

AN-881 APPLICATION NOTE

DUAL-PORTED RAM FOR THE MC68000 MICROPROCESSOR

Prepared by
Trey West
Microprocessor Applications Engineer
Motorola Microprocessor Division
Austin, Texas

INTRODUCTION

Dual-ported RAM provides a means for multiprocessor systems to exchange data without directly interfering with each other. In most systems this data exchange involves a master MPU passing information to a slave MPU. For example, a host MPU may need to transfer information to a graphic processing circuit to direct the display operation. Redundant processing schemes may require a "checking processor" to compare the results of several MPUs operating simultaneously. Whatever the application, some form of communication between processors is required.

A dual-ported RAM has, as it's name implies, two independent ports or address/data/control buses. This scheme simply allows two processors to access the same memory contents without interfering with each other. Thus, depending on the amount of dual-ported RAM that is available, messages, instructions, data, etc. may be transfered from one processor to the other.

Access to the dual-ported RAM is controlled by one or more semaphore registers. A semaphore register is simply a memory location set aside as a flag to indicate whether or not a dual-ported RAM is currently in use. If the semaphore bit is set, one of the two processors is currently using the dual-ported RAM space and the other processor is not allowed access. Other semaphore registers could be defined to indicate messages available, contents changed, etc.

The MC68000 TAS (test and set) instruction supports this semaphore register concept. The TAS instruction reads the semaphore register and determines if the most significant bit (MSB) of the semaphore register is set. If the MSB is clear the TAS instruction sets it. If the MSB of the semaphore register is already set, the TAS instruction simply reports (via the condition code register) that the resource is allocated to another processor at this time. Besides replacing several instructions with one, the TAS instruction executes the entire read/modify/write cycle in one indivisible bus cycle. This alleviates the possibility of both processors reading the

semaphore flag bit (MSB) as clear and both assuming they have the resources after setting the semaphore flag bit (MSB).

The cycle timing considerations for the dual-processor system discussed in this application note were calculated using two MC68000L8 (8-MHz clock) microprocessors. In addition, a separate 12.5 MHz arbitration clock was used to clock the dual-ported RAM arbitration circuit. The same system could be used with any other MC68000 microprocessors and arbitration clock speeds. However, the arbitration clock speed should be sufficiently high to ensure that the cycle timing is commensurate with the system speed.

HARDWARE CONSIDERATIONS

In a multiprocessor system, the operation of each processor may be asynchronous with respect to the other MPUs in the system. With asynchronous operation it is impossible to predict when an MPU will request access to the contents of the dual-ported RAM (hereafter referred to as DPR); therefore, a DPR arbitration circuit is a necessity. As shown in the circuit diagram of Figure 1, four D latches (U3A, U3B, U4A, U4B) form the basis of the arbitration circuit. The first two latches (U3A and U3B) are clocked on opposite phases of a 12.5 MHz arbitration clock. Initially after reset, the state of the four D latches is such that the U4A and U4B Q input to OR gates U2A and U2B are low. If one of these two OR gates receives a low chip select input (CS1, CS2) it will cause a change in one set of the D latches (U3A, U3B). Since both D latches of the first pair (U3A, U3B) are clocked on opposite phases of the 12.5 MHz arbitration clock, only one will change state, even if the falling edge of both CS1 and CS2 signals occur simultaneously. The second set of latches (U4A, U4B) provides a debounce latch for the first set. The debounce latch is required since, if a rising 12.5 MHz arbitration clock edge and the D input both change state at the same

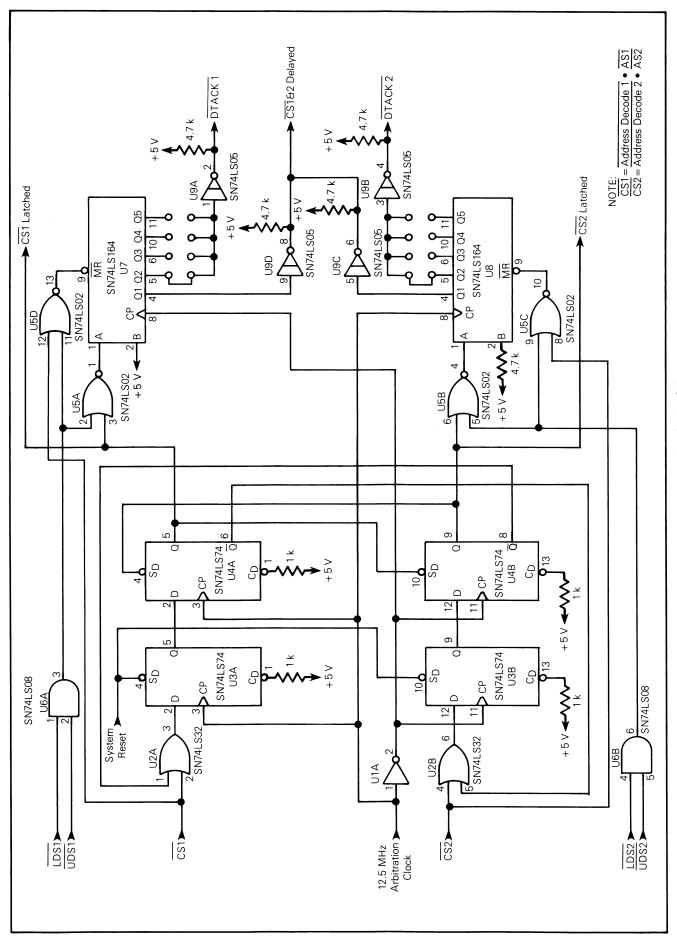


FIGURE 1 — Dual-Ported RAM Bus Arbitration Circuit, Schematic Diagram

time, the corresponding Q output could become unstable for up to 75 nanoseconds. The U4A-U4B pair of latches are also clocked by the 12.5 MHz arbitration clock, and approximately 80 nanoseconds later the latched low chip select signal appears at the Q output (CS1 at U4A, CS2 at U4B). The latched low chip select signal also presets the other D latch; similarly, the high \overline{Q} output is cross-coupled to the OR gate input of the first D latch. This feedback holds off the access of the other processor until the first processor has finished its access and releases its chip select $(\overline{CS1}, \overline{CS2})$ signal.

Once the arbitration circuit has selected the processor which is allowed access to the DPR, the other processor is locked out and cannot gain access to the DPR until the first processor has completed its bus cycle. Locking out the other processor is accomplished by holding off its data transfer acknowledge (DTACK) signal. Because holding off DTACK locks out the other processor, the BERR timer signal of the locked out processor should be longer than any DTACK delay caused by DPR accesses.

NOTE

The longest BERR timeout required would result from a lockout at the start of a TAS instruction. In the case of an 8-MHz MC68000 running with this DPR hardware, the worst case time would be approximately two microseconds. The suggested BERR timeout in this case is 10 microseconds.

The latched $\overline{CS1}$ or $\overline{CS2}$ signal (referred to as CSx) is presented to an SN74LS164 shift register provided that one or both of the data strobes (\overline{LDS} , \overline{UDS}) is asserted. Once the signal is present at the serial input of the shift register, it begins propagating through on positive transitions of the 12.5 MHz clock. The shift register outputs become \overline{CSx} Delayed and \overline{DTACK} for either processor. The delay before \overline{DTACK} can be adjusted by using a switch or jumper to tap off the appropriate delayed output of the SN74LS164. The cycle ends when the \overline{CSx} signal or both data strobes are negated, clearing the shift register.

The random logic gates attached to the SN74LS164s allow the use of the TAS instruction. The TAS instruction simplifies support of the dual port RAM semaphore registers. This instruction is a special case because two bus cycles take place during one AS asserted time (see Figure 2).

The first bus cycle starts in the same manner as all MC68000 cycles with \overline{AS} and \overline{LDS} or \overline{UDS} asserted (TAS is a byte operation only). At the end of this read cycle the only indication of a complete transfer is the negation of the data strobes. Therefore, negated data strobes must clear the shift register to remove \overline{CSx} Delayed and \overline{DTACK} . The next cycle (write) starts by asserting the data strobes (\overline{LDS} or \overline{UDS}). An asserted data strobe releases the shift register clear input (\overline{CSx} is also low) and allows application of the \overline{CSx} Latched input to the SN74LS164 serial input. The cycle continues as a normal write.

The schematic diagram in Figure 3 shows the necessary MC68B10 static RAMs and buffers required to allow two processors to access the same devices. Octal bi-directional buffers, U10, U11, U16, U17 (SN74LS245s) provide buffering for the data bus. These devices are controlled by the $\overline{\text{CSx}}$ Data input (CSx Data signals are the CSx Delayed outputs of the SN74LS164 shift registers delayed again by passing through an SN74LS244). Only one set of data buffers is on at any time as controlled by the arbitration circuitry. Data direction is determined by the state of the corresponding R/\overline{W} line. The address lines are buffered in a similar manner with the CSx Latched signal providing the enable input for the two SN74LS244s. By using the CSx Latched signal (instead of \overline{CSx} Delayed), the address setup time (tas) required by the MC68B10s is met prior to the CSx Delayed signal being presented to the chip select inputs of the MC68B10s (this address setup time is not required by many other memories). An SN74LS244 (U13) is used as a multiplexer for the R/W, LDS, and UDS control signals from the two processors. The CSx Latched signal from the arbitration circuit determines which set of control signals are presented to the MC68B10 RAMs.

The above described scheme could allow expansion to 256 words of dual-ported RAM simply by using the available A8 line on the SN74LS244s (U12 and U18 shown in Figure 3), plus larger memories. Expansion to larger dual-ported RAM memory space would also require additional address buffers and larger memories.

TIMING CONSIDERATIONS

The timing signals related to the arbitration circuit are shown in Figure 4. This diagram illustrates the special case of chip select signals from two different processors requesting

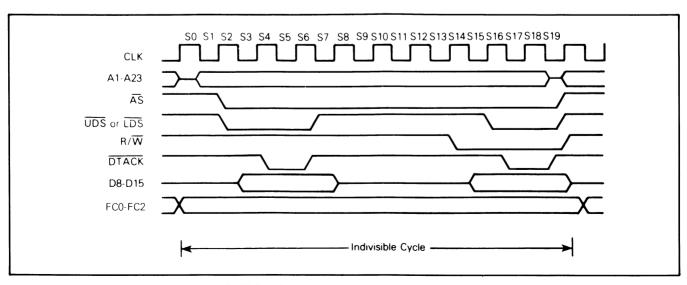


FIGURE 2 — Read-Modify-Write Cycle Timing Diagram

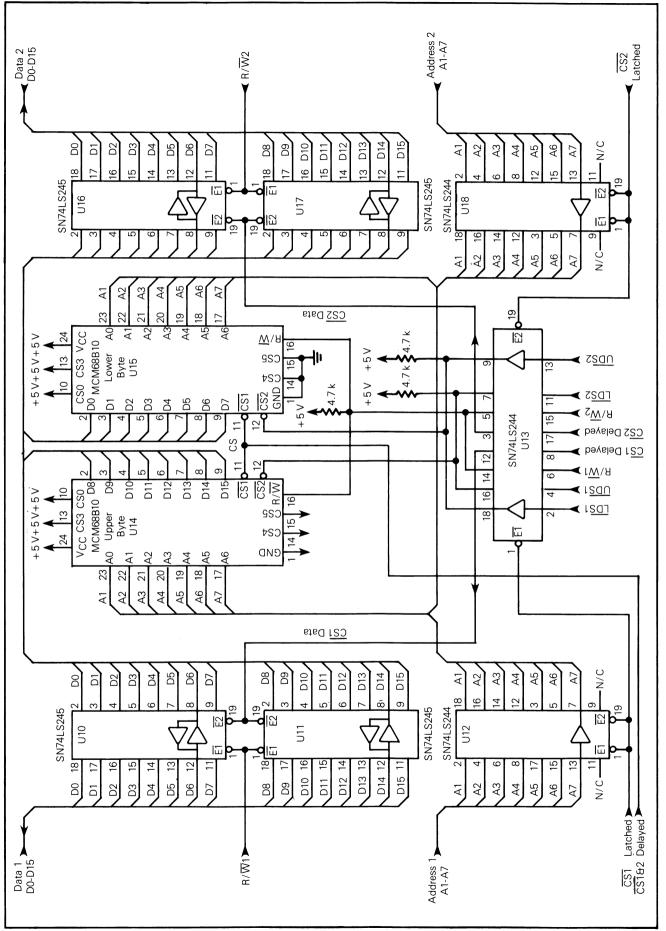


FIGURE 3 — DPR RAM and Buffers Schematic Diagram

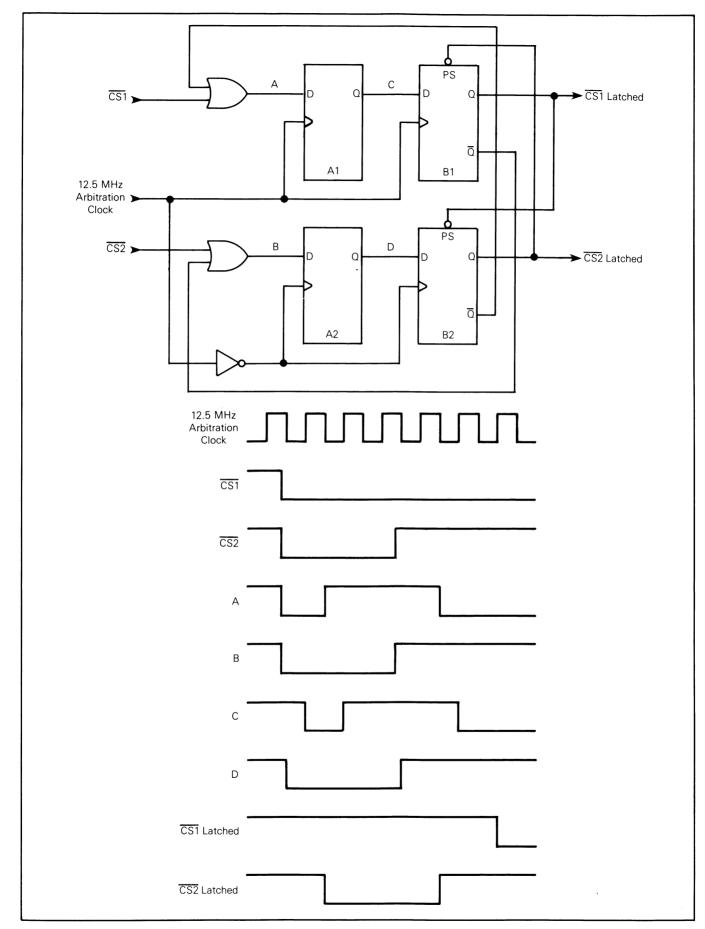


FIGURE 4 — CS Arbitration Timing Diagram

simultaneous access. As will be described, when the simultaneous requests are made, only the CS signal of one processor will be allowed to propagate through to form the \overline{CSx} (CS1, CS2) Latched signal. In the diagram of Figure 4, the chip select requests are both already asserted before the falling edge of the 12.5 MHz arbitration clock. Since the CS2 signal is clocked on the falling edge in Figure 4, it will be allowed to propagate through. Note that the Q output for CS1 (point C) does fall but the signal is not allowed to be clocked into the debounce latch (B1) because it is now held in preset by the CS2 Latched signal. The complement of the CS2 Latched signal is also presented to the OR gate at the input of the first latch for $\overline{CS1}$ causing the D input to go high, and on the next positive edge clock, the waveform at C goes high. When $\overline{CS2}$ is removed, the input latch (waveform D) and the debounce latch for $\overline{\text{CS2}}$ are driven high on consecutive negative clock edges. This action removes preset from B1 and allows CS1 to propagate through on positive clock edges to form the CS1 Latched signal.

As shown in Figure 3, the $\overline{CS1}$ or $\overline{CS2}$ Latched signal enables the address buffer for one of the MCM8B10s. The $\overline{CS1}$ or $\overline{CS2}$ latched signal is also presented to the input of one of the SN74LS164 shift registers, and a clock period later the $\overline{CS1}$ or $\overline{CS2}$ Delayed signal is presented to the $\overline{CS1}$ or $\overline{CS2}$ Delayed signal is presented to the $\overline{CS1}$ or $\overline{CS2}$ Delayed) is necessary to accommodate the address setup time for the memories.

The read and write cycle timing is shown in Figure 5 (starting with the \overline{CSx} Latched signal). For a read cycle, data is valid 250 nanoseconds after addresses are valid. The \overline{DTACK} signal for the processor (8-MHz MC68000) is asserted a clock

period after the $\overline{\text{CSx}}$ Delayed signal goes low. Data is then valid approximately 50 nanoseconds later (this satisfies the $\overline{\text{DTACK}}$ low to data setup time for the MC68000L8 specification). For a write cycle, data is valid before $\overline{\text{CSx}}$ Delayed; therefore, the only specifications that must be met are t_{Cyc} for addresses and t_{CS} for the $\overline{\text{CSx}}$ Delayed signal. Asserting $\overline{\text{DTACK}}$ at the same time as a read cycle assures that both these specifications are met. The last specification to be met is the data hold time for the memories. This 10 nanosecond hold time is met by passing the $\overline{\text{CSx}}$ Delayed signal through control multiplexer U13 to form the $\overline{\text{CSx}}$ Data signal. The $\overline{\text{CSx}}$ Data signal will negate approximately the same time as the $\overline{\text{CS}}$ signal at the memories; however the buffer delays (U10, U11, U16 and U17) will provide the required data hold time.

TEST SOFTWARE

Once both processors are able to read and write to all DPR (dual-ported RAM) locations, it is necessary to check the arbitration circuitry during real time processing. Two test programs are included. The first program (listing 1 in Figure 6) causes both processors to execute a loop in which they request access to the DPR. Once access is allowed, the processor sets all DPR memory locations to a known value, and then checks to see if all locations retained this value. Completion of the loop results in a message (error or successful completion) and the processor executes a short delay loop to allow the other processor to complete a TAS instruction. The other processor then executes the same routine with the exception of writing a different value to the DPR locations.

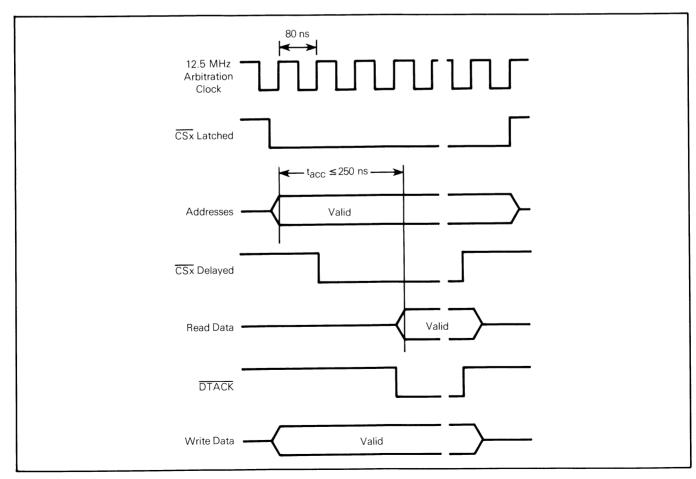


FIGURE 5 — Read/Write Cycle Timing Diagram

Two other programs (listing 2 and listing 3) provide examples of messages passing from a master to a slave processor and vice-versa. These listings are shown in Figure 7 (listing 2 for the master routine) and Figure 8 (listing 3 for the slave routine). The master processor takes characters sent from a terminal and stores them in a buffer until a carriage return is input. The master MPU then sets the semaphore

flag and transfers the message from the buffer to the DPR. Upon exiting the DPR, the master MPU sets a message flag (in the low byte of the semaphore register) to indicate a message is ready for the slave. The slave continually checks this message flag to determine if a message is present, and if so prints the message out on its terminal and resets the message flag.

```
MOTOROLA M68000 ASM VERSION 1.30SYS : 12.COLOR
                                                         .DFRTEST .SA 06/02/82 13:52:24
DUAL PORT RAM TEST
                                THIS ROUTINE TESTS THE DUAL PORT RAM ARBITRATION CIRCUIT.
                                    THE PROGRAM IS LOADED INTO BOTH BOARDS. THE ADDRESS OF THE DPR
SHOULD BE INITIALIZED AS WELL AS THE VALUE USED FOR THE CHECK FLAG.
                                 00000900
                                           ORG
       00000900 00000004
                                DERBASE
                                                                              ADDRESS OF THE DUAL FORT RAM. THIS VALUE SHOULD
  12
                                          DS.L
                                                     1.
                                                                              BE INITIALIZED BEFORE THE PROGRAM IS
  14
15
                                                                              STARTED.
  17
       00000904 00000000
                                STRSTART DC.E
                                                     $0Dv$0Av$0Av$0A
  18
       00000908
                  5441534B2043
                                                      'TASK COMPLETED.'
                                           DC.E
  19
20
       00000917
                                STREND
                                           DC.B
                  0000007E
                                RAMLEN
                                           E:QU
                                                     126
                                                                              LOCATIONS IN RAM (-1 ONE WORD FOR SEMAPHORE)
                                                            TAS IS BYTE ONLY: THEREFORE, THO FLAGS COULD BE USED IN THE WORD SPACE ALLOCATED FOR THE SEMAPHORE.
  21
22
23
24
                                                                        THIS LOCATION SHOULD BE SET TO THE CHECK VALUE. THE VALUE SHOULD BE DIFFERENT FOR EACH BOARD
       00000918 00000002
                                FLAG
                                           DS.W
                                                     1
  25
26
                                           INITIALIZATION
  27
       0000091A 41F80900
                                START
                                           LEA.L
                                                     DPREASE + A0
                                                                              GET ADDRESS OF DER IN AU
  28
29
       0000091E 2248
00000920 5449
                                           MOVE . L
                                                     A0,A1
                                                                              SET MEMORY POINTER
                                                                              INC FOR SEMAPHORE
                                           ADD.W
                                                     #2,A1
        00000922 30380918
                                                     FLAG, DO
  31
32
                                           MAIN PROGRAM
  33
34
35
       00000926 4600
                                ALL DO
                                           TAS
                                                     (An)
                                                                              DPR AVAILABLE?
        00000928 6BFC
                                           BMT.S
                                                     ALLOC
  36
37
        0000092A 323C007E
                                           MOVE.W
                                                     #RAMLEN, D1
                                                                              COUNTER
                                                                              SET POINTER
        0000092E 2449
                                           MOVE . L
                                                     A1,A2
        00000930 34C0
                                 WIL.OOF
                                                     D0,(A2)+
                                                                              WRITE A WORD
  39
                                                                              ALL DONE?
RESTORE COUNT
        00000932 51C9FFFC
                                           DERA
                                                     D1, WLOOP
  40
        00000936 323C007E
                                                     #RAMLEN, D1
                                           MOVE . W
        0000093A 2449
                                           MOVE . L
                                                     A1,A2
                                                                              RESET INDEX CHECK MEMORY
                                                     (A2)+,D0
D1,CLOOP
                                CLOOP
  42
        0000093C R05A
                                           CMP . W
  43
       0000093E 56C9FFFC
                                           DENE
                                                                              ALL DONE?
                                                     ERROR
  44
45
       00000942 6618
00000944 4250
                                           ENE .S
                                                                              REPORT ERROR
                                                                              RESET SEMAPHORE
                                           CLR
                                                     (AD)
                                                                              SETUP MESSAGE FOR PRINTOUT/ 'TASK
SETUP MESSAGE FOR PRINTOUT/ COMPLETED'
  46
        00000946 2A7C00000904
                                           MOVE.L
                                                     #STRSTART + A5
                                                     #STREND, A6
  47
48
        0000094C 2C7C00000917
                                           MOVE . L
        00000952 1E3C00F3
                                                                               TUTOR MONITOR (TM) TZD CALL
                                           MOVE.B
                                                     #243,DZ
        00000956 4E4E
                                                                              "TUTOR" MONITOR (TM) I/O CALL
  50
        00000958 6104
                                           ESR.S
                                                     DELAY
                                                                              DELAY
        0000095A 60CA
                                           BRA.S
                                                     ALLOC
        0000095C 4E40
                                 ERROR
                                           TRAP
  53
54
                                     SUBROUTINE DELAY
  55
       0000095E 363C0005
                                           MOVE.W
                                                                              SET COUNT
  56
                                DELAY
                                                     #$5,D3
        00000962 4E71
                                           NOF:
                                DL:OOF
  58
        00000964 51CBFFFC
                                           DBRA
                                                     D3+DL00F
                                                                              LOOP UNTIL TIME OUT
       00000968 4E75
                                           RTS
```

FIGURE 6 - Listing 1, Dual-Ported RAM Test Program

```
DUAL PORT RAM TEST
   3
                                              THIS PROGRAM SENDS A MESSAGE FROM THE MASTER TO THE SLAVE
PROCESSOR. CHARACTERS ARE ENTERED ON THE MASTER CRT UNTIL A
                                              PROJESSOR, CHARACTERS HE ENTERD ON THE HASTER ON ONTIL H
CARRIAGE RETURN IS DETECTED. AFTER THE CR THE MASTER ROUTINE
TRANSFERS THE MESSAGE FROM A BUFFER TO THE DPR AND SETS A FLAG.
THE SLAVE CONTINUALLY READS THE FLAG UNTIL IT IS SET THEN THE
   6
7
8
9
                                              SLAVE READS THE MESSAGE FROM THE DPR AND DISPLAYS IT ON THE
                                              SLAVE CRT.
                                   13
                                                          THIS IS THE MASTER ROUTINE.
  14
15
                                   16
                   00000850
                                              ORC
                                                         6850
                                                                              NUMBER OF CHARACTERS TRANSFERED
  19
20
        00000850 00000002
                                   COUNT
                                              DS.W
                                                                               TEMPORARY STORAGE FOR TRANSFERED CHARCTERS
                                   CHARBUFF DS.W
                                                         1.00
        00000852 000000C8
  21
22
                                              EQU
                   CORRORADO
                                                                              BASE LOCATION OF THE MASTER'S DPR
MESSAGE FLAG IS THE LOWER BYTE OF THE SEMAPHORE WORD.
                                   SEMAPHRE EQU
                                                         $20000
                   00020000
                                                         SEMAPHRE+1
  24
                   00020001
                                   MSGFLAG EQU
  25
                                                                              INITIALIZE COUNTER
                                                         COUNT
  27
        0000091A 42780850
0000091E 267C00000852
                                   START
                                              CLR.W
                                                                              SET POINTER
  28
                                                         #CHARBUFF, A3
                                              MOVE . L.
                                                                              SET UP DZ FOR TRAP CALL TO INPUT ROUTINE
CALL INPUT ROUTINE ("TUTOR" MONITOR - TM)
SET FOR ECHO CHAR BACK TO TERMINAL
CALL OUTPUT ROUTINE ("TUTOR" MONITOR - TM)
        00000924 1E3C00F7
                                   INLOOF.
                                              MOVE.B
                                                         #247 DZ
                                                         #14
  30
        00000928 4E4E
                                              TRAP
        0000092A 1E3C00F8
                                                         #248+D7
  31
                                              MOVE.B
        0000092E 4E4E
                                              TRAP
                                                         #14
                                                         #CR+D0
                                                                               END OF STRING?
        00000930 0C00000D
                                              CMP . E
  33
                                                                              GOT STRING
  34
        00000934 6708
                                                         ENDSTRG
                                              BEQ.S
                                                                               SAVE CHARACTER
        00000936 16C0
                                              MOVE . B
                                                         00.(43)+
                                                                              INC COUNT
GET NEXT CHARACTER
LINE FEED
                                                         #1,COUNT
  36
37
        00000938 52780850
                                              ADDQ
        0000093C 60E6
                                              BRA.S
                                                         TNLOOP
        0000093E 103C000A
                                   ENDSTRO
                                              MOUFLE
                                                         #$0A,D0
                                                                               OUTPUT LE
                                              MOVE . B
                                                         #248,DZ
        00000942 1E3C00E8
  39
                                                                              CALL OUTPUT '
                                                         #14
SEMAPHRE
        00000946 4E4E
                                                                                               "TUTOR"
  40
        00000948 4AF900020000 TASLOOP
                                              TASLE
                                                                              NOT YET
GET FLAG
                                                         TASLOOP
        BMIL.S
  42
                                                         MSGFLAG, D4
                                              MOVE . B
  43
                                                                               ALREADY SET?
                                                         #$FF,MSGFLAG
        00000956 0C3900FF0002
                                              CMF'.B
                   0001
        0000095E 660A
00000960 423900020000
                                              ENE . S
                                                         NOTSET
  45
                                                                              RESET SEMAPHORE
                                                         SEMAPHRE
                                              CLR.B
        00000966 612C
                                              ESR.S
  47
                                                         TASLOCE
                                                                               TRY AGAIN
        00000968 60DE
                                              BRA.S
  48
                                                                              SET MESSAGE FLAG
                                                         ##FF,MSGFLAG
        0000096A 13FC00FF0002 NOTSET
  49
                                              MOVE.B
                   0001
         00000972 227000020002
                                              MOUF .1
                                                         #SEMAPHRE+2.A1
                                                                              SET POINTER TO DPR
                                                                               STORE COUNT
        00000978 32F80850
0000097C 247C00000852
                                              MOVE.W
                                                         COUNT, (A1)+
  51
                                                                              POINTER TO BUFFER
                                              MOVE . L
                                                         #CHARBUFF vA2
  52
                                                                               MOVE DATA TO DER
         00000982 12DA
                                   TXLOOP
                                              MOVE . B
                                                         (A2)+r(A1)+
                                                         #1,COUNT
                                                                               DECREMENT COUNTER
                                              SUBQ
         00000984 53780850
  15:4
                                              BNE.S
                                                         TXL.00P
                                                                               FINISHED?
  55
         00000988 66FB
         0000098A 423900020000
00000990 6102
                                                         SEMAPHRE
                                                                               RESET SEMAPHORE
  56
57
                                              CLR.B
                                              BSR.S
                                                         DELAY
                                                                               TIAM
                                              ERA.S
                                                         START
                                                                               START OVER
  58
         00000992 6086
  60
  61
                                              DELAY SUBROUTINE
  62
  63
                                    DELAY
                                              MOVE.W
                                                          #$5,D5
                                                                               SET COUNT
  64
         00000994 3A3C0005
         00000998 4E71
0000099A 51CDFFFC
   65
                                    DLOOP
                                               NOP
                                              DERA
                                                          05, DLOOP
                                                                               LOOP UNTIL FINISHED
  66
67
         0000099E 4E75
                                              F'ND
```

FIGURE 7 — Listing 2, Dual-Ported RAM Test Program

```
DUAL PORT RAM TEST ROUTINE
   3
   5
                                          THIS PROGRAM SENDS A MESSAGE FROM THE MASTER TO THE SLAVE
                                         PROCESSOR.
   83
                               1.0
                                                          THIS IS THE SLAVE ROUTINE.
 11
12
                               13
                 00000900
                                         ORG
                                                   $900
  14
15
                 00FD5400
                               SEMAPHRE EQU
                                                   $ED5400
                                                                        EASE LOCATION OF SLAVE'S DPR
MESSAGE FLAG IS THE LOWER BYTE OF THE SEMAPHORE WORD
  16
                 00FD5401
                               MSGFLAG
                                        EQU
                                                   SEMAPHRE+1
  17
18
                 00FD5402
                               COUNT
                                         EOH
                                                   SEMAPHRE+2
                                                                        NUMBER OF BYTES TRANSFERED FROM THE MASTER
       00000900 4AF900FD5400 START
                                                   SEMAPHRE
                                          TAS
                                                                        DPR AVAILABLE?
  20
       00000906 6BF8
00000908 103900FD5401
                                         BMI.S
MOVE.B
                                                   START
MSGFLAG, D0
                                                                        NOT YET
GET FLAG
  21
       0000090E 0C0000FF
                                          CMP.B
                                                   #$FF,D0
                                                                        FLAG SET?
  23
24
       00000912 670A
00000914 423900FD5400
                                         BEQ.S
                                                   MSGAVAIL
                                                                        YES
                                                   SEMAPHRE
                                         CURAB
                                                                        NO, CLEAR SEMAPHORE
  25
       0000091A 612A
                                          ESR.S
                                                   DELAY
                                                                        WAIT
       0000091C 60E2 8RA.S
0000091E 423900FD5401 MSGAVAIL CLR.B
 26
27
                                                   START
                                                                        AND TRY AGAIN
                                                                        RESET MESSAGE FLAG
SETUP FOR OUTPUT ROUTINE
SETUP FOR OUTPUT ROUTINE
                                                   MSCEL AC
  28
       00000924 4BF900FD5404
                                                   SEMAPHRE+4, A5
                                         LEA
       0000092A 4DF900FD5404
00000930 DCF900FD5402
                                         LEA
ADDA
  29
                                                   SEMAPHRE+4,A6
  30
                                                   COUNT. A6
                                                                        OFFSET
       00000936 1E3C00E3
                                          MOVE . B
                                                                        FUNCTION CODE FOR OUTPUT ROUTINE
  31
                                                   #227 v D Z
       0000093A 4E4E
0000093C 423900FD5400
                                                   #14
SEMAPHRE
  32
                                          TRAP
                                                                        CALL OUTPUT ROUTINE "TUTOR" MONITOR
                                         CLR.B
  33
                                                                        CLEAR SEMAPHORE
  34
       00000942 6102
                                                                        SHORT WAIT
                                                   DELAY
  35
       00000944 60EA
                                          ERA.S
                                                   START
                                                                        DO AGAIN
  36
  38
                                         DELAY SUBROUTINE
  39
  40
       00000946 3A3C0005
                                DELAY
                                          MOVE.W
                                                   #$5,D5
                                                                        COUNT
       0000094A 4E71
0000094C 51CDFFFC
  41
                               DLOOP
                                          NOR
  42
                                         DBRA
                                                                       LOOP UNTIL FINISHED
                                                   D5 / DLOOP
       00000950 4E75
                                          END
```

FIGURE 8 — Listing 3, Dual-Ported RAM Test Program

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721 ● A SUBSIDIARY OF MOTOROLA INC.