Order this document
‘by AN947/D

MOTOROLA
m SEMICONDUCTOR
APPLICATION NOTE

AN947

MC68881 Floating-Point Coprocessor

as a Peripheral in an M68000 System

INTRODUCTION

The MC68881 floating-point coprocessor is.a complete '

implementation of the proposed IEEE Standard for Binary
Floating-Point Arithmetic (Task P754, Draft 10.0). All data
formats, data types, operations, modes, conversions, and
exception handling required in a conforming implemen-
tation of the proposed standard are supported entirely in
hardware. Additionally, a full library of fast elementary
transcendental functions is implemented in the -hard-
ware.:

The MC68881 is a high performance floating-point unit
designed to interface with the 32-bit MC68020 as a co-
processor; it provides a logical extension of the MC68020
instruction set and register set in-a manner which is com-
pletely transparent to the programmer. The MC68020 mi-

croprocessor implements.the M68000 coprocessor

interface entirely in hardware. All interprocessor transs

fers are initiated by the MC68020. During the processing "

of an' MC68881 instruction, the MC68020 transfers ir
struction information and data to the coproc BY
standard M68000 write bus: cycles and recei
quests for service, and status informatio
processor via standard M68000 read
MC68881" contains a number of ¢
registers which are addressed |
~MC68020 micromachine. These
part of the MC68881 program er
mapped into CPU addres i
The MC68020 distinguish
from program:and d
code encoding. (The M
the floating-poi
programmer ar
the control

sor interface
mory by the
. which are not
sible register set, are
an MC68020 system.
address space accesses
es by a unique. function

uctions and hence visible to the
floating-point registers, FPO-FP7, and
and instruction address registers.)
can also be used as a peripheral pro-
ystems where the main processor does not
he M68000 coprocessor interface on-chip (e.g.
00, MC68008, and MC68010 systems). Since the
cessor interface is based solely-on standard M68000
us. cycles, it is ‘easily emulated by software in these
systems. The MC68881 is considered to be a peripheral
processor in these systems because its coprocessor in-
terface registers are memory-mapped in data.address
space. Two methods of software emulation of the copro-
cessor interface are possible: 1) MB8000 F-line instruction
trap (traps are exceptions caused by instructions), or 2)
in-line code implemented as either subroutine calls or
macros.)

When assembled for execution in an MC68020 system,
the first word of an MC68881 instruction always has a

¢MOTOROLA INC.; 1987

8881 registers that are used by

hexadecimal F (binary 1111} in th
ble (Figure 1). When MC68000
processors encounter an F-li
processor status is saved, the:F
is fetched, and instructi
handler. When this tr

608, or MC68010
tion, the current
ing'emulation trap vector
ution resumes in the trap

without recompiling, reassembling, or
.} instruction performance will signifi-
ise'when such code is ported to a MC68020
he coprocessor interface is nmplemented

or the upward compat1b|I|ty provided by the F-line
ulgtion trap method.

he current processor status {either three or four words
ending upon the M68000 processor being used) must

‘be pushed. onto the stack when the exception is taken,

and-popped off of the stack when the RTE {(return from
exception) instruction is executed. More significantly, the
trap handler must decode the MC68881 instruction to
determine the proper protocol for a given instruction. The
performance penalty can become intolerable if the co-
processor emulation trap handler must support all M63000
effective addressing modes. This can be relieved by uti-
lizing only specific addressing modes. :

Upward compatibility of object code is not relevant to

- every M68000 system, especially when it incurs a signif-

icant performance penalty. Such systems can emulate

‘the coprocessor interface using in-line code, macros, ar

subroutine calls. Macros are particularly attractive since
they provide the performance of in-line code while al-
lowing the source code to be upward compatible to an
MC68020 system via re-compilation or reassembly. This
application note provides both a discussion of the co-

" processor. interface protocol followed by detailed infor-

mation on both a macro technique and an example of an
F-line instruction trap- technique for software emulation
of the coprocessor interface.

MC68881 AS AN MC68020
SYSTEM COPROCESSOR

COPROCESSOR CONCEPT

The M68000 coprocessor interface is the first general
purpose coprocessor interface. The main processor in-
struction set and internal details are unknown to the co-
processor, and the coprocessor instruction set and internal

-details are unknown to the main processor. The burden

@ MOTOROLA ER

15 1 13 12 1" 10 9 8 7 6 5 ' 3 . o
- COPROCESSOR
1 ' ! ! IDENTIFICATION TYPE TYPE DEPENDENT

Coprocessor ID

Specifies which coprocessor in the system is to execute this instruction. Motorola assemblers default to ID = 1 for the MC68881.

Type

" Specifies the type of coprocessor instruction:
000 — General Instruction {Arithmetics, FMOVE, FMOVEM)
001 — FDBcc, FScc, FTRAPcc

010 — FBce.W
011 — FBec.L
100 — FSAVE

101 — FRESTORE

110 — (Undefined, Reserved)

111 — (Undefined, Reserved)
Type Dependent

Normally specifies the effective address or conditional predicate, but usage depends o

of decoding the coprocessor instruction is not placed on
the main processor, and the coprocessor does not mon-
itor the main processor instruction stream. .

The MC68881 instruction set and register set are logical
extensions of the MC68020 sets. The MC68020/MC68881
execution model appears to the programmer as if imple
mented on one chip. All data transfers are performed
the main processor at the request of the MC68881; t
memory management, bus:errors, address er
-bus arbltratlon all functlon as if MC68881 i

quest of the MC68881.

The interface is designed to
with a sequential instruction exeg
main processor and copro
overlap occurs. For som
hances throughput.

e programmer
odel even though
S struction execution
ictions this overlap to en-

hronous read and write bus cycles. No new
"are required by the MC68020 to. initiate a

po
tn at different clock rates. The MC68881. is con-
like ‘a peripheral to the main: processor and re-
es- one.extira: pin, chip select:(CS), in- order to be
accessed. Chip select is generated from the MC68020
function codes and address lines, similar to the way pe-
ripheral chip selects are generated. All other MC68881 - -
pins connect-to signals present on the M68000 Family
processors.

The MC68881 has a set of coprocessor interface reg-
isters by which the main processor and coprocessor com-
municate. When performing a coprocessor access, the
MC68020 outputs @ 111 on its function code lines thus
specifying CPU address space. Therefore, the MC68881
coprocessor interface registers are memory-mapped into

space and do not infringe upon data or
dress space. A portion of this CPU address

C68020 outputs 0010 on bits 19-16 of the address bus
oprocessor accesses as shown in Figure 2. The
€68020 also outputs the Cp-iD field (bits 11-9 from the
irst word of the coprocessor instruction of Figure 1) on
--bits 15-13 of the address bus. The main processor selects
the appropriate coprocessor interface register within the
selected coprocessor via bits 4-0 of the address bus as
shown.in Figure 3. The MC68881 chip select is therefore -
based upon three elements: the MC68020 three function
code outputs, the Cp-iD field {address bits 15-13 of the
address bus), and the CPU space type field (bits 19-16 of
the address bus).

Notice, the MC68020 handles only four CPU address
space cycles:
CPU Space Type

Field (A19-A16) CPU Space Transaction

0000 Breakpoint Acknowledge

0001 Access Level Control

0010 Coprocessor Communications
1111 Interrupt Acknowledge

A5y

}

P

Therefore, when decoding the chip select for the MC68881, - -

only two bits are needed (A18 and A17) to distinguish a
coprocessor operation from the other CPU address space
operations. A suggested method for connecting the
MCe8881 to the MC68020 is illustrated in Figure 4.
Figure 5 illustrates the connection of an MC68881 to
an MC68000 or MC68010 as a peripheral processor over
a 16-bit data bus. The MC68881 is configured to operate

+over a 16-bit data bus when the SIZE pin is connected to

Ve, and the AO pin is connected to ground (GND). The
sixteen least significant data pins {D0-D15) must be con-
nected to the sixteen most-significant data pins (D16-D31}
when the MC68881 is configured to operate over a 16-
bit bus (i.e., connect DO to D16, D1 to D17,...and D15 to
D31). The DSACK1 pin of the MC68881 is connected to
the DTACK pin of the main processor, and the DSACKO
pin is not used.

MOTOROLA
2

ANS47/D

ADDRESS BUS
» 31 20 19 16 15 13 12 5 4 0
L 6 00O0O0OD0DODCDO0OO0OD0DCO0O | 001 []l X X x’ 06 00OCO0D0TDO X X X X T] .

fe——f—

COPROCESSOR
COMMUNICATIONS

COPROCESSOR
IDENTIFICATION

3 16 15
S00 RESPONSE (R}* CONTROL {(w)*
- w804 SAVE (R)* RESTGRE {R/W)*
2~
355 308 GPWORD {R/W) COMMAND (W}*
[—]
2 g E $0C (RESERVED) CONDITION (W)*
o S 15 810
R R%
§ Q o 514 REGISTER SELECTOR {R}** {RESERVED)
Q
2ES g
@
OPERAND ADDRESS (R/W)
. *Denotes required register. Imum support of all coprocessor instruction types. The MC68881 imple-
ments these registers.
**Denotes additional re plemented by the MCe8881.
igure 3. Coprocessor Interface Registers
- FCO-FC2 >
FCO-FC2 CHIP
A20-A31 i »IT5 A20-A31— | SELECT »|t5
AlB-A19 DEC . A16-A19F—>={ DECODE}
A13-A15 1 A13-A15—>> -
Vee-»{SIZE - A5-A12 e Voo SiZE
| Al-Ad A1-A4 3| A1-Ad
Vee = AO 5 : - AQp— GND =1 AD =
8 = 2
< > AS 8 2 AS >1AS 8
< > 55 = s DS »{ DS =
- > R/W RIW i RIW
- »1024-D31 D24-D31}«e] 024-D31
<€ »{016-023 _ . D16-D23 [»1016-023
- »08-D15 D8-D15 f— »108-015
-« —>100-07 D0-07 p— 1 D0-07
< DSACKD DSACKD |« DSACKD
- DSACKI DSACKT [DSACKT
MAIN PROCESSOR ‘ o COPROCESSOR MAIN PROCESSOR COPROCESSOR
CLOCK : ‘ CLOCK CLocK CLOCK
32-BIT DATA BUS CONNECTION 16-BIT DATA BUS CONNECTION

Figure 4. Suggested MC68020 to MC68881 Connections

AN947/D : ol ' ‘ MOTOROLA
‘ . : : . : 3

A20-A23 or A3 ggég%TE B
A16-A19}- - | 5
A13-A15 > Ve
A5-A12 || DEPENDENT) |") e
o Al-Ad ol AT Ae
g = GND = A0
s _AS P
= i s 8
= 03 5 8
g ’W -
g »! D24-D31
»|D16-D23
D8-D15 [« »|08-D15
D0-D7 € lbo.07
—|bsACKD
DIACK < DSACKI

MAIN PROCESSOR
CLOCK CL

‘ Figdre 5. 16-Bit Data Bus Peripheral Pr onnection

jure 6 illustrates the connection of an MC68881 to
:MC68008 as a peripheral processor over an 8-bit data

. The MC68881 is configured to operate over an 8-bit
ata bus when-the SIZE pin is connected to ground (GND).
The eight least-significant data pins (D0-D7) must be con-
nected to the twenty-four most-significant data pins (D8-
D31) when the MC68881 is configured to operate over an
. 8-bit data bus {(i.e., connect DO to D8, D16, and D24; D1
tem, such to D9, D17, and D25;...and D7 to D15, D23, and D31). The
address DSACKO pin of the MC68881 is. connected to the DTACK
pin of the MC68008, and the-DSACK1 pin is not used.

When connected as a peripheral processor, the MC68881
chip select (CS) decode is system dependent. |f the
MC68000 is used as the main processor, the MC68881.CS
must-be decoded in the supervisor or user data spaces
However, if the MC68010 is used for the main proce
the MOVES instruction may be used to emulate any
space access that the MC68020 generates for cop
communications. Thus;, the CS decode logic fa
tems may be the same as in an MC680
that the MC68881 will notuse any part o
spaces.

FCO-FC2|—f CHIP
SELECT
A16-A19 1> —
DECODE | 5IS
A13-A15 > (SYSTEM-: |
AS-A12/—»-| DEPENDENT): |
GND—3{SIZE
A1-A4 > Al-A4
A »{ A
= AS »! AS g
g€ DS 05 2
[X] vyl e | =)
S RW >RW =
| D24-D31
> D16-D23
»{D8-D15
D0-D7 <€ > D0-D7
DTACK [« | DSACKD
- —|DSACKI
T X
MAIN PROCESSOR COPROCESSOR
CLOCK CLOCK

Figure 6. 8-Bit Data Bus Peripheral Processor Condition

MOTOROLA . AN947/D
4 ‘ ‘

B AL

When connected as a peripheral processor, the MC68881
chip select {CS) decode is system dependent, and the CS
must be decoded in the supervisor or user data spaces.

MC68881 INSTRUCTION DEFINITION

The MC68881 instructions can tielsubdivided according
to the type of coprocessor operation performed: general,
branch, save, restore, or conditional. Each instruction,
when assembled, consists of from one to eight words
(Figure 7). The first word (operation word) always has a
hexadecimal F (1111} in the high-crder nibble as seen in
Figure 1. The type field {bits 8-6) of the operation. word
indicates the coprocessor instruction type. For instruction
types which require an effective address (general, save,

restore, and conditional), the type-dependent field of the.

operation word specifies.the effective addressing mode,
For the conditional instruction type, this field specifies
the condition to be evaluated by the coprocessor: the
conditional predicate (CPRED).

15 0
OPERATION WORD
COPROCESSOR COMMAND WORD {IF ANY)
EXTENSION-WORDS (IF ANY, 1-6 WORDS)

Figure 7. General Format of
Coprocessor Instruction

The format of the second word of the coprocess
struction varies with different instruction:typ
general instructions, the second word is the

command word specifying the function rformed
by the coprocessor. The MC68881 h designed
such that all general type ‘operati ecified by a

single command word. in order ¢
instruction type, the main processc
ditional predicate (CPRED}
Since the type-dependen
specify the effective ad
in the low-order six:
tional word(s) follo
the extension
immediate

i€68881 for evaluation.
he operation word may
mode, the CPRED is found

> effective addressing mode or the
nds present in the instruction. In the
d restore. instructions, all information
te processing in the coprocessor is found
ion word. Thus, the extension word(s) (if
y follows the operation word (no coprocessor
and word). '

15 1312 10 9 65 0
DP-CLASSI Rx] Ry EXTENSION -FIELD

Figure 8. MC68881 General Instruction
‘Command Word ‘

All of the MC68881 arithmetic, move, move multiple, -

move constant, and transcendental instructions are of the
general type, All general type instructions are initiated

bl

ANg47/D

-ditional predicate

¥ the second .word. The addi-
e:second word.in Figure 8is .

- by the main processor writing the coprocessor command

word {the second word of the instruction) to the MC68881
coprocessor interface command register. The format of
the MC68881 command word is shown in Figure 8, Gen-
eral type instructions are braken down into groups, called
op-classes, based on the function of the instruction and
argument location (external or internal to the coproces-
sor). The values Rx, Ry, and the extension field depend
on the specific op-class. For instance, the val
for a floating-point register to floating-poj
eration are as follows: Rx is the sou
register, Ry is the destination floatingspc
the extension field is the operation,
move, sin, etc.}). Table 1 lists
nitions, and their respective

For the branch and th
the. main processor initi
conditional predicate,
of either the first o
spectively) to th

lasses, their defi-
d extension fields.
nal type. instructions, -
processing by: writing the
rom the six low-order bits
nd ‘word of the instruction, re-
essor for evaluation. These con-
re found on lines 62-97 of the EQUATE
PENDIX A MACROS at the back of this

of an operating system context switch, the
r internal state can be saved by the FSAVE
tion. This MCB8881 instruction only saves the in-
ible state of the machine (that which is not normally
lable to the user). Thus all control, status, instruction
dress, and floating-point data registers (the user-visi-
ble registers) must be saved by the user. Only the reg-
isters beneficial (those being used) to the programmer
need to be stored. To initiate the FSAVE instruction se-
quence, the main processor reads a word {the save for-
mat word) from the save interface register location of the

-.coprocessor.. The save format word provides the status

of the coprocessor state (the null state, the idle state, or
the busy state) and also the size {0 bytes, 24 bytes, or
180 bytes respectively) of the internal state of the ma-
chineto be saved. The save format word is written to the
effective address by the main processor at the end of the
instruction execution no matter which state the copro-

. _cessor is in.

The restore type instruction which restores a previ-

4 ously saved state is initiated by the main processor writ-

ing a save format word to the coprocessor interface restore
register. This-informs the coprocessor which coprocessor
internal state is to be restored. If visible registers are
saved after the execution of the FSAVE command, they
must be restored before the execution of the FRESTORE
instruction.

When executing any MC68881 instruction, the MC68020

. follows ‘a basic protocol. First, the coprocessor infor-

mation (command word, conditionai predicate, or format
word) is written to the appropriate coprocessor interface

-~register by the main processor (the FSAVE instruction is

initiated by a read}. The main processor then reads the
appropriate coprocessor interface register to acquire the
coprocessor status and any service requests. The copro-
cessor may indicate that it is busy processing a previous
instruction and ask the main processor to query again.
{This is the mechanism by which the sequential instruc-
tion execution is maintained because the coprocessor

MOTOROLA
5

| e b o e e,

Table 1. Command Word Fields of General-Type Instructions

Op-Class Field Rx Field Ry Field Extension Field Instruction Class
000 Source FP-Data Register |Destination FP Data Operation.to Perform FP Data Register to. FP Data
- Register (MOVE, ADD, etc.}) Register Instructions
001 — - —_ Unused, Reserved
010 Source Data Format: Destination FP Data Operation to Perform External Operand to

(see Note 2) Register {(MOVE, ADD, etc.) Register

010 111 Destination FP Data Constant ROM Offset Move Consta
Register Register

01 Destination Data Format - | Source FP Data Register | 0000000 (Unless Packed

(see Note 2) BCD, see Note 2)
100 FPcr Select {see Note 1) | 000 0000000 e Multiple to

ol Register

101 FPcr Select {see Note 1) - | 000 . 0000000

ove/Move Multiple from
’Control Register
110 A/D S/D.0 (see Note 3) | 00m{see Note 4) Contains Register L Move Multiple FP Data
» Register to MC68881
m A/D S/D 0 {see Note 3) | 00m (see Note 4) Contains Registe Move Multiple FP Data

Register from MC688381

NOTES:

1. FPer Floating-Point Control Register
000 Reserved
001 FPIAR {(Instruction Address Register)
010 FPSR (Status Register)
011 FPSR and FPIAR
100 FPCR (Control Register)
101 FPCR.and FPIAR
110 FPCR and FPSR
1m FPCR, FPSR, and FPAIR

2. Value Data Format
000 Long Word Integer
001 Single Precision Real
010 Extended Precision Re
011 Packed Decimal Real*
100 Word Integer
101 Double Precisi
110 Byte Integ
m For Op-Ci 11, Packed.Decimal Real with Dynamic k Factor specified as CPU Data Register by Extension

Fielc ing, rrr0000

3. AID=0 cant-Bit-of Register-List Selects FP7 .=
AD=1 Significant Bit of Register List Selects FPQ
S/ID=0 ask-in Extension.Field
S/D Bit Mask in.CPU Data Register Selected by Extension Field, Orrr0000

ask is Transferred to Command Word: “m” is the Most-Significant Bit of the Register List

ot execute a new instruction until finished process- INTERFACE REGISTERS
ing the previous one). The coprocessor may indicate an
exceptional condition and request the main processor to
begin exception. processing by providing the proper ex-

The MC68881 contains a number of interface registers
~which are memory-mapped withinthe MC68020 CPU ad-
dress space. These are the registers identified by “*'"and

ception vector. The coprocessor may request additional “**" in Figure 8. The coprocessor registers are memory-
service of the main processor, for example, evaluating mapped into the main processor’s system like any other
effective address-and transfering data.through the co- peripheral, although they are accessed in a different ad-
processor interface operand register. Finally, the copro- dress space.

cessor may indicate to the main processor that no further The main processor initiates communication with the
servicing is required. ~ MC68881 by writing to {or reading from) a specific 16-bit

MOTOROLA ' ANS47/D
6 : :

_previously mentioned. These are: the register

- tion address register used- only when

_register, which is memory-mapped into the system. The

specific register chosen depends on the mstruc‘uon type.
A general instruction coprocessor command word is writ-
ten to the command register, and a branch or conditional

- instruction CPRED is written to the condition register. The

main processor must read the save interface register to
initiate the sequence of saving the internal state. To re-

store this state, the main pracessor writes to the restore

interface register. The save and restore functions support
virtual memory, demand paging, and task time-slicing.
After the initial write to the register in the general, con-
ditional, and branch instructions, the response register
is read by the processor to determine its next action (e.g.,
come-again: or evaluate effective address and transfer
data to/from the coprocessor). '

An example of the communication sequence may be. -

demonstrated with the memory to floating-point-register
add instruction. The main processor first writes the co-
processor command to the command interface register
and queries the response register until requested to pass

data. At which time, the host reads the data from memory

and writes it to the operand register, four bytes at a time.

The response register. is. re-read until the coprocessor.

signals the main processor to stop. The MC68020 is then
free to process the next main processor instruction, while
the MC88881 performs the floating-point add on the data.

{n this case, as in all normal processor/coprocessor com-

munications, the host processor processses only the re-
quests specified in the coprocessor primitives u
released by the MC68881.

The MC68881 uses only three registers other thant

ister used in the move multiple instruction

enabled, and the control register use
cessor either to handshake the pr
cessor exception or to abort invali
requests.

 main pro-
of the copro-
cessor service

RESPONSE PRIMITIVES

branch

- requ fvices stich as external memory accesses,.

.-Figure 9 is a'list of all possible coprocessor
some-again (CA) bit'is set, the main processor processes

to seek further service requests. If the CA bit:is not set,
the main processor is released from further services (ex-

is set, the main. processor writes the program counter
position of the first word of the coprocessor instruction
to the instruction address interface register prior to per-

forming the requested service. In the event that the -

MC68881 generated a trap exception, this PC value is
required by the exception trap handler to determine which

“instruction caused the exception.

AN947/D

onse prlmmves recognized by the MC68020. If the

the primitive and then reads the response register again-" -

The MC68881 utilizes only six of the possible re-
sponses. These are the primitives noted by an “*" in
Figure 9. The transfer multiple coprocessor registers pri-
mitive allows.the transfer of multiple coprocessor reg-

_isters to or from memory. The dr bit specifies in which

direction the transfer is to be made: from the coprocessor
to memory.if the bitis set, or from the memory into the
coprocessor if the bit is cleared. The transfer singfe main
processor register requests the main processor
fer the .contents of one of its registers to
coprocessor. If D/A equals one, the tran
is an address register. if D/A equals ze
is transferred. The register number i
ister field.

The evaluate effective addr
mitive requests the main pro
fective address specified b
and to transfer data to
the copracessor). Th
addressing mo
length field giv

The Nufl
processor

ta register
gd in the reg-

ransfer data pri-
v to evaluate the ef-
ting-point instruction
that address. (from or to
EA type field indicates which
valid - for the transfer, while the
umber of bytes to be transferred.
itive’ alerts the main processor to the co-
fter all other service requests (exclud-
requests) have been granted by the main
soriff the CA bit is set, the main processor queries
onse register until the bit is cleared, at which
the main processor is released by the coprocessor.

Even though the main processor may be signaled for

elease {when CA equals zero}, it can still pass the pro-
gram counter {PC equals one) and/or accept pending in-
terrupts (IA equals one and-CA equals one). The processing
finished (PF) bit is a status bit which indicates whether
or not the coprocessor has finished. its instruction. The
MC68020 tests the bit only'while in trace mode 10 ensure
that the instruction processing is complete. In the case
of a conditional instruction the null primitive also con-
tains a T/F bit {bit 0). This bit is tested by the main pro-
cessor to determine whether or not the conditional
predicate is true (one} or false (zero).

For all the MC68881 primitive responses, the CA bit is
always set-(CA equals one) with the exception of the null
and exception request primitives. Both the take pre-in-

- struction exception and the take mid-instruction excep-
- tion primitives contain‘the exception vector number. Pre-

instruction exceptions occur under two conditions: 1) after
no further information is needed from the main-processor
in a prévious floating-point-instruction, and 2) before the
coprocessor begins processing the present instruction.
These pre-existing exceptians represent either an illegal
command word for the present instruction, or the ter-
mination of previous instruction with an exception. This
delayed reporting allows for synchronization between the -
host'and the coprocessor in the event of any pre-existing

* -exceptions. A floating-point register to_ memory move
cept when the MC68020 is in trace mode). If the PC-bit =

{op=class 001) operation ‘is the only. instruction capable
of generating a mid-exception primitive. It is-detected in"
the last read of the response register during instruction
execution because the MC68881 performs the floating-
point calculation and releases the main processor only
after the data transfer to memory. With the memory to
floating-point register (op-class 010) or the floating-point
register to floating-point register {op-class 000}, the main

MOTOROLA
7.

BUSY y
15 14 13 12 1l 10 9 8 7 6 5 4 3 2 1 1}
[o T ol +JoJT o[1 JololoTlo[oloJololofua]
A
*TRANSFER MULTIPLE COPROCESSOR REGISTERS ; %’

% 14 13 12 m W § 8 -7 & 5 4 3 2 1 0
[calvp] ar [0l 0] o] 0o 1§ LENGTH (BYTES)

{

TRANSFER STATUS AND SCANPC
15 14 13 12: 1" 10 9 8 7 [-5 4 . 3
Lealpe ar [0] o ool 1 [sp]

o
o
o

R —
(=}
o

———|

SUPERVISOR CHECK
5 4 13 12 1N W 9 8 7 & 5
lealec]l ol ol ol 1 [ool

TAKE ADDRESS AND TRANSFER DATA

5 W13 12 1 1 9 8 2 1 0
Pealeelar [0ol ol 11 o] 1] LENGTH (BYTES) ‘
*TRANSFER MULTIPLE MAIN PROCESSOR R
5 1. 13 12 110 76 5 4 3 2 1 0 -

1 ,,
Lcalepcfar]ofof 1|

TRANSFER OPERATION WORD
5 1w 13 12 1
[calvprc] o] o

; 9. '8 7 6 5 4 3 2 1 0
[cal pc) o [mw] ot o ol ol o | ol vr |]

TIVE ADDRESS AND TRANSFER ADDRESS
3 12 1 w 9 & 7 6 5 4 3 2 1 0
o o[l v [ol 1]l LENGTH (BYTES) |

ANSFER SlNGLE MAIN PROCESSOR REGISTER ‘
5 1% 13- 12 1N 10 9 8 7 6 5 4 3 2 1 0
Fealecl o [0ol 1 1 vl o[0 0 0 0 0 DA REGISTER |

TRANSFER MAIN PROCESSOR CONTROL REGISTER
5. 14 13 12 1110 9 8 -7 6 5 4 3 2 1 0

lealpe ol ol vl vl ol vl ol ololo]ololo] o]

Figure 9. Copraocessor Response Primitives {(Sheet 1 of 2)

MOTOROLA : ‘ : ANS47/D
8 » ‘

TRANSFER TOP-OF-STACK |
5 14 13 12 1 10 9 8 7 [5 4 3 2 1 0

f

lealecl ol ol v a vl olotololo]lol it [of o]

TRANSFER FROM INSTRUCTION STREAM
5 4 13 .12 1. w9 8 7 6 5 4 3 2 1 0
bealec] ol o[o [o] v [1] LENGTH (BYTES)

*EVALUATE EFFECTIVE ADDRESS AND TRANSFER DATA .
% W 13 12 m 1w § & 1 & 5 4 3
| ca [pc | dr | + | o | vaupEeaTYPE

*TAKE PRE-INSTRUCTION EXCEPTION"
% w13 12 wm w9 8 1 6
Lofec]l ol v v 1] o]o

*TAKE MID-INSTRUCTION EXCEPTION
5 4 1B 12 1N w3 8
Lo [ecf o[v] 1t] 1] o]

3 2 1 0
VECTOR NUMBER

TAKE POST-INSTRUCTION EXCEPTION
15 14 13 12 n 10 9
lodr ol][]

6§ 5 4 3 2 1 0
| o | VECTOR NUMBER

INVALID (RESERVED)
' 15 14 13
|CA I FC| 0 l 1 l 1 ! 1 | X | X] X] X I X | X l X | X |

0 8 8 7 & 5 4 3 2 1 .0
[v T ol o] o] o] o] LENGTH (BYTES)

ESERVED)
15 14 13 12 [10 9 8 7 6 5 4 3 2 1 0
| CA] PC] 1 l 1 | 1 I 0 I 0 I 0 I X | X | X I X | X I X | X l X 1

0=Into Coprocessor Valid EA Types:000 =Control Alterable

1=Qut of Coprocessor 001=Data Alterable
] : - .-010=Memory Alterable
D/A: 0=Data 011=Alterable
. 1=Address : 100=Control
. ‘ 101=Data
* Supported by MC68881 . ‘ 110=Memory
111=Any Mode Allowed (No Restrictions)
\9 v Figure 9. Coprocessor Response Primitives (Sheet 2 of 2)
AN947/D : MOTOROLA

9

processor is freed to execute the next instruction as the
coprocessor performs the requested operation.

The save, restore, and move multiple instructions do
not generate exceptions.

SOFTWARE TO EMULATE THE
COPROCESSOR INTERFACE

DEFINITIONS AND ASSUMPTIONS

In order to utilize the floating-point coprocessor in a
MC68000/MC68008/MC68010 system, a software emu-
lation of the coprocessor interface must be developed.
There are two possible methods of software emulation:
1) in-line code such as macros or subroutine calls, or 2)
the M68000 F-line emulation trap. -

The coprocessor must reside in a.different address space -+
than in a MC68020 system. When the MC68020 accesses -

the coprocessor, it does so in CPU space by outputting
a 111 on the function code lines. The equivalent function
codes generated on eithér MC68000, MC68008, or
MC68010 signify an interrupt acknowledge bus cycle, i.e.
these processors do not implement CPU space. Thus the
MC68881 must be accessed as a peripheral with the co-
processor interface registers' memary-mapped in data
address space in these systems; not in CPU space. .

To accommodate the practical use of this application,

the demonstration software will perform a floating-point.

instruction in the fastest way possible while not violating
the safety provided in the IEEE standard and the MC6888
To do this, a number of factors are first conside
interprocessor protocol used. with all instructi
classes. may be minimized to include only tho
mechanisms necessary to perform the ba
most significant simplification is to restrj
ENABLE byte of the floating-point

bit of this byte represents a type of coprocessor detected
exception.-Figure 10 identifies all coprocessor detected
exceptions, their corresponding vector number (passed
to the MC68020 in an exception primitive), and their po-
sition in the ENABLE byte. Two exceptions are not rep-
resented in this byte: the protocol violation and the illegal
coprocessor command. This demonstration software i ig-
nores all take exception responses from the MC68881
{generated by/to the conditions specified in the
byte} which reduces the overhead reqwred
ognition in the software. An exception p
a floating-point operation, will be gener

in the ENABLE byte is also-set. T
mitive cannot be generated if the

by the user. This
e response register
tion exceptions. If a co-

eliminates the need for mo
for-pre-instruction or mj
processor-detected exg
tected by the mai

Note that two
nd'the illegal coprocessor command,
1 by a bit in the ENABLE byte. A pro-
curs anytime communication between

repartedipy the MC68881 as a mid-instruction exception.
al-coprocessor command is a coprocessor com-
d’hot implemented by the MCE8881 and is reported
8 pre-instruction exception. Therefore, by not checking
for exceptions, a protocol violation or and illegal copro-
cessor command may occur without being detected,

Another consequence of the previously mentioned
simplification is that the program counter will never be
requested of the main processor if exceptions are dis-
abled. The PC bit of the responses will never be set if the
bits in the ENABLE byte are not set. Therefore, the over-
head for testing of this bit can be saved.

13 121 10 9 8
un | osnan] oeern [ovie [uwe | oz [mex | nexi]
VE[;:gcoa Nulw;ea VEDcETgR OEFESXET ASSIGNMENT
48 $30 192 $0C0 | BRANCH OR SET ON UNORDERED CONDITION
INEXZ/INEX1 49 $31 1% $0C4 | INEXACT RESULT
Dz - 50 $32 200 $0C8 | FLOATING-POINT DIVIDE BY ZERO
UNFL 51 $33 204 $0CC | UNDERFLOW
OPERR 52 $34 208 $0D0 | OPERAND ERROR
OVFL 53 $35 212 $0D4 | OVERFLOW
SNAN 54 $36 - 216 $0D8 | SIGNALING NAN
NONE 1 $0B 44 $02C | F-LINE EMULATOR
NONE 13 $0D 52 $03¢ | COPROCESSOR PROTOCOL VIOLATION

Figure 10. MC68881 ENABLE Byte and Coprocessor Exceptions

MOTOROLA
10

AN947/D

9

IN-LINE CODE, MACROS, OR SUBROUTINES

The first approach discussed is the one t6 directly drive
the MCE8881 as a peripheral from the user program in

user data space. This approach is used when speed of

the MC68881 instruction execution‘is more important than
upward compatibility of the object code. Two methods

are available to drive the peripheral in user data space::

in-line code {(macros) or run-time libraries (subroutines).
The trade-off between the two approaches concerns time
versus space. Each time'a macro is used: the length of

the source cade increases by the size of the macro. When -

a subroutine is called, the overhead of the subroutine call
and the execution of the RTS instruction. must be in-
curred. No F-line trap is taken.in: either method, which

saves the time to perform the correspondmg stacking and..

instruction decoding.

Macros allow the coding of a repeated pattern of-in-.

structions which may contain variable entries at each

. iteration of the pattern. By incorporating the use of ma-

cros with conditional assembly instructions, some of the
necessary floating-point instruction decode can be done
during assembly time, reducing the run-time overhead.
Assuming that the assembler used has the ability to pass
parameters and manipulate them within the macro dur-
ing assembly, the programmer need not generate the
code to parse the floating-point instruction to detect the
addressing mode used — it is passed directly by the ma-

cro into the assembled code. Subroutines can also act as:

an.extension to.the in-line routine to perform functio
common to each mstructlon type (exceptuon handh

tages of using ‘these methods over the F-li
proach are: 1) the time saved by not taki
trap, and 2) the time saved by assemb]
decode.

This application note includes sa
approach to drive the code in use
code would be pertinent if i
brary approach.

There are different W,

efine the macros to drive

nacro instructions, collected'by the method of
d transfer required of the instruction {located in
'PENDIX A MACROS). As an example, all MOVE-INS,

to their respective directions and precisions. Most

- MC68881 instructions are supported, ‘but source code

compatibility with the standard MC68881 instruction set
is lost due to. consolidation: of specific instructions into
single macros. The conditional trap and the move mul-
tiple coprocessor system register mstructlons are not in-
cluded in this example set.

Every macro requires. at least the samie amount of in-
formation supplied by the programmer as the repre-
sented MC68881 floating-point instruction and, in.some

"Functional Descripti

the: particular application

AOVE-OUTS, etc. have their own macros corresponding -

cases, more information. This data is passed to the macro
by parameters. An example of a general instruction class
macro call is:
MACRONAME FUNCTION,SOURCE,DESTINATION
MACRONAME specifies the method of operand trans-

~fer, the FUNCTION is the general operation to be per-

formed, the SOURCE is the location of the source operand,
and the DESTINATION is the location of the destinati
operand. Different macros request different i
of the user. For instance, the FSAVE instr
‘quires one parameter to be passed t
cally, each-macro follows a similar fo
in Functional Description. The me
cro definitions can be employed
wishes to develop a separat

of these ma-
rogrammer who
or each instruction.

~The following
information on

s provide the programmer with
se the macros. All of the macros
instruction which transfer a source op-
ocessor {move-in) are listed below:
B Function,SourceEA,FPn
Function,SourceEA,FPn
Function,SourceEA,FPn
Function,SourceEA,FPn
Function,(An),FPn
MEMREGX Function,{An),FPn
MEMREGP Function,(An),FPn

They only differ by the precision of the data transferred.
Each macro of this class transfers a source operand (spec-
ified by SourceEA or (An)) of a specific precision to the
MCE88881 and performs the operation specified by func-
tion. A list of the functions describing the supported
MC68881 instructions and their functions can be found
on lines 25-61 of the EQUATE table of the demonstration
software found in APPENDIX A MACROS.
. The macros which transfer data from a single floating-
point register to an effective address (move out) are:

REGMEMB FMOVE,FPm,DestinationEA
REGMEMW FMOVE,FPm,DestinationEA
REGMEML FMOVE,FPm,DestinationEA
REGMEMS FMOVE,FPm,DestinationEA
REGMEMD FMOVE,FPm,(An)
REGMEMX FMOVE,FPm,{An}

" REGMEMP FMOVE,FPm,(An),[k-factor]

The MC68881 FMOVE .command is the only MC68881
instruction supporting this direction of transfer. These
macros request the passing of the instruction as a pa-
rameter to be consistent with the other macros. The k-

. factor, requested by REGMEMP, may be passed in data

register D0 or as immediate data. Thus:

(k-factor] =D0

-or
[k-factor] = #xxxx
A k-factor in the range + 1 to +17 indicates the desired

number of significant digits in the decimal mantissa after
conversion to packed decimal format. A k-factor in the
range -64 to 0 indicates the desired number of significant
digits to the right of the decimal point in a fixed-point
format.

" AN947/D

MOTOROLA
1

The general instruction macro which performs “floa-
ting-point register to ﬂoatlng -point register” operatrons
is:

REGREG Function, FPn FPm,[FPq] _

Since the MC68881 performs all data manipulations in
extended precision (no user-specified precisions), only
one macro is needed to support these general instruc-
tions. The new parameter introduced, [FPq], supports the
one special case general instruction” FSINCOS'" which
generates the sine placmg it in FPm and generates the
cosine and placing it in FPq. -

The constants supported an-chip by the-MC68881 are

available to the programmer from the coprocessor ROM
with the macro:
FMOVEROM. #CC,FPn

CC is the hex number representing the constant to be. .

accessed. A list of the constants and their corresponding

identification numbers is. found on lines-660-681:0of the -

EQUATE table in the demonstration software found in
APPENDIX A MACROS.

The two macros which move data into or out of the
coprocessor control, status, and instruction address reg-
isters are:

MOVINCS! SourceEA,Register
MOVOUCS! Register,DestinationEA

MOVINCSI moves data into the control, status, or in-
struction address registers and MOVOUCS! moves data
out. The register field is specified by CONTROL, STATUS,

or IADDRESS corresponding to the register to be trans-

ferred. .
As the- MB8000 microprocessors use the MOVEM i

struction to move multiple registers into and out of mem?

_ ory, the MC68881 also supports moving multiple §
point registers. The macros which support the
of multiple floating-point data registers are:
FMOVEMMR SourceEA,fp0,fp1,fp2,

fp6,fp7,Postincrement
FMOVEMRM fp0,fp1,fp2,fp3
fp6,fp7,DestinationEA,Pred

Each parameter of the fp0; f

the selection bit for that floaii
ister is to be moved, t
in the macro call must

ring represents
oint register. If a reg-

ith postincrement mode in the

FMOVEMMR: n the postincrement field must
be set to a ¥ ise, this parameter must be set to a
N. The s tem applies to the FMOVEMRM macro
with re; the-predecrement field (Y- if addressing

ed, N if not).
operation or synchronizing mstructlon is sup-
by the macro:
- FNOPP
No parameters are necessary to perform this function.
Only one macro. is needed to.support the branch in-
struction class, the conditional-branch:
FBCC.[Size] . Condition,Label

The size specification allows the macro to distinguish
between-a long branch and a short branch. If the size is
not specified, the default is long. The user must specify
the condition tobe tested in the condition field. A list of
the conditions and their corresponding label is found on

rresponding-parameter:- -
-a-one (otherwise; the:bit:: -
y), If the programmer:decides:to-.use .

lines 67-98 of the EQUATE table found in' APPENDIX A
MACROS. If after execution, the condition is satisfied, the
macro will cause a branch to label. _
The two macros which support the MC68881 decre-
ment and branch and the conditional set instructions are:
FDBCC Condition,Dn,Label
FSCC Condition,Label _
In both macros, the condition and label parameters
serve the same purpose as those of the FBCC m
condrtlons are listed on lines 67-98 of the EQ

by the macro. Any other data registe
The save or restore of the internal
the coprocessor is exeécuted by
FSAVEST —(An)
FRESTRST (An)+
To ensure proper rest
FRESTRST command
by the FSAVEST ¢
for a software. res

One exception to this rule is
ftware reset of the MC68881

ry of Operation

~ The following paragraphs provide information on how
to develop macros for the user who will either create his
own, or need to modify the demonstration software to
suit a particular application. The coprocessor recognizes
each coprocessor instruction by the specific bit pattern
written to the various coprocessor registers. The save
instruction is an exception because it is initiated with a
read from the save interface register. For each coproces-
sor instruction type class, a unique format for the bit
pattern exists which is the basis for instruction grouping
into macros. A detailed description of the macro devel-
opment as well as a general discussion of each type in-

-struction class follows.

' All: macros are developed following a simple protocol:

1) -know.the bit pattern of the information to be written
“to the coprocessor (the instruction to be performed) and

write it to the appropriate interface register, 2) test for

-the known possible responses from the coprocessor, 3)

perform requested operation (if any), and 4) test for the
release of the main processor. If it is necessary to add
exception detection, the programmer must add software
to compare the response to the appropriate pre-excep-

-

tion or post-exception bit pattern and call a user- specified- -

exception processing macro or subroutme if the result is
posrtrve

=-Each-MC68881.instruction follows a specific protocol
startmg from the write of the operation until the receipt

~of the null primitive. MEMREGn (n=B, W, L, S, D, X, P)

and MOVINCSI follow the sequence shown in Figure 11.

REGMEMn (n=B, W, L, S, D, X, P} and MOVOUCS! foliow
the sequence shown in Figure 12. Instructions repre-
sented by these REGMEMn macros generate at least one
null come-again response after the initial write to the

MOTOROLA
12

ANS47/D

WRITE COMMAND
REGISTER

/

NULL
COME-AGAIN

READ
RESPONSE
REGISTER

EVALUATE EA AND TRANSFER -
DATA TO COPROCESSOR/COME-AGAIN:

EVALUATE EA

Y
TRANSFER DATA

WRITE OPERAND

REGISTER
[NULL
EAD COME-AGAIN

RESPONSE
REGISTER

MAIN PROCESSOR
RELEASED ’

Figure 11. Move-In Sequenc

' Figures 13 and 14, respectlvely The

structi &her than in a main processor data register
\ dynamic form). Thus, Figures 13 and 14 rep-
only the static forms of the move multiple floating-
t register instructions. The REGREG macro follows
equence of Figure 15. The FDBCC, FBCC, and FSCC

function to be performed after evaluating of the result of
the conditional test as seen in Figure 16. Figures 17 and

18 represent the: protocol-followed by the FSAVE: and "

FRESTORE instruction, respectively.
The macro detail will be explained by discussing an
example of a general coprocessor instruction, the MEM-

REGW (lines 435-470) -macro. This: macro performs a

floating-point operation on a word datum at an effective
address pointed to by source EA address, and leaves the

koﬁware only supports the statlc forms of -

macros basically execute the same code except for the -

=

Y

WRITE COMMAND
REGISTER

READ
. RESPONSE
REGISTER

D TRANSFER
OPROCESSOR/COME-AGAIN

READ OPERAND

REGISTER
A
[NULL
READ COME-AGAIN
RESPONSE

REGISTER

MAIN PROCESSOR
_ RELEASED

Figure 12. Move-Out Sequence

o result in a specified floating-point register. The macro call
- takes the form:

MEMREGW Function,SourceEA,FPn

The function, SourceEA, and FPn are all parameters
passed to the macro. Function is the operation of the
MC68881-instruction, and FPn {n equals 0-7) is the specific
floating-point register used. Both of these parameters
represent a binary bit pattern. Thus, the need for an
EQUATE table arises. An “EQU" statement (refer to the
M68000 Assembler Manual) defines a symbol as a binary -
value when referenced anywhere in the source code. In
the EQUATE ‘table (lines 25-61) found in APPENDIX A

= MACROS; all general floating-point-instructions are as-
" 'signed the appropriate bit pattern-(e.g. FMOVE EQU $00)-

to represent the extension field of the command word in
Figure 8. Also, as seen on lines 119-126, each floating-
point register (FPn} is equated to its corresponding nu- -
merical value {e.g. FP6 EQU $06). The other parameter
passed to the MEMREGW macro is the effective address
{SourceEA).

AN947/D

MOTOROLA
13

=

Y
WRITE COMMAND
REGISTER

NULL COME-AGAIN

READ
RESPONSE
REGISTER

TRANSFER MULTIPLE COPROCESSOR REGISTERS
TQ COPROCESSOR/COME-AGAIN

READ REGISTER
BIT MAP FROM
REGISTER SELECT
REGISTER

Y

EVLUATE EA

Y
TRANSFER REGISTERS

WRITE OPERAND
REGISTER

READ
RESPONSE
REGISTER

MAIN PROCESSOR
RELEASED

Figure

ve-Multiple-In Sequence

irameters are separated by commas in the for-
se macro-calls, the indexed register indirect
set addressing mode, (d{An,Dn)), cannot be passed
38 3 single parameter. The comma betweén An and Dn .
causes the assembler to see this effective address as two
parameters; Therefore, the macro will be passed one ad-
ditional parameter for this case. Anticipating this case,
when four parameters are-passed in, the macro simply
recombines the appropriate two parameters and recon-
structs the effective address as & single parameter. The
firstline of this macro (line 452) is a conditional assembly
command where the assembler tests for-the occurrence
of a fourth parameter, signifying the use of the indexed

MOTOROLA
14

WRITE COMMAND
REGISTER

NULL COME,

READ
RESPONSE
REGISTER

READ REGISTER

BIT MAP FROM

REGISTER SELE
REGISTER

TRANSFER REGISTERS

READ OPERAND
REGISTER

"

NULL COME-AGAIN
READ
RESPONSE
REGISTER

MAIN PROCESSOR
RELEASED

Figure 14. Move-MultipIe-Ouf Sequence

address mode. This test is done by comparing this pa-
rameter (""4’) against a null character string ("'}. If a fourth
parameter is present, a separate routine (lines 461-469)

- will'be used to combine parameters “2 and “3 to recon-

struct the effective address parameter.
--Once-the assembler has chosen-which routine to as-

semble, the next task entails developing the command..

word shown on line 453 of the listing:
MOVEM.W.
#$5000+("3<<7) + £ 1,MC68881+ COMMAND

This task demonstrates how the command word is
formed for all the effective addressing modes except the

AN947/D

rpesa g

= -

3 \ . ‘ NOT READY
| WRITE command

. T0 SAVE
REGISTER READ
FORMAT WORD
FROM SAVE

A

Y

NULL COME-AGAIN

READ
RESPONSE
REGISTER

MAIN PROCESSOR
RELEASED

Figure 15. Register/Register Sequence

Y
STORE FORMAT
WORD IN
MEMORY

Y
MAIN PROCESSOR
RELEASED

Figure 17. Save Sequence

WRITE COMMAND
REGISTER

READ
RESPONSE
REGISTER

indexed modes. The assembiler, instructed by the arith-
metic operator +, adds the three fields to generate the
proper command word. The immediate data is the com-
mand- word developed by the addition of the isolated
fields seen in Figure 8. The command word base, 5000,
represents the op-class 2 and data format for a word
operand (RX). Each macro for a general instruction will
have a unique command word base (shown in Table 1)
specifying the op-class and data precision. A good un-
derstanding of the command word structure in Table 1
is helpful in developing general instruction macros.
The second field, Ry in Figure 8, is added to the com-
mand word by the assembler and represents the number

ST T/F BIT

Y of the floating-point register used in the transfer. This
— ' parameter is passed to the macro by the programmer as
COPIESIFT?SMAL . the third parameter, FPn. The symbol,. <<, causes the
OPERATION ' assembler to shift the value of the third parameter to the
left seven bits, placing it in-its proper position in the

‘ : ..command word. .
Figure 16. Branch.and Conditional Sequence. The third field of the summation is the extension field -
‘ ' which specifies the binary representation of the instruc-
tion to be performed. These representations are shown
.in the demonstration software in lines 25-61. .
. _ . Note, when the addressing mode is indexed, the ex-
v ' tension field remains the first parameter passed to the
9 i macro, but the Ry field becomes the fourth parameter

AN947/D ‘ - ‘ : MOTOROLA
: 15

=D

\

RESTORE FORMAT WORD
FROM MEMORY

WRITE RESTORE
REGISTER

NULL
FROM RESTORE

REGISTER

IDLE OR BUSY

RESTORE
© COPROCESSOR -
STATE IN COPROCESSOR

WRITE OPERAND
REGISTER

\

f

MAIN'PROCESSOR
‘ RELEASED

Figure 18. RestoreSeduence v

and is accommodated by line 462. W
dexed addressing mode, the assemble

macro recreating the pro
The command word
address of the coproce:

coprocessor-interface registers

placement of that particular register to
. Consequently, each register has a sym-

te that if the MC68881. is:mapped into the highest
) or the lowest-page.in the address map, the macros
can use short absolute addressing mode instead of long

absolute addressing mode. This will allow the macrosto ...
assemble into smaller object codes and may execute faster:.

since the processor spends less time fetching extension
words.

Once the command word is written to the command
register, only two responses can. be read from the re-
sponse register: ‘1) null come-again and evaluate effec-
tive address and 2) transfer data. Only two responses will

MOTOROLA
16

occur because exceptions are not allowed. By only testing
the response register (line 454} for the null come-again
{$8900), the main processor will pass the data when it
reads any response other than the null come-again re-
sponse.

This macro, as well as all other macros except FSA-
VEST and FRESTRST, must test the response register for
the coprocessor release of the main processor. This serv-
ice protects against spurious protocol viclations
violations are unexpected accesses to the
terface registers. For example, the coproc
expecting data to be written to the op
instead receives a write to the comm
rious violation occurs when an ex
occurs sooner than expected in s where the pro-
cessor and Coprocessors are r g at different clock
speeds. Since exceptions sumed to be disabled by
the macros, the CA bit i hitored to determine the
coprocessor state, W s set to zero, the main pro-
cessor is released llowing instructions perform
this function throa it the macro definitions:

(@ NULREL MC68881 + RESPONSE
“@@NULREL

gister access

in operation to the command register and to
the response register until asked to pass the data.
er evaluating the effective address of the data and
riting it to the operand register, the' main- processor
rereads the response register until released by the co-
processor.

The packed BCD, double precisions, and extended pre-
cisions operations would require the use of several-other
conditional assembly instructions to support all the ad-
dressing modes that the byte, word, long word, and sin-
gle precision macros allow. These instructions are
necessary due to the fact that multiple accesses from
memory are required to transfer data through the 32-bit
wide operand register. To simplify this application, these
three precisions, MEMREGD, MEMREGX, and MEM-

... REGP, are only supported by the address register indirect
:+, addres$ing mode. The other addressing: modes can be

e uses:MC68881-to represent.--- -

implemented by following the demonstration software
as an example.

The move-out macros (REGMEMn, n=R, W, L, S, D, X,
P) of op-class 011 of the general instruction class are
structured in the same manner as MEMREGn (n=R, W,
- L, 5, D, X, P). Coprocessor distinction between the move-

in and the move-out operations result from the different

op-class specifications within the command word.

The one difference between the two op-classes is in
:the packed BCD macros. This difference is due to the
nature of the MC68881 FMOVE out packed BCD from the
coprocessor.instruction.which requires the user to submit

additional information to.the coprocessor: the k-factor..
- The k-factor is passed to the operand register from either

a data register or as immediate data in the command

- word. To be able to handle all data registers, the packed

BCD macro would be extensive using elaborate condi-
tional statements. Therefore, the programmer is only al-
lowed to use data register DO, which fixes that part of

AN947/D

s example defines the sequence to-be -

AT

F-LINE ENTERS

SAVE WORK

REGISTERS
) ‘ " LOCATE
F-LINE PC

TEST FOR
INSTRUCTION
TYPE

ALL DTHERS

GENERAL TYPE

READ COMMAND
WORD FROM -

USER PROGRAM
SPACE AND
UPDATE PC

v

WRITE COMMAND
REGISTER

v

READ RESPONSE
REGISTER

@ . " 'MOVE MULTIPLE COPR

REGISTERS-(DATA Al

BREAKDOWN FP REGISTER TO FP REGISTER

OP-CLASS

MOVE OUT4 \ ; " MOVE IN COPROCESSOR
v
| READ OPERAND 1

v

WRITE GPERAND
REGISTER -+

TO APPROPRIATE
ROUTINE -
|
I
|

ALL
DATA
PASSED

NO

¢:

WRITE UPDATED
CALLER PC
ON STACK

y

~ RESTORE'WORK
REGISTERS

RTE

9 : - Figure 19. F-Line Emulation Sequence

ANS47/D ' - MOTOROLA

the extension field representing the data register as a

.constant.. Thus, only one pair of conditional instructions

is needed. i

The REGREG macro supports op-class 000 which per-
forms.a coprocessor register-to-register operation. No
services are needed of the main processor other than to
submit the coprocessor instruction. Therefore; after writ-
ing the command word to the command register, the
response register is queried until the null primitive is
granted. The several other conditional assembly state-
ments in REGREG support the unique general arithmetic
instruction; FSINCOS: Since this instruction requires.two
destination floating-point registers for the results of the
operation (FPm and ‘FPg), another parameter must be

passed to the coprocessor. The conditional assembly -
statement tests for the existence of a fourth parameter... :
To be able to support this instruction in the- REGMEMnR ...
and MEMREGn macros, similar procedures-should be |

followed. An example is implemented in the MEMREGB
macro (line 372-434).

Op-class 010 with Rx equal to 111 represents the op-
eration performing the access of the coprocessor con-
stants (FMOVEROM). A command word specifying the

constant to be retrieved is written to the command reg- -

ister. Since no further services of the main processor are
needed, the remaining function is to test the response
register for the release signal (CA equals zero).

Both macros, MOVINCSI (op-class 100) and MOV-
QUCSI (op-class 101) move the coprocessor system reg
isters. Each perform:the same instruction sequence a
MEMREGn and REGMEMn, ‘respectively, with the onlY
difference being the value of the command word Tﬁe
‘move multiple coprocessor system register i
are not supported-by the macros.-

Thefinal op-classes of the general in
discussed are those corresponding to

FMOVEMMR). Due to the natur
memory organization, the m

and the coprocessor d
by the bit mask sp
binary bit mask is
is treated as a

.by:the parameter:list:The list
f concatenated. bits which is re-

ing-point data registers are 96 bits wide,
utive accesses of 32 bits each must be made
the data. FMOVEMRM {(lines. 761-834) orga-
tis data so that the high-order bit is situated in
w-order memory. The coprocessor.delivers.FPO first.(if
ected) and FP7 last, except when the indirect address-
ing with predecrement mode is being used. In which case,

the coprocessor sends FP7 first and FPO last so that FPO . .

is always placed in low memory. Therefore, the condi-
tional test for-the predecrement-mode is required to re-
verse the order of the bit mask sent to the coprocessor.
The FMOVEMMR (lines 835-881). macro moves data into
the registers by moving FPO first as the coprocessor al-
ways expects FPO first. The FMOVEMMR miacro does not
allow the predecrement addressing mode.

ich registers-are: affected i
‘the-command: word.«The i

The second type class to be discussed is the branch
instruction class which is supported by the FBCC macro.
The main processor writes the conditional predicate
(CPRED) to the condition register and reads the response
register until signaled to be released. Then the T/F bit of
the response primitive is examined, and if status. indi-
cates, the branch is taken. .

The FDBCC and FSCC macros support the conditional
type instructions. Both macros follow the sam
as FBCC (i.e., write CPRED to the condition r
the response register, and after being rel
requested function if condition satisfied
and conditional macros must modify a
serves as a temporary variable
grants the null release primitiv
in the response. As the MC688
response register access
the CA bit can be test
bit is already availablg

The no-operati
synchronizing FN
struction. Th i

‘the branch
ister which
€ coprocessor
bit is also passed
not expect another
sponse is saved in DO so
CA equals zero, the T/F

exists for the no-operation or
truction. It is a.branch never in-
ocessor writes the second word of
instruction to the condition register and
onse register until released by the co-

68881 cbnditional instruction not implemented
> conditional trap (FTRAPcc) instruction because the

MC68000/MC68008/MC68010 system, the overflow bit in
the control register can be set, and the TRAPV instruction
executed. However, the trap handler can not distinguish

between. the simulated. coprocessor. condition and the -
overflow condition that would normally use thns trap vec-

tor.

The final two coprocessor instruction types to be dis-
cussed are the save and restore performed by macros
FSAVEST and FRESTRST, respectively. Only one ad-
dressing mode is supported in the macros. Several other
conditional assembly instructions, similar to those in the
FMOVEMMR and FMOVEMRM macro, can be imple-
mented to utilize more addressing modes. To initiate the

' 7.save sequence, the main processor reads the format word
- from the save register. This 16-bit register is reread until

the high-order byte no.longer contains a 01 (coprocessor
busy). At this point, the length {in bytes} of the copro-
cessor data to be transferred resides in the low-order byte
of the format word. The main processor isolates this length
and begins to transfer the data from the operand register
(making long word accesses) to memory via the indirect

addressing with predecrement addressing: mode. After-:

saving the invisible portion of the coprocessor state, the
main processor stores the format word at the top of the

-stack;-in-low-order-memory. This assures proper resto-

ration of the MC68881. state when the FRESTRST macro
is executed. In FRESTRST, the main processor writes the
previously saved format word from memory to the re-
store register, reads the restore register, and begins writ-
ing the stored data to the operand register until the proper
number-of bytes has been transferred. Indirect address-
ing with postincrement addressing mode is used.

§020 has these coprocessor traps The trap instruc- .

o

—

MOTOROLA
18

AN947/D

;;9

-as not all addressing modes nor the FTRAPcc instruction
8

In summary, the performance of the MC68881, driven
as a peripheral in a MC68000/MC68008/MC68010 system,
is.enhanced by using the macro approach. This is pri-
marily. due to the fact that most of the instruction decode
is done at assembly. This in-line code is upwardly source
code compatible to a MC68020 system via re-compilation
or reassembly. For instance, the following code provides
an example of how toalter a:macro {for reassembly) in

order to acquire floating-point source code compatibility -

when porting the user software to an MC68020 system
(equate table: must be deleted):
MEMREGB MACRO
“1.B 2,73
ENDM
The macro call will remain the same. For example, this
macro call:

MEMREGB - FADD,DO,FPO

expands to create the following: MC68881: ﬂoatlng -point. - :
ADD source code when used in conjunction withthe pre--

vious macro definition:
FADD DO,FPO

A few consequences of this technique exist: 1) the ob-
ject code is not MC68881 replaceable because if the code
were moved up to a MC68020/MC68881 system, the
MC68881 would still be a peripheral processor in user
data space {to benefit from the MC68020 coprocessor
interface, the macros would have to be changed and the
user program reassembied), 2) a macro library and/or
other routines are required to contain the macro soft-
ware, 3) the full environment is:not presented to'the u

are supported, all checking done by the MC68020 i is A
implemented (e.q., illegal format errors), and
are not enabled,.4) the MC68881.is:not'a
operating hardware device because peri
is used, and 5) the demonstration soft
port the M68000 immediate addre

m object code containing MC68881

frem supervisory space by supervisor software.
lete source and object code compatibility with the
8881 instruction set can be maintained.

cause some M68000:systems:separate user and su-

developed. This application note includes two examples
of an F-line emulation of the generalinstruction operation

performed on.data moved-into.the coprocessor: the pro---
tected and unprotected versions. The software for other -
types such.as move outs can be inferred from the ex-.

amples given. The protected version (APPENDIX B PRO-
TECTED F-LINE EMULATION SOFTWARE) is used on
systems which segregate user and system address spaces.
The unprotected version (APPENDIX C UNPROTECTED

AN947/D

pervisor space, different: types of -emulations must. be -

F-LINE EMULATION SOFTWARE) can be used on any
M6E8000 system which allows direct access to user spaces
from the supervisor state.

Functional Description

If the coprocessor instruction were decoded by the trap -
routine to determine the addressing modes
cessthe instruction operands, then a signifi
would be incurred with a commensurate
ance. Hence, the demonstration softw
gle addressing mode will always be.u
indirect, (AQ). If the programm
addressing modes, this can b
performing:

LEA EAAQ
before executing the fl
LEA instruction will
dressing mode i

esasin-
is is register
1o use other

'm that splits program and data
rarely encountered). Also, as. im-
cro approach, no error or exception

es, all memory to floating-point register
supported including FMOVECR and all FPn
perations.

eory of Operation

The following paragraphs provide information for users
creating their. own F-line trap emulations. The read-write
protocol of the move-in macros (Figure 11} is imple-
mented in both the.protected and unprotected forms of -
the emulation. The F-line trap emulation differs from the
protocol of the macro approach. in the emulation, after
the main processor has transferred the data to the co-
processor, the final read of the response register is no
longer needed. Sufficient time will expire between any
two consecutive floating-point instructions due to the
overhead of the F-line trap which ensures that no spu-

#:.: rious protocol violations will occur.
uld:be:implemented-in-an:+ -
10 system when-the user:re-=-

A flowchart of the unprotected emulation version is

- seen in Figure 19. In the protected version, the same

sequence of events occurs with the exception that the
floating-point instruction and source operands are ac-
cessed in user memory from supervisor space utilizing
the MC68010 MOVES and MQVEC instructions. Only the
unprotected version (APPENDIX C UNPROTECTED F-LINE
EMULATION SOFTWRAE) is referenced.

When a coprocessor instruction is encountered, the F-
line trapis taken. Thelocation of the coprocessor-instruc-
tion {program counter} and otherinformation (depending
on the main processor executing the instruction) is placed

--on.the-stack.-The data at-the program counter. location
~.*(the operation word of the.coprocessor - instruction). is. -

-examined to determine whether the instruction is a gen-
eral type (line 25). if so, the second word (thé command
word) is written to the command register (line 30). Then,
the main processor queries the response register until
the coprocessor no longer processes the previous in-
struction (no null come-again).

MOTOROLA
19

Next, the op-class specified in the command word is
examined to determine the main processor’s next action.
First, the main processor tests for the move multiple co-
processor registers (data or system) into or out of the
MC68881 (op-classes with high-order bits set, €.9. 1xx)
in lines 33-34. If found, the main processor would jump
to a routine to handie this special function. This function
is not implemented in this application but is a straight-
forward routine.

Subsequently, testing for a floating-point register-to-
register operation occursin line 35. In this case, no further
services are needed of the main processor, and a jump

-to the RTE instruction is taken.

Finally, a distinction between the move-in and move-
out operations is made (fine 37-38). (An additional routine
can be developed to support the move-out sequence.)

When a move-in operation has been identified, the main - -
processor then extracts the precision of the external op- . -
erand from the command word. If the instructioniis found - -

to be a FMOVECR (precision 111}, the main processor
immediately branches to the RTE instruction. Otherwise,
the main processor branches to the small routines for
handling the respective data transfers. Since long words,
packed BCD, single, double, and extended precision data
transfers all require at least one 32-bit data transfer, ane
routine handles all five data types (lines 54-56). Two other
routines (lines 59-60 and lines 63-64) support the byte
and word transfers. After the data has been delivered to
the coprocessor, the main processor returns from excep-
tion via the RTE instruction (the instruction which com:
pletes the F-line trap and-re-enters'the user.programy}.

In both versions of the F-line trap emulation, the wark
- registers were stored at the beginning of the ro
then restored prior to the exit.

In summary, the F-line emulation trap is.j
the main processor identifies a copr
by a hexadecimal F in the most-signj
first word of the instruction (and

e F-line trap).

" general instructio

-as a

The object code containing the MC68881 instruction .is
upward compatible to an MC68020 system without re-
compiling, reassembling, or relinking.

The major consequence in implementing an F-line em-
ulation instead of in-line code is the time factor incurred
by both the overhead of the F-line trap and the instruction
decode in the trap routine. Listed in Table 2 are the clock
cycles required to perform the various operations using
the two F-line emulations and the macro approaches.
Even with the overhead associated with the '
lation this approach offers a speed advant
ing-point software packages.and at
maintains MC68020/MC68881 upw:
Timings are based on a no-wait sta
cycle bus cycle). The MC68881 gy
account because the main p
form the. next instruction o
coprocessor executes its’,
ample instruction tha

tem (four clock
is not taken into

he'diser program while the
ructions. FMOVE is an ex-
be replaced by any of the
1ding the move multiples).

CONCLUSION

81 floating-point coprocessor can be utilized
heral in a MC88000/MC68008/MC68010 system
ither directly driving the device as a peripheral or by
ating the complete coprocessor instruction set. Ejther
ethod, depending on the application, is sufficient to
utilize the high performance of the MC68881. and offers
superior speed and versatility over floating-point soft-
ware packages. The macros:or in-line code of this appli-
cation provide a faster way to access the device for the
users interested in achieving the highest performance of
the MC68881. Alternately, for applications that can trade-
off performance to achieve object code upward compat-
ibility with MC68020 systems, an example of an F-line
emulation trap has also been included.

The:h

Table 2. Operation Execution Time (Clock Cycle)
for MC68010

Operation {MC68881) - Macro (Prlc:).tl-ei:tee d) (Un:;c&i:f:te d)
F(op).B EAFPn 88 410 342
F(op).W EA,FPn 88 410 342
F(op).L EA,FPn 1 96 462 : 398
F(op).S EAFPn 96 462 398
F(op).D EAFPn 124 516 436
Flop).X EAFPn ~ ' 156 570 474
F(op).P EA,FPn 156 570 474
F(op).X FPm,FPn 40 296 236
FMOVECR #ccc,FPn 40 370 316

{op)=MOVE, ADD, SUB

MOTOROLA
20

ANS47/D

S o M A e e

¢

AN947/D

W3 b Wwh e

) **

APPENDIX A
-MACROS

e kb b e e L e L L g e o B U
SOURCE 'CODE TO DRIVE THE MC68881 AS A PERIPHERAL *

*
TO NOT SHOW MACRO EXPANSION IN THE LIST FILE DELETE 'OPT MEX' BEFORE *
ASSEMBLY. *

*

TO SHOW THE CONDITICNAL ASSEMBLY INSTRUCTIONS IN THE MACRO EXPANSIO
DELETE THE 'OPT NOCL' (LOCATED AFTER THIS BOX) BEFORE ASSEMBLY.

¥ ¥ * * F A % *

OPT NOCL
OPT MEX
**

* *
* THIS: IS THE EQUATE FILE TQ SUPPORT THE MACROS. *
* TO.DRIVE THE MC68881 AS A PERIPHERATL. *
* WITH THE M68000 FAMILY *
* *
** hhkkhhkhkkkhkhkhkhhkkhrkkhhh
** & dhkkhkkkhhkdhhkhhhkkhkAxhkhkhkkk
* THESE ARE THE INSTRUCTION BIT PATTERN
*** *****************************
FMOVE EQU $00
FINT 'EQU $01
FSINH EQU 502
FSQRT EQU 504
FLOGNP1 EQU 506
FETOXM1: ' EQU 508
FTANH EQU 509
FATAN EQU - s0a
FASIN EQU soc
FATANH - EQU k
FSIN EQU
FTAN EQU
FETOX EQU
FTWOTOX
FTENTOX
F1OG: , .
FARS, $18 ABSOLUTE VALUE.
$19 ¢ COSH -
$1A - NEGATE
$ic ARCCOS
$1D COSINET
$1E GET EXPONENT
$1F GET MANTISSA
520 DIVIDE
- 821 MODULO REMAINDER
$22 ADD
. $23 MULTIPLY
FSGLDIV™ EQU . $24 SINGLE DIVIDE
FREM EQU $25 IEEE REMAINDER
FSCALE . EQU 526 " SCALE EXPONENT
FSGIMUL EQU $27 SINGLE MULTIPLY
FSUB EQU $28 " SUBTRACT
FCMP EQU - 8§38 COMPARE,
FTST EQU $3a TEST
FSINCOS EQU $30 SIMULTANEOUS FP SINE AND COSINE

MOTOROLA
21

63 kkkhkhkkkkhkhkkhhkdhhhkhkhkhkhkrkhdkh kb hhhkdhkrkhdhkhkhhhkkhhkhkhdhkrhhhhhhkhkhdhrdk

64 % THESE ARE THE NUEMONICS USED AS THE CONDITION CODES FOR THE *
65 * BRANCH INSTRUCTIONS _ . *
AR L L T L L T T T
67 EQ EQU $01 EQUAL
68 NEQ EQU $OE NOT EQUAL
69 GT EQU $12 GREATER THAN
70 NGT EQU $1b NOT GREATER THAN
71 GE EQU 513 GREATER THAN OR EQUAL

72 NGE EQU “$1C NOT (GREATER THAN OR EQUAL)

73 LT “EQU $14 1IESS THAN

74 NLT EQU $1B NOT LES THAN

75 1E EQU $15 1ESS THAN OR EQUAL

76 NLE EQU $1A NOT (LESS THAN OR EQUAL)

77 GL EQU $16 GREATER OR LESS THAN

78 NGL EQU 819 NOT (GREATER OR LESS THAN)

79 GLE EQU. $17 . GREATER OR LESS OR EQUAL

80 NGLE EQU .. . 818" NOT (GREATER OR LESS OR EQUAL)
81 OGT EQU: . . _$02 . . ORDERED:GREATER THAN

82 ULE EQU $0D '~ UNORDERED -OR LESS OR EQUAL

83 OGE EQU $03 ORDERED GREATER THAN OR EQUAL
84 ULT EQU $oc UNORDERED OR IESS THAN

85 OLT EQU 504 ORDERED 1ESS THAN

86 UGE - EQU .$0B UNORDERED OR GREATER O

87 OLE EQU $05 ORDERED IESS THAN OR'E

88 UGT EQU SO0A UNORDERED. OR GREAS

89 OGL EQU.- . $06 ORDERED GREATER

90 UEQ EQU $09 UNORDERED OR_ J(

91 OR EQU $07 ORDERED

92 UN EQU $08 UNORDERED

93 F EQU $00 FALSE

94 T EQU $OF TRUE (ALWA!

95 - SF EQU $10 SIGNALING FALSE (NEVER)

96 ST EQU $1F STGNALING TRUE (ALWAYS)

97 SEQ - EQU - $11 " SIGNALING EQUAL

98 . SNEQ EQU “$1E SIGNALING NOT EQUAL

99

100 ******************* ***t**********
101 * THESE E RESENT THE OFFSETS FOR THE BASE ADDRESS -OF *
102 * - THE NTERFACE ‘REGISTERS! *

ko k gk kok Kok ok deokodkd

dkkhkkkhkhkkhhhkkhkkkhkhkkhkhhhkhhhkhkdhhkkkhkkhhkhhkhhkhkhkhkhhkkkhkkk

"~ COMMAND REGISTER
RESPONSE REGISTER
. OPERAND REGISTER
CONDITION REGISTER
' SAVE REGISTER .
_'RESTORE 'REGISTER
REGISTER SELECT
MC68881 : CONTROL REGISTER
s EQU $8800 MC68881 STATUS REGISTER)
IADDRESS EQU . - $8400 MC68881 INSTRUCTION ADDRESS REGISTER
TFBIT EQU $0 TRUE/FALSE BIT OF THE RESPONSE REGISTER

kkkhkhkkhhhhkhkhkhhhhkhkkhkhkhhhkkhhhkkhkhhkhkhdhhkkhhhhkhhkhhkkhhkhkhkhkhkhkkhkdhhhdkhkhhkd

* THESE EQUATES REPRESENT THE FLOATING POINT REGISTERS *
t**************
119 FPO EQU 500 FLOATING POINT REGISTER #0
120 FP1 EQU $01 "o " "o
121 FP2 " EQU $02 " " " 42
122 FP3 EQU $03 " " "3
123 FP4 EQU. . $04 FLOATING POINT REGISTER #4
124 FP5 . = EQU - $05 " " "5
125 FP6 EQU $06 " " " %6
126 FP? EQU $07 " " "#7
2 . '3
MOTOROLA S : ‘ ANS47/D

22

127 ************************************t******************i**********************

128 # *
129 * MC68881 SINGLE PRECISION FP-REG. VALUE TO MEMORY OPERATION *
130 * *

131 » REGMEMS INSTRUCTION, FEM, <EA> *

O 132 ,) *
133 #* WHERE: INSTRUCTION= FP INSTRUCTION NUEMONIC (I.E. FMOVE) *
134 * FPM=~ SOURCE FP REGISTER *
135 * <ER>= DESTINATION ADDRESSING MODE *
136 =
137 = NO REGISTERS MODIFYED OR DESTROYED!
138 * .
139 # VALID ADDRESSING MODES: DN, (AN)+, —(AN), D(AN}, D(AN,IX)
140" * : XXX.W, XXX.L, (D,PC), D(PC,IX)
141 = , * -
142 ** *kkkk
143 REGMEMS MACRO
144 IFC *\4';'" IS <EA>=
145 ‘MOVE (W #$6400+(\2<<7) +\1, MC68881+COMMAND .MEM.
146 \ENULCA - CMPI #$8900,MC68881+RESPONSE
147 BEQ.S \@NULCA ‘ UATE EA AND TRANSFER
148 * . DATA :
149 MOVE.L MC68881+0PER, \3 _
150 \@NULREL TST.B MC68881+RESPONSE 1s ?
151 © BMI.S \@NULREL UNTIL NULL RELEASE
152 ENDC
153 IFNC '\4', ' R <EAR> NOT = INDIRECT WITH INDEXING
154 - © MOVE.W #ss4oo+(\2<<7)+\1 MC68881+COMMAND MEM. TO REG. OPERATION
155 \@NULCA - CMPI #$8900,MC68881+RESPON READ RESPONSE REGISTER
156 BEQ.S \@NUICA REREAD UNTIL EVALUATE EA AND TRANSFER
157 . * DATA
158 MOVE.IL MC68881+0PER, \3; SINGLE PRECISION DATA TRANSFER
159° \@NULREL TST.B MC68881+RES IS RESPONSE NULL RELEASE?

‘ 160 ‘BMI.S \@NULREL BRANCH UNTIL NULL RELEASE

© 161 ENDC '

e 162 - ENDM

= 163 *******************; *****************t*********************************
164
165 -+ MC6888 ORD LENGTH FP-REG. VALUE TO MEMORY OPERATION

-7 166 * :

167 *- INSTRUCTION, FPM, <EA>
168 * .
169 * ZON= FP INSTRUCTION NUEMONIC (I.E.. FMOVE)
170 * ' FPM= SOURCE. FP REGISTER. '
171 * - <EA>= DESTINATION ADDRESSING MODE

NO-REGISTERS "MODIFYED. OR DESTROYED'!

VALID ADDRESSING MODES: DN, (AN)+, —(AN), D(AN), D(AN,IX)

* XXX.W, XXX.L, (D,PC), D(PC,IX)
*

* ok % R X A * F F F N * X *

************t*****t***
REGMEML - MACRO

IFC '\4', ' 1S <EA>=INDIRECT WITH INDEXING

MOVE.W #56000+(\2<<7)+\1,MC68881+COMMAND - MEM.' TO REG. OPERATION
\ENULCA ' CMPI #$8900,MC68881+RESPONSE READ RESPONSE REGISTER

183 BEQ.S \EGNUICA REREAD UNTIL EVALUATE EA AND TRANSFER
184 +* - -DATA
185 * MOVE.L MC68881+0PER, \3 . LONG WORD TRANSFER
186 \@NULREL TST.B MC68881+RESPONSE IS RESPONSE NULL RELEASE?
187 BMI.S \@NULREL BRANCH UNTIL NULL RELEASE
188 _ENDC -
189 IFNC '\4',°* ‘ IS <EA> NOT = INDIRECT WITH INDEXING
: 180 MOVE . W #ssooo+(\2<<7)+\1 MC68881+COMMAND MEM. TO REG. OPERATION
’ 191 \@NULCA CMPI #$8900,MC68881+RESPONSE READ RESPONSE REGISTER
: » 192 BEQ.S \@NULCA REREAD UNTIL EVALUATE EA' AND TRANSFER

AN947/D _ : MOTOROLA
R 23

b e i bn e B i e an B A [W s e e e e st et e s i St , .

193 * : DATA
194 .MOVE.L MC68881+OPER,\3,\4 - LONG WORD TRANSFER
195 \@NULREL TST.B MC68881+RESPONSE . IS RESPONSE NULL RELEASE?
196 ' BMI.S \@NULREL BRANCH UNTIL NULL RELEASE
197 ENDC -
198 ENDM v
159 **
200 * ' *
201 * MC68881 WORD LENGTH FP-REG.. VALUE TO MEMORY OPERATION *
202 * ' *
203 * REGMEMW INSTRUCTION,FPM,<EA> *
204 *
205 * WHERE: INSTRUCTION= FP INSTRUCTION NUEMONIC (I.E. FMOVE)
206 * FPM= SOURCE FP REGISTER .
207 * <EA>= DESTINATION ADDRESSING MODE
208 *
209 * NO REGISTERS MODIFYED OR DESTROYED!
210 * ‘
211 * : VALID ADDRESSING MODES: DN, (AN)+, —(AN), D(aN), Df
212 * XX.W, XXX.L, (D,PC), D(RB
. .

214 *rhkdkkkhkhhhhhddohhdkddrhdkok ok ek koot kol & ko ok ok ok ok ok sk o ok ok ook ok e kR Kkkhhhkhkhhikihk

215 REGMEMW MACRO
216 JIFC '\, IS <EA>=INDIRECT 'WITH INDEXING
217 MOVE.W #$7000+ (\2<<7) +\1,MC68881+COMMAND . TO' REG. OPERATION
218 \@NULCA CMPI #$8900,MC68881+RESPONSE READ RESP 913 REGISTER

219 BEQ.S. \@NULCA 1, EVALUATE EA AND TRANSFER
220 x : v ¢

221 MOVE.W MC68881+0PER,\3 TA TRANSFER

222 \@NULREL TST.B MC68881+RESPONSE ~RESPONSE NULL REIEASE?

223 ° BMI.S \@NULREL BRANCH UNTIL NULL RELEASE

224 ENDC

225 IFNC:'\4', " 1S <EA> NOT = INDIRECT WITH INDEXING
226 MOVE.W #$7000+(\2<<7)+)1,MC68881+COMMAND MEM. TO REG. OPERATION
227 - \@NULCA RESPONSE = READ RESPONSE REGISTER

228 : : * REREAD UNTIL EVALUATE EA AND TRANSFER .
229 * DATA

230 PER, \3, \4 WORD DATA TRANSFER

231 \@NULREL : SPONSE IS RESPONSE. NULL RELEASE?

232 BRANCH UNTIL.NULL REIEASE

233

234 *

235 *

236 *

Khkhkhkkhkhhhhkkhkdkhkhkhhhhhhhkhkhhrhkhdkkhkhhhhhkhhkhhkhkkhkhhkhkkhrhkkhkkkkkkhk

-7 "MC68881* BYTE LENGTH FP-REG. “VALUE' TO MEMORY OPERATION

*

*

*

* REGMEMB INSTRUCTION,FPM, <ER> *

* *

* WHERE: INSTRUCTION= FP INSTRUCTION NUEMONIC (I.E. FMOVE) *

* ' FPM= SOURCE FP REGISTER *

* <EA>= DESTINATION ADDRESSING MODE *

* | *

* NO REGISTERS. MODIFYED OR.DESTROYED! *

* *

250 * VALID ADDRESSING MODES: DN, (AN)+, -(AN), D(AN), D{(aN,IX) *
251 * - XXX W,--X#X. L, -{D,BC), D(PC, IX) *
252 * ' *

253 KA R AR AR AR A AR R A AR AR AR IR AR R AR AR AR AR R AR AR KRR A AR R KA R ARk h Ak hkhkhhkddhkr

254 .REGQMEMB MACRO .
. 255) CIFC *\4', " IS <EA>=INDIRECT WITH INDEXING

256 MOVE.W #$7800+(\2<<7)+\1,MC68881+COMMAND - MEM. TO REG. OPERATION .
257 \@NULCA CMPI #$8900,MC68881+RESPONSE READ RESPONSE REGISTER @

258 - BEQ.S \ENUICA : REREAD UNTIL EVALUATE EA AND TRANSFER

MOTOROLA , ANS47/D
24 : :

259 * DATA

260 MOVE.B MC68881+0PER, \3 BYTE DATA TRANSFER
261 \@NULREL TST.B MC68881+RESPONSE IS RESPONSE NULL RELEASE?
262 BMI.S \@NULREL BRANCH UNTIL NULL REIEASE
263 ENDC ‘ :
O 264 IFNC "\4', "' IS <EA> NOT = INDIRECT WITH INDEXING
. 265 MOVE.W #$7800+(\2<<7)+\1,MC68881+COMMAND MEM. TO REG. OPERATION
266 \@NULCA CMPI #$8900,MC68881+RESPONSE READ RESPONSE REGISTER
267 BEQ.S . \@NULCA REREAD UNTIIL, EVALUATE EA AND TRANSFER
268 « ‘ DATA
269 MOVE.B MC68881+OPER,\3,\4 - - BYTE DATA TRANSFER »
270 \@NULREL TST.B MC68881+RESPONSE’ IS RESPONSE NULL, REIEASE?
271 BMI.S \@NULREL BRANCH UNTIL NULL RELEASE
272 ‘ENDC
273 ENDM
274 ** * %k Kk Kk
275 , s
276 -'MC68881" DOUELE :PRECISION FP-REG. VALUE TO MEMORY OPERAf
277
278 "REGMEMD .~ INSTRUCTION; FPM, <EA> i
279 , :
280 WHERE: INSTRUCTION= FP INSTRUCTION NUEMONIC .

‘'FPM= SOURCE FP REGISTER
<EA>= AN ADDRESS REGISTER, SURRO!
' CONTAINING THE PREVIQUS

D BY PARENTHESIS,
EFFECTIVE ADDRESS

o
©
X1
XK ok Rk ok R X kK * X ¥ 4
¥R % % k% ok o R N A % * %

284 (I.E. (R0)).

285 . >
286 NO REGISTERS MODIFYED OR DESTROYED!

287

288 VALID ADDRESSING MODES:

289

290 Khkkkkkhkhkkdhkhhhkddkkkhkkhkdkhkkhhkkkkk KARI KA KRR A A AR A AR AR IR AR AN Rk hkrkdhkkid
291 REGEMD MACRO) .
MOVE.W #$7400+(\2<57)+X1,MC68881+COMMAND MEM. TO REG. OPERATION
’ 293 \@NULCA

RESPONSE READ RESPONSE REGISTER Lo
REREAD UNTIL EVALUATE EA AND TRANSFER
\E@NULREL TST.B 1+RESPONSE . IS RESPONSE NULL RELEASE?
: BRANCH UNTIL NULL RELEASE

DATA
+OPER, \3 HIGH ORDER LONG WORD
+OPER, 4\3 LOW ORDER LONG WORD

khkkkkkkkhk **

68881 EXTENDED PRECISION FP-REG. VALUE TO MEMORY OPERATION

REGMEMX " INSTRUCTION,FPM, <EA>'. ..

WHERE: INSTRUCTION= FP . INSTRUCTION NUEMONIC (I.E. FMOVE)
FPM="SQURCE FP REGISTER i
<EA>= AN ADDRESS REGISTER, SURROUNDED BY PARENTHESIS,
CONTAINING THE PREVIOUSLY LOADED EFFECTIVE ADDRESS
(I.E. (A0}).

NO REGISTERS MODIFYED OR DESTROYED!

VALID ‘ADDRESSING: MODES: (AN)

* O* O % R F N ok ¥ ¥ * * % % ¥

% X * N * * F

317 ***t************************

318 REGMEMX' 'MACRO.

319 MOVE.W #56800+(\2<<7)+\1,MC68881+COMMAND MEM. TO REG. OPERATION
320 \@NULCA CMPI #58900,MC68881+RESPONSE = READ RESPONSE REGISTER
321 BEQ.S \@NULCA REREAD UNTIL EVALUATE EA AND TRANSFER
322 * ' DATA
, 323 ‘MOVE.L MC68881+0PER,\3 ‘ HIGH ORDER LONG WORD
‘ 324 MOVE.L MC68881+0PER, 4\3 MID-ORDER
AN947/D ' MOTOROLA

25

S et i oo Bt e M AL e B ety wa b e et s

B SN . EEIE SO Ay AERVOR Wi et o b bt e .,

325 MOVE.L MC68881+OPER, 8\3 LOW ORDER WORD

326 \@NULREL TST.B MC68881+RESPONSE . IS RESPONSE NULL RELEASE?
327 BMI.S \@NULREL BRANCH UNTIL NULL RELEASE

328 ENDM '

329 ***************-k******************.************************i*******t***********
330 * *
331 * MC68881 PACKED BCD FP-REG. VALUE TO MEMORY OPERATION *
332 * : *
333 * REGMEMP . INSTRUCTION,FPM, <EA>, [K-FACTOR] *
334 * *
335 WHERE: ~INSTRUCTION= FP INSTRUCTION NUEMONIC (I.E. FADD) *
336 * FPM= SOURCE FP REGISTER

337 . x <EA>= DESTINATION ADDRESSING MODE

338 * {K-FACTOR]= OPTIONAL IMMEDIATE K-FACTOR

339 *

340 * ***IF [K-FACTOR] OPTION NOT TAKEN, THE K-FACTOR MUST BE PLACED I *
341 * *
342 % “'VALID' ADDRESSING MODES:. (AN) *
343 * *
344 kA KRR A I RARR KRR AR AR KRR Ak Rk kAR KAk khdhkhkkhkhhkkdk v**_**********

345 REGMEMP MACRO

346 IFC '\4', " IS K-FACTOR IN RE(

347 MOVE.W #$7C00+(\2<<7)+\1,MC68881+COMMAND . MEM _REG. OPERATION
348 \@NUICA CMPI #$8900,MC68881+RESPONSE

349 BEQ.S - \ENULCA

350 - . MOVE.L DO0,MC68881+OPER

351 \@AGAIN -CMPI #$8900,MC68881+RESPONSE

352 ° BEQ.S \GAGAIN

353 «* .

354 MOVE.L MC68881+OPER, \3

355 MOVE.L MC68881+OPER, 4\3 ID—ORDER LONG WORD

356 MOVE.L MC68881+OPER, 8\3 IGH ORDER LONG WORD

357 \@NULREL TST.B MC68881+RESPONSE IS RESPONSE NULL RELEASE?

358 . BMI.S \@NULREL BRANCH UNTIL NULL RELEASE

359 . ENDC _

360 IFNC '\4',"' 3 IS K-FACTOR IN INSTRUCTION?

361 MOVE.W #$6C0 <7} +\4,MC68881+COMMAND MEM. TO REG. OPERATION
362 - \@NULCA 68881+RESPONSE = READ RESPONSE REGISTER

363 h REREAD UNTIL EVALUATE EFFECTIVE ADDRESS
364 * ~ AND TRANSFER DATA

365 8140PER, \3 1OW ORDER WORD

366 C68881+0PER, 4\3 MID-ORDER WORD

367 : ' MC68881+0PER, 8\3 HIGH ORDER WORD

368 \@NULRE] . B MC68881+RESPONSE 1S RESPONSE NULL RELEASE?

369 BMI.S \@NULREL . BRANCH UNTIL NULL RELEASE

370 »

37

**************************'k*'k*******************************'k****************

*

* MC68881 BYTE IN MEMORY OR IN Dn TO FP-REG. OPERATION *

* *

* MEMREGB INSTRUCTION,<EA>, FEN *

* *

* WHERE: ~ INSTRUCTION= FP INSTRUCTION NUEMONIC (I.E. FADD) *

* <EA>= SOURCE ADDRESSING MODE *

* FPN= DESTINATION REGISTER *

* . *

. 382 * NO REGISTERS MODIFYED OR DESTROYED! *
383 * : ‘ *
384 * VALID ADDRESSING MODES: DN, (AN)+, -(AN), D(AN), D(AN,IX) *
385 * XKW, XXX.L, (D,PC), D(PC,IX) *
386 * _ *
387 * THE COMMENTED OUT CODE SHOWS HOW A USER MAY IMPLEMENT FSINCOS *
3gg * IN A MEM. TO REG. TRANSFER USING THE FOLLOWING INSTRUCTION FORMAT: *
389 * *
* *

MEMREGB - INSTRUCTION, <EA>, FPN, FPQ (FPQ= 2ND DESTIRATION REG.)

MOTOROLA AN947/D
26

391 * *
392 - ARARKAAAKRRRRAXAKKAKKKRIRRERRKAHRIRRRKRARKRARKARIKRERKRARRRIARKERRRRRA AR AR KK kR
383 'MEMREGB MACRO ‘ '

394 IFC *\1°','FSINCOS' IS INSTRUCTION FSINCOS

395 IFC *\5', "' IS INDEXING PART OF THE ADDR.MODE
O 396 MOVE.W #$5800+(\4<<7)+\3+\1, MC68881+COMMAND .. MEM. TO REG. OPERATION

397 = \@NULCA CMPI #$8900,MC68881+RESPONSE READ RESPONSE REGISTER

398 " BEQ.S \ENUICA REREAD UNTIL EVALUATE EA AND TRANSFER

399 ' DATA

400 MOVE.B \2,MC68881+0PER BYTE DATA TRANSFER

401 \@NULREL TST.B MC68881+RESPONSE IS RESPONSE NULL RELEASE?

402 BMI.S \@NULREL BRANCH UNTIL NULL RELEASE

403 ENDC

404 IFNC '\5', IS <ER> NOT = INDIRECT WITH IND

405 MOVE.W #ssaoo+(\5<<7)+\4+\1 MC68881+COMMAND MEM. TO REG. OP

406 \GNULCA CMPI #$8900,MC68881+RESPONSE = READ RESPONSE REGISTER

407 ... BEQ.S \@NULCA . . REREAD UNTIL EVALUATE EA i

408 DATA

409 ‘MOVE.B-\2,\3,MC68881+0PER . . - 'BYTE DATA TRANSFER
410 - - \@NULREL TST.B.MC68881+RESPONSE ' " ' IS RESPONSE NULL

411 BMI.S \@NULREL

412 ENDC

413 ENDC

414 IFNC '\1l', 'FSINCOS' . IS. INSTRUI

415 IFC '\4', ' ‘ IS <EA>=I

416 . MOVE.W #$5800+ (\3<<7}+\1,MC68881+CO] MEM. TO REG. OPERATION

417 \@NULCA CMPI #58900,MC68881+RESPONSE NSE REGISTER

418 BEQ.S \@NULCA F UNTIL EVALUATE EA AND TRANSFER

iy ¥ .

420 MOVE.B \2,MC68881+0PER OVE DATA INTO OPERAND REGISTER

421 \@NULREL TST.B MC68881+RESPONSE S RESPONSE NULL RELEASE?

422 BMI.S \GNULREL BRANCH UNTIL NULL RELEASE

423 ENDC
424 IFNC '\4*,'! IS <EA>=NOT INDIRECT WITH INDEXING
‘ 425 . MOVE.W #$5800+()+\1 MC68881+COMMAND *MEM. TO REG. OPERATION
\ 426 '\@NULCA - CMPI #$8900,MC688814RESPONSE ~ READ RESPONSE REGISTER

427 BEQ.S \@NULGA REREAD UNTIL EVALUATE EA AND TRANSFER
428 * ' : DATA

429 68881+0PER BYTE DATA TRANSFER _

430 \@NULREL 381+RESPONSE IS RESPONSE NULL RELEASE?

431 : ‘ BRANCH UNTIL NULL RELEASE

432

433

434

435 k% ARERK AT A IR IR R A IR IR AR AR KAk kA Ik Ak hkk kR AR AR ANk ke khkh kA kA AR kR Ak kk

- MC68881: WORD: IN . MEMORY."OR: INDn .TQ FP-REG. OPERATION

MEMREGW = INSTRUCTION,<EAR>,FPN

*

*

*

*

* *

* WHERE: INSTRUCTION= FP INSTRUCTION NUEMONIC (I.E. FADD) *

* <EA>= SOURCE ADDRESSING MODE *

* FPN= DESTINATION REGISTER *

* %*

* NO REGISTERS MODIFYED OR DESTROYED! *

* *

* VALID ADDRESSING MODES: DN, (AN)+, -(AN), D(AN), D (AN, IX) *

448 * XKW, XX.L, (D,PC), D(PC, IX) *
449 . * *

LT e e L L T R e S T L g T Hurpprar
451 MEMREGW * MACRO

452 IFC "\4', ' IS <EA>=INDIRECT WITH INDEXING
453 | MOVE.W. #$5000+ (\3<<7)+\1,MC688814COMMAND MEM. TO REG. OPERATION
\ 454 \@NULCA CMPI #$8900,MC68881+RESPONSE = READ RESPONSE REGISTER
, 455 BEQ.S \@NULCA REREAD UNTIL EVALUATE EA AND TRANSFER
456 * ' DATA

ANS947/D ' ‘ MOTOROLA
' : 27

457 . MOVE.W \2,MC68881+OPER WORD DATA TO FP-REG.

458 \@NULREL TST.B MC68881+RESPONSE IS RESPONSE NULL RELEASE?

459 EMI.S \@NULREL " BRANCH UNTIL NULL RELEASE

460 ENDC ,

461 "~ IFNC "\4%, "' IS <EA> NOT = INDIRECT WITH INDEXING _
462 MOVE.W #$5000+ (\4<<7)+\1,MC68881+COMMAND MEM. TO REG. OPERATION !
463 \@NULCA CMPI #$8900,MC68881+RESPONSE READ RESPONSE REGISTER :

464 BEQ.S - .\@NULCA REREAD- UNTII, EVALUATE EA AND TRANSFER

465 * DATA

466 MOVE.W \2,\3,MCS8881+0PER WORD DATA TO FP REG.

467 \@NULREL TST.B MC68881+RESPONSE IS RESPONSE NULL RELEASE?

468 BMI.S \@GNULREL - BRANCH UNTIL NULL RELEASE

469 ENDC . ' ’ -

470 ENDM .

471 ek gk Ak ok g & gk ok A ok ek ok % o 3k A otk e ok A ok e sk e ok ok ok i ke ok e ok o ok ok ok ok e e ok o ok ok ok ko ek ok ok ek R

472 * .

473 MC68881. LONG WORD :IN MEMORY OR.IN Dn TO FP-REG. OPERATION

474

475 MEMREGL'. ~ INSTRUCTION, <EA>,FPN : :

476

477 WHERE: ~INSTRUCTION= FP INSTRUCTION NUEMONIC .

“ <EA>= SOURCE ADDRESSING MODE
: FPN= DESTINATION REGISTER \

NO REGISTERS MODIFYED OR DESTROYED!

VALID ADDRESSING MODES: . DN, (AN), D (AN}, D(aN, IX)

* ¥ ¥ % % ¥ % O ¥ * * % X *

-
. |
o
* ok %k % A % A ok % ¥ Ok H %

484 0. W X0t 1, ~(D,PC), D(PC, IX)’

485

486 khkkhkhkkhkhkhkkdkdkhkrkhhkhhkhkhhkkhkhkhkhhkkhhi khkkkkhkhkhkhkhkhrhkkhkhkhkhhkkhkhkhkhhkdkdhkhkdhkik
¥ 487 MEMREGL. MACRO . N ‘

488 IFC '\4',"" IS <EA>=~INDIRECT WITH INDEXING

489 MOVE.W #54000+(\3<<7) 68881+COMMAND MEM. TO REG. OPERATION

490 READ RESPONSE ‘REGISTER
491 REREAD UNTIL EVALUATE EA AND TRANSFER
492 DATA
493 LONG WORD DATA TO FP REG.
494 1s RESPQNSE NULL RELEASE?
495 BRANCH 'UNTIL NULL RELEASE
196
497 ', IS <EA> NOT = INDIRECT WITH INDEXING
498 #sqooo+(\4«7)+\1 MC68881+COMMAND MEM. TO REG. OPERATION
499 \@N T $58900,MC68881+RESPONSE * READ RESPONSE REGISTER
500 0.5 \@NULCA " . 'REREAD UNTIL EVALUATE EA AND TRANSFER ;
501 * DATA o
502 MOVE.L '\2, \3;MC6B8881+OPER. . .. LONG WORD DATA TO FP REG.
NULREL - TST . B~ MC68881+RESPONSE * IS RESPONSE NULL RELEASE? ',
BMI.S \@NULREL - BRANCH UNTIL NULL RELEASE i
ENDC
ENDM :

AAIKKEE R KKK KRARK AR AR KA Ak Ik hh kA kI kh AR kI A hhk kAR Ak hkhkhhhdhkdkhkdhkkhhhhhkhkhhhhdhk

xX.W, XX.L, (D,PC), D(PC,IX)

—

* *
* MC68881 SINGLE PRECISION VALUE MEMORY TO FP-REG: OPERATION *
* : *
* MEMREGS - INSTRUCTION, <EA>,FPN *
* . : *
513 * WHERE: ~INSTRUCTION= FP INSTRUCTION NUEMONIC (I.E. FADD) *
514 * ' <EA>= SOURCE ' ADDRESSING-MODE *
515 =* FPN= DESTINATION REGISTER *
516 * *
517 * NO REGISTERS MODIFYED OR DESTROYED! *
518 * . *
519 * VALID ADDRESSING MODES: DN, ' (AN)+, —(AN), D(AN), D(AN, IX} *
* .) *
* *

522 AR A AR A AR RRE R R AR KRR EAR AR RRKRRKAARKRR RN ARARARARKE ARk Ahhhhdhdkdrhhhhhhhhhdkhhhkkk

MOTOROLA _ AN947/D
ol)

523 MEMREGS ~MACRO : :
524 IFC '\4', " 1S <EA>=INDIRECT WITH INDEXING

525 MOVE.W 454400+ (\3<<7) +\1,MC68881+COMMAND MEM. TO REG. OPERATION

526 \@NULCA- CMPI #$8900,MC68881+RESPONSE - READ: RESPONSE REGISTER

527 . . “BEQ.S \@NULCA : REREAD UNTIL EVALUATE EA AND TRANSFER
’ 528 * DATA .

529 MOVE.L \2,MC68881+0OPER SINGLE PRECISION DATA TO FP REG.

530 \@NULREL TST.B MC68881+RESPONSE IS RESPONSE NULL RELEASE?

531 BMI.S \@NULREL BRANCH UNTIL NULL RELEASE

532 ENDC

533 IFNC '\4',"® IS <EA> NOT = INDIRECT WITH INDEXING

534 © - MOVE.W #54400+(\4<<7)4+\1,MC688814+COMMAND MEM, TO REG. OPERATION °

535 \@NULCA CMPI #$8900,MC68881+RESPONSE = READ RESPONSE REGISTER

536 BEQ.S \@NuLca REREAD UNTIL EVALUATE EA AND

537 x DATA

538 MOVE.L \2,\3,MC68881+0PER SINGLE PRECISION DATA TO F'
539 \GNULREL TST.B.MC68881+RESPONSE ~ - . IS RESPONSE NULL RELEAS
540 . BML.S \@NULREL BRANCH UNTIL NULL

NO REGISTERS MODIFYED OR

ESTROYED!

VALID ADDRESSINGIMODES:: (AN)

541 ENDC
542 ENDM
543 ***i******* kkkdhhhkdkdkhddkkhk
544 * : *
545 * MC68881 DOUBLE PRECISION VALUE MEMORY TO . OPERATION *
546 * . *
547 «* MEMREGD INSTRUCTION, <EA>,FPN *
548 * . *
549 * WHERE: - INSTRUCTION= FP INSTRUCTION NIC (I.E. FADD) *
550 * <EA>= SQURCE ADDRESS TER, SURROUNDED BY PRARENTHEIS, *
551 =* CONTAINING THE. SLY ENTERED ADDRESSING MODE *
552 * (I.E. (AN)). ‘ *
853 * FPN= DESTINATION *
554 * : *
¥ *
* *
* *
* *

5509 kkhkkkkkhhhkkhrkhkkhk y***

560 MEMREGD MACRO

561 (\3<<7) +\1,MC68881+COMMAND MEM. TO REG. OPERATION
562 \@NULCA CMpPI MC68881+RESPONSE - READ RESPONSE REGISTER

563 REREAD UNTIL EVALUATE EA AND TRANSFER
564 *) DATA

565 \2,MC68881+0PER HIGH ORDER LONG WORD

566 <L:4\2,MC68881+0PER . - ° LOW ORDER LONG WORD

567 - \@N L ‘TST.B MCE68881+RESPONSE .. % 1S RESPONSE NULL RELEASE?

568 - BMIL.S.: \@NULREL: BRANCH UNTIL NULL RELEASE

. ENDM
**

. *
* MC68881 EXTENDED PRECISION VALUE MEMORY TO FP-REG. OPERATION *
* *
* MEMREGX - INSTRUCTION,<EA>,FPN *
* o *
* WHERE: ~INSTRUCTION= FP INSTRUCTION NUEMONIC (I.E. FADD) *
* <EA>= SQURCE ADDRESS REGISTER, SURROUNDED BY PARENTHESIS, *
* CONTAINING THE PREVIOUSLY ENTERED ADDRESSING MODE *
579 (I.E. (aN)). *
580 * FPN= DESTINATION REGISTER *
581 * . *
582 * NO REGISTERS MODIFYED OR DESTROYED! *
583 * o _ *
584 * VALID ADDRESSING MODES: - (AN) *
585 =* ‘ : *
586 Ak k kN AIRKRKKAKIRIRAAR Ik KA KKK A KR A AI KA KRR AR TR TR K AAEFRFA KA ERRT AN R IR KAk
@ 587 MEMREGX MACRO .
588 MOVE.W #54800+(\3<<7)+\1, MC68881+COMMAND MEM. TO REG. OPERATION
AN947/D . Co MOTOROLA

29

e,

589 \@NULCA CMPI #5$8900,MC68881+RESPONSE READ RESPONSE REGISTER

590 BEQ.S \@NULCA .REREAD UNTIL EVALUATE EA AND TRANSFER
591 * ' DATA

592 MOVE.L \2,MC68881+OPER HIGH ORDER LONG WORD

593 o~
594 MOVE.L 4\2,MC68881+OPER MID-ORDER LONG WORD G
595 MOVE.L-8\2, MC68881+OPER LOW ORDER LONG WORD

596 \@NULREL TST.B MC68881+RESPONSE .. IS RESPONSE NULL RELEASE?

597 BMI.S \@NULREL BRANCH UNTIL NULL RELEASE

598 ENDM

599 AR AR A KA AR AR AN KRR AR AR AR AR AR bRk kAR AR A AR AR AR AR A kI AR d ARk ARk kkhhhhrdhkdhk

VALID ADDRESSING MODES: (AN)

600 *

601 * - MC68881 PACKED BCD VALUE MEMORY TO FP-REG. OPERATION

602 *

603 * MEMREGP INSTRUCTION, <EA>,FPN

604 * : *

605 * WHERE: ' INSTRUCTION= FP INSTRUCTION NUEMONIC (I.E. FADD) *

606 * <EA>= SOURCE ADDRESS REGISTER, SURROUNDED BY *

607 * CONTAINING THE PREVIOUSLY ENTERED AD G MODE *

608 * (I.E. (AN)). *

609 * FPN = DESTINATION REGISTER *

610 * *

611 * NO REGISTERS MODIFYED OR DESTROYED! *

612 * *
* *
* *

615 kkdkkkkkkkkkkkhkhkkkhkhhdkhhkkhdkkhkdk bk kiR (R Kk kR hkkhhkhdhdhkhkdhkhkhkhkhkxk

616 MEMREGP MACRO
617 MOVE.W #$4C00+(\3<<7)+\1,MC
618 \@NULCA CMPI #$8900,MC68881+RESPON.
619 BEQ.S \ENULCA

MMAND MEM. TO REG. OPERATION
RESPONSE REGISTER

REREAD UNTIL EVALUATE EA AND TRANSFER
DATA

HIGH ORDER LONG WORD

MID-ORDER LONG WORD

PER - IOW ORDER LONG WORD

ONSE = 1S RESPONSE NULL RELEASE?

BRANCH UNTIL NULL RELEASE

621] MOVE.L \2,MC68881+OPER
' MOVE.L 4\2,MC6888140P

ARk R AR NI I AR A KA R KA AR AR RN AR RARN KA IR I AR AAhhkhkhkhhhk

REG. TO FP-REG. OPERATION

INSTRUCTION, FPM, FEN, FNQ

- INSTRUCTION= NUEMONIC 'FOR-THE FP INSTRUCTION. (I.E. FADD) .
FPM=~. FP:SQURCE REGISTER :

FPN=- FP "DESTINATION REGISTER

FNQ= SECOND FP DESTINATION REGISTER FOR FSINCOS

NO REGISTERS MODIFIED OR DESTRCYED!

* % # ok 3 .k % F ¥ * %

L Tl LT S L S T ST
641 REGREG - MACRO

642 IFC '\1', 'FSINCOS' IF INSTR. IS FSINCOS DO THIS ROUTINE
643 | MOVE.W #(\2<<10}+(\4<<7) +\3+\1,MC68881+COMMAND -REG.. TO REG. FSINCOS
644 \@NULCA TST.B MC68881+RESPONSE READ RESPONSE REGISTER
645 . BMI.S \@NUICA REREAD UNTIL NULL RELEASE (CA=0)
646 ENDC
647 IFNC '\1', 'FSINCOS® ROUTINE FOR ALL OTHER ARITHMETIC INSTRS.
648 MOVE.W #(\2<<10) + (\3<<7} +\1,MC68881+COMMAND REG. TO REG. OPERATION
649 \EGNULCA TST.B MC68881+RESPONSE READ RESPONSE REGISTER
650 - BMIL.S \E@NULCA REREAD UNTIL NULL RELEASE (CA=0)
651 ENDC
652 ENDM

—

MOTOROLA) AN947/D

30

653 ***t**********************

654 * *
655 . * MC68881. CONSTANT IN ROM TO FP-REG. OPERATION *
656 * *
657 * FMOVEROM CC, FPN *

9 €58 * *

i 659 * WHERE : CC = MC68881 CONSTANT *

660 * $00 PI *
661 * $0B LOG10 (2} K
662 * $oc E *
663 * $0D LOG2 (E)
664 * SOE LOG10 (E)
665 * $OF 0.0
666 * $30 LOGN (2)
667 * $31 LOGN (10) *
668 * $32 1040 *
669 * $33 10°1° *
670 * $34° 1072 *
671 * $35° 10%4 *
672 * $36 10~8 *
673 * $37 10”16 *
674 * $38 1032 *
675 * $39 © 10%64 *
676 * $3a 10128 *
677 * $38 10~256 *
678 * $3c 104512 *
679 * $3D 10~1024 *
680 * $3E 102048 *
681 *. $3F 1044096 *
682 * FPN= FP DESTINATI *
683 * *
684 * NO REGISTERS MODIFIED OR *
685 * . *
586 Fhkkhkkkhkhkhkkkkhkhkhkdhkhkhkdkki **

9 . 687 FMOVEROM MACRO :

4 688 MOVE.W' #$5C00 7)+\1,MC68881+COMMAND = REG. TO REG. OPERATION

689 \GNULCA TST.B MC68
690 BMI.S

691 ENDM
692 kkhkkhkhkkkkhkkhkkk

ONSE READ -RESPONSE REGISTER
REREAD UNTIL NULL RELEASE (CA=0)

‘**

693 * *
694 * M ~CONDITIONAL BRANCH *
695 * 2 *
696 * .<SIZE> -CONDITION,ADDRESS: - *
697 * *
* WHERE:"" .<SIZE>= ALLCOWABLE BRANCH SIZES) *
CONDITION="CC, THE FLOATING POINT CONDITION (I.E. GT) *

ADDRESS= BRANCH ADDRESS ' *

. *

*

'REGISTERS MODIFIED OR DESTROYED: 0 1 2 3.4 5 6 7 *

DX *

A *

*

b R L L L S T L Lt LT L L L U
708 FBCC MACRO

709 MOVE.W #\1,MC68881+COND BEGIN COPROCESSOR COMMUNICATION
710 - \@NOPASS MOVE.W MC68881+RESPONSE, DO IS CA-BIT SET

711 © BMI.S \@NOPASS REREAD UNTIL NULL RELEASE (CA=0)
712 BTST #TFBIT, DO IS CONDITION TRUE

713 BNE.\O \2 BRANCH IF CONDITION TRUE!

714 ENDM '

AN947/D ' - : MOTOROLA
g - 31 .

* Ok A A Nk R ¥ F % ¥ N % A X % % F

RN RN B T e o A S i U ¥ et i b 8 A AR

LR et e L sy Ry s Y s R LR R R

* *
* MC68881 TEST FP CONDITION, DECREMENT, AND BRANCH *
* ’ *
* FDBCC CONDITION, DN, ADDRESS *
* *
* WHERE: CONDITION= CC, FLOATING POINT CONDITION *
* : DN= MATN PROCESSOR.DATA REGISTER TO BE DECREMENTED *
* ADDRESS= BRANCH ADDRESS *
*

* REGISTERS MODIFIED OR DESTROYED: 01 2 3 456 7

* DX

* A

*

FDBCC . MACRO
MOVE.W #\1,MC68881+COND " = BEGIN COPROCESSOR COMMUNICATION
\@NOPASS MOVE.W MC68881+RESPONSE, DO IS CA-BIT SET
BMI.S ' \@NOPASS: - REREAD UNTIL NULL REFEASE (CA=0)
BTST #IFBIT,DO IS CONDITION TRUE
 DBNE \2,\3 SUBTRACT 1 FR
* EQUALS . -1
ENDM
khkkkhhkhkhhhkkhkdhkhkhhkkhkhkhhkhkhkhkhhhhhkhkhkhkkhkkhk

UNTIL COUNTER

Fkkkhkkkhhkkdkdekhkhkhkkhhkk

* *
* MC68881 CONDITIONAL SET *
* *
*. FSCC CONDITION, ADDRESS *
* *
* WHERE: CONDITION= CC, F POINT CONDITION *
* ADDRESS= BRANCH *
* . *
* REGISTERS MODIFIED,OR PESTROYED: 0 12 3 4 5.6 7 *
* DX *
* A *
* *

HAKRKKIKI AR hhK ok kdkgk R e R L T L T T T T T L Ty
68881+COND BEGIN COPROCESSOR COMMUNICATION
\@NOPASS MOVE.W MC68881+RESPONSE, DO IS CA-BIT SET

REREAD UNTIL NULL RELEASE (CA=0)

IS CONDITION TRUE

SET BYTE AT POINTER(\2) TO 1'S IF
CONDITION. TRUE, IF CONDITION: FALSE

SET BYTE TO 0'S

ENDM " .
e R e e e T e L e L T ey s T T T T TS 2 e

L

'<EA>= DESTINATION ADDRESSING MODE
PREDECREMENT= Y (IF PREDECREMENT MODE IS BEING USED), OR
N (IF OTHER MODE IS BEING USED).

REGISTERS MODIFIED OR DESTROYED: 01 2 3 4.5 6 7
A X

*

MC68881 FP MOVE. MULTIPLE COPROCESSOR REGISTERS TO MEMORY *
*

FMOVEMRM FPRO, FPR1,FPR2,FPR32, FPR4, FPR5, FPR6, FPR7, <EA>, PREDECREMENT *
*

WHERE: FPRO={FP REG.#0) 1 IF SELECTED, 0 IF NOT *
 FPRL=(. " §1) " . *
FPR2=(" #2) ") ”" *

FPR3=(LU #3) " " *

FPRq"(” *4) L] " *)

FPRS"(" #5) " (1] *

FPR6=(n #6) " . " *

FPR7=(" #7) " " *

*

*

*

*

*

%

MOTOROLA
32

AN947/D

®

ANS47/D

D XXXX
. ' : i
VALID ADDRESSING MODES: AN, -(AN), D(AN), D(AN, IX)
XX.W, X0X.L

% . %
* O % % %

**

FMOVEMRM MACRO ‘
IFC '\a', 'y’ . 1S THE ADDRESSING MODE PREDECREMEN

THIS CODE IS FOR PREDECREMENT ADDRESSING' MODE

MOVE.W #SE000+%\8\7\6\5\4\3\2\1, MC68881+C) D FP REGISTER
* o MASK INTO COMMAND REGISTER
\@NULCA = CMPI #$8900,MC68881+RESPONSE READ RESPONSE REGISTER
BEQ.S \@NuULCcA REREAD UNTIL TRANSFER MULTIR: GS.

=

* THIS CODE'CAICULATES' THE TOTAL # OF REGISTERS TO BE TRANS]
*
MOVEQ #\1+\2+\3+\4+\5+\6\74\8-1,D3

'« TST.W MC68881+REGSEL
 MOVE.L MC68881+ODER,A0
\@AGAIN MOVE.L (A0),DO
MOVE.L (A0),D1
MOVE.L (20),D2
MOVEM.I DO-D2,\9

DBRA D3, \GAGAIN HAVE ALL REGISTERS BEEN TRANSFERRED

*
*

\@NULREL TST.B MC68881+RESPONSE IS RESPONSE NULL RELEASE?

BMI.S \@NULREL BRANCH UNTIL NULL RELEASE
ENDC . - : ,
IFC *\A', 'N' IS ADDRESSING MODE NOT PREDECREMENT

*********************v W***
OR ALL VALID ADDRESSING MODES OTHER
* THAN CREMENT. -

- KREKHIIIRRE KKK RRKAK KKK I IIER KA A KA RERIR AR h A ARk kA kKKK

VE . W #$F000+%\1\2\3\4\5\5\’7\8,MC68881+COI‘1MAND CP REGISTER BIT
MASK AND START CP COMM NICATION

; I. #58900, MC68881+RESPONSE. READ RESPONSE REGISTER

BEQ.S | . \@NULCA REREAD UNTIL TRANSFER MULTIPLE REGS.

MOVEQ. L1 # (\8+H\7+\6+\5+\4+\3+\2+\1) *3<1,D0 COUNT REG. FOR DBRA STMT.

TST.W MC68881+REGSEL READ REGISTER RESPONSE REGISTER

LEA \9,A0 : SET UP A MEMORY POINTER
@AGAIN MOVE.L MC6B8881+0PER, (A0)+ LOAD DATA ON TO THE STACK

© DBRA DO, \@AGAIN 100P UNTIL ALL DATA IS LOADED

\@NULREL TST.B MC68881+RESPONSE IS RESPONSE NULL RELEASE?

BMI.S \@NULREL BRANCH UNTIL NULL. RELEASE

ENDC :

 ENDM

MOTOROLA

33

--_-_—_—_
) ‘ AN947/D

" MOTOROLA
34

890
891
852
883

884

B95
896
897
898
899
300

o e At e e et o i

KA AR KRR AR AR IR R AR ATk Ak ANk dk kAR AN ARk h kA kIR A Ak kA ARk kA Ak hkwkkhhkkd

MC68881 FP MOVE TO MULTIPLE COPROCESSOR REGISTERS FROM MEMORY
FMOVEMMR <EA>,FPRO,FPR1,FPR2,FPR3, FPR4,FPRS,FPRE, FPR7, POSTINCREMENT

WHERE: - <EA>= DESTINATION ADDRESSING MODE
FPRO=(FP REG.#0) 1 IF SELECTED, O IF NOT

FPR1=(w +1) " "
FPR2=(" #2) n "
FPR3=(" #3) "
FPRA=((1) #4) " "
FPR5= (" #5) " "
FPR6=(" #6) " "
FPR7=(“ #7) " n

'POSTINCREMENT= Y -(IF POST-INCREMENT MODE IS BEING
‘ N (IF OTHER VALID MODE IS BEINGUSED

REGISTERS MODIFIED OR DESTROYED:"0 1 234 5 6
A X
D X

VALID ADDRESSING MODES: AN, (AN}+, D(AN
XKW, XXKX.L

AN, IX)
{PC, IX)

¥ ¥ ¥ N R N Ok % F K % AN ¥ H X ¥ N ¥ W * ¥ ¥ *

khkhkkkkhkkhkkhhkhkhkhhhkhkkhkkhkhkhkdhkhkkkkhkhkd

FMOVEMMR MACRO :
MOVE.W #$DO00+%\2\3\4\5\6\7\8\9,MC68881+COMMAND CP REGISTER BIT
K AND START CP COMMUNICATION

READ RESPONSE REGISTER

*

\GNULCA CMPI #$8900,MC68881+RESPO
BEQ.S \@NULCA : REREAD UNTIL TRANSFER MULTIPLE REGS.
MOVEQ.L # (\9+\8+\7+\6+\5+\4+\3+\2)*3-1,D0 - DECREMENT REG. FOR DERA
TST.W MC68881+REG READ REGISTER RESPONSE REGISTER
IFC '\A','N’ IS ADDRESSING MODE NOT POSTINCREMENT
LEA \1,A0 SET UP A MEMORY POINTER

\@AGAIN . 1+OPER LOAD DATA ON TO THE STACK

; LOOP UNTIL ALL DATA IS LOADED
IS RESPONSE NULL REIEASE?
BRANCH UNTIL NULL RELEASE

IS ADDRESSING MODE POSTINCREMENT
LOAD DATA ON TO THE STACK

LOOP UNTIL ALL DATA IS LOADED

IS RESPONSE NULL RELEASE?

BRANCH UNTIL NULL RELEASE

MC68881 FP MOVE TQ CONTROL, STATUS, QR INSTRUCTION ADDRESS REGISTER
MOVINCSI <EA>,REGISTER

WHERE : <EA>= VALID SOURCE ADDRESSING MODE
REGISTER= CONTROL, STATUS, OR IADDRESS .

NO-REGISTERS MODIFIED OR DESTROYED!

VALID ADDRESSING MODES: - DN, AN, (AN)+, ~(aN), D(AN), D(AN,IX)
: XXX.W, XX.L, (D,PC), D(PC,IX)

Ok A % % % R o+ o ok ¥ F)

* * * * ¥ * * F * F* * *

hkhkhkkkhhkkhkdkkhkhkhkkhkhkhkkkki

ERARE KRR AR IR KRR IR KA AR KR AR IR AR AR A AR AR R AR R AR KA KRR AR kAR AN A Ak Ak hhkhkkkhkkh

* * % X F H ¥ ¥ F X ¥ ¥ *

KERAAIRERR KA KRR KRR A AR K E AR AERIRAARRERA IR IR KAk Ak ko kR Rk Ak ok ko k ke khkhkhkhkd

MOVINCSI MACRO
IFC '\3', "') IS ADDR.MODE INDEXED?
. MOVE.W #\2,MC68881+COMMAND . MOVE BIT PATTERN IN COMMAND REG.
\@NULCA '~ CMPI.W #$8900,MC688B1+RESPONSE IS RESPONSE NULL COME AGAIN?

* % A A N ¥ ¥ %

901 BEQ.S \@NULCA COME AGAIN UNTIL NEW RESPONSE .

902 MOVE.L \1,MC68881+0PER PASS DATA TO REGISTER
903 \@NULREL TST.B MC68881+RESPONSE 1S RESPONSE NULL RELEASE?
904 . BMI.S \@NULREL BRANCH UNTIL NULL RELEASE
905 ENDC
@ 906 IFNC '\3','" IS ADDRESS MODE INDEXED?
907 MOVE.W #\3,MC68881+COMMAND MOVE BIT PATTERN IN COMMAND REG.
508 ~\NULCA CMPI.W #$8900,MC68861+RESPONSE IS RESPONS NULL COME AGAIN?
909 BEQ.S \@NULCA ' COME AGAIN UNTIL NEW RESPONSE
910 . MOVE.L \1,\2,MC68881+OPER PASS DATA TO REGISTER FROM INDEXED
911 ' MODE *
912 \@NULREL TST.B MC68881+RESPONSE ' IS RESPONSE NULL RELEASE?
913 BMI.S \@NULREL BRANCH UNTIL NULL RELEASE
914 ENDC :
915 ENDM

916 *************************************t*************************

917 * *
818 * MC68881 FP. MOVE.FROM CONTROL/STATUS/INSTRUCTION) REGISTER *
919 * *
920 * MOVOUCSI REGISTER, <EA> *
921 * *
922 * WHERE: REGISTER= CONTROL, STATUS, OR IAD *
923 * - <EA>= VALID SOURCE ADDRESSIN *
924 * *
925 * NO REGISTERS MODIFIED OR DESTROYED L *
926 * *
927 * VALID ADDRESSING MODES: ' DN, AN AN)+, -(AN), D(AN), D(aN,IX) *
928 * h.0:0.4 .L, (D,PC), D(PC, IX) *
929 * *

930 IRAAIRAIX ARk AAh A AR R KAk Ak khkkkdkdek **************************************

931 - MOVQUCSI MACRO

932 IFC '\3', " IS ADDR.MODE INDEXED?
933 _MOVE.W #\1+$2000, 881+COMMAND MOVE BIT PATTERN TO COMMAND REG.
934 - \ENULCA ' CMPI.W #$8900,MG ARESPONSE © IS RESPONSE NULL COME AGATN?
935 - COME 'AGAIN UNTII, NEW RESPONSE
936 PASS DATA TO REGISTER
937 IS RESPONSE NULL RELEASE?
938 BRANCH UNTIL NULL RELEASE
939
940 IS ADDR.MODE - INDEXED?
941 \1+$2000,MC68881+COMMAND ~ MOVE BIT PATTERN TO COMMAND REG.
942 \@NULCA #$8900, MC68881 +RESPONSE IS RESPONSE NULL COME AGAIN?
943 .S \@NULCA. . COME 'AGAIN UNTIL NEW RESPONSE
944 'MOVE.L MC68881+O0PER, \2,\3 - PASS DATA TO REGISTER FROM INDEXED 2
945 . MODE
ULREL TST.B MC68881+RESPONSE - IS RESPONSE NULL RELEASE?

BMI.S \ENULREL ' BRANCH UNTIL NULL RELEASE

ENDC

ENDM

**

VALID ADDRESSING MODES: - (AN)

* *
* ‘MC68881 FSAVE THE INTERNAL OF THE MACHINE *
* *
* THIS IS A PRIVILEDGED INSTRUCTION WHICH IS GENERALLY ONLY USED *
* IN THE OPERATING SYSTEM FOR CONTEXT SWITCHING! *
* *
* FSAVEST <EA> *
* *
* {“WHERE: <EA>= PREDECREMENT MODE - {(AN) *
* *
* REGISTERS MODIFIED OR DESTROYED: 01 2 3 4 5 6 7 *
* AX *
* D X X *
* *
* - *
* *

ANS47/D ‘ ‘ * .~ MOTOROLA ‘
. ' 35

ARKRKNARRN AR TR KA R A AR AR AR AN R AR AR R ARk kR h I AR Ak kA ko hhkkkkhrkhkhhkdhkhkhki

VALID ADDRESST

967 3

968 FSAVEST - MACRO ,

969 \@START ~MOVE.W MC688B1+SAVE, DO READ THE SAVE REGISTER

970 MOVE.W DO, D1 MAKE A COPY OF THE FORMAT WORD

971 ANDI.W_#$FF00,D1 ISOLATE THE FORMAT WORD

972 BEQ.S \@NULL IF NULL IDLE, NO STATE SAVE

973 CMPI.W #50100,D1 IS THE COPROCESSOR BUSY

974 BEQ.S \@START KEEP CHECKING UNTIL CP IS FINISHED

975 * PROCESSING

976 1EA MC68881+0PER,A0 LOAD OPERAND REGISTER TO AD

977 * :

978 MOVE.B DO, D1 THE LENGTH COF THE DATA TO BE TRANS

979. LSR.B #2,D1 DEVIDE BY 2 TO ADJUST FOR WORD TRANS

980 -~ EXT.W D1 ESTABLISH COUNT AS A WORD FOR D

981 SUBQ:W #1,D1 D1l= COUNTER FOR DERA

982 \GLOAD = "MOVE.L .(A0),\1 STORE THE INVISBLE STATE

983 " DERA' D1, \@LOAD REPEAT UNTIL ALL DATA IS

984 \@NULL.. SWAP.DO PLACE FORMAT WORD. IN UPP

985 MOVE.L DO, \1 STORE FORMAT WORD O CK

986 ENDM

987 kkdkhk kA kA Ak Ak ke kAR kkhhkhkkhkkhkkdhkhkhkkhkkkkhkk o e g do & ok ok K vk deok ko

. 988 * , ' *

989 * . MC68881 FRESTORE OF THE. INTERNAL OF THE MAGHI *

990 * ; *

991 *x THIS IS A PRIVILEDGED INSTRUCTION WHIGH IS GENERALLY ONLY USED *

992 * IN THE OPERATING SYSTEM FOR CONTEX ING! *

993 * *

994 - * ' FRESTRST <EA> *

995 * v *

996 * WHERE: - <EA>= POSTINCREMENT (AN) + *

997 * : % i *

998 * REGISTERS MODIFIED OR DES D: 01234567 *

999 * AX *

1000 * D XX *

1001 * *
* *
* *

1004 Fkkdkkkkkkkkkkkhkk
1005 TFRESTRST MACRO

1006 MOVE. MOVE FORMAT WORD AND RESERVED WORD TO DO
1007 SWAR PLACE FORMAT WORD AS THE LOW ORDER

1008 W 0,MC68881+RESTORE STORE FORMAT WORD IN RESTORE REG.

1009 VE.W MC68881+RESTORE, DO READ THE RESTORE REGISTER

1010 VE.W DO,D1- MAKE A COPY OF THE RESPONSE FORMAT WORD
1011 I.W #$FF00,D17:. - . ISOLATE THE FORMAT WORD

BEQ.S \@NULREL "
LEA MC68881+O0PER, 20,

IF ‘NULL IDLE RESPONSE, NO.STATE RESTORED
LOAD OPERAND REGISTER TO AO

MOVE.B DO,D1 THE LENGTH CF THE DATA TO BE TRANSFERED
LSR.B #2,D1 DEVIDE BY 2 TO ADJUST FOR WORD TRANSFER
EXT.W: D1 ESTABLISH COUNT AS A WORD FOR DBRA

D1= COUNTER FOR DBRA .
STORE THE INVISBLE STATE

SUBQ.W #1,D1

\GLOAD - MOVE.L \1, (AO)

1020 DBRA D1 \@LOAD REPEAT UNTIL ALL DATA IS TRANSFERRED
1021 \@NULREL EQU *
1022 ENDM ,
1023_ KKK KA KK IR R AT AR AR R A A I AN A AR AR R KRR A AR KRR AR RN AR A AR kA AR h A Ak kh sk hhkh b khdhhkdkx
1024 * : *
1025 * MC68881 FNOPP COMMAND *
1026 * *
1027 * FNOP *
1028 * *
1029 ¥ NO REGISTERS MODIFIED OR. DESTROYED! *
1030 * : ‘ *
1031, ********t***
1032 FNOPP - MACRO
]
MOTOROLA AN947/D ~

36

1033
1034
1035
1036

\@NOPAS

MOVE.W #$0000, MC68881+COND
TST.B MC68881+RESPONSE -
BMI.S \@NOPAS

ENDM

FNOP COMMAND TO
TEST RESPONSE

FP REG.

MOTOROLA
37

