
® MOTOROLA
Semiconductor Products Inc.

AN-8S1
Application Note

MOTOROLA MC684S CRTC SIMPLIFIES
VIDEO DISPLAY CONTROLLERS

Prepared by
Charles Melear and Jack Browne

Microprocessor Applications Engineering
Austin, Texas

The need for displaying visual information by the general
business community has found widespread applications.
Banks, airports, department stores, and other businesses
need rapid display of visual information at points of sale and
points of use. Much of this information is generated by peo-
ple who have only a limited knowledge of the electronics in-
volved. Therefore, they must rely on the equipment used to
automatically receive data, digest it, and display it on a video

MC6808
Microprocessor

Display
Enable Hex D

Flip-Flop

monitor. Systems could range in complexity from those
which display only a few lines of data to complicated word
processors. Historically, character printers gave way to line
printers. However, obtaining hard copy is cumbersome and
slow, and a considerable amount of paper is used. Much of
this information is used only momentarily and then discard-
ed, such as inventory checks or airport flight schedules. The
efficiency of low cost, high performance video monitors have

Display
RAM 8 BA14

Logic A15
R/W

Secondary
Bus

Video
Output

Flip-Flop

Video
OutParallel-to -

Serial Shift
Register

made the transition from hard copy to visual display even
more advantageous. As video monitors have come into
general use, the requirement for cost savings in the controller
has intensified. LSI circuits have been appearing which meet
that need.

The Motorola MC6845 CRT controller (CRTC) can
economically solve many of the problems encountered with
video monitor displays. This is acomplished by using an in-
novative design aimed at complete control of the monitor
with intervention by the MPU only when new information is
put into the display memory. The problems to be solved by
the MC6845 in a raster scan video display controller are:
cost, number of required components, amount of interven-
tion by MPU, timing and synchronization of signals, and
software, among others.

Today, CRT controllers can be built using an MC6845
which require approximately 25 ICs plus the extra chips re-
quired for memory. This number represents only a fraction
of the parts required just a few years ago when SSI and MSI
logic devices were used. CRT controllers were built using SSI
and MSI logic devices which required well over one hundred
ICs. With the MC6845 approach, the number of ICs can be
reduced to approximately 25 plus those required for
memory.

To illustrate the capabilities of an MC6845 based terminal,
the software and "rough" hardware considerations used in
its design are discussed. The terminal, as shown in Figure I,
has the following features:

Blinking Cursor
Carriage Return
Backspace
Line Feed
Automatic Scrolling
The CRTC has an address register that can point to any

one of eighteen buried registers as shown in Figure 2. These
can be programmed for up to 256 characters per row and 128
rows per screen with the only limitation being the bandwidth
of the monitor. For this terminal, an 80 by 24 format of 7 by
9 dot matrix characters is used. Horizontal and vertical sync
positions are programmable allowing the CRTC to generate
the horizontal and vertical retrace pulses. A blanking signal
(display enable) is generated during both horizontal and ver-
tical retrace. Two sets of address lines are used. The first set
of fourteen lines cycles in a binary fashion through the
display memory and is incremented with each CRTC clock
pulse. The second set of four lines can be used to address the
row address select lines of a character generator. These also
cycle in a binary fashion and are incremented with each
horizontal sync pulse. A cursor, which may be programmed
to blink, is also generated by the CRTC. It will be displayed
at the address held in the CRTC cursor address register.

Move Cursor Up One Line
Paging
Home Cursor
Clear Screen

SYSTEM IMPLEMENT AnON
Figure 3 represents a complete MC6808-MC6845 based

system capable of receiving a digital input, processing it, and
displaying alphanumeric data on a video monitor. The tim-
ing for the system is derived from a dot clock oscillator. Its
frequency determines the rate at which information is shifted
to the monitor. The dot clock oscillator output is divided by
a counter to obtain the character rate clock. For a 9 column
by 12 row character block which accommodates a 7 by 9
character, binary 8 is detected at Q3 on the counter and the
resulting inverted output is fed into the synchronous clear in-
put of the counter. For a 7 by 9 block, a logic gate could
detect binary 6 on QO, QI, and Q2. It is important to use a
counter with a synchronous clear so the clear pulse will be
one dot clock period wide. The character clock (generated by

the rising edge of Q3) serves as a shift/load signal for the out-
put shift register and a clock to latch data from the display
memory. The CRTC clock (generated by the trailing edge of
Q2) is used to clock the MC6845 CRTC. Each character rate
clock increments the address lines (MAQ-MAI3) of the
MC6845. The display memory must be capable of being con-
trolled by either the MPU or the CRTC. Therefore, the ad-
dress lines for both devices (AQ-A13 and MAQ-MA13) are
routed through multiplexers such as the SN74LS157. The
MPU takes control of the display memory only when a new
character is to be written. The output of the multiplexer ad-
dresses the memory.

As shown in Figure 3, the 8Kx 8 static display memory re-
quires 10 address lines for the address bus of the memory
elements and 3 address lines for the 3-to-8Iine decoder which
drives the chip selects of the memory elements. The output of
the display memory is fed into an 8-bit latch (74LS374) and is
clocked into the latch on the next character clock. This latch
helps to prevent address line jitter which could present
spurious data to the character generator ROM. The character
clock is used to latch data into the SN74LS374. This creates a
one character clock delay from the time that an address
becomes valid to the memory until data is presented to the
character generator ROM. The character clock is also used to
load the parallel word from the character generator ROM in-
to the shift register, producing a second character clock
delay. Once the shift register is loaded the dot clock is used to
serially shift data from the shift register to the video driver.

In order to synchronize both the display enable and cursor
output with the shift register output, a two CRTC clock
delay must be imposed. Both signals are synchronous with
the CRTC address lines. To implement this delay, the two
signals (cursor and display enable) are clocked through two
latches by the noninverted character clock and fed into the
video driver. The video signal is the combination of the
shifted data ORed with cursor and then ANDed with Display
Enable. This is fed into a "D" flip-flop and clocked out by
the dot clock.

The CRTC generates row addresses for the character
generator ROM. Cycling is synchronized within the CRTC
by the horizontal sync pulse (HSYNC) so that the address
lines are incremented by each HSYNC.

When the MPU is required to read or write to the display
memory, the address line multiplexer must be switched to the
MPU address lines. Since the display memory is located from
ooסס$ to $3FFF, address lines AI5 and AI4 will both be logic
"0" if and only if the display memory is being addressed.
Therefore, only "00" needs to be decoded on these two lines
as an MPU address select line. In normal operation where the
CRT controller is controlling the display memory, the secon-
dary data bus is being driven by the display memory. Also,
the MPU data bus is being driven by the MPU or some other
peripheral. This requires that the two data buses be isolated
from each other except during an MPU read or write of the
display memory. This requires bus transceivers that can be
set to the high-impedance state in both directions. These are
shown in Figure 2 as three MC6885 Hex Buffer-Inverters. (If
octal buffers are used, only two are required.)

To complete the entire system, RAM, ROM, and I/O in-
terface circuitry is placed on the data buses. The RAM is
used primarily for a scratch pad memory and the locations
accessed by the stack pointer register. The ROM contains the
operating program to service the I/O interface. The I/O in-
terface can be a keyboard outputting parallel ASCII code or
row/column information. As long as some method can be
programmed to receive digital data and transfer it onto the
data bus, the CRT controller, using an MC6845, can display
that information on a video display.

Horizontal
CTR (-;- 256)

MC

Vertical
Control

Vertical Sync
Position Reg

Interlace Mode
Reg

Linear
Address

Generator

''';r't R~R/W
lAD 23 AD

~Al
~A2(3~A3
A4 1 A4 ::i

~ AS S:
~ A6 ~~
IA15 10 e50l ~ ~

~C"Sl ~
~rn
,At3 13 C53

~rn
lAW 15 C55

\f ::;1~11/;lml~I******'!!ili!? >l NIl:lI<'\ iQl i'jIMll<lllllll::; IEl

y X
1

MAD

MAl MA2 MA3

; 31~161~ 10 ~ 131

MA4 MA5 MAS MA7

:1,r~ ~ J:~<{ « « or:{

2 3 5 6 11 10 14 13

A 7432

ti2
A15 A14

C YD~
A Yl~
B Y2 H*---

74lS138 Y3~
Gl Y4~
G2A Y5T-
G2B ~~tI::

VMA~ r
4 71 9 12

J::lll

MAS MA9 MAlO MAll I
~ ,1m 0 -« « ;: 4:
2 3 5 6 11 10 14 13

MA121MA13

~ 31 ~16

8K)(8
Static

Display

Memory

lStores Screen
Characters I

5~ JAI5 R/W 4 >-j ..~ 3 5 7 9 11 ,J
6E- 15 QAOBOCOCOEDF

---"'- 00
MC6887

(MeaT9]),
EI'l1
IA 18 Ie 10 IE IF

214 6 10 12 141
OOID! 02 0304051

2 4 610 11 13

~ ~;IBICID DEOF

MC68B7
......! em (MeaT9?)

OA 00 1E IF

3 51 7 9 12114

DO 01102 D3 OOID7

00..1....
Ol~02+D3 ...i...
D4~

05 ~D6....!!...
07!!...

~AO

~~;
~A3
~ A4

~~~gAlg A8

~A9
~CSO
~CSl
~CS2
~CS3

r
I--=r

Data Bus

4

VSYNC 6
5

7400
9

HSYNC 8
10

I
CRTC
Clock

CLK

00-4-
01 ..L
02 ..L
03 ...L
04 ~

05 ~D6..!..
07 ..!..

A15n.9~ 8

At3 '~n..J.LJ 6
Al2 -- 5

AI4

~llJJIJ,AT CuI/Series Resonant

-~r6~
~~

~20 I ~20

21

~ C51 =~~~
11 11 C52 RS2 ~23

eLK J ~;i'<t AS3 24 11
la~ AO ;::: DO 7 12 A
2Q~Al ~ D1~B
3a~A2 ~ D2~C
4Q~A3:;:;: D3~D
5O~A4 04~E
6Q~ AS 05 ~ F 74165

7Q~A6 D6~G

80t!2 Character f: ~LK I::I~~~::h Ge;~r~lOr QH~
'= Shift Register

ABC 0 I- '0 Q.. II:
Z <0 Z ..J

74163W" w u~

9
00 01 02 03

14
1
131"1"

4-811 Counter

3 10
4 20
7 30
8 40

13 50
14 60
17 70
18 80 [

;r :;l
10 20

r r
6 ,-;T;r
3D 40 eLK

21.1

fA IB Ie 10
NC- 00 I ""MC6887

IMCBT971 Three-StBle,......2
ENi Buffers

OAABOCOD

:l:JJ,:1D4 07 A15 A14

4 " I
3

A
7404 .••••••• '- R/W74V " 7404

10 20l]5 CLK

~5V
10'
2PR

12 20

11 2CLK

113

2eeR
20 9

208
Display
Enable 1 74a3 74LS]41~ )L--110

3 1 eLK 10 ~
1 PR 1 CLA4U

6+sv



DEVICE IMPLEMENTATION
The MC6845 CRTC has 18 programmable registers

(RO-RI7 in Figure 2) that control: the horizontal and vertical
sync, number of characters per row, number of scan lines per
row, number of rows per screen, the portion of memory to be
displayed, cursor format and position, and the choice of one
of three interlace modes.

The first four registers, ROthrough R3, are concerned with
the horizontal format. These registers determine the number
of characters to be displayed, their width, and horizontal
position. Programming considerations are based on the
period of the monitor, i.e., the sweep plus retrace time. Also,
the horizontal sync pulse should occur slightly after the beam
is driven past the right-hand side of the screen. It is impor-
tant to note that the beam is overdriven on the left side of the
screen as well as the right. This means that a certain time
elapses between the horizontal sync pulse and when the beam
sweeps onto the screen from the left and is at the position for
it to start displaying data.

ro
u

0'::;
co CD
u >

0'::; l.-
ID
>

L
Display
Period

Horizontal
Retrace
Period

Vertical
Retrace

The period of the monitor should be divided into character
times (see Figure 4). This will define the width of a character
block and this value will be stored in the Horizontal Total
Register (RO). A video monitor will require about 20070of the
period to be reserved for retrace (see Figure 5), as opposed to
about 35% for a TV. This means that the Horizontal
Displayed Register (RI), which contains the number of
characters to be displayed per row, will not usually exceed
about 80% of the value in RO. If RO contains a very small
number, each character will be very wide. Likewise, if RO
contains a large number, the characters will be very narrow.
The Horizontal Sync Position Register (R2) is programmed
in character times and should be positioned such that it will
occur slightly after the beam is driven past the right margin
of the screen. The Horizontal Sync Width Register (R3), pro-
grammed in character times, should provide sufficient width
to allow the discharge of the circuitry driving the horizontal
sweep. It should be noted that the value in ROusually exceeds
the sum of the values in R2 and R3. This is to allow for the
time required for the beam to sweep onto the screen from the
left margin since it could be overdriven to the left.

I I
I I
I •• Horizontal Total RO .,, I'
~ Horizontal Display R1-.J I
I I I
I I 1

Display 1------1 I
Enable ----~I Horizontal Sync Width R3 ---..: ~

~ Horizontal Sync Position R2 ---.1L
Horizontal'

Sync I
MAO- I~~~rrrrrJ-

I

Four registers, R4-R7, are used to set up the vertical for-
mat (see Figure 6). The frequency of the horizontal oscillator
and the vertical refresh rate must be known. Generally, the
vertical refresh rate is 60 Hz. The horizontal frequency,
usually 15,750 Hz, divided by the frame refresh rate is equal
to the total number of scan lines per frame. The vertical sync
pulse requires 16 scan lines. This means that the programmer
cannot use the total number of scan lines for information
display. A character block which contains the character to be
displayed, plus spacing columns to the right and additional
scan lines on the bottom, is chosen by the programmer.
Typically, a character generator ROM with a 7 x 9 matrix ele-
ment will be placed in a 9x 12 character block. The Vertical
Total Register (R4) contains the number of character rows
per screen which is equal to the total number of scan lines
divided by the height of the character block. This height is
programmed in scan lines and placed in the Max Scan Line
Address Register (R9). The number of scan lines left over is
written into the Vertical Adjust Register (R5). All scan lines
must be accounted for so the CRT controller will exactly
match the vertical refresh rate; otherwise, the display will
"swim" or have a wavy motion. The Vertical Displayed
Register (R6) contains the number of character rows that the
programmer wishes to be displayed. The Vertical Sync Posi-
tion Register (R7) contains the position of the vertical sync
pulse. This number, programmed in character times, must be

I 1 II.. Vertical Total R4 .1 I
I " II Vertical : I
t-+-- Vertical Displayed R6 --.: Adjust ...• l:...-
I , R5 1 I

I Display 1 I I---.J Enable _.-----1
I I!-+-- Vertical Sync Position R7---.n _
,
II Vertical Sync,



greater than or equal to the Vertical Displayed Register (R6),
but not so much greater that it shifts the last rows of the
displayed text off the bottom of the screen. Once these
registers are set up, the raster is completely defined.

Three operating modes are available with the MC6845
which have to do with which field (odd or even) that infor-
mation is written into. The first mode, Normal Sync, writes
information into one field only (see Figure 7). Remember,
one frame requires two vertical sweeps of the screen. The
first sweep (even field) starts at the upper left corner of the
screen and the second sweep (odd field) starts at the top
center. When writing into one field, each dot will be updated
60 times per second.

Raster
Add.
0-----
1 0 0

2 0 0

3 0 0

4 00000

5 0 0

6 0 0

7 0 0

Raster Master
Add. Add.
0----- 0-----1-0---0-0 2-8---3-1~=I~~~Pi]~~~E!5- -4
6 - - - - -5 --Even Field
7- --- -6
- e - - - e -7 - - - Odd Field

Normal
Sync

Interlace
Sync

Interlace
Sync and Video

The second mode, Interlace Sync, writes in both fields.
The odd field is an exact duplicate of the even field. Essen-
tially, the same information is written twice. This has the ad-
vantage of making the letters appear to have solid vertical
lines thus improving resolution. However, each dot is now
refreshed only 30 times per second which may cause an ob-
jectionable flicker on the screen. This flicker cannot be
perceived by all people due to variances in eye sight. Also,
the persistance of the phosphor will moderate the effect of
the flicker.

The third mode, Interlace Sync and Video, also writes in
both fields. However, one half the character is written in
each field. This means an eight row character block in this
mode will have four scan lines in the even field and four in
the odd field making a character only half the height of the
other two modes. This allows the highest screen density for
the MC6845. These modes are programmed in the Interlace
Mode Register (R8).

The MC6845 also controls the cursor format and blink rate
(see Figure 8). Each character row has a certain number of
scan lines as defined by the Max Scan Line Address Register
(R9). The Cursor Start Register (RIO) specifies on which scan
line the cursor begins. Also, this register contains a bit that
specifies whether the cursor will blink or not blink. Another
bit specifies the blink rate which is either one sixteenth or one
thirty second of the field rate.

The Cursor End Register (RII) specifies the scan line at the
bottom of the cursor. If the same number is specified for
both the starting and ending scan line, the cursor will be one
line tall.

There are six remaining registers. The Start Address
Registers High (RI2) and Low (RI3), contain the address of
the first byte of memory to be displayed after vertical retrace.
The Cursor Registers High (RI4) and Low (RI5) contain the
address where the cursor will appear. The Light Pen
Registers High (RI6) and Low (R17) will receive the current
address appearing on the CRT control address lines follow-
ing the recognition of the low-to-high transition of the light
pen strobe (LPSTB) input. Once the LPSTB low-to-high

Raster
Address

Raster
Address

o -+-+-+-i-+-+--+-
1 -+-+-+-+-+-+-+-
2-4++-+-H-+-
3-+-+-+-i-+-+-+-
4-+-++-+-H-+-
5-+-+-+-i-+-+--+-
6-+-+-+-i-+-+-+-
7-+-+-+-<H-+-+-
8-+-+-+-H-+-+-
9 -$4MMl$EJr

10-+-+-+-H.-+-+--
11-+-+-++-+-+-+-

o -+-+-+-H-+-+-
1 "'M$EIl~r

lD1l1
6 -+-++-+-~-+-
7-+-++-+-I-+-+--
8 -+-++-H-+-+-
9-+-++-H-+-+-

10-+-+++-+-+-+-
11-+-++-+-+-+-+-

Cursor Start = 9
Cursor End =9

Cursor Start = 1
Cursor End = 5

FIGURE 8 - Cursor Start and End Register

transition is recognized, the next low-to-high CRTC clock
transition latches the address information and loads it into
the Light Pen Register. These registers are used primarily by
the programmer who writes the software for the terminal.
The method in which they are used is discussed in the soft-
ware considerations portion of this application note.

In order to complete the hardware discussion, the dot
clock and character clocks must be defined. The character
clock rate will be the product of the horizontal oscillator fre-
quency and the total horizontal character times described in
calculating the value for RO. The dot clock will be the pro-
duct of the character rate clock and the width of the
character block in columns. This requires a different dot
clock for each screen format.
SOFfWARE IMPLEMENTATION

Once the system has been defined, software development
may begin. The firmware residing in ROM will initialize and
support the terminal. When power is applied to the system,
the MPU automatically jumps to the reset address stored in
location $FFFE and $FFFF. This address is the beginning of
the initialization sequence.

After a power-on-reset, the display memory is initialized
(to avoid a flash of false data), the eighteen buried registers
of the CRT controller are initialized, and characters are ac-
cepted from the keyboard. Some control characters will be
decoded to implement the following features:

Carriage Return Move Cursor Up One Line
Backspace Paging
Line Feed Home Cursor

Clear Screen
Scrolling up or down will be done automatically as required.

The software was developed using the concepts of struc-
tured programming. The first two routines which were writ-
ten support the hardware development and debugging. The
first routine is named CHARON and its flowchart is shown
in Figure 9. This routine initializes the display memory with
successive ASCII character codes which help identify ad-
dressing problems. The second routine is named CRTINT
and initializes the CRT controller (see flowchart in Figure
10). The register values to implement an 80 by 24 display are
read from the ROM and stored into the buried registers of
the CRT controller. Again, it is important to initialize the
display memory prior to initializing the MC6845, to avoid a
flash of false data. After the system has been initialized by
running this program (as listed in Figure 11), waveforms,
timing, and data may be checked, thus speeding the design
phase.



Initialize Register
Counter and

Parameter Counter

Increment Register
Counter and

Parameter Counter

FIGURE 9 - CHARGN Subroutine Flowchart
Loads ASCII character codes into display memory.

FIGURE 10 - CRTINT Subroutine Flowchart
Initializes the CRTC registers with the previously

calculated values stored in the ROM .

PAGE 001 BOOT •SA:l

00001 4000 A CRTCAD EQU $4000
00002 4001 A CRTCRG EQU $4001
00003A E3FE ORG $E3FE
00004A E3FE EO A FCB $EO,O
00005A EOOO ORG $EOOO
00006A EOOO 4F CHARGN CLRA FILL SCREEN WITH CHARACTER
00007A E001 CE 0000 A LDX #$0000
00008A E004 A7 00 A CHAR STAA O,X STORE CHARACTER
00009A E006 4C INCA GET NEXT CHARACTER
00010A E007 08 INX MOVE TO NEXT LOCATION
OOOllA E008 8C 1000 A CPX #$1000 FINISHED
00012A EOOB 26 F7 E004 BNE CHAR FINISHED?
OOOl3A EOOD 5F CRTINT CLRB INITIALIZE CRTC
OOO14A EOOE CE E022 A LDX #TABLE
00015A EOll F7 4000 A CRTIN1 STAB CRTCAD SELECT CRTC REGISTER
00016A E014 A6 00 A LDAA O,X
00017A E016 B7 4001 A STAA CRTCRG
00018A E019 08 INX
00019A E01A 5C INCB
00020A E01B C1 10 A CMPB #$10
00021A E01D 26 F2 EOll BNE CRTIN1
00022A E01F 01 LOOPER NOP
00023A E020 20 FD EOlF BRA LOOPER
00024A E022 30 A TABLE FCB $30,$26,$2B,$02,$14,$01
00025A E028 12 A FCB $12,$13,$00,$OB,$40,$08,$00,$00,$00
00026 END
TOTAL ERRORS 00000--00000

FIGURE 11 - CRT OEM Listing
This program, resident in PROM, will initialize the display memory
with successive ASCII characters. This will allow initial checkout of
the hardware.



These routines must be modified and additional routines
written to implement all of the features of the terminal. A
MONITOR program (see flowchart in Figure 12)is called by
the reset vector stored in the ROM. Under control of the
monitor program, the stack pointer is initialized at the end of
the RAM (address $A07F), the self-modifying sections of
code are dumped to the RAM, and all variables are initializ-
ed.

The BLANKR subroutine is then called. It is a revision of
the CHARON subroutine (see flowchart in Figure 9 and
listing in Figure 11). Instead of stepping through the entire
ASCII character code, the ASCII blank code ($20) is stored
in the display memory. After the display memory has been
filled with blanks, the CRTINT subroutine, discussed
previously, is called.

The monitor program calls CHARRC, a subroutine which
accepts and processes a character. Control is returned to the
monitor program which in turn loops on the CHARRC
subroutine call. The result is that the terminal continuously
accepts characters. A flowchart of CHARRC appears in
Figure 13. The CHARRC subroutine calls the input
character subroutine INCH (see flowchart in Figure 14),
which receives one keyboard entry.

FIGURE 12 - MONITOR Program Flowchart
Calls all routines required to implement the terminal.

FIGURE 13 - CHARRC Subroutine
Accepts characters from keyboard, moves cursor, and decodes all special characters.

8



The special functions are implemented using control
characters which are not normally utilized by CRT terminals.
Table 1 lists the feature and its control character and in-
dicates which routine processes the command. Each time one
of the special characters is received, a jump to the ap-
propriate routine occurs. All characters received from the
keyboard, except for the special control characters, are writ-
ten to the current cursor location, the cursor is moved one
space, and a blank is written under the cursor.

To facilitate carriage returns, a space counter (SPACES) is
used. It keeps track of the cursor displacement from the
beginning of the current line. The counter (SPACES) is used
whenever a carriage return key is pressed. The cursor is
moved back to the beginning of the line by subtracting the
number of spaces from the Cursor Registers (R14 and RI5).
A line feed is then generated by adding the number of
characters per line to the Cursor Register.

The CRT controller treats the screen memory as a linear
array such that the last space of a line and the first space of
the next line are located at adjacent memory locations. When
the cursor is at the end of a line and another character is in-
put, the cursor moves to the first of the next line. The space
counter (SPACES) must be reset.

Yes

Get Input
Character

Code
From PIAAD

FIGURE 14 - INCH Subroutine Flowchart
Polls PIA A Control Register until IRQA 1 is set, then the data is
retrieved from the PIA A Data Register.

Feature Keyboard Subroutine Flowcharted Result
Entry Name in Figure

Scroll Up
.

None SCROLU 15b Called whenever a line feed is generated. Will add a line to bottom of
screen when necessary.

Carriage Return CR Key CR 16 Generates carriage return, calls LF.
Line Feed LF Key LF 17 Generates line feed, calls SCROLU.
Back Space © H BS 18 Generates back space and blanks under cursor, calls SCROLD when

cursor moves back to previous line.
Move Cursor Up © $ UPLINE 19 Moves cursor up one line, calls SCROLD.One Line
Move to Next Page © D PAGE 20 Moves to same place on next page.
Home Cursor © A HOME 21 Moves cursor.
Clear Screen © G CLEAR 22 Clears page starting at cursor.
Scroll Down None SCROLD 23 Called whenever cursor moves back one line. Adds a new line to top

of screen when necessary.



1919

{

1920

Remainder

2047

-1840 }

_ 23rd Line

1919

}
24th Line

1999

2047 } Remainder

FIGURE 15a - Scrolling
Performed by changing the Start Address in R12 and R13 in the CRTC. This example shows how an 80 x 24 display is scrolled up one line.

Clear the
Portion of
the Line

at Beginning
of Display

Memory

Calculate
Remaining
Number of
Spaces to
Be Blanked

Increment
Start Address
by Number of

Characters
per Line

Blank Rest
of Line at

End of Display
Memory

FIGURE 15b - SCROLU Subroutine Flowchart
The 14-bit cursor address is checked to see if cursor has moved off the
screen. If so, the 14-bit start address is incremented to add a new line
(with the cursor) at the bottom.

FIGURE 16 - CR Subroutine Flowchart
Generates a cursor return by subtracting SPACES (the space counter)
from the current cursor position in R14 and R15 of the CRT. Jumps to
LF to generate a line feed.

FIGURE 17 - LF Subroutine Flowchart
Generates a line feed by adding the number of characters per line to
the current cursor position stored in R14 and R15 of the CRTC. Jumps
to SCROLU to see if a new line should be scrolled on the page.



Whenever SPACES is reset, the scroll up routine
(SCROLU) is called to determine if the cursor is still on the
CRT screen. If the cursor has moved off the bottom of the
CRT screen, then the Start Address Registers (R12 and R13)
are adjusted to scroll a new line in at the bottom of the
screen. The SCROLU routine is illustrated in Figure 15a and
flowcharted in Figure 15b.

Flowcharts, describing implementations of the .special
features listed in Table 1, are presented in Figures 15-23.
Notes at the bottom of each figure explain the algorithms
employed.

When the routine to generate a line feed LF (flowcharted
in Figure 17) is called, the cursor is moved down one line.
Because this may move the cursor off the screen, the

FIGURE 18 - BS Subroutine Flowchart
Backspaces and blanks under cursor. Jumps to SCROLD and checks
if the cursor has moved off the top of the screen.

FIGURE 19 - UPLINE Subroutine Flowchart
Moves the cursor up one line by subtracting the number of characters
per line from current cursor position stored in R14 and R15 of the
CRTC. Jumps to SCROLD to check if the cursor has moved off the
top of the screen.

SCROLU routine, to scroll up one line, is called. Similarly,
whenever the backspace routine or the routine to move the
cursor up one line (UPLINE, see flowchart in Figure 19) is
called, the cursor may be moved back to the previous line.
This may also move the cursor off the top of the screen re-
quiring the routine which scrolls down one line (SCROLD,
see flowchart in Figure 23) to be called. The scrolling,
whether up or down, is implemented by modifying the start-
ing address stored in CRTC Registers R12 and R13. Scrolling
up is implemented by adding or subtracting the number of
characters per line to the start address. Note that the CRTC
Cursor Registers R14 and R15 are the only read/write
registers. This requires the use of a variable to retain the cur-
rent start address duplicated in R12 and R13 (write only).

FIGURE 20 - PAGE Subroutine Flowchart
Moves to the same position on the next page by adding PAGES to the
high order byte of the starting address (R12l and the high order byte
of the cursor pOSition (R14l. PAGES multiplied by $100 equals the
number of characters per page.

Reset Start
Address to the
First Line of the

Current Page

Reset Cursor
Position to the First
Line of the Current

Page

FIGURE 21 - HOME Subroutine Flowchart
Reset start address and cursor position to the beginning of the current
page, then clear SPACES and jump to CLEAR to put blanks in each
display memory element of the current page.



FIGURE 22 - CLEAR Subroutine Flowchart
Stores ASCII blank, code $20, into all memory locations on the cur-
rent page starting at the cursor.

A complete listing of the software appears in Figure 24 and
will implement all the described features. A semi-structured
approach is utilized to simplify changes or additions. The
MC6845 CRTC supplies the video and sync pulses to the
CRT and may be programmed by the MC6808 MPU for dif-
ferent screen formats. In fact, formats can be changed "on-
the-fly" provided that the appropriate dot clocks are
available.

Additional "bells and whistles," such as page editing,
block transmit, or receive could be added. Interface cir-
cuitry, not described herein, should be added for a parallel or

FIGURE 23 - SCROLD Subroutine Flowchart
Checks to see if the cursor is before the screen by seeing if the cursor
position registers (R14 and R151 are less than the Screen Start
Registers (R12 and R13l. If so, the start address of R12 and R13 is
decremented by CHRPLN, the number of characters per line.

serial interface. A programmable character generator would
allow the use of semigraphics. Full graphics could also be im-
plemented with each memory bit corresponding to a dot on
the CRT screen. A non-encoded keyboard could also be used
with the software expanded to decode the keyboard. Addi-
tional ICs could be added enabling the MPU and CRTC to
run on different phases so that the MPU has transparent ac-
cess to the display memory. The software, developed in this
article, may be used as is or used as a building block to imple-
ment additional features.



PAGE 001 CRTC .SA:1 CRTC

00001 NAM CRTC
00002 *************************************************
00003 * HARDWARE CONFIGURATION
00004 * ACIA $FCF4
00005 * ROM $EOOO
00006 * RAM $AOOO
00007 * CRTC $4000
00008 * SCREEN MEMORY $0000
00009 *************************************************
00010 *00011 * SET UP PERIPHERAL ADDRESSES
00012 FCF4 A ACIACS EQU $FCF4 ACIA CONTROL/STATUS REG
00013 FCF5 A ACIADA EQU ACIACS+l ACIA DATA REGISTER
00014 3000 A CRTCAD EQU $3000 CRTC ADDRESS REGISTER
00015 3001 A CRTCRG EQU CRTCAD+l CRTC DATA REGISTER
00016 *
00017 * SET CONSTANTS
00018 4000 A SCRNST EQU $4000 SCREEN STARTING ADDRESS
00019 47DO A SCRNND EQU SCRNST+2000 SCREEN END ADDRESS
00020 0040 A MOVE EQU $40 SCREEN OFFSET
00021 0004 A PAGESZ EQU $04 CHARACTERS PER PAGE
00022 OOFC A PGMASK EQU $FC MASK TO GET CURRENT PAGE
00023 0002 A SCRNH EQU $02 CHARACTERS ON SCREEN
00024 OOAB A SCRNL EQU $AB
00025 *00026 * DEFINE VARIABLE LACATIONS
00027 *00028 AOOO A RAM EQU $AOOO RAM STARTING ADDRESS
00029 AOOI A CHARH EQU RAM+l
00030 A002 A CHARL EQU RAM+2 CHARACTER POINTER L
00031 A006 A BLANKH EQU RAM+6
00032 A007 A BLANKL EQU RAM+7 BLANK POINTER L
00033 A006 A BSPOSH EQU BLANKH BACK SPACE POSITION H
00034 A007 A BSPOSL EQU BLANKL BACK SPACE POSITION L
00035 AOOA A INDEX EQU RAM+I0 HOME UP POINTER
00036 AOOE A COMPR EQU RAM+14 HOME END POINTER
00037 A011 A SPACES EQU RAM+17 SPACE COUNTER
00038 A012 A STARTH EQU RAM+18 DISPLAY START ADDRESS H
00039 A013 A STARTL EQU RAM+19 DISPLAY START ADDRESS L
00040 A014 A ENDH EQU RAM+20 END OF SCREEN
00041 A015 A ENDL EQU RAM+21 END OF SCREEN
00042 A016 A CHARLN EQU RAM+22 CHARACTERS PER LINE
00043A EOOO ORG $EOOO STARTING ROM ADDRESS
00044 *************************************************
00045 * MONITOR PROGRAM
00046 * INITIALIZES THE STACK POINTER
00047 * INITIALIZES THE SELF-MODIFYING CODE
00048 * INITIALIZES THE DISPLAY MEMORY
00049 * INITIALIZES THE CRTC
00050 * ACCEPTS INPUT CHARACTERS
00051 *************************************************
00052A EOOO 8E A07F A LDS #$A07F INITIALIZE STACK POINTER
00053 *00054 * INITIALIZE THE SELF-MODIFYING CODE IN RAM
00055 *
00056A E003 4F CLRA ZERO A ACCUMULATOR
00057A E004 B7 AOOI A STAA CHARH
00058A E007 B7 A002 A STAA CHARL



PAGE 002 CRTC .SA:l CRTC

00059A EOOA B7 A006 A STAA BLANKH ZERO BLANKH/BSPOSH POINTER
00060A EOOD B7 A007 A STAA BLANKL ZERO BLANKL/BSPOSL POINTER
00061A EOIO B7 AOOA A STAA INDEX
00062A E013 B7 AOOB A STAA INDEX+l
00063A E016 B7 AOOE A STAA COMPR
00064A E019 B7 AOOF A STAA COMPR+l
00065A EOIC B7 AOll A STAA SPACES
00066A EOIF B7 A012 A STAA STARTH
00067A E022 B7 A013 A STAA STARTL
00068A E025 B7 A014 A STAA ENDH
00069A E028 B7 A015 A STAA ENDL
00070A E02B 86 B7 A LDAA #$B7 STORE "STA A" OP CODE
0007lA E02D B7 AOOO A STAA RAM
OOOnA E030 B7 A005 A STAA RAM+5
00073A E033 86 86 A LDAA #$86 STORE "LDA A" OP CODE
00074A E035 B7 A003 A STAA RAM +3
00075A E038 86 20 A LDAA #$20 STORE ASCII "BLANK"
00076A E03A B7 A004 A STAA RAM+4
00077A E03D 86 39 A LDAA #$39 STORE "RTS" OP CODE
00078A E03F B7 A008 A STAA RAM+8
00079A E042 B7 AOOC A STAA RAM+12
00080A E045 B7 AOIO A STAA RAM+16
00081A E048 86 CE A LDAA #$CE STORE "LDX" OP CODE
00082A E04A B7 A009 A STAA RAM+9
00083A E04D 86 8C A LDAA #$8C STORE "CPX" OP CODE
00084A E04F B7 AOOD A STAA RAM+13
00085A E052 86 26 A LDAA #$26 SET NO. CHAR PER LINE
00086A E054 B7 A016 A STAA RAM+22
00087A E057 8D 06 E05F BSR BLANKR FILL SCREEN WITH BLANKS
00088A E059 8D 12 E06D BSR CRTINT INITIALIZE CRTC
00089A E05B 8D 32 E08F RUN BSR CHARRC RUN PROGRAM
00090A E05D 20 FC E05B BRA RUN
00091 *************************************************
00092 * BLANKR SUBROUTINE FILLS DISPLAY MEMORY WITH
00093 * BLANK CODE ($20).
00094 *************************************************
00095A E05F 86 20 A BLANKR LDAA #$20 INITIALIZE SCREEN MEMORY
00096A E061 CE 4000 A LDX #SCRNST DISPLAY START ADDRESS
00097A E064 A7 00 A BLANKI STAA o ,X STORE CHARACTER
00098A E066 08 INX NEXT SCREEN LOCATION
00099A E067 8C 47DO A CPX #SCRNND FINISHED?
OOlOOA E06A 26 F8 E064 BNE BLANKI
OOlOlA E06C 39 RTS
00102 *************************************************
00103 * CRINT SUBROUTINE INITIALIZES CRTC BY LOADING
00104 * THE BURRIED RIGISTERS.
00105 *************************************************
00106A E06D 5F CRTINT CLRB INITIALIZE CRTC
00107A E06E CE E07F A LDX #TABLE
00108A E07l F7 3000 A CRT STAB CRTCAD SELECT CRTC REGISTER
00109A E074 A6 00 A LDAA O,X GET TABLE VALUE
OOllOA E076 B7 3001 A STAA CRTCRG STORE CRTC PARAMETER
OOlllA E079 08 INX GET NEXT TABLE VALUE
001l2A E07A 5C INCB SELECT NEXT CRTC REGISTER
OOl13A E07B Cl 10 A CMPB #$10 LAST CRTC REGISTER
001l4A E07D 26 F2 E07l BNE CRT
00115 *00116 * TABLE OF VAU

FIGURE 24 - Complete Listing of CRTC Software
(Continued)



PAGE 003 CRTC .SA:l CRTC

00117 *
001l8A E07F 30 A TABLE FCB $30 RO HORIZONTAL TOTLA
001l9A E080 26 A FCB $26 Rl HORIZONTAL DISPLAYED
00120A E081 2B A FCB $2B R2 HORIZONTAL SYNC POS.
00121A E082 02 A FCB $02 R3 HORIZONTAL SYNC WIDTH
00122A E083 14 A FCB $14 R4 VERTICAL TOTAL
00123A E084 01 A FCB $01 R5 VERTICAL TOTAL ADJUST
00124A E085 12 A FCB $12 R6 VERTICAL DISPLAYED
00125A E086 13 A FCB $13 R7 VERTICAL SYNC POSITION
00126A E087 00 A FCB $00 R8 INTERLACE MODE
00127A E088 OB A FCB $OB R9 MAX SCAN LINE ADDRESS
00128A E089 40 A FCB $40 RIO CURSOR START ADDRESS
00129A E08A 08 A FCB $08 Rll CURSOR END ADDRESS
00130A E08B 00 A FCB $00 R12 START ADDRESS H
00131A E08C 00 A FCB $00 R13 START ADDRESS L
00132A E08D 00 A FCB $00 R14 START ADDRESS H
00133A E08E 00 A FCB $00 R15 START ADDRESS L
00134 *************************************************
00135 * CHARRC SUBROUTINE ACCEPTS KEYBOARD INPUT,DECO
00136 * SPECIAL FEATURES AND CONTROLS THE CURSOR.
00137 *************************************************
00138A E08F 8D 7F EllO CHARRC BSR INCH GET INPUT
00139A E091 81 13 A CMPA #$13 DECODE SPECIAL CHARACTERS
00140A E093 23 02 E097 BLS DECODE
00141A E095 20 31 EOC8 BRA CURSE NOT A SPECIAL CHARACTER
00142A E097 81 OD A DECODE CMPA #$OD
00143A E099 26 03 E09E BNE DECI
00144A E09B 7E El77 A JMP CR CARRIAGE RETURN?
00145A E09E 81 08 A DECI CMPA #$08
00146A EOAO 26 03 EOA5 BNE DEC2
00147A EOA2 7E EIAF A JMP BS BACKSPACE?
00148A EOA5 81 OA A DEC2 CMPA #$OA
00149A EOA7 26 03 EOAC BNE DEC3
00150A EOA9 7E E191 A JMP LF LINEFED?
00151A EOAC 81 13 A DEC3 CMPA #$13
00152A EOAE 26 03 EOB3 BNE DEC4
00153A EOBO 7E EIEF A JMP UPLINE MOVE CURSOR UP ONE LINE?
00154A EOB3 81 04 A DEC4 CMPA #$04
00155A EOB5 26 03 EOBA BNE DEC5
00156A EOB7 7E E20C A JMP PAGE NEXT PAGE?
00157A EOBA 81 01 A DEC5 CMPA #01
00158A EOBC 26 03 EOCI BNE DEC6
00159A EOBE 7E E22A A JMP HOME HOME CURSOR
00160A EOCI 81 07 A DEC6 CMPA #07
00161A EOC3 26 03 EOC8 BNE CURSE
00162A EOC5 7E E258 A JMP CLEAR CLEAR SCREEN?
00163A EOC8 C6 OF A CURSE LDAB #$OF GET CURSOR ADDRESS L
00164A EOCA F7 3000 A STAB CRTCAD
00165A EOCD F6 3001 A LDAB CRTCRG
00166A EODO F7 A002 A STAB CHARL SAVE CHARACTER ADDRESS
00167A EOD3 5C INCB
00168A EOD4 F7 3001 A STAB CRTCRG
00169A EOD7 F7 A007 A STAB BLANKL SAVE CURSOR ADDRESS FOR BL
00170A EODA C6 OE A LDAB #$OE GET CURSOR ADDRESS H
00171A EODC F7 3000 A STAB CRTCAD
00172A EODF F6 3001 A LDAB CRTCRG
00173A EOE2 CA 40 A ORAB #MOVE MOVE CURSOR TO DISPLAY ADD
00174A EOE4 F7 AOOI A STAB CHARH SAVE CHARACTER ADDRESS

FIGURE 24 - Complete Listing of CRTC Software
(Continued)



PAGE 004 CRTC .SA:1 CRTC

00175A EOE7 F6 A007 A LDAB BLANKL BLANKL=O?
00176A EOEA 26 06 EOF2 BNE NOCARY
00177A EOEC F6 AOOl A LDAB CHARH INCREMENT IF CARRY REQUIRE
00178A EOEF 5C INCB
00179A EOFO 20 03 EOF5 BRA CARRYD
00180A EOF2 F6 AOOl A NOCARY LDAB CHARH INCREMENT IF CARRY REQUIRE
00181A EOF5 F7 3001 A CARRYD STAB CRTCRG UPDATE CURSOR
00182A EOF8 F7 A006 A STAB BLANKH BLNAK UNDER CURSOR
00183 *00184 * RAM IS A SECTION OF SELF-MODIFYING CODE WHI
00185 * STORES THE CHARACTER, IN THE A REGISTER, AT
00186 * THE PRESENT CURSOR LOCATION.
00187 *************************************************
00188A EOFB BD AOOO A JSR RAM SAVE CHARACTER
00189A EOFE 7C A011 A INC SPACES INCREMENT SPACE COUNTER
00190A EI0l F6 A016 A LDAB CHARLN AUTOMATIC CR?
00191A EI04 Fl A011 A CMPB SPACES
00192A EI07 2E 06 EI0F BGT NOSCRL
00193A EI09 7F A011 A CLR SPACES
00194A EI0C 7E E120 A SCRLOL JMP SCROLU CHECH FOR SCROLL UP
00195A EI0F 39 NOSCRL RTS
00196 *************************************************
00197 * INCH SUBROUTINE POLLS THE ACIA UNTIL A CHARA
00198 * IS RECEIVED THEN MASKS THE PARITY BIT AND
00199 * IGNORS RUBOUTS.
00200 *************************************************
00201A E110 B6 FCF4 A INCH LDAA ACIACS
00202A E113 47 ASRA READY?
00203A E114 24 FA E110 BCC INCH RECEIVED NOT READY
00204A E116 B6 FCF5 A LDAA ACIADA INPUT CHARACTER
00205A E119 84 7F A ANDA #$7F RESET PARITY BIT
00206A E11B 81 7F A CMPA #$7F
00207A E11D 27 Fl E110 BEQ INCH RUBOUT IGNOR
00208A E11F 39 RTS
00209 *************************************************
00210 * SCROLU SUBROUTINE CHECKS TO SEE IT THE CURSO
00211 * MOVED OFF THE BOTTOM OF THE SCREEN. IF SO A
00212 * NEW LINE IS SCROLLED ONTO THE SCREEN.
00213 *************************************************
00214A E120 B6 A013 A SCROLU LDAA STARTL SET UP END OF SCREEN ADDRE
00215A E123 9B AB A ADDA SCRNL
00216A E125 B7 A015 A STAA ENDL
00217A E128 24 04 E12E BCC FIND
00218A E12A 86 01 A LDAA #01
00219A E12C 20 01 E12F BRA FINDl
00220A E12E 4F FIND CLRA
00221A E12F BB A012 A FINDl ADDA STARTH
00222A E132 9B 02 A ADDA SCRNH
00223A E134 B7 A014 A STAA ENDH
00224A E137 C6 OE A LDAB #$OE GET CURSOR ADDRESS H
00225A E139 F7 3000 A STAB CRTCAD
00226A E13C F6 3001 A LDAB CRTCRG
00227A E13F 11 CBA
00228A E140 22 10 E152 BHI EQUALl
00229A E142 B6 A015 A LDAA ENDL CHECK LOW ADDRESS
00230A E145 C6 OF A LDAB #$OF GET CURSOR ADDRESS L
00231A E147 F7 3000 A STAB CRTCAD
00232A E14A F6 3001 A LDAB CRTCRG

FIGURE 24 - Complete Listing of CRTC Software
(Continued)



00233A
00234A
00235A
00236A
00237A
00238A
00239A
00240A
00241A
00242A
00243A
00244A
00245A
00246A
00247A
00248A
00249A
00250A
00251A
00252
00253
00254
00255
00256
00257A
00258A
00259A
00260A
00261A
00262A
00263A
00264A
00265A
00266A
00267
00268
00269
00270
00271
00272A
00273A
00274A
00275A
00276A
00277A
00278A
00279A
00280A
00281A
00282A
00283A
00284
00285
00286
00287
00288
00289
00290A

E14D 11 CBA
E14E 27 02 E152 BEQ EQUAL1
E150 23 01 E153 BLS CHANGE
E152 39 EQUALI RTS
E153 86 OD A CHANGE LDAA #$OD INCREMENT START ADDRESS
E155 B7 3000 A STAA CRTCAD
E158 F6 A013 A LDAB STARTL
E15B FB A016 A ADDB CHARLN SCROLL UP ONE LINE
ElSE F7 3001 A STAB CRTCRG
E161 F7 A013 A STAB STARTL
E164 25 01 E167 BCS CARRY CARRY?
E166 39 RTS
E167 C6 OC A CARRY LDAB #$OC INCREMENT START ADDRESS H
E169 F7 3000 A STAB CRTCAD
E16C F6 A012 A LDAB STARTH
E16F 5C INCB
E170 F7 3001 A STAB CRTCRG
E173 F7 A012 A STAB STARTH
E176 39 RTS CHECK TO SEE IF TI IS OK

*************************************************
* CR SUBROUTINE SUBTRACTS SPACE COUNTER FROM
* CURSOR POSITION TO GENERATE A CARRIAGE RETU
* AND THEN CALLS LINEFD.
*************************************************

E177 86 OF A CR LDAA #$OF GET CURSOR ADDRESS L
E179 B7 3000 A STAA CRTCAD
E17C F6 3001 A LDAB CRTCRG
E17F FO AOll A SUBB SPACES GENERATE CR
E182 F7 3001 A STAB CRTCRG
E185 24 07 E18E BCC YES NO CARRY?
E187 4A DECA ELSE DECREMENT CURSOR H
E188 B7 3000 A STAA CRTCAD
E18B 7A 3001 A DEC CRTCRG
E18E 7F AOll A YES CLR SPACES INITIALIZE SPACE COUNTER

*************************************************
* LINEFD SUBRFOUTINE MOVES THE CURSOR DOWN ONE L
* BY ADDING THE NUMBER OF CHARACTERS.LINE,CHRPLN
* CURRENT CURSOR LOCATION. SCROLU IS THEN CALLE
*************************************************

E191 86 OF A LF LDAA #$OF GET CURSOR ADDRESS L
E193 B7 3000 A STAA CRTCAD
E196 F6 3001 A LDAB CRTCRG
E199 FB A016 A ADDB CHARLN GENERATE LINE FEED
E19C 24 OB EIA9 BCC NCARRY CARRY?
E19E F7 3001 A STAB CRTCRG
EIAI 4A DECA
EIA2 B7 3000 A STAA CRTCAD
EIA5 F6 3001 A LDAB CRTCRG
EIA8 5C INCB
EIA9 F7 3001 A NCARRY STAB CRTCRG
EIAC 7E E120 A JMP SCROLU

*************************************************
* BS SUBROUTINE MOVES CURSOR BACK ONE LINE IF TH
* CURSOR MOVES TO THE PREVIOUS LINE THEN SCROLD
* IS CALLED TO SEE IF A NEW LINE SHOULD BE ADDED
* AT THE TOP OF THE SCREEN.
*************************************************

FIGURE 24 - Complete Listing of CRTC Software
(Continued)



PAGE 006 CRTC .SA:l CRTC

00291A EIBI B7 3000 A STAA CRTCAD
00292A EIB4 F6 3001 A LDAB CRTCRG
00293A EIB7 SA DECB BACK UP CURSOR
00294A EIB8 F7 3001 A STAB CRTCRG
0029sA EIBB 4A DECA SELECT CURSOR H
00296A EIBC B7 3000 A STAA CRTCAD
00297A EIBF F7 A007 A STAB BSPOSL SAVE BACK SPACE POSITION L
00298A EIC2 Cl FF A CMPB #$FF CARRY?
00299A EIC4 27 05 EICB BEQ DECR
00300A EIC6 F6 3001 A LDAB CRTCRG
00301A EIC9 20 07 EID2 BRA NODECR
00302A EICB F6 3001 A DECR LDAB CRTCRG IF SO DECREMENT CURSOR H
00303A EICE SA DECB
00304A EICF F7 3001 A STAB CRTCRG
0030sA EID2 CA 40 A NODECR ORAB #MOVE MOVE TO SCREEN MEMORY
00306A EID4 F7 A006 A STAB BSPOSH SAVE BACK SPACE POSITION H
00307A EID7 BD A003 A JSR RAM+3 BLANK UNDER CURSOR
00308A EIDA 7A AOll A DEC SPACES DECREMENT SPACE COUNTER
00309A EIDD B6 AOll A LDAA SPACES BACK TO PREVIOUS LINE?
00310A EIEO 81 FF A CMPA #$FF
00311A EIE2 27 01 EIEs BEQ CALLER
00312A EIE4 39 RTS
00313A EIEs B6 A016 A CALLER LDAA CHARLN RESET SPACE COUNTER
00314A EIE8 4A DECA
0031sA EIE9 B7 AOll A STAA SPACES
00316A EIEC 7E E284 A JMP SCROLD
00317 *************************************************
00318 * UPLINE SUBROUTINE MOVES THE CURSOR UP ONE
00319 * LINE THEN CALLS SCROLD.
00320 *************************************************
00321A EIEF 86 OF A UPLINE LDAA #$OF GET CURSOR ADDRESS L
00322A ElF 1 B7 3000 A STAA CRT CAD
00323A EIF4 F6 3001 A LDAB CRTCRG
00324A EIF7 FO A016 A SUBB CHARLN GENERATE UPLINE
0032sA EIFA 24 OB E207 BCC NOOCRY CARRY?
00326A EIFC F7 3001 A STAB CRTCRG
00327A EIFF 4A DECA GET CURSOR H
00328A E200 B7 3000 A STAA CRTCAD
00329A E203 F6 3001 A LDAB CRTCRG SUBTRACT CARRY
00330A E206 SA DECB
00331A E207 F7 3001 A NOOCRY STAB CRTCRG
00332A E20A 20 78 E284 BRA SCROLD
00333 *************************************************
00334 * PAGE SINE MOVE THE CURSOR TO THE NEXT PAGE.
00335 *************************************************
00336A E20C 86 OC A PAGE LDAA #$OC GET SCREEN START ADDRESS H
00337A E20E B7 3000 A STAA CRTCAD
00338A E211 F6 A012 A LDAB STARTH
00339A E214 DB 04 A ADDB PAGESZ MOVE TO NEXT PAGE
00340A E216 F7 3001 A STAB CRTCRG
00341A E219 F7 A012 A STAB STARTH
00342A E21C 86 OE A LDAA #$OE GET CURSOR ADDRESS H
00343A E21E B7 3000 A STAA CRTCAD
00344A E221 F6 3001 A LDAB CRTCRG
0034sA E224 DB 04 A ADDB PAGESZ MOVE CURSOR TO NEXT PAGE
00346A E226 F7 3001 A STAB CRTCRG
00347A E229 39 RTS
00348 *************************************************

FIGURE 24 - Complete Listing of CRTC Software
(Continued)



PAGE 007 CRTC .SA: 1 CRTC

00349 * HOME SUBROUTINE MOVES THE CURSOR TO THE BEGIN
00350 * OF THE PRESENT PAGE AND CALLS CLEAR.
00351 *************************************************
00352A E22A 86 OE A HOME LDAA #$OE GET CURSOR ADDRESS H
00353A E22C B7 3000 A STAA CRTCAD
00354A E22F F6 3001 A LDAB CRTCRG
00355A E232 D4 FC A AN DB PGMASK GET PAGE ADDRESS
00356A E234 F7 3001 A STAB CRTCRG MOVE CURSOR
00357A E237 F7 A012 A STAB STARTH START AT FIRST OF PAGE
00358A E23A 86 OC A LDAA #$OC
00359A E23C B7 3000 A STAA CRTCAD
00360A E23F F7 3001 A STAB CRTCRG
00361A E242 4C INCA SELECT CURSOR L
00362A E243 B7 3000 A STAA CRTCAD
00363A E246 4F CLRA
00364A E247 B7 3001 A STAA CRTCRG
00365A E24A B7 A013 A STAA STARTL START AT FIRST OF PAGE
00366A E24D C6 OF A LDAB #$OF
00367A E24F F7 3000 A STAB CRTCAD
00368A E252 B7 3001 A STAA CRTCRG
00369A E255 B7 A011 A STAA SPACES ZERO SPACE COUNTER
00370 *************************************************
00371 * CLEAR SUBROUTINE CLEARS PRESENT PAGE PAST TH
00372 * CURSOR BY STORING ASCII BLANDS ($20) INTO
00373 * SCREEN MEMORY.
00374 *************************************************
00375A E258 86 OE A CLEAR LDAA #$OE GET CURSOR ADDRESS H
00376A E25A B7 3000 A STAA CRT CAD
00377A E25D F6 3001 A LDAB CRTCRG
00378A E260 D4 FC A AN DB PGMASK LOCATE CURSOR PAGE ADDRESS
00379A E262 CB 40 A ADDB #MOVE ADD OFFSET
00380A E264 F7 AOOA A STAB INDEX SAVE START ADDRESS
00381A E267 DB 04 A AD DB PAGESZ SAVE END ADDRESS
00382A E269 F7 AOOE A STAB COMPR
00383A E26C 4C INCA SET UP LOW ADDRESS
00384A E26D B7 3000 A STAA CRTCAD
00385A E270 F6 3001 A LDAB CRTCRG
00386A E273 F7 AOOB A STAB INDEX+1
00387A E276 BD A009 A JSR RAM+9 INDEX REGISTER PAGE ADDRES
00388A E279 86 20 A BLANK LDAA #$20 ASCII BLANK
00389A E27B A7 00 A STAA O,X STORE BLANK
00390A E27D 08 INX NEXT SCREEN CHARACTER
00391A E27E BD AOOD A JSR RAM+13 CHECK INDEX REGISTER
00392A E281 26 F6 E279 BNE BLANK
00393A E283 39 RTS
00394 *************************************************
00395 * SCROLD SUBROUTINE CHECKS TO SEE IF THE CURSOR
00396 * MOVED OFF THE TOP OF THE SCREEN. IF SO A NEW
00397 * IS SCROLLED DOWN ONTO THE SCREEN.
00398 *************************************************
00399A E284 B6 A012 A SCROLD LDAA STARTH CURSOR BEFORE SCREEN?
00400A E287 C6 OE A LDAB #$OE GET CURSOR ADDRESS H
00401A E289 F7 3000 A STAB CRTCAD
00402A E28C F6 3001 A LDAB CRTCRG
00403A E28F 11 CBA
00404A E290 22 12 E2A4 BHI BEFORE
00405A E292 27 01 E295 BEQ EQUAL2
00406A E294 39 RTS HIGH ADDRESS DOESN'T MATCH

FIGURE 24 - Complete Listing of CRTC Software
(Continued)



Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.



PAGE 008 CRTC .SA: 1 CRTC

00407A E295 B6 A013 A EQUAL2 LDAA STARTL IS CURSOR BEFORE THE SCREE
00408A E298 C6 OF A LDAB #$OF GET CURSOR ADDRESS LOW
00409A E29A F7 3000 A STAB CRTCAD
00410A E29D F6 3001 A LDAB CRTCRG
00411A E2AO 11 CBA
00412A E2Al 22 01 E2A4 BHI BEFORE
00413A E2A3 39 EXIT RTS
00414A E2A4 86 OD A BEFORE LDAA #$OD MOVE BACK ONE LINE
00415A E2A6 B7 3000 A STAA CRTCAD
00416A E2A9 F6 A013 A LDAB STARTL
00417A E2AC FO A016 A SUBB CHARLN
00418A E2AF F7 3001 A STAB CRTCRG
00419A E2B2 F7 A013 A STAB STARTL
00420A E2B5 25 01 E2B8 BCS CRYSET CARRY SET?
00421A E2B7 39 RTS
00422A E2B8 4A CRYSET DECA IF SO DECREMENT STARTH
00423A E2B9 B7 3000 A STAA CRTCAD
00424A E2BC F6 A012 A LDAB STARTH
00425A E2BF 5A DECB
00426A E2CO F7 3001 A STAB CRTCRG
00427A E2C3 F7 A012 A STAB STARTH
00428A E2C6 39 RTS
00429 END
TOTAL ERRORS 00000--00000

FCF4 ACIACS 00012*00013 00201
FCF5 ACIADA 00013*00204
E2A4 BEFORE 00404 00412 00414*
E279 BLANK 00388*00392
E064 BLANKl 00097*00100
A006 BLANKH 00031*00033 00059 00182
A007 BLANKL 00032*00034 00060 00169 00175
E05F BLANKR 00087 00095*
EIAF BS 00147 00290*
A006 BSPOSH 00033*00306
A007 BSPOSL 00034*00297
EIE5 CALLER 00311 00313*
E167 CARRY 00243 00245*
EOF5 CARRYD 00179 00181*
E153 CHANGE 00235 00237*
AOOI CHARH 00029*00057 00174 00177 00180
A002 CHARL 00030*00058 00166
A016 CHARLN 00042*00190 00240 00275 00313 00324 00417
E08F CHARRC 00089 00138*
E258 CLEAR 00162 00375*
AOOE COMPR 00036*00063 00064 00382
El77 CR 00144 00257*
E071 CRT 00108*00114
3000 CRTCAD 00014*00015 00108 00164 00171 00225 00231 00238 00246

00258 00264 00273 00279 00291 00296 00322 00328 00337
00343 00353 00359 00362 00367 00376 00384 00401 00409
00415 00423

3001 CRTCRG 00015*00110 00165 00168 00172 00181 00226 00232 00241
00249 00259 00261 00265 00274 00277 00280 00282 00292
00294 00300 00302 00304 00323 00326 00329 00331 00340
00344 00346 00354 00356 00360 00364 00368 00377 00385

FIGURE 24 - Complete Listing of CRTC Software
(Continued)



PAGE 009 CRTC .SA:1 CRTC

00402 00410 00418 00426
E06D CRTINT 00088 00106*
E2B8 CRYSET 00420 00422*
EOC8 CURSE 00141 00161 00161*
E09E DECI 00143 00145*
EOA5 DEC2 00146 00148*
EOAC DEC3 00149 00151*
EOB3 DEC4 00152 00154*
EOBA DEC5 00155 00157*
EOCI DEC6 00158 00160*
E097 DECODE 00140 00142*
EICB DECR 00299 00302*
A014 ENDH 00040*00068 00223
A015 ENDL 00041*00069 00216 00229
E152 EQUALI 00228 00234 00236*
E295 EQUAL2 00405 00407*
E2A3 EXIT 00413*
E12E FIND 00217 00220*
E12F FINDI 00219 00221*
E22A HOME 00159 00352*
E110 INCH 00138 00201*00203 00207
AOOA INDEX 00035*00061 00062 00380 00386
E191 LF 00150 00272*
0040 MOVE 00020*00173 00305 00379
EIA9 NCARRY 00276 00282*
EOF2 NOCARY 00176 00180*
EID2 NODECR 00301 00305*
E207 NOOCRY 00325 00331*
EI0F NOSCRL 00192 00195*
E20C PAGE 00156 00336*
0004 PAGESZ 00021*00339 00345 00381
OOFC PGMASK 00022*00355 00378
AOOO RAM 00028*00029 00030 00031 00032 00035 00036 00037 00038

00039 00040 00041 00042 00071 00072 00074 00076 00078
00079 00080 00082 00084 00086 00188 00307 00387 00391

E05B RUN 00089*00090
EI0C SCRLOL 00194*
0002 SCRNH 00023*00222
OOAB SCRNL 00024*00215
47DO SCRNND 00019*00099
4000 SCRNST 00018*00019 00096
E284 SCROLD 00316 00332 00399*
E120 SCROLU 00194 00214*00283
A011 SPACES 00037*00065 00189 00191 00193 00260 00266 00308 00309

00315 00369
A012 STARTH 00038*00066 00221 00247 00250 00338 00341 00357 00399

00424 00427
A013 STARTL 00039*00067 00214 00239 00242 00365 00407 00416 00419
E07F TABLE 00107 00118*
EIEF UPLINE 00153 00321*
E18E YES 00262 00266*

FIGURE 24 - Complete Listing of CRTC Software
(Continued)


