
MOTOROLA
• SEMICONDUCTOR

APPLICATION NOTE

MCS3201

Order this document
by AN1123/D

AN1123

Floppy Disk Controller in MC68000 System
Prepared by: Ajay Matani

Motorola Semiconductor Product Sector
Anaheim, CA

INTRODUCTION

MCS3201 provides a highly integrated system solution for
Floppy Disk control in the IBM/PC environment. The FDC func­
tionality in the MCS3201 is based around an industry standard
core with an array of programmable features providing interface
to low cost IBM/PC compatible Floppy Disk Drives for 5.25" and
3.5" media.

Development of peripheral chips to interface with the
MC68HC000 bus has been virtually ceased in favor of high inte­
gration products in the MC68300 family of controllers. Providing
a low cost interface between the CMOS 68K member and intelli­
gent peripheral subsystems like the MCS3201 FDC results in a
mutual benefit to Motorola and customers who are looking for
low cost solutions with high performance.

This study examines the role of the FDC in a typical system
emphasizing various host interface strategies. The functionality
provided by the MCS3201 in terms of the Floppy Disk Control
and its merit are not considered in detail here as the said con­
troller does have an industry standard low cost solution with a
rich feature list.

The study is presented in the following format:

• Introduction to the MCS3201
• Data transfer analysis and DMA requirement in a

MC68HC000 based system
• Description of the hardware interface to the MCS3201
• Analysis of the software structure
• Adapting to other M68K family members
• Summary

INTRODUCTION TO THE MCS3201

The MCS3201 is a single chip solution for the Floppy Disk
Control sub-system in an IBM/PC. The "host" interface is to the
so called "PC-BUS" which includes the address decoding of the
1/0 space on the "PC-BUS" as well as the OMA interface. The
MCS3201 itself is based around a core FDC consisting of a mi­
crocoded sequencer to emulate and enhance the command set
of industry standard NEC765A in an IBM environment. This mi­
crocoded design enables enhancing the functionality of the
FDC sub-system as well as provides for an efficient testing envi­
ronment.

The interface to the Floppy Disk Drive Electronics is implem­
ented on board resulting in fast access time, high reliability and
low cost per bit capability. Refer to the data sheet MCS3201 /D
for further information.

On the Host Interface end, the decode logic to map the
MCS3201 at the appropriate 1/0 address location in the IBM/

@ MOTOROLA INC., 1991

PC's 1 K 1/0 space defined by SA[9:0] is integrated along with
the TOR and IOW strobes and support for the DMA accesses by
providing the AEN, ORO.DACK and TIC signals. As far as the
accessible range of the registers on the MCS3201 are con­
cerned only SA[2:0] are needed to address the six distinct loca­
tions.

The FDC core module, as shown in the data sheet
MCS3201, runs the command and data sequences with refer­
ence to the FCLK and WCLK clocks provided by the CLOCK
GENERATOR that uses a 24 MHz nominal fosc crystal. There
are four registers within the FDC core out of the total of seven
seen in the MCS3201: Diskette Control Register-Write Only at
$3F7, Main Status Register-Read Only at $374 and the Data
Read Register and Data Write Register at $3F5. Accesses to all
of these are asynchronous and hence the Host Interface Timing
is the same for all the registers on the MCS3201.

On the other hand, the events in the FDC core that require
information exchange are synchronized by the core and the
Host has to wait or provide long strobes while interfacing.

ACCESS CYCLE DETAILS

(Note: Refer to the AC characteristics in the MCS3201 data
sheet if needed.) A simple READ operation of the register file is
carried out by asserting the SA[9:0] and CS active along with
AEN and DACK negated 25 ns before the TOR is asserted to
meet the tAR (min) parameter. For up to a 100 pF load on the
data bus, the access time for the valid data on the bus is 80 ns
(t1 RD min) and the data is guaranteed to be valid on the SD[7:0]
bus for at least 1 0 ns (toH min).

For the write case, the addresses need to be valid as in the
read case before the TOW is asserted with identical timing as
tAw min= tAR min. The important timing is to provide valid data
60 ns (tow min) before the TOW is negated with zero hold time
requirement. The address information in both the cases has to

., be valid until the negation of the appropriate strobe (tRA min =
twA min = 0 ns).

For the DMA accesses, AEN needs to be asserted to ignore
the address decoder output, but DACK also needs to be as­
serted. Depending on the transfer direction, TOR or IOW need to
be strobed with same AC timing as for the normal access, with
DACK asserted before the access strobes.

During the OMA access, DAcK and TC (when needed) must
be wide pulses because they are synchronized by the core. The
timing requirement varies, depending upon the data rate at
which the floppy disk is operating. The DAcK width tw(AA) min=
260 ns for the 500 kb/s disks and = 51 0 ns for the 250 kb/s me­
dium. NotethatTC width tw(bC) min= (tw(AA) min+ 10)/2 i.e.= 5
ns more than half of the DA K width.

® MOTOROLA -

DATA TRANSFER ANALYSIS

Depending on the bit rate of data accessed from the dis­
kette, nominal rate at which data needs to be provided by the
system may be calculated as:

tovc typ = 8/fsit Rate µs for Bit Rate specified in kb/s

Therefore, we have 16 µs, 26.67 µs, and 32 µs as the nominal
cycle times. Due to delays in the FDC core and other synchro­
nization for MFM recording at 500 kb/s, tocv min is specified
as 13 µs. We will consider only this fastest case for further
analysis, unless otherwise noted.

Note that this minimum cycle time would not be a sustained
minimum, but would typically exist at the onset of a data trans­
fer sequence. Once data transfer sequence w.i/hin a sector be­
gins, tocv min would tend to attain its average value with high
probability. This concept is important to the solution proposed
here.

The other important parameter is the service delay from a
request to transfer (tPMRW min), which is the response time of
IOR or IOW from the DRQ request. It is specified as 12 µs for
the fastest case.

In a low cost system using the MC68000, providing hard­
ware for the OMA transfers may not be possible; therefore, the
CPU needs to be involved in the data transfer task during the
EXECUTION phase of a command sequence. This may be
achieved by CPU responding to the transfer needs in either
POOLED or INTERRUPT driven mode.

The case of the CPU polling is trivial when the MCS3201
is programmed to work in a non-OMA mode and the Request
for Master Bit 7 of the Main Status Register is awaited before
the new data is transferred. IRQ interrupt may be used in the
same mode, but the ISR has the responsibility of distinguish­
ing the phase of operation because the interrupt on the IRQ
pin may be caused during the COMMAND and RESULT
phases. A unified ISR is longer in execution and slower in re­
sponse, and may fail to provide service during the EXECU­
TION phase of operation.

The key feature of the MC68000 architecture that comes
to the rescue is the interrupt interface supporting multiple lev­
els. The solution is based on operating the MCS3201 in a OMA
mode requesting service with DRQ signal demanding an ISR
to carry out data transfer at a high priority (say level 6). This
distinguishes the ISR for the normal IRQ used during COM­
MAND and RESULT phase from the ISR during the EXECU­
TION phase to provide fast and efficient service.

HARDWARE INTERFACE

The interface described here between the MC68HC000
and MCS3201 as shown in the BLOCK DIAGRAM (Figure 1)
is based on the Interrupt Driven OMA scheme suggested earli­
er, at minimal cost. Circuit level details of blocks that are ge­
neric in a 68K based system are not illustrated, but the require­
ments are outlined.

ADDRESS DECODER

The address decoder provides decoding for the MCS3201
access, preferably in the Absolute Short Address Space at the
TOP of the MEMORY MAP along with other I/Os. It also pro­
vides DACK to the processor for the FDC access with zero
wait state and hence should not require extra logic beyond an
ORing with other DACKs. The master decode line FDC_CS is
provided to the Programmable Logic Device 16R4 which gen-

MOTOROLA
2

erates the strobes to interface with the FDC. Interrupt
Acknowledge Cycles are also decoded here, providing master
decode signal to the INTERRUPT LEVEL DECODER and the
processor to indicate an autovector termination on the VPA
line.

INTERRUPT LEVEL DECODER

This is actually an encoder for the various IRQ requests at
each of the seven levels and a decoder if the interrupting de­
vices need it. The MCS3201 does not provide any
acknowledgement in terms of vector during the IACK bus
cycle of the MC68000, so it does not need any specific signal;
therefore, the FDC_IRQ_ack and FDC_DMA_ack signals
shown in Figure 1 are not used as indicated. The acknowl­
edgement of the interrupt is provided within the ISR for the
each request from the FDC. If other interrupters do not require
specific acknowledgement, there is no need to generate them.

The IRQ request from FDC is encoded at level 1-a low
priority, while the OMA request signal DRQ is encoded at level
6-highest priority maskable interrupt. At level 7 in a 68K
based system ABORT or RESTART request is found normal­
ly. Note that the requests are active high and need to be en­
coded accordingly. It is mandatory that DRQ have the highest
priority since service latency requirement is quite stringent for
the DATA TRANSFER request.

MCS3201 INTERFACE

Since the address decoder on board the FDC looks for $3F
on SA[9:4] when ADDSEL is high, these may be pulled high.
The CS always enabled as accesses are controlled by isolat­
ing the read and write strobes in this implementation. Address
buffer enable signal AEN, indicating a normal CPU access, is
asserted when the lower nibble SA[3:0] is in a range of $[7:0]
and is disabled in the range $[F:8]. This provides for distin­
guishing the OMA access of MCS3201.

The data access is provided by connecting the upper byte
of the MC68000s data bus to the FDC so that the registers in
the MCS3201 are mapped on alternate even bytes on the
68Ks memory space. In fact, although the data transfer is only
on the even bytes here, the access decoder does not look for
such restriction. Because of this, a byte access on the corre­
sponding odd byte would result in an invalid access, since the
lower data bus is not connected to the FDC. On the same
token, a word access would only transfer data on the upper
data bus but work perfectly otherwise. Such word transfers
may be useful if data is to be transferred to the system stack
within ISR.

Also note that DRQ request is fed back to the FDC on one
of the general purpose inputs 17. This will enable the processor
to read the DRQ signal if it needs to without disrupting the
OMA sequence. Other inputs may be used to provide different
configuration information to the processor.

INTERFACE LOGIC

A low cost generic PAL device 16R4-15 is used to provide
most of the interface logic. The details of this interface may be
found in the following source code in CUPLs programming
language. The basic idea is to provide the IOR and IOW
strobes that meet the AC timing requirements. The processor
is considered to be working at its highest speed of 16.67 MHz
here since slower speeds will work without any changes.

AN1123/D

MC&BHC000-16 MHz ADDRESS DECODER

CSn
SELECT OTHER DEVICES

FC(2:0) FCn ADDRESS BUS

A(23:1)
A(UPPER)

ADDRESS DATA BUS ',/

DACK DACR FDC_CS -
AS

D (15:0)
A(23:0)

ILP (2:0)
VPA

/
/

/

'
CLK

R/W
RESET

FROM OTHER
INTERRUPTING_

DEVICES IF
NEEDED

AS

}
VPA

A3
A2
A1

....-- IRQ1

/-- IRQN2

/
,....._ IRQN3

/-- IRQN4

-- IRONS /

/
~ IRQ6

IRQN7

8
r -

IACKl

'
A(4:1)

SA(3:0)
I '\

' D (15:8)
pD(7:0)

IACK1 ~ AEN

+5 IACK2 ------...._ SA(9:4)
IACK3 ------...._ GND cs
IACK4 ------...._

~ FDC IRQ ack IACKS ~ N/U - -
IACK6 FDC_DMA_ack

IACK7 ~
MCS3201

TO OTHER FDC
INTERRUPTING
DEVICES IF
NEEDED I 17

l
IRQ

- DRQ

PAL 16R-15
A4 TOR TOR A3
A2 iOW iOW
FDC_CS DACR DACR
CLK
R/W TC - TC

RESET
AS

Figure 1. Block Diagram

To meet the tAR min, assertion of TOR or IOW is delayed
until the beginning of S3 cycle when the CLK is low. Otherwise
the strobes follow the AS from the processor when FDC_CS
is present. Also, during the cycles when A4 is high (i.e., OMA
access), the strobes will not be asserted until the DACK is
asserted.

The sequencer implemented works off the AS as clock, and
changes states to a cycle by the processor at the end. To pro-

AN1123/D

vide the extended DACK and TC pulses, if asserted during the
CPU access cycle, the said signals are extended till the hold­
ing term WEND is asserted.

Depending on the address line A4 from processor, OMA or
NON-OMA access is carried out. Depending on A3 during
OMA access, TC is asserted indicating last transfer. A2 deter­
mines the width of the pulse for DACK and TC when asserted.

MOTOROLA
3

Name
Partno
Date
Designer
Company
Assembly
Location
Device
Rev

FDCPAL
MP3201P
12/10/90
Ajay Matani
Motorola Semiconductor Products Inc.
None
None
pl6r4
01

/**/
!* */
!* MCS3201 control strobe generator *I
/* *I
I* Generates control signals for the MCS3201 from MC68HC000 bus *I
I* running at 16.67 MHz with no wait states. */
I* ;I *I
/* Decode for various cycles *I
I* *I
I* A4 A3 A2 RWN */
I* 0 X X 1 Read cycle to access MCS3201 registers */
I* 0 X X 0 Write cycle to access MCS3201 registers *I
/* 1 0 0 1 DMA read cycle without TC and wide pulse *I
I* 1 0 0 0 DMA write cycle without TC and wide pulse *I
I* 1 0 1 1 DMA read cycle without TC and narrow pulse */
I* 1 0 1 0 DMA write cycle without TC and narrow pulse *I
I* 1 1 0 1 DMA read cycle with TC and wide pulse *I
!* 1 1 0 0 DMA write cycle with TC and wide pulse *I
I* 1 1 1 1 DMA read cycle with TC and narrow pulse */
I* 1 1 1 0 DMA write cycle with TC and narrow pulse *I
/* *I
/**/
/* Allowable Target Device Types : PAL16R4 */
!**/

/** Inputs **/

Pin 1 CLK_ASN; /* Trailing edge of ASN is the CLOCK
Pin 2 !ASN I* Address strobe from MC68HC000
Pin 3 !FDC_CS I* Decode for FDC access
Pin 4 RWN /* Read/WriteN strobe from MC68HC000
Pin 5 A4 I* A4 output from MC68HC000
Pin 6 A3 I* A3 output from MC68HC000
Pin 7 A2 /* A2 output from MC68HC000
Pin 8 !RESETN I* System RESET active low
Pin 9 CLK I* CLK for combinatorial logic use

/** Outputs **/

Pin 12 !IORN /* Read strobe for the MCS3201
Pin 13 !IOWN !* Write strobe for the MCS3201
Pin 14 !WO I* wait sequencer bit 0
Pin 15 !Wl I* wait sequencer bit 1
Pin 16 !WEND I* wait sequencer end condition
Pin 17 !SPARE
Pin 18 !DACKN I* DMA acknowledge strobe
Pin 19 !TC /* Terminal count on DMA transfer

/* inverted outside

/** Declarations and Intermediate Variable Definitions**/

$define - IDLE
$define _WAITl
$define _WAIT2
$define _WAIT3

field STATES

MOTOROLA
4

'b'00
'b'0l
'b'll
'b'l0

[Wl.. OJ;

/* Default state, waiting for new bus cycle
/* Used to extend DACK and TC signals

*/
*I
*I
*/
*I
*I
*I
*I
*I

*/
*I
*I
*/
*I
*I
*/
*/
*/

*/
*/

AN1123/D

Sequence STATES
present _IDLE /* Default state

if !RESETN & DACKN & A4 & !A2
next _WAIT2 ;

if !RESETN & DACKN & A4 & A2
next _WAIT3

present _WAITl
next _IDLE

/* Unused state

*I

*I

present _WAIT2
if !RESETN

next _WAIT3

/* For wider DACK and TC pulses */

present _WAIT3 /* For DACK and TC pulses, narrow or wide */
if !RESETN

A

next IDLE out WEND.d ;/*asserting WEND completes the access */

/** Logic Equations **/

IORN = !RESETN & (

!CLK & ASN & FDC_CS & !A4 & RWN
!CLK & ASN & FDC_CS & A4 & RWN & DACKN
& ASN & IORN) ;

IOWN = !RESETN & (

!CLK & ASN & FDC_CS & !A4 & !RWN
!CLK & ASN & FDC_CS & A4 & !RWN & DACKN
& ASN & IOWN)

DACKN !RESETN & ASN & FDC_CS & A4
!RESETN & DACKN & !WEND ;

TC !RESETN & ASN & FDC_CS & A4 & A3
!RESETN & DACKN;

ANALYSIS OF SOFTWARE STRUCTURE

The access to FDC can be restricted only in a supervisor
mode, but a typical way to provide support for applications is
through a SOFTWARE INTERRUPT or TRAP to the OS or
BIOS (Basic Input Output System) equivalent service. The de­
vice driver for the MCS3201 would carry out low level tasks as
service to the OS, in terms of synchronizing with the COM­
MAND, EXECUTION, and RESULT phases. A typical trans­
action would follow a sequence like this:

1. Application program or the Memory Manager requests a
Disk Access Service (e.g., Read, Write, Format)

2. The OS queues the request for the Device Driver after vali­
dation of request.

3. Device Driver verifies the transaction request and re­
sponds with positive or negative status.

4. OS schedules CPU time to the Device Driver.

5. Device Driver interfaces with the FDC through COM­
MAND, EXECUTION, and RESULT phases during its allo­
cated time slice.
During the COMMAND and RESULT PHASE, it is recom­
mended to poll the Request For Master (Bit 7) in the Main
Status Register between the transfer of bytes to/from the
FDC.
During the EXECUTION phase, an interrupt driven Data
Transfer is carried out while the Device Driver waits for an
interrupt from the FDC indicating the end of the executing
phase.

AN1123/D

/* init term in S3 */
/* init term, DACK setup */
/* holding term */

/*
I*
I*

/*
/*

I*
/*

init term in S3 */
init term, DACK setup */
holding term */

init term */
holding term */

init term */
holding term *I

6. For most of the command sequences, the device driver
waits between the COMMAND and the subsequent
phases (remember that not all commands have an EX­
ECUTION phase) as there is physical movement involved
at the Disk Drive during that time.
Other tasks may be carried out during such periods, and an
OS supporting multi-tasking certainly would appreciate the
time.
On the other hand, during the execution phase, Service
Latency of 12 µs and Cycle time of 13.5 µs for the data
transfers is specified for the MCS3201.

The most time critical element of this driver is the data
transfer during the EXECUTION phase. The following is the
analysis of the code which provides this service in low cost
systems.

SYSTEM VARIATIONS AND ASSUMPTIONS

For the hardware interface described above, the mapping
of ROM, RAM, Interrupt Vector Table, and the MCS3201 with­
in the 16M space, plays an important role on the execution
speed of the Interrupt Driven Data Transfer Task and guaran­
tees the Service Latency.

• Vector Table in ROM forces the ISR to determine the Data
Transfer Direction, thereby increasing the Service Latency
and the cycle time.

• RAM for storing temporary variables for the Device Driver
is used if available in Absolute Short Address Space, and
minimizes the time to access them.

MOTOROLA
. 5

• Mapping MCS 3201 at the top of the Map (where most I/Os
in typical system are found) again will keep the accesses
in the Absolute Short Address Space.

is assumed because slower memory system would de­
grade the response time of the ISR.

• Accesses to ROM and RAM are zero wait state, or 4 cycle
The code sequence for the ISR to carry out Data Transfer

is illustrated here to reflect these different scenarios.

Variable Name Size Location Description

far_byte_buf byte absolute long address temp holding buffer
near_byte_buf byte absolute short address temp holding buffer
far_fdc_data byte absolute long address FDC data reg-DMA mode
near_fdc_data byte absolute short address FDC data reg-DMA mode
far_fdc_last_data byte absolute long address FDC data reg-DMA mode-w/TC
near_fdc_last_data byte absolute short address FDC data reg-Drli1A mode-w/TC
far _dma_count word
near_dma_count word
far_pointer !word
near_fdc_data !word

SIMPLE DEVICE DRIVER PSEUDO CODE

ENTRY_TASK

jsr parse_command
jsr do_set_up_dma
jsr do_fdc_command__phase
jsr wait_for_result__phase
end_task

EXECUTION PHASE

inst_in__progress
interrupt_sequence (auto vector)
isr_body

RESULT_TASK

jsr_do_fdc_result__phase
jsr_do_validate_completion
end_task

absolute long address
absolute short address
absolute long address
absolute short address

nn
50

DMA transfer counter
DMA transfer counter
DMA address pointer
DMA address pointer

EXECUTION PHASE DETAILS dia densities supported, let's look at the requirements in terms

Instruction in progress must terminate before the exception
processing can begin. In the most general case, this could be
a very long instruction like movem all the registers toHrom
the stack with a bus error in the last transfer and would de­
feat the whole concept here. With certain restrictions in the
system design, in both software and hardware the ''worst case
execution time-nn" can be restricted so we will keep this as
a parameter "nn" that needs to be maximized in our analysis
here.

Upon recognition of the interrupt, the "interrupt exception
execution time" is 44 clocks with 4 cycle IACK cycle for the
MC68000, but for our system as we use auto-vector we add
6 more clocks. Therefore, there is a total interrupt latency of
"nn + 50 clocks" before the lsr_body is executed.

We consider four cases here with different system imple­
mentation flavors resulting in ISRs that provide cost savings
at a performance penalty. An appropriate scheme may be
used depending upon the kind of Floppy Disk Drives used that
require different bit rates. To measure the performance of
these four cases against the CPU's operating speed and me-

MOTOROLA
6

of CPU clock cycles to achieve proper operation:

Bit Rate tocvtYP tocvmin tPMRwmin

500 kb/s 16.0 µs 13 µs 12 µs
300 kb/s 26.5 µs 22µs 20µs
250 kb/s 32.0 µs 27µs 24µs

For 16.67 MHz CPU clock:

Bit Rate kocvtYP kocymin kPMRwmin

500 kb/s 266 217 200
300 kb/s 442 367 333
250 kb/s 533 450 400

For 12 MHz CPU clock:

{Low cost solution utilizing the OSC on the MCS3201 for
CPU clock generation)

Bit Rate kocvtYP kocymin kPMRwmin

500 kb/s 192 156 144
300 kb/s 318 264 240
250 kb/s 384 324 288

AN1123/D

t

I

isr_body case 1

interrupt vector table in ROM i.e. not alterable
all variables are absolute long
fdc registers are absolute long
dma_count holds the transfer count as positive integer tor read case and

(count-8001 h) tor the write case

isr_body
subq.w
blt
beq
move.b

cont_read
move.l
move.1
move.b
move.l
movea
rte

do_last_read
move.w
bra

write_case
bvs
move.b

cont_write
move.l
move.1
move.b
move.1
movea
rte

do_last_write
move.w
bra

#1,far_dma_count
write_case
do_last_read
far_fdc_data,far_byte_buf

a0,-(sp)
far__pointer,a0
far_byte_buf, (a0)+
a0,far__pointer
(sp)+,a0

far_fdc_last_data,far_byte_buf
cont_read

do_last_write
far_byte_buf,far_fdc_data

a0,-(sp)
far__pointer,a0
(a0)+,far_byte_buf
a0,far__pointer
(sp)+,a0

far_byte_buf,far_fdc_last_data
cont_write

INTERRUPT ENTRY OVERHEAD
DMA access delay

SUB_TOTAL
SUB_TOTAL
SUB_TOTAL
TOTAL

Rest of the ISR

AN1123/D

20
8/10
8/10

28

14
20
20
20
12
20

28
10

8/10
28

14
20
20
20
12
20

28
10

nn+50
nn+50+64

106
220+nn

nn+114

MOTOROLA
7

isr _body case 2

interrupt vector table in ROM i.e. not alterable
all variables are absolute short
fdc registers are absolute short
dma_count holds the transfer count as positive integer for read case and

(count-8001 h) for the write case
isr_body

subq.w
blt
beq
move.b

cont_read
move.l
move.1
move.b
move.1
movea
rte

do_last_read
move.w
bra

write_case
bvs
move.b

cont_write
move.l
move.1
move.b
move.1
movea
rte

do_last_write
move.w
bra

#1,near_dma_count
write_case
do_last_read
near_fdc_data,near_byte_buf

a0,-(sp)
near...J)ointer,a0
near_byte_buf, (·to)+
a0,near_pointer
(sp) +, a0

near_fdc_last_data,near_byte_buf
cont_read

do_last_write
near_byte_buf,near_fdc_data

a0,-(sp)
near_pointer,a0
(a0)+,near_byte_buf
a0,near_pointer
(sp)+,a0

near_byte_buf,near_fdc_last_data
cont_write

INTERRUPT ENTRY OVERHEAD
DMA access delay

SUB_TOTAL
SUB_TOTAL
SUB_TOTAL
TOTAL

Rest of the ISR

MOTOROLA
8

16
8/10
8/10

20

14
16
16
16
12
20

20
10

8/10
20

14
16
16
16
12
20

20
10

nn+50
nn+50+52
94

196+nn

nn+102

AN1123/D

isr_body case 3

interrupt vector table in RAM i.e. ISR vector programmed during set_up_dma
all variables are absolute short
fdc registers are absolute short
dma_count holds the transfer count as positive integer for read or write case

isr_body_read
subq.w
beq
move.b

cont_read
move.l
move.l
move.b
move.1
movea
rte

do_last_read
move.w
bra

isr_body_write
subq.w
beq
move.b

cont_write
move.l
move.1
move.b
move.1
movea
rte

do_last_write
move.w
bra

#1,near_dma_count
do_last_read
near_fdc_data,near_byte_buf

a0,-(sp)
near_pointer,a0
near_byte_buf, (a0)+
a0,near_pointer
(sp)+,a0

near_fdc_last_data,near_byte_buf
cont_read

#1,near_dma_count
do_last_write
near_fdc_data,near_byte_buf

a0,-(sp)
near_pointer,a0
(a0)+,near_byte_buf
a0,near_pointer
(sp)+,a0

near_byte_buf,near_fdc_last_data
cont_write

INTERRUPT ENTRY OVERHEAD
DMA access delay

SUB_TOTAL
SUB_TOTAL
SUB_TOTAL
TOTAL

Rest of the ISR

AN1123/D

16
8/10

20

14
16
16
16
12
20

20
10

16
8/10

20

14
16
16
16
12
20

20
10

nn+50
nn+50+44
94

188+nn

nn+94

MOTOROLA
9

isr _body case 4

interrupt vector table in RAM i.e. ISR vector programmed during set_up_dma
all variables are absolute short
fdc registers are absolute short
dma_count holds the transfer count as positive integer for read or write case
shorter cycle time, penalty on latency of service

isr_body_read
subq.w
beq

cont_read
move.l
move.1
move.b
move.1
movea
rte

do_last_read
move.w
bra

isr_body _write
subq.w
beq

cont_write
move.l
move.l
move.b
move.1
movea
rte

do_last_wri te
move.w
bra

#1,near_dma_count
do_last_read

a0,-(sp)
near_pointer,a0
near_fdc_data, (a0)+
a0,near_pointer
(sp)+,a0

near_fdc_last_data,near_byte_buf
cont_read

#1,near_dma_count
do_last_write

a0,-(sp)
near_pointer,a0
(a0)+,near_fdc_data
a0,near_pointer
(sp)+,a0

near_byte_buf,near_fdc_last_data
cont_write

INTERRUPT ENTRY OVERHEAD
DMA access delay

SUB_TOTAL
SlTB_TOTAL
SUB_TOTAL
TOTAL

Rest of the ISR

MOTOROLA
10

16
8/10

14
16
16
16
12
20

20
10

16
8/10

14
16
16
16
12
20

20
10

nn+S0
nn+50+70
48

168+nn

nn+120

AN1123/D

PERFORMANCE ANAl VSIS

The performance of different cases is summarized below
in terms of the available clock cycles nnmax = m that the

Case 1

Case 2

Case3

Case 4

Bit Rate

500 kb/s
300 kb/s
250 kb/s

Bit Rate

500 kb/s
300 kb/s
250 kb/s

Bit Rate

500 kb/s
300 kb/s
250 kb/s

Bit Rate

500 kb/s
300 kb/s
250 kb/s

OBSERVATIONS

mocytyp

46
222
313

mocytyp

70
246
337

mocvtyp

78
254
354

mocvtyp

98
274
365

16.67 MHz

mocymin

-3
147
230

16.67 MHz

mocymin

21
171
254

16.67 MHz

mocymin

29
179
262

"16.67 MHz

mocvmin

49
199
282

MPMRwmin

86
219
286

MPMRwmin

98
231
298

MPMRWmin

106
239
306

mpMRwmin

80
213
280

o Because mocytyp is reasonably positive, even if the mini­
mum value is slightly negative there is a high probability of
successful operations. In the WORSE CASE, a data
OVERRUN or UNDERRUN may occur, which may be tak­
en care of by retrying the requested operation.

., Case 4 implementation differs from the rest because the
critical parameter is the response time and not the cycle
time.

• With Case 4 implementation for 16.67 MHz CPU operation
with 500 kb/s disks, 80 clocks or 20 memory cycle worth of
uninterruptable task may be supported in the worst case.

® With Case 4 implementation for 16.67 MHz CPU operation
with 500 kb/s disks, Case 3 could be the best implementa­
tion since the alternate task would rarely have long uninter­
ruptable sequence, and if it did, higher latency to service is
more appropriate.

e For the i 2 MHz CPU operation with 500 kb/s disks, only
Case 4 implementation is feasible. In the worse case oper­
ation a new DRQ may be generated 12 clocks before the
ISR to service the previous request completed. This leaves
only 12 blocks for the uninterruptable task. This certainly
excludes lower priority interrupts being serviced, because
they take at least 50 clocks.

® For lower data rate media, the solution here would run rea­
sonably well at 12 MHz, and would provide a very low cost

AN1123/D

instruction in progress may take before exception handling
begins.

12 MHz

mocvtyp mocymin mPMRwmin

-28 -64 30
98 44 126

167 104 174

12 MHz

mocvtyp mocvmin mPMRwmin

-4 -40 42
122 68 138
188 128 186

12 MHz

mocytyp mocymin mPMRwmin

4 -32 50
130 76 146
196 136 194

12 MHz

mocytyp mocvmin MPMRwmin

24 -12 24
150 96 120
216 156 168

solution. At 16.67 MHz one can expect that no data OVER­
RUN or UNDERRUN condition will occur.

INTERFACING WITH OTHER M6800CI
FAMILY MEMBERS

The interface approach shown here will work with
MC68020, particularly with the new MC68EC020 being avail­
able. There are four distinct advantages with the MC68020
that guarantee successful operation:

1. Autovector IACK cycle is only 3 clocks, instead of 10 for the
MC68000.

2. 32-bit data bus with minimum 3 clock access instead of 4
clocks in the MC68000 speeds up the ISR.

3. For critical cases, the Instruction Cache would hold the ISR
because other tasks will not execute much.

4. Memory indirect addressing mode eliminates the need to
save the address register as the OMA pointer may be re­
tained in the memory and also the transfer counter may not
be explicit.

For the new M68300 family this approach also would work
effectively. In fact, for MC68302 and MC68340 there is a OMA
controller on board and there is no need to follow this solution.
For the other members like MC68330, MC68331, and
MC68332 the following advantages exist:

1. Explicit IRQ requests could generate the correct vector (or
autovector may be used).

2. Instruction pipelining and 2 clock minimum memory access
cycle cut down ISR latency and cycle time significantly.

MOTOROLA
11

3. The external PAL device may be eliminated by using two
different Chip Selects where the DMA access will have a
number of wait states.

SUMMARY

Due to its low cost but superior architecture and memory
interface, M68000 is finding homes in embedded systems that
require more performance, larger memory, and were using
8-bit MCUs like the MC6809, i8085, or Z80s. Data logging
equipment that requires backup support, like Word Proces­
sors, Data Entry terminals, or Docking stations for handheld
instruments/scanners may want an interface to the Floppy
Disk Drives and may be compatible with the PC format.

We have shown here that MCS3201 with a §imple interface
can provide the solution at a low cost and at a major advantage
over other MCUs. This solution includes provision for a multi­
tasking kernel that would support data entry from the keyboard
or communication over the serial cable, which is desired while

the FDC is being interfaced. In a typical polling implementa­
tion, the back-up task hinders operation of the end application,
which result in degraded user interface.

Also note that costly DMA interfaces may be avoided in a
M68000 system if the multi-level interrupt interface is utilized
appropriately.

This design example also opens up a new family of low cost
peripherals that are used in the IBM/PC and compatible for
consideration in a M68K based system.

REFERENCES

• MCS3201/D. Motorola Semiconductor Technical Data on
IBM PC/XT/AT Floppy Disk Formatter/Controller, Advance
Information.

• M68000UM/AD Rev 5. M68000 User's Manual
• MC68000/AC REV 3. MC68000 Programming Reference

Card
• Intel's Data Book on PERIPHERALS. Order #296467

Motorola reserves the right to make changes without further notice to any producJs herein to improve reliability, function or design. Motorola does not assume
any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the
rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use,
even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and @ are registered trademarks of Motorola,
Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 58P, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate,

Tai Po, N.T., Hong Kong.

•® MOTOROLA
◊ A30182 PRINTED IN USA 10/91 IMPEII.UL Linl0 81779 18,000 MOS D--A

AN1123/D

