Volume 4 MECL INTEGRATED CIRCUITS Series A

Semiconductor Data Library

- Technical Information
 - MECL 10,000
 - · MECL III
- Phase-Locked Loop Components

Postfach 1180 + 6277 Camberg Telefon (0.6434) 6005 + Telex 484426

MECL GENERAL INFORMATION

MECL SELECTOR GUIDES

MECL 10,000 Series

MECL III MC1600 Series

COMPATIBLE CIRCUITS

PHASE-LOCKED LOOP COMPONENTS

MIL-M-38510 PROGRAM

2

3

4

THE SEMICONDUCTOR DATA LIBRARY

SERIES A VOLUME IV

prepared by Technical Information Center

MECL INTEGRATED CIRCUITS

This book presents technical data for a broad line of MECL integrated circuits. Complete specifications for the individual monolithic circuits in the most popular MECL families are provided in the form of data sheets. In addition, selector guides are included to simplify the task of choosing the best combination of circuits for optimum system architecture.

The information in this book has been carefully checked and is believed to be reliable; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of microelectronic devices any license under the patent right of any manufacturer.

Series A © MOTOROLA INC., 1974 "All Rights Reserved"

MECL, MECL I, MECL II, MECL III, MECL 10,000, MTTL, MTTL III, and MDTL are trademarks of Motorola Inc.

CONTENTS

NUMERICAL INDEX	ii
GENERAL INFORMATION	1-1
HIGH SPEED LOGICS	
Definitions and Abbreviations	1-10
TECHNICAL DATA	1-12
OPERATIONAL DATA	1-20
SYSTEMS DESIGN CONSIDERATIONS	1-23
Package Outline Dimensions	1-32
APPLICATION NOTE ABSTRACTS	1-34
MECL SELECTOR GUIDES	2-1
MECL II MC1000/MC1200 Series	2-3
MECL III MC1600 Series	2-5
MECL 10,000 Series	2-11
MECL 10,000 Series DATA SHEETS	3-1
MECL III MC1600 Series DATA SHEETS	4-1
COMPATIBLE CIRCUITS	5-1
PHASE-LOCKED LOOP COMPONENT	6-1
DATA SHEETS	
MIL-M-38510 PROGRAM	7-1

NUMERICAL INDEX

DEVICE	PAGE
DEVICE	PAGE
MC1543L	5-3
MC1648 MC1650	4-3 4-10
MC1651	4-10
MC1654	4-23
MC1658	4-26
MC1660	4-30
MC1662	4-34
MC1664	4-38
MC1666	4-42
MC1668 MC1670	4-47 4-52
MC1672	4-60
MC1674	4-64
MC1678	4-68
MC1688	4-72
MC1690	4-75
MC1692	4-81
MC1694 MC7900C	4-85 5-9
MC10100	3-3
MC10101	3-5
MC10102	3-8
MC10103	3-11
MC10104	3-13
MC10105	3-16
MC10106	3-19
MC10107 MC10109	3-22 3-25
MC10110	3-28
MC10111	3-31
MC10113	3-34
MC10114	3-36
MC10115	3-39
MC10116 MC10117	3-42 3-45
MC10117	3-48
MC10119	3-51
MC10121	3-54
MC10123	3-57
MC10124	3-59
MC10125 MC10128	3-62 3-65
MC10128	3-71
MC10130	3-75
MC10131	3-79
MC10132	3-83
MC10133	3-88
MC10134 MC10135	3-92 3-97
MC10135	3-97 3-101
MC10137	3-107
MC10138	3-111
MC10141	3-114
MC10153	3-118

DEVICE	D4.05
DEVICE	PAGE
MC10160 MC10161	3-121 3-125
MC10161	3-129
MC10162	3-129
MC10164	3-141
MC10165	3-146
MC10166	3-150
MC10168	3-154
MC10171	3-157
MC10172	3-161
MC10173	3-165
MC10174 MC10175	3-170
MC10175	3-173 3-177
MC10177	3-177
MC10178	3-183
MC10179	3-186
MC10180	3-191
MC10181	3-195
MC10182	3-199
MC10193	3-133
MC10195 MC10197	3-204
MC10197 MC10210	3-207 3-210
MC10210	3-210
MC01212	3-214
MC10216	3-217
MC10231	3-221
MC10287	3-225
MC10501	3-232
MC10502	3-235
MC10504 MC10505	3-238
MC10505	3-241 3-244
MC10507	3-247
MC10509	3-250
MC10514	3-253
MC10515	3-256
MC10516	3-259
MC10517 MC10518	3-262
MC10518	3-265 3-268
MC10521	3-271
MC10524	3-274
MC10525	3-277
MC10530	3-280
MC10531	3-284
MC10533 MC10535	3-288
MC10535 MC10536	3.292
MC10536 MC10537	3-296 3-303
MC10541	3-308
MC10560	3-312
MC10561	3-316
MC10562	3-321

NUMERICAL INDEX(continued)

DEVICE	PAGE
MC12060 MC12061 MC12560 MC12561 MCM7001L MCM10142 MCM10143 MCM10144 MCM10145 MCM10145 MCM10148	6-42 6-42 6-42 6-42 5-18 3-370 3-370 3-374 3-383 3-383 3-387 3-370
MCM10150	3-391
MCM10148	3-370

GENERAL INFORMATION

MECL GENERAL INFORMATION

Table of Contents

SECTION I: HIGH SPEED LOGICS	PAGE
MECL Products. Family Comparison tables MECL in Perspective MECL Applications Considerations for High Speed Logic Design MECL Circuit Description Variations among MECL Families Definitions, Symbols, and abbreviations.	1-4 1-5 1-6 1-6 1-7 1-8 1-9
SECTION II: TECHNICAL DATA	
General Characteristics and Specifications Maximum Ratings Noise Margin Maximum Ratings (table) Logic Levels (table) Logic Level variations — tables and graphs AC or time Parameters Variations in ac parameters (graphs) Package Dimensioned Drawings	1-12 1-12 1-13 1-13
SECTION III: OPERATIONAL DATA	
Power supply considerations Loading characteristics AC variations with loading (graphs) Unused MECL inputs	1-21 1-22
SECTION IV: SYSTEM DESIGN CONSIDERATIONS	
Thermal Management Thermal Data (tables). Mounting and heat sinks for MECL III Compatibility among MECL Families Interfacing MECL to slow logic Circuit Interconnections Clock Distribution. System Design — Summary Recommendations	1-23 1-24 1-26 1-27 1-28 1-29 1-31
SECTION V: MECL LITERATURE	
Application Note abstracts Supplementary Literature MECL System Design Handbook — contents	1-37

GENERAL INFORMATION

SECTION I: HIGH SPEED LOGICS

For the purposes of this discussion, high speed logic has either or both of two characteristics:

- a) toggle rates over 50 MHz
- b) gate propagation delays under 6 ns

Only two types of standard high speed logic integrated circuits are commonly available in the marketplace: Schottky-clamped TTL logic (TTL-S), and non-saturating emitter-coupled logic (ECL).

Schottky-clamped TTL logic is similar to conventional TTL logic in its circuit configuration and operating characteristics. Conventional TTL is a saturated form of logic; that is, during turn-on, both the emitter-base and collector-base junctions of a transistor are forward biased, causing an accumulation of charged carriers in the base regions. Then, when the transistor is turned off, this charge must discharge through the collector. The finite time required for this charge to dissipate causes a delay in turning the transistor off. This "storage time" delay is an integral part of all saturated logic forms. Schottkyclamped TTL logic reduces storage time by means of Schottky-diodes between base-collector junctions. These diodes tend to keep the transistor out of saturation, but they also tend to increase the input capacitance of the Schottky-clamped transistor. Thus, while the speed of TTL-S is greater than that of TTL, due to a reduction in storage time, it is limited by the RC time constant of the transistor input.

Emitter-Coupled Logic, being non-saturating by design, completely avoids transistor storage time and its attendent speed limitation without the tradeoffs inherent in TTL-S. Gate delays of less than a nanosecond and operating frequencies approaching a gigahertz are currently feasible, and even these are not ultimate limits.

MECL PRODUCTS

Motorola offers four ECL logic families under its MECL trademark: MECL I, MECL II, MECL III, and MECL 10,000.

The MECL I family, introduced by Motorola in 1962, was the first monolithic integrated circuit line of emitter-coupled logic. Its propagation delay time of 8 ns and toggle rate of 30 MHz, though no longer considered state of the art, still places it above the speed capabilities of most saturated logic lines. It is still being produced in quantity for use in existing equipment designs, but several features of the more advanced MECL II, III, and MECL 10,000 families favor the use of these families in new designs.

In 1966, Motorola introduced MECL II with gate propagation delays of 4 ns, and flip-flop toggle rates

of over 70 MHz. Speeds were later increased first to 120 MHz (typical) for the MC1027/MC1227 J-K flip-flop circuit, and then to 180 MHz (min.) for the MC1034 type D flip-flop.

Complex functions became available in MECL II when production capabilities shifted toward more complicated circuits. The family now has adders, data selectors, multiplexers, decoders, and a gas display tube decoder/driver.

Continuing development of MECL made possible an even faster logic family. As a result, MECL III was introduced in 1968. Its 1 ns gate propagation delays and greater than 500 MHz flip-flop toggle rates remain the industry leaders. For the moment, the very high speed capabilities of MECL III appear to have outstripped the general speed requirements of today's computer systems, however they are being utilized extensively in special high-speed sections of computers and high speed test and communication equipment. Motorola is continuing to develop and expand this product line.

For general purpose computer applications, trends in large high-speed systems showed the need for an easy-to-use logic family with propagation delays on the order of 2 ns. To match this requirement, the MECL 10,000 Series was introduced in 1971.

An important feature of MECL 10,000 is its compatibility with MECL III to facilitate using both families in the same system. A second important feature is its significant power economy — MECL 10,000 gates use less than one-half the power of MECL III or high speed MECL II gates. Finally, low gate power and advanced circuit design techniques have permitted a new level of complexity for MECL circuits. For example, complexity of the MC10181 four bit arithmetic unit compares favorably to that of any bipolar integrated circuit on the market.

The basic MECL 10,000 Series has recently been expanded by a subset of devices with even greater speed. This additional series provides a selection of MECL 10,000 logic functions with flip-flop repetition rates up to 200 MHz min. The MECL 10,200 Series is meant for use in critical timing chains, and for clock distribution circuits. MECL 10,200 parts are otherwise identical to their 10,000 Series counterparts (subtract 100 from the MECL 10,200 part number to obtain the equivalent standard MECL 10,000 part number).

Although the basic design of all MECL families is the same, there are differences other than the speed and power capabilities. Comparisons of the key characteristics of each family are given in the tables of Figure 1.

MECL FAMILY COMPARISONS

	I		MECL		
Feature	MECLI	MECL II	10,100 Series 10,500 Series	10,200 Series 10,600 Series	MECL III
Gate Propagation Delay	8 ns	4 ns	2 ns	1.5 ns	1 ns
2. Gate Edge Speed	8.5 ns	4 ns	3.5 ns	2.5 ns	1 ns
3. Flip-Flop Toggle Speed (min)	30 MHz	165 MHz	125 MHz	200 MHz	500 MHz
4. Gate Power	31 mW	22 mW	25 mW	25 mW	60 mW
5. Speed-Power Product	250 pJ	88 pJ	50 pJ	37 pJ	60 pJ
6. Transmission Line Capability	No	On Some Devices	Yes	Yes	Yes
7. Wire-Wrap Capability	Yes	Yes	Yes	Yes	No
8. Output Pulldown Resistors	Yes	Optional	No	No	No
9. Input Pulldown Resistors	No	No	50 kΩ	50 kΩ	2 kΩ & 50 kΩ

FIGURE 1a - GENERAL CHARACTERISTICS

Ambient Temperature Range	MECL I	MECL II	MECL III	MECL 10,000
0°C to +75°C (commercial)	MC350	MC1000	-	_
-30°C to +85°C (industrial)	_	- '	MC1600F,L	MECL 10,100 MECL 10,200
-55°C to +125°C (military)	MC300	MC1200	•	MECL 10,500 MECL 10,600

FIGURE 1b - OPERATING TEMPERATURE RANGE

Package Style	MECL III	MECL 10,000
Ceramic Flat Package (Hermetic)	Yes	Yes
Plastic DIP	Yes (selected types)	Yes
Ceramic DIP (Hermetic)	Yes	Yes

(For package dimensions see page 32)

FIGURE 1c - PACKAGE STYLES

^{*}Planned for selected devices.

MECL IN PERSPECTIVE

FIGURE 2b - POWER DISSIPATION versus FREQUENCY (MECL versus TTL-S)

FIGURE 2a - SPEED-POWER CHARACTERISTICS OF MAJOR LOGIC LINES

MECL IN PERSPECTIVE

In evaluating a logic line, speed and power requirements are the obvious primary considerations. In Figure 2, today's major logic families are compared on the basis of these characteristics. But these are only the start of any comparative analysis. While the chart clearly shows that MECL and other ECL-type families are without peer in the speed category, with low power levels that rival some of the TTL lines, there are a number of other characteristics that make MECL highly desirable for systems implementation. Among these:

Complementary Outputs cause a function and its complement to appear simultaneously at the device outputs, without the use of external inverters. It reduces package count by eliminating the need for associated invert functions and, at the same time, cuts system power requirements and reduces timing differential problems arising from the time delays introduced by inverters.

High Input Impedance and Low Output Impedance permit large fan out and versatile drive characteristics.

Insignificant Power Supply Noise Generation, due to differential amplifier design which eliminates current spikes even during signal transition period.

Nearly Constant Power Supply Current Drain simplifies power-supply design and reduces costs.

Low Cross-Talk due to low-current switching in signal path and small (typically 850 mV) voltage swing, and to relatively long rise and fall times.

Wide Variety of Functions, including complex functions facilitated by low power dissipation (particularly in MECL 10,000 series). A basic MECL 10,000 gate consumes less than 8 mW in on-chip power in some complex functions.

Wide Performance Flexibility due to differential amplifier design which permits MECL circuits to be used as linear as well as digital circuits.

Transmission Line Drive Capability is afforded by the open emitter outputs of MECL devices. No "Line Drivers" are listed in MECL families, because *every* device is a line driver.

Wire-ORing reduces the number of logic devices required in a design by producing additional OR gate functions with only an interconnection.

Twisted Pair Drive Capability permits MECL circuits to drive twisted-pair transmission lines as long as 1000 feet.

MECL APPLICATIONS

The graduated speed ranges of the various MECL Families satisfy a great many digital system requirements. MECL 10,000 is a general-purpose, high-speed logic family specifically designed for smaller digital systems and peripherals as well as large computers. MECL III is recommended where its exceptionally high speed can buy needed system performance. It is used frequently in counter pre-scalers, high-speed digital communication systems, VHF phase-locked loops, high-speed digital processors, and high-speed timing chains in computers.

The compatibility among MECL families provides a bridge between system performance and system cost. Thus, the many functions and complex circuit members of the MECL 10,000 Line can be conveniently mixed with the very-high-speed functions of MECL III, in judicious combinations for system optimization.

BASIC CONSIDERATIONS FOR HIGH SPEED LOGIC DESIGN

High-speed operation involves only four considerations that differ significantly from operation at low and medium speeds:

- 1. Time delays through interconnect wiring, which may have been ignored in medium-speed systems, become highly important at state-of-the-art speeds.
- 2. The possibility of distorted waveforms due to reflections on signal lines increases with edge speed.
- 3. The possibility of "crosstalk" between adjacent signal leads is proportionately increased in high speed systems.
- 4. Electrical noise generation and pick-up are more detrimental at higher speeds.

In general, these four characteristics are speed- and frequency-dependent, and are virtually independent of the type of logic employed. The merit of a particular logic family is measured by how well it compensates for these deleterious effects in system applications.

The interconnect-wiring time delays can be reduced only by reducing the length of the interconnecting lines. At logic speeds of two nanoseconds, an equivalent "gate delay" is introduced by every foot of interconnecting wiring. Obviously, for functions interconnected within a single monolithic chip the time delays of signals travelling from one function

to another are insignificant. But for a great many externally interconnected parts, this can soon add up to an appreciable delay time. Hence, the greater the number of functions per chip, the higher the system speed. MECL circuits, particularly those of the MECL 10,000 Series are designed with a propensity toward complex functions to enhance overall system speed.

Waveform distortion due to line reflections also becomes troublesome principally at state-of-the-art speeds. At slow and medium speeds, reflections on interconnecting lines are not usually a serious problem. At extreme speeds, however, line lengths can approach the wavelength of the signal and improperly terminated lines can result in reflections that will cause false triggering (see Figure 3). The solution, as in RF technology, is to employ "transmission-line" practices and properly terminate each signal line with its characteristic impedance at the end of its run. The low-impedance, emitter-follower outputs of MECL circuits facilitate transmission-line practices without upsetting the voltage levels of the system.

The increased affinity for crosstalk in high-speed circuits is the result of very steep leading and trailing edges (fast rise and fall times) of the high-speed signal. These steep wavefronts are rich in harmonics that couple readily to adjacent circuits. In the design of MECL 10,000, the rise and fall times of the gate waveforms have been deliberately slowed. This reduces the affinity for crosstalk without compromising other important performance parameters.

From the above, it is evident that the MECL logic line is not simply capable of operating at high speed, but has been specifically designed to reduce the problems that are normally associated with high-speed operation.

FIGURE 3a — UNTERMINATED TRANSMISSION LINE
(No Ground Plane Used)

FIGURE 3b — PROPERLY TERMINATED TRANSMISSION LINE (Ground Plane Added)

FIGURE 4 - MECL GATE STRUCTURE AND SWITCHING BEHAVIOR

CIRCUIT DESCRIPTION

The typical MECL circuit, Figure 4, consists of a differential-amplifier input circuit, a temperature and voltage compensated bias network, and emitter-follower outputs to restore dc levels and provide buffering for transmission line driving. High fan-out operation is possible because of the high input impedance of the differential amplifier input and the low output impedance of the emitter follower outputs. Power-supply noise is virtually eliminated by the nearly constant current drain of the differential amplifier, even during the transition period. Basic gate design provides for simultaneous output of both the OR function and its complement, the NOR function.

Power-Supply Connections — Any of the power supply levels, VBB, VCC, or VEE may be used as ground; however, the use of the VCC node as ground results in best noise immunity. In such a case: VCC = 0, VBB = -1.15 to -1.3 V (depending on the specific MECL family), VEE = -5.2 V.

System Logic Specifications — The output logic swing of 0.85 V, as shown by the typical transfer characteristics curve, varies from a LOW state of $V_L = -1.75$ V to a HIGH state of $V_H = -0.9$ V with respect to ground. (These logic levels are valid for the MECL 10,000 and MECL III families. MECL I and II logic levels differ slightly.)

Positive logic is used when reference is made to logical "0's" or "1's." Then

Circuit Operation — Beginning with all logic inputs LOW (nominal -1.75 V), assume that Q1 through Q4

are cut off because their P-N base-emitter junctions are not conducting, and the forward-biased Q5 is conducting. Under these conditions, with the base of Q5 held at -1.29 V by the VBB network, its emitter will be one diode drop (0.8 V) more negative than its base, or -2.09 V. (The 0.8 V differential is a characteristic of this P-N junction.) The base-to-emitter differential across Q1 - Q4 is then the difference between the common emitter voltage (-2.09 V) and the LOW logic level (-1.75 V) or 0.34 V. This is less than the threshold voltage of Q1 through Q4 so that these transistors will remain cut off.

When any one (or all) of the logic inputs are shifted upward from the -1.75 V LOW state to the -0.9 V HIGH state, the base voltage of that transistor increases beyond the threshold point and the transistor turns on. When this happens, the voltage at the common-emitter point rises from -2.09 V to -1.7 (one diode drop below the -0.9 V base voltage of the input transistor), and since the base voltage of the fixed-bias transistor (Q5) is held at -1.29 V, the base-emitter voltage of Q5 cannot sustain conduction. Hence, this transistor is cut off.

This action is reversible, so that when the input signal(s) return to the LOW state, Q1 - Q4 are again turned off and Q5 again becomes forward biased. The collector voltages resulting from the switching action of Q1 - Q4 and Q5 are transferred through the output emitter-follower to the output terminal. Note that the differential action of the switching transistors (one section being off when the other is on) furnishes simultaneous complementary signals at the output. This action also maintains constant power supply current drain.

VARIATIONS AMONG MECL FAMILIES

The basic gate circuits of the four MECL families are illustrated in Figure 5. From these diagrams, it is evident that some variations were employed as technology advanced. The first of these is that the bias driver for the MECL I Line is not included on the chip, whereas all subsequent lines have this as an internal feature.

Second, most corresponding resistor values differ among all MECL Lines. This difference is necessary to achieve the varying speed and power improvements of the different lines. Of course, speed is not determined by resistor values alone. Transistor geometries, while not represented on a schematic, are a major determinant. The transistor geometries in conjunction with the resistor values provide the speed and power characteristics of the different families.

Third, it will be noted that MECL 10,000 and MECL III gates are supplied with base pull-down resistors ($R_p=50,\!000~\Omega)$ in each of the input transistors while the other two families are not. These resistors provide a path for base leakage current to unused input bases, causing them to be well turned off. Where these resistors are not used, any unused inputs must be externally tied to a suitable negative potential, e.g., VEE.

A final significant difference among the families is in the output circuits. MECL I circuits normally are supplied with output pull-down resistors on the chip. MECL II circuits can be obtained with or without output resistors. MECL III and MECL 10,000 circuits have open outputs.

The use of on-chip output resistors has both advantages and limitations. On the plus side is the obvious advantage that fewer external components are required. On the minus side is the fact that wire-ORing capability with on-chip pulldown resistors is limited. Moreover, with open outputs the designer can choose both the value and location of his termination to meet the system requirements. And finally, the use of external resistors reduces on-chip heating and power dissipation, allowing more complex LSI and increasing chip life and reliability.

MECL II

FIGURE 5 – BASIC GATE DIAGRAMS FOR THE MECL FAMILIES

DEFINITIONS OF LETTER SYMBOLS AND ABBREVIATIONS

Current:		Voltage:	
1 _{BL}	Base leakage current of a MECL expander	V _{BB}	Reference bias supply voltage.
ICC	input when at VEE. Total power supply current drawn from the positive supply by a MECL unit under	V _{BE}	Base-to-emitter voltage drop of a transistor at specified collector and base currents.
СВО	test (IC on older data sheets). Leakage current from input transistor on MECL devices without pulldown resistors	V _{CB}	Collector-to-base voltage drop of a transistor at specified collector and base currents.
Іссн	when test voltage is applied. Current drain from VCC power supply with all inputs at logic HIGH level.	Vcc	General term for the most positive power supply voltage to a MECL device (usually ground, except for translator and inter-
CEX	Current drain from VCC power supply with all inputs at logic LOW level. Collector cut-off current (VCE and	V _{CC1}	face circuits). Most positive power supply voltage (output devices). (Usually ground for MECL
CEX	VBE(off) as specified). For a MECL gate expander, this term signifies the total collector leakage current when all inputs are at the negative supply potential.	Vcc2	devices.) Most positive power supply voltage (current switches and bias driver)(usually ground for MECL devices).
ΙE	Total power supply current drawn from a MECL test unit by the negative power	VEE	Most negative power supply voltage for a circuit (usually -5.2 V for MECL devices).
łF	supply. Forward diode current drawn from an	VF	Input voltage for measuring IF on TTL interface circuits.
	input of a saturated logic-to-MECL trans- lator when that input is at ground	VIH	Input logic HIGH voltage level (nominal value).
l _{in}	potential. Current into the input of the test unit when a maximum logic HIGH (VIH max) is applied at that input.	*VIH max	Maximum HIGH level input voltage: The most positive (least negative) value of high-level input voltage, for which operation of the logic element within
*INH	HIGH level node input current into an input node with a specified HIGH level	.,	specification limits is guaranteed.
	(V _{IH max}) logic voltage applied to that	VIHA VIHA min	Input logic HIGH threshold voltage level. Minimum input logic HIGH level (thres-
*IINL	node. (Same as I _{in} for positive logic.) LOW level node input current. The current flowing into an input node with a	1110	hold) voltage for which performance is specified.
	specified LOW level (V _{IL min}) logic voltage applied to that node.	*VIH min	Minimum HIGH level input voltage: The least positive (most negative) value of
۱L	Load current that is drawn from a MECL circuit output when measuring the output HIGH level voltage.		HIGH level input voltage for which opera- tion of the logic element within specifica- tion limits is guaranteed.
*Іон	HIGH level output current: the current flowing into the output, at a specified	۷۱۲	Input logic LOW voltage level (nominal value).
	HIGH level output voltage.	*VIL max	Maximum LOW level input voltage: The most positive (least negative) value of
*IOL	LOW level output current: the current flowing into the output, at a specified LOW level output voltage.		LOW level input voltage for which operation of the logic element within specification limits is guaranteed.
Ios	Output short circuit current.	VILA	Input logic LOW threshold voltage level.
l _{out}	Output current (from a device or circuit, under such conditions mentioned in context).	VILA max	Maximum input logic LOW level (threshold) voltage for which performance is specified.
IR	Reverse current drawn from a transistor input of a test unit when VEE is applied at that input.	*VIL min	Minimum LOW level input voltage: The least positive (most negative) value of LOW level input voltage for which opera-
ISC	Short-circuit current drawn from a translator saturating output when that output	* 15050 5	TA NEWA mandred definition

^{*}JEDEC, EIA, NEMA standard definition

is at ground potential.

t-+ Propagation Delay, see Figure 12. tion of the logic element within specifica-Propagation delay, input to output from tion limits is quaranteed. tod the 50% point of the input waveform at Input voltage (to a circuit or device). Vin pin x (falling edge noted by - or rising $t_{x\pm y\pm}$ V_{max} Maximum (most positive) supply voltage. edge noted by +) to the 50% point of the permitted under a specified set of output waveform at pin y (falling edge conditions noted by -, or rising edge noted by +), (Cf Figure 12.) *∨он Output logic HIGH voltage level: The voltage level at an output terminal for a Output waveform rise time as measured t_{x+} specified output current, with the from 10% to 90% or 20% to 80% points specified conditions applied to establish a on waveform (whichever is specified) at HIGH level at the output. pin x with input conditions as specified. Output logic HIGH threshold voltage VOHA Output waveform fall time as measured level from 90% to 10% or 80% to 20% points VOHA min Minimum output HIGH threshold voltage on waveform (whichever is specified) at level for which performance is specified. pin x, with input conditions as specified. VOH max Maximum output HIGH or high-level Toggle frequency of a flip-flop or ftoq voltage for given inputs. counter device. Minimum output HIGH or high-level voltfshift Shift rate for a shift register. VOH min age for given inputs. Temperature: *VoL Output logic LOW voltage level: The Maximum temperature at which device tstg voltage level at the output terminal for a may be stored without damage or specified output current, with the performance degradation. specified conditions applied to establish a Junction (or die) temperature of an inte-ТJ LOW level at the output. grated circuit device. Output logic LOW threshold voltage level. VOLA T_{Δ} Ambient (environment) temperature VOLA max Maximum output LOW threshold voltage existing in the immediate vicinity of an level for which performance is specified. integrated circuit device package. VOL max Maximum output LOW level voltage for θ_{JA} Thermal resistance of an IC package, given inputs. iunction to ambient. Minimum output LOW level voltage for VOL min θ_{JC} Thermal resistance of an IC package, given inputs. junction to case. Line load-resistor terminating voltage for LFPM VTTLinear feet per minute. outputs from a MECL device. θ CA Thermal resistance of an IC package, case Output logic LOW level on MECL 10,000 VOLS1 to ambient. line receiver devices with all inputs at Miscellaneous: VFE voltage level. (This parameter is only valid for devices on whose data sheets it is $e_{\mathbf{q}}$ Signal generator inputs to a test circuit. TPin Test point at input of unit under test. Output logic LOW level on MECL 10,000 VOLS2 **TPout** Test point at output of unit under test. line receiver devices with all inputs open. D.U.T. Device under test (This parameter is only valid for devices on whose data sheets it is specified). Zout Output impedance. Time Parameters: *PD The total dc power applied to a device, not including any power delivered from t+ Waveform rise time (LOW to HIGH), 10% the device to a load.

to 90%, or 20% to 80%, as specified.

Waveform fall time (HIGH to LOW), 90% tto 10%, or 80% to 20%, as specified.

Same as t+ tr Same as ttf

Propagation Delay, see Figure 12. t+-

Load Resistance. Rı

 R_T Terminating (load) resistor.

 R_p An input pull-down resistor (i.e., connected to the most negative voltage).

*JEDEC, EIA, NEMA standard definition

SECTION II - TECHNICAL DATA

GENERAL CHARACTERISTICS and SPECIFICATIONS

(See pages 7 and 8 for definitions of symbols and abbreviations)

In subsequent sections of this Data Book, the functional blocks of all four MECL lines are identified and characterized. Complete data sheets are provided for each of the functions in the MECL II, MECL III, and MECL 10,000 families*. To make these data sheets as useful as possible, and to avoid a great deal of repetition, the data that is common to all functional blocks in a line is not repeated on each individual sheet. Rather, these common characteristics, as well as the application information that applies to each family, are discussed in this section.

In general, the common characteristics of major importance are:

<u>Maximum Ratings</u>, including both dc and ac characteristics and temperature limits;

<u>Transfer Characteristics</u>, which define logic levels and switching thresholds;

AC Parameters, such as propagation delays, rise and fall times and other time dependent characteristics.

In addition, this section will discuss general layout and design guides that will help the designer in building and testing systems with MECL circuits.

LETTER SYMBOLS AND ABBREVIATIONS

Throughout this section, and in the subsequent data sheets, letter symbols and abbreviations will be used in discussing electrical characteristics and specifications. Recently, these symbols have been under scrutiny by various industry organizations, resulting in a number of additions and changes. The symbols used in this book, and their definitions, are listed on the preceeding two pages.

MAXIMUM RATINGS

The dc limit parameters beyond which the life of the devices may be impaired are given in the following table in Figure 6 for all MECL families. In addition, the table provides certain ac parameter limits which, if exceeded, will not destroy the devices, but could degrade the performance below that of the quaranteed specifications.

MECL TRANSFER CURVES

For MECL logic gates, the dual (complementary) outputs must be represented by two transfer curves: one to describe the OR switching action and one to describe the NOR switching action. A typical transfer curve and associated data for all MECL families is shown in Figure 7a.

It is not necessary to measure transfer curves at all points of the curves. To guarantee correct operation it is sufficient merely to measure two sets of min/max logic level parameters.

The first set is obtained by applying test voltages, V_{IL} min and V_{IH} max (sequentially) to the gate inputs, and measuring the OR and NOR output levels to make sure they are between V_{OL} max and V_{OL} min, and V_{OHmax} and V_{OHmin} specifications.

The second set of logic level parameters relates to the switching thresholds. This set of data is distinguished by an "A" in symbol subscripts. A test voltage, VILA max, is applied to the gate and the NOR and OR outputs are measured to see that they are above the VOHA min and below the VOLA max levels, respectively. Similar checks are made using the test input voltage VIHA min.

The result of these specifications insures that:

- a) The switching threshold (\approx VBB) falls within the darkest rectangle; i.e. switching does not begin outside this rectangle;
- b) Quiescent logic levels fall in the lightest shaded ranges;
 - c) Guaranteed noise immunity is met.

Figure 7b shows guaranteed 25°C logic level limits and switching thresholds for each of the MECL families, along with typical HIGH and LOW logic levels.

Of additional interest are the variations of these parameters at limit temperatures. These are given in the tables of Figure 8, for the MECL II, III, and 10.000 families.

All of these specifications assume -5.2 V power supply operation. Operation at other power-supply voltages is possible, but will result in further transfer curve changes. Transfer characteristic data obtained for a variety of supply voltages are shown in Figure 9. The table accompanying these graphs indicates the change rates of output voltages as a function of power supply voltages.

Variations in logic swing amplitude for MECL II, III, and 10,000 are shown in Figure 10.

NOISE MARGIN

"Noise margin" is a measure of a logic circuit's resistance to undesired switching. MECL noise margin is defined in terms of the specification points surrounding the switching threshold. The critical parameters of interest here are those designated with

^{*}Complete data sheets for MECL I functions are not included because this line is recommended only for replacement purposes. However, such data sheets are available and can be obtained by contacting your nearest Motorola representative.

A. Limits beyond which device life may be impaired:

		<u> </u>		Family			
Characteristic		Symbol	Unit	MECLI	MECL II	MECL III	MECL 10,000
Power Supply Voltage (V	CC = 0)	VEE	Vdc	-10 to 0 V	-10 to 0 V	-8 to 0 V	-8 to 0 V
Base Input Voltage (V _{CC}	= 0)	Vin	Vdc	0 to VEE	0 to VEE	0 to VEE	0 to VEE
Output Source Current	Continuous Surge	Io	mAdc {	<20 -	<20	<40 -	<50 <100
Storage Temperature		T _{stg}	°c {	-55 to +150	. MC1000 -55 to +150 MC1200 -55 to +150	-55 to +150	-55 to +150° -55 to +150°
Junction Operating Temp	erature ¹	TJ	°C	-	MC1000 < 150 MC1200 < 175	< 165†	< 165††

B. Limits beyond which performance may be degraded:

Operating Temperature Range	TA	°c {	MC-300 -55 to +125 MC350 0 to +75	MC1000 0 to +75 MC1200 -55 to +125	MC1600 -30 to +85	-30 to +85* -55 to +125**
AC Fan-in (Expandable gates)	m	_	≤18	≤ 20	_	~
AC Fan-out	n	_	≤15	≤15		-
DC Fan-out	_	-	-	-	≤70	≤ 70
Power Supply Regulation	-	-	-	-	±10%	±10%
a must be						

¹Case must be < 150°C.

FIGURE 6 - MAXIMUM RATINGS

FIGURE 7a - MECL TRANSFER CURVES (MECL 10,000 example)

		and SPECIFIC	ATION TEST POINT	S	MECL 10,000		
Inputs .	Outputs	MECL I	MECL II	①② MECL III	10,100 ① 10,200 ③	10,500 ⑤ 10,600	
VIL min		VEE	•	-1.850	-1.850	-1.850	
V _{IH max}		0	-0.700	-0.810	-0.810	-0.720	
	VOL min	-1.750	-1.800	-1.850	-1.850	-1.850	
	VOL max	-1.465	-1.500	-1.620	-1.650	-1.620	
	VOH min	-0.795	-0.850 ⑥	-0.960	-0.960	-0.930	
	V _{OH max}	-0.690	-0.700	-0.810	-0.810	-0.720	
VILA max		-	-1.350	-1.485	-1.475	-1.475	
VIHA min		-	-1.025	-1.095	-1.105	-1.105	
	VOLA max	-	-	-1.600	-1.630	-1.600	
	VOHA min	-		-0.980	-0.980	-0.950	
With suitable inputs:							
Typical Output HIGH State		-0.75	-0.75	-0.900	-0.900	-0.825	
Typical Output LOW State		-1.55	-1.58	-1.750	-1.750	-1.725	
Nominal V _{BB} (Switching Threshol	d)	-1.15	-1.175	-1.290	-1.290	-1.290	

 $[\]bigcirc$ Stabilized temperature, with \geq 500 lfpm air flow. DIL package outputs terminated through 50 Ω resistor to -2.0 V.

General Conditions:

VEE = -5.2 V

V_{CC} = ground T_A = 25°C

FIGURE 7b - MECL LOGIC LEVEL SPECIFICATIONS (volts) 25°C

^{*}MC10,100, MC10,200 ••MC10,500, MC10,600

[†] Except MC1666-MC1671 < 145 $^{\mathrm{o}}$ C 11 Plastic Package < 150°C

⁽a) MC1660 DIL package.
(b) MC10101 example.
(c) See individual data sheets for V_{IL min}.
(d) See individual data sheets for V_{IL min}.
(e) 100 Ω load to -2.0 V, stabilized temper. 100 Ω load to -2.0 V, stabilized temperature with \geqslant 500 lfpm air flow.

TRANSFER DATA FOR TEMPERATURE VARIATIONS

MECL 10,000 FAMILY

	Series* { 10,100 10,200 (MC10101)		Series** { 10,500 10,600	
Parameter (volts)	-30°C	+85°C	-55°C	+125°C
VIH max & VOH max	-0.890	-0.700	-0.830	-0.580
VOH min	-1.060	-0.890	-1.080	-0.825
VOHA min	-1.080	-0.910	-1.100	-0.845
VIHA min	-1.205	-1.035	-1.255	-1.000
VILA max	-1.500	-1.440	-1.510	-1.400
VOLA max	-1.655	-1.595	-1.635	-1.525
V _{OL max}	-1.675	-1.615	-1.655	-1.545
VIL min & VOL min	-1.890	-1.825	-1.920	-1.820

^{*}Outputs loaded 50 Ω to -2.0 V. **Outputs loaded 100 Ω to -2.0 V.

MECL III (e.g. MC1660) FAMILY Compatible with MECL 10,000

	DIP and Flat Package	
Parameter (volts)	-30°C	+85°C
V _{IH max}	-0.875	-0.700
V _{OH max}	-0.875	-0.700
V _{OH min}	-1.045	-0.890
V _{OHA min}	-1.065	-0.910
VIHA min	-1.180	-1.025
VILA max	-1.515	-1.440
VOLA max	-1.630	-1.555
VOL max	-1.650	-1.575
VIL min & VOL min	-1.890	-1.830

Note: Outputs loaded 50 Ω to - 2.0 V.

MECL II FAMILY

Parameter (Volts)	-55°C	0°C	+75°C	+125°C
V _{IH max}	-0.825	-0.740	-0.615	-0.530
VOH max	-0.825	-0.735	-0.615	-0.530
VOH min	-0.990	-0.895	-0.775	-0.700
VIH min	-1.165	-1.070	-0.950	-0.875
VIL max	-1.405	-1.350	-1.260	-1.205
VOL max	-1.580	-1.525	-1.435	-1.380
VOL min	-1.890	-1.830	-1.760	-1.720
V _{IL min}	<v<sub>EE</v<sub>	<v<sub>EE</v<sub>	<v<sub>EE</v<sub>	<v<sub>EE</v<sub>

Note: Noise margin = 175 mV.

TRANSFER DATA FOR POWER SUPPLY VARIATIONS

FIGURE 9b - MECL III/10,000 "NOR"

FIGURE 9c - MECL II "OR"

FIGURE 9d - MECL II "NOR"

Voltage	MECL II	MECL 10,000*	MECL III
ΔVΟΗ/ΔVΕΕ	0.015	0.016	0.033
ΔV _{OL} /ΔV _{EE}	0.230	0.250	0.27
ΔV _{BB} /ΔV _{EE}	0.115	0.148	0.14

^{*}and subsets: 10,200; 10,500; 10,600.

FIGURE 9e - LEVEL CHANGE RATES

LOGIC SWING VARIATIONS WITH TEMPERATURE AND SUPPLY VOLTAGE

FIGURE 10b - MECL 111/10,000

*Depending on part type. See selector guide or data sheet.

MECL NOISE MARGIN DATA

FIGURE 11

the "A" subscript (VOHA min, VOLA max, VIHA min, VILA max) in the transfer characteristic curves.

Guaranteed noise margin (NM) is defined as

POINTS FOR MECL GATES

NMHIGH LEVEL = VOHA min - VIHA min

follows:

NMLOW LEVEL = VOHA min - VIHA min

To see how noise margin is computed, assume a MECL gate drives a similar MECL gate, Figure 11.

At a gate input (point B) equal to VILA max, MECL gate #2 can begin to enter the shaded transition region.

This is a "worst case" condition, since the VOLA max specification point guarantees that no gate can enter the transition region before an input equal to VILA max is reached. Clearly then, VILA max is one critical point for noise margin computation, since it is the edge of the transition region.

To find the other critical voltage, consider the output from MECL gate #1 (point A). What is the most positive value possible for this voltage (considering worst case gate specifications)? From Figure 11 it can be observed that the VOLA max specification insures that the LOW state OR output from gate 1 can be no greater than VOLA max.

Note that VOLA max is more negative than VILA max. Thus, with VOLA max at the input to gate #2, the transition region is not yet reached. (The input voltage to gate #2 is still to the left of VILA max on the transfer curve.)

In order to ever run the chance of switching gate #2, we would need an additional voltage, to move the input from VOLA max to VILA max. This constitutes the "safety factor" known as noise margin. It can be calculated as the magnitude of the difference

between the two specification voltages, or for the MECL 10,000 levels shown:

Similarly, for the HIGH state:

Analogous results are obtained when considering the "NOR" transfer data.

Note that these noise margins are absolute worst case conditions. The lesser of the two noise margins is that for the HIGH state, 125 mV. This then, constitutes the guaranteed margin against signal undershoot, and power or thermal disturbances.

As shown in the table, typical noise margins are usually better than guaranteed — by about 75 mV.

Noise margin is a dc specification that can be calculated, since it is defined by specification points tabulated on MECL data sheets. However, by itself, this specification does not give a complete picture regarding the noise immunity of a system built with a particular set of circuits. Overall system noise immunity involves not only noise-margin specifications, but also other circuit-related factors that determine how difficult it is to apply a noise signal of sufficient magnitude and duration to cause the circuit to propagate a false logic state. In general, then, noise immunity involves line impedances, circuit output impedances, and propagation delay in addition to noise-margin specifications. This subject is discussed in greater detail in Application Notes AN-298 and AN-592.

AC OR TIME PARAMETERS

Time dependent specifications are those that define the effects of the circuit on a specified input signal, as it travels through the circuit. They include the time delay involved in changing the output level from one logic state to another (t+; t-). In addition, they include the time required for the output of a circuit to respond to the input signal, designated as propagation delay. Since this terminology has varied over the years, and because the

"conditions" associated with a particular parameter may differ among logic families, the common MECL waveform and propagation delay terminology are depicted in Figure 12. Specific rise, fall, and propagation delay times are given on the data sheet for each specific functional block, but like the transfer characteristics, ac parameters are temperature and voltage dependent. Typical variations for the MECL families are given in the curves of Figure 13.

MECL II, III RISE AND FALL TIMES MECL 10,000 RISE AND FALL TIMES

MECL PROPAGATION DELAY

FIGURE 12

FIGURE 13a — TYPICAL PROPAGATION DELAY t--*
versus V_{EE} and TEMPERATURE (MECL 10,000)

FIGURE 13c — TYPICAL FALL TIME (90% to 10%)
versus TEMPERATURE and SUPPLY VOLTAGE
(MECL 10,100)

FIGURE 13b — TYPICAL PROPAGATION DELAY t++**
versus VEE and TEMPERATURE (MECL 10,000)

FIGURE 13d — TYPICAL RISE TIME (10% to 90%)
versus TEMPERATURE and SUPPLY VOLTAGE
(MECL 10,100)

TYPICAL DELAY TIMES FOR MECL II FAMILY

Input t+ = t-= 5.0 ns 3 Fan-out = 1 +125°C 1 DELAY TIME (0.20 +75°C +25°C ooc __55°C PROPAGATION 0 2.0 2.0 ‡ 2.0 ... - -5.2 - -6.0 - 7.0 V_{EE}, SUPPLY VOLTAGE (VOLTS)

**Formerly desinated t_{pd+} -3.0 -5.2 -6.0 -8.0

FIGURE 13e – TYPICAL PROPAGATION DELAY

t – * versus TEMPERATURE and

SUPPLY VOLTAGE (MECL II)

FIGURE 13f — TYPICAL PROPAGATION DELAY

t++** versus TEMPERATURE and

SUPPLY VOLTAGE (MECL II)

SUPPLY VOLTAGE (MECL II)

O -3.6 -4.4 -5.2 -6.0 -7.0 -8.0

VEE, SUPPLY VOLTAGE (VOLTS)

FIGURE 13g - TYPICAL FALL TIME

(90% to 10%) versus TEMPERATURE and

FIGURE 13h — TYPICAL RISE TIME (10% to 90%) versus TEMPERATURE and SUPPLY VOLTAGE (MECL II)

TYPICAL DELAY TIMES FOR MECL 10,000 FAMILY

FIGURE 13i — TYPICAL PROPAGATION DELAY t--* versus V_{EE} and TEMPERATURE (MECL 10,500)

FIGURE 13j — TYPICAL PROPAGATION DELAY t++** versus V_{EE} and TEMPERATURE
(MECL 10.500)

FIGURE 13k — TYPICAL FALL TIME (80% to 20%) versus TEMPERATURE and (MECL 10,500)

FIGURE 13I – TYPICAL RISE TIME (20% to 80%) versus
TEMPERATURE and SUPPLY VOLTAGE
(MECL 10.500)

SETUP AND HOLD TIMES

The t_{setup} and t_{hold} times are two ac specifications which can be confused unless clearly defined. For MECL devices, t_{setup} is defined as the time (50% – 50%) before a Clock transition that Data must be present for a bistable circuit to "recognize" the incoming Data.

The thold is similarly defined to be the time after the Clock transition that Data must remain to insure that bistable outputs retain their state.

In specifying devices, Motorola establishes and guarantees values for t_{setup} and t_{hold} . The limits for t_{setup} and t_{hold} insure proper logical function of bistable circuits, but do not guarantee that propagation delay or noise specifications will be met under all conditions when operating near the limits. For MECL bistable circuits, proper device operation usually occurs with Data present for somewhat less time than that specified for t_{setup} and t_{hold} .

SECTION III - OPERATIONAL DATA

POWER SUPPLY CONSIDERATIONS

MECL circuits are characterized with the V_{CC} point at ground potential and the V_{EE} point at -5.2 V. While this MECL convention is not necessarily mandatory, it does result in maximum noise immunity. This is so because any noise induced on the V_{EE} line is applied to the circuit as a common-mode signal which is rejected by the differential action of the MECL input circuit. Noise induced into the V_{CC} line is not cancelled out in this fashion. Hence, a good system ground at the V_{CC} bus is required for best noise immunity.

Power supply regulation of 10% or better is recommended. The -5.2 V power supply potential will result in best circuit speed. Other values for VEE may be used. A more negative voltage will increase noise margins at a cost of increased power dissipation. A less negative voltage will have just the opposite effect.

On logic cards, a ground plane or ground bus system should be used. A bus system should be wide enough to prevent significant voltage drops between supply and device and to produce a low source inductance.

Although little power supply noise is generated by MECL logic, power supply bypass capacitors are recommended to handle switching currents caused by stray capacitance and asymmetric circuit loading. A parallel combination of a 1.0 μF and a 100 pF capacitor at the power entrance to the board, and a 0.01 μF low-inductance capacitor between ground and the -5.2 V line every four to six packages, are recommended.

Most MECL 10,000 and MECL III circuits have two V_{CC} leads. V_{CC1} supplies current to the output transistors and V_{CC2} is connected to the circuit logic transistors. The separate V_{CC} pins reduce cross-coupling between individual circuits within a package even when the outputs are driving heavy loads. Circuits with large drive capability, similar to the MC10110, have two V_{CC1} pins. The V_{CC} pins should be connected to the ground plane or ground bus as close to the package as possible.

All MECL II, MECL III, and MECL 10,000 devices have their own internal temperature and power-voltage-compensated bias voltage sources.

For further discussion of MECL power supply considerations to be made in system designing, see MECL System Design Handbook, Ch. 5.

POWER DISSIPATION

The power dissipation of MECL functional blocks is specified on their respective data sheets. This specification does not include power dissipated in the output devices due to output termination. The

Terminating Resistor Value	Output Transistor Power Dissipation (mW)	Terminating Resistor Power Dissipation (mW)
150 ohms to -2.0 Vdc	5.0	4.3
100 ohms to -2.0 Vdc	7.5	6.5
75 ohms to -2.0 Vdc	10	8.7
50 ohms to -2.0 Vdc	15	13
2.0 k ohms to VEE	2.5	7.7
1.0 k ohm to VEE	4.9	15.4
680 ohms to VEE	7.2	22.6
510 ohms to VEE	9.7	30.2
270 ohms to VEE	18.3	57.2
82 ohms to V _{CC} and 130 ohms to V _{EE}	15	140

FIGURE 14 — TYPICAL POWER DISSIPATION IN OUTPUT CIRCUIT WITH EXTERNAL TERMINATING RESISTORS

system designer can compute total package power for his particular termination technique by adding, I_E x 5.2 + Output Device Power. Some of the devices in the MECL I, II, and III Lines include on-chip output pulldown resistors, so that adding termination power has already been accomplished. None of the devices in the MECL 10,000 Series incorporate internal output pulldown resistors.

The omission of these resistors permits the use of external terminations designed to yield best system performance. To obtain total operating power dissipation of a particular functional block in a system, the dissipation of the output transistor, under load, must be added to the specified power dissipation of those circuits without internal termination.

The table in Figure 14 lists the power dissipation in the output transistors plus that in the external terminating resistors, for the more commonly used termination values and circuit configurations. To obtain true package power dissipation, one output-transistor power-dissipation value must be added to the specified package power dissipation for each external termination resistor used in conjunction with that package. To obtain system power dissipation, the stated dissipation in the external terminating resistors must be added as well. Unused outputs draw no power and may be ignored.

The power dissipation of MECL functional blocks varies with both temperature and VEE. Typical variations are shown in Figure 15. The graph is normalized so that it applies to all MECL lines. The reference temperature is 25°C and the reference power is obtained by multiplying the typical IE value (total power supply drain current specified on the

FIGURE 15 — NORMALIZED POWER DISSIPATION VORSUS TEMPERATURE and SUPPLY VOLTAGE

data sheet) by VEE (5.2 V). For those devices where only the maximum value of IE is specified on the data sheet, nominal power dissipation is approximately 80% of that calculated with the IE (max) specification.

LOADING CHARACTERISTICS

The differential input to MECL circuits offers several advantages. Its common-mode-rejection feature offers immunity against power-supply noise injection, and its relatively high input impedance makes it possible for any circuit to drive a relatively large number of gate inputs without deterioration of the guaranteed noise margin. Hence, dc fan-out with MECL circuits does not normally present a design problem.

The specified dc loading factors (the number of gate inputs of the same family that can be driven by a circuit output) for MECL I and MECL II families is 25. For MECL 10,000, it is 90; and for MECL III, it is 70 or 7, depending on the input impedance of the circuit (whether the system is implemented with high-impedance or low-impedance devices).

Graphs showing typical output voltage levels as a function of load current for MECL II, III, and 10,000 are shown in Figure 16. These graphs can be used to determine the actual output voltages for loads exceeding normal operation.

While dc loading causes a change in output voltage levels, thereby tending to affect noise margins, ac loading increases the capacitances associated with the circuit and, therefore, affects circuit speed. The effect of fan-out on MECL II speed is shown in the graphs of Figure 17.

For MECL 10,000 and MECL III, best performance at fan-outs greater than 10 and 6, respectively, will occur with the use of transmission lines.

FIGURE 16a — MECL II TYPICAL OUTPUT VOLTAGES versus LOAD CURRENT and TEMPERATURE

FIGURE 16b – MECL II TYPICAL OUTPUT VOLTAGES versus LOAD CURRENT and TEMPERATURE –

FIGURE 16c — OUTPUT VOLTAGE LEVELS versus DC LOADING, MECL III and MECL 10,000

FIGURE 17a — MECL II RISE TIME versus LOADING and TEMPERATURE

FIGURE 17c — MECL II PROPAGATION DELAY t++
versus LOADING and TEMPERATURE

FIGURE 18a — MECL 10,000 GATE PROPAGATION DELAY TIME versus FANOUT (Fanout-at End of 14" $\,$ 50 Ω Matched Transmission Line)

The propagation delay and rise time of a driving gate are affected very little by capacitance loading along a matched parallel-terminated transmission line. However, the delay and characteristic impedance of the transmission line itself are affected by the distributed capacitance. Signal propagation down the line will be increased by a factor, $\sqrt{1+C_0/C_0}$. Here

FIGURE 17b — MECL II FALL TIME versus LOADING and TEMPERATURE, (Single Pull-down Resistor)

FIGURE 17d — MECL II PROPAGATION DELAY t-versus LOADING and TEMPERATURE

FIGURE 18b — MECL 10,000 RISE and FALL TIME (10% to 90%) versus FANOUT (Fanout at End of 14" 50 Ω Matched Transmission Line)

Co is the normal line capacitance, and Cd is the distributed capacitance due to loading and stubs off the line.

Maximum allowable stub lengths for loading off of a MECL 10,000 transmission line vary with line impedance. For example, with $Z_0=50$ ohms, maximum stub length would be 4.5 inches (1.8 in. for

MECL III). But when $Z_0 = 100$ ohms, the maximum allowable stub length is decreased to 2.8 inches (1.0 in, for MECL III).

The input loading capacitance of a MECL 10,000 device is 2.9 pF (e.g. MC10109). Therefore it is recommended that non-transmission-line environment fanout be limited to a maximum of 10 loads, due to line delay increases which limit system speed.

The input loading capacitance of a MECL III logic function is 3.3 pF. Therefore it is recommended that non-transmission-line environment fanout be limited to a maximum of 6 loads.

Shown in Figure 18 are the effects of fanout on MECL 10,000 time parameters.

UNUSED MECL INPUTS

The input impedance of a differential amplifier, as used in the typical MECL input circuit, is very high when the applied signal level is low. Under low-signal conditions, therefore, any leakage to the input capacitance of the gate could cause a gradual build-up of voltage on the input lead, thereby adversely affecting the switching characteristics at low repetition rates.

For MECL I and MECL II circuits, the gate inputs are essentially open. In use, therefore, any unused inputs should be tied to a negative potential for

reliable system operation. Most devices can use VEE as the input return, but control inputs of series reliable system operation. Most devices can use VEE as the input return, but control inputs of series gated devices such as the MC1019, MC1021, MC1028, MC1035, MC1038, MC1045, and MC1066 should be returned to the VOL level. This protects against voltage buildup on the unused inputs and assures that noise immunity depends only on those inputs actively used.

All single-ended input MECL 10,000 and MECL III circuits contain input pull-down resistors between the input transistor bases and VEE. As a result, unused inputs may be left unconnected (the resistor provides a sink for ICBO leakage currents, and inputs are held sufficiently negative that circuits will not trigger due to noise coupled into such inputs).

Input pull-down resistor values for the MECL III high-impedance circuits and all MECL 10,000 devices are typically 50 k Ω and are not to be used as pull-down resistors for preceding open-emitter outputs.

Several MECL 10,000 devices don't contain input pull-downs. Examples are the differential line receivers, MC10115 and MC10116. If a single differential receiver of either device type is unused, one input of that receiver must be tied to the VBB pin provided, and the other input goes to VEE.

SECTION IV - SYSTEM DESIGN CONSIDERATIONS

THERMAL MANAGEMENT

Circuit performance and long-term circuit reliability are affected by die temperature. Normally, both are improved by keeping the IC junction temperatures low.

Electrical power dissipated in any integrated circuit is a source of heat. This heat source increases the temperature of the die relative to some reference point, normally the ambient temperature of 25°C in still air. The temperature increase, then, depends on the amount of power dissipated in the circuit and on the net thermal resistance between the heat source and the reference point.

The average temperature at the junction is a function of the system's ability to remove heat generated in the circuit — from the junction region to the ambient environment. The basic formula for converting power dissipation to estimated junction temperature is:

$$T_{J} = T_{A} + P_{D} (\theta_{JC} + \theta_{CA})$$
 (1)

or

$$T_{J} = T_{A} + P_{D} (\theta_{JA})$$
 (2)

where

T_J = junction temperature

T_A = ambient temperature

PD = calculated power dissipation

 θ_{JC} = thermal resistance, junction to case

 θ_{CA} = thermal resistance, case to ambient

 θ_{JA} = thermal resistance, junction to ambient

Only two terms on the right side of equation (1) can be varied by the user — the ambient temperature, and the device case-to-ambient thermal resistance, θ_{CA} . (To some extent the device power dissipation can be also controlled, but under recommended use the VEE supply and loading dictate a fixed power dissipation.) Hence, both system air flow and the MECL package mounting technique affect the thermal resistance term.

	θ _{JA} _ °C/Watt (Still Air)		θJC − °C/Watt	
Package	Worst Case	Typical	Worst Case	
Ceramic Flat Pack (Cerflat) 1/4x1/4 (Gold Eutectic Die Bond)	210	,166	60	
Plastic Dual-In-Line, 14 lead or 16 lead (Gold Eutectic Die Bond)	150	100	70	
Ceramic Dual-In-Line 14 or 16 lead (Gold Eutectic Die Bond)	150	100	50	
Ceramic Dual-In-Line 24 Lead	-	45 •	10*	
Plastic Dual-In-Line 24 Lead	-	65**	-	

^{*}Data for 8200 sq. mil die size

••500 Ifpm air flov

FIGURE 19 - WORST CASE AND TYPICAL THERMAL RESISTANCE RATINGS FOR SELECTED IC PACKAGES

FIGURE 20 – AMBIENT TEMPERATURE DERATING CURVE

Package Type - 16-Lead Black Ceramic Dissipation Level - 200 mW Air Flow - 2-Axis ${\bf 25^{\circ}C^{\circ}}$ Method - Calibrated Diode Package Mounting #1 Barnes Socket #2 Printed Circuit Board ${\bf 4''}$ x 6" x 0.062" - 2 oz. Cu.

*x-axis air flow lowers $\theta_{\rm JA}$ by 5°C per watt.

FIGURE 21 – TYPICAL THERMAL RESISTANCES FOR 16-PIN BLACK CERAMIC DUAL IN-LINE PACKAGES

Package	Ambient Condition	θJA
Stud	Copper heat sink	37°C/W typ
Dual In-Line Low Power	≥ 500 linear fpm blown air	50°C/W typ
Dual In-Line High Power (P _D > 500 mW)	Mounted in heat sink and 500 linear fpm blown air or Mounted in heat sink and on printed circuit ground plane using termal paste	35°C/W max

FIGURE 22 – THERMAL CONDITIONS FOR DC SPECIFICATIONS – MECL III

Internally, thermal resistance of an integrated circuit is a function of the package material and size, and of the method used in bonding the IC die to the package. For some standard IC packages, the worst-case and typical thermal resistance values are given in the table in Figure 19. In Figure 20, this basic data is converted into a graph showing the maximum power dissipation allowable at various ambient temperatures for circuits mounted in the various packages, taking into account the maximum permissible junction temperature for devices packaged in plastic or ceramic. These measurements are taken in still air.

The effect of air flow over the packages on θ_{JA} is illustrated in the graph of Figure 21 for two different mounting methods. This driven air flow reduces the thermal resistance of the package, therefore permitting a corresponding increase in power dissipation without exceeding the maximum permissible junction temperature.

As an example of the use of the information above, the junction temperature for a quad MECL 10,000 gate loaded with four 50 ohm loads can be calculated. Typical total power dissipation (including a load) for this quad gate is 164 mW. Assume for this thermal study that air flow is 500 linear feet per minute and that the device is soldered into a printed circuit board. From Figure 21, curve #2, θ JA is 50°C/W. With TA (air flow temperature at the device) equal to 25°C, the following junction temperature results:

$$T_J = P_D \theta_{JA} + T_A$$

 $T_J = (0.164 \text{ W}) (50^{\circ}\text{C/W}) + 25^{\circ}\text{C} = 33.2^{\circ}\text{C}$

Under the above operating conditions the MECL 10,000 quad gate has its junction elevated above ambient temperature by only 8.2°C.

Even though devices on a printed circuit board may each have different power dissipations, all will have the same input and output levels provided that each is subject to identical air flow and the same ambient air temperature. This eases design, since the only change in levels between devices is due to the increase in ambient temperature as the air passes over the devices, or differences in ambient temperature between two devices.

MOUNTING and HEAT SINK SUGGESTIONS for MECL III

With large subnanosecond logic systems, the use of multilayer printed circuit boards is recommended. Such boards permit better ground planes and shorter interconnection runs than single-layer boards and also allow better use of stripline techniques.

MECL III circuits have an average power dissipation of approximately 60 mW per logic gate. Adequate cooling should be provided to insure that device junction temperatures do not exceed 110°C.

The dc data sheet specifications for MECL III are given for an operating temperature range from -30°C

to +85 $^{\rm O}$ C for the conditions described in the table of Figure 22.

The designer may want to use MECL III under conditions that vary from those given. The main restriction facing the designer is that a few high power dual in-line parts* dissipating typically 900 mW under load require heat sinking to assure a $\theta_{\rm JA} \leq 35^{\rm o}{\rm C/W}$ which will keep junction temperature below $110^{\rm o}{\rm C}$.

The low-power dual in-line parts may be used without air and with higher θ JA. However, the designer must bear in mind that junction temperatures will be higher for higher θ JA, even though the ambient temperature is the same. Higher junction temperatures will cause logic levels to shift.

As an example, a 450 mW device operated at θ JA = 80°C/W shows a HIGH logic level shift of about 17.5 mV above the HIGH logic level when operated with a θ JA = 50°C/W (level shift = Δ TJ \times 1.3 mV/°C).

If logic levels of individual devices shift by different amounts (depending on PD and θ JA), noise margins are somewhat reduced. Therefore, the system designer must lay out his system bearing in mind that the mounting procedures to be used should minimize thermal effects on noise margin.

The following sections on package mounting and thermal characteristics are intended to provide the designer with sufficient information to insure good noise margins and high reliability in MECL III system use.

Ceramic Dual In-Line Package, Case 620

MECL III low-power devices are specified with θ JA typically 50°C/W, and the high-power units (PD > 500 mW) with θ JA equal to 35°C/W maximum. To aid the designer in using the "L" (ceramic dual in-line) package, curves and data showing thermal characteristics of the package are provided in Figure 21.

The use of multi-layer printed circuit boards is recommended to provide both a ground plane and a good thermal path for heat dissipation. Also, a multi-layer board allows the use of microstrip line techniques to provide transmission line interconnections.

Two-sided printed circuit boards may be used where board dimensions and package count are small. If possible, the VCC ground plane should face the bottom of the package to form the thermal conduction plane. If signal lines must be placed on both sides of the board, the VEE plane may be used as the thermal plane, and at the same time may be used as a pseudo ground plane. The pseudo ground plane becomes the ac ground reference under the signal lines placed on the same side as the VCC ground plane (now on the opposite side of the board from the packages), thus maintaining a microstrip signal line environment.

Two-ounce copper board is recommended for *i.e. MC1654, MC1678, MC1694, etc.

thermal conduction and mechanical strength. Also, mounting holes for low power devices may be counter sunk to allow the package bottom to contact the heat plane. This technique used along with thermal paste will provide good thermal conduction.

Printed channeling is a useful technique for conduction of heat away from the MECL dual in-line package when the device is soldered into a printed circuit board. As illustrated in Figure 23, this heat dissipation method could also serve as VEE voltage distribution or as a ground bus. The channels should terminate into channel strips at each side or the rear of a plug-in type printed circuit board. The heat can then be removed from the circuit board, or board slide rack, by means of wipers that come into thermal contact with the edge channels.

FIGURE 23a - TYPICAL MECL III/MECL 10,000 CIRCUIT BOARD SPACING

FIGURE 23b – CHANNEL/WIPER HEAT SINKING ON DOUBLE LAYER BOARD USED WITH MECL III

FIGURE 24 — MECL III HIGH-POWER DUAL IN-LINE PACKAGE MOUNTING (With Heat Sink, in 500 Ifpm of Air)

Power Dissipation (mW)	Junction Temperature Gradient (°C/Package)
200	0.4
250	0.5
300	0.63
400	0.88

Devices mounted on 0.062" PC board with Z axis spacing of 0.5". Air flow is 500 Ifpm along the Z axis.

FIGURE 25 — THERMAL GRADIENT OF JUNCTION TEMPERATURE (16-Pin MECL Dual In-Line Package)

FIGURE 26 – INTERFACING MECL II TO MECL III OR MECL 10.000

For the high-power devices requiring θ_{JA} of less than 35^{o} C/W, a suitable heat sink is the IERC-LIC-214A2WCB shown in Figure 24. The heat sink should have a minimum of 500 lfpm blown air or be mounted directly on the copper ground plane (using silicone paste) if used in still air, to meet the 35^{o} C/W maximum rating. (See IERC Data Sheet for LIC-214A2WCB.) The heat sink shown allows easy access to the dual in-line IC pins for connection to Microstrip line.

Air Flow

The majority of MECL III users employ some form of air-flow cooling. As air passes over each device on a printed circuit board, it absorbs heat from each package. This heat gradient from the first package to the last package is a function of the air flow rate and individual package dissipations. Figure 25 provides gradient data at power levels of 200 mW. 250 mW, 300 mW, and 400 mW with an air flow rate of 500 lfpm. These figures show the proportionate increase in the junction temperature of each dual in-line package as the air passes over each device. For higher rates of air flow the change in junction temperature from package to package down the air stream will be lower due to greater cooling.

(For further discussion of Thermal Management in MECL systems, see MECL System Design Handbook, Ch. 6.)

COMPATIBILITY AMONG MECL FAMILIES

MECL circuits are designed to interface with each other over a power supply voltage range of $\pm 10\%$ from the nominal -5.2 V without loss of noise margin (other than that due to reduced signal swing at low voltage). However, if two circuits are at different supply voltages or on the same power supply with a voltage offset between circuits, there will be a predictable loss of noise margin.

The MECL 10,000 logic family was designed to be directly level compatible with the MECL III logic family in dual in-line packages. The MECL II family has somewhat higher output levels but is compatible with the faster MECL 10,000 and MECL III inputs when MECL II is loaded with the resistor pair, shown in Figure 26. The resistor combination insures full noise margin in the logic LOW level. An alternate approach is to use a single 510 ohm resistor to VEE on the MECL II output, but some loss of noise margin takes place. Conversely, lightly loading the MECL 10,000 or MECL III outputs with a 1.5 k Ω resistor raises the output logic levels to meet MECL II requirements. MECL II will operate directly with MECL 10,000 and MECL III, but there is a loss of noise margin (at the interface point only).

INTERFACING MECL to SLOWER LOGIC TYPES

MECL circuits are interfaceable with most other logic forms. For MECL/MTTL/MDTL interfaces, when MECL is operated at the recommended -5.2 volts and TTL/DTL at +5 V supply, currently available translator circuits, such as MC10124 and MC10125, may be used

For systems where a dual supply (-5.2 V and + 5 V) is not practical, a discrete-component translator can be designed. For details, see MECL System Design Handbook, Ch. 8. Such circuits can easily be made fast enough for any available TTL.

MECL also interfaces readily with MOS. With CMOS operating at +5 V, any of the MECL to TTL translators works very well. On the other hand, CMOS will drive MECL directly when using a common -5.2 V supply. P-channel MOS, operating with a negative supply, requires simple translators to equalize the differing logic levels.

Specific circuitry for use in interfacing MECL families to other logic types is given in detail in Chapter 8 of the MECL System Design Handbook. Complex MECL 10,000 functions are presently available to interface MECL 10,000 with MOS logic, MOS memories, TTL tri-state circuits, and IBM bus logic levels.

CIRCUIT INTERCONNECTIONS

Though not necessarily essential, the use of multilayer printed circuit boards offers a number of advantages in the development of high-speed logic cards. Not only do multi-layer boards achieve a much higher package density, interconnecting leads are kept shorter, thus minimizing propagation delay between packages. This is particularly beneficial with MECL III which has relatively fast (1 ns) rise and fall times. Moreover, the unbroken ground planes made possible with multi-layer boards permit much more precise control of transmission line impedances when these are used for interconnecting purposes. Thus multilayer boards are recommended for MECL III layouts and are justified when operating MECL 10,000 at top circuit speed, when high-density packaging is a requirement, or when transmission line interconnects are used.

Point-to-point back-plane wiring without matched line terminations may be employed for MECL interconnections if line runs are kept short. At MECL II speeds, this applies to line runs up to 12 inches, for MECL 10,000 up to 8 inches, and for MECL III up to 1 inch (maximum open wire lengths for less than 100 mV undershoot). But, because of the open-emitter outputs of MECL 10,000 and MECL III circuits, pull-down resistors are always required. Several ways of connecting such pull-down resistors are shown in Figure 27.

Resistor values for the connection in Figure 27(a) may range from 270 ohms to 2 $k\Omega$ depending on

FIGURE 27 - PULL-DOWN RESISTOR TECHNIQUES

power and load requirements (see MECL System Design Handbook, Ch. 3). Power may be saved by connecting pull-down resistors in the range of 50 ohms (100 ohm minimum for MC10,500 and MC10,600 Series parts) to 150 ohms, to -2.0 Vdc, as shown in Figure 27(b). Use of a series damping resistor, Figure 27(c), will extend permissible lengths of unmatched-impedance interconnections, with some loss of edge speed.

With proper choice of the series damping resistor, line lengths can be extended to any length*, while limiting overshoot and undershoot to a predetermined amount. Damping resistors usually range in value from 10 ohms to 150 ohms, depending on the line length, fanout, and impedance. The open emitter-follower outputs of MECL III and MECL 10,000 give the system designer all possible line driving options.

FIGURE 29a - PARALLEL TERMINATED LINE

FIGURE 29b - PARALLEL TERMINATION -THEVENIN EQUIVALENT

*Limited only by line attenuation and bandwidth characteristics.

FIGURE 30 - SERIES TERMINATED LINE

One major advantage of MECL over saturated logic is its capability for driving matched-impedance transmission lines. Use of transmission lines retains signal integrity over long distances. The MECL III and MECL 10,000 emitter-follower output transistors will drive a 50-ohm transmission line (100 ohms or greater for MECL 10,500 and MC10,600 Series) terminated to -2.0 Vdc. This is the equivalent current load of 22 mA in the HIGH logic state and 6 mA in the LOW state.

Parallel termination of transmission lines can be done in two ways. One, as shown in Figure 28(a), uses a single resistor whose value is equal to the impedance (Z_0) of the line. A terminating voltage (V_{TT}) of -2.0 Vdc must be supplied to the terminating resistor.

Another method of parallel termination uses a pair of resistors, R1 and R2. Figure 28(b) illustrates this method. The following two equations are used to calculate the values of R1 and R2:

R1 = 1.6 Z₀
R2 =
$$\frac{R1 \cdot Z_0}{R1 + Z_0}$$

Another popular approach is the series-terminated transmission line (see Figure 29). This differs from parallel termination in that only one-half the logic swing is propagated through the lines. The logic swing doubles at the end of the transmission line due to reflection on an open line, again establishing a full logic swing.

To maintain clean wave fronts, the input impedance of the driven gate must be much greater than the characteristic impedance of the transmission line. This condition is satisfied by MECL circuits which have high impedance inputs. Using the appropriate terminating resistor (RS) at point A (Figure 29), the reflections in the transmission line will be terminated.

The advantages of series termination include ease of driving multiple series-terminated lines, low power consumption, and low cross-talk between adjacent lines. The disadvantage of this system is that loads may not be distributed along the transmission line due to the one-half logic swing present at intermediate points.

FIGURE 31 - TWISTED PAIR LINE DRIVER/RECEIVER

For board to board interconnections, coaxial cable may be used for signal conductors. The termination techniques just discussed also apply when using coax. Coaxial cable has the advantages of good noise immunity and low attenuation at high frequencies. No significant performance degradation occurs for lengths up to 20 feet for MECL III, and up to 50 feet for MECL 10.000.

Twisted pair lines are one of the most popular methods of interconnecting cards or panels. MECL complementary outputs are connected to one end of the twisted-pair line, and a differential line receiver to the other as shown in Figure 30. RT is used to terminate the twisted pair line. The 1 to 1.5 V common-mode noise rejection of the line receiver ignores common-mode cross-talk, permitting multiple twisted pair lines to be tied into cables. MECL signals may be sent very long distances (> 1000 feet) on twisted pair, although line attenuation will limit bandwidth, degrading edge speeds when long line runs are made.

FIGURE 32 - PARALLEL FAN-OUT TECHNIQUES

If timing is critical, parallel signal paths (shown in Figure 31) should be used when fanout to several cards is required. This will eliminate distortion caused by long stub lengths off a signal path.

Wirewrapped connections can be used with both MECL II and MECL 10,000. For MECL III, the fast edge speeds (1 ns) create a mismatch at the wirewrap

FIGURE 32 – PC INTERCONNECTION LINES FOR USE WITH MECL

connections which can cause reflections, thus reducing noise immunity. The mismatch occurs also with MECL II and MECL 10,000, but the distance between the wire-wrap connection and the end of the line is generally short enough so the reflections cause no problem.

Series damping resistors may be used with wire-wrapped lines for both MECL II and MECL 10,000 to extend permissible backplane wiring lengths. Twisted pair lines may be used for even longer distances across large wirewrapped cards. The twisted pair gives a more defined characteristic impedance (than a single wire), and can be connected either single-ended, or differentially using a line receiver.

The recommended wirewrapped circuit cards have a ground plane on one side and a voltage plane on the other, to insure a good ground and a stable voltage source for the circuits. In addition, the ground plane near the wirewrapped lines lowers the impedance of those lines and facilitates terminating the line. Finally, the ground plane serves to minimize crosstalk between parallel paths in the signal lines. Point-to-point wire routing is recommended because crosstalk will be minimized and line lengths will be shortest. Commercial wire-wrap boards designed for MECL 10.000 are available from Augat Inc.

Microstrip and Stripline

Microstrip and stripline techniques are used with printed circuit boards to form transmission lines. Microstrip consists of a constant-width conductor on one side of a circuit board, with a ground plane on the other side (shown in Figure 32.) The characteristic impedance is determined by the width and thickness of the conductor, the thickness of the circuit board, and the dielectric constant of the circuit board material.

Stripline is used with multilayer circuit boards as shown in Figure 32. Stripline consists of a constant-width conductor between two ground planes.

Refer to MECL System Design Handbook, Ch. 3 for a full discussion of the properties and use of these lines

CLOCK DISTRIBUTION

Clock distribution can be a system problem. Where large high-speed clock networks are required, a balanced twisted-pair line is recommended for clock distribution. A gate such as the MC1001/MC1201, together with the MC1020/MC1220 Quad Line Receiver make an excellent combination for distributing the clocking throughout a system. (See the MC1020/MC1220 data sheet for further detail.) This method allows control of clock skew time and offers 1.0 V, or better, noise immunity regardless of line length.

At MECL 10,000 speeds, either coaxial cable or twisted-pair line (using the MC10101 and MC10115) can be used to distribute clock signals throughout a system. Clock line lengths should be controlled and matched when timing could be critical. Once the clocking signals arrive on card, a tree distribution should be used for large-fanouts at high frequency. An example of the application of this technique is shown in Figure 33.

FIGURE 33 - 64 FANOUT CLOCK DISTRIBUTION

Because of the very high clock rates encountered in MECL III systems, rules for clocking are more rigorous than in slower systems.

The following guidelines should be followed for best results:

- A. On-card Synchronous Clock Distribution via Transmission Line
 - Use the NOR output in developing clock chains or trees. Do not mix OR and NOR outputs in the chain.
 - 2. Use balanced fanouts on the clock drivers.
 - Overshoot can be reduced by using two parallel drive lines in place of one drive line with twice the lumped load.
 - To minimize clock skewing problems on synchronous sections of the system, line delays should be matched to within 1 ns.
 - 5. Parallel drive gates should be used when clocking repetition rates are high, or when high capacitance loads occur. The bandwidth of a MECL III gate may be extended by paralleling both halves of a dual gate. Approximately 40 or 50 MHz bandwidth can be gained by paralleling two or three clock driver gates.
 - Fanout limits should be applied to clock distribution drivers. Four to six loads should be the maximum load per driver for best high speed performance. Avoid large lumped loads at the end of lines greater than 3 inches. A lumped load, if used, should be four or fewer loads.
 - 7. For Wire-OR (emitter dotting), two-way lines (a

bus) are recommended. To produce such lines, both ends of a transmission line are terminated with 100-ohms impedance. This method should be used when Wire-OR connections exceed 1 inch apart on a drive line.

B. Off-Card Clock Distribution

- 1. The OR/NOR outputs of an MC1660 may be used to drive into twisted pair lines or into flat, fixed-impedance ribbon cable. At the far end of the twisted pair an MC1692 differential line receiver is used. The line should be terminated with two Z₀/2 ohm resistors as shown in Figure 31. This method not only provides high speed, board-to-board clock distribution, but also provides system noise margin advantages. Since the line receiver operates independently of the VBB reference voltage (differential inputs) the noise margin from board to board is also independent of temperature differentials.
- MECL III clock distribution to MECL II logic elements can be done one of two ways:
 - a. Use the OR/NOR outputs or Q/Q outputs to drive the twisted pair as previously discussed. Receive differentially with the MECL II line receivers (MC1020, MC1035, or MC1066).
 - b. Use any MECL III single-rail output to drive MECL II logic, but lightly load the MECL III element (1.5 k Ω to -5.2 volts) and maintain the interface lead length under 1 inch total (see Figure 26).

FIGURE 34a – USE OF WIRE-OR AND COMPLEMENTARY OUTPUTS

Family	Number **
MECL II*	15
MECL 10,000	10
MECL III	6

*Devices without internal pull-down resistors.

**DC limiting case; not AC recommended.

FIGURE 34b — RECOMMENDED MAXIMUM NUMBER OF GATES TO BE WIRE-ORED

FIGURE 35 - MECL TEST SETUP

LOGIC SHORTCUTS

MECL circuitry offers several logic design conveniences. Among these are:

- 1. Wire-OR (can be produced by wiring MECL output emitters together outside packages).
- 2. Complementary Logic Outputs (both OR and NOR are brought out to package pins in most cases).

An example of the use of these two features to reduce gate and package count is shown in Figure 34a. The connection shown saves four 2-input gates and two inverters over non-ECL type logic designs. Wire-ORing also permits direct connection of MECL gates to busses (MECL System Design Handbook, Ch. 4).

Propagation delay is increased approximately 50 ps per wire-OR gate. The table in Figure 34b lists maximum numbers of gates possible for wire-OR without materially affecting system performance.

The use of a single output pulldown resistor is recommended per wired-OR, to economize on power dissipation. However, the use of two pulldown resistors per wired-OR can improve fall times and be used for double termination or busses.

Wire-OR should be done between gates on the same board, but the output of a wire-OR combination may go off board. Short on-card interconnects are recommended.

TESTING MECL 10,000 and MECL III

To obtain results correlating with Motorola circuit

specifications certain test techniques must be used. A schematic of a typical gate test circuit is shown in Figure 35.

A solid ground plane is used in the test set up, and capacitors bypass V_{CC1}, V_{CC2}, and V_{EE} pins to ground. All power leads and signal leads are kept as short as possible.

The sampling 'scope interface runs directly to the 50-ohm inputs of Channel A and B via 50-ohm coaxial cable. Equal-length coaxial cables must be used between the test set and the A and B 'scope inputs. A 50-ohm coax cable such as RG58/U or RG188A/U, is recommended.

Interconnect fittings should be 50 ohm GR, BNC, Sealectro Conhex, or equivalent.

The pulse generator must be capable of 2.0 ns rise and fall times for MECL 10,000 and 1.5 ns for MECL III. In addition, the generator voltage must have an offset to give MECL signal swings of ± 400 mV about a threshold of ± 400 mV when ± 400 mV and ± 40

The power supplies are shifted ± 2.0 V, so that the device under test has only one resistor value to load into — the precision 50-ohm input impedance of the sampling oscilloscope. Use of this technique yields a close correlation between Motorola and customer testing. The positive supply (VCC) should be decoupled from the test board by R.F. type 25 μ F capacitors to ground. The VCC pins are bypassed to ground with 0.1 μ F, as is the VEE pin.

SYSTEM CONSIDERATIONS, A SUMMARY OF RECOMMENDATIONS

	MECL II	MECL 10,000	MECL III
Power Supply Regulation	10% or better	10% or better	10% or better
On-Card Temperature Gradient	Less Than 25°C	Less Than 25°C	Less Than 25°C
Maximum Non-Transmission Line Length (No Damping Resistor)	12''	8′′	1"
Unused Inputs	Connect to VEE*	Leave Open	Leave Open
PC Board	Standard 2-Sided or Multilayer	Standard 2-Sided or Multilayer	Multilayer
Special Cooling Requirements	No	No	No
Bus Connection Capability	Yes (Wire-OR)	Yes (Wire-OR)	Yes (Wire-OR)
MSI/LSI Parts	Yes	Yes	Yes (MSI)
Maximum Twisted Pair Length (Differential Drive)	Limited by Cable Response Only, Usually > 1000'	Limited by Cable Response Only, Usually > 1000'	Limited by Cable Response Only, Usually > 1000'
The Ground Plane to Occupy Percent Area of Card	>25%	>50%	>75%
Wirewrap may be used	Yes	Yes	Not recommended
Compatible with MECL 10,000	With proper Interface	_	Yes

^{*}Some devices may not be connected to VEE; see specific data sheet information.

PACKAGE OUTLINE DIMENSIONS

A letter suffix to the MECL logic function part number is used to specify the package style (see drawings below). See appropriate selector guide for specific packaging available for a given device type.

SECTION V - MECL LITERATURE

Application Note Abstracts

AN-417A

"ICCrystal Controlled Oscillators"

Crystal controlled square wave oscillators can be used as clock drivers, harmonic sources for frequency markers, in frequency synthesizers, frequency comparators, etc. It is difficult to obtain high frequency square waves due to the long propagation delays of most integrated circuits. MECL 10,000 circuits with 2 ns propagation delays eliminate this problem. This note describes square wave oscillator circuits with crystal control that are capable of output frequencies, inverted and non-inverted, up to 200 MHz.

AN-418

"High Speed Monostable Multivibrators Design with MECL Integrated Circuits"

This note describes two configurations of monostable multivibrators using the MC1023 clock driver and a delay element. Operating frequencies in excess of 70 MHz and pulse widths of 4 nanoseconds are possible. Methods of obtaining the predetermined delay are also discussed.

AN-487

"A High-Speed Ripple-Through Arithmetic Processor"

A simple, systematic building block approach for designing a high-speed, ripple-through arithmetic processor is described. Using only gates and full adders, ultra-high speed multiplication, division, square root extraction, addition, and subtraction may be performed. Several variations of an arithmetic processor design are detailed and comparisons of speed and package count using the MECL and MDTL logic in 14-pin, 16-pin, 24-pin, 32-pin, and 64-pin packages are given.

AN-488

"High-Speed Addition Lookahead Carry Techniques

Using Lookahead Carry Techniques"

The use of the lookahead carry principle to increase the operating speed of adder systems is described. Several adders of different sizes using variations of lookahead carry are developed and the logical implementation of these using the MTTL III and MECL II logic families is given.

AN-496-A

"Error Detection and Correction Using Exclusive-OR Gates and Parity Trees"

The availability of Exclusive-OR gates and parity trees allows digital system designers to use error detection and correction codes to improve their system reliability and maintainability without the major cost penalty that has existed in the past. Use of

(Application notes are available from Motorola Inc. at P.O. Box 20924, Phoenix, Arizona 85036)

Exclusive-OR gates and parity trees available in the MRTL, MTTL, MDTL, and MECL families to design simple parity and single error Hamming parity detection and correction circuits is discussed.

AN-504

"The MC1600 Series MECL III Gates"

This application note explains the basic operation of the various gates available in the MECL III logic family. Typical operating characteristics are included as an aid to the designer of high-speed logic along with recommended layout, breadboarding, and testing procedures. This note will also provide the designer with some insight into the overall capabilities of this logic line as they apply to this application.

AN-532-A

"MTTL and MECL

Avionics Digital Frequency Synthesizer"

This application note discusses several approaches that illustrate applications of complex digital integrated circuits directed toward avionics frequency synthesizers. The techniques presented point out the simplicity with which both MTTL and MECL digital integrated circuits can be used to produce frequency synthesis for avionic communications.

AN-534

"Commutating Filter Techniques"

This note describes the design and construction of commutating (digital) filters using Motorola MECL II, MTTL III and MC7400 digital integrated circuits. A short section on commuting filter theory is included along with examples of filters and their responses.

AN-536

"Micro-T Packaged Transistors for High Speed Logic Systems"

Integrated circuits have become the first thought of most designers faced with a digital problem. For specialized needs such as extremely high speed, high speed with minimum power dissipation, or unusual logic functions, however, discrete transistors in the ultra-small Micro-T package may prove advantageous.

AN-553

"A New Generation of Integrated Avionic Synthesizers"

The need to generate signals of a multitude of different frequencies for avionic systems has resulted in complex solutions in the past. With the introduction of certain standard product integrated circuits, frequency synthesis using digital phase locked loop techniques presents a more practical solution. Several different types of servo phase locked loop systems are

APPLICATION NOTE ABSTRACTS (continued)

discussed and a practical design example is given. Results of design examples are presented along with possible applications.

AN-556

"Interconnection Techniques for Motorola's MECL 10,000 Series ECL"

This application note describes some of the characteristics of high speed digital signal lines and gives wiring rules for MECL 10,000 emitter coupled logic. The note includes discussions of printed circuit board interconnects, board-to-board interconnects, and wirewrapping techniques.

AN-565 "Using Shift Registers as Pulse Delay Networks"

This note discusses a high-speed clocked shift register using MECL 10,000 flip-flops and employed as a digitial incremental delay. The register may be clocked with a frequency division counter to accomplish delay with increments as small as 7.5 ns. The circuit, as developed, may be used for timing basic computer decisions or as an adjustable digital delay fine for pulses.

AN-566

"High Speed Binary Multiplication Using the MC10181"

With a MECL 4-bit arithmetic unit you can reduce both package count and interconnections in a ripple multiplier and achieve very fast multiply times.

AN-567

"MECL Positive and Negative Logic"

Either positive or negative logic assignments may prove convenient to the MECL system designer. This note describes the equivalences between the two approaches and providing guides for converting between them.

AN-579 "Testing MECL 10,000 Integrated Logic Circuits"

Circuit testing techniques become increasingly important as circuit speeds approach and exceed the 2 ns range. With MECL 10,000 and MECL III circuits it is possible to exploit their 50-ohm output drive capability to obtain highly accurate test data. This application note describes techniques for testing MECL 10,000 circuits for laboratory evaluation, and discusses key parameters which should be measured during incoming inspection rapid testing.

(Application notes are available from Motorola Inc.

AN-581

"An MSI 500 MHz Frequency Counter Using MECL & MTTL"

The design of an MSI 8-digit LED readout 500 MHz counter using MECL III, MECL 10,000 and TTL is discussed. Described are two prescalers using MECL, along with the designs for two input amplifiers. A unique time-base controller is also shown for providing a multiphase clock to the counter.

AN-583

"A MECL 10,000 Main Frame Memory System Employing Dynamic MMOS RAMS"

This application note describes the construction of a dynamic MOS random access memory system that employs MECL 10,000 for the memory control logic. Considered in detail are the memory organization, layout rules, interfacing, and generation of the needed control signals.

AN-584

"Programmable Counters Using the MC10136 and MC10137 MECL 10,000 Universal Counters"

This application note describes operation of two MECL 10,000 Universal counters, and their use in high speed programmable counters. Circuit diagrams and waveform traces are included.

AN-592

"AC Noise Immunity of MECL 10,000 Integrated Circuits"

This application note discusses ac noise immunity as it relates to MECL systems. Test circuits for measuring ac noise immunity are shown, and results to be expected for typical MECL 10,000 circuits are presented.

AN-700

"Simulate MECL System Interconnections With A Computer Program

Circuit interconnections are an important part of system design when using high speed logic circuits. The design of interconnecting paths affects both system speed and system accuracy. This application note describes the use of a computer program to simulate interconnections for high speed digital systems.

AN-701

"Understanding MECL 10,000 DC and AC Data Sheet Specifications"

The dc and ac specifications for emitter-coupled logic are somewhat different than those for saturated logic. This application note describes the specifications found on a MECL 10,000 data sheet and provides information for understanding these specifications for persons unfamiliar with emitter-coupled logic.

AN-709 "MECL 10,000 Arithmetic Elements MC10179, MC10180, MC10181"

The MECL 10,000 arithmetic functions include a 4-bit arithmetic unit, a dual adder/subtractor, and a lookahead carry block. This application note describes the devices and shows their operation in large system configurations.

AN-720 "Interfacing With MECL 10,000"

This article describes some of the MECL circuits used to interface with signals not meeting MECL input or output requirements. The characteristics of these circuits such as; input impedance, output drive, gain, and bandwidth allow the system designer to use these parts to optimize his system. MECL interface circuits overcome a problem area of many system designs, which is the efficient coupling on non-compatible signals.

AN-726 "Bussing With MECL 10,000 Integrated Circuits"

High speed data bus lines are an important part of modern computer systems. Features of the MECL 10,000 family allow construction of data busses in a transmission line environment. This application note describes some of the guidelines to consider when designing high speed bus lines and shows how the MC10123 can be used for maximum bus performance.

SUPPLEMENTARY LITERATURE

- "The Case for Emitter-Coupled Logic," by Anthony A. Vacca, ELECTRONICS, April 26, 1971
- "Low Power ECL Bids for TTL Applications," by Ed Tynan, ELECTRONIC PRODUCTS, May 17, 1971.
- "High-Speed Translators Simplify ECL/TTL Interface," by Bill Blood, COMPUTER HARDWARE, July 15, 1971.
- "Speedup in ECL," by John Rhea, ELECTRONIC NEWS, September 13, 1971.
- "Generate Stable High-Frequency Signals With Digital Mixers and Phase Locked Loops," by R. Treadway and L. J. Reed, ELECTRONIC DESIGN, January 6, 1972.
- "ECL vs. Schottky," Special Report by John Rhea, ELECTRONIC NEWS, March 13, 1972.
- "ECL Gates Stretch Oscillator Range," by W. Blood, ELECTRONICS, March 13, 1972.
- "ECL Who's Leading the Band?" by Sheldon Edelman, THE ELECTRONIC ENGINEER, April 1972.
- "ECL Arithmetic Unit Performs High-Speed Binary Multiplication," by Tom Balph, EDN, May 1, 1972.
- "Measure Frequency and Propagation Delay with High Speed ECL Circuits," by William R. Blood, Jr., EDN, July 1, 1972.
- "Use ECL 10,000 Layout Rules to Help Solve PC Board Interconnections, Part I," by Tom Balph, ELECTRONIC DESIGN, August 17, 1972.
- 12. ibid, Part II, ELECTRONIC DESIGN, September 2, 1972.
- "ECL/MOS for Optimum Minicomputer Systems," by P. Breedlove, COMPUTER DESIGN, August 1972.
- 14. "Testing MECL 10,000 What it Takes to Get High on Speed", by Bill Blood, ELECTRONIC PRODUCTS, November 20, 1972.

- "Boost Counting Speed to 110 MHz with ECL Universal Counters", by Tom Balph and Howard Gnauden, ELECTRONIC DESIGN, April 1, 1973.
- "Digital Alphabet Spells Change in IC Usage" by Ed Tynan, ELECTRONIC BUYERS NEWS, October 2, 1972.
- "ECL Shift Registers make Versatile Pulse Delay Networks", by Jon DeLaune, EDN, October15, 1972.
- "Testing MECL 10,000 What it Takes to Get High on Speed," by Bill Blood, ELECTRONIC PRODUCTS, November 20, 1972. (AN-579)
- 19. "Blend ECL and TTL ICs to Obtain High Frequency Counter Circuits," by Jon DeLaune, ELECTRONIC DESIGN, March 15, 1973, page 112.
- "Leapfrog Ahead with Standard Family MSI/ LSI," by Bob Cushman, Special Features Editor, EDN, April 5, 1972, page 30.
- "Positive versus Negative Logic," by Tom Balph, Electronic Products Magazine, August 21, 1972.
- 22. "Improve Fast-Logic Designs," by Bill Blood, Electronic Design, May 10, 1973.
- "Use ECL for Your High-Speed Design Part I," by Lloyd Maul, EDN, July 20, 1973.
- 24. "ECL 10,000 Layout and Loading Rules Part II," by Lloyd Maul, EDN, August 5, 1973.
- "Interface TTL Systems With ECL Circuits," by George Adams, EDN, September 5, 1973.
- "MECL 10 K Reliability Evaluation," by Paul Greer, Electronic Buyers' News, November 26, 1973.
- "Make Sure Your Logic Keeps Pace With Memory Cycle Times" by Dick Brunner, EDN, January 20, 1973.
- "Increasing Minicomputer Speed With Emitter-Coupled Logic" by Jon DeLaune, COMPUTER DESIGN, February 1974.

Contents of the MECL SYSTEM DESIGN HANDBOOK (206 pages):

CHAPTER 1 — MECL Families

The Basic MECL Gate

Noise Margin

MECL Circuit Types

MECL Flip-Flops

Operation of Flip-Flop

MECL Family Comparison

CHAPTER 2 - Using MECL

MECL II Design Rules

- A. Logic Design Considerations
- B. System Layout Considerations
- C. Circuit Board Layout Techniques
- D. Backplane Wiring
- E. System Considerations

MECL 10,000 Design Rules

- A. General Considerations
- B. Printed Circuit Card Layout Techniques
- C. Power Supply Bypassing on Circuit Cards
- D. Backplane and Loading Considerations
- E. System Distribution and Grounding
- F. Loading Rules for MECL 10,000

MECL III Design Rules

- A. Circuit Card Layout
- B. Transmission Line (Microstrip Line)
- C. On-Card Clock Distribution via Transmission
 Lines
- D. Off-Card Clock Distribution
- E. Testing MECL III

CHAPTER 3 — Printed Circuit Board Connections

Transmission Line Geometries

Basic Transmission Line Operation

Unterminated Lines

Series Damped and Series Terminated Lines

Parallel Terminated Lines

Transmission Line Comparison

Wirewrapped Cards

CHAPTER 4 - System Interconnections

Connectors

Coaxial Cable

Differential Twisted Pair Lines and Receivers

Ribbon Cable

Schottky Diode Termination

Parallel Wire Cables

Twisted Pair Cable, Driven Single-Ended

CHAPTER 5 — Power Distribution

System Power Calculations

Power Supply Considerations

System Power Distribution

Backplane Power Distribution

On-Card Power Distribution

VTT Termination Voltage Distribution

CHAPTER 6 - Thermal Considerations

MECL Integrated Circuit Heat Transfer

MECL DC Thermal Characteristics

Heat Dissipation Techniques

Mounting Techniques

CHAPTER 7 - Transmission Line Theory

Transmission Line Design Information, With Examples

Signal Propagation Delay for Microstrip and Strip Lines With Distributed or Lumped Loads

Microstrip Transmission Line Techniques, Evaluated Using TDR Measurements, with Examples

The Effect of Loading on a Parallel-Terminated Transmission Line, With Examples

Analysis: Series Terminated Lines Compared to Parallel Terminated Lines, With Example

Analysis of Series Damping Terminations

Bibliography

CHAPTER 8 - MECL Applications

Counters

Shift Registers

Adders

Code Converters

Memories

Oscillators

One-Shot Multivibrators

Linear Applications

Translators

CHAPTER 9 - AC Noise Immunity

Introduction

Test Circuits

Test Conditions

Test Results

Conclusions

CHAPTER 10 — MECL 10,000 For Military Applications

Fanout

Termination and Interconnect Techniques

Power

Noise Margin

AC Performance

APPENDIX I - MECL Hardware and Components

Motorola's MECL System Design Handbook may be purchased for \$2.50 per copy. Copies may be obtained by sending check or money order payable to Motorola Inc., at P. O. Box 20924, Phoenix, Arizona 85036.

INTEGRATED CIRCUITS

MC1000 Series (0 to +75°C) MC1200 Series (-55 to +125°C)

The MECL II series of monolithic integrated logic circuits presents the system design engineer with an integrated circuit family designed to permit system implementation with the fewest possible number of individual units. This approach offers cost savings, reduced power supply requirements, smaller physical size and high reliability.

MECL II circuits feature the fastest propagation delay times with commensurate rise and fall times of any family of integrated circuits. This feature plus the constant current feature of MECL imposes fewer restrictions on design, layout and system fabrication than any other high-speed family.

FEATURES

- Propagation typically 4 ns per logic decision
- Excellent noise immunity characteristics
- Simultaneous OR/NOR outputs
- High fan-in and fan-out capabilities
- Internally temperature compensated

TO-116

P SUFFIX PLASTIC PACKAGE CASE 646

P SUFFIX
PLASTIC PACKAGE
CASE 648

FUNCTIONS AND CHARACTERISTICS (V_{CC} = 0, V_{EE} = -5.2 V, T_A = 25°C)

	Type ①		Loading Factor Each	Propa- gation Delay	Power Dissipation mW	
Function	-55 to +125°C	0 to +75°C	Output	ns typ	typ/pkg	Case
Single 6-Input Gate, 3 OR Outputs w/Pulldowns 3 NOR Outputs w/Pulldowns	MC1201F,L	MC1001P	25	4.0	115	607,632,646
Dual 4-Input Gate, 2 OR Outputs w/Pulldowns 2 NOR Outputs w/Pulldowns	MC1204F,L	MC1004P	25	4.0	95	607,632,646
Dual 4-Input Gate, 2 OR Outputs w/o Pulldowns 2 NOR Outputs w/o Pulldowns	MC1206F,L	MC1006P	25	4.0	45	607,632,646
Triple 3-Input Gate, 3 NOR Outputs w/Pulldowns	MC1207F,L	MC1007P	25	4.0	110	607,632,646
Quad 2-Input Gate, 4 NOR Outputs w/Pulldowns	MC1210F,L	MC1010P	25	4.5	115	607,632,646
Quad 2-Input Gate, 2 NOR Outputs w/Pulldowns 2 NOR Outputs w/o Pulldowns	MC1211F,L	MC1011P	25	4.5	95	607,632,646

Type numbers with F suffix use Case 607 or 650, Type numbers with L suffix use Case 632 or 620 as indicated.
Type numbers with P suffix use Case 646 or 648 as indicated.

MEGL III LOGIC DIAGRAMS

FUNCTIONS AND CHARACTERISTICS ($V_{CC} = 0$, $V_{EE} = -5.2 \text{ V}$, $T_A = 25^{\circ}\text{C}$)

	Туре ①		Loading Factor Each	Propa- gation Delay	Power Dissipation mW		
Function	-55 to + 125°C 0 to + 75°C		Output	ns typ	' 1		
Quad 2-Input Gate, 4 NOR Outputs w/o Pulldowns	MC1212F,L	MC1012P	25	4.5	65	607, 632, 646	
AC Coupled J-K Flip-Flop (85 MHz typ)	MC1213F,L	MC1013P	25	6.0	125	607, 632, 646	
Dual R-S Flip-Flop (Positive Clock)	MC1214F,L	MC1014P	25	6.0	140	607, 632, 646	
Dual R-S Flip-Flop (Negative Clock)	MC1215F,L	MC1015P	25	6.0	140	607, 632, 646	
Dual R-S Flip-Flop (Single Rail)	MC1216F,L	MC1016P	25	6.0	140	607, 632, 646	
Level Translator (Saturated Logic to MECL)	MC1217F,L	MC1017P	25 (MECL)	15	105	607, 632, 646	
Level Translator (MECL to Saturated Logic)	MC1218F,L	MC1018P	7 (DTL)	19	55	607, 632, 646	
Full Adder	MC1219F,L	MC1019P	25	3.0 to 8.0**	145	607, 632, 646	
Quad Line Receiver	MC1220F,L	MC1020P	25	4.0	115	607, 632, 646	
Full Subtractor	MC1221F,L	MC1021P	25	4.0 to 11**	145	607, 632, 646	
Type D Flip-Flop	MC1222F,L	MC1022P	25	8.0	110	607, 632, 646	
Dual 4-Input OR/NOR Clock Driver •	MC1223F,L	MC1023P	25	2.0	250	607, 632, 646	
Dual 2-Input Expandable Gate	MC1224L	MC 1024P	25	4.0	95	632, 646	
Dual 4 and 5-Input Expander	MC1225F,L	MC1025P		_		607, 632, 646	
Dual 3-4-Input Transmission Line and Clock Driver*	MC1226F,L	MC1026P	25	2.0	140	607, 632, 646	
AC Coupled J-K Flip-Flop (120 MHz typ)	MC1227F,L	MC 1027P	25	4.0	250	607, 632, 646	
Dual 4-Channel Data Selector •	MC1228F,L	MC1028P	25	5.0	170	620, 648, 650	
Quad Exclusive OR Gate	MC1230F,L	MC1030P	25	5.0	130	607, 632, 646	
Quad Exclusive NOR Gate	MC1231F,L	MC1031P	25	5.0	130	607, 632, 646	
100-MHz AC Coupled Dual J-K Flip-Flop •	MC1232F,L	MC1032P	25	4.5	180	620, 648, 650	
Dual R-S Flip-Flop (Single Rail, Negative Clock)	MC1233F,L	MC1033P	25	6.0	140	607, 632, 646	
Type D Flip-Flop *	MC1234F,L	MC1034P	25	4.0	185	607, 632, 646	
Triple Line Receiver	MC1235F,L	MC1035P	25	5.0	140	607, 632, 646	
16-Bit Coincident Memory •	MC1236F,L	MC1036P	5	17	250	607, 632, 646	
16-Bit Coincident Memory w/o Pulldowns •	MC1237F,L	MC1037P	5	17	250	607, 632, 646	
Quad Level Translator (MECL to Saturated Logic)	MC1239F,L	MC1039P	7 (DTL)	12	200	620, 648, 650	
Quad Latch	MC1240F,L	MC1040P	25	8.0	250	607, 632, 646	
Decoder - Display Driver	MC1245F,L	MC1045P	_	_	178	620, 648, 650	
Quad 2-Input AND Gates	MC1247F,L	MC1047P	25	5.0	130	607, 632, 646	
Quad 2-Input NAND Gates	MC1248F,L	MC1048P	25	5.0	130	607, 632, 646	
Dual Full Adder •	MC1259F,L	MC1059P	25	9.0	375	620, 648, 650	
Quad 2-Input NOR Gate	MC1262F.L	MC1062P	25	2.0	320	620, 648, 650	
Quad 2-Input NOR Gate	MC1263L	MC1063P	25	2.0	320	632, 646	
Triple Line Receiver	MC1266F.L	MC1066P	25	2.0	350	607, 632, 646	
Quad MTTL to MECL Translator With Strobe	MC1267F,L	MC1067P	1	5.0	300	620, 648, 650	
Quad MECL to MECL Translator With Strobe Outputs Outputs	MC1267F,L	MC1068P	10 (MTTL)	5.0	340	620, 648, 650	
Quad Latch	MC1270F,L	MC1070P	25	8.0	200	607, 632, 646	

⁰ Type numbers with F suffix use Case 607 or 650, Type numbers with L suffix use Case 632 or 620 as indicated.

Type numbers with P suffix use Case 646 or 648 as indicated.

[†]Not recommended for new designs

^{*}Noise Margin = 150 mV

^{**}Propagation delay time is dependent on data path, see data sheet for details.

INTEGRATED CIRCUITS

MEGLINI

MC1600 Series (-30°C to +85°C)

The requirement for digital systems with ever higher performance has increased the need for high-speed integrated circuits. The industry has recognized that the only economical way to obtain high operating system speed is through the use of emitter-coupled logic. Motorola offers a state-of-the-art, emitter-coupled logic family with subnanosecond propagation delays — MECL III.

MECL III circuit design is similar to that used in the popular MECL 10,000 family. In the MECL III line, as well as MECL 10,000, advanced processing techniques are employed and the capability for driving low-impedance terminated lines is provided. MECL III is recommended for new designs.

GENERAL FEATURES

- Gate Switching Speeds of 1.0 ns typical
- Capability of Driving Terminated Lines with Impedance as Low as 50 Ohms
- Flip-Flop Toggle Rate Greater Than 500 MHz
- Operation with Unused Inputs Left Open
- Multilayer Metalization for economy
- New Packages with Improved Electrical and Thermal Characteristics
- Compatibility with MECL 10,000 Series
- · Counting Speeds to above 1 GHz

L SUFFIX CERAMIC PACKAGE CASE 632

FUNCTIONS AND CHARACTERISTICS (V_{CC} = 0, V_{EE} = -5.2·V, T_A = 25°C unless otherwise noted.)

Function	Type ① -30° to +85°C	Loading Factor # Each Output	Propagation Delay 50-ohm Load ns typ	Power Dissipation (No Load) mW typ/pkg	Case
Voltage Controlled Oscillator	MC1648	_	*225 MHz typ	150	607,632,646
Dual A/D Comparator	MC1650	70	3.5	275	620,650
Dual A/D Comparator	MC1651	70	3.0	275	620,650
Binary Counter	MC1654	70	*325 MHz typ	750 🟒	620
Voltage-Controlled Multivibrator	MC1658	70	*150 MHz typ	125	620,648,650
Dual 4-Input OR/NOR Gate	MC1660	70	1.1	120	620,650
Quad 2-Input NOR Gate	MC1662	70	1,1	240	620,650
Quad 2-Input OR Gate	MC1664	70	1.1	240	620,650
Dual Clocked R-S Flip-Flop	MC1666	70	1.8	220	620,650
Dual Clocked Latch	MC1668	70	1.8	220	620,650
Master-Slave Type D Flip-Flop	MC1670	70	*350 MHz typ	220	620,650
Triple 2-Input Exclusive OR Gate	MC1672	70	1.3	220	620,650
Triple 2-Input Exclusive NOR Gate	MC1674	70	1.3	220	620,650
Bi-Quinary Counter	MC1678	70	*350 MHz typ	750 ᠘	620
Dual 4-5-Input OR/NOR Gate	MC1688	70	0.8	125	650
UHF Prescaler Type D Flip-Flop	MC1690	70	*500 MHz min	200	620,650
Quad Line Receiver	MC1692	70	1,1	220	620,650
4-Bit Shift Register	MC1694	70	*325 MHz typ	750 ᠘᠘	620
1 GHz Divide-By-Ten Counter	MC1696	-	*1 GHz min	650	650

① L suffix denotes Dual In-Line Ceramic Package, F suffix denotes Ceramic Flat Package, P suffix denotes Dual In-Line Plastic Package. (i.e., MC1600L = Ceramic Dual In-Line Package, MC1600F = Ceramic Flat Package, MC1600P = Plastic Dual In-Line Package).

#DC Loading Factors are based on:

- 1. Full load output current, IL = -25 mAdc max
- 2. Maximum input current, I in = 350 µAdc

Requires Heat Sink - IERC-LIC-214A2WCB or equivalent.

^{*}Toggle Frequency

Numbers at ends of terminals denote pin numbers for L package (Case 620 unless noted as Case 632) and P package (Case 646 unless noted as Case 648).

Numbers in parenthesis denote pin numbers for F package (Case 650 unless noted as Case 607).

CASE	Vcc	VEE
	Pin No.	Pin No.
650	4,5	12
620	1, 16	8

See individual drawing for devices with other Cases.

-GATES MC1660 MC1662 MC1664 Dual 4-Input OR/NOR Gate Quad 2-Input NOR Gate Quad 2-Input OR Gate (8) 4 A (8) (8) (9) 5 B 3 (7) (9) (9) (10) 6 C (10) (10) (11) 7 D (7) (11) (11)(14) 10 (14) 10 -(14) 10 14 (2) - 14 (2) (15) 11 -14 (2) (15) 11 -(16) 12 -15 (3) (16) 12 -(16) 15 (3) - 15 (3) (1) 13 -(1) 13 -X = A+B+C+DY = A+B+C+D X = A+B X = A+B t_{pd} = 0.9 ns typ (510-ohm load) t_{pd} = 0.9 ns typ (510-ohm load) t_{pd} = 0.9 ns typ (510-ohm load) 1.1 ns typ (50-ohm load) 1.1 ns typ (50-ohm load) 1.1 ns typ (50-ohm load) P_D = 120 mW typ/pkg (no load) PD = 240 mW typ/pkg (no load) PD = 240 mW typ/pkg (no load) MC1672 MC1674 MC1688 Dual 4-5-Input Triple 2-Input Exclusive OR Gate **Triple 2-Input Exclusive NOR Gate** OR/NOR Gate (8) (8) 3 (8) (10)(9) 5 (9) (11) (16) 13 (16) 13 - 14 (2) (13) (10) 6 (10) (14)(14) 11-(14) 11-(2) -15 (3) (15) (11) 7-(11) 7 (16) $X = A \bullet \overline{B} + \overline{A} \bullet B$ $X = A \bullet B + \overline{A} \bullet \overline{B}$ (1) t_{pd} = 1.1 ns typ (510-ohm load) t_{pd} = 1.1 ns typ (510-ohm load) t_{p'd} = 0.8 ns typ P_D = 125 mW typ/pkg (No Load) = 1.3 ns typ (50-ohm load) = 1.3 ns type (50-ohm load) $P_D = 220 \text{ mW typ/pkg}$ PD = 220 mW typ/pkg

MECL 10,000 SERIES INTEGRATED CIRCUITS FROM MOTOROLA

MC10,100/10,200 Series (-30 to +85°C) MC10,500/10,600 Series (-55 to +125°C)

MECL 10,000 has an excellent speed-power product, has relatively slow rise and fall times, and transmission-line drive capability. The combination of versatile logic functions and the 2.0 ns propagation delay make MECL 10,000 a versatile family for data handling and processing systems.

Circuit design with MECL 10,000 is unusually convenient. The differential amplifier input and emitter-follower output permit high fanout, the wired-OR option, and complementary outputs. MECL III is directly compatible with MECL 10,000, and can be used to extend the speed capability of the MECL 10,000 series.

FUNCTIONS AND CHARACTERISTICS (V_{CC} = 0, V_{EE} = -5.2 V, T_A = 25^{o} C)

	Турв①		Propagation Delay	Power Dissipation mW		
Function	-30 to +85°C	-55 to +125°C	ns typ	typ/pkg*	Case	
Quad 2-Input NOR Gate With Strobe	MC10100	-	2.0	100	620	
Quad OR/NOR Gate	MC10101	MC10501	2.0	100	620,648,650	
Quad 2-Input NOR Gate	MC10102	MC10502	2.0	100	620,648,650	
Quad 2-Input OR Gate	MC10103	-	2.0	100	620	
Quad 2-Input AND Gate	MC10104	MC10504	2.7	140	620,648,650	
Triple 2-3-2-Input OR/NOR Gate	MC10105	MC10505	2.0	90	620,648,650	
Triple 4-3-3-Input NOR Gate	MC10106	MC10506	2.0	90	620,648,650	
Triple 2-Input Exclusive OR/Exclusive NOR	MC10107	MC10507	2.5	110	620,648,650	
Dual 4-5-Input OR/NOR Gate	MC10109	MC10509	2.0	60	620,648,650	
Dual 3-Input 3-Output OR Gate	MC10110	-	2.4	160	620,648	
Dual 3-Input 3-Output NOR Gate	MC10111		2.4	160	620,648	
Quad Exclusive OR Gate	MC10113	-	2.5	175	620	
Triple Line Receiver	MC10114	MC10514	2.4	145	620,648,650	
Quad Line Receiver	MC10115	MC10515	2.0	110	620,648,650	
Triple Line Receiver	MC10116	MC10516	2.0	85	620,648,650	
Duel 2-Wide 2-3-Input OR-AND/OR-AND- INVERT Gate	MC10117	MC10517	2.3	100	620,648,650	
Dual 2-Wide 3-Input OR-AND Gate	MC10118	MC10518	2.3	100	620,648,650	
4-Wide 4-3-3-3-Input OR-AND Gate	MC10119	MC10519	2.3	100	620,645,650	
4-Wide OR-AND/OR-AND-INVERT Gate	MC10121	MC10521	2.3	100	620,648,650	
Triple 4-3-3-Input Bus Driver	MC10123	-	3.0	310	620	
Quad MTTL to MECL Translator	MC10124	MC10524	3.5	380	620,648,650	
Quad MECL to MTTL Translator	MC10125	MC10525	4.5	380	620,648,650	
Dual MECL to MOS Translator	MC10127				620	
Bus Driver	MC10128	- ,	12.0	700	620	
Quad Bus Receiver	MC10129	-	10.0	750	620	
Dual Latch	MC10130	MC10530	2.5	155	620,648,650	
Dual Type D Master-Slave Flip-Flop	MC10131	MC10531	f = 160 MH2	235	620,648,650	
Dual Multiplexer With Latch and Common Reset	MC10132	-	3.0	225	620,648	
Quad Latch	MC10133	MC10533	4.0	310	620,648,650	
Multiplexer with Latch	MC10134		3.0	225	620,648	
Dual J-K Master-Slave Flip-Flop	MC10135	MC10535	f = 140 MHz	280	620,648,650	
Universal Hexadecimal Counter	MC10136	MC10536	f = 150 MHz	625	620,650	

¹ L suffix denotes Dual In-Line Ceramic Package, P suffix denotes Dual In-Line Plastic Package, F suffix denotes flat package (i.e., MC10100L = Ceramic Dual In-Line Package, MC10100P = Plastic Dual In-Line Package and MC10500F = Ceramic Flat Package.)

^{*}External Load Power not included.

Numbers in parenthesis denote pin numbers for F package (Case 650).

FUNCTIONS AND CHARACTERISTICS (continued)

	Туре ①		Propagation Delay	Power Dissipation mW	
Function	-30 to +85°C	-55 to +125°C	ns typ	typ/pkg*	Case
Universal Decade Counter	MC10137	MC10537	f = 150 MHz	625	620,650
Bi-Quinary Counter	MC10138	_	f = 150 MHz	370	620
64-Bit Random Access Memory (90 Ω)	MCM10140	_	t _{Access} = 15 (max)	420	620,690
Four-Bit Universal Shift Register	MC10141	MC10541	f = 200 MHz	425	620,648,650
64-Bit Random Access Memory (50 Ω)	MCM10142		t _{Access} = 10 (max)	420	620
8 x 2 Multiport Register File (RAM)	MCM10143		t _{Access} = 10	610	623
256-Bit Random Access Memory	MCM10144	-	t _{Access} = 30 (max)	420	620,690
64-Bit Register File (RAM)	MCM10145	-	t _{Access} = 10	625	620
128-Bit Random Access Memory	MCM10147	-	t _{Access} = 12 (max)	420	620
64-Bit Random Access Memory (50 Ω)	MCM10148	_	t _{Access} = 15 (max)	420	620
1024-Bit Programmable Read Only Memory	MCM10150	-	t _{Access} = 20	-	690
Quad Latch	MC10153	_	4.0	310	620
12-Bit Parity Generator-Checker	MC10160	MC10560	5.0	320	620,648,650
Binary to 1-8 Decoder (Low)	MC10161	MC10561	4.0	315	620,648,650
Binary to 1-8 Decoder (High)	MC10162	MC10562	4.0	315	620,648,650
Error Detection-Correction Circuit	MC10163	_	5.0	520	620
8-Line Multiplexer	MC10164	MC10564	3.0	310	620,648,650
8-Input Priority Encoder	MC10165	-	7.0	545	620,648
5-Bit Magnitude Comparator	MC10166	_	6.0	440	620
Quad Latch	MC10168	_	3.0	310	620
Dual Binary To 1-4 Decoder (Low)	MC10171	MC10571	4.0	325	620,648,650
Dual Binary To 1-4 Decoder (High)	MC10172	MC10572	4.0	325	620,648,650
Quad 2-Input Multiplexer/Latch	MC10173		2.5	275	620,648
Dual 4 To 1 Multiplexer	MC10174	MC10574	3.5	305	620,650
Quint Latch	MC10175	MC10575	2.5	400	620
Hex "D" Master-Slave Flip-Flop	MC10176	_	f = 250 MHz	460	620
Triple MECL to NMOS Translator	MC10177	_	-	1.0 W	620
Binary Counter	MC10178	_	f = 150 MHz	370	620
Look-Ahead Carry Block	MC10179	MC10579	3.0 (Cn,P) 4.0 (G)	300	620,648,650
Dual High Speed Adder/Subtractor	MC10180	MC10580	4.5	360	620,648,650
4-Bit Arithmetic Logic Unit/Function Generator	MC10181	MC10581	See Logic Diag.	600	623,649,652
2-Bit Arithmetic Logic Unit/Function Generator	MC10182		See Logic Diag.	575	620
Error Detection-Correction Circuit	MC10193	-	7.5	520	620
Hex Inverter/Buffer	MC10195		2.0	200	620
Hex "AND" Gate	MC10197		2.8	200	620
High Speed Dual 3-Input 3-Output OR Gate	MC10210		1.5	160	620
High Speed Dual 3-Input 3-Output NOR Gate	MC10211		1.5	160	620
High Speed Dual 3-Input 3-Output OR/NOR Gate	MC10212	_	1.5	160	620
High Speed Triple Line Receiver	MC10216	MC10616	1.8	100	620,648,650
High Speed Dual Type D Master-Slave Flip-Flop	MC10231	MC10631	f = 225 MHz	270	620,648,650
High Speed 2 x 1 Bit Array Multiplier Block	MC10287	_	_	400	620

¹ L suffix denotes Dual In-Line Ceramic Package, P suffix denotes Dual In-Line Plastic Package, F suffix denotes flat package
(i.e., MC10100L = Ceramic Dual In-Line Package, MC10100P = Plastic Dual In-Line Package and MC10500F = Ceramic Flat Package.)

^{*}Load Power not included

CASE	V _{CC1}	V _{CC2}	VEE
620	Pin 1	Pin 16	Pin 8
650	Pin 5	Pin 4	Pin 12

Advance Information

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information Section for packaging and maximum ratings.

This is advance information and specifications are subject to change without notice.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

TEST VOLTAGE VALUES (Volts) @ Test V_{IHmax} v_{ILmin} VIHAmin VILAmax VEE Temperature -30°C -0.890 -1.890 -1.205 -1.500 -5.2 +25°C -1.105 -5.2 -0.810 -1.850 -1.475

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	1 1
		Pin			м		Test Limit							PLIED TO		
	ł	Under		°c		+25°C			5°C	1			ISTED BE			(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	ΙE	8	_	_		21	26		_	mAdc	_	-	1	-	8	1,16
Input Current	linH	4.	-	_	-	_	245	-		μAdc	4.	_	_	_	8	1,16
	ì	9	- '	-	-	-	470	- '	-	μAdc	9	-	-	-	8	1,16
	linL	4*		L	0.5					μAdc		4*			8	1,16
Logic "1" Output Voltage	Vон	2	-1.060	-0.890	-0.960	_	-0.810	-0.890	-0.700	Vdc	-	-	-	-	8	1,16
		14	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc					8	1,16
Logic "0" Output Voltage	VOL	2	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	4,5,9	-	-	-	8	1,16
	 	14	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615	Vdc	9,10,11		-		8	1,16
Logic "1" Threshold Voltage	VOHA	2	-1.090		-0.980	-	-	-0.910	-	Vdc	-	-	-	9	8	1,16
	1	3	-1.090	-	-0.980	-	-	-0.910	-		i -	-	-	9		
	1	14 15	-1.090 -1.090	_	-0.980 -0.980	_	_ '	-0.910 -0.910	<u> </u>	\ ♥	_	_	_	9	Ì	V
Logic "O" Threshold Voltage	 						-1.630		-1.595	Vdc			9		8	1,16
Logic O Threshold Voltage	VOLA	2	_	~1.655 ~1.655	_	-	-1.630		-1.595	Vac	_	l -	9	_	lî	' _' ''
	ł	14	_	-1.655	_	_	-1.630	_	-1.595	1 1	_	-	9	_	↓	
L	i	15	۱ –	-1.655	-	-	-1.630	-	-1.595	1	~	-	9	-	1	\ Y
Switching Times													Pulse In	Pulse Out	-3.2 V	+2.0 V
(50-ohm load)	1	l	Ì	ŀ						i	ĺ	l				
Propagation Delay	t4+2-	2	-	-	-	2.0	-	-	-	ns	-	-	4	2	8	1,16
i	t4-2+	2	-	l –	-	1 1	-	-	-	1 1	-	-	1 1	1 1	1 1	1 1 1
Rise Time (20% to 80%)	t2+	2	-	-	-		-	-	-		-	-	1			
Fall Time (20% to 80%)	t ₂₋	2	-	-	-	₩	-	-	-		-	-	₩			

^{*}Individually test each input applying VIH or VIL to input under test.

The MC10101 is a quad 2-input OR/NOR gate with one input from each gate common to pin 12. Input pulldown resistors eliminate the need to tie unused inputs to an external supply.

 P_D = 25 mW typ/gate (No Load) t_{pd} = 2.0 ns typ Output Rise and Fall Time: = 3.5 ns typ (10% - 90%) = 2.0 ns typ (20% - 80%)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging.

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

© Test
Temperature
-30°C
+25°C

	TEST	VOLTAGE VAL	UES	
		(Volts)		
V _{IH max}	V _{IL min}	VIHA min	VILA max	VEE
-0.890	-1.890	-1.205	-1.500	-5.2
-0.810	-1.850	-1.105	-1.475	-5.2
-0.700	-1.825	-1.035	-1.440	-5.2

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
			T		N	IC10101	L Test Li	mits								
		Pin Under	-30	°C		+25°C		+8	5°C		TES	T VOLTAGE A	PPLIED TO PIN	S LISTED BELO	W:	()/)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	(V _{CC}) Gnd
Power Supply Drain Current	¹€	8			-	20	26	-	-	mAdc	-	-	-		8	1,16
Input Current	linH	12		-	-	1 1	265 535	-	-	μAdc μAdc	4 12	_	-	-	8 8	1,16 1,16
	linL	4 12	-	-	0.5 0.5	_	_	_	-	μAdc μAdc	-	4 12			8	1,16 1,16
Logic "1" Output Voltage	Voн	5 5 2 2	-1.060 -1.060 -1.060 -1.060	-0.890 -0.890 -0.890 -0.890	-0.960 -0.960 -0.960 -0.960	-	-0.810 -0.810 -0.810 -0.810	-0.890 -0.890 -0.890 -0.890	-0.700 -0.700 -0.700 -0.700	Vdc	12 4 - -	- - -	-	-	8	1,16
Logic "0" Output Voltage	VOL	5 5 2 2	-1.890 -1.890 -1.890 -1.890	-1.675 -1.675 -1.675 -1.675	-1.850 -1.850 -1.850 -1.850	1 1 1	-1.650 -1.650 -1.650 -1.650	-1.825 -1.825 -1.825 -1.825	-1.615 -1.615 -1.615 -1.615	Vdc	- - 12 4	-	- - -	·	8	1,16
Logic "1" Threshold Voltage	VOHA	5 5 2 2	-1.080 -1.080 -1.080 -1.080	-	-0.980 -0.980 -0.980 -0.980		-	-0.910 -0.910 -0.910 -0.910	-	Vdc	-	-	12 4 - -	- - 12 4	8	1,16
Logic "0" Threshold Voltage	VOLA	5 5 2 2	-	-1.655 -1.655 -1.655 -1.655	-		-1.630 -1.630 -1.630 -1.630	-	-1.595 -1.595 -1.595 -1.595	Vdc	- - -	-	- - 12 4	12 4 - -	8	1,16
Switching Times (50-ohm load)													Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t4+2- t4-2+ t4+5+ t4-5-	2 2 5 5	1.0	3.1	1.0	2.0	2.9	1.0	3.3	ns	- - -	-	4	2 2 5 5	8	1,16
Rise Time (20 to 80%)	t ₂₊ t ₅₊	2 5	17	3.6	1.1		3.3	1.1	3.7		-			2 5		
Fall Time (20 to 80%)	t ₂₋ t ₅₋	2 5	1	₩	†	+	•	•	•	\ \		-	+	2 5	\ \	

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

P SUFFIX PLASTIC PACKAGE CASE 648

@ Test Temperature -30°C +25°C

	TEST VOLTAGE VALUES											
(Volts)												
V _{IH max}	/IH max VIL min VIHA min VILA max											
-0.890	-1.890	~1.205	-1.500	-5.2								
-0.810	-1.850	-1,105	-1.475	-5.2								
-0.700	-1.825	-1.035	-1.440	-5.2								

									+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
	Pin					P Test Lis				TES	T VOLTAGE A	PPLIED TO PIN	S LISTED BELO	W:	
Symbol	Under			Min		May			Unit	VIH may	VII min	VIHA min	VII A may	VEE	(V _{CC}) Gnd
		+					-				12.,,,,,,		-		1,16
															1,16
'inH		-	1 -		1 =	535	I -				_	_			1,16
<u> </u>		 		0.5	-	-	 -				4			8	1,16
·inc	12	-	- 1	0.5	-	-	-	-	μAdic	-	12	-	-	8	1,16
VOH	5	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	12		-	-	8	1,16
1	5	-1.060		-0.960	-	-0.810	-0.890	-0.700	1 1	4	- 1	-	_	1	1
į.	2	-1.060			-	-0.810				_	-	-	-	1 1	1 1
	2			-0.960		-0.810	-0.890	-0.700		_					V
VOL	5			-1.850	-	-1.650	-1.825	-1.615	Vdc	-	-	-	-	8	1,16
l					1					-	-	-	-		1 1
i					ı						-	-	-		
	2		4			-1.650	-1.825	-1.615		4	-			· · · · · ·	
VOHA	5				-	-	-0.910	-	Vdc	-	-	12	-	8	1,16
l					1	-		-	l I .	-	-	4	-	1 1	1
1						ı		-		-	-	-		↓	١ ا
.					!				V						
VOLA		1					_		Vdc	-	-	-		8	1,16
					1		ı			-	-	1 -			
1				1	ı		_		♦	_	i .		l		
 	 		-1.000		<u> </u>	-1.030		-1.555	<u> </u>				-	- '- -	— <u>·</u>
		1	1	1		1		i			l	Pulse In	Pulse Out	-3.2 V	+2.0 V
ta+2-	2	1 -	_	1.0	2.0	2.9	_	_	ns	_	_	4	2	8	1,16
	2	l –	l _		1	1	1	_	l i	_	_	l i	2	lī	1 7
t4+5+	5	-	_	1 1	1		_	_			i -	1	5		
t4-5-	5	-	-	▼	1	🕴	-	-		-	-	1	5	1 1	1 1
t2+	2	-	_	1,1		3.3	_	_		-	_	1	2		1 1
t5+	5	-	-		1 1	l ï	-	-		-	-	1 1	5	1 1	1 1
	2	- 1	_		ΙL		-	_	1 1	_	_	1 1	2	1 1	l I
t5-	5	1	ı			i •		i		1	1	1 V			
	VOLA VOLA VOLA 14+2- 14-2+ 14-5- 12+ 15- 12- 15-	Symbol Under Test T	Symbol Under -34 Min	Symbol Test Min Max IE 8	Pin Pin	Pin -30°C +25°C	Pin -30°C	Symbol Test Min Max Min Typ Max Min Ity Max Min Max Min Ity Max Min Max Min Ity Max Min Min Max Min Min	Pin Under Test Min Max Min Typ Max Min Min Max Min Min Max Min Max Min Min Max Min Min Min Max Min Min Min Max Min Min Min Min Min Min Min Min Min Max Min M	Pin Under Under Under Test Min Max Min Typ Max Min Min Max Min Max Min Min Max Min Max Min Max	Pin Under Test T	Pin Under Test Min Max Min Typ Max Min Min Max Min Min Max Min Max Min Min Max Min Min Max Min Min Max Min Min	Pin Under Test Min Max Min Typ Max Min Min	Pin Under Symbol Test Min Max Min Typ Max Min Max Max Min	Pin Under Test Min Max Min Min

The MC10102 is a quad 2-input NOR gate. Input pulldown resistors eliminate the need to tie unused inputs to an external supply.

> PD = 25 mW typ/gate (No Load) Output Rise and Fall Time: = 3.5 ns typ (10% - 90%) = 2.0 ns typ (20% - 80%)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging.

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

VIL min

L SUFFIX CERAMIC PACKAGE **CASE 620**

VILA max

VEE

TEST VOLTAGE VALUES (Volts)

VIHA min

													1	127111100		
										-30°C	-0.890	-1.890	-1.205	-1.500	-5.2	
										+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	
										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin			^		2L Test Li				TES	T VOLTAGE A	PPLIED TO PIN	S LISTED BELO	w:	
	1	Under	-30	°C		+25°C		+8	5°C			r				(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8			-	20	26	-	-	mAdc	_		-		8	1,16
Input Current	linH	12		-	-	_	265		-	μAdc	12		-		8	1,16
	linL	12			0.5	-		-		μAdc	-	12			8	1,16
Logic "1"	VOH	9	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	12				8	1,16
Output Voltage		9	-1.060	-0.890	-0.960	1	-0.810	-0.890	-0.700	1 1	13	-	-	-		
	ł	15 15	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	-	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	♦	_	_		_		. •
Logic "0"	VOL	9	-1.890		-1.850		-1.650	-1.825		Vdc					8	1,16
Output Voltage	1 .05	9	-1.890		-1.850	-	-1.650	-1.825		1	ļ	_		_	l ĭ '	1 1
	1	15	-1.890			ĺ	-1.650	-1.825	-1.615	↓	12	l		i		
	<u> </u>	15	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615	'	13					
Logic "1"	VOHA	9	-1.080	-	-0.980	-	-	-0.910		Vdc	1		12		8	1,16
Threshold Voltage	į.	9 15	-1.080 -1.080		-0.980 -0.980	-	-	-0.910 -0.910			l	1	13	12	l i	i
		15	-1.080		-0.980	-	Į	-0.910		♦	ŀ			13	†	♥
Logic "0"	VOLA	9		-1.655	-		-1.630	-	-1.595	Vdc		-	-	12	8	1,16
Threshold Voltage		9	-	-1.655			-1.630	l	-1.595	1	1		-	13	1 1	1
	i	15 15	_	-1.655 -1.655		_	-1.630 -1.630	-	-1.595 -1.595	! ♦	ļ		12 13	-	. .	1
Switching Times	 	13	 	-1.035		-	-1.630	<u> </u>	-1.595	<u> </u>	-		13	· · · · · · · · · · · · · · · · · · ·	- '	' -
(50-ohm load)		İ			ł	l	ł	1	ĺ			l	Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t12+15-	15	1.0	3.1	1.0	2.0	2.9	1.0	3.3	ns		_	12	15	8	1.16
,	112-15+	15	ΙÏ	l ï	1	1 1	l ï		1	l ï	-		l ï	15	l i	1 1
	t12+9+	9	1	. ↓		ļ l	.	1 1	1 1	1 1	-	-		9		
	†12-9-	9		, ₹	, ₹			▼	▼		-	-		9		1
Rise Time	t15+	15 9	111	3.6	1.1		3.3	1,1	3.7		-	_	1	15		
(20 to 80%)	tg+	1 -								1 1	l -	_		9		i I
Fall Time	t ₁₅ -	15	l ∳	♦	♦	\ ♦	\ ▼	\ ♦	I ♦	\ ♦	_	_	\	15 9	 	•
(20 to 80%)	'9-	L .	1	L		L .		∟'_	L	<u> </u>			L		<u> </u>	<u> </u>

@ Test

Temperature

VIH max

P SUFFIX
PLASTIC PACKAGE
CASE 648

@ Test Temperature -30°C +25°C

TEST VOLTAGE VALUES (Volts) VIL min VILA max VEE VIH max VIHA min -1.890 -5.2 -0.890 -1.205 -1.500 -0.810 -1.850 -1.105 -1.475 -5.2

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin			N		P Test Lir				TEST	VOLTAGE A	PPLIED TO PIN	S LISTED BELO	w.	
		Under	-30	°C		+25°C		+8	5°C					1		(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	V _{IH max}	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	¹E .	8	T -		-	20	26	-	-	mAdc	-		-	_	8	1,16
Input Current	linH	12		-	-	-	265	_	-	μAdc	12	-	_	_	8	1,16
	linL	12	-		0.5		-	-	-	μAdc	_	12	-	-	8	1,16
Logic "1"	Voн	9	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	12	-	-	-	8	1,16
Output Voltage		9	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	1	13	-	_	-	1	1 1
	i	15	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	1	-	-	-	-		
		15	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	•	-					
Logic "0"	VOL	9	-1.890		-1.850	-	-1.650	-1.825	-1.615	Vdc		-	-	-	8	1,16
Output Voltage		9	-1.890		-1.850	-	-1.650	-1.825	-1.615	1	-	-	-	-	1	1
	1	15	-1.890		-1.850	-	-1.650	-1.825	-1.615		12		-	-	•	!
		15	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615		13	-				
Logic "1"	VOHA	9	-1.080	-	-0.980	-	-	-0.910	-	Vdc	-		12	_	8	1,16
Threshold Voltage		9	-1.080	-	-0.980	-	-	-0.910	-	1	-	-	13	_		1 1
	ľ	15	-1.080	-	-0.980	-	-	-0.910	-				_	12		↓
		15	-1.080		-0.980		_=_	-0.910			-	-		13		
Logic "0"	VOLA	9	-	-1.655	-	-	-1.630	-	-1.595	Vdc	-	-	-	12	8	1,16
Threshold Voltage	1	9	-	-1.655	-	-	-1.630		-1.595		-	-	l	13		1 1
		15 15	_	-1.655 -1.655	_	_	-1.630 -1.630	_	-1.595 -1.595		_	-	12 13	_	\	\ \
Switching Times (50-ohm load)													Pulse In	24.2	-3.2 V	+2.0 V
			1											Pulse Out		
Propagation Delay	t12+15-	15	-	- 1	1.0	2.0	2.9	-	-	ns	-	-	12	15	8	1,16
	¹ 12-15+	15	-	-	1	11	1	-	_		-	-	1 1	15		1 1
	t12+9+	9	-	_			•	_	-		-	-	1 1	9		1 1
	¹ 12-9-		-	_	•		٠,	_		l I .	_	_		9		1 1
Rise Time	^t 15+	15	-	-	1.1		3.3	_	_		_	-	1 1	15		
(20 to 80%)	tg+	9	-	- 1			1 1	_	_		_	-	1 1	9		1
Fall Time	^t 15-	15	-	- 1	•	1	1	-	-		-	-	1 1	15		
(20 to 80%)	tg_	9	_	-			١ '	-	-		-	-	•	9	l ▼	

STATE OF STREET

Advance Information

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging and maximum ratings.

This is advance information and specifications are subject to change without notice.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

		TEST V	OLTAGE	VALUES	
		_	(Volts)		
@ Test Temperature	ViHmax	VILmin	VIHAmin	VILAmax	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1 825	-1 035	-1 440	-5.2

										+85-0	-0.700	-1.825	-1.033	-1.440	-5.2	j
		Pin			M	C10103L	Test Limit	ts				TEST VO	LTAGE A	PLIED TO		
		Under	-30	o°C		+25°C		+8	5°C			PINS L	ISTED BE	LOW:		(Vcc)
Cherecteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	IE_	8		-	-	21	26	_	-	mAdc	-	-	-	_	8	1,16
Input Current	linH	4*	-	-	-	-	245	_	-	μAdc	4.	-	-	-	8	1,16
	linL	4*	-	_	0.5	-	-	-	-	μAdc		4.		-	8	1,16
Logic "1" Output Voltage	Voн	2 9	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	_	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	4,5 –	-	-	_	8 8	1,16 1,16
Logic "0" Output Voltage	VOL	2 9	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850	-	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	12,13	_		_	8 8	1,16 1,16
Logic "1" Threshold Voltage	VOHA	2 9	-1.080 -1.080	_	-0.980 -0.980	-	=	-0.910 -0.910	_	Vdc Vdc	_	_	4,5 -	12,13	8 8	1,16 1,16
Logic "0" Threshold Voltage	VOLA	2 9	-	-1.655 -1.655	-	=	-1.630 -1.630	_	-1.595 -1.595	Vdc Vdc	-		12,13	4,5 -	8 8	1,16 1,16
Switching Times (50-ohm load)													Pulse in	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t4+2+ t12+9-	2 9	-	_	-	2.0	-	-	-	ns 	-	-	4 12	2 9	8	1,16
Rise Time (20% to 80%)	t ₂₊	2	-	-	-		_	-	-		-	_	4	2		
Fall Time (20% to 80%)	t ₂₋	2	_	_	-		-	_	-		-	-	4	2	₩	

^{*}Individually test each input applying VIH or VIL to input under test.

The MC10104 provides a very useful low power, high speed logic AND function. High Z input pulldown resistors allow high dc and ac fanouts and eliminate the need to tie unused inputs to an external supply. The open emitter outputs allow maximum flexibility in the selection of ter-PD = 35 mW typ/gate (No load) mination techniques and minimize the power requirements t_{od} = 2.7 ns typ when driving transmission lines. Open emitter outputs Output Rise and Fall Times: also allow wire-ORing capability, which is very useful in = 3.5 ns typ (10% - 90%) control, bussing, and communications in high speed central = 2.0 ns typ (20% - 80%) processors, high speed peripherals, digital communications systems, minicomputers and instrumentation. POSITIVE LOGIC **NEGATIVE LOGIC** O 9 **~** • V_{CC1} = Pin 1 V_{CC2} = Pin 16 V_{EE} = Pin 8

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information Section for packaging and maximum ratings.

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

© Test
Temperature
-30°C
+25°C
+85°C

	TEST V	OLTAGE VA	LUES											
	Volts													
VIH max VIL min VIHA min VILA max VEE														
-0.890	-1.890	-1.205	-1.500	-5.2										
-0.810	-1.850	-1.105	-1.475	-5.2										
-0.700	-1.825	-1.035	-1.440	-5.2										

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
					- 1	MC1010	4L Test L	imits			TEST VO	I TAGE APP	LIED TO PIN	S LISTED BL	EOW:	
			-30	°C		+25°C		+89	5°C		1201 10	TINGE AT		1		(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8		_	-	28	35	-	-	mAdc	_	_	_	-	8	1,16
Input Current	linH*	12 13	-	=	=	-	265 220	-	-	μAdc μAdc	12,13 13	-	-	-	8 8	1,16 1,16
	linL	12	_	-	0.5	-	_	-	_	μAdc		12			8	1,16
Logic "1" Output Voltage	∨он	15 9	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	-	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	12,13	-	-	_	8	1,16 1,16
Logic "0" Output Voltage	VOL	15 9	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850	-	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	- 12,13	-	-	-	8 8	1,16 1,16
Logic "1" Threshold Voltage	VOHA	9 9 15 15	-1.080 -1.080 -1.080 -1.080	- - -	-0.980 -0.980 -0.980 -0.980	-	- - -	-0.910 -0.910 -0.910 -0.910	-	Vdc	- - 12 13	-	- - 13 12	12 13 - -	8	1,16
Lgoic "0" Threshold Voltage	VOLA	9 9 15 15	- - - -	-1.655 -1.655 -1.655 -1.655	 - -	- - -	-1.630 -1.630 -1.630 -1.630	-	-1.595 -1.595 -1.595 -1.595	Vdc	12 13 - -	- - -	13 12 - -	- 12 13	8	1,16
Switching Times* (50-ohm load)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t12+15+ t12-15- t12+9- t12-9+ t13+15+ t13+9-	15 15 9 9 15 9	1.0	4.3	1.0	2.2 	4.0	1.0	4.2	ns	13 	- - - -	12 	15 15 9 9 15	8	1.16
Rise Time (20 to 80%)	t 15+ tg+	15 9	1.5	3.7	1.5	2.0	3.5	1.5	3.6			- -		15 9		
Fall Time (20 to 80%)	t15- tg_	15 9										-		15 9		

^{*}Inputs 4, 7, 10, and 13 will behave similarly for ac and I_{inH} values.
Inputs 5, 6, 11, and 12 will behave similarly for ac and I_{inH} values.

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

P SUFFIX
PLASTIC PACKAGE
CASE 648

@ Test
Temperature
-30°C --(
+25°C --(
+85°C --(

	TEST V	OLTAGE VA	LUES	
		Volts		
VIH max	VIL min	VIHA min	VILA max	VEE
-0.890	-1.890	-1.205	-1.500	-5.2
-0.810	~1.850	-1.105	-1.475	-5.2
-0.700	-1.825	-1.035	-1.440	-5.2

											1					
					MC	10104P	Test Limi				TEST VO	LTAGE APP	LIED TO PIN	S LISTED BLI	EOW:	
		1	-30	°C		+25°C		+85	5°C							(V _{CC})
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	V _{IH max}	V _{IL min}	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8	-	_	-	28	35	-	_	mAdc	-	-	-	-	8	1,16
Input Current	linH*	12 13	-	1 1	-	-	265 220	-	-	μAdc μAdc	12,13 13	1 1	-	-	8	1,16 1,16
	linL	12	-	-	0.5	i -	-	-	-	μAdc	-	12	-	-	8	1,16
Logic "1" Output Voltage	VOH	15 9	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	-	-0.810 -0.810	-0.890 -0.890	-0.700 -0.7 00	Vdc Vdc	12,13 -	-	-	-	8 8	1,16 1,16
Logic "0" Output Voltage	VOL	15 9	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850	-	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	12,13	-	-	-	8	1,16 1,16
Logic "1" Threshold Voltage	VOHA	9 9 15 15	-1.080 -1.080 -1.080 -1.080	- - -	-0.980 -0.980 -0.980 -0.980	- - - -	- - -	-0.910 -0.910 -0.910 -0.910	-	Vdc	12 13	-	- - 13 12	12 13 - -	8	1,16
Lgoic "0" Threshold Voltage	VOLA	9 9 15 15	- - -	-1.655 -1.655 -1.655 -1.655	-	- - -	-1.630 -1.630 -1.630 -1.630	-	-1.595 -1.595 -1.595 -1.595	Vdc	12 13 - -	-	13 12 	- - 12 13	8	1,16
Switching Times* (50-ohm load)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Dalay	t12+15+ t12-15- t12+9- t12-9+ t13+15+ t13+9-	15 15 9 9 15	-	- - - -	1.0	2.2 	4.0	- - - -	-	ns	13 V 12 12	- - - -	12 13 13	15 15 9 9 15	8	1,16
Rise Time (20 to 80%) Fall Time (20 to 80%)	t15+ t9+ t15- t9-	15 9 15 9	- - -	- - -	1.5	2.0	3.5	- - -	- - -			- - -		15 9 15 9		

^{*}Inputs 4, 7, 10, and 13 will behave similarly for ac and I inH values.

Inputs 5, 6, 11, and 12 will behave similarly for ac and I inH values.

TRIPLE 2-3-2 INPUT **OR/NOR GATE**

MC10105

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

		TEST	VOLTAGE VAL	UES	
			(Volts)		
@ Test Temperature	V _{IH max}	V _{IL min}	VIHA min	VILA max	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	1
	1	Pin					L Test Li				TEST	VOLTAGE A	PPLIED TO PINS	LISTED BELOV	V:	1
	l	Under	-30	°C		+25°C		+85	5°C			T				(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	V _{IL min}	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8	-	-	_	17	21	-		mAdc	-		-	_	8	1,16
Input Current	linH	4	-	-	-	-	265	-	-	μAdc	4		-	=	8	1,16
	linL	4	-	-	0.5	-	-	-	-	μAdc	=	4		_	8	1,16
Logic "1" Output Voltage	VOH	3 2	-1.060 -1.060		-0.960 -0.960	_	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	_ 4	-	-	_	8 8	1,16 1,16
Logic "0" Output Voltage	VOL	3 2	-1.890 -1.890		-1.850 -1.850	- 1	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	4 -	-	-	=	8 8	1,16 1,16
Logic "1" Threshold Voltage	VOHA	3 2	-1.080 -1.080		-0.980 -0.980		-	-0.910 -0.910	-	Vdc Vdc	-	-	- 4	4 -	8 8	1,16 1,16
Logic "O" Threshold Voltage	VOLA	3 2	=	-1.655 -1.655	-	-	-1.630 -1.630	-	-1.595 -1.595	Vdc Vdc	-	=	4 -	- 4	8	1,16 1,16
Switching Times (50-ohm load)											1		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t4+3- t4-3+ t4+2+ t4-2-	3 3 2 2	1.0	3.1	1.0	2.0	2.9	1.0	3.3	ns	- - -	- - -	4	3 3 2 2	8	1,16
Rise Time (20 to 80%) Fall Time (20 to 80%)	t3+ t2+ t3- t2-	3 2 3 2	1.1	3.6	1.1 		3.3	1.1	3.7		- - -	-		3 2 3 2		

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

P SUFFIX PLASTIC PACKAGE CASE 648

!		TEST	VOLTAGE VAL	UES	
			(Volts)		
@ Test Temperature	V _{IH max}	V _{IL min}	VIHA min	VILA max	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin			!		P Test L				TEST	VOLTAGE A	PPLIED TO PINS	LISTED BELOW	V:	ł
	l	Under	-30	°C		+25°C		+85	o°C			T				(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8	-	_	-	17	21	_	-	mAdc	-	-			8	1,16
Input Current	linH	4	T -	_		-	265	-	-	μAdc	4	-	_		8	1,16
	linL	4	-	-	0.5	-	_		-	μAdc	-	4		-	8	1,16
Logic "1"	VOH	3	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	-		-		8	1,16
Output Voltage	·	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	4				8	1,16
Logic "0"	VOL	3	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	4	-	-	-	8	1,16
Output Voltage		2	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615	Vdc	_	J			8	1,16
Logic "1"	VOHA	3	-1.080	-	-0.980	_	-	-0.910		Vdc	-	_		4	8	1,16
Threshold Voltage		2	-1.080		-0.980	-		-0.910	-	Vdc	-	-	4	-	8	1,16
Logic "0"	VOLA	3	-	-1.655	-	-	-1.630	-	-1.595	Vdc	_		4		8	1,16
Threshold Voltage	1	2	-	-1.655	-	l	-1.630	-	-1.595	Vdc	-	-	-	4	8	1,16
Switching Times (50-ohm load)													Pulse in	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t4+3-	3	_	_	1.0	2.0	2.9	-	_	ns	_	-	4	3	8	1,16
	t4-3+	3	-	-	1 1	1 1		-	-	1 1	-	-	l i	3	i i	1 1
	t4+2+	2	-	- '	1 1	ii	1 1	-	-	1 1	-	-	1 1	2	1 1	1 1
	t4-2-	2	-	- :		l l	. ▼	-	-	l I -	-	-	1 1	2	1 1	1 1
Rise Time	t3+	3	-	-	1,1		3.3	-	-		-	-	1 1	3		1 1
(20 to 80%)	t2+	2	-	-	1 1	1 1	1 1	-	-		-	-	1 1	2		1 1
Fall Time	t3_	3	-	-	↓	l J	1 4	-	1 -		-	-		3	1 1	
(20 to 80%)	t2-	2	-	- '	▼	, ,	I 7	i -	l –		-	-	▼	2	. ▼	▼

The MC10106 is a triple 4-3-3 input NOR gate. Input pulldown resistors eliminate the need to tie unused inputs to an external supply.

P_D = 30 mW typ/gate (No Load) t_{pd} = 2.0 ns typ Output Rise and Fall Time = 3.5 ns typ (10% - 90%) = 2.0 ns typ (20% - 80%)

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

ı		TEST V	OLTAGE VALU	JES	
			(Volts)		
@ Test		T	I		1
Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
10500	0.700	1.025	1.025	1.440	E 2

										+85 C	-0.700	-1.020	-1.030	-1.440	-5.2]
		Pin				AC 1010	5L Test L	imits			TEST	VOLTAGE A	PPLIED TO PIN	S LISTED BEL	ow:	
Characteristic	Symbol	Under Test	-31 Min	D ^O C Max	Min	+25°C	Max	+85 Min	OC Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	(VCC)
Power Supply Drain Current	1 _E	8	-	-	-	17	21	-	-	mAdc		-1L min	-	-	8	1,16
Input Current	linH	4			-	-	265	-	-	μAdc	4	-	-	-	8	1,16
	linL	4		_	0.5	-	-		-	μAdc	-	4	_		8	1,16
Logic "1" Output Voltage	VOH	3 2	-1.060 -1.060		-0.960 -0.960	-	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	_	=	-	-	8 8	1,16 1,16
Logic "0" Output Voltage	VOL	3 2	-1.890 -1.890		-1.850 -1.850	-	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	4 9	-	_	-	8 8	1,16 1,16
Logic "1" Threshold Voltage	VOHA	3 2	-1.080 -1.080		-0.980 -0.980	_	=	-0.910 -0.910	_	Vdc Vdc		_	-	4 9	8 8	1,16 1,16
Logic "0" Threshold Voltage	VOLA	3 2	_	-1.655 -1.655	=	-	-1.630 -1.630	-	-1.595 -1.595	Vdc Vdc		-	4 9	-	8 8	1,16 1,16
Switching Times (50-ohm load)													Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t4+3-	3	1.0	3.1	1.0	2.0	2.9	1.0	3.3	ns	_	_	4	3	8	1,16
	t4-3+		1.0	3.1	1.0	1	2.9	1.0	3.3	1 1	-	-	1	l i	1	1
Rise Time (20 to 80%)	t3+		1.1	3.6	1.1		3.3	1.1	3.7		-	-				
Fall Time (20 to 80%)	t3_	+	1.1	3.6	1.1	†	3.3	1.1	3.7	•	-	-	•	.♥	+	. ♦

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

P SUFFIX
PLASTIC PACKAGE
CASE 648

@ Test
Temperature
-30°C
+25°C
+85°C

	TEST V	OLTAGE VALU	JES	
		(Volts)		
VIH max	VIL min	VIHA min	VILA max	VEE
-0.890	-1.890	-1.205	-1.500	-5.2
-0.810	-1.850	-1.105	-1.475	-5.2
-0.700	-1.825	-1.035	-1.440	-5.2
	-0.890 -0.810	VIH max VIL min -0.890 -1.890 -0.810 -1.850	(Volts) VIH max VIL min VIHA min -0.890 -1.890 -1.205 -0.810 -1.850 -1.105	VIH max VIL min VIHA min VILA max -0.890 -1.890 -1.205 -1.500 -0.810 -1.850 -1.105 -1.475

	P				N	AC1010	SP Test Li	mits			TEST VOLTAGE APPLIED TO PINS LISTED BELOW:						
	1	Under	-30	0°C		+25°C		+85	°C			1				(VCC)	
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd	
Power Supply Drain Current	1E	8	-	-	-	17	21	-	-	mAdc				-	8	1,16	
Input Current	I _{in} H	4	-	-	-	-	265	-	-	μAdc	4		_		8	1,16	
	lint	4	-	-	0.5	-	-	-	-	μAdc	_	4	-		8	1,16	
Logic "1" Output Voltage	Voн	3 2	-1.060 -1.060		-0.960 -0.960		-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc			-	_	8	1,16 1,16	
Logic "0" Output Voltage	VOL	3 2	-1.890 -1.890		-1.850 -1.850	-	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	4 9	-	-	-	8 8	1,16 1,16	
Logic "1" Threshold Voltage	VOHA	3 2	-1.080 -1.080		-0.980 -0.980	-	-	-0.910 -0.910	-	Vdc Vdc	-	-		4 9	8 8	1,16 1,16	
Logic "O" Threshold Voltage	VOLA	3 2	=	-1.655 -1.655	- -	-	-1.630 -1.630	_	-1.595 -1.595	Vdc Vdc	-	=	4 9	-	8	1,16 1,16	
Switching Times (50-ohm load)													Pulse In	Pulse Out	-3.2 V	+2.0 V	
Propagation Delay	14+3-	3	-	_	1.0	2.0	2.9	-	_	ns		1	4	3	8	1,16	
	t4-3+	1 1	-	-	1.0		2.9	-	-					i i	1	1 1	
Rise Time (20 to 80%)	t ₃₊		-	-	1.1		3.3	-	-		ļ				.		
Fall Time (20 to 80%)	t3_	<u> </u>	-	-	1.1	•	3.3	-	-	•			•	†	•	+	

TRIPLE 2-INPUT EXCLUSIVE "OR"/EXCLUSIVE "NOR"

MC10107

This three gate array is designed to provide the positive logic Exclusive OR and Exclusive NOR functions in high speed applications. Input pulldown resistors eliminate the need to tie unused inputs to VEE.

 P_D = 40 mW typ/gate (No Load) t_{pd} = 2.5 ns typ Output Rise and Fall Times = 2.5 ns typ (20% to 80%) = 3.5 ns typ (10% to 90%)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

		TEST	VOLTAGE VAL	UES	
			(Volts)		
⊘ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

		_							+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
	1	Pin			MC1	0107L Test					VOLTACE A	DDI JEO TO BIN	S LISTED BELOW	.	1
	İ	Under	-30	o°C	+2	5°C	+8	5°C		<u> </u>	TOETAGEA				(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	1E	8	_	-	-	28	-	-	mAdc	All Inputs	-	-	-	8	1,16
Input Current	lin H	4,9,14 5,7,15	-	-	-	265 220	-	-	μAdc μAdc	:	-	= .	-	8	1,16 1,16
	lin L	•	-	-	0.5	-	-	-	μAdc	-	•		_	8	1,16
Logic "1" Output Voltage	Vон	2 2	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc	4,5	=	-	-	8	1,16
Output Voltage		3 3	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	↓	4 5	=	=	=		
Logic "0" Output Voltage	VOL	2 2 3 3	-1.890 -1.890 -1.890 -1.890	-1.675 -1.675 -1.675 -1.675	-1.850 -1.850 -1.850 -1.850	-1.650 -1.650 -1.650 -1.650	-1.825 -1.825 -1.825 -1.825	-1.615 -1.615 -1.615 -1.615	Vdc	4 5 4,5	=	-	- -	å	1,16
Logic ''1'' Threshold Voltage	Vона	2 2 3 3	-1.080 -1.080 -1.080 -1.080	-1.6/5	-0.980 -0.980 -0.980 -0.980	-1.650	-0.910 -0.910 -0.910 -0.910	-1.615	Vdc	5	= = = = = = = = = = = = = = = = = = = =	4 - 4 5	4	8	1,16
Logic "0" Threshold Voltage	VOLA	2 2 3 3	_ _ _	-1.655 -1.655 -1.655 -1.655	-	-1.630 -1.630 -1.630 -1.630	-	-1.595 -1.595 -1.595 -1.595	Vdc	- - 5 -	= =	4 5 4 -	- - 4	8 	1,16
Switching Times (50 12 Load)					Min T	ур Мах			Unit	+1.1 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Prop ag ation Delay	1++ 1+- 1-+ 1	Inputs 4, 9 or 14 to either Output	1.1	3.8	1.1	2.0 3.7	1.1	4.0	ns	5,7,15	- - - -	Input 4, 9, or 14	Corresponding Ex-OR/Ex-NOR Outputs	8	1,16
	t++ t+- t-+ t	Inputs 5,7, or 15 to either Output				2.8				4,9,14	-	Input 5, 7, or 15	Corresponding Ex-OR/Ex-NOR Outputs		
Rise Time (20 to 80%)	t+		1.1	3.5	:	2.5 3.5	.	3.8		4,9,14	-	Any Input	Corresponding Ex-OR/Ex NOR		
Fall Time (20 to 80%)	t-		1.1	3.5	▼ :	2.5 3.5	▼	3.8	+	4,9,14	-	Any Input	Outputs	, ,	١ ١

^{*}Individually test each input applying V_{IH} or V_{IL} to input under test. **Any Output

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

P SUFFIX CERAMIC PACKAGE CASE 648

		TEST	VOLTAGE VAL	UES	
			(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin			N	IC10107	P Test	Limits				VOI TAGE 4		LISTED BELOW:	1	ı
		Under	-30	o°c		+25°C		+85	5°C		l ES!	VUL I AGE AI	PPLIED TO PIN	CISTED BELOW		(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	N	Aax	Miss	Max	Unit	VIH max	VIL min	VIHA min	VILA max_	VEE	Gnd
Power Supply Drain Current	1E	8		-	-		28	-		mAdc	All Inputs	-	-	-	8	1,16
Input Current	^I in H	4,9,14 5,7,15	-	-	_		265 220	-	-	μAdc μAdc	:	-	-	-	8	1,16 1,16
	lin L	·		-	0.5		-		-	μAdc	_	•		-	8	1,16
Logic "1" Output Voltage	∨он	2 2 3 3	-1.060 -1.060 -1.060 -1.060	-0.890 -0.890 -0.890 -0.890	-0.96 -0.96 -0.96	0 -0	0.810 0.810 0.810 0.810	-0.890 -0.890 -0.890 -0.890	-0.700 -0.700 -0.700 -0.700	Vdc	4,5 - 4 5	-	-		8	1,16
Logic "0" Output Voltage	VOL	2 2 3 3	-1.890 -1.890 -1.890 -1.890	-1.675 -1.675 -1.675 -1.675	-1.850 -1.850 -1.850	0 -1 0 -1 0 -1	.650 .650 .650	-1.825 -1.825 -1.825 -1.825	-1.615 -1.615 -1.615 -1.615	Vdc	4 5 4,5	- - - -	- - -	-	8	1,16
Logic "1" Threshold Voltage	VOHA	2 2 3 3	-1.080 -1.080 -1.080 -1.080	- - -	-0.98 -0.98 -0.98	0	-	-0.910 -0.910 -0.910 -0.910	- - -	Vdc	5 -	-	4 - 4 5	4	8	1,16
Logic "0" Threshold Voltage	VOLA	2 2 3 3	-	-1.655 -1.655 -1.655 -1.655	-	-1	.630 .630 .630	- - -	-1.595 -1.595 -1.595 -1.595	Vdc	- - 5 -		4 5 4	- - - 4	8	1,16
Switching Times (50 \Omega Load)				i	Min	Тур	Max			Unit	+1.1 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t++ t+- t-+ t	Inputs 4, 9 or 14 to either Output	- - -	- - -	1.1		3.7	- - -	- - -	ns	5,7,15	- - -	Input 4, 9, or 14	Corresponding Ex-OR/Ex-NOR Outputs	8	1,16
Rise Time	t++ t+- t-+ t	Inputs 5,7, or 15 to either Output	-	- - - -		2.8	3.5	- - - -	- - - - -		4,9,14	-	Input 5, 7, or 15 Any Input	Corresponding Ex-OR/Ex-NOR Outputs Corresponding		
(20 to 80%) Fall Time (20 to 80%)	t-		_	-		2.5	3.5	, 7,	-	+	4,9,14		Any Input	Ex-OR/Ex NOR Outputs		•

^{*}Individually test each input applying VIH or VIL to input under test.

3-24

^{**}Any Output

The MC10109 is a dual 4-5 input OR-NOR gate which is pin compatible with the MECL III MC1660L dual OR-NOR gate. All inputs are terminated by a 50 k ohm resistor to VEE eliminating the need to tie unused inputs low.

 t_{pd} = 2.0 ns typ P_D = 30 mW typ/gate (No Load) Output Rise and Fall Times (10% to 90%) 3.5 ns (20% to 80%) 2.0 ns

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

[TEST	VOLTAGE VAL	UES	
[(Volts)		
@ Test Temperature	VIH max	V _{IL min}	VIHA min	VILA max	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

											0.700	1	-1.000	1		
		Pin				VC10109	L Test L	imits			1	EST VOLTAG	E APPLIED TO	PINS BELOW:		ĺ
	i l	Under	-30	o°C	ľ	+25°C		+85	5°C							(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8	-	-	-	11	14	-	-	mAdc	-	-	-		8	1,16
Input Current	linH	4	-	-	-	-	265	-	-	μAdc	4	-	_	-	8	1,16
_	linL	4	-	_	0.5	-	-	-	-	μAdc	_	4	_	-	8	1,16
High Output Voltage	Voн	2 3	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	-	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	4 -	_	_	_	8 8	1,16 1,16
Low Output Voltage	VOL	2	-1.890	-1.675 -1.675	-1.850	=	-1.650 -1.650	-1.825 -1.825	-1.615	Vdc Vdc	4	-	=	=	8	1,16 1,16
High Threshold Voltage	VOHA	2	-1.080 -1.080		-0.980 -0.980	_	-	-0.910 -0.910		Vdc Vdc	-	_	4 ~	4	8 8	1,16 1,16
Low Threshold Voltage	VOLA	2 3	=	-1.655 -1.655	-		-1.630 -1.630	-	-1.595 -1.595	Vdc Vdc	-	_	- 4	4 -	8 8	1,16 1,16
Switching Times (50-ohm load)													Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t4+2+ t4-2- t4+3- t4-3+	2 2 3 3	1.0	3.1	1.0	2.0	2.9	10	3.3	ns	- - - -		4	2 2 3 3	8	1,16
Rise Time (20 to 80%)	t ₂₊	2 3	1.1	3.6	1.1		3.3	1.1	3.7		-	=		2 3		
Fall Time (20 to 80%)	t2- t3-	2 3	₩		∤	†	↓ ↓			1	-	_	♦	2 3	•	+

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2,0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

P SUFFIX PLASTIC PACKAGE CASE 648

1		TEST	VOLTAGE VAL	UES	
			(Volts)		
@ Test Temperature	VIH max	V _{IL min}	VIHA min	VILA max	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	_0.700	-1.825	-1.035	-1 440	-5.2

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	i
		Pin	ļ				9P Test L				1	TEST VOLTAG	SE APPLIED TO	PINS BELOW:		l
	ł	Under		o°c		+25°C		+81	5°C							(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8	I			11	14	-	-	mAdc	-	-			8	1,16
Input Current	linH	4	T	-	_	_	265	-	-	μAdc	4	_		_	8	1,16
	linL	4	-	-	0.5	-	-	T -		μAdc	-	4	_	_	8	1,16
High Output Voltage	Voн	2	-1.060		-0.960	-	-0.810	-0.890	-0.700	Vdc	4	-	_	_	8	1,16
	L	3	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc				L	8	1,16
Low Output Voltage	VOL	2	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	_	_	_	-	8	1,16
		3	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615	Vdc	4	-		-	8	1,16
High Threshold Voltage	VOHA	2	-1.080	-	-0.980	-	_	-0.910	_	Vdc	_	_	4	-	8	1,16
		3	-1.080	-	-0.980	-	-	-0.910	-	Vdc	-	-	-	4	8	1,16
Low Threshold Voltage	VOLA	2	-	-1.655	-	_	-1.630	-	-1.595	Vdc	-	_		. 4	8	1,16
		3	<u>1 - </u>	-1.655			-1.630	-	-1.595	Vdc	-		4		8	1,16
Switching Times (50-ohm load)													Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t4+2+	2	-	-	1.0	2.0	2.9	-	-	ns	_	_	4	2	8	1,16
	14-2-	2	-	-	1 1	1 1	1 1	-	-	1	-	-	1 1	2	1 1	1
	t4+3-	3	-	-	ll	1 1	1 1	-	-		-	-	1 1	3	1 1	1 1
	t4:3+	3	-	-	1	1 1	1 7	-	-		-	-		3	1 1	1 !
Rise Time (20 to 80%)	t ₂₊	2 3	-	-	1.1		3.3	_	-		-	-		2 3	1	
Fall Time (20 to 80%)	t2- t3-	2 3	-	-		₩		-	-	↓	_	-	+	2 3	↓	+

DUAL 3-INPUT 3-OUTPUT "OR" GATE

MC10110

The MC10110 is designed to drive up to three transmission lines simultaneously. The multiple outputs of this device also allow the wire-"OR"-ing of several levels of gating for minimization of gate and package count.

The ability to control three parallel lines from a single point makes the MC10110 particularly useful in clock distribution applications where minimum clock skew is desired. Three VCC pins are provided and each one should be used.

P_D = 80 mW typ/gate (No Load)
t_{pd} = 2.4 ns typ (All Outputs Loaded)
Output Rise and Fall Time: (All Outputs Loaded)
= 2.2 ns typ (20% to 80%)
= 4.0 ns typ (10% to 90%)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

	Ĺ	TEST \	OLTAGE VA	LUES	
	i	_	(Volts)	_	
@ Test Femperature	VIH max	VIL min	VIHA min	VILA max	
-30°C	-0.890	-1.890	-1.205	-1.500	Γ
+25°C	-0.810	-1.850	-1.105	-1.475	Γ
+85°C	-0.700	-1.825	-1.035	-1.440	Γ

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	1
		Pin			N		L Test Lim				TEST VO	OLTAGE AP	PLIED TO PIN	S LISTED BEL	.ow:	
Characteristic		Under	-30 Min	OC Max	Min	+25°C	Max		Max		VIH max	VIL min	VIHA min	VILA max	VEE	(Vcc)
	Symbol	Test				Тур		Min		Unit	VIH max					Gnd
Power Supply Drain Current	⊢ IE	8			· -	30	38	-		mÁdc	↓		·		8	1,15,16
Input Current	linH	5,6,7		-			425			μAdc			-		8	1,15,16
	linL	5,6,7		-	0.5	L			-	μAdc		•			8	1,15,16
Logic "1"	Voн	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	5	-	-	-	8	1,15,16
Output Voltage		3	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	6	-	-	1 ~	8	1,15,16
		4	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	7			<u> </u>	8	1,15,16
Logic "0"	VOL	2	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	-	-	-	-	8	1,15,16
Output Voltage		3	-1.890 -1.890	-1.675 -1.675	-1.850	-	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc	-	-	-	-	8	1,15,16
		<u> </u>			-1.850					Vdc					8	1,15,16
Logic "1"	VOHA	2	-1.080	-	-0.980	-	-	-0.910 -0.910	-	Vdc	-	-	5	-	8	1,15,16
Threshold Voltage		3	-1.080 -1.080	_	-0.980 -0.980	_	_	-0.910	_	Vdc Vdc	_	_	6 7	_	8	1,15,16 1,15,16
Logic "O"		2		-1.655	-0.300		-1.630		-1.595	Vdc		 	<u> </u>	5	8	
Threshold Voltage	VOLA	3	_	-1.655	_	_	-1.630	_	-1.595	Vdc		_	_	6	8	1,15,16 1,15,16
, mountaine voltage		4	-	-1.655	-	_	-1.630	_	-1.595	Vdc	_	_	_	7	8	1,15,16
Switching Times (50-ohm load)													Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay			1.4	3.5	1.4	2.4	3.5	1.5				ŀ	5		8	
Propagation Delay	t5+2+	2 2	1.4	3.5	1.4	2.4	3.5	1.5	3.8	ns	_		1 5	2 2	1 8	1,15,16
	15+3+	3							i i	1 1	I 5 -	_	1 1	3		1 1
	t5-3-	3				1 1		ĺ	1		_	-	1	3		li
	t5+4+	4	1		1 1	1 1		1 1	1 1		_	-	1 1	4	1 1	
	t5-4-	4	▼			\ ▼	i I		1		-	_	!!!	4		1 1
Rise Time	t2+	2	1.0		1.1	2.2		1.2	1 i		-	-		2		1
(20 to 80%)	t3+	3	1		1			1	i i		-	-	i l	3	1	
	t4+	4									_	_	1 1	4		
Fall Time	t2-	2							1 1		-	-		2	1 1	
(20 to 80%)	t3- t4-	3	🛊	♦	♦	♦	•	♦	♦	🔻	_	_	♦	3 4	♦	♦

^{*}Individually test each input using the pin connections shown.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

P SUFFIX PLASTIC PACKAGE CASE 648

© Test Temperature -30°C +25°C

.0000

	TEST \	OLTAGE VA	LUES	
		(Volts)		
VIH max	VIL min	VIHA min	VILA max	VEE
-0.890	-1.890	-1.205	-1.500	-5.2
-0.810	-1.850	-1.105	-1.475	-5.2
-0.700	-1.825	-1.035	-1.440	-5.2

										+85°C	-0.700	-1.825	-1.035	-1.440	5.2	
-		Pin			N	IC10110	P Test Limi	its			TEST V	N TACE AD	DI JED TO DIN	IS LISTED BEL	OW.	I
		Under	-30	°C		+25°C		+8	5°C		1 1531 4	JE IAGE AF	FEIED IOFIN	IS LISTED BEL		(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	V _{IL min}	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8	-	-	-	-	38	-	-	mAdc	T -	-			8	1,15,16
Input Current	linH	5,6,7	-	-	-	-	425	-	-	μAdc	•	-	_	-	8	1,15,16
	linL	5,6,7	-	_	0.5	T -	-	-	-	μAdc	T -	•	_	_	8	1,15,16
Logic "1"	Voн	2	-1.060	-0.890	-0.960	_	-0.810	-0.890	-0.700	Vdc	5	-	-	_	8	1,15,16
Output Voltage		3	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	6	-	-	-	8	1,15,16
		4	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	7		_	_	8	1,15,16
Logic "0"	VOL	2	-1.890	-1.675	-1.850	l –	-1.650	-1.825	-1.615	Vdc	-	-	~	l –	8	1,15,16
Output Voltage		3	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	-	-	_	-	8	1,15,16
		4	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615	Vdc	L -			<u> </u>	8	1,15,16
Logic "1"	VOHA	2	-1.080	-	-0.980	_	-	-0.910	-	Vdc	1 -	-	5	1 -	8	1,15,16
Threshold Voltage		3	-1.080	-	-0.980	-	-	-0.910	- 1	Vdc	-	-	6	1 -	8	1,15,16
		4	-1.080	-	-0.980		_	-0.910		Vdc			7	<u> </u>	8	1,15,16
Logic "0"	VOLA	2	Τ –	-1.655			-1.630	_	-1.595	Vdc	_	_	-	5	8	1,15,16
Threshold Voltage	024	3	-	-1.655	-	-	-1.630	-	-1.595	Vdc	_	-	-	6	8	1,15,16
	l	4		-1.655		_	-1.630	-	-1.595	Vdc		_	_	7	8	1,15,16
Switching Times (50-ohm load)													Pulse in	Pulse Out	-3.2 V	+2.0 \
Propagation Delay	t5+2+	2	_	_	1.4	2.4	3.5	_	_	ns	_	l –	5	2	8	1,15,16
	t5-2-	2	-	-		l ı	1 .	-	_	lί	_	-	l i ·	2	li	l ii
	t5+3+	3	-	_	1 1	1 1	1 1	l –	-	1 1	l –	i –	1 1	3	1 1	1 1
	t5-3-	3	l –	-	1 1	1 1		-	i –		1 -	-		3	1 1	1 1
	t5+4+	4	-	-	1 1	1 T	1 1	-	-		I -	-	1	4	l i	
	t5-4-	4	-	-	▼	▼		-	-		-	-	1 1	4	1	
Rise Time	t2+	2		_	1.1	2.2	1 1	-	-	1 1	l –	_	1 1	2		1 1
(20 to 80%)	t3+	. 3	-	-	1 1	1 1		-	-		-	_	1 1	3	1 1	1 1
	14+	4	-	-		1 1	1	l -	i –		-	-		4		1
Fall Time	t2-	2	-	_		1 1		-	-		l -	-		2		1
(20 to 80%)	t3-	3	-	-		1 I	1 1	-	-	1 1	-	-	1 1	3	1 1	1 1
	القد	4		_	! ♥	. ▼	, ∀	-	_	. ▼	l –	-	. ▼	4	. ▼	. ▼

^{*}Individually test each input using the pin connections shown.

DUAL 3-INPUT 3-OUTPUT
"NOR" GATE

MC10111

The MC10111 is designed to drive up to three transmission lines simultaneously. The multiple outputs of this device also allow the wire-"OR"-ing of several levels of gating for minimization of gate and package count.

The ability to control three parallel lines from a single point makes the MC10111 particularly useful in clock distribution applications where minimum clock skew is desired. Three VCC pins are provided and each one should be used.

 P_D = 80 mW typ/gate (No Load) t_{pd} = 2.4 ns typ (All Outputs Loaded) Output Rise and Fall Time: (All Outputs Loaded) = 2.2 ns typ (20% to 80%) = 4.0 ns typ (10% to 90%)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

		TEST V	OLTAGE VA	LUES	
			(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin				AC10111	L Test Lin	its			TEST V	OI TAGE AR	DI LED TO DIN	S LISTED BEL	OW.	
	ļ	Under	-30	o°C		+25°C		+85	5°C		I IESI VI	UL IAGE AF	PLIED TO PIN	S LISTED BEL	.OW:	(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	1E	8	-	-	-	-	38	-	-	mAdc	-	-	-	_	8	1,15,16
Input Current	linH	5,6,7	-	_	-	_	425	-	-	μAdc	•	-	-	-	8	1,15,16
	linL	5,6,7	-	-	0.5	_	-	-	-	μAdc	-	•	-	_	8	1,15,16
Logic "1"	VOH	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	-			-	8	1,15,16
Output Voltage	ļ	3	-1.060	-0.890	-0.960	ĺ	-0.810	-0.890	-0.700	Vdc		-	-	-	8	1,15,16
		4	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	V dc		i			8	1,15,16
Logic "0"	VOL	2	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	5	-	-	-	8	1,15,16
Output Voltage		3	-1.890	-1.675	-1.850		-1.650 -1.650	-1.825	-1.615	Vdc	6		-	-	8	1,15,16
		4	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615	Vdc	7		-		8	1,15,16
Logic "1"	VOHA	2	-1.080	-	-0.980	-	-	-0.910	-	Vdc		-	-	5	8	1,15,16
Threshold Voltage	1	3	-1.080	-	-0.980 -0.980	-	-	-0.910	-	Vdc	-	-	_	6	8 8	1,15,16
		-	-1.080	-	-0.980	-		-0.910		Vdc	 	<u> </u>		 _ ′		1,15,16
Logic "0"	VOLA	2	-	-1.655 -1.655	- 1		-1.630	-	-1.595	Vdc	-	-	5	-	8	1,15,16
Threshold Voltage		3		-1.655	_	-	-1.630 -1.630	_	-1.595 -1.595	Vdc Vdc		_	6	_	8	1,15,16 1,15,16
C T		 		1.000			-1.030	<u> </u>	-1.333	Vuc	+					1,13,10
Switching Times (50-ohm load)		l					ļ						Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t5+2-	2	1.4	3.5	1.4	2.4	3.5	1.5	3.8	ns	_	_	5	2	8	1,15,16
riopagation belay	t5-2+	2	1.7	3.5	'."	2.4	3.5	1.3	3.6	113		1 -	1 1	2	l i	1,15,16
	t5+3-	3									-	-	1 1	3	1 1	1 1
	t5-3+	3		i l	1 1	1 1	1 1				-	_	1 I	3	l I	. 1
	15+4-	4	1 1	1 1	1 1	1 1	1 1		1 1	l i	-	-	1 1	4	1 1	1 1
	15-4+	4			🕴	♦	♥	♦	♦		-	-	1 1	4	1 1	1
Rise Time	12+	2	1.0		1.1	2.2	3.5	1.2	3.8		-	_	1 1	2	1 1	
(20 to 80%)	13+	3	1			l i		l ï	l ï	1	-	- 1	1 1	3	1	
	14+	4				Į			1		-	_	1 1	4		
Fall Time	t2-	2				i I	1	1			-	-	1 1	2	1	l i
(20 to 80%)	13-	3	1 1	1	1 1	1 1	1 1	1 1	1 1	1 1		-	1 1	3	1.1	
	14-	4	▼	₹ 7	▼	I ▼	▼	▼	T			-	! ▼	4	i 🛡	I 🚺

^{*}Individually test each input using the pin connections shown

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

P SUFFIX
PLASTIC PACKAGE
CASE 648

		TEST V	OLTAGE VA	LUES	
			(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1,440	-5.2

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin			N		P Test Lim		-	,	TEST VOLTAGE APPLIED TO PINS LISTED BELOW:					
	l	Under	-30			+25°C			°C		L					(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	IE.	8	-	-			38			mAdc	1	-		-	8	1,15,16
Input Current	_linH	5,6,7				-	425	-	L	μAdc	·	-		-	8	1,15,16
	linL	5,6,7	-	-	0.5	-	-	-	- "	μAdc	T -	•		_	8	1,15,16
Logic "1"	VOH	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	_	_	-	-	8	1,15,16
Output Voltage		3	-1.060	-0.890	-0.960	_	-0.810	-0.890	-0.700	Vdc		-	-	-	8	1,15,16
	i	4	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	V dc				-	8	1,15,16
Logic "0"	VOL	2	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	5	-	-	-	8	1,15,16
Output Voltage	1	3	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	6	-	-	-	8	1,15,16
		4	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	7			_	8	1,15,16
Logic "1"	VOHA	2	-1.080	١ -	-0.980	-	-	-0.910	-	Vdc	-	-	-	5	8	1,15,16
Threshold Voltage	l .	3	-1.080	-	-0.980	-	-	-0.910	-	Vdc	-	-	-	6	8	1,15,16
		4	-1.080		-0.980			-0.910	-	Vdc			-	7	8	1,15,16
Logic "0"	VOLA	2	-	-1.655	-	-	-1.630	-	-1.595	Vdc	-	-	5	-	8	1,15,16
Threshold Voltage	1	3	-	-1.655	- 1	-	-1.630	-	-1.595	Vdc	-	-	6	-	8	1,15,16
	L	4	L	-1.655			-1.630		-1.595	Vdc	L -		7	-	8	1,15,16
Switching Times (50-ohm load)									1	ŀ	ļ		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t5+2-	- 1	-	_	1.4	2.4	3.5	_	_	ns	-		5	2	8	1,15,16
	t5-2+	-	-	_	1 1	1	1	-	-	1	-	-	1	2	1 1	l t
	t5+3-	-	~	-	1 1	1 1	1 1	-	-	1 1	-	-	1 1	3		1 1
	t5-3+	- 1	-	-	1 1	1 1		-	-		1 -		l l	3		1 1
	¹ 5+4-	-	-	-	1 1	1 I	i	-	-		-	-	1	4	1 1	! !
	¹ 5-4+	-	-	-		₹ 7	1 1	-	i -		i -		i i	4	1 1	1 1
Rise Time	t2+	-	-	- 1	1.1	2.2		-	-	1 1	-	-	i i	2		1
(20 to 80%)	t3+	-	-	-			1	-	-	1	-	-		3		
	t4+	-	-	-	1 1			-	-	1	-	-	1 1	4		
Fall Time	t2-	-	-	-		1 1	1 1	-	-		-	-		2		
(20 to 80%)	t3-	-	-	-		1 1	1 4	-	-	1 4	-	-	1 1	3	1 1	1 1
	14-	-	-	-	▼	, ₹] ▼	_	-	, ▼	-	-	▼	4	▼	₩

^{*}Individually test each input using the pin connections shown.

Advance Information

The MC10113 is a quad Exclusive OR gate, with an enable common to all four gates. All four outputs may be wire-ORed together to perform a 4-bit comparison function (A = B). The enable is active low. Input pulldown resistors included in the circuit make it unnecessary to tie down unused inputs. Open emitter outputs permit direct connection of outputs to busses.

 P_D = 175 mW typ/pkg (No Load) t_{pd} = 2.5 ns typ Output Rise and Fall Times = 2.0 ns typ (20% to 80%)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

This is advance information and specifications are subject to change without notice. See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the despecifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

	TEST VOLTAGE VALUES														
@ Test	(Volts)														
Temperature	VIH max	VIL min	V _{IHA min}	VILA max	VEE										
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2										
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2										
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2										

										+85-0	J -0.700	-1.825	-1.035	-1.440	-5.2		
		Pin			MC	10113	L Test	Limits			TEST VOLTAGE APPLIED TO PINS LISTED BELOW:						
	1	Under	-30	o°C		+25°C		+85	o°C		I EST VO	LIAGE APP	LIED TO PIN	S LISTED BEI	LOW:	(Vcc)	
Characteristic	Symbol	Test	Min	Max	Min		Max	Min	Max	Unit	V _{IH max}	V _{IL min}	V _{IHA min}	VILA max	VEE	Gnd	
Power Supply Drain Current	ΙE	8	-	-	-		42	-	_	mAdc	-		-		8	1,16	
Input Current	lin H	4,7,10,13	-	-	-	$\neg \neg$	265	_	-	μAdc	•	-			8	1,16	
	1	5,6,11,12	'-	-	- 1		220	-	-	μAdc		-	-	- 1	8	1,16	
	L	9			_		545			μAdc	9		_	-	8	1,16	
	lin L		-	-	-		0.5		-	μAdc	- 1	•	-	-	8	1,16	
Logic "1"	Voн	2	-1.060	-0.890	-0.96		0.810	-0.890	-0.700	Vdc	4	_			8	1,16	
Output Voitage	1	3	-1.060	-0.890	-0.96		0.810	-0.890	-0.700	l	7	-	-	-			
	ì	14	-1.060	-0.890	-0.96		0.810	-0.890	-0.700	l 1	11	- 1	-	- !	1	1	
	<u> </u>	15	-1.060	-0.890	-0.96	0 -	0.810	-0.890	-0.700		13			-			
Logic "0"	VOL	2	-1.890	-1.675	-1.85		1.650	-1.825	-1.615	Vdc		4	-	-	8	1,16	
Output Voltage	1	3	-1.890	-1.675	-1.85		1.650	-1.825	-1.615	1	-	7	_	- 1	1 1		
	i	14	-1.890	-1.675	-1.85		1.650	-1.825	-1.615		-	11	-	-	1 1		
		15	-1.890	-1.675	-1.85	0 -	1.650	-1.825	-1.615			13					
Logic "1"	VOHA	2	-1.080	-	-0.98		-	-0.910	-	Vdc	_	_	4	- 1	8	1,16	
Threshold Voltage	1	3	-1.080	-	-0.98		-	-0.910	-		l -	-	6	-			
		14	-1.080	-	-0.98		-	-0.910	-	1 1	i -	-	10	- 1	1	1	
		15	-1:080		-0.98	_		-0.910					12				
Logic "0"	VOLA	2	-	-1.655	- 1		1.630	-	-1.595	Vdc	-	-	-	5	8	1,16	
Threshold Voltage	ļ	3	-	-1.655	-		1.630	-	-1.595	1 1	-	-	-	7		1	
		14	-	-1.655	-		1.630	-	-1.595	1 4	-	- 1	-	11	1 1		
	┷	15		-1.655	<u> </u>		1.630		-1.595					13			
Switching Times (50 Ω Load)	1		l		Min	Тур	Max		ĺ	Unit	+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V	
Propagation Delay	t4+2+	2	-	-	-	3.0	-	-	-	ns	-	-	4	2	8	1,16	
	t4-2-	2	-	-	-	3.0	-	-	- 1	1	-	- 1	4		11	1 1	
	t9+2-	2	-	-	-	3.4	-	-	-		4	-	9			1	
	t9-2+	2	-	-	-	3.4	-		-	1 1	4	-	9	1 1 1			
Rise Time (20 to 80%)	t2+	2	-	-	-	2.0	-	-	_		-	-	4				
Fall Time (20 to 80%)	t2-	2	-	-	-	2.0	-	-	-	•	-	-	4	*	♥	*	

^{*}Individually test each input applying VIH or VII to input under test.

The MC10114 is a triple line receiver designed for use in sensing differential signals over long lines. An active current source and translated emitter follower inputs provide the line receiver with a common mode noise rejection limit of one volt in either the positive or the negative direction. This allows a large amount of common mode noise immunity for extra long lines.

Another feature of the MC10114 is that the OR outputs (pins 3, 7, 15) go to a logic low level whenever the inputs are left floating. The outputs are each capable of driving 50 ohm transmission lines.

This device is useful in high speed central processors, minicomputers, peripheral controllers, digital communication systems, testing and instrumentation systems. The MC10114 can also be used for MOS to MECL interfacing and it is ideal as a sense amplifier for MOS RAM's.

A VBB reference is provided which is useful in making the MC10114 a Schmitt trigger, allowing singleended driving of the inputs, or other applications where a stable reference voltage is necessary.

 t_{pd} = 2.4 ns typ (Single Ended Input) t_{pd} = 2.0 ns typ (Differential Input) P_D = 145 mW typ/pkg

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

VIH max VIL min VIHA min

L SUFFIX CERAMIC PACKAGE **CASE 620**

VIHH* VILH* VIHL* VILL*

TEST VOLTAGE VALUES (Volts)

V_{BB} -30°C -0.890 -1.890 -1.205 -1.500 From +0.110 -0.890 -1.890 -2.890 -5.2

VILA max

											0.000	1.000	1	1.000	1	- 0.1.0	0.000	1.000					
										+25°C	-0.810	-1.850	-1.105	-1.475	Pin	+0.190	-0.850	-1.810	-2.850	-5.2	1 !		
	_									+85°C	-0.700	-1.825	-1.035	-1.440] 11	+0.300	-0.825	-1.700	-2.825	-5.2			
	1	Pin	MC10114L Test Limits								TEST VOLTAGE APPLIED TO PINS BELOW:												
	1	Under	-30	0°C	+25°C			+85°C			TEST VOCTAGE A				1		1-						
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	V _{BB}	VIHH*	VILH*	VIHL*	VILL.	VEE	(V _{CC}) Gnd		
Power Supply Drain Current	1E	8	-	-	-	28	35	-		mAdc		4,9,12	-	-	5,10,13	-	-		-	8	1,16		
Input Current	linH	4	-	-	-	-	45	-	-	μAdc	4	9,12	-	-	5,10,13	-	-	-	-	8	1,16		
	СВО	4	-	-			1.0	-	-	μAdc	-	9,12	-	-	5,10,13	-	-	T -	-	8,4	1,16		
Logic "1" Output Voltage	VOH	2 3	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	-	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	4 9,12	9,12 4	-	_	5,10,13 5,10,13	-	-	-	-	8	1,16 1,16		
Logic "0" Output Voltage	VOL	2 3	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850		-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	9,12 4	4 9.12	-	-	5,10,13 5,10,13	-	-	-	-	8	1,16		
Logic "1" Threshold Voltage	VOHA	2 3	-1.080 -1.080	-	-0.980 -0.980	-	-	-0.910 -0.910	-	Vdc Vdc	9,12	9,12	4 -	- 4	5,10,13 5,10,13	-	-	-	-	8	1,16		
Logic "0" Threshold Voltage	VOLA	2 3	-	-1.655 -1.655	-	=	-1.630 -1.630	-	-1.595 -1.595	Vdc Vdc	9,12	9.12	- 4	4	5,10,13 5,10,13	-	-	-	-	8	1,16		
Reference Voltage	∨ _{BB}	11	-1.420	-1.280	-1.350	-	-1.230	-1.295	-1.150	Vdc	-	-			5,10,13	-		-	-	8	1,16		
Common Mode Rejection Test	VOH	2 3	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	=	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	-	-		-	-	4	5 -	- 5	4	8	1,16 1,16		
	VOL	2 3	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850	_	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	-	-	-	-	-	- 4	- 5	5 -	4	8 8	1,16 1,16		
Switching Times (50-ohm Load)			Min	Max	Min	Тур	Max	Min	Max				Pulse in	Pulse Out						-3.2 V	+2.0 V		
Propagation Delay**	14+2+ 14-2- 14+3- 14-3+	2 2 3 3	1.0	4.4	1.0	2.4	4.0	0.9	4.3	ns	-	=	1	2 2 3	5,10,13	-	-	-	-	8	1,16		
Rise Time (20% to 80%)	12+ 13+ 12-	2.3	1.5	3.8	1.5	2.1	3.5	1.5	3.7		-	-		2 3		-	-	=	-				
, a	t3-	3	♦	•	♦	♦	•	♦	♦	•	-	-	♦	3	♦	-	-	-	-	\ \	🛊		

@ Test

^{*}VIHH = Input logic "1" level shifted positive one volt for common mode rejection tests.

VILH = Input logic "0" level shifted positive one volt for common mode rejection tests.

VIHI = Input logic "1" level shifted negative one volt for common mode rejection tests.

VILL = Input logic "0" level shifted negative one volt for common mode rejection tests.

^{**}Delay is 2.0 ns with differential input.

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

VILA max

-1.500

VIHA min

-1.205

TEST VOLTAGE VALUES
(Volts)

VBB VIHH

From

P SUFFIX
PLASTIC PACKAGE
CASE 648

VILH. VIHL. VILL.

+0.110 -0.890 -1.890 -2.890 -5.2

VEE

										+25°C	-0.810	-1.850	-1.105	-1.475	Pin	+0.190	-0.850	-1.810	-2.850	-5.2	1
										+85°C	-0.700	-1.825	-1.035	-1.440	111	+0.300	-0.825	-1.700	-2.825	-5.2	1
		Pin			MC10	114P Tes	t Limits						TEST	VOLTAGE A	PPLIED T	O PINS	BELOW:				1
.	۱	Under		o°c		+25°C			5°C			VIH max VIL min VIHA min VILA max VBB VIHH* VILH* VIHL* VILL*									(Vcc
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	V _{BB}	AIHH.	VILH.	AIHF.	AILT.	VEE	Gnd
Power Supply Drain Current	I E	8				28	36		-	mAdc		4,9,12		_	5,10,13				<u> </u>	8	1,16
Input Current	linH	4		_	-		45		L =	μAdic	4	9,12		-	5,10,13	L		L	-	8	1,16
	ІСВО	4	-	-		-	1.0		_	μAdc		9,12			5,10,13			I -	-	8,4	1,16
Logic "1" Output Voltage	VOH	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	4	9,12	-	-	5,10,13	-	-		-	8	1,16
Cogic 1 Output Voltage		3	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	9,12	4		-	5,10,13	<u> </u>	<u> </u>			8	1,16
Logic "0" Output Voltage	VOL	2	-1.890	-1.675	-1.850	~	-1.650	-1.825	-1.615	Vdc	9,12	4	-	_	5,10,13	-	-	-		8	1,16
		3	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615	Vdc	4	9,12			5,10,13				-	8	1,16
Logic "1" Threshold Voltage	VOHA	2	-1.080	- '	-0.980	-	-	-0.910	-	Vdc	-	9,12	4	-	5,10,13	-	-	l -	-	8	1,16
		3	-1.080		-0.980	-		-0.910	-	Vdc	9,12	-		4	5,10,13					8	1,16
Logic "0" Threshold Voltage	VOLA	2	-	-1.655	-	~	-1.630	-	-1.595	Vdc	9,12	-	-	4	5,10,13	-	-	-	-	8	1,16
		3,		-1.655	_		-1.630		~1.595	Vdc		9,12	4	-	5,10,13			<u> </u>		8	1,16
Reference Voltage	V _{BB}	11	-1.420	-1.280	-1.350		-1.230	-1.295	-1.150	Vdc		-	_	-	5,10,13				-	8	1,16
Common Mode Rejection Test	VOH	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	-	-	_	_	_	4	5	-	-	8	1,16
		3	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc				-	L	L -		5	4	8	1,16
	VOL	2	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	-	-	_	-	-	-	_	5	4	8	1,16
		3	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc			L=			4	- 5	<u> </u>	l	8	1,16
Switching Times (50-ohm Load)			Min	Max	Min	Тур	Max	Min	Мах				Puise In	Pulse Out						-3.2 V	+2.0 V
Propagation Delay**	14+2+	2	_		1.0	2.4	4.0	-	_	ns		l –	4	2	5,10,13	l -	-	-	-	8	1,16
	14-2-	2	-	- '	1 1	1 1	ĺι	- 1	-	1 1	١ -	1 -	1 1	2	1 1	-		- 1	- 1	1	1 1
	14+3-	3	- 1	- :	1	1 1	1 1		-	1 1	-	l –	1 1	3	ll	l –	- 1	l -	-		1 1
	14-3+	3	1 -	-	, ₹	٧.	▼	-	-	1 1	- 1	l -		3	i I	l -	-	-	l -		1 1
Rise Time (20% to 80%)	t ₂₊	2	-	- 1	1.5	2.1	3.5	-	-		-	- 1	1 1	2	1	-	-	l -	-		1 1
	t3+	3	-	-	1 1	1	1	-	-	1 1	- 1	-		3	I	-	-	-	-	1 1	1 1
Fell Time (20% to 80%)	t2-	2	1 -		1 1	1 1	1 1	-	-	ΙI	- 1	l –	1 1	2	1 1	- 1	-	- 1	-	1 1	1 1
	13-	3	- 1	-	١٧.	₩.	₹	-	-	. ▼	-	-	. ▼	3	. ▼	- 1] -	-	- 1	₹ .	I ▼

● Test

VIH max VIL min

-30°C -0.890 -1.890

^{*}VIHH = Input logic "1" level shifted positive one volt for common mode rejection tests.

VILM = Input logic "0" level shifted positive one volt for common mode rejection tests.

VIHL = Input logic "1" level shifted negative one volt for common mode rejection tests.

VILL = Input logic "O" level shifted negative one volt for common mode rejection tests.

^{**}Delay is 2.0 ns with differential input.

The MC10115 is a quad differential amplifier designed for use in sensing differential signals over long lines. The base bias supply (VBB) is made available at pin 9 to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary.

Active current sources provide the MC10115 with excellent common mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to VBB (pin 9) to prevent upsetting the current source bias network.

t_{pd} = 2.0 ns typ P_D = 110 mW typ/pkg (No Load)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging.

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

@ Test			TEST VOLTAC	E VALUES		
Temperature	VIH max	VIL min	VIHA min	VILA max	V _{BB}	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	From	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	Pin	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	9	-5.2

		Pin			MC10	115L Test	Limits			-	EST VOLTA	SE ADDI JED 2	O PINS LISTE	5.551.000		
	l	Under	-30	o°C	+25	°C	+85	°C			EST VULTAG	SE APPLIED I	O PINS LISTE	D BELOW:		(VCC)
Characteristic .	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VBB	VEE	Gnd
Power Supply Drain Current	¹Ε	8	-		-	26	-	-	mAdc	-	4,7,10,13	-	_	5,6,11,12	8	1,16
Input Current	lin H	4	-		-	95	-	-	μAdc	4	7,10,13		-	5,6,11,12	8	1,16
	1CBO	4	-	-	_	1.0	-		μAdc	_	7,10,13	_		5,6,11,12	8,4	1,16
Logic "1" Output Voltage	Voн	2	-1.060	-0.890	-0.960	-0.810	-0.890	-0.700	Vdc	7,10,13	4	_	_	5,6,11,12	8	1,16
Logic "0" Output Voltage	VOL	2	-1.890	-1.675	-1.850	-1.650	-1.825	-1.615	Vdc	4	7,10,13	-	-	5,6,11,12	8	1,16
Logic "1" Threshold Voltage	VOHA	2	-1.080	_	-0.980	-	-0.910	_	Vdc	_	7,10,13		4	5,6,11,12	8	1,16
Logic "0" Threshold Voltage	VOLA	2	-	-1.655	-	-1.630	-	-1.595	Vdc	-	7,10,13	4	_	5,6,11,12	8	1,16
Reference Voltage	V _{BB}	9	1.420	1.280	-1.350	-1.230	1.295	-1.150	Vdc	_	-	-		5,6,11,12	8	1,16
Switching Times (50 Ω Load)										Puls	e In	Puls	Out		-3.2 V	+2.0 V
Propagation Delay	t4-2+	2	1.0	3.1	1.0	2.9	1.0	3.3	ns	-	1		2	5,6,11,12	8	1,16
	t4+2-	2	1.0	3.1	1.0	2.9	1.0	3.3	1 1	i	l	1	1	1 1	1	1 1
Rise Time (20% to 80%)	t ₂₊	2	1.1	3.6	1.1	3.3	1.1	3.7	1 1	1 .	l	l	i	i i		
Fall Time (20% to 80%)	t2-	2	1.1	3.6	1.1	3.3	1.1	3.7	▼	· '	7	1	7	▼	\ ▼	

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

P SUFFIX PLASTIC PACKAGE CASE 648

@ Test			TEST VOLTAG	E VALUES		
Temperature	VIH max	VIL min	VIHA min	VILA max	V _{BB}	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	From	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	Pin	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	9	-5.2

		Pin			MC10	115P Test	Limits			_	FET VOLTA	E APPLIED T	O BINE LIETE	D DEL 0W		ĺ
		Under	-30	o°c	+25	°C	+85	°C			EST VULTAL	SE APPLIED I	O PINS LISTE	D BELUW:		(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	∨ _{BB}	VEE	Gnd
Power Supply Drain Current	۱E	8				26	_	_	mAdc	-	4,7,10,13	_	-	5,6,11,12	8	1,16
Input Current	lin H	4		-		95	-	-	μAdc	4	7,10,13	_	-	5,6,11,12	8	1,16
	CBO	4			-	1.0	-	-	μAdc	-	7,10,13	-	-	5,6,11,12	8,4	1,16
Logic "1" Output Voltage	VOH	2	- 1.060	-0.890	-0.960	-0.810	-0.890	-0.700	Vdc	7,10,13	4	-		5,6,11,12	8	1,16
Logic "0" Output Voltage	VOL	2	- 1.890	-1.675	-1.850	-1.650	-1.825	-1.615	Vdc	4	7,10,13	-	-	5,6,11,12	8	1,16
Logic "1" Threshold Voltage	VOHA	2	- 1.080	-	-0.980	_	-0.910	-	Vdc		7,10,13	_	4	5,6,11,12	8	1,16
Logic "0" Threshold Voltage	VOLA	2	_	-1.655	-	-1.630	-	-1.595	Vdc	_	7,10,13	4	-	5,6,11,12	8	1,16
Reference Voltage	∨ _{BB}	9	1.420	1.280	-1.350	-1.230	1.295	-1.150	Vdc		-	-	_	5,6,11,12	8	1,16
Switching Times (50 Ω Load)										Puls	e In	Puls	Out		-3.2 V	+2.0 V
Propagation Delay	14-2+	2	-	-	1.0	2.9	i -	-	ns		1		2	5,6,11,12	8	1,16
	t4+2-	2	-	~	1.0	2.9	-	-		I	1	•	1	1	1 1	1 1
Rise Time (20% to 80%)	t ₂₊	2	-	-	1.1	3.3	-	-		1						ll
Fall Time (20% to 80%)	t2-	2	-	-	1.1	3.3	-	-	₩.	1	1	1	7	₹ 7	▼	▼

TRIPLE LINE RECEIVER

MC10116

The MC10116 is a triple differential amplifier designed for use in sensing differential signals over long lines. The base bias supply (Vgg) is made available at pin 11 to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary.

Active current sources provide the MC10116 with excellent common mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to V_{BB} (pin 11) to prevent upsetting the current source bias network.

Complementary outputs are provided to allow driving twisted pair lines, to enable cascading of several amplifiers in a chain, or simply to provide complement outputs of the input logic function.

> t_{pd} = 2.0 ns typ P_D = 85 mW typ/pkg (No Load)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging.

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

1		TE	ST VOLTAGE	VALUES		
			(Volts)			
@ Test						
Temperature	VIH max	VIL min	VIHA min	VILA max	∨ _{BB}	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	From	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	Pin	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	11	-5.2

										+85-C	-0.700	-1.625	-1.035	-1.440	''.	-5.2	
		Pin			N	IC10116L	. Test Limi	ts				TEST VOLT	AGE APPLIED	TO BING DE	LOW.		
		Under	-3	0°C		+25°C		+8	5°C			TEST VOLTA	AGE APPLIEL	TOPINS BE	LOW		(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	V _{IH max}	VIL min	VIHA min	VILA max	V _{BB}	VEE	Gnd
Power Supply Drain Current	ΙE	8	-	-		17	21	-	-	mAdc	-	4,9,12	_	-	5,10,13	8	1,16
Input Current	linH	4	-	_	-	-	95	-	-	μAdc	4	9,12	-	_	5,10,13	8	1,16
	1CBO	4	-	-	-	-	1.0		-	μAdc	-	9,12	-	_	5,10,13	8,4	1,16
High Output Voltage	VOH	2	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	-	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	4 9,12	9,12 4	-	-	5,10,13 5,10,13	8 8	1,16 1,16
Low Output Voltage	VOL	2 3	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850	_	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	9,12 4	9,12		=	5,10,13 5,10,13	8	1,16 1,16
High Threshold Voltage	VOHA	2 3	-1.080 -1.080	-	-0.980 -0.980	-	- -	-0.910 -0.910	_	Vdc Vdc	- 9,12	9,12	4 -	-4	5,10,13 5,10,13	8 8	1,16 1,16
Low Threshold Voltage	VOLA	2 3	-	-1.655 -1.655	-	-	-1.630 -1.630	-	-1.595 -1.595	Vdc Vdc	- 9,12	9,12	4	4 -	5,10,13 5,10,13	8	1,16 1,16
Reference Voltage	∨ _{BB}	11	-1.420	-1.280	-1.350	-	-1.230	-1.295	-1.150	Vdc	-	-	-	-	5,10,13	8	1,16
Switching Times (50 Ω Load)			Min	Max	Min	Тур	Max	Min	Max				Pulse in	Pulse Out		-3.2 V	+2.0 V
Propagation Delay	¹ 4+2+ ¹ 4-2- ¹ 4+3- ¹ 4-3+	2 2 3 3	1.0	3.1	1.0	2.0	2.9	1.1	3.3	ns	- - -	- - -	4	2 2 3 3	5,10,13	8	1,16
Rise Time (20% to 80%) Fall Time (20% to 80%)	t2+ t3+ t2- t3-	2 3 2 3		3.6	1.1		3.3	1.1	3.7		-	- - -		2 3 2			

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

P SUFFIX
PLASTIC PACKAGE
CASE 648

ſ		TE	ST VOLTAGE	VALUES		
Ī			(Volts)			
@ Test						
Temperature	VIH max	VIL min	VIHA min	VILA max	V _{BB}	VEE
- 30°C	-0.890	- 1.890	- 1.205	-1.500	From	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	Pin	-5.2
+85°C	-0.700	- 1.825	- 1.035	-1.440	11	-5.2

										+85°C	-0.700	- 1.023	- 1.035	-1.440		- 5.2	
		Pin			M	C10116P	Test Limit	ts				TEST VOLT	AGE APPLIED	TO PINS DE	I OW:		
		Under	-30	0°C		+25°C		+89	5°C			TEST VOLTA	AGE AFFLIEL	TO FINS BE	LUW.		(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	V _{BB}	VEE	Gnd
Power Supply Drain Current	¹Ε	8	-	_	1	17	21	_	-	mAdc		4,9,12		_	5,10,13	8	1,16
Input Current	linH	4		_	-	_	95		_	μAdc	4	9,12	_		5,10,13	8	1,16
	СВО	4	_	1		_	1.0		_	μAdc	_	9,12	_	_	5,10,13	8,4	1,16
High Output Voltage	VOH	2	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	=	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	4 9,12	9.12 4	=	=	5,10,13 5,10,13	8	1,16 1,16
Low Output Voltage	VOL	2 3	-1.890 -1.890	-1.675' -1.675	- 1.850 - 1.850	=	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	9,12 4	4 9,12	=	=	5,10,13 5,10,13	8	1,16 1,16
High Threshold Voltage	VOHA	2 3	-1.080 -1.080	_	-0.980 -0.980	=	=	-0.910 -0.910	=	Vdc Vdc	9,12	9,12	4	4	5,10,13 5,10,13	8	1,16 1,16
Low Threshold Voltage	VOLA	2 3	=	-1.655 -1.655	1 1	=	-1.630 -1.630	=	-1.595 -1.595	Vdc Vdc	9,12	9,12	4	4_	5,10,13 5,10,13	8 8	1,16 1,16
Reference Voltage	V _{BB}	11	-1.420	-1.280	-1.350	-	-1.230	-1.295	-1.150	Vdc	_	_	-	_	5,10,13	8	1,16
Switching Times (50 \O Load)			Min	Max	Min	Тур	Max	Min	Max				Pulse in	Pulse Out		-3.2 V	+2.0 V
Propagation Delay	t4+2+	2		_	1.0	2.0	2.9		_	ns	-	_	4	2	5,10,13	8	1,16
	t4-2-	2	_	_	1	١ ١	1	_	-	١ ١	-	-	1	2	1 1	1 1	1
	14+3-	3	_	_	1	} }	1 1	-	-		-	-	1	3	1 1		
Str. Time	¹ 4-3+	-	1	_		1 1	, v	_	-	1 1	-	_	1 1	1 3		1 1 1	
Rise Time (20% to 80%)	t ₂₊	3	_	=	1.1		3.3	_	=		=	=		3			
Fall Time (20% to 80%)	,t2- t3-	2 3	=	=	•		•		_			=		2 3	1	•	+

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

@ Test
Temperature
-30°C
+25°C

	TEST \	OLTAGE VA	LUES	
		(Volts)		
VIH max	VIL min	VIHA min	VILA max	VEE
-0.890	-1.890	-1.205	-1.500	-5.2
-0.810	-1.850	-1.105	-1.475	-5.2
-0.700	-1.825	-1.035	-1.440	-5.2

		Pin				MC10	117L Test	Limits			TECT V	N TACE AD	DI IED TO DIA	IS LISTED BEI	OW.	
		Under	-30	°C		+25°C		+8	5°C		TEST VI	JL IAGE AF	PLIED TO PIK	IS LISTED BEI	.011:	(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	V _{IL min}	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	1E	8	-	-	-	20	26 .	-	_	mAdc	_	-	_	_	8	1,16
Input Current	lin H	4 9	_	-	_	_	265 350	_	_	μAdc μAdc	4 9	-	_	_	8 8	1,16 1,16
	lin L	4 9	-	-	0.5 0.5	-	_	_	_	μAdc μAdc	_	4 9	_		8 8	1,16 1,16
Logic "1" Output Voltage	VOH	2	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	-	-0.810 -0.810	-0.890 -Q.890	-0.700 -0.700	Vdc Vdc	4,9 -	-		-	8 8	1,16 1,16
Logic "0" Output Voltage	VOL	2 3	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850	_	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	- 4,9	-		_	8 8	1,16 1,16
Logic "1" Threshold Voltage	VOHA	2 3	-1.080 -1.080	_	-0.980 -0.980	-	_	-0.910 -0.910	_	Vdc Vdc	9 -	-	4 -	_ 4	8 8	1,16 1,16
Logic "9" Threshold Voltage	VOLA	2 3	_	-1.655 -1.655	_	_	-1.630 -1.630	_	-1.595 -1.595	Vdc Vdc	_ 9	-	_ 4	4 -	8 8	1,16 1,16
Switching Times (50 Ω Load)									1		+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t4+2+ t4-2- t4+3- t4-3+	2 2 3 3	1.4	3.9	1.4	2.3	3.4	1.4	3.8	ns	9	- - -	4	2 2 3 3	8	1,16
Rise Time (20 to 80%) Fall Time (20 to 80%)	t2+ t3+ t2- t3-	2 3 2 3	0.9	4.1 	1.1	2.2	4.0	1.1 	4.6			- - - -		2 3 2 3		

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

P SUFFIX
PLASTIC PACKAGE
CASE 648

@ Test
Temperature
-30°C
+25°C

+85°C

	TEST	OLTAGE VA	LUES	
		(Volts)		
VIH max	VIL min	VIHA min	VILA max	VEE
-0.890	-1.890	-1.205	-1.500	-5.2
-0.810	-1.850	-1.105	-1.475	-5.2
-0.700	-1.825	-1.035	-1.440	-5.2

						MC10	117P Test	Limits							-	
		Pin Under	-30	°C		+25°C		+8:	5°C		TEST VO	LIAGE AP	PLIED TO PIN	IS LISTED BEL	.UW:	(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA mex	VEE	Gnd
Power Supply Drain Current	1E	8	-	-	_	20	26	_	_	mAdc	-	-	-	_	8	1,16
Input Current	fin H	4 9	-	-	-	_	265 350	_	-	μAdc μAdc	4 9	_	_	_	8	1,16 1,16
	lin L	9	=	-	0.5 0.5	_	-	-	_	μAdc μAdc		4 9	-	_	8	1,16 1,16
Logic "1" Output Voltage	VOH	2 3	-1.060 -1,060	-0.890 -0.890	-0.960 -0.960	_	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	4,9 -	-	=	_	8 8	1,16 1,16
Logic "0" Output Voltage	VOL	2	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850	-	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	- 4,9	-	_	_	8 8	1,16 1,16
Logic "1" Threshold Voltage	VOHA	2 3	-1.080 -1.080	_	-0.980 -0.980	_	_	-0.910 -0.910	_	Vdc Vdc	9 -	-	4	4	8 8	1,16 1,16
Logic "0" Threshold Voltage	VOLA	2 3	_	-1.655 -1.655	_	=	-1.630 -1.630	-	-1.595 -1.595	Vdc Vdc	9		-	4	8 8	1,16 1,16
Switching Times (50 Ω Load)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t4+2+ t4-2- t4+3- t4-3+	2 2 3 3	- - -	- - -	1.4	2.3	3.4	- - -	- - -	ns 	9	- - - -	4	2 2 3 3	8	1,16
Rise Time ' (20 to 80%) Fall Time	t ₂₊ t ₃₊	3	=	_ _	1.1	2.2	4.0	-	-			-		3		
(20 to 80%)	t2- t3-	3	_	-	♦	♦	🕴	-	_	♦	♦	_	♦	3	♦	. 🔻

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging.

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

1		TEST	VOLTAGE VAL	.UES	
			(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	- 1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

		Pin			М	C10118	L Test Lin	nits			TEST	OLTAGE AP	PLIED TO PIN	S LISTED BELO	ow:	
	1	Under	-30	°C		+25°C		+85	°c						r	(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8	_	-	-	20	26	-		mAdc	-	-			8	1,16
Input Current	lin H	6	1 -	_	-	-	265	_	_	μAdc	6	_	-	_	8	1,16
1		7	-	- 1	-	-	265	-	-	1	7	-	-	-	1	1
	Ĺ	9	-		_	_	370	-	_		9			-		
	lin L	6	-	-	0.5	-		-	-	μAdc	-	6	-	-	8	1,16
l		7	-	-	4	-	-	-	-		-	7			↓	. ↓
	ĺ	9				-					-	9		_	, v	
Logic "1" Output Voltage	VOH	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	3,9	-	-	-	8	1,16
Logic "0" Output Voltage	VOL	2	-2.000	-1.675	-1.990	-	-1.650	- 1.920	-1.615	Vdc	-	_	-	-	8	1,16
Logic "1" Threshold Voltage	VOHA	2	-1.080	-	-0.980	-		-0.910	_	Vdc	9		3	-	8	1,16
Logic "0" Threshold Voltage	VOLA	2	_	-1.655	-	-	-1.630	-	-1.595	Vdc	-		-	3	8	1,16
Switching Times (50 Ω Load)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t6 + 2+	2	1.4	3.9	1.4	2.3	3.4	1.4	3.8	ns	3		6	2	8	1,16
	t6 - 2-	1 1	1.4	3.9	1.4	2.3	3.4	1.4	3.8		l ı	-	1 1	l l	1	1 1
Rise Time (20 to 80%)	t+	1 1	0.8	4.1	1.5	2.5	4.0	1.5	4.6		1	-	1		1 1	
Fall Time (20 to 80%)	t-	♥	0.8	4.1	1.5	2.5	4.0	1.5	4.6	\ \			1	T	V	V

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

P SUFFIX PLASTIC PACKAGE CASE 648

1		TEST V	VOLTAGE VAL	.UES	
			(Volts)		
@ Test Temperature	V _{IH max}	VIL min	VIHA min	VILA mex	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

										-65 0	-0.700	-1.025	-1.000	-1.440	3.2	1
	1	Pin	L		M		P Test Lir				TEST V	OLTAGE AP	PLIED TO PIN	S LISTED BELO	OW:	
	İ	Under	-30	°C		+25°C		+85	°C							(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	¹E	8	_	-	-	20	26	-	-	mAdc		_		-	8	1,16
Input Current	lin H	6	_	-	_	_	265	_	_	μAdc	6	_	_	_	8	1,16
		7	-	-	_	-	265	-	-	1	7	- -	-	-	1	1
	L	9		-	_		370				9	- ' .				
	lin L	6	-	-	0.5	-	-	-	-	μAdc	-	6	-	-	8	1,16
		7	-	-		-	-	-	- 1	↓		7	-	-	↓	↓
		9		-		_	-		-			9			<u>'</u>	
Logic "1" Output Voltage	νон	2	-1.060	-0.890	-0.960	_	-0.810	-0.890	-0.700	Vdc	3,9				8	1,16
Logic "0" Output Voltage	VOL	2	-2.000	-1.675	-1.990	_	-1.650	- 1.920	-1.615	Vdc	_	_	_	-	8	1,16
Logic "1" Threshold Voltage	VOHA	2	-1.080	-	-0.980	-	-	-0.910	_	Vdc	9		3	-	8	1,16
Logic "0" Threshold Voltage	VOLA	2	-	-1.655		-	-1.630	_	-1.595	Vdc	_	_	_	3	8	1,16
Switching Times (50 Ω Load)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t6 + 2+	2	_		1.4	2.3	3.4	_	_	ns	3	_	6	2	8	1,16
	^t 6 - 2-	1 1		- 1	1.4	2.3	3.4	_	-	[l i	_	l i	1 1	lι	
Rise Time (20 to 80%)	1+		l –	-	1.5	2.5	4.0	_	_	[1 1	-	1 1			1 1
Fall Time (20 to 80%)	t-	•	_	- 1	1.5	2.5	4.0		_	\ ♦	∤ ▼	_	\	i ♥	▼	\ ▼

The MC10119 is a 4-Wide 4-3-3-3 Input OR-AND gate with one input from two gates common to pin 10. Input pulldown resistors eliminate the need to tie unused inputs to an external supply.

> P_D = 100 mW typ/pkg (No Load) t_{pd} = 2.3 ns typ Output Rise and Fell Time: = 3.5 ns typ (10% - 90%) = 2.5 ns typ (20% - 80%)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

L SUFFIX CERAMIC PACKAGE **CASE 620**

1		TEST '	VOLTAGE VAL	UES
			(Volts)	
@ Test Temperature	VIH max	VIL min	VIHA min	۷۱۲
-30°C	-0.890	-1.890	-1.205	-1
+25°C	-0.810	-1.850	-1.105	-1

		1231	TOLINGE TAL	CLS	
			(Volts)		
Test perature	VIH max	VIL min	VIHA min	VILA max	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

		Pin			M		L Test Lim	its			TEST V	OLTAGE AP	PLIED TO PINS	LISTED BELO	ow:	
		Under	-30	°C		+25°C		+85	°C							(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	¹E	8	_	-	-	20	26	-	-	mAdc	_	_	_	-	8	1,16
Input Current	lin H	7	-	-	_	_	265	-	_	μAdc	7	_	_	_	8	1,16
		9	-	-	-	-	265	-	- 1	1	9		- '	-	1	1
		10			_		370				10			-	V	
	lin L	7	- 1	-	0.5	-	-	-	-	μAdc	-	7	-	-	8	1,16
		9	-	-	1	-	-	-	- 1		-	9	-			1
		10	-		1							10		-		
Logic "1" Output Voltage	Voн	2	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	3,10,15	-	-	~	8	1,16
Logic "0" Output Voltage	VOL	2	-2.000	- 1.675	-1.990	_	-1.650	- 1.920	-1.615	Vdc	_	-	-	-	8	1,16
Logic "1" Threshold Voltage	VOHA	2	-1.080		-0.980	_	-	-0.910	-	Vdc	10,15	-	3	-	8	1,16
Logic "0" Threshold Voltage	VOLA	2	_	-1.655	_	_	-1.630	_	-1.595	Vdc	-	_	_	3	8	1,16
Switching Times (50 Ω Load)											+1.11 V	i	Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t3+2+	2	1.4	3.9	1.4	2.3	3.4	1.4	3.8	ns	10,13	_	3	2	8	1,16
	t3-2-	1	1.4	3.9	1.4	2.3	3.4	1.4	3.8		1 1	-	1	1 1	1	. 1
Rise Time (20 to 80%)	t+		0.8	4.1	1.5	2.5	4.0	1.5	4.6		1	_				
Fall Time (20 to 80%)	t-	\ ▼	0.8	4.1	1.5	2.5	4.0	1.5	4.6	\ ▼	. ♥	-	. ▼	\		•

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

P SUFFIX
PLASTIC PACKAGE
CASE 648

		TEST	OLTAGE VAL	UES	
			(Volts)		
@ Test Temperature	V _{IH max}	VIL min	VIHA min	VILA max	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

		Pin			M	C10119	P Test Lin	its			TEST	OLTAGE AP	PLIED TO PIN	S LISTED REL	OW:	ĺ
		Under	- 30	o°C		+25°C		+85	5°C			-				(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Mex	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA mex	VEE	Gnd
Power Supply Drain Current	1E	8	_	_	-	20	26	-	_	mAdc	_	_	_		8	1,16
Input Current	lin H	7	_		_	-	265	-	-	μAdc	7	_	_	_	8	1,16
		9	-	-	-	-	265	-	-	1	9	-	-	-	1	
		10				_	370		_		10				V	
	lin L	7	-	-	0.5	-	-	-	-	μAdc	-	7	-	-	8	1,16
	ł	9	i –	_	4	-	-	- 1		1		9	-	-	↓	1
		10	_	_		-			-			10		-	7	
Logic "1" Output Voltage	Voн	2	- 1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	3,10,15	-	-	-	8	1,16
Logic "0" Output Voltage	VOL	2	-2.000	-1.675	-1.990	-	-1.650	-1.920	-1.615	Vdc		_	-		8	1,16
Logic "1" Threshold Voltage	VOHA	2	-1.080	_	-0.980	-	_	-0.910	-	Vdc	10,15	_	3	_	8	1,16
Logic "0" Threshold Voltage	VOLA	2	_	-1.655		-	-1.630	-	-1.595	Vdc				3	8	1,16
Switching Times (50 Ω Load)			1								+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t3+2+	2	-	_	1.4	2.3	3.4	_	- 1	ns	10,13	-	3	2	8	1,16
	t3-2-	l ı	i -	l –	1.4	2.3	3.4	-	-	1	l i	-	1	1	1 1	1 1
Rise Time (20 to 80%)	t+		_	l –	1.5	2.5	4.0	_	- 1		1	-	1 1		[]	1
Fall Time (20 to 80%)	t-	♦	-	_	1.5	2.5	4.0	-	-		♥	-	∤	▼	♦	♦

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

@ Test Temperature -30°C +25°C

	TEST \	OLTAGE VA	LUES	
		(Volts)		
VIH max	VIL min	VIHA min	V _{ILA max}	VEE
-0.890	-1.890	-1.205	- 1.500	-5.2
-0.810	-1.850	-1.105	-1.475	-5.2
-0.700	-1.825	-1.035	-1.440	-5.2

									725 C	-0.610	-1.650	-1.100	-1.473	-5.Z	
									+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
[Pin					21L Test L			,	TEST V	OLTAGE AP	PLIED TO PIN	IS LISTED BEL	.ow:	
ł	Under	-30	°C	L	+25°C		+85	°C							(Vcc)
Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
ΙE	8	-	_	-	20	26	_	-	mAdc	_	_	-		8	1,16
lin H	7	-	-	-	-	265	_	_	μAdc	7	-	-		8	1,16
1	9		-	-	-		-	-	↓		-	-	-	. ↓	1
						370				10				<u> </u>	
lin L	, ,	-	-	0.5	-	-	-	-	μAdc	-		-	i -	8	1,16
i		-	_	1) -	-	-	-) .	- 1		-	-		1
				<u>'</u>					<u>'</u>						- V
Vон					1					4 10 13		-	-		1,16 1,16
VOL					ì					4,10,13	1	1	-		1,16 1,16
			-1.675			- 1.650				↓					
VOHA			-		-	-		l			-	i -	1		1,16
		-1.080		-0.980						10,13			<u> </u>		1,16
VOLA		-		-	-					1	-	1 -			1,16
	2		-1.655			-1.630		-1.595	Vdc	10,13			4	8	1,16
	ļ	ĺ		i		ŀ				+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
14+2	3	14	3.9	1.4	2.3	3.4	1.4	3.8	ns	10.13	1 _	4	3	8	1,16
	3	l ï	1	l ï	1	l i	i	l	1	1	_	l i	3	l ī	l ï
	2	1 1	1 1	1 1	1	1 1	1 1	l 1	1 1	1 1	-	1 1	2	1 1	
t4-2-	2	. ▼	■ ▼			▼	▼	▼		1 1	-	1 1	2		
t3+	3	0.9	4.1	1.1	2.5	4.0	1.1	4.6			_		3		
t ₂₊	2	1 1		1		1				1 1	-		2		1 1
t3_	3			1	l l	1	1 1	1 1	1 1	1 1	_	1 1	3	1 1	1
t2-	2		♥] ♥	▼	. ▼	▼	▼	▼	∤ ▼	_	▼	2	▼	▼
	IE	Symbol Test	Under -30	Under Test Min Max IE	Symbol Under Test -30°C IE 8 - - - Iin H 7 - - - Iin L 7 - - - Iin L 7 - - - VOH 3 -1.060 -0.890 -0.960 VOL 3 -1.060 -0.890 -0.960 VOHA 3 -1.080 -1.675 -1.850 VOHA 3 -1.080 - -0.980 VOLA 3 -1.080 - -0.980 VOLA 3 -1.655 - - V4+3- 3 1.4 3.9 1.4 44-2- 2 - - - 13+ 3 0.9 4.1 <td< td=""><td>Symbol Pin bridge Under Test -30°C +25°C +25°C IE 8 - - - 20 In H 7 - - - - 20 In H 7 -</td><td> Pin -30°C</td><td>Symbol Under Test Min Max Min Typ Max Min IE 8 - - - 20 26 - Iin H 7 - - - - 265 - 10 - - - - 265 - 10 - - - - 370 - 10 -<td> Pin Under -30°C +25°C +85°C +85°C </td><td>Symbol Test Min Max Min Typ Max Min Max Unit E</td><td> Pin Under Test /td><td> Pin Under Test /td><td> Pin Under 1-825 1-035</td><td> Pin Under No. d><td> Pin Under Test Min Max Min Typ Max Min Max M</td></td></td<>	Symbol Pin bridge Under Test -30°C +25°C +25°C IE 8 - - - 20 In H 7 - - - - 20 In H 7 -	Pin -30°C	Symbol Under Test Min Max Min Typ Max Min IE 8 - - - 20 26 - Iin H 7 - - - - 265 - 10 - - - - 265 - 10 - - - - 370 - 10 - <td> Pin Under -30°C +25°C +85°C +85°C </td> <td>Symbol Test Min Max Min Typ Max Min Max Unit E</td> <td> Pin Under Test /td> <td> Pin Under Test /td> <td> Pin Under 1-825 1-035</td> <td> Pin Under No. d> <td> Pin Under Test Min Max Min Typ Max Min Max M</td>	Pin Under -30°C +25°C +85°C +85°C	Symbol Test Min Max Min Typ Max Min Max Unit E	Pin Under Test Pin Under Test Pin Under 1-825 1-035	Pin Under No. Pin Under Test Min Max Min Typ Max Min Max M			

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 voits. Test procedures are shown for only one gate. The other gates are tested in the same manner.

P SUFFIX PLASTIC PACKAGE **CASE 648**

@ Test Temperature -30°C +25°C

TEST VOLTAGE VALUES (Vclts) $v_{IL\ min}$ VIH max VIHA min VILA max VEE -0.890 - 1.890 -1.205 - 1.500 -5.2 -0.810 -1.850 -1.475 -1.105 -5.2

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	1
	1	Pin					21P Test L				TEST V	OL TACE AR	DI JED TO BIA	IS LISTED BEL	0.00	1
	l	Under		0°C		+25°C		+85	5°C		TEST V	UL TAGE AP	PLIED TO PIN	IS LISTED BEL	.UW:	(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8	-		_	20	26	_	-	mAdc	_	_	-	_	8	1,16
Input Current	lin H	7	-		_	-	265			μAdc	7				8	1,16
		9	-	-	_	-	265	-	-	1	9	i –	-	_	1	1
		10					370		_	V	10		-	-	T	T
	lin L	7	-	-	0.5	-	(-	-	-	μAdc	-	7	-		8	1,16
		9	_		1	: I	1 =	-	-	1	-	9	-	-	1	1
Logic "1"	V	3	-1.060	-0.890						<u> </u>	-	10		-	<u> </u>	
Output Voltage	VOH	2	-1.060	-0.890	-0.960 -0.960	_	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	4,10,13	_	-	-	8	1,16
Logic "0"	VOL	3	-1.890	-1.675	-1.850								-	-	8	1,16
Output Voltage	•OL	2	-1.890	-1.675	-1.850	_	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	4,10,13	_	_	_	8	1,16
Logic "1"	VOHA	3	-1.080		-0.980			-0.910					 			
Threshold Voltage	TOHA	2	-1.080	_	-0.980	_	_	-0.910	_	Vdc Vdc	10,13	l. <u>-</u>	-	4	8 8	1,16 1,16
Logic "0"	VOLA	3	_	-1.655			-1.630		- 1.595	Vdc	- 10,13		4		8	1,16
Threshold Voltage .	000	2	-	-1.655	_	- 1	-1.630		-1.595	Vdc	10,13	_	1 -	4	8	1,16
Switching Times		·			 		-		1.000		10,10			<u> </u>		1,10
(50 Ω Load)	1										+1.11 V	l	Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t4+3-	3	-	_	1.4	2.3	3.4	_	_	ns	10.13	1	4	3	8	1,16
	14-3+	3	-	-	1	l I	l î	_	-	l "i	1 1	_	l i	3	Ιĭ	1 .,,,
	t4+2+	.2	-	-	1 4	l L	1 1	_	-			_		2		
Rise Time	t4-2-	2	-	-		, ▼	■ ■	_	-		1 1	-		2		
(20 to 80%)	t3+	3 2	-	-	1.1	2.5	4.0	_	-			-		3		
Fall Time	¹ 2+	, -	_	-				-	-	1 1	1 1	-	1 1	2		1
(00 to 000)		3	_	_	1		↓	-	-	1	1	-	1 1	3	↓	1 1
CALL CO SERVICE AND ADDRESS OF THE PARTY OF	F 2:	. 72 3 · · ·	-		: ▼	i ▼	. •	-	_	. ▼		_	. ▼	1 2	1 7	1 7

ELECTRICAL CHARACTERISTICS

TRIPLE 4-3-3 INPUT BUS DRIVER MC10123

The MC10123 consists of three NOR gates designed for bus driving applications on card or between cards. Output low logic levels are specified with $V_{OL} \le -2.0$ Vdc so that the bus may be terminated to -2.0 Vdc. The gate output, when low, appears as a high impedance to the bus, because the output emitter-followers of the MC10123 are "turned-off". This eliminates discontinuities in the characteristic impedance of the bus.

The VOH level is specified when driving a 25-ohm load terminated to -2.0 Vdc, the equivalent of a 50-ohm bus terminated at both ends. Although 25 ohms is the lowest characteristic impedance that can be driven by the MC10123, higher impedance values may be used with this part. A typical 50-ohm bus is shown in Figure 1.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

FIGURE 1 - 50-OHM BUS DRIVER

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 25-ohm resistor to -2.1 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

VIH max

-0.890

@ Test

Temperature -30°C L SUFFIX CERAMIC PACKAGE CASE 620

TEST VOLTAGE VALUES
(Volts)

VIHA min

-1.205

VILA max

-1.500

VEE

-5.2

VIL min

-1.890

										+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	1
				_						+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin			1	MC1012	3 Test Li	mits			TEST	VOLTAGE A	PPLIED TO PIN	IS LISTED BEL	OW:	
	ľ	Under	-30	D _C C		+25°C		+85	°C							(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	1E	8	-	-	-	17	21	-	-	mAdc	4,5,6,7,9,10 11,12,13,14	-	-	-	8	1,16
Input Current	linH	4	-	-	_	-	265		_	μAdc	4	-	-	_	8	1,16
	linL	4	-		0.5	-		-	-	μAdc	_	4		Ī .	8	1,16
Logic "1" Output Voltage	Voн	3	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	-	-	-	_	8	1,16
Logic "0" Output Voltäge	VOL	3	-2.100	-2.030	-2.100	-	-2.030	-2.100	-2.030	Vdc	4,5,6,7,9,12	-	-	-	8	1,16
Logic "1" Threshold Voltage	VOHA	3	-1.080	-	-0.980	-	-	-0.910	-	Vdc	-	-	-	4,5,6,7	8	1,16
Logic "0" Threshold Voltage	VOLA	3	-	-2.010	-	-	-2.010	-	-2.010	Vdc	9,12	_	4,5,6,7	-	8	1,16
Switching Times (50-ohm load)													Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t4+3-	3	1.2	4.6	1.2	3.0	4.4	1.2	4.8	ns	-	-	4	3	8	1,16
	t4-3+		♦	•	↓	3.0	↓	↓	₩	1 1	-	-		1 1		1 1
Rise Time (20 to 80%)	t3+		1.0	3.7	1.0	2.5	3.5	1.0	3.9		-	-				
Fall Time (20 to 80%)	t3_	•	*	•	♦	2.5	†	*	♦		-	-	•	•	*	

QUAD MTTL TO MECL TRANSLATOR

MC10124

The MC10124 is a quad translator for interfacing data and control signals between a saturated logic section and the MECL section of digital systems. The MC10124 has MTTL compatible inputs, and MECL complementary open-emitter outputs that allow use as an inverting/non-inverting translator or as a differential line driver. When the common strobe input is at the low logic level, it forces all true outputs to a MECL low logic state and all inverting outputs to a MECL high logic state.

Power supply requirements are ground, +5.0 Volts, and -5.2 Volts. Propagation delay of the MC10124 is typically 3.5 ns. The dc levels are standard or Schottky TTL in. MECL 10.000 out.

An advantage of this device is that MTTL level information can be transmitted differentially, via balanced twisted pair lines, to the MECL equipment, where the signal can be received by the MC10115 or MC10116 differential line receivers. The MC10124 is useful in computers, instrumentation, peripheral controllers, test equipment, and digital communications systems.

P_D = 380 mW typ/pkg (No Load) t_{pd} = 3.5 ns typ (+1.5 Vdc in to 50% out)

Output Rise, Fall Times; 2.5 ns typ (20% to 80%)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one translator. The other translators are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

i			TE	ST VOLTA	GE/CURRE	NT VALU	ES			
				V	oits				,	nA
@ Test Temperature	VIH	VIL max	VIHA'	VILA.	VF	V _R	vcc	VEE	ij	lin
- 30°C	+4.0	+0.40	+2.00	+1.10	+0.40	+2.40	+5.00	-5.2	-10	+1.0
+25°C	+4.0	+0.40	+1.80	+1.10	+0.40	+2.40	+5.00	-5.2	-10	+1.0
+85°C	+4.0	+0.40	+1.80	+0.90	+0.40	+2.40	+5.00	-5.2	-10	+1.0
						-		_	-	_
-		TES	T VOLTAG	E/CURREN	T APPLIE	TO PINS	LISTED B	ELOW:		

										85°C	+4.0	+0.40	+1.80	+0.90	+0.40	+2.40	+5.00	-5.2	-10	+1.0	
		Pin			MC	10124L Te	st Limits														
		Under	.34	0°C		+25°C		+8!	5°C			TES	ST VOLTAG	E/CURRE	NT APPLIED	TO PIN	S LISTED B	ELOW:			
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH	VIL max	VIHA.	VILA.	VF	VR	Vcc	VEE	11	lin	Gnd
Negative Power Supply Drain Current	¹E	8	-	-	-	-	-66		-	mAdç	-	-		-	-	-	9	8			16
Positive Power Supply Drain Current	Іссн	9	-	-	-	-	16	-		mAdc	5,6,7,10,11	-	-		-	-	9	- 8		-	16
	1CCL	9	-	-	-	-	25	-	-	mAdc	-		-		-		9	8	-	-	5,6,7,10,11,16
Reverse Current	¹R	6 7	-	=	-	-	200 50	_	-	μAdc μAdc	-	=	_	-	5,7,10,11	6 7	9	8			16 16
Forward Current	1F	6 7	=	=	-	-	-12.8 -3.2	-	-	mAdc mAdc	5,7,10,11	-	-	-	6 7	-	9	8	-	-	16 16
Input Breakdown Voltage	8V _{in}	6 7	_	_	5 5 5 5	-	-	-	=	Vdc Vdc		-	-		-	-	9	8 8	_	6 7	5,7,10,11,16 6,16
Clamp Input Voltage	٧ı	6 7	-	-	,	-	-1.5 -1.5	-	-	Vdc Vdc	-	-	-	_	-	_	9	8	6 7	-	16 16
High Output Voltage	Voн	1 3	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	-	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	6,7	6,7	-	-	-	-	9	8	-	**	16 16
Low Output Voltage	VOL	1 3	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850	-	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	6,7	6,7	-	-	7	-	9	8 8 .	-	-	16 16
High Threshold Voltage	VOHA	3	-1.080 -1.080	-	-0.980 -0.980	-	-	-0.910 -0.910	_	Vdc Vdc	6		7	7	-	-	9	. 8	-	-	16 16
Low Threshold Voltage	VOLA	3	-	-1.655 -1.655	-	-	-1.630 -1.630	-	-1.595 -1.595	Vdc Vdc	6	-	-,	7 -	-	-	9	8		-	16 16
Switching Time (50-12 load)											+6.0 Vdc	Pulse in	Pulse Out				+7.0 Vdc	-3.2 Vdc			+2.0 Vdc
Propagation Delay (+3.5 Vdc to 50%)()	16+1+ 16-1- 17+1+ 17-1- 17+3- 17-3+	3 3	1.5 1.0 1.5 1.0 1.5 1.0	6.8 6.0 6.8 6.0 6.8 6.0	1.5	3.5	6.0	1.0 1.5 1.0 1.5 1.0 1.5	6.0 6.8 6.0 6.8 6.0 6.8	ns	7 7 6	6 6 7	3 3		=	-	9	8	-		16
Rise Time (20% to 80%)	11+	١,	1.0	4.2	1.1	2.5	3.9	1.1	4.3				1			-			-	-	
Fall Time (80% to 20%)	tı.	1	1.0	4.2	1.1	2.5	3.9	1.1	4.3	. ♦	♦	▼	i	-	-	- 1	♦	♦	-	۱ -	♦

The sea gwitching time test circuit. Propagation delay, for this circuit is specified from ±1.5 Ydc in to the 50% point on the output weveform. The ±3.5 Ydc is shown here because all legic and supply-levels are shifted 2 volts positive.)

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one translator. The other translators are tested in the same manner.

P SUFFIX PLASTIC PACKAGE CASE 648

			TE	ST VOLTA	GE/CURRE	NT VALU	ES			
				V	olts					πA
@ Test Temperature	VIH	VIL max	VIHA'	VILA.	VF	V _R	Vcc	VEE	1,	lin
- 30°C	+4.0	+0.40	+2.00	+1.10	+0.40	+2.40	+5.00	-5.2	-10	+1.0
+25°C	+4.0	+0.40	+1.80	+1.10	+0.40	+2.40	+5.00	-5.2	-10	+1.0
+85°C	+4.0	+0.40	+1.80	+0.90	+0.40	+2.40	+5.00	5.2	-10	+1.0

		T	T		MC	10124P Te	at Limits			-	1	1 .00			1.0.40		13.00				
		Pin Under	-3	0°C		+25°C		+80	5°C		1	TE	ST VOLTAG	E/CURRE	NT APPLIED	TO PIN	S LISTED BE	LOW:			
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH	VIL mex	VIHA'	VILA.	VF	VR	Vcc	VEE	16	lin	Gnd
Negative Power Supply Drain Current	¹E	8	-	-	-	-	-66	-	-	mAdc	-	-	-	-	-	-	9	8	-	-	16
Positive Power Supply Drain Current	Іссн	9	-	-	-	-	16	-	-	mAdc	5,6,7,10,11	-	-	-	-	-	9	8	-	-	16
•	CCL	9	-	-	-		25	-	-	mAdc	-	-	-	-	-	-	9	8	-	-	5,6,7,10,11,16
Reverse Current	^I R	6 7	-	-	=	-	200 50	-	=	μAdc μAdc	=	-	-	-	5,7,10,11 6	6 7	9	8	-	-	16 16
Forward Current	1 _E	6 7	-	-	=	-	-12.8 -3.2	=	=	mAdc mAdc	5,7,10,11	=	-	-	6 7	-	9	8 8	-	-	16 16
Input Breakdown Voltage	8V _{in}	6 7	-	1	5.5 5.5	-	=	-	=	Vdc Vdc	-	-	-	-	-	-	9	8	-	6	5,7,10,11,16 6,16
Clamp Input Voltage	V _I	6 7	-	=	-	-	-1.5 -1.5	=	=	Vdc Vdc	=	-	-	-	-	-	9	8	6 7	=	16 16
High Output Voltage	VOH	1 3	-1.060 -1.080	-0.890 -0.890	-0.960 -0.960	-	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	6,7	6.7	=	-	-	=	9	8 8	-	-	16 16
Low Output Voltage	VOL	1 3	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850	=	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	6,7	6,7	=	=	-	-	9	8	-	-	16 16
High Threshold Voltage	VOHA	1 3	-1.080 -1.080	=	-0.980 -0.980	-	=	-0.910 -0.910	Ξ	Vdc Vdc	6	=	7	7	-	-	9	8 8	-	-	16 16
Low Threshold Voltage	VOLA	1 3	Ξ	-1.655 -1.655	Ξ	=	-1.630 -1.630	=	-1.595 -1.595	Vdc Vdc	6	-	-	7	=	=	9	8	=	-	16 16
Switching Time (50-12 load)			T		1						+6.0 Vdc	Pulse in	Pulse Out				+7.0 Vdc	-3.2 Vdc		1	+2.0 Vdc
Propigation Delay (+3.5 Vdc to 50%)()	%+1+ %-1- 17+1+ 17-1- 17+3- 17-3+	3 3	-		1.0	3.5	6.0		-	ns	7 7 6	6 6 7	3 3	-	-	-	9	8	-		16
Rise Time (20% to 80%)	11+	١,	-	-	1.1	2.5	3.9	-	-				1	-	-	-			-	-	
Fall Time (80% to 20%)	11.	1 .		-	1.1	2.5	3.9	-	l -	↓ ♦	[♦	[♦	1	- 1	-	-	\ ♦	♦		-	! ♦

① See switching time test circuit. Propagation delay for this circuit is specified from +1.5 Vdc in to the 50% point on the output waveform. The +3.5 Vdc is shown here because all logic and supply levels are shifted 2 volts positive.)

QUAD MECL TO MTTL TRANSLATOR

MC10125

The MC10125 is a quad translator for interfacing data and control signals between the MECL section and saturated logic sections of digital systems. The MC10125 incorporates differential inputs and Schottky MTTL "totem pole" outputs. Differential inputs allow for use as an inverting/non-inverting translator or as a differential line receiver. The VBB reference voltage is available on pin 1 for use in single-ended input biasing. The outputs of the MC10125 go to a low logic level whenever the inputs are left floating.

Power supply requirements are ground, ± 5.0 Volts and ± 5.2 Volts. Propagation delay of the MC10125 is typically 4.5 ns. The MC10125 has fanout of 10 MTTL loads. The dc levels are MECL 10,000 in and Schottky TTL, or MTTL out. This device has an input common mode noise rejection of ± 1.0 Volt.

An advantage of this device is that MECL level information can be received, via balanced twisted pair lines, in the MTTL equipment. This isolates the MECL logic from the noisy MTTL environment. This device is useful in computers, instrumentation, peripheral controllers, test equipment and digital communications systems.

 P_D = 380 mW typ/pkg (No Load) t_{pd} = 4.5 ns typ (50% to +1.5 Vdc out) Output Rise, Fall Times; 2.5 ns typ (20% to 80%) V_{CCmax} = +7.00 Vdc

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging.

VEE

ELECTRICAL CHARACTERISTICS

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Test procedures are shown for only one translator. The other translators are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

-0.890 -1.890 -1.205 -1.500 +0.110 -0.890 -1.890 -2.890 |

TEST VOLTAGE VALUES
(Volts)

VIHH VILH VIHL VILL

										-30°C	-0.890	-1.890	-1.205	-1.500	1+0.110	J-0.890	(-1.89U	-2890	From	Į +5.U	-5.2	1	1
										+25°C	-0.810	-1.850	-1.105	-1.475	+0.190	-0.850	-1.810	-2.850	Pin	+5.0	-5.2	l	1
										+85°C	-0.700	-1.825	-1.035	-1.440	+0.300	-0.825	-1.700	-2.825	1	+5.0	-5.2	ı	1
		Pin			MC1	0125L T	est Limits						TEST V	OLTAGE A	APPLIE	D TO P	NS LIS	TED BE	LOW:				
		Under	-30	°C		+25°C		+8	5°C						1	1							Output
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	V _{IH max}	VIL min	VIHA min	VILAmax	VIHH	VILH	VIHL	VILL	V _{BB}	Vcc	VEE	Gnd	Condition
Negative Power Supply Drain Current	ΙE	8	-		-	-	40	-		mAdc	_		-	-	-	-	-	~	3,7,11,15	9	8	16	
Positive Power Supply	ССН	9	-	-	-	~	52	-	-	mAdc	2,6,10,14	-	-	-	-	-	-	-	3,7,11,15	9	8	16	-
Drain Current	ICCL	9	-	-	-	_	39	-		mAdc		2,6,10,14	-		-	-	-	-	3,7,11,15	9	8	16	
Input Current	Iin H ①	2	-	-	-	-	115	-	-	μAdc	2,6,10,14	-	-	~	-		-	I -	3,7,11,15	9	8	16	
Input Leakage Current	СВО	2		-		-	1.0	-	-	μAdc	~	-	-		1	-	-	-	3,7,11,15	9	2.6.8.10.14	16	
High Output Voltage	Voн	4	2.5	-	2.5		-	2.5		Vdc	_	2,6,10,14	-	-			-	-	3,7,11,15	9	8	16	-2 0 mA
Low Output Voltage	VOL	4	-	0.5	-		0.5	-	0.5	Vdc	2,6,10,14	-		-		-		-	3,7,11,15	9	8	16	20 mA
High Threshold Voltage	VOHA	4	2.5	-	2.5		-	2.5		Vdc		6,10,14		2		-	-	-	3,7,11,15	9	8	16	-2.0 mA
Low Threshold Voltage	VOLA	4	-	0.5	_	_	0.5	~	0.5	Vdc	6,10,14	-	2	-	**	-		-	3,7,11,15	9	8	16	20 mA
Indeterminate Input Protection Tests	V _{OLS1}	4	-	0.5		-	0.5		0.5	Vdc		-	-	-		-				9	2,3,6,7,8. 10,11,14,15	16	20 mA
	V _{OLS2}	4	-	0.5	-	-	0.5	-	0.5	Vdc		-		-	-	-	-	-	-	9	8	16	20 mA
Short-Circuit Current	los	4	_	-	40	_	100	_	-	mA	-	2,6,10,14	-		-	-		-	3,7,11,15	9	8	4,16	
Reference Voltage	VBB	1	-1.420	-1.28	-1.350		-1.230	-1.295	-1.150	Vdc	_	2,6,10,14		-		-			3,7,11,15	-			
Common Mode	Voн	4	2.5	-	2.5	-	-	2.5	-	Vdc			-	-	3	2		-	-	9	8	16	-2.0 mA
Rejection Tests	L	4	2.5	l -	2.5	-		2.5	<u> </u>				-	-	<u> </u>	-	3	2	-	9	8	16	-2.0 mA
	VOL	4	_	0.5	-	-	0.5	-	0.5	Vdc	-	-	-		2	3	-	-	-	9	8	16	20 mA
		4	_	0.5			0.5		0.5					<u> </u>	ļ <u>-</u>		2	3	-	9	8	16	20 mA
Switching Times	į .	l	ŀ	ŀ			1	1	1		Pulse In	Pulse Out	C _L (pF)	1	l	1		ļ	1	1		1	1
Propagation Delay	t6+5-	5	1.0	6.0	1.0	4.5	6.0	1.0	6.0	ns	6	5	25	-	-	i	-	-	3,7,11,15	9	8	16	
(50% to +1.5 Vdc)	t6-5+ t2+4-	5		1 1	1 1		1 1		1 1		6	5	1 1	-	Į.	_	-	i	1 1		1 1 .	1 1	-
	t2-4+	l i	\ ♦	♦	♦	♦	♦	♦	♦	1 1	ĺ	1 7	1		_	_	-	[-	1 1	1	1 1	1	
Rise Time (+1.0 Vdc to 2.0 Vdc)	14+	[]		3.3	_	<u> </u>	3.3	_	3.3					1	_	-	1	1		1		1 1	_
Fall Time (+1.0 Vdc to 2.0 Vdc)	t4-	♦	-	3.3	l _	_	3.3	_	3.3	♦	I ♦	! ♦	♦	-	1 .		-	١.	I ♦	♦	♦	. •	1 -

@ Test Temperature

-30°C

¹ Individually test each input, apply VIH max to pin under test.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Test procedures are shown for only one translator. The other translators are tested in the same manner.

P SUFFIX PLASTIC PACKAGE CASE 648

				TEST	VOL TA	GE VA	LUES				
@ Test Temperature	VIH max	VIL min	V _{MAmin}	VILAmex	VIHH	VILH	VIHL	VILL	V _{BB}	vcc	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	+0.110	-0.890	-1.890	-2890	From	+5.0	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	+0.190	-0.850	-1.810	-2.850	Pin	+5.0	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	+0.300	-0.825	-1.700	-2.825	1	+5.0	-5.2

										105 C	-0.700	-1.025	-1.033	-1.440	1			-2.023		-5.0			
		Pin			MC1	0125P Te	est Limits						TEST V	OLTAGE A	APPLIE	то Рі	NS LIS	TED BE	LOW:				
	1	Under	-30	°C	l	+25°C		+89	5°C	ľ			T	T	т —								Output
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHAmin	VILAmax	Уінн	VILH	VIHL	VILL	VBB	Vcc	VEE	Gnd	Condition
Negative Power Supply Drain Current	ΙE	8	-		-	-	40	-	-	mAdc	_	-	-	-	-	-	-	-	3,7,11,15	9	8	16	_
Positive Power Supply	Іссн	9	-	-	-	-	52	-	-	mAdc	2,6,10,14				-	-	-	_	3,7,11,15	9	8	16	-
Drain Current	ICCL	9		-	-	-	39	-	-	mAdc		2,6,10,14	-		Γ			-	3,7,11,15	9	8	16	-
Input Current	In H ①	2	-	-	-	-	115		-	μAdc	2,6,10,14	_ =	-	-	-	-	-	-	3,7,11,15	9	8	16	
Input Leakage Current	1CBO	2	-	-			1.0	-	-	μAdc	-		-	-	-	-	-	-	3,7,11,15	9	2,6,8,10,14	16	
High Output Voltage	VOH	4	2.5	-	2.5		-	2.5	-	Vdc		2,6,10,14	-		-	-	-	-	3,7,11,15	9	8	16	-2.0 mA
Low Output Voltage	VOL	4	-	0.5		-	0.5		0.5	Vdc	2,6,10,14	-		-	-	-	-		3,7,11,15	9	8	16	20 mA
High Threshold Voltage	VOHA	4	2.5	-	2.5	_	-	2.5		Vdc	_	6,10,14	-	2		-		-	3,7,11,15	9	8	16	-2.0 mA
Low Threshold Voltage	VOLA	4	-	0.5	-	-	0.5		0.5	Vdc	6,10,14	-	2					-	3,7,11,15	9	8	16	20 mA
Indeterminate Input Protection Tests	V _{OLS1}	4	-	0.5	-	-	0.5	-	0.5	Vdc	-	-	-	-		-	-	-	-	9	2,3,6,7,8, 10,11,14,15	16	20 mA
	V _{OLS2}	4	-	0.5	-	_	0.5	-	0.5	Vdc	-				-	-	-	-		9	8	16	20 mA
Short-Circuit Current	los	4		-	40	_	100	-	-	mA		2,6,10,14	-	-	-	-	-	-	3,7,11,15	9	8	4,16	
Reference Voltage	V _{BB}	1	-1.420	-1.28	-1.350	_	-1.230	-1.295	-1.150	Vdc		2,6,10,14							3,7,11,15	9	8	16	
Common Mode Rejection Tests	VOH	4	2.5 2.5	-	2.5 2.5	-	-	2.5 2.5	-	Vdc		-		-	3	2	3	- 2	-	9	8	16 16	-2.0 mA -2.0 mA
	VOL	4	-	0.5 0.5	-		0.5 0.5	-	0.5 0.5	Vdc	-	-			2	3	- 2	3	-	9	8	16 16	20 mA 20 mA
Switching Times											Pulse In	Pulse Out	CL (pF)		<u> </u>		1						
Propagation Delay (50% to +1.5 Vdc)	16+5- 16-5+ 12+4- 12-4+	5 5 4	1 1	-	1.0	4.5	6.0	=	=	ns	6 6 2	5 5 4	25	-	-	-	-	-	3,7,11,15	9	8	16	-
Rise Time (+1.0 Vdc to 2.0 Vdc) Falt Time (+1.0 Vdc to 2.0 Vdc)	t4+ t4-	•	-	-	-	· <u>-</u>	3.3 3.3	-	-			↓	↓ .	- "		-	-	-					

The Individually test each input, apply VIH max to pin under test.

Advance Information

The MC10128 is designed to provide outputs which are compatible with IBM-type bus levels; or, if desired, it will drive TTL type loads and/or provide TTL three-state outputs. The inputs accept MECL 10,000 levels. The MC-10128 output levels can be accepted by the MC10129 Bus Receiver.

The operating mode IBM or TTL is selected by tying the external control pins to ground or leaving them open. Leaving a control pin open selects the TTL mode, and tying a control pin to ground selects the IBM mode.

The TTL mode will drive a 25-ohm load, terminated to +1.5 Vdc or a 50-ohm load, terminated to ground. The device has totem-pole type outputs, but it also has a disable input for three-state logic operation when the circuit

is used in the TTL mode. When in the high state the disable input causes the output to exhibit a high impedance state when it would normally be a positive logic "1" state. When the strobe is in the high state it inhibits the output data to the low state.

Latches are provided on each data input for temporary storage. When the clock input is in the low logic state, information present at the data inputs D1 and D2 will be fed directly to the latch output. When the clock goes high, the input data is latched. The outputs are gated to allow full bus driving and strobing capability.

The MC10128 is useful in interfacing and bus applications in central processors, mini-computers, and peripheral equipment.

This is advance information and specifications are subject to change without notice. See General Information section for packaging, and maximum ratings.

- MTTL MODE

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained.

L SUFFIX CERAMIC PACKAGE CASE 620

		TEST	VOLTAGE/	CURRE	NT VA	LUES		
	TEST V	OLTAGE V				mAdc	μAde	mAdc
		Volts						
VIHmax	VILmin	VIHAmin	VILAmax	VEE	vcc	юнт	I _{OH2}	lor
-0.890	-1.890	-1.205	-1.500	-5.2	+5.00	-50	-100	+56
-0.810	-1.850	-1.105	-1.475	-5.2	+5.00	-50	-100	+56
-0.700	-1.825	-1.035	-1.440	-5.2	+5.00	-50	-100	+56

									+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	+5.00	-50	-100	+56	
		Pin			MC10	128L T	est Lir	mits			TE	ST VOLTA	GE APPLIE						
		Under	-30	o°C	+25	5°C	+89	5°C				0. 102.17		0 10 P	INS LIS	I ED REI	LOW:		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Vcc	10Н1	I _{OH2}	lOL.	Gnd
Negative Power Supply Drain Current	¹E	8	-	-	-	97	-	-	mAdc	6,11	-	-	-	8	14	-	-	-	1, 9,16
Positive Power Supply Drain Current	¹cc	14	-	-	-	73	-	-	mAdc	6,11	-		-	8	14	-	-	-	1, 9,16
Input Leakage Current	linH	3 7 10 11	-		1 1 1	620 350 265 265			μAdc	3 7 10 11	-	-	-	8	14	-	-	-	1, 9,16
	L.	12 All	-	-	0.5	500	-	<u> </u>	!	12	-		-	+	<u> </u>			-	. +
Logic "1" Output Voltage	VOH	15 15	-	-	2.5 2.7	-	-	-	μAdc Vdc Vdc	11 11	-	=	-	8 8 8	14 14 14	2,15	2,15	<u>-</u> -	1, ,9,16 1, ,9,16 1, ,9,16
Logic."0" Output Voltage	VOL	15 2	-	-	-	0.5 0.5	-	-	Vdc Vdc	3	-	-	-	8	14	=	-	2,15 2,15	1, .9 ,16 1, .9 ,16
Logic "1" Threshold Voltage	VOHA	15 2	_	-	2.5 2.5	-	-	-	Vdc Vdc	11 6	7	-	10 3 10 3	8	14 14	2,15 2,15	-	-	1, .9 ,16 1, .9 ,16
Logic "0" Threshold Voltage	VOLA	15 2	_	-	-	0.5 0.5	-	-	Vdc Vdc	11 6	7,10 7,10	3 3	-	8	14 14	=	-	2,15 2,15	1, ,9 ,16 1, ,9 ,16
Output Short Circuit Current	¹sc	15 2	_	-	_	260 260	-	-	mAdc mAdc	11 6	-			8	14 14	-	-	-	1,2, ,9 ,15,16 1,2, ,9 ,15,16
Switching Times † Propagation Delay										-0.890 V	-1.690 V	Pulse In	Pulse Out						
Data Input	t11+15+ t11-15-	.5 15	=	-	3.5	18 18	-		ns	-	10 10	11	15 	8	14	-	-	-	1, 9 ,16
Clock Input	t10-15+ t10-15-	15 ① 15 ②	-	-		20	-	_		_	-	10,11 10,11				-	-		
Reset Input	¹ 7+15- ¹ 7+2-	15 ② 2 ②	_	-	↓	₩	-	-		11 6	-	7,10 7,10	2	Н		-	-	-	
STROBE Input	t3+15- t3-15+ t3+2- t3-2+	15 15 2 2	-	1 1 1	2.5	18	- - -	-		11 - 6 -	10	3 	15 15 2 2			-	-	-	
Setup Time	t _{setup} H t _{setup} L	15 15	-	-	-	-	-	-		-	-	10,11	15 			-	-	_	
Hold Time	tholdH tholdL	15 15	-	-	-	-	-	-			-					-	-	<u>-</u>	
Rise Time (20% to 80%) Fall Time (20% to 80%)	¹ 15+	15 15	-	-	1.0	8.0 8.0	-	-		-	10 10	11				-	-	-	

^{*} Apply VILmin individually to pin under test.

¹ Output latched to logic Low state prior to test.

② Output latched to logic High state prior to test.

② Output latched to logic High state † See waveforms

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C - MTTL MODE

ELECTRICAL CHARACTERISTICS - IBM MODE

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear from is maintained.

TEST VOLTAGE VALUES

L SUFFIX CERAMIC PACKAGE **CASE 620**

μAdc

mAdc

than 500 linear fpm	is	44	c pol-	_					-30°C	-0.890	-1.890	-1.205	-1.500	-5.2	+6.00	-59.3	-30	-240	1
	STRORE	. <u>.</u>	ك			ONTROL			+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	+6.00	-59.3	-30	-240	1
	STROBE	•——				.041400	•		+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	+6.00	-59.3	-30	-240	1
		Pin				128L T	est Li	mits			TE	ST VOLTA	GE APPLIED	тов	INS LIS	TED BE	LOW:		1
		Under		o°c	-	5°C		5°C											
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Vcc	IOH1	IOH2	lor	Gnd
Negative Power Supply Drain Current	'E	8.	_	_	-	97	-	_	mAdc	6,11	-	-	-	8	14	-	-	-	1,4,9,13,16
Positive Power Supply Drain Current	¹cc	14	-	-	-	73	-	-	mAdc	6,11	-	-	-	8	14	-	-	-	1,4,9,13,16
Input Leakage Current	linH	3	-	-	-	620	-	-	μAdc	3	_	-	-	8	14	-	-	-	1,4,9,13,16
	1	7 10	-	_	-	350 265	-	-	1 1	7	-	-	-		1 1	-	-	-	1 1
	1	11	_	_] [265	_] _	l i	11	_	_	_	li	l l	_	_	[_	i i
	1	12	-	-	-	500	-	i -	+	12	_	_	_	+	1 +	-		_	+
	linL	All	-	-	0.5	-	-	-	μAdc	-	•	-	_	8	14	-			1,4,9,13,16
Logic "1"	VOH	15	-	-	3.11	-	=	-	Vdc	11	-	-		8	14	2,15			1,4,9,13,16
Output Voltage		15	L	-	L	5.85	-		Vdc	11	-	-		8	14	-	2,15	-	1,4,9,13,16
Logic "0" Output Voltage	VOL	15 2	-	-	-0.5 -0.5	0.15 0.15	-	-	Vdc Vdc	3	-	-	_	8	14 14	-	-	2,15 2,15	1,4,9,13,16 1,4,9,13,16
Logic "1" Threshold Voltage	VOHA	15 2	-	Ξ		2.9 2.9	-	=	Vdc Vdc	11 6	7	-	10 3 ³	8	14	2,15 2,15	-	=	1,4,9,13,16 1,4,9,13,16
Logic "0" Threshold Voltage	VOLA	15 2	-	-	-0.5 -0.5	0.25 0.25	=	=	Vdc Vdc	11	7,10 7,10	3 3	=	8	14	-	=	2,15 2,15	1,4,9,13,16 1,4,9,13,16
Output Short Circuit Current	Isc	15	-	 -		320	-	-	mAdc	11	7,10	-		8	14	+=-		2,13	1,2,4,9,13,15,1
	30	2	-	-	-	320	-	-	mAdc	6	_	-	_	8	14	_	_	_	1,2,4,9,13,15,1
Switching Times † Propagation Delay										-0.890 V	-1.690 V	Pulse In	Pulse Out						
Data Input	t11+15+	15 15	-	_	3.5	23	-	-	ns	-	10 10	11	15 I	8	14	<u> </u>	-	-	1,4,9,13,16
Clock Input	¹ 10-15+	15 ① 15 ②	-	_			-	-		_	-	10,11				-	-	-	
Reset Input	t7+15- t7+2-	15 ② 2 ②	-	-			-	-		11 6	-	10,11 7,10 7,10	2			-	-	-	
STROBE Input	13+15-	15	_	_	2.5		_	١_		111	10	3	15	11	1 1		_	_	
	13-15+	15	-	-	12.5	H	-	-	H	-	Ιï	Ιĭ	15	1	1 1	_	1 -	_	1 1
	t3+2-	2	-	-	11	П	-	i –	1 1	6	1 1	l i	2	1 1	1 1	- 1	-	-	1 1
	t3-2+	2	-	-	١,٠	١ '	-	-	1 1	-	٠,	1	2		li	-	-	-	1 1
Setup Time	tsetupH	15	-	-	-	-	-	-	1 1	-	-	10,11	15		1	-		-	1 1
11-14 T	^T setupL	15	-	-	-	-		-	1 1	_	_	1 1	i i		1 1	-		-	1 1
Hold Time	tholdH	15 15	_	-	-		-	_	1 1	-	1 -	1	1 1		1 I	-	-	-	1 1
Rise Time (20% to 80%)	tholdL	15	_	_	1.0	8.0	-	-	1 1	_	10	l !		H	1 1	_	-	-	1 1
	t15+		_		1	1		-	1 1	_		11	1 1		1 1	-	-	-	1 1
Fall Time (20% to 80%)	t15-	15	_	-	1.0	8.0	-	-	1 7	ı –	10	11	. ▼	, ₹	١, ١	1 -		I -	. ▼

@ Test

[†] See weveforms

Apply V_{I Lmin} individually to pin under test.

¹ Output latched to logic Low state prior to test.

⁽²⁾ Output latched to logic High state prior to test.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C - IBM MODE

VOLTAGE WAVEFORMS

The MC10129 bus receiver works in conjunction with the MC10128 to allow interfacing of MECL 10,000 to other forms of logic and logic buses. The data inputs are compatible with, and accept MTTL logic levels as well as levels compatible with IBM-type buses. The clock, strobe, and reset inputs accept MECL 10,000 logic levels.

The data inputs accept the bus levels, and storage elements are provided to yield temporary latch storage of the information after receiving it from the bus. The outputs can be strobed to allow accurate synchronization of signals and/or connection to MECL 10,000 level buses. When the clock is low, the outputs will follow the D inputs, and the reset input is disabled. The latches will store the data on the rising edge of the clock. The outputs are enabled when the strobe input is high. Unused D

inputs must be tied to VCC or Gnd. The clock, strobe, and reset inputs each have 50 k ohm pulldown resistors to VFF. They may be left floating, if not used.

The MC10129 will operate in either of two modes. The first mode is obtained by tying the hysteresis control input to VEE. In this mode, the input threshold points of the D inputs are fixed. The second mode is obtained by tying the hysteresis control input to ground. In this mode, input hysteresis is achieved as shown in the test table. This hysteresis is desirable where extra noise margin is required on the D inputs. The other input pins are unaffected by the mode of operation used.

The MC10129 is especially useful in interface applications for central processors, mini-computers, and peripheral equipment.

See General Information section for packaging and maximum ratings information.

Each MECL 10.000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input/output combination. Other combinations are

· MTTL INPUT LEVELS

L SUFFIX CERAMIC PACKAGE **CASE 620**

"ISM INPUT LEVELS

HYSTERESIS MODE

TEST VOLTAGE VALUES

(Volts)

⊸ 2 Q3	te	stec	l in tl	he san	ne ma	nne	r.		Tempera		ViHmex	VILMIN	VIHAmin	VILAME	VM	VIL	VIHA'	VILA.	VIH	VIL	VIHA.	VILA	VIMA"	VILA"	VIMA	VILA	v _{cc} 0	VEE	1
										o°C	-0 890	-1 890	-1 205	-1 500	3 000		2 000	0 800	3.11	0.150	-	-	2.90	2.00	2.20	1.30	+6.0	-6.2	
										5°C	-0810	-1 850	-1 106	-1 475	3 000		2.000	0.800	3.11	0.150	1.700	0.70	2.600	1 700	1.900	1.000	+5.0	-5.2	
									+4	8℃	-0 700	-1 825	-1 035	-1 440	3 000	0.400	2.000	0.800	3.11	0.150	-	- 2	2.30	1.400	1.60		+6.0	-6.2]
		Pin													FST V	OI TAGE	APPLIED	TO PINS	1 1276	n se o				_					1
	١.	Under		ooc.	L	+25°C			°C]
Characteristic	Symbol	Test	Men	Men	Men	Түр	Max	Min	Max	Unst	VIHmes	VILmen	VIHAmin	VILAmez	V _{HH}	٧ı	VIHA.	VILA.	VIH	VIL	VIHA.	VILA"	VIHA"	VILA"	VIHA	VILA"	Vœ0	VEE	G-mi
Negative Power Supply Drain Current	'E	8	:	-	:	=	152	-	_	mAdd	1;;	12						-	-		:	-	-	-	-	-	,	8 5,8	1,5,1
Positive Power Supply Drain Current	'cc	9	-	-			80	-	-	mAdo	-	-		-	-	4,6,7,13	-	-	-	4,6,7,13	-	-	-	-	-	-	9	8	1.16
Input Current	InH	4 6 7 10 11 12 13		-			95 450 245 245 95			μAde	10,11 11 12			1111111	4 6 7				4 6 7	1111111	-			-			١	i	1,10
	link	4 6 7 10 11 12 13	-	:	05	-	-10	1	-	μAdc	-	10 11 12	1			4 6 7	-	=		4 6 7 -							9	İ	1,16
Logic "1" Output Voltage	VOH	2 3 2 3	-1 060	-0 890	-0 960	1	0.810	-0.890	-0.700	Vrte	12	10,11		:	6 4	:	-	:	6 4 6	-	-	=	-	-	-	-	ļ	5,8 5,8 8	1,16 1,16 1,5,1
Logic "0" Output Voltage	VOL	3 2 3	-1 890	-1 675	-1 850	-	-1 650	-1 825	-1 615	Voc	12	10,11				4 6 4 6			-	4 6 4 6	Ē	-	-	=	Ē	Ē	i	5,8 5,8 8	1,16 1,16 1,5,1
Logic "1" Threshold Voltage	VOHA	2 @ 2 2 2 @ 2 @	-1 060	-	-0.980	-		-0.910		Vde	11,12 10,12 12	10.11	12	10 11 	4	-	•	=	:		-		-	-	-		اً	5,8	1.16
Logic "0" Threshold Voltage	VOLA	2 @ 2 @ 2 @ 2 @ 2 @		-1 655		-	-1 630	-	-1 595	Vdc	11,12 10,12 12	10,11	10 - 11 -	12	4	-	_		4	-	-	1	-	-		-	9	5,8	1,5,16 1,5,16
Switching Times				1							+1,11 V	+0.31 V	Pulse In	Pulse Out	+5.0 V	+2.40 V	Fle	ure .	+5.0 V	+2.40 V	Pi	ure .	 	† —	†		+7.0 V	32 V	+2.0
Clock Input	17+14+ 17-14- 111-14+	14 14			6.6 3.7 2.7	-	27 0 15.0 11.0	-	-	ï	12 12 12	10,11 10,11 10	7 7 7,11	14 14 14	-	-		:	=	=			-	-	-	-	,	5,8	1,16
Strobe Input	111-14-	14 14] -	2.7 1.6 1.6	-	11.0 7.0 7.0	-	-		-	10,11 10,11	7,11	14	,	-		4	,	-		4	-	-	-	-		H	
Reset Input	112-14- 110+14-	14	-	'	20	-	8.0	1			12	10,11	10,11	14	7	,		2 3	,	-		2 3	1	-	-	-			↓
Hysteresis Mode	17+14+ 17-14-	14 14	-		:	18.0	-		-		12 12	10,11	,	14	-	-		;	-	-		1	-	-	· -	-			1,5,1
Setup Time	t _{setup}	14	-	1	25	-		1	-	1	12	10	2,11	14	-	-	Ι.		-	-	Ι.	6	1 -	1 -	l -	-	l l	5,8	1,16
Hold Time Rise Time	thold t*	14	-	1	0	-	4.3		-		12 12	10	7,11	14	-	- :		5	-	-		5	-	-	-	-		Ιĩ	1
Fall Time	t-	14	-	1 -	15	1	4.3		-	+	12	10,11	,	14		۱ -		i	۱ -	۱ -	1	i		1 -	l -	1 -	1 +	1 1	I ŧ

MECL 10,000 INPUT LEVELS

^{*}When testing chagge either MTTL or IBM Input Levels.

Operation and limits shown also apply for V_{CC} = +6.0 V.

² Input level on data input taken from +0.4 V up to voltage level given

nput level on data input taken from +4 0 V down to voltage level given Output latched to logic high state prior to test.

MC10130

The MC10130 is a clocked dual D type latch. Each latch may be clocked separately by holding the common clock in the low state, and using the clock enable inputs for the clocking function. If the common clock is to be used to clock the latch, the clock enable $(\overline{\mathsf{C}}_{\mathsf{E}})$ inputs must be in the low state. In this mode, the enable inputs perform the function of controlling the common clock $(\overline{\mathsf{C}})$.

Any change at the D input will be reflected at the output while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not affect the output information.

Input pulldown resistors eliminate the need to tie unused inputs to VEE.

Output rise and fall times have been optimized to provide relaxation of system layout and design criteria.

The set and reset inputs do not override the clock and D inputs. They are effective only when either \overline{C} or $\overline{C}E$ or both are high.

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one latch. The other latch is tested in the same manner.

L SUFFIX CERAMIC PACKAGE **CASE 620**

@ Test Temperature	VIHmax
- 30°C	-0.890
+25°C	-0.810
_	

TEST VOLTAGE VALUES (Volts) VILmin **VIHAmin** VILAmax VEE -1.890 -1.205 -1.500 -5.2 -1.850 -1.105 -1.475 ~5.2 +85°C -0.700 -1.825 -1.035 -1,440 -5.2

									.05	-0.700	-1.025	1 -1.000	-1.440	-3.2	
	Pin			МС		Test Lin	····			TEST VOL	TAGE API	PLIED TO PI	NS LISTED B	ELOW:	
i	Under	- 30	0°C	_	+25°C		+89	5°C				1			(Vcc)
Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
İΕ	8	_		-	30	35	-	-	mAdc	-	_	-	_	8	1,16
linH	6,11	_	_	-	_	220	-		μAdc	6,11	_		_	8	1,16
1		-	-	-	-		-	-			-	-	-		
1		-	-	-	-		-	-	•		-	-	-		: 🛊
	7,10,12,13					285				7,10,12,13	9				
linL	4*	_	_	0.50		_	L		μAdc		4			8	1,16
Voн	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	5	-	-	-	8	1,16
VOL	2	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	4	_	-	-	8	1,16
VOHA	2	-1.080	-	-0.980	-	-	-0.910	-	Vdc	-	9	7	-	8	1,16
VOLA	2	-	-1.655	-	-	-1.630	-	- 1.595	Vdc	-	9	-	-	8	1,16
										+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
17.0	2	1.0	3.6	1.0	25	3.5	1.0	3.8	ns	_	_	7	2	R	1,16
	1 7		3.6	1		1	1.1	3.9	1	6		5	l ī	Ĭ	1
	1 1	1 1	3.6		2.7	♦	1.1	3.9		6	_	4	1	ł	1
16-2+		!	4.3	♥	-	4.0	1.0	4.1	ll	i - 1	-	6		1 1	(
t ₂₊			3.6	1.1	2.7	3.5	1.1	3.8	1 1	-		7	ł 👃	I ↓	↓
t2_	▼	₩	3.6	1.1	2.7	3.5	1.1	3.8	▼	-	-	7	7	V	
tsetup	. 2			2.5			-	-	ns	0	_	6,7	2	8	1,16
thold	2		-	1.5		-			ns	0		6,7	2	8	1,16
	IE	Symbol Test	Volaties	Under -30°C	Pin Under Color	Pin Vinder Test Min Max Min Typ	Pin Under Under Test -30°C +25°C Symbol Test Min Max Min Typ Max 1e 8 - - - 30 35 linH 6,11 - - - - 220 4,5,9 - - - - 265 - 285 1inL 4* - - - - 285 VOH 2 -1.060 -0.890 -0.960 - -0.810 VOHA 2 -1.890 -1.675 -1.850 - -1.650 VOHA 2 -1.090 - -0.980 - - VOLA 2 - -1.655 - - -1.630 17+2+ 2 1.0 3.6 1.0 2.5 3.5 15+2+ 3.6 3.6 2.7 4 44.2 3.6 1.1 2.7 3.5 <td> Voltage Volt</td> <td>Symbol -30°C +25°C +85°C Symbol Test Min Max Min Typ Max Min Max IE B - - - 30 35 - - IinH 6,11 - - - - 265 - - 7,012,13 - - - - 265 - - - VOH 2 -1.060 -0.890 -0.960 - -0.810 -0.890 -0.700 VOLA 2 -1.890 -1.675 -1.850 - -1.650 -1.825 -1.615 VOHA 2 -1.080 - -0.980 - -0.910 - 17+2+ 2 1.0 3.6 1.0 2.5 3.5 1.0 3.8 15+2+ 1 3.6 2.7 1 1.1 3.9 14+2- 3.6 2.7</td> <td>Symbol Pin Under Under Test -30°C +25°C +85°C Honton Honton Honton Min Max Min Typ Max Min Max Unit 1e 8 - - - 30 35 - - mAdc 1inH 6,11 - - - - 220 - - μAdc 7,012,13 - - - - 285 -</td> <td>Symbol Pin Under Under Test Min Max Min Typ Ms Min Max Min Max Min Max Min Max Min Max Min Max Unit I in H 6,11 - - - - 220 - - µAdc 6,11 9 4,5,9 - - - µAdc 6,11 9 4,5,9 - - - µAdc 6,11 9 4,5,9 - - - √ 7,10,12,13 - - - - - √ 4,5,9 - - - - - 4,5,9 - - - - - 4,5,9 - - - - - - - - - - - - - - - -</td> <td>Symbol -30°C +25°C +85°C TEST VOLTAGE API Under Test Min Max Min Typ Max Min Max VILmin Min Max Min Min Max Min Max Min Min</td> <td>Symbol -30°C +25°C +85°C Test Voltage APPLIED 10 PI Number of Test Min Max Min Typ Max Min Max VILmin PILMin Min Max Min Min Max Min</td> <td>Symbol Test VoltAGE APPLIED TO PINS LISTED B Symbol Test VoltAGE APPLIED TO PINS LISTED B Symbol Test Min Max Min Max Min Max Unit VIHmax VILmin VIHAmin VILAmax I lin H 6,11</td> <td> Pin 1-30°C 1-25°C 1-85°C	Voltage Volt	Symbol -30°C +25°C +85°C Symbol Test Min Max Min Typ Max Min Max IE B - - - 30 35 - - IinH 6,11 - - - - 265 - - 7,012,13 - - - - 265 - - - VOH 2 -1.060 -0.890 -0.960 - -0.810 -0.890 -0.700 VOLA 2 -1.890 -1.675 -1.850 - -1.650 -1.825 -1.615 VOHA 2 -1.080 - -0.980 - -0.910 - 17+2+ 2 1.0 3.6 1.0 2.5 3.5 1.0 3.8 15+2+ 1 3.6 2.7 1 1.1 3.9 14+2- 3.6 2.7	Symbol Pin Under Under Test -30°C +25°C +85°C Honton Honton Honton Min Max Min Typ Max Min Max Unit 1e 8 - - - 30 35 - - mAdc 1inH 6,11 - - - - 220 - - μAdc 7,012,13 - - - - 285 -	Symbol Pin Under Under Test Min Max Min Typ Ms Min Max Min Max Min Max Min Max Min Max Min Max Unit I in H 6,11 - - - - 220 - - µAdc 6,11 9 4,5,9 - - - µAdc 6,11 9 4,5,9 - - - µAdc 6,11 9 4,5,9 - - - √ 7,10,12,13 - - - - - √ 4,5,9 - - - - - 4,5,9 - - - - - 4,5,9 - - - - - - - - - - - - - - - -	Symbol -30°C +25°C +85°C TEST VOLTAGE API Under Test Min Max Min Typ Max Min Max VILmin Min Max Min Min Max Min Max Min Min	Symbol -30°C +25°C +85°C Test Voltage APPLIED 10 PI Number of Test Min Max Min Typ Max Min Max VILmin PILMin Min Max Min Min Max Min	Symbol Test VoltAGE APPLIED TO PINS LISTED B Symbol Test VoltAGE APPLIED TO PINS LISTED B Symbol Test Min Max Min Max Min Max Unit VIHmax VILmin VIHAmin VILAmax I lin H 6,11	Pin 1-30°C 1-25°C 1-85°C sup>*</sup>All other inputs are tested in the same manner

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one latch. The other latch is tested in the same manner.

@ Test Temperature

> -30°C +25°C

P SUFFIX PLASTIC PACKAGE CASE 648

	TEST	VOLTAGE V	ALUES	
		(Volts)		
VIHmax	VILmin	VIHAmin	VILAmex	VEE
-0.890	-1.890	-1.205	~1.500	-5.2
-0.810	-1.850	-1.105	-1.475	-5.2
-0.700	-1.825	-1.035	-1.440	-5.2

										,23 C	-0.610	- 1.650	-1.103	1 -1.4/3	-3.2	i
										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	i
		Pin			MC		Test Lim			,	TEST VO	LTAGE AP	PLIED TO PI	NS LISTED B	ELOW:	
	ļ	Under		o°c		+25°C			5°C	1		.,	Γ.,	T.,	T., -	(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmex	VEE	Gnd
Power Supply Drain Current	1E	8	-	<u> </u>	-	30	35			mAdc		-		_	8	1,16
Input Current	linH	6,11	_	-			220	_	_	μAdc	6,11	_	_	_	8	1,16
	1	9	-	-	-	-	265	-	-	1 1	9	_	-	1 -	1 1 !	1 1
	l .	4,5,9 7,10,12,13	-	_	l -		285 285	1 =	_	♦	4,5,9 7,10,12,13	9	_	_	🛊	
	link	4.		+=-	0.50	-	203	-	<u> </u>	µAdc	-	4			8	1.16
Logic "1"	Voн	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	5		-	-	8	1,16
Output Voltage		L		Ļ	↓					ļ			1		ļ	
Logic "0" Output Voltage	VOL	2	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	4	-	-	-	8	1,16
Logic "1" Threshold Voltage	VOHA	2	-1.080	-	-0.980	-	-	-0.910	-	Vdc	-	9	7	_	8	1,16
Logic "0" Threshold Voltage	VOLA	2	-	-1.655	-	-	-1.630	-	-1.595	Vdc	-	9	-	-	8	1,16
Switching Times (50 Ω Load) (See Figure 1)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t7+2+	2	_	_	1.0	2.5	3.5	_	_	ns	_	_	7	2	8	1,16
,	15+2+	l ī	-	-	1	2.7	l ii	-	-	l ï	6	-	5	l ī	l i '	l ï
	t4+2-	1 1	-	-	1 1	2.7	♦	-	-	l i	6	-	4	1 1	'	1 1
	t6-2+	1 1	-	- 1	, v	[-	4.0	-	-		-	-	6			
Rise Time (20% to 80%)	t ₂₊	1 1	-	-	1.1	2.7	3.5	-	-	1 I	-	-	7	1 4		l 1
Fall Time (20% to 80%)	t2_	, •	-	-	1.1	2.7	3.5	-	-	, ▼	-	-	7	•	•	, ▼
Setup Time	tsetup	2	-	-	2.5	-	-	-	-	ns	0	-	6,7	2	8	1,16
Hold Time	thold	2	=	-	1.5	-	T -		-	ns	0	-	6,7	2	8	1,16

^{*}All other inputs are tested in the same manner

FIGURE 1 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25° C

MC10131

RS TRUTH TABLE

R	S	Q _{n+1}
L	L	Q _n
L	Н	Н
Н	L	L
ш	ч	ND

N.D. = Not Defined

CLOCKED TRUTH TABLE

С	D	Q _{n+1}
L	φ	a _n
н	L	L
Н	H	H

φ = Don't Care

C = CE + CC.

A clock H is a clock transition from a low to a high state.

The MC10131 is a dual master-slave type D flip-flop. Asynchronous Set (S) and Reset (R) override Clock (CC) and Clock Enable (\overline{C}_E) inputs. Each flip-flop may be clocked separately by holding the common clock in the low state and using the enable inputs for the clocking function. If the common clock is to be used to clock the flip-flop, the Clock Enable inputs must be in the low state. In this case, the enable inputs perform the function of controlling the common clock.

The output states of the flip-flop change on the positive transition of the clock. A change in the information present at the data (D) input will not affect the output information at any other time due to master slave construction.

Input pulldown resistors eliminate the need to tie unused inputs to VEE. Output rise and fall times have been optimized to provide relaxation of system design and layout criteria.

 $P_D = 235 \text{ mW typ/pkg (No Load)}$ $f_{Tog} = 160 \text{ MHz typ}$

See General Information section for packaging

.

ELECTRICAL CHARACTERISTICS

Each MECL 10,000 series circuit has been designed to meet the despecifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

TEST VOLTAGE VALUES (Volts) @ Test VIH max VIL min VIHA min ٧EE Temperature VILA max -30°C -0.890 -1.890 -1.205 -1.500 -5.2 +25°C -0.810 -1.850 -1.105 -1.475 -5.2 +85°C -0.700 ~1.825 -1.035 -1.440 -5.2

		0:-			MC10	131L Te	st Limits				V	I TAGE APPL	IED TO PINS LI	STED RELOW:		1
	ľ	Pin Under	- 30	°C		+25°C		+8!	5°C			TOTAL ATTE				(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8	-	-		45	56	-	-	mAdc			-	-	8	1, 16
Input Current	linH	4	-	-		-	330	-	_	μAdc	4	-	-	-	8	1, 16
	i	5	-	-	-	-	330	-	-		5 6	-	-	-	1 1	
	1	6	_		_	-	220 245	-			7	_	-			1 1
		ģ	_	_	_	-	265		_	*	ģ	_	_	-		*
Input Leakage Current	linL	4,5,*	-	-	0.5	-	-	-		μAdc		•		-	8	1, 16
		6,7,9*	-	_	0.5	_			_	μAdc	-	•	-	-	8	1, 16
Logic "1"	Voн	2	-1.060	-0.890	-0.960	-	-0.810		-0.700	Vdc	5	-	-	-	8	1, 16
Output Voltage	<u> </u>	21	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	7	-		-	8	1, 16
Logic "0"	VOL	3	-1.890	-1.675	-1.850	- '	-1.650	-1.825	-1.615	Vdc	5	-	-	-	8	1, 16
Output Voltage		3†	- 1.890		-1.850		-1.650		-1.615	Vdc	7			<u> </u>	8	1, 16
Logic "1"	VOHA	2	-1.080		-0.980	-	-	-0.910	-	Vdc	-	-	5	_	8	1, 16
Threshold Voltage		2†	-1.080		-0.980		-	-0.910	-	Vdc			7	9	8	1, 16
Logic "0"	VOLA	3	-	-1.655	-	-	-1.630	-	-1.595	Vdc	-	-	5 7	_	8 8	1, 16
Threshold Voltage	ļ	3t	<u> </u>	-1.655			-1.630		-1.595	Vdc		-		9		1, 16
Switching Times Clock Input											+1.11 Vdc		Pulse In	Pulse Out	-3.2 Vdc	+2.0 Vd
Propagation Delay	tg+2-	2	1.4	4.6	1.5	3.0	4.5	1.5	5.0	ns	_	_	9	2	8	1, 16
	19+2+	2	Li	l ï	l i	l i	l i		li	lı	7	-	9	2	1 1	1
	t6+2+	2	1 1	1 1	1 1	1		1 I	1 1		7	-	6	2	i !	
	t6+2-	2	, v	1	♥			▼	 ▼		-	-	6	2	1 1	
Rise Time (20 to 80%)	t2+	2	1.0	li	1.1	2.5		1.1	4.9		7	_	9	2		
Fall Time (20 to 80%)	t2-	2	1.0	▼	1.1	2.5	▼	1.1	4.9	▼	_	-	9	2	₹ 7	
Set Input																
Propagation Delay	t5+2+	2	1.1	4.4	1.2	2.8	4.3	1.2	4.8	ns	-	-	5	2	8	1, 16
	t12+15+	15			.	1	1		ł	1 1	6		12	15		
	^t 5+3-	3 14	1 🛊	↓	↓	↓		↓		↓	ءَ ا	_	5	3	1 🕁	1
Reset Input	†12+14-	14		-		<u>'</u>	<u>'</u>	· •	<u> </u>	<u>'</u>			12	14	· •	-
Propagation Delay	t4+2-	2	1.1	4.4	1.2	2.8	4.3	1.2	4.8	ns		_	4	2	8	1, 16
	t13+15-	15	1 ';'	177	'i*	1 2.3	7.5	l 'i*	l ii	l ;"	6	_	13	15	1 1	1 ','0
	t4+3-	3	1 1	1 I	Ιİ	1 1	1 1	ΙŢ	1 1	1 1	-	-	4	3	1 1	1 1
	113+14+	14	▼	. ▼		▼	. ▼	▼	■ ▼	.	9	-	13	14	T	
Setup Time	t _{setup}	7	-	_	2.5	-		_	_	ns		_	6,7	2	8	1, 16
Hold Time	thold	7	L -		1.5			_	_	ns		_	6,7	2	8	1, 16
Toggle Frequency (Max)	fTog	2	125	-	125	160		125		MHz	-	-	6	2	8	1, 16

^{*}Individually test each input; apply VIL min to pin under test.

Courpus level to be measured after a clock pulse has been applied to the Cg input (pin 6)

ELECTRICAL CHARACTERISTICS - ADVANCE INFORMATION.

Each MECL 10,000 series circuit has been designed to meet the despecifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.

P SUFFIX PLASTIC PACKAGE CASE 648

	TEST	VOLTAGE VAL	UES	
		(Volts)	т	
V _{IH max}	VIL min	VIHA min	VILA max	VEE
-0.890	-1.890	-1.205	-1.500	-5.2
-0.810	-1.850	-1.105	-1.475	-5.2
-0.700	-1.825	-1.035	-1,440	-5.2

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin			MC10		st Limits				VOLTAGE APPLIED TO PINS LISTED BELOW:					
		Under	-30			+25°C			5°C					,		(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	1E	8	-		-	45	56		-	mAdc	-	-		-	8 .	1, 16
Input Current	linH	4	-	-		-	330		- "	μAdc	4		-		8	1, 16
	1	5	-	-	-	-	330	-	-		5	-	-	-	1 1	
	1	6	-	-	_	_	220 245	-			6 7	i -	-	_	1 1	
	1	ý	-		_	_	265	-	_	*	l ģ	_	_	_	♦	*
Input Leakage Current	linL	4.5.*	-	-	0.5	_	-	_	_	μAdc				_	8	1, 16
	""	6,7,9	-	-	0.5	-	-	-	- 1	μAdc	_	•	-	-	8	1, 16
Logic "1"	Voн	2	-1.060	-0.890	-0.960	_	-0.810	-0.890	-0.700	Vdc	5				8	1, 16
Output Voltage		2†	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	7				8	1, 16
Logic "0"	VOL	3	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	5	-	-	-	8	1, 16
Output Voltage		3t	-1.890	-1.675			-1.650		-1.615	Vdc	7				8	1, 16
Logic "1"	VOHA	2	- 1.080 - 1.080	-	-0.980 -0.980	-	-	-0.910	-	Vdc	-	-	5 7	_	8	1, 16 1, 16
Threshold Voltage		2†						-0.910		Vdc				9		
Logic "0" Threshold Voltage	VOLA	3 3†	_	- 1.655 - 1.655	_	_	-1.630 -1.630	_	-1.595 -1.595	Vdc Vdc	_	_	5 7	9	8	1, 16 1, 16
Threshold Voltage		31	 -	- 1.055		<u> </u>	-1.630	<u> </u>	-1.595	Vuc		<u> </u>	Pulse	Pulse	- -	1, 10
Switching Times	1		1	l			i				+1.11 Vdc		in	Out	-3.2 Vdc	+2.0 Vdc
Clock Input	l							1				<u> </u>			<u> </u>	
Propagation Delay	t9+2-	2	-		1.5	3.0	4.5	-	-	ns	-	-	9	2	8	1, 16
	t9+2+	2 2	_	-	1 1	1	1 1	_	_		7	-	9 6	2 2	1 1	1
	t6+2+	2	<u>-</u>	_	l i	↓	1 1	_	_		l <u>′</u>] [6	2	1	
Rise Time (20 to 80%)	t6+2-	ľ		_		2.5	1 1		_				9	2	1 1	
	t2+	2	-	Į.	1.1			-	1	↓	7	_		1	♦	•
Fall Time (20 to 80%)	t ₂ -	2		-	1.1	2.5	<u>'</u>	<u> </u>				-	9	2	<u>'</u>	
Set Input Propagation Delay	1	2	_	_	1.2	2.8	4.3	_	_	ns		<u> </u>	5	2	8	1, 16
Propagation Delay	t5+2+ t12+15+	15	-	_	1.2	2.0	4.3	_	_	115	6	_	12	15	l ;	1,10
	t5+3-	3	-	-		1	1 1	-	- 1	1	_	-	5	3		
	112+14-	14	-	-				-	-	▼ 1	9	(-	12	14	▼	\ ▼
Reset Input					-									1		
Propagation Delay	t4+2-	2	-	-	1.2	2.8	4.3	-	-	ns	I -	-	4	2	8	1, 16
	t13+15-	15	-	-			1	-	-		6	-	13	15	1 1	1 1
	t4+3- t13+14+	3 14	_	_	•	♦	♦	-	I :	♦	9		4 13	3 14	♦	
Setup Time	+	7	 	<u> </u>	2.5	<u>'</u>	<u> </u>		 	ns			6,7	14 2	8	1, 16
Hold Time	t _{setup}	7	 -	- -				-	 	ns	<u> </u>		6,7	2	8	1, 16
	thold		- -	├	1.5				} 	MHz			6	2	8	1, 16
Toggle Frequency (Max)	fTog	2		_	125	160				IVITIZ			· · ·			1, 10

@ Test

Temperature

-30°C

+25°C

+85°C

^{*}Individually test each input; apply VIL min to pin under test.

 $^{^{\}dagger}$ Output level to be measured after a clock pulse has been applied to the \bar{C}_{E} input (pin 6) $_{VIL}$ min

^{*}This is advance information and specifications are subject to change without notice.

FIGURE 1 - TOGGLE FREQUENCY TEST CIRCUIT

FIGURE 2 – SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

MC10132

The MC10132 is a dual multiplexer with clocked D type latches. It incorporates common data select and reset inputs. Each latch may be clocked separately by holding the common clock in the low state, and using the clock enable inputs for a clocking function. If the common clock is to be used to clock the latch, the clock enable $(\overline{\text{CE}})$ inputs must be in the low state. In this mode, the enable inputs perform the function of controlling the common clock (CC).

The data select (A) input determines which data input is enabled. A high (H) level enables data inputs D12 and D22 and a low (L) level enables data inputs D11 and D21. Any change on the data input will be reflected at the outputs while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not affect the output information. The reset input is enabled when the clock is in the high state, and disabled when the clock is low.

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one latch. The other latches are tested in the same manner.

1		TEST V	OLTAGE VA	LUES	
			(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

											*85 C	-0.700	-1.023	-1.000	11,440	3.2	i
		T	Pin			MC10		st Limits				TEST VO	LTAGE APP	LIED TO PIN	S LISTED BE	LOW:	
		ĺ	Under	-30	o°c		+25°C		+8	5°C							(VCC
Characterist	tic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Current		ΙE	8	-	-		44	55	-	-	mAdc		-	-	_	8	1,16
Input Current		lin H	4	-	-	-	_	290	-	-	μAdc	4		_	_	8	1,16
			5	-	-	-	-	290	-		1	5	-	- :	-	- 1	i 1
		l	6	- 1	} -	-	-	390	-	-	1 1 1	6	-	-	-	- 1	i i
		1	7	- 1	-		-	290	-	-	1 1 1	7	-	-	-		1 1
		1	10	-	-	-	-	265			↓	10	-	-	-		1 1
			11					265	_			11			-		
		lin L	4.	-	-	0.50	-		-	-	μAdc	-	4	-	_	8	1,16
Logic "1"		Voн	2	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	4	7,9,10			8	1,16
Output Voltage			2	-1.060	-0.890	-0.960] -	-0.810	-0.890	~0.700	Vdc	5,11	7,9,10	-		8	1,16
Logic "0"		VOL	3	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	4	7,9,10	_	~	8	1,16
Output Voltage		"	3	-1.890	-1.675	-1.850	1 -	-1.650	-1.825	-1.615	Vdc	5,11	7,9,10	-	-	8	1,16
Logic "1"		VOHA	2	-1.080	-	-0.980	T -	-	-0.910	-	Vdc		7,9,10	4		8	1,16
Threshold Voltage			2	-1.080	-	-0.980	- 1	-	-0.910	-	Vdc	11	7,9,10	5	- 1	8	1,16
Logic "0"		VOLA	3	T -	-1.655	_	-	-1.630	-	-1.595	Vdc	-	7,9,10	4	_	8	1,16
Threshold Voltage			3	-	-1.655	-	-	-1.630	-	-1.595	Vdc	11	7,9,10	5	-	8	1,16
Switching Times (50-ohm	load)											+1.11 V	+0.31 V	Pulse In	Pulse Out	-3.2 V	+2.0
		1	j	ļ						1							
Propagation Delay	Data	t4+2+	2	۱ -	-	1.0	-	3.3	-	۱ -	ns	-	7,9,10	4	2	8	1,16
	Reset	t6+2-	1 1	-	-	1.0	· –	3.8	-	-	i 1	7	-	6	i I		1 1
	Clock	t7-2+	1 1	-	-	1.0	-	5.7	-	-	1 1	4	_	7	1 1	1	1 1
	Select	t11+2+	▼	_	-	1.0	-	4.6	-	-	▼	5	. 7	11	▼	v	▼
Setup Time	Data	t _{setup}	2	_	-	2.5	-	-	_		ns	-	11	4,10	2	8	1,16
	Select.	t _{setup}	2	-		3.5	-	-	-	-	ns	5	7	10,11	2	8	1,16
Hold Time	Data	thold	2	-	-	1.5	_	-		-	ns	-	11	4,10	2	8	1,16
	Select	thold	2 _	-	l	1.0	-	-	-	-	ns	5	_ 7	10,11	2	8	1,16
Rise Time (20% to 80%)		t ₂₊	2	-	-	1.5	-	3.5	-	_	ns	_	7,9,10	4	2 .	8	1,16
Fall Time (20% to 80%)		t2-	l 2	l -		1.5	-	3.5	_	-	ns	_	7,9,10	4	1 2	8	1,16

^{*}All other inputs tested in the same manner.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one latch. The other latches are tested in the same manner.

-0.890

@ Test Temperature

-30°C

P SUFFIX PLASTIC PACKAGE CASE 648

TEST VOLTAGE VALUES
(Volts)

VIHA min

-1.205

VILA max

-1.500

-5.2

VIL min

-1.890

											+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	j
											+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	į
			Pin			MC10	32P Te	st Limits				TEST VC	LTAGE APP	IED TO PIN	S LISTED BE	I OW:	
		1	Under	-30	o°C		+25°C		+8	5°C		1631 40	E IAGE AFF	10711	1	LOW.	(VCC
Characteris	tic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA mex	VEE	Gnd
Power Supply Current		IE.	8	- 1	-	-	44	55	-	-	mAdc	-	_	_	-	8	1,16
Input Current		lin H	4	-	-	-	-	290	-	-	μAdc	4	_	_	-	8	1,16
		1	5	-	-	-	-	290		-	1 1	5	-	-	-		1 1
		ł	6	- '	-	-	-	390	-	-		6	-	-	-		i i
		ļ	10	-	-	-	-	290	-	-	1 1	7	-	-	-		1 1
		l .	11		_		-	265 265	-		•	10 11	_	_			i ♦
			4.	-	-	0.50		- 203		<u> </u>	μAdc		4			8	1.16
		lin L		L													
Logic "1"		VOH	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	4	7,9,10	-	-	8	1,16
Output Voltage	·- ·- · - ·		2	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	5,11	7,9,10				1,16
Logic "0"		VOL	3	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	4	7,9,10	-	-	8	1,16
Output Voltage			3	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615	Vdc	5,11	7,9,10	_		8	1,16
Logic "1"		VOHA	2	-1.080	-	-0.980	-	-	-0.910	-	Vdc	-	7,9,10	4	-	8	1,16
Threshold Voltage			2	-1.080		-0.980	-	-	-0.910		Vdc	11	7,9,10	5		8	1,16
Logic "0"		VOLA	3	-	-1.655	-	- 1	-1.630	-	-1.595	Vdc	-	7,9,10	4	- 1	8	1,16
Threshold Voltage		l	3		-1.655	-	-	-1.630	-	-1.595	Vdc	11	7,9,10	5		8	1,16
Switching Times (50-ohn	n load)	Ţ										+1.11 V	+0.31 V	Pulse in	Pulse Out	-3.2 V	+2.0 \
Propagation Delay	Data		2	_	_	1.0	_	3.3	_	ļ		_	7,9,10	١.,	١ ,	8	1.16
Propagation Delay	Reset	t4+2+ t6+2-	ĺí		_	1.0	_	3.8	_	i _	ns	7	7,5,10	6	l i	ľ	1 '''
	Clock	17-2+	1 1	l _	_	1.0	_	5.7	_	_		4	i -	1 7	l i		1 1
	Select	111+2+	🕈	-	-	1.0	-	4.6	-	_		5	7	11			
Setup Time	Data	tsetup	2			2.5					ns		11	4,10	2	8	1,16
	Select	t _{setup}	2	-	-	3.5	_	-		l	ns	5	7	10,11	2	8	1,16
Hold Time	Data	thold	2	-	-	1.5	-	-	-	-	ns	-	11	4,10	2	8	1,16
	Select	thold	2		-	1.0		-	-		ns	5	7	10,11	2	8	1,16
Rise Time (20% to 80%)		t ₂₊	2	-	-	1.5	-	3.5	-		ns	-	7,9,10	4	2	8	1,16
Fall Time (20% to 80%)		t2-	2	-	-	1.5	i –	3.5	-	- 1	ns	-	7,9,10	4	2	8	1,16

^{*}All other inputs tested in the same manner.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

APPLICATION INFORMATION

A typical application of the MC10132 is temporary storage in a minicomputer. The arithmetic section of a minicomputer might have a configuration similar to that illustrated in Figure 1. Data may be entered into the "B" register from either the register file or the input bus, re-

quiring a multiplexed input to the register.

Figure 2 shows the MC10132 as the elements in the "B" register. Eight packages of the dual latch is necessary to construct a 16-bit register. Note that reset is available on the MC10132 if this capability is required.

MC10133

 $P_D = 310 \text{ mW typ/pkg (No Load)}$ $t_{pd} = 4.0 \text{ ns typ}$ The MC10133 is a high speed, low power, MECL quad latch consisting of four bistable latch circuits with D type inputs and gated Q outputs. Open emitters allow a large number of outputs to be wire ORed together. Latch outputs are gated, allowing direct wiring to a bus. When the clock is high, outputs will follow D inputs. Information is latched on negative going transition of the clock.

See General Information section for packaging.

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

L SUFFIX CERAMIC PACKAGE **CASE 620**

		TEST V	OLTAGE VA	LUES	
		.,.	(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	1
		Pin			M	C10133L	Test Limit	5			TEST	OI TAGE A	PPI IED TO P	INS LISTED E	ELOW:	1
	l	Under	-30	ooc		+25°C		+85	5°C			0217027				(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8	_			60	75			mAdc	-	13	-		8	1,16
Input Current	linH	3	-	-	_	-	245	-	_	μAdc	3	-	_		8	1,16
	1	4	-	-	-	-	265	-	-		4	-	-	- '		
	1	5 13	-	_	_	_	350 350	_	_	\ ♦	5 13	_	_	_	\ ♦	♦
	lint	3	 	 	0.5	-	_		<u> </u>	#Adc		3	_		8	1.16
Logic "1"	VOH	2	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	3,4			_	8	1,16
Output Voltage	Y OH	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	3,13	_		_	8	1,16
Logic "0"	VOL	2	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	13	3	_	-	8	1,16
Output Voltage		2 2	♦	♦	♦	_	♦	♦	♦	♦	3,5,13 4	3	_	_	. ♦	•
Logic "1"	VOHA	2	-1.080	_	-0.980		-	-0.910	 	Vdc	3.4			5	8	1.16
Threshold Voltage	TOHA	2	1	-	0.555	_	-	1	_	1	4	_	3	_	l ĭ	',io
	1	2	1 1	-		-	-			i	3,4	-	-	_	1 1	
	ŀ	21	1 1	-			-	1 1	-		3	-	-	-	1	1
		211	ļ	_	l i		_	1 1	_			-	_	4 .	1 1	
	1	2	1 1	_	1 1	-	_	1 1			3	_	4	1 2	J.]	1 1
	L	2		_	V	_	_	. .		▼	3		13	_	₩.	▼
Logic "0"	VOLA	2	-	-1.655	-	-	-1.630	- *	-1.595	Vdc	3,4	_	5	_	8	1,16
Threshold Voltage		2	-		-	-	1 1	-			4	-	-	3	l I	1
		2 2†		1 1	_	-	1 1	_			4 -	_	_	_		i i
	ļ	2††	-	1 1	_	_	1 1	_	1	ΙI	3	_	_	_	1 1	1 1
		2††		V	_	_			V	■ ▼	3			13	▼	. ▼
Switching Times (50 Ω Load)									i		+1.11 V		Puise In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t3+2+	2	1.0	5.6	1.0	-	5.4	1.1	5.9	ns	4	-	3	2	8	1,16
	t4+2+	2	1.0	5,4	1 1	-	5.4	1.2	6.0		3 •	-	4	2	1 1	1 1
	t5-2+	2	1.0	3.2	2.5	-	3.1	1.0	3.4		-	-	5	2 2		
	^t Setup ^t Hold	3	_] _	1.5	_	_	_	_	1 1		_	3	2		
Rise Time (20% to 80%)	t ₂₊	2	1.0	3.6	1.1	l <u>.</u> .	3.5	1.1	3.8	1	<u>-</u>	_	3	2		1 1
Fall Time (20% to 80%)	12-	2	1.0	3.6	1.1	_	3.5	1.1	3.8	♦ -	4	_	3	2	\ ▼	♦
	1 .2-	1	1.0	3.0			3.5		3.0	L						

[†]Output level to be measured after a clock pulse has been applied to the clock input (Pin 4).

⁻ VIH max L_{VIL min}

^{*}Latch set to zero state before test.

^{††}Data input at proper high/low level while clock pulse is high so that device latches at proper high/low level for test. Levels are measured after device has latched.

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

Characteristic

Power Supply Drain Current

Input Current

Logic "1"

Logic "0"

Logic "1"

Logic "0"

Switching Times

(50 12 Load)

Output Voltage

Output Voltage

Threshold Voltage

Threshold Voltage

Propagation Delay

Rise Time (20% to 80%)

Fall Time (20% to 80%)

+25°C

Typ

60

Max

75

245

265

350

350

-0.810

-0.810

-1.650

-1.630

5.4

5.4

3.1

3.5

3.5

-30°C

Max

-0.890

-0.890

-1.675

-1.655

Min

0.5

-0.960

-0.960

-1.850

-0.980

1.0

2.5

1.5

1.1

Min

-1.060

-1.060

-1.890

-1.080

Under

Test

8

3

5

13

3

2

2

2

2 2

2

2

2 2 2† 211 2† †

2

2

2

3

3

Symbol

ΙE

InH

lini

Voн

VOL

 v_{OHA}

VOLA

t3+2+

t4+2+

t5-2+

tSetup

tHold

t2+

12-

@ Test

+85°C

Min

-0.890

-0.890

-1.825

-0.910

P SUFFIX PLASTIC PACKAGE **CASE 648**

TEST VOLTAGE VALUES

(Volts)

Temp	erature	VIH max	VIL min	VIHA min	VILA max	VEE	
	-30°C	-0.890	-1.890	-1.205	-1.500	-5.2	
	+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	
	+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		TEST V	OI TAGE A	PPLIED TO P	INS LISTED E	ELOW.	1
°C							(VCC)
Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
-	mAdc	-	13	_	_	8	1,16
-	μAdc	3	-		-	8	1,16
-		4	-	-	-		
_	\ \	5 13	_	_		♦	
_	μAdc		3			8	1,16
-0.700	Vdc	3,4			_	8	1,16
-0.700	Vdc	3,13	_		-	8	1,16
-1.615	Vdc	13	3			8	1,16
. ↓		3,5,13	_	-	-	•	↓
•		4	3			· ·	
-	Vdc	3,4 4	-	3	5	8	1,16
_		3,4	_	3			
-		3	-		_		
		-	-	-	4		
-		_	_		4	1	
	•	- 3 3		13	_	♦	🛊
-1.595	Vdc	3,4		5		8	1,16
-1.595	V ac	3,4 4	_	5	3		','6
		4	_	_	_		
		-	-	-	-		
. ↓	•	- 3 3	-	-	-	↓	↓
-		3		-	13	_	

Pulse In

4

5

3

3

3

3

-3.2 V

Pulse Out

2

2

2

2

+2.0 V

1,16

+1.11 V

3 •

² †Output level to be measured after a clock pulse has been applied to the clock input (Pin 4).

⁻ VIH max L_{VIL min}

^{*}Latch set to zero state before test.

^{††}Data input at proper high/low level while clock pulse is high so that device latches at proper high/low level for test. Levels are measured after device has latched.

V_{CC1} = V_{CC2} +2.0 Vdc PROPAGATION DELAY Coa Input (0) +1.11 V Pulse Generator +0.31 V Input Pulse $t+ = t- = 2.0 \pm 0.2 \text{ ns}$ (20 to 80%) 80% Vout from D input 20% 50-ohm termination to ground located in each scope channel input. V_{out} from \overline{G} input 50% 20% Unused outputs connected to a 50-ohm resistor to ground. 0.1 µF 509 C $V_{EE} = -3.2 \text{ Vdc}$ D 50% All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be < 1/4 inch from TP_{in} to input pin and TP_{out} to output pin. a tSetup is minimum time before the negative transition of the clock pulse (C) that information must be present at the data input (D). tHold is the minimum time after the negative transition of the clock pulse (C) that information must remain unchanged at the data input (D).

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

APPLICATION INFORMATION

The MC10133 device consists of four bistable latch circuits with D type inputs and gated Q outputs. When the clock is high the outputs will follow the D inputs.

The latch will store the data on the falling edge of the clock. The outputs are gated when the output enable is low. All four latches may be clocked at one time with the common clock, or each half may be clocked separately with its clock. This device is useful as a temporary storage element in high speed central processors, accumulators, register files, digital communication systems, instrumentation and test equipment.

DUAL MULTIPLEXER WITH LATCH

MC10134

The MC10134 is a dual multiplexer with clocked D type latches. Each latch may be clocked separately by holding the common clock in the low state, and using the clock enable inputs for the clocking function. If the common clock is to be used to clock the latch, the clock enable (CE) inputs must be in the low state. In this mode, the enable inputs perform the function of controlling the common clock (CC).

The data select inputs determine which data input is enabled. A high (H) level on the A0 input enables data input D12 and a low (L) level on the A0 input enables data input

D11. A high (H) level on the A1 input enables data input D22 and a low (L) level on the A1 input enables data input D21.

Any change on the data input will be reflected at the outputs while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at: the data inputs will not affect the output information.

Output rise and fall times have been optimized to provide relaxation of system layout and design criteria.

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one latch. The other latches are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

@ Test
Temperature
-30°C
+25°C

	TEST V	OLTAGE VA	LUES									
(Volts)												
VIH max	VIL min	VIHA min	VILA max	VEE								
-0.890	-1.890	-1.205	-1.500	-5.2								
-0.810	-1.850	-1.105	-1.475	-5.2								
-0.700	-1.625	-1.035	-1.440	-5.2								

										+85°C	-0.700	-1.625	-1.035	-1.440	-5.2	1
			Pin		N	C10134	L Test L	imits			TEST VO	TACE APPL	LIED TO PINS	I ISTED OF	OW .	1
		i	Under	-3	0 _o C	+2	5°C	+85	°C		163, 40	LIAGE AFFE	LIED TO FINA	LISTED BEL	UW	
Power Supply Drain Current	istic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	(V _{CC}) Gnd
		IE	8				55	-	_	mAdc	-		_		8	1,16
Input Current		lin H	4	-	-	-	290			µAdc −	4				8	1.16
			5	-	-	-	290	-	- 1] [5	_		-	l i	1
		I	6	-		-	265	-	[-]	1 1	6		-	-	1 1	1 1
		1	10] _	_	290 265] -	- 1	1	7.	-	-	_	1	1
		<u> </u>	4.								10		~	:		-
Logic "1"		lin L				0.50				μAdc	-	4			8	1,16
Output Voltage		Voн	2 2	-1.060 -1.060	-0.890 -0.890	-0.960	-0.81 c	-0.890	-0.700	Vdc	4	6,7,10,		-	8	1,16
Logic "O"		- 				-0.960	-0.81	-0.890	-0.700	Vdc	5,6	7,10			8	1,16
Output Voltage		VOL	2 2	-1.890 -1.890	-1.675 -1.675	-1.850	-1.65 ©	-1.825	-1.615	Vdc	-	4,6,7,10,	-	_	8	1,16
Logic "1"						-1.850	-1.65 c	-1.825	-1.615	Vdc	6	5,7,10			8	1,16
Threshold Voltage		VOHA	2 2	-1.080 -1.080	_	-0.980 -0.980	-	-0.910	-	Vdc	-	6,7,10	4	-	8	1,16
Logic "O"					-1.655			-0.910		Vdc	6	7,10	5	-	8	1,16
Threshold Voltage		VOLA	2 2	-	-1.655 -1.655	_	-1.630	-	-1.595	Vdc	-	6,7,10	-	4	8	1,16
Switching Times (50-ohm load	41			<u> </u>	-7.033		-1.630		-1.595	Vdc	6	7,10		5	8	1,16
Ownterning Times (50-0iiii) load	۵,	ĺ				Min	Max				+1.11 V	+0.31 V	Pulse In-	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	Data	t4+2+	2	_	_	1.0	3.3									
	Clock	110-2+	ī		_	1.0	5.7	-	-	ns	_	6,7,10	4	2	8	1,16
	Select	16+2+	•			1.0	4.6	_	_		5	7.10	10		i 🖢	l .
Setup Time	Data	tsetup	2			2.5		-		<u> </u>		6.7	4.10	2	8	1,16
	Select	tsetup	2		-	3.5	_	1 -	-	ns ns	5	7.11	6.10	2	l å	1.16
Hold Time	Data	thold	2			1.5			ļ			6.7	4.10	2	8	1,16
	Select	thold	2.	-	-	1.0	_	_	1 :	ns ns	5	7,11	6.10	2	8	1,16
Rise Time (20% to 80%)		t ₂₊	2			1.5	3.5		-				0,10	2	8	
Fall Time (20% to 80%)		t ₂₋	2	_	_	1.5	3.5	_		ns	-	6,7,10	1 4	_	1 -	1,16
		12-				1.5	3.5	1 -	-	ns	-	6,7,10	4	2	8	1,16

^{*}All other inputs tested in the same manner.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one latch. The other latches are tested in the same manner.

P SUFFIX PLASTIC PACKAGE CASE 648

	1	TEST V	OLTAGE VA	LUES	
			(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.625	-1.035	-1.440	-5.2
	1				

										+85°C	-0.700	-1.625	-1.035	-1.440	-5.2	1
			Pin				P Test L				TEST VO	LTAGE APPI	IED TO PINS	LISTED BEL	ow	
			Under	-30	o°C	+2!	5°C	+8	5°C				I —		Γ	(Vcc)
Characteris	stic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current		1E	8	-	- '	_	55	_	-	mAdc	-	-	-	-	8	1,16
Input Current		lin H	4	-	-	-	290	-	-	μAdc	4		~		8	1,16
		1	5	-	-	-	290	-	-	1 1	5	-	-	-	1 1	1 1
			6	-	-	~	265	-	-	1 1	6		-	-		1 1
			7 10	-		_	290 265	-	_	i 🛊	10	_	_	-	•	!
		lin L	4.	 	- <u>-</u>	0.50	205	<u> </u>	-	µAdc	<u> </u>	4			8	1,16
Logic "1"		VOH	2	-1.060	-0.890	-0.960	-0.810	-0.890	-0.700	Vdc	4	6.7.10.			8	1.16
Output Voltage		\ VOH	2	-1.060	-0.890	-0.960	-0.810	-0.890	-0.700	Vdc	5,6	7,10	-	_	8	1,16
Logic "0"		VOL	2	-1.890	-1.675	-1.850	-1.650	-1.825	-1.615	Vdc	-	4,6,7,10,		_	8	1,16
Output Voltage			2	-1.890	-1.675	-1.850	-1.650	-1.825	-1.615	Vdc	6	5,7,10	-		8	1,16
Logic "1"		VOHA	2	-1.080	-	-0.980	-	-0.910	-	Vdc	-	6,7,10	4	-	8	1,16
Threshold Voltage			2	-1.080		-0.980		-0.910	-	Vdc	6	7,10	5		8	1,16
Logic "O"		VOLA	2	-	-1.655	-	-1.630		-1.595	Vdc	-	6,7,10	-	4	8	1,16
Threshold Voltage			2		-1.655	-	-1.630		-1.595	Vdc	6	7,10		5	8	1,16
Switching Times (50-ohm load	1)		l		•	Min	Max]		1	+1.11 V	+0.31 V	Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	Data	14+2+	2	_	_	1.0	3.3		_	ns	_	6.7.10	4	2	8	1.16
,	Clock	110-2+	l ī	_	-	1.0	5.7	-	_	ΙÏ	4	7	10	l ī	l ĭ	1 1
	Select	46+2+		-	-	1.0	4.6	-	-		5	7,10	6	. ♦		1
Setup Time	Data	tsetup	2	-		2.5	-		-	ns		6.7	4,10	2	8	1,16
	Select	tsetup	2	-	-	3.5	-		-	ns	5	7,11	6,10	2	8	1,16
Hold Time	Data	thold	2	-	-	1.5	-	-	-	ns	-	6,7	4,10	2	8	1,16
	Select	^t hold	2	-	-	1.0	-	-	-	ns	5	7,11	6,10	2	8	1,16
Rise Time (20% to 80%)		t ₂₊	2	-	-	1.5	3.5		-	ns		6,7,10	4	2	8	1,16
Fall Time (20% to 80%)		t2-	2	-	l –	1.5	3.5	-	-	ns	-	6,7,10	4	2	8	1,16

^{*}All other inputs tested in the same manner.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

APPLICATION INFORMATION

A typical application of the MC10134 is temporary storage in a minicomputer. The arithmetic section of a minicomputer might have a configuration similar to that illustrated in Figure 1. Data may be entered into the "B" register from either the register file or the input bus, re-

quiring a multiplexed input to the register.

Figure 2 shows the MC10134 as the elements in the "B" register. Eight dual latch packages are necessary to construct a 16-bit register.

Register File 16 x 16 Bit Arithmetic Logic Unit Swep Select Receivers Drivers Output Bus Output Bus

MC10135

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established in an ambient temperature of 25°C, while the circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.

L SUFFIX CERAMIC PACKAGE **CASE 620**

		TEST V	OLTAGE VAI	LUES									
	Vdc ± 1%												
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE								
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2								
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2								
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2								

				H2 13-						+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	Ì
		Pin		-0-	M		5L Test Li				VOL	TAGE APPLI	ED TO PINS L	ISTED BELO		
Characteristic	Symbol	Under Test	Min	O ^O C Max	Min	+25°C	Max	+8! Min	5°C Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	(VCC)
Power Supply Drain Current	IE.	8				54	68	_	_	mAdc	* IFI max	- IL min	- IFIA MIR	*ILA max	8	1,16
Input Current	+	6,7,9,10,11					265			#Adc					8	1,16
input current	lin H	4,5,12,13	_	_	_	-	390	_	- 1	μAdc μAdc	0	_	_	_	8	1,16
Input Leakage Current	lin L	4,5,6,7,9, 10,11,12,13	-	-	0.5 0.5	-	-	-	-	μAdc μAdc	-	0 0	-	-	8	1,16 1,16
Logic "1" Output Voltage	Voн	2 3	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	_	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	5 6	1 -	-	-	8	1,16 1,16
Logic "0" Output Voltage	VOL	3 3 ③	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850	-	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	5 6	-	_	-	8	1,16 1,16
Logic "1" Threshold Voltage	VOHA	2 2 ④	-1.080 -1.080	-	-0.980 -0.980	-	-	-0.910 -0.910	-	Vdc Vdc	- 6	-	5 -	-	8 8	1,16 1,16
Logic "0" Threshold Voltage	VOLA	3 3 ④	-	-1.655 -1.655	-	-	-1.630 -1.630	_	-1.595 -1.595	Vdc Vdc	- 6	-	5 -	=	8 8	1,16 1,16
Switching Times													Pulse In	Pulse Out	-3.2 Vdc	+2.0 Vdc
Clock Input Propagation Delay	tg+2+ tg+2-	2 2	1.0	5.0 ♦	1.0 1.0	3.0 3.0	4.5	1.0	4.6 †	ns	-	<u>-</u>	9	2 2	8	1,16
Rise Time (20 to 80%)	t2+,t3+	2,3	1.1	4.8	1.1	2.0	li	1.1	4.7	1 1	- :	-	9	2,3	1	1
Fall Time (20 to 80%)	t2-,t3-	2,3	🕴		1.1	2.0	₹ ₹	•	*	▼	-	-	9	2,3	V	▼
Set Input Propagation Delay	t5+2+ t12+15+ t5+3- t12+14-	2 15 3 14	1.2	5.6	1.0	3.0	5.0	1.0	5.2	ns	1 1 1 1	- - -	5 12 5 12	2 15 3 14	8	1,16
Reset Input Propagation Delay	t ₄₊₂₋ t ₄₊₃₊ t ₁₃₊₁₅₋ t ₁₃₊₁₄₊	2 3 15 14	- - -	- - -	1.0	3.0	5.0	1 1 1 1		ns	- - -		4 4 13 13	2 3 15 14	8	1,16
Setup Time	t _{setup}	7	-	-	2.5		-	-	-	ns	-	_	6,9 ⑤	. 2	8	1,16
Hold Time	thoid	7	-		1.5		-	-	_	ns	-	_	6,9 (5)	2	8	1,16
Toggle Frequency	fTog	2			125	140	-	-	-	MHz			9	2	9	1,16

NOTES:

- 1 Individually test each input; apply VIH max to pin under test.
- 2 Individually test each input; apply VIL min to pin under test.
- Output level to be measured after a clock pulse has been applied to the C input (pin 9)
- Output level to be measured after a clock pulse has been applied to the C input (pin 9)
 VIHA min
 VILA max
- See Figure 2 for timing test diagram.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established in an ambient temperature of 25°C, while the circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.

P SUFFIX
PLASTIC PACKAGE
CASE 648

	TEST VOLTAGE VALUES													
			Vdc ± 1%											
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE									
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2									
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2									
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2									

nanner.				H2 13						+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	1
		Pin					5P Test L				VOL.	TAGE APPLI	ED TO PINS L	ISTED BELO	W:	1
	1	Under		0°C		+25°C			5°C	ļ			T			(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	IE.	8		-	-	54	68	_	-	mAdc					. 8	1,16
Input Current	lin H	6,7,9,10,11 4,5,12,13	_	-	<i>-</i> -	_	265 390	_	-	μAdc μAdc	0	_	<u> </u>	-	8	1,16 1,16
Input Leakage Current	lin L	4,5,6,7,9, 10,11,12,13	-	_	0.5 0.5	-	-	-	-	μAdc μAdc	_	8	_	-	8 8	1,16 1,16
Logic "1" Output Voltage	Voн	2 2 ③	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	-	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	5 6	-		_	8	1,16 1,16
Logic "0" Output Voltage	VOL	3 3 ③	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850	-	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	5 6	_	_	-	8 8	1,16 1,16
Logic "1" Threshold Voltage	VOHA	2 2 ④	-1.080 -1.080	-	-0.980 -0.980	-	_	-0.910 -0.910	-	Vdc Vdc	- 6	-	5 -	-	8 8	1,16 1,16
Logic "0" Threshold Voltage	VOLA	3 3 ④	-	-1.655 -1.655	-	-	-1.630 -1.630	-	-1.595 -1.595	Vdc Vdc	- 6	-	5 -	-	8 8	1,16 1,16
Switching Times Clock Input													Pulse in	Pulse Out	-3.2 Vdc	+2.0 Vdc
Propagation Delay	t9+2+ t9+2-	2 2	-	_	1.0 1.0	3.0 3.0	4.5	-	-	ns l	=	_	9	2 2	8 	1,16
Rise Time (20 to 80%)	t2+,t3+	2,3	-	-	1.1	2.0	1 1	_	_		-	-	9	2,3		
Fall Time (20 to 80%)	t2-,t3-	2,3	-	-	1.1	2.0	1	- 1	-	♥	-	-	9	2,3		🕴
Set Input Propagation Delay	t5+2+ t12+15+ t5+3- t12+14-	2 15 3 14	- - -	- - -	1.0	3.0	5.0	- - -	- - -	ns	- - - -		5 12 5 12	2 15 3 14	8	1,16
Reset Input Propagation Delay	t4+2- t4+3+ t13+15- t13+14+	2 3 15 14	- - -	- - - -	1.0	3.0	5.0	- - -	- - -	ns 	- - -	- - - -	4 4 13 13	2 3 15 14	8 ↓	1,16
Setup Time	t _{setup}	7	_	_	2.5	_		-	-	ns	-	_	6,9 (5)	2	8	1,16
Hold Time	thold	7	_	_	1.5	-	-		-	ns	-	-	6,9 (5)	2	8	1,16
Toggle Frequency	fTog	2	-	-	125	140	-	-	_	MHz	_	_	9	2	9	1,16

NOTES

- 1 Individually test each input; apply VIH max to pin under test.
- Individually test each input; apply V_{IL min} to pin under test.
- 3 Output level to be measured after a clock pulse has been applied to the C input (pin 9)
- Output level to be measured after a clock pulse has been applied to the C input (pin 9)
- See Figure 2 for timing test diagram.

FIGURE 2 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

VCC1 = VCC2 = +2.0 Vdc Vout Coax Coax All input and output cables to the scope are equal lengths of 50-ohm 9 Clock Input (O С coaxial cable. Wire length should be < 1/4 inch from TP_{in} to input 7 đ pin and TPout to output pin. Input Pulse t+ = t- = 2.0 ns ± 0.2 ns Unused outputs connected to a (20 to 80%) 50-ohm resistor to ground. 50-ohm termination to ground located in each scope channel input. V_{EE} = -3.2 Vdc +1.11 V 50% +0.31 V R Input 50% ^{– t}hold +0.31 V +1.11 V 50% 50% 0.31 V S Input tsetup - t4+2-- t2-80% 50% 20% NOTE: Q Output tsetup is the minimum time before the positive transition of the clock pulse (C) that information must t5+3t4+3+ ā Output 80% be present at the inputs J or K. t_{hold} is the minimum time after the positive transition of the clock pulse (C) that information must remain unchanged at the inputs \overline{J} or \overline{K} . t3-— t3+

UNIVERSAL HEXADECIMAL

MC10136

SEQUENTIAL TRUTH TABLE*

				NPU	TS			OUTPUTS						
S1	S2	DO	D1	D2	D3	Carry	Clock	0.0	Q1	02	QЗ	Carry		
L L L	LIII	L	L	Ηφφφ	H 0 0 0	φ L L	HHH	דוד	LIL	1111	IIII	LIIL		
LLHL	TIIL	ффф	φ φ φ Η	φ φ φ L	4001	ппфф	LHHH	rrr	IIII	HHHL	TII	III		
IIII		0000	φ φ φ φ	0000	9999		IIII	コエコエ	ILLI	דונו	JJJI	HHLH		

- $\phi = Don't care.$
- Truth table shows logic states assuming inputs vary in sequence shown from top to bottom.
- * A clock H is defined as a clock input transition from a low to a high logic level.

The MC10136 is a high speed synchronous counter that can count up, count down, preset, or stop count at frequencies exceeding 100 MHz. This binary counter is useful in high speed central processors and peripheral controllers, minicomputers, high speed digital communications equipment and instrumentation. The flexibility of this device allows the designer to use one basic counter for most applications, and the synchronous count feature makes the MC10136 suitable for either computers or instrumentation.

Three control lines (S1, S2, and Carry In) determine the operation mode of the counter. Lines S1 and S2 determine one of four operations; preset (program), increment (count up), decrement (count down), or hold (stop count). Note that in the preset mode a clock pulse is necessary to load the counter, and the information present on the data inputs (D0, D1, D2, and D3) will be entered into the counter. Carry Out goes low on the terminal count, or when the counter is being preset.

This device is not designed for use with gated clocks. Control is via S1 and S2.

A prescaler can be constructed using the MC10136 in conjunction with the MC10231 which will operate at over 200 MHz input frequency. A 500 MHz prescaler is possible using an MC1690 500 MHz D Ftip-Flop, an MC1670 300 MHz D Ftip-Flop, and the MC10136.

V_{CC1} = Pin 1 V_{CC2} = Pin 16 V_{EE} = Pin 8

FUNCTION SELECT TABLE

S2	Operating Mode
L	Preset (Program)
Н	Increment (Count Up)
٦	Decrement (Count Down)
Н	Hold (Stop Count)
	L

 P_D = 625 mW typ/pkg (No Load) f_{count} = 150 MHz typ

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Test procedures are shown for only one output. The other outputs are tested in the same manner.

L SUFFIX CERAMIC PACKAGE **CASE 620**

	TEST VOLTAGE VALUES												
	(Volts)												
@ Test · Temperature	VIH max	VIL min	VIHA min	VILA max	VEE								
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2								
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2								
+85°C	-0.700	-1.825	-1.035	-1 440	-5.2								

Pro- Pro-								_			+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
Section Sect			Pin					Test Limits				TEST	OLTAGE A	PRI IED TO PI	NS LISTED B	FLOW	
Power Supply Charles Fig. Set			Under			L									T		
Input Current					_												
Second Delay Seco																	
1	Input Current	lin H				1	1		t		μAdc		ľ	i .	1 1	8	1,16
No. No.		ì			l		1			Ī	1 1		l	Į.	4		
Logic		i	13	-	-	-	-	290	-	-	1		-	-	-	†	1
Output Voltage		lin L	All	-	_	0.5	-	-	-	٠ -	μAdc	-	0	-	-	8	1, 16
Output Voltage		VOH	_	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	12	7,9	-	-	8	1, 16
Threshold Voltage VOLA 14 2		VOL		-1.890	-1.675	-1.850	_	-1.650	-1.825	-1.615	Vdc	-	7,9		_	8	
Threshold Voltage Switching Times (50-ohm Load) Propagation Delay Clock Input 113+14+ 14 0.8 4.8 1.0 3.3 4.5 1.4 5.0 ns 12 - 13 14 8 1.16 113+14+ 4 2.0 10.9 2.5 7.0 10.5 2.4 11.5 7 - 1 4 4 4 2.0 10.9 2.5 7.0 10.5 2.4 11.5 7 - 1 4 4 4 4 1.6 1.4 1.4 1.6 5.0 6.9 1.9 7.5 7 13 10 4 4 1.6 5.0 6.9 1.9 7.5 7 13 10 4 7 13 10	Threshold Voltage			-1.080		-0.980	-		-0.910	-	Vdc		7,9	12			
Set Up Time		VOLA	14 ②	-	-1.655	-	-	-1.630	-	-1.595	Vdc		7,9	-	12	8	1, 16
Clock Input 113-144 14 0.8 4.8 1.0 3.3 4.5 1.4 5.0 ns 12 - 13 14 8 1.16 13+144 14 0.8 4.8 1.0 3.3 4.5 1.4 5.0 ns 12 - 13 14 8 1.16 13+144 14 0.8 4.8 1.0 3.3 4.5 1.4 5.0 ns 12												+1.11 V	+0.31 V	Pulse in	Pulse Out	-3.2 V	+2.0 V
113+14- 14		1										1		1	1		
1/3 4	Clock Input										ns		1	13		8	1,16
Carry In To Carry Out													I.			1 1	
Carry In To Carry Out													(1 🕴		1 1	
Set Up Time Data Inputs 110+4+ 4	Carry to To Carry Out		1										1	10		1 1	
Data Inputs	Carry III 10 Carry Cut		4	1.6	7.4	1.6	5.0	6.9	1.9							1	
Select Inputs 19+13+ 14	Set Up Time	l	ì		ŀ		1	1	1		1 1	1		l	1	i i	1 1
112-13+ 14	Data Inputs	t12+13+	14	-	-		-	-	-	-		-	7,9	12, 13	14	1 1	
Select Inputs 113+10- 14 - - - - - - - - -				-	-	1	-	-	-			-	7,9	12, 13	1 1	i	
Carry In Input 110-13+ 14	Select Inputs	t9+13+	14	l .	1							-	_		↓		1 1
Hold Time Data Inputs		t7+13+		-	-	1	-	-	-	-	1 1	1	1	1	, ,	1 1	
Hold Time Data Inputs	Carry In Input			1	1		I	1	l .	-						1	i
Data Inputs		¹ 13+10+	14	_	_	-1.0	-	-	-			l ′	-	10,13	14	1 1	
Select Inputs 13-12- 14			14	_		-10		_		_			7.0	12 13	14	{ }	1 1
Select Inputs 13.99 142.5 9.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7	Data inputs			1	ı		1	-	1						1 7	J i	
Carry In Input 13+7+ 14 2.5 7, 13 1 13+7+ 14 14 1.6 7, 13 1 13+7+ 14 14 1.6 7, 13 1 10+13+ 14 14 1 3.1 7, 19 10, 13 10+13+ 14 125 - 126 150 - 125 - MHz 7 9 10, 13 10+13+ 14 125 - 126 150 - 125 - MHz 9 - 13 10+13+ 14 125 - 126 150 - 125 - MHz 9 - 13 10+13+ 14 14 14 14 14 14 14 14 14 14 14 14 14	Select Inputs	1 -	14	١ ـ	-	-2.5	_			\ -	1 1	١ _	1		1 1	1 1	ì i
Carry In Input t13+10- 141.6			14	-	-			-		-	1	-	-				
110+13+ 14	Carry In Input		14	-	-		-	-	-	-	↓	7	9	10, 13		1 1	
Countdown 14 125 - 125 150 - 125 - MHz 9 -			14	1	-		-	-		-	'	7	9	10, 13	1		
Rise Time	Counting Frequency	fcountup			l			1		l			-	13	1 1	1 1	ll
(20% to 80%)		fcountdown	1		1	1		1	I	l	MHz	9	-] †	1 1	
Fall Time			1	0.9	3.3	1 17		3.3	1.1	3.5	ns	1 ?			4		
					1 1		1		1							1	
	Fall Time (20% to 80%)	114-	14		1 1		2.0 2.0	1		l •	i 🕴	1 1	-	1 +	14	1 1	i •

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

SET UP AND HOLD TIMES

COUNT FREQUENCY TEST CIRCUIT

UNIVERSAL BINARY UP/DOWN COUNTER

APPLICATIONS INFORMATION

To provide more than four bits of counting capability several MC10136 counters may be cascaded. The Carry In input overrides the clock when the counter is either in the increment mode of the decrement mode of operation. This input allows several devices to be cascaded in a fully synchronous multistage counter as illustrated in Figure 1. The carry is advanced between stages as shown with no external gating. The Carry In of the first device may be left open. The system clock is common to all devices.

The various operational modes of the counter make it useful for a wide variety of applications. If used with MECL III devices, prescalers with input toggle frequencies in excess of 300 MHz are possible. Figure 2 shows such a prescaler using the MC10136 and

MC1670. Use of the MC10231 in place of the MC1670 permits 200 MHz operation.

The MC10136 may also be used as a programmable counter. The configuration of Figure 3 requires no additional gates, although maximum frequency is limited to about 50 MHz. The divider modulus is equal to the program input plus one (M = N + 1), there fore, the counter will divide by a modulus varying from 1 to 16. A second programmable configuration is also illustrated in Figure 4. A pulse swallowing technique is used to speed the counter operation up to 110 MHz typically. The divider modulus for this

Figure 4. A pulse swallowing technique is used to speed the counter operation up to 110 MHz typically. The divider modulus for this figure is equal to the program input (M = N). The minimum modulus is 2 because of the pulse swallowing technique, and the modulus may vary from 2 to 15. This programmable configuration requires an additional gate, such as ½MC10109 and a flip-flop such as ½MC10131.

FIGURE 1 – 12 BIT SYNCHRONOUS COUNTER

MSB

Cin Q0 Q1 Q2 Q3 Cout

C C

C

System
Clock

Note: S1 and S2 are set either for increment or decrement operation.

FIGURE 3 - 50 MHz PROGRAMMABLE COUNTER

FIGURE 4 - 100 MHz PROGRAMMABLE COUNTER

UNIVERSAL DECADE COUNTER

MC10137

SEQUENTIAL TRUTH TABLE*

			1	NPU	TS			OUTPUTS							
S1	S2	D0	D1	D2	D3	Carry	Clock	00	Q1	Q2	QЗ	Carry Out			
	TIIL	I 0 0 0	I 0 0 0	1 0 0 0	Lφφφ	φ L L	IIII	IJIJ	ILLL	ILLL	LIIL	ILII			
ודרר	riii	10000	10000	00001	00001	HIIHH	1111	IIIII	1111			IIIII			
III	L L L	φ φ φ	\$	φ φ	φ φ φ	L . L	III	ר בר	IJJ			IIL			

ϕ = Don't care.

- Truth table shows logic states assuming inputs vary in sequence shown from top to bottom.
- A clock H is defined as a clock input transition from a low to a high logic level.

The MC10137 is a high speed synchronous counter that can count up, count down, preset, or stop count at frequencies exceeding 100 MHz. This decade counter is useful in high speed central processors and peripheral controllers, minicomputers, high speed digital communications equipment and instrumentation. The flexibility of this device allows the designer to use one basic counter for most applications. The synchronous count feature makes the MC10137 suitable for either computers or instrumentation.

Three control lines (S1, S2, and Carry In) determine the operation mode of the counter. Lines S1 and S2 determine one of four operations; preset (program), increment (count up), decrement (count down), or hold (stop count). Note that in the preset mode a clock pulse is necessary to load the counter, and the information present on the date inputs (D0, D1, D2, and D3) will be entered into the counter. Carry Out goes low on the terminal count. The Carry Out on the MC10137 is pertially decoded from Q1 and Q2 directly, so in the preset mode the condition of the Carry Out after the Clock's positive excursion will depend on the condition of Q1 and/or Q2.

When an output is not needed, it can be left open to conserve system power. (The open emitter output will require no power if left open.) The counter changes state only on the positive going edge of the clock. Any other input may change at any time except during the positive transition of the clock. The sequence for counting out of improper states is as shown in the State Diagrams.

A prescaler can be constructed using the MC10137 in conjunction with the MC10231 which will operate at over 200 MHz input freugency. A 500 MHz prescaler is possible using an MC1690 500 MHz D Flip-Flop, an MC1670 300 MHz D Flip-Flop, and the MC10137.

V_{CC1} = Pin 1 V_{CC2} = Pin 16 V_{EE} = Pin 8

FUNCTION SELECT TABLE

S1	S2	Operating Mode
L	٦	Preset (Program)
L	I	Increment (Count Up)
Н	٦	Decrement (Count Down)
Н	Н	Hold (Stop Count)

P_D = 625 mW typ/pkg (No Load) f_{count} = 150 MHz typ

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Test Procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

L SUFFIX CERAMIC PACKAGE **CASE 620**

	TEST VOLTAGE VALUES													
	(Volts)													
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE									
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2									
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2									
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2									

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin			,		Test Limits				TEST	OLTAGE A	PRI IED TO PI	NS LISTED BE	: LOW	
	ł	Under		o°c		+25°C		+85								(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Mex	Min	Mex	Unit	VIH max	VIL min	VIHA min	VILA mex	VEE	Gnd
Power Supply Drain Current	1E	- 8		-	-	120	150			mAdc	~		<u> </u>		8	1, 16
Input Current	l _{in} H	5,6,11,12	· -	-	-	_	220 265		-	μAdc I	5,6,11,12			:	8	1,16
		9,10]	_	_	_	245	_		ll	9.10	_	_	-		
	<u>L</u> .	13	-	-	-	-	290	-		1	13	-	-	-	7	. 7
	lin L	All	-	-	0.5	-	-	-	-	µ Adc	-	0	-	-	8	1, 16
Logic "1" Output Voltage	Voн	14 ②	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	12 .	7,9	-	-	8	1, 16
Logic "0" Output Voltage	VOL	14 ②	-1.890	-1.675	-1.85C	-	-1.650	-1.825	-1.615	Vdc	-	7,9	-	-	8	1, 16
Logic "1" Threshold Voltage	Vона	14 ②	-1.080	-	-0.980	-	-	-0.910	-	Vdc		7,9	12	-	8	1, 16
Logic "0" Threshold Voltage	VOLA	14 ②	-	-1.655	-	-	-1.630	-	-1.595	Vdc	_	7,9	-	12	. 8	1, 16
Switching Times (50-ohm Load)											+1.11 V	+0.31 V	Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay		ļ	1		k.					ļ		ł		1		
Clock Input	t13+14+	14	0.8	4.8	1.0	3.3	4.5	1.1	5.0	ns	12	-	13	14	8	1, 16
	t13+14-	14	0.8 2.0	4.8 10.9	1.0 2.5	3.3 7.0	4.5 10.5	1.1 2.5	5.0 11.5	1 1	7		1 1	14		
i	113+4+ 113+4-	4	2.0	10.9	2.5	7.0	10.5	2.5	11.5		ı ź	_	1 🕴	4		
Carry In To Carry Out	¹ 10-4- ¹ 10+4+	4 3	1.4 1.4	7.4 7.4	1.6 1.6	5.0 5.0	6.9 6.9	1.5 1.5	7.5 7.5		7	13 13	10	1		
Set Up Time	i	1	Ì	ĺ		ĺ				1 1	l		.]	}	١. ١.	1 1
Data Inputs	^t 12+13+ ^t 12-13+	14 14		-	3.5 3.5	-	-				_	7, 9 7, 9	12, 13 12, 13	14		
Select Inputs	t9+13+ t7+13+	14 14	-	-	7.5 7.5	-		-			-	-	9, 13 7, 13			1 1
Carry In Input	[†] 10-13+ [†] 13+10+	14 14		ł	3.7 -1.0	_		-	-		7 7	9	10, 13 10, 13	14 14		
Hold Time	i i				1	_	1			} {	l			1		1 1
Data Inputs	t13+12+ t13+12-	14 14		-	-1.0 -1.0	-		-	-		_	7, 9 7, 9	12, 13 12, 13	14		1
Select Inputs	¹ 13+9+ ¹ 13+7+	14 14	_		-2.5 -2.5	_					-	-	9, 13 7, 13			
Carry In Input	t13+10- t10+13+	14 14		-	-1.6 3.1	-			}		7	9	10, 13 10, 13			
Counting Frequency	fcountup countdown	14 14	125 125	-	125 125	150 150	-	125 125	-	MHz MHz	7 9	-	13			
Rise Time	14+	4	0.9	3.3	1,1	2.0	3.3	1.1	3.5	ns	!	-		1		
(20% to 80%)	114+ 14-	14			i I	2.0		1		1 1		_		14	1	
(20% to 80%)	114-	14		I ♦	l 🕴	2.0	†	1	1	1	1		j †	14	i †	! ♦

¹ Individually apply VIL min to pin under test.

Measure output after clock pulse V_{IL} - V_{IH} appears at clock input (pin 13)

³ Before test set Q1 and Q2 outputs to a logic low.

COUNT FREQUENCY TEST CIRCUIT V_{CC1} = V_{CC2} = +2.0 Vdc 00 С Q: 50-ohm termination to ground lo-cated in each scope channel input. DO D1 02 D2 Input Pulse D3 All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be 1/4 inch from TP_{in} to input pin and TP_{out} to output pin. Q3 Duty Cycle = 50% S1 Cout Unused outputs are connected to a 50-ohm resistor to ground. +1,11 V VEF 2

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

UNIVERSAL DECADE UP/DOWN COUNTER 100-<u>02</u> <u>00</u> 13 O-Clock 14 00 11 01 ს 12 D**0** 15 Q1 6 D2 2 02 6 5 D3 6 4 Carry Out 3 03

MC10138

Advance Information

This is advance information and specifications are subject to change without notice. See General Information section for packaging and maximum ratings.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same

L SUFFIX CERAMIC PACKAGE **CASE 620**

		TEST	VOLTAGE	VALUES	
@ Test			(Volts		
Temperature	VIHmax	VILmin	VIHAmin	VILAmex	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

		_								+85 C	-0.700	-1.625	-1.035	-1.440	-5.2	ł
		_					. Test Limi						LTAGE A			
]	Pin Under	-3	0°C		+25°C		+8	5°C			TO PINS	LISTED	BELOW		
Characteristic	Symbol	Test	Min	Mex	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	(Vcc)
Power Supply Drain Current	1E	8			_	70	88	-		mAdc	9	-		-	8	1,16
Input Current	lin H	12	-	-	-	-	220	-	-		12		-			
		5,6,10,11	-	-	-	-	245	-		1 1	5,6,10,11	-	-	-	1 1	1 1
		7 9	-	-	-	-	290 410	_	l -	♦	7 9	_	_	_	ا ا	ا ⊎
	 	All	<u> </u>		0.5		410			µAdc	-	 -		- -	8	<u> </u>
Logic "1"	V _{OH}	3,14(2)	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	9		-	<u> </u>	8	1,16
Output Voltage	VOH	2,4.13,15		-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	5,6,10,11	_		1 -	8	1,16
oo ipar vonage		0	1	-0.030	-0.300	_	-0.010	-0.050	1-0.700	***	3,0,10,11	-	_	_	ľ	1,16
Logic "0"	VOL	3,14 ①	-1.890	-1,675	-1.850		-1.650	-1.825	-1.615	Vdc	5,6,10,11	_	_		8	1,16
Output Voltage	"	2,4,13,15	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	9	-	~	-	8	1,16
		2					L		L							
Logic "1"	VOHA	2,4,13,15	-1.080	-	-0.980	-	-	-0.910	-	Vdc	-	-	5,6,10,11	-	8	1,16
Threshold Voltage		3,14.2		l	1									ļ		1 1
		13,15(1)		-	♥	_	-	♦	_	♦	_	-	9 7,12	-	♦	\ ♦
Logic "0"	VOLA	2,4,13,15		-1.655	<u> </u>		-1.630		-1.595	Vdc	-	÷	7,12	5,6,10,11	8	
Threshold Voltage	VOLA	2.4,13,13		1.055	-		1.030	_	-1.595	Vac		_	_	3,6,10,11	l i	1,16
	İ	3,14(1)		1 1			1 1	_	1 1	ΙL		_	_	9	1 1	1 1
		13,15②		♥	-	-	▼	-	▼	▼	-	-	-	7,12	▼	▼
Switching Times (50-ohm Load)													Pulse in	Pulse Out	-3.2 V	+2.0 V
Propagation Delay								ł		1			1	l		
Clock Delays	112+15+	15				3.5		l _	_	ns			12	15	8	
50 Ω Loads	t12+15+	14		ľ		3.5	-		_	l "		-	12	14	١ů	1,16
	17+13+	13						-		1 1	_	-	7	13		1 1
	17+4+	4			-		-	-	-		-	-	l i	4		1
	17+2+	2	-		-		_	-	-		-	-		2		1 1
	17+3+	3		l	-		-		-		-	-	₩	3		
	112+15-	15	-	-	-		-	-	-		-	-	12	15	1 1	
	t12+14-	14	-	-	-	l i		1 :		1 1	-	-	12	14	11	
	t7+13-	13		-	- 1		-	-	-	1 1	-	-	7	13		1 1
	17+4-	4 2		-	-		-	-	-	1	-	-		4		1 1
	17+2-	3	l	_		♦	_	-	_	1 1		-	l T	2 3		11
S-+ S-1-	t7+3-			l	'	٠,	_	i -	1 -	lí	_ '					l I
Set Delay	t11+15+	15 14	<u> </u>	_		5.2	-	_	_	1 1	_	-	11	15 14		11
Reset Delay	111+14-	14	1 -	_	- 1	l	-	_	_	11	_	_	''	14	1 1 1	1 1
	t9+14+ t9+15-	15	_				1 [1 1		l 👃	_	_	9	15	11	1
Rise Time	t14+	14	_			2.5	_	_		ns V	1 -		11	14		1 1
(20% to 80%)	115+	15	1 -		1 - 1	1.0	_	! -	1 -	l '' '	_	_	;;	15		l ŀ
Fall Time	t14-	14	_	-	-			-	-		_	_	و ا	14		11
(20% to 80%)	115-	15	-	-	-	l ₩	-	l -	_	l₩	-	-	9	15		ll
Counting Frequency	fcount	2	-	-		150		-	l -	MHz	_	-	,	2	ا ال ا	1 4
	"""	15	i _	i _	_	150	_	I _	l _	MHz	l _	_	12	15	7	, ₹

^{*}Individually apply VILmin to pin under test.

① Set all four flip-slops by applying pulse

^{*}Individually apply VI_{Lmin} to pin under test.

① Set all four flip-flops by applying pulse

② Reset all four flip-flops by applying pulse

VI_{Lmin} to pins 5,6,10,11 prior to applying test voltage indicated.

VI_{Lmin} to pin 9 prior to applying test voltage indicated.

MC10141

The MC10141 is a four-bit universal shift register which performs shift left, or shift right, serial/parallel in, and serial/parallel out operations with no external gating. Inputs S1 and S2 control the four possible operations of the register without external gating of the clock. The flip-flops shift information on the positive edge of the clock. The four operations are stop shift, shift left, shift right, and parallel entry of data. The other six inputs are all data type inputs; four for parallel entry data, and one for shifting in from the left (DL) and one for shifting in from the right (DR). All four outputs are capable of driving 50 ohm lines.

When the register is used for serial output only, the unused emitter follower outputs can be left open.

** H ** Stop Short ** One, One of a ** One, One of a ** One, One of a ** One, One of a **

See General Information section for packaging.

_

Shift Left'

DL Q00 Q10 Q20

Each MECL 10.000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs tested in the same manner.

L SUFFIX CERAMIC PACKAGE **CASE 620**

		TEST VO	LTAGE V	ALUES	
@ Test			(Volts)		
Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2		, !	1	
	i	Pin			MC10	141L Test	Limits				TES			IED TO PI	NS		, !	1 '	
	ŀ	Under	-3	0°C	L	+25°C		+8	5°C			LIST	ED BELO	W:			1	()	(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	V _{IHmax}	VILmin	VIHAmin	VILAmax	VEE	P1	P2	P3	Gnd
Power Supply Drain Current	ΙE	8		_	-	82	102	-	_	mAdc		_	-	-	8		-	-	1,16
Input Current	lin H	5	-	-	-	_	220	-	-	μAdc	5	-		-	8	-	-	-	1,16
		6	-	-	-	-	220	-	-		6	-	-	-		-	-	- 1	
	ļ	7	-	-	-	-	245	-	-	↓	7	-	-	-	l 🛊 l	- 1	-	-	₩
		4			-		265		-	1	4					-	-		'
	lin L	12	-	-	0.5	-	-	-	-	μAdc	4,5,6,7,9, 10,11,13	12	-	-	8	-	-		1,16
Logic "1" Output Voltage	VOH	3	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	6	-	-	-	8	4	-	-	1,16
Logic "0" Output Voltage	VOL	3	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	-	-	-	-	8	4	-	-	1,16
Logic "1" Threshold Voltage	V _{OH} A	3	-1.080		-0.980	- - -	- - -	-0.910	- - - -	Vdc	- 6 6	- 4	6 - -	- 7 -	8	4	- 4 -	- - 4	1,16
Logic "0" Threshold Voltage	V _{OLA}	3	- - -	-1.655	- - -	- - -	-1.630	- - -	-1.595	Vdc	- - 6	- 66	- - -	6 7 -	8	4 4 - -	- 4 -	- - 4	1,16
Switching Times (50 Ω Load)															-3.2 V			$\overline{}$	+2.0 V
Propagation Delay Setup Time (t _{setup})	t4+3+ t12+4+	3 14	0.9 	3.9	1.0 2.5	2.9 -	3.8	1.2 -	4.2	ns 	② -	-	_	-	8	-	-	-	1,16
	^t 12-4+ ^t 10+4+ ^t 10-4+		-	-	2.5 5.0 5.0	-	-	-	-		-		-	-		-	-	-	
Hold Time (thold)	t4+12+		-	-	1.5	-	-	-	-		-	-	-	-		-	-	-	
	t4+12- t4+10+ t4+10-		-	-	1.5 1.0 1.0	-	-	-			-	- -	-			-	-	-	
Rise Time (20% to 80%) Fall Time (20% to 80%) Shift Frequency	t3+ t3- fShift	3 3 -	1.0 1.0 150	3.4 3.4 -	1.1 1.1 150	1.7 1.7 200	3.3 3.3	1.1 1.1 150	3.6 3.6 -	MHz	<u></u> බලාල	- - -	- - -	- - -	V	<u>-</u> -	- - -	-	

- These tests to be performed in sequence as shown.
 See switching time test circuit for test procedures.
 See shift frequency test circuit for test procedures.
 Reset to zero before performing test
 Reset to one before performing test.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs tested in the same manner.

@ Test

TEST VOLTAGE VALUES

(Volts)

Temperature VIH max VIL min VIHA min VILA max VEE

P SUFFIX PLASTIC PACKAGE **CASE 648**

e manner.						<u> </u>			I e	mperature	VIH max	VIL min	VIHA mir	1 VILA max	· VEE		1	(!	1
ic manner.				5		_j				-30°C	-0.890	-1.890	-1.205	-1.500	-5.2	1		(!	1
				5—						+25°C	-0.810	-1.850	-1.105	-1.475	-5.2]		(!	
										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	l	1 '	1 1	
		T			MC10	141P Tes	t Limits				TE	ST VOLT	AGE APPL	IED TO PI	NS	1		1 1	ĺ
	Į.	Pin	-3	0°C		+25°C		+8	5°C		1	LIS	TÉD BELO	W:				()	(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VFF	P1	P2	P3	Gnd
Power Supply Drain Current	1 _E	8	_			82	102			mAdc	-	-	-		8	-	-	-	1,16
Input Current	lin H	5	_	_	-	_	220	-	-	μAdc	5	-	-	-	8	-	-		1,16
		6	-	۱ –	- 1		220		_	1 1	6	_	-		l ı		-	(1
	l	7	-	_	-	-	245			L	7		- 1		l T	-	-	-	1 4
	1	4	-	-	- 1	-	265		~		4	-	_	-	₩	-	-	- 1	
	lin L	12	-		0.5	_	-	-	-	μAdc	4,5,6,7,9	12		-	8	-	-		1,16
							İ.,				10,11,13								İ
Logic "1"	Voн	3	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	6		_		8	4	-		1,16
Output Voltage				l						ļ	ŀ				l		'	1	
Logic "0"	VOL	3	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	-	-	-	-	8	4	-	-	1,16
Output Voltage		I	I	l			ł											L	
Logic "1"	VOHA	3	-1.080	-	-0.980	-	-	-0.910	-	Vdc	T -	T =	6	-	8	4	T -	-	1,16
Threshold Voltage	①		1 1	-		-	-		-		6	4	-	7	H	4	-	-	1 1
		₩ .	₩	-	₩	-	-	l 🖖 :	-	₩	6	(4)	-	-	₩	-	4	-	i 🔻
									-		-			-	1	·	-	4	
Logic "0"	Vola	3	-	-1.655	-	-	-1.630	-	-1,595	Vdc		l =	-	6	8	4	-		1,16
Threshold Voltage	U	1 1	-	1 1	-	_		-		1	-	(S)	-	7		4	-	-	
	i	\ ₩	1 -	\ ₩	-	-	V	-		\ ₩	6		-	-	\	}	4	4	\ \
2 i i i i i i i i i i i i i i i i i i i		'	 	<u> </u>	-			├ ──	'	<u> </u>	├ -°				-3.2 V	-	 -		+2.0 V
Switching Times (50 Ω Load)	1		Ì							ļ		1		1	-3.2 V	-	1	1	
Propagation Delay	t4+3+	3	-	-	1.0	2.9	3.8	-	_	ns	2	-	-	-	8	-	-		1,16
Setup Time (t _{setup})	112+4+	14	_	_	2.5 2.5	_	-	_	-		l] [1 1	_	-	-	
	t12-4+	1 1		-	5.0	_	_	_		1 1	i	Ι Ξ.		_		-	-	_	1 1
	t10+4+	1 1	1 -	_	5.0	_			_					_	1 1	_	_	_	
Hald Time (a)		11	_	-	1.5	_		_			į.	_	_	-	1 1		1		
Hold Time (thold)	t4+12+	1 1	-	_	1.5	_	_	-	-		Į	_	_	_	1 1	1 _	-		
	t4+12- t4+10+		1 -	_	1.0	_	1 -]		i	_	_	1 -		_	1 -	1 _	
	t4+10+	♦	-	_	1.0	_	-	1 -	_		1		_	-	11.			1	
Rise Time (20% to 80%)		3	1 _	_	1.1	1.7	3.3	-	_		l a		_	_		_	1 -	_	
Fall Time (20% to 80%)	t3+ t3_	3	1 -		1.1	1.7	3.3	-	-	! ¥	003		_	<u>-</u>	1 1	-	1 -	-	1 1
Shift Frequency	fShift	1 -	-	_	150	200		-	_	MHz	I ă	_	_	l _	V	-	-	-	V
	i .ouitt	1	1	ı		00	i	I	1	1		1	I	1	1 .	1	1	1	

- 1 These tests to be performed in sequence as shown.
- See switching time test circuit for test procedures.
 See shift frequency test circuit for test procedures.
 Reset to zero before performing test.
 Reset to one before performing test.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

SHIFT FREQUENCY TEST CIRCUIT

Advance Information

This is advance information and specifications are subject to change without notice. See General Information section for packaging.

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

L SUFFIX CERAMIC PACKAGE **CASE 620**

	TEST V	OLTAGE VA	LUES	
		(Volts)		
VIH max	VIL min	VIHA min	VILA max	VEE
-0.890	-1.890	-1.205	-1.500	-5.2
-0.810	-1.850	-1.105	-1.475	-5.2
-0.700	-1.825	-1.035	-1.440	-5.2

										+25°C	-0.610	-1.650	-1.105	-1.473	-5.2	i
										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	İ
		Pin			Mo	C10153L	Test Limit	5			TEST	OLTAGE A	PPLIED TO P	INS LISTED E	BELOW:	ĺ
		Under	-30	ooc		+25°C		+8!	o°C							(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8	-	_	-	-	75			mAdc	-	13	-	-	8	1,16
Input Current	linH	3	-	-	-	-	245	-	-	μAdc	3		-	-	8	1,16
		4	-	-	-		290	-	-		4	-		-		
	İ	13	-	_	_	-	350 350	_	_	ì ♦	5 13	_	_		\ ♦ '	\ ▼
	linL	3	<u> </u>		0.5					µAdc		3		-	8	1,16
_ogic "1"	VOH	2	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	3	4			8	1,16
Output Voltage	1 104	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	3	13	-	-	8	1,16
_ogic ''0''	VOL	2	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc		3,13	-	-	8	1,16
Output Voltage		2 2	♦	♦	♦		₩	₩	🛊		3,5	13 3,4	-	_	•	\ \
.ogic ''1''	VOHA	2	-1.080	-	-0.980			-0.910	-	Vdc	3	4	-	5	8	1,16
Threshold Voltage		2	1 1	-		-	-				l -	4	3	-	1 1	
		2 2†		-		-					3 3	4	-	_		1 1
		211		_			_	1 1	1	1 1	-	_	_		1 1	1 1
		211	1 1	-	} }	1			-	1 1	} -	-	-	· -		1 1
•		2 2	1	-	•						3	_	_	13	♦	♦
_ogic ''0''	V	2	-	-1.655	<u> </u>		-1.630	-	-1.595	Vdc	3	4	5	-	8	1,16
Threshold Voltage	VOLA	2	_	1.033	-	-	1.030		-1.555	1	_	4		3	1 1	'''
		2	-		-	-	1 1		1 1		-	4	-	-	1 1	1
		2†	-				1 1				<u> </u>] -	-	-		1
	ļ	211	_	♦	_	_	♦	-	♦	♦	3		_	13	♦	♦
Switching Times (50 \(\text{12 Load} \)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0
Propagation Delay		2			_	3.0	_	1	_	ns		- I	3	2	8	1,1
Topagation Delay	t3+2+ t13+2+	2		<u> </u>	_	4.0	1 =	1	_	113	3.		4	2	l ĭ	
	15-2+	2		-	-	2.0	-	1	-		-		5	2	1 1	
	tSetup	3	-	-	-	0.7	-			1	-	-	3	2	1 1	
	tHold	3		-	-	0.7	-				-		3	2		
Rise Time (20% to 80%)	t ₂₊	2		1	-	2.0	-				-	-	3	2		1
Fall Time (20% to 80%)	t2-	2	1	1	-	2.0	-	1	-	\ ▼	1 -	-	3	2	▼	▼

[†]Output level to be measured after a clock pulse has been applied to the clock input (Pin 4).

@ Test

Temperature -30°C

+25°C

^{††}Data input at proper high/low level while clock pulse is low so that device latches at proper high/low level for test. Levels are measured after device has latched.

^{*}Latch set to zero state before test.

r V_{IH} max VIL min

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

12-BIT PARITY GENERATOR-CHECKER

MC10160

The MC10160 consists of nine EXCLUSIVE-OR gates in a single package, internally connected to provide odd parity checking or generation. Output goes high when an odd number of inputs are high. Unconnected inputs are pulled to low logic levels allowing parity detection and generation for less than 12 bits.

INPUT	OUTPUT
Sum of High Level Inputs	Pin 2
Even	Low
Odd	High

 $P_D = 320$ mW typ/pkg (No Load) $t_{od} = 5.0$ ns typ

APPLICATIONS INFORMATION

The MC10160 is useful in any system requiring high speed detection or generation of parity. The MC10160 can generate parity for twelve bits in 4 ns. A large number of functions on one chip reduces package count and saves system power. As shown in Figure 1, by using four MC10160's and one MC10107 parity can be checked or generated on 48 bits in 9.5 ns, or 7.5 ns if the MC10107 is replaced by a MECL III MC1672 or MC1674.

If parity detection or generation is required for less than twelve bits, the unnecessary inputs can be left open. Input pulldown resistors will insure that the unused inputs are pulled to the low logic level.

General Information section for packaging and maximum ratings.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for one set of conditions. Complete testing according to truth table.

L SUFFIX CERAMIC PACKAGE CASE 620

@ Test
Temperature
-30°C
+25°C
±8E0C

		TEST VO	LTAGE VALU	ES	
			(Volts)		
Г	VIHmax	VILmin	VIHAmin	VILAmax	VEE
	-0.890	-1.890	-1.205	-1.500	-5.2
	-0.810	-1.850	-1.105	-1.475	-5.2
	-0.700	-1.825	-1.035	-1.440	-5.2

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin			M	C10160	L Test Li	mits			TEST	OLTAGE APPLIE	ED TO BING I	ICTED BELO	NAJ -	
		Under	-3	0°C		+25°C		+8	5°C		1231 V	OLIAGE AFFLIE	ED TO FINS L	. ISTED BELC		(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	ΙE	8	-	_	-	62	78	=	-	mAdc	4,5,9,10,13,14	-	-	-	8	1,16
Input Current	linH	3 4	_	-	-	-	265 220	-	_	μAdc μAdc	3 4	-	_	-	8 8	1,16 1,16
	linL	3	-	- "	0.5	-	-	-	-	μAdc		3	_	_	8	1,16
Logic "1" Output Voltage	Voн	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	3	4,5,6,7,9,10, 11,12,13,14,15	-	-	8	1,16
Logic "0" Output Voltage	VOL	2	-1.890	-1.675	-1.850	-	-1.650	- 1.825	-1.615	Vdc	_	3,4,5,6,7,9,10, 11,12,13,14,15	-	_	8	1,16
Logic "1" Threshold Voltage	VOHA	2	-1.080	_	-0.980	-	-	-0.910	_	Vdc	-	4,5,6,7,9,10,11, 12,13,14,15	3	-	8	1,16
Logic "0" Threshold Voltage	VOLA	2	-	-1.655	-	-	-1.630	_	-1.595	Vdc	-	3,5,6,7,9,10,11 12,13,14,15	_	4	8	1,16
Switching Times (50 Ω Load) Propagation Delay											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Rise Time	t3+2+ t3+2- t3-2- t3-2+ t4+2+ t4+2- t4-2- t4-2+	2	1.8	8.1	2.0	5.0	7.5	2.0	8.0	ns	- 4 - 4 - 3 - 3	-	3 4	2	8	1,16
(20% to 80%)	t ₂₊		1.1	3.5	1.1	2.0	3.3	1.0	3.5		-	-	3			
(20% to 80%)	t ₂₋		1.1	3.5	1.1	2.0	3.3	1.0	3.5	•			3	•	†	

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for one set of conditions. Complete testing according to truth table.

P SUFFIX
PLASTIC PACKAGE
CASE 648

@ Test Temperature -30⁰C

+25°C

TEST VOLTAGE VALUES (Volts) **VIHmax** VILmin **VIHAmin VILAmax** VEE -0.890 -1.890 -1.205 -1.500 -5.2 -0.810 -1.850 -1.105 -1.475 -5.2

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2]
	1	Pin			M		P Test Lin				TEST V	OLTAGE APPLIE	ED TO PINS I	ISTED BELO	w:	
		Under		0°C		+25°C			5°C							(Vcc
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	ViHmax	VILmin	VIHAmin	VILAmex	VEE	Gnd
Power Supply Drain Current	ľΕ	8		_	-	62	78	_	-	mAdc	4,5,9,10,13,14	-		-	8	1,16
Input Current	linH	3 4	_	_	_	=	265 220	_	_	μAdc μAdc	3 4	_	=	-	8 8	1,16 1,16
	link	3	T -	-	0.5	-	-	_	-	μAdc		3	_	_	8	1,16
Logic "1" Output Voltage	VOH	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	3	4,5,6,7,9,10, 11,12,13,14,15	-	-	8	1,16
Logic "0" Output Voltage	VOL	2	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	_	3,4,5,6,7,9,10, 11,12,13,14,15	-	-	8	1,16
Logic "1" Threshold Voltage	VOHA	2	-1.080	-	-0.980	-	-	-0.910	_	Vdc	_	4,5,6,7,9,10,11, 12,13,14,15	3	-	8	1,16
Logic "0" Threshold Voltage	VOLA	2	-	-1.655	-	-	-1.630	-	-1.595	Vdc	-	3,5,6,7,9,10,11 12,13,14,15	-	4	8	1,16
Switching Times (50 Ω Load) Propagation Delay											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
r ropagation balay		,			2.0	5.0	7.5					1		2	+	
0	t3+2+ t3+2- t3-2- t3-2+ t4+2+ t4+2- t4-2- t4-2+	2	-		2.0	3.0	7.5	- - - - - -	- - - - - -	ns	- 4 - 4 - 3 - 3	- - - - -	3 4		8	1,16
Rise Time (20% to 80%)	t ₂₊		-	-	1.1	2.0	3.3	-	-		-	-	3			
Fall Time (20% to 80%)	12-	♦	-		1.1	2.0	3.3	_	_	♦	_	_	3		♦	

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

BINARY TO 1-8 DECODER (LOW)

MC10161

The MC10161 is designed to decode a three bit input word to a one of eight line output. The selected output will be low while all other outputs will be high. The enable inputs, when either or both are high, force all outputs high. This device has high Z input pulldown resistors and open emitter outputs.

 $P_D = 315 \text{ mW typ/pkg (No Load)}$ $t_{pd} = 4.0 \text{ ns typ}$

TRUTH TABLE

ENA INP	BLE UTS		PU	TS			_	UTF	UTS	<u>. </u>		
Ē1	ĒΟ	С	В	Α	OO.	Q1	α2	QЗ	Q4	Q5	Ω6	Q 7
L	L	۲	٦	٦	L	Ι	Ξ	H	Ι	н	Н	Ξ
L	L	L	L	н	н	L	н	н	Η	н	н	н
L	L	L	н	L	н	н	L	н	н	н	н	н
L	ᆫ	L	н	н	н	н	н	L	н	н	н	н
L	L	н	L	L	H	н	н	н	L	н	н	н
L	L	н	L	н	н	н	н	н	н	L	н	н
L	L	н	н	ᆫ	н	н	н	Н	н	н	L	н
1 L	L	н	н	н	н	н	н	н	н	н	н	L
н	φ	φ	φ	φ	н	н	н	н	н	н	н	н
φ	н	φ	Φ	φ	Ŧ	н	н	н	Η	H	:н	Н.

 ϕ = Don't Care

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear from is maintained. Dutpust are terminated through a 50-ohm resistor to -20 volts. Test procedures are shown for only one input/output combination. Other combinations are tested according to the truth table.

Characteristic
Power Supply Drain Current

Input Current

1.ogic "1" Output Voltage

Logic "O" Output Voltage

Logic "0" Threshold Voltage

Rise Time (20% to 80%)

Fall Time (20% to 80%)

Propagation Delay

Logic "1" Threshold Voltage

witching Times (50 Ω Load) ĪΕ

1 inH

linL

VOH

VOL

VOHA

VOLA

¹14+13-¹14-13+

†13+

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater then 500 linear (funit maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input/output combination. Other combinations are tested according to the truth table.

P SUFFIX
PLASTIC PACKAGE
CASE 648

TEST VOLTAGE VALUES (Volts) @ Test VEE VIL min VIHA min VILA max VIH ma -30°C -5.2 -0.890 -1.890 -1.205 -1.500 -0.810 -5.2 -1.850 -1.105 -1.475

l	l	Pin	L	MC10161P Test Limits							TEST VOLTAGE APPLIED TO PINS LISTED BELO					
		Under	-3	D _o C		+25°C		+8	5°C							(VCC)
Cheracteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	. IE	8		-	-	61	76	-		mAdc	2,7,9,14,15	-		-	8	1,16
Input Current	linH	14	_	-	-		220	-	_	μAdc	14			-	8	1,16
1	linL	14		_	0.5		I -	-		μAdc		14			8	1,16
Logic "1" Output Voltage	VOH	13 13	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	-	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	2 15	-	=	-	8	1,16 1,16
Logic "0" Output Voltage	VOL	13	-1.890	-1.675	-1.850	_	-1.650	-1.825	-1.615	Vdc	14	-	-	-	8	1,16
Lingic "1" Threshold Voltage	VOHA	13 13	-1,080 -1.080	=	-0.980 -0.980	=	=	-0.910 -0.910	=	Vdc Vdc	=	=	2 15	=	8 8	1,16 1,16
Legic "O" Threshold Voltage	VOLA	13	-	-1.655	-	-	-1.630	-	-1.595	Vdc	-	-	14	_	8	1,16
Suitching Times (90 \Omega Load)													Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	114+13- 114-13+	13	-	_	1.5 1.5	4.0 4.0	6.0 6.0	_	-	ns i	-	_	14	13	8	1,16
Rice Time (20% to 80%)	t13+	13	-	-	1.1	2.0	3.3	-	-		-				1 1	1
Fall Time (20% to 80%)	t13-	13	-	-	1.1	2.0	3.3	-	-	🕴	-	-	\ \	1	🗡	♦

APPLICATION INFORMATION

The MC10161 is a true parallel decoder. No series gating is used internally, eliminating unequal delay times found in other decoders. This design provides the identical 4 ns delay from any address or enable input to any output.

A complete mux/demux operation on 16 bits for data distribution is illustrated in Figure 1. This system, using the MC10136 control counters, has the capability of incrementing, decrementing or holding data channels. When both S0 and S1 are low, the index counters reset, thus initializing both the mux and demux units. The four binary outputs of the counter are buffered by the MC10101s to send twisted-pair select data to the multiplexer/demultiplexer units.

FIGURE 1 - HIGH SPEED 16-BIT MULTIPLEXER/DEMULTIPLEXER Control Selection MC10101 MC10115 so 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 MC10136 MC10164 MC10164 D0 D0 MC10101 MC10115 S00so MC10136 D ĒΟ ĔΟ MC10161 MC10161 Start/Stop

Annual control and the control of the con-

MC10162

The MC10162 is designed to convert three lines of input data to a one-of-eight output. The selected output will be high while all other outputs are low. The enable inputs, when either or both are high, force all outputs low.

P_D = 315 ns typ/pkg (No Load) t_{pd} = 4.0 ns typ

> V_{CC1} = Pin 1 V_{CC2} = Pin 16 V_{EE} = Pin 8

TRUTH TABLE

Г		IN	IPU	rs					UTF	UT	s		
	ĒΟ	Ē1	С	В	4	Ω0	Q1	Q2	QЗ	Q4	Q5	Q6	Q 7
Г	٦	٦	٦	L	L	Н	٦	L	٦	L	٦	L	L
1	니	L	L	L	н	L	н	L	L	L	L	L	L
Т	L	L	L	н	L	L	L	н	L	L	L	L	L
1	L	L	L	н	н	L	L	Ļ	н	L	L.	L	L
ı	١	L	н	L	L	L	L	L	L	н	L	L	L
ı	니	L	н	L	н	L	L	L	L	L	н	L	L
1	L	L	н	н	L	L	L	L	ᅵᅵ	L	L	н	L
ı	L	L	н	н	н	L.	L	L	L	L	L	L	н
ı	н	φ	Φ	φ	φ	L	L	L	L	L	L'	L	L
L	φ	н	φ	φ	φ	L	٦	٦	٦	L	L	٦	L

 ϕ = Don't Care

See General Information section for packaging.

ELECTRICAL CHARACTERISTICS

Each MECL 10,000 series circuit has been designed to meet the dc specifications and the control of

L SUFFIX CERAMIC PACKAGE **CASE 620**

		TEST V	OLTAGE VA	LUES	
			(Volts)		
Fest erature	VIH max	VIL min	VIHA min	VILA max	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

1	Į.					MC 1016	2L Test Lis	nits								
		Pin	-3	o°c		+25°C		+8	5°C		TEST VO	OLTAGE AP	PLIED TO PI	NS LISTED	BE LOW:	(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	¹E	8	-			61	76			mAdc	-		-	-	8	1,16
Input Current	linH	14					220			μAdc	14		_	-	8	1,16
	linL	14		-	0.5	-				μAdc	-	14		-	8	1,16
Logic "1" Output Voltage	VOH	13	-1.060	-0 890	-0.960		-0.810	-0.890	-0.700	Vdc	14	-	-	-	8	1,16
Logic "0" Output Voltage	VOL	13 13	-1.890 -1.890	-1.675 -1.675	-1 850 -1 850		-1 650 -1 650	-1.825 -1.825	-1.615 -1.615	obV otV	2 15	=	=	-	8	1.16 1,16
Logic "1" Threshold Voltage	VOHA	13	-1.080		-0 980			-0 910		Vdc	-		14	-	8	1,16
Logic "0" Threshold Voltage	VOLA	13 13	-	-1.655 -1.655	_		-1.630 -1.630	-	-1.595 -1.595	Vdc Vdc	-	-	2 15	-	8 8	1,16 1,16
Switching Times (50-ohm load)								_					Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	¹ 14+13+ ¹ 14-13-	13 13	1.5 1.5	6.2 6.2	1.5 1.5	4.0 4.0	6.0 6.0	1.5 1.5	6.4 6.4	ns	-	-	14	13	8 	1,16
Rise Time (20% to 80%)	1+	13	1.0	3.3	1.1	2.0	3.3	1,1	3.5	1.	-	-				1
Fall Time (20% to 80%)	t-	13	1.0	3.3	1.1	2.0	3.3	1,1	3.5	•	-	-	*	•	*	*

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lineer from it maintained. Output are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only input/output combination. Other combinations are tested according to the

P SUFFIX
PLASTIC PACKAGE
CASE 648

		(Volts)		
VIH max	VIL min	VIHA min	VILA mex	VEE
-0.890	-1.890	-1.205	-1.500	-5.2
-0.810	-1.850	-1.105	-1.475	-5.2
-0.700	-1.825	-1.035	-1.440	-5.2

				MC10162P Test Limits							TEST VOLTAGE APPLIED TO PINS LISTED BELL					1
<u> </u>		Pin	-3	о°с		+25°C		+6	5°C		TEST V	DLTAGE API	PLIED TO PI	NS LISTED	BELOW:	(VCC)
Cheracteristic	Symbol	Test	Min	Max	Min	Тур	Mex	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	1E	8	-	-	-	61	76	-	-	mAdc	-	-	-		8	1,16
Input Current	linH	14	-	-	-	-	220			μAdc	14		-	-	8	1,16
	linL	14	-	-	0.5	-	-	-	-	μAdc	-	14	-	-	8	1,16
Logic "1" Output Voltage	Voн	13	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	14	-	-	-	8	1,16
Logic "0" Output Voltage	VOL	13 13	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850	-	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	2 15	_	-	-	8	1,16
Logic "1" Threshold Voltage	VOHA	13	-1.080	-	-0.980	-	-	-0 910	-	Vdc	-	-	14	-	8	1,16
Logic "0" Threshold Voltage	VOLA	13 13	-	-1.655 -1.655	-	-	-1.630 -1.630	1 1	-1.595 -1.595	Vdc Vdc	-	-	2 15	-	8	1,16
Switching Times (50-ohm load)													Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	¹ 14+13+ ¹ 14-13-	13 13	-	-	1.5 1.5	4.0 4.0	6.0 6.0	-	-	ns 	-	-	14	13	8	1,16
Rise Time . (20% to 80%)	t+	13	-	-	1.1	2.0	3.3	-	-	.	-	-	i			
Fall Time (20% to 80%)	t-	13	-	-	1.1	2.0	3.3	-	-	•	-	-	🕴	•	•	•

APPLICATION INFORMATION

The MC10162 is a true parallel decoder. No series gating is used internally, eliminating unequal delay times found in other decoders.

This device is ideally suited for demultiplexer applications as shown in Figure 1. One of the two enable inputs is used as the data input, while the other is used as a data enable input.

A complete mux/demux operation on 16 bits for data distribution is illustrated in Figure 2. This system, using the MC10136 control counters, has the capability of incrementing, decrementing or holding data channels. When both S0 and S1 are low, the index counters reset, thus initializing both the mux and demux units. Control information via twisted pair lines is sent through MC10101 gates to the MC10115 line receivers to provide select data to the multiplexer/demultiplexer units.

MC10163 · MC10193

Advance Information

The MC10163 and the MC10193 are error detection and correction circuits. They are building blocks designed for use with memory systems. They offer economy in the design of error detection/correction subsystems for mainframe and add-on memory systems. For example, using eight MC10163's together with eight 12-bit parity checkers (MC10160), single-bit error detection/correction and

double-bit error detection can be done on a word of 64-bit length. Only eight check bits (B0-B7) need be added to the word. A useful feature of this building block is that the MC10193 option generates the parity of all inputs to the block. Thus, if the MC10193 is applied in a byte sequence, individual byte parity is automatically available.

This is advance information and specifications are subject to change without notice See General Information section for packaging and maximum ratings. Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 500-hm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

L SUFFIX CERAMIC PACKAGE CASE 620

@ Test Temperature -30°C +25°C TEST VOLTAGE VALUES
(Voits)

VIHmax VILmin VIHAmin VILAmax VEE
-0.890 -1.890 -1.205 -1.500 -5.2
-0.810 -1.850 -1.105 -1.475 -5.2
-0.700 -1.825 -1.035 -1.440 -5.2

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	i
	i	Pin	<u> </u>	-0-	M		Test Limit	-			TE		AGE APPI			
		Under		0°C		+25°C			5°C							(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	ΙE	8	-	-	-	-	125	-	-	mAdc	_	-	-	-	8	1,16
Input Current	linH	4,6,10 5,7,9,11,12	_	-	-	-	220 265	-	1 1	μAdc μAdc	4,6,10 5,7,9,11,12	-	-	-	8	1,16 1,16
	linL	•	-	_	0.5	-	-	-	-	μAdc	-	•	_	T	8	1,16
Logic "1" Output Voltage	Voн	2 3 13 14	-1.060	-0.890	-0.960 	- - -	-0.810	-0.890	-0.700	Vdc	4 4 11 11	- - -	- - - -	- - -	**************************************	1,16
Logic "O" Output Voltage	VOL	2 3 13 14	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	-	4 11 11	- - - -	- - -	8	1,16
Logic "1" Threshold Voltage	Vона	2 3 13 14	-1.080	- - -	-0.980	- - -	- - -	-0.910		Vdc	- - -	- - -	5 11 5 4	- - -	8	1,16
Logic "O" Threshold Voltage	VOLA	2 3 13 14	- - -	-1.655	1 1 1 1	- - -	-1.630	- - -	-1.595	Vdc	- - -	- - -	- - -	5 11 5 4	8	1,16
Switching Times	1										+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
(50 Ω Load) Propagation Delay	¹ 7+15+ ¹ 4+14+	15 14	- -	_ _	_	5.0 5.0	-	-	- -	ns	-	-	7	15 14	8	1,16
Rise Time (20% to 80%) Fall Time (20% to 80%)	t ₁₅₊	15 15	-	- -	- -	2.0 2.0	-' -	-	-		-	- -	7	15 15		

^{*}Individually test each input, apply VILmin to pin under test.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

L SUFFIX CERAMIC PACKAGE CASE 620

		TEST	VOLTAG	E VALUES	
			(Volts)	
@ Test Temperature	VIHmax	VILmin	VIHAmin	VILAmax	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2]
•		Pin		0°C	M	+25°C	Test Limit		5°C				LISTED E	PPLIED TO)	
Characteristic	Symbol	Under Test	Min	Max	Min	Typ	Max	Min	Max	Unit	VIHmax	VILmin		VILAmax	VEE	(VCC) Gnd
Power Supply Drain Current	1E	8		_	-	-	125			mAdc	_	-	-	-	8	1,16
Input Current	linH	4,6,10 5,7,9,11,12		=	=	=	220 265	=	=	μAdc μAdc	4,6,10 5,7,9,11,12	-	-	-	8	1,16 1,16
	linL	•	-		0.5	_	_	-	-	μAdc	_	•	-	-	8	1,16
Logic "1" Output Voltage	VOH	2 3 13 14	-1.060	-0.890	-0.960	-	-0.810 ▼	-0.890	-0.700	Vdc	4 4 11 11	- - -		- - -	8	1,16
Logic "0" Output Voltage	VOL	2 3 -13 14	-1.890	-1.675	-1.850	- - -	-1.650	-1.825	-1.615	Vdc 		4 11 11		- - -	8	1,16
Logic "1" Threshold Voltage	VOHA	2 3 13 14	-1.080	- - -	-0.980	- - -	- - -	-0.910	- - -	Vdc	1 1 1	- - -	5 11 5	- - -	8	1,16
Logic "0" Threshold Voltage	VOLA	2 3 13 14	- - -	-1.655	- - -	- - -	-1.630	- - -	-1.595	Vdc		- - -	1111	5 11 5 4	8	1,16
Switching Times (50 Ω Load)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	[†] 7+15+ [†] 4+14+ [†] 7+2+ [†] 4+2+	15 14 2 2	- - -	-	- - -	5.0 5.0 7.5 7.5	- - -		- - -	ns	-	- - -	7 4 7 4	15 14 2 2	8	1,16
Rise Time (20% to 80%) Fall Time (20% to 80%)	t ₁₅₊	15 15	- -	-	-	2.5 2.5	- -	-	-		- -	-	7	15 15		

^{*}Individually test each input, apply VILmin to pin under test.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C (MC10163)

MC10163 APPLICATIONS INFORMATION

The MC10163 is a building block for generating the modified Hamming single-error-correction, double-error-detection (SEC-DED) code used in the IBM 370/145 memory. While the MC10163 can also be used for generating other patterns, it is optimized for generating the pattern shown in the H matrix of Figure 1.

When writing into a memory, the MC10163 is used to generate the eight check bits (CO-C32, CT) which are stored with the 65 data bits (B0-B63). These check bits are generated by taking the parity of all data bits marked with an X in the appropriate row of the H matrix. (CO, C1, C32, CT, are even parity; C2, C4, C8, C17, are odd parity.) To generate these check bits with the building blocks, eight MC10163's and eight MC10160 parity checkers are used. One MC10163 is connected to each byte of data and the outputs of these building blocks are connected to the eight MC10160 parity checkers, one for each check bit. Figure 2 shows which connections are required (i.e., CO is the even parity of output POA of the MC10163 on the "zero" byte of data, output POg of the "zero" byte, POA of the "one" byte, ---, POB of the "three" byte and data bit 32.)

During the memory read operation, the fetched check bits previously generated (as described) are exclusive-ORed with newly generated CO-C32 to generate syndrome bits SO-S32. Syndrome ST is a special case where ST is the even parity of all eight fetched check bits and all 64 fetched data bits. For determining the type and location of an error:

11:

- If all syndromes (S0-S32 and ST) are false, there is no error.
- 2. If ST is true and SO-S32 are false, the CT is in error.
- If ST is false and one or more of S0-S32 is true, an uncorrectable error has occurred.
- 4. If ST is true and one or more of S0-S32 is true, simply add the S1-S32 bits to get the binary location of the error (S1 has weight 1, S2 weight 2, S4 weight 4, etc.)

Data bits B0 and B32 are special cases of this location technique: B0 is in error if ST, S0, and S32 are true; B32 is in error if ST, S0, S1, and S32 are true.

FIGURE 2 - 370/145 PATTERN GENERATION

P12 P1		P15 P25	P16 P26	P17 P27	B(32
P32 P3	3 P34	P35	P36	P37	
POA3 PO	B3 P0A5	PO _{B5}	POA7	POB7	
			POA7	POB7	
			POA7	POB7	B(0)
POB2 PO			POB6	POA7	B(0)
	P0 _{A3} P0	P0A3 P0B3 P0A6 P0A5 P0B5 P0A6 P0B2 P0A3 P0A4	P0A3 P0B3 P0A6 P0B6 P0A5 P0B5 P0A6 P0B6 P0B2 P0A3 P0A4 P0B5	P0A3 P0B3 P0A6 P0B6 P0A7 P0A5 P0B5 P0A6 P0B6 P0A7 P0B2 P0A3 P0A4 P0B5 P0B6	P0A3 P0B3 P0A6 P0B6 P0A7 P0B7 P0A5 P0B5 P0A6 P0B6 P0A7 P0B7 P0B2 P0A3 P0A4 P0B5 P0B6 P0A7 P0A7

MC10193 APPLICATIONS INFORMATION

The MC10193 is a building block for generating modified Hamming SEC-DED codes. It can be used for any length data word and for a variety of codes. The MC10193 is optimized for codes organized on a byte repetitive basis and has the advantage of automatically supplying whole byte parity (P5 output). While it is possible to use a number of criteria for choosing a pattern, the pattern of Figure 3 was chosen on the basis of speed and ease of error location decode. As can be seen in the H matrix of Figure 3, the pattern is repetitive by byte with the various rows generated by only five combinations of bit parities within the bytes. For the 64 bit data word in the example of Figure 3, the eight check bits (B64 to B71) are generated by the odd parity of all data bits indicated by an X in the appropriate row. The syndromes S1 to S8 are generated by including the fetched check bits in the same generator that originally generated the check bits.

The pattern of Figure 3 is easily generated by using eight MC10193 devices, one for each data byte and eight MC10160 parity checkers, one for each syndrome/check bit. The connections of building blocks and parity checkers are shown in tabular form in Figure 4 and in schematic form in Figure 6.

Once the syndrome bits (S1 to S8) have been formed from fetched data (B0 to B63) and fetched check bits (B64 to B71), the determination of type and location of error is simply done:

- 1. If all syndromes are false, there is no error.
- If one syndrome is true, the corresponding checkbit is in error.
- If more than one syndrome is true, and the parity of all syndromes is even, a multiple (uncorrectable) error has occurred.
- If more than one syndrome is true, and the parity of all syndromes is odd, a single error has occurred and is easily located by the circuit of Figure 5.

Figure 5 gives the error location circuit for the example pattern. The outputs EBO to EB7 are a one-of-eight-high code giving the byte in error. Outputs ECO to EC3 give the binary location of the bit in error within the located byte. Since this location process can occur simultaneously with the determination of error type described, the entire error correction sequence (using a toggling fetched data latch) takes less than 20 ns. This is because an error occurrance detector is a simple ORing of S1 to S8. The error locator has simultaneously located the error which is then corrected as though the error was a single (and therefore correctable) error. The parity of syndromes then determines if the error was indeed single, and interrupts the CPU if the error was an uncorrectable (multiple) error. Since uncorrectable data is unusable without special handling, the CPU would be interrupted anyway; therefore this automatic correction of any error as if it were single does not create any problems. This fast error correction technique allows single error correction on a noninterrupt basis with only a 20 ns memory system access

These techniques can, of course, be extended to large or smaller data words.

FIGURE 4 - M2 PATTERN BUILDING BLOCK

```
S1 = P10 P11 P12 P13 P54 P55 P56
                                        B(64)
S2 = P20 P21 P22 P23 P54
                              P55 P57
                                        B(65)
S3 = P30
         P31
               P32 P33
                              P56
                                        B(66)
         P41
               P42
                                        B(67)
                                        B(68)
S6 = P24
                                        B(69)
S7 = P34 P35
               P36 P37
                        P50
                              P52 P53
                                        B(70)
S8 = P44 P45
               P46 P47 P51 P52 P53 B(71)
Where for P_{NM}: N = MC10193 Output M = Byte Number
```

FIGURE 5 - M2 PATTERN CORRECTION MATRIX

MC10164

TRUTH TABLE

ADDRESS INPUTS ENABLE c z X0 X1 X2 L LHLH хз X4 X5 ī LH н X6 X7 L н н φ φ φ

φ ≃ Don't Care

The MC10164 is a high speed, low power eight-channel data selector which routes data present at one-of-eight inputs to the output. The data is routed according to the three bit code present on the address inputs. An enable input is provided for easy bit expansion.

P_D = 310 mW typ/pkg (No Load) t_{pd} = 3.0 ns typ (Data to output)

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the despecifications shown in the test table, after thermal equilibrium has been established in an ambient temperature of 25°C, while the circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

	Į.	TEST V	OLTAGE VA	LUES	
			(Volts)		
	VIH max	VIL min	VIHA min	VILA mex	VEE
~30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

										785 C	-0.700	-1.825	-1.035	-1.440	-5.Z	i
	Symbol	Pin Under /mbol Test	MC10164L Test Limits												1	
Cheracteristic			-30°C		+25°C		+85°C			TEST VOLTAGE APPLIED TO PINS LISTED BELOW					(VCC)	
			Min	Mex	Min	Тур	Mex	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8	-	-	-	60	75	_	-	mAdc	_	-	_	_	8	1,16
Input Current	lin H	2	-	-	-	-	265	-	-	μAdc	2	-			8	1,16
	lin L	4	-	-	0.5	-	-	_	_	μAdc	_	4	_	_	8	1,16
Logic "1" Output Voltage	Voн	15	-1.060	-0.890	-0.960	_	-0.810	-0.890	-0.700	Vdc	4,9	-	-	-	8	1,16
Logic "0" Output Voltage	VOL	15	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	9	-	-	-	8	1,16
Logic "1" Threshold Voltage	VOHA	15	-1.080	-	-0.980	-	_	-0.910	-	Vdc	4,9	-	-	2	8	1,16
Logic "0" Threshold Voltage	VOLA	15	-	-1.655	-	_	-1.630	-	-1.595	Vdc	9	-	-	2	8	1,16
Switching Times (50 Ω Load)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t4+15+ t4-15- t7+15+ t7-15- t2+15+ t2-15+	15 15 15 15 15 15	1.5 1.5 1.9 1.9 0.9	4.7 4.7 6.3 6.3 3.3 3.3	1.5 1.5 2.0 2.0 1.0	3.0 3.0 4.0 4.0 2.0	4.5 4.5 6.0 6.0 2.9 2.9	1.6 1.6 2.2 2.2 1.0 1.0	4.8 4.8 6.5 6.5 3.1 3.1	ns	9 9 5 5 7,5 7,5	- - - -	4 4 7 7 2 2	15	8	1,16
Rise Time (20% to 80%)	t+	15	0.9	3.3	1.1		3.3	1.2	3.6		9	-	4			
Fall Time (20% to 80%)	t-	15	0.9	3,3	1.1	▼ .	3.3	1.2	3.6	. ▼	9	_	4	▼	•	, ,

Each MECL 10,000 series circuit has been designed to meet the dcspecifications shown in the test table, after thermal equilibrium has been established in an ambient temperature of 25°C, while the circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.

	1	Pin MC10164P Test Limits								TEST NO. TAGE ADDITION TO BING LIGHTED BELOW						
	1	Under	-30°C		+25°C		+85°C			TEST VOLTAGE APPLIED TO PINS LISTED BELOW					(VCC)	
Characteristic	Symbol	Test	Min	Mex	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8	-	-	-	60	75	-	-	mAdc	-	-	_	_	8	1,16
Input Current	lin H	2	-	-	-	-	265	-	_	μAdc	2	-	_	_	8	1,16
	lin L	4	_	_	0.5	T -	_	_		μAdc		4	_	_	8	1,16
Logic "1" Output Voltage	VOH	15	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	4,9	_	-	-	8	1,16
Logic "0" Output Voltage	VOL	15	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	9	_	-	-	8	1,16
Logic "1" Threshold Voltage	VOHA	15	-1.080	-	-0.980	-	_	-0.910		Vdc	4,9		_	2	8	1,16
Logic "0" Threshold Voltage	VOLA	15	-	-1.655	_	-	-1.630	-	-1.595	Vdc	9	-	_	2	8	1,16
Switching Times (50 Ω Load)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t4+15+ t4-15- t7+15+ t7-15- t2+15+ t2-15+	15 15 15 15 15 15		1 1 1 1 1	1.5 1.5 2.0 2.0 1.0	3.0 3.0 4.0 4.0 2.0	4.5 4.5 6.0 6.0 2.9 2.9	11,111	11111	ns	9 9 5 5 7,5 7,5	- - - - -	4 4 7 7 2 2	15	8	1,16
Rise Time (20% to 80%)	t+	15	-	-	1.1		3.3	-	-		9	-	4			1
Fall Time (20% to 80%)	t-	15	1	-	1,1	•	3.3	-	-	V	9	-	4	▼	V	

The MC10164 can be used wherever data multiplexing parallel to serial conversion is desirable. Full parallel serial permits equal delays through any data path. The desirable of the MC10164 incorporates a buffer gate with

eight data inputs and an enable. A high level on the enable forces the output low. The MC10164 can be connected directly to a data bus, due to its open emitter output and output enable.

Figure one illustrates how a 1-of-64 line multiplexer can be built with eight MC10164's wire ORed at their outputs and one MC10161 to drive the enables on each multiplexer, without speed degradation over a single MC10164 being experienced.

Advance Information

TRUTH TABLE

			OUTPUTS								
DO	D1	D2	D3	D4	D5	D6	D7	Q3	Q2	Q1	Ω0
H	φ	φ	φ	φ	φ	φ	φ	н	L	L	L
L	н	φ	φ	φ	φ	φ	φ	н	L	L	н
L	L	н	φ	φ	φ	φ	φ	н	L	н	L
L	L	L	н	φ	φ	φ	φ :	н	L	н	н
L	L	L	L	н	-φ	φ	φ	н	н	L	L
ᆫ	L	L	L	L	Н	Ι. φ	φ	н	н	L	н
L	L	L	L	L	L	н	φ	н	н	н	L
L	L	L	L	L	L	L	н	н	н	н	Н
L	L	L	L	L	lι	l L	L	L	L	L	L

φ = Don't Care

PD = 545 mW typ/pkg (No Load)

The MC10165 is a device designed to encode eight inputs to a binary coded output. The output code is that of the highest order input. Any input of lower priority is ignored. Each output incorporates a latch allowing synchronous operation. When the clock is low the outputs follow the inputs and latch when the clock goes high. This device is very useful for a variety of applications in checking system status in control processors, peripheral controllers, and testing systems.

The input is active when high, (e.g. the three binery outputs are low when input D0 is high). The Q3 output is high when any input is high. This allows direct extension into another priority encoder when more than eight inputs are necessary. The MC10165 can also be used to develop binary codes from random logic inputs, for addressing ROMs, RAMs, or for multiplexing data.

This is advance information and specifications are subject to change without notice. See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the despecifications shown in the test table, after thermal equilibrium has been established in an ambient temperature of 25°C, while the circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same

* P SUFFIX PLASTIC PACKAGE CASE 648

@ Test

Temperature

-30°C

-0.890

VIL min

-1.890

TEST VOLTAGE VALUES

(Volts)

VIHA min

-1.205

VILA max

-1.500

VEE

-5.2

only one input, or for one set of	mput con	ļ-	••	יטן י	49 -	7 1 4					0.000	1.000	7.200	1.000	0.2	1
ditions. Other inputs tested i	n the sam	е		Щ						+25 ⁰ C	-0.810	-1.850	-1.105	-1.475	-5.2	
manner.										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin			M	C10165	Test Lin	its			TEST VO	TAGE AP	PLIED TO P	INS LISTED	RELOW:	1
		Under	-30	ooc		+25°C		+8	5°C			TAGE AT		1	-	(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	V _{IL min}	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8	_	_	_	105	131	_		mAdc	_			-	8	1,16
Input Current	lin H	4 5	_	-	_	-	245 220	_	-	μAdc μAdc	4 5 ①	-		-	8 8	1,16 1,16
	lin L	4 5	_	_	0.5 0.5	_	_	=		μAdc μAdc	· –	4 5①	_	_	8 8	1,16 1,16
Logic "1" Output Voltage	Voн	2 3 14 15	-1.060 -1.060 -1.060 -1.060	-0.890 -0.890 -0.890 -0.890	-0.960 -0.960 -0.960 -0.960	- - - -	-0.810 -0.810 -0.810 -0.810	-0.890 -0.890 -0.890 -0.890	-0.700 -0.700 -0.700 -0.700	Vdc	6 	4	1 1 1		8	1,16
Logic "O" Output Voltage	VOL	2 3 14 15	-1.890 -1.890 -1.890 -1.890	-1.675 -1.675 -1.675 -1.675	-1.850 -1.850 -1.850 -1.850	- - -	-1.650 -1.650 -1.650 -1.650	-1.825 -1.825 -1.825 -1.825	-1.615 -1.615 -1.615 -1.615	Vdc	- - -	1	1111	- - -	8	1,16
Logic "1" Threshold Voltage	VOHA	2 3 14 15	-1.080 -1.080 -1.080 -1.080	- - -	-0.980 -0.980 -0.980 -0.980	- - -	- - -	-0.910 -0.910 -0.910 -0.910	1411	Vdc	- - -	1	6	- - -	8	1,16
Logic "0" Threshold Voltage ,	VOLA	2 3 14 15	- - -	-1.655 -1.655 -1.655 -1.655	- - -	- - -	-1.630 -1.630 -1.630 -1.630		-1.595 -1.595 -1.595 -1.595	Vdc	- - - -	4	- - -	6	8	1,16
Switching Times (50-ohm Load)		† · · · · ·								Unit	+1.11 V	+0.31 V	Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay Data Input	t7+14+ t11+15+ t7+3+ t13-2- t13+2+	3 2 2	- - - -	- - - -	- - - -	4.4 6.5 11.0 7.0 7.0	- - - -	- - - -	- - - -	ns	- - - -	4	7 11 7 13	14 15 3 2 2	8	1,16
Clock Input Setup Time	t ₄₊₂₊ t _{setup} H t _{setup} L	2 ②	- - -	- - -	- - -	3.5 3.4 3.0	- - -	- - -	- - -		7 - -	_ _ _	4 4,7 I	3 3 1		
Hold Time	thold H		-	-	-	-2.3 -2.7	-	-	- -		_ _	_ _				
Rise Time (20% to 80%)	t3+	\perp	-	-	-	2.0] -	-	-	ΙI	-	4	7	1 1		1 1
Fall Time (20% to 80%)	t3_	I ▼	-	-	-	2.0	-	-	l –	V	-	4	7	. ▼	▼	▼

The same limit applies for all D type input pins. To test input currents for other D inputs, individually apply proper voltage to pin under test.

² Output latched to low state prior to test.

^{*} To preserve reliable performance, the MC10165P (plastic-packaged device only) is to be operated in ambient temperatures above 75°C only when 500 lfpm blown air or equivalent heat sinking is provided.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

ε<u>ξ</u> Ι',

APPLICATION INFORMATION

A typical application of the MC10165 is the decoding of stem status on a priority basis. A 64 line priority encoder shown in the figure below. System status lines are con-

nected to this encoder such that, when a given condition exists, the respective input will be at a logic high level. This scheme will select the one of 64 different system conditions, as represented at the encoder inputs, which has priority in determining the next system operation to be performed. The binary code showing the address of the highest priority input present will appear at the encoder outputs to control other system logic functions.

64-LINE PRIORITY ENCODER

5-BIT MAGNITUDE COMPARATOR

MC10166

Advance Information

TRUTH TABLE

	Input	s	Out	puts
Ē	Α	В	A < B	A > B
Н	×	×	L	L
L	Word A	Word B	L	L
L	Word A	> Word B	7	н
L	Word A	< Word B	Н	L

P_D = 440 mW typ/pkg (No Load)
t_{pd} = Data to output 6.0 ns typ
E to output 2.5 ns typ

The MC10166 is a high speed expandable 5-bit comparator for comparing the magnitude of two binary words. Two outputs are provided: A < B and A > B. A = B can be obtained by NORing the two outputs with an additional gate. A high level on the enable of the comparison of the comparison of the comparison of the comparison.

LOGIC DIAGRAM

This is advance information and specifications are subject to change without notice. See General Information section for packaging.

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

L SUFFIX CERAMIC PACKAGE CASE 620

		TEST V	OLTAGE V	ALUES		
			Volts			
@ Test Temperature	VIHmax	VILmin	VIHAmin	VILAmax	VEE	
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2	
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	

	1				M	C10166L	Test Limit									1 1
1	1	Pin Under	-3	0°C	'''	+25°C	1 63t E.IIII		5°C		VOLTA	GE APPLIED	TO PINS	LISTED BE	LOW:	(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	1E	8	-	-	-	85	106	-	-	mAdc	_	4,7,10,11,14	-	-	8	1,16
Input Current	linH	5	-		-	-	220		-	μAdc	5	-		-	8	1,16
	linL	5	-	-	0.5	-	-	_	-	μAdc	-	5	_	-	8	1,16
Logic "1" Output Voltage	Voн	2	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	-	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	5 4	_	_	_	8	1,16 1,16
Logic "0" Output Voltage	VOL	2 3	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850	=	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	5,15 4,15		_	-	8 8	1,16 1,16
Logic "1" Threshold Voltage	VOHA	2 3	-1.080 -1.080	-	-0.980 -0.980	=	-	-0.910 -0.910	-	Vdc Vdc	5 4		_	15 15	8 8	1,16 1,16
Logic "0" Threshold Voltage	VOLA	2 3	_	-1.655 -1.655	-	=	-1.630 -1.630		-1.595 -1.595	Vdc Vdc	5 4	-	15 15	_	8	1,16 1,16
Switching Times (50 Ω Load) Propagation Delay											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Data to Output	t9+2+ t9-2- t11-2+ t11+2- t7+3+	2 2 2 2 3	- - - -	- - - -	- - - -	6.0	- - - -	- - - -	- - - -	ns 	- 12 12 6	1 1 1	9 9 11 11 7	2 2 2 2 3	8	1,16
Enable to Output Rise Time (20% to 80%)	t7-3- t15-3+ t15+3- t2+	3 3 3 2	- - -	- - -	- - -	2.5 2.5 2.0	- - -	- - -	- - -		6 10 10 -		15 15 9	3 3 3 2		
Fall Time (20% to 80%)	t ₂ -	2		_	-	2.0		-	-	T	-		9	2	7	

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

APPLICATION INFORMATION

FIGURE 1 - 9-BIT MAGNITUDE COMPARATOR

Advance Information

This is advance information and specifications are subject to change without notice. See General Information section for packaging.

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. The other inputs and outputs are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

		TEST	VOLTAGI	E VALUES	
			(Volts)		
@ Test Temperature	VIHmax	VILmin	VIHAmin	VILAmax	VEE
-30°C	-1.890	-1.890	-1.205	-1.500	-5.2
+25°C	-1.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

																1
	1	Pin	L		M	C10168L	Test Limit	s			TES			IED TO PI	VS	ĺ
	1	Under	-30	0°C	1.	+25°C		+8	5°C			LIS	TED BEL	OW:		(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	ΙE	8	-	-	-	60	75	-	_	mAdc	-	_	_	-	8	1,16
Input Current	linH	3,7,9,14 4,5,10,12 13	=	- - -	-	- - -	245 265 290	-	- - -	μAdc ▼	13	- - -	-	-	8	1,16
	linL	•	-	-	0.5		-	-	-	μAdc	-	•		-	8	1,16
Logic "1" Output Voltage	Voн	2 6	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	-	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	3,13 7,13	-	-	-	8	1,16 1,16
Logic "0" Output Voltage	VOL	2 6	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850	-	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	3,5 4,7	-	-	_	8	1,16 1,16
Logic "1" Threshold Voltage	VOHA	2 6	-1.080 -1.080	-	-0.980 -0.980	-	=	-0.910 -0.910	_	Vdc Vdc	13 13	-	3 7	_	8	1,16 1,16
Logic "O" Threshold Voltage	VOLA	2 6	-	-1.655 -1.655	=	=	-1.630 -1.630	-	-1.595 -1.595	Vdc Vdc	13 13	_	-	3 7	8 8	1,16 1,16
Switching Times (50 Ω Load)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t3+2+ t5-2+ t13+2+	2 2 2	-	- - -	-	3.0 2.0 4.0	- - -	- - -	- - -	ns	- - -	- - -	3 5 13	2 2 2	8	1,16
Rise Time (20% to 80%) Fall Time (20% to 80%)	t ₂₊	2	-	-	_ _	2.0 2.0	-	-	-		 -	-	3 3	2 2	₩	♦

^{*}Individually test each input applying VIH or VIL to input under test.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

DUAL
BINARY TO 1-4-DECODER
(LOW)

MC10171

The MC10171 is a binary coded 2 line to dual 4 line decoder with selected outputs low. With either $\overline{E}0$ or $\overline{E}1$ high, the corresponding selected 4 outputs are high. The common enable \overline{E} , when high, forces all outputs high.

All propagation delay times are equal due to the internal emitter dotting techniques used. High impedance 50 k ohm resistors on all inputs eliminate the need to tie unused inputs to VEE.

 P_D = 325 mW typ/pkg (No Load) t_{pd} = 4.0 ns typ

TRUTH TABLE

ENA	BLE IN	PUTS	INP	UTS				OUT	PUTS			
Ē	E0	Ē1	Α	. В	Q10	Q11	Q12	Q13	000	Q01	Q02	Q03
L	L	L	L	L	L	н	н	H	٦	Н	Н	н
L	L	L	L	н	н	L	н	Н	н	L	н	н
L	Ļ	L	н	L	н	н	L	н	н	н	L	н
L	L	L	н.	н	н	н	н	L	н	Н	н	L
l L	L	н	L	L	' н	н	Н	н	L	н	н	н
L	н	L	L	L	L	н	н	н	н	н	н	н
[н]	φ	φ	φ	φ	Н	н	Н	н	н	н	н	н

 ϕ = Don't Care

See General Information section for packaging and maximum ratings.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test Procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

TEST VOLTAGE VALUES										
		(Volts)								
VIHmax	VILmin	VIHAmin	VILAmax	VEE						
-0.890	-1.890	-1.205	-1.500	-5.2						
-0.810	-1.850	-1.105	-1.475	-5.2						
-0.700	-1.825	-1.035	-1.440	-5.2						
	,									

		Pin			N	C1017	IL Test Li	mits			TEST VO	I TAGE APP	LIED TO PINS	S I ISTED REI	OW:	
		Under	-30	o°C		+25°C		+85	5°C		1					(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	ĪΕ	8	_	-	-	65	77			mAdc	2,7,9,14,15	-			8	1,16
Input Current	linH	14	-	-	_	-	220	-	-	μAdc	14	-	_	-	8	1,16
	linL	14	-		0.5	-	-	-	-	μAdc	-	14	-	-	8	1,16
Logic "1" Output Voltage	VOH	6 13	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	_	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	15 15	-	_	-	8	1,16 1,16
Logic "0" Output Voltage	VOL	13	-1.890	-1.675	-1.850	_	-1.650	-1.825	-1.615	Vdc	-	2,7,9,14,15	_	_	. 8	1,16
Logic "1" Threshold Voltage	VOHA	6 13	-1.080 -1.080	-	-0.980 -0.980	_	-	-0.910 -0.910	-	Vdc Vdc		_	15 15	-	8 8	1,16 1,16
Logic "0" Threshold Voltage	VOLA	6 13	1 1	-1.655 -1.655	_	_	-1.630 -1.630	_	-1.595 -1.595	Vdc Vdc		2,9,14,15 2,7,14,15	-	7 9	8 8	1,16 1,16
Switching Times (50 Ω Load)												+0.31 V	Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay Rise Time (20% to 80%)	t7+6+ t7-6- t7+13+ t7-13- t6+ t13+	6 6 13 13 6 13 6	1.5 	6.2 	1.5 V 1.1	2.0	6.0 V 3.3	1.5 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6.4 	ns	= -	2,9,14,15	7	6 6 13 13 6 13 6	8	1,16
. , Fall Time (20% to 80%).	§13-	13	.∜	₹	l (l . I	1 !	- V	4	J	l	-	Y	13] 🕴	

Each MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

P SUFFIX PLASTIC PACKAGE CASE 648

TEST VOLTAGE VALUES													
	(Volts)												
VIHmax	VILmin	VIHAmin	VILAmax	VEE									
-0.890	-1.890	-1.205	-1.500	-5.2									
-0.810	-1.850	~1.105	-1.475	-5.2									
-0.700	-1.825	-1.035	-1.440	-5.2									

		Pin				MC1017	P Test Lin	nits			TEST VO	I TAGE APP	LIED TO PIN	S LISTED RE	LOW:	ĺ
	ĺ	Under	-30	9°C		+25°C		+8	5°C]	217027				(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	ΙE	8	-		_	65	77	-		mAdc	2,7,9,14,15	_	_	-	8	1,16
Input Current	linH	14	-		-	T -	220	_	-	μAdc	14	_	_	-	8	1,16
	linL	14	-	-	0.5	-	-	-	~	μAdc	i -	14	_	-	8	1,16
Logic "1" Output Voltage	VOH	6 13	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	_	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	15 15	_	_		8 8	1,16 1,16
Logic "0" Output Voltage	VOL	13	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	-	2,7,9,14,15	_	-	8	1,16
Logic "1" Threshold Voltage	VOHA	6 13	-1.080 -1.080	-	-0.980 -0.980	-	-	-0.910 -0.910	-	Vdc Vdc	=	_	15 15	_	8	1,16 1,16
Logic "0" Threshold Voltage	VOLA	6 13	=	-1.655 -1.655	-	Ξ	-1.630 -1.630	=	-1.595 -1.595	Vdc Vdc	-	2,9,14,15 2,7,14,15	-	7 9	8	1,16 1,16
Switching Times (50 Ω Load)												+0.31 V	Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t7+6+ t7-6-	6	-	-	1.5	4.0	6.0	-	_	ns	-	2,9,14,15	7	6	8	1,16
	t7+13+ t7-13-	13 13		- -	1.1	2.0	3,3	-	- - -		-			13 13 6		
Rise Time (20% to 80%)	t6+ t13+ t6-	13 6 13	-	_				-	_		-			13 6 13		
Fall Time (20% to 80%)	t13-	1 13	-	-	1 1	1 1		_	ı ~	1 1	ı -	_	, ,	13	1 7	i 7

V_{CC1} = V_{CC2} +2,0 Vdc Input 0 Pulse PROPAGATION DELAY Generator +0.31 V Input Pulse t+ = t- = 2.0 ± 0.2 ns (20 to 80%) Unused outputs connected to a 50-ohm resistor to ground. 0+0.31 Vdc VEE = -3.2 Vdc All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be <1/4 inch from TP $_{\rm in}$ to input pin and TP $_{\rm out}$ to output pin.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

DUAL BINARY TO 1-4-DECODER (HIGH)

MC10172

The MC10172 is a binary-coded 2 line to dual 4 line decoder with selected outputs high. With either EO or E1 low, the corresponding selected 4 outputs are low. The common enable E, when high, forces all outputs low.

All propagation delay times are equal. High impedance 50 k ohm resistors on all inputs eliminate the need to tie unused inputs to V_{EE} .

 $P_D = 325 \text{ mW typ/pkg (No Load)}$ $t_{pd} = 4.0 \text{ ns typ}$

T	RU	ТН	TAE	BLE

Ē	Ē1	ĒO	A	В	Q1 0	Q1 1	Q1 2	Q1 3	Q0 0	Q0 1	Q0 2	Q0 3
- r	нн	ΞI	- د	ıΓ	н	ΙΓ		L	Ξ-	T T	L	٦.
Ĺ	H	H	H	L	Ĺ	i.) I -	L	Ĺ	Ü	H	L
LLH	Ηφ	H L ф	L L	L	1111				, H L L			

 ϕ = Don't Care

See General Information section for packaging and maximum ratings.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

L SUFFIX CERAMIC PACKAGE CASE 620

@ Test Temperature -30°C +25°C

+85°C

TEST VOLTAGE VALUES										
(Volts)										
VIHmax	VILmin	VIHAmin	VILAmax	VEE						
-0.890	-1.890	-1.205	-1.500	-5.2						
-0.810	-1.850	-1.105	-1.475	-5.2						
-0.700	-1.825	-1.035	-1.440	-5.2						
	1									

	1	Pin			MC	C10172L	Test Limit				TEST VO	N TAGE APP	LIED TO PIN	S I ISTED RE	OW:	
	l	Under	-30	°C		+25°C		+8	5°C		1231 V	LIAGE ALL	LIED TO FINE	3 L131 LD DL		(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	ΙE	8		_		62	77	-	-	mAdc	-	-	_	-	8	1,16
Input Current	linH	14	-	-	-	-	220	_	-	μAdc	14	_		-	8	1,16
	linL	14	-	-	0.5	-	-		-	μAdc		14	_	_	8	1,16
Logic "1" Output Voltage	VOH	6 13	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	_	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	2 14	_	_	-	8 8	1,16 1,16
Logic "0" Output Voltage	VOL	13	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	15	2,7,9,14	_	_	8	1,16
Logic "1" Threshold Voltage	VOHA	6 13	-1.080 -1.080	1 1	-0.980 -0.980	=	=	-0.910 -0.910	-	Vdc Vdc	_	_	2 14		8 8	1,16 1,16
Logic "0" Threshold Voltage	VOLA	6 13	-	-1.655 -1.655	_	=	-1.630 -1.630		-1.595 -1.595	Vdc Vdc	-	2,9,14 2,7,14	_	7 9	8 8	1,16 1,16
Switching Times (50 Ω Load)											+1.11 V	+0.31 V	Pulse in	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	¹⁷⁺⁶⁻ ¹⁷⁻⁶⁺ ¹⁷⁺¹³⁻ ¹⁷⁻¹³⁺ ¹⁶⁺	6 6 13 13	1.5	6.2 	1.5 	4.0	6.0	1.5 	6.4	ns	2 2 14 14 2	9,14 9,14 2,9 2,9 9,14	7	6 6 13 13 6	8	1,16
Rise Time (20% to 80%) Fall Time (20% to 80%)	t13+ t6- t13-	13 6 13	Ĭ	J.3					J		14 2 14	2,9 9,14 2,9		13 6 13		

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

P SUFFIX
PLASTIC PACKAGE
CASE 648

@ Test
Temperature
.-30°C
+25°C
+85°C

	TEST VOLTAGE VALUES									
(Volts)										
VIHMAX VILMIN VIHAMIN VILAMAX VE										
-0.890	-1.890	-1.205	-1.500	-5.2						
-0.810	-1.850	-1.105	-1.475	-5.2						
-0.700	-1.825	-1.035	-1.440	-5.2						

																4
		Pin			MC	10172P	Test Limit	,			TEST VO	I TAGE APP	LIED TO PIN	S LISTED RE	OW:	l
	l	Under	-30)°C		+25°C		+81	5°C							
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmex	VEE	(VCC) Gnd
Power Supply Drain Current	ΙE	8	-	-		62	77	-	-	mAdc				-	8	1,16
Input Current	linH	14	-	-	-	-	220	-	_	μAdc	14		_	_	8	1,16
	linL	14	-	-	0.5	-	-	-	-	μAdc	-	14	-	-	8	1,16
Logic "1" Output Voltage	VOH	6 13	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	_	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	2 14		_	_	8 8	1,16 1,16
Logic "0" Output Voltage	VOL	13	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	15	2,7,9,14	-	_	8	1,16
Logic "1" Threshold Voltage	VOHA	6 13	-1.080 -1.080		-0.980 -0.980	_	_	-0.910 -0.910	_	Vdc Vdc	-	-	2 14	_	8 8	1,16 1,16
Logic "0" Threshold Voltage	VOLA	6 13		-1.655 -1.655	-	=	-1.630 -1.630	-	-1.595 -1.595	Vdc Vdc	-	2,9,14 2,7,14	_	7 9	8 8	1,16 1,16
Switching Times (50 Ω Load)											+1.11 V	+0.31 V	Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t7+6- t7-6+	6 6	-	-	1.5	4.0	6.0	-	_	ns 	2 2	9,14 9,14	7	6	8	1,16
	t7+13- t7-13+	13 13		-	↓			-	-		14 14	2,9 2,9		13 13		
Rise Time (20% to 80%)	t6+ t13+ t6-	6 13 6		-	1.1	2.0	3.3	- -	_ 		2 14 2	9,14 2,9 9,14		6 13 6		
Fall Time (20% to 80%)	t13-	13	-	-	†	1	♥.	- 1	-	[♥]	14	2,9	†	13	 †	†

MC10173

Advance Information

The MC10173 is a quad two channel multiplexer with latch. It incorporates common clock and common data select inputs. The select input determines which data input is enabled. A high (H) level enables data inputs D00, D10, D20, and D30 and a low (L) level enables data inputs D01, D11, D21, D31. Any change on the data input will

be reflected at the outputs while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not affect the output information.

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts.

CASE 620

@ Test
Temperature
-30°C
+25°C
+85°C

TEST VOLTAGE VALUES										
(Volts)										
V _{IH max}	VIL min	VIHA min	VILA mex	VEE						
-0.890	-1.890	-1.205	-1.500	-5.2						
-0.810	-1.850	-1.105	-1.475	-5.2						
-0.700	-1.825	-1.035	-1.440	-5.2						

			Ciaci								-0.700	-1.025	-1.005	-1.440	-3.2	
		Pin				MC10173	. Test Lim	its			VOLTAGE APPLIED TO PINS LISTED BELOW:				i	
		Under	-30)°C		+25°C		+8	5°C					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(Vcc	
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	and
Power Supply Drain Current	ΙE	8	-	_	-	56	66	_	-	mAdc		-			8	16
Input Current	linH	5	-	_	-		295	-		μAdc	5		-	_	8	16
		6	-	-	-	-	295	-	-		6	-	- 1	-	1	1 1
	1	9	_	_	_	_	250 250	_	-	1 1	9	_	_ :		. ↓	l
Input Leakage Current	linL	All	-		0.5		-		-	μAdc	-	•			8	16
Logic "1"	Voн	1	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	6,9	7			8	16
Output Voltage	ļ	2	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	5	7	-	L. . _	8	16
Logic "0" Output Voltage	VOL	1 2	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850	_	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	9 -	7 7	_	_	8	16 16
Logic "1"	VOHA	1	-1.080	-	-0.980		-1.000	-0.910	-1.013	Vdc	9	7	6	<u>-</u> -	8	16
Threshold Voltage	- OHA	2	-1.080	-	-0.980	-	-	-0.910	-	Vdc	-	7	5	_	8	16
Logic "0" Threshold Voltage	VOLA	1 2	-	-1.655 -1.655	-		-1.630 -1.630	_	-1.595 -1.595	Vdc Vdc	9 -	7 7		6 5	8 8	16 16
Switching Times											+1.11 Vdc	+0.31 Vdc	Puise In	Pulse Out	-3.2 Vdc	+2.0 Va
Propagation Delay	1	١.			١			١	i	1						Ι
Data Input	^t 6+1+ ^t 6-1-	!	0.8	3.7	1.0		3.5	1.1	5.3	ns	9	7	6	1 1	8	16
	t5+1+		l 1	1 1			1 1	1 1		1 1	-	1 1	5	1 1	1 1	1 1
	t5-1-		*	*	†		1	†	†		_	†	5			1 1
Clock Input	t7-1+	1 1	1.6	7.2	1.6		6.8	1.4	6.8		i –	-	5,7		i i	
	t7-1-	1 1	1.6	7.2	1.6	1	6.8	1.4	6.8	! !	-	1 -	5,7			1 1
Select Input	t9+1+	1 1	1.1	6.2	1.3		5.7	1.2	6.7	!!	6	?	9			1 1
	t9+1- t9-1+	i i	1 1				1 1	1 1	11	1 1	5		1 1	1		1 1
	19-1-	1 1	١ ↓		١ 🛊	1	١ ١	1 🗼	l ∳	1 1	6	1	i	1 1	1	1 1
Setup Time		1	'		•		i				ŀ	†	+		1	1 1
Data Input	t _{setup}	1 1	-	-	2.0	i	-	-	-	i i	-	-	5,7	1 1		1 1
Select Input	t _{setup}	1 1	-	~	3.0		-	-	-		6	-	7,9		1 1	1 1
Hold Time Data Input	1	l I		_	2.5		l _	_		1 1	1					
Select Input	thold thold	1	_		1.5	ŀ		-	_	1 1	6	_	5,7 7,9	1	i i	
Rise Time (20 to 80%)	t+		1.2	4.0	1.5		3.5	1.4	4.0		5	-	7			
Fall Time (20 to 80%)	t-	,	1.2	4.0	1.5		3.5	1.4	4.0	†		-	7			+

^{*}VILmin applied to each input pin, one at a time.

P SUFFIX
PLASTIC PACKAGE
CASE 648

© Test
Temperature
-30°C
+25°C
+86°C

	TEST V	OLTAGE VA	LUES							
(Volts)										
VIH max	VIL min	VIHA min	VILA max	VEE						
-0.890	-1.890	-1.205	-1.500	-5.2						
-0.810	-1.850	-1.105	-1.475	-5.2						
-0.700	-1.825	-1.035	-1.440	-5.2						

			Clock	,	•					+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin					P Test Lim				VOLT	AGE APPLII	ED TO PINS I	LISTED BELO	W:	
		Under		o°c		+25°€			5°C	1						(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	1E	8	L				66			mAdc		-	-		8	16
Input Current	linH	5	-		-	~	295	-	-	μAdc	5	-	_	_	8	16
	Į.	6	-	-	-	-	295 250	-	-		6	l -	-	-		1 1
	ł	ģ	_	_	_	_	250	l	-		7 9	_	_	_		l ↓
Input Leakage Current	linL	All		-	0.5		-	-	-	μAdc		· ·	-		8	16
Logic "1"	Vон	1	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	6,9	7		-	8	16
Output Voltage	-	2	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	5	7			8	16
Logic "0" Output Voltage	VOL	1 2	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850	_	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	9 -	7 7	_	_	8	16 16
Logic "1"	VOHA	1	-1.080	-	-0.980	-	-	-0.910	-	Vdc	9	7	6		8	16
Threshold Voltage		2	-1.080		-0.980			-0.910		Vdc		7	5		8	16
Logic "0" Threshold Voltage	VOLA	1 2	_	-1.655 -1.655	-	_	-1.630 -1.630	_	-1.595 -1.595	Vdc Vdc	9 -	7 7	-	6 5	8 8	16 16
Switching Times	1										+1.11 Vdc	+0.31 Vdc	Pulse In	Pulse Out	-3.2 Vdc	+2.0 Vd
Propagation Delay	ĺ		i '			ĺ			1	1						
Data Input	16+1+	1 1	- :	_	-	2.5	-	-	-	ns	9	?	6 6	1 1	8	16
	¥6∓1- 15+1+	11	_ :	_	_	1 1	_	_	_	1] <u> </u>	1 1	5	1 1		11
	15-1-	1 1	-	-	-	∤	-	- 1	_		_	l +	5	1 1		1 1
Clock Input	t7-1+		_	_	_	4.5	_	_	_] [-	_	5,7	i i		1 1
	17-1-	li.	-	-	-	4.5	-	-	-	1 1	-	-	5,7	1 1		11
Select Input	t9+1+	1 1	- '	-	- 1	3.5	-	-	-	1 1	6	,	9	1 1		1 1
	tg+1-		- 1		-	l ı	-	-	-	1 1	5	1 1	1 1	1 1		l i
	tg-1+	1 1	- '	-	-	1 1	-	-	-	1 1	5	1 1	1 1	1 1		1 1
	^t 9-1-		- 1	-	-		-	-	_	1	6	1 1	1 1	i 1		1 1
Setup Time Data Input	١.	1 1	_	_		1.5		l	1]		, ,	5,7	1 1		1 1
Select Input	^t setup ^t setup		1 -	_	_	2.5	_	-	_	1 1	6	1 =	7.9	1 1		1 1
Hold Time	-setup		1					1	1	1 1	1		1 .,5	1 1		1 1
Data Input	thold		_	_	_	0.0	_	_	l -	1 1	l _	_	5,7	1 1	i i	1
Select Input	thold		- 1	_	-	-0.5	-	-	-	1 1	6	-	7,9	1		1 1
Rise Time (20 to 80%)	t+		-	-	-	2.0	-	-	-		5	-	7			!
Fall Time (20 to 80%)	t-	+	-	-	-	2.0	-	-	-	*	-	-	7	*	,	*

^{*}VILmin applied to each input pin, one at a time.

SWITCHING TIMES TEST CIRCUIT

WAVEFORMS @ 25°C

MC10174

P_D = 305 mW typ/pkg (No Load) t_{pd} = 3.5 ns typ (Data to output) The MC10174 is a high speed dual channel multiplexer with output enable capability. The select inputs determine one of four active data inputs for each multiplexer. An output enable forces both outputs low when in the high state. The enable is also useful in wire-ORing several multiplexers to achieve additional channel capability. Delay from data input to output is typically 3.5 nanoseconds.

V_{CC1} = Pin 1 V_{CC2} = Pin 16 V_{EE} = Pin 8

ENABLE	ADDRES	SINPUTS	OUTPUTS			
Ē	В	Α	Z	w		
н	φ	φ	L	L		
L	L	·.L	ΧO	ΥO		
L	L	Н	X1	Y1_		
L	н	L	X2	Y2		
L	Н	Н	ХЗ	Y3		

TRUTH TABLE

φ = Don't Care

See General Information section for packaging.

ាត្ត ស្ត្រស្រត់ជា

ELECTRICAL CHARACTERISTICS

Each MECL 10,000 series circuit has been designed to meet the dospecifications shown in the test table, after thermal equilibrium has been established in an ambient temperature of 25°C, while the circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.

L SUFFIX CERAMIC PACKAGE **CASE 620**

		TEST VOLTAGE VALUES											
	(Volts)												
est rature	VIH max	VIL min	VIHA min	VILA max	VEE								
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2								
-25°C	-0.810	-1.850	-1.105	-1.475	-5.2								
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2								

		Pin			A	AC10174	L Test Lim	its	TEST VO							
		Under	-30	°C		+25°C		+8	5°C		TEST VC	LIAGE AFF	LIED TO FIN	IS LISTED BE		(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	1E	8	-	-	-	58	73	-	-	mAdc	-	-	_	-	8	1,16
Input Current	lin H	4	-	-	-	-	220	-	-	μAdc	4	_	_	-	8	1,16
		14		-		_	330		-		14			-	8	1,16
	l _{in L}	4	-	-	0.5	-	-	-		μAdc	-	4	-	-	8	1,16
Logic "1" Output Voltage	VOH	15	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	13	-	-	- "	8	1,16
Logic "0" Output Voltage	VOL	15	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	14	-	-	-	8	1,16
Logic "1" Threshold Voltage	VOHA	15	-1.080	-	-0.980	-	_	-0.910	-	Vdc	-	-	13	_	8	1,16
Logic "0" Threshold Voltage	VOLA	15	-	-1.655	-	-	-1.630		-1.595	Vdc	-	-	14	-	8	1,16
Switching Times (50 Ω Load)											+1.11 V		Pulse in	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t13+15+ t13-15- t7+15- t7-15+ t14+15- t14-15+	15 15 15 15 15 15	1.4 1.4 1.9 1.9 1.0	4.8 4.8 6.4 6.4 3.1 3.1	1.5 1.5 2.0 2.0 1.0	3.5 3.5 5.0 5.0 2.0 2.0	4.5 4.5 6.0 6.0 2.9 2.9	1.4 1.4 2.1 2.1 0.9 0.9	4.8 4.8 6.4 6.4 3.2 3.2	ns	- 11 11 13	- - - - -	13 13 7 7 14 14	15	8	1,16
Rise Time (20% to 80%)	t+	15		3.4	1,1	2.0	3.3	1.1	3.6			-	14			
Fall Time (20% to 80%)	t-	15		3.4	1.1	2.0	3.3	1.1	3.6	*		-	14	,		

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

QUINT LATCH
MC10175

The MC10175 is a high speed, low power quint latch. It features five D type latches with common reset and a common two-input clock. Data is transferred on the negative edge of the clock and latched on the positive edge. The two clock inputs are "OR"ed together. Propagation delays are typically 2.5 nanoseconds from each data input to the output.

Any change on the data input will be reflected at the coutputs while the clock is low. The outputs are latched on the positive transition of the clock. While the clock

is in the high state, a change in the information present at the data inputs will not affect the output information. The reset input is enabled only when the clock is in the high state.

The MC10175 allows storage of five bits of information, and it is useful in temporary storage applications in high speed central processors, accumulators, register files, digital communication systems, instrumentation, and test equipment

See General Information section for packaging and maximum ratings.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

L SUFFIX CERAMIC PACKAGE CASE 620

@ Test
Temperature
-30°C
+25°C
+85°C

TEST VOLTAGE VALUES (Volts) V_{IH max} VIL min VIHA min VILA max VEE -0.890 -1.890 -1.205 -1.500 -5.2 -0.810 -1.850 -1.105 -1.475 -5.2 -0.700 -1.825 -1.035 -1.440 -5.2

												1.020	1.000	1	V		
		Pin Under Test	MC10175L Test Limits								VOLTAGE APPLIED TO PINS LISTED BELOW:						
	l		-30°C			+25°C		+8!	5°C ·		102.	AGE AI 1 E 11				ļ	
Characteristic	Symbol		Min	Max	Min	Тур	Max	Min	Max	Unit	V _{IH max}	VIL min	V _{IHA} min	VILA max	VEE	Gnd	
Power Supply Drain Current	I _E	8		_	_	78	97	_	-	mAdc	-	_	-	_	8	1,16	
Input Current	linH	6	~	_	-	_	290	_		μAdc	6	-	_	_			
		7	-	-	-	-	290	-	-	1	7	-	-	-	1	1 1	
		10	-	-	-	-	290	-	-		10	-	-	-		l 1	
		11					650		-	7	11	_		-	Y		
Input Leakage Current		All		-	0.5	-		-	_	μAdc	-	0	_	-	8	1,16	
Logic "1"	VOH	14	-1.060	-0.890	-0.960	_	-0.810	-0.890	-0.700	Vdc	10	6			8	1,16	
Output Voltage		15	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	12	6	-	-	8	1,16	
Logic "0"	VOL	14	-1.890	-1.675	-1.850	_	-1.650	-1.825	-1.615	Vdc	_	6,10	_	_	8	1,16	
Output Voltage		15	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	- ا	6,12	-	-	8	1,16	
Logic "1"	VOHA	14	-1.080	_	-0.980	_		-0.910		Vdc		6	10	-	8	1,16	
Threshold Voltage	0	15	-1.080	-	-0.980	-	-	-0.910	-	Vdc	l –	6	12	_	8	1,16	
Logic "0"	VOLA	14	_	-1.655		_	-1.630	_	-1.595	Vdc	_	6	_	10	8	1,16	
Threshold Voltage	OZ.	15	-	-1.655	-	-	-1.630	-	-1.595	Vdc	- 1	6	-	12	8	1,16	
Switching Times											+1.11 Vdc	+0.31 Vdc	Pulse In	Pulse Out	-3.2 Vdc	+2.0 Vd	
Data Input	110+14+	14	1.0	3.6	1.0	_	3.5	1.0	3.6	ns	_	6.7	10	14	8	1,16	
	t10-14-	1 1	1	3.6	1 1	-	3.5		3.6	1	-	6,7	10	1	1	1 1	
Clock Input	t6-14+	l I	1 1	4.7	1 1	-	4.3	1 1	4.4	1		7	10,6	1	1	1 1	
	^t 6-14-			4.7		_	4.3	T	4.4			7	10,6	<u> </u>		<u> </u>	
Reset Input	t11+4 -	4	0.9	4.0	1.0	-	3.9	1.0	4.2	ns	5	6	7,11	4 ② 14 ②	8	1,16	
	¹ 11+14-	14	0.9	4.0	1.0		3.9	1.0	4.2	7	10	6	7,11	14 (2)	8	1,16	
Setup Time	tsetup	14	-	-	2.5	-		-	-	ns	-	7	6,10	14	8	1,16	
Hold Time	thold	14	-	-	1.5	-	-	-	- 1	1 1	-	7	6,10	1 1		1 1	
Rise Time (20 to 80%)	t+	14	1.0	3.6	1.1	-	3.5	1.1	3.7		-	6,7	10	1 1.		1 1	
Fall Time (20 to 80%)	t-	14	1.0	3.6	1.1	-	3.5	1.1	3.7	I ♦	I –	6.7	10	♦ .		♦	

¹ Individually test each input; apply VIL min to pin under test.

Andrew Commission of the Commission of

3 3 4 4 5

²⁾ Output latched to high logic state prior to test.

SWITCHING TIME TEST CIRCUIT

VOLTAGE WAVEFORMS

P_D = 460 mW typ/pkg (No Load) f_{toggle} 150 MHz (typ) The MC10176 contains six high-speed, master slave type "D" flip-flops. Clocking is common to all six flip-flops. Data is entered into the master when the clock is low. Master to slave data transfer takes place on the positive-going Clock transition. Thus, outputs may change only on a postive-going Clock transition. A change in the information present at the data (D) input will not affect the output information any other time due to the master-slave construction of this device.

V_{CC1} = Pin 1 V_{CC2} = Pin 16 V_{EE} = Pin 8

CLOCKED TRUTH TABLE

С	D	Q _{n+1}
L	φ	an
H*	٦	٦
H*	Н	H

φ = Don't Care

*A clock H is a clock transition from a low to a high state.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear form is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one data input, and the block input, and for one output. Other inputs and outputs tested in the same manner.

L SUFFIX CERAMIC PACKAGE **CASE 620**

QTest Temperature

-30°C

+25°C +85°C

TEST VOLTAGE VALUES (Volts)												
VIHmex	VILmin	VIHAmin	VILA max	VEE								
-0.890	-1.890	-1.205	-1.500	-5.2								
-0.810	-1.850	-1.105	-1.475	-5.2								
-0.700	-1.825	-1.035	-1.440	-5.2								

	_			_							0.700	1.020				1
		Pin			MC10176		nits	•			TEST VO	LTAGE APP	LIED TO PIN	S LISTED BE	LOW:	
		Under			+25°C			+85°C]						(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	ViHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	¹E	8	-	-	-	88	110	-	-	mAdc	-	-	-	-	8	1,16
Input Current	linH	5 9	-	_ _	- -	_ _	220 310	-	-	μAdc	5 9	-	-	-	8 8	1,16 1,16
Input Leakage Current	finL	5 9	-	_	0.5 0.5	-	_ _	 - 	-	μAdc μAdc	-	5 9	_	<u>-</u> -	8 8	1,16 1,16
Logic "1" Output Voltage	VOH	2† 15†	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	_ _	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	5 12	-	-	_	8 8	1,16 1,16
Logic "0" Output Voltage	VOL	2† 15†	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850	-	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	- -	5 12	-	-	8	1,16 1,16
Logic "1" Threshold Voltage	VOHA	2† 15†	-1.080 -1.080	-	-0.980 -0.980	-	-	-0.910 -0.910	-	Vdc Vdc	-	-	5 12	_ _	8 8	1,16 1,16
Logic "0" Threshold Voltage	VOLA	2† 15†	-	-1.655 -1.655	-	-	-1.630 -1.630	- -	-1.595 -1.595	Vdc Vdc	-	_	-	5 12	8 8	1,16 1,16
Switching Times Clock Input											+1.11 Vdc	+0.31 Vdc	Pulse In	Pulse Out	-3.2 Vdc	+2.0 Vdc
Propagation Delay Rise Time (20 to 80%) Fall Time (20 to 80%)	tg+2+ tg+2- t2+ t2-	2 2 2 2	1.4 1.4 1.0 1.0	4.6 4.6 4.1 4.1	1.5 1.5 1.1 1.1	- - -	4.5 4.5 4.0 4.0	1.5 1.5 1.1 1.1	5.0 5.0 4.4 4.4	ns	- - -	- - -	5,9	2	8	1,16
Setup Time	^t setup	2	-	-	2.5	-	-	-	-	ns	-	-	5.9	2	8	1,16
Hold Time	thold	2		-	1.5					ns	-	_	5,9	2	8	1,16
Toggle Frequency	ftog	2	-	_	125	150	-	-	-	MHz	-	-	-	-	8	1,16

[†] Output level to be measured after a clock pulse has been applied to C input (pin 9)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

Advance Information

- Max Load: 350 pF
- PD = 1.0 W typ/pkg @ 5.0 MHz
- Operating Rate: 5.0 MHz typ.
 (all 3 translators in use simultaneously)
- INPUT: MECL 10,000 (differential)
- OUTPUT: NMOS + 0.5 V VOLmax + 3.0 V VOHmin*
- *May be raised by increasing VSS.

The MC10177 consists of three MECL to MOS translators which convert MECL 10,000 logic levels to NMOS levels. It is designed for use in N-channel memory systems as a Read/Write, Data/Address driver. It may also be used as a high fanout (30) MECL to TTL translator, or in other applications requiring the capability to drive high capacitive loads. A separate lead from each of the three translators is brought out of the package. These leads may be connected to VSS or to an external capacitor (0.01 to 0.05 µF to ground), for waveform improvement, and short circuit protection. When connection is made to an external capacitor, VSS line fluctuations due to transient currents are also reduced.

POSITIVE LOGIC

NEGATIVE LOGIC

V_{CC} = Gnd = Pins 1,16

VEE = Pin 8 = -5.2 Vdc ±5%

V_{SS} = Pin 9 (+5.0 Vdc or +6.0 Vdc ± 10%)

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained.

In general test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner.

L SUFFIX CERAMIC PACKAGE CASE 620

....

	TEST VOLTAGE/CURRENT VALUES														
	Volts mAdc ±1%														
VIHmax	VILmin	VIHAmin	VILAmax	VEE	vsc	vss	IOL 1	IOL2	юн	C#					
-0.890	-1.890	-1.205	-1.500	-5.2	+5.0	+6.0	+1.0	+20	-15	0.05					
-0.810	-1.850	-1.105	-1.475	-5.2	+5.0	+6.0	+1.0	+20	-15	0.05					
-0.700	-1.825	-1.035	-1.440	-5.2	+5.0	+6.0	+1.0	+20	-15	0.05					

		·							+8	5°C	-0.700	-1.825	-1.035	-1.440	-5.2	+5.0	+6.0	+1.0	+20	-15	0.05]
		Pin		-0-	MC1		Test L		_		TE	ST VOLT	AGE/CUR	RENT APP	LIED	TO PI	NS L IS	TED B	ELOW:			
Characteristic	Symbol	Under	-3 Min	0°C	Min	+25°C	Max	+8	Max	Unit	ViHmax	VII min	VILLA	VILAmex	Vee	V _{SC}	Vss	OL1	I _{OL2}	ТОН	C#	(V _{CC})
Power Supply Drain	I _E	8	-		_		96			mAde		_	- 117.011111	- ICAMEX	8	- 30	- 33	-021	-0.2	-		1,16
Negative	Isso	9	+-	+_	-	-	88	 -	-	mAde			 		8	9	├ <u>-</u>		—			
Positive Output Low	ISSL	9	_	_		_	88	1 -	_	1'''7'		11,13,15		_	١ů	١١	-	-	-	_	_	1,16
Output High	ISSH	9	-	-	-	-	44	-	_	1		10,12,14		_	♦	♦	ΙΞ,	_	_	_	_	l ∳
Input Current	linH	10	 - -	T -	-	-	1.0	-	-	μAdc	10	11			8	9	-	- -		-		1,16
	1	11	-	-	·-	-		-	-	1 1	11	10	-	-	1	11	l –	_	-	-	_	LΈ
		12	-	-	i –	-	11	-	-	11	12	13	-	-		П	-	-	-	-	-	
	l	13	-	-	-	-	1 1	-	-		13	12	-	-	11	11	-	-	-	-	-	
		14	-	-	-	-	♦	-	-		14	15] -	-	l l	1 1	-	-	-	-	-	١ ۥ
	+		-	 -				<u> </u>	ļ-	<u> </u>	15	14			<u>'</u>	₩.				-	-	
Input Leakage Current	1CBÓ	11	-	-	-1.0	-	-	-	-	μĄdc	1	-	-	-	8,11	9	-	-	-	-	-	1,16
,		15	_] [۱ 🕴	_	_	_	-		12 14	_	_	-	8,13 8,15	1	_	-	_	-	_	! ↓
Logic "1" Output Voltage	VOH	2	3.0	+	3.0	-	<u> </u>	3.0	 	Vdc	15	14	- -		8	9	┝ <u></u>	 - -		-		1 10
20gio i Ocupativonogo	'0"	2	4.0	_	4.0	_	_	4.0	_	Vdc	15	14		_	l å	-	9	_	_	2 2	_	1,16 1,16
Logic "0" Output Voltage	VOL	2	-	0.5	_	-	0.5	-	0.5	Vdc	14	15			8	9		2	_	<u> </u>		1,16
	"	2	-	0.6	-	-	0.6	l –	0.6	Vdc	14	15	_	_	8	9	_	_	2	_	_	1,16
Logic "1" Threshold Voltage	VOHA	2	3.0	-	3.0	-	_	3.0	-	Vdc	-	14	15	_	8	9		-	-	2		1,16
		2	4.0	<u> </u>	4.0	_	L	4.0		Vdc		14	15	-	8	-	9	-	- 1	2	-	1,16
Logic "0" Threshold Voltage	VOLA	2	-	0.5	-	-	0.5	-	0.5	Vdc	14	-	_	15	8	9	-	2	-	-	-	1,16
		2		0.6		<u> </u>	0.6	<u></u>	0.6	Vdc	14		-	15	8	9	_	_	2	-	-	1,16
Output Short-Circuit Current	¹sc_	2	-50	-90	-50		-90	-50	-90	mAdo		14		-	8	9	_	_	-	-	-	1,2,16
		l	ł						1	ļ ·	-1.29 V	-1.69 V	Pulse In	Pulse Out	-5.2 V	1						l
Switching Times	115+2+	2	-	-	-	6.0	-	-	i -	ns	14	11,13	15	2	8	9	-	-	-	-	3,5,7	1,16
(350 pF Load)	t15-2-	2	-	-	-		-	-	-	l !	14		15	! !	11	11	-	-	-	-		1 1
Propagation Delay	t14+2-	2 2	-	- 1	-	ΙĹ	-	-	-	li	15		14	l l	H		-	-	-	-		1 1
B:	t14-2+	_	-	-	-	1	-	-	-	11	15		14	<u> </u>		П	-	-	-	-		1 1
Rise Time (10% to 90%)	t2+	2	-	-	-	12	-	-	-		14		15		1		-	-	-	-		1
Fall Time	١	2	1	_		12	1	l	l		ا ا	1	۱		1 1		l	l	l			1 I
(10% to 90%)	t2-	′	-	-	-	'2	-	-	-	†	14	♦	15	♦	†	🕴	-	-	-	-	♦	†
Supply Source Current	Iss	9	-	-	-	83	-	-	-	mA	10,12,14		11,13,15	-	8	<u> </u>	9	-	-	-	3,5,7	1,16
(@ 5.0 MHz) (350 pF Load)	Ì																					

-30°C

+25°C

#See test circuit.

SWITCHING TIME TEST CIRCUIT

Advance Information

P_D = 370 mW typ/pkg (No Load) f_{toggle} 150 MHz (typ)

TRUTH TABLE

L			NPU	OUTPUTS						
R	SO	S1	S2	S3	C1	C2	QO	Q1	Q2	Q3
н	٦	L	٦	٦	φ	φ	L	٦	L	٦
L	н	н	Н	Н	φ	φ	н	Н	H '	н
ᄔ	L	L	L	L	H	φ		No C	ount	
L	. L L L L					н		No C	ount	
L						•	٦	٦	٦	٦
L	L	L	L	L		•	н	L	L	L
ե	L	L	L	L	•	•	L	н	L	Ŀ
	L	L	L	L	•	•	н	н	L	
ᆫ	L	L	L	L	•	•	L	ᄔ	н	L
	L	L	ᆫ	L	•	•	н	L	н	L
ᆫ	L	L	L	L	•	•	L	Н	н	L
L	L	L	L	L	••		н	н	H	L
L	L	L.	-	<u> </u>	•	•	L	<u> </u>	١.	н
L	L	L	-	L	•	•	н	L	-	н
L	L	L	-	L	•	•	L	н	Ŀ	н
Ŀ	Ŀ	L	١.	<u> </u>	:	:	н.	H	납	н
L	L	L	-	L	:	:	Ŀ	<u> </u>	н	H
-	١. ا	_	-	L.	:	: 1	н	L	1 1	H
ויו	-	-	-	١.	I ::			н	н	
						•	H	r	ī	Н

φ = Don't Care

V_{IL}

V_{IL}

Clock transition from V_{IL} to V_{IH}

may be applied to C1 or C2 or both

for same effect.

The MC10178 is a four-bit counter capable of divideby-two, divide-by-four, divide-by-eight or a divide-bysixteen function.

Clock inputs trigger on the positive going edge of the clock pulse. Set and Reset inputs override the clock, allowing asynchronous "set" or "clear". Individual Set and common Reset inputs are provided, as well as complementary outputs for the first and fourth bits. True outputs are available at all bits.

V_{CC1} = Pin 1 V_{CC2} = Pin 16 V_{EE} = Pin 8

This is advance information on a new introduction and specifications are subject to change without notice. See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs tested in the same manner.

L SUFFIX CERAMIC PACKAGE **CASE 620**

@ Test Temperature -30°C +25°C

	TEST VOLTAGE VALUES									
VIHmax	VILmin	VIHAmin	VILAmax	VEE						
-0.890	-1.890	-1.205	-1.500	-5.2						
-0.810	-1.850	-1.105	-1.475	-5.2						
-0.700	-1.825	-1.035	-1.440	-5.2						

										.20 0	-0.0.0	-1.000	1	1	J 0.2	1
										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin			М	C10178L	Test Limit	ts				TEST VOI	TAGE AF	PLIED TO	,	
	1	Under	-30	o°C	_	+25°C		+8!	5°C			PINS	ISTED BI	ELOW:		(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	ViHmax	VILmin	VIHAmin	VILAmex	VEE	Gnd
Power Supply Drain Current	1 _E	8	_	-	_	_	88.5	-	_	mAdc	9	-	-	-	8	1,16
Input Current	1 in H	12	-	-	-		245	_	-	μAdc	12	-	-	-	8	1,16
	-	11	-	-	-	-	220	-	-	μAdc	11	-	-	-	8	1,16
	l	9	-	-	-	-	410	-	i -	μAdc	9	-	-	-	8	1,16
	linL		_		0.5	-	_	-	-	μAdc		L.:			8	1,16
Logic "1" Output Voltage	Voн	14	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	9	-	=	_	8	1,16
		15	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	11	_	_		8	1,16
Logic "0" Output Voltage	VOL	14	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	11	- '	-	-	8	1,16
	_1	15	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	9	L -	-		8	1,16
Logic "1" Threshold Voltage	VOHA	3	-1.080	-	-0.980	l –	-	-0.910	-	Vdc	-		5	-	8	1,16
		14	-1.080	-	-0.980	-	-	-0.910	-	Vdc	-	-	11	- 1	8	1,16
	_	15	-1.080		-0.980			-0.910		Vdc			9	-	8	1,16
Logic "0" Threshold Voltage	VOLA	3	-	-1.655	-	-	-1.630	-	-1.595	Vdc	-	- '	-	5	8	1,16
	ł	14	-	-1.655 -1.655	-	-	-1.630 -1.630	-	-1.595 -1.595	Vdc Vdc	-	-	_	11 9	8 8	1,16
		15		-1.655			-1.630		-1.595	Vac						
Switching Times	1	l	l			!	ł	1	ł		ł	ŀ	Pulse In	Pulse Out	-3.2 Vdc	
Clock Input**	t12+15+	15	_	-	-	3.5	-	-	-	ns	1 -	-	12	15	8	1,16
Propagation Delay	^t 12-13-	13	-	-	-	6.0 8.5	-	-	-	1 1	-	-		13		l· 1
	t12+4-	4 3	_	_	_	8.5	_	_	_	1	_	_		3		1
Rise Time (20 to 80%)	t12-3+	1 -	[_	ļ		_	ĺ	ł .	1	l	_		- 1		
	t15+	15	-	-	-	2.5	-	-	-	♦	-	-	\ ▼	15		₩
Fall Time (20 to 80%)	t15-	15				2.5			_	L .				15		<u> </u>
Set Input	t11-15+	15	-	-	-	5.2	-		-	ns	-	-	11	15	8	1,16
Reset Input	¹ 9-15+	15		-	-	5.2	-	-	-	ns	-	-	9	15	8	1,16
Counting Frequency	fcount	15	_	-	-	150	-		-	MHz	-	-	12	15	8	1,16

^{*}Individually test each input applying V_{1L} to input under test. $\frac{3}{3}$

The state of the s

P_D = 300 mW typ/pkg (No Load) t_{pd} = 3.0 ns typ (Carry, Propagate) 4.0 ns typ (Generate) The MC10179 device has 12 low power gates internally connected to perform the look-ahead carry function. This device has high Z input pulldown resistors and open emitter outputs. This device has applications in fast look-ahead adders such as with the MC10181. It can be used also as a boolean function generator.

Each MECL 10,900 series device has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

L SUFFIX CERAMIC PACKAGE **CASE 620**

	TEST VOLTAGE VALUES												
			(Volts)										
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE								
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2								
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2								
+85°C	-0,700												

										+85°C	-0,700	-1.825	-1.035	-1.440	-5.2	
		Pin				AC10179L	. Test Limi	its			TEST VO	I TAGE APE	I IED TO PIA	IS LISTED BE	LOW-	
		Under	-30	ooc		+25°C		+89	5°C		1,5,70	ETAGE ATT				(Vcc)
Characteristic	Symbol	Test	Min	Мах	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	İΕ	8	-	-	-	58	72	_		mAdc	-	-	_	-	8	1,16
Input Current	linH	4,7,11		-	· -	-	270	-	-	μAdc	4,7,11	_	_	_	8	1,16
	1	5,9	-	-	-	-	225	-	-	1 1	5,9	-	-	- 1		- 1
	1	10,13	-	-		-	440		-		10,13	-	-	-		,
	1 .	12	-	-	_	-	395	_	-	₩	12		- -	-		•
	<u> </u>	14				<u> </u>	355		<u> </u>		14					· · · ·
	linL	4	-		0.5	-				μAdc		4			8	1,16
Logic "1" Output Voltage	VOH	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	4,5,7,9				8	1,16
Logic "0" Output Voltage	VOL	3	-1.890	-1.675	-1.850		-1.650	-1,825	-1.615	Vdc				-	8	1,16
Logic "1"	VOHA	2	-1.080	-	-0.980	-	-	-0.910	-	Vdc	13	† –	5	-	8	1,16
Threshold Voltage	l	2	1 1	-		-	-	1 1	-	1 1	5,12	-	9	-		1
	I	2		-		-	-				5,9	-	12	-		•
·		2							<u> </u>	<u> </u>	5	<u> </u>	13			· · · · ·
Logic "O"	VOLA	2		-1.655	- 1	-	-1.630	-	-1.595	Vdc	13 5			5	8	1,16
Threshold Voltage	ı	2	- :		-	-	1 1	_	1 1	1 1	5		l	13 9		
	l	2 2		♦		_	♦	_	♦	♦	5,9	_	1	12	\ \ \	
Contact to Times											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Switching Times (50 Ω Load)		l					1	i e	ŀ							
	¹ 5+3+	3	- 1	-	1.0	_	5.5	-	-	пѕ	4,7,9	1 -	5	3	8	1,16
Propagation Delay	¹ 5-3-	3	-	-		_		_	-		4,7,9	<u> </u>	5	3		
	^t 11+6+ ^t 11-6-	6	_	_		_	1 1	_	_	1 1	4,7 4,7	_	11	2		
	11-6- 15+2+	6		_		_		_	_	1	4,7,9		5	2		
	t5-2-	2 2	· _	_		_				1 1	4,7,9		5	1 5		
	110+6+	6		_		_			! -		4,7	_	10	ا آ		
	110-6-	6	_	_		-	♦		_		4.7	_	10	6		1
	110+15+	15	-	_		-	3.5	_	-		12,13,14	_	10	15		l
	110-15-	15	-	_	🛊	_	l ji	_	-	1 1	12,13,14	-	10	15		
Rise Time (20% to 80%)	16 +	6	-	-	1.1	· -		-	-		4,7	_	11	6		
Fall Time (20% to 80%)	t6-	6	_		1.1	_	♥	_	_	♥	4.7		11	6		•
	<u>~_</u>	<u> </u>								ــــــــــــــــــــــــــــــــــــــ	<u> </u>	L				

Each MECL 10,000 series device has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

P SUFFIX
PLASTIC PACKAGE
CASE 648

	TEST VOLTAGE VALUES												
		(Volts)											
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE								
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2								
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2								
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2								

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
	I	Pin					Test Limi			,	TEST VO	LTAGE APP	LIED TO PIN	IS LISTED BE	LOW:	
	l	Under	-3	0°C		+25°C		+85°C		İ						(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	IE_	8	-	-	-	58	72	-	_	mAdc	_	-	_	-	8	1,16
Input Current	linH	4,7,11	-	-	_	-	270	-		μAdc	4,7,11	_	_		8	1,16
	ł	5,9	-	-	-	-	225	-	-	1 1	5,9	-	-	-		
	1	10,13	- 1	-	-	-	440	-	-		10,13	_	-	-		1
	i	12	-	-		-	395	-	-	♦	12		_	-	•	
	 	14					355	<u> </u>	 -		14	 	<u> </u>			1 10
 	linL	4			0.5			-		μAdc	-	4			8	1,16
Logic "1" Output Voltage	∨он	2	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	4,5,7,9				8	1,16
Logic "0" Output Voltage	VOL	3	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615	Vdc			-		8	1,16
Logic "1"	VOHA	2	-1.080	-	-0.980	-	-	-0.910	-	Vdc	13	-	5	-	8	1,16
Threshold Voltage	Į	2	1 1	-		-	-	1 1	-		5,12	-	9	-	1	1 1
	ŀ	2	♦	-		-	-	♦	-		5,9 5	1 -	12 13	_	•	
	 	<u> </u>	 -		 -		 -	<u>'</u> -		· · ·				-		· · ·
Logic "O"	VOLA	2	-	-1.655	-	-	-1.630		-1.595	Vdc	13 5	-	_	5 13	8	1,16
Threshold Voltage	1	2 2	_	1		-		_		il	5	_	_	9		1 [
	l	2		♦	_	_	♥	_	♦	♦	5,9	_	_	12	. ▼ .	♦
A											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Switching Times (50 Ω Load)	1	į.		ĺ				1		ł		1				
	t5+3+	3	-	-	1.0	-	5.5	-	-	ns	4,7,9	-	5	3	8	1,16
Propagation Dalay	t5-3-	3	-	-		-	1 1	-	- 1	11	4,7,9	-	5	3	1	1 1
	t11+6+ t11-6-	6	-	_	1 1 1	_	I	-	- 1		4,7	i –	11	2	1	1 1
	t5+2+	6		_	1	_		l ~	_	1 1	4,7 4,7,9	_	5	0		l i
	15-2-	2 2		_		_			_		4,7,9	_	5	5		
	110+6+	6	_	~		_			_		4,7	_	10	6		i I
	110-6-	6	_	-		_	♦	_	_		4.7	_	10	6		
	t10+15+	15	-	-		-	3.5	-	_		12,13,14	_	10	15		
	t10-15-	15	-	_	🛊	-	1 1	-	-	11.	12,13,14	-	10	15		
Rise Time (20% to 80%)	¥6+	6	-	-	1.1	_	1 1	-	-		4,7	-	11	6		
Fell Time (20% to 80%)	t6-	6	_	_	1.1	_	₹	-	-	₩	4,7	l –	11	6	•	♦

V_{CC1} = V_{CC2} = +2.0 Vdc Vout Coax 0.1 µF G3 P3 13 9 G2-Input P2 12 50-ohm termination to ground to- Θ c_n 11 cated in each scope channel input. G1 7 Pulse Generator P1 10 G0 4 Input Pulse PO 14 $t+ = t- = 2.0 \pm 0.2 \text{ ns}$ (20 to 80%) PROPAGATION DELAY 0.1 µF +1.11 V Vin 50% +0.31 V VEE = -3.2 Vdc All input and output cables to the scope are equal lengths of 50-ohm Vout coaxial cable. Wire length should be < 1/4 inch from TP_{in} to input -50% 20% pin and TPout to output pin.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

APPLICATION INFORMATION

The MC10179 is a high speed, low power, standard MECL complex function that is designed to perform the look-ahead carry function. This device can be used with the MC10181 4-bit ALU directly, or with the MC10180 dual arithmetic unit in any computer, instrumentation or digital communication application requiring high speed arithmetic operation on long words.

When used with the MC10181, the MC10179 performs a second order or higher look-ahead. Figure 2 shows a 16-bit look-ahead carry arithmetic unit. Second order carry is valuable for longer binary words. As an example, addition of two 32-bit words is improved from 30 nanoseconds with ripple-carry techniques, to 18 nanoseconds with carry look-ahead techniques. A block diagram of a 32-bit ALU is shown in Figure 1. The MC10179 may also be used in many other applications. It can, for example, reduce system package count when used to generate functions of several variables.

3-189

3-190

DUAL 2-BIT ADDER/SUBTRACTOR

MC10180

The MC10180 is a high speed, low power general-purpose adder/subtractor. It is designed to be used in special purpose adders/subtractors or in high speed multiplier arrays. The MC10180 can be used in any piece of equipment where these operations are necessary.

Inputs for each adder are Carry-in, operand A, and operand B; outputs are Sum, Sum, and Carry-out. The common Select inputs serve as a control line to invert A for subtract, and a control line to invert B. The speed is very fast, with Carry-in to Carry-out propagation delay of 2.2 ns and Operand in to Sum or Carry-out propagation delay of 4.5 ns.

Positive Logic Only

A' * A ③ SelA * A ④ SelA

B' * B ④ SelB * B (*) SelB

NEGATIVE LOGIC

Both Positive and Negative Logic $S \cong \overline{C_{in}} \; (\overline{A}' \; B' + A' \; \overline{B}') + C_{in} \; (A' \; B' + \overline{A}' \; \overline{B}')$ $C_{out} = C_{in} \; A' + C_{in} \; B' + A' \; B'$

FUNCTION SELECT TABLE

Sela	Selg	Function
н	Н.	S = A plus B
н	L	S = A minus B
۳	1	S = B minus A
٦	L	S = 0 minus A minus B

POSTIVE LOGIC DIAGRAM - 1/2 Of Circuit Shown

TRUTH TABLE

FUNCTION			WPUTS		TS				
FUNCTION	BUA		Sele AO		Cin	50	80	Cout	
ADD	*	*	-	-	-	-	×	Τ.	
	-		L I	L		*	·	١.	
	+		۱ د ا	н	L		L	12.2	
	:		;			١.	н	۱ .	
	# I	*	۱۳ ۱	t	<u>۱</u>	ŧ	l h	ı	
	l G I		ı 🖁	l h	17	١ì	1 7	;;	
	1 🛱 1	1 2	I Ĥ.	1 2	۱à.	l à	ı	l #	
BUSTRACT	н	-	-	-		H	Ť.	-	
		L	L.	L		l L	м .		
	н	Ĺ	L	н	L	L L	н	I١	
		L	١.	н	н	н	L	١.	
		i	н	L	L	L.	н	H	
		L	*	ī		н	L		
	:	٠.	:	:	۱ ۵ ا	:	<u>ا</u>	۱ μ	
REVERSE	-	+	1	7	7	+	t	7	
SUBTRACT	۱ : ۱	ä	1:	1 .	i ii	17	· *	l ä	
eos.nac.	1	H	l i	1 2	ï		H		
	ī	H 1	l i	H 1	ı ē l	i ĕ i		н	
			H	122772	L.	11.11		11.	
	١. ١			L				L	
	١.	:	:		L.			i.	
							-	-	
					12	7		-	
	1: 1	1 .	انا	٠.	171	H			
	1 7 1	1					H	ı i	
	i.	i.	H		L			72.72	
	i.		H	L	H	ü	н	н	
	:	١.	: 1		L .	L.		t	

Bes General Information section for packaging and maximum ratings information.

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 yotls.

L SUFFIX CERAMIC PACKAGE CASE 620

VEE

-5.2

-5.2

-5.2

TEST VOLTAGE VALUES Volts @ Test Temperature VIH max VIL min VIHA min VILA max -30°C -0.890 -1.890 -1.205 -1.500 +25°C -1.475 -0.810 -1.850 -1.105 +85°C -1.035 -0.700 -1.825 -1.440

MC10180 L Test Limits Pin TEST VOLTAGE APPLIED TO PINS LISTED BELOW: -30°C +25°C +85°C Under (VCC) Characteristic Symbol Test Min Max Min Тур Max Min Max Unit VIHA min VILA max VEE VIH max VIL min Gnd Power Supply Drain Current 70 mAdc 16 8 86 8 ΙE _ Input Current 370 иAdc 16 linH 220 220 290 290 10 220 _ 10 11 220 11 12 370 12 AII 0.5 μAdc 8 16 linL -0.960 Logic "1" ۷он -1.060 -0.890 ~0.810 -0.890 -0.700 7.9 16 Output Voltage -1.060 -0.890 -0.960 -0.810 -0.890 -0.700 3 4,5,7,9 15 -1.060 -0.890 -0.960 _ -0.810 -0.890 -0.700 4,7,9 Logic "O" VOL -1.890 -1.675 -1.850 ~1.650 -1.825 -1.615 Vdc 5,7,9 16 Output Voltage 3 -1.890 -1.675 -1.850-1.650-1.825 -1.615 7,9 15 -1.890 -1.675 -1.850 -1.650 -1.825 -1.615 7.9 Logic "1" VOHA 2 -1.080 -0.980 -0.910 7,9 4 16 Threshold Voltage -0.980 -1.080-0.910 4.7.9 15 -1.080 -0.980 -0.910 7,9 Logic "0" VOLA -1.655 -1.630 -1.595 7.9 4 16 2 Vdc 8 Threshold Voltage 3 -1.655 -1.630 -1 595 7.9 4 15 -1.655 -1.630-1.5954.7.9 Switching Times +1.11 V Pulse In Pulse Out -3.2 V +2.0 V Propagation Delay Operand Input ^t5+15+ 1.3 5.8 1.3 1.1 5.8 7,9 15 16 15 5.8 1.3 5.4 5.8 7,9 6 15 1.3 1.1 ^t6+15+ 15 1.0 3.4 1.0 3.3 0.9 3.6 7.9 15 Carry-in Input t4+15+ 3 1.0 3.4 1.0 3.3 0.9 3.6 5,7,9 **t**4+3+ Select Input 15 1.3 5.8 1.3 5.4 5.8 4.9 ^t7+15+ 1.1 15 1.3 5.8 5.8 7.4 9 1.3 1.1 t9+15+ Rise Time 15 1.0 3.8 1.1 3.7 1.1 3.9 7.9 5 ¹15+ (20 to 80%) Fall Time 1.0 3.8 1.1 3.7 1.1 3.9 7,9 t15-

^{*}Individually-apply-VII min to pin under test-

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts.

P SUFFIX PLASTIC PACKAGE CASE 648

	TEST VOLTAGE VALUES											
	Volts											
@ Test Temperature	VIH max	V _{IL min}	VIHA min	VILA max	VEE							
~30°C	-0.890	-1.890	-1.205	-1.500	-5.2							
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2							
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2							

		Pin		MC10180P Test Limits							TEST VOLTAGE APPLIED TO PINS LISTED BELOW					
		Under	-30	°C		+25°C		+85	o°C		120. 10					(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	V _{IL min}	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	İΕ	8	-	-	-	70	86		_	mAdc	_	-	-		8	16
Input Current	linH	4			-		370	-	-	μAdc	4	_	_	_	8	16
		5	-	-	- 1	_	220	-	-		5	-	-	-		
		6	-		- 1	_	220	-	-		6	-	-	_	1 1 1	- 1
		9	_	_	! _	_	290 290	_	_		ģ		_	_		
		10	_	_		_	220		:		10		_	_		1
		11	_	_	l – I	_	220	_	-		11	_	_	_		
		12	-	-	- 1	_	370	-	-	. 1	12	- 1	-	-	7	
	linL	Ali	_	_	0.5	_	_	-	-	μAdc	-	•	_		8	16
Logic "1"	νон	2	-1.060	-0.890	-0.960	_	-0.810	-0.890	-0.700	Vdc	7,9	-	-	~	8	16
Output Voltage		3	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700		4,5,7,9	-	-	-	1 1 1	Ţ
		15	-1.060	-0.890	-0.960	_	-0.810	-0.890	-0.700		4,7,9			-		
Logic "0"	VOL	2	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	5,7,9	-	~	-	8	16
Output Voltage		3	-1.890	-1.675	-1.850	_	-1.650	-1.825	-1.615		7,9	-	_	-	1 1 1	1
		15	-1.890	-1.675	-1.850		-1.650	-1.825	-1.615		7,9	_			'	
Logic "1"	VOHA	2	-1.080	-	-0.980	_	-	-0.910	-	Vdc	7,9	- 1	-	4	8	16
Threshold Voltage		3	-1.080	_	-0.980	_	-	-0.910	-		4,7,9	-	5			- 1
		15	-1.080		-0.980			-0.910			7,9		4			
Logic "0"	VOLA	2	-	-1.655	- 1	-	-1.630	-	-1.595	Vdc	7,9	- 1	4	-	8	16
Threshold Voltage		3 15	_	-1.655 -1.655	-	_	-1.630 -1.630	_	-1.595 -1.595		7,9 4,7,9	_	_ 5	4		•
		15		-1.000			-1.630	<u> </u>	-1.555						2211	
Switching Times Propagation Delay					1			l			+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Operand Input	¹ 5+15+	15		_	1.3	_	5.4	_	_	ns	7.9		5	15	8	16
Operatio Impot	¹ 6+15+	15	_	_	1.3	-	5.4	_	_	l ï l	7,9	1 -	6	15	lĭ	Ĭ
0 1-1	4+15+	15		_	1.0	_	3.3	_	_		7,9	_	, i	15	1 1 1	
Carry-in Input	4+15+ 4+3+	3	_	-	1.0	_	3.3	_	_		5,7,9	_	, A	3		- 1
Select Input		15	_	_		_	5.4	l _	_		4,9		,	15		: i
Select Input	^t 7+15+ ^t 9+15+	15	_	_	1.3 1.3	_	5.4	1 -			7.4	_	و ا	l 'i	1	
Rise Time		15					3.7		-		7.9		5		1 1 1	
(20 to 80%)	^t 15+	15	-	_	1.1	_	3.7	_	_		7,9	-	"			i
		4-			ا ا		3.7		l		7.9	l	5	↓		
Fall Time	t15-	15	_	-	1.1	-	3./	- 1	-	. "]	7,9	_	l °		1 1	, ,

^{*}Individually apply VIL min to pin under test.

4-BIT ARITHMETIC LOGIC UNIT/FUNCTION GENERATOR

MC10181

The MC10181 is a high-speed arithmetic logic unit capable of performing 16 logic operations and 16 arithmetic operations on two four-bit words. Full internal carry is incorporated for ripple through operation.

Arithmetic logic operations are selected by applying the appropriate binary word to the select inputs (S0 through S3) as indicated in the tables of arithmetic/logic functions.

Group carry propagate (PG) and carry generate (GG) are provided to allow fast operations on very long words using a second order look ahead. The internal carry is enabled by applying a low level voltage to the mode control input (M).

When used with the MC10179, full-carry look-ahead, as a second order look ahead block, the MC10181 provides high speed arithmetic operations on very long words.

See General Information section for packaging.

F = A • B

F = A

F = (A • B) minus 1

F = A minus 1

н

F = A + B

F = A

F = (A + B) plus 0

F = A plus 0

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts.

MC10181 Test Limits

L SUFFIX CERAMIC PACKAGE **CASE 623**

P SUFFIX PLASTIC PACKAGE CASE 649

			(49(4)										
		Test perature	VIH max	VIL min	VIHA min	VILA max	VEE						
		-30°C	-0.890	-1.890	-1.205	-1.500	-5.2						
		+25°C	-0.810	-1.850	-1.106	-1.475	-5.2						
	+85°C		-0.700	-0.700 -1.825 -1.035 -1.440 -5									
			т	EST VOLTAG	E APPLIED TO	INS BELOW:							
8	5°C	l 1				T							
1	Max	Unit	VIH mex	VIL min	VIHA min	VILA max	VEE	Gnd					
Ì	-	mAdc		-	-		12	1,24					
	-	μAdc	9	-	-	_	12	1,24					
	-	li i l	10	-	_	1 -	1 1 1	1					
	-		11	-	-	-	1 1						
	-		13	-	-	-	1 1 1						
	-		14	-	-	-	1 1 3						
ı	-		15	- 1	-	-	111	- 1					
ľ	-	l 1 i	16	1 – 1	_	-	1 1 1						

TEST VOLTAGE VALUES

Characteristic Symbol Power Supply Drain Current IE Input Current IInh	9 10 11 13 14 15 16 17 18	Min			- - - - -	Max 145 246 220 245 200 265 265			Unit mAdc μAdc	9 10 11	VIL min	VIHA min	VILA mex	12 12	1,24 1,24
	9 10 11 13 14 15 16 17 18	3	-		111,111	245 220 245 200 265	-	Ē		9 10	_				
Input Current InH	10 11 13 14 15 16 17 18		-		11,111	220 245 200 266	-	_	μAdc	10	-	=	-	12	1,24
	11 13 14 15 16 17 18		-	-	Ļ	245 200 265	-	-				_	_		1 1
	13 14 15 16 17 18	-	=	-	-	200 265	-	l		11	_	_			
	14 15 16 17 18	=	-	-	_	265	l .	-							í I
	15 16 17 18 19	=	-	-	-					13	-	-	-		()
	16 17 18 19	=	-	i l			ı	-		14	- ,	_	-		1
	17 18 19	-			_	220	-	-		15 16	-	_	-		1 1
	18 19			_	_	265	_	1 =		16 17	-	_	-		1
	19		_	1 🗆 1	_	220	_	1 -		18	_				
		۱ ـ	-		_	245	! =	1 -	- 1	19		_	i		1 1
	20	l –	l _	_	_	245	_		. 1 1	20	_	-			1 1
	21	-	_	- 1	_	220	-	-		21	_	_	_	1 1	1 1
	22	-	-	-	-	290	- 1	-	1 1	22	-	_	-	1 1	1 1
	23	-	-	-	-	200	- 1	-		23	-	_	-	•	1
nput Leakage Current linL	9	-	_	0.5	-	_	-		µАdc	_	9	-	-	12	1,24
	10	-		1 1	-	-	-	-		-	10	-	-	1 1	1 1
1	11	-	- :	1 1 1	-	-		-			11	-	-	1 1	1 1
	13	-	- '	1 1 1	-	-		-			13		-	1 1	1 1
	14	-	- :		-	-	-	-	- 1 - 1	-	14	-	-		1 1
	15	-	-		-	-	-	-		-	15	-	-	1 1	1 1
	16		- 1	1 1	-	-	- 1	-		-	16	-	-		1 1
1	17	-	-	1	-	-	-	-		-	17	-	-		1 1
	18		-	1 1 1	-	-	-	-		-	18	-	- 1		1 1
	19 20	-	-		-	_	-			-	19	-	-	1 1	1 1
l l	21	1 -	1 -		_	_	_	1 =		-	20 21	_	- 1	1	
i	22	-	1 -		_		_	-		_	21	_			1
1	23	-	=		_	_				_	23	_		†	
ligh Output Voltage VOH	· ·	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	•	•	-		12	1,24
ow Output Voltage VOL	•	-2.000	-1.675	-1.990		-1.650	-1.920	-1.615	Vdc	•	•	-	-	12	1,24
ligh Threshold Voltage VOHA	•	-1.080		-0.980	-		-0.910	-	Vdc		-	••	••	12	1,24
ow Threshold Voltage VOLA		_	-1.655	-	-	-1.630	-	-1.595	Vdc	-	-	••	••	12	1,24

^{*}Test all input-output combinations according to Function Table.

**For threshold level test, apply threshold input level to only one input pin at a time

		1	ĺ		l		AC S	witchin	g Chara	cterist	ics	
					-3	o _o c .		+25°C	;	+8	5°C ∙	
Characteristic	Symbol	Input	Output	Conditions [†]	Min	Max	Min	Тур	Max	Min	Max	Unit
Propagation Delay	t++, t	Cn	Cn+4	A0,A1,A2,A3	1.0	5.1	1.1	3.1	5.0	1.1	5.4	ns
Rise Time, Fall Time	t+,t-	C _n	Cn+4	A0,A1,A2,A3	1.0	3.2	1.0	2.0	3.0	1.0	3.2	ns
Propagation Delay	t++, t+-	Cn	F1	A0	1.7	7.2	2.0	4.5	7.0	2.0	7.5	ns
	t-+, t	lï			1.7	7.2	2.0	4.5	7.0	2.0	7.5	
Rise Time, Fall Time	t+, t-	[∮		†	1.3	5.3	1.5	3.0	5.0	1.5	5.3	
Propagation Delay	t++, t+-	A1	F1	-	2.6	10.4	3.0	6.5	10	3.0	10.8	ns
	t-+, t	1 1	1 1		2.6	10.4	3.0	6.5	10	3.0	10.8	
Rise Time, Fall Time	t+, t-	•		-	1.3	5.4	1.5	3.0	5.0	1.5	5.3	<u> </u>
Propagation Delay	t++, t	A1	PG	\$0,53	1.6	7.0	2.0	5.0	6.5	2.0	7.0	ns
Rise Time, Fall Time	t+, t-	A1	PG	\$0,53	0.8	3.7	1.1	2.0	3.5	1.1	3.8	ns
Propagation Delay	t++, t	A1	GG	A0,A2,A3,Cn	1.1	7.4	2.0	4.5	7.0	1.3	7.7	ns
Rise Time, Fall Time	t+, t-	A1	GĞ	A0,A2,A3,Cn	1.2	5.1	1.5	4.0	5.0	1.2	5.3	ns
Propagation Delay	t+-, t-+	A1	Cn+4	A0,A2,A3,Cn	1.7	7.3	2.0	5.0	7.0	2.0	7.8	ns
Rise Time, Fall Time	t+, t-	A1	Cn+4	A0,A2,A3,Cn	1.0	3.1	1.0	2.0	3.0	1.0	3.2	ns
Propagation Delay	t++, t-+	B1	F1	S3, Cn	2.7	11.3	3.0	8.0	11	3.0	11.9	ns
Rise Time, Fall Time	t+, t-	B1	F1	\$3,C _n	1.2	5.3	1.5	3.5	5.0	1.5	5.3	ns

[†]Logic high level (+1.11 Vdc) applied to pins listed. All other input pins are left floating or tied to +0.31 Vdc. $V_{CC1} = V_{CC2} = +2.0 \text{ Vdc}, V_{EE} = -3.2 \text{ Vdc}$

^{*}L Suffix Only

ELECTRICAL CHARACTERISTICS (continued)

							AC Sv	vitchin	g Chara	cterist	ics	
					-30	oc.		+25°C	;	+8	5°C*	
Characteristic	Symbol	Input	Output	Conditions [†]	Min	Max	Min	Тур	Max	Min	Max	Unit
Propagation Delay	t++, t	B1	P _G	S0, S3	1.6	7.7	2.0	6.0	7.5	2.0	8.0	ns
Rise Time, Fall Time	t+, t-	B1	P _G	S0,S3	1.0	3.6	1.1	2.0	3.5	1.1	3.9	ns
Propagation Delay	t++, t	B1	GG	\$3, C _n	1.7	8.2	2.0	6.0	8.0	2.0	8.6	ns
Rise Time, Fall Time	t+, t-	B1	GG	\$3,C _n	1.4	5.2	1.5	3.0	5.0	1.2	5.4	ns
Propagation Delay	t+-, t-+	B1	C _{n+4}	S3, C _n	1.8	8.2	2.0	6.0	8.0	2.0	8.7	ns
Rise Time, Fall Time	t+, t-	B1	C _{n+4}	S3,C _n	0.9	3.1	1.0	2.0	3.0	1.0	3.2	ns
Propagation Delay Rise Time, Fall Time	t++, t+- t+, t-	M	F1 F1	-	2.4 1.1	10.3 5.1	3.0 1.5	6.5 4.0	10 5.0	3.0 1.5	10.8 5.3	ns ns
Propagation Delay	t+-, t-+	S1	F1	A1, B1	2.5	10.7	3.0	6.5	10	3.0	10.8	ns
Rise Time, Fall Time	t+, t-	S1	F1	A1, B1	1.0	5.4	1.5	3.0	5.0	1.5	5.4	ns
Propagation Delay	t-+, t+-	S1	P _G	A3, B3	1.7	8.3	2.0	6.0	8.0	2.0	8.4	ns
Rise Time, Fall Time	t+, t-	S1	P _G	A3, B3	0.8	5.1	1.1	3.0	5.0	1.1	5.2	ns
Propagation Delay	t+-, t-+	S1	C _{n+4}	A3, B3	1.6	9.3	2.0	6.0	9.0	2.0	9.9	ns
Rise Time, Fall Time	t+, t-	S1	C _{n+4}	A3, B3	0.9	5.3	1.1	3.0	5.0	1.0	5.2	ns
Propagation Delay	t+-, t-+	S1	G _G	A3, B3	1.5	9.6	2.0	6.0	9.0	1.9	9.7	ns
Rise Time, Fall Time	t+, t-	S1	G _G	A3, B3	0.8	6.2	0.8	3.0	6.0	0.8	6.5	ns

[†]Logic high level (+1.11 Vdc) applied to pins listed. All other input pins are left floating or tied to +0.31 Vdc. V_{CC1} = V_{CC2} = +2.0 Vdc, V_{EE} = -3.2 Vdc

*L Suffix Only

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

Advance Information

The MC10182 is a high-speed arithmetic logic unit capable of performing 4 logic operations and 4 arithmetic operations on two 2-bit words. Full internal carry is incorporated for arithmetic operation.

Arithmetic logic operations are selected by applying the appropriate binary word to the select inputs (S0 and S1) as indicated in the tables of arithmetic/logic functions. Group carry propagate (PG) and carry generate (GG) are provided for a second order look ahead carry using the

MC10179. The internal carry is enabled by applying a low level voltage to the mode control input (M).

The MC10182 provides an alternate to the MC10181 four-bit ALU for applications not requiring the extended functions of the MC10181 or for applications requiring a 16-pin package. The MC10182 also differs from the MC10181 in that Word A and Word B are treated equally for addition and subtraction (A plus B, A minus B, B minus A).

	1	POSITI	VE LOGIC	NEGAT	IVE LOGIC
Function S1	n Select	Logic Function M is High F	Arithmetic Operation M is Low F	Logic Function M is High F	Arithmetic Operation M is Low F
L H H	L H L	F = A ⊕ B F = A ⊕ B F = A + B	F = A plus B plus Carry F = Ā plus B plus Carry F = A plus B plus Carry F = A times 2	F = A ⊕ B F = A ⊕ B F = A + B F = A ⊕ B	F = A plus B plus Carry F = Ā plus B plus Carry F = A plus B plus Carry F = A times 2

See General Information section for packaging and maximum ratings information. This is advance information and specifications are subject to change without notice.

TRUTH TABLE

					TRUTH TABLE	E			
	М	L	L	L	L	н	н	н	н
Input	S1	L	L	н	н	L	L	Ħ	н
	SO	L	Н	L	н	L	н	L	н
A1 B1 A	40 BO C _n	F1 F0 PG GG Cn+2	F1 F0 PG GG Cn+2	F1 F0 PG GG Cn+2	F1 F0 PG GG Cn+2	F1 F0 PG GG Cn+2	F1 F0 PG GG Cn+2	F1 F0 PG GG Cn+2	F1 F0 PG GG Cn+2
LL	LLL	LLHL	ннгн г	ннцн ц	LLHLL	нни ц к	LLUHL	L L L H →L	LLLLL
LL	LLH	LHHLL	LLLH H	LLLH H	сннс с	нин с с	LLEH H	LLLH H	LLLL
LL	LHL	LHHLL	сенн н	ньнь ь	LLHLL	ньнь ь	гний и	LLLLL	гин т г
LL	L н н	H L H L L	L н н н	нннь г	тннг г	HLHLL	LHHH H	LLLL	LHHL L
LL	нсь	LHHLL	HLHLL	сенн н	нгнг г	H L H L L	LHHLL	LLLHL	LH HL L
		нгнг г	нннь г	гннн н	нннь г	HLHLL	LHHILL	LLLHH	LHHLL
	ннг	H L H L L	ннін і	ннін і	H L H L L	H H H L L	LLEHE	L H H H H	LHHLL
LL	ннн	ннн	ссен н	LLLH H	нннь г	HHML L	LLLH H	сини н	LHHLL
L H	LLL	н L н L L	сннн н	LHHLL	LLHLL	LHHLL	нініі	LL LL L	H L H L L
L H	LLH	нннь ь	ньнн н	ньнь ь	LHHLL	LHHLL	ньнь ь	LL LL L	HLHLL
LH	LHL	ннін і	н L н н	LLHLL	LLHLL	LLEWEL	нин с с	LLLLL	HHHL L
LH	ц н н	LLLHH	нннн н	LHHLL	ьннь ь	LLLHH	ния с с	LLLLL	HHHL L
LH	HLL	ннін і	сенн н	нене с	ньнь ь	LLEML	ннись	LLLLLL	HHHL L
L H	ньн	L L L H H	_ н н н н	HHHL L	нннь с	LLA.H.H.	нинц ц.	LLLLL	нин с
LH	H H L	LLHH H	инн н	LHHLL	H L H L L	гнин н	HLHLL	L H M t L	нин с с
L H	ннн	сннн н	ньнн н	HLHLL	нннь ь	снийн и	ныны ц	LHALL	ний с
H L	LLL	H L H L L	LHHLL	гннн н	L L H H H	LHHLL	HLHLL	LLLH	ньин н
H L	LLH	HHHL L	H L H L L	ньнн н	ьннн н	LHHALL	нини ъ	LLLH	ньин и
H L	LHL	ннін і	H L H L L	сенн н	сенн н	LLLH	ний в г	LLLE, L	нннн н
H L	ь н н	LLLH H	Нннь г	ьнин н	ьнин н	LLCH H	нин с г	L L L L	нннн н
HL	HLL	нньн ь	LLHLL	нснн н	ньнн н	LLLH	нныс с	LLLH, L	нннн н
H L	ньн	LLLHH	L H H L L	нннн н	нннн н	LLL, H H	нин с с	LLLH H	нннн н
HL	ннь	стин н	LHHLL	сннн н	н L н н н	L H WALH JOHN	нгыгг	гнин . "н.	ннни н
HL	н н н	снин н	HLHLL	ненн н	нини н	LHHH H	HLNLL	гнин н	нн ин н
нн		сенн н	ннін і	ннін і	сснн н	нны н	LLLH L	ньн н	нсин н
нн		гннн н	L L L H H	L L L H H	снин н	H H H H	LLEH H	нгний	нен н
н н	LHL	ь н н н	сен н	H L H L L	сенн н	нгнны	снин н	нгий и	ннни н
нн	L н н	нснн н	L н н н	нннь г	гнін н	H L H"H H	F H JH SHOW HAN	H L H H AH	ннни н
нн	ньг	гннн н	H L H L L	сенн н	нснн н	H L H H H	LHHL	ньии и	ннян н
нн	_	нгнн н	HHHLL	енни н	нннн н	нгни н	LHHLL	нгни и	нний и
н н	ннь	нгнн н	ннсн с	Ннгн г	нснн н	нна н 💝 🛱	LLLH L	нини н	ння и н
н н	ннн	нннн н	LLLH H	LLLH H	нннн н	ннин: ***	LLLH H	н н н н н	ннн н

These outputs are not normally used during logic operation.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to 2-0 volts.

L SUFFIX CERAMIC PACKAGE CASE 620 TEST VOLTAGE VALUES

Volts

VIHmax VILmin VIHAmin VILAmax VEE

-30°C -0.890 -1.890 -1.205 -1.500 -5.2

+25°C -0.810 -1.850 -1.105 -1.475 -5.2

+85°C -0.700 -1.825 -1.035 -1.440 -5.2

50-onm resistor to -2.0 vo	oits.					0,70	L 020			+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	i
		Pin			M	C10182L	Test Limit						GE APPLI			1
	Ī	Under	-3	0°C		+25°C		+8	5°C		ļ		STED BE			(Vcc
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax		VIHAmir	VILAmex	VEE	-
Power Supply Drain Current	1E	8		-		110	138			mAdc				-	8	-1,10
Input Current	linH	7	_	-	-	-	220	-	-	μAdc	7	-	-	-	8	1,10
	1	5	-	-	-	-	390	-	-	1 1	5	-	-	l	1 1	1 1
		13		_	_	_	290 350	-	-	1 1	6 13	ł <u>-</u>	1 -	-	1 1	1 1
	link	5	- -	- -	0.5	-	350		- -	μAdc		5	H		- 'a	1,10
Logic "1" Output Voltage	VOH	2	-1.060	-0.890	-0.960	=	-0.810	-0.890	-0.700	Vdc	5,6,11	-			a	1,10
Edgic 1 Colput Voltage	T VOH	3	1.000	70.050	-0.560		1-0.810	-0.050	-0.700	1 400	12,13	l -	_		Ιî	l 'ï'
	1	. 4	1 1		1 1	_	1 1			11	l ''i''	l _	_			1 1
	i	14	1 1		1 1	-		1		1 1		_	_	l –		1 1
	.L	15	1	_ t _		-	1	•	†	1					1	1
Logic "0" Output Voltage	VOL	2	-1.890	-1.675	-1.850	_	-1.650	-1.825	-1.615	Vdc	7,9,10	_	_	_	8	1,10
	1	3	1 1	li	1 1	-	1 1	1 1	1 1	1 1	Lii	-	-	~		lί
	1	- 4	! I		i i	۱ -	1 1	1 1	1 1	i I		l –	-	-	11	1 1
	1	14	1 1	1 1	1 1	- 1	11	1 1	1 1	11	1 1	-	-	-	11	1 1
		15			<u> </u>		<u>'</u>	<u>'</u>	'		'		-	-		<u>'</u>
Logic "1" Threshold Voltage	VOHA	2	-1.080	-	-0.980		-	-0.910	l –	Vdc	6,7,9	-	5	-	8	1,09
		3	1	-	1 1	-	-	li	-	11	5,10,13	-	6	-		1 1
	ľ	4	1	-	ll	-	-		-	1 1	7,9,10	-	5	-	1 1	1 1
		14 15		_	۱ ا	_	-		-	1 1	9,10	_	5	_	١ ۥ	1 1
Logic "0" Threshold Voltage	1/-	2			- '-	 	1.000	- '	4 505		6,7,9	_	5			'
Logic U Inresnoid Voltage	VOLA	3	-	-1.655	_	_	-1.630		-1.595	Vdc	6,7,9 5,10,13	-	- 1	5	8	1,16
	ł	4	l		-	1 -	1	l	l +		7,9,10	_	_	6 5	1 1	1
	1 '	14	_		i –	-	1 1	_	1 1	1 1	9,10	_	_	5		1 1
		15	-	†	-	-	+	-	I ♦] †	6,7,9	-	- 1	5	١ ا	1 1
Switching Times		—										+1.11 V	Pulse In	Pulse Out	-3.2V	+2.0 \
(50 Ω Load)	113+2+	2	l -	-	-	2.7	-	-		ns		10	13	2	8	1.16
Propagation Delay	113+4-	4	-	-	-	2.7	-	-	-	ΙΙ.	-	5	13	4	1	LΈ
	t5+4-	4	-	-	-	7.0	-	-	-		-	7	5	4	1	1 1
	16-4-	4	-	-	-	7,0	-	-	-	11	-	9,10	6	4	H	1 1
	112-14+	14	- 1	-	-	7.0	-	-	-		-	-	12	14		1 1
	t11-14-	14 2	-		-	7.0		1 =	_	11		-	11 5	14		1
	t5+2+	2	-	_	l	7.0 7.0	_	_	1 -	11	_	9.10	12	2 2		1 1
	16-2-	2	-	_		7.0	_	_		1 1	1 [10	6	2		
	111+2+	1 2	l _	_	-	7.0	۱ -	_		1.1	l _	12	11	2		1 1
	15-15-	15	- 1	-	-	6.5	-	_	_	1 1	_	10	5	15		1 1
	¹ 6+15+	15	- 1	l –	-	6.5	- 1	-		1 1	-	10	6	15		
	15+3-	3	-	-	-	5.5		-	-	1 1	-	10	5	3	1 1	
	¹ 6-3+	3	-	-	-	5.5	-	-	-	1 1 1	-	9	6	3	1	
	17-4+	4	-	-	-	4.0	-	-	-	1 1	-	9,10	7	4	1	1
	110-4-	4				6.0		<u> </u>				6,11,13	10	. 4	<u> </u>	
Rise Time	1.	١.	l		I	١	l	i		I	l	1	i _ '	١.		١.
(20% to 80%)	14+	4	-	-	-	2.5	-	-	-	ns	-	-	5	4	8	1,10
Fall Time	1	١.	l		l	Í		ĺ	1	l	ŀ	1			1	Į
(20% to 80%)	4-	4	-	ı -	-	2.5	- 1	-	I -	ns	-	-	5	4	8	1,16

Advance Information

TRUTH TABLE

Inp	uts	Output
A	В	a
Ŀ	L	н
٦	Ξ	L
I	۲	L
H	н	Н

The MC10195 is a Hex Buffer Inverter which is built using six EXCLUSIVE NOR gates. There is a common input to these gates which when placed low or left open allows them to act as inverters. With the common input connected to a high logic level the MC10195 is a hex buffer, useful for high fanout clock driving and reducing stub lengths on long bus lines.

POSITIVE LOGIC

 $P_D = 200 \text{ mW typ/pkg (No Load)}$ $t_{pd} = 2.8 \text{ ns typ}$

> V_{CC1} = Pin 1 V_{CC2} = Pin 16 V_{EE} = Pin 8

This is advance information and specifications are subject to change without notice. See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs tested in the same manner.

والمقيد فإنها للديواء

L SUFFIX CERAMIC PACKAGE CASE 620

@ Test
Temperature
-30°C
+25°C
+85°C

TEST VOLTAGE VALUES Volts V_{IHmax} VILmin **VIHAmin** VEE -0.890 -1.890 -1.205 -1.500 -5.2 -0.810 -1.850 -1.105 -1.475 -5.2 -0.700 -1.825 -1.035 -1.440 -5.2

		Pin			M	C10195L	Test Limi	is			VOL TAG	E APPLI	ED TO PIN	IS LISTED	RELOW:	
		Under	-30	o°C		+25°C		+85	5°C							(V _{CC})
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmex	VEE	Gnd
Power Supply Drain Current	ŀΕ	8	-	-	-	39	49	-	-	mAdc		_	-	-	8	1,16
Input Current	linH	5 9	_	-	-	-	265 290	-	-	μAdc μAdc	5 9	-		_	8	1,16 1,16
	linL	5		-	0.5		-	-		μAdc		5	-	 - -	8	1,16
Logic "1" Output Voltage	Voн	2	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	-	-	-	-	8	1,16
Logic "0" Output Voltage	VOL	2	-1.890	-1.675	-1.850	_	-1.650	-1.825	-1.615	Vdc	9	_	-		8	1,16
Logic "1" Threshold Voltage	VOHA	2	-1.080	-	-0.980		-	-0.910	-	Vdc	-	-	_	5	8	1,16
Logic "0" Threshold Voltage	VOLA	2	_	-1.655	_	_	-1.630	_	-1.595	Vdc	_		5		8	1,16
Switching Time													Pulse In	Pulse Out	-3.2 Vdc	+2.0 Vdc
(50 ohm load) Propagation Delay	[†] 5+2- [†] 7-4+ [†] 10+13+ [†] 11-14-	2 4 13 14	- - -	- - -	-	2.8	- - -	- - -	- - -	ns		- - -	5 7 10 11	2 4 13 14	8	1,16
Rise Time (20% to 80%)	t2+	2	-	-	-	2.0	-	-	-		-	-	5	2		
Fall Time (20% to 80%)	t ₂₋	2	-	-	-	2.0	-	-			-	-	5	2	+	+

3-206

Advance Information

This is advance information and specifications are subject to change without notice. See General Information section for packaging.

أد مستحد المعالم

ELECTRICAL CHARACTERISTICS

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

		TEST V	OLTAGE \	ALUES	
			Volts		
@ Test Temperature	VIHmax	VILmin	VIHAmin	VILAmex	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

		Pin				C10197L	Test Limi	ts			VOLTAG	BELOW:	.]			
		Under	-30	°C		+25°C		+85	5°C		VOLING				DEEOW.	_ \vcc
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	ViHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	ΙE	8	-	_	_	39	49	-		mAdc	_	_	-	-	8	1,16
Input Current	linH	5	-			-	265			μAdc	5				8	1,16
		9	_		_	-	290			μAdc	9	_			8	1,16
	lin L	5	-	l -	0.5	-	-	-	-	μAdc	-	5	-	-	8	1,16
ogic "1" Output Voltage	Voн	2	-1.060	-0.890	-0.960	_	-0.810	-0.890	-0.700	Vdc	5,9	-	-		8	1,16
ogic "0" Output Voltage	VOL	2	-1.890	-1.675	-1.850	-	-1.650	-1.825	÷1.615	Vdc	-		-	-	8	1,16
ogic "1" Threshold Voltage	VOHA	2	-1.080	-	-0.980	_	-	-0.910	-	Vdc	9	_	5	-	8	1,16
Logic "0" Threshold Voltage	VOLA	2	-	-1.655	_	-	-1.630	_	-1.595	Vdc	9	-	_	5	8	1,16
Switching Time	T											+1.11Vdc	Pulse In	Pulse Out	-3.2 Vdc	+2.0 V
(50 ohm load)	ŀ							l	ł							
Propagation Delay	t5+2+	2	-	-	-	2.8	-	-	-	ns	-	9	5	2	8	1,16
	t9+2+	2	_] -	i -	3.5	-	-	-		-	5	9			1 1
Rise Time (20% to 80%)	t ₂₊	2	-	-	-	2.0	-	-	-		-	9	5			
Fall Time : (20% to 80%)	t ₂₋	2	_	-	- 1	2.0	-	-	-		-	9	5		1	

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

HIGH SPEED DUAL 3-INPUT 3-OUTPUT "OR" GATE

MC10210

The MC10210 is designed to drive up to six transmission lines simultaneously. The multiple outputs of this device also allow the wire "OR" ing of several levels of gating for minimization of gate and package count.

The ability to control three parallel lines with minimum propagation delay from a single point makes the MC10210 particularly useful in clock distribution applications where minimum clock skew is desired.

The MC10210 is a higher speed version of the MC10110. It is a pin-for-pin replacement for the device. Three V_{CC} pins are provided and each one should be used.

P_D = 160 mW typ/pkg (No Load) t_{pd} = 1.5 ns typ (All Output Loaded) Output Rise and Fall Time: (All Outputs Loaded) = 1.5 ns typ (20% to 80%)

CIRCUIT SCHEMATIC

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dospecifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit 560srd and transverse air flow greater than 500 linear fpm is meintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gets. The other gate is tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

	L	TEST	/OLTAGE VA	LUES	
Test perature	VIH max	VIL min	VIHA min	VILA max	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+86°C	-0.700	-1.825	-1.035	-1.440	-5.2

•										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin				C10210	L Test Lim				TEST W	N TACE AN	IL IED TO BIN	S LISTED BEL	OW.	
		Under	-30	PC		+25°C		+81	5°C							(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	¹E.	8		-	-	-	38	-	-	mAdc	-			-	8	1,15,16
Input Current	linH	5,6,7	-	-	-	_	410	-		μAdc		-	-	-	8	1,15,16
* •	lint	5,6,7	-	-	0.5	-	-		-	μAdic	-	•	_	-	8	1,15,16
Logic "1"	VOH	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	5	-	-	-	8	1,15,16
Output Voltage		3	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	6	-	-	-	8	1,15,16
		4	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	7				8	1,15,16
Logic "0"	VOL	2	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	-	-	-	-	8	1,15,10
Output Voltage		3	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850		-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc		- 1	Ξ	_	8	1,15,10
Loeic "1"	VOHA	2	-1.080	-1.075	-0.980		-1.030	-0.910	-1.013	Vdc			5		8	1,15,1
Threshold Voltage	VOHA	3	-1.080	1 -	-0.980	Ξ	1 -	-0.910		Vdc		_	6	1 -	å	1,15,1
Time and the tage		4	-1.080	_	-0.980	_	_	-0.910	_	Vdc	_		7	! =	ĕ	1,15,10
Logic "0"	VOLA	2		-1.655	-	-	-1.630	-	-1.595	Vdc		-	-	5	8	1,15,1
Threshold Voltage		3	-	-1.655	-	-	-1.630	-	-1.595	Volc	-	- 1	-	6	8	1,15,1
		4	-	-1.655			-1.630		-1.595	Vdc		-		7	8	1,15,16
Switching Times (50-ohm load)											ļ		Pulse In	Pulse Out	-3.2 V	+2.0 \
Propagation Dalay	t5+2+	2	_	-	1.0	1.5	2.5	-	-	ns	-	- 1	5	2	8	1,15,1
	t6-2-	2	-	-	1 1	. 1	il	-	-	1	-	-	1	2		1 1
•	15+3+	3	-	-		l'	1 1	-	-		-	-		3	1 1	1 1
	t5_3_	3	-	-	.	1	1 1	-	-	1 1	-	- !		3	1 1	1
	15+4+	! !	- 1	-	li.			-			-	-				1 1
	t5-4-	•	-	-	1 [!			-	-		-	- 1	1	1 4	ll	
Rise Time	t2+	2	-	-		1	1 1	-	- 1	1	-	-		2		
(20 to 80%)	t3+	3	-	-				-	-		-	-	 -] 3	1 1	
	Lq+	4	-	-			1 1	-	-		-	-		4		1 1
Fell Time	t2-	2	-	-				-	-		-	-		2		1 1
(20 to 80%)	tg_	3	-	-	🗼	1	♦	-	-	i i	-	-	↓	3	ا ا	↓
	ta		-													

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

The MC10211 is designed to drive up to six transmission lines simultaneously. The multiple outputs of this device also allow the wire "OR"-ing of several levels of gating for minimization of gate and package count.

The ability to control three parallel lines with minimum propagation delay from a single point makes the MC10211 particularly useful in clock distribution applications where minimum clock skew is desired.

P_D = 75 mW typ/gate (Outputs Open) t_{pd} = 1.5 ns typ (All Outputs Loaded) Output Rise and Fall Time: (All Outputs Loaded) = 1.5 ns typ (20% to 80%)

CIRCUIT SCHEMATIC

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the despecifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gate is tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

	L	TEST	OLTAGE VA	LUES	
			(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

	Γ		$\overline{}$			AC 10211	L Test Lim	nits			-0.700	11.023	-1.030	-1.440	1 -5.2	i			
		Pin	-30	o°C		+25°C		+85	5°C		TEST VOLTAGE APPLIED TO PINS LISTED BELOW:				.ow:	(VCC)			
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd			
Power Supply Drain Current	¹E	. 8	-		-	30	38	-	-	mAdc	-	-	-	-	8	1,15,16			
Input Current	linH	5,6,7	-				410	-	-	μAdc	•			-	8	1,15,16			
	linL	5.6,7		-	0.5	_	-	-	-	μAdc	-	•	-	-	8	1,15,16			
Logic "1"	VOH	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	-	-	-	-	8	1,15,16			
Output Voltage		3	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc		-		-	8	1,15,16			
		4	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	1	-			-8	1,15,16			
Logic "0"	VOL	2	-1.890	-1.675 -1.675	-1.850	-	-1.650 -1.650	-1.825	-1.615	Vdc	5	-		-	8	1,15,16			
Output Voltage		3	-1.890 -1.890	-1.675	-1.850 -1.850	1 -	-1.650	-1.825 -1.825	-1.615 -1.615	V dc V dc	6 7	_		-	8	1,15,16 1,15,16			
Logic "1"	VOHA	2	-1.080	-	-0.980		-	-0.910	-1.010	Vdc				5	8	1.15.16			
Threshold Voltage	TOHA	a 3	-1.080	_	-0.980	_	-	-0.910		Vdc	_			6	8	1,15,16			
		4	-1.080	l	-0.980		L	-0.910		Vdc	1			7	8	1,15,16			
'Logic "0"	VOLA	2		-1.655	-		-1.630	-	-1.595	Vdc	-	-	5	-	8	1,15,16			
Threshold Voltage		3	- '	-1.655	-	i	-1.630	-	-1.595	Vdc			6		8	1,15,16			
		4	<u> </u>	-1.655	-	-	-1.630	-	-1.595	Vdc	- :		7	-	8	1,15,16			
Switching Times (50-ohm load)													Pulse in	Pulse Out	-3.2 V	+2.0 V			
Propagation Delay	t5+2-	2		-	1.0	1.5	2.5	-	- 1	ns	- 1		5	2	8	1,15,16			
	15-2+	2	-	-	1 1	1 1	1	-	1		1	-	1 1	2		1 1			
	t5+3-	3	-		1 1	1 1	l	-	-	1 1	-	-	1 1	3		1			
	15-3+	3	-				1 1	-	-	1 1	-	-	l í	3	lí				
	15+4-	! !	-	-		1 1	1 1	-	-		-			4	1 1	1 1			
	15-4+	٠ -	- 1	-		1 1	1	-	-	1 1	-	-	1 1	i •					
Rise Time	12+	2	-	-				-	-	1	-	-	1 1	2					
(20 to 80%)	t3+	3				1 1		-	-	1 1	1	-	1 1] 3]				
	14+	7	-	-		l i		-	-	1 1	i	-		4	1 1				
Fall Time	t2-	2		-						1	Į.	-	1 1	2					
(20 to 80%)	13-	3	- 1	-		1		-	-		-	-	↓	3	↓				
	t4-	4	L						-	. •	1	-	4	4	- T	▼			

*Individually test each input using the pin connections shown

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

HIGH SPEED DUAL 3-INPUT 3-OUTPUT OR/NOR GATE

MC10212

Advance Information

The MC10212 is designed to drive up to six transmission lines simultaneously. The multiple outputs of this device also allow the wire "OR" ing of several levels of gating for minimization of gate and package count.

The ability to control three parallel lines with minimum propagation delay from a single point makes the MC10212 particularly useful in clock distribution applications where minimum clock skew is desired.

P_D =160 mW typ/pkg (No Load) t_{pd} = 1.5 ns typ (All Outputs Loaded) Output Rise and Fall Time: (All Outputs Loaded) = 1.5 ns typ (20% to 80%)

16 o VCC2 VCC1 10 0 11 0 10 0 12 0 13

CIRCUIT SCHEMATIC

This is advance information and specifications are subject to change without notice. See General Information section for packaging.

8 VEE

Each MECL 10,000 series circuit has been designed to meet the despecifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gate is tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

	TEST VOLTAGE VALUES												
			(Volts)										
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE								
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2								
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2								
+85°C	-0.700	-1.825	-1.035	-1.440	-5,2								

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2		
		Pin		-		MC10212	2L Test Lin	nits			TEST W	N TACE AD	DI JED TO DIN	E LISTED BEI	044		
		Under	-30	o°C		+25°C		+85	°C] · /E3/ V	JE IAGE AF	PLIED TO PIN	PINS LISTED BELOW:		(Vcc)	
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd	
Power Supply Drain Current	ΙE	8	-	-		30	38	-	-	mAdc	-	-	_	-	8	1,15,16	
Input Current	linH	5,6,7	-	-	-	-	405	-	-	μAdc	5,6,7*	-	_	-	8	1,15,16	
	finL	5,6,7	-	_	0.5	l -	-		-	μAdc	-	5,6,7*	-	-	8	1,15,16	
Logic "1"	Voн	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	5	-	_	_	8	1,15,16	
Output Voltage		3	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	-	-	-	-	8	1,15,16	
		4	-1.060	-0.890	-0.960	<u> </u>	-0.810	-0.890	-0.700	Vdc	↓				8	1,15,16	
Logic "0"	VOL	2	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	_	-	-	-	8	1,15,16	
Output Voltage		3	-1.890	-1.675 -1.675	-1.850	-	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	5	-	-	_	8	1,15,16 1,15,16	
	<u> </u>		-1.890		-1.850	<u> </u>					+	-	-	 			
Logic "1" Threshold Voltage	VOHA	2	-1.080 -1.080	-	-0.980 -0.980	-	-	-0.910 -0.910	_	Vdc Vdc	-	-	5	5	8	1,15,16 1,15,16	
Threshold Voltage		4	-1.080	-	-0.980	_		-0.910	_	Vdc	· _	_	_	5	8	1,15,16	
Logic "O"	VOLA	2	-	-1.655	_	<u> </u>	-1.630	-	-1.595	Vdc	-			5	8	1,15,16	
Threshold Voltage	- OLA	3	-	-1.655	· _	-	-1.630	ـ ا	-1.595	Vdc	-	-	5	-	8	1,15,16	
		4	-	-1.655	- '		-1.630	-	-1.595	Vdc			5	_	8	1,15,16	
Switching Times (50-ohm load)													Pulse In	Pulse Out	-3.2 V	+2.0 V	
Propagation Delay	t5+2+	2	-	_	_	1.5	_	-	_	ns	-	-	5	2	8	1,15,16	
	t5-2-	2	-	_	~	1 1	-	-	-	1	-	-	1 1	2	1 1	1 1	
	t5+3-	3	-	-	-	1 1	-	-	-		-	-	1 1	3	1 1	\	
	t5-3+	3	-		_			-	-		1 -	_		3	1 1		
	t5+4- t5-4+	4	_	_	_	1 1	1 -	1 3	_		1 -		1 1	4			
Rise Time		2	_		_		_	l _	_		l _	_		,	·		
(20 to 80%)	t2+ t3+	3	_				_		_			_		3			
120 10 00/61	ta+	4	_	_	_		_	_	-		-	_	1	4			
Fall Time	t2-	2	- :	_	_		-	_	_		-	_		2		1 1	
(20 to 80%)	t3_	3	-	-	-	1 1	-	-	-	1 T	-	-	1 1	3	1 1	1 1	
	t4-	4	-	-	-	▼	-	-	· - ·	▼	-	-	▼	4	▼	▼	

^{*}Individually test each input using the pin connections shown.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25° C

The MC10216 is a high speed triple differential amplifier designed for use in sensing differential signals over long lines. The base bias supply (V_{BB}) is made available at pin 11 to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary.

Active current sources provide the MC10216 with excellent common mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to V_{BB} (pin 11) to prevent upsetting the current source bias network.

Complementary outputs are provided to allow driving twisted pair lines, to enable cascading of several amplifiers in a chain, or simply to provide complement outputs of the input logic function.

> P_D = 100 mW typ/pkg (No Load) t_{pd} = 1.8 ns typ (Single ended) = 1.5 ns typ (Differential)

CIRCUIT SCHEMATIC

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

L SUFFIX CERAMIC PACKAGE **CASE 620**

1														
	TEST VOLTAGE VALUES													
1		(Volts)												
@ Test														
Temperature	. VIH max	VIL min	VIHA min	VILA max	VBB	VEE								
-30°C	-0.890	-1.890	-1.205	-1.500	From	-5.2								
+25°C	-0.810	-1.850	-1.105	-1.475	Pin	-5.2								
+85°C	-0.700	-1.825	-1.035	-1.440	11	-5.2								

										+85°C	-0.700	-1.825	-1.035	-1.440	11	-5.2	1
		Pin			N	IC 10216	. Test Lim	its				TEST VOLT	AGE APPLIED	TO DING DE	I OW:		1
Characteristic		Under	-3	0°C		+25°C		+8	5°C		.	TEST VOLT	AGE APPLIEL	TO FINS BE	LOW:		(Vcc)
	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	V _{BB}	VEE	Gnd
Power Supply Drain Current	ĪΕ	8		-	-	20	25	-	-	mAdc	4,9,12	-	_	-	5,10,13	-8	1,16
Input Current	linH	4	-	-	-	-	115	-	-	μAdc	4	9,12	-	_	5,10,13	8	1,16
	СВО	9	-	_	-	-	1.0 1.0	-	=	μAdc μAdc	=	9,12 4,12	-	=	5,10,13 5,10,13	8,4 8,9	1,16 1,16
High Output Voltage	Voн	2 3	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	-	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	4 9,12	9,12 4		_	5,10,13 5,10,13	8 8	1,16 1,16
Low Output Voltage	VOL	2 3	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850	_	-1.650 -1.650	- 1.825 - 1.825	-1.615 -1.615	Vdc Vdc	9,12 4	4 9,12	=	_	5,10,13 5,10,13	8	1,16 1,16
High Threshold Voltage	VOHA	2 3	-1.080 -1.080	-	-0.980 -0.980	_	-	-0.910 -0.910	-	Vdc Vdc	_ 9,12	9,12	4 -	- 4	5,10,13 5,10,13	8	1,16 1,16
Low Threshold Voltage	VOLA	2 3	-	-1.655 -1.655	=	=	-1.630 -1.630	-	-1.595 -1.595	Vdc Vdc	9,12	9,12	4	4 -	5,10,13 5,10,13	8	1,16 1,16
Reference Voltage	VBB	11	-1.420	-1.280	-1.350	-	-1.230	-1.295	-1.150	Vdc	-	_			5,10,13	8	1,16
Switching Times (50-ohm Load)													Pulse in	Pulse Out		-3.2 Vdc	+2.0 Vdc
Propagation Delay	t4+2+ t4-2- t4+3- t4-3+	2 2 3 3	- - -	- - -	1.0	1.8*	2.5	- - -	-	ns	- - - -	- - -	4	2 2 3 3	5,10,13	8	1,16
Rise Time (20% to 80%)	t ₂₊ t ₃₊	2 3	·-	_		1.5		-	_		-	-		3			
Fall Time (20% to 80%)	t2- t3-	2 3	-	_		↓		-	-		_	=		3			

^{*}Delay is 1.5 ns when inputs are driven differentially Delay is 1.8 ns when inputs are driven single ended.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

P SUFFIX
PLASTIC PACKAGE
CASE 648

ſ		TE	ST VOLTAGE	VALUES		
			(Volts)			
@ Test						
Temperature	VIH max	VIL min	VIHA min	VILA max	V _{BB}	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	From	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	Pin	-5.2
+8500	-0.700	-1.825	-1.035	-1 440	11	-5.2

										+85°C	-0.700	-1.825	-1.035	-1.440	11	-5.2	
		Pin				C10216	Test Limi	its				TEST VOLT	AGE APPLIED	TO BING BE			1
		Under	-3	0°C		+25°C		+8	5°C			TEST VOLTA	AGE APPLIEL	TOPINS BE	LUW.		(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	V _{BB}	VEE	Gnd
Power Supply Drain Current	1E	8	-	-	-	20	25	-	-	mAdc	4,9,12	-	-	-	5,10,13	8 .	1,16
Input Current	linH	4	_		-	-	115		-	μAdc	4	9,12	-	-	5,10,13	8	1,16
	СВО	4 9	-	-	-	-	1.0 1.0		-	μAdc μAdc	-	9,12 4,12	=	-	5,10,13 5,10,13	8,4 8,9	1,16 1,16
High Output Voltage	VOH	2 3	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960	-	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	4 9,12	9,12 4	· -	-	5,10,13 5,10,13	8 8	1,16 1,16
Low Output Voltage	VOL	2 3	-1.890 -1.890	-1.675 -1.675	- 1.850 - 1.850	-	-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc Vdc	9,12 4	9,12	-	-	5,10,13 5,10,13	8 8	1,16 1,16
High Threshold Voltage	VOHA	2 3	-1.080 -1.080	-	-0.980 -0.980		=	-0.910 -0.910	-	Vdc Vdc	9,12	9,12	4 -	- 4	5,10,13 5,10,13	8 8	1,16 1,16
Low Threshold Voltage	VOLA	2 3	-	-1.655 -1.655	-	-	-1.630 -1.630	-	-1.595 -1.595	Vdc Vdc	 9,12	9,12	4	4 -	5,10,13 5,10,13	8	1,16 1,16
Reference Voltage	V _{BB}	11	-1.420	-1.280	-1.350	-	-1.230	-1.295	-1.150	Vdc	_	-	-	-	5,10,13	8	1,16
Switching Times (50-ohm Load)													Pulse In	Pulse Out		-3.2 Vdc	+2.0 Vdc
Propagation Delay	14+2+ 14-2- 14+3- 14-3+	2 2 3 3	- - -	- - -	1.0	1.8*	2.5	- - -	- - - -	ns	- - - -	-	1	2 2 3 3	5,10,13	8	1,16
Rise Time (20% to 80%)	t ₂₊ t ₃₊	3	_	-		1.5			_		_	=		3			
Fall Time (20% to 80%)	t2- t3-	2 3	_	-	↓			_	-		_	_		2 3			

*Delay is 1.5 ns when inputs are driven differentially Delay is 1.8 ns when inputs are driven single ended

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

RS TRUTH TABLE

R	S	Q _{n+1}
L	L	Q _n
L	Н	Н
Н	L	L
Н	н	N.D.

N.D. = Not Defined

CLOCKED TRUTH TABLE

С	D	Q _{n+1}
L	φ	a _n
H	L	L
н	Н	н

φ = Don't Care

C = CE + CC.

A clock H is a clock transition from a low to a high state.

The MC10231 is a dual master-slave type D flip-flop. Asynchronous Set (S) and Reset (R) override Clock(CC) and Clock Enable (CE) inputs. Each flip-flop may be clocked separately by holding the common clock in the low state and using the enable inputs for the clocking function. If the common clock is to be used to clock the flip-flop, the Clock Enable inputs must be in the low state. In this case, the enable inputs perform the function of controlling the common clock.

The output states of the flip-flop change on the positive transition of the clock. A change in the information present at the data (D) input will not affect the output information at any other time due to master slave construction.

Input pulldown resistors eliminate the need to tie unused inputs to VEE. Output rise and fall times allow high frequency operation over 200 MHz.

 $P_D = 270 \text{ mW typ/pkg (No Load)}$ $f_{Tog} = 225 \text{ MHz typ}$

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

		TEST	VOLTAGE VAL	UES		
Ī			(Volts)			i
@ Test Temperature	VIH max	VIL min	VIHA min	VILA mex	VEE	
-30°C	-0.890	- 1.890	- 1.205	-1.500	-5.2	i
+25°C	-0.810	-1.850	-1.105	-1.475	5,2	
+85°C	-0.700	- 1.825	-1.035	-1.440	-5.2	

	1	Pin			MC102	31L Test	Limits				V	LTAGE APPL	IED TO PINS LIS	TED BELOW:		
		Under	- 30	°C		+25°C		+85	°c							(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ŀΕ	8	-		-	52	65	-		mAdc	_			-	. 8	1, 16
Input Current	linH	4] -	-	-	-	410	-	-	μAdc	4	-	~	-	8	1, 16
		5		-	-	-	410	- '	-		5 6	-	-	-	1	1
		6	_		_	_	220 220	_	_		7	-		-	!!	1
		ģ	-		_		290	-	:	•	, ý	_	_	_	•	•
Input Leakage Current	linL	4,5,*	_		0.5		_	_	-	μAdc	_	•			8	1, 16
•	""	6,7,9*	-	_	0.5	-	-	-	-	μAdc	-	•	~	-	8	1, 16
Logic "1"	VOH	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	5	-	_	-	8	1, 16
Output Voltage	<u> </u>	2†	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	7		-		8	1, 16
Logic "0"	VOL	3	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	5	-	-	-	8	1, 16
Output Voltage	L	3t	- 1.890	-1.675	-1.850		-1.650	-1.825	-1.615	Vdc	7				8	1, 16
Logic "1"	VOHA	2	-1.080 -1.080	_	-0.980	-	-	-0.910	-	Vdc	-	-	5 7	9	8	1, 16
Threshold Voltage	-	21	 	<u> </u>	-0.980			-0.910		Vdc						1, 16
Logic "0"	VOLA	3 31	-	-1.655 -1.655	-	_	-1.630 -1.630] _	-1.595 -1.595	Vdc Vdc	_	_	5 7	9	8	1, 16 1, 16
Threshold Voltage	 	31	<u> </u>	-1.005			-1.630	<u> </u>	- 1.595	Vac			Pulse	Pulse	<u> </u>	1, 10
Switching Times							1				+1.11 Vdc		ln Pulse	Out	-3.2 Vdc	+2.0 Vd
Clock Input			1 .				1	l						 	 	
Propagation Delay	t9+2-	2	1.4	3.4	1.5	۱ –	3.3	1.5	3.7	ns	-	-	9	2	8	1, 16
	t6+2+	2	1.4	3.4	1.5	-	3.3	1.5	3.7		7] -	6	2	1	
Rise Time (20 to 80%)	t ₂₊	2	0.9	3.3	1.0	-	3.1	1.0	3.5		7	-	. 9	2	i i	1 1
Fall Time (20 to 80%)	t2-	2	0.9	3.3	1.0	-	3.1	1.0	3.5	7	-	_	9	2	▼	▼
Set Input			†													†
Propagation Delay	t5+2+	· 2	1.0	3.4	1.1	-	3.3	1.1	3.7	ns	-	-	5	2	8	1, 16
	t12+15+	15		1 1	1 1	_		1 1	1 1		6	-	12	15	1 1	1 1
	t5+3+	3 14	♦	♦	! ♦	_	↓		♦	↓ '	9	_	5	3		
Reset Input	112+14-		├ -		<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>		12	14	├ -	⊢ <u>'</u>
Propagation Delay	t4+2-	2	1 1	1 1	1.1	_	3.3	1 1	۱ ۱	ns	_	_	4	2	8	1, 16
	t13+15~	15	1 1		l ï	_	1 0.0			1	6	_	13	15	l ĭ	','
	t4+3-	3	1 I	1 1	, ,	_		i I	1 1		_	-	4	3	1 1	
	113+14+	14	▼	▼	\ ▼	-	\ ▼	▼	•		9	-	13	14	!	1
Setup Time	^t Setup	7	_	-	1.0	-	_	_	-	ns	_	-	6,7	2	8	1, 16
Hold Time	tHold	7	-	-	0.75		-	_		ns		_	6,7	2	8	1, 16
Toggle Frequency (Max)	fTog	2	200		200	250		200	-	MHz			6	2	8	1, 16

Output level to be measured efter a clock pulse has been applied to the CE input (pin 6)

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.

P SUFFIX PLASTIC PACKAGE CASE 648

		TEST	VOLTAGE VAL	JES	
			(Volts)		
@ Test Temperature	V _{IH max}	VIL min	VIHA min	VILA max	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

										-03 C	-0.700	- 1.023	-1.035	-1.440	3.2	
]	Pin			MC102	31P Tes					vo	OLTAGE APPL	IED TO PINS LIS	TED BELOW:		
	ł	Under	- 30			+25°C			5°C				····			(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VILmin	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8		-	-	52	65	-	_	mAdc	-	_	_	_	8	1, 16
Input Current	linH	4	-	-	-	-	410	-		μAdc	. 4	-	-	_	8	1, 16
		5	-	-	-	1 -	410	-		1	5	-	-	_	1 1	1
	1	6	-	-	-	-	220	-	-		6	-	-	-	1	
		9	_		_		220 220	-	-	•	9			_	♦	•
Input Leakage Current	link	4,5,*	<u> </u>	 -	0.5		-	-		μAdc			_		8	1, 16
,,	1 """	6,7,9*	_	-	0.5	-	-	-	-	μAdc	_		-	-	8	1, 16
Logic "1"	Voн	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	5	-	-	-	8	1, 16
Output Voltage		2t	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc	7			_	8	1, 16
Logic "0"	VOL	3	-1.890	-1.675		ľ -	-1.650	-1.825	-1.615	Vdc	5	-	_	_	8	1, 16
Output Voltage	L	3t	- 1.890	-1.675			-1.650		-1.615	Vdc	7				8	1, 16
Logic "1"	VOHA	2	-1.080	-	-0.980	-	-	-0.910	-	Vdc	-	-	5	l -	8	1, 16
Threshold Voltage	.	2†	- 1.080		-0.980		<u> </u>	-0.910		Vdc			7	9	8	1, 16
Logic '0"	VOLA	3	-	- 1.655		-	-1.630	-	-1.595	Vdc	-	-	5 7	-	8	1, 16
Threshold Voltage	-	3†		-1.655			-1.630		-1.595	Vdc		-		9	- 8	1, 16
6 1 to 1 to 1							Į.	1	1				Pulse	Pulse Out		+2.0 Vd
Switching Times Clock Input			į			1	1	l	l	1	+1.11 Vdc	ļ <u>.</u>	in	Out	-3.2 Vdc	+2.0 Va
Propagation Delay	19+2-	2	١ _	-	۱ ـ	2.0	۱ _	۱ –	-	ns	_	l _	9	2	8	1, 16
· · · · · · · · · · · · · · · · · · ·	16+2+	2	-	l –	-	2.0	۱ -	-	-	l ï	7	_	6	2	l i	1
Rise Time (20 to 80%)	t ₂₊	2	l _	l _	- 1	1.3	l _	_	_	l i	,	l _	9	2	1 1	
Fall Time (20 to 80%)	t ₂ _	2	l _	l _	_	1.3	_	-	_	♦	i <u>'</u>		9	2	♦	♦
Set Input	 		 	 			├	 	 	-					+	
Propagation Delay	t5+2+	2	-	۱ –	-	2.0	_	_	_	ns	_	_	5	2	8	1, 16
	t12+15+	15	-	-	-	l i	_	-	-	1	6	_	12	15	l i	1
	t5+3+	3	-	-	-	1 1	-	-	i -	1 1	-	-	5	3	1 1	l I
	t12+14-	14	-	-	-	[▼	-	-	i -	▼	9	-	12	14	▼	▼
Reset Input												1				†
Propagation Delay	t4+2-	2	-	-	-	2.0	-	-	-	ns	-	-	4	2	8	1, 16
	t13+15-	15	-	-	-	1 1	-	-	-	1 1	6	-	13	15		1 1
	¹ 4+3- ¹ 13+14+	3 14	=	_	-	I ♦	1 =	-	1 -	♦ •	9	_	13	3 14		
Setup Time	†Setup	7	 	-	1.0	<u> </u>	 _	 	 _ _	ns		_	6,7	2	+ *	1, 16
Hold Time	tHold	-	 	 	0.75			 	- -	ns		····-	6,7	2	8	1, 16
Toggle Frequency (Max)	+	2	 _ _	 _		2.25	 	- -	 _	MHz	 _		6	2	8	1, 16
(MRX)	fTog	1 4	ı –		200	2.25			1 -	IVIMZ		1 -		1 2	1 8	1 1,16

^{*}Individually test each input; apply VIL min to pin under test.

[†]Output level to be measured after a clock pulse has been applied to the \bar{C}_E input (pin 6)

V_{CC1} = V_{CC2} = +2.0 Vdc V_{out} Coax Clock Input Q 9 С 7 50-ohm termination to ground lon ā cated in each scope channel input. All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should 50 be < 1/4 inch from TP_{in} to input pin and TPout to output pin. V_{EE} = -3.2 Vdc

FIGURE 1 - TOGGLE FREQUENCY TEST CIRCUIT

Advance Information

This is advance information and specifications are subject to change without notice.

See General Information section for packaging.

MC10287 FUNCTIONAL TRUTH TABLE

M1 M0	ы	ь1′	a1	a1'	ю	ю	a O	aO	œ	so	S1	œ	
14 3	13	12	11	10	4	5	6	7:	9	2	1	15	Word
нн	н	н	н	Н	н	н	н	н	н	Н	Н	н	0
H H	H	н	H	H	H	Н	H	H	H	L	L	L	1 2
н н.	Н	H.	н.	н	н	н	L	L	L	н	L,	L	3
н н	Н	н	н	н	_	<u>L</u>	н	H	Н	L	н	н.	4
H H	H. H	Н	Н	Н	L	L	H	H	H	H	Н	н	5 6
нн	H	н	Н	н	L	L	L	L	ᆫ	L	L	L	7
H H	H	н	L	L	ıı	Н	н	H H	H	Н	Н	L	8
нн	н	н	L	ī	H	н	Ü	ī	Н	-	H	Ť	10
нн	н	н	L	L	Н	н	L	L.	L	н	н	L	11
H H	H	Н	L	L	L	L	Н	Н	H	L H	L	L	12 13
нн	н	н	L	L	L	L	L	L	H	н	L	L	14
нн	Н	н	L	L	L	L	L	L	L	L	Н	L	15
H H	L	L	Н	Н	II	Н	Н	H	H	H	Н	Н	16 17
нн	L	L	Н	Н	H :	н	L	L	н	L	н	Н	18
нн	L	L	H	<u>н</u>	Н	H.	Н	H	Ι	Н	<u>+</u>	Н	19 20
нн	Ĺ	L	Н	Н	L	Ĺ	H.	Н	L	Н	Ŀ	н	21
변변	L	L	H	Н	L	L	L	L	H.	н	L	Н	22 23
H H	L	L	H	гн	H	Н	Н	H	I	Н	Н	H H	23
нн	L	L	L	L	н	н	н	н	L	L	L	L	25
H H	L	L	L	L	Н	Н	L	L	I L	LI	L	L	26 27
нн	L	Ĺ	Ĺ	L	L	Ľ	Н	Н	H	Ľ	Н	н	28
нн	L	L	L	L	L	L	н	н	٦	н	н	н	29
нн	L	L	L	Ŀ	L	Ŀ	L	L	H	Н	Н	Н	30 31
H H L	H	H	H	Н	H	Н	H	Н	Н	Н	Н	Н	32
H L	н	Н	н	н	Н	н	Н	Н	L	L	н	Н	33 34
H L	н	н	н	н	Н	н	L	L	ı ı	H	H	H L	35
HL	н	Н	Н	н	L	Ľ	Н	Н	H	L	Н	H	36
H L	н	н	Н	H	L	L	H	Н	L	н	L	L	37 38
H L	н	Н	Н	Н	L	Ĺ	Ĺ	L	L	L	Ĺ	Ĺ	39
нь	н	н	Ĺ	_	Н	Н	H	н	Н	Н	L	L	40
H L	H	H	L	L	Н	Н	H	H	L	L	L	L	41 42
HL	Н	Н	L	ī	н	н	Ĺ	L	L	Н	Н	Ĺ	43
HL	н	н	L	L	L	L	н	н	н	L	L	L	44
H L	H	Н	L	L	L	L	H	H L	L H	Н	H	L	45 46
H L	Н	Н	Ĺ	נ	L	Ĺ	Ĺ	L	Ľ	Ĺ	Н	Ĺ	47
H L	L	L	H	H	Н	Н	Н	H H	H	H	L.	Н	48 49
HL	L	L	п	귀	Н	Н	-	Ŀ	ī	-	L	н	50
ні	Ĺ	Ĺ	н	н	Н	н	L	L	L	н	н	н	51
H L H L	L	L	н	н	L	L	H	H H	Н	L	L	H	52 53
HL	L	Ĺ	Н	Н	L	Ĺ	ï	Ľ	Н	ĽΞ	Н	Н.	54
нь	L	L	н	н	L	L	L	L	L	L	н	H	55
H L	L	L	L	L	H	Н	Н	н	H	H	Н	H H	56 57
н ц	L	Ĺ	Ľ	ī	н	н	Ľ	L	н	Ĺ	н	н	58
_ н ь	L	L	L	L	н	н	L	L	L	н	L	L	59
H L	L	L	L	L	L	L	Н	H H	H L	ЬН	H	H L	60 61
# 1	L	L	L	L	L	L	L	L	н	н	L	L	62
# 5	L	L	L	L	L	L	L	L	L	L	L	H	63 64
LH	н	H	Н	Н	Н	н	Н	н	Н	H	H	н	65
LH	н	н	н	н	н	н	L	L	н	L	Ľ	н	66.
L H	н	н	н	н	н	H	L	L	니	н	L	н	67

M1	MO	ь1	ь1′	a1	a1'	ю	ь0′	a0	аOʻ	СО	so	S 1	C2	
14	3	13	12	11	10	4	5	6	7	9	2	1	15	Word
L	Н	Н	Н	н	н 1	L	L	н	н	н	L	н	Н	68 69
L	H	H	Н	Н	H	L	L	H	H	Н	Н	Н	Н	70
۱ ۲	н	н	н	н	н	L	Ļ	L	L	L	L	L	н	71
	H	1 1	Н	L	L	H	н	Н	H	I L	H	Н	<u>H</u>	72 73
Ĺ	Н	Н	Н	Ē	Ĺ	Н	Н	Ε	Ľ	Н	L	Н	L	74
L	н	Н	Н	L	Ŀ	Н	н	L	L	L	Н	Н	L	75
L	Н	H	Н	L	L	L	L	H.	Н	H	H	L	н	76 77
L	н	н	Н	L	L	L	Ŀ	L	L	н	н	L	н	78
L	H.	Н	H	L	L	H	H	H	L.	H	L H	H	L H	79 80
<u>.</u>	Н	L	Ĺ	Н	н	Н	Н	Н	Н	L	"	н	L	81
L	н	L	L	Н	н	Н	Н	L	ᆫ	н	ᆫ	н	L	82
L	Н	L	L	Н	Н	H	H	H	Г	L	H	H	L H	83 84
Ĺ	н	L	Ĺ	н	н	L	Ĺ	н	н	Ľ	н	Ĺ	н	85
١.	Н	L	L	Н	Н	L	L	L	L	H	H	Н	H L	86 87
<u> </u>	н	L	L	<u>H</u>	H	ד	Н	뉴	H	-	н	н	ᆫ	88
L	н	L	L	L	L	н	н	н	н	L	L	L	Ŀ	89
L	H H	L	L	L	L.	HH	Н	L	L	H	L	L	L	90 91
L	н	L	Ĺ	Ĺ	Ĺ,	L	Ľ	Н	Н	н	L	Н	Ĺ	92
L	н	L	L	L	L	L	L	н	Н	L	Н	н	L	93
L	Н	L	L	L	L	L	L	L	L	H	H	H	L	94 95
Ĺ	L	Н	н	н	н	Н	н	H	Н	Н	Н	Н	н	96
L	L	Н	н	н	н	Н	Н	Н	н	L	L	н	Н	97
L .	L	H	Н	Н	H	H	Н	Ĺ	L	H	L	H	H	98 99
ו	Ĺ	н	н	н	н	L	Ľ	Н	H	Н	Ľ	Н	н	100
L	L	н	Н	Н	Н	L	L	H	H	L	н	L	H	101 102
ــــــــــــــــــــــــــــــــــــــ	÷	H	Н	Н	Н	-	-	는	L	-	-		H	103
L	Ĺ	н	н	Ľ	Ľ	н	н	н.	н	н	н	Ĺ	н	104
L	L	Н	Н	L	L	Н	Н	H	H	L	L	L	H	105 106
٠.	Ĺ	н	н	L	Ĺ	н	н	Ĺ	L	L	н	Н	L	107
L	L	н	Н	L	L	L	L	н	н	н	L	L	н	108
L	L	Н	Н	L	L	L	L	H	H	LH	H	Н	L	109 110
ī	Ĺ	н		L	L	L	L	L	L	L	L.	н	L	111
L	L	L	L	Н	н	Н	н	Н	н	Ŧ	н	L	н	112
L	L	L	L	Н	н	Н	Н	H	H	LH	L	L	H	113 114
L	L	L	L	н	н	н	н	L	L	L	н	н	L	115
L	L	L	L	Н	Н	L	L	H	Н	Н	L	L	H	116 117
	- <u>L</u>	ī	ī	н	Н	L	ī	L	L	H	н	н		118
L	L	L	L	н	н	L	L	L	L	L	L	н	L	119
L	L	L	L	L	Ŀ	H	Н	Н	Н	T L	H	Н	L	120 121
	Ĺ	Ĺ	Ĺ	Ĺ	Ĺ	н	н	L	L	H	L	н	Ĺ	122
L	L	١.	L	٦.	٦.	Ħ.	Η.	LH	Ir	L	Ħ.	L	L	123 124
L	·L	L	L	L	L	L	L	Н	Н	I J	Н	L	L	125
L	L	L	L.	L	L	L	L	L	L	н	н	L	L	126
L	L	Н	L	L	L	L	L	L	L		7	H	L	127 128
L	L	Ľ	Н	L	L	Ľ	L	L	L	L	Ľ	Н	L	128
L	L	L	L	н	L	L	L	L	L	L	L	н	L	130
L	L	L	L	L	H	Н	L	L	L	L	H	L	L	131 132
-	ī	Ē	ī	ī	Ť	L	Н	ī	Ť	_	Н	Ť	L	133
L	L	L	L	L	L	L	L	н	L	L	Н	L	L	134
	L	L	L	L	_ 	L	L	L	Н	L	н	L	L	135

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

		TEST V	OLTAGE	VALUES	
			Volts		
@ Test Temperature	VIHmex	VILmin	VIHAmin	VILAmax	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin			N		Test Limit				VOLTAG	E ARRI II	ED TO PIA	IS LISTED	BELOW:	
		Under	-30	<u>°°</u>		+25°C		+8	5°C							(V _{CC})
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	ViHmax	VILmin	VIHAmin	VILAmex	VEE	Gnd
Power Supply Drain Current	1E	8		-	-	77	96	-	-	mAdc	-	-	-		8	16
Input Current	linH	3	_	-	-	-	200	_	-	μAdc	3	_	-	-	8	16
	1	4	-	-	-	-	220	-	-	1 1	4	-	-	-		
	ì	6	-	-	-	-	265	-	-	۱ ا	6	-	-	-		1
		9			-	<u> </u>	410			<u> </u>	9					
	linL	3			0.5			L-		μAdc		3			8	16
Logic "1" Output Voltage	∨он	1	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	5,9	-	-	-	8	16
	ì	2 15	١ .	١ .	1 1	-	1	1 1	1	١ .	9	-	. –	- '	↓	
· · · · · · · · · · · · · · · · · · ·			<u>'</u>	<u>'</u>	1		<u>'</u>	<u>'</u>	<u>'</u>	<u>'</u>	6,9,10	<u> </u>		- -	8	16
Logic "0" Output Voltage	VOL	1 2	-1.890	-1.675	-1.850		-1.650	-1.825	-1:615	Vdc	_] _	_	_	B	16
	i	15		♦	l 🛊	_	l ♦	l ♦	! ♦	♦		_	_		♦	
Logic "1" Threshold Voltage	VOHA	1	-1.080	<u> </u>	-0.980	_		-0.910		Vdc	6.7	_	9		8	16
	10112	2	1	_	1 1	_	_	1	_	1	-	_	4	_	lī	Ĭ
		15	1	-	1	-	-	1	-	*	6,7,10,11	_	9		•	
Logic "0" Threshold Voltage	VOLA	1		-1.655	_	-	-1.630	-	-1.595	Vdc	6,7	_	-	9	8	16
	-	2	-	1		-	1 1	-	1 1	1 1	l –	-	-	4	1 1	1 1
		15	-	V.	-		<u> </u>			1	6,7,10,11			9_	T	
Switching Times											+1.11 V	+0.31 V	Pulse In	Pulse Out	-3.2 Vdc	+2.0 V de
Propagation Delay	1															
(50 ohm load)	t9+15+	15	-	-	-	2.0	-	-	-	ns	3	i	9	15	8	16
	¹ 6-1-	1 2	-	_	-	4.5 3.5	_	-	_		3	1 1	6	1 2	1	1 1
	t4+2- t4-1+	1	_	_	_	4.5	-	_	_	1	6	1 1]	;	1 1	1 1
	111+1-	l i	-	_	_	3.0	_	_	_		13	1 1	11	1 ;		1 1
	113+1-	1	_	l _	_	3.5	-	-	_	1 1	3.9	1 1	13	l i	1 1	1 1
	13+1+	1	-	_	-	8.5	-	-	-	1 1	9		3	1 1		1 1
	t3+15+	15	-	-	-	8.0	1 -	_	_	1 1	9,14		3	15	1	
	t14+15+	15	-	-	-	8.0	-	-	-	li	11		14	15	1 1	
Rise Time				1			1	1	1		1	1 1		1	1 1	1
(20% to 80%)	t15+	15	l –	-	-	2.0	-	-	-		- 1	1	3	15	1 1	
Fall Time	i				1					Ιİ	1	1 1			1 1	1 1
(20% to 80%)	t15-	15	-	-	-	2.0	-	-	-	1	-	1	3	15	7	1

^{*}Apply +0.31 V to all other inputs.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

APPLICATION INFORMATION

The MC10287 is a stand alone fully iterative dual multiplier cell. It is intended for use in parallel multiplier arrays where maximum speed is desired. Each cell is a modified gated adder/subtractor individually controlled by a mode select line. Internal carry lookahead (also called anticipated carry) is used to minimize sum and carry out delay times.

The mode controls are specifically buffered such that they, can be grounded. Normally, MECL 10,000 device inputs should not be placed at ground to establish a high logic level. However, M0 and M1 can be used at ground potential for ease of layout in large arrays.

An array multiplier is defined as a multi-input, multioutput combinational logic circuit that forms the product of two binary numbers. Binary multiplication can be treated in two categories, that is, simple magnitude multiplication and 4-quadrant multiplication (requiring both positive and negative numbers).

MAGNITUDE BINARY MULTIPLICATION

Magnitude multiplication consists of the product of two binary numbers in which all digits are number bits (no sign bit). Magnitude representation then includes only positive numbers.

Thus, for a 4-bit number X the representation is:

$$X = x_3 x_2 x_1 x_0$$

A 4-bit by 4-bit product becomes:

$$Z = X \bullet Y = (x_3 x_2 x_1 x_0) \bullet (y_3 y_2 y_1 y_0)$$

The product consists of the sum of the single-bit products formed by this expression. The standard "parallelogram" matrix of the single-bit products (or summands) can be written:

The MC10287 is used in an array summing the single-bit products to form the final result. It is observed that the arithmetic product of binary digits x_i and y_i is also the logical product (x_j times $y_i = x_j$ AND y_i . The AND function on the operand inputs of the MC10287 forms the single-bit products of the matrix directly and sums them internally. For magnitude binary multiplication, the MC10287 functions as a dual full adder (M0, M1 are both low)

The partial product array can be summed using a number of different techniques. The fastest technique is some form of matrix reduction scheme that prevents carry propagation until the final level of summation. Several of these schemes are discussed in detail in Reference 1.

As an example, if the matrix is rearranged and written in a different form:

×093 ×193 ×390 ×290 ×190 ×090 ×293 ×391 ×291 ×191 ×091 ×393 ×392 ×292 ×192 ×092 27 26 25 24 23 22 21 20

TABLE 1 - TYPICAL MULTIPLY TIME FOR AN n-BIT BY

FIGURE 1 - 4-BIT BY 4-BIT MAGNITUDE ARRAY MULTIPLIER

The summation of the partial products for this configuration is shown in Figure 1. The number of MC10287's for an n-bit by n-bit array is n(n-1)/2. Note also that the least significant product bit $(z_0 = x_0y_0)$ is formed by an individual AND gate (negative logic).

Table 1 gives package count and typical multiplication times for n-bit by n-bit magnitude multiplier arrays. The multiply times do not include wiring delays, and the package count does not include the gate for the least significant product bit.

FOUR-QUADRANT MULTIPLICATION

Sign-magnitude and 2's complement representations are commonly used for 4-quadrant multiplication. For sign-magnitude representation, the binary word consists of a sign bit and magnitude bits which indicate the absolute value of the number. For a 4-bit example:

For $X \bullet Y = Z$

$$Z = X \bullet Y = (x_s x_2 x_1 x_0) \bullet (y_s y_2 y_1 y_0)$$

An array multiplier for this representation consists of an (n-1)-bit by (n-1)-bit magnitude multiplier that produces the product of the magnitude bits of X and Y and of logic that produces the proper product sign bit $(z_S = x_S \bigoplus y_S)$.

2's complement representation also includes a sign bit which is a negative bit. That is:

$$X = -x_3 x_2 x_1 x_0$$

where x3 is the sign bit. The product of two 4-bit 2's complement numbers becomes:

$$Z = X \bullet Y = (-x_3 x_2 x_1 x_0) \bullet (-y_3 y_2 y_1 y_0)$$

The matrix for this expression is:

The product is the sum of this array of single-bit products. However, notice that several summands are negative quantities. Therefore, they can not be simply added as is the magnitude binary multiplier. The subtraction capability of the MC10287 is utilized when considering these negative quantities.

A standard full adder is symbolized as:

in which all inputs are positive quantities. If one input is negative (such as B), the outputs $C_{\rm out}$ and S must be coded such that they can represent the 4 possible output conditions. If B can be a negative one or zero, the net output can then be:

If Cout, whose weight is twice that of S, is assigned a positive value and S is a negative value, the above values can be represented:

where:

If the truth table is written and logic equations generated, the result is a subtractor. That is, a subtractor used in place of a full adder produces the proper outputs. The symbol for the subtractor is:

Also, if the input variables are multiplied by -1, the outputs also are multiplied by -1. Thus, the following devices are equivalent:

A basic adder/subtractor can then handle all the varying situations that appear in the multiplication matrix.

If the 2's complement matrix is rearranged:

The adder/subtractor array for this configuration is shown in Figure 2. Care must be taken to insure that the proper mode of operation (add or subtract) appears at each summing node as a function of the positive and negative weighted inputs.

The summand matrix can be altered different ways to speed up the multiplier array. Reference 2 discusses the algorithm used with the MC10287 in detail. Also, the techniques of Reference 1 also apply to 2's complement arrays using the MC10287.

Table 2 gives typical multiply times for 2's complement arrays for n-bit by n-bit multipliers.

TABLE 2 - TYPICAL MULTIPLY TIME FOR AN n-BIT BY n-BIT 2's COMPLEMENT ARRAY MULTIPLIER

Number of Bits	Total Multiply Time (ns)	Package Count
4	14	6
8	25	28
12	39	66
16	44	120

IMPROVED SWITCHING DELAYS

The specified ac switching delays are given for output loading of 50 Ω to -2 volts. With lower output current, propagation delays will be improved and decreased multiply times can result. For output loading of 1 $k\Omega$ to VEE, the following delays are typical.

Input	Output	Delay (ns)
C0	C2	1.7
A0	C2	2.8
A0	S0	2.8
В0	S0	3.1
A0	S1	3.9
B0	S1	4.4
MO	S1	8.7

REFERENCE AND ACKNOWLEDGEMENT

The techniques for implementing the MC10287 inmultiplier arrays resulted from work done originally at M.I.T. Lincoln Laboratories. Also, applications information presented here developed in part from personal correspondence with P. Blankenship of Lincoln Labs. The following references are useful in developing multipliers using the MC10287:

- A. Habibi and P.A. Wintz, "Fast Multipliers," IEEE Trans. Computers (Short Notes), Vol. C-19, Feb. 1970, pp. 153-157.
- S.D. Pezaris, "A 40-ns 17-Bit by 17-Bit Array Multiplier", IEEE Trans. Computers, Vol. C-20, Number 4, April, 1971, pp. 442-447.

FIGURE 2 - 4-BIT BY 4-BIT 2's COMPLEMENT ARRAY MULTIPLIER

The MC10501 is a quad 2-input OR/NOR gate with one input from each gate common to pin 12 in the L package and pin 16 in the F package. Input pulldown resistors eliminate the need to tie unused inputs to an external supply.

 $P_D = 25$ mW typ/gate (No Load) $t_{pd} = 2.0$ ns typ Output Rise and Fall Time: = 3.5 ns typ (10% - 90%) = 2.0 ns typ (20% - 80%)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging.

L SUFFIX CERAMIC PACKAGE **CASE 620**

TEST VOLTAGE VALUES (Volts) @ Test VIL min VIH max VIHA min VILA max VEE Temperature -1.920 -1.255 -1.510 -5.2 -55°C -0.880 +25°C -0.780 -1.850 -1,105 -1.475 -5.2

									+	125°C	-0.630	-1.820	-1.000	-1.400	-5.2	
		Pin			M		L Test Lin				TES	T VOLTAGE A	PPLIED TO PIN	S LISTED BELO	w:	
		Under	_	5°C	ļ	+25°C			5°C			r				(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	V _{IL min}	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	1E	8	<u> </u>	29		20	26	-	29	mAdc					8	1,16
Input Current	linH	12	-	450 910		-	265 536	_	265 535	μAdc μAdc	4 12	_	<u>-</u>	-	8 8	1,16 1,16
	linL	12	0.5 0.5		0.5 0.5	-		0.3 0.3	-	μAdc μAdc		4 12	=	-	8	1,16 1,16
Logic "1" Output Voltage	VOH	5 5 2 2	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc 	12 4 - -	- - -	- - -	- - -	8	1,16
Logic "0" Output Voltage	VOL	5 5 2 2	-1.920	-1.655	-1.850	- - -	-1.620	-1.820	-1.545	Vdc 	- - 12 4	- - -	- - -	-	8	1,16
Logic "1" Threshold Volt ag e	VOHA	5 5 2 2	-1.100	-	-0.950		- - -	-0.845	-	Vdc 	1111	- - - -	12 4 - -	- - 12 4	8	1,16
Logic "0" Threshold Volt ag e	VOLA	5 5 2 2	-	-1.635	- - -	-	-1.600	-	-1.525	Vdc		- - -	- - 12 4	12 4 - -	8	1,16
Switching Times (100-ohm load)													Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t4+2- t4-2+ t4+5+ t4-5-	2 2 5 5	1.0	3.7	1.0	2.0	2.9	1.0	3.7	ns	- - -	- - -	1	2 2 5 5	8	1,16
Rise Time (20 to 80%) Fall Time (20 to 80%)	t ₂₊ t5+ t ₂₋ t5-	2 5 2 5		4.0	1.1		3.3		4.0		- - -	-		2 5 2 5		

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

F SUFFIX CERAMIC PACKAGE CASE 650

		TEST	VOLTAGE VAL	.UES	
			(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-55°C	-0.830	-1.920	-1.255	-1.510	-5.2
+25°C	-0.720	-1.850	-1.105	-1.475	-5.2
+125°C	-0.580	-1.820	-1.000	-1.400	-5.2

										+25°C	-0.720	-1.850	-1.105	-1.475	-5.2	
									+	125°C	-0.580	-1.820	-1.000	-1.400	-5.2	
		Pin			M		Test Lim				TES	T VOLTAGE A	PPLIED TO PIN	LISTED BELO	w:	
	İ	Under		°C		+25°C			5°C		├──	Γ				(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	¹€	12	T	29	-	20	26	-	29	mAdc	-	-	-		12	4,5
Input Current	linH	8 16	1	450	-	-	265 535	-	265 535	µAdc µAdc	8 16	-	-	-	12 12	4,5 4,5
	linL	8	0.5	910	0.5	-	-	0.3	-	μAdc	- 16	- 8		<u> </u>	12	4,5
	L	16	0.5		0.5			0.3		µAd c		16			12	4,5
Logic "1" Output Voltage	VOH	9	-1.080	-0.830	-0.930	-	-0.720	-0.825	-0.580	Vdc 	16 8	_	_	-	12 	4,5
		6	♦	♦	♦	-	♦	♦			_	-	_	_	♦	
Logic "0"	VOL	9	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	-	_	_	_	12	4,5
Output Voltage	l	6				_					16	-		_		
Logic "1"	VOHA	9	-1.100	-	-0.950	-	_	-0.845	<u> </u>	Vdc	8	<u> </u>	16		12	4,5
Threshold Voltage	VOHA	9	1-1100	_	1 1	-	_	-0.043] -	V d c	_	_	8	_	'ř	4,5
	!	6	∤	-		-	-	♦	-	+	_	-	_	16 8		♦
Logic "0"	VOLA	9	-	-1.635	-	-	-1.600	-	-1.525	Vdc		-	-	16	12	4,5
Threshold Voltage		9	-	1 1	_	_		-		1	_	_	16	8		1 1
		6	-	♦	-	_	\ \	-	•	•	_	_	8	_	🕴	•
Switching Times (100-ohm load)			,										Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t8+6-	6	-	-	1.0	2.0	2.9	-	-	ns	-	-	8	6	12	4,5
	t8-6+	6	-	-	1	1	1	-	-	1	-	-	1	6	l ï	l ï
	18+9+	9		_	•		↓	_	_		l -	_	1	9	1 1	1 1
Rise Time	t8-9-	6		_ '	1.1		3.3	l _	_		-			,	1 1	1 1
(20 to 80%)	t6+ t9+	9	-	, I	l ii		1	-	_	'	1 -	_		9	1	
Fall Time (20 to 80%)	16- 19-	6 9	1-	- ·				-	_	\	_	-		6 9	1	1

The MC10502 is a quad 2-input NOR gate. Input pulldown resistors eliminate the need to tie unused inputs to an external supply.

 P_D = 25 mW typ/gate (No Load) t_{pd} = 2.0 ns typ Output Rise and Fall Time: = 3.5 ns typ (10% - 90%) = 2.0 ns typ (20% - 80%)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging and maximum ratings.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

TEST VOLTAGE VALUES (Volts) @ Test VIL min VIHA min VILA max VEE Temperature VIH max -0.830 -1.920 -1.255 -1.510 -5.2 -55°C +25°C -0.720 -1.850 -1.105 -1.475 -5.2

									+	125°C	-0.580	-1.820	-1.000	-1.400	-5.2	
		Pin			M		L Test Lin				TEST	T VOLTAGE A	PPLIED TO PIN	S LISTED BELO	w:	
	!	Under	-55	5°C		+25°C		+12	25°C					,		(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ŀΕ	8	-	29		20	26	-	29	mAdc			-	-	8	1,16
Input Current	linH	12	-	450	-	_	265	-	265	μAdc	12	_	-	_	8	1,16
	linL	12	0.5	-	0.5	-	-	0.3	_	μAdc		12	_	_	8	1,16
Logic "1"	VOH	9	-1.080	-0.830	-0.930	_	-0.720	-0.825	-0.580	Vdc	12	_		_	8	1,16
Output Voltage	ł	9		1 1		-	1 1	1 1	1	1	13	-	i -	-		
		15 15	♦	♦	♦	_	♦	♦	♦	♦	_ '	-	_] [♦	. 🔻
Logic "O"	VOL	9	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	-	_	_	_	8	1,16
Output Voltage		9	1 1	1 1	1 1	-	1 i	1 1	1 1	l	-	-	-	-		
	l	15		i i	1	-	↓			♦	12	-	-	_	•	1
	 	15	-1.100	<u> </u>	-0.950		<u> </u>			<u> </u>	13			- -		
Logic "1" Threshold Voltage	VOHA	9 9	-1.100	_	-0.950	_	_	-0.845	-	Vdc	-	-	12 13	_	8	1,16
i nresnoid Voltage	l	15	1 1	[_	1 1	-	-		_	1	_	_	13	12		1 1
		15		-	🕴	-	-	🕈	_	♥	-	_	_	13	•	▼
Logic "0"	VOLA	9	-	-1.635	_	_	-1.600	-	-1.525	Vdc	_	_		12	8	1,16
Threshold Voltage		9	-		-	-		-		1	-	-		13		1 1
		15 15	-	🛊	_	_	♦	_	♦	♦	<u>-</u>		12	_	♦	
Switching Times (100-ohm load)											_	-	Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	112+15-	15	1.0	3.7	1.0	2.0	2.9	1.0	3.7	ns	l _	l _	12	15	8	1.16
. ropugation belay	112-15+	15	l ï	l ï		l ï	l ï	i	1	Ιï	l –	_	l ï	15	lĭ	1 1
	112+9+	9		1 I	1 1		1 1	1 1			-	-	1 1	9	1 1	l i
	t12-9-	9	1 1	₹	₩ .	11	▼	1	▼		-	-		9		
Rise Time	t15+	15		4.0	1.1	! !	3.3	1	4.0		-	-		15	1	1
(20 to 80%)	tg+	9	1 I				1 1	1 1	1 1	1	-	_	l i	9		
Fall Time	t15-	15		l 🌡	♦	۱ ا	i 🗼		↓	i 🛦	-	-		15		l ↓
(20 to 80%)	tg_	9	I .	, ,	l '	, ▼	1 *			. •	-	i -	I .	. 9	I ▼	

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

F SUFFIX
CERAMIC PACKAGE
CASE 650

	i	TEST	VOLTAGE VAL	UES	
			(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2

								+	125°C	-0.630	-1.820	-1.000	-1.400	-5.2	
	Pin	L		М		Test Lim				TEST	VOLTAGE A	PPLIED TO PIN	S LISTED BELOV	N:	
Sumbol	Under			Min		Max			l lain	V	V	V	VII A	VEE	(VCC) Gnd
		+ -				-									4,5
		+													4,5
	 					203									
			1			0.700			,						4,5
₹ОН		-1.080	-0.880	-0.930	_	-0.780	-0.825	-0.630	Vac	16	_	1 -	_	12	4,5
	3	1 1	1 1		-	i i		I	l	1 -	_	_		1 1	1
	3						. 7	₹ .	▼		-		_		
VOL	13	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	_	_	_	-	12	4,5
i		1	1 1	1 1	-	1	1	l i	1	-	-	-	- '		
		♦	♦	♦	-	♦	♦	♦	♦	16	_	1 =	_	•	•
VOHA		-1.100	-	-0.950	_	 _ 	-0.845		Vdc	 		16	 	12	4.5
1 .0,,,	13	1 1	-	1	-	-	l ı	-	i	_	_	1	_	i i	Ιï
	3		-	↓	_	-		-		-	-	-	16	↓	1
		<u> </u>	- 			-	V		· ·	<u> </u>	-				· ·
VOLA			-1.635	i		-1.600	1	-1.525	Vdc	_	-	-		12	4,5
		_	1 1	_	_	1 1	=		1	1 -	_	16	1 1	1	
	3	- 1	\ ▼	-	-	V	l –	\ ▼	▼		_	1	_	•	
				Ī									1		
ļ				1			ŀ	1	1	Į.	1	Pulse in	Pulse Out	-3.2 V	+2.0 V
t16+3-	3	-	-	1.0	2.0	2.9	-	-	ns	-	-	16	3	12	4.5
		-	-					1		-	-	1 1		1	1 1
		1 =] _	♦		\ ♦	_	_	1 1	1 -	_			1 1	1 1
		l _	l _	1.1		3.3	_	_	l l	-	l _	1	1		1 1
	13	-	_		1	5.5	-	-		-	-	1			
	1	-	-	1 1	1 1	1 1	-	1 -	1 1	_	_	1 1	3	1 1	1 1
t13-	13	-	-	7	. ▼		} -	-	₹ 7	-	-	\ \	13	\ ▼	\ ▼
	VOHA VOLA t16+3- t16+13- t16+13- t16+13- t13+ t13+ t13+	Symbol Under Test	Symbol Under -5t	Under -55°C	Pin Pin	Symbol Pin -55°C +25°C +25°C +25°C +25°C +25°C +25°C +25°C +25°C +25°C +25°C	Symbol Pin -55°C +25°C	Under -55°C +25°C +25°C +11	Pin Under Test Min Max Min Typ Max Min Max Min Typ Max Min Max Min Typ Max Min Max Min Max Min Typ Max Min Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Min Max Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Max Min Min Max Min Min Max Min M	Symbol Find Symbol Find Symbol Find Symbol Find Find Symbol Find Find Symbol Find Fi	Pin Under Test Min Max Min Typ Max Min Min Max Min Max Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Max Min Min Min Min Min Min Min Min Min Max Min M	Pin Under Test Min Max Min Typ Max Min Max Unit VIH max VIL min	Pin Under Test Min Max Min Typ Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Min Min Min Min Min Max Min Min Min Min Min Min Min Min Min Max Min M	Pin Under Test Min Max Min Typ Max Min Max Mi	Pin Under Symbol Test WC 156°C 125°C 125°C 125°C 120

The MC10504 provides a very useful low power, high speed logic AND function. High Z input pulldown resistors PD = 35 mW typ/gate (No load) allow high dc and ac fanouts and eliminate the need to t_{pd} = 2.7 ns typ tie unused inputs to an external supply. The open emitter Output Rise and Fall Times: outputs allow maximum flexibility in the selection of ter-= 3.5 ns typ (10% - 90%) mination techniques and minimize the power requirements = 2.0 ns typ (20% - 80%) when driving transmission lines. Open emitter outputs also allow wire-ORing capability, which is very useful in POSITIVE LOGIC control, bussing, and communications in high speed central processors, high speed peripherals, digital communication systems, minicomputers and instrumentation. (9) 50 (10) 6 0 03 (7) **NEGATIVE LOGIC** (14)1000 14(2) -0 2 (6) (9) 5 0 (10) 6 0 03 (7) (11) 7 0 Numbers at ends of terminals denote pin numbers for (14)100L package (Case 620). Numbers in parenthesis denote pin numbers for 09 (13) (16)120 F package (Case 650). 0 15 (3) (1)130CASE V_{CC1} V_{CC2} VEE Pin 1 Pin 8 Pin 16 620 Pin 12 Pin 5 Pin 4

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information Section for packaging and maximum ratings.

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

		TEST V	OLTAGE VA	ALUES	
			(Volts)		
@ Test Temperature	VIHmax	VILmin	VIHAmin	VILAmex	VEE
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2

								+	125°C	-0.630	-1.820	-1.000	-1.400	-5.2	
	Pin			MC		Test Limi				TEST VOL	TAGE APP	LIED TO PI	NS LISTED B	ELOW:	
l	Under			.											(Vcc)
Symbol	Test	Min		Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmex	VEE	Gnd
!E	8		39	<u> </u>	28	35		39	mAdc	_	_		_	8	1,16
linH	13		450	<u> </u>		265	. –	265	μAdc	13	_	_	_	8	1,16
		1	375	-	-	220	-	220	μAdc	12,13	_		_	8	1,16
linL	12	0.5		0.5	-	-	0.3	-	μAdc	-	12	_	-	8	1,16
νон	9	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	_	_	_	_	8	1,16
		l i	1 1	1 1	-	1	l i	1	1 1	12	_	-	-	1 1	l i
	15	♦	🕴	🕴	_	🕴		∳	♦		_	_	_	1 🕴	
VOL	9	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	12,13		-		8	1,16
		1 1	1 1	11	-	1 1	1 1	1 1	l I	-	-	-	-	1 1	l i
		♦		♦	_	♦	₩	∤	∳		_	_	_	₩	
VOHA	9	-1.100	_	-0.950	_	_	-0.845	_	Vdc	12			13	8	1.16
	9		-	1 1	-	-	1 1	-		13	_	-	12	li	Ιi
] ♦	_	₩	<u> </u>	_	1 ♦	_	₩		_		_		
VOLA	9	-	-1.635	<u> </u>	_	-1.600		-1.525	Vdc	12	_	+		8	1,16
	9	-		-	-	l l	-	1	1 1	13	-	12	_	Ιi	l i
		-	↓	-	-	♦	-	₩	↓		· -	-			↓
		 	 '	 		<u> </u>		· · · ·	 '			L		-32V	+2.0 V
	1		ļ			ŀ					ł			U.E. V	
t12+9-	9	-	-	1.0	2.2	4.0	-	_	ns	13	-	12	9	8	1,16
		-	-	1 1			-	_	1 1	1 1	-			1 1	1 1
		1	1	1 1	↓	i i	l	1	1 1	1 1	_	1 1		1 1	1 1
		ı	1		'-					.!	_			1 1	
		1	l .	1 1			_		1 1	12	_	13			i i
	l	-	_	7	1	1	_	_		1	_				
		-	-	1.5	2.0	3.5	-	-			-	1			1 1
	1	-	-	1 1	1 1		-	-			-	1	1		1 1
tg_ t15	9 15	_	_		↓	↓	-	_	↓	↓	_		9 15		
	VOLA VOLA VOLA VOLA VOLA VOLA VOLA VOLA	VOLA 9 9 15 15 15 15 15 15 15 15 15 15 15 15 15	Vola 9 -1.920 Vola 9 -1.920 Vola 9 -1.920 Vola 9 -1.920 Vola 9 -1.100 Vola 9 -1.5 15 Vola 9 -1.5 15 Vola 9 -1.100 9 -1.5 15 15 Vola 9 -1.100 9 -1.100 9 -1.100 9 -1.100 9 -1.100 9 -1.100 15 -1.100 15 -1.100 15 -1.100 15 -1.100 9 -1.100 9 -1.100 9 -1.100 15 -1.100 16 -1.100 17 -1.100 9 -1.100 18 -1.100 9 -1.100 9 -1.100 18 -1.100 9 -1.1000 9 -1.1000 9 -1.1000 9 -1.1000 9 -1.1000 9 -1.1000 9 -1.1000 9	Under Test Min Max IE	Pin -55°C	Pin Under	Pin -55°C	Under Test Min Max Min Typ Max Min Min Max Min Typ Max Min M	Pin Under Test Min Max Min Typ Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min	Pin Did Did Symbol Test Min Max Min Typ Max Min Max	Pin Under Test Min Max Min Typ Max Min Min Max Min Max Min Max Min Min	Pin Under Test Min Max Min Typ Max Min Min Max Min Min Max Min Max Min Min Max Min Min Max Min Min Max Min	Pin Under Test Winder Test Winder Test Winder Test Winder Test Winder Test Winder W	Pin Under 1-55°C 1-25°C 1-12	Print Under Test

^{*}Inputs 4, 7, 10, and 13 will behave similarly for ac and I inH values.

Inputs 5, 6, 11, and 12 will behave similarly for ac and I inH values.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

F SUFFIX CERAMIC PACKAGE CASE 650

		TEST V	OLTAGE V	ALUES	
			(Volts)		
@ Test Temperature	V _{IHmax}	VILmin	VIHAmin	VILAmex	VEE
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2

	T		Г		MC1	10504F 1	est Limit			125 C	-0.630	-1.020	-1.000	-1.400	-5.2	!
		Pin	-55	5°C		+25°C	OST EIIIII		5°C		TEST VOL	TAGE APP	PLIED TO PI	NS LISTED E	ELOW:	
Characteristic	Symbol	Under Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	(V _{CC}) Gnd
Power Supply Drain Current	¹E	12	-	39	-	28	35	-	39	mAdc	-	-	-	-	12	4,5
Input Current	linH	1 16	-	450 375	_	-	265 220	-	265 220	μAdc μAdc	1 1,16	-	-	-	12 12	4,5 4,5
	linL	16	0.5	_	0.5	-	-	0.3	-	μAdc	_	16	-	-	12	4,5
Logic "1" Output Voltage	VOH	3 13 13 13	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	1,16 - 1 16		- - -	-	12	4,5
Logic "0" Output Voltage	VOL	3 3 3 13	-1.920	-1.655	-1.850	- -: -:	-1.620	-1.820	-1.545	Vdc	- 1 16 1,16	- - - -	- - - -	- - - -	12	4,5
Logic "1" Threshold Voltage	V _{OHA}	3 3 13 13	-1.100		-0.950	- 	-	-0.845	- - -	Vdc	1 16 1	- - -	16 1 - -	- - 16 1	12	4,5
Logic "0" Threshold Voltage	VOLA	3 3 13 13	- - -	-1.635	-		-1.600	-	-1.525	Vdc	16 1 16 1	- - -	- - 1 16	1 16 - -	12	4,5
Switching Times*											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
(100-ohm load) Propagation Delay	t ₁₆₊₃₊ t ₁₆₋₃₋ t ₁₆₊₁₃₋ t ₁₆₋₁₃₊ t ₁₊₃₋ t ₁₊₁₃₊	3 13 13 13 3	- - - -	 	1.0	2.2 2.7 2.7	4.0	- - - -		ns	1 	- - - - -	16	3 3 13 13 3 13	12	4,5
Rise Time (20% to 80%)	t ₃₊ t ₁₃₊	3 13	=] =	1.5	2.0	3.5	_ _	-			_		3 13		
Fall Time (20% to 80%)	t3_ t13_	3 13	-	_				_ _	-			-	+	3 13		1

^{*}Inputs 1, 8, 11 and 14 will behave similarly for ac and I_{inH} values. Inputs 9, 10, 15 and 16 will behave similarly for ac and I_{inH} values.

TRIPLE 2-3-2 INPUT OR/NOR GATE

MC10505

The MC10505 is a triple 2-3-2 input gate. Input pulldown resistors eliminate the need to tie unused inputs to an external supply.

 P_D = 30 mW typ/gate (No Load) t_{pd} = 2.0 ns typ Output Rise and Fall Time = 3.5 ns typ (10% - 90%) = 2.0 ns typ (20% - 80%)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

......

L SUFFIX CERAMIC PACKAGE CASE 620

TEST VOLTAGE VALUES (Volts) @ Test VIH max VIL min VIHA min VILA max VEE Temperature -0.880 -1.920 -1.510 -55°€ -1.255 -5.2 -0.780 +25°C -1.850 -1.105 -1.475 -5.2

									+	125°C	-0.630	-1.820	-1.000	-1.400	-5.2	,
		Pin			N	AC 10505	L Test Li	mits			TEST	VOLTAGE A	PPLIED TO PINS	LISTED RELOV	V:	1
	i	Under	-64	5°C		+25°C	-	+12	5°C			1				(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	1E	8	-	24	-	17	21	_	24	mAdc	-	_			8	1,16
Input Current	l _{inH}	4	T -	450		-	265	-	265	μAdc	4	T -	_	_	8	1,16
	linL	4	0.5	-	0.5	-	-	0.3	_	μAdc	_	4.		-	8	1,16
Logic "1"	VOH	3	-1.080		-0.930		-0.780	-0.825	-0.630	Vdc	_	-	_	-	8	1,16
Output Voltage	1	2	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	4				8	1,16
Logic "0"	VOL	3	-1.920		-1.850	-	-1.620	-1.820	-1.545	Vdc	4	_	-	_	8	1,16
Output Voltage		2	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc		_	_		8	1,16
Logic "1"	Vона	3	-1.100		-0.950	-	-	-0.845	-	Vdc	_	-		4	8	1,16
Threshold Voltage		2	-1.100	_	-0.950	_	_	-0.845		Vdc		-	4		8	1,16
Logic "O"	VOLA	3	-	-1.635	- 1	-	-1.6 0 0	-	-1.525	Vdc	-	-	4	-	8	1,16
Threshold Voltage		2		-1.635	-		-1.600		-1.525	Vdc			_	4	8	1,16
Switching Times (100-ohm load)	l												Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t4+3-	3	1.0	3.7	1.0	2.0	2.9	1.0	3.7	ns	_	_	4	3	8	1,16
	t4-3+	3		1	1 1	1	i I	1			_	-	1	3		1
	t4+2+	2	1	1			ا ا	1 1	i .		-	-		2	1 1	1 1
	14-2-	2			' '		'	1 1			_	_	1 1	2		1 1
Rise Time	t3+	3		4.0	1.1		3.3	1 1	4.0		-	_		3		1 1
(20 to 80%)	t2+	2	1 I I	1 1				1 1			i –	-		2		1 1
Fall Time	t3~	3	•	♦			1 🛊		i .		-	_	♦	3	1	1
(20 to 80%)	t2-	2	1 "	•			. •	. ▼		•		_	'	. 2	· · ·	

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

F SUFFIX CERAMIC PACKAGE CASE 650

		TEST	VOLTAGE VAL	UES	
			(Volts)		
@ Test Temperature	V _{IH max}	VIL min	VIHA min	VILA mex	VEE
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2

		Pin			M	C 10505	F Test Lis	nits			TEST	VOLTAGE A	PLIED TO PINS	LISTED BELOW	t:	1
	i	Under	-56	5°C		+25°C		+12	5°C						·	(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	۱E	12	_	24	-	17	21	-	24	mAdc	_	-	-	-	12	4,5
(nput Current	linH	8	-	450	-	-	265	-	265	μAdc	8			_	12	4,5
	linL	8	0.5	-	0.5	_	-	0.3	-	μAdc	_	8		-	12	4,5
Logic "1" Output Voltage	VOH	7 6	-1.080 -1.080	-0.880 -0.880	-0.930 -0.930	=	-0.780 -0.780	-0.825 -0.825	-0.630 -0.630	Vđc Vđc	8	_	=	-	12 12	4,5 4,5
Logic "0" Output Voltage	VOL	7	-1.920 -1.920		-1.850 -1.850		-1.620 -1.620	-1.820 -1.820	-1.545 -1.545	Vdc . Vdc	8 —	=	=	=	12 12	4,5 4,5
Logic "1" Threshold Voltage	VOHA	7 6	-1.100 -1.100		-0.950 -0.950	=	=	-0.845 -0.845		Vdc Vdc	=	_	8	8 -	12 12	4,5 4,5
Logic "0" Threshold Voltage	VOLA	7 6	=	-1.635 -1.635	-	=	-1.600 -1.600	=	-1.525 -1.525	Vdc Vdc	=	=	8 -	8	12 12	4,5 4,5
Switching Times (100-ohm load)													Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	¹ 8+7- ¹ 8-7+ ¹ 8+6+ ¹ 8-6-	7 7 6 6		-	1.0	2.0	2.9	- - -	- - -	ns	- - - -	- - -	8	7 7 6 6	12	4,5
Rise Time (20 to 80%) Fall Time (20 to 80%)	t7+ t6+ t7- t6-	7 6 7 6	-	-	1.7		3.3	- - -	- - -		- - -			7 6 7 6		

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table. after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

Characteristic

Power Supply Drain Current

Input Current

Output Voltage

Output Voltage

Threshold Voltage

Threshold Voltage

Switching Times (100-ohm load) Propagation Delay

(20 to 80%)

(20 to 80%)

Logic "1"

Logic "0"

Logic "1"

Logic "0"

Rise Time

Fall Time

Pin

Under

8

4

4

2

2

3

2

3

Test

Symbol

1F

I_{in}H

InL

νон

VOL

VOHA

VOLA

14+3-

t4-3+

t3+

13_

-55°C

-1.080 -0.880

-1.080 -0.880

Min

-450

0.5

-1.920

-1.100

-1.100

1.0 3.7

-1.920 -1.655

Max

24

-1.655

-1.635

-1.635

3.7

4.0

4.0

Min

0.5

-0.930

-0.930

-1.850

-1.850 -0.950

-0.950

1.0

1.0

1.1

1.1

3.3

TEST VOLTAGE VALUES (Volts)

VIHA min

L SUFFIX **CERAMIC PACKAGE CASE 620**

VFF

VILA max

					-55°C	-0.880	-1.920	-1.255	-1.510	-5.2	1 1
					+25°C	-0.780	-1.850	-1.105	-1.475	-5.2	1 1
					+125°C	-0.630	-1.820	-1.000	-1.400	-5.2	
,	MC1050	6L Test L	imits			TEST	VOLTAGE A	PPLIED TO PIN	IS LISTED BEL	ow:	1
	+25°C		+12	5°C			T				(VCC)
	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
	17	21	-	24	mAdc	-		-	-	8	1,16
		265	-	265	μAdc	4		-	-	8	1,16
	-	1	0.3		μAdc		4			8	1,16
0	-	-0.780	-0.825	-0.630	Vdc		_	-	-	8	1,16
0	-	-0.780	-0.825	-0.630	Vdc	-	_	-	-	8	1,16
0		-1.620	-1.820	-1.545	Vdc	4		-		8	1,16
0		-1.620	-1.820	-1.545	Vdc	9	_	-		8	1,16
0			-0.845		Vdc			-	4	8	1,16
0			-0.845	-	Vdc	-		-	9	8	1,16
		-1.600	-	-1.525	Vdc			4		8	1,16
	_	-1.600	-	-1.525	Vdc			9	-	8	1,16
			i					Pulse In	Pulse Out	-3.2 V	+2.0 V
	2.0	2.9	1.0	3.7	ns			4	3	8	1,16
		2.9		3.7		-	-	1 1		1 1	
		3.3		4.0		1	1		1	1	
	1 1	1	1 1	1		ĺ	1	1 1	i i	1 1	1

VIL min

@ Test

VIH max

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

TEST VOLTAGE VALUES
(Volts)

VIHA min

-1.255

VIL min

-1.920

F SUFFIX CERAMIC PACKAGE CASE 650

VEE

-5.2

VILA max

-1.510

										+25°C	-0.720	-1.850	-1.105	-1.475	-5.2	1 '
						_				+125°C	-0.580	-1.820	-1.000	-1.400	-5.2	i
		Pin			м	C10506	F Test Lir	nits			TEST	VOLTAGE A	PPLIED TO PIN	S LISTED BEL	OW:	1
		Under	-5	5°C		+25°C		+12	5°C							(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	1E	12	-	24		17	21	-	24	mAdc	_	-			12	4,5
Input Current	I _{In} H	8	-	450	-	-	265	-	265	μAdc	8		-	-	12	4,5
	InL	8	0.5	-	0.5	-	-	0.3	-	μAdc	-	8	-		12	4,5
Logic "1" Output Voltage	Voн	7	-1.080 -1.080	-0.830 -0.830	-0.930 -0.930	-	-0.720 -0.720	-0.825 -0.825	-0.580 -0.580	Vdc Vdc	-	-	1 1	1 1	12 12	4,5 4,5
Logic "0" Output Voltage	VOL	7	-1.920 -1.920	-1.655 -1.655	-1.850 -1.850	-	-1.620 -1.620	-1.820 -1.820		Vdc Vdc	8 13	-	-	-	12 12	4,5 4,5
Logic "1" Threshold Voltage	VOHA	7 6	-1.100 -1.100	-	-0.950 -0.950	-	-	-0.845 -0.845	-	Vdc Vdc	-	-	=	8 13	12 12	4,5 4,5
Logic "O" Threshold Voltage	VOLA	7 6	-	-1.635 -1.635	_	-	-1.600 -1.600	-	-1.525 -1.525	Vdc Vd c	-	=	8 13		12 12	4,5 4,5
Switching Times (100-ohm load)													Pulse in	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t9+7- t9-7+	7	-	-	1.0 1.0	2.0	2.9 2.9	-	-	ns	-	-	8	7	12	4,5
Rise Time (20 to 80%)	t7+		-	-	1.1		3.3	-	-		-	-				
Fall Time (20 to 80%)	t7-	<u>'</u>		-	1.1	*	3.3	_		•			•	•	•	•

@ Test

Temperature

VIH max

-0.830

TRIPLE 2-INPUT EXCLUSIVE "OR"/EXCLUSIVE "NOR"

MC10507

The MC10507 provides three positive logic Exclusive OR and Exclusive NOR functions for high speed applications. Input pulldown resistors eliminate the need to tie unused inputs to VFF.

 P_D = 40 mW typ/gate (No Load) t_{pd} = 2.5 ns typ Output Rise and Fall Times = 2.0 ns typ (20% to 80%) = 3.5 ns typ (10% to 90%)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

		TEST	VOLTAGE VAL	UES	
	L		(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2

	Pin	L		MC1	0507L Test				7507	VOLTACE AS	ON LED TO BING	LISTED BELOW		
	Under	-51	5°C	+:	æ°c	+12	5°C		<u> </u>					(Vcc)
Symbol	Test	Min	Max	Min	Max	Min	Мах	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
1E	8	-	31	-	28	-	31	mAdc	All inputs	-	_	-	8	1,16
¹ in H	4,9,14 5,7,15	-	450 375	-	265 220	-	265 220	μAdc μAdc	:	-	-	-	8	1,16
in L	•	0.5	-	0.5	-	0.3		μAdc	-	•	-	-	8	1,16
∨он	2 2 3 3	-1.080	-0.880	-0.930	-0.780	-0.825	-0.630	Vdc	4,5 - 4 5	-	- - -	- - -	8	1,10
VOL	2 2 3	-1.920	-1.655	-1.850	-1.620	-1.820	-1.545	Vdc	4 5 4,5	- - -	- - -	- - -	8	1,16
V _{OHA}	2 2 3 3	-1.100	- - -	-0.950	=	-0.845	-	Vdc	5 - -	- - - -	4 - 4 5	- 4 -	8	1,10
VOLA	2 2 3 3	-	-1.635	-	-1.600	-	-1.525	Vdc	- - 5	-	4 5 4 -	- - 4	8	1,1
				Min 1	ур Мах			Unit	+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0
t++ t+- t-+ t	Inputs 4, 9 or 14 to either Output	1.0	4.5	1.1	2.0 3.7	1.0	4.5	ns	5,7,15	- - - -	Input 4, 9, or 14	Corresponding Ex-OR/Ex-NOR Outputs	8	1,1
t++ t+- t-+ t	Inputs 5,7, or 15 to either Output								4,9,14	- - -	Input 5, 7, or 15	Corresponding Ex-OR/Ex-NOR Outputs		
t+ t-			4.3	111			4.3			-	Any Input	Corresponding Ex-OR/Ex-NOR Outputs		
	TE	Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder Vinder V	Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Vol	Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volta Volt	Symbol Under Test -55 °C +: 1 In H 4,9,14 - 450 - 1 In H 4,9,14 - 450 - 1 In L - 0.5 - 0.5 VOH 2 -1,080 -0,880 -0,930 2 -3 -1,080 -0,880 -0,930 3 -1,020 -1,655 -1,850 2 -3 -1,000 - -0,950 2 -1,000 - -0,950 - 3 -1,000 - -0,950 - 4 -1,000 - -0,950 - 3 -1,000 - -0,950 - 4 -1,000 - -0,950 - 3 -1,000 - -0,950 - 4 -1,000 - -0,950 - 3 -1,000 - -0,950 - 4 -1,000 -	Under Test Min Max Min Max	Vinder Test Min Max Min Max Min Max Min Max Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min Min	Vode	Volta Symbol Test Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Max Min Max Min Max Min Max Min Max Min Ma	Vortex Vinder Test Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Min Max Min Max Min Min Max Min Min Max Min Min Max Mi	Vinder Test Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Min Max Min Max Min	Volta Symbol Test Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min	Under Test Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max	Under Symbol Test Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min

^{*}Individually test each input applying VIH or VIL to input under test.

^{**}Any Output

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

TEST VOLTAGE VALUES
(Volts)

F SUFFIX CERAMIC PACKAGE CASE 650

												(Volts)			- 1
									Test perature	VIH max	VIL min	VIHA min	VILA max	VEE	l
									-55°C	-0.880	-1.920	-1.255	-1.510	-5.2	l l
									+25°C	-0.780	-1.850	-1.105	-1,475	-5.2	1
									+125°C	-0.630	-1.820	-1.000	-1.400	-5.2	- 1
	1	Pin	. L		Mo	10507F Test	Limits			1			L		- 1
	į.	Under	-5	5°C		25°C	+12	25°C		TEST	VOLTAGE A	PPLIED TO PINS	S LISTED BELOW:		(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	1E	12	-	31		-28	 	31	mAdc	All Inputs			TEA IIIEA	12	4,5
Input Current	lin H	2,8,13	-	450		265	 	265	#Adc	Antiputs	<u> </u>			12	4,5
		3,9,11	-	375		220	-	220	μAdc μAdc		1 -	1 -		12	4,5
	lin L		0.5	-	0.5	1	0.3		μAdc	 				12	4,5
Logic "1"	VOH	6	-1.080	-0.880	-0.930	-0.780	-0.825	-0.630	Vdc	8,9	 			12	4.5
Output Voltage		6 ,	1 1	1	1	-0.780	-0.625	-0.630	1 1	- 0,9		_		i i	, ~~ I
		7	J .		↓	1			↓	8	-	-	-	1	
Logic "O"		+	· · · · ·	- · ·	-					9	-	-	-		V
Output Voltage	VOL	6	-1.920	-1.655	-1.850	-1.620	-1.820	-1.545	Vdc	8] -	-	·	12	4,5
	l	7	1 1	1 1					1 1	9 8,9		-	- 1	- 1 1	. 1 1
	1	7	▼			1 1	•	♦		6,3	1 -			•	: † I
Logic "1"	VOHA	6	-1.100	-	-0.950	 	-0.845	 	Vdc	9		8		12	4,5
Threshold Voltage	}	6	1 1	-	1	-	1	-	1	1 -	-	1 -	8	i i l	1 1
	ł	7		-	•	-		1	1 1	-	-	8	-		
Logic "O"	VOLA	6		4.005		-	<u> </u>	ļ	_ <u> </u>	· · · · · ·	-	9	-		
Threshold Voltage	VOLA	6	_	-1.635	-	-1.600		-1.525	Vdc	-	-	8	-	12	4,5
-		7	-	1 1	_	1 1	_	1 1	1 1	1 -	1 -	9	_		(
		7	-	7		▼		†		_	-	١ -	8		(† <u> </u>
Switching Times (100 Ω load)		1	ľ		Min	Typ Max			Unit	+1.11 V		Pulse in	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t++	Inputs	-	-	1.1	2.0 3.7		_	ns	3,9,11	1 .	Input	Corresponding	12	4.5
	t+-;	2,8 or 13	-	-			_	-	l ï	1 1	-	2,8 or 13	Ex-OR/Ex-NOR	Ιï	l ï l
	t-+ t	to either Output	_	_		111	-	-	1	1 1	-		Outputs	1	1 1 1
	1++	1			1	V	-	-	1 1	· •	-	1		1 1	1 1 1
i i	1++	Inputs 3.9 or 11				2.8	-	-		2,8,13	-	Input	Corresponding	1 1	1 1 1
	t-+	to either	_	_		111	_			1 1	-	3,9 or 11	Ex-OR/Ex-NOR Outputs	!!	1 1 1
	t	Output	-	-		1	-	_		1 1	1 -	ł	Catputs		1 1 1
Rise Time	t+		- '	-		2.5 3.5	_	_		1 -1		Any Input	1	1	
(20 to 80%)						3.5	1	1	1	1 1	1	any Input	Corresponding	1 1	!
Fall Time	t-		- 1	-	•	2.5 3.5	-	-	↓	I	_	Any Input	Ex-OR/Ex-NOR	1	1 🛊 !
(20 to 80%)		[l		1		, ,			1,	Outputs	l '	1 ' '

^{*}Individually test each input applying VIH or VIL to input under test.

^{**}Any Output

The MC10509 is a dual 4-5 input OR-NOR gate which is pin compatible with the MECL III MC1660L dual OR-NOR gate. All inputs are terminated by a 50 k ohm resistor to VEE eliminating the need to tie unused inputs low.

t_{pd} = 2.0 ns typ P_D = 30 mW typ/gate (No Load) Output Rise and Fall Times (10% to 90%) 3.5 ns (20% to 80%) 2.0 ns

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

		TEST	VOLTAGE VAL	UES	
			(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2

										125°C	-0.630	-1.820	-1.000	-1.400	-5.2	
		Pin				MC10509	9L Test Li	mits			1	TEST VOLTAG	E APPLIED TO	PINS RELOW:		
	1	Under	-56	5°C		+25°C		+12	5°C							(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ŀΕ	8	-	16	-	11	14	-	16	mAdc	-	-	-		8	1,16
Input Current	linH	4	-	450	-	_	265		265	μAdc	4	-	-	-	8	1,16
	linL	4	0.5	_	0.5		-	0.3		μAdc	-	4	-	-	8	1,16
High Output Voltage	νон	2	-1.080		-0.930	-	-0.780	-0.825	-0.630	Vdc	4		_	-	8	1,16
	L	3	-1.080	-0.880	-0.930		-0.780	-0.825	-0.630	Vdc	_		_		8	1,16
Low Output Voltage	VOL	2	-1.920		-1.850	-	-1.620	-1.820	-1.545	Vdc		-	-	-	8	1,16
	1	3	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc .	4	-		-	8	1,16
High Threshold Voltage	VOHA	2	-1.100		-0.950		-	-0.845	-	Vdc	-	-	4		8	1,16
		3	-1.100	-	-0.950	-	-	-0.845		Vdc	-	- '	-	4	8	1,16
Low Threshold Voltage	VOLA	2	-	-1.635	-	-	-1.600	-	-1.525	Vdc	-	_	_	4	8	1,16
		3	-	-1.635	-		-1.600	. –	-1.525	Vdc	-	_	4	-	8	1,16
Switching Times (100 ohm load)													Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	* t4+2+	2	1.0	3.7	1.0	2.0	2.9	1.0	3.7	ns	-	-	4	2	8	1,16
	t4-2-	2	1 1	1 1	1 1	1	1		1 1	1	-	-	1	2	1 1	1
	t4+3-	3	11		1 1	1 1		i I	1 1		-	-		3	1 1	
	t4-3+	3		1	1	1 1	1 1	1 1	, ,		-	-		3	1 1	
Rise Time	t ₂₊	2		4.0	1.1	1 1	3.3	1 1	4.0		-	-		2		
(20 to 80%)	t3+	3	11		1 1			1	1		-	-		3	1 1	
Fall Time (20 to 80%)	t2- t3-	2				₩					-	-	\	2 3		

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

F SUFFIX CERAMIC PACKAGE CASE 650

		TEST	VOLTAGE VAL	UES	
			(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-55°C	-0.830	-1.920	-1.255	-1.510	-5.2
+25°C	-0.720	-1.850	-1.105	-1.475	5.2
+125°C	-0.580	-1 820	-1 000	-1 400	-5.2

									. +	125°C	-0.580	-1.820	-1.000	-1.400	5.2	
		Pin			, A		F Test Li				1	EST VOLTAG	E APPLIED TO	PINS BELOW:		
		Under	-59	5°C		+25°C		+12	5°C			1	· · · · ·			(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	12	-	16	-	11	14	-	16	mAdc		-	-	-	12	4,5
Input Current	ImH	. 8	-	450	_	-	265	-	265	μAdc	8	-	-	-	12	4,5
	linL	8	0.5	-	0.5	-	-	0.3	-	μAdc	-	8	-	-	12	4,5
High Output Voltage	VOH	6	-1.080		-0.930	-	-0.720	-0.825	-0.580	Vdc	8	-	_	-	12	4,5
	1	7	-1.080	-0.830	-0.930	L. -	-0.720	-0.825	-0.580	Vdc			-		12	4,5
Low Output Voltage	VOL	6	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc		-	-	-	12	4,5
		7	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	8				12	4,5
High Threshold Voltage	VOHA	6	-1.100		-0.950	-	-	-0.845	-	Vdc	-	-	8	-	12	4,5
		7	-1.100	-	-0.950			-0.845	-	Vdc		-		8	12	4,5
Low Threshold Voltage	VOLA	6	-	-1.635	-	-	-1.600	-	-1.525	Vdc	-	-	_	8	12	4,5
	l	7	l	-1.635	-	l 	-1.600		-1.525	Vdc	-		8	l. –	12	4,5
Switching Times (100 ohm load)													Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t9+6+	6	-	- 1	1.0	2.0	2.9	l –	_	ns	-	_	8	6	12	4,5
	19-6-	6	-	- 1	1 1		1 1	-	- 1	١.	-	-	l i	6	l ı	l i
	t9+7-	7	-	–	1 1		1 1	-	-		-		1 1	7		
	t9-7+	7	-	-	1 1	1	1 1	-	-		-	-	!!!	7	1 1	1 1
Rise Time	t6+	6	-	-	1.1	1 1	3.3	-	-	1 1	-	-		6		1
(20 to 80%)	17+	7	-	-	lı		1 1	-	-		-	-		7	1 1	1 1
Fall Time	t6-	6	-	-	1 1	1 1	1 1	-	7	1	-	-		6	1	1
(20 to 80%)	t7-	7	-	-	1	'	! !	i –	-	1	-	-	! "	7	' '	, v

TRIPLE LINE RECEIVER
(HIGH COMMON MODE)

MC10514

The MC10514 is a triple line receiver designed for use in sensing differential signals over long lines. An active current source and translated emitter follower inputs provide the line receiver with a common mode noise rejection limit of one volt in either the positive or the negative direction. This allows a large amount of common mode noise immunity for extra long lines.

Another feature of the MC10514 is that the OR outputs go to a logic low level whenever the inputs are left floating. The outputs are each capable of driving 100-ohm transmission lines.

This device is useful in high speed central processors, minicomputers, peripheral controllers, digital communication systems, testing and instrumentation systems. The MC10514 can also be used for MOS to MECL interfacing and it is ideal as a sense amplifier for MOS RAM's

A V_{BB} reference is provided which is useful in making the MC10514 a Schmitt trigger, allowing single-ended driving of the inputs, or other applications where a stable reference voltage is necessary.

 $t_{pd} = 2.4$ ns typ (Single Ended Input)

t_{pd} = 2.0 ns typ (Differential Input)

P_D = 145 mW typ/pkg (No Load)

Numbers at ends of terminals denote pin numbers for L package (Case 620).

Numbers in parenthesis denote pin numbers for F package (Case 650).

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs or outputs are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

TEST VOLTAGE VALUES

(Volts)

(Volts)

Temperature

VIH max VIL min VIHA min VILA max VBB VIHH* VILH* VIHL* VILL* VEE

										-55°C	-0.880	-1.920	-1.255	-1.510	From	+0.170	-0.920	-1.830	-2.920	-5.2]
										+25°C	-0.780	-1.850	-1.105	-1.475	Pin	+0.280	-0.850	-1.720	-2.850	-5.2	1
										+125°C	-0.630	-1.820	-1.000	-1.400	11	+0.420	-0.820	-1.580	-2.820	-5.2	7
Characteristic	Symbol	Pin Under Test	MC10514L Test Limits								TEST VOLTAGE APPLIED TO PINS BELOW:									1	
			-61	5°C	+25°C			+125°C		1	├ ──			1							(Vcc
			Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VBB	VIHH*	VILH.	AIHT.	AILL.	VEE	Gnd
Power Supply Drain Current	¹E	8	-	39	_	28	35		39	mAdc	-	4,9,12	_		5,10,13	-	-	-		8	1,16
Input Current	linH	4		80	-	-	45	-	45	μAdc	A	9,12	-	-	5,10,13	-	-	-	-	8	1,16
	СВО	4		1.5		-	1.0		1.0	μAdc	-	9,12	-		5,10,13	-	-	-	-	8,4	1,16
Logic "1" Output Voltage	VOH	2	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	4	9,12	-	-	5,10,13	-	-	-		8	1,16
		3	-1.080	-0.880	-0.930		-0.780	-0.825	-0.630	Vdc	9,12	4		_	5,10,13	-				8	1,16
Logic "0" Output Voltage	VOL	2 3	-1.920 -1.920	-1.655 -1.655	-1.850 -1.850	_	-1.620 -1.620	-1.820 -1.820	-1.545 -1.545	Vdc Vdc	9,12 4	4 9,12	_	-	5,10,13 5,10,13	_				8 8	1,16 1,16
Logic "1" Threshold Voltage	Vона	2	-1.100 -1.100	-	-0.950 -0.950	1 1	-	-0.845 -0.845	-	Vdc Vdc	- 9,12	9,12	4 -	4	5,10,13 5,10,13	_	-		-	8	1,16
Logic "O" Threshold Voltage	VOLA	2	-	-1.635 -1.635	-	_	-1.600 -1.600	-	-1.525 -1.525	Vdc Vdc	9,12	9,12	- 4	4	5,10,13 5,10,13	-	-	=	-	8	1,16
Reference Voltage	VBB	11	-1.440	-1.320	-1.350	-	-1.230	-1.240	-1.120	Vdc	-	-	-	-	5,10,13	-	_	-		8	1,16
Common Mode Rejection Test	VOH	2 3	-1.080 -1.080	-0.830 -0.830	-0.930 -0.930	-	-0.720 -0.720	-0.825 -0.825	-0.580 -0.580	Vdc Vdc	-	-	=	-	-	4	5 -	- 5	_ 4	8	1,16 1,16
	VOL	2	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc		-	-	-	-	-	-	5	4	8	1,16
		3	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	-		-	-	_	4	5			8	1,16
Switching Times (100-ohm Load)			Min	Max	Min	Тур	Max	Min	Max		1	1	Pulse In	Pulse Out	ŀ	i	i			-3.2 V	+2.0 \
Propagation Delay**	t4+2+	2	-	-	1.0	2.5	4.0	-	-	ns	- 1	-	4	2	5,10,13		-	-	-	8	1,16
	t4-2-	2	_		1 !	1 1		-		1 1	1 -	-	1 1	2		-	-	-			1 1
	t4+3- t4-3+	3		_	🛊	l ♦		_	-	1 1	_		1 1	3	1 1	_	_	_			1 1
Rise Time (20% to 80%)		2	_		1.5	2.1	3.5		_	1 1				,			1	_	_		1 1
	t2+ t3+	3	-	-	1.5	'i'	3.5	-	_		1 -	1 -		1 3	1 1	-	_		_		1 1

^{*}VIHH = Input logic "1" level shifted positive one volt for common mode rejection tests.

VILH = Input logic "0" level shifted positive one volt for common mode rejection tests.

VIHL = Input logic "1" level shifted negative one volt for common mode rejection tests.

VILL = Input logic "0" level shifted negative one volt for common mode rejection tests.

^{**}Delay is 2.0 ns with differential input.

ELECTRICAL CHARACTERISTICS

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table. after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs or outputs are tested in the same manner.

VILA max

VIHA min

F SUFFIX CERAMIC PACKAGE **CASE 650**

VIHH*

VILH*

VIHL! VILL!

TEST VOLTAGE VALUES (Volts)

VBB

										retature.	- III IIIax	- 1C 111111	1000	I ILO IIIax							
										-55°C	-0.880	-1.920	-1.255	-1.510	From	+0.170	-0.920	-1.830	-2.920	-5.2	. 1
										+25°C	-0.780	-1.850	-1.105	-1.475	Pin	+0.280	-0.850	-1.720	-2.850	-5.2	, 1
										+125°C	-0.630	-1.820	-1.000	-1.400	15	+0.420	-0.820	-1.580	-2.820	-5.2	ı I
					MC10	514F Te:	st Limits				1		TECT	VOLTAGE A	001.150.3	O DINE E				\neg	ı I
	l	Pin Under	-5	5°C		+25°C		+125	5°C	1			1631	VULTAGE	PPLIED	U PINS E	JELOW:				(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	V88	VIHH*	VILH*	VIHL.	VILL*	VEE	Gnd
Power Supply Drain Current	¹ε	12	-	39		28	35	-	39	mAdc	-	8,13,16	_	-	1,9,14	-	-	-	-	12	4,5
Input Current	linH	8		80		-	45		45	μAdc	8	13,16	-	-	1,9,14	-	-	-	-	12	4,5
	Ісво	8	_	1.5	1	-	1.0	-	1.0	μAdc	-	13,16	-	-	1,9,14	-	-	-		8,12	4,5
Logic "1" Output Voltage	VOH	6	-1.080	-0.880	-0.930		-0.780	-0.825	-0.630	Vdc	8	13,16	-	-	1,9,14	-	-	-	-	12	4,5
Logic i Output Voltage	L	7	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	13,16	8	-		1,9,14	-	-	~	-	12	4,5
Logic "0" Output Voltage	VOL	6	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	13,16	8	-	-	1,9,14	-	- 1	-	-	12	
		-7	-1.920	-1.655	-1.850		-1.620	-1.820	-1.545	Vdc	8	13,16	-	<u> </u>	1,9,14	-				12	-
Logic "1" Threshold Voltage	VOHA	6	-1.100 -1.100	-	-0.950 -0.950	-	-	-0.845 -0.845		Vdc Vdc	13.16	13,16	8	- 8	1,9,14	-	_	-		12	1 1
	 	<u> </u>		1 2 2 2 2	-0.950	<u> </u>	-1.600					<u> </u>							_	12	
Logic "O" Threshold Voltage	VOLA	6 7		-1.635 -1.635	_	-	-1.600	-	-1.525 -1.525	Vdc Vdc	13,16	13.16	ã	8	1,9,14			- 1	-	12	1 1
Reference Voltage	V _{BB}	15	-1.440	-1.320	-1.350		-1.230	-1.240	-1.120	Vdc	-				1,9,14				_	12	
Common Mode Rejection Test	VOH	6	-1.080	-0.830	-0.930	_	-0.720	-0.825	-0.580	Vdc	<u> </u>			 		8	9	<u> </u>		12	$\overline{}$
	- 011	7	-1.080	-0.830	-0.930		-0.720	-0.825		Vdc	-	-		-	-	[- i	-	9	8	12	i l
	VOL	6	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc		-	-	-	-	-	_	9	8	12	\Box
	J -	7	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc		-	-	-	-	8	9	-	-	12	
Switching Times (100-ohm Load)			Min	Max	Min	Тур	Max	Min	Max			Ī	Pulse In	Pulse Out						-3.2 V	+2.0 V
Propagation Delay**	t8+6+	6	_	-	1.0	2.5	4.0	-	-	ns	1	-	8	6	1,9,14	-	- 1	-	-	12	4.5
. •	t8-6-	6	-	-	lí	1	1 1	-	-	1 1	I	~	1 1	6		-		-	- 1	i I '	(I I
	t8+7-	7	-	-			1	-		1	1	-		7		-	- '	-	- 1	1 '	(+ + + + + + + + + + + + + + + + + + +
	¹ 8-7+	7	-	-			. ▼		_	1	I			7		- 1	- 1	-	-	(]	
Rise Time (20% to 80%)	¹6÷	6	-		1.5	2.1	3.5	-	I		I	-	1 1	6	1 1	-	- 1	-	- 1	1 1 '	(I I

@ Test

Fall Time (20% to 80%)

t7+ t6-6

^{*}VIHH = Input logic "1" level shifted positive one volt for common mode rejection tests.

VILH = Input logic "0" level shifted positive one volt for common mode rejection tests.

VIHI = Input logic "1" level shifted negative one volt for common mode rejection tests.

VILL = Input logic "0" level shifted negative one volt for common mode rejection tests.

^{**}Delay is 2.0 ns with differential input.

The MC10515 is a quad differential amplifier designed for use in sensing differential signals over long lines. The base bias supply (VBB) is made available to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary.

Active current sources provide the MC10515 with excellent common mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to VBB to prevent upsetting the current source bias network.

t_{pd} = 2.0 ns typ P_D = 110 mW typ/pkg (No Load)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

@ Test			EST VOLTAG	E VALUES		
Temperature	VIH max	V _{IL min}	VIHA min	VILA max	VBB	VEE
-55°C	-0.880	-1.920	-1.255	-1.510	From	-5.2
+25°C	-0.780	-1.850	-1.105	-1.475	Pin	-5.2
+125°C	-0.630	-1.820	-1.000	-1.400	. 9	-5.2

		Pin			MC105	515L Test L	imits			-	EST VOLTAG	SE APPLIED T	O DINE LISTE	D. BEL OW.		
	!	Under	-85	°C	+25	°C	+12	:5°C			EST VOLTAC	SE AFFEIED I	O FINS LISTE	D BELOW:		(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA mex	V _{BB}	VEE	Gnd
Power Supply Drain Current	1E	8	_	29	-	26	-	29	mAdc	-	4,7,10,13	-	-	5,6,11,12	8	1,16
Input Current	l _{in H}	4	_	165	-	95	_	95	μAdc	4	7,10,13	_	-	5,6,11,12	8	1,16
	ICBO	4	_	1.5	-	1.0	-	1.0	μAdc		7,10,13		_	5,6,11,12	8,4	1,16
Logic "1" Output Voltage	VOH	2	-1.080	-0.880	-0.930	-0.780	-0.825	-0.630	Vdc	7,10,13	4	_	_	5,6,11,12	8	1,16
Logic "0" Output Voltage	VOL	2	-1.920	-1.655	-1.850	-1.620	-1.820	-1.545	Vdc	4	7,10,13		_	5,6,11,12	8	1,16
Logic "1" Threshold Voltage	VOHA	2	-1.100	_	-0.950	-	-0.845	-	Vdc	_	7,10,13	_	4	5,6,11,12	8	1,16
Logic "0" Threshold Voltage	VOLA	2	_	-1.635	_	-1.600	-	-1.525	Vdc		7,10,13	4		5,6,11,12	8	1,16
Reference Voltage	V _{BB}	9	-1.440	-1.320	-1.350	-1.230	-1.240	-1.120	Vdc	-	-	_		5,6,11,12	8	1,16
Switching Times (100 ohm load)			Min	Max	Min	Max	Min	Max		Puls	e In	Puls	Out		-3.2 V	+2.0 V
Propagation Delay	14-2+	2	1.0	3.5	1.0	2.9	1.0	4.0	ns	4	1		2	5,6,11,12	8	1,16
	14+2-	2		3.5	1.0	2.9	1 1	4.0	1	l	[ĺ	I	1	1 1	1
Rise Time (20% to 80%)	t ₂₊	2		3.9	1.1	3.3	1 1	4.4	1 1	١.	L	l .	1	1 1	11	111
Fall Time (20% to 80%)	t2-	2	. ▼	3.9	1.1	3.3	1	4.4	₩	i '	7	l '	₹	▼	₹	▼

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

F SUFFIX CERAMIC PACKAGE CASE 650

@ Test			TEST VOLTAG	E VALUES		
Temperature	VIH max	VIL min	VIHA min	VILA max	V _{BB}	VEE
-55°C	-0.880	-1.920	-1.255	-1.510	From	-5.2
+25°C	-0.780	-1.850	-1.105	-1.475	Pin	-5.2
+125°C	-0.630	-1.820	-1.000	-1.400	13	-5.2

		_		_					+125-0	-0.630	-1.820	-1.000	-1.400		-5.2	1
		Pin			MC10	515F Test	Limits				EST VOLTA	SE ADDI 150 T	O PINS LISTE	D 851 0W		l
	ļ	Under	-59	5°C	+25	5°C	+12	25°C		'	EST VULTA	SE APPLIED I	U PINS LISTE	D BELOW:		(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	V _{BB}	VEE	Gnd
Power Supply Drain Current	1E	12		29	-	26	-	29	mAdc		1,8,11,14	_	-	9,10,15,16	12	4,5
Input Current	lin H	8	-	165	-	95	-	95	μAdc	8	1,11,14		-	9,10,15,16	12	4,5
	ІСВО	8	-	1.5	-	1.0	-	1.0	μAdc		1,11,14	_	-	9,10,15,16	8,12	4,5
Logic "1" Output Voltage	Voн	6	-1.080	-0.880	-0.930	-0.780	-0.825	-0.630	Vdc	1,11,14	8	_	-	9,10,15,16	12	4,5
Logic "6" Output Voltage	VOL	6	-1.920	-1.655	-1.850	-1.620	-1.820	-1.545	Vdc	8	1,11,14	_	-	9,10,15,16	12	4,5
Logic "1" Threshold Voltage	VOHA	6	-1.100	-	-0.950	-	-0.845	-	Vdc		1,11,14	_	8	9,10,15,16	12	4,5
Logic "0" Threshold Voltage	.VQLA	6		-1.635	-	-1.600	-	-1.525	Vdc	_	1,11,14	8	-	9,10,15,16	12	4,5
Reference Voltage	V _{BB}	13	-1.440	-1.320	-1.350	-1.230	-1.240	-1.120	Vdc		-	_	-	9,10,15,16	12	4,5
Switching Times (100 ohm load)			Min	Max	Min	Max	Min	Max		Puls	e In	Pulse	Out		-3.2 V	+2.0 V
Propagation Delay	t8-6+	6	-	÷ .	1.0	2.9	-	-	ns		В		В	9,10,15,16	12	4,5
	¹8-6-	- 6	-	-	1.0	2.9	-	-		ŀ	l		l	1	1 1 '	1 1
Rise Time (20% to 80%)	¹ 6+	6	-	-	1.1	3.3	-	-		ł .	L	_	l		1 1 1	Ιİ
Fall Time (20% to 80%)	t6-	6	-	-	1.1	3.3	-	-	▼	۱ ۱	7	! !	7	▼	▼	[▼

TRIPLE LINE RECEIVER MC10516

The MC10516 is a triple differential amplifier designed for use in sensing differential signals over long lines. The base bias supply (Vgg) is made available to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary.

Active current sources provide the MC10516 with excellent common mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to VBB to prevent upsetting the current source bias network.

Complementary outputs are provided to allow driving twisted pair lines, to enable cascading of several amplifiers in a chain, or simply to provide complement outputs of the input logic function.

> t_{pd} = 2.0 ns typ P_D = 85 mW typ/pkg (No Load)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

ſ		TE	ST VOLTAGE	VALUES		
			(Volts)			
@ Test						
Temperature	VIH max	VIL min	VIHA min	VILA max	V _{BB}	VEE
-55°C	0.000	4.000	4.055	1.510	From	-5.2
-55°C	-0.880	-1.920	-1.255	1.510	Fiom	-5.2
+25°C	-0.880	-1.920 -1.850	-1.255 -1.105	-1.510 -1.475	Pin	-5.2

										+125°C	-0.630	-1.820	-1.000	-1.400	11	-5.2	
		Pin			N	AC105161	. Test Lim	its				TEST VOLT	AGE APPLIED	TO BINE DE			
	}	Under	-5	5°C		+25°C		+12	5°C			TEST VOLTA	AGE AFFLIEL	TOPINS BE	LOW.		
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	V _{IH max}	VIL min	VIHA min	VILA max	V _{BB}	VEE	Gnd
Power Supply Drain Current	1E	8		24	-	14	21		24	mAdc	-	4,9,12		. –	5,10,13	8	1,16
Input Current	linH	4	-	165		٠ –	95	-	95	μAdc	4	9,12	-	_	5,10,13	8	1,16
	Ісво	4		1.5	-		1.0	-	1.0	'µAdc	-	9,12	_	_	5,10,13	8,4	1,16
High Output Voltage	VOH	2 3	-1.080 -1.080	-0.880 -0.880	-0.930 -0.930		-0.780 -0.780	-0.825 -0.825	-0.630 -0.630	Vdc Vdc	4 9,12	9,12 4	_	-	5,10,13 5,10,13	8	1,16 1,16
Low Output Voltage	VOL	2 3	-1.920 -1.920	-1.655 -1.655	- 1.850 - 1.850	-	-1.620 -1.620	-1.820 -1.820	-1.545 -1.545	Vdc Vdc	9,12 4	4 9,12		-	5,10,13 5,10,13	8	1,16 1,16
High Threshold Voltage	VOHA	2	-1.100 -1.100	-	-0.950 -0.950	-	-	-0.845 -0.845	-	Vdc Vdc	9,12	9,12	4 -	4	5,10,13 5,10,13	8 8	1,16 1,16
Low Threshold Voltage	VOLA	2 3		-1.635 -1.635	ľ l	-	-1.600 -1.600	-	-1.525 -1.525	Vdc Vdc	9,12	9,12	-4	4	5,10,13 5,10,13	8	1,16 1,16
Reference Voltage	V _{BB}	11	-1.440	-1.320	- 1.350	-	-1.230	-1.240	-1.120	Vdc		-		-	5,10,13	- 8	1,16
Switching Times (100-ohm load)	, ,		Min	· Max	Min	Тур	Max	Min	Max				Pulse in	Pulse Out		-3.2 V	+2.0 V
Propagation Delay	14+2+ 14-2- 14+3- 14-3+	2 2 3 3	1.0	3.5	1.0	2.0	2.9	1.0	4.0	ns	- - -	- - - -	4	2 2 3 3	5,10,13	8	,1,16
Rise Time (20% to 80%) Fall Time (20% to 80%)	t ₂₊ t ₃₊ t ₂₋ t ₃₋	2 ,3 2 3		3.9	1.1		3.3		4.4		- - -	-		2 3 2 3			

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

F SUFFIX
CERAMIC PACKAGE
CASE 650

ſ		TE	ST VOLTAGE	VALUES		
Ī			(Volts)			
@ Test						
Temperature	VIH max	VIL min	VIHA min	VILA max	V _{BB}	VEE
-55°C	-0.880	-1.920	-1.255	-1.510	From	-5.2
+25°C	-0.780	-1.850	-1.105	-1.475	Pin	-5.2
+125°C	-0.630	-1.820	-1.000	-1.400	15	-5.2

										+125°C	-0.630	-1.820	-1.000	-1.400	15	-5.2	
						1C10516	F Test Lim	its						TO 01110 05			
		Pin Under	-5	5°C		+25°C		+12	5°C			TEST VOLTA	AGE APPLIED	I O PINS BE	LOW:		(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	V _{BB}	VEE	Gnd
Power Supply Drain Current	1E	12		24	-	17	21		24	mAdc		8,13,16	_	-	1,9,14	12	4,5
Input Current	linH	8		165			95	-	95	μAdc	8	13,16	-	-	1,9,14	12	4,5
	ІСВО	8		1.5	_	-	1.0		1.0	μAdc	-	13,16	-		1,9,14	8,12	4,5
High Output Voltage	VOH	6 7	-1.080 -1.080	-0.880 -0.880	-0.930 -0.930		-0.780 -0.780	-0.825 -0.825	-0.630 -0.630	Vdc Vdc	8 13,16	13,16 8	=	-	1,9,14 1,9,14	12 12	4,5 4,5
Low Output Voltage	VOL	6 7	-1.920 -1.920	-1.655 -1.655	-1.850 -1.850		-1.620 -1.620	-1.820 -1.820	-1.545 -1.545	Vdc Vdc	13,16 9	8 13,16	-	-	1,9,14 1,9,14	12 12	4,5 4,5
High Threshold Voltage	Vона	6 7	-1.100 -1.100	-	-0.950 -0.950	-		-0.845 -0.845		Vdc Vdc	13,16	13,16	8 -	- 8	1,9,14 1,9,14	12 12	4,5 4,5
Low Threshold Voltage	VOLA	6 7	-	-1.635 -1.635			-1.600 -1.600		-1.525 -1.525	Vdc Vdc	13,16	13,16	 8	8 -	1,9,14 1,9,14	12 12	4,5 4,5
Reference Voltage	∨ _{BB}	15	-1.440	-1.320	- 1.350		-1.230	-1.240	-1.120	Vdc	-	-			1,9,14	12	4,5
Switching Times (100-ohm load)			Min	Max	Min	Тур	Max	Min	Max				Pulse In	Pulse Out		-3.2 V	+2.0 V
Propagation Delay	¹ 8+6+ ¹ 8-6- ¹ 8+7- ¹ 8-7+	6 6 7 7	-	-	1.0	2.0	2.9	- - -	- - -	ns			8	6 6 7 7	1,9,14	12	4,5
Rise Time (20% to 80%)	t6+ t7+	6 7	-	-	1.1		3.3	-	-			_		6 7			
Fall Time (20% to 80%)	t6- t7-	6 7	-	-				_	-		-	-		6 7			

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging and maximum ratings.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

		TEST V	OLTAGE VA	LUES	
			(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-55°C	-0.830	-1.920	-1.255	-1.510	-5.2
+25°C	-0.720	-1.850	-1.105	-1.475	-5.2
+125°C	-0.580	-1.820	-1.000	-1 400	-5.2

									+	125°C	-0.580	-1.820	-1.000	-1.400	-52	
		Pin					17L Test				TEST VO	DLTAGE API	PLIED TO PIN	IS LISTED BEL	.ow:	
		Under	-55			+25°C			5°C			V	V	V	VEE	(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	V _{IH max}	VIL min	VIHA min	VILA max		Gnd
Power Supply Drain Current	1E	8	-	29	-	20	26	-	29	mAdc	-	-	-		8	1,16
Input Current	lin H	4	-	450	-	-	265		265	μAdc	4			· ·	8	1,16
		9	_	630	-	-	370	-	370	μAdc	9		· ·		8	1,16
	lin L	4	-	- '	0.5	-	-	-	-	μAdc	-	4	-	-	8	1,16
		9	_	_	0.5	-	1	-	-	μAdc	-	9			8	1,16
Logic "1" Output Voltage	Voн	2	-1.080	-0.830	-0.930	-	-0.720	-0.825	-0.580	Vdc	4,9	-	-]	8	1,16
		3	-1.080	-0.830	-0.930	-	-0.720	-0.825	-0.580	V dc		4,9			8	1,16
Logic "0" Output Voltage	VOL	2	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	-	4,9		-	8	1,16
		3	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	4,9	-			8	1 16
Logic "1" Threshold Voltage	VOHA	2	-1.100	_	-0.950	-	-	-0.845	-	Vdc	-	-	4,9	-	8	1,16
		3	-1.100	-	-0.950	-	-	-0.845	-	Vdc	L -			4,9	8	1,16
Logic "O" Threshold Voltage	VOLA	2	-	-1.635	_	-	-1.600	_	-1.525	Vdc	-		<u> </u>	4,9	8	1,16
		3	-	-1.635			-1.600	-	-1.525	Vdc	-	-	4,9	-	8	1,16
Switching Times (100-ohm load)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t4+2+	2	1.1	3.5	1.4	2.3	3.4	1.2	3.5	ns	9	-	4	2	8	1,16
	t4-2-	2	l· 1	1 1			1			1 1	1 1	-	1	2	1 1	1
	t4+3-	3	1 1	1	1	1	1	1		1 1	1	-	1 1	3		
	t4-3+	3	 ▼	₩	▼			 ▼	▼	1 1		**	1 1	3	l i	1
Rise Time	t ₂₊	2	1.0	4.1	1.1	2.2	4.0	0.9	4.1			-		2		
(20 to 80%)	t3÷	3	1 1								i i	-		3		
Fall Time	t2-	2	\		1	1 1	1	↓		ł l	1 1	-	1 1	2	1	1 1
(20 to 80%)	t3_	3	▼	. ▼	₹	▼	₹ 7	- ▼	₹	, ▼	, •	-	▼	3	▼	▼

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

F SUFFIX CERAMIC PACKAGE CASE 650

		TEST V	OLTAGE VA	LUES	
			(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-55°C	-0.830	-1.920	-1.255	-1.510	-5.2
+25°C	-0.720	-1.850	-1.105	-1.475	-5.2
+125°C	-0.580	-1.820	-1.000	-1.400	-5.2

									*	125°C	-0.580	-1.820	~1.000	-1.400	-5.Z	1
		Pin		MC10517F Test Limits								N TAGE API	PLIED TO PIN	IS LISTED BEL	OW-	
		Under	-55	° C		+25°C		+12	5°C	}		JETAGE AT				(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	1E	12	-	29	-	20	26	-	29	mAdc	-			-	12	4,5
Input Current	lin H	8		450	-	-	265	-	265	μAdc	8	-	-	_	12	4,5
		. 13		630			370		370	μAdc	13				12	4,5
	lin L	8 13	_	_	0.5 0.5	_	_	-	_	μAdc μAdc		8 13	_		12 12	4,5 4,5
Logic "1" Output Voltage	Voн	6 7	-1.080 -1.080	-0.830 -0.830	-0.930 -0.930	_	-0.720 -0.720	-0.825 -0.825	-0.580 -0.580	Vdc Vdc	8,13 -	- 8,13		-	12 12	4,5 4,5
Logic "0" Output Voltage	VOL	6 7	-1.920 -1.920	-1.655 -1.655	-1.850 -1.850	-	-1.620 -1.620	-1.820 -1.820	-1.545 -1.545	Vdc Vdc	- 8,13	8,13	1 1	-	12 12	4,5 4,5
Logic "1" Threshold Voltage	VOHA	6 7	-1.100 -1.100		-0.950 -0.950	_	-	-0.845 -0:845	_	Vdc Vdc		-	8,13	- 8,13	12 12	4,5 4,5
Logic "0" Threshold Voltage	VOLA	6 7	-	-1.635 -1.635	-	-	-1.600 -1.600	=	-1.525 -1.525	Vdc Vdc	-	-	- 8,13	8,13	12 12	4,5 4,5
Switching Times (100-ohm load)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t4+2+	6	_	-	1.4	2.3	3.4	-	-	ns	13		8	6		
	14-2-	6	_	_				-	-	1	1	-		6	1	1
	t4+3- t4-3+	7	_	_	♦	♦		-	_	1 1				, ,		1 1
Rise Time (20 to 80%)	t ₂₊ t ₃₊	6 7	-	_	1.1	2.2 I	4.0	_ ·	-			_		6 7		
Fall Time (20 to 80%)	t2_ t3_	6 7	-		↓		•	-	-	\		-		6 7		

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging and maximum ratings.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

		TEST	OLTAGE VAL	UES	
			(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2

										1120 0	-0.030	-1.020	-1.000	-1.400	-5.2	
		Pin		MC10518L Test Limits 55°C +25°C +125°C							TEST V	OLTAGE AP	PLIED TO PIN	S LISTED BELO	ow:	
	l	Under				+25°C						V	VIHA min	VILA max	VEE	(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	AFE	Gnd
Power Supply Drain Current	ŀΕ	8	! -	29	-	20	26	-	29	mAdc	_		-	-	8	1,16
Input Current	lin H	6		450	_	-	265	_	265	μAdc	6	_	-	-	8	1,16
		7	-	450	-	-	265	-	265		7	- '	-		⊥	1
		9	-	630		-	370		370		9		-		₩	
	lin L	6	0.5	-	0.5	-	-	0.3	-	μAdc	-	6	-	-	8	1,16
	!	7	↓	-		-	-	1	-	1	-	7	-	-	↓	1 1
		9			V	-		V	-			9	_		▼	
Logic "1" Output Voltage	Voн	2	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	3,9	-	-	-	8	1,16
Logic "0" Output Voltage	VOL	2	-1.920	-1.655	-1.850	_	-1.620	-1.820	-1.545	Vdc	_	3,9	-	-	8	1,16
Logic "1" Threshold Voltage	VOHA	2	-1.100	_	-0.950	-	-	-0.845	-	Vdc	9	-	3	-	8	1,16
Logic "0" Threshold Voltage	VOLA	2	-	-1.635	-	_	-1.600	-	-1.525	Vdc	_	9	_	3	8	1,16
Switching Times (100-ohm load)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t6+2+	2	1.1	3.5	1.4	2.3	3.4	1.2	3.9	ns	3	-	6	2	8	1,16
	^t 6 - 2-	1	1.1	3.5	1.4	2.3	3.4	1.2	3.9	- 1	1 1	-	1 1	1 1	1 1	1
Rise Time (20 to 80%)	t ₂₊	•	1.3	4.1	1.5	2.5	4.0	1.2	4.0		1 1	-	1 1			
Fall Time (20 to 80%)	t ₂₋	. ♦	1.3	4.1	1.5	2.5	4.0	1.2	4.0		▼	l –	\	\ \		\ \

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

F SUFFIX CERAMIC PACKAGE CASE 650

		TEST	VOLTAGE VAL	UES	
			(Volts)		
@ Test Temperature	V _{IH max}	VIL min	VIHA min	VILA max	VEE
-55°C	-0.830	-1.920	-1.255	-1.510	-5.2
+25°C	-0.720	-1.850	-1.105	-1.475	-5.2
+125°C	-0.580	-1.820	-1.000	-1.400	-5.2

										· 125 C	-0.560	-1.020	-1.000	-1,400	-5.2	
	1	Pin			MC		Test Limi				TEST V	OLTAGE AP	PLIED TO PIN	S LISTED BELO	ow:	
		Under	-55	°C		+25°C		+12	5°C							(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	12	_	29	-	20	26	_	29	mAdc	-	-	-		12	4,5
Input Current	lin H	10	-	450	-	-	265		265	μAdc	10	-	_	_	12	4,5
'	1	11	1 -	450	-	-	265	-	265	1	11	-	-	-	1	1
		13	_	630		-	370		370		13					
	1in L	10	0.5	- :	0.5	-	-	0.3	-	μAdc	-	10	-	-	12	4,5
		11	1	-		-	-	1	- 1	1	-	11	-	-	↓	
		13	V								-	13	-			
Logic "1" Output Voltage	VOH	6	-1.080	-0.830	-0.930		-0.720	-0.825	-0.580	Vdc	7,13			-	12	4,5
Logic "0" Output Voltage	VOL	6	-1.920	-1.655	-1.850	_	-1.620	-1.820	-1.545	Vdc	_	7,13	_		12	4,5
Logic "1" Threshold Voltage	VOHA	6	-1.100	-	-0.950	-	-	-0.845	-	Vdc	13	-	7	_	12≠	4,5
Logic "0" Threshold Voltage	VOLA	6	-	-1.635	-	-	-1.600	-	-1.525	Vdc	_	13		7	12	4,5
Switching Times (100-ohm load)											+1.11 V		Pulse in	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	¹ 10+6+	6	-	-	1.4	2.3	3.4	-	- 1	ns	7	-	10	6	12	4,5
· ·	t10-6-	- 1	-		1.4	2.3	3.4	-	-		l i	-	1 1		1	
Rise Time (20 to 80%)	t6+		-	-	1.5	2.5	4.0	-	- 1		1 1	-	1 -1			l I.
Fall Time (20 to 80%)	t6-	\ \	-	-	1.5	2.5	4.0	-	_	▼	▼	-	▼	▼		

The MC10519 is a 4-Wide 4-3-3-3 Input OR-AND gate with one input for two gates common to pin 10 (14). Input pulldown resistors eliminate the need to tie unused inputs to an external supply.

 $P_D = 100$ mW typ/pkg (No Load) $t_{pd} = 2.3$ ns typ Output Rise and Fall Time:

Output Rise and Fall Time: = 3.5 ns typ (10% - 90%) = 2.5 ns typ (20% - 80%)

 Case
 V_{CC1}
 V_{CC2}
 V_{EE}

 620
 Pin 1
 Pin 16
 Pin 8

 650
 Pin 5
 Pin 4
 Pin 12

Numbers at end of terminals are pin numbers for L package (Case 620). Numbers in parenthesis denotes pin numbers for F package (Case 650).

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

See General Information section for packaging and maximum ratings.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

		TEST V	VOLTAGE VAL	UES	
			(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2

		Pin		MC10519L Test Limits -55°C +25°C +125°C							TEST V	OI TAGE AP	PLIED TO PIN	S LISTED BELO	w.	
		Under	-59	5°C		+25°C		+12	5°C			OLINGE A		S ENGTED DEED		(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8	_	29		20	26		29	mAdc		-	-		8	1,16
Input Current	In H	7	-	450			265	-	265	μAdc	7	-	-	_	8	1,16
		9 10	-	450 630	_	-	265 370	-	265 370	+	9 10	-	-	-	♦	₩
	lin L	7 9	0.5	-	0.5		-	0.3	-	μAdc		7		140	8	1,16
		10	\ \	-	•	-		\ \ \		†		9 10	-	-	•	♦
Logic "1" Output Voltage	Voн	2	-1.080	-0.880	-0.930		-0.780	-0.825	-0.630	Vdc	3,10,15	-	-	-	8	1,16
Logic "0" Output Voltage	VOL	2	-1.920	-1.655	-1.850		-1.620	-1.820	-1.545	Vdc	-	3,10,15	-	-	8	1,16
Logic "1" Threshold Voltage	V _{OHA}	2	-1.100	-	-0.950	-	-	-0.845	-	Vdc	10,15	-	3	-	8	1,16
Logic "O" Threshold Voltage	VOLÀ	2	-	-1.635	-	-	-1.600	-	-1.525	Vdc	"	10,15		3	8	1,16
Switching Times (100-ohm load)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t4+2+	2	1.1	3.5	1.4	2.3	3.4	1.2	3.5	ns	10,13		4	2	8	1,16
	t4-2-	1	1.1	3.5	1.4	2.3	3.4	1.2	3.5		10,13				1	1
Rise Time (20 to 80%)	t+		1.3	4.1	1.5	2.5	4.0	1.2	4.3		. –	Į.		1 1 .	1 1	1 1
Fall Time (20 to 80%)	t-	▼	1.3	4.1	1.5	2.5	4.0	1.2	4.3	\ \	-		▼	₹ 7	} ▼	•

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

F SUFFIX CERAMIC PACKAGE CASE 650

1		TEST	VOLTAGE VAL	.UES	
			(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2

		Pin		MC10519F Test Limits -55°C +25°C +125°C							TEST V	OLTAGE AP	PLIED TO PINS	LISTED BELO	ow:	
		Under	-59	5°C		+25°C		+12	5°C							(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	1E	12	-	29	_	20	26	-	29	mAdc	-		-	-	8	1,16
Input Current	lin H	11	_	450	_	-	265	-	265	μAdc	11	-	_	-	8	1,16
·		13	-	450	_	-	265	-	265	1	13	-	-	-	1	
		14	_	630	-		370		370		14	-				
	lin L	11	0.5	-	0.5	-	-	0.3	-	μAdc	-	11	_	-	8	1,16
		13	1	-	•	-	-	♦	-	1	-	13	-	-		
		14						V				14		-	٧	
Logic "1" Output Voltage	Voн	6	-1.080	-0.880	-0.930	_	-0.780 ⁻	-0.825	-0.630	Vdc	3,7,14	-	-	-	8	1,16
Logic "0" Output Voltage	VOL	6	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	-	3,7,14	-	-	8	1,16
Logic "1" Threshold Voltage	VOHA	6	-1.100	-	-0.950	_	-	-0.845	-	Vdc	3,14	-	7	<u> </u>	8	1,16
Logic "0" Threshold Voltage	VOLA	6	_	-1.635	-	_	-1.600	-	-1.525	Vdc	-	3,14	-	7	8	1,16
Switching Times (100-ohm load)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t7+6+	6	-	-	1.4	2.3	3.4	-	-	ns	1,14	-	7	6	12	4,5
	t7-6-	l ı	-	- 1	1.4	2.3	3.4	-	-	1	1,14	-	1	1	1 1	l i
Rise Time (20 to 80%)	t ₆₊	! !	- 1	_	1.5	2.5	4.0	-	_			-				
Fall Time (20 to 80%)	t6-		l –	-	1.5	2.5	4.0	-	-	•	-		♥	•	♥	V

MECL 10,000 series

MC10521

The MC10521 is a basic logic building block providing the simultaneous OR-AND/OR-AND-PD = 100 mW typ/pkg (No Load) t_{pd} = 2.3 ns typ Output Rise and Fall Times: INVERT function, useful in data control and digital multiplexing applications. = 3.5 ns (10% to 90%) = 2.5 ns (20% to 80%) POSITIVE LOGIC **NEGATIVE LOGIC** (8) 4 (9) 5 (10) 6 (11)7 (13)9 2(7) 3(6) (14)10 (14)10 (15)11 (16)12 (16)12 (1)13 (2)14 (3)15 Logic equation using pin numbers for L package Logic equation using pin numbers for L package $2 = (4 \cdot 5 \cdot 6) + (7 \cdot 9 \cdot 10) + (10 \cdot 11 \cdot 12) + (13 \cdot 14 \cdot 15)$ $2 = (4 + 5 + 6) \bullet (7 + 9 + 10) \bullet (10 + 11 + 12) \bullet (13 + 14 + 15)$ $3 = \overline{(4+5+6)} \bullet (7+9+10) \bullet (10+11+12) \bullet (13+14+15)$ $3 = (4 \bullet 5 \bullet 6) + (7 \bullet 9 \bullet 10) + (10 \bullet 11 \bullet 12) + (13 \bullet 14 \bullet 15)$

Numbers at end of terminals are pin numbers for L package (Case 620). Numbers in parenthesis denotes pin numbers for F package (Case 650).

Case	V _{CC1}	V _{CC2}	VEE
620	Pin 1	Pin 16	Pin 8
650	Pin 5	Pin 4	Pin 12

See General Information section for packaging and maximum ratings.

L SUFFIX CERAMIC PACKAGE CASE 620

@ Test Temperature -55^OC +25^OC

1		TEST	OLTAGE VA	LUES	
			(Volts)		
	VIH max	VIL min	VIHA min	VILA max	VEE
1	-0.830	-1.920	-1.255	-1.510	-5.2
1	-0.720	-1.850	-1.105	-1.475	-5.2
- 1	-0.580	-1.820	-1.000	-1.400	-5.2

									+	125°C	-0.580	-1.820	-1.000	-1.400	-5.2	1
		Pin					521L Test				TEST V	OLTAGE API	PLIED TO PIN	S LISTED BEL	ow.	ł
		Under	-55			+25°C		+12								(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	lE .	8		29		20	26	-	29	mAdc	_	-	-	-	8	1,16
Input Current	lin H	7	-	450	-	-	265	-	265	μAdc	7			-	8	1,16
	1	9	-	450	-	_	265 370	-	265		9	-	-	-		1
		10		630			370		370	<u>'</u>	10					<u> </u>
	lin L	′	0.5	_	0.5	-	_	0.3	_	μAdc	_	7 9	_	-	8	1,16
	1	10		-		_	_	\ \ \	_	\ \		10	_	_	*	+
Logic "1"	VOH	3	-1.080	-0.830	-0.930	-	-0.720	-0.825	-0.580	Vdc	10,13	4	_	-	8	1,16
Output Voltage		2	-1.080	-0.830	-0.930	-	-0.720	-0.825	-0.580	Vdc	4,10,13	-		-	8	1,16
Logic "0"	VOL	3	-1.920	-1.655	-1.850		-1.620	-1.820	-1.545	Vdc	4,10,13	-	-	-	8	1,16
Output Voltage		2	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	10,13	4			8	1,16
Logic "1"	VOHA	3	-1.100	-	-0.950	-	-	-0.845	-	Vdc	10,13	-	-	4	8	1,16
Threshold Voltage		2	-1.100		-0.950			-0.845	-	Vdc	10,13		4		8	1.16
Logic "O"	VOLA	3	-	-1.635	-	- '	-1.600	-	-1.525	Vdc	10,13	-	4	-	8	1,16
Threshold Voltage		2	-	-1.635			-1.600	-	-1.525	Vdc	10,13			4	8	1,16
Switching Times (100-ohm load)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t4+3-	3	1.2	3.6	1.4	2.3	3.4	1.1	3.5	ns	10,13	1 -	4	3	8	1,16
	14-3+	3	1 1 '	1	ΙΙ.			1 1	!!	1	l 1	-	l t	3	1	1 1
	t4+2+	2		.	₩	₩		\	١ 🛦	1 1	1 1	-	\ \	2	\ \	1
_	t4-2-	.2						٧			1 1	-		2		
Rise Time	t3+	3 2	1.0	4.5	1.1	2.5	4.0	0.9	4.4	1		-]	3		
(20 to 80%)	t2+							l i			1 1	-	1 1	2	1 1.	1
Fall Time (20 to 80%)	13- 12-	3 2		♦	•	♦	♦	♦	\	\	\	-	•	3 2	₩	} ♦

F SUFFIX CERAMIC PACKAGE CASE 650

		TEST \	OLTAGE VA	LUES	
			(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-55°C	-0.830	-1.920	-1.255	-1.510	-5.2
+25°C	-0.720	-1.850	-1.105	-1.475	-5.2
+125°C	-0.580	-1.820	-1.000	-1.400	-5.2

										125°C	-0.580	-1.820	-1.000	-1.400	-5.2	
		Pin					521F Test				TEST V	OLTAGE AP	PLIED TO PIN	IS LISTED BEL	OW:	
		Under	-56	°C		+25°C			5°C]						(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	¹E	12	-	29	-	20	26	_	29	mAdc		-			12	4,5
Input Current	lin H	11	_	450	-	-	265	-	265	μAdc	11		-	_	12	4,5
	l	13	-	450	-	-	265	-	265	1	13	-	-	-	1	1
		14		630		-	370		370		14	-				
	lin L	11	0.5	-	0.5	-	-	0.3	-	μAdc	-	11	-	-	12	4,5
	,	13		-		-	-	} ↓	-	1	-	13	-	-	↓ .	1
		14		-								14				
Logic "1"	∨он	7	-1.080	-0.830	-0.930	-	-0.720	-0.825	-0.580	Vdc	1,14	8	-	i –	12	4,5
Output Voltage		6	-1.080	-0.830	-0.930	-	-0.720	-0.825	-0.580	Vdc	1,8,14	-	_		12	4,5
Logic "0"	VOL	7	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	1,8,14	-	-	-	12	4,5
Output Voltage		6	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	1,14	8	-		12	4,5
Logic "1"	VOHA	7	-1.100	-	-0.950	-	-	-0.845	-	Vdc	1,14	_	-	8	12	4,5
Threshold Voltage		6	-1.100	-	-0.950	-	-	-0.845	-	Vdc	1,14	-	8		12	4,5
Logic "0"	VOLA	7	-	-1.635	-	-	-1.600	-	-1.525	Vdc	1,14		8	_	12	4,5
Threshold Voltage		6	-	-1.635	-	-	-1.600	-	-1.525	Vdc	1,14	-	-	8	12	4,5
Switching Times																
(100-ohm load)							ł				+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t8+7-	7	-	-	1.4	2.3	3.4	-	-	ns	1,14	-	8	7	12	4,5
	t8-7+	7	-	-		1		-	-	1	1	-	1 1	7	1 1	1
	t8+6+	6		_	↓	1	↓	-	-	1		-	1 1	6		
	^t 8-6-	6	-	-		, ,	•	-	-	1		-		6		
Rise Time	t7+	7	-	-	1.1	2.5	4.0	-	-			-		7		
(20 to 80%)	t6+	6	- 1	-	1			-	-			-		6		
Fall Time	t7_	7	-	_			1 1	-	-	1 1	1 1	-	1 1	7	1 1	1 1
(20 to 80%)	t6-	6	- 1	-	▼	▼	▼	-	i -	▼] ▼		▼	6	▼	▼

Advance Information

The MC10524 is a quad translator for interfacing data and control signals between a saturated logic section and the MECL section of digital systems. The MC10524 has MTTL compatible inputs, and MECL complementary open-emitter outputs that allow use as an inverting/non-inverting translator or as a differential line driver. When the common strobe input is at the low logic level, it forces all true outputs to a MECL low logic state and all inverting outputs to a MECL high logic state.

Power supply requirements are ground, +5.0 Volts, and -5.2 Volts. Propagation delay of the MC10524 is typically 3.5 ns. The dc levels are standard or Schottky TTL in, MECL 10,000 out.

An advantage of this device is that MTTL level information can be transmitted differentially, via balanced twisted pair lines, to the MECL equipment, where the signal can be received by the MC10515 or MC10516 differential line receivers. The MC10524 is useful in computers, instrumentation, peripheral controllers, test equipment, and digital communications systems.

P_D = 380 mW typ/pkg (No Load) t_{pd} = 3.5 ns typ (+1.5 Vdc in to 50% out) Output Rise, Fall Times; 2.5 ns typ (20% to 80%)

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

This is advance information and specifications are subject to change without notice. See General Information section for packaging.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs or outputs are tested in the same manner.

-6.2

-10 -20

TEST VOLTAGE/CURRENT VALUES

+0.40 +2.40 +5.00

										+25°C	+1.80	+1.10	+4.0	+0.40	+2.40	+5.00	-5.2	-10	-20	+1.0	1
									+	125°C	+1.80	+0.80	+4.0	+0.40	+2.40	+5.00	-6.2	-10	-20	+1.0	}
	1	Pin			MC	10524L Te	et Limits														ì '
		Under	-6	6°C		+26°C		+12	5°C		l	TEST	VOLTAGEA	CURRENT A	WTLIED	TO PINS LE	TED BEL	OW:]
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Mex	Unit	VIH min	VIL max	VRH	٧¢	VR	Vα	VEE	111	112	in.	Gnd
Negative Power Supply Drain Current	1E	8	-	-	-	-	-66	-	-	mAdc	-	-	-	-	-	9	8	-	-	-	16
Positive Power Supply Drain Current	¹ ССН	9	-	-	-	-	16	-	-	mAdc	-	-	5,6,7,10,11	-	-	9	8	-	-	-	16
	ICCL	9	T -	-	-	-	25	-	-	mAdc	-	-			T -	-	8	- -		I -	5,6,7,10,11,16
Reverse Current	1R	6 7	-		-	-	200 50	-	-	μAdc μAdc	-	-	=	5,7,10,11 6	6 7	9	8	-	=	<u> </u>	16 16
Forward Current	lŧ	6 7	-	-	-	-	-12.8 -3.2	-	-	mAdc mAdc	-	-	-	6 7	5,7,10,11 6	9	8	=	=	=	16 16
Input Breekdown Voltage	BVin	6 7	5.5 6.5	=	5.5 5.5	-	-	5.5 5.5	-	Vdc Vdc	-	-	-	6	-	9	8	-	=	6 7	16 16
Clamp Input Voltage	V _I	6 7	=	-	-	-	-1.5 -1.5	-	-	Vdc Vdc	-	-	-	=	-	9	. 8 8	ī	6	=	16 16
High Output Voltage	VOH	1 3	-1.080 -1.080	-0.880 -0.880	-0.930 -0.930	=	-0.780 -0.780	-0.825 -0.825	-0.630 -0.630	Vdc Vdc	-	-	-	- 6	6,7	9	8	-	=	=	16 16
Low Output Voltage	VOL	1 3	-1.920 -1.920	-1.656 -1.656	-1.850 -1.850	-	-1.620 -1.620	-1.820 -1.820	-1.545 -1.546	Vdc Vdc	-	-	-	7	6 6,7	9	8	-	Ξ	=	16 16
High Threshold Voltage	VOHA	1 3	-1.000 -1.000	=	-0.950 -0.950	-	-	-0.845 -0.845	_	Vdc Vdc	7 -	-,	=	-	6	9	8	-	=	=	16 16
Low Threshold Voltage	VOLA	1 3	-	-1.635 -1.635	-	-	-1.600 -1.600	-	-1.525 -1.525	Vdc Vdc	7	7 -	-	-	8	9	8	-	=	=	16 16
Switching Time (60-12 load)											+6.0 Vdc	Pulse in	Pulse Out			+7.0 Vdc	3.2 Vdc				+2.0 Vds
Propagation Balay	110+5+	1	-	-	1.0	3.5	6.0	-	-	ns	7	6	6	1 -	-	9	8] -	-	l -	16
(+3.5 Vdc to 50%)①	110-5-	1 1	-	-	l I	1 1	1 1	-	-	1 1	7	6	1 1	-	-	1 1	1 1	-	-	l -	1 1
	111+6+	۱ ا	-	-	1 1		l I	- 1	-		6	! ?	1 1	-	-	1 1	1 1	-	-	-	1 1
	111-6- 111+7-	3		_	1 1	1 1	1 1	_	1 :		1 1	1 1			1 -	1 [1 1	_	1 =	-	1 1
	111-7+	3	=] -	•	+	*	=] =		-		,	-	=			-	=] =	
trise Time (20% to 80%)	15+	١,	-	-	1.1	2.5	3.9	-	-				5	-	-			-	-	-	
Fall Time (80% to 20%)	16_	١,	_	-	1.1	2.5	3.9	-	-	[♦	[♦	[♦	6	-	-	♦	[♦	-	-	-	[

● Test Temperature -55°C

+2.00

+1.10

+4.0

¹ See switching time test circuit. Propagation delay for this circuit is specified from +1.5 Vdc in to the 50% point on the output waveform. The +3.5 Vdc is shown here because all logic and supply levels are shifted 2 volts positive

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs or outputs are tested in the same manner.

mΑ

TEST VOLTAGE/CURRENT VALUES

										- 55°C	+2.00	+1.10	+4.0	+0 40	+2 40	+5 00	-5.2	-10	-12	+1.0	1
										+25°C	+1.80	+1.40	+4.0	+0.40	+2.40	+5.00	-5.2	-10	-12	+1.0	1
										125°C	+1.80	+0.80	+4.0	+0.40	+2.40	+5 00	-5.2	-10	-12	+1.0	1
		Pin			MC	10624F Te	st Limits														1
		Under	-5	5°C		+25°C		+12	5°C			1 E S I	VOLTAGE/	CURRENT	APPLIED	TO PINS LIS	STED BEL	OW:			
Characteristic	Symbol	Test	Min	Max	Min	Typ	Max	Min	Max	Unit	VIH min	VIL max	VRH	٧¢	VR	Vcc	VEE	111	112	lin	Gnd
Negative Power Supply Drain Current	1E	12	-	_	-	_	-66		-	mAdc	-	~	-		-	13	12	-	-	-	4
Positive Power Supply Drain Current	Іссн	13	-	,-	-	-	16	-	-	mAdc	-	-	9,10,11,14,15	-	-	13	12	-		-	4
	1CCL	13	-	-	_		25	-	<u> </u>	mAdc	-	· ·		-	_	- :	12	-		-	4,9,10,11,14,1
Reverse Current	IR.	10 11		_	_	-	200 50	_	-	μAdc μAdc	=	1 -	= 1	9,11,14,15 10	10 11	13 13	12 12	-		-	4
Forward Current	1F	10 11		=	-	=	-12.8 -3.2	=	=	mAdc mAdc	-	-	-	10 11	9,11,14,15 10	13 13	12 12	-	_	-	1
Input Breakdown Voltage	BV _{in}	10 11	5.5 5.5	=	5.5 5.5	=	=	5.5 5.5	-	Vdc Vdc	=	-	=	10	=	13 13	12 12	=	=	10 11	:
Clamp Input Voltage	V ₁	10	=.	=	=	=	-1.5 -1.5	=	Ξ	Vdc Vdc	. =	=	=	=	Ξ	13 13	12	11	10	=	1
High Output Voltage	VOH	5 8	-1.080 -1.080	-0.880 -0.880	-0.930 -0.930	-	-0.780 -0.780	-0.825 -0.825	-0.630 -0.630	Vdc Vdc	-	=	-	- 10	10,11	13	12	=		=	1
Low Output Voltage	VOL	5 8	-1.920 -1.920	-1.655 -1.655	-1 850 -1 850	=	-1.620 -1.620	-1.820 -1.820	-1.545 -1.545	Vdc Vdc	-	=	=	11	10 10,11	13 13	12	-		=	:
High Threshold Voltage	VOHA	5	-1.000 -1.000	= -	-0.950 -0.950	-	-	-0.845 -0.845	=	Vdc Vdc	11	11	=	-	10 10	13 13	12	=	=	-	:
Low Threshold Voltage	VOLA	5	. =	-1.635 -1.635	-	-	-1.600 -1.600		-1.525 -1.525	Vdc Vdc	11	11	=	· I.	10	13 13	12 12	=		-	1
Switching Time (50-12 load)		1		1							+6.0 Vdc	Pulse In	Pulse Out		1	+7.0 Vdc	-3.2 Vdc				+2.0 Vdc
Propagation Delay (+35 Vdc to 50%)①	110+5+ 110-5- 111+5+ 111-5- 111+7-	5 7	-	- -	10	3.5	6.0	= -	-	ns	11 11 10	10 10 11	5	1.1	-	13	12	-		-	1
Rise Time (20% to 80%)	¹ 11-7+	5	-	-	11	2 5	3.9	-	-				5	-				-	-	-	
Fall Time (80% to 20%)	. ts	5		_	1.1	25	3.9	l –	-		♦		5	-	-	\ ♦	. ♦	_	l -	<u> </u>	♦

@ Test

① . See switching time test circuit. Progestion delay for this circuit is specified from +1.5 Vdc in to the 50% point on the output waveform. The +3.5 Vdc is shown here because all logic and supply levels are shifted 2 volts positive.

Advance Information

The MC10525 is a quad translator for interfacing data and control signals between the MECL section and saturated logic sections of digital systems. The MC10525 incorporates differential inputs and Schottky TTL "totem pole" outputs. Differential inputs allow for use as an inverting/non-inverting translator or as a differential line receiver. The Vgg reference voltage is available for use in single-ended input biasing. The outputs of the MC10525 go to a low logic level whenever the inputs are left floating.

Power supply requirements are ground, ± 5.0 Volts and ± 5.2 Volts. Propagation delay of the MC10525 is typically 4.5 ns. The MC10525 has fanout of 6 MTTL loads. The dc levels are MECL 10,000 in and Schottky TTL, or MTTL out. This device has an input common mode noise rejection of ± 1.0 Volt.

An advantage of this device is that MECL level information can be received, via balanced twisted pair lines, in the MTTL equipment. This isolates the MECL logic from the noisy MTTL environment. This device is useful in computers, instrumentation, peripheral controllers, test equipment and digital communications systems.

P_D = 380 mW typ/pkg (No Load)

t_{pd} = 4.5 ns typ (50% to +1.5 Vdc out)

Output Rise, Fall Times;

2.5 ns typ (20% to 80%)

V_{CCmax} = +7.00 Vdc

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

This is advance information and specifications are subject to change without notice.

See General Information section for packaging.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Test procedures are shown for only one input, or for one set of input conditions. Other inputs or outputs are tested in the same manner.

-0.880

L SUFFIX CERAMIC PACKAGE CASE 620

VIHAmin VILAMIN VIHH VILH VIHL

-1.920 -1.255 -1.510 +0.170 -0.920 -1.830 -2.920

TEST VOLTAGE VALUES

										+25°C	-0.780	-1.850	-1.106	-1.475	+0.280	-0.850	-1.720	-2.850	Pin	+5.0	-5.2		
										+125°C	-0.630	-1.820	-1.000	-1.400	+0.420	-0.820	-1.580	-2.820	1	+5.0	-5.2		1
		Pin	1		MC1	0625L To	et Limits						TEST	OLTAGE A	ADD1 15	O TO B	NC I IC	TEN BE	1 OW:				1
		Under	-66	°C		+25°C		+1:	25°C				1531 4	OL TAGE A		1	113 613	10000	LUW.				Output
Characteristic	Symbol	Test	Min	Mex	Min	Тур	Max	Min	Max	Unit	V _{IH max}	VIL min	VIHAmin	VILAmex	VIHH	VILH	VIHL	VILL	V88	Vcc	VEE	Gnd	Condition
Negative Power Supply Drain Current	¹E	8	-	-	-	_	40	-	-	mAdc	-	-	-	-	-	=	-	-	3,7,11,15	9	8	16	-
Positive Power Supply	ССН	9	-	-	T -	-	52	-	-	mAdc	2,6,10,14	-	-	-	-	-	-	-	3,7,11,15	9	8	16	-
Drain Current	CCL	9	-	-	-	-	39	-	-	mAdc	_	-	-	-	-	-	-	-	3,7,11,15	9	8	16	-
Input Current	lin H ①	2	-	-	T -		115	-	-	μAdc	2,6,10,14	-	-	-	-	-	-	-	3,7,11,15	9	- 8	16	
	1	3	- 1	l -	i -] -	115	l -	l -	μAdc	3,7,11,15	-	-	- 1	-	l	-	-	2,6,10,14	9	8	16	i -
Input Leakage Current	1сво 🕏	2		T -	-	-	1.0		-	μAdc	-	-	-	-	-	T =	-	-	3,7,11,15	9	2,6,8,10,14	16	
	i -	3	! -	l -	l –	- 1	1.0	-	-	μAdc	-	-	-	-	1 -	-	-	-	2,6,10,14	9	3,7,8,11,15	16	!
Short-Circuit Current	los	4 -	-	T -	40	-	100	-	-	mA	_	2,6,10,14	-	-	-	-	T -	-	3,7,11,15	9	8	4,16	-
High Output Voltage	VOH 3	4	2.5	-	2.5	-		2.5	-	Vdc	-	2,6,10,14	-	-	-	-	-	-	3,7,11,15	9	8	16	-2.0 mA
Low Output Voltage	VOL	4	-	0.5	_		0.5	-	0.5	Vdc	2,6,10,14	_	-	-	-	-	-	-	3,7,11,15	9	8	16	12.0 mA
High Threshold Voltage	VOHA	4	2.5	-	2.5		-	2.5	T =	Vdc	-	6,10,14	T -	2	-	-	-	-	3,7,11,15	9	8	16	-2.0 mA
Low Threshold Voltage	VOLA	4	-	0.5	-		0.5	-	0.5	Vdc	6,10,14	-	2	-	-	-	-	-	3,7,11,15	9	8	16	12.0 mA
Indeterminate Input Protection Tests	V _{OLS1}	4	-	0.5	-	-	0.5	-	0.5	Vdc	-	-	-	-	-	-	-	-	-	9	2,3,6,7,8, 10,11,14,15	16	12.0 mA
	V _{OLS2}	4	-	0.5	-	_	0.5	_	0.5	Vdc	-	-	-	-	-	-	-	-	-	9	8	16	12.0 mA
Reference Voltage	V _{BB}	1	-1.440	-1.320	-1.350	-	-1.230	-1.240	-1.120	Vdc	-	-	-	Τ-	-	-	-	-	3,7,11,15	-		-	
Common Mode	Voн	4	2.5	-	2.5	_	-	2.5		Vdc	-	-	-	-	3	2	-	-	-	9	8	16	-2.0 mA
Rejection Tests		4	2.5		2.5			2.5			_			<u> </u>	1-	<u> </u>	3	2		9	8	16	-2.0 mA
	VOL	4	-	0.5	-	-	0.5	-	0.5	Vdc	-	-	-	-	2	3	-	-	-	9	8	16	12.0 mA
	└	1		0.5	<u> </u>		0.5		0.5				-	<u> </u>	-	1 -	2	3		9	8	16	12.0 mA
Switching Times		l	1	1	ı		l	l	ļ	l	Pulse in	Pulse Out	CL (pF)	1	1	1	1	l .	1			l	
Propagation Delay (50% to +1.5 Vdc)	16+5- 16-5+ 12+4-	5 5 4	=	=	1.0	4.5	6.0	-	-	ns 	6 6 2	5 5 4	25	-	-	-	-	-	3,7,11,15	9	8	16	-
	t2-4+	Lι	-	-	🕈	♥	♥	-	l -	1 1	Ιi	1		-	-	-	-	-	1	1		1 1	-
Rise Time (+1.0 Vdc to 2.0 Vdc)	14+	11	-	-	-	-	3.3	-	i -	1 1	1 1	1 1	1 1	-	-	-	-	-			1 1	ll	-
Fall Time (+1.0 Vdc to, 2.0 Vdc)	14.	! ♥	-	-	l –	- 1	3.3	-	-	. ▼	I ▼	. ▼	▼	- 1	-	-	l –	-	1 ♥		▼	I ▼	-

@ Test

-55°C

- 1 Individually test each input, apply VIH max to pin under test.
- Individually test each input, apply VEE to pin under test.
- Individually test each output, following example shown for pin 4.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Test procedures are shown for only one input, or for one set of input conditions. Other inputs or outputs are tested in the same manner.

TEST VOLTAGE VALUES
(Volts)

										-55°C	-0.880	-1.920	-1.255	-1.510	+0.170	-0.920	-1.830	-2.920	From	+50	-5 2		
										+25°C	-0.780	-1.850	-1.105	-1.475	+0.280	-0.850	-1.720	-2.850	Pin	+5 0	-52		
									+	125°C	-0.630	-1.820	-1.000	-1.400	+0.420	-0.820	-1.580	-2.820	5	+5 0	5.2		
		Pin			MC1	0625F Te	st Limits						TEST V	OLTAGE A	PPLIE	TO PI	NS LIS	TED BE	LOW				ł
		Under	-55	°c		+25°C		+12	25°C		1			r				<u> </u>					Output
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILAmax	VIHH	VILH	VIHL	VILL	V _{BB}	Vcc	VEE	Gnd	Condition
Negative Power Supply Drain Current	¹E	12	-	-	_	-	40	-	_	mAde		=		-	_	-	-	-	3,7 11 15	13	12	4	
Positive Power Supply	Іссн	13	_	_	_	_	52	_	_	mAdd	2.6 10.14	_		_	_	_	_	_	3.7,11,15	13	12	4	-
Drain Current	CCL	13	_	_	_		39	_	_	mAdc		_	_		-	_	-	T -	3.7,11,15	13	12	4	
Input Current	In H D	6	-	-	-	_	115	_	-	µA(fc	2 6 10 14	-	_	_	-	_	-	T -	3 7,11,15	13	12	4	-
		7	_	l –	_	l –	115	_	-	μAdc	3,7,11,15	_	l –	_	_	_		l –	2,6,10,14	13	12	4	_
Input Leakage Current	1своФ	6	_	T -	_	-	10	_	_	Adc	_	_	_	_	_	_	-	T -	3.7,11,15	13	26,10,12,14	4	-
		7	_	1	_	_	1.0	-	-	μAdc	_			_	_	_	-	L	2,6,10,14	13	3,7,11,12,15	4	
Short-Circuit Current	'os	8		T -	40	_	100	-	-	mA	=	2.6,10.14	_	-	-	-	-	I –	3,7,11,15	13	12	4,8	1 -
High Output Voltage	VOH ①	8	25		25	-	_	2.5	_	Vdc	-	2 6 10 14	_	_	-	_	-	Γ-	3.7.11.15	13	12	4	2 0 mA
Low Output Voltage	VOL	8	_	0.5	_	_	0.5	_	0.5	Vite	2.6 10 14	_	_	_	_	_	-	_	3,7,11,15	13	12	4	12.0 mA
High Threshold Voltage	VOHA	8	25	_	25	_		2 5	_	Velc		2,10,14		6	_	_	Γ-		3,7,11,15	13	12	4	2 0 mA
Low Threshold Voltage	VOLA	8	_	0.5	_	_	0.5	_	0.5	Velc	2,10,14	-	6	_	-	_	_	—	3.7.11.15	13	12	4	12.0 mA
Indeterminate Input Protection Tests	VOLST	8	-	05	_	_	0.5	-	0.5	Velc		-	_	_	-	-	-	-	-	13	2,3,6,7,10, 11,12,14,15	4	12.0 mA
	VOLS2	8	_	05	T -	_	0.5	_	0.5	Vilc		-	_		_	_	_	—		13	12	4	12.0 mA
Reference Voltage	V _{BB}	5	-1.440	-1.320	-1.350	_	-1.230	-1.240	-1 120	Vite	_				_	-	_	-	3.7.11.15	_	-	_	T -
Common Mode	νон	8	25		25	_	_	25		Vile	_	-		_	7	6	_	T -	_	13	12	4	2 0 mA
Rejection Tests		8	25		2 5			2.5	-	_							7	6		13	12	4	-2 0 mA
	VOL	8		0.5	-	-	0.5	-	05	Vdc	-	-	-	_	6	7	-	1	_	13	12	4	12.0 mA
		8		0.5			0.5	-	0.5			_		<u> </u>		-	6_	7		13	12	4	12.0 mA
Switching Times	1	l		į.	1		i	ĺ	i	i	Pulse In	Pulse Out	CL (pF)	l		1	ĺ					l	Ì
Propagation Delay	110+9-	9	_	-	10	4.5	6.0	-	-	ns	10	9	25	_	_	-	_	_	3,7,11,15	13	12	4	_
(50% to +1.5 Vdc)	110-9+ 16+8-	9	-	-		li	1 1	-	-	1 1	10	9	l I	-	-	-	-	-			1 1 -	1 1	-
	16-8+	۱ ،	_	=	🛊	♦	♦	_	_		"	, "		=	=	_	-	=					_
Rise Time (+1 0 Vdc to 2 0 Vdc)	tB+	1 1	_	-	-	-	33	_	_		[.]			_	_	_	_	=			1 1		=
Fall Time (+1 0 Vdc to 2 0 Vdc)	ta-	ŀ .	_	_	_	_	3.3	_	_	1 1	1 1	i L	1 1		1 -		_	. –	ı 1	1 1	1 1	1 1	1 -

@ Test

¹ Individually test each input, apply VIH max to pin under test.

Individually test each input, apply VEE to pin under test.

Individually test each output, following example shown for pin 8.

Advance Information

Case	V _{CC1}	V _{CC2}	VEE
620	Pin 1	Pin 16	Pin 8
650	Pin 5	Pin 4	Pin 12

P_D = 145 mW typ/pkg (No Load) t_{pd} = 2.5 ns typ

Numbers at end of terminals are pin numbers for L package (Case 620). Numbers in parenthesis denotes pin numbers for F package (Case 650).

The MC10530 is a clocked dual \bar{D} type latch. Each latch may be clocked separately by holding the common clock in the low state, and using the clock enable inputs for the clocking function. If the common clock is to be used to clock the latch, the clock enable (\bar{C}_E) inputs must be in the low state. In this mode, the enable inputs perform the function of controlling the common clock (\bar{C}).

Any change at the D input will be reflected at the output while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not affect the output information.

Input pulldown resistors eliminate the need to tie unused inputs to VEE.

Output rise and fall times have been optimized to provide relaxation of system layout and design criteria.

The set and reset inputs do not override the clock and D inputs. They are effective only when either \overline{C} or $\overline{C}E$ or both are high.

This is advance information and specifications are subject to change without notice. See General Information section for packaging.

A Ben Server **ELECTRICAL CHARACTERISTICS**

(3) See test unbuit tot test procedures

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs or outputs are tested in the same manner.

	ı	1 631	VOLINGE V	ALULG	
@ Test			(Volts)		
Temperature	VIHmax	VILmin	VIHAmin	VILAmax	VEE
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2

TEST VOLTAGE VALUES

												-1.620	1 -1:000	J -1.400	J -0.2	1
		Pin			MC	10530L	Test Lim	its			TEST VO	TAGE AP	PLIED TO PL	NS LISTED B	ELOW:	1
		Under	-55	°C		+25°C		+12	:5°C				-	1		(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	1E	- 8	-	39	-	28	35		39	mAdc	9	_	_	_	8	1,16
Input Current	linH	6	_	375	_	_	220	_	220	μAdc	6	_	_		8	1,16
		9	-	450	-	-	265	-	265	1 1	9	-	-	-	1 1	
		4	-	485	-	-	285	-	285	•	4,9	-	-	-		
		7		485		-	285		285	<u> </u>	7,9	9	-			<u> </u>
	linL	4*	0.5	-	0.5	-	-	0.3		μAdc	l -	4	<u> </u>	<u> </u>	8	1,16
Logic "1" Output Voltage	∨он	2	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	7	-	-	-	8	1,16
Logic "0" Output Voltage	VOL	2	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	-	7	-	-	8.	1,16
Logic "1" Threshold Voltage	VOHA	2	-1.100	_	-0.950	-	-	-0.845	-	Vdc		-	7	-	8	1,16
Logic "0" Threshold Voltage	VOLA	2	-	-1.635	-	-	-1.600	_	-1.525	Vdc	-	-	_	7	8	1,16
Switching Times (50 Ω Load) (See Figure 1)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t7+2+	2	_	~	1.0	2.7	3.5	_	_	ns	_	_	7	2	8	1,16
	t5+2+	1 1		-	1 1	2.7	l i	-	_	1	6	_	5	1 1	1 1	l i
	14+2-	1 1	-	-	1.1	2.7	♦	-	-	1 1	6	-	4			1
	t6-2-	1 1	1 -	-	. ▼	-	4.0	-	-		-	-	6	. i	1	
Rise Time (20% to 80%)	t ₂₊	1 1	-	-	1.1	2.7	3.5	-	-	1 1	-	-	7	i i		
Fall Time (20% to 80%)	t2-	▼	-	-	1.1	2.7	3.5	-	-	▼	-	-	7	'	•	1
Setup Time	tsetup	2	-	-	2.5	-	-	-		ns	0	-	6,7	2	8	1,16
Hold Time	thold	2	-		1.5	_		_	_	ns	0	_	6,7	2	8	1,16

^{*}All other inputs are tested in the same manner

¹ See test circuit for test procedures.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs or outputs are tested in the same manner.

F SUFFIX CERAMIC PACKAGE CASE 650

		TEST	VOLTAGE V	ALUES	
@ Test			(Volts)		
Temperature	VIHmax	VILmin	VIHAmin	VILAmax	VEE
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2

									•	125°C	-0.630	-1.820	-1.000	-1.400	-5.2	
		Pin		5°C	MC	10530F +25°C	Test Lin		5°C		TEST VO	LTAGE AP	PLIED TO PI	NS LISTED B	ELOW:	
Characteristic	Symbol	Under	Min	Max	Min	Тур	Max	Min	Max	Unit	ViHmax	VILmin	VIHAmin	VILAmax	VEE	(V _{CC}) Gnd
Power Supply Drain Current	İΕ	12	-	39	_	28	35	_	39	mAdc	13	_	-		12	4,5
Input Current	linH	10 13 8 11	- - -	375 450 485 485	- - -	- - -	220 265 285 285	- - - -	220 265 285 285	µAdc ▼	10 13 8,13 11,13	- - - -	- - - -	- - -	12	4,5
	linL	8*	0.5	-	0.5	_	_	0.3	-	μAdc	-	4	-	_	12	4,5
Logic "1" Output Voltage	Voн	6	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	11	-	-	-	12	4,5
Logic "0" Output Voltage	VOL	6	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	=	11	-	-	12	4,5
Logic "1" Threshold Voltage	VOHA	6	-1.100	_	-0.950	-	-	-0.845	-	Vdc	-	-	11	_	12	4,5
Logic "0" Threshold Voltage	VOLA	6	_	-1.635	-	-	-1.600	-	-1.525	Vdc	-	-	-	11	12	4,5
Switching Times (50 Ω Load) (See Figure 1)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay Rise Time (20% to 80%)	t11+6+ t9+6+ t8+6- t10-6-	6	- - - -	- - - -	1.0	2.7 2.7 2.7 –	3.5 4.0 3.5	1 1 1 1	- - - -	ns	10 10 - -	- - - -	11 9 8 10	6	12	4,5
Fall Time (20% to 80%) Setup Time	^t 6-	6			1.1 2.5	2.7	3.5			ns	0		10,11	6	12	4,5
Hold Time	^t setup ^t hold	6			1.5	_	-			ns	0		10,11	6	12	4,5

^{*}All other inputs are tested in the same manner

¹ See test circuit for test procedures.

R-S TRUTH TABLE

R	S	Q _{n+1}
L	L	αn
L	Н	Н
H	L	L
Н	н	N.D.

N.D. = Not Defined

CLOCKED TRUTH TABLE

С	D	Q _{n+1}
	φ	αn
Н	L	4
Н	H	Н

 ϕ = Don't Care

C = CF + CC.

A clock H is a clock transition from a low to a high state.

CASE	V _{CC1}	V _{CC2}	VEE
620	Pin 1	Pin 16	Pin 8
650	Pin 5	Pin 4	Pin 12

The MC10531 is a dual master-slave type D flip-flop. Asynchronous inputs Set (S) and Reset (R) override the Clock (C_C) and Clock Enable (\overline{C}_E) inputs. Each flip-flop may be clocked separately by holding the common clock in the low state and using the enable inputs for the clocking function. If the common clock is to be used to clock the flip-flop, the \overline{C} lock \overline{E} nable inputs must be in the low state. In this case, the enable inputs perform the function of controlling the common clock.

The output states of the flip flop change on the positive transition of the clock. A change in the information present at the data (D) input will not affect the output information at any other time due to master slave construction.

Input pulldown resistors eliminate the need to tie unused inputs to VEE. Output rise and fall times have been optimized to provide relaxation of system design and layout criteria.

 $P_D = 235 \text{ mW typ/pkg}$ $f_{Tog} = 160 \text{ MHz typ}$

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs are tested in the same manner.

Characteristic

Power Supply Drain Current

Input Leakage Current

Output Voltage

Output Voltage

Threshold Voltage

Threshold Voltage

Rise Time (20 to 80%)

Fall Time (20 to 80%)

Propagation Delay

Propagation Delay

Toggle Frequency (Max)

Switching Times (100-ohm load)

Input Current

Logic "1"

Logic "0"

Logic "1"

Logic "0"

Clock Input Propagation Delay

Set Input

Reset Input

Setup Time

Hold Time

+25°C

Тур

45

_

3.0

2.5

2.5

2.8

2.8

1.5

-0.5

160

Max

56

330

330

220

245

265

-0.780

-0.780

~1.620

-1.620

-1.600

-1.600

4.5

4.3

4.3

_

_

Min

0.5

-0.930

-0.930

-1.850

-1.850

-0.950

-0.950

_

1.5

1.1

1.1

1.2

1.2

2.5

1.5

125

+125°C

62

330

330

220

245

265

_

_

-0.630

-0.630

-1.545

-1.545

-1.525

-1.525

4.9

4.9

_

ns

MHz

Min Max

0.3

0.3

-0.825

-0.825

-1.820

-1.820

-0.845

-0.845

1.5 5.0

1.1 4.9

1.1

1.2 4.9

1.2

_

_

125

-55°C

62

565

565

375

420

450

-1.635

-1.635

4.6

4.5

_

Min Max

0.5

0.5

-1.080 -0.880

-1.920 -1.655

-1.100

-1.100

1.4

1.0

1.0

1.1 4.5

1.1

- | -

115

-1.080 -0.880

-1.920 -1.655

Under

Test

8

4

6

9

4,5,*

6,7,9

2

2t

3t

2

21

3

3t

2

2

2

2

2

2

15 3

14

15

3

7

7

2

Symbol

ΙE

linH

linL

VOH

VOL

VOHA

VOLA

t9+2t9+2+

t6+2+

t6+2-

t2+

t2-

t5+2+ t12+15+

t5+3-

t12+14-

t4+2-

113+15-

t4+3+ t13+14+

tsetup

thold

fTog

L SUFFIX CERAMIC PACKAGE CASE 620

	Test erature	V _{IH max}	VIL min	VIHA min	VILA max	VEE		
	-55°C		-1.920	-1.255	-1.500			
	+25°C	-0.880				-5.2		
		-0.780	-1.850	-1.105	-1.475	-5.2		
1	125°C	-0.630	-1.820	-1.000	-1.400	-5.2		
7		vo	LTAGE APPL	IED TO PINS LIS	TED BELOW:		(Vcc)	
	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd	
	mAdc	-	_	-	-	8	1, 16	
	μAdc	4		_		8	1, 16	
İ	1	5 6	-	- '	_			
ĺ		7	_	_		1 1		
	•	9	_	_	_	†	🕴	
ĺ	μAdc	_	•		-	8	1, 16	
	μAdc	~	•	-		8	1, 16	
,	Vdc	5	_	_		8	1, 16	
1	Vdc	7	+			8	1, 16	
	Vdc	5	~	-	-	8	1, 16	
_	Vdc	7				8	1, 16	
	Vdc Vdc	_	_	5 7	9	8 8	·1, 16 1, 16	
_								
	Vdc Vdc		_	5 7	9	8	1, 16 1, 16	
-				Pulse	Pulse		.,,.,	
		+1.11 Vdc	+0.31 Vdc	In In	Out	-3.2 Vdc	+2.0 Vdc	
	ns	_	_	9	2	8	1, 16	
	1 1	7	-	9	2			
		7	_	6	2 2			ĺ
		_	_					ĺ
		-	_	9	2	↓		ĺ
	V			9	2	7		
	ns	_	_	5	2	8	1, 16	ı
	1	_	_	12	15	Ιĭ	1,10	ı
		~	_	5	3			ı
	•	<u> </u>		12	14	7	*	ı
	ns	_	_	4	2	8	1, 16	
	1 1	l· –	-	13	15	l ı	1	ı
	+	_		13	3 14		•	
-	ns		_	6,7	2	8	1, 16	
								4

6.7

6

2

1, 16

1, 16

TEST VOLTAGE VALUES

Vdc ± 1%

^{*}Individually test each input; apply VIL min to pin under test.

[&]quot;Pin 3 is tied to pin 7 for these tests.

[†]Output level to be measured after a clock pulse has been applied to the \bar{C}_E input (pin 6)

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table. after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs are tested in the same manner.

F SUFFIX CERAMIC PACKAGE **CASE 650**

		TEST	VOLTAGE VAL	JES										
	Vdc ± 1%													
P Test	VIH max	VIL min	VIHA min	VILA max	VEE									
-55°C	-0.880	-1.920	-1.255	- 1.500	-5.2									
+25°C	-0.780	- 1.850	-1.105	-1.475	-5.2									
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2									

			,							125 C	-0.030	-1.020	-1.000	-1.400	-5.2	
		Pin	ļ	o°C	MC10	531F Te	st Limits	+12	-0-		vo	LTAGE APPL	PPLIED TO PINS LISTED BELOW:			
Characteristic	Symbol	Under Test	Min	Max	Min	+25°C	Max	Hin Min	Max Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	(V _{CC}) Gnd
Power Supply Drain Current	1 _E	12	-	62	_	45	56		62	mAdc	_		_	-	12	4,5
Input Current	linH	8	-	565	_		330	-	330	μAdc	8	_	_		12	4,5
		9	-	565	_	-	330	l –	330		9	-	_	-	l ï	i
		10	-	375 420	_	-	220 245	-	220 245		10	- 1	-	-		
		13	_	450	_	_	265	=	265	♦	11 13				♦	†
Input Leakage Current	linL	8,9° 10,11,13°	0.5 0.5	-	0.5 0.5	=	-	0.3 0.3	_	μAdc μAdc	=	:	=	=	12 12	4,5 4,5
Logic "1"	Voн	6	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	9		_	_	12	4,5
Output Voltage		61	-1.080	-0.880	-0.930		-0.780	-0.825	-0.630	Vdc	11	_			12	4,5
Logic "0"	VOL	7	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	9	-	-	-	12	4,5
Output Voltage		7†	-1.920	-1.655	- 1.850		-1.620	-1.820	-1.545	Vdc	11	_			12	4,5
Logic "1" Threshold Voltage	VOHA	6 6†	-1.100 -1.100	_	-0.950 -0.950	-	_	-0.845 -0.845	1-1	Vdc Vdc	=	-	9 1	13	12 12	4,5 4,5
Logic "0"	VOLA	7	-	-1.635	_	-	-1.600	_	-1.525	Vdc	-	-	9	-	12	4,5
Threshold Voltage		7†	-	-1.635		-	-1.600	<u> </u>	-1.525	Vdc			1	13	12	4,5
Switching Times (100-ohm load) Clock Input		}									+1.11 Vdc	+0.31 Vdc	Pulse In	Pulse Out	-3.2 Vdc	+2.0 Vdc
Propagation Delay	140.0	6	_	_	1.5	3.0	4.5	_	_	ns	_	_	13	6	12	4,5
	t13+6- t13+6+	6	-	-	1	1	l i	-	_	- 1	11	-	13	6	1 1	1
	t10+6+	6	-	-	1 1 1			-	-		11	_	10	6	1 1	
	t10+6-	6	-	- 1	V.	₹		_	-		_	-	10	6		
Rise Time (20 to 80%)	^t 6+	6	-	-	1.1	2.5	1	-	-	1 1	-	-	13	6		1
Fall Time (20 to 80%)	^t 6-	6	-	_	1.1	2.5	•		_			-	13	6	7	7
Set Input														_		
Propagation Delay	¹ 9+6+	6		-	1.2	2.8	4.3	_	_	ns	_	_	9	6 3	12	4,5
	^t 16+3+ ^t 9+7-	3 7	_	_					_	1	_		16 9	7	1	
i	t16+2-	2	-	-	•	♦	♦	-	-	•	-	_	16	2	†	\
Reset Input														 	 	
Propagation Delay	t8+6-	6	-	-	1.2	2.8	4.3	-	-	ns	-	-	8	6	12	4,5
	t1+3-	3	_	-				-	-	1	-	-	8	3 7	1 1	1 1
	^t 8+2+ ^t 1+2+	7 2	_	-	+ 1	♦	♦	_	_	♦	=	_		2		♦
Setup Time	tsetup	# 11	-	-		1.5	2.5	-		ns			10,11	6	12	4,5
Hold Time	thold	11	-	-	1.5	-0.5	-	_	-	ns .	_	-	10,11	6	12	4,5
Toggle Frequency (Max)	fTog	6	-	-	125	160	_	-		MHz	••	-	10	6	12	4,5

@ Test

Temperature

^{*}Individually test each input; apply VIL min to pin under test.

^{**}Pin 3 is tied to pin 7 for these tests.

[†]Output level to be measured after a clock pulse has been applied to the CE input (pin 10)

Coax

t+ = t- = ≤1.0 ns
(20% to 80%)

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock Input

Clock

FIGURE 1 - TOGGLE FREQUENCY TEST CIRCUIT

P_D = 310 mW typ t_{pd} = 4.0 ns typ The MC10533 is a high speed, low power, MECL quad latch consisting of four bistable latch circuits with D type inputs and gated Q outputs. Open emitters allow a large number of outputs to be wire-ORed together. Latch outputs are gated, allowing direct wiring to a bus. When the clock is high, outputs will follow D inputs. Information is latched on negative going transition of the clock.

See General Information section for packaging.

tingh low level for test. Lavels are measured after davice has letched.

through a 100-ohm resistor to -2.0 volts.

Test procedures are shown for only one

input, or for one set of input conditions. Other inputs are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

	TEST VOLTAGE VALUES													
	(Volts)													
@ Test Temperature	VIHmax	VILmin	VIHAmin	VIHAmax	VEE									
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2									
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2									
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2									

										125 4	-0.630	-1.820	-1.000	-1.400	-5.2	
		Pin .			M	C10533L	Test Limit	ts			TEST VOLTAGE APPLIED TO					
	· ·	Under	-59	5°C	1	+25°C		+12	5°C		PINS LISTED BELOW:					
Characteristic	Symbol	Test	Min	Max	Min	Typ:	Max	Min	Max	Ünit	VIHmax	VILmin	VIHAmin	VIHAmax	VEE	Gnd
Power Supply Drain Current	ΙE	8	-	-	- :	60	75			mAdc		13	-	,,-,	8	1,16
Input Current	lin H	3	_		-	-	245	, - 1	-	μAdc	3	-	-	-	. 8	1,16
	1	- 4 - 5	-	_	_		265 350	_	l <u>-</u> .	1 1	5	-	-	-		. 1
		13			_	_	350		`	\ ♦	13	_	_		. ♦	. 🔻
	lin L	3	y	1-	0.5	_	-		-	μAdc		3	-		8	1,16
Logic "1" Output Voltage	VOH	2	-1.080	-0.880	-0.930	_	-0.780	-0.825	-0.630	Vdc	3,4		-	-	8	1,16
		2	-1.080	-0.880	-0.930		-0.780	-0.825	-0.630	Vdc	3,13				8	1,16
Logic "0" Output Voltage	VOL	2	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	13	3	-	-	8	1,16
,	1	2 2	♦ .	♦	♦	_	♦	♦	♦	•	3,5,13	3	-	_		•
Logic "1" Threshold Voltage	VOHA	2	-1.100		-0.950	_		-0.845		Vdc	3,4	-	†	5	8	1,16
•	•	.2	1 1	-		-	-	1	-	"	4		3	- 1	ĺ.	1 1
	l	2 2†	1 1	-		-	-		_	1 1	3,4	-	-	-		1 1
		21	1 1	_		_	_		_	1 1] [} <u> </u>	_	1	1 1
		211	1 1	-	ļ.	-			-		-	-	-	4		1 1
		2 .		-	↓	-	-	1	· -	1	3	-	13	_	\ ♦	•
Logic "0" Threshold Voltage	VOLA	2	 	-1.635	 	 	-1.600	 	-1.525	Vdc	3.4		5		8	1.16
Logic o Threshold Voltage	VOLA	2	-	1.033	_	_	1 -1.500		1 1	1	4	_	-	3	Ιĭ	1
		2	-		-	-	1 1	-			4	i -	-	-	1 1	1 1
		2†	-		-	-	li	-]	•	3	-	-			
		2†† 2††] _	♦	_	_	♦	_	♦	♦	3	_		. 13	♥	•
witching Times	1		†				İ				+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0
(100-ohm Load)	. '	١.	1	1	1.0	-	1	1	1	1		1	3		8	1,16
Propagation Delay	t3+2+	2 2	_	_	1.0	-	5.4 5.4	_	_	ns	3.	1 -	1 4	2 2	ı î	1 '1'
	15-2+	2	-	_	. ▼	-	3.1	_	-	1 !	-	-	5	2		1 1
	tsetup	3	i	-	2.5	-	-	-	-		-	-	3	2		
	thold	3	-	-	1.5	-	-	-	-	1	-	-	3	2	1 1	
Rise Time (20% to 80%)	t2+	2	-	-	1.1	- 1	3.5	-	-	1 1	4	-	3	2	1 1	
Fall Time (20% to 80%)	t ₂₋	2	-	-	1.1	- 1	3.5	-	-	▼	4	- ·	3	. 2	▼	

VIH max

∟_{VIL min}

[†]Output level to be measured after a clock pulse has been applied to the clock input (Pin 4).
††Data input at proper high/low level while clock pulse is high so that device latches at proper

high/low level for test. Levels are measured after device has latched.

^{*}Latch set to zero state before test.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs are tested in the same manner.

F SUFFIX
CERAMIC PACKAGE
CASE 650

	TEŞT VOLTAGE VALUES													
	(Volts)													
@ Test Femperature	VIHmax	VILmin	VIHAmin	ViHAmex	VEE									
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2									
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2									
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2									

1	Din			MC10633F Test Limits TEST VOLTAGE APPLIED TO											
į	Under	-58	5°C		+25°C		+12	5°C							
Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VIHAmax	VEE	Gnd
1E	12	~	-	-	60	75	-	_	mAdc	-	1		-	12	4,5
¹in H	7	-	-		-	245		-	μAdc	7	-,	- '	-	12	4,5
Ī	8			-	-		-	-			-	- 1	· -		1
- 1	1		_		_			_		9	_ · .				
lio I	7		-	0.5	<u> </u>	-			#Adc		7			12	4.5
	6	-1.080	-0.880	-0.930	 	-0.780	-0.825	-0.630	Vdc	78			_		4,5
J.,	6	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	1,7	-	- :		12	4,5
. VOL	6	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	1	7	-	-	12	4,5
	6	↓			-		₩	↓				-		1	1
		1 1 2 2 2		- V		<u> </u>	200		V		<u> </u>			V	15
VOHA		-1.100	_	-0.950		1	-0.845		Vdc		l			12	4,5
l	6		_		-	-					-				
- 1	6t		-	.	- .	<u> </u>		-	li	7		- 1	-		l i
i			-		-	-	1 1 :	-,.		-	-	- 1	-		
1			_			1					· _			1	
I	6		-				- ▼		₹.	7	· - '	i	-	V	¥
VOLA	6	-	-1.635	_	-	-1.600		-1.525	Vdc ⁻	7,8	2.00	9		12	4,5
	6	-	1 1	-	-		-			8		-	7	1	1
1				_	ı					. 8	_		_	1 1	
ì	611	_	1		_		_	1 1	1 1	7		_ 1		1	1'
	611		₹.	-	-	7	_	. ▼	V	7	-	-	1	V	
										+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 \
13+2+	- 6	·-	-	1.0		5.4	- '	-	กร	8	-	7	6	12	4,5
t4-2+	6	-	-	1	1		-	-	1	7*			6		1
				25	ΙΞ.	1	l			_ :					
	7			1.5	- 1	_					_	7	6		
	6	_		1.1	-	3.5	-	_		. 8	1	7	6		
12-	8	_ 1		1.1	-	3.5					`	, ,		•	♦
	In L VOH VOL VOLA VOLA VOLA VOLA VOLA VOLA VOLA	Test Test	Symbol Under Test Min 1	Voltage Symbol Test Min Max	Pin Under Test Min Max Min	Symbol -55°C +25°C I _E 12 - - 60 I _{II} H 7 - - - - I _{II} H 7 - - - - - - I _{II} H 7 -	Pin Under Test Min Max Min Typ Max	Pin Under Test Min Max Min Typ Max Min Min Max Min Typ Max Min M	Pin Under Test Min Max Min Typ Max Min Max M	Pin Under Test Min Max Min Typ Max Min Max	Pin Under Test Min Max Min Typ Max Min Max Mi	Pinder Test Min Mex Min Typ Mex Min Min Mex Min Mex Min Mex Min Mex	Pink 125°C Pink	Symbol Test Min Max Min Typ Max Min	Pind Pinder Pin

A Agent

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

APPLICATION INFORMATION

The MC10533 device consists of four bistable latch circuits with D type inputs and gated Q outputs. When the clock is high the outputs will follow the D inputs.

The latch will store the data on the falling edge of the clock. The outputs are gated when the output enable is low. All four latches may be clocked at one time with the common clock, or each half may be clocked separately with its clock. This device is useful as a temporary storage element in high speed central processors, accumulators, register files, digital communication systems, instrumentation and test equipment.

MC10535

Advance Information

Numbers at ends of terminals denote pin numbers for L package (Case 620).

Numbers in parenthesis denote pin numbers for F package (Case 650).

CASE	V _{CC1}	v _{CC2}	VEE
620	Pin 1	Pin 16	Pin 8
650	Pin 5	Pin 4	Pin 12

The MC10535 is a dual master-slave dc coupled J-K flip-flop. Asynchronous set (S) and reset (R) are provided. The set and reset inputs over-ride the clock.

A common clock is provided with separate J-K inputs. When the clock is static, the J-K inputs do not effect the output.

The output states of the flip-flop change on the positive transition of the clock.

Input pulldown resistors eliminate the need to tie unused inputs to VEE. Output rise and fall times have been optimized to provide relexation of system design and layout criteria.

R-S TRUTH TABLE

R S Q_{n+1} L L Q_n L H H H H H L L

o = Not Defined

CLOCK J-K TRUTH TABLE*

j	ĸ	Q _{n+1}
Ĺ.,	L	ã,
н	L	L
L	н	н
н	1	۰

*Output states change on positive transition of clock for J-K input condition present.

PD = 280 mW typ/pkg (No Load) fTog = 140 MHz typ

FIGURE 1 - TOGGLE FREQUENCY TEST CIRCUIT

All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be <1/4 inch from TP_{in} to Input pin and TP_{out} to output pin. V_{out} is 2:1 attenuated.

Unused outputs connected to a 50-ohm resistor to ground.

See General Information section for packaging.

Each full temperature range MECL 10,000 series cirpuit has been designed to meet the do specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs or outputs are tested in the same manner.

L SUFFIX CERAMIC PACKAGE **CASE 620**

		TEST V	OLTAGE VAI	LUES									
	(VOLTS)												
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE								
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2								
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2								
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2								

										7120 C	-0.630	-1.020	-1.000	1.400	-5.2	1
		Pin			M	C10535L	Test Limi	ts			.,,,,,		ED TO PINS L	10750 051 0	·	1
	l	Under	-6	55°C		+25°C		+12	5°C		VOL	AGE APPLI	ED TOPINS L	IS I ED BELL)W:	(VCC)
Cheracteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Mex	Unit	V _{IH max}	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	!E	8		75	-	54	68	_	75	mAdc	_	_	_	-	8	1,16
Input Current	: Tin H	6,7,9,10,11 4,5,12,13		450 665	-	-	265 390	-	265 390	μAdc μAdc	00		-	-	8	1,16 1,16
Input Leakage Current	lin L	4,5,6,7,9, 10,11,12,13	0.5 0.5	=	0.5 0.5	=	=	0.3 0.3	=	μAdc μAdc	-	2	=	-	8 8	1,16 1,16
Logic "1" Output Voltage	Voн	2 3	-1.080 -1.080	-0.880 -0.880	-0.930 -0.930	=	-0.780 -0.780	-0.825 -0.825	-0.630 -0.630	Vdc Vdc	5 6	-	-=	-	8 8	1,16 1,16
Logic "0" Output Voltage	VOL	3 3 ③	-1.920 -1.920	-1.655 -1.655	-1.850 -1.850	-	-1.620 -1.620	-1.820 -1.820	-1.545 -1.545	Vdc Vdc	5 6	1.1	=	-	8 8	1,16 1,16
Logic "1" Threshold:Voltage	.VOHA	2 2	-1.100 -1.100	-	-0.950 -0.950	-	-	-0.845 -0.845	Ę -	Vdc Vdc	6		5 -	-	8 8	1,16 1,16
Logic "0". Threshold Voltage	VOLA	3 3 ④		-1.635 -1.635	=	-	-1.600 -1.600	=	-1.525 -1.525	Vdc Vdc	··. -	-	5 -		8 8	1,16 1,16
Switching Times Clock Input Propagation Delay	t9+2+	2		-	1.0	3.0	4.5	_	_	ns	_	_	Pulse In.	Pulse Out	-3.2 Vdc	+2.0 Vdc
Rise Time (20 to 80%)	tg+2-	2,3	- I		1.0	3.0	lï	<u> </u>	-		_	_	9	2 2,3		
Fall Time (20 to 80%)	t2+.t3+ t2-,t3-	2,3	·-	-	1.1	2.0	† †		_	•	_	_	9	2,3	•	•
Set Input [®] Propagation Delay	t5+2+ t12+15+ t5+3- t12+14-	2 15 3 14	=		1.0	3.0	5.0	= -	=	ns 	- -	1111	5 12 5 12	2 15 3 14	8	1,16
Reset Input Prepagation Delay	14+2- 14+3+ 113+15- 113+14+	2 3 15	=	=	1.0	3.0	5.0	= -	- - -	ns ↓	= =	=	4 4 13 13	2 3 15 14	8	1,16
Setup Time	tsetup	7	-	-	1.5	_	-	—	_	ns		-	6,9 (5)	2	8	1,16
Hold Time	thold	7	-		2.5	-	_			ns		-	6,9 (5)	2	8	1,16
Toggle Frequency	fTog	2	-	T -	125	140	-	-		MHz	-	-	9	2	9	1,16

NOTES:

- 1 Individually test each input; apply VIH max to pin under test.
- 2 Individually test each input; apply VIL min to pin under test.
- 3 Output level to be measured after a clock pulse has been applied to the C input (pin 9)
- Out, at level to be measured after a clock pulse has been applied to the C input (pin 9)
- See Figure 2 for timing test diagram.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs or outputs are tested in the same manner.

		TEST V	OLTAGE VA	LUES	
@ Test			(VOLTS)		
Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2

										+125°C	-0.630	-1.820	-1.000	-1.400	-5.2	
		Pin			M		Test Limi				VO. 1	TAGE ABOUT	ED TO PINS L	ISTED BELO	ш.	!
		Under	-5	55°C		+25°C		+12	5°C		VOL	AGE APPLI	ED TO PINS L	ISTED BELL	/M:	(VCC)
Cherecteristic	Symbol	Test	Min	Max	Min	Тур	Mex	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	lE.	12	-	75	-	54	68	-	75	mAdc	-		_	-	12	4,5
Input Current	lin H	10,11,13,14,15 1,8,9,16	-	450 665	-	-	265 390		265 390	μAdc μAdc	0	-	-	<u>-</u>	12 12	4,5 4,5
Input Leekage Current	lin L	8,9,10,11,13 1,14,15,16	0.5 0.5	-	0.5 0.5	-	-	0.3 0.3	-	μAdc μAdc		9	-	-	12 12	4,5 4,5
Logic "1" Output Voltage	Voн	6 3	-1.080 -1.080	-0.880 -0.880	-0.930 -0.930	_	-0.780 -0.780	-0.825 -0.825	-0.630 -0.630	Vdc Vdc	9 10	-	=	-	12 12	4,5 4,5
Logic "0" Output Voltage	VOL	7 7 ③	-1.920 -1.920	-1.655 -1.655	-1.850 -1.850	-=	-1.620 -1.620	-1.820 -1.820	-1.545 -1.545	Vdc Vdc	9 10	-	-	-	12 12	4,5 4,5
Logic "1" Threshold Voltage	VOHA	6 @	-1.100 -1.100	-	-0.950 -0.950	_	-	-0.845 -0.845	-	Vdc Vdc	_ 10		9 -	-	12 12	4,5 4,5
Logic "0" Threshold Voltage	VOLA	7 7 ④	-	-1.635 -1.635	-	-	-1.600 -1.600	-	-1.525 -1.525	Vdc Vdc	10	1 1	9	7 1	12 12	4,5 4,5
Suitshing Times Clack Input Propagation Dalay	t13+6+ t13+6-	6	=	-	1.0	3.0 3.0	4.5			ns I		-	Pulse In	Pulse Out 6 6	-3.2 Vdc	+2.0 Vd
Rige Time (20 to 80%) Fall Time (20 to 80%)	16+7+	6,7 6,7	-	_	1.0 1.1	2.0 2.0		-	-		-	-	13	6,7 6,7		
Set Input Propagation Delay	t9-6- t9-6+ t16+3+ t9-7- t16+2-	6 3 7 2			1.0	3.0	5.0	· -	- - - -	ns	-	- - -	9 16 9	6 3 7 2	12	4,5
Reset Input Propagation Delay	¹ 8+8- ¹ 8+7+ ¹ 1+3- ¹ 1+2+	6 7 3 2	- - -		1.0	3.0	5.0	- - -	- - - -	ns	1111	1 1 -	8 8 1	6 7 3 2	12	4,5
Setup Time	tsetup	11	-	-	1.5		-	-	-	ns	-	-	10,13 🕏	6	12	4,5
Hold Time	. ^t hold	11	-	_	2.5	-	-		-	ns	-	-	10,13 ⑤	6	12	4,5
Toggle Frequency	fTog	. 6	-		125	140		-	-	MHz	-	-	13	6	12	4,5

-VIHA min

NOTES:

- 1 Individually test each input; apply VIH max to pin under test.
- 2 Individually test each input; apply VIL min to pin under test.
- Quantities to be measured after a clock pulse has been applied to the C input (pin 9)
- Output level to be measured efter a clock pulse has been applied to the C input (pin 9)
- Bop Figure 2 for siming test /lipprom.

36 37 1924 U.

MC10536

SEQUENTIAL TRUTH TABLE*

				NPU'	TS				0	UTP	ÚTS	
S1	S2	D0	D1	D2	DЗ	Carry Carry	Clock	00	QΊ	02	QЗ	larry Carlou
ددد	TIIL	1000	1000	I 0 0 0	I 0 0 0	\$ L L L	III	ILIL	JJII	IIII	IIII	-II-
LIL	LIII	1999	0 0 0 H	φ φ L	9991	1100	LIII	rrr	1111	TIIL	HHH	LII
TIII	יייי	9999	0000	\$ \$\$\$	0000		TITI	ırır	ILLI	ILLI	דריי	IIII

- $\phi = Don't care.$
- Truth table shows logic states assuming inputs vary in sequence shown from top to bottom.
- A clock H is defined as a clock input transition from a low to a high logic level.

The MC10536 is a high speed synchronous counter that can count up, count down, preset, or stop count at frequencies exceeding 100 MHz. This binary counter is useful in high speed central processors and peripheral controllers, minicomputers, high speed digital communications equipment and instrumentation. The flexibility of this device allows the designer to use pne basic counter for most applications, and the synchronous count feature makes the MC10536 suitable for either computers or instrumentation.

Three control lines (S1, S2, and Carry In) determine the operation mode of the counter. Lines S1 and S2 determine one of four operations: preset (program), increment (count up), decrement (count down), or hold (stop count). Note that in the preset mode a clock pulse is necessary to load the counter, and the information present on the data inputs (D0, D1, D2, and D3) will be entered into the counter. Carry Out goes low on the terminal count, or when the counter is being preset.

When an output is not needed, it can be left open to conserve system power. (The open emitter output will require no power if left open). The counter changes state only on the positive going edge of the clock. Any other input may change at any time except during the positive transition of the clock.

This device is not designed for use with gated clocks. Control is via S1 and S2.

A prescaler can be constructed using the MC10538 in conjunction with the MC10631 which will operate at over 200 MHz input frequency. A 500 MHz prescale is possible using an MC1690 500 MHz D Flip-Flop, and MC1670 300 MHz D Flip-Flop, and the MC10536.

FUNCTION SELECT TABLE

S1	S2	Operating Mode
L	L	Preset (Program)
L	H,	Increment (Count Up)
H,	L.	Decrement (Count Down)
H	H	Hold (Stop Count)

 P_D = 625 mW typ/pkg (No Load) f_{count} = 150 MHz typ

Numbers at ends of terminals denote pin numbers for L package (Case 620).

Numbers in parenthesis denote pin numbers for F package (Case 650).

Case	V _{CC1}	V _{CC2}	VEE
620	Pin 1	Pin 16	Pin 8
650	Pin 5	Pin 4	Pin 12

generalises i generalises

ELECTRICAL CHARACTERISTICS NEW TO DESCRIPTION AND THE COMPANY OF T

Each full temperature range MECL 10,000 series circuit has been designed to meet the do specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs or outputs are tested in the same maner.

@ Test

VIH max

TEST VOLTAGE VALUES

(Volts)

VIHA min

L SUFFIX CERAMIC PACKAGE CASE 620

Other inputs or outputs ar	e tested in	n the				-		_		-55°C	-0.880	-1.920	-1.255	-1.510	-5.2	
ame manner.										+25°C	-0.780	-1.850	-1.105	-1.475	-5.2	
		·								+125°C	-0.630	-1.820	-1.000	-1.400	-5.2	
•		Piri					Test Limits				TEST	OI TAGE AF	PLIED TO PI	NS I ISTED N	FLOW	
	-	Under	-66	°C	·	+25°C		+125	°C .							(Vcc)
Cherecteristic	Symbol	Test	Min	Mex	Min	Тур	Mex	Min	Mex	Unit	· VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	l _E	8		165	-	120	150	- 1	165	m.Adc	- 1		~	- 1	8	1, 16
Input Current	lin H	5,6,11,12	-	375	-		220	-	220	μAdc	5,6,11,12		-	-	8	1,16
		7	-	450	-	-	265	-	265		7	-	i -	- 1		1
	*	9,10		415	-	-	245	-	245		9,10	-		-		
		13		495			290		290		13					
	lin L	All	0.5	-	0.5			0.3	-	μAdc		0	-	-	8	1, 16
Logic "1" Output Voltage	VOH	14 ②	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	12	7,9	-	-	8	1,16
Logic "0" Output Voltage	VOL	140	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	-	7.9	-	-	8	1, 16
Logic "1" Threshold Voltage	VOHA	14 @	-1.100	-	-0.950	-	-	-0.845	-	Vdc	-	7,9	12	-	8	1, 16
Logic "0" "Threshold Voltage	VOLA	14 ②		-1.635	-		-1.600		-1.525	Vdc	-	7,9	-	12	8	J, 16
Switching Times (100-ohm Loed)			-				<u> </u>				+1.11 V	+0.31 V	Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay				•	l	l	l	l	(į	[Į.		į.	Į.	
Clock Input	t13+14+	14	0.8	4.6	1.0	3.3	4.5	1.4	5.2	ns	12	_	13	14	8	1,16
	113+14-	14	0.8	4.6	1.0	3.3	4.5	1.4	5.2	l i	J -	-	1 1	14	1 -1	1 1
	t13+4+	4	2.0	11.0	2.5	7.0	10.5	2.4	12.6	1 1	7		1 1	1 4	1 1	l i
 _ :	113+4-	4 . 1	2.0	11.0	2.5	7.0	10.5	2.4	12.6	1 1	, ,	-	٧٠	1 1	1 1	1 1
Carry In To Carry Out	¹ 10-4- 110+4+	4 3	1.6 1.6	7:1 7.1	1.6	5.0 5.0	6.9	1.9 1.9	7.6 7.6	1 1	7	13	10	1 1	1 1	1 1
Set Up Time	10747	4	1.0	/.'	1.8	3.0	0.5		/	1 1	1 ′	13	10	•	1 1	1 1
Deta Inputs				İ			1	j.	1	1 1		1		1	1	1 - 1
Cont imports	112+13+	14:]. [3.5 3.5	_		1 :		1 1	i -	7.9	12, 13	14	1 1	1 1
Select Inputs	¹ 12-13+	14	-	ľ	1			-	1	1 1		10		i i	łi	1 1
	¹ 9+13+	. 14			7.5	l · -	1 -	1		1 1	1 -	1 -	9, 13 7, 13	1 1	1 1	1 1
Carry In Input	¹ 7+13+	14	r -	1 -	ľ	l	1	_	_	1 1	,		1 '	1 1	1 1	1 1
Carry III III put	¹ 10-13+	14		1 -	3.7 -1.0	=	1 -	1 -	1 -	1 1	1 ;	9	10, 13		1 1	1
Hold Time	^t 13+10+	l '- '	} '-] -	1 -1.0	} _] -	1 -	1 -	1) .	1 '	•	1	1 1	1 1	1 1
Date Inputs	1.2	14		l _	-1.0		_	_	_		1 .	7,9	12, 13	1 1	1 1	1 1
mit in	¹ 13+12+ ¹ 13+12-	14	Ī .	\ <u>-</u>	-1.0	-		1 -	_	1 1	1 1	7.9	12, 13	1 1	1 1	1 1
Select Inputs		14	-		-2.5	_	_	_		1 1	ľ		9, 13	1 1	1 1	
	113+9+ 113+7+	14	1 [1 -	-2.5 -2.5	-] [1 -	_	1 1	1 -	1 -	7, 13	1 1	1 1	1 1
Carry In Input		1	1 -	_	-1.6	1 _	1	1	_	1 1	,	9	10, 13	1 1	1 1	1 1
	113+10- 110+13+	14		1 -	3.1	I -		1 :	-		1 ;	9	10, 13	1 1	1 1	1 1
Counting Frequency			1	_	125	9	1	1	l		1 ,	-	1	1 (1 1	1
	countup	:	115 115	_	125	150 150	_	115 115	1 -	MHz	'	_	13	1 1	1 1	1 1
Rise Time	countdown	1 '				1	ı	1	1	1	1 -	1 -	1 1	1 !	1 1	1 1
(20% to 80%)	14+	1 4	0.9	3.3	11	2.0	3.3	1.2	3.7	ns	1 ?	-	1 1	1 4	1 1	1 1
Fall Time	114+	14		1 1			1 1	1 1	1 1	1 1	1 1	-	1 1	'*	1 1	1 1
		4														

¹ Individually apply VIL min to pin under test.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table. after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs or outputs are tested in the same manner.

F SUFFIX CERAMIC PACKAGE **CASE 650**

		TEST V	VOLTAGE VA	LUES	
● Test			(Volts)		
Temperature	VIH mex	VIL min	VIHA min	VILA max	VEE
-65°C	-0.880	-1.920	-1.255	-1.510	-5.2
+25°C	-0780	-1.850	-1.105	-1.475	-5.2
+125°C	-0.630	-1.820	-1.000	-1.400	-6.2

and manner.													11.100	-1.775		
										+125°C	-0.630	-1.820	-1.000	-1.400	-6.2	l
		Pin					Test Limits				TEST	VOLTAGE A	PPLIED TO PI	NS LISTED B	ELOW	
Cherecteristic		Under Test	-50	S ^O C Mex	Min	+25°C	·	+125 Min		Unit	VIH max	VIL min	VIHA min	VILA mex	VEE	(Vcc
Power Supply Drain Current	Symbol	12	- Men	165	Man	120	Mex		Max 165		- VIH max		TINA MIN		12	Gnd 4,5
	1E						150			mAdc						
Input Current	lin H	9,10,15,16	-	365 445			215 260	-	215 260	μAdc	9,10,15,16 11	_	1 :	_	12	4,5
	1	13,14	_	410		1 -	240		240		13,14	_				1
		"i"	_	485	-	-	285	-	285		1	_	1 -	- 1		1
	lin L	All	0.5		0.5		 	0.3		μAdc .		0		-	12	4,5
Logic "1"	Voн	20	-1.080	-0.880	-0.930		-0.780	-0.825	-0.630	Vdc	16	11.13			12	4,5
Output Voltage	Y OH	'"	-1.000	-0.000	-0.330	_	-0.700	-0.625	-0.030	1	"	11,15		_		7,0
Logic "0"	VOL	20	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	-	. 11,13	-	-	12	4,5
Output Voltage		1		<u> </u>			L						<u> </u>			
Logic "1" Threshold Voltage	VOHA	2 🛭	-1.100	-	-0.950	- 1	-	-0.845	-	Vdc	-	11,13	16	-	12	4,5
Logic "0"	VOLA	20		-1.635			-1.600	 	-1,525	Vdc		11,13	- -	16	12	4,5
Threshold Voltage	VOLA	20	_	-1.030	_	l -	-1.000	_	-1.525	Vac	ļ -	''	-	"	12	7,0
Switching Times											+1.11 V	+0.31 V	Pulse In	Pulse Out	-3.2 V	+2.0 \
(100-ohm Load)	1	1 1		l		١.	1									
Propagation Delay	1.	i _ !	_		٠.	r	١	1	}				١.	1		ء ا
Clock Input	11+2+	2 2	_	-	1.0	3.3 3.3	4.5 4.5	-	_	ns	16	-	1 1	2 2	12	4,5
	t1+2-	8		1 _	2.5	7.0	10.5		l	1 1	1	l -	1 1	2 2		l i
	11+8+	1 8 1	_	l _	2.5	7.0	10.5		1 🗔	1 1	11		1 1	1 :	1 1	
Cerry In To Cerry Out	11+8- 114-8-		_		1.6	5.0	6.9	1	ł	1 1	111 -	,	14	1 1	1 1	1 1
Carry in 18 Carry Out	114+8+	8 3	_	_	1.6	5.0	6.9				;;	1	14	1		
Set Up Time		1 1		ł		ĺ	1	1 1	1	1			1	ł	1 1	1 1
Deta Inputs	116+1+	2	_	_	3.5	-	-	l	_	1 1	1 -	11,13	1,16	2	1 .1	1 1
	118-1+	2	_	-	3.5	-	-	_	-	1 (_	11,13	1.16	1 7		1
Select Inputs		2	_	_	7.5	۱ ـ	_	_	l		_		1 .	1 1	1 1	
Sheet inputs	¹ 13+1+	2 2		1 -	7.5	_	1 7		_	1 [1 -	1 -	1,13	1 1	1 1	1 1
 .	111+1+	2		1		_			_	1 1	ľ	1	1,11	1 -1	li	1
Carry in Input	114-1+	2	-	-	3.7 -1.0	-	-	-	-	1 l·	!!	13	1,14	1 1	1 1	
M-14 T'	t1+14+	1 1	-	-	-1.0	_	-	-	-		11	13	1,14	1 1	1	
Hold Time	l	1 - 1			١	_	1				1		1	I. I	1 1	1 1
Data Inputs	11+16+	2	_	-	-1.0 -1.0	_	-	-	_	1 1	1 -	11,13	1,16	1	1 1	1 1
A. 45	11+16-				1	_	-	-	_		-	11,13	1,16	1 1 '	1 1	1 1
Select Inputs	t1+13+	2	-	-	-2.5	_	-	-	-	1 1	-	-	1,13	1 I .	1 1	1
	t1+11-	2	-	-	-2.5		-	-	-		1 -	l -	1,11	1 1	1 1	1
Carry In Input	11+14	2	-	-	-1,6	-	-	1 - 1	-	I . ₩	- 11	13	1,14	1 1 .	I I	1 1
	\$14+1+	2	-	-	3.1	-	-	- 1		l '	11 -	- 13	1,14	1 1 1	1 1	1 1
Counting Frequency	fcountup	8	-	-	125	150	- 1	1 - 1	-	MHz	11	-	1 1	1 1 1	1 1	ı
	fcountdown	8	-	-	125	150	-	-	- '	MHz	13	-	Li			ı
Rise Time	te+	i a l	_	-	1.1	2.0	3.3	- 1	-	ns	11	l -	ł I		1 1	1 1
(20% to 80%)	t2+	2	-	-	1 1	l ĩ	1 1	1 1	_	l i	1 1	-	1 1		1 1	1 1
Patt Time	100	ايةا	_	_	1 1	1	1 1	- 1	_	1 1	11:	l _	1.1		1 1 :	1
(20% to 80%)	12	1 2 1				. 1	i 1	_		i 1/	1 7		1.00	1 2		

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

SET UP AND HOLD TIMES

COUNT FREQUENCY TEST CIRCUIT

UNIVERSAL BINARY UP/DOWN COUNTER

APPLICATIONS INFORMATION

To provide more than four bits of counting capability several MC10536 counters may be cascaded. The Carry In input overrides the clock when the counter is either in the increment mode or the electroment mode of operation. This input allows several devices to be cascaded in a fully synchronous multistage counter as illustrated in Figure 1. The carry is advanced between stages as shown with eo external gating. The Carry In of the first device may be left open. The system clock is common to all devices.

The various operational modes of the counter make it useful for a wide variety of applications. If used with MECL III devices, prescalers with input toggle frequencies in excess of 300 MHz are possible. Figure 2 shows such a prescaler using the MC10536 and MC1670. Use of the MC10631 in place of the MC1670 permits 200 MHz operation.

The MC10536 may also be used as a programmable counter. The configuration of Figure 3 requires no additional gates, although maximum frequency is limited to about 50 MHz. The divider modulus is equal to the program input plus one (M = N + 1), therefore, the counter will divide by a modulus varying from 1 to 16.

A second programmable configuration is also illustrated in Figure 4. A pulse swallowing technique is used to speed the counter operation up to 110 MHz typically. The divider modulus for this figure is equal to the program input (M=N). The minimum modulus is 2 because of the pulse swallowing technique, and the modulus may vary from 2 to 15. This programmable configuration requires an additional gate, such as ½MC10509 and a flip-flop such as ½MC10531.

FIGURE 1 - 12 BIT SYNCHRONOUS COUNTER

FIGURE 2 - 300 MHz PRESCALER

FIGURE 3 - 50 MHz PROGRAMMABLE COUNTER

FIGURE 4 - 100 MHz PROGRAMMABLE COUNTER

UNIVERSAL DECADE

MC10537

SEQUENTIAL TRUTH TABLE*

			Ī	NPU.	TS				0	UTP	UTS	
S1	S2	D0	D1	D2	D3	Carry	Clock	00	Ω1	Q2	Q3	Carry Out
بالالالا	LIII	I 0 0 0	НФФФ	I 0 0 0	L	φ L L	111	HUHL	HLLL	HLLL	LIIL	L H L H
ר בררר	IIII	0 0 0 0 H	10000	00001	0000	LΗΗΦΦ	I	IIIII	Hוווו	וויוו		H H H L
III		φ φ φ	000	φ φ	φ φ		111	בדר	ILL			III

- ϕ = Don't care
- Truth table shows logic states assuming inputs vary in sequence shown from top to bottom.
- A clock H is defined as a clock input transition from a low to a high logic level.

The MC10537 is a high speed synchronous counter that can count up, count down, presst, or stop count at frequencies exceeding 100 MHz. This decade counter is useful in high speed central processors and peripheral controllers, minicomputers, high speed digital communications equipment and instrumentation. The flexibility of this device allows the designer to use one basic counter for most applications. The synchronous count feature makes the MC10537 suitable for either computers or instrumentation.

Three control lines (S1, S2, and Carry In) determine the operation mode of the counter. Lines S1 and S2 determine one of four operations; preset (program), increment (count up), decrement (count down), or hold (stop count). Note that in the preset mode a clock pulse is necessary to load the counter, and the information present on the data inputs (D0, D1, D2, and D3) will be entered into the counter. Carry Out goes low on the terminal count. The Carry Out on the MC10537 is partially decoded from Q1 and Q2 directly, so in the preset mode the condition of the Carry Out after the Clock's positive excursion will depend on the condition of Q1 and/or Q2.

When an output is not needed, it can be left open to conserve system power. (The open emitter output will require no power if left open.) The counter changes state only on the positive going edge of the clock. Any other input may change at any time except during the positive transition of the clock. The sequence for counting out of improper states is as shown in the State Diagrams.

A prescaler can be constructed using the MC10537 in conjunction with the MC10631 which will operate at over 200 MHz input freugency. A 500 MHz prescaler is possible using an MC1690 500 MHz D Flip-Flop, an MC1670 300 MHz D Flip-Flop, and the MC10537.

Case	V _{CC1}	V _{CC2}	VEE
620	Pin 1	Pin 16	Pin 8
650	Pin 5	Pin 4	Pin 12

Numbers at end of terminals are pin numbers for L package (Case 620). Numbers in parenthesis denotes pin numbers for F package (Case 650).

FUNCTION SELECT TABLE

S1	S2	Operating Mode
L	L	Preset (Program)
L	Н	Increment (Count Up)
Н	L	Decrement (Count Down)
Н	Н	Hold (Stop Count)

P_D = 625 mW typ/pkg (No Load) f_{count} = 150 MHz typ

See General Information section for packaging

L SUFFIX CERAMIC PACKAGE CASE 620

	TEST VOLTAGE VALUES										
	(Volts)										
@ Test Temperature	V _{IH max}	VIL min	VIHA min	VILA mex	VEE						
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2						
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2						
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2						

										+125°C	-0.630	-1.820	-1.000	-1.400	-5.2	
		Pin					Test Limits				TEST	OL TAGE A	PEL IED TO PL	NS LISTED B	FLOW	
ĺ	ı	Under	-56	°C		+25°C		+12	5°C							(Vcc)
Characteristic	Symbol	Test	Min	Mex	Min	Тур	Mex	Min	Mex	Unit	VIH max	VIL min	VIHA min	VILA mex	VEE	Gnd
Power Supply Drain Current	ΙĘ	8	-	165	-	120	150		165	mAdc					8	1, 16
Input Current	fin H	5,6,11,12	-	375	-	-	220	-	220	μAdc	5,6,11,12	-	-	-	8	1, 16
	1	7 9,10	_	450 415	_	_	265 245		265 245		7 9.10	_	_			
•	l .	13		495	_	_	290		290	†	13] -	_	_		†
	lin L	All	0.5		0.5			0.3		μAdc .		0			8	1,16
Logic "1"	Voн	14 ②	-1.080	-0.880	-0.930		-0.780	-0.825	-0.630	Vdc	12	7.9			8	1, 16
Output Voltage	1 .00			0.000					1		Ī		i			l
Logic "0"	VOL	14 ②	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc		7,9	-		8	1,16
Output Voltage	ļ				<u> </u>			L		L	L					
Logic "1" Threshold Voltage	VOHA	14 ②	-1.100	-	-0.950	-	-	-0.845	-	Vdc		7.9	12		8	1, 16
Logic "0" Threshold Voltage	VOLA	14 ②	-	-1.635	-	-	-1.600	-	-1.525	Vdc		7, 9	-	12	8	1, 16
Switching Times (100-ohm Load)											+1.11 V	+0.31 V	Puise in	Pulse Out	-3.2 V	+2.0 V
Propegation Delay	1	1	İ		i						ł	1	ı		1	
Clock Input	t13+14+	14	0.8	4.6	1.0	3.3	4.5	1.4	5.2	ns	12	-	13	14	8	1, 16
1	t13+14-	14	0.8	4.6 11	1.0 2.5	3.3	4.5	1.4	5.2 12.6		7	-	1 1	14	1 1	1 1
1	¹ 13+4+	1 :	2.0 2.0	;;	2.5	7.0 7.0	10.5	2.4 2.4	12.6		1 '2		l •	1 2	}	
Cerry In To Cerry Out	t13+4- t10-4-		1.6	7.1	1.6	5.0	6.9	1.9	7.6	1	,	13	10	4	1 1	
Carry III 10 Carry Oct	t10+4+	48	1.6	7.1	1.6	5.0	6.9	1.9	7.6		'n	13	10	4		1 1
Set Up Time	1	1		1	1	ĺ	1			i i	1	1	1	1	1 .1	1 1
Data Inputs	112+13+	14	-	-	3.5	-	-		-		-	7.9	12, 13	14		1 1
	¹ 12-13+	14	-	-	3.5	-	-		-		-	7,9	12, 13	1 1	1 1	1 1
Select Inputs	19+13+	14		-	7.5 7.5] -		-] [-		9,13 7,13	1 1		1 1
Carry In Input	17+13+	14 14		_	3.7	_	_	_	_	1 1	7	9	10, 13	1 1		1 1
Carry in imput	t10-13+ t13+10+	14	_	_	-1.0		_	_		1 1	'n	-	10, 13	1 1	1	1
Hold Time	10.10.	1		1	ł						ľ			1 1		
Data Inputs	113+12+	14	-	-	-1.0	-		-	-	1	-	7,9	12, 13	1 1		1
	t13+12-	14	-	-	-1.0	-	-	-	-		-	7, 9	12, 13	1 1		1 1
Select Inputs	t13+9+	14	-	-	-2.5 -2.5	_	_	-	1 -	1 1		-	9,13 7,13		.	
	t13+7+	1	l	l	-2.5 -1.6	1	1	l .	l .	1 1		1	1	1 1		1 1
Carry In Input	t13+10- t10+13+	14	_	_	3.1	i -	_	-	_	1	7	9	10, 13	1		
Counting Frequency	fcountup	4	115	_	125	150	_	115		MHz	,		13	1 1		
	countdown	4	115		125	150	_	115	-	MHz	é	ļ <u>,</u>	Ιï	1		1
Rise Time	14+	4	0.9	3.3	1.1	2.0	3.3	1.2	3.7	ns	,	_	1 [1 4		1 1
(20% to 80%)	114+	14	ĺ	Ιí	1 1	l 1	l ı	l i	l i	1 1	Ιï	-	1 1	14		
Fell Time	14	4		١ .	1 4	1 - 1		1 1	1 1	1	1 1	- 1	1 1	4	1 1	1 1
(20% to 20%)	- 1144	14		J	1 7		L T.		1 1	L .		l	L	14	1	j V

3-304

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs or outputs are tested in the same manner.

F SUFFIX CERAMIC PACKAGE CASE 650

		TEST '	VOLTAGE VA	LUES	
			(Volts)		
@ Test . Temperature	VIH max	·VIL min	VIHA min	VILA mex	VEE
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2
+125°C	-0.630	-1 820	-1.000	-1.400	~5.2

										+125°C	-0,630	-1.820	-1.000	-1.400	~5.2		Ţ
		Pin				MC 10537F	Test Limits				TEST	OLTAGE A	PLIED TO PI	NO LICTED B	ELOW.		ı
	1	Under	-68	o°C		+25°C		+12	5°C							(VCC)	1
Characteristic	Symbol	Test	Min	Mex	Min	Тур	Mex	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd	1
Power Supply Drain Current	1E	12	-	165		120	150		165	mAdc	i		-		12	4,5	ı
Input Current	lin H	9,10,15,16	-	375		-	220	-	220	#Adc	9,10,15,16	-	-		12	4,5	7
•	1	11 13,14	_	450 415			265 245		265 245		11 13,14	_	_	_		1	١
	1	13,14	_	495		_	290	_	290		13;14	~	-	- :	۱ ۱		Т
	lin L	Att	0.5	_	0.5	-	-	0.3	-	#Adc		0			12	4,5	1
Logic "1" Output Voltage	VOH	2 🕏	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	16	11,13		-	12	4,5	1
Logic "0" Output Voltage	VOL	2 ②	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	_	11,13	-	-	12	4,5]
Logic "1." Threshold Voltage	VOHA	2 ②	-1.100	-	-0.950	-		-0.845	-	Vdc	-	11,13	16	-	12	4,5]
Logic "0" Threshold Voltage	VOLA	2 ②	1	-1.636	-	-	-1.600		-1.525	Vdc	-	11,13	-	18	12	4,5]
Switching Times (100-ohm Load),											+1.11 V	+0.31 V	Pulse In	Pulse Out	-3.2 V	+2.0 V	7
Propagation Delay		1 . 1			1	1	1	ļ	1	1	1	1	1)		· .	١
Clock Input	t1+2+ t1+2-	2 2	_	Ξ.	1.0	3.3	4.5 4.5			ns	16		1 1	2 2	12	4,5	1
	t1+8+	8	_	-	2.5	7.0	10.5	_	-		11	_		á			1
	t1+8-	8	-	-	2.5	7.0	10.5	-	-	1 1	11	-	, ,	1 1	1 1	1 1	1
Carry In To Carry Out	t14-8- t14+8+	8 3	-	-	1.6	5.0 5.0	6.9 6.9	-	-	1 1	11	;	14		1 1		1
	1	ا 🖁	-	-	١٠	3.0	0.3	-	-		11	'	i '*		1 1	1 1	١
Set Up Time Data Inputs	116+1+	2		_	3.5	_	l _	_	l _	l I .] _	11,13	1,16	,	1 1		١
Cotto Import	116-1+	2 .	Ī.	-	3.5	۱ -	-		_		-	11,13	1,16	l ī	i i	1 1	1
Select Inputs	t13+1+	2	-	-	7.5	-	-	_	-	}	-	-	1,13	1			1
	t11+1+	2	-		7.5.	-	-	-	-	1 1	ì		1,11	1 1	1 1	1	1
Carry in Input	114-1+ 11+14+	2 2	-	-	3.7 -1.0	-	-	-	-	1 1	1 11	13	1,14	1 1	1 1	1 1	1
Hold Time	117147	1 1	· -	_	-1.0	-	-		-		l "	-	1,14			1 1	-
Data Inputs	t1+16+	2	_	_	-1.0	-	_	-	_		_	11,13	1,16		1 1	1 1	١
	t1+16-	2	-	-	-1.0	-	-	· -	-		-	11,13	1,16	1	1	1 1	١
Select Inputs	11+13+	2	-	-	-2.5	-	-	-	-	1 1	-	-	1,13		1 1	1 1	ł
	11+11+	2		-	-2.5	-	-	-	-] -	-	1,11	1 1	í í	1	1
Carry In Input	11+14- 114+1+	2 2	-	-	-1.6 3.1	-	-	_	-	·	111	13 13	1,14				1
Counting Frequency	fcountup	1 8	_		125	150	1 :	1 -	_	MHz	;;	13	1 1			1 1	ı
- requestry	countdown	8.	Ξ	_	125	150		_	_	MHz	13	-	l i			1	-
Rise Time	t8+	8	_	-	1.1	2.0	3.3	_	_	ns	11	_		8			ł
(20% to 80%)	t2+	2	-	-	1 1		1 1	-	-		1 1	-		2			1
Fall Time	¹8-	8	-	-	۱ ↓	1 .		-	-		1 1	-	1	8	1 1	1 1	1
(20% to 80%)	t2-	2	_		, v		1 1	-	-	' '	1 '	l' -		2	1	(T	

COUNT FREQUENCY TEST CIRCUIT

Break for and build past to be to superior of the formal o

ž

ŝ.

9

3

Š

in the contract of the second of the second

Ä

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

FOUR-BIT UNIVERSAL SHIFT REGISTER

MC10541

TRUTH TABLE

	SELI	ECT		OUTPUTS					
ĺ	S1	S2	OPERATING MODE	Q0 _{n+1}	Q1 _{n+1}	Q2 _{n+1}	Q3 _{n+1}		
į	-	L	Parallel Entry	DO	D1	D2	D3		
	_	н	Shift Right*	Q1 _n .	Q2 _n	Q3 _n	ρR		
į	H	L	Shift Left*	DL	Q0 _n	Q1 _n	02,		
ľ	Н	н	Stop Shift	00 _n	Q1 _n	Q2 _n	Q3 _n		

*Outputs as exist after pulse appears at "C" input with input condition

Numbers at end of terminals are pin numbers for L package (Case 620).

Numbers in parenthesis denotes pin numbers for F package (Case 650).

The MC10541 is a four-bit universal shift register which performs shift left, or shift right, serial/parallel in, and serial/parallel out operations with no external gating. Inputs S1 and \$2 control the four possible operations of the register without external gating of the clock. The flip-flops shift information on the positive edge of the clock. The four operations are stop shift, shift left, shift right, and parallel entry of data. The other six inputs are all data type inputs; four for parallel entry data, and one for shifting in from the left (DL) and one for shifting in from the right (DR). All four outputs are capable of driving 100 ohm lines.

When the register is used for serial output only, the unused emitter follower outputs can be left open.

 $P_D = 425 \text{ mW typ/pkg (No Load)}$ $f_{Shift} = 150 \text{ MHz typ}$

Case	Voc1	V _{CC2}	VEE
620	Pin 1	Pin 16	Pin 8
650	Pin 5	Pin 4	Pin 12

LOGIC DIAGRAM

See General Information section for packaging.

Each full temperature range MECL 10,000 series circuit has been designed to meet the de specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

L SUFFIX CERAMIC PACKAGE **CASE 620**

	TEST VOLTAGE VALUES													
	(Volts)													
@ Test Temperature	VIHmax	VILmin	VIHAmin	VILAmax	VEE									
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2									
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2									
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2									

										125°C	-0.630	-1.020	-1.000	-1.400	-b.2	} ∣			
		Pin		MC10541L Test Limits				TE		TAGE APP			1	j	, 1	1			
		Under	-55	°C	L	+25°C		+12	5°C				STED BEL						(Vcc)
Characteristic	Symbol	Test	,Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	P1	P2	Р3	Gnd
Power Supply Drain Current	ΙE	8		110	-	-	100	_	110	mAdc		-			8	-	-	-	1,16
Input Current	linH	5	-	375	-	-	220	-	220	μAdç	5	-	-	-	8	-	-	· - !	1,16
	1	6		375		-	220	-	220		6	-	-	- 1		-	- 1	- 1	1 1
	1	7	_	415 450	-	_	245 265	-	245 265	₩	1 7	_	_	_	•	_	_	_	♦
		12		450	0.5	 -	205	0.3		μAdc	4,5,6,7,9	12			-8	 		-	1.16
	linL	12	0,5		0.5	_		0.3		μAdc	10,11,13		_	_			-		1,16
Lògie "1" Output Voltage	Voн	3	-1:080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	6	_	-	_	8	.4	-		1,16
Logic "0" Output Voltage	VOL	3	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	-		_	_	8	4	-	-	1,16
Lógic "1" Threshold Voltage	VQHA	3	-1.100		-0.950	_	-	-0.845		V _d c,	-		6		8	4	-	_	1,16
	[0		1	-		-	- 1				6	4	-	7		4	-	-	
		🔻	. ♦	_	♦	_		♦	_ `	♦	6	9		_	I ♦	-	-	4	∳ ′
Logic "0" Threshold Voltage	VOLA	3 ·	-	-1.635	-	-	-1.600	-	-1.525	Vdc		-	-	6	8	4	-	_	1,16
	0		'-		-	-	11.	-	1 1	1 1	-	8		7		4	-	-	H
•		♦	-	♦	· ~	·	♦	_	₩	۱ ♦	- 6	9	1 -	_	•		4	4	•
Switching Times (100 Ω Load)	1														3.2 V	1			+2.0 V
Propagation Delay	14+3+	3	-	-	1.0	2.9	3.8	_	-	ns	0	-	-	-	8	1 -	- 1	_ `	1,16
Setup Time (tsetup)	112+4+	14	-	-	2.5	-	-	-	-	1 1	<u>-</u>	· -	-	- "	11	-	- 1	-	1 1
	t12-4+	1 1	-	-	2.5	-	-	-	-	1 1	<u> </u>		-	-		-	-	-	1 1
	¹ 10+4+	1 1	-	-	5.0 5.0	-	-	-		1 1	-	1 -	-	1 -	l i	-	_	_	1 1
11-11 -1 1-11-1	110-4+	1 1	_	i -		_	_	-	_	1 1	_	1 -	-	_		_	_	-	1 1
Hold Time (thold)	¹ 4+12+		_	_	1.5 1.5	_	_	_	-	1	1 -	-	1 -	1 -		1.	-	-	1 1
	14+10+]]	_	_	1.0	_	_	_	_	1 1	_			1		1 -	l _	_	1 1.
	14+10-	♦	i - '	-	1.0	-	-	-	-		-	-	-	-		-	-	-	
Rise Time (20% to 80%)	t3+	3	_	_	1.1	1.7	3.3	-	-		0	-	-	-	Ш	-	-	-	
Fall Time (20% to 80%)	t3_	3	_	-	1.1	1.7	3.3	-	-	♦	0	-	-	-		-	-	-	ΙŢ
Shift Frequency	fShift	_	-	-	150	1 –	_	_	-	MHz	3	-	-	-	, ▼	-	-	-	▼

- 1) These tests to be performed in sequence as shown.
- See switching time test circuit for test procedures.

 See shift frequency test circuit for test procedures.

 Reset to zero before performing test.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear form is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

TEST VOLTAGE VALUES

F SUFFIX CERAMIC PACKAGE **CASE 650**

		(Volts) Nax V _{ILmin} V _{IHAmin} V _{ILAmax} V _{EE} 80 -1.920 -1.255 -1.510 -5.2 80 -1.850 -1.105 -1.476 -5.2										
@ Test Temperature	VIHmax	VILmin	VIHAmin	VILAmex	VEE							
-66°C	-0.880	-1.920	-1.255	-1.510	-5.2							
+26°C	-0.780	-1.850	-1.105	-1.475	-5.2							
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2							

	T		MC10641F Test Limits							TEST VOLTAGE APPLIED TO				<u> </u>	1			1 1	
	1	Pin Under	-51	5°C		+25°C		+12	25°C		L``		STED BEL			1 1			(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmex	VEE	P1	P2	P3	Gnd
Power Supply Drain Current	1E	12	_	110	-	_	100	-	110	mAdc	-	-		-	12	-			4,5
Input Current	linH	9	_	365	_	_	220	-	220	μAdc	.9	-		-	12	-	- 1		4,5
		10	-	365	-	-	220	-	220		10	-	-	-	Н	- 1	-	-	
	1	11	-	420	-	-	245	-	245		11	-	-	- 1	۱ ♦	-	-	-	
		8		455	L		265		265	<u> </u>	8		<u> </u>		<u> </u>	-		-	
	linL	16	0.5	-	0.5	_		0.3	_		8,9,10,11, 13,14,15,1	16	_	-	12	_	_	-	4,5
Logic "1" Output Voltage	∨он	7	-1.080	-0.880	-0.930		-0.780	-0.825	-0.630	Vdc	10			-	12	8		-	4,5
Logic "0" Output Voltage	VOL	7	-1.920	-1.655	-1.850	_	-1.620	-1.820	-1.545	Vdc		_		_	12	8	-	-	4,5
Logic "1" Threshold Voltage	VQHA	7	-1.100		-0.950		-	-0.845	-	Vdc	-	=	10		12	8		-	4.5
	0			-	ll	-	-		-		10	8	-	11	11	8		- 1	
	j	♦	🕴	-	♦	_	_		_	♦	10	<u> </u>	_	_	₩	_	8 -	8	♦
Logic "0" Threshold Voltage	VOLA	7		-1.635	-	-	-1.600	-	-1.525	Vdc	-			10	12	8	_	-	4,5
	V _{OL} A		-	1 1 .	-	l –	1 1	-		1 1	-	8	-	11	11	8	- '	-	
		♦	-	١ ♦	-	<u> </u>] =		l ↓	10	(5)	_	_	↓	-	8	8	•
Switching Times (100 Ω Load)		<u> </u>		<u> </u>	- -	 - -		 		- '-	10	-			3.2 V	 -		-	+2.0 V
Propagation Delay	t8+7+	,	_	_	1.0	2.9	3.8	_	_	ns	2	_	_	_	12	1 _ !	_	_	4.5
Setup Time (t _{setup)}	116+8+	,	_	_	2.5		3.6	_	_	l ï	ے ا	_	_	_ :	l ï	_	_	'	1 7
comp (mis (isetup)	116-8+	lī	-	-	2.5	_	_	-	_	1 1	_	_	_	_	11	-	-	-	11
	t14+8+	1 1	-	-	5.0	-	-	_			-	-	-	_	Н	-	- 1	-	1 1
	t14-8+	1 1	-	-	5.0	-	-	-	-	1. 1	-	-	-	-	li	-	- 1	-	1 1
Hold Time (thold)	¹ 8+16+	1 1	l -	-	1.5	-	1 –	-	-	1 1	- 1	-	-		11	- 1	-	-	111
	¹ 8+16-		-	-	1.5	-	-	-	-		1 -	-	-	-	11	-	-	-	
	^t 8+14+	1 1	-	-	1.0	-	-	-	-	1	-	-	-	-	1 1	-	- 1	-	1 1
	¹ 8+14-	. ▼	-	i -	1.0	-		-	-	1 1	-	-	_	_		-	-	-	
Rise Time (20% to 80%)	t7+	7	-		1.1	1.7	3.3	- 1	-	ΙŢ	0	- 1	-	-		-	-	-	
Fall Time (20% to 80%)	t7-	7	-	·-	1.1	1.7	3.3	-	-	▼	2	-	-	-	♦	-	-	-	↓
Shift Frequency	fShift		l		150		-			MHz	3				L. <u>"</u>	L-			. ▼

¹ These tests to be performed in sequence as shown.

See switching time test groupt for test procedures.
 See shift frequency test dirput for test procedures.
 Reset to zero before perference.

Rest to one before performing With &

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

SHIFT FREQUENCY TEST CIRCUIT

12-BIT PARITY GENERATOR-CHECKER

MC10560

Numbers at end of terminals are pin numbers for L package (Case 620). Numbers in parenthesis denotes pin numbers for F package (Case 650). The MC10560 consists of nine EXCLUSIVE-OR gates in a single package, internally connected to provide odd parity checking or generation. Output goes high when an odd number of inputs are high. Unconnected inputs are pulled to low logic levels allowing parity detection and generation for less than 12 bits.

INPUT	OUTPUT
Sum of High Level Inputs	Pin 2(6)
Even	Low
Odd	High

 $P_D = 320$ mW typ/pkg (No Load) $t_{pd} = 4.0$ ns typ

Case	V _{CC1}	V _{CC2}	VEE
620	Pin 1	Pin 16	Pin 8
650	Pin 5	Pin 4	Pin 12

APPLICATION INFORMATION

The MC10560 is useful in any system requiring high speed detection or generation of parity. The MC10560 can generate parity for twelve bits in four ns. A large number of functions on one chip reduces package count and saves system power. As shown in Figure 1, by using the MC10560's and one MC10507 parity can be checked or generated on 48 bits in 9.5 ns, or 7.5 ns if the MC10507 is replaced by a MECL III MC1672 or MC1674, although these MECL III parts are not guaranteed over the full temperature range.

If parity detection or generation is required for less than twelve bits, the unnecessary inputs can be left open. Input pulldown resistors will insure that the unused inputs are pulled to the low logic level.

See General Information section for packaging and maximum ratings

L SUFFIX CERAMIC PACKAGE CASE 620

Ī		TEST VO	TAGE VALUE	ES									
⊕ Test	(Volts)												
Temperature	VIHmex	VILmin	VIHAmin	VILAmex	VEE								
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2								
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2								
+125°C	-0.630	-1.820	-1,000	-1.400	-5.2								

										+125 C	-0.630	-1.020	-1.000	-1.400	-5.2	ı
		Pin			M)L Test Li				TEST V	OLTAGE APPLIE	D TO PINS I	ISTED RELO	w:	ı
		Under	-5	5°C		+25°C		+12	eo°C	1						(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	V _{IHAmin}	VILAmex	VEE	Gnel
Power Supply Drain Current	Ē	8		86		62	78	-	86	mAdc	4,5,9,10,13,14	_	=		8	1,16
Input Current	linH	3 4	-	450 375	-	-	265 220	-	265 220	μAdc μAdc	3 4	-	_	_	8 8	1,16 1,16
	linL	3	0.5	-	0.5	-	-	0.3	-	μAdc	-	3	_		8	1,16
Logic "1" Output Voltage	∨он	2	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	3	4,5,6,7,9,10, 11,12,13,14,15	-	_	8	1,16
Logic "0" Output Voltage	VOL	2	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	-	3,4,5,6,7,9,10, 11,12,13,14,15	-	-	8	1,16
Logic "1" Threshold Voltage	VOHA	2	-1.100	_	-0.950	-	-	-0.845	_	Vdc	_	4,5,6,7,9,10,11, 12,13,14,15	3	-	8	1,16
Logic "0" Threshold Voltage	VOLA	2	-	-1.635	-	-	-1.600	-	-1.525	Vdc	-	3,5,6,7,9,10,11 12,13,14,15	_	4	8	1,16
Switching Times (100-ohm load)														-		
Propagation Delay	1		İ		ĺ		1	1		l	+1.11 V		Pulse in	Pulse Out	-3.2 V	+2.0 V
Rise Time	t3+2+ t3+2- t3-2- t3-2+ t4+2+ t4+2- t4-2- t4-2+	2	1.6	7.5	2.0	4.0	7.5	1.4	7.5	ns	- 4 - 4 - 3 - 3	- - - - - - -	3	2	8	1,16
(20% to 80%) Fall Time	t ₂₊		1.0	3.4	1.1	2.0	3.3	0.9	3.4		-	-	3			
(20% to 80%)	t ₂₋	T	1.0	3.4	1.1	2.0	3.3	0.9	3.4	▼	-	<u> </u>	3	1	7	▼

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for one set of conditions.

1		TEST VOLTAGE VALUES												
● Test		(Volts)												
Temperature	VIHmex	VILmin	VIHAmin	VILAmex .	VEE									
-65°C	-0.880	-1.920	-1.255	-1.510	-5.2									
+25°C	-0.780	-1.850	-1.106	-1.475	-5.2									
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2									
	TEST V	NI TAGE APPLI	ED TO BINS I	ISTED BELO										

	1 1	Pin			M	C10560	F Test Li	mits			TEST VOLTAGE APPLIED TO PINS LISTED BELOW:					
	1 1	Under	-5	5°C		+25°C		+12	5°C		1631 V	OCTAGE AFFEIR	DIOTING	.181 ED BECO		(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	Villmax	VILmin	VIHAmin	VILAmex	VEE	Gnd
Power Supply Drain Current	ΙE	12	_	86	-	62	78		86	mAdc	1,2,8,9,13,14	_		-	12	4,5
Input Current	linH	7 8	-	450 375	-	-	265 220	-	285 220	μAdc μAdc	7 8	_	_	_	12 12	4,5 4,5
	linL	7	0.5		0.5	-	-	0.3		μAdc		7		-	12	4,5
Logic "1" Output Voltage	VOH	6	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	7	1,2,3,8,9,10, 11,13,14,15,16	-	-	12	4,5
Logic "0" Output Voltage	VOL	6	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	-	1,2,3,7,8,9,10, 11,13,14,15,16	-	_	12	4,5
Logic "1" Threshold Voltage	VOHA	6	-1.100	-	-0.950	-	-	-0.845	-	Vdc	-	1,2,3,8,9,10, 11,13,14,15,16	7	-	12	4,5
Logic "0" Threshold Voltage	VOLA	6	_	-1.635	_	-	-1.600	-	-1.525	Vdc	-	1,2,3,7,9,10, 11,13,14,15,16	-	8	12	4,5
Switching Times (100-ohm load) Propagation Delay											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
	17+6+ 17+6- 17-6- 17-6+ 18+6+ 18-6-	6			2.0	4.0	7.5		111111	ns	- 8 - 8 - 7 - 7		7 8 	6	12	4,5
Rise Time (20% to 80%)	¹ 8-6+		-	-	1.1	2.0	3.3	_	-		-	-	7			
Fall Time (20%)	3 6 20	ite di di nec	_	-	1.1	2.0	3.3	_	-	•		_	7		100	•

Gern

MC10561

POSITIVE LOGIC

E0 (6) 2
E1 (3) 15

A (11) 7

B (13) 9

A (11) 7

B (13) 9

C (2) 14

Numbers at end of terminals are pin numbers for L package (Case 620).

Numbers in parenthesis denotes pin numbers for F package (Case 650).

The MC10561 is designed to decode a three bit input word to a one of eight line output. The selected output will be low while all other outputs will be high. The enable inputs, when either or both are high, force all outputs high.

 P_{D} = 315 mW typ/pkg (No Load) t_{pd} = 4.0 ns typ

Case	V _{CC1}	V _{CC2}	VEE
620	Pin 1	Pin 16	Pin 8
650	Pin 5	Pin 4	Pin 12

TRUTH TABLE

	BLE UTS		PU	TS	+ , 										
ĒΊ	ĒO	С	В	Α	œ	Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7									
L	L	د	ᅵᅬ	г	L	н	н	н	н	H	н	Н			
L	L	L	L	Н	н	L	H	н	н	н	н	н			
	L	L	н	L	н	н	L	н	н	н	н	н			
	L	L	н.	н	н	н	н	L	н	н	н	н			
L	L	н	L	L	н	H	н	н	L	н	н	н			
니니	L	н	L	н	н	н	н	н	н	L	н	н			
	L	н	н	L	н	н	н	н	н	н	L	н			
	L	н	н	н	н	н	н	н	н	н	н	L			
H	φ	φ	φ	φ	н	н	н	н	н	н	н	н			
ø	н	φ	Ф	φ	Н	Ξ	Н	H	н	н	н	Н			

φ = Don't Care

See General Information section for packaging.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -20 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

L SUFFIX CERAMIC PACKAGE CASE 620

		TEST V	OLTAGE VA	LUES	
			(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2
+125 ⁰ C	-0.630	-1.820	-1.000	-1.400	-5.2

										T120 C	-0.000	-1.620	-1.000	-1.400	-5.2	j
		Pin			M	C10561L	Test Limit	,			TEST V	N TAGE AP	PI IED TO PIN	S LISTED BEL	OW:	ĺ
		Under	-59	5°C		+25°C		+125°C			7207 7027 702 707 707 707 707 707 707 70					(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8		84		61	76	-	84	mAdc	2,7,9,14,15	-	_	-	8	1,16
Input Current	linH	14		374	-	_	220		220	μAdc	14	-	-	-	8	1,16
	linL	14	0.5	_	0.5	-	-	0.3	-	μAdc		14		_	8	1,16
Logic "1"	VOH	13	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	2	-			8	1,16
Output Voltage	<u> </u>	13	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	15		l – –		8	1,16
Logic "0" Output Voltage	VOL	13	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	14	~	_	-	8	1,16
Logic "1"	VOHA	13	-1.100	_	-0.950		T	-0.845	_	Vdc	-		2	-	8	1,16
Threshold Voltage		13	-1.100	-	-0.950	-	-	-0.845		Vdc	_	·	15	-	8	1,16
Logic "0" Threshold Voltage	VOLA	13		-1.635	-	-	-1.600	_	-1.525	Vdc		-	14	_	8	1,16
Switching Times																
(100 Ω Load)		l	ļ		ł	i	1						Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t14+13-	13	-	-	1.5	4.0	6.0	-	_	ns	- 1	-	14	13	8	1,16
	t14-13+	13	-	-	1.5	4.0	6.0	-	-	1	-	-	i i	1	1 1	1
Rise Time (20% to 80%)	t13+	13	-	-	1.1	2.0	3.3	-	-	1 1	-	_	1 1			
Fall Time (20% to 80%)	t13-	13	-	-	1.1	2.0	3.3	-	-	🔻	-	-	₹	1	🔻	▼

Each full temperature range MECL 10,000 series circujt has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greeter than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

		TEST VOLTAGE VALUES												
			(Volts)											
Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE									
-66°C	-0.880	-1.920	-1.255	-1.510	-5.2									
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2									
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2									

		· · · · · · · · · · · · · · · · · · ·				0105015	Test Limit										
	l	Pin			- Terr		1 est Limit				TEST V	TEST VOLTAGE APPLIED TO PINS LISTED BELOW:				1 1	
	l	Under	-60	5°C		+25°C		+1;	25°C		L		· · · · · · · · · · · · · · · · · · ·			(Vcc)	
Characteristic	Symbol	Test	Min	Masc	Min	Typ	Max	Min	Max	Unit	VIH mex	VIL min	VIHA min	VILA max	VEE	Gnd	
Power Supply Drain Current	1E	12	-	84	-	61	76	_	84	mAdc	2,3,6,11,13	_		_	12	4,5	
Input Current	linH	2	-	374	-	-	220	_	220	μAdc	2	_			12	4,5	
	linL	2	0.5	-	0.5	_	-	0.3	_	μAdc	-	2		_	12	4,5	
Logic "1"	VOH	1	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	6	_	_	_	12	4,5	
Output Voltage		1	-1.080	-0.880	-0.930	_	-0.780	-0.825	-0.630	Vdc	3		L		12	4,5	
Logic "0" Output Voltage	VOL	1	-1.920	-1.655	-1.850		-1.620	-1.820	-1.545	Vdc	2			-	12	4,5	
Logic "1"	VOHA	1	-1.100	-	-0.950	-	-	-0.845	-	Vdc	_	-	6	_	12	4,5	
Threshold Voltage		1	-1.100		-0.950		L -	-0.845		Vdc	_		3		12	4,5	
Logic "0" Threshold Voltage	VOLA	1	_	-1.635	-	-	-1.600	-	-1.525	Vdc		_	2		12	4,5	
Switching Times																	
(100 Ω Load)	ł					1	l	Ī	1	l	1		Pulse in	Pulse Out	-3.2 V	+2.0 V	
Propagation Delay	t2+1-	1	-	-	1.5	4.0	6.0	-	-	ns	-	_	2	1	12	4,5	
	12-1+	1	-	-	1.5	4.0	6.0	-	-	1 1		-	1 1	1 1	1 1	1	
Rice Time (20% to 80%)	t1+	1	l –	-	1.1	2.0	3.3	-	-		-	_	1 1	1 1			
Fall Time (20% to 80%)	t1-	1	_	-	1.1	2.0	3.3	-	ł –	\ \	-	-	▼	♥	▼	🔻	

APPLICATION INFORMATION

The MC10561 is a true parallel decoder. No series gating is used internally, eliminating unequal delay times found in other decoders. This design provides the identical 4 ns delay from any address or enable input to any output.

A complete mux/demux operation on 16 bits for data distribution is illustrated in Figure 1. This system, using the MC10536 control counters, has the capability of incrementing, decrementing or holding data channels. When both S0 and S1 are low, the index counters reset, thus initializing both the mux and demux units. The four binary outputs of the counter are buffered by the MC10501s to send twisted-pair select data to the multiplexer/demultiplexer units.

MC10562

The MC10562 is designed to convert three lines of input data to a one-of-eight output. The selected output will be high while all other outputs are low. The enable inputs, when either or both are high, force all outputs low.

 $P_D = 315 \text{ ns typ/pkg (No Load)}$ $t_{pd} = 4.0 \text{ ns typ}$

Case	V _{CC1}	V _{CC2}	VEE
620	Pin 1	Pin 16	Pin 8
650	Pin 5	Pin 4	Pin 12

TRUTH TABLE

	IN	IPU'	TS .					OUTPUTS						
ĒΟ	Ē	С	В	4	Q0	Q1	a	QЗ	Q4	Q5	Q6	Ω7		
L	٦	L	٦	L	Н	L	L	L	L	L	L	٦		
<u>ا</u> ا	L	L	L	н	L.	н.	L	L	L	L	L	L		
L	L	L	н	L	L	ㄴ	н	L	L	L	L	L		
L	L	L	н	н	L	L	L	н.	L	L	L	L		
L	L	н	L	L	L	ㄴ	L	L	н	L	L	L		
L	니	н	L	н	L	L	L	L	L	н	L	L		
ᆫ	L	н	н	L	L	L	L	L	L	L	н	L		
L	L	н	н	н	L.	L	L	L	L	L	L	н		
н	φ	Φ	φ	φ	L	L	L	L	L	L	L	L		
•	Н	φ	φ	φ	٦	۲	L	٦	L	L	L	L		

 ϕ = Don't Care

See General Information section for packaging.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

L SUFFIX CERAMIC PACKAGE CASE 620

	TEST VOLTAGE VALUES											
@Test Temperature	V _{IH mex}	V _{IL min}	VIHA min	VILA max	VEE							
-65°C	-0.880	-1.920	-1.255	-1.510	-5.2							
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2							
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2							

											1 -0.000	1.020			U.E.	
						MC1056	2L Test Lic	mits				TEST VOLTAGE APPLIED TO PINS LISTED BELOW:				Ì
		Pin Under	-51	B _O C		+25°C		+12	5°C		LESI VI	ULIAGE AM	FLIED TO PINS LISTED BELOW:			(VCC)
Cheracteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8	-	84	-	. 61	76	-	84	mAdc .		-	-	-	8	1,16
Input Current	linH	14	_	-	+	-	220			μAdc	14	-			8	1,16
	linL	14	0.5	-	0.5	-	-	0.3	-	μAdc	-	14			8	1,16
Logic "1" Output Voltage	VOH	13	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	14	_	-	-	8	1,16
Logic "0" Output Voltage	VOL	13 13	-1.920 -1.920	-1.655 -1.655	-1.850 -1.850	-	-1.620 -1.620	-1.820 -1.820	-1.545 -1.545	Vdc Vdc	2 15	=	_	- -,	8 8	1,16 1,16
Logic "1" Threshold Voltage	VOHA	13	-1.100	-	-0.950	-	_	-0.845	-	Vdc	-	-	14		8	1,16
Logic "0" Threshold Voltage	VOLA	13 13	-	-1.635 -1.635	-	_	-1.600 -1.600	_	-1.525 -1.525	Vdc Vdc	-	_	2 15	_	8	1,16 1,16
Switching Times (100-ohm load)						·							Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	^t 14+13+ ^t 14-13-	13 13	_ _	- -	1.5 1.5	4.0 4.0	6.0 6.0	- -	- -	ns	_	-	14	13	8	1,16
Rise Time (20% to 80%)	t+	13	Ξ.	-	1.1	2.0	3.3	-	_		-	-				
Fall Time (20% to 80%)	t-	13	-	_	1.1	2.0	3.3	-	-	*	-	-	•	•	*	*

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

F SUFFIX CERAMIC PACKAGE CASE 650

	TEST VOLTAGE VALUES											
			(Volts)									
@Test Temperature	V _{IH max}	VIL min	VIHA min	VILA mex	٧EE							
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2							
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2							
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2							

						MC1056	2F Test Lir	nits								
		Pin Under	-50	5°C		+25°C		+12	5°C		TEST V	DLTAGE API	PLIED TO PI	NS LISTED	BELOW:	(VCC)
Cheracteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH mex	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	İΕ	12	-	84	-	61	76		84	mAdc	-	-		-	12	4,5
Input Current	linH	2	-	-	-	-	220	-	-	μAdc	2	_	_		12	4,5
	linL	2	0.5		0.5	_	-	0.3		μAdc	-	2	-	_	12	4,5
Logic "1" Output Voltage	Voн	1	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	2	-	_	-	12	4,5
Logic "0" Output Voltage	VOL	1	-1.920 -1.920	-1.655 -1.655	-1.850 -1.850	-	-1.620 -1.620	-1.820 -1.820	-1.545 -1.545	Vdc Vdc	6 3	=	=	-	12 12	4,5 4,5
Logic "1" Threshold Voltage	VOHA	1	-1.100	-	-0.950	-	-	-0.845	-	Vdc	-		2	-	12	4,5
L'ogic "0" Threshold Voltage	VOLA	1	-	-1.635 -1.635	-	_	-1.600 -1.600	-	-1.525 -1.525	Vdc Vdc	-	-	6 3	_	12 12	4,5 4,5
Switching Times (100-ohm load)													Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t2+1+ t2-1-	1	-	Ξ	1.5 1.5	4.0 4.0	6.0 6.0	-	-	ns 	-	-	2	1	12	4,5
Rise Time (20% to 80%)	t+	1	-	-	1.1	2.0	3.3	-			-					
Fall Time (20% to 80%)	t_	1	-	-	1.1	2.0	3.3	_	.3	•	-	-	•	*	*	*

The MC10562 is a true parallel decoder. No series gating is used internally, eliminating unequal delay times found in other decoders.

APPLICATION INFORMATION

This device is ideally suited for demultiplexer applications as shown in Figure 1. One of the two enable inputs is used as the data input, while the other is used as a data enable input.

A complete mux/demux operation on 16 bits for data distribution is illustrated in Figure 2. This system, using the MC10536 control counters, has the capability of incrementing, decrementing or holding data channels. When both S0 and S1 are low, the index counters reset, thus initializing both the mux and demux units. Control information via twisted pair lines is sent through MC10501 gates to the MC10515 line receivers to provide select data to the multiplexer/demultiplexer units.

3-325

MC10564

TRUTH TABLE

	ADD	DATA ROUTED		
ENABLE	С	В	Α	FROM:
L L	L L L	LHH	LHLH	X0 X1 X2 X3
	1111	L H H	HLH	X4 X5 X6 X7
н	φ	φ	φ	L

φ = Don't Care

The MC10564 is a high speed, low power MECL eight-channel data selector which routes data present at one-of-eight inputs to the output. The data is routed according to the three bit code present on the address inputs. An enable input is provided for easy bit expansion.

P_D = 310 mW typ/pkg (No Load) t_{pd} = 3.0 ns typ

POSITIVE LOGIC

See General Information section for packaging and maximum ratings.

and the explanation of the property of the pro

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs are tested in the same manner.

		Pin			A	AC10664	L Test Lim	its					1 150 TO 014	C 4 40750 DE		
	l	Under	-68	°C		+25°C		+12	50€		I EST VC	JL TAGE APP	LIED TO PIK	IS LISTED BE	LON	(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Mex	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8	_	83	_	60	75		83	mAdc	-	_	-	-	8	1,16
Input Current	lin H	4		455	-	-	265	-	265	μAdc	2	_	=	-	- 8	1,16
	lin L	4	0.5	_	0.5	-	-	0.3	_	μAdc	-	4			8	1,16
Logic "1" Output Voltage	Voн	15	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	4,9	2,7,10	-	-	8	1,16
Logic "0" Output Voltage	VOL	15	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.546	Vdc	9	2,4,7,10	_	-	8	1,16
Logic "1" Threshold Voltage	VOHA	15	-1.100	-	-0.950	_	-	-0.845	_	Vdc	9	7,10	4	2	8	1,16
Logic "0" Threshold Voltage	VOLA	15	-	-1.635	-	_	-1.600		-1.525	Vdc	-	4,7,10	9	2	8	1,16
Switching Times (100-ohm load)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Dalay	¹ 4+15+ ¹ 4-15- ¹ 7+15+ ¹ 7-15- ¹ 2+16- ¹ 2-15+	15 15 15 15 15 15	1.3 1.3 1.8 1.8 0.9	4.6 4.6 6.1 6.1 3.0 3.0	1.5 1.5 2.0 2.0 1.0	3.0 3.0 4.0 4.0 2.0	4.5 4.5 6.0 6.0 2.9 2.9	1.2 1.2 1.9 1.9 0.9	4.5 4.5 6.0 6.0 2.9 2.9	ns	9 9 5 5 7,5 7,5	- - - - -	4 4 7 7 2 2	15	8	1,16
Rise Time (20% to 80%) Fall Time (20% to 80%)	t+ t-	15 15	↓	3.3 3.3	1.1	- V	3.3 3.3		3.4		9	-	4			

Each full temperature range MECL 10,000 series circuit has been designed to meet the do specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to. –2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs are tested in the same manner.

		Pin			М	C105641	Test Lim	its		TEST 1/4	DI TACE ADD	LIED TO BIA	E LICTED DE			
		Under	-65	°C		+25°C		+12	5°C		I EST VI	DLIAGE APP	LIED IO PIN	IS LISTED BE	LOW	(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	12	-	83		60	75	_	83	mAdc	-	_		_	12	4,5
Input Current	lin H	8	-	455	-	-	265	-	265	μAdc	6		-	-	12	4,5
	lin L	8	0.5	-	0.5	_	-	0.3		μAdc	-	8			12	4,5
Logic "1" Output Voltage	VOH	3	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	8,13	6, 11, 14	_	-	12	4,5
Logic "0" Output Voltage	VOL	3	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	13	6, 8, 11, 14	_	-	12	4,5
Logic "1" Threshold Voltage	VOHA	3	-1.100	-	-0.950	-	-	-0.845	-	Vdc	13	11, 14	8	6	12	4,5
Logic "0" Threshold Voltage	VOLA	3	-	-1.635	-	-	-1.600	-	-1.525	Vdc	-	8, 11, 14	13	6	12	4,5
Switching Times (100-ohm load)				- '							+1,11 V		Pulse in	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	18+3+ 18-3- 111+3+ 111-3- 16+3- 16-3+	3	-	11111	1.5 1.5 2.0 2.0 1.0	3.0 3.0 4.0 4.0 2.0	4.5 4.5 6.0 6.0 2.9 2.9		- - - - -	ns	13 13 9 9 9.11 9,11	- - - - -	8 8 11 11 6 6	15	12	4,5
Rise Time (20% to 80%)	13+		-	-	1.1		3.3	-	-		13	-	8			
Fall Time (20% to 80%)	t3+		-	-	1.1	'	3.3	-	-	'	13	-	8	'	'	l "

APPLICATION INFORMATION

The MC10564 can be used wherever data multiplexing or parallel to serial conversion is desirable. Full parallel gating permits equal delays through any data path. The output of the MC10564 incorporates a buffer gate with

eight data inputs and an enable. A high level on the enable forces the output low. The MC10564 can be connected directly to a data bus, due to its open emitter output and output enable.

Figure one illustrates how a 1-of-64 line multiplexer can be built with eight MC10564's wire ORed at their outputs and one MC10161 to drive the enables on each multiplexer, without speed degradation over a single MC10564 being experienced.

FIGURE 1 - 1-OF-64 LINE MULTIPLEXER Dout ABC Dout MC10564 ABC Dout MC10564 140 MSB **Q**7 ABC **Q6** Q5 Dout Q4 MC1056 03 02 ABC Q1 70 LSB 00 Dout ABC AC10564 The Bit chosen is dependent on six-bit ABC code present on inputs 7, 9, 14 of the MC10161 and the A, B, C inputs of the Ē MC10564. Dout A B C Dout MC10564

DUAL BINARY TO 1-4 DECODER (LOW)

MC10571

See General Information section for packaging and maximum ratings.

ELECTRICAL CHARACTERISTICS

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

process management of the section of

L SUFFIX CERAMIC PACKAGE CASE 620

© Test Temperature -55°C +25°C

+125°C

TEST VOLTAGE VALUES (Volts) **ViHmax** VILmin VIHAmin VILAMEN VEE -0.880 -1.920 -1.255 -1.510 -5.2 -0.780 -1.850 -1.105 -1.475 -5.2 -0.630 -1.820 -1.000 -1.400 -5.2

	I	Pin	MC10571L Test Limits													Ī
		Under	-50	5°C		+25°C		+1:	25°C		TEST VOL	TAGE APPLI	ED TO PIN	IS LISTED	BELOW:	(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmex	VEE	Gnd
Power Supply Drain Current	ΙĘ	8	<u> </u>	_	_	64	77	- T	-	mAdc	2,7,9,14,15	_	_	_	8	1,16
Input Current	linH linL	14 14	0.5	=	0.5	_	220 -	0.3	-	μAdc μAdc	14	14	_	_	8	1,16 1,16
Logic "1" Output Voltage	VOH	6 13	-1.080 -1.080	-0.880 -0.880	-0.930 -0.930	= -	-0.780 -0.780	-0.825 -0.825	-0.630 -0.630	Vdc Vdc	15 15	=	=	_	8	1,16 1,16
Logic "0" Output Voltage	VOL	13	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	T -	2,7,9,14,15	-	_	8	1,16
Logic "1" Threshold Voltage	VOHA	6 13	-1.100 -1.100	_	-0.950 -0.950	_	_	-0.845 -0.845	-	Vdc Vdc	=	=	15 15	_	8	1,16 1,16
Logic "0" Threshold Voltage	VOLA	6 13	=	-1.635 -1.635	=	=	-1.600 -1.600	-	-1.525 -1.525	Vdc Vdc	=	2,9,14,15 2,7,14,15	=	7 9	8	1,16
Switching Times (100) Ω Load)											+1.11 V	+0.31 V	Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay Rise Time (20% to 80%)	[†] 7+8+ [†] 7-8- [†] 7+13+ [†] 7-13- [†] 8+	6 6 13 13 6		-	1.5 	4.0 V 2.0	6.0 V 3.3	- - - -	-	ns	14 14 2 2 14	2,9,15 2,9,15 9,14,15 9,14,15 2,9,15 9,14,15	7	6 6 13 13 6	8	1,16
Fell Time (20% to 80%)	t6- t13-	6 13	-	-		-		-	-		14	2,9,15 9,14,15		6		

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

F SUFFIX CERAMIC PACKAGE CASE 650

metrical in the contract of

@ Test
Temperature
-55°C
+25°C
+125°C

TEST VOLTAGE VALUES (Volts) v_{lLmin} V_{IHmax} **VIHAm** VEE -0.880 -1.920 -1.255 -1.510 -5.2 -0.780 -1.850 -1.105 -1.475 -5.2 -0.630 -1.820 -1.000 -1.400 -5.2

					M	C10671F	Test Limit	is .								1
	l	Pin Under	-50	5°C		+25°C		+12	5°C		I LEST VOLT	AGE APPLIE	DIOPIN	2 FIZIED	BELOM:	(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	ΙĘ	12		-	_	64	77	_		mAdc	2,3,6,11,13		_		12	4,5
Input Current	linH	2		-			220	-	_	μAdc	2	_	_		12	4,5
	linL	2	0.5	-	0.5			0.3		μAdc		2			12	4,5
Logic "1" Output Voltage	VOH	10	-1.080	-0.880	-0.930		-0.780	-0.825	-0.630	Vdc	3	_			12	4,5
	1	1	-1.080	-0.880	-0.930	L	-0.780	-0.825	-0.630	Vdc	3				12	4,5
Logic "0" Output Voltage	VOL	1	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	_	2,7,9,14,15	_	-	12	4,5
Logic "1" Threshold Voltage	VOHA	10	-1.100	-	-0.950	-	-	-0.845	_	Vdc	3	_	3		12	4,5
	1	1	-1.100		-0.950			-0.845		Vdc	3	_	3	<u> </u>	12	4,5
Logic "0" Threshold Voltage	VOLA	10	-	-1.635	-		-1.600	-	-1.525	Vdc	-	2,9,14,15	_	11	12	4,5
		1	-	-1.635		-	-1.600	<u> </u>	-1.525	Vdc	_	2,7,14,15		13	12	4,5
Switching Times (100 Ω Load)											+1.110 V	+0.31 V	Pulse)In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	\$11+10+	10	-	-	1.5	4.0	6.0	J –	-	ns	2	3,6,13	11	10	12	4,5
	t11-10-	10	-	-	1 1		1	l -	-	ll	2	3,6,13	l 1	10	1 1	1 1
	311+1+	1	1 –	-	1 1	1 1	ΙI	-	-		6	2,3,13	1 1 .	1	1 1	1 1
	t11-1-	1 1	l –	-	! ▼	l ▼	▼	I –] -	1 1	6	2,3,13] 1	1 1	1 1
	¹ 10+	10	-	_	1.1	2:0	3.3	-	-		2	3,6,13		10		
Rise Time (20% to 80%)	t1+	1	-	-	1 1	1 1	l +	_	-	11	6	2,3,13		1		11
	t10-	10	-	-	l	1 1	1 1	-	-	1	2	3,6,13		10		
Fall Time (20% to 80%)	t1-	1 1	_	-	₩	! ♦	1 🕈	_	_	! ♦	6	2,3,13	\ ♦	1	\ ♦	₩

DUAL BINARY TO 1-4-DECODER (HIGH)

MC10572

The MC10572 is a binary-coded 2 line to dual 4 line decoder with selected outputs high. With either EO or E1 low, the corresponding selected 4 outputs are low. The common enable E, when high, forces all outputs low.

All propagation delay times are equal. High impedance 50 k ohm resistors on all inputs eliminate the need to tie unused inputs to VFF.

 $P_D = 325$ mW typ/pkg (No Load) $t_{pd} = 4.0$ ns typ

Case	V _{CC1}	V _{CC2}	VEE
620	Pin 1	Pin 16	Pin 8
650	Pin 5	Pin 4	Pin 12

Ē	Ē1	ĒΟ	A	В	Q1 0	Q1 1	Q1 2	Q1 3	Q 0 0	Q0 1	Q0 2	Q0 3
L	н	н	٦	٦	Н	٦	L	٦	н	٦	٦	٦
L	н	н	L	Н.	L	н	L	L	L	н	L	L
L	н	н	н	L	L	L	н	L	L	L	н	L
L	н	н	н	н	L.	L	L	н	L	L	L	н
L	L	н	L	L	L	L	L	L	н :	L	L	L
L	н	L	L	L	н	L	L	L	L	L	L	L
н	φ	φ	φ	φ	L	L	L	٦	٦	L	٦	٦

φ = Don't Care

See General Information section for packaging and maximum ratings.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

L SUFFIX CERAMIC PACKAGE CASE 620

© Test
Temperature
-55°C
+25°C

+125°C

	TEST V	OLTAGE VAI	LUES	
		(Volts)		
ViHmax	VILmin	ViHAmin	VILAmax	VEE
-0.880	-1.920	-1.255	-1.510	-5.2
-0.780	-1.850	-1.105	-1.475	-5.2
-0.630	-1.820	-1.000	-1.400	-5.2

																4
		Pin			M	C10672L	Test Limit	3			TEST VO	I TAGE APP	LIED TO PIN	S LISTED RE	LOW:	
		Under	-64	S°C .		+25°C		+1	25°C		1					(Vcc)
Cheracteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmex	VEE	Gnd
Power Supply Drain Current	ΙE	8	_	_	_	62	77			mAdc	-	-	_	-	8	1,16
Input Current	linH	14	-	_	-	-	220	-	_	μAdc	14	_		-	8	1,16
	linL	14	0.5	-	0.5	- 1	- "	0.3	<u> </u>	μAdc	-	14	l -	-	8	1,16
Logic "1" Output Voltage	VOH	6 13	-1.080 -1.080	-0.880 -0.880	-0.930 -0.930	_	-0.780 -0.780	-0.825 -0.825	-0.630 -0.630	Vdc Vdc	2 14	_	-	-	8	1,16 1,16
Logic "0" Output Voltage	VOL	13	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	15	2,7,9,14	I -		8	1,16
Logic "1" Threshold Voltage	VOHA	6 13	-1.100 -1.100	_	-0.950 -0.950	-	_	-0.845 -0.845	_	Vdc Vdc	_	-	2 14	-	8	1,16 1,16
Logic "0" Threshold Voltage	VOLA	6 13	- 1.	-1.635 -1.635	-	=	-1.600 -1.600	-	-1.525 -1.525	Vdc Vdc	_	2,9,14 2,7,14	. –	7 9	8 8	1,16 1,16
Switching Times (100 Ω Load)											+1.11 V	+0.31 V	Pulse in	Pulse Out	-3.2 V	+2.0 V
Propagation Dalay	t7+6- t7-6+	6	-	-	1.5 I	4.0	6.0	-	- -	ns	2 2	9,14 9,14	7	6	8	1,16
	t7+13- t7-13+	13 13	-	-				-	-		14 14	2,9 2,9		13 13		1
Rise Time (20% to 80%)	16+ 113+ 16-	6 13 6	- -	-	1.1 	2.0	3.3	- -	- - -		2 14 2	9,14 2,9 9,14		6 13 6		
Fall Time (20% to 80%)	113-	13	-		1	1		-	-	1	14	2,9		13	1	†·

F SUFFIX CERAMIC PACKAGE CASE 650

⊘ Test Temperature -55[©]C

+25°C

+125°C

TEST VOLTAGE VALUES (Volts) **VIHAmin** V_{IL,Amax} VEE VILmin V_{IHmax} -1.920 -1.255 -1.510 -5.2 -0.880 -0.780 -1.850 -1.105 -1.475 -5.2 -0.630 -1.820 -1.000 -1.400 -5.2

		Pin		-	MC	10572F	Test Limit	' 5			TEST VC	TAGE APP	LIED TO PIN	LISTED RE	OW:	i
		Under	-60	°C		+25°C		+1.	25°C		1231 VC	LIAGE AT		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(VCC)
Cheracteristic	Symbol	Test	Min	Mex	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	1E	12	-	-	_	62	77		-	mAdc	_	-	-	-	12	4,5
Input Current	linH	2	_	-	_	-	220		-	μAdc	2	-	-	-	12	4,5
	linL	2	0.5		0.5	-	-	0.3	-	μΑdic	-	12	-		12	4,5
Logic "1" Output Voltage	VOH	10 1	-1.090 -1.090	-0.880 -0.880	-0.930 -0.930	_	-0.780 -0.780	-0.825 -0.825	-0.630 -0.630	Vdc Vdc	6 2	-	-	-	12 12	4,5 4,5
Logic "0" Output Voltage	VOL	1	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	3	2,6,11,13	_	-	12	4,5
Logic "1" Threshold Voltage	VOHA	10 1	-1.100 -1.100	-	-0.950 -0.950	-	-	-0.845 -0.845	-	Vdc Vdc	-	-	6 2	-	12 12	4,5 4,5
Logic "0" Threshold Voltage	VOLA	10 1		-1.635 -1.635	-	_	-1.600 -1.600	=	-1.525 -1.525	Vdc Vdc	-	2,6,13 2,6,11	<u>-</u>	11 13	12 12	4,5 4,5
Switching Times (100 Ω Load)											+1.11 V	+0.31 V	Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	^t 11+6- ^t 11-6+	10 10	-	_	1.5 I	4.0	6.0 1	-	<u>-</u>	ns	6 6	2,13 2,13	11	10 10	12	4.5
	111+1- 111-1+	1 1	-	_		↓		_	-		2 2	6,13 6,13		1	1	1
Rise Time (20% to 80%)	t10+ t1+ t10-	10 1 10	-	-	1.1	2.0	3.3	-	-		2	2,13 6,13 2,13		10 1 10	1	
Fall Time (20% to 80%)	11-	l ï	-	_	1	†	•	-	_		14	6,13	₩	1 1	∮	†

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

		TEST V	OLTAGE VAI	LUES	
			(Volts)		
@Test nperature	VIH max	VIL min	VIHA min	VILA mex	VEE
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2

										+125°C	-0.630	-1.820	-1.000	-1.400	-5.2	
		Pin			M		. Test Limi			,	TEST VO	LTAGE APP	LIED TO PIN	S LISTED BE	LOW	
		Under		5°C		+25°C			5°C					r		(V _{CC})
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	V _{IH max}	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	le i	8	-	80	-	58	73	-	80	mAdc	-	_	-	-	8	1,16
Input Current	lin H	4	-	375	-	_	220 330	-	220 330	μAdc	4	-	-	-	8 8	1,16 1,16
	lin L	14	0.5	565 -	0.5	- -	- 330	0.3	- 330	μAdc .	14	4			8	1,16
Logic "1" Output Voltage	VOH	15	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	13	-	-	-	8	1,16
Logic "0" Output Voltage	VOL	15	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	14	-		-	8	1,16
Logic "1" Threshold Voltage	VOHA	15	-1.100	1	-0.950	-	-	-0.845	-	Vdc	-	-	13	14	8	1,16
Logic "0" Threshold Voltage	VOLA	15	_	-1.635	1	_	-1.600	-	-1.525	Vdc	_	_	14	-	8	1,16
Switching Times (100 Ω Load)											+1.11 V		Pulse in	Puise Out	-3.2 V	+2.0 V
	t ₁₃₊₁₅₊ t ₁₃₋₁₅₋ t ₇₊₁₅₋ t ₇₋₁₅₊ t ₁₄₊₁₅₋ t ₁₄₋₁₅₊	15 15 15 15 15 15	1.3 1.3 1.8 1.8 0.9	4.6 4.6 6.1 6.1 3.0 3.0	1.5 1.5 2.0 2.0 1.0	3.5 3.5 5.0 5.0 2.0 2.0	4.5 4.5 6.0 6.0 2.9 2.9	1.2 1.2 1.9 1.9 0.9	4.5 4.5 6.0 6.0 2.9 2.9	ns 	- 13 13 13 13	- - - - -	13 13 7 7 14 14	15	8	1,16
Rise Time (20% to 80%)	t+	15		3.3	1.1	2.0	3.3		3.4		13	-	14			
Fall Time (20% to 80%)	t	15	▼	3.3	1.1	2.0	3.3	١ .	3.4	•	13	-	14	•	•	•

and the same of th

F SUFFIX CERAMIC PACKAGE CASE 650

		TE	ST VOLTAGI	EVALUES	
			(Volts		
@Test nperature	VIH max	VIL min	VIHA min	VILA mex	VEE
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2

	Ì	Pin			M	C10574F	Test Limit	8								1
	i	Under	-55	°C		+25°C		+12	5°C		I IESI VI	JL I AGE API	PLIED TO PIN	S LISTED BE	LUW	(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Mex	Unit	V _{IH} max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	İΕ	12		80	_	58	73		80	mAdc	_			-	12	4,5
Input Current	lin H	8 2	-	375 565	-	-	220 330	_	220 330	μAdc	8 2	-		-	12 12	4,5 4,5
	lin L	8	0.5	-	0.5	-	-	0.3	-	μAdc	_	8	_	_	12	4,5
Logic "1" Output Voltage	VOH	3	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	1	-	-	-	12	4,5
Logic "0" Output Voltage	VOL	3	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	2	-	-	-	12	4,5
Logic "1" Threshold Voltage	VOHA	3	-1.100	_	-0.950	-	-	-0.845	-	Vdc	_	-	-	2	12	4,5
Logic "0" Threshold Voltage	VOLA	3	-	-1.635	-	-	-1.600	-	-1.525	Vdc	_	-	2	-	12	4,5
Switching Times (100 Ω Lead)											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t1+3+ t1-3- t11+3- t11-3+ t2+3- t2-3+	3 3 3 3 3	- - - - -	- - - - -	1.5 1.5 2.0 2.0 1.0	3.5 3.5 5.0 5.0 2.0 2.0	4.5 4.5 6.0 6.0 2.9 2.9	- - - -	- - - -	ns		- - - - -	1 1 11 11 2	3	12	4,5
Rise Time (20% to 80%)	t+	3	-	-	1.1	2.0	3.3	-	-			-				
Fall Time (20% to 80%)	t-	3	-	-	1.1	2.0	3.3	-	-			-	}			

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

The MC10575 is a high speed, low power quint latch. It features five D type latches with common reset and a common two-input clock. Data is transferred on the negative edge of the clock and latched on the positive edge. The two-clock inputs are "OR"ed together. Propagation delays are typically 2.1 nanoseconds from each data input to the output.

Any change on the data input will be reflected at the cutputs while the clock is low. The outputs are latched on the positive transition of the clock. While the clock

is in the high state, a change in the information present at the data inputs will not affect the output information. The reset input is enabled only when the clock is in the high state.

The MC10575 allows storage of five bits of information, and it is useful in temporary storage applications in high speed central processors, accumulators, register files, digital communication systems, instrumentation, and test equipment.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test Procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in the same manner.

L SUFFIX CERAMIC PACKAGE **CASE 620**

@ Test VIH mex Temperature -55°C -0.880 +25°C -0.780 +125°C

The second secon

TEST VOLTAGE VALUES (Volts) VIL min VIHA min VILA mex VEE -1.920 -1.255 -1.500 -5.2 -1.850 -1.105 -1.475 -5.2 -0.630 -1.820 -1.000 -1.400 -5.2

												-1.020	-1.000			
		Pin			MC105	75L Test	Limits				VOLT	ACE ADDI 15	O TO DINC I	ISTED BELO		
		Under	-65	5°C		+25°C		+12	5°C	l	VOLI	AGE APPLIE	ED TO PINS L	ISTED BELO	w:	1
Characteristic	Symbol	Test	Min	Mex	Min	Тур	Max	Min	Mex	Unit	V _{IH} mex	V _{IL min}	VIHA min	VILA mex	VEE	Gnd
Power Supply Drain Current	ΙE	8	_	-	_	78	97	-	-	mAdc		-	_	-	8	1,16
Input Current	linH	6	_	-	-	-	290	-	-	μAdc	6	_	-	_	8	1,16
	ŀ	7	-	-	-	-	290	- 1	-	l ı	7	-	-		i i	1 1
	i	10	-	-	-	-	290	- 1		ΙL	10	-	i -	l –	1 🛊	1. • 1
		11					645			V	11					
Input Leakage Current	linL	All	0.5	-	0.5	_	_	0.3	-	μAdc	-	0	_		8	1,16
Logic "1"	Voн	14	-1.080	-0.880	-0.930	_	-0.780	-0.825	-0.630	Vdc	10	6	_		- 8	1,16
Output Voltage		15	-1.080	-0.880	-0.930		-0.780	-0.825	-0.630	Vdc	12	6	L	l	8	1,16
Logic "O"	VOL	14	-1.920	-1.655	-1.850		-1.620	-1.820	-1.545	Vdc	_	6,10	_		8	1,16
Output Voltage	"-	15	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	-	6,12	_	-	8	1,16
Logic "1"	VOHA	14	-1.100	· -	-0.950	-	_	-0.845	_	Vdc	_	6	10	_	8	1,16
Threshold Voltage		15	-1.100	-	-0.950	-	. –	-0.845	-	Vdc	-	6	12	-	8	1,16
Logic "O"	VOLA	14	_	-1.635	-	_	-1.600	_	-1.525	Vdc	-	6	_	10	8	1,16
Threshold Voltage		15	-	-1.635	i -	-	-1.600	 -	-1.525	Vdc	1 -	6		12	8	1,16
Switching Times											+1.11 Vdc	+0.31 Vdc	Pulse In	Pulse Out	-3.2 Vdc	+2.0 Vdc
Data Input	t10+14+	14	-	-	1.0	2.1	3.5	-	-	ns		6,7	10	14	8	1,16
	t10-14-		-	_	1.0	2.1	3.5	-	-	1 1	-	6,7.	10	1	1 1	1 i
Clock Input	^t 6-14+	\ ♦	-	-	1.0	2.6	4.3	-	-	1 1	-	7	6,10	1 🖠	1 1	1 1
	¹ 6-14-			-	1.0	2.6	4.3	- 1	-	l I	i -	7	6,10	l '	1 1	1 1
Reset Input	t11+4-	1 4 1	- .	_	1.0	2.8	3.9	-	-	1 1	5	6	7,11	4 @ 14 @	1 1	1 1
Setup Time	^t 11+14-	14	- '	-	1.0	2.8	3.9	-	_		10	6	7,11	14 ②	11	1 1
Hold Time	tsetup	14			2.5 1.5	l -	l -	l <u>-</u>		11	-	1 4	6,10 6,10	14	1 1	11
	thold		ľ	i			Į.	l	ŀ	1 1	-	l .'	1	1 1		
Rise Time (20 to 80%)	t+	14	-	-	1.1	2.0	3.5	-	-	1 4	1 -	6,7	10	1 1	I ♦	1 1 .
Fall Time (20 to 80%)	t-	14	–	1 -	1.1	2.0	3.5	-	l –	1 7	l -	6,7	10	1	i '	1 '

¹ Individuelly test each input; apply VIL min to pin under test.

Quiput latched to high logic state prior to test.

SWITCHING TIME TEST CIRCUIT

VOLTAGE WAVEFORMS

LOOK-AHEAD CARRY BLOCK

MC10579

P_D = 300 mW typ/pkg (No Load) t_{pd} = 3.0 ns typ (Carry, Propagate) 4.0 ns typ (Generate) The MC10579 device has 12 low power gates internally connected to perform the look-ahead carry function. This device has high Z input pulldown resistors and open emitter outputs. This device has applications in fast look-ahead adders such as with the MC10581. It can be used also as a boolean function generator.

See General Information section for packaging.

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar menner.

L SUFFIX CERAMIC PACKAGE CASE 620

TEST VOLTAGE VALUES (Volts) @ Test VIH max VIL min VIHA min VILA max VEE Temperature -5.2 -55°C -0.880 -1.920 -1.255 -1.510 +25°C -0.780 -1.850 -5.2 -1.105 -1.475 -1.820 -1.000 -1 400

										+125°C	-0.630	-1.820	-1.000	-1.400	-5.2	
	1	Pin			N		Test Limi			,	TEST VO	LTAGE APP	LIED TO PIN	IS LISTED BE	LOW:	
		Under	-59	5°C	L	+25°C		+12	25°C	l		,				(V _{CC})
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	1E	8		_	-	58	72		_	mAdc		_	-	-	8	1,16
Input Current	linH	4,7,11	-	_	-		270	_		μAdc	4,7,11	_	_	_	8	1,16
		5,9	-	-	- 1	_	225	-	-		5,9	-	-	-		1
		10,13	-	-		-	440	-	-	1	10,13	-	-	-		.
		12	-	-	-	-	395	-	-		12	-	-	-	•	
		14					355			· ·	14					
	linL	4	_		0.5	_		_		μAdc		4	_		8	1,16
Logic "1" Output Voltage	Voн	2	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	4,5,7,9	-		_	8	1,16
Logic "0" Output Voltage	VOL	3	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	Vdc	-	-	-	_	8	1,16
Logic "1"	VOHA	2	-1.100	_	-0.950	_	_	-0.845	_	Vdc	13	_	5	-	8	1,16
Threshold Voltage		2		-	1	-	-	1 1	_		5,12	-	9	-	1	
		2	1 1	-	1	-	-	ا ا	-	i i	5,9	-	12	_	↓	1
<u></u>		2							_	V	5		13			Y
Logic "0"	VOLA	2	-	-1.635	- 1	-	-1.600	-	-1.525	Vdc	13	-	-	5	8	1,16
Threshold Voltage		2	-		-	-	1	-	1		5	-	-	13	1 1	1
		2	-		-	-	1	-	1		_5	-	_	9	↓	↓
		2			_		V			V	5,9			12		
Switching Times								ŀ					Į.			
(50 Ω Load)	1										+1.11 V	1	Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t11+6+	6	-	-	1.0	-	4.5	-	-	ns	4,7	-	11	6	8	1,16
	t11-6-	6	-	-	1 1	-	4.5	-	-	1	4,7	-	11	6	1 1	1
	t5+2+	2	-	-	1 1	-	5.5	-	-	1 1	4,7,9	-	5	2		
	^t 5-2-	2	-	-	₩ ₩	-	5.5	-	-		4,7,9	-	5	2		
Rise Time (20% to 80%)	t6+	6	-	_	1.1	-	3.5	-	-	1 1	4,7	_	11	6	ΙI	lĺ
Fall Time (20% to 80%)	t6_	6	-	-	1.1	-	3.5	l –	-	▼	4,7	-	11	6	▼	♥

Each MECL 10,000 series has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

F SUFFIX CERAMIC PACKAGE CASE 650

	TEST VOLTAGE VALUES									
			(Volts)							
@ Test Temperature	re VIH max VI	VIL min	VIHA min	VILA max	VEE					
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2					
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2					
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2					

										+125°C	-0.630	-1.020	-1.000	-1.400	-5.Z	
		Pin			N	C10579F	Test Lim	its			TEST VO	LTAGE APP	LIED TO PIN	IS LISTED BE	LOW:	
	1	Under	-5	5°C		+25°C		+12	25°C							(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	İΕ	12	-	-	-	58	72	-	-	mAdc	_	_	-	_	12	4,5
Input Current	linH	8,11,15	-	-	-	-	270	_	_	μAdc	8,11,15	_	_	_	12	4,5
		9,13	-	-	-	-	225	-	_	1 1	9,13	-	i –	-		
	•	1,14 16	-	-	-	- 1	440	-	-	1 1	1,14	-	-	-		
		2	-	-	-	-	395	-	-	1	16	-	-	-		•
		<u> </u>			L		355		<u> </u>		2					
	linL	8			0.5		<u> </u>		-	μAdic	_	8		-	12	4,5
Logic "1" Output Voltage	VOH	6	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	8,9,11,13	-	-	-	12	4,5
Logic "0" Output Voltage	VOL	7	-1.920	-1.655	-1.850		-1.620	-1.820	-1.545	Vdc	-	_	_	_	12	4,5
Logic "1"	VOHA	6	-1.100		-0.950	-	T -	-0.845		Vdc	1	_	9	_	12	4,5
Threshold Voltage	•	6	1 1	-	1 1	-	-	1	-		9,16	! –	13	-		
		6	1	-	1 4	_	-	↓	-	۱ .	9,13	-	16	_		↓
		6									9		17			<u> </u>
Logic "O"	VOLA	6	-	-1.635	-	-	-1.600	_	-1.525	Vdc	1	-	-	9	12	4,5
Threshold Voltage		6	-	1 1	-	-	1 1	-	1 1	1 1	9	l –	-	17		1
	1	6	-	↓	-	-	ا ا	-	↓	↓	9		-	13		1 1
		6							<u> </u>		9,13			16		
Switching Times	1		1			1							i			
(50 Ω Load)							İ		i		+1.11 V	1	Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t15+10+	10	-	-	1.0	-	4.5	-	-	ns	8,11	-	15	10	12	4,5
	t15-10-	10	-	-		-	4.5	-	-		8,11	- 1	15	10		1
	t9+6+	6	-	-	1 1	-	5.5	-	-		8,11,13	-	9	6		1
	t9-6-	6	-	-	▼	-	5.5	-	-		8,11,13	_	9	6		
Rise Time (20% to 80%)	t ₁₀₊	10	-	l –	1.1	-	3.5	-	-		8,11	-	15	10	1	l l
Fall Time (20% to 80%)	t10-	10	i _	l _	1.1	i -	3.5	-	_	▼	8,11] _	15	10	▼	i

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

APPLICATION INFORMATION

The MC10579 is a high speed, low power, standard MECL complex function that is designed to perform the look-ahead carry function. This device can be used with the MC10581 4-bit ALU directly, or with the MC10580 dual arithmetic unit in any computer, instrumentation or digital communication application requiring high speed arithmetic operation on long words.

When used with the MC10581, the MC10579 performs a second order or higher look-ahead. Figure 2 shows a 18-bit look-ahead carry arithmetic unit. Second order carry is valuable for longer binary words. As an example, addition of two 32-bit words is improved from 30 nanoseconds with ripple-carry techniques, to 18 nanoseconds with carry look-ahead techniques. A block diagram of a 32-bit ALU is shown in Figure 1. The MC10579 may also be used in many other applications. It can, for example, reduce system package count when used to generate functions of several variables.

FIGURE 2 - 16-BIT FULL LOOK-AHEAD CARRY ARITHMETIC LOGIC UNIT

MC10580

P_D = 360 mW typ/pkg (No Load) t_{pd}(typ): C_{in} to C_{out} = 2.2 ns A0 to S0 = 4.5 ns A0 to C_{out} = 4.5 ns The MC10580 is a high speed, low power general-purpose adder/subtractor. It is designed to be used in special purpose adder/subtractors or in high speed multiplier arrays. The MC10580 can be used in any piece of equipment where these operations are necessary.

Inputs for each adder are Carry-in, operand A, and operand B; outputs are Sum, Sum, and Carry-out. The common Select inputs serve as a control line to invert A for subtract, and a control line to invert B. The speed is very fast, with Carry-in to Carry-out propagation delay of 2.2 ns and Operand in to Sum or Carry-out propagation delay of 4.5 ns.

CASE

V_{CC1} V_{CC2} V_{EE}

650 Pin 5 Pin 4 Pin 12

(11) 7 - 15 (3) ΞO (13) 9 - 2 (6) (9) 5 AO во (10) 6 (8) 4 - 3 (7) Sela - 14 (2) _ -1 (5) 4 AI (16) 12

NEGATIVE LOGIC

Both Positive and Negative Logic $S = \overline{G}_{in} (\overline{A}' \ B' + A' \ \overline{B}') + C_{in} (A' \ B' + \overline{A}' \ \overline{B}')$ $C_{out} = C_{in} \ A' + C_{in} \ B' + A' \ B'$

Numbers at end of terminals are pin numbers for L package (Case 620). Numbers in parenthesis denotes pin numbers for F package (Case 650).

L L S = 0 minus A m

FUNCTION	L		NPUTS	;		0	UTPU'	TS
FUNCTION	SelA	SelB	A0	80	Cin	SO	so.	Cout
ADD	н	н	L	-	L	ī	н	_
	н	н	l L	L	н	+	L	L
	н	H	١.	н	L	н	L	L
	l H	H	L	H .	H	١ ١	н	н
	н .	H .	Н Н	L .	L	н	L	L
	н	H	H	L	н	١.	н	H
	H	#	H	H	片	L	H	#
			_			_		
SUBTRACT	Ħ	Ŀ	١.	Ŀ	L		L	Ŀ
	H	Ļ	١.	L.	н	١.	# #	H
	;;	1 :	1	H	H	1 1	H	l t
	l 🖁	ائا	H	1.		17	H	l H
	lΩ	i i	ΙG	1 .	l H	l ਜੋ i	- 2	H
	H	ī	ΙG	l ŭ	1 7	1 🛱 1	i.	1 7
	н	ĭ	lй	H	н	1 2 1	H	ЬĦ
REVERSE	ï	Ħ	1	-	ı.	Ť	L	ü
SUBTRACT	انا	H	اتا	اتا	H I	l ï	i ii	l ä
300 I HACI	l č	H	ī	i ii	1 7	اتا	H	l ii
	ιī	lі	l i	НÜ	H H	i ii	l ii	H
	ũ	Н	H I	ü	ü	ü	- Ĥ	i i
	ũ	H	н	ī	H	l Ĥ l	L	ı
	ī	н	н	н	L	н	ī	l ī
	L	н	н	н	H	L	н	н
	-	_	_	_	r	L	н	н
	L	L	L	L	Н .	н	L	н
	L	L	L	н	١.	н	L	L
	ᄔ	L	L	H	н	L	н	н
	Ŀ	١.	н	L.	L	+	L	L
	Ľ	L	H	11	Η.	١.	H	
	انا	1 1	H	# H	7.7	片	Ľ	Ļ

TRUTH TABLE

See General Information section for packaging.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs are tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 620

	TEST VOLTAGE VALUES									
			Volts							
© Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE					
-65°C	-0.880	-1.920	-1.255	-1.510	-5.2					
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2					
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2					

										125°C	-0.630	-1.820	-1.000	-1.400	-5.2	
		Pin			M		Test Limit				TEST VO	LTAGE APP	LIED TO PIN	S LISTED BEI	LOW:	
		Under	-66	° C		+25°C		+12	Se _o C							(V _{CC})
Characteristic	Symbol	Test	Min	Mex	Min	Тур	Max	Min	Max	Unit	V _{IH max}	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ΙE	8	-	95	_	70	86	-	95	mAdc	-	-	-		8	16
Input Current	linH	4		630	_	_	370	-	370	μAdc		_		-	8	16
		5	- 1	374	-	-	220	-	220	1 1	-	-	_	-	. 1 .	- 1
		6	- 1	374	- 1	-	220	-	220	1 1 1	-	- 1	_	- 1		l.
		7	-	493	-	-	290	-	290	1	-	-	_	-	1 1 1	- 1
		9	- 1	493	- 1	-	290	-	290	1 1	-	-		-		- 1
		10	-	374	- 1	-	220	-	220		-	_	_		1 1 1	- 1
		11	i - :	374	- 1	-	220	-	220		-	-	-	_	l # 1	
		12		630	_		370		370							
	linL	All	0.5	-	0.5	-		0.3	-	μAdc		•			8	16
Logic "1"	VOH	2	-1.080	-0.880	-0.930	_	-0.780	-0.825	-0.630	Vdc	7,9	-	_	-	8	16
Output Voitage		3	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	1 1	4,5,7,9	-	_	-	1 1 1	1
	L	15	-1.080	-0.880	-0.930		-0.780	-0.825	-0.630		4,7,9	_			1	
Logic "O"	VOL	2	-1.920	-1.655	-1.850	_	-1.620	-1.820	-1.545	Vdc	5,7,9	-	-	-	8	16
Output Voltage	"-	3	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545		7,9	-	_	-		1
		15	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	1	7,9	- 1	-	-	1 1	
Logic "1"	VOHA	2	-1.100	_	-0.950	_	-	-0.845	_	Vdc	7,9	_		4	8	16
Threshold Voltage		3	-1.100	-	-0.950	-	1 -	-0.845	-	1 1	4,7,9	- !	5	-	111	- 1
		15	-1.100		-0.950	_	-	-0.845			7,9	-	4			'
Logic "0"	VOLA	2	_	-1.635	-	-	-1.600		-1.525	Vdc	7,9		4		8	16
Threshold Voltage		3	- 1	-1.635	- 1	-	-1.600	-	-1.525	1 1	7,9	l –	-	4	1 1 1	1
		15	L	-1.635			-1.600		-1.525		4,7,9	<u> </u>	5			
Switching Times											+1.11 V		Pulse in	Pulse Out	-3.2 V	+2.0 V
Propagation Delay								ŀ		1		1				
Operand Input	¹ 5+15+	15	-	-	1.0	4.5	5.4	- 1	l –	ņs	7,9	-	5	15	8	16
	^t 6+15+	15	_	_	1 1	4.5	5.4	-	-		7,9	_	6	15		' 1
Carry-in Input	4+15+	15	l –	-	! ! !	2.2	3.3	1 –	-	1 1	7,9	-	4	15	1 1 1	' 1
	4+3+	3	-	-		2.2	3.3	-	-		5,7,9	-	4	3	1 1 1	.
Select Input	17+15+	15	_	_		4.5	5.4		l –		4,9	_	7	15		
	t9+15+	15	۱ -	_		4.5	5.4	-	_	1 1	7.4	_	9	li	1 1 1	
Rise Time		15	l _	_	1,1	2.0	3.7	_			7.9	l _	5		1 1 3	
(20 to 80%)	^t 15+	15	i -	_	'-'	2.0	3.7	_	_	1	,,9	_	"	l i		i
			1		ا ا	١			l	1 1			_ ا	1 1	1 & 1	l L
Fall Time	^t 15-	15	-	-	1.1	2.0	3.7	-	-		7,9	-	5	Į V	1 7 1	

^{*}Individually apply VIL min to pin under test.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs are tested in the same manner.

F SUFFIX CERAMIC PACKAGE CASE 650

			Volts		
● Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
- 55 °C	-0.880	-1.920	-1.255	-1.510	-5.2
+25°C	-0.780	-1.850	-1.106	-1.475	-5.2
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2

TEST VOLTAGE VALUES

										.25 0	-0.630	-1.020	-1.000	-1.400		
		Pin			M		Test Limit				TEST VO	LTAGE APP	LIED TO PIN	S LISTED BEI	.ow:	
Characteristic	Symbol	Under Test	-50 Min	Mex Mex	Min	+25°C	Max	+1; Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	(V _{CC}) Gnd
Power Supply Drain Current	1E	12		96		70	86		95	mAdc	_	_	_	-	12	4
Input Current	linH	8		630			370		370	µAdc −		_			12	4
	·inn	9	_	374	_	_	220	l	220	1	l –	_	_	_	i	1
		10	-	374	-	-	220		220		l –	- 1	~	-		
		11	-	493	-	-	290	- 1	290	1 1	1 -	-	-	- '		
		13	-	493		-	290	-	290			-	- 1	~		
	ł	14	-	374	- 1	-	220	-	220			- 1	- !	-		1
		15	-	374	-	-	220	-	220	↓	-	-	-	-		į.
		16		630	_		370		370		L					
	linL	All	0.5		0.5	-		0.3	-	μAdc		<u> </u>		1	12	4
Logic "1"	νон	3	-1.080	-0.880	-0.930		-0.780	-0.825	-0.630	Vdc	. 8,11,13		_	_	12	4
Output Voltage	1	6	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	1 1	11,13	i -	i -	-	1 1 1	ı
		7	-1.080	-0.880	-0.930		-0.780	-0.825	-0.630		8,9,11,13	_		-		T
Logic "0"	VOL	3	-1.920	-1.655	-1.850	_	-1.620	-1.820	-1.545	Vdc	11,13	-	_	_	12	4
Output Voltage	"	6	-1.920	-1.655	-1.850	_	-1.620	-1.820	-1.545		9,11,13	_	-	-		1.
_		7	-1.920	-1.655	-1.850	-	-1.620	-1.820	-1.545	1	11,13	-	-	-	1	7
Logic "1"	VOHA	3	-1.100	_	-0.950			-0.845		Vdc	11,13	_	8		12	4
Threshold Voltage	""	6	-1.100	-	-0.950	-	_	-0.845	-		11,13	-	_	8	1 1	1
	ł	7	-1.100	-	-0.950	_	-	-0.845	-	1	8,11,13	-	9		1	1
Logic "O"	VOLA	3	_	-1.635			-1.600		-1.525	Vdc	8,11,13	_	9	_	12	4
Threshold Voltage	02.7	6	- ا	-1.635	- 1	_	-1.600	۱ –	-1.525	1 1	11,13	-	8	۱ -	1 1	
_		7	-	-1.635	- 1	_	-1.600	-	-1.525	١ ١	11,13	-	_	8	1	7
Switching Times Propagation Delay											+1.11 V		Pulse In	Pulse Out	-3.2 V	+2.0 V
Operand Input	t9+3+	3		_	1.0	4.5	5.4	_	_	ns	11,13	_	9	3	12	4
Operation import	t10+3+	3	ـ ا		"	4.5	5.4	_	_	l ï	11,13	_	10	ا ،	ï	l i
		3	1		l I I	2.2		1		l	11,13		8	3		
Carry-in Input	t8+3+ t8+7+	7		_			3.3 3.3		l <u>-</u>		9,11,13			1 3		
[· '	ļ	-		2.2	1	ľ	I -	1		_		1 '		
Select Input	t11+3+	3	-	i -		4.5	5.4	-	-	1 1	8,13	-	11	3	I I I	
	t13+3+	3	-			4.5	5.4	-	-		8,11	-	13	1 1		
Rise Time (20 to 80%)	t3+	3	-		1.1	2.0	3.7	-	-		11,13	-	9			
Fall Time	t3_	3	l _	-	1.1	2.0	3.7	l _	-	l 🛊	11,13	_	9	l 🕴	♦	♦
	.,-		l	L	L		1	I .		L'	,	i		L '	ı ' .	L'

^{*}Individually apply VIL min to pin under test.

4-BIT ARITHMETIC LOGIC UNIT/FUNCTION GENERATOR

MC10581

The MC10581 is a high-speed arithmetic logic unit capable of performing 16 logic operations and 16 arithmetic operations on two four-bit words. Full internal carry is incorporated for ripple through operation.

Arithmetic operations are selected by applying the appropriate binary word to the select inputs (S0 through S3) as indicated in the tables of arithmetic/logic functions.

Group carry propagate (PG) and carry generate (GG) are provided to allow fast addition of very long words using a second order look ahead. The internal carry is enabled by applying a low level voltage to the mode control input (M).

When used with the MC10579, full-carry look-ahead, as a second order look ahead block, the MC10581 provides high speed arithmetic operations on very long words.

C_n to C_{n+4}

 t_{pd} (typ): A1 to F = 6.5 ns C_n to C_{n+4} = 3.1 ns A1 to $P_G = 5.0$ ns A1 to $G_G = 4.5$ ns A1 to $C_{n+4} = 5.0$ ns

POSITIVE LOGIC

Fu S3	nctio S2	n Sel S1		Logic Functions M is High C = D.C. F	Arithmetic Operation M is Low C _n is low F
L	L	L	L	FĀ	F = A plus 0
L	L	L	н	F = Ã + B	F · A plus (A ● B)
L	L	н	L	F - Ā + B	F A plus (A ● B)
L	L	н	н	F * Logical "1"	F A times 2
L	н	L	L	FĀ●B	F (A + B) plus 0
L	н	L	н	FB	F = (A + B) plus (A ● B)
L	н	н	L	F=A @ B	F A plus B
L	н	н	н	F = A + B	F : A plus (A + B)
н	L	L	L	F-X-8	F (A + B) plus 0
н	L	L	н	F A ⊕ B	F - A minus B minus 1
н	L	н	L	FB	F - (A + B) plus (A ● B)
н	L	н	н	F A + B	F A plus (A + B)
н	н	L	L	F - Logical "0"	F = minus 1 (two's complement)
н	н	L	н	F - A • B	F × (A ● B) minus 1
н	н	н	L	F = A ● B	F □ (A ● B) minus 1
н	н	н	н	F = A	F A minus 1

NEGATIVE LOGIC

į.				Logic Functions	Arithmetic Operation
Fu	nctio	n Sel	ect	M is High	M is Low Cn of LSB must be High
S3	S2	S1	S0	F	F
L	L	L	L	F · Ā	F - A minus 1
L	L	L	н	F 4 A + B	F A plus (A + B)
L	L	н	L	F - Ā • B	F · A plus (A + B)
l L	L	н	н	F - Logical "0"	F ≠ A times 2
L	н	L	L	F - A • B	F ∈ (A • B) minus 1
L	н	L	н	F∘B	F - (A + B) olus (A + B)
L	н	н	L	F = A⊕B	F · A plus B
L	н	н	н	F · A • B	F - A plus (A • B)
H	L	L	L	F·Ã+B	F ÷ (A • B) minus 1
н	L	L	н	F A ⊕B	F A minus B minus 1
н	L	н	L	F∘B	F - (A • B) plus (A + B)
н	L	н	н	F = A • B	F △ (A • B) plus A
н	н	L	L	F : Logical "1"	F minus 1 (two's complement)
H	н	L	н	F∴A+B	F = (A + B) plus 0
н	н	н	L	F + A + B	F - (A + B) plus 0
н	н	н	н	F-A	F - A plus 0

See General Information section for packaging and maximum ratings.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs tested in the same manner.

L SUFFIX CERAMIC PACKAGE CASE 623

ſ		TEST	VOLTAGE VAL	UES	
[(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-65°C	-0.880	-1.920	-1.255	-1.510	-5.2
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2
413E0C	0.630	1 920	-1.000	-1.400	-6.2

										+125°C	-0.630	-1.820	-1.000	-1.400	-5.2	l	
	1	Pin	MC10581L Test Limits -55°C +25°C +125°C								TEST VOLTAGE APPLIED TO PINS BELOW:						
Characteristic Sv	Symbol	Under Test	Min	Max	Min	+25°C	Max	+12 Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	(V _{CC})	
Power Supply Drain Current	I _E	12	-	160			145	-	160	mAdc	-	- 12 11111	- 1776 111111	- ILA IIIIA	12	1,24	
Input Current	linH	9	 -	420		-	245	_	245	µAdc	9				12	1,24	
pat contint	, inH	10		375	_	_	220	-	220	μAuc	10	I -	_		\ ' '	1,27	
		11	-	420	_	-	245	_	245	1	l ii		_	_		1 1	
	1	13	-	340	_	-	200	-	200		13	_	-	_	, ,	1 1	
	1	14	-	450	-	-	265	-	265	1	14	_	-	-		l 1	
		15	J	450	-	-	265	-	265		15	-	-	- '	1 1	1 1	
	l.	16	-	375	-	\ -	220	i -	220	1 1	16	-	\ -	-	1 1	1 1	
		17	-	450	-	-	265		265	1 1	17	-	_	-	1 1		
		18	-	375	_	-	220	-	220 245		18	_	_	_	1 1		
		19 20	-	420 420	_	_	245 245	-	245 245		19 20	-	-	_	1 1		
	i i	21	1 =	375	_	_	220	_	220		20	_	i -	_			
1	1	22	_	495	_	-	290		290		22	1 -	_	_	1 1	1 1	
		23	-	340	_	-	200	_	200		23	_	_	-	▼	7	
Input Leakage Current	linL	9	0.5	-	0.5	_	_	0.3	-	μAdc		9		_	12	1,24	
		10		-	1	-	~	1 1	-	1 1	-	10	-	-	1 1	1 1	
	1	11	1 1	-		-	-	1 1			-	11	-		1 1	1 1	
	1	13	1 1	-		-	-		-	1 1	-	13	-	-	l I	1	
	1	14 15	1 1	_		-	-	1 1	-	1	-	14 15	_	-	1 1	1 1	
	1	16		_		_	_	1 1	_			16	-	I -	ł I	1 1	
		17		· -	1 1		-	1 1		i i	_	17	l _	_		1	
	1	18	1 1	l _	1	-	_	1 1	-	1	_	18	_	-	1 1	1 1	
	1	19	1 1	_		-	_	1 1	_	1 1	-	19	_	_		1	
		20	11	-	1	-	-	11.	-	1 1	-	20	-	_		1	
		21	11	-		-	-		-	1 1	-	21	-	_	1 1	1	
	1	22 23	1 🛊	-	↓	-	-	♦	-	↓	-	22 23	-	-	↓	1 ♦	
High Output Voltage	+	23	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	-	23		- -	12	1,24	
	Voн	-				- -				Vdc	·	 		-	12	1,24	
Low Output Voltage	VOL		-1.920	-1.655	-1.850		-1.620	-1.820			L						
High Threshold Voltage	VOHA	· ·	-1.100		-0.950	_		-0.845		Vdc		<u> </u>			12	1,24	
Low Threshold Voltage	VOLA	•	l -	-1.636	-	l –	-1.660	i -	-1.525	Vdc	-		••	1	12	1,24	

^{*}Test all input-output combinations according to Function Table.

.

^{**}For threshold level test, apply threshold input level to only one input pin at a time.

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts.

F SUFFIX CERAMIC PACKAGE **CASE 652**

1	TEST VOLTAGE VALUES											
i			(Volts)									
@ Test Temperature	V _{IH max}	VIL min	VIHA min	VILA max	VEE							
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2							
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2							
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2							

										+125°C	-0.630	-1.820	-1.000	-1.400	-5.2]
		Pin	MC10581F Test Limits								TEST VOLTAGE APPLIED TO PINS BELOW:					
Characteristic Symbol	Sumbal	Under Test			+25°C		+125°C Min Max		Unit	VIH max	VIL min	VIHA min	VILA max	VEE	(V _{CC})	
Power Supply Drain Current				Max	-	Тур		+						 		<u> </u>
	1E	18		160		116	145	<u> </u>	160	mAdc		-			18	6,7
Input Current	linH	15	-	420	-	-	245		245	μAdc	15	-	-	-	18	6,7
	ì	16	-	375		-	220	-	220	1 1	16	-	-	-	1 1	1 1
	ì	17	-	420	-	_	245 200		245 200	1 1	17	-	-	-	1 1	
	l .	19 20	_	340 450	_	_	265	-	265	11.	19 20	_	-	_	1 1	1 1
	ì	20	_	450	_	_	265	-	265		20	_	-	-	1 1	l 1
	ı	22	l -	375	-	l –	220	-	220		22	_		1 -	1 1	1 1
	1	23		450	_	l –	265	_	265	1	23			_		
	1	24	-	375	-	l –	220	-	220		24		_	-	1	1 1
	i .	1		420	-	-	245		245	1 1	1	_	_	-	1 1	
	ı	2	- 1	420	~	-	245	-	245	1	2	-	-	-		1
] 3	-	375	-	! -	220	-	220	1 1	3		-	-	i I		
	ı	4	-	495	-	-	290	-	290	1 1	4	-	-	-		l .
	L	5	-	340			200		200	V	5			-		
Input Leakage Current	linL	15	0.5	-	0.5	-	-	0.3	-	μAdc	-	15	-	-	18	6,7
	1	16	l i	-	1 1	- 1	-	1 1	-		-	16	-	-	1 1	1
	l .	17	11	-	1 1	-	-	1 1	-	1 1	-	17	-	-	i I	1 1
	!	19	1 1	-	1 1	_	_	1 1		1 1 '		19 20	-	-		1 1
	1	20	11	-	1 1		_	11	1 -	1 1	_	20	_	_		1 1
	l .	21 22	1 1	_	1	-	1 -	1 1	1	1 1	_	22	_			1 1
	1	23	11	1 -	1	_	_	1 1		1 1	_	23	-	_	l -	1
	1	24	1 1			-	-	1 1	-		_	24	-	_	1	1 1
	1	1	1 I	-	i	-	-	11	- 1		-	1	-	_	1 1	
		2	1 1		1 1	-	-	11	-		-	2	-	-	! !	
	1	3	11		1 1	-	-	1 1	-	1 1	-	3	~	-	! !	1 1
	1	4	١ .	-		-	-	1			-	4	-	-		1 1
	L	5	<u>'</u>									5			<u> </u>	
High Output Voltage	Voн		-1.080	-0.880	-0.930		-0.780	-0.825	-0.630	Vdc			_	_	18	6,7
Low Output Voltage	VOL		-1.920	-1.655	-1.850		-1.620	-1.820	-1.545	Vdc					18	6,7
High Threshold Voltage	VOHA		-1.100		-0.950	_		-0.845		Vdc		F	••		18	6,7
Low Threshold Voltage	VOLA	•	Ī -	-1.635		-	-1.600	—	-1.525	Vdc	-	-	••	••	18	6,7

^{*}Test all input-output combinations according to Function Table.

**For threshold level test, apply threshold input level to only one input pin at a time.

ELECTRICAL CHARACTERISTICS (CONT')

					AC Switching Characteristics							
			:		-5!	ъ.с.	+25°C			+12		
Characteristic	Symbol	Input	Output	Conditions [†]	Min	Max	Min	Тур	Max	Min	Max	Unit
Propagation Delay	t++, t	В1	PG	S0, S3	1.8	7.6	2.0	6.0	7.5	1.6	7.6	ns
Rise Time, Fall Time	t+, t-	B1	PG	\$0,\$3	1.0	3.5	1.1	2.0	3.5	0.9	3.5	ns
Propagation Delay	t++, t	В1	GG	S3, C _n	1.9	8.1	2.0	6.0	8.0	2.0	8.1	ns
Rise Time, Fall Time	t+, t-	B1	GĞ	S3.C _n	1.3	5.0	1.5	3.0	5.0	1.3	5.0	ns
Propagation Delay	t+-, t-+	B1	Cn+4	S3, C _n	1.9	8.1	2.0	6.0	8.0	1.9	8.1	ns
Rise Time, Fall Time	t+, t-	B1	Cn+4	S3,C _n	0.9	3.0	1.0	2.0	3.0	0.9	3.0	ns
Propagation Delay	t++, t+-	М	F1	-	2.8	10.3	3.0	6.5	10	2.8	10.2	ns
Rise Time, Fall Time	t+, t-	М	F 1		1.3	5.2	1.5	4.0	5.0	1.3	5.2	ns
Propagation Delay	t+-, t-+	S1	F1	A1, B1	2.7	10.2	3.0	6.5	10	2.6	10.2	ns
Rise Time, Fall Time	t+, t-	S1	F1	A1, B1	1.3	5.2	1.5	3.0	5.0	1.3	5.2	ns
Propagation Delay	t-+, t+-	S1	PG	A3, B3	1.9	8.1	2.0	6.0	8.0	1.8	8.1	ns
Rise Time, Fall Time	t+, t-	S1	PG	A3, B3	1.0	5.1	1.1	3.0	5.0	1.0	5.1	ns
Propagation Delay	t+-, t-+	S1	Cn+4	A3, B3	1.9	9.1	2.0	6.0	9.0	1.8	9.1	ns
Rise Time, Fall Time	t+, t-	S 1	Cn+4	A3, B3	1.0	5.1	1.1	3.0	5.0	1.0	5.1	ns
Propagation Delay	t+-, t-+	S1	GG	A3, B3	1.7	9.2	2.0	6.0	9.0	1.7	9.1	ns
Rise Time, Fall Time	t+, t-	S 1	GĞ	A3, B3	0.8	6.2	0.8	3.0	6.0	0.8	6.2	ns
Propagation Delay	t++, t	Cn	Cn+4	A0,A1,A2,A3	1.0	5.1	1.1	3.1	5.0	0.9	5.1	ns
Rise Time, Fall Time	t+,t-	c _n	Cn+4	A0,A1,A2,A3	0.9	3.1	1.0	2.0	3.0	0.3	3.1	ns
Propagation Delay	t++, t+-	Cn	F1	A0	1.9	7.1	2.0	4.5	7.0	2.0	7.1	ns
	t-+, t	l i	1 1		1.9	7.1	2.0	4.5	7.0	2.0	7.1	
Rise Time, Fall Time	t+, t-			1	1.3	5.2	1.5	3.0	5.0	1.3	5.2	
Propagation Delay	t++, t+-	A1	F1	_	2.9	10.1	3.0	6.5	10	2.8	10.2	ns
	t-+, t	1	1		2.9	10.1	3.0	6.5	10	2.8	10.2	
Rise Time, Fall Time	t+, t-		1		1.3	5.2	1.5	3.0	5.0	1.3	5.2	
Propagation Delay	t++, t	A1	PG	S0,S3	1.8	6.6	2.0	5.0	6.5	1.8	6.5	ns
Rise Time, Fall Time	t+, t-	A1	PG	\$0,\$3	0.9	3.5	1.1	2.0	3.5	1.0	3.6	nş
Propagation Delay	t++, t	A1	GG	A0,A2,A3,Cn	1.9	7.1	2.0	4.5	7.0	2.0	7.1	ns
Rise Time, Fall Time	t+, t-	A1	GĞ	A0,A2,A3,C _n	1.3	5.2	1.5	4.0	5.0	1.3	5.2	ns
Propagation Delay	t+-, t-+	A1	Cn+4	A0,A2,A3,Cn	2.0	7.1	2.0 .	5.0	7.0	1.9	7.1	ns
Rise Time, Fall Time	t+, t-	A1	Cn+4	A0,A2,A3,C _n	0.9	3.0	1.0	2.0	3.0	0.9	3.1	ns
Propagation Delay	t++, t-+	B1	F1	S3, C _n	2.9	11.1	3.0	8.0	11	2.7	11.2	ns
Rise Time, Fall Time	t+, t-	В1	F 1	S3,Cn	1.3	5.2	1.5	3.5	5.0	1.3	5.2	ns

[†]Logic high level (+1.11 Vdc) applied to pins listed. All other input pins are left floating or tied to +0.31 Vdc. V_{CC1} = V_{CC2} = +2.0 Vdc, V_{EE} = -3.2 Vdc

*For L Suffix only.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

The MC10616 is a high speed triple differential aignals over long lines. The base bias supply (VgB) is made available to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary.

Active current sources provide the MC10616 with excellent common mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to V_{BB} to prevent upsetting the current source bias network.

Complementary outputs are provided to allow driving twisted pair lines, to enable cascading of several amplifiers in a chain, or simply to provide complement outputs of the input logic function.

Case V_{CC1} V_{CC2} V_{EE}
620 Pin 1 Pin 16 Pin 8
650 Pin 5 Pin 4 Pin 12

 P_D = 100 mW typ/pkg (No Load) t_{pd} = 1.8 ns typ (Single ended) = 1.5 ns typ (Differential)

CIRCUIT SCHEMATIC

See General Information section for packaging

Each full temperature range MECL-10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs und outputs are tested in a similar manner

L SUFFIX CERAMIC PACKAGE CASE 620

ſ	· · · · ·	TE	ST VOLTAGE	VALUES		
ſ			(Volts)			
@ Test						
Temperature	ViH max	VIL min	VIHA min	VILA max	V88	VEE
-56°C	-0.880	1.920	-1.255	-1.510	From	-5.2
+52 ₀ C	-0.780	-1.850	-1.106	-1.475	Pin	-5.2
+125°C	-0.630	-1.820	-1.000	-1.400	11	-5.2

										+125°C	-0.630	-1.820	-1.000	-1.400	11	-5.2	i
		Pin			M		Test Limi					TEST VOLT	AGE APPLIED	TO PINS BE	I OW		ĺ
		Under	-6	5°C		+25°C		+12	15°C	ł		1231 70217	102 201 2122				(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	V88	VEE	Gnd
Power Supply Drain Current	ΙE	8	-	28	-	20	25	-	28	mAdc		4,9,12	_	-	5,10,13	8	1,16
Input Current	linH	4		195			115	-	115	μAdc	4	9,12	_	-	5,10,13	8	1,16
	СВО	4 9	-	1.5 1.5	-	-	1.0 1.0	-	1.0 1.0	μAdc μAdc	_	9,12 4,12	_	=	5,10,13 5,10,13	8,4 8,9	1,16 1,16
High Output Voltage	∨он	2 3	-1.080 -1.080	-0.880 -0.880	-0.930 -0.930	-	-0.780 -0.780	-0.825 -0.825	-0.630 -0.630	Vdc Vdc	9,12	9,12 4	_		5,10,13 5,10,13	8	1,16 1,16
Low Output Voltage	VOL	2	-1.920 -1.920	-1.655 -1.655	-1.850 -1.850	-	-1.620 -1.620	-1.820 -1.820	-1.545 -1.545	Vdc Vdc	9,12 4	4 9,12		-	5,10,13 5,10,13	8	1,16 1,16
High Threshold Voltage	VOHA	2	-1.100 -1.100	-	-0.950 -0.950	-	-	-0.845 -0.845	-	Vdc Vdc	9,12	9,12	4 -	-4	5,10,13 5,10,13	8	1,16 1,16
Low Threshold Voltage	VOLA	2 3	-	-1.635 -1.635		-	-1.600 -1.600	-	-1.525 -1.525	Vdc Vdc	9,12	9,12	-4	4 -	5,10,13 5,10,13	8 8	1,16 1,16
Reference Voltage	V _{BB}	11	-1.440	-1.320	-1.350	-	-1.230	-1.240	-1.120	Vdc	-	-	-		5,10,13	8	1,16
Switching Times (50-ohm Load)													Pulse In	Pulse Out		-3.2 Vdc	+2.0 Vdc
Propagation Delay	t4+2+ t4-2- t4+3- t4-3+	2 2 3 3	- - -	-	1.0	1.8*	2.5	- - -		ns	-	- - -	1	2 2 3 3	5,10,13	8	1,16
Rise Time (20% to 80%)	t ₂₊ t ₃₊	2 3	_	-		1.5		_	-		-	-		3			
Fell Time (20% to 80%)	t2- t3-	2 3	-	_	₩	•	↓	_	-		-	-		2 3			

*Delay is 1.5 ns when inputs are driven differentially Delay is 1.8 ns when inputs are driven single ended

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner

ſ		TE	ST VOLTAGE	VALUES		
Ī			(Volts)			
@ Test						
Temperature	ViH max	VIL min	VIHA min	VILA max	V _{BB}	VEE
-55°C	-0.880	-1.920	-1.256	-1,510	From	-5.2
+25°C	-0.780	-1.850	-1.106	-1.476	Pin	-5.2
+125°C	-0.630	-1.820	-1,000	-1.400	15	-5.2

										*125 C	-0.630	-1.620	-1,000	-1.400	10	-5.2	
		Pin			M	C10616 F	Test Limi	ts				TEST 1/01 T	AGE APPLIED	. TO BING OF			
	l	Under	-54	5°C		+25°C		+12	5°C			TEST VOLTA	AGE APPLIEL	IU PIRES BE	LOW:		(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	V _{IH max}	VIL min	VIHA min	VILA max	V88	VEE	Gmi
Power Supply Drain Current	1E	12	-	28	-	20	25	-	28	mAdc	-	8, 13, 16	-	-	1,9,14	12	4.5
Input Current	linH	8	-	195	-	-	115	-	115	μAdc	8	13,16	_	-	1,9,14	12	4.5
	СВО	8 13	-	1.5 1.5	_	-	1.0 1.0	-	1.0 1.0	μAdc μAdc	=	13,16 8,13	=	_	1,9,14 1,9,14	8,12 12,13	4.5 4.5
High Output Voltage	∨он	6 7	-1.080 -1.080	-0.880 -0.880	-0.930 -0.930	-	-0.780 -0.780	-0.825 -0.825	-0.630 -0.630	Vdc Vdc	8 13,16	13,16 8	_	-	1,9,14 1,9,14	12 12	4.5 4.5
Low Output Voltage	VOL	6 7	-1.920 -1.920	-1.655 -1.655	- 1.850 - 1.850	-	-1.620 -1.620	-1.820 -1.820	-1.545 -1.545	Vdc Vdc	13,16 8	8 13,16		=	1,9,14	12 12	4.5 4.5
High Threshold Voltage	VOHA	6 7	-1.100 -1.100	-	-0.950 -0.950	-		-0.845 -0.845	_	Vdc Vdc	13,16	13,16	8	- 8	1,9,14 1,9,14	12 12	4.5 4.5
Low Threshold Voltage	VOLA	6 7	-	-1.635 -1.635	-	_	-1.600 -1.600	-	-1.525 -1.525	Vdc Vdc	13,16	13,16	- 8	8 -	1,9,14	12 12	4.5 4.5
Reference Voltage	V88	15	-1.440	-1.320	- 1.350	-	-1.230	-1.240	-1.120	Vdc	-	-	_	-	1,9,14	8	4.5
Switching Times (50-ohm Load)													Pulse In	Pulse Out		-3.2 Vdc	+2.0 Vdc
Propagation Delay	18+6+ 18-6- 18+7- 18-7+	6 6 7 7	- - -		1.0	1.8*	2.5	- - -	-	ns	-	-	8	6 6 7 7	1,9,14	12	4.5
Rise Time (20% to 80%)	t6+ t7+	6 7	-	-		1.5		-			-	-		6 7			
Fall Time (20% to 80%)	t6- t7-	6 7	_	-	♦	•	♦	_	-	♦	1 -	_	♦	5			♦

*Delay is 1.5 ns when inputs are driven differentially Delay is 1.8 ns when inputs are driven single ended

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

HIGH SPEED DUAL TYPE D MASTER-SLAVE FLIP-FLOP

MC10631

RS TRUTH TABLE

R	S	Q _{n+1}
L	L	an
L	Н	H.
I	L	L
н	I	N.D.

N.D. = Not Defined

CLOCKED TRUTH TABLE

C	D	Q _{n+1}
٦	φ	an
Ή	L	
Н	I	Н

φ = Don't Care

C = CE + CC.

A clock H is a clock transition from a low to a high state.

CASE	V _{CC1}	V _{CC2}	VEE
620	Pin 1	Pin 16	Pin 8
650	Pin 5	Pin 4	Pin 12

The MC10631 is a dual master-slave type D flip-flop. Asynchronous inputs Set (S) and Reset (R) override the Clock (C_C) and $\overline{\text{Clock}}$ Enable ($\overline{\text{CE}}$) inputs. Each flip-flop may be clocked separately by holding the common clock in the low state and using the enable inputs for the clocking function. If the common clock is to be used to clock the flip-flop, the $\overline{\text{Clock}}$ Enable inputs must be in the low state. In this case, the enable inputs perform the function of controlling the common clock.

The output states of the flip-flop change on the positive transition of the clock. A change in the information present at the data (D) input will not affect the output information at any other time due to master slave construction.

Input pulldown resistors eliminate the need to tie unused inputs to VEE. Output rise and fall times have been optimized to provide relaxation of system design and layout criteria.

 $P_D = 270 \text{ mW typ/pkg (No Load)}$ $f_{Tog} = 225 \text{ MHz typ}$

ELECTRICAL CHARACTERISITCS

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, Other

VIH max

-0.880

L SUFFIX CERAMIC PACKAGE **CASE 620**

TEST VOLTAGE VALUES

Vdc ± 1%

VIHA min

-1.255

VIL min

-1.920

VILA max

-1.510

2

1, 16

VEE

-5.2

		Maria and								-00 C	-5.50	7.020	1.200	1.0.0	-3.2	
nput, or for one set of in Other inputs are tested in th				S2 1	2					+25°C	-0.780	-1.850	-1.105	-1.475	-5.2	
other inputs are tested in th	e same m	anner.								+125°C	-0.630	-1.820	-1.000	-1.400	-5.2	
\$ 1 T		Pin			MC106	31L Tee	t Limits				V	TAGE APPL	IED TO PINS LIS	TED BELOW:		
	1	Under	-55	°C		+25°C		+12	5°C		•	JEINGE ATTE	125 101110211	,		(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Мах	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	, IE	8	-	72	_	52	65	-	72	mAdc	_	-		-	8	1, 16
Input Current	linH	4	-	700		-	410	-	410	μAdc	4	-	-	-	. 8	1, 16
	1	5	-	700	-	-	410	-	410	1 1	5	-	-	-	1 1 1	1
	1	6	- 1	375	-	-	220	-	220		6	-	-	-	1 1 1	
	l	9		375 495	_	_	220 290	_	220 290	♦	9		_	_	🕴	•
nput Leakage Current	linL	4,5,*	0.5		0.5	-	-	0.3	-	μAdc		•			8	1, 16
<u> </u>		6,7,9*	0.5	. –	0.5	-	_	0.3	-	μAdc		·	-		8	1, 16
Logic "1"	∨он	2	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	Vdc	5	_	-	-	8	1, 16
Output Voltage		21	-1.080	-0.880	-0.930	-	-0.780	-0.825	-0.630	V.dc	7			<u>. </u>	8	1, 16
Logic "0" Output Voltage	VOL	3 31	-1.920 -1.920	-1.655 -1.655	-1.850 -1.850	_	-1.620 -1.620	-1.820 -1.820	-1.545 -1.545	Vdc Vdc	5 7	_	_	_	8	1, 16 1, 16
Logic "1"			-1.100	-1.000	-0.950		 	-0.845		-			5	- -	8	1, 16
Logic 1 Threshold Voltage	VOHA	2 2†	-1.100	-	-0.950	_	_	-0.845 -0.845	-	Vdc Vdc	<u>.</u>	_	7	9	8	1.16
Logic "O"	VOLA	3	-	-1.635	-		-1.600		-1.525	Vdc			5	 	8	1, 16
Threshold Voltage	TOLA	31	-	-1.635	l	-	-1.600	-	-1.525	Vdc	_		7	9	8	1, 16
			1										Pulse	Pulse		
Switching Times (100-ohm load)	1				İ				1]	+1.11 Vdc	+0.31 Vdc	In	Out	-3.2 Vdc	+2.0 Vd
Clock Input Propagation Delay	l	2		i	1.5	2.0	3.3		1 _				9	2	8	1, 16
Propagation Delay	19+2- 16+2+	lí		_	1.5	2.0	3.3	_	_	ns	7	1 -	6	1 1	l î	','"
Rise Time (20 to 80%)	t2+	1]		_	1.0		3.1	_	_	1 1	',	1	9	1 1	1 1	1 1
Fall Time (20 to 80%)	12-		_	_	1.0	1.3 1.3	3.1	_	-		′	1 -	9	• ♦	♦	. .
	12-	'		<u> </u>		1.3	<u> </u>		<u> </u>	├		-		- ' -	 ' -	<u> </u>
Set Input - Propagation Delay	t5+2+	2		_	1.1	2.0	3.3	_	l _	ns	_	_	5	2	8	1, 16
· ropogation bally	t12+15+	15	i - I	-	l 'i'	1	1	_	-	1 1	-	-	12	15	l i	1
	t5+3-	3	- 1	-			1 1	-	-	1 1	-	-	6	3	1 1	1 1
	t12+14-	14	-	-	₹ .	•		-	-	. ▼	-	1 -	12	14	▼	. ▼
leset Input								1								
Propagation Delay	t4+2-	2	-	-	1.1	2.0	3.3	-	-	ns	-	_	13	2 15	8	1, 16
	t13+15-	15 3	_	_] _	-		1 -	_	13	3	1 1	1 1
	14+3+ 113+14+	14	_	_	♦	•	♦	_	-	♦	-	_	13	14	♦	♦
Setup Time	tsetup	7	-		1.0	0.75	-	-	-	ns		-	6,7	2	8	1, 16
fold Time	^t hold	7	-		0.75	-0.5	-		1 -	ns		-	6,7	2	8	1, 16
			$\overline{}$									+			+	•

● Test

fTog

Toggle Frequency (Max)

200

200

225

200

MHz

^{*}Individually test each input; apply VII min to pin under test.

^{**}Pin 3 is tied to pin 7 for these tests.

[†]Output level to be measured after a clock pulse has been applied to the CE input (pin 6)

Each full temperature range MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table. after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100-ohm resistor to -2.0 volts. Test procedures are shown for only one input, or for one set of input conditions. Other inputs are tested in the same manner.

F SUFFIX CERAMIC PACKAGE CASE 650

	TEST VOLTAGE VALUES													
⊕ Test	Vde ± 1%													
Temperature	V _{IH} mex	V _{IL} min	VIHA min	VILA MEX	VEE									
-55°C	-0.880	-1.920	-1.255	-1.510	-5.2									
+25°C	-0.780	-1.850	-1.105	-1.475	-5.2									
+125°C	-0.630	-1.820	-1.000	-1.400	-5.2									

									+	125°C	-0.630	-1.820	-1.000	-1.400	-5.2	l
		Pin			. N		Test Limi				VALT	AGE'A RD I 16	D TO PINS L	HETED BELO		1
		Under		5°C		+25°C			æ°c							(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Mex	Min	Mest	Unit	VIH mex	V _{IL} min	V _{IHA} min	VILA mex	VEE	Gnd
Power Supply Drain Current	¹E	12		62		45	65		62	mAdc					12	4,5
Input Current	l _{inH}	8 9		700 700	-	-	410 410	-	410	μAdc	8	-	-	- 1	12	4,5
		10	=	375] [l =	220	_	410 220	1 1	9	_	[<u> </u>		. 1	l I
		ii	_	375	_	-	220	_	220	↓	11	_			1	1 1
		13		495			290		290		13					
Input Leekage Current	linL	8,9*	0.5	-	0.5	l –	-	0.3	-	μAdc	-	•	- i	-	12	4,5
		10,11,13*	0.5		0.6	-		0.3		μAdc		•			12	4,5
Logic "1"	∨он	6	-1.080	-0.880 -0.880	-0.930	-	-0.780 -0.780	-0.825	-0.630 -0.630	Vdc	9	-	-	-	12	4,5
Output Voltage		61	-1.080		-0.930			-0.825		Vdc	11		- -		12	4,5
Logic "0" Output Voltage	VOL	7 71	-1.920 -1.920	-1.655 -1.655	-1.850 -1.850	=	-1.620 -1.620	-1.820 -1.820	-1.545 -1.545	Vdc Vdc	9 11	_	_	-	12 12	4,5 4.5
Logic "1"	VOHA	6	-1.100	-1.000	-0.950	<u> </u>	-1.020	-0.845	-1.0-0	Vdc			9		12	4.5
Threshold Voltage	VUHA	61	-1.100	-	-0.960	-	-	-0.845	_	Vdc	_	_	11	13	12	4.5
Logic "0"	VOLA	7	-	-1.635	-	_	-1.600	_	-1.526	Vdc	_	_	9		12	4,5
Threshold Voltage		71		-1.635			-1.600		-1.525	Vdc	-	_	11	13	12	4,5
													Pulse	Pulso		
Sudable Time (100 -b - 11)				l			۱				+1.11 Vdc	+0.31 Vdc	ln .	ln .		+2.0 Vdc
Switching Times (100-ohm load) Clock Input	t13+6+ t13+6+	6 6	_	_	1.5	2.0	3.3	_	_	ns	11	_	13 13	6	12	4,5
Propagation Delay	t10+6+	6	_	_		łl		_	_		111	_	10			
	t10+6-	6	-	-	! ♦	♦	♦	-	_			_	10			1
Rise Time (20 to 80%)	t6+	6	_	-	1.0	1.3	3.1	_	-		- 1	_	13			l I
Fall Time (20 to 80%)	te_	6	_	_	1.0	1.3	3.1	- 1	_	•	_	_	13		•	, v i
Set Input																
Propagation Delay	t9+6+	. 6	-	-	1.1	2.0	3.0	-	-	ns	-	-	9	6	. 12	4,5
	t16+3+	3 7	_		i	1 1	1 1	-	_		-	_	16 9	3 7	1	[]
	^t 9+7- ^t 16+2-	, ź	_	-	I ♦	l †	l ♦	_	_	•	_	_	16	2	•	l∳
Reset Input	1,0,2-	 											1.5			
Propagation Dalay	t8+6-	6	-	l –	1.1	2.0	3.3	-	_	ns	_	_	8	6	12	4,5
	£1+3-	3	-	-		1 1	1 1	-	-	l i	-	_	1	3	1	Ιí
	18+7+	7 2	_	_	↓		↓	-	_			_	8	7 2		
Setup Time	t ₁₊₂₊	11		<u> </u>	1.0	0.75	- '	_	 -	<u> </u>	_		10.11	6	12	4.5
Hold Time	teetup	11	- -	-	0.75	-0.5	H	-		ns	<u> </u>		10,11	6	12	4,5
Toggle Frequency (Max)	thoid_	6		┝ <u></u>	200	250	H <u>-</u> -	-		ns MHz	-		10,11	6	12	4,5
And Liedonich (Way)	f _{Tog}	, ,	ı –	ı -	1 200	200			_	MUZ	1, ""	-	10		12	9,0

^{*}Individually test each input; apply VII min to pin under test.

^{**}Pin 7 is tied to pin 11 for these tests.

⁻VIH mex tOutput level to be measured after a clock pulse has been applied to the CE input (pin 10)

FIGURE 1 - TOGGLE FREQUENCY TEST CIRCUIT Coax Coax V_CC t+ = t- = ≤1.0 ns (20% to 80%) Clock Input (O O С D 50-ohm termination to ground located in each scope channel input. All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should 100 be <1/4 inch from TPin to input ∇ 0.1 μF pin and TP_{out} to output pin. V_{out} is 2:1 attenuated. VEE

FIGURE 2 – SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C V_{CC1} = V_{CC2} = +2.0 Vdc v_{in} Vout PW = ≥2 0 ns PRF = 1.0 MHz Clock Input С Input Pulse ā D t+ = t- = 1.5 ± 0.2 ns (20 to 80%) 50-ohm termination to ground located in each scope channel input. All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should VEE = -3.2 Vdc be <1/4 inch from TP_{in} to input pin and TP_{out} to output pin. V_{out} is 2:1 attenuated. +1.11 V 50% +0.31 V R Input +1.11 V -thold +0.31 V +1.11 V 50% +0.31 V S Input tsetup t5+2+ t4+2-Q - t2-80% 50% 20% NOTE: Q Output tsetup is the minimum time before the positive t4-3t5-3-C Output transition of the clock pulse (C) that information must 80% 50% be present at the data input (D). 20% $^{\rm t}$ hold is the minimum time after the positive transition of the clock pulse (C) that information must t3. - ta remain unchanged at the data input (D).

64-BIT RANDOM ACCESS MEMORY

MCM10140 MCM10142 MCM10148

64-BIT RANDOM ACCESS MEMORY

The MCM10140, MCM10142 and MCM10148 are 64-Bit Random Access Memories (RAMs): They offer very high speed, full binary decoding, two chip enable inputs for easy memory expansion, and separate data input and data output pins.

Organization of these memories is 64 one-bit words and they are packaged in standard 16-pin hermetic dual in-line packages.

MCM10142 and MCM10148 logic levels are fully compatible with the MECL 10,000 logic family and are specified for driving a 50 ohm load. The MCM10140 logic levels are compatible with the MECL 10,000 logic family except they are specified for driving a 90 ohm load.

L SUFFIX CERAMIC PACKAGE CASE 620

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only selected inputs and outputs. Other inputs and outputs tested in the same manner.

	L	TEST V	OLTAGE V	/ALUES		
			(Voits)			_
@ Test Temperature	V _{IHmax}	VILmin	VIHAmin	VILAmax	VEE	
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2	
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin			10140, MC	M10142,	MCM10148	Test Lin	nits							1
		Under	-30	0°C		+25°C		+89	5°C		VOLTAG	E APPLIE	DIOPIN	S LISTED	BELOW:	ן (∨cc
Characteristic	i	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VIL Amax	VEE	Gnd
Power Supply Drain Current	ΙE	8			-	80	100	-		mAdc	-	_	-	-	8	16
Input Current	linH	6	_	-	-	-	265 50	-	-	μAdc	6		_	-	8	16
	link	6			0.5		-			-	- -	6				+-
Logic "1" Output Voltage	Voн	15	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	14	-		-	8	1,16
Logic "0" Output Voltage	VOL	15	-1.890	-1.675	-1.850	_	-1.650	-1.825	-1.615	Vdc	14	-	_	-	8	1,16
Logic "1" Threshold Voltage	VOHA	15	-1.080	-	-1.980	-	-	-0.910	_	Vdc	-	-	3,14	_	8	1,16
Logic "0" Threshold Voltage	VOLA	15	_	-1.655	_	_	-1.630	-	-1.595	Vdc	-	_		3,14	8	1,16
Switching Times													Pulse In	Pulse Out	-3.2 V	+2.0 \
Access Times	¹CE-D+	15	-	- 1	-	-	12	-	l -	ns	-	-	4	15	8	1,16
Chip Enable	tCE+D-	15	-	- 1	-	-	12	-	-	1 1	-	-	4	15	1 1	1 1
Address Inputs	tA+D+	15	-	- 1	-		10*,15**	-	l -	1	-	-	2	15	1 1	1 1
	tA+D-	15	-	-	-	-	10*,15**	-	-	1 1	-	-	2	15	1 1	1 1
	tA-D+	15	-	- '	-	-	10*,15**	-	-	1 1	- 1	-	2	15	1 1	1 1
	tA-D-	15	-	-	-	_	10*,15**	-	-	1	-	-	2	15	1 1	1 1
Write Pulse Width	₹W(₩E)	12	-	-	-	-	10	-	-	1 1	-	-	13	12	1 1	1 1
Chip Enable Pulse Width	tW(CE)	4	-	-	-	-	13	-	-	1 1	-	-	13	4	1 1	1
Write Strobe Mode Times Setup	1	ì		l	İ	f		į	ľ	i i		1	i		1 1	1 1
Data	tsetup(D±W-)	12	-	-	-	-	0	-	-	!!	-	-	2	12	1 1	1 1
Chip Enable	tsetup (CE-W-)	12	-	-	-	-	3	-	-	1 1		-	4	12	1 1	1 1
Address	tsetup(A±W-)	12	-	-	-	-	5	-	-	1 1	-	-	4	12		
Hold		ì	1	İ	i		1	1	1	1 1	l	ĺ		}	1 1	1 1
Data	thold(W+D±)	15	-	-	-	-	3	-	-		-	-	12	15	1 1	1 1
Chip Enable	thold(W+CE+)	4	-	-	-	-	0	-	1 -		-	- 1	12	4		1 1
Address	thold(W+A±)	2	-	-	-	-	3	-	-	♥	- 1	- 1	12	2	♥	↓ ▼

^{*}MCM10142

^{**}MCM10140, MCM10148

CHIP ENABLE ACCESS TIME **CE - Dout -

Address Address Dout

SWITCHING TIME TEST CIRCUIT @ 25°C

8 x 2 MULTIPORT REGISTER FILE (RAM)

MCM10143

8 x 2 MULTIPORT REGISTER FILE (RAM)

The MC10143 is an 8 word by 2 bit multiport register file (RAM) capable of reading two locations and writing one location simultaneously. Two sets of eight latches are used for data storage in this LSI circuit.

WRITE

The word to be written is selected by addresses A_0-A_2 . Each bit of the word has a separate write enable to allow more flexibility in system design. A write occurs on the positive transition of the clock. Data is enabled by having the write enables at a low level when the clock makes the transition. To inhibit a bit from being written, the bit enable must be at a high level when the clock goes low and not change until the clock goes high. Operation of the clock and the bit enables can be reversed. While the clock is low a positive transition of the bit enable will write that bit into the address selected by A_0-A_2 .

READ

When the clock is high any two words may be read out simultaneously, as selected by addresses $B_0\!-\!B_2$ and $C_0\!-\!C_2$, including the word written during the preceding half clock cycle. When the clock goes low the addressed data is stored in the slaves. Level changes on the read address lines have no effect on the output until the clock again goes high. Read out is accomplished at any time by enabling output gates $(B_0\!-\!B_1),\,(C_0\!-\!C_1).$

tpd:
Clock to Data out = 5 ns (typ)
(Read Selected)
Address to Data out = 10 ns (typ)
(Clock High)
Read Enable to Data out = 2.8 ns (typ)
(Clock high, Addresses present)
PD = 610 mW/pkg (typ no load)

See General Information section for packaging.

BLOCK DIAGRAM

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown only for selected inputs and outputs. Other inputs and outputs are tested in a similar manner.

	Í	TEST V	DLTAGE	VALUES	
			(Volts)		
Test	ViHmax	VILmin	VIHAmin	VILAmex	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

1		Pin			MC		Test Limi				'		LISTED B	PLIED TO	į	
		Under	-30	0°C		+25°C		+8	5°C	J			LISTED B	ELOW:	,	1
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmex	VEE .	Ł
Power Supply Drain Current	ΙE	12		-	-	118	147	-	-	mAdc	4,5,6,7,8, 9,13,14, 15,16,17, 18,19,20	-	-	-	12	
Input Current	lin H	4	-	_	-	-	200	-	-	μAdc	4	-	-	-	12	T
		5	-	-	-	-	1 1 .	-	1	1 1	5	-	-	- 1	1 1	1
		6 7	_	_	-	_	1 1	-	-	1 1	6	_	_	-	1 '	4
		8				Ī.,	1 1	1 -		l I	l á	_	-	_	1 '	1
ľ		9	-	-	_	-	1	_	-	1 1	9	-	-	- :		ı
		13	-	-		-	li	-	-	1 1	13	- 1	-	- !	i I '	1
		14	-	-	-	-	1 1	-			14		-	-	11.	1
		15 16	-		-	_		-	_	1 1	15 16		-	_	1 1 :	đ
		17	1 -	-		_	l i	-		1 1	17	-	-		1 1 '	1
		18	_	-	_	-	1 1	-	-		18	-	-	-	1 1	.1
		20	-	-	**	-	. ▼	-	-	1 1	20	-	-	-	1 1 '	1
		10	-	-	-	-	245	-	-	1 1	10	-	-	-	11	d
		11	-	-	-	-	245	-	-		11	-	-	-	V	١
		19	+				245			<u> </u>	19	-		-		4
	lin L				0.5					μAdc				-	12	4
Logic "1" Output Voltage	∨он	2	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	10,11 ①	-	-	-	12	1
		3 21	1 1	1 1	1 I	-	1 1	1 1	1	1 1	1 1 1		-	_	1 I '	1
		22	▼	\ \	▼	-	V	▼		. ▼	Y Y	_	_		, ▼	1
Logic "0" Output Voltage	VOL	2	-1.890	-1.675	-1.850	_	-1.650	-1.825	-1.615	Vdc	4,20 ①	_	-		12	1
	-01	3	1	1 1	1	_	1	1 1	1	1	1 71° Y	-	-	_	ΙÏ	1
		21	1			-	1 4	↓	1	1 1	1 1	-	-	-		.1
		22				· -	_ v	٧		V	7 7	-		-		1
Logic "1" Threshold Voltage	VOHA	2	-1.080	-	-0.980	-	i -	-0.910	-	Vdc	11 ①	-	-	4	12	1
		3 21	1 1	-		-	-	1 1	-	1 1	10	-	-	4	1 1	3
		22	T	_			-	. ▼	-	₩	10 ♥	-		20 20		1
Logic "0" Threshold Voltage	V	2	<u> </u>	-1.655	-		-1.630	-	-1.595	1		-			12	ł
Logic O Threshold Voltage	VOLA	3	1 -	-1.655		-	-1.630	-	-1.595	Vdc	11 ①	1 -	4	_	12	1
		21	- '	1 I	-	_	1 1	_	1	1 1	10 ┷] [20	=	1	1
		22	- ,	V		-	▼			▼	11 ₹		20	<u> </u>	V	1
witching Times ②												Figure	Pulse in	Pulse Out	-3.2 V	1
Access Time		1 .					1	ł			l					1
Address Input	¹B-QB-	2 2	1	-	-	10 10	-	-	-	ns	-	!	5	2	12	1
Read Enable	¹B+QB+ ¹ŘÉ-QB+	2	1 -	-		2.8		-	_	11	_	1 2	5 4	2 2	11	1
Data	Clock+QB-	2	-	-		5.0	-	-	_	1 1		3	19	2	1 1	1
Setup	0.00							i		1 1	l		_			1
Address	(setup(B-Clock-)	19	ĺ	ĺ	- 1	5.5	- 1	-	-	1 1	1	4	5	19	11.	. 1
Hold							1	1		1 1	1				11	1
Address	thold(Clock-B+)	5				-4.5	-		-	1 1	-	4	19	5	1 L	١
Vrite Time ②			i .							1 1		ł	ì	i !	i I	1
Setup										1 1					i I	1
Write Enable	tsetup(WE-Clock+)	19				2.0	1 =		-	l I	-	5	8	19	11	1
Address	tsetup(WE+Clock-)	19		1	-	2.0		-	-		14	6	8	19	11.	. 1
	(setup(A-Clock+)	19	-	-	-	3.0	-	-	-	1 1	-	8	14	19	1 1	1
Data	(setup(D-Clock+)	19	-	-	-	2.0	-		i -	i I	-	8	10	19	11.	1
Hold Write Enable		8			_	-2.0	_	_	_		1	۱.			1 1.	ł
Witte Chable	thold(Clock+WE+) thold(Clock+WE-)	8			_	-2.0	_	-	_	11		5 6	19 19	8	1 1	ı
Address		5	_	_	_	-3.0	_	! [-	1 1		8	19	14	1 1	ł
Data	thold(Clock+A+)	10	_	_	_			1			_	8			i I	ł
Vrite Pulse Width	thold(Clock+D+)	19	1		_	+2.6	-		ľ	1 1	_		19	10	i I	١
	PW₩Ē		-		-	5.0	-		-	1 1	-	7	8	19	1 I	ı
lise Time (20% to 80%)	t+	2	-		-	2.0	-	- i	-	1	-	-	5	2	/ I	1
		۱ ـ								♦				1 !	ı	ı
all Time	t-	2	-	-	1	2.0	- 1	-	-	ı V	-		5	2	. v	- 1

¹ Data has to be clocked in.

② AC timing figures do not show all the necessary pre-setting conditions -1.85 V

SWITCHING TIME TEST CIRCUIT @ 25°C

READ TIMING DIAGRAMS

WRITE TIMING DIAGRAMS

256 BIT RANDOM ACCESS MEMORY

MCM10144

256 x 1 BIT RANDOM ACCESS MEMORY

The MCM10144 is a fully decoded 256-bit Random Access Read/Write Memory organized as 256 one bit words. Stored data is selected by means of an eight bit address, consisting of inputs A0 through A7.

The MCM10144 has three active-low chip enable inputs for increased logic flexibility permitting memory expansion up to 2048 words without additional decoding. For larger memories, the upper address words are selected by using one of the CE inputs for enabling 1024 word segments.

The MCM10144 operating mode (all \overline{CE} inputs low) is controlled by the \overline{WE} input. With \overline{WE} low, the chip is in the WRITE mode, the output, D_{out} , is tow and the data state present at the data input (pin 13) is stored at the selected address. With the \overline{WE} high the chip is in the READ mode and the data state at the selected memory location will be presented, noninverted at the data output (pin 15).

Open emitter outputs permit full wire-ORing to data buses, with ${\bf Q}$ low when the chip is disabled.

The device is fully compatible with the MECL 10,000 logic family. It is designed for use in high speed scratch pad, control, cache, and buffer storage applications.

L SUFFIX CERAMIC PACKAGE CASE 620

MCM10144AL CERAMIC PACKAGE CASE 690

	TRU	TH TABLE		
MODE		INPUT		OUTPUT
	CE	WE	Din	D _{out}
Write "0"	L	L	L	L
Write "1"	L	L	н	L
Read	L	н	φ	Q
Disabled	Н	φ	φ	L

φ = Don't Care.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for selected inputs; other inputs are tested in the same manner.

	1	TEST V	OLTAGE VAL	JES	
			(Volts)		<u> </u>
© Test Temperature	VIHmex	VILmin	VIHAmin	VILAmex	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

										+85 · C	-0.700	-1.625	-1.035	-1.440	-5.2	
	Р				MCM1	0144 Tes	Limits				7,507	VOLTAGE APPL	IED TO BINE	LICTED BEL		
	l I	Under	-30	0°C		+25°C		+85	5°C		TEST	VOLTAGE APPL	TED TO PINS	LISTED BELL	,	Vcc
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmex	VEE	Gnd
Power Supply Drain Current	1 _E	8	-	-	-	80	100	-	-	mAdc	-	_	-	-	8	16
Input Current	ł _{in} H	5	-	-	-	-	265	-	-	μAdc	5	-	-	-	8	16
		1	-	-	-	-	50	-	-		1 1	-		_		1
		12 14	_	-	-	-	50 50			1	12 14	-	1 -	! [1 1	1
	linL	5	-	- -	0.5	 - -	- 50		 -	#Adc	- 14	5	- -	 	8	16
Logic "1"		15	-1.060	-0.890	-0.960	 -	-0.810	-0.890	-0.700	Vdc	13,14	1,2,3,4,5,6,			8	16
Output Voltage	VOH								L			7,9,10,11,12				
Logic "0" Output Voltage	VOL	15	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	14	1,2,3,4,5,6,7, 9,10,11,12,13	-	-	8	16
Logic "1" Threshold Voltage	VOHA	15	-1.080	-	-0.980	-	-	-0.910		Vdc	13,14	1,2,3,4,5,6, 7,9,10,11,12	-	5,6,7	8	16
Logic "0" Threshold Voltage	VOLA	15	-	-1.655	-	-	-1.630	-	-1.595	Vdc-	13,14	1,2,3,4,5,6, 7,9,10,11,12	5,6,7	-	8	16
Switching Times						T							Pulse In	Pulse Out		
Access Times		ŀ				-				1						
Chip Enable	tCE-Dout+	15 ì	_	_		5 5	10 10	-	-	ns	_	-	6,7 5	15	8	16
Address Inputs	tA±Dout+		=	-	-	18 18	30 30	_	-			-	1		1	
Write Strobe Mode Times Setup											İ				1 1	
Data	tsetup(D±W-	15	-	-	2.0	-	-	-	-	-	-	-	13,14	1 1		
Chip Enable Address	tsetup(CE-W-)		-	_	2.0 10	-	-	_	_				5,14 1,14			
Hold	1	1 1											1	1 1		
Data	thold(W+D±)			-	2.0	-	-	-	-	1 1	~	-	13,14	1 1		
Chip Enable	thold(W+CE+)		-	-	2.0	-	-	-	-		-	-	7,14	1 1		
Address	thold(W+A±)		-	-	0	-	-	-	-		l	_	1,14	[]		
Recovery After Write Time	t <u>W</u> + D _{out} +		· -	·	_	-	17					-	14			
Write Pulse Width	tw(WE)	12		i –	30	-	-		-	1 1	l	-	14	1 1	1 1	

SWITCHING TIME TEST CIRCUIT @ 25°C

CHIP ENABLE ACCESS TIME

ADDRESS ACCESS TIME

WRITE STROBE MODE

MCM10145

64-BIT REGISTER FILE (RAM)

The MC10145 is a 64-Bit RAM organized as a 16x4 array. This organization and the high speed make the MC10145 particularly useful in register file or small scratch pad applications. Fully decoded inputs, together with a chip enable, provide expansion of memory capacity. The Write Enable input, when low, allows data to be entered; when high, disables the data inputs. The Chip Enable input when low, allows full functional operation of the device; when high, all outputs go to a low logic state. The Chip Enable, together with open emitter outputs allow full wire-ORing and data bussing capability. On-chip input pulldown resistors allow unused inputs to remain open.

See General Information section for packaging.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts.

	TEST VOLTAGE VALUES														
		(Volts)													
@ Test femperature	VIH max	VIL min	VIHA min	VILA mex	VEE										
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2										
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2										
+85°C	-0.700	-1.825	-1 035	-1.440	-5.2										

							Y-21:			+85°C	-0.700	-1.825	-1.035	-1.440	-5.2
	I	Pin		o°c		MCM 101451 +25°C	L I OST LIMI		5°C	ı —	TEST V	OLTAGE AF	PLIED TO PI	NS LISTED BE	LOW
Characteristic	Symbol	Under Test	Min	Max	Min	Typ	Mex	Min	Mex	Unit	VIH max	VIL min	VIHA min	VILA max	VEE
Power Supply Drain Current	ΙE	8	-	-	-	120	150	-	-	mAdc	-	-	-	-	8
Input Current	l _{in H}	3	-	-	-	-	200	-	-	μAdc	3	-	-	-	8
	l	5	_	-	-	-	220 220	_	_	1 1	5	1 =	_	-	1
	l	6	-		-		200	-	1 -		6		-		1
	į.	?	-	-	-	-	200	-	-	1	7	-	-	- !	
	l	9				-	200 200	_			10	-		1 :	1
		11	-	-	_	_	220	-	-		111	-	<u>-</u>	- 1	
	l	12 13	_] [-	220	_	_	l ↓	12	-	-	-	
	lin L	13	-	-	0.5	_	470	_	_	µAdc	13	-	_		8
Logic "1"	VOH	1 , -	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	40				8
Output Voltage		2	1	1	1	-	1 1	1	1	l î	5 2 0	-	-	-	ΙĬ
	1	14 15	1 1	1 1		_	l •		1 1		4 (O) 5 (O) 12 (O) 11 (O)	-			
Logic "0"	VOL	1	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vde		-	-	-	
Output Voltage		2	1	l 1	1 1	-	1 1	1	1 1		I 20	-	-	-	
		14 15	†	†] †	_] 🕴		†		8000	_	-	_	
Logic "1"	VOHA	1	-1.080	-	-0.980	-	-	-0.910	-	Vdc	0	-	4		8
Threshold Voltage		2	1 1	<u>-</u>	1 1	-	-	l 1	-	1	ΙĪ	-	5	-	1
		14 15	,	-	+	_	-			†	†		12 11	-	
Logic "0"	VOLA	1	-	-1.655	-	-	-1.630		-1.595	Vdc	0	-		4	8
		2 14		1 1	=	_		_		1 1	1 1	-	-	5 12	
		15		1		-	1		1 1	1				ii	
Switching Times ③ Access Times	1						ŀ				+1.11, V		Pulse In	Pulse Out	-3.2 V
Chip Enable	¹Œ-Q+	2	-	~	-	7.0	-	-	-	ns	-	0	3	2	8
	ι <u>ς</u> Ε+α-	2	-	-	-	7.0	-	-	-		-	1 1	3	2	
Address Inputs	¹A+Q+	1,2,14,15	-	-	-	10.0	-		<u> </u>		-		6,7,9,10	1,2,14,15	
	tA-Q+		- 1		_	1	_				I -	1 1	l i	1	
	IA-Q-	l †		-	-		-	-	-	1 1	-	, ,	l †	1 +	
Write Strobe Mode Times		'	1			·				1 1	ł				
Setup Data	tsetup (D·W)	2	-	_	۱ -	0	- 1	_	_	1 1	l _	-	5,13	2	
Chip Enable	tsetup (CE-W)	2	-	-	_	3.5	-	-	-		-	-	3,13	2	
Address	^t setup (A-W)	1,2,14,15	-	-	-	3.5	-	-	-	1 1	-		6,7,9,10,13	1,2,14,15	
Hold Date	thold (₩.D)	2	_		۱ ـ	3.0				11.	l	l _	5,13	2	
Chip Enable	thold (W-CE)	2	1 -	1 -	_	3.0	_	i -		1 1	_	_	3.13	2	
Address	thold (W-A)	1,2,14,15	-	-	-	3.5	-	-	-	1 1	-	-	6,7,9,10,13	1,2,14,15	
Recovery After Write Time	¹∰+Q+	2	_	-	_	7.5	-		-		5	8	13	2	
Write Pulse Width	¹₩+Q- PW₩			-	1 [7.5 7.5	_	- 1	_	1 1	1 -	u	13	2 2	
Chip Enable	''''		-	-	-	,	-	_	I -	1 1	I -	"	'3	1	
Strobe Mode Times					1				1		ĺ	1			
Setup Data Write Enable	testup(D-CE)		-	-	-	7.5 11.0	-	-	-		l -	-	3,5 3,13	2 2	
Address	testup(W-CE)	1,2,14,15	_	-	-	3.0		_	-			-	3,13	1,2,14,15	
	-Brop(A-CE)			Ī	ĺ					1 1	İ				
Hold Write Enable	thold (CE-D)	2 2	-	-	-	3.0	-	_	-		-	-	3,5 3,13	2 2	
Address	thold (CE-W)	1,2,14,15	_		_	3.0 3.0		_			1 -	_	3,6,7,9,10	1,2,14,15	
Chip Enable Pulse Width	PWCE	2	-	-	-	7.5	-	-	-				3	2	
Rise Time	1+		-	-	-	3.0	-	-	-	1	-	0	-	1	
(20% to 80%) Fall Time	ا . ا				_	3.0	_	_	_	1 1	l	ıσ	_		
(20% ro 80%)	۱- ا		_	_		3.0	-	_	-	l '	_	۱۳	_	1	٠.

^{*}Limit applies for all inputs, individually apply V_{IL min} to pin under test.
**For definition of timing parameters, see Figure-

① Proper high/low logic levels are written into addressed location prior to test.
② Pulse is applied to pin 13 (Write Enable) with input conditions as shown before measuring output conditions.
③ For definition of symbols see timing diagrams.

SWITCHING TIME TEST CIRCUT

WRITE TIMING DIAGRAMS-WRITE STROBE MODE

CHIP ENABLE STROBE MODE

READ TIMING DIAGRAM

128-1 BIT RANDOM ACCESS MEMORY

MCM10147

128 x 1 BIT RANDOM ACCESS MEMORY

The MCM10147 is a 128-bit RAM organized as a 128-word by 1-bit array. This organization and the high speed of this MECL 10,000 device make the MCM10147 particularly useful in fast scratch pad, register file, and buffer memory applications. Full address decoding, and two Chip Enables (CE) are included in this plevice to permit simple memory expansion.

For writing Data (D) into this memory, both Chip Enables CE1 and CE2 are brought low, the address is presented at A0-A6, and the Read/Write Enable (WE) is taken low while Data is valid. To read a particular address, both Chip Enable inputs must again be low, but the Read/Write input is high (Data input disabled) while the location is addressed.

The two Chip Enables are provided for row or column selection of device packages in an expanded memory system. Either input can be used to select a particular row or column of stored data bits.

Open emitter outputs permit full wire-ORing to data buses, with the output being held low when either Chip Enable is high.

Internal input pulldown resistors are not used on this device. Unused inputs should be tied to VEE.

TRUTH TABLE

MODE		INPUT		OUTPUT	
	CE1	CE2	WE	Din	D _{out}
Write "0"	L	L	٦	r	L
Write "1"	L	L	L	H	L.
Read	L	. L	н	φ	a
Disabled	н	L	φ	φ	L
	L	н	φ	φ	L

φ = don't care

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for selected inputs; other inputs are tested in the same manner.

'		TES	T VOLTAGE	VALUES	
@ Test			(Volts)		
Temperature	ViHmax	VILmin	VIHAmin	VILAmax	VEE
-30°C	-0.890	-1.890	-1.205	-1.500	-5.2
+25°C	-0.810	-1.850	-1.105	-1.475	-5.2
+85°C	-0.700	-1.825	-1.035	-1.440	-5.2

										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	1
		Pin			MC101	47AL Tes	Limits					•				1
		Under	-30	<u>°c</u>		+25°C		+8	35°C]	TEST	VOLTAGE A	PPLIED TO PIR	IS LISTED B	ELOW:	
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	1 _E	8	_			80	100	- "	-	mAdc	-	-	-	-	8	16
Input Current	I _{in} H	2	-	-	-		35	-	-	μAdc	2	-		-	8	1,16
		11 13	_		_	_		_		1 1	11	-	-	-		1
	1	12	-		_		75	_		♦	13 12	_			•	♦
	lin L	2	-	-	-6.0		+6.0	-	_	μAdc		2		_	8	1.16
		11	-	-	-	-		-	-		-	11	-	-	ĺ	1 1
		13 12	_		-6.0	_	↓	-	-		_	13 12	-	_		
Logic "1"	Voн	15	-1.060	-0.890	-0.960		-0.810	-0.890	-0.700	Vdc		2,3,4,5,	12	13,14	8	1,16
Output Voltage	VOH	,,,	1.000	-0.030	-0.500	Ξ.	-0.810	-0.050	-0.700	l vac	_	6,7,10,11	12	13,14	•	1.16
Logic "0"	VOL	15	-1.920	-1.675	-1.880	-	-1.650	-1.855	-1.615	Vdc	-	2,3,4,5	12	13,14	8	1,16
Output Voltage			<u> </u>			_						6,7,10,11				
Logic "1"	VOHA	15	-1.080	-	-0.980	-	-	-0.910	-	Vdc	-	2,3,4,5,	12	13,14	8	1,16
Threshold Voltage	—		├ -	L				_=_		<u> </u>		6,7,10,11				—
Logic "0"	VOLA	15 15	_	-1.655 -1.655	_	_	-1.630 -1.630		-1.595 -1.595	Vdc Vdc	_	2,3,4,5, 6,7,10,11	13 14	_	8 8	1,16
Switching Times			 		 	-	-			1.00			Pulse In	Pulse Out		 ',''0
Access Times	1			ł									7 0.20 1.1	10.2001		1
Chip Enable	tŒ-Q+	15	-	_	_	l _	8.0	_	_	ns	_	_ 1	13	15	8.	1,16
•	t⊆E+Q-	1	- 1		_	_	8.0	_		ΙΪ	_	_	14	ΙïΙ	Ĭ	1 ''i'
Address Inputs	tA+Q+		-	-	-	10	12	-	-		-	-	7	1 1 1		
	tA-Q+	1	_	-		10 9	12 10	_	_		-	-	7	1 1		
	tA+Q+	•	-	-	-	9	10	-	_		_	_	4		1	
				}				!		1 1		i i] [
Write Strobe Mode Times Setup	1			ĺ	1					I 1						
Data	t _{setup} (D-W)	15	-	-	1.0	-	_	-	_		_	_	11,12			
Chip Enable	setup(CE-W)	1	-	-	1.0	-	-	-	-		-	-	12,13		ļ.	
Address	tsetup(A·W)		-	-	3.0	-	-	-	-	ł	-	-	2,12			1
Hold	tsetup(A-W)		-	-	4.0	-	-	-	-		-	-	7,12			1 1
Data	thold(D-W)		_		1.0	_	l _	_	_		_	_	11,12			
Chip Enable	thold(CE-W)		_	_	1.0	_	_	_	_		_		12,13			
Address	thold(A-₩)		-	-	3.0	-	-	_	-		_	_	2,12		-	
Recovery After Write Time	t W+ Q+	1	-	-	-	-	8.0	-	-		-	_	12			
Militan During Militan	t₩+Q-	V	-	-	-	-	8.0	-	-		-	~	12			1
Write Pulse Width	tw(WE)	12	-	-	-	-	8.0	-	-		-	-	12	▼	•	"
Rise Time (20% to 80%)	1+	11	-	-	-	2.0	-	-	-		-	-	-	11	8	1,16
Fall Time	t-	11	-	-	_	1.0	_	-	-	♦	_	_		11	8	1,16
,(20% to 80%)	1		Į.	l .	1		1	1	1	l .	I	1		1		1

SWITCHING TIME TEST CIRCUIT @ 25°C

CHIP ENABLE ACCESS TIME

ADDRESS ACCESS TIME

WRITE STROBE MODE

A

ì

MCM10150

Advance Information

256 x 4 BIT PROGRAMMABLE READ ONLY MEMORY

The MCM10150AL is a monolithic 1024-bit programmable read only memory (ROM) that can be factory programmed for custom requirements. The basic organization of the memory is 256 four-bit words. This organization and the high speed of this MECL 10,000 device make the MCM10150AL particularly useful in fast micro programs, look up tables, decode functions, code conversion, number conversion, and random logic.

Metal interconnections establish each bit initially in the logic "1" state. By "blowing" appropriate nichrome resistors and thus breaking metallization links these bits can be changed to the logic "0" state to meet specific custom program requirements.

The MCM10150AL has eight address inputs to select the proper word and one chip enable input as well as outputs for each of the four bits. The MCM10150AL is specified over an operating temperature range of -30° C to $+85^{\circ}$ C.

This is advance information and specifications are subject to change without notice.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained: Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

4	Α0		_
. 2		D _{out} 0	15
	A1	· outo	
3	A2		
9	АЗ	D _{out 1}	14
10		Couti	
	A4		ľ
6	A5		12
5		D _{out2}	
	Α6		
	Α7		11
13	CE	D _{out3}	
	U		I

									. omp							
										-30°C	-0.890	-1.890	-1.205	-1.500	-5.2	
										+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	
										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin			MCM101	50AL Te	st Limits				TE			IED TO P	INS	
		Under	-30	-30°C +25°C +85°C								LISTED BELOW:				
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit ¹	VIHmax	VILmin	VIHAmin	VIL Amax	VEE	V _{CC} Gnd
Power Supply Drain Current	1E	8	-	-	-	110	150	-	-	mAdc	-			-	8	1,16
Input Current	linH	2	-	-	_	T -	265		-	μAdc	2	-	-		8	1,16
	linL	2	_	-	0.5	_	-	_	-	μAdc	_	2	-	-	8	1,16
Logic "1" Output Voltage	V _{OH} •	15	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	-	•	-	-	8	1,16
Logic "0" Output Voltage	VOL	15	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	13				8	1,16
Logic "1" Threshold Voltage	VOHA*	15	-0.080	-	-0.980	-	-	-0.910	-	Vdc	_	•	-		8	1,16
Logic "0" Threshold Voltage	VOLA	15	T -	-1.655	-	-	-1.630	-	-1.595	Vdc		_	13		8	1,16
Switching Times (50 Ω Load)													Pulse in	Pulse Out	-3.2 V	+2.0 V
Access Time	4	·		Į.	ĺ	l			1							
Chip Enable	tCE-Dout+	15	-	-	-	7.0	-	-	-	ns	-		13	15	8	1,16
1	tCE+Dout-	1 1	-	-	. –	7.0	1 -	-	-	1.	-	7	13	l 1		1 1
Address Inputs**	tA+Dout+		-	-	-	20	-	-	-	1 1	-	_	7		1 1 1	1 1
	tA-Dout+	1 1	-	-	-	20	-	-	-	1 1	-	-	7		1 1 1	1 1
Rise Time	t ₁₅₊		-	-	-	4.0	-	-		1 1	-	-	7			1
(20% to 80%)		1 1	1		1	1		1		}	i					
Fall Time	t15-	†	-	-	-	4.0	-	_	-	♦	-	-	7	. ♦	🛊	♦
(20% to 80%)	1	l			l	ł	i	1	I	1	1			1		l

@ Test

Temperature

TEST VOLTAGE VALUES (Volts)

VIHMEX VILMIN VIHAMIN VILAMEX VEE

^{*}VOH measurement pattern dependent.

^{**}AC tests shown for only one address line and one output (times are pattern dependent).

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS € 25°C

	AMOTER BART WINDER	T			
_	MASTER PART NUMBER PREFIX: MCM	H	MOTOROLA INC. (Semiconductor Products Division		
_	(01 200 2) (3) (4) (8) (6) (7) (8) (9)	2	2200 WEST BROADWAY, MESA, ARIZONA 85202		
	11 11 21 22 14 16 16 17 16 10		MCM10150 ORDER FORM		
_	0 1 1 2 1 2 1 4 1 4 1 4 1 1 1 1	1 1			
\neg	=		DATE10		
_	DASH NUMBER	Line	PURCH, ORDER NO.		
_	[01 (11 [21 [21 [41 [51 (61 [71 (81 [8]	\Box			
_	(0 [1] [2] [3] [4] [6] [6] [7] [8] [8] (0] [1] [2] [3] [4] [6] [6] [7] [6] [6]	2 3	s		
_	(01 (11 (2) (3) (4) (8) (8) (7) (8) (8)				
\equiv	(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)		(DO NOT MARK THIS SECTION)		
_	(0) (1) (2) (3) (4) (6) (6) (7) (6) (9)	٩	7 0		
	ORDER DATE				
-	TOTE (02) [03] [04] [05] [06] [07] [08] [09] (10] [11] [12] TRNS [0] [10] [20] [30]	Day	Same as sold to unless otherwise indicated below.		
=	UNITS [0 [1 2 2 4 5 6 7 6 6	Day	Make All Marks		
_	19 1241 125 1261 1221 1202 1201 1807 1811 1821 1851 1841	₩	With a Soft #2 Lead Pencil When Completing		
اا	CUSTOMER NAME CODE	Line	Form.		
-	[192] 191] (0 [1] 2 [2] 4] 6] 6 3 7] 0 4 4 6] 6 7 7 7 7 7 7 7 7 7	1 2	Erase Completely		
	(12) [11] (0) [1 - 12 (13) [4] (5) [6: 77 (6: 5)	3	Any Merks You Wish to Change DASH NO.		
_	[12] [11] [0] [1] [2] [2] [3] [4] [5] [6] [7] [6] [6] [7] [6] [7] [7] [7] [7] [7] [7] [7] [7] [7] [7	4	With the Charles		
_	YOUR PART NUMBER*	۲۰	Numbers are marked normally on each line. For any other characters, standard Hollerith coding is used.		
		\dashv	For example, a dash can be coded by marking the 11-block in one line. The table at the left shows how to code letters (note that each letter requires two marks — a "zone" mark and a "select" mark.)		
	ATTE SIKILIMINIO PIGIA	Line			
	7 7 7 2 S T U V W X Y Z	H	As an example, you would code the 10-character part number: 'MYPART-123' as follows - For the 'M'		
\dashv	112: 111: 0 1 1 1 1 1 1 2 1 1 2 1 1 4 1 1 5 1 1 6 1 1 7 1 1 8 1 1 9 1		on line 1, mark the J _{WR} column (11-block) and the D _{MU} column (4-block) like this:		
	1121 111 10 11 12 13 14 15 16 17 10 10	3	1M*+112* - 101 (112 122 (12* 12* 13* 14* 14* 14* 14*)		
_	112: 411: 1 0 : 1 1 1 1 2 : 13 1 1 4 1 15 1 16 1 17 1 16 1 19 1	4	FOR THE 'Y' ON LINE 2, MARK THE STOZ AND THEHOY COLUMNS.		
_	[12] [11] [0] [1] [2] [3] [4] [5] [0] [7] [0]	6	Print Part Number		
	1121 1114 01 1 1 1 2 1 2 1 2 1 4 1 5 1 6 1 7 1 8 1 1 9	7	R' " 5, " " J TO R " [RZ		
_	121 131 10	8	Before Marking " 'T' " 6, " " STOZ " CLT Grid at Left, " " '-' " 7, " " 11-BLOCK		
\exists	(121 111 101 121 121 121 101 101 101 101 101		Grid at Left. 7, " 11-BLOCK 8,9 & 10, MARK THE 1,2, & 3 BLOCKS, RESPECTIVELY.		
	QUANTITY ORDERED Lim		IMPORTANT		
=	100% [11 [2] [3] [4] [5] [4] [7] [8]		Print Quantity Here - Code your order quantity in this field. For example, if you require 46 parts of		
-4	1978 (0) [1] [2] [2] [3] (4) [3] [4] [4] [4] [7] [7] [4] [7] [7] [8] [8] [8] [8] [8] [8] [8] [8] [8] [8		Before Marking Grid this type, mark the 4-block in line 2 and the 6-block in line 3.		
	MARKING OPTION	۲			
-	you desire you		*If you desire your part number to be marked on each device, it must be coded in the proper field above; otherwise, the above part number field is optional.		
_	PACKAGE TYPE				
_	ORDER/PERSONALITY TYPES		If this is a new order (not a reorder of a pettern), the personality must be coded. Note that negative		
\equiv	ROM PERSONALITY		logic can be used if more than half of your pattern is 'ones'.		
			YOUR REMARKS		
	ADDRESS ADDRESS ADDRESS N+2 N+1	"			
٠	13 12 1 1 0 1 2 1 2 1 1 0 1 2 1 1 1 1 0	ы	· · · · · · · · · · · · · · · · · · ·		
=	tai tai taj teo kartartartei en tartartartei	3			
_	[3] [3] [1] [4] [4] [3] [3] [1] [4] [4] [5] [3] [2] [1] [4] [5] [5] [5] [5] [5] [5] [5] [5] [5] [5	6			
_	[3] [2] [1] [0] [3] [2] [1] [0] [3] [2] [1] [0]	12			
=	[3] [3] [7] [0] [4] [2] [2] [1] [0] [3] [4] [4] [4]				
_	[2] [2] [1] [4] [4] [2] [2] [4] [4] [4] [4] [2] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4	18 21		- 1	
_	131 (2) (1) (0) (3) (2) (1) (0) (3) (2) (1) (1)	1 - 1			
_		27			
		30			

Request your order forms from your Motorola representative.

MECL III MC1600 series

MC1648

The MC1648 is an emitter-coupled oscillator, constructed on a single monolithic silicon chip. Output levels are compatible with MECL III logic levels. The oscillator requires an external parallel tank circuit consisting of the inductor (L) and capacitor (C).

A varactor diode may be incorporated into the tank circuit to provide a voltage variable input for the oscillator (VCO). The MC1648 was designed for use in the Motorola Phase-Locked Loop shown in Figure 9. This device may also be used in many other applications requiring a fixed or variable frequency clock source of high spectral purity (See Figure 2).

The MC1648 may be operated from a +5.0 Vdc supply or a -5.2 Vdc supply, depending upon system requirements.

SUPPLY VOLTAGE	GND PINS	SUPPLY PINS
+5.0 Vdc	7, 8	1, 14
-5.2 Vdc	1, 14	7, 8

FIGURE 1 - CIRCUIT SCHEMATIC

FIGURE 2 - SPECTRAL PURITY OF SIGNAL AT OUTPUT

ELECTRICAL CHARACTERISTICS

^{*}This measurement guarantees the ac potential at the bias point for purposes of incorporating a varactor tuning diode at this point

FIGURE 3 - TEST CIRCUIT AND WAVEFORMS

OPERATING CHARACTERISTICS

Figure 1 illustrates the circuit schematic for the MC1648. The oscillator incorporates positive feedback by coupling the base of transistor Q7 to the collector of Q8. An automatic gain control (AGC) is incorporated to limit the current through the emitter-coupled pair of transistors (Q7 and Q8) and allow optimum frequency response of the oscillator.

In order to maintain the high Ω of the oscillator, and provide high spectral purity at the output, a cascode transistor (Q4) is used to translate from the emitter follower (Q5) to the output differential pair Q2 and Q3. Q2 and Q3, in conjunction with output transistor Q1, provide a highly buffered output which produces a square wave. Transistors Q10 thru Q14 provide the bias drive for the oscillator and output buffer. Figure 2 indicates the high spectral purity of the oscillator output (pin 3).

When operating the oscillator in the voltage controlled mode (Figure 4), it should be noted that the cathode of the varactor diode (D) should be biased at least 2 VBE above VEE (\approx 1.4 V for positive supply operation).

FIGURE 4 – THE MC1648 OPERATING IN THE VOLTAGE CONTROLLED MODE

When the MC1648 is used with a constant dc voltage to the varactor diode, the output frequency will vary slightly because of internal noise. This variation is plotted versus operating frequency in Figure 5.

RMS (Hz) 100 = 5 0 Vdc Oscillator Tank Components (Circuit of Figure 4) DEVIATION, MHz D μН MV2115 1.0-10 100 10-60 MV2115 2.3 10 60-100 MV2106 0.15 FREQUENCY 1.0 1.0 10 100 f, OPERATING FREQUENCY, (MHz) Signal Generator HP 608 or Equiv 20 kHz above MC1648 Frequency 300 mV B.W. = 1.0 kH; Frequency Voltmeter 20 kHz 10 mV Product MC1648 Meter HP5210A Attenuato Under Test Detector HP3400A or Equiv MC1648 requency ((HP5210A output voltage) (Full Scale Frequency) Frequency Deviation = 1.0 Volt NOTE: Any frequency deviation caused by the signal generator and MC1648 power

FIGURE 5 - NOISE DEVIATION TEST CIRCUIT AND WAVEFORM

supply should be determined and minimzed prior to testing.

TRANSFER CHARACTERISTICS IN THE VOLTAGE CONTROLLED MODE USING EXTERNAL VARACTOR DIODE AND COIL. TA = 25°C

FIGURE 6

FIGURE 7

FIGURE 8

Typical transfer characteristics for the oscillator in the voltage controlled mode are shown in Figures 6, 7 and 8. Figures 6 and 8 show transfer characteristics employing only the capacitance of the varactor diode (pluse the input capacitance of the oscillator, 6 pF typical). Figure 7 illustrates the oscillator operating in a voltage controlled mode with the output frequency range limited. This is achieved by adding a capacitor in parallel with the tank circuit as shown. The 1 $k\Omega$ resistor in Figures 6 and 7 is used to protect the varactor diode during testing. It is not necessary as long as the dc input voltage does not cause the diode to become forward biased. The larger-valued resistor (51 $k\Omega$) in Figure 8 is required to provide isolation for the high-impedance junctions of the two varactor diodes.

The tuning range of the oscillator in the voltage controlled mode may be calculated as:

$$\frac{f_{max}}{f_{min}} = \frac{\sqrt{C_D (max) + C_S}}{\sqrt{C_D (min) + C_S}}$$

where
$$f_{min} = \frac{1}{2\pi \sqrt{L (C_D (max) + C_S)}}$$

CS = shunt capacitance (input plus external capacitance).

 CD = varactor capacitance as a function of bias voltage. Good RF and low-frequency bypassing is necessary on the power supply pins (see Figure 2).

Capacitors (C1 and C2 of Figure 4) should be used to bypass the AGC point and the VCO input (varactor diode), guaranteeing only dc levels at these points.

For output frequency operation between 1 MHz and 50 MHz a 0.1 μ F capacitor is sufficient for C1 and C2. At higher frequencies, smaller values of capacitance should be used; at lower frequencies, larger values of capacitance. At higher frequencies the value of bypass capacitors depends directly upon the physical layout of the system. All bypassing should be as close to the package pins as possible to minimize unwanted lead inductance.

The peak-to-peak swing of the tank circuit is set internally by the AGC circuitry. Since voltage swing of the tank circuit provides the drive for the output buffer, the AGC potential directly affects the output waveform. If it is desired to have a sine wave at the output of the MC1648, a series resistor is tied from the AGC point to the most negative power potential (ground if +5.0 volt supply is used, -5.2 volts if a negative supply is used) as shown in Figure 10.

At frequencies above 100 MHz typ, it may be necessary to increase the tank circuit peak-to-peak voltage in order to maintain a square wave at the output of the MC1648. This is accomplished by tying a series resistor (1 k Ω minimum) from the AGC to the most positive power potential (+5.0 volts if a +5.0 volt supply is used, ground if a -5.2 volt supply is used). Figure 11 illustrates this principle.

APPLICATIONS INFORMATION

The phase locked loop shown in Figure 9 illustrates the use of the MC1648 as a voltage controlled oscillator. The figure illustrates a frequency synthesizer useful in tuners for FM broadcast, general aviation, maritime and land-mobile communications, amateur and CB receivers. The system operates from a single +5.0 Vdc supply, and requires no internal translation, since all components are compatible.

Frequency generation of this type offers the advantages of single crystal operation, simple channel selection, and elimination of special circuitry to prevent harmonic lock-up. Additional features include dc digital switching (pref-

erable over RF switching with a multiple crystal system), and a broad range of tuning (up to 150 MHz, the range being set by the varactor diode).

The output frequency of the synthesizer loop is determined by the reference frequency and the number programmed at the programmable counter; $f_{out} = Nf_{ref}$. The channel spacing is equal to frequency (f_{ref}).

For additional information on applications and designs for phase locked-loops and digital frequency synthesizers, see Motorola Application Notes AN-532A, AN-535, AN-553, AN-564, AN-564, AN-594, or Phase-Locked Loop Systems Data Book.

FIGURE 9 - TYPICAL FREQUENCY SYNTHESIZER APPLICATION

Figure 10 shows the MC1648 in the variable frequency mode operating from a +5.0 Vdc supply. To obtain a sine wave at the output, a resistor is added from the AGC circuit (pin 5) to VEE.

Figure 11 shows the MC1648 in the variable frequency mode operating from a +5.0 Vdc supply. To extend the useful range of the device (maintain a square wave output above 175 MHz), a resistor is added to the AGC circuit at pin 5 (1 k-ohm minimum).

FIGURE 10 - METHOD OF OBTAINING A SINE-WAVE OUTPUT

Figure 12 shows the MC1648 operating from +5.0 Vdc and +9.0 Vdc power supplies. This permits a higher voltage swing and higher output power than is possible from the MECL output (pin 3). Plots of output power versus total collector load resistance at pin 1 are given in Figures 13 and 14 for 100 MHz and 10 MHz operation. The total collector load includes R in parallel with Rp of L1 and C1 at resonance. The optimum value for R at 100 MHz is approximately 850 ohms.

FIGURE 11 – METHOD OF EXTENDING THE USEFUL RANGE OF THE MC1648 (SQUARE WAVE OUTPUT)

FIGURE 12 - CIRCUIT SCHEMATIC USED FOR COLLECTOR OUTPUT OPERATION

FIGURE 13 - POWER OUTPUT versus COLLECTOR LOAD

FIGURE 14 -- POWER OUTPUT versus COLLECTOR LOAD

MC1650 · MC1651

- P_D = 330 mW typ/pkg (No Load)
- t_{pd} = 3.5 ns typ (MC1650)
- = 3.0 ns typ (MC1651)
- Input Slew Rate = 350 V/μs (MC1650)
 = 500 V/μs (MC1651)
- Differential Input Voltage:
 -5.0 V to +5.0 V (-30°C to +85°C)
- Common Mode Range:
- -3.0 V to +2.5 V (-30°C to +85°C) (MC1651)
 -2.5 V to +3.0 V (-30°C to +85°C) (MC1650)

 Resolution: ≤20 mV (-30°C to +85°C)
- Drives 50 Ω lines

Number at end of terminal denotes pin number for L package (Case 620). Number in parenthesis denotes pin number for F package (Case 650).

The MC1650 and the MC1651 are very high speed comparators utilizing differential amplifier inputs to sense analog signals above or below a reference level. An output latch provides a unique sample-hold feature. The MC1650 provides high impedance Darlington inputs, while the MC1651 is a lower impedance option, with higher input slew rate and higher speed capability.

Complementary outputs permit maximum utility for applications in high speed test equipment, frequency measurement, sample and hold, peak voltage detection, transmitters, receivers, memory translation, sense amplifiers and more.

The clock inputs (\overline{C}_a and \overline{C}_b) operate from MECL III or MECL 10,000 digital levels. When \overline{C}_a is at a logic high level, Q0 will be at a logic high level provided that $V_1 > V_2$ (V_1 is more positive than V_2). $\overline{Q}0$ is the logic complement of Q0. When the clock input goes to a low logic level, the outputs are latched in their present state.

Assessment of the performance differences between the MC1650 and the MC1651 may be based upon the relative behaviors shown in Figures 3 and 6.

	TRUTH TA	BLE								
C	V ₁ , V ₂	00 _{n+1}	<u>α</u> 0 _{n+1}							
Н	V ₁ >V ₂	Н	L							
Н	V1 < V2	L	Н							
L	φ φ	Q0 _n	₫0 _n							
φ = Don't Care										

See General Information section for packaging information.

POSITIVE LOGIC ā

CERAMIC PACKAGE **CASE 620**

TEST VOLTAGE VALUES (Volts) @ Test VILMIN VIHAMIN VILAMEN VA4 VA1 VA2 VA3 V_{A5} Temperature -30°C -0.875 -1 890 -1 180 -1 515 +0.020 -0.020 +5.0 -5.2 +25°C -0.810 -1.850 -1.095 -1.485 +0.020 -0.020 See Note 4 +5.0 -5.2

								+8	5°C	-0.700	-1.830	-1.025	-1.440	+0.020	-0.020		_			+5.0	-5.2	
		Pin			L/1651								TEST VO	LTAGE A	PPLIED T	O PINS L	STED BE	LOW				
Characteristic	Symbol	Under	<u> </u>	0°C Max	+25 Min	Mex	+8! Min	Max	Unit	VIHmax	VII min	VILLAmin	VILAmax		V _{A2}	V _{A3}	V _{A4}	V _{A5}	V _{A6}	v _{cc} 3	v _{EE} 3	Gnd
Power Supply Drain Current	39111001	1031		IVIEX	10000	1716	141111	1448	10	- Innex	- IEIIIII	Triamin	TEATHER.									
Positive Negative	ICC IE	7,10 8	-	-	-	25° 55°	-	-	mAdc mAdc		4,13	-	_	6,12 6,12	-	-	-	_	-	7,10 7,10	8 8	1,5,11,16 1,5,11,16
Input Current MC1650 MC1651	lin	6	-	-	=	10 40	-	_	μAdc μAdc	4 4	13 13		-	12 12	_	6 6	-	-	-	7,10 7,10	8	1,5,11,16 1,5,11,16
Input Leakage Current MC1650 MC1651	IR.	6	-	-	-	7	-	-	μAdc μAdc	4	13 13	-	-	12 12	-	_		6 6		7,10 7,10	8 8	1,5,11,16 1,5,11,16
Input Clock Current	I _{in} H	4	-	-	-	350	-	-	μAdc	4	13	-	-	6,12	-	-	-	-		7,10	8	1,5,11,16
	linL	4	-	-	0.5	-	-	-	μAdc	-	13	~	-	6,12	-	-	-	-	-	7,10	4,8	1,5,11,16
Logic "1" Output Voltage	∨он	2 2 2 2 3	- 1.045	0.875	-0.960	-0.810	0.890	-0.700	Vdc	4,13	1 1 1 1	-	-	6,12 - - -	5,11 - - 6,12	6,12 - -	5,11 - -	5,11	- - 6,12 -	7,10	8	1,5,11,16 1,6,12,16 1,16 1,16 1,16
		3 3 3									-	-	-	5,11 - -	-	5,11 -	6,12 -	- 6,12	- - 5,11			1,6,12,16 1,16 1,16
Logic "0" Output Voltage	VOL	2 2 2 2 3 3 3 3	-1.890	-1.650	-1.850	-1.620	-1830	-1575	Vdc	4.13	-	-		5,11 - - 6,12 - -	6,12 - - - - 5,11	5,11 - - - - 6,12	6,12 - - - - 5,11	6,12 - - - - - - 5,11	5,11 - - - - - - 6,12	7,10	8	1,5,11,16 1,6,12,16 1,16 1,16 1,5,11,16 1,6,12,16 1,16 1,16
Logic "1" Threshold Voltage (1	VOHA	2 2 3 3	-1.065	-	-0.980	- - -	-0.910		Vdc	=	13	4 - 4 -	- 4 - 4	6 - - 6	- 6 6	-	- - -	- - -	- - -	7,10	8	1,5,16
Logic "0" Threshold Voltage (1	VOLA	3 3 2	-	-1.630	-	-1.600	-	-1555	Vdc	-	13	4 - 4	- 4 - 4	6 -	- 6 6	-	-	-	-	7,10	i	1,5,16

- NOTES: 1 All data is for 1/2 MC1650 or MC1651, except data marked (*) which refers to the entire package.
 - These tests done in order indicated. See Figure 4.
 - 3 Maximum Power Supply Voltages (beyond which device life may be impaired): |VEE| + |VCC| € 12 Vdc.

•	All Temperatures	V _{A3}	VA4	V _{A5}	V _{A6}
	MC1650	+3.000	+2.980	-2.500	-2.480
	MC1651	+2.500	+2.480	-3.000	-2.980

SWITCHING TIMES

			TEST V	OLTAGE \	ALUES		
				(Volts)			
@ Test Temperature	V _{R1}	V _{R2}	V _{R3}	Vx	Vxx	v _{cc} O	vee 0
-30°C	+2.000			+1.040	+2.00	+7.00	-3.20
+25°C	+2.000	See N	ote 🕙	+1.110	+2.00	+7.00	-3.20
+85°C	+2.000	I	_	+1.190	+2.00	+7.00	-3.20

igure 2

														1						
		Pin		MC1	650L/	1 6 51L	Test L	imits		-	ST VOLT	AGE ADD	LIED TO	DINC LICT	ED BELO		1			
		Under	-30	۴C	+2	5°C	+8	5°C			I VOLI	AGE AFF	LIED TO				-	_		_
Cheracteristic	Symbol	Test	Min	Max	Min	Mex	Min	Mex	Unit	V _{R1}	V _{R2}	V _{R3}	VX	Vxx	v _{cc} O	v _E ₽Φ	P1	P2	P3	P4
Switching Times	t6+2+	2	2.0	5.0	2.0	5.0	2.0	5.7	ns	5	- I	_	4	1,11,16	7,10	8	6	-		Τ-
Propagation Delay	t6+2+	2	i ı	1 1	1 1	1 1	1 1	1 1	lι	_	5	_	l ı	1	1	l ı	-	6	-	-
(50% to 50%)	t6+2+	2	1 1	1 1	11	11	1 1	1 1	1 1	-	-	5		l i	1 1	1 1	l – I	[_ [6	1 -
V-Input to Output	t6+3-	3	11	1 1	11	11	l i	1 1	11.	5	-	-	1 1	1 1		1 1	6	-	- 1	-
	t6+3-	3	11	1 1	11	11	11	ł I	11	-	5	-			1 1		-	6	-	1 -
	¹6+3-	3	11	1 1	11	11	łi	1 1	11	-	l –	5	1 1	1 1	1 1	1 1	- 1	-	6	-
	t6-2-	2	ľ		1 1	11	1 1	1 1	11	5	-	-	1 1	1		1 1	6	- 1	-	-
	t6-2-	2	11	1 1	11	11	1 1		11	- 1	5	-	l i	1 1	1 1	i 1	-	6	-	I -
	t6-2-	2	1	1 1	14	11	11	1 1	11	-	-	5	1 1	1			-	- 1	6	1 -
	t6-3+	3	11	11	1 1	11	11		1 1	5	-	1 -	1 1	1 !	1 i	1 1	6	-	- 1	-
	t6-3+	3	١.	1 4	١ ا	۱ ا	1 🗼	! ↓	۱ ا	- 1	5	-	l 🕨	l .	1	1	-	6	-	l -
	t6-3+	3	_ •					.		_	-	5			<u>'</u>	'		-	6	1 -
Clock to Output ②	t4+2+	2	2.0	4.7	2.0	4.7	2.0	5.2	ns	5	_	_		1,11,16	7,10	8	6	-	_	14
	t4+2-	2	1	1 1	l ı	l ı	l i	1	l i	6	_	_	_	1 1	1	1 1	5	-	l –	11
	t4+3+	3	1 1	1 1	H	ΙI	11	1 1	1 1	6	1 –	1 –	i –	1 1	1 1	1 1	5	-	l –	\mathbf{I}
	t4+3-	3	₹ 7	V	∤ ▼	٧.	1			5	-	-	-	1		1	6	- 1	- 1	1 7
Clock Enable Time 3	tsetup	6	-	-	2.5	_	-	·-	ns	5		-	-	1,11,16	7,10	8	6	-	-	4
Clock Aperture Time 3	tap	6	-	_	1.5	_	-	-	ns	5	-	_		1,11,16	7,10	8	6	-	_	4
Rise Time	t ₂₊	2	1.0	3.5	1.0	3.5	1.0	3.8	ns	5	_	-	4	1,11,16	7,10	8	6	-	-	T-
(10% to 90%)	t3+	3	1.0	3.5	1.0	3.5	1.0	3.8	ns	5	_		4	1,11,16	7,10	8	6		L-	L-
Fall Time	t ₂₋	2	1.0	3.0	1.0	3.0	1.0	3.3	ns	5	-	-	4	1,11,16	7,10	8	6	_	-	Τ-
(10% to 90%)	ta	3	10	130	10	3.0	10	3.3	ne	1 6	l _	_	▲	1 11 16	7 10	l e	1 R	I _	l _	1 -

NOTES: (1) Maximum Power Supply Voltages (beyond which device life may be impaired: |VCC| + |VEE| ≤ 12 Vdc.

2) Unused clock inputs may be tied to ground.
3) See Figure 8.

④	All Temperatures	VR2	V _{R3}
	MC1650	+4.900	-0.400
	MC1651	+4.400	-0.900

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. Air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

F SUFFIX CERAMIC PACKAGE CASE 650

					TEST	VOLTAG	E VALUE	S				
						(Volt	s)					
@ Test Temperature	ViHmex	VILmin	VIHAmin	VILAmex	V _{A1}	V _{A2}	VA3	VA4	V _{A5}	VA6	v _{cc} 3	v _{EE} 3
-30°C	-0.875	-1.890	-1.180	-1.515	+0.020	-0.020					+5.0	-5.2
+26°C	-0.810	-1.850	-1.095	-1.485	+0.020	-0.020	l	See N	iote 🕢		+5.0	-5.2
+85°C	-0.700	-1.830	-1.025	-1.440	+0.020	-0.020					+5.0	-5.2

								+8	5°C	-0.700	-1.830	-1.025	-1.440	+0.020	-0.020					+5.0	-5.2	1
		Pin			/1651			<u> </u>					TEST VO	TAGE A	PPLIED T	O PINS L	STED RE	OW				l
	l	Under		0°C		5°C		5°C	ł		T.,		T	VAI	$\overline{}$		V _{A4}	V _{A5}	V _{A6}	v _{cc} 3	VEE 3	Gnd
Cheracteristic	Symbol	Test	Min	Max	Min	Mex	Min	Max	Unit	VIHmex	VILmin	VIHAmin	VILAmex	VAI	V _{A2}	VA3	*A4	VAS	*A6	*CC -	AFF	5114
Power Supply Drain Current Positive Negative	ICC IE	11,14 12	-	-	-	25° 55°	-	-	mAdc mAdc		1,8		_	10,1 6 10,1 6	-	-	-	-	=	11,14 11,14	12 12	4,5,9,15 4,5,9,15
Input Current MC1650 MC1651	1in	10 10	-	-	-	10 40	-	-	μAdc μAdc	8 8	1	-	-	16 16	-	10 10	-	-	-	11,14 11,14	12 12	4,5,9,15 4,5,9,15
Input Leakage Current MC1650 MC1651	IR	10 10		-	-	7 10	-	-	μAdc μAdc	8 8	1 1	_	-	16 16	-	-	1-1	10 10		11,14 11,14	12 12	4,5,9,15 4,5,9,15
Input Clock Current	linH	8	-	T -		350	-	-	μAdc	8	1		-	10,16	~	- "	-	_		11,14	12	4,5,9,15
	linL	8	-	-	0.5	-	-	-	μAdc	-	1	-		10,16	-	-		-	-	11,14	8,12	4,5,9,15
Logic "1" Output Voltage	VOH	6	1.045	-0875	0960	-0810	-0.890	-0700 	Vdc	1,8	-	-	-	10,16	9,15	-	-	-	-	11,14	12	4,5,9,15 4,5,10,16
		6						Ш	Н		=	=	=	=	10,16	10,16	9,15	9,15	10,16			4,5 4,5 4,5,9,15
		7									=	-	=	9,15		9,15	10,16	-	-			4,5,10,16 4,5
	1	7	1		_ T	1			<u> </u>				_					10,16	9,15			4,5
Logic "0" Output Voltage	VOL	6 6 6	1.890	-1.650	-1.850	-1.620	-1.830	-1575	Vdc	1,8	-	=	-	9,15 -	10,16	9,15	10,16	- - 10,16	- - 9,15	11,14	12	4,5,9,15 4,5,10,16 4,5
		7									-	_	_	10,16	9,15	-	-	-	-			4,5 1,5,11,16 1,6,12,16
		7	ł	•	•	•	+	•	1	+	-	-	-	_	-	10,16	9,15 -	9,11	10,16		1	1,16 1,16
Logic "1" Threshold Voltage (1	VOHA	6 6 7 7	-1.065	- - -	-0.980	-	-0910	- - -	Vdc	- - - -	ļ	8 - 8	- 8 - 8	10 - - 10	10 10	- - -		- - -	- - -	11,14	12	4,5,9
Logic "0" Threshold Voltage (1	VOLA	7 7 6 6	=	-1.630	-	-1.600	- - -	-1555	Vdc	- - -	ļ	8 - 8 -	- 8 - 8	10 - - 10	10 10	- - -	-	-	- -	11,14	12	4,5,9

NOTES: ① All data is for 1/3 MC1650 or MC1651, except data marked (*) which refers to the entire package

These tests done in order indicated. See Figure 4.

Maximum Power Supply Voltages (beyond which device life may be impaired): |VEE | + |VCC | ≤ 12 Vdc.

•	All Temperatures	V _{A3}	V _A 4	V _A 5	V _{A6}
	MC1650	+3.000	+2.980	-2.500	-2.480
	MC1651	+2.500	+2.480	-3.000	-2.980

F SUFFIX CERAMIC PACKAGE CASE 650

TEST VOLTAGE VALUES (Volts) @ Test V_{R2} V_{R3} ٧x Temperature -30°C +1.040 +2.000 +2.00 +7.00 -3.20 +25°C See Note 4 +1.110 +7.00 +2.000 +2.00 -3.20 +85°C +2.000 +1.190 +2.00 +7.00 -3.20

See Figure 2

		Pin		MC1	650F/	1651F	Test L	imits		-	EFT VOLT	ACE ADD	LIED TO	DINE LIST	ED BELO	<u> </u>	1			
		Under	-30	°C	+2	5°C	+85	5°C			SI VULI	AGE APP	LIEU 10	- INS L151	ED BELO		\vdash			_
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	V _{R1}	V _{R2}	V _{R3}	٧x	VXX	v _{cc} O	v _{EE} 0	P1	P2	P3	P4
Switching Times	t10+6+	6	2.0	5.0	2.0	5.0	2.0	5.7	ns	9	_	_	8	4,5,16	11,14	12	10	-	-	Τ-
Propagation Delay	t10+6+	6	1 1	lι	i i	1 1	11	1	1 1	-	9	-	l ı	1	1	1 1		10	-	-
(50% to 50%)	t10+6+	- 6		1 1	1 1				i i	-	-	9			1 1	1 1	-		10	-
V-Input to Output	t10+7-	7	1 1	11	1 1	1 1	1 1		11	9	-	-	1 1		1 1	1 1	10	_	-	1 -
l	t10+7-	7	l I	1 1	11	1 1	1 1	1 1	11,	_	9	-		1 1	1 1	1 1	- 1	10	-	-
	t10+7-	7			1 1				H	-	-	9		1 1	1 1	1 1	-	-	10	-
	t10-6-	6	11	1 1	1 1	1 1	1 1		1 1	9	_	-	1 1	1 1	1 1	1 1	10	-	l -	
	t10-6-	6	1 1	1 1		1 1	l i		1 1	-	9	-	1		i I	1 1		10	-	-
	t10-6-	6	1 1	1 1	1	ll	1 1		! !	-	_	9	1 1	1 1	1 1	1 1	-	-	10	-
	t10-7+	7	1 1	1 1	1 1	1 1	1 1	1 1	1 1	9	-	-	1	1 1	1 1	1 1	10	-	-	_
	t10-7+	7	1	[↓	1 🛊	۱ .	1	•	i 🛊	-	9	-	١ .	l 🛊	١ ٠	1 1	-	10	1	-
	t10-7+	7	'	_'_					<u>'</u>			9		<u>_'_</u>		'	-	_	10	
Clock to Output ②	t8+6+	6	2.0	4.7	2.0	4.7	2.0	5.2	ns	9	_	-	-	4,5,16	11,14	12	10	-	-	8
·	t8+6-	6	1 1	lι	1	1 1	lι	1 1	1	10	_	-	-	1 1	1	1 1	9	-	l -	1 1
	t8+7+	7	1 1	1 1	1 1	1 1	11	1 1	1 1	10	-	i –	-	1 1	1 1	1 1	9	_	l –	11
	t8+7-	7		, ₹	. ▼		1	. ▼		9	-	-	_	I	1	7	10	_	-	1
Clock Enable Time 3	tsetup	10	-	-	2.5	-	-	-	ns	9	-	-	-	4,5,16	11,14	12	10	_	-	8
Clock Aperture Time 3	tap	10	-	_	1.5	-	-	-	ns	9	-		_	4,5,16	11,14	12	10	-	-	8
Rise Time	t ₆₊	6	1.0	3.5	1.0	3.5	1.0	3.8	ns	9	_		8	4,5,16	11,14	12	10	_	Γ-	-
(10% to 90%)	t7+	7	1.0	3.5	1.0	3.5	1.0	3.8	ns	9	-	_	8	4,5,16	11,14	12	10	-		- '
Fall Time	¹6-	6	1.0	3.0	1.0	3.0	1.0	3.3	ns	9	_	-	8	4,5,16	11,14.	12	10	-	-	-
(10% to 90%)	t7_	7	1.0	3.0	1.0	3.0	1.0	3.3	ns	9		-	8	4,5,16	11,14	12	10	_	-	i - 1

NOTES: 1 Maximum Power Supply Voltages (beyond which device life may be impaired: $|V_{CC}| + |V_{EE}| \le 12 \text{ Vdc.}$

- 2) Unused clock inputs may be tied to ground.
- 3 See Figure 8.

		·	
•	All Temperatures	VR2	V _{R3}
	MC1650	+4.900	-0.400
	MC1651	+4.400	-0.900

4-15

FIGURE 2 – SWITCHING AND PROPAGATION WAVEFORMS @ 25°C

The pulse levels shown are used to check ac parameters over the full common-mode range.

V - Input to Output

TEST PULSE LEVELS

	Pul	se 1	Pul	se 2	Pul	se 3
	MC1650	MC1651	MC1650	MC1651	MC1650	MC1651
VIH	+2.100 V	+2.100 V	+5.000 V	+4.500 V	-0.300 V	-0.800 V
VR	+2.000 V	+2.000 V	+4.900 V	+4.400 V	-0.400 V	-0.900 V
VIL	+1.900 V	+1.900 V	+4.800 V	+4.300 V	-0.500 V	-1.000 V

FIGURE 3 - PROPAGATION DELAY (t_{pd}) versus INPUT PULSE AMPLITUDE AND CONSTANT OVERDRIVE

FIGURE 4 – LOGIC THRESHOLD TESTS (WAVEFORM SEQUENCE DIAGRAM)

Vin -0.020 V
VIHA

VILA

VILA

Sequential

Test Number (See Test Table)

FIGURE 5 - TRANSFER CHARACTERISTICS (Q versus Vin)

FIGURE 6 - OUTPUT VOLTAGE SWING versus FREQUENCY

FIGURE 7 - INPUT CURRENT versus INPUT VOLTAGE TEST CIRCUIT ∨_{CC} —0+5.0 ∨dc Vcc Vсс 50 Q 0~2.0 Vdc 50 ā Gnd Gnd -5.2 Vdc Typical MC1650 (Complementary Input Grounded) Typical MC1651 (Complementary Input Grounded) +25°C -30°C -30°C lin, INPUT CURRENT (#A) in, INPUT CURRENT (μA) +25°C +85°C +2.5 Vin. INPUT VOLTAGE (VOLTS) Vin. INPUT VOLTAGE (VOLTS)

FIGURE 8 – CLOCK ENABLE AND APERTURE TIME TEST CIRCUIT AND WAVEFORMS @ 25°C Vin to Channel A Vout to Channel B V_{CC} = +7.0 Vdc Q V_{XX} = +2.0 Q Vdc 0.1 Gnd Vino O VRO ōО ã α ā V_{EE} = -3.2 Vdc - 0.1 μF 50-ohm termination to ground located in each scope channel input. All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Analog Signal Positive and Negative Slew Case VR + 100 mV = +2.100 V Vin Negative VR = 2.000 V -VR - 100 mV = +1.900 V V_{in} Positive Clock Enable V_{IH} = +1.110 V Ē 50% VIL = +0.310 V Clock Aperture Q Positive -Q Negative -50% Clock enable time = minimum time between analog and clock signal such that output switches, and t_{pd} (analog to Q) is not degraded by more than 200 ps. ----- Clock aperture time = time difference between clock enable time and time that output does not switch and V is less than 150 mV.

MC1654

TRUTH TABLE

INPUTS								ουτι	PUTS	
R	S0	S1	S2	S 3	Cİ	C2	Ω0	Q1	Q2	Q3
1	0	0	0	0	φ	φ	0	0	0	0
0	1	1	1	1	φ	φ	1	1	1	1
0	0	0	0	0	1	φ			Count	
0	0	٥	0	0	φ	1		No C	Count	
0	0	0	0	0			0	0	0	0
0	0	0	0	0		•	1	0	0	0
0	0	0	0	0	١.	•	0	1	0	0
0	0	Ó	0	0			1	1	0	0
0	0 '	0	0	0	1		0	0	1 1	0
0	0	0	0	0		•	1	0	1	0
0	0	0	0	0	١ ٠		0	1	1	0
0	0	0	0	0	٠	•	1	1	1	0
0	0	0	0	0	٠ .	•	0	0	0	1
0	o o	0	0	0	١ .	•	1	0	0	1
0		0	0	0	١ ٠	•	0	1	0	1 1
0	0	0	0	0	١.	•	1	1	0	1
٥	0	0	0	0	١ ،	•	0	0	1	1 1
0	0	0	0	0	١.	•	1	0	1	1
0	0	0	0	0		•	0	1	1	1 1
0	0	0	0	0		1	1	1	1	

φ = Don't Care

V_{IL} V_{IH} Clock transition from V_{IL} to V_{IH} may be applied to C1 or C2 or both for same effect.

The MC1654 is a four-bit counter capable of divideby-two, divide-by-four, divide-by-eight, or a divide-by-16 functions. When used independently, the divide-by-16 section will toggle at 325 MHz typically. Clock inputs trigger on the positive going edge of the Clock pulse.

Set and Reset inputs override the Clock, allowing asynchronous "set" or "clear". Individual Set and common Reset inputs are provided, as well as complementary outputs for the first and fourth bits. True outputs are available at all bits.

Power Dissipation = 750 mW typ f_{Tog} = 325 MHz typ

See General Information section for packaging.

CIRCUIT SCHEMATIC 1/4 OF CIRCUIT SHOWN V CC2 ā, V CC1 **∮**100 100 100 300 100 D å ă **∮60** 1235 C2 o s o Ro \$50 k \$50 k \$50 k \$50 k \$60 1.3 k \$ 1.3 k 675 105 \$325 \$675 \$1.5 k \$1 k 50 ۱ ۸^{EE}

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package requires a heat sink (IERC LIC214A2 or equivalent). Outputs are tested with a 50-ohm resistor to -2.0 V. See general information section of the MECL III series for complete thermal data.

L SUFFIX CERAMIC PACKAGE CASE 620

	TEST VOLTAGE VALUES									
	(Volts)									
@ Test Temperature	VIHmax	VILmin	V#HAmin	VILAmax	VEE					
-30°C	-0.875	-1.890	-1.180	-1.515	-5.2					
+25°C	-0.810	-1.850	-1.095	-1.485	-5.2					
+85°C	-0.700	-1.830	-1.025	-1.440	-5.2					

					MC1	654 Test L	imite			30.700	-1.000		DD1 15D T	<u> </u>	1
	ļ	Pin	- 30	o°C		5°C		5°C				LTAGE A	PPLIED TO SELOW:	,	
Characteristic	Symbol	Under Test	Min	Max	Min	Max	Min	Max	Unit	VIHmax	VILmin		VILAmax	VEE	Gnd
Power Supply Drain Current	I _E	8	-	-		200	- 141,17	-	mAdc	10	-	-	-	8	1,16
Input Current	lin H	10 2,3,7,9,14,15	-	-	-	1.00	_	-	mAdc mAdc	10	_	-	-	8	1,16 1,16
	lin L	10 2,3,7,9,14,15	-	-	0.5 0.5	-	-	-	μAdc μAdc	-	10	=	-	8 8	1,16 1,16
Logic "1" Output Voltage	VOH	4,13 ① 5,6,11,12 ②	-1.045 -1.045	-0.875 -0.875	-0.960 -0.960	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	-	3,7,9,14 10	-	_	8	1,16 1,16
Logic "0" Output Voltage	VOL	4,13 ② 5,6,11,12 ①	-1.890 -1.890	-1.650 -1.650	-1.850 -1.850	-1.620 -1.620	-1.830 -1.830	-1.575 -1.575	Vdc Vdc	-	10 3,7,9,14	-	-	8	1,16 1,16
Logic "1" Threshold Voltage	VOHA	4,13 ③ 5,6,11,12 ④	-1.065 -1.065	_	-0.980 -0.980	1 1	-0.910 -0.910	-	Vdc Vdc	- -	-	-	3,7,9,14 10	8 8	1,16 1,16
Logic ''0'' Threshold Voltage	VOLA	4,13 ④ 5,6,11,12 ③	-	-1.630 -1.630	-	-1.600 -1.600	-	-1.555 -1.555	Vdc Vdc	-	_	_ _	10 3,7,9,14	8 8	1,16 1,16
AC Characteristics												Pulse In	Pulse Out	-3.2 Vdc	+2.0 Vdc
Clock Delays (50 Ω Load)	[†] 15+4+ [†] 15+5+ [†] 2+4+ [†] 2+5+	4 5 4 5	1.0	2.9	1.0	2.7	1.0	3.1	ns	- - -	- - -	15 15 2 2	4 5 4 5	8	1,16
	[†] 15+4- [†] 15+5- [†] 2+4- [†] 2+5-	4 5 4 5	1.0	2.9	1.0	2.7	1.0	3.1	ns	- - -	- - -	15 15 2 2	4 5 4 5	8	1,16
Set Delay	t3+4+ t3+5-	4 5	2.0 2.0	3.9 3.9	2.0 2.0	3.7 3.7	2.0 2.0	4.1 4.1	ns ns	=	-	3	4 5	8 8	1,16 1,16
Reset Delay	t ₁₀₊₄₊ t ₁₀₊₅₋	4 5	2.0 2.0	3.9 3.9	2.0 2.0	3.7 3.7	2.0 2.0	4.1 4.1	ns ns	-	-	10 10	4 5	8	1,16 1,16
Rise Time	t4+ t5+	4 5	1.0 1.0	2.9 2.9	1.0 1.0	2.7 2.7	1.0 1.0	3.1 3.1	ns ns	-		15 15	4 5	8 8	1,16 1,16
Fall Time	t4- t5-	4 5	1.0 1.0	2.8 2.8	1.0 1.0	2.6 2.6	1.0 1.0	3.0 3.0	ns ns	-	-	15 15	4 5	8 8	1,16 1,16
Maximum Toggle Frequency	ft	3 ⑤	260		300		260	_	MHz	Ε-	_	-	-	8	1,16

- *Individually apply VIH or VIL to input under test. ① Reset all four flip-flops by applying PA1 to pin 10
 - ② Set all four flip-flops by applying PA1 to pins 3, 7, 9, and 14 simultaneously.
 - 3 Reset all four flip-flops by applying PA2 to pin 10

⁴ Set all four flip-flops by applying PA2 to pins 3, 7, 9, and 14 simultaneously.

⁵ See Figure 1 for toggle test circuit

MC1658

The MC1658 is a voltage-controlled multivibrator which provides appropriate level shifting to produce an output compatible with MECL III and MECL 10,000 logic levels. Frequency control is accomplished through the use of voltage-variable current sources which control the slew rate of a single external capacitor.

The bias filter may be used to help eliminate ripple on the output voltage levels at high frequencies and the input filter may be used to decouple noise from the analog input signal.

The MC1658 is useful in phase-locked loops, frequency synthesizer and clock signal generation applications for instrumentation, communication, and computer systems.

See General Information Section for packaging.

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts.

L SUFFIX CERAMIC PACKAGE **CASE 620**

F SUFFIX CERAMIC PACKAGE **CASE 650**

P SUFFIX PLASTIC PACKAGE **CASE 648**

		TEST	VOLTAGE	VALUES	
			Vdc ± 15	K	
@ Test					1
Temperature	VIH	VIL	V3	VIHA	VEE
-30°C	0.0	-2.0	-1.0	+2.0	-5.2
+25°C	0.0	-2.0	-1.0	+2.0	-5.2
+85°C	0.0	-2.0	-1.0	+2.0	-5.2

										, ea c	0.0	-2.0	1.0	1	1	J
		Pin		MC1658 Test Limits VOLTAGE APPLIED TO PINS LISTED BELOW:												
	ı	Under	-30	o°C		+25°C		+8	5°C		<u> </u>					(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	V _{IH}	VIL	V ₃	VIHA	VEE	Gnd
Power Supply Drain Current	1E	8.	-	-	-	-	32	-	-	mAdc	2	-	-	_	8	1,5
		8**	-		-		32			mAdc	2				8	1,5
Input Current	1inH	2.	-	-	_	-	350	-	-	μAdc	2	-	_		8	1,5
Input Leakage Current	linL	2.	-	-	0.5	-	-	-	-	μAdc	-	2	_	-	8	1,5
''Q'' High	Voн	4.	-1.045	-0.875	-0.960	-	-0.810	~0.890	-0.700	Vdc	-	_	2		8	1,5
Output Voltage	i	6**	-1.045	-0.875	-0.960		-0.810	-0.890	-0.700	Vdc	-	_	2	-	8	1,5
"Q" Low	VOL	4.	-1.890	-1.650	-1.850	_	-1.620	-1.830	-1.575	Vdc	-		2	-	8	1,5
Output Voltage		6	-1.890	-1.650	-1.850	-	-1.620	-1.830	-1.575	Vdc	- 1	-	2	-	8	1,5
AC Characteristics (Figure 2)	1														VEE	Vcc
(Tests shown for one output, but checked on both)		•					ŀ	1			C _{X1}	C _{X2}	Gnd	-	-3.2 V	+2.0 V
Rise Time (10% to 90%)	t+	6	_	2.7	_	1.6	2.7	_	3.0	ns	_	11,14	_	2	8	1,15
Fall Time (10% to 90%)	t-	6	-	2.7	-	1.4	2.7	-	3.0	ns	-	11,14	-	2	2	1,15
Oscillator Frequency	fosc1		130	-	130	155	175	110	-	MHz	-	11,14	-		8	1,5
	fosc2	-	-	-	78	90	100	-	-	MHz	11,14	_	-		8	1,5
Tuning Ratio Test 1	TR		-	_	3.1	4.5		_	_	-	11,14		-		8	1,5

^{*}Germanium diode (0.4 drop) forward biased from 11 to 14 (11 — *Germanium diode (0.4 drop) forward biased from 14 to 11 (11 —

Output frequency at VCX = Gnd Output frequency at V_{CX} = -2.0 V

C1 = 0.01 μ F connected from pin 12 to Gnd.

 $C2 = 0.001 \mu F$ connected from pin 13 to Gnd.

C_{X1} = 10 pF connected from pin 11 to pin 14.

CX2 = 5 pF connected from pin 11 to pin 14.

FIGURE 3 — OUTPUT FREQUENCY versus CAPACITANCE FOR VARIOUS VALUES OF INPUT VOLTAGE

FIGURE 4 - RMS NOISE DEVIATION versus OPERATING FREQUENCY

FIGURE 5 - FREQUENCY-CAPACITANCE PRODUCT versus CONTROL VOLTAGE (VCX)

MC1660

(4) (5) 16 V_{CC2} Q Vcc1 (6) (3) OR 20 -0 15 OR -0 14 NOR NOR 30 (2) 50 50 50 50 50 15 6 VEE 8 10 (10) (9) (12)(14)(15) (16)

CIRCUIT SCHEMATIC

See General Information section for packaging.

Numbers at ends of terminals denote pin numbers for L package (Case 620). Numbers in parenthesis denote pin numbers for F package (Case 650).

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. Air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

											TEST V	OLTAGE	VALUES		
												(Volts)			1
									Test erature	VIHmax	v:_	VIHAmin	V.,	VEE	
								remp	-30°C	-0.875	-1.890	-1.180	-1.515	-5.2	ł
									+25°C	-0.810	-1.850	-1.095	-1.485	-5.2	1
									+85°C	-0.700	-1.830	-1.025	-1.440	-5.2	1
	T				MC16	60F Test L	imits					AGE APPL			1
	ŀ	Pin Under	-30	°C		5°C		5°C	F			LISTED B			(VCC)
Cheracteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	· IE	12	-	-	_	28	-	-	mAdc	-	-	-	-	12	4,5
Input Current	1inH	•		-		350	-	-	μAdc	· ·	-	-	-	12	4,5
	linL		-	-	0.5	-	-	-	μAdc	-	•	-	-	12	4,5
NOR Logic "1" Output Voltage	∨он	?	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	-	8	-	-	12	4,5
			1 1	l [·				1 1	1 1	-	9 _.	-	_		l i
	l	+		+		†		+	+	_	11	-	-		
NOR Logic "0" Output Voltage	VOL	7	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	8	-	-	-	12	4,5
	l	1					1 1	1 1	1 1	9 10	_	_	_	1 1	
	1	+] 🕴	•	[♦	+	†	+	+	11	_	_	_	♦	♦
OR Logic "1" Output Voltage	Voн	6	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	8	-	_	_	12	4,5
		1 1		1 1			1 1	1 1	1 1	9	-	-	-	1 1	1 1
		}			♦	1	♦	↓	l ♦	10 11	_	_	_	♦	
OR Logic "0" Output Voltage	VOL	6	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc		8			12	4,5
	100	l i	1	1				1	H	-	9	-	-	Ιī	ΙÏ
		١ .		↓				↓	١ .		10 11	_	-		
NOR Logic "1"	VOHA	7	-1.065	<u> </u>	-0.980		-0.910	 -	Vdc			 	8	12	4.5
Threshold Voltage	TOHA	Ιí	1	_	1	-	"	-	1	-	-	-	9	Ιï	lï
•		1 1	1 1	-	↓	-	1	-		-	-	_	10 11	1	↓
NOR Logic "0"	1/	7	<u> </u>	-1.630		-1,600	<u> </u>	-1.555	Vdc	-		- 8		12	4.5
Threshold Voltage	VOLA	Ιí	_	1 1	_	. 1000		1 1	l vii		_	9	_	l 'î	1 7
		1	-		-	1 1	-	1 1		-	-	10	-	1 1	! ↓
OR Logic "1" Threshold Voltage		6	-1.065	 _ ' _	-0.980	 _ _	-0.910		Vdc	 -	<u> </u>	11 8		12	4,5
On Logic 1 Threshold Voltage	VOHA	l i	-1.065		1		-0.910	_	l Vac	Ξ.	_	9	_	'1	4,5
		li		-	ı l	-	1 1	-			-	10	-	1 1	1 1
00 1 1- 1/0" The sheld Webser		6	<u>'</u> -	-1.630		-1.600	⊢ '-	-1.555	Vdc	-		11	- 8	12	15
OR Logic "0" Threshold Voltage	VOLA	١î		-1.630	_	-1.600	-	-1.555	Vac		_	_	9	'i	4,5
			-	1 1	-	1 1	-	1 1	1 1	-	-	-	10	1 1	1 1
		-				-			<u> </u>			-	11	1 2 2 1 1	1 2 2 2 2
Switching Times (50 Ω Load)	***	,	_	1.8	_	1.7	_	1.9	ns	Pulse In	Pulse Out	-	_	-3.2 V	+2.0 V
Propagation Delay	t8+7- t8-6-	6		1.8	_	1.7	_	1.9	"	l i	6	_	-	l 'í	1,5
	t8+6+	6	-	1.6	-	1.5	-	1.7	l [6	-	-	l L	
A	t8-7+	7		1.6		1.5	-	1.7	<u> </u>	'	7		-	\ <u>'</u>	\ <u>'</u>
Rise Time	t7+ t6+	7	_	2.2 2.2	_	2.1 2.1	_	2.3 2.3	ns ns	8	7	_	_	12	4,5 4,5
Fall Time	17-	7		2.2		2.1		2.3	ns	8	7			12	4,5
	16-	6	_	2.2	_	2.1	-	2.3	ns	8	6	_	_	12	4,5

^{*}Individually test each input applying $V_{\mbox{\scriptsize IH}}$ or $V_{\mbox{\scriptsize IL}}$ to the input under test.

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-14A2CB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

L SUFFIX CERAMIC PACKAGE CASE 620

	TEST VOLTAGE VALUES										
		(Volts)									
© Test Temperature	VIHmex	VILmin	VIHAmin	VILAmex	VEE						
-30°C	-0.875	-1.890	-1.180	-1.515	-5.2						
+25°C	-0.810	-1.850	-1.095	-1.485	-5.2						
+85°C	-0.700	-1.830	-1.025	-1.440	-5.2						

									+85°C	-0.700	-1.830	-1.025	-1.440	-5.2	j j
		Pin MC1660L Test Limits TEST VOLTAGE APPLIED TO							1						
	ļ	Under	-30	°C	+2	5°C	+81	5°C	Ţ	├		LISTED B			(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	1E	8	_			28	-	_	mAdc	-	-	-	-	8	1,16
Input Current	linH	•	-	-	-	350	-	-	μAdc		-	-	_	8	1,16
	linL		i –	-	0.5	-	- 1	-	μAdc	-		-	-	8	1,16
NOR Logic "1" Output Voltage	V _{OH} ø	3	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	-	4	-	-	8	1,16
		1	ll	1 1			1 1	1 1	1 1	_	5	_	~		
		♦		+	\	+	\ ♦		₩	-	, ,	_	_	•	•
NOR Logic "0" Output Voltage	VOL Ø	3	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	4	-		-	8	1,16
		l i	1 1		l 1	l i	1 1	1 1	i i	5	-	-	-	1 1	1
		1 1		١ .	↓	1	1	↓	1 1	6 7	-	_	_	١ .	
OR Logic "1" Output Voltage	Vон Ф	2	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	4	 -	-		8	1.16
On Logic 1 Output Voltage	VOH Ψ	1	-1.045	-0.8/5	-0.960	-0.810	-0.890	-0.700	Vac	5	_			l î	1,18
	ļ	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	6	-	-	-	H	1 1
				<u> </u>				<u> </u>	<u> </u>	7					'
OR Logic "0" Output Voltage	VOL Ø	2	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	_	4	-	_	8	1,16
		1 1	1 1				11			_	5 6		_		
				•		•	*		+	-	ž	-	-		
NOR Logic "1"	VOHA Ø	3	-1.065	-	-0.980	-	-0.910	-	Vdc			-	4	8	1,16
Threshold Voltage		1		-	1 1	-	1 1	-	1 1	-	-	-	5	1 1	1 1
		}		_	♦	_		1 =	♦	_	[-	_	6 7	١ ♦	
NOR Logic "0"	VOLA P	3		-1.630		-1.600	<u> </u>	-1.555	Vdc			4	-	8	1,16
Threshold Voltage	"-	Ιī	-	1	-		-	1	1	-	-	5	-	Ιĭ	1 1
		1	-		-	1 1	1 =	1 1	1	l <u>-</u>	-	6	_	↓	
OD 1 1411 Thank -1411-1-	V 4		-1.065	'	-0.980	'	-0.910	⊢ '−	Vdc			7		<u> </u>	110
OR Logic "1" Threshold Voltage	VOHA Ø	2	-1.065	-	-0.980		-0.910		Vac	_	_	5	_	8	1,16
		1 1		-	1 1	-	1 I	- 1	ll	-	-	6	-	1	1 1
				- -						-		7		· ·	
OR Logic "0" Threshold Voltage	VOLA #	2	_	-1.630	_	-1.600	_	-1.555	Vdc	_	_	_	4 5	8	1,16
	ŀ		_		-	1 1	1 -			_	1 -	_	6	1	1
	l		-		-		_	•	•	-	L	-	7		•
Switching Times (50 Ω Load)										Pulse In	Pulse Out			-3.2 V	+2.0 V
Propagation Delay	14+3-	3	-	1.8	-	1.7	-	1.9	ns	4	3	-	-	8	1,16
	14-2-	2 2	_	1.8 1.6		1.7 1.5	_	1.9 1.7		1 1	2 2	-	-	1	
	t4+2+ t4-3+	3	_	1.6	_	1.5	_	1.7	🕴	+	3	_		♦	
Rise Time	13+	3		2.2	_	2.1	-	2.3	ns	4	3			8	1,16
	12+	2	-	2.2	-	2.1	-	2.3	ns	4	ž	-	-	8	1,16
Fall Time	t3_	3	-	2.2	-	2.1	-	2.3	ns	4	3	-	-	8	1,16
	t2-	2	-	2.2	-	2.1	1 -	2.3	ns	4	2	-	-	8	1,16

^{*}Individually test each input applying V_{IH} or V_{IL} to the input under test.

The electrical specifications shown above apply to the MC1660 under the following conditions:

φ NOTES

The package is housed in a suitable heat sink.†

Air is blown trensversely over the package. See general information section for more details.

[†]A suitable heat sink is an IERC LIC14A2U or equivalent.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

MC1662

POSITIVE LOGIC NEGATIVE LOGIC (8) 4 A (9) 5 B (9) (10) (10) (11) (11) 7-(14) 10(15) 11 (16) 12 (16) 12-- 15 (3) (1) 13-(1) 13 -X = A ● B $X = \overline{A + B}$

Four 2-input NOR or NAND gating functions in a single package. An internal bias reference voltage insures that the threshold point remains in the center of the transition region over the temperature range (-30 to +85°C).

Input pulldown resistors eliminate the need to tie unused inputs to $\ensuremath{\text{V}_{\text{EE}}}.$

t_{pd} = 0.9 ns typ (510-ohm load) = 1.1 ns typ (50-ohm load)

 $P_D = 240$ mW typ/pkg (No load) Full Load Current, $I_L = -25$ mAdc max

Number at end of terminals denotes pin number of L package (Case 620). Number in parenthesis denotes pin number for F package (Case 650).

CIRCUIT SCHEMATIC

See General Information section for packaging.

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. Air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

1		TEST	VOLTAGE VAL	.UES	
		_	(Volts)		
@ Test Temperature	V _{IH max}	V _{IL min}	VIHA min	VILA max	VEE
-30°C	-0.875	-1.890	-1.180	-1.515	-5.2
+25°C	-0.810	-1.850	-1.095	-1.485	-5.2
+85°C	-0.700	-1.830	-1.025	-1.440	-5.2

									+85°C	-0.700	-1.830	-1.025	-1.440	-5.2	
		Pin			MC1662F T	Test Limits				TEST	VOLTAGE AF	PLIED TO PINS	LISTED BELOW		
		Under	- 30	o°C	+2	5°C	+8	5°C			10217027	12120 101111			
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	¹E	12		-	_	56			mAdc			_		12	4,5
Input Current	lin H	~	-	-	-	350			μAdc	•			_	12	4,5
	lin L	•	-		0.5				μAdc			_	_	12	4,5
Logic "1" Output Voltage	VOH	6	-1.045 -1.045	-0.875 -0.875	-0.960 -0.960	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc		8 9	=	-	12 12	4,5 4,5
Logic "0" Output Voltage	VOL	6	-1.890 -1.890	-1.650 -1.650	-1.850 -1.850	-1.620 -1.620	-1.830 -1.830	-1.575 -1.575	Vdc Vdc	8			-	12	4,5 4,5
Logic "1" Threshold Voltage	VOHA	6	-1.065 -1.065	-	-0.980 -0.980	-	-0.910 -0.910	-	Vdc Vdc	=	-	_	8 9	12 12	4,5 4,5
Logic "0" Threshold Voltage	VOLA	6	1 -	-1.630 -1.630	-	-1.600 -1.600	-	-1.555 -1.555	Vdc Vdc	_	-	8 9	-	12 12	4,5 4,5
Switching Times (50 Ω Load)			1							Pulse In	Pulse Out			-3.2 V	+2.0 V
Propagation Delay	^t 8-6+ ^t 8+6-	6 6	-	1.6 1.8	-	1.5 1.7	_	1.7 1.9	ns ns	8	6		-	12 12	4,5 4,5
Rise Time	¹ 6+		+	2.2		2.1		2.3	ns	8	6		_	12	4,5
Fall Time	^t 6-	6	+	2.2		2.1	-	2.3	ns	8	6	-		12	4,5

^{*}Individually test each input applying VIH or VIL to input under test.

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-14A2CB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

L SUFFIX CERAMIC PACKAGE CASE 620

> -5.2 -5.2

ſ		TEST	VOLTAGE VAL	UES
Ī			(Volts)	-
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max
-30°C	-0.875	-1.890	-1.180	-1.515
+25°C	-0.810	-1.850	-1.095	-1.485
+85°C	-0.700	-1.830	-1 025	-1.440

52
6 3
10
12 13 15

										-0.700	-1.000	-1.020	-1.440	-3.Z	
		Pin	MC1662L Test Limits							TEST VOLTAGE APPLIED TO PINS LISTED BELOW:					
		Under	-30°C		+25°C		+85°C							<u> </u>	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	1E	8			_	56	-	-	mAdc		_	_	_	8	1,16
Input Current	lin H	•	-	-	-	350	-	-	μAdc	•	_	-	_	8	1,16
	lin L	•	-	-	0.5	-	-	-	μAdc		•	-	_	8	1,16
Logic "1" Output Voltage	Voн	2 2	-1.045 -1.045	-0.875 -0.875	-0.960 -0.960	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	-	4 5	-		8	1,16 1,16
Logic "0" Output Voltage	VOL	2 2	-1.890 -1.890	-1.650 -1.650	-1.850 -1.850	-1.620 -1.620	-1.830 -1.830	-1.575 -1.575	Vdc Vdc	4 5	-	-	-	8	1,16 1,16
Logic "1" Threshold Voltage	VOHA	2 2	-1.065 -1.065	-	-0.980 -0.980	-	-0.910 -0.910	_	Vdc Vdc	-	-	-	4 5	8	1,16 1,16
Logic ''0'' Threshold Voltage	VOLA	2 2	_	-1.630 -1.630	_	-1.600 -1.600	_	-1.555 -1.555	Vdc Vdc	-	-	4 5		8	1,16 1,16
Switching Times (50 Ω Load)										Pulse In	Pulse Out			-3.2 V	+2.0 V
Propagation Delay	t4+2+ t4-2-	2 2	_	1.6 1.8	1.0 1.1	1.5 1.7	-	1.7 1.9	ns ns	4 4	2 2	-		8 8	1,16 1,16
Rise Time	t ₂₊	2	-	2.2	1.4	2.1	-	2.3	ns	4	2	-	_	8	1,16
Fall Time	t ₂₋	2	-	2.2	1.2	2.1	_	2.3	ns	4	2	_		8	1,16

^{*}Individually test each input applying VIH or VIL to input under test.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

MC1664

Four 2-input OR or AND gating functions in a single package. An internal bias reference voltage insures that the threshold point remains in the center of the transition region over the temperature range -30 to $+85^{\circ}$ C.

Input pulldown resistors eliminate the need to tie unused inputs to $V_{\mbox{\footnotesize{EE}}}$.

t_{pd} = 0.9 ns typ (510-ohm load) = 1.1 ns typ (50-ohm load)

P_D = 240 mW typ/pkg (No load) Full Load Current, I_L = -25 mAdc max

Number at end of terminals denotes pin number of L package (Case 620). Number in parenthesis denotes pin number for F package (Case 650).

CIRCUIT SCHEMATIC (11) (10) (5) (8) (9) 16 VCC2Q Q VCC1 100 350 100 O 2 (6) (7) 3 50 k 365 1958 365 50 k 50 k 50 k 100 350 100 112 112 O 15 (2) 14 (3) 50 k 50 k 365 2 k 1958 **\$2 k 36**5 50 k 50 k 11 Q AEE 13 10 12 (16) (1) (15) (12)

See General Information section for packaging.

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. Air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

F SUFFIX CERAMIC PACKAGE CASE 650

		TEST	VOLTAGE VAL	.UES									
	(Volts)												
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE								
-30°C	-0.875	-1.890	-1.180	-1.515	-5.2								
+25°C	-0.810	-1.850	-1.095	-1.485	-5.2								
+85°C	-0.700	-1.830	-1.025	-1.440	-5.2								

		Pin Under	MC1664F Test Limits								VOLTAGE AS	PLIED TO PINS			
Characteristic			-30°C		+25°C		+85°C			1231	TOLIAGEA	12123 1011110 210123 32201			(VCC)
	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	1E	12	-	-	_	56	-	-	mAdc	-	-	-		12	4,5
Input Current	l _{in H}	•		_		350	_		μAdc	•	_			12	4,5
	l _{in L}	•		-	0.5	-	-	-	μAdc	_	•	-		12	4,5
Logic "1" Output Voltage	VOH	6 6	-1.045 -1.045	-0.875 -0.875	-0.960 -0.960	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	8 9	-	-		12 12	4,5 4,5
Logic "0" Output Voltage	VOL	6	-1.890 -1.890	-1.650 -1.650	-1.850 -1.850	-1.620 -1.620	-1.830 -1.830	-1.575 -1.575	Vdc Vdc	-	8 9	-	-	12 12	4,5 4,5
Logic "1" Threshold Voltage	V _{OHA}	6 6	-1.065 -1.065	-	-0.980 -0.980	-	-0.910 -0.910	-	Vdc Vdc	-	-	8 9		12 12	4,5 4,5
Logic "0" Threshold Voltage	VOLA	6	-	-1.630 -1.630	-	-1.600 -1.600	=	-1.555 -1.555	Vdc Vdc		-	-	8 9	12 12	4,5 4,5
Switching Times (50 \(\Omega \) Load)										Pulse In	Pulse Out			-3.2 V	+2.0 V
Propagation Delay	^t 8+6+ ^t 8-6-	6 6	_	1.6 1.8	_	1.5 1.7	-	1.7 1.9	ns ns	8 8	6 6	-	_	12 12	4,5 4.5
Rise Time	t ₆₊	6	-	2.2		2.1	-	2.3	ns	8	6	-		12	4,5
Fall Time	[†] 6-	6	-	2.2	_	2.1	-	2.3	ns	8	6	-		12	4,5

^{*}Individually test each input applying VIH or VIL to input under test.

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-14A2CB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

L SUFFIX CERAMIC PACKAGE CASE 620

[TEST VOLTAGE VALUES													
[(Volts)													
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	VEE									
-30°C	-0.875	-1.890	-1.180	-1.515	-5.2									
+25°C	-0.810	-1.850	-1.095	-1.485	-5.2									
+85°C	-0.700	-1.830	-1.025	-1.440	-5.2									

] -0.700	1 -1.050	-1.025	-1.440	-5.2	
		Pin	MC1664L Test Limits								TEST VOLTAGE APPLIED TO PINS LISTED BELOW:				
Characteristic		Under	-30°C		+25°C		+89	+85°C			-	_			
	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	ŀΕ	8	T -	-	_	56	-	-	mAdc	-	-	-	_	8	1,16
Input Current	lin H	•	-	_	-	350	-	-	μAdc	•	-	_	_	8	1,16
	lin L	•	-	-	0.5	-	-	-	μAdc	-	•	-	_	8	1,16
Logic "1"	Voн	2	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	4	_	-	_	8	1,16
Output Voltage		2	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	5	-	-	-	8	1,16
Logic "0"	VOL	2	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc		4	-	_	8	1,16
Output Voltage		2	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	-	5	- 1	-	8	1,16
Logic "1"	VOHA	2	-1.065	-	-0.980	-	-0.910	-	Vdc	-	_	4	_	8	1,16
Threshold Voltage	l	2	-1.065	-	-0.980	-	-0.910	-	Vdc	-	-	5	-	8	1,16
Logic "0"	VOLA	2	_	-1.630	-	-1.600	-	-1.555	Vdc	_	_	_	4	8	1,16
Threshold Voltage		2	-	-1.630	_	-1.600		-1.555	Vdc	-	-	-	5	8	1,16
Switching Times (50 Ω Load)										Pulse In	Pulse Out			-3.2 V	+2.0 V
Propagation Delay	t4+2+	2	1 -	1.6	i –	1.5	-	1.7	ns	4	2	- 1	_	8	1,16
	t4-2-	2	-	1.8	-	1.7		1.9	ns	4	2	- [-	8	1,16
Rise Time	t ₂₊	2	-	2.2		2.1	-	2.3	ns	4	2	_		8	1,16
Fall Time	t ₂₋	2	-	2.2		2.1	-	2.3	ns	4	2	- 1	_	8	1,16

^{*}Individually test each input applying VIH or VIL to input under test.

See General Information section for packaging.

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. Air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

F SUFFIX CERAMIC PACKAGE **CASE 650**

TEST VOLTAGE VALUES (Volts) @ Test VIHAmin VILAmax VEE Temperature VIHmax VILmin -30°C -0.875 -1.890 -1.180 -1.515 -5.2 +25°C -0.810 -1.095 -1.485 -1.850 -5.2

			_						+85°C	-0.700	-1.830	-1 025	-1.440	-5.2	
		Pin			MC16	66F Test I					PLIED TO				
		Under	-30	o°c	+29	5°C	+8	5				LISTED B			(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	IE ①	12			-	55	-		mAdc	11,14				12	4,5
Input Current	l _{in} H	1	-	-	-	0.370	-	-	mAdc	1,14	-			12	4,5
		16 14	-	ļ	-	0.370 0.225		-	mAdc mAdc	14,16 14			. 1	12 12	4,5 4,5
		16		<u> </u>	0.5	0.225			µAdc	14	16	<u> </u>		12	4,5
	linL	1,14	_	-	0.5	_			μAdc μAdc		1,14			12	4,5
"Q" Logic "1" Output Voltage	Voн	3 ② 3 ③	-1.045 -1.045	-0.875 -0.875	-0.960 -0.960	-0.810 -0.810	-0 890 -0.890	-0.700 -0.700	V dc Vdc	14	1 -			12 12	4,5 4,5
"Q" Logic "0" Output Voltage	VOL	3 (4) 3 (5)	-1.890 -1.890	-1.650 -1.650	-1 850 -1.850	-1.620 -1.620	-1.830 -1.830	-1.575 -1.575	Vdc Vdc	_ 14	16			12 12	4,5 4,5
"Õ" Logic "1" Output Voltage	Voн	2 (<u>4</u>) 2 (<u>5</u>)	-1.045 -1.045	-0.875 -0.875	-0.9 6 0 -0.960	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	_ 14	16			12 12	4,5 4,5
"Ğ" Logic "O" Output Voltage	VOL	2 ② 2 ③	-1.890 -1.890	-1.650 -1.650	-1.850 -1.850	-1.620 -1.620	-1.830 -1.830	-1.575 -1.575	Vdc Vdc	- 14	1 -		-	12 12	4,5 4,5
"Q" Logic "1" Output Threshold Voltage	VOHA	3 © 3 ⑦	-1.065 -1.065		-0.980 -0.980	-	-0.910 -0.910		Vdc Vdc		1	16 14	1 -	12 12	4,5 4,5
"Q" Logic "0" Output Threshold Voltage	VOLA	3 6	·	-1.630		-1 600	-	-1.555	Vdc			1	16	12	4,5
"Q" Logic "1" Output Threshold Voltage	VOHA	2 ⑥	-1.065	-	-0.980		-0.910		Vdc	-		1	16	12	4,5
"Q" Logic "O" Output Threshold Voltage	VOLA	2 ⑥ 2 ⑦	·	-1.630 -1.630	-	-1 600 -1 600		-1.555 -1.555	Vdc Vdc		14	16 14	1 -	12 12	4,5 4,5
Switching Times (50 12 Load)										Pulse In	Pulse Out			-3.2 V	+2.0 V
Clock Input	t14+3+	3	10	2.7	1.0	2.5	1.1	2.8	ns	14	3			12	4,5
	t14+3- t14+2-	3 2				1	l I	1		1	3 2			1	
	t14+2-	2		*	†	*		†		†	2	_	_	†	🕴
Set Input	t16+3+	3	10	2.5	10	2 3	1,1	2.7	ns	16	3	-	-	12	4,5
	^t 16+2-	2		1 1					ns	16	2			12	4,5
. Reset Input	t1+2+ t1+3-	3 2	♦	♦	\	₩	\ \	+	ns	1 1	2	[12 12	4,5 4,5
Rise Time	1+	2.3	0.8	2.8	0.8	25	0.9	2.9	ns	14	2,3		-	12	4,5
Fall Time	t-	2.3	0.5	2.4	0.5	2.2	0.5	2.6	ns	14	2,3			12	4,5

O Notes appear on page following Electrical Characteristics tables.

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-14A2CB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for only one input and one output. The other inputs and outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

L SUFFIX CERAMIC PACKAGE CASE 620

		TEST V	OLTAGE \	ALUES	
			(Volts)		
@ Test emperature	VIHmax	VILmin	VIHAmin	VILAmax	VEE
-30°C	-0.875	-1.890	-1.180	-1.515	-5.2
+25°C	-0.810	-1.850	-1.095	-1.485	-5.2
+85°C	-0.700	-1.830	-1.025	-1.440	-5.2

deta.									+85°C	-0.700	-1.830	-1.025	-1.440	-5.2	
		T			MC16	66L Test	imits				TEST VO	LTAGE AF	PLIED TO		
	}	Pin Under	-30	o°c	+29	5°C	+8	5	I		PINS	LISTED B	ELOW:		(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	I _E ①	8	-	-	-	55	-	-	mAdc	7,9	_	_	-	8	1,16
Input Current	linH	12	-	-	_	0.370	-	-	mAdc	9,12	-	-	-	8	1,16
		13	-	-	_	0.370 0.225	- '	-	mAdc	9,13 9	-	-	_	8	1,16 1,16
		12		-	0.500	0.225		_	mAdc #Adc		12			8	1,16
	linL	9,13	_	-	0.500	_		_	μAdc μAdc	_	9,13		_	8	1,16
"Q" Logic "1" Output Voltage	Voн	15 ②	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc		13	-	-	8	1,16
	- 011	15 🔇	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	9				8	1,16
"Q" Logic "0" Output Voltage	VOL	15 ④	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	-	12	-	-	8	1,16
	L	15 🕲	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	9				8	1,16
"Ō" Logic "1" Output Voltage	∨он	14 ④ 14 ⑤	-1.045 -1.045	-0.875 -0.875	-0.960 -0.960	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	9	12	-	-	8	1,16 1,16
"Q" Logic "0" Output Voltage	 		-1.890		-1.850	-1.620	-0.890				13	- -		8	
U Logic U Output Voltage	VOL	14 ② 14 ③	-1.890	-1.650 -1.650	-1.850	-1.620	-1.830	-1.575 -1.575	Vdc Vdc	9	13	-	-	8	1,16 1,16
"Q" Logic "1" Output	VOHA		-1.065	_	-0.980	-	-0.910	-	Vdc			12	13	8	1,16
Threshold Voltage	1	15 (6) 15 (7)	-1.065	-	-0.980	-	-0.910	-	Vdc	-	13	9	-	8	1,16
"Q" Logic "0" Output Threshold Voltage	VOLA	15 6	_	-1.630	-	-1.600	-	-1.555	Vdc	-	_	13	12	8	1,16
"Q" Logic "1" Output Threshold Voltage	VOHA	14 ⑥	-1.065	-	-0.980	-	-0.910	-	Vdc	-	-	13	12	8	1,16
"Q" Logic "0" Output	VOLA	14 6 14 7	-	-1.630	-	-1.600	-	-1.555	Vdc	-	-	12	13	8	1,16
Threshold Voltage		14 ⑦		-1.630	_	-1.600		-1.555	Vdc		13	9		8	1,16
Switching Times (50 \O Load)	i	l.			l					Pulse In	Pulse Out		ì	-3.2 V	+2.0 V
Clock Input	19+15+	15 15	1.0	2.7	1.0	2.5	1,1	2.8	ns	9	15 15	-	-	8	1,16
	19+15-	14] [1 1]]	1 1		1 1	15	-	_		
	¹ 9+14- ¹ 9+14+	14	†	†	١ ١	1 1	1	1	1		14	_	_	♦	
Set Input	112+15+	15	1.0	2.5	1.0	2.3	1.1	2.7	ns	12	15	-		8	1,16
•	112+14-	14	l i	l i	l (1 1			ns	12	14	-	-	8	1,16
Reset Input	t13+14-	14	↓			1 1	↓	1 1	ns	13	14	-	-	8	1,16
	t13+15+	15		1		<u> </u>			ns	13	15			8	1,16
Rise Time	t+	14,15	0.8	2.8	0.8	2.5	0.9	2.9	ns	9	14,15	-	-	8	1,16
Fall Time	t-	14,15	0.5	2.4	0.5	2.2	0.5	2.6	ns	9	14,15	i -	i -	8	1,16

O Notes appear on page following Electrical Characteristics tables.

See General Information section for packaging.

		TEST	VOLTAGE V	ALUES	
@Test			(Volts)		
Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-30°C	-0.875	-1.890	-1.180	-1.515	-5.2
+25°C	-0.810	-1.850	-1.095	-1.485	-5.2
+85°C	-0.700	-1.830	-1.025	-1.440	-5.2

			MC1668F Test Limits										DE1 OV:		
		Pin Under	-3	0°C	+2	5°C	+8	5°C		TEST VO	OLTAGE A	PPLIED TO	PINS LISTED	BELOW:	(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	1E	12 ①	-		-	55		-	mAdc	11,14	_	-		12	4,5
Input Current	lin H	1,15,16②	-	_	-	0.370	_	-	mAdc	1,15,16	-	-	-	12	4,5
		13				0.225	-		mAdc	14				12	4,5
	lin L	1,15,16②	-	-	0.500	-	-	-	μAdc	-	1,15,16	-	-	12	4,5
		13			0.500	-			μAdc		14		ļ <u> </u>	12	4,5
"Q" Logic "1"	∨он	3 ③ 3 ④	-1.045	-0.875 -0.875	-0.960 -0.960	-1.810 -1.810	-0.890 -0.890	-0.700 -0.700	Vdc	-	1	-	-	12 12	4,5
Output Voltage	.		-1.045						Vdc	14					4,5
"Q" Logic "0"	VOL	3 ⑤ 3 ⑥	-1.890 -1.890	-1.650 -1.650	-1.850	-1.620 -1.620	-1.830 -1.830	-1.575 -1.575	Vdc	-	16	-	-	12 12	4,5 4,5
Output Logic					-1.850				Vdc	14	-				
"Q" Logic "1"	∨он	2 (S) 2 (G)	-1.045 -1.045	-0.875 -0.875	-0.960 -0.960	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	14	16	_	-	12 12	4,5 4,5
Output Voltage	 													12	4,5
Output Voltage	VOL	2 ③ 2 ④	-1.890 -1.890	-1.650 -1.650	-1.850 -1.850	-1.620 -1.620	-1.830 -1.830	-1.575 -1.575	Vdc Vdc	14	1	_	_	12	4,5
"Q" Logic "1" Output	 	3	-1.065		-0.980	-1.620	-0.910		Vdc	- 14		16	 	12	4,5
Threshold Voltage	VOHA	3 ⑦	-1.065	_	-0.980		-0.910	_	Vac	_	_	15	'_	'i	4,5
Threshold Voltage		3 (5)	♦	_		<u> </u>	♦	_	l ♦	15	_	14	_	♦	♦
"Q" Logic "0" Output	VOLA	3	-	-1.630		-1.600	-	-1.555	Vdc	-		1	16	12	4,5
Threshold Voltage		36	-	1	1	1	-	1	1	-	- 1	-	15	1	1 1
		3 ③		_ V			L	V			15	14			
"Q" Logic "1" Output	VOHA	2_	-1.065	-	-0.980	-	-0.910	-	Vdc	-	-	1	16	12	4,5
Threshold Voltage	l	26	١ .	- 1	1	~	1 1	-	1	-	-	-	15	١.	١ ا
		2 ③	'	-						-	15	14	L		
"Q" Logic "O" Output	VOLA	2	- 1	-1.630	-	-1.600	1 -	-1.555	Vdc	-	-	16	1	12	4,5
Threshold Voltage		2 ① 2 ⑤	-	I .	_		_	•		-	-	15 14	_	∳	↓
Switching Times (50 Ω Load)		20			 -	⊢∸		<u> </u>		Pulse In	Pulse Out	- '*		-3.2 V	+2.0 V
Clock Input	t13+3+	3	1.0	2.7	1,0	2.5	1.1	2.8	ns	14	3	_		12	4.5
Clock Input	t13+3+	3	lï	l 'i'	ان ا	1 1	1 'i'	2:0	l "i	1 7 1	3		l -	l ï	l ï
	t13+2-	2	1 1				{ }		1 1	1 1	2	-	-		
	113+2+	2	1		\ ▼	🕴	♥			🕴	2	-	-	🔻	*
Rise Time	t+	2,3	0.8	2.8	0.9	2.5	0.9	2.9	ns	14	2,3	_	-	12	4,5
Fall Time	t-	2,3	0.5	2.4	0.5	2.2	0.5	2.6	ns	14	2,3	-		12	4,5
Set Input	[†] 16+3+	3	1.0	2.5	1.1	2.3	1.1	2.7	ns	16	3	-	-	12	4,5
	t16+2-	2	1.0	2.5	1.1	2.3	1.1	2.7	ns	16	2	-	-	12	4,5
Reset Input	t1+2+	2	1.0	2.5	1.1	2.3	1.1	2.7	ns	1	2		-	12	4,5
	t1+3-	3	1.0	2.5	1.1	2.3	1.1	2.7	ns	1	3	-	i -	12	4,5

ONotes appear on page following Electrical Characteristics tables.

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-LIC-214A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

L SUFFIX CERAMIC PACKAGE CASE 620

		TEST	VOLTAGE	ALUES	
@Test			(Volts)		
Temperature	VIH max	VIL min	VIHA min	VILA max	VEE
-30°C	-0.875	-1.890	-1.180	-1.515	-5.2
+25°C	-0.810	-1.850	-1.095	-1.485	-5.2
+85°C	-0.700	-1.830	-1.025	-1.440	-5.2

	,								+85°C	-0.700	-1.830	-1.025	-1.440	-5.2	1
Pin MC1668L Test Limits										TEST VO	I TAGE A	PPLIED TO	PINS LISTED	BELOW:	l
		Under		°C	_	5°C		5°C	ļ				,		(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	IE (Hi-Z) 1	8		-		55			mAdc	7,9	-			8	1,16
Input Current	I _{in} H	11,12,13②		-	-	0.370	-	-	mAdc	11,12,13		-	-	8 8	1,16
		9				0.225			mAdc	9	=-				1,16
	lin L	11,12,13②	_		0.500 0.500	_	_	_	μAdc μAdc	-	11,12,13	_	_	8	1,16 1,16
"Q" Logic "1"	Voh	15 ③	-1.045	-0.875	-0.960	-1.810	-0.890	-0.700	Vdc		13			8	1,16
Output Voltage	1 .0"	15 @	-1.045	-0.875	-0.960	-1.810	-0.890	-0.700	Vdc	9	-	-	_	8	1,16
"Q" Logic "0"	VOL	15 ⑤	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc		12			8	1,16
Output Logic		15 🌀	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	9	_	-	-	8	1,16
"Q" Logic "1"	Voн	14 ⑤	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	-	12	-	-	8	1,16
Output Voltage	L	14 ⑥	-1.045	-0.875	-0.960_	-0.810	-0.890	-0.700	Vdc	9		-		8	1,16
"Q" Logic "0"	VOL	14 ③	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	-	13	-	-	8	1,16
Output Voltage	ļ	14 ④	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	9				8	1,16
"Q" Logic "1" Output	VOHA	15	-1.065	-	-0.980	-	-0.910	-	Vdc	-	-	12	13	8	1,16
Threshold Voltage		15 ⑦ 15 ⑤		_	♦	i -	. ♦	-	♦	1 11	-	11	-	♦	♦
"Q" Logic "O" Output	VOLA	15		-1.630		-1.600		-1.555	Vdc	-	-	13	12	8	1,16
Threshold Voltage	1	15 ⑥	-	1] -	1 1	-	1	l L	-	-	-	11	1 1	1
	<u> </u>	15 ③									11	9		V	
"Q" Logic "1" Output	VOLA	14	-1.065	-	-0.980	-	-0.910	-	Vdc	-	-	13	12	8	1,16
Threshold Voltage	ł	14 6 14 3	♦			_	•	-		_	11	9	11	♦	
"Q" Logic "O" Output	VOLA	14	÷	-1.630		-1.600	<u> </u>	-1.555	Vdc	<u> </u>		12	13	8	1,16
Threshold Voltage	1	14 ⑦	-	1	-	I		l	ΙĪ	-	-	11	_	Ì	1 1
		14 ⑤	_			. ▼		. .				9	-	■ ▼	▼
Switching Times (50 Ω Load)										Pulse In	Pulse Out			-3.2 V	+2.0 V
Clock Input	t9+15+	15	1,0	2.7	1.0	2.5	1.1	2.8	ns	9	15	-	-	8	1,16
	t9+15-	15				1 1			1 1	1 1	15	-	-	1 1	1
	¹ 9+14-	14		•		♦	♦	₩	I ↓		14 14		1 -	♦	۱ 🛊
Rise Time	t+	14,15	0.8	2.8	0.9	2.5	0.9	2.9	ns	9	14,15	-		8	1,16
Fall Time	t-	14,15	0.5	2.4	0.5	2.2	0.5	2.6	ns	9	14,15	_	-	8	1,16
Set Input	t12+15+	15	1.0	2.5	1.1	2.3	1.1	2.7	ns	12	15			8	1,16
	t12+14-	14	1.0	2.5	1.1	2.3	1.1	2.7	ns	12	14	-	-	8	1,16
Reset Input	t13+14+	14	1.0	2.5	1.1	2.3	1.1	2.7	ns	13	14	_	-	8	1,16
	t13+15-	15	1.0	2.5	1.1	2.3	1.1	2.7	ns	13	15	-	-	8	1,16

ONotes appear on page following Electrical Characteristics tables.

NOTES

- 1 IE is measured with no output pulldown resistors.
- 2 Test voltage applied to pin under test.

- 3 Apply V_{in1} to S (V_{IH} to V_{IL}).
- (5) Apply V_{in1} to R (V_{IH} to V_{IL})
- $\begin{tabular}{ll} \textbf{(6)} & Apply Sequentially:} & V_{in1} \ to \ S \ (V_{IH} \ to \ V_{IL}) \\ & V_{in2} \ to \ C \ (V_{IH}, V_{IL}) \\ \end{tabular}$
- $\begin{tabular}{ll} \be$

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS @ 25°C V_{out} To Channel "B" v_{in} To Channel "A" All input and output cables to the scope are equal lengths of Coax 100 \$ V_{CC} = +2.0 Vdc V_{EE} = -3.2 Vdc 50-ohm coaxial cable. **₹50** 50 € C1 C2 **₹50 Q1 Q2** 1/2 1/2 ā1 <u>ā</u>2 S1 R1 S2 R2 Ş₽ Input pulses by 2 pulse generators 50 v_{in} Coax 50 To Channel "A" P20 S1 100 ≷ **∮100** С 100 a MC1670 -|20 ns|-+1.11 V D ā +0.31 V +1.11 V -+0.31 V -- 20 ns , 50% , 50% 50% - tQ+ SET/RESET TO $\mathbb{Q}/\overline{\mathbb{Q}}$ ⊢ts+Q+ tR+Q-- tQ-(Switch S1 in position shown) 90% 90% , 50% a -10% 90% ₫ 50% 10% 50% 50% CLOCK ΤΟ Q/Q̄ -tc+a-- tC+Q+ (Switch S1 in opposite position) 50% ā , 50% 50% -- tc+ā+ -- tc+ā-

4-51

The MC1670 is a Type D Master-Slave Flip-Flop designed for use in high speed digital applications. Master slave construction renders the MC1670 relatively insensitive to the shape of the clock waveform, since only the voltage levels at the clock inputs control the transfer of information from data input (D) to output.

When both clock inputs (C1 and C2) are in the low state, the data input affects only the "Master" portion of the flip-flop. The data present in the "Master" is transferred to the "Slave" when clock inputs (C1 "OR" C2) are

taken from a low to a high level. In other words, the output state of the flip-flop changes on the positive transition of the clock pulse.

While either C1 "OR" C2 is in the high state, the "Master" (and data input) is disabled.

Asynchronous Set (S) and Reset (R) override Clock (C) and Data (D) inputs.

Input pulldown resistors eliminate the need to tie unused inputs to V_{EE} .

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. Air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

F SUFFIX CERAMIC PACKAGE CASE 650

TEST VOLTAGE VALUES

									P Test	l		ļ		ŀ	ł		1	
								Ten	nperature	VIH max		VIHA min	VILA max	VEE	[1		
									-30°C	-0.875	-1.890	-1.180	-1.515	-5.2]			
									+25°C	-0.810	-1.850	-1.095	-1.485	-5.2]			1 1
									+85°C	-0.700	-1.830	-1.025	-1.440	-5.2]		ı	1
		Ι			MC16	70F Test	Limits			T	EST VOL	TAGE APPLI	ED TO PINS		Ī			
1	i	Pin Under	-30	°C	+25	o°C	+8	5°C		1	LI	STED BELOV	N:					(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Pı	P ₂	P ₃	Gnd
Power Supply Drain	İΕ	12	-	-		48		-	mAdc			-	-	12	-		-	4,5
Input Current	lin H	8	-	-	-	550	-	-	μAdc	8				12	-			4,5
		9	-	-	-	550	1	-	l 1	9	ļ		-	l ı	-		-	1 1
		14	-	-	-	250	-		1 1	14				1 1	-		-	1
	ľ	111	-	_		250 270	-		↓	11			i	١	1 _	_		↓
	- .	15							<u> </u>	15	-				-	—	_	
	lin L	8	-	-	0.5		-	-	μAdc	14	8		-	12	1	-	-	4,5
	1	14	_	_					1 1	1 11	14	i	:	1 1	-	ΙΞ.	i .	1 1 1
		111	-		1	_	-			14	111		_		-	-	-	1 1
		15	-	-	•	-	-	-		14	15	-	_	*	-	-	-	*
Logic "1"	VOH	6	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	-	8,11,15	-		12	14	9	-	4,5
Output Voltage	"	7	1 1	l ı	1	1	1			15	9,14	-			11	8	-	l i l
		6	1 1	1 1		1 1	1 1		ΙI	15	9,11	İ	-	1 1	8	14	ı	111
		7	,	,				١,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	'		8,14,15		-	, T	9	11		
Logic "0"	VOL	6	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	15	9,11	-	-	12	14	8	-	4,5
Output Voltage		6			l		1 1				8,14,15 8,11,15	-	-	H	11 9	9	1	
		7	l †	l	1 1	♦	1 +		∳	15	9.14		_	♦	8	11	-	+
Logic "1"	Varia	6	-1.065	-	-0.980		-0.910	_	Vdc	-	8,11,15			12	14	 	9	4,5
Threshold Voltage	VOHA	7	1.003	_	1	1 -	1-0.510	-	1	15	9,14		[l iî	11	-	8	7,5
		6	1 1	-		l –	11	-	1 1	15	9,11				8		14	111
		7		-	l i	-	1 1	-	1 1	- 1	8,14,15	-		1 1	9		11	
		6	1 1	-	1 1	-	1 1	-	1 1	-	9,11	15		1 1	8	14	ı	1
		7	<u> </u>	-	'_		<u>'</u>			· ·	8,14		15	<u>'</u>	9	11		
Logic "0"	VOLA	6	-	-1.630		-1.600		-1.555	Vdc	15	9,11	-		12	14		8	4,5
Threshold Voltage	1	6		1	-	1 1	1 -		l ì		8,14,15 8,11,15	_	ļ		11 9	-	9	1
		7	1 -	l i	_		1	1 1		15	9,14			1 1	8		11	111
		6	l –		-	1 1	l -				8,11		15	1	9	14		111
	l l	7	-	١ ٠	-	+	-	١ ٠	*		9,14	15		١ ٠	8	11	-	†
	1				-										_		$\overline{}$	
Switching Parameters		ļ	Min	Max	Min	Max	Min	Max						-3.2 Vdc			ı	+2.0 Vdc
Clock to Output Delay	111+6+	14,6	1.0	2.7	1.1	2.5	1.1	2.9	ns		_	1 _	_	12	1	l	l _	4,5
(See Figure 1)	t11-6-	14.6	l ï	Ι'n	l "i	Ιĩ	lï	ا آ	l "	1	_	_	-	Ιï	-		-	7,5
1000 1 1001 11	t11+7-	14,7	1 1				1 1		1 1			l		11		-		111
	t11-7+	14,7			1 1		1 1			-	-	-	-			-		111
Set to Output Delay	t9+6+	9,6			1 1	11	1 1	1 1	1 1		ŀ			1 1	-			
(See Figure 2)	19+6-	9,7	! !	l						-		i	-	1 1	-	-	-	!
Reset to Output Delay	¹ 8+6-	8,6	1	1 .	↓	↓	I ↓		1 1	1	-		-			-	-	
(See Figure 2)	18+7+	8,7	l '	1 '	'	1 '	1 '	1 '	1 1	l -	-		i		-		ĺ	
Output Rise Time	10.7	١,,	0.9	2.7	1.0	2.5	1.0	2.9		l _	_	1	_		l _	1	l _	
Fall Time	*6+7+ *6-7-	6.7	0.9	2.7	0.6	1.9	0.6	2.9		_	_		-	Ιİ] [l -	_	
(See Figure 2)	1.0-/-	٠,,	0.5	1 *	0.0		1 0.0	*	1 1	-	_	_	"		l -		i	Ш
Set Up Time	ts"1"	6	l _			0.4		_		l _	6		_	Ιİ	_	۱ ـ	۱	
(See Figure 3)	ts"0"	6	_		_	0.4	_	_	1 1	_	6	_	-			<u>-</u>	1	
Hold Time	tH"1"	6	l _	-	l _	0.3	-			-	6	_	_				ĺ	
(See Figure 3)	tH"0"	6	-	_		0.5	-	-		-	6		_	*		-	-	1
Toggle Frequency	fToq	6	270	-	300	-	270	-	MHz	-			_	1		1		-
(See Figure 4)	۳, ۱	1		1	1	l	1	l		l		l	l	l		1	i	

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-14A2CB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal deta.

L SUFFIX CERAMIC PACKAGE CASE 620

			(Volts)		
@ Test Temperature	V _{IH} max	VIL min	VIHA min	VILA max	VEE
-30°C	-0.875	-1.890	-1.180	-1.515	-5.2
+25°C	-0.810	-1.850	-1.095	-1.485	-5.2
+85°C	-0.700	-1.830	-1.025	-1.440	-5.2

TEST VOLTAGE VALUES

		_			*****	70. 7			+85°C		-1.830	-1.025	-1.440	-5.2	1	ĺ		
	1	Pin Under	-30	o°c		70L Test		5°C	·	"	EST VOL1	TAGE APPLII STED BELOV	ED TO PINS N:					(Vcc
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	P1	P ₂	P3	Gnd
Power Supply Drain	1E	8			-	48	-		mAdc	7,9		-	-	8			-	1,16
Input Current	l _{in H}	4		-		550			μAdc	4				8			-	1,16
		5		-		550		-	1 1	5			-	1				11
	1	9	١.	İ		250 250				9				1			_	1
	1	11			l	270	1		+	11			-			-		
	'in L	4			0.5	t			μAdc	9	4	-		8				1,16
		5			H	Ì	İ			9	5				-			1 1
	1	9			1 1	[7 9	9 7			li		-	ŀ	
		111		1	+				+	9	11			,		_	ŀ	+
Logic "1"	VOH	2	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	Ť.	4,7,11			8	9	5		1,16
Output Voltage	"	3	1	1	1	1	1	1	l i	11	5.9		i .	li	7	4	-	
		2	↓	1 1	↓	1 1	1 1	1 1		11	5,7	1		1	4	9		l l
		3		'	· '		'	'	'		4,9,11	-			5	7	-	!
Logic "0" Output Voltage	VOL	2	-1.890	-1.650	-1 850	-1.620	-1.830	-1.575	Vdc	11	5,7 4,9,11			8	9	4 5		1,16
Output Voltage	- 1	2			1 1			H			4,7,11		_		5	9		
		3			+	+	١ ٠		•	11	5,9				4	7	-	
Logic "1"	VOHA	2	-1.065	1	-0.980	T	-0.910		Vdc		4,7,11			8	9	-	5	1,16
Threshold Voltage		3		•		ļ	1			11	5,9				7		4	ш
		2	1 1			1				11	5,7 4,9,11		j		5		9 7	1 1
		2					1 1	۱ -			5,7	11			4	9	l ′	
		3		-	٠,		١ ٠		†		4,9		11	•	5	7		
Logic "0"	VOLA	2		-1.630		-1.600		-1.555	Vdc	11	5.7			8	9		4	1,16
Threshold Voltage	i i	3			ļ	1 1					4,9,11				7		5	l 1
	- 1	3		1 1	1					11	4,7,11 5,9				5		9	1
	ľ	2		1 1	ļ			1 1			4,7		11		5	9	l '	
		3		'		'		'	1		5,9	11	· .		4	7		'
Switching Parameters			Min	Max	Min	Max	Min	Max						-3.2 Vdc				+2.0 Vdc
Clock to Output Delay	17+2+	9,2	10	27	1.1	2.5	1,1	2.9	ns					8	1	_ 1	_	1,16
(See Figure 1)	17-2-	9.2	ı	l i	lï	1 1	Lï	Ιï	i i					ĭ		_		1
	t7+3-	9,3													-			
C C C	t7-3+	9,3		1 1									-		1	-		
Set to Output Delay (See Figure 2)	*5+2+ *5+3-	5.2 5,3				1 1		1 1				~	1 - 1	- 1	-		_	1 1
Reset to Output Delay	14+2-	4,2		1		1	1 1	li			_			- 1	- 1	_		
(See Figure 2)	14+3+	4,3	†	•	+	•	٠,	+	i				_			-	_	
Output					1									[
Rise Time	12+.13+	2,3	0.9	2.7	1.0	2.5	1.0	2.9				-		- 1	-	- 1	-	
Fall Time (See Figure 2)	t2t3-	2,3	0.5	21	0.6	1.9	0.6	2.3				-			-		-	
Set Up Time	ts"1"	2		!		0.4	}	-			6		- 1		- 1	-	-	П
(See Figure 3)	ts0	2				0.5		-			6					-	-	1 1
Hold Time	tent"	2			1	0.3		-	↓	-	6	-	- 1	1	-		-	۱ ا
(See Figure 3)	tH0	2				0.5		l	l l		6		-	•	1	-	-	∣'
Toggle Frequency	fTog	2	270	1	300		270	-	MHz	-	-				- 1	- 1	-	

TP_{in} Set 50% +1.11 V +0.31 V TP_{out} Q TP_{out} TP_{ou}

FIGURE 4 - TOGGLE FREQUENCY TEST CIRCUIT +2.0 Vdc Coax 50 50 0.1 µF TPout VCC 1 VCC2 a TPin 0.1 μF Sine-Wave Generator, All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. C2 100 ā V_{Bias} = 0.71 Vdc O VEE **₹100** (Use High Impedance Probe to Adjust V_{Bias}) 50 dc Supply -3.2 Vdc

Figure 6 illustrates the variation in toggle frequency with the dc offset voltage (VBias) of the input clock signal. VBias is defined by the test circuit in Figure 4, and waveform Figure 5.

Figures 8 and 9 illustrate minimum clock pulse width recommended for reliable operation of the MC1670.

FIGURE 7 — TYPICAL MAXIMUM TOGGLE FREQUENCY Versus TEMPERATURE

TA, AMBIENT TEMPERATURE (°C)

Temperature	-30°C	+25°C	+85°C
VBias	+0.660 Vdc	+0.710 Vdc	+0.765 Vdc

FIGURE 8 – MINIMUM "DOWN TIME" TO CLOCK OUTPUT LOAD = 50 Ω

FIGURE 9 – MINIMUM "UP TIME" TO CLOCK OUTPUT LOAD = 50 Ω

FIGURE 10 - MC1670 CIRCUIT SCHEMATIC

TRIPLE 2-INPUT EXCLUSIVE-OR GATE

MC1672

CIRCUIT SCHEMATIC

See General Information section for packaging.

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. Air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

F SUFFIX
CERAMIC PACKAGE
CASE 650

@ Test
Temperature
-30°C
+25°C
+85°C

	TEST VO	LTAGE V	ALUES	
		(Volts)		
VIHmax	VILmin	VIHAmin	V _{ILAmax}	VEE
-0.875	-1.890	-1.180	-1.515	-5.2
-0.810	-1.850	-1.095	-1.485	-5.2
-0.700	-1.830	-1.025	-1 440	-5.2

									785 C	-0.700	-1.830	-1.025	-1.440	-5.Z	J
		Pin MC 1672F Test Limits TEST VOLTAGE APPLI				LIED TO									
	1	Under	-30	°C	+25	5°C	+85	5°C		L	PINS LI	STED BEL	.ow		(Vcc
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VIL Amax		
Power Supply Drain Current	1E	12	_	-	-	55	_	-	mAdc	All Inputs		_	-	12	4,5
Input Current	linH	8,14,16	_	_	-	350	_	-	μAdc	•	_	_		12	4,5
	0.75 l _{inH}	9,10,11	-	_	-	270	_		μAdc	•	_	-	_	12	4,5
	linL	•	-		0.5	-		-	μAdc	_	•	-	-	12	4,5
Logic "1" Output Voltage	VOH	6 6	-1.045 -1.045	-0.875 -0.875	-0.960 -0.960	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	8 9	9 8	-	-	12 12	4,5 4,5
Logic "0" Output Voltage	VOL	6 6	-1.890 -1.890	-1.650 -1.650	-1.850 -1.850	-1.620 -1.620	-1.830 -1.830	-1.575 -1.575	Vdc Vdc	8,9 -	_ 8,9	-	_	12 12	4,5 4,5
Logic "1" Threshold Voltage	VOHA	6 6	-1.065 -1.065	-	-0.980 -0.980	-	-0.910 -0.910	-	Vdc Vdc	_	_	8 9	9 8	12 12	4,5 4,5
Logic "0" Threshold Voltage	VOLA	6 6	_	-1.630 -1.630	-	-1.600 -1.600	-	-1.555 -1.555	Vdc Vdc	_	_	8,9 -	_ 8,9	12 12	4,5 4,5
Switching Times (50 Ω Load)	1				İ		1				1	Pulse In	Pulse Out		
Propagation Delay	t8+6+ t8-6+ t8+6- t8-6- t9+6+ t9-6+ t9-6-	6	- - - - - -	2.0 2.0 2.1 2.1 2.5	- - - - -	1.8 1.8 1.9 1.9 2.3	- - - - - -	2.3 2.3 2.4 2.4 2.8	ns	 		8 — ♥ 9 — ♥	6	12	4,5
Rise Time	t ₆₊	6		2.7	-	2.5	-	2.9	ns	_		8	6	12	4,5
Fall Time	t6-	6	-	2.4		2.2		2.6	ns	-	_	8	6	12	4,5

^{*}Individually test each input applying \mathbf{V}_{IH} or \mathbf{V}_{IL} to input under test.

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-LIC-214A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

@ Test

TEST VOLTAGE VALUES
(Volts)

VIHA min

VILA mex

VEE

												******		1	
									-30°C	-0.875	-1.890	-1.180	-1.515	-5.2	
									+25°C	-0.810	-1.850	-1.095	-1.485	-5.2	
									+85°C	-0.700	-1.830	-1.025	-1.440	-5.2	
		Pin			MC	1672L Test I	imits			TEST	VOLTAGE A	PI IED TO PINS	LISTED BELOW		
1		Under	-30	o°c	+2	5°C	+8	5°C		1.23	TOLIAGE A	TELED TO THIS	LISTED BELOW	` -	(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	lE	8	-	-		55		-	mAdc	All Inputs	-	-	-	8	1,16
Input Current	lin H	3,11,13	 -			350	-		μAdc	•				8	1,16
ļ	0.75 lin H	5,6,7	-	-	-	270	-		μAdc	•	-	-		8	1,16
i	lin L		-	-	0.5	-		-	μAdc		•	_	-	8	1,16
Legic "1"	VOH	2	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	3	5	-	_	8	1,16
Output Voltage		2	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	5	3		-	8	1,16
Logic "0"	VoL	2	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	3,5	-	-	-	8	1,16
Output Voltage	_	2	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc		3,5		-	8	1,16
Logic "1"	VOHA	2	-1.065	-	-0.980	-	-0.910	-	Vdc	-	-	3	5	8	1,16
Threshold Voltage		2	-1.065		-0.980		-0.910		Vdc		-	5	3	8	1,16
Logic "0"	VOLA	2	-	-1.630	-	-1.600	-	-1.555	Vdc	-	-	3,5	-	8	1,16
Threshold Voltage		2	_	-1.630		-1.600		-1.555	Vdc				3,5	8	1,16
Switching Times (50 Ω Load)		l	Min	Max	Min	Max	Min	Max	}	ì		Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	t3+2+	2	_	2.0	-	1.8	-	2.3	ns	- 1	_	3	2	8	1,16
	t3-2+	2	-	2.0	-	1.8	l –	2.3	1 1	-	-	1	1	1 1 3	l l
	t3+2-	2	-	2.1	-	1.9	-	2.4	1 1	-	-	. ↓	1 1	1 1 '	
	t3-2-	2	_	2.1	-	1.9	i –	2.4	1 1	-	-	, v	1	1 1 7	1
	^t 5+2+	2	-	2.5	-	2.3	-	2.8	1 1	-	-	5	l 1	1 1 '	l I
	t5-2+	2	-		-	1 1	-	1 1	1 1	-	-	1 1	1 1	1 1 3	1
	t5+2-	2	-	1	_	1	-	۱ 🗼	I ♦	-	-	1 ♦	! ♦	1	! ♦
	t5-2-	2	 -			'	-		<u> </u>			· · · · · · · · · · · · · · · · · · ·		-	
Rise Time	t2+	2		2.7		2.5		2.9	าร		-	3	2	8	1,16
Fall Time	t2-	2	-	2.4	_	2.2	-	2.6	ns	-	-	3	2	8	1,16

^{*}Individually test each input applying VIH or VIL to input under test.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

TRIPLE 2-INPUT EXCLUSIVE-NOR GATE

MC1674

CIRCUIT SCHEMATIC

See General Information section for packaging.

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. Air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

TEST VOLTAGE VALUES (Voits) @ Test V_{IHmax} v_{ILmin} Temperature **VIHAmin** VILAmax -30°C -0.875 -1.890 -1.180 -1.515 -5.2 +25°C -0.810 -1.850 -1.095 -1.485 -5.2 +85°C -0.700 -1.830 -1.025

									+85°C	-0.700	-1.830	-1.025	-1.440	-5.2	1
	ł	Pin			MC 16	74F Test L	imits			TE	ST VOL	TAGE APP	LIED TO		
	1	Under	-30	°C	+2!	5°C	+85	5°C			PINS LI	STED BEL	.ow		(VCC
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	V _{IL Amax}	VEE	Gnd
Power Supply Drain Current	1E	12	-	_	_	55	_	-	mAdc	All Inputs	_	-	_	12	4,5
Input Current	linH	8,14,16	-	-	-	350	_	-	μAdc	•	_	-	_	12	4,5
	0.75 I in H	9,10,11	-	_	_	270	_	-	μAdc	•	-	_		12	4,5
	linL	•	-	_	0.5	-	_	-	μAdc	-	•	_	_	12	4,5
Logic "1" Output Voltage	VOH	6 6	-1.045 -1.045	-0.875 -0.875	-0.960 -0.960	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	8,9 -	- 8,9	-	_	12 12	4,5 4,5
Logic "0" Output Voltage	VOL	6 6	-1.890 -1.890	-1.650 -1.650	-1.850 -1.850	-1.620 -1.620	-1.830 -1.830	-1.575 -1.575	Vdc Vdc	8 9	9	-	_	12 12	4,5 4,5
Logic "1" Threshold Voltage	Vона	6 6	-1.065 -1.065	-	-0.980 -0.980	-	-0.910 -0.910	-	Vdc Vdc	-	-	8,9 _	8,9	12 12	4,5 4,5
Logic "0" Threshold Voltage	VOLA	6	=	-1.630 -1.630	-	-1.600 -1.600	-	-1.555 -1.555	Vdc Vdc	_	_	8 9	9 8	12 12	4,5 4,5
Switching Times (50 Ω Load)												Pulse In	Pulse Out		
Propagation Delay	t8+6+ t8-6+	6	-	2.0 2.0	-	1.8 1.8	_	2.3 2.3	ns	-	_	8	6	12	4,5
	t8+6-		-	2.1	-	1.9	-	2.4			_				
	t8-6- t9+6+	1	-	2.5	_	2.3	_	2.8		_	_	9			
	t9-6+ t9+6- t9-6-	↓	-	•	- - -	↓	_ _ _			_ _ _	- - -		•		
Rise Time	t ₆₊	6	-	2.7	_	2.5	_	2.9	ns		_	8	6	12	4,5
Fall Time	t6-	6		2.4	_	2.2	-	2.6	ns	_	_	8	6	12	4,5

^{*}Individually test each input applying VIH or VIL to input under test.

4-66

ELECTRICAL CHARACTERISTICS

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-LIC-214A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

		TEST VO	LTAGE V	ALUES	
			(Volts)		
@ Test Temperature	ViHmax	VILmin	VIHAmin	V _{IL Amax}	∨ _{EE}
-30°C	-0.875	-1.890	-1.180	-1.515	-5.2
+25°C	-0.810	-1.850	-1.095	-1.485	-5.2
+85°C	-0.700	-1.830	-1.025	-1.440	-5.2

									+85°C	-0.700	-1.830	-1.025	-1.440	-5.2	1
	i	Pin				4L Test Li				TE	ST VOL	TAGE APP	LIED TO		1
	}	Under	-30	°C	+25	°C	+85	5°C			PINS LI	STED BEL	.ow		(Vcc)
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	ΙE	8	_		_	55	_	_	mAdc	All Inputs	_	_	_	8	1,16
Input Current	linH	3,11,13	-	_	-	350	-	-	μAdc	•	-	_	_	8	1,16
	0.75 l _{inH}	5,6,7	_	_		270	_	-	 µAdc	•	-		-	8	1,16
	linL	•	_	-	0.5	-	-	-	μAdc	-	•	-		8	1,16
Logic "1" Output Voltage	VОНф	2 2	-1.045 -1.045	-0.875 -0.875	-0.960 -0.960	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	3,5 —	3,5	-	-	8	1,16 1,16
Logic "0" Output Voltage	VOLØ	2 2	-1.890 -1.890	-1.650 -1.650	-1.850 -1.850	-1.620 -1.620	-1.830 -1.830	-1.575 -1.575	Vdc Vdc	3 5	5 3	_	-	8 8	1,16 1,16
Logic "1" Threshold Voltage	VOHAø	2 2	-1.065 -1.065	_	-0.980 -0.980	_	-0.910 -0.910	_	Vdc Vdc	_	-	3,5 -	_ 3,5	8 8	1,16 1,16
Logic "0" Threshold Voltage	VOLAφ	2 2	-	-1.630 -1.630	-	-1.600 -1.600	_	-1.555 -1.555	Vdc Vdc		-	3 5	5 3	8 8	1,16 1,16
Switching Times (50 Ω Load)												Pulse In	Pulse Out		
Propagation Delay	t3+2+	2	-	2.0	_	1.8	_	2.3	ns	_	_	3		8	1,16
	t3-2+	2	-	2.0	_	1.8	-	2.3	1 1	l –	-	1 1	i	1	11
	t3+2-	2	-	2.1	-	1.9] -	2.4	1 1	_	l –		- 1		1
	t3-2-	2	-	2.1	-	1.9	-	2.4		_	-	, v			1
	t5+2+	2	_	2.5	_	2.3	_	2.8		_	-	5		lli	1 1
	^t 5-2+	2	-	1 1	_		-			_	-	1 1			
	t ₅₊₂₋ t ₅₋₂₋	2 2	_	♦	_	♦	_	♦	♦	_	_	♦	♦	♦	🛊
Rise Time	t ₆₊	2	_	2.7	_	2.5	-	2.9	ns		-	3	2	8	1,16
Fall Time	t6-	2	_	2.4	_	2.2	_	2.6	ns	_	_	3	2	8	1,16

^{*}Individually test each input applying VIH or VIL to input under test.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

DC Input Loading Factor R = 2.40C1 = 0.77C2 = 1.23 S = 1.00

DC Output Loading Factor = 70

Power Dissipation = 750 mW typ

The MC1678 is a four-bit counter capable of divideby-two, divide-by-five, or divide-by-10 functions. When used independently, the divide-by-two section will toggle at 350 MHz typically, while the divide-by-five section will toggle at 325 MHz typically. Clock inputs trigger on the positive going edge of the clock pulse.

Set and Reset inputs override the clock, allowing asynchronous "set" or "clear". Individual Set and common Reset inputs are provided, as well as complementary outputs for the first and fourth bits. True outputs are available at all bits.

See General Information section for packaging.

COUNTER TRUTH TABLES BCD BI-QUINARY (Clock connected to C1 (Clock connected to C2 and Q0 connected to C2) and Q3 connected to C1) R-S COUNT QΟ Q1 **Q**2 QЗ COUNT Q1 Q2 QЗ QΟ С R s Qn+1 φ α_n LHLH HH φ н н H ND LLH 4 5 6 7 ϕ = Don't Care ND = Not Defined 8 L L Н 8 Н H H **COUNTER STATE DIAGRAM - POSITIVE LOGIC** Clock connected to C2 Q0 connected to C2 0 0

be maintained while the circuit is either in a data.

This MECL III circuit has been designed to test socket or is mounted on a printed meet the dc specifications shown in the circuit board. Test procedures are shown test table, after thermal equilibrium has for selected inputs and selected outputs. been established. The package should be The other inputs and outputs are tested in housed in a suitable heat sink (IERC-LIC- a similar manner. Outputs are tested with 214A2WCB or equivalent) or a transverse a 50-ohm resistor to -2.0 Vdc. See general air flow greater than 500 linear fpm should information section for complete thermal

		TEST	VOLTAGE V	ALUES	
@ Test Temperature	ViHmex	VILmin	VIHAmin	VILAmex	VEE
-30°C	-0.875	-1.890	-1.180	-1.515	-5.2
+25°C	-0.810	-1.850	-1.095	-1.485	-5.2
+85°C	-0.700	-1.830	-1.025	-1.440	-5.2

		Pin				78L Test L	imits			l					
		Under	-3	0°C	+2	5°C	+8	5°C			OLTAGE A	PLIED TO PI		BELOW:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VEE	Gnd
Power Supply Drain Current	1E	8	-	-	-	200	-	-	mAdc	9		_	-	8	1,16
Input Current	lin H	9	-	_	_	1.00	-	-	mAdc	9	-	_	-	8	1,16
	i	2	- '	- '	-	0.70	-	-	1 1	2	-	-	-		1
		15 3,7,10,14	_	_	_	0.45 0.45	_	-	\ \	15	_	_	_	♦	
	lin L	9	-	-	0.5	-	-		μAdc	-	9			8	1,16
		2 3,7,10,14,15	-	_	0.5 0.5	-	-	_	♦	_	2	-	-	↓	•
Logic "1"	VOH	5,12 ①	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc		3,7,10,14			8	1.16
Output Voltage	"	4,6,11,13②	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	-	9			8	1,16
Logic "O"	VOL	5,12 ②	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	-	9	-	-	8	1,16
Output Voltage	<u> </u>	4,6,11,13 ①	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	-	3,7,10,14			8	1,16
Lagic "1" Threshold Voltage	VOHA	5,12 ③ 6,8,11,13 ④	-1.065 -1.065	_	-0.980 -0.980	_	-0.910 -0.910	_	Vdc Vdc	-	-	-	3,7,10,14	8 8	1,16
Logic "0"	VOLA	5.12 4	-1.005	-1.630	-0.980	-1.600	-0.910	-1.555	Vdc				9		1,16
Threshold Voltage	VOLA	4,6,13,16 ③	_	-1.630	_	-1.600	_	-1.555	Vdc	-	_	-	9 3,7,10,14	8	1,16 1,16
AC Cheracteristics			-						1			Pulse In	Pulse Out	-3.2 Vdc	+2.0 V
Clock Delays	115+12+	12	1.0	2.9	1.0	2.7	1.0	3.1	ns	_	-	15	12	8	1,16
50 Ω Loads	¹ 15+13+	13	1 1	2.9	1 1	2.7	l 1	3.1	lι	-	-	15	13	ΙĪ	1
	12+11+	11		3.2		3.0		3.4	11	-	-	2	11		
	t2+4+	4	1 1		l i			1	1 1	-	-	2	4	1 1	l i
	t2+6+ t2+5+	6 5	♦		♦	🔻	•	\ \	♦	_	-	2 2	6 5	♦	♦
	t15+12-	12	1.0	2.9	1.0	2.7	1.0	3.1	ns	-	-	15	12	8	1,16
	t15+13-	13	1 1	2.9	1 1	2.7	1 1	3.1	1 1	-	-	15	13	1	1 1
	t3+11-	11		3.2	1 1	3.0		3.4	1 1	-	-	2	11		
	12+4-	6	1 1		1 1	1 1	1 1	ı		-	-	2	4		ll
	t2+6- t2+5-	5	♦	♥	♦	♦	\ \	•	♥	_		2 2	6 5	♥	🕈
Set Delay	†14+13+	13	2.0	3.9	2.0	3.7	2.0	4.1	ns	-	-	14	13	8	1,16
	^t 14+12-	12	2.0	3.9	2.0	3.7	2.0	4.1	ns			14	12	8	1,16
Reset Delay	t9+12+ t9+13-	12 13	2.0 2.0	3.9 3.9	2.0 2.0	3.7 3.7	2.0 2.0	4.1 4.1	ns ns	-	-	9	12	8	1,16
Rise Time		13	1.0	2.9	1.0	2.7	1.0	3.1		- -					1,16
11130 111110	¹ 13+ ¹ 12+	12	1.0	2.9	1.0	2.7	1.0	3.1	ns ns	_	_	15 15	13 12	8	1,16 1,16
Fall Time	t13- t12-	13 12	1.0	2.8 2.8	1.0	2.6 2.6	1.0	3.0	ns ns	-	-	15 15	13	8	1,16
Maximum Toggle Frequency	112- 1t	13 ⑤ 6 ⑤	260	-	300	-	260	-	MHz	-	-	- 15	- '2	8	1,16
50 Ω Load	ft	6 (Š	250	-	275	-	250	-	MHz	-	-	_	_	š	1,16

^{*}Individually apply VIH or VIL to input under test.

- (1) Reset all four flip-flops by applying PA to pin 9.
- (2) Set all four flip-flops by applying PA to pins 3, 7, 10, and 14 simultaneously.
- 3 Reset all four flip-flops by applying PA to pin 9.
- (4) Set all four flip-flops by applying PA to pins 3, 7, 10, and 14 simultaneously.
- (5) See Figure 1 for toggle test circuit

APPLICATIONS INFORMATION

With the addition of a single gate package, the MC1678 will count in a fully synchronous mode, as shown below.

Advance Information

CIRCUIT SCHEMATIC

This is advance information and specifications are subject to change without notice. See General Information section for packaging.

Each MECL III series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one input and one output. The other inputs and outputs are tested in the same manner.

F SUFFIX
CERAMIC PACKAGE
CASE 650

•		TEST V	DLTAGE \	/ALUES	
			(Volts)		
@ Test Temperature	V _{IH max}	V _{IL min}	VIHAmin	VILAmax	VEE
-30°C	-0.875	-1.890	-1.180	-1.515	-5.2
+25°C	-0.810	-1.850	-1.095	-1.485	-5.2
+85°C	-0.700	-1.830	-1.025	-1.440	-5.2

			MC1688F Test Limits						7507.16			O DINO DE	014	1		
	1	Pin Under	-30	°C		+25°C		+85	°C		IESI VC)LIAGE A	APPLIED I	O PINS BE	LOW	(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	MLAmax	VEE	Gnd
Power Supply Drain Current	1E	12	-	-		24	30		_	mAdc		_	-	-	12	4,5
Input Current	linH	8	-	-	_	-	350	-		μAdc	8	_	_	_	12	4,5
	linL	8	_		0.5	-	_		-	μAdc	_	8		-	12	4,5
High Output Voltage	Voн	6 7	-1.045 -1.045	-0.875 -0.875	-0.960 -0.960	_	-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc Vdc	8 -	- 8	-	-	12 12	4,5 4,5
Low Output Voltage	VOL	6 7	-1.890 -1.890	-1.650 -1.650	-1.850 -1.850	_	-1.620 -1.620	-1.830 -1.830	-1.575 -1.575	Vdc Vdc	- 8	8 -	_	_	12 12	4,5 4,5
High Threshold Voltage	VOHA	6 7	-1.065 -1.065	_	-0.980 -0.980	-	_	-0.910 -0.910	-	Vdc Vdc	-	-	8 -	- 8	12 12	4,5 4,5
Low Threshold Voltage	VOLA	6 7	-	-1.630 -1.630	-	_	-1.600 -1.600	-	-1.555 -1.555	Vdc Vdc	-	-	_ 8	8 -	12 12	4,5 4,5
Switching Times (50-ohm load)				, i									Pulse in	Pulse Out	-3.2 V	+2.0 V
Propagation Delay	[†] 8+7- [†] 8-7+ [†] 8+6+ [†] 8-6-	7 7 6 6	- - -	- - -	- - -	0.8	- - -	- - - -	- - -	ns	- - -	- - -	8	7 7 6 6	12	4,5
Rise Time (20 to 80%)/(10 to 90%)	t ₇₊ t ₆₊	7 6	- -	-	_ _	1.1/1.7	_	-	_ _		- -	-		7 6		
Fall Time (20 to 80%)/(10 to 90%)	t7- t6-	7 6	-	-	_		-	_	-		-	-		7 6		

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS @ 25°C

Advance Information

P_D = 200 mW typ/pkg (No Load) f_{tog} = 500 MHz min The MC1690 is a high speed D master-slave flip-flop capable of toggle rates over 500 MHz. Designed primarily for high speed prescaling applications in communications and instrumentation, this device employs two data inputs, two clock inputs and complementary Q and $\overline{\rm Q}$ outputs. It is a higher frequency replacement for the MC1670 (350 MHz) D flip-flop. There are no set or reset inputs and an extra data input is provided.

When used with the MC1678, the MC1690 provides a decade counter capable of 500 MHz operation.

Numbers at ends of terminals denote pin numbers for L package (Case 620). Numbers in parenthesis denote pin numbers for F package (Case 650).

TIMING DIAGRAM

TRUTH TABLE

С	D	Q _{n+1}
L	φ	Qn
н	φ	Qn
_	٦	L
\	Н	Н

C = C1 + C2 $\phi = Don't Care$ D = D1 + D2

This is advance information and specifications are subject to change without notice. See General Information section for packaging.

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. Air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

VIH max VIL min

-0.875 -1.890

@ Test

Temperature

-30°C

TEST VOLTAGE VALUES

Volts

VIHA min

-1.180

VILA max

-1.515

VEE

-5.2

									+2	5°C	-0.810	-1.850	-1.095	-1.485	-5.2			
									+8!	5°C	-0.700	-1.830	-1.025	-1.440	-5.2	1		
		Pin			MC16	90F T	est Lir	mits			TEST VO	TACEA	001 150 70	PINS LISTED	DEL OW.			
	i	Under	-3	0°C	,	25°C		+89	5°C		TEST VO	LIAGEA	PPLIED TO	TINS LISTED	BELUW:			(VCC)
Characteristic	Symbol	Test	Min	Max	Min	N	Max	Min	Max	Unit	VIH max	ViL max	VIHA min	VILA max	VEE	P1	P2	Gnd
Power Supply Drain Current	ΙE	12	-		_	\top	59	-	-	mAdc	11,14,15,16				12	-	-	4,5
Input Current	linH	11 15	-	-	-		250 270	-	-	μAdc μAdc	11 15	-	-	-	12 12	-	-	4,5 4,5
	linL	11 15	-	-	0.5 0.5		-	-		μAdc μAdc	-	11 15	-	-	12 12	-	-	4,5 4,5
Logic "1" Output Voltage	Voн	6	-1.045	-0.875	-0.96	0 -0	0.810	-0.890	-0.700	Vdc	15	-	-		12	11	-	4,5
Logic "0" Output Voltage	VOL	6	-1.890	-1.650	-1.85	0 -1	.620	-1.830	-1.575	Vdc		15	_	-	12	11	_	4,5
Logic "1" Threshold Voltage	VOHA	6	-1.065	-	-0.980	,	_	-0.910	-	Vdc	15	-	-	_	12	-	11	4,5
Logic "0" Threshold Voltage	V _{OLA}	6		-1.630		-1	.600	-	-1.555	Vdc	-	15	-	_	12	-	11	4,5
Switching Parameters					Min	Typ	Max								-3.2 Vdc			+2.0 Vdc
Clock to Output Delay (See Figure 1)	^t 11+6+ ^t 14+6+	6	_	-	-	1.5 1.5	-	-	_	ns	-	-	-	-	12	-	-	4,5
Output Rise Time Fall Time	t+ t-		-	-	-	1.3	-	-	-		-	<u>-</u> -		- -		-	-	
Setup Time (See Figure 2)	t _{setup} H t _{setup} L		- -	-	- -	0.3	-	_	-		-	- -	-	-		-	-	
Hold Time (See Figure 2)	thold H thold L		- -	-	-	0.2 0.3	-	_	-		-	-	-	-		-	-	V
Toggle Frequency (See Figure 3)	f _{tog}	6	500	-	500	550	-	500	-	MHz	-	=	-	_	12	-	1	4,5

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-LIC-214A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

	TEST	VOLTAGE V	ALUES	
		Volts		
VIH max	VIL min	VIHA min	VILA max	VEE
-0.875	-1.890	-1.180	-1.515	-5.2
-0.810	-1.850	-1.095	-1.485	-5.2
-0.700	-1.830	-1.025	-1.440	-5.2

				+85°C								-1.830	-1.025	-1.440	-5.2		ì	i
Characteristic	Symbol	Pin Under Test	MC1690L Test Limits								TEST VOLTAGE APPLIED TO PINS LISTED BELOW:					1		
			-30°C		+25°C			+85°C								. !		(VCC)
			Min	Max	Min	Ma	× M	in	Max	Unit	VIH max	VIL min	VIHA min	VILA max	VEE	P1	P2	Gnd
Power Supply Drain Current	1E	8	I			59	9 -		1	mAdc	7,9,11,12				8	-	-	1,16
Input Current	lin H	7	-	-	-	25 27		- 1	1 1	μAdc μAdc	7	-	-	-	8 8	-	-	1,16 1,16
	lin L	7	-	-	0.5 0.5			- 1	-	μAdc μAdc	-	7		_	8	-	-	1,16 1,16
Logic "1" Output Voltage	Voн	2	-1.045	-0.875	-0.960	-0.8	310 -0.8	90 -	-0.700	Vdc	11	_	_		8	7	-	1,16
Logic "0" Output Voltage	VOL	2	-1.890	-1.650	-1.850	-1.6	20 -1.8	330 -	1.575	Vdc	-	11	-	-	8	7	_	1,16
Logic "1" Threshold Voltage	VOHA	2	-1.065	_	-0.980	-	-0.9	10	-	Vdc	11	_		_	8	_	7	1,16
Logic "0" Threshold Voltage	VOLA	2	-	~1.630	-	-1.6	600	-	-1.555	Vdc		11	_	_	8	-	7	1,16
Switching Parameters					Min	Тур М	ax								-3.2 Vdc			+2.0 Vdc
Clock to Output Delay (See Figure 1)	[†] 7+2+ [†] 9+2+	2	-	-	-				_	ns I	-	-	- -	_	8	_	_ _	1,16
Output Rise Time Fall Time	t+ t-		-	-	-		- -	- 1	-		-	-	-	 -		-	-	
Setup Time (See Figure 2)	t _{setup} H t _{setup} L		-	-	-	0.0	- -	1	-		-	-	-	- -		-	-	
Hold Time (See Figure 2)	thold H thold L	\	_	-	-		- -	L	-	V	-	-	-	-	₩	-	-	
Toggle Frequency (See Figure 3)	ftog	2	500	-	500	540	- 50	0	-	MHz	_	-	-	-	8	-	-	1,16

@ Test

Temperature -30°C +25°C

V_{CC1} = V_{CC2} +2.0 Vdc v_{out} All input and output cables to the scope are equal lengths of 50-ohm coaxial cable. TPin Clock Input Pulse O Generator TPin TPout Data Input Pulse (O Generator 50-ohm termination to ground located in each scope channel input. V_{EE} 0 CLOCK DELAY WAVEFORMS @ 25°C Clock +0.31 V Data 90% a ₫ 50%

FIGURE 1 - PROPAGATION DELAY TEST CIRCUIT

V_{CC1} = V_{CC2} = +2.0 Vdc Vin V_{out} Coax Coax 50. TPir TPout Clock Input Pulse All input and output cables to the scope are equal lengths of Generators TPin 50-ohm coaxial cable. *Non-inductive type. 0 Data 50-ohm termination to ground lo-cated in each scope channel input. -3.2 Vdc 0 VEE SETUP TIME WAVEFORMS @ 25°C Data setup H +0.31 V -t_{setup} L +1.11 V Clock 50% +0.31 V Q Output HOLD TIME WAVEFORMS @ 25°C +1.11 V Data thold H +0.31 V +1.11 V Clock +0.31 V Q Output Setup time is the minimum time before the positive transition of the clock pulse (C) that information must be present at the data (D) input. Hold time is the minimum time after the positive transition of the clock pulse (C) that information must remain unchanged at the data (D) input.

FIGURE 2 - SETUP AND HOLD TIME TEST CIRCUIT

FIGURE 3 - TOGGLE FREQUENCY TEST CIRCUIT

QUAD LINE RECEIVER

MC1692

CIRCUIT SCHEMATIC (6) (7) 3 (2) (3) 14 V_{CC1} V_{CC2} 100 ₹ **≨100 ⋛**350 100 € ≨₁₀₀ **≨100** 100 € 100 100 o∨_{BB} (13) 365 ₹ 365 ₹ 365 € 365 € 1958 \$ 2 1 12 13 10 (9) (11) (10) (14)(15) (12) (16) Number at end of terminal denotes pin number for L package (Case 620). Number in parenthesis denotes pin number for F package (Case 650).

See General Information section for packaging information.

ELECTRICAL CHARACTERISTICS

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. Air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

F SUFFIX CERAMIC PACKAGE CASE 650

@ Test	est TEST VOLTAGE VALUES												
Temperature	VIH max	VIL min	VIHA min	VILA max	∨ _{BB}	VEE							
-30°C	-0.875	-1.890	-1.180	-1.515	From	-5.2							
+25°C	-0.810	-1.850	-1.095	-1.485	Pin	-5.2							
+85°C	-0.700	-1.830	-1.025	-1.440	13	-5.2							

					MC16	92F Test L	imits				507 1/01 74					ĺ
	1	Pin Under	-30	°C	+25	°C	+85	°C			EST VOLTAG	SE APPLIED T	O PINS LISTE	D BELOW:		(VCC)
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	V _{IL min}	VIHA min	VILA max	V _{BB}	VEE	Gnd
Power Supply Drain Current	l _E	12	-	-	-	50	-	-	mAdc		1,8,11,14	-	_	9,10,15,16	12	4,5
Input Current	lin	8	-	-	-	250	_	-	μAdc	8	1,11,14	-	_	9,10,15,16	12	4,5
Input Leakage Current	1 _R	8	-	-	_	100	-	-	μAdc	_	1,11,14	-		9,10,15,16	8,12	4,5
Logic "1" Output Voltage	Vон	6	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	1,11,14	8	-	_	9,10,15,16	12	4,5
Logic "0" Output Voltage	VOL	6	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	8	1,11,14		-	9,10,15,16	12	4,5
Logic "1" Threshold Voltage	VOHA	6	-1.065	-	-0.980	-	-0.910	_	Vdc		1,11,14	_	8	9,10,15,16	12	4,5
Logic "0" Threshold Voltage	VOLA	6	-	-1.630	-	-1.600	-	-1.555	Vdc	_	1,11,14	8	_	9,10,15,16	12	4,5
Reference Voltage	V _{BB}	13	1.375	1,275	-1.35	-1.25	1.30	1.20	Vdc	_	_	-	-	9,10,15,16	12	4,5
Switching Times (50 Ω Load)			Min	Max	Min	Max	Min	Max		Puls	e In	Puls	Out			
Propagation Delay	t8-6+	6	_	1.6	-	1.5	-	1.7	ns		В		3	9,10,15,16	12	4,5
	t8+6-	6		1.8	-	1.7	-	1.9	l 1	1	1		t	1 1		1 1
Rise Time	t ₆₊	6	-	2.2	-	2.1	-	2.3		i				1 1	11	
Fall Time	t6-	6	-	2.2	-	2.1	-	2.3	♥	'	7	'	1	▼	▼	♥

ELECTRICAL CHARACTERISTICS

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-LIC-214A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

@ Test		TEST VOLTAGE VALUES											
Temperature	VIH max	VIL min	VIHA min	VILA max	V _{BB}	VEE							
-30°C	-0.875	-1.890	-1.180	-1.515	From	-5.2							
+25°C	-0.810	-1.850	-1.095	-1.485	Pin	-5.2							
+85°C	-0.700	-1.830	-1.025	-1.440	9	-5.2							

		Pin			MC16	92L Test L	imits			_	FOT VOLTA	YE A DOLLED T	0 01110 1 1077	D. D.F.I. O.W.		1
		Under	-30	°C	+ 25	°C	+85	°C		L'	EST VULTA	SE APPLIED I	O PINS LISTE	D BELUW:		ı
Cheracteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	VIH max	VIL min	VIHA min	VILA max	V _{BB}	VEE	Gnd
Power Supply Drain Current	۱E	8	-	-	-	50	-	-	mAdc	-	4,7,10,13	_	-	5,6,11,12	8	1,16
Input Current	1 in	4	-		-	250	-	-	μAdc	4	7,10,13		_	5,6,11,12	8	1,16
Input Leakage-Current	1 _R	4	-	-	-	100	-	T -	μAdc	_	7,10,13	_		5,6,11,12	8,4	1,16
Logic "1" Output Voltage	VOH	2	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	7,10,13	4	-	_	5,6,11,12	8	1,16
Logic "0" Output Voltage	VOL	2	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	4	7,10,13	-	-	5,6,11,12	8	1,16
Logic "1" Threshold Voltage	VOHA	2	-1.065	-	-0.980	-	-0.910	-	Vdc	_	7,10,13	_	4	5,6,11,12	8	1,16
Logic "O" Threshold Voltage	VOLA.	2	-	-1.630	-	-1.600	-	-1.555	Vdc	_	7,10,13	4	-	5,6,11,12	8	1,16
Reference Voltage	∨ _{BB}	9	1.375	1.275	-1.35	-1.25	1.30	1.20	Vdc		-		-	5,6,11,12	8	1,16
Switching Times (50 Ω Load)			Min	Max	Min	Max	Min	Max		Puls	e In	Puls	Out			
Propagation Delay	t4-2+	2	-	1.6		1.5	_	1.7	ns		4		2	5,6,11,12	8	1,16
	¹ 4+2-	2	-	1.8	-	1.7	-	1.9	1 1	l	ł		1	1 1	1 1	1 1
Rise Time	t ₂₊	2	_	2.2	-	2.1	-	2.3	1 1	İ	i		1	1 1	1 1	
Fall Time	t ₂₋	2	-	2.2	-	2.1	-	2.3	♥	'	7	1	7	1	\ ▼	

APPLICATIONS INFORMATION

The MC1692 quad line receiver is used primarily to receive data from balanced twisted pair lines, as indicated in Figure 1. The line is driven with a MC1660 OR/NOR gate. The MC1660 is terminated with 50 ohm resistors to -2.0 volts. At the end of the twisted pair a 100 ohm termination resistor is placed across

the differential line receiver inputs of the MC1692. Illustrated in Figure 2 is the sending and receiving waveforms at a data rate of 400 megabits per second over an 18 foot twisted pair cable. The waveform picture of Figure 3 shows a 5 nanosecond pulse being propagated down the 18 foot line. The delay time for the line is 1.68 ns/foot.

The MC1692 may also be applied as a high frequency schmitt trigger as illustrated in Figure 4. This circuit has been used in excess of 200 MHz. The MC1692 when loaded into 50 ohms will produce an output rising edge of about 1.5 nanoseconds.

FIGURE 1 - LINE DRIVER/RECEIVER

FIGURE 2 - 400 MBS WAVEFORMS

FIGURE 3 - PULSE PROPAGATION WAVEFORMS

FIGURE 4 - 200 MHz SCHMITT TRIGGER

MC1694

FLIP-FLOP ELEMENT CIRCUIT SCHEMATIC

See General Information section for packaging.

ELECTRICAL CHARACTERISTICS

This MECL III circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The package should be housed in a suitable heat sink (IERC-LIC-214A2WCB or equivalent) or a transverse air flow greater than 500 linear fpm should be maintained while the circuit is either in a test socket or is mounted on a printed circuit board. Test procedures are shown for selected inputs and selected outputs. The other inputs and outputs are tested in a similar manner. Outputs are tested with a 50-ohm resistor to -2.0 Vdc. See general information section for complete thermal data.

	TEST VOLTAGE VALUES										
@ Test Temperature	VIHmax	VILmin	VIHAmin	VILAmax	VEE						
-30°C	-0.875	-1.890	-1.180	-1.515	-5.2						
+25°C	-0.810	-1.850	-1.095	-1.485	-5.2						
.0500	0.700	1 920	1.005	1.440	E 2	١					

									105 C	-0.700	-1.030	-1.023		-5.2	i
	Ī	Pin	<u></u>			MC1694L							PLIED TO		i
		Under	-30	o°C	+2	5°C	+8	5°C		1	PINS	LISTED B	ELOW:		İ
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	ViHmax	VILmin	VIHAmin	V _{IL} Amax	VEE	Gnd
Power Supply Drain Current	1E	8	-	-	-	200	-	_	mAdc	9	-	-	-	8	1,16
Input Current	lin H	9	Γ-		-	1.0	-	-	mAdc	9	-	-	_	8	1,16
		7	-	-	-	0.750	1	-		7	-	-	-	111	1 1
	i	2,3,6,10	-	-	-	0.6	-			:	-	-	-		
		14,15	<u> </u>			0.5		-	L. *				-		<u> </u>
	l _{in L}	7,9	-	-	0.5	-	-	-	μAdc	-		-	-	8 1	1,16
		2,3,6,10	-	-	0.5	-	-	-	۱ ا	-	l :	-	-	1	
	.	14,15	↓ -		0.5	_			. 7						
Logic "1" Output Voltage	Voн	4,5,12,13	-1.045	-0.875	-0.960	-0.810	-0.890	-0.700	Vdc	1	9	-	-	8	1,16
Logic "0" Output Voltage	VOL	4,5,12,13	-1.890	-1.650	-1.850	-1.620	-1.830	-1.575	Vdc	2	2,3,6,10	-	-	8	1,16
Logic "1" Threshold Voltage	VOHA	4,5,12,13	-1.065		-0.980	-	-0.910	-	Vdc	-	-	3	9	8	1,16
Logic "0" Threshold Voltage	VOLA	4,5,12,13	T -	-1.630	-	-1.600	-	-1.555	Vdc	-	2,3,6,10	4	-	8	1,16
AC Characteristics	Ī											Pulse In	Pulse Out	-3.2 V	+2.0 V
Clock Delays (50 12 Loads)	17+X+	4.5,12,13	1.0	3.2	10	3.0	1.0	3.4	ns	-	_	7	х	8	1,16
	17+X-	4,5,12,13	1.0	3.2	1.0	3.0	1.0	3.4	ns		-	7	×	8	1,16
Set Delay	ty+x+	4,5,12,13	2.0	3.9	2.0	3.7	2.0	4.1	ns	_	-	Y	X	8	1,16
Reset Delay	19+X-	4,5,12,13	2.0	3.9	2.0	3.7	2.0	4.1	ns	-	-	9	×	8	1,16
Rise Time	tX+	4,5,12,13	1.0	2.9	1.0	2.7	1.0	3.1	ns	-	-	×	X	8	1.16
Fall Time	tx-	4,5,12,13	1.0	2.8	1.0	2.6	1.0	3.0	ns	-	-	9	Х	8	1,16
Shift Rate		6	240		275	-	250	-	MHz	-	-	-	-	- 1	-

^{*}Individually apply V_{IH} or V_{IL} to input under test.

See Figure 1 for shift frequency test circuit.

X = Pin 4,5,12 or 13 Y = Pin 2,3,6 or 10

¹ Reset all four flip-flops by applying PA1 to pin 9

② Set all four flip-flops by applying PA1 to pins 2,3,6,

and 10 simultaneously

3 Reset all four flip-flops by applying PA2 to pin 10

Set all four flip-flops by applying PA2 to pins 2,3,6, and 14 simultaneously.

FIGURE 1 - SHIFT FREQUENCY TEST CIRCUIT

MC1543L

MONOLITHIC DUAL MECL CORE MEMORY SENSE AMPLIFIER

... a dual dc coupled sense amplifier providing output levels compatible with emitter-coupled logic levels. The MC1543L offers adjustable threshold and excellent threshold stability over a wide range of power-supply voltage variation.

- Input Threshold Adjustable from 10 to 40 mV (Positive or Negative Signals)
- Both OR and NOR Outputs Available
- Low Power Dissipation
- Threshold Insensitive VCC or VEE Voltage Variation
- Each Amplifier is Separately Strobed

DUAL MECL CORE MEMORY SENSE AMPLIFIER INTEGRATED CIRCUIT MONOLITHIC SILICON EPITAXIAL PASSIVATED

CERAMIC PACKAGE CASE 632 TO:116

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+10 -10	Vdc Vdc
Differential Input Voltage	VID	±5.0	Vdc
Common-Mode Input Voltage	VICM	±5.0	Vdc
Load Current	ار	25	mA
Power Dissipation (Package Limitation) Ceramic Dual-In-Line Package Derate above T _A = +25°C	PD	1000 6.7	mW mW/ ^O C
Operating Temperature Range	TA	-55 to +125	°c
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (Each Amplifier) (V_{CC} = +5.0 Vdc ±5%, V_{EE} = -5.2 Vdc ±5%, V_{ref} = 0.54 V ±1%, T_A = +25°C unless otherwise noted.)

Characteristic	Fig.No.	Symbol	Min	Тур	Max	Unit
Input Threshold Voltage	8	V _{TH}	17	20	23	mV
Power Supply Currents (V ₂ = V ₃ = V ₁₁ = V ₁₂ = V ₁₄ = 0)	6 6	ICC IEE	_	9.5 26.5	12 33	m Adc m Adc
Input Bias Current	7	¹IB	-	3.5	10	μAdc
Input Offset Current	7	10	-	0.05	0.5	μAdc
Output Voltage High	9	Voн	-0.85	-0.8	-0.67	Vdc
Output Voltage Low	9	VOL	_	-1.7	-1.46	Vdc
Strobe Threshold Level	10	V _{ST}		-1.30	_	Vdc
Strobe Input Current High	10	^I SH	_	25	50	μAdc
Strobe Input Current Low	10	ISL	_	0.01	0.1	μAdc
Input Common Mode Range	14	VCMR	3.0	4.0	_	Vdc
Input Threshold Range (by varying V _{ref})	8	VTHR	_	10-40	_	mV
Power Dissipation	6	PD		185	230	mW
Reference Supply Input Current (Pin 13)	6	1 _{ref}	_	10	40	μА

SWITCHING CHARACTERISTICS

Propagation Delay (Input to Output)	1	tio	T -	28	35	ns
Propagation Delay (Strobe to Output)	12	tso	-	16	20	ns
Strobe Release Time	12	tSR	_	18	30	ns
Recovery Time (Differential-Mode) (ein = 400 mVdc)	13	tDR	-	10	15	ns
Recovery Time (Common-Mode) (ein = 3.0 Vdc)	14	tCMR	-	3.0	15	ns
Strobe Width Minimum	12	ts	-	8.0	_	ns

TEMPERATURE TESTS (-55°C to +125°C)

Input Threshold Voltage		8	V _{TH}				mV
	T _A = -55°C T _A = +125°C			18 15	21.5 18.5	25 22	
Input Bias Current		7	Iв	2.2	7.0	20	μAdc
Input Offset Current		7	10	0.02	0.1	1.0	μAdc

EQUIVALENT CIRCUIT

TYPICAL CHARACTERISTICS

(VCC = +5.0 Vdc, VEE = -5.2 Vdc, V_{ref} set for 20 mV Threshold, TA = +25°C unless otherwise noted.)

FIGURE 1 – TYPICAL INPUT THRESHOLD versus TEMPERATURE

FIGURE 2 - TYPICAL INPUT THRESHOLD Versus REFERENCE VOLTAGE

FIGURE 3A - TYPICAL INPUT THRESHOLD versus VCC

TYPICAL CHARACTERISTICS (continued)

(VCC = +5.0 Vdc, VEE = -5.2 Vdc, Vref set for 20 mV Threshold, TA = +25°C unless otherwise noted.)

FIGURE 5 — INPUT-OUTPUT TRANSFER CHARACTERISTICS (one output)

-0.5

-0.5

-0.5

-0.5 mV Transition Width

-2.0

-40

-30

-20

-10

0 +10

+20

+30

+40

ein, INPUT VOLTAGE (mV)

TEST CIRCUITS

(V_{CC} = +5.0 Vdc, V_{EE} = -5.2 Vdc, V_{ref} = 0.54 V, T_A = +25 $^{\circ}$ C unless otherwise noted.)

FIGURE 6 - POWER SUPPLY CURRENT DRAIN

FIGURE 7 - INPUT BIAS CURRENT INPUT OFFSET CURRENT

FIGURE 8 - INPUT THRESHOLD LEVEL

FIGURE 9 - OUTPUT VOLTAGE LEVELS

TEST CIRCUITS (continued)

FIGURE 10 - STROBE THRESHOLD LEVEL STROBE INPUT CURRENTS +5.0 Vdc 5.1 k 51 12 ISB 1.0 k ISA -5.2 Vdc

FIGURE 11 - PROPAGATION DELAY - INPUT TO OUTPUT +5.0 Vdc (to dual-trace oscilloscope) 990 ±0.1% 10 ±0.1% (to dual-trace -5.2 Vdc oscilloscope) 25 mV 1.25 V_{TH} ≈ 25 mV INPUT tPL H < 20 ns OUTPUT tio

FIGURE 12 – PROPAGATION DELAY – STROBE TO OUTPUT and STROBE RELEASE TIME +5.0 Vdc

FIGURE 13 - DIFFERENTIAL MODE RECOVERY TIME (See definition section)

TEST CIRCUITS (continued)

FIGURE 14 – COMMON MODE RECOVERY TIME COMMON MODE INPUT RANGE

DEFINITIONS

- I_{1O} Input Offset Current The difference between amplifier input current values |I_{1A} = I_{2A}| or |I_{1B} = I_{2B}|.
- I_{SH} Strobe High Current The amount of input current when the strobe pin is grounded.
- I_{SL} Strobe Low Current The leakage current when the strobe input is tied to the negative supply.
- PD Power Dissipation The amount of power dissipated in the unit.
- t_{CMR} Common-Mode Recovery Time The minimum time by which the strobe input may follow the high level common mode input signal without causing a signal to appear at the amplifler output.
- tpp Differential-Mode Recovery Time Differential recovery time, the minimum time by which the strobe input may follow the high level differential input signal without causing a signal to appear at the amplifier output.
- t_{1O} Propagation Delay, Amplifier Input to Amplifier Output The time required for the amplifier output to reach 50% of its final value as referenced to 50% of the level of the pulse input.(Amplifier input = 25% over set threshold or approximately 25 mVdc.)
- ts Strobe Width The amount of time the strobe must be high to obtain a given output. Minimum strobe width is that minimum time required to cause the output to complete a full swing Vol. to VoH or VoH to VoL.

- tso Propagation Delay, Strobe Input to Amplifier Output The time required for the amplifier output pulse to achieve 50% of its final value referenced to 50% of the strobe input pulse at pins 4 or 10.
- t_{SR} Strobe Release Time The time required for the output to change to 50% of its swing after the strobe reaches 50% of its level going low. A dc level of 50 mV is the input signal.
- V_{CMR} Maximum Common-Mode Input Range The common-mode input voltage which causes the output voltage level of the amplifier to change by 100 mV (strobe high).
- VOH Output Voltage High The high-level output voltage at pins 6 and 8 with no input — or at pins 5 and 9 with input above threshold.
- VOL Output Voltage Low The low-level output voltage at pins 5 and 9 with no input — or at pins 6 and 8 with input above threshold.
- V_{ST} Strobe Threshold Level The voltage at which the strobe turns the amplifier to the ON state.
- V_{TH} Input Threshold Input pulse amplitude at pins 2, 3, 11, or 12 that causes the output gate to just reach its new value, V_{OL} or V_{OH}.
- V_{THR} Input Threshold Range The maximum spread of input threshold level that can be attained by varying the threshold voltage reference, V_{ref}.

NEGATIVE VOLTAGE REGULATORS

MC7900C SERIES THREE-TERMINAL **NEGATIVE VOLTAGE REGULATORS**

The MC7900C Series of fixed output negative voltage regulators are intended as complements to the popular MC7800C Series devices. These negative regulators are available in the same seven-voltage options as the MC7800C devices. In addition, two extra voltage options commonly employed in MECL systems are also available in the negative MC7900C Series.

Available in fixed output voltage options from -2.0 to -24 volts, these regulators employ current limiting, thermal shutdown, and safe-area compensation - making them remarkably rugged under most operating conditions. With adequate heat-sinking they can deliver output currents in excess of 1.0 ampere.

- No External Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Packaged in the Plastic Case 199-04 (Pin Compatible with the VERSAWATT[†] or TO-220) Or Hermetic TO-3 Type Metal Power Package

THREE-TERMINAL **NEGATIVE FIXED VOLTAGE REGULATORS**

MONOLITHIC SILICON INTEGRATED CIRCUITS

METAL PACKAGE CASE 11 (TO-3 TYPE)

DEVICE TYPE/NOMINAL OUTPUT VOLTAGE

MC7906C - 6.0 Volts MC7902C - 2.0 Volts MC7915C - 15 Volts MC7905C - 5.0 Volts MC7908C - 8.0 Volts MC7918C - 18 Volts MC7924C - 24 Volts MC7905.2C - 5.2 Volts MC7912C - 12 Volts

†Trademark of Radio Corporation of America

P SUFFIX PLASTIC PACKAGE CASE 199-04

Pin 1 GND (B)

to pin 3.

Pin 2 Output (E) Pin 3 Input (C) Heat sink surface connected

STANDARD APPLICATION

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V more negative even during the high point on the input ripple voltage.

- XX = these two digits of the type number indicate voltage.
 - = Cin is required if regulator is located an appreciable distance from power supply
- ** = CO improves stability and transient response.

MC7900C Series MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage (2.0 V – 18 V) (24 V)	V _{in}	-35 -40	Vdc
Power Dissipation and Thermal Characteristics Plastic Package $T_{\Delta} = +25^{\circ}C$	PD	2.0	Watts
Derate above T _A = +25°C Thermal Resistance, Junction to Air	1/θ JA θ JA	20 50	mW/°C °C/W
$T_C = +25^{\circ}C$ Derate above $T_C = +95^{\circ}C$ (See Figure 1) Thermal Resistance, Junction to Case	P _D 1/θ JC θ JC	15 500 2.0	Watts mW/°C °C/W
Metal Package $T_A = +25^{O}C$ Derate above $T_A = +25^{O}C$ Thermal Resistance, Junction to Air	P _D 1/θ JA θ JA	2.5 28.6 35	Watts mW/ ^O C ^O C/W
T_C = +25°C Derate above T_C = +65°C Thermal Resistance, Junction to Case	P _D 1/θ JC θ JC	15 250 4.0	Watts mW/ ^o C ^o C/W
Storage Junction Temperature Range	T _{stq}	-20 to +150	°c
Operating Junction Temperature Range	TJ	0 to +125	°C

$\textbf{MC7902C} \ \textbf{ELECTRICAL CHARACTERISTICS} \ (\textbf{V}_{in} = -10 \ \textbf{V}, \textbf{I}_{O} = 500 \ \text{mA}, \textbf{0}^{o} \text{C} < \textbf{T}_{J} < +125^{o} \text{C unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^O C)	v _o	-1.92	-2.00	-2.08	Vdc
Input Regulation (T _J = +25 ^O C, I _O = 100 mA)	Reg _{in}				mV
$-7.0 \text{ Vdc} \geqslant \text{V}_{\text{in}} \geqslant -25 \text{ Vdc}$		-	8.0	20	
$-8.0 \text{ Vdc} \geqslant V_{\text{in}} \geqslant -12 \text{ Vdc}$		- 1	4.0	10	
$(T_J = +25^{\circ}C, I_O = 500 \text{ mA})$ -7.0 Vdc $\geqslant V_{in} \geqslant -25 \text{ Vdc}$ -8.0 Vdc $\geqslant V_{in} \geqslant -12 \text{ Vdc}$		-	18	40	
			8.0	20	ļ
Load Regulation T _J = $+25^{\circ}$ C, 5.0 mA \leq I _O \leq 1.5 A 250 mA \leq I _O \leq 750 mA	Regload	-	70	120	m∨
			20	60	
Output Voltage -7.0 Vdc \geqslant V _{in} \geqslant -20 Vdc, 5.0 mA \leqslant I _O \leqslant 1.0 A, P \leqslant 15 W	v _o	-1.90	-	-2.10	Vdc
Quiescent Current (T _J = +25°C)	IВ	-	4.3	8.0	mA
Quiescent Current Change -7.0 $Vdc \geqslant V_{in} \geqslant -25 \ Vdc$ 5.0 $mA \leqslant I_O \leqslant 1.5 \ A$	ΔIB	-		1.3 0.5	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq$ 100 kHz)	V _N	_	40		μ∨
Long-Term Stability	ΔV _O /Δt	-	_	20	mV/1.0 k Hrs
Ripple Rejection (IO = 20 mA, f = 120 Hz)	RR		65	-	dB
Input-Output Voltage Differential IO = 1.0 A, T _J = +25°C	V _{in} -V _O	-	· 3.5	-	Vdc
Average Temperature Coefficient of Output Voltage $I_O = 5.0$ mA, $0^OC \leqslant T_A \leqslant +125^OC$	TCVO	-	-1.0	-	mV/°C

 $\textbf{MC7905C ELECTRICAL CHARACTERISTICS} \ (V_{in} = -10 \ V, I_{O} = 500 \ \text{mA}, 0^{O}\text{C} < T_{J} < +125^{O}\text{C}, unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^O C)	v _o	-4.8	-5.0	-5.2	Vdc
Input Regulation (T _J = +25°C, I _O = 100 mA)	Reg _{in}				m∨
-7.0 Vdc ≥ V _{in} ≥ -25 Vdc	1	-	7.0	50	
-8.0 Vdc ≥ V _{in} ≥ -12 Vdc		-	2.0	25	
$(T_J = +25^{\circ}C, I_O = 500 \text{ mA})$ -7.0 Vdc $\ge V_{in} \ge -25 \text{ Vdc}$		_	35	100	
-7.0 Vdc ≥ V _{in} ≥ -25 Vdc -8.0 Vdc ≥ V _{in} ≥ -12 Vdc		_	8.0	50	
Load Regulation	Regioad				m∨
$T_J = +25^{\circ}C$, 5.0 mA $\leq I_O \leq 1.5$ A		-	11	100	1
250 mA ≤ I _O ≤ 750 mA			4.0	50	
Output Voltage -7.0 Vdc \geqslant V _{in} \geqslant -20 Vdc, 5.0 mA \leqslant I _O \leqslant 1.0 A, P \leqslant 15 W	v _o	-4.75	-	-5.25	Vdc
Quiescent Current (T _J = +25°C)	¹в	-	4.3	8.0	mA
Quiescent Current Change -7.0 $Vdc \geqslant V_{in} \geqslant -25 \ Vdc$ 5.0 $mA \leqslant I_O \leqslant 1.5 \ A$	ΔIB	-		1.3 0.5	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq$ 100 kHz)	VN	-	40	-	μ∨
Long-Term Stability	ΔV _O /Δt	-	-	20	mV/1.0 k Hrs
Ripple Rejection (IO = 20 mA, f = 120 Hz)	RR	-	70	_	dB
Input-Output Voltage Differential $I_O = 1.0 \text{ A}, T_J = +25^{\circ}\text{C}$	Vin-VO	_	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage I_O = 5.0 mA, 0^{O} C \leqslant T_A \leqslant +125 O C	TCV _O	_	-1.0	-	mV/°C

$\textbf{MC7905.2C ELECTRICAL CHARACTERISTICS} \ (\text{V}_{in} = -10 \ \text{V}, \text{I}_{O} = 500 \ \text{mA}, \text{0}^{o}\text{C} < \text{T}_{J} < +125^{o}\text{C}, \text{unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^O C)	v _o	-5.0	-5.2	-5.4	Vdc
Input Regulation (T _{.1} = +25°C, I _O = 100 mA)	Reg _{in}				m∨
-7.2 Vdc ≥ V _{in} ≥ -25 Vdc -8.0 Vdc ≥ V _{in} ≥ -12 Vdc		-	8.0 2.2	52 27	
$(T_J = +25^{\circ}C, I_O = 500 \text{ mA})$ -7.2 Vdc \geqslant V _{in} \geqslant -25 Vdc -8.0 Vdc \geqslant V _{in} \geqslant -12 Vdc		<u>-</u>	37 8.5	105 52	
Load Regulation $T_J=+25^{O}C, 5.0 \text{ mA}\leqslant I_O\leqslant 1.5 \text{ A}$ 250 mA $\leqslant I_O\leqslant 750 \text{ mA}$	Regload	- -	12 4.5	105 52	mV
Outpyt Voltage -7.2 Vdc \geqslant V $_{in} \geqslant$ -20 Vdc, 5.0 mA \leqslant I $_{O} \leqslant$ 1.0 A, P \leqslant 15 W	v _o	-4.94	-	-5.46	Vdc
Quiescent Current (T _J = +25°C)	IВ	-	4.3	8.0	mA
Quiescent Current Change $-7.2 \text{ Vdc} \geqslant \text{V}_{\text{in}} \geqslant -25 \text{ Vdc}$ $5.0 \text{ mA} \leqslant \text{I}_{\text{O}} \leqslant 1.5 \text{ A}$	ΔΙΒ	- -	<u>-</u> -	1.3 0.5	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz \leq f \leq 100 kHz)	VN	-	42		μ∨
Long-Term Stability	ΔV _O /Δt	-	-	20	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	_	68		dB
Input-Output Voltage Differential IO = 1.0 A, Ty = +25°C	V _{in} -V _O	-	2.0	_	Vdc
Average Temperature Coefficient of Output Voltage $I_O = 5.0 \text{ mA}$, $0^{\circ}\text{C} \leqslant T_A \leqslant +125^{\circ}\text{C}$	TCVO	-	-1.0	_	mV/ ^O C

MC7906C ELECTRICAL CHARACTERISTICS (V_{in} = -11 V, I_O = 500 mA, 0^{o} C <T J < +125 o C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	v _o	-5.75	-6.0	-6.25	Vdc
Input Regulation (T _{.1} = +25 ^o C, I _O = 100 mA)	Reg _{in}				m∨
-8.0 Vdc ≥ V _{in} ≥ -25 Vdc	1	-	9.0	60	
-9.0 Vdc ≥ V _{in} ≥ -13 Vdc	1	_	3.0	30	
$(T_J = +25^{\circ}C, I_O = 500 \text{ mA})$	1 1		1		
-8.0 Vdc ≥ V _{in} ≥ -25 Vdc	1 1	-	43	120	
-9.0 Vdc ≥ V _{in} ≥ -13 Vdc	1 1	_	10	60	
Load Regulation	Regload				mV
$T_J = +25^{\circ}C$, 5.0 mA $\leq I_O \leq 1.5$ A		_	13	120	
250 mA ≤ I _O ≤ 750 mA		-	5.0	60	
Output Voltage -8.0 Vdc \geqslant V _{in} \geqslant -21 Vdc, 5.0 mA \leqslant I _O \leqslant 1.0 A, P \leqslant 15 W)	v _o	-5.7	-	-6.3	Vdc
Quiescent Current (T _J = +25 ^o C)	IВ		4.3	8.0	mA
Quiescent Current Change	ΔΙΒ				mA
-8.0 Vdc ≥ V _{in} ≥ -25 Vdc	_	_	-	1.3	
$5.0 \text{ mA} \leq I_0 \leq 1.5 \text{ A}$		-	_	0.5	
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq$ 100 kHz)	VN	-	45	-	μV
Long-Term Stability	ΔV _O /Δt	_	-	24	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	_	65	-	dB
Input-Output Voltage Differential $I_O = 1.0 \text{ A}, T_J = +25^{O}\text{C}$	V _{in} -V _O	_	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage I $_{O}$ = 5.0 mA, 0 o C \leqslant T $_{A}$ \leqslant +125 o C	TCVO	-	-1.0	-	mV/ ^O C

$\textbf{MC7908C ELECTRICAL CHARACTERISTICS} \ (V_{in} = -14 \ V, I_{O} = 500 \ \text{mA}, 0^{o}\text{C} < T_{J} < +125^{o}\text{C} \ \text{unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	v _o	-7.7	-8.0	-8.3	Vdc
Input Regulation (T _J = +25°C, I _O = 100 mA)	Reg _{in}				mV
-10.5 Vdc ≥ V _{in} ≥ -25 Vdc -11 Vdc ≥ V _{in} ≥ -17 Vdc		-	12 5.0	80 40	
$(T_J = +25^{O}C, I_O = 500 \text{ mA})$ -10.5 Vdc $\geqslant V_{in} \geqslant -25 \text{ Vdc}$ -11 Vdc $\geqslant V_{in} \geqslant -17 \text{ Vdc}$		- -	50 22	160 80	
Load Regulation $T_J=+25^{O}C, 5.0 \text{ mA} \leqslant I_O \leqslant 1.5 \text{ A} \\ 250 \text{ mA} \leqslant I_O \leqslant 750 \text{ mA}$	Regload	-	26 9.0	160 80	m∨
Output Voltage -10.5 Vdc \geqslant V _{in} \geqslant -23 Vdc, 5.0 mA \leqslant I _O \leqslant 1.0 A, P \leqslant 15 W	v _o	-7.6	-	-8.4	Vdc
Quiescent Current (T _J = +25°C)	1 _B	_	4.3	8.0	mA
Quiescent Current Change -10.5 Vdc ≥ V _{in} ≥ -25 Vdc 5.0 mA ≤ I _O ≤ 1.5 A	ΔΙΒ	_	-	1.0 0.5	mA
Output Noise Voltage (T _A = +25°C, 10 Hz \leq f \leq 100 kHz)	VN	_	52	<u> </u>	μ∨
Long-Term Stability	ΔV _O /Δt	_	1 -	32	mV/1.0 k Hrs
Ripple Rejection (IO = 20 mA, f = 120 Hz)	RR		62	T -	dB
Input-Output Voltage Differential $I_0 = 1.0 A, T_J = +25^{\circ}C$	V _{in} -V _O	_	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage $I_O = 5.0$ mA, $0^OC \leqslant T_A \leqslant +125^OC$	TCVO	-	-1.0	-	mV/°C

MC7912C ELECTRICAL CHARACTERISTICS (V_{in} = -19 V, I_{O} = 500 mA, 0^{o} C < T $_{J}$ < +125 o C, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	v _O	-11.5	-12	-12.5	Vdc
Input Regulation (T _J = +25°C, I _O = 100 mA)	Regin				mV
-14.5 Vdc ≥ V _{in} ≥-30 Vdc		_	13	120	1
-16 Vdc \ge V _{in} \ge -22 Vdc (T ₁ = +25°C, I _O = 500 mA)		_	6.0	60	
-14.5 Vdc ≥ V _{in} ≥ -30 Vdc		-	55	240	
-16 Vdc ≥ V _{in} ≥ -22 Vdc			24	120	
Load Regulation	Regload				mV
$T_J = +25^{\circ}C$, 5.0 mA $\leq I_O \leq 1.5$ A	1	_	46	240	
250 mA ≤ 1 ₀ ≤ 750 mA		_	17	120	
Output Voltage $-14.5~\rm Vdc \geqslant V_{in} \geqslant -27~\rm Vdc, 5.0~\rm mA \leqslant I_O \leqslant 1.0~\rm A, P \leqslant 15~\rm W$	v _o	-11.4	-	-12.6	Vdc
Quiescent Current (T _J = +25°C)	^I B		4.4	8.0	mA
Quiescent Current Change	ΔΙΒ		1		mA
-14.5 Vdc ≥ V _{in} ≥ -30 Vdc		_	_	1.0	
5.0 mA ≤I _O ≤1.5 A		-	-	0.5	
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz \leq f \leq 100 kHz)	٧N	-	75	-	μ∨
Long-Term Stability	ΔV _O /Δt	=		48	mV/1.0 k Hrs
Ripple Rejection (IO = 20 mA, f = 120 Hz)	RR	-	61	T -	dB
Input-Output Voltage Differential IO = 1.0 A, T _J = +25°C	V _{in} -V _O	-	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage $I_O = 5.0$ mA, $0^O C \leqslant T_A \leqslant +125^O C$	TCVO	_	-1.0	-	mV/°C

MC7915C ELECTRICAL CHARACTERISTICS (V_{in} = -23 V, I_O = 500 mA, 0° C < T_J < +125 $^{\circ}$ C, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	v _o	-14.4	-15	-15.6	Vdc
Input Regulation	Regin				m∨
$(T_J = +25^{\circ}C, I_O = 100 \text{ mA})$					
-17.5 Vdc ≥ V _{in} ≥ -30 Vdc	1 1	-	14	150	1
-20 Vdc ≥ V _{in} ≥ -26 Vdc		-	6.0	75	
$(T_J = +25^{\circ}C, I_O = 500 \text{ mA})$]				
-17.5 Vdc ≥ V _{in} ≥ -30 Vdc		-	57	300	1
-20 Vdc ≥ V _{in} ≥ -26 Vdc		-	27	150	
Load Regulation	Regload				mV
$T_{J} = +25^{\circ}C$, 5.0 mA $\leq 10 \leq 1.5$ A		_	68	300	
250 mA \leq 10 \leq 750 mA		-	25	150	1
Output Voltage	Vo	-14.25		-15.75	Vdc
-17.5 Vdc \geqslant V _{in} \geqslant -30 Vdc, 5.0 mA \leqslant I _O \leqslant 1.0 A, P \leqslant 15 W					1
Quiescent Current (T _J = +25°C)	I _B		4.4	8.0	mA
Quiescent Current Change	ΔΙΒ			1	mA
-17.5 Vdc ≥ V _{in} ≥ -30 Vdc		_	-	1.0	
5.0 mA ≤ I _O ≤ 1.5 A	1	-	-	0.5	
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq$ 100 kHz)	VN		90		μ∨
Long-Term Stability	ΔV0/Δt			60	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR		60	<u> </u>	dB
Input-Output Voltage Differential	Vin-VO	-	2.0	 -	Vdc
$I_{O} = 1.0 \text{ A}, T_{J} = +25^{\circ}\text{C}$			İ		1
Average Temperature Coefficient of Output Voltage	TCVO		-1.0	 -	mV/°C
$I_0 = 5.0 \text{ mA}, 0^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$				I	1

MC7918C ELECTRICAL CHARACTERISTICS (V_{in} = -27 V, I_Q = 500 mA, 0^{o} C <T $_{J}$ < +125 o C, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	v _o	-17.3	-18	-18.7	Vdc
Input Regulation (T _I = +25°C, I _O = 100 mA)	Reg _{in}				mV
-21 Vdc ≥ V _{in} ≥ -33 Vdc		-	25	180	
-24 Vdc ≥ V _{in} ≥ -30 Vdc		-	10	90	
$(T_J = +25^{\circ}C, I_O = 500 \text{ mA})$					i
-21 Vdc ≥ V _{in} ≥ -33 Vdc		-	90	360	1
-24 Vdc ≥ V _{in} ≥ -30 Vdc		_	50	180	
Load Regulation	Regload				m∨
$T_J = +25^{\circ}C$, 5.0 mA $\leq I_O \leq 1.0$ A		-	110	360	
250 mA \leq 10 \leq 750 mA		-	55	180	
Output Voltage	V _O	-17.1		-18.9	Vdc
-21 Vdc \geqslant V $_{in}$ \geqslant -33 Vdc, 5.0 mA \leqslant I $_{O}$ \leqslant 1.0 A, P \leqslant 15 W					
Quiescent Current (T _J = +25°C)	IВ	-	4.5	8.0	mA
Quiescent Current Change	ΔΙΒ				mA
-21 Vdc ≥ V _{in} ≥ -33 Vdc		-	-	1.0	
$5.0 \text{ mA} \leq 1_0 \leq 1.0 \text{ A}$		-	-	0.5	1
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz \leq f \leq 100 kHz)	V _N	_	110	-	μ٧
Long-Term Stability	ΔV _O /Δt	_	-	72	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	_	59	-	dB
Input-Output Voltage Differential $I_O = 1.0 \text{ A}, T_J = +25^{\circ}\text{C}$	V _{in} -V _O	_	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage $I_O = 5.0$ mA, 0^{o} C \leqslant T _A \leqslant +125 o C	TCVO	_	-1.0	-	mV/°C

$\textbf{MC7924C ELECTRICAL} \textbf{ CHARACTERISTICS} (V_{in} = -33 \text{ V}, I_{O} = 500 \text{ mA}, 0^{O}\text{C} < T_{J} < +125^{O}\text{C}, unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^O C)	v _o	-23	-24	-25	Vdc
Input Regulation (T _J = +25 ^O C, I _O = 100 mA)	Reg _{in}				mV
-27 Vdc ≥ V _{in} ≥ -38 Vdc		-	31	240	
-30 Vdc ≥ V _{in} ≥ -36 Vdc	- 1	_	14	120	
$(T_J = +25^{\circ}C, I_O = 500 \text{ mA})$	1			ł	1
-27 Vdc ≥ V _{in} ≥ -38 Vdc		_	118	480	
-30 Vdc ≥ V _{in} ≥ -36 Vdc		_	70	240	
Load Regulation	Regload				mV
$T_J = +25^{\circ}C$, 5.0 mA $\leq I_O \leq 1.0$ A		_	150	480	
250 mA \leq 10 \leq 750 mA		-	85	240	
Output Voltage -27 Vdc \geqslant V _{in} \geqslant -38 Vdc, 5.0 mA \leqslant I _O \leqslant 1.0 A, P \leqslant 15 W	v _o	-22.8	-	-25.2	Vdc
Quiescent Current (T _J = +25 ^o C)	1B	_	4.6	8.0	mA
Quiescent Current Change	ΔΙΒ				mA
-27 Vdc ≥ V _{in} ≥ -38 Vdc		-	_	1.0	
$5.0 \text{ mA} \leqslant I_{\text{O}} \leqslant 1.0 \text{ A}$		_	-	0.5	
Output Noise Voltage (T _A = +25 ^o C, 10 Hz ≤f ≤ 100 kHz)	VN	_	170		μ∨
Long-Term Stability	ΔV _O /Δt	-		96	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	-	56	-	dB
Input-Output Voltage Differential $I_{Q} = 1.0 \text{ A}, T_{J} = +25^{\circ}\text{C}$	V _{in} -V _O	_	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage $I_O = 5.0 \text{ mA}$, $0^{\circ}\text{C} \leqslant T_A \leqslant +125^{\circ}\text{C}$	TCVO	-	-1.0	-	mV/ ^o C

TYPICAL CHARACTERISTICS $(T_A = +25^{\circ}C)$ unless otherwise noted.)

FIGURE 1 – MAXIMUM AVERAGE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE (CASE 199-04)

FIGURE 2 — MAXIMUM AVERAGE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE (TO-3 TYPE PACKAGE)

FIGURE 3 – PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT-OUTPUT DIFFERENTIAL VOLTAGE

FIGURE 4 - RIPPLE REJECTION AS A FUNCTION

FIGURE 5 – RIPPLE REJECTION AS A FUNCTION OF OUTPUT VOLTAGES

FIGURE 6 – OUTPUT VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE

TYPICAL CHARACTERISTICS (continued)

FIGURE 7 - QUIESCENT CURRENT AS A FUNCTION OF TEMPERATURE

DEFINITIONS

Line Regulation – The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation — The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation – The maximum total device dissipation for which the regulator will operate within specifications.

Quiescent Current - That part of the input current that is not delivered to the load.

Output Noise Voltage - The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Long Term Stability - Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

APPLICATIONS INFORMATION

Design Considerations

The MC7900C Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected

to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 μF or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. If an aluminum electrolytic capacitor is used, its value should be 1.0 μF or larger. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no, external sense lead. Bypassing the output is also recommended.

FIGURE 8 - CURRENT REGULATOR

The MC7902, -2.0 V regulator can be used as a constant current source when connected as above. The output current is the sum of resistor R current and quiescent bias current as follows:

The quiescent current for this regulator is typically 4.3 mA. The 2.0 volt regulator was chosen to minimize dissipation and to allow the output voltage to operate to within 6.0 V below the input voltage.

FIGURE 9 — CURRENT BOOST REGULATOR (-5.0 V @ 4.0 A, with 5.0 A current limiting)

Mounted on common heat sink, Motorola MS-10 or equivalent.

When a boost transistor is used, short-circuit currents are equal to the sum of the series pass and regulator limits, which are measured at 3.2 A and 1.8 A respectively in this case. Series pass limiting is approximately equal to 0.6 V/R_{SC}. Operation beyond this point to the peak current capability of the MC7905C is possible if the regulator is mounted on a heat sink; otherwise thermal shutdown will occur when the additional load current is picked up by the regulator.

FIGURE 10 - OPERATIONAL AMPLIFIER SUPPLY
(±15 V @ 1.0 A)

The MC7815 and MC7915 positive and negative regulators may be connected as shown to obtain a dual power supply for operational amplifiers. A clamp diode should be used at the output of the MC7815 to prevent potential latch-up problems.

FIGURE 11 - TYPICAL MECL SYSTEM POWER SUPPLY

When current-boost power transistors are used, 47-ohm base-to-emitter resistors (R) must be used to bypass the quiescent current at no load. These resistors, in conjunction with the VgE of the NPN transistors, determine when the pass transistors begin conducting. The 1-ohm and 4-ohm dropping resistors were chosen to reduce the power dissipated in the boost transistors but still leave at least 2.0 V across these devices for good regulation.

MCM7001L MCM7001L-1

Advance Information

1024-BIT STATIC RANDOM ACCESS MEMORY

The MCM7001 memory is fabricated with high-density, highly-reliable, N-channel, metal-gate MOS technology. The device utilizes low-voltage inputs (except Chip Select) and on-chip address registers, and has low power consumption. Low output capacitance and a Chip Select input allow memory expansion without speed degradation. The charge pump technique is used to automatically refresh all memory cells without affecting memory access.

- Organized as 1024 Words of 1 Bit
- Access Time = 55 ns Maximum (MCM7001L)
 = 75 ns Maximum (MCM7001L-1)
- Cycle Time = 180 ns Minimum
- Static Operation
- Low Power Dissipation 640 μW/Bit Maximum Active 60 μW/Bit Maximum Standby
- Differential Current Sinking Outputs
- On-Chip Address Registers
- Low-Voltage Inputs (Except Chip Select)
- Chip Select for Memory Expansion
- MCM7001L Direct Replacement for AMS7001

ABSOLUTE MAXIMUM RATINGS (See Note 1)

(Referenced to most negative supply voltage, VSX.)

Rating	Symbol	Value	Unit
Supply Voltages	V _{DD}	-0.5 to +25	Vdc
	VREF	-0.5 to +25	Vdc
	V _{SS}	-0.5 to +10	Vdc
Input and Output Voltages	V _{in} ,V _{out}	-0.5 to +25	Vdc
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT. ING CONDITIONS. Exposure to higher than recommended or maximum voltages for extended periods of time could affect device reliability.

This is advance information and specifications are subject to change without notice.

MOS

(N-CHANNEL, METAL GATE)

1024-BIT STATIC RANDOM ACCESS MEMORY

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

RECOMMENDED OPERATING CONDITIONS (Full Temperature Range)

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltages	V _{DD}	14.7	15.5	16.3	٧
	VREF	7.0	7.5	8.0	V
	Vss	0	0	0	V
	V _S X	-2.7	-3.0	-3.3	V
Logic Levels				1	
Input High Voltage (An, Din, WE)	VIH	4.0		5.5	٧
Input Low Voltage (An, Din, WE)	VIL	-1.0		0.8	V
Chip Select High Voltage	Vcsh	V _{DD} -1.0	= -	V _{DD} + 1.0	V
Chip Select Low Voltage	VcsL	-1.0	_	1.0	٧
Charge Pump High Voltage	V _{PH}	8.0	_	12	V
Charge Pump Low Voltage	VPL	V _{SX} - 2.0	-	V _{SX} - 5.0	V
Timing (t _{CSr} and t _{CSf} = 10 ns)					
Chip Select On Time	TCS	80		500	ns
Chip Select Off Time	TES	100			ns
Chip Select Rise Time	^t CSr	5.0	-	40	ns
Chip Select Fall Time	[†] CSf	5.0		40	ns
Cycle Time (Read or Write)	T _{cyc}	180	_	_	ns
Setup Time (An, Din, WE)	TIS	0		-	ns
Address Hold Time	TAh	40	-		ns
Write Valid Time	TWv	T _{CS} + T _{IS}	-	-	ns
Data In Valid Time	T _{Dv}	T _{CS} + T _{IS}	-	-	ns
Charge Pump Input Frequency (See Figure 1 for waveform characteristics)	fpump	200	-	1000	kHz

DC ELECTRICAL CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Current (An, Din)	1111	-	0.4	1.0	mA
$(V_1 = 4.0 \text{ V}, V_{CS} = 0)$	1	}	1		
Write Enable Input Current (V _I = 4.0 V, V _{CS} = 0)	Iwн	-	-	10	μА
Chip Select Input Current, Average Over Operating Mode	¹ CSH	-		10	mA
$(V_A = V_{1L}, T_{cyc} = 180 \text{ ns})$	ŀ		1	1	
Chip Select Low Input Current	1 _{CSL}		_	-11	mA
$(V_A = 4.0 \text{ V}, V_{CS} = 0)$		l	<u>i</u>	<u> </u>	
Differential Output Sink Current	100	0.2	-	_	mA
Supply Current, Unselected Mode	¹sxu	_		-100	μА
$(V_{CS} = 0)$	UDDI	_	2.5	3.0	mA
	IREFU	-	_	60	μА
Supply Current, Operating Mode	¹sx	-	-	-400	μА
(T _{cyc} = 180 ns)	¹ DD	-	25	35	mA
	IREF	_	6.0	10	mA

AC ELECTRICAL CHARACTERISTICS (Full operating voltage and temperature range unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
Access Time (I _{DO} = 0.2 mA, t _{CSr} R _L = 100 ohms, C _L = 50 pF, Fig		1 000	-	45 -	55 75	ns ns
Address Capacitance *		CA	-	5.0	6.0	pF
Write Enable Capacitance*	V1 = VSS,	CWE	-	5.0	6.0	pF
Data In Capacitance *	f = 1.0 MHz	CDI	-	5.0	6.0	pF
Charge Pump Input Capacitance*		CQP	-	65	80	pF
Data Output Capacitance * (VCS = VSS, f = 1.0 MHz)		CDO	-	-	6.0	pF
Effective Chip Select Capacitance	(Figure 3)*	C _{CS(EFF)}	=	65	80	pF

^{*}Capacitances are periodically sampled rather than 100% tested.

FIGURE 1 - CHARGE PUMP OSCILLATOR WAVEFORM REQUIREMENTS

Characteristic	Symbol	Min	Max	Unit
Rise Time	t _r	100	-	ns
High Level Dwell Time	^t QPH	100	-	ns
Fall Time	tf	100	500	ns
Low Level Dwell Time	†QPL	100	-	ns

FIGURE 2 - MEMORY TIMING DIAGRAM

FIGURE 3 - MEASUREMENT OF EFFECTIVE CHIP SELECT CAPACITANCE

APPLICATIONS INFORMATION

The MCM7001 static random access memory provides the high speed and low power required for large memory systems. Only a single clock input is required with this memory. Data Output and its complement can be detected using a differential amplifier for sensing. The outputs of several devices can be wire-ORed with no significant degradation in speed.

Operation of the Charge Pump input is shown by the basic memory cell in Figure 4. Assume the arbitrary state of Q3 "on" and Q4 "off". In this state, C1 is charged and C2 discharged. Over a period of time, C1 will lose its charge due to leakage unless the charge is replenished. By driving the charge pump devices with an oscillator of the correct frequency, the memory will be refreshed.

The Charge Pump oscillator must operate within the frequency and amplitude limits listed under Recommended Operating Conditions. These frequencies and voltages provide low power consumption and static operation. The Charge Pump input does not need to be operated synchronously with any other input signal and has no effect on access time.

The Charge Pump oscillator of Figure 5 uses the Charge Pump input capacitance of the MCM7001 as part of a Colpitts-type oscillator. The oscillator can drive from 8 to 64 devices in a push-pull manner by connecting half of the RAM charge pump inputs to each end of the inductor. The zener and resistor are used to control the oscillator amplitude. The positive peak of the swing is determined by the zener voltage and the negative swing is 0.6 V below the VSS voltage (-5.2 V). It is important that the maximum voltage rating of the MC14049 feedback buffer be observed.

Frequency of oscillation is dependent on the number of RAMs to be driven. The inductance is determined as

$$L \approx \frac{1}{10 \text{ n CQP f}^2}$$

where n = total number of RAMs, CQP = charge pump capacitance, and f = frequency.

Typical values will therefore be

Frequency	Number of RAMs	Inductance (L)
800 kHz	8	300 μΗ
	16	150 µH
	32	75 µH
	64	37 µH

Figures 6 and 7 show possible interface circuits for driving the address and data inputs of the MCM7001. The MC10125 MECL-to-MTTL translator is used if ECL logic is being interfaced to the memory card; if TTL is being used, an MTTL gate such as the MC3000 can be used. The pullup resistor at the output is needed to meet the required "1" level. The extra drive circuitry shown in Figure 6 is required to drive the normally heavy load of

the address inputs (approximately 400 pF for a 32 k x 2 or 4 k x 16 memory board). This will maintain a fast access measured from the address input. The circuit of Figure 6 should also be used to drive the write enable input. The circuit of Figure 7 is capable of driving the four data inputs required in a 4 k x 16 memory board, but the circuit of Figure 6 should be used if more than four devices are being driven. Interface circuits MC3459 (Quad TTL-to-N channel) and MC10177 (triple ECL-to-N channel) will be available in 1974 for system use.

The Chip Select driver must charge its capacitive load with the specified rise time to maintain the fast access time. In addition, it must supply a small dc current in both the High and Low states. Figure 8 shows a MECL interface circuit which will drive a load of eight devices (one byte) to the required level of VDD ± 1.0 volt. MECL level translation is first made through a differential amplifier. The amplifier turns on a switch which in turn drives the output transistors. In order to minimize rise time and overshoot, proper line integrity and termination must be used. Some rules for achieving this are found in the MECL System Design Handbook.

Another approach for driving the Chip Select inputs, although slower, is to use the MC10127 dual clock driver for MECL systems or the MMH0026 for TTL systems.

The data outputs, D_{out} and \overline{D}_{out} , are current sinking terminals and require pullup resistors. If a logic "1" exists in the addressed location, \overline{D}_{out} will sink a minimum current of 200 μ A toward ground, while D_{out} is a high impedance. If a logic "0" exists, \overline{D}_{out} will be a high impedance and D_{out} sinks current. The output data from the memory then is referenced around the supply voltage connected to the pullup resistors.

A simple, fast, and reliable output sensing circuit is shown in Figure 9. The PNP transistors are used to translate the memory outputs to a voltage that can be detected by the differential amplifier. The 3.6 k-ohm resistors are used as 2.0 mA current sources that produce a 1.0-volt drop across the 510 ohm resistors. The voltage at the data outputs (Dout and Dout) is fixed at one diode drop above VRFF. When one data output sinks current, less current is available across the 510 ohm resistor and a lesser voltage appears at that terminal of the differential amplifier (e.g., Δ 200 μ A = Δ 100 mV; Δ 400 μ A = Δ 200 mV). For a fast MECL system the MC1650 dual comparator should be used (propagation delay = 3.5 ns). It requires a low overdrive, low input switching current and has a latch for data storage. If desired, the MC10115 quad line receiver could also be used for the differential amplifier. The MC10125 quad MECL-to-MTTL translator, which has a propagation delay of 5.0 ns can be used as the differential amplifier with TTL systems. If longer delays are tolerable, the MC1514, MC3450 or MC75107 can be used.

A major advantage of the technique used in Figure 9 is that up to 16 memory outputs can be tied together without appreciably affecting the access time.

FIGURE 4 - BASIC MEMORY CELL

FIGURE 5 - CHARGE PUMP OSCILLATOR

FIGURE 6 - ADDRESS INPUT DRIVER

PACKAGE DIMENSIONS

FIGURE 7 - DATA INPUT DRIVER

FIGURE 8 - CHIP SELECT DRIVER

FIGURE 9 - OUTPUT SENSE CIRCUIT

LOGIC PRODUCTS for PHASE-LOCKED LOOP APPLICATIONS

Motorola offers the designer a choice of specially designed integrated circuits for performing phase-locked loop functions: phase detection, frequency division, filtering, and voltage-controlled signal generation. In addition, the choice of circuits permits the designer to select TTL circuits where speed is not critical (<25 MHz), or ECL circuits where high speed is required. The MC12000 series circuits will operate at either +5.0 V or -5.2 V, and translators are included where needed so that all functions are compatible.

FUNCTION	DEVICE NUMBER	LOGIC FAMILY	SPEED (TYP) MHz	CHARACTERISTICS
Phase-Frequency Detector	MC4044	MTTL	10	Consists of two digital phase detectors, charge pump, and amplifier
Phase-Frequency Detector	MC12040	MECL	80	Operation similar to MC4044
Voltage-Controlled Multivibrator	MC4024	MTTL	25	Contains two independent voltage- controlled multivibrators with output buffers
Voltage-Controlled Oscillator	MC1648	MECL	200	Emitter-coupled oscillator with output levels compatible with MECL III
Digital Mixer/Translator	MC12000	MECL	250	A "D" flip-flop with MTTL to MECL and MECL to MTTL translators
Two-Modulus Prescaler	MC12012	MECL	200	÷2, ÷5/÷6, ÷10/÷11, ÷10/÷12
Two-Modulus Prescaler	MC12013*	MECL	400	÷10/11, ÷10/12
Counter Control Logic	MC12014	MTTL	25	Used with MC12012 and MC74416 to accomplish direct high-frequency programming
Crystal Oscillator	MC12060	MECL	100 kHz to 2 MHz	complementary ECL logic levels, and single ended TTL logic level outputs.
Crystal Oscillator	MC12061	MECL	2 MHz to 20 MHz	Frequency stability provided by external crystal (fundamental, series mode).
COUNTER OPTIONS				
Programmable Divide By N Decade Counter	MC74416 (MC4016)	MTTL	10**	÷0 through 9
Two Programmable Divide By N Counters	MC74417	MTTL	10**	\div 0-1, \div 0 through 4
Programmable Divide By N Hexadecimal Counter	MC74418 (MC4018)	MTTL	10**	÷0 through 15
Two Programmable Divide By N Counters	MC74419	MTTL	10**	÷0 through 3
Universal Counter	MC4023	MTTL	30	÷2 through 12 except 7 and 11
Decade Counter	MC7490	MTTL	20	÷2, ÷5, ÷10
Bi-Quinary Counter	MC1678	MECL	325	÷2, ÷5, ÷10
UHF Prescaler Type D Flip-Flop	MC1690	MECL	500	÷2
Universal Hexadecimal Counter	MC10136	MECL	150***	0 to 15
Universal BCD Decade Counter	MC10137	MECL	150***	÷10
Decade Counter-Divider	MC14017	McMOS	5	÷10
Binary Counter	MC14040	McMOS	10	÷(2 ¹²)
BCD Presettable Up/Down Counter	MC14510	McMOS	6	÷10
Binary Up/Down Counter	MC14516	McMOS	6	÷16
Dual BCD Up Counter	MC14518	McMOS	6	÷10 or ÷100
Dual Binary Up Counter	MC14520	McMOS	6	÷16 or ÷256
BCD Programmable Divide By N	MC14522	McMOS	5	÷0 through 9
Binary Programmable Divide By N	MC14526	McMOS	5	÷0 through 15

^(*) To be announced.

^(**) Speed can be increased to 25 MHz (typ) when used with MC12014

^{**)} When used as a prescaler, it is possible to extend the input frequency to over 200 MHz with the MC10231; to 300 MHz with the MC1670; or to over 500 MHz with the MC1690

CONTENTS

		PAGE
MC1648	Voltage Controlled Oscillator	6-5
MC12000	Digital Mixer/Translator	6-12
MC12012	Two Modulus Prescaler	6-23
MC12040	Phase Frequency Detector	6-38
MC12060, MC12560	Crystal Oscillator	6-42
MC12061 MC12561	Crystal Oscillator	6-42

NOTE: For individual data sheets on other products listed in the selector guide write —

Motorola Semiconductor Products Inc.

P.O. Box 20924

Phoenix, Arizona 85036

MECL III MC1600 series

MC1648

The MC1648 is an emitter-coupled oscillator, constructed on a single monolithic silicon chip. Output levels are compatible with MECL III logic levels. The oscillator requires an external parallel tank circuit consisting of the inductor (L) and capacitor (C).

A varactor diode may be incorporated into the tank circuit to provide a voltage variable input for the oscillator (VCO). The MC1648 was designed for use in the Motorola Phase-Locked Loop shown in Figure 9. This device may also be used in many other applications requiring a fixed or variable frequency clock source of high spectral purity (See Figure 2).

The MC1648 may be operated from a +5.0 Vdc supply or a -5.2 Vdc supply, depending upon system requirements.

SUPPLY VOLTAGE	GND PINS	SUPPLY PINS
+5.0 Vdc	7, 8	1, 14
-5.2 Vdc	1, 14	7, 8

FIGURE 1 - CIRCUIT SCHEMATIC

FIGURE 2 - SPECTRAL PURITY OF SIGNAL AT OUTPUT

ELECTRICAL CHARACTERISTICS

^{*}This measurement guarantees the dc potential at the bias point for purposes of incorporating a varactor tuning diode at this point

ELECTRICAL CHARACTERISTICS

^{*}This measurement guarantees the dc potential at the bias point for purposes of incorporating a varactor tuning diode at this point

FIGURE 3 - TEST CIRCUIT AND WAVEFORMS

OPERATING CHARACTERISTICS

Figure 1 illustrates the circuit schematic for the MC1648. The oscillator incorporates positive feedback by coupling the base of transistor Q7 to the collector of Q8. An automatic gain control (AGC) is incorporated to limit the current through the emitter-coupled pair of transistors (Q7 and Q8) and allow optimum frequency response of the oscillator.

In order to maintain the high Q of the oscillator, and provide high spectral purity at the output, a cascode transistor (Q4) is used to translate from the emitter follower (Q5) to the output differential pair Q2 and Q3. Q2 and Q3, in conjunction with output transistor Q1, provide a highly buffered output which produces a square wave. Transistors Q10 thru Q14 provide the bias drive for the oscillator and output buffer. Figure 2 indicates the high spectral purity of the oscillator output (pin 3).

When operating the oscillator in the voltage controlled mode (Figure 4), it should be noted that the cathode of the varactor diode (D) should be biased at least 2 VBE above VEE (≈ 1.4 V for positive supply operation).

FIGURE 4 - THE MC1648 OPERATING IN THE VOLTAGE CONTROLLED MODE

When the MC1648 is used with a constant dc voltage to the varactor diode, the output frequency will vary slightly because of internal noise. This variation is plotted versus operating frequency in Figure 5.

100 RMS 5.0 Vdc Oscillator Tank Components 'cc (Circuit of Figure 4) FREQUENCY DEVIATION, D MHz μН 1.0-10 MV2115 100 10-60 MV2115 2.3 10 60-100 MV2106 0.15 1.0 1.0 10 100 f, OPERATING FREQUENCY, (MHz) Signal Generator 20 kHz above MC1648 Frequency or Equiv 300 mV .W. = 1.0 kH: Frequency Voltmeter 20 kHz 10 mV MC1648 RMS Attenuator **Under Test** Detector HP3400A or Equiv MC1648 requency ((HP5210A output voltage) (Full Scale Frequency) Frequency Deviation = 1.0 Volt NOTE: Any frequency deviation caused by the signal generator and MC1648 power supply should be determined and minimzed prior to testing.

FIGURE 5 - NOISE DEVIATION TEST CIRCUIT AND WAVEFORM

TRANSFER CHARACTERISTICS IN THE VOLTAGE CONTROLLED MODE USING EXTERNAL VARACTOR DIODE AND COIL. TA = 25° C

FIGURE 6

FIGURE 7

FIGURE 8

Typical transfer characteristics for the oscillator in the voltage controlled mode are shown in Figures 6, 7 and 8. Figures 6 and 8 show transfer characteristics employing only the capacitance of the varactor diode (pluse the input capacitance of the oscillator, 6 pF typical). Figure 7 illustrates the oscillator operating in a voltage controlled mode with the output frequency range limited. This is achieved by adding a capacitor in parallel with the tank circuit as shown. The 1 k Ω resistor in Figures 6 and 7 is used to protect the varactor diode during testing. It is not necessary as long as the dc input voltage does not cause the diode to become forward biased. The larger-valued resistor (51 k Ω) in Figure 8 is required to provide isolation for the high-impedance junctions of the two varactor diodes.

The tuning range of the oscillator in the voltage controlled mode may be calculated as:

$$\frac{f_{max}}{f_{min}} = \frac{\sqrt{C_D (max) + C_S}}{\sqrt{C_D (min) + C_S}}$$

where
$$f_{min} = \frac{1}{2\pi \sqrt{L (C_D (max) + C_S)}}$$

Cg = shunt capacitance (input plus external capacitance)

CD = varactor capacitance as a function of bias voltage. Good RF and low-frequency bypassing is necessary on the power supply pins (see Figure 2).

Capacitors (C1 and C2 of Figure 4) should be used to bypass the AGC point and the VCO input (varactor diode), guaranteeing only dc levels at these points.

For output frequency operation between 1 MHz and 50 MHz a 0.1 μ F capacitor is sufficient for C1 and C2. At higher frequencies, smaller values of capacitance should be used; at lower frequencies, larger values of capacitance. At higher frequencies the value of bypass capacitors depends directly upon the physical layout of the system. All bypassing should be as close to the package pins as possible to minimize unwanted lead inductance.

The peak-to-peak swing of the tank circuit is set internally by the AGC circuitry. Since voltage swing of the tank circuit provides the drive for the output buffer, the AGC potential directly affects the output waveform. If it is desired to have a sine wave at the output of the MC1648, a series resistor is tied from the AGC point to the most negative power potential (ground if +5.0 volt supply is used, -5.2 volts if a negative supply is used) as shown in Figure 10.

At frequencies above 100 MHz typ, it may be necessary to increase the tank circuit peak-to-peak voltage in order to maintain a square wave at the output of the MC1648. This is accomplished by tying a series resistor (1 k Ω minimum) from the AGC to the most positive power potential (+5.0 volts if a +5.0 volt supply is used, ground if a -5.2 volt supply is used). Figure 11 illustrates this principle.

APPLICATIONS INFORMATION

The phase locked loop shown in Figure 9 illustrates the use of the MC1648 as a voltage controlled oscillator. The figure illustrates a frequency synthesizer useful in tuners for FM broadcast, general aviation, maritime and land-mobile communications, amateur and CB receivers. The system operates from a single +5.0 Vdc supply, and requires no internal translation, since all components are compatible.

Frequency generation of this type offers the advantages of single crystal operation, simple channel selection, and elimination of special circuitry to prevent harmonic lock-up. Additional features include dc digital switching (pref-

erable over RF switching with a multiple crystal system), and a broad range of tuning (up to 150 MHz, the range being set by the varactor diode).

The output frequency of the synthesizer loop is determined by the reference frequency and the number programmed at the programmable counter; $f_{out} = Nf_{ref}$. The channel spacing is equal to frequency (f_{ref}).

For additional information on applications and designs for phase locked-loops and digital frequency synthesizers, see Motorola Application Notes AN-532A, AN-535, AN-553, AN-564, and AN-594.

FIGURE 9 - TYPICAL FREQUENCY SYNTHESIZER APPLICATION

Figure 10 shows the MC1648 in the variable frequency mode operating from a +5.0 Vdc supply. To obtain a sine wave at the output, a resistor is added from the AGC circuit (pin 5) to VEE.

Figure 11 shows the MC1648 in the variable frequency mode operating from a +5.0 Vdc supply. To extend the useful range of the device (maintain a square wave output above 175 MHz), a resistor is added to the AGC circuit at pin 5 (1 k-ohm minimum).

FIGURE 10 - METHOD OF OBTAINING A SINE-WAVE OUTPUT

Figure 12 shows the MC1648 operating from +5.0 Vdc and +9.0 Vdc power supplies. This permits a higher voltage swing and higher output power than is possible from the MECL output (pin 3). Plots of output power versus total collector load resistance at pin 1 are given in Figures 13 and 14 for 100 MHz and 10 MHz operation. The total collector load includes R in parallel with Rp of L1 and C1 at resonance. The optimum value for R at 100 MHz is approximately 850 ohms.

FIGURE 11 - METHOD OF EXTENDING THE USEFUL RANGE OF THE MC1648 (SQUARE WAVE OUTPUT)

FIGURE 12 — CIRCUIT SCHEMATIC USED FOR COLLECTOR OUTPUT OPERATION

FIGURE 13 - POWER OUTPUT versus COLLECTOR LOAD

FIGURE 14 -- POWER OUTPUT versus COLLECTOR LOAD

DIGITAL MIXER/TRANSLATOR

MC12000

DIGITAL MIXER/TRANSLATOR (D Flip-Flop w/Translator)

The MC12000 is intended for use as a digital mixer in phase-locked loop frequency synthesizers and other applications where a MECL "D" flip-flop with translators is required. Toggle frequency is typically 250 MHz. MTL to MECL and MECL to MTTL translators are provided to facilitate interfacing with MECL or MTTL circuits.

The MC12000 is designed to operate from a single power supply of either +5.0 Vdc or -5.2 Vdc.

FIGURE 1 - LOGIC DIAGRAM

FIGURE 2 - TYPICAL DIGITAL MIXER

Note: All MECL outputs have 510-ohm internal pulldown resistors.

ELECTRICAL CHARACTERISTICS

Supply Voltage = +5.0 V

	L			TEST VO	LTAG	E/CUF	RENT	VAL	JES					
@ Test				· V	olts								mA	
Temperature	ViHmex	VILmin	VIHAmin	VILAmex	VIL	VIH	VIHA	VR	VIHT	VILT	Vcc	1	IOL	юн
0°C	+4.160	+3.130	+3.855	+3.510	+0.5	+2.4	+5.0	+4.5	+2.0	+0.8	+5.0	-2.5	16	-1.6
25°C	+4.190	+3.150	+3.895	+3.525	+0.5	+2.4	+5.0	+4.5	+2.0	+0.8	+5.0	-2.5	16	-1.6
75°C	+4.280	+3.170	+3.955	+3.550	+0.5	+2.4	+5.0	+4.5	+2.0	+0.8	+5.0	-2.5	16	-1.6

										75°C	74.260	+3.170	+3.955	+3.550	+0.5	+2.4	75.0	74.5	+2.0	10.6	į	-2.0		-1.0	i 1
		Pin				MC12	2000						TEST VO	LTAGE/CUR	RENT	APPLII	ED TO	PINS	LISTE	BELC	ow:				i 1
	_	Under	00			+25°C			5°C	Į															(VEE)
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	VIHmex	VILmin	VIHAmin	VILAmex	VIL	νн	VIHH	VR.	VIHT	VILT	Vcc	Ŀ	OL	ІОН	Gnd
Power Supply Drain Current	IE.	7			-	85				mAdc				-		<u> </u>		1-1	<u></u>	-	14			ا ـــا	7
Input Current	INHT	1 1	-	-	-	-	200	-	-	μAdc	1 1	2	-	-	-	- 1	-	-	-	- 1	14	-	-	-	! !
į		2 3	l =	-		_	200 200		_	1	2	! !				[]	-	-	[]	_	111	_ :	-	=	
ì	INH2	5	-	4.0	-	-	40	_	40	1 🕴	-	_	_ '	_	_	_	5		_	- 1	Ш	_	- 1	l - I	
	INH3	8	-	-	3.8	-	6.5	-	_	mAdc	9	8	~	-	-		-	_	-	_	111	-	- 1	-	
		9			3.8	-	6.5		-		9	8				-	<u> </u>	-		~	ш		-	┝╌┩	
	INL1 (Leakage	1 2	-	-	_ [_	2.0 2.0	-	! =	μAdc	1 =	1 =	_	-	-	-	_	-	- '	-	14	-	-	-	1,7 2,7
	Current)	3	-	-	· =	_	2.0	-	=	1 1	_	_	_	-	_	_	=	1 = 1	=	-	111	_	_	- 1	3,7
	INL2	5	-	-1.6	-	- '	-1.6	-	-1.6	mAdc	-	-	-	-	5	-	-	- 1			111	-	-	ı - I	7
	INL3	8	l -	-	3.8	-	6.5	-	-	1 1	8	9	-		-	-	-	l - l	-	- 1	1 1	-	-	-	↓
		9			2.0		4.0	<u> </u>		<u> </u>	8	9				1-	<u> </u>	1-1	<u> </u>				<u> </u>	┝═┥	
Logic "1" Output Voltage	VOH1	10	4.000	4.160	4.040		4.190	4.100	4.280	Vdc		3		_	-	5	-	1 = 1	-	_	14	10	=	=	7
		11	1 1		1 1	-	11	! !	11	1 1	3		-	-	-	-	-	l – i	-	-	111	11	- i	-	111
		121 131		1	🕴		†	*	🕴	1 🕴	-	1 1	_		-	-	_	-	_	- 1		12	_	-	
	V _{OH2}	6	2.400	-	2.400	_	-	2.400	-	Vdc	9	. 8	-		-	-	-	-	-	-	14	-	-	6	7
Logic "0"	V _{OL1}	4	3.130	3.370	3.150	-	3.380	3.170	3.410	Vdc	-	_		-	5	-	-	-	-	-	14	4	-	-	7
Output Voltage		10				_		1 1			3	3	-	_	_	- 1	_	-	_] -	111	10	_	-	11
		121	!	1 1	↓	_		1 1		1 1	1	_	_	_	-	-	-	-	-	-		12	-	-	
		13†	<u>'</u>	<u> </u>				<u> </u>					 _		<u> </u>	-	<u> -</u> -	1-		-	-	13		-	<u> </u>
	V _{OL2}	6	-	0.500			0.500	-	0.500	Vdc	8	9	<u> </u>		<u> </u>	-		-	-	-	14	-	6	-	7
Logic "1" Threshold Voltage	VOHA	10	3.980	-	4.020	_	-	4.080		Vdc	1 -	_		3	i -	1 =	Ξ.	-	5	-	14	10] =	[-]	1 ()
		11		-	1 1	-	-		-	1	-	-	3	-	-	-	-	-		-	111	11	-	l - I	
		121 131	†	-	†		_	♦	_	†	_	_	1 -	1_	-	-	-		-		†	12	-	-	†
Logic "0"	VOLA	4	-	3.390			3.400	_	3.430	Vdc		-	-		-	-	-	-	-	5	14	4	-	-	7
Threshold Voitage		10	-	1 1	-	-	1 1	-	1 1	1 1	-	-	3	-	-	-	-	-	-	- !		10	-	-	
		111	_	Ιİ	1 - 1		1 I	1 -	1 1	1 1	-	! <u>-</u>	l -	3	1 =	-	-	Ι.	1 -	=	111	11	_	-	ı I
		131			_									1	<u> </u>	<u> </u>	-	~		-	$oldsymbol{\sqcup}$	13	_	_	
Short Circuit Current	isc	6	-20	-65	-20	-	-65	-20	-65	mAdc	9	8	-	-	-	-	-	-	-		14	-	-	- 1	6,7

1Output Level to be measured after a clock pulse has been applied to the C input (pin 2) V_{1Hmax}
V_{1Lmin}

ELECTRICAL CHARACTERISTICS

Supply Voltage = -5.2 V

				TEST VO	LTAG	E/CUF	RENT	VALL	JES					
				V	olts								mA	
VIH	mex	VILMIN	VIHAmin	VILAmex	VIL	VIH	VIHH	VR	VIHT	VILT	VEE	ı,	lOL	ІОН
-0.8		-1.870	-1.145	-1.490	-4.7	-2.8	+0.0	-0.7	-3.2	4.4	-5.2	-2.5	16	-1.6
-0.8	10	-1.850	-1.105	-1.475	-4.7	-2.8	+0.0	-0.7	-3.2	4.4	-5.2	-2.5	16	-1.6
-0.7	20	-1.830	-1.045	-1.450	-4.7	-2.8	+0.0	-0.7	-3.2	-4.4	-5.2	-2.5	18	-1.6

										/B C		-1.630	-1.045	-1.400	I/	1 ~2.01		_··/	-3.2		-5.2	1 -2.0	1 !	-1.0	
		Pin				MC1	2000						TEST VO	LTAGE/CUF	RENT	APPLI	ED TO	PINS	LISTED	BELC	W:				
		Under		°C		25°C		+7	5°C]															Moci
Characteristic	Symbol	Test	Min	Mex	Min	Тур	Mex	Min	Max	Unit	VIHmex	VILmin	VIHAmin	VILAmex	VIL	VIH	VIHH	V _R	VIHT	VILT	VEE	1	IOL	lor	Gnd
Power Supply Drain Current	ΙE	7	-	_	_	90			-	mAdc	I -	-			_	-			- 1	-	7	-		- 1	14
Input Current	INH1	1 2 3	-	-		-	200 200 200	-	-	μAdc	1 2 3	1 -	111	-		-	-	1 - 1	1 1 1	1 1 1	1	=	111	111	14
	INH2	5	- 1	40	-	-	40	} -	40	۱ 🛊	- 1	-	-	-	-	- 1	5	-	-	-		۱ -	-	-	
	INH3	8 9	-		3.8 3.8	=	6.5 6.5			mAdc	9 9	. 8 8	-	-	-	'- -	Ξ	_	-	_	+	_	-	-	•
	INL1 (Leekage Current)	1 2 3	-	-		= .	2.0 2.0 2.0	: <u>=</u>	=	μAdc	=		-	-	-		=	-	111	111	1,7 2,7 3,7	=	111	1.1.1	14
	INL2	6 8 9	-	-1.6 	3.8 2.0	- -	-1.6 6.5 4.0	- -	-1.6 - -	mAdc	- 8 8	9	-	- -	5 - -	,- -	=	-	-		1	- -	- -	- - -	
Logic "1" Output Voltage	Vон1	4 10 11 121 131	-1.000	-0.840	-0.960	= = = = = = = = = = = = = = = = = = = =	-0.810	-0.900	-0.720	Vdc	- - 3 - 1	3 - 1	-	- - - -		5	=		1111	11111	1	4 10 11 12 13	1111	1 1 1 1	14
	V _{OH2}	6	-2.800		-2.800	_	T -	-2.800	-	Vdc	9	8	_	-	-	-	-	-	-	-	7	Ι-	Ι-	6	14
Logic "0" Output Voltage	V _{OL1}	4 10 11 12† 13†	-1.870	-1.635	-1.860	- - - -	-1.620	-1.830	-1.596	Vdc	- 3 - 1	- 3 - 1		-	5 - - -	1111		1111	11111	11111	1	10 11 12 13	11111	1111	14
	VOL2	6	-	-4.700	-		-4.700	i -	-4.700	Vdc	8	9	-	_	-	-	-	- 1	-	-	7	-	6	- 1	14
Logic "1" Threshold Voltage	VOHA	4 10 11 12† 13†	-1.020	-	-0.980	-	- - -	-0.920	-	Vdc			- 3 - 1	- 3 - 1	-	1 1 1 1	11111	1111	5	11111	7	10 11 12 13	1111	11111	14
Logic "0" Threshold Voltage	VOLA	4 10 11 12† 13†	- - - -	-1.615			-1.600	= = = = = = = = = = = = = = = = = = = =	-1.575	Vdc	- - - -		3 - 1	- 3 - 1	11111	11111	11111	1111	11111	5	ļ	10 11 12 13	1 - 1 - 1 -	1111	14
Short Circuit Current	¹sc.	6	-20	-65	-20		-65	-20	-65	mAdc	9	8		_	-	-	_	-	-	_	6.7	T -	T -		14

10 output Level to be measured after a clock pulse has been applied to the C input (pin 2) VIHmax

L'VILmin

AC ELECTRICAL CHARACTERISTICS

		Pin					MC1	2000			TEST VC	I TAGES/WA	VEEORMS A	PPI IFD TO	PINS LISTED BEI	OW:
		Under	04	°C		+25°C		+75	°C		1	CTAGES/WA	I I	FFEIED TO		Y
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	Pulse Gen. 1	Pulse Gen. 2	Pulse Gen. 3	Pulse Out	VEE -3.2 V or -3.0 V	V _{CC} +2.0 V
Propagation Delay	t2+13+	2,13		-	1.5	2.4	4.0	-	-	ns	2	1		13	7	14
(See Figure 4)	t2+13-	2,13	-	-	1.5	2.4	4.0	-	-	ns	2	1	- 1	13	7	14
	t2+12+	2,12	-	-	1.5	2.4	4.0	-	-	ns	2	1	1	12	7	14
	t2+12-	2,12	-	-	1.5	2.4	4.0	-	-	ns	2	1	- !	12	7	14
	t3+11+	3,11	-	-	1.0	1.5	3.0	-	-	ns	3	-	-	11	7	14
	^t 3-11-	3,11	-	-	1.0	1.5	3.0	-	-	ns	3	_	- 1	11	7	14
	t3+10-	3,10	-	-	1.0	1.5	3.0	-	-	ns	3	-	- '	10	7	14
	t3-10+	3,10	-	-	1.0	1.5	3.0	-	-	ns	3	-	-	10	7	14
	t5+4+	5,4	-	-	2.0	3	5.0	-	-	ns	i –	-	5	4	7	14
	t5_4_	5,4	-	-	1.0	1.5	3.0	-	-	ns	_	-	5	4	7	14
	t9+6+	9,6	-	-	4.0	8.0	12.0	-	-	ns	A	_	- !	6	7	14
	t9_6_	9,6	-	_	3.0	5.0	10.0	-	-	ns	A	-	-	6	7	14
Output Rise Time	t13+	13	-	-	-	2.8	-	-	-	ns	2	1	_	13	7	14
(See Figure 4)	t12+	12	-	-	-	2.8	-		-	ns	2	1	- 1	12	7	14
	t11+	11	-	-	-	2.0	-	-		ns	3	-		11	7	14
	t10+	10		-	-	2.0	-	-	-	ns	3	i –	- 1	10	7	14
	t4+	4	-	-		2.4	_	-	-	ns	_	-	5	4	7	14
Output Fall Time	t13-	13	_	-	-	2.8	-	_	-	ns	2	1	_	13	7	14
(See Figure 4)	t12-	12	-	-	-	2.8	-	-	-	ns	2	1	- !	12	7	14
	t11-	11	-	-	-	2.0		-	-	ns	3	-	. –	11	7	14
	t10-	10	-	-	-	2.0	-	-	-	ns	3	-		10	7	14
	t4-	4	-	-	~	2.4	-	-	-	ns	-	-	5	4	7	14
Setup Time	tsetup"1"	13	-	-	-	0.2	-	_	-	ns	2	1	_	-	7	14
(See Figure 5)	tsetup"0"	13	-	-	-	0.7	-	-	- 1	ns	2	1	_	_	7	14
Hold Time	thold"1"	13	-	-	_	0.0	-	-	-	ns	2	1	-	_	7	14
(See Figure 5)	thold"0"	13	-	-	-	1.0	-	-	-	ns	2	1	-	-	7	14
Toggle Frequency (See Figure 6)	f _{tog}	13	-	-	-	250	-	-	-	MHz		-		-	7	14

FIGURE 3 - SWITCHING TIME TEST CIRCUIT

FIGURE 5 - SETUP AND HOLD TIME WAVEFORMS (See Figure 3)

MC12000 DIGITAL MIXER

This device is a digital mixer designed to operate with logic levels at its input and output ports. In operation it is an MECL type "D" flip-flop with level translators to and from MTTL to accomodate most interfacing demands. Output frequency (fQ) as a function of "D" and clock injuries is shown in Figure 7. It can be seen that either direct or harmonic mixing may be employed, that is, fQ may be either the difference between fD and fC or the difference between fD and the Nth harmonic of fC.

One particular advantage of mixing in phase locked loops (PLL) is that lower frequencies may be generated for use in portions of the circuit where digital processing is done (with divide-by-P network and/or phase detector). Lower frequency operation often reduces overall system cost since a less expensive logic form may be utilized. However use of the mixing technique is not a panacea for all VHF applications and the design of such synthesizer systems must be approached with care.

Use of the MC12000 in a non-harmonic PLL is straightforward (Figure 8). Output frequency is the sum of both input quantities ($f_1 + f_C$) as long as f_1 is less than $f_C/2$ (See Figure 7), since f_Q can go no higher than that. Unless VCO output range is restricted somewhat there is a chance also that the loop may operate at the second harmonic of f_C . This problem is minimal in the loop of Figure 8, however, since the output frequency would have to vary more than 2:1.

Mixing is used because the digital phase detector has an upper frequency limit of about 10 MHz and many loops require direct locks at 20 MHz or more. Direct down-mixing does not change any loop characteristics except the sampling rate which restricts loop natural frequency to about $f_{\rm C}/10$ in practical circuits. Although

output frequency may be changed by varying either f₁ or f_C, the clock input is usually crystal controlled since it is of the same magnitude as f_D and more difficult to stabilize.

FIGURE 9

f₁ $\dot{f}_D = Pf_1 + f_C$ \dot{f}_C

Combining a standard synthesis configuration with the mixer yields a circuit capable of high frequency operation at low cost (Figure 9), if the output frequency range is relatively small ($P_{max} - P_{min}$) $f_1 < f_C/2$. In fact the choice of harmonic or non-harmonic mixing is largely based on the availability of a suitable crystal or other reference source for f_C versus the needed frequency coverage. Considering all the restrictions on f_C , its value (and the maximum harmonic number N) are dictated by the following expressions:

$$N < \frac{f_D(min) - f_1}{2 \Delta f_D} \tag{1}$$

$$N_{fc} = f_{D(min)} - f_1 \tag{2}$$

where $\triangle f_D$ = change in output frequency.

Using Equations (1) and (2) above the minimum value of f_C may be found for the circuit of Figure 10 and still get adequate frequency coverage. In this minimum configuration all necessary output frequencies may be generated by programming the "P" count string. But the divide number might bear no obvious relation to the output frequency such as often happens with non-mixing synthesizers.

DESIGN EXAMPLES

Example #1

Output Frequency: 48-54 MHz Frequency Increments: 10 kHz

Using Equations (1) and (2), a minimum frequency (fc) version can be designed:

$$N < \frac{48 \text{ MHz} - 10 \text{ kHz}}{2 (54-48) \text{ MHz}}$$

Let N = 3

NfC = 47.99 MHz

$$f_C = \frac{Nf_C}{N} = \frac{47.99}{3} = 15.99666 \text{ MHz}$$

f_C = 15.996666 MHz

Pmin = 1

$$P_{\text{max}} = \frac{\Delta f_{\text{D}}}{10 \text{ kHz}} + P_{\text{min}}$$
 (3)

$$P_{\text{max}} = \frac{6 \text{ MHz}}{10 \text{ kHz}} + P_{\text{min}}$$

 $P_{max} = 601$

$$f_{Q(max)} = P_{max} f_1$$
= 6.01 MHz (4)

Equation (4) above puts the divider string (divide-by-P) into a medium frequency situation where devices such as the MC4016/4316 may be utilized. Note that the divider number now indicates the channel selected rather than output frequency. That is, at $f_D = 48.000 \text{ MHz}$, P = 1; at $f_D = 54.000 \text{ MHz}$, P = 601.

If "proper" divide-by-P readings are desired for direct frequency readout a slight circuit modification is necessary. To enable a division at 48.000 MHz the first divide-by-P must be 100 rather than 1, and P_{max} would then be 700 to cover all 6 MHz. Recalculating $f_{Q(max)}$ from Equation 4 we still find that the 7 MHz maximum value allows use of the same components. The next question concerns the allowable range of f_{Q} in relation to f_{C} ($f_{Q} < f_{C}/2$). Since f_{C} is nearly 16 MHz, the range of f_{Q} can be contained. A cosmetic change to the most significant digit switch completes the design. Instead of reading 1 through 7 it must be modified to display 48 through 54.

Example #2

Output Frequency: 144-148 MHz Frequency Increments: 10 kHz

f₁ = increment = 10 kHz

$$N < \frac{144.00 - 0.01}{2(4)}$$

N < 18

Let N = 17

 $Nf_C = 144.00 - 0.01 MHz$ = 143.99

$$f_C = \frac{Nf_C}{N} = 8.470 \text{ MHz}$$

 $P_{min} = 1$

$$P_{\text{max}} = \frac{4 \text{ MHz}}{10 \text{ kHz}} + 1$$

$$fQ(max) = P_{max} f_1 = 4.01 MHz$$

Maximum frequency seen by the divide-by-P chain is still well within the MC4016 rating.

When converting this synthesizer to one that reads frequency directly, a "1" is again added to the most significant digit (MSD). This results in a P_{min} of 100 to P_{max} of 500. In this example, however, $f_{Q(max)}$ is 5 MHz which easily exceeds $f_{C}/2$. To alleviate this difficulty, the "N" factor must be decreased in order to raise f_{C} to at least 10 MHz.

$$N < \frac{f_{D(min)} - f_1}{f_C}$$

Let f_C = 10 MHz

N < ~ 14.4

Let N = 14

NfC = 143.99 (from above)

$$f_C = \frac{Nf_C}{N} = \frac{143.99}{14}$$

$$f_C = 10.28500 \text{ MHz}$$
 (5)

VCO RANGE RESTRICTIONS

As in all harmonically locked PLL's, it is possible for the loop to lock on the wrong harmonic if there is too wide a range in the VCO. This situation is shown in Figure 11 where the possible false lock areas are indicated near the (N - 1) and (N + 1) harmonic points. The problem of VCO restraint however is more than just making sure that output frequency fp isn't able to go to B or A' (the closeest false lock points). Actual operating limits are C and C'. symmetrically placed frequencies corresponding to fp(min) about Nfc and fp(max) about (Nf+1/2) fc. If the VCO drops below C while the feedback counter is at Pmin the phase detector will try to push fp even lower, toward the stable condition at A (Figure 12). Likewise, at C' (when P = Pmax) the tendency is for the loop to accelerate toward lockup at B' (Figure 13). When C or C' are exceeded the loop will "hang up" and not attain the proper lock.

The VCO frequency constraints may be quite severe if the minimum f_C formulation is followed and the Nth harmonic is quite high. Where VCO constraint may pose a problem, decrease N below the maximum indicated by Equation (1) until sufficient room is generated by placing the operating range of f_Q on only a small part of the f_D slope (Figure 14). Note that f_C goes up as we approach the more idealized case (Equation 5).

FIGURE 14

FIGURE 11

FIGURE 13

The most likely reasons for a "latched up" state in a harmonic loop are turn-on transients and loop overshoot when changing frequency abruptly from one end of the range to the other.

SUMMARY OF SYNTHESIS PROCEDURE

1. Compute harmonic number N

$$N < \frac{f_{D(min)} - f_1}{2 \Delta f_D}$$

where Δf_D = change in output frequency f_1 = channel spacing

2. Compute minimum mixing frequency for

$$f_C = \frac{f_D(min) - f_1}{N}$$

3. Calculate feedback divider's maximum value

$$P_{max} = \frac{\Delta f_D}{f_1} + P_{min}$$

where $P_{min} = 1$ for minimum fc.

4. Find maximum divide-by-P frequency

$$f_{Q(max)} = \Delta f_{D} + f_{1}$$

5. Calculate allowable VCO swing

$$Nf_{C} - f_{1} < f_{VCO} < (N + 1) f_{C} - f_{Q(max)}$$

If the above constraints are too tight choose the next lower number for N and repeat steps 2 and 5 until satisfied.

SKIP-LOCK TUNING

Harmonic mixing provides an alternate means to frequency synthesis without the feedback divide-by-P network. In this instance the design objective is to provide a large frequency coverage with a set (and relatively wide) channel spacing. The configuration is identical to a single frequency PLL (Figure 15) except it operates in the harmonic mode and tuning is accomplished at the VCO. Output frequency is fixed as being f₁ above all harmonics of f_C. As the VCO is tuned through its range, the loop will acquire and lose signals spaced f_C apart. Since these must be some frequency for the phase detector to operate with, the output frequency cannot be a direct harmonic of f_C. This facet of the circuit often causes users to refer to f₁ as the "offset" frequency.

The value of f₁ is often dictated by output frequency and channel spacing requirements. However the relation-

ship of f₁ to f_C has a large effect on the tunability both up and down the frequency range. If, for example, the loop were locked at point A (Figure 16) and B were the next desired point, then the VCO must be "dragged" from A to A' before lock can be achieved. This frequency adjustment may be quite critical since the frequency difference between A' and B is only 2f₁. If the VCO is tuned past B the opportunity for lock has been passed.

On the other hand, in going from B to A, the upper end of the VCO control range must only cross A' before the loop acquires frequency A. In either case it's apparent that the loop will not "jump" from one lock point to another and some indication of loop lock should be added. This is normally done by monitoring the VCO dc control line with a pair of comparators and noting when the line reaches its limits.

FIGURE 15

FIGURE 16

MAXIMUM RATINGS

MAXIMUM NATINGS			
Characteristic	Symbol	Rating	Unit
Ratings above which device life may be in	npaired:		
Power Supply Voltage (V _{CC} = 0)	VEE	-8.0	Vdc
Input Voltage (V _{CC} = 0)	V _{in}	0 to V _{IL min}	Vdc
Output Source Current	I _o	40	mAdc
Storage Temperature Range	T _{stg}	-55 to +125	°C
Recommended maximum ratings above w	hich performanc	e may be degraded:	
Operating Temperature Range	TA	0 to +75	°C
DC Ean-Out* (Gates and Elin-Flons)		70	

^{*}AC fan-out is limited by desired system performance.

MECL Phase-Locked Loop Components

TWO-MODULUS PRESCALER

MC12012

The MC12012 is a two-modulus prescaler which consists of three functional blocks: 1) a controllable divide by 5/divide by 6 prescaler; 2) a divide by 2 prescaler; and 3) a MECL to MTTL translator. When used with the MC12014 Counter Control Logic function and the MC4016 programmable counter, a divide by N programmable counter can be constructed for operation to 200 MHz. This arrangement is especially useful in frequency synthesizer applications.

- ÷2, ÷5/÷6, ÷10/÷11, ÷10/÷12
- MECL to MTTL Translator on Chip
- +5.0 or -5.2 V Operation*
- 200 MHz (typ) Toggle Frequency

*When using +5.0 V supply, apply +5.0 V to pin 16 (V_{CC}) and ground pin 8 (V_{EE}). When using -5.2 V supply, ground pin 16 (V_{CC}) and apply -5.2 V to pin 8 (V_{EE}).

FIGURE 1 -- LOGIC DIAGRAM

FIGURE 2 - TYPICAL FREQUENCY SYNTHESIZER APPLICATION

Characteristic	Symbol	Rating	Unit
Ratings above which device life may be	impaired:		
Power Supply Voltage (V _{CC} = 0)	VEE	-8.0	Vdc
Input Voltage (V _{CC} = 0)	V _{in}	0 to VIL min	Vdc
Output Source Current	10	20	mAdo
Storage Temperature Range	T _{stg}	-55 to +125	°C
Recommended maximum ratings above	which performanc	e may be degraded:	

Trecommended the Annual Tracing above to	men periorinance	may be degreed	•
Operating Temperature Range	TA	0 to +75	°c
DC Fan-Out® (Gates and Flip-Flops)	n	70	-

^{*}AC fan-out is limited by desired system performance.

ELECTRICAL CHARACTERISTICS
Supply Voltage -5.2 V

				TEST VO	LTAGE	/CURRE	NT VALL	JES				
				Vo	lts						mΑ	
@ Test		Γ	Γ		_					\vdash		$\overline{}$
Temperature	VIHmax	VILmin	VIHAmin	VILAmax	VIL	VIHH	VIHT	VILT	VEE	IL.	lor	юн
0°C	-0.840	-1.870	-1.145	-1.490	-4.7	+0.3	-3.2	-4.4	-5.2	-2.5	16	-1.6
25°C	-0.810	-1.850	-1.106	-1.475	-4.7	+0.3	-3.2	-4.4	-5.2	-2.5	16	-1.6
75°C	-0.720	-1.880	-1.045	-1.450	-4.7	+0.3	-3.2	-4.4	-5.2	-2.5	16	-1.6
	+		L	L					<u> </u>			Ь——

Supply Voltage -5.2 V										75°C	-0.720	-1.880	-1.045	-1.450	-4.7	+0.3	-3.2	-4.4	-5.2	-2.5	16	-1.6]
	l	Pin	<u> </u>	°c		+25°C	12012	+75	.00	ļ		·	TEST VOL	TAGE/CURF	RENT A	APPLIED	TO PINS	LISTED E	ELOW:				l
Characteristic	Symbol	Under Test	Min	Max	Min	Typ	Max	Min	Max	Unit	VIHmax	VILmin	VIHAmin	VILAmax	VIL	VIHH	VIHT	VILT	VEE	IL.	lOL	ЮН	(VCC) Gnd
Power Supply Drain Current	1 _E	8	-	_	_	100	-	_	_	mAdc	-	_		-	_	-			8	-	-	_	6,16
Input Current	INH1	12	i -	-		100	200	-	-	μAdc	12	-		-	_			-	8	Ξ		\Box	16
	INH2	1 11 13	- -	- - -	1 1 1	40 40 40	100 100 100	-	-	μAdc	1 11 13	-	-	-	-	- - -	=		8 8 8	1 - 1		111	16 16 16
	INH3	9 10	-	_	-	=	40 40	=	-	μAdc	-	-	-	-	-	9 10	<u> </u>		8 8	-	-	-	16 16
	INH4	4 5	_	_	3.5 3.5	_	5.5 5.5	_	_	mAdc mAdc	5 5	4	-	_	-	_	_	_	8 8	=	_	_	6
Leakage Current	INL1	1 11 12 13	-	- - -	-	- - -	2.0	- - -	-	μAdc	- - -	-	-	- - -	-	-	- - -	-	1,8 8,11 8,12 8,13	- - -	- - -	1 1 1	16
	INL2	9	-	_	1.1 1.1		2.2 2.2	-		mAdc mAdc	- -	-		-	9 10	-	-	-	8	-	-	-	16 16
	INL3	4 5		-	3.8 2.0	_	6.5 4.0	-	_	mAdc mAdc	4	5 5	_	-	-	_	_	_	8 8	-	-		16 16
Logic "1" Output Voltage	V _{ОН1} ②	2 3 14 15	-1.000	-0.840	-0.960		-0.810	-0.900	-0.720	Vdc	- - -	11,13 11,13 - -		- - - -	9,10 9,10 - -	- - -	- - -	- - -	8	2 3 14 15			16
	V _{OH2}	7	-2.800	-	-2.800	-	-	-2.800	_	Vdc	5	4	-	-	-	_	-	-	8	-	-	7	6
Logic "O" Output Voltage	V _{OL} 1 ②	2 3 14 15	-1.870	-1.635 ▼	-1.850		-1.620	-1.830	-1.595 V	Vdc	- - -	11,13 11,13 - -	- - -	- - -	9,10 9,10 - -	-	-		8	2 3 14 15	1111	1111	16
	V _{OL2}	7		-4.700	ı	-	-4.700	-	-4.700	Vdc	4	5		-	-	_		_	8	-	7	-	6
Logic "1" Threshold Voltage	VOHA	2 3 3 3 14 4 15 4	-1.020	- - -	-0.980	- - -		-0.920	- - - -	Vdc	1111	- - -	11,13 11,13 — —	- - -		- - -	9,10 9,10 —		8	2 3 14 15	1111	1111	16
Logic "O" Threshold Voltage	VOLA	2 ⑤ 3 ⑤ 14 ④ 15 ④		-1.615 			-1.600 	- - -	-1.575	Vdc	-	- - -	- - -	11,13 11,13 - -		- - -	- - -	9,10 9,10 - -	اً	2 3 14 15		1111	16
Short Circuit Current	los	7	-20	-65	-20	_	-65	-20	-65	mAdc	5	4	-		-		-	-	8	-	-	-	6

mΑ

IOL юн

16 -1.6

-1.6

-2.5 16

ELECTRICAL CHARACTERISTICS Supply Voltage +5.0 V

TEST VOLTAGE/CURRENT VALUES Volts @ Test Temperature VIHma: VILmin VIL VIHAmir VILAmax 0°C +4.160 +3.130 +3.855 +3.510 +0.5 25°C +4.190 +3.150 +3.525 +0.5 +3.895 75°C +4.280 +0.5 +3.170 +3.955 +3.550

VIHH

+5.5

+5.5

VIHT

+2.0

+2.0

VILT Vcc

+0.8

+0.8

+5.0

+5.0 | -2.5

-2.5 16

+5.5 +5.0 +2.0 +0.8 MC12012 Pin TEST VOLTAGE/CURRENT APPLIED TO PINS LISTED BELOW: 0°C +25°C +75°C Under (VEE) Characteristic Symbol Test Min Max 1L IOL Min Тур Max Max Unit VIHmax **VILmin** VIHAmin VILAmax VIL VIHH VIHT VILT Vcc юн Gnd **Power Supply Drain Current** ΙE 8 95 mAdc 6.16 8 Input Current INH1 12 100 200 _ μAdc 12 _ _ _ _ _ 16 8 16 INH2 40 100 11 μAdc 13 40 100 13 16 INH3 9 μAdc 16 8 40 10 16 INH4 4 3.5 5.5 _ mAdc 5 4 6 3.5 8 5.5 mAdc Leakage Current INLI μAdc 1,8 2.0 16 11 8,11 12 8.12 13 8.13 INL2 9 1.1 2.2 mAdc 9 16 8 8 10 10 16 1.1 2.2 mAdc INL3 3.8 6.5 mAdc 5 2.0 4.0 mAdc 5 8 Logic "1" V_{OH1} 4.000 4.160 4.040 4.190 4.100 4.280 Vdc 11,13 9,10 16 2 8 Output Voltage 11,13 9,10 3 14 14 15 V_{OH2} 2.400 2.400 5 4 6 _ 7 8 2.400 Vdc _ _ _ _ Logic "0" V_{OL1} 2 3.430 3.210 3.230 Vdc 11,13 9,10 16 2 3.190 3.440 3.470 Output Voltage 11,13 9,10 14 14 15 15 VOL2 7 0.500 0.500 0.500 Vdc 4 5 6 8 Logic "1" VOHA 2 3 3.980 4.020 4.080 Vdc 11,13 9.10 16 Threshold Voltage 3 **3** 14 **4** 15 **4** 11,13 9,10 3 Logic "0" 2 (5) 3 (5) 14 (4) 15 (4) VOLA 3.450 3.460 3.490 Vdc 11,13 Threshold Voltage 9,10 11,13 3 14 15 Short Circuit Current los -20 -65 -20 -20 -65 mAdc 4 6

		2				MC	12012				TEST	VOLTAG	ES/WAVE	FORMS A	PPLIED T	O PINS I	ISTED BEL	.ow:
		Pin Under	04	C C		+25°C		+79	5°C		Pulse	Pulse	Pulse	VIHmin	VILmin	٧F	VEE	vcc
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	Gen. 1	Gen. 2	Gen. 3	+1.100	+0.130	-3.0 V	-3.0 or -3.2	+2.0
Propagation Delay	t12+2+	12,2	-	_	2.0	3.0	4.0	-	_	ns	12	_	- "		11,13	9,10	8	6,16
(See Figures 3 and 4)	t12+3+	12,3	l	-	1	3.0	1 1	- '	-	1	1	-	-	_	11,13	9,10	1 1	1 1
	t12+	12,2	-	-		2.8		-	-			- 1	-	-	11,13	9,10	1 1	1 1
	t12+3-	12,3	-	-	1 3	2.8	11.	-	-		. ▼	-	-	_	11,13	9,10	1 1	11
	t1+14+	1,14	-	-	}	3.0	11	-	-		1		-	-	-	-	1 1	1 1
	t1+15+	1,15	-	-		3.0	1 1	-	-		1 1	-	-	-	-	-	1 1	
	t1+14-	1,14	-	_		2.8	↓	-	-		♦	-	-	-	. –	-	1 1	
	t1+15-	1,15	i –	_	li	2.8		-	_	.		-	-	-	-	-	1 1	l i
	^t 5+7+	5,7	-	-	♦	8.0	12.0	-	-	•	A	-	-	_	_		l ♦	•
	t ₅₋₇₋	5,7		_		5.0	10.0				Α						'	<u> </u>
Output Rise Time	t2+	2	-	-	-	2.0	-	-	-	ns	12	-	-	-	11,13	9,10	8	6,16
(See Figure 4)	t3+	3	-	_	-	2.0	-	-	-	1 1	12	-	-	-	11,13	9,10		
	t14+	14	-	-	-	2.0	-	-	-		!	-	-	-	- 1	-	1	1
	t15+	15				2.0		_			1		_				V	
Output Fall Time	t2-	2	-	l –	l – 1	2.0	-	_	_	ns	12	-	_	-	11,13	9,10	8	6,16
(See Figure 4)	t3_	3	-	-	-	2.0	-		-		12	-	-	-	11,13	9,10	1 1	1 1
	t14-	14	-	-	-	2.0	-	_	-	↓	1	-	-	-	-	l –		1
	t15-	15	-	-	-	2.0		_	_	▼	1						V	<u> </u>
Setup Time	^t setup1	11,13	_	4.0	_	2.4	3.0	_	4.0	ns	12	11/13	-		13/11	9,10	8	6,16
(See Figure 5)	t _{setup2}	9,10	-	7.0	-	5.0	7.0	_	8.5	ns	12	-	9/10	-	11,13	10/9	8	6,16
Release Time	t _{rel 1}	11,13		2.5	_	1.2	2.0	_	2.0	ns	12	11/13		_	13/11	9,10	8	6.16
(See Figure 5)	t _{rei2}	9,10	_	4.0	-	2.5	3.5	_	2.0	ns	12	_	9/10	-	11,13	10/9	8	6,16
Toggle Frequency	fmax		t	<u> </u>		 				MHz								\vdash
Figure 6 (÷5)	, max	2		_	175	200	_	_	_	l "i"	_	_	_	11	13	9,10	8	16
(÷6)		2	_	_	1	1 1	-	l _	- 1		_	_	-		11,13	9,10	l ī	ΙÏ
(÷ 2)	1 1	14	_	l –	11	ΙŢ	l –	_	-	1 L	_	_	l –	_	_	-	1 1	1 1
Figure 7 (÷ 10 or 11)	1 ▼	14	_	_	▼	▼	_	l –	l –	₹	_	_	_	_	_	-	▼	▼

- ① All MECL outputs (2,3,14,15) are terminated to VEE through an external 510 Ω resistor during the DC tests.
- Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is

In addition to meeting the output levels specified, the device must divide by 5 during this test. The clock input is

4 In addition to meeting the output levels specified the device must divide by 2 with a clock input of

(5) In addition to meeting the output levels specified, the device must divide by 6 during this test. The clock input is

FIGURE 4 - AC VOLTAGE WAVEFORMS Pulse Generator 50% QЗ 80% 50% (2) āз 50% (3) 80% **Q4** 50 (14)ā4 50% (15) (5) MTTL Out (7) min

FIGURE 5 - SETUP AND RELEASE TIME WAVEFORMS

FIGURE 6 - MAXIMUM FREQUENCY TEST CIRCUIT

FIGURE 7 - MAXIMUM FREQUENCY TEST CIRCUIT

FIGURE 9 - ÷ 5/6

FIGURE 10 - ÷ 10/11

FIGURE 11 - - - 10/12 MTTL E4 10 0-MECL ō **Q2** to MTTL MTTL E3 9 o Toggle Flip Trans Flop MECL E2 13 0 ·lator MECLE1 110 14 15 5 4 Q3 Q3 C4 Q4 Q4+ -MTTL COUNT Q1 **Q2** Q3 Q4 To obtain a MTTL output connect 5 and 4 to OUT 14 and 15 respectively. 14 0 1 1 15 1 13 0 1 9 0 0 0 8 1 10 0 0 1 1 E1 + E2 + E3 + E4 = 0 0 0 E1 + E2 + E3 + E4 = 1 6 1 1 -7 1 1 1 0 5 0 0 0 0 0 0 0 ō 0 0 0

FUNCTION DESCRIPTION

INTRODUCTION

The MC12012 is one part of a variable modulus (divisor) prescaling subsystem used in certain Digital Phase-Locked Loops (PLL).

More often than not, the feedback loop of any PLL contains a counter-divider. Many methods are available for building a divider, but not all are simple, economical, or convenient in a particular application.

The technique and system described here offer a new approach to the construction of a phase-locked loop divider. In addition to using the MC12012 variable modulus prescaler, this system requires an MC12014 Counter Control Logic function, together with suitable programmable counters (e.g. MC4016s). Data sheets for these additional devices should be consulted for their particular functional descriptions.

THE MC12012 TWO MODULUS PRESCALER

Three functional blocks are contained in the MC12012 variable modulus prescaler: 1) a controllable $\div 5/\div 6$ prescaler; 2) a \div 2 prescaler; and 3) an ECL to TTL translator (for single power supply operation).

Selection of division by 5 or by 6 is made by inputs to E1 through E4. If all E inputs are low before the transition of the clock pulse driving Q3 high, Q3 will stay high for 3 clock pulses, then will go low for 3 clock pulses. This provides a divide by 6 function.

On the other hand, if any one or all of the E inputs are high prior to the positive transition of the clock pulse driving Q3 high, Q3 will stay high for only 2 clock pulses, then will go low for 3 clock pulses. The result is division by 5.

For the $\div 5$ operation, at least one of the E inputs must go high sometime before the clock pulse. This time is referred to as the "setup time." Specifications for setup time are given in the electrical characteristics table: $t_{SE}tup_1$ and $t_{SE}tup_2$ for E1 and E2 (MECL inputs), and E3 and E4 (MTTL inputs).

For the divide by 6 operation all E inputs must be low for some time prior to the clock pulse. This time is referred to as the "release time." Data for release time is given in the electrical characteristics table; t_{re1} and t_{re2} for E1, E2, E3, E4.

The data given in the tables for setup and release times

are referenced to the positive transition of the clock pulse causing Q3 to go high. If it is necessary to reference the setup and release times to the positive transition of Q3, add t++ (specified for Q3) to the setup/release times given. It should be noted that the logic states for the enable inputs are important only for only one clock pulse which causes Q3 to go high (within the limits specified by setup and release times).

The \div 5/ \div 6 prescaler may be connected externally to the \div 2 prescaler to form a \div 10/ \div 11 prescaler (Figure 10) or a \div 10/ \div 12 prescaler (Figure 11).

By way of an example showing how a \div 10/ \div 11 prescaler operates, note that if E1, E3, and E4 (Figure 10) are held in a low state, the counter divides by 11. To do this, a feedback connection is established from Q4 to E2 (or to E1). With this feedback, the \div 5/ \div 6 prescaler divides by 5 when Q4 is high, and by 6 when Q4 is low.

Since Q4 changes state with each positive transition of Q3, the prescaler alternates between \div 5 and \div 6 resulting in a \div 11 at Q4

If any one or all of the E inputs are high (Figure 10), the 5/6 prescaler always divides by 5 and a divide by 10 results at Q4.

With the addition of external flip-flops and counters (MECL or MTTL) various other modulus prescalers may be produced (20/21, 20/22, 20/24, 40/41, 50/51, 100/101, etc.).

THE TECHNIQUE OF DIRECT PROGRAMMING BY UTILIZING A TWO MODULUS PRESCALER (MC12012)

The disadvantage of using a fixed modulus (÷ P) for frequency division in high frequency phase-locked loops (PLL) is that it requires dividing the desired reference frequency by P also (desired reference frequency equals channel spacing.)

The MC12012 is specially designed for use with a technique called "variable modulus prescaling". This technique allows a simple MECL two-modulus prescaler (MC12012) to be controlled by a relatively slow MTTL programmable counter. The use of this technique permits direct high-frequency prescaling without any sacrifice in resolution since it is no longer necessary to divide the reference frequency by the modulus of the high frequency prescaler.

The theory of "variable modulus prescaling" may be explained by considering the system shown in Figure 13. For the loop shown:

$$f_{out} = N \bullet P \bullet f_{ref}$$
 (1)

FIGURE 13 - FREQUENCY SYNTHESIS BY PRESCALING

where P is fixed and N is variable. For a change of 1 in N, the output frequency changes by P ● f_{ref}. If f_{ref} equals the desired channel spacing, then only every P channel may be programmed using this method. A problem remains: how to program intermediate channels.

One solution to this problem is shown in Figure 14.

FIGURE 14 - FREQUENCY SYNTHESIS BY PRESCALING

 $A \div P$ is placed in series with the desired channel spacing (frequency) to give a new reference frequency: channel spacing/P.

Another solution is found by considering the defining equation (1) for f_{OUT} of Figure 13. From the equation it may be seen that only every P channel can be programmed simply, because N is always an integer. To obtain intermediate channels, P must be multiplied by an integer plus a fraction. This fraction would be of the form: A/P. If N is defined to be an integer number, Np, plus a fraction, A/P, N may be expressed as:

$$N = Np + A/P$$
.

Substituting this expression for N in equation 1 gives:

$$f_{out} = (Np + A/P) \bullet P \bullet f_{ref}$$
 (2)

or:
$$f_{out} = (Np P + A) \bullet f_{ref}$$
 (3)

$$f_{out} = Np \bullet P \bullet f_{ref} + A \bullet f_{ref}.$$
 (4)

Equation 4 shows that all channels can be obtained directly if N can take on fractional values. Since it is difficult

to multiply by a fractional number, equation 4 must be synthesized by some other means.

Taking equation 3 and adding $\pm AP$ to the coefficient of f_{ref} , the equation becomes:

$$f_{out} = (Np \bullet P + A + A \bullet P - A \bullet P) f_{ref}.$$
 (5)

Collecting terms and factoring gives:

$$f_{OUT} = [(N_P - A) P + A (P + 1)] f_{ref}$$
 (6)

From equation 6 it becomes apparent that the fractional part of N can be synthesized by using a two-modulus counter (P and P + 1) and dividing by the upper modulus, A times, and the lower modulus (NP - A) times.

This equation (6) suggests the circuit configuration in Figure 15. The A counter shown must be the type that

FIGURE 15 – FREQUENCY SYNTHESIS BY TWO MODULUS PRESCALING

counts from the programmed state (A) to the enable state, and remains in this state until divide by Np is completed in the programmable counter.

In operation, the prescaler divides by P+1, A times. For every P+1 pulse into the prescaler, both the A counter and Np counter are decremented by 1. The prescaler divides by P+1 until the A counter reaches the zero state. At the end of $(P+1) \bullet A$ pulses, the state of the Np counter equals (Np-A). The modulus of the prescaler then changes to P. The variable modulus counter divides by P until the remaining count, (Np-A) in the Np counter, is decremented to zero. Finally, when this is completed, the P and P counters are reset and the cycle repeats.

To further understand this prescaling technique, consider the case with P = 10. Equation 6 becomes:

$$f_{Out} = (A + 10 \text{ Np}) \bullet f_{ref} \tag{7}$$

If Np consists of 2 decades of counters then:

(Np1 is the most significant digit),

and equation 7 becomes:

FIGURE 16 – DIRECT PROGRAMMING UTILIZING TWO-MODULUS PRESCALER

FIGURE 17 - WAVEFORMS FOR DIVIDE BY 43

FIGURE 18 - WAVEFORMS FOR DIVIDE BY 42

FIGURE 19 - WAVEFORMS FOR DIVIDE BY 44

 $f_{out} = (100 \text{ Np}_1 + 10 \text{ Np}_0 + \text{A}) f_{ref}$

To do variable modulus prescaling using the MC12012 and programmable divide by N counters (MC4016, MC4018, one additional part is required: the MC12014 (Counter Control Logic).

In variable modulus prescaling the MC12014 serves a dual purpose: it detects the terminal (zero) count of the A counter, to switch the modulus of the MC12012; and it extends the maximum operating frequency of the programmable counters to above 25 MHz. (See the MC12014 data sheet for a detailed description of the Counter Control Logic).

Figure 16 shows the method of interconnecting the MC12012, MC12014, and MC4016 (or MC4018) for variable modulus prescaling. To understand the operation of the circuit shown in Figure 16, consider division by 43. Division by 43 is done by programming Np₁ = 0, Np₀ = 4, and A = 3.

Waveforms for various points in the circuit are shown in Figure 17 for this division. From the waveforms it may be seen that the two-modulus prescaler starts in the divide by 11 mode, and the first input pulse causes point A to go high. This positive transition decrements the Np counter to 3, and counter A to 2.

After 11 pulses, point @ again goes high; the Np counter decrements to 2 and the A counter to 1. The "2" contained in the Np counter enables the inputs to the frequency extender portion of the MC12014. After 11 more pulses point @ goes high again.

With this position transition at (A), the output (fout) of the MC12014 goes low, the Np counter goes to 1,

and the A counter goes to 0. The zero state of the A counter is detected by the MC12014, causing point (B) to go to 1 and changing the modulus of the MC12012 to 10 at the start of the cycle.

When fout goes low, the programmable counters are reset to the programmed number. After 11 pulses (the enable went high after the start of the cycle and therefore doesn't change the modulus until the next cycle), point (A) makes another positive transition. This positive transition causes fout to return high, release the preset on the counter, and generates a pulse to clear the latch (return point (B) to 0).

After 10 pulses the cycle begins again (point ®) was high prior to point ® going high). The number of input pulses that have occured during this entire operation is: 11 + 11 + 11 + 10 = 43. Figures 18 and 19 show the waveforms for divide by 42 and divide by 44 respectively.

The variable modulus prescaling technique may be used in any application as long as the number in the Np counter is greater than or equal to the number in the A counter. Failure to observe this rule will result in erroneous results. (For example, for the system shown in Figure 16 if the number 45 is programmed, the circuit actually will divide by 44. This is not a serious restriction since Np is greater than A in most applications).

It is important to note that the A counter has been composed of only one counter for discussion only; where required, the A counter may be made as large as needed by cascading several programmable counters. Figure 20 shows the method of interconnecting counters. Operation is previously described. The number of stages in the A counter should not exceed the number of stages for the

FIGURE 20 - METHOD OF INTERCONNECTING COUNTERS

FIGURE 21 - DIRECT PROGRAMMING 100-200 MHz SYNTHESIZER IN 50 kHz STEPS

Np counters. As many counters as desired may be cascaded, as long as fan-in and fan-out rules for each part are observed.

The theory of "variable modulus prescaling" developed above, examined a case in which the upper modulus of the two-modulus prescaler was 1 greater than the lower modulus. However, the technique described is by no means limited to this one special case. There are applications in which it is desirable to use moduli other than P/(P + 1).

It can be shown that for a general case in which the moduli of the two-modulus prescaler are P and P+M, equation 6 becomes:

$$f_{Out} = [(NP - A)P + A(P + M)] \bullet f_{ref}$$

or

$$f_{out} = [Np \bullet P + M \bullet A] \bullet f_{ref}.$$
 (8)

From equation 8 it may be seen that the upper modulus of the two-modulus prescaler has no effect on the Np counter, and that the number programmed in the A counter is simply multiplied by M.

APPLICATIONS

There is no one procedure which will always yield the best counter configuration for all possible MC12012 applications. Each designer will develop his own special design for the counter portion of his PLL system.

An insight into some of the various possible counter schemes may be obtained by considering the various PLL systems shown in Figures 21, 22, and 23. These examples were chosen to show some of the moduli that may be obtained by using the MC12012.

FIGURE 23 - UHF SYNTHESIZER USING 10/12 COUNTER

MC12040

The MC12040 is a phase-frequency detector intended for use in systems requiring zero phase and frequency difference at lock. In combination with a voltage controlled oscillator (such as the MC1648), it is useful in a broad range of phase-locked loop applications. Operation of this device is identical to that of Phase Detector #1 of the MC4044. A discussion of the theory of operation and applications information is given on the MC4344/4044 data sheet.

• Operating Frequency = 80 MHz typical

ELECTRICAL CHARACTERISTICS

The MC12040 has been designed to meet the dc specifications shown in the test table after thermal equilibrium has been established. Outputs are terminated through a 50 ohm resistor to +3.0 V for +5.0 V tests and through a 50 ohm resistor to -2.0 V for -5.2 V tests.

	2	UT	0	UT	PU.	Τ_
	R	>	٦	٥	Ū	D
ı	0	0	×	х	X	×
Ì	0	1	×	×	×	×
	1	1	×	х	x	×
	0	1	×	×	х	×
	1	1	1	0	0	1
	0	1	1	0	0	1
	1	1	1	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	1	1
	1	0	0	0	1	1
	1	1	0	1	1	0
	1	0	0	1	1	0
1	-	1	0	1	1	0
1	0	1	0	1	1	0
ı	1	1	٥	0	1	٥

TRUTH TABLE

This is not strictly a functional truth table; i.e., it does not cover all possibile modes of operation. However it gives a sufficient number of tests to ensure that the device will function properly in all modes of operation.

X = Don't Care

تعت	i		(Volts)		
@ Test Temperature	VIH max	VIL min	VIHA min	VILA max	_
0°C	-0.840	-1.870	-1.145	-1.490	-3
25°C	-0.810	-1.850	-1.105	-1.475	
					_

TEST VOLTAGE VALUES

TEST VOLTAGE VALUES (Volts)

Sunnty	Voltage	=	-5	2V

supply voltage5.2 v										/5°C	-0.720	-1.830	-1.045	-1.450	-5 2	
Characteristic		Pin			· · ·	MC12	2040	r			TEST VO	LTAGE APP	LIED TO PIN	IS LISTED BE	LOW:	1
	Symbol	Under	Min	0°C Min Max		25°C Min Typ Max		+75°C Min Max		Unit	Vitt max			VILA max VE		(V _C
Power Supply Drain Current	1E	7	-	-	-60	-90	-120	-	-	mAdc	THI MEX	- TL min	V _{IHA min}	" ILA MEX	7	1,1
Input Current	INH	6	_	-		-	350 350	-	_	μAdc μAdc	6 9	-	- :	-	7	1,1
	INL	6 9	=	-	0.5 0.5	-	-	-	-	μAdc μAdc		6 9		-	7	1,1
Logic "1" Output Voltage	∨он①	3 4 11 12	-1.000	-0.840	-0.960		-0.810	-0.900	-0.720	Vdc		- - -	-	-	7	1.1
Logic ''0'' Output Voltage	v _{oL} ①	3 4 11 12	-1.870	-1.635	-1.850	-	-1.620	-1.830	-1.595	Vdc	-	-	-		7	1,1
Logic "1" Threshold Voltage	∨она②	3 4 11 12	-1.020	-	-0.980	-		-0.920	_	Vdc		-	6.9		7	1,1
Logic "0" Threshold Voltage	VOLA ②	3 4 11		-1.615	. 1 1 .		-1.600	-	-1.575	Vdc		-	9 6 9	6 9 6	7	1,1

									1 emp		TH max	AIT WILL	TIMA min	*ILA Max	*	1	
										0°C	+4.160	+3.130	+3.855	+3.510	+5.0]	
										25°C	+4.190	+3.150	+3.895	+3.525	+5.0]	
upply Voltage = +5.0V										75°C	+4.280	+3.170	+3.955	+3.550	+5.0	1	
	1	Pin				MC12	2040				TEST VO	I TAGE APP	I IED TO PIN	IS LISTED BE	I OW:	1	
		Under		°c		25°C		+7!	5°C		TEST VOLTAGE APPLIED TO PINS LISTED BELOW:						
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit	V _{IH max}	VIL min	V _{tHA min}	VILA max	Vcc	Gnd	
Power Supply Drain Current	1E	7			-60	-85	-115			mAdc					1,14	7	
Input Current	INH	6					350 350			μAdc μAdc	6 9				1,14 1,14	7 7	
	INL	6 9	-		0.5 0.5	-	-		ľ	µAdc µAdc		6 9			1,14 1,14	7 7	
Legic "1" Output Voltage	∨он ①	3 4 11 12	4.000	4.160	4.040	-	4.190	4.100	4.280	Vdc					1,14	7	
Logic "0" Output Voltage	V _{OL} ①	3 4 11 12	3.190	3.430	3.210		3.440	3.230	3.470	Vdc					1,14	7	
Logic "1" Threshold Voltage	∨она②	3 4 11 12	3.980	-	4.020	-		4.080	-	Voic			6,9		1,14	7	
Logic "0" Threshold Voltage	VOLA 2	3 4 11 12	11.1	3.450	-		3.460	-	3.490	Vdc			9 6 9 6	6 9 6 9	1,14	7	

Outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests.

⁽²⁾ The device must also function eccording to the truth table during these tests.

NOTES:

- 1. All input and output cables to the scope are equal lengths of 50 Ω coaxial cable.
- 2. Unused input and outputs are connected to a 50 $\Omega\,$ resistor to ground.
- 3. The device under test must be preconditioned before performing the ac tests. Preconditioning may be accomplished by applying pulse generator 1 for a minimum of two pulses prior to pulse generator 2. The device must be preconditioned again when inputs to pins 6 and 9 are interchanged. The same technique applies.

							MC1	2040	TEST VOLTAGES/WAVEFORMS APPLIED TO PINS LISTED BELOW:						
Cheracteristic	1	Pin Under	Output	0°C		+25°C		+		+75°C		Pulse	Pulse	VEE	Vcc
	Symbol	Test	Waveform	Min	Max	Min	Тур	Max	Min	Max	Unit	Gen. 1	Gen. 2	-3.0 or -3.2 V	+2.0 V
Propagation Delay	16+4+	6,4	В	_	2.8	1.6	-	2.8	-	3.8	ns	6	9	7	1,14
	¹ 6+12+	6,12	Α .	-	4.5	2.6	-	4.5	-	5.7	l I	9	6	1 1	1
	16+3-	6,3	Α .	-	2.8	1.6	-	2.8	l –	3.8	11	6	9	1 1 .	1 1
	16+11-	6,11	В	-	4.8	2.8	-	4.8	-	6.1	11	9	6	1 1	
	\$9+11+	9.11	В	-	2.8	1.6	-	2.8	l	3.8	! !	9	6	1 1	
	t 9+ 3+	9,3	Α .	_	4.5	2.6	-	4.5	-	5.7	11	6	9	1	i i
	t9+12-	9.12	A	i –	2.8	1.6	-	2.8	l –	3.8	11	9	6	1	li
	19+4-	9,4	В	-	4.8	2.8	-	4.8	-	6.1	↓	6	9	+	١ ٠
Output Rise Time	t3+	3	Α	_	2.4	0.8	1.5	2.4	_	3.1	ns	6	9	7	1,14
	14+	4	В	-	11	11	1 1	11	- 1	1 1	1 1	6	9	1 1	11
	t11+	11	В	-	11	11	11	i i	i –	l i	11	9	6		1 1
	t12+	. 12	A	- 1		♦	♦		l –	[♦	+	9	6	1 +	
Output Fall Time	t3-	3	A	-	2.4	0.8	1.5	2.4	_	3.1	ns	6	9	7	1,14
	14_	4	В	ļ -	1 1	11	1 1	1 1	-	H	1 1	6	9	1 1	ii
	t11-	11	В	-	11	11	1 1	11	-	11	11	9	6	1 1	11
	t12-	12	A	-	1 🕴	l ∳	1 ♦	1 ♦	l –	i 🕴	I ∳	9	6		1 1

APPLICATIONS INFORMATION

The MC12040 is a logic network designed for use as a phase comparator for MECL-compatible input signals. It determines the "lead" or "lag" phase relationship and the time difference between the leading edges of the waveforms. Since these edges occur only once per cycle, the detector has a range of $\pm 2\pi$ radians.

Operation of the device may be illustrated by assuming two waveforms, R and V (Figure 1), of the same frequency but differing in phase. If the logic had established by past history that R was leading V, the U output of the detector (pin 4) would produce a positive pulse width equal to the phase difference and the D output (pin 11) would simply remain low.

On the other hand, it is also possible that V was leading R (Figure 1), giving rise to a positive pulse on the D output and a constant low level on the U output pin. Both outputs for the sample condition are valid since the determination of lead or lag is dependent on past edge crossing and initial conditions at start-up. A stable phase-locked loop will result from either condition.

Phase error information is contained in the output duty cycle — that is, the ratio of the output pulse width to total period. By integrating or low-pass filtering the outputs of the detector and shifting the level to accommodate ECL swings, usable analog information for the voltage-controlled oscillator can be developed. A circuit useful for this function is shown in Figure 2.

Proper level shifting is acomplished by differentially driving the operational amplifier from the normally high outputs of the phase

detector (Ū and D̄). Using this technique the quiescent differential voltage to the operational amplifier is zero (assuming matched "1" levels from the phase detector). The Ū and D̄ outputs are then used to pass along phase information to the operational amplifier. Phase error summing is accomplished through resistors R1 connected to the inputs of the operational amplifier. Some R-C filtering imbedded within the input network (Figure 2) may be very beneficial since the very nerrow correctional pulses of the MC12040 would not normally be integrated by the amplifier. General design guides for calculating R1, R2, and C are included in the MC4044 data sheet. Phase detector gain for this configuration is approximately 0.16 volts/radian.

System phase error stems from input offset voltage in the operational amplifier, mismatching of nominally equal resistors, and mismatching of phase detector "high" states between the outputs used for threshold setting and phase measuring. All these effects are reflected in the gain constant. For example, a 16 mV offset voltage in the amplifier would cause an error of 0.016/0.16 = 0.1 radian or 5.7 degrees of error. Phase error can be trimmed to zero initially by trimming either input offset or one of the threshold resistors (R1 in Figure 2). Phase error over temperature depends on how much the offending parameters drift. If better performance were desired, the "charge pump" concept of the MC4044 could be implemented and subsequent errors could be reduced considerably since offsets no longer enter the picture.

6-41

MC12060 • MC12560 MC12061 • MC12561

The MC12060/12560 and MC12061/12561 are designed for use with an external crystal to form a crystal controlled oscillator. In addition to the fundamental series mode crystal, two bypass capacitors are required (plus usual power supply pin bypass capacitors). Translators are provided internally for MECL and MTTL outputs.

- Frequency Range = 100 kHz to 2.0 MHz for MC12060/12560 = 2.0 MHz to 20 MHz for MC12061/12561
- Temperature Range = -55°C to +125°C for MC12560, 61 = 0°C to +70°C for MC12060, 61
- Single Supply Operation: +5.0 Vdc or -5.2 Vdc
- Three Outputs Available:
 - 1. Complementary Sine Wave (600 mVp-p typ)
 - 2. Complementary MECL
 - 3. Single Ended MTTL

FIGURE 1 - BLOCK DIAGRAM

TYPICAL CIRCUIT CONFIGURATIONS Note: 0.1 µF power supply pin bypass capacitors not shown.

REQUIREMENTS Note: Start-up stabilization time is a function of crystal series resistance. The lower the resistance the faster the circuit stabilizes.

Characteristic	MC12060/12560	MC12061/12561
Mode of Operation	Fundamental Se	eries Resonance
Frequency Range	100 kHz - 2.0 MHz	2.0 MHz - 20 MHz
Series Resistance, R1	Minimum at	Fundamental
Maximum Effective Resistance, R _{E(max)}	4 k ohms	155 ohms

ELECTRICAL CHARACTERISTICS

		TEST VOLTAGE/CURRENT VALUES													
					Volts						mA				
	7 Test perature	VIHmex	VILmin	VIHAmin	VILAmex	VIHT	VCCL	vcc	Vccн	ЮL	ІОН	1			
	-55°C	4.07	3.18	3.72	3.49	4.0	4.5	5.0	5.5	16	-0.4	-2.5			
MC12560, MC12561	+25°C .	4.19	3.21	3.90	3.52	4.0	4.5	5.0	5.5	-16	-0.4	-2.5			
	+125°C	4.37	3.25	4.03	3.60	4.0	4.5	5.0	5.5.	16	-0.4	-2.5			
	0°C	4.16	3.19	3.86	3.51	4.0	4.75	5.0	5.25	16	-0.4	-2.5			
MC12060, MC12061	+25°C	4.19	3.21	3.90	3.52	4.0	4.75	5.0	5.25	16	-0.4	-2.5			
	+75°C	4.28	3.23	3.96	3.55	4.0	4.75	5.0	5.25	16	-0.4	-2.5			

		_														+7	5°C	4.28	3.23	3.96	3.55	4.0	4.75	5.0	5.25	16	-0.4	-2.5	i
		Pin				60, MC	_							1206			TEST VOLTAGE/CURRENT APPLIED TO					ED TO	PINS	LISTEC	BEL	ow.		1	
Characteristic	Symbol	Under	-66 Min	Mex	Min	+25°C		+12 Min	Max	O ^O	_		+25°C	Max	+71 Min	Mex	Unit	VIHmex	VILmin	VIHAmin	VILAmex	VIHT	VCCL	VCC	VCCH	lor	юн	1	Gne
Power Supply Drain Current - MC12060/12560 - MC12061/12561	¹cc	1-11	-	- -	13 18	16 23 3.0	19 28 4.0	-		- - -	-	13 18	16 23 3.0	19 28 4.0	-	-	mAdo		- - 15	-		=	-	1 1 11,16	-	-	111	111	8 8 8,9
Input Current	INH	14	-	-	13	16	19 250	=	=	-	=	13	16	19 250	=	-	μAdc	14	15	-		=	-	16	-	=	-	-	8
	INL	15 14 15	-	=	=	-	250 1.0 1.0	-	=	-	-	-	=	1.0 1.0	-	-	μAdc μAdc μAdc	15 15 14	-	=	=	=	=	16 16 16	-	=	-	=	8,1 8,1
Differential Offset Voltage MC12060/12560 MC12061/12561	Δ٧	4 to 7 2 to 3 2 to 3	=	= =	40 -220 -100	- 0 0	325 +220 +100	-	=	=	=	40 -300 -200	- 0	325 +300 +200	=	=	mVdc		=	=	=	5,6 4	=	1	-	Ξ	-	=	8
Output Voltage Level	Vout	2 3	-	=	=	3.5 3.5	- 1	-	=	=	=	Ξ	3.5 3.5	=	=	Ē	Vdc Vdc	=	=	=	-	4	=	1	-	Ξ	=	Ξ	8
Logic "1" Output Voltage	Vон1*	12 13	3.92 3.92	4.07 4.07	4.04 4.04	Ξ.	4.19 4.19	4.17 4.17	4.37 4.37	4.00 4.00	4.16 4.16	4.04 4.04	=	4.19 4.19	4.10 4.10	4.28 4.28	Vdc	14 15	15 14	=	-	Ξ	Ξ	16 16	-	=	-	12 13	8
	V _{OH2}	10	2.4	-	2.4	~		2.4		2.4	-	2.4	-	-	2.4	-	Vdc	15	14	_	-	-	11,16	-	_	-	10	Γ-	8,9
Logic "0" Output Voltage	VOL1*	12 13	2.97 2.97	3.39 3.39	3.00 3.00	-	3.44 3.44	3.04 3.04	3.50 3.50	2.98 2.98	3.43 3.43	3.00 3.00		3.44 3.44	3.02 3.02	3.47 3.47		15 14	14 15	-	_	-	-	16 16	-	-	_	12 13	8 8
	V _{OL2}	10 10	-	0.5 0.5	-	1 1	0.5 0.5	1.1	0.5 0.5	-	0.5 0.5	-	-	0.5 0.5		0.5 0.5	Vdc Vdc	14 14	15 15	-	-	-	11,16 -	-	- 11,16	10 10	-	-	8,9 8,9
Logic "1" Threshold Voltage	VOHA	12 13	3.90 3.90	-	4.02 4.02	1.1	1.1	4.15 4.15	_	3.98 3.98		4.02 4.02	-	-	4.08 4.08	-	Vdc Vdc	-	-	14 15	15 14	-		16 16	1 -	-	-	12 13	8 8
Logic "0" Threshold Voltage	VOLA	12 13	=	3.41 3.41	=	<u>-</u> ,	3.46 3.46	_	3.52 3.52	-	3.45 3.45	-	-	3.46 3.46	=	3.49 3.49		-	-	15 14	14 15	-	=	16 16	=	=	=	12 13	8
Output Short-Circuit Current	los	10	20	60	20	-	60	20	60	20	60 1	20		60	20	60	mAdo	15	14		-	-	11.16	<u> </u>	_	-	- T	_	8,9,1

^{*}Devices will meet standard MECL logic levels using V_{EE} = -5.2 Vdc and V_{CC} = 0.

6-44

FIGURE 7 - AC TEST CIRCUIT - SINE WAVE OUTPUT

OPERATING CHARACTERISTICS

The MC12060/12560 and MC12061/12561 consist of three basic sections: an oscillator with AGC and two translators (Figure 1). Buffered complementary sine wave outputs are available from the oscillator section. The translators convert these sine wave outputs to levels compatible with MECL and/or MTTL.

Series mode crystals should be used with the oscillator. If it is necessary or desirable to adjust the crystal frequency, a reactive element can be inserted in series with the crystal — an inductor to lower the frequency or a capacitor to raise it. When such an adjustment is necessary, it is recommended that the crystal be specified slightly lower in frequency and a series trimmer capacitor be added to bring the oscillator back on frequency. As the oscillator frequency is changed from the natural resonance of the crystal, more and more dependence is placed on the external reactance, and temperature drift of the trimming components then affects overall oscillator performance.

The MC12080/12560 and MC12061/12561 are designed to operate from a single supply — either +5.0 Vdc or -5.2 Vdc. Although each translator has separate $V_{\rm CC}$ and $V_{\rm EE}$ supply pins, the circuit is NOT designed to operate from both voltage levels at the same time. The separate $V_{\rm EE}$ pin from the MTTL translator helps minimize translent disturbance. If neither translator is being used, all unused pins (9 thru 16) should be connected to $V_{\rm EE}$ (pin 8). With the translators not powered, supply current drain is typically reduced from 35 mA to 16 mA for the MC12060/12560, and from 42 mA to 23 mA for the MC12061/12561.

Frequency Stability

Output frequency of different oscillator circuits (of a given device type number) will vary somewhat when used with a given test setup, however the variation should be within approximately ±0.001% from unit to unit.

Frequency variations with temperature (independent of the crystal, which is held at 25°C) are small – about -0.08 ppm/°C

for MC12061/12561 operating at 8.0 MHz, and about –0.16 $ppm/^{9}\text{C}$ for MC12060/12560 operating at 1.0 MHz (see Figure 8).

Signal Characteristics

The sine wave outputs at either pin 2 or pin 3 will typically range from 800 mVp-p (no load) to 500 mVp-p (120 ohm ac load). Approximately 500 mVp-p can be provided across 50 ohms by slightly increasing the dc current in the output buffer by the addition of an external resistor (680 ohms) from pin 2 or 3 to ground, as shown in Figure 9. Frequency drift is typically less than 0.0003% when going from a high-impedance load (1 megohm, 15 pF) to the 50-ohm load of Figure 9. The dc voltage level at pin 2 or 3 is nominally 3.5 Vdc with $V_{\rm CC}$ = +5.0 Vdc.

Harmonic distortion content in the sine wave outputs is crystal as well as circuit dependent. The largest harmonic (third) will usually be at least 15 dB down from the fundamental. The harmonic content is approximately load independent except that the higher harmonic levels (greater than the fifth) are increased when the MECL translator is being driven.

Typically, the MECL outputs (pins 12 and 13) will drive up to five gates, as defined in Figure 10, and the MTTL output (pin 10) will drive up to ten gates, as defined in Figure 11.

Noise Characteristics

Noise level evaluation of the sine wave outputs using the circuit of Figure 12, with operation at 1.0 MHz for MC12060/12560 or 9.0 MHz for MC12061/12561, indicates the following characteristics:

- Noise floor (200 kHz from oscillator center frequency) is approximately -122 dB when referenced to a 1.0 Hz bandwidth. Noise floor is not sensitive to load conditions and/or translator operation.
- Close-in noise (100 Hz from oscillator center frequency) is approximately -88 dB when referenced to a 1.0 Hz bandwidth.

FIGURE 8 - FREQUENCY SHIFT versus TEMPERATURE VCC = +5.0 Vdc T_{cyrstal} = 25°C 14, FREQUENCY SHIFT (ppm) MC12061, MC12561 MC12060, MC12560 MC12060 MC12061 -30 -55 -25 25 50 75 100 125 TA, AMBIENT TEMPERATURE (°C)

+5.0 V
0.1 μF
10.1 μF
2 or 3
0.1 μF
5680

*See text under signal characteristics.

FIGURE 10 - MECL TRANSLATOR LOAD CAPABILITY

FIGURE 11 - MTTL TRANSLATOR LOAD CAPABILITY

FIGURE 12 - NOISE MEASUREMENT TEST CIRCUIT

MOTOROLA MIL-M-38510 PROGRAM

the ultimate in quality assurance for integrated circuits

Motorola is the industry's pioneer manufacturer of high-reliability integrated circuits, having been the first company to be qualified as a MIL-M-38510 approved facility by the Defense Electronics Supply Center of the Department of Defense early in 1971. Motorola's extensive experience in high-reliability military and manned spacecraft programs such as Apollo, Minuteman and Safeguard, coupled with an investment of millions of dollars for research and development, has resulted in the ultimate in quality assurance for integrated circuits: the MOTOROLA MIL-M-38510 PROGRAM.

This comprehensive program is structured to provide an environment in which proven methods of manufacturing, quality assurance, monitoring, screening and testing can thrive — to give you the most reliable product on the market today — and to give it to you fast!

The MOTOROLA MIL-M-38510 PROGRAM is designed to support a broad base of test and evaluation programs for micro-electronic devices: materials, workmanship, performance capabilities, identification and processing — applied to all Motorola standard integrated circuit product, with appropriate levels of reliability. This product can be ordered in accordance with MIL-M-38510 JAN-Qualified standards or to the lowercost, but similar hi-rel specifications designated as MIL-M-38510 JAN-Processing. (See ordering information.)

The MOTOROLA MIL-M-38510 PROGRAM is designed to facilitate delivery and to minimize specification preparation time. Beginning with a nucleus of popular IC types from our high-volume lines, the program is continually adding more devices to the list of MIL-M-38510 JAN-Qualified products.

Because it is a "standard" hi-rel program, the MOTOROLA MIL-M-38510 PROGRAM aids in reducing the high costs and delivery delays normally associated with "custom" hi-rel programs in the past.

It is a functional, operating program, based on the Military's own long-range objective to improve and demonstrate integrated circuit reliability, and is designed to provide hi-rel customers with the finest in quality, reliability and performance — fast!

THE MOTOROLA MIL-M-38510 PROGRAM OFFERS YOU THESE BENEFITS:

- 1. Standardization of environmental and electrical test procedures
- 2. Less specification writing required
- 3. Less time required in negotiating specifications
- 4. Fast delivery
- 5. Lower costs

MIL-M-38510 processed devices are offered by Motorola in the MECL 10,000 family for both commercial and military temperature range use. Hermetically-sealed ceramic dual in line and flat packages are available. Industry-wide "slash-specs" are being issued, and when available, will permit Motorola to provide MIL-M-38510 qualified MECL 10,000 devices.

Most devices in the MECL II and MECL III families can also be processed to meet MIL-M-38510 requirements.

Motorola's MIL-M-38510 Program supplants our former high reliability "Checkmate" program. You are invited to inquire directly to Motorola for price and delivery quotations on your MIL-M-38510 MECL device requirements.

MECL MIL-M-38510 SELECTOR

MECL 10,000	Rated Temperature Range	Package Styles Available
MC10,0XX MC10,1XX MC10,2XX MC10,3XX	-30°C/+85°C	_ L L
MC10,4XX MC10,5XX MC10,6XX MC10,7XX	-55 ^o C/+125 ^o C	L,F L,F
MECL III		
MC16XX	-30°C/+85°C	L,F

THE MOTOROLA MIL-M-38510 PROGRAM

Under this program. Motorola integrated circuits may be procured to the specifications of MIL-M-38510 and to four levels of processing which meet the screening requirements of MIL-STD-883.

MIL-M-38510 JAN-OUALIFIED PRODUCT

Class A

Class B

Class C

JAN-QUALIFIED DEVICE MARKINGS

JM38510/XXXXXXXXX

JM38510/XXXXXBXX

JM38510/XXXXXCXX

JAN QUALIFIED

- 1. G.S.I. (Government Source Inspection) provided upon request.
- 2. Must be manufactured in a Governmentapproved facility.
- 3. Product inventoried in distributor and OEM warehouses.

Examples of MIL-M-38510 JAN-Qualified markings:

Linear

Digital

DEVICE:

MC5400BCB J

ORDER: MC1741BCBJ MC5400BCBJ

MARKING: JM38510/10101BCB JM38510/00104BCB

MC1741BCBJ

HOW TO ORDER MIL-M-38510 JAN-OUALIFIED PRODUCT

Basic Numbering Parameters - Example: JM38510/XXXXXBCB

J M38510 /XXX XX В C R (1) (4) (5) (6) (7)

- (1) = J This indicates a qualified device.
- (2) = M38510 The military designator.
- (3) = /XXX This three-digit number signifies the detail specification in which the device type is found. The detail specifications, also referred to as "slash specs," generally contain more than one device type and are written for various generic groupings (i.e., TTL NAND Gates, TTL NAND Buffers, TTL Flip-Flops, Op Amps, Voltage Regulators, etc.)
- (4) = XX This two-digit number identifies the device type within the detail specification.
- (5) = B This is a single letter and specifies the device class per MIL-M-38510 and will be class A, B or C.
- (6) = Case Outline. (See listings in adjacent column).
- (7) = Lead finish. (See listings in adjacent column).

The Motorola equivalent of the JAN M38510 part number is as shown in the following example and should be referenced when ordering your specific device requirement.

- 1. The MCXXXX designates the Motorola source device
- 2. The first three letters after the part type have the same meaning and order as in the JAN part numbering system. This will simplify your cross-referencing.
- 3. J. which is the last letter in the part number, designates a JAN-qualified device.

Case outline and lead finish designations are common to both JAN Qualified and JAN Processed devices:

OUALIFIED #(6) PROCESSED #(3)

C - This is a single letter and specifies the package or case outline. A list of the currentlydefined package types (the letters define the same case outline for all detail specifications) is shown helow

CASE OUTLINE **DESIGNATOR** CASE OUTLINE

- 1/4" x 1/4" flat pack, 14-pin

- 1/8" x 1/4" flat pack, 14-pin R C

- 1/4" x 3/4" dual-in-line, 14-pin *D - 1/4" x 3/8" flat pack, 14-pin

Ε - 1/4" x 3/4" dual-in-line, 16-pin F - 1/4" x 3/8" flat pack, 16-pin

G - 8-lead can

н - 1/4" x 1/4" flat pack, 10-lead

- 10-lead can

- 1/2" x 11/4" dual-in-line, 24-pin

- 3/8" x 1/2" flat pack, 24-pin

- 1/4" x 1/2" flat pack, 24-pin

- A and D outlines are interchangeable

MIL-M-38510 JAN-PROCESSED PRODUCT

Class A

Class B

Class C

Class D

JAN-PROCESSED DEVICE MARKINGS

MC38510/XXXXAXXM MC38510/XXXXBXXM MC38510/XXXXCXXM MC38510/XXXXDXXM MC38510/XXXXDXXS MC38510/XXXXAXXS MC38510/XXXXBXXS MC38510/XXXXCXXS

JAN PROCESSED

- 1. No G.S.I. provided.
- 2. Government-approved facility not required.
- 3. Product supplied with MIL-M-38510 electricals will be designated by an "M" suffix.
- 4. Product supplied with Motorola standard data sheet electricals

will be designated by an "S" suffix.

- 5. Devices will be manufactured using design and processing guidelines contained in MIL-M-38510
- 6. Inventories will be maintained prior to burn-in and final electrical tests

Examples of MIL-M-38510 JAN Processed markings:

Linear MC1741BCB (M or S) DEVICE:

MC1741BCB (M or S) ORDER: MARKINGS: MC38510/1741BCB (M or S)

Digital

DEVICE: MC5400BCB (M or S) ORDER MC5400BCB (M or S)

MARKINGS: MC38510/5400BCB (M or S)

QUALIFIED #(7) PROCESSED #(4)

B — This is a single letter and specifies the finish to be used on the package leads. There are three types of lead finishes which are acceptable for JAN product. They are:

LEAD FINISH

SYMBOL

LEAD FINISH

- Kovar or Alloy 42, with hot solder dip

В Kovar or Alloy 42, with bright acid tin plate

- Kovar or Alloy 42, with C gold plate

Note: For other Motorola standard packaging, not currently identified in MIL-M-38510, contact your Motorola representative.

HOW TO ORDER MIL-M-38510 JAN-PROCESSED PRODUCT

EXAMPLE: If you wish to enter an order for an MCXXXX Class B device in a 14-pin, dual-in-line ceramic package with the lead finish to be tin plate and electrically tested to Motorola's standard data sheet electricals, the order would be entered as follows:

> MCXXXX В C В S (1) (2) (3) (4) (5)

(1) = Motorola device type.

- (2) = B This is a single letter and specifies the device class per MIL-M-38510 for Classes A. B and C. Class D is an added Motorola JAN processing class and is the same as the MIL-M-38510 Class B except for the differences shown in the following screening procedures table.
- (3) = Case Outline. (See listings in adjacent column). (4) = Lead finish. (See listings in adjacent column).
- (5) = S This is a single letter and specifies the electrical specifications to which the device is to be

screened during electrical test and will be either an S or M. "S" specifies the use of Motorola standard data sheet electricals. "M" specifies the use of JAN slash-sheet electricals where they exist.

Electrical Test Symbols

S

Test Level

- Motorola standard data sheet electricals - JAN slash-sheet

electricals

SCREENING PROCEDURES

(To MIL-STD-883 Requirements)

This program establishes screening procedures for total lot screening of integrated circuits to assist in achieving levels of quality and reliability commensurate with the intended application. In recognition of the fact that the level of screening has a direct impact on the cost of the product as well as its quality and reliability, four standard levels of screening are provided to coincide with four device classes or levels of product assurance.

Flexibility is provided in the choice of conditions and stress levels to provide screens, tailored to a particular product or application. Selection of a level better than that required for the specific product and application will, of course, result in unnecessary expense. A level less than that required will result in an unwarranted risk that reliability and other requirements will not be met. For general hi-rel applications, the Class B screening level should be considered.

	CLASS	A	CLASS	В	CLASS	С	CLASS	D
SCREEN	METHOD	RQMT	METHOD	RQMT	METHOD	RQMT	METHOD	RQMT
Internal Visual (Precap)	2010 Cond A and 38510	100%	2010 Cond B and 38510	100%	2010 Cond B and 38510	100%	2010 Cond B and 38510	100%
Stabilization Bake	1008 24 hrs min, test condition C	100%	1008, 24 hrs min, test condition C	120%	1008, 24 hrs min, test condition C	100%	1008, 24 hrs min, test condition C	100%
Thermal Shock	1011, Cond A	100%		<u> </u>		<u> </u>		
Temperature Cycling	1010, Cond C	100%	1010, Cond C	100%	1010 Cond C	100%	1010, Cond C	100%
Mechanical Shock	2002 Cond F One Shock in Yı plane only or 5 shocks at Cond B in Yı plane	100%		_		-		_
Constant Acceleration	2001 Cond E (min) in Y ₂ plane then Y ₁ plane	100%	2001 Cond E (min) Y _i plane	100%	2001 Cond E (min) Y _i plane	100%	2001 Cond E (min) Y, plane	100%
Seal (a) Fine (b) Gross	1014	100%	1014	100%	1014	100%	1014	100%
Interim Electrical Parameters	JAN slash-sheet electrical specification unless otherwise designated	100%	JAN slash-sheet electrical specifications unless otherwise designated	100%		_	Motorola stand. data sheet electrical specs unless otherwise indicated	100%
Burn-in test	1015 240 hrs @ 125°C min	100%	1015 168 hrs @ 125°C min	100%		_	1015 168 hrs @ 125°C min	100%
Interim Electricals	JAN slash-sheet electrical speci- fications unless otherwise designated	100%						
Reverse Bias Burn-in	1015 Cond A or C 72 hrs at 150°C min	100%						
Final Electrical tests (a) Static tests (1) 25°C (Subgroup 1 table 1 5005)	JAN slash-sheet electrical specifications unless otherwise designated	100%	JAN slash-sheet electrical specifications unless otherwise designated	100%	JAN slash-sheet electrical specifications unless otherwise designated	100%	Motorola stand. data sheet electrical specs unless otherwise indicated	100%
(2) Max and min rated op. temperature (subgroups 2 and 3 table 1, 5005)		100%		100%		_		_
(b) Dynamic tests and/or switching tests 25°C (subgroup 4 and 9' table 1, 5005)		100%		100%		_		-
(C) Functional test 25°C (subgroup 7 table 1, 5005)		100%		100%		100%		100%
Radiographic	2012	100%						
Qualification or quality conformance inspection	5005 Class A	per 38510	5005 Class B	per 38510	5005 Class C	per 38510	5005 Class B	۰
External Visual	2009	100%	2009	100%	2009	100%	2009	100%

[&]quot;Group A per 5005, Generic data available for groups B & C on devices produced to Class B, C, D for JAN processed (from JAN program)