MOTOROLA
Semiconductor Products Inc.

AN-882

Application Note

THE BISYNC PROTOCOL AND A BISYNC
DATA LINK BETWEEN TWO MC68000
MPU BASED SYSTEMS

John Vaglica
Systems Applications Engineer
Motorola Inc.

Austin, Texas

INTRODUCTION

This application note describes the hardware and software
required to implement a Binary Synchronous Communica-
tions (BISYNC) data link between two MC68000 based sys-
tems. Background information is included to introduce the
user to the BISYNC protocol and the transmission sequences
used. An MC68661/MC2661 Enhanced Programmable
Communications Interface (EPCI) controls the data link at
one end, and an MC68652/MC2652 Multi-Protocol Com-
munications controller (MPCC) controls the other. The
generation and checking of the cyclic redundancy character
(CRC) is done by an MC68653/MC2653 Polynomial
Generator/Checker (PGC) used at each end. A block
diagram of the data link system is shown in Figure 1.

The hardware discussion includes schematic diagrams and
a description of the interface circuitry necessary to form the
data link. The hardware consists of the following circuitry:
MC68000 asynchronous bus interface, interrupt prioritizing
logic, interrupt vector generation logic, and ancillary support
circuitry required by the data communications devices.

Software listings are provided for the following routines:
initialization, interrupt service, and transmitter and receiver
170 drivers. The transmitter and receiver driver routines are
set up to run as tasks, with all I/O being interrupt driven.
Flowcharts and a description of the algorithm complete the
software documentation.

A final topic explores the interfacing exceptions which are
not readily discernible from the data sheets. Because
MC686xx devices were originally designed to operate on the
synchronous bus of the Signetics 2650, several minor inter-
facing differences exist when used with the MC68000 micro-
processor. In addition to the hardware exceptions, several
software irregularities are also discussed.

THE BISYNC PROTOCOL

The BISYNC protocol belongs to a group of character
oriented protocols known as byte controlled protocols
(BCPs). A BCP message consists of a header or control field,

a text field, and an error checking field. A typical message is
shown in Figure 2. Each message is transmitted as a block
consisting of both control and data characters. The special
control characters define the beginning of the block, the end
of the block, and delineate the various fields within a block.

Each message must be preceded by a minimum of two syn-
chronizing (SYN) characters, to allow the receiver to syn-
chronize itself with the transmitted data. Following the SYN
characters, a start of header (SOH) is sent, marking the
beginning of the header field. The header contains the con-
trol information necessary for the receiver to interpret the re-
mainder of the message. Information in the header includes:
the secondary station address, the block sequence number,
and control and message acknowledgement information. A
start of text (STX) character terminates the header field and
begins the text field.

The text field can be of any length, and may contain any
character not reserved for data link control. If unrestricted
data transmission is required (i.e., the data contains control
characters), it is possible to transmit in the transparent mode.
The transparent mode is entered by preceding the STX
character by a data link escape (DLE) character. Within the
remainder of the message, any control or fill characters must
be preceded by a DLE. Any control character not preceded
by a DLE will be interpreted as data. The text block must be
properly terminated by an end of text (ETX), an end of
transmission block (ETB), or an intermediate transmission
block (ITB) character. In the transparent mode, the block
termination character must be preceded by a DLE.

An error checking field follows the termination character.
This block check character (BCC) is calculated from one of
several polynomials. If the transmitted data were ASCII, the
error checking can be either a vertical redundancy check
(VRC/parity) on each character and a longitudinal redun-
dancy check (LRC) over the entire message; or a cyclic
redundancy check (CRC) over the entire message. Error
checking on transmitted EBCDIC data is normally restricted
to CRC. The BISYNC protocol requires that all SYN
characters and SOH control characters be excluded from the

©MOTOROLA INC., 1982

Address Address
Data
Channel
N
2 o »! CE " DBEN |« "o
el — 1 ~ i)
3% go 89 I 58
he)
23 85 |, |88 23 I
DTACK | s ¢ s= ? > DTACK
< Data Data >
MC68000 MC68000
MPU _ MPU
23" = 80 53
<:J‘>§S‘ > CE1 CE1l }= §g<::>
< (@] co
MC68653 MC68653
PGC PGC
FIGURE 1 — BISYNC Data Link Block Diagram
Header Field Text Field
\\ /\\
/ AN

S S S S ETX B B

Yy | vy | of HEADER | T TEXT ETB c| c

N | N | H X ITB c | c

S BLOCK ACK 0

0 :SSE'EOSZ SEQUENCE CONTROL ACK 1

H NUMBER NAK

FIGURE 2 — BISYNC Message Block Format

error checking calculation. In the transparent mode, the
DLE contained in DLE/control character pairs is excluded
from the error checking calculation as well.

When the receiver has completed the BCC calculation, an
acknowledgement must be sent to the transmitter, indicating
if the message was received without error. The BISYNC pro-
tocol does not allow transmission of a new block to begin
until an affirmative acknowledgement is received for all pre-
viously transmitted blocks. Because of this acknowledgement
requirement, the data link is forced to operate in the half
duplex mode; therefore, line utilization suffers. The receiver

signals the transmitter that it has received the message by
sending either an ACK or NAK control message. Providing
that the receiving station has a block of data ready to
transmit, the acknowledgement for the received block can be
embedded in the header field of the next transmitted
message. Otherwise, a control message with no data field,
should be sent (see Figure 3). Only the latter option is avail-
able under the software presented in this application note. If
the block sequence number for the received message was
even, an ACK 0 is sent; or if the sequence number was odd,
an ACK 1 is sent. In the case that the message was received in
error, a NAK would be sent.

S S ACK 0 P
Y Y ACK 1 A
N N NAK D

FIGURE 3 — BISYNC Control Message

The data communications peripherals (the MC68652
MPCC, MC68653 PGC, and MC68661 EPCI) each support
BISYNC to some extent. The enhanced programmable com-
munications interface (EPCI) is a bus oriented, universal
synchronous/asynchronous communications controller. It
accepts parallel data from the microprocessor, via the data
bus, and converts it into transmit-serial data. Conversely, the
EPCI receiver can convert receive-serial data back into
character data to be read by the MPU.

When operating in the synchronous mode, the EPCI is
designed to handle byte controlled protocols. Internal
registers allow the user to program the number of SYN
characters, mode of operation (transparent or non-
transparent), and automatic DLE stuffing and detection
when in the transparent mode. In order to accommodate
various character codes, it is also possible to program the
values for the SYN and DLE characters. An internal baud
rate generator is available as the source of the Tx and Rx
clocks, generating frequencies up to 614 kHz (data rate up to
38.4 kilobaud). Alternately, the TxC and RxC pins can be
driven by an external oscillator with clock speeds up to one
megahertz. The EPCI fully supports BISYNC, with the ex-
ception of CRC error checking. If CRC generation and
checking is required in a particular application, an external
generator/checker, such as the MC68653/MC2653, must be
used.

The MC68652/MC2652 is a multi-protocol communica-
tions controller (MPCC). The MPCC supports both BCPs
and bit oriented protocols (BOPs) at data rates up to one
Mbps. A standard synchronous bus interface is provided,
allowing the MPCC to communicate with an MPU. Data bus
width is eight or 16 bits, selected via the BYTE control input.

The MPCC performs only a minimum number of the func-
tions required to fully support the BISYNC protocol. The
MPCQC receiver is capable of detecting the initial SYN char-
acters in a message, but will not strip any SYN characters
used as line fill during the course of a message. Due to this
limitation, the CRC error checking facilities built into the
MPCC cannot be used under the BISYNC protocol. In the
transmit mode, the MPCC will generate leading SYN char-
acters and insert SYN characters as fill characters during
periods of transmitter underrun. The MPCC does not sup-
port the BISYNC transparent mode.

Neither the MPCC nor EPCI will properly generate the
BCC (block check character), but by using the MC68653/
MC2653, both the MPCC and EPCI can fully support
BISYNC. The PGC is used for generating the block check se-
quences and performing parity checks on the parallel data
passed between a receiver/transmitter and an MPU. The
maximum character accumulation rate is 500,000 characters
per second. Three different polynomials can be selected:

CRC-16, CRC-12, and LRC-8. Independent of the poly-
nomial selected, four maskable conditions are available as
interrupts, via an open drain output. The four conditions
allow the flagging of CRC errors, VRC errors, Block Termi-
nation Character (BTC) detection, and second search char-
acter (SSC) detection.

The PGC can be dynamically programmed to recognize
specific characters as belonging to one class or another.
There are four classes to which a character can be assigned:
normal, SYN/BISYNC not included, block termination
character (BTC)/search character (SC), and second search
character (SSC). Characters belonging to the normal class
are any normal data characters not reserved for control of
the data link. The SYN/BISYNC not included characters are
those characters which are used to synchronize the receiver
hardware to the incoming bit stream. The SYN and SOM
characters are included in this class. The BTC characters are
those control characters which are used to indicate the end of
the data block. Examples of BTCs are ETX, ETB, ITB and
ENQ. The secondary search character (SSC) is the final class
and contains the second character of control procedures
represented by a sequence of two characters. The first char-
acter of these sequences must be a DLE. An example of a
member of this class is a DLE-STX pair, signaling the initia-
tion of the transparent mode.

The character classes are used to determine whether or not
a character, presented to the PGC, should be included under
a specific accumulation mode. Up to 128 characters can be
assigned in the character class array. Characters presented to
the PGC can be accumulated in one of four modes. The
modes are: BISYNC normal, BISYNC transparent, auto-
matic accumulate, and single accumulate. In the BISYNC
normal mode, all characters presented to the PGC are
accumulated except those in the SYN/BISYNC not included
class. In the BISYNC transparent mode, characters not in-
cluded in the calculation are the first DLE of a DLE/non-
SYN pair not preceded by an odd number of DLEs. All char-
acters presented to the PGC are accumulated in the auto-
matic accumulate mode. If the single accumulation mode is
selected, the start accumulation command must be issued for
every character which is to be included.

MC68000 ASYNCHRONOUS BUS INTERFACE

The asynchronous bus structure of the MC68000 maxi-
mizes throughput by matching the processor speed to that of
the memory or peripheral devices. By signaling the MC68000
when to complete a bus cycle, the peripheral device can vary
the length of the bus cycle to match its own access time.
Asynchronous control of the bus is accomplished through
the use of four control lines: address strobe (AS), lower data
strobe (LDS), upper data strobe (UDS) and data transfer
acknowledge (DTACK). The timing for normal read and
write bus cycles is shown in Figure 4. The AS line is asserted
during S2, signaling that the address placed on the address
bus during the previous half cycle (S1) is valid. The data
strobes (UDS and/or LDS) are then asserted (during S2 for a
read or S4 for a write), indicating the length of the operand
for this bus cycle. The addressed peripheral device can now
be selected and DTACK returned such as to ensure that the
access time for the device is met. If the peripheral device does
not assert DTACK at least a setup time before the falling
edge of state S4, wait states are inserted for an integral

number of clock periods. This continues until DTACK is
asserted. A slow read cycle is shown as the final bus cycle of
Figure 4. After DTACK is recognized, the MC68000 termi-
nates the bus cycle by negating AS, UDS, and LDS. The
peripheral completes the cycle by negating DTACK.

An interrupt acknowledge cycle differs from a normal bus
cycle in several ways. Refer to the timing diagram of Figure
5. If an interrupt is pending at the end of an instruction cycle,
which is of a higher priority than the current value of the

interrupt mask, interrupt exception processing will begin.
Interrupt exception processing begins by entering the super-
visory state. The machine status, including the current pro-
gram counter and status register, is saved on the supervisor
stack, the interrupt mask is updated to reflect the current
interrupt level, and the function codes (FC0-2) are changed
to indicate an interrupt acknowledge cycle. The interrupting
level is placed on the lowest three bits of the address bus
(A1-A3), the remainder of the address bus is driven high, and

SO S1 S2S3 S4 S5 S6 S7 SO S1 S2 S3 S4 S5 S6 S7 SO S1 S2S3 S4 w w w w S5 S6 S7

Fco-FC2 ___X X

P——aead—b‘f

L

Slow Read

FIGURE 4 — MC68000 Read and Write Bus Cycle Timing

IPLO-IPL2

Last Bus Cycle of Instruction Stack IACK Cycle Stack and

(Read or Write) PCL (Vector Number Acquisition) Vector Fetch
€]IE(SSP)i € i|l -

* Although a vector number is one byte, both data strobes are asserted due to the microcode used for excectcr crocessing. The
processor does not recognize anything on data lines D8 through D15 at this time.

FIGURE 5 — Vectored Mode Interrupt Acknowledge Cycle Timing

v

)

AS and LDS are asserted. Either the vectored or auto-
vectored mode can be entered at this point.

If auto-vectoring is selected, the peripheral will respond by
asserting valid peripheral address (VPA). This causes the
MC68000 to internally generate an exception vector number
between 25 and 31 (see Table 1), which corresponds to the
current interrupt level. At the starting address contained in
this vector, execution of the interrupt service routine begins.
If the vector number is to be supplied by the peripheral (vec-
tored mode), it must be placed on the low order data lines
and DTACK asserted. The bus timing for a vectored mode
(vectored number supplied by peripheral) interrupt acknowl-
edge cycle is shown in Figure 5.

HARDWARE

The data communications devices were designed to operate
on a synchronous bus similar to the M6800 bus structure;
therefore, no provisions were made for the asynchronous bus

of the MC68000. In the next few paragraphs, the hardware
comprising the asynchronous bus interface and interrupt vec-
tor generation circuitry is described.

The data link is comprised of two receiver/transmitters,
each under the control of an MC68000 microprocessing sys-
tem. One terminus contains an MC68661 and an MC68653,
while the other contains an MC68652 and an MC68653. Each
station also contains the necessary DTACK and interrupt ser-
vice hardware. The data link prototype was tested on a single
MC68000 microprocessor system operating on a VERSAbus.
The VERSAbus is an asynchronous bus, defined by
Motorola, to be used with the MC68000 and its peripherals.
Several signals of note on the bus are the TACK and TRQ
lines. The IACK signal is generated from the function code
outputs, and is asserted only during an interrupt acknowl-
edge cycle. The IRQI through IRQ7 are vectored interrupt
request lines. On the CPU board, these seven lines are en-
coded into IPLO thru IPL2. The final note concerning the

TABLE 1 — MC68000 Exception Vectors

D15

D8 D7

D0

Ignored

v7

v6 | vb | v4 [v3| v2 | Vvl | VO

Where:

v7 is the MSB of the Vector Number
v0 is the LSB of the Vector Number

A23

A0 A3 AB A7 A6 A5 A4 A3 A2 A1 A0

All Zeroes

V7| v VvE| va]| v3|v2| vi| VO] O] O

Exception Vector Assignment

Vector Address .
Assignment
Number(s) | Dec Hex |Space
0 0 000 SP Reset: Initial SSP
— 4 004 SP Reset: Initial PC
2 8 008 SD Bus Error
3 12 00C SD Address Error
4 16 010 SD lilegal Instruction
5 20 014 SD Zero Divide
6 24 018 SD CHK Instruction
7 28 01C SD TRAPV Instruction
8 32 020 SD Privilege Violation
9 36 024 SD Trace
10 40 028 sD Line 1010 Emulator
" 44 02C SD Line 1111 Emulator
12* 48 030 SD (Unassigned, Reserved)
13* 52 034 SD (Unassigned, Reserved)
14* 56 038 SD (Unassigned, Reserved)
15 60 03C SD Uninitialized Interrupt Vector
16-23* 64 | o4c | SD (Unassigned, Reserved)
95 05F -
24 96 060 SD Spurious Interrupt
25 100 064 SD Level 1 Interrupt Autovector
26 104 068 SD Level 2 Interrupt Autovector
27 108 06C SD Level 3 Interrupt Autovector
28 112 070 SD Level 4 Interrupt Autovector
29 116 074 SD Level 5 Interrupt Autovector
30 120 078 SD Level 6 Interrupt Autovector
31 124 07C SD Level 7 Interrupt Autovector
32-47 128 080 SD TRAP Instruction Vectors
191 0BF -
48-63* 192 0Co SD (Unassigned, Reserved)
255 OFF —
64-255 256 100 SD User Interrupt Vectors
1023 3FF -

*Vector numbers 12, 13, 14, 16 through 23, and 48 through 63 are re-
served for future enhancements by Motorola. No user peripheral devices

should be assigned these numbers.

- = <
L 2
oleWweYoS 808SIU| 00089DIN O3 £G9890W /199890 — 9 JHNDIL
<« SA1
sindinQ 10108107 ued() = A %0019
Avid , weisAg
sng YOS WINS 21N A
> 88YLOW LLN
ss8l >
_Sw”< v-ovy — N 88YLOW 0LN
£G9890 6N
_ aNo L9989OW 8N
8 394 LISTWINS LN)
m L0 ES989OW ZESTWINS 9N i
vLSTVINS SN
/7199 PN g Ast VLSTPINS PN A
sa 130 £6LSTVINS €N a|qeu3 =
sng & va vl / LZSTWINS ZN dno, H_l
aeq €« »—~— | m 80STWINS LN £l z U
ooy 8 £a ov /| ——dd [t
= \ﬂ 4 $80IA8(HN2JID palelBaiu| ao L
10108UU0D SSZ8d —ca M/Y doq -
€ el L -
! 7|19 [- A 0D @ £d
| oa 03D Aov.Ld Z l 8|~ ds cl 6
7 = L =gl T zd ddog—nag+
AEE vin orw asn oL v
: rnA on a l d
aunfs 1 — NG+ AG+ od Ndo<
N /a ano AG+ en
c viin Z 8 e 1
€ N-{ oa aog
= \ ===lol
7 5] @
N g Hayuy
——1 800 o S o3
g (N €a 19989OW 8L 9s ¢ LS9
0SD
ALz /(_ ¢a van ¥ 02
/le ' Yo AG+
het- A og ov /
Lz zZl A
? von K2
s T V0N Py 7] P 03D ¢)
4 o] 94 M/8rer _ azin
ALY AL . axy 13347 voAm N —< M/H
S1D AQuXy A — 13534
AsT Aet= £ 19xH AQHX1 i ¢ i > ZINI
_ |/ =g, =
1D NAS <€ ® N10XL ¥1048 _ > LINI
6 OO> 014
8N < ZHN 296l ¥

NGt

VERSADbus is that all address and data lines are inverted.
This accounts for the need to have both local and system,
data and address buses as shown in the schematic diagrams.

MC68661 EPCI/MC68653 PGC INTERFACE

In addition to merely supplying DTACK, the MC68661/
MC68653 interface circuitry must also force the MPU to
meet the chip enable delay period, tCED, specified in the
data sheet. Figure 6 contains the circuitry required to meet
these requirements. The PGC has two chip enables, CE0 and
CEIl. The CEO enable signal controls access to the character
register used in accumulating the CRC. This signal can also
be used to access the data registers of the EPCI, and thus
write to both the PGC and the EPCI at the same time. The
CE1 enable signal is used to select the command and status
registers of the PGC and is decoded at a different address. A
number of the MC68000 instructions can access the same or
consecutive addresses on succesive bus cycles. In these cases,
a double read or write could reaccess the same location
within 2.5 clock cycles (187 nanoseconds at 8-megahertz
clock rate). This violates tCED and tCEC on the MC68653
and tCED on the MC68661. The minimum tCgD for the EP-
CI is 600 nanoseconds, whereas the minimum tCEgpD for the
PGC is 1750 nanoseconds. In order to prevent the PGC from
being reaccessed too soon, the chip enable signals must be
delayed, as discussed below.

The CSO and CS1 inputs are the unqualified chip select
signals, generated as a function of the address lines and ad-
dress strobe. The state machine (SN74LS193) shown in
Figure 6, guarantees that these chip selects are held off for
14-clock cycles after the trailing edge of the previous chip
enable. The 14-cycle delay corresponds to a period of 1750

nanoseconds (PGC tCED), assuming an 8-MHz system
clock. For other system clock frequencies, the number of
delay cycles has been compiled in Table 2. Following the
trailing (rising) edge of the first chip select, INHIBIT is
asserted. As well as holding off subsequent chip enables, IN-
HIBIT also loads the SN74LS193 counter with a binary value
of two (parallel load 0010). The state machine counts for
fourteen system clock cycles before negating INHIBIT (TCy
goes low) and halting. The falling edge of INHIBIT is syn-
chronized with the system clock, creating the ENABLE
signal. The ENABLE output is gated with LDS, allowing
CEO or CEI to be asserted. Since the chip enables are gated
with the lower data strobe only, both byte and word instruc-
tions can be used. The high ENABLE disables the SN74L.S74
(U5B) clear input and permits DTACK to be asserted on the
next rising edge of the system clock. A timing diagram of a
read bus cycle is shown in Figure 7. The first cycle of a dou-
ble read is shown with INHIBIT low, allowing a normal read
to occur. In the next cycle, CE is held off by INHIBIT until
the 14-cycle delay time is met.

TABLE 2 — Delay for Various Clock Rates

MPU Clock Delay
Rate (MHz) (MPU Clock Cycles)
4 7
6 1"
8 14
10 18
12 21
14 25
16 28

SO S1 S2 S3 S4 w w S5 S6 S7 SO S1 S2 S3 S4 w w w w w w w w S5 S6 S7 SO
CLK
AT\ /\ /S
- = — \ —
R/W _/ /
CS0 \ ,;5 \ ,;4
Inhibit I Jé \7 —\ [l /(Ar_
I(—_M—Clock Cycles—)'
Enable a (L & [__—.—
DTACK L
CE e \
D0-D7 | L Vaid) m—
l‘—ZOOns—)’

FIGURE 7 — MC68661/MC68653 Read Cycle Timing

l

U_mcu_ uoijeiauat) J0JI3A pue Buizinuoud dnusu| — 8 IHNOI4

sindinQ 10309]10) usdQ = AD "NIXOY 40 82e(d ul 31 8sn pue 3Dv| 8ziubooay jim Aioud [edisAyd 1saybly ayr yum pieoq ay |

YWCSTWINS

sng B o)1} mAm — < sidnuau
1sanbay < coul 9 S E€LNI |esayduad
1dnuisiu| - — <« |eo0
walsAg - Z0H| 1 3 ZINI P
- LOHI NA, [
LOSTVINS
+
AG+ AG+ >m
(yoea % €7€) mm_ L
ao ds
%0010 ZHIN 8
N e
LNOMOY z 51°as e 5|ag I
o ? 7
ol v
00STVINS Abs VLSTPINS m £l
AG+ zl
ol
—C
Aovia ON —59 a < SV
LOSTVINS I G
IOV bl 3 < YOV
= AVl €L
a 3 - ooVl zL €3 NQA__IA NINOY
/La 8l [4 € I oVl 1 YOSTWLNS
MN—> A G+ —_—0 —\
&N orn 14 Ne'e NS CESTVLNS SOV oL 9
—
/ sa T 9 oMoVl 6 8 N
— —
 va 2T 8 OVl £ v
L ed 6] 8ELSTVINS
20 79 ELEV \
g 5 9 st ev
g € [20Tv N
10109/ se \ /< .
sngeileq <« [b-Lps suImay N e’ < EV-LVY
walsAg

(@

The remainder of the PGC interface is straightforward.
The MC68000 R/W and RESET lines must be inverted to
match the corresponding lines of the peripherals. The inter-
rupt request lines, shown in Figure 8, are connected to the
appropriate level of the vectored interrupt hardware. The
internal baud rate generator of the MC68661A requires that
a frequency of 4.9152 MHz be applied to the BRCLK input.
A simple crystal oscillator, shown in Figure 9, may be used to
generate the clock. The SYNCLK signal is the internally
generated transmit clock that is used as the synchronous
clock in the data link. The MC1488 and MC1489 provide the
necessary level shifting to conform to EIA RS-232-C stand-
ards. This level shifting is not required, but it does allow for
the data link to be used as a standard asynchronous serial
port. Only the software configuration of the EPCI needs to
be changed to switch to the asynchronous operating mode.

U1=SN74LS04 u1c

FIGURE 9 — 4.9152 MHz Baud Rate Oscillator

MC68652 MPCC/MC68653 PGC SUPPORT CIRCUITRY

The MC68652/MC68653 bus interface is very similar to
the MC68661/MC68653 interface, even though the chip
enable to the MPCC, during the second read of a double
read, need not be delayed. A PGC is being used in conjunc-
tion with the MPCC; therefore, the 14-cycle delay is still
necessary. Figure 10 depicts the chip select circuitry. The
data bus enable signal (DBEN) is required by the MPCC and
is used as the reference for all internal activity (as opposed to
CE, which only controls power consumption). To simplify
the interface circuitry, CE is tied high and DBEN used as the
chip enable signal. In addition to the bus interface circuitry,
the MPCC requires additional hardware to minimize soft-
ware overhead.

The transmitter and receiver enables (TXE, RxE) are not
bits of a status register, but are external pins. An addressable
latch (SN74LS74) is required to permit enabling and disabl-
ing the R/T. By incorporating UDS in the latch decoding,
the latch appears as the even byte in the same address space
as the PGC (which used the TDS). The R/W signal is also us-
ed in the decoding scheme, thus allowing the same location to
be used for a status buffer as well. The SN74LS240 buffer

allows the processor to read all of the status bits that appear
as external pins to the MC68652. The latch and buffer are
shown as part of Figure 11. Additional circuitry in the figure
includes a portion of an SN74L.S32 which is used to generate
the BYTE control signal. The BYTE signal indicates to the
MPCC the width of the data in a peripheral read or write.
Through BYTE and the address lines (Al and A3), the
MPCC registers are selected as shown in Table 3. The A0 in-
put is generated by the lower data strobe since the odd and
even bytes of the MPCC are reversed with respect to those of
the MC68000. In order that the PGC character register and
the MPCC data registers could be accessed simultaneously,
address lines A1 and A2 of the MPCC, and A0 and Al of the
PGC are offset, as shown in Figure 11.

TABLE 3 — MC68652 Register Addressing

A3 A1l LDS Register
Byte=0: 16 Bit Data Bus

0 0 X RDSR

0 1 X TDSR

1 0 X PCSAR

1 1 X PCR*
Byte=1: 8 Bit Data Bus

0 0 0 RDSRI(L)

0 0 1 RDSR(H)

0 1 0 TDSR(L)

0 1 1 TDSR(H)

1 0 0 PCSAR(L)

1 0 1 PCSAR(H)

1 1 0 PCR(L)*

1 1 1 PCR(H)

* _PCR lower byte does not exist. It will be all “0s” when read.

A common serial clock is used throughout the data link;
however, to properly interface the MPCC with another
MC68652 or an MC68661, it is necessary to invert the MPCC
transmit clock (TxC). The inversion is required because the
MPCC uses the same clock edge to strobe data into the
receiver and out of the transmitter. Using a common edge is a
problem, because transmission line effects, inherent in the
data channel, could result in a loss of data integrity.

The MC68652 does not have any signals which were meant
to be used directly as interrupts. Instead, several of the status
lines (TXBE, RxSA, and RxDA) were used. The TxBE status
line is inverted, passed through a open collector driver and
prioritized on level 3 (INT3). The RxDA and RxSA status
lines are NORed to produce a single logic low output signal,
which was passed through an open collector driver and vec-
tored onto level 4 (INT4).

The serial data was level shifted similar to the EPCI. As
stated earlier, if the EPCI is not intended to be used as an
asynchronous device, TTL levels could be used for the serial
data.

b 4

“weiBeiq onewsYdS 8depelU| SNG £G989OIN/ZS9890 — OL JHNOIL

sindinQ 10199(j0) uadQ = AD

LISTVINS LN
CESTVLNS 9N
VLSTVINS SN
VLSTVINS vN
E€6LSTVINS €N
LTSTVINS 2N
80STVLNS LN

9|qeu]
el

sadA] unou1) palelbaiu| an
429 Ll #
AoV.LQ - NA: 5 e
vLiNn as
ggn Ol
AG+
1
as
8|qeu3y 9 0
o g
5|° A
ds
m van vf
N380 azn AG+

o
LU
O

do
do 5
51° o 97
vn o v
3
g AG+
L_dn
=79 oL
4|:o d —
vl
=1 &
a [
o7 ¢d n_oAv AG+
ld
L n
40d
_ <71 0d S
AG+ en
IGTV]]

g
) ven v
€ —

I

w
O

O
(2]
O

0
O

A
2

10

weBeiq opewsyog Anou) poddng ZG9890N — LI IHNOIA

sng £59890 6N
sseippy 88rLOW 8N
12907 (68VLOW /N
RN N\ 59890 9N
L OVZSTNS SN
> ZESTINS PN
sng A Y/STWINS €N
oed —sia LV [ZSTWINS TN
[£007] Ll 6L 1V YOSTVINS LN
/ﬂﬁo (44 0z v 60 80 N\\ \ sadA] 1nd11) pajesbaiu|
v /dm_o N380[— N39Q
N—Lia myf—e—e
vl dlsl
I T OA < 1353y
Jo_o e 9 O g
di\m yie} ml\ /ﬂmo I [g
/'.IJ (A od - rwo Ix| &L 4 _
ev L L oL as vin
Ne—ov sab—"1 N={a
v 2l 9 T a1hg aen <
rar—"| [N5z19d m
eaf;—] [Nz1e0 ov =0 5"
13 >—————q130 za I\m o as
030 » {020 a7 [Nge0 _ o%l>m+
N—{zq T
NI NI 0a J
o g\ \a EL) oen L
Z ao
mmm%wo_z 3 " :) w
e veNn — LSO
310 NAS 1 << 33N
> « TG) s ETTON 0
g m g7 yoxy — 3
an 7 £l O7 0N as
s Gl R R i IR G i
= or Iﬂh VA g 8 on 2l ed AG4
: 77 MSASIE A o) e EEED
7 AG+—{30 VXL s - TR e,
X X A A
£ o] N Peg9Y Mg Z| 23 13 PereaN > 1N
8 g g
dszaq 6 759890 6l ~ : » sng
ALT an ﬂ_u L7 GLa-€La '11a-8a eleq
atn walsAg
6 v €
ZL-
A 8in > cINI

A i

11

INTERRUPT VECTORING HARDWARE

The vectored interrupt mode of operation was chosen for
the interface rather than the autovectored mode. In this
mode, the vector number must be supplied via the data bus
during the interrupt acknowledge cycle. The circuitry
described here provides seven levels of interrupts, each with
its own unique vector. The vector number is alterable, such
that the circuitry can be easily duplicated on additional
boards. This allows ‘‘daisy chaining’’ of interrupts on the
same level while maintaining unique interrupt vectors for
each device.

The interrupt prioritizing/vector generation circuitry is il-
lustrated in Figure 8 and functions as follows. A one-of-eight
priority decoder (SN74LS138) determines which of the four
locally generated interrupts (INT1 through INT4) will assert
DTACK (and also negate ACKOUT) during an interrupt
acknowledge cycle. One output line of the priority decoder is
asserted low by the A1-A3 inputs (assuming E1, E2, and E3
are enabled). The selected line is then compared to the cor-
responding interrupt line inputs (INT1, INT2, INT3, or
INT4) in one of the SN74LS32 OR gates. If both inputs to
one of the OR gates are low, DTACK is asserted (ACKOUT
is negated) and the interrupt vector number is placed on the
data bus (by three-state inverter/buffer SN74LS240). The
lower three bits of the vector number are selected from
within a given range by the A1-A3 inputs to the SN74L.S240.
The upper five bits are hardwired during system design to
provide the correct range of vectors (as shown in Figure 8,
vector numbers $41 through $47 have been selected on this
board). Seven separate IACK outputs (IACKI1 through
TACK7), each corresponding to an interrupt level, are
generated by the one-of-eight priority decoder; however,
only four are used. If an interrupt currently requesting ser-
vice was generated on this board, the output of the
SN74LS20 (4-input NAND gate) goes high to assert DTACK.
The interrupt requests, which are passed down the system
bus, are driven by SN74LS07 open collector drivers to allow
wire-ORing of multiple interrupts on the same level. The
‘““daisy chaining’’ of interrupts during the interrupt
acknowledge cycle is accomplished between boards by con-
trolling the propogation of ACKIN/ACKOUT signal along
the bus. The ACKIN input of each board reflects the
ACKOUT level of the previous board in the system (the first
board in the system receives its ACKIN from the MPU).
When a low ACKIN signal reaches a board, it indicates that
no devices of higher priority are currently interrupting the
processor on the same level. If no interrupt is pending at this
priority level during the interrupt cycle, the low ACKIN will
simply pass through as a low ACKOUT to the next board.
Once the board that requested the interrupt receives a low
ACKIN, it asserts DTACK (ACKOUT cannot go low) and
places its vector number on the data bus. This breaks the
‘““daisy chain’’ propogation path and the interrupt
acknowledge cycle is completed.

SOFTWARE

Three distinct subprograms exist within the data link soft-
ware. The three divisions are the initialization routines, the
1/0 drivers and the interrupt service routines. The initializa-

tion routines define the operating conditions of the data,

communications devices, define the interrupt vectors, and

12

move the header block from ROM into RAM. The transmit-
ter and receiver driver subroutines handle the non-real time
overhead required in supporting the data link. For the
transmitters, this involves little more than controlling the
transmitter and receiver enables. The receiver driver sub-
routines must check the BCC bytes and setup and monitor
acknowledgements. The interrupt service routines handle the
real time processing required by the EPCI and the MPCC. In
addition to handling the data transfers to an from the
MC68000s, the service routines must also maintain the data
pointers. In the following paragraphs, each section of the
software is described individually. The complete, annotated
listings are included at the end of this applications note.

The data link software was written to demonstrate the
ability of the data communications peripherals to support the
BISYNC protocol. As such, only a subset of the protocol is
fully supported by the routines presented in this applications
note. The limitations imposed are that the acknowledge-
ments must be a separate control message, rather than part
of the data message header and the BISYNC transparent
mode is not supported. A few minor software changes, to
monitor the DLE characters, is the only requirement to sup-
port the transparent mode.

As has already been shown, the BISYNC protocol requires
the use of a number of control characters. The following
table matches the control character class as programmed in
the PGC, with the ASCII abbreviation and the hexadecimal
value of the code. Note that all characters not listed in the
table fall under the BISYNC Normal class.

TABLE 4 — ASCII Control Codes

ASCII Hex

Class Mnemonic | Value
SYN 16
SYN/BISYNC Not Included SOH 01
ETX 03
Block Termination Character/ EOT 04
Search Character ENQ 05
ETB 17
Secondary Search Character STX 02

SYSTEM INITIALIZATION

During the power up reset sequence, a portion of the data
link initialization takes place. After entering the supervisory
state and masking the interrupts, the power up reset initiali-
zation sequence depicted in Figure 12 is executed. The header
block, which is normally stored in ROM, is moved to RAM
to facilitate updating the station address and block sequence
count during each message. At this point, the interrupt and
trap vectors are also initialized to point to the proper service
routines. Each data communications device is then initialized
to the proper mode with the transmitters and receivers dis-
abled. The ASCII control codes are programmed into the
PGC character class array and the error checking polynomial
is set to CRC-16, completing the device initialization.

(System Initialization)

Enter Supervisory State

-

Move Header Block to RAM

v

Initialize Interrupt
and Trap Vectors

v

Set R/T Operating
Modes

v

Set PGC Mode

STOP

FIGURE 12 — Power Up Reset Initialization Sequence Flowchart

The applications dependent initialization (which includes
the clearing of flags, setting the initial value of counters and
pointers, enabling interrupts, and enabling the transmitters
and receivers) is not done at this time. Those functions are
provided by the task initialization subroutines, which are
called as each task is placed in the queue. The task queuing
procedure flowchart is shown in Figure 13. Flowcharts for
the transmitter task and receiver task initialization subrou-
tines, are found in Figures 14 and 15, respectively.

In general, an Operating System will keep track of tasks
within the system through the use of a task queue. The queue
contains information on all current tasks, including the
priority of each. Quasi-real-time operations, such as 1/0
drivers, are usually assigned the highest priority. Active tasks
in the system are denoted by a non-zero value in the
semaphore register for that task. Semaphore flags are used in
the data link software to indicate if a receiver or transmitter
is active; and if it is active, whether the message type is data
or control. Single byte locations are used for all semaphore
flags. The semaphore registers are also used as byte counters
in several instances, since only a non-zero value is required
for a device to be active.

To properly queue a transmitter task, a data block must be
prepared for transmission as follows: an ETX character must
be appended to the end of the data block, the starting
address of the block must be moved to the appropriate trans-
mitter data pointer (TC61DATP or TC52DATP), the secon-
dary station address must be written into the header block,
and the block sequence count updated (see Figure 13). Set-
ting the transmitter semaphore flags (TX61SMPH or
TX52SMPH) indicates that the task has been queued and
transmission can commence. Receiver tasks should be con-
tinually enabled, anytime the corresponding transmitter is
disabled. The actual I/O transfers are interrupt driven and
are handled by the interrupt service routines.

13

(Task Queuing Procedure

v

Append Termination
Character to Data

v

Write Secondary Station
Address to Buffer

v

Write Block Sequence
Count to Buffer

v

Call Initialization
Subroutine

v

Set Semaphore Flag

STOP

FIGURE 13 — Task Queuing Procedure Flowchart

Transmitter Task

(Initialization Subroutine

D

v

Initialize BCC Byte
Count

v

Set Header Block
Buffer Pointer

Y

Start BCC Accumulation

v

Clear All Status Flags

v

Enable Interrupts

v

Enable Transmitter

RETURN

FIGURE 14 — Transmitter Task Initialization Flowchart

Receiver Task
Initialization Subroutine

Start BCC Accumulation

v

Set Up Data Pointer

v

Clear All Flags and
Initialize Counters

v

Enable Receiver

¥

Enable Interrupts

RETURN

FIGURE 15 — Receiver Task Initialization Flowchart

INTERRUPT SERVICE ROUTINES

As the Receiver/Transmitter (R/T) completes the process-
ing of a character, the CPU is interrupted to signal the com-
pletion. The CPU acknowledges the interrupt and is vectored
off to a particular service routine. Each receiver and trans-
mitter requires a separate service subroutine. Flowcharts for
these subroutines are presented in Figures 16 and 17.

To service a transmitter interrupt, the work registers must
be saved and the data pointer restored. Using the restored
pointer, a byte of data is read from the buffer and written to
the transmitter. The pointer is then incremented and saved.
Depending on the type of message being sent, two paths are
available. For an acknowledgement control message, the
byte counter is incremented, the work registers restored, and
the routine exited. In the case of a standard data message,
checks are done to determine if the end of either the header
or data block has been reached. At the completion of the ser-
vice routine, the data pointer is updated as necessary, the
interrupt serviced flag set, and the work registers restored.
The receiver interrupt service routine also saves the work
registers and restores the data pointers upon entry. The data
is then read from the receiver. In the case of the MPCC, an
additional segment of code must be executed. The MPCC
does not strip SYN characters received after the initial two;
therefore, a short section of code is required to sense and
strip them. This is accentuated by the dotted lines in the
flowchart. Valid characters cause the interrupt serviced flag
to be set and the remaining functions performed. If this is
part of an acknowledgement control message, the byte
counter is incremented and a normal exit performed. For a

14

data message, the PGC status is read and saved before exit-
ing the routine. If an ETX was sensed by the PGC, a flag is
set before returning.

This completes the real time processing of information by
the data link software. The execution time of the remaining
software is not critical, as long as it is completely executed
before another interrupt (corresponding to the unexecuted
code) is serviced.

170 DRIVERS SUBROUTINES

Each I/0 driver contains two paths through the code, cor-
responding to acknowledgement and data messages. The
transmitter drivers (see Figure 18), clear the interrupt ser-
viced flag before branching to the appropriate path. Until the
fifth byte of an acknowledgement has been transmitted, no
special processing is required and a return is simply executed.
Following the fifth byte, the transmitter is turned off and the
reply semaphore flag is cleared. Data messages also return,
unless the BTC character has been transmitted. On subse-
quent passes after the BTC (ETX) transmission, a BCC byte
is moved to the buffer and the byte count incremented. After
the entire BCC has been transmitted, the transmitter is
disabled, the receiver enabled, and the acknowledgement
semaphore flag set.

A flowchart for the receiver I/0 drivers is presented in
Figure 19. Immediately after the interrupt serviced flag is
cleared, a check is done to see whether the current message is
data or an acknowledgement. If an acknowledgement,
nothing happens unless the entire block has been received. At
that point, a decision is made whether to retransmit the cur-
rent block, or queue the next block for transmission. The
decision is based upon the reception of a valid ACK. Data
messages also cause the routine to terminate, unless the entire
block check sequence has been received. When it has been
received, the receiver is disabled, and a check done to see
what the response should be. The proper response is loaded
into the transmit buffer, the transmitter enabled and the
reply semaphore flag is set.

ASYNCHRONOUS SUPPORT

As an asynchronous peripheral, the EPCI can be pro-
grammed for a variety of data formats. The number of stop
bits and the baud rate clock divisor are selectable through
software. Other software alterable control bits allow the user
to force a break level on the transmitter output, enable an
auto echo mode, and toggle modem control lines. The
receiver monitors the receiver-serial data for parity, overrun,
and framing errors, as well as detecting false start bits.

Either an external clock, or the built in baud rate generator
can be selected as the source of the receive and transmit
clocks. The internal baud rate generator allows the user to
select any of 16 baud rates under program control. Three ver-
sions of the EPCI are available. Each version contains a dif-
ferent set of 16 baud rates ranging from 50 to 38.4 K baud.

Features common to both the synchronous and asyn-
chronous modes of operation include a double buffered
receiver and transmitter, full or half-duplex operation, and
two maintenance loopback modes. Character length is soft-
ware programmable to be from five to eight bits plus parity,
and may be changed dynamically. All inputs and outputs are
TTL compatible, except for three open-drain MOS outputs
which are available for use in interrupt driven environments.
Also, the RxC and TxC pins are both protected against short
circuits.

L

A

Transmitter Interrupt
Service Routine
\

Save Work Registers

\

Restore Data Pointer

Output Data To
Transmitter

\

Increment Data Pointer

Acknowledge-
ment
?

A

Increment B

Update
to Point

Pointer
at Data

Was
BTC Last
Character

Transmitted
?

Set ETX Transmitted
Flag

Y
Set Pointer to Point
at Trailer Field

<

o Y

y

Restore Work Registers

\

Set Interrupt Serviced Flag

A

(RETURN)

FIGURE 16 — Transmitter Interrupt Service Routine Flowchart

15

Receiver Interrupt
Service Routine

v

Save Work Registers

v

Restore Data Pointer

Y

Read Receiver

7

~
~ 7
M

Set Interrupt
Serviced Flag

Acknowledge-

ment
?

v

Increment
Byte Counter

Read and Save PGC Status

BTC

Detected
?

Set ETX Received Flag

L I

y

Restore Work Registers

RETURN

FIGURE 17 — Receiver Interrupt Service Routine Flowchart

16

\

1 Transmitter Driver Subroutine)

Y

Clear Interrupt Serviced Flag

ETX
Transmitted

N Acknowledge- Y

ment
\?
N

5 Bytes

?

Decrement BCC
Byte Count

BCC
Block Out

<

)
RETURN

?

v

Transmitted
?

Disable Transmitter

v

Clear Semaphore
Flag

Move BCC Byte
Count To Buffer

RETURN

Disable Transmitter
Enable Receiver

v

Initialize Receiver
Buffer Pointer

v

Clear Transmitter
Semaphore Flag

v

Set Acknowledgement
Semaphore Flag

RETURN

CRC Out

?

RETURN

X

Output
BCC Byte

RETURN

FIGURE 18 — Transmitter |/O Driver Flowchart

The MC68661/MC2661 can be programmed to operate
asynchronously simply by re-initializing the device. This is
done by executing the code shown in Figure 20 in place of the
initialization routines presented earlier. Examples of typical
interrupt service routines are also included in Figure 20.
After executing the code, the EPCI will be programmed to
operate asynchronously on 8-bit data characters without
parity. The TxC and RxC are provided by the internal baud
rate generator, with 9600 baud being the selected rate. If a
different baud rate is desired, bits 0 thru 3 of Mode Register
2 should be changed according to Table 1 in the EPCI data

17

sheet. Interrupts operate the same as in the synchronous
mode.

BIT ORIENTED PROTOCOL (BOP) SUPPORT

The MC68652 is capable of supporting not only BCP, but
several BOP protocols as well: SDLC, HDLC, and ADCCP.
The features of the part, unique to the BOP mode of opera-
tion, include: secondary station address detection, zero inser-
tion and deletion, and short character detection at the end of
a message. Automatic generation and detection of special
BOP control sequences such as FLAG, ABORT, and GA are

(Receiver Driver Subroutine)

Clear Interrupt Serviced Flag

N Receiving Y

\ACV

ETX

Tx
Received Y Complete
? + ?
Set Flags
Y
\
All BCC
N
Received RETURN
?
. . Check ACK Against
Disable Receiver Outstanding Block
Number
CRC v N
Error
? y
Re-Transmit
N ‘ Block Y
Check Block No. Write NAK Clear Transmit
For Odd or Even to Buffer Semaphore Flag

v v

Write ACKO or
ACK1 1o Buffer Add PAD Character STOP

>

y
Append SYN and PAD
Characters to Message

v

Clear Receiver Semaphore Flag

v

Enable Transmitter

v

Set Reply Semaphore Flag

RETURN

FIGURE 19 — Receiver 1/0 Driver Flowchart

18

MOTOROLA M&8B000 ASM VERSION 1.20 SYS ¢ 8, » TG G.860 01/067 L1 35950
1 oooo00000 ORM:
2 DOFFFEOQS M4 1L QU
3 00FFFE07 CR6L EQU
4 DOFFFEDS SRé FNU
S RHIRS L
& DOFFFEOL THR&L
7 00000A00 RX&61FT
8 00000404 TX61FT $nuq
? X
10 x MCAES6] ABYNCI II\(JNU('“ THITIA
11 * ATA FORMAT 15
12 X :
13 X
14 X
18 00000000 1BFCOOCEDOFF INIT FHCE s MROL WOTING MODE
FEO0S
16 00000008 13FCO07EQOFF MOVE . 3 b7 MRA L SET BAUD RATE & G
FEOS
17 00000010 13FCO02700FF MOVE B2y CRE T
FEO7
18 00000018 4E7S RTS
19 *
20 X RECETVER INTERURT VICE ROUTINGE
21 X
2 0000001A 48E78080 RIMNTAL DO/AD»—(SF)
23 0000001LE 20760A00 RX&LFT AL
24 00000022 103P00FFFEGS SRGE1L» DO
25 00000028 E458 #2 yDO
26 00000024 6410 ECC.S ¢ AVATLABLE
27 0000002C LOFQOOFFFENL MOVE . B HRAL » (AD) + :
28 00000032 21C80A00 1OVE . L Ay RXG1FT
29 00000036 QLDFOIUL MOULM.L (SFY+5 DO/
30 0000003A RTE
31 0000003C 3 RERR TRAF #15
32 x
33 x TRANSMITTER INTERRUFT SERVICE
34 *
35 0000003E 48E78080 TINTAL MUVFM L. DO/A0s—(SF)
36 00000042 Z0780A04 ALl TXELFTyAD
37 00000046 1L03YO0FFFEDNS 3 ahAJyDU
38 00000040C EZ258
39 0000004E 6410 IF TX NOT READY
40 00000050 13DBOOFFFEONL (A0 +y THRAL T CHAR YO EFCT
41 00000056 21C80A04 MOVE .L, Al TXS6LFT T)QYA l~f)INITF-.
4z 000000%A 4CDF0LOL MOVEM.L. (SFY+,D0/AD ST
43 0000005E. 4E73 RTE
44 00000060 4E4F TERR TRAF #1.5
45 END

FIGURE 20 — EPCI Asynchronous Initialization Software

also included. As would be expected for a bit oriented pro-
tocol, character length can range from one to eight bits.
Error checking facilities, which are built into the MPCC,
enable the device to perform parity and CRC checks. The
available error checking polynomials include odd and even
parity (VRC), CRC-CCITT, and CRC-16.

As with the EPCI, only simple software changes are re-
quired to change the operating parameters of the peripheral.
No hardware changes are required. Depending on the pro-
tocol which is to be supported, the value written to the
MPCC during initialization will vary. Consult the MC2652/
MC68652 data sheet for the proper values. Additional infor-
mation on BOP applications is available from Motorola

19

Applications Note AN-839, ‘A Data Communications Sys-
tem Using an MC6809 MPU, MC68652 MPCC, and/or the
MC68661 EPCI.”

POTENTIAL PROBLEM AREAS

Several potential problems exist if the data sheets are not
read closely before using the data communications
peripherals. The next few paragraphs cover several situations
in which problems could develop.

Problems can start to develop even as the EPCI is being
initialized. The SYN1, SYN2 and DLE character registers are
programmed by writing to the same memory location. Inter-
nally, the EPCI rotates from the SYNI register, to the SYN2

register, to the DLE register, on subsequent writes. If more
than the required number of accesses are made, the internal
pointer sequences back to the first register. To ensure that
the pointer starts in the correct place, it is good practice to
read the command register before programming these char-
acters. A read of the command register resets the pointer to
the SYNI register. Mode registers 1 and 2 are accessed in a
similar manner.

The EPCI is double buffered on both the receiver input
and transmitter output. In the transmitting mode, one char-
acter is shifted out of the Transmit Shift Register (TSR) as
the next character is being held in the Transmit Holding
Register (THR). If the transmitter is disabled while both the
TSR and the THR are full, the contents of the TSR will con-
tinue to be shifted out until the register is empty; however,
the contents of the THR will not be transferred to the TSR
and will be lost. When disabling the transmitter after writing
the last character of a message to the EPCI, the user must
wait until TXRDY is asserted again, before disabling TXEN
(in Command Register).

During periods of transmitter underrun, while in the
BISYNC transparent mode, line fill characters will consist of
a DLE/SYN pair. The MC68661 receiver must be switched to
the transparent mode, for these character pairs to be pro-
perly detected and stripped. Entering the transparent mode
too early can cause problems if line fill is required during the
header block. To alleviate these problems, the receiver
should not be switched to the transparent mode until after
the DLE/STX pair has been received.

The MPCC is a powerful peripheral; however, several pre-
cautions should be observed when using it. Besides the hard-
ware anamolies which have been described previously, the
system programmer must be made aware of several software
exceptions. The MC68652 pins which have been designated
as possible interrupt sources are not truly interrupts, but
status signals. As a result, it is not sufficient to disable the
transmitter to disable the transmitter interrupts. Instead, a
dummy byte of data must be written to the transmitter, clear-
ing the TxRE status flag.

A final precaution when using the MPCC is that address
line A0 on the MC68652 is the logical inversion of the
MC68000 internal AO. This places MPCC odd addresses in
the high byte and even addresses in the low byte. In the data
link hardware, this problem was avoided by using the lower
data strobe instead of the upper data strobe, in generating A0O
for the MPCC.

CONCLUSION

A Binary Synchronous Communications (BISYNC) data
link, requiring a minimal amount of hardware and software
overhead, was described in this application note. The hard-
ware consists of an MC68000 asynchronous bus interface,
interrupt prioritizing and vector generation logic, and the
auxillary support circuitry required by the peripherals. The
170 drivers and interrupt service routines are provided as an
example of the software intervention that is actually required
to support the data link.

Using the hardware already described with different soft-
ware drivers, virtually any common serial protocol can be

20

supported. Using the MC68661 EPCI, asynchronous and
byte controlled synchronous protocols can be supported. In
the same light, the MC68652 MPCC can support either byte
controlled or bit oriented synchronous protocols. If the inter-
nal error checking facilities are insufficient for a given pro-
tocol, an MC68653 PGC will, in most cases, provide the
necessary functions.

A scheme for vectoring interrupt requests was also describ-
ed. This method of prioritizing the interrupts is in no way
limited to the peripherals employed in this application. Any
Motorola family peripheral can be provided with vectored
interrupts using this scheme. Multiple interrupts on the same
level are allowed, provided that each device is assigned a uni-
que vector number and interrupts are ‘‘daisy chained’’
between boards.

REFERENCES

1. ““Seminar on Basic Data Communications Techniques
and Introduction to LSI communications Circuits,”’ Stu-
dent Notes, Signetics Corporation, Sunnyvale, Cali-
fornia, 1981, pp. 1.2-2.14.

2. “Data Communications Handbook,” Signetics Cor-
poration, Sunnyvale, California, 1981, pp. 43-54, 141.

3. “MC68000 16-Bit Microprocessing Unit’’ Data Sheet,
Motorola Inc., Austin, Texas, 1981.

4. ““MC2661/MC68661 Enhanced Programmable Com-
munications Interface’’ Data Sheet, Motorola Inc.,
Austin, Texas, 1981.

5. “MC2653/MC68653 Polynomial Generator/Checker’’
Data Sheet, Motorola Inc., Austin, Texas, 1981.

6. “MC2652/MC68652 Multi-Protocol Communications
Controller’” Data Sheet, Motorola Inc., Austin, Texas,
1981.

7. ““Using the 2653 Polynomial Generator and Checker,”’
Applications Note 400, Signetics Corporation, Sunny-
vale, California, 1981.

8. ““Communicating Data with Protocols,”” Sandra E.
Traylor, Digital Design, July 1980, 40-44.

9. ““MC68000 16-Bit Microprocessor User’s Manual,”’
Third Edition, Motorola Inc., Austin, Texas, 1982.

10. ““A Data Communications System Using an MC6809
MPU, MC68652 MPCC, and/or MC68661 EPCI,”’
AN-839, Motorola Inc., Austin, Texas, 1981.

11. “General Information — Binary Synchronous Com-
munications,”” IBM Systems Reference Library,
Publication number GA27-3004, International Business
Machines, White Plains, N.Y.

»

L

MOTOROLA M68000 ASM VERSION 1.20 8YS ¢ 8. SSOFTART .88 01/06/82 10359347

1
2
3
4
S
)
7
8
?

0aonoa0n
oooaoanl
Qo000n02
00000403
ono00a04
060000A0S
00000806
00000A0A

00000A00 ORG EA00

3K 3K 3K KKK K K K 2K KK KK K K KK K K K 3K K 5K XK 3 K K K K 5K K 3K 3K 9K 5K 3K 3K 3K 3K K 3K 3K K 3K 3K K K 3K 3K K K 3K K K K 3K K K K 3K K K K 3K K KK K

x X

X MCOBOSHL/ME26461 INTERNAL RECISTERS X

X x

x*xxx*xx**xxx*xx**x*x*xx*xxx**xx**x*xxxx**xx***xX*x*x**xxxxx*xxxxxx*x*
00FF T"FO MR& EQU] 2

CRéL EQU

EQU ;
()0!"'FTF01 1 EQU v ~T D(ﬂ A HO l')I NL, RE: (‘IhTr" R
00FFF] THR&1 EQU TRANSMIT DATA HOLDING |

KK KK KK K KK K KK K KK K K KKK K K KK K 4 K 5K K 3K K K5 K K KKK K K K 3K K 5K 3K K K 3K K KK K K 3K K K KK KK 3K K

X x
x MCOBLER2/ME265E INTERNAL. AND AUXTLLARY REGISTERS X
X x

KK KK KK K K K K K K K 3K K K KKK XK

0K K KKK KK KK KKK KK 3K K K K K K K 5K K K 5K K K K K K 3K 3K 3K K K KK K K 3K K K XK

00FFFE4a FCR EQU CONTROL. REGISTER
OO0FFF FCSAR EQU SYNC/ADDRESS REGISTER
FCSARH EQL)
FCSARL. EQU
TDR EGL
TSR EQU
RDR EQL)

RSR EQU
: EGL) 2

EQU T I\(\N MITTER/RECEIVER ENAELE LATCH
K0 K 2K KK KK K 3K KK 3K 3K KK K 3 2K 3K K K K 3K K 3K K K 3K KK K K K K 3K 5K 5K K K 3K 32K 3K K 5K 3K 3K 3K K 3K 3K 3K K K 3K KK K K KK KK XK

Q0FFF E‘é[)
DOFFFESD

X x
X MCOHBAOII/MERAEE INTERNAL REGTISTERS x
x X

XX*KXXXKXXXXK*XXK*XKXKXK#XXKXK*XXWX*XXXX*XXXXXXXX*XXXXXX*K*X*XX*XXXXKK
QL
E(3L)

TER MC&8653~1
U MCEHBEEI-2
STER MC68653~1.
MC&B6GR~2
5 Y'QTUGS ¥ SR MC68653-1
STATUS RE C MCAB653-2
[lmhn(TE R CLASBES ARRAY MC68653-1
- MC4BOEI2
. ¢ MCABS -
CHARACTER MC686Y% “)'*'7
xxxxﬂ*xxx*xxK*Xx*x*ﬂ*xxx*xx*m*X*x*xxxx**x***xxxxx*xx**xxx*x*xx!xxx

X X
X TAGH CONTROL. CH FLAGS AND TEMFORARY STORAGE X
* x

XXXX**XK*XXXXXXXXKXXXXXXXXXX&XXX*K*X**XXXXXXXXX*XXXXKXXXXXXXXXXXXX*XXX

oo G S M(\F HORE:
00 0 . FIlLAG
0o 0 LlF T SERVI C‘FI\ FLAG
00 0 Al FLAG

oo 0 ORARY STORAGE

00 0 IVED FILAG
0p00o000 0 OINTER

aoooo000 C DO 0 FOINTER

THE QUTFUT D&TA FOINT
STARTING ADDRESS FOR E

I MUST EE
AOH MESS

COINITIALTZED FOR THE
SOGE BLOCK,

21

MOTOROLA M&8000 ASM VERSION 1.20 SYS ¢ 8. JBOFTART .86A 01/06/82 103159347
59 00000A0E 00000000 TCHIDATF DC.L. 0 MCo68661 OUTFUT DATA FOINTER
&0 00000A12 0000 D&LENT DC.W 0 QUTFUT CRC COLNT
61 00000940 TXTEUF&61 EQU $940 OVERHEAD BUFFER START
&2 00000820 RXEUF&61 EQU $820 MC68661 INFUT BUFFER START
63 00000062 CR61MSK EQU $62 MC68661 CONTROL REGISTER MASK
44 00000A14 00 TXS2SMFH DG E 0 TRANSMIT EU ¢ READY SEMAFHORE
65 00000A1LS 00 TCES2DRT DCWE 0 TRANSMIT INT WFT SERVICED FLAG
&6 00000A16 00 TCESZRVI DC.E 0 RECEIVED INTERRUFT SERVICED FILLAG
&7 00000A17 00 TCBRE3ZF DCLWE 0 FGC STATUS READ FLAG
&8 00000A18 00 TCESRS32 DC.E 0 FGC STATUS TEMFORARY STORAGE
69 00000ALA 00000000 TCSZRXFT DC.L 0 RECEIVE BUFFER FOINTER
70 00000A1E 00000000 TCHS2TXFT DC.L 0 TRANSMIT E ER FOINTER
71 00000A22 00000000 TCSZDATF DC.L. 0 MLCA686TE2 QUTFUT DATA FOINTER
72 00000A26 0000 DS2CNT DC.W 0 FUT CRC COUNT
73 00000A28 00 ETXFH2 DCJE 0 CEIVED FLAG
74 00000980 TXTBUFS2 EQU $980 OVERHEAD BUFFER START
75 00000700 RXBUFS2 EQU $700 MC68652 INFUT BUFFER START
76 00000A29 00 REF61SFH DC.E 0 TRANSMIT ACKNOWLEDGE SEMAFHORE
77 00000A2A 00 26FH DC.E 0 TRANSMIT ACKNOWLEDGE SEMAFHORE
78 00000AZE: 00 TCES61SFH DC.E 0 SENERAL. FURFOSE SEMAFHORES
79 00000A2C 00 TCESZ2SFH DCJE 0
80 00000AZD 00 ACKG18FH DC.E 0
81 00000AZE 00 ACKE28FH DC.E 0
a8z X
83 x THE REMAINDER OF THE TAEBLE IS ROMAELE
84 X
85 00000AZF 03 INITEUF DC.E 03 53 START UF MODE
86 00000A30 04 DC.E 04 H3 SYN/NI CLASS
87 00000A31 16 DO $1é SYN
a8 00000A32 01 DCWE 01 50H
89 00000A33 08 DCE 08 ETC/8C CLASBS
20 00000A34 03 DC.E 03
?1 00000A3% 17 DO $1.7
9z 00000A36 0% % 05
P3 00000A37 04 04
94 00000A38 0C $0C S6C CLASS
PG 00000A39 02 02 BTX
6 00000A3A 16 DUMDAT $16é SYN
@7 00000A3E 16 $16 HBYN
98 00000A3C 16 %1é4 SYN
P9 00000A3D 01 0l $S0H
100 00000A3E 00 STRTADR DCJE 0 STATION ADDRESS
101 00000A3F 00 DO E 0
102 00000A40 00 ELKSEQ DCLE 1] ELOCK SEQUENCE
103 00000A41 02 DCLE 02 8TX
104 D0000A42 00 DC.E 0 ECC
108 00000643 00 DCE 0
L0& 00000A44 16 DCLE $16 BYN AS FAD
107 . KK K K K A K KK K K K K K K K K K K K K K KK K K 3K K K KK KK K K KK K K 3K K KK K K K K K K 3K K XK K K K 3K K 3K K K K K 3K K KKK KKK
108 X x
109 x MCOBLEL/MUR266] TRANSMITTER DRIVER INLTIALIZATION x
110 x x
111 KKK K KKK K KK KK KK I K KK K K 5K K K 3K 5K 3K K 3K 3K K K 3K 5K 3K K K 5K 5K 3K 3K KK 3K 3K 5K 3K 3K K 3K 3K K K 3K 3K K 3K K 3K K K K 3K K 3K K 3K 3K KK 3K
112 00000A46 BLFCO0030A1L2 INITAHLTX MOVE.W #3yDSLONT INITIALIZE BEYTE COUNT
113 00000A4C 21UFC00000940 MOVE 4 L. FTXTEUFS1L» TCHLTXFT OVERHEAD ER FOINTER
0A0G
114 00000A%4 L3FCO08BS00FF MOVE, B BBy MRG3 1 SET 'é61 FGC MODE
FE2S

22

MOTOROLA M&8000

119

116
117
118
119
120
121
122
123
124
125
126
127
iz28
129
130

131
132

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

151

152
155

154
155
156
157

158
159
160
161
162
163
164

00000ASC

00000A64
00000A&6
00000A6A
00000A6E
00000A72
00000A76
00000A7A
00000A7E
00000AB4

00000A86
00000ABE
00000A%4

00000A%E
00000AA0
00000AA4
00000AA8
00000AAC
00000AE0
00000AE4
00000AES
00000ARE
00000AC2

00000AC4
00000ACA

00000AD2
00000ADA

00000AEZ
00000AE4
00000AES
00000AEC
00000AF0
00000AF4

00000AFC

ASM VERSION

13FCO00200FF
FE23

4200
11C00A05
11C00A01
11C00AZD
46FC2000
103C0062
00000001
13CO000FFFENY
qAE7S

13FCO0BLO0FF
FE23
13FC000200FF
FEZ3
21FC00000820
0A0&

4200
11C00A0S
11Co0a02
11.C00A03
11C00A2Z9
103C0062
aooo0004
13CO000FFFEQY
46FC2000
AE7S

B1FC00030A26
21FC00000980
0ALE
LBFCO0BG00FF
FE&Y
13FCO00200FF
FE&T

4200
11000428
11C00ALE
L1CO0AZE
46FC2000
1BFCO00L00FF
FE&0

QET G

LEFCO081L00FF

1.20 8YG ¢ 8. SBOFTART .84 01/06/82 10159347

MOVE . E *#02y CRE31 START BCC ACCUMULATION

CLRE DO

MOVE . E DOyETXF6&1 ZERO QUT FLAGS

MOVE B DO TCESLDRI

MOVE . E DOy ACKSLEFH

MOVE #462000y8R ENAELE INTERRUFTS

MOVE . B FORG6IMEK DO

ORLE #01yD0O

MOVE . & DOyCR6L ENAELE '61 TRANSMITTER

RTS
KKK I KK I K KKK KK K KKK K K K K KK KK K K K 3 3K K K K K K K K K K 3K K 5K 1K 3K K K K KK KK K K 3K K 3K 33K K oK K
X x
X MC68661/MU2661 RECEIVER DRIVER INITIALIZATION x
x x
K KKK KK KK KK KK K K 3K KKK KA K K I K KK K K K 3K KKK KK K K K K KK K KK 3K KK K K KK K 3K 3K K 3 K K 3K K KK K
INITHIRX MOVE . E KLy MREI L SET ‘61 FGC MODE

MOVE . B #6029 CREIIL START BCC ACCUMULATION

MOVE . L FRXEUFEL » TCHLRXFT FOINTER TO DATA . BUFFER

CLRE Do

MOVE .2 DOyETXFAL ZERO OQUT FLAGS

MOVE B DO TCESLRVI

MOVE L B D0y TCSE 2

MOVE . B DOy REF

MOVE . B FCROGIMEK DO

ORGLE #0450 ENARLE ‘41 RECETIVER

MOVE . B DOy CRGL

MOVE #H2000yBR ENAELE INTERRUFTS

RTS
K K K K K KK K K K 0K K K KK K 3K K K XK K KK K KK KK R K KA K K KK KK K KK K K K K K 3 K K K K 3K K 3K K 2K 3K 3K K K K KK XK
x x
x MCOBLGZ/MOZAG2 TRANSMITTER DRIVER INITIALIZATION x
X x

KK KK KK KK KK KK KK K I KKK K K I KK KK KK K KK K K K K KK KK S KK KK K KK 3K 3K K K K K K 5K K 3 K KK 2K K 3K 3K 3K 5K

INITS2TX MOVE.W #3yDS2CNT INITIALTZ YTE COUNT
MOVE. L #TXTEUFSZy TCSZTXFT OVERHEAD EUFF FOINTER
MOVELE #6855y MRS32 GET '52 PEC MODE
MOVE B F02y CRIE3IZ2 START BCC ACCUMULATION

CLRWE Do
MOVE . &
MOVE . B

DOy ETXFD2
DOTC
DOy ACKEZ

CLEAR STATUS FLAGS

#$2000 SR ENABLE INTERRUFTS
#01y TREN ENAELE 52 TRANSMITTER
RTS

KKK K KKK KK K KK KK 3 K K K K K 5K K K K 3K 3K 3K 5K 3K 2K K K 3K K K 5K K 3K K 3K 3K K K K 5K 3K K 5K 3K K K KK K K 3K K KK KK KKK
X x
x MCHBSE2/MEZOER RECETVER DRIVER INTIALIZATION x
x x
KKK KKK K KKK KKK K K KKK K K K KK 3K 3K KK K KKK 2K KK 3K K KKK K KK 3K K K K KK K 3K K KK KK KK 3K K KK K XK
INITS2ZRX MOVE B F481 » MRE32 SET 82 FGC MODE

23

MOTOROLA M&68000

1465
1466

1467
168
1469
170
171
172

173
174
175
176
177
178
179
180

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

209
210
211

212

213

214

00000E0&
00000E0E

00000B146
00000E:18
00000E1C
00000E20
00000B24
00000E:28

00000E30
00000E34

00000E36

00000E3E
00000E40
00000E44
00000E4A
00000E50
00000ES6
00000ESA
00000ESC
00000BSE

00000E62
00000E66
00000E6C
0000072
0000078

00000E7E
00000E84
00000EBA

00000E92

00000EPA
00000E9E
00000EAZ
00000EA6

ASM VERSION

FE&9?
13FCO00200FF
FE6S
21FC00000700
0AlA

4200
11C00A28
11C00AL6
11C00A17
11C00A2A
13FCO00200FF
FE&0
46FC2000
4E75

21FC00000E40
0080

4E40
446FC2700
247C00000980
207C00000940
2270¢00000A3A
303C000A
1001

1409
S1C8FFFA

307C0104

20FCO0000F4C
20FC00000F10
20FCO0000F9A
20FCO0000ECE

103900FFFEOY
207CO00FFFEO3
13FCO08CO0FF
FEO0S
13FC002C00FF
FEOS
10EC0016
10BC0016
10EC0010
LBFCO06200FF
FEO7

1.20 8Y8 ¢ 8. SBOFTART .8A 01706782 1035947

MOVE .. B 602y CREIZ

START BCC ACCUMULATION

MOVE . L. 32y TCS2RXPT FOINTER T0O DATA BUFFER

ZERD OUT FLAGS

ENABLE 52 RE

#2000y BF

P

X X
x HEADER ELOCK INITIALIZATION x
x X

KKK KKK KK KK K K KK K K 3K K KK K KK K KK K K K 3K 3K K 5K 3K 3K K 9K 3K 3K K KK K K K 3K K K 3K K 3K 3K 5K KK 3K K 3K 3K K 3K K K 3K K 3K 3K XK K
START MOVE L. FBTART Ly $080 INITIALIZE TRAF 0 VECTOR

TRAP 0 GO TO

VISORY MODE

STARTL MOVE #2700y R MASK OFF IN
MOVEA.L #TXTEUFS2y 42 SETUF DATA P
MOVEA L #TXTEUF6LyAD
2 FDUMDAT y AL
#10yD0
DEINIT (AL » (ADD+
(ALY +y (AZ)+
DERA DOy DEINIT
K K 3K K 0K 3K KKK KK KK K K 3K K KK K K K K 9K K K 3K K 0K K K K K K KK 3K 3K K K K K KKK XK KK 3K KK K XK SOK MO K XK X
X x
x INTERRUPT VECTOR INITIALXZATION x
x x

MOVEA #61L04yA0
MOVE . L. FIBHLTXy (A + IRG 1
4 Xy (ADD) + IRQ 2Z
& TXy (ADD + IRQ 3
MOVE . L. #TSHZRXy (AD) + IRQ 4
KK KK 3K K K K K 3K KK 3K K 5K K K 3K K K K 3K K KK 3 K KK 0K KK K K K K K KK K K K K K K KKK 3K K 3K K K K 3K 3K K K 3K K KK K XK
x x
X MCEB6LL/MCREST INITIALIZATION x
X x
KK KKK KK K K K K KKK KK 2K K K K K KK 3K K K K K 3K 3K K 3K K K 3K K K K 5K 3K K K 7K 3K K K 3K 3K K K KK XK K K K XK KK XK K XK KK K K XK
INITAL MOVE. E CR&61+D0O RESET REGISTER FOINTER
MOVEA.L. #8R61yAD
BBy MREL DEFINE FORMAT
FB2Cy MRS CHANGE. TO $0C FOR EXT. CLOCK
*bLdby CAOD SYNL
#B1Léy (AD) SYNZ
*$10y (A0 DL

FCROGIMSK » CREG L

KK K K KK K K KK K K K K K K KKK K K K KK K K KK KK 3K K K K I K K K K KK KK K K 3K K K K K K K K K K I K KK K K KK K OK XK KKK
X x

DISABLE TX AND RX TILL INXT COMFLETE

24

v/

MOTOROLA M68000

00000BAE
00000EE4
00000EEA
00000RECO
oooooBCZ
00000EC4
00000BCS
00000EXCS8
00000ECA
00000ECC
00000ECE
00000EDO
00000BD2
00000ED4

00000EDS
00000EDC
00000EE2
00000EES
00000EEA
00000BEC
00000EEE
00000EFO
00000EF2
00000EF4
00C00REF&
00000EF8
00000EFA
00000EFC

00000RFE

oooo00C0&

00000COE

00000C16

00000C1E

goooocze
ooooocza

ASM VERSION

207CO0FFFEZ3
227CO00FFFEZ21
247C00000A2F
109A
1094
1294
1294
1094
1294
1294
1294
1294
109A
1294

207CO00FFFESS
227CO00FFFES1
247C00000A2F
1094
1094
1294
129A
109A
1294
1294
1294
1294
109A
129A

13FCO00000FF
FE60
33FCE71600FF
48
13FCO00000FF
FE4A
13FCO0LB00FF
FE44
33FCO11600FF
FE42

4A38B0A00
6610

1.20 Y8 ¢ 8.

+SOFTART

LB 01706782 10359347

x MC68653/MC2653 INITIALIZATION x
x X
KKK KK KK K K K K 2K KK K 3K KK K KK K 3K K K 3K 3K K 3K K 3K 2K K 3K K K K 2K 3K 3K K 3K KK XK KK 3K 3K KK 3K 3K K K K KK K K KK KK XK
INITSE31L MOVEA.L #C y A0

MOVEA.L. #CCAS31yAL

MOVEA.L #INITEUF »AZ

MOVE . E (A2)+y (AD)

MOVE . E (AZ)+y (ADD

MOVE .. E (AZ)+y (A1)

MOVE..E (AZ)+y (ALD {

MOVE . E (AZ)+y (AD) C/78C CLASS

MOVE . E (AZ)+y (AL X

MOVE..E (AZ)+y (AL

MOVE . B (A2)+y (AL

MOVE.E (AZ2x+y (AL) EOT

MOVE.E (AZ2)+y (A0 580 CLASS

MOVE . B (AZ2)+y (AL) STX
KK K KKK K KKK KK KK 3K 3K 3K K K 3K 3K K 3K K 3K K K 3K K 3K K K 3K 3K 5K 3K 3K 5K 3K K 3K 3K K 3K 5K 3K 3K 3K K K 3K K 2K K KK 3K 5K K K 3K K KK 3K K 3K
x x
x MC6B653/MC2653 INITIALXZATION X
x X
KK K KKK KKK KKK KKK 5K K 3 K K 3K K K 3K 3K 3K KK K K K 3K 3K K K K 3K K 3K 5K 3K K 5K 3K K 5K KK 3K 5K 3K K KK K 3K K K K K K KK KK 3K
INITEG32 MOVEALL #CRS3ZyA0

MOVEA.L #CCAS3ZyA1

MOVEA .. #INITEUF yA2

MOVE . E (AZ)+y (ADD RESET TO START UF MODE

MOVE . E

(A2 +y (AD)
(AE)+y (AL
(AZ)+y (AL)
(AZ)+y (AN
(AZ2)+y (A1)
(AZ)Y+y (AL
(A20+y (AL)
(AZ)+y (AL

SYN/NI CLASS
WRITE 8YN TO CCA
SO

C/80 CLASS

MOVE . & (A2)+y (AD)

MOVE. & (AZ)+y (ALD 5TX
KKK KK KKK KK KK 2K K KKK 8 2K 3K K K K K K KK 3K K K K 3K 5K K XK 2K K K3 3 K K KKK K K 3K 3K 3K 3K K 3K 3 9K 3K K 3K K K K XK K K K K
x x
X MLC&BLGZ/MCR26%Z INITIALIZATION x
x x
0. K KK K 3K K K KK K KK K KKK K 3K K K K K 3K K K K K K K K 3K K38 K K 0K 3K K K K3 K K 3K K 3K KK 3K K K XK 3K 3K K KK K
INLTSZ MOV B 00y TREN DISAELE TRANSMITTER AND RECEIVER

MOVE HBET L6y FLEAR DEFINE FROTOCOL.

MOVE #4009 PIR DEFINE CHARACTER LENGTH

MOVE L E F#B18y FOR

MOVE W #$0116yTER TRANSMIT DUMMY SYNC

K K 2K K K K KKK K KK K 4K K K 3K K K KK 5 K K K K K K K K KK K K K K K K K KKK K KK K K K 3K KK 3K K 3K K 3K 3K K K K KK MK K

x
x
x

KKK K K K K K K K K KK K K K 3K K K K K K K 3K K KKK KK K K 2K KK K 2K K K 3K K K K 5K 3K K K K 3K K K K K K K K K 3K K K K K K K KK K

%
X TASK DISPATCHING L.OOF
X
TASKI.F TET LB TX&61LEMFH
ENE . S TXé61LF

61 READY TO TRANSMIT ?

25

MOTOROLA M&8000

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
2835
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

308
309
310
311
312

313
314
315
316
317
318
319
320
321

322

323

gooouocz2C
00000C30
00000C32
00000036
00000C3A
00000C3C
0oo00C40
00000C44
00000C48
00000C4A
gooooc4c
00000CS0
00000CS2
00000CS6
0o0000CTA
oooooCcsc
00000C60
00000C64
00000C66
00000C6A
00000C4E
00000C70
00000C74
00000C76

0ooo00C78
00000C7C
00000C80
goonocsz
00000C86
goooocses
00000C8C
00000C20
00g0o0Co4
00000C98
00000CPE

00000CAS
00000CAA
goooocaC
00000CE2
00000CE4

00000CEC
ogooocco
oogooccz
0o000CCs
oogooCces
00000CCA
00000CCE
00000CD4

ASM VERSION

4A380A14
&7F4
SHLOO0FES2
6100FESC
4008
&4100FECO
4100FE04
4A380A01.
46702
612C
4A3B0A16
&704
61000082
44380415
&7 04
61000144
4A3B0A02
6704
61000192
44380414
&6D4
4A380A00
S6CE
4E4A

42380A01,
44380405
6752
44380429
6624
30380612
51C80034
103C0062
00000004
13C000FFFEDY
ZIFCO0000820
0406
S0F80AZD
4E75
0C380005042E
6620
13FC006200FF
FEO7
42380429
4E7S
31000812
4400

6704
20780004
LOEQOOFFFER7
4E75

1.20 Y8 ¢ 8. SSOFTART 6A 01706782 10359847
TSY B TXEZEMFH 52 READY TO TRANSMIT
BEQ.S -
TXG2LF SR
HGR
ERA LG
TX6LILF ESR INITHZRX
ESR
LOOF &1 TRANSMITTER READY 7
LOOF1L U2 RECEIVER READY %
LOOPZ TRAONSMITTER READY P
L.OOF3 61 RECETIVER READY 7?
EBEQ.S
ESR ROVAL
LOOF4 TET B TXE2EGMEH TRANSMISSTON DOMPL ?
ENE L.OOF
TET B TXE 1L SMEH
L.CIOF
#1.0
KK 2K K 3K KKK K K K K KK 3K K KK K K K K 3K 3K 5K 2K 0 3K K 3K K 0 2K 5K 3K K K K K 5K K K56 K 3K K 5K K K K K K K K 5K 3K 3K K KK KK KK XK
x x
x MCABE61/MERE6T TRANSMITTER DRIVER SUBROUTINE X
x x
KKK K K K K KK KK KK K 5K K K K XK 3K KK 3K XK K KK K KK 3K K 3K 8 3K K K K KK KK K K 5K 3K 5K 3K K 2K K 3K 3K K K KK KK K XK
DRV&IL ClLR.E TCESLDRI CLEAR INTERRUFT FLAG FIRST
TST B ETXF&1
BEQ.S DRUSLRTN
"o E REF&1BFH I8 THIS & REFLY 7
DRVS1LZ
DOHLUNTYDO GET EYTE COUNT
DOYDRVSLL
FCRGIMGK DO D B TX AFTER Pald CHER
#0400
AND ENAELE TVER
MOV, L. TUR FOR ONSE
aT
RTS
DRVGL2 CMP B ALl OuUT P
ENE .8
MOVE . B DISAELE TX AFTER ACK/NAK
ClLiR.E REF & 1 SFH
RTS
DRVALL DO DSELENT SAVE NEW BYTE COUNT
0

DRVSILRTN
MOVEAL TOSHLTXFT a0
MOVE . B BCCH3Ly (AD)

DRVAIRTN RTS

KKK K KK K K K K KK K KK K K K K K K 3K KK 3K K 5K 3K K KK K K KK 3K 0K K K KK KK KK KK 3K 3K KK 5K 3K K K KK 3K K KK K KK

X x

x MCABLGZ/MO26GE RECETVER DRIVER SUBROUTINE x

L FAD CHARACTER
FOIN
TO BUFFER

26

MOTOROLA M&68000

324
325
326
az7
328
329
330
331
a3z
333
334
335
336
337
338
339
340
341
342
343
344

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

00000CDS
00000CDA
00000CDE
00000CED

00000CE4
00000CES

00000CF4
00000CF8
00000CFA
00000000
ngooono4

ooooobocC
00000012
00000D16
goooon1s
00000DLC
00000DLE
noooonzz
0oo000D26
00000D2A
00000DZE
00000030
ooooon32
00000034
00000036
00000038

00n0on40
aoo00D44
0000004

00000n4e
00000D4E
00000054
00000DSA
00000t
00000062
D0000N&S
noooonsA
H0000D6C
ouo0oDya
0o0o000n78

00000D7E 13

ASM VERSTION 1.20 8YS

x

3 8.

+SOFTART

88 01/706/82 10359147

X

KR KK KK KK KK KK K K KK KK KK K K K K K KK K K K 3K K K KK 3K 3K K K K K K K 5 K K 5 3 4 3K 3K K 3K K K K 3K K 3K K K K KK K K

42380016
4ABBOAZE
bH61A

4A380A17

ROVEZ

¥ %X X %X %

&70000EA
4AFBOAZE
6648

10380628

> E208

11C00A28

4ETS

0C3BBO00Z20AZC ROVE2L
600009
13FCO00000FF
FE&Q
207C00000700
0C180006
6610
10380986
1210
02000001
02010001
42380A14
4238002E
EZ200

&H602

KAE47

qEA4H

LHA6E
L3FCO00000FF
EA0
10380418
[

CLR.E
TST.E
ENE .S
TEST B

TCES2RVL
ACKSZEFH

FRXEUFSZ y A0
#0by (A0 +
ROVS2S
TXTEUFS24+65 D0
(AN »DIL
#0100
#0011
TXE2EMFH

ROCVEZ3

#7

TOBRSRERZ,DO
#1LyDO

REPLYSEL

RECETVING AUKNOWLEDGEMENT 7

EIVED ?

D AS RE
GHAGE AC

QUIREDy TO CHECK THE
KNOWLEDGEMENTy OR ELOCK

IF ALREADY SET

LT & ONLY

ALl OF ACKNOWLEDG

EMENT RECEXVED

DISARLE

RECETVER

SEQUENCE

CLEAR SEMAFHORES WHEN DONE
RETRANSMIT IF NOT CORRECT

b AN

[

D7 ON 18T BCC

AND

CHECK STATUS AFTER SECOND E

K K KN R I KA KK KKK 3 K KK I KK K K K K K K K K 3K K K K K K 7K K K 3K K K 3K K 5 K K K KK KK XK

CoHBOHZ/MURESE AUKNOWL

X
EDGEMENT SETUR x
X

MOVEA. L.
MOVE . E
MOVEA. L

&G4

X

X

X
207C00000980 REFILLYSZ

117C00060002
227¢00000700
10290003
nZoocno1
00000030
11400003
&012

207C00000980 REMLYSZ21 MO

LL7C005E0002E
1L17C00000003
LC00160004 RE

#TXTEUFSZy A0
#6062 (A0S
#RXEUFS2y B
3(AL)Y DO
#0100

ki

#0sBCA0D
LGy 4CAN0)

FILL BUFFER WXTH ACK

CHECK ELOCK # FOR ODD OR EVEN

ASCIL O OR L

OFR NOK
AND NULL.
ALD FAD CHARACTER

?

27

MOTOROLA M&B000 ASM VERSION 1,20 $YS 3 8. SGBOFTART 80 01706782 10359347

380 00000084 21C80ALE MOVEL L.
381 00000D88 10FC0016
382 0o000D8C 10FCO01S

A0y TCHZTXFT
by (AOI+
Fhléy (AG)+

383 00000DP0 42380A2C CLRWE 26FH
384 00000094 LBFCO00L00FF MOVE B ERSELE S92 TRANSMITTER

FE&0
385 00000DPC S0FB0AZA 8T SETOREPLY SEMAFRMORE
386 00000DAD 4EZS ROVEZRTN RTS
387 KKK K KKK 5K K 3K K 3K K 3 5K KKK 5K 3K K 3K KKK K 3K 5K 3K 5K 5K 3K K K 3K 3 3K 5K KKK 3K K K 3K K 3K K K KK 3K K KK K KKK K K KK KK 5K
388 X X
389 * MOHBLSHL/ME265L TRANSMITTER DRIVER SUBROUTINE £
390 X E
392 00000DAZ 42380ALE DRVEZ
393 00000DAS 4ABBOAZA TG THIS A REPLY P

394 00000DAA &624
399 00000DAC 4A380M2E
396 00000DED 4746
3?7 00000DEZ 30380426
398 00000DES G1CB002E
399 00000DEA LS

SHOFORETX SENT

EYTE COUNT

HLE TX AFTER Fal CHAR

FE&0
400 00000DC2 Z1FCO0000700 U FOR RESFONSE
0AlA

401 00000DCA TGOF

402 00000DCE 4E7S

403 00000DD0 OC3BO00BOAZC DRVGZL CMF LR

404 00000DDE 6620 ENE « 6

40% 00000DDL8 LBFCO00000FF MOVE +
FE60

00000DED 42380424

00000DE4 4E7T

00000DES 31C00A26 DRVEEL

00000DEA 4A00

00000DEC &70A

00000DEE 20780A1E

80A2E

ACHSZSFH

DISAELE TX AFTER AUK/NAK

DOy DEZONT BAVE NEW EYTE COUNT.

TN
TXFT v &0

OINTER

00000DF2 1LOEPOOFFFE [2y (AD) s BYTE

00000DF8 4E7S DRVEZRTN RTS
X x
X MCEBLSHL/ME264L RECETIVER DRIVER SUBROUTINE x
X x

D0000DFA 42380A02 REVGL CLR ¢ E T i

00000DFE 48380620
00000EQ02 &61A
00000E04 4A380003

IVING ACKNOWLEDGEMENT 2
RCVALL
TCSRG3LF ETX RECEIVED @

AS REQUIREDs TO CHECK THE
L ACKNOWLEDGEMENTy OR ELOCK

¥ X %X %X %

&7000002
4AFBOADG
) bHE40
2 1L0380ADE
1208
3 L1C00A00

ROVALRTN
ETXF&L
RECVSLE
ETXF&L v DO

Ly 20 ETX SETS EIT & ONLY
DOy ETXF&L

IF ALREADY SET

28

MOTOROLA M&8000

00000ELC
00000ELE
00000E24

00000E28

00000E30
00000E34
00000E3A
00000E3C
00000E40
00000E42
00000E4S
00000E4A
00000E4E
00000ES2
00000ES4
00000ESS
00000ESA
00000ESC
00000ESE

00000ES6S
00000ES&A
00000ESC

00000ESE
00000E74
D0000ETH
00000EB0
00000&84

DOUOUZBC

00000
009060
ooo0o0
00000
noono
gonoo
uoooo
00000

2 207000000940

ASM VERSION 1.20 5Y& ¢ 8.

qE7S
0C3800020AZE RCV611
660000A6

FL07
207C00000820
0C180006
HO1E
10380946
1210
0z000001
02010001
42380A00
42380A20D

+SOFTART

#02y TCESLGFH
RCVSLRTN
FOROGIMEIKy CREL

HFRXEUF 6L s A0
#06y (A0I+
RCV&13
TXTEUF&1+465 D0
(A0 »DL
#0100

#01LsD1

S5A 01/06/82 16359347

ALL OF ACKNOWLEDGEMENT RECV'D 7

DISARLE RECEIVER

GAINST ACK
T IF NOT OK
OCK SEQUENCE
ACK

SMIT TF NOT CORR
MAFHORE WHEN DO

CT

"6 AND 7 ON]S;T BCC
Y61 RE

CHECH STATUS AFTER ZND BCC

KKK KR KR KKK R I I S 3K I K IO K B 3 S8 R 1 K 5 3 3K 20 K KK K K K 3K D K K K K 6 K K 3K K 3K 3K 3 K XK 5K MK K XK

4606 (V6
42380000 TAéJqMIH
4E48 8
449 RCV613 #9
SAGE RCV&1L2 ROVSLRTN
13FCO06200FF FCRSEIMSI » CR& L
07
10380404 TCESRE31L »DO
E258 : Do
6524 ECS. 6 REFLY &1L
X
x MCOBESL/MUEHET ACKNOWLE
X

207C00000940
117C0006000%2
227000000820
10290003
02000001
aoo00030
11400003
&H01Z

¢
117C00150002
7000000003
/GUU160004 REFILY&LZ

4”W80A“J
103C0062
0000001

RCVSLRTN RTS

&1 v AD
(AU)
J1vﬁt

#0»3CA0)
FB1694(A0)
A0 TCHLTXET

SEMENT SETLP

ER WITH ACK

LOCK ODD OR EVEN ?

ASCTT 0 OR 2L

DR NAK
AND NUL
IV

) TO END OF MESSAGE

INSERT INITIAL SYNCS

x
X
x

2K AR KRR KNI A K I IO I I K K M 2K 5 KK 5 XK K K XK K K K 8 K KK K KK K I K 5 K K K K K K K 3K XK K K K

KK K K KKK K KK KK K K KKK KK I K 3K I K KK KK IR I K KK I KK KKK KK KK K K KK K K KK 3K K K K 3K K K K K K KK XK K KOK XK

X

X MCOBSEZ /MO2AEE RECETVER -

X

INTERRUFT VICE ROUTINE

X
x
x

xxxxxxxxxxxxxxxxxx#mxxxxx*xx

RED REGIST
DATA FOINT
CHARACTER

THE

29

MOTOROLA M&8000

490 00000EDC
491 00000EEQ
492 00000EEZ
493 00000EE4
494 00000EES
495 00000EEC
496 00000EF0
497 00000EF2
498 00000EF8
499 00000EFC
S00 00000EFE
S01 00000F00
502 00000F 04
S03 00000F08
G044 00000F0A =
505 00000FOE
S06

507

508

509

510

511 00000F10
Siz 00000F14
513 00000F 18
G14 00000F1E
515 00000F20
S1é6 00000F24
S17 00000F28
518 00000F2C
519 00000F2ZE
520 00000F34
521 00000F38
G2z 00000F3A
523 00000F30C
G524 00000F40
525 00000F44
G226 00000F 46
527 00000F 46
528

529

530

531

532

533 00000F4C
534 00000FS0
G35 00000F54
536 00000FSA
537 0000 0FGE
538 0000062
539 00000F&4
540 00000F&A
541 00000F6C
G4z 0o000F72

543 00000F74

544
545 00000F7C
546 D0000F7E
547 00000F82

ABM VERSION

0cooo001s
6722
1o0Co
21C80Aal1A
SOF80Alé
4A3B0AZE
6618

103200FFFESS

11C00A18
E&658
4404
SOF80ALY
4CDF0L0L
4E73
S238B0AZC
60F4

48E78080
20780A06

LOBQ00FFFEQL

1000
21C80006
SO0FB80A0Z
4A3BOAZD
46618
L0390 0FFFE
LLCooAa04
658
&404
S50F80403
4(‘0!’"0] 01

G?W8Uﬁﬂh
60F4

48E78080
20780600

13DBOOFFFEOL

21C80A0A
4A380/29
46630

E1FC00000948

4608

21F80A0ENADA

&016é

X1
&400
S0F80A0T

21FC00000948

BPOOFFFEZE T561TX1

1.20 8YS ¢ 8. SBOFTART .88 01/06/82 103593147

Y

TAaTUS OF PEO
STATUS

BCC.S

8T
IBSZRTN MOVEM.L. '%F Y+yDO/AD

RTE
RTNL ADDQRE #01 e TCBDLEFH

ERA IHSZRTN
KK KK 3K K 5K K KK K K KKK 5K K K 3K 32K K 3K 3K K K K 2K K K K K K K K KK K K KK K K KKK K K K K KK KO KKK XK XK K
x x
X MCOBLLL/MEZ6G6L RECET a : x
X x

xxxxxxwxxxxxxxxxxxxx*xxxxxx*xxx*xxxxxx»xmxtmxxxxxxxxxx»xmxxxxxxxxxxxxx
DO/A0y~(SF)
TCHLRXFT v A0
RHRGL DO

IS61RX MOVEM.
MOVEA . L,
MOVE

MOVI

= ﬁLTL

=

MOVE, L.

O ACKNOWLEDGEMENT 2

SET
IHGLRRTN

RITN

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxm»xxxxxxxxmxxxwxxxxxxxxxxxxxxxxx

x x
x MCOBEGL/MC2E6] TRANSMITTER — INTERRUFPT SERVICE ROUTINE x
x x
K KK K K K K KK KK K 3K K K K K K 3K K 2K K 51 3K K 3K 3K K 5K KK K K K K K K 5K 3K 3K 28 3K K 2K K 3K 2K XK 3K K 3K K 3K 0K K 3K KK XK KKK K
16561 TX MOVEM.L. DO/ADy —(SF) SAVE WORK REGISTERS

TCOHLTXFTy A0 RESTORE DATA POINTER

(AN +y THRAL ouT
&0 TCEHLTXFT

REF&1L8FH

THELTX2

JT DATA TO TRANSMITTER

HEADER QUT 7?
FOINT TO DATA IF IT IS

z CHECK TF ETX WAS TRANSMITTED
#3s DO
.‘f"‘(ﬂ h ™

&H1+8y TCSLTXFT FOINT TO TRALLER FIELD

30

o

MOTOROLA M68000

548
549
S50
581
552
553
554
b
556
a%7
558
559
560
Siel
S62
563
S64
565
S66
567
568
569
570
571
572
G573
574

576
576
G577
G768
G779
G580

00000F8A
00000F8E
00000F92
00000F94
00000F98

00000F9A
00000F9E
00000FAZ
00000FA4
00000FAS
00000FAC
00000FE0
00000FE4
00000FES
00000FEC
00000FEE
00000FC4
00000FCé
00000FCC
00000FCE
00000FDO
00000FD4

00000FDC
00000FED
00000FE4
00000F
00000FE

ASM VERSION

0A0A
S0F80A01
4CDF0101
4E73
G23B0AZE
60F0

48E78080
20780A1E
4240
1018

33CO00FFFE42
21C80A1E
4A380AZA
46630
ELFC00000988
46608
21F80AZ20ALE
6016
L03P00FFFESS
E658
46400
SOFB0AZE
1FC00000988

L5

1.20 8Y8 ¢ 8. LSOFTART 84 01706782 10159147
TIS86LIRTN 8T TCESLDRT

MOVEM.L. (8F)Y+yD0O/A0 RECOVER FROM INTERRUFTY

RTE
I861TXE ADDQ.E 01y TOESLEFH

ERA TIHS1TRTN
KKK KKK K K KKK K 3K 4K K K 3K K K K K 3K K KK 3K K 9K K 343K KK 3K 8 3K 5K K K 3K K 3K 5K K K K 3K K 3K KK K K KK KK KK XK
x x
X MCEBLG2/MEEZSEZ TRANSMITTER — INTERRUFT SERVICE ROUTINE x
X x

X()()K)(*X)KX()K)K)KXXKX‘KX)KX!(X)K)K)K)K)K)KXX)K)K)K)K)K)KX)KX(WX()KX()KXX)K)VX(XX)K)K)KX(X()KXX)K)KXXXXXX)KK)Y!

IHH2TX MOVEM. 1. DU/AOy*(’I)
MOVEA.L. TXFET 0
CLRWW I)()
MOVE . B (A0+»DO
MOVE . W DOy TSR
MOVE.. L. 0y T
TST B

I8H2TXL

MOV L.

TEH2TRTN 8T
MOVEM . L.

RTE

ADDR LB

IHERTXE

LTERED REGIS
DATA FOIN

SRS

ClLEAR

TSOM WHILE

WRITING DATA

HEADER OUT 7?2

FOINT TO DATA IF IV IS

CHECK T ETX WAS TRANSMITTED

F1. xr
AND FOINT

TO THE TRATLER

RRUFT WAS SERVICED
URNING

31

MOTOROLA M&68000 ASM VERSION

SYMEOL TABLE LISTING

SYMEOL. NAME SECT

ACKS2GFH
ACK&LBFH
AGR
BCCS31
ECCE32
FLKSE
ce
CCAS32
CRS31
CRS32
CR&1
CR61IMSBK
DH2CNT
D&LONT
DEINIT
DRVEZ
DRVS21
DRVSG22
DRVSZRTN
DRVSL
DRU& 1L
DRV&LE
DRVG1RTN
DUMDAT
ETXFS2
ETXF&L
INTTS2
INITW?F

I‘wé)] RIRTN
TH61LRTN
TEHLIRX
TGHLTX
TH&H1TXL
TS6LTXZ
100
L.OCEF L
LOOF2
L.OOPR3
.04

UALUE

QOFF
00000062
00000026
00000A1Z
00000ESA
oooooDAzZ
00000DES
00000DDO
000000FS
00000078
opo00Ces
opoooCac
00000CD4
00000434
00600/Z8
B0000A0E

00000EFE

0GODOEVE
00000a8s
0o0N0Aa4s
00000AZF
00000F ()4

00000FPA
000BOFCE
00GOOFES
00000F40
06000F8A
BO000F10
QoOooF4C
0ON00F74
00000FF4
00000CA4
00000Cs0
NneooocsSs
00060Cs0
G000006A

1.20 8Y8 ¢

SYMEOL.

BTART
bS] TN“\T i3
STRT (‘)l)h

2

NAME

LSOFTART .88 01/06/82 10

SECT ValUE

cooog
O00000F
0oononiss
00000034
00000DAY
Q00000
0Goon

000G OREDRE
QOFFFE4L
00000M2A
N0 00GAZY
000n0n4s
00006DAT

NGO0OFOM
goo00700
no0oe8a0

NO00DBC2E
QoU00BEE
00000A1LA
GOO00ALE
D0000M0E
00000ANS
DCHO0A0s
nooooats
03000416
(SR RNIRVAW
00000A01
0oonoanz
00000M2E
aooosAn4
00000~18
0go00a03
0G000A /

-
5

P47

32

MOTOROLA M&8B000 ASM VERSION 1.20 SYS ¢ 8. +SOFTART .SA 01/06/82 10159347

MRS31 00FFFE2S TXG2LF o0000C32
MRS32 0O0FFFE&69 TXS26MFH 00000A14
MR61 00FFFEO0S TXSLLF 00000C3C
FCR 00FFFE4A TX&618MFH 00000A00
PCSAR 00FFFE48 TXTRUFS2 00000980
FCSARH 00FFFEA48 TXTEUF 61 00000940
PCSARL. 00FFFEA49

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

33

@ MOTOROLA Semiconductor Products Inc.

3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721 e A SUBSIDIARY OF MOTOROLA INC.

Al6016-1 PRINTED IN USA 8-83 IMPERIAL LITHO C15332 10,000 AN-882

