Programmable Logic
Design Guide

72 National Semiconductor Corporation

Literature Order
Number 320100-001

A Corporate Dedication to
Quality and Reliability

National Semiconductor is an industry leader in the
manufacture of high quality, high reliability integrated
circuits. We have been the leading proponent of driv-
ing down IC defects and extending product lifetimes.
From raw material through product design, manufac-
turing and shipping, our quality and reliability is second
to none. .

We are proud of our success . . . it sets a standard for
others to achieve. Yet, our quest for perfection is on-
going so that you, our customer, can continue to rely
on National Semiconductor Corporation to produce
high quality products for your design systems.

Charles E. Sporck

President, Chief Executive Officer
National Semiconductor Corporation

Wir filhlen uns zu Qualitédt und
Zuverlassigkeit verpflichtet

National Semiconductor Corporation ist fihrend bei der Har-
stellung von integrierten Schaltungen hoher Qualitdt und
hoher Zuverldssigkeit. National Semiconductor war schon
immer Vorreiter, wenn es galt, die Zah! von IC Ausféllen zu
verringern und die Lebensdauern von Produkten zu verbes-
sern. Vom Rohmaterial Uber Entwurf und Herstellung bis
zur Auslieferung die Qualitdt und die Zuverldssigkeit der
Produkte von National Semiconductor sind uniibertroffen.
Wir sind stolz auf unseren Erfolg, der Standards setzt, die
fir andere erstrebenswert sind. Auch ihre Anspriiche steig-
en sténdig, Sie als unser Kunde kénnen sich auch weiterhin
auf National Semiconductor verlassen.

La Qualité et La Fiabilité:

Une Vocation Commune Chez National
Semiconductor Corporation

National Semiconductor Corporation c’est I'un des leaders
industriels qui fabrique des circuits intégrés d'une trés
grande qualité et d’une fiabilité exceptionelle. National a été
le premier & vouloir faire chuter le nombre de circuits in-
tégrés defectueux et a augmenter la durée de vie des pro-
duits. Depuis les matiéres premiéres, en passant par la con-
ception du produit sa fabrication et son expédition, partout
la qualité et la fiabilité chez National sont sans équivalents.

Nous sommes fiers de notre succés et le standard ainsi
défini devrait devenir 'objectif & atteindre par les autres so-
ciétés. Et nous continuons & vouloir faire progresser notre
recherche de la perfection; il en résulte que vous, qui étes
notre client, pouvez toujours faire confiance & National
Semiconductor Corporation, en produisant des systémes
d’une trés grande qualité standard.

Un Impegno Societario di Qualita e
Affidabilita

National Semiconductor Corporation & un'industria al ver-
tice nella costruzione di circuiti integrati di alta qualitd ed
affidabilitd. National é stata il principale promotore per I'ab-
battimento della difettosita dei circuiti integrati e per I'aliun-
gamento della vita dei prodotti. Dal materiale grezzo attrav-
erso tutte le fasi di progettazione, costruzione e spedizione,
la qualita e affidabilitd National non & seconda a nessuno.
Noi siamo -orgogliosi del nostro successo che fissa per gli
altri un traguardo da raggiungere. Il nostro desiderio di per-
fezione & d'altra parte illimitato e pertanto tu, nostro cliente,
puoi continuare ad affidarti a National Semiconductor Cor-
poration per la produzione dei tuoi sistemi con elevati livelli
di qualita. :

P,

Charles E. Sporck
President, Chief Executive Officer
National Semiconductor Corporation

Programmable Logic
Design Guide

Bipolar Memory
National Semiconductor CQrporation
Santa Clara, California

TRADEMARKS

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

Abuseable™ DPVMT™ MST™ SPIRE™™
Anadig™ ELSTAR™ National® STAR™
ANS-R-TRANT™ E-Z-LINK™ NAX 800™™ Starlink™
Auto-Chem Deflasher™ GENIX™ - Nitride Plus™ -STARPLEX™
BI-FET™ HEX 3000™™ * Nitride Plus Oxide™ STARPLEX II™
BI-FET ™™ INFOCHEX™ NML™ SuperChip™
BI-LINE™™ Integral ISET™ NOBUS™ . SYS32™
BIPLANTM Intelisplay™ NSC800™ TAPE-PAK™
BLC™ ISE™ NSX-16T™™ TDS™

BLX™ ISE/06™™ NS-XC-16™ TeleGate™
Brite-Lite™ ISE/08T™ NURAM™ The National Anthem®
BTL™ ISE/16™ OXISS™ TimewChek™
CIM™ ISE32™T™ Perfect Watch™ TLC™
CiMBUS™ Macrobus™ PharmarChek™ Trapezoidal™
ClockisrChek™ Macrocomponent™ PLANT™M TRI-CODE™
COMBO™ MeatwChek™ Polycraft™ TRI-POLY™
COPST™ microcontroliers Microbus™ data bus POSitalker™ TRI-SAFE™
DATACHECKER® (adjective) QUAD3000™™ TRI-STATE®
DENSPAKT™ MICRO-DAC™ RAT™ XMOS™
DIB™ ' ptalker™ RTX16™ XPU™
Digitalker® Microtalker™ Script»sChek™ Z STAR™
DISCERN™ MICROWIRE™ Shelf-Chek™ 883B/RETS™
DISTILLT™™ MICROWIRE/PLUS™ SERIES/800™ 883S/RETS™
DNR™ MOLE™ Series 320007™™

PAL® is a registered trademark of Monolithic Memories, Inc.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR COR-
PORATION. As used hersin:

1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and whose failure to per-
form, when properly used in accordance with instructions
for use provided in the labeling, can be reasonably ex-
pected to result in a significant injury to the user.

2. A critical component is any component of a life support
device or system whose failure to perform can be reason-
ably expected to cause the failure of the life support de-
vice or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 (408) 721-5000
TWX (910) 339-9240

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time
without notice, to change said circuitry or specifications.

v

Preface

The CLASS™ Revolution

The nature of logic design is changing and National Semiconductor is leading this
change into software-based logic and systems design through the use of structured pro-
grammable logic arrays. We welcome you to join us in.the CLASS revolution. CLASS
stands for Complete Logic And Software Solutions, and it exemplifies National’s com-
mitment to the design, development and support of programmable logic devices, and
to the software-based design tools that can make the logic and system designer’s task
easier.

Table of Contents

1.0 Introduction

1.1 Purpose of this Design Guide 1
1.2 Overview of Programmable Logic 1
1.3 National Semiconductor, The Leader 2

2.0 Programmable Logic Basics

2.1 What is Programmable Logic P 3
2.2 User Benefits of Programmable Logic 4
Reduced Board SPacecoiiiiiiiii i 4
Fast Systems Design PP 5
Design Flexibility 5
Muliti-level Logic Reduction e 5
Cost Reduction P 5
Example to Illustrate Lower Component COSts 7
Example of Cost Reduction Through Reliability Improvements . . . 8
Small Inventory e 9
2.3 Elements of Programmable Logic 10
The PROM e e 10
The FPLA .. . e 12
The PAL (Programmable Array Logic) Device 14
COMPALISON . .\ vttt ettt e ittt et e 16

2.4 Programmable Logic Versus Other LSI, Semicustom and Custom
Alternatives 17
Standardized LSI i 17
Full Custom ICS o e 17
Gate AITAYS ..o 18

3.0 Boolean Logic Review

3.1 Basic Operators and Theorems 19
3.2 Derivation of a Boolean Expression 21
3.3 Minimization e ... 24
34 KwmapMethod P 25
3.5 Sequential Circuit Elements oo, 31
3.6 State Machine Fundamentalscccoiuvinna... 34

viii Programmable Logic Design Guide

4.0 The Programmable Logic Family

4.1 BasiC GIOUPS « v vt vttt it e e e e 39
42 ThePALFamilyttt ein, 39
PAL Devices for Every Taskccvivneiivinn. . |
GalES ..ttt e 41
Register Options With Feedback e 41
Programmable /O e 42
PAL Device — Speed/POWer GIOUPSovvernennennnn.. 42
PAL Device Logic Symbols e 43
43 The Prom Family T P o 47
44 Logic DIagramsiutiit i e 49
5.0 How to Design With Programmable Logic
5.1 Problem Definitiont83
5.2 Device SEleCtion\t 84
5.3 Writing Logic Equations i 87
5.4 Programming the Device it .. 88
5.5 TestingtheDevicet 89
5.6 Programmer Vendor LiStviuiiieeneinennnenan.. 90
5.7 Examples
Example 1: Replace Existing Logic 92
Example 2: Design a Multiplexer e e 95
Example 3: Design a 3-bit Counter: 100

Example 4: Design a Video-Telephone Sync Pulse Detector 102

6.0 Software Support

6.1
6.2

6.3

6.4
6.5

Advantages of Software-Based Programmable Logic Demgn 107
Programmable Logic Analysis by National (PLAN) 108
~Boolean Entry e 109
File Editing and Documentation e e 110
Programming and Testing 110
Other SOftwaret e 112
CUPL i e e 112
PALASM L e e 116
ABEL ..\ttt PR 116
Software for Testing Programmable Logic 120
Software Vendor Listot . 120

7.0 Testing and Reliability

7.1
7.2
7.3

7.4 -

7.5

National Factory Testing e 121
Logic Verifications J T 123
Customer’s Responsibilities, 126
‘Reliability Data e e 126

PAL Device Functional Testingo i 127

8.0

7.6

Table of Contents

Combinational and Sequential Circuits
Description of PAL (Programmable Array Logic) Device
PAL Device Design Procedures
Description of Functional Table
How to Generate Test Vectors and the Function Table
From Logic Equations e
Example of Testingttt
Example 1: Combinational PALI2H6
Description e
Example 2: Sequential PALIGR4
DESCIIPUON . ..\ o ottt e e

Applications

8.1
8.2
8.3

8.4

8.5
8.6
8.7
8.8
8.9
8.10
8.11

8.12

8.13

Basic Gates
Basic Clocked Flip-Flops0. .. . i,
Memory-Mapped I/O (Address Decoder)
Functional Description
Hexadecimal Decoder/Lamp Driver
Functional Description,
General Description e
PAL Device Implementation e
Between Limits Comparator/Logic
Quadruple 3-Line/1-Line Data Selector Multiplexer
4-bit Counter with 2-Input Multiplexer
8-bit Synchronous Counter e e e e
6-bit Shift Register with Three-state Outputs
Portion of Random Control Logic for 8086 CPU Board
DP84312 Dynamic RAM Controller
Interface Circuit for the NS32032, CPUcoooivviivnin...
General Description
Féatures oo e
Mnemonic Description [P
Functional Description oot
DP84322 Dynamic RAM Controller Interface Circuit
for the 68000 CPUttt
General Description
Features T
Mnemonic Description i,
Functional Description e
DP84332 Dynamic RAM Controller Interface Circuit
for the 8086 and 8088 CPUSciviiiinnennennannns
General Description
Features e e
Mnemonic Description

X

9.0

10.0

11.0

Programmable Logic Design Guide

Functional Description e 230
System Description e 231
Refresh Request Logic e e 233
8.14 A PAL Device Interface Between the Natlonal Semiconductor
NS§32032 Mlcroprocessor DP8409 Dynamic RAM Controller,
and the DP8400 Expandable Error Checker and Corrector 242
National Masked Logic (NML)
9.1 NML Procedureovv it ettt e 269
9.2 NML Guidelinesc.uieiii ity 270
Advantages of National’s Programmable Logic Family
10.1 Technologyviiii i e 271
10.2 Broad ProductLineo i, 271
10.3 Customer Service and Supporto i e 272
Data Sheets
111 PALDevice DataSheetsc.coooiiiiiiiiiiiiiiinninn, . 273
Description e e . 273
FEaturesovvvvevnerennnnnnenns e . 274
20-Pin, Standard, Small PAL Devicescc...... . 276
20-Pin, Standard, Medium PAL Devicescc.ouuun 277
20-Pin, Fast, Small PALDevVicesccoovuiviinivennenns. . 279
20-Pin, Fast, Medium PAL Devicesccooiviiniiinns . 280
20-Pin, Ultra High-Speed, Medium PAL Devices 282
20-Pin, Fast, Half-Power, Small PAL Devicescccovvvirenenenns . 284
20-Pin, Fast, Half-Power, Medium PAL Devices e . 286
20-PIN, Ultra High-Speed, Half-Power, Medium PAL Devices 288
24-Pin, Standard PAL Devices PR P . 290
24-Pin, Fast PAL Devices [. 292
1.2 Programming/Verifying Procedure—20 Pin PAL Devices 294
Pre-verificationttt 294
Programming Algorithm e e 295
Programming the Security Fuses 297
11.3 Programming/Verifying Procedure—24 Pin PAL Devices 298
Pre-Verification e e 298
Programming Algorithm ool . 298
Programming the Security Fuses 301
11.4 Logic PROM Data Sheetsoiuviniiuninninnennennns 304
Descriptions PN 304
Testability e e e 304
Reliability i i i e e e e e 304
1.5 DM54/745188, DM54/745288 (32 x 8) 256 bit TTL PROMs 307
11.6 PL77/87X288 (32 + 8) 256-bit TTLPROMcoovenenn.. 309

Table of Contents xi

11.7 DM54/74LS471 (256 + 8) 2K-bit TTLPROM 311
11.8 DM54/74S473, DM54/745472, DM54/74S473A, DM54/748472A
DM54/745472B (512 x 8) 4K-bit TTLPROMS 313
General Description o oo S 313
Featureso e 313
119 DM54/745475, DM54/745474, DM54/745475A, DM54/745474A
DM54/745474B (512 x 8) 4K-bit TTL PROMS 316
General Descriptionc.oooviieniuann.. e 316
FEatULES . o\ ottt i e 316
11.10 DM77/87SR474, DM77/87SR474B (512 x 8) 4K-b1t
Registered TTL PROMs A 319
Resistered TTL PROMs
General DesSCrptionottt 319
Features e 320
11.11 DM77/87SR476, DM77/87SR25, DM77/87SR476B, DM77/87SR25B
(512 x 8) 4K-bit Registered TTLPROMs P 323
General Descriptionttt ~...323
FEatULES . . vttt 323
11.12 Registered PROM Programming Procedure 327
11.13 Non-Registered PROM Programming Procedure 329
11.14 Quality Enhancement Programscccoevrenneeannnn.. 332
"12.0 Package Outlinesttt 333
13.0 TerminolOgyttt PP 341
Appendix—-An Overview of LSI Testing Techniques 347
Al Testing Methods ...t 348
Concurrent TEStNGvieeriiiii i 348
EXplicit TESUNE ...\t 349
A2 Test Generation Techniques,c.oviieviiiieiin oo 351
NP-Complete Problemsooooiiiiiin, 352
Manual Test Generationc..ooiviirinenniiean... 355
Path Sensitization and the D-Algorithm 357
Algorithmic Test Generation e 359
The Thatte-Abraham TechniqueooL 360
The Abadir-Reghbati Technique 362
Simulation-Aided Test Generation 363
Binary Decision Diagramsccoeviiiiiiiiiiinn 365
Random Test Generationcooviviiinininenes 367
A3 Response Evaluation Techniques 368
Good Response GeNerationoceevnirenenaneennnnn. 368
Stored Response Testingo.veieniiiniiiiiininn... 368
ComparisonTestingcoooiiiiiiiii i, 370
Compact Testingcoiiiiiiiiiiiin.. P 370
Transition Countingccoven.. 00371

Signature Analysiso 373

List of Illustrations

Figure No.

21.1
2.1.2
2.21
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6

3.1.1
3.21
3.2.2
3.2.3
3.3.1
3.3.2
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9
3.4.10
3.4.11
3.5.1
3.5.2
3.6.1
3.6.2
3.6.3

Page No.
Conventional Representationcoeivuviienieervneaneanas 3
Programmable Logic Representation e e 4
Multilevel Logic Reduction e 6
Diode ORMatrix . ..c.vntiiiie e it eeeieaenns 10
4 X 4BItPROM ...t 11
PROM Having 16 Words X 4 Bitscoviieinnnnienenenen.. 12
FPLA Having 4 Inputs, 4 Outputs, and 16 Products 13
PAL Device Having 4 Inputs, 4 Outputs, and 16 Products 15
(a) Logic Equation, (b) PROM Solution, (c) FPLA Solution,
(d) PAL Device SOIutionc.oviiiiiiere et ininenenns 16
BasicGates ool U 19
Logic Circuits of Eq. 3.2.1 e 23
Logic Circuits of EQ. 3.2.2t 23
Simplified Logic CIFCUItSc.iuniiitirii i, 24
A Random Logic Circuitoouiiiiiiiiiiniiiiiiiiiiinines 24
Minimied Logic Circuitcoiiiiiiiiiiriiiiiiennenene. 25
Truth Tables for ANDand ORcooiiiiiieini., Sl .26
K-maps forANDand OR P 26
K-maps for 3-Variables AND and ORciiinvninnn.. 27
Sample 3-Variable K-maps I 28
K-maps for Two and Three Variables 28
Kmapof m (0, 2,3, 7) ..ottt 29
Kmapof M(0,1,5,6) ..uiiniiiiii it e ii i e 29
Adjacent MintermsonaK-map P 29
MinimizZationoviuiieetiie et e 30
Minimizationo ool e 30
Minimizationo il N 31
Basic FIp-FIOPSt e 32
Implement D Flip-Flop by UsingJ-K I 33
A Typical Sequential Circuitc.oooiiiiiiiiiiiiinniaenens 34
State Diagram e e e 35
Example of Hazard Circuitc.oiiiiiiiiiiniiiiinnnens. 36

xiv Programmable Logic Design Guide

Figure No.

3.6.4
3.6.5

4.2.1
422
423
42.4
425
43.1
44.1
44.2
443
44.4
445
44.6
44.7
44.8
449
44.10
4411
44.12
4413
44.14
4.4.15
4.4.16
4417
44.18
4.4.19
4.4.20
44.21
4.4.22
4.4.23
4.4.24
4.4.25
44.26
4.4.27
4.4.28
4.4.29
4430
4.4.31
4432

Page No
Example of Unstable Circuitc...ooviiiriiiiiniiinene.., 36
Example fo Circuit With Unpredictable Output States 37
PAL Device Output Register Circuit, Simplified Logic Diagram 41
PAL Device Bidirectional Circuit, Logic Diagram 42
Logic Symbol. DMPALIOHScooiiiiiiiininiieienennnn. 43
PAL Device Logic Symbols — Series 20ccoovvinnnnn. 44
PAL Device Logic Symbols — Series24 46
PROM Logic Symbolsccoiiiiiiiiiiiiiii i 49
Logic Diagram PALIOH8 oo 50
Logic Diagram PAL12ZHG0.ccciiiiininiiiniiineiianennnnn, 51
Logic Diagram PALI4H4ccoiiiiiiiiiieiiieaaiin., 52
Logic Diagram PALIGH2cciiiiiviiiiiiiiniiiieenn. 53
Logic Diagram PAL16CL00viiriii i iiiieeeienenss 54
Logic Diagram PALIOL8 iiiiiiiiiiiiiiiiiiiininnens 55
Logic Diagram PAL12LGc.iuiiiieiiiiinniii e, 56
Logic Diagram PAL14L4o, 57
Logic Diagram PALIOL2iiiiiiiiii i, 58
Logic Diagram PALIOL8ctvuiitiiiteiiieiianriennan, 59
Logic Diagram PALIOR8c.iitiiiiiiniii i, 60
Logic Diagram PALIGRGc.iiiiiuiiiiii e 61
Logic Diagram PAL1OL4coiiiiiiiiiiiiiiiiiiianns 62
Logic Diagram PALI2L10i . tiiiiiiiiiii i 63
Logic Diagram PAL14L8ccoviiiiiinone.. G 64
Logic Diagram PALIGLGiiviiiiiiiineinaiinenanannn, 65
Logic Diagram PAL18L4 e 66
Logic Diagram PAL20L2uiiireneniaeniar i eenennns 67
Logic Diagram PAL20CTcoiiiiitiri i iennienenens 68
Logic Diagram PAL20L10iieiiiii i nienaanans 69
Logic Diagram PAL20X10 ...ttt 70
Logic Diagram PAL20X8 e 71
Logic Diagram PAL20X4ccoennnn. e 72
Logic Diagram PAL20L8ottt 73
Logic Diagram PAL20R8c..iviiieiiiiiinnnnnenenns S 74
Logic Diagram PAL20RGiiiiiieiiiiiiiaine e, 75
Logic Diagram PAL20R4oviiiitiiiiiiiiin i, 76
32 X 8PROM Logic Diagramcuvuniiiniineninenenenanns 77
256 X 8 PROM Logic Diagramc.vvivvniiiinnennenennnnnn. 78
512 X 8PROM Logic Diagramc.cooiviiiiiiinninnnnnn.. 79
512 X 8 PROM Logic Diagram, SR476/SR25 " e e 80
512 X 8 Register PROM Logic Diagram 81

Figure No.

5.1.1
5.3.1
5.3.2
5.4.1
5.5.1
5.71
5.7.2
573
5.7.4
5.7.5
5.7.6
5.7.7
5.7.8
5.7.9
5.7.10
5.7.11
5.7.12

6.1.1
6.1.2
6.2.2
6.2.2
6.3.1
6.3.2
6.3.3
6.3.4

7.1.1
7.2.1
7.2.2
7.2.3
7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7
7.5.8

. List of Illustrations XV

Page No
Design Sequence of the Programmable Logic Device 83
Combinational PAL Device Design Stepsc.cooeuvuene. 87
Sequential PAL Device Design Stepscovvieiiiinnnnn. 88
PAL Device Programming Procedures 89
Test Vectors Creating Steps ... 90
Design Example, Logic Diagramooiiiiiiiiiinin., 92
Example of PALASM Program Inputcocoevnvinnnn... 93
PALASM OPEIatOrS .. .vuttteitie et aa e 94
Logic Diagram of the National Type 12L6 PAL Device 96
PALDevice Legendt 97
Block Diagram of a Multiplexer i, 98
Logic Diagram of the National Type 14H4 PAL Device 99
3Bt COUNErttt e e . 100
Kemap ... 101
Sweep Generation vt 102
(a) State Diagram, (b) State Table P 103
Kmap ... P 105
Early Role of Software S 107
Expanded Role of Software e 108
Plan File Informationcooiiiiiiiiiiiiiiiiniiinenes 110
Fuse Map Display from Plano 111
CUPL-GTS Screen Display Exampleccoviiiiin... 115
Block Diagram: 6809 Memory Address Decoder [117
Simplified Block Diagramccc.viriiniiianiennainen.. 118
Source File: 6809 Memory Address Decoder PR . 119
PAL Device TEStFIOWo.oviriiiiiiiin i, 122
PAL Devices Architecturecociiiiiiiiiiiiveiinneens 123
Function of TESt VECKOTttt iiiaeeeieaeanes 124
3-Inputand Gateiiiiiiii e 124
Combinational Circuitcoiiiiiiiiiniiininiiiiiin... 126
Sequential CirCUitcovviriiiin i einns e 128
Combinational PAL Device Design Steps e 130
Sequential PAL Device Design Stepsc.c.vuvuiriininines 131
PAL Device Programming Procedures0. 132
Test Vector and Function Table Creatmg Steps 133
Logic Circuit of Example #10cciiiiiiiiiiiiinnn., 136
State Diagram i e 152

xvi Programmable Logic Design Guide

Figure No.

8.1.1
8.1.2
8.2.1
8.3.1
8.3.2
8.4.1
8.4.2
8.5.1
8.5.2
8.6.1
8.7.1
8.7.2
8.9.1
8.10.1
8.11.1
8.11.2
8.11.3

8.11.4
8.11.5
8.11.6
8.12.1
8.12.2
8.12.3
8.12.4
8.125
8.12.6
8.12.7
8.12.8
8.12.9
8.12.10
8.12.11
8.12.12
8.13.1
8.13.2
8.13.3
8.13.4
8.13.5
8.13.6
8.13.7
8.13.8

Page No.
BasiC Gatesviii e 157
Logic Diagram PALI2ZHGcooiniiiiiiiiiiiii i 160
Logic Diagram PALIGR8ottt iiiniiiniaaniaanns 167
Memory Mapped 1/O Logic Dlagram 168
Logic Diagram PALI6OL2 oiiliiiiiiiinininanen 171
Hex Display Decoder-Driver, Combinational Logic Diagram 173
Logic Diagram PALIGL8ottt annnns 177
PAL Device 16C1 Limit Checkerccoiiiin... 178
Logic Diagram PALIGCToviriii it eieennennas 180
Logic Diagram PALI4H4oiiiiiiiiiniiiiniannenns 182
Four-Bit Counter With Two-Input Multiplexer 183
Logic Diagram PALIOR4o.iiiiiiiiii e iiianans 186
Logic Diagram PALIORGcouiuiriiiiiiiei e einiannn, 193
Control Logic for 8086 CPUBoardc..cvivieiininn.. 194
Connection Diagram P 197
System Block Diagram i 199
Timing Diagram; Read, Write or Hidden Refresh Memory
Cycle for the NS16032-DP8409 Interface 202
Timing Diagram; Read, or Write Memory Cycle With One Wait 202
Timing Diagram; Forced Refreshcycle 203
DP84312 Logic Diagram PALI6R6 e 206
Connection Diagram co...s S 207
Block Diagram 208
System Block Diagramoiiiininiiiinireiiiiaas 210
Timing Diagram; 68000 Memory Read Cycle 216
Timing Diagram; 68000 Memory Read Cycle and Forced Refresh ..o 217
Timing Diagram; TAS Instruction Cycle 218
Timing Diagram; Memory Read Cycle 219
Timing Diagram; Memory Read Cycle and Forced Refresh 220
Modified System Block Diagramc.coiiiiiininen.. 221
Timing Diagram 68000 Memory Read Cycle 222
‘Timing Diagram 68000 Memory Read Cycle and Memory Refresh . 223
DP84322 Logic Diagram PAL Device 16R4 226
Connection Diagram ...t 227
Block Diagramol e 228
System Block Diagramccouiiiiiiiiriirainaiiaiani.s 232
Using a Flip-Flop and a Counter for Refresh Request Loglc 233
Using the DP84300 Refresh Counter for Refresh Logic 233
Timing Diagram; Read Timingc.oovivivienninnnnnnn. 234
Timing Diagram; Write Timing i, 235
Timing Diagram; Memory Cycle With 1 Wait State 236

Figure No.

8.13.9
8.13.10
8.13.11
8.14.1
8.14.2
8.14.3
8.14.4
8.14.5
8.14.6
8.14.7
8.14.8
8.14.9
8.14.10
8.14.11
8.14.12

8.14.13

8.14.14
8.14.15
8.14.16
8.14.17

9.1.1

11.1.1
11.2.1
11.3.1
11.3.2
11.4.1
11.4.2
11.4.3
11.4.4
11.5.1
11.6.1
11.7.1
11.8.1
11.9.1
11.10.1
11.11.1
11.12.1
11.13.1

List of Illustrations xvii

Page No
Timing Diagram; Forced Refresh 237
Timing Diagram, Transparent Refresh 238
84332 Logic Diagram PALIGR8coiiiiininniianannn, 241
DP8400, DP8409, NS16032 6 MHz Computer System 242
DP8400/8409 System Interface Block Diagram 245
Timing Diagram; Read Cycle and Write Cycle 250
Timing Diagram; Read Cycle With Simple Bit Error 251
Timing Diagram; Byte Write oot inin... 252
Timing Diagram; Forced Refresh Then Access: S 253
Simulation CirCuitoiiiei i 254
Simulation Timing Diagram; Read/Wrtie Without Errors 255
Simulation Timing Diagram; Read With Error and Write Cycle 256
Simulation Timing Diagram; Byte Write 257
Simulation Timing Diagram; Forced Refresh Then Access 258
Simulation Timing Diagram; Write, Forced Refresh and
REAA ACCESS ...ttt e e e 259
Simulation Timing Diagram; Forced Refresh Followed by
Read Access (With EfTOr) . .vvtvtini e 260
Logic Diagram of PAL Device #1ccooiiiiiiiiniiinn.. 265
Logic Diagram of PAL Device #2ccoviiiiiiiinnannnnnins 266
Logic Diagram of PAL Device #3c..coiiiiiiiiiiininnaa.. 267
Logic Diagram of PAL Device #4c.coiiiiiiiiivann... 268
NML Procedure oo 270
Test Waveforms and Schematics of Inputs and Outputs 275
Pin Assignment for Programmingccoiiii.. 294
Pin Assignment for Programmingcoiiiiin.a... 298
Programming Waveforms i 302
Standard TestLoado.iuiniiiiii i 305
Switching Time Waveforms Non-Registered PROMs 305
Switching Waveforms, Registered PROM 306
Key to Timing Diagramcouivitennennr e aennnannens 306
Block and Connection Diagramcoovviiiineerinn.n.. 307
Block and Connection Diagram P 309
Block and Connection Diagramccoviiiiiiinnneanans. 311
Block and Connection Diagram e 313
Block and Connection Diagramccovvriiiiiienneann.. 316
Block and Connection Diagramc.oivveiieinnnenn.. 320
Block and Connection Diagram P 324
Programming Waveforms, Registered PROM 329

Programming Waveforms, Non-Registered PROM 331

xviii Programmable Logic Design Guide

Figure No.

12.1
12.2
12.3
124
12.5
12.6
12.7
12.8
12.9
12.10

Al.1l
A.2.1(a)
A.2.1(b)
A2.2
A.2.3(a)
A.2.3(b)
A.2.3(c)
A.2.3(d)
A.2.4(a)
A.2.4(b)
A.2.4(c)
A25
A.2.6
A3.1
A3.2
A33
A34
A.3.5

Page No.

NS Package]16A 16-Lead Cavity DIP (J) e - 333
NS Package N16E, 16-Lead Molded DIP (N) (Substltute for N16A) 2334
NS Package J20A, 20-Lead Cavity DIP (J)cviviniirinnnnennn, 334
NS Package N20A, 20-Lead Molded DIP(N)c.covvvnnne. 335
NS Package J24F, 24-Lead Cavity DIP (J)cooviinvninnnnn... 335
NS Package N24C, 24-Lead Molded DIP(N) ©..............0vnn.n. 336
NS Package J24A, 24-Lead Cavity DIP(J) -ooviie e, 336
NS Package N24A, 24-Lead Molded DIP(N)oovvenn... 337
NS Package PCC-20, 20-Lead Plastic Leaded Chip Carrier (V) 338
NS Package PCC-28, 28-Lead Plastic Leaded Chip Carrier (V) - 339
LSI Test Technologyocviirinei iy 350
A One-Out-of-Four Multiplexer-Gate-Level Descrlptlon «.. 353
Functional-Level Descriptionooiiviiinienenin.. : 353
- Gate-Level Description of a Three-Bit Incrementer - 354
Transfer INStruCtioN\ ot vt e i aas 361
A INStrUCON ..ot e e + 361
ORINSIEUCHION ..o\ttt ettt e e enan 361
Rotate Left INStruction -c.ouuuiiin it 361
AHalfAdder i e ¢ 365
Binary Decision Diagram for C=X®Yccovvivenine.. - 365
Binary Decision Diagram for S =X +,Y(c)ccovvvvennn... i 365
Simplified Binary Decision Diagrams for the Half-Adder 366
Binary Decision Diagrams for a Full-Adder 366
Stored Response TESHNGcovitieirnr i iiiienenenenenns 369
Comparison Testing e < 369
Compact TESHINGo i e . 371
One-Out-of-Four Multiplexercooiiiiiiiiiiiiiiinan, 372
The 16-Bit Linear Feedback SR Used in Signature Analysis 373

List of Tables

Table No. Page No.
2,21 Typical Component Cost Structurecoovvvinvnan .. 7
2.2.2 System Cost Comparison Between SSI/MSI Based System and

PAL Device Based Systemcoc.vuiuiiiinnriiniininen.n. 8
3.2.1 Truth Table of Eq. 3.2.1and 322ccoiiiiin s, 22
3.6.1 State Table 34
4.2.1 Members of the 20-Pin PAL Device Family 39
4.2.2 Members of the 24-Pin PAL Device Family 40
4.2.3 PAL Device Part Number Interpretation 40
4.2.4 20-Pin PAL Device Speed/Power GIOUPSvvvevuerannn.. 42
4.2.5 24-Pin Speed/POWer GrOUPSoeuenereunenernennnaeannn. 43
4.3.1 PROM Configurationsoeueiiriininiininiaiivein. 47
4.3.2. PROM Products for Logic ..ot 48
5.1.1 Typical PAL CirCUItSouiie it 84
5.2.1 20-Pin PAL Device Conﬁgurauon 85
5.2.2 24-Pin PAL Device Configurationcoviviunn.n.. 86
5.6.1 PAL Device PrOramimerso.vroririnieeniirienrnieenanns 90
5.6.2 PAL Device Development SyStemsovvvveieinnenn.. 91
5.7.1 Fuse Map 95
5.7.2 Truth Table 98
5.7.3 Function Table P 98
5.7.4 Transition LISISot e 100
5.7.5 Transition Table i i 101
5.7.6 State ASSINMENE\ttt e ettt 104
5.7.7 Transition Tablec.... i 104
6.2.1 B0O0lean OPEeratorsovueututn ittt eiieaneanas 109
6.2.2 Macro Entry With PLAN 109
6.2.3 Fuse Map File Formats in PLANcooviiiiiianninn. 111
6.3.1 Address Ranges for 6809 Controllercooviiin.n. 118
6.3.2 PALASM OPEIALOLS .. vetttete et tee et e e aee e 116

XX Programmable Logic Design Guide

Table No.

711
7.2.1
7.2.2
7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7
7.5.8
7.5.9
7.5.10
7.5.11

8.4.1

8.11.1
8.11.2
8.11.3
8.11.4
8.12.1
8.12.2
8.12.3
8.12.4
8.12.5
8.12.6
8.13.1
8.13.2
8.13.3
8.13.4
8.13.5

11.1.1
11.1.2
11.1.3
11.1.4
11.1.5
11.1.6

11.1.7
11.1.8

Page No

TESEFUSES ..ottt e e e 121
Test Vectors Generated by the Exhaustive Method 125
Test Vectors Generated by Fault Modeling 125
National’s PAL Device Familycoiiiiina, 129
TESEVECIOIS . ittt et it e 138
Test Vectors P 139
FINal TESE VECIOLS .+ .t i et ettt ettt ieeeneieenas 139
Final Function Tablecciviiiiiiieiiiiiiieeaannn. 140
TESL VECTOLS . vttt ettt et ettt ettt ettt et aeeenan, 145
TestVectors......................; PPN 148
Test VECtOrs ..o .vvvvnnenanns. S P 149
State ASSIGNMIENL . ..ottt ittt et 150
Transition Table i i 150
Final Function Table PR P . 151
Function Description ...t 172
Recommended Operating Conditions "..........c.....covene.... . 198
Electrical Characteristics R e 198
Switching Characteristics PP e 198
Function Table il i, 205
Recommended Operating Conditions .:..................co.vu... 209
Electrical Characteristicsoeieiiriineeiiiinenanenenans 209
Switching Characteristicseiieiiriieinninianenen, 209
Memory Speed 213
Memory Speed of 68000oeiiiiii e . 214
Function Table. P 225
Recommended Operating Conditions 229
Electrical Characteristicscvvvrevriiiinirieninennens. 229
Switching Characteristicst iiiii i, 229
Memory Speed Requirementsc.o.ovivvriiivinaivninnnn. . 231
Function Table - 240
20-Pin PAL DEVICES ...ttt et it in e 274
24-Pin PAL DEVICES .« v\vtvttiteeienn i enniieaneananennnnenn, 274
Absolute Maximum Ratingsicc.eveiiunniunannnn.n 275
Standard TestLoadcooiiiiiiiiiiiiiiii e 275
AC and DC Specifications for 20-Pin, Standard, Small PAL Devices 276
AC and DC Specifications for 20-Pin, Standard, Medium

PAL DEVICESttt e et e e 277
AC and DC Specifications for 20-Pin, Fast, Small PAL Devices 279
AC and DC Specifications for 20-Pin, Fast, Medium PAL Devices 280

Table No.

11.19

11.1.10
11.1.11
11.1.12

11.1.13
11.1.14
11.2.1
11.2.2
11.3.1
11.3.2
11.3.3
11.4.1
11.5.1
11.5.2
11.6.1
11.6.2

11.7.1
11.7.2
11.8.1
11.8.2
11.9.1
11.9.2
11.10.1
11.11.1
11.12.1
11.13.1

- 11.13.2
11.14.1

A3.1

A3.2

List of Tables xxi

Page No.
AC and DC Specifications for 20-Pin, Ultra High-Speed,
Medium PAL DEVICES ...\ttt ettae et iiee e e anens 282
AC and DC Specifications for 20-Pin, Fast, Half-Power, Small
o U T T 284
AC and DC Specifications for 20-Pin, Fast, Half-Power, Medium
PAL DEVICES .\ttt ittt et e 286
AC and DC Specifications for 20-Pin, Ultra High-Speed,
Half-Power, Medium PAL DEVICEScoviveiinienineinnnnnn. 288
AC and DC Specifications for 24-Pin, Standard PAL Devices 290
AC and DC Specifications for 24-Pin, Fast PAL Devices 292
InputLine Select ... 295
Input Line Selecto 295
InputLine Selectot 299
ProductLine Selectt 299
Programming Parametersveuevueevrenneanennnnneenns 301
Absolute Maximum Ratings 305
(32 X 8) 256-Bit TTL PROM OPtONS ... vvvvvireievaenanenennn. 307
AC and DC Specifications for (32 X 8) 256-Bit TTL PROMs 308
(32 X 8) 256-Bit TTL PROM Optionsouvueririninanen.. 309
AC and DC Specifications for (32 X 8) 256-Bit TTL
LOogic PROMS ... 310
(256 X 8) 2048-Bit TTL PROM Optionsvvevrerenrneenn.. 311
AC and DC Specifications for (256 X 8) 2048-Bit TTL PROMs 312
(512 X 8) 4096-Bit TTL PROM Optionsc.covuvienenen.. 313
AC and DC Specifications for (512) 4096-Bit TTL PROM 314
" (512 X 8) 4096-Bit TTLPROM\\uiviiiiieieiiineainnnn, 316
AC and DC Specifications for (512 X 8) 4096-Bit TTL
High-Speed PROM ittt 317
AC and DC Specifications for (512 X 8) 4K-Bit Registered
TTL PROMS .ottt ettt e 321
AC and DC Specifications for (512 X 8) 4K-Bit Registered
TIL PROMS .. e 325
Programming Parameters Do Not Test or You May Program
the DeVICE ..ttt e i e 328
Programming Parameters Do Not Test or You May Program
TNE DEVICE oottt e e e 331
Approved Programmers for NSCPROMS 332
Quality Enhancement Program for Bipolar Memory 332

The eight test patterns used for testing the multiplexer
of Figure A44 PRI P 373
A different sequence of the eight multiplexer test patterns 373

Programmable Logic
Design Guide

Introduction

1.1 PURPOSE OF THIS DESIGN GUIDE

This book was conceived to fill the need for a comprehensive Design Guide about
Field-Programmable Logic Devices. The Guide is organized to serve both the experi-
enced programmable logic user and the uninitiated. The primary objective of this guide
is to introduce the uninitiated logic designer to programmable logic and to take the
designer through a step-by-step approach to logic design by using programmable logic
devices. The Guide is comprehensive in that it covers all aspects of design, including:
Boolean logic basics, sequential and combinational circuit basics, testing, and applica-
tions. Every effort has been made to clearly illustrate points with examples. National
Semiconductor invites comments and suggestions from our users on improving this
Design Guide.

1.2 OVERVIEW OF PROGRAMMABLE LOGIC

Programmable Logic has been used for many years as the means of customizing logic
design. The early devices were primarily mask-programmed and were developed by
computer manufacturers for in-house use while the vast majority of other logic users
were relegated to the world of standard SSI/MSI devices. Then, in the mid to late seven-
ties, along came fuse-programmable logic. The logic devices could actually be custom-
ized by the designer who used external pulses generated by simplée programmer
equipment. Now logic designers had devices that could be customized instantly and
that offered higher integration than standard logic. Field-programmable logic devices
became the first, true semicustom logic that was widely available for both the small and
the larger user. '

Today, the user can choose from a variety of speeds, power, packages, logic fea-
tures and vendors.

The logic designer’s task is being simplified even further by the rapid development
of software tools that actually perform some of the design tasks such. as logic minimiza-
tion, higher level Boolean representation, device selection, and test vector generation.
The final goal is to simply specify input-output or state descriptions in a high-level lan-
guage to obtain a completely programmed and functionally tested device.

Technology developments are also taking place to achieve field-programmable
logic devices in low-power CMOS technology and high-speed ECL technology.

2 Programmable Logic Design Guide

1.3 NATIONAL SEMICONDUCTOR, THE LEADER

National Semiconductor. entered the field programmable logic marketplace in 1980
with the introduction of the PAL® device family. By 1984 National had taken the lead-
ership of this market through technological advances and customer support. In particu-
lar, National is the first company to come out with the 15 ns high-performance family of
PAL devices. National also has the broadest product line of programmable-logic prod-
ucts that will include CMOS and ECL products. National Semiconductor is committed
to maintaining its leadership in this area through technological innovation, customer

support and product quality.

PAL is a registered trademark of and used under license to Monolithic Memories, Inc.

2

Programmable Logic Basics

2.1 WHAT IS PROGRAMMABLE LOGIC?

Programmable logic devices are essentially uncommitted logic gates where the user
determines the final logic configuration of the device. Hence, programmable logic
devices are true semicustom products. A major feature of these devices is field-
programmability, which offers almost instant customization. A mask-programmable
option is also available for volume applications. The internal structure of these devices
is a'fuse-programmable interconnection of AND gates, OR gates, and Registers. These
devices allow the user to design combinational as well as sequential circuits. The basic
programmable array is AND-OR logic in the familiar Sum-of-Products (SOP) representa-
tion. The conventional schematic representation is shown in Figure 2.1.1.

c "\ CD “\ 0
D= S y

A D AD

D

Figure 2.1.1 Conventional Representation

4 Programmable Logic Design Guide

Its programmable logic equivalent is shown in figure 2.1.2.

D Cc B A

v W

00000

02 04

Figure 2.1.2 Programmable Logic Representation

Various programmable logic products are built around this structure by adding fea-
tures and other logic elements such as programmable Active-Low or Active-High out-
puts, output registers, internal feedback, and state registers.

A definition of programmable logic is not complete without including software.
An important part of these products is the software and design automation tools that
aid systems design with programmable logic devices.

2.2 USER-BENEFITS OF PROGRAMMABLE LOGIC

The use of programmable logic devices in systems design presents the user with many
benefits, some of which are obvious and some of which are not. The versatility and
power of programmable logic devices can be demonstrated through the most common
benefits described below.

Reduced Board Space

Today, programmable logic typically implements from 4 to 20 SSI and MSI logic devices
on a single chip. PC board real estate is one of the most valuable and limited items in a
system and programmable-logic devices are ideal for reducing board space. This can
allow the system manufacturer to reduce the size of a system or to increase the logic
power for a system of a given size.

Programmable Logic Basics 5

Fast Systems Design

Fast turnaround in systems design can be achieved. Systems can be prototyped quickly
by using available design automation development tools. Standard design tools reduce
the need for manual design and documentation. After the first prototype has been built,
modifications and correction to the logic can also be made quickly, without having to
rewire or rework the PC board. The net result is that the programmable-logic user can
enjoy a competitive advantage in the marketplace by bringing new products to
market early.

Design Flexibility

Systems design is generally an iterative process. It starts with ideas and concepts and
then progresses through an iterative series of evaluation, modification, and refinement
of the original design. Numerous logic configurations have to be evaluated in this proc-
ess and the painless way to perform these evaluations is through the use of programma-
ble logic. All of the changes can be made at the CAD terminal, which will also ensure
that the documentation is updated to include the changes. ‘

With the use of programmable logic, the designer is not limited to standard off the
shelf parts and, therefore, can use non-standard logic structures. The engineer now
simply chooses what is needed instead of taking only what is available.

Design flexibility derived from using programmable logic means logic changes are
easy in all phases of the system life cycle. For example, logic changes can be made dur-
ing prototyping, during system testing, during system production, and in the field.

Many manufacturers need to be able to perform some final customization to the
system. The use of programmable logic allows this customization to be implemented
quickly.

Multilevel Logic Reduction

The designer can compress multiple levels of logic into a two-level AND-OR structure
through the use of programmable logic, thus simplifying the design and in many cases
obtaining a speed and/or power advantage. An example is shown on the following page
in Figure 2.2.1.

Cost Reduction

The systems manufacturer can realize cost reduction by the use of programmable logic
through a variety of factors, including:

® Lower component cost through

— PC board area reduction.

Reduction in connectors used.
Simpler back panel.
Smaller power supplies.
Reduced cooling.

Programmable Logic Design Guide

LOGIC EQUATION

LEVEL 5 LEVEL 4 |, LEVEL 3

(W4
NETWORK | 7
AND/OR GATE -
lg
I
|
g
D
<
NAND 7
NETWORK j

I

=l

LEVEL 2 LEVEL 1

rF1 =a[b+cd+e)+Tg]+hij+k 1

T

laJo s

]mln Jm

&

fofe

[
|
D—>=
-

>

Kk ‘
AND/OR NETWORK

Figure 2.2.1 Multilevel Logic Reduction

e Lower design and development cost through
— Quick-turnaround software-supported design.
— Easy-to-make changes.
— Computerized documentation.
- Simplified layout.
® Lower manufacturing cost through
— Fewer component insertions.
— Fewer boards to manufacture.
- Less component, board and system testing.
® Lower service costs through
- Improved reliability.
— Fewer spare parts.
— Faster logic fixes.

Programmable Logic Basics 7

Example to lllustrate Lower Component Costs

Table 2.2.1 is an example of the elements of component cost. The costs used are typical
of those found in the-industry and will have to be modified to reflect a specific

situation.

Cost Range ‘Ave Cost Cost/IC
Cost Variable $ ‘ $ $

Purchasing, Receiving, Inventory 0.01-0.03 0.02 0.02
Incoming Inspection 0-0.15 0.08 0.08
PCBoard 10-100 30.00 0.30
Assembly Labor 0.10-0.40 0.20 0.20
Connectors, Wire, etc. 30-100 60.00 0.10
Power Supplies, Cooling 45-120 60.00 0.10
System Assembly 40-80 60.00 0.10
Rack, Cabinet, Panels - '20-50 30.00 0.05
Total Overhead ' 0.95
IC Cost 0.12-2.00 0.50
Total IC Cost in System 1.45

Table 2.2.1 Typical Component Cost Structure

- Assume a system with 600 SSI/MSI ICs. The total cost of the system is therefore as
follows:

SSI/MSI System Cost = 600 x $1.45 = $870

PAL devices are used to replace the SSI/MSI discrete logic devices. The replace-
ment can be accomplished at various efficiencies, where efficiency is defined as:

Efficiency = Average number of SSI/MSI devices replaced by one PAL.

If we assume that the cost of programming a PAL device is $0.40 then the total cost
of a PAL based system is as follows:

PAL based system cost =
600
Efficiency

600
Efficiency

X (PAL Device Price + Overhead + Programming Cost)

X (PAL Device Price + $0.95 + $0.40)

8 Programmable Logic Design Guide

Various efficiencies and PAL device prices are substituted in the above equation to
obtain the PAL based system costs in Table 2.2.2 below.

SSUMSI ngLD;vice System Cost (2) at a Your PAL Device
Efficiency System evice Purchasg Price of Your SSUMSI System Cost
Factor (EF) Cost (1) | $8.00 | $6.00 | $4.00 | $3.00 System Cost @ /PAL Device
3:1 870 1870 1470 1070 870
41 870 © 1403 1103 803 653
6:1 870 . 935 735 535 435
8:1 870 701 551 401 325

(1) Cost = 600 ICs x 1.45/IC = $870

(2) Cost = [600 + EF] x [PAL Device price + Overhead + Programming Cost]
[600 + EF] x [PAL Device price + 0.95 + 0.40]

[600 + EF] x PAL Device price + 1.35

Table 2.2.2 System Cost Comparison Between SSI/MSI Based System and
PAL Device Based System.

Most users realize at least a 4:1 ratio and at today’s PAL device prices, it is clearly
more economical to use PAL devices. Furthermore, as prices decline, even low efficien-
cies become economical.

Example of Cost Reduction Through Reliability Improvements

A simple example is used here to illustrate the power of PAL devices to improve system
reliability. Assume that systems fail for only two reasons:

e External connection failures (70%)
— Solder.
— Connectors.
— Back plane wiring,.

e IC failures (30%)

A hypothetical system is defined as having 5 boards each with 100 SSI/MSI dev1ccs
With the following assumptions:

System is in use for 3 years.

Single device failure probability is 0.01% within the 3 years.

Single device failure will cause board failure, which will result in system
failure. ,

100 systems are sold.

$1000 cost for each system failure.

1

Programmable Logic Basics 9

The system failure probabilities and expected costs are computed below.
SSI/MSI device-related board failure probability = 1 — (0.9999)!1%° = 0.009989
SSI/MSI device-related system failure. probability = 1 — (0.990011)° 0.0489583

0.0489583 x 70
External connection failure probability = 95303 ’ = 0.114236
Total system failure probability within the three years= 0.1631943
Total Expected Cost from system failures during the three years= $1000 X 100 X
0.1631943 = $16,000

The logic designer now uses PAL devices and other LSI devices to realize a 5:1 SSI/MSI
chip replacement. The system will now have one board. The system failure probability
and expected cost of the PAL device-based system is computed below:

Device-related board failure probability =1 — (0_9999)100 = 0.009989
0.009989 X 70 '
External connection failure probability = 9933
= 0.023307666

Total PAL device-based system failure probability = 0.033296666
Total Expected Cost of PAL device based system= $1000 x 100 X 0.033296666
=~$3300

On comparing the expected costs from system failures of the SSI/MSI based system
to that of the programmable-logic based system, there is approx1mately a 5:1 ratio of
cost in favor of the programmable-logic based system.

This example is somewhat simplistic and some gross assumptlons were made to
illustrate the advantages of using programmable logic. In reality, the actual reliability
improvement will depend on numerous factors that have not been addressed here.

Small Inventory
The programmable logic family can be used to replace up to 90% of TTL components.

This allows the user to lower inventory costs considerably, in addition to simplifying
the inventory system. '

10 Programmable Logic Design Guide

2.3 ELEMENTS OF PROGRAMMABLE LOGIC

The first programmable integrated circuit logic device was the diode matrix. It was
introduced in the early 1960s. This approach featured rows and columns of metalliza-
tion, connected at the crosspoints with diodes and aluminum fuses (Figure 2.3.1).
These fuses could be selectively melted, leaving some of the crosspoints open and oth-
ers connected. The result was a diode-logic OR matrix.

11 4

=]
)
[
%

Figure 2.3.1 Diode OR Matrix

The PROM

Integrated circuit designers added input decoders and output buffers to the basic diode
matrix, creating the field-programmable read-only memory (PROM) (Figure 2.3.2). This
extended the programmable-logic concept considerably, since the input variables
could now be encoded. It also reduced the number of pins required per input variable.
At the same time, the input circuitry, along with the output buffers, provided TTL com-
patibility, the lack of which was one of the drawbacks of the diode matrix. For the sake
of simplicity and clarity, the programmable diode matrix is shown at a simple cross-
point in Figure 2.3.3

A decoder is nothing more than a collection of AND gates that combine all the
inputs to produce product terms. The basic logic implemented by the PROM is
AND-OR with the AND gates all preconnected on the chip, making this portion fixed.

Programmable Logic Basics 11

The OR matrix is implemented with diode-fuse interconnections, making it program-
mable. Thus, the PROM is an AND-OR logic element with fixed AND matrix and pro-
grammable OR.

There are many advantages to using PROMs as logic devices. Because they are used
" in many applications, they are produced in high volume. Also, the PROM is a universal
logic solution. In other words, all of the product terms of the input variables are gener-
ated. This makes it possible to implement any AND-OR function of these variables.

On the less positive side, it is difficult to accomodate a large number of variables
with PROMs. For each variable added to the PROM, not only does the package increase
by one pin, but the size of the fuse matrix doubles. For example, an eight-function,
five-variable PROM (32 X 8) requires a 256-fuse element matrix. An eight-function,
six-variable device (64 X 8) requires a 512-element matrix. As a practical matter, PROMs
are limited in the maximum number of input variables they can be designed to handle.
Manufacturers are currently producing no larger than 13-input PROMs.

DECODER FUSE MATRIX
AND (OR)

Femm T

B %]]
: Ti|12
| i \Z%;Z%g
1 & 11'E
2—‘I—'II 2 ¢ # J
| | \Z“\Z‘\
| — 1l
|
| |
Fq F2 F3 Fq

Figure 2.3.2 4 x 4 Bit Prom

12 Programmable Logic Design Guide

ly ly lo “OR" ARRAY
l . l I (PROGRAMMABLE)

\\E
|

=~

H

It

b

BES

“AND"* ARRAY .
(FIXED)

—x

0; 0, 0, O

Figure 2.3.3 PROM with 16 Words x 4 Bits

The FPLA

The Field-Programmable Logic Array (FPLA) overcomes some of the size restrictions of
PROMs because its designers recognized that not all product terms are required to

Programmable Logic Basics 13

implement most logic functions. By having a second fuse matrix (an AND matrix), the
FPLA allows the designer to select and program only those product terms used in each
specific function (Figure 2.3.4). These product terms are then combined in the OR fuse
array to form an AND-OR logic equation.

l2 l1 lo “OR" ARRAY
(PROGRAMMABLE)

“AND” ARRAY :

(PROGRAMMABLE) 0; 0, 0, O,

Figure 2.3.4 FPLA with 4 Inputs, 4 Outputs, and 16 Products

14 Programmable Logic Design Guide

In addition to specifying the number of inputs and functions, the FPLA manufac-
turer must also specify the number of product terms available, since there are less than
20 terms (with n as the number of input variables). The fact that the number of product
terms is less than 27 is what allows the FPLA to accommodate larger values of n, i.e.,
more inputs. This is in contrast to the PROM where the number of product terms is
always equal to 21

Although the FPLA usually requires less fuses to implement a given logic function,
the additional fuse matrix does pose some difficulties of its own. The biggest problem
is the circuitry required to select and program these fuses — circuitry that is not used in
the final logic solution, but which is paid for in die area. This “chip overhead” cost is
not significant if the FPLA’s capabilities are fully utilized, but it does become significant
for less complex problems that leave unused logic.

As has been shown, PROMs provide all of the product terms for a limited number
of input variables in generating AND-OR logic functions. FPLAs, on the other hand,
provide a limited number of product terms for a larger number of input variables. How-
ever, the FPLA is unrestricted in combining the product terms in the OR matrix, which
adds considerable flexibility to this device.

Because of the dual fuse matrix and the overhead cost of the circuitry required for
programming, the FPLA cannot be used economically in some low complexity logic
problems. The cost saving associated with the removal of the AND matrix (by
hardwiring it) is evident when one compares price. PROMs cost less than FPLAs. As
mentioned, however, the PROM approach significantly restricts the number of input
variables. : : ‘

The PAL (Programmable Array Logic) Device

Savings similar to those of PROMs could be made without the penalty of restricting the
input variables, by removing the OR matrix from the FPLA, or hardwiring it. In the PAL
device concept (Figure 2.3.5), the AND fuse array allows the designer to specify the
product terms required. The terms are then hardwired to a predefined OR matrix to
form AND-OR logic functions.

An immediate observation is that because the OR gates in PAL devices are pre-
wired, the degree to which the product terms can be combined at these OR gates is
restricted. PAL devices partially compensate for this by offering different part types that
vary the OR-gate configuration. Specifying the OR-gate connection therefore becomes
a task of device selection rather than of programming, as with the FPLA. With this
approach, PAL devices eliminate the need for a second fuse matrix with little loss in
overall flexibility. ‘

Programmable Logic Basics 15

l3 |2 l1 lo “OR" ARRAY
(FIXED)

IR
T

I
T
I

e YWY

(PROGRAMMABLE) 0, 0, 0, O

" Figure 2.3.5 PAL Device Having 4 Inputs, 4 Ouputs, and 16 Products

16 Programmable Logic Design Guide

Comparison

To illustrate the difference among the three most popular field-programmable logic
concepts, the same four logic expressions will be solved with each, as shown in Figure
2.3.6(a). For comparison, each of the approaches is shown as an AND matrix, followed
by an OR matrix. The PROM solution shown in Figure 2.3.6(b) requires a 16-fuse

A B
¥ M
FUSIBLE OR

AR
]l) AB
LOGIC EQUATIONS AB
Fi=A PROM
Fa=AB _ . : AB
F3=A+B _
Fs=AB+AB AB
(a) HARD AND E?
Fi. F2 F3 Fq
(b) ‘
A B
& HARD OR
M) A
| -
A B , wgr
& "
FUSIBLE OR —ﬂ AB
s ‘ —\ wo
. A PAL | #
- —x L A
% ¥X-AB T 1 _
FPLA . ~ }(--D B
B o
»] ‘ _ﬂ4) AB
_T AB
FUSIBLE AND .
FUSIBLE AND
Fi F2 F3 Fu

Fi F2 F3 Fa
(@

Figure 2.3.6 (a) Logic Equation, (b) PROM Solution, (c) FPLA Solution and
(d) PAL Device Solution

(c)

Programmable Logic Basics 17

matrix, whereas the FPLA and PAL device require 32 fuses each. If we were to add
another input variable, the number of fuses in a PROM increases to 32, while the FPLA
needs only 8 more and the PAL device needs 16 more. A fourth input again doubles the
number of PROM fuses to 64, but adds only 8 to the FPLA and 16 to the PAL device.
This example illustrates the previous statement that as the number of inputs increases,
PROMs consume more fuses than either FPLAs or PAL devices. '

2.4 PROGRAMMABLE LOGIC VERSUS OTHER LSI, SEMICUSTOM AND CUSTOM
ALTERNATIVES

Logic designers are noticing an apparent “complexity gap” between TTL and LSI.
Products designed with discrete TTL devices would consume unacceptable amounts of
‘physical space and electrical power. Software-programmable LSI devices (microproc-
essors) offer high density and need relatively little power to operate. But the designer
pays a high price in software development and still has to use discretes to interface
them to the outside world. Until recently, there has been no device that provides a
really effective way of bridging this gap. National has seen this need, and now offers the
designer a family of PAL (Programmable Array Logic) devices to fill it. PAL devices offer
powerful capabilities for creating cost-effective new products or for improving the
effectiveness of existing logic designs. PAL devices save time and money by solving
many of the system partitioning and interface problems not otherwise effectively
solved by today’s semiconductor device technology.

Standardized LSI

LSI (Large Scale Integration) offers many advantages, but advances have been made at
the expense of either device flexibility or software complexity. LSI technology has
been and still is leading to larger and larger standard logic functions. LSI offers high
functional density and low power consumption; single ICs now perform functions that
formerly required complete circuit cards. However, most LSI devices don’t interface
with user systems without large numbers of support devices. Designers are still forced
to turn to random logic for many applications. LSI is slow, and it is rigidly partitioned.
For all its capability to perform varied and complex tasks, the microprocessor is a slow
and expensive way of doing simple, repetitive tasks when the necessary interface and
other support devices are added. And, when the time, money, and memory required
for software development are considered it is even more expensive.

Full Custom IC’s
Custom IC’s can be effective design solutions if the product is of low-to-medium com-

plexity, its logic function is well-defined, and its market is high-volume. Its design cycle
is typically long, and its cost can be prohibitive. This tends to discourage its use.

18 Programmable Logic Design Guide

Gate Arrays

A close relative of the custom circuit is the gate array. With gate arrays, the total logic.
capability of the chip, its pinouts, and its performance are predefined by the
semiconductor manufacturer. The user specifies only the logic interconnection pattern, a
process much the same as interconnecting standard small-scale integration (SSI) logic cir-
cuits. Since only a metallization pattern is required, the setup costs and turnaround time
for gate arrays are lower than for custom circuits, but because the designer can seldom
utilize the entire logic capability of the chip, the unit cost per active element is often
higher. The setup costs and turnaround time for gate arrays are considerably higher than
that for programmable logic, which has practically no turnaround delay.

Boolean LOgic Review

3.1 BASIC OPERATORS AND THEOREMS

A gate is an electronic circuit which operates on one or more input signals to produce
an output signal. There are three basic gates from which all other logic can be realized:
AND, OR, and INVERTER gates. Figure 3.1.1 shows these three basic gates and their
truth table.

A ‘ INPUT OUTPUT
)———-— F A B F
B 0 0 0
[} 1 (]
(A) AND GATE > 0 o
1 1 1
A memm—
B __q}—_ F INPUT OUTPUT
A B F
(B) OR GATE o 0 5
o 1 1
. 1 ()} 1
1 1 1
A > F
| INPUT OUTPUT
(C) INVERTER A F
0 1
1 0

Figure 3.1.1 Basic Gates

To express the function of these gates by Boolean* algebra, we need to define
Boolean operators as follows:

Logical Equality

Negate (not, invert, complement)
OR (sum)

AND (product)

Exclusive OR

Exclusive NOR

| 0

o+ e+

19

20 Programmable Logic Design Guide

The function of an AND gate in Figure 3.1.1 can be expressed as:
F=AoB
The function of an OR'gate and INVERTER can ‘be expressed as:

=A+ B
and F=4A

Boolean operators are logical operators, which are different from arithmetic oper-
ators. For example, + is logical addition, e is logical multlphcatxon We call such equa-
tions Boolean equations or logic equations.

A number of logic theorems and laws will be used to mampulate and reduce logical
equations. These theorems and laws are as follows:

Theorem 1 A+0 = A
Theorem 2 AeQ =0
Theorem 3 A+ 1 =1
Theorem 4 Ael = A
Theorem 5 A+ A = A
Theorem 6 AoA = A
Theorem 7 S A+ A =1
Theorem 8 AoA =0
Theorem 9 A = A
Theorem 10 A+ AoB = A
Theorem 11 A(A + B) = A
Theorem 12 (A+B)o(A+C) =A+BeC’
Theorem 13 A+AeB = A+ B

Commutative Law
A+ B. =B
.AeB =B
" Associative Law

A+B+C =A+B)+C =A+B+C)
AocBoC=(AoeB)eC=Ae¢(Be()
Distributive Law

A+(BoCoD)=(A+B)e (A+C) e (A+D)
Ae(B+C+D)=AeB + AeC+AeD
DeMorgan’s Theorem
(A+B+C) =AeBeC
AeBoeC) =A+B+C
*George Boole was the son of a shoemaker. His formal education ended in the third grade. Despite this, be was a brilliant

scholay, teaching Greek and Latin in bis own school, and an accepted mathematician who made lasting contributions
in the areas of differential and difference equations as well as in algebra.

Boolean Logic Review 21

The complement of any Boolean expression, or a part of any expression, may be
found by means of DeMorgan’s theorem. Two steps are used to form a complement in
this theorem:

1. OR symbols are replaced with AND symbols or AND symbols with OR symbols.
2. Each of the terms in the expression is complemented.

DeMorgan’s theorem is one of the most powerful tools for engineering applica-
tions. It is very useful for designing with programmable logic devices because it pro-
vides a quick and simple conversion method between PRODUCT-OF-SUMS and
SUM-OF-PRODUCTS expressions, which will be defined later.

3.2 DERIVATION OF A BOOLEAN EXPRESSION

Any logic expression can be reduced to a two-level form and expressed as either a
SUM-OF-PRODUCTS (SOP) or PRODUCT-OF-SUMS (POS). Before we define SOP or
POS, we need to define “terms.’

1. Product Term — A product term is a single variable or the logical product of several
variables. The variable may or may not be complemented.

2. Sum Term — A sum term is a single variable or the sum of several variables. The vari-
ables may or may not be complemented.

3. Normal Term — A normal term is a product or sum term in which no variable
appears more than once.

4. Minterm — A minterm is a product term containing every variable once and only
once (either true or complemented).

5. Maxterm — A maxterm is a sum term containing every variable once and only once
(either true or complemented).

For example, the term A o B o Cis a product term; A + B is a sum term; A is both a
product term and a sum term; A + B e C is neither a product term nor a sum term; A +
Bisasumterm; A o B o C is a product term; B is both a sum term and a product term.
We now define two most important forms:

1. SUM-OF-PRODUCTS Expression — A sum-of-products expression is a product term
or several product terms logically added together.

2. PRODUCT-OF-SUMS Expression — A product-of-sums expreésion is 2 sum term or
several sum terms logically multiplied together.

- For example, the expression A ¢ B + A o Bisa sum-of-products expression;
(A + B) ¢ (A + B) is a product-of-sums expression.

22

Programmable Logic Design Guide-

One prime reason for using sum-of-products or product-of-sums expressions is

their straightforward conversion to very simple gating networks. In their purest, sim-
plest form they go into two-level networks, which are networks for which the longest
path through which a signal must pass from input to output is two gates long.

When designing a logic circuit, the logic designer works from two sets of known

values; the various states which the inputs to the logical network can take, and the
desired outputs for each input condition. The logic expression is derived from these
sets of values and the procedure is as follows:

1.
2a.

2b.

Construct a table of the input and output values (Table 3.2.1 left half).

To derive a SUM-OF-PRODUCTS (SOP) expression:

A product term column is added listing the inputs A, B, and C according to their
value in the input columns (Table 3.2.1). Then the product terms from each row
in which the output is a “1” are collected.

Therefore:
F=AeBeC +AeBeC +AeBeC (Eq. 3.2.1)

To derive a PRODUCT-OF-SUMS (POS) expression:

A sum term column is added listing the inputs A, B and C according to thelr com-
Dlement value in the input columns (Table 3.2.1). Then the sum terms from each
row in which the output is “0” are collected.

Therefore:

=A+B+CA+B+C@A@+B+C@A+B+C@A+B+ C)
(Eq. 3.2.2)

Inputs Outputs
A B C F Product Terms Sum Terms
0 0 0 0 ABC A+B+C
0] 1 0 ABC A+B+CT
0 1 0 1 ABC A+B+C
0 1 1 1 ABC A+B+C
1 0 0 0 ABT A+B+C
1 0 1 0 ABC A+B+C
1 1 0 1 ABT A+B+C
1 1 1 0 ABC A+B+C

Table 3.2.1 Truth Table of Eq. 3.2.1 and Eq. 3.2.2

Figure 3.2.1 is the logic circuit which direct derived from Eq. 3.2.1. Figure 3.2.2 is
derived from Eq. 3.2.2.

Boolean Logic Review 23

Eq. 3.2.1 can be simplified as shown below:

F =AeBeC +AeBeC +AeBeC
=AeB(C +C)+ AeBeC
=AeB + AeBsesC
=B@A + AeQC)
=B@A + C)
=AeB + BeC

Eq 3.2.2 can be simplified as shown:

The two final expressions obtained are identical and can be implemented by, the circuit
shown in Figure 3.2.3. This is much simpler than the circuits in Figures 3.2.1 and 3.2.2.
This simplified procedure is called minimization.

é =\
¢ —yJ/
a) - F
c——1__/ . L/
B)
c i/
Figure 3.2.1 Logic Circuits of Eq. 3.2.1
8 D
c L/
[—_"_'II_./
A N\
=] > —_—
="
A N\
e)

Figure 3.2.2 Logic Circuits of Eq. 3.2.2

24 Programmable Logic Design Guide
B ——.3 I
é . .

Figure 3.2.3 Simplified Logic Circuits

3.3 MINIMIZATION
Logic circuits can be represented by logic expressions or so called logic equations. As

discussed, we can minimize the logic circuit through logic equations minimization. For
example, Figure 3.3.1 can be expressed by Eq. 3.3.1.

O

T T D

ow>»

—
L/

Figure 3.3.1 A Random Logié Circuit

F=AoeBeC+D)e(B+D)+AoCe(B + D) (Eq 3.3.1)
By using the theorems and laws mentioned in 3.1, we minimize Eq. 3.3.1
as follows: :

F = AeBeC+BoeD+AeBeCoeD+D+AeCoeB+AoCeD
= AeBeC(1 +D)+ DB + 1)+ AeCeB + AoC oD Distributive Law
= AeBeC +D+AeCeB+AeCoeD . Theory 3

AeB(C +C) +D(+AeC) Distributive Law

AeB + D. i

Boolean Logic Review 25

The minimum SOP expression can now be implemented as the simple AND-OR
logic circuits as shown in Figure 3.3.2.

A— D
8

>———F=AB+D
D

Figure 3.3.2 Minimized Logic Circuit

We can use Boolean Algebra to reduce the number of product terms. However,
Karnaugh Mapping and the Quine-McCluskey method are two other powerful tools to
minimize the logic equations. We’ll discuss Karnaugh Mapping method in the next
section.

3.4 K-MAP METHOD

A Karnaugh map, hereafter called a K-map, is a graphical method for representing a
Boolean function. It is similar to a truth table in that the K-map supplies the TRUE or
FALSE value of a Boolean function for all possible combinations of its logical argument.
There are many ways in which a K-map can be arranged. The most important consider-
ations of the arrangement are:

1. There must be a unique location on the K-map for entering the TRUE/FALSE value of
the function that corresponds to each combination of input variables.

2. The locations should be arranged so, with minimization mentioned in Section 3.3,
that they are readily apparent to the trained observer.

The second consideration implies that a successful K-mapping arrangement should
point to groups of minterms or maxterms that can be combined into reduced forms.
K-maps are also useful in expanding partially reduced expressions into standard forms
prior to the minimization process.

The K-map is one of the most powerful tools at the hands of the logic designer. The
power of the K-map does not lie in its application of any marvelous new theorems, but
rather in its utilization of the remarkable ability of the human mind to perceive patterns
in pictorial representations of data. This is not a new idea. Anytime we use a graph
instead of a table of numerical data, we are utilizing the human ability to recognize

26 Programmable Logic Design Guide

complex patterns and relationships in a graphical representation far more rapidly and
surely than in a tabular representation. A few examples of how to create'a K-map
follow.

First, consider a truth table for two variables. We list all four possible input combi-
nations and the corresponding function values, i.e., the truth tables for AND and OR.
(Figure 3.4.1) :

A B A<B A B A+B
00 0 0 0 0
o 1 0 0 1 1
1 1 1 1 1 1
1 0 0 1 0 1

Figure 3.4.1 Truth Tables for AND and OR

As an alternative approach, set up a diagram consisting of four small boxes, one for
each combination of variables. Place a “1” in any box representing a combination of
-variables for which the function has the value 1. There is no logical objection to putting
“0’s” in the other boxes, but they are usually omitted for clarity.

The diagrams in Figure 3.4.2(a) are perfectly valid K-maps, but it is more common
to arrange the four boxes in a square, as shown in Figure 3.4.2(b).

AB AB

00 01 1 10 00 01 1 10
1 . 1 1 1
AeB) A+B
(A)
A A
B 0 1 B 0 1
0 0 1
1 1 1 1 1
AeB A+B
(B)

Figure 3.4.2 K-maps for AND and OR

Boolean Logic Review 27

Since there must be one square for each input combination, there must be 2n
squares in a2 K-map for n-variables. Whatever the number of variables, we may interpret
the map in terms of a graphical form of the truth table (Figure 3.4.3(a)) or in terms of
union and intersection of areas (Figure 3.4.3(b)).

The K-maps for some other three-variable functions are shown in Figure 3.4.4.

Particularly note the functions mapped in Figure 3.4.3(a) and 3.4.4(b). These are
both minterms. Each is represented by one square, obviously, and each one of the eight
squares corresponds to one of the eight minterms of three variables. This is the origin
of the name minterm. A minterm is the form of Boolean function corresponding to the
minimum possible area, other than 0, on a K-map. A maxterm, on the other hand, is the
form of Boolean function corresponding to the maximum possible area, other than 1,
on a K-map. Figure 3.4.3 (b) and 3.4.4 (c) are two examples.

A B C A-B-C
A o1 1 10
o o 0 0
0 o 1 0 0
0 1 0 0
o 1 1 0
1 0 0 0
1 0 1 0 1 1
1 1 0 0
111 1
A-B-C
(a)
A A
P'*—-_\ P_—*——
1 1 1 1
c 1 1 c 1 1
[— [
B B
A A
f__'-b-'“ pr——————
1 1 1
c| 1 1 1 1 c| 1 1 1 1
[—) e —
B B

A + B + C = A+B+C
(b)
Figure 3.4.3 K-Maps for 3-variable AND and OR

28 Programmable Logic Design Guide

— 00 01 1 10
1 1 0 1
c| 1. | 1 1
et
B : © " ABC
AC +AC . . (b)
(a) A
AB '
—teeee— o\ 00 ol 1 10
1 1 1 1 0 1
c| 1 ' 1 1 1 1 1 ‘1 1
—————
B
A+B+C . C+AB

(¢ (d
Figure 3.4.4 Sample 3-variable K-maps

Since each square on a K-map corresponds to a row in a truth table, it is appropri-
ate to number the squares just as we numbered the row. These standard K-maps are
shown in Figure 3.4.5 for two and three variables. Now, if a function is stated in the
form of the minterm list, all we need to do is enter 1’s in the correspondmg squares to
produce the K-map.

A AB
B 0 1 C 00 01 1. . 10
0 0 2 0 0 2 6 4
1 1 3 1 1 3 7 S

Figure 3.4.5 K-maps for Two and Three Variables

If a function is stated as a maxterm list, we can enter 0’s in the squares listed or 1’s
in those not listed.

A map showing the 0’s of a function is a perfectly valid K-map, although it is more
common to show the 1’s.

Boolean Logic Review 29

For example, the K-map of f(A, B, C) = m(0, 2, 3, 7) is shown in Figure 3.4.6 and
the K-map of f(A, B, C) = M(0, 1, 5, 6) is shown in Figure 3.4.7. where m means min-
term, M means maxterm.

AB

c 00 01 11 10
0 1 1
1 1 1

Figure 3.4.6 K-map of m(0, 2, 3, 7)

AB ' AB

c 00 01 n 10 c 00 01 1 10
0 0 0 0 1 1
OR
1 0 0 1 1 1

Figure 3.4.7 K-map of M(0, 1, 5, 6)

As shown, the K-map can be generated from the truth table on minterm expression
or maxterm expression. For the remainder of this section, we will learn how to mini-
mize the minterm expression by using the K-map.

The general principle of this minimization technique is “Any pair of n-variable
minterms which are adjacent on a K-map may be combined into a single product term
of n -1 literals.” The definition of “adjacent” should include opposite edges of the
K-map, for instance, Figure 3.4.8(a) and 3.4.8(b) both have a pair of adjacent minterms.

(a) {b)

Figure 3.4.8 Adjacent Minterms on a K-map

30 Programmable Logic Design Guide

Consider this function
f(A, B, C) = m(0, 1, 4, 6)
= ABC + ABC + ABC + ABC

Which results on the K-map, on the pattern shown in Figure 3.4.9

AB)
c 00 01 11 10
0 2 6 4
0 1 1 1
1 3 7 5
1 1

Figure 3.4.9 Minimization

Therefore, combine minterms 0 and 1, 4 and 6 to get a minimal expression:
f(A, B, C) = BB + AC '

Figure 3.4.10 shows some examples. Notice that it is permissible to include a min-
term in several terms if it helps make the term shorter.

AB AB

cp 00 01 1 10 co 00 01 1 10
00| 1 1 1 00| 1 1
o1 1 .o 1 1
1 1 n 1 1
10 R (I 10 1 1

Figure 3.4.10 Minimization

Boolean Logic Review 31

Quite often, some of the possible combinations of input values never occur. In this
case, we ‘“don’t care’” what the function does if these input combinations appear. The
K-map makes it easy to take advantage of these “don’t care” conditions by letting the
“don’t care” minterms be 1 or 0, depending on which value results in a simpler expres-
sion. Figure 3.4.11 shows an example of the use of “don’t cares” (redundancies) to sim-
plify the terms.

TN 00 o1 1 10
oo| X X 1
ot
1
10 1 X 1 1

Figure 3.4.11 Minimization

When working with larger functions, the tabular reduction developed by Quine and
modified by McCluskey is an alternative to the K-map method. The Quine-McCluskey
minimization method involves simple, repetitive operations that compare each min-
term that is present in a sun-of-minterms expression for a Boolean functions to all
other minterms with which it may form a combinable grouping.

The reader can refer to “Introduction to Switching Theory and Logic Design” by Hill
and Peterson to understand the Quine-McCluskey method.

3.5 SEQUENTIAL CIRCUIT ELEMENTS

Usually the subject of logic design is subdivided into two types: sequential and combi-
national. A purely combinational logic subsystem has no memory. Its outputs are com-
pletely defined by its present inputs.. The analysis and design of combinational logic is
much easier. A sequential logic subsystem has memory and its outputs are functions of
not only present inputs but the previous outputs. Circuits of multiplexer/selector,
decoder/encoder, adder, and comparator are examples of combinational circuits. Shift
register, counter, state machine, and memory controller are examples of sequential
circuits.

32 Programmable Logic Design Guide

pn Qn+1
DATA — — b afF -+ at1=p" o o
CLOCK == ~»1 C 1 1

T™n Qn+1
——pd T Q=== Q"+1=(TeQ+TeQ)"

0 Q"
= =g C 1 @"
——p] s Q= Q1= (S+ReSeQ)" R s | . a+?

‘ ReS+ 1
- C 0 0 Q"
0 1 1
——-R 1 0 ()
1 1 X
-——-f J Q=== Q"+1=(JeQ + KeQ)" J K qQn+1
—=—=1C 0o o Qn
0 1 0
+1 K 1 o 1
1 1 @

Figure 3.5.1 Basic Flip-Flops

Just as we have a logic gate as the basic combinational circuit element, we have a
flip-flop as a basic sequential circuit element. A flip-flop is a memory device which can
remember, or store, a binary bit of information. There are four basic flip-flop types: (1)
D flip-flop, (2) T flip-flop, (3) RS flip-flop, and (4) JK flip-flop. Figure 3.5.1 shows these
elements and their truth table.

With the memory elements, the output does not change as a functlon of the inputs
until the clock transition. Therefore, a superscript notation is used to indicate that the
output during clock period n + 1 is a function of the mputs durmg the prevnous clock’
period n.

The D (delay) flip-flop means the input (D) is “stored” in the flip flop when the
clock occurs and will appear on the output (Q) during the next (n + 1) clock time. The
D flip-flop is thus very much like a smgle -bit RAM. It is very useful for data storage and’
other special applications. :

The other three types of flip-flops defined in Flgure 3.5.1 are also one-bit storage
elements, but instead of simply storing the input, they change state in response to the
inputs by various logical rules. Since they hold their previous state in spite of the clock,
unless an input goes true, they often simplify the combinational logic functlons
required to control them in control applications.

Boolean Logic Review 33

The T (toggle) flip-flop, for example, stays in its previous state if the T input is false
before the clock. If the T input is true, the output changes to the opposite state (toggle)
on the clock. The T flip-flop is thus useful, for example, in binary counters where we
want each bit to invert every time there is a carry from the lower order bits.

The R-S flip-flop sets after the S input is true and resets after the R input is true. Its
output is undefined if both R and S are true. It is possible to define a Set Overrides Reset
(SOR) or a Reset Overrides Set (ROS) flip-flop. It will set or reset respectively if both the
R and the S inputs are true.

The J-K flip-flop sets after J is true and resets after K is true. It is similar to an R-S
flip-flop except that if J and K are both true, the output changes to the opposite state
(toggle). It can be used as a T flip-flop by tying the J and K inputs together.

Since the J-K flip-flop can essentially do the job of both the R-S and the T flip-flop,
the R-S and the T flip-flops are seldom seen. The choice is between J-K flip-flops for
small counters and control or D flip-flops for data storage applications. Actually the J-K
flip-flop can even do the job of the D flip-flop with the addition of 2 single inverter, as
shown in Figure 3.5.2. ‘

CLOCK

Figure 3.5.2 Implement D Flip-Flop by Using J-K

Another memory element type, called a latch, is often described on data sheets with a
truth table like the one for the D flip-flop in Figure 3.5.1. It is definitely not like a D flip-
flop, however because the output changes as soon as the clock goes high and does not
“latch” until the clock falls (if the input changes while the clock is high, the output fol-
low it). Because of this characteristic, a latch is not usable in the synchronous logic.

34 Programmable Logic Design Guide

3.6 STATE MACHINE FUNDAMENTALS

The relationships among present-state variables, primary input variables, next-state (or
excitation) variables, and primary output variables that describe the behavior of a
sequential system can be specified in several ways. As an example, consider the simple
sequential system that is shown in Figure 3.6.1.

W—) .
_J

<
<

DELAY

Figure 3.6.1 A Typical Sequential Circuit

This system has two primary input variables, having four different combinations of
values. There is one primary output variable and one state variable. It uses delay for
memory. There are only two possible present states: y = 0 and y = 1. When combined
with the four input combinations, these give eight different total present states. The
values of the next-state variable, Y, and the primary output variable, F, must be specified
for each total present state. The tabular arrangement shown in Table 3.6.1 is a common
method for presenting this information. This descriptive tool is called a state table.

NEXT-STATE OUTPUT
PRESENT - STATE ‘ Y F
y I412=00011011 | I112=000110 1
0 0101 0000
1 0111 0011

Table 3.6.1 State Table

* Boolean Logic Review 35

0, 0/0 1, 0/0

0, 1/0
0,000 K, IfF
1,10

1,11 1,011

0, 1/0

Figure 3.6.2 State Diagram

A second method for describing the behavior of a sequential system is the use of a
state diagram. This method presents a pictorial representation of the
present-state/next-state sequences that apply to the sequential device. State changes are
marked with directed arrows, with the primary input and output conditions that apply
to each state transfer given beside the arrows. The state diagram for the system of Fig-
ure 3.6.1 is shown in Figure 3.6.2. A slash separates the input information from the out-
put information.

State tables and state diagrams are essential tools in the analysis and design of
sequential digital systems. The reader should be familiar with these two tools by read-
ing the references listed in the end of this section.

36 Programmable Logic Design Guide

Because a sequential system has feedback from its outputs to its input, certain
types of instabilities and uncertainties can occur. When present, these conditions make
the operation of circuit difficult or impossible to describe. They may even render the
circuit useless, since its behavior may not be predictable or consistent. Several of these
types of problems are listed below.

1) The input or output conditions of the system may be indeterminant. For example,
the circuit in Figure 3.6.3.

Figure 3.6.3 Example of Hazard Circuit

2) The output condition of the system may be unstable, changing even though the
external inputs do not change. Figure 3.6.4. illustrates an example.

)
_—

DELAY

Figure 3.6.4 Example of Unstable Circuit

Boolean Logic Review 37

3) The output condition of the system, even though stable, may not be predictable
depending upon the primary input conditions. Figure 3.6.5 is an example.

l

4 Fq

>

DELAY

f2

DELAY

Figure 3.6.5 Example of Circuit with Unpredictable Output States

However, these problems mentioned above can be avoided by making certain
restrictions in the way sequential systems are designed and used. For instance, the fol-
lowing are some restrictions:

1. Avoiding continuing instabilities (oscillations).
2. Allowing only fundamental-mode operation.

3. Allowing only pulse-mode operation.

References

Hill & Peterson “Introduction to Switching Theory and Logical Design”’
Kohavi “Switching and Finite Automata Theory”

Rhyne “Fundamentals of Digital Systems Designs”

Krieger ‘“Basic Switching Circuit Theory.”

The Programmable Logic
Family | |

National’s programmable logic family consists of PAL devices and PROMs that come in
a variety of gate densities, pin-counts, architectures, speed and power specifications.
The following sections describe and tabulate these various options in addition to dis-
playing the logic schematics.

4.1 BASIC GROUPS

The programmable logic devices are divided into two sections: one to address PAL
devices and the other to address PROMs.

4.2 THE PAL DEVICE FAMILY

The PAL device family is separated by pin-count and by architecture. There is a 20-pin
family and a 24-pin family. Each family contains simple combinational logic devices and
more complex devices which have on-chip feedback options and output registers. The
20-pin small PAL devices and the 20-pin medium PAL devices are listed in Table 4.2.1.

Part No. of No. of No. of No. of Output

No. Inputs Outputs 1/0s Registers Polarity Functions
10H8 10 8 AND-OR AND-OR Array
12H6 12 6 AND-OR AND-OR Array
14H4 14 4 AND-OR AND-OR Array
16H2 16 2 AND-OR AND-OR Array
10L8 10 8 AND-NOR AND-OR:-Invert Array
12L6 12 6 AND-NOR AND-OR-Invert Array
14L4 14 4 AND-NOR AND-OR-Invert Array
16L2 16 2 AND-NOR AND-OR-Invert Array
16C1 16 1 AND-OR/NOR AND-OR/AND-OR-Invert Array
16L8 10 8 6 AND-NOR AND-OR-Invert Array
16R8 8 8 8 AND-OR AND-OR-Invert Register
16R6 8 8 2 6 . AND-OR AND-OR-Invert Register
16R4 8 8 4 4 AND-OR AND-OR-Invert Register

Table 4.2.1 Members of the 20-Pin PAL Device Family

39

40

Programmable Logic Design Guide

The 24-pin PAL devices are listed in Table 4.2.2 and Table 4.2.3 shows how to read the
part numbers. :

Part No. of No. of No. of No. of _ Output

No. Inputs Outputs 1/0s Registers Polarity Functions
12L10 12 10 AND-NOR | AND-OR Invert Gate Array
1418 14 8 AND-NOR | AND-OR Invert Gate Array
16L6 16 6 AND-NOR AND-OR Invert Gate Array
18L4 18 4 AND-NOR AND-OR Invert Gate Array
20L2 20 2 AND-NOR AND-OR [nvert Gate Array
20L8 14 2 6 AND-NOR AND-OR Invert Gate Array
20L10 12 2 8 AND-NOR AND-OR Invert Gate Array
20R8 12 8 8 AND-NOR AND-OR Invert w/Registers
20R6 12 .6 2 6 AND-NOR AND-OR Invert w/Registers
20R4 12 4 4 4 AND-NOR AND-OR Invert w/Registers
20X10 10 10 10 AND-NOR AND-OR-XOR Invert w/Registers
20X8 10 8 2 8 AND-NOR AND-OR-XOR Invert w/Registers
20X4 10 4 6 4 AND-NCR AND-OR-XOR Invert w/Registers

Table 4.2.2 Members of the 24-Pin PAL Device Family

R

-
o
|
NI

\

N

——————————— — PROGRAMMABLE LOGIC — FAMILY
PAL FOR PAL DEVICES

NL FOR NATIONAL MASKED LOG
PL FOR FACTORY PROGRAMMED PAL DEVICE

e o e e o — — OUTPUT TYPE: -

'H=ACTIVE HIGH
L = ACTIVE LOW

' € =COMPLEMENTARY

R=REGISTER
X =EXCLUSIVE-OR WITH
REGISTER

P =PROGRAMMABLE
OUTPUT POLARITY

[—— NUMBER OF OUTPUTS
— — —— — —— SPEED RANGE

NUMBER OF ARRAY INPUTS

NO SYMBOL = STANDARD SPEED
A =HIGH-SPEED

. A2 =HIGH-SPEED, HALF-POWER
B =ULTRA HIGH SPEED, ETC.

-—— — —PACKAGE TYPE:

N=PLASTIC DIP
J =CERAMIC DIP
V =PLASTIC LEADED CHIP CARRIER

— TEMPERATURE RANGE:"
C=0TO +75DEG. C

M= -55TO +125 DEG. C

Table 4.2.3 PAL Device Part Number Interpretation

The Programmable Logic Family 41

PAL Devices For Every Task

The members of the PAL device family are listed in Tables 4.2.1 and 4.2.2. They are
designed to cover the spectrum of logic functions at lower cost and lower package
count than SSI/MSI logic. This allows you to select the PAL device that best fits your
application. PAL devices come in three basic configurations: Gates, Register Outputs
With Feedback, and Programmable 1/O.

Gates

PALs are available in sizes from 12 X 10 (12 inputs, 10 outputs) to 20 X 2, with either
active-high or active-low output configurations. One part has complimentary outputs.
This wide variety of input/output formats allows the PAL to replace many
different-sized blocks of combinational logic with single packages.

Register Options With Feedback

High-end members of the PAL device family feature latched data outputs with register
feedback. Each Sum-Of-Product term is stored in a D flip-flop on the rising edge of the
system clock. (See Figure 4.2.1) The Q-output of the flip-flop can then be gated to the
output pin by enabling the active low TRI-STATE® buffer.

In addition to being available to transmission, the Q-output is also fed back into
the PAL array as an input term. This feedback allows the PAL device to “remember” its
prior state. And, it can alter its function based upon that state. This allows one to con-
figure the PAL device as a state machine that can be programmed to execute elementary
functions such as count up, count down, skip, shift, and branch.

INPUTS, FEEDBACK AND I/0
CLOCK E

o
L)
ol

. ‘4#>61
B> = ——

Figure 4.2.1 PAL Device Output Register Circuit, Simplified Logic Diagram

42 Programmable Logic Design Guide

Programmable 1/0

Another feature of the high-end members of the PAL family is programmable
input/output. This allows the product terms to directly control the outputs of the PAL
device. (Figure 4.2.2) One product term is used to enable the TRI-STATE buffer, which
in turn gates the summation term to the output pin. The output is also fed back into the
PAL device array as an input. Thus, the PAL drives the I/O pin when the TRI-STATE gate
is enabled. The I/O pin is an input to the PAL device array when the TRI-STATE gate is
disabled. This feature can be used to allocate available pins for I/O functions or to pro-
vide bidirectional output pins for operations such as shifting and rotating serial data.

INPUTS, FEEDBACK AND /O

— 1/0

> % 4
Figure 4.2.2 PAL Device Bidirectional Circuit, Logic Diagram

PAL Device - Speed/Power Groups

PAL devices are available with various speed/power specifications. For easy reference,
these are summarized in Tables 4.2.4 and 4.2.5.

20-Pin Small PAL
Devices 20-Pin Medium PAL Devices
10H8, 12H6, 14H4, ‘
16H2, 10L8, 12L6, 14L4, ’ '
16L2, 16C1 16L8, 16R8, 16R6, 16R4
Taa Max lec Max Taa Max Tgy Min Tek Max lec Max
(ns) (mA) (ns) (ns) (ns) (mA)
Standard 35 90 35 35 25 180
A Series 25 90 ’ 25 25 15 180
B Series — - 15 15 12 180
A-2 Series 35 45 35 35 25 90
B-2 Series — — *25 *25 *15 *90

*Preliminary information.

Table 4.2.4 20-Pin PAL Device Speed/Power Groups

The Programmable Logic Family 43

20C1, 20L2,
18L4, 16L6, 14L8,
20L10 20X10, 20X8, 20X4 12L10 20L8A, 20R8A, 20R6A, 20R4A

Taa Max |lcc Max | Tgy Min [Te, « Max oo Max [Toa Max |lgc Max | Tas Max | Tgy Min | T Max |l Max
(ns) | (mA) | (ns) (ns) (mA) | (ns) | (mA) [(ns) | (ns) (ns) (mA)

lStandard 50 165 50 30 180 40 100 — - -— -
| Aseries| — — — — — — — 25 25 15 210

Table 4.2.5 24-Pin Speed/Power Groups

PAL Device Logic Symbols

The logic symbols for each of the individual PAL devices gives a concise functional
description of that device. Figure 4.2.3 shows a typical logic symbol, that of the 10H8
gate array.

PAL10H8
\J

1

—1 AND
GATE
ARRAY

TR EEE

YYYYYYOY

|

Py - =y
- N (2]

ELELF G FLE L ELFELEL

Figure 4.2.3 Logic Symbol, PAL10H8

PAL12H6 PAL14H4

Programmable Logic Design Guide
PAL10H8

44

=] >
=] O
|
PAL10L8
] >
] D
=D
]
] >
] e
B
PAL16L2
o

s)
oks oF
_\ i3¢ 23
M_

Figure 4.2.4 PAL Device Logic Symbols — Series 20

EFELE ELE R EEE £ E ELELELEEFLELF E 2 7 [[F1LE F [FLFELE

da0add [ol T TT] +f [Tadeall
_|____.“___ _l__.L_,cA___ ._n___F.”___
N E N EEE T T T = =T & TN ETEENEEE
glalelslelslelsisls =1 = [[[F F FE FELE 2l 1 E L FFE FEFE
(aaaa0ndd)] o TTIAAITT] (18Adaae]
_l____.___ _..__L_H__ _IF_J_GA___
DN HEENEEE HNEETE N EEE N HE AN EEE

45

PAL16R6

The Programmable Logic Family

PAL16R8

PAL16L8

Bl [=] [E] =] 121 2] (5] =) (] 15
R onr 17—.% +

, [ST |

L Wmmm
ACNRIC At Gt E]
Rl [= FL = E EL RS E] [R1 2] [E] [5] 2] [9] (5] [7] [S] [

Ip lp » e st LV m _‘V.My M e 17 ¢
| i | RE G0a
A 2553 &[4l ssk2
E._‘.w._._m:.._w_._,wh_m_ Erwu_w__w___h_n_.o_.._m_

RIEIEEEEREREEE

.|
1
Do
1 ‘or %
eng
Do
.|
)

o=
E N
G

Figure 4.2.4 PAL Device Logic Symbols — Series 20 (Contd.)

Programmable Logic Design Guide

46

PAL14L8 PAL16L6 PAL18L4 PAL20L2

PAL12L10

[

lelclzlclolcioiciclalc

isiplelicicicicielielielEl

v | GG S
1 N N_w HH
—l_ | S | { 1 1 J & N —
GjojRjRejojEninjcjepn]
jelsgiginiciciciciciciaicl
_ a
@Dm&my s
v ~
25 g
1 1] 1 | 1 1 | .
BlojojniojEioninjejo|
ieiplioieicinicicicigicle
o
T1308A00T 1
ﬁ 858 m
1 i i 1 1 { L1
b bl Led el o0 B e el e]

- N
opX mv 3 30—&!‘
st g 385k .
\—l_ 1 { i 1 1 1 i) i i 1 1 1 1 1 1 i 1
O RN RN ETETETE Ll L el e e e =T e B T L
FLELR R R EILEEEE R R A EFEREEEREEEE
NOORRONEAE || 3
) 89
_J 338 & _J g5¢
] 1 1 1 i 1 |] 1 1) - 1 1 1 1 1
Bojsjoianiaiojo = ENE Baojapsnooojoje o]

PAL20R6 PAL20L8 PAL20R8

PAL20R4

G

alpiclalclclalalolo

Figure 4.2.5 PAL Device Logic Symbols — Series 24

4.3 THE PROM FAMILY

The Programmable Logic Family 47

National’s broad PROM family extends from a 32 x 8 bit (256 bit) PROM to a 4096 x 8
bit (32K) PROM. Only the low density byte-wide PROMs are considered here for pro-
grammable logic applications. The products in this category are shown in Table 4.3.1.

Part No. of No. of Prod'::{ '?lrmsl No. of | T,, Max lcc Max

No. Density Inputs Outputs Output Pins (ns) (mA)
745288 256 Bit (32 x 8) 5 8 32 16 35 110
87X288B 256 Bit (32 x 8) 5 8 32 16 15 140
74LS4T1 2K (256 x 8) 8 8 256 20 €0 100
7418472 4K (512 x 8) 9 8 512 20 60 155
7AS472A 4K (512 x 8) 9 8 512 20 50 155
7454728 4K (512 x 8) 9 8 512 20 35 155
745474 4K (512 x 8) 9 8 512 24 65 170
74S4TAA 4K (512 x 8) 9 8 512 24 45 125
745474B 4K (512x 8) 9. 8 512 24 35 170
87SR474 4K (12x 8) 9 8 512 - 24" 35 185
87SR476 4K (512x 8) 9 8 512 24* 35 185
87SR25 4K (512 8) 9 8 512 24 '35 185

Military versions are also available. Above data is commercial.
*24 Pin Narrow Dual-In-Line Package

Table 4.3.1 PROM Configurations

48

Programmable Logic Design Guide

Size DIP Part TAA TEA IcC Temperature
(Bits) Organization (Pins) Number (Max.)inn$ (Max.)in ns (Max.)inmA Celsius
32 x 8 Standard PROMs

256 32x8 oC 16 DM545188 45 30 110 -55t0 +125
32x8 OoC 16 DM745188 35 20 110 0to +70
32x8 TS 16 DM545288 45 30 110 -551t0 +125
32x8 TS 16 DM74S288 35 20 110 Oto +70

32 x 8 Ultra High-Speed PROMs
256 '32x8 TS 16 PL77X288 20 15 140 -55t0 +125
32x8 TS 16 PL87X288 15 12 140 0to +70
256 x 8 Standard PROMs
2048 256x8 TS 20 DM54LS471 70 35 100 -55t0 +125
256x8 TS 20 DM74L.8471 60 30 100 Oto+70
512 x 8 Standard PROMs
4096 512x8 OoC 20 DM54S473 75 35 1565 -55t0 +125
512x8 oc 20 DM74S473 60 30 1585 0to +70
512x8 TS 20 DM54S472 75 35 155 -55t0 +125
512x8 TS 20 DM74S472 60 30 155 0to +70
512x8 oC 20 bM54S473A 60 35 155 -55t0 +125
512x8 oc 20 DM74S473A 45 25 155 Oto+70
512x8 TS~ 20 DM54S472A 60 35 155 -55t0 +125
512x8 TS 20 DM74S472A 45 25 155 Oto +70
512x8 TS 20 DM54S472B 50 35 155 -55t0 +125
512x8 TS 20 DM7484728 35 25 155 0to+70
512x8 oCcC 24 DM54S475 75 40 170 -55t0 +125
512x8 oCcC 24 DM74S475 65 35 170 0to +70
512x8 TS 24 . DM54S474 75 40 170 -55to0 +125
512x8 TS 24 DM74S474 65 35 170 Oto +70
512x8 oc 24 DM54S475A 60 35 170 -55t0 +125
512x8 oCcC 24 DM74S8475A 45 25 170 0to +70
512x8 TS 24 DM54S474A 60 35 170 -55t0 +125
512x8 TS 24 DM748474A 45 25 170 0to+70
512x8 TS 24 DM545474B 50 35 170 -55t0 +125
512x8 TS 24 DM74S474B 35 25 170 Oto +70
512 x 8 Registered PROMs
4076 512x8 REG 24* DM77SR474 40** 30 185 -55t0 +125
512x8 REG 24* DM87SR474) 35" 25 185 Oto +70.
512x8 REG 24° DM77SR476 40* 30 185 -55t0 +125
512x8 REG 24* DM77SR25 40" 30 185 -55t0 +125
512x8 REG 24* DM87SR476 35" 25 185 Oto +70
512x8 REG 24" DM87SR25 35" 25 185 0to +70

* 300 mit wide package.

** Set-up time.

Table 4.3.2 PROM Products for Logic

A\
Q11 16— Vce
Q22 15 —E1
Q33 14— A4
Q14 13— A3

32x8
as—|s 12— A2
Q6—6 1| A1
Q7—{7 10} A0

GND—{ 8 9l-as
A7 1 24— vee
As2 5oy [As
As—3 REG. 22— NC
As—4 21— G
A3 —5 E 20 |~ INIT (CLR
A2—16 T 19-Gs
A7 g 18 rcx
Ag—8 S 1707
0p—9 16 |— Og
01—10 15— 05
0z—M1 141 04

GND—{12 13— 03

Note:

Figure 4.3.1 PROM Logic Symbols

The Programmable Logic Family

N
A0 —11 20 Vee
A1—{2 19} A7
A2—]3 18} A6
A3—4 17— A5
A4—|5 16— E2

256 x 8 _
Qi—|s 15—E1
Q2—7 14 Q6
Q3—|s 13Q7
Qi— 9 12— Q6

GND—{ 10 1}—-aQ5
A7 1 A 24 Vee
Re 2 gaxg [Ao
As—{3 REG. 22}—PS
As—{4 21—G
A3—{5 ©w 20-INIT (CLR)"

o N —

A;-l6 =G 18-GS
A7 §§ 18}-ck
Ap—18 o8 17107
0p—9 16— Os
0110 15 }— O5
O2~{11 1404
GND {12 13}-03

49

\)

Ao-;— lig\lcc
T =
Prasd 18 57
PEpel (17 6
A S 16 55

6 512x8 15 =
0y 2
oz% .::3‘.,,8
03 —g- 307
04 E -'—l-Uﬁ
onp 1L [~ 05

w Y

A4

512x 8

All of the virgin devices come with their fuses intact. But for the sake of simplicity, the

fuse-linked crosspoints in the array are shown unconnected.

4.4 LOGIC DIAGRAMS

The following pages show the logic diagrams of the PAL device and PROM family of
programmable logic devices. The logic diagrams are ordered in the following
sequence:

PAL Devices:

PROMs:

Figures 4.4.1—4.4.13 (20-pin PAL devices)
Figures 4.4.14—4.4.27 (24-pin PAL devices)

Figures

4.4.28—4.4.32

50

Product Terms (0-63)

Programmable Logic Design Guide

Inputs (0-31)

1123 438 0 un " nn nswy MuION

2l _ ‘ 1 19

3 [.
—x

" —=T>
4 N

“ : D 16
5‘ N
—x
Gv .
—Px
7 N
—T%

S S
8 ~ P A 12
__% N——
9 - N

17y ese? e (LX) wn nn ELRTRITLANRTRIBTEN

Figure 4.4.1 Logic Diagram PAL10H8

Product Terms (0-63)

The Programmable Logic Family
Inputs (0-31)

1 N
___?

\ s D 19

\ s D 18
3 ~
—iz
4
—iz

; B >——
5 N
1
iz |

N B D 14
7
L ix

“ iﬁ > 13
8
—x

] B—_—D—i
9 ' P 1
—z T

Figure 4.4.2 Logic Diagram PAL12H6

51

52

Product Terms (0-63)

Programmable Logic Design Guide

Inputs (0-31)

r21 4557 Esuu 12y

.

WHNRD AW 029300

P 19
4—

N
P 18

5 [
—IF
6

D ' 17
: 16

:V 15

: 14

P 12

0123 4587 egwn 2l

Figure 4.4.3 Logic Diagram PAL14H4

1.7

WA MBI

Product Terms (0-63)

The Programmable Logic Family

Inputs (0-31)

0123 @557 . 08100 12130415 16171819 20292220 24252627 2829301

5 N
—z
6 N

"»—-4
o= 16
-
==
~>—)
» 15
P
-
99—
L~}
. 14

0123 4567 2910110 121015 16171019 0212223 24252627 28283021

Figure 4.4.4 Logic Diagram PAL16GH2

53

54

Programmable Logic Design Guide

INPUTS (0-31)

(R} RN wn L E 423 2621 3

1
')

2) 19
re
Lg ~

3 N A 18

——‘) (J—'

4\ . 17

.V) {‘.—-———

s . 16

.V)

15

6 P 14
— - =N

7 N P 13
— LY

8 A 12
Ve N

9) 11
1& rd,

Wi 5 " T Ly an ma EEHY

~ 'Figui'c 4.4.5 Logic Diagram PAL16C1

Product Terms (0-63)

The Programmable Logic Family 55

Inputs (0-31))

Figure 4.4.6 Logic Diagram PAL10LS8

11 4 [] "7 1w 921 U2 23300
1 N
. B D 19
1
2 W
, B D 18
1]
3 »n
" O 17
n
4 <
—Iz
. E D 16
5
5 N
g
2 E D 15
3
i
a0 i ;# >c 14
a“
Iy
“ B D 13
[t
L&
- R D 4 12
57
9 N < 1
6121 4§ " mn %17 wun 45 229300

56

Product Terms (0-63)

Programmable Logic Design Guide

Inputs (0-31)
912 4587 LR} nn " nwn W NN
L
2 \ | 1 19
]
bt D
3 »N
|2 .
E 17
AL}
"
4
) LB
N . 16
: B >
5 N
l‘. >
n
: By O>—
6 . ‘
© E): 14
“
7 .
“ 13
L)
s0 >c
§1
8 " . 12
—1% N
9 I | 1
8123 “se () 17113 "o nn 425127 NN

Figure 4.4.7 Logic Diagram PAL12L6

The Programmable Logic Family 57

Inputs (0-31)

€11y ase sun un 1wy wnuan wswn wnen

A 18

ED 17

: 16

Product Terms (0-63)

g:: 15

: 14

] 12

0123 4582 sy vy 1837 DRV WD 229003

Figure 4.4.8 Logic Diagram PAL14L4

58

Product Terms (0-63)

Programmable Logic Design Guide

Inputs (0-31)

D123 4567 $91011 12130415 16101819 20212223 24252677 28293010

L

16

VWAAALL)

)9 |

L

15

d

123 S 67 B NI0N 12031415 10171810 20212220 24252820 20282001

Figure 4.4.9 Logic Diagram PAL16L2

The Programmable Logic Family 59

1 Inputs (0-31)
1 4587 1990 12131418 18171019 20212223 34252627 10290031
'
3 19
4
s
1]
7
L —— -
.
1]
18
0—¢
17

;

;

Product Terms (0-63)

;

;

b

v

A4S 6T B0 12121415 16171008 20212221 24252820 28293011

Figure 4.4.10 Logic Diagram PAL16L8

60

Product Terms (0-63)

Programmable Logic Design Guide

Inputs (0-31)

>

V23 4567 89101 5131815 18171618 20212213 <22 .30

8 -'pJ
: >
: 18
1
13
10 »
1 :;-7
3 P

UK llt

tTIlT

L

U

U

%

e (0 e |
| %

40
a » '
a »,
@ 5
a ».
a5
a5 5
».
et]

L

AL

Rl

X

V)
L

0123 8557 89101 12131008 16171819 20212725 23252670 2829303

Figure 4.4.11 Logic Diagram PAL16R8

Product Terms (0-63)

The Programmable Logic Family 61

Inputs (0-31)

ck —
H 19
: LIRD
2 | P
sR—{g_] <—
: s 18
5 = $o— Q,
3. 1 :>ﬁ b
D, —18 — &
: R
u » 17
u » jDQ Q,
n » r
4 n :a Q]
D, — 3 — N
s 16
: o :
. »]
0, 1% ﬂ————]
5 c=
u », 15
. s [a
6, = _ 2 |
Dy ~ 5 — K
. 3-)
2 » 14
. s Da &)_ Q.
. a
7. B |
o, —I¥ IS p—
“ 13
; P2 o
8 s) D
D; _‘tL .
12
i RILO
9 3} -~ 4 11 B
st % T —<}—¢

G123 456 LA UMY RIS 022 N AN

Figure 4.4.12 Logic Diagram PAL16R6

62 Programmable Logic Design Guide

] Inputs (0-31)

>

0123 4567 981000 12100405 16171019 20212220 24252627 282930 91

:
b
:
2 | A
B > — =
L
1
it
s
"
3

WAL

VY

Product Terms (0-63)

VAL

Rl

)

A

Y.

56 (5 (3

9L

A

13

KN—

0123 ese

0 1ZIS EIZINNS 0020 MU N

Figure 4.4.13 Logic Diagram PAL16R4

qu_ﬂ

The Programmable Logic Family 63

Inputs (0-39)

1219 1817 0 21 uB w9 an 35373829

2

)

2

N

i

2

-

:

2

o

:

1

©

i

1

]

1

~

i

1

o

:

1

J

1

»

i

13

|

213 161 02 us 8 29 231 5 37 38

Figure 4.4.14 Logic Diagram PAL12L10

64

Programmable Logic Design Guide

Inputs (0-39)

121 161

an

1,
—2
2 23
ol { —
: 22
10
n
3
s
. 21
. B1>—
4.
—13-
u j: m >° 20
5 »
-3
ST 19
6
_L)
18
o BT >—
7.
-
: 8D
8
—13
. 16
o B >—
9
13
u 15
88
87
10 14
1 : 13
% —~—
N 0 029 32333435 36373839

1721 16 ¥

'

Figure 4.4.15 Logic Diagram PAL14L8

The Programmable Logic Family 65

Inputs (0-39)
1 0123 “«567 s 90N 7 A[RI 20 479 W90 23S BTN
13— ‘
2 23
—+T1 <
3 22
13 N
18 21
”
198
19
4.
%3
% 20
5 g >°
26
27
5
2 19
6
—+x
© 18
. BT >—
7 :
%3
: @_17
43
50
51
8 _
%3
56 16
57
58
59
9 15
1% N
10 14
% P
1 13
—x —~—
23 4567 910n 121 161 20 U2 28293031 32333435 386373839

Figure 4.4.16 Logic Diagram PALI1GLG

66 Programmable Logic Design Guide

INPUTS (0-39)
MW 1213141 1817 aon 20252827 282307 RVUII MU
1)
3
2 {
_[V;""‘
3 : 23
—IVY S
4 ’ 22
—1' B “l-—
5 21
-3 Zi—
5 , 20
6 =
=
3 3 t 19
.: 18
H
7 a
%
. 17
51
8 16
-1 N—
9 15
% <
10 14
—1x N
h L 13
-1 +—
912 4 1] WM 12131415 1617 un 252627 282930 3233343 36373839

Figure 4.4.17 Logic Diagram PAL18L4

The Programmable Logic Family

Inputs (0-39)

45 1 89100 2SS BITIRI 20212223 4252827 80N 2N UI 537 1

1
-3
2 | 23
_]’S'— ——
3 22
13 S
4 21
—1x K
5 20
13 T
u 19
*
n
Y
6 »
—‘VX
4
a 18
Q
“
“
“
7 v 17
—+% N
8 16
—iz N
9 15
—+% 3
10 14
-3 N
1 13
-1 —
458 10 91 RIBWI W17 20212223 240252627 293031 RIUB NI NN

Figure 4.4.18 Logic Diagram PAL20L2

67

68

Programmable Logic Design Guide

Inputs (0-39)

1 1213 4567] WN 121U 1671319 20202223 24252627 Ii 29 30 NONNUN BTN
_{:)
2 .23
3 22
4 21
-1 —
5 20
-1z N

2 .

3

n

35

36

2

38
6 = 19
—+%

a 18

@

a

“

45

46
7 4 17
8 16
-1z FY
9 15
—+3 <—
10 : 14
—<x rdl
1n 13
—Is —_~

1 3 4567 8 MM 12131415 16171819 20212223 24252627 28293001 32333435 38T

Figure 4.4.19 Logic Diagram PAL20C1

Product Terms (0-79)

The Programmable Logic Family

Inputs (0-39)

69

1
0123 4567 891011 12131415 156171819 20212223 24252627 28293031 32333435 36373839

0 Sy
¢ 23
! | <
3

2 | .,

— N
H e 22
10
1"

3 .,

R R 21

18
19

4 .

.—P
u — 20
26
27

5 -

—B

oz 19
3
35

6 P

—4= 3
“ ., 18
42
43

7 [—

5=

o 17
50 P
51

8

- 54—

‘ u — 16
59 N

9)

—% R

. g; Dy 15
65
67

10 -
4 = 1
74
75

L 13

—I% S

0123 4567 891011 12131415 16171819 20212223 24 252627 28293031 32333435 36373839

Figure 4.4.20 Logic Diagram PAL20L10

70

PRODUCT TERMS (0-79)

Programmable Logic Design Guide

-

INPUTS (0-39)

0123 4567 891011 12131415 16171819 20212223 24252627 28293031 32333435 38373838

19

u

25
26

a

az

kX

34

35

A

40

L3

42

a3

7>

48

49

50
51

56

57

58

59

i

64

[

67
10!L__

72
14

T4

15

7
6 L
7

ol

14

@‘T?NT@T%@‘

)|

0123 4567 891011 12131415 16171819 20212223 24252627 28293031 32333435 36373839

Figure 4.4.21 Logic Diagram PAL20X10

AL G RGAGEGEL

L t?

PRODUCT TERMS (0-79)

The Programmable Logic Family

INPUTS (0-39)

71

1 D
D123 4567 891011 12131415 16171819 20212223 20252627 28293001 32333435 36373838
0
1 23
) .
3
2p Q—J
. .
9 22
; %‘B?D@*
" >
3 <
16
17 21
: i
4
N
2%
25 E 20
" BjagDD
1z N
32 -
3 19
; %}D%
6
—1x - ES
©
a 18
: %}DE :
7 .
% N
“
4 E 17
2 %BB:JD
8
> &
56 16
PRl
59 s
s T
o4 15
65 :Bo_
1045 4
7 [y
7 14
kL)
5
~ " 13
1 b | R <f

0123 4567 891011 12131415 16171819 20212223 24252627 28293031 32333435 36373839

Figure 4.4.22 Logic Diagram PAL20X8

72

PRODUCT TERMS (0-79)

Programmable Logic Design Guide

INPUTS (0-39)

0123 4567 891011 12131415 16171819 20212223 24252627 28293031 32333435 36373839

23

22

21

51

g5 [18

16

15

14

0123 4567 B 91011 12131415 16171819 20212223 24252627 28203031 32333435 36373839

Figure 4.4.23 Logic Diagram PAL20X4

The Programmable Logic Family

Inputs (0-39)
20L8

0123 4887 391011 1213115 18171819 20212223 0252527 28293001 3233435 6373839

J

21

20

)

]
y

14

il

a
[
WA

-
=y

13

|

<4

B 91011 12139415 16171819 20212223 24252627 28293031 32333435 36378

Figure 4.4.24 Logic Diagram PAL20LS8

TULS598-10

73

19

18

74

Product Terms (0-63)

Programmable Logic Design Guide

Inputs (0-39)

251

0123 4567 89101 1213415 16171819 20212223 24252627 2829303 32333435 3637339

2

w

Y

©

L

:aszsas:‘. [222

v.OY%

v

-
=]

i

vy

SR RENENC N

X

wNn 2w 18174 0212223 20252627 W290N N2IMIS 6B

Figure 4.4.25 Logic Diagram PAL20RS8

-t
;’u‘ a ;w

TULS598-13

Product Terms (0-63)

The Programmable Logic Family 75

Inputs (0-39)

1_>

0123 4567 29001 WU WITWY DNRZ ABNT AARNN RNUIB NITNN

[-
AN

25
T

1]
,
10
"
12
17
"
15

s
1%
7
"
19
0
a
2

LLBR2EES
I!' l

s 4

Co
| i
M
S
ica

9
-1 5
1% N
84
p
% 15
-]
]
0
n
10)
1= N—
M P 14
13 — & prd
1011 1213115 18171819 2012220 24252827 28293031 32333438 34383 L¢-
TULS598-12

Figure 4.4.26 Logic Diagram PAL20R6

76 Programmable Logic Design Guide

20R4

0123 4567 891011 12131415 16971319 20012223 24252627 28293031 32333435 36373839

: "{:EE:-4— ~
1}
9
10
1"
12
1
1%
15

'Y

23

YA

4

22

AN

¢

18 21

a3]

L
y ETEET TS
2 b3 bY 3
Al
B

58 ‘ 16

15

A 14
!11

0 . W1 1213W1S 16171819 20212223 24252627 28293031 323335 36373839 - d 13

TULIS598-11

Figure 4.4.27 Logic Diagram PAL20R4

The Programmable Logic Family

W# V# 1% W% ‘& - -, PROGRAMMABLE "'0R"* ARRAY* .

(‘WA D
R A3AZAT RO
MAIRZALAD
AL A3 AZ A1 AD
A4 A3 A2 AT AD
A4 A3 A2AT A0
AR A2 A1 RO
R A3 A2A1 R0
R4 A3 AZRi AD
A3 A3 AZ AT A0
ﬁmﬁmm
A3 A3 AZ A1 A0
R4 A3 A2 AT AD

ARG A3 A2 KT AD
AAA3 A2A1 RD

25 | MA3Aza1 A0
AND GATES

A A3 RZATAD

A4AIAZRT A
AMAIAZ A1 AD
A4AIAZ A1 RO
M A3 A2 AT R
A4 A3 A2 AT A0
A4 A3 A2 A1 AD
‘A4 A3 AZ A1 AD

A4 A3 A2AT AD
A4 A3 A2Ri AD
A4 A3 AZ At RO
A4A3AZ A1 AD
A% A3 A2 AT RD
A4 A3 A2 AT AO
A4A3 A2 A1 AD
| ASA3 AZ A1 AO

sleleleleleleisielelele/elelels’s'w sleiviv/vleleleielele elele

FIXED '*AND"’ ARRAY
GENERATING ALL 2°
PRODUCT TERMS

(=]

Q7 Q6 05 Q4 Q3 02 01 Q0

TULI6747-3

* OR array is shown with all fuses blown

Figure 4.4.28 32 X 8 PROM Logic Diagram

77

78 Programmable Logic Design Guide

7
rls Is 14 13 12 Iy lo-‘l- "I

rerrrrrrrrrrrrtd |
28 I T I I A A O A |
AND 1 rrrrrerrrrrreitl |
GATES [T T T I I B |
rrrrrrrevrrerrnd I

7 1 15 14 13 12 11 To

171615 1g 13 1211 Ip
L

UUUUU—-—-{JUUU

FIXED AND ARRAY
GENERATING ALL 28
PRODUCT TERMS !

Og

Figure 4.4.29 256x8 PROM Logic Diagram

vtN

0o

79

The Programmable Logic Family

R

X

T)

X

A

I

I

(

—/
)
L/

A

r

T

—T—

FIXED AND ARRAY
GENERATING ALL 29
PRODUCT TERMS

pusting

Jvivivivivivivly

0g6 05 03 03 02 O 0o

07

Figure 4.4.30 512 x 8 PROM Logic Diagram

80

Programmable Logic Design Guide

SR476/SR25

lo

* \

]

%

Iy I3 Iz

v W 14

i

A

111

29 111
AND 111
GATES | I |
P11

Iy

~ (CIR)

7S5

CLK

GS ~—

QUUUU0----0000U0

FIXED AND ARRAY
GENERATING ALL 29
PRODUCT TERMS -

i

oy

INITIALIZE WORD

y v v v v v Vv ¥

>1— U

8-BIT
EDGE-TRIGGERED REGISTER

wpr
FLIP-FLOP

G

et

ST

Figure 4.4.31 512 x 8 Registered PROM Logic Diagram

The Programmable Logic Family

SR474

P
~
A
A
Y o
“
LY oy
V]
o
P
.|
P
™
A
-
o
(j—

AND 1
GATES

O0U0U-—---U000C

\ T

FIXED AND ARRAY
GENERATING ALL 29 |
PRODUCT TERMS ! ‘

Nt —-Df . INITIALIZE WORD

cx—> T 2 2

8-BIT
EDGE-TRIGGERED REGISTER

Figure 4.4.32 512 x 8 Registered PROM Logic Diagram

81

How to Design with
Programmable Logic

There are two design objectives to keep in mind when using programmable logic
devices. The first objective is to use the programmable logic device to replace discrete
chips in the existing product. Each device will be able to replace 3 to 8 TTL chips. The
second objective is to design the programmable logic device into the new/next genera-
tion product.

Each design is different. But the procedures are similiar. Figure 5.0 shows a typical
design sequence.

DEFINE SELECT PROGRAM TEST
THE o s e THE e s THE s amem i THE
PROBLEM DEVICE DEVICE DEVICE

Figure 5.1.1 Design Sequence of the Programmable Logic Device

The design sequence can also be viewed .as a set of five questions: (1) How do I
define the problem? (2) How do I select the logic device? (3) How do I write the logic
equations? (4) How do I program the device? (5) How do I test the device?

5.1 PROBLEM DEFINITION

First, we need to know the function of the logic circuit. Is it used for generating combina-
tional control signals, decoding addresses/operation codes, or multiplexing/demulti-
plexing signals? Is it used for counting or shifting bits, generating different control
sequences, or implementing a state machine for any usage?

83

84 Programmable Logic Design Guide

Then we can decide on the type of logic circuit. Is it combinational, sequential or
mixed? Table 5.1.1 shows the typical combinational and scqucntlal circuits and the PAL
devices that can be adapted.

- Typlcal Circuits =~ - . PAL Devices Used For
‘) : ‘ 10H8, 12H6, 14H4, 16H2,
Decoder/encoder, multiplexer, adder, memory mapped /0, 10L8, 12L6, 14L4, 16L2
MBINATIONAL ' : : !
co 10 strictly signal combination (no latch). 16C1, 12110, 14L8, 16L6,
18L4, 2012, 16L8
: . : 16L8, 16R8, 16R6, 16R4,
SEQUENTIAL Counter, shift registers, accumulator, i : 20L10, 20X10, 20X8,
Control sequence generator . . 20X4, 20L8, 20R8, 20R6,
20R4

Table 5.1.1 Typical PAL Circuits

5.2 DEVICE SELECTION

The next question is, which PAL device should we choose to optimize space-and cost?
To answer this, we first need to calculate théhu_mber of inputs and outputs of the logic
circuits.being designed and decide on the outputs’ polarity: active-low or active-high.
For example, if there are 10 input and 7 output signals and the majority of outputs are
active-low, then the best choice is the 10L8. If the number of outputs are six; then we
can use either the 10L8 or 12L6. Since each PAL device has limited product terms, we
need to know how many product terms each output uses. The number of product
terms each output will use can be viewed from logic equations. For instance, the logic
equation of O1 = P1 + P2 + P3 + P4 + P5 will use five product terms for the output O1.
Fortunately, National’s software, PLAN, will help the user to select the right PAL device.
See chapter 6 for a discussion of PLAN.

Table 5.2.1 shows National’s 20 pin PAL device conﬁguratlons and Table 5.2.2
shows the 24 pin PAL devices.

How to Design With Programmable Logic 85
Max Propagation Delay (ns)
1/0 (and CLK to Output) lec No. of
Complexity Serles | Series Max Data No. of Outputs
PAL (1 Standard A B (mA) | Inputs and Confligurations
10H8 20S 35 25 90 10 | ex—BIH>O—
10L8 208 35 25 90 10 | 8x—BI>—
12H6 208 35 25 g0 12 | axB>—:2 x%}-
12L6 208 35 25 %0 12 | 4ax=BI>—o2x %}—
14H4 208 35 25 90 1 | ax %}-
14L4 20s 35 25 % 18 | 4x %}—
=R
16C1 208 35 25 90 % | 1x o
16H2 20S 35 25 90 6 | 2x %
16L2 20S 35 25 90 6 | 2x %}V
16L8 20M 35 25 15 180 16-10 | 6x % 2x %
16R4 20M 35/25 25115 | 15/12 | 180 12-8 | 4x % %1‘“ % % l
16R6 20M 35/25 25115 | 15/12 | 180 10-8 | 6x % if3 B2
B prmm—
16R8 20M 35/25 25115 | 15/12 | 180 8 8x [
p— <

Table 5.2.1 20 Pin PAL Device Configuration

86

Programmable Logic Design Guide

Max Propagation Delay (ns)
1/0 (and CLK to Output) e No. of .
Complexity Serles | Serles Max Data No. of Outputs
PAL (1) Standard A B (mA) | Inputs and Configurations
12L10 248 40 100 12 10x— BT >—
14L8 245 40 100 14 | ex BT >—o2x %}-
16L6 248 40 100 16 | 2x=B>— 4x %}»—
18L4 248 40 100 18 2x@ 2x %}—
20C1 248 40 100 | 20 | 1x
20L2 248 40 100 20 |2 x%—
20L10 2aM 50 165 | 20-12 | 8 x@? x@,
20X4 24M 50/30 180 16-10 | 4x ?ﬁij@‘% 6x®r
——
20X8 24M 50/30 180 12-10 | 8 x%ﬁ2 x %’
—_—
20X10 24M 50/30 180 10 10x
(1) Complexity:
20=20-PinPAL S = Small PAL
24 = 24 Pin PAL M = Medium PAL

Table 5.2.2 24 Pin PAL Device Configuration

How to Design With Programmable Logic

5.3 WRITING LOGIC EQUATIONS

Writing logic equations from an existing combinational circuit is straightforward.
Examples are given in Chapter 3. Also, the generation of logic equations for a new

design combinational circuit is quite simple. The procedures are as follows:

1. Define the inputs and outputs.

2. Generate the Truth Table.

3. Use the techniques mentioned in Section 3.2 to get the SOP expression for each

output.

4. Use the minimization techniques mentioned in Section 3.3, i.e., Boolean Algebra, K-

Map or the Quine-McCluskey method to minimize every SOP expression.

5. These four steps result in the logic equations.

Figure 5.3.1 shows these steps:

DEFINE INPUTS
AND OUTPUTS

FUNCTIONAL

|DESCRIPTION

It is much more complicated to generate logic equations for a sequential circuit.

P e -]

TRUTH
TABLE

KARNAUGH MAPS OR
BOOLEAN ALGEBRA

e

TRANSFER
FUNCTION
(Loaic
EQUATIONS)

(PROGRAMMING THE PAL DEVICE)

o v o=]

CIRCUITS
(PAL)
DEVICE

— ==]

FUNCTION
TABLE

Figure 5.3.1 Combinational PAL Device Design Steps

Generally, the procedures are as follows:

1. Define the inputs and outputs, different states and variables.

2. Generate the state diagram.

3. Generate the state table.

4. Minimize the state table.

88

5.
6.
7.
8.

Assign the new state.

Generate the transition table.

Programmable Logic Design Guide

Figure 5.3.2 shows these seven steps.

These seven steps result in the logic equations.

Use the minimization technique to minimize transition table.

MINIMIZING THE "

STATE TABLE
STATE o smare MINIMAL
DIAGRAM [~ —— TABLE [~ = — —%|sTaATE TABLE[™ — >
STATE KARNAUGH MAPS OR
ASSIGNMENT BOOLEAN ALGEBRA (PROGRAMMING THE PAL DEVICE)
: TRANSFER
e ITRANSITION FUNCTION cmml{ns
TABLE [T = ™1 woaic [~———*| (AL
EQUATIONS) EV
FUNCTION
—————1 TABLE

Figure 5.3.2 Sequential PAL Device Design Steps

5.4 ’PROGRAMMING THE DEVICE

Given the logic equations, the PAL device programmer will manage the programming-
job for us. All we need to do is to enter those logic equations into the terminal. The
programming procedures are shown in Figure 5.4.1.

After programming, the fuse status should be verified. Most programmers will pro-
vide this fuse verification capability.

Manually coding the programming format sheet, which has appeared in National’s
1983 PAL Device Data Book will not be discussed in this Design Guide.

How to Design With Programmable Logic 89

EXERCISE A
ENTER ENTER FUNCTION TABLE[™ ™ peate
LoGiC ~>1 FUNCTION +| ToLOGIC BIT PATTERN F——>
EQUATIONS TABLE EQUATION
. (SIMULATION)

IF NO FUNCTION TABLE AVAILABLE

LOAD PATTERN PROGRAM " VERIFY TEST PAL's
——] INTO - FUSE = |j—wp FUSE .1 FUNCTION B
PROGRAMMER MATRIX MATRIX WITH TEST
VECTORS
ANOTHER *
" LOGIC
TEST
, BLOW
—<»1 SECURITY FUSE
IF WANT

* FOR EXAMPLE: DATA 1/0’s FINGERPRINT TEST.

Figure 5.4.1 PAL Device Programming Procedures

5.5 TESTING THE DEVICE*

Fuse verification tells us if the fuse was blown correctly or not; but it doesn’t tell us if
the PAL device functions properly. Therefore, we also need to do functional testing.
There are two ways to do functional testing. One method uses function tables. Another
method uses test vectors. Each of these methods may give a different result.

Function tables are generated without reference to the logic equations. The func-
tion table tells what the PAL device should do. Function tables are used to determine if
the device functions as intended. If it does not, we have to go back to the equations,
since there may be a problem there. ;

Test vectors are generated directly from the logic equations. They are used to verify
the internal operation of the PAL device. If a problem is detected, it implies that some-
thing is internally wrong with the device. However, a device may pass the test vector
screening and still not function properly if the logic equations were derrived incorrectly.

It is the logic designer’s responsibility to generate the function table. This is the
person who best knows the design. After the design is released, the test engineer will

*Also see Chapter 7 for details about testing.

90 Programmable Logic Design Guide

take the responsibility for testing incoming devices. 'As mentioned before, the function
table.can’t catch all the interior bugs. Therefore, the test engineer needs to write the
test vectors. It is a large and sophisticated job to create test vectors. Figure 5.5.1 shows
these steps and will be explained in chapter 7. There are a few software packages availa-.
ble for generating test vectors, for example; HILOl,'and T EGASZ, LOGCAP3, ‘LAZAR4.

S-A-0 TEST FOR EACH PRODUCT TERM TEST
-] S-A-1 TEST FOR EACH PRODUCT TERM | S vecE%as
. S-A-1 TEST FOR EACH LOGIC EQUATION T

LOGIC
EQUATIONS

Figure 5.5.1 Test Vectors Crcatihg Stcps

5.6 PROGRAMMER VENDOR LIST

PAL ;
Device Storage Medla for | Programs
PAL-) Design- | Performs Blows
Basic Device Software Logic Bit Test 20- | 24- | Security
Mfgr. | Equipment | Module | Adapters| Included | Simulation | Pattern | Vectors | Pin | Pin | Fuses
Data /O | Model 19, 1427 142841 No No Master - Yes | No No
19A or -2 PAL
100A -3
Digelec P 803 FAM 51 20+24 Yes No Master + Yes | Yes Yes
Pin) PAL
Socket
Kontron | EPP 80or | MOD 21 | SA 27+ No No Master - Yes | Yes Yes
MPP 80S SA 2741 PAL
Stag PPX PM 202+ | AM10HS Yes No Master — Yes | No Yes
BRAL . ‘ PAL '
. .
L)
AM16C1 ‘
Citel System 47 PL1 No No Master 7 | PROM | Yes | Yes Yes
PAL,
PROM,
EPROM

All these systems program and verify the PAL in the PROM mode. They do not perform a logic simulation in the PAL device
mode. Additional (external) circuitry for logic simulation should be used if PAL devices go into volume production — otherwise, a
small percentage of the PAL devices will show failures when testing the complete PC board. OK for prototype-making.

Table 5.6.1 PAL Device Programmers

1. HILO is a registered trademark of Gen Rad.

2. TEGAS is a registered trademark of CDC.

3. LOGCAP is a registered trademark of Phoenix Data Systems.
4. LAZAR is a registered trademark of Teledyne.

How to Design With Programmable Logic 91
PAL
Device Storage Media for Programs
PAL- Design- | Performs Blows
Basic Device Software Logic Bit Test 20- | 24- | Security
Mfgr. Equipment| Module | Adapters | Included | Simulation | Pattern { Vectors | Pin | Pin | Fuses
Data IO Model 19, | Logic- Design Yes Yes, Master | External | Yes | Yes Yes
29A or Pack Ad. and Automatic PAL or :
100 and Progr. or Manual or
Any Ad. Generation
Terminal of Test EPROM
Vectors
Digelec ©P 803 FAM 52 | 20- and Yes Yes, Master | External | Yes | Yes Yes
24-Pin Automatic PAL
Adapter or Manual
Generation
of Test
Vectors
Stag —_ ZL 30 - Yes Yes, Master | External | Yes | Yes Yes
Automatic PAL
or Manual
Generation
of Test
Vectors
Structured Any SD20/ —_ Yes Yes, Master | External | Yes | Yes No
Design Terminal 24 Manual PAL or
Generation or
of Test
. Vectors On Wafertape
Structured Any SD1000 — Yes Yes, Master | External | Yes | Yes Yes
Design Terminal Manual PAL or
Generation or
of Test
Vectors EPROM

All these systems allow software supported PAL device design. They perform a fuse-verify in the PROM mode and can do a
logic simulation in the PAL device mode. All 5 programmers and 5 development systems can be connected with a host com-
puter to run more sophisticated design software and/or for storage use.

Table 5.6.2 PAL Device Development Systems

92 Programmable Logic Design Guide -

5.7 EXAMPLES

Example 1: Replace the existing logic circuit in Figure 5.7.1 by a PAL device.

h o——m - -0 04
12 0— —1J © 02
o I *_/i ' 2 0

. 0 04

40

Is o
lgo

70

Ho 0—

Figure 5.7.1 Design Example, Logic Diagram

We will follow the procedure discussed in this chapter. We know the first step is to
understand the function of this circuit. There is no register and latch involved. By
- experience, we understand that this circuit is used to manipulate different input signals
and generate different outputs. We should select the combinational PAL device (i.e.
PAL10HS, PAL10L8, PAL12H6, etc.).

The second step is to choose the specific devme Because the number of inputs is
10 and the number of outputs is 6, we limit our choice to be 10HS8, 10L8, 12H6 and
12L6. Three outputs have AND-OR functions and 3 outputs have AND-OR-INVERT
functions. We could still select from either active-high or active-low (H or L) parts.
Since the more complex functions are AND-OR-INVERT, the active LOW (L) series is
most likely. Therefore, we now limit our choice to the 10L8 and 12L6 devices. A review
of the 10L8’s logic diagram shows that all of its NOR gates are two-input gates, and the
design example requires a three-input gate. On the other hand, the 12L6 has two 4-
input gates which will accommodate the 3-input requirement. It, therefore, is selected.

The third step is to write the logic equation. It is very straightforward for this
example.

How to Design With Programmable Logic 93

We get:
0p =/
0 = /I I
03 =1 + 13
04 =/(/I3%1g)

05 =/(/I3*15*I6 +I; + 18*19)
0s =/(Ig*19 + /I3 * /17 x Ig * 110)

Since we have selected a PAL12L6 (which has inverting outputs) we need to apply
DeMorgan’s theorem to convert these equations from active-high to active-low out-
puts. DeMorgan’s theorem can be used to convert any logic form to the AND-OR or
AND-NOR structure used in PALs. Applying DeMorgan’s theorem gives the active LOW
form of the equation:

/01 = Il

0 =17 + /12‘

103 = /) * /13

104 = /I3 * 14

/05 = /13*15*16 + I + Ig =g

/06

Ig *.Ig + /I3 * [I7 » Ig * Ijg

Assuming that there are no board layout constraints, input I; through Ijo may be
assigned to pins 1 through 11 (pin 10 is ground). The only constraint on output pin
assignment is that 05 must be assigned to pin 13 or 18 to take advantage of one of the 4-
input NOR gates. '

The fourth step is to program the PAL device. To do this we must enter the logic
equations into the computer or the PAL device programmer. National’s PLAN software
allows users to enter logic equations in any format. But PALASM requires the program
shown in Figure 5.7.2 in its host computer to be used as follows:

Line1 PAL12L6

Line 2 PAT201

Line3 PAL DESIGN EXAMPLE

Line 4

Line5 1412131415117 1g1g GND l1g NC 05

Line6 0g 04 03 02 03 NC Vcc

Line 7

Line8 /0y=1I

Line9 /02=ly+/l2

Line 10 /03=/l1 * /i3

Line 11 /0g4=/13 * |,

Line 12 /0g=lg ~ lg+/l3 + /lz + lg * 4o

Line13 /05=/l3*Ils+lg + l7 + lg* lg

Line 14

Line 15 DESCRIPTION

Line 16

Line 17 THIS PROGRAM IS A DESIGN SAMPLE DESCRIBING
Line 18 THE USE OF PALASM AS A PAL DESIGN AID.

Figure 5.7.2 Example of PALASM Program Input

94 Programmable Logic Design Guide

Line 1:
Line 2:
Line 3:
Line 4:

Lines 5, 6,
and 7:

Line 8:

" At the left margin, the PAL device is specified. For this example, the 12L6

remains the best solution, therefore entering PAL12L6 at the left margin.

A unique pattern number for this PAL device design is entered at the left
margin on Line 2, followed by designer’s name and date.

The name or description of the device or function is entered. If this runs
over one line, Line 4 may be used to complete it.

If not used to complete Line 3, this line is skipped.

These lines are used for pin assignments. All 20 of the pins on the PAL are
assigned symbolic names, usually corresponding to the symbols used on
the logic diagram. (Note that GND and V.. must be included.) Assignment
starts at pin 1 and proceeds sequentially, through pin 20.

Beginning on Line 8 or Line 6, if only Line 5 is needed for the pin assign-
ments, the logic equations that describe the required functions are written
using the symbols defined in Lines 5, 6 and 7, in the format applicable to
the PAL device selected. For example, the output of the 12L6 is low for the
selected product term; therefore, the logic equations must be of the form
104 = f(I;, I,,...). The symbology used must be that shown in Figure 5.7.3.

EQUAL
REPLACED BY, FOLLOWING CLOCK
COMPLEMENT
AND, PRODUCT
OR, SUM
: XOR
XNOR
CONDITION TRI-STATE {F STATEMENT, ARITHMETIC

Ve e~

—
~

Figure 5.7.3 PALASM Operators

Then the PAL device software will generate the fuse map and bit pattern shown in
Table 5.7.1, load pattern into programmer, program the device and verify the fuse
matrix. Since there is no function table in this example, we need to do another logic
test to guarantee it works properly. For example, we can do the fingerprint test if we
already have a known good device, or we can generate a few (or whole) test vectors to
do the structure test in a DATA I/O programmer.

How to Design With Programmable Logic 95

8 --X- -——— -- -- - - - -———— -———
9 XX XX XXXX XX XX XX X X XXXX XX XX
10 XXXX XXXX X X XX X X XX XXXX XX XX
1" XXXX XXXX XX XX XX XX XXXX XXXX

6| --x- _——— - —= e a- _——— _————
7] -X-- _———— ——_— e e -- _———- —_———
24| ---Xx “Xee me e —m - _———- ————
25 | XXXX XXXX XX XX XX XX XXXX XXXX
32| --oe aXe-= X= e= ee ee e ——_———
33 | XXXX XXXX XX XX XX XX XXXX XXXX
0] ---- T X-=-
41 _——— “X== == em me 2 X meew X-X-
48| ---- -X-- = X= X- == ———— S
49 | ---- ———— T _————
50 | ---- ———— T G X-m-

51 XX XX XXXX XX X X XX XX XXXX XX XX

Table 5.7.1 Fuse Map

Figure 5.7.4 is the logic dlagram of this PAL device and Figure 5.7. 5 shows the PAL
device legend.

Example 2: Design a multiplexer to select one of three input data buses which contain
4 data lines, as shown in Figure 5.7.6. The output should be high if we don’t select any
data bus.

From Figure 5.7.6 we know there are 14 mput lines and 4 outputs. Since we select
one out of three, we need 3 product terms in-each output. In addition, we need
another product term to implement diselection which will cause all output-high. From
the PAL device select chart (Table 5.2.1) we find 14H4 is the best fit.

The logic equation is very easily derived from intuition or we can get from the
truth table shown in Table 5.7.2.

PLAN software will help us to select the device, assign pinouts, and generate a fuse-
map. All we need to do is enter the logic equations.

Y1 = /SELA * /SELB » A1 + SELA » /SELB » B1 + /SELA = SELB » Cl + SELA =

SELB

Y2 = /SELA » /SELB *» A2 + SELA » /SELB » B2 + /SELA = SELB » C2 + SELA
SELB

Y3 = /SELA * /SELB ~ A3 + SELA * /SELB » B3 + /SELA = SELB » C3 + SELA «
SELB

Y4 = /SELA » /SELB » A4 + SELA » /SELB = B4 + /SELA = SELB » C4 + SELA »*
SELB

96 Programmable Logic Design Guide

W —1%_
19
o 2Pt 2 ne
[18 —
: = 2D
! ‘
3 N
Iy —1%=
" 17 —
! —B-] 2)o——0,=1,+1,
4
ly —ﬁﬁ
; BT De—-0,=T,7%,
5 : ~N
s — 12—
n —2] :>°—15 0, =1y,
6 ~N
e —1%
w 7 S ——
. B 50— 0 = Igelg + oo lgelyg
0 7 N :
7 % . . .
o R~ 1B —
; °s='s"5"e+'7+|a’|9
S ps 2 e
-9
o —3—

11
453 1y

Figure 5.7.4 Logic Diagram of the National Type 12L6 PAL®

How to Design With Programmable Logic 97

PAL Legend

Constants

LOW (L) NEGATIVE (N) ZERO (0) GND FALSE x l FUSE NOT BLOWN
HIGH (H) POSITIVE (P) ONE (1) Vee TRUE - + FUSE BLOWN

Operators EQUAL

REPLACED BY FOLLOWING CLOCK

COMPLEMENT

AND, PRODUCT

OR, SUM

XOR

: XNOR

} CONDITIONAL THREE STATE, IF STATEMENT, ARITHMETIC

* 4+ 200

Equations —
q Standard Qy = L+l

PALASM ol I1*/12 + /I1*12

I / o
D—_ Lz + 11,
I

Conventional Symbology

PAL Device Symbology

LOGIC STATE

FUSE IC ST/

BLOWN Vee HLLH PRODUCT WITH ALL
Ut | FUSES BLOWN REMAINS

FUSE HIGH HIGH ALWAYS

NOT BLOWN L/ o
Do

W T2 AN PRODUCT WITH ALL
' L8 X__ FUSES INTACT REMAINS
W +Ty 1, i LOW ALWAYS
SHORTHAND NOTATION

l, I3 ‘ FOR ALL FUSES INTACT
*HH—E} 4

PAL Logic Diagram

ACTIVE HIGH THREE-STATE ENABLE

INPUT LINE NUMBER /C_LOCK)

, D121 A A6 T KAWL 00T 6NN 0121 TAsSIRI) MISN — /
PRODUCT [1
NUMBER | : STANDARD SUM OF PRODUCTS
) : IS EQUATED AT THESE NODES
) — —%3— |X (BEFORE THE BUBBLE)
PIN
NUM;ERS o

Figure 5.7.5 PAL Legend

98 Programmable Logic Design Guide

EN e

BCD ay BUS A
UP/DOWN ——>1 . BC0 -+

EN > ' BUS B

= BCD 4/ .
UP/DOWN >! counter ¢ /
CLK ———>1 =

4y ‘ o BUSC

/
MULTI- a7} oecoper |7/ | 7-seGmENT
. 2 PLEXER 7 DRIVER 7 DISPLAY
SELECT / '

Figure 5.7.6 Block Diagram of a Multiplexer

N

A1 A2 A3 A4 | B1 B2 B3 B4 | C1 C2 C3 C4 | SELA |SELB| Y1 Y2 Y3 Y4
Al A2 A3 Ad| X X X X X X X X L L | At A2 A3 A4

X X X X |{B1 B2B3 B4|] X X X X H L B1 B2 B3 B4
X X X X X X X X |C1 C2 C3 C4 L H Ci C2 C3 C4
X X X X X X X X X X X X H H H H H H

Table 5.7.2 Truth Table

We can replace 2 of 745153 in this application.
The Function Table and logic diagram are shown in Table 5 7.3 and Figure 5.7.7.

A1 A2 A3 A4 | B1 B2 B3 B4 | C1 C2 C3 C4 | SELA |SELB| Y1 Y2 Y3 Y4
L L L L|X X X X X X X X L L L L L L
X X X X X X X X X X X X H H H H H H
H H H H X X X X X X X X L L H H H H
X X X X H H H H X X X X H L H H H H
X X X X X X X XL L L H L H L L L H
X X X X X X X X L L H L L H L L H L

Table 5.7;3 Function Table

As N

How to Design With Programmable Logic

Inputs (0-31)

123 4 asun an

A2 N

w

AN NBND BN

A1 ~N

Bs N

Product Terms (0-63)

Y2

: Y4

C2

B4

Cq

SELA p

A SELB

123 s sy 20

nanun wpnsun wnn

Figure 5.7.7 Logic Diagram of the National Type 14H4 PAL Device

929

100 Programmable Logic Design Guide

Example 3: Design a 3-bit counter which causes only one bit change for each change
of state shown in Figure 5.7.8. A RESET input will initialize the counter to 000.

The PAL device under design is used for a 3-bit counter with only one input line,
RESET. When active, it will reset all three flip-flops. Obviously we can use a 16R4 to
implement this application.

A B c

0 0 ’o —
0 (] 1

(] 1 1

0 1 (]

1 ; 0 REPEAT
1 R 1

1 0 1

1] o [|
0 o 0

(] 0 1

Figure 5.7.8 3-Bit Counter

Q" — — — — —» QN+ D J K s R T
0 ————— 0 o | o X 0 X 0
0 ————— 1 1 1 X 1 0 1
1 —————= 0 0 X 1 0 1 1
1 ————— 1 1 X 0 X -0 0

*Q", Q"+ 1 STAND FOR PRESENT AND NEXT STATE; X IS DON'T CARE.

Table 5.7.4 Transition Lists

How to Design With Programmable Logic 101

We can easily write the transition table for this simple example as shown in
Table 5.7.5.

CLK R (RESET) A" Bn cn AP +1 gn+1 cn+1
4 o 0 0 0 o] 1
4 o 0 0 1 0 1 1
4 0 0 1 1 0 1 0
4 0 (] 1 (] 1 1 0
4 0 1 1 .0 1 1 1
4 0 1 1 1 1 0 4
t 0 1 0 1 1 0 0
) (] 1 "0 0 (] (] (]
) 1 X X X 0 0 (]

Table 5.7.5 Transition Table

‘We can get the logic equation from Table 5.7. 5 by K-map minimization technology
as shown in Figure 5.7.9.

AB AB AB

CR_ 00 o 1 10 CR_ 00 01 11 10 CR_ 00 o1 1 10
00| 0 EI] 0 0| o Ej 0 00 u 0 u 0
ot|o ool o ot| o o|lolo ot| ol o] oo
1l o|lo]olo nloflo|ojo| mlojo|olo
10f o] o EI' 10 EI) 0| o 10 ’T' 0 m 0

A ‘ B c

Figure 5.7.9 K-map

A . = BCR+ACR
B : = BCR+ACR

We can also get the Function Table from Table 5.7.5. In this case, we replace 2 of
74S00 and 1 of 74S175.

102 Programmable Logic Design Guide

Example 4: Design a video-telephone sync pulse detector.

The video-telephone set contains a CRT for displaying the received picture from
another video-telephone, and a vidicon camera for generating the picture to be trans-
mitted.

The vidicon sweeps across the head and shoulders view of the person talking,
starting at the upper left of the picture and moving right as shown in Figure 5.7.10.

Figure 5.7.10 Sweep Generation

The dots shown in the figure represent samples taken by the vidicon. The vidicon
produces a voltage that is proportional to the light intensity for each sample taken. The
voltage is then quantized into seven levels. These seven levels correspond to light levels
from white to black with intermediate levels of gray. Because there are seven quantized
levels, a 3-bit quantizer is employed. These seven levels are then channel-encoded such
that where the code 1 1 1 is reserved for the line sync pulse. The data are transmitted in
a bit-serial manner. When the sync pulse is detected, the receiver camera flies back to
start a new line, as shown in Figure 5.7.10. The use of the line sync pulse ensures that

0 0 0 |————— WHITE

0 0 1]

0 1 0

0 1 1 | LEVELS OF GRAY
100

10 1| |

11 0|—=———— BLAck

How to Design With Programmable Logic 103

all the lines start at a2 well-defined left edge. This prevents the occurrence of skewed
lines which will distort the picture.

The PAL device under design is used as a sync pulse detector which will trigger the
flyback circuit. There is another feature we need to design into this PAL device which
automatically resets to the initial state after three input pulses. This reset procedure will .
ensure that no false output occurs due to consecutive sequences which produce an
overlapping 1 1 1 sequence.

From the function description above, we can generate the State Diagram and State
Table as shown in Figure 5.7.11 (a) and (b).

0/0, 1/1 ‘ X

0 1
A D/0 B/O
B E/0 c/o
c A0 Y
D E/0 E/0
E A0 AlO

(A) STATE DIAGRAM (B) STATE TABLE

Figure 5.7.11 (A) State Diagram (B) State Table-

Where A is the initial state, the sequence A -2, B -0, ¢ L1, A will detect the
sync pulse (1 1 1) and generate a “1” output. Note that the state diagram is arranged so
that every sequence of length 3 returns the machine to the initial state A.

Since we have 5 different states (3 registers are enough), 1 input for serial data, 1
non-register output for sync pulse detecting, we may use the 16R4 to implement this
application. . :

104 Programmable Logic Design Guide

- Let’s assign these 5 different states as in Table 5.7.6.

STATE ASSIGNMENT
STATE Y4, Y2, Y3
000

001

010

101

110

moow>»

Table 5.7.6 State Assignment

Then from the State table Figure 5.7.11 (B) we get the Transition table shown in
Table 5.7.7.

X X
viy2y3. 0 1 0 1
000 101 0 0 1 0 0
001 110 010 0 0
010 000 000 0 1
011 X X X|] X X X X X
100 X X X | X X X X X
101 1.1 0 110 0 0
110 000 000 0 0
11 1 X X X | X X X X X

Y1 Y2 Y3 - z

Table 5.7.7 Transition Table

From Table 5.7.7 Transition Table we can draw the K-map of each register output
Y1, Y2, Y3 and the non-register output Z as shown in Figure 5.7.12.

How to Design With Programmable Logic 105

y3X y3 X
oy 00 01 11 10 yioy2 qo 01 11 10
o o 1 0 0 1 0 o o.| o 1] 1
0 1 0 0 X X 0o 1 0 (] X X
11 0 0 X X 11 (] 0 X X
1 0 X X 1 1 1 0 X X 1 1
Y1 Y2 -
Y1 = Y1°'Y3 + V2°X Y2 = Y3
Y3 X Y3 X
0o 01 11 10 0 01 11 10
Y1 Y2 00 Y1 Y2 0
00 1 1 0 0 "0 0 0 o .| o 0
0 1 0 0 X X 0 1 0 1 X X
1 1 0 0 X X 1 1 (] 0 X X
1 0 X X (] 0 1.0 X X (] 0
Y3 z
Y3 = Y2'V3 Z = Yi'Y2*X

Figure 5.7.12 K-map

Therefore, we get the logic equations as:

Y1 = Y1+Y3+Y2+X
Y2 = Y3
Y3 = Y2+Y3

Z = Y1+Y2+X

106 Programmable Logic Design Guide

Summary

The four design examples are quite simple for purposes of illustration. The author
has attempted to give the reader a very clear idea and to encourage the reader to use
PAL devices. The reader can find other examples in the applications section of
Chapter 8.

Here the author would like to point out one thing; “There are many different
approaches to designing a PAL device circuit.” Some users like to directly code the PAL
device logic diagram (coding “x’’). In this case, users may not need logic equations. But
if circuits become more complicated, then the user will find that the logic equations are
much easier to get than directly coding “x” in the PAL device logic diagram. There are
many ways to develop logic equations. One approach is to use truth tables or transition
tables. Another way, which is widely used, is from timing waveforms.

The user can draw the timing diagram for each output, then derive his logic equa-
tions from these timing waveforms. But no matter what method is used, the user still
needs to know the K-map or other techniques (the Quine-McCluskey method is fre-
quently used) to minimize his logic gates.

The author strongly recommends deriving the logic equations for PAL devices
rather than coding “X” in the PAL device logic diagram. Then the user can take advantage
of PAL device software (PLAN, PALASM, etc.) instead of manually coding the PAL de-
vice programming format sheet.

Software Support

Today a variety of software products makes the logic design engineer’s task much eas-
ier. The designer can now focus on the intricacies of logic design at the Boolean level
instead of filling in tedious fuse map charts, or worrying whether a standard logic part
exists to implement the logic. Some of the traditional programmer vendors are now
marketing full-fledged development systems or CAD systems that include the terminal,
software and the hardware for fuse blowing, and logic verification. Other vendors mar-
ket software only or programmer/verifier only. The key part of any development sys-
tem is the software and this section describes the attributes of these products.

6.1 ADVANTAGES OF SOFTWARE-BASED PROGRAMMABLE LOGIC DESIGN

When programmable logic devices were first introduced, the only method for specify-
ing the logic to be implemented was to manually code the status of each fuse on a form
and then enter this information into a programmer. With a device like the PAL16L8
which has 2048 fuses, this manual method is clearly time-consuming and error-prone.
Furthermore, these early programmers could not verify if the programmed device was
functional. They could only check if the correct fuses were blown. Information about
testing is found in Chapter 7.

The first phase in software development was the development of tools to eliminate
the manual fuse-map entry. Users could enter Boolean equations in Sum-Of-Products
format on a computer and the program would generate the fuse-map information
which could be downloaded to a programmer unit (Figure 6.1.1).

onononooonn

LOGIC (PROGRAMMED

EQUATIONS - PAL DEVICE DEVICE

quuuouuuud

Figure 6.1.1 Early Role of Software

107

108 Programmable Logic Design Guide

Subsequent developments in software goes further in providing two additional capa-
bilities. The first area of improvement is logic design. Recent developments are emphasiz-
ing design tools for logic circuit design with features like high level logic design options
and plans for logic minimization, and state-machine synthesis. The second area being
addressed is that of functional testing of programmed devices. Most of the current soft-
ware has features to perform simulation for design verification, i.e., verify if the user sup-
plied test vectors match the logic conditions described by the equations for the logic
being implemented. These test vectors can also be downloaded to a programmer which
will perform a functional test on the programmed device (Figure 6.1.2).

opoononononn.

LOGIC N PROGRAMMED
EQUATIONS ' o PAL DEVICE C DEVICE
A S oo OO0
nonnnnnnnn
LOGIC ‘ - FUNCTIONAL
DESIGN AIDS . PAL DEVICE q DEVICE

Uuduuuuugugu

Figure 6.1.2 Expanded Role of Software

The next section describes National’s contribution to advanced programmable
logic design software called Programmable Logic Analysis by National (PLAN).

6.2 PROGRAMMABLE LOGIC ANALYSIS BY NATIONAL (PLAN)

PLAN is a set of interactive software tools for logic designers who will be using pro-
grammable logic devices in their circuits. The advantages of PLAN are that: (1) it is easy
to use; and (2) it comes with clear and simple documentation that explains the numer-
ous features of PLAN and the methods of accessing and using these features. PLAN also
has a liberal sprinkling of error messages to help the user. PLAN does not have PALASM
type input format constraints and is available on more than one operating system. The
package actually contains three programs: PLUS, SERV, and PROG.

PLUS allows the user to define logic via Boolean equations and also selects an
appropriate device and assigns pin-outs. The resulting equations, device, and pin-outs
are stored in a file.

Software Support 109

The next program, called SERV, can then be used to access the logic defined by
PLUS for possible reassignment of the device and pin-out. When the device and
pin-outs are finalized, SERV also displays the pin-out diagrams, fuse-maps and equa-
tions. For documentation purposes, the above data can also be printed out.

The third program, called PROG, takes the logic and pin assignment data and pro-
vides it to a programmer in a format that the user selects. This program can also acquire
. a previously defined file containing test vectors and download it to a programmer for
functional verification.

The software package is available on 8-inch SSSD (Single Side Single Density)
floppy disks to run under CP/M-80 and 5 1/4-inch SSSD floppy disks for operation
under MS-DOS and APPLE-DOS. Future revisions will include other operating systems.

Boolean Entry .

The Boolean entry operators that PLAN supports are shown in Table 6.2.1

EQUALITY
AND, PRODUCT

OR, SUM

COMPLEMENT .
:= REPLACED BY (AFTER CLOCK)
() CONDITIONAL TRI-STATE

:+: EXCLUSIVE OR

;o ra

Table 6.2.1 Boolean Operators

An example of a logic equation using these operators is:
(/INP1 * INP2) OUT2 = /INP3 = INP4

A useful feature that PLAN offers during Boolean logic entry is the definition and
inclusion of logic macros. Table 6.2.2 is an example of the use of the macro feature in
PLAN.

MACRO IS EN1+/CK2
INPUT RESULTING EQUATION
OUT1 = INP1*/INP2 OUT1 = INP1*/INP*1EN1*/CK2
+/INP1*INP2 +/INP1*INP2*EN1*/CK2
OUT2=INP3 + INP4 OUT2 = INP3 + INP4EN1*/CK2
*INP5*INP6 *INP5*INP6

Table 6.2.2 Macro Entry with PLAN

110 Programmable Logic Design Guide

PLAN allows the user to edit the Boolean equations after entry. When the equations
are finalized, the program will automatically select a device that can implement the
defined logic and assign pin-outs to that device. This process is shown in Figure 6.2.3.

The information can also be stored in a filé and the data in the file is essentially the
information in Figure 6.2.3. '

EQUATIONS/VARIABLES PINOUTS
LADSHG = D*KJR*/RDIUH -,
+ OJH*IH
OEU = EUY*KJR + DU o 20 f—Vce
ERIJH = DJ*JD*JJJ*IPP KJR—] 2 19—
+ I0DF*DFJ*JJJ*JPP RDIUH—] 3 18 }-pFy
oJH—4 7l
IH—{5 16 }-oku
) Euy—{ 6 15 |- LADSHG
DEVICE pu—7 14 —ERIH
ps—{8 13 | 10DF
LOGIC DEVICE NAME IS PAT0099 R oe 12 | upp
THE SOURCE DEVICE IS A PAL 14H4 >
A SERIES 20 SMALL PAL WITH GND—10 np-J
ACTIVE HIGH OUTPUTS

Figure 6.2.1 PLAN File Information

File Editing and Documentation

The program SERV can be used to change the selected device and also to change the
pin-out assignment. When the device and pin-outs have been finalized, the device dia-
gram with pin-out, the equations or the fuse-map of the programmed device can be
printed out or viewed on the screen. Figure 6.2.4 is an example of the fuse-map display.

Programming and Testing

In order for a programmer to function, it has to receive the fuse-map information in a
specified format. The third program in PLAN, called PROG, will provide the fuse-map
information, at the users option, in any of the five formats listed in Table 6.2.3.

The programmer fuse-map data can be saved in a file for later use. PROG can also
access a file containing test vectors and download them to a programmer for functional
verification of a programmed device.

Because of its ability to support the various data formats, many programmers are
supported by PLAN and most are physically interfaced through a standard RS-232 cable.

Software Support

FUSE MAP FOR LOGIC PAT0099 — SOURCE DEVICE IS DMPAL 14H4

INPUTS (0-31) .
1 1 1 22 22 23
02 46 80 2 6 02 46 80

16 XXXX . XXXX XXXX XX XX XXXX XXXX XXXX

17 XXXX XXXX XXXX XX XX XXXX XXXX XXXX

19 XXXX XXXX © XXXX XX XX XXXX XXXX XXXX

24 Xe== o= e -2 X= =m== ee—= ——-= EUY*KJR
25 cem e e e em X emmm eeee DU ’
26 XXXX XXXX XXXX XX XX XXXX XXXX XXXX
27 XXXX XXXX XXXX XX XX XXXX XXXX XXXX

32 X-X- -X-= === == o= meee ame= —m-w D*KJR*/RDIUH
33 = e Xemm X= == mmmm e eeem OJH*IH

34 XXXX XXXX XXXX XX XX XXXX XXXX XXXX

35 XXXX XXXX XXXX XX XX XXXX XXXX XXXX

40 —mem mmem e em mm mime X-X= X-X= DJ*JD*JJJ*IPP
41 o= cem oXe —= == —X= --X- --X- IODF*DFJ*JJJ*JPP
42 XXXX XXXX XXXX XX XX XXXX XXXX XXXX

43 XXXX XXXX XXXX XX XX XXXX XXXX

X’S REPRESENT INTACT FUSES, 152 HAVE BEEN REMOVED.
PRODUCT

TERMS
(0-63)

Figure 6.2.2 Fuse-Map Display from PLAN

MMI Hex

JEDEC

Intel Hex
Standard Hex
PALASM Format

Table 6.2.3 Fuse-Map File Formats in PLAN

Order from: National Semiconductor Corporation PLAN
2900 Semiconductor Drive

M/S D3698

Santa Clara, CA. 95057

(408) 721-4107

111

112 Programmable Logic Design Guide

6.3 OTHER SOFTWARE
CUPL™ by Assisted Technology

CUPL is the first software CAD tool designed especially for the support of all programma-
ble logic devices (PLDs), including PALs and RROMs. It was developed specifically for
YOU, the Hardware Design Engineer. Each feature of the' CUPL language has been
chosen to make. using programmable logic easier and faster than conventional TTL
logic design.

Major Features of CUPL

Universal v

e PRODUCT SUPPORT: CUPL supports products from every manufacturer of of
programmable logic. With CUPL you are free to use not only programmable
logic. With CUPL you are free to use not only PALS, but also other programmable
logic devices.

e PALASM CONVERSIONS: CUPL has a PALASM to CUPL language translator Wthh
allows for an easy conversion from your previous PALASM designs to CUPL.

e LOGIC PROGRAMMER COMPATIBILITY: CUPL produces d standard JEDEC down-
load file and is compatible with any logic programmer that JEDEC files.

High Level Language
High Level Language means that the software has features that allow you towork in terms
that are more like the way you think than like the final PLD programming pattern. Exam-
ples of these are:
e FLEXIBLE INPUT: CUPL gives the engineer complete freedom in entering logic
descriptions for their design.
— Equations
— Truth Tables
— State Machine Syntax
o EXPRESSION SUBSTITUTION: This allows you to pick a name for an equation
and then, rather than write the equation each time it is used, you need only use
the name. CUPL will properly substitute the equation during the compile pro-
cess.

Software Support 113

e SHORTHAND FEATURES: Instead of writing out fully expanded equatlons CUPL
provides varous shorthand capabilities such as:
— List Notation: Rather than [A6,A5,A4,A3,A2 A1 A0]
CUPL only requires [A7..0]
— Bit Fields: A group of bits may be assigned to a name,
as in FIELD ADDR = [A7..0]
Then ADDR may be used in other expressions
— Range Function: Rather than Al5 & 1A14 #
, Al5 & Al4 & 'A13 #
Al5 & Al4 & Al3 & 'A12
CUPL only requires ADDR: [8000..EFFF}] -
— The Distributive Property:

From Boolean Algebra, where A& B # C)
is replaced by A&B#A&C
— DeMorgan’s Theorem: ~
From Boolean Algebra, where (A& B)
is replaced by A#'B
Self Documenting

CUPL provides a template file which provides a standard “fill-in-the- blanks” documenta-
tion system that is uniform among all CUPL users. Also, CUPL allows for free form com-
ments throughout your work S0 there can be detailed explanations included in each part
of the project.

Error Checkmg :
CUPL includes a comprehensive error check capability with detailed error messages de-
signed to lead you to the source of the problem.

Logic Reduction '

CUPL contains the fastest and most powerful minimizer offered for Programmable Loglc
equation reduction. The minimizer allows the choice of various levels of minimization
ranging from just fitting into the target device to the absolute minimum.

Simulation '
With CSIM, the CUPL Simulator, you can simulate your logic prior to programming an ac-
tual device. Not only can this save devices but it can help in debugging a system level
problem.

Test Vector Generation :

Once the stimulus/response function table information has been entered into the
simulator, CSIM will verify the associated test vectors and append them to the JEDEC file
for downloading to the logic programmer. The programmer will verify not only the fuse
map, but also the functionality of the PLD, giving you added confidence in the operation
of your custom part.

114 Programmable Logic Design Guide

Expandability
CUPL is designed for growth so as new PALs and other devices are introduced you will
be kept current with updated device libraries and product enhancements.

CUPL-GTS™

In recent years, programs like CUPL and ABEL have become available to provide high
level language support for PAL designs. These languages allow the designer to represent
a PAL function in terms of high-level equations, truth tables or state machines.

Many hardware designers, however, are most comfortable with the traditional logic
schematic as a logic description format.

CUPL-GTS is a powerful combination of hardware and software which turns an IBM-
PC type computer into a programmable logic workstation allowing the user to draw logic
schematics for the function of a PAL. A basic premise in creating GTS was to provide a
friendly environment where the user is isolated from the traditional keyboard as much
as possible. Virtually all functions can be actuated with one button by way of the mouse
and a series of pop-up menus which ease the user’s task. An area is provided at the top of
the CUPL-GTS screen for prompting the user regarding the next operation ina command
sequence. Highlighting of various elements on the screen is coordinated with these
prompts. For the most part, the user need only utilize the conventional keyboard for de-
fining symbolic names for wires, pins, objects, and files.

An on-screen HELP facility is provided to aid the user with CUPL-GTS commands In
addition to the basic set of object types which can be easily picked from a pop-up menu,
the ability to call up macro-objects is also provided. These macro-objects have been pre-
viously drawn using GTS and stored away on the disk under their own symbolic name.

After a logic schematic has been entered, the user may quickly check to see if the de-
sign fits into a specific PAL. This is done by selecting the “Translate to PLD” command
from the main menu which automatically invokes the GTS translation programs. These
programs run in an on-screen window which overlays the graphical information, provid-
ing feedback in the form of error messages displayed in this window. In this way many
errors can be quickly determined and remedied without ever having to let go of
the mouse.

When the user wishes a hard copy version of a design, the print comrnand from the
main menu may be selected. This causes the GTS print program to execute in an on-
screen wndow according to the printer configuration file (PRINTCAP). The PRINTCAP
file allows the user to configure the GTS print function for any dot matrix printer they
might have.

Often a logic description does not fit in a particular PAL due to a logic capacity
(product-term) limitation. When this occurs, the universal capability of GTS will easily
allow the user to try placing this same logic in a different PAL of a similar architecture.

Software Support 115

Since CUPL-GTS incorporates CUPL the high level language in its internal operation,
it also benefits from CUPL’s powerful “Quine Procedure” logic minimizer. This is espe-
cially advantageous for CUPL-GTS as logic descriptions showing many levels of gates can
be very deceptive in their ability to consume the logic capacity of a PAL. The presence of
the logic minimizer can eliminate unnecessary and redundant logical functions, and
maximizes the probability that a design will fit in a target PAL.

Also included with CUPL-GTS is the CUPL simulator; CSIM, which allows the user to
simulate a logic design prior to physically creating a programmed PAL. Not only can this
save devices, but it can help significantly in debugging a system level problem.

CUPL-GTS is designed for growth and expandability. As new programmable logic
devices are introduced users will be kept current with updated device libraries and
product enhancements.

Most of us first use PAL devices to replace TTL in order to shrink a design and/or add
functionality. The following example shows how a simple I/O decoder design would ap-
pear on the CUPL-GTS screen prior to translation to a PAL16L8 or PAL16PS.

Select Command From Main Menu Help

Change Scale

Set Center

AEN LS32 LS04 Redraw Screen
E READ E
Add Object
Y 1,
HHOR ! D ‘ Add Wire
LS00
LS00 LS04
9 H—==a [So-EMBLE rry Add Pin
Q
HHow
[18] Change Object
RANGE
LS04 Name/Rename

Move

LS04
A6 =1 L.S21 Delete

LS21

LS04
m A7 D Find

Translate to PLD

(

A8 '
7 Load From Disk

Save On Disk

‘

Quit

More ...

Figure 6.3.1 CUPL-GTS Screen Display Example

116 Programmable Logic Design Guide

PALASM

The oldest design aid for PAL devices is PALASM, which is a FORTRAN 1V-based soft-
ware package. PALASM accepts logic equations in a rigid format and assembles them
into fuse-map data for programmers. In addition, PALASM also accepts user input test
vectors, performs simulation and formats them to be programmer compatxblc Table
6.3.2 lists the PALASM operators.

Comment follows

Complement, prefix to a pin name.
AND (product)

OR (sum)

XOR (exclusive OR)

XNOR (exclusive NOR)
Conditional three-state

Equality

Replaced by after the low to hlgh
transition of the clock.

—_—

T T%Y + %~

Table 6.3.2 PALASM Operators

ABEL™ by Data I/0

As the use of PALs and PLEs (PROMSs) increases, high level design tools become neces-
sary. Designers need easier, faster, and more efficient ways to design with such pro-
grammable devices. With the more complex devices currently being introduced to the
market, this need is even greater. Additionally, a designer should be able to specify logic
designs in a way that makes sense in engineering terms; he or she should not have to
learn a new way of thinking about designs.

ABEL™, a complete logic design tool for PALs, PLEs, and FPLAs meets these require-
ments. ABELTM incorporates a high-level design language and a set of software programs
that process logic designs to give correct and efﬁc1em designs. ABEL™ was developed by
Data I/O Corporation, Redmond, WA.

The ABEL™ design language offers structures familiar to designers: state diagrams,
truth tables, and Boolean equations. The designer can choose any of these structures or
combine them to describe a design. Macros and dlrectlves are also avallable to simplify
complex designs.

The ABEL™ software programs process designs described with the high-level lan-
guage. Processing includes syntax checking, automatic logic reduction, automatic design
simulation, verification that a given design can be implemented in a chosen device, and
automatic generation of design documentation. ~

Software Support 117

-To use ABEL™, the designer uses an editor to created a source file containing an
ABEL™ design description. He then processes the source file with the ABEL™ software
programs to produce a programmer load file. The programmer load file is used by logic
and PLE programmers to program devices. Several programmer load file formats are
supported by ABEL™ so that different programmers may be used.

The source file created by the designer must contain test vectors if simulation is to
be performed. Test vectors describe the desired (expected) input-to-output function of
the design in a truth table format. The ABEL™ simulator applies the inputs contained in
the test vectors to the design and checks the obtained outputs against the expected out-
puts in the vectors. If the outputs obtained during simulation do not match those
specified in the test vectors, an error is reported.

Following is a design described in the ABEL™ design language This design would
be processed to verify its correctness and to reduce the number of terms required to im-
plement it. The design is 1mplememed in a PAL.

6809 Memory Address Decoder

Address decoding is a typical application of programmable logic devices, and the follow-
ing describes the ABEL™ implementation of such a desing. :

Design Specification

Figure 6.3.2 shows a block diagram for the design and a continuous block of memory di-
vided into sections containing dynamic RAM (DRAM), I/O (1I0), and two sections of ROM
(ROM1 and ROM2). The purpose of this decoder is to monitor the six high-order bits
(A15-A10) of a sixteen-bit address bus and select the correct section of memory based on
the value of these address bits. To perform this function, a simple decoder with six inputs
and four outputs is designed with a 14L4 PAL.

A15 —f
D—3 ROM1
Al4 —»!
D—> ROM2
A13 —>]
; D—> 10
A12 —3] .
: D—> DRAM
A1l —p]
A10 —
V.
% /
ROM1|ROM2 /// /0 | DRAM
FFFF FS00 FOQ0 ES00 EQQD 0000

Figure 6.3.2 Block Diagram: 6809 Memory Address Decoder

118 Programmable Logic Design Guide

Table 6.3.1 shows the address ranges associated with each section of memory. These
address ranges can also be seen in figure 6.3.2.

Memory Section Address Range (hex)
DRAM 0000-DFFF
110 S E000-E7FF
ROM2 FO00-F7FF .
ROMA1 ‘ F800-FFFF

Table 6.3.1 Address Ranges for 6809 Controller
Design Method

Figure 6.3.3 shows a simplified block diagram for the address decoder. The address de-
coder is implemented with simple Boolean equations employing both relational and
logical operators as shown in figure 6.3.4. A significant amount of simplification is
achieved by grouping the address bits into a set named Address. The lower-order ten ad-
dress bits that are not used for the address decode are given “don’t care” values in the ad-
dress set. In this way, the designer indicates that the address in the overall design (that
beyond the decoder) contains sixteen bits, but that bits 0-9 do not affect the decode
‘of that address. This is opposed to simply defining the set as, Address =
[A15,A14,A13,A12,A11,A10], which ignores the existence of the lower-order bits. Specify-
‘ing all 16 address lines as members of the address set also allows full 16-bit comparisons
of the address value against the ranges shown in table 6.3.1.

D—» ROM1
. fo—>» rROM2

Address —» :
: O—> 10

_o—> DRAM

Figure 6.3.3 Simplified Block Diagram: 6809 Memory Address Decoder

Software Support 119

module m680I9a
title Y6809 memory decode
Jean Designer Data I/0 Corp Redmond WA 24 Feb 1984°

uos device 'P14L4%;

A1S5,A14,A13,A12,A11,A10 pin 1,2,3, 4,5, 67
ROM1, 10, ROM2, DRAM pin 14,15,16,17;

Hy Ly X = 1,0,. %03
Address = [A15,A14,A13,A12, AL1,RA10, Xy Xy X, Xy Xy Xy X¢ X, Xy XJ 3

equations
! DRAM = (Address (= “hDFFF)}
‘10 = (Rddress)= ~hEO00) & (Rddress (= ~hE7FF);
! ROME = (Address)= ~hF000) & (Rddress (= ~hF7FF)}
‘ROM1 = (Address)= ~hF800);

test_vectors (Rddress -) (ROM1, ROM2, 10, DRRAM])

~hOO0O =) € H, H, H, L I;
~h4000 -> [H, H, H, L 1
~h8O00 =) L Hy H, H, L I;
~hCOOO => [T Hy, H, H, L 13
~hEGOO =) C H, H, L, H 3
“hEBOO =~} [H, H, H, H 1j
~“hFOO0O =) L H, L, H, H I
~hFBO0 =~ [L, H, H, H 13

end m&809%a

Figure 6.3.4 Source File: 6809 Memory Address Decoder

Test Vectors

In this design, the test vectors are a straightforward listing of the values that must appear
on the output lines for specific address values. The address values are specified in
hexadecimal notation on the left sife of the “->" symbol. Inputs to a design always appear
on the left side of the test vectors. The expected outputs are specified to the right of the
“->” symbol. The designer chose in this case to use the symbols H and L instead of the
binary values 1 and 0 to describe the outputs. The correspondence between the symbols
and the binary values was defined in the constant declaration section of the source file,
just above the section labeled equations.

Summary

A design described with the ABEL™ design language has been shown. This design shows
how Boolean equations with logical and relational operators are used to describe an ad-
dress decoder. Test vectors were written to test the function of the design using ABEL™'s
simulator. In addition to the Boolean equations shown in this example, ABEL™ features
truth tables and state diagrams. State diagrams allow the designer to fully describe state
machines in terms of their states and state transitions. Truth tables specify designs in
terms of their inputs and outputs, much like test vectors.

Regardless of the method used to describe logic, ABEL™ s automatic logic reduction
and simulation ensure that the design uses as few terms as possible and that it operates
as the designer intended. The end results are savings in time, devices, board space,
and money.

T™?

120 Programmable Logic Design Guide

- 6.4 SOFTWARE FOR TESTING PROGRAMMABLE LOGIC

Some of the test equipment vendors also have software that can be used for testing pro-
grammed devices in a production environment. These software packages do not have
any design aids but have automatic test vector generation and simulation tools and are
generally written to run on powerful mini-computers.

6.5 SOFTWARE VENDOR LIST
Listed below are the major software vendors for Programmable Logic.

NATIONAL SEMICONDUCTOR CORPORATION
PLAN "

2900 Semiconductor Drive

M/S 16-198

P.O. Box 58090

Santa Clara, CA 95052-8090

(408) 721-4107

ASSISTED TECHNOLOGIES, INC.
2381 Zanker Road, Suite 150
San Jose, CA 95131

DATA I/0 CORPORATION
10525 Willows Road N.E.
C-46

Redmond, WA 98052 .

A vendor who supplies software for production testing of Programmable Logic is
provided below. . '

GENRAD
170 Tracer Lane
Waltham, MA 02254 :

Testing and Reliability

7.1 NATIONAL FACTORY TESTING

National’s PAL devices include special test circuitry designed to permit thorough AC
and DC testing to be accomplished on an unprogrammed unit. This test circuitry is
used to ensure good programming yield and to verify that devices will meet all para-
metric and switching specifications after programming.

Each PAL device has special test fuses. These test fuses are blown during factory
testing and demonstrate beyond reasonable doubt that the device is capable of opening
all fuses when programmed by the user. They also increase the confidence level in
unique addressing.

Table 7.1.1 shows the total number of fuses and test fuses for each device. Figure
7.1.1 shows the PAL test flow in National’s factory.

Since PAL devices are logic devices, in addition to testing the fuses blown their
logic function should be tested after programming. This can be performed on a
National tester, or on some PAL device programmers, using user defined test vectors
or by comparison against a known good unit (fingerprint test).

Test vectors are relatively easy to generate for combinational designs usmg PAL
devices. Sequential function testing is more difficult.

National’s application Note # 351 by Tom Wang tells the user how to generate these
test vectors. National also supports customer test vectors and fully tests its custom
order NML or programmed PAL devices.

AND Array Organization

Device Input TIc Product Number Number of

Number Lines X X Lines = of Fuses Test Fuses
PAL10H8 10 2 16 320 42
PAL12H6 12 2 16 384 44
PAL14H4 14 2 16 448 46
PAL16H2 16 2 16 512 48
PAL16C1 16 2 16 512 48
PAL16L8 16 2 64 2048 98
PAL16R8 16 2 64 2048 98
PAL16R6 16 2 64 2048 98
PAL16R4 16 2 64 2048 98

Table 7.1.1 Test Fuses
121

122

Programmable Logic Design Guide

F
VERIFY WORD |-—+
F
VERIFY BIT =
DC F
PARAMETRIC |-=+
TESTS
F
AC TESTt -
*FUNCTIONAL F
TEST B

START
<« OPENsaND WORD PATTERN
SHORTS CHECK
F BIT PATTERN
=7 icc CHECK
F GROSS E ‘
<——] FUNCTIONAL <= ARRAY CHECK
iIHIGHY!
F GROSS
<--] FUNCTIONAL PROG WORD
llLowtl
F
-] MIX CHECK PROG BIT
F
oo

+ FOR SAMPLE ONLY

* FOR NML/PROGRAMMED PAL

ARRAY CHECK

Figure 7.1.1 PAL Device Test Flow

Testing and Reliability 123

7.2 LOGIC VERIFICATION

PAL devices are not only memory devices, but also logic devices. Therefore, in addition
to verifying the fuses blown after programming, we also need to verify the logic opera-
tion before it is put in a system. Logic verification provides assurance that a device will
function in a board. Figure 7.2.1 shows the PAL device’s architecture which will clarify
the difference between fuse programming/verification and logic verification. The
programming/verification circuit is required to allow custom configuration by the user.
This circuit is operational only when a super voltage is applied to V¢c. Under normal
5.0 volt operation, this circuit is invisible and the logic circuit will take over. Therefore
the skills we use to check the PAL device under normal 5.0 volt operation are called
logic verification. The most important skill we use now is called functional test.

PROGRAMMING/
> VERIFICATION
CIRCUIT

Yy

INPUT PROGRAMMABLE OUTPUT
ARRAY

\

LOGIC
CIRCUIT

Y

wen PROGRAMMING/VERIFICATION FLOW
w===FUNCTIONAL FLOW

Figure 7.2.1 PAL Device’s Architecture

124 Programmable Logic Design Guide

Functional testing must accomplish two purposes:

1) It must verify that the PAL device, after programming, performs the function
intended. ’

2) It must verify the circuit removed through programining does not affect the PAL
device’s operation..

The functional testing technique relies on the test vectors. A test vector means a
combination of desired input variable values and expected output'variable values. The
PAL device will be exercised by the desired input values. Then, the received outputs
will be compared with the expected output values. The device is considered a “mal-
function” if the comparison does not match. Figure 7.2.2 shows an example.

EXERCISED INPUTS EXPECTED OUTPUTS
1101101101 10110110 PAL OUTPUTS
b v g b v - DEVICE
| INPUTS
AN
> ERROR IF
COMPARISON \

> MISMATCH ~

Figure 7.2.2 Function of Test Vector

There are many methods of generating test vectors:

1. Exhaustive — generate the whole different input combination and the expected out-
put values. For instance, for 3-input AND gate in Figure 7.2.3, we get eight test vec-
tors as in Table 7.2.1. For an n-inputs device, we get 21 test vectors.

Figure 7.2.3 3-Input AND Gate

Testing and Reliability 125

A B o F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Table 7.2.1 Test Vectors Generated by Exhaustive Methods

2. Fault modeling — Use the stuck at 0 and stuck at 1 technique to sensitize the differ-
ent logic path. For instance, in Figure 7.2.3, there are three different paths, i.e. AF,
BF and CF. Therefore we get six test vectors shown in Table 7.2.2 (a). Due to vector
1,3 and 5 being the same, we can reduce to four test vectors as in Table 7.2.2 (b).

A B Cc F A B c F
1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 0
1 1 1 1 1 0 1 0
1 0 1 0 1 1 0 0
1 1 1 1 :

1 1 0 0

(A) ()

Table 7.2.2 Test Vectors Generated by Fault Modeling

3. Structure Test — Only pick up the possible existing input states and their corres-
ponding output states.

There is another skill to do the logic verification. It uses the signature analysis technique.
This technique uses random input values exercising on a good device to generate differ-
ent outputs. The outputs are manipulated in certain ways to get a “test sum” called a “sig-
nature.” Then, using the same sequence of input values to another device we get its sig-
nature which is compared with the known good one. Some PAL device programmer ven-
dors offer user fingerprint tests which are based on signature analysis techniques such as
DATA I/O, Digital Media.

126 Programmable Logic Design Guide

7.3 CUSTOMER'’S RESPONSIBILITIES

The number of parts that are non-functional after programming is generally less than
2% and may be picked up. during board-level check. However, the author strongly
recommends that the user do the logic verification before putting PAL device compo-
nents into the system.

Since the user defines the function of the PAL device, it is impossible for the sup-
plier to perform full functional testing prior to shipment unless the user orders an NML
or programmed PAL device from National.

It is the user’s responsibility to generate test vectors or do the fingerprint test. The
methods for generating test vectors was discussed in Section 7.2.

7.4 RELIABILITY DATA

Following is sample reliability data on National’s PAL devices. For additional information
please contact your National representative or distributor.

Product: Bipolar PALs (DM3300)
Package: Molded (N) and Hermetic (J)

Test Method: Dynamic (DHTL)/Static (SHTL) High Temperature Operating Life
Conditions: Continuous Operation at Rated Supply Voltage, and 125°C
Duration: 1000 Hours

Filel.D. Device Package Test Sample 168 500 1000 Failure Mode

Type Type Size Hours — —
RMB75131 16R4 J DHTL 77 0 0 -0
RMB75133 16L8 77 0 (0] 0
RMB75101 16R6 77 0 0 0
RMB75137 16R6 , ~ 77 0 1 0 Fuse verify and functional
RMB75096 16R4 SHTL 77 0 0 0
RMB75132 16R4 77 0 0 1]
RMB75097 16L8 - 77 0 0 0
RMB75142 16R8 77 0 0 0
RMB75143 16L8 N DHTL 77 0 0 0
RMB75144 16R8 77 0 0 0
RMB75190 16R4 . 77 0 0 0
RMB75144 16R8 ’ - SHTL 77 0. 0 0
RMB75154 16L8 77 0. 0 0

Total Devices: 1001
Total Device Hours at 125°C: 1001*10°

Testing and Reliability 127

Failure Rate at Stress = 0.2%/1000 Hours

Total Device Hours at 55°C, and 0.4EV = 12.012*10°

Failure Rate at 55°C, 0.4EV and 60% Confidence Level:

%/1000 Hours: 0.0168; PPM Hours: 0.168; Fits: 168; MTBF: 5.9+10°
Test Method: Temperature Humidity Bias Test

Conditions: Continuous Operation at Rated Supply Voltage, 85°C, and 85%RH
Duration: 1000 Hours

Filel.D. Device Package Sample 168 500 1000 Failure Mode
Type Type ~ Size Hours — -
RMB75143 16L8 N 77 0 0 0
RMB75144 16R8 77 0 0 0
RMB75199 16R4 77 0 0 0

Total Devices: 231
Failure Rate at Stress: 0.4%/1000 Hours

7.5 PAL DEVICE FUNCTIONAL TESTING
Combinational and Sequential Circuits

Digital circuits can be classified as either combinational or sequential. Combinational cir-
cuits (e.g., decoder, multiplexer, adder, etc.) whose present value of the outputs at any
time are functions of only the present circuit inputs at that time can bé described as:

Y = F(X)

where F is Boolean sum of products transfer function (Figure 7.5.1).

INPUTS X —p| F(X) —> OUTPUTS Y

Figure 7.5.1 Combinational Circuit

Sequential circuits (e.g., counter, shift register, accumulator, etc.) whose present
value of the outputs at any given time will be the functions not only of the present cir-
cuit inputs at that time, but also the previous value of the outputs can be described as:

Y =F(X, Y)

where F is the Boolean Sum-of-Product transfer function. See (Figure 7.5.2).

128 Programmable Logic Design Guide

CLOCK
]

INPUTS X =P/

F(X,Y) REG P OUTPUTS Y

N
»”

Figure 7.5.2 Sequential Circuit

Description of PAL (Programmable Array Logic) Device

Due to rapidly increasing integrated circuit technology, logic circuit designers face a
difficult decision: should they use conventional TTL gates or custom LSI to implement
desired combinational/sequential circuits.

Use of conventional TTL gates does not take advantage of the increased integra-
tion available. However, expensive and complicated software often makes custom LSI
unsatisfactory. There is a big void between these two solutions. This void is now being
addressed by semicustom approaches (e.g., PAL devices or gate array, etc). Since PAL
devices have advantages over other semicustom chips in many areas (for instance, cost
effectiveness, quick turnaround, complete software support, multi-source, etc.), it may
be the best approach for the logic designer designing combinational/sequential circuits.

National offers the designer a family of PAL dev1ces See Table 7.5. 1 for a broad '
overview of National’s products.

PAL Device Design Procedure

Designing combinational circuits is straightforward. The first step is to define the cir-
cuit’s function. The second step is to build a truth table. The third step is to minimize
the truth table by using Karnaugh maps or Boolean algebra, in order to get the transfer
function (i.e., logic equations). Step four is programming the circuits. Figure 7.5.3 is a
flow diagram which applies to designing combinational PAL devices.

It is much more complicated to design a sequential circuit, as discussed in many
textbooks and articles. Figure 7.5.4 is a flow diagram Wthh applies to designing
sequential PAL devices.

The last step in both Figures 7.5.3 and 7.5. 4 is programming the PAL device. The
entire procedure for programming a PAL device is shown in Figure 7.5.5. The first step
is to generate the logic equations and function table. The second step is, using PAL
device software tools (e.g., PALASM®, PLAN™, etc.), to create a bit pattern and exercise
the function table, if any, in the logic equations. The third step is to load the bit pattern
into a PAL device programmer to program and verify the fuse matrix. The fourth step is
to functionally test the PAL device. The last step is to blow the security fuse. This last
step is optional.

Testing and Reliability 129
High Speed Ultra-High Low Power | Package
Standard (25 ns) Speed (15 ns) (35 ns) (Pins) Description
(35 ns) P

10H8 10HBA 10H8A2 20 10 Input, 8 Output AND-OR Array

12H6 12HBA 12H6A2 20 12 Input, 6 Output AND-OR Array

14H4 14H4A - 14H4A2 20 14 Input, 4 output AND-OR Array

16H2 16H2A 16H2A2 20 16 Input, 4 Output AND-OR Array

10L8 10LBA 10L8A2 20 10 Input, 8 Ouptut AND-OR Array

12L6 12L6A 12L6A2 20 12 Input, 6 Output AND-OR Array

14L4 14L4A 14L4A2 20 14 Input, 4 Output AND-OR Array

16L2 16L.2A 16L2A2 20 16 Input, 2 Output AND-OR Array

16C1 16C1A 16L1A2 20 16 Input, 1 Output AND-OR/NOR Array

1618 16LBA 16L8B 16L8A2 20 16 Input, 8 Output AND-OR-Inv Array

16R8 16R8A 16R8B 16R8A2 20 16 Input, 8 Output AND-OR-Reg Array

16R6 16R6A 16R6B 16R6A2 20 16 Input, 6 Output AND-OR Reg Array

16R4 16R4A 16R4B 16R4A2 20 16 Input, 4 Output AND-OR-Reg Array

(40 ns)

12L10 24 12 Input, 10 Output AND-OR Array

1418 24 14 Input, 8 Output AND-OR Array

16L6 24 16 Input, 6 Output AND-OR Array

18L4 24 18 Input, 4 Output AND-OR Array

20L2 24 20 Input, 2 Output AND-OR Array

20C1 24 20 Input, 1 Output AND-OR/NOR Array
20L8A 24 20 Input, 8 Output AND-OR-Inv Array
20R8A 24 20 Input, 8 Output AND-OR-Reg Array
20R6A 24 20 Input, 6 Output AND-OR-Reg Array
20R4A 24 20 Input, 4 Output AND-OR-Reg Array

(50 ns) :

20L10 24 20 Input, 10 Output AND-OR-Inv Array

20X10 24 20 Input, 10 Output AND-OR-XOR-Reg Array

20X8 24 20 Input, 8 Output AND-OR-XOR-Reg Array

20X4 24 20 Input, 4 Output AND-OR-XOR-Reg Array

Description of Functional Table

Table 7.5.1 National’s PAL Device Family

In Figures 7.5.3, 7.5.4 and 7.5.5 we encounter a step called “generating function table.”
However, what is the meaning of a function table and why do we need it? A function
table is a sequence of test conditions which are representative of the device in actual
circuit operation. When we derive the logic equations by using Karnaugh maps or
Boolean algebra, it is possible to introduce errors that may not be obvious. The func-
tion table is a means of expressing what we expect the PAL device to do in the system.
PALASM or other software simulators will exercise the function table in the logic equa-
tions and report simulation errors. Then, we can correct the function table and/or the
logic equations until no simulation error occurs.

130 Programmable Logic Design Guide

FUNCTIONAL
DESCRIPTION -

DEFINE INPUTS
'S AND OUTPUTS

FUNCTION . TRUTH
TABLE ¢ . TABLE

KARNAUGH MAPS OR
2 BOOLEAN ALGEBRA

TRANSFER
FUNCTION
(LOGIC
EQUATIONS)

| ~————— (PROGRAMMING THE

A PAL DEVICE)

CIRCUITS
(PAL)
DEVICE

Figure 7.5.3 Combinational PAL Device Design Steps

Even if both the logic equations and blown fuses are correct, there is no guarantee
that the PAL device will function properly. PALASM or other software tools can gener-
ate test vectors from the function table entries and exercise these test vectors in the PAL
device after it has been programmed. Even though the functional verification fallout is
very small (typically less than 2%), it is necessary to perform this test at the device
level. Ten devices on a board with a 2% device fallout translates into 18% fallout at the
board level if these devices are not individually tested.

Thus, we can see that a good function table will provide a high degree of confi-
dence that the design is correct. It will also help ensure that the PAL device will work
properly the first time it is plugged into the system. :

FUNCTIONAL
DESCRIPTION

STATE
DIAGRAM

STATE
TABLE

v

e ————ee

MINIMAL
STATE TABLE

FUNCTION
TABLE

TRANSITION
TABLE

L 4

TRANSFER
FUNCTION
(LOGIC -

EQUATIONS)

A 4

CIRCUITS
{PAL)
DEVICE

Testing and Reliability

MINIMIZING THE
STATE TABLE

STATE
ASSIGNMENT -

- KARNAUGH MAPS OR

BOOLEAN ALGEBRA

<~ (PROGRAMMING THE

PAL DEVICE)

Figure 7.5.4 Sequential PAL Device Design Steps

131

132 Programmable Logic Design Guide

ENTER LOGIC EQUATIONS

ENTER FUNCTION TABLE

CREATE BIT PATTERN

y

EXERCISE FUNCTION TABLE
INLOGIC EQUATIONS
(SIMULATION)

A

LOAD PATTERN INTO
PROGRAMMER

v

PROGRAM FUSE MATRIX

VERIFY FUSE MATRIX

TEST PAL DEVICE FUNCTION
WITH TEST VECTORS OR DO
OTHER LOGIC TEST

y

BLOW SECURITY FUSE
(DO FUNCTIONAL
TESTING AGAIN)

Figure 7.5.5 PAL Device Programming Procedures

Testing and Reliability 133

How to Generate Test Vectors and the Function Table from Logic Equations

It is the PAL device designer’s responsibility to generate the function table since he/she
knows the operation of the design best. However, if this is not possible, we can gener-
ate the function table manually from the existing logic equations. To do this, the cor-
rect logic equations are needed. Figure 7.5.6 outlines the procedure which will be
detailed by exampiles in the next section. The “optimization” procedure is sometimes
difficult and may need intuition. (Notice the different procedure between combina-
tional and sequential PAL in the last step.)

LOGIC EQUATIONS (KNOWN GOOD)

y

SA0 TEST FOR EACH PRODUCT TERM
SA1 TEST FOR EACH PRODUCT TERM
SA1 FOR EACH PRODUCT EQUATION

MINIMIZATION
v
TEST VECTORS
OPTIMIZATION
v
GENERATE STATE DIAGRAM AND
COMBINATIONAL - TRANSITION TABLE FOR STATE
PAL) SEQUENTIAL PAL
A\ 4
> FUNCTION TABLE

"Figure 7.5.6 Test Vector and Function Table Creating Steps

134 Programmable Logic Design Guide

Before going to the next section, a few conventions are defined. First, only the fol-
lowing symbols can be accepted in the test vectors or function table:

H—Logic High

L—Logic Low

X—Irrelevant “Don’t Care”

Z—High Impedance

C—Clock '

?—Undetermined

0 and 1 can be treated as Low and High.

Second, let’s consider a general logic equation (or product equation)
O;=P1 +P2+P3
where O; is the output; P1, P2 and P3 are the product terms.

IfPl=1; % I % /I3
P2=/1) I3 x Is
P3=1Is % /Ig % Mg

where Iy, I, I3, Is, Ig, Ig and Io are inputs.
Then the output O will be

O1=11 # Ip « M3+l « I3 %« Is+1Ig % /Ig % /Iy

where, 1y, Ip, /13, Is, Ig, /lg, /19 are called factors.

Consider a particular test vector, V1, which will cause the product term P1 to be
high and the product terms P2 and P3 to be low. In this case the output, Oy, will be
high. Now, if a fault is created by the PAL device which causes P1 to be low, then the
output, Oy, will be low which is different from the fauit-free condition. This fault con-
dition is called “stuck at 0” (SAO) fault. Thus, the vector, V1, is able to detect the pro-
duct term, P1, for the SAO fault and we can say that V1 covers P1 for the SAO fault.

In order to get P1 to be high, all factors of P1 should be high (i.e., I1, I and /I3 are
high). Both I, = high and /I3 = high will cause P2 to be low no matter what I5 is. There-
fore, the vector of:

L Ip I3 I4 15 Ig I7 Iglg 11 In iz O1 Oz O3 O4 Os Og
HHLXXLIXXX X X X HX X X X X

will cover P1 for the SAQ fault.

Similarly, if there is another vector, V2, which causes P1 to be low (only one fac-
tor of P1 is low, the other factors of P1 are high) provided that P2 and P3 are low, then
the output, Oy, is low. Now if a fault is created by the PAL device which causes P1 to be
high then the output, O, will be high which is different from the fault-free condition.

T To talk about letting a product term which is under test be low means that we only force one factor of this term to be low
and the other factors should remain bigh.

Testing and Reliability 135

This fault condition is called “stuck at 1" (SA1) fault. Thus, the vector, V2, is able to
detect the product term, P1, for SAl fault and we can say that V2 covers P1 for SAl
fault.

For example, if I; is low, I; and /I3 are high, the P1 is low. Therefore the vector of

I b I3 I Is Ig Iy Ig Ig I1p Iyp Ijp O Oz O3 O4 Os Og
LHLXXLXXX X X X L X X X X X

will cover P1 for the SA1 fault.
Similarly, the following vectors will cover P1 for the SA1 fault, too.

I b I3 14 Is Ig I7 Ig Ig. I1g Iy Ijz O1 Oz Oz O4 Os Og
HLLXXLXXXX X X L X X X X X
HHHXXILXXXX X X L X X X X X

To get an SA1 fault test for a product equation, generate a vector which sets all the
factors in each product term to be low. The output of this product equation will then
be low. If a fault is created by an AND or OR gate of the PAL device which causes the
product term to be high, then the output will be high, which is different from the fault-
free condition. For example, if Iy, Iz, /I3, Is, I, /Ig, /Ig are low, then the followmg vector
will cover equation 01 for an SA1 fault.

I b 3 Iy Is Ig I7 Ig Ig Iip In Iz O Oz O3 O4 Os Og
LLHXULIULIXHHIZX X X L X X X X X

A good function table should cover all of the product terms for the SAO and SA1
faults. The Product Term Coverage (PTC) is calculated as:
Total # of SAOQ Faults Tested + Total # of SA1 Faults Tested

PTC = x 100 (%)
2 x Total Number of Product Terms

To achieve 100% PTC is the goal of generating a function table. PALASM version
1.5 and up will inform the user of:

® Total number of SA1 faults tested
e Total number of SAO faults tested
- ® Product term coverage (PTC)‘

In case all the product terms are not covered, the user receives a message which
tells him the product term and the type of fault for which it was not tested (e.g., “Prod-
uct P, of EQN 1 Untested (SAO) Fault”). This implies that the user must update the func-
tion table by including vectors which will cover product terms for the faults.

136 Programmable Logic Design Guide

7.6 EXAMPLES OF TESTING

Example 1: Combinational PAL12H6

PAL12H6

PTAN301

Tom Wang

Portion of random control logic for 8086 CPU board

PD EN ED EA S1 SA E1 DO DE GND SO NC3 NO C3 HA SS LA MW PW VCC
MW = /SO + PW * DE (1)

LA = /SA * /DO @) .

SS=S1 * PD * /SA 3)

HA=S1 * PD * /SA * EA * El (4)

C3=PD * ED * EA (5)

NO =PD * /EN

e M e e

Description

This is a portion of random control logic for 8086 CPU board. See (Figure 7.5.7). ,

, l:)V: —qD_,___D{D MW

SO

EN — I—‘

NO

ED C3

-
L/
—
s
: g
‘ = 1>

sI : : ' ’
}ED__ ss

sa ——>o i

Figure 7.5.7 Logic Circuit of Example 1

Testing and Reliability 137

The generation of function table is described in the following steps:

Step 1:
Step 2:

Step 3:

Step 4:

Step 5:

Get Test Vector Coding Form; Fill in the input and output names.

Exercise the product term 1 (/SO) of equation 1.

SAQ Fault Testing: Let PT1 be high and PT2 be low, then the output of equa-

tion 1, MW, should be high; so, we get vector 1.
SA1 Fault Testing: Let PT1 and PT2 be low, then the output of equation 1, MW
should be low; so we get vector 2.

Exercise product term 2 (PW * DE) of equation 1. _

SAQ Fault Testing: Let PT1 be low and PT2 be high, then the output of equa-
tion 1, MW, should be high (i.e., vector 3).

SA1 Fault Testing: Let PT1 and PT2 be low, then the output of equation 1,
MW, should be low.

Since PT2 consists of two factors, PW and DE, we create two SA1 test vectors

(i.e., vectors 4 and 5).

SA1 Fault Testing for product equation 1.

Let PT1 and PT2 be low, then the output of equation 1, MW, should be low
(i.e., vector 6). ‘ ‘
This step is similar to the SA1 test in step 3 but is different, since all the factors
in this equation were set to be low.

Exercise product term 1 (/SA * /DO) of equation 2.
SAO Fault Testing: Let PT1 be high, then the output LA should be high.

- SA1 Fault Testing: Let PT1 be low, then the output LA should be low,

Step 6:
Step 7:

Step 8:

So, we get vectors 7, 8, and 9 in Table 7.5.2
SA1 fault test for product equation 2, we get vector 10.

Continue to exercise the rest of the product terms, completing all 31 test vec- -
tors (Table 7.5.2).

Optimize the test vectors to get the function table.
1) Because of vector 2, we don’t need vectors 4 and 6.

2) Combine vectors 7-10 with vectors 1-6.

3) Rearrange vectors 11-15, then combine with the preceding vectors.
4) Merge vectors 28-31 with vectors 23-27.

5) This results in only 17 vectors (Table 7.5.3).

6) These 17 vectors can still be minimized by comparison and intuition to get
only 7 vectors (Table 7.5.4).

7) By inserting “X” into unused spaces, the result is Table 7.5.5, which is the
function table.

Programmable Logic Design Guide

138

Outputs

NO |C3 |HA | SS |LA | MW

Inputs

DO | DE | SO | NC3 | PW

H

H

SA | El

L

L

H]H

HiH|H|H

L{H

L

PD |EN | ED [EA | SI

H

H

10

12
13

15
16
17
18
19
20
21

22
23

24
25

26
27

28| H
29

30 H |H

31

Table' 7.5.2 Test Yectors

139

Outputs

NO [C3 | HA | SS |LA | MW

Testing and Reliability

Inputs

SA | El

DO | DE | SO [NC3 | PW

H

H

H

L

L

L

L

H|H

H|H

H|H|H|H

L|H

LIL}H

H

H

L

L

PD |EN | ED |EA | SI

H

L
H
H

10

1"

12

13| H
14

15| H|H
16
17

Table 7.5.3 Test Vectors

SWHLHL

2

3

m.MHLLL

(<]

14 I Y))
-3 |- =))) QAT
3|~))]
eix|= Y
El=|=2]z|x

8

=z

2| x
glx|x|x|~

ol|8l=l=|xT|x

2

3

Sl@|z|z|xz|a]|x]|=
S22~
@ I|T|L|H| |
glix|z|z|a|x|=
alx|= JixT|x
Sl fn ol I
Qix|z|xz|={2|xT
N T]wn]|©

Table 7.5.4 Final Test Vectors

140 Programmable Logic Design Guide

Inputs ' oo Outputs
PD [EN |ED |EA'| SI | SA[EI | DO | DE | SO | NC3 | PW ' NO [C3 [HA|SS | LA | MW

t|fH}LJH|H|H|L|H}JL|[X}L]|X L H|H|H|H|H]|H
2IlH|H|L|H|H|H|H|JL|[X]|H]| X L [S I I O I I B O
3|H|{X|X|H|L|L|H{H|H|H| X |H X|X|L|L|L|H
4|L{H|L]JL]JL]|H]|JL|H]|]L]|H]} X H | S I VR A VO I U I U B
S[LJLIH|H]|JH|IL|H|[X|X|[X]| X | X LiL{L]L|X] X
6|HIX|H|JL[H|LJH[X|X|[X]| X |[X X]JLIL]IX|X]| X
7IHIX|X[H]JH|[LjL[X]{X|[X] X |X X{X|L}X|X|X

Table 7.5.5 . Final Function Table

The following are printouts of PAL device design specifications, function table, pinout
list, fuse map, simulation result, and fault testing result. We get 100% PTC!

PALASM VERSION. 1.5 .

PAL12H6

PTAN301

TOM WANG

PORTION OF RANDOM CONTROL LOGIC FOR 8086 CPU BOARD
PD EN ED EA S1 SA E1 DO DE GND SO NC3 NO C3 HA SS LA

MW PW VCC

MW = /SO + PW*DE

LA = /SA*/DO

SS = S1*PD*/SA

HA = S1*PD*/SA*EA*E]
C3 = PD*ED*EA

NO = PD*/EN

FUNCTION TABLE : :
PO EN ED EA S1 SA E1 DO DE SO NC3 PW NO C3 HA SS LA MW

HLHHHLHLXLUXLHHHHHH

CHHLHHHHLXHXLLLLLLL
HXXHLLHHHHXHXXLLLH
LHLLLHLHLHXHLLLLLL
LLHHHLHXXXXXLLLLXX
HXHLHLHEXXXXXXLLXXX
HXXHHLLXXXXXXXLXXX
DESCRIPTION

PORTION OF RANDOM CONTROL LOGIC FOR 8086 CPU BOARD

TOM WANG

TOM WANG

1 10111010XX0XHHHHHHOL
2 11011110XX1XLLLLLLOL
3 1XX100111X1XXXLLLH11
4 010001010X1XLLLLLLLL
5 0011101XXXXXLLLLXXX1
6 1X10101XXXXXXLLXXXX1
7 IXX1100XXXXXXXLXXXX1

PASS SIMULATION 49
TOM WANG

11 1111 1111 2222
0123 4567 8301 2345 6789 0123

BEG*FPLT PALI12H6 8
0 0000 0000 00CO 0000 00CO 0000
1 0000 0000 0000 0000 0000 0000
2 0000 0000 0000 0000 0000 0000
3 0000 0000 0000 0000 0000 0000
4 0000 0000 0000 0000 0000 0000
5 0000 0000 0000 0000 0000 0000
6 0000 0000 0000 0000 0000 0000
7 0000 0000 0000 0000 0000 0000

PD

EN

ED

EA

S1

SA

3

]

0E

GND

Rad 22242222222)

*
i i]
* 1'
wRAk
*
Rk
* 2'
ANA

*
i i
* 3'
kA

*
AR

C 4w

Ty

*
Ak
* G
hAE

*
T
* GF
Ahdew

*
hhE
* 7*
whhw

*
*hhw
* g¥
rhkn

-
LT
* gw
AhAh

*
ek
10
han

*

*

*

Testing and Reliability

kb A Rhhhhhhdhd

PAL

12H6

*
whkd
»20%
i1
*
11233
tlgt
LIy s

"
13224
8%
RARh
*
Akhd
ﬁl7t
Ahhw
*
hkdk
16
AkEE
*
12223
*]15%
Akhk

L%
hkd
i14t
EREh
*
whhk
]3
hhw
*
*hhk
12
12a2d
*
LTS
*l1r
s s i d
*

ARARRAARAAERRR AR A ARk kbt

2222 2233
4567 8901

0000 0000
0000 0000
0000 0000
0000 Q000
0000 0000
0000 0000
0000 0000
0000 0000

---------- 00 --00

--00 --00
XX00 XX00
XX00 XX00
0000 0000
0000 0000
0000 0000
0000 0000

T 00 --00

XX00 XX00
0000 00CO
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

--00 X-00
XX00 XX00
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

vee
PN
MW
LA
$S
HA
a
o
NC3

S0

--00
--00
XX00
XX00
0000
0000
0000
0000

-X00
XX00
0000
0000
0000
0000
0000
0000

-X00
XX00
0000
0000
0000
0000
0000
0000

------- X
emmm X=e-
XXXX XXXX
XXXX XXXX
0000 0000
0000 0000
0000 0000
0000 0000

Xem mmme
XXXX XXXX
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

141

/S0
PW*DE

/SA*/D0

S1*PD*/SA

142 Programmable Logic Design Guide

32 --X- ---- X-00 X-00 -X00 X-00 ---- ---- S1*PD*/SA*EA*E]L
33 XXXX XXXX XX00 XX00 XXO00 XX00 XXXX XXXX
34 0000 0000 0000 0000 0COO 0000 COOO 0000
35 0000 0000 0000 0000 0000 0000 0000 0000
36 0000 0000 0000 0000 0000 0000 000G 0000
37 0000 0000 0000 0000 0000 0000 0Q00 0000
38 0000 0000 0000 0000 0CO0 0000 0000 0000
39 0000 0000 0000 0000 0000 0000 00CO 0000

40 --X- X--- X-00 --00 --00 --00 ---- ---- PD*ED*EA
41 XXXX XXXX XX0O XX00 XX0O XXOO XXXX XXXX
42 0000 0000 0000 0000 0000 0000 0000 0000
43 0000 0000 0000 0000 0000 0000 0000 0000
44 0000 0000 0000 0000 0000 0000 0000 0000
45 0000 0000 0000 0000 0000 0000 0000 0000
46 0000 0000 000G 0000 0000 0000 0000 0000
47 0000 00CO 00CO 0000 000C 0000 0000 0000

48 -XX- ---- =-00 --00 --00 --00 ---- ---= PO*/EN
49 XXXX XXXX XX0OO XXQO XXOO XX00 XXXX XXXX ¢

50 XXXX XXXX XXOO XXO0 XX0O XXOO XXXX XXXX

51 XXXX XXXX XXO0 XXOO XX0O XXOO XXXX XXXX

§2 0000 0000 0000 0000 0000 0000 0000 0000

§3 0000 0000 0000 0000 0000 0000 0000 0000

54 0000 0000 0000 0000 0000 0000 0000 0000

55 0000 0000 0000 0000 0000 0000 0CO0 0000

56 0000 0000 0000 0000 000C 0000 0000 0000
57 0000 0000 0000 G000 0000 0000 0000 0000
58 0000 0000 0000 G000 0000 0000 0000 0000
59 0000 0000 0000 G000 0000 0000 0000 0000
60 0000 0000 0000 0000 0000 0000 0000 0000
61 0000 0000 0000 0000 0000 0000 0000 0000
62 0000 0000 0000 G000 0000 0000 000G 0000
63 0000 0000 0000 GOOO 0000 0000 0000 0000

END*FPLT
LEGEND: X : FUSE NOT BLOWN (L,N,0) - : FUSE BLOWN (H,P,1)

0 : PHANTOM FUSE (L,N,0) O : PHANTOM FUSE (H,P,1)
NUMBER OF FUSES BLOWN = 206

TOM WANG

1 10111010XXOXHHKHHHO1
2 11011110XX1XLLLLLLOL
3 1XX100111X1XXXLLLH11
4 010001010XIXLLLLLLLL
§ 0011101XXXXXLLLLXXX1
6 1X10101XXXXXXLLXXXX1
7 1XX1100XXXXXXXLXXXX1

PASS SIMULATION 49 8
NUMBER OF STUCK AT ONE (SAl) FAULTS ARE = 7

NUMBER OF STUCK AT ZERD (SAQ) FAULTS ARE = 7
PRODUCT TERM COVERAGE =100%

Testing and Reliability 143

The differences between sequential and combinational circuits have been dis-
cussed. The output of sequential circuits is a function not only of the present inputs,
but the previous outputs. .

There are two kinds of outputs in the sequential PAL device: registered output, and
non-registered output. For example, pin 14 of the PAL16R4 is a registered output;
pin 13 is a non-registered output. Different combinations of registered outputs are
defined as different states. Each present-state is related to the present inputs and pre-
vious state, so the function table vectors need to be arranged in proper sequential
order. \ ‘

Furthermore, since the previous state is obtained from the previous vector, it is
necessary to “initialize” the registers to a “known state”. (Output is a function of the
inputs but is independent of the previous state, similar to a clear or preset function).

. The following is an example of the sequential PAL16R4. Referring to Figure 7.5.6,
generate the state diagram and state transition table to derive the proper function table.

Example 2: Sequential PAL16R4

PAL16R4
PTAN302

Tom Wang

Op code analyzer

CLK /2B12 /2B23 /B2B1 /B2B3 /3B /B3B /B1B GND /EN FIST /ILLOP
/IC /B /A 17 /RD F23 vCC

If (VCC) /F1ST =F23 : ;i (1)
If (VCC) ILLOP=/A * /B * /C y (@)
C:=A*/B*/C*/B3B+/A*/B*C*/B2B2+RD+A*B*C* /BIB+A*/B*C*

/B2B3 * /3B+ /A * B * /B2Bl1 NG))
B:=A* /B */C* /B3B+/A * /B *C*/B2B2+RD+A * B * C * /BIB * /2B23 +

A* /B * C* /B2B3 +/A * B * /B2B1 i (4)
A:=A* /B */C*/B3B+/A */B*C*/B2B2+RD+A * B * C * /BIB * /2B12 +

A*/B*C=*/B2B3+/A* B */B2B1+B * /C ;o (5)
17:=A * B * C ’ ;. (6)
If(VCC) /F23=/A * /B * /C+A *B *C i (D
Description

The function of this PAL device is to analyze the incoming op code.
The generation of the function table is described in the following steps:

Step 1: Get test vector coding form. Fill in the input and output names. Since the
outputs C, B and A act as inputs as well, they appear on both sides and are
considered first because they feed back to themselves. Therefore, equations
3, 4, and 5 are exercised first.

144

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:
Step 7:

Step 8:

Programmable Logic Design Guide

Exercise product term 1 of equation 3.
SAO Fault Testing: Let PT1 (A * /B * /C * /B3B) be high and PT2, 3, 4, 5, and
6 be low; the output of equation 3 should be high; so, we
get vector 1 in Table 7.5.6.
SA1 Fault Testing: Let PT1, 2, 3, 4, 5, and 6 be low; the output of equation 3
. should be low; so, we get vectors 2, 3, 4, and 5 in Table
7.5.6. .

Exefcise product term 2 of equation 3.

SAO Fault Testing: Let PT2 be high and PT1, 3, 4, 5, and 6 be low; the output
of equation 3 should be high; so, we get vector 6 in Table
7.5.6.

SA1 Fault Testing: Let PT1 2, 3, 4, 5, and 6 be low; the output of equation 3
should be low; so, we get vectors 7, 8, 9, and 10 in Table
7.5.6.

Exercise product term 3 of equation 3 (only SAO fault testing is needed).

SAOQ Fault Testing: Let PT3 be high and PT1, 2, 4, 5, and 6 be low; the output
of equation 3 should be high; so, we get vector 11 in Table
7.5.6.

Continue to exercise the rest of the product terms, completing all of
equation 3. .

SALl fault test for product equation 3; so, we get vector 25.

Repeat step 2 through step 6 for equation 4; i.e.,

SAO Fault Testing: Let PT1 be high and PT2, 3, 4, 5, and 6 be low; the output
of equation 4 should be high.

SA1 Fault Testing: Let PT1, 2, 3, 4, 5, and 6 of equation 4 be low, the output -
of equation 4 should be low.

SAQ Fault Testing for PT2, SA1 Fault Testing for PT2.
SAOQ Fault Testing for PT3, SA1 Fault Testing for PT3.
SAO Fault Testing for PT4, SA1 Fault Testing for PT4.
SAQ Fault Testing for PT5, SA1 Fault Testing for PT5.
SAO Fault Testing for PT6, SA1 Fault Testing for PT6.
SAQ Fault Testing for equation 4.

So, we get vectors 26 to 50.

Repeat step 2 through step 6 for equation 5: i.e.,

SAO Fault Testing: Let PT1 be high and PT2, 3, 4, 5, 6, and 7 be low; the out-
put of equation 5 should be high. ‘

SA1 Fault Testing: Let PT1, 2, 3, 4, 5, 6, and 7 of equation 5 be low; the out-
put of equation 5 should be low.

SAQ Fault Testing for PT2, SA1 Fault Testing for PT2.

SAO Fault Testing for PT3, SA1 Fault Testing for PT3.

SAQ Fault Testing for PT4, SA1 Fault Testing for PT4.

145

Testing and Reliability

@
o~
w
o=
3
al =<
3
-
o=@ T)
o ha of Q) [N} - -3
a
(=]
-
=]
7]
=
=) [[) AUY QASY IU) GIT)) Y U Q) (AT GV [QT T RN T D U QU GEEY QU DU VY VY V) TS Y] Iy AT]
<|I|J|Z|T|{T|I|T|2|=2{2 Ijl|lxjix|x|xx|4|T|TliT|T dlxi2lT|iT|lT|AlT| A= Trjid|x
ala|alx|ala|2la|xi2|= e ool e ol IR I ol - off IO RN [o) QY QU (R jn ol I Y 5. o QU QY VY Y (5, o [N) I TixT|~
O|ldja|dlT|ia|lT|xT|T|a| T IL|IZ|IT|=2|XT|T|T|T|2|T|xT I T|4jT|T|T|2| T IZ|XT|T
=
w
@
& Y] T T) Uy
a8 T
sm T
2
HE:
2lg T
o~
@ X
@
—
@ oy
@
]
m R Oy NS I e |
o~
o
o
@
o~
x
-
[5)
olo|o |l o oo
2IF¥ 222 =] 2| 2| | |N|Q[J|Q|RN|R|QB|&|9|3 2515|833

Table 7.5.6 Test Vectors

Programmable Logic Design Guide

146

«
[
ol|®E
2
3l < Tlalajalx]alalalalxlz]ajala]laizia]alalalz)alzia
- - -
nuvBLLLHLLLLHLL
3}
o
o
-
=
-
@
je=
Sl alalalalalalalala]afal 2202222222222 2]2]=2]=
<|IT|T|IIT|I||T|T|TjI| ||| T|Tj{T|A|]| jo ol IR e ul i ol [) (sl [) fu ol e ol e o) I) (O —
o|lI|IXT|T|Ad|2|lT|Al=2]|lT|T|lja|2|LI|2]2]Ti2|= I|lxz|2|lTiT|2|2lT|Aj2|T|ITiIT|T
O|JA|IT|T|T|T|{T| 2| T IT|a|l|Tj2|TjT|jxT|2|x I|T|T|xT|TjT|{T|T|2| T |
= —
w
@
IHEIEIE T) R R . o T
m. IT|J| =] I
]
7]
2 -
S|l o
a9 alalala)x T glalalalx T
-1
o
o T alafalalx T
m
-
9 4z 4|z T
2 -
[x¢]
al=2l=]x T
@ i
o~
m NS Iy R B QS [N) e I
o~
~
-t
o
UIF[QI|R[Q52235 |B B3B8 5|3|3[3|5||3|3|8|8|5|B|B|R|F|N|R|x

Table 7.5.6 Test Vectors Continued

Step 9:

Step 10:
Step 11:

Step 12:

Testing and Reliability 147

SAO Fault Testing for PT5, SA1 Fault Testing for PT5.
SAO Fault Testing for PTG, SA1 Fault Testing for PTG,
SAQ Fault Testing for equation 5.

So, we get vectors 51 to 74.

Minimize the vectors following these rules:
1) Vectors which have same inputs can be combined to be one vector.

2) If the inputs of a vector are subsets of another Vector s inputs, then they
can be combined to form one vector.

So, vectors 1, 26, and 51 can be combined to one vector 1 in Table 7.5.7; vec-

tors 12 and 37 can be combined to one vector 21 in Table 7.5.7, etc.

3) Decide the *“?”” (undetermined) state in the output by using the inputs and
logic equations (inserting the known values into logic equations).
Therefore, we get Table 7.5.8.

Assign the state numbers. See Table '7.5.9, then we get Table 7.5.10.

Build the state diagram and transition path (Figure 7.5.8) from the vector
Table 7.5.10.

Generate the function table from the state diagram.

1) Be aware of two rules:
a) Generate the initial state first.
b) Generate the function table in sequential order and cover all possible
paths.

2) The value of outputs F1ST, ILLOP, 17 and F23 in each test vector can be
derived easily by inserting the previous values of outputs C, B, and A and
the present values of inputs (none in this example) into their correspond-
ing logic equations.

3) We can quickly identify that the RD signal in this example is the initialize
or reset signal, so RD is set high as the first vector in the function table.

4) Finally, insert an “X” into the unused space. We get the function table as
shown in Table 7.5.11.

Programmable Logic Design Guide

148

&
o
wﬂ
l<|xz|alx|a|alx]a]alal=slx(zl=la]a]a]o]x|a]=]]|f]| |]z]a| =]z
-
WBHLLLLHL.LLLHHLLLLLHLLHLLLLL??????
(23 = ol QEE) QUKY QETY NENE B off N DUE N QUR DN N b off B off (NS ONY QY IUAFY QENE B, off N QNS . off) QU QUED R . off = off) N QRN B o) IV
o -
S
=2
173
=
Sl a)2lala]alalz]al2afa)a]a)]alalafa)a]a|a]g)afafa]a]a)=
<|T|2|T|x|T|2|T|2|2|2|X|T|=2|T]lz||xz]|2|2|2|Ti2|T]T|T|jT|T|A|lT|T|T|X
(.3 [P QY B o) AR QURY QEN Y BEEE [, o (PN |} QUOUY (1) PN QUK o off QR QU QUC R e ol [u ol s ol e i s ol AP s ol i ol s ol i s ol P A0 o) ol e o
O|A|AAT|AE|T|T|H|IEIX|[Z|I|(T IT|T|X|X|IT|T|Z|T|SIT|T|IT|TIT| ||
=
17}
«©
o T2l =2]2|=]2lT)-
MLLLLH I
@ RN NS Y QN |y (K s o N | I
2
3| e
m.m A2l ajalxT e
o
o R S) T B o T
o
@ -S|
@
[¢]
g T|Sfa|=2]|=2=|x
o~
o™~ I
@ T alalalalx
o~
=
-
o
rlajo|sjw|lo|Nnjololo|rla|lo|t|lv]ioirn]|lo]lo|ojs|alo|slv]oln]|lo|lo|lo| =] a
il Rl Bl Bl Bl Bl Bl Bl Bl Bl K A K R R R B R I R I R K k)

Table 7.5.7 Test Vectors

149

Testing and Reliability

]
&
al®
Bl ozl alalxzlalalstalxlxtalalalalalz{alalz]lalalzlalzlialalzlal =zl ol ol ool a2 =1
2
WBHLLLLHLLLLHHLLLLLHLLHHLLL.LLLLLHLLHLLHLLLH
[(b= ol QXY ETD QENY T . o R) R KY VY . of B o (Y UV DU Q) NE . off IR U I of = o) (PR N U U R Y I o s ol = ol = ol (U QY) O . o I o) Y .
= -
o
-
=
[
]
=
=3 [F=] [P] () QAVY QAT GErY Ny GI) GT) . (VY QETY UF) IR GEVD QT) DUNY DUFY BIF) QUFY DEFR QEF) JICY DAY JEFD DEF) DEC) N JEFY) D DIFD JUT) DA
<|IT|A T ||| =] T2 T[T T ||| T TS| E[IT| T T| T ||| T} || ||| T | x|~
[L.J) [P QNC b o) QY QUETY ERY QU B b o) QN | QN IR I I A A A I I L EA E A A E A A A EA A I L A A e R 4 - kS
O|AdA|IFHNT|IT| ||| T I|IIT|T|HIZ|IIX|IX|T|T|IT|TiXT|T|A|A| |||zl] [
=
w
m Tla|a|a|A|a]| 2]l alala]a]a)xia|=
mLLLLH I
Q) QR) S - of] T
a2
S|lem
m.m) Y QECY R Y . of T | x - I
Elx ;
o~
aQ) ET)) QAT) B o T
o
Q ~lx|x 4| b ofl I
@
™«
o juof) NS K QU QUK SR Y DT DY B o - < D . of alx
o~
o~
o s ol Y s of Slxlatalatlalalalxzlx
Q :
~
-
5]
-l o wnl|o o|o - - —
efe|~l=[o{e[=]e]e[=]e]e[=[=]2[c]s]a[a][s]a]&[xz[z]8[s]a]a8s]8]8s]8]a]e[=

Table 7.5.8 Test Vectors

Programmable Logic Design Guide

150

State #

A

State Assignment

Table 7.5.9

Outputs

RIST | ILLOP |C|B|A|17|F23

1

3(3[3
7717
3|3|3

3|3}3

1

3(3|3
3|3|3
3|3)3
3|3]3
1
1

313|383
3|33
3|3]3
3133
3133

1

31313
31313

2|22

3{3(3
71717
3(3(3

71717
313|3
313|3

Inputs

CLK |2B12 | 2823 |B2B1| B2B2 | B2B3 | 3B | B3B |B1B|EN

RD

c

2

H|2o0r8|20r8|20r8| L

H|2or8(20r8|20r8| L

Table 7.5.10 Transition Table

H JH|H|H|H

H

L

H

10

1

12
13
14
15
16
17
18
19

20| C
21

2| C | H
23
24

25

26
27

28

151

1

Outputs
1
5|5|5
3(3|3
8|8|8
3(3|3
313|3
2|2|2
41414
1
Z|Z|Z

RIST | ILLOP |C[B|A[17{F23

5|55
4|afa
707|7
7)7i7

RD

Testing and Reliability

c

H|8or6{8or6|8o0r6]L

Inputs

CLK }2B12 | 2B23 |B2B1 | B2B2 | B2B3 | 3B | B3B |B1B | EN

23| C

Table 7.5.10 Transition Table Continued

CLK /2B12 /2823 /B2B1 /B2B2 /B2B3 /3B /B3B /Bl1B /EN F1ST

/ILLOP /C /B /A /17 /RD F23

FUNCTION TABLE

H
H

L
L
L
L
L
H

38| C | H

30|C | H
31

32| C

33| C

35| C

36| C

37| C

39

40

41

[e R e cQE I = s =G RS [QS e oQ [N e oqie fibe o RN Jie, ofihe odiin oS RS R R |
4 I I rrJ I I I I IXXIIITIJIIIXIITJTTTT I)
S I T J X T J T J T T JXX T XTI AT T T I
- LN I XA XTI XA Ad A d T S d I T A d DD DT DD
Dl = = = = e e <P P e - S B S . I [P]
[SN [[- R [S QN - < N JUU S - N B B e ol o NN e o QPN 5. QN N |
I T rJ4 T I X IJIIXIrXJIXITXTIJEIITTIT NI
A4 I I JdIIrJIrIJdIrIrJJdJxxrJdJdaxTT
S ddd D dad S d A
HMIEXXIN X I I XINXINXMIXMXNXXXKIEXXXINXDIT
€ € < 2 3¢ 2K D 2 < ¢ 3 2 < D€ D€ IC I DC D XK XK D XK T X XX X
€ € €< 2 3 2 K 3 3 O I T ¢ 2 2 I od I X X DX) DK K X XK X
€ 2C 2K > I > I > I 3 I I L DC - X I I DC DK X XK T XK XK X X X
3¢ >€ D€ O 3¢ DK I X I —d I€ 3¢ < D 3C I < I 3¢ 3¢ < X XK > DC X < X
€ € 5 2€ —J 3€ 2€ 3€ 2C < 3¢ 3C 3¢ 3¢ 2K 3¢ € 3 C 3 I 2K X< 2K XK XK X X
MIEM IO I I I Il DI DCICICIC DI T
MadIad XM AIM AN I I TN TN T
LCOOLULOLOLOLOLLOLOLLOLLLLLLLLLLLLLLLL

¥

Table 7.5.11 Final Function Table

DESCRIPTION
OP CODE ANALYZER

152 Programmable Logic Design Guide

Now we can get any test sequence we like just by
following the state transition. The first vector
should be the initialize vector and, by intuition,
we know state D is the initialize state.

Figure 7.5.8 State Diagram

The following are printouts of PAL device design specifications, function table, pinout
list, fuse map, simulation result, and fault testing result. We get 100% PTC!

PALASM VERSION 1.5

PAL16R4
PTAN302
TOM WANG
OP CODE ANALYZER
CLK /2812 /2B23 /B2B1 /3282 /82B3 /38 /B38 /BIB GND
JEN F1ST /ILLOP /C /B /A /17 /RD F23 VCC
IF (VCC)/F1ST = F23
IF (VCC)ILLOP = /A*/B*/C
C:=A*/B*/C*/B3B + /A*/B*(*/B2B2 + RD + A*B*C*/B1B +
A*/B*C'/BZBS*/38 + [A*B*/B281
B:=A*/B*/C*/B3B + /A*/B*C*/82B2 + RD + A*B*C*/B1B*/2B23 +
A*/B*(C*/B2B3 + /A*B*/B2Bl
A:=A*/B*/C*/B3B + /A*/B*C*/B2B2 + RD + A*B*C*/B18*/2B12 +
A*/B*C*/B2B3 + /A*B*/B2Bl1 + B*/C
17:= A*8*C
IF(VCC)/F23 =/A*/B*/C + A*B*C

TOM

TOM

CoNOITODdDWwN -

16

WANG

whhkkkhhkkkhhk

*

deddk

CLk * 1%
*ddkd

*

*kkdk

/2812 * 2*
*kkk

*

*hkd

2823 * 3*
dkodek

*

ke

/B2B1 * 4*
ke

*

ko

/B2B2 * 5*
*hkk

*

Jek ke

/B2B3 * 6*
ok kk

*

*kkk

/3B *T*
ddrkdk

.

drkkodk

/B3 * g*
dekkk

*

dkkk

/B1B * 9*
*kkk

*

*kkk

GND *10*
dokkk

* .

* *

PAL
16R4

Testing and Reliability

R T 2 1 £ 3

*

L2223
*20%
b 2224
*

drkdok
]1g
drkkh
*.

Hkkk
ig
Tkkk
*

*dkdk
*] 7%
*hkk
*

kdhkk
t16*
Kk
*

*kkk
*]19%
drkkk
*

*hkk
*14%
L2223
*

*hkk
13
*hkk
*

*hkkk
*12%
ki
*

dde ko
]1
*hkk
*

FT22a3222 222328222222t 2issdisssdsd

WANG

CXXXXXXXXXOHHLLLLOLL
CO1XXXXX1XOLHLLHL1H1
CXXIXXXXXXOHHLLLHLLL
CO1XXXXX1XOLHLLHLIH1
CXXOXXXXXXOHLHHHRILL
CXXXXXXXXXOHHLLLHOLL
COOXXXXX1XOLHLHHLIH1
CXXXIXXXXXOHHLLLH1L1
COOXXXXX1XOLHLHHL1H1
CXXXOXXXXXOHLHHHH1L1
CXXXXXXXXXOHHLLLHOL1
CLIOXXXXXLXOLHLHLL1HL
CXXXX11XXXOHHLLLH1L1
CLIOXXXXXLXOLHLHLL1H1
CXXXXOXXXXOHLHHHH1L1
CXXXXXXXXXOHHLLLHOL1

vce

F23

/RD

/17

/A

/B

/C

/ILLOP

F1ST

/EN

153

154 Programmable Logic Design Guide

17 C1OXXXXXIXOLHLHLL1H]
18 CXXXX10XXXOLHHLLH1H1
19 CXXXXXXXXXOLHHHLH1H1
20 CXXXXXXOXXOHLHHHH1L1
21 CXXXXXXXXXOHHLLLHOL1
22 C10XXXXXIXOLHLHLL1H1
23 CXXXX10XXXOLHHLLH1H1
24 CXXXXXXXXXOLHHHLH1H1
25 CXXXXXX1XXOHHLLLHIL1
26 CXXXXXXXOXOHLHHHL1L1
27 CXXXXXXXXXOHHLLLHOL1
28 C11XXXXX1XOHHLLLLOL1

PASS SIMULATION 672 29

TOM WANG

11 1111 1111 2222 2222 2233
0123 4567 8901 2345 6789 0123 4567 8901

BEG*FPLT PALI6R4 8

T ST e N L4 oL
--------------- X ==-X ---X ---- ---- A*B*(

NOGI L WN —
>
>
>
>
>
>
>
>
>
>
>
>
b
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

16 =eee —omm —omm —m G A*B*C

A*/B*/C*/B3B
ég*/B*C*/BZBZ
A*B*C*/B18*/2B12
A*/B*C*/B283
/A*B*/B2B1

B*/C

A*/B*/C*/B3B
/A*/B*(C*/B2B2

RD)
A*B*C*/B18*/2823
A*/B*C*/B2B3
/A*B*/B2B1

Testing and Reliability

L i X =-X= <-X= X=-s =--= A®/B*/C*/B3B
L X=X =KX= ==oX =mee --on /A% /B*C*/B2B2

42 - --- T IR RS RD

43 —oen emee ceen oo X ==X ---X ---- X--- A*B*(*/BIB

48 —mon oen ool e X X-X= X=X --=- ---- A*/B*C*/B2B3*/38
45 —--- ---- Ty S G /A*B*/B28B1

46 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

R LT LIPS e S —7. V). LYo

END*FPLT
LEGEND: X : FUSE NOT BLOWN (L,N,0) - : FUSE BLOWN (H,P,1)
NUMBER OF FUSES BLOWN = 786
TOM WANG |

FILE: PTAN302 FUSEPLOT A <<< NATIONAL SEMICONDUCTOR TIMESHARING SERVICES SYST

1 CXXXXXXXXXOHHLLLLOLL
2 COIXXXXX1XOLHLLHL1H]
3 CXXIXXXXXXOHHLLLHIL1
4 COIXXXXX1XOLHLLHLIH1
§ CXXOXXXXXXOHLHHHH1L1
6 CXXXXXXXXXOHHLLLHOL1
7 COOXXXXX1XOLHLHHL1H1
8 CXXX1XXXXXOHHLLLH1L1
9 COOXXXXX1XOLHLHHL1H1
10 CXXXOXXXXXOHLHHHH1L1
11 CXXXXXXXXXOHHLLLHOL1
12 CLOXXXXX1XOLHLHLL1H1
13 CXXXX11XXXOHHLLLHIL1
14 C1OXXXXX1XOLHLHLLIH1
15 CXXXXOXXXXOHLHHHH1L1
16 CXXXXXXXXXOHHLLLHOL1
17 C1OXXXXX1XOLHLHLL1H1
18 CXXXX10XXXOLHHLLH1H1
19 CXXXXXXXXXOLHHHLH1H1
20 CXXXXXXOXXOHLHHHH1L1
21 CXXXXXXXXXOHHLLLHOL1
22 C1OXXXXX1XOLHLHLLIH1
23 CXXXX10XXXOLHHLLH1H1
24 CXXXXXXXXXOLHHHLHIH1
25 CXXXXXX1XXOHHLLLH1L1
26 CXXXXXXXOXOHLHHHLIL1
27 CXXXXXXXXXOHHLLLHOL1
28 ClIXXXXX1XOHHLLLLOL1

PASS SIMULATION 672 29
NUMBER OF STUCK AT ONE (SAl) FAULTS ARE = 24

[

NUMBER OF STUCK AT ZERO (SAO) FAULTS ARE = 24

PRODUCT TERM COVERAGE =100%

155

156 Programmable Logic Design Guide

Applications*

8.1 BASIC GATES

This example demonstrates how fusable logic can implement the basic inverter, AND
OR, NAND, NOR and exclusive -OR functions. The PAL 12HG is selected because it has 12
inputs and 6 outputs. .

PAL12H6

Dj2

E Fl3

—¢
Sl

G|l4

M]l5

6

‘ Pl;
M_—‘Do—o
N—1 a[e

TY Y
I
a

|

Y

GND [0 11]4

Figure 8.1.1 Basic Gates

¢ Applications c ined in this chapter are for illustration purposes only and National makes no representation or
warranty that such applications will be suitable for the use specified without further testing or modification.

157

158

Programmable Logic Design Guide

PALASM VERSION 1.5

PAL12H6
TOM WANG
BASIC GATE

NSC SANTA CLARA
CDFGMNPQIGNMJKLROHEDBAVC

CDEF

B = /A
E = C*D
H=F+6
L=/1+/3+K
0= /M/N

R = P¥/Q + /P*Q
FUNCTION TABLE

A B G

—
[}
=
—
=

=
o
©
o
=

I I ICICIC I ICICICICIC I I DI DI > > T

KX IK I KKK XN XXX T
PCICICICIC I I I T T > >
PCICICICICIK I I NN NN T r > >

IR NK T r>xX>X ¢

>
>

DI IE I I ICI IO IICIE T I r— < D<K >< >< > <

XXX KKK KX DM D r— > <X >xX > X X x
PKICICOKICX KKK IR TLT X T > > X >X > X

DESCRIPTION
BASIC GATE

ek ek dede ke dededeodedeok

*
dedkk
* 1%
*kkk

*
*kkk
* Ok
*kkk

*
Sk
* 3
*ohkk

LYk

PAL
12HE6

" .

Fokekk
* 4k
Aok

INVERTER
INVERTER
AND GATE
AND GATE
AND GATE
AND GATE
OR GATE
OR GATE
OR GATE
OR GATE
NAND GATE
NAND GATE
NAND GATE
NAND GATE
NAND GATE
NOR GATE
NOR GATE
NOR GATE
NOR GATE
EXCLUSIVE
EXCLUSIVE
EXCLUSIVE
EXCLUSIVE

Fekdeddedkdkkkdedkdkkok

*

Fddek
*20% VCC
dkkk

*

*dkk
*19% A
Fdedede

*

Jededkok
1g B
dkdk

*

Jededk ke .
7 E

dedkdeok

OR GATE
OR GATE
OR GATE
OR GATE

Applications 159

* *
Jekedek Fodkkok
Mo x5 *16* H
Kk *kkk
* *
B dekkk dkkk
N o* 6 *15% 0
*kkk Kk kd
* *
ddkkk *kdk
pox7* *14* R
) kedkkok *dkkk
* *
o dokok dkkk
Q * 8 ¥13% L
Jodkokek *dkk
* *
. Jodkdkk *kkk
I % g ¥12%x K
*kdkk F*dek ok
* *
Jedede ke dedededk
GND. *10% LSS TN
Frdkk *hkkk
* *

e e s sk e vk ke 3 o s e ke sk ek e ok sk ok ke ok sk de ok ok ek ke ke ke

BASIC GATE

11 1111 1111 2222 2222 2233
0123 4567 8901 2345 6789 0123 4567 8901

BEG*FPLT PAL12H6 8

8 --ee oo X --00 --00 --00 --00 ---- --—-- /A
9 XXXX XXXX XX00 XX00 XX00 XX00 XXXX XXXX
10 XXXX XXXX XX00 XX00 XX00 XX00 XXXX XXXX
11 XXXX XXXX XX00 XX00 XX00 XX00 XXXX XXXX

16 X=X= ==== ==00 -~00 --00 --00 ---- -——- C*0
17 XXXX XXXX XX00 XX0O XX00 XX00 XXXX XXXX

24 —=em X=om - 00 --00 --00 --00 ~--- --=- F

25 ~emm oo X-00 --00 --00 --00 ---- ---- G
kR 00 -X00 -X00 --00 ---- ---- JM* /N
33 XXXX XXXX XXO0 XX00 XX00 XX00 XXXX XXXX

T 00 --00 --00 X-00 -X-- ---- P*/Q
41 e e - 00 --00 --00 -X00 X--- ---- /P*Q
. S 00 --00 --00 --00 ---- -X-- /I
49 oo oo oo 00 --00 --00 --00 ---- --- X /J
50 —omm —mem —- 00 --00 --00 --00 ---X ---- /K

51 XXXX XXXX XX00 XX00 XX00 XX00 XXXX XXXX
END*FPLT

LEGEND: X : FUSE NOT BLOWN (L,N,0) - : FUSE BLOWN (H,P,1)
0 : PHANTOM FUSE (L,N,0) O : PHANTOM FUSE (H,P,1)

NUMBER OF FUSES BLOWN = 306

160

Programmable Logic Design Guide

BASIC GATE

s
NHOWVONOOT B WN -

13
14
15
16
17
18
19
20
21
22
23

PASS SIMULATION

PASS SIMULATION

XXXXXXXXXXXXXXXXXHO1
XXXXXXXXXXXXXXXXXL11
O0XXXXXXXXXXXXXXLXX1
OIXXXXXXXXXXXXXXLXX1
TOXXXXXXXXXXXXXXLXX1
TIXXXXXXXXXXXXXXHXX1
XX0OXXXXXXXXXXXLXXX1
XXOLXXXXXXXXXXXHXXX1
XXTOXXXXXXXXXXXHXXX1
XXTIXXXXXXXXXXXHXXX1
XXXXXXXXOXOOHXXXXXX1
XXXXXXXXOX01HXXXXXX1
XXXXXXXXOX1OHXXXXXX1
XXXXXXXX1XOOHXXXXXX1
XXXXXXXX1XTILXXXXXX1"
XXXX00XXXXXXXXHXXXX 1
XXXXOLXXXXXXXXLXXXX1
XXXXIOXXXXXXXXLXXXX1
XXXXTIXXXXXXXXLXXXX1
XXXXXX00XXXXXLXXXXX1
XXXXXX01XXXXXHXXXXX1
XXXXXX1OXXXXXHXXXXX1
XXXXXX11XXXXXLXXXXX1

1 OF EQUATION.

PRODUCT 2
PRODUCT: 2 OF EQUATION.
PRODUCT: 3 OF EQUATION.

NUMBER OF STUCK AT ONE (SA1) FAULTS ARE
NUMBER OF STUCK AT ZERO (SA0) FAULTS ARE
PRODUCT TERM

COVERAGE

230

230

4
4
4

i

BASIC GATE

PO = = b b b et o 2
OCWEONONHBWNHOWENOOH WRN —

N RN N
WA -

XXXXXXXXXXXXXXXXXHO1
XXXXXXXXXXXXXXXXXL11
00XXXXXXXXXXXXXXLXX1
OLXXXXXXXXXXXXXXLXX1
LOXXXXXXXXXXXXXXLXX1
LIXXXXXXXXXXXXXXHXX1
XX00XXXXXXXXXXXLXXX1
XXO1XXXXXXXXXXXHXXX1
XX1OXXXXXXXXXXXHXXX1
XXTIXXXXXXXXXXXHXXX1
XXXXXXXXOXOOHXXXXXX1
XXXXXXXXOXQLIHXXXXXX1
XXXXXXXXOX1OHXXXXXX1
XXXXXXXXIXOOHXXXXXX1
XXXXXXXXIXT1LXXXXXX1
XXXX0OXXXXXXXXHXXXX1
XXXXOLXXXXXXXXLXXXX1
XXXXTOXXXXXXXXLXXXX1
XXXXTIXXXXXXXXLXXXX1
XXXXXXOO0XXXXXLXXXXX1
XXXXXXOLIXXXXXHXXXXX1
XXXXXX10XXXXXHXXXXX1
XXXXXX1IXXXXXLXXXXX1

UNTESTED(SAQ)FAULT
UNTESTED(SAQ)FAULT
UNTESTED(SAQ) FAULT

10
7

85%

Product Terms (0-63)

Inputs (0-31)

1123 tser ey 1y o wn nsn wnun

Applications 161

P

"
"

E D 17E

u
iy

M

n
n

B D 16H

BD 15o

N——-1%

«©
4

7 N
P I

«
as

st

B D 14R

%: 13 L

a—x—

P

Lil
1

123 4S8 wy nn (L33 nn wnun WBRN

Figure 8.1.2 Logic Diagram PAL12H6

162 Programmable Logic Design Guide

8.2 BASIC CLOCKED FLIP FLOPS

This example demonstrates how fusable logic, PAL16R8, can implement the basic flip-
flops; J-K flip-flop; T flip-flop, D flip-flop, and S-R flip-flop. A PAL16L8 can be substituted
for this application. Then, the clock input (CLK) would be gated with the data inputs to
implement the basic flip-flop.

PALASM VERSION 1.5

PAL16R8
BFLIP
. BASIC
NSC
CLK J K TPRCLRDSRGN
/0C /SRC /SRT /DC /DT /TC /TT /JKC /JKT VvCC
JKT:=J*/IKT*/CLR ‘
+/K*JKT*/CLR
+PR
JKC:=/J*K* /PR
+/J*/JKT*/PR
+K*JKT* /PR
+CLR
TTe=T*/TT*/CLR
+/T*TT*/CLR
+PR .
TCe=/T*/TT* /PR
+T*TT*/PR
+CLR
DT:=D*/CLR
+PR
DC:=/D*/PR
+CLR
SRT:=S*/CLR
+/R*SRT*/CLR
+PR
SRC:=/S*R*/PR
+/8*/SRT* /PR
+CLR
FUNCTION TABLE
CLK /0C PR CLR J K JKT JKC T TT TC D DT DC S R SRT SRC

XHXX XXZ Z X211 X117 ‘XX1 Z;HI-Z
CLLH XXL H XXX XXX XXX X;CLEAR
CLLL LLL H XXX XXX XXX X;
CLLL LHL H XXX XXX XXX X;
CLLL HHH L XXX XXX XXX X;TOGGLE
CLLL HLH L XXX XXX XXX- X;
CLLL LLH L XXX XXX XXX X;
CLLL LHL H XXX XXX XXX X;
CLHL XXH L XXX XXX XXX X;PRESET
CLLL HHL H XXX XXX . XXX -X;TOGGLE
CLLL HLH L XXX XXX XXX X;
CLLH XXX X XLH XXX XXX X;CLEAR
CLLL XXX X LLH XXX XXX X;
CLLL XXX X HHL XXX XXX X;TOGGLE
CLLL XXX X HLH XXX XXX X;TOGGLE
CLHL XXX X XHL XXX XXX X;PRESET

PO X X X XX xr-xrr

rTrrx T

€ > > > > > > >

Trr>xr~r~xTrx > X > >

mreEX>XTXITrr>x > > > X >X

TXxrrxxrrr XK XXX XX

Applications

X3
X3PRESET

H;CLEAR
H;

L;SET
H3RESET
H;HOLD
L;PRESET
Ls

Ls

CLLH XXX X XXX X
cCLLL XXX X XXX L
CLLL XXX X XXX H
CLLL XXX X XXX L
CLHL XXX X XXX X
CLLH XXX X XXX X
cLLL XXX X XXX X
cCLLL XXX X XXX X
cLLL XXX X XXX X
CLLL XXX X XXX X
CLHL XXX X XXX X
CLLL XXX X XXX X
CLLL XXX X XXX X
DESCRIPTION
BASIC
Kkkkdkkkkkkkkk
* N
*kkKk
CLK * 1* PAL
*kkk
* 16R8
*dkk
J * 2x
kkk
*
kkkk
K * 3%
dkkdk
*
hkkk
T * 4%
kkkk
*
kdkk
PR * 5%
Jkkok
*
ke
CLR * 6*
Kdekk
*
dokkk
D * 7k
dokkdk
*
dekkdk
S *x gx
Skkk
*
*kkk
R % g%
dkkk
*
dokkk
GND *10%

*kkdk
*

Fhkkkkhkdkkhkkkik

*

dkki
20
*kkk
*

*kKhk
*1Q%
*dkdek
*

ek hk
*18%
Jedededke
*

ek
*]7%
dKkdkdk
*

*kkk
16
dkkk
*

ek
*]16%
*k sk
*

Jedekede
]14
dedkkdk
*

dkkk
13
dededk
*

dedkde
*]2%
dekdedk
*

*kkk
11
Fdkkk
*

e e e s e e e e e de ke ek e ke e e e e sk o e ok e o ke e ke ke

vce

/IKT

/JKC

/1T

/7C

/DT

/0C

/SRT

/SRC

/0C

163

164

Programmable Logic Design Guide

BASIC

11 1111
0123 4567 8901 2345

BEG*FPLT PALL6R8 8

NOoOT OB WwNh—O

O D

ceeX <Xom mmmn m—ee

Xom Xmmm mmmm o
X mmem mmem X
ceeX Xemmm mmmm =Xem

J*/JKT*/CLR
/K*JKT*/CLR
PR

/J*K* /PR
/J*/JKT* /PR
K*JKT*/PR
CLR

T*/TT*/CLR
/T*TT*/CLR
PR

JT*/TT*/PR
TATT*/PR
CLR

D*/CLR
PR

/D*/PR
CLR

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

XXXX XXXX XXXX
XXXX XXXX XXXX
XXXX XXXX XXXX
XXXX XXXX XXXX

END*FPLT

LEGEND: X : FUSE

/S*R*/PR

Applications

“X== =mom —mo= XX= ---= /S*/SRT*/PR

NOT

CLR

BLOWN (L,N,0) - : FUSE BLOWN (H;P,1)

NUMBER OF FUSES BLOWN = 686
BASIC

XXXXXXXXXX12222271771
CXXX01XXXXOXXXXXXLH1
CXXX01XXXXOXXXXXXLH1
COOXO0XXXXOXXXXXXLHL
CO1X00XXXXO0XXXXXXLH1
C11IX00XXXXOXXXXXXHL1
C10X00XXXXOXXXXXXHL1
COOX00XXXXOXXXXXXHLL
CO1XO00XXXXOXXXXXXLH1
CXXX10XXXXOXXXXXXHL1
C11XO0XXXXOXXXXXXLHL
C10X00XXXXOXXXXXXHL1
CXXXOIXXXXOXXXXLHXX1
CXXXO1XXXXO0XXXXLHXX1
CXX000XXXXOXXXXLHXX1
CXX100XXXXOXXXXHLXX1
CXX100XXXXOXXXXLHXX1
CXXX10XXXXOXXXXHLXX1
CXXXO1XXXXOXXLHXXXX1
CXXX01XXXX0XXLHXXXX1
CXXX000XXXOXXLHXXXX1
CXXX001XXXOXXHLXXXX1
CXXX000XXXOXXLHXXXX1
CXXX10XXXXOXXHLXXXX1
CXXXOLXXXXOLHXXXXXX1
CXXXO1XXXXOLHXXXXXX1
CXXX00X00XOLHXXXXXX1
CXXX00X10XOHLXXXXXX1
CXXXO00X01XOLHXXXXXX1
CXXXO0XO1XOLHXXXXXX1
CXXX10XXXXOHLXXXXXX1
CXXXO00X00XOHLXXXXXX1
CXXX00X10XOHLXXXXXX1

PASS SIMULATION

759

34

165

166

Programmable Logic Design Guide

PASS SIMULATION
PRODUCT:
PRODUCT:
PRODUCT ¢
PRODUCT:
PRODUCT ¢
PRODUCT:

NUMBER OF STUCK AT ONE (SAl) FAULTS ARE
NUMBER OF STUCK AT ZERO (SAO) FAULTS ARE

PRODUCT TERM

BASIC

P e b b b .
NOOMODWNHFOWLUONOWUIH WN =

1 OF EQUATION.
4 OF EQUATION.
2 OF EQUATION.
3 OF EQUATION.
2 OF EQUATION.
3 OF EQUATION.

COVERAGE

XXXXXXXXXX12Z2ZZ277171
CXXXO1XXXXOXXXXXXLH1
CXXX01XXXXOXXXXXXLH1
CO0X00XXXXOXXXXXXLH1
COIXO00XXXXOXXXXXXLH1

‘C11X00XXXXOXXXXXXHL1

C10X00XXXX0XXXXXXHL1
COOX00XXXXOXXXXXXHL1
CO1X00XXXXOXXXXXXLH1
CXXX10XXXXOXXXXXXHL1
C11X00XXXXOXXXXXXLH1
C10X00XXXXOXXXXXXHL1
CXXXOLXXXXOXXXXLHXX1
CXXX01XXXXOXXXXLHXX1
CXX000XXXX0XXXXLHXX1
CXX100XXXXOXXXXHLXX1
CXX100XXXXOXXXXLHXX1
CXXX10XXXXOXXXXHLXX1
CXXXO1XXXXOXXLHXXXX1
CXXX01XXXXOXXLHXXXX1
CXXX000XXXOXXLHXXXX1
CXXXQOLXXXOXXHLXXXX1
CXXX000XXX0XXLHXXXX1
CXXX10XXXXOXXHLXXXX1
CXXXOLXXXXOLHXXXXXX1
CXXXOLXXXXOLHXXXXXX1
CXXX00X0OXOLHXXXXXX1
CXXX00X10XOHLXXXXXX1
CXXX00X01XOLHXXXXXX1
CXXX00X01XOLHXXXXXX1
CXXX1OXXXXOHLXXXXXX1
CXXXO0XO00XOHLXXXXXX1

CXXXO0X10XOHLXXXXXX1

759 34

OO WwMN N

n n

n

23
17
86%

UNTESTED (SAO) FAULT
UNTESTED (SAG) FAULT
UNTESTED (SAO) FAULT
UNTESTED (SAO) FAULT
UNTESTED (SAQ) FAULT
UNTESTED (SAO) FAULT

Product Terms (0-63)

Applications

ek >

0123 4567 85U

OIS Iy idierds etk a3

167

0
: 19 __
: DQ &w JKT
5 —
] ksl
2 | P
J N
. ‘- 34
» 15 18—
e = lpq] Bo—.n(c
1 —
. i 51) "Lﬂ
k— <
13
2w :)_
H = 17—
2% =< Da ’go—TT
n —
; == b
4 »
% N
; = n
» » pQ 16%
i: S 3
n S Q
5 p
PR—LX% i
N 3)
N »; 15—
H < f{;o— oT
35 E; »
6
CLR =
["r—!
4 R 1 14 _
2 s be
; == D
T P
D—L% F
4 i s 18-
5 ». E SRT
-
83 ™.
54 S
55 Pj
8 P I
S—1x &
56
] 12
i SRC
H D
9 P n_
R— % oc
0121} 4567 8 90010 HZ130415 6NN 022225 44252627 24293031

Figure 8.2.1 Logic Diagram PAL1GR8

168 Programmable Logic Design Guide

8.3 MEMORY-MAPPED I/0 (ADDRESS DECODER)

Memory-mapped I/O is an interface technique that treats I/O devices’ physical
addresses the same as memory address space. That is, no Memory-1/O decoding is
required. Furthermore, most computers have more instructions to manipulate the con-
tents of memory than they have I/O instructions. Therefore, the use of memory map-
ping can make I/O control much more flexible, PAL devices can be used to make

memory-mapped I/O implementation easy, even if changes in memory addresses are
required. . , -

Functional Description

. Figure 8.3.1 shows a circuit that is typical of those found in memory-mapped /O appli-
cations. The inputs to the decode logic are the system memory address lines, Ag-Ag.
The logic shown compares the address on the memory bus with the programmed com-
parison address. When an address on the bus matches, the corresponding 1/0O port
enable signal is set. In conjunction with other system control signals, thlS enable can be
used to transfer data to and from the system data bus.

PORT 0= 1F78 PORT 1=1F79.
ABF > >o asF D———>
ABE D— >o— ABE > Do
ABD D—————PDo—— ABD D> Do
ABC D— ABC D>
ABB O ABB O
ABA D>~ ABA D>
AB9 > AB9 -
AB8 D> ABS > _
AT > o] PORTO o0 O Do Yo— PORT 1
AB6 > ABes -
ABS5 > AB5 -
ABS D>— AB4 D
AB3 D— AB3 O
AB2 D———-— > AB2 D Do
AB1 O Do : ABT1 D> —>o-
ABO O— P>o— ABO >

MEMORY MAPPED 10 MEMORY MAPPED 10

Figure 8.3.1 Memory Mapped I/O Logic Diagram

Applications 169

PAL Device Design

One PALIGL2 can be used to monitor a 16-bit address bus, fully decode addresses,
and furnish enables to two ports, each of which can be anywhere within 64K of
address space. Partial decoding for a larger number of ports can be done using other
members of the PAL device family. ‘ ‘

Typical logic equations for the memory-mapped I/O logic are as follows:

Port 0 = /ABO®/AB1¢/AB2¢ AB3®AB4®ABS®ABGe/AB7®
AB8*AB9°ABA®ABBeABCe/ABDe/ABE®/ABF

Port 1 = ABO®/AB1e/AB20AB39AB4eABSeABGe/AB7e
AB8eAB9eABA®ABBeABCe/ABD®/ABEe/ABF

The above example shows address decoding for memory locations 1F78y and
1F79y. The equation terms could be changed to accommodate any 16-bit address.

PALASM VERSION 1.5

PAL16L2

PAT

MEMORY

MAP

ABO AB1 AB2 AB3 AB4 AB5 AB6 AB7 AB8 GND

AB9 ABA ABB ABC /PORT1 /PORTO ABD ABE ABF VCC

PORTO=/ABO*/AB1*/AB2*AB3 *AB4*AB5*AB6* /AB7*ABB*ABI*
ABA*ABA*ABC* /ABD*/ABE*/ABF

" PORT1=ABO*/AB1*/AB2*AB3*AB4*AB5*AB6* /AB7*ABS*ABI*

ABA*ABB*ABC* /ABD*/ABE*/ABF

DESCRIPTION i

MEMORY

Fede e ek ek e dek Kk de Fdkkkkkhdhdkhkdk

* * * *
Fkkk . T 224
ABO * 1* PAL *20% VCC
*kkk] . *kkk
* 16L2 *
*dkkk . Jedodk ke
ABL * 2% < o *19* ABF
dekkk kkkk
* *
. *kkk Kok kk
AB2 * 3% *18% ABE
*kkk *kkk .
* *
ek H*kddk
AB3 * 4% *17% ABD
. kkkk *kkk .
* : *
C kkkk Fkkk
AB4 * &% : *16* /PORTO

*kkk *kkk

170 Programmable Logic Design Guide

* *
Fedkk Skkk
ABS * 6* . *15%* /PORT1
*kkk) ddekk
* *
dekekk kkkk
AB6 * 7% ’ - *14* ABC
Fkkk Fokkk
*) *
Kkkk T kkkk
AB7 * 8% . *13* ABB
Kkkk kkkk
* : *
Fkkk kkekk
AB8 * o* . *12* . ABA
hkkk Kdkk
* *
kkkk kkhk
GND *10* *11* AB9
L kkkk ' hkkok
* *

ek d gk dedodododkodeoddededokkdkdkdedkdkdkkdkk

MEMORY

11 1111 1111 2222 2222 2233
0123 4567 8901 2345 6789 0123 4567 8901

BEG*FPLT PAL16L2 8

24 -X-X -X-X X--X X--X X-X- X--- -XX- X-X- /ABO*/AB1*/AB2*AB3*AB4*ABS*AB6*
25 XXXX XXXX XXXX XXXX XXXX XXXX XXXX.XXXX . :

26 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

27 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

28 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

29 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

30 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

31 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

32 -XX- -X-X X--X X--X X-X- X-X- -XX- X-X- ABO*/ABl*/AB2*AB3*AB4*ABS*AB6*/
33 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
34 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
35 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
36 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
37 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
38 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
39 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

END*FPLT

LEGEND: X :
0 : PHANTOM FUSE

NUMBER OF FUSES BLOWN = 32

FUSE NOT BLOWN (L,N - 3 FUSE BLOWN (
(L : (

»0) H,P,1)
,N,0) 0 : PHANTOM FUSE (H,P,1)

Applications 171

0123 4 S 67 BN 21015 161NN 20202200 24232820 8190001

2 4 19
ae—g 1 R #8F
3 ~ 4 18
AB, —3 ﬁ————————ABE

) 4 - 4 17
AB,—1¥ <——~4e0
2 —’__J .
28
n 16
u PORT 0
til
‘ 5 i 3
AB,—1 8 &
. n -
3 15
an PORT 1
n
n
n P—1
6 n 4 14
as,—1s H——~se
7 N 4 13
AB,—J3 <H————~es
8 ~ P 12
as,—Js H——28a
9 n . 1n
AB,—{3 H——48,

0123 4887 R 1S 1IN NN WA BN

Figure 8.3.2 Logic Diagam PAL16L2

172 Programmable Logic Design Guide

8.4 HEXADECIMAL DECODER/LAMP DRIVER

The increasing use of microcomputers has led to an increased need to display numbers in
hexadecimal format (0-9, A-F). Standard drivers for this function are not available, so
most applications are forced to use several packages to decode each digit, of the display.
Since 6 to 12 digits are often being displayed, this approach can become very expensive.
This example demonstrates how the hexadecimal display format can be both decoded
and the LED indicators driven using a single PAL for each digit of the display.

Functional Description

A hex decoder/lamp driver accepts a four-bit hex digit, converts it to its corresponding
seven-segment display code, and activates the appropriate segments on the display.
These drivers can be used in both direct-drive and multiplexed display applications. A
single PAL can provide both the basic decode/drive functions, and additional useful fea-
tures as well. ‘ '

General Description

Figure 8.4.1 shows three digits of a display system that uses three PALs to implement
the complete decoding and display-driving functions. The inputs to each section are a
hex code on pins Dy-Ds, a ripple blanking signal, an intensity control signal, and a lamp
test signal. o 4

The hex codes are decoded to form the seven-segment patterns shown in Figure
8.4.1. The input codes, digit, represented, and segments driven are as follows:

D, D, D, D, Digit Segments
0 0 0 0 0o - ABCDEF
0 0 0 1. 1 BC

0 0 1 0 2 ABDEG
0 0 1 1 3 ABCDG
0 1 0 0 4 BCFG

0 1 0 1 5 ACDFG
0 1 1 0 6 ACDEFG
0 1 | 1 7 ABC

1 0 0 0 8 ABCDEFG
1 0 0 1 9 ABCDFG
1 0 1 0 A ABCEFG
1 0 1 1 B CDEFG
1 1 0 -0 C ADEF

1 1 0 1 - D BCDEG
1 1 1 0 E ADEFG
1 1 1 1 F AEFG

Table 8.4.1 Function Description

THREE STAGE HEXADECIMAL DECODER /DRIVER

Applications

A PAL16LS
ol BCD TO HEXADECIMAL
G DECODERI7SEGMENT
g |Ic DRIVER WITH RIPPLE BLANKING
o
Tl o 2 T Iz TS ST T 2
(I [O WD T g 2 ”
DISPLAY : A5
LEADING$ ¥CC TRET Vee
ZEROS BT W [y
Do A
BLANK § ——_DE~ o0 —
LEADING = — 5 B @t ——
ZEROS =1 —c
D3 E [}
- —l | AND —
ic . cm;r-: - E
A
__LT a ‘Aﬂmv}j' = ——
F
EH . By
GH iz
=
GND -
RBT
Vee
- 11— 16l8 20——¢
D°E— O) S I,
171 :IB
ADECIMAL Dy c
INPUTS o 14 H E&T—-u
3
GEH A o /et — LEDILAMP
IC— | GATE E DRIVER OUTPUTS
e S me | —
TL_. ARRAY E
o E:] - RBO
EH EBriE
B Piae
Gno e) _
RBT " Ve
G
20t ™ oot
{51 AND j..._—_
ofr Avee —(5H AP e
IC — | cate E] E
INTENSITY / L2 |ArRAY
L S e
i & e
ON
LAMP TEST cH FB—ze
OFF?_‘ GND = T T

Figure 8.4.1 Hex Display Decoder-Driver, Combinational Logic Diagram

TO NEXT STAGE

173

174 Programmable Logic Design Guide

Ripple-blanking input RBI is used to suppress leading zeroes in the display. The sig-
nal is propagated from the most significant digit to the least significant digit. If the digit
input is zero and RBI is low (indicating that the previous digit is also zero), all segments
are left blank and this digit position’s ripple-blanking output RBO is set low.

Intensity control signal IC controls the duty cycle of the display driver. When IC is
high, all segment drivers are turned off. Pulsing this pin with a duty-cycled signal
allows the adjustment of the display’s apparent brightness.

Lamp test signal LT lets you check to see if all LED segments are energized.

PAL Device Implementation

The PAL16LS has both the required I/O pins and the drive current capability to perform
as the complete display decoder-driver circuit with seven inputs and eight outputs. The
logic equations for this circuit are shown in the listing. One PAL device drives each
digit; they may be cascaded without limit. With minor changes, the same logical struc-
ture could be used with multiplexer logic to allow a single PAL device to decode and
drive multiple digits. ‘

PALASM VERSION 1.5

PAL16L8

PATO7

HEX

BLANK

/RBI DO D1 D2 D3 IC LT NC NC GND

NCG /RBOFEDCBAVCC

IF(/1C)/A=/RBO*/DO*/D2+/RBO*/00*D3+/RBO*D1*D2+
/RBO*D1*D2*/D3+/RBO*00*D2*/D3+/RBO*/01*/D2*D3+LT

IF(IC)/B=/RBO*/02*/D3+/RBO*/D0O*/D2+/RBO*/DO*/D1*/D3+
/RBO*D0*D1*/D3+/RBO*D0*/01*/D3+LT

IF(IC)/C=/RBO*00*/D1+/RBO*D0*/D2+/RBO*/D1*/D2+
/RBO*D2* /D3+/RBO*/D2*D3+LT

IF(IC)/D=/RBO*/D1*D3+/RBO*/DO*/D2*/D3+
/RBO*D0*D1*/D2+/RBO*/DO*D1*D2+/RBO*DO*/D1*D2+LT

IF(IC)/E=/RBO*/DO*/D2+/RBO*D2*D3+/RBO*/D0O*D1+
/RBO*D1*D3+LT

IF(IC)/F=/RBO*/DO*/D1+/RBO*/D2*03+/RBO*D1*D3+
/RBO*/0D0*D2+/RBO* /D1*D2*/D3+LT

IF(VCC)RBO=/D0*/D1*/D2*/D3*/RBI

IF(/1C)/G=/RBO*D1*/D2+/RBO*DO*D3+/RBO*/D2*D3+
/RBO*/D0*D1+/RBO*/D1*D2*/D3+LT

DESCRIPTION
HEX
dhckdkkkdokkdkkk dkikokkkkkdokkkk
* * ¥ *
*kkk | kkk
/RBI * 1* PAL *20* VvCC
Yk ekedk
* 16L8 *
*kkk kkekk
Do - * 2* *19% A

dededede dededrde

Applications 175

* *
*kkdk *kkk
p1 * 3* *18* B
*kkk *kkk
* *
dkkdke dedekK
D2 * 4% *17% C
*hkdk *hkk
* *
dekkk Shkk
D3 * 5% *16* D
*hkk dekkk
* *
*hkk *kkk
Ic *6* *16% €
’ *kkk Kdekok
* *
*kkk dedkk
LT * 7* . *l4x F
kkk *dkk
* *
Fkhh *kkKk
NC * g* *13* /RBO
*kkk *kkk
* *
kkkk | okkkk
NC * 9* *12* G
kdkk Skdkk
* *
*hkk *KkkK
GND *10* *11* NC
Fkkk *kkk
* *

khkhkkhkkhkkkkkhhhkhkkkkhkkkhhkhhkhkikkk

HEX

11 1111 1111 2222 2222 2233
0123 4567 8901 2345 6789 0123 4567 8901

BEG*FPLT PAL16L8 8

T i STy (»
[=t womm === mmm= =mmm mmmm oY= -=-= /RBO*/DO*/02

2 K== === =m== Xm== =mm= mmee —2X- === /RBO*/D0*D3

3 =mmm Xom= Xom= === mem —eoe —oX- -=-- /RBO*D1*D2

4 —mmm Xem= X=== =K== =m-= —mm= ==X~ ---- /RBO*D1*D2%/D3

5 X--- ---- X=== =K== === -=-= --X- ---- /RBO*D0*D2*/D3
6 -=-= -X-= ~X-= X=== —=-= -=== --X~ -=-- /RBO*/D1*/D2*D3
R Xmmm mmmm mem LT

8 =mn mmmm mmmm —mmn Xmmm mmms momm man IC

9 —moe momm Xmm =X== mme- —mm= ==X- --== /RBO*/D2*/D3
10 -X-- ==== =X== ==== ==-= —-o= —-X- --== /RBO*/DO*/D2
11 -X-- -X-= ==== ~X== ==-= -=== ==X~ ---- /RBO*/DO*/D1*/D3
12 X=== X=== ==== =X-= ==== === ==X~ --== /RBO*DO*D1*/D3
13 X-=- =X== ==-= -X-= ==e= -=== —-X~ --=- /RBO*DO*/D1%/D3
14 o momm e e oo e LT

15 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

176 Programmable Logic Design Guide

IC
/RBO*DO*/D1
/RBO*DO*/D2
/RBO*/D1*/D2
/RBO*D2* /D3
/RBO*/D2+D3
LT

28 ~-m mmm mem ee- Xmmm mmmm mmmn meen IC

25 —-== -X== ==-= X=== === -=z= --X- ---= /RBO*/D1*D3

26 -X-- ==== =X-= =X-= ==== =-== --X- ---= JRBO*/D0*/D2*/D3

27 X-== X--= -X== === —=-= -=== —=X= ---- /RBO*DO*D1*/D2

" 28 X== X=-= X--= ==-= ==== --o ==X~ ---- /RBO*/DO*D1*D2

29 X-=- -X== X-== ==== === —=oe -=X- -——= /RBO*D0*/D1*D2

R X=mm mmmm mmee LT

31 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

32 mmmm mme e —ee O Ic

33 ~X-= === “X== === ==m= === —=X= --== /RBO*/D0%/D2

34 —mm - X=== X=== ==-= ==== =X~ ---= /RBO*D2*D3

35 ~X== X=== ==== ==== ==o= —=oe --X- ———= /RBO*/DO*D1

36 ---= X-=- ---- X-== ==== === ==X~ --—- /RBO*D1*D3

37 —mm e e e e e LT

38 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

39 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

], Xemm mmmm oo aeen Ic

41 <tem ofe mmes mem —meo —ooo —oXo oo /RBO%/D0*/01

82 -=== === X== X=== ==== === -=X- ---= /RBO*/D2*D3

43 —-m Xemm --o- X-== ==== === -=X- ---- /RBO*D1*D3

44 -X-= === Xe== ==o= ==o= —=ee —X- —--o /RBO*/DO*D2

45 ---= -X-= X-== -X== === —=== ==X~ --== JRBO*/D1*D2*/D3

R Xemm mmmm e LT

47 £XXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

L e S —

49 -XX~ -X-= -X== =X== ==== === —-—= ———_ /DO*/D1*/D2*/D3*/RBI

50 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

51 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

52 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

53 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

54 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

55 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

§6 --== —=== =m== === <X=m —mmm —=ae - /IC

§7 ~=-< X=== =X== ==== === === -=X- ---- /RBO*D1*/D2

58 X-mn -mmm —mo- X==- =-== === —-X- ---- /RBO*D0*D3

§9 === ==== —X== X==- ==== ---= -=X- ---= /RB0*/D2*D3

60 -X-= === === —-== —-mo —oio ——X= ———— /RBO*/D0*D1

6l -=-= -X== X=== -X== =--- —--= ==X~ ---- /RBO*/D1*D2*/D3

62 —=-= === mmme —mem oo e LT

63 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

END*FPLT) .
LEGEND; X : FUSE NOT BLOWN (L,N,0) - : FUSE BLOWN (H,P,1)
NUMBER OF FUSES BLOWN = 1496 '

Applications 177

RBI

0123 4567 881011 12131415 16079019 20212223 24252627 70731001

s

.

18

18

”

" 17

20 — c

j:
%)*r@

)

ISR SR SN ob

,"
7]
o

)

-t
(4]

IC

)

)h
m

)

— 12 RBO

ne P

Y

59 12

1

ne P

NC

0123 4567 891011 12131415 161819 20212223 24252627 2829341

Figure 8.4.2 Logic Diagram PAL16L8

178 Programmable Logic Design Guide

8.5 BETWEEN LIMITS COMPARATOR/LOGIC

PAL16C1
wuil— 20 Ve
cAnt 5 o,
EaiL [s E T,
ar, [7] &T,
Eq2u [5}H anD E]'BT_WE
GATE
F{E—Annm Es] NC
EaaC [7 14] NC
o] no
gasu [oH [12] Ea3t
ano [io 1) 7,

LOGIC SYMBOL

Figure 8.5.1 PAL Device 16C1 Limit Checker

PALASM VERSION 1.5

PAL16C1

PAT 0021

BETWEEN LIMITS COMPARITOP LOGIC

NSC

/EQLU /LT1 /EQIL /GT2 /EQ2U /LT2 /EQ2L /GT3 /EQ3U GND

/LT3 /EQ3L NC NC NC /BTWL /GTO /LTO /GT1 VCC

/BTHL = GT3 + GT2*EQ3U + GT1*EQ3U*EQ2U + GTO*EQ3U*EQ2U*EQLU +
LT3 + LT2*EQ3L + LTI*EQ3L*EQ2L + LTO*EQ3L*EQ2L*EQLL
DESCRIPTION '

BETWEEN LIMITS COMPARITOP LOGIC

Fedekkdkodokokdkdkkokk dodkkkdododokdokkkkk

* * * : *
ddkhk : Jokkek
/EQlU * 1* PAL *20* - VCC
\ Aok dekkok .
* 16C1 *
*kkk Jekkk
/LTl * 2% *19% /GT1
dkkk ddkok
* *
dkkk Sekkk
JEQIL * 3* *18* /LTO
dkdk dekdek

* *

/GT2

/EQ2U

/LT2

/EQ2L

/GT3

/EQ3U

GND

*okkk
* 4
ek

*
Tk
* Gk
*iekk

*
*kkk
* Gk
*kkk

*
kkk
* 7%
ekdrk

*
*kekk
* gk
*ikk

*
*hkk
* g
dkk

*
*kk
*]10%
*kkk

*

*okk
*]7%
*kkk
*

*iekk
16
*ekkk
*

*kkk
*]5%
*kkk
*

-
*]4%
Kk
*

e
]3
e
*

*kkk
*]2%
e
*

—
*]1%
*ekkk
*

Yededededed s deded e de dededkede dedekek A ko ek drkeok ok

BETWEEN LIMITS COMPARITOP LOGIC
11 1111 1111 2222 2222 2233

0123 4567 8901

BEG*FPLT PAL16C1 8

2345 6789 0123 4567 8901

Applications

/GTO

/BTHL

NC

NC

NC

JEQ3L

/LT3

28 coo ce e emoe e oo e —-- GT3
25 —moc —oom Xeo cmoo mmee —ooe aoon —X-- GT2*EQ3U

26 =mmm - X =mmm Xe- mmoc mmme —ooe —X-- GTI*EQ3U*EQ2U

27 ==X =mm= mmee X=X =mce =eme —mee -X-- GTO*EQ3U*EQ2U*EQLU
1 R S X LT3

P RS S — . T]

30 -X-= ==e= —em= —mee cmoo’ <Xeo —-=X ---- LTL¥EQ3L*EQ2L

31 =mee Xem ==X =m== =mo= X== ==X ---- LTOEQ3L*EQ2L*EQLL

36 XXXX XXXX
37 XXXX XXXX
38 XXXX XXXX
39 XXXX XXXX

END*FPLT

LEGEND: X
0

e oo

XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX

FUSE NOT BLOWN
PHANTOM FUSE

NUMBER OF FUSES BLOWN = 236

-
(=X~}

~—~
o

FUSE BLOWN
PHANTOM FUSE

’P’

(H,P,1)
(H,P,1)

179

180 Programmable Logic Design Guide

0123 &4SE7 091011 12108 B171019 2021222) 4252827 AN

1 N
EQIU—&
— 2 ! ' 4 19—
s b Zm— G,
3 N 4 18 —
EQIL —{2 <+,
—4 N 1 17 —
GT,—1¢ ' N 6T
~
; B
H]
H — 16—
—5 ~
EQ2U —F , 5 BTWL
z) '
H
3 P'—]
—6_ N 4 1
o, —12 $+———Nc
— AN ” 13
TR : — +———Nc
—_ ~ A 12—
o, 13 ’ 51————2 EQ3L
9 ; .) .) | J—
EQ3U —{F 1,

9123 4SET 8901 12100415 171019 20212223 24252827 2029301

Figure 8.5.2 Logic Diagram PAL16C1

Applications

8.6 QUADRUPLE 3-LINE/1-LINE DATA SELECTOR MULTIPLEXER

PALASM VERSION 1.5

PAL14H4
PAT0016
DATA SECLECTOR MULTIPLEXER
PAL DESIGN
2A 3A 4A 1B 2B 3B 4B 1C GND
3C 4C 4Y 3y 2Y 1Y S1 S0 vCC
+ 1C*/S0*S1
+ 2C*/S0*S1
+ 3C*/S0*S1
+ 4C*/S0*S1

1A
2C
1y
2y
3Y
4ayY

DESCRIPTION

1A*/S0*/S1 + 1B*SO0*/S1
2A*/S0*/S1 + 2B*SO*/S1
3A*/S0*/S1 + 3B*SO*/S1
4A*/S0*/S1 + 4B*S0*/S1

DATA SECLECTOR MULTIPLEXER

11 1111 1111
0123 4567 8901 2345 6789

8

--00
X-00
--00
XX00

--00
--00
--00
XX00

--00
--00
--00
XX00

#500
--00
--00
XX00

--00

--00
--00
XX00

--00
X-00
--00
XX00

--00.

--00
--00
XX00

--00
--00
--00
XX00

FUSE NOT BLOWN

BEG*FPLT PAL14H4
16 --X- ---X ---X
17 --=- ==X- --=X
18 -——- --- X --X-
19 XXXX XXXX XXXX
24 X--- --- X ---X
25 —=om --X- -==X
26 ---- --- X --X-
27 XXXX XXXX XXXX
32 —--m X=-X ==X
33 —-om -eX~ ==X
34 —-om - X -=X-
35 XXXX XXXX XXXX
40 ---- --- X X--X
41 -=-= --X- ==X
42 --en - X --X-
43 XXXX XXXX XXXX

END*FPLT
LEGEND: X :

0:

NUMBER OF FUSES BLOWN =

PHANTOM FUSE

2222 2222

0123 1567

348

2233
8901

oo so

s(1-2)

]

B(1-4)l* MUX rm»y(m;)

_A*/S0*/S1
~3%S0*/S1
LC*/S0*S1

2A*/S0*/S1
2B8*S0*/S1
2C*/S0*S1

3A%/S0%/S1
36*S0*/S1
3C*/S0%S1

4p* /S0*/S1
< 4B*S0*/S1
4C*/S0*S1

FUSE BLOWN (H,P,1)
PHANTOM FUSE (H,P,1)

181

182

12134858 wn o ou2n

Programmable Logic Design Guide

N0 BB AN

1A—|1 >3
i J5—1
3Py 2D,
4 'Y A 1
an—1F s,
[s l—-—— 17
Sl =
5 I
18—
j;J‘ T : %H‘zy
n
AL a1 ' "
" \
6 | -
28—1%
“ L]
e =B >
7 N >
38— —ac
4B 8 ~N A 12 ac
9 N P 1
1c—F— 2

wn

nuun unmsy nunn

Figure 8.6.1 Logic Diagram PAL14H4

Applications 183

8.7 4-BIT COUNTER WITH 2-INPUT MULTIPLEXER

INPUT A INPUT B

CARRY | CARRY
IN 4-BIT COUNTER our
WITH
2-INPUT MUX
AND
op 3.STATE OUTPUTS | CLOCK
SELECT | ENABLE
OUTPUT

OUTPUTS

Figure 8.7.1 Four-Bit Counter With Two-Input Multiplexer

PALASM VERSION 1.5

PAL16R4
PAT0034

4 BIT COUNTER WITH2 INPUT MUX

NSC

CLOCK A0 Al A2 A3 BO B1 B2 B3 GND

JE COUT 11 Q3 Q2 QL Q0 I0 CIN VCC

/Q0:=/11*/10%/Q0 + /I1*10%/A0 + [1*/10%*/BO +

T1¥10%/CIN*/Q0 + I1*I0*CIN*QO

/Ql:=/T1%/10%/Q1 + /I1*I0%/Al + I1%/10%/B1 +

T1*10%/CIN%/QL + I1*IO*CIN*QI*Q0 + I1*10%*/QL*/Q0
JQ2:=/11%/10%/Q2 + /I1*I0%/A2 + 11%/10*B2 + I1*I0*/CIN*/Q2 +
I1*I0*CIN*Q2*Q1*Q0 + I1¥10%/Q2*/Ql + I1*10%*/Q2*/Q0
/Q3:=/11%/10%/Q3 + /11*10%/A3 + 11*/10%/B3 + I1*I0*/CIN*/Q3 +
T1*IO*CIN*Q3*Q2*Q1*Q0 + I1*10%/Q3*/Q2 + I1*10*/Q3*/Ql +
11*10%/Q3*/Q0 o

IF(VCC)/COUT = /CIN + /Q3 + /Q2 + /QL + /QO0

DESCRIPTION

4 BIT COUNTER WITH2 INPUT-MUX

Jededdkdk ok ddkokkkokd ek dede ke dedo ke ke Aok e

* * * *
C ekkk . dkkk
CLOCK. * 1% PAL *20% VCC
*khk N N dkkk
* 16R4 *
Jkkk ' Jedkdk
AQ * 2% *1g* CIN
Jededede dedekedk
* *
sk ededede
AL * 3% *1g* 10

dededede Jededed

184

Programmable Logic Design Guide

A2

A3

BO

B1

‘B2

B3

GND

*
Fekekk
* g*
dkkk

*
Jekkk
* Gk
raen

*
o
* G*
*kkk

*
-
* 7%

kkkk

*
-
* gk
Fkkeke

*
*kdkk
* Gk
Fekdek

*
-
*]10%
o

*

*

dkkk

*17% QO
*dkk

*

*kkk

16 Q1
*kkk

* .

*kkk

*15% Q2
*dkkk

*

Jk ki

*14% Q3
Jededk

*

*dkk

¥13* 11
drdkdek

*

*kkk)
*12% COUT
ddkk

*

*kkk
*11% /E

dekkk

*

4 BIT COUNTER WITH2 INPUT MUX
11 1111 1111 2222

0123

BEG*FPLT
0 XXXX
1 XXXX
2 XXXX
3 XXXX
4 XXXX
§ XXXX
6 XXXX
7 XXXX

8 XXXX
9 XXXX
10 XXXX
11 XXXX
12 XXXX
13 XXXX
14 XXXX
15 XXXX

4567

8901

PALL6RA

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX

XXXX:

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

2345

8

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

6789

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

0123

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

XXXX

“XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

2222
4567

XXXX
XXXX

XXXX

XXXX
XXXX
XXXX
XXXX
XXXX

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

2233 -

8901

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX -

XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX -
XXXX

XXXX
XXXX
XXXX

16 ~eam - X --=X
17 -Xem =Ko —mmm —mem
T R — G
19 =X ==X= ==X —mm-
20 -X- —=X= ==X —=n-
21 XXXX XXXX XXXX XXXX
22 XXXX XXXX XXXX XXXX
23 XXXX XXXX XXXX XXXX
28 —ee e) QR X
25 —eem XX mmme o
T R —) QR
27 ==X ==X mmem —=eX
28 ~-X- --X- -=X- --X-
29 —ce —X= ==X ——X
30 XXXX XXXX XXXX XXXX
31 XXXX XXXX XXXX XXXX
7 S) QS
33 ccoe —Xe Koo memm
Y J—— X

36 —ooX aXm —mmm —mme
36 ~X- =-X- ==X- --X-
kA S {
38 —mmm —aXe —ooX ---
39 XXXX XXXX XXXX XXXX
T —— X

] cooe —oXm mmem X-m
[J— X mmom mmmm
43 coX =Xe mmmm mmmm
44 —X- --X= =-X- -=X-
45 ccoe Ko mmee weme
46 mmmm —aXm mmmm —muX
47 cmee —Xe —-X

48 XXXX XXXX XXXX XXXX
49 XXXX XXXX XXXX XXXX
50 XXXX XXXX XXXX. XXXX
51 XXXX XXXX XXXX XXXX
52 XXXX XXXX XXXX XXXX
53 XXXX XXXX XXXX XXXX
54 XXXX XXXX XXXX XXXX
55 XXXX XXXX XXXX XXXX
56

57 —--X

B8 coim cmme mmoe cmmm mmmm oo X
R
) X
3 R —— X

62 XXXX XXXX XXXX XXXX
63 XXXX XXXX XXXX XXXX
END*FPLT

LEGEND: X : FUSE NOT BLOWN (L,N,0)

NUMBER OF FUSES BLOWN =

921

- ¢ FUSE BLOWN

Applications

/11*/10%/Q0
/I1*10*/A0
I1*/10*/BO
I1*I0*/CIN*/Q0
I1*I0*CIN*QO

/11*/10*%/Q1
/I1*10* /Al
11*/10*/81
I1*10*/CIN*/Q1
I1*I0*CIN*Q1*Q0
I1*10*/Q1*/Q0

J11%/10%/Q2
J11%10%/A2
11%/10%B2
11*10%/CIN*/Q2
[1*10*CIN*Q2*Q1*Q0
11*10*/Q2*/Q1
11*10%/Q2*/Q0

/I1*/10%/Q3
JI1*I0*/A3

I1*/10*/B3
I1*10*/CIN*/Q3
I1*10*CIN*Q3*Q2*Q1*Q0
I1*10*/Q3*/Q2
[1*10*/Q3*/Q1
I1*10*/Q3*/Q0

(H,P,1)

185

186 Programmable Logic Design Guide

>

0123 48557 091001 12031415 16V 20N2220 18627 290N

II“-'

n :»J
3 -

E)

38

n »

n

n v—’

UK
d

AR A 4

%

o (e (60 (6

9 A

B3 4S8 BRI 2008 BTN BNRD 0T NN

Figure 8.7.2 Logic Diagram PAL16R4

7

Applications 187

8.8 8-BIT SYNCHRONOUS COUNTER

The 8-bit synchronous counter is used in many systems. The input AQ serves a mode
control with LOW for LOAD operation and HIGH for count operation. Input Al
enables the LOAD operation when AO is set in the LOAD mode and doesn’t care when
the count mode is chosen. This enables the counter to be cascaded as a multibyte
counter with the capability of leading individual byte from a simple byte wide data bus
and a common clock. /CIN is the carry input and /COUT is the carry output.

PAL20X8

8BIT SYNCHRONOUS COUNTER
LOGIC DESIGN

NSC

CLK A0 X0 X1 X2 X3 X4 X5 X6 X7 Al GND
JEN /COUT /Y7 /Y6 /Y5 /Y4 /Y3 /Y2 /Y1 /YO /CIN VvCC
Y0:=/A1*/A0*Y0

+A0*Y0

:+:AL*/A0*X0

+A0*CIN

Y1:=/A1*/A0*Y1+

AO*Y1s+:

Al*/A0*X1 +

AO*CIN*YO

Y2:=/A1*/A0*Y2+

AO*Y2:+:

Al*/AQ*X2 +

AO*CIN*YO*Y1
Y3:=/AL*/A0*Y3+
AO*Y3:+:A1*/AD*X3 +
AO*CIN*YO*Y1*Y2
Y4:=/A1*/A0*Y4 +

AO*Y4 :+:

Al*/A0*X4+
AQ*CIN*YQ*Y1*Y2*Y3
Y5:=/A1*/A0*Y5S +

AO*Y5:+:

Al*/A0*X5+
AO*CIN*YO*Y1*Y2*Y3*Y4
Y6:=/A1*/A0*Y6 +

AO*Y6:+:

Al*/A0*X6+
AQ*CIN*YQ*Y1*Y2*Y3*Y4*Y§
Y7:=/A1*/A0*Y7 +

AD*Y7:+:

Al*/A0*X7+
AO*CIN*YO*Y1*Y2*Y3*Y4*Y5*Yp
IF(VCC)COUT = CIN*YQ*Y1*Y2*Y3*Y4*xY5*Y6*Y7
DESCRIPTION

188

Programmable Logic Design Guide

LOGIC DESIGN

CLK

A0

X0

X1

X2

X3

X4

X5

X6

X7

Al

GND

Fededededdkdrkdok ko Tk kdkkkkkkkk
* * * *
*kkk *hkk
* * PAL *24%
dkdkk dkkk
* 20x8 *
dokkk *hkk
* 2% *23%
dekkk *kkk
* %*
dededek *hkk
* 3k *90%
*kdk (2223
* *
*dkk *hkk
* g* *Q]%
*hkk *kkk
* * -
*dkk *kkk
* Gk *20*
dkdok *kkk
* *
1222 kkkk
* Gk *]19%
ddkok dkkt
* *
*dkk *kkk
* 7% *]18%
*kkk *hkk
* *
*dkkk *kkk
* g% *]17%
dkkk dkkk
* *
dededkk dkddk
* gk *1g*
*kkk Ckkkk
* *
dedkk | dkdkk
*10% *]5¢
*kkk *kkk
* *
*kkk kkdk
11 *14%
dkkk *kdk
* *
*dkk *kkk
*]2% *13*
kkkk *kkk
* . *

Fededededeododeodeded dedededodode kg dedkdedododeok ke deokkok

vce

/CIN

/Y0

/Y1

/Y2

/Y3

/Y4

/Y5

/Y6

/N7

/couT

/EN

LOGIC DESIGN

11 1111 1111 2222 2222 2233 3333 3333
0123 4567 8901 2345 6789 0123 4567 8901 2345 6789
BEG*FPLT PAL20X8 10
0 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
1 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
2 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
3 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
8 —Xem cooX mmco ccoe mmee cmee cmee mmme —oo= =X== JAL*/AO*YO
9 Xemm —m- X mmem mmmm mmmm mmmm mmme mmmm mmmm e AO*YO
10 Xom Xemm mmm mmmm cmmm mcce cme e e X--- A1*/AO*X0
11 X=X mmom cocm mccm mmmm mmme cmee cmee —mme —mmm AO*CIN
16 =X== === ==X =mmm mmmm mmme mmem cmme mmme <Xem JAL%/AO*Y1
|25 CUN— X mmmm e e e mmme e e AO*Y1
18 —Xo= wmmm Xmmm mmom mmmm cmom mmee e e X--- Al*/A0*X1
19 X=X ==oX mmmm mmmm mmmm mmm mmm e mm—e - AO*CIN*YO
24 Xem —mie ccoe —ooX com cmmm e mcoe —eee Xem JAL*/AO%Y2
P15 S — X mmmm mmmm mmom mmme e e AO*Y2
26 ~Xem memm mmme Xeme mmmm mmmm oo mmme e X--- Al*/A0*X2
27 XeoX ===X ==X memm mmmm mmn o mmm e e AO*CIN*YO*Y1
32 Xem mmmm moms mmom mmoX mmme mmom mooe —mmm =X-— JAL¥/AO*Y3
33 Xemm mmmm mme mmam e X mmom mmmm Zmm mmme mmee AO*Y3
38 Xem mmmm momm cmmm Keom cmmm mmoe mome —mee X--- AL*/A0*X3
35 X=X ===X ==X ==X memm mmem mmem mmee ames amee AO*CIN*YO*Y1*Y2
80 -Xe= =mmm mmmm mmmm mmme mmoX mmmm mmme mmem X== [ALX/AO%Y4
S . AO*Y4
42 Xom mmmm mmmm mmmn mmme Komm mmmm mmme —mee X--- AL*/AO*X4 -
43 X==X ==X ===X ==X ==X mmom mmmm mom amee oo AD*CIN*YO*Y1*Y2%Y3
48 ~Xom mmmm mmom mmmm mmm e mmnX mmme mmee <X-= AL*/AO*YS5
U G AO*Y5
B0 Xo= —mmm mmmm mmmm mmmm mmmm Xemm mmee amee X--- Al*/AO*X5
51 XeoX ===X ==X ==X =moX oo mmmm mmme mmme mmee AO*CIN*YO*Y1*Y2*Y3%Y4
56 ~X== mm== mmm= cmmm mmmm cmmm cmmm =o=X —mm= <X-= /AL¥/AO*Y6
A X —mmm mmem AO*Y6
58 —X== mmmm mmmm cmen wmmm mmmm mmmm Xem mmee X--- AL*/AO*X6
59 XeoX ===X ===X ==X ==X =ooX ==X mmme —mee —mee AO*CIN*YO*Y1*Y2%Y3*Y4*Y5
64 ~Xom memm cmmm cmmm mmme mmm mmm mmmm =mX =Xem JAL*/AORY7
65 Xemm =mmm moom cco ammm cmem mmm mem mee X --mm AO*Y7
66 ~X-m mmmm —mmm mmmm mmmm mmmm mmmm mmmm Xeme X-mm AL*/AO*X7
67 XooX ==X ===X ==X =ooX ==X ==X =X mmme —mmm AO*CIN*YO*Y 1¥Y2%Y3I*Y4*y.-.
7S
73 ==X ==X mm=X mm=X mmeX meeX mmeX —o=X ==X —omm CINKYOR*Y1*Y24Y3%Y4RYGHY.
74 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
75 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
END*FPLT
LEGEND: X : FUSE NOT BLOWN (L,N,0) - : FUSE BLOWN (H,P,1)
0 : PHANTOM FUSE (L,N,0) O : PHANTOM FUSE (H,P,1)

NUMBER OF FUSES BLOW = 1243

Applications

189

190 Programmable Logic Design Guide

8.9 6-BIT SHIFT REGISTER WITH THREE-STATE OUTPUTS

PALASM VERSION 1.5

PAL16R6

PATO5

6BIT

SVALE

CK SR DO D1 D2 D3 D4 D5 SL GND

JE RILO Q5 Q4 Q3 Q2 Q1 QO LIRO VCC

IF(SR*/SL) /LIRO=/QO0
/Q0z=/SR*/SL*/QO+SR*/SL*/QL+/SR*SL*/L IRO+SR*SL* /D0
/QLz=/SR*/SL*/Q1+SR*/SL*/Q2+/SR*SL*/Q0+SR*SL*/D1
/Q2:=/SR*/SL*/Q2+SR*/SL*/Q3+/SR*SL*/Q1+SR*SL*/D2
/Q32=/SR*/SL*/Q3+SR*/SL*/Qd+/SR*SL*/Q2+SR*SL*/D3
/Qdz=/SR*/SL*/Qa+SR* /SL*/Q5+/SR*SL*/Q3+SR*SL*/D4
/Q5:=/SR* /SL*/Q5+SR*/SL*/RILO+/SR*SL*/Q4+SR*SL*/D5
IF(/SR*SL)/RILO=/Q5

DESCRIPTION
6BIT
L kkedekeddkdedkodokdek ok ok Fedekddedokddd ik dkk
* * * *
weddkk *kkk .
CK * 1 PAL *20% VCC
ki dkkk
* 16R6 .
Fdekk *dkkk
SR % 2w *19* LIRO
. dedekk *kkk
* *
Jodkekk *kkk
D0 * 3* *x18% Q0
*kkk Jedkkk
* *
Fdkk *kkk
D1 * 4* *17%¢ Q1
*kkk ki
* *
ek Jdkdek
D2 * 5 *16% Q2
*kkk kkk
* *
*kkk dkkk
D3 * 6* *15% Q3
dededkek Jekddk
* *
*kkk *kkk
D4 * 7+ : *14% Q4
*kkk dkkk
* R ;
dkkk *kkk
D5 * 8+ *x13* Q5
*dkk Kkkk
* *
*kdk ik
SL*o* *12* RILO

*kkk dkkk

GND

6BIT

0123

BEG*FPLT
0 Xemm
1

*
Kkhk
10
kokok

*

Applications

*

dkdk
A1 /fE
F*kkk

*

Yo dedede ek e oo e dede sk e de e ek ok ke ok ke ko ke ke

4567

11 1111 1111 2222 2222
8901 2345 6789 0123 4567

PAL16R6 8

Xem oo mmm e e

XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX

e oo mmmm mmmm emem

25 X-mm mmom cmee eem o X —omm -

e Xmm mmm o e

XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX

U S

33 Xemm mmmm momm mmm e —oe X -=--

39 XXXX

XXXX

e mmme e mmmm e

XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX

2233
8901

-X-- SR*/SL
——-- /Q0

-X-- /SR*/SL*/Q0
-X-- SR*/SL*/Q1
X--- /SR*SL*/LIRO
X--- SR*SL*/DO
XXXX

XXXX

XXXX

XXXX

-X-- /SR*/SL*/Ql
-X-- SR*/SL*/Q2
X--- /SR*SL*/Q0
X--- SR*SL*/D1
XXXX

XXXX

XXXX

XXXX

-X-~ /SR*/SL*/Q2
-X-- SR*/SL*/Q3
X--- /SR*SL*/Q1
X--- SR*SL*/D2
XXXX

XXXX

XXXX

XXXX

-X-- /SR*/SL*/Q3
-X-- SR*/SL*/Q4
X--- /SR*SL*/Q2
X~~~ SR*SL*/D3
XXXX

XXXX

XXXX

XXXX

191

192 Programmable Logic Design Guide

80 Xem —-m= —omm —oee ccme —ooX —ooe —X-- /SR¥/SL*/Q4
O X -X-- SR*/SL*/Q5
42 Yoo wmmm —oom coce woo mmme —me- X--- /SR*SL*/Q3
43 X-mw mmem mmme cmee emoe Xeo —moo X——- SR¥SL*/D4

44 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
45 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
46 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
47 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

48 Y- =omm —cm ceoe cooo oo —ooX -X-- /SR¥/SL*/Q5
49 Xemc === cmmm come come —moe —oeo X=X SR¥/SL¥/RILO
50 -X-= ==e= =eo= =moc —=om —=cX =--n X=-- /SR*SL*/Q4
51 oo —m== —oem —ioe —moo oo X-= X--= SR¥SL¥/D5

52 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
53 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
54 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
55 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

56 -X-= =wo= cmmm mmme —mem ——oo oo X-—- /SRASL
B7 comm cmem cee imee e emem o X ---- /Q5

58 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

59 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

60 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

61 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

62 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

63 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

END*FPLT , ‘
LEGEND: X : FUSE NOT BLOWN (L,N,0) = -': FUSE BLOWN (H,P,1)
NUMBER OF FUSES BLOWN = 818

Product Terms (0-63)

Applications 193

Inputs (0-31)

ok P>
:-&| 3 i wn 2101608 RPN 2002220 a8 Il)!lgl——
9 LiRp
2 1
SR <
. %]
!3?‘* * ‘l: =: -__I;o_‘e a
0 0
Do =3~ N :
B L Tk ‘E:::A
= * E ot g,
. H —J P
0, % .S
) % |~
::iz 3% % aﬂ: -:E_ 16
N i = Q,
. H %ﬁ P
D, % SN
= EHE RS i
» Q,
: g =
6 Iy ” ’j 1 !
Dy —3—]
% ST R y
E :)
7 N P
Dy —% I N
a g H—1>
e SR i=: 9
@ 5
. 3)
Ds =3
EE—-& % L ™, -
o 2 pio
LR P 1=
sL—{¥— & ~}—E

0123 4867 A0 12101a8 SIS 20212223 24252620 2282000

Figure 8.9.1 Logic Diagram PAL16RG

194 Programmable Logic Design Guide

8.10 PORTION OF RANDOM CONTROL LOGIC FOR 8086 CPU BOARD

PW
DE - Mw

SO

PD— 1'>F[

PD- — : JD — NO

1 -~
EO {1 cs
EA
El
| HA
si ‘ I
sA > >— ss

Figure 8.10.1 Control Logic for 8086 CPU Board

PALASM VERSION 1.5

PAL12H6
PATO3
8086

~CPU v
PD EN €0 EA S1 SA E1 DO DE GND
SO NC3 NO C3 HA SS LA MW PW VCC
MW=/S0+PW*DE
LA=/SA* /D0
$S=S1*PD*/SA
HA=S1*PD*/SA*EA*E]
C3=PD*EQO*EA

NO=PD*/EN
DESCRIPTION
‘8086
Skkhkhhkkdkhhkk kdkkkkhkhikhkk
* * * *
C kK *dkk
PD * i* PAL *20* VCC
dkkk *okkk
* 12HE6 *
Kkdok Kk
EN * 2* *19* PW

dkkk *kkk

E0

EA

Sl

SA

El

Do

DE

GND

8086

0123

BEG*FPLT

10
11

16
17

24
25

32
33

40
41

*
Fhkk
* Ik
dkekk

*
dekkdk

Tk g
Kk

*
*kkk
* Gk
Skkk

*
kkk
* Gk
*kkk

*
kdk
* 7%
*kkk

*
Kk
* ge
HkKkk

*
dekkdk
* g%
Sk

*
Sekdk
]0
Fedekk

*

*
dkhk
1g8
Fdkek
*
Fkkk
*] 7%
dkkk
*
dekkk
16
*kkk
*
dedkkr
*]5%
sk
*
Sk
14
dkdkk
*
Fkkk
]3
Hkkk
*
dekkek
*]o%

T ek
*
sk
]1
Sk
*

Fevdedede dededede sk sk ok de e dede e ek e dede el e dekedek dekeok

11
4567 8901 -

PAL12H6

--X- --00
XXXX XX00
XXXX XX00
XXXX XX00

---- --00
XXXX XX00

—mmm X-00
XXXX XX00

X--- X-00
XXXX XX00

1111
2345

8

--00
--00
XX00
XX00

--00
XX00

X-00
XXao

X-00
XX00

--00
XX00

1111 2222 2222
6789 0123 4567

--00 --00 ----
=00 ~-00 --n-
XX00 XX00 XXXX
XX00 XX00 XXXX

-X00 --00 ~X--
XX00 XX00 XXXX

-X00 --00 ----
XX00 XX00 XXXX

-X00 X-00 ----
XX00 XXOO XXXX

--00 --00 ----
XX00 XX00 XXXX

2233
8901

X--- PW*DE

XXXX
XXXX

Applications 195

Mu

LA

SS

HA

C3

NO

NC3

S0

---- /SA*/DO

XXXX

———- S1*PD*/SA
XX

---- S1*PD*/SA*EA*E]
XX

---- PD¥EO*EA

196 Programmable Logic Design Guide

48 -XX- --== ==00 -=00 =-00 --00 ---n --u- PD*/EN
49 XXXX XXXX XX00 XX00 XX0O XX00 XXXX XXXX
50 XXXX XXXX XX00 XX0O XX00 XX00 XXXX XXXX
51 XXXX XXXX XX00 XXOO XX00 XX00 XXXX XXXX

END*FPLT

LEGEND: X : FUSE NOT BLOWN (L,N,0) - : FUSE BLOWN (H,P
0 : PHANTOM FUSE (L,N,0) O : PHANTOM FUSE (H,P

NUMBER OF FUSES BLOWN = 206

PAL DEVICES FOR EASY INTERFACE BETWEEN DP8408/09* DRAM
CONTROLLER AND POPULAR MICROPROCESSORS

High storage density and low cost have made dynamic RAMs the designers choice in
most memory applications. However, the major drawbacks of dynamic RAMs are the
complex timing involved and periodic refresh needed to keep all memory cells
charged. With the introduction of the DP8408/09 Dynamic RAM controller/driver, the
above complexities are simplified.

Use of PAL devices adds flexibility in the design as PAL device logic equations can
be modified by the user for his/her application and programmed into any of the PAL
devices. In addition, PAL devices lower the parts count in memory system design. For
most memory operations, the PAL devices (DP8432/322/332) can be directly connected
between the control signals from the CPU chip set and the DP8408/09 dynamic RAM
controller. The PAL device allows hidden refresh using the DP8408/09. In a standard
memory cycle, the access can be slowed by one clock cycle to accommodate slower
memories. This extra wait state will not appear during the hidden refresh cycle, so
faster devices on the CPU bus will not be affected. Similarly, PAL devices allow for the
insertion of wait states for processors operating at high CPU clock frequencies to use
slower dynamic RAMs. '

The following three applications describe the use of National’s PAL16RG,
PAL16R4 and PAL16R8 for the ease and flexibility of interfacing DP8408/09 with
popular microprocessors such as the 32032, 68000, 8086, and 8088. Today the PAL
device family offers the designer flexibility to design desired speed/power PAL device
in his memory systems, and achieve the memory operations at very high frequencies
with or without wait state conditions.

* DP8408/09 is part of the tnterface product line at National Semiconductor Corp.

Applications 197

8.11 DP84312 DYNAMIC RAM CONTROLLER INTERFACE CIRCUIT FOR THE
NS32032 CPU

‘General Description

The DP84312 dynamic RAM Controller interface is a PAL device for interface between
the DP8409 dynamic RAM Controller and the NS32032 microprocessor.

Using timing signals from the NS32032timing and control unit and the NS32032
the DP84312 supplies all control signals needed to perform memory read, write, byte
write, and refresh.

Features

¢ Low parts count memory system.

* Allows the DP8409 to perform hidden refresh.

* Allows for the insertion of wait states for slow dynamic RAMs.
° Supplies independent CASs for byte writing.

® Possibility of operation at 8MHz with no wait states.

® 20-pin 0.3 inch wide package.

o Standard National Semiconductor .PAL device part (PAL16RO).

® PAL device logic equations can be modified by the user for his/her specific applica-
tion and programmed into any of the National Semiconductor PAL device family,
including the new high speed PAL devices.

Dual-In-Line Package

CLK—T_U—MI:VCC
RASIN—2 19— RFSH
AFRG—3 T 18 rmu
HBE—{4 17}—CASL
A0—{5 16—NC
WAITIN—6 15—NC
cTTL—{7 14[—NC
cs—8 13[—=NC
WAITi—9 12—WATT
GND—{10 11}--GND
TOP VIEW

Figure 8.11.1 Connection Diagram

198 Programmable Logic Design Guide

Symbol Parameter Min Typ Max Units
“Vee Supply Voltage 4.75 5.00 5.25 Vv
lon High Level Qutput Current) -3.2 mA
loL - Low Level Output Current) (th‘; 2) mA
Taa Operating Free Air Temperature 0 75 °C
Table 8.11.1 Recommended Operating Conditions
Symbol Parameter Conditlons Min | Typ Max |[Units
Viy | High Level input Voltage 2 v
ViL Low Level Input Voltage] : 0.8 \
Vic | Input Clamp Voltage Veo=Min, Ij= - 18 mA -15 \"
Von | High Level Output Voltage Vee=Min, Viy=2V, V| =0.8V, loy = Max 24 v
VoL | Low Level Output Voltage Veeo=Min, Vig=2V, V| =0.8V,.Ig. = Max 05 \
lozw | Off-State Output Current Vec=Max, Viy=2V, Vg=24V, V, =0.8V 100 rA
High Level Voltage Applied
lozL | Off-State Output Current Veo=Max, Viy=2V,Vo=0.4V, V| =08V -100 wA
Low Level Voltage Applied
N Input Current at Vee=Max, V=55V 1.0 mA
Maximum Input Voltage
Iy High Level Input Current Veo=Max, V=24V 25 kA
i | Low Level Input Current Vee = Max, V;=0.4V -250 pA
los | Short Circuit Output Current | Vo= Max -30 -130 mA
lcc | Supply Current Veo= Max 150 225 mA
(Note 1)

Table 8.11.2 Electrical Characteristics

‘ Commercial
Symbol Parameter %1.“:2:507?73 Tc:co;cs.;%:;f;c Units
Min - Typ Max

two WAITIN to WAIT Delay C_=45pF 25 40 ns
tep Clock to Output C_=45pF 15 26 ns
tezx Pin 11 to Output Enable C_=45pF 15 25 ns
tpxz Pin 11 to Output Disable C_=5pF 15 25 ns
tw Width of Clock High 25 ns

Low 25 ‘ns
tey Set-Up Time 40 ‘ns
th Hold Time 0 -15 ns

Note 1: Icc =max at minimum temperature.
Note 2: One output at a time; otherwise 16 mA.

Table 8.11.3 Switching Chracteristics

ADO-AD1S

ADC-AD15 | e ——
cs @ DO-D15
DDIN »| WiN WR fA—b| WR
ADS ~ AM1-AM20
o
4 B1 @
74504 L 4 Q0-6, 7] 406, 7
BO
DM7aLS3" oM74s139 [o3
G PERIP o>
A, B, G — | @
o O co6. 7 AASO || 7RSO
NS32032 DP8409 MM5295-12
I RO-6, 7 e MM4164-12
[1 P]
RAS1 v\A—d| RAST
»| ADS
— @ —
M1 RAS2 = \=b] RASZ
at6-A22 § Ao-Ats
-x- DP84300 »| rRFcK @
RAS3 YWA—P| RAS3
ry > K RFI/O
HBE RGC! m .
M2 RASIN CASL CASH
p 3 3
4 T w
A16-A23)
RDY PHI2Z PHI1 A16-A23 \ A0 A0-A23 @ :f @ %
» r' 4 *
ANV
+ "]
RDY PHIt PHIZ REEE RFAQ ASL CASH
CTTL | CTTL
»| A0
N§32201 | HBE DP8a312
FCLK »] FeLk
NTSO I NTSO
NCWAIT |4— WAIT
NPER * Note: For more than 16 RAM chips, NC WAIT IN —> | yaimin
f add buffers. .
— @These outputs may need resistors.
PERIP

Figure 8.11.2

System Block Diagram

suonednddy

661

200 Programmable Logic Design Guide

Mnemonic Description

Input Signals

RFRQ
HBE, A0
WAITIN
CTTL

CS

WAIT1

Clock input. This clock comes from the FCLK output of the NS32201
timing and control unit, and supplies timing for the internal logic.

RAS input. This input is connected to the NTSO pin of the NS§32201"
This signal marks the start of a memory cycle.)

Refresh request. The DP8409 requests a forced refresh with this input.

Address select inputs. These inputs select the type of write during a
write cycle, and select their respective CAS outputs. These inputs must
remain stable throughout the memory cycle.

This wait input allows other devices to use the NCWAIT line of the
NS16201 clock chip.

System clock input. This clock is used to synchronize the memory sys-
tem to the microprocessor clock.

Chip select. This input is used to determine if a memory cycle or a hid-
den refresh cycle is to be performed. ‘

Insert one wait state. This input allows the use of slow memories with
a microprocessor using a fast clock by inserting a wait state in selected
memory cycles.

Output Signals ‘

RFSH
CASH, CASL

WAIT

Refresh. This output switches the DP8409 to a refresh mode.

CAS outputs. CASH is for controlling the high bank of dynamic RAMs,
while CASL controls the CAS line of the lower bank of RAMs. If only
eight RAMs are used in each bank, the CAS outputs will directly drive
the memories, For large arrays, these outputs should be buffered with
a high current driver, such as the DP84244 MOS driver.

This output controls the insertion of wait states. This output is ORed.
with WAITIN to allow other devices to insert wait states.

Functional Description

The DP84312 detects the start of a memory cycle when NTSO from the NS32032 tim-
ing and control unit (TCU) goes low. The NTSO signal is also used to supply RASIN to
the DP8409 dynamic RAM controller. After the DP8409 has latched the row address
and supplied the column address to the DRAMs, the DP84312 latches the column

Applications 201

address. The DP84312 supplies two CAS outputs: one for the high byte of memory, and
the other for the low byte. The ability to control the upper and lower bytes of memory
separately is important during a memory write cycle where one byte of memory is to
be written (byte write).

By connecting WAIT1 of the DP84312 to ground, all selected memory cycles will
have one wait state inserted. This allows an NS32032 operating at high CPU clock fre-
quency to use slower dynamic RAMs.

Memory refresh can be achieved in one of two ways: hidden or forced. Hidden
refresh is accomplished whenever a refresh is requested (internal to the DP8409) and
an unselected memory cycle occurs. With a hidden refresh, the DP84312 does nothing
while the DP8409 performs the refresh. If no refresh occurs before the trailing edge of
refresh clock, the DP8409 will request a forced refresh. The DP84312 detects this
request, and allows the current memory cycle to finish. It then outputs wait states to
the CPU, which will hold the CPU if it requests a memory cycle. During this time the
DP84312 has switched the dynamic RAM controller to the auto refresh mode, allowing
it to perform a refresh. At the end of the refresh cycle, the DP8409 is switched back to
the auto access mode, and the wait is removed after a sufficient RAS precharge time.
The total forced refresh takes four CPU clock cycles, of which some, none or all may
be actual wait states. If the CPU does not request a memory cycle during this refresh
cycle, the refresh will not impact the CPU’s performance.

The DP84312 can possibly be operated at 8 MHz with no wait states (WAIT1 = “1")
given the following conditions:

T2 +T3 =250 ns

NTSO generation = 15 ns max.

RASIN to CAS delay DP8409-2 = 130 ns max.

External CASH,L generation using 74S02 and 745240
7.5 ns (74S02) + 10 ns (74S240) - 7.5 ns (less load on 8409 CAS lme) =10 ns max.

Transceiver delay = 12 ns max.

NS16032 data setup = 20 ns max.

. Minimum tcac = 63 ns

=250-15-130-10-12-20

Minimum tgag =250 ns

Minimum tgp = 250 ns

Minimum tgay =20 ns

The DP84312 is a standard National PAL device part (PAL 16R6). The user can
modify the PAL device equations to support his/her particular application. The
DP84312 logic equations, function table (functional test), and logic diagram can be seen
at the end of this section.

202 Programmable Logic Design Guide

}—t, OR t4 —} t1 | 2 } 13 : t4 {~—t, OR t1—]

en [| | L1 L1 LJd L4 L

NTSO , | | L.
s | | 1
CASH, L | I
DATA _ ‘
FROM RAM [neao nata)
(READ) : { READ DATA)-
DATA :

FROM CPU 7
(WRITE) \ADDRESSH DATA TO BE WRITTEN >__—

Figure 8.11.3 Timing Diagram; Read, Write or Hidden Refresh Memory Cycle for
the NS32032-DP8409 Interface

CPU STATE |4 OR f;—|——11 fo—t2 —fo— tW——|——13——|]-——td——| ‘11 ORY,

e {1 L L L4 L1 L I
NTSO —I J

NC WAIT I I

RAS | |

CASH,L , | [
DATA : i

M RA! { vaup H)—
FROM RAM { LID)
DATA
/

FROM CPU { ADDRESS x DATA TO BE WRITTEN TO MEMORY)———

Figure 8.11.4 Timing Diagram; Read, or Write Memory Cycle With One Wait

Applications 203

t, t1 t, t1 t, T1 T|, t1 t, t1
CPU STATE |— t, OR t4 —~~—t, OR ti—|~—OR t; —|~—OR ty —=[~—OR ty —|~— OR t, —| OR t2

e |4 L1 L1 L1 L1 L[]

NTSO

T
]
e=d bao-.

e} J
NC WAIT | |
RFSH | [

AAS | | | :

c—— L.

Figure 8.11.5 Timing Diagram; Forced Refresh Cycle

PAL16R6

DP84312

Interface Circuit for the NS32032/DP8409

Memory System

CK NTSO /RFRQ /HBE A0 /WAITIN CTTL /CS /SLOW
GND /OE /WAIT /D /C /B /A /CASL /CASH /RFSH VCC

CASH: = A*/B+C+D* HBE*CS +
/A*/B¥*D+*HBE*CS

CASL : = A*/B+/C+D*/AO *CS +
/A*/B*D*/AO*CS

A : = /A*/B*/C+/D*/NTSO*CS*SLOW +
B+/C+/D +
A*/C+/D +
A*B

B : = /A*/B*/C+/D*NTSO*RFRQ+*CTTL +
/A*B +
A*B+/C +
B*C+«D

204 Programmable Logic Design Guide

C : = /A*/B*/C+/D*NTSO*RFRQ*CTTL +
/A*/B*D + '
A*B+D +
B+C+/D +
- /A*/B*C+/D*/NTSO

D :=/A%B*C*D*/NTSO*CS*/SLOW +
/Ax/B#/C+/D*/NTSO*/CS +
A*/C + '
/B*/C+*D +
/A*B*C

IF (VCC) WAIT = /B#/C+/D*NTSO*CS*SLOW +
/A*B*D +
B+/C*/D +
AB +
A*C+/D +
/CS*WAITIN

IF (VCC) RFSH = /A*B +
B+/C+/D +
AxB+/C +
A*B+C

205

Applications

[cK NTSO RFRG HBE A0

OE CASH CASL A B C D WAIT RFSH

SLOW

cs

WAITIN CTTL

XA d I3 J 0 A JJ AT TTITITITIITITJdd A3 000N

XA L 3 3 T T T T T T T IT ST T S ON

Xd4ILILJdJJJIIIXI ST T J A I T JJIJIT T JJ AT T JJdN
XJITT 141 JTTdJTLJTITJJJJTI LT JJT LT JIN
XLLLLLLLLLLLLLLL‘HHHHHHHHLLLLLLLZ
XA d A I I T Tl D VA J T T T T T A d 003 aN

Xdd It 0300180000003 00N
XAdAdT T4 d AT T T dddddddd 000010300 4aN
Sdddaddadddd tddddddtdddddddddddaT
ITIITIT I TdddI XXX XXX XXHXX XX XIXXXXXT
ITXT A I A I JJ AT TITITITIXXXXXXXXXIIIIITITT

ITIXXXXXXXXXXXXXXET AT JTJT AT XXXXXXTI

IITI I I IIIITIIIrIJIIIIIIIIIIIIJJJIIT

A A dd T T T T T A g XXX XXX XX XXX X XXT

A AT I T OIXXKXKXXKXXKXXXXXKXXX XX XTI

IIXXXXXXXXXXXXXXAIXITIITIIIIIIIIIXXI

IITJdAdXITAXXXXITIJIXIIIIIIIIILIIILdJdJTIT T

0V0VOVVVVVVVVVVOVVVVVVOVVVVLVOVOVO

Table 8.11.4 Function Table

206 Programmable Logic Design Guide

Inputs (0-31)

123 7 1011 12131415 18171819 b 7 28203001

Product Terms (0-63)
S| X
l’m |
m
}r

17Tt
RGN

BEIKLRRER

5 &

DI

O
x

|

(2]
b4

~

a‘inl a‘;ml a‘,;:-l

=
uiol

2R

—

N

cof’_”
O
<

0123 4567 891011 12131415 16171819 20212223 24252627 28293031

Figure 8.11.6 DP84312 Logic Diagram PAL16R6

Applications 207

8.12 DP84322 DYNAMIC RAM CONTROLLER INTERFACE CIRCUIT FOR
THE 68000 CPU

General Description

The DP84322 dynamic RAM controller interface is a PAL device for interface between

the DP8409 dynamic RAM Controller and the 68000 microprocessor. :
The DP84322 supplies all the control signals needed to perform memory read,

write and refresh. Logic is included for inserting a wait state when using fast CPUs.

Features

® Provides 3-chip solution for the 68000 CPU and dynamic RAM interface.
¢ Works with all 68000 speed versions.
® Possibility of operation at 8 MHz with no wait states.

o Performs hidden refresh.

DUAL-IN-LINE PACKAGE

cLock—{ 1 W) 20 b— V¢
AS— 2 19 (— RASIN .
UDS — 3 18 [— DTACK
iDS— 4 . 17 |— RFSH
RIW-—{5 16 —NC
RFRQ—] 6 15— NC
TAS—{7 _ 14 —NC
cs5—i8 13 |—CASU
WAIT—{ 9 : 12 }—CASL
GND—{ 10 11— OE
TOP VIEW

Figure 8.12.1 Connection Diagram

208 Programmable Logic Design Guide

* DTACK is autofnatically inserted for both memory access and memory refresh.
¢ Performs forced refresh using typically 4 CPU clocks.
¢ Standard National Semiconductor PAL device part (PAL16R4).

* PAL device logic equations can be modified by the user for his specific application
- and programmed into any of National’s PAL device family, including the new high
speed PAL devices.

AS P
RASIN $ RASIN
—» | GENERATOR
LDS . e CASL
U—DS < : CAS
_ | ceEneRaTOR —
CAS L >) e CASU
cs
—p
—>
> —
DTACK —_—
_ GENER
RV q ATOR
WAIT >
R REFRESH/
ACCESS . —
ARBITRATION > M2 (RFSH)
AFRG — »| Loaic

Figure 8.12.2 Block Diagram

Applications 209
Symbol Parameter Min Typ Max Units
Vee Supply Voitage 4.75 5.00 5.25 \
lon High Level Output Current =32 mA
loL Low Level Output Current iNj:a 2) mA
Ta Operating Free Air Temperature 0 75 “C
Table 8.12.1 Recommended Operating Conditions
Symbol Parameter Conditions Min | Typ Max (Units
Viy | High Level Input Voltage 2 v
S VL Low Level Input Voltage 0.8 v
Vi | Input Clamp Voltage Veo=Min, ;= - 18 mA -15 v
Vou | High Level Output Voltage Vee=Min, Viu=2V, V, =08V, Igy=Max 24 \
VoL | Low Level Output Voltage Vee=Min, Vi =2V, V) =0.8V,lg. =Max 0.5 v
loz | Off-State Output Current Vee=Max, Vig=2V, Vo =2.4V, V) = 0.8V 100 uA
* | High Level Voltage Applied
lpzL | Off-State Output Current Vee = Max, Viy=2V, Vo =0.4V, V| =0.8V -100 rA
Low Level Voltage Applied
h Input Current at Veeo=Max, V=5.5V 1.0 mA
Maximum Input Voitage
M High Level Input Current Ve =Max, V=24V 25 rA
he | Low Level Input Current Veo=Max, V;=0.4V - 250 uA
los | Short Circuit Output Current | Voo =Max -30 -130 mA
lcc | Supply Current Vee = Max 150 225 mA
(Note 1) ’
Table 8.12.2 Electrical Characteristics
Commercial
. =0° o
Symbol Paramgter Tes'ta f:::;tsl)ons TAV -;:;;‘g’v; ;f/n c Units
Min Typ Max
top input to Output C,=45pF 25 40 ns
tep Clock to Output i 15 25 ns
tozx Pin 11 to Output Enable 15 25 ns
toxz Pin 11 to Output Disable C_ =5pF 15 25 ns
thzx Input to Output Enable C_ =45pF 25 40 ns
toxz Input to Output Disable C =5pF 25 40 ns
ty Width of Clock High 25 ns
Low 25 ns
e Set-Up Time 40 ns
t, Hold Time 0 -15 ns

Note 1: Icc = max at minimum temperature.
Note 2: One output at a time; otherwise 16 mA.

Table 8.12.3

Switching Characteristics

DP84322 and DP8409 tor 68000 CPU

DTACK

A1-A23

68000

D0-D15

CLK

RIW

ADDRESS BUS
RO-6,7,.8 Q06 7.8 AD-6, 7, 8 Dy
RAS0 RAS
€0-6,7,8 CASU
ADDRESS BO . c—_A—s-L
DECODER 81 WE WE Dour
Ve
L’ ADS A0-6.7.8 Dy
_ RAST RAS
»lcs CASU
CasL
DM74LS393 »| RFCK
FAN
A06,7.8 Dy
10 MHz MAX J—
] rRack AAS2 RAS
CASU
—| Win CASL
WE Dour
— V— [
Ly»|ES T RASIN » | RASIN
»| AS RFSH | M2 (RFSH) A0-6.7.8 Dy
> W a— pa——— 3 ———
> RW :' M1 RAS3 hAAA »|RAs
»|uos —{ Mo »|casu
»|Ds DP84322 »| CASL
»|Ccas — G »| WE
AFRG CAS I »| WE Dour
—p|RFRQ DTACK
—p|WAIT G > DRAMSs
—_ CAsY | orsazas
J_—- OE CASL >

BUFFER NECESSARY IF MORE THAN ONE BANK

Figure 8.12.3

DATA BUS *These outputs may need resistors.

System Block Diagram

01¢

apino usisaog d1807 sjqewrwessSosg

Applications 211

Mnemonic Description

Input Signals
CLOCK

The clock signal determines the timing of the outputs and should be
connected directly to the 68000 clock input.

Address Strobe from the 68000 CPU. This input is used to generate
RASIN to the DP8409.

Upper and lower data strobe from the 68000 CPU. These inputs,
together with AS, R/W, provide DTACK to the 68000.

Read/write from the 68000 CPU, when WAIT = 0. Selects processor
speed when WAIT =1 (“1” =4, to 6 MHz, “0” = 8 MHz).

Column Address Strobe from the DP8409. This input, together with

LDS and UDS, provides two separate CAS outputs for accessing upper

and lower memory data bytes.

Chip Select. This input enables DTACK output. CS = 0, DTACK output
is enabled; CS = 1, DTACK output is TRI-STATE®.

Refresh Request. This input requests the DP84322 for a forced refresh.

This input allows the necessary wait state to be inserted for memory
access cycles.

Output Signals

g

SIN

CASU, CASL
DTACK

RFSH

This output provides a memory cycle start signal to the DP8409 and
provides RAS timing during hidden refresh.

These signals are the separate CAS outputs needed for byte writing.

This output is used to insert wait states into the 68000 memory cycles
when selected and during a forced refresh cycle where the CPU
attempts to access the memory. This output is enabled when CS input
is low and TRI-STATE when CS is high.

This output controls the mode of the DP8409. It always goes low for 4
CPU clock periods when AS is inactive and'a forced refresh is
requested through RFRQ input. This allows the DP8409 to perform an
automatic forced refresh.

Functional Description

As a2 68000 bus cycle begins, a valid address is output on the address bus A1-A23. This
address is decoded to provide Chip Select (CS) to the DP8409. After the address
becomes valid, AS goes low and it is used to set RASIN low from the DP84322 interface

212 Programmable Logic Design Guide

circuit. Note that CS must go low for a minimum of 10 ns before the assertion of RASIN
for a proper memory access. As an example, with an 8 MHz 68000, the address is valid .
for at least 30 ns before AS goes active. AS then has to ripple through the DP84322 to
produce RASIN. This means the address is valid for 2 minimum of 40 ns before RASIN
goes low, and the decoding of CS should take less than 30 ns. At this speed the
DM74LS138 or DM74LS139 decoders can be selected to guarantee the 10 ns minimum
required by CS set-up time going low before the access RASIN goes low(tcsgy, Of the
DP8409). This is important because a false hidden refresh may take place when the
minimum tcggy iS not met.

Typically RASIN occurs at the end of S2. Subsequently, selected RAS output, row
to column select and then CAS will automatlcally follow RASIN as determined by mode
5 of the DP8409. Mode 5 guarantees a 30 ns minimum for row address hold time (tray)
and a minimum of 8 ns column address set-up time (tasc). If the system requires
instructions that use byte writing, then CASU and CASL are needed for accessing upper
and lower memory data bytes, and they are provided by the DP84322. In the DP84322,
LDS and UDS are gated with CAS from the DP8409 to provide CASL and CASU. There-
fore, designers need not be concerned about delaying CAS during write cycles to
assure valid data being written into memory. The 8 MHz 68000 specifies during a write
cycle that data output is valid for a2 minimum of 30 ns before DS goes active. Thus,
CASL and CASU will not go low for at least 40 ns after the output data becomes stable,
guaranteeing the 68000 valid data is written to_memory. ‘

Furthermore, the gating of UDS, LDS and CAS allows the DP84322 interface con-
troller to support the test and set instruction (TAS). The 68000 utilizes the
read-modify-write cycle to execute this instruction. The TAS instruction provides a
method of communication between processors in a multiple processor system.
Because of the nature of this instruction, in the 68000 this cycle is indivisible and the
Address Strobe AS is asserted through the entire cycle. However, DS is asserted twice
for two accesses: a read then a write. The dynamic RAM controller and the DP84322
respond to this read-modify-write instruction as follows (refer to the TAS instruction
timing diagram for clarification). First, the selected RAS goes low as a result of AS going
low, and this RAS output will remain low throughout the entire cycle. Then the
DP84322’s selected CAS output (CASL or CASU) goes low to read the specified data
byte. After this read, DS goes high causing the selected CAS to go high. A few clocks
later R/W goes low and then DS is reasserted. As DS goes low, the selected CAS goes
low strobing the CPU’s modified data into memory, after which the cycle is ended
when AS goes high.

The two CAS outputs from the DP84322 however, can only drive one memory
bank. For additional driving capability, a memory driver such as the DP84244 should
be added to drive loads of up to 500 pF.

Since this DP84322 interface circuit is designed to operate with all of the 68000
speed versions, a status input called WAIT is used to distinguish the 8 MHz from the
others. The WAIT input should be set low for a 6 MHz or-less allowing full speed of
operation with no wait states. Data Transfer Acknowledge input (DTACK) of the 68000
at these speeds is automatically inserted during S2 for every memory transaction cycle

Applications 213

and is then negated at the end of that cycle when UDS and/or IDS go high. For the 8
MHz 68000 however, a wait state is required for every memory transaction cycle. At
these speeds, the WAIT input is set high, selecting the DP8409’s CAS output to generate
DTACK and again DTACK is negated at the end of the cycle when UDS or LDS goes
high. Note that DTACK output is enabled only when the DP8409’s CS is low. Therefore
when the 68000 is accessing I/O or ROM (in other words, when the DP8409 is not
selected), the DP84322’s DTACK output goes high impedance logic ‘1’ through the
external pull-up resistor and it is now up to the designer to supply DTACK for a proper
bus cycle.

Table 8.12.4 indicates the maximum memory speed in terms of the DRAM timing
parameters: tcac (access-time from CAS) and tgp (RAS precharge time) required by dif-
ferent 68000 speed versions.

Microprocessor Maximum Minimum Minimum
Clock teac tap taas
8 MHz 125 ns 140 ns 220 ns
6 MHz 90 ns 170 ns 290 ns
4 MHz 270 ns 280 ns 450 ns

Table 8.12.4 Memory Speed

Pin 5 (R/W input to the DP84322) is not used as RAW when the WAIT input is high.
Therefore, when WAIT is high and pin 5 is low, this is configured for the 8 MHz 68000.
The dynamic RAM controller in this configuration operates in mode 5 and mode 1.

When both WAIT and pin 5 are high, this is configured for 4 MHz and 6 MHz
68000, allowing only two microprocessor clocks for fnemory refresh. Furthermore,
the designer can use the DP8408 because the dynamic RAM controller now operates in
mode 0 and mode 5 or mode 6. In addition, the programmable refresh timer, DP84300,
should be used to determine the refresh rate (RFCK) and to provide the refresh request
(RFRQ) input to the DP84322. The refresh timer can provide over two hundred differ-
ent divisors. RFRQ is given at the beginning of every RFCK cycle and remains active
until M2 goes low for memory refresh. The DP84322 samples RFRQ when AS is high,
then sets M2 low for two microprocessor clocks, taking the DP8408 or DP8409 to the
external control refresh mode. RASIN for this refresh is also issued by the DP84322. If a
memory access is pending, RASIN for this access will not be given until it is delayed for
approximately one microprocessor clock, allowing RAS precharge time for the
dynamic RAMs.

214 Programmable Logic Design Guide

The following table indicates differeni memory speeds in terms of the DRAM
parameters required by 4 MHz and 6 MHz 68000:

Microprocessor Maximum - Minimum Minimum Minimum
Clock teac thas tae taan
4 MHz' 290 ns 200 ns . 225ns : 20 ns
6 MHz 110 ns 125 ns . 140 ns 20 ns

Table 8.12.5 Memory Speed of 68000

When WAIT =1, pin 5 =0 (8 MHz), the PAL device controller supports read and
write cycles with one inserted wait state, forced refresh with five wait states inserted
if CS is valid, and hidden refresh. This PAL device mode does not support the TAS
instruction. .

When WAIT =pin 5=1 (4-6 MHz), the PAL device controller supports read and
write cycles with no wait states inserted, and forced refresh with two wait states
inserted if CS is valid. This PAL device mode does not support the TAS instruction and
only supports hidden refresh when used in mode 5 with the DP8409 controller.

The DP84322 can possibly be operated at 8 MHz with no wait states (WAIT = “0”)
given the following conditions:

FAST PAL DEVICE (PAL 16R4A)
S2 +83 +S4 +85=250ns
RASIN delay = 60 ns (AS low max.)
+25 ns (Fast PAL delay) = 85 ns max.
RASIN to CAS delay DP8409-2 = 130 ns max.
External CASH,L generation using 74502
and 745240 : _
7.5 ns (74502) + 10 ns (745240) - 7.5 ns (less load
on 8409 CAS line) = 10 ns max.
Transceiver delay (74LS245) = 12 ns max.
68000 data setup into S6 = 40 ns min.
. Minimum tgac = 53 ns
=250-85-130-10-12 +40
Minimum tgag = 240 ns
Minimum tgp = 150 ns
Minimum tgay = 20 ns

Refresh Cycle

Since the access sequence timing is automatically derived from RASIN in mode 5, R/C
and CASIN are not used and now become Refresh Clock (RFCK) and RAS-generator

Applications 215

clock (RGCK) respectively. The Refresh Clock RFCK may be divided down from RGCK,
which is the micropocessor clock, using the DM74LS393 or DM74LS390. RFCK pro-
vides the refresh time interval and RGCK the fast clock for all-RAS refresh if forced
refreshing is necessary. The DP8409 offers both hidden refresh in mode 5 and forced
refresh in mode 1 with priority placed on hidden refreshing. Assume 128 rows are
being refreshed, then a 16us maximum clock period is needed for RFCK to distribute
refreshing of all the rows over the 2 ms period.

The DP8409 provides hidden refreshing in mode 5 when the refresh clock (RFCK)
is high and the microprocessor is accessing RAM. In other words, when the DP8409’s
chip select is inactive because the microprocessor is not accessing elsewhere, all four
RAS outputs follow RASIN, strobing the contents of the on-chip refresh counter to
every memory bank. RASIN going high terminates the hidden refresh and also incre-
ments the refresh counter, preparing it for the next refresh cycle. Once a hidden
refresh has taken place, a forced refresh will not be requested by the DP8409 for the
current RFCK cycle.

However, if the microprocessor continuously accessed the DP8409 and memory
while RFCK was high, a hidden refresh could not have taken place and now the system
must force a refresh. Immediately after RFCK goes low, the Refresh Request signal
(RFRQ) from the DP8409 goes low, indicating a forced refresh is necessary. First, when
RFRQ goes low any time during S2 to S7, the controller interface circuit waits until the
end of the current memory access cycle and then sets M2 (RFSH) low. This refresh takes
four microprocessors clocks to complete. If the current cycle is another memory cycle,
the 68000 will automatically be put in four wait states.

Alternately, when RFRQ goes low while AS is high during SO to S1, M2 is now set
low at S2. Therefore, it requires an additional microprocessor clock for this refresh.
Once the DP8409 is in mode 1 forced refresh, all the RAS outputs remain high until two
RGCK trailing edges after M2 goes low, when all RAS outputs go low. This allows a mini-
mum of one and a half clock periods of RGCK for RAS precharge time. As specified in
the DP8409 data sheet, the RAS outputs remain low for two clock periods of RGCK.
The refresh counter is incremented as the RAS outputs go high. Once the forced
refresh has ended, M2 is brought high, the DP8409 back to mode 5 auto access. Note
that RASIN for the pending access is not given until it has been delayed for a full micro-
processor clock, allowing RAS precharge time for the coming access.’

If the 68000 bus is inactive (i.e., the 68000’s instruction queue is full, or the 68000
is executing internal operations such as a multiply instruction, or the 68000 is in half
state . . .) and a refresh has been requested, a refresh will also take place because RFRQ
is continuously sampled while AS is high. Therefore, refreshing under these conditions
will be transparent to the microprocessor. Consequently, the system throughput is
increased because the DP84322 allows refreshing while the 68000 bus is inactive.

The 84322 is a standard National PAL device part (PAL16R4). The user can
modify the PAL equations to support his particular application. The 84322 logic
equations, function table, and logic diagram can be seen at the end of this section.

216 Programmable Logic Design Guide

68000 MEMORY READ CYCLE (WAIT =0, PIN 5 =R/W)

CLOCK

S1 S2 S3 sS4 S5 S6 s7 SO S1

S0
A1-A23 :)-—(VALID ADDRESS)—
OUTPUTS AS J .
FROM
68000 ,
UDS,
L AW g
[RASIN _l N
 RFSH
ouTpuTs | -
FROM
DPs4s22 |
“ | bTAck N\
CASU, /
| ¢aAsL

RASO: SELECTED RAS. <
[s _J N ouTPUT —g

Qo-a8)(X AD%%Z;SS% COLUMN ADDRESS %
ar (
Orom | oA Q —

DP8409
WE ::I

| "FRG \

DRAM
OUTPUT

+—teac *torr

Y av—
MEMORY DATA

Figure 8.12.4 Timing Diagram; 68000 Memory Read Cycle

OUTPUTS
FROM
68000

OUTPUTS
FROM
DP84322

OUTPUTS
FROM
DP8409

AS ‘
UDS, LDS

DRAM MEMORY
 outpur _DpaTA >"'

Applications 217

MEMORY READ CYCLE AND FORCED REFRESH (WAIT =1, PIN 5=0)

DP84322 DETECTS START OF DP84322 CONTINUES ’l
CYCLE, SO INSERTS REFRESH CYCLE MEMORY ACCESS CYCLE

CLOCK

AO-A15)—(ADDRESS

2

RASIN J

4 4P CLOCK PERIODS

RFSH

[

CASU,
Casv

RASO- ALL K
AAS3 RAS OUTPUTS
ROW \) I\
Qa8 . REFRESH ADDRESS X ADDRESS COLUMN ADDRESS)ﬁ
A

we
RFRG

all

Figure 8.12.5 Timing Diagram; 68000 Memory Read Cycle and Forced Refresh

218 Programmable Logic Design Guide

TAS INSTRUCTION CYCLE (WAIT =0, PIN 5 = R/W)

SO S1 S4 S6 S8 S10 S12 S14 S16 S18 SO

S2 S3 'S5 14 S9 St S13 S15 S17 S19

[Avazs :>—(ADDRESS »—
AS }\
OUTPUTS :
FROM)
68000 | {ps,
ios
| RW é / ’

LL

RFSH -
OUTPUTS
FROM
DP84322 —
DTACK
I"tCAC"
CASU, ;
L CAsL :
[*—torr
(Sre SELECTED RAS
RASO- :
RAS3 \ 'OUTPUT

firs

|
>
£\

Q0-8 COLUMN ADDRESS
t
OUTPUTS CAS
FROM
DP8409

s
L
/

RFRG \
DRAM (VEM { cruoama
‘ OUTPUT DATA __:>_

Figure 8.12.6 Timing Diagram; TAS Instruction Cycle

FROM
68000

OUTPUTS

OUTPUTS
FROM
DP84322

OUTPUTS
FROM
DP8409

CLOCK

MEMORY READ CYCLE (WAIT =1, PIN 5=0)

Applications

A1-A23

AS

ups,
LDS

DRAM
OUTPUT

Isols1|s'z_]ssls4Ewlsw|ss|ss|s7|sol

ADDRESS

—

>____

__l

\
tl

(tcac f—torr
SELECTED —
\4\ RAS OUTPUT
ROW)\
ADD COLUMN ADDRESS

MEM
DATA

Figure 8.12.7 Timing Diagram; Memory Read Cycle

219

220

(WAIT =1, PIN 5=0)

INPUTS
FROM 1
68000

INPUTS
FROM <
DP84322

INPUTS
FROM 1
DP8409

N7

A0-A15

D

START OF CYCLE, SO

Programmable Logic Design Guide

P84322 DETECTS

DP84322

MEMORY CONTINUES
| INSERTS REFRESH CYCLE *[*" ACCESS CYCLE _>I

\

ADDRESS

—

\

<—r4uP CLOCK PERIODS —
A

[

—

-

1

=

ALL RAS -
OUTPUTS

]

tcac

]
1

\(SELECTED

RAS OUTPUT

¥

FRESH ADDRESS

J
|
-

ADDRESS g4\ ADDRESS

N

MEMORY
DATA

Figure 8.12.8 Timing Diagram; Memory Read Cycle and Forced Refresh

DTACK

A1-A23

68000

CLK

ubs
LDS

DP8408, DP8409 AND 68000 INTERFACE

|wg Dour

A0-6,7,8 Dy

RAS

CASU

CASL

we Dour

A0-6,7,8 Dy

RAS
CASU
CASL

A0-6,7,8 Dy

RAS

CASU
CASL
WE

Dour

A0-6,7,8 Dy

RAS

CASU

JV vyvw VL

DP84244

ADDRESS BUS
RO-6,7,8 Q0-6,7,8
RASD
C0-6,7,8
ADDRESS BO _
DECODER B1 WE
111
$] ADS
»]CS RAS1
RFRQ
d
M2 DP8408/9
DP84300 |«
A
1 | CASIN
RAS2
RIC
—>| WIN
— V1 -
»|CS RASIN »| RASIN
»|AS RFSH MODE’ »| M2 (RFSH)
“1” —p|RIW {—» M1 ____
> UEDP s SOR6|_ Mo RAS3
»| o5 PPes
—»| CAS As
»| RFRQ DTACK |
“1"—4]WAIT CASU >
I OE TASL >
DATA BUS

BUFFER NECESSARY IF MORE

THAN ONE BANK

*These outputs may need resistors.

Figure 8.12.9 Modified System Block Diagram

suonednddy

| K44

222

Programmable Logic Design Guide

68000 MEMORY READ CYCLE (WAIT AND PIN5=1)’

CLOCK Iso]s1|sz|ss|s4]ss|ss|s7|so|
i .
A0-A23 < ADDRESS)—-C
OUTPUTS AS é\
FROM
68000
Ubs/ |
- / /
L RIW) §\ /
(RASIN / / \}\
M2 \ /
RFSH
OUTPUTS
FROM
DP84
22| Staek \I
_ / — |—toFF
CASU,. ‘
| CAsL (| |
o ~—tcac—
r RASO-
AAS3 \é\\ '
Qo-08 X:X ADBANSs COLUMN ADDRESS :
OUTPUTS
FROM. \ / d
DP8408/9| xS \ I—
| WE \|
)
RFRQ
OUTPUTS \
FROM |
DPMSOOL DATA
ouT <MEMORY DATA>_

Figure 8.12.10 Timing Diagram; 68000 Memory Read Cycle

Applications 223

68000 MEMORY READ CYCLE AND MEMORY REFRESH (WAIT AND PIN 5=0)

DP84322 D TS
START OF c%{:i(é’ SO DP84322 CONTINUES
INSERTS REFRESH CYCLE I MEMORY ACCESS CYCLE

CLOCK so|51 lszlss IS4 lswlswlswlswlss |ss|s7|so|

(A0-A23)—(ADDRESS :)——

OUTPUTS‘
FROM

I.__
68000 ?%Sg/ "'——_—I I—_
I__

| 2 4P CLOCK

i PERIODS
(M2)
AFSH J
OUTPUTS /
FROM |
.DP84322 | BTACR : END WAIT STATE I
| loFF
-FF]
casu, | I
" CASL :
[=-tcac—]
) : ALL RAS | |
%‘; - JouTPuTS SELECTED RAS OUTPUT
Q0-G8 XREFRESH ADDRESSXROW Anoness\x\ COLUMN ADDRESS)C
OUTPUTS
FROM | —
DP8408/ | s
| wE |
RFRG ~
OuTPUT

FROM
DP84300 %I:JT: J‘ MEMORY DATA ;—-

Figure 8.12.11 Timing Diagram; 68000 Memory Read Cycle and Memory Refresh

224 Programmable Logic Design Guide

PAL 16R4
DP84322

Dynamic RAM Controller Interface for the
MC68000-DP8409 Memory System

CK /AS /UDS /LDS R /RFRQ /CAS /CS WAIT GND
/OE /CL /CU /C /B /A /RFSH /DTACK /RASIN VCC

IF (VCC) RASIN =

IF (CS) DTACK =

RFSH: =

om >
|

IF (VCC) CU =
IF (VCC) CL =

AS*RFSH+/A +
RESH*R*A*WAIT
/R*CAS*WAIT +
UDS*/A*/B+/WAIT +
LDS*/A*/B+/WAIT +
AS+/R¥/A*/B*WAIT +
AS+/RESH*R+/A*/B*WAIT

/AS*RFRQ +
RFSH*/R*/C+WAIT +
RFSH*R*/A*WAIT +
RFSH*/C+/WAIT

RFSH

= A

B
UDS*CDS
LDS*CAS

225

Applications

v————

Cu ¢ B A RFSH DTACK RASIN

cL

OE

CS WAIT

CAS

ICK AS UDS (DS R RFRQ

Irrrr4JJJJIIIIIrI XA JJIIIXIISJIIISISOTI

XXXXNJJ L JAU T I T IIIIJJIIIITIII A JONIITIISIXT

XXXXIIIIIITIJJJIIIIIIJJJITIIIIIASIIIIN

XXXXIIIIIIIIJJJJIJITTXIJJIJJITIIITITIASJJIITIIN
XXXXIIIIIIIIIJJJJIJIIIIIAASJIJIJIITIIIILSIIIN

XXXXIIIIIIIIXIJJJAIIIII S AJALJIJITITITITIITIISIISIN

IJJITII-SIIZJIIIIIIXIXIIIIXIITI-SIIIIIIII)

HLHLHHHHHHHHHHHHHLLHHHHHH.HLHHHHHHHHH

JN T [N [RN [T R T R [[T [Y [[[N Y SRS UV T [U [N | U [U [[R [[O I, of
A S J I DA AN I VA I J DT I I I IITIIIIIIIIIIT

IIXTIrIXIraddddd00a0d30d303 004000000000 dd000d04d4

IJ4JJ4IIJJJJIIIIIIIJJJIIIIIINJIIIIISASSAST

IrrIrIrxrIrIrrIrIrJJ4rrrrrrIrJJIrIIITIIXIIIrI4JIIIITI

IIIIIIIIJdddId 0403303040330 JAdJITITIIITIITXT
44 IJIIXIIIIIIIddJddJdJAdTTITITIJAdJddJAdJTITITITIIIIIITT
4 JJ I I 2 JIITIJIIIIIIIIIITII L4 A JIITITIIIIIIISSITT

IIIIIJdAddadJdJdITITIT NI LA IJIdTITI T I I IAIITITITIITINILTTI

CC.h.uCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Table 8.12.6 Function Table

226

Programmable Logic Design Guide

Inputs (0-31)

CLOCK D
1

23 4 7

891011 12131415 16171819 20212223 24252627 - 29203031

. —~_
1
§ AASIN
H 19
7
AS —]
2 .
:
i BTACK
" 18
15
uDns .
NS &
16
17 P
u RFSH
n
. 22 E 17
—— 2: >
DS 4
=]
=~ i
™ o ' NC
© 7
{ DQ 4:&0—
e]
e | 16
2 o g
5 n/w[: 1
§ .
] i E NC
=3 5 p—
« ; 15
é
RFR__k <]
6 A
g - -
Eg E NC
n; . g 14
46 S
a
CAS
7 .[}
1] [
49
! z CASU
2 X
3 X 13
[4
S K
z CASL
i 3 12
WAIT, P OF
T P < —<—
0 4567 891011 12131415 16171819 20212223 24252627 28293031

Figure 8.12.12 DP84322 Logic Diagram PAL Device 16R4

Applications 227

8.13 DP84332 DYNAMIC RAM CONTROLLER INTERFACE CIRCUIT FOR THE
8086 AND 8088 CPUS

General Description

The DP84332 dynamic RAM controller interface is a PAL device for interface between
the DP8408 dynamic RAM controller and the 8086 and 8088 microprocessors. No wait
states are required for memory access. Memory refreshing may be hidden (no wait
states) or forced (up to three wait states).

The DP84332 supplies all the control signals needed to perform memory read, write
and refresh. Logic is also included to insert a wait state when using slow memory.

Dual-In-Line Package

CLOCK — 1 U 20— V¢c
A0 —]2 19 = NC
BHE —{ 3 © 18p=—=NC
[I 17}—NC
ALE —{5 16 —RFSH
RFCK—] 6 15 j—RDY
AWAIT — 7 14 p—CASH
RFRQ—{ 8 13 — CASL
NC—{9 12}—RASIN
GND—{ 10 11}—OE
TOP VIEW

TLIFI5000-1

Figure 8.13.1 Connection Diagram

228 Programmable Logic Design Guide

Features

o Low parts count controller for the DP8408/DP8409.

* Works with 8086 systems configured in min or max mode.

¢ Performs hidden refresh using the DP8408 dynamic RAM controller.

* Compatible with both the 8086 and 8088 microprocessors.

® Capable of working at all CPU clock frequencies up to 8 MHz.

¢ Standard National Semiconductor PAL device part (PAL16R8).

¢ PAL device logic equations can be modified by the user for his specific application
and programmed into any of the PAL devices in the National Semiconductor family,

including the new high speed PAL devices.

a%g - CAs |—» CASH

»| GENERATOR }—» CASL

- RASIN —

RASIN

AWAIT——p| COUNTER cenenmon—"

4 1 - RDY1 .
cs *| AEauEsT
ALE >l encoper

r' 3

RFRQ | REqUEsT |— FFSH

RFCK | Encoper

TL/F15000-2

Figure 8.13.2 Block Diagram

Applications 229

Symbol Parameter Min Typ Max Units
Vee Supply Voltage 4.75 5.00 5.25 \
lon High Level Output Current -3.2 mA

oL Low Level Output Current (N;‘; 2) mA
Ta Operating Free Air Temperature 0 75 °C

Table 8.13.1 Recommended Operating Conditions

Symbol Parameter Conditions Min | Typ| Max JUnits
ViH High Level input Voltage 2 \
ViL Low Level Input Voltage 0.8 v
Vic Input Clamp Voltage Veg=Min, [j= -~ 18 mA -15 \
Vou High Level Output Voltage Vee=Min, Viy £2V, VL=0.8V, loy = Max 24 '
Vou Low Level Output Voltage Voo =Min, Viy=2V, V=08V, Ig.=Max 0.5 \
lozH Off-State Output Current Vee=Max, Viy=2V, Vg=2.4V, Vv, =08V 100 A

High Level Voltage Applied
lozL Off-State Output Current Voo =Max, Viy=2V, Vg=0.4V, vV =0.8V -100 A
. Low Level Voltage Applied
I, Input Current at Vee=Max, V=55V 1.0 mA
‘ | Maximum Input Voltage
liH High Level Input Current Vee=Max, V=24V 25 A
n Low Level Input Current Voo =Max, V,=0.4V -250 | uA
los Short Circuit Output Current | Vee=Max -30 -130 mA
lee Supply Current Ve =Max 150 225 mA

g (Note 1)

Table 8.13.2 Electrical Characteristics

Commercial
Conditions Ta=0°C to +75°C .
Units
Symbol Parameter R, =6670 Ve =5.0V 5% '
Min Typ Max
tep Clock to Output C_=45pF . 15 25 ns
tpzx Pin. 11 to Output Enable C_=45pF 15 25 ns
tpxz Pin 11 to Output Disable C_ =5pF . 15 25 ns
tw Width of Clock High 25 ns
Low 25 ns
tsy Set-Up Time 40 ’ ns
ty Hold Time 0 -15 ns

Note 1: |cc = max at minimum temperature.
Note 2: One output at a time; otherwise 16 mA.

Table 8.13.3 Switching Characteristics

230 Programmable Logic Design Guide

Mnemonic Description

Input Signals
CLOCK

A0, BHE

CE

The CLOCK signal determines the timing of the outputs and should be
connected directly to the 8086 clock.

These inputs come from the 8086 CPU. They must remain stable dur-
ing the memory cycle for proper operation of the CAS outputs.

Chip enable. This input is used to select the memory and enable the

~ hidden refresh logic.

ALE

RFCK

AWAIT

=

FRQ

Address latch enable. This input is used to indicate the beginning of a

memory cycle.

Refresh clock. The period of this input determines the refresh interval.
The duty cycle of this clock will determine the length of time that the
circuit will attempt a hidden refresh.

When connected to VCC, the DP84332 will insert an extra wait state in
selected memory cycles.

Refresh request. This input requests the DP84332 to perform a refresh.
The state of the RFCK input will determine what type of refresh will be
performed.

Output Signals

RASIN
CASH, CASL

RDY

RFSH

This output provides a memory cycle start signal to the DP8408, and
provides RAS timing during refresh.

These signals are the separate CASs needed for byte writing. Their
presence is controlled by BHE and AO respectively.

This output is used to insert 2 wait state into the 8086 memory cycles
when selected and during a forced refresh cycle where the 8086
attempts to access the memory. The 8284A clock circuit should be
configured so that ASYNC is enabled.

This output controls the mode of the DP8408 dynamic RAM control-
ler. When low, it switches the DP8408 into an all RAS refresh mode.
This signal is also used to reset the refresh request logic.

Functional Description

A memory cycle starts when chip select (CS) and the address latch enable (ALE) are
true. RASIN is supplied from the DP84332 to the DP8408 dynamic RAM controller
which then supplies a RAS signal to the selected dynamic RAM bank. After the neces-

Applications 231

sary row address hold time, the DP8408 switches the address outputs to the column
address. The DP84332 then supplies the required CAS signals (CASH, CASL) to the
RAM. For byte operations, only one CAS will be activated. To differentiate between a
read and a write, the DT/R signal from the CPU is inverted and supplied by the DP8408
to the memory array. 7

A refresh cycle is started by one of two conditions. One is when a refresh is
requested (RFRQ is true), refresh clock (RFCK) is high, and a non-selected memory
cycle is started (CE is not true, ALE is high). This is called hidden refresh because it is
transparent to the CPU. In this case, the address supplied to the memories comes from
the refresh counter in the DP8408, and no CAS signals are generated from the
DP84332 . The second form of refresh occurs when a refresh is requested, refresh clock
is low, and there is no memory cycle in progress. This is called forced refresh, because
the CPU will be forced to wait during the next memory cycle to allow for the refresh to
be performed. In this case, a refresh is performed as before, but any attempt to access
memory is delayed by wait states until after the refresh is finished. In either case, the
refresh request is cleared by the refresh line (RFSH), which also goes to the DP8408.

In a standard memory cycle, the access can be slowed down by one clock cycle to
accommodate slower memories. This extra wait state will not appear during the hidden
refresh cycle, so faster devices on the CPU bus will not be affected.

With higher speed systems, memory speed requirements will affect the perform-
ance of the system. Table 1 shows memory speed requirements at three different CPU
clock speeds. :

CPU teac
Clock No Wait 1 Wait tran
Frequency States State
8 MHz <105 ns <223 ns =30 ns
5 MHz <170 ns =370 ns <30 ns

Table 8.13.4 Memory Speed Requirements

System Description

For memory operation, the DP84332 can be directly connected between the control
signals from the CPU chip set and the DP8408 dynamic RAM controller. Each CAS out-
put of the DP84332 is capable of driving eight memory devices. If additional drive is
required, a DP84244 buffer can be used to increase the fanout to the full capabilities of
the DP8408 (ecight memories per output of the DP84244).

The 84332 is a standard National Semiconductor PAL part (PAL 16R8). The user
can modify the PAL equations to support his particular application. The 84332 logic
equations, function table, and logic diagram can be seen at the end of this section.

ADDRESS BUS

INTERFACING THE DP8408 TO AN 8086 SYSTEM

-Qo-6, 7 A0-6,7
RO-6, 7 RAS 3 RAS 16K,
ADDRESS DM74LS 139] CAS 64K
PORT C0-6, 7 WE
'R »| B1
—»| Bo
ALE »| ADS -
»{ CS RAS 2
DP84300 W DP8408
8086 CLK 10 MHz MAX -
. 8284A MM 74LS04 RAS 1
&— ASYNC DTR D& »| WIN
RFCK R
aFRg > »| RASIN
—»| RDY1 > RAS 0
AENT > M2 , =
LATCHED [__Bﬁcé »| DP84332 @FSA)|M1 moWE W
ATA AWAIT W T - T CASH| fCasL ORAMS
D CONTROL
PORT s > CASH *
0’ =NO WAIT =
‘ ‘1’ = ONE WAIT L »| DP84244 % A
SEE TABLE | I T OE
= "FOR CK <8MHz M1="0’, M0 ="‘1’
FOR CK>8MHz M1="1’, MO="0’
" DATA BUS *THESE OUTPUTS MAY NEED RESISTORS

Figure 8.13.3 System Block Diagram

4 %4

apmo udrso(21807 sjqewrwresSord

Applications 233

Refresh Request Logic

To generate the refresh request for the DP84332, external circuitry is required. Figure 1
shows how this can be implemented, using standard SSI and MSI logic. A DM741.5393
counter is used to time the period between refresh cycles, while the DM74LS74
flip-flop is used to record the need of a new refresh. A better solution is to use the
24-pin DP84300 programmable refresh timer, as shown in Figure 2. This part allows a
maximum amount of time for a hidden refresh to occur before lowering the refresh
clock output, and implements the refresh request logic.

—» RFCK
uon_ D B Q -R—ER—Q
DM74LS74
SYSTEM _1 niviper >
cLOCK

T——-—-(RFSH

Figure 8.13.4 Using a Flip-Flop and a Counter for Refresh Request Logic

SYSTEM
cLOCK ? —> RFCK
DIVIDE

CONSTANT “m’, DP84300

AFSA y—— — AFRG

Figure 8.13.5 Using the DP84300 Refresh Counter for Refresh Logic

234 Programmable Logic Design Guide

t1- t2 t3 49—

~ PCLK 1 []

- DRESS) _{
ADO-15 —-—Goomass) { DATA READ

& \ tsuf—tus/”

ALE Ftsu-— I

RASIN top—] ton
‘RAS , |
CAS tpo-'—’l tep-

ALk

RAM ADD ————— Row ADD X COLUMN ADDRESS

Figure 8.13.6 Timing Diagram; Read Timing

Applications 235

t1 t2 13 t4

pcLK | [] \ [

AD0-15 —————(A!Donéss—H | " WAITE oATA >
cs Ctsut-tu/ ‘

ALE tsu’——-l
DT/R / \

RASIN teo -] , o]
AAS 1 [
thAs thg-—| oo

RAM ADD—————— Row ADD X COLUMN ADDRESS —

Figure 8.13.7 Timing Diagram; Write Timing

236 Programmable Logic Design Guide

t1 | t2 13 ty ty

PCLK | | [

cs tsy

‘—'H._f.
-
=
L

thp-

RASIN tpp

15

RAS
CAS tep _._| : tpp
RDY teo 1:I teo -1:' '
‘ T READ DATA VAL‘D\
DATA { D e

- Figure 8.13.8 Timing Diagram; Memory Cycle With 1 Wait State

Applications 237

|

PoLK | [T | j
RFCK |

—_ — \) X
cs tsy -\—-r \ N\ \
| WP | . K VI PR dadlcwe= K WP) B
. t r-\L_'—} r it | r=T --': rag=—
ALE su1 : H H H H : H

RASIN | top /

RS i f '/ | L.
RAM ADD — REFRESH ADDRESS XRDW| | ADDRESS
|
N

\ N 4
4 N, N L{l’.’i?;'

WAIT STATES DUE TO ALE

RFSH - ’PD"X | \) tpo—~4) \
/

<31

RDY too —

~ Figure 8.13.9 Timing Diagram; Forced Refresh

238 Programmable Logic Design Guide

PCLK | .
D15 ————(AooRESS -
cS ,'Lts"_'

‘ AI;E _ Ft »—_I

CAS

RAM ADD

PAL1GR8

' t1
l

—

SU

teo

1]

tep

L

—

/
\

REFRESH ADDRESS

) ——

Figure 8.13.10 Timing Diagram, Transparent Refresh

Dynamic RAM Controller Interface for the 8086-8408 System
CK AQ /BHE /CS ALE RFCK WAIT /RFRQ NC GND /OE /RASIN /CA /CB
RDY /RFSH /A /B /MRQ VCC

MRQ: =

/RASIN*/CA*/CB*RDY*/RFSH*/A*/B*/MRQ*RFRQ*CS*ALE+/RFCK +

MRQ+*RASIN +

RAISIN#*/CA*/CB*RDY*RFSH*/A*MRQ*CS*ALE

RASIN*/CA*/CB*RFSH*/A*/B +

RASIN*/CA*/CB*/RDY*/RFSH*/A*/B*WAIT +

RASIN*RDY#*/RFSH*A*/B

RFSH:

CB:

RASIN:

Applications

RASIN*ICA*ICB*RDY*/RFSH+*/A*/B*/WAIT +
RASIN*RDY*/RFSH+/A*B + '
RASIN*RDY*/RESH*A*/B

/RASIN*/CA*/CB*RDY*/RFSH*/A*/B*/MRQ*RFRQ*/CS*ALE*RFCK* +
/RASIN+/CA*/CB*RDY*/RFSH*/A*/B*/MRQ*RFRQ*/RFCK + ‘
RASIN+/CA*/CB+*RFSH*/A*/B

/RASIN*/CA*/CB*RDY*/RFSH*/A*/B*MRQ*RFRQ*CS*ALE+/RCFK +
RASIN#/CA*/CB*RDY*RFSH*/A*/MRQ*CS*ALE +
/RASIN*/CA*/CB*RDY*/RFSH*/A*/B*/MRQ*/RFRQ*CS*ALE*WAIT +
/RASIN*/CA*/CB+/RDY*/RFSH*/A*/B*MRQ#*/RFRQ*WAIT +
RASIN#/CA*/CB+/RDY*RFSH+*/A +
/RASIN#/CA*/CB+*RDY#*/RFSH*/A*/B*/MRQ*RFRQ*CS*ALE+RFCK+WAIT

RASIN*/CA+/CB+*/RFSH*/A*/B*BHE. +
RASIN*CB*RDY*/RFSH*/A*B*WAIT +
RASIN*CB*RDT#*/RFSH*A/*B

RASIN*/CA#*/CB*/RFSH*/A*/B+*BHE +
RASIN*CA*RDY*/REFSH+/A*B*WAIT +
RASIN*CA*RDY*RFSH*A*/B

/RASIN*/CA*/CB*RDY*/RFSH+/A*/B*/MRQ+*/RFRQ*CS+ALE +
/RASIN*/CA*/CB*/RDY+*/RFSH*/A*/B*MRQ+*/RFRQ +
RASIN+*/CA#*/CB*/RFSH*/A*/B +
RASIN*RDY*/RESH*/A*B*WAIT +
/RASIN#/CA*/CB*RDY*/RFSH*/A*/B*/MRQ*RFRQ+*ALE*RFCK +
/RASIN*/CA*/CB*RDY*/RFSH*/A*/B*/MRQ*RFRQ*/RFCK -+
RASIN*/CA*/CB+*RFSH*/A*/B +

RASIN*RDY#*/RFSH*A*/B

239

Programmable Logic Design Guide

240

CA

RASIN

ALE RFCK WAIT RFRQ OE

cs

BHE

CK A0

XHHHHHHHHHHHHHHHHLLLH‘HHHHLLHHHH.HHH

XIIIJIIJIJIILAIIJIIJIITATITT

XITJJ4IITJJIXIITIIIIIIIII-LIT

XIIIIIIIrrIrrJ4J4IrJ4J4IrJarrrxxT4d

XIIIIrJIIXIrrIITITITIrJJ4JITITITT
XIIIIXIIIIIIIIIXIIIIIXIJJTIT
XII oI IIIITIITIXITIITIIIIIIT
XTJAJJT 4 d AT JJT I JdJT 4TI I I
N S S RS R S B P R O S S [[0 [|

IIIIXIIIIIIIIJXIAXIUOXIIIITITJ
A A A AT T T TTXXXXXXXXXddSIX

ITIXXXIXXXXITIXXIXXIXXXXXX

4 AT 00T dJdJd I T A d I3 T S dd a4
IXI A JIdT I JdAdTTITIIXXXX I3 Ida%
AAXTIXXIITIIXXXXXXXX IS I IXX

A AN A IXXTITIXXXXXXXXIIIITIXX

>

IJI2ITIT

ITJ=2TITI-

IXIIIITT

4 IIIITITT

I JJaIT I J

I a0 IT

HJJ 3T Jd4

ITITIIX X

ITITITIXI LA

XX XX X T X

AddaaTa

RS RS R R Y [e |

Jd XX d

e dAdX XTI

I XX

x

[SRORORSRSNORORGNSNORONSRORORORONORONONSRORONOG NG RORORORCHORO RO RONORORO RS RORG]

Table 8.13.5 Function Table

Applications

1 Inputs (0-31)
cLock —>-

' D123 4867 BEI0I LIS 161 0eds 202:2028 eddlale s8N
?)
2
k)
.
s
i =

2

a0 —PE1. FH

] "_3—.!
|; >
!i
(k]
R =)

—3 N A
BHE —¥ <
: =)

A1)
3
H ._.)
4 .
s % N
«)
W -
7
i
23
o =] 1
5 4
ae —{x H

241

-
N

>l

v

6
arok S <
o >
a2 »
4]
4
4)
7 N '_7 A
awarr g ras
a8
4
50
5 i >—
52
8]
54
5
8 N A
AFRG % &H
56 ")J
b 3
59
60 »
61
9 N “
NC — X R
012 4582 B 9101 1508y 1B1IIBIS 017775 ¢34Svi) lges30 N

v [=]
ol O

Figure 8.13.11 84332 Logic Diagram PAL1GR8

242

8.14 A PAL DEVICE INTERFACE BETWEEN THE NATIONAL SEMICONDUCTOR
NS32032 MICROPROCESSOR, DP8409 DYNAMIC RAM CONTROLLER, AND

Programmable Logic Design Guide

THE DP8400 EXPANDABLE ERROR CHECKER AND CORRECTOR

TERMINAL
RS-232
CPU &
e || e |y o ||
MONITOR NS32202 INS8251 INS8255
NS32201
b (Tﬁ
’ ADDRESS BUS 24 BITS
> < <z
DATA BUS 16 BITS
< </ VW
CONTROL BUS
H <> <__ ADDRESS
A MEMORY (DRAM)
A-PAL K_:D Yl (256K DRAMS)
CONTROL DP8400 DP8409 4 BANKS OF 22
CONTROLLER A 2m BYTES PLUS.
: A ckBits
T‘t 23 j’\ CONTROL 4
7 CONTROL 8409 }
DATA
CHECK BITS

Figure 8.14.1 DP8400, DP8409, NS16032 6 MHz Computer System

* Application 8.14 is contributed by Webster (Rusty) Meier, Design Engineer of Natibnél Semiconductor

Applications 243

Four PAL devices were used in this application in order to interface between the
NS32032, DP8409 and the DP8400. These PAL devices have the following features:

1.

The PAL devices control the following types of cycles:

a) READ cycles with no errors detected, ALWAYS CORRECT MODE

b) READ cycles with single error detected, the correct data will be written back
to memory

¢) WRITE cycles

d) BYTE WRITE cycles

€) DRAM REFRESH cycles

The PAL devices take care of everything, no extra control logic is needed.

The outputs of the PAL device control the DP8409, the DP8400 and insert
WAIT states at the appropriate times into the NS32032 cycles.

The PAL device contains outputs to interrupt the NS32032, or cause a cycle
abort if an error greater than a single error is detected (DOUBLERR), or if there
is a bus parity error in data transfer from the CPU to memory (PARITYERROR).

This PAL device design should work up to 8Mhz with the NS32032. If it is
desired to go faster, another WAIT state will have to be inserted into all cycles,
and the PAL device equations will have to be adjusted accordingly. Another
possibility would be to use the new oxide isolated DP8400 and the new DRAM
controller DP8419 (pin compatible with DP8409 in modes 0,1,4,5). These parts
would allow considerably more time margin.

As can be seen by looking at the PAL device logic diagrams some external logic
is needed and some external logic may be added. For example, a system reset
input could be added to allow the internal flip-flops to be set to a known state
— in this case a refresh state (In PAL device number 1, for example, I used exter-
nal logic to “NOR” the RFI/0 input with a system RESET input). An output
enable input was also included to allow all the PAL device outputs to be
tri-stated. ' ‘

This PAL device interface performs HIDDEN REFRESHES (CPU not accessing
the Dynamic RAM controlled by the DP8409, indicated by /CS being high)
assuming a four-T state processor access cycle.

Logic diagrams, the PAL device equations, and the timing diagrams follow this
introduction section. Basically everything is self-explanatory.

I feel that if one is using this interface above 4-6MHz, he should use the fast
PAL devices (example “PAL16R8A” instead of “PAL16R8”). The fast PAL devices
have an input to output maximum time of 25ns and 15ns if it is a registered
output.

244

Programmable Logic Design Guide

The slow PAL devices have an input-to-output maximum time of 35ns and 25ns
if it is a registered output. Depending on the specific type of PALs and logic
used, the user can calculate the speed requirements for the DRAM at the speci-
fied processor frequency with the timing that I have chosen.

The four PAL devices that I have used allow full use of the DP8400 and all its
modes of operation. For example, one can petform a complete diagnostic test
of the DP8400 without needing to use the external memory. This is possible
using an I/O port to control M2 and M1 of the DP8400, along with diagnostic
control signals DIAGCS and DIAGD. These signals from the I/O port allow the
user complete control over the operating modes of the DP8400 and its data
syndrome, and check bit latches.

PAL Device Number 1 Inputs

10.

FCLK Fast Clock (twice CTTL frequency) from NS32201
CTTL Output clock from NS32201
/CS Chip Select for the Dynamic RAM controlled by the
DP8409 and DP8400. :
/DDIN " Data Direction in, from NS32032, indicates the direction
of the data transfer during a bus cycle.
RFI/O Refresh request output from the DP8409, is also used as a
reset input to set PAL to a known state.
INCY Output from PAL device number 2 indicating that the
" NS32032is in an access cycle.
/AOHBE If address bit 0 AND high byte enable (fromNS32032) are

both low this input is high. Used to determine when byte
operations are in progress. '

NTSO FromNS32201, indicating that timing state T2 is starting,
‘ it stays low until the beginning of T4.

/ERRLATCH Output from PAL device number 3 indicating that any
‘ error, AE, was valid during a READ access cycle.

/OE Controlled externally, TRI-STATE PAL outpu'ts.

Applications
FROM A ADDRESS
PROCESSOR—¥{ADS RFRQ |—»HOLD
SYSTEM Reek (RFI0)| (To up)
cLK
(FROM RFCK ppgaos
PROCESSOR)
HOLDA—»{ M2 (RFSH)
PBUFO b RASIN—RASIN AAS 0-3} WA —+] AAS 0-3
— WIN—¥WIN CAS VW3] CAS
aalfmi= gl ==
. DECODER
4] 7415245 }e—K »|DI0-7
ADDRESS/ |
DATA 0-7
DIR
1
ADDRESS/
DATA 8-15
5¢ » 745245}« »{Dis-15
DATA
TRANSMIT/O DIR_
RECEIVE G * MEMORY
seOFio— 1 . 5¢ 7aL5244 fe—{D08-15
DOUTE
e g
A 4 A4
a7 oaens :
086 —»|0B0
OBi—»{0B1 s
e——1 o
csLE —slCsLE o 74L5244 +—] D0O0-7
DLE—T DLE DP8400
OLE—»|OLE
6, DO16-21
M2 M2 Co-5 [(CHECK BITS)
oEs cs
L o }
DIt6-21
74LS244 [(cHECK BITS)
@ RESISTOR REQUIRED DEPENDS ON DRAM LOAD.
* R=2.7K0

Figure 8.14.2 DP8400/8409 System Interface Block Diagram

245

246

Programmable Logic Design Guide

PAL Device Number 1 Outputs

1.
2.

/RASIN
/RFSH

/1DLY
/2DLY
/3DLY
/4DLY

/ODCLEN
/CYCLED

Input to DP8409.
Input to DP8409, causes the DP8409 to enter modeé 1 to

" do a refresh.

Delay used by the PAL devices to determine the state of
the processor system.

Delay used by the PAL devices to determine the state of
the processor system.

Delay used by the PAL devices to determine the state of
the processor system.

Delay used by the PAL devices to determine the state of
the processor system.

/OLE, DLE, CSLE enable latch signal.

Indicates that a processor access cycle is complete.

PAL Device Number 2 Iinputs

1.

¥ o oW N

._.
e

p—
—

/RFSH

/RASIN

A0

/HBE
/DDIN

/ADS

NTSO
12DLY
/4DLY
/ERRLATCH

CSOE

Output from PAL device number 1 that indicates whether
the DRAMs are being refreshed.

Output from PAL device number 1.
Output from NS32032, address bit 0.
Output from NS32032, high byte enable.
Data Direction in, from NS32032.
Address strobe from NS32032.

Output fromNS32201.

Output from PAL device number 1.
Output from PAL device number 1.

Output from PAL device number 3 indicating that an
error has occured during a READ cycle.

Chip select Output Enable, TRI-STATE the outputs of the
PAL device when low, and also used for other control
purposes.

Applications 247

PAL Device Number 2 Outputs

/0BO
0B1
/PBUFO

/PBUF1
/DOUTB

/INCY
/CWAIT

Controls DP8400 output buffer for byte “0”.
Controls DP8400 output buffer for byte “1”.

Controls the processor buffer transceiver
for byte “0”.

Controls the processor buffer transceiver for byte “1”.

Controls memory buffers that interface between the
DRAM and the DP8400/memory data bus.

Output indicating that the N§32032 is in an access cycle.

Output toNS32201 that causes WAIT states to be inserted
into the NS32032 bus cycles.

PAL Device Number 3 Inputs

Y ® N 0w

11.
12.

/DDIN
/RFSH

/AOHBE

/ERRLATCH

/1DLY
/2DLY
/3DLY
/4DLY
/RESET

AE
EO
El

Output from NS32032.

‘Output from PAL device number 1 indicating a forced

refresh of the memory.

Output of A0 and /HBE logically NORed together. There-
fore, if either input is high this signal will be low. This sig-
nal is useful to determine whether words or bytes are
being written.

Output from PAL device number 4 indicating that an error
has occurred during a CS READ cycle, it may be a single or
multiple bit error.

Input from PAL device number 1.
Input from PAL device number 1.
Input from PAL device number 1.
Input from PAL device number 1.

Input from external logic that resets the double bit error
latch /DOUBLERR or the parity error latch PARITYERR.

Output from DP8400 indicating an error.
Output from DP8400 indicating the type of error.
Output from DP8400 indicating the type of error.

248

13.

14.

Programmable Logic Design Guide

/PARITYERROR

CSOE

This is an output of this PAL device also. This input indi-
cates that a PARITY error has occurred during a WRITE
cycle.

Chip Select Output enable, tristates the registered out-
puts of the PAL device when low.

PAL Device Number 3 Outputs

1.
2.

3.

WIN
/MODECC

~ /PARITYERR

Input to the DP8409.

Input to the DP8400, changes between READ and
WRITE modes.

Can be used to interrupt the system when a parity error
has been detected during a WRITE cycle.

PAL Device Number 4 Inputs

10.

11.

12,

FCLK
ODCLEN
. DIAGCS
DIAGD |
/RESET

/CYCLED

AE
/EO1

/3DLY
/0E
/DDIN

/RFSH

Fast clock fromNS32201.
/OLE, DLE, CSLE latch enable input.

Enable input from I/O port for diagnostics to enable

CSLE, check bit syndrome latch enable.

Enable input from I/O port for dagnostics to enable DLE,
data latch enable.

Reset input from I/O p'ort to reset PAL error latches.

Output from PAL device number 1 indicating that a pro-

~cessor access cycle is complete.

Output from DP8400 indicating an error.

When this input is low it indicates that either error flag
EO or E1 was high.

This is an input from PAL device number 1.

‘Output from 1/O port that enables the PAL outputs.

NS32032 input that indicates the direction of the bus
transfer during a bus cycle.

Output from PAL device number 1 indicating a DRAM
refresh cycle. . :

Applications 249

PAL Device Number 4 Outputs

1.
2.

DLE
CSLE

/OLE
/DOUBLERR

/ERRLATCH

Output that controls the DP8400 Data latch.

Output that controls the DP8400 Check bit Syndrome
latch.

Output that controls the DP8400 Output latch.

Can be used to interrupt the system when a double bit
error has been detected during a READ cycle.

Used in the PAL device controller to indicate that an error
has occurred during a /CS READ cycle, as indicated by AE
being valid.

WRITE CYCLE

T4

T3

T2

T

T4

| -r1—-
p— w —_]
i
- 2F
<
I~
— 4=z

- rr—T1--r— 11
sy 4| - |

a [}

] R L B e e

cm [=]

Wy ES

= N - L B BN

g0

]

T3

Programmable Logic Design Guide

250

32032 8 MHz ““READ” CYCLE (NO ERRORS)

FCLK

™

T2

T1

llllllllll — ——
3 —1.
o
| 3]
—_ —] _ 4 __ _1a
15}
n
w
5 83 E g8 &3
O =0 3 @@= L O
gz B EE
o < o) o

ga]

a alo

CHECK BITS L

]
L

l
|
||

Figure 8.14.3 Timing Diagram; Read Cycle and Write Cycle

251

Applications

“WRITE" CYCLE — EXTENDED
FROM ERROR IN “READ" CYCLE

32032 8 MHz “READ” CYCLE
W/SINGLE BIT ERROR

FCLK

3

[TW |

T2

CTTL

—y — — 3 — ——

-y — — 4 — —— —

4 =z —1——— —
[= %
= o =
-4 m IIWOII
= o |
4 w —j— — a D] —
& B
~ 1 |- —]
<
N -3 B N (RN A
a
qu - — = —|—
-
]
+ g J —
o q
oa
-4+ JO —_— — [.
%}
Q
4 W JgJj— — -
4 f-_H—— = — —
<&
4 =L 2 A
-
= m -0 w
L |l -
Ms 5 23 o
o= re} @ 0 -
e a U
- g ©
a g o
oo

_] — — 4 — —}—

CSLE

ERRLATCH

Figure 8.14.4 Timing Diagram; Read Cycle With Simple Bit Error

Programmable Logic Design Guide

252

32032 8 MHz BYTE WRITE

FCLK

T4

T3

™w

W

T2

T1

CTTL

—_— e —— e — e e ——— — e E—— . — — —

 — |—“Ill|h.
T ~"1"11l.5%
mD
4 L —— 13z
QO
|||||||| --1|gs
=
4 -] —

z 0 7 m o wuw » & = w r
=] » 2 83 = ER = o _M _w =]
< < s > WW Dm o L a

= gg B k& 4ws x 8

8 = O n w =
b4 B_B w T
[~ olo al\“ o

o

Figure 8.14.5 Timing Diagram; Byte Write

253

Applications

NEW 32032 FORCED REFRESH THEN ACCESS

FCLK

T3

T 2 L w b ww !l vw !l w | 1w

T: |T4|

CTTL

RASIN
NTSO
INCYCLE

Figure 8.14.6 Timing Diagram; Forced Refresh Then Access

rc fvcc 2 e
LK ~ RASIN
1) —{> - RASIN
Faxo> CTTL ~RFSH —{>-RFSH
2 "
T > —csl, I BXE —— ST
-cs> ~oom], 16 |20 — > -20wy
~0OIN[D>~ RF-01, par [230Y > - 3oLy
rr1-o> NI) 40wy > - 4oLy
ABD>— ~ AOHBE 14
~ AOHBE ~ ODCLEN ——{> - ODCLEN
~HBE D> [e Y [cveieo —> -cYeLe
- ~CYCLED
NTS0 [“ERRLATCH : “f —OE -
RESET1
10
RN
. Ivcc 20
~RFSH = = ~g:4‘) > - 080
~RASINY e oo {> -081
Y] s BT —[>> -PBUFO
SHBEL - PBUF1 {> - PBUF1
~ DOIN PAL 16 -DouUT8 {> -pouts
s "2 s
-aos] sefINCY
-Aps - nrsol yfCSQE_
saowly o o |ERALAT -
CSOE ED—-D ~ODCLE
~oe[>—
olaGes £
{>oLe
DIAGP [vee 20 Sosie
5 |
RESET >— w8 csoe Y o BT > -oue
—RsH], 18 |-PARITYERR “ODCLENY, 1 jBLE | —— - WIN
SYITH I 3 1 CS:E "> - MODECC
= ~ot -
~ERALATCH] s WIN ¢ paL 16 ——{> - DOUBLERR
—wow] eac Ol mooece s ne 15p-O0UBLERR I—-—D - ERRLATCH
—20LY ~ERRLATCH _
s 1af— [18— PARITYERR
AE[D SECL ™) 7 13—
€ol a0ty EO | 3] ~DOIN
e> RESET] 2 EO0 s "o
= 9 10 nj-AE r 3 n
T 2

Figure 8.14.7 Simulation Circuit

$se

apimny udisa(21307 Sqewrwressoid

Applications 255

SIMULATION RESULTS
READ (NO ERRORS) READ (W/SINGLE ERROR)
SCALE 2:1 TIME 591 STARTING TIME 591 ENDING TIME 1521 TRIGGER TIME 591
591 691 79 891 991 1091 1191 1291 1391 1491

} | 1 ! ! 1 ' } }
T2 TW1 T3 T4 T1 T2 TW1
CTTL -l
~CS —

~DDIN —

gl

NTSO

~ADS

~RASIN

~1DLY

~20LY

~30LY

~4DLY

~0DCLE

~INCY ——I l—-1

~CYCLED

~0B1

~PBUFO

~CWAIT I_L_ I 1 | J-—
~DOUTB | T

~WIN
~MODECC ——I

~ERRLAT

Figure 8.14.8 Simulation Timing Diagram; Read/Write Without Errors

256 Programmable Logic Design Guide

READ (W/ERROR) . WRITE STANDARD FROM PREVIOUS
CONTINUED READ W/ERROR CYCLE

SCALE 2:1 TIME 1491 STARTING TIME 1491 ENDING TIME 2421 TRIGGER TIME 1491
}491 }591 }691 }791 1IB91 }991 I2091 I2191 l2291 I2391
L] L]

oy BIWt LT3 L Te 1 T | T | Twi g T3 L Ta
-cs

~DDIN I

NTSO 1 L I
~ADS L] .
~RASIN] [

~1DLY I——l

~20LY l

- =y _ l_J—_

~apLY »
|

~ODCLE

~INCY J 1 im

~CYCLED

~0B1

~PBUF0 1 I 1 rT

~CWAIT Li_ J

~DOUTB
~WIN

~MODECC

~ERRLAT

Figure 8.14.9 Simulation Timing Diagram; Read With Error and Write Cycle

SCALE 2:1 TIME 2391 STARTING TIME 2391

2391 2491

2591
1

BYTE WRITE
ENDING TIME 3321

2691
1

2791

2891 2991

Applications

WRITE

TRIGGER TIME 2391

3091 3191

3201

-
T2

TW1

TW2

T T
T4 T1

5

~CS

~DDIN

NTSO

~ADS | |

~RASIN

~1DLY

~2DLY

~3DLY

~4DLY

~ODCLE

~INCY . . |

~CYCLED

~0B1

~PBUFO0

~CWAIT

Ly

~DouTB

~WIN

~MODECC |

~ERRLAT

Figure 8.14.10 Simulation Timing Diagram; Byte Write

257

258

SCALE 2:1-

CTTL

~Cs

~DDIN

RFI~0
a0
~HBE
NTSO
~ADS
~RASIN
~RFSH
~1DLY
~2DLY
~3DLY

~4DLY

~ODCLE

~INCY

~CYCLED

~0BO

~0Bt1

~PBUFO

~PBUF1

TIME 3591

3591
1l [l

3691

3791

3891
1

Programmable Logic Design Guide

3991
1

4091 4191
1 } Il

4291

4391

4491

I T1I

4L

TWA

L L

'TW2

YTws !

]

Figure 8.14.11 Simulation Timing Diagram; Forced Refresh Then Access

SCALE 2:1

CTTL

~DDIN

NTSO

~ADDS

~RASIN

~1DLY

~2DLY

~3DLY

~4DLY

~ODCLE

~INCY

~CYCLED

~0B1
~PBUF0

~CWAIT

~DouTB

~WIN

~MODECC

~ERRLAT

Applications

WRITE FORCED REFRESH & READ ACCESS
(W/ERROR)

TIME 3101 STARTING TIME 3101 ENDING TIME 4031 TRIGGER TIME 3101
3101 3201 3301 3401 3501 3601 3701 3801 3901 400t
} } i } } } } } } f

T1 T2 T3 T4 T T2 TW1 TW2

KRN

A1

259

Figure 8.14.12 Simulation Timing Diagram; Write, Forced Refresh and Read

Access

260

SCALE 2:1

CTTL

~Cs
~DDIN

NTSO

~ADDS
~RASIN

~1DLY

~2DLY
~3DLY
~4DLY
~ODCLE
~INCY
~CYCLED
~0B1

~PBUF0

~CWAIT

~DOUTB

~WIN

~MODECC

~ERRLAT

Figure 8.14.13 Simulation Timing Diagram; Forced Refresh Followed by Read

Programmable Logic Design Guide

FORCED REFRESH FOLLOWED BY READ ACCESS (W/ERROR)

TIME 4001 STARTING TIME 4001 ENDING TIME 4931 TRIGGER TIME 4001

4001 4101 4201 4301 4401 4501 4601 4701 4801 4901
TW2 | TW3 | TW4 | TW5 | TWs | T3 | T4 | _T5
]
T
(l
- \ |
, \ / 1 //V
| /
\l/ 7
r
1
\ l e
| e
Y R ¥ \
| I \
1
L\

Access (With Error)

PAL Device Number 1

Applications 261

This PAL Device is Part of a Four PAL Device Set Needed to Control the 32201,

8409, 8400 Interface

PALI1GR8A

RFSH : =
/RFIO*/1DLY */2DLY */INCY*/CTTL +
RFSH*/RFIO +

RFSH*1DLY +

RFSH*4DLY

IDLY : =

RFSH*/RFIO +

RFSH*1DLY*/4DLY +

RFSH*1DLY*CTTL +
/RFSH*RASIN*/2DLY */3DLY */4DLY +
/RFSH*CS*RASIN*/4DLY*DDIN +
/RFSH*CS*RASIN*/4DLY*/DDIN*AOHBE +
/RFSH*CS*1DLY*CTTL*DDIN +
/RESH*CS*1DLY*CTTL*/DDIN*AOHBE

2DLY : =

1DLY */4DLY +

1DLY*RFSH +

/RFSH*CS*1DLY *DDIN +
/RESH*CS*1DLY */DDIN*AOHBE

3DLY : =

2DLY */4DLY

2DLY *RFSH +

/RFSH*CS*2DLY *DDIN +
/RESH*CS*3DLY*ERRLATCH*RASIN +
/RESH*CS*2DLY */DDIN*AOHBE

4DLY : =

3DLY *RASIN +

3DLY*RFSH +
/RESH*CS*3DLY *2DLY *DDIN +
/RESH*CS*3DLY *ERRLATCH +
/RFSH*CS*RASIN*4DLY */DDIN*AOHBE

RASIN : =
/RESH*INCY*/CYCLED*/4DLY */CTTL +
/RESH*CS*RASIN*DDIN*1DLY +
/RFSH*CS*RASIN*DDIN*ERRLATCH*CYCLED +
/RESH*CS*RASIN*DDIN*/CYCLED +
/RFSH*CS*RASIN*/DDIN*3DLY *AOHBE +
/RFSH*INCY*/NTSO*/ERRLATCH*/4DLY * RASIN

; RFSH in idle states or in long
; accesses of, other devices or
; at the beginning of an access

; Start RFSH 1DLY

; Hold RFSH 1DLY

; Extend RFSH 1DLY

; For READs and WRITEs

; For READs

; For BYTE WRITEs

; Extend 1DLY during READ

; Extend 1DLY during BYTE WRITEs

; For READs or WRITEs

; Extend for RFSH

; Extend for READ

; Extend for BYTE WRITE

; For READs or WRITEs

; Extend for RFSH

; Extend for READ

; Extend for READ with error
; Extend for BYTE WRITE

; For READs or WRITEs

; Extend for RFSH

; Extend for READ

; Extend for READ with error
; Extend for BYTE WRITE

; Start /RASIN

; READ cycle without error
; READ cycle with error

; WRITE cycle

; BYTE WRITE cycle

; Hidden RFSH, assume on
; four ‘T’ States.

262 Programmable Logic Design Guide

CYCLED : =

/RFSH*1DLY *2DLY *3DLY *4DLY + ; BYTE WRITE or READ cycles
/RFSH*/DDIN*2DLY *3DLY */AOHBE + ; WRITE cycle
CYCLED*CTTL + ; End CYCLED
CYCLED*/NTSO +

CYCLED*RASIN*/DDIN*AOHBE ; End BYTE WRITE cycle
ODCLEN : = .
CS*/RFSH*DDIN*RASIN*2DLY * ; READ and READ with error
/4DLY */ERRLATCH +

CS*/RFSH*/DDIN*RASIN*/2DLY * ; WRITE cycle
/3DLY*/4DLY*/AOHBE +

CS*/RFSH*/DDIN*RASIN*2DLY */4DLY * AOHBE + : BYTE WRITE cycle
CS*/RFSH*/DDIN*RASIN* 1DLY * CYCLED*AOHBE ; BYTE WRITE cycle

PAL Device Number 2

PAL16L8A
IF (CSOE) 0BO =
/DOUTB*DDIN*4DLY *RASIN*/RFSH + ; READ or READ
; wlerror
/DOUTB*AO*HBE*/DDIN*4DLY *RASIN*/RFSH ; BYTE WRITE
; high byte
IF (CSOE) OB1 =
/DOUTB*DDIN*4DLY *RASIN*/RFSH + . ; READ or READ
; wWlerror
/DOUTB*/AO*/HBE*/DDIN*4DLY *RASIN*/RFSH ; BYTE WRITE
; low byte
IF (CSOE) PBUFO = .
/DOUTB*/AO*DDIN*4DLY * RASIN*/RFSH +] ; READ,
; READ/error
/DOUTB*/AO*/HBE*/DDIN*4DLY *RASIN*
/RFSH. + ; BYTE WRITE
/DOUTB*/Au *HBE*/DDIN*RASIN*/RFSH ; 'Word WRITE
IF (CSOE) PBUF1 =
/DOUTB*IIBE*DDIN*4DLY *RASIN*/RFSH + ; READ,,
; READ/error
/DOUTB*AO*HBE*/DDIN*4DLY*RASIN*)
/RFSH + ' ; BYTE WRITE
/DOUTB*/AO*HBE*/DDIN*RASIN*/RFSH ; Word WRITE
IF (CSOE) DOUTB =
DDIN*/RFSH*2DLY */4DLY + ; READ cycle
/AO*/HBE*/DDIN*/RFSH*2DLY */4DLY + ; BYTE WRITE

AO*HBE*/DDIN*/RFSH*2DLY */4DLY . ; BYTE WRITE

IF (VCC) INCY =
/RFSH*ADS*/4DLY +
/RFSH*CSOE*/NTSO*/RASIN +

INCY*/4DLY +
INCY*CSOE*/DDIN*RASIN +
INCY*/CSOE*RASIN

IF (CSOE) CWAIT =
RFSH*CSOE*/NTSO +
/RFSH*CSOE*/NTSO*/RASIN +

/RESH*DDIN*RASIN*2DLY*INCY*/4DLY +
/RFSH*/DDIN*/AO*/HBE*RASIN*/4DLY +
/RESH*/DDIN*AO*HBE*RASIN*/RDLY +
/RFSH*INCY*ERRLATCH*/2DLY*/NTSO

PAL Device Number 3

PAL14L4A
WIN =

/RESH*ERRLATCH*/2DLY*3DLY*4DLY*CSOE +

/RESH*DDIN*3DLY*/AOHBE*CSOE +

/RESH*/DDIN*AOHBE*/2DLY*4DLY*CSOE

MODECC =
/RFSH*ERRLATCH*/1DLY*4DLY*CSOE +
/RFSH*/DDIN*/AOHBE*CSOE +

/RESH*/DDIN*AOHBE*/1DLY*4DLY*CSOE

PARITYERR =
/RFSH*/DDIN*/RESET*4DLY*

. /AE*EO*/E1*AOHBE*CSOE -+
/RESH*/DDIN*/RESET*4DLY*
/AE*EO*E1*AOHBE*CSOE +
/RFSH*DDIN*/RESET*4DLY*
/AE*/EO*/E1*/AOHBE*CSOE +
PARITYERR*/RESET*CSOE

Applications

; Start INCY

; Start INCY for access
; after forced refresh

; or READ w/error

; Continue INCY

; WRITE cycles

; Non-/CS cycles

; Access in RFSH
; Access after

; forced refresh
; READ cycle

; BYTE WRITE.
; BYTE WRITE

; Insert WAITS

; into the next

; cycle

; READ w/error
; Word WRITE
; BYTE WRITE

; READ w/error
; Word WRITE
; BYTE WRITE

; Parity error byte
; “1” during WRITE
; Parity error byte

; “0” during WRITE

; Parity error
; both bytes

263

264 Programmable Logic Design Guide

PAL Device Number 4

PAL16RGA
/DLE: =
ODCLEN +
DLE*DIAGD ; Hold /DLE for
diagnostics
/CSLE: =
ODCLEN +
CSLE*DIAGCS ; Hold /CLSE for
: diagnostics
OLE: = ODCLEN
DOUBLERR: =
/RFSH*/DIAGCS */DIAGD*/RESET* ; Double bit error
OLE*CYCLED*AE*/EO1 + ; during READs
DOUBLERR*/RESET ; or BYTE WRITEs
ERRLATCH: =
DDIN*OLE*CYCLED*/DIAGCS */DIAGD*AE + ; Error during READ

ERRLATCH*3DLY

Product Terms (0-63)

Applications 265

(16201)
FCILK Inputs (0-31)
02 456 BOSAINL LY Yelilels dwdeid b aedrden . u.xdl‘
. .
f g 1o PASIN
: E
(16201) CTTL ; :
2 P
Py S -
: RFSH
2 : L:i EW18
5 0 of—
G 3]
3, 4 j
-3 7
“
: - , TN
|
,,
(16032) DDIN = :E
4 "
RFPQ Py -
; o 20
(8409) i Sl B °
RF IO’ RFLO % T
SYSTEM - 5N < 1 ___]
RESET
(ACTIVE B — ’E 15 30LY
HIGH) o oe
INCY B "La_
(PAL #2 OUTPUT) 6_[;} < j
w _
: _ $ 14 300V
[|
AOHBE & o
AO 7N 1
HBEM N
IF EITHER “ 55 CLER
INPUTHIGH & — 13 ODCLEN
D Q
THISISLOW &
. w q
(FROM 16032) 8_17 ﬂ‘_____—l
NTSO & CYCLED
a 12
i [o o] o
o
ERRLATCH o

(PAL #3 OUTPUT)g_m

le
3

0123 @se s w00 N WIS Qe citiad] tars 0N =

Figure 8.14.14 Logic Diagram of PAL Device #1

266

Product Terms (0-63)

Programmable Logic Design Guide

Figure 8.14.15 Logic Diagram of PAL Device #2

(PAL#1)
1 RFSH Inputs (0-31)
1] } f e567 891011 12101015 16171819 20212223 24252620 29292031
3_ o 0B0
(PAL#1) : ol "
S
2RAsm)
o
g 18
: .
s A0 *
= 1 B PBUFO
19 — 17
0 "
— n
4 HBE n
—5= =
n S =
25 PBUF1
b 16
(16032) n 0
29
DDIN H
Iy <
H > DOUTB
(16032) 15
37
¢ ADS H
@0 _Y
M » IN(i4
(16201) “ o
(1}
7Nrso a
o CSOE
(PAL#1) i _‘E"C(Zeg
k1) —~—
I 3 OE
2o * . TRISTATE
=}— INPUT, MUST
. — BE HIGH TO
e CWAIT ENABLE
(PAL#1) " 12 paAL OUTPUT
8 -
aDLY Hpau ERRLATCH
9) i 1
12 4567 8 9101t 12931415 16971009 20212223 4252627 20293001

Applications 267
Inputs (0-31)
1 [458 ¢ yn 1mu wn 20227 4292821 0850
(16201) N
DDIN 2
(PAL#1)
RFSH
- »
AOHBE
A—o 3 N A 19
HBE N CSOE
IF EITHER IS HIGH
THE OUTPUT IS LOW
PARITYERR
— 4 P 18
ERRLATCH ——{& H—
" : 17
" s ——————
19
PaL#) \ PARITYERR
oy —{¥
g
e u % 16
o H DO'———:_—
E » y WIN
2
g
8)
a u E 15
» l: MODECC
(PAL#1)
2oy —%
“ ‘ 14
p o—
: B
(PAL#1)
7 . 13
3oy —1& St
(PAL#1) 12
—— A
oy —{3 "
—_ 9 P 1
RESET — {3 =

8123 4asse7 psien un

W22 24252000 WY

Figure 8.14.16 Logic Diagram of PAL Device #3

268 Programmable Logic Design Guide

16R6A

1
FeLK —>

’ 1 wn 31018 W N i » o

i 19
| 0 RFSH

: 18
DLE

3 N
DIAGCS — 1%

17
CSLE

a4,
DIAGD 5

’_,JV %
OLE

5
RESET —[%

15
DOUBLERR

ALNARNENE

6
EYCLED — %
5 L w__
2 oa ERRLATCH
» Q
= i
ne—Ps
“ 13
: %} ~ '_—|°°
h [
o I S P]
E“ -E—GT " [7
. 2
- DDIN
9, " ' P n_
3o % <+ ~<—0E

B2 A4S e €90 20ts 0 202NN s wenn

Figure 8.14.17 Logic Diagram of PAL Device #4

National Masked Logic (NML)

National Masked Logic (NML) was introduced to provide cost benefits of volume pro-
duction to programmable logic users who have large volume applications for a given
logic pattern. NML devices are mask-programmed and functionally tested in-house by
National, thus relieving the customer of programming and testing the devices. There-
fore, for these volume applications, the customer can simplify his production line and
gain cost savings through the use of NML.

The NML option is available for all of National’s programmable logic products. The
NML products have the same data sheet specifications as the field-programmable prod-
ucts. The following are the procedures and guidelines involved in using NML.

9.1 NML PROCEDURE

The procedure for using NML is shown in Figure 9.1.1. When a customer has decided
on the NML approach, the equations should be supplied to National for generation of
programmed parts. These programmed devices are then sent to the customer for verifi-
cation of the logic pattern in the application. After the logic has been verified by the
customer in his circuit, National is notified. At that point orders for the masks are
placed in-house at National. At the same time, the Test Engineering and Product Engi-
neering departments prepare to test and qualify the product upon generation of first
silicon. After successful testing and qualification, the product is released for routine
production. ‘

When the order is placed the customer will also be required to provide test vec-
tors to functionally test the logic. When considering the use of NML, - the customer
should keep in mind the need for functional testing of the part. He should generate a
sequence of test vectors that will test the logic functionality to meet his needs.

269

270 - Programmable Logic Design Guide

CUSTOMER INPUT || _
(EQUATIONS) -
! VERIFICATION
oK
PROGRAMMED PALs
. |
p MARKETING
‘ APPLICATIONS
GENERATES BIT MAP
PR
]] ¥
. CAE GENERATES ENGINEERING
TEST VECTORS MASKS MADE ' PREPARES
TO QUAL/TEST
Y
8-12 WEEKS FIRST SILICON
 J
> TEST/QUAL -
]
{ PRODUCTION

Figure 9.1.1 NML-Procedure

9.2 NML GUIDELINES

In evaluating whether NML is an economic option for a certain application, it is impor-
tant to keep in mind the following guidelines. The most important and somewhat obvi-
ous point is that the logic pattern must be verified and frozen. A minimum quantity for
economic justification of NML is at least 10,000 units. At these volumes there is usually
a nominal charge for mask generation. The lead time from the point at which the equa-
tions are verified to the point at which finished goods are shipped is 8-12 weeks.

NML users typically realize cost savings of between 10-40% over the cost of
unprogrammed devices, depending on the volume and the device being used. Keep in
mind that NML users do not have to incur programming and testing costs associated
with unprogrammed devices.

Advantages of National’s
Programmable Logic Family

National Semiconductor has taken leadership of the programmable logic market
through commitments in technology, quality, customer scrvice and support, and by
offering a broad product line. In addition, National is also committed to continuing
developments in software leading to automated design with programmable logic
products.

10.1 TECHNOLOGY

Through innovations in circuit design and process technology, National was the first to
introduce the fastest PAL devices, thus clearly establishing itself as the leading technol-
ogy house for programmable logic devices. The technology used is the proprietary
oxide isolated OXISS process that offers higher integration than other bipolar processes
and also offers improved performance. The advantages of this superior technology are
being harnessed to produce ECL programmable logic devices that will offer speeds at
6 ns. Furthermore, National is also pursuing a major development program to intro-
duce CMOS programmable logic devices.

10.2 BROAD PRODUCT LINE

National’s leading technology position has resulted in the broad TTL product line that
is currently available. This product line offers a variety of speed, power, and density
options as evidenced by the product line description in Chapter 4. For the future,
National will offer a broader spectrum of speed and power options through CMOS and
ECL devices. More options in the TTL family of programmable products are also forth-
coming. Some of the forthcoming features are FPLA-type structures, higher densities,
improved testability through register preloads, and scan registers.

To complete the product line, National is also committed to software development
and support. PLAN is the first step toward meeting that commitment.

271

272 Programmable Logic Design Guide

10.3 CUSTOMER SERVICE AND SUPPORT

Within the field offices, National has fully equipped and trained Field Application Engi-
neers (FAEs) who can support customers in designing with programmable logic. The
FAEs also have the software and the development systems at their disposal to fully sup-
port the customer. In addition, the factory applications and engineering staff are also
available to support the customer in programmable logic-based designs.

Customer training seminars are also given, as part of National’s service, to inform
and train customers on programmable logic products and their applications.

Data Sheets

11.1 PAL DEVICE DATA SHEETS

The PAL device data sheets are broken down into two main sections: 20- -pin PALs and
24-pin PALs, and within each sectlon the various speed/power groups are shown
separately.

Description

The PAL device family utilizes National’s Schottky TTL process and bipolar PROM
fusible-link technology to provide user-programmable logic to replace conventional
SSI/MSI gates and flip-flops. Typical chip count reduction gained by using PAL devices
is greater than 4:1.

The family lets the systems engineer customize his chip by opening fusible links to
configure AND and OR gates to.perform desired logic functions. Complex interconnec-
tions that previously required. time-consuming layouts are thus transferred from PC
board to silicon where they can be easily modified during prototype checkout or
production.

The PAL device transfer function is the familiar Sum-of-Products with a single array
of fusible links. Unlike the PROM, the PAL device is a programmable AND array, driving
a fixed OR array. (The PROM is a fixed AND array driving a programmable OR array) In
addition, the PAL device famlly offers these options:

e Variable input/output ratio.
e Programmable TRI-STATE® outputs.
® Registers and feedback.

Unused inputs are tied directly to Vc or GND. Product terms with all fuses blown
assume the logical high state, and product terms connected to both true and complement
of any single input assume the logical low state. Registers consist of D-type flip-flops that
are loaded on the low-to-high transition of the clock. PAL device logic diagrams are
shown with all fuses blown, enabling the designer to use the diagrams as coding sheets.

The entire PAL device family is programmed using conventional PROM program-
mers with appropriate personality and socket adapter cards. Once the PAL device is
programmed and verified, two additional fuses may be blown to make verification dif-
ficult. This feature gives the user a proprietary circuit that is very difficult to copy.

273

274 Programmable Logic Design Guide

Features

® Programmable replacement for SSI and MSI TTL Logic.

e Simplifies prototyping and board layout.
Skinny DIP packages.
e Reliable titanium-tungsten fuses.
® Awailable in standard, low power and high speed versions.
Part No. of No. of No. of No. of Output .
No. Inputs Outputs I10s Registers Polarity Functions
10H8 10 8 AND-OR AND-OR Array
12H6 12 6 AND-OR AND-OR Array
14H4 14 4 AND-OR AND-OR Array
16H2 16 2 AND-OR AND-OR Array
10L8 10 8 - AND-NOR AND-OR-Invert Array
12L6 12 6 AND-NOR AND-OR:Invert Array
1414 14 4 AND-NOR AND-OR-Invert Array
16L2 16 2 AND-NOR AND-OR-Invert Array
16C1 16 1 AND-OR/NOR AND-OR/AND-OR-Invert Array
16L8 10 8 6 AND-NOR AND-OR-Invert Array
16R8 8 8 8 AND-OR AND-OR:-Invert Register
16R6 8 8 2 6 AND-OR AND-OR-Invert Register
16R4 8 8 4 4 AND-OR AND-OR-Invert Register
Table 11.1.1 20-Pin PAL Devices
Part No. of No. of No. of No. of Output :
No. Inputs Outputs 1/0s Registers Polarity Functions
12L10 12 10 AND-NOR AND-OR Invert Gate Array
14L8 14 8 AND-NOR AND-OR Invert Gate Array
16L6 16 6 AND-NOR AND-OR Invert Gate Array
18L4 18 4 AND-NOR AND-OR Invert Gate Array
20L2 20 2 AND-NOR AND-OR Invert Gate Array
20L8 14 2 6 AND-NOR AND-OR Invert Gate Array
20L10 12 2 8 AND-NOR AND-OR Invert Gate Array
20R8 12 8 8 AND-NOR AND-OR Invert w/Registers
20R6 12 6 2 6 AND-NOR AND-OR Invert w/Registers
20R4 12 4 4 4 AND-NOR AND-OR Invert w/Registers
20X10 10 10 10 AND-NOR AND-OR-XOR Invert w/Registers
20X8 10 8 2 8 AND-NOR AND-OR-XOR invert w/Registers
20X4 10 4 6 4 AND-NOR AND-OR-XOR Invert w/Registers

Table 11.1.2 24-Pin PAL Devices

Supply Voltage, Vcc
Input Voltage
Off-State Output Voltage

Storage Temperature Range

Data Sheets 275
Operating Programming
v 12v
55V 12V
55V 12v
~65°C to +150°C

Table 11.1.3 Absolute Maximum Ratings

ouTPUT

MEDPAL SMPAL

i com'L
Ri=390 RI=200 A1a560
R2a750 R2=390 R2m1.tk

Table 11.1.4

Standard Test Load

EQUIVALENT INPUT

TYPICAL QUTPUT

(23 vee
3 sk NoW 3: 400 NOM.
w e X -
INPUT ¢
—o
N .
N ————— g
y e
3 B
b3
\ A
= ' —3
Set-Up and Hold Pulse Width
TIMING St W HIGH-LEVEL A A
INPUT Vil (SEE NOTE A) PULSE
ov
tser-up 1’ tHoo w
) ! 3v
j LOW-LEVEL
I::l‘]‘? }‘ v wy PULSE v v
ov

Propagation Delay

ki

INPUT o Vi :
s/ o
retPLH thvi

Vou
IN-PHASE (" Vi
ouTPUT ' T
— Vou
pe-tent o totn
————— Vou
0UT OF PHASE
ouTPUT \)
Vou

Note A: Vp =15V

Note B: C_includes probe and jig capacitance.

Note C: In the examples above, the phase rela-

tionships between inputs and outputs have been
chosen arbitrarily.

Vou

ENABLE oo

(ENABLE PIN OR INPUT) 0
L

Vou - ——+

NORMALLY HIGH — 0.5y
ouTPyYT '""j"’k 4 - jq
(STOPEN) 15¢ !
—
NORMALLY LW 2= -+ 15V nz ;
ouTRUT v .
(51 CLOSED) 0.5V

Note D: Al input pulses are supplied by genera-
tions having the following characteristics:
Ppr=1MH2, Zoyr=50Q.

Figure 11.1.1 Test Waveforms and Schematics of Inputs and Outputs

276

Programmable Logic Design Guide

10H8, 12H6, 14H4, 16H2, 16C1, 10L8, 12L6, 14L4, 16L2

Recommended Operating Conditions

Symbot Parameter Military Commercial Unit
Min | Nom | Max | Min | Nom | Max
Vee Supply voltage 45 5.0 .55 475 5.00 5.25 Vv
loH High-level.output current -20 -3.2 mA
loL Low-level output current 8 8 mA
TA Operating free air temperature | — 55 125 1 0 75 °C
Electrical Characteristics
Over Recommended Operating Temperature Range
Symbol Parameter Test Conditions Min | Typ Max | Unit
VIH High-level input voltage v
ViL Low-level input voltage 0.8 A
Vic Input clamp voltage Vece = MIN || = —18mA -15 \'
VeC = MIN vy = 2v
igh-leve!l out l 4 \
VoH High-level output vo tagg Vil = 0.8V - Iy = MAX 2
VCC = MIN vV = 2V
\ - | |
oL Low-level output voltage Vi = 08V oL = MAX 0.5 \
Input current at maximum
|| input VO“age VCC = MAX =55V 1.0 mA
K High-level input current Voo =MAX V= 2.4V 25 uA
L Low-level input current Vco = MAX = 0.4V - 250 pA
los Short:circuit output current Vcc = MAX Vpo=0V -30 -130 mA
Icc Supply current Voo .= MAX 55 90 mA
Switching Characteristics
Over Recommended Ranges of Temperature and Vg
tt Military Commercial
- Test Conditions — _55° S — o° .
Symbol Paramefer ¢ R1°= 5600 Ta = -55%t0 +125°C Ta = 07 to75°C Unit
R2=1.1 k0 Voo = 50V =10% Vee = 50V = 5%
Min Typ Max | Min Typ Max
tpD From any input to any output C .= 15pF 25 45 25 35 ns

Table 11.1.5 AC and DC Specifications for 20-Pin Standard Small PAL Devices

Data Sheets 277
16L8, 16R8, 16R6, 16R4
Recommended Operating Conditions
Symbol Parameter Military Commercial Unit
Min | Nom Max | Min Nom Max
Vce Supply voltage 45 5.0 55] 4.75 5.00 5.25 v
IOH High-level output current =20 -3.2 mA
loL Low-level output current 12 24 mA
Ta Operating free air temperature | - 55 125* | O 75 °C
*Operating Case Temperature only, Tc = 125°C
Electrical Characteristics
Over Recommended Operating Temperature Range
Symbol Parameter Test Conditions Min | Typ| Max | Unit|’
VIH High-level input voltage 2 v
ViL Low-level input voltage 0.8 \
Vic Input clamp voltage Vce = MIN | = -18 mA -15 v
. Vee = MIN vy = 2V
igh- | 1
VoM High-level output volitage ViL = 08V Ion = MAX 24 \
Vee = MIN vy = 2V
. | I
VoL Low-level output voltage ViL = 08V loL = MAX 0.5 v
| Off-state output current Vece = MAX, Vg = 2V,
OzH high-level voltage applied Vo = 24V, VIL = 08V 100 [wA
| Otf-state output current Voo = MAX, Vg = 2V
ozL low-level voltage applied Vo = 04V. VIL = 08V - 100 [«A
| Input current at maximum
| input voltage Ve = MAX V) =55V 1.0 mA
HH High-level input current Voo MAX V) = 24V 25 uA
TN Low-level input current Voc MAX Vp = 0.4V - 250 nA
los Short-circuit output current Vcc=MAX Vo=0V -30 -130 mA
16L8 140 180
Supply Vce = MAX :
Icc Current 16R4,16R6,16R8 150 180 mA

Table 11.1.6 AC and DC Specifications for 20-Pin Standard, Medium PAL Devices

278 Programmable Logic Design Guide

Switching Characteristics
Over Recommended Ranges of Temperature and V¢g

Military Commercial
) A= —55° Ta=0°
Symbol Parameter Test Conditionstt to+125°C . to 75°C Unit
R1, R2 Vee=5.0V+£10% | Vec 5.0V+5%
Min | Typ | Max ['Min | Typ | Max
tep Input to output 25 | 45 25 | 35 | ns
top | Clock to output C_=50pF 15 | 25 15 | 25 | ns
tpzx | Pin 11 to output enable 15 | 25 15 | 256 | ns
texz | Pin 11 to output disable C_=5pF 15 | 25 15 | 256 | ns
tezx | Input to output enable C_=50pF 25 | 45 25 | 35 | ns
toxz | Input to output disable C,=5pF 25 | 45 25 | 35 | ns
High 25 25
tw Width of clock 9 ns
Low 25 25
X 16R8, 16R6, 16R4 45 35
tsy Setup time - ns
16X4, 16A4
t, Hold time) 0 -15 0 | -15 ns

++See Standard Test Load and Definition of Waveforms

Table 11.1.6 AC and DC Specifications for 20-Pin Standard, Medium PAL Devices
(Cont.)

Data Sheets . 279

10H8A, 12H6A, 14H4A, 16H2A, 16C1A, 10L8A, 12L6A, 14L4A, 16L2A
Recommended Operating Conditions

Military Commercial
Symbol Parameter Min Type Max Min Tve Max Units
Vee Supply Voltage 4.5 5 5.5 4.75 5 5.25 \
lon High Level Output Current -2 -3.2 mA
loL Low Level Output Current 12 24 mA
Ta Operating Free-Air Temperature 0 75 °C
To Operating Case Temperature 125 °C
Electrical Characteristics
Over Recommended Operating Temperature Range
Symbol Parameter Test Conditions Min. | Typ. | Max. [Unit
ViK High Level Input Voltage 2 Vv
ViL Low Level Input Voltage 0.8 \
Vic Input Clamp Voltage Vec=Min, |j=-18mA -1.5 v
VoH High Level Output Voltage xi‘;::()'.‘gic;'lz:r:ﬁ:x' 24 v
Vou | Low Level Output Voltage x:iC::o'_“gi\'/‘"'I;’lH::hfa‘i‘ 05 | v
Iy Input Current at Maximum Input Voltage Vce =Max., Vj=5.5V 1 mA
™ High Level Input Current Voo =Max., V=24V 25 uA
[Low Level Input Current Veo =Max,, V| =04V -0.25 uA
los Short Circuit Output Current Vec=5V -30 -130 | mA
lcc Supply Current Vcc = Max. 55 90 mA
Switching Characteristics
Over Recommended Ranges of Temperature and Vg
Military: Ty = —=55°C to + 125°C*, Voo =5V + 10%
Commercial: To=0to 75°C, Voo =5V 5%
Symbol Parameter Test Conditions Military Commercial Unit
Min. | Typ. | Max. | Min. | Typ. | Max.
tep From any Input to any Output C_=15pF 15 30 15 25 ns
16C1A C_=15pF 35 30 ns

Table 11.1.7 AC and DC Specifications for 20-Pin Fast, Small PAL Devices

280

Programmable Logic Design Guide

16L8A, 16R8A, 16R6A, 16R4A
Recommended Operating Conditions

Milita Commercial
Symbol Parameter v Unit
Min. | Typ. | Max. | Min. | Typ. | Max.
Vee Supply Voltage 45 5 5.5 4.75 5 5.25 Vv
Low - 20 10 15 10
tw Width of Clock ns
High 20 10 15 10
t Setup Time from Input | ygpq, 46REA, 16R4A | 30 | 16 25 | 16 ns
su or Feedback to Clock ! !
th Hold Time 0 -10 -10 ns
Ta Operating Free-Air Temperature -55 25 75 °C
Tc Operating Case Temperature 125 °C
Electrical Characteristics
Over Recommended Operating Temperature Range]

Symbol Parameter Test Conditions Min. | Typ. | Max. | Unit
Vin High Level Input Voltage 2 A"
ViL Low Level Input Voltage 0.8 \"
Vic Input Clamp Voltage Vec =Min,, [j=-18mA -08 | -1.5 \

Vec=Min. | 1, =—2mA MIL
Vou High Level Outpuyt Voltage ViL=0.8Vv 2.4 2.8 \
V=2V lon=-32mA COM
Vec=Min. | |0 = 12mA MIL :
VoL Low Level Output Voltage ViL=0.8V 0.3 0.5 v
V=2V | loo=24mA*** COM ‘
I Vec=Max. | v, =24y 100 | uA
O | Oif-state Output Current Vi =08V -
lozL Vip=2v | Vo=04V -100 | uA
h Maximum Input Current Vce = Max., Vy=5.5V 1 mA
hH High Level Input Current Voc =Max,, Vi=2.4V 25 uA
e Low Level Input Current Vec =Max., V=04V -0.02 |-0.25 mA
los Output Short-Circuit Current** | Ve =5V Vo=0V -30 | -70 |-130 mA
lec Supply Current f Vec = Max. 120 | 180 | mA

t Igc = Max. at minimum temperature.

Table 11.1.8 AC and DC Specifications for 20-Pin Fast Medium PAL Devices

Data Sheets 281

Switching Characteristics

Over Recommended Ranges of Temperature and V¢

Military: Ty = —55°C to +125°C*, Voo =5V + 10%

Ccmmercial: Ty =0 to 75°C, Ve =5V +5%

Symbol Parameter Tost (F:i?,n :!L’“ons” Min. N‘:'l;:ary Max. Mln.coT::rc':ax. Unit
tpo Input or Feedback to Output CL=50pF 15 30 15 25 ns
toik Clock to Output or Feedback 10 20 10 15 ns
tpzx Pin 11 to Output Enable 10 25 10 20 ns
tpxz Pin 11 to Output Disable C_=5pF 11 25 11 20 ns
tpzx Input to Output Enable C_=50pF 10 30 10 25 ns
tpxz Input to Output Disable C_=5pF 13 30 13 25 ns
fmax | Maximum Frequency 20 30 25 30 ns

ttSee Waveforms, Test Load on pg. 24-21.

Table 11.1.8. AC and DC Specifications for 20-Pin Fast Medium PAL Devices (Cont.)

282 Programmable Logic Design Guide

16L8B, 16R8B, 16R6B, 16R4B

Recommended Operating Conditions

Military Commercial
Symbol |- Parameter Units
!) Min | Typ | Max | Min | Typ | Max
Vee Supply Voltage 4.5 5 5.5 | 4.75 5 |525|. V
Low 25 10 25 10
tw Width of Clock - ns
' High 25 10 25 | 10
tsy Setup Time from Input or Feedback to Clock 50 25 35 25 ns
t, Hold Time 0 -5 0 -5 ns
Ta Operating Free-Air Temperature -55 125 0 25 75 °C
Te Operating Case Temperature 125 °C
Electrical Characteristics ;
Over Recommended Operating Temperature Range
Symbol Parameter Test Conditions Min{ Typ | Max (Units
Viy* | High Level Input Voltage 2] \Y
Vi * |Low Level Input Voltage 0.8 \
Vie Input Clamp Voltage Vee=Min,, || = —18mA -08|-15| V
Ve =Min. loy= —2mA MiL
Von | High Level Output Voltage V=08V 24 | 34 v
Viy=2V loy=-32mA COM
, Vec=Min. |ig =12mA MIL
VoL | Low Level Output Voltage V, =08V 30| 05 A
Viy=2V loL =24mA COM
lozu Ve =Max. Vo=2.4V 100 | pA
I Off-State Output Current t V, =08V
ozZL Vip=2V Vo =0.4V -100 | pA
I, Maximum Input Current Ve =Max,, V,=5.5V 1 mA
[High Level Input Current 1 Vee=Max., V=24V 25 A
{Except pins 1 & 11 -0.04(-0.25
I Low Level Input Current Veo=Max., V,=0.4V - mA
Pins 1 & 11 -04
log Output Short-Circuit Current** Vo =5V Vo=0V -30{ -70 { —130 [mA
lee Supply Current Ve =Max. 120 | 180 | mA

1 1/0 pin leakage is the worst case of lozx of Iix ©.9. I and lozy.
* These are absolute voltages with respect to pin 10 on the device and include all overshoots due to system and/or tester noise. Do not attempt
to test these values without suitable equipment.
** Only one output shorted at a time.
*** Pins 1 and 11 may be raised to 20V max.

Table 11.1.9 AC and DC Specifications for 20-Pin Ultra High-Speed, Medium
PAL Devices

Data Sheets 283
Switching Characteristics
Over Recommended Ranges of Temperature and Vg
Military: T, = - 65°C to + 125°C*, Voo =5V + 10%
Commercial: Ty=0 to 75°C, V=5V + 5%
Test _Military Commercial Un
P its
Sym arameter Conditions (Min | Typ | Max | Min | Typ | Max
tpp | Input or Feed- ns
back to Output 16R6B 16R4B 16L8B 1 20 1 15

tck | Clock to Qutput or Feedback 8 15 8 12 ns

tpzx | Pin 11 to Output Enable 10 20 10 15 ns

texz | Pin 11 to Output Disable 10 20 10 15 ns

Input to
tpzx Output Enable 16R6B 16R4B 16L8B | R, =2009 1" 25 11 20 ns
Rz =390Q
t Input to ‘
PXZ Output Disable 16R6B 16R4B 16L8B 11 20 11 15 ns
f Maximum
MAX Frequency 16R8B 16R6B 16R4B 30 50 40 50 MHz

Table 11.1.9 AC and DC Specifications for 20-Pin Ultra High-Speed, Medium
PAL Devices (Cont.)

284

Programmable Logic Design Guide

10HBA2, 12H6A2, 14H4A2, 16H2A2, 16C1A2,
10L8A2, 12L6A2, 14L4A2, 16L2A2

Recommended Operating Conditions

Symbol Parameter Mititary Commercial Units
: . Min Typ Max Min Typ Max
Veo Supply Voltage 45 5 55 4.75 5 5.25 v
loH High-Level Output Current -2.0 -3.2 mA
loL Low-Level Output Current Small PAL 711 8 8 mA
Medium PAL 12 24 -
Ta Operating Free-Air Temperature —55 125 0 25 75 °C
Electrical Characterist,ics Over Recommended Operating Temperature Range
Symbol Parameter Test Conditions Min Typ Max Units
ViH* High Level Input Voltage 2 Vv
vi® Low Levet Input Voltage 0.8 v
Vic Input Clamp Voltage Vce = Min, I = —18 mA -08 -15 \
: Vec=Min. | |y = —2mA ML 1
VoH High Level Output Voltage VL = 0.8V 24 28 \
Vi = 2V lon=—-32mA COM
Vee = Min,
VoL Low Level Output Voltage Vi = 0.8V loL = Max. 0.3 0.5 Vv
Viy =2V
lozH Veg = Max. | vg=24v 100 RA
Off-State Output Currentt ViL = 0.8V
lozL Vi = 2V Vo = 0.4V -100 MA
h Maximum Input Current Vee = Max,, V) = 5.5V 1 mA
IH High Level Input Currentt Vce = Max,, V) = 2.4V 25 nA
iL Low Leve! Input Currentt Vee = Max,, V| = 0.4V —-0.02 | —0.25 mA
los Output Short-Circuit Current** | Vgg = Max., Vg = 0V -30 -70 —-130 mA
lec Supply Current Vee = Max. Small PALTTY 28 4 mA
Medium PAL 70 9011

+1/0 pin leakage is the worst case of lozx or Iix, e.9. i and lozu.

1t

Icc specification applies to unp

d devices only. Icc could increase up 10 10% for programmed units.

111 Small PAL consists of 10HBA2, 12HBA2, 14H4A2, 16H2A2, 16C1A2, 10LBA2, 12L6A2, 14L4A2 and 16L2A2. Medium PAL consists of 16L8A2, 16RBA2,
16R6A2 and 16R4A2,

* These are absolute voltages with respect to the ground pin on the device and includes all overshoots due to system and/or tester noise. Do not attempt to test
these values without suitable equipment.

** Only one output shorted at a time.
*** Pins 1 and 11 may be raised to 20V max.

Table 11.1.10 AC and DC Specifications for 20-Pin Fast, Half-Power, Small
PAL Devices

Data Sheets 285

Swltching Characteristics over Recommended Ranges of Temperature and Vcg
Military: T = —55'C to +125°C*, Ve = 5V£10%
Commercial: Ta = 0to 75°C, Vcg = 5V15%

Symbol Parameter - Test Conditions Military Commerclal Units
Min Typ Max Min Typ Max
tpp Input or Feedback to Output 25 45 25 35 ns
toLk Clock to Output or Feedback Cg = 50 pF 15 | 25 15 25 ns
tpzx Pin 11 to Output Enable 15 25 15 25 ns
tpxz Pin 11 to Output Disable CL=5pF 15 25 15 25 ns
tpzx Input to Output Enable C = 50pF 25 45 25 35 ns
tpxz Input to Output Disable Cp = 5pF 25 45 25 35 ns
fMAX Maximum Frequency . 14 25 16 25 MHz
tw Width of Clock Low 25] 10 25 | 10 ns
High 25 10 25 10 ns
w | Swmlmeponia | o | s aE s
th Hold Time 0 -15 0 -15 ns

Note: The max tpp of 16C1A2 in commercial range is 40 ns.

Table 11.1.10 AC and DC Specifications for 20-Pin Fast, Half-Power, Small
PAL Devices (Cont.)

286 Programmable Logic Design Guide

16L8A2, 16R8A2, 16R6A2, 16R4A2
Recommended Operating Conditions

Military Commercial .
Symbol Parameter Units
Min Typ | Max | Min | Typ | Max
Vee Supply Voltage 4.5 5 55 | 4.75 5 5.25 \
Low 25 10 25 10
tw Width of Clock - ns
High 25 10 25 10
tsu Setup Time from Input or Feedback to Clock 50 25 35 25 ns
t, Hold Time i 0 -15 0 -15 ns
Ta Operating Free-Air Temperature -55 125 0 25 75 °C
Te Operating Case Temperature 125 °C
Electrical Characteristics
Over Recommended Operating Temperature Range
Symbol Parameter Test Conditions Min [Typ | Max | Units
Vi* | High Leve! Input Voltage ‘ 2 \']
Vit Low Level Input Voltage : o8] V
Vic Input Clamp Voltage Veo=Min, ||= —18mA -08 | -15] V
Vec=Min. | Io,=-2mA MIL :
Von | High Level Output Voltage V=08V 24| 34 \Y

V=2V | loy=-3.2mA COM
Voc=Min. | 1o, =12mA MIL

VoL Low Level Output Voltage Vi =0.8V 0.3 0.5 v
V=2V log.=24mA COM
lozn Vee=Max.| Vo=2.4V 100 | pA
Off-State Output Current 1 Vi =0.8V

lozu V=2V | Vo=04V —100| pA
l; Maximum Input Current Vgo=Max,, V=55V . ' 1 mA
M High Level Input Current t Voo =Max., V| =2.4V 25 uA
I Low Level Input Current Voo =Max., V;=0.4V -0.02| -0.25| mA
los Output Short-Circuit Current** [Voo =5V, Vo=0V -30| -70 | —130| mA
lec Supply Currenttt Ve =Max. 70 a0ttt | mA

t /O pin leakage is the worst case of lozx OF Iix €.g. I, and lozu.
11 Maximum Icc specification applies to unprogrammed devices only. lgc could increase up to 10% for programmed units.
* These are absolute voltages with respect to the ground pin on the device and includes all overshoots due to system and/or tester noise. Do
not attempt to test these values without suitable equipment.
Only one output shorted at a time.
** Pins 1 and 11 may be raised to 20V max.

Table 11.1.11 AC and DC Specifications for 20-Pin Fast, Half Power Medium
PAL Devices

Data Sheets 287
Programmable Array Logic PAL Low Power PAL Series 20A2
* Symbol Parameter Test Conditionstt Military Commerclal Unit
: Min | Typ |{ Max | Min | Typ | Max
tep Input or Feedback to Output 25 50 25 35 ns
Clock to Qutput or Feedback C, =50pF 15 25 15 25 ns
tpzx Pin 11 to Output Enable 15 25 15 25 ns
toxz Pin 11 to Output Disable C_ =5pF 15 25 15 25 ns
tozx Input to Output Enable C, =50pF 25 45 25 35 ns
texz Input to Output Disable C_=5pF 25 45 25 35 ns
frax Maximum Frequency 14 25 16 25 MHz

Table 11.1.11 AC and DC Specifications for 20-Pin Fast, Half Power Medium PAL

Devices (Cont.)

288 Programmable Logic Design Guide

16L8B2, 16R8B2, 16R6B2, 16R4B2
Recommended Operating Conditions

Military Commercial
Symbol Parameter . Units
~ Min | Typ | Max | Min | Typ | Max '
Vee Supply Voltage 45 5 | 55 |475] 5 |525 Vv
: Low 20 10 15 8
tw Width of Clock - . ns
) High 20 10 15 8
tgy | Setup Time fromInput | 46Rgp, 16REB, 16R4B | 25 | 10 20 | 10 ns
or Feedback to Clock :
t, Hold Time -5 ns
Ta Operating Free-Air Temperature 25 75 °C
Te Operating Case Temperature °C

Electrical Characteristics
Over Recommended Operating Temperature Range

Symbol Parameter Min | Typ | Max | Units
Vig* High Level Input Voltage 2 \
' Low Level Input Voltage 08 V
Vic Input Clamp Voltage - 18mA -08| -15] V

lon= —2mA MIL

Von | High Level Output Volit LE0. 241 34 \Y

V=2V loy= -3.2mA COM

Vcc = Min. lOL = 12mA MIL
VoL Low Level Output Voltage V, =08V 03 0.5 v

V=2V loL=24mA COoM

Ve =Max.
] cc Vg =2.4V 100
|OZH Off-State Output Current + V=08V 2 - s
ozL Vip=2V Vo=0.4V -100| »A
], Maximum Input Current Ve = Max.,, V=55V ' 1 mA
[High Level Input Current t Ve = Max,, V,=2.4V 25 pA
Iy Low Level Input Current t Veo=Max,, V,=0.4V -0.01| ~0.25| mA
los Output Short-Circuit Current** | Voo =5V, Vo =0V ~-30f -70 | —130| mA
lec Supply Currentft Ve =Max.) 70 90 mA

1 1/O pin leakage is the worst case of lozx or Iix 8.9. In. and lozu.
11 Maximum Icc specification applies to unprogrammed devices only. Icc could increase up to 10% for programmed units.
* These are absolute voltages with respect to the ground pin on the device and includes all overshoots due to system and/or tester noise. Do
not attempt to test these values without suitable equipment.
Only one output shorted at a time.
** Pins 1 and 11 may be raised to 20V max.

Table 11.1.12 AC and DC Specifications for 20-Pin Ulira High-Speed, Half Power,
Medium PAL Devices

Data Sheets 289

Switching Characteristics

Military: Ty = —55°C to + 125°C*, Vg =5V + 10%
Commercial: T,=0 to 75°C, Voo =5V + 5%

" Military Commercial .
Symbol Parameter Test Conditions - - Unit
. Min | Typ | Max | Min | Typ | Max
tpp - | 'MPutorFeed- | 1gpeE 16R4B 16L8B 15 30 B 25| ns
back to Output 1
tok Clock to Output or Feedback . 8 | 20 8 | 15 ns
tpox Pin 11 to Output Enable 10 | 25 10 | 20 ns
toxz Pin 11 to Output Disable 10 | 25 10 | 20 ns
thzx Input 1o 16R6B 16R4B 16L8B | R, =2000 1 | 30 1n|25| ns
Output Enable R,=3900
toyz input to 16R6B 16R4B 16L8B 1| 30 1|25 ns
Output Disable
funx | Maximum 16R8B 16R6B 16L4B | 20 |30 25 | 30 MHz
Frequency 50 40

»

These are absolute voltage with respect to pin 10 on the device and include all overshoots dus to system and/or tester noise. Do not attempt
to test these values without suitable equipment.) ’
** Only one output shorted a time.

t /O pin leakage is the worst case of |, Or I, €.g. |, and 1.

Table 11.1.12 AC and DC Specifications for 20-Pin Ultra High-Speed, Half Power,
Medium PAL Devices (Cont.)

290

Programmable Logic Design Guide

12110, 14L8, 16L6, 18L4, 20L2, 20C1
20L10, 20X10, 20X8, 20X4

Operating Conditions

Symbol Parameter Military Commercial Unit
Min | Typ | Max | Min | Typ | Max
Vec | Supply Voltage 45| 5 | 55 |4751 5 [525| V
Ta | Operating Free-air Temperature 0 75 | °C
Tc | Operating Case Temperature -55 125 °C
Electrical Characteristics Over Operating Conditions
Symbol | Parameter Test Conditions Min | Typ | Max “Unit
ViL Low Level Input Voitage 0.8
Vi High Level input Voltage 2
Vic Input Clamp Voitage Vec=Min. || =-18mA ~1.5
Iy ‘Low Level Input Current t Vec =Max. V=04V -0.25
|m High Level Input Current + Vec=Max. V=24V 25
Iy Maximum Input Current Vg =Max. V=55V 1
Veg=Min. | g =12mA MiL
VoL Low Level Output Voltage V. =0.8V 0.5 \
. Iy =2V loe=24mA COM
Vou | HighLevel Output Voltage \\;?ch Owg{]/ oy =-2mA MIL 2.4 v
V=2V lon=-32mA COM
lozL Off-state Output Current t \\;::_6;0'.%8?/)(‘ Vo =04V =100 | nA
lozn Vi =2V Vo 2.4V 100 | pA
los Output Short-Circuit Current™ | Voo =Max. V=0V -30 -130 | mA
20X4, 20X8, 20X10 120 | 180
lee Supply Current Ve = Max. 20L10 9% 165 mA
B oo |

t /O pin leakage is the worst case of lozx OF lix, .9, Iy_and lgzy.
* Pins 1 and 13 may be raised to 22V max.
** Only one output shorted at a time.

Table 11.1.13 AC and DC Specifications for 24-Pin, Standard PAL Devices

Data Sheets 291
Switching Characteristics Over Operating Conditions
Symbol Parameter Test g:ngglons Military Commercial Unit
’ Min | Typ | Max| Min| Typ | Max
20L10, 20X10
tpp | Inputor Feedback to Output 20X8, 20X4 35| 60 351 50 | ns
C_=50pF
12L10, 14L8, 16L6 .
trp Input or Feedback to Output 18L4, 20L2, 20Ct 25| 45 25 | 40 ns
. CL =50 pF
tcik | Clock to Output or Feedback C_=50pF 20 | 40 20 |. 30 { ns
tozx | Pin 13to Output Enable C_=50pF 20 | 45 20| 35 | ns
texz - | Pin 13 to Output Disable C_=5pF 20 | 45 20| 35 | ns
tezx | Inputto Output Enable C_=50pF 35| 55 35 | 45 | ns
texz | Inputto Output Disable C_=5pF 35| 55 35] 45 | ns
Low 40 | 20 35] 20 ns -
tw | Widthof Clock
High 30 | 10 251 10 ns
tsy | Set-Up Time from Input or Feedback 60 | 38 50 | 38 ns
ty Hold Time 0 {-15 0 |-15 ns
fuax | Maximum Frequency 10.0 125 MHz

Table 11.1.13 AC and DC Specifications for 24-Pin, Standard PAL Devices (Cont.)

292

20L8A, 20R8A, 20R6A, 20R4A

Programmable Logic Design Guide

Operating Conditions

' Military Commercial
Symbol Parameter i Typ | Max | Min Typ | Max Units
Vee | Supply Voltage 45 5 5.5 475 5 5.25 v
Ta Operating Free-Air Temperature 0 75 °C
Tc Operating Case Temperature: -55 125 °C
Electrical Characteristics over Operating Conditions
Symbol Parameter Test Conditions Min | Typ | Max | Units
Vi Low Level Input Voltage 08 \
Vin | High Level Input Voltage 2 v
Vic Input Clamp Voltage Vec=Min, §j=-18mA -15 v
"% Low Level Input Current t Veo=Max,, V=04V 025 | mA
IiH High Level Input Current t Vec=Max, V|=24V 25 HA
N Maximum Input Current Vce = Max., V=55V 1 mA
Vec =Min. loL=12mA MIL
VoL | Low Level Output Voltage Vi =08V 05 \
Vig=2V loL=24mA*** COM
Vee=Min. low=—2mA MIL
Von | High Level Output Voltage ViL=08V " 24 "
Vih=2V loy=-32mA COM
lozt Off-State Output Currentt \\//(I:L(::—O,.:?Ix‘ Vo=04V 100 | wA
lozn Vin=2V Vo=24V 100 A
los Output Short-Circuit Current** Vec=5V, Vo =0V -30 -130 | mA
lcc Supply Current Vec=Max. 160 210 mA

t 10 pin leakage is the worst cast of lgzx or lix, e.g.). and lgzn.
* Pins 1 and 13 may be raised to 20V max.

* Only one output shorted at a time.
*** These are absolute voltages with :espect 1o the ground pin on the device and includes all overshoots due to system andlor tester noise.
Do not attempt to test these values without suitable equipment.

Table 11.1.14 AC and DC Specifications for 24-Pin, Fast PAL Devices

Data Sheets 293
Switching Characteristics over Operating Conditions
Military Commercial
Symbol Parameter Test Conditions Units
Min Typ | Max | Min Typ | Max
20L8A, 20R6A
tep Input or Feedback to Output 20R4A 18 30 18 25 ns
CL= 50pF
. fok Clock to Output or Feedback C_=50pF 12 20 12 15 ns
tpzx Pin 13 to Output Enable C_=50pF 10 25 10 20 ns
texz Pin 13 to Output Disable C_=5pF 1" 25 1 20 ns
tpzx | Input to Output Enable C_=50pF 10 30 10 25 ns
texz Input to Output Disable C_=5pF 13 30 13 25 ns
Low 20 7 15 7 ns
tw Width of Clock
High 20 7 15 7 ns
tsy Setup Time from Input or Feedback 20RBA, 20R6A, 30 18 25 18 ns
20R4A
th Hold Time 0 =10 0 -10 ns
fmax Maximum Frequency 20 40 285 40 MHz

Table 11.1.14 AC and DC Specifications for 24-Pin, Fast PAL Devices (Cont.)

294 Programmable Logic Design Guide

1.2 PROGRAMMING/VERIFYING PROCEDURE — 20 PIN PAL DEVICES*

Aslong as Pin 1 is at HH, Pin 11 is at ground, and Pin 12 is either at HH or Z (as defined
in Table 11.2.1) — Pins 16, 17, 18, and 19 are outputs. The other pin functions are: 10
(Pin 2) through 17 (Pin 9) plus Pin 12 address the proper row; A0 (Pin 15), Al (Pin 14),
and A2 (Pin 13) address the proper product lines.

When Pin 11 is at HH, Pin 1 is at ground, and Pin 19 is either at HH or Z — Pins 12, 13,
14, and 15 are outputs. The other pin functions are: 10 (Pin 2) through 17 (Pin 9) plus
Pin 19 address the proper row; A0 (now Pin 18), Al (now Pin 17), and A2 (now Pin 16)
address the proper product lines.

PRODUCTS 0 THRU 31 PRODUCTS 32 THRU 63
Gloo =~ vecl@ [croek ~ vee [z9]
Ew oo Ew LR [9]
En o & wof
Gl o2 7] & N
Gl 03 {15] B Az [ig]
[e]a a0 18] [e] 0o [13]
[a1[1g] s o1]1g]
] ur [v 03 [iZ]
[eno crock [i [io] ano oo [1i]

Figure 11.2.1 Pin Assignment for Programming

Pre-Verification

Step 1.1 Raise V¢ to 5V. _
Step 1.2 Raise Output Disable pin, OD, to Viyy.
Step 1.3 Select an input line by specifying Inputs and L/R as shown in Table 11.2.2.

Step 1.4 Select a product line by specifying AQ, Al and A2 one-of-eight select as shown
in Table 11.2.2

Step 1.5 Pulse the CLOCK pin and verify (with CLOCK at Vi) that the output pin, O, is
in the state corresponding to an unblown fuse.
— For verified unblown condition, continue procedure from Step 1.3
through Step 1.5.
— For verified blown condition, stop procedure and reject part.

Note: For programming purposes many PAL pins have double functions.

Data Sheets 295
Input Product . .
Line Pin identification Line Pin Identification
Number (I, g s 1 I3 L 1y Iy LR Number [O; O, O, O, A, A, A,
0 HH HH HH HH HH HH HH L Z 0,32 Z Z .Z HH 2Z Z V4
1 HH HH HH HH HH HH HH H Z 1,33 V4 Z Z HH 2z Z HH
2 HH HH HH HH HH HH HH L HH 2,34 Z Z Z HH Z HH 2Z
3 HH HH HH HH HH HH HH H HH 3,35 z z Z HH Z HH HH
4 HH HH HH HH HH HH L HH Z 4,36 2 z Z HH HH 2z V4
5 HH HH HH HH HH HH H HH 2Z 5,37 4 z Z HH HH Z HH
6 HH HH HH HH HH HH L HH HH 6,38 Z zZ Z HH HH HH .Z
7 HH HH HH HH HH HH H HH HH 7,39 z Z Z HH HH HH HH
8 HH HH HH HH HH L HH HH Z 8,40 Z Z HH Z z z z
9 HH HH HH HH HH H HH HH 2 9,41 Z Z HH 2Z z Z HH
10 HH HH HH HH HH L HH HH HH 10,42 Z Z HH 2Z Z HH Z
11 HH HH HH HH HH H HH HH HH 11,43 4 Z HH Z Z HH HH
12 HH HH HH HH L HH HH HH Z 12,44 b4 Z HH Z HH Z Z
13 HH HH HH HH H HH HH HH Z 13,45 4 Z HH Z HH Z HH
14 HH HH HH HH L HH HH HH HH 14,46 Z Z HH Z HH HH 2Z
15 HH HH HH HH H HH HH HH HH 15,47 |" Z Z HH Z HH HH HH
16 HH HH HH L HH HH HH HH Z 16,48 Z HH 2Z 4 4 Z z
17 HH HH HH H HH HH HH HH 2Z 17,49 Z HH 2z 4 Z Z HH
18 HH HH HH L HH HH HH HH HH 18,50 Z HH 2Z z Z HH 2z
19 HH HH HH H HH HH HH HH HH 19,51 Z HH 2z z Z HH HH
20 HH HH L HH HH HH HH HH Z 2052 | Z HH Z Z HH Z Z
21 HHHH H HH HH HH HH HH Z 21,53 Z HH . Z Z HH 2Z HH
22 HH'HH L HH HH HH HH HH HH 22,54 Z HH Z Z HH HH 2Z
23 HH HH H HH HH HH HH HH HH 23,55 Z HH 2Z Z HH HH HH
24 HH L HH HH HH HH HH HH Z 24,56 HH Z Z Z Z Z Z
25 HH H HH HH HH HH HH HH Z 25,57 HH Z Z z Z Z HH
26 HH L HH HH HH HH HH HH HH 26,58 HH Z 4 Z Z HH 2z
27 HH H HH HH HH HH HH HH HH 27,59 HH Z z 4 Z HH HH
28 L HH HH HH HH HH HH HH 2Z 28,60 HH Z Z Z HH 2Z V4
29 H HH HH HH HH HH HH HH Z 29,61 HH Z V4 Z HH Z HH
30 L HH HH HH HH HH HH HH HH 30,62 HH Z Zz Z HH HH Z
31 H HH HH HH HH HH HH HH HH 31,63 HH Z Z Z HH HH HH

Table 11.2.1

Programming Algorithm

Input Line Select

Table 11.2.2 Input Line Select

Step 2.1 Raise Output Disable pin, OD to Viyy.

Step 2.2 Programming pass. For all fuses to be blown:
Lower CLOCK pin to ground.
Select an input line by-specifying Inputs and L/R as shown in
Table 11.2.2.

Select a product line by specifying A0, Al and A2 one-of-eight

Step 2.2.1
Step 2.2.2

Step 2.2.3

Step2.2.4

select as shown in Table 11.2.2.

Raise V¢ to 1uy.

296

Step 2.3

Step 2.4

Step 2.5

Programmable Logic Design Guide

Step 2.2.5

Step 2.2.6
Step 2.2.7

Program the fuse by pulsing the output pins of the selected
product group one at a time to Vigy (as shown in the Program-
ming Waveforms).

Lower Ve to 5V.

Repeat this procedure from Step 2.2.2 until pattern is complete.

First verification pass. For all fuse locations:

Step 2.3.1
Step 2.3.2

Step 2.3.3

Step 2.3.4

Select an input line by specifying Inputs and L/R as shown in
Tables 11.2.1 and 11.2.2.

Select a product line by specifying A0, 'Al, and A2 one-of-eight
select as shown in Table 11.2.2.

Pulse the CLOCK pin and verify (with CLOCK at Vyp) that the out-
put pin, O, is in the correct state.

— For verified output state, continue procedure.

— For overblow condition, stop procedure and reject part.

— For underblow condition, reexecute Steps 2.2.4 through
2.2.6 and 2.2.3. If successful, continue procedure. After
three attempts to blow fuse without success, reject part but
continue procedure. :

Repeat this procedure from Step 2.3.1 until the entire array is
exercised.

High Voltage Verify. For all fuse locauons

Step 2.4.1
Step 2.4.2

Step 2.4.3

Step 2.4.4

Step 2.4.5

Raise V¢ to 5.5V.
Select an input line by specifying Inputs and L/R as shown in
Tables 11.2.1 or 11.2.2.
Select a product line by specifying AQ, Al, and A2 one-of-eight
select as shown in Table 11.2.2.
Pulse the CLOCK pin and verify (with CLOCK at VH_) that the out-
put pin, O, is in the correct state.

— For verified output state, continue procedure.

— For invalid output state, stop procedure and reject part.
Repeat this procedure from Step 2.4.1°until the entire array is
exercised.

Low Voltage Verify. For all fuse locations:

Step 2.5.1
Step 2.5.2

Step 2.5.3

Lower V¢c to 4.5V.

Select an input line by specifying inputs and L/R as shown in
Tables 11.2.1 or 11.2.2.

Select a product line by specifying A0, Al, and A2 one-of-eight
select as shown in Table 11.2.2,

*NSC programming spec. Rev. 1. The old programming spec. is still valid.

Data Sheets 297

Step 2.5.4 Pulse the CLOCK pin and verify (with CLOCK at Vp;) that the out-
put pin, O, is in the correct state.
— For verified output state, continue procedure.
— For invalid output state, continue procedure and reject part.

Programming the Security Fuses

Step 3.1 Verify per Step 2.4 and Step 2.5.
Step 3.2 Raise V¢ to GV,

Step 3.3 Program the first fuse by pulsing Pin 1 to Vp. (From 1 to 5 pulses is
acceptable.)

Step 3.4 Program the second fuse by pulsing Pin 11 to Vp. (1 to 5 pulses is acceptable.)

Step 3.5 Verify per Step 2.4 and Step 2.5:
— A device is “secure” if either half fails to verify.

Voltage Legend

L = Low level input voltage, Vi, HH = High level program voltage, Vigy

H = High level input voltage, Vig Z =10 kQ to 5V

Note: For programming purposes many PAL device pins have double functions.

298 Programmable Logic Design Guide

11.3 PROGRAMMING/VERIFYING PROCEDURE — 24 PIN PAL DEVICES*

As long as Pin 1 is at HH, Pin 13 is at ground, and Pin 14 is either at HH or Z (as defined
in Table 11.3.1) — Pins 19, 20, 21, and 22 are outputs. The other pin functions are: 10
(Pin 2) through 19 (Pin 11) plus Pin 14 address the proper row; AO (Pin 15), Al (Pin 16),
and A2 (Pin 17) address the proper product lines.

As long as Pin 13 is at HH, Pin 1 is at ground, and Pin 23 is either at HH or Z (as
defined in Table 11.3.1) — Pins 15, 16, 17 and 18 are outputs. The other pin functions
are: 10 (Pin 2) through I9 (Pin 11) plus Pin 23 address the proper row; AD (Pin 22), Al
(Pin 21), and A2 (Pin 20) address the proper product lines.

PRODUCTS 0 THRU 39 PRODUCTS 40 THRU 79
\J \J
00— 1 24— Ve cLock —{ 1 24 |— v
lhb— 2 23 |— 0, h—2 23 [— LR
Ww—3 22 p— 0, y,—3 22 f— A,
,— 4 21 fm 0, =4 21— A,
ty—{5 20 |— 0, I3—5 20 — A,
h— & 19 — 0O, W —6 19 |— ne
Ig =] 7 18 f— NC 15— 7 18 [0,
e K 17— A, 15— 8 17— 0,
=9 16— A, I, 9 16— 0,
1g—4 10 15 [Aq 1g— 10 15 |— 0,
l,-J " 14 |~ LR 19— 1t 1% [~ 0,
GND 12 13 — CLOCK GND —{ 12 13 — OD
Top View Top View

Figure 11.3.1 Pin Assignment for Programming
Pre-Verification
Step 1.1 Raise V¢ to 5V.
Step 1.2 Raise Output Disable pin, OD,. to Viun.
Step 1.3 Select an input line by specifying Inputs and L/R as shown in Table 11.3.1.

Step 1.4 Select a product line by specifying A0, Al and A2 one-of-eight select as shown
in Table 11.3.2.

Step 1.5 Pulse the CLOCK pin and verify (with CLOCK at Vyp) that the output pin, OH,
is in the state corresponding to an unblown fuse.
— For verified unblown condition, continue procedure from Step 1.3
through Step 1.5.
— For verified blown condition, stop procedure and reject part.

Programming Algorithm
Step 2.1 Raise Output Disable pin, OD, to Vigy.

Step 2.2 Programming pass. For all fuses to be blown:
Step 2.2.1 Lower CLOCK pin to ground.
Step 2.2.2 Select an input line by specifying inputs and L/R as shown in
Table 11.3.1.

Data Sheets 299
Input Input
Line Pin Identification Line Pin Identification
Number|lg g 1, 15 s 13 13 I, 1, 1l L/IR Number [0, O; O, O, O, A, A; A,
0 HHHHHHHHHHHHHHHHHH L Z 0, 40 Z Z Z Z HH Z2 2z 4
1 HHHHHHHHHHHHHHHHHH H Z 1, 41 Z 2 Z Z HH Z Z HH
2 HHHHHHHHHHHHHHHHHH L HH 2,42 | Z Z Z Z HH Z HH Z
3 HHHHHHHHHHHHHHHHHH H HH 3,43 |2 Z Z Z HH Z HH HH
4 [HHHHHHHHHHHHHHHH L HH Z 4,44 |2 2Z 2 Z HH HH Z 4
5 [HHHHHHHHHHHHHHHH H HH Z 545 {2 2Z 2Z Z HH HH Z HH
6 |HHHHHHHHHHHHHHHH L HH HH 6,46 [Z 2 Z 2Z HH HH HH 2Z
7 HHHHHHHHHHHHHHHH H HH HH 7,47 |2 2 Z Z HH HH HH HH
8 HHHHHHHHHHHHHH L HHHH Z 8,48 (Z Z Z HH. . Z Z 2Z Z
9 MHHHHHHHHHHHHHH H HHHH Z 9,49 |2 Z 2Z HH Z Z Z HH
10 |[HHHHHHHHHHHHHH L HHHH HH 10, 50 Z Z Z HH Z Z HH 2Z
1 HHHHHHHHHHHHHH H HH HH HH 1, 51 Z Z Z HH Z 2Z HH HH
2 |HHHHHHHHHHHH L HHHHHH Z 12, 52 Z Z Z HH Z HH 2Z Z
i3 [HHHHHHHHHHHH H HHHHHH Z 13, 53 Z Z Z HH Z HH Z HH
14 {HH HH HH HH HH HH L HH HH HH HH 14, 54 2 Z Z HH Z HH HH 2Z
15 [HHHHHHHHHHHH H HHHHHH HH 15, 55 Z 2 2 HH Z HH HH HH
16 [HHHHHHHHHH L HHHHHHHH Z 16, 56 Z Z HH Z2 2zZ2 zZ Z z
7 HHHHHHHHHH H HHHHHHHH Z 17, 57 Z Z HH 2 Z 2Z 2Z HH
18 |HHHHHHHHHH L HH HH HH HH HH 18, 58 Z Z HH Z Z Z HH 2z
19 |HHHHHHHHHH H HH HH HH HH HH 19, 59 Z Z HH Z Z Z HH HH
20 |[HHHHHHHH L HHHHHHHHHH Z 20,60 { Z Z HH Z Z HH 2z z
21 HHHHHHHH H HHHHHHHHHH Z. 21, 61 Z Z HH Z Z HH Z HH
22 |HHHHHHHH L HHHHHHHH HH HH 22,62 | Z Z HH Z Z HH HH Z
238 [HHHHHHHH H HHHH HH HH HH HH 23,63 {2 Z HH Z Z HH HH HH
24 [HHHHHH L HHHHHHHHHHHH Z 24,64 | Z HH 2 2Z2 Z2 Z 2 V4
2 [HHHHHH H HHHHHHHHHHHH Z 25,656 | Z HH Z2 2 2Z 2Z Z HH
26 |HHHHHH L HHHHHHHHHHHH HH 26,66 | Z HH 2 Z Z Z HH Z
27 |HHHHHH H HH HH HH HH HH HH HH 27,67 | Z HH Z2 Z Z Z HH HH
28 |HHHH L HHHHHHHHHHHHHH Z 28,68 | Z HH Z2 Z Z HH 2 Z
29 |[HHHH H HHHHHHHHHHHHHH Z 29,69 {Z HH Z Z Z HH Z HH
30 |HHHH L HHHH HHHH HH HH HH HH 30, 70 Z HH Z Z Z HH HH 2Z
31 HHHH H HH HH HH HH HH HH HH HH 31,7 Z HH Z Z Z HH HH HH
32 |HH L HHHHHHHHHHHHHHHH Z 3,72 |HH 2z 2zZ2 2Z2 2Z2 2 2Z z
383 [HHH HHHHHHHHHHHHHHHH Z 33,73 |HH Z Z zZ Z 2Z Z HHZ
3 |HH L HH HH HH HH HH HH HH HH HH 34,74 |lHH 2 Z 2 Z Z HH 2Z
3 |HH H HH HH HH HH HH HH HH HH HH 35,7 {HH Z2 2Z Z Z Z HH HH
36 L HHHHHHHHHHHHHHHHHH Z 3,76 |[HH Z Z Z Z HH HH Z
37 H HHHHHHHHHHHHHHHHHH 2 37,77 |[HH 2 . 2 Z Z HH Z HH
38 L HH HH HH HH HH HH HH HH HH HH 3,78 tfHH 2 Z 2Z Z HH HH Z
39 39,79 {HH Zz 2 Z Z HH HH HH

H HH HH HH HH HH HH HH HH HH HH

Table 11.3.1 Input Line Select

Table 11.3.2

Product Line Select

300 Programmable Logic Design Guide

Step 2.3

Step 2.4

Step 2.5

Step 2.2.3 Select an input line by specifying inputs and L/R as shown in
‘ Table 11.2.2. ‘

Step 2.2.4 Select a product line by specifying A0, Al, and A2 one-of-eight
select as shown in Table 11.2.2

Step 2.2.5 Raise V¢c to Vigy.

Step 2.2.6 Program the fuse by pulsing the output pins of the selected
product group one at a time to Vigy (as shown in the Program-
ming Waveforms).

Step 2.2.7 Lower Vg to 5V,

Step 2.2.8 Repeat this procedure from Step 2.2.2 until pattern is complete.

First verification pass. For all fuse locations:
Step 2.3.1 Select an input line by specifying Inputs and L/R as shown in
Tables 11.2.1 and 11.2.2.
Step 2.3:2 Select a product line by specifying AO Al, and A2 one-of-eight
~ select as shown in Table 11.2.2.
Step 2.3.3 Pulse the CLOCK pin and verify (with CLOCK at VIL) that the out-
‘ put pin, O, is in the correct state.
— For verified output state, continue procedure.
— For overblow condition, stop procedure and reject part.
. — For underblow condition, reexecute Steps 2.2.4 through
2.2.6 and 2.2.3. If successful, continue procedure, after
three attempts to blow fuse without success, reject part but
continue procedure.
Step 2.3.4 Repeat this procedure from Step 2.3.1 until the entire array is
exercised. .
High Voltage Verify. For all fuse locations:
Step 2.4.1 Raise V¢ to 5.5V.
Step 2.4.2 Select an input line by specifying Inputs and L/R as shown in
’ Table 11.3.1.
Step 2.4.3 Select a product line by specnfymg AO, Al, and A2 one- of-elght
select as shown in Table 11.3.2.
Step 2.4.4 Pulse the CLOCK pin and verify (with CLOCK at Vy) that the out-
put pin, 0, is in the correct state.
— For verified output state, continue the procedure.
- — For invalid output state, stop procedure and reject part.
Step 2.4.5 Repeat this procedure from step 2.4.1 until the entire array is
' exercised.

Low Voltage Verify. For all fuse locations:

Step 2.5.1 Lower V¢ to 4.5V.

Step 2.5.2 Select an input line by specifying inputs and L/R as shown in
Table 11.3.1.

Step 2.5.3 Select a product line by specifying A0, Al, and A2 one-of-eight as
shown in Table 11.3.2.

Data Sheets

301

Step 2.5.4 Pulse the CLOCK pin and verify (with CLOCK at Vy) that the out-

put pin, 0, is in the correct state.
— For verified output state, continue procedure.

— For invalid output state, continue procedure and reject part.

Programming the Security Fuses

Step 3.1 Verify per Step 2.4 and Step 2.5
Step 3.2 Raise V¢ to 6V.
Step 3.3 For PAL 24 and PAL 24A:
— Program the first fuse by pulsing Pin 1 to Vp
(From 1 to 5 pulses is acceptable.)
— Program the second fuse by pulsing Pin 13 to Vp
(1 to 5 pulses is acceptable.)
Step 3.4 Verify per Step 2.4 and Step 2.5:
— A device is “secure” if either half fails to verify.

Symbol)) Parameter Min Typ Max | Units
VIHH Program Level Input Voltage 15 | 1175 12 \
Output Program Pulse 50
liHH Program Level Input Current OD, L/R 50 mA
All Other Inputs 10
lccH Program Supply Gurrent 900 mA
tvccp | Pulse Width of Voo @VinK 60 HS
tp Program Pulse Width 10 20 50 us
to Delay Time) 100 . ns
tp2 Delay Time after L/R Pin ’ 10 Hus
Veep Duty Cycle 20 %
Vp Security Fuse Programming Voltage .) 18 18.5 19 v
Ip Security Fuse Programming Supply Current 400 mA
Security Fuse Programming Pulse Width 10 40 70 us
tep Security Fuse Programming Duty Cycle 50 %
Rise Time of Output Programming and Address Pulses 1 15 10
trp Rise Time of Security Fuse Programming Pulses 1 15 10 Vis
Vcc Value During Security Fuse Programming 575 6 6.25
Vecpp Ve Value for First Verify ' 4.75 5 5.25 v
Vcc Value for High Vg Verify 54 5.5 5.6
Vcc Value for Low V¢ Verify 44 | 45 46

Table 11.3.3 Programming Parameters

*NSC prbgramming spec. Rev. 1. The old programming spec. is still valid.

302

Programmable Logic Design Guide

Array Programming Waveforms

Vinu
oD

CLOCK

Vinu
A, LR

ViHn
Vi ——— ' t
(T p—

Vinn

5V

Vinu

Vou
VoL

Note:)

Vec (Low Voltage Verify) = 4.5V

Vce (High Voltage Verify) =5.5V.

Vg (First Verify) =5V

A Delay (tpo) must always precede the Positive

Clock Transition. (e.g. see step 1.2.3.3 for underblow condition)

REPEAT UNTIL
PATTERN IS
PROGRAMMED

TL/L/5598-7

Figure 11.3.2 Programming Waveforms

VIHH

Vi

oD

Vinu

vIL

™

Vou
Voo

CLOCK
Vi

Verification Waveforms

Data Sheets

<—t°

X

|<— to2
|

\

VERIFY

i

Security Fuse Programming Waveforms

Veer
cc

Q—-Tpp —D'

PIN1

\

REPEAT
UNTIL
ARRAY IS
VERIFIED

Q—TPP—'

PIN11

Figure 11.3.2 Programming Waveforms (Cont.)

Refer to Chapter 5 for a List of PAL Programmer Vendors

303

304 | Programmable Logic Design Guide
11.4 LOGIC PROM DATA SHEETS

Description

This generic Schottky PROM family by National provides the industry with one of the
widest selections in sizes and organizations. Four-bit wide PROMs are provided with
256 to 4096 words in pin compatible 16 and 18-pin dual-in-line packages. The 8-bit
wide devices range from 32 to 4096 words in a variety of packages. Being ‘generic’, all
PROMs share a common programming algorithm.

National’s new Programmable Read-Only Memories (PROMs) feature titanium-
tungsten (Ti: W) fuse links designed to program efficiently with only 10.5 Volts applied.
The high peformance and reliability of these PROMs are the result of fabrication by a
Schottky bipolar process, of which the titanium-tungsten metallization is an integral
part, and an on-chip programming circuit is used. 4

A major advantage of the titanium-tungsten fuse technology is the low program-
ming voltage of the fuse links. At 10.5 Volts, this voltage level virtually eliminates the
need for guard-ring devices and wide spacings required for other fuse technologies.
Care is taken, however, to minimize voltage drops across the die and to reduce parasit-
ics. The device is designed to insure that worst-case fuse operating current is low
enough for reliable long-term operation. The Darlington programming circuit is liber-
ally designed to insure adequate power density for blowing fuse links. The complete
circuit design is optimized to provide high performance over the entire operating
ranges of V¢ and temperature.

Testability

The Schottky PROM die includes extra rows and columns of fusible links for testing the
programmability of each chip. These test fuses are placed at the worst-case chip loca-
tions to provide the highest possible confidence in the programming tests in the final
product. A ROM pattern is also permanently fixed in the additional circuitry and coded
to provide a parity check of input address levels. These and other test circuits are used
to test for correct operation of the row and column-select circuits and functionality of
input and enable gates. All test circuits are available at both wafer and assembled device
levels to allow 100% functional and parametric testing at every stage of the test flow.

Reliability

As with all National products, the Ti:W PROMs are subjected to an ongoing reliability
evaluation by the Reliability Assurance Department. These evaluations employ acceler-
ated life tests, including dynamic high-temperature operating life, temperature-
humidity life, temperature cycling, and thermal shock. To date, nearly 7.4 million
Schottky Ti:W PROM device hours have been logged. DIP (N-package) and cerdip
- (J-package). Device performance in all package configurations is excellent. .

Data Sheets 305

Supply Voltage (Note 2) -0.5t0 +7.0V
Input Voltage (Note 2) ' -1.2t0 +5.5V
Output Voltage (Note 2) -0.5to +5.5V
Storage Temperature -65to +150C -
Lead Temperature (10 seconds) : 300C

Table 11.4.1 Absolute Maximum Ratings

*Device input waveform characteristics are;
Vee Repetition rate = 1IMHz i
Source impedance =500
Rise and Fall times = 2.5ns max.
R1 (1.0 to 2.0 volt levels)

*TAA is measured with stable enable inputs.

OUTPUT O- ~ TEST *TEA and TER are measured from the 1.5
I POINT volt level on inputs and outputs with all
& R2
>
C=

address and enable inputs stable at
applicable levels. :

30pF
P *For lg, = 16mA, R1 = 3002 and R2 = 6000
) for o, = 12mA, R1 = 4000 and R2 =8000.

AAA

= . *«C” includes scope and jig capacitance.
GND .

Figure 11.4.1 Standard Test Load

3.0V
ADDRESS W VALID
ov

L———-TAA———>1

OUTPUT —W VALID >——

—»FE(-— FTXZ::‘
TEA TER
3.0v - -

ENABLE X X

Figure 11.4.2 Switching Time Waveforms Non-Registered PROMs

306 Programmable Logic Design Guide

}‘a..mol _ |°"s(‘l -|«——| tu(A)

AKX

Aok | |

t,(c‘s)i«—-_. -t..(G—S)-I = 15(GS) | 14(GS)

S // ST\ S\

AT

14(GS) |~ —*'t..(c_swl

b |
SR 230\ 0 Gl AL\ AN

[toai® —~|

, | e (CP) —’I = tow (CP) -|

XXX |

}+-teuntee) ~| ‘-— ton(@ —-|

| |
|.-:,,,,(cp, _.l ~— tpzu(CP) -

X —

0g-Q; |

15, 2(CP) -.I
[

*— 120 _’I

1.5V
ov

1.5V
[

v
1.8V
ov

Vou

-— 1.8V

T —&=

- to2l®—=|

l._. tpe(CP) ._.I |- tm(CP)—vl

7

tg(INIT) —1 |:ﬁm"ﬁ)°|
NIt
Figure 11.4.3 Switching Waveforms, Registered PROM
WAVEFORM INPUTS OUTPUTS WAVEFORM INPUTS OUTPUTS
MUST BE WILL BE DON'T CARE: CHANGING:
STEADY STEADY M ANY CHANGE STATE
L : PERMITTED UNKNOWN
R WILL BE
m an:’:‘;‘“ CHANGING M DOES NOT CENTER LINE
OL FROMHTOL APPLY IS HIGH
MAY CHANGE WILL BE IMPEDANCE
FROMLTOH CHANGING “QFF" STATE
FROMLTOH

Figure 11.4.4 Key to Timing Diagram

Voo

v
\ —_— 15V
ov

v
15V
ov

Data Sheets 307

11.5 DM54/745188, DM54/745288 (32 x 8) 256-BIT TTL PROMs
General Description

These Schottky memories are organized in the popular 32 words by 8 bits configura-
tion. A memory enable input is provided to control the output states. When the device
is enabled, the outputs represent the contents of the selected word. When disabled, the
8 outputs go to the OFF or high impedance state. The memories are available in both
open-collector and TRI-STATE® versions.

PROMs are shipped from the factory with lows in all locations. A high may be pro-
grammed into any selected location by following the programming instructions.

Features

e Advanced titanium-tungsten (Ti:W) fuses.

e Schottky-clamped for high speed.
Address access—22 ns typ.
Enable access—15 ns typ.
Enable recovery—15 ns typ.

PNP inputs for reduced input loading.

All DC and AC parameters guaranteed over temperature.

Low voltage TRI-SAFE™ programming.

Open-
Military | Commercial | Collector | TRI-STATE | Package
DM745188 X X N.J
DM745288 X ’ X N.J
DM545188 X X J
DM545288 X X J

Table 11.5.1 (32 x 8) 256-Bit TTL PROM Options

INPUT
BUFFER

A4 256 BIT ARRAY
:g GENERATING
a1 32 UNIQUE

A PRODUCT TERMS

DECODER
1 Pl s & & & & & &
ENABLE

BUFFER Q8 Q7

ORDER NUMBER: ORDER NUMBER:
DM74S188 J, DM745288 J, DM745188 N OR DM745288 N
DM545188 J, DM545288 J SEE NS PACKAGE N16A

SEE NS PACKAGE J16A
Figure 11.5.1 Block and Connection Diagram

308

DM54/745188, DM54/74S5288 (32 x 8) 256-BIT TTL PROMs

Programmable Logic Design Guide

DC Electrical Characteristics

(Note 3)
DM545188/288 DM745188/288
Sym Parameter Conditions - Units
} .) Min | Typ | Max | Min | Typ | Max | .
it | Input Load Current Ve = Max, Viy = 045V -80 | -250 -80 | -250 | uA
iy | Input Leakage Current Voo =Max, Viy=27V 25 25 | pA
) Vee = Max, Viy = 5.5V 1.0 10 | mA
VoL | Low Level Output Voltage| Ve = Min, IgL = 16mA 035} 0.50 0.35 | 045 Vv
VL | Low Level Input Voltage 0.80 0.80 \Y%
Vi | High Level! Input Voltage 20 20)
loz { Output Leakage Current | Voc = Max, Voex =24V 50 50 MA
(Open-Collector Only) Ve = Max, Veex = 5.5V 100 100 | pA
Ve |[Input Clamp Voltage Veg = Min, liy=-18mA 08| -1.2 -08 | -1.2 \
Ci | Input Capacitance Ve =50, Viy=20V 40 40 pF
Ta=25C, 1IMHz
Co | Output Capacitance Vee =50V, Vg =20V 6.0 6.0 pF
Ta = 25C, 1MHz, Outputs Off
lcc | Power Supply Current Vg = Max, Inputs Grounded 70 | 110 70 | 110 | mA
All Outputs Open o
TRI-STATE® Parameters
los | Short Circuit Vo =0V, Vg = Max -20 -70 | -20 -70 | mA
Output Current iNote 41
loz | Output Leakage Voo = Max, Vo =045 to 2.4V +50 +50 | pA
(TRI-STATE) Chip Disabled -50 -50 uA
Von| Output Voltage High lop=-20mA 24| 32 \
loH= —6.5mA 24 | 32 \
AC Electrical Characteristics
(With Standard Load and Operating Conditions)
DM545188/288 DM74S188/288
Sym Parameter JEDEC Symbol Units
Min | Typ | Max | Min [Typ | Max
TAA|Address Access Time TAVQV 22 45 ‘22 35 ns
TEA|Enable Access Time TEVQV 15 30 15 20 ns
TER|[Enable Recovery Time TEXQX 15 35 15 25 ns
TZX | Output Enable Time TEVQX "~ 15 30 15 20 ns
TXZ]Output Disable Time TEXQZ 15 35. 15 25 ns

Note 3: These limits apply over the entire operating range unless stated otherwise. Al typical values are for Vee =5.0Vand Ty = 25C.

Note 4: During log measurement, only one output at a time should be grounded, Permanent damage may otherwise result.

Table 11.5.2 - AC and DC Specifications for (32 x 8) 256-Bit TTL PROMs

Data Sheets

11.6 PL77X288/PL87X288 (32 x 8) 256-BIT TTL LOGIC PROMs

General Description

These Schottky programmable logic devices are organized in the popular 32 words by
8-bit configuration. An enable input is provided to control the output states. When the
device is enabled, the outputs represent the conterits of the selected word. When dis-
abled, the 8 outputs go to the OFF or high impedance state. The memories are avallable

in the TRI-STATE® version only.

PROMs are shipped from the factory with lows in all locations. A high may be pro-

grammed into any selected location by following the programming instructions.

Features

o Advanced titanium-tungsten (Ti-W) fuses

o Schottky-clamped for high speed
— Addressed access—10 ns typ
— Enable access—8 ns.typ
— Enable recovery—8 ns typ
o PNP inputs for reduced input loading

©

o Low voltage TRI-SAFE™ programming

All DC and AC parameters guaranteed over temperature

- . Open- y
Military Commercial Collector TRI-STATE Package
PL87X288 X X N, J
PL77X288 X X J

Table 11.6.1 (32 X 8) 256-Bit TTL PROM Options

M—
A3 =1 TERM
A2 =4 FIXED m"
AND
Al —
ARRAY
AD

256 BIT OR ARRAY
PROVIDING
ALL 32 PRODUCT TERMS

= ENABLE
G (i g o o o A o L
a7 Q6 05 a4 a3 62 a1 ao

Dual-In-Line Package

00 —
a1 =
02 —
03 —1
04 ~—
05 —
6 —
GND =

1
2
3
1
§
6
7
8

|\

-

Figure 11.6.1 Block and Connection Diagram

TOP VIEW

3

Vee

A

A2
At
A0
a7

310

Programmable Logic Design Guide

PL77X288/PL87X288 (32 x 8) 256-BIT TTL LOGIC PROMs

DC Electrical Characteristics (Note 3)

PL77X288 PL87X288 i
Symbol Parameter Conditions Units
Min Typ Max Min Typ Max
e Input Load Current Vee = Max, Viy =04V -80 | -250 —-80 | —250 PL.
Iy |Input Leakage Current]Vce = Max, Viy=2.7V 25 25 | uA
Vcc =Max, VIN =5.5V 1.0 10 mA
VoL |Low Level Qutput Vee=Min, loL =24 mA (Com) 0.35 0.50 0.35 0.50 \%
Voltage loL =12 mA (Mil)
ViL |Low Level Input (Note 7) 0.80 0.80 v
Voltage
Viy | High Level Input (Note 7) 20 20 \
Voltage
Ve {Input Clamp Voltage [Vge=Min, ly=—18mA -08 | -15 -08 | -15 v
C Input Capacitance Voo =5.0V,V)y=2.0V 4.0 4.0 pF
Tao=25°C, 1 MHz
Co |Output Capacitance |Vge=5.0V, Vo=20V 6.0 6.0 pF
Ta=25°C, 1 MHz, Outputs Off
lcc |Power Supply Current | Voo = Max, Inputs Grounded 110 140 110 140 mA
All Outputs Open
TRI-STATE
log | Short Circuit Output | Vo =0V, Vgc=Max -30 -130 | -30 -130 mA
Current (Note 4) ’
loz | Output Leakage Vee = Max, Vg =04V to 24V 100 100 A
(TRI-STATE) Chip Disabled ~100 ~100 WA
Von |Output Voltage High |lgy= —2.0mA 24 3.2)
lop=-3.2mA 24 3.2 \
AC Electrical Characteristics with standard toad and operating conditions
PL77X288 PL87X288
Symbol Parameter JEDEC Symbo! " Units
Min Typ Max Min Typ Max
taa Address Access Time (Note 5) TAVQV 10 20 10 15 ns
tea Enable Access Time (Note 5) TEVQV 8 15 8 12 ns
ter Enable Recovery Time (Note 6) TEXQX 8 15 8 12 ns
tzx Output Enable Time (Note 5) TEVQX 8 15 8 12 ns
txz Output Disable Time (Note 6) TEXQZ 8 15 8 12 ns

Note 1: Absolute maximum ratings are those values beyond which the device may be permanently damaged. They do not mean that the device may be
operated at these values.
These limits do not apply during programming. For the programming ratings, refer to the programming parameters.
These limits apply over the entire operating range unless stated otherwise. All typical values are for Voo = 5.0V and Tp =25°C.
During |gg measurement, only one output at a time should be grounded. Permanent damage may otherwise result.

Note 2:
Note 3:
Note 4:
Note 5:
Note &:
Note7:

Cp=50pF.
CL=5pF.

These are absolute voltages with respect to the ground pin on the device and includes all overshoots due to system and/or tester noise. Do not attempt
to test these values without suitable equipment.

Table 11.6.2 AC and DC Specifications for (32 X 8) 256-Bit TTL Logic PROMs

Data Sheets 311

11.7 DM54/74LS471 (256 x 8) 2048-BIT TTL PROMs
General Description

These Schottky memories are organized in the popular 256 words by 8 bits configura-
tion. Memory enable inputs are provided to control the output states. When the device
is enabled, the outputs represent the contents of the selected word. When disabled, the 8
outputs go to the “OFF” of high impedance state.

PROMs are shipped from the factory with lows in all locations. A high may be pro-
grammed into any selected location by following the programming instructions.

Features

® Advanced titanium-tungsten (Ti-W) fuses
e Schottky-clamped for high speed
— Addressed access—40 ns typ
— Enable access—15 ns typ
— Enable recovery—15 ns typ
e PNP inputs for reduced input loading
All DC and AC parameters guaranteed over temperature
® Low voltage TRI-SAFE™ programming

Open-
Military | Commercial | Collector | TRI-STATE | Package

DM74L.5471 X X N.J

DM54LS471 X X J

Table 11.7.1 (256 X 8) 2048-Bit TTL PROM Options

o U s
e I g e
R ol I ¥
A — 2048:BIT ARRAY ; e o 4
e GENERATING 256 gl L
UNIQUE PRODUCT TERMS 5 16 —
A — - E2
A2 — 0 .GJ .E 3]
83— 2 14 08 Order Number;
M s 8 3 DM74LS4T1 J,
® 3 T DMS4LSAT1 J,
= = 06
i — 00 ! See NS Package J208
il T — 05
€2 — Order Number,
DM74LS471 N

ENABLE See NS Package N20A

BUFFER (8 o] 05 1] (I [

Figure 11.7.1 Block and Connection Diagram

312

DM54/74LS471 (256 x 8) 2048-BIT TTL PROMs

Programmable Logic Design Guide

DC Electrical Characteristics Note 31

: . DM54LS471 DM74L8471
Sym Parameter Conditions Units
Min | Typ | Max | Min | Typ | Max
L |Input Load Current Voo = Max, Viy = 045V -80 | -250 -80 | -250 | uA
Aiq | Input Leakage Current Voo = Max, Viy =27V 25 25 pA
: Ve = Max, Viy = 5.5V 10 1.0 mA
VoL |Low Level Output Voltage | Voo = Min, Ig = 16mA 035 | 0.50 035 | 045 \
ViL |Low Level Input Voltage 0.80 0.80 \)
Viy |High Level Input Voltage 20 20 \
Vg |Input Clamp Voitage Vee = Min, Iy =-18mA 08 | -1.2 -08 | -1.2 \%
C, |Input Capacitance Vo =50, Vi =20V 4.0 40 pF
Ta=25C, IMHz
Co |Output Capacitance Voo =50V, Vo =20V 6.0 6.0 pF
Ta = 25C, 1IMHz, Outputs Off
lcc | Power Supply Current Ve = Max, Inputs Grounded 75 | 100 75 | 100] mA
All Outputs Open
TRI-STATE® Parameters
los [Short Circuit Vo =0V, Ve = Max -20 -70 | -20 -70 | mA
Output Current Note 4
loz |Output Leakage Vee = Max, Vo =045 to 2.4V +50 +50 | uA
(TRI-STATE) Chip Disabled 50 -50 uA
Vou | Output Voltage High lop = -20mA 24 | 32) \
loy = 6.5mA 24 | 32 \
AC Electrical Characteristics with Standard Load and Operating Conditions:
- DM54LS471 DM74LS471
Sym Parameter JEDEC Symbol Units
Min | Typ | Max | Min | Typ | Max
TAA|Address Access Time TAVQV 45 70 40 60 ns
TEA [Enable Access Time TEVQV 15 35 15 30 ns -
TER [Enable Recovery Time TEXQX 15 35 15 30 ns
TZX{Output Enable Time TEVQX 15 35 15 30 ns
TXZ |Output Disable Time TEXQZ 15 35 15 30 ns

Note 3: These limits apply over the entire operating range unless stated otherwise. All typical values are for Vo = 5.0V and Ty = 25C.
Note 4: During lgg measurement, only one output at a time should be grounded. Permanent damage may otherwise result.

Table 11.7.2 AC and DC Specifications for (256 X 8) 2048-Bit TTL PROMs

Data Sheets 313

11.8 DM54/74S473, DM54/74S472; DM54/74S473A, DM54/74S472A;
DM54/74S472B (512 x 8) 4K-BIT TTL PROMs

General Description

These Schottky memories are organized in the popular 512 words by 8 bits configura-
tion. A memory enable input is provided to control the output states. When the device
is enabled, the outputs represent the contents of the selected word. When disabled, the
8 outputs go to the OFF or high impedance state. The memories are available in both
open-collector and TRI-STATE® versions.

PROMs are shipped from the factory with lows in all locations. A high may be pro-
grammed into any selected location by following the programming instructions.

Features

o Advanced titanjum-tungsten (Ti:W) fuses.

o Schottky-clamped for high speed.
Address access—25 ns typ.
Enable access—15 ns typ.
Enable recovery—15 ns typ.

o PNP inputs for reduced input loading.

‘o All DC and AC parameters guaranteed over temperature.

o Low voltage TRI-SAFE™ programming.

Open-
Miltary Commercial Collector TRI-STATE . Pa(.:kage

DM745473 X ’ X ' N,J
DM748472 X X N,J
DM545473 X X J
DM548472 X X J

Table 11.8.1 512 X 8 4096-Bit TTL PROM Optics

INPUT
BUFFER

As 1 [\ | 20
A7 A0 2y .
:g 3 -’ oM § :—:- AB Order Number:
Ao+ o oy A2— [A7 DM745473 J, DM74S472 J
GENERATING 512 UNIQUE . 2 7 , ,
A1 PRODUCT TERMS a3 "~ a6 DM54S473 J, or DM54S472 J
' a2 L See NS Package J208
A2+ 5 15
v NI 1450 order Numb
A4 A Ll rder Number:
— 027 13 08 DM74S473 N or DM745472 N
Q3 — —Q7 See NS Package N20A
_ 9 12
E1 04— Ll
sur| [Bur| {BuF| lBUF| |BuF| [BUF| |BuUF| |BUF] GND—] a5
ENABLE)

BUFFER @8 Q7 Q6 Q5 Q4 Q@3 Q2 o1

Figure 11.8.1 Block and Connection Diagram

314

Programmable Logic Design Guide

DM54/74S473, DM54/74S472, DM54/74S473A DM54/74S472A, DM54/74S472B
DC Electrical Characteristics

(Note 3)
DM54S473/472 DM74S473/472
Sym Parameter Conditions Units
Min | Typ | Max | Min | Typ | Max
i, |Input Load Current Vee = Max, Viy =045V -80 |-250 -80 | 250 | uwA
lin |Input Leakage Current Veg =Max, Viy=2.7V 25 25 pA
Voo = Max, Viy = 5.5V 1.0 10 | mA
VoL |Low Level Output Voltage| Voo = Min, lor = 16mA 035 | 050 035 | 045 v
ViL |Low Level Input Voltage 0.80 0.80 Vv
Vi {High Level Input Voltage 20 2.0 \
loz |Output Leakage Current | Voo = Max, Voex = 2.4V 50 50 HA
1Open-Collector Only: Voo = Max, Veex = 5.5V 100 100 uA
Ve |Input Clamp Voltage Voo = Min, iy =-18mA 08 | -1.2 -08 | -12 \
C; |lnput Capacitance Vee =50, Viy=20V 40 40 pF
Ta=25C, IMHz
Co |Output Capacitance Veo =50V, Vo =20V 6.0 6.0 pF
Ta = 25C, IMHz, Outputs Off
Icc |Power Supply Current) Vee = Max, Inputs Grounded 110 | 155 110 [155 | mA
All Outputs Open
TRI-STATE® Parameters
los [Short Circuit Vo =0V, Vg = Max -20 -70 | -20 -70 | mA
Output Current (Note 4)
loz [Output Leakage Vee = Max, Vo = 045 to 2.4V +50 +50 | pA
(TRI-STATE) Chip Disabled ~50 -50 uA
Voi | Output Voltage High lon =-20mA 24 | 32 \Y
' lo =6.5mA 241 32 Vv
AC Electrical Characteristics
(With Standard Load and Operating Conditions)
DM545473/472 DM745473/472
Sym Parameter JEDEC Symbol - Units
Min | Typ | Max | Min | Typ | Max
TAA| Address Access Time TAvVQV 40 75 40 60 ns
TEA|Enable Access Time TEVQV 15 35 . 15 30 ns
TER| Enable Recovery Time TEXQX 15 35 15 30 ns
TZX|Output Enable Time TEVQX 15 35 15 30 ns
TXZ]| Output Disable Time TEXQZ 15 35 15 30 ns

“Table 11.8.2 AC and DC Specifications for (512 X 8) 4096-Bit TTL. PROM

Data Sheets 315
AC Electrical Characteristics
(With Standard Load and Operating Conditions)
DM54S473A/472A, B DM74S473A1472A, B
Sym| Parameter JEDEC Symbol Units
Min Typ Max Min Typ Max
TAA Address Access Time | TAVQV 473A/472A 25 60 25 45 ns
4728 25 50 25 35 | ns
TEA|Enable Access Time TEVQV 473A/472A 15 35 15 30 ns
4728 15 35 15 25 ns
TER|Enable Recovery Time | TEXQX | 473A/472A 15 35 15 30 ns
472B 15 35 15 25 ns
TZX|Output Enable Time TEVQX 473A/472A 15 35 15 30 ns
472B 15 35 15 25 ns
TXZOutput Disable Time TEXQZ 473A/472A 15 35 15 30 ns
472B 15 35 15 25 ns

Note 3: These limits apply over the entire operating range unless stated otherwise. All typical values are for Vg = 5.0V and Tp = 25C.
Note 4: During Ing measurement, only one output at a time should be grounded. Permanent damage may otherwise result.

Table 11.8.2 AC and DC Specifications for (512 X 8) 4096-Bit TTL PROM (Cont.)

316 Programmable Logic Design Guide

11.9 DM54/74S475, DM54/74S474; DM54/74S475A, DM54/74S474A;
DM54/74S474B, (512 x 8) K-BIT TTL PROMs

General Description

These Schottky memories are organized in the popular 512 words by 8 bits configura-
tion. Memory enable inputs are provided to control the output states. When the device
is enabled, the outputs represent the contents of the selected word. When disabled, the
8 outputs go to the OFF or high impedance state. The memories are available in both
open-collector and TRI-STATE® versions. ,
PROMs are shipped from the factory with lows in all locations. A high may be pro-
grammed into any selected location by following the programming instructions.

Features

® Advanced titanium-tungsten (Ti:W) fuses.

Schottky-clamped for high speed.
Address access—25 ns typ.
Enable access—15 ns typ.
Enable recovery—15 ns typ.

PNP inputs for reduced input loading.

All DC and AC parameters guaranteed over temperature.

® Low voltage TRI-SAFE™ programming.

Open-
Military | Commercial | Collector | TRI-STATE | Package
DM748475 X X NJ
DM745474 X X NJ
DM545475 X X J
DM545474 X X J

Table 11.9.1 (512 X 8) 4096-Bit TTL PROM

‘ORDER NUMBER:
DM745475 J, DM74S475 J,
DM45S475 J, DM545474 J

SEE NS PACKAGE J24A

A 4096-BIT ARRAY
a3 GENERATING 512
UNIQUE PRODUCT TERMS

Ay

Ay

E

£3

E3

E4 B
ENABLE

GATE Q8 Q7 Q8 Q5 Q8 G Q2 Of

'ORDER NUMBER:
DM745475 N OR DM74S474 N
SEE NS PACKAGE N24A

Figure 11.9.1 Block and Connection Diagram

Data Sheets

DM54/74S745, DM54/74S474, DM54/74S475A, DM54/74S474A, DM54/74S474B
DC Electrical Characteristics

317

(Note 3)
DM54S475/474 DM745475/474
Sym Parameter Conditions Units
Min{ Typ| Max | Min| Typ| Max
li. | Input Load Current Vce = Max, Viy = 045V 80| -250 80| 250 | wpA
i | Input Leakage Current Voo =Max, Vin=27V 25 25 uA
Ve = Max, Vin = 5.5V 1.0 1.0 mA
VoL | Low Level Output Voltage | Voe = Min, IgL = 16mA 035| 050 035| 045 \'
VL | Low Level Input Voltage 0.80 0.80 \
Vi1 | High Level Input Voltage . 20 20 Vv
loz | Output Leakage Current | Voc = Max, Vgex = 24V 50 50 HA
(Open-Collector Only) Vee = Max, Vegx =55V 100 100 | pA
V¢ | Input Clamp Voltage Voe = Min, Iy =-18mA 08| -1.2 08| -1.2 \')
C, [Input Capacitance Vec =50, Vin=20V 4.0 40 pF
Ta=25C, 1IMHz
Co | Output Capacitance Voo =5.0V, Vg =20V 6.0 6.0 pF
Ta = 25C, 1MHz, Outputs Off
lcc | Power Supply Current Ve = Max, Inputs Grounded 115 170 115 170 | mA
All Outputs Open
TRI-STATE® Parameters
los | Short Circuit Vo =0V, V¢ = Max -20 -70 | -20 -70 | mA
Output Current (Note 4)
loz | Output Leakage Vee = Max, Vo = 045 to 2.4V +50 +50 | pA
(TRI-STATE) Chip Disabled -50 -50 | pA
Von| Output Voltage High lon =-20mA 24 | 32 v
lon =6.5mA - 24 | 32 \
AC Electrical Characteristics
(With Standard Load and Operating Conditions)
DM545475/474 DM745475/474
Sym Parameter JEDEC Symbol Units
Min | Typ | Max [Min | Typ | Max
TAA|Address Access Time TAVQV 40 75 40 65 ns
TEA|Enable Access Time TEVQV 20 40 20 [35 ns
TER| Enable Recovery Time TEXQX 20 | 40 20 | 35 ns
TZX]| Output Enable Time TEVQX 20 | 40 20 { 35 ns
TXZ | Output Disable Time TEXQZ 20 40 20 | 35 ns

Table 11.9.2 AC and DC Specifications for (512 X 8) 4096-Bit TTL
High Speed PROM

318

AC Electrical Characteristics

Programmable Logic Design Guide

(With Standard Load and Operating Conditions)

- DM54S475A/474A, B

DM74S475A/474A, B

Sym Parameter JEDEC Symbol Units|
. Min Typ Max Min Typ Max

TAA|Address Access Time | TAVQV 475A/474A 25 60 25 45 ns
474B 25 50 25 35 ns
TEA|Enable Access Time | TEVQV 15 35 15 25 ns
TER|Enable Recovery Time | TEXQX 15 35 15 25 ns
TZX{Output Enable Time TEVQX 15 35 15 25 ns
. TXZ|Output Disable Time TEXQZ 15 35 15 25 ns

Note 3: These limits apply over the entire operating range unless stated otherwise. All typical values are for Vo = 5.0V and Ty = 25C.

Note 4: During log measurement, only one output at a time should be grounded. Permanent damage may otherwise resuit.

Table 11.9.2 AC and DC Specifications for (512 X 8) 4096 Bit TTL
ngh Speed RPOM (Cont.)

Data Sheets 319

11.10 DM77/87SR474, DM77/87SR474B (512 x 8) 4K-BIT REGISTERED
TTL PROM

General Description

The DM77/87SR474 is an electrically programmable Schottky TTL read-only memory
with D-type, master-slave registers on-chip. This device is organized as 512 words by
8-bits and is available in the TRI-STATE output version. Designed to optimize system
performance, this device also substantially reduces the cost and size of pipelined
microprogrammed systems and other designs wherein accessed PROM data is tempo-
rarily stored in a register. The DM77/87SR474 also offers maximal flexibility for mem-
ory expansion and data bus control by providing both synchronous and asynchronous
output enables. All outputs will go into the OFF state if the synchronous chip enable
(GS) is high before the rising edge of the clock, or if the asynchronous chip enable (G)
is held high. The outputs are enabled when GS is brought low before the rising edge of
the clock and G is held low. The GS flip-flop is designed to power-up to the OFF state
with the application of V¢c. »

Data is read from the PROM by first applying an address to inputs Ay-Ag. During the
setup time the output of the array is loaded into the master flip-flop of the data register.
During the rising edge (low-to-high transition) of the clock, the data is then transferred
to the slave of the flip-flop and will appear on the output if the' output is enabled. Fol-
lowing the rising edge clock transition, the addresses and synchronous chip enable can
be removed and the output data will remain stable.

The DM77/87SR474 also features an initialize function, INIT. The initialize function
provides the user with an extra word of programmable memory which is accessed with
single pin control by applying a low on INIT. The initialize function is synchronous and
is loaded into the output register on the next rising edge of the clock. The unpro-
grammed state of the INIT is all lows, providing a CLEAR function when not
programmed. o

PROMs are shipped from the factory with lows in all locations. A high may be pro-
grammed into any selected location by following the programming instructions. Once
programmed, it is impossible to go back.to a low.

320 Programmable Logic Design Guide

Features

On-chip, edge-triggered registers.

Synchronous and asynchronous enables for word expansion.
Programmable synchronous register INITIALIZE.

24-pin, 300 mil thin-DIP package. | |

35 ns address setup and 20 ns clock to output for maximum system speed.
Highly reliable, titanium tungsten fuses. ‘ '
TRI-STATE® outputs.

Low voltage TRI-SAFE™ programming.

All parameters guaranteed over tempcrature_.

Pinout compatible with DM77SR181 (iK x 8) Registered PROM for future
.expansion.

INPUT

BUFFER
Ag— v ,
P A - 24 Vee
. As—2 23f— A,
:s— v Ay —3 22 }— NC
A 4096 BIT ARRAY A, — 4 21f—&
GENERATING _ | = =R
§12 UNIQUE :‘ —1° 20 NI (CLR)
» PRODUCT TERMS A6 rrsnan O O
Ay A =7 18 |— cK
A, N A
> o — 8 crb—aq,
Ao—
. G 16— q,
: INITIALIZE WORD a, =10 15— o
—_ 1 ‘ . 1 ‘ l l l Q, —1 14~ Q,
NT GND — 12 13 |— q,
CLK _.{>_r_ — 8-BIT EDGE-TRIGGERED REGISTER
: TULS189

Order Number DM77SR474J,

— . D
GS ~|FLie-FLOP - DMB7SR474J, DMBTSRAT4N,
- E7 |V | _I, DM77SR474BJ, DMBTSR474BJ
G Y
. @ 0 a

or DMB87SR474BN
See NS Package J24F or N24C
., QO Q Q, TLILS5189

e a

Figure 11.10.1 Block and Connection Diagrams

Data Sheets 321
DM77/87SR474
DC Electrical Characteristics (note 3)
Symbol Parameter Conditions DM77SR474 DM87SR474 | ynits
Min. | Typ. [Max. |Min. | Typ. | Max.
L, Input Load Current Vee =Max., Vi, =0.45V -80| -250 -80 | -250| uA
| Ve =Max,, V=27V ' 25 25 pA
[nput Leakage Current Voo = Max., Vyy= 5.5V 0 0| mA
VoL Low Level Output Voltage | Ve = Min., I = 16mA 0.35 | 0.50 0.35 | 0.45 v
Vi Low Level Input Voltage 0.80 0.80 \'
Vi High Level Input Voltage 2.0 2.0 Vv
loz Output Leakage Current | Voo =Max., Veey =2.4V 50 50 uA
Ve Input Clamp Voltage Vec=Min,, Iy = - 18mA -08| -1.2 -08] -12| V-
. Voo =5.0, Vjy=2.0V 4.0 £
C Input Capacitance T2 259C, 1MHz 4.0 . p
; Vee=5.0V, Vp=2.0V E
Co Output Capacitance Ty 25°C, 1MHz, Outputs Off 6.0 6.0 p
¢ Ve =Max., Inputs Grounded 185 135 | 185 A
lec Power Supply Current Al Outputs Open 135 m
TRI-STATE Parameters
Short Circuit V=0V, V¢ = Max.
| o ' YCC ~2 -70 | -20 =70 | mA
08 Output Current (Note 4) 0
loz Output Leakage Vec=Max., Vy=0.45t0 2.V -50 +50 | -50 +50 [pA
(TRI-STATE) Chip Disabled
v ’ . loy= —2.0mA 24 | 3.2 . \
'on | Output Voltage High lon = — 6.5mA 24 | 32 v

Note 3: These limits apply over the entire operating range unless stated otherwise. All typical values are for Vgc =5.0V-and Tq = 25°C.

Note 4: During los measurement, only one output at a time should be grounded. Permanent damage may otherwise result.

Table 11.10.1 AC and DC Specifications for (512 X 8) 4K-Bit Registered TTL PROMs

322 Programmable Logic Design Guide

DM77/87SR474B ’
Switching Characteristics

Symbol _ Parameter : DM77SR474 DMB7SR474 Units
: Min. | Typ. | Max. | Min. | Typ. | Max.

g . | .SR474 55 | 20 50 | 20
tsm) Address to CLK (High) Setup Time 'SRa74B 40 20 35 | 20
Yy " |Address to CLK (High) Hold Time ‘ 0| -5 0o} -5 ns
tsnm INIT to CLK (High) Setup Time 30 | 20 25 | 20 ns
tinm iNIT to CLK (High) Hold Time o | -5 o |-~5 ns
toHLCLK)]] SR474 15 | 30 15 | 27
teLicLio Delay from CLK (High) to Output (High or Low) ['SRa7a8 . 5 25 B | 20 ns
Iweeuo ICLK Width (High or Low) ' 25 | 13 20 | 18 ns
'WL(CLK))
tsas) GS to CLK (High) Setup Time 10| 0 10| 0 ns
tuas) GS to CLK (High) Hold Time 5| o0 5|0 ns
";g‘:&"’m Delay from CLK (High) to Output Active (High or Low) 20 | 35 20 | 30 ns
‘g:((z)) " |pelay from G (Low) to Output Active (High or Low) 15 30 15 | 25 ns
;:':Zz(((c::uu(()) Delay from CLK (High) to Output Inactive (TRI-STATE) 20 | 35 20 | 30 ns
{Eﬂ‘i}) . Delay from G (Low) to Output Inactive (TRI-STATE) 15 | 30 15 | 25 ns

Table 11.10.1 AC and DC Specifications for (512 X 8) 4K-Bit Registered TTL PROMs
(Cont.)

Data Sheets 323

11.11 DM77/87SR476, DM77/87SR25, DM77/87SR476B,
DM77/87SR25B (512 x 8) 4K-BIT REGISTERED TTL PROMs

General Description

The DM77/87SR476 is an electrically programmable schottky TTL read-only memory
with D-type, masterslave registers on-chip. This device is organized as 512 words by
8-bits and is available in the TRI-STATE® output version. Designed to optimize system
performance, this device also substantially reduces the cost and size of pipelined
microprogrammed systems and other designs wherein accessed PROM data is tempo-
rarily stored in a register. The DM77/87SR476 also offers maximal flexibility for mem-
ory expansion and data bus control by providing both synchronous and asynchronous
output enables. All outputs will go into the OFF state if the synchrounous chip enable
(GS) is high before the rising edge of the clock, or if the asynchrounous chip enable (G)
is held high. The outpus are enabled when GS is brought low before the rising edge of
the clock and G is held low. The GS flip-flop is designed to power up to the OFF state
with the application of V¢c.

Data is read from the PROM by first applying an address to inputs A0-A8. During the
rising edge (low-to-high transition) of the clock, the data is then transferred to the slave
of the flip-flop and will appear on the output if the output is enabled. Following the ris-
ing edge clock transition, the addresses and synchronous chip enable can be removed
and the output data will remain stable.

The DM77SR476 also features an initialize function, INIT. The initialize function pro-
vides the user with an extra word of programmable memory which is accessed with
single pin control by applying a low on INIT. The initialize function is asynchronous
and is loaded into the output register when INIT is brought low. The unprogrammed
state of the INIT is all lows, which makes it compatible with the CLEAR function on the
AM27825. PS loads lows into the output registers when brought low.

PROMs are shipped from the factory with lows in all locations. A high may be pro-
grammed into any selected location by following the programming instructions. Once
programmed, it is impossible to go back to a low.

Features

Functionally compatible with AM27S25.

On-chip, edge-triggered registers.

Synchronous and asynchronous enables for word expansion.
Programmable asynchronous INITIALIZE (SR476 only).
24-pin, 300 mil thin-DIP package.

® ¢ o o o0 o

35 ns address setup and 20 ns clock to output for maximum system speed.

324 Programmable Logic Design Guide

e Highly reliable, titanium tungsten fuses.
e TRI-STATE outputs. '
e Low voltage TRI-SAFE™ programming.
e All parameters guaranteed over temperature.
® Preset input.
1 OF 64
WORD
DECODER
. Ag—]
Ay —] ! A7 —iq 10 24 f=—— V¢
Ag—| R ‘ Ag— 2 23— As
:,_J v . Ay — 3 2—7"s
A;— 4096-BIT ARRAY Ay —] s 21 }—G
] GENERATING 512 . .
UNIQUE PRODUCT TERMS i 20 (= T (CLR)
- A, — 6 DM77SR476 19 — Gg
DM77SR25 .
Ay —] Ay = 7 18 p— CK
1ore Ar— » , A~ 8 wh—a,
oEcoper °] . 9 — 9 16 |— 06
R O T T T T T e B 5[0
i o INITIALIZE WORD ' a; — 1 . 1—a,
«;—Lﬁ;—D°—-—,— : GND] 12 1BF—aq
Fs I s D-Bi'l’ EDGE-TRIGGERED‘ REGISTER —_
CLK —DT_. *CLR only on DM77/87SR25 TLLS190

“p” Order Number DM77SR476J,
GS —{ FupFLOP p

' ' ' DM77SR25J, DM77/87SR4T6N,
: DM77/87SR25N, DM77SR476BJ,
a Y Y Y Y Y DM77SR25B., DM77/87SR476BN

or DM77/87SR25BN
See NS Package J24F or N24C

Q@ ©o @ 0 0 0 Q0 @

Figure 11.11.1 Block and Connection Diagrams

Data Sheets 325
DM77/87SR476, DM77/87RS25, DM77/87SR476B, DM77/87SR25B
DC Electrical Characteristics (Note 3)
Symbol " Parameter Conditions DM77SR474 DM87SR474 | units
Min. | Typ. | Max. | Min. | Typ. | Max.
Ly Input Load Current Ve =Max,, V) =0.45V -80| -250 -80 | -250| pA
Kage G Veo=Max,, V=27V 25 25 A
hw |Input Leakage Current 7y T (= 5.5V 1.0 1.0 | mA
VoL Low Level Output Voltage | Voo = Min., I =16mA 0.35 | 0.50 0.35 [0.45 \
Vi Low Level Input Voltage 0.80 0.80 \
Vi High Level Input Voltage . 2.0 2.0 \
loz Output Leakage Current | Voo =Max., Vg =2.4V 50 50 A
Ve Input Clamp Voltage Vee=Min., |y = -18mA -0.8 -1.2 -08| ~-12| V
; Vee=5.0, Viy=2.0V 4
C, Input Capac-ta?ce Tos 259G, 1MHz 4.0 .0 pF
y ; Voo =5.0V, Vy=2.0V
Co Output Capacitance T2 255C, 1MHz, Outputs Off 6.0 6.0 pF
Ve = Max., Inputs Grounded
| cC 1
cc Power Supply Current All Outputs Open 135 | 185 35 185 mA
TRI-STATE Parameters
Short Circuit Vo =0V, Vo = Max. _ - _ ~70
los Output Current (Note 4) 20 70 |-20 70 | mA
loz Output Leakage Voo =Max., Vy=0451t02.V -50 +50 | -50 +50 | A
(TRI-STATE) Chip Disabled
. loy= —2.0mA 24] 32 \"
Voy | Output Voltage High » lon = — 6.5mA 24 | 30 v

Note 3: These limits apply over the entire operating range unless stated otherwise. All typical values are for Voo = 5.0V and Ty =25°C.
Note 4: During los measurement, only one output at a time should be grounded. Permanent damage may otherwise result.

Table 11.11.1 AC and DC Specifications for (512 X 8) 4K-Bit Registered TTL PROMs

326 Programmable Logic Design Guide

Switching Characteristics

DM77SR476, 476B | DM87SR476, 476B
Symbol Parameter DM77SR25, 25B | DM87SR25, 25B | y,i4e
Min. | Typ. | Max. | Min. | Typ. | Max.
) . SR476, SR25 55 | 20 50 | 20

ts(a) Address to CLK (High) Setup Time ns

. SR476B, SR258 | 40 | 20 35 | 20
tha) Address to CLK (High) Hold Time 0 |-5 0 |-5 ns
tpHL(CLK) |Delay from CLK (High) to Output SR476, SR25 15 | 30 15 27 ns
tPLH(CLK) (ngh or LOW) SR476B, SR25B 15 25) 15 20
:W“(CLK) CLK Width (High or Low) 25 | 13 25 | 13 ns
WL(CLK)
tsgs) | GS to CLK (High) Setup Time 0] 0 10| 0 ns
thes) | GS to CLK (High) Hold Time . ' 5 | 0 - ns
tpLHps) |Delay from PS (Low) to Output (High) 20 30 20 25 ns
:FL“('N'T) Delay from INIT (Low) to Output (Low or High) 20 | 30 20 | 25 | ns
PHL(INIT)
twips) | PS Pulse Width (Low) 15 | 10 15 | 10 ns
twignimy | INIT Pulse Width (Low) : 15 | 10 15 | 10
ts(ps) PS Recovery (High) to CLK (High) 25 | 10 20 | 10 ns
tSNIT) INIT Recovery (High) to CLK (High) 25 10 20 10 ns
tpzL(CLK) . . ,
tPZH(CLK) Delay from CLK (Low) to Active Output (High or Low) 20 35 20 30 ns
tpzi(q) 5 : .
tp2r(G) Delay from G (Low) to Acttve Output (Low or High) 15 30 15 25 ns
tpLz(CLK) . .
toHzICLK) Delay from CLK (High) to Inactive Output (TRI-STATE) 20 a5 20 30 ns
tpLz(G) G (Hi ;
terz(a) Delay from G (High) to Inactive Output (TRI-STATE) 15 30 15 o5 ns

Table 11.11.1 AC and DC Specifications for 20-Pin Ultra High- Speed Medium PAL
Devices (Cont.)

11.12

Data Sheets 327

REGISTERED PROM PROGRAMMING PROCEDURE

National Schottky PROMs are shipped from the factory with all fuses intact. As a result,
the outputs will be low (logical “0”) for all addresses. To generate high (logical “1”’) lev-
els at the outputs, the device must be programmed. Information regarding commer-
cially available programming equipment can be obtained from National, If it is desired
to build your own programmer, the following conditions must be observed:

1. Programming should be attempted only at ambient temperatures between 15 ° and
30°C.

2. Address and enable inputs must be driven with TTL logic levels during program--
ming and verification. :

3. Programming will occur at the selected address when Vcc is at 10.5V, and at the
selected bit location when the output pin representing that bit is at 10.5V, and the
device is subsequently enabled. To achieve these conditions in the appropriate
sequence, the following procedure must be followed:

2)

b)

d)

€)

Select the desired word by applying high or low levels to the appropriate
address inputs. Disable the device by applying a high level to the asynchronous
Chip Enable input G. GS is held low during the enable programming time.
Increase Ve from nominal to 10.5 volts (+ 0.5V) with a slew rate between 1.0
and 10.0V/ps. Since V¢ is the source of the current required to program the
fuse as well as the I for the device at the programming voltage, it must be
capable of supplying 750mA at 11.0V.

Select the output where a logical high is desired by raising that output voltage to
10.5V (£ 0.5V). Limit the slew rate from 1.0 to 10.0V/us. This voltage change
may occur simultaneously with the increase in V¢, but must not precede it. It
is critical that only one output at a time be programmed since the internal cir-
cuits can only supply programming current to one bit at a time. Outputs not
being programmed must be left open or connected to a high impedance source
of 20kQ minimum. (Remember that the outputs of the device are disabled at this
time.)

Enable the device by taking the chip enable (G) to a low level. This is done with
a pulse of 10ps. The 10ps duration refers to the time that the circuit (device) is
enabled. Normal input levels are used, and rise and fall times are not critical.
Verify that the bit has been programmed by first removing the programming vol-
tage from the output and then reducing V¢ to 4.0V (% 0.2V) for one verification
and to 6.0V (% 0.2V) for a second verification. Verification at a V¢ level of 4.0V
and 6.0V will guarantee proper output states over the V¢ and temperature range
of the programmed part. Each data verification must be preceded by a positive
going (low-to-high) clock edge to load the data from the array into the output
register. The device must be enabled to sense the state of the outputs, During ver-
ification, the loading of the output must be within specified I, and Iy limits.
Steps b, ¢, and d must be repeated up to 10 times or until verification that the bit
has been programmed.

328

f)

g)

h)

Programmable Logic Design Guide

The initialize word is programmed by setting INIT input to a logic low and pro-
gramming the initialize word output by output in the same manner as any other
address. This can be accomplished by inverting the A9 address input from the
PROM programmer and applying it to the INIT input. Using this method, the ini-
tialize word will program at address 512.

Following verification, apply five additional programming pulses to the bit
being programmed. The programming procedure is now complete for the
selected bit. :

Repeat steps a through f for each bit to be programmed to a high level. If the
procedure is performed on an automatic programmer, the duty cycle of V¢ at
the programming voltage must be limited to a maximum of 25%. This is neces-
sary to minimize device junction temperatures. After all selected bits are pro-
grammed, the entire contents of the memory should be verified.

Programming Parameters
Do not test or you may program the device

Symbol Parameter Co::ifitons Min. ﬁeco‘z Eznded Max. Units
Veep Required V¢ for Programming 10 10.5 n A
lcce lcc During Programming Vee=1V 750 mA
Vop Required Output Voltage for Programming 10 10.5 11 \
lop Output Current While Programming Voyr=1V 20 mA
lrR Rate of Voltage Change of V¢ or Output 1 10 Vius
Pwe Programming Pulse Width (Enabled) 9 10 1" us
Veovl Required Law V¢ for Verification 3.8 4 4.2 \
VeeovH Required High V¢ for Verification 5.8 6 6.2 \
Mpc Maximum Duty Cycle for Ve at Vegp i 25 25 %

Table 11.12.1 Programming Parameters. Do Not Test or You 'May Program the Device.

Data Sheets 329

-Programming Waveforms

ADDRESS >t
INPUTS SELECTED ADDRESS STABLE > <

Vee ' I
’ Veewt Veown
PROGRAMMED
OUTPUT W /L r/
Vou DUTPUT UTPUT
| T3 [Tl VERIFY VERIFY
G
ENABLE
—»| PWE ‘4— IO—T5—>‘ ’<-T5—>|
CLK '
cLocK
Ty=100 ns MIN.
T2=5 us MIN. (T2 MAY BE > 0 IF Vgcp RISES AT THE SAME RATE OR FASTER THAN Vgp.)
T3=100 ns MIN.
T4=100 ns MIN.
T5=100 ns MIN.
Tg=50 ns MIN.

Figure 11.12.1 Programming Waveforms Registered PROM

11.13 NON-REGISTERED PROM PROGRAMMING PROCEDURE

National Schottky PROMs are shipped from the factory with all fuses intact. As a result,
the outputs will be low (logical “‘0”) for all addresses. To generate high (logical “1”’) lev-
els at the outputs, the device must be programmed. Information regarding commer-
cially available programming equipment can be obtained from National. If it is desired
to build your own programmer, the following conditions must be observed:

1. Programming should be attempted only at ambient temperatures between 15 and 30
degrees Celsius.

2. Address and enable inputs must be driven with TTL logic lchls during program-
ming and verification.

3. Programming will occur at the selected address when V¢ is at 10.5 volts, and at the
selected bit location when the output pin representing that bit is at 10.5 volts, and
the device is subsequently enabled. To achieve these conditions in the appropriate
sequence, the following procedure must be followed:

330

Programmable Logic Design Guide

a) Select the desired word by applying high or low levels to the appropriate address

b)

d)

€)

8

inputs. Disable the device by applying a high level to asynchronous Chip Enable
input G. GS is held low during the enable programming time.

Increase Ve from nominal to 10.5 volts (+ 0.5V) with a slew rate between 1.0
and 10.0V/us. Since V¢ is the source of the current required to program the fuse
as well as the I for the device at the programming voltage, it must be capable of
supplying 750 mA at 11.0 V.

Select the output where a logical high is desired by raising that output voltage to
10.5 volts (+ 0.5V). Limit the slew rate from 1.0 to 10.0V/us. This voltage change
may occur simultaneously with the increase in V¢, but must not precede it. It is
critical that only one output at a time be programmed since the internal circuits
can only supply programming current to one bit at a time. Outputs not being pro-
grammed must be left open or connected to a high impedance source of 20kQ
minimum. (Remember that the outputs of the device are disabled at this time.)
Enable the device by taking the chip enable (G) to a low level. This is done with a
pulse of 10us. The 10us duration refers to the time that the circuit (device) is
enabled. Normal input levels are used and rise and fall times are not critical.
Verify that the bit has been programmed by first removing the programming vol-
tage from the output and then reducing Vec to 4.0V (% 0.2V) for one verification
and to 6.0V (% 0.2V) for a second verification. Verification at a V¢ level of 4.0V
and 6.0V will guarantee proper output states over the V¢c and temperature range
of the programmed part. Each data verification must be preceded by a positive
going (low-to-high) clock edge to load the data from the array into the output
register. The device must be enabled to sense the state of the outputs. During ver-
ification, the loading of the output must be within specified Io; and Iy limits.
Steps b, ¢, and d must be repeated up to 10 times or until verification that the bit
has been programmed.

Following verification, apply five additional programming pulses to the bit being
programmed. The programming procedure is now complete for the selected bit.

‘Repeat steps a through f for each bit to be programmed to a high level. If the pro-

cedure is performed on an automatic programmer, the duty cycle of V¢ at the
programming voltage must be limited to a maximum of 25%. This is necessary to
minimize device junction temperatures. After all selected bits are programmed,
the entire contents of the memory should be verified.

Note: Since only an enabled device is programmed, it is possible to program these

parts at the board level if all of the programming parameter are complied with.

TRI-STATE® is a registered trademark of National Semiconductor Corp.
TRI-SAFE™ is a trademark of National Semiconductor Corp.

Data Sheets 331
Programming Parameters
Do not test or you may program the device
Test Recommended
Symbol Parameter Conditions Min. Value Max. Units
Veer Required Vg for Programming 10 10.5 11 A
lccp lcc During Programming Vec=1V 750 mA
Vor Required Output Voltage for Programming 10 10.5 n \
lop Output Current While Programming Vour= 11V 20 mA
IrRR Rate of Voltage Change of V¢ or Output ' 1 10 Vips
Pwe Programming Pulse Width (Enabled) 9 10 1" us
Veovl Required Low V¢ for Verification 3.8 4 4.2 \
VeevH Required High V¢ for Verification 58 6 6.2 \
Mpc Maximum Duty Cycle for Vg at Voep 25 25 %
Table 11.13.1 Programming Parameters
Do Not Test or You May Program the Device
Programming Waveforms non-Registered PROM
ADDRESS x
INPUTS SELECTED ADDRESS STABLE
Vee
Ts I‘__ Veove Veowr
Vgp == e oo,
PROGRAMMED Von .
oureur A__ X7 A __ 77
VoL e OUTPUT OUTPUT
—=| Ts j+=—Te VERIFY VERIFY

G
ENABLE

CLK
cLock

Figure 11.13.1 Programming Waveforms Non-Registered PROM

——rwe‘——

—

—

T1=100 ns MIN.

T2=5 us MIN. (T2 MAY BE > O IF Vgcp RISES AT THE SAME RATE OR FASTER THAN Vop.)

T3=100 ns MIN.
T4=100 ns MIN.
T5=100 ns MIN.
Tg=50 ns MIN.

332

Programmable Logic Design Guide

MANUFACTURER SYSTEM #
DATA I/0 5/17/19/29A
PRO-LOG M910, M980
KONTRON MPP80S
STAG PPX
AIM RP400
DIGELEC UP803
STARPLEX™ ,

Table 11.13.2

Approved Programmers for NSC PROMs

11.14 QUALITY ENHANCEMENT PROGRAMS .

A + PROGRAM* B + PROGRAM
Guaranteed Guaranteed
Test Condition LOTAQLS Test Condition LOTAQLS5
‘ 25°C 0.05 ' 25°C 0.05
D.C. D.C.
Parametric Each Parametric Each .
And Temperature 0.05 And Temperature 0.05
Functionality Extreme Functionality Extreme
AC. 25°C 04 A.C. 25°C 0.4
Parametric . Parametric
Critical 0.01 Critical 0.01
Mechanical) Mechanical
Major 0.28 Major 0.28
Seal Fine Leak 04 Seal Fine Leak 04
Tests (5x 10 -8 Tests (5x 10 -8
Hermetic Hermetic
Gross 04 Gross 04

“*Includes 160 hours of burn-in at 125°C.

Table 11.14.1 Quality Enhancement Program for Bipolar Memory

Package Outlines

0.785
1 (19.939) -
MAX
0.025
(0.635) 0.220-0.310
RAD Pttt
(5.588 —7.874)
1

0.005 - 0.020
(0.127 - 0.508)
RAD TYP

0.290 - 0.320 10005 g ass 0.060+0.005 _0-200

(7.366 ~ 8.128) 0.127 SEALANT (1.524 4 0.12 (5.080)
- I- (MIN)—- ($0.12) “hiax 0.150
! 0.008-0.012 f—/ 1 (3.810)
—
(0.203-0.305) Li] 5 MIN § gg° 94
0.180 s TYP
(4.572) 0.080) 0.018.40.003 0.020 - 0.060
MAX 0.400 + D.OZSL (2.032) | : . -—”. 0.125-0.200 (0.508— 1.524)
) -0.060 MAX (0.457 £ 0.076) (3.175 - 5.080)
(+0.635 BOTH |=- 0.100 4 0.010
10.16 _ 4,524 ENDS (2.540 £ 0.254) ey

Figure 12.1 NS Package J16A 16-Lead Cavity DIP (J)

333

334 Programmable Logic Design Guide

0.090

0.780
0.092 (2.286) (19.81)
(2.3137) NOM — MAX
DIA NOM - il 14] [13] [v2] [11] [10] 9]
PIN NO. 1 IDENT @
~1© @
0.280 IRBRERURENCRERORPYT +0.005
‘7.';&2) (6.350.127)
0.030 0.130 £ 0.005
(0.762) 0.040 (3.302+£0.127)
MAX 0.065 0.020
0.300-0.320 (1.016) -
(7.62-8.128) [1.e81) TYp (0.508)
i I ETTrTE
J’ssqs_’_\ 0.009 - 0.015 f

(0.229 - 0.381)
0.030 +0.015 —=

- |k I0i]

+0.025
0.325 _j 045 “(0.762 +0.381) 0.018 + 0.003 (3'.41&5)
) (+0.635 0.100 £0.010 (0.457 £ 0.076)
8.255 _p 381 (2.540 + 0.254)

NI16E(REV 8)

Figure 12.2 NS Package N16E 16-Lead Molded DIP (N) (Substitute for N16A)

0.985

0.025 (25.019)

(0.635) MAX

RAD fa [s] [is] [} [re] 5] [oe] [oo] 2] [
0.220 - 0.310

(5.588-7.874) [

0.005-0.020 /
(0.127 - 0.508)

O Lf eI D LT BT L [o] 1o

RAD TYP
0.180 0.020 - 0.060
0.290 - 0.320 —_—
(4.572) —m— 0.005 0.060 4 0.005 (0.508 - 1.524)
MAX / (7.366-8.128) Ty —
0.127) (1,524 -0.127) <
GLASS MIN TYP
- 1 SEALANT ™\ 0.200
[rr 0.008 - 0.012 i (5.080)
(0.203 - 0.305) _ 5 Y MAX
s6°X —
95° +5° 94° f 0.125 +0.200
‘ TYP (3.175 - 5.080)
[0.060 = 0.018 £0.003 _,| | 0.150
0.385 : g'gig (1.524) ' (0.457 1 0.076) (3.810)
- MAX 0.100 £ 0.010 TYP MIN
0770 T0-635) - BOTHENDS (2.540 £ 0.254)
179 _ 1,524 TP

Figure 12.3 NS Package J20A 20-Lead Cavity DIP (J)

PIN NO. 1 INDENT ~

0.092

(2.3137)
DIA NOM

Package Outlines

1.040

(26.42)
MAX
[

0.280 0.260 4+ 0.005
7.112) - 0.090 (6.604 £ (0.127)
MIN (2.286)
NOM
0.300 - 0.320
(7.620-8.128) 0.065 g | 0:130£0.005
0.030 (igsy) - —] r p (3.302 to 127)
T (0.762) I _ 0.020
. MAX LI-LL- 8 508
95° 3+ 5°| 0.009-0.010 T (fum)
(o.zzgr; :.254) L |__ 86° 94 \ 125
TYP
+0.025 0.100 40.010 ‘ (3.175)
0.325 _ 0.015 0.060 +0.005 (2.540£0.254) « 0,018 +0.003
+0.635 1.524 £ 0.12 (0.457 £ 0.076)
(a.zss T o381 (1-5624£0:127) .
Figure 12.4 NS Package N20A 20-Lead Molded DIP, (N)
0.025 1.290
(0.635) (32.766)
RAD MAX
L[] [7) [7] [} []) [} () (o] (5] e} foa)
0.315 0.295
MAX MAX
(8.001) GLASS (7.493)
0.030 - 0.055
0.672-1.397
RAD TYP
9180 0.060 +0.005
(4.572) GLASS 71-'57*-0’7 0.020 - 0.070 0.290~0.320
MAX SEALANT Ry 7 (0.508 - 1.778) (7.366-8.128)
X
H 1 .
X T } 0.008 - 0.012
86° 94° } 95° & 50 0.008-0.012
Tvp , ! = (0.203 - 0.305)
0.095 \Lo.wo + o.o1o‘l L 0.018 £ 0.003 0.125 TYP
@.413) - (2.54 £ 0.254) (0.457 £ 0.076) ™1 (3.175)
M. AX TYP TYP MIN 0.3gs *0:025
0.225 9-99° _0.060
BOTH
ENDS

s2eF eV R

(5.715) +0.635
Max 2779 —1524

Figure 12.5 NS Package J24F 24-Lead Cavity DIP (J)

335

336 Programmable Logic Design Guide
0.092 %
2
(2.3137)
DIA ; MAX
0.260 £ 0.005
(6.604 +0.127)
—/v
PIN NO. 1 IDENT . EJECTOR PINS 0.130 £ 0.005
0.300 - 0.320 OPTIONAL 5,040 (3.302 £ 0.127)
(7.62-8.128) 0.065 (1.o1s)f1 I— 0.020
(esy TYp (0.508)
I D : il MIN
0.009-0.015_ 4
95° 45 ‘
(o 229 -0.381) 5% .
+0.025 | 0.280 0129
0.325 " gots | —vPrS L J _“__ (3.175)
ki 7.112) ‘ N MIN
(+0.635 MIN F 0.100 +0.010 0.018+0.008 \ 6o o4° TYP
8255 0381 : “@stz0258) (045710.076)
0.075+0.015 VP TP wacweve
(1,905 +0.381)
Figure 12.6 NS Package N24C 24-Lead Molded DIP (N)
1.200
) 0.600
i— e {15.240)
@] [[[(6 5 @) 66 {EAi‘ss
—ia
0.025 |
(0.635) 0.514-0.526
RAD (13.06 - 13.36)

0.030 - 0.055
(0.762 - 1.397)
RAD TYP
0.005 0.055 + 0.005 0.180
0.590 - 0.620 . 127) GLAss (1.397£0.127) (4.572)
"(14 .986 — 15. 74e)~1 M|N |=— SEALANT] | MAX 0.020 - 0.070
0.008-0.012 [hY N -} - (0.508-1.778)
—_— |
(0.203 — 0.305) - !
—

95° +5°

0.685 +0.025
. 0.685 _g 060
: 0650 —-| _0.098 | ’l L ’”._\ 86° 0.125-0.200 0.150
‘ (17'4" t12524) (2.489) ° _0-100:0.010 0.018 % 0.003 TYP * (3.175 - 5.080) (3.810)
MAX (2.540£0.254) MIN N
- ndtN

(0.457 +0.076)

Figure 12.7 NS Package J24A 24-Lead Cavity DIP ()

Package Outlines

1.270
(32.258)

MAX
[@ @] [G (6] [(7] (6] (5 (3 [13]

0.062
(1.575)
RAD N

PIN NO. 1 IDENT\

0.540 +0.005

?“'\‘Cj“"

DRDRERORORORURORORD
DOTTED OUTLINES

REFLECT ALTERNATE
MOLDED BODY CONFIGURATION

0.580
(14.73) — 0.030
MIN ©0.762) 0.075 0.040 0.160 + 0.005
0.600 - 0.620 —
T I (t.016) l‘ (4064 £0.127)
e
95%25° B 0.015
+0.025_ | r—
= .25 15 g1a] oar ul s L }" 86° 94° (Olflzﬂ
—_— 5+ 0.01
+0.635 2050018 TYP
15.875 _ 331 (1.905 +0.381) 0.018 to 003 0.125
0.009 - 0.015 0.10040.010 (0 457 +0.076) (3.175)
—_— MIN

(0.229 - 0.381) (2.540£0.254)

N24A (REVC)

- Figure 12.8 NS Package N24A 24-Lead Molded DIP (N)

I
I
I
I
[=="=7
(| (13.716 £ 0.127)
1
1
|

337

338

Programmable Logic Design Guide

4 SPACES AT
0.050

0.045
‘l‘—} (1.143)
(1.270) , x45°
wlao12ls _ A
[

8 VIEW A-A
T
4 SPACES AT
0.050 ‘13 9 '
(1.270) 0.226
(5.740)
NOM
SQUARE
0.310-0.330
(7.874 - 8.382)
(CONTACT DIMENSION) | _o0.013-0.018
(0.330 - 0.457)
0.026 - 0.032 TYP
(0.660 - 0.813)
TYP ———l—
t_ 0.018 - 0.040
(0.457 —1.016)
0.095 - 0.125 {
(2.413 -3.175) L1~ 0.345 - 0.355 0.165 - 0.180
PNNO1— | (6.783-9.0m #.191-4.572)
IDENT SQUARE
0.385 - 0.395 ~
(9.779 - 10.03)
SQUARE

Figure 12.9 NS Package PCC-20 20-Lead Plastic Leaded Chip Carrier (V)

e

6 SPACES AT

Package Outlines

0.050 '
(1.270) r

10
D)
6SPACES AT X 0.326 VIEW A-A

0.050 8 33 22 (8.280) ,
02 B NOM SQUARE

=

N
> 126 0.045 __I |
0.045 (1.143)
(1.143) x 45° -
x45°
| 0.410-0.430 SQUARE
(10.41-10.92) (CONTACT DIMENSION)
0.018 - 0.040 — flg%!t%
(0.457 - 1.016) Rty J
PIN _
e T L=
0.445 - 0.455 IDENT TYP ’)
("ggJA:‘Es‘) 0.165 - 0.180
0.485 - 0.495 (4.191-4.572)
(12.32 - 12.57)
SQUARE

Figure 12.10 NS Package PCC-28 28-Lead Plastic Leaded Chip Carrier (V)

339

Terminology

Term

Explanation

PAL Device

PROM

FPLA

Product Term
(Pn)

Summing Term
(Sn)
Output Polarity

Don’t Care

Active High

Active Low

Programmable Array Logic. AND-OR Array with
a-programmable AND array and a fixed OR
array. ’

Programmable Read-Only Memory. AND-OR
Array with a fixed AND array and a
programmable OR array.

Field-Programmable Logic Array. AND-OR Array
with a programmable AND array and a
programmable OR array.

Logical AND operation on input variables.
Example: Pg= A0A1A15, PlO = A2A5

Logical OR operation on product terms.
Example: S =Pg+Pyg
= A0A1A15 + A2A5

Inversion or Non-inversion of summing term
outputs.

Variable can take any logic state without
affecting logic operation.

Output is a logic high when Sum-of-Products
expression is true. Within programmable logic
context, refers to a non-inverted output.

Output is a logic low when Sum-of-Products
expression is true. Within programmable logic
context, refers to an inverted output.

Fixed connection.

Programmable connection in virgin array.

341

342

Programmable Logic Design Guide

Term

Explanation

+
*

Maximum Clock Frequency, fyax:

High Level Input Current, Ijy:

High Level Output Current, Ioy:

Low Level Input Currént, I

Low Level Output Current, Ioy:

Off-State (High-Impedance State)
Output Current of a 3-State
Output), Ipz:

Short-Circuit Qutput Current, Igg:

Supply Current, Icc:

Unconnected in programmed part.
Programmed, connected.

The highest rate at which the clock input of a
bistable circuit can be driven through its
required sequence while maintaining stable
transitions of logic level at the output with
input conditions established that should cause
changes of output logic level in accordance
with the specification.

The current into an input when a high level
voltage is applied to that input.*

The current into an output with input
conditions applied that, according to the
product specification, will establish a high level
at the output.*

The current into an input when a low level
voltage is applied to that input.*

The current into an output with input
conditions applied that, according to the
product specification, will establish a low level
at the output.*

The current into an output having 3-state
capability with input conditions applied that,
according to the product specification, will
establish the high-impedance state at the
output.*

The current into an output when that output is
short-circuited to ground (or other specified
potential) with input conditions applied to
establish the output logic level farthest from
ground potential (or other specified potential).*

The current into the V¢ Supply terminal of an
integrated circuit.*

Terminology - 343

Term

Explanation

Hold Time, ty:

Output Enable Time (of a 3-State
Output) to High Level, tpzy(or
Low Level, tpz):

Output Enable Time (of a 3-State
Output) to High or Low Level,

tpzx:

Output Disable Time (of a 3-State
Output) from High Level, tpyz(or
Low Level, tPLZ):

Output Disable Time (of a 3-State
Output) from High or Low Level,

tpxz:

The interval during which a signal is retained at
a specified input terminal after an active
transition oc¢curs at another specified input
terminal.

Notes: :

1. The hold time is the actual time between
two events and may be insufficient to
accomplish the intended result. A minimum
value is specified that is the shortest interval
for which correct operation of the logic
element is guaranteed.

2. The hold time may have a negative value, in
which case the minimum limit defines the
longest interval (between the release of data
and the active transition) for which correct

- operation of the logic element is guaranteed.

The propagation delay time between the
specified reference points on the input and
output voltage waveforms with the 3-state
output changing from a high-impedance (off)
state to the defined high (or low) level.

The propagation delay time between the
specified reference points on the input and
output voltage waveforms with the 3-state
output changing from a high-impedance (off)
state to either of the defined active levels (high
or low).

The propagation delay time between the
specified reference points on the input and
output voltage waveforms with the 3-state
output changing from the defined high (or low)
level to a high-impedance (off) state.

The propagation delay time between the
specified reference points on the input and
output voltage waveforms with the 3-state
output changing from either of the defined
active levels (high or low) to a high-impedance
(off) state. :

344 - Programmable Logic Design Guide

Term

Explanation

Propagation Delay Time, tpp:

Propagation Delay Time,

Low-to-High Level Output, tpp i

Propagation Delay Time,

High-to-Low Level Output, tpyy:

Pulse Width, ty:

Setup Time, tg,

High Level Input Voltage, Vig:

The time between the specified reference points
on the input and output voltage waveforms with
the output changing from one defined level
(high or low) to the other defined level.

The time between the specified reference
points on the input and output voltage
waveforms with the output changing from the
defined low level to the defined high level.

The time between the specified reference
points on the input and output voltage
waveforms with the output changing from the
defined high level to the defined low level.

The time interval between specified reference

- points on the leading and trailing edges of the

pulse waveform.

The time interval between the application of a
signal that is maintained at a specified input
terminal and a consecutive active transition at
another specified input terminal.

Notes:

1. The setup time is the actual time between
two events and may be insufficient to-
accomplish the setup. A minimum value is
specified that is the shortest interval for
which correct operation of the logic
element is guaranteed.

2. The setup time may have a negative value in

* which case the minimum limit defines the
longest interval (between the active
transition and the application of the other
signal) for which correct operation of the
logic element is guaranteed.

An input voltage within the more positive (less
negative) of the two ranges of values used to
represent the binary variables.

Note: A minimum is specified that is the least
positive value of high level voltage for which

Terminology 345

Term

Explanation

High Level Output Voltage, Voy:

Input Clamp Voltage, Vic:

Low Level Input Voltage, Viy:

Low Level Output Voltage, Vor:

Negative-Going Threshold
Voltage, Vr_

Positive-Going Threshold Voltage,
Ve +:

operation of the logic elements within
specification limits is guaranteed.

The voltage at an output terminal with input
conditions applied that, according to the
product specification, will establish a high level
at the output,.

An input voltage in a region of relatively low
differential resistance that serves to limit the
input voltage swing.

An input voltage level within the less positive
(more negative) of the two ranges of values
used to represent the binary variables.

Note: A maximum is specified that is the most
positive value of the low level input voltage for
which operation of the logic element within
specification limits is guaranteed.

The voltage at an output terminal with input
conditions applied that according to the
product specification will establish a low level
at the output.

The voltage level at a transition-operated input
that causes operation of the logic element
according to specification as the input voltage
falls from a level above the positive-going
threshold voltage, Vr ...

The voltage level at a transition-operated input
that causes operation of the logic element
according to specification as the input voltage
rises from a level below the negative-going
threshold voltage, V_.

*Current out of a terminal is given as a negative value.

Appendix — an Overview of
LSI Testing Techniques

The growth in the complexity and performance of digital circuits can only be
described as explosive. Large-scale integrated circuits are being used today in a variety
of applications, many of which require highly reliable operation. This is causing con-
cern among designers of tests for LSI circuits. The testing of these circuits is difficult for
several reasons:

e The number of faults that has to be considered is large, since an LSI circnit contains
thousands of gates, memory elements, and interconnecting lines, all individually
subject to different kinds of faults.

e The observability and controllability of the internal elements of any LSI circuit are
limited by the available number of I/O pins. As more and more elements are packed
into one chip, the task of creating an adequate test becomes more difficult. A typical
'LSI chip may contain 5000 gates but only 40 1/O pins.

e The implementation details of the circuits usually are not disclosed by the
manufacturer. For example, the only source on information about commercially avail-
able microprocessors is the user’s manual, which details the instruction set and
describes the architecture of the microprocessor at the register-transfer level, with
some information of the system timing. The lack of implementation information elim-
inates the use of many powerful test generation techniques that depend on the actual
implementation of the unit under test.

® As more and more gates and flip-flops are packed into one chip, new failure modes
— such as pattern-sensitivity faults — arise.! These new types of faults are difficult
to detect and require lengthy test patterns.

e The dynamic nature of LSI devices requires high-speed test syste'ms that can test the
circuits when they are operating at their maximum speeds.

e The bus structure of most LSI systems makes fault isolation more difficult because
many devices — any of which can cause a fault — share the same bus.

© 1983 IEEE, Reprinted, with permission, from IEEE MICRO, Vol. 3, No. 1, pp. 34, February 1983.
M.S. Abadir, H K. Reghbati, Authors.

347

348 Programmable Logic Design Guide

o Solving the problems above increases the number of test patterns required for a suc-
cessful test. This in turn increases both the time required for applying that test and
the memory needed to store the test patterns and their results.

LSI testing is a challenging task. Techniques that worked well for SSI and.MSI cir-
cuits, such as the D-algorithm, do not cope with today’s complicated LSI and VLSI cir-
cuits. New testing techniques must be developed. In what follows, we describe some
basic techniques developed to solve the problems associated with LSI testing.

A.1 TESTING METHODS

There are many test methods for LSI circuits, each with its own way of generating and
processing test data. These approaches can be divided into two broad categories —
concurrent and explicit.?

In concurrent approaches, normal user-application input patterns serve as diagnos-
tic patterns. Thus testing and normal computation proceed concurrently. In explicit
approaches, on the other hand, special input patterns are applied as tests. Hence, nor-
mal computation and testing occur at different times.

Concurrent Testing

Systems that are tested concurrently are designed such that all the information
transferred among various parts of the system is coded with different types of error
detecting codes. In addition, special circuits monitor this coded data continuously and
signal detection of any fault.

Different coding techniques are required to suit the different types of information
used inside LSI systems. For example, m-out-of-z codes (x-bit patterns with exactly m
1’s and n — m 0’s) are suitable for coding control signals, while arithmetic codes are best
suited for coding ALU operands.>

The monitoring circuits — checkers — are placed in various locations inside the
systems so that they can detect most of the faults. A checker is sometimes designed in a
way that enables it to detect a fault in its own circuitry as well as in the monitored data.
Such a checker is called a self-checking checker.3

Hayes and McCluskey surveyed various concurrent testing methods that can be
used with microprocessor-based LSI systcms 2 Concurrent testing approaches provide
the following advantages:

o Explicit testing expenses (e.g., for test equipment, down time, and test pattern gen-
eration) are eliminated during the life of the system, since the data patterns used in
normal operation serve as test patterns.

o The faults are detected instantaneously during the use of the LSI chip, hence the first
faulty data pattern caused by a certain fault is detected. Thus, the user can rely on the
correctness of his output results within the degree of fault coverage provided by the

Appendix 349

- error detection code used. In explicit approaches, on the other hand, nothing can be
said about the correctness of the results until the chip is explicitly tested.

o Transient faults, which may occur during normal operation, are detected if they cause
any faulty data pattern. These faults cannot be detected by any explicit
testing method.

Unfortunately, the concurrent testing approach suffers from several problems that
limit its usage in LSI testing: :

o The application patterns may not exercise all the storage element or all the internal
- connection lines. Defects may exist in places that are not exercised, and hence the
faults these defects would produce will not be detected. Thus, the assumption that
faults are detected as they occur, or at least before any other fault occurs, is no
longer valid. Undetected faults will cause fault accumulation. As a result, the fault
detection mechanism may fail because most error detection codes have a limited
capability for detecting multiple faults.

o Using error detecting codes to code the information signals used in an LSI chip
requires additional I/O pins. At least two extra pins are needed as error signal indica-
tors. (A single pin cannot be used, since such a pin stuck at the good value could go
undetected.) Because of constraints on pin count, however, such requirements can-
not be fulfilled.

© Additional hardware circuitry is required to implement the checkers and to increase
the width of the data carriers used for storing and transferring the coded information.

o Designing an LSI circuit for concurrent testing is a much more complicated task
than designing a similiar LSI circuit that will be tested explicitly.

o Concurrent approaches provide no control over critical voltage or timing parameters.
Hence, devices cannot be tested under marginal timing and electrical conditions.

o The degree of fault coverage usually provided by concurrent methods is less than
that provided by explicit methods.

The above-mentioned problems have limited the use of concurrent testing for most
commercially available LSI circuits. However, as digital systems grow more complex and
difficult to test, it becomes increasingly attractive to build test procedures into the UUT
(unit under test) itself. We will not consider the concurrent approach further in this
article, For a survey of work in concurrent testing, see Hayes and McCluskey.

Explicit Testing

All explicit testing methods separate the testing process from normal operation. In gen-
eral, an explicit testing process involves three steps:

© Generating the test patterns. The goal of this step is to produce those input pat-
terns which will exercise the UUT under different modes of operation while trying
to detect any existing fault.

350

Programmable Logic Design Guide

e Applying the test patterns to the UUT. There are two ways to accomplish this

step. The first is external testing — the use of special test equipment to apply the test
patterns externally. The second is internal testing — the application of test patterns
internally by forcing the UUT to execute a self-testing procedure.2 Obviously, the
second method can only be used with systems that can execute programs (for exam-
ple, with microprocessor-based systems.) External testing gives better control over
the test process and enables testing under different timing and electrical conditions.
On the other hand, internal testing is easier to use because it does not need special
test equipment or engineering skills.

Evaluating the responses obtained from the UUT. This step is designed with
one of two goals in mind. The first is the detection of an erroneous response, which
indicates the existence of one or more faults (go/no-go testing). The other is the iso-
lation of the fault, if one exists, in an easily replaceable module (fault location test-
ing). Our interest in this article will be go/no-go testing, since fault location testing
of LSI circuits sees only limited use.

Many explicit test methods have evolved in the last decade. They can be distin-

guished by the techniques used to generate the test patterns and to detect and evaluate

the faulty responses (Figure A.1.1). In what follows, we concentrate on explicit testing

LSl
TESTING

——

EXPLICIT CONCURRENT
TESTING TESTING

TEST TEST RESPONSE
GENERATION APPLICATION EVALUATION

MANUAL RANDOM INTERNAL EXTERNAL

SIMULATION-

ALGORITHMIC

AIDED

GOOD

RESPONSE
GENERATION

——1

COMPACT
TESTING

——

STORED
RESPONSE

COMPARISON

TRANSITION
COUNTING

SIGNATURE
ANALYSIS

Figure A.1.1 LSI Test Technology

Appendix 351

and present in-depth discussions of the methods of test generation and response evalu-
ation employed with explicit testing.

A.2 TEST GENERATION TECHNIQUES

The test generation process represents the most important part of any explicit testing

method. Its main goal is to generate those test patterns that, when applied to the UUT,

sensitize existing faults and propagate a faulty response to an observable output of the

UUT. A test sequence is considered good if it can detect a high percentage of the possible

UUT faults; it is considered good, in other words, if its degree of fault coverage is high.
Rigorous test generation should consist of three main activities:

e Sclecting a good descriptive model, at a suitable level, for the system under consid-
eration. Such a model should reflect the exact behavior of the system in all its possi-
ble modes of operation.

e Developing a fault model to define the types of faults that will be considered during
test generation. In selecting a fault model, the percentage of possible faults covered
by the model should be maximized, and the test costs associated with the use of the
model should be minimized. The latter can be accomplished by keeping the com-
plexity of the test generation low and the length of the tests short. Clearly these
objectives contradict one another — a good fault model is usually found as a result
of a trade-off between them. The nature of the fault model is usually influenced by
the model used to describe the system.

e Generating tests to detect all the faults in the fault model. This part of test genera-
tion is the soul of the whole test process. Designing a test sequence to detect a cer-
tain fault in a digital circuit usually involves two problems. First, the fault must be
excited; i.e., a certain test sequence must be applied that will force a faulty value to
appear at the fault site if the fault exists. Second, the test must be made sensitive to
the fault; i.e., the effect of the fault must propagate through the network to an
observable output. '

Rigorous test generation rests heavily on both accurate descriptive (system)
models and accurate fault models. ‘

Test generation for digital circuits is usually approached either at the gate-level or
at the functional level. The classical approach of modeling digital circuits as a group of
connected gates and flip-flops has been used extensively. Using this level of descrip-
tion, test designers introduced many types of fault models, such as the classical stuck-at
model. They also assumed that such models could describe physical circuit failures in
terms of logic. This assumption has sometimes restricted the number of physical fail-
ures that can be modeled, but it has also reduced the complexity of test generation
since failures at the elementary level do not have to be considered.

Many algorithms have been developed for generating tests for a given fault in com-
binational networks.1$5:6.7 However, the complexity of these algorithms depends on
the topology of the network; it can become very high for some circuits. Ibarra and

352 Programmable Logic Design Guide

Sahni have shown that the problem of generating tests to detect single stuck-at faults in
a combinational circuit modeled at the gate level is an NP-complete problem.? More-
over, if the circuit is sequential, the problem can become even more difficult depending
on the deepness of the circuit’s sequential logic.

Thus, for LSI cicuits having many thousands of gates, the gate level approach to
the test generation problem is not very feasible. A new appoach, the functional level, is
needed. ,

Another important reason for considering faults at the functional level is the con-
straint imposed on LSI testing by a user environment — the test patterns have to be gen-
erated without a knowledge of the implementation details of the chip at the gate level.

Appendix 353

The only source of information usually available is the typical IC catalog, which details
the different modes of operation and describes the general architecture of the circuit.
With such information, the test designer finds it easier to define the functional behavior
of the circuit and to associate faults with the functions. He can partition the UUT into var-
ious modules such as registers, multiplexers, ALUs, ROMs, and RAMs. Each module can
be treated as a “‘black box” performing a specified input/output mapping. These modules
can then be tested for functional failures; explicit consideration of faults affecting the
internal lines is not necessary. The example given below clarifies the idea.

Consider a simple one-out-of-four multiplexers such as the one shown in Figure
A.2.1. This multiplexer can be modeled at the gate level as shown in Figure A.2.1(a), or at
the functional level as shown in Figure A.2.1(b).

X Y z w
Co s
>
Cy I_DO_T
LIJ__ s
]
c, | c,| u
@ X Y z W L
L 1 11 oo X
Co— o | 1| v
o | t-ouT-oF-4 mux ,
1 & 1 o] z
(b) 1 1 w
u

Figure A.2.1 (a) A One-out-of-four Multiplexer-gate-level Description;
(b) Functional-level Description.

A possible fault model for the gate-level description is the single stuck-at fault
model. With this model, the fault list may contain faults such as the line labeled with
“f is stuck at 0, or the control line “Cq” is stuck at 1.

At the functional level, the multiplexer is considered a black box with a
well-defined function. Thus, a fault model for it may specify the following as possible
faults: selection of wrong source, selection of no source, or presence of stuck-at faults
in the input lines or in the multiplexer output. With this model, the fault list may con-
tain faults such as source “X”is selected instead of source ““Y,” or line “Z” is stuck at 1.

354 Programmable Logic Design Guide

Ad hoc methods — which determine what faults are the most probable — are
sometimes used to generate fault lists. But if no fault model is assumed, then the tests
derived must be either exhaustive or a rather ad hoc check of the functionality of the
system. Exhaustive tests are impossible for even small systems because of the enor-
mous number of possible states, and superficial tests provide nclther good coverage
nor even an indication of what faults are covered.

Once the fault list has been defined, the next step is to find the test patterns
required to detect the faults in the list. As previously mentioned, each fault first has to
be excited so that an error signal will be generated somewhere in the UUT. Then this
signal has to be sensitized at one of the observable outputs of the UUT. The three exam-
ples below describe how to excite and sensitize different types of faults in the types of
modules usually encountered in LSI circuits.

Consider the gate-level description of the three-bit incrementer shown in Figure A.2.2.

Yo . Yy Y2

Figure A.2.2 Gate-level Description of a Three-Bit Incrementer

The incrementer output, Yz Y; Yo, is the binary sum of C; and the three-bit binary
number X;X1Xg, while Cg is the carry-out bit of the sum. Note that Xy(Y() is the least
significant bit of the incrementer input (output). ‘

Assume we want to detect the fault “line fis stuck at 0.” To excite that fault we will
force a 1 to appear on line f so that, if it is stuck at 0, a faulty value will be generated at
the fault site. To accomplish this both X and C; must be set to 1. To sensitize the faulty
0 at f, we have to set X; to 1; this will propagate the fault to Y, independent of the value
of X,. Note that if we set X; to 0, the fault will be masked since the AND gate output
will be 0, independent of the value at f. Note also that X, was not specified in the above
test. However, by setting X, to 1, the fault will propagate to both Y, and Cy, which
makes the response evaluation task easier.

Consider a microprocessor RAM and assume we want to generate a test sequence
to detect the fault “accessing word 7 in the RAM results in accessing the word j instead.”

Appendix 355

To excite such a fault, we will use the following sequence of instructions (assume a
microprocessor with single-operand instructions):

Load the word 00 . . . 0 into the accumulator.
Store the accumulator contents into memory address j.
Load the word 11 ... 1 into the accumulator.

Store the accumulator contents into memory address 7.

If the fault exists, these instructions will forcea 11 . . . 1 word to be stored in mem-
ory address j instead of 00 . . . 0. To sensitize the fault, we need only read what is in
memory address j, using the appropriate instructions. Note that the RAM and its fault
have been considered at the functional level, since we did not specify how the RAM is
implemented.

Consider the program counter (PC) of 2 microprocessor and assume we want to gen-
erate a test sequence that will detect any fault in the incrementing mode of this PC, i.e.,
any fault that makes the PC unable to be incremented from x to x + 1 for any address x.
One way to excite this fault is to force the PC to step through all the possible addresses.
This can be easily done by initializing the PC to zero and then executing the no-operation
instruction x + 1 times. As a result, the PC will contain an address different than x + 1. By
executing another no-operation instruction, the wrong address can be observed at the
address bus and the fault detected. In practice, such an exhaustive test sequence is very
expensive, and more economical tests have to be used. Note that, as in the example
immediately above, the problem and its solution have been considered at the functional
level.

Four methods are currently used to generate test patterns for LSI circuits: manual
test generation, algorithmic test generation, simulation-aided test generation, and ran-
dom test generation.

Manual Test Generation

In manual test generation, the test designer carefully analyzes the UUT. This analysis
can be done at the gate level, at the functional level or at a combination of the two. The
analysis of the different parts of the UUT is intended to determine the specific patterns
that will excite and sensitize each fault in the fault list. At one time, the manual
approach was widely used for medium-and small-scale digital circuits. Then, the for-
mulation of the D-algorithm and similar algorithms eliminated the need for analyzing
each circuit manually and provided an efficient means to generate the required test pat-
terns. 1> However, the arrival of LSI circuits and microprocessors required a shift back
toward manual test generation techniques, because most of the algorithmic techniques
used with SSI and MSI circuits were not suitable for LSI circuits.

Manual test generation tends to aoptimize the length of the test patterns and pro-
vides a relatively high degree of fault coverage. However, generating tests manually
takes a considerable amount of effort and requires persons with special skills. Realizing

356 Programmable Logic Design Guide

that test generation has to be done economically, test designers are now moving in the
direction of automatic test generation.

One good example of manual test generation is the work done by Sridhar and
Hayes,” who generated test patterns for a simple bit-sliced microprocessor at the func-
tional level. -

A Dbit-sliced microprocessor is an array of » identical ICs called slices, each of which
is a simple processor for operands of kbit length, where & is typically 2 or 4. The inter-
connections among the # slices are such that the entire array forms a processor for nkbit
operands. The simplicity of the individual slices and the regularity of the interconnec-
tions make it feasible to use systematic methods for fault analysis and test generation.

Sridhar and Hayes considered a one-bit processor slice as a simplified model for
the commercially available bit-sliced processors such as the Am2901.10 A slice can be
modeled as a collection of modules interconnected in a known way. These modules are
regarded as black boxes with well-defined input-output relationships. Examples of
these functional modules are ALUs, multiplexers, and registers. Combinational mod-
ules are described by their truth tables, while sequential modules are defined. by their
state tables (or state diagrams). v

The following fault categories were considered:

o For combinational modules, all possible faults that induce arbitrary changes in the
truth table of the module, but that cannot convert it into a sequential circuit.

e For sequential modules, all possible faults that can cause arbitrary changes in the
state table of the module without increasing the number of states.

Only one module was assumed to be faulty at any time.

To test for the faults allowed by the above-mentioned fault model, all possible
input patterns must be applied to each combinational module (exhaustive testing), and
a checking sequence!l to each sequential module. In addition, the responses of each
module must be propagated to observable output lines. The tests required by the indi-
vidual modules were easily generated manually — a direct consequence of the small
operand size (k = 1). And because the slices were identical, the tests for one slice were
easily extended to the whole array of slices. In fact, Sridhar and Hayes showed that an
arbitrary number of simple interconnected slices could be tested with the same num-
ber of tests as that required for a single slice, as long as only one slice was faulty at one
time. This property is called C-testability. Note that the use of carry-lookahead when
connecting slices eliminates C-testability. Also note that slices with operand sizes equal
to 2 or more usually are not C-testable. '

The idea of modeling a digital system as a collection of interconnected functional
modules can be used in modeling any LSI circuit. However, using exhaustive tests and
checking sequences to test individual modules is feasible only for toy systems. Hence,
the fault model proposed by Sridhar and Hayes, though very powerful, is not directly
applicable to LSI testing.

Appendix 357

 PATH SENSITIZATION AND THE D-ALGORITHM

- One of the classical fault detection methods at the gate and flip-flop level is the D-
algorithm1 5 employing the path sensitization testing technique.® The basic prin-
. ciple involved in path sensitization is refatively simple. For an input X; to detecta
~ fault “line a is stuck at 7, j = 0,1, the input X; must cause the signal ¢ in the‘nor-:
‘mal (f1u1t~fre<.) circuit to take the value 7. This condition is necessary b no

ficient to dcu.ct the fault. The error signal must bc propagated ‘xlong s_
from its site to an obscrvable output. : ‘
L To generate 2 test to detect a stuck-at fault in a c,ombmatloml circuit, the fol- .
fi»lowmg path sensnuatxon proaedure must be iollowcd

. o Excxtauon—«’l‘ he: mputs must be specified bO as to generate the dpploprmte
,value (0 for stuck-at land!l for stuck—at ()) at the sm, of the fault. :

Error propag‘ txon——A p’lth from thc fault 31te to 'm obaervabic output must bc
Gelccted and addmonal sag,nal va ues to _propagate Ihe fqult gngl aloa gh;s’ ‘
path must beasp' o , e

5 tO prddticé"vthél_éligr}a

: possnble cho1ces for
sthcre may. bea Wi ¢
se choxces may lcad toan in sxstcncy, and so the procedure ;

‘ native. If éll thc alternatlvcs Icad to an

uit and 0 in a faulty
‘normal urcmt and

ﬂon of test This aIso facﬂmtcs t(:‘b[%nerq~
' ror’fauit ptop’lg'ltlon throuvh complex‘\“

cs (1 Ime V"HUCS spcaﬁed in

he output Qf E.

358 Programmable Logic Design Guide

Appendix 359

thms to Com-
ic Circuits,” IEEE
67-580.

Algorithmic test generation

In algorithmic test generation, the test designer devises a set of algorithms to generate the
1’s and 0’s needed to test the UUT. Algorithmic test techniques are much more economi-
cal than manual techniques. They also provide the test designer with a high level of flexi-
bility. Thus, he can improve the fault coverage of the tests by replacing or modifying
parts of the algorithms. Of course, this task is much simpler than modifying the 1’s and
0’s in a manually generated test sequence.

Techniques that use the gate-level description of the UUT, such as path sensitiza-
tion? and the D-algorithm,> can no longer be used in testing complicated LSI circuits.
Thus, the problem of generating meaningful sets of tests directly from the functional
description of the UUT has become increasingly important. Relatively little work has
been done on functional-level testing of LSI chips that are not memory ele-
ments.12,13,14,15,16,17 Functional testing of memory chips is relatively simple because
of the regularity of their design and also because their components can be easily con-
trolled and observed from the outside. Various test generation algorithms have been

360 Programmable Logic Design Guide

developed to detect different types of faults in memories.!"18 In the rest of this section
we will concentrate on the general problem of generating tests for irregular LSI chips,
i.e., for LSI chips which are not strictly memory chips.

It is highly desirable to find an algorithm that can generate tests for any LSI circuit,
or at least most LSI circuits. One good example of work in this area is the technique
proposed by Thatte and Abraham for generating tests for microprocessors.!2:13
Another approach, pursued by the authors of this article, is a test generation procedure
capable of handling general LSI circuits.!5:16:17

The Thatte-Abraham Technique

Microprocessors constitute a high percentage of today’s LSI circuits. Thatte and Abra-
ham!2.13 approached the microprocessor test generation problem at the functional
level. .

The test generation procedure they developed was based on:

© A functional description of the microprocessor at the register-transfer level. The
model is defined in terms of data flow among storage units during the execution of
an instruction. The functional behavior of a microprocessor is thus described by
information about its instruction set and the functions performed by each instruc-
tion.

o A fault model describing faults in the various functional parts of the UUT (e.g., the
data transfer function, the data storage function, the instruction decoding and con-
trol function). This fault model describes the faulty behavior of the UUT without
knowing its implementation details. ‘

The microprocessor is modeled by a graph. Each register in the microprocessor
(including general-purpose registers and accumulator, stack, program counter, address
buffer, and processor status word registers) is represented by a node of the graph.
Instructions of the microprocessors are classified as being of transfer, data manipula-
tion, or branch type. There exists a directed edge (labeled with an instruction) from
one node to another if during an execution of the instruction data flow occurs from the
register represented by the first node to that represented by the second. Examples of
instruction representation are given in Figure A.2.3.

Having described the function or the structure of the UUT, one needs an appropri-
ate fault model in order to derive useful tests. The approach used by Thatte and Abra-
ham is to partition the various functions of a microprocessor into five classes: the
register decoding function, the instruction decoding and control function, the data
storage function, the data transfer function, and the data manipulation function. Fault
models are derived for each of these functions at a higher level and independently of
the details of implementation for the microprocessor. The fault model is quite general.
Tests are derived allowing any number of faults, but only in one function at a time; this
restriction exists solely to cut down the complexity of test generation.

Appendix 361

ey

(a). ‘ (b)

Figure A.2.3 Representations of Microprocessor Instruction — I, (a) Transfer
Instruction, Ry—Rj; (b) Add Instruction, Rz-—~Rj+Ry; (¢) I3, OR
Instruction, Ry —R; OR Ry; (d) I4 Rotate Left Instruction.

The fault model for the register decoding function allows any possible set of regis-
ters to be accessed instead of a particular register. (If the set is null then no register is
accessed.) This fault model is thus very general and independent of the actual realiza-
tion of the decoding mechanism. "

For the instruction decoding and control function, the faulty behavior of the
microprocessor is specified as follows. When instruction [;, is executed any one of the
following can happen:

o Instead of instruction I;, some other instruction Iz is executed This fault is denoted
by F(1 /Ik)

e In addition to instruction I, some other instruction I,e is activated. This fault is
denoted by F(I + 1),

e No instruction is executed. This fault 1s denoted by E(l; /qb)

Under this specification, any number of instructions can be faulty.
In the fault model for the data storage function, any cell in any data storage moclule
is allowed to be stuck at 0 or 1. This can occur in any number of cells.
The fault model for the data transfer function includes the following types of faults:

o A line in a path used in the execution of an instruction is stuck at 0 or 1.

e Two lines of a path used in the instruction are coupled; i.e., they fail to carry differ-
ent logic values.

Note that the second fault type cannot be modeled by single stuck-at faults. The
transfer paths in this fault model are logical paths and thus will account for any failure
in the actual phy51cal paths.

Since there is a variety of designs for the ALU and other functional units such as
increment or shift logic, no specific fault model is used for the data manipulation func-
tion. It is assumed that complete test sets can be derived for the functional units for a
given fault model.

By carefully analyzing the logical behavior of the microprocessor according to the
fault models presented above, Thatte and Abraham formulated a set of algorithms to

362 Programmable Logic Design Guide

generate the necessary test patterns. These algorithms step the microprocessor through
a precisely defined set of instructions and addresses. Each algorithm was designed for
detecting a particular class of faults, and theorems were proved which showed exactly
the kind of faults detected by each algorithm. These algorithms employ the excitation
and sensitization concepts previously described.

To gain insight into the problems involved in using the algorithms, Thatte investi-
gated the testing of an eight-bit microprocessor from Hewlett-Packard.!? He generated
the test patterns for the microprocessor by hand, using the algorithms. He found that
96 percent of the single stuck-at faults that could affect the microprocessor were
detected by the test sequence he generated. This figure indicates the validity of the
technique. :

The Abadir-Reghbati technique

Here we will briefly describe a test generation technique we developed for LSI cir-
cuits.!516 We assumed that the tests would be generated in a user environment in
which the gate-and flip-flop-level details of the chip were not known.

We developed a module-level model for LSI circuits. This model bypasses the gate
and flip-flop levels and directly describes blocks of logic (modules) according to their
functions. Any LSI circuit can be modeled as a network of interconnected modules
such as counters, registers, ALUs, ROMs, RAMs, multiplexers, and decoders.

Each module in an LSI circuit was modeled as a black box having a number of func-
tions defined by a set of binary decision diagrams (see box, next page).1 This type of
diagram, a functional description tool introduced by Akers in 1978, is a concise means
for completely defining the logical operation of one or more digital functions in an
implementation-free form. The information usually found in an IC catalog is sufficient to
derive the set of binary decision diagrams describing the functions performed by the dif-
ferent modules in a device. These diagrams — like truth tables and state tables — are
amenable to extensive logical analysis. However, unlike truth tables and state tables, they
do not have the unpleasant property of growing exponentially with the number of varia-
bles involved. Moreover, the diagrams can be stored and processed easily in a digital com-
puter. An important feature of these diagrams is that they state exactly how the module
will behave in every one of its operation modes. Such information can be extracted from
the module’s diagrams in the form of a set of experiments.15:20 Each of these experiments
describes the behavior of the module in one of its modes of operation. The structure of
these experiments makes them suitable for use in automatic test generation.

We also developed a functional-level fault model describing faulty behavior in the
different modules of an LSI chip. This model is quite independent of the details of
implementation and covers functional faults that alter the behavior of a module during
one of its modes of operation. It also covers stuck-at faults affecting any input or output
pin or any interconnection line in the chip.

Using the above-mentioned models, we proposed a functional test generation pro-
cedure based on path sensitization and the D-algorithm.!> The procedure tzikcs the

Appendix 363

module-level model of the LSI chip and the functional description of its modules as
parameters and generates tests to detect faults in the fault model. The fault collapsing
techniquel was used to reduce the length of the test sequence. As in the D-algorithm,
the procedure employs three basic operations, namely implication, D-propagation, and
line justification. However, these operations are performed on functional modules.

We also presented algorithmic solutions to the problems of performing these oper-
ations on functional modules. !0 For each of the three operations, we gave an algorithm
which takes the module’s set of experiments and current state (i.e., the values assigned
to the module inputs, outputs, and internal memory elements) as parameters and gen-
erates all the possible states of the module after performing the required operation.

We have also reported our efforts to develop test sequences based on our test gen-
eration procedure for typical LSI circuits.!” More specifically, we considered 2 one-bit
microprocessor slice C that has all the basic features of the four-bit Am2901 microproc-
essor slice.!0 The circuit C was modeled as a network of eight functional modules: an
ALU, a latch register, an addressable register, and five multiplexers. The functions of the
individual modules were described in terms of binary decision diagrams or equivalent
sets of experiments. Tests capable of detecting various faults covered by the fault model
were then generated for the circuit C. We showed that if the fault collapsing technique
is used, a significant reduction in the length of the final test sequence results.

The test generation effort was quite straightforward, indicating that the technique
can be automated without much difficulty. Our study also shows that for a simplified
version of the circuit C the length of the test sequence generated by our technique is
very close to the length of the test sequence manually generated by Sridhar and Hayes?
for the same circuit. We also described techniques for modeling some of the features of
the Am2909 four-bit microprogram sequencer!? that are not covered by the circuit C.

The results of our case study were quite promising and showed that our technique
is a viable and effective one for generating tests for LSI circuits.

Simulation-aided Test Generation

Logic simulation techniques have been used widely in the evaluation and verification of
new digital circuits. However, an important application of logic simulation is to inter-
pret the behavior of a circuit under a certain fault or faults. This is known as fault simu-
lation. To clarify how this technique can be used to generate tests for LSI systems, we
will first-describe its use with SSI/MSI-type circuits.

To generate a fault simulator for an SSI/MSI circuit, the following information is
needed:!

o the gate-level description of the circuit, written in a special language;
o the initial conditions of the memory elements; and

@ a list of the faults to be simulated, including classical types of faults such as stuck-at
faults and adjacent pin shorts.

364 Programmable Logic Design Guide

The above is fed to a simulation package which generates the fault simulator of the
circuit under test. The resulting simulator can simulate the behavior of the circuit
under normal conditions as well as when any faults exist. :

Now, by applying various input patterns (either generated by hand, by an algo-
rithm, or at random), the simulator checks to see if the output response of the correct
circuit differs from one of the responses of the faulty circuits. If it does, then this input
pattern detects the fault which created the wrong output response; otherwise the input
pattern is useless. If an input pattern is found to detect a certain fault, this fault is
deleted from the fault list and the process continues until either the input patterns or
the faults are finished. At the end, the faults remaining in the fault list are those which
cannot be-detected by the input patterns. This directly measures the degree of fault
coverage of the input patterns used.

Two examples of this type of logic simulator are LAMP — the Logic Analyzer for
Maintenance Planning developed at Bell Laboratories,?! and the Testaid III fault simula-
tor developed at thé Hewlett-Packard Company.!2 Both work primarily at the gate level
and simulate stuck-at faults only. One of the main applications of such fault simulators
is to determine the degree of fault coverage prov1ded by a test sequence generated by
any other test generation technique.

There are two key reqmrements that affect the success of any fault sxmulator

e the existence of a software model for each primitive element of the circuit, and

e the existence of a good fault model for the UUT which can be used to generate a
fault list covering most of the actual physical faults.

These two requirements have been met for SSI/MSI circuits, but they pose serious -
problems for LSI circuits. If it can be done at all, modeling LSI circuits at the gate level
requires great effort. One part of the problem is the lack of detailed information about
the internal structure of most LSI chips. The other is the time and memory required to
simulate an LSI circuit containing thousands of gates. Another severe problem facing
almost all LSI test generation techniques is the lack of good fault models at a level
higher than the gate level. ' ‘ '

The Abadir-Reghbati description model proposed in the previous section permits
the test designer to bypass the gate-level description and, using binary decision dia-
grams, to define blocks of logic according to their functions. Thus, the simulation of
complex LSI circuits can take place at a higher level, and this €liminates. the large time
and memory requirements. Furthermore, the Abadir-Reghbati fault model is quite effi-
cient and is suitable for simulation purposes. In fact, the implication operation16
employed by the test generation procedure represents the main building block of any
fault simulator. It must be noted that fault simulation techniques are very useful in opti-
mizing the length of the test sequence generated by any test generation technique.

Appendix 365

’_-;‘BlNARY oemsnon DIAGRAMS

: ',_;'Bmary dCClSlOﬂ dnagrams are a mcans of defining the loglcal opcrauon of dngltal_‘- '

~ functions. ! 0 They tell the user how to determmc the output value of a digital func-

,-?;',atlon by cxamming the values of the mputs Each node in these dxagmms is associ
ated with a binary vanablc, znd there are two branches commg;o fro

node. ‘The rlght branch is the. “1 o branch, whxle} the laft branch it

Dependmg on the value of th 1

lected when the dmgram 1s

366 Programmable Logic Design Guide

-

.

Appendix 367

- the node varlable E;. by traversmg the Ej dlagram he obtams a value of O Rctum-. _" ,
ng to the original Cj4 7 diagram W1th Ej 0 will result in takxng the 0 bram_h and
xztmgthh Cj”«Aj—l | , S
~Since node variables can refer to other auxﬂxary funcnons ‘we can sxmply -
escnbc complex modules by brcakmg their functxons into small subfuncuons .

Random Test Generation

This method can be considered the simplest method for testing a device. A random
number generator is used to simultaneously apply random input patterns both to the
UUT and to a copy of it known to be fault-free. (This copy is called the golden unit.)
The results obtained from the two units are compared, and if they do not match, a fault
in the UUT is detected. This response evaluation technique is known as comparison
testing; we will discuss it later. It is important to note that every time the UUT is tested,
a new random test sequence is used.

The important question is how effective the random test is, or, in other words,
what fault coverage a random test of given length provides. This question can be
answered by employing a fault simulator to simulate the effect of random test patterns
of various lengths. The results of such experiments on SSI and MSI circuits show that

368 Programmable Logic Design Guide

random test generation is most suitable for circuits without deep sequential logic.1:22:23
However, by combining random patterns with manually generated ones, test designers
can obtain very good results.

The increased sequentiality of LSI circuits reduces the apphcablhty of random test-
ing. Again, combining manually generated test patterns with random ones improves
the degree of fault coverage. However, two factors restrict the use of the random test
generation technique:

e The dependency on the golden unit, which is assumed to be fault-free, weakens the
level of confidence in the results.

® There is no accurate measure of how effective the test is, since all the data gathered
about random tests are statistical data. Thus, the amount of fault coverage provided
by a particular random test process is unpredictable.

A.3 RESPONSE EVALUATION TECHNIQUES

Different methods have been used to evaluate UUT responses to test patterns. We restrict
our discussion to the case where the final goal is only to detect faults or, equivalently, to
detect any wrong output response. There are two ways of achieving this goal — using a
good response generator or using a compact testing technique.

Good Response Generation

This technique implements an ideal strategy: comparing UUT responses with good
response patterns to detect any faulty response. Clearly, the key problems are how to
‘obtain a good response and at what stage in the testing process that response will be
generated. In current test systems, two approaches to solving these problems are taken
— Sstored response testing and comparison testing.

Stored Response Testing

In stored response testing, a one-shot operation generates the good response patterns
at the end of the test generation stage. These patterns are stored in an auxiliary memory
(usually a ROM). A flow dlagram of the stored response testing technique is shown in
Figure A3.1.

Different methods can be used to obtain good responses of a circuit to a particular
test sequence. One way is to do it manually by analyzing the UUT and the test patterns.
This method is the most suitable if the test patterns were generated manually in the first
place.

The method most widely used to obtain good responses from the UUT is to apply
the test patterns either to a known good copy of the UUT — the golden unit — or to a
software-simulated version of the UUT. Of course, if fault simulation techniques were
used to generate the test patterns, the UUT’s good responses can be obtained very eas-
ily as a partial product from the simulator.

> uut

uuT

RESPONSE

STORED
GOOD
RESPONSE

Figure A.3.1 Stored Response Testing

Py

uuT

Bl RESPONSE
GOLDEN GOOD

UNIT RESPONSE

Appendix
ERROR
SIGNAL
COMPARATOR
ERROR
SIGNAL
COMPARATOR

Figure A.3.2 Comparison Testing

369

The use of a known good device depends on the availability of such a device.
Hence, different techniques must be used for the user who wants to test his LSI system
and for the designer who wants to test his prototype design. However, golden units are
usually available once the device goes into production. Moreover, confidence in the
correctness of the responses can be increased by using three or five good devices
together to generate the good responses.

The major advantage of the stored response technique is that the good responses
are generated only once for each test sequence, thus reducing the cost of the response
evaluation step. However, the stored response technique suffers from various disadvan-

tages:

® Any change in the test sequence requires the whole process to be repeated.

370 Programmable Logic Design Guide

e A very large memory is usually needed to store all the good responses to a reason-
able test sequence, because both the length and the width of the responses are rela-
tively large. As a result, the cost of testing equipment increases.

® The speed with which the test patterns can be applied to the UUT is hmlted by the
access time of the memory used to store the good responses.

Comparison Testing

Another way to evaluate the responses of the UUT during the testing process is to apply
the test patterns simultaneously to both the UUT and a golden unit and to compare
their responses to detect any faulty response. The flow diagram of the comparison test-
ing technique is shown in Figure A.3.2. The use of comparison testing makes possible
the testing of the UUT at different speeds under different electrical parameters, given
that these parameters are within the operating limits of the golden unit, which is
assumed to be ideal.

Note that in comparison testing the golden unit is used to generate the good
responses every time the UUT is tested. In stored response testing, on the other hand,
the golden unit is used to generate the good responses only once.

The disadvantages of depending on a golden unit are more serious here, however,
since every explicit testing process requires one golden unit. This means that every tester
must contain a golden copy of each LSI circuit tested by that tester.

One of the major advantages of comparison testing is that nothing has to be
changed in the response evaluation stage if the test sequence is altered. This makes
comparison testing highly desirable if tést patterns are generated randomly.

Compact Testing

The major drawback of good response generation techniques in general, and stored
response testing in particular, is the huge amount of response data that must be ana-
lyzed and stored. Compact testing methods attempt to solve this by compressing the
response data R into a more compact form f(R) from which most of the fault informa-
tion in R can be derived. Thus, because only the compact form of the good responses
has to be stored, the need for large memory or expensive golden units is eliminated. An
important property of the compression function f is that it can be implemented with
simple circuitry. Thus, compact testing does not require much test equipment and is
_especially suited for field maintenance work. A general diagram of the compact testmg
technique is shown in Figure A.3.3.
Several choices for the function f exist, such as “the number of 1’s in the
sequence,’ “the number of 0 to 1 and 1 to 0 transitions in the sequence” (transition
cozmting),z4 or “the signature of the sequence” (signature analysis).2> For each com-
pression function f, there is a slight probability that a response R1 different from the
fault-free response RO will be compressed to a form equal to f{RO), i.e., f(R1) = f(RO).

Appendix 371

Thus, the fault causing the UUT to produce R1 instead of RO will not be detected, even
though it is covered by the test patterns.

The two compression functions that are the most widely accepted commercially
are transition counting and signature analysis. :

»-] RESPONSES fn

uuT R

ERROR
SIGNAL

COMPARATOR

GOOD
COMPRESSED
RESPONSES

Figure A.3.3 Compact Testing

Transition Counting

In transition counting, the number of logical transitions (0 to 1 and vice versa) is com-
puted at each output pin by simply running each output of the UUT into a special
counter. Thus, the number of counters needed is equal to the number of output pins
observed. For every m-bit output data stream (at one pin), an #-bit counter is required,
where 7n =[logym)]. As in stored response testing, the transition counts of the good
responses are obtained by applying the test sequence to a golden copy of the UUT and
counting the number of transitions at each output pin. This latter information is used as
a reference in any explicit testing process.

In the testing of an LSI circuit by means of transition counting, the input patterns
can be applied to the UUT at a very high rate, since the response evaluation circuitry is
very fast. Also, the size of the memory needed to store the transition counts of the
good responses can be very small. For example, a transition counting test using 16 mil-
lion patterns at a rate of one MHz will take 16 seconds, and the compressed stored
response will occupy only K 24-bit words, where K is the number of output pins. This
can be contrasted with the 16 million K-bit words of storage space needed if regular
stored response testing is used.

The test patterns used in a transition counting test system must be designed such
that their output responses maximize the fault coverage of the test.24 The example
below shows how this can be done.

372 Programmable Logic Design Guide

Consider the one-out-of-four multiplexer shown in Figure A.3.4. To check for mul-
tiple stuck-at faults in the multiplexer input lines, eight test patterns are required, as
shown in Table A.3.1. The sequence of applying these eight patterns to the multiplexer
is not important if we want to evaluate the output responses one by one. However, this
sequence will greatly affect the degree of fault coverage if transition counting is used.
To illustrate this fact, consider the eight single stuck-at faults in the four input lines
X1,X2,X3, and X4 (i.e., X1 stuck-at 0, X1 stuck-at 1, X2 stuck-at 0, and so on). Each of
these faults will be detected by only one pattern among the eight test patterns. For

X1 X2 X3 X4

So S4 Y

S et ‘ o 0| Xx1
1/4 MUX 1] 1 X2

| Ppa— 1 0 X3
1.1 X4

h
Figure A.3.4 One-Out-of-Four Multiplexer

example, the fault “X1 stuck-at 0” will be detected by applying the first test pattern in
Table A.3.1, but the other seven test patterns will not detect this fault. Now, suppose we -
want to use transition. counting to evaluate the output responses of the multiplexer.
Applying the eight test patterns in the sequence shown in Table A.3.1 (from top to bot-
tom) will produce the output response 10101010 (from left to right), with a transition
count of seven. Any possible combination of the eight faults described above will
change the transition count to a number different from seven, and the fault will be
detected. (Note that no more than four of the eight faults can occur at any one time.)
Thus, the test sequence shown in Table A.3.1 will detect all single and multiple stuck-at
faults in the four input lines of the multiplexer.

Now, if we change the sequence of the test patterns to the one shown in Table
A.3.2, the fault coverage of the test will decrease considerably. The output responses of
the sequence of Table A.3.2 will be 11001100, with a transition count of three. As a
result, six of the eight single stuck-at faults will not be detected, because the transition
count of the six faulty responses will remain three. For example, the fault “X1 stuck-at
1" will change the output response to 11101100, which has a transition count of three.
Hence, this fault will not be detected. Moreover, most of the multiple combinations of
the eight faults will not change the transition count of the output, and hence they will
not be detected either.

It is clear from the above example that the order of applying the test patterns to the
UUT greatly affects the fault coverage of the test. When testing combinational circuits,
the test designer is completely free to choose the order of test patterns. However, he

S, S, X1 X2 X3 X4 Y Sy S, X1 X2 X3 X4 Y
0 0 1 0 0 0 1 0 0 1 0 0 0 1
0 0 0 1 1 1 0 0 1 0 1 0 0 1
0 1 0 1 0 0 1 0 0 0 1 1 1 0
0 1 1 0 1 1 0 0 1 1 0 1 1 0
1 0 0 0 1 0 1 1 0 0 0 1 0 1
1 0 1 1 0 1 0 1 1 0 0. 0 1 1
1 1 0 0 0 1 1 1 0 1 1 0 1 0
1 1 1 1 1 0 0 1 1 1 1 1 0 0

Table A.3.1 The eight test patterns Table A.3.2 A different sequence of

used for testing the the eight multiplexer
multiplexer of , test patterns
Figure A3.4

cannot do the same with test patterns for sequential circuits. More seriously, because
he is dealing with LSI circuits that probably have multiple output lines, he will find that
a particular test sequence may give good results at some outputs and bad results at oth-
ers. One way to solve these contradictions is to use simulation techniques to find the
optimal test sequence. However, because of the limitations discussed here, transition
counting cannot be recognized as a powerful compact LSI testing method.

Signature Analysis

In 1977 Hewlett-Packard Corporation introduced a new compact testing technique
called signature analysis, intended for testing LSI systems.25-28 In this method, each
output response is passed through a 16-bit linear feedback shift register whose contents
f(R), after all the test patterns have been applied, are called the test signature. Figure
A3.5 shows an example of a linear feedback shift register used in signature analysis.

]Df’lllllllllllllllllll
\16-BIT SHIFT REGISTER

SERIAL
DATA
INPUT

Figure A.3.5 The 16-bit Linear Feedback Shift Register Used in Signature Analysis

374 Programmable Logic Design Guide

The signature provided by linear feedback shift registers can be regarded as a
unique fingerprint — hence, test designers have extremely high confidence in these
shift registers as tools for catching errors. To better understand this confidence, let us
examine the 16-bit linear feedback shift register shown in Figure A.3.5. Let us assume a
data stream of length # is fed to the serial data input line (representing the output
response to be evaluated). There are 2” possible combinations of data streams, and
each one will be compressed to one of the 216 possible signatures. Linear feedback shift
registers have the property of equally distributing the different combinations of data
streams over the different 51gnatures 27 This property is illustrated by the following
numerical examples.

e Assume n = 16. Then each data stream will be mapped to a distinctive signature
(one-to-one mapping).

® Assume n = 17. Then exactly two data streams will be mapped to the same signa-
ture. Thus, for a particular data stream (the UUT good output response), there is
"only one other data stream (a faulty output response) that will have the same signa-
ture; i.e., only one faulty response out of 217 — 1 possible faults will not be
detected.

® Assume 7z = 18. Then four different data streams will be mapped to the same signa-
ture. Hence, only three faults out of 218 — 1 possible faults will not be detected.

We can generalize the results obtained above. For any response data stream of
length 72> 16, the probability of missing a faulty response when using a 16-bit signa-
ture analyzer is?’

n - 16_1
27 -1

=2-16 for n>>16.

Hence, the possibility of missing an error in the bit stream is very small (on the order of
0.002 percent). Note also that a great percentage of the faults will affect more than one
output pin — hence the probability of not detecting these kind of faults is even lower.

Signature analysis provides a much higher level of confidence for detecting faulty
output responses than that provided by transition counting. But, like transition count-
ing, it requires only very simple hardware circuitry and a small amount of memory for
storing the good signatures. As a result, the signatures of the output responses can be
calculated even when the UUT is tested at its maximum speed. Unlike transition count-
ing, the degree of fault coverage provided by signature analysis is not sensitive to the
order of the test patterns. Thus, it is clear that signature analysis is the most attractive
solution to the response evaluation problem.

The rapid growth of the complexity and performance of digital circuits presents a
testing problem of increasing severity. Although many testing methods have worked
well for SSI and MSI circuits, most of them are rapidly becoming obsolete. New tech-
niques are required to cope with the vastly more complicated LSI circuits.

Appendix 375

In general, testing techniques fall into the concurrent and explicit categories. In
this article, we gave special attention to explicit testing techniques, especially those
approaching the problem at the functional level. The explicit testing process can be
partitioned into three steps: generating the test, applying the test to the UUT, and evalu-
ating the UUT’s responses. The various testing techniques are distinguished by the
methods they use to perform these three steps. Each of these techniques has certain
strengths and weaknesses.

We have tried to emphasize the range of testing techniques available, and to high-
light some of the milestones in the evolution of LSI testing. The details of an individual
test method can be found in the sources we have cited.

References

1. M.A. Breuer and A.D. Friedman, Diagnosis and Reliable Design of Digital Systems,
Computer Science Press, Washington, DC, 1976.

2. J.P. Hayes and E.J. McCluskey, “Testing Considerations in Microprocessor-Based
Design,” Computer, Vol. 13, No. 3, Mar. 1980, pp. 17-26.

3. J. Wakerly, Error Detecting Codes, Self-Checking Circuits and Applications, Ameri-
can Elsevier, New York, 1978.

4. D.B. Armstrong, “On Finding a Nearly Minimal Set of Fault Detection Tests for
Combinatorial Nets,” IEEE Trans. Electronic Computers, Vol. EC-15, No. 2, Feb.
1966, pp. 63-73.

5. J.P. Roth, W.G. Bouricius, and PR. Schneider, “Programmed Algorithms to Com-
pute Tests to Detect and Distinguish Between Failures in Logic Circuits,” IEEE
Trans. Electronica Computers, Vol. EC-16, No. 5, Oct. 1967, pp. 567-580.

6. S.B. Akers, “Test Generation Techniques,” Computer, Vol. 13, No. 3, Mar. 1980,
pp. 9-15.

7. E.I. Muehldorf and A.D. Savkar, “LSI Logic Testing — An Overview,’ IEEE Trans.
Computers, Vol. C-30, No. 1, Jan. 1981, pp. 1-17.

8. O.H. Ibarra and S.K. Sahni, “Polynomially Complete Fault Detection Problems,”
IEEE Trans. Computers, Vol. C-24, No. 3, Mar. 1975, pp 242-249.

9. T. Sridhar and J.P. Hayes, ‘“Testing Bit-Sliced Microprocessors,” Proc. 9th Int’l
Symp. Fault-Tolerant Computing, 1979, pp. 211-218.

376 Programmable Logic Design Guide

10.
11.

12.
13.
14.

15.
16.
17.
18.

19.

The Am2900 Family Data Book, Advanced Micro Devices, Inc., 1979.
Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill, New York, 1970.

S.M. Thatte, “Test Generation for Microprocessors,” PhD thesis, University of Illi-
nois, Urbana, 1979. ' : R

S.M. Thatte and J.A. Abraham, “Test Generation for Microprocessors,” IEEE Trans.
Computers, Vol. C-29, No. 6, June 1980, pp. 429-441.- '

M.A. Breuer and A.D. Friedman, ‘“Functional Level Primitives in Test Generation,”’
IEEE Trans. Computers, Vol. C-29, No. 3, Mar. 1980, pp. 223-235.

M.S. Abadir and H.K. Reghbati, “Test Generation for LSI: A New Approach,” Tech.
Report 81-7, Dept. of Computational Science, University of Saskatchewan, Saska-
toon, 1981.

M.S: Abadir and H.K. Reghbati, ‘“Test Generation for LSI: Basic Operations,” Tech.
Report 81-8, Dept. of Computational Science, University of Saskatchewan, Saska-
toon, 1981.

M.S. Abadir and H.K. Reghbati, “Test Generation for LSI: A Case Study,” Tech.
Report 81-9, Dept. of Computational Science, University of Saskatchewan, Saska-
toon, 1981. '

M.S. Abadir and H.K. Reghbati, “Functional Testing of Semiconductor Random
Access Memories,” Tech. Report 81-6, Dept. of Computational Science, Univeristy
of Saskatchewan, Saskatoon, 1981. ‘

S.B. Akers, “Binary Decision Diagram,” IEEE Trans Computers, Vol. C-27, No. 6,
June 1978, pp. 509-516.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

Appendix 377

. $.B. Akers, “Functional Testing with Binary Decision Diagram,” Proc. 8th Int’l

Symp. Fault-Tolerant Computing, June 1978, pp. 82-92.

B.A. Zimmer, “Test Techniques for Circuit Boards Containing Large Memories and
Microprocessors,” Proc. 1976 Semiconductor Test Symp., pp. 16-21.

P Agrawal and V.D. Agrawal, “On Improving the Efficiency of Monte Carlo Test
Generation,” Proc. 5th Int’l Symp. Fault-Tolerant Computing, June 1975, pp. 205-
209.

D. Bastin, E. Girard, J.C. Rault, and R. Tulloue, ‘“Probabilistic Test Generation Meth-
ods,” Proc. 3rd Int’l Symp. Fault-Tolerant Computing, June 1973, p. 171

J.P. Hayes, “Transition Count Testing of Combinational Logic Circuits,” /EEE Trans.
Computers, Vol. C-25, No. 6, June 1976, pp. 613-620.

“Signature Analysis,” Hewlett Packard J., Vol.28, No. 9, May 1977.

R. David, “Feedback Shift Régister Testing,” Proc. 8th Int’l Symp. Fault-Tolerant
Computing, June 1978.

H.J. Nadig, “Testing a Microprocessor Product Using Signature Analysis,” Proc.
1978 Semiconductor Test Symp., pp. 159-169.

J.B. Peatman, Digital Hardware Design, McGraw-Hill, New York, 1980.

M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman, San Francisco, 1978.

E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer Sci-
ence Press, Washington, DC, 1978.

National Semiconductor Corporation
P.O. Box 58090

2900 Semiconductor Drive

Santa Clara, CA 95052-8090

Tel: (408) 721-5000

TWX: (910) 339-9240

Electronica NSC de Mexico SA
Juventino Rosas No. 118-2
Col Guadalupe Inn

Mexico, 01020 D.F. Mexico
Tel: (905) 524-9402

National Semicondutores

Do Brasil Ltda.

Av. Brig. Faria Lima, 830

8 Andar

01452 Sao Paulo, SP. Brasil
Tel: (55/11) 212-5066

Telex: 391-1131931 NSBR BR

€1985 National Semiconductor Corp. W/L/1687

National Semiconductor GmbH
Westendstrasse 193-195
D-8000 Munchen 21

West Germany

Tel: (089) 5 70 95 01

Telex: 522772

National Semiconductor (UK) Ltd.
301 Harpur Centre

Horne Lane

Bedford MK40 1TR

United Kingdom

Tel: 0234-47147

Telex: 826 209

NationalsSemiconductor Benelux
Ave Charles Quint 545

B-1080 Bruxelles

Belgium

Tel: (02) 4661807

Telex: 61007

National Semiconductor (UK) Ltd.
1, Bianco Lunos Alle

DK-1868 Copenhagen V
Denmark

Tel: (01) 213211

Telex: 156179

National Semiconductor
Expansion 10000

28, Rue de la Redoute

F-92 260 Fontenay-aux-Roses
France

Tel: (01) 660-8140

Telex: 250956

National Semiconductor S.p.A.
Via Solferino 19

20121 Milano

Italy

Tel: (02) 345-2046/7/8/9
Telex: 332835

National Semiconductor AB
Box 2016

Stensatravagen 4/11 TR
S$-12702 Skarholmen
Sweden

Tel: (08) 970190

Telex: 10731

National Semiconductor
Calle Nunez Morgado 9
(Esc. Dcha. 1-A)

E-Madrid 16

Spain

Tel: (01) 733-2954/733-2958
Telex: 46133

National Semiconductor Switzerland

Alte Winterthurerstrasse 53
Postfach 567

CH-8304 Wallisellen-Zurich
Tel: (01) 830-2727

Telex: 59000

National Semiconductor
Pasilanraitio 6C
SF-00240 Helsinki 24
Finland

Tel: (90) 14 03 44

Telex: 124854

NS Japan Ltd.

4-403 Ikebukuro, Toshima-ku
Tokyo 171, Japan

Tel: (03) 988-2131

Fax: 011-81-3-988-1700

National Semiconductor
Hong Kong Ltd.

Southeast Asia Marketing
Austin Tower, 4th Floor
22-26 Austin Avenue
Tsimshatsui, Kowloon, H.K.
Tel: 3-7231290, 3-7243645
Cable: NSSEAMKTG
Telex: 52996 NSSEA HX

National Semiconductor (Australia)
PTY, Ltd.

21/3 High Street

Bayswater, Victoria 3153

Tel: (03) 729-6333

Telex: AA32096

National Semiconductor (PTE), Ltd.
10th Floor

Pub Building, Devonshire Wing
Somerset Road

Singapore 0923

Tel: 652700047

Telex: NAT SEMI RS 21402

National Semiconductor (Far East)
Ltd.

Taiwan Branch

P.O. Box 68-332 Taipei

7th Floor, Nan Shan Life Bldg.,
302 Min Chuan East Road,

Taipei, Taiwan R.0.C.

Tel: (02) 501-7227

Telex: 22837 NSTW

Cable: NSTW TAIPEI

National Semiconductor (Far East)
Ltd.
Korea Office

" Third Floor, Hankyung Bldg.

4-25 Hannam-Dong
Yongsam-Ku, Seoul 140, Korea
Tel: 797-8001/3 ’
Telex: K24942 NSRK

RRD20MO75/Printed in U.S.A

