MOTOROLA
Semiconductor Products Inc.

AN-825

Application Note

AN INTERACTIVE GRAPHIC SYSTEM
USING THE MC6809

Prepared by
Hunter Scales
Microprocessor Applications Engineer
Austin, Texas

INTRODUCTION

The increased use of computers in all types of data pro-
cessing has created as well as solved user problems. The
decreased cost of owning and operating small computer
systems has created a large demand because many small
businesses, professionals and others now see the computer as
a way of cutting costs or the time involved in solving or
handling the problems they have.

One of the problems created by the expanded use of com-
puters is display of data. Many systems have software that
generate mountains of output that baffles even the author of
the programs. Some systems have expensive options which
generate relatively simple bar graphs, but most rely on a
printer which is not well suited to displaying information in
graphic form. And yet, it is well known that most people can
grasp information better, more quickly, and with improved
retention if the information is displayed pictorially.

Large computer systems often have impressive graphics
capabilities because the cost of the graphics peripherals are a
small percentage of the total system cost. If a system, which
would provide some of the graphics abilities of the larger
systems, could be designed for use on the popular
microprocessor-based small business system and still be
available for a small portion of the system cost, the accep-
tability of microprocessor-based systems would increase.

To do this an inexpensive video graphics generator, a low-
cost display system, and some sort of intelligent controller
are needed. The Motorola MC6847 Video Display Generator
(VDQ) is a cost-effective means of putting graphic informa-
tion on a video screen. When used in conjunction with the
MC1372 Color TV Video Modulator, the VDG can be used
with standard television receivers to display graphics in a
variety of modes.

To be effective as a display system, some intelligence is
needed to format and maintain the data for the VDG to
display. The MC6809 microprocessor is capable of providing
the variety of logical bit manipulations and addressing modes
which are necessary for high-density graphics display pro-
grams. The MC6809 can format and display raw data passed

to it by a Basic report generating program fast enough to per-
mit semi-real time animation, if desired.

HARDWARE COMPONENTS

As shown in Figure 1, the hardware components consist of
the MC6809 with its stack and user RAM, an MCM2716
EPROM which contains the display routines, 6K of display
RAM, the MC6847 video display generator, and the MC1372
color television video modulator.

A complete schematic of the system is given in Figure 2.

This system could be used as a peripheral processor to a
microcomputer running the main system software or the
MC6809 could be the main processor and use the VDG as its
display. In this version, the system runs Basic and the USR
function is used to call the video display subroutines.

MC6847 VIDEO DISPLAY GENERATOR (VDG)

The display modes of the VDG are controlled by mode
control pins A/G, A/S, INT/EXT, GM0, GM1, GM2, CSS,
and INV. The high resolution graphics six mode is used in
this system and the VDG is programmed with resistors tied to
the proper voltage levels. Table 1 shows the pin configura-
tion.

Table 1. Mode Control Pin Programming for
High Resolution Graphics Six Mode

Pin Name |A/G|A/S|INT/EXT|GM2|GM1|GMO0|CSS| INV
Logic Level 1 X X i 1 1 0 X

X denotes don't care

In the high resolution graphics six mode, the active screen
is divided into 6144 bytes: 32 bytes (256 bits) horizontal by
192 bits vertical. Therefore, 12 MCM2114, 1K X 4-bit static
RAMs are used as the display memory. The 8T28 and 8T97
three-state buffers are used to isolate the MPU from the
VDG during normal VDG operations. The address lines of
the VDG sequentially read the display RAM and display the
information found there.

©MOTOROLA INC., 1981

Display RAM
6K of MCM2114s

7N

MC6809
MPU
and
RAM
(Stack

and User)

Bus

Control

MPU Address Bus

Decode

<
-

Buffer

VDG Address Bus

MPU Data Bus

) 4

MCM2716
EPROM

<%

VDG Data Bus

Buffer

MC6847
VDG

Clock RF
—— Output
MC1372
Color
Video TV
Modulator

o

3.58 MHz XTAL

Figure 1. Interactive Granhics System — Block Diagram

>
o IS
4 B
b 3
: ‘g
B2g
1€
=€
I
i€
a
Bs |
4
(i
1
i€
>

vewn

MM

A

|£_ ——
o

= i

- —8iE§BBBBB==wc§

Figure 2. Interactive Graphics System — Schematic Diagram

g oM
Stach and Unee RAM.

s

s
AT

¥
€
o-

il

ﬁ

-

i

1”' nHHl }

|!||

ﬂ | J

5
\ i l
il

gt

fro Y
\u MW”

+r 8

il

R T LR

ek Y wtayei]

|
vyt
L

m.f\ ,,‘

Wi
u} | | lf[

'|I\ I\’ ST

When the MPU wishes to access the display RAM, the
buffers are turned on and the VDG address lines are put in a
high-impedance state by the bus control logic bringing the
memory select (MS) input low. This is done to prevent bus
contention between the MPU and VDG.

SYSTEM SOFTWARE

To assist in understanding how the software operates on
the display, refer to Figure 3 to see how the display area is
mapped into the display RAM. This illustration shows how
the display screen is interpreted by the VDG.

Each of the 32 bytes on a line has eight bits, with each bit
corresponding to a pixel, for a total of 256 separate pixels.
Each pixel can be buff or black. If a bit is set, the correspon-
ding pixel is buff and if it is reset the pixel is black.
Therefore, when the memory is written all ones ($FF in each
byte), the screen is buff. To put a black dot on the screen, the
appropriate bit in the appropriate byte must be written with
zero. The main task of the software is to determine which
byte and which bit(s) in that byte must be set or reset.

To simplify interfacing between the main or driving pro-
gram (for example, a financial report generator) and the
graphics routines, the display screen is considered as an X-Y
plane with the origin (X =0, Y =0) in the center of the screen
as shown in Figure 4. Points can be plotted on the screen by
giving the X-Y Cartesian coordinates in twos complement
hexadecimal form to the line generation routine (LINGEN).
The limits, as shown, are (in decimal) —128<X <127 and
-96<Y<95.

The main graphics-generating routines are line generation
(LINGEN) and point address (PNTADD). Two X-Y points
are passed to LINGEN and it calculates which pixels best ap-
proximate a staight line drawn between them and sets those
bits in the display memory to ‘‘draw’’ the line. LINGEN then
calls PNTADD which, given an X-Y coordinate, calculates
the address of the byte in which the pixel should be and
returns the address and a mask of one byte in which one bit is
set. This is the location of the pixel in the addressed byte.

LINE GENERATION ROUTINE (LINGEN) —
LINGEN is the main line-drawing routine. It uses a modified
Bresenham’s algorithm to calculate the pixels which approx-
imate the line. In this method, an error term which shows the
deviation of the plotted pixel from the true line is calculated.
The X direction is always incremented and, if the error term
is positive, the Y direction is also incremented and the point
is plotted. The error term is then updated by adding the in-
cremental slope of the line.

For the following discussion, reference the LINGEN
flowchart in Figure 5. Upon entry, LINGEN transfers the
points to variable locations and then calls PNTADD to get
the ending address (ENDADD) and a mask with the final
pixel (EMASK). PNTADD is called a second time to get the
beginning address in index register X and the first pixel in ac-
cumulator A (MASK).

Next, the delta terms representing the change in X
(DELTAX) and the change in Y (DELTAY) are calculated.
The error term (E) is set to zero and the X increment (XINC)
and Y increment (YINC) terms are set to one. Notice that the
unity increment for the Y direction is — 32 (decimal). This is
because the screen format is such that locations addressed 32
apart are directly above or below one another.

Now the delta terms are checked to see if they are negative.
If so, they are negated to get the absolute values. The incre-
ment terms are also negated. If DELTAX is negative, the er-
ror term is set to — 1. DELTAX is then subtracted from the
error. The first point is ““plotted’’ by inverting MASK and
ANDing with the pixels already on screen.

The sign bit of error term E is now checked. If it is
negative, the true line will pass above on the next iteration so
the Y direction is changed by YINC (which could be
negative) and E is updated by adding DELTAX. If it is
positive, the line will pass to the right so the X direction is in-
cremented or decremented and E is updated by subtracting
DELTAY from E. The address of the current pixel is com-
pared to ENDADD and if they are equal then the current
mask in the A register is compared to the EMASK. If they
are equal, the line is finished, otherwise a branch is made to
plot more points.

Once the end and beginning addresses are found
PNTADD is not called again. This is done to save the time it
would take to calculate the address of each pixel. Instead, the
address is kept in the X register and continually updated.
When the X direction is to be incremented or decremented, a
rotate of the MASK is done and the shifting of the pixel into
the carry bit indicates the crossing of a byte boundary. The
address is then incremented and decremented accordingly.

POINT ADDRESS ROUTINE (PNTADD) — PNTADD
finds the address of a specified X-Y coordinate by the for-
mula:
(X + XOFF)
8
where:
XOFF and YOFF =the offsets necessary to place the origin
at the center of the display screen.
SCRNOFF =the length of the screen minus 32. This is the
address of the first byte in the last line.
The original X coordinate is then used to find the pixel loca-
tion within the byte. The last three bits of the coordinate are
used as an index into a lookup table (BITAB) which consists
of 8 bytes in which there is one set bit in descending order.
This is returned in the A register as the mask.

—(Y + YOFF) X 32 + SCRNOFF + SCRNSTART

LINE LISTS

In order to further ease user interface to the system, a data
structure which allows the simplest manipulation of the raw
data is needed. For this system, the X-Y plotter is used as a
model. In machines of this type, the pen is controlled by
separate X-Y axis arms and is raised or lowered to draw lines.
This system emulates this behavior by providing routines for
handling line lists.

The line list consists of a head (the pointer to which is kept
in a table) and elements. An element consists of two bytes
which are either Cartesian coordinates (X,Y) or special
codes. Since the Y coordinate can legally take on values only
between —96 and -+ 95 ($A0 and $5F) the remaining values
can serve as function codes.

The list is drawn by the subroutine DRWLIS in the follow-
ing manner. A point is checked for a legal Y value and, if
legal, a line is drawn from the previous point in the list to the
current one. If the Y value is $6F, the imaginary pen is
moved to the next point and processing continues. In this
way non-continuous objects can be drawn. If the Y value is
$70, the next two bytes in the list are taken as the address of
the continuation ofthe list (indirection). Finally, if the Y
value is $71, the list is considered ended and control is return-
ed to the caller. A flowchart of DRWLIS is given in Figure 6.

CURSOR CONTROL MODE

In order to allow the user to easily generate the desired for-
mat for his particular system, a cursor-oriented input system
is provided. This set of programs takes care of the ‘‘book-
keeping’’ of the line lists and pointer table. A cursor is pro-

A000 A0O1 A002 A003 A4 AOID AQ1E AOTF
L
AC0O J [AO1TF
A020 1 AO3F
A040 Y AOSF
A0B0 W AO7F
A080 | AQ9F
AOAO AOBF
AOCO AODF
AQEO AQFF
A100 AOTF
A120 A13F
//\-/ _/F\
B760 B77F
B780 B79F
B7A0 B7BF
B7CO ([B7DF
B7EO) B7FF
7/
B7E1 B7E2 B7E3 B7FD B7FE
Figure 3. Memory Map of Display RAM
(0, 96)
[(0, 3)
L (0, 2)
- (0, 1)
T T T T T T T T T
(—128, 0) I=3,.01(—20){— T50) 0,0 (1,0 (2,0 (3,0 (127, 0)
- (0:.=2)
- (0, —3)
- (0, —4)
- (0, —5)
- (0, —96)

Figure 4. Software Map of Display Screen

If DELTAY negative, do same with
it.

Store the mask byte in screen — —

RAM.

If X is current screen address — —

check for last dot in mask.

If E negative, next pixel lies above

or below. If E positive, next pixel _ _

lies to left or right, which is deter-
mined by XINC, YINC.

LINGEN

ENADD~ Addr of Byte
With Last Pixel
XREG— Addr of Byte
With First Pixel
AREG — Mask With First Pixel
EMASK —Mask With Last Pixel

— — — Call PNTADD with X1, Y1, X2, Y2
to get beginning and ending ad-
dresses and masks.

XINC—1
YINC— —32
DELTAX—X2-X1
DELTAY—Y2-Y1

————— Start with positive unit increment,

for X, 1 for Y, —32. Compute
deltas. Set error to zero.

E—0
Y | DELTAX—|DELTAX|
XINC— — XINC
N
v
S

DELTAY —|DELTAY]|
YINC— - YINC

— — Negative delta?

If so make it

positive but negate increment.

— — If no change (horizontal line) let er-

ror start a — 1 to

change Y first.

E—E-DELTAY

Write Byte in
AREG at Addr in
XREG

X=ENDADD

Left Or Right
Move

Shift Mask

E—E+ DELTAX
XREG—XREG + YINC

AN |

Update Error

~ To Reflect

Figure S. Flowchart of Subroutine LINGEN

Yes

XREG—XREG
+ XINC
Reset Mask

Update X Reg.

(DRwLIS ,

Erase
Cursor

Y

Get X, Y
Pair

; Draw Line from
S L Previous Point to Current
Point
2 e o S e s ‘
Code, Finished > Write
Cursor
Y
END
Skip
- Next X, Y
Pair — — — — Move Cursor Code,
Make Current Point,
Last, Get New Point
Get
New List
Address - - i N e e Indirection, Get Address
of Next List

Normal Point,

Figure 6. Flowchart of Subroutine DRWLIS

vided to give visual feedback to the user and several com-
mands allow the entry, modification, and manipulation of
the line lists.

Entry into the main program at GRAPH causes the in-
itialization of the necessary pointers and flags and prints a
prompt asking for an address in memory in which the lists
can be stored. The command handler is then entered, the
screen is cleared, and the cursor is written to the screen. The
system is then ready to execute commands.

The cursor consists of a line width that is one bit wide
horizontally and four vertical lines high. The cursor position
is defined as the point at which the top of this character is
located.

It can be manipulated by using standard ASCII control
characters. Back space ($08) moves the cursor to the left one
position (one bit width), Control-L ($0C) moves the cursor
right one position, Control-K (Vertical Tab $0B) moves the
cursor up one position (one line width), and Control-J (Line
Feed $0A) moves the cursor down one line.

Line lists are compiled by the use of the Point and Line
functions. Entering a P on the console terminal causes the
current location of the cursor, along with the move pen con-
trol code, to be entered into the currently active line list.

Thus, when the list is drawn the ‘‘pen”’ is moved to this loca-
tion before proceding with the next point. The first point in a
list should always be this code followed by the starting coor-
dinate of the first line.

Typing an L on the console terminal causes a line to be
drawn on the screen from the point entered to the current
cursor location and the coordinates of the cursor to be
entered as a point in the line list. Appropriate messages are
printed on the console confirming these actions.

Typing an N on the console terminal causes an end code to
be entered in the current list and a new list to be started.The
screen can be erased by entering an E command and lists can
be drawn using the DR command. A complete list of the user
commands and their syntax is given in Table 2.

RUBBER-BAND MODE

The cursor control mode is not the only mode of operation
of the system. Sometimes it can be helpful to have a con-
tinuous line drawn to the cursor at every instant. This is
known as a rubber-band line and is a very common method
of interactive graphics input. This mode is accomplished by
drawing and erasing a line from the last point entered to the
current cursor location on a move-by-move basis. The P (fix

Table 2. User Commands

Command Input
B
D <space>
DEL

DR <space>

DR <list number>,
< list number> <cr>
DW

RES

T
&

>

ESC
Control R

Description
Cursor Control — Bottom — Move the cursor to the bottom of the display immediately.
Delete the last line entered from the line list.

Delete a List — “"DELETE LIST" will be displayed and a list number must be entered. If the number given
is valid, that list is deleted and “LIST — DELETED" is displayed. If the number given was invalid, 'DOES
NOT EXIST" will be displayed and “NO LIST DELETED" will also be displayed if nothing was done. If
there is only one list, it cannot be deleted. The letter N must be entered to start a new list before an old
list can be deleted.

Draw the currently active list.
Draw the list specified. If the list does not exist, *’ < list number> DOES NOT EXIST" will be displayed.

Draw a Line — The message “ENTER TWO POINTS X1, Y1" will be displayed. The user must enter valid
X-Y coordinates for the starting point. Then, ““X2, Y2'* will be displayed and valid X-Y coordinates must
be entered for the finishing point. A line will be drawn between these points. If the same coordinates are
entered for both points, a dot is plotted at that point.

Erase Display — Clears the display and writes the cursor.

Cursor Control — Home the Cursor — The cursor is moved to the center of the display immediately.
Line — Enters the current location of the cursor into the currently active line list and draws a line between
it and the previous point. A message giving the coordinates of the point entered is displayed. In Rubber-
Band Mode, the line is fixed and the cursor moves from there.

Fix Point — The current location of the cursor and the move pen code are entered into the current active
line list. A message giving the coordinates of the point entered are displayed.

In rubber-band mode this point becomes the anchor point for the rubber-band line.

Reset — Reset the pointers and send prompt out.

Status — Display status of the system. Data displayed will include:
Current start address of lists
Address of next free space in list pointer table
Address of next free location in the line list
Current number of line lists

Cursor Control — Top — Move the cursor to the top of the display immediately.
Cursor Control — Move the cursor to the left side of the display immediately.
Cursor Control — Move the cursor to the right side of the display immediately.
Escape — Do a monitor restart.

Enter or exit the rubber-band mode.

point) command causes the line to be entered and the end of
the line to become the new ‘‘anchor” of the rubber-band
line. Of course, cursor movement is slower due to the extra
processing of the line generation routine, but this is made up
by the utility of the mode. To enter the rubber-band mode,
type Control-R on the console terminal. To exit the rubber-
band mode and return to the cursor control mode, simply
enter Control-R again.

SYSTEM USE

The routines have been programmed into an MCM2716
EPROM and are used with the ASSIST09 monitor (see
MC6809-MC6809E Microprocessor Programming Manual
for a listing of ASSIST09). The only system dependent
routines are the I/O routines and an expression handler.
These are accessed using a software interrupt (SWI) instruc-

tion followed by a function code, for example: 02 is the code
for an output character routine. These routines are simple to
write but are hardware dependent and must be provided by
the user for his system configuration.

In general, these routines are called as subroutines by a
larger program which usually does the data processing and
then passes the data to a formatter. This would be a routine
to scale the data and put it in the line list format to be
displayed by DRWLIS. In this way the routines are system-
independent and form a powerful way to display data that
formerly was difficult to do on low-end microcomputer-
based systems.

PROGRAM LISTING

Figure 7 is a complete listing of the program contained in
the MCM2716 EPROM.

PAGE

20001
00002
00003
po004
000085
00006
00007
00008
00009
00010
00011
90012
20013
pog14
#0015
00016
00917
00018
poB19
PO020A
00021
00022
00023
00024A
@0@25A
00026A
G0B27A
P0@28A
B0029A
PO030A
POB31A
00032A
PB033A
PO@34A
@@@35A
POB036A
000377
P0@38A
PBB39A
POBA4AGA
P0B41A
000427
00043A
P0044A
0BB45A
P0046A
00047A
00048A
PPB49A
B0050A
20051
B0B52A
20053
20054
#3355
20056
20057
pA058

201

DD@ @

DD@@
DD@1
DD@3
DD@4
DD@5
DD@6
DD@7
DD@8
DD@9
DD@A
DD@B
DD@D
DD@F
DD11
DD13
DD15
DD16
DD18
DD1A
DD1B
DD1D
DD1F
DD21
DD23
DD24
DD25
DD35

Foo0

GRAFPAKA.SA:1

F800
Foo0
1300
9000
B441
1800
2080
2060
FCDF
DFF4
@OFF

2001
0002
9001
9001
9001
2001
9001
9001
0001
P001
2002
2002
2002
2002
2002
2001
20032
2002
9901
0002
0002
0002
2002
9001
0001
p010
20085

po09
Aol

GRAFPA

PP PP P PP

DPPDPPPPPPIPPIPPPPPDPDP PP PP PP P

* % ¥ ¥

*

ROM1
ROM2
RAMOFS
SCRN
MODCON
RAMLEN
XOFF
YOFR
GET
ECHO
CLERCH
*

*

NAM
OPT

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

ORG

GRAFPAK

ABS,LLE=81

GRAFPAK TO BE LOCATED AT ADDRESS "ROM2"
GLOBALS LOCATED AT ROM2~RAMOFS

TO ACCOMODATE THE HARDWARE CONFIGURATION
OF THE 6809 EVALUATION BOARD.

SF800 ADDRESS OF MONITOR
ROM1~$80@ ADDRESS OF SECOND ROM
$1300 ON BOARD RAM IS HERE

$9000 VDG SCREEN RAM (6K)

$B441 ADDRESS OF VDG CONTROL PORT
$1800 LENGTH OF VDG RAM

128 X OFESET

96 Y OFFSET

ROM1+$4DF ADDR OF EXPRES HANDLER
ROM1~$180C ECHO FLAG FOR ASSIS@9
$FF TO FILL SCREEN

ROM2~RAMOFS

* GLOBAL VARIABLES FOLLOW

*

FLAG
TEMP
X1

Yl

X2

¥2
XINC
YINC
MASK
EMASK
DELTAX
DELTAY
E
ENDADD
STACK
MODE
NEXTAD
LISTP
LISCNT
CURSAV
CURPOS
NEXTPT
CURAD
CURCH
DELIM
BUFFER
SAVC

*

THE
THE

* * ¥

*

INCHC
OUTCHC

RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB

ORG

§=WRITE S$FF=UNWRITE
FOR ARITH RESULTS

X LOC OF 1ST POINT

Y LOC OF 1ST POINT

X LOC OF 2ND POINT

Y LOC OF 2ND POINT
FOR LINGEN

DOT MASK OF LINE
MASK AT END LINE
CHANGE IN X OF LINE
CHANGE IN Y OF LINE
ERROR IN LINE
LAST ADDRESS IN LINE
SAVE USER STACK HERE
CURSOR OR RUBBER~BAND MODE
NEXT FREE SPACE IN LIST TABLE
START OF LIST TABLE
NUMBER OF LISTS
SAVE UNDER CURSOR
X~Y POS OF CUSRSOR
NEXT FREE ADDR IN LIST
ADDRESS OF CURSOR
CURSOR MASK
DELIMITER FROM GETEXP
6 GETLIS SAVES LIST NUM
SAVE CURSOR HERE

U HNDNDNDNDHENDRNFNDNNRN N

ROM2

FOLLOWING ARE FUNCTION CODES FOR USE WITH
ASSIST@A9 MONITOR SWI FUNCTIONS.

EQU
EOU

%} INPUT CHAR NO PARITY
i OUTPUT CHAR TO CONSOLFR

Figure 7. Interactive Graphics System Program Listing (Sheet 1 of 20)

PAGE @02 GRAFPAKA.SA:1 GRAFPA

20859 20032 A PDATAC EQU 2 PRINT STRING EOT AS TERMINATOR
PoP60 2003 A PDATIC EQU 3 AS ABOVE WITH CR LF
00061 2006 A PCRLFC EQU 6 PRINT CR LF STRING
00062 o007 A SPACEC EQU ¥ PRINT SPACE TO CONSOLE
00063 poa8 A MONITC EQU 8 RESTART THE MONITOR
po064 %

#0065 * FOLOWING ARE THE MONITOR DEPENDENT ROUTINES
00066 x

poa67 * OUTS~PRINT ONE SPACE TO CONSOLE AND RETURN
p0068 * “VOLATILE: A

00069 *

00070A FOOO 3F ouTs SWI SWI FUNCTION

00071A F@Q1 a7 A FCB SPACEC FUNCTION CODE

PO@72A FOB2 39 RTS

90073 5

00874 * CRLF~SET A CARRIAGE RETURN~LINE FEED STRING TO
Po075 *. CONSOLE

BoB076 * VOLATILE: X,A

oea77 &

#@978A F@@3 3F CRLF SWI MONITOR FUNCTION

B0B79A FOB4 a6 A FCB PCRLFC CODE

g0080A FOB5 39 RTS

20081 %

pog82 * OUTHL~PRINT THE LEFT NIBBLE IN A REGISTER TO
p0083 * CONSOLE

@9e84 * VOLATILE: A

20085 %

PO086A FOP6 44 OUTHL LSRA SHIFT LEFT NIBBLE
P0@87A FO@7 44 LSRA INTO RIHT NIBBLE AND
J0088A FOP8 44 LSRA THEN FALL INTO OUTHR
P0089A F@QP9 44 LSRA

Bo090 *

00091 * OUTHR~PRINT THE RIGHT NIBBLE OF A REGISTER TO
00092 * 1 "CONSOLE.,

#0093 #EUVOLATILE s SA

0pv94 =

PPP95A FOQPA 84 @F A OUTHR ANDA #SF MASK TOP NIBBLE

PPB96A FOQPC 8B 30 A ADDA #530 CONVERT TO ASCII

@0P97A FOPE 81 39 A CMPA #$39

PPP98A FO10 23 @2 Fgl4 BLS ouTC

PPP99A F@l2 8B a7 A ADDA #7

PP109A F@l4 BD F@48 A OUTC JSR OUTCH PRINT HEX DIGIT

PO101A F@17 39 RTS

30102 *

00103 * OUTHEX~PRINT A REGISTER AS TWO HEX DIGITS
po104 L

PO1P5A F@18 34 @2 A OUTHEX PSHS A SAVE REGISTER

@2106A F@1lA BD F@o6 A JSR OUTHL PRINT LEFT NIBBLE
P3107A F@A1D 35 a2 A PULS A GET CHAR BACK

$@108A F@1F BD FOOA A JSR OUTHR PRINT RIGHT NIBBLE
PB109A F@22 39 RTS

00110]

#9111 * OUT4HS~OUTPUT X REGISTER AS FOUR HEX DIGITS
g9112 * AND A SPACE.

#0113 L

PP114A F@23 34 10 A OUT4HS PSHS X SAVE CHAR

P@115A F@25 35 g2 A PULS A GET LSBYTE

@@116A FA27 BD Fa18 A TSR OUTHEX PRTNT TT

Figure 7. Interactive Graphics System Program Listing (Sheet 2 of 20)

10

PAGE

GOL17A
PP118A
@@119A
P0120A
09121
#0122
20123
pp124
23125
20126
20127
90128
20129A
00130A
g0131A
P0132A
PO133A
#0134A
#P135A
P3136A
20137
20138
#7139
00149
90141
#0142A
00143A
#9144A
#0145
#0146
p@147
p0148
p@149
0B150A
P@151A
20152A
#0153
20154
#@155
PA156
00157
#0158
PB159A
PO160A
g0161A
00162
#0163
#0164
@0165A
P0166A
P0167A
20168
#0169
00170
90171
20172A
@@173A
20174

203

F@2A
F@2cC
F@2F
F@32

F@33
F@35
F@37
F@39
F@3C
F@3E
Fg41
Fg43

F@45
Fo46
F@47

Fo48
F@49
Fo4A

F@4B
Fg4cC
F@4D

FO4E
F@4F
F@50

F@51
FA52

35
BD
BD
39

34
86
1
BD
34
B7
DC
35

3F

39

3

39

3F

39

3F

39

3F

GRAFPAKA.SA:1

72
Fg18
FogQ

78
S5E
8B
FCDF

DD24
9B
89

20

g1

23

32

78

GRAFPA
A PULS A GET MSBYTE
A JSR OUTHEX
A JSR oUTS
RTS
*
* GETEXP-WILL RETURN A HEX NUMBER FROM THE
* CONSOLE IN THE D REGISTER
* ON RETURN Z=1 IF VALID HEX NUMBER, =@ IF
* NOT A VALID HEX NUMBER
* THE TERMINTING DELIMITER IS SAVED IN DELIM
* VOLATILE: D
*
A GETEXP PSHS DP SAVE DIRECT PAGE
a LDA #S5F
A TFR A,DP SET DP FOR MONITOR
A JSR GET EXPRESSION HANDLER IN ASSIST@9
A PSHS cc SAVE COND CODE
A STA DELIM
A LDD $9B GET NUMBER
a PULS PC, BB, CC
*
* INCH~INPUT ONE CHAR FROM THE CONSOLE IN THE
* A REGISTER
*: IYOLATEEES A
*
INCH SWI
A FCB INCHC
RTS
*
* QUTCH~OUTPUT ONE ASCII CHARACTER IN THE A
* REGISTER TO THE CONSOLE.
* VOLATILE: NONE
*
OUTCH SWI
A FCB OUTCHC
RTS
*
* PDATAl-SEND A STRING POINTED TO BY THE X REGISTER
* AND TERMINATED BY AN ASCII EOT (@4) TO THE
* CONSOLE PRECEDED BY A CRLF.
*UOVOLATEERS S X, A
*
PDATAl SWI SEND CRLF THEN PRINT STRING
A FCB PDAT1C FUNCTION COIDE
RTS
*
* PDATA~SAME AS ABOVE WITHOUT CRLF STRING.
*
PDATA SWI
a FCB PDATAC
RTS
*
* MONIT-DOES A SWI FUNCTION OF THE MONITOR WHICH
* CAUSES A RESTART OF THE MONITOR
*
MONIT SWI
A FCB MONITC FUNCTION CODE FOR RESTART

*

Figure 7. Interactive Graphics System Program Listing (Sheet 3 of 20)

11

PAGE

80175

pB176

80177

#0178

80179

00180

PP181

#0182

#0183

p0184

PP185A
PP186A
PB187A
#@188A
B0189A
PP1906A
#08191A
PB192A
#6193A
P0194A
PB195A
#0196A
PB197A
#0198A
PB199A
00200A
00201A
00202A
B0203A
00204A
P0@205A
0B206A
P0207A
BB208A
P0209A
PO210A
PB211A
P@212A
@B213A
P0214A
BB215A
@B216A
P@217A
#0218A
PB219A
00220A
PB221A
002227
00223A
P0224A
@0225A
P0226A
00227A
PB228A
00229

00230

98231

AA232

204

F@53
F@57
F@5A
F@5D
Fo60
F@63
FP66
Fo68
F@6B
FO6E
Fg71
F@74
Fo77
FO7A
F@7D
Fo80
F@83
F@86
F@89
F@8C
FO8F
F@92
Fp94
F@96
F@99
F@9cC
FOAQ
FOA2
F@AS
FOA8
FOAA
FOAC
FOAF
F@B2
F@B5
F@B7
F@B9
FOBB
F@BE
F@Co
F@C2
F@C5
F@C7
FOCA

GRAPH~ENTRY ROUTINE INTO GRAPHICS MODE.
POINTERS AND VARIABLES ARE INITIALIZED AND THE
USER IS PROMPTED TO SUPPLY A STARTING ADDRESS

FOR THE LINE LIST TO BE STORED AT.

THIS ROUTINE

IS SELF~CONTATAINED EXCEPT FOR THE
MONITOR FUNCTIONS ALREADY MENTIONED AND
AND HAS ITS OWN COMMAND HANDLER

AND COMMAND LISTS.

GRAFPAKA.SA:1 GRAFPA

*

*

*

*

*

*

*

*

*

*
19FF DD13 A GRAPH STS
8E DOQ@ A LDX
BF DD18 A STX
BF DD16 A STX
1E DDA @ A CLR
7 DD1A A CLR
86 F A LDA
B7 DD23 A STA
TE DD15 A CLR
8E 9BF@ A LDX
BF DD21 A STX
8E DD35 A LDX
BF DD1B A STX
1P DD1D A CLR
1F DD1E A CLR
BD F140 A JSR
8E FgccC A GRAPH1 LDX
BD F@4B A JSR
8E FOEE A GRAPH2 LDX
BD F@4B A JSR
BD F@33 A JSR
26 F5 F@89 BNE
1F g2 A TFR
BD F5B8 A JSR
BD F2DA A GRAPH3 JSR
16FE DD13 A GRAPH4 LDS
86 FE A LDA
B7 DFF4 A STA
BD F@45 A JSR
81 19 A CMPA
25 1B F@c7 BLO
BD Fp48 A JSR
ir DFF4 A CLR
8E F108 A LDX
Al 84 A GRAPH5 CMPA
27 29 F@C2 BEQ
30 23 A LEAX
8C F132 A CMPX
26 ES F@B5 BNE
20 D7 F@99 BRA
AD 98 01 A FOUND JSR
20 D2 F@99 BRA
17 @2B2 F37C GRAPH6 LBSR
20 D@ F@9cC BRA

*

*

*

*

STACK

SAVE STACK

#ROM2~$200@ RAM FOR LIST TABLE

LISTP
NEXTAD
FLAG
LISCNT
#STF
CURCH
MODE

SETUP LIST TABLE POINTER
ALSO START OF TABLE
DEFAULT FOR LINGEN

START CURSOR CHAR

DEFAULT TO CURSOR

#SCRN+S$SBF@ CENTER OF SCREEN

CURAD SAVE IN CURSOR ADDR

#SAVC AREA

CURSAV ADDR TO SAVE UNDER CURSOR
CURPOS CURSOR IN CENTER OF SCREEN
CURPOS+1

CLEARS CLEAR SCREEN

#MSG10 SIGN~ON MESSAGE

PDATAl

#MSG15 "ENTER START LIST ADDRESS"
PDATAL

GETEXP GET LIST ADDR FROM USER
GRAPH2

D,Y GET ADDR IN Y FOR NEXTL1
NEXTL1 SETUP NEXTPT AND NEXTAD
PROMPT PUT OUT PROMPT

STACK RESTORE STACK ON ABORT
#SFF

ECHO INHIBIT ECHO

INCH GET COMMAND

#$10

GRAPH6 CONTROL CHAR

OUTCH ECHO CHAR IF NOT CONTRL
ECHO ECHO NEXT COMMANDS
#COMLIS GET BASE ADDR OF COMMAND LIST
2,X CHECK FOR MATCH

FOUND GOTA IT

3% BUMP POINTER

#COMEND

GRAPHS BACK FOR MORE

GRAPH3 NOT VALID COMMAND

[1,X]

GRAPH3 BACK FOR NEXT COMMAND
MOVEC CHECK FOR CURSOR CONTRL
GRAPH4 BACK FOR NEXT COMMAND

Figure 7. Interactive Graphics System Program Listing (Sheet 4 of 20)

12

PAGE

#0233A
90234A
90235

P0@236A
@@237A
p0238

90239

PB240A
@0241A
B0242A
P0243A
00244A
PB245A
PO246A
P0247A
@0248A
0@249A
B0250A
PB251A
#08252A
@B253A
@P254A
@@255A
P0256A
PB257A
B0258A
982592
00260A
@0261A
002627
@0263A
#0264A
@@265A
P0266A
00267A
70268

00269

00279

PP271A
#0272A
20273A
002747
PB275

60276

80277

00278

#0279A
pB280A
P@281A
pB282

#0283A
09284A
#0285A
00286

009287

p0288

02289

00290

205

F@CC
FOED

FOEE
F107

F108
F109
F10B
Fl@C
F10E
F10F
P111
B112
F114
F115
FLli
F118
F11A
F11B
F11D
F1l1E
F1290
Fl21
F123
F124
F126
F127
F129
F12A
Fl2cC
F12D
F12F
F130

F132
F134
F136
F138

F139
F13C
F13F

F140
F143
F146

GRAFPAKA.SA:1

36
g4

DD15
B37C

FSFD
F414

A
A

A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

>

F138
A

GRAFPA

MSG1@ FCC
FCB

*

MSG15 FCC

FCB
*

*

COMLIS FCC
FDB
FCC
FDB
EcC
FDB
PEC
FDB
FCC
FDB
FCC
FDB
FCB
FDB
FCB
FDB
FCC
FDB
FCC
FDB
ECC
FDB
FCC
FDB
FCC
FDB
ECC
FDB

COMEND EQU
*

*

ABORT CMPA
BNE
PULS
ABORT2 RTS
*

/6809~6847 GRAPHICS LINE PROCESSOR/

4

/ENTER START LIST ADDRESS /

4

/BF
FIXP
/L/
LINER
/D/
DHAND
/N/
NEXTL
/E/
CLEARS
/8/
STATUS
$1B
EXIT
$12
RBAND
1>/
RIGHT
/</
LEFT
/2/
up
/B/
DWN
/H/
HOME
/R/
RESET
*

#518
ABORT2
X

FIX POINT AND RETURN

FIX LINE RETURN

HANDLE D COMMNANDS

START NEW LIST

STATUS REPORT

'*ESC!

EXIT TO CALLING ROUTINE
CNTRL~R RUBBER~BAND MODE

MOVE CURSOR QUICK
MOVE CURSOR QUICK
MOVE CURSOR QUICK
MOVE CURSOR QUICK

HOME CURSOR
RESET AND RESTART

CAN?

CLEAN RETURN ADDR

RIGHT

LEFT

UP

DOWN

* RBAND-WILL TOGGLE THE MODE BYTE TO CHANGE FROM
* RUBBER BAND MODE TO CURSOR OR VICE-~VERSA.

*

A RBAND COM

JSR
RTS

*

CLEARS JSR
JSR
RTS

*

*

*

*

*

MODE
MOVEC

CLEAR
WRITEC

STATUS~STATUS REPORT OF SYSTEM
ADDRESS OF STARTING LIST
ADDRESS OF NEXT ENTRY INTO LIST TABLFE

Figure 7. Interactive Graphics System Program Listing (Sheet 5 of 20)

13

PAGE

20291

#0292

P@293A
B0294A
#0295A
00296A
B0297A
B0298A
BB299A
23300A
PO301A
PB302A
P@303A
BO@304A
@a305A
BO306A
PO307A
PB308A
BB309A
PA310A
99311

#0312A
P@313A
P0314A
@@315A
PB316A
@0317A
BP318A
PO319A
00320

#0321

#0322A
P@323

00324

20325

28326

00327

p0328

00329

00330

#@331

#0332

#0333

#0334

#@335A
@B336A
PB337A
#@338A
P@339A
@0340A
PP341A
@9342a
P0343A
00344A
P@345A
PBd346A
PB3347A
@0348A

a6

F147
F14A
F14D
F151
F154
B157
F15A
F15D
F160
F163
F166
F169
Fl6C
F16F
P72
E175
F176
K179

F17A
F18C
F18D
F1A7
F1A8
F1BC
F1BD
F1D7

F1D8

F1DB
F1DE
F1lE1l
FLE3
F1E6
F1E8
F1EB
F1EE
F1F#
BPIF3
F1F5
F1F8
F1FB
ELED

GRAFPAKA.SA:1

7E

F17A
F@4B

9F DD18

F@23
F18D
F@4B
DD16
F@23
F1A8
F@4B
DD1F
F@g23
F1BD
F@4B
DD1A

Fg18

53
g4
4E
g4
4E
g4
43
04

F@51

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

>

hi i e e

F2il

b i v v Bt e i i

FP1B

> PP P

GRAFPA

* ADDRES OF NEXT FREE LIST POINT

*

STATUS LDX #MSG18 "START LIST ADDR= $"
JSR PDATA1
LDX [LISTP]
JSR OUT4HS
LDX #MSG19 "NEXT LIST TABLE ENTRY AT $"
JSR PDATA1
LDX NEXTAD
JSR OUT4HS
LDX #MSG20 "NEXT LIST POINT AT $"
JSR PDATA1
LDX NEXTPT
JSR OUT4HS
LDX #MSG25 "CURRENT NUMBER OF LISTS= "
JSR PDATAL
LDA LISCNT
INCA ACTUALLY ONE MORE
JSR OUTHEX
RTS
*
MSG18 FCC /START LIST ADDR= $/
FCB 4
MSG19 FCC /NEXT LIST TABLE ENTRY AT $/
FCB 4
MSG2# FCC /NEXT LIST POINT AT $/
FCB 4
MSG25 FCC /CURRENT NUMBER OF LISTS= $/
FCB 4
*
*
EXIT JMP MONIT BACK TO MONITOR
*
* FASMOV PROVIDES AUXILIARY CURSOR FUNCTIONS.
* THE SPECIFIED FUNCTION TO BE PERFORMED AND
* THE INPUT ROUTINE IS CALLED FOR THE NEXT
* COMMAND UNTIL A NON~FAST MOVE
* CHARACTER IS ISSUED.
* T~MOVE THE CURSOR TO THE TOP OF THE SCREEN
* B~MOVE THE CURSOR TO THE BOTTOM OF THE SCREEN
* L~MOVE THE CURSOR TO THE LEFT SIDE OF THE SCREEN
* R~MOVE THE CURSOR TO THE RIGHT SIDE OF THE SCREEN
* H~HOME MOVE THE CURSOR TO @,% (CENTER OF SCREEN)
*
RIGHT JSR CHKMOD CHECK FOR R~BAND MODE
JSR ERASEC GET RID OF CURSOR
LDA #S7E FAR RIGHT MAX POS
STA CURPOS CURSOR X POSITION
BRA FASMV1 CHECK FOR NEXT COMMAND
LEFT JSR CHKMOD SEE IF RUBBER~BAND
JSR ERASEC GET RID OF CURSOR
LDA #581 FAR LEFT MAX POS
STA CURPOS CURSOR X POS
BRA FASMV1 NEXT
up JSR CHKMOD CHECK MODE
JSR ERASEC REMOVE CURSOR
LDA #S5F TOP POSITION
STA CURPOS+1 CURSOR Y POS

Figure 7. Interactive Graphics System Program Listing (Sheet 6 of 20)

14

PAGE

BB349A
@0350A
@@351A
#@352A
@B3353A
B@354A
@@355A
PB356A
@B357A
PB358A
@B359A
00360A
#0361A
B0362A
@@363A
PB364A
@03365A
PP366A
P@367A
PP368A
90369
00370
#0371
#0372
60373
p0374
BB375A
BB376A
@0377A
@@378A
20379
pP380
po381
#9382
p0383
p0384
#0385
pB386
#0387
p0388
02389
00390
20391A
208392A
P@393A
P@394A
P@395A
2@396A
PB397A
@@398A
@B3399A
PO40BA
P0401A
0040 2A
P0403A
P0404A
00405A
PO406A

887

F200
F202
F205
F208
F20A
F20D
F20F
F212
F215
F218
P21B
F21E
F221
F224
F225
F228
F22B
F22E
F230
F233

F234
FP237
P239
F23€C

F23D
F249
F243
F245
F247
F24A
F24C
F24F
F251
F254
F257
F259
F25C
F25P
F262
F265

GRAFPAKA.SA:1

20
BD
BD
86
B7
20
BD
BD
cc
FD
EC
BD
BF
43
B7
BD
7D
27
BD
39

7D
27
BD
30

¥9

F234
F400
Ad

DD1E
gc

F234
F400
o000
DD1D
DD1D
F61D
DD21

DD23
F414
DD15
g3

F2AC

DD15

F2B

F@45
F132

1F
F400

DD1F
5E
DD1F
5E

F645
F414
F28D
F@4E

GRAFPA
F21B BRA FASMV1 NEXT
A DWN JSR CHKMOD CHECK MODE
A JSR ERASEC TAKE CURSOR OFF
A LDA #SA4 BOTTOM OF SCREEN
A STA CURPOS+1 CURSOR Y POS
F21B BRA FASMV1 NEXT
A HOME JSR CHKMOD
A JSR ERASEC
A LDD #00 CENTER CO~ORDINATES
A STD CURPOS PUT IN CURSOR
A FASMV1 LDD CURPOS GET FINAL POSITION
A JSR PNTADD GET ADDRESS
A STX CURAD SAVE FOR USE
COMA INVERT PIXEL
A STA CURCH NEW CURSOR CHAR
A JSR WRITEC PUT CURSOR BACK
A TST MODE CHECK FOR R~BAND
F233 BEQ FASRET NO
A JSR DRAWL DRAW THE LINE
FASRET RTS BACK TO COMHAND
*
*
* CHKMOD~CHECKS TO SEE IF IN RUBBER
* BAND MODE AND, IF SO,
* TO ERASE THE CURRENT LINE.
*
A CHKMOD TST MODE RUBBER BAND ?
F23C BEQ CHRET NOPE
A JSR ERASEL YES, ERASE LINE
CHRET RTS
*
*
* DHAND A "D" COMMAND CAUSES CONTROL TO BE
* PASSED HERE FOR FURTHER PROCESSING.
* D <SP> DELETE LAST LINE, PUT CURSOR AT
* LAST POINT
* DEL DELETE SPECIFIED LIST NUMBER
* DR <SP> DRAW CURRENT LIST
* DR <LIST#,LIST#,..> DRAW SPECIFIED LISTS
* DA DRAW ALL LISTS
* DW DRAW A LINE TO BE SPECIFIED
*
A DHAND JSR INCH GET NEXT CHAR
A JSR ABORT CHECK FOR "CAN" ABORT CHAR
A CMPA #$20 SPACE?
F266 BNE DH1 NOPE
A JSR ERASEC REMOVE CURSOR
A LDA #SFF FLAG=UNWRITE
A LDU NEXTPT GET ADDR OF NEXTPT IN LIST
A LEAU -2,U DELETE POINT
A STU NEXTPT UPDATE POINTER
A LDY -2,U0 GET Xi¥il
A LDX g,U GET %X2,Y2
a JSR LINGEN UNDRAW LINE
A JSR WRITEC PUT CURSOR BACK
A LDX #MSG30 "LINE DELETED"
A JSR PDATA
RTS MORE COMMANDS

Figure 7. Interactive Graphics System Program Listing (Sheet 7 of 20)

15

PAGE @08 GRAFPAKA.SA:1 GRAFPA

@P407A F266 81 45 A DH1 CMPA #'E AN "E"?

PP4P8A F268 26 gA F274 BNE DH2

@0409A F26A BD F@45 A JSR INCH GET NEXT CHAR
@@410A F26D 81 4cC A CMPA # UL,

@P411A F26F 26 1B F28C BNE DHRET

@@412A F271 BD F43E A JSR DELIST DELETE A LIST
@P413A F274 81 52 A DH2 CMPA #'R

PP414A F276 26 g4 F27C BNE DH3

@P415A F278 BD FAF3 A JSR GETETS GET NUMBER AND DRAW
@@416A F27B 39 RTS

P@417A F27C 81 41 A DH3 CMPA $vA DRAW ALL LISTS
@P418A F27E 26 g4 F284 BNE DH4

@@419A F280¢ BD F29D A JSR DRALL

P@420A F283 39 RTS

@P421A F284 81 57 A DH4 CMPA $#'W DRAW A LINE

@@422A F286 26 74 F28C BNE DHRET

@@423A F288 BD F733 A JSR DRAW LINE DRAWING ROUTINE
@@424A F28B 39 RTS

@P425A F28C 39 DHRET RTS

00426 *

@@427A F28D 20 A MSG3¢ FCC S LINE DELETED/

@@428A F29C 24 A FCB 4

g@429 *

00430 * DRALL-DRAW ALL LISTS. ALL THE LISTS ARE DRAWN
g@a3l * ON THE SCREEN.

90432 *

@@433A F29D F6 DD1A A DRALL LDB LISCNT GET LIST COUNT
@@434A F2AQ 5C INCB REAL LIST NUM
@P435A F2Al1 34 g4 A DRAl PSHS B SAVE COUNTER
@P436A F2A3 BD F519 A JSR GETL3 DRAW LIST IN B
@@437A F2A6 35 g4 A PULS B GET COUNTER

PP438A F2A8 5A DECB DECREMENT COUNTER
PP439A F2A9 26 F6 F2A1l BNE DRA1 FINISHED

g@g449A F2AB 39 RTS

pp441 *

00442 * DRAWL DRAW A LINE BETWEEN THE CURSOR AND THE LAST
g@443 * POINT IN THE CURRENT LIST.

gp4a44 *

go44s5 *

@P446A F2AC AF DRAWL CLRA FLAG=WRITE

@@447A F2AD 34 92 A PSHS A SAVE FLAG

@@448A F2AF 20 g4 F2B5 BRA DRAWL?2

@P449A F2Bl 86 FF A ERASEL LDA #SFF FLAG=UNWRITE
@P4AS@A F2B3 34 @2 A PSHS A SAVE FLAG

@P451A F2B5 BD F400 A DRAWL2 JSR ERASEC GET RID OF CURSOR
@@452A F2B8 FC DD1D A LDD CURPOS GET CURSOR POSITION
@@453A F2BB BE DD1F a LDX NEXTPT

@@454A F2BE 1Q0AE 1E A LDY -2,X GET LAST POINT
@@455A F2Cl1 1@¢8C 0971 A CMPY #$71

@P456A F2C5 27 gF F2D6 BEQ DRET

@0457A F2C7 1@8C @@6F A CMPY #S6F CHECK FOR MOVE PEN
@P458A F2CB 26 32 F2CF BNE DRAW3 NOPE

@P459A F2CD 1F 92 A TFR D,Y YEP, DRAW DOT
§P46@0A F2CF 1F g1 A DRAW3 TFR DipX 2ND POINT

@P461A F2D1 35 g2 A PULS A GET FLAG BACK
@@462A F2D3 BD F645 A JSR LINGEN DRAW LINE

@P463A F2D6 BD F414 A DRET JSR WRITEC

@O@464A F2D9 39 RTS BACK

Figure 7. Interactive Graphics System Program Listing (Sheet 8 of 20)

16

PAGE

00465
PP466
gp4a67
00468
pP469
004707
@@471A
0@472A
00473A
po4a74
p0475
pe4a76
@e477A
PB478A
BO479A
po480A
PP481A
P@482A
PO483A
Pp484A
PO485A
00486
00487
pp488
20489
00490
pP491
p0492
20493
00494
#0495
09496
pp497
p0498
2@499A
PO500A
@o501A
0B8502A
@8503A
p@504A
2Aa505A
@B506A
@@507A
PP508A
@B509A
@@510A
@A511A
@@512A
@0513A
@@3514A
@@515A
@3516A
2@517A
28518A
20519
005207
@@521A
#@522A

#39 GRAFPAKA.SA:1

F2DA
F2DD
F2DF
F2E2

F2E3
F2E6
F2ES8
F2EA
F2ED
F2EF
F2F1
F2F5
F2F8

F2F9
F2FC
F2FE
F301
F304
F307
F30A
F30D
F310
F312
F315
F317
F31A
F31D
F320
F323
F326
F329
F32B
F32E

F32F
F342
F343

BD
86
BD
39

F@@3

F@48

DD15
K}

F2BI
F32F
FO4E
E357
DD1F
go6F
Clk

DD1F

F343
FO4E
F357
F2AC
DD1F
DD1D

DD1F
20

24
20

GRAFPA
*
*
* PROMPT WRITES THE PROMPT CHAR (%) AND CRLF
* AND RETURNS.
*
A PROMPT JSR CRLF
A LDA #'%
A JSR OUTCH
RTS
*
* RESET WILL REST ALL THE POINTERS AND START FRESH
*
A RESET JSR INCH GET NEXT CHAR IN COMM
A CMPA #'E
F2F8 BNE RRET
A JSR INCH
A CMPA #'S
F2F8 BNE RRET
A LDS STACK GET USER STACK
A JMP GRAPH BACK TO RESTART
RRET RTS
%*
*
*
* LINER PUT CURSOR LOCATION AS NEXT
* POINT IN CURRENT LIST AND DRAW
* A LINE TO IT FROM THE PREVIOUS POINT.
*
*
* FIXP PUT MOVE PEN CODE IN NEXT POINT AND THEN PUT
* CURRENT CURSOR POSITION IN POINT LIST AND
* PLOT A POINT AT CURPOS; WRITE THE CURSOR
* AND RETURN TO COMMAND HANDLER.
%*
A FIXP TST MODE CHECK FOR R~BAND
F391 BEQ FIX
A JSR ERASEL
A FIX LDX #MSG26 "POINT FIXED AT $"
A JSR PDATA
A JSR PCURSE PRINT POINT POS
A LDU NEXTPT
A FIX1 LDX #S6F MOVE PEN COMMAND
A STX 2,U++ PUT IN LIST,INC POINTER
A STU NEXTPT UPDATE POINTER
F320 BRA LINER2
A LINER LDX #MSG27 "LINE ENTERED AT"
A JSR PDATA
A JSR PCURSE
A LINER2 JSR DRAWL DRAW LINE OR PUT DOT
a LDU NEXTPT GET POINTER
A LD% CURPOS
A STX g,U++ PUT IN POINT, INC POINTER
a STU NEXTPT UPDATE POINTER
FIXRET RTS
*
A MSG26 FCC 7 POINT FIXED AT /
A FCB 4
A MSG27 FCC 7 LINE ENTERED AT /

Figure 7. Interactive Graphics System Program Listing (Sheet 9 of 20)

17

PAGE

@B523A
#0524
#0525
#0526
#@527
205287
PB3529A
BB530A
PB531A
#@532A
#@533A
@0534A
PB535A
@B536A
80537
#0538A
BB8539A
BO540A
PB541A
#0542
#0543
#@544
PB545
PB546
208547
#0548
P0549
#0550
#4551
#3552
#0553
#0554
#@555
#8556
P@557A
#@558A
BB559A
PB560A
PB561A
#0562A
PP563A
@B564A
PB565A
PB566A
@B567A
B0568A
PB569A
BB570A
@0571A
#0572A
@B8573A
@B574A
@B575A
BB576A
@B577A
#0578A
@3579A
P@580A

210

F356

F357
F35A
F35D
F360
F363
F366
F369
P36C
E36F

F370
¥375
E376
F37B

F37C
F37E
F381
F384
E387
F389
F38C
F38E
F390
F391
F393
F395
F398
F39A
F39B
F39D
F39E
F3Al
F3A3
F3A5
F3A7
F3A9
F3AB
F3AD

8E
BD
B6
BD
8E
BD
B6

39

24

F370
FO4E
DD1D
Fg18
F376
FO4E
DD1E
Fg18

20

20
24

DD23

a7
a7
45
1P
41
ac

GRAFPAKA,.SA:1

A

it i i i i

b i

F3EE
A
F3EE
A

GRAFPA

FCB

CURSOR

* ¥ * ¥

PCURSE LDX
JSR
LDA
JSR
LDX
JSR
LDA
JSR
RTS

MSG31 FCC
FCB
FCC
FCB

=
n
Q
w
N

ON ENTRY

CNTRL~H
CNTRL~L
CNTRL~K
CNTRL~J

CHECK IS

* % % % F % %k ¥ % ¥ F ¥ ¥ F *

(< S
o
<
=
e}

PSHS
JSR
JSR
MOV2 LDX
PULS
LDB
CMPA
BNE
DECB
CMPB
BEQ
LDA
ORCC
ROLA
BCS
ROLA
MOK1 STA
TER
ANDA
EORA
BNE
LEAX
BRA
MOVE1l CMPA

!

PCURSE~PRINTS THE CURRENT X,Y POSITION OF THE

#MSG31 " X=$"

PDATA

CURPOS GET X POSITION
OUTHEX PRINT IT
#MSG32 " ,y=$"

PDATA

CURPOS+1 Y POSITION
OUTHEX

/ X=85/
4
/ ,Y=$/
4

MOVEC UPDATES THE POSITION OF THE
CURSOR ACCORDING TO THE KEYBOARD
INPUT FROM THE USER.

A=CONTROL CHARACTER

MOVE CURSOR LEFT 1 PIXEL SPACE
MOVE CURSOR RIGHT 1 PIXEL SPACE
MOVE CURSOR UP ONE SCAN LINE

MOVE CURSOR DOWN ONE SCAN LINE

MADE TO MAKE SURE THAT THE

CUROSR STAYS ON THE SCREEN.

A SAVE CON CAHR
CHKMOD CHECK MODE
ERASEC REMOVE CURSOR

CURAD GET CURSOR ADDR
A GET CHAR BACK
CURPOS GET X POS IN B
#8 (CNTRL~H) MOVE LEFT?
MOVE1
YES,DEC X POS ONE
#5580 LEFT BORDER?
CURET2 YES,TOO MUCH LEAVE IT
CURCH GET CURSOR CHAR
#1 SET CARRY
CHECK TO SEE IF
MOK 1 CURSOR CROSSED A BYTE
BOUNDARY
CURCH
B,A GET XPOS IN A
#7 MASK TOP 5 BITS
#7 SEE IF 3 LSBITS ZERO
CURET1 IF SO CROSSED BYTE BOUNDARY
-1,X DEC CURSOR ADDR
CURET1 OK, UPDATE POSITION
#sac (CNTRL~L) MOVE RIGHT?

Figure 7. Interactive Graphics System Program Listing (Sheet 10 of 20)

18

PAGE @11 GRAFPAKA.SA:1 GRAFPA
§@581A F3AF 26 1B F3CC BNE
§@582A F3Bl 5C INCB
g@583A F3B2 Cl 7F A CMPB
@@584A F3B4 27 3B F3F1l BEQ
§@585A F3B6 B6 DD23 A LDA
§@586A F3B9 1A g1 A ORCC
@@587A F3BB 46 RORA
@P588A F3BC 25 g1 F3BF BCS
§@589A F3BE 46 RORA
@@590A F3BF B7 DD23 A MOK2 STA
@@9591A F3C2 1F 98 A TFR
P@592A F3C4 84 g7 A ANDA
§@593A F3C6 26 26 F3EE BNE
@P594A F3C8 30 g1 A LEAX
@@595A F3CA 20 22 F3EE BRA
P0@596A F3CC F6 DD1E A MOVE2 LDB
@@597A F3CF 81 gB A CMPA
@@598A F3D1 26 gA F3DD BNE
§@599A F3D3 5C INCB
9P600A F3D4 Cl 5F A CMPB
§P601A F3D6 2E 19 F3F1 BGT
g@602A F3D8 30 88 E@ A LEAX
§P603A F3DB 20 gc F3E9 BRA
@0604A F3DD 81 gA A MOVE3 CMPA
@@6@5A F3DF 26 19 F3F1 BNE
gP606A F3E1l 5A DECB
9@6@7A F3E2 Cl A4 A CMPB
0@608A F3E4 2D @B F3F1 BLT
§0609A F3E6 30 88 20 A LEAX
#P610A F3E9 F7 DD1E A CURET STB
g@611A F3EC 20 93 F3F1 BRA
§0612A F3EE F7 DD1D A CURET1 STB
§B613A F3F1 BF DD21 A CURET2 STX
@P614A F3F4 BD F414 A JSR
@@615A F3F7 7D DDI15 A TST
@@616A F3FA 27 23 F3FF BEQ
@@617A F3FC BD F2AC A JSR
@0618A F3FF 39 CURET3 RTS
90619 *

00620 *

90621 * ERASEC
00622 *

90623 *

@@624A F40¢% BE DD21 A ERASEC LDX
§@625A FA@3 1@BE DD1B A LDY
00626A F407 C6 g4 A LDB
§0627A FAG9 A6 AQ A ERAC1 LDA
§P628A FA@B A7 84 A STA
90629A FA@GD 30 88 20 A LEAX
§P630A FA41l@ 5A DECB
909631A F41ll 26 F6 F409 BNE
@@632A F413 39 RTS
90633 o

90634 *

20635 * WRITEC
00636 *

90637 *

70638 *

MOVE2
INC X POS ONE
#STF RIGHT BORDER?
CURET2 TOO MUCH
CURCH
#1
MOK 2
CURCH
B,A
#7
CURET1
1 INC CURAD
CURET1 UPDATE
CURPOS+1 GET Y POS IN B
#S0B (CNTRL~K) MOVE UP?
MOVE3
IN Y POS ONE
#S5F TOP BORDER?
CURET2 YEP
~$20,X
CURET OK, UPDATE
#S0A (CNTRL~J) MOVE DOWN?
CURET?2 ERROR, RETURN UNCHANGED
DEC Y POS ONE
#SA4 BOTTOM BORDER?
CURET2 YES
$20,X
CURPOS+1
CURET?2
CURPOS UPDATE X POS
CURAD UPDATE CURSOR ADDR
WRITEC PUT CURSOR BACK
MODE
CURET3
DRAWL YES,DRAW CURRENT LINE

RETURN FOR NEXT COMMAND

ERASE CURSOR FROM SCREEN BY REPLACING
IT WITH PREVIOUSLY SAVED PIXELS.

CURAD GET CURSOR ADDR
CURSAV WHERE TO SAVE PIXELS
$4 COUNTER
Y+ GET BYTE
5 SAVE IT
$20,X NEXT LINE

FINSHED ALL LINES?
ERAC1

PUT CURSOR ON SCREEN AT CURRENT X=-Y
LOCATION IN CURPOS,
UNDERNEATH. [H.

SAVE INFORMATION

Figure 7. Interactive Graphics System Program Listing (Sheet 11 of 20)

PAGE

PP639A
0P640A
PP641A
P0642A
PB643A
00644A
BP645A
PO646A
PB647A
PO648A
PP649

20650

PP651

20652

#0653

PO654A
PB655A
PA656A
#0657A
PA658A
PB659A
P0660A
PO661A
00662A
PP663

P0664

#0665

PP666

00667

P0668

20669

Po670

30671

00672

P0673A
PO674A
@0675A
PO676A
BO677A
PB678A
BB679A
PO680A
PO681A
P0682A
00683A
PP684A
#P685A
PO686A
P0687A
00688A
B0689A
PO690A
A0691A
@0692A
AP693A
B0694A
P0695A
0P3696A

12

F414
F417
F41A
F41cC
F41F
F421
F423
F426
F427
F429

F42A
F42D
F431
F433
F435
F437
F43A
F43B
F43D

F43E
F441
F444
F447
F449
F44B
F44cC
F44E
F44F
F452
F454
F457
F45A
F45C
F45E
F4SF
F461
F464
F466
F468
F46B
F46D
F46F
F472

BD
BE
Ccé6
B6
A4
A7
30
5A
26
39

BE
14BE

A6
A7
30
5A
26
39

F42A
DD21
o4
DD23
84
84
88 20

E3

F4C7
F@4B
F@33

24
26

DD1A
28

F54A
F@4B

18

OE
DD16

84
DD1F
24
42
FADF
F@4B

GRAFPAKA.SA:1

A
A
A
A
A
A
A

F41C

>y

F433

F44B
F46F

F454

F45C

F46F

F476

F46F

F4B

bt e i i

GRAFPA

WRITEC JSR
LDX
LDB

WRIT1 LDA
ANDA
STA
LEAX
DECB
BNE
RTS

* % % * *

n
>
<
[s2]
(@]

LDX
LDY
LDB
SAV1 LDA
STA
LEAX
DECB
BNE
RTS

PRINTED.

* % * % * F ¥ ¥ ¥ *

DELIST LDX
JSR
JSR
BEQ
BRA
DELIS1 TSTB
BEQ
DECB
CMPB
BLS
NOLIST LDX
JSR
BRA
DELIS2 BLO
TSTB
BEQ
LDX
LEAX
LDX
STX
PSHS
BRA
DLRET LDX
JSR

SAVEC WILL SAVE THE
THE LOCATION OF THE
CURAD, AND PUT THEM

CURAD
CURSAV
#4

X

Y+
$20,X

SAV1

SAVE PIXELS UNDER CURSOR
CURSOR ADDR

LINE COUNT

GET CURSOR CHAR

MERGE WITH PIXELS ON SRN

NEXT LINE

PIXELS UNDER
CURSOR AT
IN LOCATION CURSAV.

GET CURSOR ADDR
WHERE TO SAVE THEM
LINE CNT

DL DELETE A LIST FROM LIST TABLE.

"DELETE LIST #" WILL BE PRINTED. ANY NON-HEX
CHARACTER WILL CAUSE AN ABORT, A VALID LIST
WILL CAUSE THAT LIST TO BE DELETED IF IT EXISTS
AND THE MESSAGE "LIST # DELETED" TO BE PRINTED.
IF IT DOES NOT EXIST, A MESSAGE SO STATING IS

IN ANY CASE IF NOT LIST IS ACTUALLY

DELETED, THE MESSAGE

#MSG11
PDATA1
GETEXP
DELIS1
DLRET

NOLIST

LISCNT
DELIS2
#MSG13
PDATAL
DLRET

DELIS3

DLRET
NEXTAD
-2,%X
3,X
NEXTPT
B
DELISS
#MSG21
PDATAL

"NO LIST DELETED" IS PRINTED.

DELETE LIST #"

NOT VALID HEX

CAN NEVER HAVE ZERO LISTS
ONE LESS THAN ACTUAL

IS VALID LIST #?

YES

"NO SUCH LIST #"
NO.RETURN

OTHER THAN LATEST LIST
CAN'T DELETE LAST LIST

SET NEXTAD BACK

GET ADDRESS OF CURRENT LIST
RESET NEXT POINTER THERE
SAVE NUMBER TO PRINT

FINISH UP

"LIST NOT DELETED"

Figure 7. Interactive Graphics System Program Listing (Sheet 12 of 20)

20

PAGE

PB697A
PP698A
PP699A
PO700A
PO701A
PB702A
B0703A
00704A
@0705A
00706A
0B707A
P0708A
0@709A
007108A
P0711A
P0712A
P0713A
00714A
@8715A
B0716A
@O717A
B0718A
B0719A
00720A
60721A
B0722A
@8723A
00724A
B8725A
B0726A
88727A
20728A
60729A
B0730A
20731A
80732A
@0733A
00734A
@0735A
@@736A
88737

@0738A
B@739A
00749

00741

00742

23743

ne744

90745

PB746

08747

po748A
BB749A
@B750A
BB751A
6B752A
BB753A
00754A

g13

F475
F476
F479
F47B
F47cC
F47E
F481
F483
F485
F487
F48B
F48D
F491
F493
F495
F497
F499
F49B
F49D
F49F
F4Al
F4A3
F4AS5
F4A8
F4AA
F4AC
F4AF
F4B1
F4B4
F4B7
F4BA
F4BC
F4BD
F4Cg
F4C3
F4C6
F4cC7
F4D5
F4D6
F4DE

F4DF
F4F2

F4F3
F4F6
F4F9
F4FC
F4FF
F501
F503

GRAFPAKA.SA:1
39
BE DD18 A
34 24 A
58
30 85 A
190AE 84 A
EE B2 A
A6 Cco A
A7 AQ A
11B3 DDIF A
26 Fé F483
1¢BF DDI1F A
EC 84 A
34 06 A
EC B2 A
A3 E4 A
ED E4 A
30 g2 A
EC 84 A
A3 E4 A
ED 1E A
30 g2 A
BC DD16 A
26 F3 F49D
30 1E A
BF DD16 A
35 190 A
7A DD1A A
8E F4CE A
BD F@4B A
35 g2 A
4ac
BD F@18 A
8E F4D6 A
BD F@4E A
39
44 A
24 A
20 A
g4 A
20 A
24 A
8E F592 A
BD F@4B A
CE DD35 A
BD F@33 a
26 30 E531
36 24 A
B6 DD24 A

GRAFPA

DLRET2
DELIS3

DELIS4

Loop

DELISS5

MSG1l1

MSG12

MSG21

Q * % * ¥ * ¥ ¥ F

ETLIS

GETL1

RTS
LDX
PSHS
LSLB
LEAX
LDY
LDU
LDA
STA
CMPU
BNE
STY
LDD
PSHS
LDD
SUBD
STD
LEAX
LDD
SUBD
STD
LEAX
CMPX
BNE
LEAX
STX
PULS
DEC
LDX
JSR
PULS
INCA
JSR
LDX
JSR
RTS
FCC
FCB
PCC
FCB

ECC
FCB

"DRAW LIST #"

IF IT EXISTS;,
PRINTED TO THAT EFFECT.

LDX
JSR
LDU
JSR
BNE
PSHU
LDA

LISCNT
#MSG11+7
PDATAl

A

OUTHEX
#MSG12
PDATA

BACK TO COMMAND HANDLER

GET BASE OF LIST TABLE

SAVE LIST NUMBER

X2

POINT TO LIST TO BE DELETED
HEAD OF LIST TO BE DELETED
HEAD OF FOLLOWING LIST

GET POINT

COPY POINT UP

END OF LISTS?

NEW END OF LISTS

GET POINTER TO LIST
SAVE

GET PTR TO NEXT LIST
GET DIFFERENCE

SAVE DIFF

POINT TO NEXT LIST
GET POINTER

SUB DIFF

PUT IN TABLE

CLEAN STACK
UPDATE LIST COUNTER

“LIST 48 ™

GET LIST NUMBER DELETED
LIST NUMBER

PRINT IT

"DELETED"

/DELETE LIST % /

4

/ DELETED/
4

/ ==LIST
4

#MSG14
PDATAL

NOT DELETED/

GETLIS~-WHEN DR IS TYPED IN THE MESSAGE
IS PRINTED. IF A VALID
HEX NUMBER IS INPUT, THAT