MOTOROLA
Semiconductor Products Inc.

AN-859

Application Note

MEMORY MANAGEMENT TECHNIQUES
USING THE MC6829

Prepared by
Charles Melear
Microprocessor Applications Engineer

Ed Rupp

and

MOS System Design Engineer
Austin, Texas

INTRODUCTION

Eight-bit systems have been the work horse of the com-
puter industry for a long time. This trend will continue
because 8-bit systems are easy to build, small-sized, and
economical. Most modern microprocessors have a 16-bit
address range which limits their memory address range to 64
kilobytes. Many systems need additional memory and utilize
inexpensive solid state memory (about 1/50 cent per bit) for
mass storage. The access time required for large programs is
virtually instantaneous when stored in solid state RAM as
compared to the time required in fetching those programs
from a disk or tape.

The management of this memory is a major concern.
Various techniques are used to allow an 8-bit processor to use
these large memories. Basically, bank select and mapping
RAM techniques can be used (see Figures 1 and 2). Bank
select involves using an addressable latch to select one of
several memory banks. That is, the outputs of the latch form
part of the chip select circuitry. With the mapping RAM
technique, various data can be written to sequential
addresses which will correspond to the upper N bits of an
expanded address. Usually the mapping RAM will contain a
power of 2 words; i.e., 2, 4, 8, 16, 32, etc.

The width of the memory is arbitrary. The required num-
ber of address lines from the MPU to address the mapping
RAM are applied to it and the remaining address lines go to
the system address bus. For instance, the upper three address
lines of the MPU could address eight words of mapping
RAM. The data output of the mapping RAM then forms the
upper address bits. This is basically the technique used in the
system presented in this application note.

To understand the system, an explanation of all major
components is needed. The building blocks of the system
consist of the MC6809 microprocessor unit (MPU), MC6829
memory management unit (MMU), MC6850 asynchronous
communications interface adapter (ACIA), MC6840 pro-
grammable timer module (PTM), MC6844 direct memory
controller (DMAC), and MC6854 advanced data link con-
troller (ADLC). Each of these parts will be discussed here in
order to outline their function in the total system under con-
sideration. The function of the system is to act as a satellite
processing station to be down loaded from a host computer
with programs and data. The local operator can invoke these
programs and digest data as the need arises.

SYSTEM CONFIGURATION

The MPU used in the system is an MC6809. With the aid
of an MC6829 memory management unit, the memory capa-
bility of this system is increased to a maximum of 2 mega-
bytes. One MC6829 MMU can be programmed to address
any given 256 kilobytes of the 2 megabytes (the same MMU
can be reprogrammed to address a different 256 kilobytes).
An MC6850 asynchronous communications interface
adapter (ACIA) provides communications to a local ter-
minal. To enable rapid data transfer via a serial link to the
main computer, a synchronous data link control (SDLC)
protocol network is employed using the MC6854 advanced
data link controller (ADLC). Only minimal ROM is needed
to operate the system since application programs reside in
RAM. The major function of the resident software is to

©MOTOROLA INC., 1982

Y

Latch

© —
Rl -
g 8
Address E

Decode ~

o

©

o

AO-A15 J

MPU

Bank Select 2
Bank Select3
Bank Select 4

1.

1

.
L

64K 64K 64K 64K
FIGURE 1 — Bank Select Technique
Address
> from
Mapping RAM

Data 3-State o

Buffer Mapping

MPU RAM
Address N Address Lines - 2n
16-N Address Lines

FIGURE 2 — Mapping RAM Technique

allow the local operator to control the system and to main-
tain control of, and assign memory to, the various tasks as
needed.

The system block diagram of Figure 3 illustrates the place-
ment of peripheral devices and buffers. See Figure 4 for a
complete schematic diagram. Except for the MMU and
DMAUC, the address bus is applied to the rest of the system
via 74L.S244 buffers. The DMAC must appear exactly like
the MPU to the entire system; therefore, the MPU and
DMAC address buses are connected directly together on the
input side of the address bus buffers. The MPU address bus
is also connected directly to the MMU input address lines.
The DMAC address bus could be applied to the output side
of the address buffers; however, extra logic would be re-
quired to place the 741.S244 buffers in the high-impedance
state whenever the DMAC is active. Since the MC6809 MPU
can interface directly with the MC6844 DMAC, it is best to
connect their address pins together. This allows the DMAC
addresses to be mapped the same as the MPU address.

The chip select signal for the DMAC, as well as all other
peripherals, is generated from the entire 21-bit address bus.
At first it might appear that the DMAC chip select should be
generated only from A0-A1S since this part directly feeds the
MPU address bus. This is definitely not the case, as it would
allow the DMAC to have a valid chip select signal in every
one of the tasks handled by the MC6829 MMU.

In the example of Figure 3, the MC6854 ADLC drives the
data bus during a DMA transfer. The read/write line for the
ADLC is inverted during DMA and this places the ADLC
data bus drivers in conflict with the 74L.S245 data bus buffer;
i.e., both devices would be driving the data bus. The problem
is solved by disabling the 74L.S245 data bus buffer during a
DMA transfer. This can be accomplished by using Tx STB of
the DMAC to act as a disable signal for the 74L.S245. During
a read of any MMU register, a conflict with the 74L.S245 will
again occur; therefore, the chip select signal for the MMUs
must be used to disable the data bus drivers just as Tx STB
was used when the ADLC was in the DMA mode. In general,
data bus drivers must always be disabled when a peripheral
device is connected to the MPU in parallel with the data bus
buffer.

Two problems associated with random garbage accesses to
memory must be solved. The first has to do with the timing
of the R/W line with respect to the address lines. The second
problem is associated with the dead cycles which precede and
follow DMA cycles. The mode 1 timing (TSC steal mode) in
Figure 5 shows that the internal MPU E clock is stretched
during these dead cycle times. The MC6809 automatically
places its address bus in the high-impedance state in response
to a low bus request (DMA/BREQ). The DMAC comes out
of or goes into the high-impedance state whenever the MPU
does the opposite. During these dead cycles, neither device

MC6809
MPU
A A
\
Data Bus
Buffers
245s
\ A A
YY
MC6829
o MMU
© <
5 I
e
<
a
Y \
Address
Bus Buffers
244s
Data
Address
Y ¥ / Y ¥ Y | \ Y ¥
MCM2716 MCM2716 MC86840 MC6850
Boot Strap ASSIST09 PTM ACIA
Data
Address
Y \ A \
MCM2114 2 m:g‘aobrye
Stack RAM MCM6664

FIGURE 3 — MC6809 MPU System With Memory Management, Block Diagram

has control of the bus; therefore, it is possible for the address
bus to float and possibly provide a valid chip select signal to
some system device. If this happens, the affected memory
location will be written with whatever random information is
appearing on the data bus at that time. This problem can be
eliminated by generating a DMAVMA signal using the circuit
shown in Figure 6.

The output of an exclusive OR gate (SN74LS86) is low
while the inputs to it are alike and high when they differ. The
MC6809 BA and BS outputs go high during the first dead
cycle (generate DGRNT) and return low during the second
dead cycle. The DMAVMA signal goes high during the dead
cycle as shown in Figure 7 and can be used as a memory

deselect. Both BA and BS are asserted during the first dead
cycle; however, the resulting DGRNT output (see Figure 4) is
not clocked through the 74LS74 flip-flop until the next
negative transition of E. For this cycle the output of the ex-
clusive OR gate is high and provides a memory deselect.
Thus, during the time shown as dead in Figure 5, the system
cannot be enabled and memories and peripherals are pro-
tected during exchange of bus control. Both BA and BS are
released in the dead cycle immediately following the DMA
transfer; therefore, the inputs to the exclusive OR gate do not
match and the output goes high. Thus, while there is is no
active bus master (dead cycle), the memory cannot be in-
advertently accessed.

PAL1

3 74832
A10
NOTE: The MC6829 KVAD through KVAT lines shown represent connections to eight different parallel connected MMUs. Because of the 1-0f-8 U23a o 8 13
decoding action of U7, the KVA (pin 15) input to only one MMU at a time can go low. A9 4 3 10 11
6
A5 uzse U23d
U23b
3 74LS10
ar5)3 PA0 1)8 s
A raL Al4 f ~ PAT i B DE - —
I 13 4 A U12a ;1) 2 15
= A2 # A xR13 16
T . g & %
EXTAL Alofs / Pﬁ SLsiz A? LSS 031 cTsha 5 = 18
e . U)o 1 6 O_ 19
A8l 10 7 L5 20
7 AN S Vi =il Lei8 2 2
Y| K Y PAT I~ "D’ 1 =lle 8 =2
N 013h 3 g oz
MCB809 Adfs PA16 U13a 12 %5
Ul A3 75 13
5 el a2f 741532
wma Al PA20 1 26.
A0] A15
Ref 2 R/W Al4 A—— 260
Device Desig. NMT (é 4 ﬁ}g — PAT11 3 5
——
MC6809 u1 8A INT A L5133 2 T U26¢
MC6829 u2 y— 14
B8S 9 1.8432 MHz 8 RAS2
7415244 u3 4OIFATT D7 86 f FAI3T0JU17 '_?;LD—
7415244 U4 33 / D6 A8 V PAT (I 7 Lﬁe% nss
741.S244 us 3 MRDY D5 ! Ad MC6829 d I FAI6 1 A YO b= ’_112)_)-_
7415245 U6 37 D4] A3 v2 ¢ PAL 208 21 i U27a
74LS38A u7 RESE D3 a2 ¢ w8 2 > 3_RAS4
741532 us D2 74 A1 +5 o] 74Ls138 Y
741586 U9 gé] AD__ G1 Y4 4 U27b
741574 u1o 1 g/w € oanfdl (Y5 6 RASE
741500 U i = g palg 20 1 PAIQ 4 9 13 u27¢
74LS10 u12 1 BA @ PAI8 YA LS260 G2A Y6! 8 RAS6
74L504 u13 5s Dear [2 5 9
741502 u14 C PA16 T PA20 5 7 u27d
< ¥ G28 Y7 11 RAS7
741508 u1s Y S PAIS ” U24a 12
7415133 U6 5161 o Note 1A RVAD <. PAlA E 741502
7415133 u17 G2A v6 gg ol HRVAT § PAI3 2l oars 4 E 31k 741532
7415138 u1e G28 Y5 o | KVAZ £ PAI12 %8-\ SlpaT—) Ls260 1 LS10 Q 2
74LS04 u19 Y4 T5] KVA3 © PATT = 51 6 12
74L532 020 M1 yah e6 Note T Wm = = ;
74LS00 u21 c Yo KVAS U24b 13012 Q
& g NOte KVAG = 4 uize
741521 U22 vE—SeeNote s =
741832 u23
745260 u24 7
74521 u2s =
740832 U2 Yo7
741832 u27 D6)
7418138 u28 Bg 2 A4 AY AY
741832 u29 T131 14 14
MC6840 U3 T o3 LS04 74L500 3 wfato oo 2 a9 vl
MCB850 U3t WISNg!2
Mcare D N_BA 2075 Ut0a 12 s B c 5 X U2 A8 33 D2 U < A7 U3 1/Q3j
MC2716 U33 3 a7 b3 1704 N a4
= © 11b © A6 © pa <o P
MCM2114 u34 ok Ta 20! RESET v = x A5 =% DS =& na =i
T S
MCM2114 u3s L] P 1rrbo 15V = gé 4 g& D6 gcﬁ A3 52
7415133 U36 b A3 & o7 8 A2 58
MC6844 1074LS32 o o% og og
MC6854 4 2009 sravRE 8 = P = A =°
MC14411 U39 sa 1)) A< By S 8140 s
U20c 20~ 0
MC1489 U0 JaL586 N i3 {9 IS W
MC1488 U4l I £
MCM2532 U4z J
74532 ua3 ¢
741586 U4 -
741508 uds 2
7418153 u46 \=
741832 ua7 3
741509 u4g D W
741504 U9 kD R/W A
745155 Us0 S D) YAT YAT A0 A0 PAI3
] 7415245 N +5 NPA20 &
g 6] 5] 4] 3]i0] 11 3 iz c—
I 740832 74LS09 T 7AST 1 1 2 2 2 L PATS |
1U6312U47d ccccccecec
2) = 1 , 01230123 PQS 748133
‘ 74L5153 1 N
BA 8 U46 16 NDAIL)
14 2 1 5 —— NPAT2 -
Y Y 2G PA13 IFC”
74LS32 74LS09 9 / - 3
U49a 3 b
1 22 b i
Udda
74LS04 74586 +BV
1 U45a — 1 i yep
qc 6 s LS 3 i o rsol2 N T 10
e, A #Rw RS1 NZng U42
ul 8 vk 740508 e U 5 o -]! A8 S
»n3 1Y3 TxAK2 741832 DO TxC — To baud rate generator a7 B
B o 2vof? 74l D1 G RxC v 6 9
Zdic & 2avaf10 [~ 3 o 5 S5
19 11 D3 RxD 71 o%
2C 2v2 i < ™
14428 2v3)12 L P 2l =
3.3 los X To|B ‘5. ﬁ%
%%76 S ooz a0
8lors s
£4TpsR RTS|?
RDSR

aoft 50 DO
a2 491
a2|3 48| D2
a3l4 47)
n4ls5 s6foa
ns|6 45]08
a7 44|06
a7ls 43|07
a8le 42|RASO
aslio o 41{RAST
aojnn © 40|RAS2
pattiz 5 39|RAS3
pa12f13 W 38|RASA
patsfia Z 37|RASE
pat4l1s & 36|RASE
pAIB[16 O 35|RAS7
pate|17 3
pAa17|18 kel
pA1g|19 32
PA19} 20 31
pPA20{ 21 30
rR/w|22 29
af23 28| ReF
E]24 27
m|25 26,

FIGURE 4 — System Schematic Diagram

MPU > Dead |«—DMA_—» Dead {«—MPU
S/ U U VY e W W A
tTQHI > le—1TQS1 (TQH2> e ‘ <tTQS1
HRa J]////]/‘ AW
tDQD > tDQD > |<—
DRQI]
l«—1DGS—> IDGH>{ e
DGRNT \
IDGH > |e— —> €tTD — TH
Tx STB
tTKD1 > je— tITKD1» e
Tx AKA /
TS/Tx AKB S \\ \X __ O
- tATSR> |e— tATSD>
AO-A15, R/W
(Output) <<<\<<)
—» = 1TAHO
AO-A4, R/'W
(Input)
IDED2> |« —> [«!DED1 > |«IDED1 - |« IDEDI
- ¥ | T)
IRQ/DEND ' !
__________________ J S | ——————
. IRQ DEND IRQ
CS Open Collector Input
Tx AKB Output

FIGURE 5 — Mode 1 Timing (TSC Steal Mode)

As previously mentioned, the timing of the R/W line can
cause a problem if a peripheral or memory becomes selected
and R/W is recognized as a write before all address lines
become stable. This problem arises in devices, such a
memories, that do not use the enable signal. By gating R/W
with E or Q of the MC6809 MPU, R/W cannot go low until
after the address lines have become stable. The circuit in
Figure 8 shows a simple circuit to accomplish the proper con-
ditioning of R/W. The timing for the read/write delay circuit
is shown in Figure 9. This problem does not always occur
since it depends upon the individual characteristics of each
MPU; however, at some point it may destroy the memory of
certain systems in a random fashion if the conditioning cir-
cuit shown in Figure 8 is not used.

New interrupts must be delayed if they occur during an in-
terrupt stacking operation for the current interrupt. Refer to
the Interrupt Handling paragraph for more interrupt infor-
mation. As shown in the system schematic diagram (Figure
4), FIRQ and TRQ are logical ORed with the BA line from
the processor. This guarantees that the first instruction of
every interrupt routine will be executed. That instruction can
mask further interrupts. The NMI input to the MPU is not
handled in this way and its use in an MMU system for
memory management is not advised.

There are two monitor programs used in this system. The
first is ASSIST09, a debug program, which makes use of
NMI when doing single step traces through various pro-
grams. Its use is limited to task 0 only and it will not function
in any other task because of its extensive use of SWI. The
other monitor is CONST which helps program and use the
memory management units in this system. The use of
CONST is also restricted to task 0; however, this is a func-
tion of the software interrupts. This program is called by
SWI, thus a task switch is required to enter it. In addition, an
initialization program (MMUINIT) allows the MMU to be
initialized. The ASSIST09 source code is available in the
MC6809-MC6809E Micorprocessor Programming Manual,
MC6809PM(AD). The source code for CONST and
MMUINIT is included at the end of this application note.

Synchronous communications are implemented using the
MC6854 advanced data link controller (ADLC). A block
diagram of the ADLC is shown in Figure 10. The ADLC is a
full duplex communications device which is compatible with
IBM SDLC format. The transmit and receive baud rates do
not necessarily have to be equal. Modem interface pins are
provided although they are not used in this example.

In addition to the processor interface pins, there are two
DMA service request outputs associated with the transmit

System

YvYyy

BA

BS

Denhg)

Y,

D
¥274LS74

>CP

DMAVMA To
System
Decode
FIGURE 6 — DMAVMA Generation Circuit
MPU Dead DMA Dead MPU
E.
J_\ 05V ___/_\ 0.5V
o/ S S S
20V
DMA/BREQ 0.8 /
—> 1€—1pPCSD —>» |<—tpCcsSD
BA, BS 24V
—»/ <—taD
Addr \ Hi-Z /
(MPU) / __
Addr Hi-Z /
{DMAC) N\
DMAVMA

FIGURE 7 — MC6809 Bus Timing During MPU-DMA-MPU Bus Control Transfer

and receive channels, respectively. When enabled, these pins
will drive the TxRQ pins of the DMAC. The TDSR (transmit
data service request) will be asserted when the transmit data
FIFO is empty. The RDSR (receive data service request) is
asserted when data is ready to be read from the receive data
FIFO.

The transmission format for SDLC is shown in Figure 11.
Every message begins with an opening flag of 01111110. The

gy

FIGURE 8 — R/W Conditioning Circuit, Gated By E

Q

R/W \\\\

7

R/W/ \

/

FIGURE 9 — R/W Conditioning Circuit Gated By E, Timing Diagram

next byte is an 8-bit address field and it may be extended in
8-bit increments. The control field follows the address field
and is normally eight bits, but it may also be extended in 8-bit
increments. The information field can be of any length and
contains the data which is to be transmitted. The ADLC
automatically calculates and appends a cyclic redundancy
check character (CRCC). The polynomial used is
x16 + x12 4+ x5 4+ 1. A closing flag (01111110) is appended
after the frame check sequence field.

The ADLC contains two read-only status registers, four
write-only control registers, a receive data register, a transmit
data register, and a transmit last data register. See Table 1 for
an internal register structure and Table 2 for a register
addressing map. The ADLC functions similar to other serial
transmission devices. A receive data available bit and a
transmit data register empty bit are monitored. The receive
data register is read or the transmit data register is written
when the respective bits are asserted. Unlike the MC6850
ACIA, the transmit shift register must always be kept full.
The transmit FIFO must be written at a sufficient rate to in-
sure that a transmitter underflow never occurs. Likewise, the
receive data register must be read often enough so that a
receive overrun does not occur.

The application of SDLC protocol and the MC6854 is con-
siderably more complex than the explanation presented here;.
however, the basic ideas apply. The main purpose of the
ADLC in this application note is to demonstrate a peripheral
device using a DMAC in an MC6809-MC6829 system.

The MC6844 direct memory access controller (DMAC)
performs the function of transferring data directly between
memory and peripheral device controllers (See Figure 12 for
block diagram). It accomplishes this transfer by supplying a
bus address (instead of being supplied by the MPU) and con-
trolling the data bus such that a memory or peripheral device
drives the data bus. Only consecutive-memory-locations-to-
peripheral or peripheral-to-consecutive-memory-locations
transfers can be handled. The transferred data does not go
through the DMA controller. There are four independent

channels, all of which can operate in any of three modes; i.e.,
TSC steal, halt-steal, and halt-burst. The timing diagrams for
these three modes are presented in Figures 13, 14, and 15. To
fully understand a typical transfer, a study of the internal
DMAC registers, shown in Tables 3 and 4, must be made.
For each channel, the starting address for the transfer and
the number of bytes to be sent are loaded into the respective
address high/low and byte count high/low registers. A con-
trol register is associated with each channel to specify the
transfer mode, the direction of the data transfer, and if the
data is to be accessed in ascending or descending order. The
priority control register is used to enable transfer requests
(TxRQ 0-3). It also causes the channels to rotate in priority
(channel 0, then 1, and 2, . . .) or have a fixed priority (chan-
nel 0 is highest and channel 3 is lowest). The interrupt control
register is used to enable the TRQ/DEND signal for each in-
dividual channel. A data chain enable register allows the
address and byte count registers, for either channel 0, 1, or 2,
to be loaded with the contents of the channel 3 register when
the chained channel byte count register is decremented to
$0000. The data chain register also selects either two or four
channels to be active.

A typical sequence for data transfer for the TSC steal
mode (see Figure 13) begins with a peripheral device asserting
its DMA service request which would be connected to a Tx-
RQ (transfer request) input to the MC6844 DMAC. The high
TxRQ input will be recognized within one E clock cycle. The
DRQI1 output of the DMAC is connected to bus request
(DMA/BREQ) of an MC6809 and it will be asserted during
the cycle in which TXxRQ is recognized; see Figure 4. The
DMAC activates its address bus during the following cycle
while the MPU places its bus in the high-impedance state and
issues a bus grant to the DGRNT pin of the DMAC. This cy-
cle is known as a dead cycle. Following the dead cycle is a
DMA transfer cycle. During this cycle, the DMAC outputs
the address for the data (to be written or read), asserts the
proper state on the read/write line, and asserts transfer
strobe (TXSTB). The transfer strobe acts similar to a chip

TS RSQ

R/W. RS1
Control Control Control —+ YY r
Register | | Register | | Register <«
#2 #3 #4 Chip Select
/\ {DCD
Receive <{RxC
Data
FIFO
Register LA \
(3 Bytes) @ Zero .
Receive <€ RxD
#1 eceiver] Deletion <{ Rx
Y Y
1 Status : FCS Check Flag/Abort/Idle Flag
Data Register | o Detect Detect
Data Bus v [T
<:> Interface <:
Bus
DO-D7
| Status Y
Register |« Flaa/Ab
- #1 <« FCS Generator ngmerat?)rrt
Transmit}
Data)
FIFO . Zero
A Register :> Transmitter > Insertion ——> 1D
(3 Bytes)
#1 A
<TxC
j—
Control — {CTS
Register Control f—————LOC/DTR
——3RTS
#1
- A {RESET
Vss Pin 1 TRQ €————
vec Pin 14 TDSR€— |
RDSR =
FIGURE 10 — MC6854 ADLC Block Diagram
- A Frame >|
I .
01111110 8 Bits 8 Bits 8 Bits | "La"att’:f 16 Bit 01111110
Per Byte Per B eng
y Per Byte er Byte { (5-8)
(Opening) Address* Control* Logical Control Frame Check (Closing)
Flag Field Field Sub-Field (Option) Sequence Field Flag
*Extendable (Optional) |<— Information Field ———a

(Optional)

FIGURE 11 — Data Format of a Frame

TABLE 1 — ADLC internal Register Structure

RS1 RSO0 = 00 RS1 RS0 = 01 RS1 RS0 = 10 RS1 RSO = 11
Receiver Data
Bit #| Status Register #1 Status Register #2 Register
0 RDA Address Present Bit 0
8| 1 |stus# Frame Valid Bit 1
é’, Read Request
o 2 Loop Inactive Idle Received Bit 2
Z | 3 | Flag Detected Abort Received Bit 3
2 (When Enabled) Same as RS1, RSO = 10
§ 4 |TTS FCS Error Bit 4
5 | Tx Underrun BCD Bit5
6 | TDRA/Frame Rx Overrun Bit 6
Complete
7 | IRQ Present RDA (Receiver Data Available) Bit 7
Transmitter | Transmitter !
Data Data
Control Register #2 |Control Register #3 (Last Data) Control Register #4
Bit # | Control Register #1 (C1bp=0) (C1bg=1) (Continue Data) | (C1bg=0) (C1bp=1)
0 | Address Control (AC}{ Prioritized Status Logical Control Bit 0 Bit 0 Double Flag/Single
Enable Field Select Flag Interframe Control
2 1 Receiver Interrupt 2 Byte/1 Byte Extended Control Bit 1 Bit 1 Word Length Select
2 Enable (RIE) Transfer Fixed Select Transmit #1
2 | 2 | Transmitter Interrupt | Flag/Mark Idle Auto, Address Bit 2 Bit 2 Word Length Select
f> Enable (TIE) Extension Mode Transmit #2
S 3 | RDSR Mode (DMA) | Frame Complete/ 01/11 Idle Bit 3 Bit 3 Word Length Select
3 TDRA Select Receive #1
§ 4 | TDSR Mode (DMA) | Transmit Last Data Flag Detected Bit 4 Bit 4 Word Length Select
Status Enable Receive #2
5 Rx Frame CLR Rx Status Loop/Non-Loop Bit5 Bit5 Transmit Abort
Discontinue Mode
6 Rx RESET CLR Tx Status Go Active on Bit 6 Bit 6 Abort Extend
Poll/ Test
7 Tx RESET RTS Control Loop On-Line Bit 7 Bit 7 NRZI/NRZ
Control DTR
TABLE 2 — Register Addressing select signal to the peripheral device which is supplying/
receiving the data. Following the DMA transfer cycle is a
Address dead cycle which allows the MPU to regain the address bus
Control Bit and the DMAC returns its bus to the high-impedance state.
Register Selected R/W | RS1 | RSO (C1bo) The halt steal mode is very similar to the TSC steal mode
Write Control Register #1 0 0 0 % (refer to 'Figure 14). In th‘is case, DRQ2, which drives the
Write Control Register #2 0 0] 0 HALT pin of the'MPU, is asserte.d‘ in response to TxRQ.
Write Control Register £3 o o 1 1 When the current instruction h:clS finished execution, a dead
- - cycle occurs and the processor issues a bus grant (DGRNT).
Write Transmit FIFO The TxRQ signal must remain valid until after the falling
(Frame Contine) 0 L 0 X edge of E of the cycle preceding the DMA transfer cycle. A
Write Transmit FIFO DMA cycle and second dead cycle follow. The DRQ2 line is
(Frame Terminate) 0 ! 1 0 released during the DMA cycle.
Write Control Register #4 0 1 1 1 The halt burst mode-is identical to halt steal with one
Read Status Register #1 1 0 0 X major exception (refer to Figure 15). The DRQ2 output
Read Status Register #2 1 0] X (driving HALT of the MPU) is not released until the byte
Read Receiver FIFO 1 1 X X count has been decremented to $0000, indicating that all

transfers have taken place. As shown in Figure 15, the TXRQ

(]!

R/IW AO~ A4 AB~ A15

1 g 1

DO~ D7

DMAEND

IRQ/
—» |[RQ/DEND
Control

L

Byte Count Register (16 x 4)

Tx RQO

«————— Tx RQ1

Tx RQ2

A

Fyvy

- Tx RQ3

}—>» Tx STB

Tx AK
b—a3» Tx AKA

Encoder

Address Address Data Bus
Bus Bus
Bus Bufter Buffer
Control
——
&/TX AKB " 4 Register
<«—»] MPX
Select Address Latch
Address
Increment/ Decrementer
{l) Address
ORGT - #0 H ' L] Regster #0H
DRO #1H : L (16 x 4) #1 H
DGANT m——,, ——. . §#7 7~ 7 peme————— l-—---——--'< - ————
Control #2H | L #2 H
DRQ2 -« e —_—— e ——— 1 11 1! F=--=---
#3 H ! L #3 H
< Channel
Control
#0 Register
' 71 (8% 4)
#2
- —— - -
Mode/ Timing #3
E DMA Control General
Control
PCR 1 Regster Prionty
ICR (b) Control
DCR (4)
RESET a3
Ve —
Vgg —»

(Tx AKB)

FIGURE 12 — DMAC Block Diagram

TABLE 3 — DMAC Control Registers

Register Address Register Content
e9 (Hex) Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DMA End T Yo
Channel x* Flag Busy/Ready Not Used Not Used Address MCA MCB Read/Write
Control Flag Up/Down (R/W)
(DEND)
o Request Request Request Request
Erority 14 Soate NotUsed | NotUsed | NotUsed | Enable #3 | Enable#2 | Enable #1 | Enable #0
(RE3) (RE2) (RET) (REO)
Interrupt DEND DEND IRQ DEND IRQ DEND IRQ DEND IRQ
Contrcz 15 IRQ Not Used Not Used Not Used Enable #3 Enable #2 Enable #1 Enable #0
Flag (DIE3) ' (DIE2) (DIET) (DIEO)
Two/Four Data Chain Data Chain Data Chain
Data Chain 16 Not Used Not Used Not Used Not Used Channel Channel Channel Enable
Select (2/4) Select B Select A

*The x represents the binary equivalent of the channel desired.

TABLE 4 — Address and Byte Count Registers

. Address
Register Channel (Hex)
Address High 0 0
Address Low 0 1
Byte Count High 0 2
Byte Count Low 0 3
Address High 1 4
Address Low 1 5
Byte Count High 1 6
Byte Count Low 1 7
Address High 2 8
Address Low 2 9
Byte Count High 2 A
Byte Count Low 2 B
Address High 3 C
Address Low 3 D
Byte Count High 3 E
Byte Count Low 3 F

line is sampled on the following edge of E for each DMA
cycle. If TxRQ is high, a transfer takes place; if low, a
dummy cycle occurs. The byte count and address registers
are not affected by a dummy cycle. Remember, once a halt
burst mode has begun, the MPU cannot regain control of the
bus until the entire transfer has taken place. This problem
can be circumvented by removing DGRNT from the DMAC
(thus HALT from the MPU) with external circuitry, then
writing the byte count register of the active channel to $0000.

Asynchronous communications to a local terminal are pro-
vided by the MC6850 asynchronous communications inter-
face adapter (ACIA). See Figure 16 for block diagram. This
device can be operated in full duplex at speeds up to one
megabit per second. Four registers are provided: a transmit
data register, a receive data register, a control register, and a
status register. The definition of the ACIA register contents
is presented in Table 5.

In order to activate the communications link via the
ACIA, the control register must be configured. From a
power fail/restore or a power-on condition, the ACIA
should be placed in a master reset condition. This is done by

11

writing the lower two bits of the control register (CR0-CR1)
to 1s, as shown in Table 6.

A master reset clears the status register except for data car-
rier detect (DCD) or clear to send (CTS); however, it does
not affect any control register bit. In addition to providing
master reset, control register bits CRO to CR1 are also used to
select the clock divide ratio for both the transmitter and
receiver sections (also shown in Table 6).

Three bits are used as word select bits (CR2, CR3, and
CR4) and the configuration of these bits select word length,
parity, and number of stop bits. The encoding format is as
shown in Table 7.

Two transmitter control bits (CR5 and CR6) provide for
the control of the interrupt from a transmit data register
empty condition, the request-to-send (RTS) output, and the
transmission of a break level. The encoding format and con-
trolled function are as shown in Table 8.

The remaining bit, CR7, is the receive interrupt enable. It
allows interrupts caused by the following conditions to be
reflected at the TRQ output: receive data register full,
receiver overrun, or a positive transition on the data carrier
detect (DCD) signal line.

The status register bits provide information on the status
of the ACIA; i.e., the conditions present. The bits of the
status register are shown in Table 5.

The overall functioning of the MC6850 ACIA can be
understood by an examination of the block diagram shown
in Figure 16 together with the registers shown in Table 5.

The control register is loaded with the appropriate infor-
mation to configure the device. When ready to transmit data,
the status register is checked to see that the CTS input is low
and the transmit data register is empty. Once both of these
conditions are met, a data byte can be written to the ACIA
transmit data register. Incoming data will then set the receive
data register full (RDRF) flag in the status register. Upon
polling the status register and finding the RDRF bit set, the
data carrier detect (DCD), framing error (FE), receiver over-
run (OVRN), and parity error (PE) bits should be examined.
If no errors are found, the receive data can be read from the
receive data register.

Memory expansion to 2 megabytes is made possible by use
of the MC6829 memory management unit (MMU). The
MMU allows the system to address 32 blocks of memory in 2
kilobyte increments for a total of 64 kilobytes. These blocks
are not required to be in any certain order or to be con-
tiguous. Different sections of memory can be accessed by

MPU > Dead |j«—DMA—»| Dead |e——MPU
S pn U s U o U U W
TTQHI l] > [170S1 (TQH2> e -\l <tTQS1
- i LRARARNNY
DQD > DQD>| r—
DRQT f
l€«—tDGS—> {IDGH>{ [«
DGRNT _Z
IDGH—> td— —> D —> tTH
Tx ST8 S‘
tTKD1 > te— tTKD1» fee
Tx AKA /
TS/Tx AKB \ \\‘ _ \]
_ ATSR> fe— TATSD—>
AO-A15, R/W ¥,
(Output) { <<<\<<)
—» = 1TAHO
AO-A4, R/W
(Input)
IDED2» e —»| |«!DED] —» |«IDED1 —» |« IDEDI
— F \ T \
TRQ/DEND Y L /
CTTTTTTTThRa T “DenD T
CS Open Collector Input
Tx AKB Output

FIGURE 13 — Mode 1 Timing (TSC Steal Mode)

reprogramming the MMU. Each MMU is capable of map-
ping four tasks and each task allows the addressing of 32
2-kilobyte blocks of memory. Only one task at a time may be
active. Provisions are made so that eight MMUSs can be used
in a system. Only one 64-kilobyte task can be active at a given
time. To switch to different memory, the MMU must be
reprogrammed or a different task must be used.

To explain the functional aspects of the MC6829 MMU, a
register mode 1 is shown in Figure 17 and a logical-to-
physical address translation diagram is shown in Figure 18.
In each task, 30 10-bit registers are used for address transla-
tion. The upper five address lines from the MPU select a
register and the contents of this register are gated onto the
physical address bus. A particular task is activated by pro-
gramming the task number to the appropriate register of the
MMU. Figure 17 illustrates the the MMU functions as a
memory mapping RAM.

To program the MC6829 MMU, a thorough explanation
of the internal registers is needed. See Figure 19 for a block
diagram of registers. There are 32 pairs of registers
associated with a task. Examination of the MMU register
model in Figure 18 shows that these registers are arranged
alternately as a 2-bit register and then an 8-bit register. When
programming these registers, the register select lines (RSO-

12

RS6) are used. Figure 20 provides pin assignment details.
Thus, to program all of the mapping registers 64 8-bit ac-
cesses to the MMU are required. When the MMU has been
fully programmed and is in operation, these register pairs are
selected by A11-A15. That is, a particular combination of in-
puts on A11-A15 will cause the contents of a register pair to
be applied to the physical address bus.

Locations $40-$47 address the same register on the MMU;;
i.e., only one register exists and it responds to any of these
eight addresses. The key value register is at this address. Each
MMU must have a unique value in this 3-bit register since it
determines which MMU in a system will be active.

The S bit at location $48 is the system/user bit. The S bit is
set to a 1 by a reset or any interrupt including software inter-
rupts. It is cleared by writing a value to the fuse register and
allowing the fuse register to decrement to 0. Only when the S
bit is set can the internal MMU registers be modified. Also,
the system will be automatically placed in task O as long as
the S bit is set, regardless of any other register values. The
mapping registers for task 0 will be active even when the S bit
is set. The MMUs are internally decoded to appear at
Al1-A15=1 and RA=0. At this address, the internal
registers can be accessed as per the register map in Figure 18.
In task 0, whether the S bit is set or not, the mapping

MPU » Dead |«—DMA—»| Dead |e—MPU
o TN TN TN VL
(DMAC) T > [|«tT0s] (TQH2» je— =tTQS1
RO J]//////‘ \\\\\\\\\\ﬂ
1DQD > 1DQD>| |<—
DRQT [
l€«—1DGS—> IDGH>{ [«
DGRNT \
IDGH—>] l4— —> «tTD —> tTH
Tx STB L J
TTKD1=>{ fe— ITKD1 —
Tx AKA /
TS/Tx AKB \ \\\
— IATSR> |e— tATSD >
AO-A15, R/W
(Output) -\ <<<\<< /
—> ltTAHO
AO-A4, R/W
(Input) :
IDED2> |« —| |«IDED1 > |«IDED1 - |«IDED1
— | +F
IRQ/DEND i i__ / ‘L
——— —— i — I T J ______ ’I —_———————
_ IRQ DEND RO
CS Open Collector Input
Tx AKB Output

FIGURE 14 — Mode 2 Timing (Halt-Steal Mode)

registers function normally with one exception. When an
MMU register is accessed, the physical address bus (PA10-
PA20) is driven to all 1s if S=1.

The access key allows the MPU to address the internal
registers of the MMU. The upper three bits of this S-bit
register must match the key value register and the S bit must
be set before the MMU register can be changed or examined.
The lower two bits of the access key select the particular task
to be modified.

The operate key register is active only when the S bit is not
set and a DMA transfer is not occurring. This assumes that
the MMU has been initialized by programming the appro-
priate registers and initializing the key value register. The
upper three bits of the 5-bit operate key register of an MMU
must match the key value register to select a particular
MMU; otherwise, the physical address bus will be in the
high-impedence state. The lower two bits are used to choose
the task to be used.

The fuse register is used to determine the exact timing of a
task switch. A task switch is always to or from task 0 except
for DMA. A number is loaded into the fuse register, and
when the fuse register is decremented to zero the MMU auto-
matically switches to the task called for by the operate key.
On each successive valid (non-DMA) processor cycle, the

13

fuse register is decremented by one. Consider the program-
ming example shown in Figure 21.

A jump instruction takes 4 cycles to execute. On the 4th
cycle after the jump opcode has been fetched, the fuse
register will have been decremented to zero and the program
counter will output the destination address of the jump. The
next opcode fetch which occurs will be from task N. It is
possible to jump to task O from task 0. This allows the system
to use task O like any other task. By jumping to task O via the
fuse register, the system will not be able to change the inter-
nal MMU registers until after an interrupt occurs.

INITIALIZATION OF THE
MEMORY MANAGEMENT UNIT

Once the MC6809-MC6829 system is built it must be
initialized. However, it is important to understand the state
of the system when RESET is released. This includes:

1. An internal MMU reset flag remains set — This causes
all of the physical address lines to be driven high
(logical 1, not high-impedance state). This flag does not
appear in any register and is cleared by writing to the
key value register. It is important to have the physical
address lines driven to a known state so that a specific
section of memory can always be used for the system

4!

MPU —————— Dead |-—DMA——>| Dummy* |<—-DMA_->{<-—DMA—»| Dead fe——— MPU
/L /) \ 1) \/
tTQHD —> [=17QS1 ITQH2 > }=1TQs2 —> [«—1TQS2 > (e 1TQS2 e—17QS2
R NN 777 | NS A
—»J tbaD TQH2 —> &= tTQH2 —> 1TQH2 —> f—tDOD
DRQ2 ’
IDGS—>| [« IDGH» e
DGRNT j —
—><——tDGH—->L4-- le1TD —> tTH —> o tTH—> Iq—
Tx STB /‘
f-TKD1 re— (TKD1
Tx AKA f \
ITKD2 > |
TS/Tx AKB / \\\) \
- AT e {AD LAD > — IATSD
AO-A15, R/W SF 7 :_ i \

(Output) \ ><h >¢ /
AQ-A4, R/W \ /

(Input) / _J \

> < IDED2 DED1 - DED1 [<—DED1
F X
/ \
__________________________ - | U,
IR DEND R

TS Open Collector Input

Tx AKB Output

*No transfer (dummy cycle) because Tx RQ was negated at start of E cycle

FIGURE 15 — Mode 3 Timing (Halt-Burst Mode)

TABLE 5 — Definition of ACIA Register Contents

Buffer Address
Data RS ¢ R/'W RS ¢ R/W RS e R/W RS e R/'W
Bus Transmit Receive
Line Data Data Control Status
Number Register Register Register Register
(Write Only) (Read Only) (Write Only) (Read Only)
0 Data Bit 0* Data Bit 0 Counter Divide Receiver Data Register
Select 1 (CRO) Full (RDRF)
1 Data Bit 1 Data Bit 1 Counter Divide Transmit Data Register
Select 2 (CR1) Empty (TDRE)
2 Data Bit 2 Data Bit 2 Word Select 1 Data Carrier Detect
(CR2) (DCD)
3 Data Bit 3 Data Bit 3 Word Select 2 Clear to Send
(CR3) (CTS)
4 Data Bit 4 Data Bit 4 Word Select 3 Framing Error
(CR4) (FE)
5 Data Bit 5 Data Bit 5 Transmit Control 1 Receiver Overrun
(CRb) (OVRN)
6 Data Bit 6 Data Bit 6 Transmit Control 2 Parity Error
(CR6) (PE)
7 Data Bit 7*** Data Bit 7** Receive Interrupt Interrupt Request
Enable (CR7) (TRQ)

*Leading bit = LSB = Bit0
**Data bit will be zero in 7-bit plus parity modes.

***Data bit is “"don’t care”” in 7-bit plus parity modes.

initialization. In the first two cycles after RESET is
released, the restart vectors are fetched. At this time,
the MMU mapping registers are not used; however, by
having PA20-PA11 driven high, the restart vector will
always come from $1FFFFE-$1FFFFF.

2. The fuse register is disabled — A write to this register
will have no effect until the key value register is written
and the upper three bits of the operate key register and
the key value register are equal.

3. The system state bit (S bit) is set — This bit must be set
to access any MMU register. It is cleared when the fuse
register is written and then decremented to zero which
means task O is being exited. In order to set the S bit,
the BA and BS lines must be 0 and 1, respectively. This
occurs when the processor responds to RESET, NMI,
FIRQ, IRQ, SWI, SWI2, or SWI3. If the system is
operating with the S bit clear and the program needs to
change an MMU register, the program must execute a
software interrupt or cause some external device to in-
put a hardware interrupt.

4. The operate key register and access key register are both
cleared — Even though contents of these two registers
will match the key value register, the internal flag still
causes the physical address lines to be high. Not until a
byte is written to the key value register will the mapping
registers be used for address generation.

5. The key value register is also cleared after reset — This
register must be written to clear the internal reset bit.
This is true even if $00 is to be written to the key value
register.

To initialize a system from reset, the key value register of
MMUs 1-7 must be written. Figure 22 is an example of eight
MMUs in a single system. For convience, MMUI1 will have
$01 written to its key value register, MMU2 will have
$02, ..., and MMU?7 will have $07. This causes their

15

physical address buses to assume a high-impedance condi-
tion. The program must be careful not to write the key value
register of MMUO until enough of its mapping registers, in
task 0, have been programmed to define the address space.
By not writing to the key value register of MMUO, the MPU
will stay in the range of $1FF800-$1FFFFF. Remember the
physical address lines remain high until the key value register
is written in MMUO clearing its internal reset bit. With the
mapping registers of MMUO task 0 programmed, its
(MMUO) key value register may be written.

The MC6809-MC6829 system is now using the mapping
registers of MMUO, task O to generate physical addresses.
The following conditions exist:

1. The mapping registers (32 mapping registers per task, 4
tasks per MMU, 8 MMUSs per system) have been pro-
grammed to the desired values.

2. The system state bit (S bit) is set in all MMU s.

3. Allinternal reset bits are clear. This is a mandatory con-
dition to use the mapping registers.

4. Each of the MMU key value registers contains a unique
3-bit value. (Writing the key value register clears the in-
ternal reset bit.)

5. The access key and operate key registers are the same
for all MMUs.

6. The fuse register in all MMUSs are enabled.

7. The system is operating in task 0, MMUO.

Now consider the following program (see Figure 23). The
microprocessor stores the A register to the key value register
of MMUQO. The lower 11 address lines of the microprocessor
drives the physical memory directly. As the microprocessor
program counter steps from $F850 through $F852, the 10
physical address lines are high. This means the 21-bit physical
address (AO-A10 of the MPU and PA11-PA20 of the MMU)
is $1FF850 through $1FF852. As soon as the key value
register is written (physical address $1FF852), the mapping

Transmit Clock 4

Read/Write
Chip Select 0
Chip Select 1
Chip Select 2

Register Select

DO
D1
D2
D3
D4
D5
D6
D7

Clock Parity
Enable 14 ﬁ Gen Gen
13— Chip J |
8—3 Select Transmit Transmit
10— and _> :> Shift ——————— 6 Transmit Data
9 ——0 Read/Write Register Register
11— Control *
' > Transmit
Control D-—T———— 24 Clear-to-Send
2 ‘ Status <
21 € <7 Register +
<> |
20 Data niirgr;::pt D— 7 Interrupt Request
V> Bus \ T
18 €| Buffers 23 Data Carrier Detect
17 €| I
16 € D— P» 5 Request-to-Send
15 <€ Control A
Register
- Receive | _ Parity
Control | Check
* A
_ Receive Receive
Vee=Pin 12
Vgg: Pin 1 C: Shift <€ 2 Receive Data
Register Register
Clock Sync
» Gen i Logic Bl

Receive Clock 3

FIGURE 16 — ACIA Block Diagram

TABLE 6 — Counter Divide Select Bits (CR0-CR1)

CR1 CRO Function
0 0 +1
0 1 +16
1 0 +64
1 1 Master Reset

TABLE 7 — Word Select Bits (CR2, CR3, and CR4)

CR4 CR3 CR2 Function

0 0 0 7 Bits+ Even Parity+2 Stop Bits
0 0 1 7 Bits+ Odd Parity+2 Stop Bits
0 1 0 7 Bits+ Even Parity+ 1 Stop Bit
0 1 1 7 Bits+ Odd Parity+ 1 Stop Bit
1 0 0 8 Bits+ 2 Stop Bits

1 0 1 8 Bits+ 1 Stop Bit

1 1 0 8 Bits+ Even Parity+ 1 Stop Bit
1 1 1 8 Bits+ Odd Parity+ 1 Stop Bit

16

TABLE 8 — Transmitter Control Bits (CR5 and CR6)

CR6 | CR5 Function
0 0 [RTS=Low, Transmitting Interrupt Disabled
0 1 RTS = Low, Transmitting Interrupt Enabled
1 0 | RTS=High, Transmitting Interrupt Disabled
1 1 RTS=Low, Transmit a Break level on the Transmit
Data Output. Transmitting Interrupt Disabled

TABLE 9 — Condition Codes Bits Set by Interrupts

Interrupt 1 Bit F Bit
NMI S S
FIRQ S S
TRQ S *
SWi S S
SWI2 * *
SWI3 * *

*Indicates interrupt has no effect on this bit.

Logical Address
Task # A15 A111 A10 AO
Interrupt —» Mapping RAM
DMA —»
l \J
PA20 PA11|PA10 PAO
Physical Address

FIGURE 17 — Logic-To-Physical Address Translation Diagram

register becomes active; therefore, when the MPU program
counter steps to $F853, the 21-bit physical address is com-
posed of PA20-PA11 of the mapping register selected by the
upper five address lines of the MPU and A10-AQ of the
MPU. In this example the upper five address lines of the
MPU are all high, selecting the highest order mapping
register. The operate key register still contains $00 since it has
never been written and, thus, its contents match the MMUOQ
key value register. The system is still in task 0 because of the
S bit is set and the operate key register is not used. As a
matter of convience and logical program flow, the high order
mapping register should contain all 1s so that the next in-
struction following the write to the key value register (Figure
23) will be fetched from the next physical memory location;
i.e., $1FF853. This is by no means necessary; it is just con-
venient and will make system software easier to follow.

An examination of the MMU registers show all needed
mapping registers are programmed and each key value
register contains a unique value. The S bit is set meaning that
task 0 of MMUO is being used. The access key register will
contain the key value and task number of the last MMU in
which the registers were modified. The operate key will con-
tain the key value and task number that will be used when the
program jumps from the operating system. It is absolutely
essential to note that as long as the S bit is set, only task 0, of
the MMU in which the key value register is $00 can be used.
Only a DMA transfer indicated by BA=1, BS=1 will over-
ride this condition. Then task 1 of MMUO is used.

To switch from task 0, the fuse register of all MMUSs must
be written. This is the only method that can be used to leave
task 0 except for DMA cycles. The fuse register is loaded
with the number of cycles which must occur after the write to
the fuse register until task N is entered. The instruction
following the write to the fuse register will generally be a
branch, jump, or return from interrupt. The fuse register will
be decremented on each successive valid (non-DMA) pro-
cessor cycle. When the fuse register reaches zero, the system
will be operating in task N.

INTERRUPT HANDLING

If an interrupt is received by the processor, it will switch
automatically to task O as soon as the stacking operation is

17

complete. The stacking operation interrupt timing for TRQ
and NMI is presented in Figure 24 and is shown in Figure 25
for FIRQ. The stack pointer is not saved on the stack;
therefore, it is the responsibility of the operating system in
task O to retrieve and store the stack pointer from the task
that was just exited. Normally this would be fairly straight-
forward. Special cases arise when one or more interrupts are
recognized during the stacking operation for a current inter-
rupt. For recognition of an additional interrupt to occur, the
second interrupt must be valid beginning with cycle 16 of an
NMI, TRQ, SWI, SWI2, or SWI3 stacking operation.
Recognition must occur by cycle 7 of an FIRQ stacking
operation. For NMI to be recognized, only a transition must
be detected. Once the negative transition is recognized, the
logic level on the NMI pin is no longer important. However,
TRQ and FIRQ must remain at a logic 0 level for the three
cycles immediately preceding cycle 16 or cycle 17 of the par-
ticular stacking operation or they will not be recognized.

If another stacking operation begins before the stack
pointer for the prior task has been stored, data in task 0 may
be lost. This means that the program will not be able to find
its way back to task N. A method must be found to hold off
other interrupts until information can be stored which directs
the processor back to task N. An understanding of the inter-
rupts and how they work is needed to develop a simple
system of allowing multiple interrupts. The interrupts set the
I and F bits according to Table 9.

If NMT occurs first, it will set both interrupt bits of the
condition code register, masking further hardware inter-
rupts. The only way for a software interrupt to occur before
the stack pointer, from the prior task, could be saved, is for a
software interrupt to be the first instruction of the NMI ser-
vice routine. By causing the NMI service routine to im-
mediately save the task N stack pointer, this problem will
never be encountered in returning to task N.

An FIRQ is the next highest priority hardware interrupt. If
software interrupts are treated the same as with NMI, then
SWIs will not be a problem. However, if NMI is recognized
before the stack pointer is stored, that data will probably be
lost. Since the NMI input is level sensitive, there is nothing
that can be done to hold off an NMI once it occurs. This
means that there is no way to absolutely guarantee that the

Register D7 D6 D5 D4 D3 D2 D1 DO Logical Address
—
00 PA20 PA19
0000-0
01 PA18 PA17 PA16 PA15 PA14 PA13 PA12 PAN 4 7FF
02 PA20 PA19 s SOFFF
03 PA18 PA17 PA16 PA15 PA14 PA13 PA12 PA11
Access 04 PA20 PA19
1000-$17FF
Key 05 PA18 PA17 PA16 PA15 PA14 PA13 PA12 PAN ¥
“'Window"’ o
~ . -
~ P
~ o e
/ o) /
/ o yd
PA19
SE PA $FBOO-$FFFF
L 3F PA18 PA17 PA16 PA15 PA14 PA13 PA12 PA11
40 KV MMUO
41 KV MMU1 Only one Key Value Register for
42 KV MMU2 each MMU, but all Key Value
43 KV MMU3 Registers fall in this range
44 KV MMU4
45 KV MMU5
46 KV MMU6
47 KV MMU7
48 A [s System/User flag bit
49 Fuse ¥ai SCWitChtIFuZe d Th h
ask Currently Accesse roug
4A Access Key Register $00-$3F
4B Operate Key Current Task
4C o
P o e
yd o _~ Undefined
~ ~
7F 1 3 i i 9 Il i 3 1
¥ Ll L] T v Al L] 1
Notes:
1. The contents of bytes $4C through $7F are undefined and do not respond to any reads or writes.
2. The Access, Operate and Key Value Registers are cleared on reset. The S-bit is set.
3. Unused bits of defined registers always read zeros.
4. Locations $40-$47 are accessible only when KVA=0.
5. In multiple MMU configurations, the MMU whose Key Value Register matches the upper three bits of the access key will respond to a pro-

cessor read of locations $48-$4B. Processor writes to these registers will cause the data to be written to all MMUs simultaneously.

FIGURE 18 — MMU Register Model

return information can be saved if NMIs are allowed. An
FIRQ does set both interrupt bits. Thus it will automatically
hold off an TRQ should it occur.

An TRQ only sets the I bit of the condition code register.
This does not allow it to automatically mask an FIRQ if it
occurs. Since both an TRQ and FIRQ must remain valid for
three cycles to be recognized, a hardware property of the
MC6809 can be employed to hold off FIRQ. If an interrupt
signal is ORed with BS before connection to the FIRQ input,
then FIRQ will never be recognized during a stacking opera-
tion since FIRQ will be removed during cycles 17 and 18 of
the stacking operation for TRQ. This will allow the TRQ ser-
vice routine to execute at least one instruction. If that in-
struction sets the F bit in the condition code register, FIRQ
will successfully be masked. The interrupt routine can enable
interrupts when it has saved all necessary information.

An SWI sets both the I and F bits. This keeps IRQ and
FIRQ from preventing the return information from being

18

lost. An NMI cannot be held off; therefore, the system
should be designed such that NMTs occur only in response to
system crashes or the like.

Software interrupts SWI2 and SWI3 do not set either the I
or F bits. This means that either IRQ or FIRQ can prevent
the return information from being saved. By ORing TRQ and
FIRQ with BS before applying them to their respective inputs
on the MC6809, sufficient time will be allowed to mask off
the I and F bits in the condition code register by SWI2 and
SWI3. An NMI cannot be handled safely as in the case of all
other interrupts. Once again, it must be emphasized that
there is not a software method to disable NMI; therefore, its
use, except for system crash recovery, should be discouraged.

Generally speaking, NMI can be successfully handled
while operating in task 0. This is because there is no task
switch since the program is already in task 0. The stack
pointer will remain valid as long as no task switch takes
place. If hardware is built to disable NMI and if the system is

Mapping RAM
Task O Registers
- askTRe—glst;s ——————
ANAE— — — — — 2N —— - PA11-PA20
Task 2 Registers
Task 3 Registers
Output
A Task Select Enable
Access Key
€—— BA
.
l«— BS
B Task
g >)I Operate Key |_.> Select j«— RESET
b Logic
(=) f
l—— E
)I Fuse I(—)
_ 7 -
DO-D7 s S
RSO-RS6 —3»
R/W —»{ Reqister
RVA —> Select MapA‘z;g?egsAM
KV Logic
RA ——»

FIGURE 19 — MC6829 MMU BLock Diagram

in any task but task 0, then NMI cannot be used to recover
from system crashes. Designers must be cautioned again that
NMI should not be used for program control in systems us-
ing the MC6829 unless all possible avenues for the program
to lose the return information have been explored and
remedied.

TASK SWITCHING

The operating system must eventually execute an RTI in-
struction to allow the processor to reload the MPU registers.
The map switch must occur after the opcode for the RTI is
fetched and before the first register is pulled from the stack.
Prior to the RTI, the operating system must reload the saved
stack pointer for the task about to run. There must be no
interrupts from the time the stack pointer is reloaded until
the RTI is executed. An interrupt here would cause the
system to treat the task N stack pointer as the task 0 stack
pointer. The signal to the MMU that the map should be
returned to the user task is noted by a write to the fuse
register. When a write to this register is detected, the value
written is loaded into the counter and it begins to decrement
by one for every non-DMA processor cycle. When the
counter underflows (reaches zero), the S bit is cleared and the
next processor cycle will be mapped using the task number in
the operate key. For most systems, a 1 would be written to

19

the fuse register immediately before the RTI opcode is
executed. This delay allows enough time for the RTI opcode
to be fetched (registers are not pulled from the stack until the
third cycle of the RTI). Note that DMA operations are still
possible within this critical section. The fuse register will
count only non-DMA cycles after the write to the fuse
register in order to be sure of when to switch the map. Bus
dead cycles are also excluded when clocking the fuse register.
Thus, the fuse register is inhibited from counting whenever
BA is high and for the cycle after the BA high to low transi-
tion. The common exit point for all operating system func-
tions is detailed in the programming example shown in Figure
26.

The I and F bits of the condition code register are used to
mask interrupts during the RTI (return from interrupt) in-
struction. When the operating system masks and unmasks
these bits, no problem is encountered in properly restoring
the MPU registers using an RTI instruction. Any time an
interrupt occurs, the E bit of the condition code register will
be properly set and then the MPU registers will be stacked in
the current task. The last register stacked is the condition
code register. The condition code register is the first one
pulled from the stack upon return. The E and F bits are
immediately examined to determine if a return from a fast
interrupt is being executed or if the entire status needs to be

Vss]' @ 4 40[1PAT1
A15[]2 391 PA12
A14Q]3 38[1PA13
A13[] 4 37[PA14
A12[]5 36[1PA1S
Al B[PAle
RAQ 3afPA17
RS6Q 8 33{IPA18
RS5}9 32[1PA19
Rs4[]10 31 PA20
RS3[1 30f107
RsS2[12 29[] D6
RS1[]13 28105
Rso[j14 27[1D4
KVA[hs 261 D3
afe 25102
Q7 24101
BA[]18 23[100
BS[19 2fVce
RESET[20 210rR/W

FIGURE 20 — MC6829 MMU Pin Assignment

Change from Task #0 to Task n

LDA #n
STA OPERATE
LDA #4
STA FUSE
JMP $XXXX
Cycle by Write #4
Cycle to Fuse Address Address Task N
Operation Register JMP High Low VMA Opcode
Fuse Register

Contents

0 l 4 | 3 | 2 | 1

FIGURE 21 — Programming Example to Change from Task 0

20

Up to 8 6829s

System Bus

NS

Task 28-31 in Parallel
(]
|
Task 8-11
Task 4-7
BA 6829
BS
Task 0 PA20 PA20
‘ A
Q » Task 1
MC6809/ MC6809E Task 2
Ao PAN
A1 Task 3
A10
\
AQ PAO
Task 0= Operating System Task
Task 1=DMA Task
Tasks 2-31=User Tasks
DO-D7
: PAO-PA19
| MC6829
I PA20
BA, BS, E, Q A
RSO0-RS6 [«
KVA A
©
A11-A15 <o'(
4
MC6809
; MC6809E
00-D7 AC-A10
] g . 4)
2 <
| J\ /L] 2 :
] Decode 2
K_VA1 i} _
RSO-RS6 Jen
_ BA, BS, E, Q PAZ0 B
RIW __l MC6829
DO-D7
R/IW

VMA

System
Memory

FIGURE 22 — MMU System Configuration

21

F84E LDA 86
F850 STA B7
F853 Next Instruction

#3500
$F840

Write MMUO Key Value Register 1
PA11-PA20=1
Physical Address=$1FF850

PA11-PA20= Contents of Register
3F of MMUO, Task 0

Physical Address=$1FF853

if 3F contains $O3FF

FIGURE 23 — Program for MMUO and Key Value Initialization

retrieved. This allows the MPU to pull the proper number of
bytes from the stack.

PROGRAMMING
Each of the system MMUSs must be initialized before the

system can be utilized. Only the upper 2 kilobytes of memory.

are available until after the initialization is complete. The
MMUINIT program first writes key values to MMUs 1
through 7, followed by programming the mapping registers
of MMUO, task 0. The key value for MMUQO is then loaded.
Table 10 contains a copy of the initial MMU memory map.
After each MMU is initialized per Table 10, ASSISTO09 is
entered.

The ASSISTO09 monitor program is a useful monitor that
allows tracing through programs in task 0 only (because it
uses NMI). Also, ASSIST09 contains routines PUNCH and
LOAD. These two routines allow the writing and reading of
programs contained on the audio cassette tapes. The system
can be further configured using ASSIST09. Once the MMUs
and peripheral devices are initialized, ASSIST09 would not
generally be used except for interrupt vector processing. A
complete listing of the MMUINIT (MC6829 MMU IN-
ITIALIZATION) program can be found at the back of this
application note.

22

The CONST program (MC6809-MC6829 MMU
MONITOR PROGRAM) controls the use of the MMUs. It
allows pages to be added and deleted from tasks, examina-
tion and change of memory, display of MPU registers, and
display of MMU registers for the current task. This program
forms the basis of an MMU operating system and a complete
command summary is found at the back of this application
note.

CONCLUSION

In future systems, memory management will become a
topic of increasing importance. RAM densities are sure to in-
crease into the 512 kilobit range in a relatively short time.
This means just one RAM chip could fill the entire address
space of the current 8-bit processor. Obviously, a system can-
not function only from RAM as it would have no restart vec-
tors or boot strap programs. If history repeats itself, the cost
per bit in these RAMs will not appreciably increase over the
cost per bit of smaller RAMs; this, of course, encourages
their use. With the prospect of a single RAM or ROM chip
filling an entire memory space, memory management not on-
ly becomes desirable but necessary. With the elements
presented in this application note, everything is in place to
begin large 8-bit MPU system design.

€C

Last cycle

of Current Instruction

Instruction Fetch

| = Interrupt Stacking and Vector Fetch Sequence | |
[m=-2|m=1] m |m+1|m+2|m+3|m+4|m+5|m+6|m+7|m+8|m+9 |m+10/m+11|m+12|m+13|m+14|m+15|m+16|m+17|m+18] n | n+1]

N [[[I I

Y s Y Y Y e e e e e e e e Y e e Y Y Y e e Y Y o N
|

Adress X X XXX O O) X X X O o X O C X O O C

Bus PC PC FFFF SP—-1 SP—2 SP-3 SP-4 SP-5 SP—6 SP-7 SP—8 SP-9SP-10SP-11SP-12 FFFF FEEC FFFD FFFF New New
tPCS <EI_EN|§_'8) (NMI) PC PC+1
Tz%” (RO (Bo)

Data___ X X X X XX X e X X XlYHX - X X X XX XX X XX X X
IXL

VMA PCL PCH USL USH IYL IXH DP ACCB ACCA CCR VMA New New VMA

PCH PCL
R/W Y X Y \ /

BA X X_ A

8BS X__X__\ /[\

N U U [) e O e I O

NOTE: Waveform measurements for all inputs and outputs are specified at logic high=2 0 V and logic low=0 8 V unless otherwise specified
E clock shown for reference only

FIGURE 24 — Stack Operation Timing for TRQ and NMI

124

Last Cycle

. Instruction
|of Current |« Interrupt Stacking and Vector Fetch Sequence »>| Fetch |
Instruction

|m—2|m—1|m |m+‘||m+2|m+3[m+4|m+5|m+6|m+7|m+8|m+9|n+‘lIn+I

G20 I [S B
ol N [[I I B B o
"o X X X XXX XA __X__X C_ XX

FFFF SP-1 SP-2 SP-3 SFFFF SFFF6 $FFF7 SFFFF New PC New PC+1
’*tpcs

a
S G S G G G G G SIS S G G D G &

VMA New PCH New PCL VMA

w X X . /
7 G G
os X X\ / A\
30 [Y I O

NOTE: Waveform measurements for all inputs and outputs are specified at logic high=2 0 V and logic low=0 8 V unless otherwise specified
E clock shown for reference only

FIGURE 25 — Stack Operation Timing for FIRQ

EXIT LDA TASK GET NEXT TASK TO RUN
STA OPFRAT AND PLACE IS IN THE OPERATE KEY
STS OSSP SAVE CURRENT OS STACK POINTER
ORCC #F+1 SET F AND | (ENTER CRITICAL SECTION)
LDS SAVESP RESTORE USERS STACK POINTER
LDA #1 CAUSE MAP SWITCH 1 CYCLE AFTER WRITE
STA FUSF TO FUSE REGISTER
RTI RETURN TO USER TASK
L]
. MAP SWITCH OCCURS, USER TASK RESUMES
[]
FIGURE 26 — Exit Routine from Task 0
TABLE 10 — Initial MMU Memory Map
MMU
Register Data Physical Address
31 03FF 1FF8xx INITMMU + MMUs
30 03FE 1FFOxx ASSIST09
29 03FD 1FE8xx (Reserved for Peripherals)
28 03FC 1FEOxx DMA, ACIA, PTM, ADLC
27 0018 00D8xx Task O Stack RAM
26 001A 00DOxx Task O Stack ROM
25 03F9 1FC8xx CONST
24 03F8 1FCOxx CONST
23 0017 00B8xx RAM
22 0016 00BOxx RAM
21 0015 00A8xx RAM
20 0014 00AOxx RAM
19 0013 0098xx RAM
18 0012 0090xx RAM
17 0011 0088xx RAM
16 0010 0080xx RAM
15 000F 0078xx RAM
14 000E 0070xx RAM
13 000D 0068xx RAM
12 000C 0060xx RAM
1 0008 0058xx RAM
10 000A | 0050xx _RAM
9 0009 0048xx RAM
8 0008 0040xx RAM
7 0007 0038xx RAM
6 0006 0030xx RAM
5 0005 0028xx RAM
4 0004 0020xx RAM
3 0003 0018xx RAM
2 0002 0010xx RAM
1 0001 0008xx RAM
0 0000 0000xx RAM

25

PAGE

00001

00002

00003

00004

00005A
00006

00007

00008

00009

00010A
00011A
00012A
00013A
00014A
00015A
00016

00017

00018

00019A
00020A
00021A
00022A
00023A
00024A
00025A
00026A
00027A
00028A
00029A
00030A
00031A
00032A
00033A
00034A
00035A
00036A
00037A
00038A
00039A
00040A
00041A
00042A
00043A
00044A
00045A
00046A
00047A
00048A
00049A
00050A
00051A
00052A
00053A
00054A
00055A
00056A
00057A
00058A

001

FCOO

FCOO0
FCO3
FCO5
FCO7
FCO08
FCOA

FCOC
FCOF
FCl12
FCl4
FC17
FC19
FClC
FCLE
Fc21
FC24
FC27
FC29
FC2c
FC2E
FC32
FC36
FC38
FC3C

FC3E:

FC40
FC43
FC45
FC48
FC4A
FC4D
FCAF
FC52
FC54
FC57
FC59
FC5C
FC5E
FC61
FC63
FC66
FC68
FC6B
FC6D
FC70
FC72

MMUINIT

8E F841
86 01
A7 80
4C

81 08
26 F9
8E 03FF
BF F83E
30 1F
BF F83C
30 1F
BF F83A
30 1F
BF F838
8E 0018
BF F836
30 1F
BF F834
30 1F
108E 03F9
10BF F832
31 3F
10BF F830
30 1F
30 1F
BF F82E
30 1F
BF F82C
30 1F
BF F82A
30 1F
BF F828
30 1F
BF F826
30 1F
BF F824
30 1F
BF F822
30 1F
BF F820
30 1F
BF F81E
30 1F
BF F81cC
30 1F
BF F81A

.SA:

1

FCO

A
A
A
A
5

>

>

> > > > > > > >

> > > P P P> > P > P

MC6829 MMU INITIALIZATION

TTL

ORG
OPT

X* X

LDX
LDA
NEXT STA
INCA
CMPA
BNE

*

MC6829 MMU INITIALIZATION

$FCOO0
ABS,LLE=82,S,CRE

#$F841 MMU #1 ADDRESS

#$01

0,X+ WRITE KEY VALUE TO MMU
NEXT MMU

#$08 LAST MMU?

NEXT

: ALL MAPPING REGISTERS FOR MMU O ARE INITIALIZED

LDX
STX
DEX
STX
DEX
STX
DEX
STX
LDX
STX
DEX
STX
DEX
LDY
STY
LEAY
STY
DEX
DEX
STX
DEX
STX
DEX
STX
DEX
STX
DEX
STX
DEX
STX
DEX
STX
DEX
STX
DEX
STX
DEX
STX
DEX
STX

#$03FF
$F83E PHYS ADDR $1FF800-$1FFFFF

$F83C PHYS ADDR $1FFOO0O0-S$1FF7FF
$F83A PHYS ADDR $1FE800-$1FEFFF

$F838 PHYS ADDR $1FEOOO-S$1FE7FF
#$0018B

$F836 PHYS ADDR $00D800-$00DFFF
$F834 PHYS ADDR $00D000-$00D7FF
4$03F9

$F832 PHYS ADDR $1FC800-$1FCFFF
-1,y

$F830 PHYS ADDR $1FCO00-$1FC7FF

$F82E PHYS ADDR $00B800-$00BFFF
$F82C PHYS ADDR $00BO0O0-$00B7FF
$F82A PHYS ADDR $00A800-$00AFFF
$F828 PHYS ADDR $00A000-SOOA7FF
$F826 PHYS ADDR $009800-$009FFF
$F824 PHYS ADDR $009000-$0097FF
$F822 PHYS ADDR $008800-$008FFF
$F820 PHYS ADDR $008000-$0087FF
$F81E PHYS ADDR $007800-$007FFF
$F81C PHYS ADDR $007000-$0077FF
$F81A PHYS ADDR $006800-$006FFF

REG
REG
REG
REG
REG
REG

REG

REG

REG
REG
REG
REG
REG
REG
REG
REG
REG
REG

REG

31
30
29
28
27
26

24

23
22
21
20
19
18
17
16
15
14
13

26

PAGE 002 MMUINIT .SA:l
00059A FC75 30 IF

00060A FC77 BF F818 A
00061A FC7A 30 1IF

00062A FC7C BF F816 A
00063A FC7F 30 1F

00064A FC81 BF F814 A
00065A FC84 30 IF

00066A FC86 BF F812 A
00067A FC89 30 IF

00068A FC8B BF F810 A
00069A FC8E 30 1F

00070A FC90 BF F8OE A
00071A FC93 30 IF

00072A FC95 BF F80C A
00073A FC98 30 IF

00074A FC9A BF F80A A
00075A FC9D 30 IF

00076A FCOF BF F808 A
00077A FCA2 30 IF

00078A FCA4 BF F806 A
00079A FCA7 30 IF

00080A FCA9 BF F804 A
00081A FCAC 30 IF

00082A FCAE BF F802 A
00083A FCB1 30 1F

00084A FCB3 BF F800 A
00085A FCB6 7E F037 A
00086

00087

00088

00089

00090

00091

00092

00093

00094

00095

00096A FFFO

00097A FFFO F7D4 A
00098A FFF2 F708 A
00099A FFF4 F7DC A
00100A FFF6 FT7EOD A
00101A FFF8 F7E4 A
00102A FFFA F7E8 A
00103A FFFC F7EC A
00104A FFFE FCOO A
00105

TOTAL ERRORS 00000--00000
TOTAL WARNINGS 00000--00000

FCO5 NEXT 00012*00015

XX X X X X % X X X

MC6829 MMU INITIALIZATION

DEX
STX
DEX
STX
DEX
STX
DEX
STX
DEX
STX
DEX
STX
DEX
STX
DEX
STX
DEX
STX
DEX
STX
DEX
STX
DEX
STX
DEX
STX
JMP

$F818
$F816
$F814
$F812
$F810
$F80E
$F80C
$F80A
$F808
$F806
$F804
$F802

$F800
$F037

PHYS ADDR $006000-$0067FF REG 12
PHYS ADDR $005800-$005FFF REG 11
PHYS ADDR $005000-$0057FF REG 10
PHYS ADDR $004800-$004FFF REG 9
PHYS ADDR' $004000-$0047FF REG 8
PHYS ADDR $003800-$003FFF REG 7
PHYS ADDR $003000-$0037FF REG 6
PHYS ADDR $002800-$002FFF REG 5
PHYS ADDR $002000-$0027FF REG 4
PHYS ADDR $001800-$001FFF REG 3
PHYS ADDR $001000-$0017FF REG 2
PHYS ADDR $000800-$000FFF REG 1
PHYS ADDR $000000-$0007FF REG O

THE START ADDRESS FOR THE MMU MONITOR IS $C008. IT IS
PERMISSIBLE TO JUMP DIRECTLY TO THE MMU MONITOR FROM
THIS JUMP INSTRUCTION. HOWEVER, ASSIST09 MUST BE IN
PLACE BECAUSE THE INTERRUPT VECTORS IN THIS PROGRAM
ARE BASED ON ASSISTO9.

BOTH THE MMU MONITOR AND ASSISTO9 WILL WORK ONLY 1IN

TASK 0

ORG
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
END

$FFFO
$F7D4
$F7D8
SF7DC
S$F7ED
SF7E4
SF7E8
$F7EC
$FCO0

RESERVED VECTOR
SWI3 VECTOR
SWI2 VECTOR
FIRQ VECTOR

IRQ VECTOR

SWI VECTOR

NMI VECTOR

27

PAGE 001 CONST
00001A €000
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058

.SA:

0000
0001
0002
0001
0003
0004
0006
0008
000A

0080
0040
0020
0010
0008
0004
0002
0001

007F
00BF
00DF
00EF
00F7
00FB
00FD
00FE

FFFO
FFF2
FFF4
FFF6
FFF8
FFFA
FFFC
FFFE

0000
0007
0008
0009

> >

>
¥ FO<NZ—I MM x %

bbb _Ib_Jb g b b

S>> >

> > >

X X X X

COFF
AOFF
BOFF
DOFF
DPOFF
XOF F
YOFF
UOFF

% O
o
b=t
-n

MC6809-MC6829 MMU MONITOR PROGRAM

ORG
TTL
OPT

$C000
MC6809-MC
ABS,LLE=8

6829 MMU MONITOR PROGRAM
2,S,CRE

MANIFEST CONSTANTS
REGISTER OFFSETS FROM STACK TOP

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

—HOOARWHFNDFO

0

CONDITION CODES

A q ®
B P 1
D SAME AS A] P
DPR L]
X L S
Y | H
u v 9
PC

CONDITION CODE BITS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

°NOT'

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

%10000000
%01000000
%00100000
%00010000
%00001000
%00000100
%00000010
%00000001

CONDITION

SFF-E
SFF-F
SFF-H
SFF-1
$FF-N
SFF-1
SFF-V
$FF-C

ENTIRE FLAG
FIRQ BIT

HALF CARRY
INTERRUPT MASK
NEGATIVE

ZERO

OVERFLOW

CARRY

CODE BITS

THE INTERRUPT VECTORS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$FFFO
$FFF2
SFFF4
SFFF6
SFFF8
SFFFA
SFFFC
SFFFE

RESERVED VECTOR

SOFTWARE INTERRUPT 3

SOFTWARE INTERRUPT 2

FAST INTERRUPT

EXTERNAL INTERRUPT

SOFTWARE INTERRUPT (SYS CALL)
NON-MASKABLE INTERRUPT
PROCESSOR RESTART VECTOR

CHARACTER CONSTANTS

EQU
EQU
EQU
EQU

$00
$07
$08
$09

END OF STRING
BELL (©G)
BACKSPACE
TAB (®1)

(®H)

28

PAGE

00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116

002

CONST

.SA:

000A
000C
000D
0018
0020
007F

0000
0001

F800
F840
F847
F848
F849
F84A
F84B

0800
0020
0020
0400
0020
0200
E008
D7A0
D7B0O
D7AF

0004
1000

1

> > >

> >

> rP>> > >>> > r>>

A
A

LF

FF

CR

ESC
BLANK
RUBOUT

GETC
PUTC

* OX X ¥

*
MMU
MMUO
MMU7
SBIT
FUSE
ACCESS
OPERAT
*

PSIZE
NTASK
NPAGE
MAXPAG
MAXTAS
FAULT
CONSOL
STACKP
SPTAB
CURTAS

*

¥ % X X X X X X X X F X X N ¥

*

FREE
FREEPG
*

SYS
SWI

EQU
EQU
EQU
EQU
EQU
EQU

SYS CALL NAMES

EQU
EQU

$0A
$0C
$0D
$18
$20
$7F

0
1

MC6809-MC6829 MMU MONITOR PROGRAM

LINE FEED (®J)

FORM FEED (L)
CARRIAGE RETURN (©M)
ESCAPE (©[)

ASCII BLANK

RUBOUT (DEL)

GET NEXT CHARACTER FROM STANDARD
PUT CHARACTER ON STANDARD OUTPUT

END OF CONSTANTS

EQUATES FOR 6829 REGISTERS

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$F800

MMU+$40
MMU+$47
MMU+$48
MMU+$49
MMU+S$4A
MMU+$4B

$800
32

32
$400
32
$200
$E008
$D7A0
$D78B0O
$D7AF

START OF MMU REGISTERS
KEY VALUE FOR MMUO

KEY VALUE FOR MMu7
SYSTEM/USER FLAG (BIT 0)
COUNT-DOWN FUSE

ACCESS KEY

OPERATE KEY

PAGE SIZE

NUMBER OF TASKS IN SYSTEM

NUMBER OF PAGES PER TASK

MAXIMUM NUMBER OF PAGES IN PHYSI
MAXIMUM NUMBER OF TASKS IN SYSTE
PAGE FAULT PAGE (FIRST PAGE OF N
EXORCISOR ACIA

CONVENIENT STACK START

ADJOINS BOTTOM OF STACK
CURRENTLY EXAMINED TASK

MEMORY MANAGEMENT UNIT MONITOR

COMMANDS ARE:

VNI +O0NXIODOH

EQU
EQU

MACR

EXAMINE/CHANGE CURRENT TASK NUMBER
DISPLAY CPU AND MMU REGISTERS FOR CURRE
DISPLAY REGISTERS

EXAMINE /CHANGE MEMORY

EXAMINE /CHANGE STACKP POINTER
START/CONTINUE TASK EXECUTION

ADD RAM PAGE

REMOVE RAM PAGE

ZAP MMU REGISTERS TO FAULT

COMMAND SUMMARY

4
$1000

ADDRESS OF FREE MMU REGISTER
ADDRESS IN MAP 0 OF FREE PAGE

29

PAGE

00117

00118

00119A
00120A
00121A
00122A
00123A
00124

00125

00126

00127A
00128A
00129

00130A
00131A
00132

00133A
00134A
00135

00136A
00137A
00138A
00139A
00140A
00141A
00142A
00143A
00144A
00145A
00146A
00147A
00148A
00149A
00150A
00151A
00152A
00153A
00154

00155A
00156A
00157A
00158

00159

00160

00161

00162A
00163A
00164A
00165A
00166A
00167A
00168A
00169A
00170A
00171A
00172A
00173A
00174A

003

cooo
€000
Cc003
C006
coos8

cooB
COOF

c013
Cc016

€019
coic

CO1F
€022
co24
C026
c028
CO2A
c02D
€030
C033
C035
C037
C039
CO3B
C03D
CO3F
co41
c045
co47

049
co4B
c04D

CO4F
C050
C052
C053
C055
C056
C058
C059
C058B
C05¢C
CO5E
CO5F
co61l

MMA

8E
BF
20
16

10CE
10FF

CE
17

1F
TF

17
86

84
17
17
30
6D
217
Al
27
30
20
EC
30
AD
20

86
20

.SA:

c008
D7DO
03

04c9

D7A0
D7BO

E008
0588

D7AF
F848

0469
5F

1F
0456
03E5
8C 1C
84
12
84
04

8D 3F

52
02C5
2B
01B9
44
0396
2D
01ES
54
020cC
5A
037E
4D

1

A
cooB
Cc4D4

C48B
A

A
€483
C415

A
c049
A
CO3F
A
€033

MC6809-MC6829 MMU MONITOR PROGRAM

FCB ®©0
ENDM

START

*

MAIN

Loorp

A LOOP2

BB
A
COlF
A

COlF

> P> >

OFFSET

ORG
LDX
STX
BRA
LBRA

$C000
#$C008
$D7D0O
INIT
SWIH

SWI VECTOR VALUE OF SWI
ASSISTO09 SWI VECTOR LOCATION

JUMP TO THE SWI HANDLER

INITIALIZE ONLY TASK 0'S SAVED STACKP POINTER

LDS #STACKP SETUP STACK FOR MONITOR
STS SPTAB REWRITE TASK 0'S SAVED STACKP AD
LDU #CONSOL

LBSR INZACI INITIALIZE THE TERMINAL
CLR CURTAS START BY EXAMINING TASK O
CLR OPERAT AND WE'RE RUNNING FROM ZERO TO0O
LBSR CRLF PRINT ON NEXT LINE

LDA #PROMPT

SYS PUTC PRINT PROMPT

SYS GETC AND WAIT FOR INPUT

ANDA #$TF MASK PARITY

LBSR PUTS PRINT A BLANK

LBSR MAPUP CONVERT LOWER TO UPPER CASE
LEAX <CTAB,PCR TABLE OF VALID COMMANDS
TST » X END OF TABLE TEST

BEQ HUH COMMAND NOT FOUND

CMPA W X MATCH COMMAND

BEQ LOOP2 FOUND IT

LEAX 3,X GO TO NEXT ENTRY

BRA LoopP

LDD 1,X PICKUP OFFSET FROM TABLE
LEAX 0,PCR

JSR D,X GO TO ROUTINE

BRA MAIN

LDA #'? UNRECOGNIZED COMMAND

SYS PUTC

BRA MAIN LOOP AROUND

CTAB --- TABLE OF COMMAND CHARACTERS

FCB 'R DISPLAY REGISTERS

FDB REGS-OFFSET

FCB '+ ADD PAGE TO TASK

FDB ADDPAG-OFFSET

FCB 'D DISPLAY CURRENT TASK REGISTERS
FDB DISPLA-OFFSET

FCB ' - REMOVE PAGE FROM TASK

FDB REMOVE-OFFSET

FCB 'T CHANGE CURRENT TASK

FDB TASK-OFFSET

FCB 'z ZAP TASK REGISTERS

FDB ZAP-0FFSET

FCB "M EXAMINE /CHANGE MEMORY

30

PAGE

00175A
00176A
00177A
00178A
00179A
00180A
00181A
00182A
00183A
00184A
00185

00186

00187

00188A
00189A
00190A
00191

00192

00193

00194A
00195A
00196A
00197A
00198A
00199A
00200A
00201A
00202A
00203A
00204A
00205A
00206A
00207A
00208A
00209A
00210A
00211A
00212A
00213A
00214A
00215A
00216A
00217A
00218A
00219

00220A
00221A
00222A
00223A
00224

00225

00226

00227

00228

00229

00230A
00231A
00232A

004

062
C064
C065
067
C068
CO6A
C06B
C06D
CO6E
€070

c071
co74
co77

co78
CO7A
c0o8D
CO8F
cos1
C0B3
COEOQ
COE2
COFE
€100
Cl1F
Ci21
C145
c147
C163
Cl65
Cl7F
Cc181
€192
C194
C1A8
C1AA
C1CA
cicc
C1DF

ClEO
ClEE
ClEF
C1FD

C1FE 30
c201 17
c204 17

.SA:1

8C 04
0420 C497

0D

0D
54
0D
44
0D
4D
0D
52
0D
53
0D
24
0D
47
0D
2B
0D
2D
0D
5A
0D
3F
00

50
00
20
00

8C DF
0293 Cc497
024E C455

—
~
(3,
w

> P> >

> > > oI35 b 3 » P_E-_b_b_B_D_b_lb__lb_Jb_s s b b b ¥

MC6809-MC6829 MMU MONITOR PROGRAM

FDB MEMORY-OFFSET
FCB G BEGIN/CONTINUE EXECUTION OF TASK
FDB EXECUT-OFFSET
FCB 'S EXAMINE /CHANGE STACKP POINTER
FDB STACKP-OFFSET
FCB '$ DISPLAY PAGE (256 BYTES) IN HEX
FDB HEXDUM-OFFSET
FCB "2 ASKING FOR HELP
FDB HELP-OFFSET
FCB 0 END OF TABLE
HELP --- PRINT LEGAL COMMANDS SUMMARY
LEAX <HELPIN,PCR
LBSR PSTRNG
RTS
HELPINFO --- TEXT EMITTED FOR HELP COMMAND
FCB CR,LF
FCC JLEGAL COMMANDS ARE:/
FCB CR,LF
FCC :T DISPLAY/CHANGE CURRENT TASK:
FCB CR,LF
FCC /D DISPLAY MMU REGISTERS FOR CURRENT
FCB CR,LF
FCC M EXAMINE /CHANGE MEMORY:
FCB CR,LF
FCC :R EXAMINE TASK'S REGISTERS:
FCB CR,LF
FCC :S EXAMINE /CHANGE STACKP POINTER:
FCB CR,LF
FCC :$ DISPLAY A PAGE IN HEX:
FCB CR,LF
FCC :G BEGIN/CONTINUE TASK:
FCB CR,LF
FCC /+ ADD A PAGE/
FCB CR,LF
FCC /- DELETE A PAGE/
FCB CR,LF
FCC /1 ZAP PAGES BACK TO DEFAULT/
FCB CR,LF
FCC /? THIS MESSAGE/
FCB E0S
FCC /PHYSICAL PAGE=/
FCB EOS
FCC / LOGICAL PAGE=/
FCB E0S

ADD PAGE XXX TO CURRENT TASK AT PAGE PP (A XXX

LEAX
LBSR
LBSR

XXX
PP

$000 TO MAXPAG
$00 TO NPAGE

PHYMSG,PCR PROMPT FOR PHYSICAL PAGE#
PSTRNG
GET3HX ASK FOR PAGE

31

PAGE

00233A
00234A
00235A
00236A
00237
00238A
00239A
00240A
00241A
00242A
00243A
00244
00245
00246
00247A
00248A
00249A
00250A
00251A
00252
00253
00254
00255
00256
00257A
00258A
00259A
00260A
00261A
00262A
00263A
00264A
00265A
00266A
00267A
00268A
00269
00270
00271
00272A
00273A
00274A
00275A
00276
00277
00278
00279A
00280A
00281A
00282A
00283A
00284A
00285A
00286A
00287A
00288
00289
00290

005

c207
€209
20D
C20F

c211
c214
c217
C21A
c21cC
C21E

c220
c222
€225
C226
€229

C22A
c22D
€230
€233
€235
€237
€239
C238B
C23E
C23F
€243
C246

c247
c249
c24c
C24F

€251
254
€257
C25A
C25D
C25F
€261
€263
C266

MMA

25
1083
24
1F

30
17
17
25
81
24

8D
8E
48
10AF
39

30
17
17
25
81
24
8D
8E
48
108E
10AF
39

34
B6
B7
35

B6
17
17
17
25
81
24
B7
39

.SA:1

20
0400
1A
02

€229
A
€229
A

8C DB

0280 C497
0227 C441
0D €229
20 A
09 €229

25
F800

c247
A

86

8C C2

0267 C497
020E C441
11 C246
20 A
0D C246
0C c247
F800 A

0200
86

A
A

02
D7AF
F84A
82

> > >

D7AF
025E
0229
O0l1E4
07
20
03
D7AF

C4B5
c483
C441
C266

C266
A

*

REMX
*

)
*

WINDOW

TASK

TASKX
*

*

MC6809-MC6829 MMU MONITOR PROGRAM

BCS ADDX

CMPD #MAXPAG

BHS ADDX PAGE NUMBER OUT OF RANGE
TFR D,Y SAVE IT IN Y

LEAX LOGMSG,PCR PROMPT FOR LOGICAL PAGE#
LBSR PSTRNG

LBSR GET2HX ASK FOR TASK PAGE

BCS ADDX

CMPA #NPAGE CHECK OUT OF RANGE PAGE
BHS ADDX

NOW PUT PHYSICAL PAGE NUMBER IN TASK'S MAP

BSR WINDOW GET CURRENT TASK WINDOW
LDX #MMU

ASLA COMPUTE MMU OFFSET

STY A, X PUT PAGE IN MMU

RTS

REMOVE A PAGE FROM A TASK
THE LOGICAL PAGE NUMBER

LEAX LOGMSG,PCR ASK FOR LOGICAL PAGE #
LBSR PSTRNG

LBSR GET2HX

BCS REMX QUIT IF NOT HEX

CMPA #NPAGE OR IF PAGE OUT OF RANGE
BHS REMX

BSR WINDOW

LDX #MMU

ASLA

LDY #FAULT AN EMPTY PAGE

STY ALX

RTS

WINDOW --- SET ACCESS KEY TO CURRENT TASK
PSHS A

LDA CURTAS

STA ACCESS

PULS A,PC

TASK --- DISPLAY/CHANGE CURRENT TASK BEING EXAM
LDA CURTAS PICKUP CURRENT TASK

LBSR PUT2HX DISPLAY IT

LBSR PUTS PRINT A BLANK AND

LBSR GET2HX ASK FOR NEW TASK NUMBER
BCS TASKX NON-HEX TASK#

CMPA #NTASK

BHS TASKX TASK OUT OF RANGE

STA CURTAS ADDRESS TASK GIVEN

RTS

MEMORY --- EXAMINE/CHANGE MEMORY

32

PAGE

00291A
00292A
00293A
00294A
00295A
00296A
00297A
00298A
00299A
00300A
00301A
00302A
00303A
00304A
00305A
00306A
00307A
00308A

00309

00310A
00311A
00312A
00313A
00314A
00315A
00316A
00317A
00318A
00319A

00320
00321
00322
00323
00324

00325A
00326A
00327A
00328A

00329
00330
00331
00332
00333

00334A
00335A
00336A
00337A

00338
00339
00340
00341
00342
00343
00344
00345

00346A
00347A
00348A

006

267
C26A
C26C
C26E
c271
273
€276
c279
ca27c
C27E
€281
c284
c287
€289
C28B
C28D
C28F
€291

€293
€295
€297
€299
Cc298
C29D
C29F
C2A1
C2A3
C2A4

C2A5
C2A7
C2A9
C2AB

C2AD
C2AF
C2B1
€283

C2B5
c2B7
C2BA

MMA

17
25
1F
17
1F
17
17
F6
8D
17
17
17
25
8D
30
20
81
217

81
26
30
20
81
26
30
20
12
39

34
8D
A6
35

34
8D
A7
35

34
1F

MC6809-MC6829 MMU MONITOR PROGRAM

01F8 C462 MEMORY LBSR GET4HX GET START ADDRESS

.SA:1
38 C2A4
01 A
021A C488B
10 A
0255 C4CB
020A C483
D7AF A
27 C2A5
0234 C4B5
01FF C483
01BA C441
06 C28F
22 C2AD
01 A
DF C26E
2E A
DB C26E
0D A
04 C298B
01 A
D3 C26E
5E A
04 C2A3
1F A
CcB C26E
10 A
0ocC C2B5
84 A
90 A
10 A
04 C28B5
84 A
90 A
26 A
F84A A
10 A

LR

BCS MEMX BAD ADDRESS

TFR D,X MOVE POINTER TO X
LBSR CRLF START NEW LINE

TFR X,D MOVE POINTER TO D AND
LBSR PUT4HX PRINT CURRENT ADDRESS
LBSR PUTS SEPARATE WITH A BLANK

LDB CURTAS PICKUP CURRENT TASK#

BSR FUBYTE PICKUP THE BYTE FROM USER MAP
LBSR PUT2HX AND PRINT IT

LBSR PUTS ANOTHER SPACE

LBSR GET2HX TRY TO GET NEW BYTE

BCS MMOVE NON-HEX, MIGHT BE SPECIAL

BSR SUBYTE PLACE BYTE IN USER MAP

LEAX 1,X UPDATE POINTER TO NEXT BYTE
BRA MLOOP INCREMENTED ADDRESS

CMPA #AGAIN RE-EXAMINE SAME?

BEQ MLOOP

CMPA #FWD ADVANCE TO NEXT?

BNE MEM2

LEAX 1,X ADD 1 TO X

BRA MLooP

CMPA #BACK GO BACK ONE?

BNE MEM3

LEAX -1,X SUBTRACT ONE FROM X

BRA MLOOP

NOP

RTS NONE OF THE ABOVE
FUBYTE --- FETCH USER BYTE (SIMULATE LDA ,X OF

BYTE ADDRESS IS IN X, TASK TO USE IS IN
RETURNS WITH BYTE IN A. OTHER REGS UNCH

PSHS X
BSR GETPAG PLACE USER PAGE IN FREEPG
LDA X PICKUP BYTE
PULS X,PC AND RETURN TO CALLER
SUBYTE --- SET USER BYTE (SIMULATE STA ,X OF TA

BYTE ADDRESS IS IN X, BYTE IN A, TASK T
REGISTERS UNCHANGED ON EXIT

PSHS X

BSR GETPAG PLACE USER PAGE IN FREEPG
STA o X SAVE IT IN RIGHT PLACE
PULS X,PC AND RETURN

GETPAG --- POINT TO USER BYTE

X HAS USER ADDRESS, B HAS TASK #

RETURNS WITH X POINTING TO BYTE IN

0S MAP. D UNCHANGED, ACCESS KEY IS LEFT WITH T
TASK NUMBER IN B.

PSHS D,Y SAVE SOME REGISTERS
STB ACCESS SETUP WINDOW TO TASK
TFR X,D MOVE POINTER INTO ACCUMULATOR

33

PAGE 007 MMB .SA:1 MC6809-MC6829 MMU MONITOR PROGRAM

00349A C2BC 47 ASRA FIND PHYSICAL PAGE #
00350A C2BD 47 ASRA

00351A C2BE 84 3E A ANDA #%00111110 MASK ALL BUT PAGE #
00352A C2C0 108E F800 A LDY #MMU

00353A C2C4 10AE A6 A LDY AY PICKUP PAGE

00354A C2C7 7F F84A A CLR ACCESS NOW TALK TO 0S MAP
00355A C2CA 10BF F804 A STY MMU+FREE °FREE' 0S PAGE

00356A C2CE 1F 10 A TFR X,D NOW POINT TO OFFSET
00357A C2D0 84 07 A ANDA #5111 MASK HIGH BITS OF ADDRESS
00358A C2D2 8E 1000 A LDX #FREEPG POINT TO PAGE BEGIN
00359A C2D5 30 8B A LEAX D,X ADD OFFSET

00360A C2D7 35 A6 A PULS D,Y,PC RESTORE REGISTERS AND RETURN
00361 *

00362 * REGS --- DISPLA TASK'S REGISTERS
00363 *

00364 * EFHINZVC A-XX B-XX DPR-XX

00365 * X=XXXX Y=XXXX U=XXXX P=-XXXX

00366 * S=XXXX

00367 *

00368A C2D9 45 A RSTRNG FCC JEFHINZVC/THE NAMES OF THE BITS
00369 *

00370A C2E1 20 A MSSTR FCC / A-? B-? DPR-?/

00371A C2FO 0D A FCB CR,LF

00372A C2F2 58 A FCC /X-22 Y-2? U-?? P-??/

00373A C305 0D A FCB CR,LF

00374A C307 53 A FCC /S=/

00375A €309 00 A FCB EOS

00376 *

00377 *

00378 * FIRST, PRETTY PRINT THE CCR

00379 *

00380A C30A F6 D7AF A REGS LDB CURTAS

00381A C30D 17 0258 (568 LBSR GETUS GET TOP OF USER STACKP
00382A C310 30 84 A LEAX COFF,X ADD IN CCR OFFSET
00383A C312 8D 91 C2A5 BSR FUBYTE PICKUP CONDITION CODES
00384A C314 34 02 A PSHS A STORE ON STACKP

00385A C316 30 8C CO LEAX RSTRNG,PCR PICKUP STRING START
00386A C319 C6 08 A LDB #8 LOOP COUNTER

00387A C31B A6 80 A REGS3 LDA s X+ PICKUP APPROPRIATE CHARACTER
00388A C31D 69 E4 A ROL) GET LEADING BIT

00389A C31F 25 02 €323 BCS REGS?2 PRINT BIT NAME

00390A C321 86 2E A LDA #'. BIT OFF CHARACTER
00391A C323 REGS2 SYS PUTC PRINT . OR CHARACTER
00392A C325 5A DECB LOOP ON ALL 8 BITS
00393A C326 26 F3 C31B BNE REGS3

00394A C328 32 61 A LEAS 1,S DELETE TEMPORARY

00395 *

00396A C32A F6 D7AF A LDB CURTAS

00397A C32D 17 0238 (€568 LBSR GETUS

00398A C330 30 01 A LEAX AOFF X POINT TO START OF REGISTERS
00399A (€332 31 8C AC LEAY MSSTR,PCR GET FORMATTING STRING
00400A C335 A6 AQ A REGS6 LDA , Y+ PICKUP FORMAT CHAR
00401A C337 81 00 A CMPA #E0S IF AT END, WRAP UP WITH STACKP P
00402A C339 27 12 C34D BEQ REGS4

00403A C33B 81 3F A CMPA #'? INSERT HEX NUMBER?
00404A C33D 26 0A €349 BNE REGS5

00405A C33F 17 FF63 C2A5 LBSR FUBYTE GET THE BYTE

00406A C342 30 01 A LEAX 1,X AND ADVANCE TO NEXT

34

PAGE

00407A
00408A
00409A
00410A
00411A
00412A
00413A
00414A
00415

00416

00417

00418A
00419A
00420A
00421A
00422A
00423A
00424A
00425

00426

00427

00428A
00429A
00430A
00431A
00432

00433

00434

00435A
00436A
00437A
00438A
00439A
00440A
00441A
00442A
00443A
00444A
00445A
00446A
00447A
00448A
00449A
00450A
00451A
00452A
00453A
00454A
00455A
00456

00457

00458

00459A
00460A
00461A
00462

00463

00464

€344
C347
C349
€348
C34D
€350
€352
€355

C356
€359
C35C
C35E
€361
C364
€367

€369
C368B
C36E
€371

€372
C375
C377
€379
C37A
€370
C37F
€382
€385
€388
€388
38D
€390
€392
€394

C396.

€398
C39A
C39B
C39D
C39F

C3A0
C3A3
C3A6

008 MMB

17
20

20
17
1F
17
39

F6
17
1F
17

17
25

1F
Fé
17
39

17
25
6F
5F
17
1F
17
17
F6
17
30
17
6C
A6
85
26
1F
5D
26
32
39

B6
B7
17

.SA:1

00FA
EC

E8
0218

0176

D7AF
020cC
10

016A
O011F
00FB
08

01
D7AF
0201

D7AF
F84B
019F

C441
€335

€335
C568

c4cs

€568
C4cCB
€483

€462
€371

A
C572
C441
C39F
488

C4cCB
€483

C2A5
A
C441

A
€382

C37A
A

€548

REGS5
REGS4

STACK

X

STACKX
*

*
*
HEXDUM

HEX3

HEX?2

HEXX
*

*
*

EXECUT

MC6809-MC6829 MMU MONITOR PROGRAM

LBSR GET2HX

BRA REGS6 GET NEXT CHAR

SYS PUTC JUST PRINT THE CHAR

BRA REGS6

LBSR GETUS

TFR X,D FINALLY,

LBSR PUT4HX PRINT USER STACKP POINTER
RTS

STACK --- EXAMINE CHANGE USER STACK POINTER
LDB CURTAS GET CURRENT TASK NUMBER

LBSR GETUS PICKUP SP IN X

TFR X,D MOVE TO D

LBSR PUT4HX

LBSR PUTS
LBSR GET4HX ASK FOR NEW VALUE
BCS STACKX

PUT NEW STACKP POINTER IN PLACE
TFR D,X MOVE TO PLACE PUTUS EXPECTS IT
LDB CURTAS GET CURRENT TASK
LBSR PUTUS REPLACE IT
RTS

HEXDUM --- DUMP A PAGE IN HEXADECIMAL

LBSR GET2HX AS FOR PAGE NUMBER

BCS HEXX BAD PAGE ADDRESS

CLR ,-S INITIALIZE BYTE COUNT
CLRB ZERO LOW BYTE OF ADDRESS
LBSR CRLF
TFR D, X MOVE ADDRESS TO POINTER REG.
LBSR PUT4HX PRINT CURRENT ADDRESS

LBSR PUTS THEN A BLANK

LDB CURTAS

LBSR FUBYTE PICKUP THE BYTE

LEAX 1,X BUMP POINTER

LBSR GET2HX PRINT THE BYTE

INC .S

LDA .S

BITA #%1111 START NEW LINE WHEN COUNT MOD 16
BNE HEX?2

TFR X,D

TSTB : WHILE LOW BYTE != O KEEP PRINTIN
BNE HEX3

LEAS 1,S DROP TEMP

RTS

EXECUT --- BEGIN/CONTINUE EXECUTION OF TASK
LDA CURTAS
STA OPERAT SETUP FOR TASK SWITCH
LBSR RETURN SIMULATE RTI

WHEN TASK QUITS, IT RETURNS HERE

35

PAGE

00465A
00466A
00467A
00468A
00469A
00470A
00471
00472A
00473A
00474
00475
00476
00477A
00478A
00479A
00480A
00481A
00482A
00483A
00484A
00485A
00486
00487
00488
00489
00490A
00491A
00492A
00493A
00494A
00495A
00496
00497A
00498A
00499
00500
00501
00502A
00503A
00504A
00505A
00506A
00507A
00508A
00509A
00510A
00511A
00512A
00513A
00514
00515A
00516A
00517
00518
00519
00520
00521
00522

009

C3A9
C3AC
C3AF
C3B2
C3B5
C3B8

C38B9
Cc3c2

C3C3
C3C6
c3c8
C3CB
C3CE
Cc3D2
C3D5
Cc3D8
C3DA

Cc3DB
C3DE
C3E1
C3E4
C3E7
C3E9

C3EC
C3EF

C3F1
C3F4
C3F6
C3F8
C3FB
C3FE
C400
c402
c404
c407
C40A
c4aoc

c40D
c414

MMB

7F
B6
17
30
17
39

B6
217
B7
8E
108E
10AF
8C
26

17
30
17
B6
8D
17

8E
34

17
35
EC
17
17
1F
C5
26
17
8C
26
39

.SA:1
F848B A
D7AF A
008F C441
8C 04
00DF C497
20 A
00 A
D7AF A
12 C3DA
F84A A
F800 A
0200 A
81 A
F840 A
F8 Cc3D2

00AD C48B
8C 2C

00B3 C497
D7AF A
58 ca41
009F C48B
F800 A
10 A
FE53 C247
10 A
81 A
00C7 c4c?
0085 C483
10 A
07 A
03 c407
0084 C48B
F840 A
E3 C3EF
54 A
00 A
005F A
002E A
000D A
005E A

*
XITMSG
*

*

*

ZAP

ZAP2

ZAPX
*
*
*
*

DISPLA

DISP5

*
TASMSG

*

PROMPT
AGAIN
FWD
BACK

*

MC6809-MC6829 MMU MONITOR PROGRAM

CLR OPERAT SWITCH BACK TO MONITOR

LDA CURTAS

LBSR GET2HX SHOW WHICH TASK QUIT

LEAX <XITMSG,PCR

LBSR PSTRNG

RTS TASK TERMINATED, RETURN TO MONIT
FCC / STOPPED./

FCB EOS

ZAP --- SET ALL REGISTERS FOR CURRENT TASK TO F
LDA CURTAS CAN'T ZAP TASK O !

BEQ ZAPX

STA ACCESS BRING IT INTO THE WINDOW

LDX #MMU START OF REGS

LDY #FAULT PAGE FAULT PAGE

STY S X+t
CMPX #MMU+NPAGE+NPAGE END OF MMU REGISTERS
BNE ZAP2

RTS

DISPLA --- DISPLAY MMU REGISTERS FOR CURRENT TA
LBSR CRLF START ON A NEW LINE

LEAX <TASMSG,PCR

LBSR PSTRNG PRINT TASK NUMBER
LDA CURTAS
BSR GET2HX PRINT TASK #
LBSR CRLF START NEW LINE

LDX #MMU POINT TO START OF REGS

PSHS X SAVE POINTER

FINALLY PRINT THE PAGE NUMBER

LBSR WINDOW

PULS X RESTORE POINTER TO REGS.

LDD S X++ PICKUP PAGE AND ADVANCE TO NEXT
LBSR PUT3HX PRINT PAGE ADDRESS

LBSR PUTS

TFR X,D CHECK IF TIME TO PRINT CR

BITB #%111 CR EVERY 4 REGISTERS (EACH 8 BYT
BNE DISPS

LBSR CRLF

CMPX #MMU+NPAGE+NPAGE CHECK IF AT END OF REGS
BNE DISP2

RTS

FCC /TASK # /

FCB EOS

EQU ! PROMPT FOR INPUT

EQU ' RE-EXAMINE SAME BYTE

EQU CR GO TO NEXT BYTE

EQU ‘e GO BACK ONE BYTE

36

PAGE

00523
00524
00525
00526
00527
00528
00529
00530
00531A
00532A
00533A
00534A
00535A
00536A
00537
00538
00539
00540
00541
00542
00543
00544A
00545A
00546A
00547A
00548A
00549A
00550A
00551A
00552A
00553A
00554A
00555A
00556A
00557A
00558A
00559A
00560A
00561
00562
00563
00564
00565
00566
00567
00568A
00569A
00570A
00571A
00572A
00573A
00574A
00575A
00576A
00577A
00578A
00579A
00580A

010

C415
c417
C419
Cc418
C41D
C41F

c420
c422
c424
C426
ca428
C4a2A
c42C
C42t
€430
€432
C434
C436
€438
C43A
Cc43cC
C43D
C43F

ca41
c443
c445
Ca46
ca47
ca48
C449
C44B
C44D
CA4F
c451
452
Ca54

10

81
25
81
22
80
39

8D
34
80
2B
81
2F
80
81
2F
81
2E
32
1C
39
1A
35

8D
25
48
48
48
48
34

25
AA
39
32
39

61
06
7A
02
20

Fl
02
30
13
09
0A
07
09
09
OF

61
FE

01
82

DD
OF

02
D3
03
EO

61

.SA:l

C41F
C41F

C415

C43D

€438

C43D
A
C43D

> > > >

€420
C454

A
€420
C452

A

A

MC6809-MC6829 MMU MONITOR PROGRAM

* MONIQ --- MONITOR CONSOLE I1/0 ROUTINES
*
*
* MAPUP --- CONVERT a-z TO A-Z
*
* CHARACTER TO CONVERT IS IN A, ONLY CHARACTERS F
* ARE CHANGED
*
MAPUP CMPA #'a CHECK BOUNDS
BLO NOMAP CHARACTER <A
CMPA #'z

BHI NOMAP CHARACTER >Z
SUBA #'a-"'A PERFORM MAP DOWN
NOMAP RTS
*

t GETNYB =--- GET NYBBLE IN A
* TRY TO GET ONE HEX CHARACTER. IF 0-9 OR A-F,
* CONVERT TO BINARY. OTHERWISE RETURN CHARACTER
* IN A WITH C-BIT SET.
*
GETNYB SYS GETC GET ONE CHARACTER
BSR MAPUP MAP TO UPPER CASE ONLY
PSHS A SAVE IT IN CASE IT'S NOT HEX
SUBA #'0
BMI NOTHEX WAS LESS THAN O
CMPA #9

BLE GOTIT IS BETWEEN 0-9
SUBA #'A-'9-1

CMPA #9
BLE NOTHEX WAS BETWEEN 9 AND A
CMPA #S$F

BGT NOTHEX WAS GREATER THAN F
GOTIT LEAS 1,S DON'T NEED SAVED CHAR

ANDCC ~ #NC TURN OFF CARRY
RTS
NOTHEX ORCC #C SET CARRY
PULS A,PC RETURN TYPED CHARACTER
*
* GET2HX --- GET ASCII CHARACTERS AND CONVERT TO BINARY
* RESULT IS RETURNED IN A, NO OTHER REGISTERS ARE CHANG
* IF A NON-HEX CHARACTER IS TYPED, THE C BIT IS SET
* AND THE CHARACTER TYPED IS RETURNED IN A. OTHERWISE
* THE C BIT IS CLEARED.
*
GET2HX BSR GETNYB GET HIGH NYBBLE
BCS GET22
ASLA MOVE IT TO THE HIGH NYBBLE
ASLA
ASLA
ASLA
PSHS A SAVE IT

BSR GETNYB GET LOW NYBBLE
BCS GET23 BAD SECOND NYBBLE

ORA , S+ COMBINE HIGH AND LOW NYBBLES
RTS
GET23 LEAS 1,S DROP HIGH NYBBLE

GET22 RTS

37

PAGE

00581
00582
00583
00584
00585
00586
00587
00588
00589A
00590A
00591A
00592A
00593A
00594A
00595A
00596
00597
00598
00599
00600
00601
00602
00603
00604A
00605A
00606A
00607A
00608A
00609A
00610A
00611
00612
00613
00614
00615
00616A
00617A
00618A
00619A
00620A
00621A
00622A
00623A
00624A
00625A
00626
00627
00628
00629
00630
00631
00632A
00633A
00634A
00635A
00636
00637A
00638A

011

C455
C457
€459
C458
C45D
C45F
C461

C462
C464
C466
C468
C46A
C46C
C46E

C46F
471
C473
C475
ca477
ca479
C478B
C47E
c480
ca82

€483
C485
cas7
c489

488
48D

10

8D
25
1F
8D
25
1E
39

8D
25
1F
8D
25
1E
39

8D
25
1F
8D
8D
25
c3
1F
1C
39

34
86

35

34
86

.SA:

C9

89
E4
OF
89

DD
08
89
D7
02
89

02
20

82

02
0D

1

€420
C46E

c441
C46E

C441
C46E

C441
C46E

C462
€482

€483
C462
c482

> T >

GET3HX

L S

GET32

x

D o X X X x X X

ET4HX

GET42

*

@ X X X X

ETRNG

GETRX
*

* PUTS
*
*

MC6809-MC6829 MMU MONITOR PROGRAM

GET3HX =--- GET ASCII CHARACTERS AND CONVERT TO

RESULT IS RETURNED IN D, NO OTHER REGISTERS ARE
IF A NON-HEX CHARACTER IS TYPED, THE C-BIT IS S
AND THE CHARACTER TYPED IS RETURNED IN A. OTHE
THE C-BIT IS CLEARED.

BSR GETNYB

BCS GET42

TFR A,B MOVE HIGH NYBBLE TO B

BSR GET2HX

BCS GET42

EXG A,B SWAP HIGH FOR LOW

RTS

GET4HX =--- GET ASCII CHARACTERS AND CONVERT TO

RESULT IS RETURNED IN D, NO OTHER REGISTERS ARE
IF A NON-HEX CHARACTER IS TYPER, THE C-BIT IS S
AND THE CHARACTER TYPED IS RETURNED IN A. OTHE
THE C-BIT IS CLEARED.

BSR GET2HX

BCS GET42

TFR A,B MOVE HIGH BYTE TO B

BSR GET2HX

BCS GET42

EXG A,B SWAP HIGH FOR LOW

RTS

GETRNG --- GET START AND END ADDRESSES

RETURN START IN X AND END+1 IN Y
C-BIT SET IF A NON-HEX DIGIT WAS TYPED;

BSR GET4HX

BCS GETRX BAD START ADDRESS

TFR D,X

BSR PUTS ACKNOWLEDGE FIRST ADDRESS AS GOO
BSR GET4HX

BCS GETRX BAD END ADDRESS

ADDD #1 BUMP END ADDRESS

TFR D,Y

ANDCC #NC CLEAR C-BIT TO SAY NO ERROR
RTS

--- PRINT A BLANK ON THE CONSOLE

*ALL REGISTERS UNCHANGED
k

PUTS

CRLF

PSHS A

LDA #BLANK

SYS PUTC

PULS A,PC RESTORE AND RETURN
PSHS A SAVE A

LDA #CR

38

PAGE

00639A
00640A
00641A
00642A
00643
00644
00645
00646
00647
00648
00649
00650A
00651A
00652A
00653A
00654A
00655A
00656A
00657
00658
00659
00660A
00661A
00662A
00663A
00664A
00665A
00666A
00667A
00668
00669
00670
00671
00672
00673A
00674A
00675A
00676A
00677A
00678A
00679A
00680A
00681A
00682
00683
00684
00685
00686
00687A
00688A
00689A
00690A
00691A
00692
00693
00694
00695
00696

012

C48F
€491
€493
C495

€497
€499
C498
C49D
C49F
C4Al
C4A3

C4A5
C4A7
C4A9
C4AB
C4AD
CA4AF
c4aBl
Cc4B3

C4B5
C4B7
C4B8
C4B9
C4BA
C4B8B
C4BD
C4BF
c4ac1

c4c?2
cacsa
C4ceé
c4acs
C4CA

10

86
35

34
A6
81
27

20
35

34
84
88
81
23
88

35

34
47
47
47
47

35
8D
39

8D
1E
8D
1E
39

0A
82

12
80
00
04

Fé6
92

02
OF
30
39
02
07

82

02

£E8
E4

El
89
ED
89

.SA:1

C48

> B> D>I

C4A5
C4A5

C4A5
C4B5
A

MC6809-MC6829 MMU MONITOR PROGRAM

sYS PUTC
LDA #LF
sYS PUTC
PULS A,PC RESTORE AND RETURN
*
* PSTRNG --- PRINT STRING
)
* POINTER TO STRING START IS IN X, STRING
* IS TERMINATED BY EOS CHARACTER
* NO REGISTERS ARE CHANGED
PSTRNG PSHS A,X SAVE STUFF
PSTR2 LDA X+ PICKUP CHARACTER
CMPA #EOS AT END OF STRING?
BEQ PSTR9 YES, QUIT
sys PUTC PRINT IT
BRA PSTR2 AND CONTINUE
PSTR9 PULS A,X,PC RESTORE AND RETURN
*
* PUTNYB --- PRINT LOWER NYBBLE OF A IN HEX
*
PUTNYB PSHS A SAVE A
ANDA #SF CLEAR HIGH GARBAGE
ADDA #'0 ADD ASCII OFFSET
CMPA #'9 CHECK IF >9
BLS PUTNY2 NOW PRINT
ADDA #'A-'9-1 MOVE UP TO A-F
PUTNY2 SYS PUTC
PULS A,PC RESTORE AND RETURN

PUT2HX =--- PRINT A IN HEX ON TERMINAL

*
*
*
* NUMBER TO BE PRINTED IS IN A, NO REGISTERS ARE CHANGE
*
P

UT2HX PSHS
ASRA
ASRA
ASRA
ASRA
BSR
PULS
BSR
RTS

A

PUTNYB

>

PUTNYB

SAVE A FOR LOW NYBLLE

PRINT ONE HEX DIGIT
PICKUP VALUE AGAIN
PRINT LOW NYBBLE
RETURN

PUT3HX --- PRINT D IN HEX ON TERMINAL

*
*
*)
* NUMBER TO BE PRINTED IS IN D, NO REGISTERS ARE CHANGE
*
p

UT3HX BSR PUTNYB PRINT HIGH NYBBLE FIRST
EXG A,B NOW PRINT LOW NYBBLE
BSR PUT2HX
EXG A,B SWITCH BYTES BACK
RTS

PUT4HX --- PRINT D IN HEX ON TERMINAL

* X X X X

NUMBER TO BE PRINTED IS IN D, NO OTHER REGISTERS
ARE CHANGED

39

PAGE

00697
00698A
00699A
00700A
00701A
00702A
00703
00704
00705
00706
00707
00708
00709
00710
00711
00712
00713
00714
00715
00716
00717
00718A
00719A
00720A
00721A
00722A
00723
00724
00725
00726A
00727A
00728A
00729A
00730A
00731A
00732A
00733A
00734A
00735A
00736A
00737A
00738A
00739A
00740A
00741A
00742A
00743A
00744A
00745A
00746
00747
00748
00749A
00750A
00751A
00752A
00753A
00754A

013

cacs
C4acD
C4CF
C4D1
C4D3

c4Dn4
can7
C4DA
Cc4DB
C4DE

C4E2
C4E5
C4E8
C4EA
C4ED
C4EF
C4F1
C4F4
C4F6
C4F8
C4FB
C4FD
CAFF
€501
€503
€505
€507
C50A
€50C
C50E

C511
C513
C515
€517
C51A
C518B

10

8D
1E
8D
1E
39

8E
B6
48
10EF
10FE

F6
17
30
17
34
30
17

34

35
17
34
30
34
8D
30
35
17
30
35
17

35
81
24
30
48
EC

.SA:

E8
89
E4
89

D780
F84B

86
D780

F84B
0080
08B
FDB8
02
1F
FDB1
02
10
FDAA
02
01
10
65
0A
02
FDA3
01
02
FD9C

02
03
31
8C 05

86

1

C4B5
C4B5
A

> >

)

MC6809-MC6829 MMU MONITOR PROGRAM

PUT4HX BSR PUT2HX PRINT HIGH BYTE FIRST

VX X ¥ X O X X X X X X X ¥ N X%

WIH

EXG A,B NOW PRINT LOW BYTE
BSR PUT2HX

EXG A,B SWITCH BYTES BACK
RTS

SWIH --- SOFTWARE INTERRUPT HANDLER

SWIH IS ENTERED VIA THE SWI INSTRUCTION AND IS
FOR TRANSFERRING CONTROL TO A ROUTINE DETERM
BYTE THAT FOLLOWS THE SWI OPCODE. THIS BYTE IS
INDEX INTO THE DISPATCH TABLE FOR STAND
FUNCTIONS. THE RETURN ADDRESS OF THE CALLING
ADJUSTED BY SWIH BEFORE THE NAMED ROUTINE IS C
CALLED ROUTINE IS ENTERED AS IF IT WERE DIREC
FROM AN SWI INSTRUCTION (EXCEPT THAT THE MACHIN
WILL NOT BE CORRECT).

NOTE: THIS ROUTINE CONVERTED FROM A NON-MMU SY

LDX #SPTAB SAVE TASKS STACK POINTER
LDA OPERAT

ASLA

STS A, X SAVE IT OFF

LDS SPTAB PICKUP MONITOR'S STACK

FETCH TASK'S PC

LDB OPERAT GET TASK THAT INTERRUPTED
LBSR GETUS GET STACK POINTER

LEAX POFF+1,X LOW BYTE OF PC

LBSR FUBYTE

PSHS A SAVE

LEAX -1,X BACKUP TO HIGH BYTE OF PC
LBSR FUBYTE

PSHS A PC NOW ON STACK

PULS X RESTORE TO X

LBSR FUBYTE GET SWI FUNCTION CODE
PSHS A SAVE

LEAX 1,X BUMP USER PC

PSHS X SAVE FOR REPLACEMENT

BSR GETUS

LEAX POFF,X POINT TO HIGH BYTE
PULS A GET HIGH BYTE

LBSR SUBYTE REPLACE HIGH

LEAX 1,X POINT TO LOW BYTE
PULS A GET LOW BYTE

LBSR SUBYTE REPLACE LOW

NOW DO THE REAL WORK

PULS A RESTORE FUNCTION CODE

CMPA #NCALLS THROW OUT BAD NUMBERS

BHS RETURN CALL OUT OF RANGE

LEAX <SWITAB,PCR GET TABLE START ADDRESS
ASLA TABLE IS 2 BYTES/ENTRY

LDD A,X PICKUP OFFSET FROM TABLE

PAGE

014

SWIH

00755A C51D 6E

00756
00757
00758
00759A
00760A
00761A
00762
00763
00764
00765
00766A
00767A
00768A
00769A
00770A
00771A
00772A
00773A
00774A
00775A
00776A
00777A
00778A
00779A
00780A
00781
00782
00783
00784
00785
00786
00787
00788
00789
00790
00791
00792A
00793A
00794A
00795A
00796A
00797A
00798A
00799A
00800A
00801A
00802A
00803A
00804A
00805A
00806A
00807A
00808A
00809
00810
00811
00812A

C51F
€521
€523

€525
528
C52A
C52D
C52F
€531
€534
C536
€539
C53C
C53E
C540
€543
C545
€547

€548
C548B
C54D
C54E
€551
€555
€557
€559
C55C
C55F
€560
€561
€562
€563
564
€565
C567

€568

CE
8D
Fé6
8D
30
17
20
CE
F6
8D
30
17
8D
20
39

34

.SA:

88

0006
0017
0028

0003

EQO8

F84B
39
01
FD79
12
E008
F84B
2A
01
FD62

01

F84B
1A

D780
D780
01
50
86
F849

FE

04

1

> >

C57D
€568
C2AD
€548
C568
C2A5

€585
€548

€567

=2 P> >

C565

*
*
SWITAB

*

NCALLS
*

*
UGETC

UPUTC

UQUIT

*

A X F X o+ X X X X X

ETURN

SIMPLE
*

*
*

GETUS

MC6809-MC6829 MMU MONITOR PROGRAM

JMP D,X GO TO ROUTINE
SWITAB --- TABLE OF SYSTEM CALL ADDRESSES

FDB UGETC-SWITAB #0 USER GETC
FDB UPUTC-SWITAB #1 USER PUTC
FDB UQUIT-SWITAB #2 USER QUITS

EQU 3 NUMBER OF, ENTRIES IN THE TABLE

LDU #CONSOL GET CONSOLE ADDRESS

BSR RAWGTC

LDB OPERAT DESTINATION TASK#

BSR GETUS GET USERS STACK POINTER
LEAX AOFF X ADD OFFSET FOR A REGISTER
LBSR SUBYTE WRITE CHARACTER INTO STACK
BRA RETURN SWITCH BACK TO TASK

LDU #CONSOL

LDB OPERAT DESTINATION TASK#

BSR GETUS POINT TO STACK:

LEAX AOFF X ADD A REG OFFSET

LBSR FUBYTE FETCH THE CHARACTER

BSR RAWPTC PRINT IT

BRA RETURN

RTS RETURN FROM MONITOR CALL TO STAR

RETURN =--- RETURN TO INTERRUPTED TASK

THE INTERRUPTED TASK NUMBER IS IN THE OPERAT
THE TASK WAS ZERO (I.E. THE MONITOR ITSELF) A
IS EXECUTED. IF NOT, THEN THE STACK POINTER I
TO WHAT IT WAS WHEN THE INTERRUPT OCCURRED AND
TO THAT TASK IS CAUSED BY WRITING TO THE 6
REGISTER.

LDA OPERAT PICKUP INTERRUPTED TASK#

BEQ SIMPLE WAS JUST THE MONITOR

ASLA

LDX #SPTAB FIND OLD STACK POINTER

STS SPTAB SAVE MONITOR'S STACK POINTER

LDB #1 SETUP FOR WRITE TO FUSE

ORCC #1+F ENTER CRITICAL SECTION

LDS AX PICKUP USER TASK STACK POINTER
STB FUSE START THE SWITCH

RTI AND AWAY WE GO......

NOP

NOP

NOP

NOP

NOP

BRA * SOMETHING SERIOUSLY WRONG HERE
RTI JUST AN RTI FOR MONITOR

GETUS --- GET USERS STACK POINTER IN X (TASK#
PSHS B SAVE B

41

PAGE

00813A
00814A
00815A
00816A
00817
00818
00819
00820A
00821A
00822A
00823A
00824A
00825
00826
00827
00828
00829
00830
00831
00832
00833
00834
00835
00836
00837
00838
00839A
00840A
00841A
00842A
00843
00844
00845
00846
00847
00848
00849
00850
00851A
00852A
00853A
00854A
00855A
00856A
00857A
00858A
00859A
00860A
00861A
00862A
00863A
00864A
00865A
00866
00867
00868
00869
00870

015

C56A
C568B
C56E
C570

€572
C574
C575
€579
C578B

C57D
C57F
€581
€583

€585
€587
€589
C588B
C58D
C58F
€591
€593
€595
€596
€598
€599
C598B
C59D
C59F

SWIH

58
8E
AE
35

A6
85
27
Ab

34
A6
85
27
35
A7
81
27
39
34
4F
8D
8D
8D
35

.SA:

D780
85
84

D7BO
A5
A4

0000
0001
0001
0002

c4

FA
41

02
c4
02
FA
02
41
0A
01

02

EA
E8
E6
82

1

> > > 3> >

> >

C57D

> > >

*

PUTUS

*
*

*
ACIACR
ACIADR
-RDRF
. TDRE

o T .

RAWGTC

X X % ¥ % % X

RAWPTC
RPUTC2

PRDLY

% % % F X

MC6809-MC6829 MMU MONITOR PROGRAM

ASLB
LDX #SPTAB POINT TO STACK SAVE AREA
LDX B,X PICKUP APPROPRIATE POINTER
PULS B,PC RETURN WITH SP IN X
PUTUS --- MAKE X THE STACK POINTER FOR TASK IN
PSHS B,Y
ASLB
LDY #SPTAB
STX B,Y PUT NEW POINTER IN PLACE

PULS B,Y,PC
RAW ACIA 1/0 SUBROUTINES

EQuU 0 CONTROL REGISTER

EQU 1 DATA REGISTER

EQU %00000001 RECEIVER FULL FLAG

EQU %00000010 TRANSMITTER EMPTY FLAG

RAWGTC --- GET A CHARACTER FROM THE CONSOLE AND

U CONTAINS THE ADDRESS OF THE ACIA CONTROL REGI
CHARACTER IS RETURNED IN A, ALL OTHER REGISTERS
GETC FALLS INTO PUTC IN ORDER TO ECHO THE CHARA

LDA ACIACR,U

BITA #.RDRF WAIT FOR RECEIVER FULL
BEQ RAWGTC

LDA ACIADR,U PICKUP RECEIVED CHARACTER

RAWPTC --- SEND THE CHARACTER IN A OUT

U CONTAINS THE ADDRESS OF THE ACIA CONTROL REGI
ALL REGISTERS RETURN UNCHANGED.
THERE IS SPECIAL TREATMENT OF LF FOR SLOW TERMI

PSHS A SAVE IT

LDA ACIACR,U

BITA #.TDRE WAIT FOR EMPTY ACIA
BEQ RPUTC?2

PULS A PICKUP CHARACTER

STA ACIADR,U AND SEND IT ON ITS WAY
CMPA #LF FUDGE FOR SLOW BANTAMS!
BEQ PRDLY

RTS

PSHS A SAVE IT

CLRA

BSR RAWPTC
BSR RAWPTC
BSR RAWPTC
PULS A,PC

INZACI --- INITIALIZE AN ACIA

U CONTAINS THE ADDRESS OF THE ACIA CONTROL REGI

42

PAGE O

00871A
00872A
00873A
00874A
00875A
00876A
00877
00878
00879
00880
00881
00882
00883
00884
00885A
00886A
00887A
00888A
00889A
00890

16 RAWIO .SA:1

C5A1 34
C5A3 86
C5A5 A7
C5A7 86
C5A9 A7
C5AB 35

C5AD A6
C5AF 84
C5B1 27
C5B3 86
C5B5 39

02
03
ca
15
ca
82

INZACI

>

L A R A

c4 A RAWEMP
01 A
02 C5B5
01 A
RAWEXT

TOTAL ERRORS 00000--00000
TOTAL WARNINGS 00000--00000

0001
0002
F84A
0000
0001
C1FE
€229
002E
0001
005E
0007
0020
0002
0008
0001
0000
£008
000D

c488
CO4F
D7AF

C3EF
c407
C3DB
0001
0003
0080
0000
0018
C3A0
0040

.RDRF
.TDRE
ACCESS
ACIACR
ACTADR
ADDPAG
ADDX
AGAIN
AOFF
BACK
BEEP
BLANK
BOFF
BS

C

COFF
CONSOL
CR

CRLF
CTAB
CURTAS

DISP2
DISP5
DISPLA
DOFF
DPOFF
E

EOS
ESC
EXECUT
F

00830%00840 00886
00831*00853
00081*00274 00347
00828*00839 00852
00829*00842 00856
00165 00230*
00233 00235 00241
00307 00519*
00011%00398 00770
00314 00521+
00056*
00063*00633
00012*

00057 *
00029*00040 00559
00010*00382
00090*00130 00766
00061*00194 00196
00214 00216 00371
00136 00294 00439
00143 00162*
00093*00133 00273
00459 00466 00477
00498%00512

00509 00511*
00167 00490*
00013*

00014+
00022%00033
00055*00218 00221
00062*

00177 00459*
00023*00034 00798

MC6809-MC6829 MMU MONITOR PROGRAM

PSHS A SAVE

LDA #%00000011 MASTER RESET ACIA

STA ACIACR,U

LDA #%00010101 8DATA,1STOP,DIVIDE BY 16
STA ACIACR,U INITIALIZE CONTROL REG
PULS A,PC RESTORE AND RETURN

RAWEMP --- CHECK IF A CHARACTER IS READY

U CONTAINS THE ADDRESS OF THE CONTROL REGISTER,
IS TESTED TO SEE IF A CHARACTER HAS BEEN RECEIV

RETURNS WITH A=0 IF NO CHARACTER PRESENT, OTHER

LDA ACIACR,U PICKUP STATUS BYTE
ANDA #.RDRF A CHARACTER PRESENT?
BEQ RAWEXT NO QUIT WITH A=0

LDA #1

RTS

END

00354 00479

00873 00875 00885
00243 00251*
00776

00773

00198 00200 00202 00204 00206 00208 00210 00212
00373 00520 00638

00490 00495 00510 00637*

00279 00286 00298 00380 00396 00418 00429 00443
00493

00223 00375 00401 00473 00516 00652

43

PAGE

0200
000cC
FFFé6
0004
1000
C2A5
F849
000D
C454
C452
C441

C461
455
C46E
C462
0000
420
C2B5
C46F
482
€568
438
0020
071
co78
€382
C37A
€372
C39F
€049
0010
C00B
C5AL
FFF8
000A

ClEF
€033
CO3F
CO1F
C415
0400
0020
C298
C2A3
€267
C2A4
C26E
C28F
F800

F840
F847
C2E1
0008
00FE
0003

017

RAWIO .SA:l
FAULT
FF
FIRQVC
FREE
FREEPG
FUBYTE
FUSE
FWD
GET22
GET23
GET2HX

00089*00266.
00060*
00047*
00112%00355
00113*00358
00299 00325*
00080*00800
00310 00520%*
00569 00580*

00240 00259
00604 00607
00595*
00232 00589*
00590 00593
00291 00423
00068*00139
00544%00568
00326 00335
00616*
00617 00621
GETUS 00381 00397

GET32
GET3HX
GET42
GET4HX
GETC
GETNYB
GETPAG
GETRNG
GETRX

00576 00579*

MC6809-MC6829 MMU MONITOR PROGRAM

00481

00383 00405

00282 00302

00605 00608
00604*00616
00544

00575 00589
00346*

00625*
00411 00419

00444 00729 00732 00735 00777

00407 00435 00446 00467 00494 00568*00592

00610*
00620

00727 00739 00769 00775 00812*

GOTIT 00550 00556*

H 00024*00035

HELP 00183 00188*
HELPIN 00188 00194*

HEX?2 00442*00450

HEX3 00439*00453
HEXDUM 00181 00435%*

HEXX 00436 00455*

HUH 00145 00155*

1 00025*00036 00798
INIT 00122 00127%*
INZACI 00131 00871%*
IRQVEC 00048%*

LF 00059*00194 00196
00214 00216 00371
00222*00238 00257
00144*00149

00147 00150*
00136*00153 00157
00142 00531*00545
00087*00234
00088*

00311 00314~
00315 00318%*
00175 00291%*
00292 00319*
00294*00306 00308
00303 00307*
00076*00077 00078
00480 00483 00497
00077*

MMU7 00078%*

MSSTR 00370*00399

N 00026*00037

NC 00040*0D0557 00624
NCALLS 00750 00763*

LOGMSG
LooP
LOOP2
MAIN
MAPUP
MAXPAG
MAXTAS
MEM2
MEM3
MEMORY
MEMX
MLOOP
MMOVE
MMU

MMUO

00198 00200 00202 00204 00206 00208 00210 00212
00373 00640 00857

00313 00317

00079 00080 00081 00082 00248 00264 00352 00355
00511

PAGE

007F
00BF
00DF
00EF
FFFC
00F7
C41F
C43D
FFFO
0020
0020
00FD
00FB
€045

F848
CLEO
000A
596
005F
0800
499
C4A3
C497
C4B5
cac2
c4cB
0001
C4B1
C4A5
483
572
C5AD
585
C57D
€585
C30A
€323
C318
34D
€349
€335
C22A
C246
FFFE
548
587
c2D9
007F
F848
567
D7BO
356
D7A0
€371
000
C2AD
FFF4

018

NE

NF

NH

NI
NMIVEC
NN
NOMAP
NOTHEX
NOVEC
NPAGE
NTASK
NV

NZ
OFFSET

OPERAT
PHYMSG
POFF
PRDLY
PROMPT
PSIZE
PSTR2
PSTR9
PSTRNG
PUTZHX
PUT3HX
PUTAHX
PUTC
PUTNY2
PUTNYB
PUTS
PUTUS
RAWEMP
RAWEXT
RAWGTC
RAWPTC
REGS
REGS?2
REGS3
REGS4
REGSS
REGS6
REMOVE
REMX
RESVEC
RETURN
RPUTC2
RSTRNG
RUBOUT
SBIT
SIMPLE
SPTAB
STACK
STACKP
STACKX
START
SUBYTE
SWI2vC

RAWIO

.SA:1

00033*
00034 +*
00035%*
00036*
00050%*
00037 *
00532 00534
00548 00553
00044*
00086*00242
00085*00284
00039*
00038%*
00152*00163
00183
00082*00134
00220%00230
00018*00728 00740

00858 00860*

00137 00518%*

00084*

00651*00655

00653 00656%*

00189 00231 00239 00258
00280 00300 00673*00689
00505 00687*

00296 00413 00421
00069*00138 00156
00664 00666*
00660*00678 00680
00141 00281 00297
00430 00820%*
00885*

00887 00889*

00767 00839*00841
00778 00851%00862
00163 00380*

00389 00391%*
00387*00393

00402 00411%*

00404 00409*
00400%*00408 00410
00169 00257*

00260 00262 00268%*
00051*

00461 00751 00772 00779
00852%00854

00368*00385

00064 *

00079%*

00793 00808*
00092*00128 00718 00722
00418%*

00091%00127 00179

00424 00431%

00120%

00304 00334*00742 00745
00046*

00536*
00555 00559*

00261 00483

00165 00167
00460 00465

00441
00391

00687
00301

00863

00483 00511

00169 00171
00719 00726

00469 00492
00698 00700

00698*
00409 00634

00422 00442

00864

00792*

00795 00796

00771

MC6809-MC6829 MMU MONITOR PROGRAM

00511

00173 00175 00177 00179 00181

00768 00774 00792

00650*

00639 00641 00654 00666

00506 00619 00632*

00814 00822

45

PAGE 019

FFF2
C4D4
C51F
FFFA
0009
c251
266
400
525
0008
536
C547
0002
247
389
0004
0006
0004
€3C3
€302
C3DA

SWI3VC
SWIH
SWITAB
SWIVEC
TAB
TASK
TASKX
TASMSG
UGETC
UOFF
UPUTC
UQUIT
v
WINDOW

RAWIO SA:1 MC6809-MC6829 MMU MONITOR

00045%*

00123 00718%*

00752 00759%00759 00760 00761
00049*

00058*

00171 00279*

00283 00285 00287*
00491 00515%*

00759 00766%*
00017 *

00760 00773*

00761 00780*
00028*00039

00247 00263 00272*00502
00468 00472*
00015%*

00016*

00027*00038

00173 00477*
00482*00484

00478 00485*

PROGRAM

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

MOTOROLA Semiconductor Products Inc.

3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721 e A SUBSIDIARY OF MOTOROLA INC.

A15322 PRINTED IN USA 5-82 IMPERIAL LITHO CO05197 20,000 AN-859

