
Order this document
as AN429/D

—

AN429

MC68332 QSPI interface for the MCM2814 EEPROM

By Mark Malolani
Motorola Semiconductors Ltd
East Kilbride
Glasgow

INTRODUCTION

This application note describes the software and hardware
necessary to use the MCM2814 serial EEPROM with the
MC68332 Queued Serial Peripheral Interface, or OSPI.

As wellas giving specific details on accessing the MCM281 4
EEPROM with the OSPI. this application note can also be
used to providegeneral information on configuringand using
the OSPI with SPI compatible devices.

The main areas covered are hardware configuration, the
general operation of the OSPI and a description of software
which allows programming and reading data from the
MGM2814. Information on interfacing the software with
high level ‘C’ language programs is also covered, with a short
demonstration program included.

HARDWARE CONFIGURATION

Figure 1 shows a simple system with four MCM2814
EEPROMs connected directly to the MG68332 OSPI. The
MCM2814 is a serially accessed 256 byte FEPROM, which
can be used in either IC or SPI protocol systems. In this
application SPI mode is selected by pulling the MCM281 4
MODE pin to the ..-5V supply level, Vdd. As the MCM2814
generates its programming voltage (Vpp) internally, only a
single 5V supply is necessary.

In the simplest configuration, selection of the individual
EEPROMs is accomplished by connecting the OSPI slave
select lines, PCSO-3, directly to the MCM2814 SPI slave
select lines, SPISS. With this configuration a maximum of
four EEPROMs or other SPI devices can be individually
selected.

If more than four devicesare to be connected to the SPI bus,
a decoder can be added to select a maximum of 15 devices.

P053
P052
PcS1
PcSo —

MC68332
OSPI

MISO
MOSI
50K

1

Vdd

2
5
7

SPISS

MODE

SPISO
SPISI
SPICK

MCM2814
#0

1 SPISS

Vdd MODE

2
5
7

SPISO
SPISI
SPICK

MCM281 4
#1

1 SPISS

Vdd MODE

2
5
7

SPISO
SPISI
SPICK

MCM2814
#2

—m

1 SPISS

Vdd MODE

2
5
7

SPISO
SPISI
S PIGK

MCM281 4
#3

Figure 1 — Basic Hardware

MOTOROLA U
AN429/DCMOTOROLA LTD. 1990

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
Rectangle

rxzb30
Rectangle

rxzb30
Rectangle

rxzb30
ForwardLine

rxzb30
Rectangle

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

SPI AND OSPI OVERVIEW

The SPI bus consists of two serial data lines, a clock line and
one or more slave select lines. The two data lines, MOSI and
MISO, are used by the master device on the bus to transmit
and receive data respectively. The clock and slave select
lines, designated SCK and P050-3 on the OSPI. are gener-
ated by the master, which in this case is the OSPI.

When the SPI master accesses a particular SPI device, the
slave select linefor thatparticular device is driven low before
the required number of bits are transferred during SCK
transitions.

The SPI protocol defines that data transmission and recep-
;,on always occur simultaneously, as whiledata is transmit-
ed from themaster on the MOSI line, data is being received
~iongthe MISO line. If themaster only has to read data from

levice, it may transmit uninitialised or ‘don’t care’ values
:i’ng MOSI, and conversely if the master only has to write
~ta to a device it may ignore the data received along MISO.

3 enhancements of the OSPI over the SPI consist mainly
thequeued architecture of the OSPI. Rather than having
program each individual transfer before it is transmitted,

as on the SPI, the OSPI can be configured to automatically
carry out a numberof transferswithout intervention from the
processor. Each transfer can be individually configured to
access a specific deviceby using thePCSO-3 lines. Individual
control of the numberof bits per transfer, bus timing delays
and the state of the PCS lines between transfers is also
possible.

The transfer data and control information is contained in
three queues:- the receive data queue RECRAM, the trans-
mit data queue TRANRAM and the command data queue
COMD.RAM. The transmit and receive queues are 16 bits
wide, although each SPI transfer can be from 8 to 16 bits
long, defined by BITS of register SPCRO and BITSE of the
command entries. The command data queue is byte wide,
with each byte configuring various aspects of one transfer,
such as the number of bits in the transfer, bus delays and
device selection. Figure 2 shows the bit usage of the
command bytes.

All three queues are 16 entries deep, resulting in 32 bytes
each for the transmit and receive data queues and 16 bytes
for the command queue bits.

Command Queue Entry

7 6 5 4 3 2

ICONTIBtTSE DT OSOKI P0531 P052 P0511 P050

STATE ACTION

o Slave Select Lines POS 3-0 return to default
states, as defined in QPDR, between transfers

1 POS 3-0 do not change between transfers

0 Transfer length defaults to 8 bits
1 Bits field of SPORO defines transfer length (8 - 16 bits)

o Default delay of 17 clocks after each transter
1 Delay specified by DTL field of SPORi

0
1

Default delay of 1/2 clock between device selection and transfer
Delay specified by DSCKL field of SPORi

Defines the state of the slave select lines PCS3-0 during transfer

FIgure 2— Command entry format

1 0

BIT

CONT

BITSE

DT

OSCK

P053-0

MOTOROLA AN429/D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

NVMRWC SOFTWARE - OVERVIEW

The MC68332 assembly language software, NVMRWC,
contains routines to both read and write EEPROM data via
the OSPI, and is configured to be called as a function from
a C language program.

The read routine is enteredat <ee_read>, and is used to read
up to 29 bytes of data starting from any MCM281 4 location.
Figures 3 and 4 show the main program flow for the read
action, and an example read operation.

QSTART~ee read>

)

Store registers on local stack area

Start transfers by enabling OSPI

The write routine starts at <ee_write>, and is able to write
up to 4 bytes of data starting at any location, as long as all of
the bytes are within a 4 byte boundary. This limitation is due
to the operation of the MCM2814, which is detailed in the
data sheet for thedevice. Program flow for the write action
and an example transfer are shown in figures 5 and 6.

15
Transmit Data Queue TRAN.RAM

87 0
READ ($A7) Address ($20)

xx xx
xx xx
xx xx

Entry 0
Entry 1
Entry 2
Entry 3

-L .1

15
Receive Data Queue REC.RAM

87 02~X XX

~I~QA~1a

~xI~$2~dat~ ~a~1a

L

Entry 0
Entry 1
Entry 2
Entry 3

,j-

Command Queue CMD.RAM

CONT/BITSE/DT/DSCK PCS3-0
7 6 5 4 3210

I.-

Example queue set-up for a read of 5 bytes of data
starting from MCM2814 address $20. with the
device select code, (PCS3-O), set to 0010. Note the
use of 16 bit transfers for each two bytes of data.
XX is un-initialised or unused data, underlined data
is received from MCM2814.

FIgure 3 — EEPROM read flowchart FIgure 4 — EEPROM read example

Wait until QSPI has finished any
pending transfers before initializing

<OSPINIT>

Get passed parameters from ‘C’ call[
I——

Initialize transmit data queue, command
queue and main QSPI control registers

using parameters from C’ call

K
U—”

Has OSPI finished transfers? 1 1 1 0 0010
1 1 1 0 0010
1 1 1 0 0010
0 1 1 0 0010

Copy data from receive queue
into ‘C’ parameter area using

MC68332 loop mode
~PASSL00Th

Entry 0
Entry 1
Entry 2
Entry 3

AN429/D MOTOROLA
3

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

START .~ee write>

)

Store registers on local stack area

Wait until OSPI has finished any
pending transfers before initializing

<OSPINIT>

Get passed parameters from ‘0’ call

:uitialize transmit data queue, command
queue and main OSPI control registers

using parameters from ‘C’ call

~1
15

Transmit Data Queue TXD.RAM
87 0

XX Vpp ON ($A6)
XX WRITE ($A2)
XX Address ($10)
XX Data ($AA)
XX Data ($55)
XX Vpp OFF ($A4)

F

15

———-I

Receive Data Queue REC.RAM
87 0

XX XX
XX XX
XX XX
Xx XX
XX XX
XX XX

Start transfers by enabling OSPI

Command Queue CMD.RAM

Has programming delay
elapsed? NO

YES

Initialise SPCR2 to send
Vpp OFF command

Figure 5— EEPROM wrIte flowchart

CONT/BITSE/DT/DSCK
7 65 4

PCS3-0
3210

0 0 1 0 0001
1 0 1 0 0001
1 0 1 0 0001
1 0 1 0 0001
0 0 1 0 0001
0 0 1 0 0001

L 4

Example queue set-up for a write of 3 bytes of
data starting from MCM2814 address $10, with
the device select code, (PCS3-0), set to 0010. XX
is un-initialised or unused data, underlined data is
received from McM2814.

Figure 6 — EEPROM wrIte example

Entry 0
Entry 1
Entry 2
Entry 3
Entry 4
Entry 5

Entry 0
Entry 1
Entry 2
Entry 3
Entry 4
Entry 5

Entry 0
Entry 1
Entry 2
Entry 3
Entry 4
Entry 5

AN429/D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

WORKSPACE ALLOCATION - LINK. UNLK AND MOVEM

The routines <ee_read> and <ee_write> return with all
processor registers restored to their origimal state. To ac-
complish this, the registers are written to the stack on entry,
and recovered before returning. The instruction, LINK
A6,#&-28, creates a 28 byte stack frame for this purpose by
moving the stack pointer. A7, past the reserved area, and
loading A6 to act as the frame pointer.

Storing the processor registers is accomplished in a single
instruction by the MOVEM (move multiple) command.
MOVEM.L DO/D1/D2/D3/AO/A1/A2,(A71 stores all of the

listed registers as long words starting at theaddress pointed
to by the stack pointer A7. As the LINK instruction sets A7
to point to the lowest address of the reserved 28 bytes, all
of the registers are stored in this area. Figure 7 shows the
stack organisation in detail.

The MOVEM instruction is used again at the end of the
program, with theorder of theoperands reversed, to recover
the register values, and the reserved stack area is deallo-
cated by the UNLK (unlink) instruction. This recovers the
original value of the specified local stack pointer, A6, and
resets the main stack pointer, A7, to its previousvalue.

(Stack pointer A7 —b-
after LINK)

(AG after LINK)
(Stack pointer A7

before LINK)

DO
Dl
D2
D3
AO
Al
A2

Temporary store of AG
‘C’ return address
Parameter ‘DEV’

Parameter ‘ADDR’
Parameter ‘BYTE COUNT’

Address of array ‘BYTE BUFFER

’

br

Un-used stack

28 bytes reserved by
LINK

(contents after MOVEM)

I Stack condition
on entry

Long word (4 byte) width

FIgure 7 — Stack allocatIon

AN429/D

Decreasing
address

MOTOROLA
5

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INITIALISING THE OSPI

Before the OSPI is used for an EEPROM read or write, it is
initialised to the desired startup state. The subroutine
<OSPIN IT> allows the OSPI to complete any pending trans-
fers before it is stopped and initialised. At this stage initiali-
sation consists mainly of configuring the OSPIhardware by
assigning the lines MISO,MOSI,SCK and PCSO-3 to the
OSPI. with MOSI and PCSO-3 set as outputs which default

high. The OSPI is also set to non wired-or outputs and SPI
master with a clock rate of 100KHz at this point.

Note that if it is known the OSPI will be idle and in a suitable
state when an EEPROM read orwrite is requested, or if it is
acceptable to halt the OSPI with transfers pending, the
initialisation subroutine could be simplified,

FUNCTION PARAMETER PASSING - MC68332 LOOP MODE

.A.’hen either reading orwriting EEPROM data, the software
~sto retrieve theparameters that the C program has placed

.~ the stack. NVMRWC is configured to work with a C
2ompiler that passes the variables in the stack locations

‘wn in figure 7. If the C compiler passes the variables in
fferent manner, the program must be altered accord-
v. The parameters are initially stored in the MC68332
mal registers as follows:-

I — Address in MC68332 memory of the C data
array, <BYTE_BUFFER>

0 — Number of bytes to transfer, <BYTE_COUNT>

— MCM2814 starting byte address, <ADDR>

Note that Al is the memory address of the main C array,
rather than the actual data. This allows NVMRWC to read or
modify the data in thearray when necessary by usingAl as
a pointer. An example of this is when the EEPROM data is
passed back to the array after a read in the routine <PAS-
SLOOP>. This program sectionuses a MOVE instruction to
copy a byteof data from the OSPI receive data queue to the
array, and a decrement if false, or DBF instruction to cause
the program to loop around until a count register reaches 0.
As the MOVE instruction occupies one word, the MC68332
automatically enters ‘Loop Mode’ when this program sec-
tion is encountered. When in this mode, no instruction
fetches are made to memory, thusgreatly speeding execu-
tion.

— Device selection code for PCSO-3 pins, <DEV>

TRANSMIT DATA QUEUE INITIALISATION

The transmit dataqueue has to be initialised with the correct
sequence of MCM2814 commands and data before an
EE PROM read orwritecan be carried out. Reading data from
the E EPROM uses thesimplest sequence, consisting of the
following>

MCM2814 READ command 1SA7)

Starting byte address to be read

The remainder of the transmit queue does not need to be
initialised, as after this sequence has been sent the
MCM28l 4 transmits data, and no longer monitors incoming
data. Because the MCM281 4 remains selected between all
of the individual byte transfers, the full 16 bit width of the
data queues can be used to increase the maximum possible
transfer size. The example in figure 4 shows that the read
code and the byte address are sent as one 16 bit transfer,

with the receive queue holding up to 29 bytes of received
EEPROM data.

When writing data to the EEPROM, the followingsequence

is transmitted:-

Vpp ON command ($A6)

WRITE DATA command (SA2)

Starting byte address to be programmed

up to 4 bytes of data

Vpp OFF command CSA4)

Because the EEPROM has to be deselected at various
points during the sequence, all transfers are 8 bit only. An
example transfer is shown in figure 6.

<“OROLA AN429/D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

COMMAND QUEUE INITIALISATION

The command queue is configured with the device selection
state during and between transfers, timing information and
bit size information.

For an EEPROM read or write sequence the device select
code remains constant throughout, as all of the transfers are
intended for a single device. This device select code, which
is determined from theparameter <DEV>, is written into the
PCSO-3 field of all of the COMD entries used.

An MCM2814 read sequence is treated as one command,
and the device must remain selected for its full duration,
even between the individual transfers. To accomplish this
theCONT bits are set for all of the COMD entries except the
one which controls the last transfer.

Because a MCM2814 write sequence consists of three
command blocks lVpp ON, WRITE and Vpp OFF) and the
device has to be deselected between the blocks, the CONT
bits have to be cleared for the lasttransfer of each block. This
can be seen in the example, figure 6, where the CONT bits

are clear in theCOMD entries corresponding to theVpp ON
command, the last data byte and the Vpp OFF command.

As all EEPROM writes are byte size, BITSE is clear for all of
thecommand queueentries.This forces the OSPI to use the
default transfer size, which is 8 bits. For the EEPROM read
operation all transfers are 16 bit, so BITSE is set for all of the
COMD entries.This causes theOSPI to use the transfer size
programmed into the BITS field of register SPCRO, which
has previously been set to 16. If necessary, the BITS field can
be used to selectalternative transfer sizes from 8 to 16 bits.

To conform with the MCM2814 timing spec. a delay is
generated after each transfer by setting bit DT in the com-
mand queue entries, causing the OSPI to use the 5p~S delay
specified in control register SPCR1.

No extra delay is needed between selection of the
MCM2814 and data transfer, so the DSCK bits, which
control this delay, are cleared in the command queue en-
tries.

MAIN QSPI CONTROL REGISTERS

Before the OSPI transfers can be started, the main configu-
ration register SPCR2 is configured. This register holds the
first and last OSPI entry numbers that are to be sentwhich
are dependent on the type of transfer and parameters, eg.
the number of bytes to read/write. The WRAP control bits,
which control the OSPI wrapping operation in which the

OSPI constantly loops around a group of queueentries, are
set to disable this function.

OSPI transfers are started by setting the OSPI enable bit,
SPE, of SPCR1. The program then loops, testing for comple-
tion of transfers by polling the SPI finished flag, SPIF. of the
status register SPSR.

DEMONSTRATION C PROGRAM - EECALL

A small demonstration C program, EECALL, shows the way
that a C program can utilise theassembly language program
NVMRWC as well as demonstrating its functions. Several
functions can be invoked by a single keypress. These func-
tions are:-

P — (Set Parameters) — This option allows the user to define
the parameters Start Address, No. of Bytes and Device
Code.

W — (Write Data) — Thisoption makes one call to the assem-
bly language routine <EE_WRITE> using the parameters
which have been set previously. The user is prompted to
enter the data to be programmed, byte by byte. Thisdata is
entered as single ASCII characters, with no carriage return
necessary.

R — (Read Data)— One call is made to the assembly language
routine <EE_READ> using the previously set parameters.
The returned data is printed in ASCII format, with each byte
separated by a slash (.1) character.

D — (EE PROM Dump) — The entire contentsofone EE PROM
(as selected by the previously setdevice code) are printed on
screen in an ASCII table format. This option calls
<EE_READ> 16 times, with each call reading 16 bytes of
EEPROM.

T — (Text Entry) —When this option is selected, the user can
enter a text message of undefined length to be programmed
into EEPROM. To terminate the message a hash l#) must be
entered. Programming is carried out character by character,
by using a call to <EE_WRITE> to program each byte

X — (Exit) — Exits the program EECALL by executing an RTS.

AN429~O MOTOROLA
.7

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

1*
* EECALL.C Basic front—end program to test and show use of
* assember calls EE_READ and EE_WRITE to read and write data
* on MQ42814 LEPROMconnected to OSPI.

*1

*include <terminal. h>

typedef unsignedchar byte;

byte i,tbc,dev,addr,tadd,byte count,byte_buffer(29];
mt iovar;

char c;

extern byte ee_write(byte d,byte a,byte bcount,byte *b_buffer);
extern byte ee_read(byte d,byte a,byte b_count,byte *b buffer);

void
pstring (s)

char *5;

while (*s)
putchar(*s++);

main()

byte error;

dev—14;
addrOxl 0;
byte_count’-4;
for (i—0;i<4;i++)

byte_buffer~i]=i+40;

/* Initialise pass parameters */

/* initialize I/O device

pstring(”Enter an
pstringQ’
pstring(”
pstring(”
pstring(”
pstring(”

\“X\” to terminate the program\n\r”);
\“WV’ to Write to EEPROM \n\r”);
\“RV’ to Read the EEPROM\n\r”);
\“P\” to set Parameters\n\r”);
\“D\” to Dump entire EEPROM\n\r”);
\“T\” to enter Text message\n\r”);

while ((c — toupper(getcharo)) — ‘X’)

if (c — ‘W’)

pstring (“Write Data\n\r”);
for (i—O;i<byte_count; i++)

pstring (“\n\rEnter char
c—getchar0;
Jutchar (c);
byte buffer [il—c;

— “I;

pstring(”\n\rWriting Data to E.EPR~.-

error — ee_write(dev,addr,byte_count,bytebuffer);
error — error+l;

AN429/D

open 0; *1

MOTOROLA
8

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

if (c — ‘T’)

printf (“Program text from address %d.\n\r”,addr);
pstring (“Enter Text - • to terxuinate\n\r”);
tadd — addr;
tbc = 1;
while (Cc getcharO) !— ‘I’)

yutchar (c);
byte_buffer[0]—c;
error — ee write (dev,tadd,tbc,byte_buffer);
++tadd;

if (c — R’)

patring (“Read Data\n\r”);
ee read(dev,addr,byte_count,byte buffer);
for (i—O;i<byte_count;i++)

putchar (byte_buffer[i]);
putchar(‘I’);

pstring (“\n\r”);

if (c — ‘0’)

patring (“Block EEPROMdurnp\n\r”);
tbc — 16;

tadd = 0;

do

printf(”\n %4d — “,tadd);
ee_read(dev,tadd,tbc,byte_buffer);
for (i—0;i<16; i++)

if (byte buffer)>] < 32
byte_buffer[i] —

putchar (byte_bufferfi]);

tadd — tadd + 16;
putchar(’ ‘I;
I while (tadd>0);

pstring(”\n\r”);

if Cc — ‘P’)

pstring (“Parameters”);
pstring(”\n\rEnter no. of bytes 0—29 :“);

do
scanf (“%d”, &iovar);

while (iovar > 29 1;
byte_count — (byte)iovar;
pstring(”Enter start address 0—255 :“);

do
scanf (“%d”, Liovar);
while Ciovar > 255);

addr = (byte)iovar;
printf (“Bytes — %d Address — %d.\n”,bytecount,addr);
pstring (“\n\r”);

pstrinq(”\n\rX:eXit W:Write R:Read P:Paranieters D:Dump T:Text\n\r”);
pstring (“7”);

pstring(”EXIT PROGRAl’1\n\r”);

AN429/D MOTOROLA
9

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

(This page intentionally left blank)

AN429/IMOTOROLA
10

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

* MCM2814 EEPROM Read and Write Subroutines for the MC68332 OSPI

* Configured as a ‘C’ language extermal call
*

* Copyright Motorola 1990

* Call format: F.E_READ (0EV, ADDR, BYTE_COUNT,*BYTE_BUFFER)

LIB 68332.REG Include MC68332 register equates

section .data

*********** **

* EEPROMread
****** ***

* * * * CREATELOCAL STACK FRAMEAND STORE REGI STERS

ee read LINK A6,#&—28 Allocate local stack area of 28 bytes
* and use A6 as local stack pointer

MOVEM.L DO/D1/D2/D3/AO/A1/A2, (A7)
* Store registers in local stack frame

* *** INITIALISE QSPI

BSR OSPINIT

* * * * FETCH PARAMETERS FROM

LEA (&52,A7),AO
MOVE.L -(AO),Al
MOVE.L -(AO),DO
MOVE.L -(AOLDl
MOVE.L -(AO),D2

Disable QSPI and initialise I/O

STACK USING AO AS POINTER
Point to element above first parameter
Put BYTE_BUFFERaddress in Al
Put BYTE COUNT in DO
Put ADOR in Dl
Put DEV in D2

*** LOAD TXD QUEUE WITH ~Z2184 COt’24ANDS
*

*

*

*

0: Read byte con~nand
1: MC~428l4 byte address
MOVE.B •$A7,TXD

MOVE.B Dl,’IXD+l

*** ENSUREBYTE_COUNTIS
ANDI.W •$OOFF,DO
CMP.B •$1E,DO
BCS B_COKi
MOVE.B •$1D,DO

B_COKi TST DO

BNE B_COK2
MOVE.B •S0l,DO

* BYTE_COUNTshould be

B_COK2 MOVE.W 00,01

store READ coriwnand
store byte address into TXD queue
(Dl can be used now)

IN RANGE 1 TO 29
Clear MSB (word will be used in DBcc)

Should be 0 < BYTE_COUNT< &30
BYTE_COUNT< ~3O?
No. so force to &29
BYTE_COUNT<> 0?

No, so force to 1
O.K. now

Working copy of BYTE_COUNT in Dl

*** SET UP CCJMD QUEUE

Use 0EV code to calculate
ORI.B #$EO,D2

MOVEA. L •COMD, AD

CCMDqueue entries
Calculate entry with CONT bit set

16 bit transfer
Use AD as COMO queue pointer

No. of 32 bit transfers —

Calculate value in D2 for
ADD.B
ASR.B
SUB.B

* Setup
COMDLOOP ~VE .B

DBF

* Setup
ANDI .B
MOVE. B

((BYTE_COUNT+2)/2) + 1

DBcc loop to set up COMOqueue
BYTE_COUNT+2
(BYTE_COUNT+2)/2
(BYTE_~OUNT+2)/2—1

all C~4D entries except last with CONT bit set
02, (AO)+
Dl, COMOLOOP

last COMO entry with CONT clear (deselect EEPROM at end)
•S6F,D2 Calculate entry with CONT bit clear
02, (AD) Install in COMO queue

\N429/D

#$02, Dl
#1,Dl
#$01,Dl

*

*

MOTOROLA
11

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

* * * * CALCULATE LAST QSPI

MOVE.B DO,Dl
ADD.B •$02,D1
ASR.B ~1,D1
MOVE.B D1,SPCR2
MOVE.B #S0O, SPCR2+1

* ~ READ DATA FROMMC~42814

MOVE.W •S8003, SPCRl

* ~ WAIT FOR END OF TRANSMISSION
WTLOOP TST.B SPSR

BPL WTLOOP

ENTRY NO. AND INCORPORATE IN SPCR2
Make working copy of BYTE_COUNT
BYTE_COUNT +2
(BYTE_COUNT+2) /2
Put into SPCR2 MSB
and 00 as start entry in LSB

Enable 0521, DTL delay of approx 5u5

Test SPIF bit
and wait till set

* * * * PASS DATA BACK TO C PRCX3RAM ARRAY

SUB.B #SO1,DO Use BYTE_COUNT-i as loop counter
MOVEA.L #REC+3,AO Use AO as REC queue pointer

* Use MC68332 LOOP MODE

PASSLOOP MOVE.B (AO)+,(Al)+
DBF DO,PASSLOOP

to fill array
Copy one data entry from REC queue
(loop until 00<0

* * ** RESTOREREGISTERS AND DE-ALLOCATE STACK

MOVEM.L (A7) ,DO/Dl/02/D3/AO/Al/A2
*

UNIX
RTS

*

ee write
*

A6
Retrieve registers from local stack frame
And de—allocate local stack

**************************** **** * ******************

* EEPROM write
****** **** *************** ************ **************

CREATE LOCAL STACK FRAME AND STORE REGISTERS
LINK A6,~&-28 Allocate local stack area of 16 bytes for

reg. store, using A6 as stack pointer
MOVEM.L DO/D1/D2/D3/AO/Al/A2, (A7)

Store registers in local stack frame

‘~‘~‘ INITIALISE QSPI

BSR QSPINIT

* * * FETCH PARAMETERS FROM

LEA (52,A7),AO
MOVE.L -(AO),Al
MOVE.L -(AO),DO
MOVE.L -(AO),Dl
MOVE.L -(AO),D2
Stack pointer unchanged

Disable and initialise OSPI

STACK USING AO AS POINTER
Point to element above first parameter
Put BYTE_BUFFER address in Al
Put BYTE_COUNT in DO
Put ADDR in Dl
Put 0EV in D2

LOAD T~ QUEUE WITH 14ZM2814 CO~t1ANDS
0: Vpp on coiwnand
1: Write data corrtnand
2: reserved for byte address

data
off conunand

•$A6, TXD+l
•$A2, TXD+3
Dl, TXD+5

3:
4: Vpp
MOVE. B
MOVE B
MOVE. B

Vpp ON conunand
WRITE coirvriand
Use ADDR as byte address
(Dl can be used now)

* ~ Adjust

SUB.B
ANDI.W
MOVE .W

Byte_Count
•soi,oo
•S03,DO
00,01

for use in DBcc loop
Need BYTE_COUNT loop counter in range 0-3
for use in DBcc loop, not 1-4
Working copy in Dl

*

*

*

*

*

*

*

*

AN429/IJMOTOROLA
12

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

* * * PROGRAM COW) AND TXD

Program start of TXD
MOVEA.L •COW),AO
MOVEA.L #TXD+7,A2

ORI.B •S20,02
MOVE.B D2, (AO)+
ORI.B •$AO,D2
MOVE.B 02, (AO)+
MOVE.B D2,(AO)+

QUEUES
and COW) queues

Use AO as CCt’!D queue pointer
Use A2 as TXD queue pointer
Calculate COW) entry with CONT bit clear
Use as entry for Vpp ON (CONT clear)
Calculate COW) entry with CONT set
Use as entry for WRITE DATA and
ADDR, (CONT set)

* PROGRAM

DATALOOP MOVE.B
ADDA.L
MOVE. B
DBF

TXD AND CMD QUEUES
(Al)+, (A2)+
• $01, A2
02, (AO)+
Dl, DATALOOP

Put a byte of write data in TXD queue
TXD buffer is i’K)RD wide, so increment
Put an entry into COW) queue (CONT set)
Loop until finished

Finish
MOVE. B
ANDI.B
MOVE. B
MOVE . B

off COW) and
•$A4, (A2)
#$2F,D2
02, (—l,AO)
D2, (AO)

* * * * CALCULATEWHATQUEUE

ADD.B •$03,DO
MOVE.B DO, SPCR2
MOVE.B •SOO,SPCR2+1

* *** START TRANSMISSION AND

MOVE.W •$8003,SPCR1
MOVE.L #$00008000,Dl

LOOP DBF Dl, LOOP

TXD queue setup
Vpp OFF conunand in TXD queue
Calculate COW) entry with CONT clear
Change last data COW) entry to CONT clear
Last COW) entry (Vpp OFF), CONT clear

ENTRIES TO SEND FOR PROGRAMMING
Last data entry is no. 2+BYTE_BUFFER
Put into SPCR2 MSB
and 00 as start entry in LSB

PROGRAMMINGDELAY
** Start progranuning **

Progranuning delay (approx 2Oms)

* * * * CALCULATE WHAT QUEUE ENTRIES TO SEND FOR Vpp OFF

ADD.B •$0l,DO Vpp OFF conunand is inunediately after
*

MOVE.B DO,SPCR2
MOVE.B DO,SPCR2+l

progranuning sequence
Put into SPI~R2 MSB and LSB
so that only this cormnand is sent

* ~ RESTOREREGISTERS AND DE-ALLOCATE STACK

MOVEM.L (A7) ,DO/D1/D2/D3/AO/Al/A2
*

UNIX
RTS

Retrieve registers from local stack frame
And de—allocate local stackAE

*

*

*

MOTOROLA
13

AN429/D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

** **** * *** *** ****** ** ******************************

* QSPINIT
* Orderly stop and initialise QSPI hardware
***** * * ** * ***** ****** ******************************

QSPINIT ORI.B •$80,SPCRO
ANDI.B •$BF,SPCR2
ANDI.B #$7F,SPSR

active
SPCRl
MISS

Ensure QSPI is mester
Clear WREN (stop wrapping)
Clear SPIF to enable sensing of when
transmission has finished

Test SPE bit to see if QSPI enabled
Goto MISS if disabled

* Wait till QSPI reached

ANDI.B *$06,SPCR3
NOSPIF TST.B SPSR

BPL NOSPIF

Disable QSPI
ANDI.B •S7F,SPCR1

end of current queue
Ensure system not HALTed
Wait until SPlFinished

Clear SPE bit

Initialise QSPI for accessing M~42814
MOVE.W •S8054,SPCRO Set MASTER, no WIRED OR, 16 bits, 100KHZ
MOVE.W •$7B7E,QPAR Configure MOSI,MISO+PCSO-3 as QSPI lines
MOVE.W •$OOFA,QPDR MOSI+PCSO to default high
ANDI.B •S7F,SPSR Clear SPIF to enable sensing of when

next transmission has finished
RTS

Allow other programs (eg C program) to access routine labels
ee_write and ee_read

export ee_write
export ee read

AN429/l

*

* Is QSPI
TST.B
BPL

*

*

MISS

*

*

MOTOROLA
14

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

(This page IntentIonally left blank)

AN429/D MOTOROLA
15

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Uterature DistrIbution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE.Motorola Ltd.; European Uterature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 58P, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dal King Street, Tal Pa Industrial Estate,

Tai Po N T Hong Kong

U MOTOROLA
Jut PRtNTED IN THE USA 1993 lAPS AN42~IO

I IllJill 111111III 11111II III liii Ill liii III liii

All products are sold on Motorola’s Terms & Conditions of Supply. Inordering a product covered by this document the Customer agrees to be bound by those
Terms & Conditions and nothing contained in this document constitutes or farms pan ofa contract Iwith the exception of the contents of this Notice). A copy
of Motorola’s Terms & Conditionsof Supply isavailable on request.

Motorola reserves the right to make changes without furthernotice toany products herein. Motorola makes no warranty, representation orguarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or arcuit,
and specificaily disclaims any and ail liability, includingwithout limitation consequential or incidental damages. “Uyplcal” parameterscan and dovary indifferent
applications. All operating parameters, induding “Typicals must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under itS patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to suppert or sustain life, or tar any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintendedorunauthorized application.Buyer shall indemnity and hold Motorola and itsofficers, employees, subsidiaries, atfiliates and distributors harmless
against all daims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
assoaated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorolaand (~ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

The Customer should ensure that it has the most up to date version of the document by contacting its local Motorola office. This document supersedes any
earlier documentation relating to the products referred to herein. The information contained in this document is current at the date of publication. It may
subsequently be updated, revised or withdrawn.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

rxzb30
Rectangle

rxzb30
hibbertleft

rxzb30
disclaimer

rxzb30
freescalecolorjpeg

