and for burst cycles respectively.

The CPU always waits for SRT to be HIGH before repeating
the bus cycle. While SRT is lOW, the CPU places all the
output signals shown in Figure 4-11 in a TRI-STATE@ condi­
tion.

Bus Error

If a bus error is incorrectable the CPU may be requested to
interrupt the current process and branch to an appropriate
procedure to handle the error. The request is performed by
activating the SER signal. SER is sampled by the CPU at
the end of state T2 or T2S on the rising edge of SClK.

2-50

BCLK [

00-3{
SPC [

ODIN [

STO-4 [

ANY
IT - STATE I T1

" I

\.

T2 I T1 or Ti I

8

/

TL/EE/10253-33

FIGURE 3-26. Slave Processor Read Cycle

When BER is sampled active, the CPU completes the bus
cycle normally. If a bus error occurs during a bus cycle for a
reference required to execute an instruction, then a bus er­
ror exception is recognized. However, if an error occurs dur­
ing an acknowledge cycle of another exception or during
the ICU read cycle of a RETI instruction, the CPU interprets
the event as a fatal bus error and enters the 'halted' state.

In this state the CPU floats its address and data buses and
places a special status code on the STO-4 lines. The CPU
can exit this condition only through a hardware reset. Refer
to Section 3.2.6 for more details on bus error.
Note 1: If the erroneous bus cycle is extended by means of wait states, then

the CPU uses the values of BRT and/or BER sampled during the
last wait state.

Note 2: If the CPU samples both BRT and BER active, BRT has higher
priority. The bus error indication is ignored, and the bus cycle is
repeated.

Note 3: If BER is asserted during a bus cycle of a multi-cycle data transfer,
the CpU completes the entire transfer normally, but the data will be
Ignored. The CPU also ignores any subsequent assertion of BER
during the same data transfer.

Note 4: Neither BRT nor BEi"l should be asserted during the T2 state of a
slave processor bus cycle.

3.5.6 Dynamic Bus Configuration

The NS32GX32 is tuned to operate with 32-bit wide memory
and peripheral devices. The bus also supports a-bit and
16-bit data widths, but at reduced efficiency. The CPU can
switch from one bus width to another dynamically; the only
restriction is that the bus width cannot change for locations
within an aligned 16-byte block.

The CPU determines the bus width in effect for a bus cycle
by using the values of the SWO and SW1 signals sampled
during the last T2 state. Values of SWO and SW1 sampled
before the last T2 state or during T2S states are ignored.
Whenever a bus width other than 32-bit is detected by the
CPU, two idle states are inserted before the next bus cycle
is initiated. These idle states are only inserted once during
an operand access, even if more than two bus cycles are
needed to complete the access.

3.0 Functional Description (Continued)

ANY

BCLK [

IT-STATE I Tl I T2 1T1 ORTI I TI I T1 I T2 I T1 orTI I

_.
AO-3{

DO-3{

DDIN [

ADS [

Bt.1T [

CONF [

RDY [

BRT [

BER [

BOUT [

BiN [

BWO-l, [
CIIN,IODEC

Z

'l.

'l

Z

h

'I.

-BEO- 3, ?TO- 4, [
U/S,IOINH -

CASEC [

~ - X X ~ DC ~ .-{
I-- ~

If//' (Ih ?-- -- 10-- ~ ,- -- ~- -. -- -- --
, / \.

\. V I\. V \. ~ I\.. V

r0 I~ ;.-. V I~V I~ ~ V

/

1/11 Ifll 1/11 Ifll. "II ~ /J VI) [/f.L Vb V/i rtIJ Vh

VI} VII VII VI/' VI/' ~ /. (/1. V/I VI/ VI) VI, Vii

'II. rll. rlh '(III rll." " rlh Vh VIJ Vh VIJ VIJ

/

'ih 'ih VIJ VIJ 'lIJ '/IJ VI) VI/ Vfl Vfl 'IfL ILL VfL

'II 'Il VI/' III X :x rill "Ih Iflh 'II 'II /1) ~
X - tx X ~ DC - X - ,.,.

~ ~

IX ~ K ~ "I/, 'I/, ~
FIGURE 3·27. Bus Retry During a Basic Read Cycle

2-51

X

I<!N . -- ~.

/

\. V

I~ I--V

1/ I\-~
V\. L) VI/ VI

'(/ ~ If//' ~ VI. .-

V ~ If//' 1060I-I
Vl
joIoo6

VLL III /1/ V/

ex '/h 'ih rh

--r--

~ K ~ ~
TL/EE/10253-34

z en
w
N
Q
><
W
N • N o
Z en
w
N
Q
><
W
N
~
C1I
z en
w
N
Q
>< w

~ o

o
C") .
N
C")

><
" N
C")

en z
II)
N
N
C")

><
" N
C")

en z
....... o
N .
N
C")

><
" N
C")

en
z

3.0 Functional Description (Continued)

The various combinations for BWO and BW1 are shown be­
low.

BW1 BWO

0 0 Reserved
0 1 a-Bit Bus
1 0 16-Bit Bus
1 1 32-Bit Bus

The bus width is always 32 bits during slave cycles (See
Section 3_5.4.7). An important feature of the NS32GX32 is
that it does not impose any restrictions on the data align­
ment, regardless of the bus width .

Bus accesses are performed in double-word units. Access­
es of data operands that cross double-word boundaries are
decomposed into two or more aligned double-word access­
es.

The CPU provides four byte enable signals (BEO-3) which
facilitate individual byte accessing on either a 32-bit or a
16-bit bus.

Figures 3-28 and 3-29 show the basic interfaces for 32-bit
and 16-bit memories. An a-bit memory interface (not shown)
is even simpler since it does not use any of the BEO-3
signals and its single bank is always enabled whenever the
memory is selected. Each byte location in this case is se­
lected by address bits AO-31.

The NS32GX32 does not keep track of the bus width used
in previous instruction fetches or data accesses. At the be­
ginning of every memory transaction, the CPU always as­
sumes that the bus is 32-bit wide and the BEO-3 signals are
activated accordingly.

The BOUT signal is also asserted during instruction fetches
or data reads if the conditions for bursting are satisfied. If
the bus is other than 32-bit wide, the BIN signal is ignored
and BOUT is deasserted at the beginning of the T state
following T2, since burst cycles are not allowed for a-bit or
16-bit buses.

CACH------.-~--._+_--~~--~

(NOTE)

8 BITS BBITS

A2-31

00-31~ ________________________ ~

TL/EE/l0253-35

FIGURE 3-28. Basic Interface for 32-Blt Memories
Note: The CACR signal must be asserted during cacheable read accesses.

2-52

The following subsections provide detailed descriptions of
the access sequences performed in the various cases.
Note: Although the NS32GX32 ignores the BIN signal for S-bit and 16-bit

bus widths, it is recommended that BIN be asserted only if the system
supports burst transfers. This is to ensure compatibility with future
versions of the CPU that might support burst transfers for S-bit and
16-bit buses.

AO--------------------~
BE3-----,
BE1--------~

CACH------~~--.....,

8 BITS 8 BITS

AI-31

DO -15 \.---------1

TL/EE/l0253-36

FIGURE 3-29. Basic Interface for 16-Blt Memories

3.5.6.1 Instruction Fetch Sequences

The CPU performs two types of instruction fetch cycles: se­
quential and non-sequential. These can be distinguished
from each other by the differing status combinations on pins
STO-4. For non-sequential instruction fetches the CPU
presents on the address bus the exact byte address of the
first instruction in the instruction stream that is about to be­
gin; for sequential instruction fetches, the address of the
next aligned instruction double-word is presented on the ad­
dress bus. The CPU always activates all byte enable signals
(BEO-3) for both sequential and non-sequential fetches.
BOUT is also asserted during T2 if the addressed double­
word is not the last in an aligned 16-byte block. Tables 3-5
to 3-7 show the fetch sequence for the various bus widths.

32-Blt Bus Width

The CPU reads the entire double-word present on the data
bus into its internal instruction buffer.

If BOUT and BIN are both active, the CPU reads up to 3
consecutive double-words using burst cycles. Burst cycles
are used for instruction fetches regardless of whether the
accesses are cacheable.

3.0 Functional Description (Continued)

Example: JUMP @5 Example JUMP @6

• The CPU performs a fetch cycle at address 5 with 8EO-3 • A fetch cycle is performed at address 6 with 8EO-3 all
all active. active.

• Two burst cycles are then performed and addresses 8 and • The word at address 4 is then fetched if the access is
12 are output while 8EO-3 are kept active. cacheable.

16-Blt Bus Width 8-Blt Bus Width

The word on the least-significant half of the data bus is read The instruction byte on the bus lines 00-7 is fetched. The
by the CPU. This is either the even or the odd word within CPU performs three consecutive cycles to read the remain-
the required instruction double-word, as determined by ad- ing bytes within the required double-word, while keeping
dress bit 1. 8EO-3 all active. The 4 bytes are then assembled into a

The CPU then complements address bit 1, clears address double-word and transferred into the instruction buffer. For

bit 0 and initiates a bus cycle to read the other word, while a non-sequential fetch, if the access is not cacheable, the

keeping all the 8EO-3 signals active. CPU will only read the upper bytes within the instruction

These two words are then assembled into a double-word
double-word starting with the byte at the instruction ad-

and transferred into the instruction buffer.
dress.

In case of a non-sequential fetch, if the access is not cache-
Example: JUMP @7

able and the instruction address selects the odd word within • The CPU performs a fetch cycle at address 7 with 8EO-3

the instruction double-word, the even word is not fetched. all active.

• 8ytes at addresses 4, 5 and 6 are then fetched consecu-
tively if the access is cacheable.

TABLE 3-5. CacheablelNon-Cacheable Instruction Fetches from a 32-Bit Bus

1. In a burst access four bytes are fetched with the L.S. bits of the address set to 00.

2. A 'C' on the data bus refers to cacheable fetches and indicates that the byte is placed in the instruction cache. An 'I' refers
to non-cacheable fetches and indicates that the byte is ignored.

Number Address
Bytes to be Fetched

Address
BEO-3 Data Bus

of Bytes LSB Bus

1 11 80 - - - A LLLL 80 C/I CII C/I

2 10 81 80 - - A LLLL 81 80 C/I C/I

3 01 82 81 80 - A LLLL 82 81 80 C/I

4 00 83 82 81 80 A LLLL 83 82 81 80

TABLE 3-6. CacheablelNon-Cacheable Instruction Fetches from a 16-Blt Bus

1. A bus access marked with '.' in the 'Address 8us' column is performed only if the fetch is cacheable.

Number Address
Bytes to be Fetched

Address
BEO-3 Data Bus

of Bytes LSB Bus

1 11 80 - - - A LLLL - - 80 C/I
*A - 3 LLLL - - C C

2 10 81 80 - - A LLLL - - 81 80
*A - 2 LLLL - - C C

3 01 82 81 80 - A LLLL - - 80 C/I
A+1 LLLL - - 82 81

4 00 83 82 81 80 A LLLL - - 81 80
A+2 LLLL - - 83 82

2-53

z
en w
N
Q
><
W
N

I
N
o
Z
en w
N
Q
><
W
N

I
N
UI
Z
en w
N
Q
><
W
N

I
W
o

o
C")

N
C")

><
C!J
N
C")
U)
Z an
~
N
C")

><
C!J
N
C")
U)
Z o
~
C")

><
C!J
N
C")
U)
Z

3.0 Functional Description (Continued)

TABLE 3-7_ Cacheable/Non·Cacheable Instruction Fetches from an 8-Blt Bus

Number
of Bytes

2

3

Address
LSB

11

10

01

Bytes to be Fetched

BO

B1 BO

B2 B1 BO

4 00 B3 B2 B1 BO

3.5.6.2 Data Read Sequences

The CPU starts a data read access by placing the exact
address of the operand on the address bus. The byte en­
able lines are activated to select only the bytes required by
the instruction being executed. This prevents spurious ac­
cesses to peripheral devices that might be sensitive to read
accesses, such as those which exhibit the characteristic of
destructive reading. If the on-chip data cache is internally
enabled for the read access, the BOUT signal is asserted at
the beginning of state T2. BOOT will be deasserted if the
data cache is externally inhibited (through CIIN or IODEC),
or the bus width is other than 32 bits. During cacheable
accesses the CPU always reads all the bytes in the double­
word, whether or not they are needed to execute the in­
struction, and stores them into the data cache. The external
memory, in this case, must place the data on the bus re­
gardless of the state of the byte enable signals.

If the data cache is either internally or externally inhibited
during the access, the CPU ignores the bytes not selected
by the BEO-3 signals. Data read sequences for the various
bus widths are shown in tables 3-8 to 3-10.

32-Blt Bus Width

The entire double-word present on the bus is read by the
CPU. If the access is cacheable and the memory allows
burst accesses, the CPU reads up to 3 additional double­
words within the aligned 16-byte block containing the first
byte of the operand. These burst accesses are performed in
a wrap-around fashion within the 16-byte block.
Example: MOVW @5, RO

• The CPU reads a double-word at address 5 while keeping
BE1 and BE2 active.

• If the access is not-cacheable, BOUT is deasserted and
the data bytes 0 and 3 are ignored.

• If the access is cacheable, the CPU performs burst cycles
with BEO-3 all active, to read the double-words at ad­
dresses 8, 12, and O.

2-54

Address
BEO-3 Data Bus

Bus

A LLLL - - - BO
* A - 3 LLLL - - - C
* A - 2 LLLL - - - C
* A - 1 LLLL - - - C

A LLLL - - - BO
A+1 LLLL - - - B1

* A - 2 LLLL - - - C
* A - 1 LLLL - - - C

A LLLL - - - BO
A+1 LLLL - - - B1
A+2 LLLL - - - B2

* A - 1 LLLL - - - C

A LLLL - - - BO
A+1 LLLL - - - B1
A+2 LLLL - - - B2
A+3 LLLL - - - B3

16-Blt Bus Width

The word on the least-significan't half of the data bus is read
by the CPU. The CPU can then perform another access
cycle with address bit 1 complemented and address bit 0
cleared to read the other word within the addressed double­
word.

If the access is cacheable, the entire double-word is read
and stored into the cache.

If the access is not cacheable, the CPU Ignores the bytes in
the double-word not selected by BEO-S. In this case, the
second access cycle is not performed, unless selected
bytes are contained in the second word.

Example: MOVB @5, RO

• The CPU reads a word at address 5 while keeping BE1
active.

• If the access is not cacheable, the CPU ignores byte O.

• If the access is cacheable, the CPU performs another ac­
cess cycle, with BEO-3 all active, to read the word at
address 6.

8-Blt Bus Width
The data byte on the bus lines 00-7 is read by the CPU.
The CPU can then perform up to 3 access cycles to read
the remaining bytes in the double-word.

If the access is cacheable, the entire double-word is read
and stored into the cache.

If the access is not cacheable, the CPU will only perform
those access cycles needed to read the selected bytes.

Example: MOVW @5, RO

• The CPU reads the byte at address 5 while keeping BE1
and BE2 active.

• If the access is not cacheable, the CPU activates BE2 and
reads the byte at address 6.

• If the access is cacheable, the CPU performs three bus
cycles with BEO-3 all active, to read the bytes at address­
es 6,7 and 4.

3.0 Functional Description (Continued)

TABLE 3-8. Cacheable/Non-Cacheable Data Reads from a 32-Blt Bus

1. In a burst access four bytes are read with the L.S. bits of the address set to 00.

2. A 'C' on the data bus refers to cacheable reads and indicates that the byte is placed in the data cache. An 'I' refers to non-
cacheable reads and indicates that the byte is ignored.

Number Address
Bytes to be Read

Address
BEO-3 Data Bus

of Bytes LSB Bus

1 00 - - - BO A HHHL C/I C/I C/I BO

1 01 - - BO - A HHLH C/I C/I 80 C/I

1 10 - BO - - A HLHH C/I 80 C/I C/I

1 11 BO - - - A LHHH BO C/I C/I C/I

2 00 - - B1 BO A HH LL C/I C/I B1 BO

2 01 - B1 BO - A HLLH C/I 81 80 C/I

2 10 B1 BO - - A LLHH B1 BO C/I C/I

3 00 - 82 81 BO A HLLL C/I B2 81 BO

3 01 82 B1 BO - A LLLH B2 B1 BO C/I

4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO

TABLE 3-9. Cacheable/Non-Cacheable Data Reads from a 16-Blt Bus

1. A bus access marked with '.' in the 'Address Bus' column is performed only if the read is cacheable.

Number Address
Data to be Read

Address BEO-3
Data Bus

of Bytes LSB Bus Cach. NonCach.

1 00 - - - BO A HHHL HHHL - - CII BO
*A + 2 LLLL - - C C

1 01 - - BO - A HHLH HHLH - - BO C/I

• A + 1 LLLL - - C C

1 10 - BO - - A HLHH HLHH - - C/I BO
*A - 2 LLLL - - C C

1 11 BO - - - A LHHH LHHH - - BO C/I

• A - 3 LLLL - - C C

2 00 - - B1 80 A HH LL HH LL - - B1 BO
* A + 2 LLLL - - C C

2 01 - B1 BO - A HLLH HLLH - - BO C/I
A+1 LLLL HLHH - - C/I 81

2 10 81 BO - - A LLHH LLHH - - B1 BO
* A - 2 LLLL - - C C

3 00 - B2 B1 BO A H LLL HLLL - - B1 BO
A+2 LLLL HLHH - - C/I 82

3 01 B2 B1 BO - A LLLH LLLH - - BO C/I
A+1 LLLL LLHH - - B2 81

4 00 83 B2 B1 BO A LLLL LLLL - - B1 80
A+2 LLLL LLHH - - B3 B2

2-55

z
en w
N
C)
><
W
N • N
Q
.......
Z
en w
N
C)
><
W
N .
N
U1
Z
en
w
N
C)
>< w
~
W
Q

o
~
C")

><
CI
N
C")
en z
an
N .
N
C")

><
CI
N
C")
en z
o
N
N
C")

><
CI
N
C")

en z

3.0 Functional Description (Continued)

TABLE 3-10. CacheableINon-Cacheable Data Reads from an 8-Blt Bus 08-12

Number Address
Data to be Read

Address BEO-3
Data Bus

_ of Bytes LSB Bus Cacho NonCach.

1 00 - - - BO A HHHL HHHL - - - BO
"A + 1 LLLL - - - C
"A + 2 LLLL - - - C
"A + 3 LLLL - - - C

1 01 - - BO - A HHLH HHLH - - - BO
"A + 1 LLLL - - - C
"A + 2 LLLL - - - C
"A - 1 LLLL - - - C

1 10 - BO - - A HLHH HLHH - - - BO
"A + 1 LLLL - - - C
"A - 2 LLLL - - - C
"A - 1 LLLL - - - C

1 11 BO - - - A LHHH LHHH - - - BO
"A - 3 LLLL - - - C
"A - 2 LLLL - - - C
"A - 1 LLLL - - - C

2 00 - - B1 BO A HHLL HHLL - - - BO
A+1 LLLL HHLH - - - B1

"A + 2 LLLL - - - C
"A + 3 LLLL - - - C

2 01 - B1 BO - A HLLH HLLH - - - BO
A+1 LLLL HLHH - - - B1

"A + 2 LLLL - - - C
"A - 1 LLLL - - - C

2 10 B1 BO - - A LLHH LLHH - - - BO
A+1 LLLL LHHH - - - B1

"A - 2 LLLL - - - C
"A - 1 LLLL - - - C

3 00 - B2 B1 BO A HLLL H LLL - - - BO
A+1 LLLL HLLH - - - B1
A+2 LLLL HLHH - - - B2

"A +' 3 LLLL - - - C

3 01 B2 B1 BO - A LLLH LLLH - - - BO
A+1 LLLL LLHH - - - B1
A+2 LLLL LHHH - - - B2

"A - 1 LLLL - - - C

4 00 B3 B2 B1 BO A LLLL LLLL - - - BO
A+1 LLLL LLLH - - - B1
A+2 LLLL LLHH - - - B2
A+3 LLLL LHHH - - - B3

3.5.6.3 Data Write Sequences 32-Blt Bus Width

In a write access the CPU outputs the operand address and The CPU performs only one access cycle to write the se-
asserts only the byte enable lines needed to select the spe- lected bytes within the addressed double-word.
cific bytes to be written. Example: MOVB RO, @6
In addition, the CPU duplicates the data to be written on the • The CPU duplicates byte 2 of the data bus into byte 0 and
appropriate bytes of the data bus in order to handle a-bit performs a write cycle at address 6 with BE2 active.
and 16-bit buses.

16-Blt Bus Width
The various access sequences as well as the duplication of Up to two access cycles are needed to complete the write
data are summarized in tables 3-11 to 3-13.

operation.

2-56

3.0 Functional Description (Continued)
Example: MOVW RO, @5 signals. By asserting HOLD, an external device requests ac-

• The CPU duplicates byte 1 of the data bus into byte 0 and cess to the bus. On receipt of HLDA from the CPU, the

performs a write cycle at address 5 with BE1 and BE2 device may perform bus cycles, as the CPU at this point has

active. placed all the output signals shown in Figure 3-30 into the

• A write at address 6 is then performed with BE2 active
TRI-STATE condition.

and the original byte 2 of the data bus placed on byte O. To return control of the bus to the CPU, the external device

8-Blt Bus Width sets HOLD inactive, and the CPU acknowledges return of

Up to 4 access cycles are needed in this case to complete
the bus by setting HLDA inactive.

The CPU samples HOi]) in the middle of each T-state on the write operation.
the falling edge of BCLK. If ROID is asserted when the bus

Example: MOVB RO, @7 is idle between access sequences, then the bus is granted
• The CPU duplicates byte 3 of the data bus into bytes 0 immediately (see Figure 3-2U). If HOLD is asserted during

and 1, and then performs a write cycle at address 7 with an access sequence, then the bus is granted immediately
BE3 active. after the access sequence, including any retried bus cycles,

3.5.7 Bus Access Control has completed (see Figure 4-13). Note that an access se-

The NS32GX32 has the capability of relinquishing its control
quence can be composed of several bus cycles if the bus

of the bus upon request from a DMA device or another CPU.
width is 8 or 16 bits.

This capability is implemented with the HOLD and HLDA

TABLE 3-11. Data Writes to a 32-Blt Bus

1. Bytes on the data bus marked with '.' are undefined.

Number Address
Data to be Written

Address
BEO-3 Data Bus

of Bytes LSB Bus

1 00 - - - BO A HHHL • • • BO

1 01 - - BO - A HHLH • • BO BO

1 10 - BO - - A HLHH • BO • BO

1 11 BO - - - A LHHH BO • BO BO

2 00 - - B1 BO A HH LL • • B1 BO

2 01 - B1 BO - A HLLH • B1 BO BO

2 10 B1 BO - - A LLHH B1 BO B1 BO

3 00 - B2 B1 BO A HLLL • B2 B1 BO

3 01 B2 B1 BO - A LLLH B2 B1 BO BO

4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO

TABLE 3-12. Data Writes to a 16-Blt Bus

Number Address
Data to be Written

Address
BEO-3 Data Bus

of Bytes LSB Bus

1 00 - - - BO A HHHL • • • BO

1 01 - - BO - A HHLH • • BO BO

1 10 - BO - - A HLHH • BO • BO

1 11 BO - - - A LHHH BO • BO BO

2 00 - - B1 BO A HHLL • • B1 BO

2 01 - B1 BO - A HLLH • B1 BO BO
A+1 HLHH • • • B1

2 10 B1 BO - - A LLHH B1 BO B1 BO

3 00 - B2 B1 BO A HLLL • B2 B1 BO
A+2 HLHH • • • B2

3 01 B2 B1 BO - A LLLH B2 B1 BO BO
A+1 LLHH • • B2 B1

4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO
A+2 LLHH • • B3 B2

2-57

z
(J)
w
I\)
Ci)
>< w
I\)
• I\)

Q
Z
(J)
w
I\)
Ci)
>< w
I\)

N
U1
Z
(J)
w
I\)
Ci)
>< w
I\)
• W

Q

o
~
C")

><
CJ
N
C")
U)
Z
LI)

~
C")

><
CJ
N
C")
U)
Z
o
N .
N
C")

><
CJ
N

~
Z

3.0 Functional Description (Continued)

TABLE 3-13. Data Writes to an 8-Blt Bus

Number Address
Data to be Written

Address
BEO-3

of Bytes LSB Bus

1 00 - - - 80 A HHHL
1 01 - - 80 - A HHLH
1 10 - 80 - - A HLHH
1 11 80 - - - A LHHH
2 00 - - 81 80 A HHLL

A+1 HHLH
2 01 - 81 80 - A HLLH

A+1 HLHH
2 10 81 80 - - A LLHH

A+1 LHHH
3 00 - 82 81 80 A HLLL

A+1 HLLH
A+2 HLHH

3 01 82 81 80 - A LLLH
A+1 LLHH
A+2 LHHH

4 00 83 82 81 80 A LLLL
A+1 LLLH
A+2 LLHH
A+3 LHHH

2-58

Data Bus

• • • 80

• • 80 80

• 80 • 80

80 • 80 80

• • 81 80

• • • 81

• 81 80 80

• • • 81

81 80 81 80

• • • 81

• 82 81 80

• • • 81

• • • 82

82 81 80 80

• • • 81

• • • 82

83 82 81 80

• • • 81

• • • 82

• • • 83

3.0 Functional Description (Continued)

TI TI TI TI "Jifth BCLK [

AO-3{

00-3{
ODIN [

ADS [

BI.4T [

-
-

CONF [

HOLD [

HLDA [

BOUT [

BEO- 3 [

CASEC [

STO- 4 [

}- -- ~- ----

1\

,- -- -- po--

.-- -- -- po--

- -- -- ---
'- --- -- ---
'- --- -- ---
'- .-- -- ---

\

'- ~-- -- ~--

r ~-- -- 1--'

r ~-- -- -_.

~S- ~-- { X
--

~S- po-- -- ~- (- -- ~--- r-

~S- po -- C ~ ~-- -- ~-

~S- --- \. /

~S- -- I~ V -
~S- --- \ - r---
r~
JJ

rt / ..

~S- ~-- J \. ~

~S- ~-- -(X
-(r--

~ -
~

~S- ~ --
I--- - p0-

rt ..
rr ..

TL/EE/10253-37

FIGURE 3-30. Hold Acknowledge. (Bus Initially Idle.)
Note: The status indicates 'IDLE' while the bus is granted. If the cause of the IDLE changes (e.g., CPU starts waiting for an interrupt), the status also changes.

The CPU will never grant the bus between interlocked read
and write bus cycles.
Note: If an external device requires a very short latency to get control of the

bus, the bus retry signal (BRn can be used instead of hold. See
Section 3.5.5.

3.5.8 Interfacing Memory-Mapped I/O Devices

In Section 3.1.3.2 it was mentioned that some special pre­
cautions are needed when interfacing I/O devices to the
NS32GX32 due to its internal pipelined implementation.
Two special signals are provided for this purpose: 10lNH
and 10DEC. The CPU asserts 10lNH during a read bus cycle
to indicate that the bus cycle should be ignored if an I/O
device is selected. The system responds by asserting
10DEC to indicate to the CPU that an I/O device has been
selected. 10DEC is sampled by the CPU in the middle of

2-59

state T2. If the cycle is extended, then the CPU uses the
10DEC value sampled during the last wait state. If a bus
error or a bus retry occurs, the sampled 10DEC value is
ignored. 10DEC must be kept high during burst transfer cy­
cles.

When 10DEC is active during a bus cycle for which 10lNH is
asserted, the CPU discards the data and applies the special
handling required for I/O devices. Figure 3-31 shows a pos­
sible implementation of an I/O device interface where the
address mapping of the I/O devices is fixed.

In an open system configuration, 10DEC could be generated
by the decoding logic of each I/O device subsystem.
Note 1: When IODEC is active in response to a read bus cycle, the CPU

treats the reference as noncacheable.

Note 2: iOiNH is kept inactive during write cycles.

z en w
~
C)
><
W
~
~
Q
Z en w
~
C)
><
W
~ .
~
U1
z en
w
~
C)
><
W
~ • W
Q

Q r--
C") .
N
C")

><
CJ
N
C")
U)
Z
.......
Lt)
N
N
C")

><
CJ
N
C")
U)
Z
Q
N .
N
C")

><
CJ
N
C")
U)
Z

3.0 Functional Description (Continued)

NS32GX32 ADDRESS
CPU

TL/EE/10253-38

FIGURE 3-31. Typical 110 Device Interface

3.5.9 Interrupt and Debug Trap Requests

Three signals are provided by the CPU to externally request
interrupts and/or a debug trap. INT and NMI are for maska­
ble and non-maskable interrupts respectively. DBG is used
for requesting an external debug trap.

The CPU samples INT and NMI on every other rising edge
of BClK, starting with the second rising edge of BClK after
RST goes high.

NMI is edge-sensitive; a high-to-Iow transition on it is detect­
ed by the CPU and stored in an internal latch, so that there
is no need to keep it asserted until it is acknowledged.

INT is level-sensitive and, as such, once asserted, it must
be kept asserted until it is acknowledged.

The DBG signal, like NMI, is edge-sensitive; it differs from
NMI in that the CPU samples it on each rising edge of
BClK. DBG can be asserted asynchronously to the CPU
clock, but it should be at least 1.5 clock cycles wide in order
to be recognized.

If DBG meets the specified setup and hold times, it will be
recognized on the rising edge of BClK deterministically.

Refer to Figures 4-19 and 4-20 for more details on the tim­
ing of the above Signals.
Note: If the m signal is pulsed to request a non-maskable Interrupt, it may

be necessary to keep it asserted for a minimum of two clock cycles to
guarantee its detection, unless extra logic ensures that the pulse oc­
curs around the BCLK sampling edge.

2-60

3.5.10 Internal Status

The NS32GX32 provides information on the system inter­
face concerning its internal activity.

The UlS signal will indicate the state of the U bit in the PSR
except in the following cases:

While executing a MOVUS instruction it will be '1' during the
source read.

While executing a MOVSU instruction it will be '1' during the
destination write.

The PFS signal is asserted for one BClK cycle when the
CPU begins executing a new instruction. The ISF signal is
driven High along with PFS if the new instruction does not
follow the previous instruction in sequence. More specifical­
ly, ISF is High along with PFS after processing an exception
or after executing one of the following instructions: ACB
(branch taken), Bcond (branch taken), BR, BSR, CASE,
CXP, CXPD, DIA, JSR, JUMP, RET, RETT, RETI, and RXP.

The BP signal is asserted for one BClK cycle when an ad­
dress-compare or PC-match condition is detected. If the BP
signal is asserted one BClK cycle after PFS, it indicates
that an address-compare debug condition has been detect­
ed. If BP is asserted at any other time, it indicates that a PC­
Match debug condition has been detected.

While executing a CINV instruction, the CPU displays the
operation code and source operand using slave processor
write bus cycles.

During idle bus cycles, the signals STO-ST4 indicate wheth­
er the CPU is waiting for an interrupt, waiting for a Slave
Processor to complete executing an instruction or halted.

4.0 Device Specifications

""KI"{
BUS ACCESS {

CONTROL

RESET

EXCEPTION [
REOUEST

INTERNAL {
STATUS

CACHE CONTROL {

NS32GX32

BWO-I

ADDRESS

DATA

BUS TIt.4ING AND
CONTROL OUTPUTS

}
SLAVE TIt.4ING
AND CONTROL

TL/EE/l0253-39

4.1 NS32GX32 PIN DESCRIPTIONS

FIGURE 4-1. NS32GX32 Interface Signals

4.1.2 Input Signals

Descriptions of the NS32GX32 pins are given in the follow­
ing sections.

Included are also references to portions of the functional
description, Section 3.

Figure 4-1 shows the NS32GX32 interface signals grouped
according to related functions.
Note: An asterisk next to the signal name indicates a TRI-STATE condition

for that signal when fR5lJ5 is acknowledged or during an extended
retry.

4.1.1 Supplies

VCCl1-6

VCCB1-14

VCCClK

logic Power.

+ 5V positive supplies for on-chip logic.

Buffers Power.
+ 5V positive supplies for on-chip output
buffers.

Bus Clock Power.

+ 5V positive supply for on-chip clock driv­
ers.

GNDl1-6 logic Ground.
Ground references for on-chip logic.

GNDB1-13 Buffers Ground.

Ground references for on-chip output buffers.

GNDClK Bus Clock Ground.
Ground reference for on-chip clock drivers.

2-61

ClK Clock.
Input Clock used to derive all CPU Timing.

Synchronize.
When SYNC is active, BCLK will stop tog­
gling. This signal can be used to synchronize
two or more CPUs (Section 3.5.2).

Hold Request.
When active, causes the CPU to release the
bus for DMA or multiprocessing purposes
(Section 3.5.7).
Note:

If the fR5lJ5 signal is generated asynchronously, its set
up and hold times may be violated. In this case it is rec­
ommended to synchronize it with the falling edge of
BCLK to minimize the possibility of metastable states.

The CPU provides only one synchronization stage to min­
Imize the HLDA latency. This is to avoid speed degrada­
tions in cases of heavy fR5lJ5 activity (I.e. DMA controller
cycles interleaved with CPU cycles).

RST Reset.
When RST is active, the CPU is initialized to
a known state (Section 3.5.3).

INT Interrupt.

A low level on this signal requests a maska­
ble interrupt (Section 3.5.9).

Nonmaskable Interrupt.
A High-to-Low transition of this signal re­
quests a nonmaskable interrupt (Section
3.5.9).

z en
w
N
Ci)

><
W
N • N o
........
Z en w
N
Ci)

><
W
N • N
U1
........
Z en
w
N
Ci)

><
W
N · W o

o .---.
C")

N
C")

><
CJ
N
C")

en z
It)

~
N
C")

><
CJ
N
C")

en
z
o
N • N
C")

><
CJ
N
C")

en
z

4.0 Device Specifications (Continued)

DBG Debug Trap Request.
A High-to-Low transition of this signal re­
quests a debug trap (Section 3.5.9).

CIIN Cache Inhibit In.

BWO-1

When active, indicates that the location refer­
enced in the current bus cycle is not cache­
able. CIIN must not change within an aligned
16-byte block.

I/O Decode.
Indicates to the CPU that a peripheral device
is addressed by the current bus cycle. The
value of IODEC must not change within an
aligned 16-byte block (Section 3.5.8) .

Force Slave Status Read.
When asserted, indicates that the. slave
status word should be read by the CPU (Sec­
tion 3.1.4.1). An external 10 kn resistor
should be connected between FSSR and
Vee·
Slave Done.
Used by a slave processor to signal the com­
pletion of a slave instruction (Section
3.1.4.1). An external 1 0 kn resistor should be
connected between SON and Vee.

Burst In.
When active, indicates to the CPU that the
memory supports burst cycles (Section
3.5.4.3).

Ready.

While this signal is not active, the CPU ex­
tends the current bus cycle to support a slow
memory or peripheral device.

Bus Width.
These lines define the bus width (8, 16 or 32
bits) for each data transfer; BWO is the least
significant bit. The bus width must not
change within an aligned 16-byte block-en­
codings are:

OO-Reserved

01--8 Bits

10-16 Bits

11-32 Bits

Bus Retry.

When active, the CPU will reexecute the last
bus cycle (Section 3.5.5).

Bus Error.

When active, indicates that an error occurred
during a bus cycle. It is treated by the CPU as
the highest priority exception after reset.

2-62

4.1.3 Output Signals
BCLK Bus Clock.

Output clock for bus timing (Section 3.5.2).

Bus Clock Inverse •
Inverted output clock.

Hold Acknowledge.
Activated by the CPU in response to the
HOLD input to indicate that the CPU has re­
leased the bus.

Program Flow Status.
A pulse on this Signal indicates the beginning
of execution for each instruction (Section
3.5.10).

ISF Internal Sequential Fetch.
Indicates along with PFS that the instruction
beginning execution is sequential (ISF Low)
or non-sequential (ISF High).

U/S User/Supervisor.

CASEC

User or supervisor mode status (Section
3.5.10).

Break Point.
This signal is activated when the CPU de­
tects a PC or operand-address match debug
condition (Section 3.3.2).

·Cache Section.

For cacheable data read bus cycles indicates
the Section of the on-chip Data Cache where
the data will be placed; undefined for other
bus cycles.

110 Inhibit.
Indicates that the current bus cycle should
be ignored if a peripheral device is ad­
dressed.

Slave Processor Control.
Data strobe for slave processor transfers.

·Burst Out.

When active, indicates that the CPU. is re­
questing to perform burst cycles.

Interlocked Operation.
When active, indicates that interlocked cy­
cles are being performed (Section 3.5.4.5).

• Data Direction.
Indicates the direction of a data transfer. It is
low for reads and high for writes.

·Conflrm Bus Cycle.

When active, indicates that a bus cycle initia­
ted by ADS is valid; that is, the bus cycle has
not been cancelled (Section 3.5.4.2).

4.0 Device Specifications (Continued)

BMT *Begln Memory Transaction.

When Stable Low indicates that the current
bus cycle is valid; that is, the bus cycle has
not been cancelled (Section 3.5.4.2).

ADS * Address Strobe.

BEO-3

STO-4

When active, indicates that a bus cycle has
begun and a valid address Is on the address
bus.

*Byte Enables.

Used to selectively enable data transfers on
bytes 0-3 of the data bus.

Status.

Bus cycle status code; STO is the least signif­
icant. Encodings are:

OOOOO-idle: CPU Inactive on Bus.

00001-ldle: WAIT Instruction.

00010-ldle: Halted.

00011-ldle: The bus is idle while the slave
processor is executing an instruction.

00100-lnterrupt Acknowledge, Master.

00101-lnterrupt Acknowledge, Cascaded.

00110-End of Interrupt, Master.

00111-End of Interrupt, Cascaded.

4.2 ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

Case Temperature Under Bias O°C to + 95°C

Storage Temperature - 65°C to + 150°C

AO-31

01000-Sequentiallnstruction Fetch.

01 001-Non-Sequentiallnstructlon Fetch.

01010-Data Transfer.

01 011-Read Read-Modify-Write Operand.

01100-Read for Effective Address.

r 101) Reserved.

11100

11101-Transfer Slave Operand.

11110-Read Slave Status Word.

11111-Broadcast Slave ID.

• Address Bus.
Used by the CPU to output a 32-bit address
at the beginning of a bus cycle. AO is the
least significant.

4.1.4InputlOutput Signals

00-31 ·Data Bus.

Used by the CPU to input or output data dur­
ing a read or write cycle respectively.

All Input or Output Voltages with
Respect to GND

Power Dissipation

-0.5Vto +7V

4W

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended,' operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS NS32GX32-20, 25: TeASE = 0° to + 95°C, Vee = 5V ± 10%, GND = OV
NS32GX32-30: TeASE = 0° to + 95°C, Vee = 5V ±5%, GND = OV.

Symbol Parameter Conditions Min Typ Max Units

VIH High Level Input Voltage 2.0 Vee + 0.5 V

VIL Low Level Input Voltage -0.5 0.8 V

VOH High Level Output Voltage IOH = -400 p,A 2.4 V

VOL Low Level Output Voltage
AO-11, DO-31, DDIN IOL = 4mA 0.45 V
CONF, BMT IOL = 6mA 0.45 V
BCLK, BCLK IOL = 16mA 0.45 V
All Other Outputs IOL = 2mA 0.45 V

IL Input Load Current o ~ VIN ~ Vee -20 20 p,A

IL Leakage Current (Output and 0.4 ~ VIN ~ Vee -20 20 p,A
I/O. pins in TRI-STATE/lnput Mode)

CIN CLK Input Capacitance 10 pF

lee Active Supply Current lOUT = 0, TA = 25°C 700 @ 30 MHz 800 @ 30 MHz

Vee = 5V 600 @ 25 MHz 700 @ 25 MHz rnA
470@20MHz 575 @ 20 MHz

2-63

z
en
w
I\)
Q
>< w
I\)
• I\)
o
'" z
en
w
N
Q
>< w
I\) · I\)
U1

'" z
en
w
I\)
Q
>< w
I\) · w o

fJ

4.0 Device Specifications (Continued)

Connection Diagram

Desc Pin Desc

Reserved A1 026
Reserved A2 Reserved
Reserved A3 Reserved
BP A4 VCCL2
15F A5 Reserved
RST A6 PF5
NMI A7 SON
GNOB1 A8 Reserved
Reserved A9 BCLK
VCC82 A10 VCCCLK
Reserved (2) A11 SYNC
Reserved (1) A12 Reserved (2)
Reserved (2) A13 Reserved (2)
Reserved (2) A14 VCCL6
VCCB1 A15 029
Reserved B1 027
VCCB4 B2 025
Reserved B3 U/S
Reserved B4 Reserved
VCCB3 B5 Reserved
FSSR B6 GNOL3
INT B7 GNOB2
VCCL1 B8 DBG
GNOL2 B9 Reserved
Reserved (2) B10 BCLK
Reserved (2) B11 GNOCLK
Reserved (2) 812 CLK
Reserved (2) B13 Reserved (2)
030 B14 031
028 B15 GNOL1

S@@@@@@@@@@@@@@@@
R@@@@@@@@@@@@@@@@
P@@@@@@@@@@@@@@@@
N@@@@@@@@@@@@@@@@
M@@@ @@@
L@@@ @@@
K@@@ @@@
J @ @ @ NS32GX32 @ @ @
H@@@ @@@
G@@@ @@@
F@@@ @@@
E@@@ @@@
D@@@@@@@@@@@@@@@@
C@@@@@@@@@@@@@@@@
B@@@@@@@@@@@@@@@@
A@@@@@@@@@@@@@@@

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
TL/EEI10253-40

Bottom View

FIGURE 4-2. 17S-Pln PGA Package

NS32GX32 Pinout Descriptions

Pin Desc Pin Desc Pin Desc Pin

B16 GNOB13 014 GNOL6 J14 GNOL5 N9
C1 VCCB14 015 VCCL5 J15 CONF N10
C2 023 016 013 J16 ROY N11
C3 IOINH E1 VCC86 K1 AO[[) N12
C4 reo E2 A23 K2 VCCB11 N13
C5 GNOB3 E3 GNOL4 K3 GNOB10 N14
C6 024 E14 GNOB11 K14 04 N15
C7 022 E15 011 K15 06 N16
C8 020 E16 012 K16 A16 P1
C9 A30 F1 A22 L1 VCC87 P2

C10 ~ F2 A21 L2 GNOB6 P3
C11 Reserved F3 VCCL3 L3 A10 P4
C12 021 F14 08 L14 A6 P5
C13 019 F15 09 L15 A2 P6
C14 018 F16 010 L16 5T3 P7
C15 A29 G1 A20 M1 GNOB8 P8
C16 A31 G2 GNOB5 M2 VCCL4 P9
01 VCC85 G3 A17 M3 BE1 P10
02 GNOB12 G14 05 M14 GNOB9 P11
03 017 G15 07 M15 BWO P12
04 016 G16 VCCB12 M16 m P13
05 A27 H1 A19 N1 Reserved P14
06 A28 H2 A18 N2 DO P15
07 GNOB4 H3 A14 N3 03 P16
08 VCCB13 H14 A11 N4 A15 R1
09 015 H15 VCC88 N5 A12 R2
010 014 H16 GN087 N6 A9 R3
011 A26 J1 5T4 N7 A7 R4
012 A25 J2 HLOA N8 A4 R5
013 A24 J3

Note 1: This pin should be grounded.

Delc

AO
VCCB9
Reserved
SPC
BE3
VCC810
ADS
BW1
SEA
CIIN
02
A13
A8
A5
A3
A1
ST2
ST1
STO
l300T
tmTfJ
BE2
BEO
BMT
BR'f
~
01

Note 2: This pin should be connected to logical high.
All other reserved pins should be left open.

2-64

Pin

R6
R7
R8
R9

R10
R11
R12
R13
R14
R15
R16
51
52
53
54
55
56
S7
58
59

510
511
512
513
514
515
516

4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions
All the timing specifications given in this section refer to
O.BV or 2.0V on all the signals as illustrated in Figures 4-3
and 4-4, unless specifically stated otherwise.

.ru[2.0V

O.SV

S1G'[
tslGlh

------------ 2."V
2.0V

tslGh O.SV
O."5V

S~[
tSIG2v UV

2.0V
tSIG2h

O.SV
- - - -- --- - - -- --O."5V

TL/EE/10253-41

FIGURE 4·3. Output Signals Specification Standard

2-65

z en w
I\)

ABBREVIATIONS: Ci)

L.E.-Ieading edge R.E.---rising edge
>< w
I\)

T.E.-training edge F.E.-falling edge • I\)
0

BClK[
2.0V

Z en w
O.SV I\)

Ci)
><

SIG{
2.4V w

I\)
•

tSIGh tSIGlh
I\)
CJ'1 z en

S~{
w
I\)

tSIG21 tSIG2h Ci)
><

O."5V W
I\)

TL/EE/10253-42 · W
FIGURE 4·4. Input Signals Specification Standard 0

o
C?
N
CW)

><
CJ
N
CW)
(J)
Z
.......
LI)
N
N
CW)

><
CJ
N
CW)
(J)
Z
o
N
N
CW)

><
CJ
N
CW)
(J)
Z

4.0 Device Specifications (Continued)

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation Delays, NS32GX32-20, NS32GX32-25, NS32GX32-30
• Maximum times assume capacitive loading of 100 pF on the clock signals and 50 pF on all the other signals. A minimum

capacitance load of 50 pF on BClK and BClK is also assumed .
• The output to input timings (e.g., Address to RDY, Address to BER, etc.) are at least 2 ns better than the worst case values

calculated from the output valid and Input setup times relative to BClK or B'CD<.

Name Figure Description Reference/Conditions
NS32GX32-20 NS32GX32-25 NS32GX32-30

Units
Min Max Min Max Min Max

tscp 4-24 Bus Clock Period R.E., BClK to Next
50 100 40 100 33.3 100

R.E., BClK
ns

tSCh 4-24 BClK High Time At 2.0V on BClK
20 16 13

(Both Edges)

tSCI 4-24 BClK low Time At O.BV on BClK
20 16 13

(Both Edges)

tscr 4-24 BClK Rise Time O.BV to 2.0V on
5 4 3 (Note 1) R.E., BClK

ns

tsCt 4-24 BClK Fall Time 2.0V to O.BV on
5 4 3

(Note 1) F.E., BClK
ns

tNSCh 4-24 BClK High Time At 2.0V on BClK
(Both Edges)

20 16 13

tNSCI 4-24 BClK low Time At O.BV on BClK
20 16 13

(Both Edges)

tNSCr 4-24 BClK Rise Time O.BV to 2.0V on
5 4 3

(Note 1) R.E., BClK
ns

tNSCt 4-24 BClK Fall Time 2.0V to O.BV on
5 4 3 (Note 1) F.E., BClK

ns

tCSCdr 4-24 ClKto BClK 2.0V on R.E., ClK to
20 17 15

R.E. Delay 2.0V on R.E., BClK
ns

tCSCdf 4-24 ClKto BClK 2.0V on R.E., ClK to
20 17 15

F.E. Delay O.BV on F.E., BClK
ns

tCNSCdr 4-24 ClKto BClK 2.0V on R.E., ClK to
20 17 15

R.E. Delay O.BV on R.E., BClK
ns

tCNSCdt 4-24 ClKto BClK 2.0V on R.E., ClK to
20 17 15

F.E. Delay O.BV on F.E., BClK
ns

tSCNBCr 4-24 Bus Clocks Skew 2.0V on R.E., BClK to -2 +2 -2 +2 -2 +2 (Note 1 O.BV on F.E., BClK
ns

tSCNSCtr 4-24 Bus Clocks Skew O.BV on F.E., BClK to -2 +2 -2 +2 -2 +2 (Note 1) 2.0V on R.E., BClK
ns

tAv 4-5,4-6 Address Bits 0-31 After R.E., BClK Tl
11 9 B

Valid
ns

tAh 4-5,4-6 Address Bits 0-31 After R.E., BClK Tl or Ti
0 0 0

Hold
ns

tAt 4-11,4-12 Address Bits 0-31 After F.E., BClK Ti
21 17 13

Floating
ns

tAnt 4-11,4-12 Address Bits 0-31 After F.E., BClK Ti
0 0 0

Not Floating
ns

Note 1: Guaranteed by characterization. Due to tester conditions, this parameter is not 100% tested.

2-66

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32GX32-20, NS32GX32-25, NS32GX32-30 (Continued)

Name Figure Description Reference/Conditions
NS32GX32-20 NS32GX32-25 NS32GX32-30

Min Max Min Max Min Max

tASv 4-8 Address Bits A2, A3 After RE., BCLK T2B
11 9 8

Valid (Burst Cycle)

tASh 4-8 Address Bits A2, A3 After R.E., BCLK T2B
0 0 0

Hold (Burst Cycle)

toov 4-6,4-15 Data Out Valid After R.E., BCLK T1 0.5 tscp 0.5 tscp 0.5 tscp
+13 +12 + 11

tOOh 4-6,4-15 Data Out Hold After RE., BCLK T1 or Ti 0 0 0

toospc 4-15 Data Out Setup Before SPC T.E.
8 6 5

(Slave Write)

tOOf 4-7 Data Bus Floating After RE., BCLK
21 17 13

T10rTi

tOOnf 4-7 Data Bus After F.E., BCLK T1
0 0 0

Not Floating

tSMTv 4-5,4-7 BMT Signal Valid After R.E., BCLK T1 32 27 23

tSMTh 4-5,4-7 BMT Signal Hold After RE., BCLK T2 0 0 0

tSMTf 4-11,4-12 BMT Signal Floating After F.E., BCLK Ti 21 17 13

tSMThf 4-11,4-12 BMTSignal After F.E., BCLK Ti
0 0 0

Not Floating

tCONFa 4-5,4-8 CONF Signal Active After R.E., BCLK T1
0.5 tscp

0.5tscp 0.5 tscp
0.5 tscp 0.5 tscp

0.5 tscp
+ 11 +9 +8

tCONFia 4-5,4-8 CONF Signal Inactive After R.E., BCLK T1 or Ti 11 9 8

tCONFf 4-11,4-12 CONF Signal Floating After F.E., BCLK Ti 21 17 13

tCONFnf 4-11,4-12 CONFSignal After F.E., BCLK Ti
0 0 0

Not Floating

tAOSa 4-5,4-8 ADS Signal Active After RE., BCLK T1 11 9 8

tAOSia 4-5,4-8 ADS Signal Inactive After F.E., BCLK T1 11 9 8

tAOSw 4-6 ADS Pulse Width At 0.8V (Both Edges) 15 12 9

tAOSf 4-11,4-12 ADS Signal Floating After F.E., BCLK Ti 21 17 13

tAOSnf 4-11,4-12 ADS Signal After F.E., BCLK Ti
0 0 0

Not Floating

tSEv 4-6,4-8 BEn Signals Valid After R.E., BCLK T1 11 9 8

tSEh 4-6,4-8 BEn Signals Hold After RE., BCLK T1,
0 0 0

Ti orT2B

tSEf 4-11,4-12 BEn Signals Floating After F.E., BCLK Ti 21 17 13

tSEnf 4-11,4-12 BEn Signals After F.E., BCLK Ti
0 0 0

Not Floating

tOOINv 4-5,4-6 ODIN Signal Valid After RE., BCLK T1 11 9 8

tOOINh 4-5,4-6 ODIN Signal Hold After RE., BCLK T1 or Ti 0 0 0

tOOINf 4-11,4-12 ODIN Signal Floating After F.E., BCLK Ti 21 17 13

tOOINnf 4-11,4-12 ODIN Signal After F.E., BCLK Ti
0 0 0

Not Floating

tSPca 4-14,4-15 SPC Signal Active After R.E., BCLK T1 19 15 12

2-67

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

z en w
~
C)
>< w
~ · ~ o
z en w
~
C)
>< w
~ · ~ U1
z en
w
~
C)
>< w
~ · w o

o
C")

I
N
C")

><

" N
C")

en
z
It)
N

I
N
C")

><
" N
C")

en
z
o
N
N
C")

><
" N
C")

en
z

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32GX32-20, NS32GX32-25, NS32GX32-30 (Continued)

Name Figure Description Reference/Conditions
NS32GX32-20 NS32GX32-25 NS32GX32-30

Min Max Min Max Min Max

tSPCia 4-14,4-15 SPC Signal Inactive After R.E., BCLK Ti, T1 or T2 19 15 12

tDDSPC 4-14 ODIN Valid to Before SPC L.E.
0 0 0

(Note 1) SPCActive

tHLDAa 4-12,4-13 HLDA Signal Active After F.E., BCLK Ti 15 11 10

tHLDAia 4-12 HLDA Signal Inactive After F.E., BCLK Ti 15 11 10

tSTv 4-5,4-14 Status (STO-4) Valid After R.E., BCLK T1 11 9 8

tSTh 4-5,4-14 Status (STO-4) Hold After R.E., BCLK T1 or Ti 0 0 0

tSOUTa 4-8,4-9 BOUT Signal Active After R.E., BCLK T2 15 12 11

tSOUTia 4-8,4-9 BOUT Signal Inactive After R.E., BCLK
15 12 11

Last T2B, T1 or Ti

tSOUTf 4-11,4-12 BOUT Signal Floating After F.E., BCLK Ti 21 17 13

tSOUTn! 4-11,4-12 BOUT Signal After F.E., BCLK Ti
0 0 0

Not Floating

tlLOa 4-7 Interlock Signal Active After F.E., BCLK Ti 11 9 8

tlLOia 4-7 Interlock Signal Inactive After F.E., BCLK Ti 11 9 8

tpFSa 4-21 PFS Signal Active After F.E., BCLK 15 11 10

tPFSia 4-21 PFS Signal Inactive After F.E., Next BCLK 15 11 10

tlSFa 4-22 ISF Signal Active After F.E., BCLK 15 11 10

tlSFia 4-22 ISF Signal Inactive After F.E., Next BCLK 15 11 10

tSPa 4-23 BP Signal Active After F.E., BCLK 15 11 10

tSPia 4-23 BP Signal Inactive After F.E., Next BCLK 15 11 10

tusv 4-5 U/S Signal Valid After R.E., BCLK T1 11 9 8

tUSh 4-5 U/S Signal Hold After R.E., BCLK T1 or Ti 0 0 0

tCASv 4-5 CASEC Signal Valid After F.E., BCLK T1 15 11 10

tCASh 4-5 CASEC Signal Hold After R.E., BCLK T1 or Ti 0 0 0

tCAS, 4-11,4-12 CASEC Signal Floating After F.E., BCLK Ti 21 17 13

tCASn! 4-11,4-12 CASEC Signal After F.E., BCLK Ti
0 0 0

Not Floating

tlOlv 4-5 IOINH Signal Valid After R.E., BCLK T1 15 11 10

tlOlh 4-5 IOINH Signal Hold After R.E., BCLK T1 or Ti 0 0 0

Note 1: Guaranteed by characterization. Due to tester conditions, this parameter is not 100% tested.

2·68

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements: NS32GX32-20, NS32GX32-25, NS32GX32-30

Name Figure Description Reference/Conditions
NS32GX32-20

Min Max

tcp 4-24 Input Clock Period R.E., ClK to Next
25 50

R.E, ClK

tCh 4-24 ClK High Time At 2.0V on ClK 0.5tcp
(Both Edges) -5ns

tCI 4-24 ClK low Time At 0.8V on ClK 0.5tcp
(Both Edges) -5ns

tCr 4-24 ClK Rise Time 0.8V to 2.0V on R.E, ClK
5

(Note 1)

tCt 4-24 ClK Fall Time 2.0V to 0.8V on F.E, ClK
5

(Note 1)

to Is 4-5,4-14 Data In Setup Before R.E., BClK T1 or Ti 13

tOlh 4-5,4-14 Data In Hold After R.E., BClK T1 or Ti 1

tROYs 4-5 ROY Setup Time Before R.E., BClK T2(W),
22

T10rTi

tROYh 4-5 ROY Hold Time Ater R.E., BClK T2(W),
1

T10rTi

tsws 4-5 BWO-1 Setup Time Before F.E., BClK T2 or T2(W) 21

tSWh 4-5 BWO-1 Hold Time After F.E., BClK T2 or T2(W) 1

tHO LOs 4-12,4-13 HOLD Setup Time Before F.E., BClK 21

tHOLOh 4-12 HOLD Hold Time After F.E., BClK 1

tSINs 4-8 BIN Setup Time Before F.E., BClK T2 or T2(W) 21

tSINh 4-8 BIN Hold Time After F.E., BClK T2 or T2(W) 1

tSERs 4-6,4-8 BER Setup Time Before R.E., BClK T1 or Ti 21

tSERh 4-6,4-8 BER Hold Time After R.E., BClK T1 or Ti 1

tSRTs 4-6,4-8 BRT Setup Time Before R.E., BClK T1 or Ti 21

tSRTh 4-6,4-8 BRT Hold Time After R.E, BClK T1 or Ti 1

tlOOs 4-5 IODEC Setup Time Before F.E., BClK T2 or T2(W) 21

tlOOh 4-5 IODEC Hold Time After F.E., BClK T2 or T2(W) 1

tpWR 4-26 Power Stable to After VCC Reaches 4.5V
50

(Note 1) R.E. of RST

tRSTs 4-27 RST Setup Time Before R.E, BClK 14

tRSTw 4-27 RST Pulse Width At 0.8V (Both Edges) 64

Note 1: Due to tester conditions, this parameter Is not 100% tested.

2·69

NS32GX32-25

Min Max

20 50

0.5 tcp
-5 ns

0.5 tcp
-5 ns

4

4

11

1

18

1

17

1

17

1

17

1

17

1

17

1

17

1

40

12

64

NS32GX32-30

Min Max

16.6 50

0.5 tcp
-4ns

0.5 tcp
-4ns

3

3

9

1

15

1

14

1

14

1

14

1

14

1

14

1

14

1

30

11

64

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

p.s

ns

tscp

z en w
N
G')
><
W
N

I
N
o
Z
en
w
N
G')
><
W
N
I

N
U1
.......
Z en w
N
G')

><
W
N
I

W
o

o
M

I
C'II
M
><
CJ
C'II
M en
Z
.......
Lt)
C'II

I
C'II
M
><
CJ
C'II
M en
Z
o
C'II .
C'II
M
><
CJ
C'II
M en
Z

4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements: NS32GX32-20, NS32GX32-25, NS32GX32-30 (Continued)

Name Figure Description Reference/Conditions
NS32GX32-20 NS32GX32-25

Min Max Min Max

tClis 4-5 CIIN Setup Time Before F.E., BCLK T2 21 17

tClih 4-5 CIIN Hold Time After F.E., BCLK T2 1 1

tiNTs 4-19 INT Setup Time Before R.E., BCLK 14 12

tlNTh 4-19 INT Hold Time After R.E., BCLK 1 1

tNMls 4-19 NMI Setup Time Before R.E., BCLK 20 17

tNMlh 4-19 NMI Hold Time After R.E., BCLK 1 1

tsos 4-16 SON Setup Time Before R.E., BCLK 14 12

tSOh 4-16 SON Hold Time After R.E., BCLK 1 1

tFSSRs 4-17 FSSR Setup Time Before R.E., BCLK 14 12

tFSSRh 4-17 FSSR Hold Time After R.E., BCLK 1 1

tSYNCs 4-25 SYNC Setup Time Before R.E., CLK 10 8

tSYNCh 4-25 SYNC Hold Time After R.E., CLK 1 1

tOBGs 4-20 OBG Setup Time Before R.E., BCLK 14 12

tOBGh 4-20 OBG Hold Time After R.E., BCLK 1 1

2-70

NS32GX32-30
Units

Min Max

14 ns

1 ns

11 ns

1 ns

16 ns

1 ns

11 ns

1 ns

11 ns

1 ns

7 ns

1 ns

11 ns

. 1 ns

4.0 Device Specifications (Continued)

4.4.3 Timing Diagrams

ANY

BCLK [

I T- STATE I Tl T2 I T2 (W) I T1 OR n I

AO-31 [

DO-3{

DDIN [

ADS [

Bt.n[

--

CONF [

RDY [

BWO-{

BEO-3 [

STO-4 [

U/S [

CIIN [

CASEC [

IODEC [

IOINH [

--- ~ tAv - _~tAh

DC - ~ X -
~_tJ.

}-I--. -- -- ~-. IN t- ~-.

-{ltOOINV - ~Olh

I¥
tAOSa -

~ r
tAOSla -- I-tOOINh

~- ~ I- tBt.CTh
\. V

~
!o-

r0 I--.,..If ~ t--V - { \cONF'a -- r-~eONFla

1/ ~tJ:: ~ N 1/ \ ¥
tBWStL 1-- \-tROYh

~ ~ --n..: tBWh

- r tSTv ... tSTh

X X

- r tusv ... tUSh

X X
tells

bt-
l-

1<
--- ~teAsv r: ~tellh

X X
~ -.! ~ASh tIOO~ ~

lX ~
t lO1v '" ~

t lOOh'= t lO1h I -
X X

I

FIGURE 4·5. Basic Read Cycle Timing

2·71

TL/EE/l0253-43

z
en w
N
C)
><
W
N · N
C
Z
en
w
N
C)
><
W
N · N
U1
Z
en w
N
C)
><
W
N · W
C

o
C")
• N

C")

><
CJ
N
C")
U)
Z
Lt)
N .
N
C")

><
CJ
N
C")
U)
Z
o
~
C")

><
CJ
N
C")
U)
Z

4.0 Device Specifications (Continued)

BCLK [

AO-31 [

00-3{
ODIN [

ADS [

Bton [

CONF [

RDY [

BWO-{

8EO-3 [

BRT [

BER [

STO-4 [

U/s[

ANY
IT-STATE I T1 T2 I T1 OR TI I

tAv - /+ .. tAh

[)(IX
t~ !

I- - tOOh

I}- f-(DATA OUT ~

tOJNV- ~
;

l~tOOINh ~..slt ~
....

\: I\. V

f0 ~ - I ~ ~ /

1/ 1/ \. ~

\. /

X D<
tBEv - ~ tBEh

X IX
~BRTs H f-

I}'
~ tBERs M tBRTI

fi t - ~

Note: An Idle State is always inserted before a Write Cycle when the
Write immediately follows a confirmed Read Cycle. AO-31, ODIN,
BEO-3, STO-4 remain unchanged during this idle state.

FIGURE 4·6. Write Cycle Timing

2-72

TL/EE/10253-44

4.0 Device Specifications (Continued)

AO - 3{-+_-+--+, '+---1r-+--+----!-+--+---I-+-_+' ""t---..;­
- I': tOOnti - . r tOOt

00-31 [-+--+~fJ'})-~-t--K-€!8>-+--+--+-(~ DATA OUT ~}ol-+--+--
-+--+---.n. r- tOOINv - r tODINh/

DDiN[-+_~-+-'L~_~-+--++-Jr~~
ADS [

Bt,tT [

\..v Itt I\..V
t'j'_ ~'=W.l'"'l-BM_T+h ~~'"~"" ~V

tcONFe. - {t r tcONFIe.

BEO - 3 [X XI'-!--+-_

BRT[~-+~~ __ ~~/ \~~~--+-~/ \~~_

BER[~-+~~ __ ~~/ \~-+--~~~/ \~-+-_

STO - 4 [-+--+_+' "'+--I--+_+--+--+_~-+--+_+-' "'+---+-_

U/S [-+--+_+' '"+--I--+_+--I--+_~-+--+_+-' "'+---+-_

FIGURE 4-7. Interlocked Read and Write Cycles

2·73

TL/EE/l0253-45

z en
w
N
C)
><
W
N · N o
Z en
w
N
C)
><
W
N • N
U1
Z en w
N
C)
><
W
N · W
o

o .--,
C"') · C\I
C"')

><
c"
C\I
C"')
CJ)
z
Lt)
C\I · C\I
C"')

><
c"
C\I
C"')
CJ)
z
o
C\I • C\I
C"')

><
c"
C\I
C"')
CJ)
z

4.0 Device Specifications (Continued)

BCLK [

AO-3{

00-31 [
ODIN [

ADS [

BMT [

CONF [

ROY [

BWO-{

BEO- 3 [

BiN [

BOUT [

BRT [

BER [

CIIN [

[

ANY
IT - STATE I T1 I T2 I T2B I T2B I T2B I T1 OR n I

... ~ tAv tABv-

~ ~ ~= D< ~ D< X
to-- ~

" \.l~ KD-KD--(!N I

\. L
tADSa - ~)

tAOSla

\.V \... V

r0 I~ ~ V I~ l"""-V - ~--tcoNra tCONFla - t
/ J\. t--

\. 1\ / / , L ~ L
:-

fk~ tBWSI)(-

-- t tBEv ~ iI_ {Ioc,
)(/

tB1NSt;l I--

lL f\ / r\ '/
tBOUTa - ~

I-tBINh
tBOUTla- f.

;
tBRT~1 r-

./ ~1~ \. / \. V \.
tBER~i-

;
~h \. V \. V \.

:-

~ ex
~ ~

FIGURE 4-8. Burst Read Cycles

2-74

Tl/EE/10253-46

4.0 Device Specifications (Continued)

ANY
IT-STATE I T1 T2 T2B I T2B(W) I T1 or n I

BOUT [

FIGURE 4·9. External Termination of Burst Cycles

ANY
I T- STATE I T1 T2 T2B I T1 or n I

FIGURE 4·10. Bus Error or Retry During Burst Cycles
Note: Two idle state are always inserted by the CPU following the assertion of BRT.

2-75

TLlEE/10253-47

TL/EE/10253-4B

z
(J)
W
N
G')

><
W
N

I
N
o
Z
(J)
W
N
G')

><
W
N
I

N
U1
Z
(J)
W
N
G)
><
W
N

I
W o

o r---____________________ --.
C") · N
C")

><
CJ
N
C")
tJ)
Z
Lt)
N · N
C")

><
CJ
N
C")
tJ)
Z
o
N · N
C")

><
CJ
N
C")
tJ)
Z

4.0 Device Specifications (Continued)

AO-3{

00-3{
ODIN [

ADS [

Bt.fT [

CONF [

BEO-3 [

BRT [

BOUT [

CASEC [

~

U/S [

I T2 I T1 or n I TI TI

-~tAf I
~~~--~~ ~: 

- tOOINf 

--r-
- tAOSf 

\.. V l"t-t--
-"r.~~t-· I~~ 

- r":'Ff _. 1/ 
- ~I tBEf x-;ep. -- _. -

t7fi ~ Ii ~ Jj ~ Ii ?A 
- r~TI ~ -t--- • ~ teASf 

J-~- _. 
-r--r-

X t--DC 
t--

D< t-- t--

X I--DC 
I--

D< I-- I--

-K -- ~~ 
~~ po_. 

-.( -- ~S- ~-. 

-w: ~S- 1--

-·f ~~ po_. 

-·f ~~ po_. 

... 
.( ~~ 1--. 

/A IW '<I, VI; 

- t: -- ~~ 1--. 

-. .( ~~ po-. 

rt .. 
rr .. 

FIGURE 4-11. Extended Retry Timing 

2-76 

tAnf 

D< 

- -to{· -- --
tOOINnf 

Kt--- I--

tAOSnf 

tf 
~ 
tcoN~nf 

Cf' 
X 

VI/' 'II. VI/' If/ 

tBOUTnf 

~J, 
::D< 
IX 

TL/EE/l0253-49 



4.0 Device Specifications (Continued) 

-
AO-3{ 

DO-3{ 

DDIN[ 

ADS [ 

BMT. [ 

CONF [ 

BEO- 3 [ 

HOLD [ 

HLDA [ 

BOUT [ 

CASEC [ 

U/s[ 

-

TI TI TI TI 

---
'I

AI 

( 

-- ----.-. --f~ ~. t). 
- IIDIlINt --r-
--- ~':'t -. 
--- ~B~t -. 
-. 

r.~N" -r - ~BE' - _. 
1 ..-tHOLDs 

\f r-tHOLDi 

I I I 

-. { tHLra 

I I 
--00 .r tOUT! 

'i---r-· 
-. ,I teAS! 

J-~-~-' 

X ~ X - D< ~ -
X ~ D< - D< ~ -

" J-UD--L 
~ 

-ED< --~~ ~-

1--- 'T~-- --~ - {--- _. 

--- .( lornN,1 
- - ~s- -- -0 --

..... I:. t
ADSn

!--' 

- - ~T ~- if ,\.{I 
..... I:. tBt.4Tn! 

- - ~T ~-

~1:1-V 
--00 

- - ~T ~ _. tf 1\ 
--00 

·{tx' - - -Sf !'"-

tHOLDs~ ..-

rr Vf 
JT 

tHLDAla ..... r 
rr A JT r--

..... I: toUTn! 

- - ~T ~-

~~! \. ~ 
--00 

--~T--- ::D< 

rr 

" 
rr 

" 

FIGURE 4·12. Hold Timing (Bus Initially Idle) 

2-77 

TLlEE/10253-50 

z 
(f) 
W 
I\) 
G) 
>< 
W 
I\) 

~ 
o ...... 
Z 
(f) 
w 
I\,) 

G) 
>< 
W 
I\) . 
I\) 
(J1 ...... 
Z 
(f) 
w 
I\) 

G) 
>< 
W 
I\) . 
W 
o 

PI 



C) r---------------------------------------------------------------------------------------~ 
C") 

N 
C") 

>< 
CJ 
N 
C") 
t/) 
Z 
....... 
in 
N . 
N 
C") 

>< 
CJ 
N 
C") 
t/) 
Z ....... 
C) 
N • N 
C") 

>< 
CJ 
N 
C") 
t/) 
Z 

4.0 Device Specifications (Continued) 

ANY 
IT-STATE I T1 T2 TI TI 

BCLK [ 

AO-31 [ 

ADS [ 

CONr [ 

HOLD [ 

HLDA [ 

TL/EE/10253-51 

FIGURE 4·13. HOLD Acknowledge Timing 
(Bus Initially Not Idle) 

ANY 
,T - STATE, T1 T2 I T1 or TI I 

SPC [ 

ODIN [-+-01--1" 

STO - 4 [-+-_+--+' "'I-..... o!--+O-+' ""+-~_ 
TL/EE/10253-53 

FIGURE 4·15. Slave Processor Write Timing 

2-78 

ANY. 

BCLK [ 

IT- STATE, T1 T2 I T1 or TI I 

DO - 3{-+_+--+,>-~-+--CI 

SPC [ 

DDIN[~ ..... ~~~~~~~ ..... ~~ ..... ~ 

STO - 4 [--..+ ..... -+--+" 1o-l-~ ..... +-.....,r '-+--+-_ 

TL/EE/10253-52 

FIGURE 4·14. Slave Processor Read Timing 

I , , 

BCLK[FLrUL 

I I I 
tSOI i 

sOn 

SON [ 

TL/EE/10253-54 

FIGURE 4·16. Slave Processor Done 

I I I 

BCLK[FLrUL 

tF~SRS I I I 
trssRn 

rSSR [ 

TLlEE/10253-55 

FIGURE 4·17. FSSR Signal Timing 



4.0 Device Specifications (Continued) 

RST [-+_+--+-_+' 
rnIT[~ __ ~~~~ __ ~-r~~-~ __ ~-f 

TL/EE/l0253-57 

FIGURE 4·18.INT and NMI Signals Sampling 
Note 1: iNT and NMI are sampled on every other riSing edge of BClK, starting with the second rising edge of BClK after RS'i' goes high. 

Note 2: iNT is level sensitive, and once asserted, it should not be deasserted until it is acknowledged. 

I I I I 

BCLK[JLr1JLIL 
tOBGST! I I 

tDBGh 

DBC [ 
TL/EE/l0253-58 

FIGURE 4·19. Debug Trap Request 

I I I I 

BCLK[JLr1JLIL 
tlS~a I I I 

tlsna 

~[ 
TL/EE/l0253-60 

FIGURE 4·21. ISF Signal Timing 

2·79 

I I I I 

BCLK[JLr1JLIL 
tPf~a I I I 

tPfSla 

TL/EE/l0253-59 

FIGURE 4·20. PFS Signal Timing 

BP[ 
TL/EE/l0253-61 

FIGURE 4·22. Break Point Signal Timing 

z 
en 
w 
N 
C) 
>< 
W 
N • N 
C ...... 
Z 
en 
w 
N 
C) 
>< 
W 
N · N 
U1 ...... 
Z 
en 
w 
N 
C) 
>< 
W 
N • W 
C 



4.0 Device Specifications (Continued) 

'-"----tNBCp,----+I 

FIGURE 4-23. Clock Waveforms 
TL/EE/10253-62 

cLKU-Ll-L1-u-~hh.hJL 

[ 

I t~YNCII I t~YNCs 
- It W-..... -+-..... - ........ -
SYNC SYNCh 

TL/EE/10253-63 

FIGURE 4-24. Bus Clock Synchronization 

BCLK[ __ ........ 
Jl-rLJI tRSTI '\ 

RST[ 
-----------------~S TL/EE/10253-64 

FIGURE 4-25. Power-on Reset 

BCLK[~JLn.-rl.. 
tRSTI I JI tRSTW '1: ' 

RST [--\-S .... ~-~ 55 r---
TL/EE/10253-65 

FIGURE 4-26. Non-Power-on Reset 

2-80 



Appendix A: Instruction Formats 
NOTATIONS: 

i = Integer Type Field 
B = 00 (Byte) 
W = 01 (Word) 
D = 11 (Double Word) 

f = Floating Point Type Field 
F = 1 (Std. Floating: 32 bits) 
L = 0 (Long Floating: 64 bits) 

c = Custom Type Field 
D = 1 (Double Word) 
Q = 0 (Quad Word) 

op = Operation Code 
Valid encodings shown with each format. 

gen, gen 1, gen 2 = General Addressing Mode Field 
See Section 2.2 for encodings. 

reg = General Purpose Register Number 

cond = Condition Code Field 
0000 = EQual: Z = 1 
0001 = Not Equal: Z = 0 
0010 = Carry Set: C = 1 
0011 = Carry Clear: C = 0 
0100 = Higher: L = 1 
0101 = Lower or Same: L = 0 
0110 = Greater Than: N = 1 
0111 = Less or Equal: N = 0 
1000 = Flag Set: F = 1 
1001 = Flag Clear: F = 0 
1010 = LOwer: L = 0 and Z = 0 
1011 = Higher or Same: L = 1 or Z = 1 
1100 = Less Than: N = 0 and Z = 0 
1101 = Greater or Equal: N = 1 or Z = 1 
1110 = (Unconditionally True) 
1111 = (Unconditionally False) 

short = Short Immediate value. May contain: 
quick: Signed 4-bit value, in MOVQ, ADDQ, 

CMPQ, ACB. 

cond: Condition Code (above), in Scond. 

areg: CPU Dedicated Register, in LPR, SPA. 
0000 = US 
0001 = DCR 
0010 = BPC 
0011 = DSR 
0100 = CAR 
0101-0111 = (Reserved) 
1000 = FP 
1001 = SP 
1010 = SB 
1011 = USP 
1100 = CFG 
1101 = PSR 
1110 = INTBASE 
1111 = MOD 

2-81 

Options: in String Instructions 

I U/W I BIT I 
T = Translated 
B = Backward 
U/W = 00: None 

01: While Match 
11: Until Match 

Configuration bits, in SETCFG Instruction: 

I 1 I 1 I 1 I 1 I C I Res F 

Note: Reserved bit must be set to 0 when executing SETCFG. 

7 0 

I 'co'nd' 11' 0 ' 1 ' 0 I 
FormatO 

Bcond (BR) 

7 o 
i i 

op 

Format 1 

BSR -0000 ENTER -1000 
RET -0001 EXIT -1001 
CXP -0010 NOP -1010 
RXP -0011 WAIT -1011 
RETT -0100 DIA -1100 
RETI -0101 FLAG -1101 
SAVE -0110 SVC -1110 
RESTORE -0111 BPT -1111 

15 81 7 0 , , 
'Sh'ort 1 

, , 
11 ' 1 1 gen op 

Format 2 
ADDQ -000 ACB -100 
CMPQ -001 MOVQ -101 
SPR -010 LPR -110 
Scond -011 

z en w 
N 
G) 
>< 
W 
N · N 
o 
........ 
Z en w 
N 
G) 
>< 
W 
N · N 
(J1 
........ 
Z en w 
N 
G) 
>< 
W 
N · W 
o 



o 
Cf) 

N 
Cf) 

>< 
CJ 
C\I 
Cf) 
t/) 
Z 
....... 
&I) 

~ 
Cf) 

>< 
CJ 
C\I 
Cf) 
t/) 
Z ....... 
o 
C\I . 
C\I 
Cf) 

>< 
CJ 
C\I 
Cf) 
t/) 
Z 

CXPD 
BICPSR 
JUMP 
BISPSR 

-0000 
-0010 
-0100 
-0110 

ADJSP 
JSR 
CASE 

Trap (UNO) on XXX1, 1000 

ADD 
CMP 
BIC 
ADDC 
MOV 
OR 

MOVS 
CMPS 

15 SI7 

Format 4 

-0000 
-0001 
-0010 
-0100 
-0101 
-0110 

SUB 
ADDR 
AND 
SUBC 
TBIT 
XOR 

Format 5 

-0000 
-0001 

SETCFG 
SKPS 

Trap (UNO) on 1 XXX, 01XX 

ROT 
ASH 
CBIT 
CBITI 
Trap (UNO) 
LSH 
SBIT 
SBITI 

Format 6 

-0000 NEG 
-0001 NOT 
-0010 Trap (UNO) 
-0011 SUBP 
-0100 ABS 
-0101 COM 
-0110 IBIT 
-0111 ADDP 

S 7 

-1010 
-1100 
-1110 

o 
I i I 

op 

-1000 
-1001 
-1010 
-1100 
-1101 
-1110 

-0010 
-0011 

-1000 
-1001 
-1010 
-1011 
-1100 
-1101 
-1110 
-1111 

o 

i 1 100 1 1 1 0 

MOVM 
CMPM 
INSS 
EXTS 
MOVXBW 
MOVZBW 
MOVZiD 
MOVXiD 

Format 7 

-0000 
-0001 
-0010 
-0011 
-0100 
-0101 
-0110 
-0111 

MUL 
MEl 
Trap (UNO) 
DEI 
QUO 
REM 
MOD 
DIV 

-1000 
-1001 
-1010 
-1011 
-1100 
-1101 
-1110 
-1111 

2-82 

EXT 
CVTP 
INS 
CHECK 
MOVSU 
MOVUS 

MOVif 
LFSR 
MOVLF 
MOVFL 

Trap (UNO) Always 

ADDf 
MOVf 
CMPf 
Note 3 
SUBf 
NEGf 
Note 2 
Note 1 

FormatS 

-000 
-001 
-010 
-011 

INDEX 
FFS 

-110, reg = 001 
-110,reg = 011 

Format 9 

-000 
-001 
-010 
-011 

ROUND 
TRUNC 
SFSR 
FLOOR 

TL/EE/10253-66 

-100 
-1 01 

-100 
-101 
-110 
-111 

7 0 
---I I I I I I I I 1 
___ 0 1 1 1 1 1 1 0 

TL/EE/10253-67 

Format 10 

o 

1 1 1 1 0 

Format 11 

-0000 
-0001 
-0010 
-0011 
-0100 
-0101 
-0110 
-0111 

DIVf 
Note 1 
Note 3 
Note 1 
MULf 
ABSf 
Note 2 
Note 1 

-1000 
-1001 
-1010 
-1011 
-1100 
-1101 
-1110 
-1111 



~------------------------------------------------------------------------. z 
Appendix A: Instruction Formats (Continued) 

Format 12 

Note 2 -0000 Note 2 -1000 
Note 1 -0001 Note 1 -1001 
POLYf -0010 Note 3 -1010 
OOTf -0011 Note 1 -1011 
SCALBf -0100 Note 2 -1100 
LOGBf -0101 Note 1 -1101 
Note 2 -0110 Note 2 -1110 
Note 1 -0111 Note 1 -1111 

7 

---I I I I I I I I 1 
___ 10011110 

TL/EE/10253-68 

Format 13 

Trap (UNO) Always 

Format 14 

CINV -1001 
Trap (UNO) on OOXX, 01 XX, 1000, 101 X, 11 XX 

161 15 

Operation Word 10 Byte 

Format 15 

(Custom Slave) 

nnn Operation Word Format 

000 

LCR 
SCR 

23 

gen 1 

Format 15.0 

-0010 
-0011 

Trap (UNO) on all others 

001 

2-83 

CCV3 
LCSR 
CCV5 
CCV4 

101 

CCALO 
CMOVO 
CCMPO 
CCMP1 
CCAL1 
CMOV2 
Note 2 
Note 1 

111 

Note 2 
Note 1 
Note 3 
Note 3 
Note 2 
Note 1 
Note 2 
Note 1 

Format 15.1 

-000 CCV2 -100 
-001 CCV1 -101 
-010 SCSR -110 
-011 CCVO -111 

Format 15.5 

-0000 CCAL3 -1000 
-0001 CMOV3 -1001 
-0010 Note 3 -1010 
-0011 Note 1 -1011 
-0100 CCAL2 -1100 
-0101 CMOV1 -1101 
-0110 Note 2 -1110 
-0111 Note 1 -1111 

23 

gen 1 

Format 15.7 

-0000 Note 2 -1000 
-0001 Note 1 -1001 
-0010 Note 3 -1010 
-0011 Note 1 -1011 
-0100 Note 2 -1100 
-0101 Note 1 -1101 
-0110 Note 2 -1110 
-0111 Note 1 -1111 

If nnn = 010,011,100,110 then Trap (UND) Always. 

7 0 

---I I I I I II I 1 
___ 0 1 0 1 1 1 1 0 

TL/EE/10253-69 

Format 16 

Trap (UNO) Always 

7 0 

---I I I I I I I I 1 
___ 1 1 0 1 1 1 1 0 

TL/EE/l0253-70 

Format 17 

Trap (UNO) Always 

7 0 

---I I I I I I I I 1 
___ 1 0 0 0 1 1 1 0 

TLlEE/10253-71 

rn 
w 
N 
C) 
>< 
W 
N . 
N o ...... 
Z rn 
w 
N 
C) 
>< w 
~ 
U1 ...... z rn 
w 
N 
C) 
>< w 
~ 
w o 



o 
('f) 
• N 

('f) 

>< 
CJ 
N 
('f) 
U) 
Z ...... 
it) 
N · N 
('f) 

>< 
CJ 
N 
('f) 
U) 
Z ...... o 
N • N 
('f) 

>< 
CJ 
N 
('f) 
U) 
Z 

Appendix A: Instruction 
Formats (Continued) 

Format 18 

Trap (UND) Always 
7 0 

Format 19 

Trap (UND) Always 

Implied Immediate Encodlngs: 
7 

---I I I I I I I I 1 ___ x x x 0 0 1 1 0 

TL/EE/10253-72 

o 

r1 rO 

Register Mark, Appended to SAVE, ENTER 

7 o 

Register Mark, Appended to RESTORE, EXIT 

7 o 

: offset : leng;h - 1 

Offset/Length Modifier Appended to INSS, EXTS 
Note 1: Opcode not defined; CPU treats like MOV, or CMOVc. First operand 
has access class of read; second operand has access class of write; f or c 
field selects 32- or 64-bit data. 

Note 2: Opcode not defined; CPU treats like ADD, or CCALc. First operand 
has access class of read;, second operand has access class of read-modify­
write; f or c field selects 32- or 64-bit data. 

Note 3: Opcode not defined; CPU treats like CMP, or CCMPc. First operand 
has access class of read;, second operand has access class of read; f or c 
field selects 32- or 64-bit data. 

Appendix B. Compatibility Issues 
The NS32GX32 is compatible with the Series 32000 archi­
tecture implemented by the NS32532, NS32032, NS32332, 
and previous microprocessors in the family. Compatibility 
means that within certain limited constraints, programs that 
execute on one of the earlier Series 32000 microprocessors 
will produce identical results when executed on the 
NS32GX32. Compatibility applies to privileged operating 
systems programs, as well as to non-privileged applications 
programs. This appendix explains both the restrictions on 
compatibility with previous Series 32000 microprocessors 
and the extensions to the architecture that are implemented 
by the NS32GX32. 

B.1 RESTRICTIONS ON COMPATIBILITY 

If the following restrictions are observed, then a program 
that executes on an earlier Series 32000 microprocessor 
will produce identical results when executed on the 
NS32GX32 in an appropriately configured system: 

1. The program is not time-dependent. For example, the 
program should not use instruction loops to control real­
time delays. 

2. The program does not use any encodings of instruc­
tions, operands, addresses, or control fields identified to 

2-84 

be reserved or undefined. For example, if the count op­
erand's value for an LSHi instruction is not within the 
range specified by the Series 32000 Instruction Set Ref­
erence Manual, then the results produced by the 
NS32GX32 may differ from those of the NS32032. 

3. The program does not depend on the use of a Memory 
Management Unit (MMU). 

4. The program does not depend on the detection of bus 
errors according to the implementation of the NS32332. 
For example, the NS32GX32 distinguishes between re~ 
startable and nonrestartable bus errors by transferring 
control to the appropriate bus-error exception service 
procedure through one of two distinct entries in the In­
terrupt Dispatch Table. In contrast, the NS32332 uses a 
single entry in the Interrupt Dispatch Table for all bus 
errors. 

5. The program does not modify itself. Refer to Section 8.4 
for more information. 

6.. The program does not depend on the execution of cer­
tain complex instructions to be non-interruptible. Refer 
to Section 8.5 on. "Memory-Mapped 1/0" for more in­
formation. 

7. The program does not use the custom slave instructions 
CATSTO and CATST1, as they are not supported by the 
NS32GX32 and will result in a Trap (UND) when their 
execution is attempted. 

B.2 ARCHITECTURE EXTENSIONS 

The NS32GX32 implements the following extensions of the 
Series 32000 architecture using previously reserved control 
bits, instruction encodings, and memory locations. Exten­
sions implemented earlier in the NS32332, such as 32-bit 
addressing, are not listed. 

1. The DC, LDC, IC, and LlC bits in the CFG register have 
been defined to control the on-chip Instruction and Data 
Caches. The DE-bit in the CFG register has been de­
fined to enable Direct-Exception Mode. 

2. The V-flag in the PSR register has been defined to en­
able the Integer-Overflow Trap. 

3. The DCR, 8PC, DSR, and CAR registers have been de­
fined to control debugging features. Access to these 
registers has been added to the definition of the LPR 
and SPR instructions. 

4. Access to the CFG and SP1 registers has been added 
to the definition of the LPR and SPR instructions. 

5. The CINV instruction has been defined to invalidate 
control of the on-chip Instruction and Data Caches. 

6. Direct-Exception Mode has been added to support fast­
er interrupt service time and systems without module 
tables. 

7. A new entry has been added to the Interrupt Dispatch 
Table for supporting vectors to distinguish between re­
startable and nonrestartable bus errors. Two additional 
entries support Trap (OVF) and Trap (D8G). 

B.3 INTEGER OVERFLOW TRAP 

A new trap condition is recognized for integer arithmetic 
overflow. Trap (OVF) is enabled by the V-flag in the PSR. 
This new trap is important because detection of integer 
overflow conditions is required for certain programming lan­
guages, such as ADA, and the PSR flags do not indicate the 
occurrence of overflow for ASHi, DIVi and MULi instructions. 



Appendix B. Compatibility Issues (Continued) 

More details on integer overflow are given in Section 3.2.5, 8.5 MEMORY-MAPPED 1/0 
where a description of all the cases in which an overflow As was mentioned in Section 3.1.3.2, certain peripheral de-
condition is detected is also provided. vices exhibit characteristics identified as "destructive-read-
INTEGER ARITHMETIC ing" and "side-effects of writing" that impose requirements 

The V-flag in the PSR enables Trap (OVF) to occur following 
execution of an integer arithmetic instruction whose result 
cannot be represented exactly in the destination operand's 
location. 

If the number of bits required to represent the resulting quo­
tient of a DEI instruction exceeds half the number of bits of 
the destination, then the contents of both the quotient and 
remainder stored in the destination are undefined. 

The ADDR instruction can be used in place of integer arith­
metic instructions to perform certain calculations. In this 
case however, integer overflow is not detected by the CPU. 

LOGICAL INSTRUCTIONS 

The V-flag in the PSR enables Trap (OVF) to occur following 
execution of an ASHi instruction whose result cannot be 
represented exactly in the destination operand's location. 

ARRAY INSTRUCTIONS 

The V-flag in the PSR enables Trap (OVF) to occur following 
execution of a CHECKi instruction whose source operand is 
out of bounds. 

PROCESSOR CONTROL INSTRUCTIONS 

The V-flag in the PSR enables Trap (OVF) to occur following 
execution of an ACBi instruction if the sum of the "inc" val­
ue and the "index" operand cannot be represented exactly 
in the "index" operand's location. 

8.4 SELF-MODIFYING CODE 

The Series 32000 architecture does not have special provi­
sions to optimally support self-modifying programs. 
Nevertheless, on the NS32332 and previous Series 32000 
microprocessors it is possible to execute self-modifying 
code according to the following sequence: 

1. Modify the appropriate instruction. 

2. Execute a JUMP instruction or other instruction that 
causes the microprocessor's instruction queue to be 
flushed. 

3. Execute the modified instruction. 

For example, an interactive debugger may follow the se­
quence above after reaching a breakpoint in a program be­
ing monitored. 

The same program may not produce identical results when 
executed on the NS32GX32 due to effects of the Instruction 
Cache and branch prediction. In order to execute self-modi­
fying code on the NS32GX32 it is necessary to do the fol­
lowing: 

1. Modify the appropriate instruction. 

2. If the modified instruction is on a cacheable page, exe­
cute CINV to invalidate the contents of the Instruction 
Cache. 

3. Execute an instruction that causes a serializing opera­
tion. See Section 3.1.3.3. 

4. Execute the modified instruction. 

2-85 

for special handling of memory-mapped I/O references. 
The NS32GX32 supports two methods to use on references 
to memory-mapped peripheral devices that exhibit either or 
both of these characteristics. 

For peripheral devices that exhibit only side-effects of writ­
ing, correct operation can be ensured either by locating the 
device between addresses FFOOOOOO (hex) and FF7FFFFF 
(hex) in the address space or by observing the first 2 restric­
tions listed below. For peripheral devices that exhibit de­
structive-reading, all the following restrictions must be ob­
served to ensure correct operation: 

1. References to the device must be inhibited while the 
CPU asserts the output signal IOINH. 

2. The input signal IODEC must be asserted by the system 
on references to the device. 

3. The device cannot be used for instruction fetches, reads 
of effective addresses. 

4. If an instruction that reads a source operand from the 
device crosses a page boundary, then no Trap (ABT) or 
restartable bus error can occur during fetches from the 
page with higher addresses. 

5. The device can be used as a source operand only for 
instructions in the list below. 
ABSi CBITi MOVMi SBITIi 
ADDi CBITIi MOVXi SUBi 
ADDCi CMPi MOVZi SUBCi 
ADDPi CMPQi NEGi SUBPi 
ADDQi COMi NOTi TBITi 
ANDi IBITi ORi XORi 
ASHi LSHi ROTi 
BICi MOVi SBITi 

This restriction arises because the CPU can respond to 
interrupt requests during the execution of complex in­
struction in order to reduce interrupt latency. Thus, the 
CPU may read the source operands for a DEID instruc­
tion (extended-precision divide), begin calculating the in­
struction's results, and then respond to an interrupt re­
quest before completing the instruction. In such an 
event, the instruction can be executed again and com­
pleted correctly after the interrupt service procedure re­
turns unless one of the source operands was altered by 
destructive-reading. 

Appendix C. Instruction Set 
Extensions 
The following sections describe the differences and ex­
tensions to the Series 32000 instruction set (as present­
ed in the "Series 32000 Instruction Set Reference Man­
ual") implemented by the NS32GX32. 

No changes or additions have been made to the user­
mode instruction set, and only a few privileged instruc­
tions have been added. 

z en w 
N 
G) 
>< 
W 
N · N o ........ 
Z en w 
N 
G) 
>< 
W 
N • N 
en ........ 
Z en 
w 
N 
G) 
>< 
W 
N • W 
o 



Appendix C.lnstruction Set Extensions (Continued) 

C.1 PROCESSOR SERVICE INSTRUCTIONS 

The CFG register, User Stack Pointer (SP1), and Debug 
Registers can be loaded and stored using privileged forms 
of the LPRi and SPRi instructions. 

When the SETCFG instruction is executed, the CFG register 
bits 0 through 3 are loaded from the instruction's short field, 
bits 4 through 7 are forced to 1, and bits S through 12 are 
forced to O. 

The contents of the on-chip Instruction Cache and Data 
Cache can be invalidated by executing the privileged in­
struction CINV. While executing the CINV instruction, the 
CPU generates 2 slave bus cycles on the system interface 
to display the first 3 bytes of the instruction and the source 
operand. 

C.2 INSTRUCTION DEFINITIONS 

This section provides a description of the operations and 
encodings of the new NS32GX32 privileged instructions. 

Load and Store Processor Registers 

Syntax: LPRI procreg, src 
short gen 

read.i 

SPRI procreg dest 
short gen 

write.i 

The LPRi and SPRi instructions can be used to load and 
store the User Stack Pointer (USP or SP1), the Configura­
tion Register (CFG) and the Debug Registers in addition to 
the Processor Registers supported by the previous Series 
32000 CPUs. Access to these registers is privileged. 

Figure C-t and Table C-1 show the instruction formats and 
the new 'short' field encodings for LPRi and SPRi. 

Flags Affected: No flags affected by loading or storing the 
USP, CFG, or Debug Registers. 

Traps: Illegal Instruction Trap (ILL) occurs if an 
attempt is made to load or store the USP, 
CFG or Debug Registers while the U-flag 
is 1. 

11~ I ,
s

17
1 

I I I I I :°1 I I 

I gen short . 1 1 0 1 1. 

src procreg LPRi 

11~ I I ,
S

17
1 

I I I I I :01 I 

I gen short . 0 1 0 1 1. 

dest procreg SPRi 
FIGURE C-1. LPRIISPRllnstruction Formats 

2-S6 

TABLE C-1. LPRi/SPRi New 'Short' Field Encodings 

Register procreg 

Debug Condition Register DCR 

Breakpoint Program Counter BPC 

Debug Status Register DSR 

Compare Address Register CAR 

User Stack Pointer USP 

Configuration Register CFG 

Cache Invalidate 

Syntax: CINV options, src 

gen 

read. D 

short field 

0001 

0010 

0011 

0100 

1011 

1100 

The CINV instruction invalidates the contents of locations in 
the on-chip Instruction Cache and Data Cache. The instruc­
tion can be used to invalidate either the entire contents of 
the on-chip caches or only a 16-byte block. In the latter 
case, the 2S most-significant bits of the source operand 
specify the physical address of the aligned 16-byte block; 
the 4 least-significant bits of the source operand are ig­
nored. If the specified block is not located in the on-chip 
caches, then the instruction has no effect. If the entire 
cache contents is to be invalidated, then the source oper­
and is read, but its value is ignored. 

Options are specified by listing the letters A (invalidate All), I 
(Instruction Cache), and D (Data Cache). If neither the I nor 
D option is specified, the instruction has no effect. 
In the instruction encoding, the options are represented in 
the A, I, and D fields as follows: 

A: O-invalidate only a 16-byte block 
1-invalidate the entire cache 

I: O-do not affect the Instruction Cache 
1-invalidate the Instruction Cache 

D: O-do not affect the Data Cache 
1-invalidate the Data Cache 

Flags Affected: None 

Traps: 

Examples: 

Illegal Operation Trap (ILL) occurs if an at­
tempt is made to execute this instruction 
while the U-flag is 1. 

1. CINV A, D, I, R3 1E A7 1B 

2. CINV I, R3 1E 2719 

Example 1 invalidates the entire Instruction Cache and Data 
Cache. 

Example 2 invalidates the 16-byte block whose physical ad­
dress in the Instruction Cache is contained in R3. 



Appendix C. Instruction Set 
Extensions (Continued) 

123 115 aj7 °1 '~e~' 10iAII 010'1'0'0'1'1'1 0'0'0'1'1'1'1'0 

src options CINV 
FIGURE C-2. CINV Instruction Format 

Appendix D. Instruction 
Execution Times 
The NS32GX32 achieves its performance by using an ad­
vanced implementation incorporating a 4-stage Instruction 
Pipeline, an Instruction Cache and a Data Cache into a sin­
gle integrated circuit. 

As a consequence of this advanced implementation, the 
performance evaluation for the NS32GX32 is more complex 
than for the previous microprocessors in the Series 32000 
family. In fact, it is no longer possible to determine the exe­
cution time for an instruction using only a set of tables for 
operations and addressing modes. Rather, it is necessary to 
consider dependencies between the various instructions ex­
ecuting in the pipeline, as well as the occurrence of misses 
for the on-Chip caches. 

The following sections explain the method to evaluate the 
performance of the NS32GX32 by calculating various timing 
parameters for an instruction sequence. Due to the high 
degree of parallelism in the NS32GX32, the evaluation tech­
niques presented here include some simplifications and ap­
proximations. 

0.1 INTERNAL ORGANIZATION 
AND INSTRUCTION EXECUTION 

The NS32GX32 is organized internally as a functional units 
as shown in Figure 1. The functional units operate in parallel 
to execute instructions in the 4-stage pipeline. The structure 
of this pipeline is shown in Figure 3-2. The Instruction Fetch 
and Instruction Decode pipeline stages are implemented in 
the loader along with the a-byte instruction queue and the 
buffer for a decoded instruction. The Address Calculation 
pipeline stage is implemented in the address unit. The Exe­
cute pipeline stage is implemented in the Execution Unit 
along with the write data buffer that holds up to two results 
directed to memory. 

The Address Unit and Execution Unit can process instruc­
tions at a peak rate of 2 clock cycles per instruction, en­
abling a sustained pipeline throughput at 30 MHz of 
15 MIPS (million instructions per second) for sequences of 
register-to-register, immediate-to-register, memory-to-regis­
ter instructions and register-to-memory. Nevertheless, the 
execution of instructions in the pipeline is reduced from the 
peak throughput of 2 cycles by the following causes of de­
lay: 

1. Complex operations, like division, require more than 2 cy­
cles in the Execution Unit, and complex addressing 
modes, like memory relative, require more than 2 cycles 
in the Address Unit. 

2. Dependencies between instructions can limit the flow 
through the pipeline. A data dependency can arise when 
the result of one instruction is the source of a following 
instruction. Control dependencies arise when branching 
instructions are executed. Section 0.3 describes the 
types of instruction dependencies that impact perform­
ance and explains how to calculate the pipeline delays. 

2-87 

3. Cache misses can cause the flow of instructions through 
the pipeline to be delayed, as can non-aligned refer­
ences. Section 0.4 explains the performance impact for 
these forms of storage delays. 

The effective time T eft needed to execute an Instruction is 
given by the following formula: 

T elf = T e + T d + T s 
T e is the execution time in the pipeline in the absence of 
data dependencies between instructions and storage de­
lays, T d is the delay due to data dependencies, and T 5 is the 
effect of storage delays. 

0.2 BASIC EXECUTION TIMES 

Instruction flow in sequence through the pipeline stages im­
plemented by the Loader, Address Unit, and Execution Unit. 
In almost all cases, the Loader is at least as fast at decod­
ing an instruction as the Address Unit is at processing the 
instruction. Consequently, the effects of the Loader can be 
ignored when analyzing the smooth flow of instructions in 
the pipeline, and it is only necessary to consider the times 
for the Address Unit and Execution Unit. The time required 
by the Loader to fetch and decode instructions is significant 
only when there are control dependencies between instruc­
tions or Instruction Cache misses, both of which are ex­
plained later. 

The time for the pipeline to advance from one instruction to 
the next is typically determined by the maximum time of the 
Address Unit and Execution Unit to complete processing of 
the instruction on which they are operating. For example, if 
the Execution Unit is completing instruction n in 2 cycles 
and the Address Unit is completing instruction n+ 1 in 4 
cycles, then the pipeline will advance in 4 cycles. For certain 
instructions, such as RESTORE, the Address Unit waits until 
the Execution Unit has completed the instruction before 
proceeding to the next instruction. When such an instruction 
is in the Execution Unit, the time for the pipeline to advance 
is equal to the sum of the time for the Execution Unit to 
complete instruction n and the time for the Address Unit to 
complete instruction n+ 1. The processing times for the 
Loader, Address Unit, and Execution Unit are explained be­
low. 

0.2.1 Loader Timing 

The Loader can process an instruction field on each clock 
cycle, where a field is one of the following: 

• An opcode of 1 to 3 bytes including addressing mode 
specifiers. 

• Up to 2 index bytes, if scaled index addressing mode is 
used. 

• A displacement. 

• An immediate value of 8, 16 or 32 bits. 

The Loader requires additional time in the following cases: 

• 1 additional cycle when 2 consecutive double-word fields 
begin at an odd address. 

• 2 cycles in total to process a double-precision floating­
point immediate value. 

z en 
Cot) 
N 
G) 
>< 
Cot) 
N • N 
Q ...... 
Z en 
Cot) 
N 
G) 
>< 
Cot) 
N • N 
CI1 ...... 
Z en 
Cot) 
N 
G) 
>< 
Cot) 
N · Cot) 
Q 



o 
C") 

N 
C") 

>< 
C!J 
N 
C") 
U) 
Z ....... 
Ln 
N . 
N 
C") 

>< 
C!J 
N 
C") 
U) 
Z 
....... o 
N • N 
C") 

>< 
C!J 
N 
C") 
U) 
Z 

Appendix D. Instruction Execution Times (Continued) 

D.2.2 Address Unit Timing 

The processing time of the Address Unit depends on the 
instruction's operation and the number and type of its gen­
eral addressing modes. The basic time for most instructions 
is 2 cycles. A relatively small number of instructions require 
an additional address unit time, as shown in the timing ta­
bles in Section 0.5.5. Floating-point instructions as well as 
Custom-Slave instructions require an additional 3 cycles 
plus 2 cycles for each quad-word operand in memory. 

For instructions with 2 general addressing modes, 2 addi­
tional cycles are required when both addressing modes re­
fer to memory. Certain general addressing modes require an 
additional processing time, as shown in Table 0-1. For ex­
ample, the instruction MOVD 4(8(FP», TOS requires 7 cy­
cles in the Address Unit; 2 cycles for the basic time, an 
additional 2 cycles because both modes refer to memory, 
and an additional 3 cycles for Memory Relative addressing 
mode. 

TABLE D-1. Additional Address Unit Processing 
Time for Complex Addressing Modes 

Mode 
Additional 

Cycles 

Memory Relative 3 
External 8 
Scaled Indexing 2 

D.2.3 Execution Unit Timing 

The Execution Unit processing times for the various 
NS32GX32 instructions are provided in Section 0.5.5. Cer­
tain operations cause a break in the instruction flow through 
the pipeline. 

Some of these operation simply stop the Address Unit, 
while others flush the instruction queue as well. The infor­
mation on how to evaluate the penalty resulting from in­
struction flow breaks is provided in the following sections. 

D.3 INSTRUCTION DEPENDENCIES 

Interactions between instructions in the pipeline can cause 
delays. Two types of interactions can arise, as described 
below. 

D.3.1 Data Dependencies 

In certain circumstances the flow of instructions in the pipe­
line will be delayed when the result of an instruction is used 
as the source of a succeeding instruction. Such interlocks 
are automatically detected by the microprocessor and han­
dled with complete transparency to software. 

D.3.1.1 Register Interlocks 

When an instruction uses a base register that is the destina­
tion of either of the previous 2 instructions, a delay occurs. 
Modifications of the Stack Pointer resulting from the use of 
TOS addressing mode do not cause any delay. Also, there 
is no delay for a data dependency when the instruction that 
modifies the register is one for which the Address Unit 
stops. The delay is 3 cycles when, as in the following exam­
ple, the base register is modified by the immediately preced­
ing instruction. 

2-88 

n: ADDD Rl.RO 
n+l: MOVD 4(RO).R2 

modify RO 
RO is base register, 
delay :5 cycles 

The delay is 1 cycle when the register is modified 2 instruc­
tions before its use as a base register, as shown in this 
example . 

n: ADDD Rl,RO modify RO 
n+l: MOVD 4(SP),R:5 RO not used 
n+2: MOVD 4(RO),R2 RO is base register, 

delay 1 cycle 
When an instruction uses an index register that is the desti­
nation of the previous instruction, a delay of 1 cycle occurs, 
as shown in the example below. If the register is modified 2 
or more instructions prior to its use as an index register, 
then no delay occurs. 

n: ADDD Rl.RO ; modify RO 
n+l: MOVD 4 (SP)[RO :B] .R2 

; RO is index register 
delay 1 cycle 

Bypass circuitry in the Execution Unit generally avoids delay 
when a register modified by one instruction is used as the 
source operand of the following instruction, as in the follow­
ing example. 

n: ADDD Rl.RO modify RO 
n+l: MOVD RO.R2 RO is source register. 

no delay 
For the uncommon case where the operand in the source 
register is larger than the destination of the previous instruc­
tion, a delay of 2 cycles occurs. Here is an example. 

n: ADDB Rl.RO modify byte in RO 
n+l: MOVD RO.R2 ; RO dw Source operand. 

2 cycle delay 
Note: The Address Unit does not make any differentiation between CPU 

and FPU registers. Therefore, register interlocks can occur between 
integer and floating-point Instructions. 

D.3.1.2 Memory Interlocks 

When an instruction reads a source operand (or address for 
effective address calculation) from memory that depends on 
the destination of either of the previous 2 instructions, a 
delay occurs. The CPU detects a dependency between a 
read and a write reference in the following cases, which 
include some false dependencies in addition to all actual 
dependencies: 

• Either reference crosses a double-word boundary 

• Address bits 0 through 11 are equal 

• Address bits 2 through 11 are equal and either reference 
is for a word 

• Address bits 2 through 11 are equal and either reference 
is for a double-word 

The delay for a memeory interlock is 4 cycles when, as in 
the following example, the memory location is modified by 
the immediately preceding instruction. 

n: ADDQD 1.4(SP) modify 4(SP) 
n+1: CMPD 10.4(SP) ; read. 4(SP). 

4 cycle delay 



Appendix D.lnstruction Execution Times (Continued) 
The delay is 2 cycles when the memory location is modified 
2 instructions before its use as a source operand or effec­
tive address, as shown in this example. 

n: ADDQD l,4(SP) ; modify 4(SP) 

n+l: MOVD RO,Rl no reference to 4(SP) 

n+2: CMPD 10, 4(SP); read 4(SP), 

2 cycles delay 

Certain sequences of read and write references can cause 
a delay of 1 cycle although there is no data dependency 
between the references. This arises because the Data 
Cache is occupied for 2 cycles on write references. In the 
absence of data dependencies, read references are given 
priority over write references. Therefore, this delay only oc­
curs when an instruction with destination in memory is fol­
lowed 2 instructions later by an instruction that refers to 
memory (read or write) and 3 instructions later by an instruc­
tion that reads from memory. Here is an example: 

n: MOVD RO,4(SP) memory write 

n+l: MOVD R6,R7 any instruction 

n+2: MOVD 8(SP),RO memory read or write 

n+3: MOVD 12(SP),Rl; memory read 

delayed 1 cycle 

0_3.2 Control Dependencies 

The flow of instructions through the pipeline is delayed 
when the address from which to fetch an instruction de­
pends on a previous instruction, such as when a conditional 
branch is excuted. The Loader includes special circuitry to 
handle branch instructions (ACB, BR, Bcond, and BSR) that 
serves to reduce such delays. When a branch instruction is 
decoded, the Loader calculates the destination address and 
selects between the sequential and non-sequential instruc­
tion streams. The non-sequential stream is selected for un­
conditional branches. For conditional branches the selec­
tion is based on the branch's direction (forward or back­
ward) as well as the tested condition. The branch is predict­
ed taken in any of the following cases. 

• The branch is backward. 

• The tested condition is either NE or LE. 

Measurements have shown that the correct stream is se­
lected for 64% of conditional branches and 71 % of total 
branches. 

If the Loader selects the non-sequential stream, then the 
destination address is transferred to the Instruction Cache. 
For conditional branches, the Loader saves the address of 
the alternate stream (the one not selected). When a condi­
tional branch instruction reaches the Execution Unit, the 
condition is resolved, and the Execution Unit signals the 
Loader whether or not the branch was taken. If the branch 
had been incorrectly predicted, the Instruction Cache be­
gins fetching instructions from the correct stream. 

The delay for handling a branch instruction depends on 
whether the branch is taken and whether it is predicted cor­
rectly. Unconditional branches have the same delay as cor­
rectly predicted, taken conditional branches. 

Another form of delay occurs when 2 consecutive condition­
al branch instructions are executed. This delay of 2 cycles 
arises from contention for the register that holds the alter­
nate stream address in the Loader. 

Control dependencies also arise when JUMP, RET, and oth­
er non-branch instructions alter the sequential execution of 
instructions. 

2-89 

0.4 STORAGE DELA VS 

The flow of instructions in the pipeline can be delayed by 
off-Chip memory references that result from misses in the 
on-chip storage buffers and by misalignment of instructions 
and operands. These considerations are explained in the 
following sections. The delays reported assume no wait 
states on the external bus and no interference between in­
struction and data references. 

0.4.1 Instruction Cache Misses 

An Instruction Cache miss causes a 5 cycle gap in the fetch­
ing of instructions. When the miss occurs for a non-sequen­
tial instruction fetch, the pipeline is idle for the entire gap, so 
the delay is 5 cycles. When the miss occurs for a sequential 
fetch, the pipeline is not idle for the entire gap because 
instructions that have been prefetched ahead and buffered 
can be executed. The delay for misses on non-sequential 
instruction fetches can be estimated to be approximately 
half the gap, or 2.5 cycles. 

0.4.2 Data Cache Misses 

A Data Cache miss causes a delay of 2 cycles. When a 
burst read cycle is used to fill the cache block, then 3 addi­
tional cycles are required to update the Data Cache. In case 
a burst cycle is used and either of the 2 instructions follow­
ing the instruction that caused the miss also reads from 
memory, then an additional delay occurs: 3 cycle delay 
when the instruction that reads from memory immediately 
follows the miss, and 2 cycle delay when the memory read 
occurs 2 instructions after the miss. 

0.4.3 Instruction and Operand Alignment 

When a data reference (either read or write) crosses a dou­
ble-word boundary, there is a delay of 2 cycles. 

When the opcode for a non-sequential instruction crosses a 
double-word boundary, there is a delay of 1 cycle. No delay 
occurs in the same situation for a sequential instruction. 
There is also a delay of 2 cycles when an instruction fetch is 
located on a different page from the previous fetch and 
there is a hit in the Instruction Cache. This delay, which is 
due to the time required to translate the new page's ad­
dress, also occurs following any serializing operation. 

0.5 EXECUTION TIME CALCULATIONS 

This section provides the necessary information to calculate 
the T e portion of the effective time required by the CPU to 
execute an instruction. 

The effects of data dependencies and storage delays are 
not taken into account in the evaluation of T e, rather, they 
should be separately evaluated through a careful examina­
tion of the instruction sequence. 

The following assumptions are made: 

- The entire instruction, with displacements and immedi­
ate operands, is present in the instruction queue when 
needed. 

- All memory operands are available to the Execution Unit 
and Address Unit when needed. 

- Memory writes are performed at full speed through the 
write buffer. 

- Where possible, the values of operands are taken into 
consideration when they affect instruction timing, and a 
range of times is given. When this is not done, the worst 
case is assumed. 

z en 
(,,) 
N 
G) 
>< 
(,,) 
N • N o ....... 
Z en 
(,,) 
N 
G) 
>< 
(,,) 
N • N en ....... 
Z 
en 
(,,) 
N 
G) 
>< 
(,,) 
N · (,,) 
o 



C) .-------------------------------------------------------------------------------------------, 
C") 

N 
C") 

>< 
" N 
C") 
U) 
Z ....... 
it) 
N • N 
C") 

>< 
" N 
C") 
U) 
Z ....... 
C) 
N 
N 
C") 

>< 
" N 
C") 
U) 
Z 

Appendix D. Instru~tion Execution Times (Continued) 

D.5.1 Definitions 

T eu Time required by the Execution Unit to execute an 
instruction. 

Tau Total processing time in the Address Unit. 

Tad Extra time needed by the Address Unit, in addition 
to the basic time, to process more complex cases. 
Tad can be evaluated as follows: 

Tad = T x + T y1 + T y2 

T x = 2 if the instruction has two general operands 
and both of them are in memory. 

o otherwise. 

T y1 and T y2 are related to operands 1 and 2 re­
spectively. Their values are given below. 

T y(1, 2) = 3 if Memory Relative 
8 if External 

2 if Scaled Indexing 

o if any other addressing mode 

The following parameters are only used for floating-point 
execution time calculations. 

T anp Additional Address Unit time needed to process 
floating-point instructions (Section 0.2.2). T anp can 
be calculated as follows: 

T anp = 3 + 2 • (Number of 64-bit operands in 
memory) 

Ttcs Time required to transfer 10 and Opcode, if no op­
erand needs to be transferred to the slave. Other­
wise, it is the time needed to transfer the last 32 
bits of operand data to the slave. In the latter case 
the transfer of 10 and Opcode as well as any oper­
and data except the last 32 bits is included in the 
Execution Unit timing. 

Ttsc Time required by the CPU to complete the floating­
point instruction upon receiving the DONE signal 
from the slave. This includes the time to process 
the DONE signal itself in addition to the time need­
ed to read the result (if any) from the slave. 

This parameter is related to the floating-point oper­
and size as follows: 

Standard floating (32 bits): I = 0 

Long floating (64 bits): I = 1 

D.5.2 Notes on Table Use 

1. In the T eu column the notation n1 ~ n2 means n1 mini­
mum, n2 maximum. 

2. In the notes column, notations held within angle brackets 
< > indicate alternatives in the operand addressing 
modes which affect the execution time. A table entry 
which is affected by the operand addressing may have 
multiple values, corresponding to the alternatives. This 
addressing notations are: 

< I > Immediate 

< R > CPU register 

<M> Memory 

<F> FPU register, either 32 or 64 bits 

2-90 

<m> Memory, except Top of Stack 

<T> Top of Stack 

<x> Any addressing mode 

<ab> a and b represent the addressing modes of oper­
ands 1 and 2 respectively. Both of them can be 
any addressing mode. (e.g., <MR> means 
memory to CPU register). 

3. The notation 'Break K' provides pipeline status informa­
tion after executing the instruction to which 'Break K' ap­
plies. The value of K is interpreted as follows: 

K = 0 The Address Unit was stopped by the instruction 
but the pipeline was not flushed. The Address 
Unit can start processing the next instruction im­
mediately. 

K > 0 The pipeline was flushed by the instruction. The 
Address Unit must wait for K cycles before it can 
start processing the next instruction. 

K < 0 The Address Unit was stopped at the beginning 
of the Instruction but it was restarted IKI cycles 
before the end of it. The Address Unit can start 
processing the next Instruction IKI cycles before 
the end of the instruction to which 'Break K' ap­
plies. 

4. Some instructions must wait for pending writes to com­
plete before being able to execute. The number of cycles 
that these instructions must wait for, is between 6 and 7 
for the first operand in the write buffer and 2 for the sec­
ond operand, if any. 

5. The CBITIi and SBITIi instructions will execute a RMW 
access after waiting for pending writes. The extra time 
required for the RMW access is only 3 cycles since the 
read portion is overlapped with the time in the Execution 
Unit. 

6. The keyword defined for the Bcond instruction have the 
following meaning: 

BTPC Branch Taken, Predicted Correctly 

BTPI Branch Taken, Predicted Incorrectly 

BNTPC Branch Not Taken, Predicted Correctly 

BNTPI Branch Not Taken, Predicted Incorrectly 

D.5.3 T eff Evaluation 
The T e portion of the effective execution time for a certain 
instruction in an instruction sequence is obtained by per­
forming the following steps: 

1. Label the current and previous instruction in the se­
quence with nand n-1 respectively. 

2. Obtain from the tables the values of T eu and Tau for in­
struction nand T eu for instruction n -1. 

3. For floating-point instructions, obtain the values of Ttcs 
and Ttsc. 

4. Use the following formula to determine the execution time 
Te· 
T e = func (T au(n), T eu(n -1), TfIt(n -1), 

Break (n-1» + Teu(n) + TfIt(n) 



Appendix D. Instruction Execution Times (Continued) 

func provides the amount of processing time in the Address 
Unit that cannot be hidden. Its definition is given below. 

o if Tau(n) ~ (Teu(n-1) + Tfit (n-1)) 

AND NOT Break (n -1) 

Tau(n) - Teu(n-1) if Tau(n) > (Teu(n-1) + TfIt(n-1)) 

AND NOT Break (n -1) 

Tau(n) + K 

o 

if (Tau(n) + K) > 0 

AND Break (n-1) 

if (Tau(n) + K) ~ 0 

AND Break (n-1) 

K is the value associated with Break (n -1). 

Tfit only applies to floating-point instructions and is al­
ways 0 for other instructions. It is evaluated as follows: 

Tfit = ttcs + Ttsc + Tfpu 

Tfpu is the execution time in the Floating-Point Unit. 

5. Calculate the total execution time T eft by using the follow­
ing formula: 

T eft = T e + T d + T s 
Where T d and T s are dependent on the instruction se­
quence, and can be obtained using the information pro­
vided in Section 0.4. 

_fib: movd r3,tos 2 cycles 
movd r4,tos 2 cycles 
movd rl,r3 2 cycles 
cmpqd $(2) ,r3 2 cycles 

0.5.4 Instruction Timing Example 
This section presents a simple instruction timing example 
for a procedure that recursively evaluates the Fibonacci 
function. In this example there are no data dependencies or 
storage buffer misses; only the basic instruction execution 
times in the pipeline, control dependencies, and instruction 
alignment are considered. 

The following is the source of the procedure in C. 

unsigned fib(x) 
int X; 
( 

if (x > 2) 

return (fib(x-l) + fib(x-2»; 
else 

return(l) ; 

The assembly code for the procedure with comments indi­
cating the execution time is shown below. The procedure 
requires 26 cycles to execute when the actual parameter is 
less than or equal to 2 (branch taken) and 99 cycles when 
the actual parameter is equal to 3 (recursive calls). 

bge .Ll 2 cycles, Break 2 If Branch Taken 
movd r3,rl 2 cycles 
addqd $(-2),rl 2 cycles 
bsr _fib 3 cycles 
movd rO,r4 2 cycles + 4 Cycles due to RET 
movd r3,rl 2 cycles 
addqd $(-1) ,rl 2 cycles 
bsr _fib 3 cycles 
addd r4,rO 2 cycles + 1 cycle alignment + 4 cycles due to RET 
movd tos,r4 2 cycles 
movd tos,r3 2 cycles 
ret $(0) 4 cycles, break 4 
• align 4 

_Ll: movqd $(1) ,rO 4 cycles + 4 cycles due to BGE 
movd tos,r4 2 cycles 
movd tos,r3 2 cycles 
ret $(0) 4 cycles, Break 4 

2-91 

z 
(J) 
w 
I\) 

G') 

>< w 
I\) 

• I\) 
o ...... 
Z 
(J) 
w 
I\) 
G') 

>< w 
I\) . 
I\) 
U1 ...... 
Z 
(J) 
w 
I\) 
G') 

>< w 
~ 
w o 



C) r---------------------------------------------------------------------------------------~ 
Cf) 
• N 

Cf) 

>< 
CJ 
N 
Cf) 
tJ) 
Z ....... 
it) 
N • N 
Cf) 

>< 
CJ 
N 
Cf) 
tJ) 
Z ....... 
C) 
N 
N 
Cf) 

>< 
CJ 
N 
Cf) 
tJ) 
Z 

Appendix D. Instruction Execution Times (Continued) 

0.5.5 Execution Timing Tables 
The following tables provide the execution timing information for all the NS32GX32 instructions. The table for the floating-point 
instructions provides only the CPU portion of the total execution time. The FPU execution times can be found in the NS32381 
datasheet. 

0.5.5.1 Basic Instructions 

Mnemonic Teu Tau Notes Mnemonic Teu Tau Notes 

ABSi 5 2 + Tad CINV 10 2 + Tad Wait for 

ACBi 5 2 + Tad If incorrect prediction 
then Break 1 

pending 
writes. 
Break 5 

ADDi 2 2 + Tad 
CMPi 2 2 + Tad 

ADDCi 2 2 + Tad n = number 

ADDPi 9 2 + Tad of elements. 
CMPMi 6 + 8 * n Break 0 

ADDQi 2 2 + Tad 

ADDR 2 4 + Tad 

ADJSPi 5 2 + Tad i= B,W Break 0 

CMPQi 2 2 + Tad 

CMPSi 7 + 13 * n 2 + Tad n = number 
of elements. 

3 2 + Tad i = D Break 0 Break 0 

ANDi 2 2 + Tad CMPST 6 + 20 * n 2 + Tad n = number 

ASHi 9 2 + Tad of elements. 

BCONO 2~3 2 BTPC 
Break 0 

2 2 BTPI Break 2 COMi 2 2 + Tad 

2 2 BNTPC CVTP 5 4 + Tad 
2 2 BNTPI Break 2 

(see Note 5 in 
CXP 17 13 Break 5 

Section D.5.2) CXPD 21 11 + Tad Break 5 

BICi 2 2 + Tad DEli 28 + 4 * i 5 + Tad i = 0/4/12 

BICPSRi 6 2 + Tad Wait for pending writes. 
Break 5 

for B/W/D. 
Break 0 

BISPSRi 6 2 + Tad Wait for pending writes. 
DIA 3 2 Break 5 

Break 5 DIVi (30 ~ 40) + 4 * i 2 + Tad i = 0/4/12 

BPT 30 2 Modular for B/W/D 

21 2 Direct ENTER 15 + 2 * n 3 n = number 

Break 5 
of registers 
saved. 

BR 2~3 2 Break 0 

BSR 2~3 3 + Tad EXIT 8 + 2 * n 2 n = number 

CASEi 7 2 + Tad Break 5 
of registers 
restored 

CBITi 10 2 <R> 
14 2 + Tad <M> Break 0 

EXTi 12 8 <R> 
13 8 + Tad <M> 

CBITIi 18 2 + Tad <M> 
Wait for pending writes. Break -3 

Execute interlocked EXSi 11 6 <R> 
RMW access. Break 5 14 6 + Tad <M> 

CHECKi 10 2 + Tad Break -3. 
If SRC is out of bounds 

Break -3 

and the V bit in the PSR FFSi 11+3*i 2 + Tad i = number 
is set, then add trap of bytes 
time. 

2-92 



~----------------------------------------------------------------------~ z 
Appendix D. Instruction Execution Times (Continued) 

D.5.5.1 Basic Instructions (Continued) 

Mnemonic Teu Tau Notes Mnemonic Teu 
FLAG 4 2 No trap MOVSVi 9 

32 2 Trap, Modular 
21 2 Trap, Direct 

If trap then: 
(wait for 

MOVUSi 11 

pending writes; 

IBITi 10 2 

Break5} 

<R> 
MOVXii 2 

14 2 + Tad <M> MOVZii 2 
If <M> MULi 13 + 2 * i 
then Break 0 

INDEXi 43 5 + Tad 

INSi 15 8 <R> 
24 

18 8 + Tad <M> 

INSSi 14 6 <R> 
NEGi 2 

19 6 + Tad <M> NOP 2 

Break 0 
NOTi 3 

JSR 3 9 + Tad Break 5 

JUMP 3 4 + Tad Break 5 

ORi 2 

QUOi (30 -. 40) 
+ 4 * i 

LPRi 6 2 + Tad CPU Reg = FP, 
SP, USP, SP, MOD. 
Break 0 

REMi (32 -. 42) 
+ 4 * i 

Tau 

2 + Tad 

2+ Tad 

2 + Tad 

2 + Tad 

2 + Tad 

2 + Tad 

2 + Tad 

2 

2 + Tad 

2 + Tad 

2 + Tad 

2 + Tad 

5 2 + Tad CPU Reg = CFG, RESTORE 7+2*n2 
INTBASE, DSR, 
BPC, UPSR. 
Wait for pending 
writes. RET 4 3 
Break 5 

7 2 + Tad CPU Reg = DCR, 
PSR CAR. Wait for 
pending writes. 
Break 5 

RETI 19 5 
13 5 
29 5 
22 5 

LSHi 3 2 + Tad 

MEli 13 + 2 * i 5 + Tad i = 0/4/12 
forB/W/D. 
Break 0 RETI 14 5 

MODi (34 -. 49) 2 + Tad i = 0/4112 
8 5 

+ 4 * i forBIWID 

MOVi 2 2 + Tad 

MOVMi 5 + 4 * n 2 + Tad n = number 
of elements. ROTi 7 2 + Tad 
Break 0 RXP 8 5 

MOVQi 2 2 + Tad SCONDi 3 2 + Tad 
MOVSi n = number SAVE 8 + 2 * n 2 

of elements. 
12 + 4 * n 2 + Tad No options. 
14 + 8 * n 2 + Tad B, W andlor U 

Options in effect. 
Break 0 

SBITi 10 2 
14 2 + Tad 

MOVST 16 + 9 * n 2 + Tad n = number 
of elements. 
Break 0 

2·93 

Notes 

Wait for 
pending writes. 
Break 5 

Wait for 
pending writes. 
Break 5 

i = 0/4/12 
forB/WID. 
General case. 
If MULDand 
o ~ SRC ~ 255 

i = 0/4/12 
forB/WID 

i = 0/4/12 
forB/WID 

n = number 
of registers 
restored. 
Break 0 

Break 4 

Noncascaded, Modular 
Noncascaded, Direct 
Cascaded, Modular 
Cascaded, Direct 

Wait for 
pending writes. 
Break 5 

Modular 
Direct 

Wait for 
pending writes. 
Break 5 

Break 5 

n = number 
of registers. 
Break 0 

<R> 
<M> 
Break 0 

en 
w 
I\) 
G) 
>< w 
I\) 
• I\) 
o ...... 
z 
en 
w 
I\) 
G) 
>< w 
~ 
I\) 
<11 ...... 
Z 
en w 
I\) 
G) 
>< w 
~ 
w o 



C) r-------------------------------------------------------------------------------, 
C") 

N 
C") 

>< 
" C'I 
C") 

UJ 
Z 
"" LI) 
C'I 
N 
C") 

>< 
" C'I 
C") 
UJ 
Z 

"" C) 
C'I . 
C'I 
C") 

>< 
" C'I 
C") 

UJ 
Z 

Appendix D. Instruction Execution Times (Continued) 

D.5.5.1 Basic Instructions (Continued) 

Mnemonic Teu Tau Notes Mnemonic Teu 
SBITIi 10 2 <R> SUBi 2 

18 2 + Tad <M> SUBCi 2 

Wait for pending SUBPi 6 
writes. Execute 
interlocked RMW 

SVC 32 
21 

access. 
Break 5 

SETCFG 6 2 Break 5 

SKPSi 8 + 6· n 2 + Tad n = number of 
elements . TBITi 8 

Break 0 11 

SKPST 6+20·n 2 + Tad n = numberof 
elements. WAIT 3 

Break 0 

SPRi 5 2 + Tad CPU Reg = 
PSR,CAR XORi 2 

3 2 + Tad CPU Reg = 
all others 

2-94 

Tau Notes 

2 + Tad 

2 + Tad 

2 + Tad 

2 Modular 
2 Direct 

Wait for 
pending writes. 
Break 5 

2 <R> 
2 + Tad <M> 

If < M > then break 0 

2 Wait for pending 
writes. Wait 
for interrupt 

2 + Tad 



Appendix D. Instruction Execution Times (Continued) 

0.5.5.2 Floating-Point Instructions, CPU Portion 

Mnemonic Tau Tau Ttcs Ttsc 

MOVf,NEGf, 2 2 + Tanp 2 1 
ABSf, lOGBf 4 + 3 *1 2 + Tanp + Tad 2 1 

6 + 3 *1 2 + Tanp 2 1 
6 + 3 *1 2 + Tanp 2 1 
11+4*1 2 + Tanp + Tad 2 3 + 2 *1 
13 + 7 *1 2 + Tanp + Tad 2 3 + 2 *1 

ADDf,SUBf, 2 2 + Tanp 2 1 
MULt,DIVf, 4 + 3 *1 2 + Tanp 2 1 
SCAlBf 6 + 3 *1 2 + Tanp 2 1 

6 + 3 *1 2 + Tanp 2 1 
17+7*1 2 + Tanp + Tad 2 3 + 2 *1 
19+10*1 2 + Tanp + Tad 2 3 + 2 *1 

AOUNDfi, TAUNCfi, 11 2 + Tanp 2 3 + 2 *1 
FlOOAfi 11 +4*1 2 + Tanp + Tad 2 3 + 2 *1 

13 2+ Tanp + Tad 2 3 + 2 *1 
13 + 7 * I 2 + Tanp + Tad 2 3 + 2 *1 

CMPf 18 2 + Tanp 2 
20 + 3 *1 2 + Tanp + Tad 2 
23+3*1 2 + Tanp + Tad 2 
25 + 6·1 2 + Tanp + Tad 2 

POlYt, DOTt 2 2 + Tanp 2 1 
4 + 3 *1 2 + Tanp + Tad 2 1 
6 + 3 *1 2 + Tanp 2 1 
11+4*1 2 + Tanp + Tad 2 1 
13 + 7 * I 2 + Tanp + Tad 2 1 

MOVif 6 2 + Tanp 2 1 
13 2 + Tanp + Tad 2 
6 + 3 *1 2 + Tanp + Tad 2 1 
13 + 7 * I 2 + Tanp + Tad 2 

lFSA 6 2 + Tanp 2 1 
6 + 3 *1 2 + Tanp + Tad 2 1 
6 + 3 *1 2 + Tanp 2 1 
6 + 3 *1 2 + Tanp 2 1 

SFSA 11 2 + Tanp + Tad 2 3 

MOVFl 4 2 + Tanp 2 1 
6 2 + Tanp + Tad 2 1 

15 2 + Tanp + Tad 2 
17 2 + Tanp + Tad 2 

MOVlF 4 2 + Tanp 2 1 
9 2 + Tanp + Tad 2 1 

15 2 + Tanp + Tad 2 
20 2 + Tanp + Tad 2 

2·95 

Notes 

<FF> 
<MF> 
<IF> 
<TF> 
<FM> Break - (1 + I) 
<MM>, <1M> Break - (1 + I) 

<FF> 
<MF> 
<IF> 
<TF> 
<FM> Break - (1 + I) 
<MM>, <1M> Break - (1 + I) 

<FA> Break - 1 
<FM> Break - (1 + I) 
<MA>, <IA> Break -: 1 
<MM>, <1M> Break - (1 + I) 

<FF> 
<MF> 
<FM> 
<MM>, <1M>, <MI>, <II> 
Break 3 

<FF> 
<MF> 
<IF>, <TF> 
<FM> Break - (1 + I) 
<MM>, <MI>, <1M>, <II> 
Break - (1 + I) 

<AF> 
<AM> Break - 1 
<MF>, <IF>, <TF> 
<MM>, <1M> 
Break - (1 + I) 

<A> 
<M> 
<I> 
<T> 

Break - 1 

<FF> 
<MF>, <IF>, <TF> 

<FM> Break 0 
<MM>, <1M> Break 0 

<FF> 
<MF>, <IF>, <TF> 

<FM> Break 0 
<MM>, <1M> Break 0 

z en 
w 
N 
Ci) 

>< 
W 
N . 
N o 
........ 
Z en w 
N 
Ci) 

>< 
W 
N 
N 
(J1 
........ z en 
w 
N 
Ci) 
>< w 
~ o 



~ .-----------------~-------------------------------------------------------------------, ..... . 
CD ..... 
" o 
N 
C") 
tJ) 
Z ...... o ..... • CD ..... 

" o 
N 
C") 
tJ) 
Z 

~National 
~ Semiconductor 

PRELIMINARY 

NS32CG16-10/NS32CG16-15 
High-Performance Printer/Display Processor 

General Description 
The NS32CG16 is a 32-bit microprocessor in the Series 
32000® family that provides special features for graphics 
applications. It is specifically designed to support page ori­
ented printing technologies such as Laser, LCS, LED, lon­
Deposition and InkJet. 

The NS32CG16 provides a 16 Mbyte linear address space 
and a 16-bit external data bus. It also has a 32-bit ALU, an 
eight-byte prefetch queue, and a slave processor interface. 

The capabilities of the NS32CG16 can be expanded by us­
ing an external floating point unit which interfaces to the 
NS32CG16 as a slave processor. This combination pro­
vides optimal support for outline character fonts. 

The NS32CG16's highly efficient architecture, in addition to 
the built-in capabilities for supporting BITBLT (BIT-aligned 
BLock Transfer) operations and other special graphics func­
tions, make the device the ideal choice to handle a variety 
of page description languages such as PostscriptTM and 
PCLTM. 

Block Diagram 
ADD/DATA CONTROLS Ie STATUS 

Features 
• Software compatible with the Series 32000 family 
• 32-bit architecture and implementation 
• 16 Mbyte linear address space 
• Special support for imaging applications such as print­

ers, faxes and scanners 
- 18 graphics instructions 
- Binary compression/expansion capability for font 

storage using RLL encoding 
- Pattern magnification for Epson and HP LaserJet™ 

emUlations 
- 6 BITBL T instructions on chip 
- Interface to an external BITBL T processing unit for 

very fast BITBLT operations (optional) 
• Floating point support via the NS32081 or the NS32381 

for outline fonts, scaling and rotation 
• On-chip clock generator 
• Optimal interface to large memory arrays via the 

DP84xx family of DRAM controllers 

• Power save mode 
• High-speed CMOS technology 
• 68-pin plastic PCC package 

REGISTER SET 
N AS 

WICROCOOE ROW 
AND 

CONTROL LOGIC 

IJ]J] 
crG 

REGISTER 

GRAPHICS 
LOGIC 

DATA 

I t _______________ • 

32 BIT INTERNAL BUS 

TL/EE/9424-1 

2-96 



1.0 Product Introduction 
The NS32CG16 is a high speed CMOS microprocessor in 
the Series 32000 family. It is software compatible with all 
the other CPUs in the family. The device incorporates all of 
the Series 32000 advanced architectural features, with the 
exception of the virtual memory capability. 

Brief descriptions of the NS32CG16 features that are 
shared with other members of the family are provided be­
low: 

Powerful Addressing Modes. Nine addressing modes 
available to all instructions are included to access data 
structures efficiently. 

Data Types. The architecture provides for numerous data 
types, such as byte, word, doubleword. and BCD, which may 
be arranged into a wide variety of data structures. 

Symmetric Instruction Set. While avoiding special case 
instructions that compilers can't use, the Series 32000 fami­
ly incorporates powerful instructions for control operations, 
such as array indexing and external procedure calls, which 
save considerable space and time for compiled code. 

Memory-to-Memory Operations. The Series 32000 CPUs 
represent two-address machines. This means that each op­
erand can be referenced by anyone of the addressing 
modes provided. 

This powerful memory-to-memory architecture permits 
memory locations to be treated as registers for all useful 
operations. This is important for temporary operands as well 
as for context switching. 

2-97 

Large, Uniform Addressing. The NS32CG16 has 24-bit 
address pointers that can address up to 16 megabytes with­
out any segmentation; this addressing scheme provides 
flexible memory management without added-on expense. 

Modular Software Support. Any software package for the 
Series 32000 family can be developed independent of all 
other packages, without regard to individual addressing. In 
addition, ROM code is totally relocatable and easy to ac­
cess, which allows a significant reduction in hardware and 
software cost. 

Software Processor Concept. The Series 32000 architec­
ture allows future expansions of the instruction set that can 
be executed by special slave processors, acting as exten­
sions to the CPU. This concept of slave processors is 
unique to the Series 32000 family. It allows software com­
patibility even for future components because the slave 
hardware is transparent to the software. With future ad­
vances in semiconductor technology, the slaves can be 
physically integrated on the CPU chip itself. 

To summarize, the architectural features cited above pro­
vide three primary performance advantages and character­
istics: 

• High-Level Language Support 

• Easy Future Growth Path 

• Application Flexibility 

z 
en 
CAl 
N o 
G) 
-A. 
en • -A. 
o ....... 
Z 
en 
CAl 
N o 
G) 
-A. 
en • -A. 
U1 

EI 



U) r---------------------------------------------------------------------------------------, .... 
I 

CD .... 
CJ 
o 
N 
Cf) 
U) 
Z ..... 
o .... 
cb .... 
CJ 
o 
N 
Cf) 
U) 
Z 

Table of Contents 

1.0 PRODUCT INTRODUCTION 

1.1 NS32CG16 Special Features 

2.0 ARCHITECTURAL DESCRIPTION 

2.1 Register Set 

2.1.1 General Purpose Registers 
2.1.2 Address Registers 
2.1.3 Processor Status Register 
2.1.4 Configuration Register 

2.2 Memory Organization 

2.2.1 Dedicated Tables 

2.3 Instruction Set 

2.3.1 General Instruction Format 
2.3.2 Addressing Modes 
2.3.3 Instruction Set Summary 

2.4 Graphics Support 

2.4.1 Frame Buffer Addressing 
2.4.2 BITBL T Fundamentals 

2.4.2.1 Frame Buffer Architecutre 
2.4.2.2 BIT Alignment 
2.4.2.3 Block Boundaries and Destination Masks 
2.4.2.4 BITBL T Directions 
2.4.2.5 BITBL T Variations 

2.4.3 Graphics Support Instructions 
2.4.3.1 BITBL T (Bit-aligned BLock Transfer) 
2.4.3.2 Pattern Fill 
2.4.3.3 Data Compression, Expansion and 

Magnify 
2.4.3.3.1 Magnifying Compressed Data 

3.0 FUNCTIONAL DESCRIPTION 

3.1 Power and Grounding 

3.2 Clocking 

3.2.1 Power Save Mode 

3.3 Resetting 

3.4 Bus Cycles 

3.4.1 Bus Status 
3.4.2 Basic Read and Write Cycles 
3.4.3 Cycle Extension 
3.4.4 Data Access Sequences 

3.4.4.1 Bit Accesses 
3.4.4.2 Bit Field Accesses 
3.4.4.3 Extending Multiple Accesses 

3.4.5 Instruction Fetches 
3.4.6 Interrupt Control Cycles 

2-98 

3.0 FUNCTIONAL DESCRIPTION (Continued) 
3.4.7 Slave Processor Communication 

3.4.7.1 Slave Processor Bus Cycles 
3.4.7.2 Slave Operand Transfer Sequences 

3.5 Bus Access Control 

3.6 Instruction Status 

3.7 Exception Processing 

3.7.1 Exception Acknowledge Sequence 
3.7.2 Returning from an Exception Service Procedure 
3.7.3 Maskable Interrupts 

3.7.3.1 Non-Vectored Mode 
3.7.3.2 Vectored Mode: Non-Cascaded Case 
3.7.3.3 Vectored Mode: Cascaded Case 

3.7.4 Non-Maskable Interrupt 
3.7.5 Traps 
3.7.6 Instruction Tracing 
3.7.7 Priority Among Exceptions 
3.7.8 Exception Acknowledge Sequences: Detailed 

Flow 
3.7.8.1 Maskable/Non-Maskable Interrupt 

Sequence 
3.7.8.2 Trap Sequence: Traps Other Than Trace 
3.7.8.3 Trace Trap Sequence 

3.8 Slave Processor Instructions 

3.8.1 Slave Processor Protocol 
3.8.2 Floating Point Instructions 

4.0 DEVICE SPECIFICATIONS 

4.1 NS32CG16 Pin Descriptions 

4.1.1 Supplies 
4.1.2 Input Signals 
4.1.3 Output Signals 
4.1.4 Input-Output Signals 

4.2 Absolute Maximum Ratings 

4.3 Electrical Characteristics 

4.4 Switching Characteristics 

4.4.1 Definitions 
4.4.2 Device Testing 
4.4.3 Timing Tables 

4.4.3.1 Output Signals: Internal Propagation 
Delays 

4.4.3.2 Input Signal Requirements 
4.4.4 Timing Diagrams 

Appendix A: INSTRUCTION FORMATS 



List of Illustrations 
NS32CG16 Internal Registers ................................................................................... 2-1 

Processor Status Register (PSR) ................................................................................. 2-2 

Configuration Register (CFG) .................................................................................... 2-3 

Module Descriptor Format ....................................................................................... 2-4 

A Sample Link Table ........................................................................................... 2-5 

General Instruction Format ..............................................................................•....... 2-6 

Index Byte Format ............................................................................................. 2-7 

Displacement Encodings ........................................................................................ 2-8 

Correspondence between Linear and Cartesian Addressing ......................................................... 2-9 

32-Pixel by 32-Scan Line Frame Buffer ........................................................................... 2-10 

Overlapping BITBLT Blocks .................................................................................... 2-11 

B B Instructions Format ........................................................................................ 2-12 

BITWT Instruction Format ...................................................................................... 2-13 

EXTBLT Instruction Format .......................................•............................................ 2-14 

MOVMPi Instruction Format .................................................................................... 2-15 

TBITS Instruction Format ...................................................................................... 2-16 

SBITS Instruction Format ...............................................................................•...... 2-17 

SBITPS Instruction Format ..................................................................................... 2-18 

Bus Activity for a Simple BITBL T Operation ........•.............................................................. 2-19 

Power and Ground Connections .............................................................................•... 3-1 

Crystal Interconnections ...............................................•........................•........•...... 3-2 

Power-On Reset Requirements .................................................................................. 3-3 

General Reset Timings ..................•...................................................................... 3-4 

Bus Connections .........................•..............................................................•...... 3-5 

Read Cycle Timing ........................•.......................................................•.......•.... 3-6 

Write Cycle Timing ......................................................................................•...... 3-7 

Cycle Extension of a Read Cycle ................................................................................. 3-8 

Memory Interface .............................................................................................. 3-9 

Slave Processor Connections .................................................................................. 3-1 0 

Slave Processor Read Cycle ................................................................................... 3-11 

Slave Processor Write Cycle .................................................................................... 3-12 

HOLD Timing, Bus Initially Idle .................................................................................. 3-13 

HOLD Timing, Bus Initially Not Idle .............................................................................. 3-14 

Interrupt Dispatch and Cascade Tables ....................................•...............................•.•... 3-15 

Exception Acknowledge Sequence .............................................................................. 3-16 

Return from Trap (RETTn) Instruction Flow ...............................................•....................... 3-17 

Return from Interrupt (RETI) Instruction Flow ..............................•...................................•.. 3-18 

Interrupt Control Unit Connections (16 Levels) ............................•..•.....................•..........•... 3-19 

Cascaded Interrupt Control Unit Connections ................................•.....................•.............. 3-20 

Service Sequence .................................•.............•............................................ 3-21 

Slave Processor Protocol ..............................................•....................................... 3-22 

Slave Processor Status Word Format ...............................•.............................•.............. 3-23 

Connection Diagram ................................•.....................•............•........•............... 4-1 

Timing Specification Standard (CMOS Output Signals) .............................................................. 4-2 

Timing Specification Standard (TTL Input Signals) ......•...........................................•......•........ 4-3 

Test Loading Configuration .................•........•..............................•......•................•.•.. 4-4 

Read Cycle ..............................................................................•..................... 4-5 

Write Cycle ..............................................................•.....................•...........•... 4-6 

HOLD Acknowledge Timing (Bus Initially Not Idle) ......•........................................................... 4-7 

HOLD Timing (Bus Initially Idle) .....•................•........................................................•.. 4-8 

DMAC Initiated Bus Cycle ....................................................................................... 4-9 

2-99 

z 
en 
w 
N 
o 
C) 
...... 
en . ...... 
o ...... 
z en 
w 
N o 
C) 
...... 
en • ...... 
U1 



II) ..... . 
CD ..... 
C!J 
o 
N 
CW) 
(J) 
Z ....... 
o ..... • CD ..... 
C!J o 
N 
CW) 
(J) 
Z 

List of Illustrations (Continued) 
Slave Processor Write Timing ................................................................................... 4-10 
Slave Processor Read Timing ..........................................................•.............•......... 4-11 
SPC Timing .................................................................................................. 4-12 
Relationship of PFS to Clock Cycles .....................................................................••...... 4-13 
Relationship between Last Data Transfer of an Instruction and PFS Pulse of Next Instruction .......................... .4-14 
Guaranteed Delay, PFS to Non-Sequential Fetch .................................................................. 4-15 
Guaranteed Delay, Non-Sequential Fetch to PFS ..........................................•....................... 4-16 
Relationship of ILO to First Operand Cycle of an Interlocked Instruction .......•...... , ............................... 4-17 
Relationship of ILO to Last Operand Cycle of an Interlocked Instruction .............................................. 4-18 
Relationship of ILO to Any Clock Cycle .......................................................................... 4-19 
Clock Waveforms ............................................................•................................ 4-20 
Power-On Reset .............................................................................................. 4-21 
Non-Power-On Reset .................................................................................•........ 4-22 
INT Interrupt Signal Detection .........................................................•........................ 4-23 

NMllnterrupt Signal Timing ..................................................................................... 4-24 

List of Tables 
NS32CG 16 Addressing Modes ......................................•..........................•................• 2-1 
NS32CG16 Instruction Set Summary ...........................................•..............................•.. 2-2 
'OP' and 'i' Field Encodings ...................................................••.........•...•.•.............•.. 2-3 

External Oscillator Specifications ................................•.•................................•..•••.......• 3-1 
Bus Cycle Categories ..........................•.....................••......................................... 3-2 
Access Sequences ..............•......... " ...........••.........•..........••................................. 3-3 
Interrupt Sequences .................................••......................................................... 3-4 

Floating Point Instruction Protocols .............................•..•.........•....•............................... 3·5 
Test Loading Characteristics ..•........••.................................•............•...........•.•.. " ....... 4-1 

2-100 



~----------------------------------------------------------~z 

1.0 Product Information (Continued) 

1.1 NS32CG16 SPECIAL FEATURES 

In addition to the above Series 32000 features, the 
NS32CG16 provides features that make the device ex­
tremely attractive for a wide range of applications where 
graphics support, low chip count, and low power consump­
tion are required. 

The most relevant of these features are the graphics sup­
port capabilities, that can be used in applications such as 
printers, CRT terminals, and other varieties of display sys­
tems, where text and graphics are to be handled. 

Graphics support is provided by eighteen instructions that 
allow operations such as BITBLT, data compression/expan­
sion, fills, and line drawing, to be performed very efficiently. 
In addition, the device can be easily interfaced to an exter­
nal BITBL T Processing Unit (BPU) for high BITBL T perform­
ance. 

The NS32CG16 allows systems to be built with a relatively 
small amount of random logic. The bus is highly optimized 
to allow simple interfacing to a large variety of DRAMs and 
peripheral devices. All the relevant bus access signals and 
clock signals are generated on-chip. The cycle extension 
logic is also incorporated on-chip. 

The device is fabricated in a low-power, double-poly, single 
metal, CMOS technology. It also includes a power-save fea­
ture that allows the clock to be slowed down under software 
control, thus minimizing the power consumption. This fea­
ture can be used in those applications where power saving 
during periods of low performance demand is highly desir­
able. 

The bus characteristics and the power save feature are de­
scribed in the "Functional Description" section. A general 
overview of BITBL T operations and a description of the 
graphics support instructions is provided in Section 2.4. De­
tails on all the NS32CG16 instructions can be found in the 
NS32CG16 Printer/Display Processor Programmer's Refer­
ence Supplement and the related NS32CG16 supplement. 

Below is a summary of the instructions that are directly ap­
plicable to graphics along with their intended use. 

Instruction Application 

BBAND 
BBOR 
BBFOR 
BBXOR 
BBSTOD 
BITWT 
EXTBLT 

MOVMP 

TBITS 

The BitBlt group of instructions provide a 
method of quickly imaging characters, creating 
patterns, windowing and other block oriented 
effects. 

Move Multiple Pattern is a very fast instruction 
for clearing memory and drawing patterns and 
lines. 

Test Bit String will measure the length of 1's or 
O's in an image, supporting many data 
compression methods (RLL), TBITS may also 
be used to test for boundaries of images. 

2-101 

Instruction 

SBITS 

Application 

Set' Bit String is a very fast instruction for filling 
objects, outline characters and drawing 
horizontal lines. 

SBITPS 

SBIT 
CBIT 
TBIT 
IBIT 

INDEX 

The TBITS and SBITS instructions support 
Group 3 and Group 4 CCITT communications 
(FAX). 

Set Bit Perpendicular String is a very fast 
instruction for drawing vertical, horizontal and 
45° lines. 
In printing applications SBITS and SBITPS may 
be used to express portrait and landscape 
respectively from the same compressed font 
data. The size of the character may be scaled as 
it is drawn. 

The Bit group of instructions enable single pixels 
anywhere in memory to be set, cleared, tested 
or inverted. 

The INDEX instruction combines a multiply-add 
sequence into a single instruction. This provides 
a fast translation of an X-Y address to a pixel 
relative address. 

2.0 Architectural Description 
2.1 REGISTER SET 

The NS32CG16 CPU has 17 internal registers grouped ac­
cording to functions as follows: 8 general purpose, 7 ad­
dress, 1 processor status and 1 configuration. Figure 2-1 
shows the NS32CG16 internal registers. 

Address 
~ 3281ts ----+ 

PC 

SPO 

SP1 

FP 

SB 

INTBASE 

I MOD 

Processor Status 

PSR I 

General Purpose 
~ 3281ts ----+ 

RO 

R1 

R2 

R3 

R4 

R5 

R6 

R7 

Configuration 

I CFG I 
FIGURE 2-1. NS32CG16 Internal Registers 

2.1.1 General Purpose Registers 
There are eight registers (RO-R7) used for satisfying the 
high speed general storage requirements, such as holding 
temporary variables and addresses. The general purpose 
registers are free for any use by the programmer. They are 
32 bits in length. If a general purpose register is specified for 

en w 
I\) 

o 
Q 
...... 
0) . ...... 
o ....... 
z en 
w 
I\) 

o 
Q ...... 
0) . ...... 
U1 

PI 



U') ,.... . 
CD ,.... 
<!l 
o 
N 
C") 
U) 
Z ....... 
o ,.... . 
CD ,.... 
<!l 
o 
N 
C") 
U) 
Z 

2.0 Architectural Description (Continued) 

an operand that is 8 or 16 bits long, only the low part of the 
register is used; the high part is not referenced or modified. 

2.1.2 Address Registers 

The seven address registers are used by the processor to 
implement specific address functions. Except for the MOD 
register that is 16 bits wide, all the others are 32 bits. In the 
NS32CG16 only the lower 24 bits are implemented in the six 
32-bit address registers. The top 8 bits are always zero. A 
description of the address registers follows. 

PC-Program Counter. The PC register is a pointer to the 
first byte of the instruction currently being executed. The PC 
is used to reference memory in the program section. 

SPO, SP1-Stack Pointers. The SPO register points to the 
lowest address of the last item stored on the INTERRUPT 
STACK. This stack is normally used only by the operating 
system. It is used primarily for storing temporary data, and 
holding return information for operating system subroutines 
and interrupt and trap service routines. The SP1 register 
points to the lowest address of the last item stored on the 
USER STACK. This stack is used by normal user programs 
to hold temporary data and subroutine return information. 

When a reference is made to the selected Stack Pointer 
(see PSR S-bit), the terms 'SP Register' or 'SP' are used. 
SP refers to either SPO or SP1, depending on the setting of 
the S bit in the PSR register. If the S bit in the PSR is 0, SP 
refers to SPO. If the S bit in the PSR is 1 then SP refers to 
SP1. 

Stacks in the Series 32000 family grow downward in memo­
ry. A Push operation pre-decrements the Stack Pointer by 
the operand length. A Pop operation post-increments the 
Stack Pointer by the operand length. 

FP-Frame Pointer. The FP register is used by a procedure 
to access parameters and local variables on the stack. The 
FP register is set up on procedure entry with the ENTER 
instruction and restored on procedure termination with the 
EXIT instruction. 

The frame pointer holds the address in memory occupied by 
the old contents of the frame pointer. 

SB-Static Base. The SB register points to the global vari­
ables of a software module. This register is used to support 
relocatable global variables for software modules. The SB 
register holds the lowest address in memory occupied by 
the global variables of a module. 

INTBASE-Interrupt Base. The INTBASE register holds 
the address of the dispatch table for interrupts and traps 
(Section 3.2.1). 

MOD-Module. The MOD register holds the address of the 
module descriptor of the currently executing software mod­
ule. The MOD register is 16 bits long, therefore the module 
table must be contained within the first 64 kbytes of memo­
ry. 

2.1.3 Processor Status Register 

The Processor Status Register (PSR) holds status informa­
tion for the microprocessor. 

2-102 

The PSR is sixteen bits long, divided into two eight-bit 
halves. The low order eight bits are accessible to all pro­
grams, but the high order eight bits are accessible only to 
programs executing in Supervisor Mode. 

\15 BI 817 °1 
FIGURE 2·2. Processor Status Register (PSR) 

C The C bit indicates that a carry or borrow occurred after 
an addition or subtraction instruction. It can be used with 
the ADDC and SUBC instructions to perform multiple­
precision integer arithmetic calculations. It may have a 
setting of 0 (no carry or borrow) or 1 (carry or borrow). 

T The T bit causes program tracing. If this bit is set to 1, a 
TRC trap is executed after every instruction (Section 
3.7.6). 

L The L bit is altered by comparison instructions. In a com­
parison instruction the L bit is set to "1" if the second 
operand is less than the first operand, when both oper­
ands are interpreted as unsigned integers. Otherwise, it 
is set to "0". In Floating-Point comparisons, this bit is 
always cleared. 

K Reserved for use by the CPU. 

J Reserved for use by the CPU. 

F The F bit is a general condition flag, which is altered by 
many instructions (e.g., integer arithmetic instructions 
use it to indicate overflow). 

Z The Z bit is altered by comparison instructions. In a com­
parison instruction the Z bit is set to "1" if the second 
operand is equal to the first operand; otherwise it is set 
to "0". 

N The N bit is altered by comparison instructions. In a 
comparison instruction the N bit is set to "1" if the sec­
ond operand .is less than the first operand, when both 
operands are interpreted as signed integers. Otherwise, 
it is set to "0". 

U If the U bit is "1" no privileged instructions may be exe­
cuted. If the U bit is "0" then all instructions may be 
executed. When U = 0 the processor is said to be in Su­
pervisor Mode; when U = 1 the processor is said to be in 
User Mode. A User Mode program is restricted from exe­
cuting certain instructions and accessing certain regis­
ters which could interfere with the operating system. For 
example, a User Mode program is prevented from 
changing the setting of the flag used to indicate its own 
privilege mode. A Supervisor Mode program is assumed 
to be a trusted part of the operating system, hence it has 
no such restrictions. 

5 The S bit specifies whether the SPO register or SP1 reg­
ister is used as the Stack Pointer. The bit is automatical­
ly cleared on interrupts and traps. It may have a setting 
of 0 (use the SPO register) or 1 (use the SP1 register). 

P The P bit prevents a TRC trap from occurring more than 
once for an instruction (Section 3.7.6). It may have a 
setting of 0 (no trace pending) or 1 (trace pending). 

If 1= 1, then all interrupts will be accepted. If 1=0, only 
the NMI interrupt is accepted. Trap enables are not af­
fected by this bit. 



2.0 Architectural Description (Continued) 

B Reserved for use by the CPU. This bit is set to 1 during 
the execution of the EXTBL T instruction and causes the 
BPU signal to become active. Upon reset, B is set to 
zero and the BPU signal is set high. 

Note 1: When an interrupt is acknowiedged, the B, I, P, Sand U bits are set 
to zero and the BJ5U signal is set high. A return from interrupt will 
restore the original values from the copy of the PSR register saved 
in the interrupt stack. 

Note 2: If BITBl T (BB) instructions are executed in an interrupt routine, the 
PSR bits J and K must be cleared first. 

2.1.4 Configuration Register 

The Configuration Register (CFG) is 8 bits wide, of which 
four bits are implemented. The implemented bits are used to 
declare the presence of certain external devices and to se­
lect the clock scaling factor. CFG is programmed by the 
SETCFG instruction. The format of CFG is shown in Figure 
2-3. The various control bits are described below. 

17 °1 . I I ci M I F II 
FIGURE 2·3. Configuration Register (CFG) 

Interrupt vectoring. This bit controls whether maskable 
interrupts are handled in nonvectored (I = 0) or vectored 
(I = 1) mode. Refer to Section 3.2.3 for more information. 

F Floating·point instruction set. This bit indicates whether 
a floating-point unit (FPU) is present to execute floating­
point instructions. If this bit is 0 when the CPU executes 
a floating-point instruction, a Trap (UNO) occurs. If this 
bit is 1, then the CPU transfers the instruction and any 
necessary operands to the FPU using the slave-proces­
sor protocol described in Section 3.1.4.1. 

M Clock scaling. This bit is used in conjuction with the C bit 
to select the clock scaling factor. 

C Clock scaling. Same as the M bit above. Refer to Sec-
tion 3.2.1 on "Power Save Mode" for details. 

2.2 MEMORY ORGANIZATION 

The main memory of the NS32CG16 is a uniform linear ad­
dress space. Memory locations are numbered sequentially 
starting at zero and ending at 224 -1. The number specify­
ing a memory location is called an address. The contents of 
each memory location is a byte consisting of eight bits. Un­
less otherwise noted, diagrams in this document show data 
stored in memory with the lowest address on the right and 
the highest address on the left. Also, when data is shown 
vertically, the lowest address is at the top of a diagram and 
the highest address at the bottom of the diagram. When bits 
are numbered in a diagram, the least significant bit is given 
the number zero, and is shown at the right of the diagram. 
Bits are numbered in increasing significance and toward the 
left. 

A °1 
Byte at Address A 

Two contiguous bytes are called a word. Except where not­
ed, the least significant byte of a word is stored at the lower 
address, and the most significant byte of the word is stored 
at the next higher address. In memory, the address of a 
word is the address of its least significant byte, and a word 
may start at any address. 

2-103 

A+1 A °1 
MSB LSB 

Word at Address A 

Two contiguous words are called a double-word. Except 
where noted, the least significant word of a double-word is 
stored at the lowest address and the most significant word 
of the double-word is stored at the address two higher. In 
memory, the address of a double-word is the address of its 
least significant byte, and a double-word may start at any 
address. 

24123 16 115 

A+3 A+2 A+1 A °1 
MSB LSB 

Double Word at Address A 

Although memory is addressed as bytes, it is actually orga· 
nized as words. Therefore, words and double-words that are 
aligned to start at even addresses (multiples of two) are 
accessed more quickly than words and double-words that 
are not so aligned. 

2.2.1 Dedicated Tables 

Two of the NS32CG16 dedicated registers (MOD and INT· 
BASE) serve as pointers to dedicated tables in memory. 

The INTBASE register points to the Interrupt Dispatch and 
Cascade tables. These are described in Section 3.8. 

The MOD register contains a pointer into the Module Table, 
whose entries are called Module Descriptors. A Module De­
scriptor contains four pointers, three of which are used by 
the NS32CG16. The MOD register contains the address of 
the Module Descriptor for the currently running module. It is 
automatically updated by the Call External Procedure in­
structions (CXP and CXPD). 

The format of a Module Descriptor is shown in Figure 2-4. 
The Static Base entry contains the address of static data 
assigned to the running module. It is loaded into the CPU 
Static Base register by the CXP and CXPD instructions. The 
Program Base entry contains the address of the first byte of 
instruction code in the module. Since a module may have 
multiple entry points, the Program Base pointer serves only 
as a reference to find them. 

-I"" 

31 

_ .. 

15 

L MOD J 
I 

STATIC BASE 
{J 

LINK TABLE ADDRESS 

PROGRAM BASE 

RESERVED 

-... 
TL/EE/9424-2 

FIGURE 2·4. Module Descriptor Format 

z en w 
N o 
C) ..... 
0) . ..... 
o ..... 
z en 
w 
N 
o 
C) ..... 
0) 

• ..... 
U1 



II) .,.. . 
CD .,.. 
" o 
'" ('I) 
en z 
....... o .,.. . 
CD .,.. 

" o 
'" ('I) 

en z 

2.0 Architectural Description (Continued) 

The Link Table Address points to the Link Table for the 
currently running module. The Link Table provides the infor­
mation needed for: 

1) Sharing variables between modules. Such variables 
are accessed through the Link Table via the External 
addressing mode . 

2) Transferring control from one module to another. This 
is done via the Call External Procedure (CXP) instruc­
tion. 

The format of a Link Table is given in Figure 2-5. A Link 
Table Entry for an external variable contains the 32-bit ad­
dress of that variable. An entry for an external procedure 
contains two 16-bit fields: Module and Offset. The Module 
field contains the new MOD register contents for the mod­
ule being entered. The Offset field is an unsigned number 
giving the position of the entry point relative to the new 
module's Program Base pointer. 

For further details of the functions of these tables, see the 
Series 32000 Instruction Set Reference Manual. 

-~1 ENTRY 
o-r-

ABSOLUTE ADDRESS ( VARIABLE) 

ABSOLUTE ADDRESS ( VARIABLE) 

OFFSET I MODULE ( PROCEDURE) 

-'- -.... 
TL/EE/9424-3 

FIGURE 2-5. A Sample Link Table 

2.3 INSTRUCTION SET 

2.3.1 General Instruction Format 

Figure 2-6 shows the general format of a Series 32000 in­
struction. The Basic Instruction is one to three bytes long 
and contains the Opcode and up to two 5-bit General Ad­
dressing Mode ("Gen") fields. Following the Basic Instruc­
tion field is a set of optional extensions, which may appear 
depending on the instruction and the addressing modes se­
lected. 

Index Bytes appear when either or both Gen fields specify 
Scaled Index. In this case, the Gen field specifies only the 
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies 
which General Purpose Register to use as the index, and 
which addressing mode calculation to perform before index­
ing. See Figure 2-7. 

Following Index Bytes come any displacements (addressing 
constants) or immediate values associated with the select­
ed addressing modes. Each Disp/lmm field may contain 
one of two displacements, or one immediate value. The size 
of a Displacement field is encoded within the top bits of that 
field, as shown in Figure 2-8, with the remaining bits inter­
preted as a signed (two's complement) value. The size of an 
immediate value is determined from the Opcode field. Both 
Displacement and Immediate fields are stored most-signifi­
cant byte first. Note that this is different from the memory 
representation of data (Section 2.2). 

Some instructions require additional "implied" immediates 
and/or displacements, apart from those associated with ad­
dressing modes. Any such extensions appear at the end of 
the instruction, in the order that they appear within the list of 
operands in the instruction definition (Section 2.3.3). 

GEN. ADDR. MODE l REG. NO. 
o I 

FIGURE 2-7. Index Byte Format 

2.3.2 Addressing Modes 

TL/EE/9424-5 

The NS32CG16 CPU generally accesses an operand by cal­
culating its Effective Address based on information avail­
able when the operand is to be accessed. The method to be 
used in performing this calculation is specified by the pro­
grammer as an "addressing mode." 

Addressing modes in the NS32CG16 are designed to opti­
mally support high-level language accesses to variables. In 
nearly all cases, a variable access requires only one ad­
dressing mode, within the instruction that acts upon that 
variable. Extraneous data movement is therefore minimized. 

NS32CG16 Addressing Modes fall into nine basic types: 

Register: The operand is available in one of the eight Gen­
eral Purpose Registers. In certain Slave Processor instruc­
tions, an auxiliary set of eight registers may be referenced 
instead. 

Register Relative: A General Purpose Register contains an 
address to which is added a displacement value from the 
instruction, yielding the Effective Address of the operand in 
memory. 

OPTIONAL BASIC 
EXTENSIONS INSTRUCTION 

rr------------------~A'-------------------~\r~--------~A-----------, 

DISP2 DISP1 DISP21DISP1 
; : 
I I 

I 

GEN I GEN I 
IMPLIED INDEX INDEX I I 

DISP DISP ADDR I ADDR I OPCODE IMMEDIATE BYTE BYTE MODE I 
MODE I 

OPERAND(S) I I 
A I B I 

IMM IMM 
I I 

I : 

t 4,. j 
TL/EE/9424-4 

FIGURE 2-6. General Instruction Format 

2-104 



2.0 Architectural Description (Continued) 

Memory Space: Identical to Register Relative above, ex­
cept that the register used is one of the dedicated registers 
PC, SP, S8 or FP. These registers point to data areas gen­
erally needed by high-level languages. 

Memory Relative: A pointer variable is found within the 
memory space pointed to by the SP, S8 or FP register. A 
displacement is added to that pointer to generate the Effec­
tive Address of the operand. 

7 

1 

Byte Displacement: Range - 64 to + 63 

SIGNED DISPLACEMENT 
o I 

Word Displacement: Range -8192 to +8191 

I 
I 

Double Word Displacement: 
Range (Entire Addressing Space) 

0 

1 I 
# 

"f(,,<1-
~q"';: 

Q'\ 
~f("Q 

r:a-(j 

TLlEE/9424-6 

FIGURE 2-8. Displacement Encodlngs 

2-105 

Immediate: The operand is encoded within the instruction. 
This addressing mode is not allowed if the operand is to be 
written. 

Absolute: The address of the operand is specified by a 
displacement field in the instruction. 

External: A pointer value is read from a specified entry of 
the current Link Table. To this pointer value is added a dis­
placement, yielding the Effective Address of the operand. 

Top of Stack: The currently-selected Stack Pointer (SPO or 
SP1) specifies the location of the operand. The operand is 
pushed or popped, depending on whether it is written or 
read. 

Scaled Index: Although encoded as an addressing mode, 
Scaled Indexing is an option on any addressing mode ex­
cept Immediate or another Scaled Index. It has the effect of 
calculating an Effective Address, then multiplying aflY Gen­
eral Purpose Register by 1, 2, 4 or 8 and adding into the 
total, yielding the final Effective Address of the operand. 

Table 2-1 is a brief summary of the addressing modes. For a 
complete description of their actions, see the Series 32000 
Instruction Set Reference Manual. 

In addition to the general modes, Register-Indirect with 
auto-increment/decrement and warps or pitch are available 
on several of the graphics instructions. 

z en w 
N o 
G) ..... 
0") . ..... 
o ....... 
z en w 
N o 
G) ..... 
0") . ..... 
U1 

fJ 



II) .... . 2.0 Architectural Description (Continued) CD .... 
" TABLE 2·1. NS32CG16 Addressing Modes 0 
N 
C") ENCODING MODE ASSEMBLER SYNTAX EFFECTIVE ADDRESS 
CJ) 

Register Z ....... 00000 Register 0 RO or FO None: Operand is in the specified 0 .... 00001 Register 1 R1 or F1 register . • CD 00010 Register 2 R2 or F2 .... 
" 00011 Register 3 R30rF3 
0 00100 Register 4 R4 or F4 N 
C") 00101 Register 5 R5 or F5 CJ) 
Z 00110 Register 6 R6 or F6 

00111 Register 7 R6 or F7 
Register Relative 
01000 Register 0 relative disp(RO) Disp + Register. 
01001 Register 1 relative disp(R1) 
01010 Register 2 relative disp(R2) 
01011 Register 3 relative disp(R3) 
01100 Register 4 relative .disp(R4) 
01101 Register 5 relative disp(R5) 
01110 Register 6 relative disp(R6) 
01111 Register 7 relative disp(R7) 
Memory Relative 
10000 Frame memory relative disp2(disp1 (FP» Disp2 + Pointer; Pointer found at 
10001 Stack memory relative disp2(disp1 (SP» address Disp 1 + Register. "SP" 
10010 Static memory relative disp2(disp1 (S8» is either SPO or SP1, as selected 

in PSR. 
Reserved 
10011 (Reserved for Future Use) 
Immediate 
10100 Immediate value None: Operand is input from 

instruction queue. 
Absolute 
10101 Absolute @disp Disp. 
External 
10110 External EXT (disp1) + disp2 Disp2 + Pointer; Pointer is found 

at Link Table Entry number Disp1. 
Top Of Stack 
10111 Top of stack TOS Top of current stack, using either 

User or Interrupt Stack Pointer, 
as selected in PSR. Automatic 
Push/Pop included. 

Memory Space 
11000 Frame memory disp(FP) Disp + Register; "SP" is either 
11001 Stack memory disp(SP) SPO or SP1, as selected in PSR. 
11010 Static memory disp(S8) 
11011 Program memory *+ disp 
Scaled Index 
11100 Index, bytes mode[Rn:8] EA (mode) + Rn. 
11101 Index, words mode[Rn:W] EA (mode) + 2 x Rn. 
11110 Index, double words mode[Rn:D] EA (mode) + 4 X Rn. 
11111 Index, quad words mode[Rn:Q] EA (mode) + 8xRn. 

"Mode" and "n" are contained 
within the Index 8yte. 
EA (mode) denotes the effective 
address generated using mode. 

2·106 



2.0 Architectural Description (Continued) 

2.3.3 Instruction Set Summary gen = General operand. Any addressing mode can be speci· 
fied. Table 2-2 presents a brief description of the NS32CG16 

instruction set. The Format column refers to the Instruction 
Format tables (Appendix A). The Instruction column gives 
the instruction as coded in assembly language, and the De· 
scription column provides a short description of the function 
provided by that instruction. Further details of the exact op· 
erations performed by each instruction may be found in the 
Series 32000 Instruction Set Reference Manual and the 
NS32CG16 Printer/Display Processor Programmer's Refer· 
ence. 

short= A 4-bit value encoded within the Basic Instruction 
(see Appendix A for encodings). 

imm= Implied immediate operand. An 8-bit value appended 
after any addressing extensions. 

disp = Displacement (addressing constant): 8, 16 or 32 bits. 
All three lengths legal. 

reg=Any General Purpose Register: RD-R7. 

areg = Any Processor Register: SP, SB, FP, INTBASE, 
MOD, PSR, US (bottom 8 PSR bits). Notations: 

I = Integer length suffix: B = Byte 
W= Word 
o = Double Word 

f = Floating Point length suffix: F = Standard Floating 
L = Long Floating 

cond = Any condition code, encoded as a 4-bit field within 
the Basic Instruction (see Appendix A for encodings). 

TABLE 2·2. NS32CG16 Instruction Set Summary 
MOVES 

Format Operation Operands Description 

4 MOVi gen,gen Move a value. 
2 MOVQi short,gen Extend and move a signed 4-bit constant. 
7 MOVMi gen,gen,disp Move multiple: disp bytes (1 to 16). 
7 MOVZBW gen,gen Move with zero extension. 
7 MOVZiD gen,gen Move with zero extension. 
7 MOVXBW gen,gen Move with sign extension. 
7 MOVXiD gen,gen Move with sign extension. 
4 ADDR gen,gen Move effective address. 

INTEGER ARITHMETIC 
Format Operation Operands Description 

4 ADDi gen,gen Add. 
2 ADDQi short,gen Add signed 4-bit constant. 
4 ADDCi gen,gen Add with carry. 
4 SUBi gen,gen Subtract. 
4 SUBCi gen,gen Subtract with carry (borrow). 
6 NEGi gen,gen Negate (2's complement). 
6 ABSi gen,gen Take absolute value. 
7 MUll gen,gen Multiply. 
7 QUOi gen,gen Divide, rounding toward zero. 
7 REMi gen,gen Remainder from QUO. 
7 DIVi gen,gen Divide, rounding down. 
7 MODi gen,gen Remainder from DIV (Modulus). 
7 MEIi gen,gen Multiply to extended integer. 
7 DEli gen,gen Divide extended integer. 

PACKED DECIMAL (BCD) ARITHMETIC 
Format Operation Operands Description 

6 ADDPi gen,gen Add packed. 
6 SUBPi gen,gen Subtract packed. 

2-107 

z 
en w 
N o 
C) ...... 
0') 

I ...... 
o ....... 
z 
en w 
N o 
C) ...... 
0') 
I ...... 

U1 



Ln ,.... *' 2.0 Architectural Description (Continued) 

~ 
~ TABLE 2·2. NS32CG16 Instruction Set Summary (Continued) 
~ INTEGER COMPARISON 

Format Operation Operands Description Z ...... 
o ,.... . 
<D ,.... 
~ o 
C\I 
C") 
(J) 
Z 

4 CMPi gen,gen Compare. 
2 CMPQi short,gen Compare to signed 4-bit constant. 
7 CMPMi gen,gen,disp Compare multiple: disp bytes (1 to 16). 

LOGICAL AND BOOLEAN 
Format Operation Operands Description 

4 ANDi gen,gen Logical AND. 
4 ORi gen,gen Logical OR. 
4 BICi gen,gen Clear selected bits. 
4 XORi gen,gen Logical exclusive OR. 
6 COMi gen,gen Complement all bits. 
6 NOTi gen,gen Boolean complement: LSB only. 
2 Scondi gen Save condition code (cond) as a Boolean variable of size i. 

SHIFTS 
Format Operation Operands Description 

6 LSHi gen,gen Logical shift, left or right. 
6 ASHi gen,gen Arithmetic shift, left or right. 
6 ROTi gen,gen Rotate, left or right. 

BIT FIELDS 

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records used in 
Pascal. "Extract" instructions read and align a bit field. "Insert" instructions write a bit field from an aligned source. 

Format Operation Operands Description 

8 EXTi reg,gen,gen,disp Extract bit field (array oriented). 
8 INSi reg,gen,gen,disp Insert bit field (array oriented). 
7 EXTSi gen,gen,imm,imm Extract bit field (short form). 
7 INSSi gen,gen,imm,imm Insert bit field (short form). 
8 CVTP reg,gen,gen Convert to bit field pointer. 

ARRAYS 
Format Operation Operands Description 

8 CHECKi reg,gen,gen Index bounds check. 
8 INDEXi reg,gen,gen Recursive indexing step for multiple·dimensional arrays. 

2-108 



2.0 Architectural Description (Continued) 

TABLE 2-2. NS32CG16 Instruction Set Summary (Continued) 

STRINGS 

String instructions assign specific functions to the General 
Purpose Registers: 

Options on all string instructions are: 

B (Backward): Decrement string pointers after each 
step rather than incrementing. R4 - Comparison Value 

R3 - Translation Table Pointer 

R2 - String 2 Pointer 

R1 - String 1 Pointer 

RO - Limit Count 

Format Operation 

5 MOVSi 
MOVST 

5 CMPSi 
CMPST 

5 SKPSi 
SKPST 

JUMPS AND LINKAGE 

Format Operation 

3 JUMP 
0 BR 
0 Bcond 
3 CASEi 
2 ACBi 
3 JSR 

BSR 
CXP 

3 CXPD 
SVC 
FLAG 
BPT 
ENTER 
EXIT 
RET 
RXP 
RETI 
RETI 

CPU REGISTER MANIPULATION 

Format Operation 

SAVE 
RESTORE 

2 LPRi 
2 SPRi 
3 ADJSPi 
3 BISPSRi 
3 BICPSRi 
5 SETCFG 

Operands 

options 
options 
options 
options 
options 
options 

Operands 

gen 
disp 
disp 
gen 
short,gen,disp 
gen 
disp 
disp 
gen 

[reg list], disp 
[reg list] 

disp 
disp 
disp 

Operands 

[reg list] 
[reg list] 

areg,gen 
areg,gen 
gen 
gen 
gen 
[option list] 

U (Until match): End instruction if String 1 entry matches 
R4. 

W (While match): End instruction if String 1 entry does not 
match R4. 

All string instructions end when RO decrements to zero. 

Description 

Move string 1 to string 2. 
Move string, translating bytes. 
Compare string 1 to string 2. 
Compare, translating string 1 bytes. 
Skip over string 1 entries. 
Skip, translating bytes for until/while. 

Description 

Jump. 
Branch (PC Relative). 
Conditional branch. 
Multiway branch. 
Add 4-bit constant and branch if non-zero. 
Jump to subroutine. 
Branch to subroutine. 
Call external procedure 
Call external procedure using descriptor. 
Supervisor call. 
Flag trap. 
Breakpoint trap. 
Save registers and allocate stack frame (Enter Procedure). 
Restore registers and reclaim stack frame (Exit Procedure). 
Return from subroutine. 
Return from external procedure call. 
Return from trap. (Privileged) 
Return from interrupt. (Privileged) 

Description 

Save general purpose registers. 
Restore general purpose registers. 
Load dedicated register. (Privileged if PSR or INTBASE) 
Store dedicated register. (Privileged if PSR or INTBASE) 
Adjust stack pointer. 
Set selected bits in PSR. (Privileged if not Byte length) 
Clear selected bits in PSR. (Privileged if not Byte length) 
Set configuration register. (Privileged) 

2-109 

z en 
w 
N 
(') 
Ci) 
...A. 
0) 
• ...A. 
o ...... 
Z en 
w 
N 
(') 
Ci) 
...A. 
0) . 
...A. 
U1 



lot) .... 
• 2.0 Architectural Description (Continued) CD .... 

C!J 
0 TABLE 2-2. NS32CG16 Instruction Set Summary (Continued) 
N 
C"') FLOATING POINT en Format Operation Operands Description Z ...... 11 MOVf gen,gen Move a floating point value. 
0 .... 9 MOVlF gen,gen Move and shorten a long value to standard. • CD 9 MOVFl gen,gen Move and lengthen a standard value to long. .... 
C!J 9 MOVif gen,gen Convert any integer to standard or long floating. 
0 9 ROUNDfi gen,gen Convert to integer by rounding. 
N 
C"') 9 TRUNCfi gen,gen Convert to integer by truncating, toward zero. 
en 9 FlOORfi gen,gen Convert to largest integer less than or equal to value. Z 

11 ADDf gen,gen Add. 
11 SUBf gen,gen Subtract. 
11 MULf gen,gen Multiply. 
11 DIVf gen,gen Divide. 
11 CMPf gen,gen Compare. 
11 NEGf gen,gen Negate. 
11 ABSf gen,gen Take absolute value. 
9 lFSR gen load FSR. 
9 SFSR gen Store FSR. 
12 POlYf gen,gen Polynomial Step. 
12 DOTf gen,gen Dot Product. 
12 SCAlBf gen,gen Binary Scale. 
12 lOGBf gen,gen Binary log. 

MISCELLANEOUS 
Format Operation Operands Description 

NOP No operation. 
WAIT Wait for interrupt. 
DIA Diagnose. Single-byte "Branch to Self" for hardware 

breakpointing. Not for use in programming. 

GRAPHICS 
Format Operation Operands Description 

5 BBOR options· Bit-aligned block transfer 'OR'. 
5 BBAND options Bit-aligned block transfer 'AND'. 
5 BBFOR Bit-aligned block transfer fast 'OR'. 
5 BBXOR options Bit-aligned block transfer 'XOR'. 
5 BBSTOD options Bit-aligned block source to destination. 
5 BITWT Bit-aligned word transfer. 
5 EXTBlT options External bit-aligned block transfer. 
5 MOVMPi Move multiple pattern. 
5 TBITS options Test bit string. 
5 SBITS Set bit string. 
5 SBITPS Set bit perpendicular string. 

BITS 
Format Operation Operands Description 

4 TBITi gen,gen Test bit. 
6 SBITi gen,gen Test and set bit. 
6 SBITIi gen,gen Test and set bit, interlocked. 
6 CBITi gen,gen Test and clear bit. 
6 CBITIi gen,gen Test and clear bit, interlocked. 
6 IBITi gen,gen Test and invert bit. 
S FFSi gen,gen Find first set bit. 

·Note: Options are controlled by fields of the Instruction, PSR status bits, or dedicated register values. 

2-110 



2.0 Architectural Description (Continued) 

2.4 GRAPHICS SUPPORT 

The following sections provide a brief description of the 
NS32CG16 graphics support capabilities. Basic discussions 
on frame buffer addressing and BITBLT operations are also 
provided. More detailed Information on the NS32CG16 
graphics support instructions can be found in the 
NS32CG16 Printer/Display Processor Programmer's Refer­
ence. 

2.4.1 Frame Buffer Addressing 

There are two basic addressing schemes for referencing 
pixels within the frame buffer: Linear and Cartesian (or x-y). 
Linear addressing associates a single number to each pixel 
representing the physical address of the corresponding bit 
in memory. Cartesian addressing associates two numbers 
to each pixel representing the x and y coordinates of the 
pixel relative to a point in the Cartesian space taken as the 
origin. The Cartesian space is generally defined as having 
the origin in the upper left. A movement to the right increas­
es the x coordinate; a movement downward increases the y 
coordinate. 

The correspondence between the location of a pixel in the 
Cartesian space and the physical (BID address in memory 
is shown in Figure 2-9. The origin of the Cartesian space 
(x=O, y=O) corresponds to the bit address 'ORG'. Incre­
menting the x coordinate increments the bit address by one. 
Incrementing the y coordinate increments the bit address by 
an amount representing the warp (or pitch) of the Cartesian 
space. Thus, the linear address of a pixel at location (x, y) in 
the Cartesian space can be found by the following expres­
sion. 

ADDR = ORG + y·WARP + x 

Warp is the distance (in bits) in the physical memory space 
between two vertically adjacent bits in the Cartesian space. 

Example 1 below shows two NS32CG16 instruction se­
quences to set a single pixel given the x and y coordinates. 
Example 2 shows how to create a fat pixel by setting four 
adjacent bits in the Cartesian space. 

Example 1: Set pixel at location (x, y) 

Setup: RO x coordinate 

R1 y coordinate 

Instruction Sequence 1: 

MULD WARP, R1 
ADDD RO, R1 
SBITD R1, ORG 

Instruction Sequence 2: 

INDEXD R1, (WARP-1), RO 
SBITD R1, ORG 

Y*WARP 
+ X = BIT OFFSET 
SET PIXEL 

Y*WARP + X 
SET PIXEL 

2-111 

Example 2: Create fat pixel by setting bits at locations 
(x, y), (x+1, y), (x, y+1) and (x+1, y+1). 

Setup: RO x coordinate 

R1 y coordinate 

Instruction Sequence: 

INDEXD R1, (WARP-1), RO 
SBITD 41, ORG 

ADDQD 1, R1 
SBITD R1, ORG 

ADDD (WARP-1), R1 
SBITD R1, ORG 

ADDQD 1, R1 
SBITD R1, ORG 

ORG ORG+ 1 ORG+ 2 

~ ~ ~ 

+- ORG+WARP 

+- ORG + 2·WARP 

BIT ADDRESS 
SET FIRST PIXEL 

(X+1, Y) 
SECOND PIXEL 

(X, Y+1) 
THIRD PIXEL 

(X+1, Y+1) 
LAST PIXEL 

x 

• (X,Y) 

t.. ORG+Y.WARP+X 

Y 
TL/EE/9424-61 

FIGURE 2-9. Correspondence between Linear and 
Cartesian Addressing 

2.4.2 BITBL T Fundamentals 

BITBLT, BIT-aligned BLock Transfer, is a general opera­
tor that provides a mechanism to move an arbitrary size 
rectangle of an image from one part of the frame buffer 
to another. During the data transfer process a bitwise 
logical operation can be performed between the source 
and the destination data. BITBLT is also called Raster­
Op: operations on rasters. It defines two rectangular ar­
eas, source and destination, and performs a logical oper­
ation (e.g., AND, OR, XOR) between these two areas and 
stores the result back to the destination. It can be ex­
pressed in simple notation as: 

Source op Destination ~ Destination 
op: AND, OR, XOR, etc. 

z 
(J) 
w 
I\) 

o 
Q ..... 
cp ..... 
o ....... 
Z 
(J) 
w 
I\) 

o 
Q ..... 
0) 
• ..... 

U1 



~ r---------------------------------------------------------------------------------~ ,... 
• CD ,... 

C!J 
o 
('II 
C") 
U) 
z ...... o ,... . 
CD ,... 
C!J 
o 
('II 
C") 
U) 
z 

2.0 Architectural Description (Continued) 

2.4.2.1 Frame Buffer Architecture 

There are two basic types of frame buffer architectures: 
plane-oriented or pixel-oriented. BITBlT takes advantage of 
the plane-oriented frame buffer architecture's attribute of 
multiple, adjacent pixels-per-word, facilitating the movement 
of large blocks of data. The source and destination starting 
addresses are expressed as pixel addresses. The width and 
height of the block to be moved are expressed in terms of 
pixels and scan lines. The source block may start and end 
at any bit position of any word, and the same applies for the 
destination block. 

2.4.2.2 Bit Alignment 

Before a logical operation can be performed between the 
source and the destination data, the source data must first 
be bit aligned to the destination data. In Figure 2-10, the 
source data needs to be shifted three bits to the right in 
order to align the first pixel (i.e., the pixel at the top left 
corner) in the source data block to the first pixel in the desti­
nation data block. 

2.4.2.3 Block Boundaries and Destination Masks 

Each BITBl T destination scan line may start and end at any 
bit position in any data word. The neighboring bits (bits shar­
ing the same word address with any words in the destination 
data block, but not a part of the BITBl T rectangle) of the 
BITBl T destination scan line must remain unchanged after 
the BITBl T operation. 

Due to the plane-oriented frame buffer architecture, all 
memory operations must be word-aligned. In order to pre­
serve the neighboring bits surrounding the BITBl T destina­
tion block, both a left mask and a right mask are needed for 
all the leftmost and all the rightmost data words of the desti­
nation block. The left mask and the right mask both remain 
the same during a BITBl T operation. 

The following example illustrates the bit alignment require­
ments. In this example, the memory data path is 16 bits 
wide. Figure 2-10 shows a 32 pixel by 32 scan line frame 
buffer which is organized as a long bit stream which wraps 
around every two words (32 bits). The origin (top left corner) 
of the frame buffer starts from the lowest word in memory 
(word address 00 (hex». 

Each word in the memory contains 16 bits, 00-015. The 
least significant bit of a memory word, ~O, is defined as the 
first displayed pixel in a word. In this example, BITBl T ad­
dresses are expressed as pixel addresses relative to the 
origin of the frame buffer. The source block starting address 
is 021 (hex) (the second pixel in the third word). The desti­
nation block starting address is 204 (hex) (the fifth pixel in 
the 33rd word). The block width is 13 (hex), and the height is 
06 (hex) (corresponding to 6 scan lines). The shift value is 3. 

I" WORD BOUNDARIES 1 PIXEL NUMBERS 
... WITHIN WORDS 

00 
02 
04 
06 
08 
OA 
OC 
OE 
10 
12 
14 
16 
18 
1A 
1 C 
IE 
20 
22 
24 
26 
28 
2A 
2C 

WORD 2E 
ADDRESSES 30 

32 
34 
36 
38 
3A 
3C 
3E 

0123456789ABCDEF0123456789ABCDEF 

SSSSSSSSSSSSSSSSSSSS 
SSSSSSSSSSSSSSSSSSSS 
SSSSSSSSSSSSSSSSSSSS 
SSSSSSSSSSSSSSSSSSSS 
SSSSSSSSSSSSSSSSSSSS 
SSSSSSSSSSSSSSSSSSSS 

DDDDDDDDDDDDDDDDDDDD 
DDDDDDDDDDDDDDDDDDDD 
DDDDDDDDDDDDDDDDDDDD 
DDDDDDDDDDDDDDDDDDDD 
DDDDDDDDDDDDDDDDDDDD 
DDDDDDDDDDDDDDDDDDDD 

FIGURE 2-10. 32-Plxel by 32-Scan Line Frame Buffer 

2·112 

TL/EE/9424-62 



~------------------------------------------------------------------------. z 
2.0 Architectural Description (Continued) 

• 
1 SCAN LINE 

DESTINATION 1 
/!---~ 

--- • ( ~ D 

• • • I) SOURCE 

-) J rr -- f-
V 

SOURCE I I I 1 PIXEL 
DESTINATION 

T T T 

J J ) 
\ J ./ 

TL/EE/9424-63 TL/EE/9424-64 

(a) (b) 
FIGURE 2·11. Overlapping BITBLT Blocks 

The left mask and the right mask are 0000,1111,1111,1111 
and 1111,1111,0000,0000 respectively. 
Note 1: Zeros In either the left mask or the right mask Indicate the destina­

tion bits which will not be modified. 

Note 2: The BB(function) and EXTBL T Instructions use different set up pa­
rameters, and techniques. 

2.4.2.2 BITBL T Directions 

A BITBl T operation moves a rectangular block of data in a 
frame buffer. The operation itself can be considered as a 
subroutine with two nested loops. The loops are preceeded 
by setup operations. In the outer loop the source and desti­
nation starting addresses are calculated, and the test for 
completion is performed. In the inner loop the actual data 
movement for a single scan line takes place. The length of 
the inner loop is the number of (aligned) words spanned by 
each scan line. The length of the outer loop is equal to the 
height (number of scan lines) of the block to be moved. A 
skeleton of the subroutine representing the BITBlT opera­
tion follows. 

BITBl T: calculate BITBl T setup parameters; 
(once per BITBl T operation). 

such as 

width, height 

bit misalignment (shift number) 

left, right masks 

horizontal, vertical directions 

etc 

• 
• 

OUTER lOOP: calculate source, dest addresses; 
(once per scanline). 

INNERlOOP: move data, (logical operation) and incre­
ment addresses; 
(once per word). 

2-113 

UNTil 

UNTil 

RETURN 

done horizontally 

done vertically 

(from BITBl n. 
Note: In the NS32CG16 only the setup operations must be done by the 

programmer. The Inner and outer loops are automatically executed 
by the BITBL T Instructions. . 

Each loop can be executed in one of two directions: the 
inner loop from left to right or right to left, the outer loop 
from top to bottom (down) or bottom to top (up). 

The ability to move data starting from any corner of the 
BITBl T rectangle is necessary to avoid destroying the 
BITBlT source data as a result of destination writes when 
the source and destination are overlapped (Le., when they 
share pixels). This situation is routinely encountered while 
panning or scrolling. 

A determination of the correct execution directions of the 
BITBlT must be performed whenever the source and desti­
nation rectangles overlap. Any overlap will result in the de­
struction of source data (from a destination write) if the cor­
rect vertical direction is not used. Horizontal BITBl T direc­
tion is of concern only in certain cases of overlap, as will be 
explained below. 

Figures 2-11 (a) and (b) illustrate two cases of overlap. Here, 
the BITBl T rectangles are three pixels wide by five scan 
lines high; they overlap by a single pixel in (a) and a single 
column of pixels in (b). For purposes of illustration, the 
BITBl T is assumed to be carried out pixel-by-pixel. This 
convention does not affect the conclusions. 

In Figure 2-11 (a), if the BITBl T is performed in the UP direc­
tion (bottom-to-top) one of the transfers of the bottom scan 
line of the source will write to the circled pixel of the destina­
tion. Due to the overlap, this pixel is also part of the upper­
most scan line of the source rectangle. Thus, data needed 
later is destroyed. Therefore, this BITBl T must be per­
formed in the DOWN direction. Another example of this oc-

en w 
N o 
G) ..... 
0') 
• ..... 
o ....... z en w 
N 
o 
G) ..... 
0') 
• ..... 

UI 

EI 



It) ...... 
cD ...... 

" o 
N 
Cf) 
U) 
Z ...... o ...... 
cD ...... 

" o 
N 
Cf) 
U) 
Z 

2.0 Architectural Description (Continued) 

curs any time the screen is moved in a purely vertical direc­
tion, as in scrolling text. It should be noted that, in both of 
these cases, the choice of horizontal BITBl T direction may 
be made arbitrarily. 

Figure 2-11 (b) demonstrates a case in which the horizontal 
BITBl T direction may not be chosen arbitrarily. This is an 
instance of purely horizontal movement of data (panning) . 
Because the movement from source to destination involves 
data within the same scan line, the incorrect direction of 
movement will overwrite data which will be needed later. In 
this example, the correct direction is from right to left. 

2.4.2.5 BITBl T Variations 

The 'classical' definition of BITBlT, as described in "Small­
talk-80 The language and its Implementation", by Adele 
Goldberg and David Robson, provides for three operands: 
source, destination and mask/texture. This third operand is 
commonly used in monochrome systems to incorporate a 
stipple pattern into an area. These stipple patterns provide 
the appearance of multiple shades of gray in single·bit-per­
pixel systems, in a manner similar to the 'halftone' process 
used in printing. 

Texture op1 Source op2 Destination ..... Destination 

While the NS32CG16 and the external BPU (if used) are 
essentially two-operand devices, three-operand BITBl T op­
erations can be implemented quite flexibly and efficiently by 
performing the two operations serially. 

2.4.3 GRAPHICS SUPPORT INSTRUCTIONS 

The NS32CG16 provides eleven instructions for supporting 
graphics oriented applications. These instructions are divid­
ed into three groups according to the operations they per­
form. General descriptions for each of them and the related 
formats are provided in the following sections. 

2.4.3.1 BITBl T (BIT-aligned Block Transfer) 

This group includes seven instructions. They are used to 
move characters and objects into the frame buffer which will 
be printed or displayed. One of the instructions works in 
conjunction with an external BITBl T Processing Unit (BPU) 
to maximize performance. The other six are executed by the 
N832CG16. 

BIT-aligned Block Transfer 

Syntax: BB(functlon) Options 

Setup: RO base address, source data 
R1 base address, destination data 
R2 shift value 
R3 height (in lines) 
R4 first mask 
RS second mask 
R6 source warp (adjusted) 
R7 destination warp (adjusted) 
O(SP) width (in words) 

Function: AND, OR, XOR, FOR, STOD 

Options: IA IncreaSing Address (default option). 

When IA is selected, scan lines are 
transferred in the increasing BIT/BYTE 
order. 

DA Decreasing Address. 

S True Source (default option). 

-8 Inverted Source. 

2-114 

These five instructions perform standard BITBl T operations 
between source and destination blocks. The operations 
available include the following: 

BBAND: src AND dst 
-src AND dst 

BBOR: src OR dst 
-src OR dst 

BBXOR: src XOR dst 
-src XOR dst 

BBFOR: src OR dst 
BBSTOD: src TO dst 

-src TO dst 

'src' and '-src' stand for 'True Source' and 'Inverted 
Source' respectively; 'dst' stands for 'Destination', 
Note 1: For speed reasons, the BB instructions require the masks to be 

specified with respect to the source block. In Figure 2-10 masking 
was defined relative to the destination block. 

Note 2: The options -8 and OA are not available for the BBFOR instruc­
tion. 

Note 3: BBFOR performs the same operation as BBOR with IA and 8 op-
tions. 

Note 4: IA and OA are mutually exclusive and so are 8 and -8. 
Note 5: The width is defined as the number of words of source data to read. 
Note 6: An odd number of bytes can be specified for the source warp. 

However, word alignment of source scan lines will result in faster 
execution. 

The horizontal and vertical directions of the BITBl T opera­
tions performed by the above instructions, with the excep­
tion of BBFOR, are both programmable. The horizontal di­
rection is controlled by the IA and DA options. The vertical 
direction is controlled by the sign of the source and destina­
tion warps. Figure 2-12 and Table 2-3 show the format of 
the BB instructions and the encodings for the 'op' and 'i' 
fields. 

123 16 j1s 8 7 0 

o 0 0 0 0 0 D X sol op· I i 0 0 0 0 1 1 1 0 

• 0 is set when the OA option is selected 
• S is set when the - 8 option is selected 
• X is set for BBANO, and it is clear for all other BB instructions 

FIGURE 2-12. BB Instructions Format 

TABLE 2-3. 'op' and 'I' Field Encodlngs 

Instruction Options 'op' Field 'I'Fleld 

BBAND Yes 1010 11 

BBOR Yes 0110 01 

BBXOR Yes 1110 01 

BBFOR No 1100 01 

BBSTOD Yes 0100 01 

BIT-aligned Word Transfer 

Syntax: BITWT 

Setup: RO 
R1 
R2 

Base address, source word 
Base address, destination double word 
Shift value 

The BITWT instruction performs a fast logical OR operation 
between a source word and a destination double word, 
stores the result into the destination double word and incre­
ments registers RO and R1 by two. Before performing the 
OR operation, the source word is shifted left (Le., in the 
direction of increasing bit numbers) by the value in register 
R2. 



2.0 Architectural Description (Continued) 

This instruction can be used within the inner loop of a block 
OR operation. Its use assumes that the source data is 
'clean' and does not need masking. The BITWT format is 
shown in Figure 2-13. 

23 16 15 8 7 o 

o 0 0 0 0 0 0 0 001 0 0 0 0 1 0 0 0 0 1 1 1 0 

FIGURE 2-13. BITWT Instruction Format 

External BITBl T 

Syntax: EXTBl T 

Setup: RO 
R1 
R2 
R3 
R4 
R5 
R6 
R7 

base addresses, source data 
base address, destination data 
width (in bytes) 
height (in lines) 
horizontal increment! decrement 
temporary register (current width) 
source warp (adjusted) 
destination warp (adjusted) 

Note 1: RO and R1 are updated after execution to point to the last source 
and destination addresses plus related warps. R2. R3 and RS will 
be modified. R4. RB, and R7 are returned unchanged. 

Note 2: Source and destination pointers should point to word-aligned oper· 
ands to maximize speed and minimize external Interface logic. 

This instruction performs an entire BITBL T operation in con­
junction with an external BITBL T Processing Unit (BPU). 
The external BPU Control Register should be loaded by the 
software before the instruction is executed (refer to the 
DP8510 or DP8511 data sheets for more information on the 
BPU). The NS32CG16 generates a series of source read, 
destination read and destination write bus cycles until the 
entire data block has been transferred. The BITBL T opera­
tion can be performed in either horizontal direction. As con­
trolled by the sign of the contents of register R4. 

Depending on the relative alignment of the source and des­
tination blocks, an extra source read may be required at the 
beginning of each scan line, to load the pipeline register in 
the external BPU. The L bit in the PSR register determines 
whether the extra source read is performed. If L is 1, no 
extra read is performed. The instructions CMPQB 2,1 or 
CMPQB 1,2 could be executed to provide the right setting 
for the L bit just before executing EXTBLT. Figure 2-14 
shows the EXTBL T format. The bus activity for a simple 
BITBLT operation is shown in Figure 2-19. 

23 8 7 o 

o 0 0 0 0 0 0 0 0 0 0 1 011 100 0 0 1 1 1 0 

FIGURE 2-14. EXTBlT Instruction Format 

B.3.2 Pattern Fill 

Only one instruction is in this group. It is usually used for 
clearing RAM and drawing patterns and lines. 

Move Multiple Pattern 

Syntax: MOVMPI 

Setup: RO 
R1 
R2 
R3 

base address of the destination 
pointer increment (in bytes) 
number of pattern moves 
source pattern 

Note: R1 and R3 are not modified by the instruction. R2 will always be 
returned as zero. RO is modified to reflect the last address into which 
a pattern was written. 

2-115 

This instruction stores the pattern in register R3 into the 
destination area whose address is in register RO. The pat­
tern count is specified in register R2. After each store oper­
ation the destination address is changed by the contents of 
register R1. This allows the pattern to be stored in rows, in 
columns, and in any direction, depending on the value and 
sign of R1. The MOVMPi instruction format is shown in Ag­
ure 2-15. 

23 o 
o 000 1 110 

FIGURE 2-15. MOVMPllnstructlon Format 

B.3.3 Data Compres~lon, Expansion and Magnify 

The three Instructions In this group can be used to com­
press data and restore data from compression. A com­
pressed character set may require from 30% to 50% less 
memory space for its storage. 

The compression ratio possible can be 50:1 or higher de­
pending on the data and algorithm used. TBITS can also be 
used to find boundaries of an object. As a character Is need­
ed, the data is expanded and stored in a RAM buffer. The 
expand instructions (SBITS, SBITPS) can also function as 
line drawing instructions. 

Test Bit String 

Syntax: TBITS option 

Setup: RO base address, source (byte address) 
R1 starting source bit offset 
R2 destination run length limited code 
R3 maximum value run length limit 
R4 maximum source bit offset 

Option: 1 count set bits until a clear bit is found 
o count clear bits until a set bit is found 

Note: RO, R3 and R4 are not modified by the Instruction execution. R1 
reflects the new bit offset. R2 holds the result. 

This instruction starts at the base address, adds a bit offset, 
and tests the bit for clear if "option" = 0 (and for set if 
"option" = 1). If clear (or set), the instruction increments to 
the next higher bit and tests for clear (or set). This testing 
for clear proceeds through memory until a set bit is found or 
until the maximum source bit offset or maximum run length 
value is reached. The total number of clear bits is stored in 
the destination as a run length value. 

When TBITS finds a set bit and terminates, the bit offset is 
adjusted to reflect the current bit address. Offset is then 
ready for the next TBITS instruction with "option" = O. After 
the instruction is executed, the F flag is set to the value of 
the bit previous to the bit currently being pointed to (i.e., the 
value of the bit on which the instruction completed execu­
tion). In the case of a starting bit offset exceeding the maxi­
mum bit offset (R1 ~ R4), the F flag is set if the option was 
1 and clear if the option was O. The l flag is set when the 
desired bit is found, or if the run length equalled the maxi­
mum run length value and the bit was not found. It is cleared 
otherwise. Figure 2-16 shows the TBITS instruction format. 

23 15 8 7 o 
000 0 0 0 0 0 S 0 1 001 1 1 0 0 0 0 1 110 

• S is set for 'TBITS l' and clear for 'TBITS 0'. 

FIGURE 2-16. TBITS Instruction Format 

z 
CJ) 
W 
N o .., 
..... 
Q) . ..... 
o 
....... 
Z 
CJ) 
W 
N 
o .., 
..... 
cp ..... 
U1 



II) ..... . 
CD ..... 
C!J 
(,) 
N 
Cf) 
tJ) 
Z ...... 
o ..... 
• CD ..... 

C!J 
(,) 
N 
Cf) 
tJ) 
Z 

2.0 Architectural Description (Continued) 

Set Bit String 

Syntax: SBITS 

Setup: RO 
R1 
R2 
R3 

base address of the destination 
starting bit offset (signed) 
number of bits to set (unsigned) 
address of string look-up table 

Note: When the Instruction terminates, the registers are returned un-
changed. 

SBITS sets a number of contiguous bits in memory to 1, and 
is typically used for data expansion operations. The instruc­
tion draws the number of ones specified by the value in R2, 
starting at the bit address provided by registers RO and R1. 
In order to maximize speed and allow drawing of patterned 
lines, an external 1 k byte lookup table is used. The lookup 
table is specified in the NS32CG16 Printer/Display Proces­
sor Programmer's Reference Supplement. 

When SBITS begins executing, it compares the value in R2 
with 25. If the value in R2 is less than or equal to 25, the F 
flag is cleared and the appropriate number of bits are set in 
memory. If R2 is greater than 25, the F flag is set and no 
other action is performed. This allows the software to use a 
faster algorithm to set longer strings of bits. Figure 2-17 
shows the SBITS instruction format. 

23 15 8 7 o 
o 0 0 0 0 0 0 0 0 0 1 101 1 1 0 0 0 0 1 1 1 0 

Set BIT Perpendicular String 

Syntax: SBITPS 

Setup: RO 
R1 
R2 
R3 

base address, destination (byte address) 
starting bit offset 
number of bits to set 
destination warp (signed value, in bits) 

Note: When the instruction terminates, the RO and R3 registers are re-
turned unchanged. R1 becomes the final bit offset. R2 is zero. 

The SBITPS can be used to set a string of bits in any direc­
tion. This allows a font to be expanded with a 90 or 270 
degree rotation, as may be required in a printer application. 
SBITPS sets a string of bits starting at the bit address speci­
fied in registers RO and R1. The number of bits in the string 
is specified in R2. After the first bit is set, the destination 
warp is added to the bit address and the next bit is set. The 
process is repeated until all the bits have been set. A nega­
tive raster warp offset value leads to a 90 degree rotation. A 
positive raster warp value leads to a 270 degree rotation. If 
the R3 value is = (space warp + 1 or -1), then the result is 
a 45 degree line. If the R3 value is + 1 or -1, a horizontal 
line results. 

SBITS and SBITPS allow expansion on any 90 degree an­
gie, giving portrait, landscape and mirror images from one 
font. Figure 2-18 shows the SBITPS instruction format. 

8 7 o 

o 0 0 000 0 000 1 0 1 1 1 100 001 1 1 0 
FIGURE 2·17. SBITS Instruction Format 

FIGURE 2·18. SBITPS Instruction Format 

READ SOURCE READ SOURCE READ SOURCE 

READ DESTINATION READ DESTINATION READ DESTINATION 

WRITE RESULT WRITE RESULT WRITE RESULT 
TO DESTINATION TO DESTINATION TO DESTINATION 

READ SOURCE 

READ DESTINATION 

WRITE RESULT 
TO DESTINATION 

12341234123412341234123412341234123412341 

em 

WORD 1 (12 CLOCKS) WORD 2 (12 CLOCKS) WORD 3 (12 CLOCKS) 

FIGURE 2·19. Bus Activity for a Simple BITBLT Operation 
Note 1: This example is for a block 4 words wide and 1 line high. 
Note 2: The sequence is common with all logical operations of the DP8510/DP8511 BPU. 

Note 3: Mask values, shift values and number of bit planes do not affect the performance. 
Note 4: Zero wait states are assumed throughout the BITBL T operation. 
Note 5: The extra read is performed when the BPU pipeline register needs to be preloaded. 

2-116 

WORD 4 (12 CLOCKS) 

TL/EE/9424-66 



2.0 Architectural Description (Continued) 

B.3.3.1 Magnifying Compressed Data 

Restoring data is just one application of the SBITS and 
SBITPS instructions. Multiplying the "length" operand used 
by the SBITS and SBITPS instructions causes the resulting 
pattern to be wider, or a multiple of "length". 

As the pattern of data is expanded, it can be magnified by 
2x, 3x, 4x, ... , 10x and so on. This creates several sizes of 
the same style of character, or changes the size of a logo. A 
magnify in both dimensions X and Y can be accomplished 
by drawing a single line, then using the MOVS (Move String) 
or the BB instructions to duplicate the line, maintaining an 
equal aspect ratio. 

More information on this subject is provided in the 
NS32CG16 Printer/Display Processor Programmer's Refer­
ence Supplement. 

3.0 Functional Description 

3.1 POWER AND GROUNDING 

The NS32CG16 requires a single 5-Volt power supply, ap­
plied on 5 pins. The logic voltage pin (Veeu supplies the 
power to the on-chip logic. The buffer voltage pins 
VCCCTTL, VCCFCLK, VCCAD, and VCCIO supply the pow­
er to the on-chip output drivers. 

Grounding connections are made on 6 pins. The Logic 
Ground Pin (VSSL) provides the ground connection to the 
on-chip logic. The buffer ground pins VSSFCLK, VSSNTSO, 
VSSHAD, VSSLAD, VSSIO are the ground pins for the on­
chip output drivers. 

For optimal noise immunity, the power and ground pins 
should be connected to Vee and ground planes respective­
ly. If Vee and ground planes are not used, single conductors 
should be run directly from each Vee pin to a power point, 
and from each GND pin to a ground point. Daisy-chained 
connections should be avoided. 

Decoupling capacitors should also be used to keep the 
noise level to a minimum. Standard 0.1 fLF ceramic capaci­
tors can be used for this purpose. In addition, a 1.0 fLF 
tantalum capacitor should be connected between VeeL and 
ground. They should attach to Vee, Vss pairs as close as 
possible to the NS32CG16. 

During prototype using wire-wrap or similar methods, the 
capacitors should be soldered directly to the power pins of 
the NS32CG16 socket, or as close as possible, with very 
short leads. 

Recommended bypass for production in printed circuit 
boards: 

+ 5 Ground Capacitors 

VCCL VSSL 0.1 fLF Disk Ceramic 
1.0 fLF Tantulum 

VCCIO VSSIO 0.1 fLF 
VCCCTTL VSSNTSO 0.1 fLF 
VCCAD VSSLAD 0.1 fLF 
VCCAD VSSHAD None 
VCCFCLK VSSFCLK 0.1 fLF 

VCCL-VSSL bypass requires a very short lead length and 
low inductance on the 0.1 fLF capacitor. 

Design Notes 

When constructing a board using high frequency clocks with 
multiple lines switching, special care should be taken to 

avoid resonances on signal lines. A separate power and 
ground layer is recommended. This is true when designing 
boards for the NS32CG16. Switching times of under 5 ns on 

,some lines are possible. Resonant frequencies should be 
maintained well above the 200 MHz frequency range on 
signal paths by keeping traces short and inductance low. 
Loading capacitance at the end of a transmission line con­
tributes to the resonant frequency and should be minimized 
if possible. Capacitors should be located as close as possi­
ble across each power and ground pair near the 
NS32CG16. 

2-117 

Power and ground connections are shown in Figure 3-1. 

+5V 
( 

VCCL _ 

VCCCTIL, ... _4..;., .... __ • OTHER VCC 
CONNECTIONS 

VCCFCLK,' (VCC PLANE) 
VCCAD, 

VCCIO 

NS32CG16 
CPU 

VSSL !-1 
VSSFCLK, ... 1~_5 ... 'L""1--_'" OTHER GROUND 
VSSNTSO,l -, CONNECTIONS 

VSSHAD, (GND PLANE) 

VSSLAD, 
VSSIO 

TL/EE/9424-7 

FIGURE 3-1. Power and Ground Connections 

3.2 CLOCKING 
The NS32CG16 provides an internal oscillator that interacts 
with an external clock source through two signals; OSCIN 
and OSCOUT. 

Either an external single-phase clock signal or a crystal can 
be used as the clock source. If a single-phase clock source 
is used, only the connection on OSCIN is required; 
OSCOUT should be left unconnected or loaded with no 
more than 5 pF of stray capacitance. The voltage level re­
quirements specified in Section 4.3 must also be met for 
proper operation. 

When operation with a crystal is desired, a fundamental 
mode crystal should be used. In this case, special care 
should be taken to minimize stray capacitances and induc­
tances, especially when operating at a crystal frequency of 
30 MHz. The crystal, as well as the external RC compo­
nents, should be placed in close proximity to the OSCIN and 
OSCOUT pins to keep the printed circuit trace lengths to an 
absolute minimum. Figure 3-2 shows the external crystal 
interconnections. Table 3-1 provides the crystal characteris­
tics and the values of the RC components, including stray 
capacitance, required for various frequencies. 

"-...I... "l" , OSCIN 

C2 T ~ XTAL ~ Rl 

" 1 &&& ~ ..l ""...- ",OSCOUT 

~Cl R2 

TL/EE/9424-8 

FIGURE 3-2. Crystal Interconnections 

z en 
w 
N 
o 
C) ..... 
en • ..... 
Q 
........ 
Z en 
w 
N 
o 
C) ..... 
en . ..... 
U'I 



II) ..... 
• CD ..... 

CJ o 
C\I 
C"') 
U) 
z ...... 
o ..... 
• CD ..... 

CJ 
o 
C\I 

~ 
Z 

3.0 Functional Description (Continued) 

TABLE 3-1. External Oscillator Specifications 

Crystal Characteristics 

Type ........................................... At-Cut 

Tolerance .............................. 0.005% at 25°C 

Stability ......................... 0.01 % from O°C to 70°C 

Resonance ...................... Fundamental (parallel) 

Capacitance .................................... 20 pF 

Maximum Series Resistance ........................ 500 

Rand C Values 

Frequency R1 R2 C1 C2 
(MHz) (kO) (0) (pF) (pF) 

12 470 120 20 20 
16 360 100 20 20 
20 270 75 20 20 
25 220 68 20 20 
30 180 51 20 20 

3.2.1 Power Save Mode 

The NS32CG16 provides a power save feature that can be 
used to significantly reduce the power consumption at times 
when the computational demand decreases. The device 
uses the clock signal at the OSCIN pin to derive the internal 
clock as well as the external signals PHI1, PHI2, CTTL and 
FCLK. The frequency of all these clock signals is affected 
by the clock scaling factor. Scaling factors of 1, 2, 4 or 8 can 
be selected by properly setting the C and M bits in the CFG 
register. The power save mode should not be used to re­
duce the clock frequency below the minimum frequency re­
quired by the CPU. 

Upon reset, both C and M are set to zero, thus maximum 
clock rate is selected. 

Due to the fact that the C and M bits are programmed by the 
SETCFG instruction, the power save feature can only be 
controlled by programs running in supervisor mode. 

The following table shows the C and M bit settings for the 
various scaling factors, and the resulting supply current for a 
crystal frequency of 30 MHz. 

C 

o 
o 

Clock Scaling Factor vs Supply Current 

M 

o 
1 
o 

Scaling CPU Clock Typical Icc 
Factor Frequency at + 5V 

1 15MHz 140mA 
2 7.5 MHz 76 rnA 
4 3;75 MHz 42 rnA 
8 1.88 MHz 25 rnA 

. -----------. • • 
: RESET I 

• • .. _--------.. 
EXTERNAL RESET 

(OPTIONAL) 

RESET SWITCH 
(OPTIONAL) 

3.3 RESETTING 

The RSTI input pin is used to reset the NS32CG16. The 
CPU samples RSTI on the falling edge of CTTL. 

Whenever a low level is detected, the CPU responds imme­
diately. Any instruction being executed is terminated; any 
results that have not yet been written to memory are dis­
carded; and any pending interrupts and traps are eliminated. 
The internal latch for the edge-sensitive NMI signal is 
cleared. 

On application of power, RSTI must be held low for at least 
50 ,.,.s after Vee is stable. This is to ensure that all on-chip 
voltages are completely stable before operation. Whenever 
a Reset Is applied, it must also remain active for not less 
than 64 CTTL cycles. See Figures 3-3 and 3-4. 

While in the Reset state, the CPU drives the signals ADS, 
RD, WR, DBE, TSQ, BPU, and DDIN inactive. ADO-AD15, 
A 16-A23 and SPC are floated, and the state of all other 
output signals is undefined. 

The internal CPU clock, PHI1, PHI2 and CTTL all run at half 
the frequency of the signal on the OSCIN pin. FCLK runs at 
the same frequency of OSCIN. 

The HOLD signal must be kept inactive. After the RSTI sig­
nal is driven high, the CPU will stay in the reset condition for 
approximately 8 clock cycles and then it will begin execution 
at address O. 

The PSR is reset to O. The CFG C and M bits are reset to O. 
NMI is enabled to allow Non-Maskable Interrupts. The fol­
lowing conditions are present after reset due to the PSR 
being reset to 0: 

Tracing is disabled. 
Supervisor· mode is enabled. 
Supervisor stack space is used when the TOS addressing 
mode is indicated. 
No trace traps are pending. 
Only NMI is enabled. INT is not enabled. 
BPU is inactive high. 
The Clock Scaling Factor is set to 1, refer to Section 3.2.1. 

Note that vector/non-vectored interrupts have not been se­
lected. While interrupts are disabled, a SETCFG [I] instruc­
tion must be executed to declare the presence of the 
NS32202 if vectored interrupts are desired. If non-vectored 
interrupts are required, a SETCFG without the [I] must be 
executed. 

The presence/absence of the NS32081 or NS32381 has 
also not been declared. If there is a Floating Point Unit, a 
SETCFG [F) instruction must be executed. If there is no 
floating point unit, a SETCFG without the [F) must be exe­
cuted . 

TL/EE/9424-67 

FIGURE 3-2a. Recommended Reset Connections 

2-118 



3.0 Functional Description (Continued) 

In general, a SETCFG instruction must be executed in the 
reset routine, in order to properly configure the CPU. The 
options should be combined, and executed in a single in­
struction. For example, to declare vectored interrupts, a 
Floating Point unit installed, and full CPU clock rate, execute 
a SETCFG [F, I] instruction. To declare non-vectored inter­
rupts, no FPU, and full CPU clock rate, execute a 
SETCFG [ ] instruction. 

Vcc[j 

cm[_--I-....I ~ 
I..- ~ 64 CLo;aCK 

RSTI [

CYCLES _ 

1+----~ 50 JJ.S 

TL/EE/9424-9 

FIGURE 3-3. Power-On Reset Requirements 

r
~64~CLOCK 

[ 

____ ...... """- CYCLES 

Rsn \\~ S 

TL/EE/9424-10 

FIGURE 3-4. General Reset Timing 

3.4 BUS CYCLES 

The CPU will perform a bus cycle for one of the following 
reasons: 

1) To write or read data, to or from memory or peripheral 
devices. Peripheral input and output are memory­
mapped in the Series 32000 family. 

2) To fetch instructions into the eight-byte instruction 
queue. This happens whenever the bus would otherwise 
be idle and the queue is not already full. 

3) To acknowledge an interrupt and allow external circuitry 
to provide a vector number, or to acknowledge comple­
tion of an interrupt service routine. 

4) To transfer information to or from a Slave Processor. 

In terms of bus timing, cases 1 through 3 above are identi· 
cal. For timing specifications, see Section 4. The only exter­
nal difference between them is the four-bit code placed on 
the Bus Status pins (STO-ST3). Slave Processor cycles dif­
fer in that separate control signals are applied (Section 
3.4.7). 

3.4.1 Bus Status 

The NS32CG16 CPU presents four bits of Bus Status infor­
mation on pins STO-ST3. The various combinations on 
these pins indicate why the CPU is performing a bus cycle, 
or, if it is idle on the bus, then why it is idle. 

The Bus Status pins are interpreted as a four-bit value, with 
STO the least significant bit. Their values decode as follows: 

0000 - The bus is idle because the CPU does not need 
to perform a bus access. 

0001 - The bus is idle because the CPU is executing 
the WAIT instruction. 

0010- (Reserved for future use.) 

0011-

0100-

0101-

0110-

0111-

1000-

1001-

1010-

1011-

1100-

1101-

1110-

1111-

2-119 

z en w 
I\) 

The bus is idle because the CPU is waiting for a 0 
Slave Processor to complete an instruction. G) ...... 
Interrupt Acknowledge, Master. a) 

• ...... 
The CPU is performing a Read cycle to ac- 0 
knowledge an interrupt request. See Section 

....... 
Z 

3.4.6. en w 
Interrupt Acknowledge, Cascaded. I\) 

The CPU is reading an interrupt vector to ac-
0 
G) 

knowledge a maskable interrupt request from a ...... 
a) 

Cascaded Interrupt Control Unit. • ...... 
End of Interrupt, Master. U1 

The CPU is performing a Read cycle to indicate 
that it is executing a Return from Interrupt 
(RETI) instruction at the completion of an inter-
rupt's service procedure. 

End of Interrupt, Cascaded. 

The CPU is performing a read cycle from a Cas-
caded Interrupt Control Unit to indicate that it is 
executing a Return from Interrupt (RETI) in-
struction at the completion of an interrupt's 
service procedure. 

Sequential Instruction Fetch. 

The CPU is reading the nex1 sequential word 
from the instruction stream into the Instruction 
Queue. It will do so whenever the bus would 
otherwise be idle and the queue is not already 
full. 

Non-Sequential Instruction Fetch. 

The CPU is performing the first fetch of instruc-
tion code after the Instruction Queue is purged. 
This will occur as a result of any jump or branch, 
any interrupt or trap, or execution of certain in-
structions. 

Data Transfer. 

The CPU is reading or writing an operand of an 
instruction. 

Read RMW Operand. 

The CPU is reading an operand which will sub-
sequently be modified and rewritten. The write 
cycle of RMW will have a "write" status. 

Read for Effective Address Calculation. 

The CPU is reading information from memory in 
order to determine the Effective Address of an 
operand. This will occur whenever an instruc-
tion uses the Memory Relative or External ad-
dressing mode. 

Transfer Slave Processor Operand. 

I The CPU is either transferring an instruction op-
erand to or from a Slave Processor, or it is issu-
ing the Operation Word of a Slave Processor 
instruction. See Section 3.9.1. 

Read Slave Processor Status. 

The CPU is reading a Status Word from a Slave 
Processor after the Slave Processor has sig-
nalled completion of an instruction. 

Broadcast Slave 10. 
The CPU is initiating the execution of a Slave 
Processor instruction by transferring the first 
byte of the instruction, which represents the 
slave processor indentification. 



~r---------------------------------------~------------------~ 

eD 
op-

~ 
o 
N 
C") 
(f) 
Z 
C; 
0p-

eD 
op-

~ 
o 
N 

~ 
Z 

3.0 Functional Description (Continued) 

3.4.2 Basic Read and Write Cycles 

The sequence of events occurring during a CPU access to 
either memory or peripheral device is shown in Figure 3-6 
for a read cycle, and Figure 3-7 for a write cycle. 

The cases shown assume that the selected memory or pe­
ripheral device is capable of communicating with the CPU at 
full speed. If not, then cycle extension may be requested 
through OWAIT and/or WAiT1-2. 

A full-speed bus cycle is performed in four cycles of the 
CTIL clock signal, labeled T1 through T4. Clock cycles not 
associated with a bus cycle are designated Ti (for "Idle"). 

During T1 , the CPU applies an address on pins ADO -AD15 
and A 16-A23. It also provides a low-going pulse on the 
ADS pin, which serves the dual purpose of informing exter­
nal circuitry that a bus cycle is starting and of providing con­
trol to an external latch for demultiplexing Address bits 0-
15 from the ADO-AD15 pins. See Figure 3-5. During this 
time also the status signals DDIN, indicating the direction of 
the transfer, and HBE, indicating whether the high byte 
(AD8-AD15) is to be referenced, become valid. 

During T2 the CPU switches the Data Bus, ADO-AD15, to 
either accept or present data. Note that the signals A 16-
A23 remain valid, and need not be latched. 

ODIN 1-------1 

ADO-AD15 

NS32CG18 

A1&-A23 

DeE 1--------' 

CTTL 
CTTLr---------------------------------------------------

Jmt---------------~ 

WHr----------------------------------------------------

~r---------------------------------------TS-O~ 
TL/EE/9424-11 

FIGURE 3-5. Bus Connections 

2-120 



3.0 Functional Description (Continued) 

T4 OR n Tt T2 T3 

em [ 

A16-A23 [ 

ADO-AD15 [ 

ADS [ 

STO-ST3 [ 

ODIN [ 

HBE [ 

CWAIT [ 

WAITt-2 [ 

RD [ 

ViR [ 

DBE [ 

TSO [ 
FIGURE 3-6. Read Cycle Timing 

2-121 

TLlEE/9424-12 

z en 
c".) 
N 
o 
C) ..... 
en . ..... 
o ...... 
z en 
c".) 
N 
o 
C) ..... 
en • ..... 
(J1 



&l) .... . 3.0 Functional Description (Continued) CD .... 
CJ 
0 T4 OR n Tl T2 T3 N T4 nOR Tl 
C") 

[ (/) 
Z CTTL 
"-
0 .... 
• CD .... 

[ CJ 
A16-A23 0 

N 
C") 
(/) 
Z 

ADO-AD15 [ 

ADS [ 

STD-ST3 [ 

ODIN [ 

HBE [ 

CWAIT [ 

WAIT1-2 [ 

RD [ 

WR [ 

DBE [ 

TSO [ 
TL/EE/9424-13 

FIGURE 3·7. Write Cycle Timing 

2·122 



3.0 Functional Description (Continued) 

At this time the signals TSO (Timing State Output), DBE 
(Data Buffer Enable) and either RD (Read Strobe) or WR 
(Write Strobe) will also be activated. 

The T3 state provides for access time requirements, and it 
occurs at least once in a bus cycle. At the end of T2, on the 
rising edge of CTTL, the CWAIT and WAIT1-2 signals are 
sampled to determine whether the bus cycle will be extend­
ed. See Section 3.4.3. 

If the CPU is performing a read cycle, the data bus 
(ADO-AD15) is sampled at the beginning of T 4 on the rising 
edge of CTTL. Data must, however, be held a little longer to 
meet the data hold time requirements. The RD signal is 
guaranteed not to go inactive before this time, so its rising 
edge can be safely used to disable the device providing the 
input data. 

The T4 state finishes the bus cycle. At the beginning of T4, 
the RD or WR, and TSO signals go inactive, and on the 
falling edge of CTTL, DBE goes inactive, having provided for 
necessary data hold times. Data during Write cycles re­
mains valid from the CPU throughout T 4. Note that the Bus 
Status lines (STO-ST3) change at the beginning of T4, an­
ticipating the following bus cycle (if any). 

3.4.3 Cycle Extension 

To allow sufficient access time for any speed of memory or 
peripheral device, the NS32CG 16 provides for extension of 
a bus cycle. Any type of bus cycle except a Slave Processor 
cycle can be extended. 

In Figures 3-6 and 3-7, note that during T3 all bus control 
signals from the CPU are flat. Therefore, a bus cycle can be 
cleanly extended by causing the T3 state to be repeated. 
This is the purpose of the WAIT1-2 and CWAIT input sig­
nals. 

At the end of state T2, on the rising edge of CTTL, WAIT1-
2 and CWAIT are sampled. 

If any of these signals are active, the bus cycle will be ex­
tended by at least one clock cycle. Thus, one or more addi­
tional T3 state (also called wait state) will be inserted after 
the next T-State. Any combination of the above signals can 
be activated at one time. However, the WAIT1-2 inputs are 
only sampled by the CPU at the end of state T2. They are 
ignored at all other times. 

The WAIT1-2 inputs are binary weighted, and can be used 
to insert up to 3 wait states, according to the following table. 

WAIT2 WAin 
Number of 
Walt States 

HIGH HIGH 0 
HIGH LOW 1 
LOW HIGH 2 
LOW LOW 3 

CWAIT causes wait states to be inserted continuously as 
long as it is sampled active. It is normally used when the 
number of wait states to be inserted in the CPU bus cycle is 
not known in advance. 

The following sequence shows the CPU response to the 
WAIT1-2 and CWAIT inputs. 

1. Start bus cycle. 

2. Sample WAIT1-2 and CWAIT at the end of state T2. 

3. If the WAIT1-2 inputs are both inactive, then go to step 
6. 

2-123 

4. Insert the number of wait states selected by WAIT1-2. 

5. Sample CWAIT again. 

6. If CWAIT is not active, then go to step 8. 

7. Insert one wait state and then go to step 5. 

8. Complete bus cycle. 

Figure 3-8 shows a bus cycle extended by three wait states, 
two of which are due to WAIT2, and one is due to CWAIT. 

3.4.4 Data Access Sequences 

The 24-bit address provided by the NS32CG 16 is a byte 
address; that is, it uniquely identifies one of up to 
16,777,216 eight-bit memory locations. An important feature 
of the NS32CG16 is that the presence of a 16-bit data bus 
imposes no restrictions on data alignment; any data item, 
regardless of size, may be placed starting at any memory 
address. The NS32CG16 provides a special control signal, 
High Byte Enable (HBE), which facilitates individual byte ad­
dressing on a 16-bit bus. 

Memory is organized as two eight-bit banks, each bank re­
ceiving the word address (A 1-A23) in parallel. One bank, 
connected to Data Bus pins ADO-AD7, is enabled to re­
spond to even byte addresses; i.e., when the least signifi­
cant address bit (AO) is low. The other bank, connected to 
Data Bus pins AD8-AD15, is enabled when HBE is low. See 
Figure 3-9. 

HBE AO(LBE) 

BBITS BBITS 

A1·A23 

LSBYTE 

TLlEE/9424-15 

FIGURE 3·9. Memory Interface 

Any bus cycle falls into one of three categories: Even Byte 
Access, Odd Byte Access, and Even Word Access. All ac­
cesses to any data type are made up of sequences of these 
cycles. Table 3-2 gives the state of AD and HBE for each 
category. 

TABLE 3·2. Bus Cycle Categories 

Category HBE AO 

Even Byte 1 0 
Odd Byte 0 1 
Even Word 0 0 

z en 
w 
N 
o 
G) 
...... 
m • ...... 
o 
........ z en 
w 
N o 
G) ...... 
m . ...... 
U1 



U) --• 3.0 Functional Description (Continued) CD --CJ 
0 T1 T2 T3 T3(W) T3(W) T3(W) T4 T1 OR T1 N 
C') 

[ U) 
Z CTTL ...... 
0 --• CD --CJ [ 0 A16-A23 ADDRESS VALID N 
C') 
U) 
Z 

ADO-AD15 [ --- ---- ---- ---- -

ADS [ 

ODIN [ 

HBE [ 

WAIT2 [ 

WAIT1 [ 

CWAIT [ 

RD [ 
TL/EE/9424-14 

FIGURE 3·8. Cycle Extension of a Read Cycle 

2·124 



3.0 Functional Description (Continued) 

Accesses of operands requiring more than one bus cycle 
are performed sequentially, with no idle T-States separating 
them. The number of bus cycles required to transfer an op­
erand depends on its size and its alignment (Le., whether it 
starts on an even byte address or an odd byte address). 
Table 3-3 lists the bus cycle performed for each situation. 
For the timing of AO and HBE, see Section 3.4.2. 

3.4.4.1 Bit Accesses 

The Bit Instructions perform byte accesses to the byte con­
taining the designated bit. The Test and Set Bit instruction 
(SBIT), for example, reads a byte, alters it, and rewrites it, 
having changed the contents of one bit. 

3.4.4.2 Bit Field Accesses 

An access to a Bit Field in memory always generates a Dou­
ble-Word transfer at the address containing the least signifi­
cant bit of the field. The Double Word is read by an Extract 
instruction; an Insert instruction reads a Double Word, modi­
fies it, and rewrites it. 

3.4.4.3 Extending Multiply Accesses 

The Multiply Extended Integer (MEl) instruction will return a 
result which is twice the size in bytes of the operand it 
reads. If the multiplicand is in memory, the most-significant 
half of the result is written first (at the higher address), then 
the least-significant half. 

3.4.5 Instruction Fetches 

Instructions for the NS32CG16 CPU are "prefetched"; that 
is, they are input before being needed into the next available 
entry of the eight-byte Instruction Queue. The CPU performs 

2-125 

two types of Instruction Fetch cycles: Sequential and Non­
Sequential. These can be distinguished from each other by 
their differing status combinations on pins STO-ST3 (Sec­
tion 3.4.1). 

A Sequential Fetch will be performed by the CPU whenever 
the Data Bus would otherwise be idle and the Instruction 
Queue is not currently full. Sequential Fetches are always 
Even Word Read cycles (Table 3-2). 

A Non-Sequential Fetch occurs as a result of any break in 
the normally sequential flow of a program. Any jump or 
branch instruction, a trap or an interrupt will cause the next 
Instruction Fetch cycle to be Non-Sequential. In addition, 
certain instructions flush the instruction queue, causing the 
next instruction fetch to display Non-Sequential status. Only 
the first bus cycle after a break displays Non-Sequential 
status, and that cycle is either an Even Word Read or an 
Odd Byte Read, depending on whether the destination ad­
dress is even or odd. 

3.4.6 Interrupt Control Cycles 

Activating the INT or NMI pin on the CPU will initiate one or 
more bus cycles whose purpose is interrupt control rather 
than the transfer of instructions or data. Execution of the 
Return from Interrupt instruction (RETI) will also cause Inter­
rupt Control bus cycles. These differ from instruction or data 
transfers only in the status presented on pins STO-ST3. All 
Interrupt Control cycles are single-byte Read cycles. 

Table 3-4 shows the Interrupt Control sequences associat­
ed with each interrupt and with the return from its service 
routine. For full details of the NS32CG16 interrupt structure, 
see Section 3.8. 

z en 
w 
~ o 
G) 
...&. 
en . 
...&. 
o ...... 
Z en 
w 
~ 
o 
G) 
...&. 
en . 
...&. 

U'I 



II) 
'P"" • 3.0 Functional Description (Continued) CD 
'P"" 

c" 
0 TABLE 3-3. Access Sequences 
N 
C") Cycle Type Address HBE AO High Bus Low Bus en 
Z ..... 
0 
'P"" 

A. Odd Word Access Sequence • CD 
'P"" 

c" BYTE 1 BYTE 0 +-A 0 
N 

Odd Byte A 0 1 Byte 0 Don't Care C") 
en 2 Even Byte A+1 0 Don't Care Byte 1 Z 

B. Even Double-Word Access Sequence 

BYTE 3 BYTE 2 BYTE 1 BYTE 0 +-A 

Even Word A 0 0 Byte 1 Byte 0 
2 Even Word A+2 0 0 Byte 3 Byte 2 

C. Odd Double-Word Access Sequence 

BYTE 3 BYTE 2 BYTE 1 BYTE 0 +-A 

Odd Byte A 0 Byte 0 Don't Care 
2 Even Word A+1 0 0 Byte 2 Byte 1 
3 Even Byte A+3 1 0 Don't Care Byte 3 

D. Even Quad-Word Access Sequence 

BYTE 7 BYTE 6 BYTES BYTE 4 BYTE 3 BYTE 2 BYTE 1 BYTE 0 +-A 

Even Word A 0 0 Byte 1 Byte 0 
2 Even Word A+2 0 0 Byte 3 Byte 2 

Other bus cycles (instruction prefetch or slave) can occur here. 

3 Even Word A+4 0 0 Byte 5 Byte 4 
4 Even Word A+6 0 0 Byte? Byte 6 

E. Odd Quad-Word Access Sequence 

BYTE 7 BYTE 6 BYTES BYTE 4 BYTE 3 BYTE 2 BYTE 1 BYTE 0 +-A 

1 Odd Byte A 0 1 Byte 0 Don't Care 
2 Even Word A+1 0 0 Byte 2 Byte 1 
3 Even Byte A+3 0 Don't Care Byte 3 

Other bus cycles (instruction prefetch or slave) can occur here. 

4 Odd Byte A+4 0 Byte 4 Don't Care 
5 Even Word A+5 0 0 Byte 6 Byte 5 
6 Even Byte A+? 0 Don't Care Byte? 

2·126 



3.0 Functional Description (Continued) 

TABLE 3-4. Interrupt Sequences 

Cycle Status Address AO High Bus 

A. Non-Maskable Interrupt Control Sequence 

Interrupt Acknowledge 
1 0100 FFFF0016 o o Don't Care 

Interrupt Return 

None: Performed through Return from Trap (RETI) instruction. 

B. Non-Vectored Interrupt Control Sequence 

Interrupt Acknowledge 
1 0100 FFFE0016 o o Don't Care 

Interrupt Return 

None: Performed through Return from Trap (RETT) instruction. 

C. Vectored Interrupt Sequence: Non-Cascaded 

Interrupt Acknowledge 
1 0100 FFFE0016 o o Don't Care 

Interrupt Return 
1 0110 FFFE0016 o o Don't Care 

D. Vectored Interrupt Sequence: Cascaded 

Interrupt Acknowledge 
1 0100 FFFE0016 o o Don't Care 

(The CPU here uses the Cascade Index to find the Cascade Address.) 

Low Bus 

Don't Care 

Don't Care 

Vector: 
Range: 0-127 

Vector: Same as 
in Previous Int. 
Ack.Cycle 

Cascade Index: 
range -16 to -1 

2 0101 Cascade 0 1 or 0 or 
Address O· 

Vector, range 0-255; on appropriate 
half of Data Bus for even/odd address 

Interrupt Return 
1 0110 FFFE0016 o o 

(The CPU here uses the Cascade Index to find the Cascade Address.) 
2 0111 Cascade 0 1 or 0 or 

Address 1* 

Don't Care 

Don't Care 

Cascade Index: 
same as in 
previous Int. 
Ack. Cycle 

Don't Care 

• If the Cascaded ICU Address Is Even (AO is low), then the CPU applies HBE high and reads the vector number from bits 0-7 of the Data Bus. 

If the address Is Odd (AD Is high), then the CPU applies HBE low and reads the vector number from bits 8-15 of the Data Bus. The vector number 
may be in the range 0-255. 

2·127 

z en 
w 
N o 
Q .... 
0) . .... 
Q ...... 
Z en 
w 
N o 
Q .... 
0) 
• .... 

CJ1 



an ..... . 
CD ..... 
c" 
o 
N 
C") 
(J) 
Z ...... o ..... 
• CD ..... 

c" 
o 
N 
C") 
(J) 
Z 

3.0 Functional Description (Continued) 

3.4.7 Slave Processor Communication 

The SPC pin is used as the data strobe for Slave Processor 
transfers. In a Slave Processor bus cycle, data is transferred 
on the Data Bus (ADO-AD15), and the status lines STO­
ST3 are monitored by the Slave Processor in order to deter­
mine the type of transfer being performed. SPC is bidirec­
tional, but is driven by the CPU during all Slave Processor 
bus cycles. See Section 3.8 for full protocol sequences. 

PREV. CYCLE 

14 OR TI 

...... ADl5 [ 

STo-ST3 [ 

DaN [ 

DB' [ 

"Note: CPU samples Data Bus here. 

T1 

;1-----1'\ AD«()'15) 
~/ 

D«()'15) 

§PC SiiC 

NS32CG16 SLAVE 
CPU PROCESSOR 

STO-ST3 STG-ST3 

TLlEE/9424-16 

FIGURE 3-10. Slave Processor Connections 

T4 

NEXT CYCLE 

TI OR Tl 

TL/EE/9424-17 

FIGURE 3-11. Slave Processor Read Cycle 

2-128 



3.0 Functional Description (Continued) 

3.4.7.1 Slave Processor Bus Cycles 

A Slave Processor bus cycle always takes exactly two clock 
cycles, labeled T1 and T4 (see Figures 3·11 and 3-12). 
During a Read cycle SPC is active from the beginning of T1 
to the beginning of T 4, and the data is sampled at the end of 
T1. The Cycle Status pins lead the cycle by one clock peri­
od, and are sampled at the leading edge of SPC. During a 
Write cycle, the CPU applies data and activates SPC at T1, 
removing SPC at T 4. The Slave Processor latches status on 
the leading edge of SPC and latches data on the trailing 
edge. 

The CPU does not pulse the Address Strobe (ADS), and no 
bus signals are generated. The direction of a transfer is de­
termined by the sequence ("protocol") established by the 
instruction under execution; but the CPU indicates the direc­
tion on the DDIN pin for hardware debugging purposes. 

PREV. CYCLE 

T4 OR 11 

"c [ 

ADO-AD1' [ 

STO-SI3 [ 

omN [ 

"BE [ 

OBE [ 

T1 

'Note: Slave Processor samples Data Bus here. 

3.4.7.2 Slave Operand Transfer Sequences 

A Slave Processor operand is transferred in one or more 
Slave bus cycles. A Byte operand is transferred on the 
least-significant byte of the Data Bus (ADO-AD7), and a 
Word operand is transferred on the entire bus. A Double 
Word is transferred in a consecutive pair of bus cycles, 
least-significant word first. A Quad Word is transferred in 
two pairs of Slave cycles, with other bus cycles possibly 
occurring between them. The word order is from least-signif­
icant word to most-significant. 

3.5 BUS ACCESS CONTROL 

The NS32CG16 CPU has the capability of relinquishing its 
access to the bus upon request from a OMA controller or 
another CPU. This capability is implemented on the HOLD 
(Hold Request) and HLDA (Hold Acknowledge) pins. By as-

NEXT CYCLE 

11 OR T1 

TLlEE/9424-18 

FIGURE 3-12. Slave Processor Write Cycle 

2-129 

z en 
w 
N o 
Q 
~ 

en 
I 
~ 

o 
........ z en 
w 
I\) 

8 
~ 

en 
I 
~ 

CJ'1 



It) ,... 
cD ,... 
CJ 
o 
N 
C") 
U) 
Z 
....... 
Q ,... 
• (Q ,... 

C!J 
o 
N 
C") 
U) 
Z 

3.0 Functional Description (Continued) 

serting HOLD low, an external device requests· access to 
the bus. On receipt of HLDA from the CPU, the device may 
perform bus cycles, as the CPU at this point has set ADO­
AD15, A 16-A23 and HBE to the TRI-STATE~ condition and 
has switched ADS and DDIN to the input mode. The CPU 
now monitors ADS and DDIN from the external device to 
generate the relevant strobe signals (Le., fSQ, DBE, RD or 
WR). To return control of the bus to the CPU, the device 
sets HOLD inactive, and the CPU acknowledges return of 
the bus by setting HLDA inactive. 

How quickly the CPU releases the bus depends on whether 
it is idle on the bus at the time the HOLD request is made, 
as the CPU must always complete the current bus cycle. 
Figure 3-13 shows the timing sequence when the CPU is 

n n • • • 
cm[ 

HOLD [ 

HLDA [ 

idle. In this case, the CPU grants the bus during the immedi­
ately following clock cycle. Figure 3-14 shows the sequence 
if the CPU is using the bus at the time that the HOLD re­
quest is made. If the request is made during or before the 
clock cycle shown (two clock cycles before T4), the CPU 
will release the bus during the clock cycle following T 4. If 
the request occurs closer to T 4, the CPU may already have 
decided to initiate another bus cycle. In that case it will not 
grant the bus until after the next T 4 state. Note that this 
situation will also occur if the CPU is idle on the bus but has 
initiated a bus cycle internally. 
Note 1: During DMA cycles the WAli1-2 signals should be kept Inactive, 

unless they are also monitored by the DMA controller. If wait states 
are required, ~ should be used. 

Note 2: The logic value of the status pins, STO-ST3, is undefined during 
DMA activity. 

n n nOR T4 nOR T1 

AFFECTED SIGNALS 

ADS [ --- ~~----------

ODIN [ 

HBE [ --- ~~---------

ADO-AD15 [ 

A16-A23 [ NEXT ADDR 

STO-ST3 [ 

TLlEE/9424-19 

FIGURE 3-13. HOLD Timing, Bus Initially Idle 

2-130 



3.0 Functional Description (Continued) 

T2 OR T3 T3 T4 TI • • • TI TI TI TI OR T1 

em [ 

HOLD [ 

HLDA [ 

AFFECTED SIGNALS 

ADS [ 

ODIN [ 

HBE [ 

ADO-AD15 [ 

A16-A23 [ 

STo-Sll [ 

TLlEE/9424-20 

FIGURE 3-14. HOLD Timing, Bus Initially Not Idle 

3.6 INSTRUCTION STATUS 

In addition to the four bits of Bus Cycle status (STO-ST3), 
the NS32CG16 CPU also presents Instruction Status infor­
mation on three separate pins. These pins differ from STO­
ST3 in that they are synchronous to the CPU's internal in­
struction execution section rather than to its bus interface 
section. 

2-131 

PFS (Program Flow Status) is pulsed low as each instruction 
begins execution. It is intended for debugging purposes. 

U/S originates from the U bit of the Processor Status Regis­
ter, and indicates whether the CPU is currently running in 
User or Supervisor mode. Although it is not synchronous to 
bus cycles, there are guarantees on its validity during any 
given bus cycle. See the Timing Specifications in Section 4. 

z en 
w 
N o 
G) .... 
en . .... 
o ........ 
z en 
w 
N o 
G) .... 
en . .... 
U1 



it) ,.... 
I 

(Q ,.... 
CJ 
o 
N 
C"') 
U) 
Z ....... 
o ,.... 

I 
(Q ,.... 
CJ 
o 
N 
C"') 
U) 
Z 

3.0 Functional Description (Continued) 

ILO (Interlocked Operation) is activated during an SBIT! (Set 
Bit, Interlocked) or CBITI (Clear Bit, Interlocked) instruction. 
It is made available to external bus arbitration circuitry in 
order to allow these instructions to implement the sema­
phore primitive operations for multi-processor communica­
tion and resource sharing. ILO is guaranteed to be active 
during the operand accesses performed by the interlocked 
instructions. 
Note: The acknowledge of HOD) is on a cycle by cycle basis. Therefore, it 

is possible to have HLDA active when an interlocked operation is in 
progress. In this case, ILO remains low and the interlocked instruction 
continues only after HOLD is de-asserted. 

3.7 EXCEPTION PROCESSING 

Exceptions are special events that alter the sequence of 
instruction execution. The CPU recognizes two basic types 
of exceptions: interrupts and traps. 

An interrupt occurs in response to an event signalled by 
activating the NMI or INT input signals. Interrupts are typi­
cally requested by peripheral devices that require the CPU's 
attention. 

Traps occur as a result either of exceptional conditions 
(e.g., attempted division by zero) or of specific instructions 
whose purpose is to cause a trap to occur (e.g., supervisor 
call instruction). 

When an exception is recognized, the CPU saves the PC, 
PSR and the MOD register contents on the interrupt stack 
and then it transfers control to an exception service proce­
dure. 

Details on the operations performed in the various cases by 
the CPU to enter and exit the exception service procedure 
are given in the following sections. 

r~ 

MEMORY ~ 
r~ 

/ CASCADE ADDR 0 

· CASCADE TABLE ;. ~ · ~~ 

I'NTEAAUPT.AS~ 
· 

CASCADE ADDR 14 

CASCADE ADDR 15 

REGISTER I 
FIXED INTERRUPTS 

AND TRAPS 

It is to be noted that the reset operation is not treated here 
as an exception. Even though, like any exception, it alters 
the instruction execution sequence. 

The reason being that the CPU handles reset in a signifi­
cantly different way than it does for exceptions. 

Refer to Section for details on the reset operation. 

3.7.1 Exception Acknowledge Sequence 

When an exception is recognized, the CPU goes through 
three major steps: 

1) Adjustment of Registers. 

Depending on the source of the exception, the CPU may 
restore and/or adjust the contents of the Program Coun­
ter (PC), the Processor Status Register (PSR) and the 
currently-selected Stack Pointer (SP). A copy of the PSR 
is made, and the PSR is then set to reflect Supervisor 
Mode and selection of the Interrupt Stack. 

2) Vector Acquisition. 

A Vector is either obtained from the Data Bus or is sup­
plied by default. 

3) Service Call. 

The Vector is used as an index into the Interrupt Dis­
patch Table, whose base address is taken from the CPU 
Interrupt Base (INTBASE) Register. See Figure 3-15. A 
32-bit External Procedure Descriptor is read from the ta­
ble entry, and an External Procedure Call is performed 
using it. The MOD Register (16 bits) and Program Coun­
ter (32 bits) are pushed on the Interrupt Stack. 

1"~1 Oi" 
0 NVI N ON-VECTORED INTERRUPT 

1 NMI N ON·MASKABLE INTERRUPT 

2 RESERVED 

3 SLAVE SLAVE PROCESSOR TRAP 

4 ILL I LLEGAL OPERATION TRAP 

5 SVC SUPERVISOR CALL TRAP I VECTORED t DISPATCH TABLE 6 DVZ DIVIDE BY ZERO TRAP 

1: INTERRUPTS 1 7 FLG F LAG TRAP 

8 BPT BREAKPOINT TRAP 

9 TRC T RACE TRAP 

10 UNO UNDEFINED INSTRUCTION TRAP 

11-15 ::: ;::: RESERVED ~ 
16 VECTORED 

INTERRUPTS 
r.., A. 

TL/EE/9424-21 

FIGURE 3-15. Interrupt Dispatch and Cascade Tables 

2-132 



3.0 Functional Description (Continued) 

This process is illustrated in Figure 3-16, from the viewpoint 
of the programmer. 

Details on the sequences of events in processing interrupts 
and traps are given in the following sections. 

l RETURN ADDRESS 

I STATUS I MODULE 

PSR MOD 

INTBASE REGISTER 

DESCRIPTOR 

I (PUSH) 

I 

I I (PUSH) 

INTERRUPT 
STACK 

r-------- -----, 
I I 
I CASCADE TABLE I 
I I 
I I 
I I 

DISPATCH 
TABLE 

DESCRIPTOR (32 BITS) 

j
32 BITS 

32 BITS 

I,.....· -16----roI I-· -16---1 
OFFSET MODULE 

l 
0 

MOD REGISTER ~ MODULE TABLE 

I NEW MODULE 

I MODULE TABLE ENTRY 

j 

MODULE TABLE ENTRY 
32 

STATIC BASE POINTER ----.., 

LINK BASE POINTER 

~ PROGRAM BASE POINTER 

(RESERVED) 

PROGRAM COUNTER SBREGISTER 

ENTRY POINT ADDRESS I NEW STATIC BASE 
I T --

FIGURE 3-16. Exception Acknowledge Sequence 

2-133 

TL/EE/9424-22 

J 
TL/EE/9424-23 

z en w 
N o 
C) ..... 
en 

I ..... 
o 
"­z en w 
N o 
C) ..... 
en 

I ..... 
en 



it) ,... 
• CD ,... 

CJ 
o 
C\I 
C") 
t/) 
z ...... 
o ,... . 
CD ,... 
CJ 
o 
C\I 
C") 
t/) 
z 

3.0 Functional Description (Continued) 

3.7.2 Returning from an Exception Service Procedure 

To return control to an interrupted program, one of two in­
structions can be used: RETT (Return from Trap) and RETI 
(Return from Interrupt). 

RETT is used to return from any trap or a non-maskable 
interrupt service procedure. Since some traps are often 
used deliberately as a call mechanism for supervisor mode 
procedures, RETT can also adjust the Stack Pointer (SP) to 
discard a specified number of bytes from the original stack 
as surplus parameter space. 

RETI is used to return from a maskable interrupt service 
procedure. A difference of RETT, RETI also informs any 
external interrupt control units that interrupt service has 
completed. Since interrupts are generally asynchronous ex­
ternal events, RETI does not discard parameters from the 
stack. 

80th of the above instructions always restore the PSR, 
MOD, PC and S8 registers to their previous contents. 

PROGRAM COUNTER 
(POP) 

RETURN ADDRESS 

3.7.3 Maskable Interrupts 

The INT pin is a level-sensitive input. A continuous low level 
is allowed for generating multiple interrupt requests. The in­
put is maskable, and is therefore enabled to generate inter­
rupt requests only while the Processor Status Register I bit 
is set. The I bit is automatically cleared during service of an 
INT or NMI request, and is restored to its original setting 
upon return from the interrupt service routine via the RETT 
or RETI instruction. 

The INT pin may be configured via the SETCFG instruction. 
as either Non-Vectored (CFG Register bit 1=0) or Vectored 
(bit 1=1). 

3.7.3.1 Non-Vectored Mode 

In the Non-Vectored mode, an interrupt request on the INT 
pin will cause an Interrupt Acknowledge bus cycle, but the 
CPU will ignore any value read from the bus and use instead 
a default vector of zero. This mode is useful for small sys­
tems in which hardware interrupt prioritization is unneces­
sary. 

I ·1 
(POP) 

STATUS I MODULE 

} 32 BITS 

--f _________ :'r--_-~-------f} 32 BITS 

PSR MOD 

MODULE T~BLE ENTRY 

STATIC BASE POINTER -r----., 

LINK BASE POINTER 

PROGRAM BASE POINTER 

(RESERVED) 

SBREGISTER 

STATIC BASE 
.. ~ 

POP AND 
DISCARD 

n 
BYTES 

INTERRUPT 
STACK 

MODULE 
TABLE 

MODULE TABLE ENTRY 

,~------------, 

PARAMETERS 

STACK SELECTED 
IN NEWLY­

POPPEDPSR. 

FIGURE 3-17. Return from Trap (RETT n) Instruction Flow 

2-134 

TLfEEf9424-24 



3.0 Functional Description (Continued) 

"END OF INTERRUPT" 

PROGRAM COUNTER 

RETURN ADDRESS 

STATUS I MODULE 

PSR MOD 

BUS CYCLE 

I 
I 

I 
I 

(POP) 

(POP) 

INTERRUPT 
CONTROL 

UNIT 

INTERRUPT 
STACK 

MODULE 
TABLE 

'--------------iMODULE TABLE ENTRY 

) 

f 
MODULE TABLE ENTRY 

STATIC BASE POINTER -------.. 

LINK BASE POINTER 

PROGRAM BASE POINTER 

(RESERVED) 

STATIC BASE 

SBREGISTER 
TL/EE/9424-25 

FIGURE 3-18. Return from Interrupt (RETI) Instruction Flow 

3.7.3.2 Vectored Mode: Non-Cascaded Case 

In the Vectored mode, the CPU uses an Interrupt Control 
Unit (ICU) to prioritize up to 16 interrupt requests. Upon re­
ceipt of an interrupt request on the INT pin, the CPU per­
forms an "Interrupt Acknowledge, Master" bus cycle read­
ing a vector value from the low-order byte of the Data Bus. 
This vector is then used as an index into the Dispatch Table 
in order to find the External Procedure Descriptor for the 
proper interrupt service procedure. The service procedure 
eventually returns via the Return from Interrupt (RETI) in­
struction, which performs an End of Interrupt bus cycle, in­
forming the ICU that it may re-prioritize any interrupt re-

2-135 

quests still pending. The ICU provides the vector number 
again, which the CPU uses to determine whether it needs 
also to inform a Cascaded ICU. 

In a system with only one ICU (16 levels of interrupt), the 
vectors provided must be in the range of 0 through 127; that 
is, they must be positive numbers in eight bits. By providing 
a negative vector number, an ICU flags the interrupt source 
as being a Cascaded ICU (see below). 

3.7.3.3 Vectored Mode: Cascaded Case 

In order to allow up to 256 levels of interrupt, provision is 
made both in the CPU and in the NS32202 Interrupt Control 

z 
en w 
N o 
G) 
....I, 

0') 
I 

....I, 

o 
'" z en w 
N o 
G) 
....I, 

0') 
I 

....I, 

U1 



U) ,---------------------------------------------------------------------------------------, --. CD --CJ o 
N 
C") 

en 
z ....... 
o --• CD --CJ 
o 
N 
C") 

en 
z 

3.0 Functional Description (Continued) 

Unit (ICU) to transparently support cascading. Figure 3-20 
shows a typical cascaded configuration. Note that the Inter­
rupt output from a Cascaded ICU goes to an Interrupt Re­
quest input of the Master ICU, which is the only ICU which 
drives the CPU INT pin. 

In a system which uses cascading, two tasks must be per­
formed upon initialization: 

1) For each Cascaded ICU in the system, the Mater ICU 
must be informed of the line number (0 to 15) on which it 
receives the cascaded requests. 

2) A Cascade Table must be established in memory. The 
Cascade Table is located in a NEGATIVE direction from 
the location indicated by the CPU Interrupt Base (INT­
BASE) Register. Its entries are 32-bit addresses, pointing 
to the Vector Registers of each of up to 16 Cascaded 
ICUs. 

Figure 3-15 illustrates the position of the Cascade Table. To 
find the Cascade Table entry for a Cascaded ICU, take its 
Master ICU line number (0 to 15) and subtract 16 from it, 
giving an index in the range -16 to -1. Multiply this value 
by 4, and add the resulting negative number to the contents 
of the INTBASE Register. The 32-bit entry at this address 
must be set to the address of the Hardware Vector Register 
of the Cascaded ICU. This is referred to as the "Cascade 
Address." 

Upon receipt of an interrupt request from a Cascaded ICU, 
the Master ICU interrupts the CPU and provides the neg-

NS32CG16 
CPU 

GROUP 

STATUS 1 

ative Cascade Table index instead of a (positive) vector 
number. The CPU, seeing the negative value, uses it as an 
index into the Cascade Table and reads the Cascade Ad­
dress from the referenced entry. Applying this address, the 
CPU performs an "Interrupt Acknowledge, Cascaded" bus 
cycle, reading the final vector value. This vector is interpret­
ed by the CPU as an unsigned byte, and can therefore be in 
the range of 0 through 255. 

In returning from a Cascaded interrupt, the service proce­
dure executes the Return from Interrupt (RETI) instruction, 
as it would for any Maskable Interrupt. The CPU performs 
an "End of Interrupt, Master" bus cycle, whereupon the 
Master ICU again provides the negative Cascaded Table 
index. The CPU, seeing a negative value, uses it to find the 
corresponding Cascade Address from the Cascade Table. 
Applying this address, it performs an "End of Interrupt, Cas­
caded" bus cycle, informing the Cascaded ICU of the com­
pletion of the service routine. The byte read from the Cas­
caded ICU is discarded. 
Note: If an interrupt must be masked oft, the CPU can do so by setting the 

corresponding bit in the Interrupt Mask Register of the Interrupt Con­
troller. However, if an interrupt is set pending during the CPU instruc­
tion that masks oft that interrupt, the CPU may still perform an inter­
rupt acknowledge cycle following that instruction since it might have 
sampled the INT line before the ICU deasserted it. This could cause 
the ICU to provide an invalid vector. To avoid this problem the above 
operation should be performed with the CPU interrupt disabled. 

NS32202 
ICU 

IR1 

IR3 

IR5 

IR7 

IR9 

IR11 

IR13 

IR15 

GOIIRO 

GlIIR2 

G2/1R4 

G3/1R6 

G411R8 

G5/1R10 

HARDWARE 
INTERRUPTS 

OR 
CASCADED 

CONTROLLERS 

INTERRUPTS, 
CASCADED, 

OR 
BIT 1/0 

~~g~ESS CS 
G6/1R12 

DECODER G711R14 

TL/EE/9424-26 

FIGURE 3-19. Interrupt Control Unit Connections (16 Levels) 

2-136 



3.0 Functional Description (Continued) 

IRI 

IR3 

IR5 

IR7 HARDWARE 
CASCADED 

IRe INTERRUPTS 
NS32202 

ICU IRll 

IR13 

IR15 

GOIIRO 

Gl/1R2 

G2/1R4 
FROM G3/1R8 INTERRUPTS 
ADDRESS CS OR 
DECODER G4/1RI BIT 110 

iNT 
G5/1Rl0 

G8/1R12 

G7/1R14 

CONTROL 

NS32CGI6 MASTER 
NS32202 

CPU ADDR ICU 
GROUP 

STATUS 1 

INT !NT 

FROM 
ADDRESS CS 
DECODER 

TL/EE/9424-27 

FIGURE 3-20. Cascaded Interrupt Control Unit Connections 

3.7.4 Non-Maskable Interrupt 

The Non-Maskable Interrupt is triggered whenever a falling 
edge is detected on the NMI pin. The CPU performs an 
"Interrupt Acknowledge, Master" bus cycle when process­
ing of this interrupt actually begins. The Interrupt Acknowl­
edge cycle differs from that provided for Maskable Inter­
rupts in that the address presented is FFFF0016. The vector 
value used for the Non-Maskable Interrupt is taken as 1, 
regardless of the value read from the bus. 

The service procedure returns from the Non-Maskable In­
terrupt using the Return from Trap (RETT) instruction. No 
special bus cycles occur on return. 

For the full sequence of events in processing the Non­
Maskable Interrupt, see Section 3.7.7.1. 

2-137 

3.7.5 Traps 

Traps are processing exceptions that are generated as di­
rect results of the execution of an instruction. The Return 
Address pushed by any trap except Trap (TRC) is the ad­
dress of the first byte of the instruction during which the trap 
occurred. Traps do not disable interrupts, as they are not 
associated with external events. Traps recognized by 
NS32CG16 CPU are: 

Trap (SLAVE): An exceptional condition was detected by 
the Floating Point Unit during the execution of a Slave In­
struction. This trap is requested via the Status Word re­
turned as part of the Slave Processor Protocol (Section 
3.8.1). 

z 
en w 
N 
0 
C> ...... 
Q) 

I ...... 
0 ...... 
Z 
en 
W 
N 
0 
C> ...... 
Q) 
I ...... 

U1 



Lt) ,... . 
CD ,... 
~ 
(.) 
N 
('I) 

en 
z ...... 
o ,... . 
CD ,... 
~ 
(.) 
N 
('I) 

en 
z 

3.0 Functional Description (Continued) 

Trap (ILL): Illegal operation. A privileged operation was at­
tempted while the CPU was in User Mode (PSR bit U = 1). 

Trap (SVC): The Supervisor Call (SVC) instruction was exe­
cuted. 

Trap (OVZ): An attempt was made to divide an integer by 
zero. (The SLAVE trap is used for Floating Point division by 
zero.) 

Trap (FLG): The FLAG instruction detected a "1" in the 
CPU PSR F bit. 

Trap (BPT): The Breakpoint (BPT) instruction was execut­
ed. 

Trap (TRC): The instruction just completed is being traced. 
See Section 3.7.6. 

Trap (UNO): An undefined opcode was encountered by the 
CPU. 

3.7.6 Instruction Tracing 

Instruction tracing is a feature that can be used during de­
bugging to single-step through selected portions of a pro­
gram. Tracing is enabled by setting the T-bit in the PSR 
Register. When enabled, the CPU generates a Trace Trap 
(TRG) after the execution of each instruction. 

At the beginning of each instruction, the T bit is copied into 
the PSR P (Trace "Pending") bit. If the P bit is set at the end 
of an instruction, then the Trace Trap is activated. If any 
other trap or interrupt request is made during a traced in­
struction, its entire service procedure is allowed to complete 
before the Trace Trap occurs. Each interrupt and trap se­
quence handles the P bit for proper tracing, guaranteeing 
only one Trace Trap per instruction, and guaranteeing that 
the Return Address pushed during a Trace Trap is always 
the address of the next instruction to be traced. 

Due to the fact that some instructions can clear the T and P 
bits in the PSR, in some cases a Trace Trap may not occur 
at the end of the instruction. This happens when one of the 
privileged instructions BICPSRW or LPRW PSR is executed. 

In other cases, it is still possible to guarantee that a Trace 
Trap occurs at the end of the instruction, provided that spe­
cial care is taken before returning from the Trace Trap Serv­
ice Procedure. In case a BICPSRB instruction has been ex­
ecuted, the service procedure should make sure that the T 
bit in the PSR copy saved on the Interrupt Stack is set be­
fore executing the RETT instruction to return to the program 
begin traced. If the RETT or RETI instructions have to be 
traced, the Trace Trap Service Procedure should set the P 
and T bits in the PSR copy on the Interrupt Stack that is 
going to be restored in the execution of such instructions. 

While debugging the NS32CG16 instructions which have in­
terior loops (BBOR, BBXOR, BBAND, BBFOR, EXTBL T, 
MOVMP, SBITPS, TBITS), special care must be taken with 
the single-step trap. If an interrupt occurs during a single­
step of one of the graphics instructions, the interrupt will be 
serviced. Upon return from the interrupt service routine, the 
new NS32CG16 instruction will not be re-entered, due to a 
single-step trap. Both the NMI and INT interrupts will cause 
this behavior. Another single-step operation (S command in 
DBG16/MONCG) will resume from where the instruction 
was interrupted. There are no side effects from this early 
termination, and the instruction will complete normally. 

For all other Series 32000 instructions, a single-step opera­
tion will complete the entire instruction before trapping back 

2-138 

to the debugger. On the instructions mentioned above, sev­
eral single-step commands may be required to complete the 
instruction, ONLY when interrupts are occurring. 

There are some methods to give the appearance of single­
stepping for these NS32CG16 instructions. 

1. MON16/MONCG monitors the return from single-step 
trap vector, PC value. If the PC has not changed since the 
last single-step command was issued, the single-step oper­
ation is repeated. It is also advisable to ensure that one of 
the NS32CG 16 instructions is being single-stepped, by in­
specting the first byte of the address pointed to by the PC 
register. If it is OxOE, then the instruction is an NS32CG16-
specific instruction. 

2. A breakpoint following the instruction would also trap af­
ter the instruction had completed. 
Note: If instruction tracing is enabled while the WAIT instruction is executed, 

the Trap (TAC) occurs after the next interrupt, when the interrupt 
service procedure has returned. 

3.7.7 Priority Among Exceptions 

The NS32CG16 CPU internally prioritizes simultaneous in­
terrupt and trap requests as follows: 

1) Traps other than Trace (Highest priority) 

2) Non-Maskable Interrupt 

3) Maskable Interrupts 

4) Trace Trap (Lowest priority) 

3.7.8 Exception Acknowledge Sequences: Detail Flow 

For purposes of the following detailed discussion of inter­
rupt and trap acknowledge sequences, a Single sequence 
called "Service" is defined in Figure 3-21. Upon detecting 
any interrupt request or trap condition, the CPU first per­
forms a sequence dependent upon the type of interrupt or 
trap. This sequence will include pushing the Processor 
Status Register and establishing a Vector and a Return Ad­
dress. The CPU then performs the Service sequence. 

3.7.8.1 Maskable/Non-Maskable Interrupt Sequence 

This sequence is performed by the CPU when the NMI pin 
receives a falling edge, or the INT pin becomes active with 
the PSR I bit set. The interrupt sequence begins either at 
the next instruction boundary or, in the case of the String 
instructions, or Graphics instructions which have interior 
loops (BBOR, BBXOR, BBAND, BBFOR, EXTBLT, MOVMP, 
SBITPS, TBITS), at the next interruptible point during its ex­
ecution. The graphics instructions are interruptible. 

1. If a String instruction was interrupted and not yet com­
pleted: 

a. Clear the Processor Status Register P bit. 

b. Set "Return Address" to the address of the first byte 
of the interrupted instruction. 

Otherwise, set "Return Address" to the address of the 
next instruction. 

2. Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits S, U, T, P and I. 

3. If the interrupt is Non-Maskable: 

a. Read a byte from address FFFF0016, applying Status 
Code 0100 (Interrupt Acknowledge, Master: Section 
3.4.1). Discard the byte read. 

b. Set "Vector" to 1. 

c. Go to Step 8. 



3.0 Functional Description (Continued) 
4. If the interrupt is Non·Vectored: 

a. Read a byte from address FFFE0016, applying Status 
Code 0100 (Interrupt Acknowledge, Master: Section 
3.4.1). Discard the byte read. 

b. Set "Vector" to O. 

c. Go to Step 8. 
5. Here the interrupt is Vectored. Read "Byte" from ad· 

dress FFFE0016, applying Status Code 0100 (Interrupt 
Acknowledge, Master: Section 3.4.1). 

6. If "Byte" ~ 0, then set "Vector" to "Byte" and go to 
Step 8. 

7. If "Byte" is in the range -16 through -1, then the inter· 
rupt source is Cascaded. (More negative values are reo 
served for future use.) Perform the following: 

a. Read the 32·bit Cascade Address from memory. The 
address is calculated as INTBASE + 4· Byte. 

b. Read "Vector", applying the Cascade Address just 
read and Status Code 0101 (Interrupt Acknowledge, 
Cascaded: Section 3.4.1). 

8. Push the PSR copy (from Step 2) onto the Interrupt 
Stack as a 16·bit value. 

9. Perform Service (Vector, Return Address), Figure 3·21. 
ServIce (Vector, Return Address): 

1) Read the 32·bit External Procedure Descriptor from the 
Interrupt Dispatch Table: address is 
Vector·4+ INTBASE Register contents. 

2) Move the Module field of the Descriptor into the tempo· 
rary MOD Register. 

3) Read the Program Base pointer from memory address 
MOD + 8, and add to it the Offset field from the Descrip· 
tor, placing the result in the Program Counter. 

4) Read the new Static Base pointer from the memory ad· 
dress contained in MOD, placing it into the SB Register. 

5) Flush Queue: Non·sequentially fetch first instruction of 
Interrupt Routine. 

6) Push MOD Register onto the Interrupt Stack as a 16·bit 
value. (The PSR has already been pushed as a 16·bit 
value.) 

7) Push the Return Address onto the Interrupt Stack as a 
32·bit quantity. 

8) Copy temporary MOD Register to MOD Register. 

FIGURE 3·21. ServIce Sequence 
Invoked during AlllnterruptlTrap Sequences 

3.7.0.2 Trap Sequence: Traps Other Than Trace 

1) Restore the currently selected Stack Pointer and the 
Processor Status Register to their original values at the 
start of the trapped instruction. 

2) Set "Vector" to the value corresponding to the trap type. 

SLAVE: Vector = 3. 
ILL: Vector = 4. 
SVC: Vector = 5. 
DVZ: Vector = 6. 
FLG: Vector = 7. 
BPT: Vector = 8. 
UNO: Vector = 10. 

2·139 

3) Copy the Processor Status Register (PSR) into a tempo· 
rary register, then clear PSR bits S, U, P and T. 

4) Push the PSR copy onto the Interrupt Stack as a 16·bit 
value. 

5) Set "Return Address" to the address of the first byte of 
the trapped instruction. 

6) Perform Service (Vector, Return Address), Figure 3·21. 

3.7.0.3 Trace Trap Sequence 

1) In the Processor Status Register (PSR), clear the P bit. 

2) Copy the PSR into a temporary register, then clear PSR 
bits S, U and T. 

3) Push the PSR copy onto the Interrupt Stack as a 16·bit 
value. 

4) Set "Vector" to 9. 

5) Set "Return Address" to the address of the next instruc-
tion. 

6) Perform Service (Vector, Return Address), Figure 3·21. 

3.0 SLAVE PROCESSOR INSTRUCTIONS 

The NS32CG16 supports only one group of instructions, the 
floating point instruction set, as being executable by a slave 
processor. The floating point instruction set is validated by 
the F bit in the CFG register. 

If a floating·point instruction is encountered and the F bit in 
the CFG register is not set, a Trap(UND) will result, without 
any slave processor communication attempted by the CPU. 
This allows software emulation in case an external floating 
point unit (FPU) is not used. 

3.8.1 Slave Processor Protocol 

Slave Processor instructions have a three·byte Basic In· 
struction field, consisting of an 10 Byte followed by an Opere 
ation Word. The 10 Byte has three functions: 

1) It identifies the instruction as being a Slave Processor 
instruction. 

2) It specifies which Slave Processor will execute it. 

3) It determines the format of the following Operation Word 
of the instruction. 

Upon receiving a Slave Processor instruction, the CPU initio 
ates the sequence outlined in Figure 3-22. While applying 
Status Code 1111 (Broadcast ID, Section 3.4.1), the CPU 
transfers the 10 Byte on the least·significant half of the Data 
Bus (ADO-AD7). All Slave Processors input this byte and 
decode it. The Slave Processor selected by the 10 Byte is 
activated, and from this point the CPU is communicating 
only with it. If any other slave protocol was in progress (e.g., 
an aborted Slave instruction), this transfer cancels it. 

The CPU next sends the Operation Word while applying 
Status Code 1101 (Transfer Slave Operand, Section 3.4.1). 
Upon receiving it, the Slave Processor decodes it, and at 
this point both the CPU and the Slave Processor are aware 
of the number of operands to be transferred and their sizes. 
The Operation Word is swapped on the Data Bus; that is, 
bits 0-7 appear on pins AD8-AD15 and bits 8-15 appear 
on pins ADO-AD7. 

z en 
w 
I\.) 

o 
G') 
....... 
m • ....... 
o ...... 
z en 
w 
I\.) 

o 
G') 
....... 
m • ....... 
U1 



~ ,-------------------------------------------------------------------------------------------, ...... 
I 

CD ...... 
(!J 
o 
N 
('I) 
U) 
Z ....... 
o ...... 

I 
CD ...... 
(!J 
o 
N 
('I) 
U) 
Z 

3.0 Functional Description (Continued) 

Using the Addressing Mode fields within the Operation 
Word, the CPU starts fetching operands and issuing them to 
the Slave Processor. To do so, it references any Addressing 
Mode extensions which may be appended to the Slave 
Processor instruction. Since the CPU is solely responsible 
for memory accesses, these extensions are not sent to the 
Slave Processor. The Status Code applied is 1101 (Transfer 
Slave Processor Operand, Section 3.4.1). 

Step 

1 

2 

3 

4 

5 

6 

7 

Status Combinations: 
Send ID (I D): Code 1111 
Xfer Operand (OP): Code 1101 
Read Status (ST): Code 1110 

Status 

ID 

OP 

OP 

ST 

OP 

Action 

CPU Sends ID Byte. 

CPU Sends Operation Word. 

CPU Sends Required Operands. 

Slave Starts Execution. CPU Pre­
Fetches. 

Slave Pulses SPC Low. 

CPU Reads Status Word. (Trap? Alter 
Flags?) 

CPU Reads Results (If Any). 

FIGURE 3-22. Slave Processor Protocol 

After the CPU has issued the last operand, the Slave Proc­
essor starts the actual execution of the instruction. Upon 
completion, it will signal the CPU by pulsing SPC low. 

While the Slave Processor is executing the instruction, the 
CPU is free to prefetch instructions into its queue. If it fills 
the queue before the Slave Processor finishes, the CPU will 
wait, applying Status Code 0011 (Waiting for Slave). 

Upon receiving the pulse on SPC, the CPU uses SPC to 
read a Status Word from the Slave Processor, applying 
Status Code 1110 (Read Slave Status). This word has the 
format shown in Figure 3-23. If the Q bit ("Quit", Bit 0) is set, 
this indicates that an error was detected by the Slave Proc­
essor. The CPU will not continue the protocol, but will imme­
diately trap through the Slave vector in the Interrupt Table. 
Certain Slave Processor instructions cause CPU PSR bits to 
be loaded from the Status Word. 

The last step in the protocol is for the CPU to read a result, 
if any, and transfer it to the destination. The Read cycles 
from the Slave Processor are performed by the CPU while 
applying Status Code 1101 (Transfer Slave Operand). 

3.8.2 Floating Point Instructions 

Table 3-5 gives the protocols followed for each Floating 
Point instruction. The instructions are referenced by their 
mnemonics. For the bit encodings of each instruction, see 
Appendix A. 

TABLE 3·5. Floating Point Instruction Protocols 

Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits 

Mnemonic Class Class Issued Issued Type and Dest. Affected 

ADDf read.f rmw.f ftoOp.2 none 
SUBf read.f rmw.f ftoOp.2 none 
MULf read.f rmw.f ftoOp.2 none 
DIVf read.f rmw.f fto Op. 2 none 

MOVf read.f write.f N/A fto Op. 2 none 
ABSf read.f write.f N/A ftoOp.2 none 
NEGf read.f write.f N/A ftoOp.2 none 

CMPf read.f read.f N/A N,Z,L 

FLOORfi read.f write.i N/A ito Op. 2 none 
TRUNCfi read.f write.i N/A ito Op. 2 none 

ROUNDfi read.f write.i f N/A itoOp.2 none 

MOVFL read.F write.L F N/A LtoOp.2 none 

MOVLF read.L write.F L N/A FtoOp.2 none 

MOVif read.i write.f N/A fto Op. 2 none 

LFSR read.D N/A D N/A N/A none 
SFSR N/A write.D N/A N/A DtoOp.2 none 

POLYf read.f read.f fto FO none 
DOTf read.f read.f fto FO none 
SCALBf read.f rmw.f ftoOp.2 none 
LOGBf read.f write.f N/A ftoOp.2 none 

Note: 

o = Double Word 

i = integer size (B,W,D) specified in mnemonic. 

f = Floating Point type (F,L) specified in mnemonic. 

Nt A = Not Applicable to this instruction. 

2-140 



3.0 Functional Description (Continued) 

The Operand class columns give the Access Class for each 
general operand, defining how the addressing modes are 
interpreted (see Series 32000 Instruction Set Reference 
Manual). 

The Operand Issued columns show the sizes of the oper· 
ands issued to the Floating Point Unit by the CPU. "0" indio 
cates a 32·bit Double Word. "i" indicates that the instruction 
specifies an integer size for the operand (B = Byte, 
W = Word, 0 = Double Word). "f" indicates that the instruc· 
tion specifies a Floating Point size for the operand (F = 32· 
bit Standard Floating, L=64·bit Long Floating). 

The Returned Value Type and Destination column gives the 
size of any returned value and where the CPU places it. The 
PSR Bits Affected column indicates which PSR bits, if any, 
are updated from the Slave Processor Status Word (Figure 
3·23). 

15 8 7 

I 00000000 IN Z F 0 0 L 0 al 
NewPSRBltVaIUe(I)~ J 
"auit": Terminate Protocol. Trap(FPU). 

TLlEE/9424-28 

FIGURE 3-23. Slave Processor Status Word Format 

Any operand indicated as being of type "f" will not cause a 
transfer if the Register addressing mode is specified. This is 
because the Floating Point Registers are physically on the 
Floating Point Unit and are therefore available without CPU 
assistance. 

4.0 Device Specifications 

4.1 NS32CG16 PIN DESCRIPTIONS 

The following is a brief description of all NS32CG 16 pins. 
The descriptions reference portions of the Functional De­
scription, Section 3. 

Unless otherwise indicated, reserved pins should be left 
open. 
Note: An asterisk next to the signal name indicates a TRI-STATE condition 

for that signal during HOLD acknowledge. 

4.1.1 Supplies 

VCCL Logic Power. 
+ 5V positive supply for on-chip logic. 

VCCCTTL, Buffers Power. 

VCCFCLK, + 5V positive supplies for on-chip output 
VCCAD, buffers. 
VCCIO 

VSSL Logic Ground. 
Ground reference for on-chip logic. 

VSSFCLK, Buffers Ground. 

VSSNTSC, Ground reference for on·chip output buffers. 
VSSHAD, 
VSSLAD, 
VSSIO 

2·141 

4.1.2 Input Signals 

RSTI Reset Input. 
Schmitt triggered, asynchronous signal used to 
generate a CPU reset. See Section 3.3. 
Note: 
The reset signal is a true asynchronous input. Therefore. no 
external synchronizing circuit is needed. 

When RSTI changes right before the falling edge of CTTL, 
and meets the specified set·up time, it will be recognized on 
that falling edge. Otherwise it will be recognized on the fail­
ing edge of CTTL in the following clock cycle. 

Hold Request. 
When active, causes the CPU to release the 
bus for DMA or multiprocessing purposes. See 
Section 3.5. 
Note: 
If the HOLD signal is generated asynchronously, its set up 
and hold times may be violated. In this case, it is recom­
mended to synchronize it with CTTL to minimize the possibili­
ty of metastable states. 

The CPU provides only one synchronization stage to mini­
mize the HLDA latency. This is to avoid speed degradations 
in cases of heavy HOLD activity (I.e., DMA controller cycles 
interleaved with CPU cycles). 

Interrupt. 
A low level on this pin requests a maskable in­
terrupt. INT must be kept asserted until the in­
terrupt is acknowledged. 

Non-Maskable Interrupt. 
A High-to-Low transition on this signal requests 
a non-maskable interrupt 

Continuous Wait. 
Causes the CPU to insert continuous wait 
states if sampled low at the end of T2 and each 
following T-State. See Section 3.4.3. 

WAIT1-2 Two-Bit Wait State Inputs. 
These inputs, collectively called WAIT1-2, al­
low from zero to three wait states to be speci­
fied. They are binary weighted. See Section 
3.4.3. 
Note: During a DMA cycle, WAIT1-2 should be kept inactive 

unless they are also monitored by the DMA Controller. 
Wait states, in this case, should be generated through 
CWAIT. 

OSCIN Crystal/External Clock Input. 
Input from a crystal or an external clock source. 
See Section 3.2. 

4.1.3 Output Signals 

A 16-A23 *Hlgh-Order Address Bits. 
These are the most significant 8 bits of the 
memory address bus. 

HBE *High Byte Enable. 
Status signal used to enable data transfers on 
the most significant byte of the data bus. 

z en 
w 
N o 
C) 
....... 
en . ....... 
o 
'" z en 
w 
N o 
C) 
....... 
en . ....... 
U1 



~ ~------------------------------------------------------------------------------------------, ,.... . 
CD ,.... 

" o 
N 
C") 
U) 
Z ...... o ,.... 
• CD ,.... 

" o 
N 
C") 
U) 
Z 

4.0 Device Specifications (Continued) 

STO-3 Status. 

U/S 

Bus cycle status code; STO is the least significant. 
Encodings are: 

OOOO-idle: CPU Inactive on Bus . 

0001-ldle: WAIT Instruction. 

0010-(Reserved) 

0011-ldle: Waiting for Slave. 

01 OO-Interrupt Acknowledge, Master. 

0101-lnterrupt Acknowledge, Cascaded. 

0110-End of Interrupt, Master. 

0111-End of Interrupt, Cascaded. 

1000-Sequential Instruction Fetch. 

1001-Non-Sequentiallnstruction Fetch. 

1010-Data Transfer. 

1 011-Read Read-Modify-Write Operand. 

1100-Read for Effective Address. 

1101-Transfer Slave Operand. 

1110-Read Slave Status Word. 

1111-Broadcast Slave ID. 

User/Supervisor. 
User or Supervisor Mode status. High indicates 
User Mode; low indicates Supervisor Mode. 

Interlocked OperatIon. 
When active, indicates that an interlocked oper­
ation is being executed. 

Hold Acknowledge. 
Activated by the CPU in response to the HOLD 
input to indicate that the CPU has released the 
bus. 

Program Flow Status. 
A pulse on this signal indicates the beginning of 
execution of an instruction. 

BPU Cycle. 
This signal is activated during a bus cycle to 
enable an external BITBLT processing unit. The 
EXTBL T instruction activates this signal. * 
Reset Output. 
This signal becomes active when RSTI is low, 
initiating a system reset. 

Read Strobe. 
Activated during CPU or DMAC read cycles to 
enable reading of data from memory or periph­
erals. See Section 3.4.2. 

WrIte Strobe. 
Activated during CPU or DMAC write cycles to 
enable writing of data to memory or peripherals. 
°Note: BPO is low (Active) only during bus cycles involving 

pre-fetching instructions and execution of EXTBL T 
operands. It is recommended that BPU, ADS and 
status lines (STO-ST3) be used to qualify BPU bus 
cycles. If a DMA circuit exists In the system, the 
HLDA signal should be used to further qualify BPU 
cycles. BPO may become active during T 4 of a non­
BPU bus cycle, and may become inactive during T4 
of a BPU bus cycle. BPU must be qualified by ADS 
and status lines (STO-ST3) to be used as an exter­
nal gating signal. 

2-142 

TSO TImIng State Output. 
The falling edge of TSO identifies the beginning 
of state T2 of a bus cycle. The rising edge iden­
tifies the beginning of state T 4. 

DBE Data Buffers Enable. 
Used to control external data buffers. It is active 
when the data buffers are to be enabled. 

OSCOUT Crystal Output. 
This line is used as the return path for the crys­
tal (if used). When an external clock source is 
used, OSCOUT should be left unconnected or 
loaded with no more than 5 pF of stray capaci­
tance. 

FCLK Fast Clock. 
This clock is derived from the clock waveform 
on OSCIN. Its frequency is either the same as 
OSCIN or is lower, depending upon the scale 
factor programmed into the CFG register. See 
Section 3.2.1. 

PHI1, PHI2 Two-Phase Clock. 
These outputs provide a two-phase clock with 
frequency half that of FCLK. They can be used 
to clock the DP8510/DP8511 BPU. The trace 
lengths of PHI1 and PHI2 should be shorter 
than 4 inches (10 centimeters) when connected 
to the BPU. 

CTTL System Clock. 
This clock is similar to PHI1 but has a much 
higher driving capability. The skew between its 
rising edge and PHI1 rising edge is kept to a 
minimum. 

4.1.4 Input-Output SIgnals 
ADO-15 *Address/Data Bus. 

Multiplexed Address/Data information. Bit 0 is 
the least significant bit of each. 

Slave Processor Control. 
Used by the CPU as the data strobe output for 
slave processor transfers; used by a slave proc­
essor to acknowledge completion of a slave in­
struction. See Section 3.4.7.1. 

*Data DIrection. 
Status signal indicating the direction of the data 
transfer during a bus cycle. During HOLD ac­
knowledge this signal becomes an input and 
determines the activation of RD or WR. 

* Address Strobe 
Controls address latches; signals the beginning 
of a bus cycle. During HOLD acknowledge this 
signal becomes an input and the CPU monitors 
it to detect the beginning of a DMA cycle and 
generate the relevant strobe signals. When a 
DMA is used, ADS should be pulled up to Vee 
through a 10 k!l resistor. 



4.0 Device Specifications (Continued) 

4.2 ABSOLUTE MAXIMUM RATINGS All Input or Output Voltages with 

If Military/Aerospace specified devices are required, Respect to GND -0.5Vto +7V 

please contact the National Semiconductor Sales Note: Absolute maximum ratings indicate limits beyond 
Office/Distributors for availability and specifications. which permanent damage may occur. Continuous operation 

Temperature Under Bias O°Cto +70°C at these limits is not intended; operation should be limited to 

Storage Temperature - 65°C to + 150°C those conditions specified under Electrical Characteristics. 

4.3 ELECTRICAL CHARACTERISTICS: T A = O°C to + 70°C, Vee = 5V ± 5%, GND = OV 

Symbol Parameter Conditions Min Typ Max Units 

VIH High Level Input Voltage (Note 4) 2.0 Vee + 0.5 V 

VIL Low Level Input Voltage (Note 3) -0.5 0.8 V 

VT+ RSTI Rising Threshold Voltage Vee = 5.0V (Note 5) 2.5 3.5 V 

VHYS RSTI Hysteresis Voltage Vee = 5.0V (Note 5) 0.8 1.8 V 

VXL OSCIN Input Low Voltage 0.5 V 

VXH OSCIN Input High Voltage 4.5 V 

VOH High Level Output Voltage IOH = -400 j.LA (Note 6) 2.4 V 

VOL Low Level Output Voltage IOL = 4 rnA (Note 6) 0.45 V 

IlLS SPC Input Current (low) VIN = O.4V, SPC in Input Mode 0.05 1.0 rnA 

II Input Load Current o ~ VIN ~ Vee, All Inputs except SPC -20 20 j.LA 

IL Leakage Current 0.4 ~ VOUT ~ Vee 
Output and 110 Pins in -20 20 j.LA 
TRI·STATE Input Mode 

lee Active Supply Current lOUT = 0, T A = 25°C (Note 2) 140 200 rnA 

VPH PHI1, 2 High Level Output Voltage IOH = -400 j.LA 0.9 Vee V 

VPL PHI1, 2 Low Level Output Voltage IOL = 4 rnA 0.1 Vee V 
Note 1: Care should be taken by designers to provide a minimum inductance path between the Vss pins and system ground in order to minimize noise. 
Note 2: lec is affected by the clock scaling factor selected by the C and M bits in the CFG register, see Section 3.2.1. 
Note 3: VIL min-in the range of -0.5V to -1.5V, the pulse must be s: 20 ns, and the period between pulses ~ 120 ns. 
Note 4: VIH max-in the range of Vee + 0.5V to Vee + 2.0V, the pulse must be s: 25 ns, and the period between pulses ~ 120 ns. 
Note 5: Not 100% tested. 
Note 6: All outputs except PHI1 and PHI2. 

2·143 

z en 
w 
N o 
C) 
.."" 
0') . 
.."" 
o ....... 
Z en 
w 
N o 
C) 
.."" 
0') 
• .."" 

U1 



U) ~--------------------------------------------------------------------------------------, .... 
• U) .... 
~ 
o 
N 
Cf) 
U) 
Z 
C; .... 
ch .... 
~ 

~ 
Cf) 
U) 
z 

4.0 Device Specifications (Continued) 

6S-Pln PCC Package 

~ ~ ~ I~ I~ I~ ~I~ I I ~ ~ ~ ~ ~ ~ ~ 
ST2 

ST3 

prs 
DDIN 

ADS 

SPC 

VCCIO 

HBE 

HOLDA 

HOLD 

RSTO 

WAITl 

WAIT2 

CWAIT 

VSSL 

OSCIN 

RSTI 

28 

29 

30 

A18 

A17 

A16 

VCCAD 

AD15 

AD14 

AD13 

AD12 

ADll 

AD10 

AD9 

AD8 

VSSLAD 

AD7 

AD6 

AD5 

AD4 

TL/EE/9424-29 

Bottom View 

FIGURE 4-1. Connection Diagram 

4.4 SWITCHING CHARACTERISTICS 

4.4.1 Definitions 

All the timing specifications given in this section refer to 
O.BV or 2.0V on the rising or falling edges of CTTL when the 
capacitive loading of CTIL is 100 pF, unless specifically 
stated otherwise. The timing specifications refer to O.B or 
2.0V on the TIL output and input signals as illustrated in 
Figures 4-2 and 4-3 unless specifically stated otherwise. 

2·144 

CnL[_~r~-2.0_V------------­O.BV 

[--+--------""\.-1------2.4V 

SIG1 ~tS~IG:!.!1I-------__ --~O.-BV--O.45V 
tSIG2h 

[ ~ ..... ------uv 
SIG2 ______ --" 2.0V - ------------O.45V 

TL/EE/9424-30 

FIGURE 4-2. Timing Specification Standard 
(TTL Output Signals) 



4.0 Device Specifications (Continued) 

ABBREVIATIONS: 

L.E. -leading edge 

T.E. - trailing edge 

R.E. - rising edge 

F.E. - falling edge 

em[ 2.0VC ______________________ O~.8~V~ 

SIGl[----------.. J:-~~G!!-:: ---­
o.a~I'_---_+_-­t:tSIG2h -

SIG2 [ _______ 2 ...... 0a ___________ _ 

4.4.2 DEVICE TESTING 

TEST EQUIPMENT r-----------., 

PROGRAMMABLE 
CURRENT 

SOURCE/SINK 

~ SIGNAL 
.... -,.---..... T--<i~ UNDER TEST 

1.-----------
I
+CAPACITIVE 

LOADING 

TL/EE/9424-31 

FIGURE 4-3. Timing Specification Standard 

TL/EE/9424-65 

FIGURE 4.4. Test Loading Configuration 

(TTL Input Signals) 

TABLE 4-1. Test Loading Characteristics 

Capacitive 
High Level Low Level Input Load 

High Level Low Level 
Signal Name 

Loading 
Output Voltage Output Voltage Current 

Input Voltage Input Voltage 
(IOH = - 400 /LA) (IOL = 4mA) (0 :>: VIN :>: Vee) 

HBE, 5TO-3, U/S, 50pF 

iLO, HLDA, PFS, 
BPO, RSTO, RD, 2.0V:>:VOH:>:VCC+ 0.5V -0.5V:>:VOL:>:0.BV -20 /LA:>: 11:>:20 /LA 2.0V:>:VIH:>:VCC+ 0.5V -0.5V:>:VIL:>:0.45V 
WR, TSO, DBE, 
FCLK, ODiN, ADS 

RSTI, HOLD, INT, 50pF -20 /LA:>: 11:>:20 /LA 2.0V:>:VIH:>:VCC+ 0.5V -0.5V:>:VIL:>:0.BV 

NMI, eWAlT, WAff1-2 

OSCIN 50pF -20 /LA:>:II:>:20 /LA 4.5V :>: VIH:>: Vee + 0.5V -0.5V:>:VIL:>:0.5V 

ADO-15, A16-23, 100pF 2.0V:>:VOH:>:VCC+ 0.5V -0.5V:>:VOL:>:0.BV -20 /LA:>: 11:>:20 /LA 2.4V:>:VIH:>:VCC+ 0.5V -0.5V:>:VIL:>:0.45V 
CTIL 

PHI1,PHI2 30pF (Note 2) (Note 2) 

~ 30pF 2.0V:>:VOH:>:VCC+ 0.5V -0.5V:>:VOL:>:0.BV 50 /LA:>: II:>: 1.0 mA 2.0V:>:VIH:>:VCC+ 0.5V -0.5V:>:VIL:>:0.4V 

OSCOUT see Table 2.0V:>:VOH:>:VCC+ 0.5V -0.5V:>:VOL:>:0.8V 

(Note 1) 3·1 

Not. 1: The maximum capacitive loading of 05COUT Is given In Table 3·1 when the NS32CG16's oscillator Is driven with a crystal. If a Single phase clock source is 
used, 05COUT should be left unconnected or loaded with no more than 5 pF of stray capacitance. 

Note 2: As stated in Table 4.4.3. 

2-145 

z en 
w 
N o 
C) 
...... 
Q) 
• ...... 

Q 
....... 
Z en w 
N o 
C) ...... 
Q) . ...... 
U'I 



&t) ,... . 
CD ,... 
CJ o 
N 
C") 
U) 
Z ....... 
o ,... . 
CD ,... 
CJ 
o 
N 
C") 
U) 
Z 

4.0 Device Specifications (Continued) 

4.4.3 Timing Tables 

4.4.3.1 Output Signals: Internal Propagation Delays, NS32CG16-10 and NS32CG16-15 

NS32CG16-10 
NS32CG16-15 

Name Figure Description Reference/Conditions (Note 3) Units 

Min Max Min Max 

tCTp 4-20 CTIL Clock Period R.E., CTIL to Next R.E., CTIL 100 1000 66 1000 ns 

tCTh 4-20 CTIL High Time 25 pF-100 pF Capacitive Load 
At 1.5V (Both Edges) 0.40 0.57 0.46 0.58 tcTp 
(see Note 1) 

tCTI 4-20 CTILLowTime AtO.8V 
0.42 0.56 0.40 0.53 tCTp 25 pF-100 pF Capacitive Load 

tCTr 4-20 CTIL Rise Time 0.8V to 2.0V VCC on R.E., CTIL 0 8 0 6 ns 

tCTt 4-20 CTIL Fall Time 2.0V to 0.8V VCC on F.E., CTIL 0 8 0 6 ns 

tCLw(1,2) 4-20 PHI1, PHI2 Pulse Width At 2.0V on PHI1, PHI2 
0.35 0.55 0.32 0.53 tCTp (Both Edges) 

tCLh 4-20 Clock High Time At 90% VCC on PHI1, PHI2 
0.22 0.50 0.28 0.50 tcTp (Both Edges) 

tnOVL(1,2) 4-20 PHI1, PHI2, Non-Overlap At 50% VCC on PHI1, PHI2 
2 2 

Time 
ns 

tXFr 4-20 OSCIN to FCLK 80% VCC on R.E., OSCIN 
2 29 2 25 

R.E. Delay to R.E., FCLK 
ns 

tFCr 4-20 FCLKtoCTIL R.E., FCLK to R.E., CTIL 
-2 10 -2 10 

R.E. Delay 
ns 

tFCf 4-20 FCLKtoCTIL R.E., FCLK to F.E., CTIL 
-2 10 -2 10 

F.E. Delay 
ns 

tPCr 4-20 CTILand PHI1 Skew R.E., CTIL to R.E., PHI1 -4 4 -4 4 ns 

tALv 4-5 Address Bits 0-15 Valid after R.E., CTIL T1 40 4 30 ns 

tALh 4-5 Address Bits 0-15 Hold after R.E., CTIL T2 5 5 ns 

tAHv 4-5 Address Bits 16-23 Valid after R.E., CTIL T1 40 0 30 ns 

tAHh 4-5 Address Bits 16-23 Hold after R.E., CTIL Next T1 or Ti 0 0 ns 

tAUr 4-5 Address Bits 0-15 after R.E., CTIL T2 
5 38 5 28 

floating (during read) 
ns 

tALnfr 4-5 ADO-AD15 
4 36 4 26 

Floating (Note 2) 
ns 

Note 1: Device testing Is performed using the Test Loading Characteristics In Table 4.1. Additional timing data for CTIL with various capacitive loads Is not 100% 
tested. 
Note 2: tALnlr Is address bits 0-15 floating or not active after R.E. CTIL T1. This Is only valid If the previous CPU cycle was a read (Figure 4.5). A previous wrlte 
may have "data" active into T1 of the next cycle which then becomes "address" during T1. 
Note 3: 15 MHz specifications are only guaranteed when tcTp = 66 ns. 

2-146 



4.0 Device Specifications (Continued) 

4.4.3.1 Output Signals: Internal Propagation Delays, NS32CG16-10 and NS32CG16-15 (Continued) 

NS32CG16-10 NS32CG16-15 
Name Figure Description Reference/Conditions Units 

Min Max Min Max 

tAu 4·7 ADO-AD15 Floating after R.E., CTIL Ti 
25 18 

(Caused by HOLD) 
ns 

tAHf 4·7 A 16-A23 Floating after R.E., CTIL Ti 25 18 ns 

tALnf 4·5,4·8 Address Bits 0-15 after R.E., CTIL T1 
4 36 4 26 

Not Floating 
ns 

tAHnf 4·8 Address Bits 16-23 after R.E., CTIL T4 
4 36 4 26 

Not Floating 
ns 

tov 4·6,4·10 Data Valid (Write Cycle) after R.E., CTIL T2 or T1 50 38 ns 

tOh 4·6,4·10 Data Hold after R.E., CTIL Next T1 or Ti 0 0 ns 

tAOSa 4·5 ADS Signal Active after R.E., CTIL T1 5 35 5 26 ns 

tAOSia 4·5 ADS Signal Inactive after F.E., CTIL T1 5 35 5 25 ns 

tAOSw 4·6 ADS Pulse Width at 15% VCC (Both Edges) 30 25 ns 

tAOSf 4·7 ADS Floating after R.E., CTIL Ti 55 40 ns 

tAOSr 4·8 ADS Return from Floating after R.E., CTIL Ti 55 40 ns 

tALAOSs 4·6 Address Bits 0-15 Setup before ADS T.E. 25 20 ns 

tAHAOSs 4·6 Address Bits 16-23 Setup before ADS T.E. 25 20 ns 

tALAOSh 4·5 Address Bits 0-15 Hold after ADS T.E. 12 12 ns 

tHBEv 4·5 HBE Signal Valid after R.E., CTIL T1 60 38 ns 

tHBEh 4·5 HBE Signal Hold after R.E., CTIL Next T1 or Ti 0 0 ns 

tHBEf 4·7 HBE Signal Floating after R.E., CTIL Ti 55 40 ns 

tHBEr 4·8 HBE Return from Floating after R.E., CTIL Ti 55 40 ns 

tOOINv 4-5 DDIN Signal Valid after R.E., CTIL T1 65 38 ns 

tOOINh 4-5 DDIN Signal Hold after R.E., CTIL Next T1 or Ti 0 0 ns 

tOOINf 4·7 DDIN Floating after R.E., CTIL Ti 55 40 ns 

tOOINr 4-8 DDIN Return from Floating after R.E., CTIL Ti 55 40 ns 

tSPCa 4·10 SPC Output Active after R.E., CTIL T1 35 5 26 ns 

tSPCia 4-10 SPC Output Inactive after R.E., CTIL T4 35 5 26 ns 

tSPCnf 4-12 SPC Output Non-Forcing after F.E., CTIL T4 tCTp + 10 tCTp + 8 ns 
(Note 2) 

tHLOAa 4·7 HLDA Signal Active after R.E., CTIL Ti 50 26 ns 

tHLOAia 4·8 HLDA Signal Inactive after R.E., CTIL Ti 50 26 ns 

tSTv 4-5 Status STO-ST3 Valid after R.E., CTIL T4 
45 38 

(before T1, see Note 1) 
ns 

tSTh 4·5 Status STO-ST3 Hold after R.E., CTIL T4 0 0 ns 

tBPUv 4·5 BPU Signal Valid after R.E., CTIL T4 45 30 ns 

tBPUh 4·5 BPU Signal Hold after R.E., CTIL T4 5 5 ns 
Note 1: Every memory cycle starts with T4, during which Cycle Status is applied. If the CPU was idling, the sequence will be: " ... Ti, T 4, T1 ... ". If the CPU was 
not idling, the sequence will be: " '" T4, T1 ... ". 
Note 2: If the CPU is connected directly to the FPU and the CTTL loading is not violated, the CPU and FPU will function correctly together. The CPU and FPU 
connect directly without buffers. They should be located less than 4 inches (10 centimeters) apart. tspca and tSPCia will track each other on all CPU's and therefore 
it is not possible to have a minimum tSPCia and a maximum tSPCa value. The pulse width minimum, tsPCw, of the FPU will not be violated by the NS32CG 16 when 
connected directly to the FPU. 

2·147 

z en 
w 
N 
(') 
C) ..... 
Q) 

I ..... 
o 
"­z en 
w 
N 
(') 
C) ..... 
Q) 

I ..... 
CJ1 



Lt) 
or-

I 
CD 
0r-

e" 
o 
N 
C") 

en 
z 
........ 
o 
or-

I 
CD 
0r-

e" 
o 
N 
C") 

en z 

4.0 Device Specifications (Continued) 

4.4.3.1 Output Signals: Internal Propagation Delays, NS32CG16-10 and NS32CG16-15 (Continued) 

NS32CG16-10 
Name Figure Description Reference/Conditions 

Min Max 

tTSOa 4-5 TSO Signal Active after R.E., CTIL T2 15 

tTSOia 4-5 TSO Signal Inactive after R.E., CTIL T4 15 

tAOa 4-5 RD Signal Active after R.E., CTIL T2 20 

tAOia 4-5 RD Signal Inactive after R.E., CTIL T4 20 

tWAa 4-6 WR Signal Active after R.E., CTIL T2 20 

tWRia 4-6 WR Signal Inactive after R.E., CTIL T4 20 

tOBEa(A) 4-5 DBE Active (Read Cycle) after F.E., CTIL T2 21 

tOBEa(W) 4-6 DBE Active (Write Cycle) after R.E., CTIL T2 28 

tOBEia 4-5,4-6 DBE Inactive after F.E., CTIL T 4 23 

tUSv 4-5 U/S Signal Valid after R.E., CTIL T 4 40 

tUSh 4-5 U/S Signal Hold after R.E., CTIL T 4 5 t I 

tPFSa 4-13 PFS Signal Active after F.E., CTIL 50 

tPFSia 4-13 PFS Signal Inactive after F.E., CTIL 50 

tpFSw 4-13 PFS Pulse Width at 15% Vee (Both Edges) 70 

tNSPF 4-16 Nonsequential Fetch after R.E., CTIL T1 
4 

to Next PFS Clock Cycle 

tpFNS 4-15 PFS Clock Cycle to before R.E., CTIL T1 
4 

Next Nonsequential Fetch 

tlXPF 4-14 Last Operand Transfer before R.E., CTIL T1 of 
of an Instruction to First Bus Cycle of Transfer 0 
Next PFS Clock Cycle 

tllOs 4-17 ILO Signal Setup before R.E., CTIL T1 of 
30 

First Interlocked Read Cycle 

tllOh 4-18 ILO Signal Hold after R.E., CTIL T3 of Last 
5 

Interlocked Write Cycle 

tllOa 4-19 ILO Signal Active after R.E., CTIL 55 

tllOia 4-19 ILO Signal Inactive after R.E., CTIL 55 

tASTOa 4-22 RSTO Signal Active after R.E., CTIL 21 

tASTOia 4-22 RSTO Signal Inactive after R.E., CTIL 21 

tATOI 4-22 Reset to Idle after F.E. of RSTO 10 

tATOF 4-22 Reset to Fetch after R.E. of RSTO 8 

2-148 

NS32CG16-15 
Units 

Min Max 

2 12 ns 

0 10 ns 

15 ns 

0 15 ns 

15 ns 

0 15 ns 

15 ns 

15 ns 

15 ns 

30 ns 

5 ns 

38 ns 

38 ns 

45 ns 

4 teTp 

4 teTp 

0 tCTp 

30 ns 

5 ns 

35 ns 

35 ns 

15 ns 

15 ns 

10 teTp 

8 teTp 



4.0 Device Specifications (Continued) 

4.4.3.2 Input Signal Requirements: NS32CG16-10 and NS32CG16-15 

Name Figure Description Reference/Conditions 

txp 4-20 OSCIN Clock Period R.E., OSCIN to Next R.E., OSCIN 

tXh 4-20 OSCIN High Time at 4.2V (Both Edges) 
(External Clock) 

tXI 4-20 OSCIN Low Time at 1.0V (Both Edges) 

tOls 4-5,4-11 Data In Setup before R.E., CTTL T4 

tOlh 4-5,4-11 Data In Hold after R.E., CTTL T 4 
(see Note 1) 

tCWs 4-5,4-6 CWAIT Signal Setup before R.E., CTTL T3 orT3(w) 

tCWh 4-5,4-6 CWAIT Signal Hold after R.E., CTTL T3 or T3(w) 

tws 4-5,4-6 WAITn Signals Setup before R.E., CTTL T3 or T3(w) 

tWh 4-5,4-6 WAITn Signals Hold after R.E., CTTL T3 or T3(w) 

tHLOs 4-7,4-8 HOLD Setup Time before R.E., CTTL TX2 or Ti 

tHLOh 4-7,4-8 HOLD Hold Time after R.E., CTTL Ti 

tpWR 4-21 Power Stable to RSTI R.E. after VCC Reaches 4.5V 

tRSTs 4-21,4-22 RSTI Signal Setup before F.E., CTTL 

tRSTw 4-22 RSTI Pulse Width at O.BV (Both Edges) 

tSPCh 4-12 SPC Hold Time after R.E., CTTL 
(see Note 3) 

tlNTh 4-23 INT Signal Hold after Interrupt Acknowledge 

tNMlw 4-24 NMI Pulse Width at 0.8V (Both Edges) 

tSPCd 4-12 SPC Pulse Delay after F.E., CTTL T 4 
from Slave 

tsPCs 4-12 SPC Input Setup before F.E., CTTL 

tAOSs 4-9 ADS Input Setup before F.E., CTTL 

tAOSh 4-9 ADS Input Hold after F.E., CTTL T1 
(see Note 2) 

tOOINs 4-9 DDIN input Setup before F.E., CTTL 

tOOINh 4-9 DDIN Input Hold after R. E., CTTL T 4 

Note 1: tDlh is always less than or equal to tRDia. 
Note 2: ADS must be deasserted before state T4 of the DMA controller cycle. 
Note 3: Not tested, guaranteed by design. 

2-149 

NS32CG16-10 NS32CG16-15 

Min Max Min Max 

50 500 33 500 

16 11 

16 11 

18 15 

7 7 

20 20 

5 5 

20 20 

5 5 

30 22 

0 0 

50 33 

20 20 

64 64 

0 0 

8 8 

70 50 

2 2 

37 30 

15 10 

10 10 

15 10 

7 5 

Units 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

p's 

ns 

tCTp 

ns 

tCTp 

ns 

tCTp 

ns 

ns 

ns 

ns 

ns 

z 
en w 
N o 
G') ..... 
0') . ..... 
o 
'" z 
en w 
N o 
G') ..... 
0') . ..... 
U1 



U) .---------------------------------------------------------------------------------------. --• U) --CJ 
o 
'" ('t) 

en z ...... o --. U) --CJ 
o 
'" ('t) 
en z 

4.0 Device Specifications (Continued) 

4.4.4 TIMING DIAGRAMS 

T4 OR n T1 

ADO-ADI5 [ _-+-__ -+' 

A 16-A23 [ _--+-__ -+0' 

ADS [ 

HBE [-+---i-' 

T2 T3 T4 nOR T1 

ODIN [ -+--~-~-+--+-~--_+-+_~~--r_-
STO-ST3 [ 

U/s [ 

BPU [ 

rso[ 

RD[ 

DBE[ 

FIGURE 4-5. Read Cycle 

2-150 

TL/EE/9424-32 



4.0 Device Specifications (Continued) 

T4 OR n T1 T2 T3 T3(W) T3(W) 

JL rL IL IL IL rL 
ADO-AD15 [ 

~ ~tDv 

- -------)t\-t>t DATA OUT 

1---. ~tAl.AOSI 

A16-A23 [ _. -------): 
1---. ~ tAHAOSs 

~~t ... 
HBE [ 

-. ~tODINv 

DDIN [ 

STO-ST3 [ =tx 
U/s [ =tx 
BPU [ ]X 

tWRIl -. ~ tWRIIl -. 

\ 
tOBEIl(W) -. ~ 

DBE[ \k-
1\ 

tCW.-. ~ 

CWAIT [ ~~ ~ ~ ~ 
tW.-. ~ '---. tcwh 

WAIT1 [ ~~ ~ ~ ~ ~ ~ ~ 
-. k-tWh 

FIGURE 4·6. Write Cycle 

2-151 

T4 T1 OR n 
~ rL ~ I--

---. tOh 

-lC ~ 
- I...-.-

V 
- -
- -

-. ~tODINh 

1\ 

) 

) 

) 

I 
rl-

fi 
-. ~ tOBElIl 

t 

~ ~ ~ 
TUEE/9424-33 

z en 
w 
N o 
C) 
-" en • -" o ....... 
z en 
w 
N 
o 
C) 
-" en . 
-" 
U1 



U) r---------------------------------------------------------------------------------------~ .... 
I 

CD .... 
(!J 
o 
N 
C"') 

tn 
Z ....... 
o .... 

I 
CD .... 
(!J 
o 
N 
C"') 

tn 
Z 

4.0 Device Specifications (Continued) 

TXl TX2 T4 TI TI TI 

cm[ 
HOLD [ 

HlOA [ 

(FLOATING) 

ADO-AD15 [ ----L----(FLOATING) 

A16-A2J [ ----L----(FLOATING) 

I 
TL/EE/9424-34 

FIGURE 4·7. HOLD Acknowledge Timing (Bus Initially Not Idle) 
Note: When the bus is not idle, fID[O must be asserted before the rising edge of CTIL of the timing state that precedes state T41n order for the request to be 

acknowledged. 

2-152 



4.0 Device Specifications (Continued) 

T4 OR TI TI TI TI TI TI 

em [ 

HOLD [ 

HLOA [ 

ADS [ 

HBE [ 

ODIN [ 

FIGURE 4·8. HOLD Timing (Bus Initially Idle) 

2·153 

T4 OR TI T1 OR TI 

TLlEE/9424-35 

z en w 
I\) 

o 
C) 
...&. 

c:n • ...&. 

o ....... 
Z en w 
I\) 

o 
C) 
...&. 
c:n . 
...&. 
U1 



an 
"t-• CD 
"t-

C!J 
o 
C\I 
C") 
(J) 
z ...... o 
"t-• CD 
"t-

C!J 
o 
C\I 
C") 
(J) 
z 

4.0 Device Specifications (Continued) 

CPU STATES n n n 
DMAC STATES n T1 T2 

cm[ 

HOLD [ 

HLDA [ 

ADS [ 

ODIN [ 

TSO [ 

CWAIT [ 

WAIT1-2 [ 

n 
T3 

(HIGH) , 

n 
T3(W) 

FIGURE 4·9. DMAC Initiated Bus Cycle 
Note 1: ADS must be deactivated before state T4 of the DMA controller cycle. 

n 
T4 

n 
Tl OR n 

TLlEE/9424-36 

Note 2: During a DMA cycle WAIT1-2 must be kept inactive unless they are monitored by the DMA Controller. A DMA cycle is similar to a CPU cycle. The 
NS32CG16 generates TSO, RD, WR and DBE. The DMAC drives the address/data lines HBE, ADS and ODIN. 

Note 3: During a DMA cycle, if the ADS signal is pulsed in order to initiate a bus cycle, the HOLD signal must remain asserted until state T 4 of the DMAC cycle. 

2-154 



,------------------------------------------------------------------------------, z 
4.0 Device Specifications (Continued) 

cm [ 

ADO-15 [ 

SPC [ 

ODIN [ 

STo-ST3 [ 

ADS [ 

11 

STATUS VALID 

T4 

NEXT CYCLE 
STATUS 

(HIGH) 

11 T4 

CTIL [ 

Aoo-15 [ 

SPC [ 

ODIN [ 

STO-ST3 [ STATUS VALID NEXT STATUS 

ADS [ 
(HIGH) 

TL/EE/9424-37 

FIGURE 4-10. Slave Processor Write Timing 
TLlEE/9424-38 

FIGURE 4-11. Slave Processor Read Timing 

11 T4 

cm 

(FROO c~~ 1 f\ ~ I t r 1--+-m-u u_ _mu-1--
(FROO :'3- mum m_m· mu__ mu-~l- ~:- --

FIGURE 4-12. SPC Timing 
After transferring the last operand to the FPU, the CPU turns OFF the 

output driver and holds SPC high with an internal 5 kS1 pullup. 

cm [ 

FIGURE 4-13. Relationship of PFS to Clock Cycles 

2-155 

TL/EE/9424-39 

TL/EE/9424-40 

en w 
N o 
G) 
-"'" 
0) . 
-"'" o ....... 
z 
en 
w 
N 
o 
G) 
-"'" 
0) . 
-"'" 
U1 



II) ,... 
I 

CD ,... 
~ o 
N 
('I) 
(J) 
Z ...... 
o ,... 

I 
CD ,... 
~ 
o 
N 
('I) 
(J) 
Z 

4.0 Device Specifications (Continued) 

FIRST BUS CYCLE NEXT 

T1 1'2 13 T4 

TL/EE/9424-41 

Note: In a transfer of a Read-Modify-Write type operand, this is the Read transfer, displaying RMW Status (Code 1011). 

FIGURE 4-14. Relationship Between Last Data Transfer of an Instruction and PFS Pulse of Next Instruction 

T1 

CTTL [ 

m[b / 
tpFNS .1 

s~[ X CODE 1001 

TL/EE/9424-42 

FIGURE 4-15. Guaranteed Delay, PFS to Non-Sequential Fetch 

1 T1 11'21···1 I 1 1 

CTTL[ 

Aoi[ 

CODE 1001 STI).3 [ 

-r----------------ir------~------------

PFi[ 
'NSPF 

TL/EE/9424-43 

FIGURE 4-16. Guaranteed Delay, Non-Sequential Fetch to PFS 

I 13 OATI I T40RTI I T1 12 13 T4 

CTTL[ 

AOi[ 

iLO[ 
TLlEE/9424-44 

FIGURE 4-17. Relationship of ILO to First Operand Cycle of an Interlocked Instruction 

2-156 



4.0 Device Specifications (Continued) 

OSCIN [ 

Feu< [ 

I T30RTI I T40RTi I T1 T2 T3 T4 

CTTL[ 

AOS[ 

ILO[ ______________ -+ ____________ ~~I 
TL/EE/9424-45 

FIGURE 4-18. Relationship of ILO to Last Operand Cycle of an Interlocked Instruction 

TLlEE/9424-46 

FIGURE 4-19. Relationship of ILO to Any Clock Cycle 

TL/EE/9424-47 

FIGURE 4-20. Clock Waveforms 

2-157 

z en w 
N o 
C) ...... 
0') . ...... 
o 
'­z en 
w 
N o 
C) 
...... 
0') . ...... 
U1 



II) ,... . 
<0 ,... 
C!J 
(.) 
C\I 
CW) 
C/) 
z ...... o ,... . 
<0 ,... 
C!J 
(.) 
C\I 
CW) 
C/) 
z 

4.0 Device Specifications (Continued) 

VCC 

cm[ 
Rsn [ 

RSro [ ____________________________ ~~--------~ 

TL/EE/9424-4B 

FIGURE 4-21. Power-On Reset 

~JL 
------,..,..~ 1----+---tR-STw S 

RST1 [ 

RSTO [ 

ADO-I 5. [ 
AI 6-23. 

SPC 

FIGURE 4-22. Non-Power-On Reset 
Note 1: During Reset the HOLD signal must be kept high. 

Note 2: After RSTI is deasserted the first bus cycle will be an instruction fetch at address zero. 

CTTL [ JUlll,JlJlSLJL 

I~ ~F 
INTA [ --------I)~ I 

~[ \\\\\ 

FIGURE 4-23. INT Interrupt Signal Detection 
Note 1: Once INT is asserted, it must remain asserted until it is acknowledged. 

Note 2: INTA is the Interrupt Acknowledge bus cycle (not a CPU signal). Refer to Section 3.4.1 and Table 3.4. 

~[ 
FIGURE 4-24. NMllnterrupt Signal Timing 

2·158 

TL/EE/9424-51 

TL/EE/9424-49 

TLlEE/9424-50 



Appendix A: Instruction Formats 
NOTATIONS 

i = Integer Type Field 

B = 00 (Byte) 

W = 01 (Word) 

D = 11 (Double Word) 

f = Floating Point Type Field 

F = 1 (Std. Floating: 32 bits) 

L = 0 (Long Floating: 64 bits) 

op = Operation Code 

Valid encodings shown with each format. 

gen, gen 1, gen 2 = General Addressing Mode Field 

See Sec. 2.3.2 for encodings. 

reg = General Purpose Register Number 

cond = Condition Code Field 

0000 = EOual: Z = 1 

0001 = Not Equal: Z = 0 

0010 = Carry Set: C = 1 

0011 = Carry Clear: C = 0 

0100 = Higher: L = 1 

0101 = Lower or Same: L = 0 

0110 = Greater Than: N = 1 

0111 = Less or Equal: N = 0 

1000 = Flag Set: F = 1 

1001 = Flag Clear: F = 0 

1010 = LOwer: L = 0 and Z = 0 

1011 = Higher or Same: L = 1 or Z = 1 

1100 = Less Than: N = 0 and Z = 0 

1101 = Greater or Equal: N = 1 or Z = 1 

1110 = (Unconditionally True) 

1111 = (Unconditionally False) 

short = Short Immediate value. May contain 

quick: Signed 4·bit value, in MOVO, ADDO, CMPO, 
ACB. 

cond: Condition Code (above), in Scond. 

areg: CPU Dedicated Register, in LPR, SPA. 

0000 = UPSR 

0001 - 0111 = (Reserved) 

1000 = FP 

1001 = SP 

1010 = SB 

1011 = (Reserved) 

1100 = (Reserved) 

1101 = PSR 

1110 = INTBASE 

1111 = MOD 

Options: in String Instructions"""" __ "---"T_-' 

I U/W 

T = Translated 

B = Backward 

U/W = 00: None 

01: While Match 

11: Until Match 

B T 

2·159 

z en 
w 
~ 

Configuration bits in SETCFG instruction: (") ,., 
I C I M F 

..... 
en . ..... 

7 0 
0 ...... 

I I 
1110 111 01 

z 
cond en 

w 
~ 

FormatO 
(") ,., 

Bcond (BR) ..... 
en . 

7 0 
..... 
UI 

I 
I I 

10

1

0

1

1

1

01 op 

Format 1 

BSR -0000 ENTER -1000 
RET -0001 EXIT -1001 
CXP -0010 NOP -1010 
RXP -0011 WAIT -1011 
RETI -0100 DIA -1100 
RETI -0101 FLAG -1101 
SAVE -0110 SVC -1110 
RESTORE -0111 BPT -1111 

15 01 7 0 
I I 

1 
ISh~rt I I I 

11 111 gen op 

Format 2 

AD DO -000 ACB -100 
CMPO -001 MOVO -101 
SPR -010 LPR -110 
Scond -011 

15 01 7 0 
I I I 

1 
I ~p' 11 I 1 I 1 I 1 I 1 1 

1 gen 

Format 3 

CXPD -0000 ADJSP -1010 
BICPSR -0010 JSR -1100 
JUMP -0100 CASE -1110 
BISPSR -0110 

Trap (UND) on XXX1, 1000 

15 
1
017

1 
0 B 

I 
I I I I 

1 

I 

1 

I I I 
gen 1 gen2 op 

Format 4 

ADD -0000 SUB -1000 

CMP -0001 AD DR -1001 
BIC -0010 AND -1010 
ADDC -0100 SUBC -1100 

MOV -0101 TBIT -1101 

OR -0110 XOR -1110 



It) .... 
I 

CD .... 
C!J 
o 
N 
C"') 
CJ) 
Z 
....... o .... 

I 
CD .... 
C!J 
o 
N 
C"') 
CJ) 
Z 

Appendix A: Instruction Formats (Continued) 

FormatS 

MOVS -0000 BITWT 
CMPS -0001 TBITS 
SETCFG -0010 BBANO 
SKPS -0011 SBITPS 
BBSTOO -0100 BBFOR 
EXTBLT -0101 SBITS 
BBOR -0110 BBXOR 
MOVMP -0111 
No Operation on 1111 

ROT 
ASH 
CBIT 
CBITI 
Trap (UNO) 
LSH 
SBIT 
SBITI 

MOVM 
CMPM 
INSS 
EXTS 
MOVXBW 
MOVZBW 
MOVZiO 
MOVXiD 

EXT 
CVTP 
INS 
CHECK 

8 7 

i o 1 

Format 6 

-0000 NEG 
-0001 NOT 
-0010 Trap (UNO) 
-0011 SUBP 
-0100 ABS 
-0101 COM 
-0110 IBIT 
-0111 ADDP 

1 1 

Format 7 

-0000 MUL 
-0001 MEl 
-0010 Trap (UND) 
-0011 DEI 
-0100 QUO 
-0101 REM 
-0110 MOD 
-0111 OIV 

Format 8 

-000 
-001 
-010 
-011 

INDEX 
FFS 

Trap (UNO) on -110and -111 

-1000 
-1001 
-1010 
-1011 
-1100 
-1101 
-1110 

0 

o 0 1 1 1 0 

-1000 
-1001 
-1010 
-1011 
-1100 
-1101 
-1110 
-1111 

0 

o 0 1 1 1 0 

-1000 
-1001 
-1010 
-1011 
-1100 
-1101 
-1110 
-1111 

TL/EE/9424-52 

-100 
-101 

MOVif 
LFSR 
MOVLF 
MOVFL 

Trap (UND) 

AODf 
MOVf 
CMPf 
(Note 3) 

SUBf 
NEGf 
Trap (UNO) 
Trap (UND) 

(Note 2) 
(Note 1) 
POLYf 
OOTf 
SCALBf 
LOGBf 
Trap (UNO) 
Trap (UND) 

Format 9 

-000 ROUND -100 
-001 TRUNC -101 
-010 SFSR -110 
-011 FLOOR -111 

7 0 ---I I I II I I I 1 ___ 0 1 1 1 1 1 1 0 

Format 10 
Always 

Format 11 

-0000 OIVf 
-0001 (Note 1) 
-0010 Trap (UNO) 
-0011 Trap (UNO) 
-0100 MULf 
-0101 ABSf 
-0110 Trap (UNO) 
-0111 Trap (UNO) 

Format 12 

-0000 (Note 2) 
-0001 (Note 1) 
-0010 Trap (UNO) 
-0011 Trap (UNO) 
-0100 (Note 2) 
-0101 (Note 1) 
-0110 Trap (UNO) 
-0111 Trap (UNO) 

TL/EE/9424-53 

o 

1 1 1 1 0 

-1000 
-1001 
-1010 
-1011 
-1100 
-1101 
-1110 
-1111 

0 

111110 

-1000 
-1001 
-1010 
-1011 
-1100 
-1101 
-1110 
-1111 

"Instructions with Format 12 are available only when the NS32381 Is used. 

Trap (UNO) 

2-160 

Format 13 
Always 

7 o 
---I I I I I I I I I 
_ .. 10011110 

TLlEE/9424-54 

~=IOiOiOi1i1i 1'1'01 

TL/EE/9424-55 



Appendix A: Instruction Formats (Continued) 

Trap (UNO) 

Trap (UNO) 

Trap (UNO) 

Trap (UNO) 

Trap (UNO) 

Format 14 
Always 

Format 15 
Always 

Format 16 
Always 

Format 17 
Always 

Format 18 
Always 

--I I I I I I I I 1 
__ n n n 1 0 1 1 0 

TL/EE/9424-56 

---I I I I I I I I 1 
___ 0 1 0 1 1 1 1 0 

TL/EE/9424-57 

7 0 

---I I I I I I I I 1 
___ 1 1 0 1 1 '1 1 0 

TL/EE/9424-58 

7 0 

---I I I I I I I I 1 
___ 1 0 0 0 1 1 1 ~ 

TL/EE/9424-59 

Trap (UNO) 
Format 19 

Always 

Implied Immediate Encodlngs: 

7 

7 0 

---I I I I I I I I 1 
U' x x x 0 0 1 1 ~ 

TL/EE/9424-60 

o 

r1 

Register Mask, appended to SAVE, ENTER 

7 o 
r1 r2 r3 r4 r5 r6 

Register Mask, appended to RESTORE, EXIT 

7 0 

I : offset : I~ngth -:1 I 
Offset/Length Modifier appended to INSS, EXTS 

Note 1: Opcode not defined; CPU treats like MOVf. First operand has access class of read; second operand has access class of write; f·field selects 32·bit or 
54·bit data. 

Note 2: Opcode not defined; CPU treats like ADDf. First operand has access class of read; second operand has access class of read·modify·write. f·field selects 
32·bit or 54·bit data. 

Note 3: Opcode not defined; CPU treats like CMPf. First operand has access class of read; second operand has access class of read. f·field selects 32·bit or 54·bit 
data. 

2-161 

z 
en w 
N o 
G) .... 
Q) 
• .... 
o ...... 
z 
en 
w 
N 
o 
G) .... 
Q) . .... 
U1 





Section 3 
Slave Processors 



Section 3 Contents 
NS32381-15, NS32381-20, NS32381-25, NS32381-30 Floating-Point Units................ 3-3 
NS32081-10, NS32081-15 Floating-Point Units......................................... 3-32 

3·2 



~National 
~ Semiconductor 

PRELIMINARY 

NS32381-15/NS32381-20/NS32381-25/NS32381-30 
Floating-Point Unit 

General Description 
The NS32381 is a second generation, CMOS, floating-point 
slave processor that is fully software compatible with its 
forerunner, the NS32081 FPU. The NS32381 FPU functions 
with National's Embedded System Processors™, the 
NS32GX32 and the NS32CG16, and with any Series 32000 
CPU, from the NS32008 to the NS32532, in a tightly cou­
pled slave configuration. The performance of the NS32381 
has been increased over the NS32081 by architecture im­
provements, hardware enhancements, and higher clock fre­
quencies. Key improvements include the addition of a 32-bit 
slave protocol, an early done algorithm to increase CPU/ 
FPU parallelism, an expanded register set, an automatic 
power down feature, expanded math hardware, and addi­
tional instructions. 

The NS32381 FPU contains eight 64-bit data registers and 
a Floating-Point Status Register (FSR). The FPU executes 
20 instructions, and operates on both single and double­
precision operands. Three separate processors in the 
NS32381 manipulate the mantissa, sign, and exponent. 

The CPU and NS32381 FPU form a tightly coupled comput­
er cluster, which appears to the user as a single processing 
unit. The CPU and FPU communication is handled automati­
cally, and is user transparent. 

FPU Block Diagram 

The FPU is fabricated with National's advanced double-met­
al CMOS process. It is available in a 68-pin Pin Grid Array 
(PGA) package or 68-pin Plastic package. 

Features 
• Compatible with NS32008, NS32016, NS32C016, 

NS32032, NS32C032, NS32332, NS32532, NS32CG16 
and NS32GX32 microprocessors 

• Selectable 16-bit or 32-bit Slave Protocol 
• Format compatible with IEEE Standard 754-1985 for 

binary floating point arithmetic 

• Early done algorithm 
• Single (32-bit) and double (64-bit) precision operations 
a Eight on-chip (64-bit) data registers 

• Automatic power down mode 
• Full upward compatibility with existing 32000 software 
• High speed double-metal CMOS design 
II 68-pin PGA package 
• 68-pin plastic package 

CONTROL BUS 

Control 
Unit 

Execution 
Unit 

Interface 
and 
storage Unit 

TL/EE/91S7-1 

FIGURE 1-1 

3-3 

z 
en 
w 
N 
W 
CX) 
...I. . 
...I. 

U1 ...... 
Z 
en 
w 
N 
W 
CX) 
...I. . 
N 
o 



o 
N . .... 
CO 
C") 
N 
C") 
C/) 
Z 
....... 
Il) .... . .... 
CO 
C") 
N 
C") 
C/) 
Z 

Table of Contents 
1.0 PRODUCT INTRODUCTION 

1.1 IEEE Features Supported-Standard 754-1985 

1.2 Operand Formats 

1.2.1 Normalized Numbers 

1.2.2 Zero 

1.2.3 Reserved Operands 

1.2.4 Integers 

1.2.5 Memory Representations 

2.0 ARCHITECTURAL DESCRIPTION 

2.1 Programming Model 

2.1.1 Floating-Point Registers 

2.1.2 Floating-Point Status Register (FSR) 

2.1.2.1 FSR Mode Control Fields 

2.1.2.2 FSR Status Fields 

2.1.2.3 FSR Software Fields (SWF) 

2.2 Instruction Set 

2.3 Exceptions 

3.0 FUNCTIONAL DESCRIPTION 

3.1 Power and Grounding 

3.2 Automatic Power Down Mode 

3.3 Clocking 

3.4 Resetting 

3.5 Bus Operation 

3.5.1 Bus Cycles 

3.5.2 Operand Transfer Sequences 

3.6 Instruction Protocols 

3.6.1 General Protocol Sequence 

3.6.2 Early Done Algorithm 

3.6.3 Floating-Point Protocols 

3-4 

4.0 DEVICE SPECIFICATIONS 

4.1 Pin Descriptions 

4.1.1 Supplies 

4.1.2 Input Signals 

4.1.3 Output Signals 

4.1.4 Input/Output Signals 

4.2 Absolute Maximum Ratings 

4.3 Electrical Characteristics 

4.4 Switching Characteristics 

4.4.1 Definitions 

4.4.2 Timing Tables 

4.4.2.1 Output Signal Propagation Delays for all 
CPUs 

4.4.2.2 Output Signal Propagation Delays for the 
NS32008, NS32016, NS32032 CPUs 

4.4.2.3 Output Signal Propagation Delays for the 
32-Bit Slave Protocol NS32332 CPU 

4.4.2.4 Output Signal Propagation Delays for the 
32-Bit Slave Protocol NS32532 CPU 

4.4.2.5 Input Signal Requirements for all CPUs 

4.4.2.6 Input Signal Requirements for the 
NS32008, NS32016, NS32032 CPUs 

4.4.2.7 Input Signal Requirements for the 32-Bit 
Slave Protocol NS32332 CPU 

4.4.2.8 Input Signal Requirements for the 32-Bit 
Slave Protocol NS32532 CPU 

4.4.2.9 Clocking Requirements for all CPUs 

APPENDIX A: NS32381 PERFORMANCE ANALYSIS 



List of Illustrations 
FPU Block Diagram ............................................................................................ 1-1 

Floating-Point Operand Formats ................................................................................. 1-2 

Integer Format .............................................................................•.........•......... 1-3 

Register Set ................................•.................................................................. 2-1 

The Floating-Point Status Register ..........•.................................................................... 2-2 

Floating-Point Instruction Formats ................................................................................ 2-3 

Recommended Supply Connections ..................•........................................................... 3-1 

Power-On Reset Requirements .................................................................................. 3-2 

General Reset Timing ..............................•........................................................... 3-3 

System Connection Diagram with the NS32532 CPU ............................................................... 3-4a 

System Connection Diagram with the NS32332 CPU ............................................................... 3-4b 

System Connection Diagram with the NS32008, NS32016 or NS32032 CPU ......................................•... 3-4c 

System Connection Diagram with the NS32CG16 CPU ............................................................. 3-4d 

Slave Processor Read Cycle (NS32008, NS32016, NS32032 and NS32332 CPUs) ..................................... 3-5 

Slave Processor Read Cycle (NS32532 CPU) ...................................................................... 3-6 

Slave Processor Write Cycle (NS32008, NS32016, NS32032 and NS32332 CPUs) ................................•.... 3-7 

Slave Processor Write Cycle (NS32532 CPU) ...................................................................... 3-8 

I D and Opcode Format 16-Bit Slave Protocol ...................................................................... 3-9 

ID and Opcode Format 32-Bit Slave Protocol .................................................................•... 3-1 0 

FPU Status Word Format ..................................................................................•... 3-11 

16-Bit General Slave Instruction Protocol: FPU Actions ............................................................ 3-12 

32-Bit General Slave Instruction Protocol: FPU Actions ............................................................ 3-13 

68-Pin PGA Package .........•................................................................................. 4-1 

Timing Specification Standard (Signal Valid After Clock Edge) ........................................................ 4-2 

Timing Specification Standard (Signal Valid Before Clock Edge) ...................................................... 4-3 

Clock Timing .................................................................................................. 4-4 

Power-On Reset ............................................................................................... 4-5 

Non-Power-On Reset ............................................•.............................................. 4-6 

RST Release Timing ............................................................................................ 4-7 

Read Cycle from FPU (NS32008, NS32016, NS32032 CPUs) ........................................................ 4-8 

Write Cycle to FPU (NS32008, NS32016, NS32032 CPUs) ........................................................... 4-9 

Read Cycle from FPU (NS32332 CPU) ............................•.............................................. 4-10 

Write Cycle to FPU (NS32332 CPU) ............................................................................. 4-11 

SDN332 Timing (NS32332 CPU) ..........................................................................•..... 4-12 

SDN332 (TRAP) Timing (NS32332 CPU) ........................................................................ .4-13 

Read Cycle from FPU (NS32532 CPU) ........................................................................... 4-14 

Write Cycle from FPU (NS32532 CPU) ........................................................................... 4-15 

SDN532 Timing (NS32532 CPU) ................................................................................ 4-16 

FSSR Timing (NS32532 CPU) .................................................................................. 4-17 

SPC Pulse from FPU .......................................................................................... 4-18 

3-5 

z en 
c".) 
N 
c".) 
co 
...I. . 
...I. 
U1 
....... 
Z en 
c".) 
N 
c".) 
co 
...I. • N 
o 



o 
N . ,.. 
CO 
~ 
N 
~ 
t/) 
Z ....... 
Lt) ,.. . ,.. 
CO 
~ 
N 
~ 
t/) 
Z 

List of Tables 
Sample F Fields ............................................................................................... 1-1 

Sample E Fields ............................................................................................... 1-2 

Normalized Number Ranges ..........................................................................•.......•.. 1-3 

16-Bit General Slave Instruction Protocol .......................................................................•.. 3-1 

32-Bit General Slave Instruction Protocol .......................................................................•.. 3-2 

Floating-Point I nstruction Protocols ............................................................................... 3-3 

3-6 



1.0 Product Introduction 
The NS32381 Floating-Point Unit (FPU) provides high 
speed floating-point operations for the Series 32000 family, 
and is fabricated using National high-speed CMOS technol­
ogy. It operates as a slave processor for transparent expan­
sion of the Series 32000 CPU's basic instruction set. The 
FPU can also be used with other microprocessors as a pe­
ripheral device by using additional TTL and CMOS interface 
logic. The NS32381 is compatible with the IEEE Floating­
Point Formats. 

1.1 IEEE FEATURES SUPPORTED-STANDARD 754-1985 

a) Basic floating-point number formats 

b) Add, subtract, multiply, divide and compare operations 

c) Conversions between different floating-point formats 

d) Conversions between floating-point and integer formats 

e) Round floating-point number to integer (round to near­
est, round toward negative infinity and round toward 
zero, in double or single-precision) 

f) Exception signaling and handling (invalid operation, di-
vide by zero, overflow, underflow and inexact) 

1.2 OPERAND FORMATS 

The N32381 FPU operates on two floating-point data 
types-single precision (32 bits) and double precision (64 
bits). Floating-point instruction mnemonics use the suffix F 
(Floating) to select the single precision data type, and the 
suffix L (Long Floating) to select the double precision data 
type. 

A floating-point number is divided into three fields, as shown 
in Figure 1-2. 

The F field is the fractional portion of the represented num­
ber. In Normalized numbers (Section 1.2.1), the binary point 
is assumed to be immediately to the left of the most signifi­
cant bit of the F field, with an implied 1 bit to the left of the 
binary point. Thus, the F field represents values in the range 
1.0 ~ x < 2.0. 

TABLE 1-1. Sample F Fields 

FFleld Binary Value Decimal Value 
000 ... 0 1.000 ... 0 1.000 ... 0 
010 ... 0 1.010 ... 0 1.250 ... 0 
100 ... 0 1.100 ... 0 1.500 ... 0 
110 ... 0 1.110 ... 0 1.750 ... 0 

t 
Implied Bit 

The E field contains an unsigned number that gives the bi­
nary exponent of the represented number. The value in the 
E field is biased; that is, a constant bias value must be sub­
tracted from the E field value in order to obtain the true 

exponent. The bias value is 011 ... 112, which is either 127 
(single precision) or 1023 (double precision). Thus, the true 
exponent can be either positive or negative, as shown in 
Table 1-2. 

TABLE 1-2. Sample E Fields 

E Field FFleld Represented Value 
011 ... 110 100 ... 0 1.5x2-1 = 0.75 
011 ... 111 100 ... 0 1.5X20 = 1.50 
100 ... 000 100 ... 0 1.5 X 21 = 3.00 

Two values of the E field are not exponents. 11 ... 11 sig­
nals a reserved operand (Section 1.2.3). 00 ... 00 repre­
sents the number zero if the F field is also all zeroes, other­
wise it signals a reserved operand. 

The S bit indicates the sign of the operand. It is 0 for posi­
tive and 1 for negative. Floating-point numbers are in sign­
magnitude form, that is, only the S bit is complemented in 
order to change the sign of the represented number. 

1.2.1 Normalized Numbers 

Normalized numbers are numbers which can be expressed 
as floating-point operands, as described above, where the E 
field is neither all zeroes nor all ones. 

The value of a Normalized number can be derived by the 
formula: 

( -1)S X 2(E-Bias) X (1 + F) 

The range of Normalized numbers is given in Table 1-3. 

1.2.2 Zero 

There are two representations for zero-positive and nega­
tive. Positive zero has all-zero F and E fields, and the S bit is 
zero. Negative zero also has all-zero F and E fields, but its S 
bit is one. 

1.2.3 Reserved Operands 

The IEEE Standard for Binary Floating·Point Arithmetic pro­
vides for certain exceptional forms of floating-point oper­
ands. The NS32381 FPU treats these forms as reserved 
operands. The reserved operands are: 
• Positive and negative infinity 
• Not-a-Number (NaN) values 
• Denormalized numbers 

Both Infinity and NaN values have al\ ones in their E fields. 
Denormalized numbers have all zeroes in their E fields and 
non·zero values in their F fields. 

The NS32381 FPU causes an Invalid Operation trap (Sec­
tion 2.1.2.2) if it receives a reserved operand, unless the 
operation is simply a move (without conversion). The FPU 
does not generate reserved operands as results. 

Single Precision 
31 30 23 22 o 

Is I E F 

8 23 

Double Precision 
63 62 5251 o 

Is I E F 

11 52 
FIGURE 1-2. Floating-Point Operand Formats 

3-7 

z en 
w 
N 
W 
Q:) 
...&. 

• ...&. 
(J1 
....... 
Z en w 
N 
W 
Q:) 
...&. . 
N 
o 



o r---------------------------------------------------------------------------------------~ 
C'\I . .... 
CO 
(f) 
C'\I 
(f) 

tn 
Z ...... 
it) .... . .... 
CO 
(f) 
C'\I 
(f) 

tn 
Z 

1.0 Product Introduction (Continued) 

TABLE 1-3. Normalized Number Ranges 

Most Positive 

Least Positive 

Least Negative 

Most Negative 

Single Precision 
2127 x (2 - 2-23) 

= 3.40282346 x 1038 

2- 126 

= 1.17549436 X 10-38 

-(2- 126) 

= -1.17549436 x 10-38 

-2127 X (2 - 2-23) 
= - 3.40282346 x 1038 

Double Precision 
21023 x (2 - 2-52) 
= 1.7976931348623157 x 10308 

2- 1022 

= 2.2250738585072014 X 10-308 

-(2- 1022) 
= -2.2250738585072014 x 10-308 

-21023 X (2 - 2-52) 
= -1.7976931348623157 X 10308 

Note: The values given are extended one full digit beyond their represented accuracy to help in generating rounding and conversion algorithms. 

1.2.4 Integers 

In addition to performing floating-point arithmetic, the 
NS32381 FPU performs conversions between integer and 
floating-point data types. Integers are accepted or generat­
ed by the FPU as two's complement values of byte (8 bits), 
word (16 bits) or double word (32 bits) length. 

See Figure 1-3 for the Integer Format and Table 1-4 for the 
Integer Fields. 

S 

0 

1 

n-1 n-2 o 
S I 

FIGURE 1-3. Integer Format 

TABLE 1-4. Integer Fields 

Value Name 

I Positive Integer 

1- 2n Negative Integer 

Note: n represents the number of bits In the word, B for byte, 16 for word 
and 32 for double-word. 

1.2.5 Memory Representations 

The NS32381 FPU does not directly access memory. How­
ever, it is cooperatively involved in the execution of a set of 
two-address instructions with its Series 32000 Family CPU. 
The CPU determines the representation of operands in 
memory. 

In the Series 32000 family of CPUs, operands are stored in 
memory with the least significant byte at the lowest byte 

address. The only exception to this rule is the Immediate 
addressing mode, where the operand is held (within the in­
struction format) with the most significant byte at the lowest 
address. 

2.0 Architectural Description 
2.1 PROGRAMMING MODEL 

The Series 32000 architecture includes nine registers that 
are implemented on the NS32381 Floating-Point Unit (FPU). 

2.1.1 Floating-Point Registers 

There are eight registers (LO-L7) on the NS32381 FPU for 
providing high-speed access to floating-point operands. 
Each is 64 bits long. A floating-point register is referenced 
whenever a floating-point instruction uses the Register ad­
dressing mode (Section 2.2.2) for a floating-point operand. 
All other Register mode usages (Le., integer operands) refer 
to the General Purpose Registers (RO-R7) of the CPU, and 
the FPU transfers the operand as if it were in memory. 
Note: These registers are all upward compatible with the 32-bit NS320Bl 

registers, (FO-F7), such that when the Register addressing mode is 
specified for a double precision (64-bit) operand, a pair of 32·bit reg­
Isters holds the operand. The programmer specifies the even register 
of the pair which contains the least significant half of the operand and 
the next consecutive register contains the most significant half. 

2.1.2 Floating-Point Status Register (FSR) 

The Floating-Point Status Register (FSR) selects operating 
modes and records any exceptional conditions encountered 
during execution of a floating-point operation. Figure 2-2 
shows the format of the FSR. 

\+-~-- 64--=1-+ 
32 ·1· 32 

f4--32-..f 
I F'SR I 

n /LO t.fSDW 
Ll t.fSDW 

F'37L2 t.fSDW 

F'O/LO LSDW 
Ll LSDW 

F'2 /L2 LSDW 

LSDW ---. least significant double word 
t.fSDW ---. most significant double word 

L3 t.fSDW 
F'5 /L4 t.fSDW 

L5 t.fSDW 
F'77L6 t.fSDW 

L7 t.fSDW 

FIGURE 2-1. Register Set 

L3 LSDW 
F'4 /L4 LSDW 

L5 LSDW 
F'67L6 LSDW 

L7 LSDW 

31 17 16 15 9876543210 

I Reserved I Rt.fB I I SWf 

FIGURE 2-2. The Floating-Point Status Register 

3-8 

TL/EE/9157 -36 

TLlEE/9157-37 



2.0 Architectural Description (Continued) 

2.1.2.1 FSR Mode COJ;ltrol Fields 

The FSR mode control fields select FPU operation modes. 
The meanings of the FSR mode control bits are given be­
low. 

Rounding Mode (RM): Bits 7 and 8. This field selects the 
rounding method. Floating-point results are rounded when­
ever they cannot be exactly represented. The rounding 
modes are: 

00 Round to nearest value. The value which is nearest to 
the exact result is returned. If the result is exactly half­
way between the two nearest values the even value 
(LSB = 0) is returned. 

01 Round toward zero. The nearest value which is closer 
to zero or equal to the exact result is returned. 

10 Round toward positive infinity. The nearest value which 
is greater than or equal to the exact result is returned. 

11 Round toward negative infinity. The nearest value 
which is less than or equal to the exact result is re­
turned. 

Underflow Trap Enable (UEN): Bit 3. If this bit is set, the 
FPU requests a trap whenever a result is too small in abso­
lute value to be represented as a normalized number. If it is 
not set, any underflow condition returns a result of exactly 
zero. 

Inexact Result Trap Enable (lEN): Bit 5. If this bit is set, 
the FPU requests a trap whenever the result of an operation 
cannot be represented exactly in the operand format of the 
destination. If it is not set, the result is rounded according to 
the selected rounding mode. 

2.1.2.2 FSR Status Fields 

The FSR Status Fields record exceptional conditions en­
countered during floating-point data processing. The mean­
ings of the FSR status bits are given below: 

Trap Type (TT): bits 0-2. This 3-bit field records any excep­
tional condition detected by a floating-point instruction. The 
TT field is loaded with zero whenever any floating-point in­
struction except LFSR or SFSR completes without encoun­
tering an exceptional condition. It is also set to zero by a 
hardware reset or by writing zero into it with the Load FSR 
(LFSR) instruction. Underflow and Inexact Result are always 
reported in the TT field, regardless of the settings of the 
UEN and lEN bits. 

000 No exceptional condition occurred. 

001 Underflow. A non-zero floating-point result is too small 
in magnitude to be represented as a normalized float­
ing-point number in the format of the destination oper­
and. This condition is always reported in the TT field 
and UF bit, but causes a trap only if the UEN bit is set. 
If the UEN bit is not set, a result of Positive Zero is 
produced, and no trap occurs. 

3-9 

010 Overflow. A result (either floating-point or integer) of a 
floating-point instruction is too great in magnitude to 
be held in the format of the destination operand. Note 
that rounding, as well as calculations, can cause this 
condition. 

011 Divide by zero. An attempt has been made to divide a 
. non-zero floating-point number by zero. Dividing zero 
by zero is considered an Invalid Operation instead 
(below). 

100 Illegal Instruction. Any instruction forms not included 
in the NS32381 Instruction Set are detected by the 
FPU as being illegal. 

101 Invalid Operation. One of the floating-point operands 
of a floating-point instruction is a Reserved operand, 
or an attempt has been made to divide zero by zero 
using the DIVf instruction. 

110 Inexact Result. The result (either floating-point or inte­
ger) of a floating-point instruction cannot be repre­
sented exactly in the format of the destination oper­
and, and a rounding step must alter it to fit. This condi­
tion is always reported in the TT field and IF bit unless 
any other exceptional condition has occurred in the 
same instruction. In this case, the TT field always con­
tains the code for the other exception and the IF bit is 
not altered. A trap is caused by this condition only if 
the lEN bit is set; otherwise the result is rounded and 
delivered, and no trap occurs. 

111 (Reserved for future use.) 

Underflow Flag (UF): Bit 4. This bit is set by the FPU when­
ever a result is too small in absolute value to be represented 
as a normalized number. Its function is not affected by the 
state of the UEN bit. The UF bit is cleared only by writing a 
zero into it with the Load FSR instruction or by a hardware 
reset. 

Inexact Result Flag (IF): Bit 6. This bit is set by the FPU 
whenever the result of an operation must be rounded to fit 
within the destination format. The IF bit is set only if no other 
error has occurred. It is cleared only by writing a zero into it 
with the Load FSR instruction or by a hardware reset. 

Register Modify Bit (RMB): Bit 16. This bit is set by the 
FPU whenever writing to a floating point data register. The 
RMB bit is cleared only by writing a zero with the LFSR 
instruction or by a hardware reset. This bit can be used in 
context switching to determine whether the FPU registers 
should be saved. 

2.1.2.3 FSR Software Field (SWF) 

Bits 9-15 of the FSR hold and display any information writ­
ten to them (using the LFSR and SFSR instructions), but are 
not otherwise used by FPU hardware. They are reserved for 
use with NSC floating-point extension software. 

z en 
w 
I\) 
w 
CIC) ..... . ..... 
U1 ....... 
z en 
w 
I\) 
w 
CIC) ..... . 
I\) 
c 



o 
C\I . ..... 
CO 
C") 
C\I 
C") 
CJ) 
z ...... 
II) ..... . ..... 
CO 
C") 
C\I 
C") 
CJ) 
z 

2.0 Architectural Description (Continued) 

2.2 INSTRUCTION SET 

2.2.1 Floating-Point Instruction Set 

This section describes the floating-point instructions execut­
ed by the FPU in conjunction with the CPU. These instruc­
tions form a subset of the Series 32000® instruction set and 
take 9, 11, and 12 encoding formats. A list of all the Series 
32000 instructions as well as details on their formats and 
addressing modes can be found in the appropriate CPU 
data sheets. 

Certain notations in the following instruction description ta­
bles serve to relate the assembly language form of each 
instruction to its binary format in Figure 2-3. 

23 

23 

Format 9 

I I I 
gen2 

ar 0 I I II I I I I I I I I 1 
op f i ;. 0 0 1 1 1 1 1 0 i 

OPERATION WORD 

Format 11 

10 BYTE 

TL/EE/9157 -5 

16
1

15 al7 0 

I I I I I I I I I I 
o f 1\ 1 0 1 1 1 1 1 0 i 

I I I I I I 
gen2 • op 

OPERATION WORD 

Format 12 

ID aYTE 

TL/EE/9157 -6 

iii Iii i I Iii iii iii 
gen 2 op 0 f 1 1 1 1 1 1 1 0 

TLlEE/9157-7 

FIGURE 2-3. Floating-Point Instruction Formats 

The Format column indicates which of the three formats in 
Figure 2-3 represents each instruction. 

The Op column indicates the binary pattern for the field 
called "op" in the applicable format. 

The Instruction column gives the form of each instruction as 
it appears in assembly language. The form consists of an 
instruction mnemonic in upper case, with one or more suffix­
es (i or f) indicating data types, followed by a list of oper­
ands (gen1, gen2). 

An i suffix on an instruction mnemonic indicates a choice of 
integer data types. This choice affects the binary pattern in 
the i field of the corresponding instruction format as follows: 

Suffix i 
B 
W 
D 

Data Type 
Byte 
Word 
Double Word 

I Field 
00 
01 
11 

An f suffix on an instruction mnemonic indicates a choice of 
floating-point data types. This choice affects the setting of 
the f bit of the corresponding instruction format as follows: 

Suffix f 
F 
L 

Data Type 
Single Precision 
Double Precision (Long) 

f Bit 
1 
o 

3-10 

An operand designation (gen1, gen2) indicates a choice of 
addressing mode expressions. This choice affects the bina­
ry pattern in the corresponding gen1 or gen2 field of the 
instruction format. Refer to Table 2-1 for the options avail­
able and their patterns . 

Further details of the exact operations performed by each 
instruction are found in the Series 32000 Instruction Set 
Reference Manual. 

Movement and Conversion 

The following instructions move the gen1 operand to the 
gen2 operand, leaving the gen1 operand intact. 

Format Op Instruction 
gen1,gen2 11 0001 MOVf 

9 010 MOVLF gen1, gen2 

9 011 MOVFL gen1, gen2 

9 000 MOVif gen1, gen2 

9 100 ROUNDfi gen1, gen2 

9 101 TRUNCfi gen1, gen2 

9 111 FLOORfi gen1, gen2 

Description 
Move without 
conversion 

Move, converting 
from double 
precision to 
single precision. 

Move, converting 
from single 
precision to 
double 
precision. 

Move, converting 
from any integer 
type to any 
floating-point 
type. 

Move, converting 
from floating­
point to the 
nearest integer. 

Move, converting 
from floating­
point to the 
nearest integer 
closer to zero. 

Move, converting 
from floating­
point to the 
largest integer 
less than or 
equal to its 
value. 

Note: The MOVLF instruction f bit must be 1 and the i field must be 10. 

The MOVFL instruction f bit must be 0 and the i field must be 11. 

Arithmetic Operations 

The following instructions perform floating-point arithmetic 
operations on the gen1 and gen2 operands, leaving the re­
sult in the gen2 operand. 
Note: POLY and DOT use the additional third implied operand. 

POLY and DOT put their result to LO/FO register and not to GEN2. 

Format Op Instruction Description 
11 0000 ADDf gen1,gen2 Add gen1 to gen2. 

11 0100 SUBf gen1,gen2 Subtract gen1 
from gen2. 

11 1100 MULf gen1,gen2 Multiply gen2 by 
gen1. 



2.0 Architectural Description (Continued) 

Format Op Instruction Description 
11 1000 DIVf gen1, gen2 Divide gen2 by gen1. 

11 0101 NEGf gen1, gen2 Move negative of 
gen1 to gen2. 

11 1101 ASSf gen1, gen2 Move absolute value 
of gen1 to gen2. 

(N) 12 0100 SCAlSf gen1, gen2 Move gen2*2gen1 to 
gen2, for integral 
values of gen1 
without computing 
2gen1 . 

(N) 12 0101 lOG Sf gen1, gen2 Move the unbiased 
exponentofgen1 to 
gen2. 

(N) 12 0011 DOTf gen1, gen2 Move (gen1*gen2) 
+ lO to lO.(*) 

(N) 12 0010 POL Yf gen1, gen2 Move (lO*gen1) + 
gen2 to lO.(*) 

Notes: 

(N): Indicates NEW instruction. 

(·)The third impled operand used by these instructions can be either FO or 
LO depending on whether 'floating' or 'long' data type is specified in the 
opcode. 

Comparison 
The Compare instruction compares two floating-point val­
ues, sending the result to the CPU PSR Z and N bits for use 
as condition codes. See Figure 3-11. The Z bit is set if the 
gen1 and gen2 operands are equal; it is cleared otherwise. 
The N bit is set if the gen1 operand is greater than the gen2 
operand; it is cleared otherwise. The CPU PSR l bit is un­
conditionally cleared. Positive and negative zero are consid­
ered equal. 

Format 
11 

Op 
0010 

Instruction 
CMPf gen1, gen2 

Floating-Point Status Register Access 

Description 
Compare gen1 

to gen2. 

The following instructions load and store the FSR as a 32-
bit integer. 

Format 
9 

9 

Op 
001 

110 

Instruction 
lFSR gen1 

SFSR gen2 

Description 
load FSR 

Store FSR 

Note: All instructions support all of the NS32000 family data formats (for 
external operands) and all addressing modes are supported. 

+5V 

TL/EE/9157-8 
PGAPackage 

Rounding 
The FPU supports all IEEE rounding options: Round toward 
nearest value or even significant if a tie. Round toward zero, 
Round toward positive infinity and Round toward negative 
infinity. 

2.3 EXCEPTIONS 
The FPU supports five types of exceptions: Invalid opera­
tion, Division by zero, Overflow, Underflow and Inexact Re­
sult. When an exception occurs, the FPU mayor may not 
generate a trap depending upon the bit setting in the FSR 
Register. The user can disable the Inexact Result and the 
Underflow traps. If an undefined Floating-Point instruction is 
passed to the FPU an Illegal Instruction trap will occur. The 
user can't disable trap on Illegal Instruction. 

Upon detecting an exceptional condition in executing a 
floating-point instruction, the FPU requests a TRAP by puls­
ing the SPC line for one clock cycle, pulsing the SDN332 
line for two and a half clock cycles and pulsing the FSSR 
line for one clock cycle. (The user will connect the correct 
lines according to the CPU being used). 

In addition, the FPU sets the Q bit in the status word regis­
ter. The CPU responds by reading the status word register 
(refer to Section 3.6.1 for its format) while applying status 
h'E (transferring status word) on the status lines. A trapped 
instruction returns no result (even if the destination is FPU 
register) and does not affect the CPU PSR. The FPU rec­
ords exceptional cause in the trap type (IT) field of the FSR. 
If an illegal opcode is detected, the FPU sets the TS bit in 
the slave processor status word register, indicating a trap 
(UNO). 

3.0 Functional Description 
3.1 POWER AND GROUNDING 

The NS32381 requires a single 5V power supply, applied on 
the Vee pins. These pins should be connected together by 
a power (Ved plane on the printed circuit board. See Figure 
3-1. 

The grounding connections are made on the GND pins. 
These pins should be connected together by a ground 
(GND) plane on the printed circuit board. See Figure 3-1. 

+5V 

NS32381 

TL/EE/9157 -43 
PLCC Package 

FIGURE 3-1. Recommended Supply Connections 

3-11 

z en 
(,,) 
I\) 
(,,) 
co .... 

I .... 
(J1 
........ 
z en 
(,,) 
I\) 
(,,) 
co .... 

I 
I\) 
o 



C) r---------------------------------------------------------------------------------------~ 
N • ,.... 
co 
C"') 
N 
C"') 

en 
z 
........ 
it) ,.... . ,.... 
co 
C"') 
N 
C"') 

en z 

3.0 Functional Description (Continued) 

v 4.5VI_-----------------;(ISi------
cc -' 

RST 

n-n­
~64C;~~~~ r 

---~----------------~~ 
1----------~30 ).'S--------- • 

TlIEE/9157 -9 

FIGURE 3-2. Power-On Reset Requirements 

3.2 AUTOMATIC POWER DOWN MODE 

The NS32381 supports a power down mode in which the 
device consumes only 10% of its original power at 30 MHz. 
The NS32381 enters the power down mode (internal clocks 
are stopped with phase two high) if it does not receive an 
SPC pulse from the CPU within 256 clocks. 

The FPU exits the power down mode and returns to normal 
operation after it receives an SPC from the CPU. There is no 
extra delay caused by the FPU being in the power down 
mode. 

3.3 CLOCKING 

The NS32381 FPU requires a single-phase TIL clock input 
on its ClK pin (pin A8). Different Clock sources can be used 
to provide the ClK signal depending on the application. For 
example, it can come from the 8ClK of the NS32532 CPU. 
It can also come from the CTIl pin of the NS32C201 Tim­
ing Control Unit, if it is required. 

3.4 RESETTING 

The RST pin serves as a reset for on-chip logic. The FPU 
may be reset at any time by pulling the RST pin low for at 
least 64 clock cycles. Upon detecting a reset, the FPU ter­
minates instruction processing, resets its internal logic, and 
clears the FSR to all zeroes. 

On application of power, RST must be held low for at least 
30 ,..,s after Vee is stable. This ensures that all on-chip volt­
ages are completely stable before operation. See Figures 
3-2 and 3-3. 

CLK JLrLSLILfl-
---I- <1:64 CLOCK--..l 

---.. _I'ftft'm'f'!'" CYCLES I 

m I r-
TL/EE/9157 -10 

FIGURE 3-3. General Reset Timing 

3.5 BUS OPERATION 

Instructions and operands are passed to the NS32381 FPU 
with slave processor bus cycles. Each bus cycle transfers 

3-12 

either one byte (8 bits), one word (16 bits) or one double 
word (32 bits) to or from the FPU. During all bus cycles, the 
SPC line is driven by the CPU as an active low data strobe, 
and the FPU monitors pins STO-ST3 to keep track of the 
sequence (protocol) established for the instruction being ex­
ecuted. This is necessary in a virtual memory environment, 
allowing the FPU to retry an aborted instruction. 

3.5.1 Bus Cycles 

A bus cycle is initiated by the CPU, which asserts the proper 
status on (STO-ST3) and pulses SPC low. The status lines 
are sampled by the FPU on the leading (falling) edge of the 
SPC pulse except for the 32532 CPU. When used with the 
32532 CPU, the status lines are sampled on the rising edge 
of ClK in the T2 state. If the transfer is from the FPU (a 
slave processor read cycle), the FPU asserts data on the 
data bus for the duration of the SPC pulse. If the transfer is 
to the FPU (a slave processor write cycle), the FPU latches 
data from the data bus on the trailing (rising) edge of the 
SPC pulse. Figures 3-5, 3-6, 3-1 and 3-8 illustrate these 
sequences. 

The direction of the transfer and the role of the bidirectional 
SPC line are determined by the instruction protocol being 
performed. SPC is always driven by the CPU during slave 
processor bus cycles. Protocol sequences for each instruc­
tion are given in Section 3.6. 

3.5.2 Operand Transfer Sequences 

An operand is transferred in one or more bus cycles. For the 
16-8it Slave Protocol a 1-byte operand is transferred on the 
least significant byte of the data bus (00-07). A 2-byte op­
erand is transferred on the entire bus. A 4-byte or 8-byte 
operand is transferred in consecutive bus cycles, least sig­
nificant word first. 

For the 32-8it Slave Protocol a 4-byte operand is trans­
ferred on the entire data bus in a single bus cycle and an 
8-byte 'operand is transferred in two consecutive bus cycles 
with the most significant byte transferred on data bits (00-
07). The complete operand transfer of bytes 80-87 where 
80 is the least significant byte would appear on the data bus 
as 84, 85, 86, 87 followed by 80, 81, 82, 83 in the second 
bus cycle. 



3.0 Functional Description (Continued) 

+5V 
..--

: 10k 

SPC 

DDIN 
.A 

00-D31 
~ 

(NS32532) STO 

CPU STI 

ST2 

ST4 

SDN 
.... 

FSSR 

BClK 

T RST 

,,10k 

32-BIT 
DATA BUS 

I 

_+5V 

~1k : 1k 1k .. . . 
~ ~ 

NOE PSO PS1 

~ SPC 

DDIN 
.... 
) DO-D31 

I' 
STO (NS32381) 

STI FPU 

ST2 

ST3 

SDN532 
RESERVED ~ 

FSSR ~ RESERVED 
ClK ~ RESERVED 
RST 

-== 
TL/EE/9157-38 

FIGURE 3-4a. System Connection Diagram with the NS32532 CPU 

+5V +5V +5V 
4 

10k "1k :~1k . " . " 

~ 

NOE PSO PS1 

SPC SPC 

.A 32-BIT .... 
ADO-AD31 DATA BUS 00-D31 

't I' 

(NS32332) STO STO (NS32381) 

CPU STI r' STI FPU 

ST2 r' ST2 

ST3 .. ST3 ~ 

RESERVED ~ 
DT/SDONE SDN332 " RESERVED ~ 

RSTjill RST 

1 
RESERVED ~ 

I 
ClK 

"'7 
RSTO cm 

SYSTEM ... 
Rsn RESET 

NS32C201 

TCU 

TL/EE/9157-39 

FIGURE 3-4b. System Connection Diagram with the NS32332 CPU 

3·13 

z en w 
N 
W 
Q) ..... . ..... 
U1 ...... 
z en w 
N 
W 
Q) ..... . 
N 
Q 

II 



C) .-----------------------------------------------------------------------------------~ 
N 
C; 3.0 Functional Description (Continued) 
Cf) 
N 
Cf) +5V 
en 
Z ...... 
II) ..... 
• ..... 

co 
Cf) 
N 
Cf) 

en z ll'/SPC 

ADO-ADI5 

(NS32032) STO 

(NS32016) ST1 

(NS32008) 

CPU 

RST/ABT 

) 

A 

'I 

10k 

16-BIT 
DATA BUS 

r I 
RSTO cm 

SYSTEM ... 
Rsn RESET ' 

NS32C201 

TCU 

-
~ ~- ~ 1 NOE pso PSI 

SPC 

I\. 
00-015 

Y 
STO (NS32381) 

STI rpu 

---+ ST2 

.......-.. ST3 

-:.= RESERVED ML. -
RESERVED ~ 

RST 
RESERVED !!.-

--'" ClK 

-== 

FIGURE 3-4c. System Connection Diagram with the NS32008, NS32016 or NS32032 CPU 

+5V +5V 
) 

:= 10k 
• lk 

~ ~ .1 
NOE PSO PSI 

SPC SPC 

A 16-BIT I\. 
ADO-ADI5 DATA BUS 00-015 

'I " STO STO 

(NS32CGI6) STI STI (NS32381) 

CPU ---+ ST2 rpu 

.......-.. ST3 

-:.= RESERVED ML. -
RESERVED ~ 

RSTI .. RST 
RESERVED ~ 

cm _ .. ClK 
-:.= 

SYSTEM 
RESET 

FIGURE 3-4d. System Connection Diagram with the NS32CG16 CPU 

3-14 

TL/EE/9157-40 

TL/EE/9157-41 



3.0 Functional Description (Continued) 

STO,ST1 __ ,,", ___ V_AL'"'I"IO ___ .J~ 
m ___________ ~NDTE11 ~ 

00-015 ---- --- --- --<", ___ VA_L_IO_F_RO_M_F_PU __ ..I>---
TLlEE/9157-12 

Note 1: FPU samples CPU status here. 

FIGURE 3·5. Slave Processor Read Cycle (NS3200B, NS32016, NS32032 and NS32332 CPUs) 

r Ti 

elK 

+ (NOTE 1) 

STO- ST4 1U11Z7IZx'--__ ---JXll//II/ 

JJZ!!IZ/ 

\'--__ --'1 

OO-D31---------------~<~ ______________ _J»----------
TL/EE/9157-13 

Note 1: FPU samples CPU status here. 

FIGURE 3·6. Slave Processor Read Cycle (NS32532 CPU) 

3-15 

z 
en 
w 
I\) 
w 
C) 
-"" . 
-"" 
U1 ...... 
z 
en w 
I\) 
w 
C) 
-"" . 
I\) 
o 



o 
N • ,.... 
CO 
C") 
N 
C") 
en z 
....... 
it) ,.... 
• ,.... 

CO 
C") 
N 
C") 

en z 

3.0 Functional Description (Continued) 

STD. STI VALID 

----------,1 (NOTE 1) 

m 
(NOTE 2) 

00-015 ------ VALID FROM CPU 

TL/EE/9157-14 

Note 1: FPU samples CPU status here. 

Note 2: FPU samples data bus here. 

FIGURE 3-7. Slave Processor Write Cycle (NS32008, NS32016, NS32032 and NS32332 CPU) 

r TI T2---1 
elK 

~ (NOTE I) 

STO-ST3 71711///1X--~X!-"Z"""'71""""'Z/""""'Z~71""""71~Z 

ODIN //7I///!IY '<7I//71Z/1 

\"---~ t (NOTE 2) 

OO-D31----------------------------«~ ____________ _J)~--------------
Note 1: FPU samples CPU status here. 

Note 2: FPU samples data bus here. 

FIGURE 3-8. Slave Processor Write Cycle (NS32532 CPU) 

3-16 

TL/EE/9157-15 



3.0 Functional Description (Continued) 

3.6 INSTRUCTION PROTOCOLS 2) It specifies which Slave Processor will execute it. 

3.6.1 General Protocol Sequences 

The NS32381 supports both the 16-bit and 32-bit General 
Slave protocol sequences. See Tables 3-1,3-2 and Figures 
3-12,3-13 respectively. 

3) It determines the format of the following Operation Word 
of the instruction. 

Slave Processor instructions have a three-byte Basic In­
struction field, consisting of an ID byte followed by an Oper­
ation Word. See Figure 3-9 for the ID and Opcode format 
16-bit Slave Protocol and Figure 3-10 for the ID and Opcode 
Format 32-bit Slave Protocol. The ID Byte has three func­
tions: 

1) It identifies the instruction to the CPU as being a Slave 
Processor instruction. 

Upon receiving a slave processor instruction, the CPU initi­
ates a sequence outlined in either Table 3-1 or 3-2, depend­
ing on the PSO and PS1, to allow for the 16-bit or 32-bit 
slave protocol. The NS32008, NS32016, NS32C016, 
NS32032, NS32C032 and NS32CG 16 all communicate with 
the NS32381 using the 16-bit Slave Protocol. The NS32332, 
NS32532 and NS32GX32 CPUs communicate with the 
NS32381 using a 32-bit Slave Protocol; a different version is 
provided for each CPU. 

Mnemonic 

ADDf 
SUBf 
MULf 
DIVf 
MOVf 
ABSf 
NEGf 
CMPf 
FLOORfi 
TRUNCfi 
ROUNDfi 
MOVFL 
MOVLF 
MOVif 
LFSR 
SFSR 
SCALBf 
LOGBf 
DOTf 
POLYf 

D = Double Word 

Step 

1 
2 
3 
4 
5 
6 
7 

Step 

1 
2 
3 
4 
5 

6 

Operand 1 
Class 

read.f 
read.f 
read.f 
read.f 
read.f 
read.f 
read.f 
read.f 
read.f 
read.f 
read.f 
read.F 
read.L 
read.i 
read.D 
N/A 

read.f 
read.f 
read.f 
read.f 

TABLE 3-1. 16-Blt General Slave Instruction Protocol 

Status 

ID (1111) 
OP (1101) 
OP (1101) 

ST(1110) 
OP (1101) 

Action 

CPU sends ID Byte 
CPU sends Operation Word 
CPU sends required operands (if any) 
Slaves starts execution (CPU prefetches) 
Slave pulses SPC low 
CPU Reads Status Word 
CPU Reads Result (if destination is 
memory and if no TRAP occurred) 

TABLE 3-2. 32-Blt General Slave Instruction Protocol 

Status 

ID(1111) 
OP (1101) 

ST(1110) 

OP (1101) 

Action 

CPU sends ID and Operation Word 
CPU sends required operands (if any) 
Slaves starts execution (CPU prefetches) 
Slave signals DONE or TRAP or CMPf 
CPU Reads Status Word (If TRAP was signaled 
or a CMPf instruction was executed) 
CPU Reads Result (if destination is memory and 
if no TRAP occurred) 

TABLE 3-3. Floating-Point Instruction Protocols 

Operand 2 Operand 1 Operand 2 Returned Value 
Class Issued Issued Type and Destination 

rmw.f f f fto Op. 2 
rmw.f f f fto Op. 2 
rmw.f f f fto Op. 2 
rmw.f f f fto Op. 2 
write.f f N/A fto Op. 2 
write.f f N/A fto Op. 2 
write.f f N/A fto Op. 2 
read.f f f N/A 
write.i f N/A itoOp.2 
write.i f N/A itoOp.2 
write.i f N/A itoOp.2 
write.L F N/A LtoOp.2 
write.F L N/A FtoOp.2 
write.f i N/A fto Op. 2 
N/A D N/A N/A 

write.D N/A N/A Dto Op. 2 
rmw.f f f fto Op.2 
write.f f N/A fto Op.2 
read.f f f *f to FO/LO 
read.f f f *f to FO/LO 

I = Integer size (B, W, D) specified in mnemonic. 

f = Floating-Point type (F, L) specified in mnemonic. 

N/A = Not Applicable to this Instruction. 

·The "returned value" can go to either FO or LO depending on the "f" bit in the opcode, I.e., whether "floating" or "long" data type is used. 

3-17 

PSR Bits 
Affected 

none 
none 
none 
none 
none 
none 
none 
N,Z,L 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 

z en 
w 
N 
W 
CD 
...I. 

• ...I. 
U'I ...... 
Z en w 
N 
W 
CD 
...I. • N o 

EI 



o r-------------------------------------------------------------------~ 
N • ,.. 
CO 
C") 
N 
C") 
U) 
Z ...... 
II) ,.. 
• ,.. 

CO 
C") 
N 
C") 
U) 
Z 

3.0 Functional Description (Continued) 

7 o 

10 Byte 

15 7 0 

I OPCOOE (low) OPCOOE (high) 

Byte 1 Byte 0 
Operation Word 

FIGURE 3·9. 10 and OPCODE Format 
16·Blt Slave Protocol 

31 23 15 7 0 

10 IOPCOOE (low)IOPCOOE (high)1 XXXXXXXX I 
Byte 3 Byte 2 Byte 1 Byte 0 

FIGURE 3·10. 10 and OPCODE Format 
32·Blt Slave Protocol 

For the 16-bit Slave Protocol the CPU applies Status Code 
1111 (Broadcast 10), and sends the 10 Byte on the least 
significant half of the Oata Bus (00-07). The CPU next 
sends the Operation Word while applying Status Code 1101 
(Transfer Slave Operand). The Operation Word is swapped 
on the Oata Bus; that is, bits 0-7 appear on pins 08-015, 
and bits 8-15 appear on pins 00-07. 

For the 32-bit Slave Protocol the CPU applies Status Code 
1111 and sends the 10 Byte (different 10 for each format) in 
byte 3 (024-031) and the Operation Word in bytes 1 and 2 
in a single double word transfer. The Operation Word is 
swapped such that OPCOOE low appears on byte 2 (016-
023) and OPCOOE high appears on byte 1 (08-015). Byte 
o (00-07) is not used. 

All Slave Processors input and decode the data from these 
transfers. The Slave Processor selected by the 10 Byte is 
activated and from this point on the CPU is communicating 
with it only. If any other slave protocol is in progress (e.g., an 
aborted Slave instruction), this transfer cancels it. Both the 
CPU and FPU are aware of the number and size of the 
operands at this point. 

Using the Addressing Mode fields within the Operation 
Word, the CPU starts fetching operands and issuing them to 
the FPU. To do so, it references any Addressing Mode ex­
tensions appended to the FPU instruction. Since the CPU is 
solely responsible for memory accesses, these extensions 
are not sent to the Slave Processor. The Status Code ap­
plied is 1101 (Transfer Slave Processor Operand). 

After the CPU has issued the last operand, the FPU starts 
~ actual execution of the instruction. A one clock cycle 
SPC pulse is used to indicate the completion of the instruc-

3-18 

tion and for the CPU to continue with the 16-Bit Slave Proto­
col by reading the FPU's Status Word Register. 

For the 32-bit Slave Protocol, upon completion of the in­
struction, the FPU will signal the CPU by pulsing either 
SONXXX or FSSR (Force Slave Status Read). 

A half clock cycle SON332 pulse with a NS32332 CPU, or a 
one clock cycle SON532 pulse with a NS32532 or 
NS32GX32 CPU, indicates a valid completion of the instruc­
tion and that there is no need for the CPU to read its Status 
Word Register. 

But if there is a need for the CPU to read FPU's Status Word 
Register, a two and a half clock cycle SON332 (from 
NS32332) or a one clock cycle FSSR pulse (from NS32532 
or NS32GX32) will be issued instead. 

In all cases for both the 16-Bit and 32-Bit Slave Protocols 
the CPU will use SPC to read the Status Word from the 
FPU, while applying status code (1110). This word has the 
format shown in Figure 3-11. If the Q bit ("Quit", Bit 0) is set, 
this indicates that an error (TRAP) has been detected by the 
FPU. The CPU will not continue the protocol, but will imme­
diately trap through the Slave vector in the Interrupt Table. If 
the instruction being performed is CMPf (Section 2.2.3) and 
the Q bit is not set, the CPU loads Processor Status Regis­
ter (PSR) bits N, Z and L from the corresponding bits in the 
FPU Status Word. The FPU always sets the L bit to zero. 

The last step will be for the CPU to read the result, provided 
there are no errors and the results destination is in memory. 
Here again the CPU uses SPC to read the result from the 
FPU and transfer it to its destination. These Read cycles 
from the FPU are performed by the CPU while applying 
Status Code 1101 (Transfer Slave Operand). 

Bit 

(0) Q: 

(2) L: 

(6) Z: 

15 7 0 

ITSI ZERO INlzlolololLlolJ ZERO 

Description 

Set to "1" if an FPU TRAP (error) occurred. 

Cleared to '0" by a valid CMPf. 

Cleared to "0" by the FPU. 

Set to "1" if the second operand is equal to 
the first operand. Otherwise it is cleared to 
"0". 

(7) N: Set to "1" if the second operand is less than 
the first operand. Otherwise it is cleared to 
"0". 

(15) TS: Set to "1" if the TRAP is (UNO) and cleared to 
"0" if the TRAP is (FPU). 

FIGURE 3·11. FPU Status Word Format 



3.0 Functional Description (Continued) 

GO 

READ OPERAND 
(BUS STATUS = 1101) 

FIGURE 3·12. 16·Bit General Slave Instruction Protocol: FPU Actions 

Pulse Active 
-- 1 
SDN332 for 2 clock 

__ or 
SDN532 for 1 clock (DONE) 

READ OPERAND 
(BUS STATUS = 1101) 

FIGURE 3·13. 32·Bit General Slave Instruction Protocol: FPU Actions 

3-19 

TL/EE/9157-16 

TL/EE/9157-17 

z en 
eN 
N 
eN 
C) ..... . ..... 
U1 ....... 
z en 
eN 
N 
eN 
C) ..... 
• N 

C 



C) r------------------------------------------------------------------------------------, 
N • .... 
co 
(f) 
N 
(f) 
U) 
Z ...... 
Lt) .... 
• .... 

co 
(f) 
N 
(f) 
U) 
Z 

3.0 Functional Description (Continued) 

3.6.2 Early Done Algorithm 

The NS32381 has the ability to modify the General Slave 
protocol sequences and to boost the performance of the 
FPU by 20% to 40%. This is called the Early Done Algo­
rithm . 

Early Done is defined by the fact that the destination of an 
instruction is an FPU register and that the instruction and 
range of operands cannot generate a TRAP (error). When 
these conditions are met the FPU will send a SDNXXX or 
SPC pulse after receiving all of the operands from the CPU 
and before executing the instruction. Hence this becomes 
an early done as compared to the General Slave Protocols. 

In the case of the 16-bit Slave Protocol in which the CPU 
always reads the slave status word, the FPU will force all 
zeroes to be read. The CPU can then send the next instruc­
tion to the FPU and save the general protocol overhead. 
The FPU will start the new instruction immediately after fin­
ishing the previous instruction. 

SFSR, CMPF and CMPl do not generate an Early Done. 

3.6.3 Floating-Point Protocols 

Table 3-3 gives the protocols followed for each floating­
point instruction. The instructions are referenced by their 
mnemonics. For the bit encodings of each instruction, see 
section 2.2.3. 

The Operand Class columns give the Access Classes for 
each general operand, defining how the addressing modes 
are interpreted by the CPU (see Series 32000 Instruction 
Set Reference Manual). 

The Operand Issued columns show the sizes of the oper­
ands issued to the Floating-Point Unit by the CPU. "D" indi­
cates a 32-bit Double Word. "i" indicates that the instruction 
specifies an integer size for the operand (B = Byte, W = 
Word, D = Double Word). "f" indicates that the instruction 
specifies a floating-point size for the operand (F = 32-bit 
Standard Floating, l = 64-bit long Floating). 

The Returned Value Type and Destination column gives the 
size of any returned value and where the CPU places it. The 
PSR Bits Affected column indicates which PSR bits, if any, 
are updated from the FPU Status Word (Figure 3-11). 

Any operand indicated as being of type "f" will not cause a 
transfer if the Register addressing mode is specified, be­
cause the Floating-Point Registers are physically on the 
Floating-Point Unit and are therefore available without CPU 
assistance. 

4.0 Device Specifications 
4.1 PIN DESCRIPTIONS 

4.1.1 Supplies 

The following is a brief description of all NS32381 pins. 

Vee Power: + 5V positive supply. 

GND Ground: Ground reference for both on-Chip log­
ic and drivers connected to output pins. 

3-20 

4.1.2 Input Signals 

ClK Clock: TIL-level clock signal. 

Data Direction In: Active low. Status signal indi­
cating the direction of data transfers during a 
bus cycle . 

STO-ST3 Status: Bus cycle status code from CPU. STO is 
the least significant and rightmost bit. 

RST 

NOE 

1100- Reserved 

1101- Transferring Operation Word or Oper-
and 

1110- Reading Status Word 

1111- Broadcasting Slave ID 
Note: The NS32332 generates four status lines and the 

NS32532 generates five. The user should connect the 
status lines as shown below: 

NS32381 NS32332 NS32532 
STO STO STO 
ST1 ST1 ST1 
ST2 ST2 ST2 
ST3 ST3 ST4 

Reset: Active low. Resets the last operation 
and clears the FSR register. 

New Opcode Enable: Active high. This signal 
enables the new opcodes available in the 
NS32381. 

PSO, PS1 Protocol Select: Selects the slave protocol to 
be used. PSO is the least significant and right­
most bit. 

OO-Selects 16-bit protocol. 
01-Selects 32-bit protocol for NS32332. 
10-Reserved. 
11-Selects 32-bit protocol for NS32532. 

4.1.3 Output Signals 

SDN332 Slave Done 332: Active low. This signal is for 
use with the NS32332 CPU only. If held active 
for a half clock cycle and released this pin indi­
cates the successful completion of a floating­
point instruction by the FPU. Holding this pin 
active for two and a half clock cycles indicates 
TRAP or that the CMPf instruction has been ex­
ecuted. 

SDN532 Slave Done 532: Active low. This signal is for 
use with the NS32532 CPU only. When active it 
indicates successful completion of a floating­
point instruction by the FPU. 

Force Slave Status Read: Active low. This sig­
nal is for use with the NS32532 CPU only. 
When active it indicates TRAP or that the CMPf 
instruction has been executed. 

4.1.4 Input/Output Signals 

*DO-D31 Data Bus: These are the 32 signal lines which 
carry data between the NS32381 and the CPU. 

SPC Slave Processor Control: Active low. This is the 
data strobe signal for slave transfers. For the 
32-bit protocol, SPC is only an input signal. 

·For the 16·bit Slave Protocol the upper sixteen data input signals (016-
031) and ODIN should be left floating. 



4.0 Device Specifications (Continued) 

Connection Diagrams 

Desc 

Vee 
01 
00 
PS1 (Note 1) 
GNO 
GNO 
ClK 
RST 
Reserved (Note 2) 
Reserved (Note 2) 
02 
017 
016 
PSO (Note 1) 
GNO 
NOE (Note 1) 
Reserved (Note 3) 
Reserved (Note 2) 
Vee 
015 
018 
03 
031 
014 
019 
Vee 
030 
Vee 
04 
020 
013 
029 
Reserved (Note 3) 
05 

Note 1: CMOS input; never float. 

Note 2: Pin should be grounded. 

Note 3: Pin should be left floating. 

@@@@@@@@@ 
K@€)@@@@@@@€)@ 
J @ @ @@ 
H @ @ @@ 
G@@ @@ 
F @ @ NS32381 @@ 
E @@ @@ 
D@@ @@ 
C @ @d @ @ 

B@€)@@@@@@@€)@ 
A @@@@@@@@@ 

1 2 3 4 5 6 7 8 9 10 11 

Bottom View 

Order Number NS32381 
See NS Package Number US8D 

FIGURE 4-1. S8-Pln PGA Package 
NS32381 Pinout Descriptions 

TL/EE/9157-18 

Pin Desc 

A2 028 
A3 GNO 
A4 GNO 
A5 021 
A6 012 
A7 027 
A8 06 
A9 022 
A10 011 
81 SON332 
82 07 
83 023 
84 SPC 
85 SON532 
86 Vee 
87 08 
88 GNO 
89 026 
810 GNO 
811 Vee 
C1 Reserved (Note 3) 
C2 STO 
C10 ST1 
C11 Reserved (Note 3) 
01 GNO 
02 024 
010 025 
011 09 
E1 010 
E2 OOIN 
E10 Vee 
E11 ST2 
F1 ST3 
F2 FSSR 

3-21 

Pin 

F10 
F11 
G1 
G2 
G10 
G11 
H1 
H2 
H10 
H11 
J1 
J2 
J10 
J11 
K1 
K2 
K3 
K4 
K5 
K6 
K7 
K8 
K9 
K10 
K11 
l2 
l3 
l4 
l5 
l6 
l7 
l8 
19 
l10 

z en 
w 
I\) 
w 
Q) .... 
• .... 

U1 ...... 
z en 
w 
I\) 
w 
Q) .... 
• I\) 
o 



o 
N 
~ 4.0 Device Specifications (Continued) 
('I') 

~ Connection Diagrams (Continued) 
en 
z ...... 
II) ..... 

I ..... 
co 
('I') 
N 
('I') 

en z 

D25 

Vee 

GND 

D9 

D26 

Dl0 

GND 

DDIN 

Vee 

ST2 

STO 

ST3 

STl 

.., N ~i! co N ~ ~ N 
Q Q Q > (.!) 

1 

~ 
0 
z 

8 
> 
0:: 
Lo.I 

0 0> 
10 

II) ..,. .., Lo.I N 0 Q 0:: Q Q Q 

NS32381 
epu 

Bottom View 

00 ~i! N 0 Q > (.!) 

Vee 

D17 

Dl 

D16 

DO 

PSO 

PSI 

GND 

NOE 

Vee 

GND 

RESERVED NOTE 1 

elK 

RESERVED NOTE 2 

RST 

Vee 

RESERVED NOTE 2 

Order Number NS32381V-15, NS32381V-20, NS32381V-25 or NS32381V-30 
See NS Package Number V68 

Note 1: All these pins should be left open. 

Note 2: All these pins should be grounded. 

FIGURE 4-2. 68-Pln Plastic Chip Carrier Package 

3-22 

TL/EE/9157 -42 



4.0 Device Specifications (Continued) 

4.2 ABSOLUTE MAXIMUM RATINGS All Input or Output Voltages 

If Military/Aerospace specified devices are required, with Respect to GND -0.5Vto +7.0V 

please contact the National Semiconductor Sales ESD Rating 2000V (in human body model) 
Office/Distributors for availability and specifications. Note: Absolute maximum ratings indicate limits beyond 
Maximum Case Temperature 95°C which permanent damage may occur. Continuous operation 

Storage Temperature - 65°C to + 150°C at these limits is not intended; operation should be limited to 
those conditions specified under Electrical Characteristics. 

4.3 ELECTRICAL CHARACTERISTICS T A = O°C to 70·C, Vee = 5V ± 5%, GND = OV 

Symbol Parameter Conditions Min Typ Max Units 

VIH High Level Input Voltage· 2.0 Vee +0.5 V 

VIL Low Level Input Voltage· -0.5 O.B V 

VOH High Level Output Voltage IOH = -400 J.l.A 2.4 V 

VOL Low Level Output Voltage IOL = 2 rnA 0.4 V 

II Input Load Current· o =:;: VIN =:;: Vee -10.0 10.0 J.l.A 

VIH High Level Input Voltage 
3.5 Vee +0.5 V 

for PSO, PS1, NOE 

VIL Low Level Input Voltage 
-0.5 1.5 V 

for PSO, PS1, NOE 

II Input Load Current o =:;: VIN =:;: Vee 
-100 100 J.l.A for PSO, PS1, NOE 

IL Leakage Current 0.4 =:;: VOUT =:;: 2.4V 
(Output and 1/0 Pins -20.0 20.0 J.l.A 
in TRI-STATE®/lnput Mode) 

IcC Active Supply Current lOUT = 0, TA = 25°C, Vec = 5V 300 rnA 

Icc Power Down Current lOUT = 0, TA = 25°C, VCC = 5V 60 rnA 

"Except PSO. PS1. NOE and Reserved pins. 

Note: PSO. PSl NOE pins have to be connected to either GND or Vee (possible via resistor) as it is shown in Figure 3·48, 3-4b. 3-4c, and 3-4d 

4.4 SWITCHING CHARACTERISTICS ABBREVIATIONS 

4.4.1 Definitions L.E. - Leading Edge R.E. - Rising Edge 

All the Timing Specifications given in this section refer to T.E. - Trailing Edge F.E. - Falling Edge 

O.BV and 2.0V on all the input and output signals as illustrat-

[ "V(C ed in Figures 4.3 and 4.4, unless specifically stated other-
CLK wise. 

D.BV 

[)t·v 
eLK 

.. ~ 
--2.4V -'t\ D.BV 

SIGl [ ISIGll 

[ \ 
2.4V O.45V 

5101 2.4V 
ISIGll 

[ 2.DV L O.BV tSIG2h 
O.45V 

[ 
I l'w 

2.4V SIG2 
tSIG2h O.45V 

TL/EE/9157-2D 

SIG2 FIGURE 4-4. Timing Specification Standard 

O.4SV (Signal Valid before Clock Edge) 

TL/EE/9157-19 

FIGURE 4-3. Timing Specification Standard 
(Signal Valid after Clock Edge) 

3-23 



o 
N 

I 
0p-

eC) 
(f) 
N 
(f) 
(/) 
Z ...... 
an 
op-

I 
0p-

eC) 
(f) 
N 
(f) 
(/) 
Z 

4.0 Device Specifications (Continued) 

4.4.2 Timing Tables (Maximum times assume temperature range O°C to 70°C) 

4.4.2.1 Output Signal Propagation Delays for all CPUs (16·8It Slave Protocol) 
(Maximum times assume capacitive loading of 100 pF) 

Symbol Figure Description Reference/ NS32381·15 NS32381·20 NS32381·25 
Units 

Conditions 
Min Max Min Max Min Max 

tSPCFw 4·18 SPC Pulse Width AtO.8V 
tCLKp - 10 tCLKp + 10 tCLKp - 10 tCLKp + 10 tCLKp - 10 tCLKp + 10 from FPU (Both Edges) 

ns 

tSPCFa 4·18 SPC Output Active After ClK R.E. 17 17 15 ns 

tSPCFia 4·18 SPC Output Inactive After ClK R.E. 38 33 25 ns 

tSPCFf(1) 4·18 SPC Output Floating After ClK F.E. 35 30 25 ns 

4.4.2.2 Output Signal Propagation Delays for the NS32008, NS32016 and NS32032 CPUs 
Maximum times assumes capacitive loading of 100 pF 

Symbol Figure Description Reference/ NS32381·15 NS32381·20 NS32381·25 
Units 

Conditions Min Max Min Max Min Max 

tov 4-8 Data Valid (00-015) After SPC L.E. 30 18 ns 

to,(1) 4-8 00-015 Floating After SPC T.E. 30 30 ns 

4.4.2.3 Output Signal Propagation Delays for the 32·81t Slave Protocol NS32332 CPU 
Maximum times assume capacitive loading of 100 pF unless otherwise specified 

Reference/ NS32381·15 
Symbol Figure Description 

Conditions 
Units 

Min Max 

tov 4-10 Data Valid After SPC L.E.; 
25 

75 pF Cap. loading 
ns 

tOh 4·10 Data Hold After SPC T.E. 8 ns 

to,(1) 4-10 Data Floating After SPC T.E. 30 ns 

tsoNa 4-12,13 Slave Done Active After ClK F.E. 3 28 ns 

tSDNh 4-13 Slave Done Hold After ClK R.E. 33 ns 

tSDNw 4-12 Slave Done AtO.8V 
% tCLKp -10 %tCLKp +10 Pulse Width (Both Edges) 

ns 

tSDN,(1) 4·12,13 Slave Done Floating After ClK R. E. 30 ns 

tSTRPw 4-13 Slave Done (TRAP) AtO.8V 
2%tCLKp-10 2%tCLKp +10 

Pulse Width (Both Edges) 
ns 

Note 1: Not 100% tested. 

3·24 



4.0 Device Specifications (Continued) 

4.4.2.4 Output Signal Propagation Delays for the 32-81t Slave Protocol NS32532 CPU 
Maximum times assume capacitive loading of 50 pF 

Reference! 
NS32381-

Symbol Figure Description Conditions 20 25 

Min Max Min Max 

tov 4·14 Data Valid After SPC L.E. 35 35 

tOh 4·14 Data Hold After ClK R.E. 3 3 

tOl(1) 4·14 Data Floating After SPC T.E. 30 30 

tsoa 4·16 Slave Done Active After ClK R.E. 35 25 

tSOh 4·16 Slave Done Hold After ClK R.E. 2 33 2 25 

tSOf(1) 4·16 Slave Done Floating After ClK R. E. 30 30 

tFSSRa 4·17 Forced Slave Status After ClK R.E. 
35 25 

Read Active 

tFSSRh 4·17 Forced Slave Status After ClK R.E. 
2 33 2 25 

Read Hold 

tFSSR,!1) 4·17 Forced Slave Status After ClK R.E. 
30 30 

Read Floating 

4.4.2.5 Input Signal Requirements with all CPUs 

NS32381-

Symbol Figure Description 
Reference! 

15 20 
Conditions 

Min Max Min Max Min 

tPWR 4·5 Power·On Reset Duration After ClK R.E. 30 30 30 

tRSTw 4·6 Reset Pulse Width At 0.8V (Both Edges) 64 64 64 

tRSTs 4·7 Reset Setup Time Before ClK R.E. 10 14 12 

tRSTh 4·7 Reset Hold After elK R.E. 0 0 0 

4.4.2.6 Input Signal Requirements with the NS32008, NS32016, NS32032 CPUs 

Symbol Figure Description 
Reference! NS32381-15 NS32381-20 
Conditions 

Min Max Min Max 

tss 4·8 Status (STO-ST1) Setup Before SPC L.E. 20 20 

tSh 4·8 Status (STO-ST1) Hold After SPC L.E. 20 20 

tos 4·9 Data Setup (00-015) Before SPC T.E. 25 20 

tOh 4·9 Data Hold (00-015) After SPC T.E. 20 20 

tspCw 4·8 SPC Pulse Width AtO.8V 
35 35 

from CPU (Both Edges) 

Note 1: Not 100% tested. 

3·25 

30 

Min Max 

35 

3 

30 

20 

2 20 

30 

20 

2 20 

30 

25 30 

Max Min Max 

30 

64 

11 

0 

NS32381-25 

Min Max 

15 

17 

15 

15 

28 

Units 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Units 

J.Ls 

tCLKp 

ns 

ns 

Units 

ns 

ns 

ns 

ns 

ns 

z en 
(,) 
N 
(,) 
Q) ..... • ..... 
U1 
......... 
z en 
(,) 
N 
(,) 
Q) ..... • N 
o 



o 
C\I • or-
CO 
C") 
C\I 
C") 

UJ 
Z ....... 
Lt) 
or-. 
or­
CO 
C") 
C\I 
C") 

UJ 
Z 

4.0 Device Specifications (Continued) 

4.4.2.7 Input Signal Requirements with the 32-Blt Slave Protocol NS32332 CPU 

Symbol Figure Description 
Reference! NS32381-15 

Units 
Conditions Min Max 

tSTs 4-11 Status Setup Before SPC L.E. 20 ns 

tSTh 4-11 Status Hold After SPC L.E. 20 ns 

tos 4-11 Data Setup Before SPC T.E. 20 ns 

tOh 4-11 Data Hold After SPC T.E. 20 ns 

tspCw 4-11 SPC Pulse Width At O.BV (Both Edges) 35 ns 

4.4.2.8 Input Signal Requirements with the 32-Bit Slave Protocol NS32532 CPU 

NS32381 

Symbol Figure Description 
Reference! 

20 25 30 
Conditions Units 

Min Max Min Max Min Max 

tSTs 4-15 Status Setup Before ClK (T2) R.E. 25 20 20 ns 

tSTh 4-15 Status Hold After ClK (T2) RE. 20 10 10 ns 

tOOINs 4-15 Data Direction In Setup Before SPC L.E. 0 0 0 ns 

tOOINh 4-15 Data Direction In Hold After SPC T.E. 10 10 10 ns 

tos 4-15 Data Setup Before SPC T.E. 6 6 4 ns 

tOh 4-15 Data Hold After SPC T.E. 20 10 10 ns 

tspcs 4-14,15 SPCSetup Before ClK RE. 20 20 20 ns 

tSPCh 4-14,15 SPCHold After ClK R.E. 0 0 0 ns 

4.4.2.9 Clocking Requirements with all CPUs 

NS32381 

Symbol Figure Description 
Reference! 

15 20 25 30 
Conditions Units 

Min Max Min Max Min Max Min Max 

tCLKh 4-4 Clock High Time At 2.0 V (Both Edges) 25 1000 20 1000 16 1000 13 1000 ns 

tCLKI 4-4 Clock low Time At O.BV (Both Edges) 25 DC 20 DC 16 DC 13 DC ns 

tCTr(1) 4-4 Clock Rise Time Between O.BV and 2.0V 7 5 4 3 ns 

tCTi1) 4-4 Clock Fall Time Between 2.0V and O.BV 7 5 4 3 ns 

tCLKp 4-4 Clock Period ClK R.E. to Next ClK RE. 66 DC 50 DC 40 DC 33.3 DC ns 

Note 1: Not 100% tested. 

3-26 



4.0 Device Specifications (Continued) 

4.4.3 Timing Diagrams 

elK 

TL/EE/9157 -21 

FIGURE 4-5. Clock Timing 

FIGURE 4-S. Power-On Reset 

eLK SLJLfLSLIL 
m_{ t"~ r--

FIGURE 4-7. Non-Power-On Reset 

ClK~ I 

RST 9 j--tRSTs-l 
RSTh/ 

----' 

TLlEE/9157 -22 

TLlEE/9157-23 

TL/EE/9157 -24 

FIGURE 4-S. RST Release Timing 
Note: The rising edge of RST must occur while elK is high, as shown. 

ClK --.....I 

STO, ST1 ?llX VALID x071/1//Z 
ItSSj~tSh~ 

_tspcw-T 

tDv-j ~ I--tOf:j 
00-015 -----------< VALID FROM FPU r-

TL/EE/9157 -25 

FIGURE 4-9. Read Cycle from FPU (NS3200S, NS3201S, NS32032 CPUs) 

3-27 



o .---------------------------------------------------------------------------~ 
N • ,... 
CO 
C") 
N 
C") 
t/) 
Z ....... 
it) ,... 
• ,... 

CO 
C") 
N 
C") 
t/) 
Z 

4.0 Device Specifications (Continued) 

ClK ----' 

STO, ST1lllX VALID x07111111 
1-",1 C="h---l 

SPC ----ctspcw--l~L 
r----- tos -j tOh::j 

DO-D1S-Z'-:Zl""'lZ""V"/X""" VALID fROt.! CPU ~ 
TLlEE/9157-26 

FIGURE 4-10. Write Cycle to FPU (NS32008, NS32016, NS32032 CPUs) 

ru[ 
I-Tl T4--j 

sro-Sl3[mzmoX ___ 

S~[ H 
OO_D3{ ________ t_

Dv 

__ fVWD p_m ___ m_m 
FIGURE 4-11. Read Cycle from FPU (NS32332 CPU) 

I-Tl 'I' T4--j 

DO-D3{---------.....(JI'-__ "'If).---------

FIGURE 4-12. Write Cycle to FPU (NS32332 CPU) 

3·28 

TLlEE/9157 -27 

TL/EE/9157 -28 



4.0 Device Specifications (Continued) 

C~[ 
____ [-----~~!~~~ t:~~~ _____ _ 
SDN332 

tsDNw 
TL/EE/9157-29 

FIGURE 4-13. SDN332 Timing (NS32332 CPU) 

tso .. ~r ___ --l_~~tSDNf 
TL/EE/9157-30 

FIGURE 4-14. SDN332 (TRAP) Timing (NS32332 CPU) 

r T1 "I' T2--j 

tOl] 
OO-D3t[----------eJl-___ D_AT_A_VA_LI_D __ """If - ----

TLlEE/9157-31 

FIGURE 4-15. Read Cycle from FPU (NS32532 CPU) 

3-29 

z en 
w 
N 
W 
co .... • .... 
U1 ..... z en w 
N 
W 
co .... . 
N o 



o 
N . 
'I"'" 
CO 
C") 
N 
C") 
(J) 
Z ....... 
it) 
'I"'" • 'I"'" 
CO 
C") 
N 
C") 
(J) 
Z 

4.0 Device Specifications (Continued) 

rn 'I' T2-j 

ru[ 
~ t:tSTS-1 .J~h 

STO-ST3 [""""'ZZ""""'ZZ-,-r'ZZ""""'ZZ"""""ZX X1......-ZZ,.......,...71.,....,...7Z-7Z....,..-p7Z~7 
I 

DO-"{-----------<II'-__ DA_TA_VA_Ll_D_-'l()-------

TLlEE/9157-32 

FIGURE 4-16. Write Cycle to FPU (NS32532 CPU) 

TLlEE/9157 -33 

FIGURE 4-17. SDN532 Timing (NS32532 CPU) 

TL/EE/9157 -34 

FIGURE 4-18. FSSR Timing (NS32532 CPU) 

tSPCFlI.1 r-- I r--tspcna 

elK 

I~....;. ...... t:" ~sPcrt 

TL/EE/9157 -35 

FIGURE 4-19. SPC Pulse from FPU 

3·30 



Appendix A 
NS32381 PERFORMANCE ANALYSIS 

The following performance numbers were taken from simu­
lations using the 381 SIMPLE model. The timing terms have 
been designed to provide performance numbers which are 
CPU independent. Numbers were obtained from SIMPLE 
simulations, taking the average execution times using 'typi­
cal' operands. 

Listed below are definitions of the timing terms: 

EXT - (EXecution Time) This is the time from the last data 
sent to the FPU, until the early DONE is issued. 
(FPU Pipe is empty) 

EDD - (Early Done Delta) This is the time from when the 
early DONE is issued until the execution of the next 
instruction may start. 

Provided that the CPU can transfer the ID/OPCODE and 
any operands to the FPU during the EDD time, the average 
system execution time for an instruction (keeping the FPU 
pipe filled) is: EXT + EDD. 

The system execution time for a single FPU instruction with 
FPU register destination and early done is: EXT plus the 
protocol time. (FPU pipe is initially empty) 

Instruction EXT· EOO· Total· 

LFSR any, reg 5 8 13 

MOVF any, reg 5 6 11 
MOVL any, reg 5 8 13 

MOVif any, reg 5 45 50 

MOVFL any, reg 9 6 15 

ADDF any, reg 11 31 42 
ADDL any, reg 11 31 42 

SUSF any, reg 11 31 42 
SUSL any, reg 11 31 42 

MULF any, reg 11 20 31 
MULL any, reg 11 27 38 

DIVF any, reg 11 45 56 
DIVL any, reg 11 59 70 

POL YF any, any 15 46 61 
POL YL any, any 15 53 68 

DOTF any,any 15 46 61 
DOTL any, any 15 53 68 

"Measured in the number of clock cycles. 

3-31 

NS32381 PERFORMANCE ANALYSIS 

The following instructions do not generate an early done. In 
this case, EXT is the time from the last data sent to the FPU, 
until the normal DONE is issued. (FPU Pipe is empty) 

Instruction EXT 

SFSR reg, mem 7 

MOVLF any,any 18 

ROUNDfi any, mem 46 
FLOORfi any, mem 46 
TRUNCfi any, mem 46 

CMPF any,any 17 
CMPL any,any 17 

ASSf any,any 9 
NEGf any,any 9 

SCALSf any,any 49 

LOGSf any,any 36 

z 
en w 
N 
W 
CD ...... . ...... 
U1 ...... 
z 
en 
w 
N 
W 
CD ...... 
~ 
o 



Il) ,... . ,... 
co o 
N 
C') 

en 
z 
....... o ,... 
• ,... 

CO 
o 
N 
C') 

en z 

~National 
~ Semiconductor 
NS32081-10/NS32081-15 Floating-Point Units 

General Description 
The NS32081 Floating-Point Unit functions as a slave proc­
essor in National Semiconductor's Series 32000® micro­
processor family. It provides a high-speed floating-point in­
struction set for any Series 32000 family CPU, while remain­
ing architecturally consistent with the full two-address archi­
tecture and powerful addressing modes of the Series 32000 
micro-processor family. 

Block Diagram 

r 

I 

I ... 
I Condition and 

Completion 

MICRO 
ROM 

STORE 

Command 

Features 
• Eight on-chip data registers 
• 32-bit and 64-bit operations 
• Supports proposed IEEE standard for binary floating­

point arithmetic, Task P754 

• Directly compatible with NS32016, NS32008 and 
NS32032 CPUs 

• High-speed XMOSTM technology 
• Single 5V supply, 
• 24-pin dual in-line package 

- EXECUTION UN'ji"I 

I 
~+---~~ .. ~~ .. --~~ 

I 
... 

I 
L 

Inlernal Data Bus 

3-32 

Data Bus 16 

Control Bus 

INTERFAcE ANij'I 
STORAGE UNIT I 

TLlEE/5234-1 



r-------------------------------------------------------------------~z 

1.0 PRODUCT INTRODUCTION 

1.1 Operand Formats 

1.1.1 Normalized Numbers 

1.1.2 Zero 

1.1.3 Reserved Operands 

1.1.4 Integers 

1.1.5 Memory Representations 

2.0 ARCHITECTURAL DESCRIPTION 

2.1 Programming Model 

2.1.1 Floating-Point Registers 

2.1.2 Floating-Point Status Register (FSR) 

2.1.2.1 FSR Mode Control Fields 

2.1.2.2 FSR Status Fields 

2.1.2.3 FSR Software Field (SWF) 

2.2 Instruction Set 

2.2.1 General Instruction Format 

2.2.2 Addressing Modes 

2.2.3 Floating-Point Instruction Set 

2.3 Traps 

3.0 FUNCTIONAL DESCRIPTION 

3.1 Power and Grounding 

3.2 Clocking 

3.3 Resetting 

Table of Contents 

3·33 

3.0 FUNCTIONAL DESCRIPTION (Continued) 

3.4 Bus Operation 

3.4.1 Bus Cycles 

3.4.2 Operand Transfer Sequences 

3.5 Instruction Protocols 

3.5.1 General Protocol Sequence 

3.5.2 Floating-Point Protocols 

4.0 DEVICE SPECIFICATIONS 

4.1 Pin Descriptions 

4.1.1 Supplies 

4.1.2 Input Signals 

4.1.3 Input/Output Signals 

4.2 Absolute Maximum Ratings 

4.3 Electrical Characteristics 

4.4 Switching Characteristics 

4.4.1 Definitions 

4.4.2 Timing Tables 

4.4.2.1 Output Signals: Internal Propagation De­
lays 

4.4.2.2 Input Signals Requirements 

4.4.2.3 Clocking Requirements 

4.4.3 Timing Diagrams 

en 
w 
N 
o 
(X) -. • -. 
o 
....... 
z en w 
N 
o 
(X) -. • -. 
U1 

EI 



Lt) ,.... . ,.... 
co 
o 
N 
C") 
t/) 
Z ....... 
o ,.... . ,.... 
CO o 
N 
C") 
t/) 
Z 

List of Illustrations 
Floating-Point Operand Formats .......................................................•......................... 1-1 

Register Set ................................................................................................... 2-1 

The Floating-Point Status Register ............................................................................... 2-2 

General Instruction Format ...................................................................................... 2-3 

Index Byte Format ............................................•................................................ 2-4 

Displacement Encodings .........•.............................................................................. 2-5 

Floating-Point Instruction Formats ................................................................................ 2-6 

Recommended Supply Connections ..............................................................•............... 3-1 

Power-On Reset Requirements .................................................................................. 3-2 

General Reset Timing .......................................................................................... 3-3 

System Connection Diagram ..........................................................•.........•............... 3-4 

Slave Processor Read Cycle ..................................................................................... 3-5 

Slave Processor Write Cycle ..................................................................................... 3-6 

FPU Protocol Status Word Format ................................................................................ 3-7 

Dual-In-Line Package ........................................................................................... 4-1 

Timing Specification Standard (Signal Valid After Clock Edge) ........................................................ 4-2 

Timing Specification Standard (Signal Valid Before Clock Edge) ...................................................... 4-3 

Clock Timing ................................................................................................... 4-4 

Power-an-Reset ..............................................•.......•................................•....... 4-5 

Non-Power-On-Reset. ..................................•....................................................... 4-6 

Read Cycle From FPU ........•.................................................................•............... 4-7 

Write Cycle To FPU ..........................................................................................•. 4-8 

SPC Pulse from FPU ........................................................................................... 4-9 

RST Release Timing ..................•....................................................................... 4-1 0 

List of Tables 
Sample F Fields ............................................................................................... 1-1 

Sample E Fields ...............................................•............................................... 1-2 

Normalized Number Ranges ..................................................................................... 1-3 

Series 32000 Family Addressing Modes ........................................................................... 2-1 

General Instruction Protocol ..............•..............................•....................................... 3-1 

Floating-Point Instruction Protocols ............................................................................... 3-2 

3-34 



1.0 Product Introduction 
The NS32081 Floating-Point Unit (FPU) provides high 
speed floating-point operations for the Series 32000 family, 
and is fabricated using National high-speed XMOS technol­
ogy. It operates as a slave processor for transparent expan­
sion of the Series 32000 CPU's basic instruction set. The 
FPU can also be used with other microprocessors as a pe­
ripheral device by using additional TIL interface logic. The 
NS32081 is compatible with the IEEE Floating-Point For­
mats by means of its hardware and software features. 

1_1 OPERAND FORMATS 

The NS32081 FPU operates on two floating-point data 
types-single precision (32 bits) and double precision (64 
bits). Floating-point instruction mnemonics use the suffix F 
(Floating) to select the single precision data type, and the 
suffix L (Long Floating) to select the double precision data 
type. 

A floating-point number is divided into three fields, as shown 
in Figure 1-1. 

The F field is the fractional portion of the represented num­
ber. In Normalized numbers (Section 1.1.1), the binary point 
is assumed to be immediately to the left of the most signifi­
cant bit of the F field, with an implied 1 bit to the left of the 
binary point. Thus, the F field represents values in the range 
1.0 ::;;: x ::;;: 2.0. 

TABLE 1-1. Sample F Fields 

FField Binary Value Decimal Value 
000 ... 0 1.000 ... 0 1.000 ... 0 
010 ... 0 1.010 ... 0 1.250 ... 0 
100 ... 0 1.100 ... 0 1.500 ... 0 
110 ... 0 1.110 ... 0 1.750 ... 0 

i 
Implied Bit 

The E field contains an unsigned number that gives the bi­
nary exponent of the represented number. The value in the 
E field is biased; that is, a constant bias value must be sub­
tracted from the E field value in order to obtain the true 
exponent. The bias value is 011 ... 112, which is either 127 
(single precision) or 1023 (double precision). Thus, the true 
exponent can be either positive or negative, as shown in 
Table 1-2. 

TABLE 1-2. Sample E Fields 

E Field F Field Represented Value 
011 ... 110 100 ... 0 1.5X2-1 =0.75 
011 ... 111 100 ... 0 1.5X2o=1.50 
100 ... 000 100 ... 0 1.5X21 = 3.00 

Two values of the E field are not exponents. 11 ... 11 sig­
nals a reserved operand (Section 2.1.3). 00 ... 00 repre­
sents the number zero if the F field is also all zeroes, other­
wise it signals a reserved operand. 

The S bit indicates the sign of the operand. It is 0 for posi­
tive and 1 for negative. Floating-point numbers are in sign­
magnitude form, that is, only the S bit is complemented in 
order to change the sign of the represented number. 

1.1.1 Normalized Numbers 

Normalized numbers are numbers which can be expressed 
as floating-point operands, as described above, where the E 
field is neither all zeroes nor all ones. 

The value of a Normalized number can be derived by the 
formula: 

(-1)S X 2(E-Bias) X (1 + F) 

The range of Normalized numbers is given in Table 1-3. 

1.1.2 Zero 

There are two representations for zero-positive and nega­
tive. Positive zero has all-zero F and E fields, and the S bit is 
zero. Negative zero also has all-zero F and E fields, but its S 
bit is one. 

1.1.3 Reserved Operands 

The proposed IEEE Standard for Binary Floating-Point Arith­
metic (Task P754) provides for certain exceptional forms of 
floating-point operands. The NS32081 FPU treats these 
forms as reserved operands. The reserved operands are: 

• Positive and negative infinity 

• Not-a-Number (NaN) values 

• Denormalized numbers 

Both Infinity and NaN values have all ones in their E fields. 
Denormalized numbers have all zeroes in their E fields and 
non-zero values in their F fields. 

The NS32081 FPU causes an Invalid Operation trap (Sec­
tion 2.1.2.2) if it receives a reserved operand, unless the 
operation is simply a move (without conversion). The FPU 
does not generate reserved operands as results. 

Single Precision 

31 30 23 22 o 

Is I E F 

8 23 

Double Precision 

6362 52 51 o 

Is I E F 

11 52 

FIGURE 1-1. Floating-Point Operand Formats 

3-35 

z 
(f) 
W 
N 
o 
(X) 
-4 • -4 

o ....... 
Z 
(f) 
W 
N 
o 
(X) 
-4 

• -4 

U1 



Lt) 
~ 

• ~ 
co o 
N 
('I) 
U) 
Z ....... 
o 
~ • ~ 
CO o 
N 
('I) 
U) 
Z 

1.0 Product Introduction (Continued) 

TABLE 1-3. Normalized Number Ranges 

Most Positive 
Single Precision 

2127 x (2 - 2 - 23) 
Double Precision 

21023X(2-2-52) 

= 3.40282346 X 1038 = 1.7976931348623157 X 1 0308 

Least Positive 2-126 2-1022 

= 1.17549436X 10-38 = 2.2250738585072014 X 10 - 308 

least Negative -(2- 126) -(2- 1022) 
= -1.17549436X10-38 = -2.2250738585072014X10- 308 

Most Negative -2127X(2-2-23) - 21023 X (2 -2-52) 
= - 3.40282346 X 1038 = -1.7976931348623157 X 10308 

Note: The values given are extended one full digit beyond their represented accuracy to help in generating rounding and conversion algorithms. 

1.1.4 Integers 

In addition to performing floating-point arithmetic, the 
NS32081 FPU performs conversions between integer and 
floating-point data types. Integers are accepted or generat­
ed by the FPU as two's complement values of byte (8 bits), 
word (16 bits) or double word (32 bits) length. 

1.1.5 Memory Representations 

The NS32081 FPU does not directly access memory. How­
ever, it is cooperatively involved in the execution of a set of 
two-address instructions with its Series 32000 Family CPU. 
The CPU determines the representation of operands in 
memory. 

In the Series 32000 family of CPUs, operands are stored in 
memory with the least significant byte at the lowest byte 
address. The only exception to this rule is the Immediate 
addressing mode, where the operand is held (within the in­
struction format) with the most significant byte at the lowest 
address. 

2.0 Architectural Description 
2.1 PROGRAMMING MODEL 

The Series 32000 architecture includes nine registers that 
are implemented on the NS32081 Floating-Point Unit (FPU). 

DEDICATED 
-32-
I FSR , 

DATA 
-32-

FO':===:::::::: 
F11::===~ 
F2::' ===::::: 
F31::===::::: 
F4::! ===:::: 
F5::! ===::::::::: 
F6::' ===:::: 
F7 .. ! _____ ... 

TL/EE/5234-4 

FIGURE 2-1. Register Set 

3-36 

2.1.1 Floating-Point Registers 

There are eight registers (FO-F7) on the NS32081 FPU for 
providing high-speed access to floating-point operands. 
Each is 32 bits long. A floating-point register is referenced 
whenever a floating-point instruction uses the Register ad­
dressing mode (Section 2.2.2) for a floating-point operand. 
All other Register mode usages (i.e., integer operands) refer 
to the General Purpose Registers (RO-R7) of the CPU, and 
the FPU transfers the operand as if it were in memory. 
When the Register addressing mode is specified for a dou­
ble precision (64-bit) operand, a pair of registers holds the 
operand. The programmer must specify the even register of 
the pair. The even register contains the least significant half 
of the operand and the next consecutive register contains 
the most significant half. 

2.1.2 Floating-Point Status Register (FSR) 

The Floating·Point Status Register (FSR) selects operating 
modes and records any exceptional conditions encountered 
during execution of a floating-point operation. Figure 2-2 
shows the format of the FSR. 

31 1615 9 8 7 6 5 4 3 2 1 0 

rR'e;;r:ed I SWF I RM IIF IIENI UF IUENI TT I L ... '" III I I I 

TL/EE/5234-5 

FIGURE 2-2. The Floating-Point Status Register 

2.1.2.1 FSR Mode Control Fields 

The FSR mode control fields select FPU operation modes. 
The meanings of the FSR mode control bits are given be­
low. 

Rounding Mode (RM): Bits 7 and 8. This field selects the 
rounding method. Floating-point results are rounded when­
ever they cannot be exactly represented. The rounding 
modes are: 

00 Round to nearest value. The value which is nearest to 
the exact result is returned. If the result is exactly half­
way between the two nearest values the even value 
(lSB = 0) is returned. 

01 Round toward zero. The nearest value which is closer to 
zero or equal to the exact result is returned. 



2.0 Architectural Description (Continued) 

10 Round toward positive infinity. The nearest value which 
is greater than or equal to the exact result is returned. 

11 Round toward negative infinity. The nearest value which 
is less than or equal to the exact result is returned. 

Underflow Trap Enable (UEN): Bit 3. If this bit is set, the 
FPU requests a trap whenever a result is too small in abso­
lute value to be represented as a normalized number. If it is 
not set, any underflow condition returns a result of exactly 
zero. 

Inexact Result Trap Enable (lEN): Bit 5. If this bit is set, 
the FPU requests a trap whenever the result of an operation 
cannot be represented exactly in the operand format of the 
destination. If it is not set, the result is rounded according to 
the selected rounding mode. 

2.1.2.2 FSR Status Fields 

The FSR Status Fields record exceptional conditions en­
countered during floating-point data processing. The mean­
ings of the FSR status bits are given below: 

Trap Type (TT): bits 0-2. This 3-bit field records any excep­
tional condition detected by a floating-point instruction. The 
TT field is loaded with zero whenever any floating-point in­
struction except LFSR or SFSR completes without encoun­
tering an exceptional condition. It is also set to zero by a 
hardware reset or by writing zero into it with the Load FSR 
(LFSR) instruction. Underflow and Inexact Result are always 
reported in the TT field, regardless of the settings of the 
UEN and lEN bits. 

000 No exceptional condition occurred. 

001 Underflow. A non-zero floating-point result is too small 
in magnitude to be represented as a normalized float­
ing-point number in the format of the destination oper­
and. This condition is always reported in the TT field 
and UF bit, but causes a trap only if the UEN bit is set. If 
the UEN bit is not set, a result of Positive Zero is pro­
duced, and no trap occurs. 

010 Overflow. A result (either floating-point or integer) of a 
floating-point instruction is too great in magnitude to be 
held in the format of the destination operand. Note that 
rounding, as well as calculations, can cause this condi­
tion. 

011 Divide by zero. An attempt has been made to divide a 
non-zero floating-point number by zero. Dividing zero by 
zero is considered an Invalid Operation instead (below). 

100 Illegal Instruction. Two undefined floating-point instruc­
tion forms are detected by the FPU as being illegal. The 
binary formats causing this trap are: 

xxxxxxxxxx0011xx10111110 

xxxxxxxxxx1001xx10111110 

101 Invalid Operation. One of the floating-point operands of 
a floating-point instruction is a Reserved operand, or an 
attempt has been made to divide zero by zero using the 
DIVf instruction. . 

110 Inexact Result. The result (either floating-point or inte­
ger) of a floating-point instruction cannot be represent­
ed exactly in the format of the destination operand, and 
a rounding step must alter it to fit. This condition is al­
ways reported in the TT field and IF bit unless any other 
exceptional condition has occurred in the same instruc­
tion. In this case, the TT field always contains the code 
for the other exception and the IF bit is not altered. A 
trap is caused by this condition only if the lEN bit is set; 
otherwise the result is rounded and delivered, and no 
trap occurs. 

111 (Reserved for future use.) 

Underflow Flag (UF): Bit 4. This bit is set by the FPU when­
ever a result is too small in absolute value to be represented 
as a normalized number. Its function is not affected by the 
state of the UEN bit. The UF bit is cleared only by writing a 
zero into it with the Load FSR instruction or by a hardware 
reset. 

Inexact Result Flag (IF): Bit 6. This bit is set by the FPU 
whenever the result of an operation must be rounded to fit 
within the destination format. The IF bit is set only if no other 
error has occurred. It is cleared only by writing a zero into it 
with the Load FSR instruction or by a hardware reset. 

2.1.2.3 FSR Software Field (SWF) 

Bits 9-15 of the FSR hold and display any information writ­
ten to them (using the LFSR and SFSR instructions), but are 
not otherwise used by FPU hardware. They are reserved for 
use with NSC floating-point extension software. 

2.2 INSTRUCTION SET 

2.2.1 General Instruction Format 

Figure 2-3 shows the general format of an Series 32000 
instruction. The Basic Instruction is one to three bytes long 

OPTIONAL BASIC 
EXTENSIONS INSTRUCTION 

r~----------------~A~----------------~\(~--------~A~------~\ 

DISP2DISP1 DISP21DISP1 
I 

I 
GEN I GEN I .. PUED INDEX INDEX I 

1 .... EDlATE DISP DISP BYTE BYTE ADDR I ADDR OPCODE 
OPERANO(S) MODE I MODE 

A I B 
IMM IMM 

I : 

l 1 4.. 1 
TL/EE/5234-6 

FIGURE 2-3. General Instruction Format 

3-37 

z 
en w 
N 
o 
CQ ..... 

I ..... 
o ....... 
z 
en w 
N o 
CQ ..... 
I ..... 

en 



II) ..... • ..... 
co 
<:) 

'" C") 

en z 
....... o ..... . ..... 
CO 
<:) 

'" C") 

en 
z 

2.0 Architectural Description (Continued) 

and contains the opcode and up to two 5-bit General Ad­
dressing Mode (Gen) fields. Following the Basic Instruction 
field is a set of optional extensions, which may appear de­
pending on the instruction and the addressing modes se­
lected. 

The only form of extension issued to the NS32081 FPU is 
an Immediate operand. Other extensions are used only by 
the CPU to reference memory operands needed by the 
FPU. 

Index Bytes appear when either or both Gen fields specify 
Scaled Index. In this case, the Gen field specifies only the 
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies 
which General Purpose Register to use as the index, and 
which addressing mode calculation to perform before index­
ing. See Figure 2-4. 

Following Index Bytes come any displacements (addressing 
constants) or immediate values associated with the select­
ed addressing modes. Each Disp/lmm field may contain 
one or two displacements, or one immediate value. The size 
of a Displacement field is encoded within the top bits of that 
field, as shown in Figure 2-5, with the remaining bits inter­
preted as a signed (two's complement) value. The size of an 
immediate value is determined from the Opcode field. Both 
Displacement and Immediate fields are stored most signifi­
cant byte first. 

Some non-FPU instructions require additional, "implied" im­
mediates and! or displacements, apart from those associat­
ed with addressing modes. Any such extensions appear at 
the end of the instruction, in the order that they appear with­
in the list of operands in the instruction definition. 

2.2.2 Addressing Modes 

The Series 32000 Family CPUs generally access an oper­
and by calculating its Effective Address based on informa­
tion available when the operand is to be accessed. The 
method to be used in performing this calculation is specified 
by the programmer as an "addressing mode." 

Addressing modes in the Series 32000 family are designed 
to optimally support high-level language accesses to vari­
ables. In nearly all cases, a variable access requires only 
one addressing mode within the instruction which acts upon 
that variable. Extraneous data movement is therefore mini­
mized. 

Series 32000 Addressing Modes fall into nine basic types: 

Register: In floating-point instructions, these addressing 
modes refer to a Floating-Point Register (FO-F7) if the op­
erand is of a floating-point type. Otherwise, a CPU General 
Purpose Register (RO-R7) is referenced. See Section 2.1.1. 

Register Relative: A CPU General Purpose Register con­
tains an address to which is added a displacement value 
from the instruction, yielding the Effective Address of the 
operand in memory. 

GEN. ADDR. MODE 

TL/EE/5234-7 

FIGURE 2·4. Index Byte Format 

3-38 

Memory Space: Identical to Register Relative above, ex­
cept that the register used is one of the dedicated CPU 
registers PC, SP, SB or FP. These registers point to data 
areas generally needed by high-level languages . 

Memory Relative: A pointer variable is found within the 
memory space pointed to by the CPU SP, SB or FP register . 
A displacement is added to that pointer to generate the Ef­
fective Address of the operand. 

Immediate: The operand is encoded within the instruction. 
This addressing mode is not allowed if the operand is to be 
written. Floating-point operands as well as integer operands 
may be specified using Immediate mode. 

Absolute: The address of the operand is specified by a 
Displacement field in the instruction. 

External: A pointer value is read from a specified entry of 
the current Link Table. To this pointer value is added a dis­
placement, yielding the Effective Address of the operand. 

Top of Stack: The currently-selected CPU Stack Pointer 
(SPO or SP1) specifies the location of the operand. The op­
erand is pushed or popped, depending on whether it is writ­
ten or read. 

Scaled Index: Although encoded as an addressing mode, 
Scaled Indexing is an option on any addressing mode ex­
cept Immediate or another Scaled Index. It has the effect of 
calculating an Effective Address, then multiplying any Gen­
eral Purpose Register by 1, 2, 4 or 8 and adding it into the 
total, yielding the final Effective Address of the operand. 

The following table, Table 2-1, is a brief summary of the 
addressing modes. For a complete description of their ac­
tions, see the Series 32000 Instruction Set Reference Man­
ual. 

SIGNED DISPLACEMENT 

7 0 

1: 1 J 
t~~~~" 

~\) \)\':.~\Y-
~\U~ 

TL/EE/5234-10 

FIGURE 2·5. Displacement Encodings 



2.0 Architectural Description (Continued) 

TABLE 2-1. Series 32000 Family Addressing Modes 

Encoding Mode 

REGISTER 

00000 Register 0 
00001 Register 1 
00010 Register 2 
00011 Register 3 
00100 Register 4 
00101 Register 5 
00110 Register 6 
00111 Register 7 

REGISTER RELATIVE 

01000 Register 0 relative 
01001 Register 1 relative 
01010 Register 2 relative 
01011 Register 3 relative 
01100 Register 4 relative 
01101 Register 5 relative 
01110 Register 6 relative 
01111 Register 7 relative 

MEMORY SPACE 

11000 Frame memory 
11001 Stack memory 
11010 Static memory 
11011 Program memory 

MEMORY RELATIVE 

10000 
10001 
10010 

IMMEDIATE 

10100 

ABSOLUTE 

10101 

EXTERNAL 

10110 

TOP OF STACK 

10111 

SCALED INDEX 

11100 
11101 
11110 
11111 

10011 

Frame memory relative 
Stack memory relative 
Static memory relative 

Immediate 

Absolute 

External 

Top of Stack 

Index, bytes 
Index, words 
Index, double words 
Index, quad words 

(Reserved for Future Use) 

Assembler Syntax 

RO or FO 
R1 or F1 
R2 or F2 
R3 or F3 
R4 or F4 
R5 or F5 
R6 or F6 
R7 or F7 

disp(RO) 
disp(R1) 
disp(R2) 
disp(R3) 
disp(R4) 
disp(R5) 
disp(R6) 
disp(R7) 

disp(FP) 
disp(SP) 
disp(S8) 

• +disp 

disp2(disp1 (FP)) 
disp2(disp1 (SP)) 
disp2(disp1 (S8)) 

value 

@disp 

EXT (disp1) + disp2 

TOS 

mode[Rn:8] 
mode[Rn:W] 
mode[Rn:D] 
mode[Rn:Q] 

3·39 

Effective Address 

None: Operand is in the specified register. 

Disp + Register. 

Disp + Register; "SP" is either 
SPO or SP1, as selected in PSR. 

Disp2 + Pointer; Pointer found at 
address Disp1 + Register. "SP" is 
either SPO or SP1, as selected in PSR. 

None: Operand is issued from 
CPU instruction queue. 

Disp. 

Disp2 + Pointer; Pointer is found 
at Link Table Entry number Disp1. 

Top of current stack, using either 
User or Interrupt Stack Pointer, 
as selected in PSR. Automatic 
Push/Pop included. 

Mode + Rn. 
Mode + 2 x Rn. 
Mode + 4 x Rn. 
Mode + 8 x Rn. 
"Mode" and "n" are contained 
within the Index 8yte. 

z 
en 
w 
N 
C 
C) ...... . ...... 
o ....... 
z 
en w 
N 
C 
C) ...... 
• ...... 

U1 



II) ,... . ,... 
co 
o 
N 
C") 
tJ) 
Z 
........ o ,... 
• ,... 

CO o 
N 
C") 
tJ) 
Z 

2.0 Architectural Description (Continued) 

2.2.3 Floating-Point Instruction Set 

The NS32081 FPU instructions occupy formats 9 and 11 of 
the Series 32000 Family instruction set (Figure 2-6). A list 
of all Series 32000 family instruction formats is found in the 
applicable CPU data sheet. 

Certain notations in the following instruction description ta­
bles serve to relate the assembly language form of each 
instruction to its binary format in Figure 2-6. 

Format 9 

23 

I I I I 
gen2 

I I I I I I I I I I I I I 
op' 1,0 0 1 , , , , 0 

OPERATION WORD 10 BYTE 

TLlEE/5234-11 

Format 11 

23 
I I I I I I I 10 I, , 0 , , , , , 0 I 

H , 
I, 

I I I 
'. gin' 

OPERATION WORO ID BYTE 

TL/EE/5234-12 

FIGURE 2-6. Floating-Point Instruction Formats 

The Format column indicates which of the two formats In 
Figure 2-6 represents each instruction. 

The Op column indicates the binary pattern for the field 
called "op" in the applicable format. 

The Instruction column gives the form of each instruction as 
it appears in assembly language. The form consists of an 
instruction mnemonic in upper case, with one or more suffix­
es (i or f) indicating data types, followed by a list of oper­
ands (gen1, gen2). 

An i suffix on an instruction mnemonic indicates a choice of 
integer data types. This choice affects the binary pattern in 
the i field of the corresponding instruction format (Figure 2-6) 
as follows: 

Suffix I 
B 
W 
D 

Data Type 
Byte 
Word 
Double Word 

I Field 
00 
01 
11 

An f suffix on an Instruction mnemonic indicates a choice of 
floating-point data types. This choice affects the setting of 
the f bit of the corresponding instruction format (Figure 2-6) 
as follows: 

Suffix f 
F 
L 

Data Type 
Single Precision 
Double Precision (Long) 

f Bit 

o 

An operand designation (gen1, gen2) indicates a choice of 
addressing mode expressions. This choice affects the bina­
ry pattern in the corresponding gen1 or gen2 field of the 
instruction format (Figure 2-6). Refer to Table 2-1 for the 
options available and their patterns. 

Further details of the exact operations performed by each 
instruction are found in the Series 32000 Instruction Set 
Reference Manual. 

3-40 

Movement and Conversion 

The following instructions move the gen1 operand to the 
gen2 operand, leaving the gen1 operand intact. 

Format Op Instruction Description 
Move without 
conversion 

11 0001 MOVf gen1, gen2 

9 010 MOVLF gen1, gen2 Move, converting 
from double 
precision to 
single precision. 

9 

9 

9 

9 

9 

011 MOVFL gen1,gen2 

000 MOVif gen1,gen2 

Move, converting 
from single 
precision to 
double 
precision. 

Move, converting 
from any integer 
type to any 
floating·point 
type. 

100 ROUNDfi gen1, gen2 Move, converting 
from floating­
point to the 
nearest integer. 

101 TRUNCfi gen1, gen2 Move, converting 
from floating­
point to the 
nearest integer 
closer to zero. 

111 FLOORfi gen1, gen2 Move, converting 
from floating­
point to the 
largest integer 
less than or 
equal to its 
value. 

Note: The MOVLF Instruction f bit must be 1 and the I field must be 10. 

The MOVFL Instruction f bit must be 0 and the I field must be 11. 

Arithmetic Operations 

The following instructions perform floating-point arithmetic 
operations on the gen1 and gen2 operands, leaving the re­
sult in the gen2 operand. 

Format Op Instruction Description 
11 0000 ADDf gen1,gen2 Add gen1 to gen2. 
11 0100 SUBf gen1,gen2 Subtract gen1 

fromgen2. 
11 1100 MULf gen1,gen2 Multiply gen2 by 

gen1. 
11 1000 DIVf gen1,gen2 Divide gen2 by 

gen1. 
11 0101 NEGf gen1,gen2 Move negative of 

gen1 to gen2. 
11 1101 ABSf gen1, gen2 Move absolute 

value of gen1 to 
gen2. 



2.0 Architectural Description (Continued) 

Comparison 

The Compare instruction compares two floating-point val­
ues, sending the result to the CPU PSR Z and N bits for use 
as condition codes. See Figure 3-7. The Z bit is set if the 
gen1 and gen2 operands are equal; it is cleared otherwise. 
The N bit is set if the gen1 operand is greater than the gen2 
operand; it is cleared otherwise. The CPU PSR l bit is un­
conditionally cleared. Positive and negative zero are consid­
ered equal. 

Instruction Format 
11 

Op 
0010 CMPf gen1, gen2 

Description 
Compare gen1 
to gen2. 

Floating-POint Status Register Access 

The following instructions load and store the FSR as a 32-
bit integer. 

Format 
9 
9 

2.3 TRAPS 

Op 
001 
110 

Instruction 
lFSR gen1 
SFSR gen2 

Description 
load FSR 
Store FSR 

Upon detecting an exceptional condition in executing a 
floating-point instruction, the NS320B1 FPU requests a trap 
by setting the Q bit of the status word transferred during the 
slave protocol (Section 3.5). The CPU responds by perform­
ing a trap using a default vector value of 3. See the Series 
32000 Instruction Set Reference Manual and the applicable 
CPU data sheet for trap service details. 

A trapped floating-point instruction returns no result, and 
does not affect the CPU Processor Status Register (PSR). 
The FPU displays the reason for the trap in the Trap Type 
(TT) field of the FSR (Section 2.1.2.2). 

3.0 Functional Description 
3.1 POWER AND GROUNDING 

The NS32081 requires a single 5V power supply, applied on 
pin 24 (Vee>. See DC Electrical Characteristics table. 

Grounding connections are made on two pins. logic Ground 
(GNDl, pin 12) is the common pin for on-chip logic, and 
Buffer Ground (GNDB, pin 13) is the common pin for the 
output drivers. For optimal noise immunity, it is recommend­
ed that GNDl be attached through a single conductor di­
rectly to GNDB, and that all other grounding connections be 
made only to GNDB, as shown below (Figure 3-1). 

12 
GNDl 

NS32081 
FPU 

+5V 

Vee 24 

13 OTHER 
GNOB F ...... I--... -. GROUNO 

CONNECTIONS 

TL/EE/5234-13 

FIGURE 3-1. Recommended Supply Connections 

3-41 

3.2 CLOCKING 

The NS320B1 FPU requires a single-phase TTL clock input 
on its ClK pin (pin 14). When the FPU is connected to a 
Series 32000 CPU, the ClK signal is provided from the 
CTTl pin of the NS32201 Timing Control Unit. 

3.3 RESETTING 

The RST pin serves as a reset for on-chip logic. The FPU 
may be reset at any time by pulling the RST pin low for at 
least 64 clock cycles. Upon detecting a reset, the FPU ter­
minates instruction processing, resets its internal logic, and 
clears the FSR to all zeroes. 

On application of power, RST must be held low for at least 
50 Ils after Vee is stable. This ensures that all on-chip volt­
ages are completely stable before operation. See Figures 3-2 
and 3-3. 

Vee 4.5V 

ClK JL.JL 
I :<!:64ClOCK2 

m 
r-- CYCLES _ 

i+-----:<!:50 I'I-----.j 

TLlEE/5234-14 

FIGURE 3-2. Power-On Reset Requirements 

ClK JLfLfLSLfl 
~ CYCLES I .i 

:<!:64 CLOCK----J 

m---'"'W'I'I'ft'I'I'rmoI I 
TL/EE/5234-15 

FIGURE 3-3. General Reset Timing 

3.4 BUS OPERATION 

Instructions and operands are passed to the NS32081 FPU 
with slave processor bus cycles. Each bus cycle transfers 
either one byte (8 bits) or one word (16 bits) to or from the 
FPU. During all bus cycles, the SPC line is driven by the 
CPU as an active low data strobe, and the FPU monitors 

SPC 

10kn~ 
SPC SPC 

AID 0-15 
... 16-BIT .... 

00-15 
'DATA BUS r 

SERIES STO ..... STO NS32081 
32000 STO 

CPU STI sn ..... STI FPU 
RST -

I 
RST L elK 

RST cm 
NS32201 

TCU 

TL/EE/5234-2 

FIGURE 3-4. System Connection Diagram 

z en 
w 
I\) 
o 
CD ..... 
• ..... 
o ...... z en 
w 
I\) 
o 
CD ..... 
• ..... 

U1 



In 
~ 

• ~ 
co o 
C\I 
C") 
(J) 
z ...... o 
~ • ~ 
CO o 
C\I 
C") 
(J) 
z 

3.0 Functional Description (Continued) 

pins STO and ST1 to keep track of the sequence (protocol) 
established for the instruction being executed. This is nec­
essary in a virtual memory environment, allowing the FPU to 
retry an aborted instruction . 

3.4.1 Bus Cycles 

A bus cycle is initiated by the CPU, which asserts the proper 
status on STO and ST1 and pulses SPC low. STO and ST1 
are sampled by the FPU on the leading (falling) edge of the 
SPC pulse. If the transfer is from the FPU (a slave processor 
read cycle), the FPU asserts data on the data bus for the 
duration of the SPC pulse. If the transfer is to the FPU (a 
slave processor write cycle), the FPU latches data from the 
data bus on the trailing (rising) edge of the SPC pulse. Fig­
ures 3-5 and 3-6 illustrate these sequences. 

The direction of the transfer and the role of the bidirectional 
SPC line are determined by the instruction protocol being 
performed. SPC is always driven by the CPU during slave 
processor bus cycles. Protocol sequences for each instruc­
tion are given in Section 3.5. 

3.4.2 Operand Transfer Sequences 

An operand is transferred in one or more bus cycles. A 1-
byte operand is transferred on the least significant byte of 
the data bus (00- 07). A 2-byte operand is transferred on 
the entire bus. A 4-byte or 8-byte operand is transferred in 
consecutive bus cycles, least significant word first. 

3.5 INSTRUCTION PROTOCOLS 

3.5.1 General Protocol Sequence 

Slave Processor instructions have a three-byte Basic In­
struction field, consisting of an 10 byte followed by an Oper­
ation Word. See Section 2.2.3 for FPU instruction encod­
ings. The 10 Byte has three functions: 

1) It identifies the instruction to the CPU as being a Slave 
Processor instruction. 

2) It specifies which Slave Processor will execute it. 

3) It determines the format of the following Operation Word 
of the instruction. 

Upon receiving a Slave Processor instruction, the CPU initi­
ates the sequence outlined in Table 3-2. While applying 
Status Code 11 (Broadcast 10. Table 3-1), the CPU trans­
fers the 10 Byte on the least significant half of the Data Bus 
(00-07). All Slave Processors input this byte and decode it. 
The Slave Processor selected by the 10 Byte is activated, 
and from this point the CPU is communicating only with it. If 
any other slave protocol was in progress (e.g., an aborted 
Slave instruction), this transfer cancels it. 

The CPU next sends the Operation Word while applying 
Status Code 01 (Transfer Slave Operand, Table 3-1). Upon 
receiving it, the FPU decodes it, and at this point both the 
CPU and the FPU are aware of the number of operands to 
be transferred and their sizes. The Operation Word is 
swapped on the Data Bus; that is, bits 0-7 appear on pins 
08-015, and bits 8-15 appear on pins 00-07. 

STO.ST1 __ .... ___ VAL"'P"'IO __ .J'f/J~. 

-----------1:"TE" -
m " 

00-015 ---------- --{,, ___ V_AL_ID_F_R_OM_FP_U __ 
J
}---

Note 1: FPU samples CPU status here. 

FIGURE 3·5. Slave Processor Read Cycle 

STD. ST1 VALID 

__________ ~I (NOTE 11 

00-015 ------ VALID FROM CPU 

Note 1: FPU samples CPU status here. 

Note 2: FPU samples data bus here. 

FIGURE 3·6. Slave Processor Write Cycle 

3-42 

(NOTE 21 

TL/EE/5234-16 

TLlEE/5234-17 



3.0 Functional Description (Continued) 

Using the Addressing Mode fields within the Operation 
Word, the CPU starts fetching operands and issuing them to 
the FPU. To do so, it references any Addressing Mode ex­
tensions appended to the FPU instruction. Since the CPU is 
solely responsible for memory accesses, these extensions 
are not sent to the Slave Processor. The Status Code ap­
plied is 01 (Transfer Slave Processor Operand, Table 3-1). 

After the CPU has issued the last operand, the FPU starts 
the actual execution of the instruction. Upon completion, it 
will signal the CPU by pulsing SPC low. To allow for this, the 
CPU releases the SPC signal, causing it to float. SPC must 
be held high by an external pull-up resistor. 

Upon receiving the pulse on SPC, the CPU uses SPC to 
read a Status Word from the FPU, applying Status Code 10. 
This word has the format shown in Figure 3-7. If the Q bit 
("Quit", Bit 0) is set, this indicates that an error has been 
detected by the FPU. The CPU will not continue the proto­
col, but will immediately trap through the Slave vector in the 
Interrupt Table. If the instruction being performed is CMPf 
(Section 2.2.3) and the Q bit is not set, the CPU loads Proc­
essor Status Register (PSR) bits N, Z and L from the corre­
sponding bits in the Status Word. The NS32081 FPU always 
sets the L bit to zero. 

15 8 7 0 

10 0 0 0 0 0 0 01 N ZOO 0 L 0 Q1 

NEW PSR BIT VALUE(S~ J 
"QUIT": TERMINATE PROTOCOL, TRAP (FPU). 

TL/EE/5234-18 

FIGURE 3-7. FPU Protocol Status Word Format 

The last step in the protocol is for the CPU to read a result, 
if any, and transfer it to the destination. The Read cycles 
from the FPU are performed by the CPU while applying 
Status Code 01 (Section 4.1.2). 

TABLE 3-1. General Instruction Protocol 

Step Status Action 
1 11 CPU sends ID Byte. 
2 01 CPU sends Operation Word. 
3 01 CPU sends required operands. 
4 XX FPU starts execution. 
5 XX FPU pulses SPC low. 
6 10 CPU reads Status Word. 
7 01 CPU reads result (if any). 

3.5.2 Floating-Point Protocols 

Table 3-2 gives the protocols followed for each floating­
point instruction. The instructions are referenced by their 
mnemonics. For the bit encodings of each instruction, see 
Section 2.2.3. 

The Operand Class columns give the Access Classes for 
each general operand, defining how the addressing modes 
are interpreted by the CPU (see Series 32000 Instruction 
Set Reference Manual). 

The Operand Issued columns show the sizes of the oper­
ands issued to the Floating-Point Unit by the CPU. "D" indi­
cates a 32-bit Double Word. "i" indicates that the instruction 
specifies an integer size for the operand (B = Byte, W = 

Word, D = Double Word). "f" indicates that the instruction 
specifies a floating-point size for the operand (F = 32-bit 
Standard Floating, L = 64-bit Long Floating). 

The Returned Value Type and Destination column gives the 
size of any returned value and where the CPU places it. The 
PSR Bits Affected column indicates which PSR bits, if any, 
are updated from the Slave Processor Status Word (Figure 
3-7). 

Any operand indicated as being of type "f" will not cause a 
transfer if the Register addressing mode is specified, be­
cause the Floating-Point Registers are physically on the 
Floating-Point Unit and are therefore available without CPU 
assistance. 

TABLE 3-2. Floating Point Instruction Protocols 

Mnemonic 
Operand 1 Operand 2 

Class Class 
ADDf read.f rmw.f 
SUBf read.f rmw.f 
MULf read.f rmw.f 
DIVf read.f rmw.f 
MOVf read.f write.f 
ABSf read.f write.f 
NEGf read.f write.f 
CMPf read.f read.f 
FLOORfi read.f write.i 
TRUNCfi read.f write.i 
ROUNDfi read.f write.i 
MOVFL read.F write.L 
MOVLF read.L write.F 
MOVif read.i write.f 
LFSR read.D N/A 
SFSR N/A write.D 

D = Double Word 

i = Integer size (B, W, D) specified in mnemonic. 

f = Floating-Point type (F, L) specified in mnemonic. 

Nt A = Not Applicable to this instruction. 

Operand 1 
Issued 

f 

f 
F 
L 
i 
D 

N/A 

3-43 

Operand 2 
Issued 

f 

N/A 
N/A 
N/A 

f 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 

Returned Value PSR Bits 
Type and Dest. Affected 

fto Op. 2 none 
ftoOp.2 none 
f to Op. 2 none 
fto Op. 2 none 
fto Op. 2 none 
f to Op. 2 none 
f to Op. 2 none 

N/A N,Z,L 
itoOp.2 none 
ito Op. 2 none 
ito Op. 2 none 
Lto Op. 2 none 
FtoOp.2 none 
fto Op. 2 none 

N/A none 
D to Op. 2 none 

z 
en w 
N 
o 
Q:) 
~ . 
~ 

o 
'­z 
en w 
N 
o 
Q:) 
~ 

• ~ 
U1 



U) r---------------------------------------------------------------------------------------, .,.. . .,.. 
co 
Q 
N 
C"') 

en z ...... 
Q .,.. 
• .,.. 

co 
Q 
N 
C"') 

en z 

4.0 Device Specifications 
4.1 PIN DESCRIPTIONS 

The following are brief descriptions of all NS32081 FPU 
pins. The descriptions reference the relevant portions of the 
Functional Description, Section 3. 

Dual-In-llne Package 

o10-~I--VCC 
09- 2 23 ~STO 

08- 3 22 I-- ST1 

07- 4 21 ~SJ5C 

06- 5 201--011 

05- 6 
NS320a1 

19~012 FPU 

04- 7 18 -013 

03- 8 17 -014 

02- 9 16 -015 

01-10 15-'RlT 

00- 11 14 -elK 

GNol- 12 13 -GNoB 

TL/EE/5234-3 

Top View 
FIGURE 4-1. Connection Diagram 

Order Number NS32081D-10 or NS32081D-15 
See NS Package Number D24C 

Order Number NS32081N-10 or NS32081N-15 
See NS package Number N24A 

4.2 ABSOLUTE MAXIMUM RATINGS 

Temperature Under Bias 

Storage Temperature 

All Input or Output Voltages 

with Respect to GND 

Power Dissipation 

O·Cto +70·C 

- 65°C to + 150·C 

-O.5V to + 7.0V 

1.5W 

4.1.1 Supplies 

Power (Vee): +5V positive supply. Section 3.1. 

logic Ground (GNDl): Ground reference for on~chip logic. 
Section 3.1. 

Buffer Ground (GNDB): Ground reference for on-chip driv­
ers connected to output pins. Section 3.1 . 

4.1.2 Input Signals 

Clock (ClK): TTL-level clock signal. 

Reset (RST): Active low. Initiates a Reset, Section 3.3. 

Status (STO, ST1): Input from CPU. STO is the least signifi­
cant bit. Section 3.4 encodlngs are: 

OO-(Reserved) 

01-Transferring Operation Word or Operand 

10-Reading Status Word 

11-Broadcasting Slave ID 

4.1.3 Input/Output Signals 

Slave Processor Control (SPC): Active low. Driven by the 
CPU as the data strobe for bus transfers to and from the 
NS32081 FPU, Section 3.4. Driven by the FPU to signal 
completion of an operation, Section 3.5.1. Must be held high 
with an external pull-up resistor while floating. 

Data Bus (DO-D15): 16-bit bus for data transfer. DO is the 
least significant bit. Section 3.4. 

If Military/Aerospace specified devices are required, 
please contact the National Semiconductor Sales 
Office/Distributors for availability and specifications. 

Note: Absolute maximum ratings indicate limits beyond 
which permanent damage may occur. Continuous operation 
at these limits is not intended,· operation should be limited to 
those conditions specified under Electrical Characteristics. 

4.3 ELECTRICAL CHARACTERISTICS T A = O·C to 70·C, Vee = 5V ± 5%, GND = OV 

Symbol Parameter Conditions Min Typ Max Units 

VIH HIGH Level Input Voltage 2.0 Vee +0.5 V 

VIL LOW Level Input Voltage -0.5 0.8 V 

VOH HIGH Level Output Voltage IOH = - 400 fLA 2.4 V 

VOL LOW Level Output Voltage IOL = 4mA 0.45 V 

II Input Load Current 0:::;: VIN:::;: Vee -10.0 10.0 ,...A 

IL Leakage Current 0.45 :::;: VIN :::;: 2.4V 
Output and I/O Pins in -20.0 20.0 ,...A 
TRI-STATEllnput Mode 

lee Active Supply Current lOUT = 0, TA = 25·C 200 300 mA 

3-44 



4.0 Device Specifications (Continued) 

4.4 SWITCHING CHARACTERISTICS 

4.4.1 Definitions 

All the Timing Specifications given in this section refer to O.8V 
and 2.0V on all the input and output signals as illustrated in 
Figures 4.2 and 4.3, unless specifically stated otherwise. 

[ 2.0Y 

eLK 
O.BY 

[ SI01 
tSIGlI 

[ 1'·~ 
2.4V 

tSIG2h 

81G2 

O.4SV 

TL/EE/5234-26 

FIGURE 4-2. Timing Specification Standard 
(Signal Valid After Clock Edge) 

ABBREVIATIONS 

L.E. - Leading Edge 

T.E. - Trailing Edge 

eLK [ 
SlG1 [ 
SIG2 [ 

R.E. - Rising Edge 

F.E. - Falling Edge 

2.4V 

tSlG2h 

TL/EE/5234-27 

FIGURE 4-3. Timing Specification Standard 
(Signal Valid Before Clock Edge) 

3·45 

z en 
w 
N 
o 
Q:) 
-'" • -'" o ....... 
z en w 
N o 
Q:) 
-'" . 
-'" 
U1 



Lt) ,.... 
I ,.... 

co 
o 
C'\I 
C") 

en 
z ....... 
o ,.... 

I ,.... 
CO o 
C'\I 
C") 

en z 

4.0 Device Specifications (Continued) 

4.4.2 Timing Tables 

4.4.2.1 Output Signal Propagation Delays 

Maximum times assume capacitive loading of 100 pF . 

Reference! 
Name Figure Description 

Conditions 

tov 4-7 Oata Valid After SPC L.E. 

to! 4-7 00-015 Floating After SPC T.E. 

tSPCFw 4·9 SPC Pulse Width AtO.8V 
from FPU (Both Edges) 

tSPCFI 4·9 SPC Output Active After ClK R.E. 

tSPCFh 4·9 SPC Output Inactive After ClK R.E. 

tSPCFn! 4-9 SPCOutput After ClK F.E. 
Nonforcing 

4.4.2.2 Input Signal Requirements 

Name Figure Description 
Reference! 
Conditions 

tPWR 4·5 Power Stable to AfterVcc 
RSTR.E. Reaches 4.5V 

tRSTw 4·6 RST Pulse Width AtO.8V 
(Both Edges) 

tss 4-7 Status (STO-ST1) Before SPC L.E. 
Setup 

tSh 4-7 Status (STO-ST1) After SPC L.E. 
Hold 

tos 4-8 00-015 Setup Time Before SPC T.E. 

tOh 4·8 00-015 Hold Time After SPC T.E. 

tsPCw 4·7 SPC Pulse Width AtO.8V 
from CPU (Both Edges) 

tsPCs 4·7 SPC Input Active Before ClK R.E. 

tSPCh 4-7 SPC Input Inactive After ClK R.E. 

tRSTs 4-10 RST Setup Before ClK F.E. 

tRSTh 4-10 RST R.E. Oelay After ClK R.E. 

4.4.2.3 Clocking Requirements 

Name Figure Description 
Reference! 
Conditions 

tCLKh 4-4 Clock High Time At2.0V 
(Both Edges) 

tCLKI 4-4 Clock low Time AtO.8V 
(Both Edges) 

tCLKp 4-4 Clock Period ClK R.E. to Next 
ClK R.E. 

NS32081-10 NS32081-15 
Units 

Min Max Min Max 

45 30 ns 

50 2 35 ns 

tCLKp - 50 tCLKp + 50 tCLKp - 40 tCLKp + 40 ns 

55 38 ns 

55 38 ns 

45 35 ns 

Min Max Min Max Units 

50 50 JJ-s 

64 64 tCLKp 

50 33 ns 

40 35 ns 

40 30 ns 

50 35 ns 

70 50 ns 

40 35 ns 

0 0 ns 

10 10 ns 

0 0 ns 

Min Max Min Max Units 

42 1000 27 1000 ns 

42 1000 27 1000 ns 

100 2000 66 ns 

3-46 



4.0 Device Specifications (Continued) 

4.4.3 Timing Diagrams 

~--------------------~~ 
1------IClKp-----..; Vce 

ClK IL 
m ____ ....-.j,)-

FIGURE 4-4. Clock Timing 
FIGURE 4-5. Power-On Reset 

ClK~SUL 
m __ { I~I. r-

FIGURE 4-6. Non-Power-On Reset 

CLK 
----I) 

STD.STt 

VALID FROM FfU 

FIGURE 4-7. Read Cycle from FPU 
Note: SPC pulse must be (nominally) 1 clock wide when writing into FPU. 

TL/EE/5234-21 

TL/EE/5234-22 

l"----l! 
STO,STI 

00-015 ~", ____ VA_L_ID_F'R_O_M_C_P_U ___ _ 

TL/EE/5234-20 

TL/EE/5234-23 

FIGURE 4-8. Write Cycle to FPU 
Note: SPC pulse may also be 2 clocks wide, but its edges must meet the tspc~ and tSPCh requirements with respect to ClK. 

3-47 

z en 
eN 
N 
o 
(X) ..... . ..... 
o ....... 
z en 
eN 
N 
o 
(X) ..... . ..... 
U1 



U) ,-------------------------------------------------------------------------------, ,.. 
• ,.. 

co o 
C\I 
C"') 

en z ....... 
o ,.. 
• ,.. 

CO o 
C\I 
C"') 

en z 

4.0 Device Specifications (Continued) 

-I tSPCFl r- -I r tSPCFh 

elK Ir...-.-..1 ' ............. 1 I-IL I- tSPCFnI 

m---------~ I'r--------
I-tSPCFw-l 

FIGURE 4-9. SPC Pulse from FPU 

CLK.-J tRSTI""I __ ... r 
-~~ 
RST~ 

FIGURE 4-10. RST Release Timing 
Note: The riSing edge of fiST must occur while elK Is high, as shown. 

3·48 

Tl/EE/5234-25 

TLlEE/5234-24 



Section 4 
Peripherals 



Section 4 Contents 
NS32202-10 Interrupt Control Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 
NS32203-10 Direct Memory Access Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28 
NS32CG821 microCMOS Programmable 1 M Dynamic RAM Controller/Driver. . . . . . . . . . . . . . 4-57 
HPC16083/HPC26083/HPC36083/HPC46083/HPC16003/HPC26003/HPC36003/ 

HPC46003 High-Performance Microcontrollers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-58 
DP8510 BITBLT Processing Unit..................................................... 4-59 
DP8511 BITBL T Processing Unit (BPU) ............................................... 4-60 

4-2 



~National 
D Semiconductor 
NS32202-10 Interrupt Control Unit 

General Description 
The NS32202 Interrupt Control Unit (ICU) is the interrupt 
controller for the Series 32000<6> microprocessor family. It is 
a support circuit that minimizes the software and real-time 
overhead required to handle multi-level, prioritized inter­
rupts. A single NS32202 manages up to 16 interrupt sources, 
resolves interrupt priorities, and supplies a single-byte interrupt 
vector to the CPU. 

The NS32202 can operate in either of two data bus modes: 
16-bit or 8-bit. In the 16-bit mode, eight hardware and eight 
software interrupt positions are available. In the 8-bit mode, 
16 hardware interrupt positions are available, 8 of which can 
be used as software interrupts. In this mode, up to 16 addi­
tional ICUs may be cascaded to handle a maximum of 256 
interrupts. 

Two 16-bit counters, which may be concatenated under pro­
gram control into a single 32-bit counter, are also available 
for real-time applications. 

Basic System Configuration 

Features 
• 16 maskable interrupt sources, cascadable to 256 
• Programmable 8- or 16-bit data bus mode 
• Edge or level triggering for each hardware interrupt with 

individually selectable polarities 

• 8 software interrupts 
• Fixed or rotating priority modes 
• Two 16-bit, DC to 10 MHz counters, that may be con-

catenated into a single 32-bit counter 
• Optional a-bit 1/0 port available in a-bit data bus mode 
• High-speed XMOSTM technology 

• Single, + 5V supply 
• 40-pin, dual in-line package 

NS32018 
CPU 

GRDUP 

I+- iNf 

MASTER 
NS32202 

ICU 

:::) NON·CASCADED .i. INTERRUPT SOURCES 

I+:-- iNf +-
: +0;-

1+ • CASCADED : 
'---"" N532202 

ICU 

- iNf +-

4-3 

CASCADED 
N532202 

ICU 

+0;-

CASCADED 
INTERRUPT 
SOURCES 

TL/EE/5117-1 

z en w 
N 
N 
Q 
N • ...&. 

o 



o .... 
~ o 
N 
N 
Cf) 
U) 
Z 

Table of Contents 
1.0 PRODUCT INTRODUCTION 

1.1 I/O Buffers 

1.2 Read/Write Logic and Decoders 

1.3 Timing and Control 

1.4 Priority Control 

1.5 Counters 

2.0 FUNCTIONAL DESCRIPTION 

2.1 Reset 

2.2 Initialization 

2.3 Vectored Interrupt Handling 

2.3.1 Non·Cascaded Operation 

2.3.2 Cascade Operation 

2.4 Internal ICU Operating Sequence 

2.5 Interrupt Priority Modes 

2.5.1 Fixed Priority Mode 

2.5.2 Auto·Rotate Mode 

2.5.3 Special Mask Mode 

2.5.4 POlling Mode 

3.0 ARCHITECTURAL DESCRIPTION 

3.1 HVCT· Hardware Vector Register (RO) 

3.2 SVCT • Software Vector Register (R1) 

3.3 EL TG • Edge/Level Triggering Registers (R2, R3) 

3.4 TPL • Triggering Polarity Registers (R4, RS) 

3.5 IPND • Interrupt Pending Registers (R6, R7) 

3.6 ISRV • Interrupt In·Service Registers (R8, R9) 

3.7 IMSK • Interrupt Mask Registers (R10, R11) 

3.8 CSRC· Cascaded Source Registers (R12, R13) 

3.0 ARCHITECTURAL DESCRIPTION (Continued) 

3.9 FPRT· First Priority Registers (R14, R15) 

3.10 MCTL· Mode Control Register (R16) 

3.11 OSCASN • Output Clock Assignment (R17) 

3.12 CIPTR • Counter Interrupt Pointer Register (R18) 

3.13 PDAT· Port Dada Register (R19) 

3.14 IPS· Interrupt/Port Select Register (R20) 

3.15 PDIR • Port Direction Register (R21) 

3.16 CCTL • Counter Control Register (R22) 

3.17 CICTL • Counter Interrupt Control Register (R23) 

3.18 LCSVlHCSV • L·Counter Starting Value/H·Counter 
Starting Value Registers (R24, R25, R26, and R27) 

3.19 LCCV /HCCV • L·Counter Current Value/H·Counter 
Current Value Registers (R28, R29, R30, and R31) 

3.20 Register Initialization 

4.0 DEVICE SPECIFICATIONS 

4.1 NS32202 Pin Descriptions 

4.1.1 Power Supply 

4.1.2 Input Signals 

4.1.3 Output Signals 

4.1.4 Input/Output Signals 

4.2 Absolute Maximum Ratings 

4.3 Electrical Characteristics 

4.4 Switching Characteristics 

4.4.1 Definitions 

4.4.1.1 Timing Tables 

4.4.1.2 Timing Diagrams 

List of Illustrations 
NS322021CU Block Diagram ...............•...........•...................•.................................... 1·1 
Counter Output Signals in Pulsed Form and Square Waveform for Three Different Initial Values ....................•...... 1·2 
Counter Configuration and Basic Operations .................................................................•..... 1·3 
Interrupt Control Unit Connections in 16·Bit Bus Mode .....................•........................................ 2·1 
Interrupt Control Unit Connections in 8·Bit Bus Mode ............................................................... 2·2 
Cascaded Interrupt Control Unit Connections in 8·Bit Bus Mode •.....................•............................... 2·3 
CPU Interrupt Acknowledge Sequence ........................... '" .............................................. 2·4 
Interrupt Dispatch and Cascade Tables ...........•............................................................... 2·5 
CPU Return from Interrupt Sequence ................................................•............................ 2·6 
ICU Interrupt Acknowledge Sequence ......................•......................•.............................. 2·7 
ICU Return from Interrupt Sequence .............................................................................. 2·8 
ICU Internal Registers ...........................•.............................................................. 3·1 
HVCT Register Data Coding ................•.................................................................... 3·2 
Recommended ICU's Initialization Sequence .........................................•............................ 3·3 
NS322021CU Connection Diagram ............................................................................... 4·1 
Timing Specification Standard ................................................................................... 4·2 
READIINTA Cycle ..............................•.......•...................................................... 4·3 
Write Cycle .................................................................................................... 4·4 
Interrupt Timing in Edge Triggering Mode ................... , ............. , ........................................ 4·5 
Interrupt Timing in Level Triggering Mode ......................................................................... 4·6 
Externallnterrupt.Sampling-Clock to be Provided at Pin COUT/SCIN When in Test Mode •............................... 4·7 
Internallnterrupt·Sampling-Clock to be Provided at Pin COUT /SCIN ....................•............................. 4·8 
Relationship Between Clock Input at Pin CLK and Counter Output Signals at Pins COUT /SCIN or GO/RO-G3/R6, 
in Both Pulsed Form and Square Waveform ....................................................................... 4-9 

4-4 



.-------------------------------------------------------------------~z 

1.0 Product Introduction 
The NS32202 ICU functions as an overall manager in an 
interrupt-oriented system environment. Its many features 
and options permit the design of sophisticated interrupt sys­
tems. 

Figure 1-1 shows the internal organization of the NS32202. 
As shown, the NS32202 is divided into five functional 
blocks. These are described in the following paragraphs: 

1.11/0 BUFFERS AND LATCHES 

The I/O Buffers and Latches block is the interface with the 
system data bus. It contains bidirectional buffers for the 
data I/O pins. It also contains registers and logic circuits 
that control the operation of pins GO/IRO, ... ,G7/IR14 
when the ICU is in the a-bit bus mode. 

1.2 READ/WRITE LOGIC AND DECODERS 

The Read/Write Logic and Decoders manage all internal 
and external data transfers for the ICU. These include Data, 
Control, and Status Transfers. This circuit accepts inputs 
from the CPU address and control buses. In turn, it issues 
commands to access the internal registers of the ICU. 

1.3 TIMING AND CONTROL 

The Timing and Control Block contains status elements that 
select the ICU operating mode. It also contains state ma­
chines that generate all the necessary sequencing and con­
trol signals. 

GND Vee STl !NT IRI 

1.4 PRIORITY CONTROL 

The Priority Control Block contains 16 units, one for each 
interrupt position. These units provide thl3 following func­
tions. 

• Sensing the various forms of hardware interrupt sig­
nals e.g. level (high/low) or edge (rising/failing) 

• Resolving priorities and generating an interrupt re-
quest to the CPU 

• Handling cascaded arrangements 
• Enabling software interrupts 
• Providing for an automatic return from interrupt 
• Enabling the assignment of any interrupt position to 

the internal counters 
• Providing for rearrangement of priorities by assigning 

the first priority to any interrupt position 
• Enabling automatic rotation of priorities 

1.5 COUNTERS 

This block contains two 16-bit counters, called the H-coun­
ter and the L-counter. These are down counters that count 
from an initial value to zero. Both counters have a 16-bit 
register (designated HCSV and LCSV) for loading their re­
starting values. They also have registers containing the cur­
rent count values (HCCV and LCCV). Both sets of registers 
are fully described in Section 3. 

IR3 IRS IR7 IR9 IRll IR13 IR15 

I i~---. 
L.: PRIORITY 

1..L 
G7/IR14 +-+ 
G611R12 +-+ 
GSliR1D +-+ 

CONTROL 

G411R8+-+ 
G311R6+-+ 
G2IIR4+-+ 

Gl11R2 +-+ I/O BUFFERS 
GOIIRO +-+ AND I+---'i 

D7 +-+ LATCHES 

TIMING 
AND 

CONTROL CLK 
06+-+ 

1----1-.1 co,:" I: · ~/S~ 
..... -~--' 

DS+-+ 
D4+-+ 
D3+-+ 
02+-+ 
01+0+ 
DO..-. 

READ/WRITE LOGIC 
AND DECODERS 

iii t 
AD Al A2 A3 A4 

FIGURE 1-1. NS322021CU Block Diagram 

4-5 

TL/EE/5117-2 

en 
w 
N 
N 
o 
N • ..... 
<:) 



1.0 Product Introduction (Continued) 

The counters are under program control and can be used to 
generate interrupts. When the count reaches zero, either 
counter can generate an interrupt request to any of the 16 
interrupt positions. The counter then reloads the start value 
from the appropriate registers and resumes counting. Figure 
1-2 shows typical counter output signals available from the 
NS32202. 

The maximum input clock frequency is 2.5 MHz. 

A divide-by-four prescaler is also provided. When the pre­
scaler is used, the input clock frequency can be up to 10 
MHz. 

When intervals longer than provided by a 16-bit counter are 
needed, the L- and H-counters can be concatenated to form 
a 32-bit counter. In this case, both counters are controlled 
by the H-counter control bits. Refer to the discussion of the 
Counter Control Register in Section 3 for additional informa­
tion. Figure 1-3 summarizes counter read/write operations. 

INPUT CLOCK 

COUNTER 
CONTENTS 

2.0 Functional Description 
2.1 RESET 

The ICU is reset when a logic low signal is present on the 
RST pin. At reset, most internal ICU registers are affected, 
and the ICU becomes inactive. 

2.2 INITIALIZATION 

After reset, the CPU must initialize the NS32202 to establish 
its configuration. Proper initialization requires knowledge of 
the ICU register's formats. Therefore, a flowchart of a rec­
ommended initialization sequence is shown in (Figure 3-3) 
after the discussion of the ICU registers. 

The operation sequence shown in Figure 3-3 ensures that 
all counter output pins remain inactive until the counters are 
completely initialized. 

2.3 VECTORED INTERRUPT HANDLING 

For details on the operation of the vectored interrupt mode 
for a particular Series 32000 CPU, refer to the data sheet for 

(INIT. VALUE=2)· ___________ ....., r---------.... 
OUTPUT IN U If 

PULSED FORM 

OUTPUT IN 
SQUARE WAVEFORM 

COUNTER 
CONTENTS 

(INIT. VALUE = 1) ---------. po-----..... r------..,lf 
OUTPUT IN U U 

PULSED FORM 

OUTPUT IN 
SQUARE WAVEFORM 

COUNTER 
CONTENTS 

(INIT. VALUE=O) ____ --, 

OUTPUT IN 
PULSED FORM 

OUTPUT IN 
SQUARE WAVEFORM 

L 

TL/EE/5117-4 

FIGURE 1-2. Counter Output Signals In Pulsed Form and Square Waveform for Three Different Initial Values 

4-6 



2.0 Functional Description (Continued) 

that CPU. In this discussion, it is assumed that the NS32202 
is working with a CPU in the vectored interrupt mode. Sever­
al ICU applications are discussed, including non-cascaded 
and cascaded operation. Figures 2-1, 2-2, and 2-3 show 
typical configurations of the ICU used with the NS32016 
CPU. 

A peripheral device issues an interrupt request by sending 
the proper signal to one of the NS32202 interrupt inputs. If 
the interrupt input is not masked, the ICU activates its Inter-

I STARTING VALUE 
LCSV/HCSV 

~, 
COUNTER 

FREEZE COUNTER READINGS I 
,. 

I CURRENT VALUE 
LCCV/HCCV 

BASIC OPERATIONS: 

WRITING TO LCSV/HCSV 

READING LCSV IHCSV 

WRITING TO LCCV IHCCV 

rupt Output (INT) pin and generates an interrupt vector byte. 
The interrupt vector byte identifies the interrupt source in its 
four least significant bits. When the CPU detects a low level 
on its Interrupt Input pin, it performs one or two interrupt 
acknowledge cycles depending on whether the interrupt re­
quest is from the master ICU or a cascaded ICU. Figure 2-4 
shows a flowchart of a typical CPU Interrupt Acknowledge 
sequence. 

.....,II: ..... ;a... 

o :~ r 

Dl 
co 

CI> 

~ 

0: < 
!;;: 
Q .... 
< 

~ 
2: 

0 1 
.. C I r 

""II ...... :,.. 

TL/EE/5117-5 

(only possible when counters are halted) 

READING LCCV/HCCV 

~ ~ (lOB) 

~ ~ (lOB) 

@ ~ (lOB) 

@J ~ (lOB) 

@J ~ (lOB) 

(only possible when counter 
readings are frozen) 

COUNTER COUNTS AND READINGS ARE 
NOT FROZEN 

COUNTER RELOADS STARTING VALUE 

(occurs on the clock cycle following 
the one in which it reaches zero) 

FIGURE 1-3. Counter Configuration and Basic Operations 

4-7 

z en 
w 
I\) 
I\) 
o 
I\) 

I ..... 
o 



o .... S 2.0 Functional Description (Continued) 
N 
N 
C") 
U) 
Z 

A16-A23 lO-A23 
iiil 

I LATCH I lO-A4 
M-A4 r-+l HS32018 I L r HBE IR15 

T CPU 

ADS I ACDRESS r--+ 
DECODER Ci IRU 

STl In IRll 
iHT iNi 

HS32202 IR9 
Diiiii ICU 

BUFFER 
DO-D1S IR7 

DO-D71 ADO-AC1S 
r GOIIRD-07/IR14 

PHil PHIZ IRS 

J f 
PHil PHIZ DDIN iffil IR3 

ADS iffi HS32201 ---,1 
Teu WKI WK IRl 

DO-D15 

FIGURE 2-1. Interrupt Control Unit Connections In 16-Blt Bus Mode 

A16-A23 
r lD-A23 

LATCH I Al-AS 
AO-A4 G7/IR14 r-+l HS32018 I OND~ HBE G6/IR1Z 

t .~ 

PHil 

t 
PHil 

CPU 

ADS I MORESS r--+ 
DECODER Ci 

sn sn 
iHT iNi 

ODIN 
BUFFER 

DO-07 
ADO-AC15 '" DO-D7 

PHIZ 

t ~ 

PHIZ ADS DDIN iffil 
HS32201 -.L 

iii) 

Teu WKI Wi 

DO-D15 

NOTE: In the a-Bit Bus Mode the Master ICU Registers appear at even 
addresses (AO = 0) since the ICU communicates with the least sig­
nificant byte of the CPU data bus. 

GSIIR10 
G4/IRI 
G3/IRS 
GZ/IR4 

Gl/IRZ 
HS32202 GO/IRO 

leu 
IR15 
IR13 
IRll 
1R9 
IR7 

IR5 
IR3 
IRl 

FIGURE 2-2. Interrupt Control Unit Connections In 8-Bit Bus Mode 

4-8 

~ 

+-

+-

+-

+-

+-

+--

+--

TL/EE/5117-6 

+-+ ..... ..... ..... ..... ..... 
+-+ ..... 
+-
+--
+-
+--
+-
+--
+-
+-

TL/EE/5117-7 



2.0 Functional Description (Continued) 

A1-AS-'o. 
AO-M 07111114 

~ . 
GI I 11112 

GND~ HIE 05/11110 ~ 
GC/IU ~ G3/1R1 
GZ/III4 ~ 

Ci CASCADED GlIlRZ f+-+ 
IT1 NS32202 GO/IIO ~ ICU 1115 

OO-D7 1.13 f4-
1111 f+-
IRtf+-

ID 1171+-
M IRSf4-

1R3f4-

roo .1f4-

A11-A23 AD-A23 

I A1-AS 

~ 
I 

~ LATCH AO-M 07/1114 
NS320HI I P' 

Gl/II12 ~ CPU 1 , GND ...... HIE G5/1110 ~ 
ADS I =: I GC/IU ~ 

cs 63/1R1 ~ GZ/IU 
IT1 In MASTER 01/1112 ~ 
iii iii NS32202 001Il10 :::-ICU 11115 

iiii J 
BUFFO I 11113 := I OO-D7 

ADO-AD15 OO-D7 11111 
PH" PHI2 I I' 1111 +-
f f 1117 +-

-. IRS +-
'"" PHI2 ADS DOlI ~, iii IR3 ::: NS32201 Wi 1111 TCU WI, 

,. 
OO-D15 

FIGURE 2-3. Cascaded Interrupt Control Unit Connections In 8·Blt Bus Mode 

4-9 

TL/EE/5117-B 

z en 
w 
N 
N o 
N . .... 
o 



o ..... S 2.0 Functional Description (Continued) 
N 
N 
CW) 
en z 

• Condo A is true if current Instruction is terminated 
or an Interruptible point in a string Instruction is 
reached. 

FIGURE 2-4. CPU Interrupt Acknowledge Sequence 

4·10 

TL/EE/5117 -9 



2.0 Functional Description (Continued) 

In general, vectored interrupts are serviced by interrupt rou­
tines stored in system memory. The Dispatch Table stores 
up to 256 external procedure descriptors for the various 
service procedures. The CPU INTBASE register points to 
the top of the Dispatch Table. Figure 2-5 shows the layout 
of the Dispatch Table. This figure also shows the layout of 
the Cascade Table, which is discussed with ICU cascaded 
operation. 

2_3.1 Non-Cascaded Operation. Whenever an interrupt re­
quest from a peripheral device is issued directly to the mas­
ter ICU, a non-cascaded interrupt request to the CPU re­
sults. In a system using a single NS32202, up to 16 interrupt 
requests can be prioritized. Upon receipt of an interrupt re­
quest on the INT pin, the CPU performs a Master Interrupt­
Acknowledge bus cycle, reading a vector byte from address 
FFFE0016. This vector is then used as an index into the 
dispatch table in order to find the External Procedure De­
scriptor for the proper interrupt service procedure. The serv­
ice procedure eventually returns via the Return-fram-Inter­
rupt (RET) instruction, which performs a Return-from-Inter­
rupt bus cycle, informing the ICU that it may re-prioritize any 
interrupt requests still pending. Figure 2-6 shows a typical 
CPU RETI sequence. In a system with only one ICU, the 
vectors provided must be in the range of 0 through 127; this 
can be ensured by writing OXXXXXXX into the SVCT regis­
ter. By providing a negative vector value, the master ICU 
flags the interrupt source as a cascaded ICU (see below). 

MEMORY 

CASCADE TABLE 

2.3.2 Cascaded Operation. In cascaded operation, one or 
more of the interrupt inputs of the master ICU are connect­
ed to the Interrupt Output pin of one or more cascaded 
ICUs. Up to 16 cascaded ICUs may be used, giving a sys­
tem total of 256 interrupts. 
Note: The number of cascaded ICUs is practically limited to 15 because the 

Dispatch Table for the NS32016 CPU is constructed with entries 1 
through 15 either used for NMI and Trap descriptors, or reserved for 
future use. Interrupt position 0 of the master ICU should not be cas­
caded, so It can be vectored through Dispatch Table entry 0, reserved 
for non-vectored interrupts. In this case, the non-vectored interrupt 
entry (entry 0) is also available for vectored interrupt operation, since 
the CPU is operating in the vectored interrupt mode. 

The address of the master ICU should be FFFE0016. (*) 
Cascaded ICUs can be located at any system address. A list 
of cascaded ICU addresses is maintained in the Cascade 
Table as a series of sixteen 32-bit entries. 
(·)Note: The CPU status corresponding to both, master interrupt acknowl­

edge and return from interrupt bus cycles, as well as address bit 
AS, could be used to generate the chip select (CS) signal for ac­
cessing the master ICU during one of the above cycles. In this case 
the master ICU can reside at any system address. The only limita­
tion is that the least significant 5 or 6 address bits (6 in the S-bit bus 
mode) must be zero. The address bit AS must be decoded to pre­
vent an NMI bus cycle from reading the hardware vector register of 
the ICU. This could happen, since the NS32016 CPU performs a 
dummy read cycle from address FFFF0016, with the same status 
as a master INTA cycle, when a non-maskable-interrupt is acknowl­
edged. 

THESE ADDRESSES ARE 
USED BY THE CPU DURING 
THE SECOND CYCLE OF 
AN INTAOR RETI 
SEDUENCE TO GET THE 
INTERRU~ VECTOR FROM 
A CASCADED ICU. 

~~~~------~----N-VI-O-ES-C-RI-~-OR----+--

INTERRU~
DISPATCH TABLE

NMIANOTRAP
OESCRI~ORS *

RESERVED*

INT. DESCRI~OR 16

INT. DESCRI~OR N

I
(INTBASE+4· VECTOR)

1----------------
~------------~

INT. DESCRI~OR 255

MASTER ICU'S
HVCT REGISTER

- CPU READS THIS LOCATION DURING
ARST CYCLE OF INTA OR RETI
SEQUENCE TO GET EITHER
THE INTERRU~ VECTOR OR
A CASCADE TABLE INDEX FROM
THE MASTER ICU. TL/EE/5117-10

• Table entries 1 to 15 should not be used by the ICU since they contain NMI and Trap Descriptors
or are reserved for future use. (For more details refer to NS32016 data sheet.)

FIGURE 2-5. Interrupt Dispatch and Cascade Tables

4-11

o r---~ • C\I o
C\I
C\I
C")
t/)
z

2.0 Functional Description (Continued)

oro

EXECUTE CASCADED
ICU CYCLE AND READ

VECTOR FROM
CASCADED ICU

TL/EE/5117-11

FIGURE 2-6. CPU Return from Interrupt Sequence

The master ICU maintains a list (in the CSRC register pair)
of its interrupt positions that are cascaded. It also provides a
4-bit (hidden) counter (in-service counter) for each interrupt
position to keep track of the number of interrupts being
serviced in the cascade ICUs. When a cascaded interrupt
input is active, the master ICU activates its interrupt output
and the CPU responds with a Master Interrupt Acknowledge
Cycle. However, instead of generating a positive interrupt
vector, the master ICU generates a negative Cascade Table
index.

The CPU interprets the negative number returned from the
master ICU as an index into the Cascade Table. The Cas­
cade Table is located in a negative direction from the Dis­
patch Table, and it contains the virtual addresses of the
hardware vector registers for any cascaded NS32202s in
the system. Thus, the Cascade Table index supplied by the
master ICU identifies the cascaded ICU that requested the
interrupt.

Once the cascaded ICU is identified, the CPU performs a
Cascaded Interrupt Acknowledge cycle. During this cycle,
the CPU reads the final vector value directly from the cas­
caded ICU, and uses it to access the Dispatch Table. Each

4-12

cascaded ICU, of course, has its own set of 16 unique inter­
rupt vectors, one vector for each of its 16 interrupt positions.

The CPU interprets the vector value read during a Cascad­
ed Interrupt Acknowledge cycle as an unsigned number.
Thus, this vector can be in the range 0 through 255.

When a cascaded interrupt service routine completes its
task, it must return control to the interrupted program with
the same RETI instruction used in non-cascaded interrupt
service routines. However, when the CPU performs a Mas­
ter Return From Interrupt cycle, the CPU accesses the mas­
ter ICU and reads the negative Cascade Table index identi­
fying the cascaded ICU that originally received the interrupt
request. Using the cascaded ICU address, the CPU now
performs a Cascaded Return From Interrupt cycle, informing
the cascaded ICU that the service routine is over. The byte
provided by the cascaded ICU during this cycle is ignored.

2_4 INTERNAL ICU OPERATING SEQUENCE

The NS32202 ICU accepts two interrupt types, software and
hardware.

Software interrupts are initiated when the CPU sets the
proper bit in the Interrupt Pending (IPND) registers (R6, R7),
located in the ICU. Bits are set and reset by writing the
proper byte to either R6 or R7. Software interrupts can be
masked, by setting the proper bit in the mask registers (R10,
R11).

Hardware interrupts can be either internal or external to the
ICU. InternallCU hardware interrupts are initiated by the on­
chip counter outputs. External hardware interrupts are initia­
ted by devices external to the ICU, that are connected to
any of the ICU interrupt input pins.

Hardware interrupts can be masked by setting the proper bit
in the mask registers (R10, R11). If the Freeze bit (FRZ),
located in the Mode Control Register (MCTL), is set, all in­
coming hardware interrupts are inhibited from setting their
corresponding bits in the IPND registers. This prevents the
ICU from recognizing any hardware interrupts.

Once the ICU is initialized, it is enabled to accept interrupts.
If an active interrupt is not masked, and has a higher priority
than any interrupt currently being serviced, the ICU acti­
vates its Interrupt Output (INT). Figure 2-7 is a flowchart
showing the ICU interrupt acknowledge sequence.

The CPU responds to the active INT line by performing an
Interrupt Acknowledge bus cycle. During this cycle, the ICU
clears the IPND bit corresponding to the active interrupt po­
sition and sets the corresponding bit in the Interrupt In-Serv­
ice Registers (lSRV). The 4-bit in-service counter in the
master ICU is also incremented by one if the fixed priority
mode is selected and the interrupt is from a cascaded ICU.
The ISRV bit remains set until the CPU performs a RETI bus
cycle and the 4-bit in-service counter is decremented to
zero. Figure 2-8 is a flowchart showing ICU operation dur­
ing a RETI bus cycle.

When the ISRV bit is set, the INT output is disabled. This
output remains inactive until a higher priority interrupt posi­
tion becomes active, or the ISRV bit is cleared.

An exception to the above occurs in the master ICU when
the fixed priority mode is selected, and the interrupt input is
connected to the INT output of a cascaded ICU.ln this case
the ISRV bit does not inhibit an interrupt of the same priority.

This is to allow nesting of interrupts in a cascaded ICU.

2.0 Functional Description (Continued)

• Condo B is true if anyone of the following condi­
tions is satisfied.

1) No interrupt is being serviced

2) There Is a pending unmasked Interrupt with
priority higher than that of the Interrupt being
serviced.

3) There is a pending unmasked interrupt from a

z en
w
PI.)
PI.)
Q
PI.)

•
Q

cascaded ICU with priority higher or same as that I]
of the highest priority interrupt position in the ~
master ICU with the ISRV bit set. --.....;:....--

TLlEE/5117-12

FIGURE 2-7.ICU Interrupt Acknowledge Sequence

4-13

o
'I"'"

• N o
N
N
C")

UJ
Z

2.0 Functional Description (Continued)

~------~~------------~

RESET
INTERRUPT ISRV BIT
AND ASSIGN FIRST
PRIORITY TO NEXT

INTERRUPT POSITION

YES

RESET
INTERRUPT

ISRV BIT

FIGURE 2-8. leu Return from Interrupt Sequence

4·14

TL/EE/5117-13

2.0 Functional Description (Continued)

2.5 INTERRUPT PRIORITY MODES

The NS32202 ICU can operate in one of four interrupt priori­
ty modes: Fixed Priority; Auto-Rotate; Special Mask; and
Polling. Each mode is described below.

2.5.1 Fixed Priority Mode

In the Fixed Priority Mode (also called Fully Nested Mode),
each interrupt position is ranked in priority from 0 to 15, with
o being the highest priority. In this mode, the processing of
lower priority interrupts is nested with higher priority inter­
rupts. Thus, while an interrupt is being serviced, any other
interrupts of the same or lower priority are inhibited. The ICU
does, however, recognize higher priority interrupt requests.

When the interrupt service routine executes its RETI instruc­
tion, the corresponding ISRV bit is cleared. This allows any
lower priority interrupt request to be serviced by the CPU.

At reset, the default priority assignment gives interrupt IRO
priority 0 (highest priority), interrupt IR1 priority 1, and so
forth. Interrupt IR15 is, of course, assigned priority 15, the
lowest priority. The default priority assignment can be al­
tered by writing an appropriate value into register FPRT (L)
as explained in Section 3.9.
Note: When the ICU generates an interrupt request to the CPU for a higher

priority interrupt while a lower priority interrupt is still being serviced by
the CPU, the CPU responds to the interrupt request only if its internal
interrupt enable flag is set. Normally, this flag is reset at the beginning
of an interrupt acknowledge cycle and set during the RETI cycle. If the
CPU is to respond to higher priority interrupts during any interrupt
service routine, the service routine must set the internal CPU interrupt
enable flag, as soon during the service routine as desired.

2.5.2 Auto-Rotate Mode

The Auto Rotate Mode is selected when the NT AR bit is set
to 0, and is automatically entered after Reset. In this mode
an interrupt source position is automatically assigned lowest
priority after a request at that position has been serviced,
Highest priority then passes to the next lower priority posi­
tion. For example, when servicing of the interrupt request at
position 3 is completed (ISRV bit 3 is cleared), interrupt po­
sition 3 is assigned lowest priority and position 4 assumes
highest priority. The nesting of interrupts is inhibited, since
the interrupt being serviced always has the highest priority.

This mode is used when the interrupting devices have to be
assigned equal priority. A device requesting an interrupt, will
have to wait, in the worst case, until each of the 15 other
devices has been serviced at most once.

2.5.3 Special Mask Mode

The Special Mask Mode is used when it is necessary to
dynamically alter the ICU priority structure while an interrupt
is being serviced. For example, it may be desired in a partic­
ular interrupt service routine to enable lower priority inter­
rupts during a part of the routine. To do so, the ICU must be
programmed in fixed priority mode and the interrupt service
routine must control its own in-service bit in the ISRV regis­
ters,

4-15

The bits of the ISRV registers are changed with either the
Set Bit Interlocked or Clear Bit Interlocked instructions (SBI­
TIW or CBITIW). The in-service bit is cleared to enable low­
er priority interrupts and set to disable them.
Note: For proper operation of the ICU, an interrupt service routine must set

its ISRV bit before executing the RETI instruction. This prevents the
RETI cycle from clearing the wrong ISRV bit.

2.5.4 Polling Mode

The Polling Mode gives complete control of interrupt priority
to the system software. Either some or all of the interrupt
positions can be assigned to the polling mode. To assign all
interrupt positions to the polling mode, the CPU interrupt
enable flag is reset. To assign only some of the interrupt
positions to the polling mode, the desired interrupt positions
are masked in the Interrupt Mask registers (lMSK). In either
case, the polling operation consists of reading the Interrupt
Pending (IPND) registers.

If necessary, the IPND read can be synchronized by setting
the Freeze (FRZ) bit in the Mode Control register (MCTL).
This prevents any change in the IPND registers during the
read. The FRZ bit must be reset after the polling operation
so the IPND contents can be updated. If an edge-triggered
interrupt occurs while the IPND registers are frozen, the in­
terrupt request is latched, and transferred to the IPND regis­
ters as soon as FRZ is reset.

The polling mode is useful when a single routine is used to
service several interrupt levels.

3.0 Architectural Description
The NS32202 has thirty-two a-bit registers that can be ac­
cessed either individually or in pairs. In 16-bit data bus
mode, register pairs can be accessed with the CPU word or
double-word reference instructions. Figure 3-1 shows the
ICU internal registers. This figure summarizes the name,
function, and offset address for each register.

Because some registers hold similar data, they are grouped
into functional pairs and assigned a single name. However,
if a Single register in a pair is referenced, either an L or an H
is appended to the register name. The letters are placed in
parentheses and stand for the low order a bits (L) and the
high order a bits (H). For example, register R6, part of the
Interrupt Pending (IPND) register pair, is referred to individu­
ally as IPND(L).

The following paragraphs give detailed descriptions of the
registers shown in Figure 3-1.

3.1 HVCT - HARDWARE VECTOR REGISTER (RO)

The HVCT register is a single register that contains the in­
terrupt vector byte supplied to the CPU during an Interrupt
Acknowledge (INTA) or Return From Interrupt (RETI) cycle.
The HVCT bit map is shown below:

7 6 5 4 320

B B B B v v v v

z
en
w
I'\)
I'\)
o
I'\)

I
.......
o

C) 3.0 Architectural Description (Continued) N
C)
N
N
C")
r.n
z

REG. NUMBER AND REG. REG. FUNCTION
ADDRESS I HEX. NAME

RO (0016) HVCT- HARDWARE VECTOR

R1 (0116) SVCT- SOFTWARE VECTOR

R3 (0316) R2 (0216) ELTG- EDGE/LEVEL TRIGGERING

R5 (0516) R4 (0416) TPL- TRIGGERING POLARITY

R7 (0716) R6 (0616) IPND- INTERRUPTS PENDING

R9 (0916) R8 (0816) ISRV- INTERRUPTS IN-SERVICE

R11 (0816) R10 (OA16) IMSK- INTERRUPT MASK

R13 (OD16) R12 (OC16) CSRC- CASCADED SOURCE

R15 (OF16) R14 (OE16) FPRT- FIRST PRIORITY

R16 (1016) MCTL- MODE CONTROL

R17(1116) OCASN- OUTPUT CLOCK ASSIGNMENT

R18 (1216) CIPTR- COUNTER INTERRUPT POINTER

R19 (1316) PDAT- PORT DATA

R20 (1416) IPS- INTERRUPT IPORT SELECT

R21 (1516) PDIR- PORT DIRECTION

R22 (1616) CCTL- COUNTER CONTROL

R23 (1716) CICTL- COUNTER INTERRUPT CONTROL

R25 (1916) R24 (1816) LCSV- L-COUNTER STARTING VALUE

R27 (1816) R26 (1A16) HCSV- H-COUNTER STARTING VALUE

R29 (1016) R28 (1C16) LCCV- L-COUNTER CURRENT VALUE

R31 (1F16) R30 (1E16) HCCV- H-COUNTER CURRENT VALUE

FIGURE 3-1.ICU Internal Registers

4-16

3.0 Architectural Description (Continued)

The BBBB field is the bias which is programmed by writing
BBBB00002 to the SVCT register (R1). The WVV field iden­
tifies one of the 16 interrupt positions. The contents of the
HVCT register provide various information to the CPU, as
shown in Figure 3-2:
Note 1: The ICU always interprets a read of the HVCT register as either an

INTA or RETI cycle. Since these cycles cause internal changes to
the ICU, normal programs must never read the ICU HVCT register.

Note 2: If the HVCT register is read with ST1 = 0 (INTA cycle) and no
unmasked interrupt is pending, the binary value 88881111 is re­
turned and any pending edge-triggered interrupt in pOSition 15 is
cleared.

If the auto-rotate priority mode is selected, the FPRT register is also
cleared, thus preventing any interrupt from being acknowledged. In
this case a re-intialization of the FPRT register is required for the
iCU to acknowledge interrupts again.

If a read of the HVCT register is performed with ST1 = 1 (RETI
cycle), the binary value 88881111 is returned.

If the auto-rotate mode is selected, a priority rotation is aiso per­
formed.

3.2 SVCT - SOFTWARE VECTOR REGISTER (R1)

The SVCT register is a copy of the HVCT register. It allows
the programmer to read the contents of the HVCT register
without initiating a INTA or RETI cycle in the ICU. It also
allows a programmer to change the BBBB field of the HVCT
register. The bit map of the SVCT register is the same as for
the HVCT register.

During a write to SVCT, the four least significant bits are
unaffected while the four most significant bits are written
into both SVCT and HVCT (R1 and RO).

The SVCT register is updated dynamically by the ICU. The
four least significant bits always contain the vector value
that would be returned to the CPU if a INT A or RETI cycle
were executed. Therefore, when reading the SVCT register,
the state of the CPU ST1 pin is used to select either pend­
ing interrupt data or in-service interrupt data. For example, if
the SVCT register is read with ST1 = 0 (as for an INTA
cycle), the VWV field contains the encoded value of the
highest priority pending interrupt. On the other hand, if the
SVCT register is read with ST1 = 1, the VVVV field contains
the encoded value of the highest priority in-service interrupt.
Note: If the CPU ST1 output is connected directly to the ICU ST1 input, the

vector read from SVCT is always the RETI vector. If both the INTA
and RETI vectors are desired, additional logic must be added to drive
the ICU ST1 input. A typical circuit is shown below. In this circuit, the
state of the ICU ST1 input is controlled by both the CPU ST1 output
and the selected address bit.

INT A CYCLE (ST1 = 0)

Highest priority pending interrupt is from:

BBBB
cascaded ICU J any other source

1111 I programmed bias·

VVW
encoded value of the highest
priority pending interrupt

ST1 _

CPU I AS OR AS ")
STI

-

3.3 ELTG - EDGE/LEVEL TRIGGERING
REGISTERS (R2, R3)

leu

TL/EE/5117-14

The EL TG registers determine the input trigger mode for
each of the 16 interrupt inputs. Each input is aSSigned a bit
in this register pair. An interrupt input is level-triggered if its
bit in EL TG is set to 1. The input is edge-triggered if its bit is
cleared. At reset, all bits in EL TG are set to 1.

If odd-numbered interrupt positions must be used for soft­
ware interrupts, the edge triggering mode must be selected
and the corresponding interrupt inputs should be prevented
from changing state.

3.4 TPL - TRIGGERING POLARITY
REGISTERS (R4, R5)

The TPL registers determine the polarity of either the active
level or the active edge for each of the 16 interrupt inputs.
As with the EL TG registers, each input is assigned a bit.
Possible triggering modes for the various combinations of
EL TG and TPL bits are shown below.

ELTG BIT TPL BIT TRIGGERING MODE
o
o
1
1

o
1
o
1

Falling Edge
Rising Edge
Low Level
High Level

Software interrupt positions are not affected by their TPL
bits. At reset, all TPL bits are set to O.
Note 1: If edged-triggered interrupts are to be handled, the TPL register

should be programmed before the EL TG register.

This prevents spurious interrupt requests from being generated dur­
ing the ICU initialization from edge-triggered interrupt positions.

Note 2: Hardware interrupt inputs connected to cascaded ICUs must have
their TPL bits set to O.

3.5 IPND -INTERRUPT PENDING REGISTERS (RS, R7)

The IPND registers track interrupt requests that are pending
but not yet serviced. Each interrupt position is assigned a bit
in IPND. When an interrupt is pending, the corresponding bit
in IPND is set. The IPND data are used by the ICU to gener­
ate interrupts to the CPU. These data are also used in poll­
ing operations.

RETI CYCLE (ST1 = 1)

Highest priority in-service interrupt was from:

cascaded ICU I any other source

1111 I programmed bias·

encoded value of the highest
priority in-service interrupt

z en w
N
N
o
N .
-"" o

·The Programmed bias for the master ICU must range from 0000 to 01112 because the CPU interprets a one In the most significant bit position as a Cascade Table "
Index indicator for a cascaded ICU. y

FIGURE 3-2. HVCT Register Data Coding

4-17

o
• N o

N
N
Cf)
tJ)
Z

3.0 Architectural Description (Continued)

The IPND registers are also used for requesting software
interrupts. This is done by writing specially formatted data
bytes to either IPND(L) or IPND(H). The formats differ for
registers R6 and R7. These formats are shown below:

IPND(L) (R6) - SOOOOPPP

IPND(H) (R7) - S0001 PPP

Where: S = Set (S = 1) or Clear (S = 0)

PPP = is a binary number identifying one of
eight bits

Note: The data read from either R6 or R7 are different from that written to
the register because the ICU returns the register contents, rather than
the formatted byte used to set the register bits.

The ICU automatically clears a set IPND bit when the pend­
ing interrupt request is serviced. All pending interrupts in a
register can be cleared by writing the pattern 'X1 XXXXXX'
to it (X = don't care). To avoid conflicts with asynchronous
hardware interrupt requests, the IPND registers should be
frozen before pending interrupts are cleared. Refer to the
Mode Control Register description for details on freezing
the IPND registers.

At reset, all IPND bits are set to O.
Note: The edge sensing mechanism used for hardware Interrupts In the

NS32202 ICU is a latching device that can be cleared only by ac­
knowledging the interrupt or by changing the trigger mode to level
sensing. Therefore, before clearing pending interrupts in the IPND
registers, any edge-triggered Interrupt Inputs must first be switched to
the level-triggered mode. This clears the edge-triggered interrupts;
the remaining interrupts can then be cleared in the manner described
above. This applies to clearing the interrupts only. Edge-triggered in­
terrupts can be set without changing the trigger mode.

3.6 ISRV - INTERRUPT IN·SERVICE
REGISTERS (RS, R9)

The ISRV registers track interrupt requests that are current­
ly being serviced. Each interrupt position is assigned a bit in
ISRV. When an interrupt request is serviced by the ICU, its
corresponding bit is set in the ISRV registers. Before gener­
ating an interrupt to the CPU, the ICU checks the ISRV reg­
isters to ensure that no higher priority interrupt is currently
being serviced.

Each time the CPU executes an RETI instruction, the ICU
clears the ISRV bit corresponding to the highest priority in­
terrupt in service. The ISRV registers can also be written
into by the CPU. This is done to implement the special mask
priority mode.

At reset, the ISRV registers are set to O.
Note: If the ICU initialization does not follow a hardware reset. the ISRV

register should be cleared during initialization by writing zeroes into it.

4-18

3.7 IMSK -INTERRUPT MASK REGISTERS (R10, R11)

Each NS32202 interrupt position can be individually
masked. A masked interrupt source is not acknowledged by
the ICU. The IMSK registers store a mask bit for each of the
ICU interrupt positions. If an interrupt position's IMSK bit is
set to 1, the position is masked.

The IMSK registers are controlled by the system software.
At reset, all IMSK bits are set to 1, disabling all interrupts.
Note: If an Interrupt must be masked off, the CPU can do so by setting the

corresponding bit In the IMSK register. However, if an Interrupt Is set
pending during the CPU instruction that masks off that Interrupt, the
CPU may still perform an Interrupt acknowledge cycle following that
Instruction since it might have sampled the INT line before the ICU
deasserted It. This could cause the ICU to provide an Invalid vector.
To avoid this problem, the above operation should be performed with
the CPU Interrupt disabled.

3.S CSRC - CASCADED SOURCE
REGISTERS (R12, R13)

The CSRC registers track any cascaded interrupt positions.
Each interrupt position is assigned a bit in the CSRC regis­
ters. If an interrupt position's CSRC bit is set, that position is
connected to the INT output of another NS322021CU, i.e., it
is a cascaded interrupt.

At reset, the CSRC registers are set to O.
Note 1: If any cascaded ICU Is used, the CSRC register should be cleared

during Initialization (if the Initialization does not follow a hardware
reset) by writing zeroes into It. This should be done before setting
the bits corresponding to the cascaded Interrupt positions. This op­
eration ensures that the 4-bit in-service counters (associated with
each Interrupt position to keep track of cascaded Interrupts) always
get cleared when the ICU Is re-initialized.

Note 2: Only the Master ICU should have any CSRC bits set. If CSRC bits
are set In a cascaded ICU, incorrect operation results.

3.9 FPRT - FIRST PRIORITY REGISTERS (R14, R1S)

The FPRT registers track the ICU interrupt position that cur­
rently holds first priority. Only one bit of the FPRT registers
is set at one time. The set bit indicates the interrupt position
with first (highest) priority.

The FPRT registers are automatically updated when the ICU
is in the auto-rotate mode. The first priority interrupt can be
determined by reading the FPRT registers. This operation
returns a 16-bit word with only one bit set. An interrupt posi­
tion can be assigned first priority by writing a formatted data
byte to the FPRT(L) register. The format is shown below:

7 6 5 432 1 0

x x x x F F F F

Where: XXXX = Don't Care

FFFF = A binary number from 0 to 15 indi­
cating the interrupt position as­
signed first priority.

Note: The byte above is written only to the FPRT(L) register. Any data writ-
ten to FPRT(H) is ignored.

At reset the FFFF field is set to 0, thus giving interrupt posi­
tion 0 first priority.

3.10 MCTL - MODE CONTROL REGISTER (R16)

The contents of the MCTL set the operating mode of the
NS32202 ICU. The MCTL bit map is shown below.
76 543210

3.0 Architectural Description (Continued)

CFRZ

COUTO

COUTM

CLKM

FRZ

NTAR

T16N8

Determines whether or not the NS32202 coun­
ter readings are frozen. When frozen, the
counters continue counting but the LCCV and
HCCV registers are not updated. Reading of
the true value of LCCV and HCCV is possible
only while they are frozen.

CFRZ = 0 = > LCCV and HCCV Not Frozen

CFRZ = 1 = > LCCV and HCCV Frozen

Determines whether the COUT ISCIN pin is an
input or an output. COUT/SCIN should be
used as an input only for testing purposes. In
this case an external sampling clock must be
provided otherwise hardware interrupts will not
be recognized.

COUTO = 0 = > COUT ISCIN is Output

COUTO = 1 = > COUT ISCIN is Input

When the COUT/SCIN pin is programmed as
an output (COUTO = 0), this bit determines
whether the output signal is in pulsed form or in
square wave form.

COUTM = 0 = > Square Wave Form

COUTM = 1 = > Pulsed Form

Used only in the 8-bit Bus Mode. This bit con­
trols the clock wave form on any of the pins
GO/IRO, ... ,G3/1R6 programmed as counter
output.

CLKM = 0 = > Square Wave Form

CLKM = 1 = > Pulsed Form

Freeze Bit. In order to allow a synchronous
reading of the interrupt pending registers
(lPND), their status may be frozen, causing the
ICU to ignore incoming requests. This is of spe­
cial importance if a polling method is used.

FRZ = 0 = > IPND Not Frozen

FRZ = 1 = > IPND Frozen

Determines whether the ICU is in the AUTO­
ROTATE or FIXED Priority Mode. In AUTO­
ROTATE mode, the interrupt source at the
highest priority position, after being serviced, is
assigned automatically lowest priority. In this
mode, the interrupt in service always has high­
est priority and nesting of interrupts is therefore
inhibited.

NT AR = 0 = > Auto-Rotate Mode

NT AR = 1 = > Fixed Mode

Controls the data bus mode of operation.

T16N8 = 0 = > 8-Bit Bus Mode

T16N8 = 1 = > 16-Bit Bus Mode

At reset, all MCTL bits except COUTO, are reset to o.
COUTO is set to 1.

3.11 OCASN - OUTPUT CLOCK
ASSIGNMENT REGISTER (R17)

Used only in the 8-bit Bus Mode. The four least significant
bits of this register control the output clock assignments on
pins GO/IRO, ... ,G3/1R6. If any of these bits is set to 1, the
clock generated by either the H-Counter or the H + L-Coun­
ter will be output to the corresponding pin. The four most
significant bits of OCASN are not used. At Reset the four
least significant bits are set to O.

Note: The Interrupt sensing mechanism on pins GOIIRO, ... ,G311R6 Is not
disabled when any of these pins is programmed as clock output.
Thus, to avoid spurious Interrupts, the corresponding bits In register
IPS should also be set to zero.

3.12 CIPTR - COUNTER INTERRUPT
POINTER REGISTER (R18)

The CIPTR register tracks the assignment of counter out­
puts to interrupt positions. A bit map of this register is shown
below.
765432 0

H H H H L L L L

Where: HHHH = A 4-bit binary number identifying the
interrupt position assigned to the H­
Counter (or the H + L-counter if the
counters are concatenated).

LLLL = A 4-bit binary number identifying the
interrupt position assigned to the L­
counter.

Note: Assignment of a counter output to an interrupt position also requires
control bits to be set in the CICTL register. If a counter output Is
assigned to an interrupt position, external hardware Interrupts at that
position are ignored.

At reset, all bits in the CIPTR are set to 1. (This means both
counters are assigned to interrupt position 15.)

3.13 PDAT - PORT DATA REGISTER (R19)

Used only in the 8-bit Bus Mode. This register is used to
input or output data through any of the pins GOI
IRO, ... ,G7/1R14 programmed as 1/0 ports by the IPS reg­
ister. Any pin programmed as an output delivers the data
written into PDAT. The input pins ignore it. Reading PDAT
provides the logical value of all 1/0 pins, INPUT and OUT­
PUT.

3.14 IPS -INTERRUPT IPORT SELECT REGISTER (R20)

Used only in the 8-bit Bus Mode. This register controls the
function of the pins GO/IRO, ... ,G7/1R14. Each of these
pins is individually programmed as an I/O port, if the corre­
sponding bit of IPS is 0; as an interrupt source, if the corre­
sponding bit is 1. The assignment of the H-Counter output
to GOIIRO, ... ,G3/1R6 by means of reg. OCASN overrides
the assignment to these pins as 1/0 ports or interrupt in­
puts.

At Reset, all the IPS bits are set to 1.
Note: Whenever a bit in the IPS register is set to zero, to program the

corresponding pin as an 1/0 port, any pending interrupt on the corre­
sponding interrupt position will be cleared.

3.15 PDIR - PORT DIRECTION REGISTER (R21)

Used only in the 8-bit Bus Mode. This register determines
the direction of any of the pins GO/IRO, ... ,G7/1R14 pro­
grammed as 1/0 ports by the IPS register. A logic 1 indi­
cates an input, while a logic 0 indicates an output.

At Reset, all the PDIR bits are set to 1.

3.16 CCTL - COUNTER CONTROL REGISTER (R22)

The CCTL register controls the operating modes of the
counters. A bit map of CCTL is shown below.
765432 1 0

ICCONlcFNPsicOUT11cOUTOIcRUNHIcRUNLlcDCRHlcDCRLI

CCON

4-19

Determines whether the counters are indepen­
dent or concatenated to form a single 32-bit
counter (H + L-Counter). If a 32-bit counter is
selected, the bits corresponding to the H-

z
tJ)
W
N
N o
N •Ao

o

o ,...
• N o

N
N
C")
(/)
Z

3.0 Architectural Description (Continued)

Counter will control the H + L-Counter, while
the bits corresponding to the L-Counter are not
used.

CFNPS

COUT1&

COUTO

CRUNH

CRUNL

CDCRH

CDCRL

CCON = 0 = > Two 16-bit Counters

CCON = 1 = > One 32-bit Counter

Determines whether the external clock is
prescaled or not.

CFNPS = 0 = > Clock Prescaled (divided by 4)

CFNPS = 1 = > Clock Not Prescaled.

These bits are effective only when the COUT I
SCIN pin is programmed as an OUTPUT
(COUTD bit in reg. MCTL is 0). Their logic lev­
els are decoded to provide different outputs for
COUT ISCIN, as detailed in the table below:

~OUT1 COUTO COUT ISCIN Output Signal

0 0 Internal Sampling Oscillator
0 1 Zero Detect Of L-Counter
1 0 Zero Detect Of H-Counter
1 1 Zero Detect Of H + L-Counter*

·If the H- and L-Counters are not concatenated and
COUT1/COUTO are both 1, the COUT/SCIN pin is active
when either counter reaches zero.

Determines the state of either the H-Counter or
the H + L-Counter, depending upon the status
of CCON.

CRUNH = 0 = > H-Counter or H + L-Counter
Halted

CRUNH = 1 = > H-Counter or H + L-Counter
Running

Effective only when CCON = O. This bit deter­
mines whether the L-Counter is running or halt-
ed.

CRUNL = 0 = > L-Counter Halted

CRUNL = 1 = > L-counter Running

Effective only when CRUNH = 0 (Counter Halt­
ed). This bit is the single cycle decrement sig-
nal for either the H-Counter or the H + L-Coun­
ter.

CDCRH = 0 = > No Effect

CDCRH = 1 = > Decrement H-Counter or
H + L-Counter

Effective only when CRUNL = 0 and CCON =
O. This bit is the single cycle decrement signal
for the L-Counter.

CDCRL = 0 = > No Effect

CDCRL = 1 = > Decrement L-Counter
Note: The bits CDCRL and CDCRH are set when a logic 1 is written into

them, but, they are automatically cleared after the end of the write
operation. This is needed to accomplish the decrement operation.
Therefore, these bits always contain 0 when read.

Reset does not affect the CCTL bits.

3.17 CICTL-COUNTER INTERRUPT
CONTROL REGISTER (R23)

The CICTL register controls the counter interrupts and rec­
ords counter interrupt status. Interrupts can be generated
from either of the 16-bit counters. When the counters are
concatenated, the interrupt control is through the H-Counter

4-20

control bits. In this case the CIEL bit should be set to zero to
avoid spurious interrupts from the L-Counter. A bit map of
the CICTL register is shown following.
76543210

I CERH I CIRH I CIEH I WENH I CERL I CIRL I CIEL I WENL I
CERH

CIRH

CIEH

WENH

CERL

CIRL

CIEL

WENL

H-Counter Error Flag. This bit is set (1) when a
second interrupt request from the H-Counter
(or H + L-Counter) occurs before the first re­
quest is acknowledged.

H-Counter Interrupt Request. It is set (1) when
an interrupt is pending from the H-Counter (or
H + L-Counter). It is automatically reset when
the interrupt is acknowledged.

H-Counter Interrupt Enable. When it is set, the
H-Counter (or H + L-Counter) interrupt is en­
abled.

H-Counter Control Write Enable. When WEHN
is set (1), bits CERH, CIRH, and CIEH can be
written.

L-Counter Error Flag. This bit is set (1) when a
second interrupt request from the L-Counter
occurs before the first request is acknowl­
edged.

L-Counter Interrupt Request. It is set (1) when
an interrupt is pending from the L-Counter. It is
automatically reset when the interrupt is ac­
knowledged.

L-Counter Interrupt Enable. When it is set (1),
the L-Counter interrupt is enabled.

L-Counter Control Write Enable. When WENL
is set (1), bits CERL, CIRL, and CIEL can be
written.

Note: Setting the write enable bits (WENH or WENL) and writing any of the
other CICTL bits are concurrent operations. That is, the ICU will ig­
nore any attempt to alter CICTL bits if the proper write enable bit is
not set in the data byte.

At reset, all CICTL bits are set to O. However, if the counters
are running, the bits CIRL, CERL, CIRH and CERH may be
set again after the reset signal is removed.

3.18 LCSV IHCSV - L-COUNTER STARTING VALUEI
H-COUNTER STARTING VALUE REGISTERS
(R24, R25, R26, AND R27)

The LCSV and HCSV registers store the start values for the
L-Counter and H-Counter, respectively. Each time a counter
reaches zero, the start value is automatically reloaded from
either LCSV or HCSV, one clock cycle after zero count is
reached. Loading LCSV or HCSV from the CPU must be
synchronized to avoid writing the registers while the reload­
ing of the counters is occurring. One method is to halt the
counters while the registers are loaded.

When the 16-bit counters are concatenated, the LCSV and
HCSV registers hold the 32-bit start count, with the least
significant byte in R24 and the most significant byte in R27.

3.19 LCCV IHCCV - L-COUNTER CURRENT VALUEI
H-COUNTER CURRENT VALUE REGISTERS
(R28, R29, R30, AND R31)

The LCCV and HCCV registers hold the current value of the
counters. If the CFRZ bit in the MCTL register is reset (0),
these registers are updated on each clock cycle with the
current value of the counters. LCCV and HCCV can be read
only when the counter readings are frozen (CFRZ bit in the

3.0 Architectural Description (Continued)

HALT COUNTERS
BY CLEARINO

BITS CRUNL ANO
CRUNH IN
REO. CCTL

WRITE COUNTER'S
STARTING VALUES

INTO LCCV AND
HCCV TO AVOID

LONG INITIAL
COUNTS

RESET COUTO BIT
IN YCTL TO

PROGRAM toUT / SCtN
PIN AS AN OUTPUT
AHD ENABLE THE

INTERNAL INTERRUPT
SAMPLING CLOCK

START COUNTERS
BY SmlNO BITS
CRUNL AND/OR

CRUNH IN REO. ccn

FIGURE 3-3. Recommended leU's Initialization Sequence

4-21

TLlEE/5117-15

z en w
N
N
o
N •
o

Q
• N

Q
N
N
CW)
en z

3.0 Architectural
Description (Continued)

MCTl register is 1). They can be written only when the
counters are halted (CRUNl and/or CRUNH bits in the
CCTl register are 0). This last feature allows new initial
count values to be loaded immediately into the counters,
and can be used during initialization to avoid long initial
counts.

When the 1S-bit counters are concatenated, the lCCV and
HCCV registers hold the 32-bit current value, with the least
significant byte in R28 and the most significant byte in R31.

3.20 REGISTER INITIALIZATION

Figure 3-3 shows a recommended initialization procedure
for the ICU that sets up all the ICU registers for proper oper­
ation.

4.0 Device Specifications
4.1 NS32202 PIN DESCRIPTIONS

4.1.1 Power Supply
Power (Vee): + 5V DC Supply
Ground (GND): Power Supply Return

4.1.2 Input Signals
Reset (RST): Active low. This signal initializes the ICU. (The
ICU initializes to the 8-bit bus mode.)
Chip Select (CS): Active low. This signal enables the ICU to
respond to address, data, and control signals from the CPU.
Addresses (AO through A4): Address lines used to select
the ICU internal registers for read/write operations.
High Byte Enable (HBE): Active low. Enables data trans­
fers on the most-significant byte of the Data Bus. If the ICU
is in the 8-bit Bus Mode, this signal is not used and should
be connected to either GND or Vee.
Read (RD): Active low. Enables data to be read from the
ICU's internal registers.
Write (WR): Active low. Enables data to be written into the
ICU's internal registers.

4-22

Status (ST1): Status signal from the CPU. When the Hard­
ware Vector Register is read, this signal differentiates an
INTA cycle from an RETI cycle. If ST1 = 0 the ICU initiates
an INTA cycle. If ST1 = 1 an RETI cycle will result.
Interrupt Requests (IR1, IR3 ••• , IR15): These eight in­
puts are used for hardware interrupts. Each may be individu­
ally triggered in one of four modes: Rising Edge, Falling
Edge, low level, or High level.
Counter Clock (ClK): External clock signal to drive the ICU
internal counters.

4.1.3 Output Signals
Interrupt Output (INT): Active low. This signal indicates
that an interrupt is pending.

4.1.4 Input/Output Signals
Data Bus 0';'7 (DO through 07): Eight low-order data bus
lines used in both 8-bit and 1S-bit bus modes.
General Purpose I/O Lines (GOIIRO, G1I1R2, ••• ,G7/
IR14): These pins are the high-order data bits when the ICU
is in the 1S-bit bus mode. When the ICU is in the 8-bit bus
mode, each of these can be individually assigned one of the
following functions:

• Additional Hardware Interrupt Input (IRO through
IR14)

• General Purpose Data Input
• General Purpose Data Output
• Clock Output from H-Counter (Pins GO/IRO through

G3/IRS only)

It should be noted that, for maximum flexibility in assigning
interrupt priorities, the interrupt positions corresponding to
pins GO/IRO, ... ,G7/IR14 and IR1, ... ,IR15 are inter­
leaved.

Counter or Oscillator Output/Sampling Clock Input
(COUT /SCIN): As an output, this pin provides either a clock
Signal generated by the ICU internal oscillator, or a zero
detect signal from one or both of the ICU counters. As an
input, it is used for an external clock, to override the internal
oscillator used for interrupt sampling. This is done only for
testing purposes.

4.0 Device Specifications (Continued)

4.2 ABSOLUTE MAXIMUM RATINGS

Temperature Under Bias

Storage Temperature

All Input or Output Voltages with

Respect to GND

Power Dissipation

4.3 ELECTRICAL CHARACTERISTICS

O°Cto + 70°C

- 65°C to + 150°C

-0.5Vto +7.0V

1.5 Watt

TA = 0° to 70°C, Vee = +5V ± 5%, GND = OV

Symbol Parameter

Input Low Voltage

Input High Voltage

Output Low Voltage

Output High Voltage

Leakage Current
(Output and I/O Pins in TRI-STATE/lnput mode)

Input Load Current

lee Power Supply Current

Connection Diagram

IRIS- 1

00-2
STl- 3

G7I1R14- 4
G6I1R12- 5

GSIIR10- 6
G411R8- 7

G311R6- 8
G2IIR4- 9

GlI1R2- 10
GOIIRO- 11

07- 12
06- 13
05- 14
04- 15
03- 16
02- 17
01- 18
00- 19

GNO- 20

NS32202
leu

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

Conditions

IOL = 2 rnA

IOH = -400 fJ-A

0.4 ::;: VIN ::;: Vee

Yin = Oto Vee

lout = 0, T = O°C

40"-- Vee
39 ___ IR13

38 "--IRll
37 "--IRS
36 "--IR7
35 ___ IRS

34....-IR3

33 "--IRl
32-ClJ(

31"--Wii
3O"--RD
29 "-- CauT I SetH
281-- HBE
27~m

261--A4
25 I-- A3
24~A2

23~Al

22~AO

211--ts

Min

2.0

2.4

-20

-20

Typ Max Units

0.8 V

V

0.45 V

V

20 fJ-A

20 fJ-A

300 rnA

Top View TL/EE/5117 -3

Order Number NS32202D-6, NS32202D-10
See NS Package Number D40C

FIGURE4-1

4-23

z
en
w
I\)
I\)
o
I\)

I
o

o ,...
N o
C'I
C'I
C")
(/)
Z

4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the timing specifications given in this section refer to
O.BV or 2.0V on the input and output signals as illustrated in
Figure 1, unless specifically stated otherwise.

=x ~:: TEST POINTS TEST POINTS ~:: x:
TL/EE/5117-16

FIGURE 4-2. Timing Specification Standard

4.4 .. 1.1 Timing Tables

Symbol Figure Description

READ CYCLE

tAhRDia 4-3 Address Hold Time

tAsRDa 4-3 Address Setup Time

tCShRDia 4-3 CS Hold Time

tCSsRDa 4-3 CS Setup Time

tDhRDia 4-3 Data Hold Time

tRDaDv 4-3 Data Valid

tROw 4-3 RD Pulse Width

tSsRDa 4-3 ST1 Setup Time

tShRDia 4-3 ST1 Hold Time

WRITE CYCLE

tAhWRia 4-4 Address Hold Time

tAsWRa 4-4 Address Setup Time

tCShWRia 4-4 CSHoldTime

tCSsWRa 4-4 CS Setup Time

tDhWRia 4-4 Data Hold Time

tDsWRia 4-4 Data Setup Time

tWRiaPf 4-4 Port Output Floating

tWRiaPv 4-4 Port Output Valid

tWRw 4-4 WR Pulse Width

Abbreviations:

L.E.-Ieading edge R.E.-rising edge

T.E.-trailing edge F.E.-falling edge

Reference/Conditions NS32202·10 Units
Min Max

After RD T.E. 10 ns

Before RD L.E. 35 ns

After RD T.E. 15 ns

Before RD L.E. 30 ns

After RD T.E. 5 50 ns

After RD L.E. 150 ns

At O.BV (Both Edges) 160 ns

Before RD L.E. 35 ns

After RD T.E. -30 ns

After WR T.E. 10 ns

Before WR L.E. 35 ns

After WR T.E. 15 ns

Before WR L.E. 30 ns

After WR T.E. 10 ns

Before WR T.E. 70 ns

After WR T.E. (To PDIR) 200 ns

After WR T.E. 200 ns

At O.BV (Both Edges) 160 ns

4-24

4.0 Device Specifications (Continued)

4.4.1.1 Timing Tables (Continued)

Symbol Figure Description Reference/Conditions NS32202-10 Units
Min Max

OTHER TIMINGS

tcOUTI 4·B Internal Sampling Clock At O.BV (Both Edges)
50 low Time ns

tCOUTD 4·B Internal Sampling Clock Period 400 ns

tSCINh 4-7 External Sampling Clock High Time At 2.0V (Both Edges) 100 ns

tSCINI 4-7 External Sampling Clock low Time At O.BV (Both Edges) 100 ns

tSCIND 4·7 External Sampling Clock Period BOO ns

tCh 4·9 External Clock High Time At 2.0V (Both Edges)
100 (Without Prescaler) ns

tChp 4·9 External Clock High Time
(With Prescaler)

At 2.0V (Both Edges)
40 ns

tCI 4·9 External Clock low Time At O.BV (Both Edges)
100 ns (Without Prescaler)

tClp 4·9 External Clock low Time
(With Prescaler)

At O.BV (Both Edges)
40 ns

tey 4·9 External Clock Period
400 ns (Without Prescaler)

teyp 4·9 External Clock Period
100 (With Prescaler) ns

tGCOUTI 4·9 Counter Output Transition Delay After ClK F.E. 300 ns

tCOUTw 4·9 Counter Output Pulse At O.BV (Both Edges)
50 ns Width in Pulsed Form

tACKIA 4·5 Interrupt Request Delay After Previous Interrupt
500 ns Acknowledge

tlAld 4·5 INT Output Delay After Interrupt
BOO ns Request Active

tlRw 4·5 Interrupt Request Pulse At O.BV (Both Edges)
50 Width in Edge Trigger ns

tRSTw RST Pulse Width At O.BV (Both Edges) 400 ns

4.4.1.2 Timing Diagrams

ADDRESS) K

ST1~
-IAIRDI- IShRDii -I

C! ~ICSIRDI- -IAIIRDiI-

-ISIRDI- IROw -ICShRDiI-1

m \ .,~
IRDIo. IohRDia-1

DATA BUS - - - - - - - - - - - - - J: ----
DATAVAUD

------------- ----
TLlEE/5117-17

FIGURE 4-3. READIINTA Cycle

4-25

z en
w
N
N
(;)
N •
(;)

o
~ S 4.0 Device Specifications (Continued)
C\I
C\I
C")

~ ADDRESS

DATA BUS

OUTPUT PORT
DATA

-tAIIWltia-

DATAVAUD

... --J

FIGURE 4-4. Write Cycle

o (INTA)

FIGURE 4-5. Interrupt Timing in Edge Triggering Mode

IR \~ ____ ~r:
~'''x""",,-____ r iIif

1iii(INTA) _-_/
FIGURE 4-6. Interrupt Timing in Level Triggering Mode

4-26

TL/EE/5117-16

TLlEE/5117-19

TL/EE/5117-20

4.0 Device Specifications (Continued)

CLK

TL/EE/Sl17 -21

Note: Interrupts are sampled on the rising edge of elK.

FIGURE 4-7. Externallnterrupt-Sampllng-Clock to be Provided at Pin COUT/SCIN When In Test Mode

SCLK

TL/EE/Sl17-22

FIGURE 4-8. Internallnterrupt-Sampllng-Clock Provided at Pin COUT ISCIN

elK

COUNTER OUTPUT
IN SQUARE ----""­
WAVEFORM

TL/EE/Sl17-23

FIGURE 4-9. Relationship Between Clock Input at Pin ClK and Counter Output Signals at Pins COUT ISCIN or
GO/RO, ... ,G3/R6, In Both Pulsed Form and Square Waveform

4-27

z en
w
I\)
I\)
o
I\)

•
o

II

C) r---~ ,...

~ ~National
&l ~ Semiconductor

PRELIMINARY

z
NS32203-10 Direct Memory Access Controller

General Description
The NS32203 Direct Memory Access Controller (DMAC) is
a support chip for the Series 320001fil microprocessor family
designed to relieve the CPU of data transfers between
memory and I/O devices. The device is capable of packing
data received from 8-bit peripherals into 16-bit words to re­
duce system bus loading. It can operate in local and remote
configurations. In the local configuration it is connected to
the multiplexed Series 32000 bus and shares with the CPU,
the bus control signals from the NS32201 Timing Control
Unit (TCU). In the remote configuration, the DMAC, in con­
junction with its own TCU, communicates with I/O devices
and/or memory through a dedicated bus, enabling rapid
transfers between memory and I/O devices. The DMAC
provides 4 16-bit I/O channels which may be configured as
two complementary pairs to support chaining.

Block Diagram

A16-A23

ADO-AD15

HBE

ODIN

ADS u
C3

Cs g
w

ROY u
~

CLK cr::
~

BREQ ;r:

BGRT
en
~
II)

HOLD

HLDA

lORD
IOWR

iNT
RST/HLT

Features
• Direct or Indirect data transfers
• Memory to Memory, I/O to I/O or Memory to I/O

transfers
• Remote or Local configurations
• 8-Bit or 16-Bit transfers
• Transfer rates up to 5 Megabytes per second
• Command Chaining on complementary channels
• Wide range of channel commands
• Search capability
• Interrupt Vector generation
• Simple interface with the Series 32000 Family of

Microprocessors
• High Speed XMOSTM Technology
• Single + 5V Supply
• 48-Pin Dual-In-Line Package

REQO

ACKO

REQ1

ACK1

REQ2

ACK2

REQ3

ACK3

TL/EE/8701-1

4-28

1.0 PRODUCT INTRODUCTION
2.0 FUNCTIONAL DESCRIPTION

2.2 Data Transfer Operations
2.2.1 Indirect Data Transfers
2.2.2 Direct (FLYBY) Data Transfers

2.3 Local Configuration
2.4 Remote Configuration
2.5 Data Source (Destination) Attributes
2.6 Word Assembly/Disassembly
2.7 Auto Transfer
2.8 Search
2.9 Interrupts
2.10 Transfer Modes
2.11 Chaining
2.12 Channel Priorities

3.0 ARCHITECTURAL DESCRIPTION
3.1 Global Registers

3.1.1 CONF - Configuration Register
3.1.2 HVCT - Hardware Vector Register
3.1.3 SVCT - Software Vector Register
3.1.4 STAT - Status Register

3.2 Control Registers
3.2.1 COM - Command Register
3.2.2 SRCH - Search Register

Table of Contents
3.0 ARCHITECTURAL DESCRIPTION (Continued)

3.3 Parameter Registers
3.3.1 SRC - Source Address Register
3.3.2 DST - Destination Address Register
3.3.3 LNGT - Block Length Register

4.0 DEVICE SPECIFICATIONS
4.1 NS32203 Pin Descriptions

4.1.1 Supplies
4.1.2 Input Signals
4.1.3 Output Signals
4.1.4 Input/Output Signals

4.2 Absolute Maximum Ratings
4.3 Electrical Characteristics
4.4 Switching Characteristics

4.4.1 Definitions
4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation
Delays

4.4.2.2 Input Signal Requirements
4.4.2.3 Clocking Requirements

4.4.3 Timing Diagrams
Appendix A: Interfacing Suggestions

List of Illustrations
Power-on Reset Requirements ... 2-1
General Reset Timing .. 2-2
Recommended Reset Connections ... 2-3
Indirect Read Cycle .. 2-4
Indirect Write Cycle (Single Transfer Mode) .. 2-5
Direct Memory-To-I/O Data Transfer (Single Transfer Mode) ... 2-6
Direct I/O-To-Memory Data Transfer (Single Transfer Mode) ... 2-7
NS322031nterconnections .. 2-8
Write to NS32203 Internal Registers .. ; 2-9
Read from NS32203 Internal Registers .. 2-10
NS 32203 Internal Registers ... 3-1
NS32203 Connection Diagram ... 4-1
Timing Specification Standard (Signal Valid After Clock Edge) .. 4-2
Timing Specification Standard (Signal Valid Before Clock Edge)4-3
Write to DMAC Registers .. 4-4
Read From DMAC Registers ... 4-5
Clock Timing ...•.... 4-6
Indirect Write Cycle ... 4-7
Indirect Read Cycle .. 4-8
Direct I/O-To-MemoryTransfer .. 4-9
Direct Memory-To-I/O Transfer ... 4-10
HOLD/RQ[5A Sequence Start ...•... 4-11
HOLD/HOLDA Sequence End .. 4-12
Bus Request/Grant Sequence Start•......•... 4-13
Bus Request/Grant Sequence End .. 4-14
Ready Sampling•.. 4-15

z en w
N
N o
W
o

REOn/ ACKn Sequence (DMAC Initially Not Idle) .. 4-16 II
REOn/ACKn Sequence (DMAC Initially Idle) .. 4-17 III
Halted Cycle ... 4-18
Interrupt On Match/No Match .. 4-20
Interrupt On Halt .. 4-21
Power-on Reset •... 4-22
Non-Power-on Reset .. 4-23
NS322031nterconnections in Remote Configuration .. A-1

4-29

Q ,....
I

('I')
Q
N
N
('I')

en
z

1.0 Product Introduction
The NS32203 Direct Memory Access Controller (DMAC) is
specifically designed to minimize the time required for high
speed data transfers in a Series 32000-based computer
system. It includes a wide variety of options and operating
modes to enhance data throughput and system optimiza­
tion, and to allow dynamic reconfiguration under program
control.

The NS32203 can operate in two basic system configura­
tions: local and remote. In the local configuration, the DMAC
and the CPU share the same bus (address" data and con­
trol) and only one of them can perform data transfers on the
bus at anyone time. In this configuration, the DMAC and the
CPU also share a Timing Control Unit (TCU) and a single set
of address latches. Since this configuration yields a mini­
mum part-count system, it offers a good cost/performance
trade-off in many situations.

The remote configuration is intended to minimize the CPU
bus use. In this configuration, the NS32203 liD devices and
optional buffer memory have their own dedicated bus (re­
mote bus) so that an liD transfer may be performed without
loading the CPU bus (local bus).

Communication between the dedicated bus and the CPU
bus may be initiated at any time by either the CPU or the
NS32203. The DMAC accesses the CPU bus whenever a
data transfer tolfrom memory or any liD device residing on
this bus is to be performed. The CPU, in turn, accesses the
dedicated bus for reading status data or for programming
either the DMAC or its liD devices.

The NS32203 internal organization consists of seven func­
tional blocks as illustrated in the block diagram. Descrip­
tions of these blocks are given below.

DMA Channels. The NS32203 provides four channels.
Each channel accepts a request from a peripheral liD de­
vice and informs it when data transfer cycles are about to

begin. A set of registers is provided for each channel to
control the type of operation for that channel.

Bus Interface Unit. The bus interface unit controls all data
transfers between peripheral liD devices and memory
whenever the DMAC is in control of the bus. This unit also
controls the transfer of data between the CPU and the
DMAC internal registers.

Timing and Control Loglc_ This block generates all the
sequencing and control signals necessary for the operation
of the DMAC.

Priority Resolver. This block resolves contentions among
channels requesting service simultaneously.

2.0 Functional Description
2.1 RESETTING

The RST IHl T line serves both as a reset input for the on­
chip logic and as a DMAC HALT input. Resetting is accom­
plished by pulling RST/HlT low for at least 64 clock cycles.
Upon detecting a Reset, the DMAC terminates any Data
transfer in progress, resets its internal logic and enters an
inactive state. On application of power, RST IHl T must be
held low for at least 50 ,..,S after Vee is stable. This is to
ensure that all on-chip voltages are stable before operation.
Whenever reset is applied, the rising edge must occur while
the clock signal on the ClK pin is high (see Figure 2-1 and
2-2). The NS32201 TCU provides circuitry to meet the reset
requirements. Figure 2-3 shows the recommended connec­
tions. The HALT function is accomplished when RST/HlT
is activated for 1 or 2 clock cycles and then released. It can
be used to stop any data transfer in progress in case of a
bus error. As soon as HALT is acknowledged by the
NS32203, the current transfer operation is terminated. See
Figure 4-18.

V 4.5V,~ _________ ~~·S""' ____ _
CC--./

eLK
--+---~ s-fLfl

~"~O~~~:~l
~-------~50~S------~--~

FIGURE 2-1. Power-On Reset Requirements

4-30

TLlEE/8701-2

2.0 Functional Description (Continued)

CLK~~
1--64 CLOCK CYCLES-.!

RS'i'/HIJ--"'~""'~~"""'~\\ 55 r
TLlEE/8701-3

FIGURE 2-2. General Reset Timing

• '-­
• RESET
• • ._-------- ..

EXTERNAL RESET
(OPTIONAL)

Vee

RESET SWITCH
(OPTIONAL)

NS32201
TCU

HALT
(OPTIONAL)

NS32203
Dt.lAC

SYSTEt.l RESET

TL/EE/8701-4

FIGURE 2-3. Recommended Reset Connections

2.2 DATA TRANSFER OPERATIONS

After the NS32203 has been initialized by software, it is
ready to transfer blocks of data, containing up to 64 kbytes,
between memory and 110 devices, without further interven­
tion required of the CPU. Upon receiving a transfer request
from an 110 device, the DMAC performs the following oper­
ations:

1) Acquires control of the bus

2) Acknowledge the requesting 110 device which is con­
nected to the highest priority channel.

3) Starts executing data transfer cycles according to the val­
ues stored into the control registers of the channel being
serviced.

4) Terminates data transfers and relinquishes control of the
bus as soon as one of the programmed conditions is met.

4-31

Each channel can be programmed for indirect or direct data
transfers. Detailed descriptions of these transfer types are
provided in the following sub-sections.

2.2.1 Indirect Data Transfers

In this mode of operation, each byte or word transfer be­
tween source and destination requires at least two bus cy­
cles. The data is first read into the DMAC and subsequently
it is written into the destination. The bus cycles in this case
are similar to the CPU bus cycles when the MMU is not
used. This mode is slower than the direct mode, but is the
only one that allows some data manipulation like Byte
Search or Word Assembly/Disassembly. Figure 2-4 and 2-5
show the read and write cycle timing diagrams related to
indirect data transfers. If a search operation is specified,
extra clock cycles may be added following each read cycle.

z en w
I\)
I\)
o
W

I
o

2.0 Functional Description (Continued)

CLK[
n n T1 T2 T3 T4 I T1 OR n I

A16-23 [~rm.~~~K:::t=E~~CtlX=!
ADO-15 [

lORD [

m[

ACKii[

mnD[~ ____ ~ ____ ~ __ ~ ____ -+ ____ ~ ____ +-____ ~

HLDA [

NS32201 SIGNALS

RO[

FIGURE 2·4. Indirect Read Cycle

4-32

TL/EE/8701-5

2.0 Functional Description (Continued)

TI TI T1 T2 T3 T4 I T1 OR TI I
_IL n-IL rLfL ru IL

-'hVIIIIII/I 1/111111/ VIIt ADDRESS VALID ~

- -

ClK [

A16-23 [

ADO-15 [

ADS [

ADDR. X DATA OUT X

1mIR[~-
.~~ HBE [

ROY [

IOWR [

ACKn [

WR[

-~

-

VALID

+

1\

\

NSF'SiT

-
U

1\

-X -

I

I

I

r

FIGURE 2·5. Indirect Write Cycle (Single Transfer Mode)
Note: If burst mode is selected. HOLD is released at the end of the transfer operation.

4-33

r-

--
--

-
-

~

TL/EE/8701-6

z en
w
N
N o
W .
...A.

o

o
'P" • C")
o
N
N
C")

UJ
Z

2.0 Functional Description (Continued)

2.2.2 Direct (Flyby) Data Transfers

This mode of operation allows a very high data transfer rate
between source and destination. Each data byte or word to
be transferred requires only a single bus cycle instead of
two separate read and write cycles, which are typical of the
indirect mode. The DMAC accomplishes direct data trans­
fers by activating lORD, during memory write cycles, and
10WR, during memory read cycles.

An 1/0 device, in the direct mode, is usually enabled by the
proper acknowledge signal (ACKn) from the DMAC. No
search or word assemblyldisassembly are possible during

TI

_rL CLK [

A16-23 [

ADO-IS [

ADS [

ODIN [

HBE [

'I/I///////)

.~~

ROY [

lORD [

IOWR [

ACKn [

HOLD [

HLDA [
._r\

TI

rL
~///////i

Tl

rL
VlJ.

.-
ADDR. -

'/\

\

direct data transfers. Figures 2-6 and 2-7 show the timing
diagrams of direct memory-to-I/O and I/O-to-memory trans­
fers respectively.
Note 1: In the direct mode each c.hannel can control only one I/O device

because the I/O device is hardwired to the ACKn output of the
corresponding channel. in the indirect mode, a channel can control
multiple devices as long as each device is selected through its own
address rather than the ACKn output. However, the possiblity of
selecting a single I/O device by the ACKn output is maintained in
the indirect mode as well.

Note 2: Whenever the DMAC is either idle or is performing indirect transfers,
it generates the lORD and 10WR signals as a replica of RD and WR.
This simplifies the logic required to access 1/0 devices wired for
direct data transfers.

T2 T3 T4 I Tl OR TI I

rLfl--n..... rL ~
~ x:::: ADDRESS VALID __ .L l-- ~C
~

:}·W~~ DATA ---
-~-- I-" ~

U
\

X--VALID - -
+

!\ I

I

I

r

RB[
NS32201 SIGNtS

I I
TLlEE/8701-7

FIGURE 2-6. Direct Memory-To-I/O Data Transfer (Single Transfer Mode)

4-34

2.0 Functional Description (Continued)

2.3 LOCAL CONFIGURATION

As previously mentioned, in the local configuration the
DMAC shares with CPU and MMU the multiplexed address I
data bus as well as the control signals from the NS32201
TCU. A typical local configuration is shown in Figure 2-8.
The DMAC, in the local configuration, must gain control of
the bus whenever a data transfer cycle is to be performed,

n

RDY[:.~

lORD [

IOWR[

ACKn [

n T1

even though it is directed to an 110 device and is related to
an indirect data transfer. This causes the system to be quite
sensitive to the volume of data handled by the DMAC. Thus,
the overall system performance decreases as the volume of
data increases. A possible solution to this problem is to use
the remote configuration, described in the following section.
A significant advantage of the local configuration is its sim­
plicity.

HOLD[-r ____ ~----~----~----~----~J

HLM[-t ____ ~----~----~----~--~~--~---J

TL/EE/8701-8

FIGURE 2-7. Direct I/O-To-Memory Data Transfer (Single Transfer Mode)

4-35

z en
w
N
N
C
W .
....A.

C

~

lJ
a>

N141 INT
Ar/SPC r Ar/SPC

rLT FLT
RST/ABT RST/ABT

PFS PFS

NS320t6 U/S U/S NS32082
ADS

..
ADS CPU ~ 14I4U

S1O-3
~

STO-3
ROY ROY

HLDA HLDAI
ODIN ODIN
PHil PHil
PHI2 PHI2 PAY -

HOLD HOLD
RSTI -

HBE r--- HLDAO q ~TA ' A16-23 00-15 L ~{t-{i5 BUFFERS 'I

U~ =
~ ~

A T
ADMmfU <
v~Q 't

~ 1111 "' ~4J " A
<
'I

PHI1~ 'f\-..[}, 11 I!JJn L ~6-2300-1~ ~ PHI2
HLDA HBE

DECODER ADDR 00-15

~ HOLD CS , 16-BIT I/O
NS32201 ADS ADS DEVICE

TCU i& RST ACKO L CS
ODIN ODIN NS32203

ROY D14AC REOO REO
ROY

~ RDWR cm cm ACKI

ViR I--

40"4'[
REOI

RD -- ACK2 r-+
RE02 ~ BREO ACK3
RE03 ~
lORD

~- __ IO~

FIGURE 2-8. NS32203 Interconnections In local Configuration
Note 1: The 16 Bit I/O device is wired for direct transfers.
Note 2: The data buffers should not be enabled during direct data transfers or CPU accesses to the DMAC registers.

HBE

CS 14E140RY
r+ RD

r+ WR
ADDR 00-15

...:: ~~ ~

'- ~ 7 00-151\

::
r- ~ ~

I'

'"' AO-23

n v

ADDR 00-7

8-BIT I/O
DEVICE

r---~CS

REO RD WR

I •

NS32203-10

TL/EE/8701-9

I\)
Q
."
C
::::s
()
ci"
::::s
e!-
O
CD
(I)
() ...
-6"
0"
::::s
g>
a :;­
c:
CD
S:

2.0 Functional Description (Continued)

2.4 REMOTE CONFIGURATION

The remote configuration is intended to minimize CPU Bus
usage. In this configuration, the DMAC, buffer memory and
I/O devices reside on a dedicated bus. Communication be­
tween the dedicated bus and the CPU bus is achieved by
means of TRI-STATE buffers. Whenever the CPU needs to
access the dedicated bus, it issues a bus request to the
NS32203 by activating the BREQ signal. As the dedicated
bus becomes Idle, the DMAC pulls off the bus and acknowl­
edges the CPU request by activating BGRf. This output is
also used as a control signal for the interconnection logic of
the two buses.

The CPU can either be interrupted by BGRf or it can poll
BGRT to determine when the dedicated bus can be ac­
cessed. The DMAC, in turn, before accessing the CPU bus,
has to gain control of it. This is accomplished through the
usual request-acknowledge mechanism performed by
means of the HQ[5 and HLDA signals.
Figure A-1 in Appendix A shows an Interconnection diagram
of a basic remote configuration. Both TCUs are clocked by
the same clock signal. They are synchronized during reset
by the RWEi'JISYNC signal so that their output clocks are in
phase. Figures 2-9 and 2-10 show the timing diagrams for
read and write accesses to the NS32203 internal registers.

NS32201 SIGNALS

TL/EE/8701-10

FIGURE 2-9. Write to NS32203 Internal Registers

NS32201 SIGNALS

TL/EE/8701-11

FIGURE 2-10. Read from NS322031nternai Registers

4·37

z en
w
N
N o
~
o

C) ,---,
• C")

C)
N
N
C")

en z

2.0 Functional Description (Continued)

2.5 DATA SOURCE (DESTINATION) ATTRIBUTES

Two types of data source (destination) are recognized: I/O
device and memory. If the source (destination) is an I/O
device, its address register is not changed after a data
transfer; if it is memory, its address register is either incre­
mented or decremented after any data transfer, according
to the value of the corresponding direction bit. In the remote
configuration, any data source (destination) may reside ei­
ther on the CPU bus or on the dedicated bus. If it resides on
the dedicated bus, the NS32203 does not activate the
HOLD request line when an access to the source (destina­
tion) is performed, unless a direct transfer with a data desti­
nation (source) residing on the CPU bus is required.

Data can be transferred in either 8 bit or 16 bit units. The
DMAC always considers the memory to be 16 bits wide.
Thus, if an 8 bit transfer is specified, address bit AO will
determine the byte of the data-bus where the transfer takes
place. If AO = 0, the transfer occurs on the low order byte.
If AO = 1, it occurs on the high order byte. Different transfer
widths can be specified for source and destination. Howev­
er, some limitations exist in specifying these transfer widths
when certain operations must be performed. These limita­
tions are explained below.

1) If a transfer block has an odd number of bytes or is not
word aligned, an 8 bit width for source and destination
should be selected.

2) 16-bit I/O transfers can not be specified with 8 bit
memory transfers.

3) Memory to memory transfers should have the same
width.

Note 1: If source and destination are both memory, DMAC transfers can
only be performed in indirect mode.

Note 2: If source and destination are both I/O devices and direct mode is
being used, the source device is accessed by lORD and ACKn; the
destination device is accessed by WR (from the NS32201) and CS
(from the address decoder). This allows a one direction data trans·
fer only from one I/O device (source) to another. If data is to be
transferred in both directions in direct mode between two I/O devic·
es, two channels must be used (one for each direction of transfer),
and extra hardware is required to control the read and write Signals
to the two I/O devices.

Note 3: When an a·bit transfer is related to an I/O device, the other half of
the l6·bit data bus is considered as DON'T CARE, and the ABE/
signal may be activated.

2.6 WORD ASSEMBLY IDISASSEMBL Y

This feature is automatically enabled when indirect transfers
are selected, with data transferred between an 8-bit wide
I/O device and a 16-bit I/O device or memory. For every 16-
bit I/O device or memory access, the DMAC accesses the
8-bit I/O device twice, assembling two data bytes into a 16-
bit word or breaking a 16-bit word into two data bytes, de­
pending on the direction of transfer. The word assem­
bly/disassembly feature allows a significant increase in the
transfer speed and minimizes the CPU bus usage when the
transfer occurs between an 8-bit I/O device residing on the
dedicated bus, and a 16-bit I/O device or memory residing
on the CPU bus. Word assembly/disassembly is not possi­
ble during direct data transfers.
Note: Requests from other channels are not acknowledged in the middle of

a word assembly/disassembly. If this is unacceptable, a bit transfers
should be specified for both source and destination.

4-38

2.7 AUTO TRANSFER

The NS32203 initiates a data transfer as a result of a re­
quest from an I/O device. In some cases a data transfer
may be necessary without the corresponding request signal
being asserted. This can happen, for example, when a block
of data is to be moved from one memory region to another.
In such cases, the auto transfer mode can be selected by
setting an appropriate bit in the command register. The
DMAC will initiate a data transfer regardless of the REOn
signal for that channel.
Note: For proper operation, when auto transfer is required, the low order

byte of the command register (containing the auto·transfer enable bit)
should be written into after the other registers controlling the channel
operation have been initialized.

2.8 SEARCH

The NS32203 provides a search capability that can be used
to detect the occurrence of a certain data pattern. The
search is performed by comparing each data byte with the
search register, in conjunction with the mask register. An
appropriate bit in the command register indicates whether
the search continues 'UNTIL' a match occurs, or 'WHILE' a
match exists. The search operation does not necessarily
involve a data transfer. The DMAC allows a block of data to
be searched without requiring any data transfer between
source and destination. When performing a search, the user
can specify whether or not the matched byte will be trans­
ferred. If 'INCLUSIVE SEARCH' is specified (INC = 1), the
matched byte will be transferred, and the channel parame­
ters will be updated accordingly. In this case, if a 16 bit word
has been read from the data source and the search condi­
tion is satisfied by the low order byte, then the high order
byte is transferred as well. If 'EXCLUSIVE SEARCH' is
specified (INC = 0), the transfer will terminate with the last
byte before the search condition was satisfied, and the pa­
rameters will point to the last transferred byte.

Search is not possible during direct transfers.

2.9 INTERRUPTS

The NS32203 provides interrupt circuitry that can be used to
generate an interrupt whenever a data transfer is completed
or a search condition is met. If an NS32202 ICU is used, the
INT signal from the DMAC should be connected to an inter­
rupt input of the ICU. When an interrupt occurs and the
corresponding interrupt acknowledge (INTA) or return from
interrupt (RETI) cycle is executed by the CPU, the NS32203
supplies its own vector as if it were a cascaded ICU. For
such operation the virtual address of the interrupt vector
register should be placed in the ICU cascade table, de­
scribed in the NS32016 and NS32202 data sheets. See
section 3.1.2.

2.10 TRANSFER MODES

When the NS32203 is in the inactive state and a channel
requests service, the DMAC gains control of the bus and
enters the active state. It is in this state that the data trans­
fer takes place in one of the following modes:

SINGLE TRANSFER MODE

In single transfer mode, the NS32203 makes a single byte
or word transfer for each HOLD/HLDA handshake se­
quence.

In this case the request signal from the I/O device is edge
sensitive, that is, a single transfer is performed each time a

2.0 Functional Description (Continued)

falling edge on REOn occurs. To perform multiple transfers,
it is therefore necessary to temporarily deassert REOn after
each transfer is initiated. If auto transfer mode is selected,
the bus is released between two transfers for at least one
clock cycle.

BURST (DEMAND) TRANSFER MODE

In burst transfer mode the DMAC will continue making data
transfers until REOn goes inactive. Thus, the 110 device
requesting service may suspend data transfer by bringing
REOn inactive. Service may be resumed by asserting REOn
again. If the auto transfer mode is selected, the DMAC will
perform a single burst of data transfers until the end-transfer
condition is reached.
Note 1: In either of the transfer modes described above, data transfers can

only occur as long as the byte count is not zero or a search condi­
tion is not met. Whenever any of these conditions occur, the
NS32203 terminates the current operation and releases the bus for
at least one clock cycle.

Note 2: Whenever the DMAC releases ROCD, it waits for HLDA to go inac­
tive for at least one clock cycle before reasserting ROCD again to
continue the transfer operation.

2.11 CHAINING

The NS32203 provides a chaining feature that allows the
four DMAC channels to be regarded as two complementary
pairs. Channels 0 and 1 form the first pair, while channels 2
and 3 form the second pair. Each pair is programmed inde­
pendently by setting the corresponding bit in the configura­
tion register. When two channels are complementary, only
the even channel can perform transfer operations, while the
odd one serves as temporary storage for the new control
values and parameters loaded for the chaining operation. If
an operation is being performed by the even channel of a
pair and an end-condition is reached, the channel is not
returned to the inactive state; rather, a new set of control
values with or without parameters is loaded from the com­
plementary channel and a new operation is started. During
the reload operation the bus is released for at least two
clock cycles. At the end of the second operation the chan­
nel returns to the inactive state, unless a new set of values
has been loaded into the complementary channel by the
CPU.

The chaining feature can be used to transfer blocks of data
tolfrom non-contiguous memory segments. For example,
the CPU can load channel 0 and 1 with control values and
parameters for the first two blocks. After the operation for
the first block is completed by channel 0, the control values
and parameters stored in channel 1 are transferred to chan­
nel 0, during an update cycle, and a second operation is
started. The CPU, being notified by an interrupt, can load
channel 1 registers with control values and parameters for
the third data block.
Note 1: Whenever a reload operation occurs, the register values of the com·

plementary channel are affected. Thus, the CPU must always load a
new set of values into the complementary channel if another chain·
ing operation is required.

Note 2: When the chain option is selected, the CPU must be given the op·
portunity to acquire the bus for enough time between DMAC opera·
tions, in order for the complementary channel to be updated.

2.12 CHANNEL PRIORITIES

The NS32203 has four 110 channels, each of which can be
connected to an liD device. Since no dependency exists
between the different 110 devices, a priority level is as­
signed to each liD channel, and a priority resolver is provid­
ed to resolve multiple requests activated simultaneously.

4-39

The priority resolver checks the priorities on every cycle. If a
channel is being serviced and a higher priority request is
received, the channel operation is suspended and control
passes to the higher priority channel, unless the lock bit for
the lower priority channel is set. If the lock bit is set, that
channel operation is continued until completion before con­
trol passes to the higher priority channel. The bus is always
released for at least two clock cycles when control passes
from one channel to another.

Two types of priority encodings are available as software
selectable options.

The first is fixed priority which fixes the channels in priority
order based on the decreasing values of their numbers.
Channel 3 has the lowest priority, while channel 0 has the
highest.

The second option is variable priority. The last channel that
receives service becomes the lowest priority channel
among all other channels with variable priority, while the
channels which previously had lower priority will get their
priorities increased. If variable priority is selected for all four
channels, any liD device requesting service is guaranteed
to be acknowledged after no more than three higher priority
services have occurred. This prevents any channel from
monopolizing the system. Priority types can be intermixed
for different channels.

As an example, let channels 0, 2 and 3 have variable priority
and channel 1 fixed priority. Channel 2 receives service first,
followed by channel O. The priority levels among all chan­
nels will change as follows.

Priority Initial Order Next Order
High 3 ch.O ACK ~ ch.O

Final Order
ch.3

2 ch.1 ch.1 ch.1 ~ fixed priority
1 ACK ~ ch.2 ch.3 ch.2

Low 0 ch.3 ch.2 ch.O

Whenever the PT bit (priority type) in the command register
is changed, the priority levels of all the channels are reset to
the initial order. If only one channel has variable priority,
then no change in priority will occur from the initial order.
Note: If the lock bit is not set, three idle states are inserted between the

write cycle of a previous burst indirect transfer and the next read
cycle.

3.0 Architectural Description
The NS32203 has 128 8-bit registers that can be addressed
either individually or in pairs, using the 7 least significant bits
of the address bus and the high byte enable signal HBE.
Seventy-one of these registers are reserved, while the rest
are accessible by the CPU for readlwrite operations. Figure
3-1 shows the NS32203 internal registers together with their
address offsets. Detailed descriptions of these registers are
given in the following sections.

3.1 GLOBAL REGISTERS

The global registers consist of one configuration, one status
and two interrupt vector registers. They are shared by all
channels, and they control the overall operation of the
NS32203.

3.1.1 CONF-Conflguratlon Register

This register controls the hardware configuration of the
NS32203 as well as the chaining feature.

z
en w
N
N
o
W .
-4
o

0 ..-• 3.0 Architectural Description (Continued) (f)
0
C'I The CONF register format is shown below: CO = 0 = > Channels not complementary
C'I
(f) 7 6 5 4 3 2 1 0 CO = 1 = > Channel 1 complementary to chan-(/) I C1 I CO I z XXXXX CNF nelO

CNF - Configuration Bit. Determines whether the C1- Chaining bit for channels 2 and 3. Determines

NS32203 is in local or remote configuration. whether or not channels 2 and 3 are complemen-

CNF = 0 = > Local Configuration
tary.

C1 = 0 = > Channels not complementary
CNF = 1 = > Remote Configuration

C1 = 1 = > Channel 3 complementary to chan-
CO- Chaining bit for channels 0 and 1. Determines nel2

whether or not channel 0 and 1 are complementa-
XXXXX - Reserved. These bits should be set to O. ry.
At reset, all CONF bits are reset to zero.
Note: The CNF bit should never be set by the software if the DMAC is wired

for local configuration, otherwise bus conflicts will result.

{
23 16 15 8 7 0

COM (H) (0216) COM(M) (01 16) COM(L) (0016) Command
Channel 0
Control SRCH (0416) Search Pattern
Registers

MSK (0816) Search Mask

{
SRC(H) (OE16) SRC(M) (0016) SRC(L) (OC16) Source Address

Channel 0
Parameter DST(H) (1216) DST(M) (1116) DST(L) (1016) Destination Address
Registers

LNGT(H) (1516) LNGT(L) (1416) Block Length

{
COM (H) (2216) COM(M) (21 16) COM(L) (2016) Command

Channel 1
Control SRCH (2416) Search Pattern
Registers

MSK (2816) Search Mask

{
SRC(H) (2E16) SRC(M) (2016) SRC(L) (2C16) Source Address

Channel 1
Parameter DST(H) (3216) DST(M) (31 16) DST(L) (3016) Destination Address
Registers

LNGT(H) (3516) LNGT(L) (3416) Block Length

{
COM (H) (4216) COM(M) (41 16) COM(L) (4016) Command

Channel 2
Control SRCH (4416) Search Pattern
Registers

MSK (4816) Search Mask

{
SRC(H) (4E16) SRC(M) (4016) SRC(L) (4C16) Source Address

Channel 2
Parameters DST(H) (5216) DSC(M) 51 16) DST(L) (5016) Destination Address
Registers

LNGT(H) (5516) LNGT(L) (5416) Block Length

{
COM(H) (6216) COM(M) (61 16) COM(L) (6016) Command

Channel 3
Control SRCH (6416) Search Pattern
Registers

MSK (6816) Search Mask

{
SRC(H) (6E16) SRC(M) (6016) SRC(L) (6C16) Source Address

Channel 3
Parameter DST(H) (7216) DST(M) (71 16) DST(L) (7016) Destination Address
Registers

LNGT(H) (7516) LNGT(L) (7416) Block Length

1
CONF (7816) Configuration

Global SVCT (5C16) Software Vector

Registers HVCT (7C16) Hardware Vector

STAT(H) (7F16) STAT(L) (7E16) Status

FIGURE 3-1_ NS322031nternai eglsters

4-40

3.0 Architectural Description (Continued)

3.1.2 HVCT - Hardware Vector Register

This register contains the interrupt vector byte that is sup­
plied to the CPU during an interrupt acknowledge (INTA) or
return from interrupt (RETI) cycle. The HVCT register format
is shown below.

7 6 543 2 0

BIAS E CN

CN - Channel number. Represents the number of the in­
terrupting channel

E - Error code. Determines whether a normal operation
completion or an error condition has occurred on
the interrupting channel.

E = 0 = > Normal Operation Completion

E = 1 = > A second interrupt was generated by
the same channel before the first inter­
rupt was serviced.

BIAS - Programmable bias. This field is programmed by
writing the pattern BBBBBOOO into the HVCT regis­
ter.

The NS32203 always interprets a read of the HVCT register
as either an interrupt acknowledge (INTA) cycle or a return
from interrupt (RETI) cycle. Since these cycles cause inter­
nal changes to the DMAC, normal programs should never
read the HVCT register (see next section). The DMAC dis­
tinguishes an INTA cycle from a RETI cycle by the state of
an internal flip-flop, called Interrupt Service Flip-Flop, that
toggles every time the HVCT register is read. This flip-flop is
cleared on reset or when the HVCT register is written into.
When an interrupt is acknowledged by the CPU, the INT
signal is deasserted unless another interrupt from a lower
priority channel is pending. In this case the INT signal is
deasserted when the acknowledge cycle for the second in­
terrupt is performed.

For this reason, if the INT signal is connected to an interrupt
input of the NS32202 ICU, the triggering mode of that inter­
rupt position should be 'low level'.

Furthermore, if that ICU interrupt input is programmed for
cascaded operation and nesting of interrupts from other de­
vices connected to the ICU is to be allowed, then the ICU
interrupt input connected to the DMAC should be masked
off during the interrupt service routine, before the CPU inter­
rupt is reenabled. This is because the DMAC does not pro­
vide interrupt nesting capability.

An interrupt from a certain channel can be acknowledged
only after the return from interrupt from a previously ac­
knowledged interrupt is performed.

3.1.3 SVCT - Software Vector Register

The SVCT register is an image of the HVCT register. It is a
read-only register used for diagnostics. It allows the pro­
grammer to read the interrupt vector without affecting the
interrupt logic of the NS32203. The format of the SVCT reg­
ister is the same as that of the HVCT register.

3.1.4 STAT - Status Register

The status register contains status information of the
NS32203, and can be used when the interrupts are not en­
abled. Each set bit is automatically cleared when a read
operation is performed. The format of this register is shown
in the following figure.

4-41

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMElcHIMNI TC IMEI CHIMNI TclMEI CHIMNI TclMEI CHIMNI Tci
channel # 3 channel # 2 channel # 1 channel # 0

The status of each channel is defined in a four-bit field as
described below:

TC - Transfer Complete.

Indicates the completion of a channel operation, re­
gardless of the state of the length register or whether
a match/no match condition occurred.

MN - Match/No Match Bit.

This bit is set when a match/no match condition oc­
curs.

CH - Channel Halted.

Set when a channel operation is halted by pulling the
RST/HLT pin.

ME - Multiple events. This bit is set when more than one of
the above conditions have occurred.

Note: If an interrupt is enabled, the corresponding bit in the status register is
not cleared upon read, unless the interrupt is acknowledged.

3.2 CONTROL REGISTERS

Each of the four channels has three control registers, con­
sisting of a 24-bit command register, an 8-bit search register
and an 8-bit mask register.

3.2.1 COM - Command Register

The command register controls the operation of the associ­
ated channel. It is divided into three separately addressable
parts: COM(L), COM(M) and COM (H). The format of each
part and bit functions are shown below.

COM(L) - Command Register (Low-Byte)
7 6 5 4 3 2

I AT I LK I PT I UW I INC I 01

CC - Command Code

CC = 00 = > Channel Disabled.

CC =01 = > Search

CC = 10 = > Data Transfer

CC = 11 = > Data Transfer and Search

01 - Direct/Indirect Transfers

01 = 0 = > Indirect Transfers

01 = 1 = > Direct Transfers

INC - Inclusive/Exclusive Search

INC =0 = > Exclusive Search

INC = 1 = > Inclusive Search

UW - Search type

UW =0 = > Search UNTIL

UW = 1 = > Search WHILE

PT - Priority type

PT =0 = > Fixed

PT = 1 = > Variable

LK - Priority lock

LK = 0 = > Priority Unlocked

LK = 1 = > Priority Locked

o
CC

z en
Col
N
N o
Col
o

o
• Cf)

o
N
N
Cf)
(J)
Z

3.0 Architectural Description (Continued)

AT - Auto transfer

AT =0 = > Auto Transfer Disabled

AT = 1 = > Auto Transfer Enabled

At Reset, the CC bits in COM(L) are cleared, disabling the
channel.
Note: The CC bits can be cleared by software during an indirect data trans·

fer to stop the transfer. This, however, should not be done during
direct data transfers. See section 3.3.3.

COM(M) - Command Register (Middle-Byte)
76543210

I DO I OW I DL I DT I SO I sw I SL I ST I
ST - Source Type

ST =0 = >1/0 Device

ST = 1 = > Memory

SL - Source Location

(Effective only in the remote configuration)

SL =0 = > Local

SL =1 = > Remote

SW - Source Width

SW = 0 = > a Bits

SW = 1 = > 16 Bits

SO - Source Direction

SO =0 =>Up

SO =1 = > Down

DT - Destination Type

DT = 0 = > 1/0 Device

SO = 1 = > Memory

DL - Destination Location

(Effective only in the remote configuration)

DL =0 = > Local

DL = 1 = > Remote

OW - Destination Width

OW = 0 = > a Bits

OW = 1 = > 16 Bits

DO - Destination Direction.

DO =0 = > Up

DO =1 =>Down

COM (H) - Command Register (High-Byte)
7 6 5 4 3 2 1 0

I HLII MNII TCII AMN IATCI OM I X

X - Reserved. (Should be set to 0)

TM - Transfer Mode

OM = 0 = > Single Transfer

OM = 1 = > Burst Transfer

ATC - Action after Transfer Complete

ATC = 0 = > Disable Channel

ATC = 1 = > Load Control Values and Parame­
ters from Complementary Channel
and Continue

4-42

AMN - Action after Match/No Match

AMN =00 = > Disable Channel

AMN = 01 = > Continue

AMN = 10 = > Load Control Values from Comple­
mentary Channel and Continue

AMN = 11 = > Load Control Values and Parame­
ters from Complementary Channel
and Continue

TCI- Interrupt Mask on "Transfer Complete"

TCI = 0 = > No Interrupt

TCI = 1 = > Interrupt

MNI- Interrupt Mask on "Match/No Match"

MNI = 0 = > No Interrupt

MNI = 1 = > Interrupt

HLI- Interrupt Mask on "Channel Halted"

HLI = 0 = > No Interrupt

HLI = 1 = > Interrupt

3.2.2 SRCH - Search Register

This a-bit register holds the value to be compared with the
data transferred during the channel operation.

3.2.3 MSK - Mask Register

The a-bit mask register determines which bits of the trans­
ferred data are compared with corresponding search regis­
ter bits. If a mask register bit is set to 0, the corresponding
search register bit is ignored in the compare operation. At
reset, all the MSK bits are set to O.

3.3 PARAMETER REGISTERS

Each channel has three parameter registers, consisting of a
24-bit source address register, a 24-bit destination address
register and a 16-bit block length register.

3.3.1 SRC - Source Address Register

The source address register points to the physical address
of the data source. When the data source is an 1/0 device,
the register does not change during the transfer operation.
When the data source is memory, the register is increment­
ed or decremented by either one or two after each transfer.

3.3.2 DST - Destination Address Register

The destination address register points to the physical ad­
dress of the data destination. When the data destination is
an 1/0 device, the register does not change during the
transfer operation. When the data destination is memory,
the register is incremented or decremented by either one or
two after each transfer.

3.3.3 LNGT ~ Block Length Register

The block length register holds the number of bytes in the
block to be transferred. It is decremented by either one or
two after each transfer.
Note: A direct data transfer can be stopped by writing zeroes into the LNGT

register. The number of bytes transferred can be determined in this
case, from the value of either the SRC or the DST register.

4.0 Device Specifications
4.1. NS32203 PIN DESCRIPTIONS

The following is a brief description of all NS32203 pins. The
descriptions reference portions of the Functional Descrip­
tion, Section 2.0.

Connection Diagram

A22 Vee
A21 A23

A20 Cs
A19 BREQ

A18 BGRT

A17 RST/HlT

A16 iNf
ADIS HOLD

AD14 HlDA

AD13 REQ3

AD12 ACK3

ADll REQ2

AD10 ACK2

AD9 REQI

AD8 ACKI

AD7 REQO

AD6 ACKO

ADS HBE

AD4 ODIN

AD3 lORD

AD2 IOWR

ADI ADS

ADO ROY

GND ClK

TL/EE/B701-12

Top View

FIGURE 4-1. NS32203 Dual-ln-L1ne Package

Order Number NS32203D or NS32203N
See NS Package Number D48A or N48A

4.1.1 SUPPLIES

Power (Vee>: +5V positive supply.

Ground (GND): Ground reference for on-chip logic.

4.1.2 INPUT SIGNALS

Reset/Halt (RST/HlT): Active low. If held active for 1 or 2
clock cycles and released, this signal halts the DMAC oper­
ation on the active channel. If held longer, it resets the
DMAC. Section 2.1.

4-43

Chip Select (CS): When low, the device is selected, en­
abling CPU access to the DMAC internal registers.

Ready (RDY): Active high. When inactive, the DMA Control­
ler extends the current bus cycle for synchronization with
slow memory or peripherals. Upon detecting ROY active,
the DMAC terminates the bus cycle.

Channel Request 0-3 (REQO - REQ3): Active low. These
lines are used by peripheral devices to request DMAC serv­
ice.

Bus Request (BREQ): Used only in the remote configura­
tion. This signal, when asserted, forces the DMAC to stop
transferring data and to release the bus. It must be activated
by the CPU before any CPU access to the remote bus is
performed. In the local configuration this signal should be
connected to Vee via a 4.7k resistor. Section 2.4.

Hold Acknowledge (HlDA): Active low. When asserted,
indicates that control of the system bus has been relin­
quished by the current bus master and the DMAC can take
control of the bus.

Clock (ClK): Clock signal supplied by the CTTL output of
the NS32201 TCU.

4.1.3 OUTPUT SIGNALS

Address Bits 16-23 (A16-A23): Most significant 8 bits of
the address bus.

Hold Request (HOLD): Active low. Used by the DMAC to
request control of the system bus.

Channel Acknowledge 0-3 (ACKO - ACK3): These lines
indicate that a channel is active. When a channel's request
is honored, the corresponding acknowledge line is activated
to notify the peripheral device that it has been selected for a
transfer cycle. Section 2.2.2.

Bus Grant (BGRT): Used only in the remote configuration.
This signal is used by the DMAC to inform the CPU that the
remote bus has been relinquished by the DMAC and can be
accessed by the CPU. Section 2.4.

I/O Read (lORD): Active low. Enables data to be read from
a peripheral device. Section 2.2.2.

I/O Write (IOWR): Active low. Enables data to be written to
a peripheral device. Section 2.2.2.

Interrupt (I NT): Active low. Used to generate an interrupt
request when a programmed condition has occurred. Sec­
tion 2.9.

4.1.4 INPUT/OUTPUT SIGNALS

Address/Data 0-15 (ADO-AD15): Multiplexed Address/
Data bus lines. Also used by the CPU to access the DMAC
internal registers.

High Byte Enable (HBE): Active low. Enables data trans­
fers on the most significant byte of the data bus.

Address Strobe (ADS): Active low. Controls address latch­
es and indicates the start of a bus cycle.

Data Direction in (DDIN): Active low. Status signal indicat­
ing the direction of data flow in the current bus cycle.

z en
w
N
N o
W .
-r.
o

C) ,---,
C")
C)
C'I
C\I
C")
tJ)
z

4.0 Device Specifications (Continued)

4.2 ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

Temperature Under Bias O·C to + 70·C

Storage Temperature

All Input or Output Voltages with
Respect to GND

Power Dissipation

- 65·C to + 150·C

-0.5Vto +7V

1.1 Watt

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS T A = 0 to + 70·C, Vee = 5V ± 5%, GND = OV

Symbol Parameter

High Level Input Voltage

Low Level Input Voltage

VOH High Level Output Voltage

Low Level Output Voltage

Input Load Current

Leakage Current
Output and I/O Pins in TRI-STATE/lnput Mode

ICC Active Supply Current

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the timing specifications given in this section refer to
0.8V and 2.0V on all the input and output signals as illustrat­
ed in Figures 4-2 and 4-3, unless specifically stated other­
wise.

-ClK '\j 2.0V J O.BV

- tSIG11.::::j

O.8V SIG1 tSIG2h

~~--2.0V SIG2

TL/EE/8701-13

FIGURE 4-2. Timing Specification Standard
(Signal Valid after Clock Edge)

Conditions Min Typ Max

2.0 Vee + 0.5

-0.5 0.8

IOH = - 400 p.A 2.4

IOl = 2 mA 0.45

0< VIN ~ Vee -20 20

0.4 ~ VIN ~ Vee -20 20

lOUT = 0, TA = 25·C 180 300

ABBREVIATIONS:

L.E. - leading edge R.E. - rising edge
T.E. - trailing edge F.E. - falling edge

ClK 2.0V K-___________ O~.B_V~.~ __

SIG1

SIG2

O.BV

tSIG1I 1+-­
tSIG2h~

2.0V

Units

V

V

V

V

p.A

p.A

mA

TL/EE/8701-14

FIGURE 4-3. Timing Specification Standard
(Signal Valid before Clock Edge)

4-44

4.0 Device Specifications (Continued)

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation Delays, NS32203·10
Maximum Times Assume Capacitive loading of 100 pF.

Name Figure Description

tAlv 4-7 Address Bits 0-15 Valid

tAlh 4-9 Address Bits 0-15
Hold Time

tAHv 4-7 Address Bits 16-23 Valid

tAHh 4-7 Address Bits 16-23 Hold

tALAOSs 4-8 Address Bits 0-15 Set Up

tAHAOSs 4-8 Address Bits 16-23 Set Up

tALAOSh 4-9 Address Bits 0-15
Hold Time

tAU 4-8 Address Bits 0-15 Floating

tev 4-7 Data Valid (Write Cycle)

tOh 4-7 Data Hold (Write Cycle)

toOv 4-5 Data Valid (Reading
DMAC Registers)

tOOh 4-5 Data Hold (Reading
DMAC Registers)

tHBEv 4-7 HBE Signal Valid

tHBEh 4-7 HBE Signal Hold

tOOINv 4-8 ODIN Signal Valid

tOOINh 4-8 ODIN Signal Hold

tAOSa 4-7 ADS Signal Active

tAOSia 4-7 ADS Signal Inactive

tAOSw 4-7 ADS Pulse Width

tALz 4-12.4-13 ADO-AD15 Floating

tAHz 4-12,4-13 A16-A23 Floating

tAOSz 4-12,4-13 ADS Floating

tHBEz 4-12,4-13 HBE Floating

tOOINz 4-12,4-13 ODIN Floating

tHlOa 4-11 HOLD Signal Active

tHlOia 4-12 HOLD Signal Inactive

tlNTa 4·19,4-21 I NT Signal Active

tACKa 4-16,4-17,4-7 ACKn Signal Active

tACK!a 4-16,4-17,4-7 ACKn Signal Inactive

4-45

Referencel
Conditions

After R.E., ClK T1

After R.E., ClK T2

After R.E., ClK T1

After R.E., ClK T1
orTi

Before ADS T.E.

Before ADS T.E.

After ADS T.E.

After R.E., ClK T2

After R.E., ClK T2

After R.E., ClK T1
orTi

After R.E., ClK T3

After R.E., ClK T4

After R.E., ClK T1

After R.E., ClK T1
orTi

After R.E., ClK T1

After R.E., ClK T1
orTi

After R.E., ClK T1

After R.E., ClK T1

atO.8V
(Both Edges)

After R.E., ClK Ti

After R.E., ClK Ti

After R.E., ClK Ti

After R.E., ClK Ti

After R.E., ClK Ti

After R.E., ClK Ti

After R.E., ClK Ti
orT4

After R.E., ClK Ti

After R.E., ClK T1

After F.E., ClK T4

NS32203·10

Min Max

50

5

50

5

25

25

15

25

50

0

50

10

50

0

65

0

35

40

30

55

55

55

55

55

50

50

40

50

35

Units

ns

ns

ns

ns

ns

ns

JLs

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

z en
w
I\)
I\)
o
w •
o

o ,..
• ('I)

o
N
N
('I)
en
z

4.0 Device Specifications (Continued)

Name Figure Description

tSGATa 4-13 BGRT Signal Active

tSGATia 4-14 BGRT Signal Inactive

tlORDa 4-8,4-9 lORD Active

tlORDia 4-8 lORD Inactive (During
Indirect Transfers)

tlOROia 4-9 lORD Inactive (During
Direct Transfers)

tlOWRa 4-7,4-10 IOWRActive

tlOWRia 4-7 IOWR Inactive (During
Indirect Transfers)

tlOWRdia 4-10 IOWR Inactive (During
Direct Transfers)

4.4.2.2 Input Signal Requirements: NS32203-10

tPWA 4-22 Power Stable to
RST/HlT R.E.

tRSTw 4-23 RST IHlT Pulse Width
(Resetting the DMAC)

tASTs 4-24 RST IHl T Set Up Time
(Resetting the DMAC)

tHLTs 4-18 RST IHlT Setup Time
(Halting a DMAC Transfer)

tHLTh 4-19 RST IHl T Hold Time
(Halting a DMAC Transfer)

tOls 4-6 Data in Setup Time

tOlh 4-6 Data in Hold

tOls 4-6 Data in Setup Time
(Writing to DMAC Registers)

tOlh 4-6 Data in Hold

(Writing to DMAC Registers)

tHLOAs 4-11,4-12 HOLDA Setup Time

tHLOAh 4-11 HlDA Hold Time

tROYs 4-15 ROY Setup Time

tROYh 4-15 ROY Hold Time

tREOs 4-16,4-17 REQn Setup Time

tAEOh 4-16,4-17 REQn Hold Time

tSAEOs 4-13 BREQ Setup Time

Referencel NS32203-10
Units

Conditions Min Max

After R.E., ClK 65 ns

After R.E., ClK 65 ns

After R.E., ClK T2 40 ns

After R.E., ClK T4
40 ns

After F.E., ClK T4
40 ns

After R.E., ClK T2 40 ns

After R.E., ClK T4
40 ns

After F.E., ClK T3
40 ns

After Vee Reaches
50

4.75V fLs

at 0.8V (Both Edges)
64 tCp

Before F.E., ClK
15 ns

Before R.E., ClK T3
25 ns

After R.E., ClK T4
10 ns

Before R.E., ClK T3 15 ns

After R.E., ClK T4 3 ns

After R.E., ClK T3
15 ns

After R.E., ClK T 4
3 ns

Before R.E., ClK 25 ns

After R.E., ClK 10 ns

Before R.E.,
20

ClK T2 orT3
ns

After R.E., ClK T3 5 ns

Before R.E., ClK 50 ns

After R.E., ClK 10

Before R.E., ClK 25 ns

4-46

4.0 Device Specifications (Continued)

Name Figure Description
Referencel NS32203·10
Conditions Min Max

tBREQh 4-13 BREQ Hold Time After R.E., ClK 10

tALAoSis 4-6 Address Bits 0-5 Setup Before ADS T.E. 20

tALAoSih 4-6 Address Bits 0-5 Hold After ADS T.E. 20

tHBEs 4-6 HBE Setup Time Before R.E., ClK T1 10

tHBEih 4-6 HBE Hold Time After R.E., ClK T4 40

tAoSs 4-6 ADS L.E. Setup Time Before R.E., ClK T1 40

tAoSiw 4-6 ADS Pulse Width ADS L.E. to ADS T.E. 35

tCSs 4-6 CS Setup Time Before R.E., ClK T1 15

tCSh 4-6 CS Hold Time After R.E., ClK T4 40

too INs 4-6 DDIN Setup Time Before R.E., ClK T2 30

toolNh 4-6 DDIN Hold Time After R.E., ClK T4 40

4.4.2.3 Clocking Requirements: NS32203-10

Name Figure Description
Referencel NS32203-10
Conditions Min Max

tClKh 4-4 Clock High Time At 2.0V (Both Edges) 42

tClK1 4-4 Clock low Time At O.BV (Both Edges) 42

tClKp 4-4 Clock Period R.E., ClK to Next
100

R.E. ClK

4.4.3 Timing Diagrams

tcLKp

tcLKh

elK
2.0V

C.BV
tCLKI

TL/EE/8701-17

FIGURE 4-4. Clock Timing

4-47

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Units

ns

ns

ns

z en w
N
N o
W .
....Ao

o

o
• Cf)

o
N
N
Cf)
U)
Z

4.0 Device Specifications (Continued)

elK [

ADS [

ADO-IS [

ODIN [

Tl T2 T3

HBE[~,~ __ ~ __________ ~ ______ ,~

cs[
FIGURE 4-5. Read from DMAC Registers

Tl T2 T3 T4 I Tl OR n

ODIN [

FIGURE 4-6. Write to DMAC Registers

4·48

TL/EE/8701-18

TL/EE/8701-15

4.0 Device Specifications (Continued)

T1 T2 T3 T4

ROY [

IOWR [

FIGURE 4·7. Indirect Write Cycle

ROY [(HIGH)

I
IOWR [(HIGH)

lORD [

ACKn [

FIGURE 4·8. Indirect Read Cycle

4-49

tlORDla

TL/EE/B701-18

TL/EE/B701-19

z en w
N
N o
W
o

o
"P-

I
C")
o
'" '" C")
en z

4.0 Device Specifications (Continued)

I T1

eLK [

T2 T3 T4

ADO -15 [~,"-__ ~

A 16- 23 [-+-",'--+--+------+--+--10,,"­

ADS [

HBE[~,--~-----+--+-~~
ODIN [

ROY [

lORD [

IOWR [

ACKn [

FIGURE 4-9. Direct 1/0 to Memory Transfer

T1 T2 T3 T4

CLK [

ADO-15 [

A 16-23 [

ADS [

HBE [

ODIN [

ROY [(HIGH)

I
lORD [

tlOWRdla

IOWR [

ACKn [

FIGURE 4·10. Direct Memory to 1/0 Transfer

4·50

TL/EE/8701-20

TL/EE/8701-21

4.0 Device Specifications (Continued)

I n I n
ClK[~

tHlD~

n I n Tl T2

HOLD [

HlDA [

ADO-1S[- ------~
I

A 16-23 [. - - - - - - < ADDRESS VALID

AOS[- ---- rvf-
H8E [• VALID

ODIN [. - - - - - - - - - - - - VALID

FIGURE 4·11. HOLD/HOLDA Sequence Start

ClK [

T1 I T2 T3 I T4 n

HOLD [

HlDA[

ADO-IS [

A 16-23[

ADS [

H8E[

FIGURE 4·12. HOLD/HOLDA Sequence End
Note 1: DMAC in local configuration.

Note 2: The FiOID/HOLDA sequence shown above is related to the single transfer mode.

In burst transfer mode FiOID is deactivated two cycles later.

4-51

TL/EE/8701-22

TL/EE/8701-23

z en
w
N
N
o
W .
-&.

o

o ,....
S 4.0 Device Specifications (Continued)
N
N
~ I n I n I n I n
Z ClK[..rt...nJ.LrL

~BREOS tBREOh

BREO [

BGRT [

ADO -15 [+ __ -+-..... ~\-+-_--!J

A 16 -23 [-+----t--~ 'r-t----+'

ADS [

HBE [~---+-~'H---I-"
DDIN [-+----t--~ 'r-+----+'

TLlEE/B701-24

FIGURE 4·13. Bus Request/Grant Sequence Start

ClK [
n I n n n 11 T2

BREQ [

BGRT [

ADO-IS [- ------~
I

A 16-23[- ------< ADDRESS VALID

ADS [. ---- rvf-
HBE [. - - - - - - - - - - - - - - - - - - < VALID

DDIN [. - - - - - - - - - - - - - - - - - - < VALID

TLlEE/B701-25

FIGURE 4·14. Bus Request/Grant Sequence End
Note 1: DMAC in remote configuration.

Note 2: If BREQ is asserted in the middle of a DMAC transfer, the transfer will always be completed.

4·52

4.0 Device Specifications (Continued)

[
I T1 I T2 I T3 I T3 I T3 T4

CLK~

R~[~JJi-~ ~tRDTh
FIGURE 4-15. Ready Sampling

T3 T4 Tl T2 I T3 T4

REOn [

ACKn [

ADS [

FIGURE 4-16. REQn!ACKn Sequence (DMAC Initially Not Idle)

[
I TI I TI I T1

CLK~
I T3 T4 T2

tREOs

FIGURE 4-17. REQn! ACKn Sequence (DMAC Initially Idle)

4-53

TL/EE/8701-26

TL/EE/8701-27

TL/EE/8701-28

z en w
N
N o
W •
o

o
C")
o
N
N
C")
U)
Z

4.0 Device Specifications (Continued)

elK [

T1 T2 I T3 I T4

ADS [

RST/HLT [

DDIN [

HOlD[

FIGURE 4·18. Halted Cycle
Note 1: Halt may occur in previous T·States. It must be applied for 1 or 2 clock cycles.

Note 2: If BREQ is asserted in the middle of a DMAC transfer, the transfer will always be completed.

T1 T2 I T3 I T4 I n

ADS [

IN{

I n

FIGURE 4·19. Interrupt on Transfer Complete

4·54

TL/EE/B701-29

n

TL/EE/B701-30

4.0 Device Specifications (Continued)

T1 T2 I T3 I T4 I n n I n

ADS [

iID[

iNr[
FIGURE 4-20. Interrupt on MatchINo Match

Note: If inclusive search is specified a write cycle is performed before INT is activated.

ClK [

T1 T2 I T3 I T4 I n

ADS [

iID/WR [

RST/HlT [

iNr[
FIGURE 4-21. Interrupt on Halt

Vee 4.SV

s-IL elK
-~I--""

RST/HLT tpWR~
------------------srJf

TL/EE/6701-33

n

tlNTa
• MATCH ON
'.HIGH BYTE

TL/EE/6701-32

TL/EE/8701-31

TL/EE/8701-34

FIGURE 4-22. Power on Reset FIGURE 4-23. Non Power on Reset

4-55

z
en w
I\,)
I\,)
o
w .
-'"
o

.;>.

tn
0>

NS32203-10

DATA BUFmIS
-~ .. -~

~~"=. ~ • --~
"'i:,'~-" • ~ ., • ~~. • .. .",

~l a~
.. :~ :1 ::::~,;,« ~Q -,- ~:~~ ~ I I · ~} = ± = CW~ ex occao I SlDWAC -LPrrD-

"""'i~T----- RSTO DBE r--- "K
HOlD iiIiiI RST/ABT J i RS11 XII em --'- ~ ~ 7

f ~ U '" -~ ~ "':L ~~----,
~; ~Q p.. 4 ~gr ~ __ ~ ~~;- ~;-ex 1-..+ JD/WRj .. r 0iB£ -=r 0 v

~ fiBr,lCiAlf _

~-+M~j ~ J~ ~~nb rL--. ~~ r !q~
H~-+--f----+---t-HttI---oI..L~t:::=J -=rJ su-- '- L.-

I LJ --' '-;;"'~ ~"'~

HOlD HlDABRt08GRT i~ ~ ~.
RSf/~ :: ~1:~!:IIIIIJS IJ ~ ~ ~ ~ -

ClJ(em RD ADDRESS _ _
ROY ROY DBE DECODER Ell l1li

"=' a IS _~,,_ >- • ~ • --~
:: --,,;: I ~ • _~,. > .. :~

ACK3 ~ L ROIQTE ADDRESS BUS ,)
AI6-23 ..

aHBE

l>
'0
'0
CD
::::s
Co
>C.

1>
::::s ...
CD
D)
()
S·

CO
en
c

CO
CO
CD
en ...
O·
::::s
en

TUEE/8701-35

FIGURE A-1. NS32203 Interconnections in Remote Configuration.
Note: This logic does not support direct (flyby) DMAC transfers.

~National
D Semiconductor

PRELIMINARY

NS32CG821 microCMOS Programmable
1M Dynamic RAM Controller/Driver

General Description
The NS32CG821 dynamic RAM controller provides a low
cost, single chip interface between dynamic RAM and the
NS32CG16. The NS32CG821 generates all the required ac­
cess control signal timing for DRAMs. An on-chip refresh
request clock is used to automatically refresh the DRAM
array. Refreshes and accesses are arbitrated on chip. If
necessary, a WAIT output inserts wait states into memory
access cycles, including burst mode accesses. RAS low
time during refreshes and RAS precharge time after refresh­
es and back to back accesses are guaranteed through the
insertion of wait states. Separate on-chip precharge coun­
ters for each RAS output can be used for memory interleav­
ing to avoid delayed back to back accesses because of
precharge.

Features
• Allows zero wait state operation
• On chip high precision delay line to guarantee critical

DRAM access timing parameters
• microCMOS process for low power
• High capacitance drivers for RAS, CAS, WE and DRAM

address on chip
• On chip support for page and static column DRAMs
• Byte enable signals on chip allow byte writing with no

external logic
• Selection of controller speeds: 20 MHz and 25 MHz
• On board access refresh arbitration logic
• Direct interface to the NS32CG 16 microprocessor
• 4 RAS and 4 CAS drivers (the RAS and CAS configura­

tion is programmable)

of Pins # of Address
Largest Direct Drive

Control DRAM Memory
(PLCC) Outputs

Possible

NS32CG821 68 10 1 Mbit

Block Diagram
NS32CG821 DRAM Controller

BANK ADDRESS IN,.'---I~I

ROW ADDRESS IN --+--+---I~I

COLmAN ADDRESS IN --+-.....,.'-t~1 _-"r"""'f-_-..Ii

MODE LOAD -+---I~I

CONTROL INPUTS

SYSTEt.4 CLOCK

FIGURE 1

4-57

Capacity

8 Mbytes

ADDRESS
OUT

RASO-3

CASO-3

TL/F/l0126-1

z en w
N o
C)
Q)
N
...&.

~ .---~
Q
Q
CD
~ o
c..
::z:
~
Q
Q
CD
~ o
c..
::z:
~
Q
Q
CD
N o
c..
::z:
~
Q
Q
CD
o
c..
::z:
~
co
Q
CD
~
o
c..
::z:
~
co
Q
CD
~
o
c..
::z:
~
co
Q
CD
N
o
c..
::z:
~
co
Q
CD
o
c..
::z:

~National
~ Semiconductor

PRELIMINARY

HPC16083/HPC26083/HPC36083/HPC460831
HPC16003/HPC26003/HPC36003/HPC46003
High-Performance microControliers
General Description
The HPC16083 and HPC16003 are members of the HPCTM
family of High Performance microControllers. Each member
of the family has the same core CPU with a unique memory
and I/O configuration to suit specific applications. The
HPC16083 has 8k bytes of on-chip ROM. The HPC16003
has no on-chip ROM and is intended for use with external
direct memory. Each part is fabricated in National's ad­
vanced microCMOS technology. This process combined
with an advanced architecture provides fast, flexible I/O
control, efficient data manipulation, and high speed compu­
tation.

The HPC devices are complete microcomputers on a single
chip. All system timing, internal logic, ROM, RAM, and I/O
are provided on the chip to produce a cost effective solution
for high performance applications. On-chip functions such
as UART, up to eight 16-bit timers with 4 input capture regis­
ters, vectored interrupts, WATCHDOGTM logic and MICRO­
WIRE/PLUSTM provide a high level of system integration.
The ability to address up to 64k bytes of external memory
enables the HPC to be used in powerful applications typical­
ly performed by microprocessors and expensive peripheral
chips. The term "HPC16083" is used throughout this data­
sheet to refer to the HPC16083 and HPC16003 devices un­
less otherwise specified.

The microCMOS process results in very low current drain
and enables the user to select the optimum speed/power
product for his system. The IDLE and HALT modes provide
further current savings. The HPC is available in 68-pin
PLCC, LCC, LOCC, PGA and 84-Pin TapePak® packages.

Block Diagram (HPC16083 with 8k ROM shown)

~-----------------------~
ROY 1l[Jj Iimf STATUS CKICKDCK2 , 't t

I ______ --------------~~~~~

Features
• HPC family-core features:

- 16-bit architecture, both byte and word
-16-bit data bus, ALU, and registers
- 64k bytes of external direct memory addressing
- FAST -200 ns for fastest instruction when using

20.0 MHz clock, 134 ns at 30 MHz
- High code efficiency-most instructions are single

byte
- 16 x 16 multiply and 32 x 16 divide
- Eight vectored interrupt sources
- Four 16-bit timer/counters with 4 synchronous out-

puts and WATCHDOG logic
- MICROWIRE/PLUS serial I/O interface
- CMOS-very low power with two power save modes:

IDLE and HALT
• UART -full duplex, programmable baud rate
• Four additional 16-bit timer/counters with pulse width

modulated outputs
• Four input capture registers
• 52 general purpose I/O lines (memory mapped)
• 8k bytes of ROM, 256 bytes of RAM on chip
• ROMless version available (HPC16003)
• Commercial (O°C to + 70°C), industrial (- 40°C to

+ 85°C), automotive (-40°C to +105°C) and military
(- 55°C to + 125°C) temperature ranges

TL/DD/BB01-1

4-58

~National
~ Semiconductor
DP8510 BITBL T Processing Unit

General Description
The DP8510 BITBLT Processing Unit (BPU) is a high-per­
formance microCMOS device designed for use in raster
graphics applications. It implements, in high-speed pipe lined
logic, the data operations which are fundamental to BITBL T
(BIT boundary Block Transfer) graphics: shifting, masking
and bitwise logic operations. Under control of external hard­
ware such as a state machine or a general-purpose micro­
processor, it provides all necessary data path operations,
easing the implementation of a wide variety of BITBL T sys­
tems. A number of input pins control the proper data flow in
the BPU. A simple handshake scheme is used to interface
the CPU, the BPU and the memory system.

The BPU has two modes, BITBL T and line drawing. The
mode is set by the elL pin. The line-drawing mode can be
treated as a special case BITBL T with height and width
equal to one.

In order to perform a BITBLT operation, the BPU's control
register must first be loaded with four parameters: the shift
number, left and right masks and the function select code, a
total of 16 bits. BITBL T can then proceed, as directed by an
external processor or state machine. It is the responsibility
of the controller to generate appropriate addresses for the
BITBLT, to interface with the frame buffer's memory control
circuitry, and to control the BPU itself.

Block Diagram

Features
• Supports all 16 classical BITBL T functions
• Pipelined data input for high system throughput
• Flexible architecture allows BPU to be used with a

state machine or processor
• Multiple BPUs can be used for multiple bitplanelcolor

applications

• Line drawing support
• Compatible with static or dynamic RAMs, including

Video DRAMs
• Compatible with page mode, nibble mode and static

column RAMs
• 32-bit to 16-bit barrel shifter
• 16-bit data port
• 16-word FIFO
• 16-bit logic operations
• 20 MHz operation
• Single + 5 volt supply
• All inputs and outputs TTL-compatible
• Packaged in a 44-pin PCC (commercial) or 44-pin PGA

(MIL)

• Single-bit pixel 1/0 port
• A member of National's Advanced Graphics Chip Set
• microCMOS technology

DQO-15 PDQn

DQ0-15 PDQn
TL/F/B672-22

4-59

c
-a
CD
U1
o

II

'P"
'P"
Lt)
co
D.
C
~National
~ Semiconductor
DP8511 BITBL T Processing Unit (BPU)

General Description
The DP8511 BITBLT Processing Unit (BPU), a member of
National Semiconductor's Advanced Graphics Chip Set
(AGeS), is a high performance microCMOS device intended
for use in raster graphics applications. Specifically designed
to complement the DP8500 Raster Graphics Processor
(RGP), the BPU performs data operations that are elemen­
tary to BITBL T (BIT boundary Block Transfer) graphics:

pendent of the CR, so that multiple bitplanes can be updat­
ed Simultaneously while each BPU performs different logical
operations on its own destination data.

Features
• Interfaces directly to the DP8500 Raster Graphics

Shift, mask, and bitwise logical manipulation of memory. Un­
der the control of the RGP, the BPU performs the necessary
BITBL T data path operations at pipelined hardware speeds.
A simple set of control lines interfaces the BPU to the RGP
and to the system memory.

Processor or any general purpose controller

• 20 MHz operation
• Supports all 16 classical BITBL T functions
• Pipe lined data input for high system throughput

The BPU has two modes of operation: BITBL T and Line
Drawing. BITBL T performs shift and logical operations on
blocks of 16-bit data words. Line drawing performs similar
operations on single-bit pixel data by utilizing a single bit
pixel port (PDn). This port allows data read and read-modify­
write operations on single pixels across a number of bit­
planes, giving access to pixel depth. The BPU provides both
pixel level processing commonly used in image processing
applications and extremely fast planar operations used
most frequently in color graphics.

• Provides performance independent of the number of
bitplanes

• Line Drawing support
• Compatible with static, dynamic RAMs, and Video

RAMs
• Compatible with page mode, nibble mode and static

column RAMs
• 32-bit to 16-bit barrel shifter
• 16-bit data port, Single bit pixel port

• 16-word FIFO
• 16-bit logic operations
• Single + 5V supply The BPU's operation is controlled by the values loaded to

the Control Register (CR) and the Function Select Register
(FSR). This dual register configuration of the DP8511 allows
for high throughput in multi-plane systems that incorporate a
BPU per plane. This performance advantage is achieved by
allowing the flexibility of changing the FSR's contents inde-

• All inputs and outputs TTL compatible
• 2 micron microCMOS technology
• Packaged in a 44-pin PCC (commercial) or 44-pin PGA

(MIL)

Connection Diagrams
44-Pln Plastic Chip Carrier (PCC)

~ ~ IW W IW IW N ~ ~ u ~
~ If r 'tf J 't Ttl

~ 6 5 4 3 2 1 «43 42 41 40
06- 7 39 -09

05- 8 38 -010

LVCC - 9 37 - BGN02

04- 10 36 -LGNo

BGND3- 11 35 -011

03 - 12 34 i- BVCCI

BVCCO - 13 33 I- 012

02- 14 321-BGNol

BGNoo- 15 311-013

01- 16 301-014

00- 17 29 r-015
18 19 20 21 22 23 24 25 26 27 28

N.C. = No Connection
Top View

Order Number DP8511V
See NS Package Number V44A

4-60

TL/F/9337-1

Section 5
Development Systems
and Software Tools

Section 5 Contents
NS32CG161SE Development Tool... 5-3
SYS32/30 PC-Add-In Development Package .. 5-10
Series 32000 GENIX Native and Cross-Support (GNX) Development Tools (Version 3) 5-16
Series 32000 GNX-Version 3 C Optimizing Compiler 5-21
Series 32000 GNX-Version 3 Fortran 77 Optimizing Compiler. 5-25
Series 32000 GNX-Version 3 Pascal Optimizing Compiler................................ 5-29

5·2

~ National Semiconductor

NS32CG16 ISE Development Tool

• NS32CG 16 emulator for software and
hardware development and debugging

• 512 kbytes of mappable memory for
emulation

• 15 MHz, 0 wait state access to emulation
memory

• Sixteen definable events-match on
address and data, no match on address
and data and match on status conditions
(address fetch, data read/write, slave
cycle and interrupt acknowledge)

• Thirty-six software breakpoints using
NS32CG16's BPT instruction

1.0 Product Overview
The NS32CG 16 ISE is a full featured emulator for the
development of NS32CG 16 based systems. The emu­
lator works with SYS32/20 and SYS32/30 hosts. Up
to 512 kbytes of memory ·may be mapped onto the
target, allowing users to download their software into
mapped (or emulation) memory. The emulator sup­
ports single stepping, 36 software breakpoints and 2
hardware breakpoints based on any of sixteen pre-

5-3

TLlEE/10334-4

• Two hardware breakpoints based on
events

• 2k deep, event triggered, real time, trace
display in mnemonic and machine
formats

• Execution time measurement with 1 ,...,s
resolution

• On screen menu for command selection

• FPU (Floating Point Unit) and BPU (Bit
Aligned Block Transfer Processing Unit)
support

• Software support via GNXTM tools

• Includes PC interface board and cable

defined events. Events may be defined as match on
address & data, no match on address & data and
match on status conditions (address fetch, data readl
write, slave cycle and interrupt acknowledge). A 2k
deep real time trace may be triggered by any of the
sixteen pre-defined events and displayed in mnemon­
ic or machine formats. The emulator supports execu­
tion time measurement with a resolution of 1 p.s.

z en
w
N o
G)
......
Q)

en
m

1.0. Product Overview (Continued)

The emulator connects to a high speed parallel inter­
face board on the development system host. The em­
ulator connects to the target system via a probe unit
and target cable. An IC plug at the end of the target
cable fits into the CPU socket on the target board. The
probe unit contains an NS32CG16 microprocessor for
emulation.

The emulator software resides in a DOS environment
on the host. The emulator runs from a DOS environ­
ment on the host. An on-screen menu enables com­
mand selection.

Commands supported by the emulator include:

Program down-loading
Assembly language debugging
Symbolic access to program variables

Modification of CPU registers and Memory locations
FPU and BPU slave processor support
Single stepping and software breakpoints
Trace display
On-screen command prompting facility

Full software support is provided by National's GNX
tools in the UNIX® environment of the SYS32/20 or
SYS32/30 host. The object files produced by the
compilation (or assembly) and linking process in the
UNIX environment may be converted into DOS-format
files and loaded into the emulator.

2.0 Description of Features
The NS32CG16 ISE consists of a main emulator unit,
a probe unit with target cable and IC plug, an interface
cable and PC interface board that resides on the host.
Figure 1 shows a pictorial view of the emulator.

Ho. Items
1 PC/AT keyboard
2 IBt.I-PC/AT
3 Display
4 Target systlm
5 Probe unit
6 Main unit
7 Interface board
8 Interface cable
9 Power cable
10 Probe cable
11 Tafltlt cable
12 IC plug

TL/EE/10334-1

FIGURE 1. NS32CG16 Emulator System

5-4

2.0 Description of Features (Continued)
2.1 NS32CG161SE System Configuration

Figure 2 shows the NS32CG16 ISE system configura­
tion.

2.2 Description of the System

The development system consists of the SYS32/20 or
SYS32/30 host computer with the emulator interface
board, the emulator and probe units and the IC plug
(located at the end of the target cable) which fits into
the CPU socket on the target board. The emulator
SCSI interface board enables high speed parallel
communication between the emulator and the host.
The probe unit contains an NS32CG16 microproces­
sor for emulation.

The emulator unit consists of Controller, Memory,
Trace and Breakpoint and Probe Interface boards.
The Controller board communicates with the SCSI in­
terface on the host and with all other boards in the
emulator unit. The Probe Interface board communi­
cates with the probe unit.

The Memory Board provides 512 kbytes of emulation
memory, with O-wait state access at 15 MHz. Sixteen
memory partitions may be mapped in 4 kbyte blocks
with write protection capability. 4 kbytes of the avail­
able memory is used by the emulator's monitor, and
the remaining memory may be used for emulation.

The Trace and Breakpoint board supports trace and
breakpoint capabilities. The 2k deep trace of address,
data and status may be displayed in mnemonic or ma­
chine formats, and may be triggered by any of 16 pre­
defined events. Two hardware breakpoints (based on
any of the 16 predefined events) and 36 software
breakpoints are supported.

Execution time measurement is accomplished with a
resolution of 1 p.s, and may be measured between two
instruction execution addresses or between the occur­
rence of any two of the 16 predefined events.

Sixteen events may be defined based on the follow­
ing:

match on address and data
no match on address and data
match on status conditions (address fetch, data
read/write, slave cycle and interrupt acknowledge)

I n specifying the formats for the address and data, for
example, any combination of Os, 1 s or Xs (don't cares)
may be used. For example FFXO or XXFF (in hexade­
cimal) are valid formats for specifying address and
data.
All symbolic information in the source program is re­
tained during debugging.

The emulator software resides in a DOS environment
on the system host. The emulator runs from the DOS
environment and may be invoked from the DOS direc­
tory in which the emulator software resides and com­
mands may then be issued to control the operating
mode of the emulator. An on-screen menu enables
selection of commands with prompting facility. Com­
mands are provided to download, execute and debug
programs. The command structure supports symbolic
access to program variables.
Software support is provided by National's GNX tools
in the UNIX environment on the SYS32 host. A user
program may be edited, compiled and linked in this
environment to obtain an executable object file. The
object file may then be converted into DOS-format
and copied into the DOS environment, by using the
udcp (UNIX to DOS copy) utility in the UNIX environ­
ment. This resulting DOS-format file may be directly
loaded into emulation memory by emulator com­
mands. The ducp (DOS to UNIX copy) utility may be
used (in the UNIX environment) to convert files in the
DOS-format (in the DOS environment) to UNIX-format
(in the UNIX environment). Both udcp and ducp also
support conversion of ASCII files.

32CG16
Target System

IBt.I-PC/AT
or

Compatible
I Emulator 11-10--1

Interface r Emulator

~
TL/EE/l0334-2

FIGURE 2. NS32CG161SE System Configuration

5-5

z en
w
N o
C)
en
en
m

II

2.0 Description of Features (Continued)

2.3 The Development Process

Figure 3 shows the development process in the different environments.

2.4 Command Summary

DOS
Emulator Software

dos QUITt + unix

UNIX
Edit, Compile/Assemble &:

Link -> Object flle
udcp, ducp utilities

exit t +dos

DOS
Emulator Software

exit f .emul

EMULATOR
Program Loading

Program Execution
Program Debug

exit t +dos

DOS
Emulator Software

TLlEE/l0334-3

FIGURE 3. The Development Process

The following is a summary of the commands supported by the emulator.

CONFIGURATION COMMANDS

Mapping address Thru address RomlRAmlTArgetlLocked
Maps 4 kbyte memory blocks in the specified address range as ROM, RAM, Target or Locked memory space.

MOnitor address
This command maps a single 4 kbyte memory block at specified address for use by the monitor.

Interrupt EnablelOlsable Nmllint
Enables or Disables the selected interrupt NMI or INT.

OMa EnablelOisable
Enables or Disables DMA transfers when the CPU is not accessing the bus.

Break EnablelOlsable MonltorlRom write
Enables or Disables a break in program execution when an access to Monitor address space or a write to the
ROM address space occurs.

Load CofflSform file Offset
Loads a specified file in COFF or Motorola S formats into memory at a specified offset from address O.
Store file From address Thru address
Stores the program data in the specified address range in memory into the specified file in Motorola S format.

Clear
Clears all the symbols used in the program.

5-6

2.0 Description of Features (Continued)

2.4 Command Summary (Continued)

The following is a summary of the commands supported by the emulator

DISPLAY COMMANDS

Display Configuration

Displays the current configuration of the emulator.

Display Register Format GenerallSlnglelOouble

Displays CPU registers in the specified format.

Display Memory address Format BytelWordlOwordlOwordlMnemonlclSlnglelOouble

Displays memory contents starting at specified address in the specified format.

Display Trace TrlggerlTOplBottomlline MnemonlclMAchlne

Displays results of the trace with the specified display position and display format.

The display position may be specified at the Trigger point or the top of the trace or the bottom of the trace or a
specified line number on the trace.

The display format may be specified to be in mnemonic or machine formats.
Display SWbreak

Displays all the software breakpoints.

Display Event

Displays all the pre-defined events.

DATA MANIPULATION COMMANDS

Register Format GenerallSinglelOouble

Specifies the display and change formats for register commands.

MOdify reg To data

Modifies the specified register to the specified data.

Memory address Format BytelWordlOwordlOwordlMnemonlclSlnglelOOuble
Specifies the display and change formats for memory commands.

MOdify address Thru address To data

Modifies the memory locations in the specified address range to the specified data.

EVENT SETUP COMMANDS

Event

Initiates the event definition process.

Add Address = I # address Data = I # data Status OfflFetchlOatalOReadlOWritellntacklSlave
Adds an event with specified address match or nomatch, with specified data match or nomatch, and specified
status conditions.

Replace number Address = I # address Data
= I # data Status OfflFetchlOatalOReadlOWritellntacklSlave

Replaces the event with the specified event number with the new event defined with the specified address
match or nomatch, with specified data match or nomatch, and specified status conditions.
DELete Aliinumber

Deletes all currently defined events or the event with the specified event number.

5-7

II

LLI
~
CD
CJ o
N
('I)
(J)
Z

2.0 Description of Features (Continued)

2.4 Command Summary (Continued)

The following is a summary of the commands supported by the emulator.

SOFTWARE BREAKPOINT COMMANDS

SWbreak
Initiates the setup of software breakpoints.

Add address
Adds a software breakpoint at specified address.

Replace number To address
Replaces the breakpoint address of a pre-defined breakpoint (referenced by the specified number) with the
new specified address.

DELete Aliinumber
Deletes all the pre-defined software breakpoints or the pre-defined breakpoint with the specified number.

Set EnablelDisable Aliinumber
Enables or disables the state of all pre-defined software breakpoints or the pre-defined software breakpoint
(referenced by the specified number).

PROGRAM EXECUTION COMMANDS

RESet
Resets the CPU.

Go From address Until address1lEvent# Or address2lEvent# Times number
Executes program from specified address until a match occurs on the specified address (address1) or on the
specified event (hardware breakpoint # 1), or until a match occurs on the specified address (address2) or on
the specified event (hardware breakpoint # 2). A specified number of times a specified match occurs may also
be used to control program execution. If the hardware breakpoint conditions are omitted, then program execu­
tion breaks on the software breakpoints that may be set and enabled.

Step From address
Executes one instruction from the specified address.

Trace From address Trigger address1lEvent# Or address2lEvent#
Enables the trace from the specified address, with the trigger points being defined by address1 or a specified
event or by address2 and a specified event.

MEAsure From address Start address1lEvent# End address2lEvent#
Enables program execution from specified address with execution time being measured from specified start
address1 or event until the specified end address2 or event.

Quit

Forces a break in program execution and stops the CPU.

EMULATOR CONTROL COMMANDS

CANcel
Resets the emulator to its initial state at start-up.

EXIT
Exits from the emulator environment to the DOS environment.

DOS
Suspends temporarily to the DOS environment from the emulator environment.

MAcro file
Executes command lines stored in the specified macro file in text format.

5-8

3.0 Specifications
Environment The NS32CG16 ISE is designed to op­

erate in a laboratory environment. The
emulator unit may be mounted horizon­
tally (flat) or vertically.

Temperature Operative: + 15°C to + 50°C
Storage: -40°C to + 60°C

Humidity 10% to 90% relative, non-condensing
Altitude Operative 15000 feet
Power NS32CG16 ISE requires a standard
Requirements AC power outlet (125V AC).

5-9

4.0 Ordering Information
NSS-ISE-CG16 NS32CG16 Emulator.

III

o
Cf)
.......
N
Cf)
en
> en

~ National Semiconductor

SYS32/30 PC Add-In
Development Package

• 15 MHz NS32332/NS32382 Add-In board
for an IBM® PC/ AT® or compatible
system

• 2-3 MIP system performance
• No wait-state, on-board memory in 4-, 8-

or 16-Mbyte configurations
• Operating system derived from AT&T's

UNIX® System V Release 3
• Multi-user support
• GENIXTM Native and Cross-Support

(GNXTM) language tools. Includes­
assembler, linker, libraries, debuggers

Product Overview
The SYS32TM/30 is a complete, high-performance
development package that converts an IBM PCI AT or
compatible computer into a powerful multi-user sys­
tem for developing applications that use National
Semiconductor Embedded System Processors™ or
Series 32000 microprocessor family components. The
SYS32/30 add-in processor board containing the Se­
ries 32000 device cluster with the NS32332 micro­
processor allows programs to run on a personal

5-10

TL/EE/9420-1

• Support for other Series 32000®
development products:
-SPLICE
- National's Series 32000 Development

Board family
- Optimizing Compilers: C,

FORTRAN 77, Pascal
• Easy-to-use DOS/UNIX interface

computer at speeds greater than those of a VAXTM
11/780. The chip cluster on the processor board in­
cludes the NS32332 Central Processing Unit,
NS32382 Memory Management Unit, NS32C201 Tim­
ing Control Unit and the NS32081 Floating-Point Unit.
Along with the processor board, the SYS32/30 pack­
age contains the OpUS5™ operating system which is
derived from GENIX V.3, National Semiconductor's

Product Overview (Continued)

port of AT&T's UNIX System V Release 3. Specially
developed software is included to efficiently integrate
the NS32332 processor board and the host PCI AT
processor, allowing them to function as a complete
UNIX computer system. National's Series 32000 GE­
NIX Native and Cross-Support (GNX) language tools
are included in the SYS32/30 package to provide sta­
ble and effective tools for software development. Op­
tional compilers are available for FORTRAN 77, C,
and Pascal.

Functional Description
15 MHz ADD-IN PROCESSOR BOARD FOR AN IBM PC/AT
OR COMPATIBLE SYSTEM

The SYS32/30 development package contains a
processor board designed around the Series 32000
chip set. This chip set includes the NS32332 Central
Processing Unit, NS32382 Memory Management Unit,
NS32C201 Timing Control Unit, and the NS32081
Floating-Point Unit.
This processor board forms the high-performance
center of the computer system with the host PCI AT
processor. Peripherals are under the control of the
PCI AT's microprocessor and are located either on the
PCI AT motherboard or on other boards in the PCI AT
chassis. The PCI AT handles all direct access to de­
vices and serves as an integral dedicated 110 proces­
sor.

SYS32/30

A

The SYS32/30 processor board plugs into the PCI AT
bus, uses the standard control and data signals, and
appears to the PCI AT as 16 bytes in the PCI AT In­
put/Output (1/0) space. Communication between the
PCI AT and the board is accomplished via this ad­
dress space. This architecture allows the board to in­
terface to the PCI AT in the same manner as any other
PCIAT peripheral. The PCIAT processes 110 com­
mands while the SYS32/30 processor board contin­
ues with regular operation. 1/0 is requested via inter­
rupt to the PCI AT, which then performs the data
transfer using Direct Memory Access (DMA). (See Fig­
ure 1).

The processor board requires two slots in the PCI AT
motherboard and plugs into a single long 16-bit bus
slot. The space of the second slot is needed to ac­
commodate the piggybacked memory board attached
to the processor board. No additional connections are
required.

2-3 MIPS SYSTEM PERFORMANCE

The NS32332 CPU and associated devices operating
at 15 MHz provide computing power greater than that
of a VAX 11/780. Sustained performance for the
NS32332 device cluster is 2-3 VAX MIPS (Million In­
structions Per Second). An example of relative per­
formance using the widely recognized Dhrystone
benchmark is shown in Figure 2.

DOS
UTILITIES

to..

K
'I DATA v
Afi t..

K OPMON PROGRAM

~ DATA I' SYS32/30 DRIVERS

1; n AND
CONTROL

PC ;1--1\ PC
HARDWARE \r-V

PERIPHER-
ALS

UNIX ENVIRONMENT DOS ENVIRONMENT
TL/EE/9420-2

FIGURE 1

5-11

en
-< en w
I\)
w
o

o
('I)

C\i Functional Description (Continued)
('I)
U)

>
U)

.,
u
c .,
E
~ a.. .,
.i!:
id
Q;
0::

DHRYSTONE 1.1

SYS32/30

VAX 11/780

TL/EE/9420-3

FIGURE 2. SYS32130 Dhrystone Program
Compiled with GNX Version 3 C Compiler

VAX 11/780 Dhrystone Data Obtained from USENET

ON-BOARD MEMORY CONFIGURATIONS
OF 4, 8 OR 16 MBYTES

The processor board is configured with either 4, 8, or
16 Mbytes of zero wait-state physical memory. It is
possible to upgrade the 4- or 8-Mbyte configuration to
16 Mbytes through the purchase of an optional 16-
Mbyte memory card.

OPERATING SYSTEM

The SYS32/30 operating system is derived from
GENIX V.3, National Semiconductor's port of
AT&T's UNIX System V Release 3.
The UNIX operating system is a powerful, multi-user,
multitasking operating system that includes the follow­
ing key features:

Demand-Paged Virtual Memory
Hierarchical file system
Source Code Control System (SCCS)
UNIX to UNIX copy (uucp)
"make" utility
Menu-driven system administration

The UNIX operating system has a proven reputation
as an effective and productive environment for effi­
cient software development. UNIX allows multiple us­
ers to work simultaneously on the same computer and
project. The Source Code Control System (SCCS) au­
tomatically tracks program revisions as development
work progresses. The "make" software saves valu-

able time in regenerating complex software systems
after changes are made. The uucp software allows
users on different UNIX systems to communicate us­
ing electronic mail and to transfer files over dial-up or
serial communications links. Menu-driven system ad­
ministration is available for system setup, adding us­
ers, controlling communication lines, installing soft­
ware packages, changing passwords, and other ad­
ministrative functions.

ADDITIONAL SUPPORT UTILITIES

5-12

Many of the popular utilities from the Berkeley 4.3
UNIX operating system, not contained in AT&T's UNIX
System V Release 3, are supplied as part of the pack­
age. These utilities are listed in Table I.

TABLE I. Bsd 4.3 Utilities

CSheli apply banner
bsu chsh clear
ctags expand factor
from head last
leave more primes
scrpt strings test
unexpand whereis which

The Tools for Documenters package, derived from the
AT&T Documenter's WorkbenchTM Utility, provides
the Series 32000 programmer with the tools to pre­
pare documentation. The major components of this
package are shown in Table II.

TABLE II. Tools for Documenters Utilities

Name Description

nroff A text formatter for line printers

troff A text formatter for typesetters

mm A macro package

mmt A macro package

eqn A troff preprocessor for typesetting
mathematics on a phototypesetter

neqn A troff preprocessor for typesetting
mathematics on a terminal

tbl A preprocessor for formatting tables

pic A preprocessor for graphic illustrations

col A filter to nroff for processing multicolumn
text output, as from tbl

NETWORKING CAPABILITY

The SYS32/30 based development system config­
ured to support networking using the TCP/IP protocol
allows project development using multiple systems, in­
cluding SYS32/30 based systems, VAX/VMSTM (us­
ing TCP/IP), SUN-3ISunOS™ and VAX/ULTRIX. The

~--. w
Functional Description (Continued)

compatibility design of the GNX language tools allows
software modules developed on these networked sys­
tems to be linked together on a single system for exe­
cution as one program. Networking requires that addi­
tional hardware and software be installed in the sys­
tem. Third party products that enable networking are
listed in the SYS32/30 configuration guide.

MANUALS

A complete manual set for the operating system and
related software is included in the SYS32/30 pack­
age. This includes:
Installation instructions for the PC Add-in board
Installation instructions for software
UNIX System V.3 reference manuals and user guides
GNX Language Tools Manuals
Tools for Documenters Reference Manual
Berkeley Utilities Manual

MULTI-USER SUPPORT

The SYS32/30 operating system is an interactive,
multi-user, multitasking operating system. Many activi­
ties or jobs can be performed simultaneously when
serial ports are added to the host system. These addi­
tional serial ports are used for terminals, printers, mo­
dems, IIO-to-development boards, IIO-to-target hard­
ware, or for communication with National's SPLICE
debugging tool. Information about third party products
that provide additional serial ports is contained in the
SYS32/30 configuration guide.

GNXLANGUAGETOOLS

The GENIX Native and Cross-Support (GNX) lan­
guage tools allow the user to compile, assemble, and
link user programs to create executable files. These
files can then be executed and debugged on a Series
32000 development board, target system application
hardware, or a 32000/UNIX-based system such as
the SYS32/30.

The GNX language tools include the assembler, link­
er, debuggers, libraries, and the monitor software for
all Series 32000 development boards in both PROM
and source code form.

The Series 32000 GNX language tools are based on
AT&T's Common Object File Format (COFF). Under
COFF, object modules created by any of the GNX
compilers or the GNX assembler may be linked to
object modules of any other translator in the GNX
tools. Optimizing compilers are available for C,
FORTRAN 77, and Pascal.

The COFF file format also allows object modules that
have been created by the GNX tools on other devel-

5-13

opment hosts (VAX/VMS or VAX/ULTRIX, for exam­
ple) to be linked with modules created on the
SYS32/30 system. This flexibility is most valuable
where non-centralized software development is de­
sired and the systems are able to transfer or share
files via a common network. Information for configur­
ing the SYS32/30 for integration into a network is
contained in the configuration guide.

Compilers are available separately as optional soft­
ware to allow individual selection of the application
language. The C, FORTRAN 77 and Pascal compilers
are the result of National's optimizing compiler project
and reflect state-of-the-art compiler technology for op­
timizing execution speed. For additional details about
the GNX tools consult the GNX tools data sheet.

SUPPORT FOR AN INTEGRATED DEVELOPMENT
ENVIRONMENT

The SYS32/30 contains the functionality and compati­
bility needed to utilize other tools available from Na­
tional Semiconductor for developing and debugging
Series 32000-based applications. These tools include
the SPLICE software debugger, NS32GG16-ISE, the
Series 32000 Development Board set, and National's
Embedded System Processor evaluation boards for
the NS32CG16 and NS32GX32 processors.
The NS32CG16 ISE is a full featured emulator for de­
velopment of NS32CG16 based systems. Software is
developed on the SYS32/30, then transferred to the
DOS partition of the development system for down­
load by the ISE.
The SPLICE development tool provides a communica­
tion link between a Series 32000 target and a devel­
opment system host. This connection allows users to
download and map their software onto target memory
and then debug this software using National Semicon­
ductor's GNX debugger. Consult the SPLICE data
sheet for more information.

The GNX debugger also directly supports the Hewlett­
Packard HP64772 NS32532/NS32GX32 in-system
emulator. This combination provides powerful inte­
grated support for high-level source debugging and in­
system emulation of the NS32532 or NS32GX32 proc­
essors.
The Series 32000 development boards and Embed­
ded System Processor evaluation boards used with
the SYS32/30 are specifically designed to assist the
user in evaluating and developing hardware and soft­
ware for embedded systems and the Series 32000
family of CPUs.

-< w
W
N
W
o

Functional Description (Continued)

DOS/UNIX INTEGRATION

The SYS32/30 PC add-in development package al­
lows easy transfer of data between DOS and the
UNIX operating system. A system console user can
switch between either operating system using only a
few keystrokes. A shell interface allows DOS com­
mands to be executed from the UNIX shell, UNIX
commands to be executed from DOS, and files to be
transferred between the UNIX and DOS partitions on
the system disk. I n addition, the user can suspend the
SYS32/30 operation, enter DOS, run an application,
and then return to the SYS32/30 environment.

Series 32000 Application Development
The SYS32/30 with the PCI AT operates as a local
host computer system for integrating application soft­
ware into target prototype boards containing Series
32000 components. Programs can be written in as­
sembly language or in a higher level language. Option­
al compilers are available for C, FORTRAN 77, and
Pascal.
During compilation, the compilers generate assembly
code which is assembled by the GNX assembler. (See

Figure 3.) The output of the assembler is an object file
which can be linked to other object file and lor librar­
ies, resulting in an executable file.

Since the SYS32/30 provides a Series 32000 native
environment, the executable file may be run on the
host SYS32/30 system or loaded into RAM on either
a target system, an Embedded System Processor
evaluation board or one of the Series 32000 develop­
ment boards. The source-level software debuggers in
the GNX tools provide powerful facilities for debug­
ging software on the target system.
The GNX debugger is capable of downloading and
controlling the execution of software on the target sys­
tem. Executable monitor software is provided in
PROMs in the SYS32/30 package for the Series
32000 development boards and the Embedded Sys­
tem Processor evaluation boards. Monitor software is
also provided in source form in the GNX language
tools so application designers can modify and port the
monitor to suit the needs of their target system.

After debugging, the executable file created by linking
can also be converted to PROM format using the GNX
nburn utility.

TO
TARGET
SYSTEM,

SPLICE, OR
DB BOARD

TL/EE/9420-4

FIGURE 3

5-14

Configuring a System
The SYS32/30 PC Add-In package supports a variety
of configurations. Based on developer needs, the final
configuration may need extra serial I/O ports, and/or
networking capability. A hard disk of sufficient size is
also an important part of the configuration. A configu­
ration guide that outlines available options and recom­
mended products for configuring the SYS32/30 devel­
opment system is available.

Host system elements required for SYS32/30 opera­
tion are:

- IBM PCI AT or compatible system

- Two full length slots in the motherboard

- 512 Kbytes of RAM

- PC-DOS 3.1 or later

- 1.2-Mbyte floppy disk drive

- Adequate hard disk storage (see the next section
on disk size)

Note: The SYS32/30 processor board actually plugs into a single slot.
The second slot is required to accommodate the space taken by
the piggybacked memory board attached to the NS32332 proces­
sor board.

The SYS32/30 PC/AT Add-In Development Package
runs on an IBM PCI AT or compatible computer. If an
IBM PCI AT is not used for the host system, it is impor­
tant to remember that compatibility can vary between
IBM PC/AT compatible systems. The SYS32/30 proc­
essor board may not be adequately supported by sys­
tems that lack full IBM PC/AT compatibility. The con­
figuration guide available contains a list of IBM PC/AT
compatible systems that have the required compatibil­
ity.

HARD DISK CAPACITY

Several factors influence the size selected for a hard
disk. Consideration should include the number of us­
ers for the system, space for user files, the size of the
application to be developed, and extra software pack­
ages and compilers that must reside on the system.

For example, a 50-Mbyte hard disk is the minimum
size recommended for a SYS32/30-based develop­
ment environment. This provides sufficient space for a
single-user account, the UNIX operating system and
utilities, the GNX tools, compiler software, basic DOS
software, and a moderate size application. Disk drives
with even greater capacity than the minimum sizes in­
dicated here should be considered for additional users
or software and to provide for growth of the system.

When selecting hard disk drives or other peripheral
devices, it is important that the device conform to the
industry-standard for peripheral devices designed for
use on the PCI AT bus.

5-15

Basic Kits
The SYS32/30 Add-In Development package is avail­
able in three basic kits:

NSS-SYS30-KIT1 For IBM-AT and compatible
systems

NSS-SYS30-KIT2

NSS-SYS30-KIT3

MEMORY UPGRADE

PC Add-In coprocessor board
with 4 Mbytes on-board memo­
ry
UNIX System V.3 based operat­
ing system
GNX Language Tools
Tools for Documenters
Berkeley Utilities
Installation instructions for the
PC Add-In board
Installation instructions for soft­
ware
UNIX System V.3 reference
manuals and user guides
GNX Language Tools Manuals
Tools For Documenters Refer­
ence Manuals
Berkeley Utilities Manual
Same as KIT1 except with
8 Mbytes of on-board memory

Same as KIT1 except with
16 Mbytes of on-board memory

To upgrade the memory size to 16 Mbytes after the
purchase of KIT1 or KIT2, the following 16-Mbyte
memory board must be purchased to replace the ex­
isting memory board:

NSS-SYS30-MEM16 16-Mbyte memory board.

Optional Software Packages
(A prerequisite for use is the purchase of one of the
above basic kits).

NSW-C-3-BHBF3 Optimizing C Compiler

NSW-F77-3-BHBF3 Optimizing FORTRAN 77 Com-
piler

NSW-PAS-3-BHBF3 Optimizing Pascal Compiler

NSW-NET-BHBF3 Networking software

NSP-SYS32/V3-MS Additional operating system
manual set

tJ)

-<
tJ)
W
N
W
o

c;-
c
o
'iii ...
CI)

> -tn
'0
o
I--c
CI)

E
c.
o
Q)
>
CI)

o
>< z
~ -... o c.
Co
::J en
en
tn
o ...
o
"C
c
m
CI)

> ;:;
m
Z
><
Z
LLI
C-'
o o
o
C\I
C')

tn
CI)
'':
CI)
en

~ National Semiconductor

Series 32000® GENIXTM Native and
Cross-Support (GNX) Development Tools

(Version 3)

• Complete software development
environment for Series 32000

• Supports software development on
VAXTM, Sun-3®, and SYS32™
development hosts

• Supports Common Object File Format
(COFF)

• Includes versatile configuration
definition utility

Introduction
The Series 32000 GNX-Version 3 (GENIX Native and
Cross-Support) development tools consist of assem­
bler, linker, debuggers, monitors, basic I/O routines,
libraries, optional high-level language compilers, and
other tools to aid in the development of applications
for the Series 32000 microprocessor family. The GNX
tools allow users to compile, assemble, and link appli­
cation programs to create executable files. These files
can then be executed and debugged on Series 32000-
based development hosts, such as the SYS32/20 and
SYS32/30, or on a Series 32000-based target board.
After debugging, the executable files can be convert-

5-16

TO
TARGET

TLlEE/10418-1

• Includes source code for board-level
monitors

• Includes complete floating-point unit
emulation software

• Supports optional C, FORTRAN 77, and
Pascal optimizing compilers

• Supports SPLICE development tool

ed to binary/hexedecimal files suitable as input to
PROM programmers for burning PROMs.
The Series 32000 GNX development tools are based
on the Common Object File Format (COFF), as devel­
oped by AT&T and enhanced by National Semicon­
ductor Corporation. This allows files developed on dif­
ferent hosts and in different high-level languages to
be easily integrated.

Supported Development Hosts
The Series 32000 GNX development tools are avail­
able hosted for cross-development on the VAX se-

Supported Development Hosts (Continued)

SYS32

ar
as
cc

dbg32
f77
gts
Id

lorder
monfix
nburn

nm
pc

size
strip

._----_.
• Libraries are maintained by AR.

TL/EE/10418-2

FIGURE 1. Sample Development Process

TABLE I. Commands for SYS32,
VAX/UNIX, and VAX/VMS

VAX/UNIX VAX/VMS

nar nar
nasm nasm
nmcc nmcc
ncmp ncmp
dbg32 dbg32
nf77 nf77
gts gts

nmeld nmeld
nlorder
monfix monfix
nburn nburn
nnm nnm
nmpc nmpc
nsize nsize
nstrip nstrip

5-17

ries of computers, running the VMSTM, UNIX® (bsd),
and UL TRIX operating systems and on a Sun-3 work­
station running SunOS™. Also supported are National
Semiconductor's SYS32/20 and SYS32/30 develop­
ment environments. Table I summarizes the GNX
commands for each environment.
The SYS32/20 and SYS32/30 PC-Add-In Develop­
ment Packages are complete, high-performance
packages that convert an IBM-PCI ATTM or compati­
ble computer into a powerful multi-user system for de­
veloping applications that use the Series 32000 fami­
ly. The SYS32 systems are based on the Series
32000 processor family; the SYS32/20 includes an
NS32032 Central Processing Unit, and the SYS32/30
is based on the NS32332 CPU. Both the SYS32/20
and SYS32/30 run a derivative of the AT&T System
V.3 UNIX operating system. Because these host sys­
tems are themselves based on the Series 32000 proc­
essor family, application code can be debugged on
the host system without down-loading to target hard­
ware.
Figure 1 illustrates a typical development process.

en
CD
(ii"
en
CN
N
o
o
o
G)
m
z
X
z
D) -<'
CD
D)
:l
Co

o
o
en en
en
c
"C
"C
o -Q
z
~
c
CD
<
CD
0"

"C
3
CD
:l --I
o
o
Ui'
<:
CD en o·
:l

~

~r---~

c o
'f
cu
~
tn
'0
{!. -c
cu
E c.
o

CG
> cu
C

>< Z

" -1::
o c.
C.
:J
U) .
tn
tn
o
L. o

"C
C
cu
~
:;
cu
Z
><
Z
w

" c c c
C\I
C")

tn
cu
''::
cu
U)

Tools Components
The GNX Development Tools comprise the following
utilities and support libraries:
Ar

This utility maintains groups of files combined into a
single archive file. Ar is used to create and update
library files as used by the GNX linker Id.

As
The GNX assembler, as, assembles Series 32000 as­
sembly language source programs and generates re­
locatable object modules. Relocatable object modules
must be linked to create executable load modules.
DBG32

DBG32 is an interactive symbolic debugger. It can be
used for remote debugging in conjunction with a host
and any target hardware that includes a Series 32000
GNX monitor. DBG32 allows source-level debugging
and includes an easy-to-use on-line help facility.
Floating-Point Enhancement and
Emulation (FPEE) Library

When a floating-point unit (FPU) is not present, the
floating-point enhancement and emulation (FPEE) li­
brary provides low-cost floating-point support by emu­
lating the Series 32000 FPU instructions. When an
FPU is present, FPEE enhances the FPU by providing
additional functionality as recommended by Draft 10
of the ANSI/IEEE Task 754 Proposal for Binary Float­
ing-Point Arithmetic (IEEE 754). FPEE meets the IEEE
754 standard for double-precision arithmetic.
The FPEE library is provided in source form and as a
binary library suitable for its particular GNX tool-set
environment. The source includes all support routines
necessary to build the FPEE library. The FPEE library

can be configured to enhance/emulate either the
NS32081 FPU or the NS32381 FPU.
GNX Target Setup (GTS)

The GNX tools support the full line of Series 32000
central processing units and peripheral devices,
based on user-defined parameters. The GNX Target
Setup (GTS) utility allows users to easily define the
characteristics of the target system at one time. This
information is saved in a file on the host system, which
is examined each time a GNX utility is invoked. These
parameters are used to tailor the application code to
characteristics of the particular hardware.
GTS operates both interactively and non-interactively
and includes an easy-to-use interface and on-line help
facility.

Ld
The GNX linker, Id, creates executable files by com­
bining object files, providing relocation, and resolving
external references. The linker also processes sym-
bolic debugging information. The linker includes a
powerful directives language, which allows the user to
precisely control the linking process.

Lorder
Lorder finds ordering relations for object libraries. The
input may be one or more object or library archive
(see ar) files. The output of lorder can be processed
to find an ordering of a library suitable for one-pass
access by the linker.
Math Libraries
The math libraries (libm.a and lib381 m.a) contain stan­
dard math functions that support both the NS32081
and NS32381 floating-point units. These functions are
highly optimized for the Series 32000 architecture.
Table II contains a list of the available math functions.

TABLE II Available Math Functions

acos exp fdrem fmod fpow log1p
acosh exp2 fexp fneg fpstrpvctr log2
asin expm1 fexp2 fp-gmathenv frelation neg
asinh fabs fexpm1 fp-getexptn frem nextdouble
atan facos ffabs fp-getround frint nextfloat
atan2 facosh ffinite fp-gettrap fsin pi
atanh fasin ffloor fp-procentry fsinh pow
bessel fasinh ffmod fp-procexit fsqrt randomx
cabs fatan fhypot fp-smathenv ftan relation
cbrt fcabs finf fp-setexptn ftan2 rem
ceil fcbrt finite fp-setround ftanh rint
compound fceil flog fp-settrap gamma sin
copysign fcompound flog10 fp-testrap hypot sinh
cos fcopysign flog1p fp-tstexptn inf sqrt
cosh fcos flog2 fpgtrpvctrv log tan
drem fcosh floor fpi log10 tanh

Note: All math hbrary functions are provided In single and double precision versions.

5-18

Tools Components (Continued)

Monitors

Mon16, mon32, mon332, mon332b, mon532 and
mon32GX are PROM-based firmware monitors for use
on a Series 32000-based development board. The
monitors allow the user to load, execute, and debug
development board programs with the dbg32 debug­
ger running on a host computer system. The monitors
also provide run-time services, such as physical I/O,
interrupt handling, and error handling in the form of
supervisor calls.

Source to each monitor is provided so that it may be
modified, assembled, linked, and installed on other
Series-32000 based target boards.

Monfix

Monfix is a utility that creates a Series 32000 boot­
strap program by modifying a Series 32000 GNX exe­
cutable file.

Nburn

Nburn loads the specified bytes of a file to an EPROM
burner in one of several user-specified formats, includ­
ing ASCII-HEX and S-record.

Nm

The nm utility displays the symbol table of a Series
32000 GNX object file.

Size

The size utility displays size information for each sec­
tion and optional header information of a Series 32000
GNX object file.

Strip

The strip utility strips symbol and line number infor­
mation from a Series 32000 GNX object file.

Optional Compilers
A substantial amount of application code is developed
in a high-level language; therefore, the speed and effi­
ciency of the application are functions not only of
processor speed, but also of quality of code generat­
ed by the high-level language compiler. An inefficient
compiler can extract a significant performance penal­
ty. Likewise, a significant performance improvement
can be achieved for a much lower cost in software
rather than hardware. For this reason. National Semi­
conductor has developed a line of optimizing compil­
ers that generate extremely efficient code for the Se­
ries 32000 architecture.

Each of the optimizing compilers includes the state-of­
the-art GNX optimizer, based on advanced optimiza­
tion theory developed over the past 15 years. In addi­
tion, because all GNX-Version 3 optimizing compilers
use a standard calling sequence, internal intermediate

5-19

representation, and object file format, mixed-language
programming is greatly simplified, aiding in the porting
of existing applications to the Series 32000 architec­
ture.

C Optimizing Compiler

The GNX-Version 3 C Optimizing Compiler fully imple­
ments the C programming language, as defined in The
C Programming Language by B. Kernighan and D. Rit­
chie. The C Optimizing Compiler is also compatible
with the UNIX System V C compiler, derived from the
portable C compiler (pcc). Several features of the
draft ANSI C standard (X3J11) are supported.

FORTRAN 77 Optimizing Compiler

The GNX-Version 3 FORTRAN 77 Optimizing Compil­
er fully implements the FORTRAN 77 programming
language, as defined by the American Standard publi­
cation Programming Language FORTRAN (ANSI
X3.9-1978). In addition, a command-line option is pro­
vided that forces the compiler to accept as input only
programs that adhere to the FORTRAN 66 standard.

Pascal Optimizing Compiler

The GNX-Version 3 Pascal Optimizing Compiler fully
implements the Pascal programming language, as de-

fined by the International Standards Organization
(ISO) standard ISO dp7185 level 1. Several useful
extensions to the Pascal language are supported. A
command-line option is provided that forces the com­
piler to accept as input only programs that adhere to
the ISO standard.

SPLICE Support
The GNX development tools enable the use of the
SPLICE development tool, which can be used to de­
bug software/hardware on a Series 32000 target.
SPLICE provides a communication link between a Se­
ries 32000 target and a development system host that
allows users to down-load and map their software
onto target memory and debug this software using the
dbg32 debugger. The monitor resident on the SPLICE
communicates with dbg32 on the development host.

Source Products
The GNX development tools, as well as the optional
optimizing compilers, are available in source form for
use in porting to other potential development environ­
ments. Source code is provided on a VAX/UNIX bsd
tape. Contact Series 32000 Marketing for more infor­
mation regarding GNX source availability.

en
CD ...
oi"
tn
w
N
o
o
o
C)
m
z
><
z
Co) -<"
CD
Co)
::s
c.
(") ...
o
tn
tn
en
c
-c
-c
o ... -Ci
z
>< -c
CD
<
CD
0"
-c
3
CD
::s -.....
o
o
"iii
'<
CD
U;
0"
::s
w -

~r---~ Cf)

c o
"~

~ -en
"0
~ -c
CD
E
Q.
o
Gi
>
CD
C
~

>< z
e.
1:
o
Q.
Q.
::::a

~ en e
(.)

"C
C
CO

~ ..
C'CI
Z
><
Z
w
CJ
o o o
N
Cf)

en
CD
"C
CD
(J)

Licensing
All binary versions of the Series 32000 GNX develop­
ment tools require the execution of National Semicon­
ductor's binary user agreement. Because the GNX de­
velopment tools contain AT&T proprietary code, a
System V source license is prerequisite for obtaining a
source version of the GNX tools. Contact Series
32000 Marketing for more information regarding spe­
cific licensing issues.

Customer Support
National Semiconductor offers a full 90-day warranty
period. Extended warranty provisions can be arranged
by calling National Semiconductor's Technical Sup­
port Engineering Center at the toll-free number listed
below.

National Semiconductor's Technical Support Engi­
neering Center has highly trained technical specialists
available to assist customers over the telephone with
any product-related technical problems.

For more information, please call (800) 759-0105 (in
the United States and Canada). Outside North Ameri­
ca, please contact your local National Semiconductor
office.

Ordering Information
Supported Host Environments and Order Codes:

SYS32/20:
NSW-ASM-3-BHAF3 (included with SYS32/20 kit)

SYS32/30:
NSW-ASM-3-BHBF3 (included with SYS32/30 kit)

VAX/VMS:
NSW-ASM-3-BRVM

VAX/UL TRIX (UNIX bsd):
NSW-ASM-3-BRVX

Micro VAX/VMS:
NSW-ASM-3-BCVM

5-20

Micro VAX/UL TRIX:
NSW-ASM-3-BCVX

Sun-3:
NSW-ASM-3-BCSX

Each software package is delivered with one copy of
each appropriate manual. Additional manual sets may
be ordered using the following order codes:

NSP-ASM-NX3-MS:
Manual set included with NSW-ASM-3-BHAF3 and
NSW-ASM-3-BHBF3

NSP-ASM-X3-MS:
Manual set included with NSW-ASM-3-BRVX, NSW­
ASM-3-BCVX, and NSW-ASM-3-BCSX

NSP-ASM-M3-MS:
Manual set included with NSW-ASM-3-BRVM and
NSW-ASM-3-BCVM

NSP-C-V3-M:
Manual set delivered with Optimizing C compiler (all
hosts)

NSP-F77-V3-M:
Manual set delivered with Optimizing FORTRAN 77
compiler (all hosts)

NSP-PAS-V3-M:
Manual set delivered with Optimizing Pascal compiler
(all hosts)

For further information regarding National Semicon­
ductor's software development tools and develop­
ment hosts, please refer to the following datasheets:

GNX-Version 3 C Optimizing Compiler

GNX-Version 3 FORTRAN 77 Optimizing Compiler

GNX-Version 3 Pascal Optimizing Compiler

SYS32/20 PC-Add-In Development Package

SYS32/30 PC-Add-In Development Package
SPLICE Development Tool

~ National Semiconductor PRELIMINARY

Series 32000® GNX-Version 3
C Optimizing Compiler

C

• Generates high-quality code for the
Series 32000 architecture

• Implements the C Language as defined
by B. Kernighan and D. Ritchie in The C
Programming Language

• Uses state-of-the-art optimization
techniques

1.0 Introduction
A substantial amount of application code is developed
in a high-level language. Therefore, the speed and ef­
ficiency of the application are functions not only of
processor speed, but also of quality of code generat­
ed by the high-level language compiler. An inefficient
compiler can extract a significant performance penal­
ty. Likewise, a significant performance improvement
can be achieved for much lower cost in software rath­
er than hardware. For this reason, National Semicon­
ductor has developed a line of optimizing compilers
that generate extremely efficient code for the Series
32000 architecture.

1.1 Product Overview

The Series 32000 GNX-Version 3 C Optimizing Com­
piler is a member of National Semiconductor's opti­
mizing compiler family, which also includes compilers
that support the Pascal and FORTRAN 77 program­
ming languages. Because all three optimizing compil­
ers use a standard calling sequence, internal interme­
diate representation, and object file format, mixed-lan­
guage programming is greatly simplified. The ability to
use mixed-language programming simplifies the port­
ing of pre-existing applications and code reuse. A de­
tailed discussion of mixed-language programming is
presented in the GNX- Version 3 C Optimizing Compil­
er Reference Manual.

The C Optimizing Compiler fully implements the C
Language, as defined by B. Kernighan and D. Ritchie.

5-21

Code
Generator

Assembly
Code

TL/EE/10363-1

• Supports mixed-language programming
• Includes a complete run-time C library

and highly optimized math library
• Incorporates many draft-proposed ANSI

C standard (X3J11) features
• Compiles under UNIX®, ULTRIXTM, and

VMSTM operating systems

The C Optimizing Compiler is also compatible with the
UNIX Systtem V C compiler, derived from the fully por­
table C compiler (pcc). Several features of the draft
ANSI C standard (X3J 11) are supported.

The input to the C Optimizing Compiler is a C lan­
guage source program. The output, controlled by
command-line options, is either a Series 32000 exe­
cutable module, a Series 32000 object module, or Se­
ries 32000 assembly code.

1.2 Native and Cross-Support

The GNX-Version 3 C Optimizing Compiler is available
hosted as a cross-support compiler on the VAXTM se­
ries of computers, running the VMS, UNIX (bsd), and
UL TRIX operating systems and on a Sun-3® worksta­
tion running SunOS™. Also supported are National
Semiconductor's SYS32TM/20 and SYS32/30 devel­
opment environments.

1.3 GNX Development Tools

The GNX-Version 3 C Optimizing Compiler is an inte­
gral component of the GNX CrOSS-Development tool
set. The GNX-Version 3 Assembler Package includes
the Series 32000 assembler, the GNX linker, debug­
gers, libraries, and development board monitors. The
GNX-Version 3 Assembler Package is a prerequisite
for the GNX-Version 3 C Optimizing Compiler. See the
GNX-Version 3 Development Tools Datasheet for
more information on the GNX Tools.

CJ)
C'D
Ci)"
en
w
N o
o
o
G)
Z
>< • <
C'D en o·
:::J
W
o
o
"g -3'
N' s·

CD
o
o
3
"2.
CD

~ r---~
.!!
'Q.
E
o
o
C)
c
'N
'E .. a. o
o
C")

c
o
'f!
~ • >< z
" o
o
o
N
C")

en
CD
'i:
CD
U)

1,0 Introduction (Continued)

The SYS32/20 and SYS32/30 PC-Add-In Develop­
ment Packages are complete, high-performance
packages that convert an IBM®-PCTM/AT or compati­
ble computer into a powerful multi-user system for de­
veloping applications that use the Series 32000 fami­
ly. The SYS32 systems are based on the Series
32000 processor family; the SYS32/20 includes an
NS32032 Central Processing Unit, and the SYS32/30
is based on the NS32332 CPU. Both the SYS32/20
and SYS32/30 run a derivative of the UNIX System
V.3 operating system. Because these host systems
are themselves based on the Series 32000 processor
family, application code can be debugged on the host
system without down-loading to target hardware.

2.0 Compiler Structure
The C Optimizing Compiler is a modular language
processor consisting of five separate programs: the
driver, the macro preprocessor (cpp), the parser (front
end), the optimizer, and the code generator.

2.1 The Driver

The driver is a program that parses and interprets the
command line and, in turn, sequentially calls each of
the other programs, based on its input and the com­
mand-line options invoked. Under the UNIX operating
system, the assembler and linker are also automati­
cally invoked by the driver as required; under VMS,
the assembler is invoked by the driver, and linking is
done at the command line.

2.2 The Macro Preprocessor (cpp)

The macro. preprocessor is the standard C preproces­
sor, known as cpp. The macro preprocessor's input is
the C source program with preprocessor macros; its
output is processed C code, with all preprocessor
commands expanded and transformed as necessary.
The macro preprocessor can be used to define con­
stants, insert text from another file, or conditionally
include or exclude source code from compilation
based on a testable condition.

2.3 The C Language Parser (front end)

The front end of the C Optimizing Compiler is derived
from the UNIX portable C compiler (pcc), with bug fix­
es and extensions included. The front end's input is C
source code; its output is an intermediate representa­
tion that can be passed either to the optimizer or the
code generator.

Among the extensions implemented in the front end
are:

• Unsigned constants
• Enumerated types
• Improved structure manipulation; structures can be

assigned, passed as parameters to functions, and
returned by functions. Structure and union member
names can be reused in other structures and un­
ions in the same module. No limit is imposed on the
size of structures.

5-22

• Void data type
• Signed and unsigned bitfields

• Volatile type; variables can be declared as type
volatile to make them inaccessible to the optimiz­
er. This is useful for mapping to external devices.

• Const keyword

The void, volatile, and const extensions conform to
ANSI C standard (X3J11) features.
The output of the front end is a proprietary intermedi­
ate representation that can be either used as input to
the optional optimizer phase or passed directly to the
code generator. This intermediate language, known
as IR32, is an attributed tree-structured representa­
tion. IR32 is completely high-level language indepen­
dent; all of the GNX optimizing compilers produce the
same internal representation. This allows a common
back end to be shared by all GNX optimizing compil­
ers.

2.4 The Optimizer

The state-of-the-art GNX optimizer is based on ad­
vanced optimization theory developed over the past
15 years. Depending on the compiler and application
code characteristics, the GNX optimizer improves
code performance from 15 to 200 percent beyond that
of other compilers.

The GNX-Version 3 C optimizer is the most innovative
component of the GNX Optimizing Compilers. The op­
timizer's input is an IR32 intermediate representation
file; its output is an optimized IR32 file. The optimiza­
tion pass is optional.
Unlike many other optimizers that are local in nature,
optimizations are performed across the whole pro­
gram by using sophisticated global-data-flow analysis.

The optimization process can be thought of as a five­
step sequence. The sequence of optimizations has
been carefully chosen to ensure that each optimiza­
tion is performed to maximum effect and to provide
more opportunities for later optimizations. These
steps are as follows:

Step One-Local Optimizations

The source program is read-in one procedure at a
time. A procedure is then partitioned into basic blocks:
sequences of code that have branches only at entry
or exit. Optimizations performed at this stage include:

• Value Propagation-replacing variables with their
most recent values

• Constant Folding-evaluating expressions that
consist solely of constants

• Redundant Assignment Elimination--eliminating
assignments that are not used or that are reas­
signed prior to use

2.0 Compiler Structure (Continued)

The relationships between the various optimizations
are illustrated as follows:

The program Sequence

a = 4;
if (a*8 < 0) b = 15;

else b = 20;
••• code which uses b but

not 8 •••

is translated by the compiler front end into the fol­
lowing intermediate code

a~4

if (a*8 >= 0) goto Ll

b~15

goto L2
Ll: b ~ 20

L2:
which is transformed by "value propagation" into

a~4

if (4*8 >= 0) goto Ll

b~15

goto L2
Ll: b ~ 20

L2:
which after "constant folding" becomes

a~4

if (true) goto Ll

b~15

goto L2
Ll: b~20

L2:
"dead code removal" results in

a~4

goto Ll

Ll: b ~ 20

L2:
which is transformed by another "flow optimiza­
tion" into

a~4

b~20

Since there is no further use of a, a ~ 4 is a "re­
dundant assignment:"

b~20

Step Two-Flow Optimizations

A flow graph is constructed. Each basic block is a
node in the graph, with "arrows" drawn to represent

5-23

program flow. Optimizations performed at this stage
include:

• Branch Elimination-branches to branches are
removed. Code may be reordered to eliminate
branches.

• Dead Code Removal--code that will never be ex­
ecuted is removed.

The following diagram is an example of a flow graph:

TL/EE/l0363-2

Step Three-Global-Data-Flow Analysis

Global-data-flow analysis is a process that identifies
desirable global code transformations that can speed
code execution. Since studies have shown that most
programs spend 90 percent or more of their time in
loops, particular attention is paid to transformations
that allow loops to execute faster. This involves sever­
al techniques:

• Fully Redundant Expression Elimination-Ex­
pressions that are computed twice on the same
path are instead computed only once, with the re­
sult saved, usually in a register.

• Partially Redundant Expression Elimination-If
a path exists that contains a computation and a
path exists that does not contain a computation,
the computation is placed in each path. This makes
the expression fully redundant, allowing it to be
eliminated.

• Loop Invariant Code Motion-Values that are
computed repeatedly inside of a loop are instead
computed outside the loop and the result saved.

• Strength Reduction-Complex instructions are
replaced by simpler substitutes (Le., multiplications
may be replaced with a sequence of additions).

• Induction Variable Elimination-Variables that
maintain a fixed relation to other variables are re­
placed.

Step Four-Register Allocation

Register allocation is the process of placing variables
in registers rather than main memory, allowing much
faster access times. Proper allocation of registers can
lead to significant improvement in execution speed.
Most optimizing compilers attempt register allocation
for local variables, to avoid problems caused by "ali­
asing," or referring to a variable in more than one way.
By using a sophisticated algorithm, the GNX-Version 3
C Optimizing Compiler considers nearly all variables
as candidates for register allocations.

en
CD
CD'
rn
w
N
o
o
o
C)
Z
~
<
CD
U;
0'
::s
w
o
o
'C -3'
N'
5'
cc
o
o
3
"2,
CD"

~ r---~

.!!
's.
E
o
(.)

at
C

:8
E :e=
Q.

o
(.)
C")

c o
'f!
~
>< z
~
o o o
N
C")

en
CD
'E:
CD

tJ)

2,0 Compiler Structure (Continued)

The algorithm used by the optimizer is called the col­
oring algorithm, derived from graph theory. The "live
range" of each variable is constructed. The live range
is the program path along which a variable has a val­
ue; assignment to a variable generally starts a new
live range, which terminates with the last use of that
value. Two variables that do not have intersecting live
ranges can share a register. More frequently used
variables are given priority for register allocation. In
this way, maximum usage can be made of the regis­
ters. Other optimizations performed at this stage are:

• Allocation Of Safe And Scratch Registers-By
convention, registers RO through R2 and FO
through F3 are considered "scratch" registers;
their values are not retained across procedure
calls. Usage of these registers can reduce over­
head of procedure calls.

• Register Parameter Allocation-For static rou­
tines, parameters are passed in registers whenever
possible.

Step Five-Code Rewrite

Code is rewritten in IR32 to be passed to the code
generator. Code is reorganized where necessary to
increase performance.

2.5 The Code Generator

The code generator's input is an IR32 file; its output is
assembly code that can be assembled by the GNX
assembler into an object module.
The code generator matches expression trees with
optimal code sequences. Several "peephole" opti­
mizations are performed by the code generator: fur­
ther reduction of arithmetic identities, stack and frame
alignments, and stre~gth reductions.
In addition, the target CPU and FPU are taken into
consideration when code is produced. Sequences of
code are chosen based on the characteristics of the

target processor specified by the user. This further in­
creases code efficiency.

3,0 Ordering Information
Supported Host Environments and Order Codes:

SYS32/20: MicroVAX/VMS:
NSW-C-3-BHAF3 NSW-C-3-BCVM

SYS32/30: MlcroVAX/ULTRIX:
NSW-C-3-BHBF3 NSW-C-3-BCVX
VAX/VMS: Sun-3:
NSW-C-3-BRVM NSW-C-3-BCSX
VAX/ULTRIX (UNIX bsd):
NSW-C-3-BRVX

GNX-Version 3 Assembler and Cross-Development
tools (required for use with the Optimizing C Compil­
er):

SYS32/30:

SYS32/30:

VAX/VMS:
VAX/ULTRIX
(UNIX bsd:)
MicroVAX/VMS:

NSW-ASM-3-BHAF3 (provid­
ed with SYS32/20 system)
NSW-ASM-3-BHBF3 (provid­
ed with SYS32/30 system)
NSW-ASM-3-BRVM

NSW-ASM-3-BRVX
NSW-ASM-3-BCVM

MicroVAX/ULTRIX: NSW-ASM-3-BCVX
Sun-3: NSW-ASM-3-BCSX

For further information regarding National Semicon­
ductor's software development tools and develop­
ment hosts, please refer to the following datasheets:

5-24

GNX-Version 3 Development Tools
GNX-Version 3 FORTRAN 77 Compiler
GNX-Version 3 Pascal Compiler
SYS32/20 PC-Add-In-Development Package
SYS32/30 PC-Add-In-Development Package

r--, W

~ National Semiconductor PRELIMINARY

Series 32000® GNX-Version 3
FORTRAN 77 Optimizing Compiler

FORTRAN 77

• Generates high-quality code for the
Series 32000 architecture

• Implements the FORTRAN 77 Language
as described by the American Standard
publication Programming Language
FORTRAN (ANSI X3.9-1978)

• Uses state-of-the-art optimization
techniques

1.0 Introduction
A substantial amount of application code is developed
in a high-level language. Therefore, the speed and ef­
ficiency of the application are functions not only of
processor speed, but also of quality of code generat­
ed by the high-level language compiler. An inefficient
compiler can extract a significant performance penal­
ty. Likewise, a significant performance improvement
can be achieved for much lower cost in software rath­
er than hardware. For this reason, National Semicon­
ductor has developed a line of optimizing compilers
that generate extremely efficient code for the Series
32000 architecture.

1.1 Product Overview

The Series 32000 GNX-Version 3 FORTRAN 77 Opti­
mizing Compiler is a member of National Semiconduc­
tor's optimizing compiler family, which also includes
compilers that support the C and Pascal programming
languages. Because all three optimizing compilers use
a standard calling sequence, internal intermediate
representation, and object file format, mixed-language
programming is greatly simplified. The ability to use
mixed-language programming simplifies the porting of
pre-existing applications and code reuse. A detailed
discussion of mixed-language programming is pre­
sented in the GNX-Version 3 FORTRAN 77 Optimiz­
ing Compiler Reference Manual.

The FORTRAN 77 Optimizing Compiler fully imple­
ments the FORTRAN 77 programming language, as

5·25

Code
Generator

Assembly
Code

TL/EE/l0362-1

• Supports mixed-language programming
• Includes complete FORTRAN intrinsic

function and I/O libraries
• Implements many extensions to

standard FORTRAN 77
• Compiles under UNIX®, ULTRIXTM, and

VMSTM operating systems

defined by the American Standard publication Pro­
gramming Language FORTRAN (ANSI X3.9-1978). In
addition, a command-line option is provided that
forces the compiler to accept as input only programs
that adhere to the FORTRAN 66 standard.
The input to the FORTRAN 77 Optimizing Compiler is
a FORTRAN 77 language source program. The out­
put, controlled by command-line options, is either a
Series 32000 executable module, ~ Series 32000 ob­
ject module, or Series 32000 assembly code.

1.2 Native and Cross-support

The GNX-Version 3 FORTRAN 77 Optimizing Compil­
er is available hosted as a cross-support compiler on
the VAXTM series of computers, running the VMS,
UNIX (bsd), and UL TRIX operating systems. Also sup­
ported are National Semiconductor's SYS32TM/20
and SYS32/30 development environments.

1.3 GNX Development Tools

The GNX-Version 3 FORTRAN 77 Optimizing Compil­
er is an integral component of the GNX Cross-devel­
opment tool set. The GNX-Version 3 Assembler Pack­
age includes the Series 32000 assembler, the GNX
linker, debuggers, libraries, and development board
monitors. The GNX-Version 3 Assembler Package is a
prerequisite for the GNX-Version 3 FORTRAN 77 Op­
timizing Compiler. See the GNX-Version 3 Develop­
ment Tools Datasheet for more information on the
GNX Tools.

CD -.
CO·
en
w
N o
o o
C)
Z
>< <:
CD -. en
O·
::s
w
'T1 o
~
:lJ
l>
Z
.......
.......
o
"C -3'
N' s·
co
o
o
3
'2.
CD -.

~ r---~---------------------------
'is.
E
o
o
c::n
c
'N
'E
~ c. o
I'­
I'-
Z «
D:
I­
D: o u..
C")

c
o
'f
Q)

>
>< z
Cl
o
o o
N
C")

tn
Q)
'i:
Q)

C/)

1,0 Introduction (Continued)

The SYS32/20 and SYS32/30 PC-Add-In Develop­
ment Packages are complete, high-performance
packages that convert an IBM®-PCTM/ AT or compati­
ble computer into a powerful multi-user system for de­
veloping applications that use the Series 32000 fami­
ly. The SYS32 systems are based on the Series
32000 processor family; the SYS32/20 includes an
NS32032 Central Processing Unit, and the SYS32/30
is based on the NS32332 CPU. Both the SYS32/20
and SYS32/30 run a derivative of the UNIX System
V.3 operating system. Because these host systems
are themselves based on the Series 32000 processor
family, application code can be debugged on the host
system without down-loading to target hardware.

2,0 Compiler Structure
The FORTRAN 77 Optimizing Compiler is a modular
language processor consisting of five separate pro­
grams: the driver, the macro preprocessor (cpp), the
parser (front end), the optimizer, and the code genera­
tor.

2.1 The Driver

The driver is a program that parses and interprets the
command line and, in turn, sequentially calls each of
the other programs, based on its input and the com­
mand-line options invoked. Under the UNIX operating
system, the assembler and linker are also automati­
cally invoked by the driver as required; under VMS,
the assembler is invoked by the driver, and linking is
done at the command line.

2,2 The Macro Preprocessor (cpp)

The macro preprocessor is the standard C-Ianguage
preprocessor, known as cpp. Preprocessing is an op­
tional step and is performed only if macros are defined
in the FORTRAN 77 source code. The macro preproc­
essor's input is the FORTRAN 77 program with pre­
processor macros; its output is processed FORTRAN
77 code, with all preprocessor commands expanded
and transformed as necessary. The macro preproces­
sor can be used to define constants, insert text from
another file, or conditionally include or exclude source
code from compilation based on a testable condition.

2.3 FORTRAN 77 Language Parser (front end)

The FORTRAN 77 language parser, known as
f77_fe, takes as input a FORTRAN 77 program. The
output is an intermediate representation that can be
passed either to the optimizer or the code generator.
Several extensions to standard FORTRAN are imple­
mented in the FORTRAN 77 language parser.

Among the extensions implemented in the front end
are:

• Double Complex data type; each datum is repre­
sented by a pair of double-precision real variables.

• Short Integer data type; declarations of type
Integer'" 2 are accepted

5·26

• Hollerith (nh) notation
• Variable-length program lines
• unlimited identifier length and underscores in iden­

tifier names

• non-integer constants (binary, octal, and hexadeci­
mal)

• recursion; procedures may call themselves directly
or through a chain of other procedures

Note: A command-line option is provided that will force the compiler to
accept only code that conforms to the FORTRAN 77 (or
FORTRAN 66) standard (ANSI X3.9-1978).

The output of the front end is a proprietary intermedi­
ate representation that can be either used as input to
the optional optimizer phase or passed directly to the
code generator. This intermediate language, known
as IR32, is an attributed tree-structured representa­
tion. IR32 is completely high-level language indepen­
dent; all of the GNX optimizing compilers produce the
same internal representation. This allows a common
back end to be shared by all GNX optimizing compil­
ers.

2.4 The Optimizer

The state-of-the-art GNX optimizer is based on ad­
vanced optimization theory developed over the past
15 years. Depending on the compiler and application
code characteristics, the GNX optimizer improves
code performance from 15 to 200 percent beyond that
of other compilers.
The GNX-Version 3 FORTRAN 77 optimizer is the
most innovative component of the GNX Optimizing
Compilers. The optimizer's input is an IR32 intermedi­
ate representation file; its output is an optimized IR32
file. The optimization pass is optional.
Unlike many other optimizers that are local in nature,
optimizations are performed across the whole pro­
gram by using sophisticated global-data-flow analysis.
The optimization process can be throught of as a five­
step sequence. The sequence of optimizations has
been carefully chosen to ensure that each optimiza­
tion is performed to maximum effect and to provide
more opportunities for later optimizations. These
steps are as follows:

Step One-Local Optimizations

The source program is read-in one procedure at a
time. A procedure is then partitioned into basic
blocks: sequences of code that have branches only
at entry or exit. Optimizations performed at this stage
include:

• Value Propagation-replacing variables with their
most recent values

• Constant Folding-evaluating expressions that
consist solely of constants

• Redundant Assignment Elimination-eliminating
aSSignments that are not used or that are reas­
signed prior to use

2.0 Complier Structure (Continued)

The relationships between the various optimizations
are illustrated as follows:

The program Sequence
a = 4

IF (a • 8 .LT. 0) THEN
b = 15

ELSE
b = 20

ENDIF
... code which uses b but not a ...

is translated by the Compiler front end into the fol­
lowing intermediate code

a~4

if (a • 8 > = 0) goto L 1
b~15

goto L2
L1: b ~ 20

L2: ...
which is transformed by "value propagation" into

a~4

if (4 • 8 > = 0) goto L 1
b~15

goto L2
L1: b ~ 20

L2: ...
which after "constant folding" becomes

a~4

if (true) goto L 1
b~15

goto L2
L1: b ~ 20

L2: ...
"dead code removal" results in

a~4

goto L 1
L1: b ~ 20

L2: ...
which is transformed by another "flow optimiza­
tion" into

a~4

b~20

Since there is no further use of a, a ~ 4 is a "re­
dundant assignment:"

b~20

Step Two-Flow Optimizations

A flow graph is constructed. Each basic block is a
node in the graph, with "arrows" drawn to represent

5-27

program flow. Optimizations performed at this stage
include:
• Branch elimination-branches to branches are

removed. Code may be reordered to eliminate
branches.

• Dead code removal-code that will never be exe­
cuted is removed.

The following diagram is an example of a flow graph:

TL/EE/l0362-2

Step Three-Global-Data-Flow Analysis

Global-data-flow analysis is a process that identifies
desirable global code transformations that can speed
code execution. Since studies have shown that most
programs spend 90 percent or more of their time in
loops, particular attention is paid to transformations
that allow loops to execute faster. This involves sever­
al techniques:

• Fully redundant expression elimination-Ex­
pressions that are computed twice on the same
path are instead computed only once, with the re­
sult saved, usually in a register.

• Partially redundant expression elimination-If a
path exists that contains a computation and a path
exists that does not contain a computation, the
computation is placed in each path. This makes the
expression fully redundant, allowing it to be elimi­
nated.

• Loop invariant code motion-Values that are
computed repeatedly inside of a loop are instead
computed outside the loop and the result saved.

• Strength reduction-Complex instructions are re­
placed by simpler substitutes (Le., multiplications
may be replaced with a sequence ot' additions).

• Induction variable elimination-Variables that
maintain a fixed relation to other variables are re­
placed.

Step Four-Register Allocation

Register allocation is the process of placing variables
in registers rather than main memory, allowing much
faster access times. Proper allocation of registers can
lead to significant improvement in execution speed.
Most optimizing compilers attempt register allocation
for local variables, to avoid problems caused by "ali­
asing," or referring to a variable in more than one way.
By using a sophisticated algorithm, the GNX-Version 3
FORTRAN 77 Optimizing Compiler considers nearly
all variables as candidates for register allocations.

en
(1) ...
(ii'
en
w
I\)
o
o
o
G)
Z
>< <:
(1) ... en
0'
::s
w
-n o
:D
-I
:D
:t­
Z
.......
.......
o

"'C -3'
N'
5'
cc
(')
o
3
'2,
Ci) ...

~ ~--~
.!!
'Q.
E o
o
c:n c
'N
's
:;:
Q.

o
.....
Z
< a:
I­a:
~
C")

c
o
'i!!
~
><
Z
c:J
o o o
N
C")

en
CD
'i:
CD
U)

2.0 Compiler Structure (Continued)

The algorithm used by the optimizer is called the col·
orlng algorithm, derived from graph theory. The "live
range" of each variable is constructed. The live range
is the program path along which a variable has a val­
ue; assignment to a variable generally starts a new
live range, which terminates with the last use of that
value. Two variables that do not have intersecting live
ranges can share a register. More frequently used
variables are given priority for register allocation. In
this way, maximum usage can be made of the regis­
ters. Other optimizations performed at this stage are:

• Allocation of safe and scratch registers-By
convention, registers RO through R2 and FO
through FS are considered "scratch" registers;
their values are not retained across procedure
calls. Usage of these registers can reduce over­
head of procedure calls.

• Register Parameter Allocation-for static rou­
tines, parameters are passed in registers whenever
possible.

Step Flve-Code Rewrite

Code is rewritten in IRS2 to be passed to the code
generator. Code is reorganized where necessary to
increase performance.

2.5 The Code Generator

The code generator's input is an IRS2 file; its output is
assembly code that can be assembled by the GNX
assembler into an object module.
The code generator matches expression trees with
optimal code sequences. Several "peephole" opti­
mizations are performed by the code generator: fur­
ther reduction of arithmetic identities, stack and frame
alignments, and strength reductions.

In addition, the target CPU and FPU are taken into
consideration when code is produced. Sequences of
code are chosen based on the characteristics of the
target processor specified by the user. This further in­
creases code efficiency.

3.0 Ordering Information
Supported Host Environments and Order Codes:

SYSS2/20: VAX/ULTRIX (UNIX bsd):
NSW-F77-S-BHAFS NSW-F77-S-BRVX

SYSS2/S0: Micro VAX/VMS:
NSW-F77-S-BHBFS NSW-F77 -S-BCVM
VAX/VMS: Micro VAX/UL TRIX:
NSW-F77 -S-BRVM NSW-F77 -S-BCVX

GNX-Version S Assembler and Cross-development
tools (required for use with the Optimizing FORTRAN
77 Compiler):

SYSS2/S0:

SYSS2/S0:

VAX/VMS:

NSW-ASM-S-BHAFS
(provided with SYSS2/20
system)

NSW-ASM-S-BHBFS
(provided with SYSS2/S0
system)
NSW-ASM-S-BRVM

VAX/ULTRIX (UNIX bsd): NSW-ASM-S-BRVX
Micro VAX/VMS: NSW-ASM-S-BCVM

Micro VAX/ULTRIX: NSW-ASM-S-BCVX
For further information regarding National Semicon­
ductor's software development tools and develop­
ment hosts, please refer to the following datasheets:

5-28

GNX-Version S Development Tools
GNX-Version S C Compiler
GNX-Version S Pascal Compiler
SYSS2/20 PC-Add-In-Development Package
SYSS2/S0 PC-Add-In-Development Package

~ National Semiconductor PRELIMINARY

Series 32000® GNX-Version 3 Pascal
Optimizing Compiler

Pascal

• Generates high-quality code for the
Series 32000 architecture

• Implements the Pascal Language as
described by the International Standards
Organization (ISO) standard ISO dp7185
level 1

• Uses state-of-the-art optimization
techniques

1.0 Introduction
A substantial amount of application code is developed
in a high-level language. Therefore, the speed and ef­
ficiency of the application are functions not only of
processor speed, but also of quality of code generat­
ed by the high-level language compiler. An inefficient
compiler can extract a significant performance penal­
ty. Likewise, a significant performance improvement
can be achieved for much lower cost in software rath­
er than hardware. For this reason, National Semicon­
ductor has developed a line of optimizing compilers
that generate extremely efficient code for the Series
32000 architecture.

1.1 Product Overview

The Series 32000 GNX-Version 3 Pascal Optimizing
Compiler is a member of National Semiconductor's
optimizing compiler family, which also includes compil­
ers that support the C and FORTRAN 77 program­
ming languages. Because all three optimizing compil­
ers use a standard calling sequence, internal interme­
diate representation, and object file format, mixed-lan­
guage programming is greatly simplified. The ability to
use mixed-language programming simplifies the port­
ing of pre-existing applications and code reuse. A de­
tailed discussion of mixed-language programming is
presented in the GNX-Version 3 Pascal Optimizing
Compiler Reference Manual.

5-29

Code
Generator

Assembly
Code

TLlEE/10365-1

• Supports mixed-language programming
• Includes a complete Pascal run-time

library and highly optimized math library
• Implements many extensions to

standard Pascal
• Compiles under UNIX®, ULTRIXTM and

VMSTM operating systems

The Pascal Optimizing Compiler fully implements the
Pascal programming language, as defined by the In­
ternational Standards Organization (ISO) standard
ISO dp7185 level 1, with several useful extensions to
the compiler extensions found in the University of Cali­
fornia, Berkeley Pascal compiler (pc). In addition, a
command-line option is provided that forces the com­
piler to accept as input only programs that adhere to
the ISO standard.
The input to the Pascal Optimizing Compiler is a Pas­
cal language source program. The output, controlled
by command-line options, is either a Series 32000 ex­
ecutable module, a Series 32000 object module, or
Series 32000 assembly code.

1.2 Native and Cross-Support

The GNX-Version 3 Pascal Optimizing Compiler is
available hosted as a cross-support compiler on the
VAXTM series of computers, running the VMS, UNIX
(bsd), and ULTRIX operating systems. Also supported
are National Semiconductor's SYS32TM/20 and
SYS32/30 development environments.

1.3 GNX Development Tools

The GNX-Version 3 Pascal Optimizing Compiler is an
integral component of the GNX Cross-development
tool set. The GNX-Version 3 Assembler Package in­
cludes the Series 32000 assembler, the GNX linker,

en
CD ..,
(D'
en
w
I\)
o
o
o
C)
Z
>< <:
CD ..,
en o·
:::J
W
"'C
D)
en
(")

~
o
"C -3'
N'
s·
cc
o
o
3
'2.
CD" ..,

~ .-----------------~--~
.!!
'is..
E
o
o
en
c
'N
'E
;:;
Q.

o
ca
Co)
en ca
a.
C")

c
o
.~

CD
> • >< z
CJ
o
Q
o
C\I
C")

en
CD
'i:
CD

tJ)

1.0 Introduction (Continued)

debuggers, libraries, and development board moni­
tors. The GNX-Version 3 Assembler Package is a pre­
requisite for the GNX-Version 3 Pascal Optimizing
Compiler. See the GNX-Version 3 Development Tools
Datasheet for more information on the GNX Tools.
The SYS32/20 and SYS32/30 PC-Add-In Develop­
ment Packages are complete, high-performance
packages that convert an IBM-PCTM/AT or compati­
ble computer into a powerful multi-user system for de­
veloping applications that use the Series 32000 fami­
ly. The SYS32 systems are based on the Series
32000 processor family; the SYS32/20 includes an
NS32032 Central Processing Unit, and the SYS32/30
is based on the NS32332 CPU. Both the SYS32/20
and SYS32/30 run a derivative of the UNIX System
V.3 operating system. Because these host systems
are themselves based on the Series 32000 processor
family, application code can be debugged on the host
system without down-loading to target hardware.

2.0 Compiler Structure
The Pascal Optimizing Compiler is a modular lan­
guage processor consisting of five separate programs:
the driver, the macro preprocessor (cpp), the parser
(front end), the optimizer, and the code generator.

2.1 The Driver

The driver is a program that parses and interprets the
command line and, in turn, sequentially calls each of
the other programs, based on its input and the com­
mand-line options invoked. Under the UNIX operating
system, the assembler and linker are also automati­
cally invoked by the driver as required; under VMS,
the assembler is invoked by the driver, and linking is
done at the. command line.

2.2 The Macro Preprocessor (cpp)

The macro preprocessor is the standard C-Ianguage
preprocessor, known as cpp. Preprocessing is an op­
tional step and is performed only if macros are defined
in the Pascal source code. The macro preprocessor's
input is the Pascal program with preprocessor macros;
its output is processed Pascal code, with all preproc­
essor commands expanded and transformed as nec­
essary. The macro preprocessor can be used to de­
fine constants, insert text from another file, or condi­
tionally include or exclude source code from compila­
tion based on a testable condition.

2.3 The Pascal Language Parser (front end)

The Pascal language parser, known as pas_fe, takes
as input a Pascal program. The output is an intermedi­
ate representation that can be passed either to the
optimizer or the code generator. Conformant array pa­
rameters, as defined in the ISO level 1 Standard, are
fully supported. Several extensions to standard Pascal
are implemented in the Pascal language parser.

5-30

Among the extensions implemented in the front end
are:

• Separate compilation; programs can be divided into
a number of files that can be compiled separately

• Longreal data type; double-precision (64-bit) float-
ing point values

• String padding of constant strings with blanks

• Conversions of pointers to integers and vice versa

• Unlimited identifier length and underscores in iden­
tifier names

• Non-integer constants (binary, octal, and hexadeci­
mal)

• Constant expressions; constants can be defined in
terms of mathematical expressions

• predefined argc and argv functions; allows appli­
cation programs to easily accept and process com­
mand-line arguments

Note: A command-line option is provided that will force the compiler to
accept only code that conforms to the ISO Pascal standard ISO
dp7185 level 1.

The output of the front end is a proprietary intermedi­
ate representation that can be either used as input to
the optional optimizer phase or passed directly to the
code generator. This intermediate language, known
as IR32, is an attributed tree-structured representa­
tion. IR32 is completely high-level language indepen­
dent; all of the GNX optimizing compilers produce the
same internal representation. This allows a common
back end to be shared by all GNX optimizing compil­
ers.

2.4 The Optimizer

The state-of-the-art GNX optimizer is based on ad­
vanced optimization theory developed over the past
15 years. Depending on the compiler and application
code characteristics, the GNX optimizer improves
code performance from 15 to 200 percent beyond that
of other compilers.
The GNX-Version 3 Pascal optimizer is the most inno­
vative component of the GNX Optimizing Compilers.
The optimizer's input is an IR32 intermediate repre­
sentation file; its output is an optimized IR32 file. The
optimization pass is optional.

Unlike many other optimizers that are local in nature,
optimizations are performed across the whole pro­
gram by using sophisticated global-data-flow analysis.
The optimization process can be thought of as a five­
step sequence. The sequence of optimizations has
been carefully chosen to ensure that each optimize is
performed to maximum effect and to provide more op­
portunities for later optimizations. These steps are as
follows:

Step One-Local Optimizations

The source program is read-in one procedure at a
time. A procedure is then partitioned into basic
blocks: sequences of code that have branches only

2.0 Compiler Structure (Continued)

at entry or exit. Optimizations performed at this stage
include:

• Value Propagation-replacing variables with their
most recent values

• Constant Foldlng-evaluating expressions that
consist solely of constants

• Redundant Assignment Ellmlnatlon-eliminating
assignments that are not used or that are reas­
signed prior to use

Step Two-Flow Optimizations
A flow graph is constructed. Each basic block is a
node in the graph, with "arrows" drawn to represent
program flow. Optimizations performed at this stage
include:

• Branch elimination-branches to branches are
removed. Code may be reordered to eliminate
branches.

• Dead code removal---code that will never be exe­
cuted is removed.

The following diagram is an example of a flow graph:

TL/EE/10365-2

Step Three-Global-Data-Flow Analysis

Global-data-flow analysis is a process that identifies
desirable global code transformations that can speed
code execution. Since studies have shown that most
programs spend 90 percent or more of their time in
loops, particular attention is paid to transformations
that allow loops to execute faster. This involves sever­
al techniques:

• Fully redundant expression elimination-Ex­
pressions that are computed twice on the same
path are instead computed only once, with the re­
sult saved, usually in a register.

• Partially redundant expression elimination-If a
path exists that contains a computation and a path
exists that does not contain a computation, the
computation is placed in each path. This makes the
expression fully redundant, allowing it to be elimi­
nated.

• Loop Invariant code motion-Values that are
computed repeatedly inside of a loop are instead
computed outside the loop and the result saved.

• Strength reductlon-Complex instructions are re­
placed by simpler substitutes (I.e., multiplications
may be replaced with a sequence of additions).

• Induction variable elimination-Variables that
maintain a fixed relation to other variables are re­
placed.

5-31

The relationship between the various optimizations
are illustrated as follows:

The program sequence
a:= 4;
if (a * 8 < 0) then b : = 15;
b:= 20;
... code which uses b but not a ...

is translated by the Compiler front end into the fol­
lowing intermediate code

a+--4
if (a * 8 > = 0) goto L 1
b +-- 15
goto L2

L1: b +-- 20
L2: ...

which is transformed by "value propagation" into
a+--4
if (4 * 8 > = 0) goto L1
b +-- 15
goto L2

L1: b +-- 20
L2: ...

which after "constant folding" becomes
a+--4
if (true) goto L 1
b +-- 15
goto L2

L 1: b +-- 20
L2: ...

"dead code removal" results in
a+--4
goto L 1

L1: b +-- 20
L2: ...

which is transformed by another "flow optimiza­
tion" into

a+--4
b +-- 20

Since there is no further use of a, a+--4 is a "re­
dundant assignment:"

b +-- 20

Step Four-Register Allocation

Register allocation is the process of placing variables
in registers rather than main memory, allowing much
faster access times. Proper allocation of registers can
lead to significant improvement in execution speed.
Most optimizing compilers attempt register allocation
for local variables, to avoid problems caused by "ali­
asing," or referring to a variable in more than one way.
By using a sophisticated algorithm, the GNX-Version 3
Pascal Optimizing Compiler considers nearly all vari­
ables as candidates for register allocations.

en
CD
CD'
C/)

W
N
o
o
o
C)
Z
>< <:
CD
Ci1 o·
~

w

" Q)
C/)
n
~
o
'C -3'
N' s·

CQ

o
o
3
"2.
m

...
.!!
'a.
E
o
o
C)
c
'N
'E
;:;
c.
o
ca
(,)
rn
'" D..

Cf)

C
o
'~
CI)

>
>< Z

" o
o o
N
Cf)

rn
CI)
'i:
CI)

C/)

2.0 Compiler Structure (Continued)

The algorithm used by the optimizer is called the col­
oring algorithm, derived from graph theory. The "live
range" of each variable is constructed. The live range
is the program path along which a variable has a val­
ue; assignment to a variable generally starts a new
live range, which terminates with the last use of that
value. Two variables that do not have intersecting live
ranges can share a register. More frequently used
variables are given priority for register allocation. In
this way, maximum usage can be made of the regis­
ters. Other optimizations performed at this stage are:

• Allocation of safe and scratch registers-By
convention, registers RO through R2 and FO
through F3 are considered "scratch" registers;
their values are not retained across procedure
calls. Usage of these registers can reduce over­
head of procedure calls.

• Register Parameter Allocation-For static rou­
tines, parameters are passed in registers whenever
possible.

Step-Five-Code Rewrite

Code is rewritten in IR32 to be passed to the code
generator. Code is reorganized where necessary to
increase performance.

2.5 The Code Generator

The code generator's input is an IR32 file; its output is
assembly code that can be assembled by the GNX
assembler into an object module.
The code generator matches expression trees with
optimal code sequences. Several "peephole" opti­
mizations are performed by the code generator: fur­
ther reduction of arithmetic identities, stack and frame
alignments, and strength reductions.
In addition, the target CPU and FPU are taken into
consideration when code is produced. Sequences of
code are chosen based on the characteristics of the
target processor specified by the user. This further in­
creases code efficiency.

5-32

3.0 Ordering Information
Supported Host Environments and Order Codes:
SYS32/20:
NSW-PAS-3-BHAF3
SYS32/30:
NSW-PAS-3-BHBF3
VAX/VMS:
NSW-PAS-3-BRVM
VAX/ULTRIX (UNIX bsd):
NSW-PAS-3-BRVX
Micro VAX/VMS:
NSW-PAS-3-BCVM
Micro VAX/ULTRIX:
NSW-PAS-3-BCVX
GNX-Version 3 Assembler and Cross-development
tools (required for use with the Optimizing Pascal
Compiler):
SYS32/20:

SYS32/30:

VAX/VMS:
VAX/ULTRIX
(UNIXbsd):

NSW-ASM-3-BHAF3 (provided
with SYS32/20 system)
NSW-ASM-3-BHBF3 (provided
with SYS32/30 system)
NSW-ASM-3-BRVM

NSW-ASM-3-BRVX
MicroVAX/VMS: NSW-ASM-3-BCVM
MicroVAX/ULTRIX: NSW-ASM-3-BCVX
For further information regarding National Semicon­
ductor's software development tools and develop­
ment hosts, please refer to the following datasheets:

GNX-Version 3 Development Tools
GNX-Version 3 C Compiler
GNX-Version 3 FORTRAN 77 Compiler
SYS32/20 PC-Add-In Development Package
SYS32/30 PC-Add-In Development Package

Section 6
Physical Dimensions!
Appendices

Section 6 Contents
Glossary of Terms. 6-3
Physical Dimensions. 6-10
Bookshelf
Distributors

6-2

Glossary
In our efforts to be concise and precise, we often invent new words or acronyms to use as shorthand representations of "things"
that require much longer names if the jargon is not used. Being humans, we then become very impressed with our ability to
exclude those not in "the know" and another "in" group is formed. This glossary has been developed to help bridge this
language gap. We know it will help. We hope you will use it.

Abort-The first step of recovery when an instruction or its operand(s) is not available in main memory. An Abort is initiated by
the Memory Management Unit (MMU) and handled by the CPU.

Absolute Address-An address that is permanently assigned to a fixed location in main memory. In assembly code, a pattern
of characters that identifies a fixed storage location.

Access Time-The time interval between when a request for information is made and the instant this information is available.

Access Class-The five Series 32000 access classes are memory read, memory write, memory read-modify-write, memory
address, and register address. The access class informs the Series 32000 CPU how to interpret a reference to a general
operand. Each instruction assigns an access class to each of it two operands, which in turn fully defines the action of any
addressing mode in referencing that operand.

Accumulator-A register which stores the result of an ALU operation.

Ada-A high level language designed for the Department of Defense. It gives preference to full English words. It is meant to be
the standard military language.

Address-An expression, usually numerical, which designates a specific location in a storage or memory device.

Address-Data Reglster-A register which may contain either address or data, sometimes referred to as a general-purpose
register.

Address Strobe-Control signal used to tell external devices when the address is valid on the external address bus.

Address Translation-The process by which a logical address emanating from the CPU is transformed into a physical address
to main memory. This is performed by the Memory Management Unit (MMU) in Series 32000 systems. Logical address to
Physical address mapping is established by the operating system when it brings pages into main memory.

Addressing Mode-The manner in which an operand is accessed. Series 32000 CPUs have nine addressing modes: Register,
Register Relative, Memory Relative, Immediate, Absolute, External, Top-of Stack, Memory Space, and Scaled Indexing.

Algorithm-A set of procedures to which a given result is obtained.

Alignment-The issue of whether an instruction must begin on a byte, double byte, or quad byte address boundary.

ALU-Arithmetic Logic Unit. A computational subsystem which performs the arithmetic and logical operations of a digital
system.

Array-A structured data type consisting of a number of elements, all of the same data type, such that each data element can
be individually identified by an integer index. Arrays represent a basic storage data type used in all high-level languages.

ASCII-(American National Standard Code for Information Interchange, 1968). This standard code uses a character set gener­
ally coded as 7-bit characters (8-bits when using parity check). Originally defined to allow human readable information to be
passed to a terminal, it is used for information interchange among data processing systems, communication systems, and
associated equipment. The ASCII set consists of alphabetic, numeric, and control characters. Synonymous with USASCII.

Assemble-To prepare a machine language program (also called machine code or object code) from a symbolic language
program by substituting absolute operation codes for symbolic operation codes and absolute or relocatable addresses for
symbolic addresses. Machine code is a series of ones and zeros which a computer "understands".

Assembler-This program changes the programmer's source program (written in English assembly language and understand­
able to the programmer) to the 1's and O's that the machine "understands". In particular, the Assembler converts assembly
language to machine code. This machine code output is called the OBJECT file.

Assembly Language-A step up in the language chain. This is a set of instructions which is made up of alpha numeric
characters which, with study, are understandable to the programmer. Different type of machines have different assembly
languages, so the assembly language programmer must learn a different set of instructions each time s/he changes machine.

Associative Cache-A dual storage area where each data entry has an associated "tag" entry. The tags are simultaneously
compared to the input value (a logical address) in the case of the MMU, and if a matching tag is found, the associated data entry
is output. An associative cache is present within the MMU in Series 32000 systems to provide logical-to-physical address
translation.

Asynchronous Devlce-A device in which the speed of operation is not related to any frequency in the system to which it is
connected.

BASIC-This acronym stands for Beginner's All-purpose Symbolic Instruction Code. BASIC is one of the most "English like" of
the high level languages and is usually the first programming language learned.

Baud Rate-Data transfer rate. For most serial transmission protocols, this is synonymous with bits-per-second (bps).

BCD-Binary Coded Decimal. A binary numbering system for coding decimal numbers. A 4-bit grouping provides a binary value
range from 0000 to 1001, and codes the decimal digits "0" through "9". To count to 9 requires a single 4-bit grouping; to count
to 99 takes two groupings of 4 bits; to count to 999 takes three groupings of 4 bits, etc.

Benchmark-In terms of computers, this refers to a software program designed to perform some task which will demonstrate
the relative processing speed of one computer versus another.

6-3

~
m Glossary (Continued)
U)
o Bit-An abbreviation of "binary digit". It is a unit of information represented by either a one or a zero.

c; Bit Fleld-A group of bits addressable as a single entity. A bit field is fully specified by the location of its least significant bit and
its length in bits. In Series 32000 systems, bit fields may be from one to 32 bits in length.

Branch-A nonsequential flow in a software instruction stream.

Breakpolnt-A place in a routine specified by an instruction, instruction digit, or other condition, where the software program
flow will be interrupted by external intervention or by a monitor routine.

Buffer-An isolating circuit used to avoid reaction of a driven circuit on the corresponding driver circuit. Buffers also supply
increased current drive capacity.

Bus-A group of conductors used for transmitting signals or power.

Bus Cycle-The time necessary to complete one transfer of information requiring the use of external address, data and control
buses.

Byte-Eight bits.

Byte Enable-BEO to BE3. CPU control signals which activate memory banks, each bank providing one byte of data per
address.

C-A highly structured high level language developed by Bell Laboratories to optimize the size and efficiency of the program.
This language has gained much popularity because it allows the programmer to get close to the hardware (low level) as well as
being a high level language. Before C, the programmer who had to address the hardware had to use assembly language or
machine code.

Cache-See Associative Cache.

Cache Hit-In the MMU, logical-to-physical address translation takes place via the associative cache. For this to happen, the
addressed page must be resident in physical memory such that a logical address tag is present in the MMU's translation cache.

Cache Miss-When a logical address is presented to the MMU, and no physical address translation entry is found In the MMU's
associative cache.

Cascaded-Stringing together of units to expand the operation of the unit. Interrupt Control Units present in a Series 32000
system which are in addition the Master ICU are referred to as "cascaded" ICUs; I.e., interrupts cascade from a second-level
ICU through the master ICU to the CPU.

Clock-A device that generates a periodic Signal used for synchronization.

Clock Cycle-After making a low-to-high transition, the clock will have completed one cycle when it is about to make another
low-to-high transition. This time is equal to 1 If where f = the clock frequency.

COBOL-This acronym stands for "Common Business Oriented Language". It is a language especially good for bookkeeping
and accounting.

COFF·COMMON OBJECT FILE FORMAT is a standard way of constructing files developed by AT&T for the express purpose of
making all files similar. This will help reduce the situation where large files developed by one organization won't run on another
organization's equipment simply because the software interfaces are different. It provides a great potential for savings in both
time and money.

Compile-To take a program written in a High-Level Language such as C, Pascal, or FORTRAN and convert it into an object­
code format which can be loaded into a computer's main memory. During compilation, symbolic HLL statements, called source
code, are converted into one or more machine instructions which the CPU "understands". A compiler also calls the assemble
function.

Complier-The program that converts from Source to Machine Code. The conversion is from a particular high level language to
machine code. For example, the C compiler will convert a C source program written by a programmer to machine code. This
machine code output is in the same format as that of the assembler and is also called an OBJECT file.

CPU-Central Processing Unit. The portion of a computer system that contains the arithmetic logic unit, register file, and other
control oriented subsystems. It performs arithmetic operations, controls instruction processing, and provides timing signals and
other housekeeping operations.

Cross Support-The alternative to using a "Native" development like SYS32 to develop your programs is to use Cross Support
software. "Native" means that the CPU in the development system is the same as the CPU in the system being developed.
Cross support software is all of the necessary programs for development that operate on one CPU, but generate code for
another CPU. Use of the VAX to generate Series 32000 code is a good example of cross support.

Demand·Paged Virtual Memory-A virtual memory method in which memory is divided into blocks of equal size which are
referred to as pages. These pages are then moved back and forth between main memory and secondary storage as required by
the CPU. Demand paging reduces the problem of memory fragmentation which results in unused memory space.

Dispatch Table-In Series 32000 systems, this is an area of memory which contains interrupt descriptors for all possible
hardware interrupts and software traps. The interrupt descriptor directs the CPU to the module descriptor for the procedure
which is designed to handle that particular interrupt.

Dlsplacement-A numerical offset from a known point of reference. Displacements are used in programming to facilitate
position independent code, such that a given program can be loaded anywhere in memory. In Series 32000 processors, a
displacement is contained in the instruction itself.

6-4

Glossary (Continued)

DMA-Direct Memory Access. A method that uses a small processor (DMA Controller) whose sole task is that of controlling
input-output or data movement. With DMA, data is moved into or out of the system without CPU intervention once the DMA
controller has been initialized by the CPU and activated.

Double-Preclslon-With reference to 32000 floating-point arithmetic, a double-precision number has a 52-bit fraction field, 11-
bit exponent field and a sign bit (64-bits total).

Double Word-Two words, i.e., 32 bits.

Edltor-A program which allows a person to write and modify text. This program can be as complicated as the situation
requires, from the very simple line editor to the most complicated word processor. Letters, numbers and unprintable control
characters are stored in memory so that they can be recalled for modification or printing. The programmer uses this device to
enter the program into the computer. At this stage, the program is recognizable to both the programmer and the computer as
lines of English text. This English version of the program is known as the SOURCE.

Emulate-To imitate one system with another, such that the imitating system accepts the same data, executes the same
programs, and achieves the same results as the imitated system.

Exception-An occurrence which must be resolved through CPU intervention. An exception results in the suspension of normal
program flow. In Series 32000 systems, exceptions occur as a result of a hardware reset, interrupt or software traps. Execution
of floating-point instructions may also result in occurrences which must be resolved through CPU intervention.

Exponent-In scientific notation, a numeral that indicates the power to which the base is raised.

EXEC2-NSC's Real Time Executive for Series 32000.

FIFO-First-in first-out. A FIFO device is one from which data can be read out only in the same order as it was entered, but not
necessarily at the same rate.

Floating-Point-A method by which computers deal with numbers having a fractional component. In general, it pertains to a
system in which the location of the decimal/binary point does not remain fixed with respect to one end of numerical expressions,
but is regularly recalculated. The location of the point is usually given by expressing a power of the base.

FORTRAN-A high level language written for the scientific community. It makes heavy use of algebraic expressions and
arithmetic statements.

FP-Frame Pointer. CPU register which points to a dynamically allocated data area created at the beginning of a procedure by
the ENTER instruction.

FPU-Floating-Point Unit is a slave processor in Series 32000 systems which implements in hardware all calculations needed to
support floating-point arithmetic, which otherwise would have to be implemented in software. The NS32081 FPU provides high­
speed floating point instructions for single (32-bit) and double (64-bit) precision. Supports IEEE standard for binary floating point
arithmetic. Compatible with NS32032, NS32C032, NS32016, NS32C016 and NS32008 CPUs.

Fragmented-The term used to describe the presence of small, unused blocks of memory. The problem is especially common
in segmented memory systems, and results in inefficient use of memory storage.

Frame-A block of memory on the stack that provides local storage for parameters in the current procedure.

GENIX-The NSC version of the UNIX operating system, ported to work with the Series 32000. It also has all of the necessary
utilities added so that program development can be accomplished.

Hardware-Physical equipment, e.g., mechanical, magnetic, electrical, or electronic devices, as opposed to the software
programs or method in which the hardware is used.

High Level Languages-These are languages which are not dependent on the type of computer on which they run. A program
written in a high level language will generally run on any computer for which there is a compiler for that language. This feature
makes high level languages "Portable", i.e., the same program will run on many different types of computers. A HLL requires a
compiler or interpreter that translates each HLL statement into a series of machine language instructions for a particular
machine.

ICU-Interrupt Control Unit. A memory-mapped microprocessor support chip in Series 32000 systems which handles external
interrupts as well as additional software traps. The ICU provides a vector to the CPU to identify the servicing software procedure.

Indexing-In computers, a method of address modification that is by means of index registers.

Index Reglster-A register whose contents may be added to or subtracted from the operand address.

Indirect Addressing-Programming method where the initial address is the storage location of a word which is the actual
address. This indirect address is the location of the data to be operated upon.

Instructlon-A statement that specifies an operation and the values or locations of its operands, i.e., it tells the CPU what to do
and to what.

Instruction Cycle-The period of time during which a programmed system executes a particular instruction.

Instruction Fetch-The action of accessing the next instruction from memory, often overlapped by its partial execution.

Instruction Queue-With Series 32000 CPUs, this is a small area of RAM organized as a FIFO buffer which stores prefetched
instructions until the CPU is ready to execute them.

Interpreter-A program which translates HLL statements into machine instructions at run time, i.e., while the program is
executing, and is co-resident with the user program.

6-5

~
m Glossary (Continued) en
o Interrupt-To signal the CPU to stop a software program in such a way that it can be resumed and branch to another section of
C; code. Interrupts can be caused by events external or internal to the CPU, and by either software or hardware.

INTBASE-Interrupt Base Register. In the Series 32000, a 32-bit CPU register which holds the address of the dispatch table
containing addresses for interrupts and traps.

ISE-In-System Emulator. A computer system which imitates the operation of another in terms of software execution. In
microprocessor system development, the ISE takes the place of the microprocessor by means of a connector at the end of an
umbilical cable. Not only does the ISE perform all the functions of the microprocessor, but it also allows the engineer to debug
his system by setting breakpoints on various conditions, permits tracing of program flow, and provides substitution memory
which may be used in place of actual target system memory.

ISV-Independent Software Vendor. A vendor, independent from National Semiconductor, who ports or develops software for
Series 32000 components. They in turn sell this software to our customers who are designing Series 32000 based products.

Kernel-This is the name given to the core of the operating system. Other programs are added to the kernel to provide the
features of the operating system. The kernel provides control and synchronization.

Language-A set of characters and symbols and the rules for using them. In our context, it is the "English like" format of the
instructions which are understood by both the programmer and the computer.

Library-High level languages as well as assembly language contain many routines which are used over and over again. To
prevent the programmer from having to write the routine every time it is needed, these routines are stored in libraries to be
referenced each time they are needed. These libraries are also OBJECT files.

Linear Address Space-An address space where addresses start at location zero and proceed in a linear fashion (Le., with no
holes or breaks) to the upper limit imposed by the total number of bits in a logical address.

Link Base-In the Series 32000, Module Descriptor entry which points to a table in memory containing entries which reference
variables or entry points in Modules external to the one presently executing.

Linker-Large programs are generally broken down to component parts and farmed out to several programmers. Each one of
these parts is called a MODULE. Each programmer will develop the module using either high level or assembly language, then
"assemble" assembly language modules or "compile" high level language modules. A programmer tells the linker how to
connect these modules to make the program run. The linker makes these connections, resolves all questions about data
needed by one module, but contained in another, finds all library routines, and cleans up any other loose ends. The output from
the linker is called BINARY file and is the file that will run on the computer.

Logical Address Space-The range of addresses which a programmer can assign in a software program. This range is
determined by the length of the computer's address registers.

LSB-Least Significant Bit. The bit in a string of bits representing the lowest value.

Machine Code-The code that a computer recognizes. Specifies internal register files and operations that directly control the
computer's internal hardware.

Machine Language-The ones and zeros which are "understood" by the machine. This is often called "Binary Code." The
programmer must be able to understand the bit patterns to be able to decipher the language. Each machine has a unique
machine language.

Main Memory-The program and data storage area in a computer system which is physically addressed by the microprocessor
or MMU address lines.

Mantissa-In a floating-point number, this is the fractional component.

Mapping-The process whereby the operating system assigns physical addresses in main memory to the logical addresses
assigned by the software.

Memory-Mapped-Referring to peripheral hardware devices which are addressed as if they were part of the computer's
memory space. They are accessed in the same manner as main memory, i.e., through memory read/write operations.

Microcode-A sequence of primitive instructions that control the internal hardware of a computer. Their execution is initiated by
the decoding of a software instruction. Microcode is maintained in special storage and often used in place of hardwired logic.

Microcomputer-A computer system whose Central Processing Unit is a Microprocessor. Generally refers to a board-level
product.

Minlcomputer-A "box-level" computer with system capabilities generally between that of a microcomputer and a mainframe.

MMU-Memory Management Unit. This is a slave processor in Series 32000 which aids in the implementation of demand-paged
virtual memory. It provides logical to physical address translation and initiates an instruction abort to the CPU when a desired
memory location is not in main memory.

MOD-Mod Register. In the Series 32000, a 16-bit CPU register which holds the address of the Module Descriptor of the
currently executing software module.

Module-An independent subprogram that performs a specific function and is usually part of a task, i.e., part of a larger
program.

Module Descriptor-In the Series 32000, a set of four 32-bit entries found in main memory. Three are currently defined and
point to the static data area, link table, and first instruction of the module it describes. The fourth is reserved.

6-6

Glossary (Continued)

Modularlty-A software concept which provides a means of overcoming natural human limitations for dealing with programming
complexity by specifying the subdivision of large and complex programming tasks into smaller and simpler subprograms, or
modules, each of which performs some well-defined portion of the complete processing task.

MSB-Most Significant Bit. The bit in a string of bits representing the highest value.

NET-Short for NETWORK and describes a number of computers connected to each other via phone or high speed links. A net
is convenient for exchanging common information in the form of "mail" as well as for data exchange.

NMI-Nonmaskable Interrupt. A hardware interrupt which cannot be disabled by software. It is generally the highest priority
interrupt.

Object Code-Output from a compiler or assembler which is itself executable machine code (or is suitable for processing to
produce executable machine code).

Operand-In a computer, a datum which is processed by the CPU. It is referenced by the address part of an instruction.

Operating System-A collection of integrated service routines used by the computer to control the sequence of programs. The
operating system consists of software which controls the execution of computer programs and which may provide storage
assignment, input/output control, scheduling, data management, accounting, debugging, editing, and related services. Their
sophistication varies from small monitor systems, like those used on boards, to the large, complex systems used on main
frames.

Operating System Mode-In this mode, the CPU can execute all instructions in the instruction set, access all bits in the
Processor Status Register, and access any memory location available to the processor. .

Operator-In the description of an instruction, it is the action to be performed on operands.

Page Fault-A hardware generated trap used to tell the operating system to bring the missing page in from secondary storage.

Page Swap-The exchange of a page of software in secondary storage with another page located in main memory. The
operating system supervises this operation, which is executed by the CPU and involves external devices such as disk and DMA
controllers.

Page Table-A 1 K-byte area in main memory containing 256 entries which describe the location and attributes of all pointer
tables, Le., a list of pointer table addresses.

Perlpheral-A device which is part of the computer system and operates under the supervision of the CPU. Peripheral devices
are often physically separated from the CPU.

Pascal-A high level language designed originally to teach structured programming. It has become popular in the software
community and has been expanded to be a versatile language in industry.

Physical Address-The address presented to main memory, either by the CPU or MMU.

Pointer Table-A 512-byte page located either in main memory or secondary storage containing 128 entries. Each entry
describes an individual page of the software program. Each page of the software program may reside in main memory or in
secondary storage.

Pop-To read a datum from the top of a stack.

PORT-To port an operating system is to cause that particular operating system to operate with a defined hardware package.
GENIX is the NSC version of UNIX which has been ported to SYS32. The operating system for other Series 32000 based
systems will differ in some degree from SYS32 and the NSC GENIX binary will not operate. It is now necessary to modify GENIX
to fit the situation caused by the new hardware. The GENIX SOURCE is used because this is the program that is most readily
understood by the programmer. The source is changed, compiled, and linked to get a new binary for that particular machine.

Primitive Data Type-A data type which can be directly manipulated by the hardware. With Series 32000, these are integers,
floating-point numbers, Booleans, BCD digits, and bit fields.

Procedure-A subprogram which performs a particular function required by a module, Le., by a larger program; an ordered set
of instructions that have a general or frequent use.

Process-A task.

Program Base-Module Descriptor entry which points to the first instruction in the module being described.

Program Counter-CPU register which specifies the logical address of the currently executing instruction.

Protection-The process of restricting a software program's access to certain portions of memory using hardware mecha­
nisms. Typically done at the operating system and page level.

PSR-Processor Status Register. A 16-bit register on Series 32000 CPU's which contains bits used by the software to make
decisions and determine program flow.

Push-to write a datum to the top of a stack.

Quad word-Four words, Le., 64 bits.

Queue-A First-In-First-Out data storage area, in which the data may be removed at a rate different from that at which it was
stored.

Real Time-The actual time in human terms, related to a process. In a UNIX system, real time is total elapsed time, CPU time is
the percent of time a process is actually in the CPU. Sys time is the time spent in system mode, and user time is the time spent in
user mode.

6-7

~
m Glossary (Continued)
tn o Real Time Operating Systems-An operating system which operates with a known and predictable response time limit, so that
C; it can control a physical event.

Record-A structured data type with multiple elements, each of which may be of a different data type, e.g., strings, arrays,
bytes, etc.

Register-A temporary storage location, usually in the CPU, which holds digital data.

Relative Address-The number that specifies the difference between the base address and the absolute address.

Relocatable-In reference to software programs, this is code which can be loaded into any location in main memory without
affecting the operation of the program.

Return Address-The address to which a subroutine call, interrupt or trap subroutine will return after it is finished executing.

Routine-A procedure.

Royalty-Royalty is money paid to the inventor for each item of product sold. A good analogy to use is the music business. Any
time a song is used, the songwriter is paid a royalty. Think of UNIX as a song and GENIX or SYSTEM Vas special arrangements.
For each shipment of GENIX or SYSTEM V, the customer pays a royalty to NSC who, in turn, pays a royalty to AT&T.

SB-In the Series 32000 Static Base Register. Points to the start of the static data area for the currently executing module.

Secondary Storage-This is generally slow-access, nonvolatile memory such as a hard-disk which is used to store the pages
of software programs not currently needed by the CPU.

Segmented Address Space-Term used to describe the division of allocatable memory space into blocks of segments of
variable size.

Setup Time-The minimum amount of time that data must be present at an input to ensure data acceptance when the device is
clocked.

Slave Processor-A processor which cooperates with the main microprocessor in executing certain instructions from the
instruction stream. A slave processor generally accelerates certain functions which increases overall system throughput. Exam­
ples of slave processors are the FPU and MMU of Series 32000.

Software-Programs or data structures that execute instructions or cause instructions to be executed and that will cause the
computer to do work.

Software License-NSC does not sell software. Rather, we license the right to use our software. A software license is required
for all Series 32000 software. We use the license to protect NSC's interests and to assist in honoring our commitment to AT&T.
The license is also the vehicle which we use to track customers so that updates can be issued in a timely manner.

Software QI A-It is the charter of the Quality Assurance people to ensure that when a software product reaches the customer
that it is "bug" free. In the real world, it is impossible to test every combination of functions, so some bugs do get through. The
QI A engineer develops test programs which rigorously test the product prior to its introduction to the market place.

SP1-ln the Series 32000, User Stack Pointer. Points to the top of the User Stack and is selected for all stack operations while
in User Mode.

SPO-In the Series 32000, Interrupt Stack Pointer. Points to the top of the interrupt stack. It is used by the operating system
whenever an interrupt or trap occurs.

Stack-A one-dimensional data structure in which values are entered and removed one datum at a time from a location called
the Top-of-Stack. To the programmer, it appears as a block of memory and a variable called the Stack Pointer (which points to
the top of the stack).

Stack Pointer-CPU register which points to the top of a stack.

Static Base Reglster-A 32-bit CPU register which points to the beginning of the static data area for the currently executing
module.

String-An array of integers, all of the same length. The integers may be bytes, words, or double words. The integers may be
interpreted in various ways (see ASCII).

Subroutlne-A self-contained program which is part of a procedure.

Symmetry-A computer architecture is said to be symmetrical when any instruction can specify any operand length (byte, word
or double word) and make use of any address-data register or memory location while using any addressing mode.

Synchronous-Refers to two or more things made to happen in a system at the same time, by means of a common clock
signal.

Tag-A label appended to some data entry used in a look-up process whereby the desired datum can be identified by its tag.

Task-The highest-level subdivision of a user software program. The largest program entity that a computer's hardware directly
deals with.

TCU-Timing Control Unit. A device used to provide system clocks, bus control signals and bus cycle extension capability for
Series 32000.

Trap-An internally generated interrupt request caused as a direct and immediate result of the encounter of an event.

T-State-One clock period. If the system clock frequency is 10 MHz, one T-State will take 100 ns to complete. Operations
internal and external to the CPU are synchronized to the beginning and middle of the T-States. There are four T-States in a
normal Series 32000 CPU bus cycle.

6-8

Glossary (Continued)

UNIXTM-An operating system developed at Bell Laboratories in the early 1970s. Software programs that run under UNIX are
written in the high·level language C, making them highly portable. UNIX systems do not distinguish user programs from operat·
ing system programs in either capability or usage, and they allow users to route the output of one program directly into the input
of another. This operating is unique and is becoming very popular in the microcomputer world.

USENET-A net to which UNIX systems in the United States connect. Some systems in Europe and Australia also use this net
for the purpose of passing information.

User-A software program. The total set of tasks (instructions) that accomplish a desired result. Tasks are managed by the
operating system.

User Mode-Machine state in which the executing procedure has limited use of the instruction set and limited access to
memory and the PSR.

uucp-Software which allows UNIX computers to pass information to other UNIX systems.

Varlable-A parameter that can assume any of a given set of values.

Vector-Byte provided by the ICU (Interrupt Control Unit) which tells the CPU where within the Descriptor table the descriptor is
located for the interrupt it has just requested.

Virtual Address-Address generated by the user to the available address space which is translated by the computer and
operating system to a physical address of available memory.

Virtual Memory-The storage space that may be regarded as addressable main storage by the system. The operating system
maps Virtual addresses into physical (main memory) addresses. The size of virtual memory is limited by the method of memory
management employed and by the amount of secondary storage available, not by the actual number of main storage locations,
so that the user does not have to worry about real memory size or allocation.

VMS-This is the operating system designed by Digital Equipment Corporation for their VAX series of computers. The original
Series 32000 software was developed on a VAX which was being controlled by the VMS Operating System.

Walt-State-An additional clock period added to a CPU memory cycle which gives an external memory device additional time to
provide the CPU with data. Also used by bus arbitration circuitry to hold the CPU in an idle state until access to a shared
resource is gained.

Wlnchester-Small, hard·disk media commonly found in personal computers.

Word-A character string or bit string considered as the primary data entity. For historical reasons, a word is a group of 16 bits
in Series 32000 systems.

6-9

G)

0"
en en
Q)

-<

rn c o
'en c
Q)

E
C
1U
u

~National
~ Semiconductor All dimensions are in inches (millimeters)

'~ 24 Lead Hermetic Dual-In-Line Package (D)
f. NS Package Number D24C

1.230
~----------- -------------~

0.050 ± 0.005
(1.270 ±0.127)­

TVP

(31.24)
MAX

0.568-0.605

0.165

(4.191)
MAX

--I--~W---~========~====~-t 0.020-0.060

t (0.508-1.524)

0.008-0.015

(0.203-0.391) -

~ ~
VP

0.590-0.620

(14.99-15.75)

-,
0.005

(0.127)
MIN

0.005
(0.127)­

MIN

~-
(2.489)

MAX TVP

0.100 ±0.010 _I
(2.540 ±0.254)

TVP

40 Lead Hermetic Dual-In-Line Package (D)
NS Package Number D40C

f

0.150

(3.810)
MIN

0.125-0.200

(3.175-5.080)

024C(REV G)

0.610
(15.49)

PIN NO. 1 r;r-r.:T""T":T""r.r'T:"T'""'I":'Fi=::;::;;;:;:::;;;::::;:;i=r.;::;;:;=~;;;;::T~T-r.::T""1~r.:r-r.::l-r.:::rlJMAX IDENT .,

0.200
(5.080)
MAX I

. 0.045
--(1.143)

MAX TVP
~:""",==-:~=--=~~;:::;:;::::::::::==;::::::::;::::;:;::~==~~~#~=!=l==~Ir- 0.020-0.060

~

'\

0.203-0.381)
0.590-0.620 TVP

1--(14.99-15.75)-1 --~~~~~~~~TlCAL
REF OUlWARD TVP

0.100 ±D.01D _I 1 _
(2.540 ±0.254) "I I

TVP

6·10

0.015-0.023 _ II _
(0.381-0.584) --, I

TVP

0.125
(3.175)

MIN

[WOO ("EVH)

48 Lead Hermetic Dual-In-Line Package (D)
NS Package Number D48A

ZA34

I .. 161.12)MAX

41 .. 41 .. OJ OJ '1 CD 31 31 n 38 3i 3C 33 32 31 30 21 21

)
jPlN NO.lI0ENT

27 2'~

I 10 11 12 1J 1. 15 II 20 11 21 23 I.

0.110-0100

I--~ MAX---l (2.194-5.080)
1 111.018) 1----.1

24 Lead Molded Dual-In-Line Package (N)
NS Package Number N24A

11
0.580 0.610

114.13) 115.49)

~

o

0.045 1 i1.'i4iI MAX TYP

o
I:~::=::~~~) TYP

1.243-1.270 I ,--------(31.57-32.26)------..... ·-1

13

0.062
(1.576)

RAD

PIN NO. llDENT

DOTTED OUTLINES
REflECT ALTERNATE

(14.73) 0.030
MIN -(0.-76-2) 0.075

0.160 iO.005 r:
~:l MOLDED BODY CONFIGURATION

0.600-0.620 MAX (1.905)

11;==(15.24-15.748) LrrT----++-----...:....:.;:.......+-I---n--t------'-

95·i5·

0.625 ~:~~~
f.-- (15 875 +0.635) ---I

. -{I.3S1

0.009-0.015 ~
(0.229-0.381)

0.07510.015
(1.90510.381) f--

N2.4A(REYE)

6-11

LEADS
VERTICAL
TO 1&"MAX
OUTWARD
TYP

"'C
:::J"
'< en
n'
~
c
3'
CD
:::s
en
0'
:::s
en

In
C
,~ 48 Lead Molded Dual-In-Line Package (N)
5i NS Package Number N48A
E
;S
cu
u
'iii
>­.c a..

68 Pin Grid Array, Cavity Down
NS Package Number U68D

fr
1.162

(29.5ij

~1I
CHIP

CAPACITOR
2 PlCS

6·12

0.567
-(i4.4oi­

MAX
0.530

(13.46)
MAX

0.100
__ (2.540)

TYP

ueeoIAEVA)

175 Pin~rid Array, Cavity Down (Type A)
NS Package Number U175A

iF'.'Z"71IMAX3J
~MAX-

_...!..!1L
123.1141 MU-----

~ ~
I~I==========~II==~~~

4I'XI~:I../
IPI,CI

INOEXNARK

RADIMOR
MOUNTIHG~AO

I:OI~IMAX

~MAX

0.120 to 01&
13.04ItO.3I11

O.165±O.OO5 n--""""'--t:============i,...--:----'-

'''e_!! .. olO

-+-".210)
4P1,CS

'.005

~ .. ~~7~

68 Lead Plastic Chip Carrier
NS Package Number V68A

~ u
""'I .. I------(~o~::)-------I .. ~I

NOM

6-13

4---(2~~~) 1"1-

______ ~MAX-----4~1

I @@@@@@@@@@@@@@®@
R @@@~@@@@@@@@~@@@
, @@@~@@@@@@@@~@@@
N @@@~@@@@@@@@~@®@
M @@@
L @@@
K @@@
j @@@
H @@@
a @@@
f @@@

I @ @ @ ~=============::==:::==:::==::~~~~"=t==~--L
D @@@@@@@@@@@@@@@@
C @@@@@@@@@@@@@@®o
I @@@@@@@@@@@@@@@@
A@@@@@@@@@@@@@@@

1 Z 3 , I I 7 I 11011 12 13

I+----------I~~!~~:I-----------I

0.020
(oToii

MIN

0.950
(24.13)
REF so

O.01'±O.D02
~I

0.985-0.995
(25.02 - 25.27)

SQUARE

VMAIREVGI

~National
~ Semiconductor
Bookshelf of Technical Support Information
National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical
literature.

This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and
section contents for each book.

Please contact your local National sales office for possible complimentary copies. A listing of sales offices follows this
bookshelf.

We are interested in your comments on our technical literature and your suggestions for improvement.

Please send them to:

Technical Communications Dept. M/S 16300
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, CA 95052-8090

ALS/AS LOGIC DATABOOK-1987
Introduction to Bipolar Logic • Advanced Low Power Schottky • Advanced Schottky

ASIC DESIGN MANUAL/GATE ARRAYS & STANDARD CELLS-1987
SSIIMSI Functions • Peripheral Functions • LSIIVLSI Functions • Design Guidelines • Packaging

CMOS LOGIC DATABOOK-1988
CMOS AC Switching Test Circuits and Timing Waveforms. CMOS Application Notes. MM54HC/MM74HC
MM54HCT /MM74HCT. CD4XXX. MM54CXXX/MM74CXXX. Surface Mount

DATA ACQUISITION LINEAR DEVICES-1989
Active Filters • Analog Switches/Multiplexers • Analog-to-Digital Converters • Digital-to-Analog Converters
Sample and Hold • Temperature Sensors • Voltage Regulators. Surface Mount

DATA COMMUNICATION/LAN/UART DATABOOK-1989
LAN IEEE 802.3 • High Speed Serial/IBM Data Communications. ISDN Components. UARTs
Modems • Transmission Line Drivers/Receivers

DISCRETE SEMICONDUCTOR PRODUCTS DATABOOK-1989
Selection Guide and Cross Reference Guides • Diodes • Bipolar NPN Transistors
Bipolar PNP Transistors • JFET Transistors. Surface Mount Products • Pro-Electron Series
Consumer Series • Power Components • Transistor Datasheets • Process Characteristics

DRAM 'MANAGEMENT HANDBOOK-1989
Dynamic Memory Control • Error Detection and Correction. Microprocessor Applications for the
DP8408A109A117/18/19/28/29. Microprocessor Applications for the DP8420Al21A122A
Microprocessor Applications for the NS32CG821

EMBEDDED SYSTEM PROCESSOR DATABOOK-1989
Embedded System Processor Overview. Central Processing Units • Slave Processors • Peripherals
Development Systems and Software Tools

F100K DATABOOK-1989
Family Overview. F1 OOK Datasheets • 11 C Datasheets • 10K and 100K Memory Datasheets
Design Guide • Circuit Basics. Logic Design • Transmission Line Concepts • System Considerations
Power Distribution and Thermal Considerations. Testing Techniques. Quality Assurance and Reliability

FACTTM ADVANCED CMOS LOGIC DATABOOK-1989
Description and Family Characteristics • Ratings, Specifications and Waveforms
Design Considerations • 54AC17 4ACXXX • 54ACT 17 4ACTXXX

FAST® ADVANCED SCHOTTKY TTL LOGIC DATABOOK-Rev. 1-1988
Circuit Characteristics. Ratings, Specifications and Waveforms. Design Considerations. 54F174FXXX

FAST® APPLICATIONS HANDBOOK-REPRINT
Reprint of 1987 Fairchild FAST Applications Handbook
Contains application information on the FAST family: Introduction. Multiplexers. Decoders. Encoders
Operators· FIFOs. Counters. TTL Small Scale Integration. Line Driving and System Design
FAST Characteristics and Testing • Packaging Characteristics. Index

GENERAL PURPOSE LINEAR DEVICES DATABOOK-1989
Continuous Voltage Regulators • SWitching Voltage Regulators • Operational Amplifiers • Buffers • Voltage Comparators
Instrumentation Amplifiers • Surface Mount

GRAPHICS HANDBOOK-1989
Advanced Graphics Chipset. DP8500 Development Tools. Application Notes

INTERFACE DATABOOK-1988
Transmission Line Drivers/Receivers • Bus Transceivers. Peripheral Power Drivers • Display Drivers
Memory Support. Microprocessor Support. Level Translators and Buffers • Frequency Synthesis • Hi-Rei Interface

LINEAR APPLICATIONS HANDBOOK-1986
The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuit
applications using both monolithic and hybrid circuits from National Semiconductor.

Individual application notes are normally written to explain the operation and use of one particular device or to detail various
methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by
keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index.

LS/S/TTL DATABOOK-1989
Contains former Fairchild Products
Introduction to Bipolar Logic • Low Power Schottky • Schottky • TTL • TTL-Low Power

MASS STORAGE HANDBOOK-1989
Rigid Disk Pulse Detectors. Rigid Disk Data Separators/Synchronizers and ENDECs
Rigid Disk Data Controller. SCSI Bus Interface Circuits. Floppy Disk Controllers • Disk Drive Interface Circuits
Rigid Disk Preamplifiers and Servo Control Circuits • Rigid Disk Microcontroller Circuits • Disk Interface Design Guide

MEMORY DATABOOK-1988
PROMs, EPROMs, EEPROMs • Flash EPROMs and EEPROMs • TTL I/O SRAMs
ECL I/O SRAMs • ECL I/O Memory Modules

MICROCONTROLLER DATABOOK-1989
COP400 Family • COP800 Family. COPS Applications • HPC Family • HPC Applications
MICROWIRE and MICROWIRE/PLUS Peripherals. Microcontroller Development Tools

MICROPROCESSOR DATABOOK-1989
Series 32000 Overview • Central Processing Units • Slave Processors • Peripherals
Development Systems and Software Tools. Application Notes. NSC800 Family

PROGRAMMABLE LOGIC DATABOOK & DESIGN MANUAL-1989
Product Line Overview • Datasheets • Designing with PLDs • PLD Design Methodology. PLD Design Development Tools
Fabrication of Programmable Logic • Application Examples

REAL TIME CLOCK HANDBOOK-1989
Real Time Clocks and Timer Clock Peripherals • Application Notes

RELIABILITY HANDBOOK-1986
Reliability and the Die -Internal Construction. Finished Package. MIL-STD-883. MIL-M-38510
The Specification Development Process. Reliability and the Hybrid Device. VLSIIVHSIC Devices
Radiation Environment • Electrostatic Discharge • Discrete Device • Standardization
Quality Assurance and Reliability Engineering • Reliability and Documentation • Commercial Grade Device
European Reliability Programs • Reliability and the Cost of Semiconductor Ownership
Reliability Testing at National Semiconductor. The Total Militaryl Aerospace Standardization Program
883B/RETSTM Products. MILS/RETSTM Products. 883/RETSTM Hybrids. MIL-M-38510 Class B Products
Radiation Hardened Technology • Wafer Fabrication - Semiconductor Assembly and Packaging
Semiconductor Packages • Glossary of Terms • Key Government Agencies • ANI Numbers and Acronyms
Bibliography. MIL-M-38510 and DESC Drawing Cross Listing

SPECIAL PURPOSE LINEAR DEVICES DATABOOK-1989
Audio Circuits • Radio Circuits. Video Circuits • Motion Control Circuits. Special Function Circuits
Surface Mount

TELECOM MUN ICA TIONS-1987
Line Card Components • Integrated Services Digital Network Components • Modems
Analog Telephone Components • Application Notes

NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS
ALABAMA Sunnyvale GEORGIA MASSACHUSETTS

Huntsville Arrow Electronics Norcross Andover
Arrow Electronics (408) 745-6600 Arrow Electronics Bell Industries
(205) 837-6955 Bell Industries (404) 449-8252 (508) 474-8880
Bell Industries (408) 734-8570 Bell Industries Lexington
(205) 837-1074 Hamilton/ Avnet (404) 662-0923 Pioneer Standard
Hamilton/ Avnet (408) 743-3355 Hamilton/ Avnet (617) 861-9200
(205) 837-7210 Time Electronics (404) 447-7500 Zeus Components
Pioneer Technology (408) 734-9888 Pioneer Technology (617) 863-8800
(205) 837-9300 Thousand Oaks (404) 448-1711 Norwood

ARIZONA Bell Industries ILLINOIS Gerber Electronics
Chandler (805) 499-6821 Addison (617) 769-6000

Hamilton/ Avnet Torrance Pioneer Electronics Peabody
(602) 231-5100 Time Electronics (312) 437-9680 Hamilton/ Avnet

Phoenix (213) 320-0880 Bensenville (508) 531-7430

Arrow Electronics Tustin Hamilton/ Avnet Time Electronics
(602) 437-0750 Arrow Electronics (312) 860-7780 (508) 532-6200

Tempe (714) 838-5422 Elk Grove Village Wilmington
Anthem Electronics Yorba Linda Anthem Electronics Anthem Electronics
(602) 966-6600 Zeus Components (312) 640-6066 (508) 657-5170

Bell Industries (714) 921-9000 Bell Industries Arrow Electronics
(602) 966-7800 COLORADO (312) 640-1910 (508) 658-0900

CALIFORNIA Englewood Itasca MICHIGAN
Agora Hills Anthem Electronics Arrow Electronics Ann Arbor

Zeus Components (303) 790-4500 (312) 250-0500 Arrow Electronics
(818) 889-3838 Arrow Electronics Urbana (313) 971-8220

Anaheim (303) 790-4444 Bell Industries Bell Industries
Time Electronics Hamilton/ Avnet (217) 328-1077 (313) 971-9093

(714) 934-0911 (303) 799-7800 Wood Dale Grand Rapids
Chatsworth Wheatridge Time Electronics Arrow Electronics

Anthem Electronics Bell Industries (312) 350-0610 (616) 243-0912

(818) 700-1000 (303) 424-1985 INDIANA Hamilton/ Avnet
Arrow Electronics CONNECTICUT Carmel (616) 243-8805

(818) 701-7500 Cheshire Hamilton/ Avnet Pioneer Standard
Hamilton Electro Sales Time Electronics (317) 844-9333 (616) 698-1800

(818) 700-6500 (203) 271-3200 Fort Wayne Livonia
Time Electronics Danbury Bell Industries Pioneer Standard
(818) 998-7200 Hamilton/ Avnet (219) 423-3422 (313) 525-1800

Costa Mesa (203) 797-2800 Indianapolis Novi
Avnet Electronics Meriden Advent Electronics Inc. Hamilton / Avnet
(714) 754-6050 Anthem Electronics (317) 872-4910 (313) 347-4720

Hamilton Electro Sales (203) 237-2282 Arrow Electronics Wyoming
(714) 641-4159 Norwalk (317) 243-9353 R. M. Electronics, Inc.

Garden Grove Pioneer Standard Bell Industries (616) 531-9300

Bell Industries (203) 853-1515 (317) 634-8200 MINNESOTA
(714) 895-7801 Wallingford Pioneer Standard Eden Prairie

Gardena Arrow Electronics (317) 849-7300 Anthem Electronics
Bell Industries (203) 265-7741 IOWA (612) 944-5454
(213) 515-1800 FLORIDA Cedar Rapids Pioneer Standard
Hamilton/ Avnet Altamonte Springs Advent Electronics (612) 944-3355
(213) 217-6751 Bell Industries (319) 363-0221 Edina

Irvine (407) 339-0078 Arrow Electronics Arrow Electronics
Anthem Electronics Pioneer Technology (319) 395-7230 (612) 830-1800
(714) 768-4444 (407) 834-9090 Bell Industries Minnetonka

Ontario Clearwater (319) 395-0730 Hamilton/ Avnet
Hamilton/ Avnet Pioneer Technology Hamilton/ Avnet (612) 932-0600
(714) 989-4602 (813) 536-0445 (319) 362-4757 MISSOURI

Rocklin Deerfield Beach KANSAS Chesterfield
Anthem Electronics Arrow Electronics Lenexa Hamilton/ Avnet
(916) 624-9744 (305) 429-8200 Arrow Electronics (314) 537-1600
Bell Industries Bell Industries (913) 541-9542 SI. Louis
(916) 652-0414 (305) 421-1997 Arrow Electronics

Sacramento Hamilton/ Avnet
Pioneer Technology (913) 888-8900 (314) 567-6888

Hamilton/ Avnet (305) 428-8877 Pioneer Standard Time Electronics
(916) 925-2216 Fort Lauderdale (913) 492-0500 (314) 391-6444

San Diego Hamilton/ Avnet NEW HAMPSHIRE Anthem Electronics (305) 971-2900 MARYLAND
(619) 453-9005 Columbia Hudson
Arrow Electronics

Lake Mary
Anthem Electronics Bell Industries

Arrow Electronics
(619) 565-4800 (407) 333-9300 (301) 995-6640 (603) 882-1133

Hamilton/ Avnet Arrow Electronics Manchester
(619) 571-7510

Largo
(301) 995-0003 Arrow Electronics

Bell Industries (603) 668-6968 Time Electronics (813) 541-4434 Hamilton/ Avnet
(619) 586-1331 (301) 995-3500 Hamilton/ Avnet

Oviedo (603) 624-9400 San Jose Zeus Components Time Electronics
Anthem Electronics (407) 365-3000 (301) 964-3090
(408) 453-1200 SI. Petersburg Zeus Components
Pioneer Technology Hamilton/ Avnet (301) 997-1118
(408) 954-9100 (813) 576-3930 Gaithersburg
Zeus Components Winter Park Pioneer Technology
(408) 998-5121 Hamilton/ Avnet (301) 921-0660

(407) 628-3888

NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS (Continued)

NEW JERSEY NORTH CAROLINA Pittsburgh WISCONSIN
Cherry Hill Charlotte Hamilton/ Avnet Brookfield

Hamilton/ Avnet Pioneer Technology (412) 281·4150 Arrow Electronics
(609) 424·0100 (704) 527·8188 Pioneer (414) 792·0150

Fairfield Time Electronics (412) 782·2300 Mequon
Anthem Electronics (704) 522·7600 TEXAS Taylor Electric
(201) 227·7960 Durham Austin (414) 241·4321
Hamilton/ Avnet Pioneer Technology Arrow Electronics Waukesha
(201) 575·3390 (919) 544·5400 (512) 835·4180 Bell Industries

Marlton Raleigh Hamilton/ Avnet (414) 547·8879
Arrow Electronics Arrow Electronics (512) 837·8911 Hamilton/ Avnet
(609) 596·8000 (919) 876·3132 Pioneer Standard (414) 784·4516

Parsippany Hamilton/ Avnet (512) 835·4000 CANADA
Arrow Electronics (919) 878·0810 Time Electronics WESTERN PROVINCES
(201) 538·0900 Winston·Salem (512) 399·3051 Burnaby

Pine Brook Arrow Electronics Carrollton Hamilton/ Avnet
Nu Horizons Electronics (919) 725·8711 Arrow Electronics (604) 437·6667
(201) 882·8300 OHIO (214) 380·6464 Semad Electronics
Pioneer Standard Centerville Time Electronics (604) 420·9889
(201) 575·3510 Arrow Electronics (214) 241·7441 Calgary
Time Electronics (513) 435·5563 Dallas Hamilton/ Avnet
(201) 882·4611 Bell Industries Hamilton/ Avnet (403) 250·9380

NEW MEXICO (513) 435·8660 (214) 404·9906 Semad Electronics
Albuquerque Bell Industries·Military Pioneer Standard (403) 252·5664

Alliance Electronics Inc. (513) 434·8231 (214) 386·7300 Zentronics
(505) 292·3360 Cleveland Houston (403) 272·1021
Arrow Electronics Pioneer Arrow Electronics Edmonton
(505) 243·4566 (216) 587·3600 (713) 530·4700 Zentronics
Bell Industries Dayton Pioneer Standard (403) 468·9306
(505) 292·2700 Hamilton/ Avnet (713) 988·5555 Richmond
Hamilton/ Avnet (513) 439·6700 Richardson Zentronics
(505) 765·1500 Pioneer Standard Anthem Electronics (604) 273·5575

NEW YORK (513) 236·9900 (214) 238·7100 Saskatoon
Amityville Zeus Components Zeus Components Zentronics

Nu Horizons Electronics (914) 937·7400 (214) 783·7010 (306) 955·2207

(516) 226·6000 Solon Stafford Winnipeg
Binghamton Arrow Electronics Hamilton/ Avnet Zentronics

Pioneer (216) 248·3990 (713) 240·7733 (204) 694·1957

(607) 722·9300 Hamilton/ Avnet UTAH EASTERN PROVINCES
Buffalo (216) 831·3500 Midvale Brampton

Summit Electronics Westerville Bell Industries Zentronlcs
(716) 887·2800 Hamilton/ Avnet (801) 255·9611 (416) 451·9600

Fairport (614) 882·7004 Salt Lake City Mississauga
Pioneer Standard OKLAHOMA Anthem Electronics Hamilton/ Avnet
(716) 381·7070 Tulsa (801) 973·8555 (416) 677·7432
Time Electronics Arrow Electronics Arrow Electronics Nepean
(716) 383·8853 (918) 252·7537 (801) 973·6913 Hamilton/ Avnet

Hauppauge Hamilton/ Avnet Hamilton/ Avnet (613) 226·1700
Anthem Electronics (918) 252·7297 (801) 972·4300 Zentronics
(516) 273·1660 Radio Inc. West Valley (613) 226·8840
Arrow Electronics (918) 587·9123 Time Electronics Ottawa
(516) 231·1000 OREGON (801) 973·8181 Semad Electronics
Hamilton/ Avnet Beaverton WASHINGTON (613) 727·8325
(516) 434·7413 Almac·Stroum Electronics Bellevue Pointe Claire
Time Electronics (503) 629·8090 Almac·Stroum Electronics Semad Electronics
(516) 273·0100 Anthem Electronics (206) 643·9992 (514) 694·0860

Port Chester (503) 643·1114 Bothell SI. Laurent
Zeus Components Arrow Electronics Anthem Electronics Hamilton/Avnet
(914) 937·7400 (503) 645·6456 (206) 483·1700 (514) 335·1000

Rochester Hamilton/ Avnet Kent Zentronics
Arrow Electronics (503) 627·0201 Arrow Electronics (514) 737·9700
(716) 427·0300 Lake Oswego (206) 575·4420 Willowdale
Hamilton/ Avnet Bell Industries Redmond ElectroSonic Inc.
(716) 475·9130 (503) 635·6500 Hamilton/ Avnet (416) 494·1666
Summit Electronics

PENNSYLVANIA (206) 881·6697
(716) 334·8110

Ronkonkoma Horsham

Zeus Components Anthem Electronics

(516) 737·4500 (215)443·5150

Syracuse Pioneer Technology

Hamilton/ Avnet (215) 674·4000

(315) 437·2641 King of Prussia

Time Electronics Time Electronics

(315) 432·0355 (215) 337·0900

Westbury Monroeville

Hamilton/ Avnet Export Div. Arrow Electronics

(516) 997·6868 (412) 856·7000

Woodbury
Pioneer Electronics
(516) 921·8700

SALES OFFICES

ALABAMA FLORIDA MICHIGAN ONTARIO
Huntsville Boca Raton Grand Rapids Mississauga

(205) 721-9367 (407) 997-8133 (616) 940-0588 (416) 678-2920

ARIZONA Orlando W. Bloomfield Nepean

Tempe (305) 629-1720 (313) 855-0166 (613) 596-0411

(602) 966-4563 SI. Petersburg MINNESOTA OREGON

CALIFORNIA
(813) 577-1360 Bloomington Portland

Inglewood GEORGIA (612) 854-8200 (503) 639-5442

(213) 645-4226 Norcross NEW JERSEY PENNSYLVANIA
Roseville (404) 441-2740 Paramus Horsham

(916) 786-5577 ILLINOIS (201) 599-0955 (215) 672-6767
San Diego Schaumburg NEW MEXICO PUERTO RICO

(619) 587-0666 (312) 397-8777 Albuquerque Rio Piedras
Santa Clara INDIANA (505) 864-5601 (609) 756-9211

(406) 562-5900 Carmel NEW YORK QUEBEC
Tustin (317) 643-7160 Lachine (714) 259-8660 Fairport

Fort Wayne (716) 223-7700 (514) 636-6525
Woodland Hills (219) 464-0722 Liverpool (816) 888-2602 TEXAS

IOWA (3,15) 451-9091 Austin
COLORADO Cedar Rapids Melville (512) 346-3990

Boulder (319) 395-0090 (516) 351-1000 Houston (303) 440-3400
KANSAS Wappinger Falls (713) 771-3547

Colorado Springs
Overland Park (914) 296-0660 Richardson

(303) 578-3319
(913) 451-4402 NORTH CAROLINA (214) 234-3811

Englewood
(303) 790-8090 MARYLAND Cary UTAH

Hanover (919) 481-4311 Salt Lake City
CONNECTICUT

(301) 796-6900 OHIO (601) 322-4747
Hamden

(203) 288-1560 MASSACHUSETTS Dayton WASHINGTON
Burlington (513) 435-6666 Bellevue

(617) 273-3170 Dublin (206) 453-9944
(614) 766-3679

WISCONSIN Independence
Brookfield

(216) 524-5577
(414) 762-1818

I I'!"',:\ ... ___ '. ,_. ~ _ ~ I')

~;J) (i::* l! U U II (t:; (U) U !l ~,Jl ~,:,~ ~,.,;~, (\,J) U

I ~f;IIr~Jif:1I-=i:li-.H':l;li[!('.l4i'1. ,cl'I.~l'lnH;li'
:J!jI!1 ~1:llIlI"'I'I;I'i'l/tJ' ':',,'i:,

I ~,t', :t.~:· ;j:\ li!II
~!:I.I!:' :: If:I,:, ~I:\ !t.\II;}:.; ::II~!!I

I: :li 'Idl!:\ .t~" '~Ill!I

'I~~ rI ~ :,~ '~\'rllil :,~,~
'oJ;-';'(cl~£:

l='Ir';411·',lRII~{' :J.I,',tDH~"'t;\
'J.~'i:~,\j,~ .• ;;!./-.:!--h-(. t:~ ,I,

,',' 't1H;1'~.\'~'J'J ~ !',.

",I ."/',',;, ';\'l:"'t'!'r:,

'.'f.llr.j,j·l'·':j.j"n"·),I;II'i·I'·j,

"H;'~" :!.!. ~;~1411 •. :.1: :Jt.~<1

''':1 ,j~1~, t i"Ho .. '·.1t;;1;

::'~,- 1.101' '\ ,/. ".,j:, .'1-'1;1: :I:

,'f:lIr-J,'·J"':·h"IH-J'I;IIH(·I"~1i,I;1:'
r".i V.',~F1j~;kH; \ I.
I": ;{'.l;t. ,~~ .1 ' (~1 ~ i (.) Ii!.: ~ t\.l.
'.11 :J...:~ . lILt;j ~ •• t~ 1'1 '

"1;1 It·~:~ '. ','1 1 O<J:­
":1(:., i',~"" :;rJ~

','f-.\lr·l,!;I":jI,',iI+l,\:j',';(·1 '1IJ:1'~H;'
,~\;, Ifd;l~:L, ~\;"I~I,14 •• ,·~J;lt

=,·,'/I.:'t':1 ',IHl,,'II: ~ ... \r·.j;H'
.. , _. \ ~:; ~ ,i ~, :. \~ llill"

q, (H"~I,:" '.

, .; t ,._ l' ~ . t ' I • I. t

. 1:), (",".J ,I .. '!;"', ~ I ; :~ ,: ~ •

'!,II",·;\I':',

,,' f·ll (oil ~.\ ft';~·i Illl"'I, \~lllo-ll'l,j t 'j:1I ~ ... ~ol
:1'.i·U~I" ,,:' ,

1:/ (1,...1 ,t;,r.t" ... /

~ ;"1(:., t~

': I\lt·) ,11' 'f·I, ,1 H-l ,:;)1 (~{~) - 0:".\
I F},\I (: ,.: "":~ if:,,«:!... ~ 'I 1,0; .. :rl, '.' ,j,y i 1"1:1 ~.

':f·1IJt·,':)~\1 f,~.~:1.',1'}~1~1'!:· ':',\: ~;.

':1""(' ',~~ll\.I;rJr, ,.:1;
::' .!,..}(! j.;" ".;':' ~ ~ : 1. ... ~. ': II ! • , ' • l1 ,) •

~:)(.'~' ·;~: ... ~t:;~~

~'.~, II :h'\~I~·'.':!;'

, ' •• r ,.... j; •... ~ • 'I • ':; • \ • ': I ~ ;

" , :. , \ ' , ; , ; , ~ l' , ;- ~ '.r -\' .

"," I"l';\!:',+';f!

','f,\i.r·liU j. '!·11 'I I h·) rI:,H~('I- '~~":'

jj:1~

\:. ~h'~' ;\>".l.'lf.~:~;·j ," ,:~,'!

I :4 (I; .\ ~' ";', !;:. ;1.

. :,. ,t,:, ~. ,~ ,

',. ~l t~~ ,~./ , ,:: .',. I

~,: ~.. "J)'''.' ;,~. ~.

,:'·iil·I,;·,) 'OH"Ii~'l"~I'I';(~I' ,J.;'

\~:Ii,·. ~~Il ~,:".r:.;~u~;, C'

'J;!'I(!:'~ \'I~; !.~I' .• ,

.:"t'. 'j"";! f ~.I' If

f ;1 (It I \! \.~ 1-' ".f' ~ ~.,:I'

t; d.:.t ' .; ... J:.' ,~,.

'(f·lll·J,'·1·'i·I;,l\·i'I,".;,['Ht~),
:1;·!'l'.JII~1, ... lff;II".'t1.~.11I - !~~

1.:.1 ~!!,\, :kl 1;1 • .' ':1<

.. '=1(=1 ,~ ... ~; •. ,J;'

'(f.ll(·l,l.ll'i.j,',lh·j,:;PHi·J-

.1:1:\1 :,: 1,14.:.j:/--'!

"(= .. '(:/l'i.:.j,I;"i',l

, , : I ",., , ': \ , I : ~ or:, ~ "I:

, '" ~ 'I - I' : . , ,1..1 ;

,'!ilJ"';.'·~j·''''H·!'l;lq';I.·I''I·,b·''
"I ~ ,
.:-:: 1 , •. ' : J ,,'I : I ~ ~ ~ ., w

t~ "\", I. ~I .,1 II ,I

.;"1""'1 11,0. '.~'

,.:.,' j' 'I;;, 't;,1 ~ ,;"
"~1 ~: .~:~: '.-1,.\

'If·llr·:,L!t~1 .. ,IH·I,:;('I14{·1-

':('ld':':~'I,H"';'

'~:lf;~, ;""~t~'; .'~':"""~:"~' ~.,

c, ").;.;,!;

~ f:'i j r.: • t \ 1:'!,.j I i II ~ ~) i I; 1 ~ ,.:I \ oj,

"\'1.\i,,)I'·I':""'="'''
, ~ .' ", ... , J ~ :,; ~ ,.:!; ': I_

, • ...il.',', :1,.,'1,h;

, , ; j (t '" ~ .~; ,t t '. ~ t; I ~,

:"' , • ~ ~ t.:. i ! I ... _ t j t ,f ~

l:l ~~!;'~'.I.,,~..i;

1 : 1 ~;~, ';~; : ,.:, j; t' "

'.'I·ilr'1r!1'~·I,',lr~'·)il~I'i4{·1-'I~I' '\\ H
I~ (~.I

·'.,1\'a·l.'I~,[I"ll[J"

ll, ""/" \1.1. ;1 •.. l, ,(: :j'l!

'. ~ I ,'. .'1. I , • , ,. . I • : ... 1-. t ':' I. . I ,

, ~", 0) i 1 '~l r'.' t1 ~~ I
I;)h, ~r.. r,.1 ':I',!t,' ,;/: I,,"''!II .. ;(..... :

;~ ~ '~... ~ ,', .• '. ' " I,.,', L. (., I ••• : t .' '. I

~~;, I ,'" ,.

1 :i , •• '.1 i;"" ~i.:",- ,t

'l:l';~. ,,,,~~:,., 1~~1·".~

, !
, i

:1

~National
D Semiconductor

