Freescale Semiconductor

Order this document
as AN429/D

ANA429

MC68332 QSPI interface for the MCM2814 EEPROM

By Mark Maiolani

Motorola Semiconductors Ltd
East Kilbride

Glasgow

INTRODUCTION

This application note describes the software and hardware
necessary to use the MCM2814 serial EEPROM with the
MC68332 Queued Serial Peripheral Interface, or QSPI.

Aswell as giving specific details on accessing the MCM2814
EEPROM with the QSP, this application note can also be
used to provide general information on configuring and using
the QSPI with SPI compatible devices.

The main areas covered are hardware configuration, the
general operation of the QSP! and a description of software
which allows programming and reading data from the
MCM2814. Iinformation on interfacing the software with
highlevel ‘C’ language programs is also covered, with a short
demonstration program included.

HARDWARE CONFIGURATION

Figure 1 shows a simple system with four MCM2814
EEPROMSs connected directly to the MC68332 QSP!. The
MCM2814 is a senally accessed 256 byte EEPROM, which
can be used in either IIC or SPi protocol systems. In this
application SPt mode is selected by pulling the MCM2814
MODE pin to the +5V supply level, Vdd. As the MCM2814
generates its programming voltage (Vpp) internally, only a
single 5V supply is necessary.

in the simplest configuration, selection of the individual
EEPROMs is accomplished by connecting the QSP! slave
select lines, PCS0-3, directly to the MCM2814 SP! slave
select lines, SPISS. With this configuration a maximum of
four EEPROMs or other SPI devices can be individually
selected. .

if more than four devices are to be connected to the SPI bus,
a decoder can be added to select a maximum of 15 devices.

PCS3 —
PCS2 —
PCS1 —1
PCS0
1 1 1 1
SPISS SPISS SPISS SPISS
MCe8332 | Vvdd —3{mopE | vdd —3{mope | vdd —3{mopE | vdd —3{mopE
QSPI g SPISO g SPISO g SPISO g SPISO
> SPIS] > SPiS| 2 SPIS| > SPisi
| SPICK SPICK | SPICK SPICK
MCM2814 MCM2814 MCM2814 MCM2814
#0 # #2 #3
MISO —}—3—}- — |-
Mosi -} - - -
ScK —}
Figure 1 — Basic Hardware ™
freescale

© Freescale Semiconductor, Inc., 2004. All rights reserved.

semiconductor

rxzb30
Rectangle

rxzb30
Rectangle

rxzb30
Rectangle

rxzb30
ForwardLine

rxzb30
Rectangle

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

Freescale Semiconductor, Inc.

SP1 AND QSPI OVERVIEW

The SP! bus consists of two serial data lines, a clock line and
one or more slave select lines. The two data lines, MOS! and
MISO, are used by the master device on the bus to transmit
and receive data respectively. The clock and slave select
lines, designated SCK and PCS0-3 on the QSPI, are gener-
ated by the master, which in this case is the QSPI.

When the SPI master accesses a particular SPI device, the
slave select line for that particular device is driveniow before
the required number of bits are transferred during SCK
transitions.

The SPI protocol defines that data transmission and recep-
:ion always occur simultaneously, as while data is transmit-
‘ed from the master on the MOSI! line, data is being received
;iong the MISQO line. if the master only has to read data from
. device, it may transmit uninitialised or ‘don’t care’ values
»'ong MOS), and conversely if the master only has to write
.\ata 1o a device it may ignore the data received along MISO.

.2 gnhancements of the QSP! over the SPI consist mainly
1 the queued architecture of the QSPI. Rather than having
.. program each individual transfer before it is transmitted,

as on the SPI, the QSP! can be configured to automatically
carry out a number of transfers without intervention fromthe
processor. Each transfer can be individually configured to
access a specific device by using the PCS0-3 lines. Individual
control of the number of bits per transfer, bus timing delays
and the state of the PCS lines between transfers is also
possible.

The transfer data and controf information is contained in
three queues:- the receive data queue REC.RAM, the trans-
mit data queue TRAN.RAM and the command data queue
COMD.RAM. The transmit and receive queues are 16 bits
wide, although each SPI transfer can be from 8 to 16 bits
long, defined by BITS of register SPCRO and BITSE of the
command entries. The command data queue is byte wide,
with each byte configuring various aspects of one transfer,
such as the number of bits in the transfer, bus delays and
device selection. Figure 2 shows the bit usage of the
command bytes.

All three queues are 16 entries deep, resulting in 32 bytes
each for the transmit and receive data queues and 16 bytes
for the command gqueue bits.

Command Queue Entry

7 6 5 4 3 2 1 0
CONT | BITSE DT DSCK| PCS3| PCS2 | PCS1!| PCSO
BIT STATE ACTION
CONT 0 Slave Select Lines PCS 3-0 return to default
states, as defined in QPDR, between transfers
1 PCS 3-0 do not change between transfers
BITSE 0 Transter length defaults to 8 bits

1
DT 0
1
DSCK 0
1

PCS3-0 -

Bits field of SPCRO defines transfer length (8 - 16 bits)

Detauit delay of 17 clocks after each transter
Delay specified by DTL field of SPCR1

Default delay of 1/2 clock between device selection and transfer
Delay specified by DSCKL field of SPCR1

Defines the state of the slave select lines PCS3-0 during transfer

Figure 2 - Command entry format

MOTOROLA For More Information On This Product, AN429/D
2 Go to: www.freescale.com

Freescale Semiconductor, Inc.

NVMRWC SOFTWARE - OVERVIEW

The MC68332 assembly language software, NVMRWC,
contains routines to both read and write EEPROM data via
the QSPI, and is configured to be called as a function from
a C language program.

Thereadroutineis entered at <ee_read>, and is used to read
up to 29 bytes of data starting from any MCM2814 location.
Figures 3 and 4 show the main program flow for the read
action, and an example read operation.

C START <ee_read>)
l

Store registers on local stack area

l

Wait until QSPI has finished any
pending transfers before initializing
<QSPINIT>

l

Get passed parameters from ‘C’ call

Initialize transmit data queue, command
queue and main QSP! control registers
using parameters from ‘C’ call

Stant transfers by enabling QSP!

-

Has QSP! finished transters?

<WTLOOP> NO

Copy data from receive queue
into 'C’ parameter area using
MC68332 loop mode
<PASSLOOP>

Figure 3 - EEPROM read flowchart

The write routine starts at <ee_write>, and is able to write
up to 4 bytes of data starting at any location, as long as all of
the bytes are within a 4 byte boundary. This limitation is due
to the operation of the MCM2814, which is detailed in the
data sheet for the device. Program flow for the write action
and an example transfer are shown in figures 5 and 6.

Transmit Data Queue TRAN.RAM

15 8 7 0]
READ {$A7) Address ($20) Entry 0
XX XX Entry 1
XX XX Entry 2
XX XX Entry 3
|
r-—=—-—=—----=- Ay d
[} I
|
Receive Data Queue REC.RAM
15 87 0
XX j XX Entry 0
Address ($20) Byle $20 data Entry 1
Byte $21 data Byte $22 data Entry 2
Byte $23 data_ Byte $24 data Entry 3
e e e e e - - - 5 i
| | |
Command Queue CMD.RAM
CONT/BITSE/DT/DSCK PCS3-0
7 6 5 4 3210
1 1 1 0 0010 Entry 0
1 1 1 0 0010 Entry 1
1 1 1 0 0010 Entry 2
0 1 1 0 0010 Entry 3
e e m m e e m e e e e - - -l

Example queue set-up for a read of 5 bytes of data
starting from MCM2814 address $20, with the
device select code, (PCS3-0), set 1o 0010. Note the
use of 16 bit transters for each two bytes of data.
XX is un-initialised or unused data, underlined data
is received from MCM2814.

Figure 4 —- EEPROM read example

AN429/D For More Information On This Product, MOTOROLA
Go to: www.freescale.com 3

Freescale Semiconductor, Inc.

C START <ee_write>) Transmit Data Queue TXD.RAM
15 8 7 0
: XX] vep ON ($A6)| Entry 0
Store registers on local stack area XX WRITE ($A2)| Entry 1
l XX | Address ($10){ Entry 2
| XX | Data ($AA)| Entry 3
! Wait until QSPI has finished any XX Data ($55)| Entry 4
pending transfers before initializing XX i Vpp OFF ($A4)| Entry 5
<QSPINIT>)
________ I |
r
[, ' |
~ Get passed parameters from ‘C’ call Recelve Data Queue REC.RAM
' T 15 8 7 0
XX XX Entry 0
nitialize transmit data queue, command XX XX | Entry 1
; queue and main QSPI control registers XX | XX | Entry 2
using parameters from ‘C’ call XX XX Entry 3
XX i XX Entry 4
XX | XX Entry 5
; Start transters by enabling QSPI :" """""" J,_ """"" f
Command Queue CMD.RAM
CONT/BITSE/DT/DSCK PCS3-0
7 6 5 4 3210
Has programming delay 0 01 0 0001 Entry 0
1 0 1 0 0001 Entry 2
1 0 1 0 0001 Entry 3
0 0 1 0 0001 Entry 4
0 0 1 0 0001 Entry 5
Initialise SPCR2 to send it i -
Vpp OFF command ' '
Example queus set-up for a write of 3 bytes of
data starting from MCM2814 address $10, with
the device select code, (PCS3-0), set to 0010. XX
is un-initialised or unused data, underlined data is
received from MCM2814.
Figure 5 - EEPROM wrlite flowchart Figure 6 — EEPROM write example

Wi A For More Information On This Product, AN429/D
g Go to: www.freescale.com

Freescale Semiconductor, Inc.

WORKSPACE ALLOCATION - LINK, UNLK AND MOVEM

The routines <ee_read> and <ee_write> return with all
processor registers restored to their origimal state. To ac-
complish this, the registers are written to the stack on entry,
and recovered before returning. The instruction, LINK
A6, #8-28, creates a 28 byte stack frame for this purpose by
moving the stack pointer, A7, past the reserved area, and
loading A6 to act as the frame pointer.

Storing the processor registers is accomplished in a single
instruction by the MOVEM (move muitiple} command.
MOVEM.L DO/D1/D2/D3/A0/A1/A2,(A7) stores all of the

listed registers as long words starting at the address pointed
to by the stack pointer A7. As the LINK instruction sets A7
to point to the lowest address of the reserved 28 bytes, all
of the registers are stored in this area. Figure 7 shows the
stack organisation in detail.

The MOVEM instruction is used again at the end of the
program, with the order of the operands reversed, torecover
the register values, and the reserved stack area is dealio-
cated by the UNLK (unlink) instruction. This recovers the
original value of the specified local stack pointer, A6, and
resets the main stack pointer, A7, to its previous value.

Un-used stack

(Stack pointer A7 —p» DO

after LINK) D1

28 bytes reserved by

[LINK

(contents after MOVEM)

Decreasing

(A6 after LINK) —pm] Temporary store of A6

address

(Stack pointer A7 —3»| ‘C’ return address

before LINK) i Parameter ‘DEV’

Parameter ‘ADDR’

Stack condition

Parameter ‘BYTE_COUNT’

on entry

Address of array ‘BYT. _| FER |)

= = e e e - e e = - e e o = -

Long word (4 byte) width

Figure 7 - Stack allocation

AN429/D For More Information On This Product,

Go to: www.freescale.com

MOTOROLA

5

Freescale Semiconductor, Inc.

INITIALISING THE QSP!

Before the QSPI is used for an EEPROM read or write, itis
initialised to the desired startup state. The subroutine
<QSPINIT> allows the QSPI to complete any pending trans-
fers before it is stopped and initialised. At this stage initiali-
sation consists mainly of configuring the QSP! hardware by
assigning the lines MISO,MOS|,SCK and PCS0-3 to the
QSPI, with MOSI| and PCS0-3 set as outputs which default

high. The QSPI is also set to non wired-or outputs and SP!
master with a clock rate of 100KHz at this point.

Note that if itis known the QSP! will be idie and in a suitable
state when an EEPROM read or write is requested, or if itis
acceptable to halt the QSPI with transfers pending, the
initialisation subroutine could be simplified.

FUNCTION PARAMETER PASSING - MC68332 LOOP MODE

Ahen either reading or writing EEPROM data, the software
“.as toretrieve the parameters that the C program has placed
.n the stack. NVMRWC is configured to work with a C
compiler that passes the variables in the stack locations
-~wn in figure 7. if the C compiler passes the variables in
fferent manner, the program must be altered accord-
.. /y. The parameters are initially stored in the MC68332
rnal registers as follows:-

| — Address in MC68332 memory of the C data
array, <BYTE_BUFFER>

:0 — Number of bytes to transfer, <BYTE_COUNT>
‘I = MCM2814 starting byte address, <ADDR>

)2 — Device selection code for PCS0-3 pins, <DEV>

Note that A1 is the memory address of the main C array,
rather than the actual data. This allows NVMRWC to read or
modify the data in the array when necessary by using A1 as
a pointer. An example of this is when the EEPROM data is
passed back to the array after a read in the routine <PAS-
SLOOP>. This program section uses a MOVE instruction to
copy a byte of data from the QSPI receive data queue to the
array, and a decrement if false, or DBF instruction to cause
the program to loop around until a count register reaches 0.
As the MOVE instruction occupies one word, the MC68332
automatically enters ‘Loop Mode’ when this program sec-
tion is encountered. When in this mode, no instruction
fetches are made to memory, thus greatly speeding execu-
tion.

TRANSMIT DATA QUEUE INITIALISATION

The transmit data queue has to be initialised with the correct
sequence of MCM2814 commands and data before an
EEPROMread or write can be carried out. Reading data from
the EEPROM uses the simplest sequence, consisting of the
following:-

MCM2814 READ command ($A7)
Starting byte address to be read

The remainder of the transmit gueue does not need to be
initialised, as after this sequence has been sent the
MCM2814 transmits data, and no longer monitors incoming
data. Because the MCM2814 remains selected between alit
of-the individual byte transfers, the full 16 bit width of the
data queues can be used to increase the maximum possible
transfer size. The example in figure 4 shows that the read
code and the byte address are sent as one 16 bit transfer,

with the receive queue holding up to 29 bytes of received
EEPROM data.

When writing data to the EEPROM, the following sequence
is transmutted:-

Vpp ON command ($A6)

WRITE DATA command ($A2)

Starting byte address to be programmed

up to 4 bytes of data

Vpp OFF command ($A4)
Because the EEPROM has to be deselected at various

points during the sequence, all transfers are 8 bit only. An
example transfer is shown in figure 6.

~"OROLA For More Information On This Product, AN429/D
Go to: www.freescale.com

AN429/D

Freescale Semiconductor, Inc.

COMMAND QUEUE INITIALISATION

The command queue is configured with the device selection
state during and between transfers, timing information and
bit size information.

For an EEPROM read or write sequence the device select
code remains constant throughout, as all of the transfers are
intended for a single device. This device select code, which
is determined from the parameter <DEV>, iswritten into the
PCSO0-3 field of all of the COMD entries used.

An MCM2814 read sequence is treated as one command,
and the device must remain selected for its full duration,
even between the individual transfers. To accomplish this
the CONT bits are set for all of the COMD entries except the
one which controls the last transfer.

Because a MCM2814 write sequence consists of three
command blocks (Vpp ON, WRITE and Vpp OFF) and the
device has to be deselected between the biocks, the CONT
bits have to be cleared for the last transfer of each block. This
can be seen in the example, figure 6, where the CONT bits

are clear in the COMD entries corresponding to the Vpp ON
command, the last data byte and the Vpp OFF command.

As all EEPROM writes are byte size, BITSE is clear for all of
the command queue entries. This forces the QSPI to use the
default transfer size, which is 8 bits.For the EEPROM read
operation all transfers are 16 bit, so BITSE is set for all of the
COMD entries. This causes the QSP! to use the transfer size
programmed into the BITS fieid of register SPCRO, which
has previously been setto 16. If necessary, the BITS fieldcan
be used to select alternative transfer sizes from 8 to 16 bits.

To conform with the MCM2814 timing spec. a delay is
generated after each transfer by setting bit DT in the com-
mand queue entries, causing the QSP! to use the 5uS delay
specified in control register SPCR1.

No extra delay is needed between selection of the
MCM2814 and data transfer, so the DSCK bits, which
control this delay, are cleared in the command queue en-
tries.

MAIN QSP1 CONTROL REGISTERS

Before the QSP! transfers can be started, the main configu-
ration register SPCR2 is configured. This register holds the
first and last QSPI entry numbers that are to be sent which
are dependent on the type of transfer and parameters, eg.
the number of bytes to read/write. The WRAP control bits,
which control the QSPI wrapping operation in which the

QSPI constantly loops around a group of queue entries, are
set to disable this function.

QSPI transfers are started by setting the QSP! enable bit,
SPE, of SPCR1. The program then loops, testing for comple-
tion of transfers by polling the SPI finished flag, SPIF, of the
status register SPSR.

DEMONSTRATION C PROGRAM - EECALL

A small demonstration C program, EECALL, shows the way
that a C program can utilise the assembly language program
NVMRWC as well as demonstrating its functions. Several
functions can be invoked by a single keypress. These func-
tions are:-

P - (Set Parameters) — This option allows the user to define
the parameters Start Address, No. of Bytes and Device
Code.

W —~ (Write Data) - This option makes one call to the assem-
bly language routine <EE_WRITE>, using the parameters
which have been set previously. The user is prompted to
enter the data to be programmed, byte by byte. This data is
entered as single ASCII characters, with no carriage return
necessary.

R - (Read Data) - One call is made to the assembly language
routine <EE_READ> using the previously set parameters.
The returned data is printed in ASCIl format, with each byte
separated by a slash (/) character.

D - (EEPROM Dump) - The entire contents of one EEPROM
{as selected by the previously set device code) are printed on
screen in an ASCI! table format. This option calls
<EE_READ> 16 times, with each call reading 16 bytes of
EEPROM.

T - (Text Entry) —~ When this option is selected, the user can
enter a text message of undefined length to be programmed
into EEPROM. To terminate the message a hash (#) must be
entered. Programming is carried out character by character,
by using a call to <EE_WRITE> to program each byte

X ~- (Exit) - Exits the program EECALL by executing an RTS.

*

or More Information On This Product,
Go to: www.freescale.com

MOTOROLA
S

Freescale Semiconductor, Inc.

/*
* EECALL.C Basic front-end program to test and show use of
* assember calls EE READ and EE WRITE to read and write data
* on MCM2814 EEPROM connected to QSPI.
*/
#include <terminal.h>
typedef unsigned char byte;
byte i,tbc,dev,addr,tadd,byte_count,byte buffer(29];
int iovar; ’
char c¢;
extern byte ee write(byte d,byte a,byte b _count,byte *b buffer);
extern byte ee_ read(byte d,byte a,byte b_count,byte *b buffer);
void
pstring(s)
char *s;
{
while (*s)
_putchar(*s++) ;
}
main ()

byte error;

dev=14; /* Initialise pass parameters */
addr=0x10;

byte count=4;

for (i=0;i<4;i++)

byte buffer(i)=i+40;

open(); /* initialize I/O device */
pstring (“Enter an \”X\” to terminate the program\n\r”):;

pstring(™ ,, ,, \"W\” to Write to EEPROM \n\r”);
pstring(™ ,, ,, \“R\” to Read the EEPROM\n\r“};

pstring{(™ ,, ,, \”P\” to set Parameters\n\r”);
pstring(* ,, ., \”D\” to Dump entire EEPROM\n\r”);
pstring(™ ,., ., \”T\” to enter Text message\n\r”);

while ((c = toupper(_getchar())) != ‘X’)
{
if (¢ == ‘W)
{
pstring(“Write Data\n\r”);
for (i=0;i<byte count;i++)
{
pstring (“\n\rEnter char - “);
c= getchar();
_putchar(c);
byte buffer[i]=c;
}
pstring (™M\n\rWriting Data to EEPROM...\n\r”);
error = ee_write(dev, addr, byte_count, byte buffer);
error = error+l;

}

"

MOTOROLA For More Information On This Product, AN429/D
8 Go to: www.freescale.com

£ (e — 1) Freescale Semiconductor, Inc.

{
printf (“Program text from address $%d.\n\r”,addr):;
pstring (“Enter Text - # to terminate\n\r”);

tadd = addr;

thc = 1;

while ((c =_getchar()) != ‘§/)
{
_putchar(c);

byte buffer{0]=c;
error = ee_write (dev, tadd, tbc,byte buffer);
++tadd; -
}
}

if (c == ‘R’)
« {

pstring (“Read Data\n\r”);

ee_read(dev,addr,byte_count,byte_buffer):

for (i-O;i<byte_count:i++)
{
putchar (byte buffer(i});
putchar(‘/’);
}

pstring (“\n\r”);

}

if (c == '‘D’)
{
pstring (“Block EEPROM dump\n\r”):;

tbc = 16;
tadd = O;
do

{
printf (*\n %44 - “,tadd);
ee_read(dev,tadd,tbc,byte_buffer);
for (i=0;i<16;i++)
{
if (byte buffer[i] < 32)
byte buffer[i] = *.’;
putchar (byte buffer(i]);
}
tadd = tadd + 16;
putchar(*);
} while (tadd>0);
pstring (“\n\r”);
}

if (c == ‘P’")
{
pstring(“Parameters”) ;
pstring ("\n\rEnter no. of bytes 0-29 :”);
do
scanf (“%d”, &¢iovar);
while (iovar > 29);
byte count = (byte)iovar;
pstring (*Enter start address 0-255 :”);
do
scanf (“%d”, &¢iovar);
while (iovar > 255);
addr = (byte)iovar;
printf ("Bytes = %d Address = %d.\n”,byte count,addr);
pstring (“\n\r”);
}
pstring (“\n\rX:eXit W:Write R:Read P:Parameters D:Dump T:Text\n\r”);
pstring (“?7);
}

pstring ("EXIT PROGRAM\n\r”) ;
}

. MOTOROLA
AN429/D For More Information On This Product, 9

Go to: www.freescale.com

Freescale Semiconductor, Inc.

(This page intentionally left blank)

MOTOROLA For More Information On This Product, AN429/1
10 Go to: www.freescale.com

* MCM2814 EEPROM Read andrirR@SCale.Semiconducinesine.;

* Configured as a ‘C’ language external call
*
* Copyright Motorola 1990
* Call format: EE_READ (DEV,ADDR, BYTE COUNT, *BYTE_BUFFER)
LIB 68332.REG Include MC68332 register equates

section .data

AR AN A AR R R AR A AN A R A AR AR AR R R AR AR AR AN AN AR AR AR AR AN AN

* EEPROM read
AR AR AR AN AR R AR AR R AR R AN A AR R AR RRANARANRNNRAANAAR
* *** CREATE LOCAL STACK FRAME AND STORE REGISTERS
ee read LINK A6, #£-28 Allocate local stack area of 28 bytes
* * and use A6 as local stack pointer
MOVEM.L DO0/D1/D2/D3/A0/Al/A2, (A7)
* Store registers in local stack frame
* *** TNITIALISE QSPI
BSR QSPINIT Disable QSPI and initialise I/0
* *** FETCH PARAMETERS FROM STACK USING A0 AS POINTER
LEA (&52,A7) ,A0 Point to element above first parameter
MOVE.L -(AO),Al Put BYTE BUFFER address in Al
MOVE.L - (AO),DO Put BYTE COUNT in DO
MOVE.L -(A0),D1 Put ADDR in D1
MOVE.L -(A0),D2 Put DEV in D2

*** LOAD TXD QUEUE WITH MC2184 COMMANDS
0: Read byte command

* 1: MCM2814 byte address
MOVE.B #S5A7,TXD store READ command
MOVE.B D1, TXD+1 store byte address into TXD queue
(D1 can be used now)
* *** ENSURE BYTE COUNT IS IN RANGE 1 TO 29
ANDI.W #S00FF, DO Clear MSB (word will be used in DBcc)
CMP.B #S1E,DO Should be 0 < BYTE COUNT < &30
BCS B COK1 BYTE _COUNT < &30?
MOVE.B #51D,DO No, so force to &29
B_COK1 TST DO BYTE_COUNT <> 02
BNE B_COK2
MOVE.B #$01,D0 No, so force to 1
* BYTE COUNT should be O.K. now
B_COK2 MOVE.W DO,D1 Working copy of BYTE COUNT in D1
* *** SET Up COMD QUEUE
* Use DEV code to calculate COMD queue entries
ORI.B #SEO, D2 Calculate entry with CONT bit set
* 16 bit transfer
MOVEA.L #COMD, A0 Use A0 as COMD queue pointer
* No. of 32 bit transfers = ((BYTE_COUNT+2) /2) + 1
* Calculate value in D2 for DBcc loop to set up COMD queue
ADD.B #502,D1 BYTE COUNT +2
ASR.B #1,D1 {BYTE_COUNT+2) /2
SUB.B #501,D1 (BYTE_COUNT+2) /2-1
* Set up all COMD entries except last with CONT bit set
COMDLOOP MOVE.B D2, (AQ)+
DBF D1, COMDLOOP
* Set up last COMD entry with CONT clear (deselect EEPROM at end)
ANDI.B #56F,D2 Calculate entry with CONT bit clear
MOVE.B D2, (AD) Install in COMD queue

AN429/D MOTOROLA

For More Information On This Product, 1
Go to: www.freescale.com

Freescale Semiconductor, Inc.

* *#* CAILCULATE LAST QSPI ENTRY NO. AND INCORPORATE IN SPCR2
MOVE.B DO, D1 Make working copy of BYTE COUNT
ADD.B #502,D1 BYTE COUNT +2
ASR.B #1,D1 (BYTE_COUNT+2) /2
MOVE.B D1, SPCR2 Put into SPCR2 MSB
MOVE.B #3500, SPCR2+1 and 00 as start entry in LSB
* **% READ DATA FROM MCM2814
MOVE.W #58003, SPCR1 Enable QSPI, DTL delay of approx 5SuS
* x**x WAIT FOR END OF TRANSMISSION
WTLOOP TST.B SPSR Test SPIF bit
BPL WTLOOP and wait till set
* *** PASS DATA BACK TO C PROGRAM ARRAY
SUB.B #501,D0 Use BYTE_COUNT-1 as loop counter
MOVEA.L #REC+3,A0 Use A0 as REC queue pointer
* Use MC68332 LOOP MODE to fill array
PASSLOOP MOVE.B (AO) +, (A1) + Copy one data entry from REC queue
DBF DO, PASSLOOP (loop until DO<O)
* *** RESTORE REGISTERS AND DE-ALLOCATE STACK
MOVEM.L (A7),D0/D1/D2/D3/A0/Al1/A2
* Retrieve registers from local stack frame
UNLK Ab And de-allocate local stack
RTS

AhhkhkRAKR A KRR KARANKAA A AR A AR A RN A AR AR R AR AR KAR AR A AR A A Ak

* EEPRCM write

ARAANAKAARKRKAKRANRANA R A A A AN AR A A A b Ak kA RA A kAR AR AR ANk AN

* *** CREATE IOCAL STACK FRAME AND STORE REGISTERS
ee_write LINK A6, #&-28 Allocate local stack area of 16 bytes for
* reg. store, using A6 as stack pointer
MOVEM.L DO/D1/D2/D3/A0/Al/A2, (A7)
* Store registers in local stack frame
* **%x INITIALISE QSPI
BSR QOSPINIT Disable and initialise QSPI
* **x* FETCH PARAMETERS FROM STACK USING A0 AS POINTER
LEA (52,A7),A0 Point to element above first parameter
MOVE.L -{(A0),Al Put BYTE BUFFER address in Al
MOVE.L -{(A0),DO Put BYTE COUNT in DO
MOVE.L -(A0),D1 Put ADDR in D1
MOVE.L -(A0) ,D2 Put DEV in D2
* Stack pointer unchanged
* *** LOAD TXD QUEUE WITH MCM2814 COMMANDS
* 0: Vpp on command
* 1: Write data command
* 2: reserved for byte address
* 3: e ., data
* 4: Vpp off command
MOVE.B #SA6, TXD+1 Vpp ON command
MOVE.B #SA2, TXD+3 WRITE command
MOVE.B D1, TXD+5 Use ADDR as byte address
* (D1 can be used now)
* *** Adjust Byte Count for use in DBcc loop
SUB.B #$01,D0 Need BYTE COUNT loop counter in range 0-3
ANDI.W #503,DO0 for use in DBcc loop, not 1-4
MOVE.W DO,D1 Working copy in D1

MOTOROLA For More Information On This Product, AN429/D
12 Go to: www.freescale.com

R ++» pROGRAM cowp anp T ckke€escale Semiconductor, Inc.

* Program start of TXD and COMD queues
MOVEA.L #COMD,AQ Use A0 as COMD queue pointer
MOVEA.L #TXD+7,A2 Use A2 as TXD queue pointer
ORI.B #520,D2 Calculate COMD entry with CONT bit clear
MOVE.B D2, (AO)+ Use as entry for Vpp ON (CONT clear)
ORI.B #5A0,D2 Calculate COMD entry with CONT set
MOVE.B D2, (A0)+ Use as entry for WRITE DATA and
MOVE.B D2, (AO)+ ADDR, (CONT set)
* PROGRAM TXD AND CMD QUEUES
DATALOOP MOVE.B (Al)+, (A2)+ Put a byte of write data in TXD queue
ADDA.L #501,A2 TXD buffer is WORD wide, so increment
MOVE.B D2, (AO) + Put an entry into COMD queue (CONT set)
DBF D1, DATALOOP Loop until finished
* Finish off COMD and TXD queue setup
MOVE.B #$A4, (A2) Vpp OFF command in TXD queue
ANDI.B #$2F,D2 Calculate COMD entry with CONT clear
MOVE.B D2, (-1,A0) Change last data COMD entry to CONT clear
MOVE.B D2, (AO) Last COMD entry (Vpp OFF), CONT clear
* **x* CALCULATE WHAT QUEUE ENTRIES TO SEND FOR PROGRAMMING
ADD.B #503,D0 Last data entry is no. 2+BYTE BUFFER
MOVE.B DO, SPCR2 Put into SPCR2 MSB
MOVE.B #500, SPCR2+1 and 00 as start entry in LSB
* *** START TRANSMISSION AND PROGRAMMING DELAY
MOVE.W #$8003, SPCR1 ** Start programming **
MOVE.L #5$00008000,D1 Programming delay (approx 20ms)
LOOP DBF D1, LOOP
* *** CALCULATE WHAT QUEUE ENTRIES TO SEND FOR Vpp OFF
ADD.B #$01,D0 Vpp OFF command is immediately after
* programming sequence
MOVE.B DO, SPCR2 Put into SPCR2 MSB and LSB
MOVE.B DO, SPCR2+1 so that only this command is sent
* **x* RESTORE REGISTERS AND DE-ALLOCATE STACK
MOVEM.L (A7),D0/D1/D2/D3/A0/A1/A2
* Retrieve registers from local stack frame
UNLK A6 And de-allocate local stack
RTS

AN429/D . . MOTOROLA
For More Information On This Product, 13

Go to: www.freescale.com

Freescale Semiconductor, Inc.

IR 2222 RSt RERES SRR X sz 2RSSR E SR

* QSPINIT
* Orderly stop and initialise QSPI hardware
Khkhhkkhk kR kAR AR ARk kR AR Rk kR kR R kR R kAR AR AN R R AN AN R AR kK
QSPINIT ORI.B #580, SPCRO Ensure QSPIl is master
ANDI.B #SBF, SPCR2 Clear WREN (stop wrapping)
ANDI.B #$7F,SPSR Clear SPIF to enable sensing of when
* transmission has finished
* Is QSPI active
TST.B SPCR1 Test SPE bit to see if QSPI enabled
BPL MISS Goto MISS if disabled
* Wait till QSPI reached end of current queue
ANDI.B #506,SPCR3 Ensure system not HALTed
NOSPIF TST.B SPSR Wait until SPIFinished
BPL NOSPIF
* Disable QSPI
ANDI.B #$7F,SPCR1 Clear SPE bit
* Initialise QSPI for accessing M(M2814
MISS MOVE.W #5$8054, SPCRO Set MASTER, no WIRED OR, 16 bits, 100KHz
MOVE.W #$7B7E, QPAR Configure MOSI,MISO+PCS0-3 as QSPI lines
MOVE.W #S500FA, QPDR MOSI+PCSO to default high
ANDI.B #$7F, SPSR Clear SPIF to enable sensing of when
* next transmission has finished
RTS
* Allow other programs (eqg C program) to access routine labels
* ee write and ee read

export ee write
export ee_read

MOTOROLA For More Information On This Product,

14

Go to: www.freescale.com

AN429/

Freescale Semiconductor, Inc.
(This page Intentionally left blank)

AN429/D . . MOTOROLA
For More Information On This Product, 15
Go to: www.freescale.com

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Z “freescale

semiconductor

For More Information On This Product||[[J[j ||} Il 111 111 00

Go to: www.freescale.com

rxzb30
Rectangle

rxzb30
hibbertleft

rxzb30
disclaimer

rxzb30
freescalecolorjpeg

