
Order this document
by AN461/D

Motorola Semiconductor Application Note

AN461
An Introduction to the HC16 for HC11 Users
By Ross Mitchell

MCU Applications Group
Motorola Ltd., East Kilbride, Scotland

Introduction — Basic Design Philosophy of the M68HC16

The M68HC16 (HC16) is a highly modular device family based on the
CPU16 16-bit core. The CPU16 core is a true 16-bit design, with an
architecture that will be very familiar to M68HC11 (HC11) users. The
resemblances to the HC11 core design are a deliberate move to provide
an upgrade path for those 8-bit 68HC11 designs that require the
increased power of a 16-bit CPU. Many features of the HC16 and the
CPU16 core will be new to HC11 users, and it is these changed and new
features that this document aims at explaining.

The HC16 provides a software upgrade path for HC11 users while giving
full hardware compatibility with the asynchronous address and data bus
found on the 32-bit microprocessors.

The basic HC11 CPU is easily recognizable in Figure 4 , with a number
of additional registers enhancing the flexibility of the core. The addition
of the multiply-accumulate (MAC) block (Figure 7) provides the user
with greatly improved digital signal processing (DSP) capabilities. Many
architectural changes have been made to improve the performance of
the CPU.

The hardware interface has, however, been radically changed. This is
now compatible with the asynchronous address/data bus interface found
© Motorola, Inc., 1992, 2000 AN461

Application Note
on the 68000, 68020, and 68300 Families of devices. To greatly reduce
the external logic, a module called the system integration module (SIM)
has been designed and provides the signals required to control the
external bus.

The HC16 is built with the 0.8-micron double metal HCMOS (high-
density metal-oxide semiconductor) process.

The following discusses the various differences likely to be encountered
by a user of the M68HC16 who is experienced in using the HC11. It
covers the CPU architecture, software compatibility, and hardware of the
HC16 device. A detailed table of contents follows. Since there are a
number of technical references available, it will be assumed the reader
has these to hand.

Table of Contents

Introduction — Basic Design Philosophy of the M68HC16.1

The Concept of the Intermodule Bus (IMB) 7

Explanation of the Basic IMB Concept7

Basic Starting Position .9

Modularity. .9

Choosing a Module List for IMB Designs11

On-Chip Peripherals .11

CPU16 .12

System Integration Module (SIM). .12

General-Purpose Timer Module (GPT) 13

Standby RAM (SRAM) .14

Serial Communications Interface (SCI) 15

Serial Peripheral Interface (SPI). .16

Analog-to-Digital Converter (ADC) .18

Ports .18
AN461

2 MOTOROLA

Application Note
Table of Contents
Basic CPU16 Core Architecture Differences 19

A Look at the Non-DSP Parts of the Core for the CPU16 . .19
CCR Register .22
K Registers. .24
Program and Data Space. .25

Examination of the DSP Part of the CPU16 Core 28
HC16 n-Tap FIR Filter .29
Use of SM, EV, and MV Bits of the CCR31

Source Code Compatibility .31

Basic Approach to Source Code Compatibility.31

Changes in Detail .32
Addressing Modes .32
Timing Changes. .34

Assembly Code Differences Between HC11 and HC16. . . .34

Enhancements in CPU16 Source Code36
20-Bit Addressing. .36
Moving Data without Affecting the Accumulators.36
MAC and RMAC. .38
Stack Operations .40
Difference between RTI and RTS 42
16-Bit Signed Branch .43
Pipelining .43
16- and 32-Bit Arithmetic .44

Comparison of HC11 and HC16 Code and Benchmarks . . .47

Check List of Changes to HC11 Code47

Initialization of HC16 Device .48

PLL Control .48

SRAM Initialization Procedure .49

Stack Initialization. .50

K Register Initialization. .50

Mode Selection During Reset. .52

Reset Operation .52
Vectors, Stack Operations .54
Exception Routine Address .54
User-Defined Vectors. .55
New Vectors for HC11 Users .55
Reset Status Register .56
AN461

MOTOROLA 3

Application Note
Exception Handling (Interrupts) .59

Interrupt Request Handling .59

Module Design Influence on the Conversion
from HC11 to HC16 Code .59

Setting Up an Internal Exception .59
HC11 Timer Initialization .60
HC16 Code for GPT Interrupt Initialization.61
Initializing the QSPI .63

Setting Up an External Exception. .63

Periodic Interrupt vs. Real-Time Interrupt 65

Different Exception Levels .66
Arbitration. .67
Same Exception Level .68
Multiple Exception Events .68
Prioritization Schemes .70

Exception Routine Entry Latency .70

External Hardware Interfacing .73

Asynchronous vs. Synchronous Bus73
Wait States. .74
Fast Termination (Synchronous Timing) 75

Using Chip Selects .75
8-Bit and 16-Bit Read/Write Access to

8-Bit Wide Memory Devices 75
Hardware for 8-Bit and 16-Bit Addressing Using a

Single-Chip Select .77
VDDE vs. VDDI vs. VDDA .78

Minimum Required Connections for the SIM79

Debugging Tools. .83

Background Mode .83

Evaluation Board .83

Appendix A .84

Appendix B .85

Appendix C .86
AN461

4 MOTOROLA

Application Note
Figures, Tables, and Examples
Figures, Tables, and Examples

Figure Title Page

1 68HC16Z1, 68HC16Y1, and 68332 Block Diagrams8
2 68HC11E9 and 68HC11K4 Block Diagrams 8
3 QSPI RAM Model .17
4 HC11 Register Set .19
5 Basic HC16 Register Set Minus the MAC Registers 21
6 HC11 and CPU16 Condition Code Registers.24
7 MAC Registers .28
8 MAC Instruction Flow .29
9 MAC Instruction Operation .39
10 Schematic Diagram of the PLL. .48
11 Multiple Interrupts .69
12 8- and 16-Bit Address Read and Write Access

with CSBOOT. .78
13 Shows the Suggested Decoupling as Close to the

HC16 Pins as Possible for These Pairs of Power Pins . .79
14 HC11 with External Memory. .81
15 HC16 with External Memory. .82
16 MC68HC11E9 Device .84
17 MC68HC16Z1 Device. .85
18 Simplified HC16 Timing Diagram .86

Table Title Page

1 Initial Modules Available for the IMB Family.10
2 Example Baud Rates Possible with a System Clock

of 16.78 MHz .15
3 Accumulator D and E Instructions Compared 23
4 HC11 Instructions Modified for CPU16 Implementation35
5 Move Instruction .36
6 DSP Register Initialization .38
7 DSP Support Instructions .40
8 HC11 Stack Control Instructions .41
9 CPU16 Stack Control Instructions .42
10 Registers that Must/Should be Written after Reset 51
11 List of 1-Time Write Bits/Registers .52
12 SIM Configuration Out of Reset .53
13 Vector Table Definition for the HC1657
14 Generating an Autovector and Initializing the Watchdog64
15 Periodic Interval Timer Setup and Exception Handler66
AN461

MOTOROLA 5

Application Note
Example Title Page

1 HC16 Code with Data Accesses the Same
64-Kbyte Segment .26

2 HC16 Code Data Accesses Across Adjacent
64-Kbyte Segments .27

3 HC11 Code to Average 64 10-Bit A/D Values 30
4 N-Tap FIR Filter for the HC16 .30
5 HC16 Moving Data from an ADC Result Register

to a RAM Table .37
6 HC11 Code to Calculate 16-Bit Times 8 Bits

 Divided by 16 Bits .45
7 HC16 Code to Perform 16-Bit Times 8-Bit

Divided by 16 Bits .45
8 HC11 (8-Bit x 8-Bit x 8-Bit) / 9-Bit. .46
9 HC16 (8-Bit x 8-Bit x 8-Bit) / 9-Bit. .46
10 MC68HC16Z1 Initialization Routine .51
11 HC11 Initialization Code .51
12 Definition of HC11 Vector Table .56
13 Actual HC16 Vector Table .58
14 HC11 Code for Timer Initialization .60
15 HC16 GPT Initialization for Interrupts on OC262
16 Initialization of the QSPI .63
17 HC11 Timer Output Compare 2 Interrupt Routine71
18 HC16 Timer Output Compare 2 Exception Handler72
19 Initialization Code for 8- and 16-Bit Addressing of

External Memories .76
AN461

6 MOTOROLA

Application Note
The Concept of the Intermodule Bus (IMB)
The Concept of the Intermodule Bus (IMB)

Explanation
of the Basic IMB
Concept

The HC11 device is made up of a number of functionally different
modules which are connected together to form a fully operational
microcontroller. These modules range from CPU (central processor unit)
and ROM (read-only memory) to very complex timers and
communications interfaces. The HC16 employs the same techniques,
but goes one step further by standardizing the shape and interface of the
modules to one another. Each module must be designed so that there is
the absolute minimum of change in connection to the rest of the design,
and this means that the intermodule connections and the external pin
connections are standardized.

This is achieved by the intermodule bus (IMB) which is a standard bus
interface for all internal modules of the HC16 and 68300 Families of
microcontrollers. It consists of 16 data lines, 24 address lines, and
numerous control lines that are available to all modules in the device.

In general terms, the IMB has a similar function to an address and data
bus on any computer system. This bus is very like the 68020
asynchronous bus and so uses handshaking between the sending and
receiving modules to allow a data transfer to occur. Thus, a very large
number of modules can be accommodated simply with little design effort
for each variant of the HC16 or 68300.

The system integration module (SIM) is simply the logic required to run
the asynchronous address and data bus and takes care of both internal
and external bus activity with little differentiation between them. It also
provides control of interrupt events and includes a number of
systemwide functions such as system monitors and clock generation.

One thing that you will notice is that the IMB concept results in a “back
bone” for the device, with a visible track stretching across the middle of
the device. See Figure 1 showing the block diagrams of the HC16
devices 68HC16Z1 and 68HC16Y1 for an example of the back bone
effect. Compare these to the design of the 68HC11E9 and 68HC11K4
devices in Figure 2 and note the irregular shapes of the HC11 devices.
AN461

MOTOROLA 7

Application Note
Figure 1. 68HC16Z1, 68HC16Y1, and 68332 Block Diagrams

Figure 2. 68HC11E9 and 68HC11K4 Block Diagrams

68HC16Z1 68HC16Y1 68332

GPT

QSM

IMB

SIM
CS

S
I
MCPU16

S

R
A
M

A
D
C

A
D
C

G
P
T

M
C
C
I

TPU
RAM TPU

IMB

ROM CPU16 S
C

I

M

CS

S
C
I
M

S

I

M

CS

S
I
M

Q
S
M

TPU
RAM TPU

IMB

CPU32

68HC11K468HC11E9

TIMER

CPU

512 RAM

12-K ROM

A/D OSC

SPI

SCI

MMUA/D

640 EEROM

512 EEROM

768 RAM

CPU WDG
OSC

SCI

SPI
TIMER PWM

24
-K

 R
O

M

WDG
AN461

8 MOTOROLA

Application Note
The Concept of the Intermodule Bus (IMB)
Basic Starting
Position

A couple of modules always exist on an intermodule bus (IMB) device.
The IMB itself is, of course, absolutely required. A CPU is a good idea,
and then one must choose a system integration module to suit the
application. After that, there is a free hand in choosing of the modules.

Modularity The HC11 and HC05 customer will be well acquainted with the CSIC
(customer-specified integrated circuit) approach. This is simply where
the customer specifies a custom integrated circuit, and it will often have
a completely new module that must be designed to support the
customer’s particular needs. Where a design does not involve a new
module to be designed, the complete design and layout process can
take as little as three months. Most of this time is spent integrating the
customer-specified modules and incorporating them into a rectangular
piece of silicon, where each module is often an irregular shape.

The intermodule bus (IMB) allows even faster integration by specifying
a standard shape and interconnectivity for all modules. The IMB lies
along the center of the device and each module has a fixed height such
that only the width of the silicon will vary according to the number and
width of each module. Figure 1 illustrates two devices in the HC16
Family and compares them with the 68332, the first CPU32-based IMB
device.

It is a relatively simple matter to assemble the appropriate modules to
give the best utilization of the silicon, and then all that remains is to
connect the external pads of the device to the modules. As a
consequence, a 3- to 6-month design period can turn out vastly more
complex devices than the HC11 and HC05 in a comparable time frame.

The modularity of each module normally requires that there be no
customization of the module so that it has precisely the same
functionality as that module on another device. This is not a restriction
as the modules themselves are therefore designed to provide the
maximum flexibility for the user. As new requirements of the MCUs are
demanded, the library of modules increases. Currently, 12 are available
and many more are in design. See Table 1 for a brief list of the first
modules to become available.
AN461

MOTOROLA 9

Application Note
A clear result of this modular approach is that the initialization of each
module is very important and certainly more complex than would be the
case for an HC11 device. In the majority of cases, the registers are pre-
initialized to a value that would be either safe or expected in normal
operation.

The HC11 offers an approach called the fixed chassis customer-
specified integrated circuit (FCCSIC), where the basic device chassis
and pinout are restricted to a few combinations and there is an area of
silicon known as white space which is available for any random logic
design. There is no such equivalent as yet for the IMB Family, but often
the flexibility of the modules will account for much of the logic required in
these cases.

Table 1. Initial Modules Available for the IMB Family

CPU16 16-bit CPU, based on HC11 core

CPU32 32-bit CPU, based on 68020 core

SIM System integration module (chip selects, clock, system protection)

SCIM Single-chip SIM (Address/data bus can become port lines.)

SRAM Static RAM with low-voltage standby operation

TPURAM TPU emulation SRAM

TPU Timer processor unit, 16-channel timer with RISC-type core

EEROM 16-k and 48-k FLASH EEROM modules

ROM 48-Kbyte ROM module

QSM SCI and queued SPI module

MCCI 2 SCIs and a single SPI

ADC 8/10-bit, 8-channel A to D converter
AN461

10 MOTOROLA

Application Note
On-Chip Peripherals
Choosing
a Module List
for IMB Designs

Making a choice of modules is a complex task. In essence, it comes
down to choosing the functionality required of the application and
building up the device out of the available blocks. Since the functionality
of each module is very specific, the application can often be broken
down to match these functions. The choice is then between two or three
modules and becomes much more obvious.

Each module has its own reference manual and so it is easy to collect all
the relevant data on each module function for analysis of a system’s
design of an application.

As the Family of HC16 devices grows, it is increasingly likely that the
user will find a device close to the ideal requirements of the application.
This makes the task of defining a new variant of the HC16 much simpler,
since the combination of critical modules can be assessed easily.

On-Chip Peripherals

The HC16 consists of a number of different modules, each with its own
specialist function which will combine to give the functionality of a
powerful microcontroller. The CPU and the external bus interface are
obvious elements of such a device and are known as CPU16 and the
system integration module (SIM), in this case. These are connected to
the IMB just as any other module would and so it is important to consider
the functions of the core and the SIM as separate from one another, with
communication via the intermodule bus (IMB).

Much of this document is directed at giving the reader a basic
understanding of the features of the CPU16 and SIM modules since
these are the basic blocks of any version of the HC16. Many other
modules exist today, with many more in design. The following, therefore,
will concentrate on the peripherals found on the MC68HC16Z1, since
this device most closely resembles the very popular MC68HC11E9
device.
AN461

MOTOROLA 11

Application Note
CPU16 The core is a module like all other modules. It is a true 16-bit CPU with
some novel features. It has a pseudo-linear address capability of
1 Mbyte for the user program, while the data space is built up from
16 banks or segments of 64 Kbytes. The CPU16 also boasts a digital
signal processor (DSP) functionality with a full MAC capability, allowing
16-bit x 16-bit multiply and addition into a 36-bit wide accumulator in a
single 720-ns instruction.

The programmer’s model can be seen in Figure 4 , Figure 5 , and
Figure 6 .

System Integration
Module (SIM)

The system integration module is one of the most complex modules
available and interfaces between the internal device modules and the
external peripheral devices on the system. It has 12 chip selects,
24 address lines, 16 data lines, seven interrupt pins, numerous bus
control lines, digital I/O (input/output) ports, a periodic interval timer,
arbitration logic, system monitors, and the system clock generation via a
PLL (phase-locked loop).

The chip selects are a large piece of the SIM and are basically
12 comparators that can check the 24 bits of the address bus and some
of the bus control signals such as address strobe, read/write, and
address space type. This then allows a handshake signal called DSACK
to be signalled to the external bus interface section of the SIM, and this
in turn completes the bus cycle. The comparator is also used for
generation of AVEC, a signal to indicate the presence of an autovector
(interrupt event).

The bus monitor is disabled after reset, but when enabled it will flag
(BERR) a long delay in the bus cycle completion, possibly due to a write
or read from non-existent memory.

The PLL allows a 32.78-kHz crystal to be connected to the external
oscillator pins and then multiply up the frequency by the use of a
prescaler in the feedback circuit of the PLL from the VCO to the phase
detector. It is this multiplied clock that becomes the system clock. The
prescaler is a 6-bit modulus prescaler with separate divide-by-2 and
divide-by-4 selections and so can generate a system clock ranging from
131 kHz up to 16.78 MHz from a 32.78-kHz input clock. This allows the
AN461

12 MOTOROLA

Application Note
On-Chip Peripherals
user to arrange the exact frequency for timers, periodic timer, SCI, etc.,
to suit the application. See Figure 10 for a block diagram of the PLL.

A significant portion of this document aims to explain the operation of the
SIM. The basic blocks of the SIM and its external pins can be seen in
Appendix B .

The following is a very brief overview of the HC11-like peripherals found
on the HC16 device. These peripherals offer many improved features
over the HC11 equivalent, and so the user must refer to the appropriate
reference manuals to take full advantage of the increased functionality.

General-Purpose
Timer Module
(GPT)

The general-purpose timer (GPT) module is based mainly on the
HC11F1 or HC11E9 timer. It has three input captures, four output
compares, an input capture or output compare channel, a pulse
accumulator input, and two 8-bit PWM (pulse-width modulation) outputs
and a PWM clock input. The PWM is similar to the 68HC05B6’s PWM.

The differences are:

1. Maximum of 4 MHz (240 ns) timer clock (2-MHz HC11 has a
maximum of 500-kHz (2 µs) timer clock)

2. The pulse accumulator input is a separate pin from the OC1
channel.

3. The PWMs are additional. These are more sophisticated than the
HC05B6 PWMs, since they have a prescaler in addition to the
fast/slow mode. They do not, however, have the modulus counters
of the HC11G5 device.

The two 8-bit PWMs can run from a maximum of 32.78 kHz down
to just 4 Hz. These cannot, however, be concatenated as is the
case with the HC11G5.

The PWM clock can come from an external pin called PCLK.

4. All the input capture and output compare pins have alternate
functions of digital I/O capability, and the PWM pins may be used
as discrete output pins.
AN461

MOTOROLA 13

Application Note
Standby RAM
(SRAM)

The SRAM can be mapped anywhere in the 1-Mbyte addressable
program or data space. To move the SRAM, the STOP (RAM
enable/disable) bit must be set, meaning that the RAM is disabled, and
the RLCK (RAM base address lock) bit must not have been written to a
1 state. (This is a write-once register bit.) A write to the RAM base
address registers RAMBAR ($FFB04) and ($FFB06) will allow the user
to place the RAM base address anywhere in memory.

A good place to put the SRAM is at address $F0000, since this can be
accessed by the same instructions that access the module registers as
they, too, are situated in bank 15.

The SRAM can be either program or program and data space. This
allows the user to decide whether code can be run out of RAM or if it is
to be used for data storage.

If using the RAM only for program space, the initialization is important.
Since there is no way to write data from the CPU registers to program
space, it is necessary to initialize the RAM as program and data space
first and then copy the user code into RAM. The RASP (RAM array
space) bit is then set and the RAM will only execute code from RAM until
the RASP bit is cleared once more.

An application for running code from RAM would possibly be where the
user has slow or maybe 8-bit wide external memory in the system and
wishes to use the internal 16-bit wide fast termination RAM for execution
of a critical piece of code that requires short cycle times. Remember that
in program space-only mode there is no possibility of storing data in
RAM from the CPU registers.

NOTE: The SRAM is disabled in standby mode which operates whenever the
VSTBY pin is approximately 0.5 volts higher than the VDDI supply. To
avoid this situation, the VSTBY pin may be grounded and the SRAM will
always be powered from VDDI.
AN461

14 MOTOROLA

Application Note
On-Chip Peripherals
Serial
Communications
Interface (SCI)

The SCI and the queued SPI share the QSM module and so the
registers will all be found together.

The SCI operates in almost exactly the same way as the SCI of the
HC11K4. This means that it has a modulus register to generate the baud
rate for the receive and transmit and so can have a very wide range of
baud rates to allow for the variable system clock frequency possible from
the PLL.

The HC11E9 has a much simpler SCI baud rate generator that has fixed
divide ratios that sometimes cause problems for users wishing to run the
device at 3-MHz bus speed and still require 9600 baud, for example.
With the modulus baud rate divider, a simple equation is used to
generate the appropriate baud rate. It is:

Baud rate = system clock / (32 * BR)

where BR is the divide ratio selected in the baud rate register ($FFC08).

Clearly, the PLL can be used to bring these small errors to a minimum.

Table 2. Example Baud Rates Possible with a System Clock
of 16.78 MHz

Nominal
Baud Rate

Actual
Baud Rate

Percent
Error

Baud Rate
Register Value

500,000 524,288 +4.9 1

38,400 37,449 –2.5 14

19,200 19,418 +1.1 27

9600 9533 –0.7 55

4800 4810 +0.2 109

2400 2405 +0.2 218

1200 1200 0 437

300 300 0 1748

110 110 0 4766
AN461

MOTOROLA 15

Application Note
The other features of the SCI that have changed are relatively minor.
The SCI has an option for wired OR mode for the TXD output, and it will
automatically generate the parity bit and check the parity on receiving
data. Also, there is a bit in the status register called RAF that is set when
the SCI receiver is busy, indicating that another message is being
received.

Serial Peripheral
Interface (SPI)

The basic SPI from the HC11 is recognizable after a good long look at
the QSPI. There are a great many additional features in this module
which have been grafted onto the HC11 type of SPI. It should be a
relatively easy job to convert the HC11 over to the QSPI function, but it
is more likely that the user will wish to take advantage of the improved
functionality of this module in particular to reduce unnecessary CPU
intervention in the SPI transfers.

The SPI is a queued SPI and so has a 16-word transmit and 16-word
receive storage RAM within the module. The actual function of the SPI
remains unchanged, but each of the 16 words of transmit/receive RAM
are controlled by an 8-bit command register that autonomously controls
the SPI operation without direct control from the CPU.

The queue can send or receive a number of words or bytes and can
manipulate the external slave select lines continuously or in a burst and
then await further intervention from the CPU.

The obvious applications are for control of an SPI LCD display or
external A/D converter, to name just two external peripherals. Here there
is a need to send or receive several bytes/words of data regularly and
the QSPI can handle this with little or no CPU control once started. In the
case of the A/D, the data could be read from the receive queue by an
interrupt service routine and the SPI would just continue to collect the
data automatically.

The queue control byte associated with each of the 16 sets of receive
and transmit registers is made up from two 4-bit fields. The first field
controls the protocol and the second field determines which of the
external SPI devices is being accessed.
AN461

16 MOTOROLA

Application Note
On-Chip Peripherals
Thus, it is possible to determine the number of bytes transferred,
whether there is a delay after a transfer, the delay from slave select to
transmission start, and whether to disable the slave devices between
data transfers on each SPI transfer. Also, the four slave select lines can
be changed on each of the 16 transfers.

In addition to the number of bytes, the QSPI can transmit/receive any
number of bits from eight up to 16, thus making communication with a
10-bit external A/D much simpler.

The SPI baud rate definition is very similar to that for the SCI baud rate.
Again, there is a modulus prescaler, set by the 8-bit BAUD field of the
SPCR0 (QSPI control register 0) register at $FFC18. The equation is set
as follows:

Baud rate = system clock / (2 * baud)

where baud has values ranging from 2 up to 256.

At reset, the baud register is preset to 4, giving a baud rate of 2.1 MHz
with a 16.78-MHz system clock. The maximum baud rate is 4.19 MHz
and the minimum baud rate is 33 kHz (with the 16.78-MHz system
clock).

Figure 3. QSPI RAM Model

15 0 15 0

$FFD00 $FFD20 $FFD40 0

F$FFD3E $FFD4F$FFD1E

07

RECEIVE DATA TRANSMIT DATA COMMAND CONTROL
AN461

MOTOROLA 17

Application Note
Analog-to-Digital
Converter (ADC)

The ADC is basically the same as the MC68HC11E9 in its functionality,
but it does have a number of significant improvements.

For example, the module can operate as an 8-bit or 10-bit converter
(taking 1 µs longer to convert a 10-bit result). The results of all eight
channels can be read from their individual data registers in three
different data representations: right justified unsigned, left justified
unsigned, and left justified signed. This means that there are a total of
24 16-bit wide registers for the eight channels of 10-bit A/D. The data
formatting is intended to make the application of DSP functions much
simpler by providing the results in signed form. The left justified unsigned
value gives easy access to the most significant 8-bit result, while the
right justified unsigned value gives easy handling of the 10-bit result.

Conversion times are 8 µs for eight bits and 9 µs for 10 bits.

The other ADC features — such as continuous sampling, single
conversion and stop, and grouping of four or eight channels — are much
the same as for the HC11G5.

Ports Each module on the HC16 has its own digital port lines as an alternate
function to the primary module function. The GPT has a parallel digital
I/O port which operates in precisely the same way as port A on the
HC11.

Since the modules are designed to be completely separate, the port line
control registers are scattered across the register/address map. In some
cases, the individual control of port pins may be in completely different
registers. An example of this is the timer processor unit (TPU), where the
digital I/O pin control comes from the control for each timer channel.
AN461

18 MOTOROLA

Application Note
Basic CPU16 Core Architecture Differences
Basic CPU16 Core Architecture Differences

A Look
at the Non-DSP
Parts of the Core
for the CPU16

A close inspection of the CPU16 register set in Figure 5 reveals very
close similarity to the corresponding registers of the HC11 in Figure 4 .
There are several additional registers, with accumulator E, index register
IZ largely being duplicates of the accumulator D and index register IY,
respectively. The K register is completely new, the result of extending
the address range of the CPU. The condition code register has changed
quite a bit to support the enhancements to the CPU.

Figure 4. HC11 Register Set

Accumulators D and E differ slightly from one another. Accumulator E is
only a 16-bit accumulator (unlike accumulator D, which also can be
considered as two 8-bit accumulators). As can be seen in Table 3 , most
of the instructions apply equally to accumulators D and E. All the logical,
comparative, and data movement instructions are identical for both
accumulators; however, there are some differences with the arithmetic
instructions. Just as with the HC11, there is a decrement and increment
on the 8-bit registers A and B, but since there is no 16-bit decrement on
the HC11, there is no such instruction on the CPU16. Accumulator E,
therefore, has no associated decrement/increment instruction.
Additionally, the ABA instruction is complemented by the ADE
instruction on the CPU16; however, there is no instruction to add E to D.

NOTE: The decimal adjust only operates on accumulator A. In a similar way,
reading from/writing to the CCR is possible only from accumulators A or
D for an 8-bit or 16-bit operation, respectively.

ACCUMULATOR D

INDEX REGISTER X

PROGRAM COUNTER

FLAGS

STACK POINTER

INDEX REGISTER Y

CONDITION CODE REGISTER

015 ACCUMULATOR A ACCUMULATOR B
AN461

MOTOROLA 19

Application Note
The implications of this is to continue to concentrate on accumulator D
as the primary 16-bit accumulator and use accumulator E for the results
of the calculations. All accumulator D and accumulator E instructions
take the same number of clock cycles to execute. This is further
emphasized by the addition of two new types of instruction for the
CPU16. These are the 16-bit offset on an indexed instruction and the
accumulator E offset on an indexed instruction.

There is only a 16-bit signed offset available for the accumulator E
instructions whereas accumulator D has the possibility of an unsigned
8-bit offset or a signed 16-bit offset on the index register. The 8-bit offset
is directly compatible with the HC11 and is normally a 2-byte opcode,
making it a very efficient and normally 2-cycle (120 ns) instruction.

The accumulator E offset on an index register is a significant
improvement over the HC11. This will allow an offset calculation of a
signed 16-bit value to be used to directly access a memory location. This
allows the index register to remain pointing at the top of the data field
rather than save the pointer address and then restore later as required
by the HC11. Example 1 and Example 2 show how this instruction
might be used.
AN461

20 MOTOROLA

Application Note
Basic CPU16 Core Architecture Differences
Figure 5. Basic HC16 Register Set Minus the MAC Registers

Table 3 also shows that there are 32-bit instructions. These are primarily
intended for use with 32-bit registers found on some modules for the IMB
bus. In particular, the TPU can be configured to have 32-bit registers
which must be written in one memory access cycle. See Example 5 for
an example of this instruction in a program example. As is shown later
in this section, there are also special uses for accumulator E when using
the multiply accumulate functions in the CPU16.

ACCUMULATOR A ACCUMULATOR B

015
19 16

19 16

(EK)

(XK)

(YK)

(ZK)

(PJK)

(SK)

FLAGS
PC EXTENSION

PK

STACK EXTENSION

SK

IZ EXTENSION

ZK

EXT. ADDR.
EXTENSION

EK

IX EXTENSION

XK

IY EXTENSION

YK

PROGRAM COUNTER

STACK POINTER

INDEX REGISTER IZ

INDEX REGISTER IY

INDEX REGISTER IX

ACCUMULATOR E

ACCUMULATOR D

DIIRECT PAGE/
INDEX REGISTER

CONDITION CODE
REGISTER

K REGISTER

SK REGISTER
AN461

MOTOROLA 21

Application Note
CCR Register At first sight, there is little difference between the CCR (condition code
register) of the HC11 and that of the HC16. Most of the bits from the
HC11 are included in the CPU16 CCR, but there are a number of
changes (see Figure 6). Bits C, V, Z, N, H, and S operate the same way
for both devices. The I and X bits in the HC11 CCR are replaced by three
bits: I0, I1, and I2. This is as a result of a major change in the approach
to interrupt handling on the HC16. Rather than have a single non-
maskable interrupt and a prioritized maskable interrupt, the HC16 has
seven levels of interrupt or exception mask, the highest level (7) of which
is non-maskable. The section on Exception Handling (Interrupts)
covers this in detail.

NOTE: After reset, the interrupt mask is at level 7.

CPU16 bits SM, EV, and MV relate to the MAC instruction and are
covered later in this section. The PK field is the 4-bit extension to the PC
register to allow 20-bit addressing by the CPU16 program counter.
When the CCR and PC are stacked during an interrupt, there is no need
for a special additional stack operation for the PK register. During a
branch to subroutine, the HC11 would normally stack just the PC, but
here we need the additional four bits of the PK register and so both the
CCR and PC registers are also stacked for a branch-to-subroutine
operation on CPU16. An RTS instruction discards the stacked CCR
content on returning to the calling routine.
AN461

22 MOTOROLA

Application Note
Basic CPU16 Core Architecture Differences
Table 3. Accumulator D and E Instructions Compared

Instruction
Accumulator

A
 8-Bit

Accumulator
B

 8-Bit

Accumulator
D

16-Bit

Accumulator
E

16-Bit

Accumulator E:
Accumulator D

32-Bit

ARITHMETIC
add with carry
add
add B to A
add D to E
subtract with carry
subtract
subtract B from A
subtract D from E
decrement
increment
decimal adjust
clear

ADCA
ADDA
ABA
ADE

SBCA
SUBA
SBA
SDE

DECA
INCA
DAA

CLRA

ADCB
ADDB

SBCB
SUBB

DECB
INCB

CLRB

ADCD
ADDD

SBCD
SUBD

CLRD

ADCE
ADDE

SBCE
SUBE

CLRE

LOGICAL
complement
and
negate
OR
exclusive OR
arithmetic shift L
arithmetic shift R
logical shift R
rotate left
rotate right

COMA
ANDA
NEGA
ORAA
EORA
ASLA
ASRA
LSRA
ROLA
RORA

COMB
ANDB
NEGB
ORAB
EORB
ASLB
ASRB
LSRB
ROLB
RORB

COMD
ANDD
NEGD
ORD

EORD
ASLD
ASRD
LSRD
ROLD
RORD

COME
ANDE
NEGE
ORE

EORE
ASLE
ASRE
LSRE
ROLE
RORE

COMPARATIVE
compare
test

CMPA
TSTA

CMPB
TSTB

CPD
TSTD

CPE
TSTE

DATA MOVEMENT
load
store
transfer
exchange
stack
unstack

LDAA
STAA
TBA

XGAB
PSHA
PULA

LDAB
STAB
TAB

XGAB
PSHB
PULB

LDD
STD
TED

XGDE
PSHM D
PULM D

LDE
STE
TDE

XGDE
PSHM E
PULM E

LDED
STED

PSHM D,E
PULM D,E

CCR OPERATIONS
transfer A to CCR
transfer CCR to A
transfer D to CCR
transfer CCR to D

TAP
TPA

TDP
TPD

INDEX REGISTER
CONTROL
add to index X
add to index Y
add to index Z

ADX
ADY
ADZ

AEX
AEY
AEZ
AN461

MOTOROLA 23

Application Note
Figure 6. HC11 and CPU16 Condition Code Registers

K Registers The HC11 has a limit of 64 Kbytes unsegmented addressable memory
which is clearly a limitation of the 16-bit wide program counter and other
CPU registers. The CPU16 core has been designed to provide a linear,
unsegmented memory map of 1 Mbyte for the user program.

A 1-Mbyte address space requires 20 bits in the address bus and,
therefore, the program counter, index registers, stack pointer, and
accumulators must be able to address 20 bits of address bus. This is
done by adding 4-bit registers to the normally 16-bit wide registers in the
CPU. These additional 4-bit registers are collectively known as the
K registers.

There are six in total:

• Three for the X, Y, and Z index registers called XK, YK, and, of
course, ZK.

• The program counter 4-bit extension is PK.

• The stack pointer 4-bit extension is, obviously, called SK.

• The sixth 4-bit extension is a little different, EK, but it is not just
associated with the accumulator E. The EK register is the 4-bit
extension for any direct read or write from/to memory from any of
the accumulators A, B, D, or E.

15

7 S X H I N Z V C

0
PK

HC11

CPU16DSP SUPPORT

S MV H EV N Z V C I2 I1 I0 SM

X BIT EQUATES TO I2:I0 = 7
I BIT EQUATES TO I2:I0 = 1,2,3,4,5,6

0

AN461

24 MOTOROLA

Application Note
Basic CPU16 Core Architecture Differences
Figure 5 shows the K registers both in their symbolic location and in their
apparent physical location. As can be seen, the index K registers and the
EK register are grouped together in a single 16-bit wide register called,
unsurprisingly enough, K. PK is added to the lowest nibble of the CCR.
This makes a great deal of sense when it comes to stacking the CPU
registers for interrupt and subroutines. Clearly, SK should not be altered
after a stacking operation and so need not be accessible in a 16-bit wide
register for stacking purposes.

The K registers are the most obvious core differences to an HC11 user,
but they are normally set up at the start of a program and after that, rarely
altered. This is a good idea, not least because a new value for the 4-bit
K registers must first be loaded in the accumulator B and then
transferred to nK (nK is XK or YK or ZK or EK or SK) by the command
TBnK and read from nK by the command TnKB. A primary reason for not
changing the K registers is that they normally point to data either within
the program or generated by the program or HC16 peripheral modules.
Often, the K registers may take advantage of the CPU distinguishing
between data and program space.

Program and Data
Space

NOTE: There is a difference between data and program address space for the
CPU16. The CPU determines that any access of data that requires the
use of the program counter (and, of course, the PK register) must be an
address space known as program space. Data space is any memory
access via the accumulators (such as a read or write operation with
accumulator E). A third type of space is CPU space and this will be
explained later in the section concerning hardware interfacing and
external interrupts.

Program space is a linear 1-Mbyte addressable space and the CPU16
automatically handles all the manipulation of the additional 4-bit PK
register. Thus, there is no way to manipulate the PC or PK registers
other than with stack operations.
AN461

MOTOROLA 25

Application Note
Data space is 16 segments of 64 Kbytes of address space. The EK, XK,
YK, ZK, and SK extension registers all point to data space. The CPU will
not automatically change the K register contents when a series of data
instructions crosses a 64-Kbyte boundary (unlike the PK register for
program space). The user must, therefore, ensure that the tables of data
are within a 64-Kbyte segment or take care of the boundary conditions
as the access to the data fields cross the 64-Kbyte boundary.

The following examples illustrate the small modifications required to
ensure data accesses will operate between adjacent segments. It only
takes five additional lines of code and 10 bytes to make Example 1 work
over a bank boundary. The resultant code can be found in Example 2 .
Both examples perform the same task, but Example 2 has no
restrictions on where the input table lies.

Another interesting point is the use of the std, e,y instruction. Had the
output table in RAM gone across a bank boundary, this code would still
work because accumulator E is added to YK:IY and the value of YK will
be temporarily incremented if the sum of accE and IY exceeds $FFFF.
YK itself is never changed by such an instance.

Example 1. HC16 Code with Data Accesses
the Same 64-Kbyte Segment

*************** MOVE the data within a bank boundary *************
* 64-Kbyte ROM extends from $0000 to $0FFFF
* Move 256 words of table from ROM to internal RAM in bank 15
*
RAM_TABLE equ $0040 ; output table at $F0040 (RAM in bank 15)
TABLE equ $F000 ; input table starts at $0F000 (bank 0)
TABLE_END equ $F200 ; input table ends at $0F200 (bank 0)
TABLE_LENGTH equ $200 ; table is 512 bytes in length

ldab #$0 ; point to bank 0 for ROM table
tbxk
ldab #$F ; point to bank 15 for RAM
tbyk
lde #$0000
ldy #RAM_TABLE ; destination in SRAM
ldx #TABLE ; source in ROM

moveloop
ldd 0,x ; get the data from ROM
std e,y ; write it to RAM
aix #2 ; increment source pointer by a word
adde #2 ; increment destination pointer by a word
cpe #TABLE_LENGTH ; check if past end of table
blt moveloop ; if not then continue to move data
AN461

26 MOTOROLA

Application Note
Basic CPU16 Core Architecture Differences
Example 2. HC16 Code Data Accesses Across Adjacent 64-Kbyte Segments
*************** MOVE the data within a bank boundary *************
* 128-Kbyte ROM extends from $0000 to $1FFFF
* Move 256 words of table from ROM to internal RAM in bank 15
*
RAM_TABLE equ $0040 ; output table at $F0040 (RAM in bank 15)
TABLE equ $FF80 ; input table starts at $0FF80 (bank 0)
TABLE_END equ $0180 ; input table ends at $10180 (bank 0)
TABLE_LENGTH equ $200 ; table is 512 bytes in length

ldab #0
tbxk ; point to bank 0 (ROM) for input table
ldab #$F
tbyk ; point to bank 15 (RAM) for output table
lde #$0000
ldy #RAM_TABLE ; destination in SRAM
ldx #TABLE ; source in ROM

moveloop
ldd 0,x ; get the data from ROM
std e,y ; write it to RAM
aix #2 ; increment source pointer by a word

check_bank
cpx #$0000 ; check if data runs over a bank boundary
bne same_bank ; if IX not $0000 then still in same bank

new_bank
txkb ; if IX=$0000 then get the current bank
addb #1 ; increment it by 1
tbsk ; update the bank pointer

same_bank
adde #2 ; increment destination pointer by a word
cpe #TABLE_LENGTH ; check if past end of table
blt moveloop ; if not then continue to move data
AN461

MOTOROLA 27

Application Note
Examination
of the DSP Part
of the CPU16 Core

A totally new function of the core is the multiply-accumulate capability.
As can be seen from Figure 7 , there are a number of new registers that
are intended to be used to multiply two 16-bit numbers pointed to by
index registers X and Y and the result added to the contents of a 36-bit
register called M by a single instruction MAC (multiply-accumulate). This
instruction can post increment/decrement up to 15 both the X and Y
index registers to allow a series of MAC n m commands to multiply and
accumulate the results of a series of values very quickly. This function is
for digital filtering and it can complete a MAC in 720 ns (12 clock cycles).

The H and I registers are used as pointers to the indexed data and the
XMASK and YMASK bytes control the actual addressing of the data.
These masks, when not set to 0, will effectively give an upper limit on the
address range of the H and I registers. This gives a wrap around effect
to the data, but remember to start the table of input data and coefficient
data at a multiple of the X and Y mask value. The table size is a power
of 2 of the XMASK maximum bit set plus 1. A value of XMASK equal to
$1 will allow a table of 2 values, while XMASK equal to $3 will allow four
values and XMASK equal to $7 will allow a table of eight values.

DSP algorithms can be found in many HC11 applications and the
CPU16 core will perform the same function very much faster.

Figure 7. MAC Registers

15

35

SIGN
LATCH

15

15

15

0

0

16

0

0

MAC MULTIPLIER INPUT REGISTER H

MAC MULTIPLIER INPUT REGISTER I

MAC ACCUMULATOR M BITS 35–16

MAC ACCUMULATOR M BITS 15–0

XMASK YMASK
AN461

28 MOTOROLA

Application Note
Basic CPU16 Core Architecture Differences
Figure 8. MAC Instruction Flow

HC16 n-Tap FIR
Filter

It is often found that the HC11 device was required to perform some
averaging of data to reduce noise in the A/D reading, for example.
Normally, this would simply be a buffer with the last n readings from the
A/D channel and this would be updated regularly, while a separate
routine would add up all the results and divide the answer by the number
of readings averaged. In effect, this is making the HC11 perform a low-
pass digital filter function.

The HC16 device has the MAC and RMAC instructions to allow it to
perform more than just an averaging function on the incoming data. To
show the actual operation of the DSP part of the core, the following
shows a simple FIR filter performing the averaging routine through the
use of what is called a finite response filter (FIR).

The 64 results to be averaged, it would be necessary for the HC11 to
divide the sum of the values by 64. If the average is more than a 10-bit
result, then the HC11 would have problems storing the sum of the results
because this would exceed 16 bits. A solution to this is to divide each
result by 64 or a multiple of 2 at least to prevent overflow, but this would
reduce the accuracy of the result. The only alternative is to perform
arithmetic on greater than 16 bits which is time consuming for the HC11.

COEFFICIENTSA/D READINGS

IYIX

15 0 15 0
H I

ACCUMULATOR M

35 0

x

+

AN461

MOTOROLA 29

Application Note
The FIR routine in Example 4 is more general and allows fairly complex
filtering functions where the coefficients are not constant as in the
averaging routine described earlier. This routine also shows the
initialization of the MAC registers and masks for modulus addressing of
the coefficients and input data.

There are a number of commands especially for this DSP function.

Example 3. HC11 Code to Average 64 10-Bit A/D Values
 cycles

ldd #0 3 clear the accumulator
ldy #63 4 set up for 64 values to be averaged

loop addd result,x 6 add the next value
inx 3 move pointer to next result in RAM
inx 3
dey 4 decrement the result counter
bne loop 3 check if all 64 values added to acc D

loop = 19 * 64 = 1216
lsrd 2
lsrd 2
lsrd 2
lsrd 2 divide total by 64 (6 left shifts)
lsrd 2
lsrd 2
std average 4 save average

Example 4. N-Tap FIR Filter for the HC16
* ENTRY: E = INPUT DATA (Q15 fraction)
NTAP EQU 65 ; NUMBER OF TAPS

ORG DATA
STATE RMB NTAP ; STATES (2 WORDS)

ORG COEFF_TABLE
COEFF RMB NTAP ; COEFFICIENTS (4 WORDS)

ORG USER_ROM
*
* INITIALIZE
*
START1LDX #STATE ; initialize input data pointer

LDY #COEFF ; initialize coefficient pointer
LDD #$3F3F ; X,Y masks set for 2**6 (64)
TDMSK ; Load X & Y masks
LDHI ; (IX) -> HR(m); (IY) -> IR(m)
CLRM
LDE #NTAP-1 ; loop count

*
* calculation
*
LOOP RMAC 2 2 ; accM + [HR(m-1) x IR(m-1)] -> accM

; IX+2 -. IX; IY+2 -> IY
; (IX) -> HR(m); (IY) -> IR(m)
; accE-1 -> accE

MAC 0 2 ; perform the 65th MAC and slip the input
; data pointer

TMR ; transfer rounded result to accE from accM
AN461

30 MOTOROLA

Application Note
Source Code Compatibility
Use of SM, EV,
and MV Bits
of the CCR

EV saturation of the M accumulator shows that there has been an
overflow into bit 31. The value of M is now greater than 0.99997 or less
than –0.99997.

MV extension of the M accumulator shows that there has been an
overflow into bit 35 and that the result in accumulator M is incorrect and
changed from a positive number to a negative number. This bit is written
to an invisible register called the signlatch which will retain the sign of the
overflow.

SM (saturation mode) is a bit that can be written in the CCR. When the
MV bit or EV bit is set, the result in accM (31:16) will be either the most
positive ($7FFF) or most negative ($8000) number, depending upon the
sign of the overflow. This simulates analogue saturation.

Source Code Compatibility

Basic Approach
to Source Code
Compatibility

The HC16 is considered to be source code compatible with the HC11.
This means that the user can take HC11 code and pass it through an
HC16 assembler and it will function just as before (ignoring the obvious
hardware differences). With a few exceptions, which will be explained in
this section, this is indeed the case.

The CPU16 core is fully 16-bit and has the additional feature of 20-bit
addressing built into the core design. This accounts for many of the
changes, but these new features do not normally affect the way that
HC11 source code would operate. Interrupts, stack operations, and
communication with on-chip peripherals are the main areas of change,
and these are very simple to make.
AN461

MOTOROLA 31

Application Note
Changes in Detail In fact, a great deal of effort has gone into maintaining HC11 source
code compatibility. For example, there is now an exception vector for a
divide by 0; however, this does not function with the HC11 command
IDIV or FDIV. It will function only with the new CPU16 divide instruction,
EDIV and EDIVS. Similarly, there is a direct page (page zero)
addressing mode to enable the user to use code efficient 8-bit offset
operations anywhere in memory.

At a quick glance, HC16 assembly code looks very much like HC11
code. The most obvious difference is in the initialization sequence at the
start of the user program. Here, the K registers are set up and the
peripheral modules configured for the specific requirements of the
application. Since the HC11 can only address 64 Kbytes (except, of
course, the HC11K4), the K registers most likely will be set to 0 or F.

K reg = 0 will point to the lowest 64-Kbyte address space where the reset
vectors are situated and where the user program most likely will start.
The registers for the peripherals, however, are located at the very top of
the 1-Mbyte memory address. Therefore, they can be accessed either
by forcing the read/write at the top 64-Kbyte segment or by a negative
offset on the address.

Addressing Modes The CPU16 core makes full use of signed arithmetic and so it is
important to remember that an unsigned operation on the HC11 could
become a signed operation with the HC16. The 16-bit indirect offset is
an unsigned value on the HC11, but becomes a signed 16-bit value on
the HC16. The following example should help illustrate this.

Taking a register TOC2 (timer output compare 2 in the GPT module) with
address $FF916 as an example, we can read this with the following
instructions:

1. LDD $F916,X where XK = $0, X = $0000 signed offset

2. LDD – $06EA,X where XK= $0, X = $0000 signed offset

3. LDD $F916 where EK = $F unsigned direct address

4. LDD $16,X where XK = $F, X = $F900 unsigned offset
AN461

32 MOTOROLA

Application Note
Source Code Compatibility
In number 1, $F916 is a negative number and since a 16-bit offset is
always signed, the XK register must be 0. Indeed, Number 2 is exactly
the same instruction, but this time the negative number is shown more
clearly by the negative sign. In number 3, the address mode has
changed from indirect 16-bit signed offset on an index register to a direct
address mode. In this case, the address is considered a positive,
unsigned number, and so the EK register must be set to $F to force the
read from segment 15 ($F). For completeness, number 4 shows the
HC11 approach to this by using the unsigned 8-bit offset on an index
register address. In this last example, the XK and X register form a
20-bit address and so the XK register must point to segment 15 ($F) at
the top of the address space.

For simplicity, the programmer would normally utilize number 3 to
access the HC16 registers since this leaves the X index register for other
activities within the program.

Making full use of the 16-bit offset addressing mode on the HC16 leads
to other small changes in the user’s software. Taking the previous
example, we can look at it from the point of view of the HC11 user.

Normally, the HC11 TOC2 register would reside at address $1018, and
so the HC11 program would have:

a. LDD $18,X where X = $1000

b. LDD $1018

Experienced users of the HC11 usually would opt for example (a) (or the
equivalent using the Y register) because when using equates for the
peripheral register address (for example LDD TOC2, where
TOC2 = $1018), it is important to remember that the bit manipulation
(BRSET, BRCLR) instructions can use only 8-bit offsets. To avoid
multiple definitions of the same register, most HC11 programmers keep
the register address at a byte value and so can equally have LDD
TOC2,X and BRSET #1, TOC2,X,LABEL (with TOC2 EQU $18) to read
the register. With the HC16, the EK register allows a 16-bit (2-byte)
address to be used for the equate and so frees up the index register.

NOTE: Bit manipulation now operates on both 8- and 16-bit addresses. Hence,
for the HC16, with TOC2 EQU $F916, the following would work perfectly.

LDD TOC2 (EK = $F)

BRSET #1,TOC2,LABEL (EK = $F)
AN461

MOTOROLA 33

Application Note
Timing Changes Program delay or timing loops are obviously affected by the change to
the cycle times for instructions. There is no relation between the HC11
instruction timing and the CPU16 timing. Remember also that the HC16
can run at clock speeds of up to 16.78 MHz (bus speed of up to 8.39
MHz).

On the HC11, there are advantages in using the X index register rather
than the Y index register. This is because the instructions using index Y
require an additional opcode and so take one byte more memory and
one more bus cycle to execute. The CPU16 does not have such a
difference between the index registers which have the same number of
opcodes and timing.

Assembly Code
Differences
Between HC11
and HC16

A number of HC11 instructions are changed slightly to allow them to
function with the new core design. The list in Table 4 is not a long one,
and often the user can create a macro routine to instruct the assembler
to change the HC11 code into CPU16 code.

The new instructions ANDP, AIX, AIY, AIS, PSHM, PULM, and ORP
each replace several HC11 instructions. In particular, AIX #2 will often
replace either two sequential INX instructions (similarly, AIX #-2
replaces two sequential DEX instructions) and so will make the CPU16
code smaller and look better.

The remaining changes are to accommodate the different stack
operation of the CPU16 (discussed later in Exception Handling
(Interrupts)) and the 20-bit addressing capability of the core.
AN461

34 MOTOROLA

Application Note
Source Code Compatibility
Table 4. HC11 Instructions Modified for CPU16 Implementation

HC11 Instruction Change in CPU16

BSR Generates a different stack frame

CLC, CLI, CLV Replaced by ANDP instruction

DES,DEX,DEY Replaced by AIS, AIX, and AIY instructions

INS, INX, INY Replaced by AIS, AIX, and AIY instructions

JMP
Indirect 8-bit offset replaced by 20-bit offset

and extended addressing (20-bit address) modes

JSR As JMP instruction and generates different stack frame

PSHX, PSHY Replaced by PSHM

PULX, PULY Replaced by PULM

RTI Only unstacks the PC and CCR registers

RTS Only unstacks the PC and PK registers

SEC, SEI, SEV Replaced by ORP instruction

TAP, TPA CCR bits and interrupt masking differ from HC11

TSX, TSY Adds 2 to SK:SP before transfer to XK:IX or YK:IY

TXS, TYS Subtracts 2 from XK:IX / YK:IY before transfer to SK:SP

TXY, TYX Transfers full 20 bits, including K registers

WAI Generates a different stack frame
AN461

MOTOROLA 35

Application Note
Enhancements
in CPU16 Source
Code

20-Bit Addressing The 16-bit signed branch (or long branch) limits the programmer to
moving plus $7FFF and minus $8000 bytes from the current PC position.
The HC11 JMP and JSP instructions have an operand of 16 bits and so
allow a jump anywhere within the 68-Kbyte address range of a 16-bit
operand. The JMP and JSR instructions have been changed on the
CPU16 to take a 20-bit address. These instructions also allow a jump to
an indexed IX, IY, or IZ address with a 20-bit signed offset. Thus, it is
now possible to calculate the destination address of a jump with the
HC16 where it would have required building and executing the
instruction in RAM for the HC11. This instruction is not affected by the
EK register which remains unchanged.

Moving Data
without Affecting
the Accumulators

Two new instructions have been added to CPU16 to move data from a
specific memory location to another memory or range of memory
locations. These are the MOVB and MOVW instructions which rather
unsurprisingly are move byte and move word, respectively.

The instructions are in the form shown in Table 5 , with, of course, the
same instructions for word moves.

Table 5. Move Instruction

MOVB offset,X(n) EXT
Move byte from indexed address with post increment

signed 8-bit offset to extended 16-bit address.

MOVB EXT offset,X(n)
Move byte from extended 16-bit address to indexed

address with post increment signed 8-bit offset.

MOVB EXT EXT
Move byte from extended 16-bit address to extended

16-bit address.
AN461

36 MOTOROLA

Application Note
Source Code Compatibility
This instruction is not completely orthogonal and does not include a
move from indexed address to indexed address.

These instructions are particularly useful when capturing data from a
peripheral module such as the SCI or ADC and placing the results in a
buffer for future use. An interrupt routine could move the data with the
minimum disturbance to the CPU registers and hence reduce the
interrupt execution time. Such an example is shown here, where an
interrupt routine triggered by the periodic interrupt timer (PIT) copies and
A/D value to a circular buffer for an FIR filter.

Note also the use of the 32-bit load and store instructions LDED and
STED.

Example 5. HC16 Moving Data from an ADC Result Register
to a RAM Table

************************MOVEW A/D data into RAM ****************************
* Interrupt routine running from PIT
* 128 word table for FIR filter
*
addreslt1 equ $F732
start_tableequ $0100
end_table equ $0200

org RAM
RAMpoint rmb 4 ; 32-bit result

org PIT_exception
moveAD1 pshm D,E,X,K ; save altered CPU registers

ldab #$F
tbek ; point to ADC
lded RAMpoint ; get 32bit value containing 20bit pointer
tbxk ; put bits 19:16 into XK
xgex ; move bits 15:0 into IX
movw adres1tl, x(2); get the data from ADC result register
cpx #end_table ; check if IX pointing past end of RAM table
bmi OK ; if not then continue
ldx #start_table ; if yes, rest pointer to start of table

OK xgex ; get new value of IX into accE
sted RAMpoint ; store new value in RAM again
pulm D,E,X,K ; restore altered CPU registers
rti
AN461

MOTOROLA 37

Application Note
MAC and RMAC The multiply-accumulate (MAC) instruction and the repeat MAC (RMAC)
offer a substantial improvement in CPU performance over the HC11. As
has been explained in the previous section about the core design, the
MAC function has a number of dedicated registers in the CPU. These
registers require the support of a number of new instructions, some of
which can be seen in the example of code describing an FIR filter
algorithm.

The new instructions are described here and provide the programmer
with all the necessary tools to perform DSP algorithms.

First, the DSP section of the CPU must be initialized.

The MAC and RMAC instruction multiples the HR and IR registers
together and then adds the 32-bit result to the lower 32 bits of the M
register.

The MAC and RMAC instructions are of the form:

Table 6. DSP Register Initialization

LDHI
Loads the contents of the addresses pointed to by IX and IY

into registers HR and IR, respectively

TDMSK Loads the modulo addressing mask for the IX and IY registers.

CLRM Zeros the M register and clears the appropriate flags in the CCR

TEM
Transfers the contents of acc E into bits 31:16 of the M register

and clears the other bits in the M register

TEDM Loads the M register with a 32-bit value in accE:accD

MAC offsetX offsetY (HR x IR) + M; IX and IY post incremented by offsets

RMAC offsetX offsetY
(HR x IR) + M; IX and IY post incremented by offsets
Accumulator E decremented and then the calculation

is repeated until acc E is 0
AN461

38 MOTOROLA

Application Note
Source Code Compatibility
The flow of the MAC instruction is shown in Figure 9 .

NOTE: All the CPU registers are modified by the MAC, with the exception of
accumulator E which is used by the RMAC instruction to count the
number of MAC instructions performed.

Figure 9. MAC Instruction Operation

The RMAC instruction is interruptable and takes 18 cycles for the first
calculation followed by 12 cycles per iteration thereafter.

NOTE: The IX and IY modulo masks must be cleared to allow more than
256 indexed values to be multiplied by the RMAC instruction.

 IY IX

I REGISTER H REGISTER IZ

++

Y OFFSET X OFFSET

+

AccD AccE AccM

+

MAC:
AccE:AccD<--(H-Reg)x(I-Reg)
AccM <--(AccM)+(AccE:AccD)
IX <--(IX)+X-offset, qualified by X mask
IY <--(IY)+Y-offset, qualified by Y mask
IZ <--(H-Reg)
H-Reg <--(IX)
I-Reg <--(IY)

MAC FLOWCHART

RMAC:
AccM <--(H-Reg)x(I-Reg)+AccM
IX <--(IX)+X-offset, qualified by X mask
IY <--(IY)+Y-offset, qualified by Y mask
H-Reg <-- (IX)
I-Reg <-- (IY)
E <--E - 1
Until E<0
AN461

MOTOROLA 39

Application Note
The four additional bits of the M accumulator allow a certain amount of
overflow without the loss of data. The data in the M accumulator can be
accessed by the commands listed in Table 7 .

Stack Operations The differences between the cores mean that the stack operations will
be quite different. The HC11 has a number of instructions for stack
manipulation, but the stack is always made up of 8-bit values. The
CPU16 stack consists of 16-bit values and has many more registers to
save on the stack.

A fundamental difference is that only the CCR and PC are saved during
an exception process. It is left to the programmer to decide which of the
remaining CPU registers must be saved on the stack. To make life
simpler, there are two new instructions to perform this task:

Table 7. DSP Support Instructions

TMER Transfer a convergent-rounded 16-bit value of M(31:0) into accE

TEMT Transfer a truncated 16-bit value of accumulator M(31:16) into accE

TMXED
Transfer all 36 bits of accumulator M into IX(3:0):accE:accD with

IX(15:4) sign extended with the value of bit 3 of IX

Support instructions also available:

FMULS
Perform a signed fractional multiply of accE by accD and then shifts

the result left one place and clear the accD(0) bit

ACED Adds accE:accD to accumulator M(31:0)

ACE Adds accE to accumulator M(31:16)

ASLM
Shifts the entire 36 bits of accumulator M left one place

(multiply M by 2)

ASRM
Shifts the entire 36 bits of accumulator M right one place

(divide M by 2)

PSHMAC Save the contents of the HR, IR, M, and modulo masks on the stack

PULMAC
Restore the contents of the HR, IR, M, and modulo masks

from the stack

LBEV Long branch if the EV bit is set (M(31) set)

LBMV Long branch if the MV bit is set (M(35) set)

PSHM D,E,X,Y,Z,K
Saves any combination of listed registers to the stack

in a fixed order

PSHMAC Stacks all the MAC registers (M, HR, IR, X, Y masks)
AN461

40 MOTOROLA

Application Note
Source Code Compatibility
PSHA and PSHB are retained from the HC11 source code to maintain
compatibility, but PSHX and PSHY become PSHM X and PSHM Y,
respectively, or can be performed with one line of code, PSHM X,Y, to
save time.

The push multiple (PSHM) instruction adds the appropriate number of
words to the stack and decrements the stack pointer appropriately.

It always makes sense to use as few CPU registers as possible when
writing exception (interrupt) handlers for the HC16 as each additional
stacked register takes two clock cycles to save it onto the stack and
using the MAC registers (any of them requires 14 clock cycles for the
stack operation). Remember also that they must all be pulled from the
stack afterward, when the routine is complete and ready to return from
interrupt.

The stack pointer is 20 bits on the CPU16 and can be placed anywhere
in memory using the SK register. The SK and SP registers are either set
up by including their address in the reset vector table (see Initialization
of HC16 Device) or by the use of the TBSK and LDS instructions in the
same way as the HC11.

NOTE: Initialize the stack pointer at an even address (see Example 10).

Table 8. HC11 Stack Control Instructions

BSR Relative branch to subroutine (stack 2 bytes – PC reg)

DES Decrement stack pointer by 1 byte

INS Increment stack pointer by 1 byte

JSR Direct jump to subroutine (stack 2 bytes – PC reg)

LDS Load stack pointer with memory or immediate value

PSHA, PSHB Push 8-bit A or B accumulators

PSHX, PSHY Push 16-bit X or Y registers

PULA, PULB Pull 8-bit A or B accumulators

PULX, PULY Pull 16-bit X or Y registers

RTI Return from interrupt (unstack 9 bytes)

RTS Return from subroutine (unstack 2 bytes – PC register)

STS Store stack pointer value in memory

SWI Software interrupt (stack all 9 CPU registers)

TSX, TSY Transfer stack pointer to X or Y register

TXS, TYS Transfer X or Y register to stack pointer

Interrupt event Stack 9 bytes (all CPU registers)
AN461

MOTOROLA 41

Application Note
Difference
between RTI
and RTS

At first sight, the RTI and RTS instructions look very similar, but there is
a subtle difference between them. They both pull the CCR and SP
registers off the stack and both take 12 clock cycles to execute, but the
RTI stores the entire CCR register contents while the RTS only restores
the PK field of the CCR register.

Another small change is the fact that the RTI must return to the
instruction following the one just completed prior to taking the exception.
Since the pipeline fetches the code six cycles ahead, the RTI
decrements the program counter by six and thus points to the correct
place in memory after the exception.

Table 9. CPU16 Stack Control Instructions

BSR Branch to subroutine (stack 4 bytes – PC, CCR)

CPS
Compare stack pointer with memory or immediate

value

AIS Add signed 16-bit value to stack pointer

JSR Jump to subroutine (stack 4 bytes – PC, CCR)

LDS
Load stack pointer with memory or immediate

value

PSHA, PSHB Push 8-bit A or B accumulators

PSHM D, E, X, Y, Z, K, CCR Push any combination of 16-bit registers in the list

PULA, PULB Pull 8-bit A or B accumulators

PULM D, E, X, Y, Z, K, CCR Pull any combination of 16-bit registers in the list

RTI Return from interrupt (unstack 4 bytes – PC, CCR)

RTS
Return from subroutine (unstack 4 bytes – PC,

CCR)

STS Store stack pointer value in memory

SWI Software interrupt (stack 4 bytes – PC, CCR)

TBSK Transfer accB(3:0) to SK register

TSKB
Transfer SK register to accB and sign extend

accB(7:4)

TSX, TSY, TSZ Transfer stack pointer to X, Y, or Z register

TXS, TYS, TZS Transfer X, Y, or Z register to stack pointer

Interrupt event Stack 4 bytes (PC and CCR registers)
AN461

42 MOTOROLA

Application Note
Source Code Compatibility
The RTS assumes that the jump or branch instruction was a 2-word
instruction (except for a BSR label) and so just subtracts 2 from the PC
after restoring the stacked PC and CCR. The BSR instruction adds 2 to
the PC since it is a single word opcode, and so it simulates the JMP and
LBSR opcode instructions of 2-word length.

By comparison, the HC11 takes 12 bus cycles for an RTI and five bus
cycles for an RTS instruction, and the RTI pulls all the CPU registers off
the stack.

16-Bit Signed
Branch

To overcome the limitations of the HC11 branch instruction being limited
to a signed 8-bit value, the CPU16 has a new set of instructions called
long branches. These have a 16-bit signed offset and so allow a
32-Kbyte jump anywhere in program space, even across 64-Kbyte
boundaries.

The instructions are simply the same as the 8-bit signed offset with the
addition of the letter L before the instruction (for example, BRA REL8
becomes LBRA REL16). Since the 16-bit offset requires more data in the
operand, the opcode becomes two bytes and the operand two bytes with
a typical execution time of four to six cycles compared with the 8-bit
relative branch which takes two or six cycles and has single-byte opcode
and operand.

Pipelining You will notice that there were two possible execution times for the
conditional branch instructions. This is a function of the CPU16
architecture which involves pipelining the data read from memory and
preprocessing the information before it is actually executed.

The pipeline is a 3-stage operation which first reads the 2-byte (word)
value and then evaluates the opcodes. At this stage, the operands are
evaluated and the instruction is executed. Finally, the opcodes are
moved through to the third stage after execution is complete.

The improvements in CPU performance are approximately two-fold over
the more conventional approach of the HC11 and hence the HC16 is
roughly twice as fast as the HC11 for a given bus speed.

The pipeline is especially noticeable with two types of instructions.
AN461

MOTOROLA 43

Application Note
The inherent instructions take two clock cycles (or one bus cycle in
HC11 terms) to execute. Even the NOP instruction on the HC11 takes
two bus cycles to execute.

The more important change, especially for the HC11 user, is that a
conditional branch can take differing execution times depending upon
whether the pipeline needs purging after the instruction is completed.

Let us take the BNE instruction. This takes three cycles for the HC11,
irrespective of whether the condition is true or false. The CPU16 pipeline
is set to read the next instruction as if the result is false and so it will read
the next address after the BNE instruction while the BNE instruction is
being evaluated and executed. If the result is false, then the CPU has
already fetched and evaluated the next instruction and can immediately
execute it, thus saving possibly four clock cycles. If, however, the BNE
instruction result is true and the branch taken, then the CPU16 must look
for the new address indicated by the relative offset in the operand and
fetch this instruction instead. It will, therefore, need to disregard the first
stages of the pipeline and start again. Hence, it takes six cycles this time
to complete the BNE instruction.

The long branch is similar, but here the opcode plus operand now fill two
of the three stages, and so only one stage of the pipeline must be
disregarded if the branch is taken. Thus, the LBNE takes four cycles if
not taken and six cycles if taken.

NOTE: When converting code from HC11, take special note of the critical timing
loops as it may be faster to invert the logic of the test to take advantage
of the pipeline and speed up the execution.

16- and 32-Bit
Arithmetic

The following four examples show two pieces of code for the HC11 and
then for the HC16 device. First, it will be striking how much shorter the
HC16 code is compared to the HC11 code. Clearly, speed of execution
is another important difference.

The first example comes from a linear interpolation table routine where
a limited number of data points were used to form a complex table.

NOTE: The HC16 code uses signed multiply and divide to allow the table to
have positive and negative slopes.
AN461

44 MOTOROLA

Application Note
Source Code Compatibility
Example 8 and Example 9 are cubing an 8-bit A/D result to give a non-
linear function for an A/D input. Since the result is calculated each time
and is always positive, unsigned arithmetic has been used in the HC16
example.

Example 6. HC11 Code to Calculate 16-Bit Times 8 Bits
 Divided by 16 Bits

CALC_TBL_ENTRY
STD NOMINATOR
STX DENOMINATOR
LDAB MULTIPLIER
MUL ; acc A x mult = R2
STD AMUL
LDAA NOMINATOR+1
LDAB MULTIPLIER
MUL ; acc B x mult = R1
STD BMUL
ADDA AMUL+1 ; added to first multiply gives low 16 bits
STD BMUL
LDAB AMUL
LDAA #0
BCC C_SKIP ; carry not affected by ldaa or ldab
INCB

C_SKIP STD AMUL
*

LDX DENOMINATOR
LDD AMUL+1 ; get top 16 bits of the 24-bit result
TSTA ; check if multiply result was only 16 bits
BEQ C_SMALL ; if yes then do a different divide
FDIV ; calculation of low 8-bit result
XGDX
TAB
CLRA
RTS ; result in Acc D

*
C-SMALL LDD BMUL

IDIV ; calculation of high 8 bits (8-bit result)
XGDX
RTS ; result in Acc D

Example 7. HC16 Code to Perform 16-Bit Times 8-Bit
Divided by 16 Bits

calc_tbl_entry
 emuls ; multiplier x nominator
 edivs ;------------------------ ---> Acc D

; denominator
 xgdx place result in accumulator D
 rts
AN461

MOTOROLA 45

Application Note
Example 8. HC11 (8-Bit x 8-Bit x 8-Bit) / 9-Bit
**
* CALCULATE THE NUMBER OF PULSES FOR A, D, S, R
* Acc A contains the A/D value for calculation
* Acc D contains result
*
* f(x) = (ad_measured + 15) cubed / 400
* or
* f(x) = ((AD_RESULT) x (AD_RESULT) x (AD_RESULT)) / 400
**
CALC_PULSES ; save A/D value temporarily

STAA TEMP_AD
TAB
MUL ; A/D squared
CLR CALC_SHIFT

READ_5 CMPA #0
BEQ READ_6 ; check if greater than 8-bit value
INC CALC_SHIFT ; if yes then continue
LSRD ; keep track of divisions
BRA READ_5 ; divide by 2

READ_6 LDAA TEMP_AD ; go back and check for 8-bit result
MUL ; restore original A/D result
LDX #400 ; and obtain cubed value
IDIV ; offset for normalized values
XGDX ; divide by offset for best values

READ_7 TST CALC_SHIFT ; place 16-bit result in acc D
BEQ READ_8 ; check if had previously div by 2
DEC CALC_SHIFT ; if not then finish
LSLD ; keep track of multiplies
BRA READ_7 ; go back and check if all mults done

READ_8 RTS ; result in Acc D

Example 9. HC16 (8-Bit x 8-Bit x 8-Bit) / 9-Bit

* calculate the number of pulses for a, d, s, r
*
* acc B contains the A/D value for calculation
* acc D contains result
*
* f(x) = (ad_measured + 15) cubed / 400
* or
* f(x) = ((ad_result) x (ad_result) x (ad_result)) / 400
**

**
calc_pulses

clra ; ad_result
tde ; placed in accE (making sure upper byte=0)
tba ;
mul ; multiply accA and accB
emul ; Multiply accD and accE (=24 bits E:D)
ldx #400 ;
ediv ; divide E:D by 400 scale factor
xgdx ; place result in accD
rts
AN461

46 MOTOROLA

Application Note
Source Code Compatibility
Comparison
of HC11 and HC16
Code and
Benchmarks

A rough estimate of the increased performance of the HC16 over the
HC11 is that at 16.78-MHz clock the HC16 is nine times faster at 8-bit
operations than a 2-MHz HC11. Taking a theoretical 8-MHz bus speed
HC11 and comparing it with the 16-MHz clock speed HC16 (8-MHz fast
termination bus speed), the performance differential is still
approximately a factor of 2. This is largely due to the improved opcode
efficiency and pipeline of the CPU16 architecture.

For 16-bit and 32-bit calculations, the HC16 is even faster than the
HC11.

Check List
of Changes
to HC11 Code

• Set the K registers up correctly.

• Ensure the CPU registers are stack in interrupt routines.

• Remember to add exception routines for the additional vectors.

• Initialize the SIM and peripherals MCR register at the start of the
program.

• Change the register equate addresses if using similar peripheral
functions.

• Check actual timing of software delay loops.

• Make use of the interrupt and arbitration priorities correctly.

• Remember that the HC16 averages nine times the speed of the
2-MHz bus HC11.

• Alter any code that manipulates the CCR. (The bits are moved
about.)

• Check for misaligned stack addressing using PSHA, PSHB, etc.

• Indirect 16-bit offset address operations are now signed values.
AN461

MOTOROLA 47

Application Note
Initialization of HC16 Device

PLL Control A significant change from the HC11 is the control of the clock frequency.
The HC16 SIM module has a phase-locked loop (PLL) and a “limp
mode” 8-bit oscillator built into the clock circuitry.

In normal operation, the SIM would have a 32-kHz crystal connected to
the EXTAL and XTAL pins. This frequency is then multiplied and phase
locked by the PLL to provide an internal clock frequency of up to 33 MHz
in theory.

In practice, the maximum speed is currently restricted to 16.78 MHz.

Figure 10. Schematic Diagram of the PLL

SYSTEM CLOCK CONTROL

FEEDBACK DIVIDER

CRYSTAL
OSCILLATOR PHASE COMPARATOR LOW-PASS FILTER VCO

SYSTEM
CLOCK

CLKOUT

VDDSYN

XFC

0.1 µF

VDDSYNXFC PIN 0.01 µF10 M
XTALEXTAL

330 k
20 pF 20 pF

0.1 µF

Notes:
1. Must be low-leakage capacitor.
2. EXTAL can be driven with an external oscillator.

(NOTE 1)
AN461

48 MOTOROLA

Application Note
Initialization of HC16 Device
After reset, the PLL is preset at 8-MHz clock frequency from a 32-kHz
crystal and so normally will be changed in the initialization section of the
HC16 code.

NOTE: There is a 20-ms lock time for the PLL and altering the W-bit will,
therefore, take this amount of time before the frequency has stabilized.
Changing the X bit has an instantaneous effect since it is outside the PLL
feedback loop. As a consequence, it is necessary to check if a change
to the X bit will take the oscillator over 16.78 MHz before the effect of a
change to the W bit takes effect.

An example is changing the oscillator from 8 MHz to 16.78 MHz where
the W bit = 1 and X bit = 0 (SYNCR(15:8) = $8F). Writing $9F to the
upper byte of SYNCR looks the same as writing $7F to SYNCR(15:8),
but the latter would cause the oscillator to attempt to run at 33 MHz for
a short time as the PLL changes frequency and would certainly cause
the system a fatal error. The correct procedure is to write $3F to
SYNCR(15:8) and then after the SLOCK bit is set to a 1 state (10 to
20 ms later) write $9F to SYNCR(15:8).

A pin called MODCLK controls whether the PLL is enabled. Holding the
MODCLK pin at a logic low during reset will disable to PLL and the
system designer can then use an external high-frequency clock driver
connected to the EXTAL pin.

NOTE: It is not possible to connect a 16-MHz crystal to the EXTAL and XTAL
pins directly.

SRAM Initialization
Procedure

The internal SRAM is disabled at reset. This is because the RAM is fully
relocatable and the default start address is at the same location as the
reset vectors. The SRAM base address registers should, therefore, be
written and then the module configuration register written to enable the
SRAM.

NOTE: The SRAM base address registers cannot be modified unless bit 15
(STOP control) is set to a 1 (SRAM disabled) and bit 11
(RLCK: RAM base address lock) is cleared. The RLCK bit is a 1-time
writable register after reset.
AN461

MOTOROLA 49

Application Note
When using the HC16Z1 evaluation board, it is often the case that a
memory display window will be pointing to the RAM after it has been
initialized. Typing the reset command will cause the HC16 device to be
reset and the SRAM to be disabled again. The window will now show
garbage data unless it is pointing to a chip-selected address. In addition,
any further EVB16 commands will try to update the memory display
window and could cause a string of DSACK errors as the EVB16
software reads non-existent memory.

Stack Initialization Since the SRAM can be placed anywhere in the 1-Mbyte address space,
it is obvious that the stack pointers will very likely be required to have the
same flexibility. The 20-bit stack pointer is set up by the reset vectors,
and so it seems a good idea to move the SRAM to this location as soon
as possible after reset.

Remember that the stack will decrement by two bytes and so the stack
pointer is always set to an even address. As an example, assume that
the SRAM is positioned at $14000 and since the MC68HC16Z1 has
two Kbytes of SRAM, the top address is byte addressable RAM is
$143FF. The stack would be initialized with the value SK = $1 and
SP = $43FE.

When debugging code with the HC16Z1 evaluation board, the user may
find debug of code simpler by adding initialization of the stack pointer to
the initialization code, even though it is loaded after issuing the RESET
command on the EVB. Such an example is shown in Example 10 .

K Register
Initialization

The 4-bit K registers are normally set up in the initialization routine of the
HC16 along with any index register initialization just as one would do in
HC11 code. Since the only way to access the K registers is via
accumulator B, it is a simple matter to set up accB and copy the value
into the appropriate K register.

The following code illustrates MC68HC16Z1 initialization of the SRAM,
stack pointer, CSBOOT, GPT module and the K registers. By
comparison, the HC11 routine is quite tiny.
AN461

50 MOTOROLA

Application Note
Initialization of HC16 Device
Example 10. MC68HC16Z1 Initialization Routine
reset ldab #1

tbzk
tbsk
lds $ramstart+$03fe
ldab #$0f
tbek
ldab #rambase ; init rambase (=1)
stab $fb05 ; rambah(low)
ldd #ramstart ; (=4000)
std $fb06 ; lower 16 bits = $4000
clr $fb00 ; rammcr = $8000
ldd #$78b0
std csorbt ; set up csboot with 1 wait state
ldab #$7f ; 16.777 mhz
stab $fa04 ; syncr
clr $fa21 ; sypcr
ldab #0 ; =0 for movedata subroutine
tbxk
ldab #1
tbyk
ldz #0000
ldd #$000f ; iarb=$f
std gptmcr
ldd #$9650 ; overflow=highest priority, irq level 6, vect=5x
std gpticr
andp #$ff1f ; set cpu interrupt priority to 0 (lowest)

Example 11. HC11 Initialization Code
RESET LDS #$FF

CLI ; CLEAR INTERRUPT INHIBIT

Table 10. Registers that Must/Should be Written after Reset

SIMMCR SIM module configuration register

QSMMCR QSM module configuration register

ADCMCR ADC module configuration register

GPTMCR GPT module configuration register

SRAMMCR SRAM module configuration register

SYNCR PLL control register

CSPAR0 Action of chip select pins

CSPAR1 Action of chip select pins

CSPDR Chip-select port pins status – port C

PORTF Port F output pin status

DDRF Mode of operation of port F

PFPAR Bus control pin status – port F
AN461

MOTOROLA 51

Application Note
Mode Selection
During Reset

The SIM can be configured in several different ways out of reset. This
allows for the basic functions of asynchronous data/address bus,
data/program space selection and chip selects. To bring the HC16 out
of reset in a particular mode of operation, simply pull the appropriate
data bus pin to logic 0 during reset. The best way to force the data pin is
to connect the data bus to the outputs of a 74HC244 device and enable
to outputs with the reset signal. Alternatively, a 2-kΩ resister can be
used to condition the data bus pins with a small effect on the switching
characteristics of the data bus. The table of possible mode options is
shown in Table 12 .

Reset Operation Reset of the HC16 is much like the HC11. An address is fetched from a
known area in the memory map and used to determine the start of the
user’s program.

The HC11 vector table contains the reset vector and interrupt vectors
starting at $FFFE,$FFFF (16-bit address) and moving down the memory
map two bytes at a time with increasing priority. See Example 12 for an
example of the HC11 vector table.

Table 11. List of 1-Time Write Bits/Registers

SIMMCR (MM bit) SIM module address

SRAMMCR (RAMBAR bit) SRAM base address

SYPCR (entire register) System protection control register
AN461

52 MOTOROLA

Application Note
Initialization of HC16 Device
The HC16 has a similar approach with the exception that the table starts
at $00000 and moves up the memory two bytes at a time. Prioritization
of the interrupts is described in Exception Handling (Interrupts) and
differs significantly from the HC11. The HC16 reset vector actually
consists of four 16-bit values. These are the K register values for the ZK,
SK, and PK registers, the 16-bit reset vector, the 16-bit stack pointer
address, and lastly the 16-bit IZ register value. In effect, this is the 20-bit
address of the reset vector and stack pointer plus a direct page address
of 20 bits.

The reset vector can, therefore, jump anywhere in the 1-Mbyte address
range of the program space, but all other vectors are just 16 bits and so
can only jump directly to the first 64-Kbyte address segment of program
space. From there, a JMP 20-bit address instruction will go anywhere in
program space memory.

Table 12. SIM Configuration Out of Reset

Mode Select
Pin

Default Function
Pin Left High

Alternate Function
Pin Pulled Low

DB0 CSBOOT 16-bit CSBOOT 8-bit

DB1
CS0 16-bit
CS1 16-bit
CS2 16-bit

BR
BG

BGACK

DB2
CS3 16-bit
CS4 16-bit
CS5 16-bit

FC0
FC1
FC2

DB3
DB4
DB5
DB6
DB7

CS6 16-bit
CS7–CS6 16-bit
CS8–CS6 16-bit
CS9–CS6 16-bit

CS10–CS6 16-bit

A19
A20–A19
A21–A19
A22–A19
A23–A19

DB8
Bus control

DSACK0, DSACK1,
AVEC, DS, AS, SIZE

PORTE

DB9 IRQ7–IRQ1 MODCK PORTF

DB11 Slave mode disabled Slave mode enabled

MODCK VCO = system clock EXTAL = system clock

BKPT Background mode disabled Background mode enabled
AN461

MOTOROLA 53

Application Note
The reason for including the IZ register is for compatibility with the HC11
direct page instructions. These offer code efficient 8-bit operations and
now have the added feature of being anywhere in memory, rather than
just between addresses $0000 and $00FF in the HC11.

Vectors, Stack
Operations

The first 512 bytes of address bank 0 (from $00000 to $001FF) are
reserved for the vector or exception table. The first eight bytes are
special, since these contain the reset vector data. This is followed by a
number of special vectors required to maintain system operation. These
are directly related to the SIM and CPU operation. After this is space for
200 user-defined vectors to be stored, each a 2-byte (16-bit) address
pointing to address bank 0 ($00200 to $0FFFF).

There are many differences from the HC11 vector table. The most
obvious is that the vector table starts at the beginning of the memory
map and increments up through the map compared with the HC11
vector table starting at $FFFE,F and decrementing the address two
bytes at a time for each vector. The HC11 has fixed vectors always
16 bits in length, but the HC16 has vectors set up for most peripheral
modules by the user and the reset vector has substantially more
information in eight bytes. There are also a number of new vectors not
familiar to the HC11 user. These are explained later.

Exception Routine
Address

There are many more interrupt sources possible in an HC16 system. To
allow maximum flexibility and maintain compatibility with the 68000
exception handling and external bus protocol, the internal peripherals do
not have fixed predetermined exception vectors like the HC11.

Each peripheral may have the exception vector number initialized after
reset, and it is up to the user to maintain these correctly. In addition, the
scheme allows any external device to be initialized with its own vector
number so there are no restrictions on the mix of peripheral devices.
AN461

54 MOTOROLA

Application Note
Initialization of HC16 Device
User-Defined
Vectors

The user vector number is initialized for each module or interrupt source.
Some modules or submodules may have just a single vector, such as
the PIT, while others, such as the GPT, have 12 vectors associated with
the module. The vector number is an 8-bit value that, when multiplied by
2, becomes the vector address of the first exception vector for that
module or peripheral.

An example of the HC16 vector table is shown in Example 13 . This
shows that for the GPT the vector number is set to $38 (decimal 56).

This can be compared with the definition of the HC11 and HC16 vector
tables that follow. Note the different start addresses and direction down
the vector table.

New Vectors
for HC11 Users

The divide-by-zero interrupt is caused by a failure of the extended divide
instructions from the CPU16. The bus error exception is explained in
External Hardware Interfacing , covering hardware design and
basically occurs as a result of a read of non-existent memory. The
breakpoint vector is associated with background mode. This leaves a
spurious interrupt where the SIM cannot determine the source of the
interrupt, the uninitialized interrupt, which is the default value for an
interrupt on 68000 peripheral devices and, finally, the autovectors. The
latter are most likely treated as XIRQ and IRQ pins by HC11 users.
These are directly linked to the IRQ1 to IRQ7 pins of the SIM and provide
the user with general-purpose interrupt vectors for non-68000 peripheral
devices.

Remember that the order of the vectors is not linked to the priority of the
interrupt and so, for example, the IRQ1 vector comes before the IRQ2
vector. There is, of course, a hierarchy of priorities for the exception
processing, and this can be found in the SIM reference manual.
AN461

MOTOROLA 55

Application Note
Reset Status
Register

After a reset, this register can be checked to determine the source of the
reset for the HC16 device. This register is at $FFA06.

Sources of reset are:

• External reset

• Power-up reset

• Software watchdog reset

• Halt monitor reset

• Loss of clock reset

• System reset; from CPU32 and not available from CPU16

Example 12. Definition of HC11 Vector Table
ORG $FFD6

VECTORS
FDB SCI_interrupt ; SCI
FDB SPI_interrupt ; SPI
FDB PAC_interrupt ; PULSE ACC INPUT
FDB PAC_overflow ; PULSE ACC OVERFLOW
FDB OVERFLOW ; TIMER OVERFLOW 1
FDB IC4_INT ; INPUT CAPTURE 4 / OUTPUT COMPARE 5
FDB OC4_INT ; OUTPUT COMPARE 4
FDB OC3_INT ; OUTPUT COMPARE 3
FDB OC2_INT ; OUTPUT COMPARE 2
FDB OC1_INT ; OUTPUT COMPARE 1
FDB IC3_INT ; INPUT CAPTURE 3
FDB IC2_INT ; INPUT CAPTURE 2
FDB IC1_INT ; INPUT CAPTURE 1
FDB RTI ; REAL TIME INTERRUPT
FDB IRQ ; IRQ
FDB XIRQ ; XIRQ
FDB swi_interrupt ; SWI
FDB illegal ; ILLEGAL OPCODE
FDB cop_interrupt ; COP
FDB RESET ; CLOCK MONITOR
FDB RESET ; RESET
AN461

56 MOTOROLA

Application Note
Initialization of HC16 Device
Table 13. Vector Table Definition for the HC16

Vector
Number

Vector
Address

SPACE
(prog/data) Exception

0 0000 P Reset — Initialize ZK, SK, PK

1 0002 P Reset — Initial PC (start of user prog)

2 0004 P Reset — Initialize SP

3 0006 P Reset — Initialize IZ (direct page)

4 0008 D Breakpoint (BKPT)

5 000A D Bus error (BERR)

6 000C D Software interrupt (SWI)

7 000E D Illegal instruction

8 0010 D Divide by zero

9-14 0012–001C D Unassigned

15 001E D Uninitialized interrupt

16 0020 D Unassigned

17 0022 D Level 1 interrupt vector (autovector)

18 0024 D Level 2 interrupt vector (autovector)

19 0026 D Level 3 interrupt vector (autovector)

20 0028 D Level 4 interrupt vector (autovector)

21 002A D Level 5 interrupt vector (autovector)

22 002C D Level 6 interrupt vector (autovector)

23 002E D Level 7 interrupt vector (autovector)

24 0030 D Spurious interrupt

25–55 0032–006E D Unassigned

56–255 0070–01FE D User-defined interrupt vectors
AN461

MOTOROLA 57

Application Note
Example 13. Actual HC16 Vector Table
org $0

k equ $0110 ; not used, zk=$1, sk=$1, pk=$0
sp equ {ramstart+$03fe} ; stack pointer starts at address $43fe
iz equ $0000 ; index pointer set for registers

org vectors
fdb k ; initial zk, sk, pk
fdb reset ; initial program counter value
fbd sp ; initial stack pointer value
fdb iz ; initial direct page select (iz)
fdb bkpt_int ; breakpoint address
fdb bus_err ; bus error address
fdb swi_int ; swi interrupt address
fdb illegal ; illegal instruction address
fdb div_by_0 ; divide by zero

dumy1 rmb 6 ;
dumy2 rmb 6 ;

fdb un-initialised ; uninitialised interrupt
fdb reset ; reserved
fdb int_1 ; level 1 interrupt autovector
fdb int_2 ; level 2 interrupt autovector
fdb int_3 ; level 3 interrupt autovector
fdb int_4 ; level 4 interrupt autovector
fdb int_5 ; level 5 interrupt autovector
fdb int_6 ; level 6 interrupt autovector
fdb int_7 ; level 7 interrupt autovector
fdb spurious ; spurious interrupt

end_main_vect equ *
org $70
fdb itic1 ; highest priority within GPT module

; - any of below can be selected
fdb itic1
fdb itic2
fdb itic3
fdb itoc1
fdb oc2_int
fdb itoc3
fdb itoc4
fdb iti4o5
fdb ioverflow
fdb ipulse_ovr
fdb ipactl ; lowest priority within GPT module
AN461

58 MOTOROLA

Application Note
Exception Handling (Interrupts)
Exception Handling (Interrupts)

Interrupt Request
Handling

Interrupts are called exceptions in the HC16 world. This conforms to the
nomenclature of the 68000 processor and more accurately explains the
nature of the sudden change in the activities of the CPU. Interrupts will,
therefore, be referred to as exceptions from now on.

Module Design
Influence
on the Conversion
from HC11
to HC16 Code

Many of the HC16 modules are clearly based on the functionality of an
HC11 module. A prime example of this is the general-purpose timer
(GPT) timer module. The main difference lies in the IMB interface and
this required some specific initialization of the interrupt vectors,
arbitration, etc. After this, there is often a modulus prescaler where the
HC11 had a choice of just divide-by-two options before and this is
necessary to accommodate the variable system clock frequency
possible with the PLL. In addition to this, the module may also operate
at higher maximum speeds, greater functionality, and generally be more
flexible in its operation. All the peripheral modules have 16-bit wide
registers and in general a much greater flexibility of operation than an
equivalent HC11 module.

As an example, we will look at the GPT for the HC16 as we set up the
module for interrupt handled events. This module is based upon the
timer used on the HC11E9 and the HC11F1, but has a number of
important differences.

Setting Up
an Internal
Exception

Both internal and external exceptions are basically handled the same
way.

An exception starts when an interrupt source pulls an IMB or external
IRQ line low (active state). The SIM responds with an interrupt cycle
(CPU space) and waits for acknowledgment from the interrupt source.
Any interrupt must generate an interrupt acknowledge (IACK) cycle. This
lets the SIM know that the interrupt source is still available and it will then
take control of the bus.
AN461

MOTOROLA 59

Application Note
The SIM is able to determine that an internal module is an interrupt
source due to the existence of a special line on the IMB called IIACK.
This lets the SIM know that the interrupt source is still available and it will
then take control of the address/data bus.

To set up an exception on an internal module, the interrupt level and
arbitration priority must be set, along with the desired reset vector. Each
module can and must be uniquely programmed with this data.
Remember that the exception vector must be doubled to provide the
vector address since this device has a 16-bit vector address.

HC11 Timer
Initialization

The task of initializing the HC11 timer is relatively simple. Set up the
action of the event such as input capture or output compare, set up the
output function pin state on the occurrence of the next event or the input
trigger set up for an input capture, clear the event flag and enable the
interrupt. Example 14 shows the code for setting up OC1 and OC2 to
cause a pulse to be generated from the OC2 pin.

Example 14. HC11 Code for Timer Initialization
* TIMER_INITIALIZATION
* set OC2 and OC1 for cylinder pulse on PA6
* Interrupt on OC1 (falling edge of pulse)
* timer set to 0.5 microsecond resolution
*
TIMER_SET

LDAA #%01000000
STAA OC1M+REGS ; PA6 (OC2) is also controlled by OC1
LDAA #%01000000
STAA OC1D+REGS ; OC1 set pin PA6 to 1 when compares
LDAA #%01000000
STAA TCTL1+REGS ; OC2 toggles pin PA6 on compare
RTS
AN461

60 MOTOROLA

Application Note
Exception Handling (Interrupts)
HC16 Code
for GPT Interrupt
Initialization

The HC16 has several different timers, but the GPT design is basically
taken from the MC68HC11E9 timer. As a consequence, there is very
little difference in the main part of the setup procedure. There are some
additional lines of code to set up the GPT module exception vector base
address, interrupt level, arbitration, and timer prescaler.

In the code in Example 15 , we can see the GPT being initialized for
interrupts from output compare 2.

NOTE: 1. The vector number (5) is part of the GPTICR register and sets up
the vector number to be from $50 onward. This means the vector
table starts at $A0.

2. The GPTICR also contains the interrupt level (level 6 is used in
this example) and the highest priority vector adjustment just as is
possible with the HC11.

3. The arbitration priority is set to the maximum of $F. This is not
required, but the timer is usually the highest priority event. But
remember that the IRQ level is much more important than the
arbitration level for prioritization of interrupts.

4. Some registers only have half of the 16 bits written in this example.
This is because the reset condition of the vectors is used.

5. The output OC2 must be specifically made an output of the OC2
function. The default would be an input general-purpose port line.

6. Just as with the HC11, the OC1 function can drive the OC2 pin.

7. The interrupt capability is enabled finally and the timer is fully
initialized. Remember to set the prescaler selection for the timer.
AN461

MOTOROLA 61

Application Note
AN461

Example 15. HC16 GPT Initialization for Interrupts on OC2
*
*GPT registers
*
gptmcr equ $f900
gptmtr equ $f902
gpticr equ $f904
gptport equ $f906
oc1 equ $f908
 :
toc1 equ $f914
toc2 equ $f916
 :
tct1 equ $f91e
tmsk equ $f920
*

org $A0
fdb ioverflow
fdb itic1
fdb itic2
fdb itic3
fdb itoc1
fdb oc2_int
fdb itoc3
fdb itoc4
fdb iti4o5
fdb ioverflow
fdb ipulse_ovr
fdb ipact1

**
* Timer_initialization
*
* set oc2 and oc1 for cylinder pulse on oc2data
* interrupt on oc1 (falling edge of pulse)
* timer set to 0.5 microsecond resolution
**

timer_set
ldab #$f
tbek

ldd #$000f ; iarb=$f
std gptmcr

ldd #$000f ; overflow=highest priority
std gptmcr ; irq level 6,vect=5x

ldaa #%00010000 ; oc2data (oc2) is also controlled by oc1
ldab #%00010000 ; oc1 set pin oc2data to 1 when compares
std oc1

ldaa #%00000001 ; oc2 toggles pin oc2data on compare
staa tct1

ldd #$1010 ; enable OC2 output
std gptport

ldaa #%00010000 ; oc2 output compare interrupt enable
ldab #$00000001 ; set timer prescaler to divide by 8
staa tmsk
rts
62 MOTOROLA

Application Note
Exception Handling (Interrupts)
Initializing the QSPI The QSPI was briefly described previously. The QSM reference manual
has a very good explanation of its use and good examples of
initialization code. The code in Example 16 initializes the QSPI. The four
configuration registers are set up at the start of the user program and
then normally only require changes in a few bits during the rest of the
user software.

The steps are relatively simple:

1. Assign the pin functions in the QPAR register.

2. Configure the clock, SPI as master/slave, data size.

3. Set beginning and end of the queue, enable/disable wrap mode
(continuous transmit) and enable interrupts.

4. Set up the command and transmit data in the appropriate queues.

5. Select any delay options as required and enable the QSPI.

The QSPI RAM model can be seen in Figure 9 .

Setting Up
an External
Exception

The HC11 user is most likely to use the IRQx pins of the SIM to emulate
the functions of the IRQ and XIRQ pins of the HC11. The HC16 requires
that an autovector (AVEC) cycle be returned to the SIM to complete the
interrupt acknowledge of an IRQ request. The simplest and cheapest
way to do this is to use the built-in chip select control logic to generate
an AVEC signal and so complete the interrupt acknowledge (IACK) cycle
of the SIM. The later section on external memory control explains the
chip select logic in more detail. There will be no need to use the chip
select as an output since it will be purely for the generation of an internal
signal for the SIM, but it does mean that particular chip select will be
reserved for this purpose and cannot also be used as a chip-select
function for external memory, etc.

Example 16. Initialization of the QSPI
QSPI_INIT

LDD #$1B7E
STD QPAR ; PCS1 active, enable SPI pins, make MISO input
LDD #$8008
STD SPCR0 ; SPI master, inactive=0, leading edge, 1.05MHz
LDD #$2069
STD SPCR1 ; PCS to SCK delay=1.9 µs, transfer delay=200 µs
LDD #$8F00
STD SPCR2 ; SPI finished interrupt enable, end queue=$F
LDD #$0200
STD SPCR3 ; HALTA and MODE FAULT interrupt enabled
AN461

MOTOROLA 63

Application Note
In this instance, the chip select is a comparator checking for the CPU
space identifier on the upper four bits of the address bus (A(23:20) which
will be $F. It also checks for the appropriate interrupt level that it is
responding to by placing this data on address A(3:1). All the other
address bits are set to logic 1. Hence, an autovector for level 2 will result
in $FFFF3 appearing on the address bus, and for autovector level 7
(IRQ7) the address bus will issue $FFFFF.

An example follows that illustrates the implementation of the chip-select
logic to generate an AVEC signal.

This example also illustrates the initialization of the software watchdog.
This operates in exactly the same way as the HC11. On starting the
watchdog, it cannot be disabled until a reset occurs. A register called the
reset status register ($FFA06) contains a number of flags that show the
last cause for reset in the HC16. One of these bits is a flag to indicate
the existence of a watchdog reset.

Table 14. Generating an Autovector and Initializing the Watchdog
LDAB #$C0 ; enable the watchdog (COP)
STAB SYPCR ; and set timeout period to 8 seconds

LDD #$FFF8 ; initialize Chip Sel Base Reg for Autovector
STD CSBAR3 ; on an IACK cycle: A24-A11=$FFF8, blK_sz = 2K
LDD #$7801 ; initialize Chip Sel Option Reg for Autovector:
STD CSOR3 ; asynchronous, any Interrupt Priority Level

LDAB #$FF ; set port F pins to be IRQ pins
STAB PFPAR ; this is redundant: it happens at reset

AUTOV: ; when IRQ6 is low, this autovector routine starts
JSR SEND_STRING
RTI ; return to the main loop
AN461

64 MOTOROLA

Application Note
Exception Handling (Interrupts)
Periodic Interrupt
vs. Real-Time
Interrupt

The HC11 real-time interrupt (RTI) allows the user to generate “ticks” or
regularly spaced events with four possible periods: 4.1 ms, 8.2 ms,
16.4 ms, and 32.8 ms with a 2-MHz HC11 device.

The HC16 has a much improved version of this called the periodic
interval timer (PIT). As we have seen with other modules, the variable
system clock frequency of the HC16 means that a modulus counter
prescaler has replaced the four options of the HC11 to give a total of 255
options for timer periods, plus an additional divide by 512. This results in
periods ranging from 122 microseconds up to 15.9 seconds.

The PIT clock source is the 32.78-kHz oscillator frequency (EXTAL) and
not the system clock.

The PIT can be set to have an interrupt level from 1 to 7, and it is
important to set up the vector number (multiplied by 2 to give the vector
address).

NOTE: No flag is set and hence there is no clearing mechanism other than the
execution of the PIT exception handler after the interrupt occurs.

The next example shows some example code of initialization of the PIT
and also includes the vector and exception handler.
AN461

MOTOROLA 65

Application Note
Different
Exception Levels

The CPU16 has seven discrete exception levels, compared with the
HC11’s two levels. Level 1 is the lowest exception mask level and
level 7 is the equivalent of the non-maskable interrupt (NMI) of the HC11
(masked by its X bit in the CCR). Looking once again at the condition
code registers in Figure 6 , it can be seen that there are bits I0, I1, and
I2 on the CPU16 which replace the X and I bits of the HC11.

On the HC11, only the maskable interrupt (masked by the I bit) is
available to the on-chip peripherals, whereas all seven levels are
possible for on-chip peripherals on the HC16.

External interrupt pins IRQ1, IRQ2 up to IRQ7 can each generate an
exception request if the feature is enabled.

Table 15. Periodic Interval Timer Setup and Exception Handler
; PIT demo code.
picr equ $fa22
pitr equ $fa24

; PIT INTERRUPT VECTOR
org $70
fdb pitint ; PIT interrupt vector

; PIT INITIALIZATION VECTOR
org ROMCODE
ldd #$0110 ; period = 1 second
std pitr
ldd #$0238 ; PIT vector $38, IRQ level 2
std picr
andp #$FF0F ; set cpu interrupt mask = 0
bra *

; PIT INTERRUPT ROUTINE
; assume EK=$F
pitint

pshm d,x
ldx #string

send_string
ldaa 0,x
beq done
ldab $fc0c ; scsr
andb #1 ; wait for TDRE=1
beq send_ch
staa $fc0f ; scdr
aix #1
bra send_string

done pulm d,x
rti

string fcb ’The Z1 writes this using the PIT’ ,$0a, $0d, $00
AN461

66 MOTOROLA

Application Note
Exception Handling (Interrupts)
In this case, IRQ7 is the direct equivalent to the XIRQ pin of the HC11,
and any of the others can be used as the HC11 IRQ pin.

One fundamental difference is the fact that all internal and external
exception requests are handled in exactly the same way by a single
section of the system integration module (SIM).

Level 0 exception is effectively disabling the interrupt source.

Arbitration The exception scheme is taken directly from the 68000 and later
microprocessors where there could be very many different interrupt
sources. Seven separate levels of exception mask is a great help, but in
a complex system there is a need for an even greater control of
exception priorities. For this reason, the concept of arbitration was
developed and is implemented on the HC16 in the SIM to be precise.
There are four arbitration bits available to the programmer that will allow
15 discrete levels of exception priority for each exception level. It is
important that every exception source is given a non-zero arbitration
priority so that only one exception source must have a unique arbitration
priority for a given exception level or even the arbitration logic will be
unable to differentiate between two sources of the same exception level.

Remember that even the external exception source must also have
unique arbitration priorities. IARB = 1 is the lowest practical value of
arbitration.

There is little chance of running out of exception levels and priorities as
there are a total of 115 active levels.

An arbitration level of 0 means that the internal arbitration is switched off
and so it will not be possible to have the CPU16 service an interrupt from
such a source. This is because IARB = 0 disables the internal interrupt
acknowledge (IIACK) signal and so the CPU cannot see the source of
the interrupt and defaults to the spurious interrupt vector.
AN461

MOTOROLA 67

Application Note
Same Exception
Level

Several exceptions set at a single exception level are commonplace in
HC11 applications and are equally possible on the HC16. Just as one
would expect, an exception request of a given level locks out all other
exceptions of that same level and lower. Similarly, as for the HC11, the
exception vector is decided after the stacking operation of the CCR and
PC registers is completed.

NOTE: Here the CPU16 will stack fewer registers and consequently fetches the
exception vectors very much faster than the HC11. The reduced
exception latency is generally a great advantage when converting code
from the HC11.

Multiple Exception
Events

When several exceptions occur simultaneously, the highest level of
exception and arbitration will normally win. Also, a subsequent higher
level of exception can interrupt a lower level exception routine.

For example, assuming a level 3 exception is in progress when a level 4
exception occurs. The level 4 exception is not masked out and will cause
the system to stack the PC and CCR and then start executing the
level 4 exception routine. The exception mask is now set to 4 and so a
subsequent level 4 exception of any arbitration level cannot exception
until the exception mask has dropped below level 4 once more. This will
happen as the RTI of the first level 4 routine restores the CCR. At this
point, the pending level 4 exception immediately takes control and the
level 3 exception must wait a while longer before resuming its task.
There is a short (2 µs to 4 µs) delay from the interrupt event occurring
and the CPU fetching the vectors. During this time, other interrupts may
occur of the same or higher interrupt level. It is during this period that the
arbitration takes place.

See examples in Figure 11 where three types of events can occur.
AN461

68 MOTOROLA

Application Note
Exception Handling (Interrupts)
Figure 11. Multiple Interrupts

MAIN ROUTINE MAIN ROUTINE

SAME INTERRUPT LEVEL 2 EXCEPTIONS OF THE SAME INTERRUPT LEVEL,
EVENT B AT LEAST 2 µs AFTER EVENT A

INTERRUPT A
(IVL = 4,

IARB = $7)

INTERRUPT B

(IVL = 4,

IARB = $9)

EXCEPTION A
HANDLER

EXCEPTION B
HANDLER

DELAY BEFORE EXCEPTION IS PROCESSED

ARBITRATION HAS NO EFFECT SINCE B OCCURS AFTER EVENT A VECTORS ARE FETCHED.

MAIN ROUTINE MAIN ROUTINE

ARBITRATION AT WORK 2 EXCEPTIONS OF THE SAME INTERRUPT LEVEL,
EVENT B 0.5 µs AFTER EVENT A

EXCEPTION B
HANDLER

EXCEPTION A
HANDLERINTERRUPT A

(IVL = 4,

IARB = $7)
DELAY BEFORE EXCEPTION IS PROCESSED

ARBITRATION TAKES EFFECT SINCE VECTORS HAVE NOT YET BEEN FETCHED.

INTERRUPT B

(IVL = 4,

IARB = $9)

HIGHER INTERRUPT LEVEL OCCURS DURING EXCEPTION PROCESS

MAIN ROUTINE MAIN ROUTINE

EXCEPTION A
HANDLER

EXCEPTION A
HANDLER

INTERRUPT A
(IVL = 4,

IARB = $7)

INTERRUPT B

(IVL = 5,

IARB = $1)

EXCEPTION A IS INTERRUPTED AND EXCEPTION B
HANDLER RUNS. WHEN B IS COMPLETE, A WILL
RESUME AND COMPLETE ITS TASK AND RETURN TO
THE MAIN ROUTINE.

EXCEPTION B
HANDLER
AN461

MOTOROLA 69

Application Note
Prioritization
Schemes

Prioritizing exceptions is normally self evident from the system
specification, but when converting from HC11 code it is worth careful
consideration where it is required on the HC16. The HC16 is much faster
than the HC11 and most HC11 interrupt routines will not account for the
possibility of being interrupted themselves, so leaving all routines at the
same level of interrupt will normally work perfectly.

The flexibility of the exception scheme may seem rather daunting, but
there are just a few key points to remember:

1. Simultaneous exceptions of the same interrupt level are arbitrated
on the basis of the IARB0–IARB3 bits in each of the module
control registers and so these must be unique.

2. An exception of the same level as the current exception mask
cannot be executed until the mask level reduces below that
pending exception level except for level 7 exceptions.

3. A higher level exception will interrupt a lower exception level
routine which must then wait until the exception mask has
returned to its level before continuing.

4. Level 7 exception is highest interrupt level and is a non-maskable
exception that can be interrupted by another level 7 exception.

5. An arbitration level of 0 will cause a spurious interrupt if any
interrupt occurs from that module.

Exception Routine
Entry Latency

An HC11 interrupt takes the same amount of time as the SWI instruction
to get into the interrupt routine (14 cycles) but the CPU16 exception must
also clear the pipeline in addition to the operations common with the SWI
command and so the SWI command takes 16 cycles while the exception
takes 20 cycles (4 to reload 2 stages of the 3 stage pipeline).

If exception latencies are the reason for moving to the HC16, then
remember that the first line of the exception routine is guaranteed to
execute and could be a PSHM instruction. Making the first instruction a
NOP will reduce the time from a maximum of 18 cycles down to just
2 cycles in addition to the 20 cycles entry latency and 38 cycles for the
worst case instruction (EDIVS).

Included later are two exception routines that perform the same task,
one for the MC68HC11E9 and the other for the MC68HC16A1. The
similarity of the two routines is the most striking feature and emphasizes
the ease of code conversion. The differences are easily seen and will
invariably follow the same approach for any code conversion of an
exception routine from HC11 to HC16.
AN461

70 MOTOROLA

Application Note
Exception Handling (Interrupts)
The first difference is to remember to save the registers that are to be
used in the exception routine, but not necessarily those that are used for
global variables. As we can see, the accumulator D, IX, and K registers
are all changed within the routine, but the IZ register is used as a global
register and contains the base address of SRAM and so is not saved on
the stack. At the end of the routine, the registers are pulled back off the
stack with the same syntax as pushed onto the stack. The assembler
orders the registers to ensure that the unstacking order is reversed.

The XK register is different in the exception routine and so must be
initialized. This requires the use of accumulator B to make use of the
TBXK instruction.

In terms of execution speed, the HC16 manages to perform the entire
exception routine in 5.76 µs where the HC11 takes 35.5 µs. Also, the
worst case latency reduces to 2.3 µs from the HC11’s 20.5 µs.

Example 17. HC11 Timer Output Compare 2 Interrupt Routine
| <--A---><---B----><--C---> |
| +----------+ |
| | | |

 --- --------+ +--------| ----------------
 A + B + C = 331 cycles
 A = 331 cycles – 258 ---> minimum low state (73 cycles)
 B = PWM duty (256 – 2 cycles)
 PWM frequency is 6.7 kHz (timer clock is same as bus clock)

Subroutine below takes 32 cycles (including interrupt latency)
until the output compare 1 is re-armed, plus an IDIV or FDIV
instruction may start executing with max 41 cycles left before done.
Thus min period for this must be 331 cycles since the rising
edge of the pwm must occur after the OC1 is re-armed.

Routine takes 71 bus cycles to complete (35.5 µs at 2 MHz)
with a worst case entry latency of 41 bus cycles (20.5 µs at 2 MHz)

; 14 interrupt latency
OC2_INT LDX TEMP_X ; 4

LDD TOC1+REGS ; 5
ADDD #PERIOD ; 4 256 (max PWM) + 2 + (max time) before

; switch to other table is complete
STD TOC1+REGS ; 5 write OC1

* The OC1 reg has been updated so this is the point at which the routine
* must get to before OC1 has to go high. Worst case is when OC2 has
* maximum delay (max duty cycle).

ADDD 2,X ; 6 get new compare for OC2 (added to OC1)
ADDD #2 ; 4 prevent OC’s occurring simultaneously
STD TOC2+REGS ; 5 write OC2
LDAA #%01000000 ; 2
STAA TFLG1+REGS ; 4 clear OC2 flag

* Note that OC2 only occurs soon after OC1 when there is plenty of time
* for the interrupt routine to execute (over 300 cycles) and so the
* OC2 flag may be cleared after updating the OC2 register.

INX ; 3
INX ; 3 increment X index by 2
STX TEMP_X ; 4
INC TABLE_POINTER ; 6 increment A/D output counter
RTI ; 12
AN461

MOTOROLA 71

Application Note
Example 18. HC16 Timer Output Compare 2 Exception Handler
|<--a---><---b----><--c---> |
| +----------+ |
| | | |

 ---|-------+ +--------|----------------
 a + b + c = 310 timer counts
 a = 310 cycles – 258 ---> minimum low state (52 timer counts)
 b = pwm duty (256 – 2 timer counts)
 PWM frequency is 15 kHz (timer clock is system clock divided by 4)

The minimum pulse width is 2 timer clocks.
The PWM is 8 bits (256 timer clocks)
The subroutine below takes 52 cycles (including interrupt latency)
until the output compare 1 is re-armed, plus an edivs instruction may
start executing with max 38 cycles left before done. Thus the minimum
period for this must be 90 cycles (23 timer counts) since the rising
edge of the pwm must occur after the oc1 is re-armed.

Entry conditions :
ZK:IZ points to SRAM
location temp_x,Z is temporary save of IX register

Routine takes 96 clock cycles (5.76 µs at 16.66MHz
with a worst case entry latency of 38 clock cycles (2.28 µs at 16.66MHz

; 20 interrupt latency
oc2_int pshm d,x,k ; 10 save accD,IX and K on stack

ldab #1 ; 2 set up accB=1 ready for TBXK

tbxk
; 2 and point IX to data space
; segment 1

ldx temp_x,z ; 4
ldd toc1 ; 5
addd #period ; 4 256(max pwm) + 2 + (max time)

; before switch to other table is complete
std toc1 ; 5 write oc1

* the oc1 reg has been updated so this is the point at which the routine
* must get to before oc1 has to go high. worst case is when oc2 has
* maximum delay (max duty cycle).

addd 2,x ; 6 get new compare for oc2(added to oc1)
addd #2 ; 4 prevent oc’s occurring simultaneously
std toc2 ; 5 write oc2
bclrw tflg,oc2f ; 4 clear oc2 flag

* note that oc2 only occurs soon after oc1 when there is plenty of time
* for the exception routine to execute and so the
* oc2 flag may be cleared after updating the oc2 register

aix #2 ; 3 increment x index by 2
stx temp_x,z ; 4
inc table_pointer,z ; 6 increment D/A output counter
pulm d,x,k
rti ; 12
AN461

72 MOTOROLA

Application Note
External Hardware Interfacing
External Hardware Interfacing

Asynchronous vs.
Synchronous Bus

The HC11 address and data bus is called a synchronous bus since all
the timing is derived from the address strobe (AS) and E clock. The
68020 devices have an asynchronous bus where the MPU has a number
of additional pins that act as handshakes for the bus communication. In
effect, this allows a fast or slow external device to communicate with the
MPU, and the MPU must wait for a handshake from the peripheral
device before continuing with the portion of the bus cycle.

The HC16 uses the techniques from the 68020 devices but has the
addition of chip-select circuitry to allow the user to control the entire bus
cycle from the HC16. In the case of conversion from HC11 to HC16, it is
almost certain that the user will make extensive use of the chip-select
logic to reduce external hardware and access external peripheral
devices.

The SIM reference manual describes the bus in great detail, but for a
very basic look at the bus, we will look at using two external 6226
(128-Kbyte) SRAM devices will the HC16.

The chip-select logic lets the user program a specific set of conditions
for the chip selects to function. This includes qualification with
address/data strobes, address bus A(23:11), type of address space,
etc., and the chip select has a base address and block size over which
it will function.

To overcome the asynchronous bus, the chip-select logic generates the
DSACK signals that would normally come from an external peripheral
circuit. These can be programmed in terms of wait states. This refers to
the number of bus cycles that the HC16 must wait before it can complete
the bus cycle to read or write to the peripheral device. One wait state is
the equivalent of 60 ns at a 16.66-MHz clock.

If the DSACK signal is not received within the time set up by the bus
monitor (64 cycles default value), then the bus error (BERR) signal is
asserted. This indicates the possibility of non-existent memory at this
address. A second consecutive bus error indicates that the CPU is
completely lost and so the SIM will force a reset.

NOTE: The bus monitor is disabled after reset.
AN461

MOTOROLA 73

Application Note
The CSBOOT line is the only chip select to be active after reset. Its
default settings are address strobe, upper and lower data bus
read/writes, asynchronous mode, and 13 wait states. This allows for the
slowest external memory and so will normally be altered immediately
after reset to speed up the communication with the memory to the
desired rate (normally, the fastest the memory can operate at). A chip
select with zero wait states equates to a chip select access time of 85 ns
(with a 16.78-MHz clock).

If there is only a single external memory, then the chip-select pins may
not be required to be connected to the memory device. This would
assume that the user had no other external bus devices and so no
problems with bus contention. This would give an address access time
of 114 ns at zero wait states, but remember that the chip-select logic
must be configured for this memory or there will be no generation of
DSACK when accessing external memory and the memory will not be
addressable. The chip select logic is, therefore, essential to the
operation of external memory even if the memory has the chip-enable
pin permanently connected to ground.

Wait States A wait state is a function of the asynchronous bus of the SIM. Normally,
a 68000 system would have a mixture of different memory types with
varying address access times. To accommodate this, the address/data
bus sends out the address and then waits for handshaking signals
before reading the data bus. To make this system operate as simply as
possible, the chip-select logic in the SIM allows for a number of bus
cycles to remain unchanged while the external memory fetches the data
that it will output on the bus. By adding a clock cycle to the fastest normal
bus cycle as a built-in delay is known as a wait state. At 16.66 MHz, this
translates to 60 ns per wait state.
AN461

74 MOTOROLA

Application Note
External Hardware Interfacing
Fast Termination
(Synchronous
Timing)

Fast termination is a special case of address/data bus timing that is most
commonly used with the internal peripheral modules and takes just two
clock cycles to complete, compared with a zero wait state memory
access of three clock cycles. In effect, this is the equivalent to the HC11
type of address/data bus cycle as it is synchronous with the CPU internal
clock.

NOTE: All the cycle times for instructions are shown in terms of fast termination.
An external memory must have an access time of 35 ns to be able to
operate fast termination mode with a 16.78 MHz HC16. This compares
with the 4-MHz HC11F1 (non-multiplexed) memory address access time
of 100 ns.

Using Chip Selects The chip selects take care of all the address and bus control compare
logic required to drive external memory devices. A single-chip select can
be eight or 16 bits wide and general chip-select signals and a range of
addresses with a resolution of two Kbytes anywhere in the address
range of the HC16 device.

Further options are upper/lower data bus, read, and/or write, wait states,
type of address space, qualification on a read cycle with address strobe
or data strobe and asynchronous or synchronous control.

The additional control of interrupt priority level (IPL) and AVEC are just
for an alternative function of the chip-select logic to generate AVEC for
an external IRQ as described in the previous section on exception
processing.

8-Bit and 16-Bit
Read/Write
Access to 8-Bit
Wide Memory
Devices

In the following example, three chip selects are connected to two 32-k
by 8 bits wide RAM devices (MCM60L256AP10) with 100 ns access
time. CS2 is connected to the output enable pins of both devices, while
CS0 and SC1 are connected to the write enable pins of the even
addressed and odd addressed memory devices, respectively. This is the
arrangement to be found for controlling the two optional RAMs (U1 and
U3) on the HC16Z1 EVB.
AN461

MOTOROLA 75

Application Note
We will put the memory at address range $80000 up to $8FFFF (64-k
range). There are two 8-bit wide memories, and these attach in parallel
to the 16-bit wide data bus. Address A0 effectively determines which
device is written to, but A0 is not connected to the device because we
will set up the chip-select logic to perform this task for us. Figure 15
shows the actual device connections to the chip-select logic and HC16
bus. This all means that the base address for both memories is $80000.

NOTE: Although the memories are 32 Kbytes, the block size is 64 Kbytes with
the two memories attached to different halves of the data bus.

Since CS0 is connected to the RAM on the upper eight bits of the data
bus, it is the even addresses, and CS1 controls writes to the RAM on the
lower eight bits and becomes the odd addresses.

The memory devices in use are 100-ns access time, and since we are
using the chip selects to enable the device, we must take the access
times from the chip-select falling edge rather than the address bus valid
time which is earlier. See Appendix C for a simplified timing diagram.
This gives an access time required for zero wait states of 85 ns. This is
clearly less time that the 100-ns device can manage, and so we must
use one wait state timing which gives an extra 60-ns access time of
145 ns.

Example 19. Initialization Code for 8- and 16-Bit Addressing of External Memories
CSOR0 EQU $FF4C
CSBAR0 EQU $FF4E
CSOR1 EQU $FF50
CSBAR1 EQU $FF52
CSOR2 EQU $FF54
CSBAR2 EQU $FF56
CSPAR0 EQU $FA44

LDAB #$0F
TBEK ; select bank 15 for direct writes
LDD #$0803
STD CSBAR0 ; set U1 RAM base addr to $80000: bank 3, 64k
STD CSBAR1 ; set U3 RAM base addr to $8000: bank 3, 64k
LDD #$50B0
STD CSOR0 ; set Chip Select 0, upper byte, write only
LDD #$30B0
STD CSOR1 ; set Chip Select 1, lower byte, write only
LDD #$0803
STD CSBAR2 ; set Chip Select 2 to fire at base addr $80000
LDD #$78B0
STD CSOR2 ; set Chip Selects 2, both bytes, read and write
LDD #$3FFF
STD CSPAR0 ; set Chip Selects 0,1,2, to 16-bit ports
AN461

76 MOTOROLA

Application Note
External Hardware Interfacing
Hardware for 8-Bit
and 16-Bit
Addressing Using a
Single-Chip Select

It is normal practice to use the CSBOOT line to select two separate
memory devices (often EPROMs) since this is the only chip select active
following reset. In some cases, however, it may be desired to write both
8-bit and 16-bit values to a RAM which is selected using CSBOOT. An
example of this is the HC16Z1 evaluation board where the main
emulation memory is selected by CSBOOT. The HC16 can read an 8-bit
value correctly with a single chip select connected to both memories
because the CPU16 will only read the relevant data. Writing a byte is a
different matter and in the same setup as earlier, an 8-bit write would
cause a write to both memories with the same data in each byte. Thus,
a write of $55 would appear to be a write of $5555.

To cure this, the chip select must be gated with signals that indicate a
byte write and the address to be written. The chip select is set up for
16 bits, and rather than go directly to the output enable pins of both
memory devices, is gated by the SIZ0 and A0 lines. The SIZ0 line is a
logic 1 during a byte read or write operation and the address A0 line is
used to determine which of the two memory devices is to be written to.
SIZ1 indicates an even address read or write and so is not required in
the equation that follows because the function of the extra logic is to
prevent writes to the wrong memory device. This approach makes the
external logic much simpler.

Thus a simple logic equation results in two chip-select lines with slightly
delayed timing compared with the original chip select. The chip select
delay is a maximum of 30 ns with the circuit described in Figure 12 .
Thus, an 85-ns access time RAM would require an extra wait state to be
added to the chip-select access time (zero wait states in 85 ns at
16.6 MHz).

Taking the chip select to be CSBOOT, we have the following equations
for the high and low memory chip enable pins.

The logic equations are:

CSLOW = SIZ0 . A0 + CSBOOT

CSHIGH = SIZ0 ./A0 + CSBOOT

This can be done either by a PAL, such as a 16L8, or with two 74HC00
devices.
AN461

MOTOROLA 77

Application Note
Figure 12. 8- and 16-Bit Address Read and Write Access
with CSBOOT

VDDE vs. VDDI
vs. VDDA

A device with so many different modules on board can be a real problem
for the designers. Some modules generate a great deal of noise on the
VDD and VSS supplies because they are switching loads very quickly (for
example, address and data bus and I/O ports), while other modules
require as noise free a supply as possible (for instance, ADC and PLL).

To overcome some of these problems, the HC16 has four separate
power supplies.

VDDI and VSSI are the internal power supply pins. This powers up the
CPU, SIM internal logic and the internal logic of other modules. Power
consumption is relatively consistent, with few sudden changes in
impedance.

VDDE and VSSE are the power supply for the external pin logic. This
supply can have large swings in current consumption as I/O pins switch
on and off.

VDDA and VSSA are the supply for the analog-to-digital converter (ADC).
Since the ADC module has a 10-bit accuracy, it is important to have as
little noise on these power supply pins as possible. A 10-bit accuracy
means a resolution of just 3-mV peak to peak with a 3-volt reference
voltage differential.

NC

NC11

11

+5 V

12

13

12

13

1d

2d
2c

2d 6

8

CSlow

CShigh
3

9

10

8
1c

1a

1b

2a

 6

 3

5

4

2

CSBOOT

1

2

4

5

1

A0

SIZ0

10

 9

BYTE AND WORD ADDRESSING USING CSBOOT
AN461

78 MOTOROLA

Application Note
External Hardware Interfacing
VDDSYN is a special power supply just for the PLL circuit. Just as with the
ADC, the PLL internal voltages are very susceptible to noise and the
internal analog section of the circuit is affected by changes in voltage of
as little as 5 mV. The effect of noise on VDDSYN is to alter the VCO
frequency by a small amount.

VSTBY for the SRAM standby power should be treated as for the VDDI
supply. It may also be grounded to avoid the SRAM being disabled by a
lowering of the VDDI supply below the VSTBY voltage.

Figure 13. Shows the Suggested Decoupling as Close to the HC16 Pins as Possible
for These Pairs of Power Pins

Minimum
Required
Connections
for the SIM

The SIM is rather more complex than the address/data bus section of the
HC11 and may take a while to learn, but many of the features have
defaults that enable the user to place the device into an application with
the minimum of fuss and with few external connections.

Figure 15 shows the HC16 in the same application as the HC11 in
Figure 14 .

NOTE: Unused input pins should be tied to VSS or VDD via 10-kΩ resistors. Note
the changes to the address and data bus interface and the connections
to the SIM module in particular.

0.1 µF CAPACITOR0.01 µF CAPACITOR

VDDE

VSSE
HC16 DEVICE

VCC

VSSPLACE CAPACITORS AS NEAR
TO HC16 PINS AS POSSIBLE
AN461

MOTOROLA 79

Application Note
Points to note about the HC16 application include:

1. The HC16 data bus has internal pullup resistors internally in the
SIM.

2. There are several power supply pin pairs, all of which must be
connected to power and each pair should be suppressed with a
0.01 µF and 0.1 µF capacitor to reduce system noise. Take
particular care over noise suppression on VDDSYN.

3. Mode selection after reset is set by the 74HC244 device.

4. The memories need doubling up to make full use of the speed of
the HC16. A single 8-bit wide data bus can be used but reduces
the performance of the system significantly.

5. Four chip selects are used. The EPROM is byte and word read
access, and the RAM is byte and word read and write access.

6. The EPROM uses A15 to select the device on the lower 32-k part
of a 64-k block, the CSBOOT line selects the bank (in this case
bank0).

7. Many pins can be input or output depending upon the mode after
reset, so pullup resistors have been shown in these cases. Many
could be removed for specific modes of operation.
AN461

80 MOTOROLA

Application Note
External Hardware Interfacing
F
ig

ur
e

14
. H

C
11

 w
ith

 E
xt

er
na

l M
em

or
y

V D
D

XT

AL
EX

TA
L

M
C

68
H

C
11

E9

A0
 /

D
0

A1
 /

D
1

A2
 /

D
2

A3
 /

D
3

A4
 /

D
4

A5
 /

D
5

A6
 /

D
6

A7
 /

D
7

M
O

D
A

M
O

D
B

/V
ST

BY

PD
5

/S
S

PD
4

/ S
C

K
PD

3
/ M

O
SI

PD
2

/ M
IS

O
PD

1
/ T

D
0

PD
0

/ R
D

I

PA
0

/ I
C

3
PA

1
/ I

C
2

PA
2

/ I
C

1
PA

3
/ I

C
4

/ O
C

5
PA

4
/ O

C
4

PA
5

/ O
C

3
PA

6
/ O

C
2

PA
7

/ P
AI

 /
O

C
1

IR
Q

XI
R

Q

R
ES

ET

V S
S

AS E
R

/ W A8 A9 A1
0

A1
1

A1
2

A1
3

A1
4

A1
5

AN
0

AN
1

AN
2

AN
3

AN
4

AN
5

AN
6

AN
7

V R
H

V R
L

10
kΩ

47
kΩ

47
kΩ

10
kΩ

10
kΩ

47
kΩ

47
kΩ

10
kΩ

10
 n

F
R

ES
ET

V D
D

8
M

H
z

22
 p

F
22

 p
F

V S
S

O
EW

VCC

A1
4

A1
3

A1
2

A1
1

A1
0

A9 A7 A6 A5 A4 A3 A2 A1 A0

G

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

A1
5

E
R

/W

V D
D

LE
O

E

74HC373

V D
D

A0 A1 A2 A3 A4 A5 A6 A7

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

V D
D

VCC

PGM

VPP

O
E

C
E

27
C

12
8

16
 K

BY
TE

S

A1
5

A1
4

V S
S

A1
3

A1
2

A1
1

A1
0 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

V D
D

8
X

22
kΩ

1k
Ω

1
µF

M
C

M
60

L2
56

32
 K

BY
TE

S

M
C

68
H

C
11

E9
 IN

 E
XP

AN
D

ED
 M

O
D

E

A8

10
 M

Ω

V D
D

AN461

MOTOROLA 81

A
p

p
lic

a
tio

n N
o

te

82
M

O
T

O
R

O
LA

VDD
VDD VDD

V
C

C

V
P

P

VDD

V
C

C

VSS

VSS

MCM60L256

32 KBYTES

HIGH BYTE

D0

D1
D2

D3

D4

D5

D6

D7

A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1

CE

OE

D0

D1
D2

D3

D4

D5

D6

D7

A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1

HIGH BYTE

27C128

16 KBYTES

PGM

DATA BUS

ADDRESS BUS

E

W
G

A
N

461 Figure 15. HC16 with External Memory

GPT

QSM

CPU16SRAM

10 kΩ

10 kΩ

10 kΩ

RXD
TXD

PCS0/SS
PSC1
PSC2
PSC3

SCK
MISO
MOSI

OC1
OC2/OC1

OC4/OC1

IC4/OC5/OC1
IC3
IC2
IC1

OC3/OC1

1 µF

1 kΩ

0.1 µF1 µF 0.01 µF

1 µF 0.1 µF

VRL

VHR

VDD

VDDA

PWMA
PWMB

PCLK
PAI

QBA0
QBA1
QBA2
QBA3
QBA4
QBA5
QBA6
QBA7

QAA0
QAA1
QAA2
QAA3
QAA4
QAA5
QAA6
QAA7

VSTBY

IPIPE0/DS0

IPIPE1/DSI
VDD

VBattery

BKPT/DSCLK

1 kΩ

TEST

C
LO

C
K

SIM

EBI

C
H

IP
 S

E
LE

C
T

IMB

CSBOOT
BR/CS0
BG/CS1
BGACK/CS2

FC0/CS3
FC1/CS4
FC2/CS5
A19/CS6
A20/CS7
A21/CS8
A22/CS9
ECLK/A23/CS10

A(0:18)

DSACK0
DSACK1
AVEC
DS
AS
SIZ0
SIZ1

DD(0:15)

IRQ1
IRQ2
IRQ3
IRQ4
IRQ5
IRQ6
IRQ7

MODCK
BERR

R/W

RESET

HALT

CLKOUT

FREEZE/QUOT

TSTME/TSC

VDDSYN

XFC
EXTAL

XTAL

10 kΩ

0.01 µF0.1 µF
VDD

VDD

10 MΩ

330 kΩ

32 kHz

22 pF

22 pF

V
C

C

V
P

P

VDD

V
C

C

VDD

10 kΩ

74
H

C
24

4

VDD

D0
D1
D2
D3
D8
D9

10 nF
RESET

DATA BUS DATA BUS

10 kΩ

CE
OE

VSS

VSS

LOW BYTE

MCM60L256

32 KBYTES

D8

D9
D10

D11

D12

D13

D14

D15

A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1

D8

D9
D10

D11

D12

D13

D14

D15

A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1

LOW BYTE

27C128

16 KBYTES

PGM

E

W
G

CS1

CS0

CS2

10 kΩ

10 kΩ

ADC

VSS

VSSA

MC68HC16Z1SYSTEM

0.1 µF

VOLTAGE
REFERENCE

Application Note
Debugging Tools
Debugging Tools

Background Mode Those experienced in using PCBUG11 for the HC11 device will find
background mode on the HC16 very familiar. This mode is intended just
for debug purposes and would not normally be used in a finished
application, although the application could leave access to the mode for
later problem solving.

Background debug mode uses three dedicated pins that are the only
direct connection to the CPU16. The communication with the CPU16 is
similar to the SPI synchronous serial communication, with a clock pin
(DSCLK) and transmit and receive pins (DSO and DSI, respectively).

In general, the user will be unaware of the background mode operation,
but it is used in most of the emulation systems and is the basis of the
EVB for the MC68HC16. There is a small number of commands which
are built up by the software running on a PC to make up the normal
emulator commands. Thus, a dump of a block of 256 bytes of memory
will be translated into 256 reads of memory contents at specified
addresses which are sequential. The programmer can enter the
background debug mode with the CPU16 instruction BGND.

An ample explanation of the background mode can be found in the
M68HC16 Family CPU Reference Manual, Motorola document order
number CPU16RM/AD.

Evaluation Board The EVB16 software on the IBM PC provides a sophisticated debug tool
with very little external hardware. The EVB16Z1 emulator for the
HC16Z1 device has sockets for 128 Kbytes of RAM, the HC16Z1 device,
of course, and a background mode connector to the PC via the parallel
port of the PC. There is little requirement for much else as the
background debug mode and the PC software provide a high degree of
debug capability, including 256 instructions trace buffer and assembly
source level debug to name just two features. HP logic analyzer clips
can be used to perform real-time analysis of code running on the EVB
via the special groups of pins for these clips.

There is ample information available from Motorola concerning the EVB
and other related products.
AN461

MOTOROLA 83

Application Note
Appendix A

Figure 16. MC68HC11E9 Device

EXPANDED

ADDRESS/DATE BUS

HANDSHAKE I/O

PORT B

DATA DIRECTION C

PORT C

SINGLE
CHIP

R
/W

AS
ST

R
B

ST
R

A

AD
0

PC
0

PC
7

AD
7

A8
PB

0

PB
7

A1
5

POWER

V S
S

V D
D

MODE
SELECT

MODA
(LIR)

MODB
(VSTBY)

OSCILLATOR

E

EXTAL

XTAL

INTERRUPTS

RESET

XIRQ
IRQ

M6811 CPU

A/D

VRL

VRH

PO
R

T
E

PE0

PE7
SCI TxD

RxD

SPI

SS
SCK

MOSI
MISO

D
AT

A
D

IR
EC

TI
O

N
 D

PO
R

T
D

PD0

PD5

RAM — 512 BYTES

EEPROM —512 BYTES

ROM — 12 KBYTES

PO
R

T
A

PA7

PA0PERIODIC INTERRUPT
COP WATCHDOG

TIMER

PULSE ACCUM.

PAI
OC2
OC3
OC4

IC4/OC5

IC1
IC2
IC3

O
C

1

AN461

84 MOTOROLA

Application Note
Appendix B
Appendix B

Figure 17. MC68HC16Z1 Device

C
O

N
TR

O
L

PO
R

T G
P

OC1
OC2/OC1
OC3/OC1
OC4/OC1
IC4/OC5/OC1
IC3
IC2
IC1

PWMA
PWMB
PCLK
PAI

OC1

OC2/OC1

OC4/OC1

IC4/OC5/OC1
IC3

IC2

IC1

GPT

C
O

N
TR

O
L

PO
R

T G
P

QSM

CPU16

SRAMADC
C

O
N

TR
O

L

PO
R

T G
P

C
O

N
TR

O
L

CHIP
SELECT

SIM

EBI

CLOCK

TEST

RXD

VDD

VSS

TXD
PCS0/SS
PSC1
PCS2
PSC3
SCK
MISO
MOSI

TXD
PCS0
PSC1
PCS2
PCS3
SCK
MISO
MOSI
SS

VDD

VHR

VRL

VSTBY

IPIPE0/DS0

IPIPE1/DSI

BKPT/DSCLK

ADA0
ADA1
ADA2
ADA3
ADA4
ADA5
ADA6
ADA7

ADA0
ADA1
ADA2
ADA3
ADA4
ADA5
ADA6
ADA7

DSCLK
DSO
DSI
IPIPE1
IPIPE0
BKPT

C
O

N
TR

O
L

PO
R

T
E

C
O

N
TR

O
L

PO
R

T
F

IRQ(1:7)

MODCK

MODCK
IRQ1
IRQ2
IRQ3
IRQ4
IRQ5
IRQ6
IRQ7

C
O

N
TR

O
L

TSC
TSTME
QUOT

FREEZE

TSTME/TSC
FREEZE/QUOT

EXTAL
XFC

VDDSYN

XTAL
CLKOUT

RESET
HALT
BERR

R/W

D(0:15)

DSACK0
DSACK1
AVEC
PE3
DS
AS
SIZ0
SIZ1

DS
AS

SIZ0
SIZ1

DSACK0
DSACK1

AVEC

A(0:18)

CSBOOT

C
O

N
TR

O
L

PO
R

T
C

CS0-CS10

BR
BG
BGACK

FC0
FC1
FC2

BR/CS0
BG/CS1

BGACK/CS2
FC0/CS3
FC1/CS4
FC2/CS5
A19/CS6
A20/CS7
A21/CS8
A22/CS9

ECLK/A23/CS10

IMB

VSS

A(19:23)
AN461

MOTOROLA 85

Application Note
Appendix C

Figure 18. Simplified HC16 Timing Diagram

S0 S1 S2 S3 S4 S5 S0

6 1

ADDRESS ADDRESS VALID

AS

WRITEREAD

27

DATA READ

CS

DATA

DATA

26

25

WAIT STATES INSERTED BETWEEN S3 AND S4

TIMING PARAMETERS
1 – CLOCK PERIOD
2 – HALF CLOCK PERIOD
6 – CLOCK HIGH TO ADDRESS VALID
9 – CLOCK LOW TO AS, DS, CS ASSERTED
9A – AS TO DS OR CS ASSERTED (READ)
25 – DS, CS NEGATED TO DATA OUT INVALID (DATA HOLD)
26 – DATA OUT TO DS, CS ASSERTED (WRITE)
27 – DATA IN TO CLOCK LOW (DATA SETUP)
29 – DS, CS NEGATED TO DATA IN INVALID (DATA IN HOLD)

MIN 60 ns
MIN 28 ns
MAX 29 ns
MAX 25 ns
MAX 15 ns
MIN 15 ns
MIN 15 ns
MIN 5 ns
MIN 0 ns

AT 16.66 MHZ
CHIP SELECT = 1 + 1 – 9 – 27
 = 60 ns + 60 ns – 25 ns – 5 ns = 85 ns
 =
ADDRESS ACCESS = 1 + 1 + 2 – 6 – 27
 = 60 ns +60 ns +28 ns – 29 ns – 5 ns = 114 ns

9A
9

2

29

DATA WRITE

9

AN461

86 MOTOROLA

Application Note
Appendix C
AN461

MOTOROLA 87

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-303-675-2140

or 1-800-441-2447. Customer Focus Center, 1-800-521-6274
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo, 106-8573 Japan.

81-3-3440-8573
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate,

Tai Po, N.T., Hong Kong. 852-26668334
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/
AN461/D

© Motorola, Inc., 1992, 2000

Mfax is a trademark of Motorola, Inc.

	Introduction — Basic Design Philosophy of the M68HC16
	Table of Contents
	Figures, Tables, and Examples
	The Concept of the Intermodule Bus (IMB)
	Explanation of the Basic IMB Concept
	Basic Starting Position
	Modularity
	Choosing a Module List for IMB Designs

	On-Chip Peripherals
	CPU16
	System Integration Module (SIM)
	General-Purpose Timer Module (GPT)
	Standby RAM (SRAM)
	Serial Communications Interface (SCI)
	Serial Peripheral Interface (SPI)
	Analog-to-Digital Converter (ADC)
	Ports

	Basic CPU16 Core Architecture Differences
	A Look at the Non-DSP Parts of the Core for the CPU16
	CCR Register
	K Registers
	Program and Data Space

	Examination of the DSP Part of the CPU16 Core
	HC16 n-Tap FIR Filter
	Use of SM, EV, and MV Bits of the CCR

	Source Code Compatibility
	Basic Approach to Source Code Compatibility
	Changes in Detail
	Addressing Modes
	Timing Changes

	Assembly Code Differences Between HC11 and HC16
	Enhancements in CPU16 Source Code
	20-Bit Addressing
	Moving Data without Affecting the Accumulators
	MAC and RMAC
	Stack Operations
	Difference between RTI and RTS
	16-Bit Signed Branch
	Pipelining
	16- and 32-Bit Arithmetic

	Comparison of HC11 and HC16 Code and Benchmarks
	Check List of Changes to HC11 Code

	Initialization of HC16 Device
	PLL Control
	SRAM Initialization Procedure
	Stack Initialization
	K Register Initialization
	Mode Selection During Reset
	Reset Operation
	Vectors, Stack Operations
	Exception Routine Address
	User-Defined Vectors
	New Vectors for HC11 Users
	Reset Status Register

	Exception Handling (Interrupts)
	Interrupt Request Handling
	Module Design Influence on the Conversion from HC11 to HC16 Code
	Setting Up an Internal Exception
	HC11 Timer Initialization
	HC16 Code for GPT Interrupt Initialization
	Initializing the QSPI

	Setting Up an External Exception
	Periodic Interrupt vs. Real-Time Interrupt
	Different Exception Levels
	Arbitration
	Same Exception Level
	Multiple Exception Events
	Prioritization Schemes

	Exception Routine Entry Latency

	External Hardware Interfacing
	Asynchronous vs. Synchronous Bus
	Wait States
	Fast Termination (Synchronous Timing)

	Using Chip Selects
	8-Bit and 16-Bit Read/Write Access to 8-Bit Wide Memory Devices
	Hardware for 8-Bit and 16-Bit Addressing Using a Single-Chip Select

	VDDE vs. VDDI vs. VDDA
	Minimum Required Connections for the SIM

	Debugging Tools
	Background Mode
	Evaluation Board

	Appendix A
	Appendix B
	Appendix C

