MOTOROLA

APPLICATION NOTE

Order this document by ANE415/D

ANE415

MC68HC11 Implementation of IEEE-488
Interface for DSP56000 Monitor

Prepared by: Richard Soja and Mark Maiolani, Motorola Semiconductors Ltd, East Kilbride, Scotland

This application note describes the implementation of an
IEEE-488 (GPIB) interface to the Motorola DSP56000 Digital
Signal Processor using an MC68HC11 single chip MCU.
The original purpose of this interface was to permit the
development of DSP56000 software and hardware on a
Hewlett Packard HP9836 engineering workstation, which is
furnished as standard with Hewlett Packard's
implementation of the IEEE-488 interface, called the HPIB.

In addition, the software was designed to permit GPIB
access to the MCU's Serial Communications Interface (SCI).

The hardware for the DSP to GPIB interface is composed
of the MCU/Port replacement block, the DSP decoding
logic and the GPIB handshake logic and |/O buffering. The
block diagram of a typical system implementation is
shown in figure 1.

To minimise the component count of the MC68HC11
circuit and, as the entire software occupies less than 2K
bytes of memory, an MC68HC811A2 is used in the
implementation. The result of this is to minimise external
decoding and to remove the need for any external
memory. (The MC68HC811A2 has 2K bytes of on-chip
EEPROM pius 256 bytes of on-chip RAM for program
execution and storage).

Figures 2 and 3 show the entire hardware circuit. The
MC34064 LVI circuit shown in figure 2 ensures that the
MCU is reset when the power supply voltage is below 4.5
Voits.

DSP 0
osP 1 MCBBHC11 =t X B
GPIB
] INTERFACE (‘ ! ') CONTROLLER
? s
oSP 2 -
LEVEL
SHIFTER
¥ Rs2x
DSP 3§
TERMINAL

Fig. 1 Block Diagram of Typical System interface

© MOTOROLA INC., 1988

To simplify the hardware and software needed to access
the DSP56000 host interface registers, the MC68HC811A2
is run in expanded mode, with code executed from internal
EEPROM. The external bus is used to communicate with
the DSP host port, which is configured by the DSP
decoding logic to appear as a group of MC68HC11 external
memory locations.

/O ports B and C, which become the address and data
bus of the MCU in expanded mode, are replicated by an
MC68HC24 I/O port replacement device. These ports plus
STRA and STRB are used to impiement the GPIB interface.
In particular, it is the powerful handshake features of
PORTC, in conjuction with STRA and STRB which are
extensively utilised in the implementation of the GPIB
protocol.

Relocating and programming the MC68HC811A2's
internal memory.

Since the MC68HC811A2's internal EEPROM can be
remapped on any 4K byte boundary by modifying its
CONFIG register, it is important to verify that the CONFIG
register is set to $FF, to ensure correct mapping of the
software. Details of how to do this can be found in the
MC68HC811A2 data sheet and M68HC11EVM user manual.
The software described in this application note does not
include routines to reprogram the CONFIG register.

The EVM user manual also describes how to download
software to the MC68HC811A2's internal EEPROM.

GPIB implementation.

An important point to note about this particular design is
that, apart from the fully implemented handshake and 8 bit
data bus, only two of the five GPIB control lines have been
utilised. These are ATN and IFC. The remaining lines
REN,EOI and SRQ are not needed and are therefore not
implemented. .

To simplify operation, the software was designed as a
finite state machine, with the ATN and IFC lines providing
interrupt sources to the MCU via two of its input capture
pins - IC2 and IC3 on PORTA.

IFC was primarily included to assist in the debug of the
development software. Assertion of this line causes the
MCU to vector to the program segment <ABORT>, which
forces the MCU's GPIB interface to the idle state, i.e. all bus
lines are released and the program re-initialises into a
known state. Note the unusual method of clearing the 1C2
flag, which avoids the use of an accumulator. (line 263 of
the program listing)

| @ MOTOROLA EEER

20F T an 2F
vas —i0
3| 2l | ™ 8
MODA MODB EXTAL XTAL
el e L™
MCE8HC811A2FN 4] o
Ny
vas|g vss vaa vad
42]41 {40 |39 38|37136]35 9l 10} 11} 12§ 13]14] 1S} s|e __J ’]
ol Ll e s o] o] '
. A8-A11 A12-A15 Y AIDO-A/D7) o« - ,——D_ 3 1 HEN O
| +——TD>0- & T :
H. = ou L 1
A8-A1S s S| CH AT 4
9 ' 2
NA4_61gs Sl /T—D)_ 8
A/DO-A/D7 \A12_3 a2 " ! s
d _ NAR2_2 a1 @2 ¥m —D_L_,_
Ll -
NALL_1 {a0 Ot} 11 1
AR 8 = s '
I'— 74,5138 r 744C08]
]
68HC11 . .
v o[l wlofslsfalelofol alo - 1N ;
t RESET A1 ! HA2
v
vog 2] vag MCEBHC24FN \ a9 1 HA1
E° wooe _A3 | __HAO
2 1]
1oTEST .
Is .
vss vas \ ! HO-H7
\ | HR/W
i

Fig. 2 MCU/PRU Block and DSP Address Decoding.

STRB
STRA |Z *octeH-
PORT B4 3 -
«@? | &7
vas

MCBSHC24FN) -
7
0“ 7
PORT 8,0 }2Z -
vad
_L 1
Ot
« . e DIO1
PORT B,1 3 B 2
PORT C,0 |2 2 e 3
Pyt 3 m]
| L ——1
2 11 S - s
3 13 e ﬁ s
s 14 7 . 7
Py i 8
9 LS 245
‘_!.‘x'_idy‘_’_l.ln % LOGIC Gnd
29 17
J§ o v
4K7 .
PORT A0 [: [:] Lo} ATN
MC68HC811A2FN N E] 2~ @ ' IFC

GPIB Interface Lines
Fig. 3 GPIB Handshake Logic and |/O Buffer.

MOTOROLA ANE415
2

SWITCH UP : RFD SELECTED (PORT B.3LOW)
SWITCH DOWN :DAC SELECTED (PORT B.3 HIGH)

SWITCH UP : LISTENER (PORT B,0 LOW)
SWITCH DOWN : TALKER (PORT 8.0 HIGH)

1 1
STRB s N— RFD
‘ X
1 3
1 $
STRA _I)
1
- 1
PORT B4 —— DAV

ALL UNCONNECTED INPUTS PULLED HIGH
Fig 4 - Switch Representation

7 6 5 4 3 2 1 0
| x | x | x]rsnns[sms]mm[uns]

Vv

CMDSTAT Flags | x
(68HC11 address $00)

MCU States SLACS SPAS TACS LACS
or
STACS
Note: :

Flag names cofrespond to states shown in Figures 8 and 9
SLACS and STACS correspond to Secondary LACS and Secondary TACS.
The N preceding SADS -and TADS indicates that the state is active when the bit is logic 0.

Fig 5 - CMDSTAT Flags and MCU States

GPIB Command processing

The logic level of the ATN control! line dictates whether a
command or data byte is available on the data bus during
assertion of DAV. Changing the state of ATN always forces
an interrupt to the MCU. This is serviced by routine
<ATNSRV>, which polls ATN (PORTA,0) to determine
whether commands or data bytes are to be processed.

While ATN is asserted, all bytes received are treated as
commands, and processed by the program segment
<CMDMODE>.

Once ATN is deasserted, the service routine <ATNSRV>
is re-entered, and program flow is passed to-the segment

= Yard

- [

STAF

Read PORTCL.

PORTB.3 STRB connected to RFD

Fig 6 - MC68HC11 Acceptor Handshake Sequence

ANE41S

determined by the status of flags in variable CMDSTAT.
Program vectoring is accomplished by first removing ali
registers stacked by the interrupt, then pushing the entry
point of the required program segment back on the stack
and then executing an RTS instruction.

Figure 5 shows the relationship between flags and
program segments which would be entered on deassertion
of ATN.

GPIB handshake

The most critical software and hardware feature of the
MCU's GPIB interface is the 1/O switching and re-routing of
the handshake lines.

In an attempt to optimise the hardware and software
configuration of the GPIB interface, PORTC is used as the
I/0 data port, while STRA and STRB provide the
appropriate handshake signals. However, as the GPIBis a 3
wire handshake, it is necessary to muitiplex the GPIB's RFD
and DAC handshake lines on to either STRA (during source
state), or on to STRB (during acceptor state).

The source state is used when the MCU is an active
talker (i.e. outputting data), while the acceptor state is used
when the MCU is an active listener or receiving commands
(i.e. inputting data).

The remaining handshake line, DAV is also multiplexed
between STRB (in source state) and STRA (in acceptor
state). Figure 4 illustrates the basic operation of the
handshake multiplexer, while figure 3 shows the hardware
implementation, which was designed to guarantee that no
transient states occur during multiplexing of the lines on
the GPIB side.

MOTOROLA
3

e 7 ACDS

a LACS
~_ . LADS
STAF \h::t_u.wmx L'DS

SIDS

oxc ; N SPAS
F—\ SPIS
™ 4 SPMS
‘ TADS
TIDS

PORTB3 STRA connecied 1 RFD / STRAcomecsdoDAC \STRA connecid to RFD

Acceptor Data State
Listener Active State
Listener Addressed State
Listener idle State :
Source ldle State

Serial Poll Active State .
Serial Poll Idle State
Serial Poll Mote State
Talker Active State
Talker Addressed State
Talker Idle State

Fig 7 - MC68HC11 Source Handshake Sequence Table 1 - State Mnemonics used in Application Note

Fig 8 - Primary and Secondary Talker, Serial Poll State Diagram

(UNLVMTA) AGCDS)

Fig 9 - Primary & Secondary Listener State Diagram

MOTOROLA

A

Figures 6 and 7 illustrate the relative timings of the
handshake and control lines during source and acceptor
states.

Handshake states are controlled by PORTB,0 which also
controls the direction of the 74LS245 1/O data buffer.
PORTB,1 is used simply to disable the 74LS245 1/O data
buffer when the interface is initialised.

PORTB,3 is used to control which of RFD or DAC is
connected to STRB in acceptor state, or STRA in source
state.

Note that if the active listener state is entered from
command state, there is no change in the handshake state.
Acceptor to source handshake switch only occurs when
changing from commaad state to talker state.

Listener and talker state diagrams are shown in figures 8
and 8.

Table 1 lists the meanings of the state mnemonics used
in this application.

Acceptor to source handshake state switch

When switching from command state to primary or
secondary TACS, the routine INITOP is first executed, on
the deassertion of ATN. The secondary TACS state is
referred to as STACS within this application note, though
the mnemonic is not in the IEEE-488 specification.

The additional control line, provided by PORTB, 4 is used
to deassert STRB by clamping STRA low, prior to
switching the handshake line from acceptor to source
state. This prevents DAV from being asserted when the
handshake switch occurs. An unwanted side effect of this
action is that the STAF flag in PIOC register is set by STRA
changing state. To ensure that this flag is cleared before
entering TACS or STACS, and to prevent STRB from being
asserted (which would produce an erroneous assertion of
RFD), the non-handshake mode for PORTC is enabled. The
STAF clearing operation of reading the PIOC register
followed by a dummy read from PORTCL is then safely
executed. (Lines 402-405 of the program listing).

For the duration of the above operations, the handshake
lines are in the acceptor state. (i.e. RFD and DAC are
outputs, DAV is an input). Once completed, and full
handshake mode has been restored to PORTC (line 406),
the handshake lines are switched to source state and the
data buffer is enabled (line 407). The condition of the
handshake lines is then: STRB connected to DAV; STRA
connected to RFD. DAC is not needed at this stage, as it is
the assertion of RFD which signals readiness of the active
listener(s) to receive data from the MCU.

The STRA clamp is then released (line 410) and the data
handshake sequence commences once the <SENDBYTE>
routine is executed in TACS, STACS or SPAS.

A point to note within <SENDBYTE> is that interrupts are
enabled to permit IFC or ATN to force the program to
revert respectively to the idle state or acceptor state.

To initiate a valid data transfer, <SENDBYTE> will wait
for assertion of RFD, which will set STAF in PIOC register
(See Figure 7). Then, by writing to PORTCL, the data in
ACCA is output on the data bus, with DAV asserted. The
action of writing data to PORTCL (line 333) causes STAF to
be cleared.

DAC (input) is then switched to STRA. Once it is
asserted, STAF is again set and DAV is deasserted. STRA is
then pulled low via PORTB,4 to ensure that subsequent
assertion of RFD by the listener is not lost.

ANE415

As previously described, STAF is then cleared without
asserting STRB by selecting the non-handshake mode for
PORTC. Before exitting the routine, full handshake mode is
again selected and STRA is reconnected to RFD, and the
PORTB,4 clamp is removed.

An important consequence of the above sequence of
events is that, despite the apparent slowness of the
software, the handshake protocol is always maintained
correctly. For example, if RFD had been asserted prior to
completion of the SENDBYTE routine, the assertion would
be detected at the point that PORTB,4 clamp on STRA was
removed. On later re-entry to <SENDBYTE>, a set STAF bit
would be immediately detected, and normal execution
would proceed as aiready described.

In this application <SENDBYTE> is only executed in
TACS, STACS or SPAS.

Source to acceptor handshake state switch

This form of handshake switch will occur when
TACS,STACS or SPAS is exitted on the assertion of ATN,
which in turn would occur when a change of MCU
operating state is requested by the active controller (e.g.
HP9836 work station). Before receiving and processing the
command bytes necessary to incur the change in
operating state, the MCU first switches the handshake
lines from source to acceptor states and enables the 1/O
data buffer for input. This is performed by the routine
INITIP, which also deasserts RFD by routing DAC to STRB.
The hardware is designed to ensure that whichever of RFD
or DAC is routed to STRB, the other line is held in the
deasserted (low) state.

With RFD deasserted and the spuriously set STAF bit
cleared by selecting non-handshake mode on PORTC,
STRB is connected to RFD. The active states of STRA and
STRB are then inverted, since the asserted states of RFD
and DAC are the inverse of DAV.

The above sequence of events prepares the MCU's
interface to accept data from the active controlier, using
the routine <READBYTE>, where RFD is first asserted by
performing a dummy read of PORTCL (See figure 6). The
MCU now waits for DAV to be asserted by testing for a set
STAF bit. When this occurs, RFD (STRB) is also deasserted
by virtue of PORTCL handshake mode. The STRB line is
now switched to DAC and STRA active edge sense is
changed from negative to positive to permit detection of
DAV deassertion. Following this action, STAF is cleared by
a dummy read of PORTCL, which also causes DAC (STRB)
to be re-asserted. This ultimately results in DAV being
deasserted by the active talker, a condition which is
detected by again testing STAF. In this case, it is the
deassertion of DAV which causes deassertion of DAC
(STRB) and the STAF bit to be set.

STRB is then cieanly reconnected to RFD (line 325),
STRA active edge is restored to negative sense, and the
routine is exited with STAF still set. It is cleared by the next
dummy load of PORTCL on re-entry to <READBYTE>.

GPIB-DSP Hardware interface
The DSP decoding logic performs the function of
decoding the high address byte of the MC68HC11's
external bus to enable up to four DSP host interfaces, by
setting the corresponding Host Enable (HEN) lines low. By
using only the high address byte, the need for de-
multiplexing the low byte, AD0-AD7, is avoided, thus

MOTOROLA
5

simplifying the decoding hardware.

The hardware, shown in figure 2, consists of a 74L.S138
three to eight line decoder, an 74LS05 inverter and an
74HCO08 quad nand gate package.

Address lines A11 - A15 are qualified with inverted E

- clock to provide the DSP enable signais HENO - HEN 3.

Output 04 from the74LS138 provides a Multi DSP enable
feature. When it is asserted, HENO - HEN3 are
simultaneously asserted, thus providing synchronous
access to all four DSPs. The outputs O0 - O3 are used to
access each DSP independently.

Table 2 lists the valid addresses for all permutations of
DSP enable.

The direction of data transfer between the interface and
the DSP is controlled by the MC68HC11 R/W line, which
directly drives the DSP host read/write (HR/W) line.

MCU High Addr
01000XXX
01001XXX

1 01010XXX
01011XXX

01100XXX
Bit765432 10

The DSP host interface is configured as a group of 8 x 8
bit registers. The MCU high address bits, A8-A10 are used
to address these registers via the DSP's HA0-HA2 lines.
Table 3 summarises the functions of these registers.

The data to be transferred is available on the MC68HC11
multiplexed address/data lines AD0-AD7. No de-
multiplexing is neccessary as the MCU's E clock is used by
the DSP as a data valid signal.

GPIB-DSP Software Interface
The DSP software interface has been designed to
support the development of up to four
independantDSP56000s. In order to optimise data
throughput, and to simplify the host computer’s (e.g.
HP9836) software drivers, the GPIB secondary addressing
mode is used to select the required DSP.

DSP Enable

HENO
HEN1
HEN2
HEN3
HENO-3

Bits0-2 specify the address of the required DSP host register.

Table 2 - DSP Enable Addresses

HA2 HA1 HO Register Function Mnemonic Access
0O 0 O interrupt Control Reg. ICR RW
0o 0 1 Command Vector Reg. CVR RW
o 1 0 Interrupt Status Reg. ISR R only
0o 1 1 Interrupt Vector Reg. IVR RW
i 0 O Not used
1 0 1 Receive data byte Regs. RXH/TXH RW
(during Host reads)

1 1 0 or RXM/TXM RW
Transmit data byte Regs.

1 1 1 (during Host writes) RXL/TXL RW

Table 3 - Summary of DSP Host Registers

MOTOROLA
6

ANE415

4 3 2 0
@ St S0 | HA2 | HA1 | HAQ | GPIB SECONDARY ADDRESS
. 0 1 M S1 SO0 | HA2 | HA1 | HAO | DSP INTERFACE
HIGH ADDRESS BYTE
L————— Register Address
DSP Number
© X X | ME | X X X AM | MODE BYTE

The nterfece’s GPIB primary address is not used in
conpnchon with the DSP interface, but instead is used to
comwmumcate with the MC68HC11's SCI port.

When writing 1o the DSP, the interface is in secondary
«ataner sctrve state (SLACS), while data reads cause the
wscondery talker active state (STACS) to be entered.

When cvxsting ether data reads or writes, bits 3 and 4
of e % ba secondsry address field are used to specify
anch OSP 3 selected. Bits 0-2 are only used during data
-wedu. ‘o setect which OSP register is addressed. Figure
‘Ol shows the relationship between secondary addresses
o~ O5Pvegester selects.

An smembly iisting of the MCBBHCB11A2 software is
Jon &t the end of thes spplication note.

Writing to OSP host registers
When mraing data 10 the DSP, the first data byte
‘xeved “om the host computer is the Mode Byte. It is
~sed o Setermine the method of accessing the DSP's
;-o-l-t The mode bvte s aiso used to seiect the Multi
T3P mode where at DSPs are enabied simulitaneously.
os fgurs 10

e *mo aree modes ere: Normal - executed in program
wmyrwre . SLNCRM>

Auto - executed in ram
o prog

':.:MMDSPWhMupﬁciﬂy
_ mm Svle which precedes the data for that
Soater : 1\ way any numbder of registers can be
S anns M-MMQNDSP‘:TXDEM&:

b

overrun condition.

The general format for GPIB data in Normal Write mode
is:

Mode byte,regx addr, regx data.regy addr,regy data, etc....

The following example statement executed from the host
computer, loads DSP 1, command vector register, with a
value of hexadecimal 93.

OUTPUT 70008;CHRS$(0),CHR${1);.CHRS(147);

The Auto Write mode is used to write data sequentially
to register addresses 5,6 and 7 of the selected DSP. Each
consecutive 3 byte block received from the GPIB is
repeatedly written to these 3 registers in turn until no more
data is available. This mode is primarily used to provide a
simple high speed download of program code from the
host computer to the DSP. In this case the TXDE flag is
tested before each data transfer to ensure no dsta overrun
occurs.

To simplify the MC68HC11's software, the Multi mode
feature is not permitted in Auto Write mode.

The general format for GP1B data in Auto mode is:

Mode byts.regS data.reg8 data.reg) datasegh data.segl data, eic.

The following host computer statement downloads
hexadecimal AASSAASS to DSP number 2:

OUTPUT 70016,CHRS{1):CHRS! 170) CHREESL.CHRSI 701, CHRSIES):

The Auto Write feature is particularly powerful when
used with host computers which SuUppOrt 8rTay 0perators in
output statements:

0.9 OUTPUT 70008 USING “8.C"CHRS(11 Program 18}
will download the entire contents of the data (e.9. user
program) stored in string array <Programi$>, to DSP
number 1.

4

<SLNORM> LOAD IN ADDRESS <SLAUTO>
MASK
MASK M BIT OF MODE pomsy
wTo TO TWO AND READ
MASK
READ TARGET REGISTEH
NO. FROM GPB TXDE BIT
QLEAR ES
v
READ IN DATA TO BE NO
SENT FROM GPB
WRITE DATA TO DSP
'WRITE DATA TO DSP

Fig 11 - <SLACS> Program Segment Flowchart

Reading from DSP host registers

GPIB secondary address bits 3 and 4 select the required
DSP, while bits 0-2 select which register is to be read first.

Following reception of the secondary address and on
entering STACS, each byte transferred from the selected
DSP to the GPIB is read from consecutive DSP register
addresses. After register 7 is read, subsequent reads
continue repeatedly through registers 5,6 and 7, until the
host computer's input is satisfied. This is to simplify and
speed up the process of reading blocks of words from the
DSP's data registers. The RXDF bit in the DSP status
register is tested before reads of registers 5,6 and 7 to
ensure the validity of data. Single byte reads can be used
to test the other registers on the DSP interface. In this case,
RXDF is not tested.

As the GPIB-DSP interface has been designed without an
EOI control line or any explicit end of transfer character
sequence, it is important that the host computer data read
statement is formatted in some way to ensure proper
termination of data transfer.

On the HP9836, this is achieved by incorporating the
<USING> function within the ENTER statement. In
addition, the variable into which data is read must be
dimensioned appropriately.
eg DiM Program2$(30)(3] ! Reserve 30 x 3 byte words for data

ENTER 70005 USING " #,3A";Program2$(*)
will upload 30 words of program code (or data) from DSP
number 0, into array <Program2$> on the host computer.

Figures 11 and 12 are flow charts of the DSP interface
software segments. These correspond to secondary LACS
and secondary TACS states of the GPIB.

MOTOROLA
8

Fig 12 - <STACS> Program Segment Flowchart

Reading from and writing to the MC68HC11's SCI
via the GPIB.
Typical syntax for reading from the SCl is:
ENTER 700 USING *#,A"A$
Note that this statement will wait until data is received
by the SCI. To abort the ENTER statement under program
control, a timeout interrupt must be set up by the user.
Typical syntax for writing to the SCl is:
OUTPUT 700;°ABCDEF"
Note that in this implementation, there is no software or
hardware handshake associated with the SCI, other than
checking the SCI status register.

ANE41S

M68HC11 Absolute Assembler Version 2.4 C:GPIBDSP.ASC

2A * Interrupt driven GPIB Talker/Listener function
3A *
[‘ A AEAEAEERRAREARERRRRA R AN AR RN AR AR R AR EANR RN AR T EAR AR RN AR RR R LA AR AT AR RN
5A *
6 A * HARDWARE PROTOCOL : DSP ADDRESS DECODE HARDWARE
TA *
8 A * The DSP interface uses the high address byte to enable the required
9A * DSP(s) and drive the DSP register select lines HA2,HA1 and HAO as
10 A * shown below:
11A *
12 A * High address byte : 0,1,M,S1,50,HA2,HA1,HAO
13A * .
14 A * M bit - Master Select, enables all DSPs simultaneously
15 A * S§1 + SO - Select DSP to be enabled (overriden by M bit)
16 A * HA2 + HA1 + HAO - Select DSP internal address register to be accessed
17 A *
18 A * Note: The low address byte is not used by the interface and therefore
19 A * does not need to be setup.
20 A *
21 A * infalnobuininieioinioieiaiabubninininieiainiodebniniei ** iodadednduindeieiaininioioiuinininiaiaiade
22 A 0000 PORTA EQU 0
3 A 0004 PORTB EQU 4
24 A 0003 PORTC EQU 3
25 A 0005 PORTCL EQU 5
26 A 0007 DDRC EQU 7
27 A 0002 P10C EQU 2
28 A 000c OC1M EQU $C
29 A 0021 TCTL2 EQU $21
30A 0022 TMSK1 EQU $22
31A 0023 TFLGY EQU $23
32A 0024 TMSK2 EQU $24
33A 0028 SPCR EQU $28
3% A 0028 BAUD EQU $28
35A oo2c SCCR1 EQU. $2¢
36 A 0020 SCCR2 EQU $20
37 A 002E SCSR EQU $2E
38 A 002F SCDR EQU $2F
39A A200 DUART EQU $A200
40 A *
41 A * Workspace
42 A 0000 ORG $0
43 P 0000 0001 CMDSTAT RMB 1
44 P 0001 0001 STATUS RMB 1
45 P 0002 0001 ADDR2 RMB 1
46 P 0003 0001 CURRENT RMB 1
47 A *
48 A * Constants
49 A 0002 TXDE EQU $02 DSP status bit mask (Transmit Data Empty)
50 A 0001 RXDF EQU $01 e ss +«+ o+o (Receive Data Full)
51 A 0018 SPE EQU $18
52 A 0019 SPD EQU $19
53 A 0020 LAG EQU $20
54 A 0040 TAG EQU $40
55 A 0060 SCG EQU $60
56 A 0020 MLA EQU LAG+0
57 A 0040 MTA EQU TAG+0
58 A 0060 MSAL EQU SCG+0

ANE&15 MOTOROLA
9

59 A
60 A
61 A
62 A
63 A
64 A
65 A
66 A
67 A
68 A
69 A
70 A
7aA
A
A
7% A
A
76 A
77 A
78 A
DA
80 A
81 A
8 A
8 A
84 A
85 A
86 A
87 A
88 A
89 A
90 A
91 A
92 A
93 A
9% A
95 A
96 A
97 A
98 A
99 A
100 A
101A
102 A
103 A
104 A
105 A
106 A
107 A
108 A
109 A
110 A
1M1A
112 A
1M3A
1% A
115 A
116 °A

gggaggEaaeseg

OOFF

F800

F800
F800 8EOQFF
F803 BDF922
F806 3&

F807
F807 BOF9E7
FBOA 847F
F8OC 16
F80D C460
FBOF C160
F811 2742
F813 C140
F815 2611
F817 8140
F819 2608
F818 150003
F8IE 140008
F821 2066
F823 14000A
F826 200F
F828 8120
F82A 2605
F82C 140008
F82F 2006
F831 813F
FB33 2605
F835 150001
FE38 20D
FE3A 815F
F83C 2605
FE3E 14000A
F841 20C4
FBAS 8118
F845 2605
FB47 140004
F84A 2088

MOTOROLA

10

NTADS

NSADS
NIFC
PIFC
PATN
NATN
EOS
JTIC3
Jr1c2
USTACK
TORE
RDRF

»

MAIN

IDLE

OTA

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

Los
JSR
WAL

SCG+7
$3F
$5F
1
2
4
8
8
4 -
1
2
0
$C4
$C7
SFF
$80
$20
$F800
E
#USTACK Initialise stack
INIT
Wait for ATN or IFC.
-
READBYTE Get command byte
#S7F Remove MS Bit
#$60
#360 1f SCG then
SECCMD process the address field
#840 else
o1 ! If talk address then
MMTA i 1f my talk address then
OTA
CMDSTAT, #(LADS+NTADS) ! idle listener (LADS=0)
CMDSTAT , #NSADS ! enable talker (NTADS=0)
CMDMODE ! and clear sec. addr. mode
CMDSTAT , #(NTADS+NSADS) ! else idle talker
CMDMODE
LA ! else If my listen address then
o2 ! idle talker &
CMDSTAT , #(LADS+NTADS+NSADS)
CMDMODE ! enable listener
#UNL ! else If unlisten then
cMn3
CMDSTAT, #LADS ! ' idle listener
CMDMODE
#UNT ! else 1f Untalk then
cMD4 ! idle talker
CMDSTAT , #(NTADS+NSADS)
CMDMODE
#SPE
cMDS5
CMDSTAT , #SPMS

ANE41S

117 A F84C 8119 CMD5 CMPA #SPD

118 A F84E 2603 BNE cMD6

119 A F850 150004 BCLR CMDSTAT, #SPMS

120 A F853 2082 cMD6 BRA CMDMODE

1 -4 I St inaiudaiadiatadededeindedadaded hadndal indadabuiaiadeindeiabeiobnid
122 A * /SECCMD/ Prepares secondary command address to correct format

123 A * and stores it for STACS or SLACS

126 A habubededebibeindudeiodeiaedaioddodiniedeedoddadbed i duindubeiadeboiadededbobd ERAAAEERANAARRA AR AR
125 A F8S5 SECCMOD EQU * .

126 A F855 150008 BCLR CMDSTAT , #NSADS Enter Sec. address state

127 A F858 845F ANDA #85F Mask off Master Enable bit

128 A F85A 9702 STAA ADDR2 Store

129 A F85C 20A9 BRA CMDMODE

130 A *

131 A F85€E LACS EQU *

132 A F8SE BDF967 JSR READBYTE

133 A F861 BDF953 JSR oUTPUT

134 A F864 20F8 BRA LACS

135 A *

136 A F866 TACS EQU *

137 A F866 BDF94A JSR INPUT

138 A F869 BDF984 JSR SENDBYTE

139 A F86C 20F. BRA TACS

140 A *® aiinddndndb oot iniedbededebedeiededeiaiobdddd b bodobbedddddb bbb dbdieddedededede

141 A * /STACS/ Data read from DSP and sent to GPIB

142 A * On entry the secondary address mask is stored in ADDR2 -

143 A * DSP ready testing is performed only if the register to be

144 A * read is no. 5,6 or 7 :

145 A * Multiple bytes of data are read from successive registers until
*

146 A register 7 has been read when the next register becomes 5.

17T A 0 AEERERRREss inde *w ARRRARERRRERRERRRRRRRAARAARR
148 A F86E STACS EQU *

149 A F8SE 9602 LDAA ADDR2 Load in address mask

150 A F870 16 TAB

151 A F871 C407 ANDB #3807 Get register field

152 A F873 C105 CMPB #305 Test B and branch if less than 5
153 A F875 2500 BLO STMISS (i.e. 0,1,2,3 or 4)

154 A F877 8458 ANDA #358 Clear reg. address field

155 A F879 8A02 ORAA #302 Set address to DSP status register
156 A F87B 188F XGDY Load address into Y

157 A F87D OF STLOOP cLs Allow IFC and ATN interrupts

158 A F87E 181F0C01FB BRCLR 0,Y,#XDF,* Wait till DSP ready (+delay)

159 A F883 OF SEl

160 A F884 18DE02 STMISS LDY ADDR2 Re-load original address into Y
161 A F887 18A600 LDAA ,Y Read data from DSP

162 A F88A BDF984 JSR SENDBYTE Send to GPIB

163 A F88D 9602 LDAA ADDR2 Get current address mask

164 A F88F 16 TAB

165 A F890 4C INCA + increment

166 A F891 9702 STAA ADDR2 + store

167 A F893 8407 ANDA #$07 Get register no.

168 A F895 2807 BNE STACS Loop if not last register

169 A F897 C458 ANDB #8358 Clear reg. field of address

170 A F899 CACS ORAB #305 and set to 5

171 A F898 D702 STAB ADDR2 Update ADDR2

172 A F89D 20CF BRA STACS ..and loop

173 A AT A R R RN ER AR R R RN RN R R R TR R AR R AR AR AR AR RAR R R R AR ERR R EARA R A AR AR RARA R ARNY
174 A * /SLACS/ Data read from GPIB and sent to DSP

ANE415 MOTOROLA
11

175 A * On entry the secondary address mask is stored in ADDR2

176 A * The operating modes is selected by the first byte sent from

177 A * the GPIB:

178 A * XXMXXXXA

179 A * M - Master select, when set all DSPs are written to simultaneously
180 A * A - Auto address , when set the GPIB data is automatically routed

181 A * to DSP registers $5,%6,$7,$5,86,87,85,.......

182 A * When A is clear normal mode is selected, in which alternate bytes
183 A * read from the GPIB indicate the DSP target register address then
184 A * the data to be written.

185 A ARRRERXRRENERN R A RN ERRRERRRR R RN RRRR AR A RN ERAN RN AN N RN LR ERRA AR RARRY
186 A *

187 A F89F SLACS EQU *

188 A F89F BDF967 JSR READBYTE Get mode byte from GPIB

189 A F8A2 16 TAB

190 A F8A3 C401 ANDB #301 Test &uto bit

191 A F8AS 2731 BEQ SLNORM Go to normal mode if clear

192 A 0 Rkttt A A R RS R R R A Ay bbbt bbb b bbb bbbt bt deddddeddedddedd
193 A * - /SLAUTO/ Auto address mode

194 A * Multiple addressing inhibited

195 A * DSP ready testing activated

196 A 00 SRRttt R e AR A A AN A AR *n dadadedededddedndebeiodebob bt bbb *
197 A F8A7 D602 LDAB ADDR2 Get address mask

198 A F8A9 C458 ANDB #8358 Clear Reg. address field and M bit
199 A F8AB D702 STAB ADDR2 Replace

200 A F8AD 8605 SLAUTO LDAA #305

201 A F8AF 9A02 ORAA ADDR2 Set first address to $05

202 A F881 188F XGDY .

203 A F883 183C SLLOOP PSHY ...and store

204 A F8B5 BDF967 JSR READBYTE Get a data byte from GPIB

205 A F888 36 PSHA «..and store

206 A F889 8602 LDAA #3$02 DSP ’ready’ esting

207 A F8BB 9A02 ORAA ADDR2 Set address to DSP status register
208 A F88BD 188F XGDY Load address into Y

209 A F8BF OE SLTL CL1 Allow ATN and IFC ints.

210 A F8CO 181F0002FB BRCLR 0,Y,#TXDE,* Wait till DSP ready (+delay)

211 A F8CS OF SEl

212 A F8C6 32 PULA . Retrieve data for DSP

213 A F8C7 1838 PULY Retrieve DSP write address

214 A F8C9 18A700 STAA Y Write data to DSP

215 A F8CC 188F XGDY Put address into D for processing
216 A F8CE 4C INCA Set to next register

217 A F8CF 16 TAB Test for last register in cycle.

218 A F8D0 C407 ANDB #3807 (mask off register field and set flags)
219 A F8D2 188F XGDY Address back in Y

220 A F8D4 26DD BNE SLLOOP Continue if not last reg.

221 A F8D6 2005 BRA SLAUTO Repeat whole cycle

22A 2000000 ke wh * . ininieiniele
223 A * /SLNORM/ - Normal data write mode

224 A * Multiple addressing used if indicated in mode byte

225 A * No DSP ready testing used

226 A lndabudedeiadedudnbiedubuindeininieioiobuinindininininiaie infaidednideinininiaiabeiabuinininininioioiobelnbelaiaiale
227 A F8D8 SLNORM EQU * Normal write routine

228 A F8D8 C660 LDAB #360 Prepare as if M bit is set

229 A F8DA 8420 ANDA #$20 Test M bit of mode byte

230 A F8DC 2604 BNE SLNMISS Miss if M is set

231 A F8DE D602 LDAB ADDR2 Prepare for M bit clear

232 A FBEO C458 ANDB #3858 (Clear Reg. field and M bit)

MOTOROLA : ANE415
12

233 A F8E2 D702 SLNMISS STAB ADDR2 Update ADDR2

234 A F8E4 BDF967 SLNLOOP JSR READBYTE Get DSP reg. address field

235 A FBE7 8407 ANDA #307 Remove any extra bits

236 A F8E9 9A02 ORAA ADDR2 Incorporate into address mask

237 A F8EB 188F XGDY Put into Y

238 A F8ED BDF967 JSR READBYTE Get data

239 A F8F0 18A700 STAA Y Send to DSP

240 A F8F3 20EF BRA SLNLOOP Start again

241 A T RRARERRRRS R A A A A A SR TN A AR AR RA AR AR N AR
262 A *

263 A *

264 A F8F5 SPAS EQU *

245 A F8F5 9601 LDAA STATUS Bit 6 in STATUS must be set if service requested
246 A FUF7 BDF984 JSR SENDBYTE

247 A F8FA 20F9 BRA SPAS

268 A *

269 A F8FC SENDSTRG EQU &

250 A F8FC 18A600 SSTRG1 LDAA Y

251 A F8FF BDF984 JSR SENDBYTE

252 A F902 1808 INY

253 A F904 81F5 CMPA #SF5 (=0A):ACCA is inverted by SENDBYTE
254 A F906 26F4 BNE SSTRG1

255 A F908 39 RTS

256 A .

257 A F909 WAIT EQU *

258 A F909 1809 VAIT1 DEY

259 A F908 26FC BNE WAIT1

260 A F90D 39 RTS

261 A *

262 A F90E 18CEOO0A ABORT LDY #10

263 A F912 1D23FD BCLR TFLG1,X,#SFD Clear 1/C 2 flag only

264 A F915 8DF2 BSR WAIT Wait to see if IFC glitch only
265 A F917 1F000206 BRCLR PORTA,X,#$2,ABORTEX I1f IFC line still asserted t_hen
266 A F91B 8EOOFF LoS #USTACK ! reset stack &

267 A F91E TEFBOO Jwp MAIN ! re-start,

268 A F921 38 ABORTEX RTI else return.

269 A *

270 A F922 INIT EQU *

271 A F922 OF SEl Disable interrupts.

272 A F923 CE1000 LDX #$1000

273 A F926 860A LDAA #(NTADS+NSADS)

274 A F928 9700 STAA CMDSTAT Set talker & listener to idle states.
275 A F92A BDFAO1 JSR IDLEBUS Release STRA,RFD & DAC (Also disables 1/0 buff)
276 A F920 A623 LDAA TFLG1,X .

277 A F92F AT23 STAA TFLG1,X Clear all flags and

278 A F931 8605 LDAA #(PIFC+PATN) enable interrupt on ATN assertion.
279 A F933 AT21 STAA TCTL2, X

280 A F935 8603 LDAA s

281 A F937 A722 STAA TMSK1,X Enable I1C3,1C2 interrupt,

282 A F939 6FOC CLR OC1IN, X and disable all others.

283 A F93B 6F24 CLR T™MSK2,X

284 A F93D 6F28 CLR SPCR, X

285 A F93F CC300C LDD #$300C

286 A F942 6F2C CLR SCCR1,X Enabl,e SCI Tx + Rx

287 A F944 ET2D STAB SCCR2,X for 9600 baud

288 A F946 A72B STAA BAUD, X

289 A F948 OF CLI

290 A F949 39 RTS before returning.

ANE415 MOTOROLA
13

291 A
292 A
293 A
29 A

295 A

296 A
297 A
298 A
299 A
300 A
301 A
302 A
303 A
304 A
305 A
306 A
307 A
308 A
309 A
310 A
311 A
312 A
313 A
314 A
315 A
316 A
37 A
318 A
319 A
320 A
321 A
322 A
33 A
324 A
325 A
326 A
327 A
328 A
329 A
330 A
3314
332 A
3334
334 A
335 A
336 A
337 A
338 A
339 A
340 A
341 A
342 A
343 A
344 A
345 A
346 A
347 A
348 A

FOLA
FO4A OF
F948 1F2E20FC
FO4F OF
F950 A62F
F952 39

F953
F953 OE
F954 1F2EBOFC
F958 OF
F959 AT2F
F958 39

F95C
F95C A600
F9SE 2706
F960 BDF953
F963 08
F964 20F6
F966 39

F967
F967 OE
F968 01
F969 E605
F968 1F0280FC
F96F 1C0408
F972 1€0202
F975 OF
F976 A605
FO78 43
F979 1F0280FC
F97D 100408
F980 100202
F983 39

F984
F984 OF
F985 43
F986 1F0280FC
F98A A705
F98C 1C0408
F98F 1F0280FC
F993 1C0410
F996 100210
F999 E605
F998 1C0210
F99E 100408
F9A1 100410
FOAL 39

F9AS
F9AS 1F000110
F9A9 C60A
F9AB E704
F9AD 8D5C

MOTOROLA

14

INPUT

OUTSTRG

STRGEX

READBYTE

NDAV

DAV

SENDBYTE

NRFD

NDAC

ATNSRV

EQU
CL1
BRCLR
SEl
LDAA
RTS

EQU
CL!
BRCLR
SEI
STAA
RTS

EQU
LDAA
BEQ
JSR
INX

RTS

EQU
CL1

LDAB
BRCLR

BCLR
RTS

EQU
BRCLR
LDAB
STAB
BSR

SCSR, X, #RDRF ,*

SCOR, X

SCSR, X, #TDRE ,*

SCOR, X

-
X

STRGEX
QUTPUT

QUTSTRG

PORTCL , X
PI10OC,X,#$80, NDAV
PORTB, X, #8
PIOC,X,#2

PORTCL X

P10C, X, #$80,DAV
PORTB, X, #8
Pl0C,X,#2

PIOC, X, #$80,NRFD
PORTCL, X
PORTB, X, #8
PIOC, X, #$80,NDAC
PORTB, X, #$10
P10C,X,#$10
PORTCL, X
PIOC,X,#$10
PORTB, X, #8
PORTB, X, #$10

*

PORTA, X, #1,DATAMODE

#SA
PORTB,X
INITIP

allow ATN and IFC interrupts
Wait for data

Read in char

enable IFC and ATN interrupts

wWhen ready, send char and
return

Allow ATN,IFC or T/0 interruptions.

Make sure RFD is asserted. .
Wait for DAV (when RFD de-asserted)
Switch STRB (low) to DAC line.

Set up detection of DAV de-assertion.
inhibit interruptions until data checked
Read data and assertDAC,

and invert data,

and wait for DAV to go false.

Switch STRB (low) to RFD line

Reset DAV neg detection,

and return with data in ACCA.

Wait for RFD assertion, then send
data to listener, with DAV asserted.
Switch DAC to STRA,

and wait for DAC assertion.

Pull STRA low.

Select non-handshake mode

to clear STAF without re-asserting DAV
Re-select handshake mode.

Reconnect STRA to RFD,

and release STRA before

returning with STAF set if RFD asserted

1f ATN asserted then

! make sure RFD is de-asserted

! until all registers are configured.
! Set up input handshake mode

ANE415

349 A FOAF C606
350 A F9B1 E721

351 A £983 18CEF807
352 A F9B7 203€

353 A F9B9 C605

354 A F98B E721

355 A F98D 13000110
356 A’ F9C1 13000806
357 A F9C5 18CEF85E
358 A F9C9 202C
359 A F9CB 18CEF89F
360 A F9CF 2026

361 A

362 A F9DO1 1200021C
363 A F9D5 8D4B

364 A F9D7 12000410
365 A F9DB 13000806
366 A FIDF 18CEF866
367 A F9E3 2012
368 A F9ES 18CEF86E
369 A F9E9 200C

370 A F9EB 18CEF8F5
371 A F9EF 2006
372 A F9F1 8DOE
373 A F9F3 1BCEF806
374 A FOF7 1D23FE
375 A FOFA BEOOFF
376 A F9FD 183C
377 A F9FF OE

378 A FAOO 39

39 A

380 A FAO1

381 A FAOT cc1211
382 A FAG4 E702
383 A FAOS A704

384 A FAOS 6C04
385 A FAOA 39

386 A

387 A FAOB

388 A FAOB 6F07
389 A FAOD 100407
390 A FA10 C610

391 A FA12 ET02
392 A FA14 E602
393 A FA16 1C0410
394 A FA19 1D0410
395 A FAIC E602
396 A FAIE 100408
397 A FA21 39

398 A

399 A FA22

400 A FA22 1D040A
401 A FA25 1C0410
402 A FA28 C608
403 A FA2A ET702
404 A FA2C E602
405 A FA2E E60S
406 A FA30 1C0210

ANE415

DATAMODE

LISTEN2

TALKER

TALKER2
sPoLL
NOADRD

SRVEXIT

IDLEBUS

-

INITIP

INITOP

LDAB
STAB
LY
BRA
LDAB
STAB
BRCLR
BRCLR
LY

Loy

BRSET
BRSET
BRCLR
Loy

LoY

SEEGE

BCLR
LDS
PSHY
CLI
RTS

STAB
STAA
INC
RTS

EQU
CLR
BCLR
LDAB
STAB

LDAB
BSET
BCLR
LDAB
BCLR
RTS

EQU

BCLR
BSET

. LDAB

STAB
LDAB
LDAB
BSET

#(PIFCHNATN) { enable interrupt on
TCTLZ,X ! deassertion of ATN,
#CMDMODE ! Get required return address
SRVEXIT ! and go there.
#(PIFC+PATN) else enable interrupt on
TCTL2,X ! assertion of ATN
CMDSTAT ,#LADS, TALKER | 1f listener then
CMDSTAT , #NSADS, LISTEN2! 1f not sec. listener then
#LACS ! enter LACS state,
SRVEXIT
#SLACS ! else enter SLACS state.
SRVEXIT
CMDSTAT ,#NTADS,NOADRD ¢ else if talker then
INITOP ! ensble buffer for output
CMDSTAT ,#SPMS,SPOLL ! if not serial poll mode then
CMDSTAT , #NSADS, TALKER2! if secondary talker not
#TACS ! addressed, then enter
SRVEXIT primary TACS
#STACS ! else
SRVEXIT enter secondary TACS
#SPAS ! else activate serial poll
SRVEXIT
IDLEBUS [else go to idle mode
#I0LE
TFLG1,X,#SFE Clear interrupt flag generated by ATN
#USTACK Reset user stack
{ and return.
-
#$1211 Select handshake mode, to prevent STRB pulses
P10C,X when writing to PORTB. Select +ive STRB.
PORTB,X Disable bus driver, and de-assert STRB.
PORTB, X Now release RFD & DAC, by selecting talker mode
*
DDRC, X Set PortC to input. -
P&TB,X,S‘I Connect DAC to STRB,select input buffer mode.
#310 Select -ive STRA, -ive STRB,
P10OC,X full i/p handshake mode.
P1OC,X
PORTB, X, #8310 Make sure STRB is de-asserted
PORTB,X,#$10 by toggling STRA
P1oC,X Do cusmwy read, to prepare for STAF clearing,
PORTB,X,#8 before connecting RFD to STRB (low).
* Entered with data & handshake lines in Listener mode
PORTB, X, #S0A Route RFD to STRA.
PORTB,X,#$10 Pull STRA low, to deassert STRB.
#308 Select non-harcishake mode, +ive STRA, +ive STRB
P1OC,X
P10C, X then read PIOC & PORTCL in turn,
PORTCL , X to clear STAF without asserting STRB.
P1OC,X,#8$10 Now select full output handshake mode.

MOTOROLA
15

407 A FA33 10405 BSET PORTB, X, #5 Connect RFD to STRA,STRB to DAV,ensble o/p buffer
408 A FA36 C6FF LDAB #SFF

409 A FA3B E707 STAB DDRC,X Then put PortC in output mode

410 A FA3A 100410 BCLR PORTB,X,#$10 & release STRA.

411 A FA3D 39 RTS Exit with STAF set only if RFD asserted.
412 A *

413 A FA3E NULLSRV EQU bl This service routine should never be executed,
414 A FA3E 38 RT1 as all unused interrupts are disabled.
415 A *

416 A FA3F ILLOPSRV EQU bl '

417 A FA3F CF STOP Stop processor if there’s a problem with code.
418 A FALO TEFA3F Jup ILLOPSRV Just in case.(Should never be executed).
419 A

420 A * Interrupt vector assignments

421 A *

422 A FFEA ORG SFFEA

423 A FFEA FOAS FDB ATNSRV 1/P capture 3

424 A FFEC F9OE FDB ABORT 1/P capture 2

425 A FFEE FA3E FOB NULLSRV 1/P capture 1

426 A FFFO FA3E FOB NULLSRV Real time interrupt

427 A FFF2 FA3E FDB NULLSRV IRQ

428 A FFF4 FA3E FDB NULLSRV . XIRQ

429 A FFF6 FA3E FD8 NULLSRV Swt

430 A FFF8 FA3F FDB ILLOPSRV Illegal opcode trap

431 A FFFA FA3E FoB NULLSRV COP timeout

432 A FFFC FA3E FDB NULLSRV Clock monitor failure

433 A FFFE F800 FDB MAIN

434 A -

435 A END

MOTOROLA ANE415

1R

ABORT F90E " PIFC 0004

ABORTEX F921 PIOC 0002
ADDR2 0002 PORTA 0000
ATNSRV FOAS PORTB 0004
BAUD 0028 PORTC 0003
cMD1 F828 PORTCL 0005
cMD2 F831 RDRF 0020
cMD3 FE3A READBYTE F967
CMD3A F&3E RXDF 0001
cMD4 : F843 SCCR1 002¢
cMDS F84C SCCR2 0020
D6 Fes3 SCOR 002F
CMDMODE F807 sc6 0060
CMDSTAT 0000 SCSR 002€
CURRENT 0c03 SECCHD Fass
DATAMODE F989 SENDBYTE F984
DAV FO79 SENDSTRG F8FC
DDRC 0007 SLACS. FE9F
DUART A200 SLAUTO FBAD
EOS 0000 SLLOOP Fes3
IDLE ' F806 SLNLOOP F8E4
IDLEBUS FAO1 SLAMISS F8E2
ILLOPSRV FA3F - SLNORM F808
INIT F922 sLiL - F8BF
INITIP FAOB SPAS F8FS
INITOP FA22 SPCR 0028
INPUT F94A sPD 0019
JTIC2 ooc7 SPE 0018
JTIC3 00C4 SPHS 0004
LACS F8SE SPOLL F9EB
LADS 0001 SRVEXIT FOF7
LAG 0020 SSTRG1 F8FC
LISTEN2 F9C8 STACS FB6E
MAIN F800 STATUS 0001
MLA 0020 sTLOOP F87D
MSAH 0067 STMISS Fa84
MSAL 0060 STRGEX F966
MTA 0040 TACS , F866
NATN 0002 G 0040
NDAC F98F TALKER F9D1
NDAV F968 TALKER2 FIES
NIFC 0008 cTLR 0021
NOADRD PR TORE 0080
NRFD F986 TFLG1 0023
NSADS 0008 ™SK1 0022
NTADS 0002 ™SK2 0024
NULLSRV FA3E TXDE 0002
oc1M 000C UNL 003F
OTA F823 UNT 005F
ouTPUT F953 USTACK 00FF
OUTSTRG F95C WAIT F909
PATN 0001 WAIT1 F909

ANEA41S MOTOROLA
17

Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals™ must be validated for each customer application by customer’s technical experts. Motoroladoes
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as

systems intended for surgical implant into the bodly, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and (%) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong.

| @ MOTOROLA

JIT PRINTED IN THE USA 1993 MPS ANE415/D

¢ | R FEE RO R ORRY B0 0O

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

