

National
Semiconductor
Corporation

~

Introduction

Welcome and thank you for your interest in National's products.
National has been providing and manufacturing microprocessors and
support tools since 1972. This databook describes the various
development tools available to design and develop microprocessor
based products. Support tools include software packages for applica­
tions software development; real-time emulators for fast and efficient
hardware and software debugging; peripherals packages (such as
PROM programmers and printers); and, of course, powerful host
systems to bring all of these support packages together.

National offers the STARPLEX II and the SYS16 Development
Systems. STARPLEX II allows the designer to develop 8-bit micro­
processor-based products, while the SYS16 allows the designer to
develop NS16000-based products_ Available for each of the host
systems are appropriate packages for software development work.
Software packages for the STARPLEX 11 include 8-bit cross­
assembiers and compilers (such as the COPS cross-assembler for
COP400 family microcontrollers), and PASCAL compilers for 8085 and
NSC800 microprocessors. Software for the SYS16 include PASCAL
and C to support the NS16000 family_ To debug the software in the
tlardwa.re prototype, powerful real-time In-System Emulators (ISEs) are
available for the appropriate microprocessors_

The Service Organization provides technical support and repair for
Microcomputer Systems Division products. The designer can use toll­
free numbers (800-536-1866 or 800-672-1811 in California) to contact the
Response Center for hardware and software technical assistance or
for service.

As integrated circuits become more and more complex, the benefit
of consistently high quality products becomes increasingly more im­
portant to customers, many of whom have long recognized National
as the outstanding supplier of top quality products. Such recognition
IS the result of a management-driven Quality Improvement Program
that has pervaded every manufacturing operation, from product
design through assembly and packaging, for the past several years.
Progress has been nothing less than dramatic, and National's com­
mitment to quality will remain unrelenting in the decades to come.

LIFE SUPPORT POLICY

NATIONAL.:S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUP­
PORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF
NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or
systems which, (a) are intended for surgical im­
plant into the body, or (b) support or sustain life,
and whose failure to perform, when properly used
in accordance with instructions for use provided
in the labeling, can be reasonably expected to re­
sult in a significant injury to the user.

2. A critical component is any component of a life
support device or system whose failure to perform
can be reasonably expected to cause the failure
of the life support device or system, or to affect its
safety or effectiveness.

ISETM, IntegrallSETM, PALTM, PALASMTM, NSC800™, NS16000™, MASKTRTM
STARPLEXTM, STARPLEX IITM, STARLIN KTM, Tiny BASICTM, and COPSTM are trademarks of National Semiconductor.
CP/M" is a registered trademark of Digital Research, Inc.
Z80", Z80A® and Z80B® are registered trademarks of Zilog Corp.
Inteliec™ is a trademark of Intel Corp.
UNIJ(TM is a trademark of Bell Laboratories

National
Semiconductor
Corporation

~

Table of Contents

STARPLEX II Development System.

In-System Emulator (ISE) Module.

8080 Emulator Package ..

8048 Family Emulator Package ...

8070 Series Emulator Package ..

Integral In-System Emulator (lSE) Package

NS80CX48 Emulator Package

8085 Emulator Package ..

NSC800 Emulator Package

Z80 Emulator Package.

COPS In-System Emulator (ISE) Package.

COP400 In-System Emulator Boards

PLM80 PUM High-Level Language Compiler ..

PASCAL High-Level Language Compiler

PALASM Software Program ..

STARLINKSTARPLEXIl-to-MDSComlink.

Impact Printer. ..

NS16032 In-System Emulator (ISEl16)

.

.

17

24

27

31

34

42

46

49

53

56

62

65

69

81

. 85

87

89

NS16008ln-System Emulator (ISEl08). 103

SYS16 Multi-User Based Development System (SYS16).. 118

NSXC16 NS16000 Cross Software Package 121

NSX16 Cross Software Package .. 123

~ National Semiconductor
STARPLEX IITM

Development System

• A Complete Development System

• Dual CPU microprocessor-based system
in master/slave configuration
- 128K bytes of Random Access Memory
- Dual floppy disk drives
- Video monitor and keyboard controller
- Two RS232C interfaces
- Integral CRT keyboard with eight upper/

lower case for a total of sixteen user
definable keys

- PROM programmer interface

• Software
- Disk Operating System
- Resident Debugger
- Text Editor
- Macro Assembler
- On-board ROM and RAM diagnostics
- I/O Spooling
- FORTRAN
- BASIC

• Options
- In-System Emulator (ISPM) packages

for NSC800™ INS8048 family, INS8070
family, NS80CX48, 8080, 8085 and Z80
microprocessor devices

- In-System Emulator package for
COP400 microcontroller devices

- PUM for 8080/8085, PUM' for
NSC800/Z80

- PASCAL compiler for 8080/8085,
PASCAL compiler for NSC800/Z80

- Optional double-sided/double-density
disk drives with 2 megabytes of memory
expandable to 4 megabytes

- Cross assemblers (Included with the
emulator packages)

- STARLINK - Interface to Intellec
Development System

- PAL /PROM programmer personality
modules

• Field-Upgradable from STARPLEX'M
80/41,80/51 or 80/61 Systems

• Upgrade kit includes:
- Z80A Master CPU Board
- Z80A Slave CPU Board with 64K bytes

of RAM
- Internal RS232C cable and connector
- Keyboard with user-definable keys
- Disk-Based Operating System for

STARPLEX II

• Easy to Use

• Prompting menus guide operator entries
- English language explanation of

user errors
- Direct system function keys to

PAUSE/CONTINUEI ABORT/DEBUG
- HELP key for online user assistance
- Single stroke CRT edit keys

Product Overview

The STARPLEX II Development System is a general­
purpose microcomputer and microprocessor develop­
ment system. New levels of operating simplicity have
been designed into the STARPLEX II system to signifi­
cantly reduce the amount of time spent on product devel­
opment. By getting the user into actual application work
sooner and with fewer mistakes, the STARPLEX II system
allows the user to take full advantage of time spent at the
console.

A Complete System

The STARPLEX II design combines all the components
required for the entire development task in one complete
system. The STARPLEX II package includes a Z80A­
based system controller board, a Z80A-based user
processorlmemory board with 64K bytes of RAM, 64K
bytes of system RAM, 1 M byte of disk storage controlled
by a floppy disk controller, a video monitor and keyboard.
The standard STARPLEX II software package includes a
disk operating system, Z80 assembler, debugger, editor,
linker, loader, FORTRAN, BASIC, on-board ROM diag­
nostics and utilities. Options available are: in-system
emulation packages for real-time debugging of custom­
ized hardware and software prototype systems, PAL!
PROM programmer personality modules for verifying,
copying and programming PROMs or PALs, STARLINK
for transferring files between STARPLEX II and Intellec
Development System, and cross assemblers.

Easy to Use

The STARPLEX Systems reduce the time a user must
spend at a terminal by making many complex functions
accessible through Single easy keystrokes. System com­
mands are initiated by clearly marked function keys which
invoke prompting menus to guide the user through each
task. These function keys eliminate the need to memorize
system commands and various command options. As a
result, there is no need to refer to lengthy documentation,
and errors or delays caused by incorrectly entered com­
mands are eliminated. With the user-definable keys on
the STARPLEX II System keyboard, the amount of time a
user must spend at a terminal is further reduced. Eight
function keys are provided with upper and lower case
capability for a total of sixteen different keys which are
user-definable. These keys may be utilized both in com­
mand mode (system) and by an application program run­
ning on the system. Thus, while system commands are
initiated by clearly marked function keys, which invoke
prompting menus to guide the user through each task,
many non-system complex functions become accessible
through these user-definable keys.

Recognizing that a great deal of the user's time is spent
on creating and changing source code, the designers of
the STARPLEX II system have devoted special attention
to the text editing facility.

2

A set of special function keys direct the STARPLEX II
Editor, allowing corrections to be made with single key­
strokes. Also, the powerful "string mode" commands
allow search and replacement of character strings as well
as block moves. An entire file may be quickly and easily
reviewed or altered. The number of mistakes is reduced
because the data and changes are immediately displayed.
Backup files are automatically created, protecting the
user from accidental loss of data. Because the STAR­
PLEX II system is easy to use, learning time is consider­
ably shortened. A first-time user can be productive within
a half hour. Also, as users make more efficient use of the
system, machine availability is maximized.

Spooled Printer Capability

STARPLEX II supports spooled 1/0 to a user-selected
print or another input or output device. Thus, printing long
listings of files, compiler output and similar tasks may
now be done at the same time as text editing, compiling,
emulation, debugging, etc. The net result is a greater
utilization of designer resources and subsequent reduc­
tion in program development time.

Resident System Debugger

The system debug utility is resident and always available
to the user. This program does not occupy any user space
in memory and can be invoked by a single keystroke.
Unlike many other debug utilities, the STARPLEX II
debugger does not have to be specified prior to program
execution and may be invoked at any time.

Full Product Line Support

The STARPLEX II system supports development for
the NSC800, NS16000, INS8070 family (8070, 8072,
8073 with Tiny Basic Interpreter), INS8048 family (8048,
8049,8050), NS80CX48, Z80A, Z80B, 8085 microproces­
sors and COP400 microcontroller devices.

Functional Description

Hardware Modules

STARPLEX II components are packaged into modules
which form a unified system when placed together. The
modules are durable, with housings constructed of 'ia-inch
aluminum and front panels of molded lexan foam.

STARPLEX II is designed for easy maintenance. Snap­
down doors on the base module make it easy to access
the card cages and circuit boards. Interconnecting cables
between all modules and boards are routed to the rear of
the system and covered by easily removable cable chan­
nels. Thus, cables are out of sight and protected from
accidental damage. All cables, including the single AC
power distribution system, are plug-detachable at both
ends, making it easy to disconnect modules and recon­
figure the system as the user chooses.

STARPLEX II Electronics

Five printed circuit boards make up the STARPLEX II
electronics: the main ZSOA-based CPU board, a ZSOA­
based user processor board which also has 64K bytes of
memory, an SOSOA-based video monitor/keyboard con­
troller board, an SOSOA-based floppy disk controller board
and an additional 64K byte memory board.

The ZSOA-based CPU board and user slave processor
board are designed in a master/slave configuration to
give the user processing power and speed that were
unobtainable with previous development systems. The
main CPU board with the floppy disk controller board and
the video/keyboard controller board all have multi-master
bus logic allowing them to share the system bus. The
floppy disk controller board and the video/keyboard con­
troller board communicate with the main CPU board and
user processor board using Direct Memory Access and
programmed I/O.

The optional printers and PAL /PROM programmer per­
sonality modules communicate with the main CPU/user
processor boards through two programmable parallel I/O
ports. A pair of RS232C ports on the main CPU board are
available and permit both asynchronous and synchro­
nous communications for use with options such as
STARLINK.

Individual circuit boards are built to National's high manu­
facturing ql1ality standards, utilizing techniques such as
computer-aided layout and auto insertion. All boards are
tested dynamically under system load conditions at ele­
vated temperatures as part of a thorough factory burn-in.

Software

User programs are separated from those of the STAR­
PLEX II operating system. This means that users have
much more memory space available, and since the oper­
ating system resides in its own environment, accidental
interface between user programs and the operating sys­
tem is virtually eliminated.

The STARPLEX II software is completely thought out
from a functional standpOint, carefully engineered to be
easy to understand and use, and thoroughly integrated
into the total system. Every aspect is designed to assist
the user in rapidly developing microprocessor-based
systems from the ground up.

The elegance of STARPLEX II software lies in its ability to
make the complicated process of program development
appear simple to the user.

OPERATING SYSTEM

The operating system provides system housekeeping
functions and coordinates access to system resources. It
includes a nucleus file manager, an I/O control system
and a loader.

The nucleus of the STARPLEX II operating system con­
trols and allocates system resources for the higher-level
processes. The nucleus:

• Provides synchronization and communication facilities
for higher-level asychronous processes.

3

Services all hardware interrupts.
Provides interval timer functions.
Is completely device-independent.

File Manager

The file manager organizes, stores and retrieves data
and programs stored on the diskettes.

Maintains a directory.
• Allows multiple file attributes.
• Supports random access.

I iO Control System

The I/O control system is designed to eliminate the need
for the user to understand the physical I/O characteristic
of each individual device and presents asimplified, logical
device-independent architecture.

Provides overlapped I/O commands.
Allows files to be accessed by name.
Handles error conditions.
Supports spooled I/Oto a user-selected print or another
input or output device.

Loader

The loader brings programs into main memory at speci­
fied locations.

Provides "load and go" mode.
• Allows controlled load mode - starting address re­

turned to calling program, useful for implementing over­
lay structures.

DEVELOPMENT SERVICES

The "development services" include a linker, a CRT­
oriented editor, utilities, a resident debugger, optional
PALIPROM programmer support macro assemblers,
BASIC and FORTRAN IV, optional PLIM for NSCSOO/
ZSO or SOSO/SOS5, and optional PASCAL for NSCSOO/
ZSO or SOSO/SOS5.

Linker

The linker combines relocatable object modules created
by the assemblers or compilers into an executable run
time module.

Assigns absolute addresses to load modules.
Produces a memory map of linked components.
Searches system and user libraries for unresolved
external references.

Editor

The STARPLEX II editor is an easy-to-use CRT-oriented
text editor.

String search and replace.
Forward and backward paging.
Block moves.
Automatic source file backup.

• Traps illegal commands.

Utilities

General utilities provide routine maintenance functions.

Transfer data files between devices.
• Obtain diskette directory listings.

Format diskettes.

Modify file attributes.
Rename files.
Print screen.

Debugger

The system debug utility is resident and always available
to the user. The debugger does not occupy any user
space in memory and may be invoked by a single key­
stroke. The program debugger simplifies program check­
out by allowing program execution to be monitored and
altered.

Allows single step control.
Permits eight breakpoint aSSignments.
Displays program counter and registers al breakpoints.
Memory references are absolute or relative to one of
the relocation registers.

PAL/PROM Programmer Support

The PAL/PROM programmer support software manages
the optional PALIPROM personality module functions.

Allows PROM code to be listed, verified and copied.
Data stored in a PROM can be transferred to or from
another PROM, a diskette file, memory, the video moni­
tor or keyboard.

• Allows for custom programming of programmable array
logic devices (PAL).

Macro Assembler

Individual macro assemblers can assemble 8080, 8085,
8048, 8070, NSC800, or Z80 mnemonic code and allow
operator definition of useful higher-level instructions
called "Macros" which are then expanded into a sequence
of machine-level instructions. (Macro assembler for
NSC800/Z80 is included with the STARPLEX II system.
All other cross assemblers are optional.)

Generates absolute or relocatable object modules.
• Conditional assembly parameters.
• Allows external references.

FORTRAN IV

The FORTRAN IV compiler on the STARPLEX II system
meets the ANSI X3.9-1966 standard and includes the
following enhancements:

PEEK and POKE - allow direct access to memory.
Supports user-written I/O drivers.
Random access disk 1/0.
Allows assembly language subroutine calls.

BASIC

The STARPLEX II BASIC compiler/interpreter conforms
to the Dartmouth-defined BASIC with extensions:

PEEK and POKE ~- allow direct access to memory.
Complete string operators.
MUlti-dimensional arrays.
Extensive debugging and programming aids -~ trace,
edit, direct mode, renumber.

PLiM for 8080/8085 and NSC800/Z80 (Optional)

PL/M is compatible with the industry standard PUM, but
offers many enhancements to Improve program execu­
tion time and memory utilization.

Available for 8080/8085 object code or NSC800/Z80
object code.

4

Hardware access via high-level statements.
Block structure facilitates structured programming
techniques.
Relocatable and linkable output object code.

PASCAL for 808018085 and NSC800lZ80 (Optional)

Specifications

Processor Subsystem: Z80A-based CPU board

Floppy Disk Subsystem:
Configuration
Format
Capacity

Maximum Capacity

Keyboard Subsystem:
System Function

ASCII
Programmable

CRT Subsystem:
Matrix
Display Array
Phosphor
Other

Printers:
Type
Speed
Width
Character Type

Power:

Base Module
Floppy Disk Module
Impact Printers
Video Monitor

PhYSical'

Base

Z80A-based user processor/
memory with 64K bytes RAM

Video monitor/keyboard
controller

Double-density floppy disk
controller

Memory board with 64K bytes
RAM (128K bytes total RAM)

Dual disk drives
IBM-compatible, soft-sectored
Double-density, single-sided

512K bytes/drives
Expanded to 4 double-denSity,

double-sided drives With 4
megabyte storage capacity

8 singlestrake system
control keys

58 alphanumeric keys
8 user-definable keys with

upper Ilower case

7x9 dot
80 columns by 25 lines
P2 green
Screen tilted 10' for comfort­

able viewing

Impact
120 characters per second
132 columns
7 x 9 dot matrix

115VAC,60Hz,10amps(max)
or
230 VAC, 50 Hz, 5 amps (max)
644 Watts
966 Watts
360 Watts

34 Watts

Floppy
Disk Impact Video

Module Module Printer Monitor

Height 5.7S In 11.51n 81n 11 Sin.

14.6cm 29.2 em ?'Q.3cm 292cm

Width 26 in. 13 in. 24.5 In. 131n.

66em 33em 62.2 em 33em

Depth 26in 19 In 18 in 191n
66em 48.3 em 457em 48.3 em

Weight 68 lb. 50 lb. 60 lb. 291b
30.8 kg 22.7 kg 27 kg 13.2 kg

STARPLEX
DEVELOPMENT SYSTEM

In-System Emulator
Module

---~-----l USER STATUS

I CABLE

INTERFACE

RAM (32Kx8)

BREAKPOINT LOGIC

TRACE LOGIC

MAP AND CONTROL LOGIC

TARGET MICROPROCESSOR

TARGET MICROPROCESSOR

.- ---~-----~-.-----'

(8 LINES)

BREAKPOINT
SYNC

TRACE SYNC

EMULATION CABLES

In-System Emulator System Configuration

5

Application Multiprocessor System Configuration

EMULATOR
CABLE

PROCESSOR
#1

BUS
ARBITER

COMMON BUS

EMULATOR
CABLE

PROCESSOR
#2

SHAR~LJ~
RA~~~u"

~ ____________________ ~ __________ J

8080 Emulator Package

6

8048 Family Emulator Package

8070 Series Emulator Package

7

Integral In-System Emulator

IntegrallSE Components Installation

ISE TWO PORT RAM BOARD _~~-~-----~-~------~--~'
MEMORY BUS CABLE ASSEMBLY

I

~~"~. ~ '~~

I

,-, ~~I:~'
',P

----------,SETAflGETBOARD

8

MEMORY
CARD

IntegrallSE System Configuration
(Total: 3 Boards and 2 Pods)

CABLE
POD

USER PROTOTYPE
SYSTEM

USER STATUS
POD

STATUS PROBES

8085 Emulator Package

9

NSC800 (5V) EmUlator Package

10

Installation of the COPS ISE Target Board and an Emulator Board

STARPLEXII

(TOTAL CABLE
REACH 4 FEET)

COPS™ In-System Emulator Package

11

Impact Printer

STARPlEX II Development System

Video Monitor Subsystem -----..
Large screen - measures 12" diagonally
Legible characters - 7 x 9 do! matrix
24 lines x 80 characters
Soft green phosphor
Variable screen intensity
10° tilted screen for cornfol1abje viewing
Extensive screen control; scrol111irlg,
blink, blank, inverse video or
alternate characters

User Definable Function Keys ------~
Eight function keys are provided
with upper and lower case
capability for a total of sixteen
different keys which are user
definable

Processors Subsystem -----------__
Z80-based CPU
Z80-based user processor/memory
with 64K byte RAM
Floppy disk controller/formatter
64Kbyte RAM
Dual4-slot chassis provides
three expansion slots

ASCII Keypad
58 a!phanumenc keys

12

Disk Subsystem
Dual standard floppy drives give
512K bytes per drive capacity
Uses IBM soft-sectored format
Expanadable to four drives
(two million bytes)

PROM Programmer (Optional)
Plug in PROM personality modules­
standard PRO-LOG compatible
Programs bipolar PROMs,
2708.2716 EPROMs, PALs

110... _________ System Function Keypad
9 system controi keys
Control program execution

Editor Keypad
5 cursor keys
13 special edit keys

System Reset Boot Load Button
Powerful resident bootstrap has built-in
micro-diagnostics to check all system
facilities on initialization. then
automatically switch out of user
memory space

STARPLEX II Multiprocessor System

PAL/PROM PROGRAMMER

~u ~
SYSTEM i BUS :_

~lUS ------~
~-

I BUS J 'L ARBITRAIION ZSOA CPU
LOGIC

I
.~ 'tn

USER PROCESSOR/MEMORY

'-+--.-~ L..--------f--'

13

STANDARD FLOPPY
DISC DRIVER

64K BYTE RAM
AND OTHER

SYSTEM OPTIONS

EXPANSION
DRIVES

STARPlEX II Keyboard

User Defined Keypad
Lower/upper case

ASCII Keypad
58 alphanumeric keys

14

Editor Keypad
5 cursor keys
13 special edit keys

System Function Keypad
9 system control keys
Control program execution

Standard Configuration

IN THE STANDARD CONFIGURATION, STARPLEX II
provides a fully functioning turnkey syslem including the
following features:

• CPU Master

• CPU Slave

• Bootstrap and diagnostic utility

• Two RS232C serial I/O ports

Real time clock/calendar

• 128K bytes of mappable RAM

• Keyboard base

• Video monitor with 7 x 9 dot matrix and 1920 character
display

• Dual floppy disk subsystem with double-density (1 mb)
or double-sided double-density (2 mb) disk drives

• Debugger for diagnosing program execution

• Additional utilities for system maintenance

• Expansion slots for Integral ISETM capability

• BASIC interpreter

• FORTRAN compiler

• Modular construction for versatility in operation

• Expansion capabilities to meet your growing
requirements

• Complete operating system including an input/output
system with an Independent interface to user tasks

• File manager for comprehensive data storage and
retrieval file creation, protection, deletion and attribute
assignment with use of unique keyboard utility keys

• Screen oriented text editor for creating and editing
source statements

• Macro assembler for assembling Z80 mnemonics and
user-defined macros

• Linker for linking independent program modules into
executable files

• PROM programming capability including interface
board and universal software with PAL support

Order Information

SPX-90/51 STARPLEX II Development
System with 1 Megabyte Disk
Storage (single-sided, double­
density drives) (60 Hz)

SPX-90/61 STARPLEX II Development
System with 2 Megabyte Disk
Storage (double-sided, double­
density drives) (60 Hz)

Options

SPM-90-A02-2 PROM programming module
for programming 2716
EPROMs

15

SPM-90-A06-1

SPM-90-A06-2

SPM-90-A08

SPM-90-A09-1

SPM-90-A09-2

SPM-90-A09-3

SPM-90-A13

SPM-90-A13-2

SPM-90-A 13-3

SPM-90-A13-4

SPM-90-A13-7

SPM-90-A15

SPM-90-A20

SPM-90-A25

SPM-90-A55

SFW-90-A001

SFW-90-A002

SFW-90-A003

SFW-90-A006

SFW-90-A009

SFW-90-A50

SFW-90-A60

SFW-90-A200

SFW-90-A300

SFW-90-A320

AEE-90-A001

AEE-90-A002

STARPLEX 11 Dual Single
Sided, Disk Expansion

STARPLEX II Dual Double
Sided, Disk Expansion

In-System Emulator Module

8080 Emulator Package

8048 Emulator Package
(includes upgrade kits that
convert ISE 8048 to emulate
8049 and 8050)

8070 Emulator Package
(includes upgrade kits that
convert ISE 8070 to emulate
8070 and 8073)

Integral In-System
Emulator Package

80CX48 Emulator Package

8085 Emulator Package

NSC800 Emulator Package

Z80 (4 M Hz) Emulator Package

COPS™ Emulator Package

Z80 (6MHz)
Complete ISE Package

80CX48 Complete
ISE Package

Impact Printer

8048 Cross-Assembler

8070 Cross-Assembler

NSC800 Cross-Assembler

COPS Cross-Assembler

8080 Cross-Assembler

PUM Compiler for
8080/8085

PUM Compiler for
NSC800lZ80

CP/M Operating System
Software Package

PASCAL Compiler for
8080/8085

PASCAL Compiler for
NSC800/Z80

STARLINK - SPX/MDS220,
230 Link

STARLINK - SPX/MDS800,
888 Link

Note: To order 50 Hz add the letter "E" to the order.

Documentation

STARPlEX II Development System

420~06465-001 STARPLEX II System Hard-
ware Reference Manual

420306383-001 STARPLEX II System Soft-
ware Reference Manual

420305788-001 STARPLEX II Macro Assem-
bler Software User's Manual

420305790,001 STARPLEX II FORTRAN Com-
piler Software User's Manual

420305791 -00 1 STARPLEX II BASIC Inter-
preter Software User's Manual

420305804-001 BLC-8222 Double-Density
Floppy Disk Controller Hard-
ware Reference Manual

420305587-001 BLC-8228/8229 Video
Monitor/Keyboard Controller
Hardware Reference Manual

420305529-001 BLC-032/048/064
32/48/64K RAM Board Hard-
ware Reference Manual

420306183-001 Universal PAL/PROM
Programmer User's Manual

STARPlEX II Development System Options

420305653-001

420305869-001

420306065-001

420306 132 -001

420306240-001

SPM-90-A09-1 8080 ISE
Target Board User's Manual

SPM-90-A08 In-System
Emulator Reference Manual

SPM-90-A09-2 8048 ISE
Target Board User's Manual

SPM-90-A09-3 8070 ISE
Target Board User's Manual

SPM-90-A13-3 8085 Integral
ISE-User's Manual

16

420306241-001

420306692-001

420306254-001

420308101-001

SPM-90-A 13-4 NSC800
Integral ISE User's Manual

SPM-90-A13-7, Z80
IntegrallSE User's Manual

SPM-90-A 15 COPS ISE
User's Manual

SPM-90-A13-2,80CX48
Integral ISE User's Manual

STARPlEX II Development System Software

420305789 -00 1

422306050-001

420306064-001

420306123001

420306198-001

420306253-001

420306371 -00 1

420306680-001

SFW-90-A009 8085/8085
Cross Assember
Software User's Manual

STARLlNK, STARPLEX III
MDS800/888 or MDS220/230
Reference Guide

SFW-90-A001 8048 Family
Cross-Assembler User's
Manual

SFW-90-A002 8070 Family
Cross-Assembler User's
Manual

SFW-90-A003 NSC800
Cross-Assembler User's
Manual

SFW-90-A006 COPS
Cross-Assembler User's
Manual

SFW-90-A50, SFW-90-A60
PLM80 Software Reference
Manual

SFW-90-A300, SFW-90-A320
Pascal Compiler Reference
Manual

~ National Semiconductor

In-System Emulator (ISETM)
Module

• Real·Time Emulation of
8·Bit Microprocessors
• Full Support for 8080 Microprocessors
• Full Support for 8048 Family Micro­

processors (Le_, 8035, 8039, 8040, 8048, 8049,
and 8050)

• Full Support for 8070 Series Micro­
processors (Le_, 8070, 8072 and 8073_ 8073 is
prepr0ru-ammed with National's Tiny
BASIC _)

• Communicates to Any STARPLEX™I
STARPLEX IFM Development System
Via a High·Speed RS232C Serial Port

• A Total Emulation System
• Hardware

- Processor Independent
- Breakpoint, Trace, Interface, Memory

Mapping and Control Logic
- 32 K-Bytes Dedicated Mapped Memory
- RS232C Serial Port
- 128 x 40-Bit Trace Memory
- Trace Load Sync Pulses

Product Overview

National Semiconductor's In-System Emulator
goes beyond the single-card approach to emulation
and qualifies as a genuine innovation in the devel­
opment of microprocessor-based systems_

ISE is a complete stand-alone unit housing 32 K
bytes of user programmable memory and all the

17

- 8-Bit User Status Cable
- Microsecond Timer

• Software
- Host Resident Symbolic Debugger and

Driver Software
- Control Firmware
- In-Line Assembler and Disassembler
- Coast After Breakpoint

• Easy to Use
• Consistent and Easy-to-Use Commands
• Infile Facility for Automatic Test

• Full Access to STARPLEX/STARPLEX II
Development Systems Facilities

• Versatile
• Single or Double Microprocessor Emulation
• Optional Emulator Package to Handle

Conversions from One Target Processor to
Another

necessary logic for breakpoints, tracing and
memory mapping_ Microprocessor emulation is
isolated on a single target card containing all the
logic needed to emulate the particular micro­
processor_ ISE is capable of supporting two of
these target cards concurrently to achieve emula­
tion in a multiprocessor environment ISE can
support either two target cards for the same
microprocessor or two different microprocessors_

There are three important advantages to a stand­
alone emulation system over the emulation card
approach:

Performance is the primary advantage. An emula­
tion card must share the host system bus and
memory. The card not only shares these resources;
it also must compete for them in a priority scheme
designed into the host system. This creates an
unpredictable environment, making real-time
emulation impossible.

In contrast, ISE as a stand-alone system has its
own special bus designed for high speed emula­
lion. It also has memory dedicated to the user's
program, thus eliminating any conflicts and allow­
ing real-time emulation.

Economy is another advantage of the system
approach to emulation. The only difference
between one emulator card and another is the
microprocessor under emulation. The expensive
trace memory, breakpoint logic, memory mapping
logic, etc., are Ihe same for all microprocessor
emulations. The ISE module contains all the logic
common to the emulation process while individual
target cards are dedicated to the emulation of
particular microprocessors. Each target card
supported by ISE shares the total system
resources, thus eliminating the unnecessary cost
of supplying separate logic and memory on each
emulator card.

Convenience is the most obvious advantage. The
user needs to master only one software package -
a single STARPLEX software driver program -

:

EMULATOR
CABLE

which supports all features of ISE and a variety of
target cards. Specific characteristics of the
emulated microprocessor which must be known by
the driver program (register complement, word size,
status bits, etc.) are recorded in an architecture
ROM located on the target card. The driver program
simply reads the contents of the architecture ROM
when the system is initialized. It then knows which
microprocessor it is emulating and the characteris­
tics of that microprocessor.

The ISE software package is totally integrated into
the STARPLEX Development Systems. All of the
ease-of-use concepts that set STARPLEX above
other development systems are designed into the
ISE system.

ISE is called with a single keystroke on the
STARPLEX keyboard, as are all other STARPLEX
system resources. A fill-in-the-blank menu appears
on the CRT and prompts the user to select the
microprocessor to be emulated. During the
emulation process a portion of the CRT screen is
reserved to inform the user of emulation status.
This status information includes the type of micro­
processor(s) selected for emulation, the state of
the emulated microprocessor(s) - running, select­
ed, present - breakpoint condition masks and
whether or not breakpoints are enabled.

Should the user wish to review the full range of ISE
commands available he can call for "HELP"; the
"HELP" key on the STARPLEX keyboard allows the
user to display information describing the ISE
software functions.

SHARED ~~-

RAM~/ {~l1II!
01~~W

L _________ "_~ __ ~ __ _

FIGURE 1. Application Multiprocessor System Configuration

18

Functional Description

Supports Various Microprocessors

The In-System Emulator is a one system solution
for users who wish to prototype systems involving
one or more types of microprocessors. By chang­
ing a target CPU card, ISE can be used to emulate
various different microprocessors such as the
8080, 8048 family and 8070 family.

Multiprocessor Support

Many complex microprocessor-based systems use
two or more microprocessors in a distributed or
multiprocessor configuration. ISE will accom­
modate two target cards, and will support two
microprocessors operating on a common on-board
bus, such as National's MICROBUS.

All memory mapping, trace and breakpoint features
are available for multiprocessor emulation when­
ever both processors are on a common bus. When
the two microprocessors are emulated in this
system, breakpoints can be set on either of the
microprocessors, and the trace memory will record
all activities on the common bus, including which
processor is on the bus during each cycle.

Multiprocessing emulation is accomplished by
connecting two bus control probes from the target
card cable assemblies to the application system.
When attached to the user system's bus arbitration
circuitry, these probes enable the user to direct ISE
to dynamically monitor the target card on the
common bus.

Powerful Debugging Capability

National's ISE provides all the usual features of a
powerful In-System Emulator, plus many more that
make it the most powerful unit available today. The
usual features include: program loading from the
host mass storage unit to the ISE program memory;
saving programs in the ISE memory on the host
system's mass storage medium; memory examina­
tion and modification; register examination and
modification. Some of the additional and more
powerful characteristics include:

• Real-Time Emulation of the Target
Microprocessor

Real-time emulation means that the target
microprocessor is emulated in an applications
system with the same hardware and software
timing characteristics that the microprocessor
chip will exhibit when it is plugged into the
system. Real-time emulation has been designed
into ISE. Some design characteristics contribut­
ing to real-time emulation are:

- Separation of the Host Development System
Function. Separating ISE from the host
development system is a major contribution
to real-time emulation. ISE uses a separate

19

internal bus from the host system, thus elim­
inating bus access conflicts between the
emulation function and the host control
functions. Its internal structure is optimized
for microprocessor emulation, and is not
compromised by some predefined architec­
ture. However, via the RS232C link and the
driver program in the host, ISE is able to u!le
all of the host system peripherals.

- System Clock Selection. In the early stages of
the applications system checkout, where
minor timing variations are more easily
tolerated, the applications system designer
may choose to run the emulation using the
ISE system clock. In the final checkout
stages, where real-time emulation is much
more critical, the designer may choose to run
the emulation using the applications system
clock. ISE will support either mode of
operation.

- Positioning of the Emulator Processor. Propa­
gation delays in cables and buffers can con­
tribute significant timing errors to the
emulation process. For this reason, the
emulation processor is iocated on a cable
card only eight inches from the emulation
plug to the applications system microproces­
sor socket. High speed buffers are used to
transmit signals between the emulation
processor and the applications system.

- Emulation Processor Selection. Wherever
possible an exact copy of the microprocessor
being emulated is used as an emulation
processor. For example, when an 8080 micro­
processor is being emulated, an 8080 is used
as the emulation processor. Instruction
execution times and control signal timing are
therefore identical to the timing that will be
experienced in the final system.

• Thirty-Five Breakpoint Conditions

Two breakpOint registers (BPC) can be defined on a
32-bit maskable word. Each breakpoint register is
specified by:
- 16 bits of address
- 8 bits of target CPU status
- 8 bits of user hardware status

Each bit of the 32-bit breakpOint register mask may
be specified to compare on "1" or "0," or "don't
care."

The user can then specify a breakpoint to occur
when anyone of the following conditions is met:
- If BPC #1 is met
- If BPC #2 is met
- If BPC #1 or BPC #2 is met
- If BPC #1 is met after BPC #2 is met
- If BPC #2 is met after BPC #1 is met

ISE can also be told to "coast" after the break­
point combination has been satisfied before
suspending operation:
- Coast until n more BPs are encountered
- Coast until n more BPC #1s are encountered
_. Coast until n more BPC #2s are encountered
- Coast until n more read/write cycles are

encountered
-- *Coast until n more instruction fetches are

encountered
- 'Coast until n more memory read/write cycles

are encountered
.- 'Coast until n more I/O read/write cycles are

encountered

Note: 0 < n < 256.

There are five Breakpoint (BP) combinations and
seven "Coast" combinations, making a total of
thirty-five total combinations.

• Program Trace

ISE maintains a constant record, in real-time, of the
last 128 cycles performed by the target
microprocessor. Forty bits of information are
recorded for each cycle:
- 16 bits of address
- 8 bits of data
- 8 bits of CPU status
- 8 bits of user-defined status, via the 8-bit status

cable

The type of information recorded in the trace
memory is selectable in four ways:
- All read/write cycles
- • Instruction fetches only
- 'Memory read/write cycles only
- *1/0 readlwrite cycles only

ISE generales a Sync Pulse each time data is
recorded in the trace memory. In addition, the
user may specify that the applications program
be halted after 64 words are recorded in the trace
memory.

• Target Card Control Features

The target microprocessor will be placed in an
inactive state at the end of the current instruc­
tion when one of the following conditions
occurs:
- The user gives a halt-command to the given

target
- A breakpOint is encountered
- .1>. memory protect violation is encountered
- Trace memory is filled with 64 words of new

data, when specified
- In single step mode

*If the t3rget microprocessor puts out necessary status
infofld l!ion in one form or another.

20

When a target is halted, the user may take any
one or all of the following actions:
- Examine and change the target's internal

registers
- Examine and change program memory
- Dump trace memory for examination
- Change trace specifications
- Change memory map

• Flexible Memory Mapping

A 32K address space is available in ISE. A
maximum of 32K bytes of the applications
program may be mapped into ISE memory in
512-byte blocks. These blocks need no! be
contiguous. The memory map may be specified
and altered under program control, and any
segment may be write protected. In addition,
data may be copied from the applications
system memory.

• Microsecond Timer

National's ISE has a 16 second timer which
counts in one-microsecond increments. The user
may use this timer to measure the time elapsed
between any two points of his program. The two
points in the program must be defined through
breakpoint conditions; the clock starts counting
as breakpoint condition #1 is encountered and
stops when breakpoint condition #2 is
encountered.

• User Status Cable

ISE provides the user with a four foot cable
carrying eight probes. The user may hook these
probes anywhere in his system and treat the
status of these pOints as part of his breakpoint
word and trace word.

Convenient Software

Several tools are provided to make ISE a very
convenient emulation system to use. Many of the
debugging features available for software
development, like symbolic debugging, are now
available for system development.

• Symbolic Debugging

Programmers use symbols to reference program
and data memory when writing programs, but
they are usually required to use absolute hexa­
decimal addresses when referencing those loca­
tions during program debug. ISE allows the
designer to use lhose same symbols to refer­
ence program and data memory during program
debug. A symbol table is generated when the
program is first assembled or compiled in the
host development system. That symbol table is
passed to the driver program in the host system
for use during the debugging operations. During
debugging operations, symbols may be added or
deleted, and symbol values may redefined.

* In-Line Assembler

A one-pass in-line assembler is provided to allow
modification of object code in ISE memory or
the applications system memory without having
to manually convert symbolic instructions to ma­
chine language. The in-line assembler accepts
program modifications in the assembly language
of the target microprocessor, assembles them,
and inserts them into the object program at the
locations specified by the system programmer.

• Disassembler
The disassembler examines specified segments
of ISE or applications system memory, disas­
sembles them, and displays their contents in the
assembly language mnemonics of the target
microprocessor. This feature eliminates many of
the tedious manual steps normally involved in
applications system debug.

• Automatic Testing

The application system designer often wishes to
perform a predefined sequence of tests on the
system over a relatively long period of time. ISE
has an automatic testing mode whereby the
designer may write a sequence of test steps in a
language similar to BASIC, store those tests in
the memory of the host system, and initiate the
test sequence. ISE will perform the tests in the
specified sequence and record the results on a
disc or a hard copy device of the host system.
Branching and conditional branching are also
permitted in the test program. This feature is
especially useful for rigorous proof that all parts

STARPLEX
DEVELOPMENT SYSTEM

1----

I

of the applications system are in fact working,
for detecting and documenting infrequent
failures, and for performing "life" tests.

The list of predefined test sequences resides in
a file created by using the 1St:: software or the
STARPLEX Text Editor. Once the file is resident
on the STARPLEX disc, it can be retrieved, de­
leted, edited, etc., by the ISE SoHwam Package.

The following commands allow the user to
perform automatic testing functions:

DELETE Deletes a range of lines from
test program.

EXECUTE Executes the test program.

LIST Prints the test program to a
selected device.

LOAD IN FILE Loads the specified test
program fom disc

SAVE INFILE

SCRATCH

END

GOTO

IF

INPUT

PRINT

RAM (32Kx8)

BREAKPOINT LOGIC

Saves the test program on disc.

Deletes the entire test program.

Directive to end test program
and return control to command
mode.

Unconditional branch to
another statement in test
program.

Conditional branch to anothEr
statement in test program.

Enables user to interact with
test program at run time to
specify data values.

Prints number and string data
on console.

~

I USER STATUS
CABLE

~ h BREAKPOINT ' fJ SYNC

~ -jINTERFACEJ+
TRACE LOGIC TRACE SYNC

MAP AND CONTROL LOGIC

I TARGET MICROPROCESSOR

TARGET MICROPROCESSOR

EMULATION CABLES

--------------,

FIGURE 2_ In-System Emulator System Configuration

21

lSI: Commands
Initialization and Setup Commands

SELECT or TARGET Select target processor

LATCH

RESET

NORESET

PRINT

RADIX or BASE

ARCHIVE

RESTORE

Control input from user status
cable.

Set flag to reset selected target
processor prior to resumption of
emulation.

Rescind RESET command.

Select host processor's output
device.

Establish default input and
display mode (binary, decimal,
hexadecimal, or octal).

Save system's status on
nonvolatile storage medium for
later retrieval.

Restore system status saved by
ARCHIVE command.

Emulation Commands

RUN

STEP

Continue system emulation until
break condition is encountered.

Continue system emulation in
single·step mode.

Memory/Register Modification and Display Commands

CHANGE Alter contents of memory
locations and registers with new
data values.

DISPLAY or DUMP Display portions of target
processor memory, register or
trace data.

22

MOVE

SEARCH

Transfer a region of memory
into another region.

Search a range of memory
locations for a specified value
and display the location.

Breakpoint Control Commands

BREAK

TIME

Suspend emulation when
specified break conditions are
met in target system.

Display time between
breakpoints.

Trace Control Commands

TRACE Select target activity to be
recorded into trace memory.

Memory Mapping/Demapping Control

MAP Copy a specified memory range
to or from target memory and
ISE memory.

DEMAP or NOMAP Restore a memory range
previously mapped by MAP
command.

Symbol Table and File Manipulation

DELETE

LOAD

SAVE

Delete specified symbol(s) from
symbol table.

Fetch symbol table or load file
from storage medium.

Create symbol table or load file
on storage medium.

Specifications

Memory

Power

Mappable - 32K bytes
Trace - 128 x 40 bits

115VAC,60Hz
230VAC,50Hz
345 Watts

Physical Height - 11.31 in. (28.7 cm)
Width - 13.0 in. (33.0 em)
Depth - 15.95 in. (40.5 em)
Weight - 35 Ibs. (15.9 kg)

Prerequisite

Any STARPLEXISTARPLEX II Development System.

Order Information
For STARPLEX Development Systems:
SPM-A08 In·System Emulator Module
SPM-A09-1 8080 Emulator Package
SPM-A09-2 8048 Family Emulator Package
SPM-A09-3 8070 Series Emulator Package

For STARPLEX II Development Systems:
SPM-90-A08 In·System Emulator Module
SPM-90-A09-1 8080 Emulator Package
SPM-90-A09-2 8048 Family Emulator Package
SPM-90-A09-3 8070 Series Emulator Package
Note: With the exception ot the SPM-A09-1, 8080 Emulator
Package, all the other emulator packages listed above include
appropriate cross-assemblers and manuals. The 8080/8085
macroassembler for the SPM-A09-1 emulator package is
included with the STARPLEX Development System operating
system diskettes set.

23

Documentation
420305869-001 ISE System Reference Manual
420305789-001 8080/8085 Macroassembler Software

User's Manual (Part of STARPLEX
System Reference Manual, Vol II,
950305891-002)

420305653-001 8080 In-System Emulator Target Board
User's Manual

420306064-001 8048 Family Cross-Assembler Software
User's Manual

420306065-001 8048 In-System Emulator Target Board
User's Manual

420306123-001 8070 Family Cross-Assembler Software
User's Manual

420306132-001 8070 In-System Emulator Target Board
User's Manual

~ National Semiconductor
8080 Emulator Package

• True Real-Time Emulation of 8080
Microprocessor (2 MHz)

II Includes Target Card, Cable Card with
Cables and Complete Software

• Supports Three Modes of Operation
• Program development
• Single processor emulation
• Multiprocessor emulation

Product Overview

The 8080 Emulator Package, in conjunction with
the In-System Emulator Module, provides emula­
tion capabilities for the user that are not available
in other emulators. National's In-System Emulator
Module is a complete unit housing 32 K bytes of
real time map memory and all the necessary logic
for breakpoints, tracing and memory mapping.
These resources are available for the emulation of
other processors since the individual emulation
packages are the only components dedicated to
particular processors. This approach simplifies
changing processors since the user needn't learn a
new machine each time he changes.

The 8080 Emulator Package provides the physical
and electrical interface between the In-System
Emulator Module and an 8080 based system under­
going development. A target board resides in the
Emulator Module and connects to the system under

24

• Contains 8080 Architectural Firmware,
Status Decode logic and CPU Control
Circuitry

• Used with In-System Emulator (ISPM)
Module

development by way of a cable board with associa­
ted cables. One of these cables connects the
target board to the cable board containing the 8080
microprocessor; the other connects the cable board
to the user system. This arrangement allows the user
to take full advantage of ISE module features.

The target board has three modes of operation:
program development, single processor emulation,
and multiprocessor emulation. The program devel­
opment mode permits the user to develop and
debug his software even though he has no hardware
available. During the emulation of a single
processor, the user may select the clock Signals for
the 8080 from either his hardware or from the emula­
tor. Multiprocessor emulation enables the user to
emulate both the 8080 and another processor
operating in the target system_

Specifications

Environmental

Power

Physical

Prerequisites

Operating Temperature 10°C
(50°F) to 30°C (90°F) in a
controlled environment

Storage Temperature -40°C
to 75°C

+5 Voc @ 1.94 A (Typical)
-5Voc @ 1.00 A (Typical)

-12 Voc @ 0.08 A (Typical)
+12Voc @ 0.05 A (Typical)

Target Board Dimensions-
6.75 x 12.00 inches

Cable Board Dimensions-
3.8 x 8.9 inches

Cable-Board Box Dimensions-
4.7 x 9.8 inches

Target/Cable-Board Cables­
Internal: 14 inches
External: 48 inches

Cable-Board/User Cable
Length -10 inches

Any STARPLEXTM/STARPLEX WM Development Systems
and In-System Emulator Module
(SPM-A08, SPM-90-A08)

25

Bus Enable Lines Sl and 52

1 i --,NPUT LOAD I OUTP-UT DRIVE - I
PIN ' Ilh~Q~hmA I lolmA T ~~emo~=-J

l' I I -26 '6iA'0

~ I ~ -;-00 ~s ;; I ~~D
I 4 80 - 200 I 5 20 05

I
5 80 I - 200 5 20 I 00 67

80 ·-200 ·5 20
I 80 _ 200 20 I 08

80 -200 -5 20 02

10 ~~ =~~~ =~ ~~ I g~
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

20
20
20
30

10

20

81 +40"A
52 40"A

-360
-360
-360
-370 70A

400 !~A
-400uA

- 400"A
--400,!A

-40D"A
-10 90uA
-360

-400 uA
--2.6
-26
-2.6

-26
-2.6

-26
- 2.6

-2.6
- 2.6

2.6
--2.6

2.6
-2.6
-2.6

- i ~:~ET
I
, HOLD

INT
2.1 '02

8 I'NTE
DBIN

I
WR

SYNC

25 I ;;::y
1

WAIT
16 AD
16 A1

16 ! A2
+ 12V

16 ! A3

16 A4
16 j A5

16 A6

16 I A7
16 I AS

~~ I ~~5
16 A12
16 A13
16 A 14

16 A11

BUS ENABLE1
BUS ENABLE2

Order Information
(Includes Target Board, Lightweight Plastic Cable Pod,
Cables, Software for 8080 Display Charge for Mnemonic
Assembly and Disassembly. SPM-90-A09-1 also includes
8080 Cross-Assembler.)

For STARPLEX Development Systems:
SPM-A08 In-System Emulator Module
SPM-A09-1 8080 Emulator Package

For STARPLEX II Development Systems:
SPM-90-A08 In-System Emulator Module
SPM-90-A09-1 8080 Emulator Package

TARGET BOARD

Documentation
420305869-001
420305653-001

420305789-001

ISE Module Reference Manual
8080 In-System Emulator Target Board
User's Manual'
8080/8085 Macroassembler Software
User's Manual (Part of STARPLEX
System Reference Manual, Vol. II,
420306383-001)

*Included with 8080 Emulator Package
(SPM·A09·1. SPM·90·A09·1).

CABLE BOARD

TO/

BUFFERS BUFFERS

ADDRESS I+--------.... ------l ADDRESS

J1 J3

I~~P----~I~I ["II ~TOUSER
EMULATOR

ADORESSANDI
DATA BUSSES

EMULAT~~ ! T1 CONTROL

CONT:8~ T2 CONTROL

T1 TIEDHIGH

DATA

TARGET
SELECT

STATUS ARCHITECTURAL
DECODE ROM
LOGIC lk x8

MO~

CO~

CONTROL
LOGIC

DATA

CONTROL

POWER

Target and Cable Boards, Simplified Block Diagram

26

LOCAL
CLOCKS

SYSTEM

J2 IV" 4 UD7-0 _ CABLE

\ TO USER
J SYSTEM

BUS

-s11~~:uBg
_S21~~~~

'-----' SYSTEM

-------\USER
_------1 CLOCKS

~ National Semiconductor
8048 Family Emulator Package

• Real Time Emulation of 8048
Micrccomputer Family Devices (8035,
8039, 8040, 8048, 8049, 8050)

• Supports Both 6 and 11 MHz Versions
of 8049 and 8050 with Crystal Change

• 4 K Bytes of On-Board RAM allows dis­
assembly and debug of program ROM

• Used with In-System Emulator (lSPM)
Module

Product Overview

National's 8048 Emulator Package gives the design­
er of 8048 based systems the kind of sophisticated
tool required for efficient microcomputer develop­
ment. The 8048 Emulator Package, in conjunction
with the In-System Emulator, provides capabilities
that have not been available in this type of instru­
ment.

National's In-System Emulator Module is a com­
plete unit housing 32K bytes of real time map
memory and all the necessary logic for break
points, tracing and memory mapping. These re­
sources are available for the emulation of other
processors since the individual emulation pack­
ages are the only components dedicated to parti­
cular processors. This approach simplifies changing
processors since the user needn't learn a new
machine each time he changes. The 8048 Emulator
Package provides capabilities which focus on the
problems of designing with single-chip microcom-

27

• Supports Three Modes of Operation
• Program Development
• Single Processor Emulation
• Multiprocessor Emulation

• Contains 8048, 8049, 8050 Architectural
Firmware, Status Decode Logic and
CPU Control Circuitry

puters. The target card has its own 4 K bytes of RAM
dedicated to the purpose of emulating the proces­
sor's program ROM. The designer has complete
access to this memory during emulation. He may
exalT,lne and disassemble existing ROM contents
into the dedicated RAM, make changes and execute
the altered code. This gives the user considerable
flexibility in new product design as well as in de­
bugging existing systems containing a previously
masked 8048. Also, the unit supports the 6 or 11 MHz
versions of the 8048.

The 8048 Emulator Package provides the physical
and electrical interface between the In-System
Emulator module and an 8048 based system under·
going development. A target board resides in the
module and connects by way of the cable board and
40-pin plug to the system under development. The
system supports three modes of operation. These
modes are program development, single processor
emulation and multiprocessor emulation.

The program development mode permits the user to
dflvelop and debug his software even though he has no
prototype har<Jware available. The emulator package
provides the clocks and memory necessary for this task.
During emulation of a single processor, the user may
s8iect clock signals for the 8048 from the prototype
h;'l'dware or from the emulator. Multiprocessor emulation
enables the user to emulate both the 8048 and another
processor operating in the same target system.

Spiecifications

Emlironmental Operating Temperature 10°C
(50°F) to 30°C (gO°F) in a
controlled environment

Storage Temperature -40°C
to 75°C

PClW~H +5 VDC @ 2.6 A (Typical)
-5 Voc @ 4.00 mA (Typical)

+12Voc @ 50 mA (Typical)

Physical Target Board Dimensions-
6.75 x 12.00 inches

Cable Board Dimensions-
4.5 x 9.0 inches

Cable·Board Housing-·
4.8 x 10.0 inches

Target Board Cables-·
Internal: 14 inches
External: 48 inches

Cable·Board/User Cable
Length - 10 inches

loading Information lor 40·Pin
Connector and Bus Enable lines

~- r-'NPU;'-LO-A--D---'-O-U-T-P-U-T-D-R-',,"E __ ~-- .~

PIN

1
2
3
4
5
6
7
8
9
10
11
12*
13*
14*
15*
16*
17*
18*
19*
20
21
22
23
24
25
26*
27
28
29
30
31
32
33
34
35
36
37
38
39
40

TP1
TP2

200!-,A
200!-,A
200!-,A
200!-,A
200!-,A
200!-,A
200!-,A
200!-,A

100mA

20 !-lA

10!-,A
10!-,A
1O!-,A

400!-,A
360!-,A
360!-,A
360!-,A

5mA
5mA
5mA
5mA
5mA
5mA
5mA
5mA

IOH IOl Mnemonic

400!-,A
400!-,A

400 "A
400!-,A
10mA
10mA
10mA
10mA
lamA
10mA
10mA
10mA

SmA
8mA
8mA
8mA

43mA I
43mA
43mA
43mA
43mA
43mA
43mA
43mA

TO

XTAL1
XTAL2
RESET

SS
INT
EA
RD

PSEN
WR
ALE
080

DS1
DB2

DS3
DB4

DB5

DB6

DB?

Vss
250!-,A 125!-,A 1.8mA P20
250!-,A 125!-,A 1.8mA P21
250!-,A 125!-,A 1.8mA P22
250!-,A 125!-,A 1.8mA P23

- 100!-,A 2mA PROG

- 10!-lA - Voo
125!-,A 125"A 2mA P10
125!-,A 125!-,A 2 mA P 11
125!-,A 125!-,A 2mA P12
125"A 125!-,A 2mA P13
125!-,A 125!-,A 2mA P14

1251.A 125"A 2mA P15
125!-,A 125"A 2mA P16
125!-,A 125!-,A 2mA P1?

125"A 125!-,A 2mA P24

125!-,A 125!-,A I 2 mA P25
125!-,A 125!-,A 2 mA P26

350 "A - - T1
- - - Vcc

125"A 125!-,A 12mA P27

20!-,A 720!1A I Bus Enable 1
20!-,A nO!-,A Bus Enable 2

~--' _____ L.. __ ~L.__ . ___ .1 ____ -.1

28

i
~ ~

• . •

29

E
f!
Ol

'" C

"'" o o
iii
~
'" "'" o

'" a.
o
0;
:;
E
w
Z­
"E
'" u.
00

~
00

Prerequisites

Any STARPLE)(TM/STARPLEX WM Development Systems
and In-System Emulator™ Module (SPM-A08,
SPM-90-A08)

Order Information
(Includes Target Board, Lightweight Plastic Cable Pod,
Cables, Software for 8048 Display Charge for Mnemonic
Assembly and Disassembly, 8048 Cross-Assembler,
Upgrades fro 8049 and 8050 ISE.)

For STARPLEX Development Systems:
SPM-A08 In-System Emulator Module
SPM-A09-2 8048 Family Emulator Package

For STARPLEX " Development Systems:
SPM-90-A08 In-System Emulator Module
SPM-90-A09-2 8048 Family Emulator Package

30

Documentation
420305869-001
420306064-001

420306065-001

ISE Module Reference Manual
8048 Family Cross-Assembler Software
User's Manual-
8048 In-System Emulator Target Board
User's Manual-

*Included with 8048 Family Emulator Package
(SPM·A09·1, SPM-90·A09·1).

~ National Semiconductor

8070 Series Emulator Package

• Real·Time Emulation of 8070 Series
Microcomputer Devices (8070,
8072,8073)

• 2.5 K Bytes of On- Board RAM to
Simulate On-Board ROM

• Used with In·System Emulator
(ISETM) Module

Product Overview

National's 8070 Series Emulator Package gives the
designer of 80lx-based systems the kind of sophis­
ticated tool required for efficient microcomputer
development The 8070 Series Emulator Package,
in conjunction with the In-System Emulator, pro­
vides capabilities that have not been available in
this type of instrument

National Semiconductor's In-System Emulator (ISE)
Module is a complete unit housing 32K bytes of
real-time map memory and all the necessary logic
for breakpoints, tracing and memory mapping_
These resources are available for the emulation of
other processors since the individual emulation
packages are the only components dedicated to
particular processors_ This approach simplifies
changing processors since the user needn't learn a
new set of ISE commands each time he changes.

31

• Supports Three Modes of Operation
• Program development
• Single processor emulation
• Multiprocessor emulation

• Contains 8070, 8072, 8073 Architectural
Firmware, Status Decode Logic and
CPU Control Circuitry

The 8070 Series Emulator Package provides capa­
bilities which focus on the problems of designing
with single-chip microcomputers. The target board
has its own 2.5 K bytes of RAM dedicated to the
purpose of emulating the processor's program
ROM. The designer has complete access to this
memory during emulation.

The 8070 Series Emulator Package provides the
physical and electrical interface between the In­
System Emulator module and an 80lx-based sys­
tem undergoing development A target board resides
in the module and connects by way of the cable
board and a 40-pin plug to the system under devel­
opment The system supports three modes of oper­
ation. These modes are program development, single
processor emulation and multiprocessor emulation.

The program development mode permits the user Loading Information for 40·Pin Connector and Bus Enable Lines
to develop and debug his software even though he
has no prototype hardware available. The emulator INPUT LOAD OUTPUT DRIVE

package provides the clocks and memory necessary PIN lih mA 'ilmA lohmA 'olmA Mnemonic
for this task. During emulation of a single processor,

1 -2.6 16 NENOUT the user may select clock signals for the B07x from
the prototype hardware or from the emulator. Multi- 2 0.02 -0.36 NENIN

processor emulation enables the user to emulate 3 0.02 -0.36 0 15.6 NBREQ

both the B07x and another processor operating in 4 -5.2 32 NRDS

the same target system. 5 0.02 -0.36 NHOLD
6 -5.2 32 NWDS

The B07x Series microprocessors are presently 7 -2.6 16 XOUT
available in the following configurations: 8 0.02 -0.36 XIN

9 -2.6 16 A15
",p ROM Size RAM Size 10 -2.6 16 A14

B070 None 64 bytes 11 -2.6 16 A13

B072 2.5K bytes 64 bytes 12 -2.6 16 A12

B073 2.5 K* bytes 64 bytes 13 -2.6 16 A11
14 -2.6 16 A10

*Pre-programmed with National Semiconductor's "Tiny BASIC™,,. 15 -2.6 16 A9
16 -2.6 16 A8
17 -2.6 16 A7
18 -2.6 16 A6

Specifications 19 -2.6 16 A5
20 GND

Environmental Operating Temperature 10°C 21 -2.6 16 A4
(50°F) to 30°C (90°F) in a 22 -2.6 16 A3
controlled environment 23 -2.6 16 A2
Storage Temperature -40°C 24 -2.6 16 A1
(-40°F) to 75°C (167°F) 25 -2.6 16 AO

26 0.08 -0.2 -3 8 D7
Power +5 Voe @ 3.22A (Max.) 27 0.08 -0.2 -3 8 D6

-5 Voe @ 45 mA (Max.) 28 0.08 -0.2 -3 8 D5

+12 Voe @ 64 mA (Max.) 29 0.08 -0.2 -3 8 D4
30 0.08 -0.2 -3 8 D3

Physical Target Board Dimensions- 31 0.08 -0.2 -3 8 D2

6.75 X 12.00 inches 32 0.08 -0.2 -3 8 D1
33 0.08 -0.2 -3 8 DO

Cable Board Dimensions- 34 -2.6 16 F1
4.5 X 9.0 inches 35 -2.6 16 F2

Cable-Board Housing 36 -2.6 16 F3

Dimensions - 4.B x 10.0 inches 37 0.001 -0.001 NRST
38 0.02 -0.4 SA

Target Board Cables- 39 0.02 -0.4 SB
Internal: 14 inches 40 vee
External: 4Binches

Cable-Board/User Cable
Note: The above loading information generally provides higher drive
capability than the actual 8070,8072 or 8073 devices. The input loading is

Length-10 inches nominally equal to the same devices.

Approximate overall length
from Emulator Module to the
40-pin connector - 5.5 ft.

32

Prerequisites
Any STARPLEXTM/STARPLEX WM Development Systems
and In-System Emulator Module (SPM·A08, SPM-90-A08)

Order Information
(Includes Target Board, Lightweight Plastic Cable
Pod, Cables, Software for 8070 Display Charge for
Mnemonic Assembly and Disassembly, 8070 Cross·
Assembler Upgrades for 8072 and 8073 ISE.)

For STARPLEX Development Systems:
SPM·A08 In·System Emulator Module
SPM·A09-3 8070 Series Emulator Package

TARGET BOARD LOGIC

DATD-DAT7

MEMTW
SElEC

MAST

SSH Rea
HALT

TRFH REO
BPH REO

MMPH PO
MONH PO

HACK

MNT R/W
ASTAT

INTERRUPT COMPENSATION LOGIC
STRB? MNT MODE

I

For STARPLEX II Development Systems:
SPM-90·A08 In-System Emulator Module
SPM-90·A09-3 8070 Series Emulator Package

Documentation
420305869-001 ISE Module Reference Manual
420306123-001 8070 Series Cross-Assembler Software

User's Manual-
420306132-001 8070 In·System Emulator Target Board

User's Manual-

'Included with 8070 Series Emulator Package
(SPM·A09-3, SPM-90·A09-3).

CABLE BOARD LOGIC

01

CPU
CONTROL

LOGIC
AND

STATUS

Block Diagram, 8070 Emulator

33

USER
SYSTEM

UADO-UAD15

USA
USB

UFl
UF'

UOSO-UDS?

UXIN
UXOUT

UF3

UNRDS

UNWOS

UNENOUT
UNSREQ
UNENIN

UNRST
UNHOLD

ENBUS
ISE GATE
Ise ENABLE

~ National Semiconductor

Integral In-System Emulator (ISETM)
Package

• Real·time emulation of a·Bit
microprocessors

• Full Support for 80CX48 Family, 8085
Series, NSC80QTM and Z80
Microprocessors

• Combined with an emulator board, will
operate in any STARPLEXTM/
STARPLEX 111M Development System

• An integral emulation system
• Hardware

- Processor independent
- 32 K byte mapped memory
- Two 32-bit breakpoint registers,

each bit programmable
- 256 x 40-bit trace memory
- Memory mapping in 1 K byte increments
- a-bit user status cable for custom

breakpoint and trace operations
- Real-time counter in microseconds

up to 16 seconds.

Product Overview

The Integral ISE consists of two logic boards in
standard STARPLEX/STARPLEX II configuration,
one bus connector and a cable. In addition to this
are manuals and user software. The two logic

34

• Software
- Host system resident command driver
- Host system resident mnemonic

assembler and disassembler
- Coast after breakpoint provided with

variable length and user-defined
qualifications

• Easy to use

• In-File for Automatic Test
• Consistent Commands
• Symbolic Debugger
• Full Access to STARPLEXI

STARPLEX II Development Systems
Facilities (e.g., access to STARPLEXI
STARPLEX II Editor and other utility
programs)

• Optional emulator packages to handle
conversion from one target processor
to another

boards provide all the necessary logic for break­
points, tracing, and real-time memory mapping.
Microprocessor emulation is isolated on a required

single optional target board containing all the logic
needed to emulate the particular microprocessor.
Together with any specified target processor, which
is not part of the Integral ISE, the three boards can
be installed in any STARPLEXISTARPLEX II Devel­
opment System. When installed directly in a STAR­
PLEXISTARPLEX II Development System, the Inte­
gral ISE supports only Single processor emulation.

(From this point on "STARPLEX" will signify
"STARPLEXISTARPLEX II".)

There are three very important advantages to this
approach to system emulation:

Economy is the prime advantage. The customer
needs to purchase exactly what his application
requires. For simple single processor applications,
the user can install the Integral ISE directly into any
STARPLEX Development System without being re­
quired to purchase an entire emulation chassis.
Since the Trace and Mapped Memory boards are
standard logic modules, the customer will require
only one set of these boards in most applications,
whereas he might have several different types of tar­
get modules. In this manner, the user would be
allowed to change his target module set-ups for one
processor to another quickly and conveniently with­
out changes of any kind to the Trace and Mapped
Memory boards.

Convenience is an obvious advantage. The user need
only master one software package-a single host
software driver program-which supports all the
features of the Integral ISE and its entire set of com­
patible target boards. Specific characteristics of the
emulated microprocessor which must be known by
the driver program (e.g., register complement, word
size, status bits, etc.) are recorded on a "target
specific" diskette which is supplied with each differ­
ent target board. The driver program upon initialization
reads the target board status which identifies the
target processor device type. This information
together with the data contained on the "target
specific" diskette allows the software driver to display
data to the user in a syntax consistent with each
processor type.

The Integral ISE software package is totally inte­
grated into a STARPLEX Development System. All of
the ease-of-use concepts that set the STARPLEX
above other development systems are designed into
the Integral ISE system.

The software is invoked with a single keystroke on a
STARPLEX keyboard, as are all other STARPLEX
system resources. A fill-in-the-blank menu appears
on the CRT and prompts the user to select the micro­
processor to be emulated. During the emulation pro­
cess a portion of the CRT screen is reserved to
inform the user of emulation status. This status
information includes the type of microprocessor(s)
selected for emulation, the state of the emulated
microprocessor(s), breakpoint condition mask, and
whether or not breakpoints are enabled.

35

Should the user wish to review the full range of the
Integral ISE commands available he can call for
"HELP"; the "HELP" key on a STARPLEX keyboard
allows the user to display information describing
the Integral ISE software functions.

Performance is the final advantage. Unlike other in­
system emulators which are installed directly into a
development system, National's Integral ISE does
not have to compete with the system bus in order to
attain real-time emulation, either mapped or
unmapped. Even though the Trace and Mapped
Memory boards are physically within the develop­
ment system, they do not interface directly with the
system bus. They interface only with the Target
Board through a specialized high-speed emulation
bus connector. Only the Target Board has the capa­
bility of interfacing to the system bus. The Mapped
Memory board is dedicated to Integral ISE and does
not occupy any STARPLEX Development System
address space.

Functional Description

Support Various Microprocessors

The Integral ISE is a flexible solution for users who
wish to prototype systems involving one or more
types of microprocessors. By changing a target
CPU board, Integral ISE can be used to emulate
various different microprocessors such as the 8085
NSC800, 80CX48 and Z80 microprocessors.

Powerful Debugging Capability

National Semiconductor's Integral ISE provides all
the usual features of a powerful in-system emulator,
plus many more that make it the most powerful unit
available today. The usual features include: program
loading from the host mass storage unit to the Inte­
gral ISE program memory; saving programs in the
Integral ISE on the host system's mass storage med
ium; memory examination and modification; register
examination and modification. Some of the addi­
tional and more powerful characteristics include:

• Real-Time Emulation of the Target
Microprocessor

Real-time emulation means that the target micro­
processor is emulated in an applications system
with the same hardware and soft~~are timing char­
acteristics that the microprocessor chip will
exhibit when it is plugged into the application
system. Real-time emulation has been designed
into the Integral ISE. Some design characteristics
contributing to real-time emulation are:

- Separation of the Host Development System
Function. Separation of Integral ISE from the
host development is a major contribution to
real-time emulation. Integral ISE uses a sepa­
rate internal bus from the host system, thus

eliminating bus access conflicts between the
emulation function and the host control func­
tions. Its internal structure is optimized for
microprocessor emulation, and is not compro­
mised by some predefined architecture.

- System Clock Selection. In the early stages of
the applications system checkout, where minor
timing variations are more easily tolerated, the
applications system designer may choose to
run the emulator using the IntegrallSE system
clock. In the final checkout stages, where real·
time emulation is much more critical, the de­
signer may choose to run the emulator using
the applicaton system's own clock. Integral
ISE will support either mode of operation.

- Positioning of the Emulator Processor. Propa­
gation delays in cables and buffers can con­
tribute significant timing errors to the emula·
tion process. For this reason, the emulation
processor is located on a cable board only
eight inches from the emulation plug to the
applications system microprocessor socket.
High-speed buffers are used to transmit sig­
nals between the emulation processor and the
applications system.

- Emulation Processor Selection. Wherever pos­
sible an exact copy of the microprocessor being
emulated is used as an emulation processor.
For example, when an 8085 microprocessor is
being emulated, an 8085 is used as the emula­
tion processor. Instruction execution times and
control signal timing are therefore identical to
the timing that will be experienced in the final
system.

• Breakpoint Conditions Provided for

Two breakpoint registers (BPC) can be defined on
a 32-bit, maskable word. Each breakpoint register
is specified by:

-16 bits of address
- 8 bits of target CPU status
- 8 bits of user hardware status

Each bit of the 32-bit breakpoint register mask
may be specified to compare on "$" or "0", or
"don't care". The user can then specify a break­
point to occur when anyone of the following
conditions is met:

-If BPC #1 is met
-If BPC #2 is met
-If BPC #1 or BPC #2 is met
-If BPC#1 is met after BPC#2 is met
-If BPC #2 is met alter BPC #1 is met

Integral ISE can also be told to "coast" after the
breakpoint combination has been satisfied
before suspending operation:

-Coast until n more BPs are encountered
-Coast until n more BPC #1s are encountered

36

- Coast until n more BPC #2s are encountered
-Coast until n more read cycles are

encountered
- Coast until n more write cycles are

encountered
-Coast until n more instruction fetches are

encountered
- 'Coast until n more memory read cycles are

encountered
- 'Coast until n more memory write cycles are

encountered
- 'Coast until n more memory read or write

cycles are encountered
- 'Coast until n more I/O read cycles are

encountered
- *Coast until n more I/O write cycles are

encountered
- *Coast until n more I/O read or write cycles

are encountered
- *Coast until n more interrupt acknowledges
- *Coast until n more serial input data
- 'Coast until n more serial output data
-Coast until n more of all the above

Note: 0< n < 256; Those coast options preceded by a * are only available
if the target microprocessor puts out the necessary status information.

There are five breakpoint (BP) combinations and
sixteen "Coast" combinations, making a total of
eighty total possible breakpoint conditions.

• Program Trace
Integral ISE maintains a constant record, in real­
time, of the last 256 cycles performed by the tar­
get microprocessor. Forty bits of information are
recorded for each cycle:

-16 bits of address
-8 bits of data
-8 bits of CPU status
-8 bits of user-defined status, via the 8-bit

status cable

The type of information recorded in the trace
memory is selectable in thirteen ways:

-All write cycles only
-All read cycles only
-Instruction fetches only
- *Memory read cycles only
- * Memory write cycles only
- *Memory read or write cycles
- *1/0 read cycles only
- 'I/O write cycles only
- *1/0 read or write cycles
- *Interrupt acknowledges
- *Serial input data only
- 'Serial output data only
- All of the above

Note: Those options preceded by a * are only available if the target
microprocessor puts out the necessary status information.

IntegrallSE generates a Sync Pulse each time data is
recorded in the trace memory.

• Target Board Control Features

The target microprocessor will be placed in an
inactive state at the end of the current instruction
when one of the following conditions occurs:

- The user gives a halt-command to the given
target

- A breakpoint is encountered
- The Integral ISE is in single·step mode

When a target is halted, the user may take any
one or all of the following actions:

- Examine and change the target's registers,
memory, or port

- Dump trace memory for examination
- Change emulation specifications
- Change memory map

• Flexible Memory Mapping

A 32K mapped memory space is available for the
Integral ISE. The applications program may be
mapped into Integral ISE memory in 1 K blocks.
These blocks need not be contiguous. The memo
ory map may be specified and altered under pro­
gram control, and any segment may be write
protected. In addition, data may be copied from
the applications system memory to the Integral
ISE memory.

• Microsecond Timer

National Semiconductor's Integral ISE has a 16-
second timer which counts in one-microsecond
increments. The user may use this timer to mea­
sure the time elapsed between any two points of
this program. The two pOints in the program must
be defined through breakpoint conditions; the
clock starts counting as breakpoint #1 is encoun­
tered and stops when breakpoint condition #2 is
encountered.

• User Status Cable

Integral ISE provides the user with a six·foot
cable carrying eight probes. The user may hook
these probes anywhere in his system and treat
the status of these points as part of his break·
point word and trace a word.

Convenient Software

Several tools are provided to make the Integral ISE
a very convenient emulation system to use. Many
of the debugging features available for software
development, like symbolic debugging, are now
available for system development.

37

• Symbolic Debugging

Programmers use symbols to reference program
and data memory when writing programs, but they
are usually required to use absolute hexadecimal
addresses when referencing those locations
during program debug. Integral ISE allows the
designer to use those same symbols to reference
program and data memory during program
debug. A symbol table is generated when the
program is first assembled or compiled in the
host development system. That symbol table is
passed to the driver program in the host system
for use during the debugging operations. During
debugging operations, symbols may be added or
deleted, and symbol values may be redefined.

• In-Line Assembler

A one-pass line-by-line assembler is provided to
allow modification of object code in the Integral
ISE memory or the applications system memory
without having to manually convert symbolic in­
structions to machine language. The in-line as­
sembler accepts program modifications in the as­
sembly language of the target microprocessor,
assembles them, and inserts them into the object
program at the locations specified by the system
programmer.

• Disassembler

The disassembler reads specified segments of
Integral ISE or applications system memory, dis­
assembles them, and displays their contents in
the assembly language mnemonics of the target
microprocessor. This feature eliminates many of
the tedious manual steps normally involved in
application debug.

• Automatic Testing

The application system designer often wishes to
perform a predefined sequence of tests on the
system over a relatively long period of time. Inte­
gral ISE has an automatic testing mode whereby
the designer may write a sequence of test steps
in a language similar to BASIC, store those tests
in the memory of the host system, and initiate the
test sequence. Integral ISE will perform the tests
in the specified sequence and, if requested,
record the results on a disc or a hard copy device
of the host system. Branching and conditional
branching are also permitted in the test program.
This feature is especially useful for rigorous proof
that all parts of the applications system are in
fact working, for detecting and documenting in·
frequent failures, and for performing "life" tests.

The list of predefined test sequences resides in a
file created by using the Integral ISE software or
the development system's Text Editor. Once the
file is resident on disc, it can be retrieved,
deleted, edited, etc., by the Integral ISE Software
Package.

The following commands allow the user to
perform automatic testing functions:

DELETE Deletes a range of lines from the test
program.

EXECUTE
LIST

LOAD FAST
INFILE

SAVE FAST
INFILE
SCRATCH
END

GOTO

IF

INPUT

Executes the test program.
Lists the test program.
Loads the specified test program
from disc.
Saves the test program on disc.

Deletes the entire test program.
Directive to end test program and
return control to command mode.
Unconditional branch to another
statement in test program.
Conditional branch to another
statement in test program.
Enables user to interact with test
program at run time to specify data
values.

PRINT Prints number and string data on
console.

ERROR Allows errors to occur during testing
without halting the test.

CALL Passes control to a line in an INFILE
subroutine.

RETURN Returns control from an INFILE
subroutine.

SET Sets a specified IN FI LE parameter to
PARAMETER a value.

Command Summary

Initialization and Setup Commands

CHANGE

HOLD

INITIALIZE

LATCH

LOCK

RESET

NORESET

Change target-specific system
configuration characteristics.

Enables or disables hold timeout
for the selected target processor.

Causes a reset of the target
board firmware and clears the
work registers of the selected
target processor.

Selects trigger for input validity
from the user status cable.

Forces all target processors into
"hold" state to allow power-down
of user system.

Indicates that the selected target
processor registers are to be
reset prior to the resumption of
emulation.

Rescinds the RESET command.

38

RADIX

WAIT

Establishes the default input and
display mode (binary, octal,
decimal of hexadecimal).

Enables or disables wait timeout
for the selected target processor.

Memory MappinglDemapping Control

MAP This command enables or
disables use of ISE memory
and allows copying betwen ISE
and user memory.

GUARD Write-protects any block of target
I/O ports or memory.

UNGUARD Write-enables any block of target
I/O ports of memory.

Breakpoint Control

BREAK Suspends emulation when the
specified break conditions are
met in the target system.

TIME Displays the time interval
between occurence of
breakpoints A and B, when B
occurs after A.

Emulation Commands

RUN

STEP

Trace Control

TRACE

Continues the system emulation
until a break condition is
satisfied.

Continues the system emulation
in single-step mode.

Selects target activity to be
recorded into the trace memory.

Memory/Register/Port Modification and
Display Commands

CHANGE Replaces contents of memory
locations with new data values
or writes values to I/O ports.

DISPLAY

MOVE

SEARCH

Displays portions of target
processor memory, register, I/O
port, or trace data.

Transfers a region of memory
into another region.

Searches a range of memory
locations for a specified value
and displays the locations where
the value is found.

Symbol Table and File Manipulation Commands

DELETE Deletes the specified symbol(s)
from the symbol table file.

LOAD Fetches an in-file program or
load file from disk medium or
opens a symbol table file.

SAVE

LIST

Creates and saves in·file
programs or load files on disk or
closes symbol table files.

Display all or part of the INFILE.

Utility- Commands

ECHO Selects the host processor's
echoing device for hard copy
history.

PRINT Displays strings and expressions.

ARCHIVE Saves the system status on disk
for later retrieval.

RESTORE Restores the system status
saved by ARCH IVE.

DIAGNOSTIC Performs limited testing of Trace
and Memory Boards.

Specifications

Environmental Operating Temperature 10°C
(50°F) to 32°C (90°F)

Power

Memory

Physical

Storage Temperature -40°C
(-40°F) to 75°C (167"F)

All boards + 5 Voc each

Board Involved
Target Board
Cable Board

Integral ISE Set:
Traee Board
Status Board
Memory Board

Total

Worst
4.2A (21.0W)
1.9A (9.5W)

3.6A (1ROW)
0.3A (1.5W)
5.5A (27.5W)
15.5A (77.5W)

Mappable - 32 K bytes in 1 K
byte increments

Trace - 256 x 40 bits

Target Board
Height - 7.15 in. (18.16 cm)
Width - 12.00 in. (30.48 cm)
Depth - 0.50 in. (1.27 cm)

39

Prerequisites

Cable Board
Height - 9.00 in. (22.86 cm)
Width - 4.55 in. (11.56 cm)
Depth - 0.54 in. (1.37 cm)

Cable Board Housing
Height - 9.75 in. (24.76 cm)
Width - 5.75 in. (14.60 cm)
Depth - 1.62 in. (4.11 cm)

Status Board Housing
Height - 6.00 in. (15.24 cm)
Width - 3.00 in. (7.62 cm)
Depth - 0.50 in. (1.27 cm)

Memory Board
Height - 6.75 in. (17.75 cm)
Width - 12.00 in. (30.48 em)
Depth - 0.50 in. (1.27

Trace Board
Height - 6.75 in. (17.75 cm)
Width - 12.00 in. (30.48 cm)
Depth - 0.50 in. (1.27 em)

Cables
Target Board Cables -
72.0 in. (6 ft.)
Cable·Board/User Cable -
15.0 in. (1 ft. 3 in.)

Approximate overall length from
STARPLEX base module to the
40·pin connector - 96 in (8 ft.)

Any STARPLEXISTARPLEX II Development System.

~

ISE TWO PORT RAM BOARD

MEMORY BUS CABLE ASSEMBLY

DUAL P2 CONNECTOR

ISE CABLE BOARD ASSEMBLY

~
"'---~--7' .

"v
~ ISE40-PIN
~ ---ADAPTER PLUG
/~

I ~ __________ CRYSTAL ASSEMBLY

I ~JD~~9~ ~~~~EJAL
SYSTEM

//'

ISE STATUS CABLE ASSEMBLY

~- USER-SSYSTEM

Pi

"
COMPONENTS ~

CARDCAGE \ '

P2"'--- \ ~ "-"
~,-~,

Pi l--1
/'1 ~:-// ;//

(SPM-A i3-X)
ISE TARGET BOARD SPM-90-Ai3-X

--------------ISETRACEBOARD

~- -7 mR~fl~O:S~ERACKET

8~ .~,

JL:J[]
2 PLCS TYP

FIGURE 1.lntegrallSE Components Installation

Order Information
(Includes One 32 K Byte Mapped Memory Board, One
Trace Board, Cables, and One ISE TTL Status Cable Pod.)

SPM·90-A13·4 NSC800 Emulator Package
SPM·90-A13·7 Z80 Emulator Package

For STARPLEX Development Systems:
SPM·A13 Integral In·System Emulator Package
SPM·A13·2 80CX48 Emulator Package
SPM·A13·3 8085 Emulator Package
SPM·A13-4 NSC800 Emulator Package
SPM·A13·7 Z80 Emulator Package

For STARPLEX II Development Systems:
SPM·90·A13 Integral In·System Emulator Package
SPM·90·A13-2 80CX48 Emulator Package
SPM·90-A13-3 8085 Emulator Package

Documentation
420305789-001

420306198-001

420306240-001
420306421-001
420306692-001
420308101-001

8080/8085 Macroassembler Software
User's Manual
NSC800 Cross·Assembler Software
User's Manual
8085 Integral ISE User's Manual
NSC800 Integral ISE User's Manual
zao Integral ISE User's Manual
aOCX48 Integral ISE User's Manual

STARPLEX
LEFT·HAND
CARDCAGE

,-----,

MEMORY
BOARD

CABLE
POD

TRACE
BOARD

USER STATUS
POD

USER PROTOTYPE
SYSTEM STATUS PROBES

Integral ISE System Configuration
SPM·A13 with SPM·A13·X,

SPM·90·A13 with SPM·90·A13·X
(Total: 3 Boards and 2 Pods)

41

W National Semiconductor

NS80CX48 Emulator Package

• Real time emulation of NS80CX48
microprocessors family devices
(NS80CX35, 80CX39, 80CX40, NS80CX48,
80CX49, 80CX50, 80C35, 80C39, 80C48,
80C49, 80C50)

• Supports two model of operation
• Program development
• Single processor emulation

Product Overview
National's NS80CX48 Emulator Package gives the
designer of NS80CX48 based systems the kind of
sophisticated tool required for efficient microcomput­
er development. The NS80CX48 Emulator Package,
in conjunction with the Trace Board in the Integral
ISE Package™ and a STARPLEX/STARPLEX " De­
velopment System, provides capabilities that up to
now have not been available in any NS80CX48 or
80C48 Emulator Package.
The Trace Board in National's Integral ISE Package is
installed directly into any STARPLEX/STARPLEX "
Development System. The Integral ISE Package
consists of two logic boards-TRACE logic and 32
Kbyte of dedicated MAPPED MEMORY; performing
NS80CX48 emulation requires the use of only the
trace board from the Integral ISE Package. The
trace logic board provides the user with all the nec­
essary logic for breakpoints, tracing and memory
mapping for NS80CX48 development work. In gener­
al, the Integral ISETM provide the resources that are

42

• Plugs directly into any STARPLEXTM/
STARPLEX IITM development system

• Contains NS80CX48 and 80C48
architectural firmware, status decode
logic and CPU control circuitry

• 4 Kbytes of on-board RAM to allow
disassembly and debug of program ROM

available for the emulation of any microprocessor
since the individual emulation packages are the only
package with the components dedicated to the par­
ticular microprocessors. This approach simplifies em­
ulation since the user needn't learn a new ISETM
language each time he changes emulation pack­
ages.
The NS80CX48 Emulator Package provides the
physical and electrical interface between the trace
board, a STARPLEX/STARPLEX " development
system and an NS80CX48 based system undergoing
development. When installed in a ST ARPLEX/
STARPLEX " Development System, the ISE con­
nects to the user's system under development via
the 40-pin plug extending from the cable pod as­
sembly. In this configuration, the entire ISE system
supports two modes of operation. These modes are
program development and single processor emula­
tion.

The program development mode permits the user to
develop and debug his software even though he
may have no prototype hardware available. The Em­
ulator Package provides the clocks and memory
necessary for this task.

During single processor emulation, the user's system
under development provides the actual clock signal
thus forcing the entire NS80CX48 Ir:"Itegral ISE sys­
tem to operate at the actual clock rate of the user's
system.

Whether in program development or single proces­
sor emulation, NS80CX48 development work is done
in real time. That's because no demand is made of
the STARPLEX/STARPLEX II development system's
resources.

Optional NS80CX48 Emulator Package­
Complete
An optional NS80CX48 Emulator Package-Complete
is available for the first time users who want to do
real time emulation of the NS80CX48 microproces­
sor. Included in this package are: target board, light­
weight plastic cable pod, cables, ISE Host Driver
software, NS80CX48 Display Change software for
mnemonic assembly and disassembly, 80CX48
Cross-Assembler Software, trace board and a CMOS
status pod.
(Note: The first time user is recommended purchas­
ing Integral ISE Package in conjunction with the
NS80CX48 Emulator Package if there are considera­
tions for future microprocessor development work
such as the NSC800™ microprocessor.)

Specifications

Environmental

• Operating Temperature O°C (32°F) to 40°C (104°F)
• Storage Temperature -40°C (rF) to 75°C

(16rF)

Power

All cards + 5 VDC each

Card Involved:
NS80CX48

Target Card
NS80CX48

Cable Card
Trace Board
Status Card

Total:

Physical

• Target Card

Typical

3.6A (18.0W)

1.4A (7.0W)
2.0A (10.0W)
0.3A (1.5W)

Typical 36.5W

Height: 7.15 in. (18.16 cm)
Width: 12.00 in. (30.48 cm)
Depth: 0.50 in. (1.27 cm)

Worst

4.2A (21.0W)

1.9A (9.5W)
3.6A (18.0W)

Worst 48.5W

43

• Cable Card
Height: 9.00 in. (22.86 cm)
Width: 4.55 in. (11.56 cm)
Depth: 0.54 in. (1.37 cm)

• Cable Card Housing
Height: 9.75 in. (24.76 cm)
Width: 5.75 in. (14.60 cm)
Depth: 1.62 in. (4.11 cm)

• Status Card Housing
Height: 6.00 in. (15.24 cm)
Width: 3.00 in. (7.62 cm)
Depth: 0.50 in. (1.27 cm)

• Trace Board
Height: 6.75 in. (17.75 cm)
Width: 12.00 in. (30.48 cm)
Depth: 0.50 in. (1.27 cm)

• Cables
Target Board Cables: 72.0 in. (6 ft)
Cable Board/User Cable: 15.0 in. (1 ft 3 in)
Approximate overall length from ST ARPLEX
base module to the 40-pin connector: 96 in. (8 ft)

Prerequisites
Any STARPLEX/STARPLEX II Development System
and Integral In-System Emulator Package (SPM-A13,
SPM-90-A 13).

Order Information
(lncliJdes Target Board, Lightweight Plastic Cable
Pod, Cables, ISE Host Driver Software, NS80CX48
Display Change Software for Mnemonic Assembly
and Disassembly, NS80CX48 Cross Assembler Soft­
ware.)

For use in ST ARPLEX Development Systems:
SPM-A13 Integral ISE Package
SPM-A 13-2 NS80CX48 Emulator Package

For use in STARPLEX II Development Systems:
SPM-90-A13 Integral ISE Package
SPM-90-A13-2 NS80CX48 Emulator Package

For the first time user:
(Note: No pre-requisites other than a ST ARPLEX/
ST ARPLEX II Development System.)

For use in ST ARPLEX Development Systems:
SPM-A25 NS80CX48 Integral In-System

Emulator Package-Complete

For use in STARPLEX II Development Systems:
SPM-90-A25 NS80CX48 Integral In-System

Emulator Package-Complete

Documentation
420306064-001 NS8048 Cross Assembler Software

User's Manual
420308101-001 Integral In-System Emulator

(NS80CX48) User's Manual

ISE 80CX48 AC and DC Characteristics

VOH=2.4V VOL =O.8V VIH=2.0V VL =O.8V
Werst

Signals Pin case
IOH(mA) lodmA) IIH(J.LA) IdJ.LA)

TO<N~

TO 1 -.01 2 11 -11 0
XTAL1 2 0
XTAL2 3 0
RESETI 4 1 -1 38
SSI 5 1 -1 20
INTI 6 1 -1 20
EA 7 1 -1 20
RDI 8 -4 4 20
PSENI 9 -4 4 20
WRI 10 -4 4 20
ALE 11 -4 4 20
DBO 12 -2 2 1 -1 50
DBl 13 -2 2 1 -1 50
DB2 14 -2 2 1 -1 50
DB3 15 -2 2 1 -1 50
DB4 16 -2 2 1 -1 50
DB5 17 -2 2 1 -1 50
DB6 18 -2 2 1 -1 50
DB7 19 -2 2 1 -1 50
Vss 20
P20 21 -.01 2 11 -11 0
P21 22 -.01 2 11 -11 0
P22 23 -.01 2 11 -11 0
P23 24 -.01 2 11 -11 0
PROGI 25 -.01 2 11 -11 0
Vdd' 26
Pl0 27 -.01 2 11 -11 0
Pll 28 -.01 2 11 -11 0
P12 29 -.01 2 11 -11 0
P13 30 -.01 2 11 -11 0
P14 31 -.01 2 11 -11 0
P15 32 -.01 2 11 -11 0
P16 33 -.01 2 11 -11 0
P17 34 -.01 2 11 -11 0
P24 35 -.01 2 11 -11 0
P25 36 -.01 2 11 -11 0
P26 37 -.01 2 11 -11 0
P27 38 -.01 2 11 -11 0

i
Tl 39 1 -1 100
Vee/lDLEI 40

*Vdd 5V ± 10%

44

DUAL P2 CONNECTOR
ISE CABLE BOARO ASSEMBLY

~
USER'S SYSTEM

IntegrallSE 80CX48 Components Installation

45

TLlR/5273-1

W National Semiconductor

8085 Emulator Package

• Real Time In-System Emulation of
8085 Microprocessor Devices (8085A
and 8085A·2)

• Supports Both 8085A and 8085A·2
Applications Without Alterations

Product Overview

National's 8085 Emulator Package gives the
designer of 8085 based system the kind of sophisti­
cated tool required for efficient microcomputer
development. The 8085 Emulator Package, in con­
junction with the Integral ISpM Package and a
STARPLEX/STARPLEX II Development System, pro­
vides capabilities that up to now have not been
available in this type of instrument.

National's IntegrallSE Package is installed directly
in any STARPLEX/STARPLEX II Development Sys­
tem. This package consists of two logic boards
(TRACE logic and MAPPED MEMORY). These two
logic boards provide the user with 32 K bytes trac­
ing and memory mapping. These resources are
available for the emulation of any processor since
the individual emulation packages are the only
components dedicated to particular processors.
This approach simplifies changing processors
since the user needn't learn a new ISETM language
each time he changes emulation packages.

46

• Supports Two Modes of Operation
• Program Development
• Single Processor Emulation

• Plugs directly into any STARPLEX™/
STARPLEX WM Development System

The 8085 Emulator Package provides the physical
and electrical interface between the Integral ISE
package, the STARPLEX Development System and
an 8085 based system undergoing development.
When installed in aSTARPLEX Development System,
it connects to the User's System via the Cable Pod
and a 40-pin plug to the system under development.
In this configuration, the entire system supports
two modes of operation. These modes are program
development and single processor emulation.

The program development mode permits the user to
develop and debug his software even though he has
no prototype hardware available. The emulator
package provides the clocks and memory necess­
ary for this task. During emulation of a single pro­
cessor, the user's hardware provides the actual
clock signal thus forcing the entire Integral ISE
system to operate at the actual clock rate of the
user's system.

Characteristics for 40·Pin Connector
Output Load Input Load Time Delay (To)

Pin VOH =2.4V VOL=0.8V VIH =2.0V VIL=0.8V Between 8085 &
No. IOH (mA) IOL (mA) IIH (j.tA) IlL (j.tA) 40 Pin Plug Mnemonic

1 - - - - 0 X1
2 - - - - 0 X2
3 -.36 1.6 - - 22n5 RESET OUT
4 -.35 1.6 - - 0 SOD
5 - - 60.0 -410 0 SID
6 - - 30.0 -210 38n5 TRAP
7 - - 30.0 -210 38n5 RST 7.5
8 - - 30.0 -210 38n5 RST 6.5
9 - - 30.0 -210 38n5 RST 5.5

10 - - 30.0 -210 38n5 INTR
11 -.36 1.6 - - 0 INTA
12 -10.0 48 80 -250 27n5 ADo
13 -10.0 48 80 -250 27n5 AD1
14 -10.0 48 80 -250 27n5 AD2
15 -10.0 48 80 -250 27n5 AD3
16 -10.0 48 80 -250 27n5 AD4
17 -10.0 48 80 -250 27n5 AD5
18 -10.0 48 80 -250 27n5 AD6
19 -10.0 48 80 -250 27n5 AD?
20 - - - - - Vss
21 -.35 1.6 - - 0 As
22 -.35 1.6 - - 0 Ag
23 -.35 1.6 - - 0 A10
24 -.35 1.6 - - 0 A11
25 -.35 1.6 - - 0 A12
26 -.35 1.6 - - 0 A13
27 -.35 1.6 - - 0 A14
28 -.35 1.6 - - 0 A15
29 -.35 1.6 - - 0 SD
30 -.35 1.6 - - 0 ALE
31 -15.0 64 - - 9n5 WR
32 -15.0 64 - - 9n5 RD
33 -.35 1.6 - - 0 S1
34 -.35 1.6 - - 0 101M
35 - - - - 30n5 READY
36 - - 60 -410 38n5 READY
37 -.35 1.6 - - 0 RESET IN
38 -.38 1.8 - - 0 HLDA
39 - - 30 -210 43 HOLD
40 * * * * - Vee

*Ycc @ +5V Icc:::: 1 rnA maximum

47

Specifications

Environmental Operating Temperature 10°C
(50°F) to 32°C (90°F)

Power

Physical

Storage Temperature -40°C
(-40°F) to 75°C (16rF)

All boards +5VDC eaeh

Board Involved Typical Worst

8085 Target Board 3.6A 4.2A
(18.0W) (21.0W)

8085 Cable Board 1.4A 1.9A
(7.0W) (9.5W)

Integral ISE Set
Trace Board 2.0A 3.6A

(10.0W) (18.0W)
Status Board 0.3A

(1.5W)
Memory Board 2.7A 5.5A

(13.5W) (27.5W)

Total: 50.0W 77.0W

Target Board
Height - 7.15 in. (18.16 em.)
Width - 12.00 in. (30.48 em.)
Depth - 0.50 in. (1.27 em.)

Cable Board
Height - 9.00 in. (22.86 em.)
Width - 4.55 in. (11.56 em.)
Depth - 0.54 in. (1.37 em.)

Cable Board Housing
Height - 9.75 in. (24.76 em.)
Width - 5.75 in. (14.60 em.)
Depth - 1.62 in. (4.11 em.)

Status Board Housing
Height - 6.00 in. (15.24 em.)
Width - 3.00 in. (7.62 em.)
Depth - 0.50 in. (1.27 em.)

Memory Board
Height - 6.75 in. (17.75 em.)
Width - 12.00 in. (30.48 em.)
Depth - 0.50 in. (1.27 em.)

48

Trace Board
Height - 6.75 in. (17.75 em.)
Width - 12.00 in. (30.48 em.)
Depth - 0.50 in. (1.27 em.)

Cables
Target Board Cables-
72.0 in (6 It.)
Cable-Board/User Cables-
15.0 in (1 It. 3 in.)
Approximate overall length lrom
STARPLEX base module to the
40-pin eonneetor-96 in. (8 It.)

Prerequisites

Any STARPLEX ISTARPLEX II Development System
and Integral In-System Emulator Package (SPM·A13,
SPM·90-A13)

Order Information
(Includes Target Board, Lightweight Plastic Cable Pod,
Cables, Software for ISE Host Driver, and 8085 Display
Change for Mnemonic Assembly and Disassembly.
SPM-90-A13-3 also includes 8080/8085 Cross-Assembler
Software.)

For STARPLEX Development Systems:
SPM-A13 Integral In-System Emulator Package
SPM·A13·3 8085 Emulator Package

For STARPLEX II Development Systems:
SPM-90-A13 Integral In·System Emulator Package
SPM-90-A13-3 8085 Emulator Package

Documentation
420305789-001 STARPLEX 8080/8085 Assembler

Software User's Manual'
420306240-001 Integral In-System Emulator (8085)

User's Manual 2

1. Included with SPM·90·A13·3 not SPM·A13·3
2. Included with both SPM·90·A13·3 and SPM·A13·3

W National Semiconductor

NSC800™ Emulator Package

• Real·Time In·System Emulation of
NSC800 Microprocessor

• Supports Two Modes of Operation
• Program Development
• Single Processor Emulation

Product Overview

National's NSC800 Emulator Package gives the
designer of NSC800 based systems the kind of
sophisticated tool required for efficient microcom­
puter development. The NSC800 Emulator Package,
in conjunction with the Integral ISETM Package and
the STARPLEX/STARPLEX II Development System,
provides capabilities that up to now have not been
available in this type of instrument.

National's IntegrallSE Package is installed directly
in any STARPLEX/STARPLEX II Development Sys­
tem. This package consists of two logiC boards
(TRACE logic and MAPPED MEMORY). These two
logic boards provide the user with 32 K bytes
tracing and memory mapping. These resources are
available for the emulation of any processor since
the individual emulation packages are the only
components dedicated to particular processors.
This approach simplifies changing processors
since the user needn't learn a new ISETM language
each time he changes emulation packages.

49

• Plugs Directl~ Into Any STARPlEX™/
STARPlEX II M Development System

The NSC800 Emulator Package provides the physi·
cal and electrical interface between the Integral
ISE package, the STARPLEX Development System
and an NSC800 based system u~dergoing develop­
ment. When installed in a STARPLEX Development
System, it connects to the User's System via the
Cable Pod and a 40-pin plug to the system under
development. In this configuration, the entire sys­
tem supports two modes of operation. These modes
are program development and single processor
emulation.

The program development mode permits the user
to develop and debug his software even though he
has no prototype hardware available. The emulator
package provides the clocks and memory neces­
sary for this task. During emulation of a single pro­
cessor, the user's hardware provides the actual
clock signal thus forcing the entire Integral ISE
system to operate at the actual clock rate of the
user's system.

Loading Information for 40·Pin Connector
Output load (mA) Input load {JiA) Time Delay (To)

Pin Between NSC800
No. VOH =IOH VOL=loL VIH=IIH VIL= IlL & 40 Pin Plug Mnemonic

1 -.95 1.6 - - 0 As
2 -.95 1.6 - - 0 Ag
3 -.95 1.6 - - 0 A10
4 -.95 1.6 - - 0 A11
5 -.95 1.6 - - 0 A12
6 -.95 1.6 - - 0 A13
7 -.95 1.6 - - 0 A14
8 -.95 1.6 - - 0 A15
9 -.95 1.6 - - 0 ClK

10 - - - - - XOUT
11 - - - - 0 X 1N
12 -10 48 80 -250 27ns ADo
13 -10 48 80 -250 27ns AD1
14 -10 48 80 -250 27ns AD2
15 -10 48 80 -250 27ns AD3
16 -10 48 80 -250 27ns AD4
17 -10 48 80 -250 27ns AD5
18 -10 48 80 -250 27ns AD6
19 -10 48 80 -250 27ns AD?
20 - - - - - GND
21 - - 20 -200 38ns NMI
22 - - 20 -200 38ns RSTA
23 - - 20 -200 38ns RSTB
24 - - 20 -200 38ns RSTC
25 - - 20 -200 38ns INTR
26 -.96 1.6 - - 0 INTA
27 -.96 1.6 - - 0 S1
28 -.96 1.6 - - 0 RFSH
29 -.95 1.6 - - 0 So
30 -.95 1.6 - - 0 ALE
31 -15 64 - - 9ns WR
32 -15 64 - - 9ns RD
33 - - 50 -400 38ns RESET IN
34 -.95 1.6 - - 0 101M
35 -.98 1.8 - - 0 BACK
36 - - 20 -200 43ns BREQ
37 -.96 1.6 - - 22ns RESET OUT
38 - - 50 -400 30ns WAIT
39 - - 20 -200 0 PS
40 - Vee

.. VCC @ +5V Icc = 1 rnA max.

50

~

ISE TWO PORT RAM BOARD --­

MEMORY BUS CABLE ASSEMBLY

DUAL P2 CONNECTOR

ISE CABLE BOARD ASSEMBLY

'/

~_ISE40-PIN
~ -~ ADAPTER PLUG

/#

I
~ ..--------CRYSTAL ASSEMBLY

~ INTERFACE SOCKET
ON USER'S EXTERNAL
SYSTEM

v~~

~~
~~

/~~\
\ \

\

i
,N
\P4

~

J5--~:=-~

/
/

// /
£~/

USER'S SYSTEM

P1

STARPLEX
DEVEL~~~f~J -.
COMPONENTS

l~' , '" r~~ "'~,
'~~,,::,,-~~

". "~~ CARDCAGE

P2 \\
~~
'~
'~

P1

~------------------------------- ISE TARGET BOARD

------ ISE TRACE BOARD
/P

~ ~T --~~-;_7 ~~DR~fl~O:m~~w

~: 8~
\ ~lI ~111
\'~

2 PLCS TYP

NSC800 Emulator with Integral ISE Components Installation

Specifications

Environmental Operating Temperature 10°C
(50°F) to 32°C (90°F)

Power

Physical

Storage Temperature -40°C to
-40°F

All Boards +5VDC eaeh

Board Involved Typical Worst
NSCBOO Target 3.6A 4.2A
Board (1B.OW) (21.0W)
NSCBOO Cable 1.4A 1.9A
Board (7.0W) (9.5W)
Integral ISE Set

Trace Board 2.0A 3.6A
(10.0W) (1B.OW)

Status Board O.3A
(1.5W)

Memory Board 2.7A 5.5A
(13.5W) (27.5W)

Total: 50.0 W 77.0 W

Target Board
Height - 7.15 in. (18.16 em.)
Width - 12.00 in. (30.48 em.)
Depth - 0.50 in. (1.27 em.)

Cable Board
Height - 9.00 in. (22.86 em.)
Width - 4.55 in. (11.56 em.)
Depth - 0.54 in. (1.37 em.)

Cable Board Housing
Height - 9.75 in. (24.76 em.)
Width - 5.75 in. (14.60 em.)
Depth - 1.62 in. (4.11 em.)

Status Board Housing
Height - 6.00 in. (15.24 em.)
Width - 3.00 in. (7.62 em.)
Depth - 0.50 in. (1.27 em.)

Memory Board
Height - 6.75 in. (17.75 em.)
Width - 12.00 in. (30.48 em.)
Depth - 0.50 in. (1.27 em.)

52

Prerequisites

Traee Board
Height - 6.75 in. (17.75 em.)
Width - 12.00 in. (30.48 em.)
Depth - 0.50 in. (1.27 em.)

Cables
Target Board Cables-
72.0 in (6 ft.)
Cable-Board/User Cables-
15.0 in (1 ft. 3 in.)
Approximate overall length from
STARPLEX base module to the
40-pin eonnector-96 in. (8 ft.)

Any STARPLEXISTARPLEX II Development System and
Integral In-System Emulator Package (SPM-A13,
SPM-90·A13)

Order Information
(Includes Target Board, Lightweight Plastic Cable Pod,
Cables, Software for ISE Host Driver and NSC800 Dis­
play Charge for Mnemonic Assembly and Disassembly.
SPM-A13-4 also includes NSC800 Cross·Assembler
Software.)

For STARPLEX Development Systems:
SPM-A13 Integral In·System Emulator Package
SPM-A13-4 NSC800 (5V) Emulator Package

For STARPLEX II Development Systems:
SPM-90-A13 Integral In-System Emulator Package
SPM-90-A13-4 NSC800 Emulator Package

Documentation
420306198-001 NSC800 Assembler

Software User's Manual'
420306241-001 Integral In-System Emulator (NSC800)

User's Manual 2

1. Included with SPM·A13·4 not SPM·90·A13·4.
2. Included with both SPM·A13-4 and SPM·90·A13-4.

~ National Semiconductor

zao Emulator Package

II Real-time emulation of zao, ZaOA and
ZaOB microprocessors

II Supports two modes of operation
• Program development
• Single processor emUlation

Product Overview

National's laO Emulator Package gives the designer
of laO based systems the kind of sophisticated tool
required for efficient microcomputer development.
The laO Emulator Package, in conjunction with the
Integral ISETM Package and a STARPLEXlSTARPLEX
II Development System, provides capabilities that
up to now have not been available in this type of
instrument.

National's Integral ISE Package is installed directly
into any STARPLEXlSTARPLEX II Development Sys­
tem. This package consists of two logic boards
(TRACE logic and MAPPED MEMORY). These two
logic boards provide the user with 32 K bytes of real·
time map memory and all the necessary logic for
break·points, tracing and memory mapping. These
resources are available for the emulation of any
processor since the individual emulation packages
are the only components dedicated to particular
processors. This approach simplifies changing pro­
cessors since the user needn't learn a new ISETM
language each time he changes emulation packages.

The laO Emulator Package provides the phYSical and
electrical interface between the Integral ISE package,
the STARPLEX Development System and a laO based
system undergoing development. When installed in a

53

II Plugs directly into any STARPlEX™/
STARPlEX WM development system

II Includes target board, cable pod with
cables and complete software

STARPLEX Development System, it connects to the
user's system via the cable pod and a 40·pin plug to
the system underdevelopment. In this configuration,
the entire system supports two modes of operation.
These modes are program development and single
processor emulation.

The program development mode permits the user to
develop and debug his software even though he has
no prototype hardware available. The emulator pack­
age provides the clocks and memory necessary for
this task. During emulation of a single processor, the
user's hardware provides the actual clock signal,
thus forcing the entire IntegrallSE system to operate
at the actual clock rate of the user's system.

zao (6 MHz) Emulator Package Option

An optional 6 MHz laO Emulator Package is available
for first time users who wal'lt to do real-time emu­
lation of the laOS microprocessor. Included in this
package are: target board, lightweight plastic cable
pod, cables, software for ISE Host Driver, l80 Display
Change software of mnemonic assembly and disas­
sembly, trace board, high-speed (55 ns) 32 K bytes
mappable memory board and TTL status pod. (SPM­
A20 also includes laO (NSCaOO™) Cross-Assembler
Software.)

Characteristics for 40·Pln Connector

Output Load Input Load Time Delay (To)
Pin VOH=2.4V VOL =O.4V V1H =2.0V V1L =O.8V Between Z80 Mnemonic
No. IOH(mA) lodmA) IIH(,.A) IIL(,.A) & 40·Pin Plug

1 -0.20 1.4 - - 0 A11
2 -0.20 1.4 - - 0 A12
3 -0.20 1.4 - - 0 A13
4 -0.20 1.4 - - 0 A14
5 -0.20 1.4 - - 0 A15
6 - - - - 0 elK
7 -10 20 80 -200 18 04
8 -10 20 80 -200 18 05

10 -10 20 80 -200 18 06
11 - - - - - Vee
12 -10 20 80 -200 18 02
13 -10 20 80 -200 18 07
14 -10 20 80 -200 18 DO
15 -10 20 80 -200 18 D1
16 - - 50 -400 9 iNT
17 - - 50 -400 16 NMI
18 -15 64 - - 18 HALT
19 -15 64 - - 18 MREO
20 -15 64 - - 18 IORO
21 -15 64 - - 18 RO
22 -15 64 - - 18 WR
23 -15 64 - - 18 BUSAK
24 - - 100 -800 9 WAIT
25 - - 100 -800 24 BUSRO
26 - - 100 -800 36 RESET
27 -15 64 - - 18 M1
28 -0.20 1.4 - - 0 RFSH
29 - - - - - GNO
30 -0.20 1.4 - - 0 AO
31 -0.20 1.4 - - 0 A1
32 -0.20 1.4 - - 0 A2
33 -0.20 1.4 - - 0 A3
34 -0.20 1.4 - - 0 A4
35 -0.20 1.4 - - 0 A5
36 -0.20 1.4 - - 0 A6
37 -0.20 1.4 - - 0 A7
38 -0.20 1.4 - - 0 A8
39 -0.20 1.4 - - 0 A9
40 -0.20 1.4 - - 0 A10

54

Specifications

Environmental

Operating
Temperature -

Storage
Temperature -

Power All Boards +5VDC each

Board Involved Typical Worst

Z80® Target Board 3.6 Amps (18 Watts) 4.2 Amps (21 Watts)

Z80 Cable Board 1.4 Amps (7.0 Watts) 1.9 Amps (9.5 Watts)

Integral ISE
Set:

Trace Board 2.0 Amps (10 Watts) 3.6 Amps (18 Watts)

Status Board 0.3 Amps (1.5 Watts)

Memory Board 2.7 Amps (13.5 Watts) 5.5 Amps (27.5 Watts)

Total: Typical 50 Watts Worst 77 Watts

Physical

Target Board - Height 7.15 in. (18.16 em)
Width 12.00 in. (30.48 em)
Depth 0.50 in. (1.27 em)

Cable Board- Height 9.00 in. (22.86 em)
Width 4.55 in. (11.56 em)
Depth 0.54 in. (1.37 em)

Cable Board
Housing - Height 9.75 in. (24.76 em)

Width 5.75 in. (14.60 em)
Depth 1.62 in. (4.11 cm)

Status Board
Housing- Height 6.00 in. (15.24 cm)

Width 3.00 in. (7.62 cm)
Depth 0.50 in. (1.27 cm)

Memory
Board- Height 6.75 in. (17.75 cm)

Width 12.00 in. (30.48 cm)
Depth 0.50 in. (1.27 cm)

Trace Board - Height 6.75 in. (17.75 cm)
Width 12.00 in. (30.48 cm)
Depth 0.50 in. (1.27 cm)

Cables - Target Board Cables 72.0 in. (6 ft)
Cable·Board/User Cable 15.0 in.

(1 ft. 3 in.)
Approximate overall length from
STARPLEX base module to the
40-pin connector: 96 in.(8 ft.)

1 Included with SPM-A13-7 and SPM-A20.

2 1ncluded with SPM-A13-7, SPM-90-A13-7, SPM-A20 and SPM-90-A20.

55

Prerequisites
Any STARPLEXISTARPLEX II Development
System and Integral In-System Emulator Package
(SPM-A13, SPM-90-A13).

Order Information
(Includes Target Board, Lightweight Plastic Cable
Pod, Cables, Software for ISE Host Driver, l80
Display Change for Mnemonic Assembly and
Disassembly. SPM-A13-7 and SPM-A20 also include
l80 (NSC800) Cross-Assembler Software.)

For STARPLEX Development System:

SPM-A13 Integral ISE Package
SPM-A13-7 l80 (4 MHz) Emulator Package

For STARPLEX II Development System:

SPM-90-A13 IntegrallSE Package

SPM-90-A13-7 l80 (4 MHz) Emulator Package

For complete 6 M Hz development work:
Note: No prerequisites other than a STARPLEXISTARPLEX II
Development System.

For STARPLEX Development System:

SPM-A20 l80 (6 MHz) Integral In-System
Emulator Package Complete

For STARPLEX II Development System:

SPM-90-A20 l80 (6 MHz) Integral In-System
Emulator Package Complete

Documentation

420306198-001 STARPLEX NSC800 Cross­
Assembler Software User's
Manual'

420306692-001 Integral In-System Emulator (l80)
User's Manual2

~ National Semiconductor

COPS™
In-System Emulator (ISETM) Package

• True Real-Time Emulation of the COP400
Family of Microcontrollers

• Plugs Directly into Any
STARPLEXTM/STARPLEX WM
Development System

• Compatible with the Required Optional
COP400 Family Emulator Boards

• Easy to Use

• Hardware
- Real-time trace of 256 x 20-bit

instruction cycles
- 4K x 8-bit of Shared RAM Memory for

rapid downloading of programs from
STARPLEX/STARPLEX II peripherals

- 1 K x 12-bit dump memory used in place
of control firmware

- External hardware breakpoint

Product Overview
The COP400 In-System Emulator (ISE) is designed for
users with the STARPLEX/STARPLEX II Development
System. Coupled with the power of STARPLEX/
STARPLEX II, COP400 ISE is a very powerful tool avail­
able for developing and debugging COP400 family based
microcontroller products. The COP400 ISE target board

56

- Breakpoint timer in milliseconds
- Fully compatible with a STARPLEX/

STARPLEX II system bus
- One target card handles entire series of

microcontrollers and COP400 Emulator
Boards

• Software
- Software breakpoints
- Lists user-specified registers when

selected breakpoint is detected
- Mnemonic modification of object code
- Step-list-restart command
- Dump routines for various COPS micro-

controller chips

plugs directly into any STARPLEX/STARPLEX II Devel­
opment System and interfaces easily with any COP400
system. The designer has the capability of executing the
target system program in real-time while collecting up to
256 instruction cycles of true real-time trace data. In
addition, he can single step through his program and
display the data from a 4K Shared Memory location.

Functional Description
Hardware
The COP400 ISE hardware consists of a printed circuit
board (Target Board) which resides in the STARPLEX/
STARPLEX " chassis. This target board interfaces via
a flat ribbon cable to a required external emulator board
which interfaces to the user"s prototype system. This
interface from the emulator board to the user's proto­
type system is accomplished through a COP400 pin­
compatible plug - e.g., 20, 24 or 28 pin pin-compatible
plugs, depending on the microcontroller chip. With the
external COP400-E02, COP400-E02C, COP400-E04L,
COP400-E24 or any other COP400 Emulator Board, a
designer can perform emulation of the entire COP400
family of microcontrollers. They include:

• COP420, COP420L, COP420C

• COP421, COP421 L, COP421 C

• COP444L

• COP445L

• COP410L, COP410C

• COP411L, COP411C

• COP440, COP441, COP442

• COP2440, COP2441, COP2442

Note: "C" and "L" denote CMOS and Low-power versions respectively.

The COP400 ISE target board has 4K x 8-bit of Shared
RAM Memory to allow rapid downloading of programs
from STARPLEX/STARPLEX " peripherals. Also imple­
mented on the target board is a single hardware break­
point to allow the user to halt execution of the user program
at a specified point in order to obtain information on the
internal state of the COPS microcontroller device under
emulation before resuming execution.

Also, on the target board is a 1 K x 12-bit dump memory,
used in place of a control firmware. The purpose of this
dump memory is to allow different dump routines, con­
tained on the main host driver diskette, to be entered in
the dump memory for different microcontroller chips.
Thus, the target board can be used for the entire series of
microcontrollers.

On the Emulator Boards are two features that facilitate
tracing. They are: 1) a "Trace Out" test point to help
trigger oscilloscopes and logic analyzers, and 2) four
user defined "external event" inputs into the Trace Logic
circuitry to allow the user to define his own "events" for
tracing.

Software

The COP400 ISE software is a STARPLEX/STARPLEX
" systems program which performs as the interface be­
tween the STARPLEX/STARPLEX " user and the COPS
hardware system. The host driver, called COPMONTM,
allows the user the interrupt the flow of a program as it is
being executed. The interruption is directly controlled by
one of several events, all under user control. This inter­
ruption is called a "breakpoint." Possible conditions for a

breakpoint are "address;' "next instruction;' or any com­
bination of two external events. COPMON can maintain a
ten (10) level "condition" stack to aid easy debugging of
large programs. In addition, COPMON can be specified
to "break" only on the nth occurrence of a particular
condition. A breakpoint timer allows COPMON to display
the time in milliseconds between two "conditions:'

COPMON also has one other primary function, "trace"
control and display. The trace command allows the user
to specify: 1) conditions that will initiate the trace and 2)
how many steps prior to meeting that condition will be
traced. The "Go" (see Command Summary below)
command then arms the trace logic and executes the
user's program. After a trace has been completed, the
user may wish to examine the trace data by using a
"TYpe" command or the user may wish to search for an
address in the trace memory by using a "SEearch"
command.

The COPS Cross-Assembler is also included with the
COPS STARPLEX System Software package. It assem­
bles COPS programs written with the STARPLEX Editor
and stores them as object code load modules on the
system diskette. There the load modules are accessible
to the COPMON program which loads them into the
Shared Memory on the COP400 ISE target board and
executes them through the Emulator Board.

The third program included with the software package is
called MASKTRTM MASKTR accepts final object code
load modules prepared by the cross-assembler as input
files and translates them into "Transmittal Files" which
are stored on another diskette. The Transmittal Files each
are in a format acceptable for National Semiconductor to
prefJare "hard" mask patterns from for custom ROM­
based COP400 chip programs. A Transmittal File contains:
1. Name and phone number of the customer

2. Company name and address

3. Date

4. Chip number

5. Listing of option showing option number, option name,
and option value

6. ROM data including addresses

7. Source, object, and transmittal file checksums.

COPMON Console Command Summary
Alter Alter Shared Memory

AUtoprint

Breakpoint

Clear

CHip

COmpare

Deposit

Find

57

Breakpoint printout control

Breakpoint condition/occurrence
control

Clears Breakpoint and Trace
enables, and disables Timer

Selects Chip under emulation

Compares Shared Memory to a disk
file

Deposit value into Shared Memory

Searches Shared Memory for a
specified value

END

Go

Help

List

LOad

Modify

Next

Put

Reset

Singlestep

SAve

SEarch

SET

SHared Mem

STatus

Time

TYpe

TRace

UNassemble

ExitCOPMON

Begin Program Execution

Prints out complete COPMON
command summary for quick
reference

Prints out the contents of Shared
Memory

Loads Shared Memory from a disk
file

Alters register contents of COPS
chip under emulation

Executes a single instruction but
skips subroutines

Alters Shared Memory
mnemonically

Resets the COPS device

Executes a single instruction

Saves Shared Memory in a disk file

Searches Trace memory for a
specified address

Set SIOMODE or STACKMODE
Flags

Enables Shared Memory operation

Prints out the emulation status

Breakpoint timer control

Prints out register contents of COPS
chip under emulation

Set Trace Conditions

Display Instruction Mnemonics of
the data in Shared Memory

MASKTR Console Command Summary

Abort Aborts the creation of a Transmittal
File

COmpany Prompts for Company Name and
Address

Date Prompts for Date

Error Summarizes any option conflicts

Finish Finishes the creation of the
Transmittal File

List Lists the Transmittal File

Name Prompts for name/phone number of
the person responsible for the
program

Option Prompts for the valid options

Print Prints allowable options for chip
specified

Transmittal Load "Load Module" into memory

PrerequiSites
Any STARPLEX/STARPLEX " Development System
and a COP400-E02, COP400-E04L, COP400-E02C,
COP400-E24 or any other COP400 Emulator Board.

58

Specifications
Note: The following specifications apply when the COPS ISE is con­
figured with a standard COP400-E04L Emulator Board.

Environmental Operating Temperature: 0 to 40°C

Power

Storage Temperature: - 40°C to 80°C
Humidity: 10% to 90% non­

condensing
Shock (Drop): 30g on 3 axis in

shipping container

(DC Characteristics - SPM-A 15/SPM-90-A 15 Power
Consumption for Multiple Configurations)

Target Board: +5Voc
Emulator Board: +5Voc; -12Voc

Reasonable
Typical Worst Case

Target with Emulator
and no PROMS: 2.25A 3.20A

Target with Emulator
with PROMS:

Maximum User
Supplied Vcc:

Physical

Cables

2.50A

150mA

Target Board
Length: 6.75 inches
Width: 12.00 inches
Depth: 0.50 inches

Emulator Board
Length: 8.50 inches
Width: 4.55 inches
Depth: 1.00 inches

(with 4-0.50 inch
nylon standoffs)

Target/Emulator
Length: 3 feet

3.75A

250mA

Material: 50 x 28 AWG flat ribbon
Termination: 50-pin PCB edge

RS232 male
RS232 female

Emulator User
Length: Approx. 1 foot
Material: 20, 24 or 28 x 28

AWG flat ribbon
Termination: 20-pin IC plug both

ends
24-pin IC plug both
ends
28-pin IC plug both
ends

COPS Emulator/User Interface

COP411L - 20-Pin COP 421/410/445 - 24-Pin COP420/444 - 28-Pin

Pin Signal Pin Signal Pin Signal
1 L4 1 GNO 1 GNO
2 VCC 2 CKO 2 CKO
3 L3 3 CKI 3 CKI
4 L2 4 RESET! 4 RESET!
5 L1 5 L7 5 L7
6 LO 6 L6 6 L6
7 SI 7 L5 7 L5
8 SO 8 L4 8 L4
9 SK 9 VCC 9 IN1

10 GNO 10 L3 10 IN2
11 L5 11 L2 11 VCC
12 L6 12 L1 12 L3
13 L7 13 DO 13 L2
14 RESET/ 14 01 14 L1
15 CKI 15 02 15 DO
16 DO 16 03 16 01
17 01 17 G3 17 02
18 G2 18 G2 18 03
19 G1 19 G1 19 G3
20 GO 20 GO 20 G2

21 SK 21 G1
22 SO 22 GO
23 81 23 IN3
24 LO 24 INO

25 SK
26 SO
27 SI
28 LO

User Plug DC Characteristics Combined Specs For All Three Sockets

Value

Signal Symbol Parameter Conditions Min Max Unit

LO - L7 VOH Voltage, Output High IOH = 100[LA 2.4 V
DO - 03 VOL Voltage, Output Low IOL = 1.6mA 0.4 V
GO - G3 10H Current, Output High -100 [LA
80,8K IOFF Hi-z Output Leakage -10 +10 [LA
CKO IOL Current, Output Low 1.6 mA

LO - L7
CKI VIH Voltage, Input High 2.0 V
SI VIL Voltage, Input Low 0.8 V
INO -IN3
GO - G3
RESET/ VIH Voltage, Input High .7VCC V

VIL Voltage, Input Low 0.6 V
Hysteresis 1.0 V

59

gJ

STARPLEX/STARPLEX II

COPS
ISETARGET
BOARD

LEFT HAND
CARD CAGE
DOOR OPEN

TARGET IEMULATOR
CABLE
(3 FEET)

EMULATOR/USER
CABLE
(1 FOOT)

Installation of the COPS ISE Target Board and an Emulator Board

Order Information

(Includes ISETarget Board, STARPLEX/STARPLEX \I
Emulator Cable, Cross Assembler, complete soft­
ware and user's manuals, software to create a disk
file for transmission of customer ROM patterns and
device I/O options.)

For STARPLEX Development Systems:

SPM-A15 COPS In-System Emulator (ISE)
Package

For STARPLEX II Development Systems:

SPM-90-A15 COPS In-System Emulator (ISE)
Package

COP400 Family Emulator Boards:

COP400-E02 402 Emulator Board

COP400-E02C
COP400-E04L
COP400-E24

Documentation

420305785-001

420306469-001

420306253-001

420306254-001

Target PWA Block Diagram

61

CMOS Emulator Board
404L Emulator Board
440/2440 Emulator Board

COP400 Microcontroller Family
User's Manual

COP400 In-System Emulator
Card User's Manual

COPS Cross-Assembler Soft­
ware User's Manual

COPS ISE Operator's Manual

~ National Semiconductor

COP400 In-System Emulator™ Boards

Product Overview
The COP400 Emulator Boards enable in-system
emulation of the entire COP400 Microcontroller
family. To emulate the desired COP4XX part re­
quires the appropriate COP400 Emulator Board
with the appropriate ROM less COP4XX microcon­
troller part. COP400 In-System Emulator Boards
currently available are the following:
COP400-E02 COP400-E02C COP400-E04L
and COP400-E24 boards.

Emulator Boards and ROMless Parts for
COP4XX Device Emulation

Emulator Board ROMless Part Parts Emulated

COP400·E02

COP400-E04L

COP400·E02

COP400-E04L

COP400-E02C

COP400·E24

COP400·E24

COP401L'

COP401L

COP402

COP404L

SL0402

COP404

COP2404"

COP410L

COP411L

COP420
COP421
COP422

COP420L
COP421L
COP422L
COP444L
COP445L

COP410C
COP411C
COP420C
COP421C

COP404
COP441
COP442

COP2440
COP2441
COP2442

Flexible Configurations
The emulator board may be used stand-alone
with EPROMs and external power supply or as a
peripheral to a development system. The COP400
Emulator Boards are designed to interface
with either the COP400-PDS Development Sys­
tem or the STARPLEXTM Development Systems.

Useful and Informative Features
When used in conjunction with a develop­
ment system, the emulator adds the capabili­
ties of real-time program tracing, breakpoint/
single-stepping, and speedy program updating,
resulting in rapid program evolution from con­
ception through debug to final product.

Physical Features

The emulator board is a double-sided printed
circuit board mounted on four O.5-inch nylon
stand-offs for easy access to jumpers and
sockets. The processing is carried out by the
ROMless microeontroller located near the top
center of the board. At the bottom of the board is
a 50-pin edge connector used to interface to the
development system via the emulator-card
cable. Three DIP-to-DIP cables are supplied with
each emulator board.
For the COP400-E02 and COP400-E04L boards,
the DIP-to-DIP cables are the 20-pin, 24-pin,
and 28-pin. The 20-pin socket is used for emu­
lating a COP411L device. The 24-pin socket is
used for emulating the COP410L, COP421L,
COP421, and COP445L devices. The 28-pin socket
is used to emulate the COP420L, COP420,
and COP444L devices .

• The COP401L has the CKO pin selected as the RAM Keep Alive Option. This pin must be connected to the Vee power supply
in the user's system and W4 installed on the COP400-E02 or COP400·E04L Board .

•• As shipped, the COP400·E24 board contains a COP404 ROM less part. For emulating the COPs 2440, 2441 or 2442, install the
COP2404 shipped with the board.

62

For the COP400-E02C board, the DIP-to-DIP cables
are the 20-pin, 24-pin, and 28-pin. The 20-pin
socket is used for emulating the COP411C.
The 24-pin socket is used for emulating the
COP410C and COP412C. The 28-pin socket is
used for emulating the COP420C.

Emulator 50-pin Edge Connector Assignments

Connector
No. Name

1 GND
2 GND
3 Vee
4 Vee
5 EX2
6 EX1
7 EX4
8 EX3
9 ClK

10 SKIP
11 A8
12 A9
13 A3
14 A7
15 A1
16 A2
17 A4
18 AO
19 A6
20 A5
21 Not Used
22 A10
23 Not Used
24 Not Used
25 Not Used
26 Not Used
27 Not Used
28 Not Used
29 Not Used
30 Not Used
31 Not Used
32 Not Used
33 BO
34 B7
35 B2
36 B5
37 B3
38 B4
39 B6
40 B1
41 TRIGGER

OUT
42 Not Used
43 RSr
44 PROM

DISABLE
45 See Note 1
46 See Note 1
47 Vce
48 Vce
49 GND
50 GND

Note 1: Pins 45 and 46 are used as follows:

For the COP400-E24 board, the DIP-to-DIP cables
are the 24-pin, 28-pin, and 40-pin. The 40-pin
socket is used for emulating the COP440 and
COP2440 devices. The 28-pin socket is used for
emulating the COP441 and COP2441 devices. The
24-pin socket is used for emulating the COP442
and COP2442 devices.

Description

Signal and power return
Signal and power return
+ 5Voc power from Development System

+ 5Voe power from Development System

Buffered External Event
Buffered External Event
Buffered External Event
Buffered External Event
Buffered AD/DATA signal from COP4XX
COP4XX skip status line
Address Bit
Address Bit
Address Bit
Address Bit
Address Bit
Address Bit
Address Bit
least significant address bit
Address Bit
Address Bit

Most significant address bit

least significant COP object code bit
Most significant COP object code bit
Object code bit
Object code bit
Object code bit
Object code bit
Object code bit
Object code bit
BREAKPOINTfTRACE indicator

Same as RESEr

Select PROM or Shared Memory mode

+ 5Voc power from Development System

+ 5Voe power from Development System

Power and Signal return
Power and signal return

PDS with target board 980306552 REV A or later, normally not used.
with target board 980305551 REV F or earlier, -12Voc from the PDS.

STARPlEX with target board 980306254, normally not used. However, jumper W5 on the target board may
be installed to supply - 12Voc to the emulator board.

63

Prerequisites
• As A Stand-Alone

- Appropriate EPROMs with external power
supply.

• As A Peripheral To A PDS Development Sys­
tem.
For COP400-E02, COP400-E04L, and COP400-
E02C Emulator Boards:
- Any COP400 PDS Development System
For COP400-E24 Emulator Board:
- (See Footnote '1' Below.)

• As A Peripheral To A STARPLEXTM Develop­
ment System.
- Any STARPLEX/STARPLEX WM Develop­
ment System.
- COPSTM In-System Emulator (ISETM) Package
(SPM-A15 or SPM-90-A15)

1. The COP400·E24 is compatible with all STARPLEX and
STARPLEX II systems as well as COP400·PDS systems
shipped after October 1981. PDS systems shipped prior
to this date may be upgraded to this level by purchase of
an upgrade kit. Order number of the upgrade kit is
COP400-A2. Order number for PDS systems shipped
after October 1981 will be COP400-PDS2.

2. Number not available at printing time.

64

Order Information
COP400-E02
COP400-E02C
COP400-E04L
COP400-E24

Documentation

Emulator Board
CMOS Emulator Board
Emulator Board
404/2404 Emulator Board

• Minimum Documentation
420306469-001 COP400 In-Circuit

Emulator Boards
(See Footnote '2' COP400 Microcontroller
Below) Family Databook

• When Used With COP400 PDS
Above Minimum Documentation Plus:
420305548-002 COP400 PDS (Product

Development System)

• When Used With STARPLEX Development
Systems
Above Minimum Documentation Plus:
420306254-001 COPS ISE (In-System

Emulator, SPM-A15,
SPM-90-A 15) Operator's
Manual

420306253-001 COPS Cross-Assembler
(SFW-A006-1 C,
SFW-90-A006) User's
Manual

~ National Semiconductor
PLM80

PUM High Level Language Compiler
for STARPLEX™ Development Systems

• Executes on all STARPLEXI
STARPLEX WM Development Systems

• Code generation for 8080/8085 and
NSC800™ I Z80 microprocessors

• Relocatable and linkable object code
output

Product Description

PLM80 is a high level language compiler designed
for STARPLEX and STARPLEX II Development Sys­
tems. Available in two versions, this highly efficient
compiler generates relocatable object code for 80801
8085 and NSC800/Z80 microprocessors.

PUM has proven to be one of the most popular,
effective and powerful program development tools
available. Programmer productivity and reliability
are greatly improved because the programmer can
concentrate on system development rather than all
the details of assembly languages. Since PUM uses
data structures that are very close to typical
microprocessor architectures, it allows for efficient
use of the machine. PUM programs are efficiently
converted to assembly language instructions, thus
requiring fewer statements. Software development
and maintenance costs are significantly reduced.

Free form PUM source programs are efficiently and
effectively converted into 8080/8085 or NSC800/Z80
assembly language instructions. A given program,
when written in PUM, requires fewer statements

65

j ~
• Reentrant procedures as specified

by user

• Compatible with existing industry
standard PLI M-80

• Hardware access via high level
statements (interrupt systems, absolute
addresses, and input/output ports)

than would the equivalent program written in
assembly language. Thus, software development
and maintenance costs are significantly reduced
due to the problem oriented structure that results
naturally from the use of PUM. User programming
conventions and structured programming tech­
niques are easily accommodated by the free form
source statements of PUM.

Functional Description

The PLM80 Compiler is a STARPLEX System pro­
gram which accepts STARPLEX PLM80 language
source modules and produced linkable object
modules. Object modules may be linked to form exe­
cutable PLM80 programs. The PLM80 compiler is
also designed to accept programs written in the
industry standard PUM programming language.

The STARPLEX PLM80 compiler invocation is
similar to that of other STARPLEX software. The
8080 version of the compiler in particular has all the
features of the existing industry standard PUM-80

compiler. In many cases, no changes to existing
PLlM·80 programs are required. However, STAR­
PLEX PLM80 has a number of superior enhance­
ments which may be incorporated into existing
PLlM·80 programs to make it faster, smaller, and
easier to debug. What modification is required can
be done very easily.

Compilation is one step in the formation of an
executable PLM80 program. The formation of a com·
plete program involves the following steps:

• Writing the PLM80 "Source Modules" using the
TEXT EDITOR.

• Compiling the source files to produce "Object
Modules."

• Linking the object modules to create an
executable PLM80 "Load Module."

When the source module(s) have been created using
the TEXT EDITOR for compilation, choose the
correct PLM80 diskette for the type of compilation
desired. The 8080 version may be used for programs
to be executed on 8080 and 8085 based systems.
The NSC800 version may be used for NSC800 or
Z80 based systems.

Enhancements
Lexical Extensions

PLM80 will allow the underscore character "_" in
identifiers and in numeric constants, to aid legibil·
ity. For example, NAMLTABLE or 1100_0111B.
Unlike the industry standard PLIM "$", which
PLM80 also will accept, the underscore is a signifi·
cant character in identifiers; thus, A-TO_M is a
distinct identifier from AT_OM and from ATOM.

PLM80 will accept the ASCII form·feed character as
lexically equivalent to a blank; the form-feed, like
the EJECT compiler control, will cause a page eject
in the listing file.

Explicit Locator References

In the industry standard PLlM, each based variable
is associated with a unique pointer. The pointer is
specified in the based declaration, and does not
appear explicitly in references to the based variable.

Declare Statement Syntax

The industry standard PLiM requires attributes to
appear in a specified order within a declaration.
This restriction has been relaxed in PLM80.

Declaration of Arrays

The keyword ARRAY has been added for optional
use in dimension·specifications.

The industry standard syntax for based array declara­
tions is misleading because the dimension·specifier
appears to be "attached" to the wrong variable:

DECLARE B BASED P(100) BYTE;

66

creates a 100-byte array b, based on a scalar pointer
P. PLM80 will provide a number of superior alterna·
tive forms, e.g.,

DECLARE B(100) BYTE BASED P;
DECLARE B BASED PARRA Y(100) BYTE:

The second of these forms permits the industry stand­
ard form to be modified easily, the only difference is
the addition of the keyword "ARRAY". It also accepts
the standard form without the usage of "ARRAY".

Empty Blocks and Procedures

PLM80 will accept a block or procedure that con·
tains no executable statements. This is not per­
mitted by the industry standard.

Do·Case Extensions

PLM80 will accept case-selectors in the range of a
do-case statement, thus permitting the programmer
to create sparsely populated case constructs
without sacrificing efficiency. Multiple specifiers will
be permitted on a single statement, so the
programmer need not write duplicate code.,

PLM80 will accept an otherwise·clause in the range
of a do-case statement. This makes it unnecessary to
write out the action for every case if most of them are
identical.

PLMBO will do range checking in the case construct.
Unspecified or out·of-range cases will cause a jump
to the statement following the do·case-block.

Example: The following code executes special statements
if I is 6, 28, 496 or 8128. If I has any other value, the
statement in the otherwise·clause is executed.

DO CASE I;
6:

28: DO;

END;

'* This entire do·block is *' '* executed if I = 6 or 28. *'
8128: ... '* This statement is executed *' '* ifl=8128. *'

496: .. . '* This statement is executed *' '* if I = 496. *'
OTHERWISE. . . '* This statement is executed *' '* if I has any other value. *'

END;

Iterative DO

In the industry standard, the expressions in "TO" and
"BY" options in an iterative do-statement are eval­
uated each time the loop is executed. Worse, the
time of evaluation depends upon the datatype of the
index variable. PLMBO adopts the convention that
these expressions are evaluated once, prior to entry
to the loop. The values calculated at that time will be
preserved and reused. This makes for faster running
time.

User Interface
Listings

The PLM80 compiler can provide, upon request,
source and object listings. Diagnostics will be pro­
vided; regardless of list options.

Source listings will include statement numbers,
block nesting depth, diagnostics, a list of the
options present for the compilation, and statistics
(e.g., resources used) for the compilation.

Object listings will show object code (pseudo­
assembly language and actual machine code) and
approximate statement numbers.

Compile-Time Diagnostics

For syntax errors, the diagnostic message will ap­
pear in the source listing immediately after the point
at which the error was recognized. For example:

LlNESTMTLEVEL + 1 ... + ... 2 ... + ... 3 ... + ... 4 ... + ... 5 ... +

13 9 3 z :::::: X + * x;
ERROR 21 * * .. " Stmt9 - near '*' - Syntax error; skipping input to ";"

At the end of the source listing for a module, the compiler will list all
other diagnostic messages for that module, sorted by statement

Example PLM80 Program

STARPLEX PUM-80 Rev A-810428 MODULE:SEARCH_MODULE

OPTIONS: FDS1:EXPROG LIST CODE

number. Each message will clear and concise, and will describe the
error in detail. For example:

ERROR 48 *"** Stmt 8 - Missing data type attribute
ERROR 43 **** Stmt 11 - Undeclared identifier
ERROR 54 ***" Stmt 13 - Reference to member of undeclared

structure

Code Generation and Optimization

The PLM80 compiler handles: local optimizations,
basic block optimization, efficient register allo­
cation, special casing for common constructs,
some strength reduction, removal of dead code and
of branch-around-branch. This, in effect, produces
smaller, faster and more efficient object code than
the industry standard PLiM compiler.

Run-Time Support

The run-time support package contains those built­
in procedures that are not compiled as in-line code,
procedures for the arithmetic operations not per­
formed in-line, and stack management.

LINE STMT LEVEL + 1 + 2 + 3 + 4 ... + 5 .. ' . + 6_ ... + 7 + 8 +

1
2
3
4
5
6
7

9
10
11
12
13
14
15
16
17

20
21
22
23
24

26
27
28
29
30
31
32
33
34
35

37

39
40

2
3

4

5
6
7

8

9
11
12
13
14
15
16
18

19

20
21

o

2
2

2

3
3
3

3

5
5
4
4
3
3
2

2

o

SEARCH_MODULE:
DO; "This module contains a typed procedure named SEARCH. SEARCH'

, searches the based array BUFFER for the first occurrence of the strind '
• contained in the based array WORD. If the strind is found, SEARCH'
, returns the subscript value of the element of BUFFER containing the'
• first character. Otherwise, SEARCH returns a value greater than the'
• length of the buffer. "

SEARCH: PROCEDURE (BUF _PTR,LENGTH,WORD_,PTR,WORD_LENGTH) ADDRESS PUBLIC;
DECLARE (BUF __ PTR,LENGTH,WORD_PTR,WORD_LENGTH) ADDRESS,

BUFFER BASED BUF _PTR ARRAY(1) BYTE,
WORD BASED WORD_PTR ARRAY(1) BYTE,
FIRST_CHAR ADDRESS,
(I, K) ADDRESS,
FOUND BYTE,
TRUE LITERALLY 'OFFH',
FALSE LITERALLY 'OOH';

SET _FIRST_CHAR:
DO FIRST_CHAR =0 TO LENGTH-1;

I = FIRST_CHAR;
K=O;
FOUND = TRUE;

COMPARE:
DO WHILE (FOUND=TRUE) AND (K<WORD_LENGTH);

IF BUFFER (I)=WORD (K) THEN DO;
1=1+1;
K=K+1;

END;
ELSE FOUND = FALSE;

END COMPARE;
IF FOUND=TRUE THEN RETURN FIRST_CHAR;

END SET_FIRST_CHAR;

RETURN LENGTH + 1;

END SEARCH;
END SEARCH_MODULE

67

00A2' ;>>>> STATEMENT 2
00A2' EB XCHG
00A3' 22 0006" SHLD WORD_LENGTH
00A6' 69 MOV L,C
OOA7' 60 MOV H,B
OOA8' 22 0004" SHLD WORD_PTA
OOAB' D1 POP D
OOAC' E1 POP H
OOAD' 22 0002" SHLD LENGTH
OOBO' E1 POP H
OOB1' D5 PUSH D
OOB2' 22 0000" SHLD BUF _PTR

0087' ;»» STATEMENT 18

0087' $00012:

CSEG
ORG 0081

0081' 0087' DW $00012

CSEG
ORG $00012

0087' 2A 0008" LHLD $00002
008A' 23 INX H
008B' 22 0008" SHLD $00002

OOSE' $00003:

CSEG
ORG 0021

Prerequisites

Any STARPLEX /STARPLEX " Development System.

Order Information
SFW·A50

SFW·A60

SFW·90·A50

PLM80, PLiM Compiler to generate
8080/8085 object program on STARPLEX
Development System.
PLM80, PLiM Compiler to generate
NSC800/Z80 object program on
STARPLEX Development System.
PLM80, PLiM Compiler to generate 8080/
8085 object program on STARPLEX "
Development System.

0021' 008E' DW $00003

CSEG
ORG $00003

008E' 2A oooF" LHLD $00005
0091' EB XCHG
0092' 2A 0008" LHLD $00002
0095' 7B MOV A,E
0096' 95 SUB L
0097' 7A MOV A,D
0098' 9C SBB H
0099' D20023' JNC $00004

009C' ;»» STATEMENT 19
009C' 2A 0002" LHLD LENGTH
009F' 23 INX H
OOAO' C9 RET

00A1' ;»» STATEMENT 20
00A1' C9 RET

00A2' ;»» STATEMENT 21
00A2' FB EI
00A3' 76 HLT
MODULE STATISTICS:

21 STATEMENTS PROCESSED
o DIAGNOSTIC(S) ISSUED

CODE SEGMENT SIZE 181 D (OOB5H)
DATA SEGMENT SIZE 19D(0013H)

SFW·90·A60 PLM80, PLiM Compiler to generate
NSC800/Z80 object program on
STARPLEX " Development System.

Documentation

420306371-001 STARPLEX PLM80 Compiler Software
Reference Manual (Included with SFW·
A50, SFW·A60, SFW·90·A50, SFW·90·A60)

420305789-001 8080/8085 Macroassembler Software
User's Manual

420306198-001 NSC800 Macroassembler Software
User's Manual

68

ra National Semiconductor

PASCAL
PASCAL High Level Language Compiler
For ST ARPLEX IITM Development Systems

STARPLEX II
DEVELOPMENT SYSTEM

• Executes On All ST ARPLEX II
Development Systems

• Compatible With Existing ISO Standard
PASCAL

• Highly Portable And Extended Source
Programs

• Code Generation For 8080/S085 and
NSC800™/Z80 Microprocessors

Product Description
PASCAL is a high level language compiler designed
for ST ARPLEX II Development Systems. Available in
two verSions, this highly efficient and powerful com­
piler generates relocatable object code for 8080/
8085 and NSC800/Z80 microprocessors.

PASCAL has proven to be one of the most popular,
effective and powerful program development tools
available today. With STARPLEX II PASCAL, pro­
grammer productivity is greatly improved because
the programmer can concentrate on system develop­
ment rather than all the details of assembly lan­
guages. Since PASCAL uses data structures that
are very close to typical microprocessor architec­
tures, it allows for efficient use of the machine.
PASCAL programs are efficiently converted to assem-

69

.... ~

• Relocatable And Linkable Object Code
Output

• Reentrant Procedures as Specified by
User

• Extensions For Easy Hardware Access
Via High Level Statements (Absolute
Addresses and Input/Output Ports)

bly language instructions thus requiring fewer state­
ments. Software development and maintenance
costs are significantly reduced.
Free form PASCAL source programs are efficiently
and effectively converted into 8080/8085 and
NSC800/Z80 assembly language Instructions. A giv­
en program, when written in PASCAL, requires much
fewer statements than would the equivalent program
written in assembly language. Thus, software devel­
opment and maintenance costs are significantly re­
duced due to the block oriented structure that re­
sults naturally from the use of PASCAL. User pro­
gramming conventions and structured programming
techniques are easily accommodated by the free
form source statements of PASCAL.

Functional Description
The STARPLEX " PASCAL compiler is a system
program which accepts PASCAL language source
modules and produces linkable object modules. Ob­
ject modules may be linked to form executable PAS­
CAL programs. The STARPLEX " PASCAL compiler
is compatible with the International Standards Orga­
nization (ISO) standard and has extensions to facili­
tate access to and manipulation of machine data
structures. Code generated by the STARPLEX "
PASCAL compiler is native machine code, rather
than the intermediate p-code found in other micro­
computer PASCAL compilers. The execution speed
of programs compiled to machine code is much fast­
er than those complied to p-code, thus maintaining
the programming advantages of a high-level lan­
guage without sacrificing execution speed.

The STARPLEX " PASCAL compiler invocation is
similar to that of other STARPLEX " software. In
many cases, no changes to existing PASCAL pro­
grams are required. STARPLEX " PASCAL has a
number of extensions which may be incorporated
into existing PASCAL programs to make it faster,
smaller, and easier to debug. In many cases, be­
cause of STARPLEX II PASCAL's many low-level
escapes to the machine level, programs written in
STARPLEX " PASCAL can be comparable in speed
to programs written in assembly language.

The STARPLEX " PASCAL compiler reads source
files containing PASCAL source modules and pro­
duces:

• a linkable object module containing object
code,

• a listing of the STARPLEX " PASCAL source
statements,

• a listing of syntax and semantic errors and
warning messages,

• an optional listing of object code in assembly
language mnemonics.

Compilation is one step in the formation of an exec­
utable PASCAL program. The formation of a com­
plete program involves the following steps:

• Writing the PASCAL "Source Modules" using
the TEXT EDITOR.

• Compiling the source files to produce linkable
"Object Modules".

• Linking the object modules to create an
executable PASCAL "Load Module".

When the source module(s) have been created us­
ing the ST ARPLEX " TEXT EDITOR, choose the
correct PASCAL diskette for the type of compilation
desired. The SOSO/SOS5 version of the PASCAL
compiler can generate code that can be used for an
S080 or SOS5 based system, while the NSCSOO ver­
sion of the PASCAL compiler can generate code
that can be used for an NSCSOO or ZSO based sys­
tems.

70

Extensions

As stated before, the STARPLEX " PASCAL pro­
vides many extensions to the ISO standard PAS·
CAl. The following is an overview of the extensions.

1. Direct files: To enhance standard PASCAL's file
capabilities, direct (random access) files are imple­
mented, and accessed with the SEEK procedure.

2. Variable-length strings: A special variable-length
string type called the LSTRING is implemented in
STARPLEX " PASCAL to overcome standard PAS­
CAL's inadequate string-handling capabilities. Spe­
cial predeclared procedures and functions are avail­
able to facilitate use of the feature.

3. Super arrays: A special variable-length array dec­
laration permits both passing arrays of different
lengths to a reference parameter, as well as dynam­
ic allocation of arrays of difference lengths.

4. BYTE/WORD types: Predeclared BYTE (0-255)
and WORD (0-65535) types are available to facilitate
programming at the system level.

5. String reads: Strings can be read as structures
rather than character by character as with the stan­
dard procedures READ and READLN.

6. Nondecimal numbering: Hexadecimal, octal, and
binary numbering are allowed to facilitate program­
ming at the byte and bit level.

7. Address types (segmented and unsegmented): A
special address type is implemented to allow manip­
ulation of actual machine addresses.

S. Interface to assembly language: PUBLIC and EX­
TERN procedures, functions and variables are imple­
mented to allow for low-level interfacing to assembly
language and library routines.

9. Separate compliation: MODULES are implement­
ed to allow portions of a program to be compiled at
separate times.

10. VALUE section: Variables in a program can be
given initial constant values in the VALUE section of
a program.

11. Structured function return values: Functions can
return values of a structured type, as well as values
of simple type.

12. Support for interactive files: A special internal
mechanism called "lazy evaluation" allows normal
interactive input from terminals.

13. OTHERWISE in CASE statements: An OTHER­
WISE clause can be used in CASE statements to
avoid explicitly specifying each case constant.

14. STATIC attribute for variables: Variables can be
given the STATIC attribute to indicate that they are
allocated at a fixed location in memory rather than
on the stack.

15. ORIGIN attributes: Variables, procedures, and
functions can be given the ORIGIN attribute to indi­
cate their absolute location in memory.

16. Underscores in identifiers: Identifiers may contain
underscores to improve their readability.

User Interface
Listings

The PASCAL compiler can provide, upon request,
source and object listings. Diagnostics will be provid­
ed, regardless of list options.

Source listings will include statement numbers with
corresponding source statements.

Object listings will show line number with corre­
sponding object code (pseudo-assembly language)
as well as relative memory locations and statistics
(e.g., resources used) for the compilation.
Diagnostic Messages

Each error and warning flag contains a code number
and a brief message. The code number indicates
where in the list of error messages, a detailed expla­
nation of that particular error or warning can be
found. The brief message indicates an overview ex­
planation of the incorrect condition detected.
Code Generation and Optimization
The STARPLEX II PASCAL compiler handles local
optimizations: basic block optimization, competent
register allocation, special casing for common con­
structs, some strength reduction, removal of dead
code and of branch-around-branch. This produces
smaller, faster and efficient object code.

71

Predefined Procedures and Functions for
Run-Time Support
A number of predefined procedures and functions
are included in the PASCAL compiler library which
the user can use to facilitate his programming.
These procedures and functions perform liD, data
allocation, arithmetic, string, and system operations.
The procedures and functions are divided into the
following categories:

• liD routines
• Dynamic allocation routines

• Mathematic routines

• String routines
• Manipulation routines
• Library management routines

While the Library procedures and functions must be
declared EXTERN, all the other functions and proce­
dures are predeclared and hence do not have to be
declared in the user's program. The use of these
procedures and functions therefore do not require
extra statement lines in the program itself.

Example of a PASCAL Program
Page 1

07/22/82
00:32:51

Line# NSC Starplex-II Pascal - version 2.06 - 7/82
1 PROGRAM shellsort (input, output);
2 CONST
3 maxlength = 1000;
4 TYPE
5 index = 1 •. maxlength;
6 rowtype = ARRAY [index] OF integer;
7 VAR
8 inrow : rowtype;
9 count: 0 •. maxlength;

ix : index; 10
11
12
13

PROCEDURE sort (VAR row rowtype; length
VAR

14 jump, m, n : index;
15 temp: integer;
16 alldone : boolean;
17 BEGIN
18 jump := length;
19 WHILE jump> 1 DO
20 BEGIN
21 jump := jump DIV 2;
22 REPEAT
23 alldone := true;
24 FOR m := 1 TO length - jump DO
25 BEGIN
26 n := m + jump;
27 IF row[m] > row[n]
28 THEN
29 BEGIN
30 temp := row[m] ;
31 row[m] := row[n] ;
32 row[n] := temp;
33 alldone := false;
34 END;
35 END; (* for *)
36 UNTIL alldone;
37 END; (* while *)
38 END; (* sort *)

39
40 BEGIN (* main program *)
41 count := 0;
42 read(inrow[count + 1]) ;
43 WHILE NOT eof DO;
44 BEGIN
45 count := count + 1;

72

index) ;

Example of a PASCAL Program (Cont'd)
Page 2

07/22/82
00:33:33

Line#
46
47
48
49
50
51
52
53

NSC Starplex-II Pascal - version 2.06 - 7/82
read (inrow[count + 1]) ;

END; (* while *)
IF count > 0

THEN
BEGIN

sort (inrow, count);
FOR ix := 1 TO count DO

write(inrow[ix])
54 END
55 ELSE write('no input')
56 END. (* shellsort *)

57

procedure / function: SORT

** 0001" DB 01 ; level
** 0002" CALL RENGQQ
** 0005" DW 0004, 0014 return displacement,

L18:
** 0009" CALL LSAGQQ
** OOOC" 0002
** OOOD" PUSH HL
** OOOE" LD HL,OlOO
** 0011" PUSH HL
** 0012" LD HL,E803
** 0015" PUSH HL
** 0016" CALL RCIEQQ
** 0019" CALL ASAGQQ
** OOlC" 0008

L19:
14:

** OOlD" CALL LSAGQQ
** 0020" 0008
** 0021" LD DE,FEFF
** 0024" LD A,H
** 0025" ADD A,A
** 0026" JP C,I5
** 0029" ADD HL,DE
** 002A" JP NC,I5

L2l:
** 002P" LD DE,OlOO
** 0030" CALL LSAGQQ
** 0033" 0008
** 0034" CALL SRDGQQ

** 0037" PUSH HL
** 0038" LD HL,OlOO

** 003B" PUSH HL

73

frame length

Example of a PASCAL Program (Cont'd)

** 003C" LD HL,ES03
** 003F" PUSH HL
** 0040" CALL RCIEQQ
** 0043" CALL ASAGQQ
** 004S" OOOS

L22:
IS:
L23:

** 0047" LD HL,0100
** 004A" CALL ASGGQQ
** 004D" 0010

L24:
** 004E" CALL LSBGQQ
** 0051" 0002
** 0052" CALL LSAGQQ
** 0055" OOOS
** 005S" CALL SVBGQQ
** 0059" CALL ASAGQQ
** 005C" 0012
** 005D" CALL LSAGQQ
** OOSO" 0012
** OOS1" LD DE,FFFF
** 00S4" LD A,H
** 00S5" ADD A,A
** OOSS" JP C,IlO
** 00S9" ADD HL,DE
** OOSA" JP NC,IlO
** 0070" PUSH HL
** 0071" PUSH HL
** 0072" LD HL,ES03
** 0075" PUSH HL
** 007S" CALL RCIEQQ
** 0079" CALL ASAGQQ
** 007C" OOOA
** 007D" CALL LSAGQQ
** OOSO" 0012
** OOSl" PUSH HL
** 00S2" LD HL,0100
** 00S5" PUSH HL
** OOSS" LD HL,ES03
** 00S9" PUSH HL
** OOSA" CALL RCIEQQ

Ill:
L2S:

** OOSD" CALL LSBGQQ
** 0090" OOOS
** 0091" CALL LSAGQQ
** 0094" OOOA
** 0095" CALL AEBGQQ
** 009S" PUSH HL
** 0099" LD HL,0100
** 009C" PUSH HL
** 009D" LD HL,ES03
** OOAO" PUSH HL
** OOAl" CALL RCIEQQ
** 00A4" CALL ASAGQQ
** 00A7" OOOC

L27:
** OOAS" CALL LSAGQQ
** OOAB" OOOC

74

Example of a PASCAL Program (Cont'd)
** OOAC" ADD HL,HL
** OOAD" EX DE,HL
** OOAE" DEC HL,DE
** OOAF" DEC HL,DE
** OOBO" CALL LSAGQQ
** 00B3" 0000
** 00B4" CALL OVBGQQ
** 00B7" CALL LSAGQQ
** OOBA" OOOA
** OOBB" ADD HL,HL
** OOBC" PUSH DE
** OOBD" EX DE,HL
** OOBE" DEC HL,DE
** OOBF" DEC HL,DE
** OOCO" CALL LSAGQQ
** 00C3· 0000
** 00C4" CALL OVAGQQ
** 00C7" POP DE
** OOCS" LD A,D
** 00C9" XOR H
** OOCA" LD A,D
** OOCB" JP M,14094
** OOCE" LD A,E
** OOCF" SUB L
** OODO" LD A,D
** OODl" SBC A,H

14094:
** 00D2" ADD A,A
** 00D3· JP NC,I12

L30:
** OODS" CALL LSAGQQ
** 00D9" OOOA
** OODB" EX DE,HL
** OODC" DEC HL,DE
** OODD" DEC HL,DE
** OODE" CALL LSAGQQ
** 00E1" 0000
** 00E2· CALL OVAGQQ
** 00E5" CALL ASAGQQ
** OOES" OOOE

L31:
** 00E9" CALL LSAGQQ
** OOEC" OOOC
** OOED" ADD HL,HL
** OOEE" EX DE,HL
** OOEF" DEC HL,DE
** OOFO" DEC HL,DE
** OOFl" CALL LSAGQQ
** 00F4" 0000
** 00F5" CALL OVBGQQ
** OOFS· CALL LSAGQQ
** OOFB" OOOA
** OOFC" ADD HL,HL
** OOFD" PUSH DE
** OOFE" EX DE,HL
** OOFF" DEC HL,DE
** 0100" DEC HL,DE
** 01Ol" CALL LSAGQQ
** 0104· 0000
** 0105" ADD HL,DE

75

Example of a PASCAL Program (Cont'd)

** 010S" POP DE
** 0107n LD (HL),E
** 010S" INC HL
** 0109" LD (HL) ,D

L32:
** 010A" CALL LSAGQQ
** OlOD" OOOC
** OlOE" ADD HL,HL
** 010F" EX DE,HL
** Ollon DEC HL,DE
** 0111" DEC HL,DE
** 01l2n CALL LSAGQQ
** 0115" 0000
** Ollsn ADD HL,DE
** 01l7n CALL LSBGQQ
** OllAn OOOE
** OllBn LD (HL),E
** Ollcn INC HL
** OllDn LD (HL) ,D

L33:
** OllEn LD HL,OOOO
** 0121" CALL ASGGQQ
** 0124n 0010

L34:
112:
L35:

** 0125" CALL LSBGQQ
** 012S" 0012
** 012g n CALL LSAGQQ
** 012C" OOOA
** 012Dn INC HL
** 012En CALL ASAGQQ
** 0131" OOOA
** 0132 n DEC HL,HL
** 0133 n LD A,L
** 0134n CP E
** 0135" JP NZ,111
** 013g n CP D
** 013A" JP NZ,111

110:
L3S:

** 013D" CALL LSAGQQ
** 0140" 0010
** 0141 n LD A,L
** 0142 n RRA
** 0143 n JP NC,IS

L37:
** 014S n JP 14

15:
L3S:
13:

** 014g n CALL PRAGQQ
** 014cn DB 04
** 014D" DB 00

76

Example of a PASCAL Program (Cont'd)
procedure I function: SHELLSOR

** 014E" DB 00 ;level
** 014F" CALL RENGQQ
** 0152" DW 0000, 0006 return displacement, frame length
** 0156" CALL INIFQQ

L41:
** 0159" LD HL,OOOO
** 015C" LD (COUNT) ,HL

L42:
** 015F" LD HL,INPFQQ
** 0162" PUSH HL
** 0163" LD HL, (COUNT)
** 0166" ADD HL,HL
** 0167" EX DE,HL
** 016S" LD HL,INROW
** 016B" ADD HL,DE
** 016C" PUSH HL
** 016D" LD HL,OlSO
** 0170" PUSH HL
** 017l" LD HL,FF7F
** 0174" PUSH HL
** 0175" CALL RTIFQQ

L43:
114:

** 017S" LD HL,INPFQQ
** 017B" PUSH HL
** 017C" CALL EOFFQQ
** 017F" LD A,L
** Olson RRA
** OlSl" JP C,115
** 01S4" JP 114

115:
L45:

** 01S7" LD HL, (COUNT)
** OlSA" CALL INDGQQ
** OlSD" DB 01
** OlSEn PUSH HL
** OlSF" LD HL,OOOO
** 0192" PUSH HL
** 0193" LD HL,ES03
** 0196" PUSH HL
** 0197" CALL RCIEQQ
** 019A" LD (COUNT) ,HL

L46:
** 019D" LD HL,INPFQQ
** OlAO" PUSH HL
** OlAl" LD HL, (COUNT)
** 01A4" ADD HL,HL
** 01A5" EX DE,HL
** 01A6" LD HL,INROW
** 01A9" ADD HL,DE
** OlAA" PUSH HL
** OlAB" LD HL,OlSO
** OlAE" PUSH HL
** OlAF" LD HL,FF7F
** 01B2" PUSH HL
** 01B3" CALL RTIFQQ

77

Example of a PASCAL Program (Cont'd)
L48 :

** 01B6" LD HL, (COUNT)
** OlB9" LD DE,FFFF
** OlBD" ADD A,A
** OlBE" JP C,Il6
** OlCl" ADD HL,DE
** 01C2" JP NC,Il6

L51:
** 01C5" LD HL,INROW
** 01C8" PUSH HL
** 01C9" LD HL, (COUNT)
** OlCC" PUSH HL
** OlCD" LD HL,OlOO
** OlDO" PUSH HL
** OlD!" LD HL,E803
** 01D4" PUSH HL
** 01D5" CALL RCIEQQ
** 01D8" PUSH HL
** 01D9" CALL SORT

L52:
** OlDC" LD HL, (COUNT)
** OlDF" CALL ASAGQQ
** 01E2" 0004
** 01E3" CALL LSAGQQ
** 01E6" 0004
** 01E7" LD DE,FFFF
** OlEA" LD A,H
** OlEB" ADD A,A
** OlEC" JP C,Il8
** OlEF" ADD HL,DE
** OlFO" JP NC,Il8
** 01F3" LD HL, 0100
** OlFS" PUSH HL
** 01F7" PUSH HL
** 01F8" LD HL,E803
** OlFB" PUSH HL
** OlFC" CALL RCIEQQ
** OlFF" LD (IX) ,HL
** 0202" CALL LSAGQQ
** 0205" 0004
** 0206" PUSH HL
** 0207" LD HL,OlOO
** 020A" PUSH HL
** 020B" LD HL,E803
** 020E" PUSH HL
** 020F" CALL RCIEQQ

Il9 :
L53:

** 0212" LD HL,OUTFQQ
** 0215" PUSH HL
** 0216" LD HL, (IX)
** 0219" ADD HL,HL
** 021A" EX DE,HL
** 021B" LD HL,INROW+FFFE
** 021E" CALL OVAGQQ
** 0221" PUSH HL
** 0222" LD HL,FF7F
** 0225" PUSH HL
** 0226" PUSH HL
** 0227" CALL WTIFQQ

78

Example of a PASCAL Program (Cont'd)
** 022A" CALL LSBGQQ
** 022D" 0004
** 022E" LD HL, (IX)
** 0231" INC HL
** 0232" LD (IX) ,HL
** 0235" DEC HL,HL
** 0236" LD A,L
** 0237" CP E
** 023B" LD A,H
** 023C" CP D
** 023D" JP NZ,119

118:
** 0240" JP 120

116 :
L55:

** 0243" LD HL,OUTFQQ
** 0246" PUSH HL
** 0247" LD HL,0800
** 024A" PUSH HL
** 024B" LD HL, <const> ;offset = 2
** 024E" PUSH HL
** 024F" LD HL,FF7F
** 0252" PUSH HL
** 0253" PUSH HL
** 0254" CALL WTSFQQ

120:
113:

** 0257" CALL PRAGQQ
** 025A" DB 00
** 025B" DB 00

Rom size: 614 decimal
Ram size: 2006 decimal

79

Prerequisites
Any ST ARPLEX " Development System with Rev F
operating system or later.

Order Information
SFW-90-A300 PASCAL compiler to generate

8080/8085 linkable object code
module(s) on ST ARPLEX "
Development Systems.

SFW-90-A320 PASCAL compiler to generate
NSC800/Z80 linkable object code
module(s) on STARPLEX "
Development Systems.

80

Documentation
420306680-001 STARPLEX" PASCAL Compiler

Software Reference Manual
(Included with SFW-90-A300 and
SFW-90-A320)

W National Semiconductor

PALASM™ Software Program

• STARPLEX™ and STARPLEX !I'M
compatible

• Program generation for National PAL
devices

Product Description

Like PROM, the Program-Array-Logic (PAL) device
has a single array of fusible links. These links may
be left intact or "blown" to create various combina­
tions of AND and OR gates to peform the desired
function.

Programming a PAL device may be done manually
with the designer marking PAL logic diagrams with
appropriate fuse interconnections or via PALASM,
an automatic fuse pattern generator.

PALASM is a FORTRAN IV program which trans­
forms PAL symbolic equations into a format com­
patible with standard PAL programming personality
modules. The output of this program is formatted to
create the proper fuse patterns in PAL devices.

The pins of a PAL devices are represented as sym­
bolic names and equations are given to specify how
the pins are to be connected. For example, P=Q*R
indicates that P is the logical AND of pins Q and R.
The PALASM program translates these symbolic
equations into a fuse pattern, absolute format, hex
format, BHLF and/or BPNF format.

PALASM is supported on both STARPLEX and STAR­
PLEX II development systems, and is an integral part
of the Universal PROM Programmer Interface.

81

• Compatible with National's Universal
PROM Programmer Interface

Functional Description

PALASM uses three designated files for input/output.
These files are:

1. Input file

2. ABSOLUTE file

3. Object file

The Input file is the user-defined data file, a series of
Boolean expressions defining the input/output rela­
tionship for each pin of the PAL devices.

The Output file may be either an ABSOLUTE file for
input to the standard PROM programmer or an object
file in one of several formats. These optional formats
are useful for verification of the plot, or for inputs to
various PROM programmers not directly supported
by STARPLEX.

Optional formats are:

A=ABSOLUTE

B=PLOT
H=HEX
S=SHORT HEX
L = BHLF HIGH LOW
N = BPNF POSITIVE-NEGATIVE

M=MAP

When PALASM is invoked, the source file name is
entered and the PALASM program then assembles
the symbolic equations in the user's data file. Upon
completion, PALASM requests the type of output
file required. The program then executes the desired
functions. Upon completion of the desired function,
the user is prompted to enter the name of another
file. This will continue until the Operation Code 'Q'
(Quit) is entered.

At this point, the PROM Programmer utility program
is used to program the PAL device.

Sample PAL Design Specification (Source File)

PAL16R4 <------------­
PATODOO <------------­
SAMPLE PROBLEM <-----­
DECEMBER 4th 1980 <--­
CF CH CJ AL AM AZ CO XD

PAL PART NO. (MUST START AT LINE L COLUMN 1)
PATTERN NO
NAME OF DEVICE' (MUST START ON LINE 3)
AUTHORS' NA~E, DATE etc. OR LEAVE BLANK
LOCK GND GND FF CW /Q4 /03 /02 /01 CV CU VCC <-----

pm LIST (MUST START ON LINE:;)
CONSISTS OF 20 SYMBOLIC NAMES
WHICH ARE CONSECUTIVELY ASSIGNED
TO PIN 1 THRU 20

01 = CH + CH + CH + CH

04 XD + XD +XD +/LOCK*04 + ILOCK.04 + ILOCK*04

CU

CW /CJ*/AZ*/04 + /CJ~/AZ*/04 + /CJ*/AZ*/04 + IAZ*/01*/04 +
/AZ*/01*/04 + /AZ*/01*/04

> EOATIONS

DESCRIPTION: THIS IS A SAMPLE PAL DESIGN SPECIFICATIONS PROBLEM.
FUNCTIm~ TABLE OR OTHER FORMS OF INFORMATION COULD BE
PROVIDED HERE

--------- PALASM STOPS COMPILING AT FIRST UNDEFINED SYMBOL

82

Prerequisites
Any configuration STARPLEX/
STARPLEX II Development System
with a PROM Programmer Interface
(SPM-A02) package installed.

USER DEFINED DATA- 9-'" ""'M""
.------'---....!....~

STARPLEX
PAL ASSEMBLY

RUN

STARPLEX
PROM

PROGRAMMING
RUN

~
~

FUSE PATIERN PLOT
HEX FORMAT

_ SHORT HEX FORMAT
BHLF FORMAT
BPNF FORMAT
MAP

Figure 1. System Flow Chart for Programming PROM/PAL PROMs

83

Order Information
SPM-A02

SFW-A200

Documentation

PROM Programmer Interface
Package (includes Universal PROM
programmer software and PALASM
- SFW-A200)

Universal PROM Programmer
Software (includes PALASM)

420305788-001 STARPLEX Software Reference
Manual

420306183-001 STARPLEX PROM Programmer
User's Manual

PAL Family Data Handbook'

'Number not available at the time of printing.

84

W National Semiconductor

STARLINIrM

STARPLEX II™·to·MDS Comlink

• Permits communication between
ST ARPLEX II and INTEL M DS230 or
M DS800 systems

• Simple operating procedures

Product Overview

STARLINK is a serial link between a STARPLEX II
and an INTEL MDS230 or 800 development system.
The link provides the capability of transmitting or
receiving data files over a 50-foot cable connected to
the systems' RS232 ports. Because the MDS800
does not provide an extra serial port, an 1/0 expan­
sion board such as the BLC-517 is required for
operation of STARLINK.

The STARLINK kit consists of the cable with con­
nectors and three diskettes containing software ne­
cessary for operation of the link. Included are a
STARPLEX II diskette and two MDS diskettes (one
single density and one double density). For MDS800
users, a separate kit is available (Part No. AEE-A002,
AEE-90-A002) which includes the BLC-517 1/0 ex­
pansion board.

The file transfer procedure is as follows:

• Enter the command line for the applicable MDS
system into the MDS keyboard.

85

• No changes required to either system

• All necessary hardware and software
included

For MDS230 enter - :fx:XFER MDS230 follow­
ed by a carriage return.

For the MDS800 enter - :fx:XFER MDS800
followed by a carriage return.

Note: x refers to the disk drive.

• Enter the name FDSx:XFER into the STARPLEX
keyboard and then press the RETURN key. The
STARPLEX II transfer program then prompts
with an asterisk" *" to indicate that com­
mands may now be entered.

• When the asterisk appears on the screen, enter
one of the appropriate commands listed below.

• The END key is depressed to exit from the
Transfer program. Data is then saved and files
are closed in an orderly fashion.

• The HELP key enables the user to review the
list of applicable STARLINK commands. The
HELP key is a feature of the STARPLEX II
Development System which is available to the
development engineer at all stages of his pro­
gram development.

Once the MDS transfer program is loaded on the
MDS system, all commands to send or receive files
are issued from the STARPLEX system. No other in·
teraction is required with the MDS system. The form
of commands that are issued on the STARPLEX
system are as follows:

SEND<STARPLEX file> [[TO)MDS
file][$Delete)

RECEIVE<STARPLEX file>[[FROM)MDS
file][$Delete)

Where,

STARPLEX file

TO MDS file

FROM MDS file

is the name of the file to be
sent or received by the
STARPLEX II system.

is the optional parameter
that specifies the name of
the MDS file that is sent to
the MDS system from the
STARPLEX II system. If this
filename is not specified,
the STARPLEX filename is
used with the device code
changed to Fx: from FDSx:

is an optional parameter
that specifies the name of
the file that is received from
the MDS system. If this
filename is not specified,
the STARPLEX II filename is
used and changed to FDSx:
from Fx:

86

$D or $ DELETE If the filename to be sent or
received already exists, the
existing file is deleted prior
to transfer. If $D is speci·
fied, the file is automatically
deleted. If $D is not speci·
fied, the system prompts the
user for permission to delete
the existing file with the
following message:
Delete filename? (Y or N)

All data transmissions include a checksum and reo
transmissions are performed automatically. Fatal
systems errors are reported to the user with descrip·
tive information so that error recovery is simplified.

Order Information

Part Number Description

For use under STARPLEX:
AEE·A001 STARLINK - SPX/MDS-220/230
AEE·A002 STARLINK - SPX/MDS-800/888

Link with BLC-517 1/0 Expan·
sion Board

For use under STARPLEX II:
AEE·90·A001 STARLINK - SPX II/MDS·2001

230 Link
AEE·90·A002 STARLINK - SPX II/MDS-8001

888 Link with BLC-517110 Expan·
sion Board

~ National Semiconductor

Impact Printer

• Compatible with STARPLEX™ and
STARPLEX WM Development Systems

• 150 CPS at 10 CPI

• 100% duty cycle

• 9 x 7 dot matrix

Product Overview

The Centronics Model 150 Impact Printer is a light,
compact, versatile, and rugged printer designed for
most applications where size is a consideration. It is
capable of 100% duty cycle applications, thus
making it a highly efficient and high·speed printer.
Its snap-on tractors, top·of-form feature, and con·
densed print capability allow the printer to be able to
print out a variety of computer output such as
computer program listings, business forms, finan­
cial data and labels. The printer includes a cassette
ribbon system, self-test, and paper-empty detection
for operator convenience.

87

• Bidirectional, logic seeking

• Uses standard cut-sheet, fan-fold paper

• 40, 80, and 132 column format

• Light, compact, rugged

Specifications

Operator
Cantrall
Indicators

Data Input

Power on/off switch
Select switch
Select light
Paper empty light
Power light

7-Bit ASCII parallel, TTL levels with
strobe, acknowledge, busy 8th bit
selects second character set. 768
character buffer. Remote
select/deselect.

Temperature Operating: 5°C (40°F) to
40°C (100°F)

Storage: -20°C (-28°F) to
71°C (160°F)

Humidity Operating: 10% to 80%

Storage: 5% to 90%
INo condensation)

Electrical 60Hz, 115VAC, +10% -15% of
Requirements nominal

50Hz, 230VAC, +10% -15% of
nominal

Physical (Dimensions exclusive of roll paper
Dimensions holder)

Weight 22.2 Ibs. (10kg.)

Height 5.9 in. (15 cm.)

Width 14.9 in. (38 cm.)

Depth 13.75 in. (35 cm.)

Standard 150 CPS at 10 CPI
Features 5, 8.18, 10, 16.36 CPI

9 x 7 dot matrix
Bidirectional, logic seeking
Cassette ribbon
Adjustable snap·on tractors
Paper-empty detection
Variable top-of-form
96-character ASCII

88

Standard
Features
(Cont.)

Full 1-line buffer
Paper tear bar
Self-test
Auto line feed

Prerequisites

- STARPLEX Development System Operating
System Software Rev. H or later.

- STARPLEX II Development System Operating
System Rev F or later.

Order Information

For STARPLEX Development Systems:
SPM-A60 Impact Printer (Centronics 150)
For STARPLEX II Development Systems:
SPM-90-A60 Impact Printer (Centronics 150)

~ National Semiconductor

NS16032 In-System Emulator (ISE/161M)

• Operation up to 6 M Hz

• Emulation of NS16032 Central Process-
ing Unit, NS16082 Memory Manage-
ment Unit, NS16201 Timing Control Unit

• Host resident high-level language and
assembly language symbolic debugger

• Generalized event driven system

• Memory mapping, up to 30 K bytes

• Write protection/detection of 2 K byte
memory blocks

• Program flow tracing, up to 255 non-
sequential fetches

Description

The NS16032 In-System Emulator (ISE/16) is a power­
ful tool for both hardware and software development
of NS16032 microprocessor-based products.

When used with a host system such as VAX (VMS) or
STARPLEX II Development Systems, ISE/16 emulates
a complete NS16000™ chip set. This chip set in­
cludes the 16032 Central Processing Unit (CPU), the
16082 Memory Management Unit (MMU), and the
16201 Timing Control Unit (TCU). ISE/16 allows users
to test and debug both hardware and software in their
own hardware environment. ISE/16 operates in either
of two modes: emulation mode, when ISE/16 is act­
ually running the user's program, or monitor mode,
when ISE/16 is communicating with the user via the
host system.

ISE/16 is a complete unit, including an internal clock
oscillator and 30K bytes of dedicated user's ISETM
memory. With ISE/16, users can easily stop emulation

89

• Complete bus activity trace

• Qualified tracing

• Pre-, post-, or center-triggering on trace

• Count-down event counter

• Count-up execution timer/counter

• Supports Memory Management Unit
functions

• Runs on VAXl11 (VMS) and
STARPLEX IITM hosts

• Hierarchical help facility (on-line
manual)

• Self-diagnostic

and examine the contents of CPU registers, slave
processor registers, and memory.

ISE/16 consists of the ISE hardware, the ISE monitor,
a host-dependent debugger (IDBG16), an RS232 serial
port cable and manual.

ISE/16 hardware is the circuitry required for emula­
tion of a user's target system. It interfaces to the host
system with an RS232-compatible serial link and pro­
vides a second RS232 port for an optional terminal
connection. The ISE/16 hardware also has three tar­
get cables for connections to the target system. The
target cables plug into the target system CPU, MMU,
and TCU sockets.

The ISE monitor is the ISE hardware control program
that monitors the host system serial data link. The
ISE monitor receives monitor commands from the
host system, acknowledges these commands, and
generates the appropriate responses. The ISE moni­
tor also controls the target system emulation pro­
gram.

IDBG16 is the interactive debugger program for
ISE/16. It runs on the host system and makes the host
system facilities available to the ISE/16 user. IDBG16
automatically translates commands entered at a
host system terminal to the equivalent ISE monitor
commands, and communicates with the ISE monitor
via the serial data link.

Hardware Description

The ISEl16 hardware is housed in three enclosures: the
ISE Support Box, the Emulator Pod, and the TTL Sta·
tus Pod. Figure 1 is a block diagram of ISE/16 hard­
ware. The ISE/16 enclosures are described in the
following paragraphs.

TTL
STATUS

POD

The ISE Support Box is the largest enclosure. It con·
tains the emulation support circuits for trace, break·
points, and mapped memory. It also contains power
supplies and the hardware forthe RS232 serial ports.

The Emulator Pod contains the 16032 CPU, 16082
MMU, and 16201 TCU required for target system emu·
lation. It also contains the ISE Monitor firmware and
houses the ISE/16 controls and indicators. Figure 2
shows the location of the ISE/16 controls and indi­
cators. Table 1 lists the function of each switch and
LED.

The Emulator Pod connects to the ISE Support Box
through a 4·foot twisted·pair cable assembly. Connec-

ISE SUPPORT BOX r -;S;;P;;'T ;;;;;RO- -,

TLlR5127-1

FIGURE 1. 18E116 Block Diagram

MMU SWITCH

ON~OFF

NMI
(HANG·CLEAR)

SWITCH

@
RESET

SWITCH

@
POWER ON

o
MONITOR

RUN

o
DIAGNOSTIC

FAIL

o

FIGURE 2. 18E116 Controls and Indicators

90

DIAGNOSTIC
RUN

o
HANG·CLEAR

REQUEST

o

TLlR5127·2

tions to the target system are made with 12-inch target
cables. One target cable is provided for each member
ofthe 16000chip set. (CPU, MMU, and TCU).

a high-level language debugger program, drives the
ISEl16 unit. IDBG16 runs on the host computer and it
communicates with the ISE/16 unit. Optionally, IDBG16
can also communicate with a terminal connected to
ISE/16. The ISE/16 unit communicates with the IDBG16
program (running on the host) only while the ISE/16
unit is running the monitor program (in monitor mode),
not while it is running the user's program (in emula­
tion mode).

The Status Pod is the smallest enclosure. It provides
TTL-compatible input and output Signals for use dur­
ing ISE operation. The Status Pod has eleven leads
and seven binder posts that can be connected to
either the target system or test equipment such as
logic analyzers or osci Iloscopes. Table 21 ists the func­
tion of each lead and post on the Status Pod. The
Status Pod connects to the ISE Box front panel status
connector via a 6-foot cable.

IDBG16 software is available for VAXl11 (VMS) and
STARPLEX II hosts.

IDBG16, The ISEl16 Debugger
ISEl16 Software Overview

The ISE/16 software consists of two modules; the ISE
monitor, residing in firmware on the Emulator Pod, and
the ISE Debugger (IDBG16), residing in the host sys·
tem. The monitor controls the ISE hardware. IDBG16,

IDBG16 is user compatible with the standard non·ISE
NS16000 Cross-Software Debugger, DBG16. Compati·
bility minimizes learning time for users of the various
development tools. IDBG16 fully supports all the
power debugging and emulation facilities provided by

Table 1. ISEl16 Control and Indicator Functions

Control/Indicator Function

MMU Switch When on, it enables MMU operation (Mbit in CPU Configuration
Register set to 1). When off, disables MMU (Mbit set to 0).

NMI Switch When pressed, <HANG·CLEAR> occurs.
<HANG·CLEAR> restores control to ISE monitor.

RESET Switch When pressed, resets the ISE hardware.
POWER ON Indicates power to ISE.
MONITOR RUN Indicates ISE monitor is running.
DIAGNOSTIC RUN Indicates ISE diagnostics are running.
DIAGNOSTIC FAIL Indicates failure during diagnostic tests.
HANG·CLEAR REQUEST Indicates CPU has stopped executing instructions.

Table 2. Status Pod Signal Description

Status Pod Label ISE Function

1-WHT -USRCLK-U ISO (input sync 0)
2-BLK-GND Common Ground
3-BRN-EXTO-U EXTO (external input 0)
4-RED-EXT1 EXT1 (external input 1)
5-0RN-EXT2 EXT2 (external input 2)
6-YEL-EXT3 EXT3 (external input 3)
7-GRN-EXT4 EXT4 (external input 4)
8-BLU-EXT5 EXT5 (external input 5)
9-VI0-EXT6 EXT6 (external input 6)
10-GRY-EXT? EXT? (external input 7)
11-WHT -USEBRKlU IS1 (input sync 1)

TBRUN Multi-Processor Sync
BK SYNCH/-U DO (output sync)
TR SYNCH/-U TO (trace sync)
GND Common Ground
TSYNC311 Not Used
TSYNC21 Not Used
GND Common Ground

91

the ISEl16 hardware, and supplements these features
with a very powerful software-based program debugg­
ing environment.

The basic debugging features of I DBG16 are:

(1) Both high-level and assembly languages are sup­
ported.
(2) Breakpoints can be set at the source code level,
even when using high-level languages.
(3) Variables can be accessed by their source code
names, i.e., IDBG16 is symbolic in nature.
(4) Procedure parameters and local variables are easi­
ly displayed.
(5) Structured data types and pointers are easily
displayed.
(6) Both command and history fi les are supported.
(7) Memory can be displayed in many different ways,
including a disassembly mode displaying memory as
16032 instructions.
(8) All the emulation and debug facilities provided by
the ISEl16 hardware are supported.

The ISE Monitor

When the ISE/16 unit is not running an emulation pro­
gram, it is running a program called the ISE monitor.
The monitor communicates with IDBG16 and it pro­
vides a command protocol that allows the host com­
plete control of the ISE/16 hardware.

The monitor is invisible to the user, who normally com­
municates with the system via the friendly IDBG16
program.

Optional Terminal Feature

As an option, the ISE monitor communciates with a
terminal connected to the ISE/16 unit. This terminal
also serves as a terminal for the host. Thus the ISEl16
unit and the user's terminal share one RS232 port from
the host.

Operation with the optional terminal is called Trans­
parent Mode; operation without the optional terminal
is called Stand-Aside Mode.

Conversion Kit for NS16008ln-System Emulation
(Available December 1983)

An optional conversion kit is available for those who
wish to do NS16008 development work. Contained in
this kit are the following: ISEl08™ Emulator Pod,
ISEl08 Symbolic Debugger (IDBG08), ISEl08 Monitor
Firmware, and ISEl08 Manual. Thus, because the ISE
Support Box can be used for either ISEl16 or ISE/08
development work, a user wishing to do NS16008
development work but who already has an ISEl16 unit
can purchase this conversion kit (in comparison to
the purchase of an entire ISEl08 unit).

ISEN6 Operation

Human Interface

ISE/16 is easy to learn and easy to use. The software in­
cludes a complete on-line manual. Invoking the

92

"H ELP" command gives a summary of all ISEl16 com­
mands, an individual command, or an individual com­
mand's parameters. This feature helps the user get his
work done quickly with less frustration.

Real-Time Emulation

The ISE/16 unit has its own CPU, MMU, and TCU com­
ponents. These components are connected to the
target system via cables, and they perform the same
functions, with close to the same timing character­
istics as they would if mounted in the target system.
ISE/16does not add wait states in its operation.

Emulation memory, resident in ISE/16, can be used in
lieu of target system memory. This feature is imple­
mented by the mapping capabilities. ISE/16 can run
and debug programs, without a working target
system.

User target memory address space (whether it exists
or not) can be mapped onto the ISE/16 emulation mem­
ory. A memory read or write operation to an address
mapped onto emulation memory is performed on em­
ulation memory only and not on the target system's
memory.

Memory from the entire 24-bit physical address space
of the CPU or MMU can be mapped onto emulation
memory if the followi:1g restrictions are observed:

(1) Up to four, non-contiguous segments can be defin­
ed.
(2) The address range mapped by a segment must lie
within an integral 128K byte division of the address
space, e.g. 00000 to h'1 FFFF, or h'20000 to h'3FFFF.
(3) The address range mapped by a segment must
start at the beginning of an integral 2 K byte division
of the address space, and end at the end of one such
division e.g. h'OO to h'FFF, or h'2800 to h'37FF.
(4) The total memory space mapped by all segments
must not exceed 30 K bytes.
Associated with the emulation memory mapping
scheme is a capability for write protection/detection.
Any 2 K byte block within any of the four 128 K byte
segments selected can be protected. A write opera­
tion to a protected memory segment causes an 1M (Il­
legal Map) event to occur. Write operations to pro­
tected memory are inhibited only if they occur on
emulation memory. They are not inhibited if they
occur in target system memory.

Related commands:

MC - Map Create
MP- Map Print

Note: For the syntax of these, and other commands listed in this section,
refer to the IDBG16 Command Summary.

Generalized Events

To provide a versatile way of observing and controlling
the significant state changes on the microprocessor,
ISE/16 allows the use and definition of "events". In
general, a simple event is a breakpoint, a bus change,

or a significant observation. An event can also be a
logical combination of simple events (an Event-Ex­
pression).

Simple Event Definition

The simple events are:
• Breakpoints
• Latched Breakpoints
• Counter Done
• Status Pod Inputs

• Illegal Map
• Trace Done

Breakpoint Events

ISE/16 provides three common breakpoint events,
named A, B, and C. The breakpoint event can be used
in two ways:

(1) Execution Breakpoint - occurs just prior to. execu­
tion of an instruction fetched from a specified ad­
dress.
(2) Memory Reference Breakpoint -occurs on a match
when sampling:

• Address Bits

• Data Bits
• External Status Bits
• User/Supervisor Pin
• High Byte Enable Pin
• Data Direction Pin
• And where any of the above options or bits can

be masked.

Eithervirtual or physical addresses can be sampled.

ISEl16 also provides a range breakpoint event, R. The
range breakpoint occurs on any read or write opera·
tion to an address in a specified address range.

All breakpoints can cause emulation to stop im·
mediately. Also, if used with the No Stop (INS) option,
breakpoints can be combined with other events to
cause a variety of action.

Latched Breakpoint Events, Counted Events

Latched breakpoint events, named LA, LB, LC, occur
at some time after a cycle where the corresponding
breakpoint event (A, B, or C) has taken place. The oc·
currence of a latched breakpoint event remains as·
serted until cleared.

Events, instructions, memory cycles, and clock cycles
can be counted with the breakpoint counter (up to 12
bits). Upon reaching a certain count provided by the
Define Counter (DC)command, the Counter Done (CD)
event takes place.

Other Simple Events

The other simple events available are:

(1) ISO, lSi - Status Pod Input Sync ° and Input Sync 1.
(2) 1M - Write operation to write-protected address.
(3) TO - End of trace.

93

Related commands:

BC - Breakpoint Create
BD- Breakpoint Delete
DP- Breakpoint Print

Event-Expressions

An event-expression is a Boolean expression made up
of simple events, i.e., a logical combination of simple
events. This allows the user to generate many dif·
ferent event combinations, tailored to system activity
of particular interest to the user. These generalized
events are used by many ISEl16 commands such as
stop, trace, event counting, etc. Event·expressions
provide creative and flexible debugging procedures.

Event-expressions can be evaluated as either logically
true or logically false. Valid logic operations for event­
expressions are: Negation (NOT), AN 0, and OR.

Stopping Execution on Events

A common debugging activity is to stop emulation on
the occurrence of an event of interest. Stopping emu­
lation puts ISEl16 in the monitor mode so the user can
examine and alter the state of the CPU, memory, and
ISE/16 functions. Emulation can be stopped on either
Simple events or event-expressions.

Related commands:

OS - Define Stop
BS - Breakpoint Create

Flexible Tracing

ISEl16maintains a 255-entrytrace memory. Trace memo
ory captures bus activity in one of two trace modes.
The trace modes are:

• Program Flow Trace
• Memory Bus Trace

Program Flow Trace

The Program Flow Trace mode captures the CPU Pro­
gram Counter address of 255 non-sequential instruc·
tions. This mode also maintains a count of sequential
instructions executed between each non·sequential
instruction stored in the trace memory.

Memory Bus Trace

The Memory Bus Trace mode captures a summary of
system parameters during 255 memory bus access
cycles. The following parameters are captured:

• Address bus contents
• Data bus conter.ts
• CPU Status (data transfer, non-sequential fetch,

interrupt acknowledge, etc.)

• Status Pod External Inputs
• Statesofthe Following CPU Pins:

PFSC - Program Flow Status (start of. instruction)
UNS - User/Not Supervisor
NHBE- Not High Byte Enable
NDDIN - Not Data In

A tracing event can qualify the memory bus tracing
mode. This event allows the user to reduce the number
of events captured.

When enabled, tracing in either mode continues until
a specified terminating event occurs. The actual end
of tracing can be delayed after the terminating event
by a count of 1 to 255. This allows trace data to be cap­
tured before, after, or around the terminating event.

Execution Timer

The execution timer is a 24-bit counter with an over­
flow flag that may be used to count events, instruction
cycles, memory cycles, or clock cycles. The timer may
be programmed to start and stop counting on specific
events. This permits using the execution timer to de·
termine relative timing differences between various
events. One use of this feature is to measure software
or hardware performance.

Related Commands:

DE - Define Execution Timer
LD - List Definitions

Event Trigger for External Test Equipment

ISEl16 events can trigger external test equipment,
such as oscilloscopes and logic analyzers. This test
equipment can be used in conjunction with ISE/16
debugging features to solve system timing problems.
Two external trigger sources are provided:

• General Event (or Event-Expression)
o Trace Trigger Event (i .e., an event that causes an

entry into trace memory.)

The external trigger signals are available at two status
pod outputs:

o BKSYNCH/-U (General Event)
o TRSYNCH/-U (Trace Trigger Event)

Related Commands:

DO - Define Output Sync Command

ISEl16Timing Options

ISEl16 includes the following timing options:

o Sampling time can be set to sample either virtual
or phYSical addresses

o Status Pod external lines can besampled at either
data valid or address valid times

o The emulation clock frequency can be set to one
of the following frequencies:

1.5MHz
3.0MHz
6.0MHz
Target Board Frequency

Note: Selection of target board frequency may require synchronous and/or
asynchronous delay compensation. Refer to ISE/16 User's Manual, Chapter
6, fordetails.

Related Commands:

SO - Select Options

94

Self-Test Diagnostics

At power-up or reset, ISEl16 runs a diagnostic program
to verify ISE software integrity and proper hardware
function.

Required User-Supplied Equipment

For use under VAX111 systems:

o Valid DEC VAX111 configuration, with available
RS232 port.

o VMS Operating System, Version 3.0 or later.
o NSX·16 Cross Software Package, or NS-ASM-16

NS16000 Cross-Assembler Package.

For use with STARPLEX II systems:

o STARPLEX II Development System.
o STARPLEX II Operating System, Version G or

later.
o SFW-90-A010 NS16000 Cross-Assembler

Package.

For use with a system that has a Berkeley 4.1 based
UNIXTM Operating System:
[Contact Marketing for Availability Information.]

o Valid computer system with an available RS232
port.

o Appropriate cross software package.
[Contact Marketing for further information.]

Specifications

Environmental

Physical

ISE Support Box-

Emulation Pod-

TTL Status Pod-

Cable Lengths-

Operating Temperature
+ 10°C to + 40°C
Storage Temperature
- 20°C to + 65°C

3A @ 115 VAC, 50/60 Hz,
single phase
1.5A @ 220VAC, 50/60 Hz,
single phase
Approximately 1170 BTU.

Height: 4.125 in. (10.5 cm)
Wi.dth: 19.0 in. (48.3 cm)
Depth: 17.5 in. (44.5 cm)

Height: 2.25 in. (6.4 cm)
Width: 9.25 in. (23.5 cm)
Depth: 14.0 in. (35.6 cm)

Height: 1.0 in. (2.5 cm)
Width: 3.125 in. (7.9 cm)
Depth: 6.125 in. (15.6 cm)

ISE Support Box to Emula­
tion Pod: 4.0 ft. (1.22M)
ISE Support Box to TTL
Status Pod: 6.0 ft. (1.83 M)

Emulation Pod to Target
Board: 1.0 ft. (0.30M)

Electrical

Operating
Frequency-

Target Interface
Electrical

User selectable to one of the
following:

1.5MHz
3.0MHz
6.0MHz
Target Board Frequency

Note: Selection of target board frequen­
cy may require synchronous and/or
asynchronous delay compensation.
Refer to ISE/16 User's Manual,
Chapter 6, for details.

Characteristics - See Tables 3 through 5.

Order Information
Complete ISEl16 Units

NS-ISE-16 ISEl16 (NS16032), 115VAC for
VAXl11 (VMS) Computer
System.

SPM-90-A1632 ISEl16 (NS16032), 115VAC for
STARPLEX II Development
Systems.

NS-SYS-2004 ISEl16 (NS16032), 115VAC for
UNIX as based operating
systems. [Contact Marketing
for Availability Information.]

95

Conversion Kits to Allow for ISE/DS Emulation
[Contain ISEIOa Emulator Pod, ISE Debugger
(IDBGOa), appropriate ISEIOa monitor firmware, and
ISE/Oa manual.]

AEE-90-A160a ISEl16 to ISEIOa kit for
STARPLEX II use.

AEE-ISE-oa

AEE-ISENlx-oa

Documentation

420306675-002

ISEl16 to ISEIOa kit for VAXl11
(VMS) use.
ISEl16 to ISEIOa kit for UNIX
based as systems use.
[Contact Marketing for
Availability Information.]

ISEl16 User's Manual
(Included with NS-ISE-16, and
SPM-90-A1632.)

Table 3. Electrical Characteristics for TCU Interface

Input AndlOr Propagation
Signal Name Interface Device Output Current Delay Time Tpd*

IOH IOL

OUTGOING SIGNALS:

NT80 748244 15mA 64mA 14.6n8
CTTl 748244 15mA 64mA 14.6n8
FClK 748244 15mA 64mA 14.6n8
NOBE 748244 15mA 64mA 14.6n8
NRO 748244 15mA 64mA 14.6n8
NWR 748244 15mA 64mA 14.6n8
NR8T 748244 15mA 64mA 14.6n8
ROY 748244 15mA 64mA 14.6n8

IIH IlL

INCOMING SIGNALS:

NPER 748244 50llA 400ilA 14.6n8
NCWAIT 748244 50llA 400ilA 14.6n8
NWAIT1 748244 50llA 400ilA 14.6n8
NWAIT2 748244 50llA 400ilA 14.6n8
NWAIT3 748244 50llA 400ilA 14.6n8
NWAIT4 748244 50llA 400ilA 14.6n8
XCTL1 748244 50llA 400ilA 14.6n8
NCEN 748244 50llA 400ilA 14.6n8
NR8T1 748244 50llA 400ilA 14.6n8

*Interface device, plus cable.

Table 4. Electrical Characteristics for MMU Interface

Input AndlOr Propagation
Signal Name Interface Device Output Current Delay Time Tpd*

IOH IOL

OUTGOING SIGNALS:

A24 748244 15mA 64mA 14.6n8
MMUMINT 748244 15mA 64mA 14.6n8
NPAV 748244 15mA 64mA 14.6n8
NABT 748244 15mA 64mA 14.6n8
NFLT 748244 15mA 64mA 14.6n8
NHLOAO 748244 15mA 64mA 14.6n8

IIH IlL

INCOMING SIGNALS:

NHOLO 748244 50llA 400ilA 14.6n8

* Interface device, pi us cable.

96

Table 5. Electrical Characteristics for CPU Interface

Input AndlOr Propagation
Signal Name Interface Device Output Current Delay TimeTpd*

IOH IoL ~H IlL

BIDIRECTIONAL SIGNALS:

N5PC none - - - - 1.4n8
AD15 8T28 10mA 48mA 25/AA 200/AA 18.4n8
AD14 8T28 10mA 48mA 25/AA 200/AA 18.4n8
AD13 8T28 10mA 48mA 25/AA 200/AA 18.4n8
AD12 8T28 10mA 48mA 25/AA 200/AA 18.4n8
AD11 8T28 10mA 48mA 25/AA 200/AA 18.4n8
AD10 8T28 10mA 48mA 25/AA 200/AA 18.4n8
AD09 8T28 10mA 48mA 25/AA 200/AA 18.4n8
AD08 8T28 10mA 48mA 25/AA 200/AA 18.4n8
AD07 8T28 10mA 48mA 25/AA 200/AA 18.4n8
AD06 8T28 10mA 48mA 25/AA 200/AA 18.4n8
AD05 8T28 10mA 48mA 25/AA 200/AA 18.4n8
AD04 8T28 10mA 48mA 25/AA 200/AA 18.4n8
AD03 8T28 10mA 48mA 25~ 200/AA 18.4n8
AD02 8T28 10m A 48mA 25/AA 200/AA 18.4n8
AD01 8T28 10mA 48mA 25/AA 200/AA 18.4n8
ADOO 8T28 10mA 48mA 25/AA 200/AA 18.4n8

OUTGOING SIGNALS:

A23 745244 15mA 64mA - - 14.6n8
NILO 745244 15mA 64m'A - - 14.6n8
5TO 745244 15mA 64mA - - 14.6n8
5T1 745244 15mA 64mA - - 14.6n8
5T2 745244 15mA 64mA - - 14.6n8
5T3 745244 15mA 64mA - - 14.6n8
NPF5 745244 15mA 64mA - - 14.6n8
NDDIN 745244 15mA 64mA - - 14.6.n8
NAD5 745244 15mA 64mA - - 14.6n8
UN5 745244 15mA 64mA - - 14.6n8
NHBE 745244 15mA 64mA - - 14.6n8
HHLDA 745244 15mA 64mA - - 14.6n8
A22 745244 15mA 64mA - - 14.6n8
A21 745244 15mA 64mA - - 14.6n8
A20 745244 15mA 64mA - - 14.6n8
A19 745244 15mA 64mA - - 14.6n8
A18 745244 15mA 64mA - - 14.6n8
A17 745244 15mA 64mA - - 14.6n8
A16 745244 15mA 64mA - - 14.6n8

INCOMING SIGNALS:

T5Y5PWR 1N4002 - - - - -
NINT 745244 - - 50/AA 400/AA 14.6n8
NNMI 745244 - - 50/AA 400/AA 14.6n8
NHOLD 745244 - - 50/AA 400/AA 14.6n8

"Interface device, pi us cable.

97

Documentation Conventions

The following documentation conventions are used in
describing the IDBG16 commands and parameters.
Upper-case and lower-case letters are used in these
conventions; any combination of upper-case and
lower-case letters may actually be used when
entering commands.

UPPER-CASE letters show the command letters, para·
meters and options. The names must be entered
exactly as shown.

Spaces and blanks have been added for readability.
When actually entering commands, spaces and blanks
may only appear between the command and its para­
meters and between the parameters and the local
radix.

IDBG16 Command Summary

< >-angle brackets enclose descriptive names (in
lower-case) for user-supplied parameters/options.

{} - braces enclose more than one item out of which
one, and only one, must be used. The items are sep­
arated from each other by a logical OR sign "I".

[]- brackets enclose optional item(s).

I-logical OR sign separates items out of which one,
and on Iy one, may be used.

. .. -three consecutive periods indicate optional rep·
etition of the preceding item.

The following is a comprehensive list of the IDBG16 commands. Commands are in alphabetical order. See the
ISEl16 User's Manual for a detai led description of each command.

Command

Begin

Breakpoint Create

Breakpoint Delete
Breakpoint Revive
Breakpoint Print

Command File

Debugger String
Define Counter

Syntax

B [<file>] [/NL] [IN I] [fR] [/Z]

Function

(if no switches) Loads the program <file>
into target board memory, and initializes
registers.
INL- No Load
INI- No Initialize
IR-Reset
IZ - Zero-Fill data areas

BC [A,I B,IC,] <address> [INS] Creates execution breakpoint A,B, or C at
specified <address>.
INS-No Stop

BC [A,IB,IC,] {<address> I <mask>} <breakpoint-options> [INS]
Creates memory reference breakpoint A, B, or
C at address specified by <address> or
<mask> and with specified
<breakpoi nt-options>.
INS- No Stop

BC R, <address·range> [INS] Creates range breakpoint R at specified
<address-range>.

BD [AIBIClR]
BR [AIBIClR]
BP [AIBIClR]

@ {<file> I <n>}

INS-No Stop
Deletes specified breakpoints.
Revives specified breakpoint.
Prints address and conditions of
specified breakpoints.
Executes command <file> or debugger
string sequence beginning at <n>.

$ <n> = [<string>] Sets debugger string <n> to <string>.
DC <n> [/B = <event-expression>]

DC/R
[/C = {<event-expression> IIIMICl]

Defines set up for ISE counter.
<n> - Number of counts
IB- Begin event
IC - Counter type
IR- Reset

98

IDBG16 Command Summary (Continued)

Command

Define Execution­
Timer

Define Output Sync

Define Stop
Define Trace

Disassemble

Go

Help

In

List Calls
List Definitions

List Files
List Information
List Modules
List Procedures
List Strings
List Trace

Syntax Function

DE [IB = <event-expressio[1>] [IE = < event-expression>]
[/C = {<event-expression> IIIMIC}]

DE/R Defines set up for ISE execution timer.

DO <event-expression>

IB- Begin event
IE - End event
IC - Count type
IR-Reset
Defines output sync event.

DS <event-expression> Defines stop event.
DT [IE = <event-expression> [ID = <n>]]
[/P 11M [= { <address> I <mask>}] <qualify-options> III

Defines the end, delay, and trace mode
parameters for trace.
IE - End event
ID - Delay count
IP- Program Flow mode
1M - Memory Bus mode
IR- Reset

D <address-range> [II =<n>] [INA]
Disassemble instructions in <address-range>.
INA-No Address
11- Number of Instructions to be disassembled.

G [IF = <address>] [[IT =] <breakpoint>]
Starts execution of the program at the
current PC address of from the <address>.
Execution continues until <breakpoint>.

H [<string>] Displays general help or command syntax
or parameter syntax.

I {<address> I <register>} [<radix>]
<value1>
[<value2>] Checks that contents of <address> or

<register> are in the range specified by

LC [<n>]

LD [ITI/EI/Cl/OI/S]

LF [<line> [/<file>]]
LI
LM
LP
LS

LT [<n> I*I/AI/J]

<value1> and <value2 >, inclusively.
Lists first <n> entries in call chain.
Lists current definitions.
IT - Trace definition
IE - Execution timer definition
IC - Counter definition
10 - Output sync definition
IS - Stop definition
Lists lines in <file>.
Lists current IDBG16 status.
Lists modules in current program.
Lists procedures in current program.
Lists current debugger string values.
Lists nine trace entries centered around
entry <n> or around the trigger point (*).
lA-Ail entries
IJ-Jumps only

99

IDBG16 Command Summary (Continued)

Command

Map Create

Map Print

Memory Fill

Memory Move

Memory Search

On

Print

Print Address

Protection Create

Potection Print

Quit

Repeat
Replace

Select Echo
Select Full
Select History

Select Link

Select Module

Syntax Function

MC [<address-range>] [IS = {AIBICID}] [1M =<n> I/NM] [/PI/NP]
Creates segment assignment and mapping
for special <address-range>.
IS-Segment assignment
1M - Mapping to ISE block <n>
INM - No Mapping
IP - Write Protection
INP- No Protection

MP [IS = {AIBIClD}] Prints current mapping for specified
segment.

MF <address-range> [<radix>]
<value>

Fills memory at <address-range> with
<value>.

MM <address-range>,<address> [<radix>]
Moves memory from <address-range> to
<address>.

MS <address-range> [<radix>]
<value>

Searches for <value> in <address-range>.
o {FAILIRESETINMIIEXIT [({AIBICIRISIHC})] {@ <n> I/O}

Sets IDBG16 response on condition:
@ <n> - Executes debugger string

sequence on condition beginning
with $ <n>,

10 - Response Off, restores normal
response.

P [<address-range> I<register-range>] [<radix>]
Prints contents of <address-range> or
<registers>.

PA <address> Prints absolute address and module area
associated with <address>.

PC <address-range> [/UWI/URI/SWISR] [IVI/NV] [/RI/NR]
[/MI/NM] [1T=<gn>] [/P]

Creates protectionltranslation for pages
specified by <address-range>.

PP [<address-range>] Prints protection level status for pages
specified by <address-range>.

Q[/S] Terminates session.
IS- Save IDBG16 status in IDBG16.1ND

<cr> Repeats previous command.
R {<address> I <register>} [lNV] [<radix>]

[<value>] Replaces contents of <address> or

SE[/O]
SF [10]
SH {<file> [/F]I/O}

SL <file> [,<file>] [/L]

SM<module>

<register> with <value>.
INV - No Verify
Selects echo mode. 10 - Echo Off.
Selects full symbolic PC. 10- Full Off.
Selects history file <file>:
IF - Full history (with responses)
10 - History Off
Selects communications channel(s):
IL- List communications
Selects module.

100

IDBG16 Command Summary (Continued)

Command

Select Options

Select Procedure
Select Radix

Step

Step Call
Step Down

Step Instruction
Step Until

Step While

Parameter Summary

Syntax Function

SO [lAS ={NADSINPAV} [/XS = {DIAll [/EC ={101512.5IU}]
[/MC={10IECl] [/L={C!NCll [/T={OI1INIAll

Selects current ISE operation options.
lAS-Address Sample time
IXS - External Sample time
IEC - Emulator Clock frequency
IMC - Monitor Clock frequency
IL- Latched Clear or No-Clear
IT - Translation

SP [<n> I <procedure>:] Selects procedure.
Select global radix. SR <radix>

S [<gn>] Executes <gn> machine instructions (Assembly
programs) or one Pascal statement (Pascal
programs). <gn> illegal in Pascal.

SC Executes until a call or return.
SD Executes one instruction inside a

procedure; skips over call instructions.

SI [<gn>] Executes <gn> machine instructions.
SU {<address> I <register>} [<radix>]

<value1> Executes instructions until contents of
[<value2>] <address> or <register> within the range

specified by <value1> and <value2>.
SW {<address> I <register>} [<radix>]

[<value1>] Executes instructions while contents of
[<value2>] <address> or <register> are within the

range specified by <value1> and <value2>.

The following is a comprehensive list of command parameters. See the ISEl16 User's Manual for a detailed
description of each.

Command

Number «n»

General Number
(gn)

Mask

Name

Module
Procedure

Symbol

Register

Syntax

<digits>

[H'IQ'IO'ID'] [-] <digits>

M'{OI1IXI_} .. ·

Function

An unsigned, decimal number in the range 0 to
32767.

A signed, octal, decimal, or hexadecimal
number in the range of - 231 to 231 -1.
An unsigned number which consists of binary
digits, "don't care" bits, and optional
underscores. A mask represents the value of
address, data, status, or external bits.

<letters, numbers, underscores, tildes>

<name>
<name> [# <n>]

<name>

<register-name> [% <n>]

A combination of letters, digits, underscores,
and tildes which does not start with a digit.
The name of a module in the program.
The name of a procedure in the selected
module. # <n> specifies the <n>th procedure
having <name> in the selected module.
The name of a variable in the selected module
or procedure.
One of the registers shown in Table 3.
% <n> specifies the field starting at the
<n>th bit in <register>.

101

Parameter Summary (Continued)

Command

Register-Range

Address

Address-Range

Radix

Value

File

Event

Event-Expression

Syntax Function

{eCPU_leMMU_I-FPU_1 ePSR_I-MSR_leFSR_1 <register>}
Specifies all CPU, MMU, or FPU registers or
all PSR, MSR, and FSR fields.

<basic-address> [+<abs> I-<abs> 1% <abs> I A I e <field> I <indexing>] ...
A byte or bit address. The address consists
of a basic address and any
combination of optional operators.

+ <abs> - Adds <abs> to address.
- <abs> - Subtracts <abs> from address.
%<abs> - Takes <abs>th bit at address.
A- Takes contents as address.
• <field>-Address is address of a field

in a Pascal record.
<indexing>-Address is address of an

array element.

{<address1> .. <address2> I < address> ! <n> I <address>}
The range of addresses from <address1>
to <address2>, from <address>
to <address> + «n> -1)*«current radix»,
or from <address> to itself.

[%] <n> <base> Specifies the length and type of input/output
in IDBG16 commands. [%] specifies length.
If % is specified, length is in bits. <n> must
be within the range 1 to 256. <base> specifies
type and may be binary (B), decimal (D),
octal (0), hexadecimal (H), hexadecimal dump (H),
floating-point (F), logical (L), ASCII (A),
Pascal set (S), or Pascal string (G).
A value to be entered or displayed after
issuing a Print, Replace, Step, Memory, or In
command. Syntax is defined by current radix.
The name of any file in the host system.
File syntax is host dependent.

{ISOIIS11IMITDICDIAIBICILAILBILCiR}
The name of an ISE response to a specific set
of run-time conditions.

(['] <event> [*['] <event> ... [+ ['] <event> [*<event>] ...] ...])
(1) A Boolean expression consisting of one or
(0) more <events>s and the logical NOT (,), AND

(*), and OR (+) operators.
(1)-always true.
(2) - always false.

102

W National Semiconductor

NS16008 In-System Emulator (ISE/081M)

• Operation up to 6 M Hz

• Emulation of NS16008 Central Process·
ing Unit, NS16201 Timing Control Unit

• Host resident high·level language and
assembly language symbolic debugger

• Generalized event driven system

• Memory mapping, up to 30 K bytes

• Write protection/detection of 2 K byte
memory blocks

• Program flow tracing, up to 255 non·
sequential fetches

Description

The NS160D8 In-System Emulator (ISE/08) is a power­
ful tool for both hardware and software development
of NS16008microprocessor-based products.

When used with a host system such as VAX (VMS) or
STARPLEX II Development Systems, ISE/08 emulates
a complete NS16000™ chip set. This chip set in­
cludes the 16008 Central Processing Unit (CPU), and
the 16201 Timing Control Unit (TCU). ISE/08 allows
users to test and debug both hardware and software
in their own hardware environment. ISE/08 operates
in either of two modes: emulation mode, when ISE/08
is actually running the user's program, or monitor
mode, when ISE/08 is communicating with the user
via the host system.

ISE/08 is a complete unit, including an internal clock
oscillator and 30 K bytes of dedicated user's ISETM
memory. With ISE/08, users can easily stop emula­
tion and examine the contents of CPU registers,
slave processor registers, and memory.

ISE/D8 consists of the ISE hardware, the ISE monitor,
a host-dependent debugger (IDBG08), an RS232
serial port cable and manual.

103

• Complete bus activity trace

• Qualified tracing

• Pre·, post·, or center·triggering on trace

• Count·down event counter

• Count·up execution timer/counter

• Supports Memory Management Unit
functions

• Runs on VAXl11 (VMS) and
STARPLEX IITM hosts

• Hierarchical help facility (on·line
manual)

• Self·diagnostic

ISE/08 hardware is the circuitry required for emula­
tion of a user's target system. It interfaces to the host
system with an RS232-compatible serial link and pro­
vides a second RS232 port for an optional terminal
connection. The ISE/08 hardware also has two target
cables for connections to the target system. The
target cables plug into the target system CPU, and
TCU sockets.

The ISE monitor is the ISE hardware con~rol program
that monitors the host system serial data link. The
ISE monitor receives monitor commands from the
host system, acknowledges theRe commands, and
generates the appropriate responses. The ISE moni­
tor also controls the target system emulation pro­
gram.

IDBG08 is the interactive debugger program for
ISE/D8. It runs on the host system and makes the host
system facilities available to the ISE/08 user. IDBG08
automatically translates commands entered at a
host system terminal to the equivalent ISE monitor
commands, and communicates with the ISE monitor
via the serial data link.

Hardware Description

The ISEIDS hardware is housed in three enclosures:
the ISE Support Box, the Emulator Pod, and the TTL
Sta~us Pod. Figure 1 is a block diagram of ISEIDS hard­
ware. The ISEIDS enclosures are described in the
following paragraphs.

The ISE Support Box is the largest enclosure. It con­
tains the emulation support circuits for trace, break­
points, and mapped memory. It also contains power
suppl ies and the hardware for the RS232 serial ports.

The Emulator Pod contains the 160DS CPU, and 162D1
TCU required for target system emulation. It also con­
tains the ISE Monitor firmware and houses the ISEIDS
controls and indicators. Figure 2 shows the location
of the ISEIDS controls and indicators. Table 1 lists the
function of each switch and LED.

The Emulator Pod connects to the ISE Support Box
through a 4o1oot twisted-pair cable assembly. Connec­
tions to the target system are made with 12-inch target
cables. One target cable is provided for each member
of the 16DDD chip set. (CP and TCU).

TTL
STATUS

POD

The Status Pod is the smallest enclosure. It provides
TTL-compatible input and output signals for use dur­
ing ISE operation. The Status Pod has eleven leads
and seven binder posts that can be connected to
either the target system or test equipment such as
logic analyzers or oscilloscopes. Table 21ists the func­
tion of each lead and post on the Status Pod. The
Status Pod connects to the ISE Box front panel status
connector via a 6-foot cable.

18E/08 Software Overview

The ISEIDS software consists of two modules; the ISE
monitor, residing in firmware on the Emulator Pod, and
the ISE Debugger (IDBGDS), residing in the host sys­
tem. The monitor controls the ISE hardware. IDBGDS,
a high-level language debugger program, drives the
ISEIDS unit. IDBGDS runs on the host computer and it
communicates with the ISEIDS unit. Optionally,
IDBGD8 can also communicate with a terminal con­
nected to ISEIDS. The ISEIDS unit communicates with
the IDBGDS program (running on the host) only while
the ISEIDS unit is running the monitor program (in
monitor mode), not while it is running the user's pro­
gram (in emulation mode).

IDBGDS software is available for VAx/11 (VMS) and
STARPLEX II hosts.

ISE SUPPORT BOX r ~S;;;;~T ;;;R;- ..,

TLiR5290-1

FIGURE 1. 15EJ16 Block Diagram.

104

NMI
(HANG·CLEAR)

SWITCH
RESET

SWITCH POWER ON
MONITOR

RUN
DIAGNOSTIC

FAIL
DIAGNOSTIC

RUN

© © o o o o

FIGURE 2. ISEl08 Controls and Indicators.

Table 1. ISEI08 Control and Indicator Functions

Control/Indicator

NMI Switch

RESET Switch
POWER ON
MONITOR RUN
DIAGNOSTIC RUN
DIAGNOSTIC FAIL
HANG-CLEAR REQUEST

Function

When pressed, <HANG-CLEAR> occurs.
<HANG-CLEAR> restores control to ISE monitor.
When pressed, resets the ISE hardware.
Indicates power to ISE.
Indicates ISE monitor is running.
Indicates ISE diagnostics are running.
Indicates failure during diagnostic tests.
Indicates CPU has stopped executing instructions.

Table 2_ Status Pod Signal Description

Status Pod Label

1-WHT -USRCLK-U
2-BLK-GND
3-BRN-EXTO-U
4-RED-EXT1
5-0RN-EXT2
6-YEL-EXT3
7-GRN-EXT4
8-BLU-EXT5
9-VI0-EXT6
10-GRY-EXT7
11-WHT -USEBRKlU

TBRUN
BKSYNCH/-U
TR SYNCH/-U
GND
TSYNC311
TSYNC21
GND

ISE Function

ISO (input sync 0)
Common Ground
EXTO (external input 0)
EXT1 (external input 1)
EXT2 (external input 2)
EXT3 (external input 3)
EXT4 (external input 4)
EXT5 (external input 5)
EXT6 (external input 6)
EXT7 (external input 7)
IS1 (input sync 1)

Multi-Processor Sync
DO (output sync)
TO (trace sync)
Common Ground
Not Used
Not Used
Common Ground

105

HANG· CLEAR
REOUEST o

TLfA5290-2

IDBG08, The ISEl08 Debugger

IDBG08 is user compatible with the standard non-ISE
NS16000 Cross-Software Debugger, IDBG08. Compati­
bility minimizes learning time for users of the various
development tools. IDBG08 fully supports all the
power debugging and emulation facilities provided by
the ISEl08 hardware, and supplements these features
with a very powerful software-based program debugg­
ing environment.

The basic debugging features of IDBG08are:

(1) Both high-level and assembly languages are sup­
ported.
(2) Breakpoints can be set at the source code level,
even when using high-level languages.
(3) Variables can be accessed by their source code
names, i.e., IDBG08 is symbolic in nature.
(4) Procedure parameters and local variables are easi­
Iydisplayed.
(5) Structured data types and pointers are easily
displayed.
(6) Both command and history files are supported.
(7) Memory can be displayed in many different ways,
including a disassembly mode displaying memory as
16032 instructions.
(8) All the emulation and debug facilities provided by
the ISEl08 hardware are supported.

The ISE Monitor
When the ISEl08 unit is not running an emulation pro­
gram, it is running a program called the ISE monitor.
The monitor communicates with IDBG08 and it pro­
vides a command protocol that allows the host com­
plete control of the ISEl08 hardware.

The monitor is invisible to the user, who normally com­
municates with the system via the friendly IDBG08
program.

Optional Terminal Feature
As an option, the ISE monitor communciates with a
terminal connected to the ISEl08 unit. This terminal
also serves as a terminal for the host. Thus the ISEl08
unit and the user's terminal share one RS232 port from
the host.

Operation with the optional terminal is called Trans­
parent Mode; operation without the optional terminal
is called Stand-Aside Mode.

Conversion Kit for NS16008ln-System Emulation
(Available December 1983)
An optional conversion kit is available for those who
wish to do NS16008 development work. Contained in
this kit are the following: ISEl08 Emulator Pod, ISEl08
Symbolic Debugger (IDBG08), ISEl08 Monitor Firm·
ware, and ISE/08 Manual. Thus, because the ISE Sup­
port Box can be used for either ISEl16 or ISEl08
development work, a user wishing to do NS16008
development work but who already has an ISEl08 unit
can purchase this conversion kit (in comparison to the
purchase of an entire ISEl08 unit).

106

ISEl08 Operation
Human Interface

ISEl08 is easy to learn and easy to use. The software
includes a complete on-line manual. Invoking the
"HELP" command gives a summary of a111SE/08 com­
mands, an individual command, or an individual com­
mand's parameters. This feature helps the user get his
work done quickly with less frustration.

Real-Time Emulation

The ISEl08 unit has its own CPU, and TCU com­
ponents. These components are connected to the
target system via cables, and they perform the same
functions, with close to the same timing character­
istics as they would if mounted in the target system.
ISEl08does not add wait states in its operation.

Emulation memory, resident in ISEl08, can be used in
lieu of target system memory. This feature is imple­
mented by the mapping capabilities. ISEl08 can run
and debug programs, without a working target
system.

User target memory address space (whether it exists
or not) can be mapped onto the ISEl08 emulation
memory. A memory read or write operation to an ad­
dress mapped onto emulation memory is performed
on emulation memory only and not on the target
system's memory.

Memory from the entire 24-bit physical address space
of the CPU or can be mapped onto emulation memory
if the following restrictions are observed:

(1) Up to four, non·contiguous segments can be defin­
ed.

(2) The address range mapped by a segment must lie
within an integral 128K byte division of the address
space, e.g. 00000 to h'1 FFFF, or h'20000 to h'3FFFF.
(3) The address range mapped by a segment must
start at the beginning of an integral 2 K byte division
of the address space, and end at the end of one such
division e.g. h'OO to h'FFF, or h'2800 to h'37FF.
(4) The total memory space mapped by all segments
must not exceed 30 K bytes.

Associated with the emulation memory mapping
scheme is a capability for write protection/detection.
Any 2 K byte block within any of the four 128 K byte
segments selected can be protected. A write opera­
tion to a protected memory segment causes an 1M (Il­
legal Map) event to occur. Write operations to pro­
tected memory are inhibited only if they occur on
emulation memory. They are not inhibited if they
occur in target system memory.

Related commands:

MC-MapCreate
MP- Map Print

Note: For the syntax of these, and other commands listed in this section,
refer to the I DBG08 Command Summary.

Generalized Events

To provide a versatile way of observing and controlling
the significant state changes on the microprocessor,
ISEl08 allows the use and definition of "events". In
general, a simple event is a breakpoint, a bus change,
or a significant observation. An event can also be a
logical combination of simple events (an Event-Ex­
pression).

Simple Event Definition

The simple events are:
• Breakpoints
• Latched Breakpoints
• Counter Done
• Status Pod Inputs
• Illegal Map
• Trace Done

Breakpoint Events

ISEl08 provides three common breakpoint events,
named A, B, and C. The breakpoint event can be used
in two ways:

(1) Execution Breakpoint - occurs just prior to execu­
tion of an instruction fetched from a specified ad­
dress.
(2) Memory Reference Breakpoint - occurs on a match
when sampling:

• Address Bits
• Data Bits
• External Status Bits
• User/Supervisor Pin
• Data Direction Pin
• And where any of the above options or bits can

be masked.

Eithervirtual or physical addresses can be sampled.

ISEl08 also provides a range breakpoint event, R. The
range breakpoint occurs on any read or write opera­
tion to an address in a specified address range.

All breakpoints can cause emulation to stop im­
mediately. Also, if used with the No Stop (INS) option,
breakpoints can be combined with other events to
cause a variety of action.

Latched Breakpoint Events, Counted Events

Latched breakpoint events, named LA, LB, LC, occur
at some time after a cycle where the corresponding
breakpoint event (A, B, or C) has taken place. The oc­
currence of a latched breakpoint event remains as­
serted until cleared.

Events, instructions, memory cycles, and clock cycles
can be counted with the breakpoint counter (up to 12
bits). Upon reaching a certain count provided by the
Define Counter (DC) command, the Counter Done (CD)
event takes place.

107

Other Simple Events

The other simple events available are:

(1) ISO, IS1- Status Pod Input Sync 0 and Input Sync 1.
(2) 1M - Write operation to write-protected address.
(3) TD - End of trace.

Related commands:

BC - Breakpoint Create
BD- Breakpoint Delete
DP- Breakpoint Print

Event-Expressions

An event-expression is a Boolean expression made up
of simple events, i.e., a logical combination of simple
events. This allows the user to generate many dif­
ferent event combinations, tailored to system activity
of particular interest to the user. These generalized
events are used by many ISEl08 commands such as
stop, trace, event counting, etc. Event-expressions
provide creative and flexible debugging procedures.

Event-expressions can be evaluated as either logically
true or logicaliy false. Valid logic operations for event­
expressions are: Negation (NOT), AND, and OR.

Stopping Execution on Events

A common debugging activity is to stop emulation on
the occurrence of an event of interest. Stopping emu­
lation puts ISEl08 in the monitor mode so the user can
examine and alter the state of the CPU, memory, and
ISEl08 functions. Emulation can be stopped on either
simple events or event-expressions.

Related commands:

DS - Define Stop
BS - Breakpoint Create

Flexible Tracing

ISEl08maintains a 255-entry trace memory. Trace mem­
ory captures bus activity in one of two trace modes.
The trace modes are:

• Program Flow Trace
• Memory Bus Trace

Program Flow Trace

The Program Flow Trace mode captures the CPU Pro­
gram Counter address of 255 non-sequential instruc­
tions. This mode also maintains a count of sequential
instructions executed between each non-sequential
instruction stored in the trace memory.

Memory Bus Trace

The Memory Bus Trace mode captures a summary of
system parameters during 255 memory bus access
cycles. The following parameters are captured:

• Address bus contents
• Data bus contents
• CPU Status (data transfer, non-sequential fetch,

interrupt acknowledge, etc.)

• Status Pod External Inputs
• Statesofthe Following CPU Pins:

PFSC - Program Flow Status (start of instruction)
UNS - User/Not Supervisor
NDDIN - Not Data In

A tracing event can qualify the memory bus tracing
mode. This event allows the user to reduce the number
of events captured.

When enabled, tracing in either mode continues until
a specified terminating event occurs. The actual end
of tracing can be delayed after the terminating event
by a count of 1 to 255. This allows trace data to be cap­
tured before, after, or around the terminating event.

Execution Timer

The execution timer is a 240bit counter with an over­
flow flag that may be used to count events, instruction
cycles, memory cycles, or clock cycles. The timer may
be programmed to start and stop counting on specific
events. This permits using the execution timer to de­
termine relative timing differences between various
events. One use of this feature is to measure software
or hardware performance.

Related Commands:

DE - Define Execution Timer
LD - List Definitions

Event Trigger for External Test Equipment

ISEl08 events can trigger external test equipment,
such as oscilloscopes and logic analyzers. This test
equipment can be used in conjunction with ISEl08
debugging features to solve system timing problems.
Two external trigger sources are provided:

• General Event (or Event-Expression)
• Trace Trigger Event (i .e., an event that causes an

entry into trace memory.)

The external trigger signals are available at two status
pod outputs:

• BKSYNCH/-U (General Event)
• TRSYNCH/-U (Trace Trigger Event)

Related Commands:

DO - Define Output Sync Command

108

ISEl08 Timing Options

ISEl08 includes the following timing options:

• Sampling time can be set to sample either virtual
or physical addresses

• Status Pod external lines can be sampled at either
data valid or address valid times

• The emulation clock frequency can be set to one
ofthe following frequencies:

1.5MHz
3.0MHz
6.0MHz
Target Board Frequency

Note: Selection of target board frequency may require synchronous and/or
asynchronous delay compensation. Refer to ISE/Oa User's Manual. Chapter
6. fordetails.

Related Commands:

SO - Select Options

Self-Test Diagnostics

At power-up or reset, ISEl08 runs a diagnostic program
to verify ISE software integrity and proper hardware
function.

Required User-Supplied Equipment

For use under VAX111 systems:

• Valid DEC VAX111 configuration, with available
RS232 port.

• VMS Operating System, Version 3.0 or later.
• NSX-08 Cross Software Package, or NS-ASM-08

NS16000 Cross Assembler Package.

For use with STARPLEX II systems:

• STARPLEX II Development System.
• STARPLEX II Operating System, Version G or

later.
• SFW-90-A010 NS16000 Cross-Assembler

Package.

For use with a system that has 3. Berkeley 4.1 based
UNIXTM Operating System:
[Contact Marketing for Availability Information.]

• Valid computer system with an available RS232
port.

• Appropriate cross software package.
[Contact Marketing for further information.]

Specifications

Environmental

Power

Operating Temperature
+ 10"C to +40"C
Storage Temperature
-20"C to + 65°C

3A @ 115 VAC, 50/60 Hz,
single phase
1.5A @ 220VAC, 50/60 Hz,
single phase
Approximately 1170 BTU.

Physical

ISE Support Box-

Emulation Pod -

TTL Status Pod-

Cable Lengths-

Electrical

Operating
Frequency-

Target Interface
Electrical
Characteristics -

Height: 4.125 in. (10.5 cm)
Width: 19.0 in. (48.3 cm)
Depth: 17.5 in. (44.5 cm)

Height: 2.25 in. (6.4 cm)
Width: 9.25 in. (23.5 cm)
Depth: 14.0 in. (35.6 cm)

Height: 1.0 in. (2.5 cm)
Width: 3.125 in. (7.9 cm)
Depth: 6.125 in. (15.6 cm)

ISE Support Box to Emula­
tion Pod: 4.0 ft. (1.22 M)
ISE Support Box to TTL
Status Pod: 6.0 ft. (1.83M)

Emulation Pod to Target
Board: 1.0 ft. (0.30 M)

User selectable to one of the
following:

1.5MHz
3.0MHz
6.0MHz
Target Board Frequency

Note: Selection of target board frequen­
cy may require synchronous and/or asyn­
chronous delay compensation. Refer to
ISEI08 User's Manual. Chapter 6, for
details.

See Tables 3 through 5.

109

Order Information
Complete ISElOa Units

NS-ISE-08 ISEl08 (NS16008), 115VAC for
VAXl11 (VMS) Computer
System.

SPM-90-A1608 ISEl16 (NS16008), 115VAC for
STARPLEX II Development
Systems.

NS-SYS-2008 ISEl16 (NS16008), 115 'jAC for
UNIX as based opf;rating
systems. [Contact Marketing
for Availability Information.]

Conversion Kits to Allow for ISEli6 Emulation
[Contain ISEl16 Emulator Pod, ISE Debugger
(IDBG16), appropriate ISEl16 monitor firmware, and
ISEl16manual.]

AEE-90-A1632

AEE-ISE-16

AEE-ISENIX-16

Documentation

TBD

ISEl08 to ISEl16 kit for
STARPLEX II use.

ISEl08 to ISEl16 kit for VAXl11
(VMS) use.

ISE/08 to ISEl16 kit for UNIX
based as systems USA.

[Contact Marketing for
Availability Information.]

ISEl08 User's Manual
(Included with NS-ISE-08, and
SPM-90-A1608.)

Documentation Conventions

The following documentation conventions are used in
describing the IDBG08 commands and parameters.
Upper-case and lower-case letters are used in these
conventions; any combination of upper-case and
lower-case letters may actually be used when entering
commands.

UPPER-CA8E letters show the command letters, para­
meters and options. The names must be entered ex­
actly as shown.

Spaces and blanks have been added for readability.
When actually entering commands, spaces and
blanks may only appear between the command and its
parameters and between the parameters and the local
radix.

< > - angle brackets enclose descriptive names (in
lower-case) for user-supplied parameters/options.

{ } - braces enclose more than one item out of which
one, and only one, must be used. The items are
separated from each other by a logical OR sign "I".

[]- brackets enclose optional item(s).

I-logical OR sign separates items out of which one,
and on Iy one, may be used.

. .. - three consecutive periods indicate optional
repetition of the preceding item.

Table 3. Electrical Characteristics for TCU Interface

Input And/Or Propagation
Signal Name Interface Device Output Current Delay Time Tpd*

10H 10L

OUTGOING SIGNALS:

NT80 748244 15mA 64mA 14.6ns
CTIL 745244 15mA 64mA 14.6ns
FCLK 748244 15mA 64mA 14.6ns
NDBE 745244 15mA 64mA 14.6ns
NRD 748244 15mA 64mA 14.6ns
NWR 745244 15mA 64mA 14.6ns
NRST 748244 15mA 64mA 14.6ns
RDY 748244 15mA 64mA 14.6ns

IIH IlL

INCOMING SIGNALS:

NPER 74S244 50!,A 400!,A 14.6ns
NCWAIT 745244 50!,A 400!,A 14.6ns
NWAIT1 748244 50!,A 400!,A 14.6ns
NWAIT2 748244 50!,A 400!,A 14.6ns
NWAIT3 745244 50!,A 400!,A 14.6ns
NWAIT4 745244 50!,A 400!,A 14.6ns
XCTL1 748244 50!,A 400!,A 14.6ns
NCEN 74S244 50!,A 400!,A 14.6ns
NR8T1 748244 50!,A 400!,A 14.6ns

* Interface device, pi us cable.

110

Table 4. Electrical Characteristics for CPU Interface

Input And/Or Propagation
Signal Name Interface Device Output Current Delay TimeTpd*

IOH IoL IIH ilL
BIDIRECTIONAL SIGNALS:

N5PC none - - - - 1.4n5
A15 745244 15mA 64mA - - 14.6n5
A14 745244 15mA 64mA - - 14.6n5
A13 745244 15mA 64mA - - 14.6n5
A12 745244 15mA 64mA - - 14.6n5
A11 745244 15mA 64mA - - 14.6n5
A10 745244 15mA 64mA - - 14.6n5
A09 745244 15mA 64mA - - 14.6n5
A08 745244 15mA 64mA - - 14.6n5
AD07 745244 15mA 64mA - - 14.6n5
AD06 745244 15mA 64mA - - 14.6n5
AD05 745244 15mA 64mA - - 14.6n5
AD04 745244 15mA 64mA - - 14.6n5
AD03 745244 15mA 64mA - - 14.6n5
AD02 745244 15mA 64mA - - 14.6n5
AD01 745244 15mA 64mA - - 14.6n5
ADOO 745244 15mA 64mA - - 14.6n5

OUTGOING SIGNALS:

A23 745244 15mA 64mA - - 14.6n5
NILO 745244 15mA 64mA - - 14.6n5
5TO 745244 15mA 64mA - - 14.6n5
5T1 745244 15mA 64mA - - 14.6n5
5T2 745244 15mA 64mA - -

I

14.6n5
5T3 745244 15mA 64mA - - 14.6n5
NPF5 745244 15mA 64mA - - 14.6n5
NDDIN 745244 15mA 64mA - - 14.6n5
NAD5 745244 15mA 64mA - - 14.6n5
UN5 745244 15mA 64mA - - 14.6n5
HHLDA 745244 15mA 64mA - - 14.6n5
A22 745244 15mA 64mA - - 14.6n5
A21 745244 15mA 64mA - - 14.6n5
A20 745244 15mA 64mA - - 14.6n5
A19 745244 15mA 64mA - - 14.6n5
A18 745244 15mA 64mA - - 14.6n5
A17 745244 15mA 64mA - - 14.6n5
A16 745244 15mA 64mA - - 14.6n5

INCOMING SIGNALS:

T5Y5PWR 1N4002 - - - - -
NINT 745244 - - 50f'A 400f'A 14.6n5
NNMI 745244 - - 50f'A 400f'A 14.6n5
NHOLD 745244 - - 50f'A 400f'A 14.6n5

* Interface device, plus cable.

111

IDBG08 Command Summary
The following is a comprehensive list of the IDBG08 commands. Commands are in alphabetical order. See the
ISEl08 User's Manual for adetailed description of each command.

Command

Begin

Breakpoint Create

Breakpoint Delete
Breakpoint Revive
Breakpoint Print

Command File

Debugger String
Define Counter

Define Execution­
Timer

Define Output Sync
Define Stop

Syntax

B [<file>] [/NL] [/NI] [/R] [/Z]

Function

(if no switches) Loads the program <file>
into target board memory, and initializes
registers.
INL-No Load
INI- No Initialize
IR- Reset
IZ-Zero-Fill data areas

BC [A,IB,IC,] <address> UNS] Creates execution breakpoint A,B, or C at
specified <address>.
INS-No Stop

BC [A,IB,IC,] {<address> I <mask>} <breakpoint-options> [INS]
Creates memory reference breakpoint A, B, or
C at address specified by <address> or
<mask> and with specified
<breakpoint-options>.
INS-No Stop

BC R, <address-range> [INS] Creates range breakpoint R at specified
<address-range>.

BD [AIBIClR]
BR [AIBIClR]
BP [AIBIClR]

INS-No Stop
Deletes specified breakpoints.
Revives specified breakpoint.
Prints address and conditions of
specified breakpoints.

@ {<file> I <n>} Executes command <file> or debugger
string sequence beginning at <n>.

$ <n> = [<string>] Sets debugger string <n> to <string>.
DC <n> [/B = <event-expression>]

[/C = {<event-expression> IIIMIc}]
DC/R Defines set up for ISE counter.

<n> - Number of counts
IB- Begin event
IC - Counter type
IR-Reset

DE [/B = <event-expression>] [IE =< event-expression>]
[/C = {<event-expression> IIIMIC}]

DE/R Defines set up for ISE execution timer.

DO <event-expression>
DS <event-expression>

IB- Begin event
IE - End event
IC-Count type
IR-Reset
Defines output sync event.
Defines stop event.

112

IDBGOS Command Summary (Continued)

Command

Define Trace

Disassemble

Go

Help

In

List Calls
List Definitions

List Files
List Information
List Modules
List Procedures
List Strings
List Trace

Map Create

Syntax Function

DT [IE = <event-expression> [10 = <n>]]
[/P 11M [= { <address> I <mask>}] <qualify-options> III

Defines the end, delay, and trace mode
parameters for trace.
IE- End event
10 - Delay count
IP- Program Flow mode
1M - Memory Bus mode
IR-Reset

D <address-range> [/I =<n>] [INA]
Disassemble instructions in <address-range>.
INA- No Address
/1- Number of Instructions to be disassembled.

G [IF = <address>] [[IT =] <breakpoint>]

H [<string>]

Starts execution of the program at the
current PC address of from the <address>.
Execution continues until <breakpoint>.
Displays general help or command syntax
or parameter syntax.

I {<address> I <register>} [<radix>]
<value1>
[<value2>]

LC[<n>]
LD [ITI/EI/Cl/OI/S]

LF [<line> [/<file>]]
LI
LM
LP
LS
LT [<n> I*I/AI/J]

Checks that contents of <address> or
<register> are in the range specified by
<value1> and <value2 >, inclusively.
Lists first <n> entries in call chain.
Lists current definitions.
IT - Trace definition
IE- Execution timer definition
IC - Counter definition
10 - Output sync definition
IS - Stop definition
Lists lines in <file>.
Lists current IDBG16 status.
Lists modules in current program.
Lists procedures in current program.
Lists current debugger string values.
Lists nine trace entries centered around
entry <n> or around the trigger point (*).
lA-Ail entries
IJ-Jumps only

MC [<address-range>] [IS ={AIBIClD}] [1M =<n> I/NM] [/PI/NP]
Creates segment assignment and mapping
for special <address-range>.
IS - Segment assignment
1M - Mapping to ISE block <n>
INM - No Mapping
IP - Write Protection
IN P - No Protection

113

IDBGOS Command Summary (Continued)

Command

Map Print

Memory Fill

Memory Move

Memory Search

On

Print

Print Address

Protection Create

Potection Print

Ouit

Repeat
Replace

Select Echo
Select Full
Select History

Select Link

Select Module

Syntax Function

MP [IS = {AIBICID}] Prints current mapping for specified
segment.

MF <address-range> [<radix>]
<value>

Fills memory at <address-range> with
<value>.

MM <address-range>,<address> [<radix>]
Moves memory from <address-range> to
<address>.

MS <address-range> [<radix>]
<value>

Searches for <value> in <address-range>.
a {FAILIRESETINMIIEXIT [({AI BICJ RISIHC})] {@ <n> IIO}

Sets IDBG16 response on condition:
@ <n> - Executes debugger string

sequence on condition beginning
with$<n>,

10 - Response Off, restores normal
response.

P [<address-range> I<register-range>] [<radix>]
Prints contents of <address-range> or
<registers>.

PA <address> Prints absolute address and module area
associated with <address>.

PC <address-range> [/UWI/URI/SWISR] [/VI/NV] [/RI/NR]
[/MI/NMJ [/T=<gn>] [/P]

PP [<address-range>]

o [IS]

Creates protectionltranslation for pages
specified by <address-range>.
Prints protection level status for pages
specified by <address-range>.
Terminates session.
IS-Save IDBG16 status in IDBG16.IND

<cr> Repeats previous command.
R {<address> I <register>} [/NV] [<radix>]

[<value>] Replaces contents of <address> or
<register> with <value>.

SE[/O]
SF [/0]
SH {<file> [/F]I/O}

SL <file> [,<file>] [/L]

SM <module>

INV - No Verify

Selects echo mode. 10 - Echo Off.
Selects full symbolic PC. 10 - Full Off.
Selects history file <file>:
IF - Full history (with responses)
10 - History Off
Selects communications channel(s):
IL- List communications
Selects module.

114

IDBG08 Command Summary (Continued)

Command

Select Options

Select Procedure
Select Radix
Step

Step Call
Step Down

Step Instruction
Step Until

Step While

Syntax Function

SO [lAS ={NADSINPAV} [/XS ={DIA}] [/EC ={101512.5IU}]
[/MC = {10IEC}] [/L = {ClNC}] [/T={OI1INIA}]

Selects current ISE operation options.
lAS-Address Sample time
IXS - External Sample time
IEC - Emulator Clock frequency
IMC - Monitor Clock frequency
IL- Latched Clear or No-Clear
IT - Translation

SP [<n> I <procedure>:]
SR <radix>

Selects procedure.
Select global radix.

S [<gn>] Executes <gn> machine instructions
(Assembly programs) or one Pascal

SC
SD

statement (Pascal programs). <gn>
illegal in Pascal.
F.:xecutes until a call or return.
Executes one instruction inside a
procedure; skips over call
instructions.

SI [<gn>] Executes <gn> machine instructions.
SU {<address> I <register>} [<radix>]

<value1> Executes instructions until contents of
[<value2>] <address> or <register> within the range

specified by <value1> and <value2>.
SW {<address> I <register>} [<radix>]

[<value1>] Executes instructions while contents of
[<value2>] <address> or <register> are within the

range specified by <value1> and <value2>.

115

Parameter Summary
The following is a comprehensive list of command parameters. See the ISEl16 User's Manual for a detailed
description of each.

Command

Number «n»

General Number
(gn)

Mask

Name

Module
Procedure

Symbol

Register

Register-Range

Syntax

<digits>

[H'IQ'IO'ID1 [-] <digits>

M' {OI1IXI_} ...

Function

An unsigned, decimal number in the range 0 to
32767.

A signed, octal, decimal, or hexadecimal
number in the range of - 231 to 231 -1.

An unsigned number which consists of binary
digits, "don't care" bits, and optional
underscores. A mask represents the value of
address, data, status, or external bits.

<letters, numbers, underscores, tildes>

<name>
<name> [# <n>]

<name>

A combination of letters, digits, underscores,
and tildes which does not start with a digit.
The name of a module in the program.
The name of a procedure in the selected
module. # <n> specifies the <n>th procedure
having <name> in the selected module.
The name of a variable in the selected module
or procedure.

<register-name> [% <n>] One of the registers shown in Table 3.
% <n> specifies the field starting at the
<n>th bit in <register>.

{eCPU_loMMU_leFPU_lePSR_I-MSR_leFSR_I<register>}
Specifies all CPU, MMU, or FPU registers or
all PSR, MSR, and FSR fields.

116

Parameter Summary (Continued)

Command

Address

Address-Range

Radix

Value

File

Event

Event-Expression

Syntax Function

<basic-address> [+<abs> I-<abs> 1% <abs> 11\ I • <field> I
<indexing>] ...

A byte or bit address. The address consists
of a basic address and any
combination of optional operators.

+ <abs> - Adds <abs> to address.
- <abs> - Subtracts <abs> from address.
%<abs> - Takes <abs>th bit at address.
1\- Takes contents as address.
• <field> - Address is address of a field

in a Pascal record.
<indexing> - Address is address of an

array element.

{<address1> .. <address2> I < address> ! <n> I <address>}

[%] <n> <base>

The range of addresses from <address1>
to <address2>, from <address>
to <address> + «n> - 1)*«current radix»,
or from <address> to itself.
Specifies the length and type of input/output
in IDBG16 commands. [%] specifies length.
If % is specified, length is in bits. <n> must
be within the range 1 to 256. <base> specifies
type and may be binary (B), decimal (D),
octal (0), hexadecimal (H), hexadecimal dump (H),
floating-point (F), logical (L), ASCII (A),
Pascal set (S), or Pascal string (G).
A value to be entered or displayed after
issuing a Print, Replace, Step, Memory, or In
command. Syntax is defined by current radix.
The name of any file in the host system.
File syntax is host dependent.

{ISOIIS11IMITDICDIAI Blc[LAI LBI LC[R}
The name of an ISE response to a specific set
of run-time conditions.

(['] <event> [*['] <event> ... [+ ['] <event> [*<event>] ...] ...])
(1) A Boolean expression consisting of one or
(0) more <events>s and the 10Dicai NOT ('), AND

(*), and OR (+) operators.
(1) - always true.
(2)-always false.

117

iI National Semiconductor PRELIMINARY
May 1983

SYS16™ Multi-User Development System
for the NS16000™ Microprocessor Family

• GENIXTM enhanced Berkeley 4.1 bsd
UNIX operating system

• Time-shared support for up to eight
users

• NS16032 Microprocessor Family based

• Demand-Paged Virtual Memory (DPVM)
support

• Easy to use, proven programming
environment

Product Overview
The SYS16 is a mUlti-user development system
which provides powerful software and hardware
tools for the development of applications using Na­
tional Semiconductor's NS16000 Microprocessor
Family components.
Based on the NS16032 16-bit Microprocessor,
SYS16 gives the designer access to an assembler,
high level language compliers and real-time In-Sys­
tem Emulation (ISETM) tools. Total development sup­
port is provided for up to eight users, on a time­
shared basis.
The SYS16 includes two main modules: the Proces­
sor module, which houses most of the electronics
and the Disk-Tape module, which houses the hard
disk and streamer tape back-up.

SYS16TM, ISETM, GENIXTM and NS16000TM are trademarks of National Semiconductor Corp.

UNIXTM is a trademark of Bell Labs

©1983 National Semiconductor Corp. TLlR/5266

118

TL/F/5266-1

• 1.25 MB RAM, expandable to 3.25 MB

• 20 MB Hard Disk, expandable to 140 MB

• Streamer Tape backup, with 20 MB
cartridges

• C and Pascal High Level Language
Compilers

• NS16000 assembler

• Supports emulation of NS16000
Microprocessor Family

Optional disk drive modules may be added to in­
crease system capacity. Disk drive modules contain
two drives of 20 MB each.
One terminal is provided with the system. Additional
terminals may be added to the system as the de­
mand warrants. Emulation and software develop­
ment work may be performed concurrently. Shared
resources of the hard disk and user-supplied printer
lowers the system's cost per user.
National's GENIX Operating System is an enhanced
version of Berkeley 4.1 bsd UNIX. These enhance­
ments have been added to fully utilize the advanced
architecture of the NS16032 Micrprocessor Family.

Hardware Description

Processor Module

This six-slot module houses most of the electronics
for the SYS16. Standard configuration includes
boards installed in four of the slots, with the remain­
ing two available for additional Random Access
Memory boards. The bus is an extended-CPU Na­
tional proprietary bus designed for fast interface be­
tween the boards. The four boards provided in the
standard configuration are the CPU, Serial liD,
Memory, and Disk-Tape Controller.

The CPU board is based on the NS16032 microproc­
essor family and includes the CPU plus the NS16082
Memory Management Unit, the NS16201 Timing
Control Unit, the NS16081 Floating-Point Unit and
the NS16202 Interrupt Control Unit. The CPU board
also contains diagnostic firmware, one parallel liD
port, one GPIB IEEE-488 port, one RS232 port, and
256 kB of RAM.

The Serial liD board contains logic supporting eight
RS232 ports.

The memory board contains 1 MB of RAM with error
checking and correction. Access time is 400 ns. Ad­
ditional memory boards may be added to the sys­
tem, up to a total of 3.25 MB.

The Disk-Tape Controller board contains the neces­
sary electronics to control the disk drives and the
streamer tape.

Disc-Tape Module

This module houses an 8-inch Winchester hard disk
with a capacity of 20 MB (17.8 MB formatted). It also
contains a %" streamer tape for backup and ready
access for Operating System and other software up­
dates. The tape cartridge has a 20 MB capacity.

Disc only Module

Additional hard disk memory may be added to the
system. Disk-only modules are available which
house 40 MB each. A total of 3 modules may be
added for a total of 140 MB.

Hardware Support:

Parallel Printer Interface: Centronics interface is pro­
vided to support both 700 and 300 series printers.

Prom Programming: support is provided for Data liD
System 19.

Software Description
The SYS16 includes the GENIX operating system,
an enhanced version of Berkeley 4.1 bsd UNIX.
These enhancements allow GENIX to fully support
the features of the NS16000 family, providing an ad­
vanced, proven programming environment.

119

The GENIX operating system is a time-shared, de­
mand-paged system with protected address spaces,
supporting from one to eight users. It is completely
compatible with the NSXC16 cross software pack­
age.

Included are a C compiler, based on Berkeley's por­
table C compiler, NS1600 assembler, linker, libraries,
utilities, loader, editor, and debugger. Virtually all of
the utilities that make UNIX a powerful' operati n

system are provided.

A Pascal compiler is available as an option.

Physical Specifications
The standard SYS16 consists of the Processor Mod­
ule, Disk-Tape Module, one terminal, the required in­
terconnect cables, and supporting manuals.

Processor Module: this is a rectangular floor mount­
ed unit with front mounted controls and indicators,
and rear mounted liD connections.

Height: 24 inches
Width: 7.5 inches
Depth: 27 inches
Color: beige side panels with grey inner frame,

and black fron~ and rear
Weight: 38 pounds

Disk-Tape Module: this unit is physically similar to
the processor module, with the exception of the
Weight, which is 48 pounds.

Terminal: DEC VT100 compatible.

Environmental:

Altitude: 25,000 ft. non-operating
15,000 ft. operating

Temperature: - 20°C to 65°C non-operating
10°C to 40°C operating

Humidity: 5% to 80% max wet bulb
32°C minimum dew point 2°C

Electrical:

Processor Module:
FCC: Class A
AC Voltage: 90-130 or 180-260 VAC;

47-63 Hz
Fusing: 6A-Domestic

3A-European

Disk-Tape Module: same as processor module

Odering Information

Systems:

NS-SYS-1 001:

NS-SYS-1001 E:

Accessories:

Full system: Processor Module,
Disk-Tape Module, one Terminal,
GENIX operating system, cables,
and manuals.
same as above configured for
European power.

NS-SYS-2001: Disk Drive Expansion Module
with 40 MB

NS-SYS-2001 E: same as above configured for
European power

NS-SYS-2002: 1 MB RAM Expansion Board
NS-SYS-2003: Terminal
NS-SYS-2003E: Terminal with European power

configuration

120

NS-SYS-2004: ISE for 16032
NS-SYS-2004E: ISE for 16032 with European

power configuration
NS-SYS-2005: 20 MB Streamer Tape Cartridge
NS-SYS-2006: Hardware manual
NS-SYS-2007: Software manual
NS-SYS-200B: ISE for 1600B
NS-SYS-200BE: ISE for 1600B with European

power configuration

Software:

NS-SYS-3001: Pascal software

rlJ National Semiconductor PRELIMINARY

NSXC16™ Cross Software Package

• Advanced software development
environment

• C compiler
• Pascal compiler with extensions

Product Overview
NSXC16 is a comprehensive cross software package
that supports an advanced software development
environment for the NS16000 family. It is designed
to run on DEC's VAX11 series with the Berkeley
4.1bsd UNIX operating system. It is compatible with
all language tools of the SYS16'TM GENIXTM operat­
ing system.

All NSXC16 language tools are modeled after, and
integrated with the SYS16 GENIX language tools. In­
cluded are a C compiler, an optional Pascal compil­
er, NS16000 assembler, linker, libraries, utilities, and
an interactive debugger. The NSXC16 provides a full
complement of tools to make the generation of
NS16000 code an easy task. Programs thus devel­
oped can be downloaded via serial port to the
DB16000 development board or ISE/16™ for execu­
tion and debug.

Components
nmcc-C Compiler
Designed to be compatible with the portable C com­
piler (pcc) of the Berkeley 4.1bsd UNIX system. The
C compiler accepts compatible C source and
generates NS16000 assembly language code.
DeSigned to fully utilize the NS16000 architecture.

121

• Powerful assembler supporting the full
NS16000™ architecture

• Superior interactive debugger with
efficient command interface

• Runs under DEC V AX11 with Berkeley 4.1
bsd UNIX 0.5.

nmpc-Pascal Compiler (OPTIONAL)
ANSI standard with modular software extensions.
Accepts compatible Pascal source and generates
NS16000 assembly language code. Extensions in­
clude features such as import/export in support of
full modularity. Designed to fully utilize the NS16000
architecture.

nasm-NS16000 Assembler
The assembler produces NS16000 object code in
extended UNIX a.out format. It accepts complex ex­
pressions, external symbolic references, and exter­
nal address arithmetic.

nmeld-Linker
Modules generated by the assembler can be linked
by nmeld with the supplied libraries or user-generat­
ed ones to produce executable files.

include, libc.a, libpc.a-Libraries
The libraries contain standard UNIX include files, the
C library, and the Pascal library.

nar, nnm, nranlib, nsize,
nstrip-Utilities
Utilities provide the necessary tools to construct
user defined libraries and to facilitate performance
improvement.

ddt-Interactive Debugger
The interactive debugger allows remote debugging
at the assembly language source level. It communi­
cates with the 0816000 monitor via a serial link al­
lowing execution and debugging on the board. In­
struction may be displayed symbolically and break­
points set by instruction. Single-stepping is possible
at the machine instruction level, the procedure level,
or when a register address value match occurs. ddt
supports debugging in physical address space, su­
pervisor virtual address space, and user virtual ad­
dress space.

122

cu16-Remote Communication Utility
cu16 provides communication between the host sys­
tem and 0816000 board. it is used interactively to
download programs from the host systel11 to the
0816000 board.

monitor-DB16000 Monitor
The 0816000 monitor is provided in source form
and allows NS16000 customers to modify the moni­
tor to suit their target system.

nburn-EPROM Programmer
Nburn is used for the programming of EPROMs.

Ordering Information
NS-XC-16 NSXC16 software package on, 16000

bpi magnetic tape
NS-XC-PAS nmpc Pascal compiler option

~ National Semiconductor

NSX16 Cross Software Package
TO D616000

DEVELOPMENT
BOARD

TO USER
PROM

PROGRAMMER

NSX16 Cross Software Package

• Runs under STARPLEX WM operating
system and DEC VAXIVMS operating
system

• Compatible with ANSI standard PASCAL

• Supports NS16081 floating point unit

Product Overview

NSX16 is a comprehensive software development
package that includes all the components neces­
sary to produce NS16000 native code. Intended as a
support package to facilitate the development of
software for NS16000-based systems, NSX16 has
been designed to run initially on two hardware con­
figurations. These are National Semiconductor's
STARPLEX II operating system and Digital Equip­
ment's VAX11 series running the VMS operating
system.

Consisting of a PASCAL compiler, NS16000 cross­
assembler, linker, librarian, and source-level de­
bugger, NSX16 provides the full ensemble of tools to
make the generation of NS16000 code an easy task.
Code thus developed may then be downloaded via a
serial port to the DB16000 development board for
execution and debug.

NSX16 consists of the following components:
- PAS16, the PASCAL Cross-Compiler

Note: Not available for STARPLEX II.

- RTS16, the Run-Time Support Package
Note: Not available for STARPLEX II.

- ASM16, NS16000 Cross-Assembler
- LlNK16, the Cross Linker
- LlB16, the Librarian
- BIN16, the File Conversion Utility
- DBG16, the Source-Level Symbolic Debugger

123

• PASCAL run-time support environment
for 0816000 development board

• PASCAL compiler produces NS16000
code directly

• High-level symbolic debugger allows
debug at source level

PAS16

Designed to be compatible with the ANSI standard,
with listed extensions and restrictions, the PASCAL
cross-compiler is capable of accepting compatible
PASCAL source and generating NS16000 code. Ex­
tensions include features such as IMPORT/EXPORT
in support of full modularity and FAST variables for
code optimization. Also included is the run-time
support environment for the DB16000 development
board.
Note: PAS16 is not available for STARPLEX II Development Systems.

ASM16

The cross-assembler produces relocatable NS16000
object code. It accepts complex expressions, float­
ing point scientific notation, external symbol refer­
ences and can handle external address arithmetic.

LlNK16

Modules generated by the cross-compiler or assem­
bler are linked by LlNK16 to produce executable
modules. LlNK16 is interactive, allowing the user to
include additional files and libraries at link time
whenever symbol matching is unsuccessful. LlNK16
provides an extensive repertoire of directives to sup­
port complex system configurations. Directives can
be entered from disk or directly from the console.
LIN K16 permits user control of RAM/ROM allocation.

LlB16

The librarian maps module characteristics and
builds module libraries.

BIN16

The BIN16 program is a utility that converts 16000
executable files into a format acceptable for PROM
programmers.

DBG16

DBG16 is an interactive symbolic debugger that
allows df'!bugging at the source level. It communi­
cates with the DB16000 monitor via a serial link
allowing execution and debug on the board. Source
code may be displayed and breakpoints set by line
numbers. Single-stepping is possible at the ma­
chine instruction level, the PASCAL statement
level, the procedure level, or until a register/address
value match occurs. DBG16 supports debugging of
multi module programs, drawing all information
needed to support debug from source files and the
output of the linker. It supports command files and
output to a file to serve as a history file.

Supported Hardware
- STARPLEX II

STARPLEX Operating System
Revision G or later

- DEC VAX 11 Family
VMS Operating System Vers 2.X or later

124

Shipping Package

VAX Version:
1600 bpi mag tape (9-track VMS copy format).
User and reference documentation.

STARPLEX II Version:
Compatible 8" floppy diskette, standard soft sector
format.
User and reference documentation.

Order Information

NSX-16 Cross Software Package, VAX/
VMS version (Includes PAS16, RTS16
ASM16, LlNK16, LlB16, BIN16 and
DBG16)

NS-PAS-16 PASCAL Cross-Compiler, VAXIVMS
version

NS-ASM-16 NS16000 Cross-Assembler, VAX/
VMS version (Includes ASM16,
LlNK16, LlB16, BIN16 and DBG16)

SFW-9Q-A010 NS16000 Cross-Assembler, STAR­
PLEX II version (includes same as
NS-ASM-16)

