
.:,

MOTOROLA

Semiconductor Products Inc.

A TERMINAL INTERFACE,
PRINTER INTERFACE, AND

BACKGROUND PRINTING FOR

AN899
Application Note

,,,:s *>~$

INTRODUCTION
\.i:v:<1>..,?.>~’l;,~,?’*>,

Very efficient terminal and printer 1/0 can be ,a@&* ?n
an MC68000-based system using ~only the Q996~$ durd
universal receiver transmitter (DUART) and ~,~j$~~ inter-
face driver chip set. As an extra bon~{?k~~~ual-tasking
scheme can be easily implemented us~$n@[~$~&ounter/timer
on-chip the MC68681 to generate w~~~~ time-slice inter-
rupts to the MC68000. This a~ows @e ~~68000 to appear to
be executing two tasks simultap~~~~ically, one of the
tasks would be a printing ta$~,,~,~$~t printing can be done as
a “background” task to ~~$hmg else being executed by
the MC68000. ., ““*..<$.!**

In this ~~$~$.ation Note, a complete
MC68000/MC6~~$$\nt~rface and a durd-task sample ap-
plication is p~$~~t~d. It begins with a description of the
MC68681 a~@@h and programming for this application,
This is fi~l%~ by a description of the MC68000/MC68681
hardM$&.~#rface. Finally, the software required for the ap-
pli~{~~?~ presented. It includes the routines required to in-
iW~+&wnd drive the MC68681 serial channels and counter,
w~he software required to implement the durd-tasking
sc~eme. The software also includes two sample task routines.
One continually monitors a terminal (attached to DUART
channel A) for incoming characters, assembles them into a
character string in an input buffer, than places the string in a
print queue. The other task continurdly monitors the print
queue for character strings destined to be printed and sends
them to the printer (attached to DUART channel B).

MC68681 OPERATION AND PROGRAMMING

The MC68681 DUART is a communications device that
provides two independent full-duplex asynchronous
receiver/transmitter channels, a 6-bit parallel input port, an
8-bit parallel output port, and a 16-bit counter/timer in a
single package. Mso, the MC68681 can be programmed to
generate interrupts upon any of the following conditions:

Channel A Transmitter Ready

Channel A Receiver Ready

Channel A Change-in-Break

Channel B Transmitter Ready

Channel B Receiver Ready

Channel B Change-in-Break

Counter/Timer Ready

Input Port Change-of-State

Channels A and B of the MC68681 can operate in four dif-
ferent modes: normal, automatic echo, local loopback, and
remote loopback. A channel operating in normal mode
allows full-duplex communication. A channel operating in
automatic-echo mode operates exactly as in normal mode,
but automatically re-transmits any received data. Local loop-
back and remote loopback modes are diagnostic modes that
can be used to verify correct operation of a channel.

OMOTOROLA INC., 19w

The MC68681 has a 6-bit parallel input port and an 8-bit
parallel output port. Each of the inputs and outputs can be
used as general-purpose inputs and outputs. However, each
has programmable alternate functions, as shown below:

Pin

IPO

IP1

IP2

IP3

IP4

IP5

OPO

OP1

OP2

0P3

0P4

0P5

0P6

0P7

Programmable Alternate Function

Channel A Clear-to-Send Input

Channel B Clear-to-Send Input

Channel B Receiver External Clock Input or
Counter/Timer External Clock Input

Channel A Transmitter External Clock Input
Channel A Receiver External Clock Input

Channel B Transmitter External Clock Input

Channel A Request-to-Send Output

Channel B Request-to-Send Output

Channel A Transmitter Clock Output or Channel A
Receiver Clock Output

Counter/Timer Output or Channel B Transmitter
Clock Output or Channel B Receiver Clock Output

Channel A Reveiver-Ready or Buffer-Full Interrupt
output

Channel B Receiver-Ready or Buffer-Full Interrupt
output

Channel A Transmitter-Ready Interrupt Output

Channel B Transmitter-Ready Interrupt Output

Finally, the MC68681 has a 16-bit programmable
counter/timer that can be used to measure elapsed time be-
tween events, or to generate periodic interrupts. It can be
programmed to operate as a free-running timer (cannot be
stopped and started) or as a counter (can be stopped and
started).

..{<,:~
..tJ~.L ,

.{. !. />-

This application will use the normal, automatic-echo, and, ‘~~,, ‘~~
local Ioopback modes, and will utilize two of the Mc68@$&7$+
interrupt sources: the channel A change-in-break ~@$&d,$*
the counter/timer ~. Mso, one of the output P@@iQW’
and one of the input port pins will be used a$k%F$~TS
handshake lines. In this application, a terrni~~l ~~rbe at-
tached to DUART channel A and will b~$~~~med to
transmit and”receive at 9600 baud with ~&Y~,~b+@/character,
even parity, and two stop bits. The tj~~$el will be pro-
grammed to operate in automati,-~:~ode so that the
character typed at the terminal ke~~~@d will appear on the
CRT screen. So that the ch~~~$j rec?lver FIFO is not over-
run, channel A will be ~M,@hed to use the receiver
RTS/CTS handshake .m.~ol. This protocol works as
follows: the receiver ~$~utput is connected to the CTS in-
put of the termin~~$@”%ng as the receiver has room in its
FIFO for anoth#~c~Acter, the receiver will assert RTS. If
the FIFO be*$&@ll, the receiver will negate RTS. When
the FIFO o@#%wn has room for another character, it will
automatf~~~~f~-assert RTS. Assuming that the terminal will
not trans~t a character unless it sees CTS asserted, receiver
overrun w~l not occur. Finally, the BREAK key will be used
as an abort button, so that the user can exit to the monitor
(or operating system) at any time. Channel A will, therefore,
be programmed to generate an interrupt to the MC68000
when it receives a BREAK character from the terminal.

A printer wfll be attached to DUART channel B and the
channel wfil be programmed to operate in normal mode,
transmit at 300 baud with seven bits/character, even parity,
and one stop bit. So that the channel does not send
characters to the printer faster than the printer can handle

them, “channel B will be programmed to use the transmitter
RTS/CTS handshake protocol. This protocol works as
follows: when channel B needs to send a character to the
printer, it wfll assert RTS and then wait for the printer to
assert CTS before transmitting the character. ●The MC68681 counter/timer will be programmed to
generate the time-slice interrupts to the MC68000 required
for dual-tasking. The counter/timer must be able to be stop-
ped and re-started; therefore, it is programmed to operate in
counter mode. After initializing the counter registers with the
count value, the counter will be started. When th?3$Q~#ter
reaches terminal count, it will generate an int@RP*~o the
MC68000. The MC68000 will then stop the c~x~~~$iear the
interrupt, swap tasks being executed, an~,~,~~tie counter
again. When the counter is started w&%~”@’will be re-
initiahzed using the vrdue found in thg,#~ferregisters.

.V*<..ha,>;.~hs~,+,,-.\..,.:&
INTERFACE HARDWARE ><

‘t~$b,,-:,>
$T?

The hardware required ~d$a~face the MC68681 to the
MC68000 is minimal, as,~j+by the schematic in Figure 1.
The m, “R/~, aq$w fines are connected directly
between and MC6wYRd the MC68000. Address fines
A5-A23 are rou~gd tbugh address decode logic and used to
generate the ~$~@81 chip select. Address lines A1-A4 are
tied to tQ~’~&$8681 register select pins RS1-RS4. The
MC686$1 ~.~a$ bus pins, DO-D7 are connected to the
MC6* lower data bus fines, DO-07. Typicafly, the
~~686&ls would be attached to the lower data bus because

,%<@e~C68681must supply an interrupt vector number to the
$’ @68000 on DO-D7 during ~ cycles. However, if the

,. ,%>~C68681 will not be generating interrupts, it could jus~s
?$:ki?:::.,,

‘<;~i?<’~~easilv be attached to the uD~er data bus. TheMC68681 IRQ
%$ fine “must be encoded by [tie SN74LS148 to give the =Q ~.+?>

priority level required by the MC68000 on its IPLO-IPL
.*Enes. Mso, the MC68000 A1-A3 Enes must be decoded dur-

ing IACK cycles by the SN74LS138 to generate IACK back
to the MC68681. Using the SN74LS148 .as the ~ encoder
and the SN74LS138 as the =K decoder provides full sup-
port of the MC68000 seven interrupt levels. The MC68681 re-
quires only one interrupt level. For this apphcation, interrupt
level four has been arbitrarily chosen. This leaves the other
six levels for future system expansion.

The two channels are connected to the external devices via
RS-232 drivers and DB-25 connectors. Because this applica-
tion uses the OPO and OP1 tines as the RTSA and CTSB
handshake lines, respectively, they too are routed via the
RS-232 drivers to their respective connectors.

Finally, a 3.6864 MHz crystal is, connected between the
MC68681 X1/CLK and X2 pins. The crystal is required for
the built-in baud rate generator. The 15 pF and 5 pF shunt
capacitors must dso be connected between the crystal and
ground as shown to insure proper operation of the baud rate
generator.,

INTERFACE SO~WA~
The interface software required for this application is

flowcharted in Figure 2 and is listed at the end of this Ap-
plication Note. The routines can be broken down into three
categories: the DUART initialization routines, the 1/0 driver
routines, and the interrupt handling routines, The DUART
initialization routines consist of DINIT, CHCHK, and
CTRCHK. DINIT is the DUART initialization routine, and
is called at system initialization time. After DINIT initializ

othe DUART channels and counter, it checks channel A,
channel B, and the counter for operational errors. Before

2

a
RESET ;8

34 —RESET X1/CLK
~ ~,~

2 ~ 10
DTACK ~ DTACK

/ \

TxD#

TxDE
nw

1+5V

RxDP
RxDE

IPC
1P’

–12V

Channel A
DB-25

4

1
7

=

31 3

ti

10 6
1
4

7 CTSA 8 ~ 10
4 CTSB 11 ~ 13%

2 G
,. z

:
12

27K

I I I

Cu

DB-25

1
2: RGB

CLB

I

FIGURE 1 – MC680W/MC6B6Bl Intetiace Schematic

I

DINIT is called; the cauing routine must aflocate three words ~
on ~the system stack. Upon return to the calhng routine,
DINITwiU pdss back three statuswordson the system stack .
that reflect theoperation ofchannel A, channel B, and the
counter. if DINIT finds no errors in channel A, it will enable
the channel A receiver and transmitter. Likewise, if DINIT
finds no errors in channel B, it will enable the channel B
transmitter. CHCHK and CTRCHK are routines that are
called by DINIT to perform the actual checks. CHCHK
checks a channel for proper operation. DINIT calls CHCHK’
twice: the first time to check channel A and the second time
to check. channel B. After placing the channel in local loop-,
back mode, CHCHK checks the channel for the fo~owing er- .
rors: transmitter never ready, receiver never ready, framing
error, :parity errorj and incorrect. character received.
CTRCHK checks the counter for proper operation by verify-
ing that the counter interrupts the MC68000 properly after,
reaching terminal count. ~

The, 1/0 driver routines consist -of INCH, OUTCH, and
POUTCH. INCH is the terminal input character routine.
INCH gets a character from the channel A receiver and
places it in the lower byte of register DO. OUTCH is the ter~
minrd output character routine. OUTCH sends. the character
in the lower byte. of register DOto the channel A transmitter.
POUTCH’is the printer output character routine. POUTCH
sends the character in the. lower byte of register DO to the
channel.B transmitter. . :

The interrupt handling routines consist. of. DIRQ and
CIRQ, DIRQ is the DUART interrupt handling routine.
After the DUART generates an interrupt, the MC68000
begins executing DIRQ. DIRQ determines whether the inter-
rupt was caused by the counter or a channel A change-in-
break. If the interrupt was caused by the counter, DIRQ
causes the MC68000 to swap tasks being executed. This pro- .J~~~
cess is discussed in a later section, If the interrupt was caused ~${,, ‘$}
by a channel A change-in-break interrupt (beginning,t &$~+
break), DIRQ clears the interrupt source, waits for thai~~>
change-in-break condition interrupt (end of break){~w”
the interrupt source again and then returns fro~,’~%%on
processing to the system monitor. CIRQ is u~d~@kad of
DIRQ as the DUART interrupt handti~+rw~e when
CTRCHK is executing. When the counte~,&eg~tes an inter-
rupt during execution of CTRCHK, C~~@#e?S’the carry bit
in the status register, thus infor@~,~r-CHK that the
counter interrupt was generated c%red~y,

. .,\&,r...‘, ~...
DUAL-TASKING SOFTW,* ..~Y?. .?

The dud-tasking soft,~,~$~e~~ired for this application is
flowcharted in Figure$~~@’&’%listed at the end of this Ap-
plication Note. Th~,t;%~~kes can be broken down in two
categories: the r@Wl~ that facilitate dual-tasking and the
two sample t~k~,, t&mselves. The routines that facilitate
dual-taskingt~tifof SWPTSKS and TSKINIT.

SWPT@&$~’&the task swapping routine executed when
DIRQ de@nes that the counter generated an interrupt.
SWPTSKS” ‘swaps out” the task currently being executed
with the task that is currently dormant. The’ ‘swap” process
works as follows: the counter interrupt causes the MC68000
to begin exception processing. During exception processing
the MC68000 stacks the active task program counter and
status register on the active task system stack, then executes
DIRQ. DIRQ determines that the interrupt was caused by the
counter and branches to SWPTSKS. SWPTSKS stops the
counter, then saves the active task register contents and user
stack pointer ,on the active task system stack. After saving

this information on the active task system stack, SWPTSK
swaps out the active task system stack pointer with the dor-
mant task system stack pointer (stored in a reserved memory
location). SWPTSKS then pulls the dormant task user stack
poiriter and register contents off the dormant task system
stack (this information was placed on the dormant system
stack .by a previous task swap operation); and restarts the
counter. Finally, because the dormant task status register
contents and program counter are now at the top of th~&~r-
mant task system stack, the MC68000 will return fro~3~&~-
tion where the dormant task had been interruptfi}~~e%y
re-activating it.., ‘$,.:,..$,,“**,

TSKINIT is the task initialization routine,.~it.f~~~zes the
DUART by calling DINIT, then checks ~&&:$&rational er-
rors in the two channels and the count~~gf @6rs are found
in either of the channels or the cou,~fW%,~@~INITprints the
appropriate error, messages to a ‘$m~and console” then
stops; If. no errors are found~~t*Ifi then initializes the
print task as the initial dor~~@~?&k. The initialization pro-
cedure works like this: th&@rfitit task ‘system stack pointer
is initiahzed. The start #,~$@of the print task is stacked on
the system stack, twa lrutid status register content is
stacked. This isJ$~ ordbk in which the MC68000 requires in-

. formation to ,~:j,w~ked when returning from exception.
Next, the~’%?~{~~k initial register contents and user stack
pointer%~re,~Swed on the system stack, -This is the order in
which S*TSKS requires information to be stacked to .per-
fox~its t~~:swap operation. After initializing the print task

~al~~:~ormant task, TSKINIT initializes the input task user
!{?pn$$systemstack pointers, starts the counter, then begins ex-

,.l~~~ ~tition of the input task.t3J(:;.s:!.::{,,,.\, The two sample tasks given in this Application Note are‘-,..*
,**$’‘ INPTTSK and PRNTTSK. The tasks work together to per-

form two typical 1/0 operations: character string input from
a terminal and character string output to a printer. Because
1/0 hardware is character-oriented and not string-oriented,
character string 1/U must be transformed mto character 1/0
by using buffers and queues. Character string input is ac-
complished through the use of an input buffer. Characters
are placed in this buffer as they come in from the terminal.
When the carriage return character is received and placed in
the buffer, the string has been completely assembled and is
moved elsewhere so that another one can be assembled.

Character string printing is accomplished through the use
of a print buffer and a print queue. For efficient character
string printing, the print buffer should be capable of holding
more than one character string. This is because the MC68000
can supply strings to be printed much faster than the printer
can print them. A multiple-string print buffer allows the
MC68000 to “queue” character strings bound for the
printer, then goon to more important things, rather than act-
ing as a slave to the printer. The print queue is required to
determine where the next string arriving at the buffer will go
and where the next string departing from the buffer can be
found. Print (‘tags” indicating that there are character
strings in the print buffer are placed in this queue. The queue
has an input and output pointer, and acts in a first-in-first-
out manner. Thus, strings in the print buffer will be sent to
the printer in the order that their print tags arrived at the
print queue.

For this application, a character string is terminated by a
carriage return, and maximum string length is set by the con-
stant CSLNTH. CSLNTH is used to define the width of the
input buffer and the width of the print buffer. The print e
queue length is set by the constant PQLNTH. PQLNTH is

4,

used to define the length of the print queue and the length of
the print buffer. Both CSLNTH and P,QLNTH must be
assigned values that are powers of two and can have a m~-

0

imum value of 256. Because maimum string len@h is 256
bytes, the print tags need only be a byte value.

When a character string is to be sent to the print buffer, it
must be moved into the print buffer and an associated print
tag placed in the print queue. When a character string is to be
sent to the printer, it must be taken from the print buffer and
its associated print tag removed from the print queue.

INPTTSK continually monitors the terminal attached to
DUART channel A for incoming characters, assembles them
into a character string in the input buffer, then queues the
string in the print buffer. INPTTSK consists of two routines:
ISTRG and QSTRG. ISTRG is the routine that assembles
characters received from the terminal (via the INCH routine)
into a character string in the input buffer. QSTRG is the
routine that queues the character string in the print buffer.
QSTRG first checks the status of the print queue. If the
queue is fu~, QSTRG will wait until there is room in the
queue for a print tag. If the queue is not full, QSTRG wfll
move the character string into the print buffer and place a
print tag in the print queue.

,,

PRNTTSK continually monitors the print queue for print
tags. If it finds a print tag in the queue, PRNTTSK prints the
string and removes the tag from the ‘queue. PRNTTSK con-
sists of two routines: RSTRG and PSTRG. RSTRG is the
routine that releases a character string from the print buffer,
,,

and sends it to the printer via the PSTRG routine. RSTRG
checks the status of the Drint aueue. If it is em~tv, RSTRG-. . . .
will wait until a print tag appears in the queue. If the queue is
not empty,, RSTRG will cdl routine PSTRG, then remove
the print tag from the print queue. PSTRG is the routine that
sends a character string to the printer character-by-character
(via the POUTCH routine).

-’~’$,, ‘:?,,,
The frequency at which the MC68000 sw~s.%tween tasks

is directiy determined by the frequency,,~~~hti’;~he DUART
counter generates interrupts. This is ,d~~-itied by the count
vahre placed in the upper and lo~’#~+ca~ter registers. The>?.,,.;~ ~
main concern in determining t:~~k$:~,q~value is making sure
that the task-swapping is trans~r~t to the user sitting at the
terminal. That is, he must ~t b’$tiware that he does not have
the attention of the syst~~~~ the time.

,*\.~~*.:&.s,‘Y:~,
The system on wbYc~‘~hts application was developed per-

formed well witht’k~~j~ount value’ set at $0073. With the
counter clock @&’~programmed to be the 3.68M MHz.?,’.$,
crystal divi~gd-by~mteen, this count vrdue causes an inter-
rupt to o@l@~~protimately every 500 microseconds.

~s~+~~y~pplication Note presents the interface required
for,::,e~gjci,at ‘pofl-driven serial 1/0 using the MC68681
D~~R’~If you wish to modify this interface to support

~~intepkpt-driven 1/0, no changes in the hardware are re-
~$~~ired. only software modifications need to be made.\~>)+!?,..]/ ~!/:,

a ,.

*.

d
DINIT

Init Channel A
Init Channel B

Init Counter
Init Interrupts

CHKA

Point to Channel A

9Save Chan A Status

CHKB
Y

N

v
Enable Channel

B’s TX

I

D’N’TR*

FIGURE 2 – MC~661 Interface Software Flowchans (Sheet 1 of 6)

a

●

a
6

——-

V,uA

FIGURE 2 – MC66661 Intetiace Software Flowchafis (Sheet 2 of 6)

7

I

h
.....

B

,. ,.. .,

FIGURE 2- MC~661 Interface Sotiare Flowchans (Sheet 3 of 6)

8

r

QCTRCHK

I

I

FIGURE 2 – MC66661 ‘Interface Sotiar.e Flowcha~a (Sheet 4 of 6)

,..

DIRQ

i

1ABRKI N

N
7

Clear Change in
BREAK Status Bit

I

+

INCH

Does
Chan A RX N

Have a
Char,

?

Y

*

dReturn

FIGURE 2 – MC66661 Intetiace Sotiare Flowcharts (Sheet 5 of 6)

10

+

Is
Chan A TX N

Readv
?

Y

I Send Character I
in DO to I

Chan A TX

OUTCHI 1‘,..>

.,..
.<s POUTCHI ~—l

QIs
Chan B TX N

Ready
?

Y

ImSend a Lne

Feed Character

to Chan B TX

1

FIGURE 2 – MC66661 Intetiace Sotiare Flowcharts (Sheet 6 of 6)

11

m
ISTRG

dReturn

,.

12

o

8.

PSTRG

PSTRG

Initialize
Character Count

1’ 1
\ POUTCH) I

13

..-

&
Y

Return

FIGURE 3 – Dual-TasKng SoWare Flowcharts (Sheet 3 of 5)

14

a

SWPTSKS 1~

6Save Active Task
Register Contents
on System Stack

dSave Active Task
USP on System

Stack

ASwap-Out Active
Task SSP With
Dormant Task

CHAERRS’~

Ptint Channel A
Error Message(s)

I

1

FIGURE 3 – Dual-Tasting Software Flowcharts (Sheet 4 of 5)

15

vc

,.

. .

16

@

m

e m

120
*:, ,,.,,~

* ‘1i,. .s.
121

*>,
‘~~$.’

122

\ !t$~,

00002000 4FEFFFFA TSKINIT LEA.L -6(A7),A7
123 00002004 61000218

ALLOCATE STACK SPACE FOR$&?I.$TUS WORDS
9SR.L OINIT INITIALIZE 8 CHECK DUA,~%\~~$;]’”$:;’

124 00002008 4C9FOO07 MOVEM.W (A7)+,Da-D2 PULL STATUS WOROS OF$$}”’~T~~M
125 \ ‘.,,,,.?”,,i.

126 OOO0200C 4A40 CTRERRS

,*~,,,i},

TST. W .:.<,,$*.i94i’~’Do COUNTER ERROR(S)? ., ,,.,?..*+$14:,,
127 0000200: 670C SEQ CH9ERRS
128

NO, SKIP NEXT PAR~j.~~)

00002010 4BF9264D LEA CTRERR8A5 YES, PRINT COUk.TER ‘+RROR ME55AGE
129 00002014 4DEoO023 LEA LCTRERR(A5),A6

,4$,,.~$
,*:,,

130 00002018 610000s6 BSR.L PRTMSG
.,,J3:.,>.?,>

.?::,)h$.:%
131 .:q ‘N.]$:“

132 0000201C 4A41 CHBERRS TST.W 01 CHANNEL<jBc~~R&~R(S)?

133 OOO0201E 6754 BEQ CHAERRS NO, SK$~,,>Nk~~PART

134 ‘$\.,$,
135 00002020 08010000 CHBERR1 9TST #O,Dl
73b

YE::&$; IS r~ TX NEVER REAOY?

00002024 670C BEQ CHBERR2 {~z ‘k~Ip NEXT pART
J37 00002026 4BF82470 LEA CHBMSGI,A5
138

,~~~~ PRINT TX-NEVER-READY ME55AGE

0000202A 40EOO034 LEA LCHEMSGI(A5),A6 :*.;>.:

139 0000202E 610000A0 PRTMSG
‘~~+\.?~$,},.i?

BSR. L
,::<~:t,.::,.f’$}$+,,

140

141
“::,>,\,

00002032 08010001 CHBERR2 ETST #l,Dl +.s IS IT RX NEVER REAOY?

142 00002036 670C BEQ CHBERR3
1,

143

\,:~). NO, SKIP NEXT PART

00002038 4BF824A4 LEA CHBMSG2/A5 is
144 0000203C 40EOO02B

YES, PRINT RX-NEVER-REAOY MESSAGE
LEA

145
LcHBMsG2(.4t~’ fl*$,6

00002040 51OOOO8E BSR.L PRTMSL . ‘w “:’
‘“!146 .::,,$::f}~$.t$:,

..,,,~>,,>,.
147 00002044 03010002 CHBERR3 BTST #2,0+~~& m
748

IS IT A FRAMING ERROR?

000C2048 670A 8EQ CH@$~~* <* NO, SKIP NEXT PART
149 0000204A 4BF824CF L5A CU~~%d%k”:A5 yEs, pRINT FRAMING-ERRoR MESSAGE

150 0000204E 40EoOOID LEA
~@ti<&;~G3(A5),A6

151 00002052 617C BSR “$?~~~ G

152
~:;,
,},,, .

153 00002054 06010003 CH9ERR4 ~ T s ~i$ii” y\,$g,o,

J54 00002058 670A

IS IT A PARITY ERROR?
BEQ$J,, ~ cHBERR5 NO, SKIP NEXT PART

155 0000205A 4BF824EC “b~g+~!$)$ CHBMSG4,A5

156

YES, PRINT PARITY-ERROR MESSAGE

0000205E 40EOOOIC LCHBMSG4(A5)ZA6
157 00002062 416C ~r6;$:;;~ PQTMSG

158 .3 ..,J

159 00’002064 08010004
.’P.,,0.

CH~fRR~.?.VSTS T #4,01 1$ lT A BAo CHARACTER?

160 00002065 670A .’*
‘.?.::;:.?: aEQ CHAERRS NO, SKIP NEXT PART

161 0000206A 4BF82508 $(, ~,,. f~h L5A CHSNSG5,A5
162

YESI PRINT BAO-CHARACTER MEss AGE
00C0204E 40EOO02C .$\\.,~j${’%$W LEA

163
LCHaMSG5(A5),A6

00002072 415C ‘~ ..:’,~,,,.r,
,&:*?*?~ ..+ 3SR PRTMSG

164 ~.~::+,t~\’f..i\.$
165 00002074 4A42 ‘i~~.<’:~, CHAERRS TST.W D2 CHANNEL A EURO?(S)?

166 oooo2076 475Q$i** ‘~~t BEQ ERRCHK
147

NO, SKIP NEXT PART
~~ ~+.*.

168 00002078 ~sai’w CHAERRI BTST #o,02
169

YES/ IS IT TX NEVER READY?

0000207C’’~<<&%$S BEQ CHAERR2
170

NO, SKIP NEXT PART

000020ZS~y$4E~8 2534 LEA CHAMSGI,A5 y~s, PRINT TX-NEVER-REAOY MESSAGE

171 0000203~,k.&.&f200?4 LEA

172
LCHAMSG1(A5)8A4

000020S@~j\6148 BSR PRTMSG
173
174 00002088 08020001 CHAERR2 3TST #l,02
175

IS IT RX NEVER READY?
0003208C 670A EEQ CHAERP3 NO, SKIP NEXT PART

,.

MOTOROLA M68000 ASti VERSION 1.30SYS : 5.APPNOTE .0uART68S.SA 04/12/S4 15:.14:00
0UART69S

1 ?6 0000208,E 4BF82568
17?. 000020?2 &3E2002S
178 oo~020g5 6138

7.79

180 00002098’ 08020002
187 0000209C 670A”
182 0000209E 48F82593
la3 000020A2 4OEOOO1O
134. 000020A4 612a
la5

lab oooo20A8 oao20003
18? 000020AC 470A
18a 000020AE 49F82s90
1$9 009020B2 LOEOOOIC
190 000020S6 bl18

191
192 000020a8 08020004
193 000C206C 675C
194 000020BE 48F8Z5CC

-19,5 000020CZ 40EOOOZC
196., 000020C4 6108
1.97

79a 000020C8 8041
199” 000020CA ao42
200” 0000ZOCC 670A
201 000020CE 60FE
202
203 OOO020D0 1E3COOF3

204 00002004 4E4E
205 00002006 4E75
206,
29?
208
209

210
211

i12
213
214
215
216

217
zl~

219

220
221
222

223
224
225

226
227

228

229
230
231

232
233

000020D8
OOO0200E

000020E4

000020E8
000020EA

OOOOZOEC

000020F0

000020F6

000020FA

000020FE

2E7COCCC5000

2F3COOOOZ122
3F3CZ300

700E

42A?
51C5FFFC
2F3c00004800

21CF7000

CHAERR3 BTST #2,02
BEQ CHAERR4
LEA CHAM’SG3,A5
LEA LCHAMSG5(A5),A6
SSR PRTMSG

CHA5RR4 BTST’ #3,’02

aEQ CHAERR5

LEA CHAMSG4,A5
LEA LCHAMSG4(A5)*A6
BSR PRTMSG

* .~~.:.>,~c.;.>,.t....:,.,.“.,...,.
* INITIALIZE PRINT TASK<,~f~~y~~K) AS 50RMANT TASK, INITIALIZE
* PRINT QUEUE, START C&QM,?E~$ THEN 8EGIN EXECUTION OF THE INPTTSK.

* 6aOO0 WILL EXECUTE{\~~~~~Tgk UNTIL THE COUNTER GENERATES AN IRQ.
* THE 68000 WILL T~~.~’’$3:~?N EXECUTING PRNTTSK AND INPTTSK WILL

* 9ECOME THE 90QM,&N$.~~&$K.
* t?f:;<..:,.\~~

,.,,, .

INIT PRINT
INIT PRINT

INIT PRINT-
IN.IT PRINT

INIT PRINT

SAVE PRINT

INIT PRINT
INIT PRINT

TASK-S SYSTEM STACK POINTER

TASK’S PROGRAM COUNTER
TASK-S STATUS REGIST5R:IPL4-7

TAS~’S REGISTERS

TASK’S uSER STACK POINTER
T&SK’S SYSTEM STACK ?OINTER

QUEUE INPuT POINTER
QUEUE OUTPUT POINTER

000021022E7coooB%%&k”
MOVE.L #IusP,A7

00002108 4E47 ~$$” ‘*+$,.
INIT INPUT TASK’S uSER STACK POINTER

vOVE.L A7,USP
OOOOZ1OA 2E7CO~O04000 MOVE.L #IssP,A7 INIT INPuT TA5K”S SYSTEM STACK POINTER
00002110 49#&BY@w9

,..
MOVE.W #$z300,sR INIT INPuT TASK’S STATUS REGISTER:IPL4-7

.,*:$.,.~~....:,:$,:$

*3 ~ <..,

.,S> ,’ ., ?~.:l,,
$i>t~ ,$.+ ,}><

,,,, >,,. ~’~t,~, ?s

YOTOROI.A M68000 ASM VERSION 1.30SYS : 5.AP?NOTS .2UART68S.SA 04112/a4 15:14:00
‘.*i!,..k~,$,.?.:.-
“.,i~?. PAGE 5

DU4RT6aS
...*“t.
,, .J>a},~,,*,jh>.:>.>$..

\F., >.>>*~$+ ,,.
234 ● ,SS*V”:$2’,.

235 * I~iPTTSK - TAsK THAT CONTINUALLY CHECKS TERMINAL FOR INCOMI)4G CHARAC&~~,;’’$#w
236 * STRINGS. WHEN THE COMPLETE CHARACTEQ STRING HAS BEEN 2EC@iV:-.$i;p
237 * INPTTSK SUEMITS THE STRING TO THE PRINT QUEUE. .~,:, ~~,.:i,’....,

23a * \.,<,\4:,,>

239

240

‘s..%\$*<:y:

0000211A 61000056

.>:\m,. ~t,

lNPTTSK 9S?.L ISTRG

2LI 0000211E 612E

INPUT STRING FROM CHAJ@&&\#&,
B$R

242
QSTRG

00002120 60Fa
SUaMIT STRING TO PRI~~J$%~EbE

BRA INPTTSK ..J&&.\i,J,~?)

243
~y

.:\>::J~{.::;:;~,

244 * ~...;:V,,

245 * pRNTTSK - TA5K THAT continually CHEcK5 pRINTER .QUEU+S’S%OR S’TRING5 TO 9E

246 * PRINTED. wHEN A STRING IS TO 9E P~INTED, ‘~$@~W,8SK WILL SEN3 THE

247 * STRING ,FROM THE PRINT dUFFER TO THE P~;fix%~*i IF No sTRINGs NEE~
24a * To ?E PRINTEc, PqNTTSK WILL CONTINU$,F~HEC~ING QuEuE FoR sTQINGs

249 TO 9E PRINTEO. ‘<}TF~..}J}* :? .4, .
,’k,b,,i:,~

250 *

251
f~?~t,\~:,.~~.i.,

252 00002122 6172 PRNTTSK ESR R.STRG R fitibq$ E
253 00002124 60FC ERA

STRING FROM PRINT QUEUE
PRNTTSK

254
~$@~~{K$@UEUE FOR ANCTHER PRINT TAG
:~, ,t.<

,.\>;.i}tJqk;)$,?
255 .*

256 * SWPTSKS - ROUTINE TO SWAP TASKS 93\~M,&{$j&XECUTE0 BY THE 6S000.

257 * SWPTSKS SWAPS BETWEEN TW@\klASKS BY EXCHANGING THE

258 *

259
SYSTEM STACK POINTER, ~$GI%TER CONTENTS, USER STACK POINTER,

●

260
STATUS REGISTER, 8.<.#RO@kAM COUNTER OF ONE TASK TO THAT OF THE OTHER

* ,. ,,*@::.,

261 *

262
ENTRY’ CCNOITIONq~ “ix

●
.,:.:,.,,ya?l,,
-.t,,,:~~.~.’’t*J.’.\

263 * DRMNbJ~?Tb%~ ‘~ SSP IN OTSKSSP.

264 * Aclr~&}sT#3K’S SSP IN A7.

265 ● .SS~~@it.y:%CTIVE TASK-S STATUS REGIsTER coNTENTs.
266 * , ‘k$%<~g~::~ ACTIVE TASK’S P~OGRAM COUNTER. CONTENTS.

26? *’ $*’*4>
268 * EXI~\C~W.C~TIONS:
269

.+4,...-

;*Ew DRMNT TASK S SSP IN OTSKSSP

* ,,<.!.+s~~l,$,..,y::-.
270 * .? .,;:.r. .

2;71 * ‘“i. + NEW ACTIVE TASK’S SSP IN A?.~b++.}..?,l,.h.~{:(,.>,.

272 ● *i -~,
2.73

SSP+O - NEW ACTIVE TASK’S STATUS REGISTER CONTENTS
* .$.+ ,..*W,’ ssPt2 - NEW ACTIVE TASK’S PROGRAM COUNTER CONTENTS

“274
,2y.*::Tit:~:Y.:,$,~w’

* ,,!~.. ,,..,
’275

..:.
*,,~,.+,1’

276
,,ip. e;$.?.’

27? 00002126 4A~900FOOOlF $~~~it~$ ‘TST.9 STPC

27a

ST.OP COUNTER
.?:,‘t~,l>$.~.

279 0000212C 48E7FFFE .,.’\’~::.:<...,;.,. MO VEM. L AO-A6/00-07,-(A7)

280 00.002130 4E6E
.?.(+),,

SAVi ACTIVE TASK’S REGISTER CONTENTS
~ ~$..$,

t$k,+L!*+, MOVE. L US P,A6

2a7 000021.32 2FOE
SAVE ACTIVE TASK’S USER STACK POINTER

,%5 ,,<+~:y~!; MO,VE. L A6,-(A7)

2a2 .l$$& +?
.,.,,\,!“t,,.:,.\

2a3 00002134 40D7Fy’ ,:L’& LEA.L >(A7’),A6

“2”84 00002136 2~3~~~0$’
SAVE TEHP COPY .OF ACTIVE TASK’S SS?

.MOVE.L oTsKssP/A7

2a5 0000213A ~#q~7b50
GET 5~MNT TASK’S SYSTEM STACK POINTER

MOVE.L A6,DTSKSSP
.!<..*.,.:.

2a.6

SAVE ACTIVE TASK’S SYSTEM STACK POINTER
~~>::$:~

2a7 oooo213&*t&;y# MOVE.L (A7)+,A6 GET ORMNT TASK’S USER STACK POINTER

2.aa 0000214~<#~56” MOVE.L A6,USP

2a9 00002142’%4CDF7FFF VOVEM.L (A7)+/00-D7/AO-A6

290

GET OQMNT TASK’S REGISTER CONTENTS

2 ?1 ‘00002146 4A3900FOOOI0 TST.9 STRC START COUNTER

,.

MoToRoLA M68000 ASM VERSION 1.30sYs : 5.APPNOTE .cuART68s.sA 04f12f94 15:14:00
0UART68S

PAGE

292
293

294

295
296

29?
29a

299
300

391

302

303

304
305

306
307

308

309
310

311
312

313

374

315
316
31?
378

0000214C 4E73

*
* QSTRS
*

*
*

●

●

*

*

*

*
*

.,, ,.. ..
,;],$.i,{>

- SUSR3UTINE TO SU9MIT A CHARACTER STRING To PQINT QUEUE.
~b?:‘
)il..~J,.:’,,?’

QSTRG’ cHEcKS THE STATUS OF THE PRINT QUEUE. IF IT Is
~~,“.~+.y.x ,t....-.,.::;,,,l,

FULL, QSTRG WILL WAIT UNTIL THERi IS ROOM IN THE QUEUE ~’$~-’’”!i‘“

A TAG. 1= THE QUEUE IS NOT FULL, QSTRG WILL MOVE THE @wA?’&&.#ER

STRING INTO THE PRINT 8UFFER, 5 PLACE A PRINT TAG IU~J+T~E PRiNT. .<,,
QUEUE. :5w’\’:$g
A PRINT TAG IS A BYTE CONTAINING THE LENGTH OF T~.$,,~%,&.JNG TO SE

.~*’P..s.

PRINTED.
...

f&.,.?~\\~~~.’.y<J{,,<$t~

*
*
*
*
*
*
*
*
*
*

0000214E 4aE7FOC0

319
320
321
322
323

000021S2 4242 CLR.W 02
00002154 143a7084 MOVE.B PCIN,D2 ~
000021S8 5202

.,j:.i
4DDC.B #l,02

,.:>~\

000021SA 020200FF
e.~~~(,’.,<

ANOI.3 #PQLMSK,~~\ “R,;?
0000215E B43S70a5 QSTRGI CMP.B P QO UT, Q,~~..’$?
00002162 67FA ~EG GSTR$3~ “:~;e>

,</) x..

BUMP INPUT POINTER
(KEEP POINTER wITHIN QUEUE 30UN3S)
IS PRINT QUEUE FULL (PQINtl=PQOUT)?
YES, WAIT UNTIL HAVE ROOM FOR TAG324

32S
326

327
328

329

330
331

NO, MOVE STRING INTO PRINT 3uFFE?:

GET STRING DESTINATION ADORESS BY
ADDING INPUT OFFSiT (PQIN * CSLNTH)

TO
PRINT BUFFER 6ASE AODRESS

332

333
334

335

336
337
33a
339

340

00002174

00002176
00002178
0000217A

4240

1001
5300

0200C07F

Oc
O1,DO
#l,oo
#CSLMSK,00

GET STRING LENGTH

OECREMENT IT BY 1

(KEEP IT UITHIN STRING LENGTH BOUNDS)

0000217E

00002180

120a

S1C8FFFC
(AO)+,(Al)t

D0,2STRG2
MovE STRING

oooo21a4

oooo218a

43F87Qa6

13812000
PQuE,A1

DI,0(AI,02.W)

PLACE PQINT TAG IN PRINT GUEUE
341
342

UPDATE PRINT QUEUE INPUT POINTER

MOVEM.L (A7)+,Ao-Al/Do-03 RESTORE REGISTER CONTENTS

RTS

349

349

●

☛ R~T?G - subroutine To PELEASE A CHARACTER sT~ING FROM PRINT QUEUE.

!*,.. ‘$!.. ‘ ‘
!$.’ ‘x’)\~~;.,:>k ,.

‘:~~.,\,\.y.,‘~~:~.,.,:,.
MOTOROLA M6300G ASM VERSION 1.30SYS : j.APPNOTE .DUART65S.SA 04/12/s4 15:14:00

“1,~,$ PAGE 7+<!~~~k,
,’”.>.,*,.,.

DUART68S
..,:.,!,..,:,7

-,$)1$$’

350 *

,\ ,~~l$,!-’

RSTZG CHECKS THE STATUS OF THE PRINT QUEUE. IF ThE QUEUE IS
..,!’:$jx.,:,~~~~.~~.;>.

351 * EMPTY, RSTRG WILL WAIT UNTIL A PRINT TAG APpEARS IN THE QUEU@.v%\ .*
~ . “’*.l),*,$:J

352 * A PRINT TLG IS A 8YTE CONTAINING THE LENGTH OF THE STRING Td3$s $?.,\\J,.<;;’+

353 * SE PRINTEO.
,.
~~~:,$ “??

354 * IF THE PRINT QUEUE IS NOT EMPTY, RSTRG WILL 5END THE ST~~.~$.,

3“55 * FRCM THE PRINT SUFFER TO THE PRINTER, THEN PULL THE T.#~:,$,~~8~ THE

356 * PRINT QUEUE.
,,,!<~ %$+,\

$,~i,,,t,:’
357 * ,*<<

358 * ENTRY CONDITIONS:
.?IT,,,‘‘:J$$f:y

359
N’:....;e,.

* ~\Q\~:.:t,,,.>+,

‘.F:e,{,
360 * (NONE) ,..,.!\

361 *
,~

~,$,y’~>t~~i7:,X.

362 * EXIT CCN91TIONS:
$,:<,,.J.!.
\3,\..J..ve+\,,i:,

363 *
~? .?;\

364 * CHAQACTER STRING IS SENT FROM~S$~,.,<,P:$INT 8UFFER

365 * TO CHANNEL B.
,,(.$ ,,
.,,ii.Y’*:

366 * PRINT TAG IS REMOVED FROM \?RIM~,,QUEUE.

367 * ALL REGISTERS UNALTERED.~)$~’, ‘:’
“:i.+$,,,36a *

369
~~,,,~,+\:\,.~>

~\i,,* ~\l,

370
.,,.

,’,, t*,,~,iv

371 00002196 4aE7COC0 RSTRG MOVEM.L ao-ol/Ao-Al*-(A7) *’:i$w&ROUTINE uSES REGS 00/ D1/ AOJ & Al

372
~.’**/:y{\i\,$:,*Gf

373 0000219A 4240 CLR.M 00 “$&}GET PRINT QuEUE OUTPUT POINTER

374 0000219C lo3a70a5 MOVE.B PQouT,00 ,<~~

375 oooo21Ao ao3a7084 RSTRGI CMP.8 PQIN,00
,,;)

IS PRINT QUEUE EMPTY (PQOUT=PQIN)?\~;:i?+:\
376 000021A4 67FA aEQ RSTRG1 “’}F.X YES, WAIT FOR A TAG TO APPEAR IN QUEUE

‘.lt:a).,,,..
377
37a 000021A6 41Fa7186

.,s>,>,,.‘*Y.
LEA. L PRT9uF,A@J;<*J:i~&

379 000021AA 4281

NO, RELEASE STRING:

CLR.L D1 ,.\+~>\,,$,:’.

3ao 000021AC 3200
,,,,,~,.~~i GET STRING SOURCE ADORESS 3Y

MOVE.d DO,D<$,,YX$ <’ AOOING OUTPUT OFFSET (PQOUT * CSLNTH)

3al 000021AE c2Fcooao MULU.W #C $,L%%@ ~S~ TO

382 000021B2 LlF31aoo LEA.L O?;*;~;+WL)*A O

3a3

PRINT BUFFER 3ASE AODRESS
7!.,..+~+.>$~,,,-,)>>

384 000021B6 43F87086 LEA.L

385 000021BA 4241

‘!?~>Q&E/Al GET STRING LENGTH
cLa.w,~+$+ ~$$$: FROM

386 000021BC 12310000 MOVE.% f~(Al,oo.w),Dl PRINT TAG

3a7
l~y’,,,,’;~+,~>,,..,.liv

3a3
.;*. *$*

000021C0 6142 B$8 ~; PSTRG SEND sTRING ’To cHANNEL B

389
.’..:.*\ +)

;:”~~l?.$!.,<..>

390 000021C2 5200 *i~ A~~Q.3 #l,DO

391

BUMP PRINT QUEUE OUTPUT POINTER

000021C4 020000FF !4,. “’”’b~dbI.a #PQLMSK/00 (KEEP POINTER WITHIN QUEUE SOUNDS)

392 000021Ca 11C07085 ‘~$”>3.).{>.,k. AOVE. B CO,PQOUT

3?3

UPDATE pRINT QUEUE OUTPUT POINTER
,I]x*.*~a>~:.

394 000021CC 4COF0303
~~g.‘$<,,!.’

..$~.‘$~., MOVEM. L (A7)+,00-DIIAO-AI RESTORE REGISTER CONTENTS

395 00002100 4E75 ,,.$.,,.-+}.3,.:,. RTS

396
. ~..,.$..
“’if..<...1.>:,

397
,,$’,,..>..\.\.*.
,.,.,,.Y‘.1,

398 .C,<.,:.:‘:*.~>.~,‘* ISTRG - ROUTINE TO INPUT A CHARACTER STRING FROM THE TERMINAL E PLACE

399
,:i,t

$~ ● IT IN INPUT BUFFER.~d$..
400

.;?; *.i+..?....\\\<t,,..>t~:: A CHARACTER STRING CAN BE A MAXIMUM OF 256 CHARACTERS LONG

401 \\:, ~.,~.%~eitr * (AS DEFINEO BY THE CSLNTH), 3 ENOS MITH CARRIAGE RETURN CHARACTER.,..}$:
402 ..., *

~~::r~:\\\>\\).?:
403

IF A BACKSPACE IS RECEIVED, ISTRG WILL OECREMENT THE INPUT
**..,,.:,,‘~i$,~ BuFFER POINTER uNLESS pDINTEQ IS AT FIRST POSITION IN BUFFER.

404
‘:~iy *

405
*;,> * ENTRY CONDITIONS:

406 *

407 * (NONE)



MOTOROLA M68000 ASM VERSION 1.30SYS : 5.AP?NOTE .0UART68S.SA 04/12/84 15:14:09

0UART68S

408

409
410
411
412

413

414

475
41 b
477
47 a

419

420
421
422
’423

424

425

*
* EXIT COPJCITIONS:
*
*
*
*
*
*
●

OOO021D2 L8E78000 ISTRG MoVEM.L DO,-(A7)

INBUF,AO
31
l~~cH

#ss,20
PUTCHAR.

DI
GETcHAR

$l,D1

GETCHAR

00,0(AO,O1.W)
#ltDl

#CSLMSK*Ol
#CR,DO

OOO0210b 41F87004
000021DA 4241
000021DC b10001B2

LEA.L

CLR.W
GETCHAR 9SR.L

BSCHK CMP.B

9NE
TST.B
BEQ

SUBQ.S
9RA

000021E0 0COOOO08
000021E4 660a

000021E6 4A01
000021E8 67F2
000021EA 5301

000021EC 60EE

426

427
428

429

430
431

432
433

436
435

436
43?
43a
439
440

447
442

‘ 443
444

445

44b
447
44a

449
450
451
452

4s3

454

455

456
457
45a

45Q

460
4b7
462
463

46b

46S

000021EE llaOIOOO

$

00 021F2 5201

00 021F4 O2O1OO7F

oooo21Fa Ocoooooo
000021FC 66DE

PuTCHAR MOVE.B
AOOQ.B
AND.I.a

cMP.a
BNE GETCHAR

~=.\.

000021FE 4CDFOOOI

00002202 4E75

MOVEM.L

RTS

*

00002204 4aE7COa0

INIT CHARACTER CCUNT FROM ST?ING LENGTH
(KEEP IT WITHIN STRING LENGTH aOUN3S)
GET CHAR OF STRING TO aE PRINTE2

PRINT CHARACTER

wAS IT THE LAST CHARACTER OF STRING?

YES, RESTORE REGISTER CONTENTS

e



* *



030F
,,.,.,.+

529 00002272 13 FCOOOC04JF0
,\,>?.~~.:+

M3VE.9 RIRQMSK,IMR
oooa

INIT IRQ MAS@&,&$,&:JSTER

530

,.+:,,:,,....~a
,:g..’ ,.,.+~%}::;$

531 * cHECK CHANNEL A FOR OPERATIONAL ERRORS
,$,

532

.,:<’‘>J*;,:$:*l*
;$ ,,$

533 0000227A 41F900FO0301 CHKA L5A.L
534

CHANA,AO
00002250 5142

LOA~,,ACH’%~~EL A AOORESS FC? CHECK
?s2 CWCHK

535
CHBq~CHANNEL A

00002282 3F40000C P1OVE.W 00,CHASTS(A7)
536

,~~~{~~efHAN A STATUS WORO IN STACK
‘\l.\.

53?
538

539
540
541
542

543
544
545

546

547

54a
549

550
551
552

S53

554

555

5S6

S57

ssa

559

560
561
562
S63

S64

565
566

567

:.t~,...~j>::.$t$t
000022e4 41F900FOO011 CHKE LEA.L cHhNa8Ao
000022aC 6134

“’a’;,’%”OAO CHANNEL 5 ADDRESS FOP CHECK
BSR CHCHK

000022aE 3FLaOOOE
y+ CMFCK CHANNEL 9

MOVE.W CO,CHBSTS(A?). <$’ PLACE CHAN 9 STATUS WORD IN ST.4CK
~.::?’

‘i* ,
OOOC2292 61OOOOAC CHKCTQ BSR.L cT~cHK ,++$$W$,

00002296 3F4OOO1O
CHECK COUNTER

MOVE.W 35,cT@:s~s(x?) PLACE COUNTER STATUS NORO 1:4 STACK

,,,$

0000229A LA6FOGOC
.+!*:,,

ENA8LA TST.W ,>3S+!,CH#STS ( A7) ARE THERE ERR5RS IN CHAN!IEL A?
OOO0229E 6610 ~NE ~}}% @~A g L a YES, SKIP NEXT PART
000022A0 13FCOOO1OOFO MOVE$~i+, .#S$31,CQA

0C05
NO, ENABLE A-S RX,

.P*:>!,*,,“.Yb,..,,

000022a0 4A6FOOOE E!4ABL9’}/~tii~T.w CHBSTS(A?) ARE THERE ERRORS IN CdANNEL 5?
00002294 6403 ‘,~$‘$

#i#,~\ iem E 51NITR
000922S5 13FCOO040GF0

YES, SKIP NEXT PART
.** . M5VE.9 #$04,cR@

G015
:.+.?.t:!l~’..

NO, ENA9LE B’S TX
-i;,+.%,,ti,,t,,’”



6 *



646
64?

64a
649,

650

651
652
653
654

655
556
657

658
659
640

651
652

663
654

665

666

66?
66a

669
670
671

b72
673
674

675

476

677
b73
679
t~c

691
532

6d3

090C2343

90032344

9
1-15

ALL OTHER REGISTERS

MOVEM.L 91,-(47)

MoVE.L 31PQvEC,-(A7)

COUNTER rRQ NEVER RECEIVE3

(NOT USED)

ARE UNALTEREO.

SUBROUTINE USES QEG 01

SAVE ORIGINAL EXCEPTION vECTOR



o
MO TO?

2UART

6S4

685
~~~

687

685
589
690

6?1
.6?2
693
696

695
696
6Q7

69a
699
700
701

702
703

704

705 ‘
?36
707

7oa

709
710
711

712
713
714

715

716
717
71a

719

720

721
722
723

724

725
726

727
72a
729

730
731
7z2

733

734
7:5

736
737

73a
739

“~:..
* ENT2Y CONDITIONS:
*
● OUART CHANNEL A RX & TX ENA3LE3.
*

w

w
w

o

3uART68S

SYM30L TAaLE LISTING

SYMaOL NAME

LBRKI
AB~KIl

ACR

aRKMSG

Bj
9SCHK

9TRST

9TST
CHAERR1

CHAERR2
CH4EQR3

CHAE2R4
CHAERR5
CHAER?S

CHAMSGI

CHAMSG2
CHAMSG3
CHAMSG4
CHAMSG5

CHANA
CHAN3
CHASTS

CH3EPRI

CHPERR2

CH9ERR3
CH8ERR4

CH9ERR5

CHaERRS
CH3MSG1

CHBMSG2
CHaMSG3

CHaMSG4
cH~MsG5

CHaSTS

CHCHK

CHKA
CHKa
CHKCTR

CHRCHK
CiRQ

CIRQR
CLSB

cMsa
CR

CR4
cza

CSLMSK
CSLNTH
CSRA

:sQa
CTLR

CTRCHK

SECT V2LUE

00002404
@c002415

00FOCO09

00002446
oooo~~~s

OGO021E0
30F0001F
OOFOOOIC

oooo297a
oo,oo20e8
0CG02098
COO02048

ooo22~98
00002074
0GO02534
00002558

00002593

00002590
OOO025CC
OOFOOCOI

OOFGOO1l
Oooooooc

COO02020
03002932
00002044
00002054
00002064
0G32201C

00202470

000024A4
OOO024CF

OOO024EC

00002506
OO08000E

000022C4
OOO0227A
OOO0228L
o~oo~292

03G02324

SYM90L NAME

I?IITTSK2

INPTTSK
1?
IPCR

IR:CNT

IRQF:SK

ISG

1SS?
ISTRG
IuSP

IVR

L9RKMSG
LCH4MSGI
LCHAMjG2

LCHAMSG3

LCHAFSG4
LCHAMSG5

LCH5NSGI
LcH8~sG?
LCHSMSG3
LCHPMSG4
LCH5MSG5

LCTRERR

LF
MONITOR
v~lb

YR13
HR2A
YR2E
OPCR

OUTCH

OUTCHI

SECT V4LUE

000023CC

~0007086

00002318

00002122
00007136

00002000
00005009
00002204
000022JE

00004800

o

.,-

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does
nOtassume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its
Patent rights nor the rights of others. Motorola and @j are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/
Affirmative Action Employer.

@

m MOTOROLA Semiconductor Products Inc.

,17727-2 mm,. ,“ “s. 1-s6 mmm LImO ,37103 10,000

3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721. A SUBSIDIARY OF MOTOROLA INC.

mB99

