[enuepy s33s() JCRYGDIN vrouosom)

TIVH-3DILN3Hd

MC68851UM/AD

MC68851

Paged Memory Management Unit
User’s Manual

@ MOTOROLA

@ MOTOROLA

MC68851

PAGED MEMORY MANAGEMENT UNIT
USER’'S MANUAL

First Edition

PRENTICE-HALL, Inc., Englewood Cliffs, N.J. 07632

© 1986 by Motorola Inc.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

This document contains information on a new product.
Specifications and information herein are subject to change
without notice. Motorola reserves the right to make changes to
any products herein to improve functioning or design.
Although the information in this document has been carefully
reviewed and is believed to be reliable, Motorola does not
assume any liability arising out of the application or use of any
product or circuit described herein; neither does it convey any
license under its patent rights nor the rights of others.

Motorola, Inc. general policy does not recommend the use of its components in life support ap-
plications where in a failure or malfunction of the component may directly threaten life or injury.
Per Motorola Terms and Conditions of Sale, the user of Motorola components in life support ap-
plications assumes all risk of such use and indemnifies Motorola against all damages.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-5kkL902-2 0es

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall Southeast Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

TABLE OF CONTENTS

Paragraph Page
Number Title Number

Section 1

Introduction

1.1 MCBBB5T OVEIVIEW ...vineteitieee et ettt e e et e e e e e e e aees 11
1.1.1 Address Translationccooiiiiiiii 1-1
1.1.2 Protection Mechanism............cooiiiiiiiiiii i e 1-2
1.1.3 BreaKpOints. .. vt 1-2
114 M68000 Family Instruction Set EXteNsioNScccvuevvneeineenneineannnns 1-2
1.1.5 The Coprocessor CONCEPT ...uuueiiriiiie it aeeiaee e aanaeas 1-3
1.2 Hardware OVEIVIBW ...t 1-4
1.2.1 Coprocessor INterface...........ovieiiiiiiii 1-7
1.2.2 Access Level Control Interface..........ccooviiiiiiiiiiiii e 1-8
1.2.3 Breakpoint Acknowledge Interfaceccccoiiiiiiiiiiiiiiiiii e 1-8
1.2.4 BUS OPerationsvuviiiiiie it e 1-8

Section 2

Overview of System Operation

2.1 System Configurationcooiuieiiii e 241
2.2 Address Translationoveieieiiiiie e 2-2
221 Address Translation Cachecooiiiiiiiiiiiii e 2-2
222 Address Translation Tablesccooiiiiiiiiii e 2-3
2.2.3 Protection Mechanismc..oiuiiiiiiiiii e 2-4

Section 3

Signal Description
3.1 Logical Address Bus (LA8 through LA31)cciviiiiiiiiiiiiiiiiieie e, 3-2
3.2 Physical Address Bus (PA8 through PA31).......cciiiiiiiiiiiiiiiiiiicei e 3-2
33 Shared Address Bus (A0 through A7) ..ot 3-2
34 Function Code (FCO through FC3)couiuiiiiiiiiiiiiiiie e 3-2
35 Data Bus (DO through D371)c.iuiiiiiiiiiiie i 3-3
3.6 Transfer Size (SIZ0, SIZT) ..o s 3-3
37 BUS CoNtrol Signals.....ouuuu it 3-3
3.741 Read-Modify-Write (RMC)........ccouuuiiiiiiniaieiiin e eee e 3-3
3.7.2 Logical Address Strobe (LAS).........c..iiuiiiineiiieiieiiieiineieeeieeeneaneen 34
3.7.3 Physical Address Strobe (PAS)c.couuiiiiiiiiiii i, 34
3.7.4 Data Strobe (DS) .. cvuieeiriieieii et 3-4
3.7.5 Read/Write (RAW).......ouiiriiie e 34
3.7.6 Data Transfer and Size Acknowledge (DSACKO, DSACK1)........cvvunn 34
3.7.7 Data Buffer Disable (DBDIS).......cooiiuiiiiiiiiii e 3-5
3.8 Bus Exception Control Signals...........coiiiiiiiiiiiii e 3-5
3.8.1 RESEE (RESET). ...ttt ittt e e eas 3-5
3.8.2 Halt (HALT) .ot e e e 3-5
3.8.3 Bus Error (BERR)ociiiiiii i s 3-6
|

MC68851 USER'S MANUAL MOTOROLA

\%

TABLE OF CONTENTS

(Continued)
Paragraph Page
Number Title Number
3.9 Cache Load INhibit (CLT)oeuuiriniiieiieii e e e e 3-6
3.10 Asynchronous Control (ASYNC)ccuiuiiiiiiiiiiiii e 3-7
3.1 (04 o Tod Q{04 11 PPN 3-7
3.12 Physical Bus Arbitrationcccoiiiiiiiiiiiiiiiiii 3-7
3.121 Physical Bus Request (PBR)cccuivuiiiieiieeieeiieeiieeieeieeneaneenns 3-7
3.12.2 Physical Bus Grant (PBG)ocuiuiiuiinieriieeeeneeeeeeaeeseeaeaenanns 3-7
3.12.3 Physical Bus Grant Acknowledge (PBGACK)........ccoviviiiiiiiiiiinnnnnnen, 3-7
3.13 Logical Bus Arbitration............ccooviiiiiiiiiiiiii e 3-8
3.13.1 Logical Bus Request In (LBRI).........ccvueiuiiiteiiieiieeieeiieeeiee e eaeeneen. 3-8
3.13.2 Logical Bus Request Out (LBRO).......c.ccvviiiiiiiiiiiiiiii e 3-8
3.133 Logical Bus Grant In (LBGI)ccceiiiiiiiiiiiiii i eeeeaes 3-8
3.134 Logical Bus Grant Out (LBGO).......cccovviiiiiiiiiiiiiice e 3-8
3.135 Logical Bus Grant Acknowledge (LBGACK)cc.ccvieiiiiiiiiininnnnen. 3-8
3.14 SigNal SUMMAIY ... e 3-8
Section 4
Bus Operation Description

41 ReSEt OPeratioN.cuiieiiiii it e e e 4-2
411 Initialization of Internal State...........cccoiniiiiiiiii e 4-2
4.1.2 Bus Interface Initializationccoiiiiiiiiiii e 4-2
4.1.21 0 4-3
4.1.2.2 BUS SiZ€ (D1, D2) viiniiiiiiiiiii it i i i e i e et re e raaeeeanaes 4-3
4.1.2.3 Decision Timeout Delay (D3, D4)covieeiiiiiiiiiiiiiie e 4-3
4.1.24 Fast Table Search (D5)cccvviiniiiiiiiiiiiiiii e 4-3
4.1.25 Early Processing Startup (D6)ccoceeiiiiiiiiiiiiiiiieiieneeeen 4-4
4.1.2.6 Assertion INhibit (D7)ovviviiiiiiiii e naees 4-5
4.2 Address Translationcoiiiiiiiiii e 4-5
4.2.1 Signal Usage During Address Translation...........c.coooovieiiiiiiiiiieinnnn, 4-5
4211 AdAress BUSEScuuiineie i aie et 4-5
4.2.1.2 AdAress StrobES ... vuiieiii i 4-6
4213 Bus Cycle Termination Signals........c...ocoeviiiiiiiiiiiiiiiiiiiiis 4-6
4.2.2 Synchronous versus Asynchronous Address Translation.................... 4-7
4.2.21 Synchronous Operation.........c.ccviiviiiiiiiiiiiiere e 4-7
42.22 Asynchronous Operationc.cvievieiiiiieiiiiiiii e aees 4-7
423 Functional DesCriptions.ciuiiiiiie i e e eens 4-7
4.2.31 Normally Terminated Address Translation (Non-CPU Space)......... 4-8
4.2.3.2 Address Translation Terminated by Relinquish and Retry

Y=o (8 =] 3 ot PP 4-10
4.2.3.3 Address Translation Terminated by Bus Error.............ccooviennaee. 4-12
4234 CPU Space Access with Relinquish Request...............ccooeiieiinnn. 4-13
4.2.35 Translation of CPU Space ACCeSSeScccevviiiiiiiiiiiiiiiiiiiinnnen, 4-15
4.2.3.6 CPU Space Access with Relinquish and Retryc..occvenenn 4-18
4.3 Table Search Operationsc.cveiieiiiiiiiiiiii e 4-20
4.3.1 Operand Transfer Mechanismccvvviiiiiiieiiiiii i aes 4-20
4.3.1.1 Dynamic Bus Sizing........cccouiuiiiiiiiiiiiii 4-20

MOTOROLA MC68851 USER’'S MANUAL
vi

TABLE OF CONTENTS

(Continued)
Paragraph Page
Number Title Number
4.3.1.2 Effects of Dynamic Bus Sizingoooviiiiiiiiiiiii i 4-23
43.1.3 Address, Size, and Data Bus Relationshipscoovevieiiinnne 4-23
4.3.2 Physical Bus Operation...........coiuiiieiiiiiiiiii e e 4-25
4.3.2.1 REad CyCle .. e 4-27
4.3.2.2 WIHEE CyClE . e e e e 4-29
4.3.2.3 Read-Modify-Write CycCleoiiiiiiii e 4-29
4324 Bus Error and Halt Operation..............coovviiiiiiiiiiiicecens 4-31
4.2.3.4.1 Bus Error Operationoovioeieiiieiiei e eieeeeenns 4-31
4.3.2.4.2 Retry Operationccoiviiiiiiiiiii i 4-34
4.3.24.3 Halt Operationccooviiiiiiiii 4-35
43244 The Relationship of DSACKx, BERR, and HALT 4-38
4.3.25 Asynchronous versus Synchronous Physical Bus Operation.......... 4-38
4.3.2.5.1 Asynchronous Operation............ccovvvviiiiiiiiiniiiee e 4-38
4.3.25.2 Synchronous Operationooeviiiiiiiiiiiiiii i 4-40
433 BUS CyCle SEQUENCE.ttt e aaeas 4-41
4.4 Logical Bus Arbitration..........ceiuiiiiiii i 4-41
4.4.1 Requesting the Logical BUSccoviiiiiiiiiiiiiiiiiii e 4-42
4411 Alternate Master Requesting the Logical Bus...............ccoevvveenen . 4-42
4.4.1.2 MC68851 Requesting the Logical Bus...........ccoiiiiiiiiiiciiat 4-45
4.4.2 Receiving the Logical Bus Grantccooviiiiiiiiiiiiiiie e 4-47
4.4.3 Passing the Logical Bus Grant............coooiiiiiiiiiiie e 4-47
44.4 Acknowledgement of Logical Bus Mastership............c.ccooeiiiiiiciinnt 4-48
4.4.5 Read-Modify-Write CYCIESoveiuiiiiiiiiiiiiiiicii e 4-48
4.5 Physical Bus Arbitrationooieiiiiiiii i e i ie e e s aannenns 4-50
4.5.1 Requesting the Physical Busccooiiiiiiiiiiiiii s 4-53
4.5.2 Receiving the Physical Bus Grant...........c...coviiiiiiiiii 4-53
453 Acknowledgement of Physical Bus Mastership...........c..cccooiviiiiennn. 4-53
45.4 Physical Bus Arbitration Controlc...ccoiiiiiiiiiiii 4-54
4.6 Concurrent Dissociate Logical and Physical Bus Activity...............coceveene 4-56
4.7 Bus Operation EXamplesccoiiiiiiiiiiiiii e 4-57
4.7.1 Table Search Operationc.covveiiiiiiiiiiiiii 4-57
4.7.2 Logical Bus Arbitrationcoeveiiiiiiinii i ae e 4-57
Section 5
Address Translation
5.1 Address Translation Tablesccovviiiiiiii e 5-1
5.1.1 General Translation Table Structurecocviiiiiiiiiiiii e 5-2
5.1.2 Variations in Translation Table Structure.............c.oooiiiiiiiiiiiiiiene 5-5
5.1.2.1 ContiguoUS MEMOTYviuiiiiiite it e eeeeeas 5-5
5.1.2.2 INAIreCtioNn . ..o e 5-9
5.1.2.3 Table Sharing Between Tasksc.ccvvviiiiniiiiiiiiiiiiiieeeenns 5-9
5.1.24 Paging of Tables.......cccuoviiiniiiii 5-9
5.1.2.5 Dynamic Allocation of Tablesccooeviiiiiiiiiiic 5-9
5.1.3 Functions Controlled by Address Translation Tables 5-13
5.1.3.1 Protectiono.cieii i 5-13
5.1.3.2 ATC Managementocvriiniiniiiii e et as 5-13
S

MC68851 USER'S MANUAL MOTOROLA

Vi

TABLE OF CONTENTS

(Continued)
Paragraph Page
Number Title Number
5.1.3.3 Data Cache Inhibit........coooiiiiiiiiiiii e 5-13
5.14 ROOt POINTEIS. . .c.eieieie e e e 5-13
5.1.4.1 Root Pointer Formatoioiiiiiii e 5-14
5.14.1.1 Lower/Upper (L/U) ..o 5-14
5.1.4.1.2 T 0 5-14
5.1.4.1.3 Shared Globally (SG)ooviieiiiiiiii e 5-14
5.1.4.1.4 Descriptor Type (DT) oo 5-15
5.1.4.1.5 Table AdAress ...c.vuiiriiiii i e 5-15
5.14.1.6 UNUSEA .. 5-15
5.1.4.2 Selection of ROOt Pointer.........cociiiiiiii e 5-15
5.1.5 Translation DeSCriPtors.......coiuiiiii e e 5-15
5.1.5.1 Descriptor FOrMats.veeeiii e e e 5-16
5.1.5.2 (D TTe g o] (o] g 1Y/ o113 PPN 5-16
5.1.5.2.1 Table DEeSCriPtors ... 5-16
5.1.5.2.2 Type-1 and Type-2 Page Descriptors...........ccovvvviniiieiiinnennen. 5-16
5.1.5.2.3 INdirect DesCriptors........vovieiiiiiiiii e e 5-19
5.1.5.24 Invalid DeSCriptors......vvviiiiiiiiiiiii e 5-19
5.1.5.3 Descriptor Field Definitionsccoviviiiiiii i e 5-20
5.1.5.3.1 Lower/Upper (L/U) ... e e e 5-20
5.1.56.3.2 [T o1 PP 5-20
5.1.5.3.3 Read Access Level (RAL)ooviiiiiiiiiii i 5-20
5.1.5.34 Write Access Level (WAL) ..o 5-20
5.1.56.3.5 Shared Globally (SG)ccovviiiiiiii s 5-20
5.1.6.3.6 SUPEIVISOI (S) irriiiiii i e e 5-20
5.1.6.3.7 Gate (G) ceinerii e e 5-20
5.1.5.3.8 Cache INhibit (C)..ueeiii e 5-21
5.1.6.3.9 LOCK (L) eeeeiiiee e e 5-21
5.1.5.3.10 Modified (M) ..o e 5-21
5.1.5.3.11 UNUSEd (U) oo e 5-21
5.1.5.3.12 WIite Protect (WP) ..o it e eaes 5-22
5.1.5.3.13 Descriptor Type (DT) ..ieiiiiiiiiie e e 5-22
5.1.5.3.14 Table AdAress ..ouieiieii i 5-22
5.1.5.3.15 Page AdAressooeiiiiiniiii e 5-22
5.1.5.3.16 INdirect Address.......ooovviiiiiiiiii e 5-22
5.1.5.3.17 L0 LU ET Y P 5-22
5.1.6 g 0 (=T o1 4 [o Y 5 1= 5-23
5.2 Address Translation Cache........coviriiiiiiiii i e 5-23
5.2.1 Internal Organization...........coeviiiiiiii e 5-23
5.2.1.1 L= 1o TS 1ot 7o I 5-23
5.2.1.2 Data SECHION .. et 5-23
5.2.1.3 Replacement Algorithm....... .o e 5-24
5.2.2 ATC OPEratioN ...vti ittt et aaaas [T 5-24
5.2.2.1 Address Translation by the ATC ... 5-24
5.2.2.2 Translation MOdEScoueiiiiiiiiii e e 5-25
5.3 CRoot Pointer Table ... 5-25
5.3.1 Loading the RPT ... e e aae e 5-26
5.3.2 Flushing the RPT ... e 5-26
5.4 Detail of Table Search Operationsccccvveiiiiiiiiiiiiii e 5-26
|
MOTOROLA MC68851 USER’'S MANUAL

viii

TABLE OF CONTENTS

(Continued)
Paragraph Page
Number Title Number
Section 6
Instruction Set Processor
6.1 [L= 11 =T - P 6-1
6.1.1 Root Pointer Registers..........ccvvviiiiiiiiiiiiii e 6-1
6.1.1.1 Lower/Upper (L/U). ..o 6-2
6.1.1.2 (1] 3 11 G 6-2
6.1.1.3 Shared Globally (SG)....eiiiii i s 6-2
6.1.1.4 Descriptor TYPe (DT). .. 6-3
6.1.1.5 Table AdArESS . .viiiiiiiei it ittt 6-3
6.1.1.6 L0] U 1Y o P 6-3
6.1.2 PMMU Cache Status (PCSR)coiviiiiii i e 6-3
6.1.2.1 TSk AlIAS (TA) criiiiii it et e e e e re e eeaannneas 6-4
6.1.2.2 [TV s T |) P 6-4
6.1.2.3 Lock Warning (LW)......ooeiiie e 6-4
6.1.3 Translation Control (TC)....uiiiiiiie i it e e e e eanaes 6-4
6.1.3.1 oy 0T 1 oY L= T =3 T 6-5
6.1.3.2 Supervisor Root Pointer Enable (SRE)cooooiiiiiii, 6-5
6.1.3.3 Function Code Lookup (FCL)......oiiuiiiiii i 6-5
6.1.3.4 Page Size (PS) ..o e 6-5
6.1.3.5 Initial Shift (1S) c.viriii i e e 6-5
6.1.3.6 Table Index (TIA, TIB, TIC, and TID) ...c.oiiiiiiiiii i 6-6
6.1.4 Current Access Level (CAL).....cooiiiiiiiii e iiaee e e 6-6
6.1.5 Validate Access Level (VAL)oooriiiiir i e 6-6
6.1.6 Stack Change Control (SCC).....cuuiiiiiiii e e 6-6
6.1.7 ACCESS CONTIOl (AC) t.iiiiiiiii et et ettt e e e e e ananaaeens 6-7
6.1.7.1 Module Control (IMC)vviiiiiii i i e e e rraaeeeees 6-7
6.1.7.2 Access Level Control (ALC)viviiiiii i 6-7
6.1.7.3 Module Descriptor Size (MDS)c.coiviiiiiiiiiiii e 6-7
6.1.8 PMMU Status Register (PSR)ooiieiiiiii i 6-8
6.1.8.1 BUS ErrOr (B) .ottt i ettt e e e 6-8
6.1.8.2 Limit VIiolation (L) «oveoieiiii i e e v e erneenas 6-8
6.1.8.3 Supervisor Violation (S) ...oo.vviiiii i 6-8
6.1.8.4 Access Level Violation (A)......oviiiiii e 6-8
6.1.8.5 Write Protected (W) ..o e e 6-8
6.1.8.6 IV (1)t e 6-8
6.1.8.7 1Yo L1 7T=Yo 1 1Y/ 6-9
6.1.8.8 L= =) 6-9
6.1.8.9 Globally Shared (C)oviiiii i e e 6-9
6.1.8.10 Level NUMDEr (N) .o i e e e iee e e e as 6-9
6.1.9 Breakpoint Acknowledge Data (BADO-BAD7)cccvvvieiiiiiiiiinenninenns 6-9
6.1.10 Breakpoint Acknowledge Control (BACO-BACT7)c.covvvivininiininnnennne. 6-10
6.1.10.1 Breakpoint Enable (BPE)coiiiiiiiiii 6-10
6.1.10.2 SKip CoUNt ... e, 6-10
6.2 =3 L € o Y T 6-10
6.2.1 Data Movement (PMOVE).......coviiiriiiii i e et vee e tie i vaeens 6-11
6.2.2 Parameter Validation (PVALID)cviiiiiiiiiii e i e e eiaeens 6-11
6.2.3 Address Attribute Testing (PTEST) ...oieiiiniiiiiiiieiieeie e 6-11
.|
MC68851 USER'S MANUAL MOTOROLA

1X

TABLE OF CONTENTS

(Continued)
Paragraph Page
Number - Title Number
6.2.4 Cache Pre-Loading (PLOAD).......c.iuiiiiiiieiiiiiieiee e 6-11
6.2.5 Cache FIUShiNG «..ouvieiiiii e 6-12
6.2.5.1 PRLUSH/PFLUSHS ...t e e e e 6-12
6.2.5.2 L ST 1] o | N 6-12
6.2.5.3 PRLUSHA Lo 6-12
6.2.6 CoNAIIONAIS ..ot e 6-12
6.2.6.1 Branch Conditionally (PBCC) .. .v.vvviireiiiiiiieiiiic e 6-12
6.2.6.2 Decrement and Branch (PDBCC)........ccovvvviiiiiiiiiiiiiiiiecieneeaans 6-12
6.2.6.3 Set Conditionally (PSCC) ..ouviiriiiiiiii i e 6-12
6.2.6.4 Trap Conditionally (PTRAPCC)cocvviiiiiiiiiiiiei e 6-12
6.2.7 State Save and Restore..........ovvviiiiiiiiii e 6-12
6.2.7.1 PSAVE........... e e e e 6-12
6.2.7.2 PRESTORE ..ottt e et e e nens 6-13
6.2.7.3 State FOrMaAts .ooviiiiiii i e e 6-13
6.3 oot =T o] 1 To] o 1= PP 6-14
6.3.1 51 T3 =1 o PP PP 6-14
6.3.1.1 Bus Error Signaled from Main Memorycocovviiiiiiiiiiiiiennens 6-15
6.3.1.2 Limit Field Exceeded.........cooviiuiiiiiiii i e 6-15
6.3.1.3 Attempted User Access of Supervisor Address............cooevvvnennnns 6-15
6.3.1.4 Access Level Violationccoviiiii i 6-15
6.3.1.5 Write Protection Violation..........ooovviiiiiiiii e 6-15
6.3.1.6 INValid AdAresscoviviieiiiii e 6-16
6.3.1.7 Read-Modify-Write (RMW) Cyclecovviviiiiiiiiiiiiiiieaee 6-16
6.3.2 Coprocessor Interface EXCEptions.........ccovviviiiiiiiiiiiiiiiieieinieeeae 6-16
6.3.2.1 F-Line EmMulation........ouviueiieiii et 6-17
6.3.2.2 Protocol Violation, et ee e eeeareee e, 6-17
6.3.2.3 Configuration Errorooeiiii i e e 6-17
6.3.2.4 Iegal Operation Error.........ccocoviiiiiiiiii e 6-17
6.3.2.5 ACCESS Violation ..cuvineiii i 6-17
Section 7
Protection

7.1 Protection Using Address Space Encodings...........coovviiiiiiiiiiniiieiiiiennnn. 7-1
7.1.1 Supervisor/User and User/Supervisor Protectioncccecevivvnennnnn.. 7-1
7.1.2 User/User ProteCtionooveeiiiiiiii e eeaees 7-3
7.1.3 WIite ProteCtion «..ve et 7-4
7.1.4 Access (Read and Write) Protection.........ccooeviiviiiiiiiiiiniiini i iaaaens 7-5
7.1.5 Protection EXamplescoevuiriniiiieiiiie e 7-7
7.2 Protection Using the Access level Protection Mechanism......................... .77
7.2.1 Overview of Operationccviiiiiiiiiii e e 7-8
7.2.2 Access Level Protection Mechanism Operationcccoviviiiinnnnn. 7-10
7.2.3 Constructing Address Spaces Using Access Levels.............c.oeeeae. 7-12
7.2.3.1 Write ProteCtion. . c.ui it i 7-13
7.2.3.2 Access (Read and Write) Protectioncceviiviiiiiiiniiiiiiennnsn. 7-14
7.24 Transfers Between Access Levels........oooovvviiiiiiiiiniiiiiiicceieane 7-14
7.2.5 Passing Parameters Between Routines at Different Access Levels........ 7-15
MOTOROLA ‘ MC68851 USER’S MANUAL

X

Paragraph
Number

7.2.6
7.2.7
7.2.8

8.1
8.1.1
8.1.2
8.2

9.1
9.1.1
9.1.2
9.1.2.1
9.1.2.2
9.1.2.3
9.1.2.4
9.1.25
9.1.2.6
9.1.2.7
9.1.2.8
9.1.2.9
9.1.2.10
9.1.2.11
9.1.3
9.2
9.2.1
9.2.2
9.2.2.1
9.2.2.2
9.2.2.3
9.2.2.4
9.2.25
9.2.2.6
9.2.2.7
9.2.2.7.1
9.2.2.7.2
9.2.2.8
9.3
9.3.1
9.3.1.1
9.3.1.2
9.3.1.3

MC68851 USER’S MANUAL

TABLE OF CONTENTS

(Continued)
Page
Title Number
LY=o U 14V 7-15
Relationship Between Access Levels and Supervisor Mode 7-16
Considerations for Non-32-Bit Systemsccooiiiiiiiiiiii i 7-16
Section 8
Breakpoints
Instruction Breakpoint Mechanismcoooiiiiiiiiiiii e 8-1
Breakpoint Acknowledge Data Registers............coccoviiiiiiiiiiniinnnnnn. 8-1
Breakpoint Acknowledge Control Registerscoevvviiiiiiiiiinennan. 8-2
Breakpoint Usage...... ..o 8-4
Section 9
Coprocessor Interface

Coprocessor Interface Signal Connectioncovveiiiiiiiiiiiiiiiiie e 9-1
Selecting the MCB8857Tccoiiiiii i 9-1
Coprocessor Interface Registers........ccovveiiiiiiiiiii i 9-2
ResSponse CIR ($00)vuiiiiitiii et ee e eees 9-3

Control CIR ($02) ...vrieiiiiii e e e 9-4

SAVE CIR (B04) .. ittt et ettt 9-4
ReStOre CIR ($06) . .uuuneeieitiiiiiitet it et e e et e aeeaaeaees 9-5
Operation Word CIR ($08)cviiiiiiiie i e 9-5
Command CIR ($0A)ourieiiiiii e 9-5
Condition CIR ($0E)vviiiiiiiii e 9-6
Operand CIR ($710) .. .uuiriririiii e et e e 9-6
Register Select CIR ($14). ..o e 9-7
Instruction Address CIR ($18)......ceiiriiiiiiiiiii i 9-7
Operand Address CIR ($1C).....cvviuiiiieiiiiiieiein e 9-7
INterprocessor TransSfersccviiiiiiii e 9-7
Coprocessor INSTrUCHIONSouiie e 9-7
INSruction ProtocCol.coeiiriiii i e 9-8
ReSPONSE PrimitiVes. . ccuviei it e 9-9
NUI PrimMItIVE . et e e e 9-9
Evaluate Effective Address and Transfer Data Primitive................ 9-10
Transfer Single Main Processor Register Primitive 9-1
Supervisor Check Primitiveccciii i 9-12
Evaluate and Transfer Effective Address Primitive.............cooeene e 9-12
Transfer Main Processor Control Register Primitive..................... 9-13

Take Exception Primitivescoceoiiiiiiiii e 9-13

Take Pre-Instruction Exception Primitive.............ccocevvevvennnnns 9-14

Take Post-Instruction Exception Primtiive 9-14

Response Primitive Summarycooooiiiiiiiii s 9-15
Instruction Dialogs e et e 9-15
General INSIrUCLIONSuiee i e aees 9-17
PFLUSH INStructions.......ccovuiviiniiiiii e 9-17
PLOAD INSHIUCHIONS ...ttt ettt ie e eeees 9-17
PMOVE INStruCtioNS.....ouvieiiiieiiii e enaeaees 9-19

MOTOROLA

Xi

TABLE OF CONTENTS

(Continued)
Paragraph , Page
Number Title Number
9.3.14 PTEST INStrUCtiONS «...ucitiiiiiii e aeaas 9-24
9.3.15 PVALID InStructions.........cocoviiiiiiiiiiiiin 9-24
9.3.2 Conditional INStrUCLIONSviviieii e 9-24
9.3.3 Context Switch INStructionscoviiiiiiiii e 9-24
9.3.31 PO AVE. ... e 9-24
9.3.3.2 PRESTORE ..ot e e 9-28
9.34 Exception ProCessingc.ouvuviiiiiiiiiniinii i 9-29
9.3.4.1 Take Pre-Instruction EXception.........ccccoiiiiiiiiiiiiiiiiiiiiiii e, 9-29
9.34.2 Take Post-Instruction EXceptionc.ccovieiiiiiciiiiiiiiiiiieeanns 9-30
9.34.3 F-Line Emulator EXCEPLIONccvviuieiiiiiiii e eeaaaaes 9-30
9.344 Format Exception, PSAVE INStructionccovviviiiiinnnenan.. 9-30
9.345 Format Exception, PRESTORE Instruction..............coooviiiiiiinnnn, 9-32

Section 10
Access Level Control Interface

10.1 Access Level Control Interface Signal Connectioncceevvvneivnnnn... 10-1

10.1.1 Selecting the MCB885Tviuiiiiiii e e aee s 10-1

10.1.2 Access Level Control Interface Registers...........covvvviiiiiiiiiiiiiiiinnnnnnns 10-2
10.1.2.1 Current Level (CL) ALCR ($00).......viuieiiiiiiiieiieiiineeierecaeaeen e, 10-3
10.1.2.2 Access Status (AS) ALCR ($04)......ueviuuieiiiiiieiieiiineeeiiieeeeiineeaans 10-3
10.1.2.3 Increase Access Level (IAL) ALCR ($08)........ccovevviiiiiiiiiiiininienen. 10-3
10.1.2.4 Decrease Access Level (DAL) ALCR ($0C)ovvivveviiiiieininninnnn. 10-4
10.1.2.5 Descriptor Address ALCRS ($40 Through $5C).........ccccvvveivininnnnn. 10-4
10.2 CALLM and RTM INStrUCtiONScouiiuiiiiiiii et nee s 10-6
10.2.1 CALLM INStrUCHION ...t et 10-6
10.2.2 RTM INSIrUCHION ...eeeei e e e e e 10-7

Section 11
Operation Timings

11.1 Factors Affecting Execution TiMes.......ccoooeiiiiiiiiiiiiiiiiiiiiiiii s 11-1

11.2 Address Translation Table Search Timingcoooiiiii 111

11.3 INStruction TimMiNgoiieiiiiii e 11-10
11.3.1 Effective Address Calculation.............ccoooviiiiiiiiii e, 11-1
11.3.2 General INStrUCHIONS ...oeii i e 11-12
11.34 PSAVE and PRESTORE INStruCtionSc.oviuiiiiiieiiieiieeeieniieiaeaaieenaens 11-13
11.4 INtErrUPt LatenCy .o.uviiiiiii e 11-13
11.5 Bus Arbitration LatenCycovuieiiiiiiii i 11-14

Section 12
Electrical Specifications

121 Maximum RatingS.......ovviiiiiiiiiiii 1241
12.2 Thermal Characteristics — PGA Package...........cocviiiiiiiiiiiiiiiiee, 1241
12.3 Power Considerations ..., 12-1
MOTOROLA MC68851 USER'S MANUAL

Xii

TABLE OF CONTENTS

(Continued)
Paragraph Page
Number Title Number
12.4 DC Electrical CharacteriStiCsvuviuiuiieiiiit e eaeas 12-2
12.5 AC Electrical Specifications — Clock Input..........ccooiiiiiiiiiiiiiiiiiineenn, 12-3
12.6 AC Electrical Specifications — All Bus Operations.............cocvvvvvieniennnns.. 12-4
12.7 AC Electrical Specification Definitions............ccooiiiiiiiiiiiiiii 12-10

Section 13
Ordering Information and Mechanical Data

131 Standard MC68851 Ordering Informationccoooiiiiiiiiiiic s 13-1
13.2 Pin ASSIGNMENTS. .. et 13-1
13.3 Mechanical Data........co.oiiiiiii 13-2

Appendix A
Instruction Set

A1 MC68020/MC68851 Addressing Modesccovvviiiiiiiiiiiiiiiiiiiiiiie e, A-1
A.2 Operation Description Definitionscoiiiiiiiiiiiiiiic e A-2
A3 Individual Instruction Descriptions.........c.cviiiiiiiiiiii e A-2
A4 Instruction Format Diagramsooovriiiiiii e A-27

Appendix B
Hardware Considerations

B.1 Simple System Configurationccooiiiiiiiii i B-1
B.2 Alternate Logical Bus Mastersccovieiiiiiiiiiiiiii e aeee e B-3
B.3 Logical Address Space DeviCesccuvuviiiiineiiii i B-6
B.3.1 Logical Address Space COProCESSOIS.uuuuiueiuiatiiiieiiineiieieaneannnaans B-6
B.3.2 Other Logical Address Space Devicescccvovviieiiiiiiieiiieiiiiiennnn, B-7
B.4 Access Time ComPULatioNSuiitiiiie e e ee e B-9
B.4.1 CPU-to-Memory Access Time Computationsccoevvveiiiiinineen.n. B-9
B.4.2 MC68851-to-Memory Access Time Computations...........cooveevviienen.n. B-11
B.5 EXternal Cacheso.ciuiinii e B-12
B.5.1 Logical Cache Implementation............ccviiiiiiiiiiii e B-13
B.5.2 Physical Cache Implementationcoociiiiiiii i B-17
B.5.3 A Note on “Instruction-Only” Cache Implementations....................... B-17
B.6 Power and Ground Considerationsccocveiiieeiiiiiii i aeena s B-19
B.7 Test Equipment Considerations..........vovviiiiiiiiiiiiii e B-20

Appendix C
Software Considerations

C.1 Context Save and Restore Considerationscvoovvevieiiiiiiniiiiininennns.. C-1
C.2 Logical DMA Considerationscoeviueiiiiiiiiiiiieii i ieeieeaieeneaneaneens C-2
C.21 Use of the L and SG Bits.......oouiiiiiiii e C-2
C.2.2 Mapping of DMA ACHIVITIESviitiii e e es C-2
C3 CALLM/RTM Programming Exampleccoiviiiiiiiiiiiiiiiieic i C-3

MC68851 USER'S MANUAL MOTOROLA
Xiii

TABLE OF CONTENTS

(Concluded)
Paragraph Page
Number Title Number
C4 Multiprocessing Considerationsocvieiiiiiiiiiiiiiiii e C-4
Cc.41 Sharing of Translation Table Structurescccviviiiiiiiiiiiins C4
C4.2 Globally Shared Data Areas........ccoevviuiiieneiiie it naeananas C-5
C.43 Remote Manipulation of MCB8851cccovvviiiiiiiiiiiiiiiciieae s C-5
C5 Defining and Using Page Tables in an Operating System C-6
C.5.1 CPU and Supervisor Root Pointer Registersccoovviiiiiniiinaa. C-6
Cb5.2 Task Memory Map Definitionoooiiiiiiii e Cc-7
C.5.3 MC68851 Features and Their Impact on Table Definition.................... C-9
C.5.3.1 Number of Table Levelsoccveiiiiiiiii e Cc-9
C.5.3.2 Initial Shift CouNt... ..ot e C-10
C.5.3.3 Locking Entries in the ATC........ceiiiiiiiiiiiiii e C-10
C.5.34 Limit Fields. ..o C-10
C.5.35 Page Tables at Other than the Lowest Three Level...................... C-1
C.5.3.6 INAirect DeSCriPOrSitiiiie e e C-1
C.5.37 Unused Descriptor Bitscoouiiiiiiiiiiiiiiiicne e C-12
C.6 Example MC68851 Paging System Implementationccoievininne. C-12
C.6.1 0.S. Allocation Modules for Example System.........c.ccccvvviiiiiiiinennen. C-17
C.6.2 0.S. Paging System Bus Error Handler Exampleccccovevieiiiinnnen. C-20

MOTOROLA MC68851 USER'S MANUAL
Xiv

LIST OF ILLUSTRATIONS

Figure Page
Number Title Number
1-1 MC68851 Programming Model...........ccoovuiiiiiiiiiiiiiii e 1-5
1-2 MC68851 Simplified Block Diagramcoooiiiiiiiiiiiiiiiiiiiiiie e 1-6
21 Simple System Block Diagram.......c..oouviieiiiiiiiieiiie e 2-1
2-2 MC68851 Memory Managed System Simple Block Diagram..................... 2-2
2-3 MC68851 Address Translation Functional Timing Diagram....................... 2-3
2-4 MC68851 Translation Table Tree Structurec.oovvivieiiiiiiiiiiiiienens 2-4
3-1 Functional Signal GroUPScouvieiiiiiie i e eaaeeaes 3-1
4-1 Relationship Between External and Internal Signals.................ciiiii 4-1
4-2 Input Sample Window ..o e 4-2
4-3 Synchronous Mode Translationccooiiiiiiiiii e 4-9
4-4 Synchronous Translation Accessing Logical Cache................cooviiiiinnnn, 4-9
45 Asynchronous Mode Translation (LAS Meets Input Setup Time) 4-10
4-6 Synchronous Relinquish and Retryc..cooiiiiiiiiiiiiiiii e 4-12
4-7 Asynchronous Relinquish and Retry (LAS Misses Input Setup Time).......... 4-13
4-8 Synchronous Cycle Terminated by Bus Errorccccvvvviiiiiiiiiennnnnn... 4-14

4-9 Asynchronous Cycle Terminated by Bus Error

(LAS Meets Input Setup TimMe).......ovvieeeiiiiieneieieeeee e eeeeiaeeeanen 4-14
4-10 Synchronous CPU Space Cycle Accessing MC68851 Registers

Terminated by Relinquish Request...........c.cooiiiiiiiiiiiiii e 4-16
4-11 Synchronous CPU Space Read Cycle Accessing MC68851 Register............ 4-17
4-12 Synchronous CPU Space Write Cycle Accessing MC68851 Register............ 4-18
4-13 Synchronous CPU Space Cycle Accessing Physical Address Space............ 4-19
4-14 Typical Physical Address Space Strobe and RAW Generation 4-19
4-15 MC68851 Interface to Various Port Sizesccoevviiiiviiiiiiiiiiiiiienene, 4-21
4-16 Example of Long Word Transfer from 16-Bit Port..............cccciiiiiiiininn. 4-23
4-17 Long Word Operand Read Timing (16-Bit Data Port)...........c.ccooviiieiennnn.. 4-24
4-18 Example of Long Word Transfer from Byte Portc.ccooviiiiiiiiiiiennenn.. 4-25
4-19 Long Word Operand Read Timing (8-Bit Data Port)c..cccooviniennnnnn. 4-26
4-20 Read Cycle FIOWChArtoouiiuiii i e e e eaeee 4-27
4-21 Long Word Operand Read Timing (32-Bit Data Port)................coeeveiennnnn. 4-28
4-22 Write Cycle FIOWChArtoouiiiiiiii e et e s enaees 4-29
4-23 Byte Write Timing Diagramcooviriiiiiiiiiiiiiei e 4-30
4-24 Read-Modify-Write Cycle Flowchartc.ccociiiiiiiiiiiiiii e 4-32
4-25 Read-Modify-Write Cycle Timing Diagram (32-Bit Port).............cocveienene. 4-33
4-26 BUS Error TiMiNg ..oouieeii i et et et e et eas 4-34
4-27 Delayed Bus Error Timingcveieiiieiiiiitii e e eeniiaeeae e 4-35
4-28 Bus Cycle Retry Timingcooviiiiiiiiiiiiiii e 4-36
4-29 Delayed Bus Cycle Retry Timing.......c.coeeiiieiuiiiiiiii i 4-37
4-30 Halt Operation TimiNg.....oceouiiiii it r e e e aae e e e aaanaens 4-39
4-31 Logical Bus Arbitration Flowchart for MC68851 Bus Request.................... 4-43

|
MC68851 USER'S MANUAL MOTOROLA

XV

LIST OF ILLUSTRATIONS

(Continued)

Figure Page
Number Title Number
4-32 Logical Bus Arbitration During Relinquish and Retry Sequence................. 4-44
4-33 Logical Bus Arbitration Signal Inter-Connection..............coovviiiiiiiiininnnn, 4-45
4-34 Single Alternate Logical Master Bus Request Conditioning Logic............... 4-45

4-35 Relinquish and Retry Operation — MC68851 Arbitration for Logical Bus

Preempted by Bus Request from Higher Priority Logical Master 4-46
4-36 MC68851 Passes Logical Bus Grant to Alternate Mastercoeeviinee 4-49
4-37 Physical Bus Arbitration Flowchart for Single Requestc.cceeeee 4-50
4-38 Physical Bus Arbitration During Address Translationc.coocvviennee 4-51
4-39 Physical Bus Arbitration During MC68851 Table Searchccenee 4-52
4-40 Physical Bus Arbitration State Diagram............ccooeiiiiiiiiiiii i 4-54
4-41 Physical Bus Arbitration (Bus Inactive)..........cooiiiiiiiiiiiiiiiiie e 4-55
4-42 Example of Single Buffering Requirements for Support of

Concurrent Logical and Physical Bus Activity..........ccocoviiiiiiiiiiiiennn 4-59
4-43 Example of Concurrent Logical and Physical Bus Activitycooevinnes 4-60/4-61
4-44 MC68851 Table Search Example (Table Search with Function Code Lookup

and Two Levels of Long Format Descriptors)........ccoevvivvieiiinennennnnns 4-62/4-63
4-45 Page Descriptor U Bit Status Update..........cccvueiiiieiiiniiiiniiiiieieiieaenns 4-64
4-46 Table Pointer U Bit or Page Descriptor U and M Bit Status Update 4-65
4-47 MC68851 Table Search Operation Interrupted by

Alternate Logical Bus Masterccoiviiiiiiiiiiiiiii s 4-66
5-1 Simplified MC68851 Table Search Flowchart............coooviiiiiiiiiiiiiiien 5-3
5-2 Derivation of Table Index Fieldsooeiiiiiiii s 5-4
5-3 Example Translation Table Treecoviiiii i e 5-6
5-4 Example Translation Tree Layout in Memoryc.ocviiiiiiiiiiiiiic s 5-7
5-5 Example Translation Using Contiguous Memoryc.cocvviiiniiiiininnenns, 5-8
5-6 Example Translation Tree Using Indirect Descriptorsccooeviivieinnennn. 5-10
5-7 Example Translation Tree Using Shared Tables...............oocvvviiiiiiiiinnnnnn, 5-11
5-8 Example Translation Tree with Non-Resident Tablesocovnee. 5-12
5-9 Root Pointer Register FOrmMat.uvueiieiiiiii i eeeviaaes 5-14
5-10 Descriptor Type Determinationccoueiiiiiiii i 5-16
5-11 Example Translation Tree Using Different Format Descriptors 5-17
5-12 Short Format Table Descriptor.oouuiiiiiiii e 5-17
5-13 Long Format Table DescCriptorc.cvvviiiiiiiiiiiiiii e 5-18
5-14 Type-1 and Type-2 Short Format Page Descriptors..........ccccovveviiiieiinennes 5-18
5-15 Type-1 Long Format Page Descriptoro.vveiieiiiiie i i 5-18
5-16 Type-2 Long Format Page Descriptorooiiiiiiiiiiiiiii e 5-18
5-17 Short Format Indirect DeSCriPLOrvieiiiiiiiiiei it eeenes 5-19
5-18 Long Format Indirect DesCriptor........c.oouiiuiiiniii i e 5-19
5-19 Short Format Invalid Descriptorccvueiiiiiiiii e 5-19
5-20 Long Format Invalid DeSCriptor.....couuiuiieiiii et e 5-19
5-21 ATC Tag ENtry ..o e 5-23
L N O D T | - T 1 | V2% 5-23
5-23 Detailed Flowchart of MC68851 Table Search Operation..............ccovevvvnnnn 5-27
5-24 Table Search Initialization Detail..............oooiiiiiiiii e 5-28
5-25 Detail of ATC Entry Creation During Table Search................ccociiiinnnnt. 5-28

MOTOROLA MC68851 USER'S MANUAL
Xvi

LIST OF ILLUSTRATIONS

(Continued)

Figure Page
Number Title Number
5-26 Detail of Limit Check Procedurecccoiiiiiiiiiiiiiiiii i 5-29
5-27 Detailed Flowchart of Descriptor Fetch Operation............c.ccoooeiiiiiiiinnn... 5-30
6-1 Root Pointer Register (CRP, SRP, DRP) Formatc.ccoiiiiiiiiiiinannans 6-1
6-2 Cache Status Register (PCSR) Format.........c..ocoiiiiieiiiiiiiiiiiiiiiieneeas 6-4
6-3 Translation Control Register Format............ccoovviviiiiiiiii i 6-4
6-4 CAL and VAL Register FOrmatsccoviiiiiiiiiiiiii e 6-6
6-5 Stack Change Control Register Formatcooviiiiiiiiiiiiiiiaeens 6-7
6-6 Access Control Register FOrmatccooeviiiiiiiiiii e 6-7
6-7 PMMU Status Register Format...........cooiieiiiiiiii e 6-8
6-8 Breakpoint Acknowledge Data Register Formatccocceiiiiiiiinnnn... 6-10
6-9 Breakpoint Acknowledge Control Register...........coooviiiiiiiiiiiiiiiininnenes 6-10
6-10 Idle Format Frame.o e 6-13
6-11 Mid-Coprocessor Format Frameccoooiiiiiiiiiii i 6-13
6-12 Breakpoint Enabled Format Frame............ccoooiiiiiiii i 6-14
6-13 Reset Format Framecooiniiiiiii e 6-14
7-1 Logical Address Map Using Function Code Lookupccccvvviiininnennnne. 7-2
7-2 Example Translation Tree Using Function Code Lookupccoeeneee. 7-3
7-3 Example Logical Address Map with Shared Supervisor and User Spaces.... 7-4
7-4 Example Translation Tree Using S and WP Bits to Set Protection.............. 7-5

7-5 Example Translation Tree Structure for Two Tasks Sharing

a Common Supervisor Table..........coooiiii i 7-6
7-6 Example of Protection Mechanism Privilege Hierarchy 7-8
7-7 Example Logical Address Map for System Using Access Level Mechanism 7-9
7-8 Translation Table for Example Systemc.ccoiiiiiiiiiiiiiiiiiiieeees 7-10
7-9 Logical Address Map Using Access Level Information as

Address Informationcoociiiiiiii e 7-12
7-10 Logical Address Map Using Access Level Information as

Control Information Only ..o e 7-13
8-1 Breakpoint Acknowledge Cycle Address Encoding................coovviiiiinnnnnnn, 8-1
8-2 MC68851 Breakpoint RegiSters.coo.uiuiiiiiiiiie i 8-2
8-3 Breakpoint Acknowledge Data Register Formatcoovviiiiiiiininnn, 8-2
8-4 Breakpoint Acknowledge Control Register Format.................coovviiiiennnnn, 8-2
8-5 Instruction Breakpoint Flowchart ..o 8-3
8-6 Breakpoint Acknowledge Cycle — MC68851 Supplies Replacement Opcode 8-4
8-7 Breakpoint Acknowledge Cycle — Bus Error Asserted..............ccccevevnnnns 8-5
9-1 Coprocessor Interface Address Bus Encoding...........ccooviiiiiiiiiiiiinnnnnns 9-1
9-2 MC68851 Coprocessor Interface Register Map..........c.ccooviiiiiiiiiiiiiinnnnnns 9-2
9-3 Control CIR RegiStercvviiiiiiiiiiii e 9-4
94 Operand CIR Data AlIignment..........cccovviiiiiii i 9-6
9-5 Coprocessor Instruction General Format...........ccooviiiiiiiiiiiiiiiiiieeenens 9-8
9-6 MC68851 Instruction Operation Word........ccoovviiiiiiiiiiiiiiiii s 9-8
9-7 M68000 Coprocessor Response Primitive General Format........................ 9-9
9-8 Null Primitive FOrmat.......cooooiiiii e 9-10

) ; ===
MC68851 USER’S MANUAL MOTOROLA

Xvii

LIST OF ILLUSTRATIONS

(Continued)
Figure , Page
Number Title Number
9-9 Evaluate Address and Transfer Data Primitive Format............................. 9-10
9-10 Transfer Single Main Processor Register Primtiiveccoiiiiniinnen, 9-12
9-11 Supervisor Check Primitive FOrmat........ccoovviiiiiiiiiiiiiiiciic e 9-12
9-12 Evaluate and Transfer Effective Address Primitive Format........................ 9-12
9-13 Transfer Main Processor Control Register Primitive Format...................... 9-13
9-14 Take Pre-Instruction Exception Primitive Format.............ccovvvviiiiniinnnn.. 9-14
9-15 Pre-Instruction Exception Stack Frame............coooiiiiiiiiiiiiiiici e 9-14
9-16 Take Post-Instruction Exception Primitive Format.............ccoooeiiiiiinnnn. 9-14
9-17 Post-Instruction Stack Framecocoiiiiiiiiiiiii 9-15
9-18 PFLUSH and PFLUSHS Instruction Dialog........ccoovvviiiiiiiiiiii e 9-18
9-19 PFLUSHA and PFLUSHR Instruction Dialog........ccccooviiiiiiiiiiiii e 9-19
9-20 PLOAD Instruction Dialogcoviviviiiiiiiiiiiii e 9-20
9-21 PMOVE PMMUreg,(ea) Instruction Dialog..........cceivveiiiiiieiiiiiiiiiecaeans 9-21
9-22 PMOVE (ea),PMMUreg (Root Pointer or TC Registers).............cccceveenennn... 9-22
9-23 PMOVE (ea),PMMUreg (CAL, VAL, SCC, AC, PSR, PSCR, BADx,
and BACX REGISLEIS) ..ouuiitiitiiiiii i e 9-23
9-24 PTEST Instruction Dialogcoiviiiiiiiiiiii e 9-25
9-25 PVALID Instruction Dialog........ccvviiiiiiiiii i 9-26
9-26 Conditional Instruction Dialog.........ocviiviiiii i e 9-27
9-27 PSAVE INStruction Dialog.......oevviiiiiiiiie it i e eiae e iea e 9-27
9-28 PRESTORE INStruction Di@log i ..cvuvueeiiiniiiiiiieeiii e ean e e aneneaeas 9-28
9-29 Take Pre-Instruction Exception Dialog..........coooeiiiiiiiiiiiiiiie e 9-29
9-30 Take Post-Instruction Exception Dialog (PVALID Example) e 9-30
9-31 Take F-Line Emulation Exception Dialogc..ovevivieiiiieiineiiieiinennnes 9-31
9-32 PSAVE Format EXception Di@logcuveiriinineiiiriiiiiiineiieeieeeaieennn 9-31
9-33 PRESTORE Format Exception Dialogcocvveiiiiiiiiiiiiiieicene e 9-32
10-1 Access Level Control Interface Logical Address Bus Encoding 10-1
10-2 MC68851 Access Level Control Interface Register Map.............c.ccovevnennnn. 10-2
10-3 CALLM Instruction Dialog Flowchartccooiiiiiiiiiii e 10-5
10-4 Access Status Computation Flowchart...........cociiviiiiiiiiiiiiiiiieae e 10-7
10-5 RTM Instruction Dialog FIOWChart..............oouuiiiiiiiiiiieiiie e 10-8
12-1 Test Loads.......iiviiiiiiiiiii 12-3
12-2 Clock Input TimMing Diagramveuniienerinieeeieeeeneesie e e e e eeneeeaneens 12-3
12-3 MC68851 Initiated Read CycCle.........ovviniiiiiiiiii e Foldout-1
12-4 MC68851 Initiated Write CyCleouviriiniiiii i e e e Foldout-2
12-5 Synchronous Mode Translationc.viiiviiiiiiiii i ieaaaas Foldout-3
12-6 Logical Master Relinquish and Retry Timing Diagramc.coveieiennnns Foldout-4
12-7 Logical Bus Arbitration by Asynchronous Master Timing Diagram............. Foldout-5
12-8 Physical Bus Arbitration Timing Diagramcccoveieiieniiiinereiieieeeennnes Foldout-6
12-9 CPU Space Read From MC68851 or From Other Coprocessor
(CLI Asserted by MC68851) Timing Diagram...........ceccuvveniiveineenenennns Foldout-7
12-10 CPU Space Write to MC68851 or To Other Coprocessor
(CLI Asserted by MC68851) Timing Diagram.........c.eeenvivnienrivineneennns Foldout-8
12-11 Reset and Mode Select Timing Diagramcccevvuviiiiininiieniiinineneenn. Foldout-9
12-12 Drive Levels and Test Points for AC Specifications................cccociiiiinni, 12-11
MOTOROLA MC68851 USER'S MANUAL

xviii

LIST OF ILLUSTRATIONS

(Concluded)

Figure Page
Number Title Number
B-1 Example Simple MC68020/MC68851 Hardware Configuration................... B-2

B-2 Example MC68020/MC68851 Hardware Configuration with Single

Alternate Logical Bus Master (MC68442)............cccoovviiiiiiiiiiineinnnn.. B-4
B-3 Address/Data Bus Demultiplex Logic for Figure B-2..............ccocvvvininnn... B-5
B-4 Example MC68020/MC68851 Hardware Configuration with Logical

Address Space Device (MCB888T FPCP).......cc.vviviiiiiiiiiieiiaiiieanens B-8
B-5 Access Time Computation Diagramc.coeeviiieiiiiiiiiiiieniinieiiinenaans B-9
B-6 Access Time Compuation Diagram — MC68851 Initiated Accesses B-11
B-7 Example MC68020/MC68851 Hardware Configuration with

Logical Data Cacheccoiiiiiiiii B-14
B-8 Example Early-Termination Control Circuitccoevieiiiiiiiiiiie e, B-15
B-9 Example MC68020/MC68851 Hardware Configuration with

Physical Data Cache...........cooevuiiiiiii e B-18

MC68851 USER'S MANUAL MOTOROLA
Xix

LIST OF TABLES

Table Page
Number Title Number
341 M68000 Family Function Code AsSignMmentsc.oceveviiiiiiiiniiniinieneennnss 3-2
3-2 SIgNAl SUMIMAIY ... it e s e e e e eens 3-9
4-1 Coprocessor Data Bus Size Specification............cc.ccooiii, 4-3
4-2 Additional Decision Timeout Delaycieviiiiiiiiiiiiinii e, 4-3
4-3 DSACK Codes and Resultsoooooiiiiiiiiii 4-21
4-4 Size Output ENCOdings......oovviiiiiiiiiiiiin i 4-22
4-5 Address Offset ENCOdiNGS.......cciiiiiiiiiiiiiiiiiiiiiii e 4-22
4-6 MC68851 Internal to External Data Bus Multiplexerccoviiviiiiiinnennnns 4-22
4-7 Data Bus Activity for Byte, Word, and Long Word Portscccoeeiiininnns 4-25
4-8 DSACK, BERR, and HALT Assertion Results..............cccoviviiiiiiiniiiiens 4-40
9-1 MC68020 CPU Space Type Field Encodingscovvviviiiiiiiiiiiiie i 9-2
9-2 Coprocessor Interface Register Characteristics.............cooeviviiiiiiiiiiiiennennnn, 9-3
9-3 Null Primtive ENCOdingsoviviiiiiiiiiiiiiii e e 9-10
9-4 Coprocessor Valid Effective Address Codescevvvieiiiriiniiiiienneiinnnnnnn. 9-11
9-5 Evaluate Effective Address and Transfer Data Primitive Encoding................. 9-11
9-6 MC68851 Vector NUMDEISoviiiiiiiiiiiii i e 9-13
9-7 MCB8851 Primitive RESPONSES «..uvuvivitiiitititeieeiieiieeiinerteneieieereieaaeaanens 9-16
10-1 Access Level Control Interface Register Characteristics...............ccocviiinnnnnn. 10-3
10-2 Access Register Status Codeooviiiniiiiiiiiiiiiiiiiiici e 10-4
12-1 AC Electrical Specifications Reference Summaryc.cocviiiiiiiinnnn.. 12-10
A-1 Effective Addressing Mode Categories......... hetenesrtanerr rn et tane et raaeraraaa A-2
B-1 CPU-to-Memory Access Time Equationscceiiiiiiiininnn, B-10
B-2 Example CPU-to-Memory Access Time Calculationscoovviiiiiiinnnn. B-11
B-3 MC68851-to-Memory Access Time Equations...........coovveiviiiiiiiiiiiienienns B-12
B-4 Example MC68851-to-Memory Access Time Calculations............................ B-12
B-5 Ve and GND Pin Assignmentso.uiiiiiiiiiiiiiicei e B-19

MOTOROLA MC68851 USER'S MANUAL
XX

SECTION 1
INTRODUCTION

The MC68851 is a high-performance paged memory management unit (PMMU) designed to
efficiently support a demand paged virtual memory environment with the MC68020 32-bit
microprocessor. The MC68851 can also be used as a peripheral with other processors. Implemented
using VLSI technology and an HCMOS fabrication process, the MC68851 is optimized to perform
very fast logical-to-physical address translations, to provide a comprehensive access control and
protection mechanism, and to provide extensive support for paged virtual systems.

Operating as a coprocessor to the MC68020, the MC68851 provides a logical extension to program
control and processing abilities of the main processor. It does this by providing a set of translation,
protection, and breakpoint registers that control operation of the comprehensive memory
management mechanism. These registers are utilized in a manner that is analogous to the use
of any internal processor register.

The implementation of a comprehensive memory management system is facilitated by utilizing
the following MC68851 features:

® Fast Logical-to-Physical Address Translation

32-Bit Logical and Physical Addresses with 4-Bit Function Code

Eight Available Page Sizes Ranging from 256 to 32K Bytes

Fully Associative 64-Entry On-Chip Address Translation Cache

Address Translation Cache Support for Multi-Tasking

Hardware Maintenance of External Translation Tables and On-Chip Cache
MC68020 Instruction Set Extension and Instruction-Oriented Communcation Using M68000
Family Coprocessor Interface

Hierarchical Protection Mechanism with up to Eight Levels of Protection
Instruction Breakpoints for Software Debug and Program Control
Support for Logical and/or Physical Data Cache

Support for Multiple Logical and/or Physical Bus Masters

1.1 MC68851 OVERVIEW

The primary system functions of the MC68851 are to provide logical-to-physical address translation,
to monitor and enforce the protection/privilege mechanism, and to support the breakpoint
operations. The MC68851 also supports the M68000 Family coprocessor interface in order to
simplify processor/coprocessor communication.

1.1.1 Address Translation

Logical-to-physical address translation is the most frequently executed operation of the MC68851
so this task has been optimized and requires minimal processor intervention. The logical address
operated on by the MC68851 consists of the 32-bit incoming address and a 4-bit function code.

The MC68851 initiates address translation by searching for the page descriptor corresponding to
the logical-to-physical mapping in the on-chip address translation cache (ATC). The ATC is a very

.
MC68851 USER'S MANUAL MOTOROLA
1-1

fast 64-entry fully-associative cache memory that stores recently used page descriptors. If the
descriptor does not reside in the ATC then the bus cycle of the logical bus master is aborted and
the MC68851 executes bus cycles to search the translation table in physical memory. The translation
table is a data structure in main memory that, at its lowest level, contains the page descriptors
controlling the logical-to-physical address translation. After being located, the page descriptor is
loaded into the ATC and the logical bus master is allowed to retry its bus cycle, which is then
correctly translated.

1.1.2 Protection Mechanism

The MC68851 hierarchical protection mechanism provides cycle-by-cycle examination and
enforcement of the access rights of the currently executing process. There may be up to eight
distinct levels in the privilege hierarchy and these levels are encoded in the upper three bits of
the incoming logical address. Privilege mechanisms of zero, two, or four levels can also be
implemented with the MC68851 in which case the access level encoding is contained in the upper
zero, one, or two logical address lines, respectively. The MC68851 compares these bits against
the current access level and determines whether the bus cycle is requesting a higher privilege
than allowed. In the case where a privilege violation is detected, the MC68851 terminates this
access as a fault.

The MC68851 completely supports the MC68020 module call and return functions (CALLM/RTM
instructions), which include a mechanism to change privilege levels during module operations.

1.1.3 Breakpoints

The MC68851 provides a breakpoint acknowledge facility to support the MC68020 and other
processors with on-chip caches. When the MC68020 encounters a breakpoint instruction it executes
a breakpoint acknowledge cycle by reading from a predetermined address in the CPU address
space. The MC68851 decodes this address and responds by either providing a replacement opcode
for the breakpoint opcode and asserting the data transfer and size acknowledge outputs or by
asserting bus error to initiate illegal instruction exception processing. The MC68851 can be
programmed to signal the illegal instruction exception on every breakpoint or to provide the
replacement opcode n times (1 < n < 255) before signaling the exception.

1.1.4 M68000 Family Instruction Set Extensions
The MC68851 implements an extension to the M68000 Family instruction set using the coprocessor
interface. These instructions provide control functions for:

® Loading and storing of MMU registers,

® Testing access rights, and conditionals based on the results of this test, and

® MMU control functions.

The instruction set extensions are as follows:

PMOVE Moves data to/from MC68851 register.

PVALID Compares access rights of a logical address against the current access level and
traps if address requires a higher privilege than allowed. This instruction can be
used by a routine to verify that an address passed to it by a calling routine is a valid

address.

PTESTR Searches the translation tables and loads the status and access rights information
of a logical address used for a read cycle into the MC68851 status register. This

MOTOROLA MC68851 USER'S MANUAL
1-2

instruction allows the operating system to quickly determine the cause of faults
generated by a read cycle from a particular logical address.

PTESTW Searches the translation tables and loads the status and access rights information
of a logical address used for a write access into the MC68851 status register. This
instruction allows the operating system to quickly determine the cause of faults
generated by a write cycle to a particular logical address.

PLOADR Searches translation tables and loads the ATC with a translation for the specified
logical address. The history information in the external translation tables is updated
to reflect that the physical page corresponding to the logical address has been used.

PLOADW Searches translation tables and loads the ATC with a translation for the specified
logical address. The history information in the external translation tables is updated
to reflect that the physical page corresponding to the logical address has been
modified.

PFLUSH Flushes translation cache entries by logical address, function code, or function code
and logical address. The PFLUSH instructions allow the operating system to easily
remove entries from the ATC after making modifications to the external translation
tables.

PFLUSHA Flushes all entries from the translation cache.
PFLUSHR Flushes root pointer table and translation cache entries by root pointer.

PFLUSHS Flushes globally shared entries from the ATC by logical address and/or function
code.

PSAVE Saves the internal state of the MC68851 in order to support fast context switching
and MC68020 virtual memory/virtual machine capabilities.

PRESTORE Restores the internal state of the MC68851 stored by the PSAVE instruction.

PBcc Branches conditionally on MC68851 condition. The conditional instructions provide
the operating system with a means by which program flow can be controlled by
MC68851 conditions.

PDBcc Tests MC68851 condition, decrements a CPU register, and branches.
PScc Sets operand according to MC68851 condition.

PTRAPcc Traps on MC68851 condition.

1.1.5 The Coprocessor Concept

The M68000 Family coprocessor interface is an integral part of the design of the MC68020 and
the MC68851. The coprocessor interface allows the execution of special purpose instructions that
are not executable by the processor. Each processor in a system has an instruction set that reflects
its special function whether it be floating-point math, memory management, etc. These instructions
may be executed merely by placing the instruction opcode and parameters in the MC68020
instruction stream. The MC68020 detects the coprocessor instruction, initiates bus communication
with the registers of the target coprocessor to pass the instruction, and tests for conditions

MC68851 USER'S MANUAL MOTOROLA
1-3

requiring further action. The MC68020 performs activity to support the execution of the instruction
1 (e.g., address calculation or data transfer) at the request of the coprocessor.

The interchange of information and the division of responsibility between the main processor
and the coprocessor are controlled by the coprocessor interface and this process is completely
transparent to the user. The addition of a coprocessing unit to an MC68020 system supplements
the instruction set executable by the processor. The register set of the coprocessor is perceived,
by system programmers, to be a direct extension of the main processor registers.

The MC68851 functions as a coprocessor in systems where the MC68020 is the main processor
via the M68000 coprocessor interface. It can function as a peripheral in systems where the main
processor is an MC68010, MC68012, or any other processor with virtual memory capabilities.

The MC68851 is a DMA-type coprocessor that uses a subset of the general purpose coprocessor
interface supported by the M68000 Family. Features of the interface implemented in the MC68851
are as follows:

® The main processor and the MC68851 communicate via standard bus cycles.

® The main processor and MC68851 communications are not dependent upon the instruction
sets of the individual devices (e.g., instruction pipes or caches, addressing modes).

® The main processor and the MC68851 may operate at different clock speeds.

® MC68851 instructions may utilize any addressing modes provided by the main processor;
all addresses are calculated by the main processor at the request of the coprocessor.

o All data transfers (except translation table searches in physical memory) are performed by
the main processor at the request of the MC68851; thus the memory management mechanism
functions as if the MC68851 instructions are executed by the main processor.

® Coprocessor detection of exceptions that require a trap to be taken are serviced by the main
processor at the request of the MC68851; thus exception processing functions as if the
MC68851 instructions were executed by the main processor.

® Support of virtual machine/virtual memory systems is provided via the PSAVE and PRESTORE
instructions.

® Up to eight coprocessors may reside on the same local bus simultaneously, although only
one of those may be an MC68851.

1.2 HARDWARE OVERVIEW

The MC68851 is a high-performance paged memory management unit designed to interface to
the MC68020 as a coprocessor. This device fully supports the MC68020 virtual machine architecture,
and is implemented in HCMOS, a low-power, small geometry process. This process allows both
CMOS and HMOS (high density NMOS) gates to be combined on the same device. CMOS structures
are used where speed and low power are required, and HMOS structures are used where minimum
silicon area is desired. Using this technology enables the MC68851 to be very fast while consuming
less power, and having a smaller die size than is feasible with older technologies.

The MC68851 can also be used as a peripheral processor in systems where the MC68020 is not
the main processor (e.g., the MC68010 and MC68012). The configuration of the MC68851 as a
peripheral processor or coprocessor may be completely transparent to user mode software (i.e.,
the same user object code may be executed in either configuration with appropriate emulation
software for the coprocessor interface).

The architecture of the MC68851 appears to the user as a logical extension of the M68000 Family
architecture. Because of the coprocessor interface, the MC68020 programmer can view the MC68851
registers as though the registers were resident in the main processor. Thus, the MC68020/MC68851

MOTOROLA MC68851 USER'S MANUAL
1-4

device pair appears to be one processor that has registers for data storage, address pointers,
general control, translation and protection control, and breakpoint functions.

The MC68851 programming model is shown in Figure 1-1, and consists of the following:

Three 64-bit root point registers, one each pointing to the root of user, supervisor, and DMA
translation tables (CRP, SRP, and DRP).

A 32-bit translation control register containing configuration information for the MC68851
(TC).

A 16-bit cache status register that provides information concerning the MC68851 internal
translation cache (PCSR).

A 16-bit status register that contains status and access rights information for a given logical
address (PSR).

Three 8-bit protection control registers used in the privilege checking mechanism (CAL, VAL,
and SCC).

A 16-bit access control register that contains configuration information for the privilege
mechanism (access control — AC).

63 32
CPU ROOT
POINTER
31 0
MA ROOT
0 ADDRESS
POINTER TRANSLATION
CONTROL
REGISTERS
SUPERVISOR ROOT
POINTER
[TRANSLATION CONTROL]
15 0
| PMMU CACHE STATUS (PCSR)] STATUS
INFORMATION
[PMMU STATUS (PSR)] REGISTERS
7 0
CAL [VAL] [SCC PROTECTION
MECHANISM
CONTROL
[ACCESS CONTROL | REGISTERS
BADO BACO
BAD1 BACT
BAD2 BAC2
BAD3 BAC3 BREAKPOINT
CONTROL
BAD4 BAC4 REGISTERS
BADS BACS
BADG BAC6
BAD7 BACT

Figure 1-1. MC68851 Programming Model

MC68851 USER'S MANUAL ' MOTOROLA

1-6

o Eight 16-bit breakpoint acknowledge data registers that provide replacement opcodes during
MC68020 breakpoint acknowledge cycles (BAD0O-BAD?7).
® Eight 16-bit breakpoint acknowledge control registers that contain enable and count functions
for the instruction breakpoint capabilities of the MC68020 and MC68851 (BAC0O-BAC7).

As shown in Figure 1-2, the MC68851 can be viewed as being composed of eight major elements:
the bus interface (BIU), the address translation cache (ATC), the root pointer table (RPT), the
execution unit (EU), the control store, the control logic, the address translation sense circuit, and
the register decode logic.

The address translation cache contains 64 recently-used translation descriptors and the control
circuitry required to monitor access rights and to create new ATC entries. The ATC itself is
composed of three major components: the content-addressable-memory (CAM) containing the
logical address and access rights information to be compared against incoming logical addresses,
the physical address store that contains the physical address associated with a particular CAM
entry, and the control section containing the entry replacement circuitry that implements the
replacement algorithm (a variation of the least-recently-used algorithm).

The RPT contains a cache that stores the eight most recently used values of the CPU root pointer
and a task alias that is associated with each of the stored values. The root pointer caching and
task alias maintenance performed by the RPT allows translation descriptors for multiple tasks to
reside in the ATC simultaneously.

The bus interface unit controls the interface to both the logical and physical buses. Included in
the BIU are the buffers for both the logical and physical address buses and the hardware necessary
to perform bus cycles in the physical address space. Also included in the BIU are the bus arbitration
state machines for both the logical and physical buses.

BUS INTERFACE
ADDRESS TRANSLATION UNIT
CACHE

ADDRESS TRANSITION
SENSE

CONTROL

Logic CONTROL
EXECUTION STORE
UNIT

ROOT POINTER TABLE

REGISTER
DECODE

Figure 1-2. MC68851 Simplified Block Diagram

MOTOROLA MC68851 USER'S MANUAL
1-6

The register decode section contains the logic required to monitor the logical bus for accesses
to its register set internally such that no external decoding of addresses is required.
The address transition sense circuitry continuously monitors the logical address bus to detect

any transition in one or more of the logical address inputs. When a transition is detected, the

ATC and access rights checking circuits in the ATC initiate an address translation. Monitoring for

an address transition allows the ATC to begin address translation as soon as an address is
presented by the logical bus master rather than waiting for the assertion of one of the logical bus

control strobes, thereby optimizing translation performance.

The control store section contains the two-level microcode store of the MC68851 and the address
generation circuitry required to correctly sequence the control store during table search operations
and execution of the MC68851 instruction set.

The control logic section provides residual decode for the control store and register decode
outputs, and it drives control points in the execution unit (EU). The EU performs address calculations
for accessing the translation tables, contains the MC68851 register set, and controls table search
activities and instruction execution.

1.2.1 Coprocessor Interface

The MC68851 contains eleven coprocessor interface registers (CIRs) that are memory-mapped
into the M68000 CPU space. The M68000 Family coprocessor interface is implemented as a
protocol of reading and writing these registers by the main processor. The MC68020 implements
this general purpose coprocessor interface protocol in hardware and microcode. The MC68851
implements a subset of the general purpose protocol.

When the MC68020 detects an MC68851 instruction, the MC68020 writes the instruction to the
appropriate CIR. The register decode section decodes the access from the logical address bus
and selects the required register in the EU. The MC68020 then reads the response CIR, which in
conjunction with the control store, provides requests for any further action required of the MC68020
on behalf of the MC68851. For example, the response may request that the MC68020 fetch an
operand from the evaluated effective address and transfer the operand to the operand CIR.

The only difference between a coprocessor bus transfer and any other bus transfer is that the
MC68020 issues a function code and address bus encoding that indicates the CPU address space
during the cycle. Thus, the memory-mapped coprocessor interface registers do not infringe upon
program and data address spaces. When accessing the MC68851, the MC68020 places a coprocessor
ID field of 0 (zero) onto three of the upper address lines in order to distinguish the MC68851 from
other coprocessors in the system (refer to SECTION 9 COPROCESSOR INTERFACE).

Since the coprocessor interface protocol is based solely on bus transfers, it is easily emulated by
software when the MC68851 is used as a peripheral with any processor capable of memory-
mapped I/O over an M68000-type bus.

The M68000 Family coprocessor interface is an integral part of the MC68851 and MC68020 design,
with the interface tasks shared between the two. The interface is fully compatible with all present
and will maintain compatibility with all future M68000 Family products. Functionality required to
execute coprocessor instructions is partitioned such that the MC68020 does not have to decode
coprocessor instructions, and the MC68851 does not have to duplicate main processor functions
such as address calculation for data transfers.

MC68851 USER'S MANUAL MOTOROLA
1-7

This partitioning provides an extension of the instruction set that permits MC68851 instructions
to utilize all MC68020 addressing modes and to generate execution time exception traps. Thus,
from the programmer’s view, the CPU and coprocessor appear to be integrated onto a single
chip. The MC68020 single-step (trace) mode is fully supported by the MC68851 and the M68000
Family coprocessor interface.

The MC68851 initiates bus cycles required to search the translation tables in physical memory in
order to load descriptors into the address translation cache, to check privilege information contained
in the descriptors, and to maintain descriptor history information. The MC68851 does not initiate
bus cycles to fetch instructions or to manipulate any data other than the descriptor operations
specified above. The MC68020 is responsible for fetching instructions, transferring them to the
MC68851, and performing any other actions related to these instructions with the exception of
descriptor manipulation.

1.2.2 Access Level Control Interface

For operations initiated by the MC68020 CALLM and RTM instructions, the MC68851 can be
accessed via a set of access level control registers (ALCRs) that participate in the protection
mechanism supported by the MC68020 and the MC68851. Similar to the CIRs of the coprocessor
interface, the ALCRs are memory-mapped into the M68000 CPU space and accesses to these
registers are detected by decode logic in the BIU that selects the appropriate registers and control
logic.

Refer to SECTION 10 ACCESS LEVEL CONTROL INTERFACE for further details on this interface.

1.2.3 Breakpoint Acknowledge Interface

In response to breakpoint acknowledge cycles, one final method by which the MC68851 can be
accessed is via the breakpoint acknowledge interface that supports the instruction breakpoint
capabilities of the MC68020. When a breakpoint acknowledge cycle in the CPU space is observed
by the register decode section, the appropriate breakpoint acknowledge control and data registers
are selected in the EU. The EU, under control from the control store, then provides the correct
MC68851 response to the cycle.

For further information on the MC68851 breakpoint operations refer to SECTION 8 BREAKPOINTS.

1.2.4 Bus Operations

In addition to controlling access to the MC68851 from the logical bus, the BIU also contains the
circuitry required to execute bus cycles in physical memory in order to access mapping information
located in the translation tables. The physical bus controller performs accesses in memory following
the standard protocol of the M68000 Family bus definition.

The BIU also contains arbiters to control and/or monitor mastership of both the logical and physical
buses. The MC68851 allows for multiple logical and/or physical alternate bus masters.

The bus interface of the MC68851 is described in detail in SECTION 4 BUS OPERATIONS.

MOTOROLA MC68851 USER'S MANUAL
1-8

SECTION 2
OVERVIEW OF SYSTEM OPERATION

This section provides a general overview of the MC68851 in a system.

2.1 SYSTEM CONFIGURATION

In a simple microprocessor-based system, the CPU is connected directly to memory, as shown
in Figure 2-1. In this system, no memory mapping or protection functions are provided and the
addresses generated by the CPU directly identify the physical locations to be accessed. The number
of physical devices present in the system uniquely determines the range of the logical address
space of the processor that is useable. Any location in the address space that does not contain
a device cannot be used by the CPU. This type of system is unsuitable for execution of multiple
concurrent tasks since there is no mechanism to protect the memory of one task from corruption
by any other task. It is also unsuitable for hosting virtual systems that allow uniform use of an
address space that is larger than the address space represented by the devices present, or provide
separate unique address spaces for each task in the system.

The MC68851 is designed to provide the mapping and protection facilities needed to construct a
multi-tasking, demand-paged virtual system. In order to build such a system, the address bus is
divided into two sections separated by the MC68851, as shown in Figure 2-2. The ‘logical’ address
is output by the processor and is monitored by the MC68851 on its logical address inputs. The
MC68851 performs translation and privilege checking on the logical address and, if valid, outputs
the translated ‘physical’ value on the physical address bus where it is used to access memory or

BUS ARBITRATION

<

BUS CONTROL/RESPONSE
K LOGIC

FUNCTION CODE

CPU MEMORY

ADDRESS BUS

DATA BUS

VIRV IRV IR VIR Y:

G

Figure 2-1. Simple System Block Diagram

MC68851 USER'S MANUAL MOTOROLA
2-1

BUS CONTROL/RESPONSE
< Lo6IC)

LOGICAL BUS PHYSICAL BUS
ARBITRATION ARBITRATION

) N GE—

FUNCTION CODE

cPU > MC68851 MEMORY

LOGICAL ADDRESS PHYSICAL ADDRESS
BUS > BUS >
DATA LATCH

BUS
- —
SHARED ADDRESS BUS (AQ-A7)

Figure 2-2. MC68851 Memory Managed System Simple Block Diagram

peripheral devices. Using this configuration, all accesses to physical devices are controlled by the
MC68851; tasks can be prevented from accessing the resources owned by other tasks, and, under
control of an operating system with virtual capabilities, the logical-to-physical mapping functions
of the MC68851 allow tasks to utilize the entire address space of the CPU without knowledge of
the physical attributes of the system.

2.2 ADDRESS TRANSLATION

The address translation facility of the MC68851 is a comprehensive mechanism that provides
logical-to-physical mapping of up to a 4-gigabyte logical address space with no software assistance
from the CPU. The address translation mechanism is fully implemented in hardware in order to
minimize the system performance penalty for the mapping functions. The address translation
mechanism provides full logical-to-physical mapping in less than one clock cycle for a very high
percentage of all bus cycles. The functional timing for these translations is shown in Figure 2-3.

2.2.1 Address Translation Cache

In order to perform the translation functions as shown in Figure 2-3, the MC68851 contains a
high-speed memory that stores recently used logical-to-physical address translations. This mem-
ory, the address translation cache (ATC), is a 64-entry, fully-associative array containing logical
addresses and their corresponding physical translations. When a bus cycle is initiated by a logical
master, the logical address and function code is input to the ATC where it is compared against
all current entries. If one of the ATC entries matches (there is a ‘hit’), the ATC drives the stored
physical address onto the physical address bus. If the MC68851 detects no exceptional conditions
(for example, write violation, . . ., etc.), it then asserts the physical address strobe (PAS).

In addition to the address mappings, each entry in the ATC also contains bits that describe the
protection information for that mapping, a data cache inhibit indicator, a lock-entry flag, as well
as history information used by the MC68851.

MOTOROLA MC68851 USER'S MANUAL
2-2

S0 S2 Sw S4 S0

wx /N N N O
LOGICAL X
ADDRESS
LOGICAL
ADDRESS \ /

STROBE

PHYSICAL K X
ADDRESS

PHYSICAL

ADDRESS \ /

STROBE

Figure 2-3. MC68851 Address Translation Functional Timing Diagram

In order to improve utilization of the MC68851 address translation cache in a multi-tasking en-
vironment, translation descriptors for multiple tasks can reside in the ATC simultaneously. In order
to control this, the logical portion of each ATC entry has three additional bits, a ‘task alias’, that
is included in the compare operation to determine if a cache hit has occurred. The task alias
identifies one of eight tasks that may have translation descriptors resident in the ATC simulta-
neously and is used as an extension to the logical address.

The task alias mechanism works in conjunction with the root pointer caching function of the root
pointer table (RPT). The CPU root pointer register of the MC68851 contains the address, in physical
memory, of the root of the translation table for the currently executing task. The RPT is a table
of eight recently-used CPU root pointers. Each entry in the RPT has a unique task alias associated
with it. When the operating system initiates a new task, or restarts a suspended one, it writes a
value to the CPU root pointer register identifying the location of the translation table for that task.
When this value is written, it is compared against entries currently in the RPT. If no match is
found, then a new entry is made in the RPT and the task alias associated with that entry is assigned
to the current task. If the RPT entry that is written has been previously assigned to another task,
the MC68851 automatically flushes all entries in the ATC that are currently identified with this
task alias. If the value loaded into the CPU root pointer register is already in the RPT, then the
previous task alias is reused and none of the ATC entries are flushed.

2.2.2 Address Translation Tables

When a logical bus master initiates a cycle that does not have a corresponding translation resident
in the ATC, the MC68851 performs bus operations to load the mapping for that cycle from the
translation tables. To perform this search operation, the MC68851 simultaneously aborts the
logical bus cycle, signals the master to retry the operation, and requests mastership of the logical
bus. Upon receiving indication that the logical bus is free, the MC68851 completes the arbitration
sequence, assumes mastership of the bus, and, after loading the required translation descriptor,
returns control of the bus to the logical master which then retries the previous bus cycle.

The translation tables supported by the MC68851 have a tree structure. The root of a translation
table tree is pointed to by one of three root pointer registers: CPU, supervisor, or DMA. Table
entries at the higher levels of the tree (pointer tables) contain pointers to other tables. Entries at

MC68851 USER'S MANUAL MOTOROLA
2-3

the leaf level (page tables) contain page descriptors. All addresses contained in the translation
table entries are physical addresses.

Figure 2-4 illustrates the structure of the MC68851 translation tables. Several determinants of the
detailed table structure are software selectable. The first level of lookup in the table normally uses
the function codes as an index, but this may be suppressed if desired. The logical address can
be between 17 and 32 bits (inclusive). The number of levels in the table indexed by the logical
address can be set from one to four, and up to 15 logical address bits can be used as an index
at each level.

The first step in a normal table search operation by the MC68851 is to perform an index into the
translation table by the function code. The index by function code is performed by adding (un-
signed) the function code value generated by the current logical bus master to the value contained
in the appropriate root pointer register for that access. The MC68851 uses the sum of this operation
as the physical address to read the pointer at the first level of the translation table. The pointer
read during this operation is used as the base address for the next table search. Until a page
descriptor is encountered, subsequent descriptor fetches by the MC68851 operate similiarly: a
table pointer is fetched and a specified field of the logical address (the logical address that caused
the table search to be initiated) is added (unsigned) to generate the physical address for the next
fetch. When a page descriptor is encountered, an entry is made in the ATC and the table search
operation is terminated.

2.2.3 Protection Mechanism

The MC68851 supports a comprehensive protection mechanism that facilitates implementation
of fully protected systems. In addition to the option of enforcing the distinction of user and
supervisor modes normally found in an M68000 system, the MC68851 also supports a mechanism
that provides finer granularity of protection within the user address spaces.

The access level mechanism subdivides the logical address spaces of user mode operations into
one, two, four, or eight level(s) of privilege. Routines operating at different access levels can have
different privileges to memory and a facility is provided to closely control changes in access level.

ROOT POINTER =i

POINTER
TABLES

W
}..

l l PAGE

[TABLES

Figure 2-4. MC68851 Translation Table Tree Structure

MOTOROLA MC68851 USER'S MANUAL
2-4

The access level for a bus cycle is encoded in the highest order (zero, one, two, or three) bits of
the logical address generated by the CPU. The access level mechanism, when enabled, compares
this value against the current access level as specified in the CAL register. The current access
level specifies the highest privilege level that a task may assume at that time. If the privilege level
value presented by the bus cycle is greater (less privileged) than the current level allowed, then
the cycle is requesting a privilege in excess of its rights and is aborted by the MC68851.

In the MC68851 protection scheme, the privilege associated with a task is specified by its access
level. Smaller values for access levels represent higher privilege levels. In a system using eight
access levels, level zero is the highest privilege in the hierarchy and level seven is the lowest.
The privilege level associated with a particular page is specified by its read access level, write
access level, write protect, and supervisor attributes.

In order to access code and/or data that requires a higher level of privilege than is possessed by
the current task, the MC68851 supports the MC68020 module call (CALLM) and return (RTM)
instructions that allow a less privileged routine to transfer execution control to a module operating
at a higher level and to return from that module after completion of the module function. When
the MC68020 executes a CALLM instruction that requests an increase in access level, the MC68020
automatically communicates with the MC68851 access level protection mechanism via access
level control CPU space cycles, to determine if the requested change is valid. The MC68851 checks
the request against a module descriptor for that operation and indicates the validity of that request
to the MC68020. The RTM instruction operates similarly except that control is always passed from
a higher privileged task to a less privileged one.

MC68851 USER'S MANUAL MOTOROLA
2-5

MOTOROLA MC68851 USER'S MANUAL
2-6

SECTION 3
SIGNAL DESCRIPTION

This section is a brief description of the input and output signals of the MC68851 paged memory
management unit. The signals are functionally grouped as shown in Figure 3-1. Each signal is

explained in a brief paragraph with reference (if applicable) to other sections that contain more

detailed information.

NOTE
The terms assertion and negation are used extensively. This is done to avoid confusion
when dealing with a mixture of ‘active low’ and ‘active high’ signals. The term assert
and assertion is used to indicate that a signal is active or true, independent of whether
that level is represented by a high or low voltage. The term negate or negation is used
to indicate that a signal is inactive or false.

— RAMIC
1AS K LOGICAL ADDRESS LA8-LA31
- PAS
g D_S P
i B R/W PHYSICAL ADDRESS PAS-PA31
CONTROL - - ‘
e DSACKI
_ DSACKD _|
— BERR
aus = vews K wnoveor > rorss
EXCEPTION — HALT
CONTROL RESET PAGED
L MEMORY
MANAGEMENT DATA BUS D0-D31
- UNIT
B LN Siz0
PHYS! —
sgﬁé - - PBG M TRANSFER
ARBITRATION PBGACK —> Size
— [.
[ABRL ASYRC
L [BRO
- — CLOCK
LOGICAL BUS _| [
ARBITRATION 4 1BGO Ve (8
N 4 BGACK GND (8)
Figure 3-1. Functional Signal Groups
MC68851 USER’'S MANUAL MOTOROLA

3-1

3.1 LOGICAL ADDRESS BUS (LA8 through LA31)

These inputs are the lines on which the MC68851 accepts a logical address for translation or for
internal operations. The logical address bus should be connected to the address outputs of all
logical bus masters.

If the logical address is less than 32 bits (logical address space <232 bytes) as determined by the
translation control register (refer to 6.1.5.5 INITIAL SHIFT), the unused bits are ignored and should
be tied to a constant voltage level (either Vcc or ground).

3.2 PHYSICAL ADDRESS BUS (PA8 through PA31)

These three-state outputs provide the physical address for both address translations and MC68851-
initiated bus operations.

3.3 SHARED ADDRESS BUS (A0 through A7)

The use of these three-state, bidirectional lines is shared between the functions of the logical and
physical buses. When the MC68851 is performing address translations, these signals are input in
order that the MC68851 be able to monitor the entire logical address in the event that a CPU
space cycle accesses one of its registers. When the MC68851 is the bus master, these pins output
the low order eight bits of the physical address. With the inclusion of A0 through A7, both the
logical and physical buses have a 32-bit (4 gigabyte) linear addressing range.

3.4 FUNCTION CODE (FCO through FC3)

These three-state, bidirectional signals indicate the address space of the current bus cycle. When
the MC68851 is performing translations, these signals provide the address space being accessed
by the current logical bus master. The MC68851 uses the function code associated with a bus
cycle as an extension to the logical address when creating entries in the address translation cache.
The function code may also be used as an index from the root pointer in the first level of a
translation table search.

The 4-bit function code consists of the three function code outputs of the M68000 Family processor
and a fourth bit that indicates that a DMA access is in progress. The M68000 address spaces
generated by the function codes are shown in Table 3-1.

When the MC68851 is bus master it drives the function code pins as outputs with a constant value
of FC3—-FCO = $5, indicating the supervisor data space.

Table 3-1. M68000 Family Function Code
Assignments

FC3-FCO Cycle Type
$0 (Undefined, Reserved for Motorola Use)
$1 User Data Space
$2 User Program Space
$3 (Undefined, Reserved for User Definition)
$4 (Undefined, Reserved for Motorola Use)
$5 Supervisor Data Space
$6 Supervisor Program Space
$7 CPU Space
=$8 (Alternate Bus Master, Reserved for User Definition)

MOTOROLA MC68851 USER'S MANUAL
3-2

3.5 DATA BUS (DO through D31)

These three-state bidirectional signals provide the general purpose data path between the MC68851
and other devices. This bus may be dynamically sized through use of the DSACKx signals, trans-
ferring 8, 16, 24, or 32 bits of information during a bus cycle. The most significant byte of the
data bus is D24 through D31.

In systems that do not use the MC68020 (or any other 32-bit CPU) as the main processor, the
width of the data bus used to communicate between the processor and the MC68851 may be
fixed at 16, or 8 bits (refer to 4.1.2.2 BUS SIZE). In such systems, the dynamic bus sizing mechanism
still functions but the maximum amount of data transferred in a single cycle is limited to the bus
size. In either case, the processor data bus is aligned towards the high order portion of the MC68851
data bus —that is, an 8-bit master is connected to D24 through D31 and a 16-bit master is connected
to D16 through D31.

When the RESET signal is asserted, the MC68851 inputs configuration information from the least
significant byte of the data bus (D0-D7). This information determines the bus size for coprocessor
operations, sets the ‘decision time’ for determining whether or not an ATC hit has occurred,
determines whether the CLI signal is asserted for all MC68851-initiated bus operations, and sets
the timing for PAS assertion. The configuration operation is detailed in 4.1 RESET OPERATION.

3.6 TRANSFER SIZE (SIZ0, SIZ1)

These three-state, bidirectional signals are used in conjunction with the dynamic bus sizing ca-
pabilities of the MC68851. When the MC68851 is the bus master, the SIZE signals are driven as
outputs and when accessed as a slave, these signals are inputs. Otherwise, the size signals are
ignored. Regardless of the state (input or output) of these signals, they indicate the number of
bytes remaining to be transferred during the current operand cycle.

An operand cycle is a bus cycle or sequence of bus cycles required to transfer a complete operand.

The encodings for the SIZE signals are shown in Table 4-4.

3.7 BUS CONTROL SIGNALS

The Iogical and physical bus control signals are described in the following paragraphs.

3.7.1 Read-Modify-Write (RMC)

This three-state, bidirectional signal is used to indicate that the bus cycle in progress is an indi-
visible read-modify-write cycle. This signal is asserted for the duration of the read-modify-write
sequence and should be used as a bus lock to ensure integrity of operation of these cycles.

When the MC68851 is translating addresses, the assertion of RMC by the logical bus master
indicates that the master is performing a read-modify-write cycle and that a write operation to
the same operand is likely to follow. When RMC is asserted during a read cycle, the MC68851
performs access and privilege checking for that cycle as if it were a write cycle in order that the
operation not be aborted after having partially completed the write portion of the cycle. In addition,
physical bus arbitration is suspended once the physical bus cycle for the address translation is
initiated.

When the MC68851 is bus master, RMC may be asserted to indicate that the operation in progress
should not be interrupted by other bus traffic and, hence, all arbitration for the physical bus is
suspended by the MC68851 when this signal is asserted.

MC68851 USER'S MANUAL MOTOROLA
3-3

3.7.2 Logical Address Strobe (LAS)

The assertion of this input indicates that the logical bus master has driven the logical address
bus, function code, and R/W valid. When the MC68851 is being accessed as a slave, the assertion
of LAS also indicates that the SIZE signals are driven valid.

3.7.3 Physical Address Strobe (PAS)

This three-state output is asserted when the MC68851 has driven a valid address on the physical
address bus. When the MC68851 is master of the logical bus, the assertion of PAS also indicates
that the function code, R/W, and SIZE signals are valid.

3.7.4 Data Strobe (DS)

This bidirectional, three-state signal is used to control the flow of information on the data bus.

When the MC68851 is selected by the CPU, DS is an input that indicates that the MC68851 should
drive the data bus on a read cycle, or that the CPU has placed valid data on the bus during a
write cycle.

When the MC68851 is the bus master, DS indicates that the slave device should drive the data
bus in the case of a read cycle, or that the MC68851 has placed valid data on the bus in the case
of a write cycle.

The data strobe is ignored for the purposes of address translation.

3.7.5 Read/Write (R/W)

This bidirectional, three-state signal is used to indicate the direction of transfer for a bus cycle.

When the MC68851 is translating addresses, the state of the R/W signal is input in order to support
write-protection checking.

When the MC68851 register set is accessed by the CPU for an operation (refer to 4.2.3.5 TRANS-
LATION OF CPU SPACE ACCESSES), the R/W output by the CPU determines the direction of data
transfer. If this signal is asserted (low) the MC68851 latches data from the data bus at the termation
of the cycle. If the signal is negated (high), the MC68851 outputs data on the data bus and signals
that the transfer is complete.

When the MC68851 is bus master, the R/W signal is driven as an output. A high level indicates a
read from an external device, a low indicates a write to an external device.

3.7.6 Data Transfer and Size Acknowledge (DSACKO, DSACK1)

These bidirectional, three-state signals, whether used as inputs or outputs, are used to normally
terminate a bus cycle and to indicate the port size of the responding device.

When the MC68851 register set is accessed by the CPU, the DSACKXx signals are output to indicate
that valid data has been or will be (see below) placed on the data bus for a read cycle, or that
data has been accepted from the data bus for a write cycle. Note that the relationship between
DSACKx and data is dependent on the operating mode of the MC68851. When operating in the
synchronous mode, the MC68851 drives the data bus on the same clock edge that DSACKXx is
asserted. Otherwise, the MC68851 drives the data bus two clock periods before asserting the
DSACKX signals.

MOTOROLA MC68851 USER'S MANUAL
3-4

The DSACKXx signals are monitored as inputs when the MC68851 arbitrates for the logical bus.
After receiving a bus grant from the CPU, the MC68851 waits until LBGACK, LAS, and both DSACKx
signals are negated before asserting logical bus grant acknowledge in order to ensure that the
previous slave device has released connection from the bus.

When the MC68851 is executing bus cycles as the physical bus master, the DSACKx signals are
inputs to indicate that a data transfer is complete and the port size of the external device being
accessed. During a read cycle, when the MC68851 recognizes DSACKX, it latches the data and
then terminates the bus cycle; during a write cycle, when the MC68851 recognizes DSACKXx, the
bus cycle is terminated. Refer to 4.3.1.1 DYNAMIC BUS SIZING for further information on DSACKx
encodings.

When operating as bus master, the MC68851 synchronizes the DSACKx inputs and allows skew
between the two inputs of up to one quarter of a clock.

3.7.7 Data Buffer Disable (DBDIS)

This active-high output provides an enable to external data buffers connected to the MC68851
data bus.

When the logical bus master reads the contents of one of the MC68851 registers, the MC68851
drives the data bus with the required operand. Typical systems directly connect the MC68851
data bus with that of the main processor and the combined bus is buffered before being routed
to a large number of physical address space devices. In order to avoid contention, the buffers
between the MC68851/CPU bus and the bus driving the physical memory must be disabled when
the MC68851 drives the bus. The MC68851 provides the control necessary to perform this function
with the DBDIS signal.

In addition, DBDIS performs a function similar to the function of the MC68020 DBEN signal. DBDIS
is asserted during table search operations and can be used to control data bus transceivers in
order to avoid contention between the transceivers and the MC68851 data bus drivers.

Finally, DBDIS is driven during reset in order to isolate the MC68851 data bus while configuration
information is being input (refer to 4.1.1 Initialization of Internal State).

3.8 BUS EXCEPTION CONTROL SIGNALS

The following paragraphs describe the bus exception control signals for the MC68851.

3.8.1 Reset (RESET)

Assertion of this input signals the MC68851 to disable the address translation mechanism, clear
all breakpoints, set the internal state to idle, and input configuration information from the data
bus. Refer to 4.1 RESET OPERATION for additional information.

3.8.2 Halt (HALT)

HALT is a bidirectional, three-state signal.

When the MC68851 is the logical bus master, HALT is an input and assertion of HALT stops all
MC68851 bus activity at the completion of the current bus cycle. When the MC68851 has been
halted using this input, all control signals, with the exception of bus arbitration outputs, are placed
in their inactive states and the physical address bus remains driven with the value used during
the previous bus cycle. Bus arbitration functions normally when the MC68851 is halted.

MC68851 USER'S MANUAL MOTOROLA
3-5

When the MC68851 is translating addresses, HALT is used as an output in conjunction with BERR
and/or LBRO to signal the current logical bus master to perform either a ‘relinquish and retry’ or
a‘relinquish’ operation. Refer to 4.2.3.2 ADDRESS TRANSLATION TERMINATED BY REQLINQUISH
AND RETRY SEQUENCE and to 4.2.3.4 CPU SPACE ACCESS WITH RELINQUISH REQUEST.

During address translation, the assertion of HALT by an external device does not effect translation
operations of the MC68851.

3.8.3 Bus Error (BERR)

This bidirectional, three-state signal is used to indicate that a bus cycle should be terminated due
to abnormal conditions.

When the MC68851 is bus master, BERR is an input and assertion of BERR by an external device
signals that there has been some problem with the bus cycle currently being executed. These
problems may be the result of:

1) Non-responding devices, or

2) Various other application-dependent errors (for example, parity errors).

When the MC68851 is translating addresses, bus error is used as an output to the logical bus
master. Bus error is asserted by the MC68851 for the following conditions:

1) The BERR bit is set in the matched ATC entry,
2) A write or read-modify-write cycle is attempted to a write-protected page,

3) An instruction breakpoint is detected and the associated count register is zero or it is
disabled,

4) As a portion of the relinquish and retry operation if:
a) the required address mapping is not resident in the ATC,
b) a write operation occurs to a previously unmodified page,
c) aread from the response CIR causes a suspended PLOAD or PTEST instruction to be
restarted,
d) a module call operation references a descriptor that does not have a corresponding
entry in the ATC.
5) An RMC cycle is attempted and a corresponding descriptor with appropriate status is not
resident in the ATC,
6) The access level protection mechanism detects an access violation.

The bus error signal interacts with the HALT signal to determine if the current bus cycle should
be retried or aborted. Refer to SECTION 4 BUS OPERATION DESCRIPTION for additional infor-
mation.

3.9 CACHE LOAD INHIBIT (CLI)

During address translation this output is asserted by the MC68851 if the matched address trans-
lation cache entry has its Cl (cache inhibit) bit set. Assertion of this output signals to external
caches that the data associated with the current bus cycle is non-cacheable. In order to support
concurrent dissociated logical and physical bus activity, if a referenced translation descriptor has
its Cl bit set, CLI is asserted by the MC68851 regardless of whether or not it currently owns the
physical bus. Refer to 4.6 CONCURRENT DISSOCIATE LOGICAL AND PHYSICAL BUS ACTIVITY.

In order to maintain the distinction between CPU space and other address spaces (for example,
supervisor program, . . ., etc.) the MC68851 does not assert PAS for CPU space cycles. Cache load
inhibit is used to generate a CPU space address strobe during CPU space cycles that do not access

MOTOROLA MC68851 USER’S MANUAL
3-6

the MC68851. CLI is asserted on the falling edge of the clock and external qualification of CLI with
LAS and a CPU space indicator provides a CPU space address strobe. CPU space cycles that
access the MC68851 registers are decoded internally and generate no physical bus activity. Refer
to 4.2.3.5 TRANSLATION OF CPU SPACE ACCESSES. Note that if the MC68851 is not master of
the physical bus and a CPU space cycle is executed that does not reference the MC68851 internal
registers, CLI is not asserted until ownership of the physical bus is returned to the MC68851. Note
also that the operation of the CLI signal during physical bus arbitration is dependent on the
operational mode of the CLI signal (i.e., whether it is signaling ‘cache inhibit’ or ‘CPU space cycle'.

When the MC68851 is performing table search operations, it continuously asserts CLI in order to
prevent caching of translation table information. This function may be suppressed during reset
configuration if desired.

3.10 ASYNCHRONOUS CONTROL (ASYNC)

When a logical bus master does not present logical bus control signals with the exact timing
specifications of the MC68020, this input must be driven, with appropriate setup and hold times,
to inform the MC68851 that input synchronization must take place.

Operating in a synchronous mode, the MC68851 utilizes known signal relationships in order to
perform faster translations. If the logical bus master does not present signals conforming to these
relationships (different control strobe timings and/or different operating frequency), it must assert
ASYNC prior to initiating bus activity.

3.11 CLOCK (CLK)

The MC68851 clock input is a TTL-compatible signal that is internally buffered to develop internal
clocks for the memory management unit. The clock must conform to minimum and maximum
period and pulse width specifications and must be of a constant frequency.

Note that the MC68851 and the logical bus master may operate at different clock frequencies.
Refer to 4.2.2.2 ASYNCHRONOUS OPERATION for further details.

3.12 PHYSICAL BUS ARBITRATION
This section describes the three-wire physical bus arbitration circuitry of the MC68851 used to
determine which device in a system is the master of the physical bus.

The MC68851 is the default master of the physical bus and any other devices requiring access to
the bus must arbitrate for mastership. Refer to 4.4 Physical Bus Arbitration for further details.

3.12.1 Physical Bus Request (PBR)

This input is the wire-OR of the bus request signals from all potential physical bus masters and
indicates that some device other than the MC68851 requires mastership of the physical bus.
3.12.2 Physical Bus Grant (PBG)

This output signal indicates to potential bus masters that the MC68851 will release ownership of
the physical bus when the current bus cycle is completed.

3.12.3 Physical Bus Grant Acknowledge (PBGACK)

This input indicates that some other device has become master of the physical bus. This signal
should not be asserted until the following conditions have been met:

MC68851 USER'S MANUAL MOTOROLA
3-7

1) A physical bus grant (PBG) has been received through the arbitration process,

2) PAS is negated, indicating that neither the MC68851 nor the logical bus master is using the
physical bus,

3) DSACKXx are negated, indicating that no external device is still driving the data bus, and
4) PBGACK is negated, indicating that no other device is still claiming bus mastership.

PBGACK must remain asserted as long as any device other than the MC68851 is bus master.

3.13 LOGICAL BUS ARBITRATION

The following paragraphs describe the five-wire bus arbitration pins used to determine which
device in the system is the master of the logical bus. Refer to 4.4 LOGICAL BUS ARBITRATION.

3.13.1 Logical Bus Request In (LBRI)

The LBRI input indicates that a device with higher priority than the MC68851 or the current Jogical
bus master requires ownership of the logical bus,

3.13.2 Logical Bus Request Out (LBRO)
This output is asserted to inform the processor that the MC68851 requires ownership of the logical
bus and is used as a portion of the relinquish operation and the relinquish and retry operation.

The request input to the logical bus arbiter (usually the main processor) should consist of wire-
OR of requests input to LBRI logically ORed with the LBRO output of the MC68851.

3.13.3 Logical Bus Grant In (LBGI)

This input, generated by the MC68020, indicates that the MC68020 will release ownership of the
bus at the completion of the current bus cycle, or, if an alternate master is currently the owner
of the bus, that the MC68020 will not claim the bus after the alternate master has released it.

3.13.4 Logical Bus Grant Out (LBGO)

This output indicates that the MC68851 has recognized and synchronized the assertion of LBGI
by the MC68020, has detected the assertion of LBRI, and is passing the bus grant to an alternate
logical bus master or to arbitration prioritization circuitry.

3.13.5 Logical Bus Grant Acknowledge (LBGACK)
This bidirectional, three-state signal indicates that a logical bus master, other than the CPU, has
taken control of the logical bus.

This signal is asserted by the MC68851 to indicate when it is the current logical bus master.
LBGACK is also monitored as an input to determine when the MC68851 can become bus master.

3.14 SIGNAL SUMMARY

Table 3-2 provides a summary of the electrical characteristics of the signals discussed in the
previous paragraphs.

‘ MOTOROLA MC68851 USER'S MANUAL
3-8

Table 3-2. Signal ‘Summary

Active | Three-
Signal Function Signal Name Input/Output | State State Driven by MC68851 When

Logical Address Bus LA8-LA31 Input High — —

Physical Address Bus PA8-PA31 Output High Yes |MC68851 Owns Physical Bus

Shared Address Bus A0-A7 Input/Output High Yes | MC68851 Owns Logical and
Physical Buses

Function Codes FCO-FC3 Input/Output High Yes MC68851 Owns Logical and
Physical Buses

Data Bus D0-D31 Input/Output High Yes |Read from MC68851 Registers or
MC68851 Write Cycle

Size SIZ0-SIZ1 Input/Output High Yes |MC68851 Owns Logical and
Physical Buses

Cache Load Inhibit cu Output Low No |Always

Asynchronous Control ASYNC Input Low — —

Read-Modify-Write Cycle RMC Input/Output Low Yes |MC68851 Owns Logical and
Physical Buses

Logical Address Strobe LAS Input Low — -

Physical Address Strobe PAS Output Low Yes | MC68851 Owns Physical Bus

Data Strobe DS Input/Output Low Yes MC68851 Owns Logical and
Physical Buses

Read/Write RW Input/Output | High/Low| Yes |MC68851 Owns Logical and
Physical Buses

Data Transfer and Size DSACKO-DSACKT | Input/Output Low Yes |Access to Address Map Occupied

Acknowledge by MC68851 Interface Register Set

Data Bus Disable DBDIS Output High No Always

Bus Error BERR Input/Output Low Yes | Exceptional Condition is Generated
by Address Translation

Halt HALT Input/Output Low Yes |Exceptional Condition is Generated
by Address Translation

Reset RESET Input Low — —

Physical Bus Request PBR Input Low — —

Physical Bus Grant PBG Output Low No Always

Physical Bus Grant Acknowledge PBGACK Input Low — —_

Logical Bus Request In LBRI Input Low — —

Logical Bus Request Out LBRO Output Low No Always

Logical Bus Grant In LBGI Input Low —_ —_

Logical Bus Grant Out LBGO Output Low No Always

Logical Bus Grant Acknowledge LBGACK Input/Output Low Yes |MC68851 Has Assumed Mastership
of the Logical Bus

Clock CLK Input — — —

Power Supply Vce Input — —_ —

Ground GND Input — — —

MC68851 USER'S MANUAL

MOTOROLA
39

MOTOROLA MC68851 USER’S MANUAL
3-10

SECTION 4
BUS OPERATION DESCRIPTION

This section describes the bus operations of the MC68851 during reset, address translation, table
search operations, bus arbitration, and accesses to MC68851 internal registers.

NOTE
In paragraphs dealing with bus transfers, a ‘port’ refers to the width of the external data
path to which the slave device for the operation is connected whether that device be
the MC68851 or external memory.

During an MC68851-initiated write cycle, all bytes of the data bus are driven regardless
of the operand transfer size.

The term ‘synchronization’ is used repeatedly when discussing bus operation. This delay is the
time period required for the MC68851 to sample an external asynchronous signal, determine
whether it is high or low, and synchronize the input to its internal clocks. Figure 4-1 shows the
relationship between the clock signal, an external input, and its associated internal signal that is
typical for all of the asynchronous inputs.

Furthermore, for all inputs, there is a sample window during which the MC68851 latches the level
of the input. This window is illustrated in Figure 4-2. In order to guarantee recognition of a certain
level on a specific falling edge of the clock, that level must be held stable at the input throughout
the sample window. If an input makes transitions during the sample window, the level recognized
by the MC68851 is not predictable; however, the MC68851 will always resolve the latched input
level to a logical high or low before taking action on it. There are two exceptions to this rule. The
first is for the late assertion of BERR or BERR and HALT (refer to 4.3.2.4.1 Bus Error Operation),
where the signal must be stable through the window or the MC68851 may exhibit erratic behavior.
The second is for the assertion of LAS and DS when operating in the synchronous translation
mode (refer to 4.2.2.1 SYNCHRONOUS OPERATION) where proper functionality cannot be guar-
anteed if setup times are not met. In addition to meeting input setup and hold times, all input

Key: wmwmem |ndicates that the signal is driven by

EXT the MC68851

Indicates that the signal is driven by
the Main Processor

Indicates that the signal is driven by
INT an external device or alternate bus
—— master

r———————— SYNC DELAY ————————— Note: The Clock Signal is always depicted with a
normal width line

Figure 4-1. Relationship Between External and
Internal Signals

MC68851 USER’S MANUAL MOTOROLA
4-1

tsy ——

SAMPLE

Figure 4-2. Input Sample Window

signals must obey the protocols described later in this section. For example, when the MC68851
is performing a table search and DSACKXx is asserted by an external device, it must remain asserted
until PAS is negated.

4.1 RESET OPERATION

The following paragraphs describe the operation of the MC68851 in response to an external reset.
The timing for the reset operation is detailed in SECTION 12 ELECTRICAL SPECIFICATIONS.

4.1.1 Initialization of Internal State

The assertion of the RESET input by an external device initializes the MC68851 to a known, idle
state by clearing the enable (E) bits in the translation control register (TC) and in each of the eight
breakpoint control registers (BAC0-BAC7), and clearing the ALC field of the AC register.

Clearing of the E bit of the translation control register disables the address translation mechanism
of the MC68851 and causes logical addresses LA8 through LA31 to be passed directly through
(unmapped) to the physical bus. The physical address strobe is asserted for all non-CPU space
translations regardless of the state of the E bit; however, no access right checking is performed
when the translation mechanism is disabled.

Clearing the E bit of the breakpoint control registers disables all breakpoint operations. If a break-
point acknowledge cycle is executed by the CPU while the breakpoint acknowledge functions are
disabled, the MC68851 responds by asserting bus error (BERR). Clearing the ALC field of the AC
register inhibits RAL, WAL, and CAL access level checking.

4.1.2 Bus Interface Initialization

Several characteristics of the bus operations of the MC68851 are system-configurable. The infor-
mation that determines this configuration is latched from the data bus at the end of the reset
sequence (i.e., at the rising edge of the RESET input).

While the RESET input is asserted, the MC68851 asserts the DBDIS output, allowing its data bus
to be isolated from all other bus drivers. The condition of both RESET and DBDIS being asserted
can be used to gate configuration information onto the MC68851 data bus.

The use of the data bus for MC68851 configuration, as discussed in the following paragraphs, is
valid only during reset operation and only the least significant byte of the bus is used. The three
higher-order bytes of the data bus are ignored during reset.

MOTOROLA MC68851 USER'S MANUAL
4-2

4.1.2.1 DO. This input must be either pulled high (logic one) or left floating during the reset
sequence.

4.1.2.2 BUS SIZE (D1, D2). D1 and D2 specify the minimum data bus size that connects the
MC68851 to any device that may access its internal registers using the coprocessor interface. If
multiple logical devices are capable of accessing the MC68851 registers, the maximum size for a
single transfer is limited to the size of the smallest of the data buses.

When accessed as a slave device, the MC68851 responds with a DSACKx encoding that indicates

the port size as specified on D1 and D2 during reset. n

Table 4-1 shows the D1, D2 encodings for various bus width configurations. The default value
(D2, D1 left in high-impedance state) is 32 bits.

4.1.2.3 DECISION TIMEOUT DELAY (D3, D4). D3 and D4 specify an additional, if any, amount
of delay for the MC68851 internal decision-timeout circuitry used to determine when the compare
logic of the address translation cache has generated a correct decision. This additional delay is
defined from the clock edge on which the bus control signals (PAS, BERR, HALT, and LBRO)
would normally be asserted by the MC68851 in the absence of a timeout delay and results in a
delay of the assertion of these signals by an integral number of half-clocks as specified by the
encoding of D3, D4. These encodings are shown in Table 4-2.

The additional timeout delay is provided for proper operation of MC68851 devices that have a
mismatch between the clock speed and the speed of the address translation cache. If the address
translation cache decision logic requires more time to validate an access than is available, as
determined by the operating frequency and translation time, it is then necessary to delay the
assertion of the bus control signals until that validation can be made. Otherwise, correct func-
tionality of the address translation and protection mechanisms cannot be guaranteed since the
bus control strobes may be activated before valid decisions have been made.

The default additional timeout delay is zero and this can be obtained by either forcing both D3
and D4 high (logic one) or by leaving both in the high-impedance state during reset.

4.1.2.4 FAST TABLE SEARCH (D5). During all table search operations, the MC68851 always
(except as described below) asserts the physical bus control strobes with the same timing as that
of the MC68020. That is, the strobes are asserted on the first falling edge of the clock after initiation
of the bus cycle (the falling edge of S1). Normally, during address translations the control strobes

Table 4-1. Coprocessor Data Bus Table 4-2. Additional Decision
Size Specification Timeout Delay
Minimum Coprocessor Additional Strobe Assertion

D2 D1 Data Bus Width D4 D3 Timeout Delay Clock Edge

0 Unused, Reserved 0 0 11/2 CLK Rising
0 1 8 Bits 0 1 1 CLK Falling
1 0 16 Bits 1 0 1/2 CLK Rising
1 1 32 Bits 1 1 No Delay Falling

MC68851 USER'S MANUAL MOTOROLA
4-3

are also asserted on a falling clock edge; however, the additional decision timeout delay specified
on D3 and D4, as described above, may alter this.

In order to facilitate operation in systems that use the control strobes (for example, PAS) in a
synchronous manner (i.e., the signal relationship to a clock edge is important), the MC68851 can
be configured such that the control signals are always asserted on the same clock edge regardless
of whether a translation or a table search is taking place. In this type of synchronous system, if
the decision timeout delay is set such that the bus control signals are asserted on the rising edge
of the clock during address translations, it may be desirable to also have them asserted on the
rising clock edge during table search operations.

m If D5 is held low (logic zero) during reset, the MC68851 asserts the bus control strobes on the

same edge of the system clock during both address translation and table search operations. The
edge on which the signals are asserted is determined by the decision time-out delay indicated
on D3 and D4. If D5 is driven high (logic one) or left in the high-impedance state during reset, the
MC68851 will not delay the assertion of the bus control strobes when performing table search
operations and will always assert PAS on the first falling edge of the clock for these bus cycles
(bus state S1).

4.1.2.5 EARLY PROCESSING STARTUP (D6). D6 specifies whether the exception processing
hardware of the MC68851 is enabled as soon as an exception (any operation by a logical bus
master that requires a table search by the MC68851) is detected or delayed until the MC68851
has received control of the logical bus and has asserted logical bus grant acknowledge (LBGACK).

There are two factors to be considered when selecting this mode. If the early processing startup
is selected, the exception processing hardware is activated as soon as the exception is detected
and six clock periods of the startup overhead are overlapped with the termination of the current
logical bus cycle and arbitration for the logical bus. However, the early startup poses a potential
problem since the MC68851 initiates processing prior to becoming logical bus master.

In order to correctly service an alternate logical bus master, the MC68851 must be ready to perform
address translations as soon as that master gains control of the logical bus. In order to perform
this service, the exception processing hardware of the MC68851 must be completely idle and
ready for the next translation and, for certain exception conditions, eight clock periods are required
to bring the exception processing hardware into the idle state. The MC68851 prevents conflicts
between logical bus traffic and the exception processing hardware by delaying the assertion of
the logical bus grant output (LBGO) in response to a logical bus request (LBRI), if necessary, by
the eight clock periods (maximum) required to idle the exception hardware. If the early startup
mode is not enabled, then this delay is not imposed and the worst case arbitration latency for
the logical bus is reduced by seven clock periods.

If the early processing startup is enabled, by leaving D6 in the high-impedance state or driving it
high (logic one), the normal overhead required for the MC68851 to acquire the logical bus and
initiate service for the CPU (for example, table search, . . ., etc.) is reduced by six clock periods.
If D6 is pulled low (logic zero), the MC68851 does not initialize its exception processing hardware
until it asserts LBGACK. In this case, the worst-case LBGI to LBGO delay is reduced by seven clock
periods, but the overhead for all MC68851-initiated operations is increased by six clock periods.
The system designer must balance the above two criterion when selecting this mode of operation.

It is possible to completely avoid the LBGI to LBGO delay imposed by the MC68851 through the
use of external arbitration circuitry. Since the response of the MC68851 to a given arbitration
sequence is defined, external logic may be employed to bypass the MC68851 bus grant circuitry

MOTOROLA MC68851 USER'S MANUAL
4-4

such that the bus request-to-bus grant latency is defined by the bus arbitor of the CPU as opposed
to the latency of the CPU plus that introduced by the MC68851. Note that this method mandates
use of the MC68851 without the early processing startup mode enabled (i.e., D6 must be driven
low during reset). This method is not described in detail in this manual; however, the operation
of the logical bus arbitration circuitry is explained in detail in 4.4 LOGICAL BUS ARBITRATION.

4.1.2.6 ASSERTION INHIBIT (D7). D7 specifies whether or not CLI is to be asserted during all
MC68851-initiated bus cycles. It is unlikely that external caching of MC68851 initiated accesses
would be of value, but this decision is left to the system designer.

If D7 is pulled high (logic one) or left in the high-impedance state, CLI will be asserted for all
MC68851-initiated bus cycles. Otherwise, CLI will not be asserted during these bus cycles.

4.2 ADDRESS TRANSLATION

The translation of logical to physical addresses by the MC68851 involves the following signals:
1) Logical Address Bus LA8 through LA31,
2) Physical Address Bus PA8 through PA31,
3) Shared Logical/Physical Address Bus A0 through A7,
4) Logical Bus Control Signals, and
5) Physical Bus Control Signals.

The following paragraphs explain the operation of the above signals during address translation
by the MC68851.

4.2.1 Signal Usage During Address Translation

The following paragraphs describe the MC68851 signals that are functional during address trans-
lation. Signals not discussed (for example, physical bus arbitration circuitry) are not necessarily
inactive, but are not relevant to address translation and are discussed later.

4.2.1.1 ADDRESS BUSES. The MC68851 inputs the logical address to be translated on A0 through
A7 and LA8 through LA31. The shared address lines A0 through A7 are always inputs during
address translation. Although the least significant eight bits of the logical address never take part
in the address translation (the minimum page size being 256 bytes), they are input during each
translation in order to supply the register select field should the cycle attempt to access the
MC68851 internal registers (refer to SECTION 9 COPROCESSOR INTERFACE).

The range of the logical address used is determined by the initial shift (IS) field of the translation
control register (TC). This field specifies a number of high-order logical address bits that are to
be ignored for the purposes of address translation and table search operations. Up to fifteen bits
of the logical address (starting from bit 31) may be discarded, allowing adaptation to systems
with logical address buses of 17 to 32 bits. However, regardless of the value specified in the IS
field, the MC68851 always monitors at least AO through LA19 during all CPU space cycles in order
to decode accesses to its internal registers.

The page size for which the MC68851 is configured also affects the use of some portions of the
logical address for translation purposes. For a page size, N, in a logical address space, M, LOG2(M)-
LOG2(N) bits of the logical address are used to uniquely identify one of M+ N pages and the
remaining LOG2(N) bits are used as an index into the page. The index into the page does not
take any part in the translation processes and, hence, is ignored during address translation. By

MC68851 USER'S MANUAL MOTOROLA
4-5

default, the lower eight bits of the logical address are always ignored (LOG2(256) = 8) and are
routed around the MC68851, directly connecting the logical and physical buses. If the page size
for which the MC68851 is configured is larger than 256 bytes, additional logical address inputs
are ignored during address translation. However, instead of being routed directly to the physical
address bus externally, the additional signals are passed through the MC68851 and driven un-
changed onto the physical address bus with the same functional timing as the higher order physical
address outputs, although somewhat faster (refer to SECTION 12 ELECTRICAL SPECIFICATIONS).

The physical address bus (PA8 through PA31) outputs the mapped results of the address trans-
lation and remains driven as long as the MC68851 retains ownership of the physical bus. During
address translation, the MC68851 always drives the high order 24 bits of the physical address
m bus and the assertion time always lags that of the logical bus by the MC68851 translation time.
Note, however that physical addresses may become invalid very shortly after a transition of the
logical address bus (i.e., the delay is not related to the translation time of the MC68851).

4.2.1.2 ADDRESS STROBES. The logical bus master signals to the MC68851 that it has initiated
a bus cycle by driving the logical address strobe (LAS) input low. LAS indicates that a valid address
has been driven onto thée logical address bus and it must remain asserted until the bus master
is signaled, by either the MC68851 or an external device, that the bus cycle should be terminated.

After the logical bus master asserts LAS, the MC68851 responds in one of several manners. If the
requested translation is successful and does not access address space seven (the CPU space),
the MC68851 asserts the physical address strobe (PAS), signaling to the physical devices that
there is a valid physical address on the bus.

If the logical access is made to the CPU space, but not to the MC68851 (i.e., not a coprocessor,
breakpoint acknowledge, or access level control access to the MC68851), the logical address is
passed directly through to the physical bus, PAS is not asserted, and cache load inhibit (CLI) is
asserted, which, when gated with a CPU space qualifier, can be used to generate a CPU space
address strobe.

If the target of the CPU space access is the MC68851, neither PAS nor CLI is asserted.

4.2.1.3 BUS CYCLE TERMINATION SIGNALS. Attempts to execute bus cycles that the MC68851
cannot immediately translate (for example, translation descriptor not resident in address translation
cache) are terminated with the relinquish and retry sequence that involves the simultaneous
assertion of bus error (BERR), halt (HALT), and logical bus request out (LBRO) by the MC68851
(refer to 4.2.3.2 ADDRESS TRANSLATION TERMINATED BY RELINQUISH AND RETRY SEQUENCE).

Bus cycles that the MC68851 cannot allow to complete (for example, a write violation) are ter-
minated by the assertion of BERR. Certain other accesses to MC68851 internal registers are also
terminated with BERR (for example, a breakpoint acknowledge cycle executed with breakpoints
disabled in the MC68851 (refer to 4.2.3.3 ADDRESS TRANSLATION TERMINATED BY BUS ERROR).

Finally, bus cycles that access the MC68851 registers can be terminated in one of three ways. If
the access does not require execution of table search operations, then the MC68851 drives (during
a read cycle) or latches (during a write cycle) the appropriate portions of the data bus (DO through
D31) and asserts one or both of the DSACKx outputs (as determined by the bus size for which
the MC68851 is configured). If the access does require a table search, the cycle is terminated as
above except that LBRO and HALT are asserted prior to assertion of the DSACKx signal(s). If the
access causes the MC68851 to restart a table search initiated by a PTEST or PLOAD instruction,
or an address is written to the descriptor address ALCR and no corresponding entry is resident

MOTOROLA MC68851 USER'S MANUAL
4-6

in the ATC, the MC68851 asserts the BERR, HALT, and LBRO outputs to force the CPU to relinquish
the bus and retry the cycle after the MC68851 has searched the translation tables and loaded the
required mapping into the ATC. Refer to 4.2.3 Functional Descriptions for further detailed dis-
cussion of these operations.

4.2.2 Synchronous versus Asynchronous Address Translation

In order to offer both maximum performance and flexibility, the MC68851 can operate in two
different translation modes, as determined by the state of the ASYNC input.

logical bus master and the MC68851 operate in a tightly-coupled manner using the same clock
signal and bus timings. The asynchronous mode is provided to allow coupling with logical bus
masters that operate at different frequencies, either slower or faster, than the MC68851.

The synchronous mode is intended to provide maximum performance and requires that both the n

4.2.2.1 SYNCHRONOUS OPERATION. In the synchronous translation mode, the MC68851 is
optimized to perform translations for bus masters that present bus timings identical to those of
the MC68020. In this mode of operation, the MC68851 operates with the same clock that drives
the logical master and uses known timing information concerning address, address strobe, and
clock relationships to minimize the delay between the assertions of the logical and physical address
strobes. During synchronous translations, LAS is not synchronized by the MC68851 and it is gated
through to generate PAS one clock period after the clock edge on which LAS was asserted by the
logical master. This is possible because normal synchronization delays are not imposed.

The critical factor in the synchronous mode of operation is that the logical bus master must
provide bus timings with exactly the characteristics of the MC68020. This requirement includes
all signals that are active during address translation as well as all those that are active during
communications between the synchronous master and the MC68851 register set.

The above restriction requires that there be no intervening delay between the bus control signals
of the synchronous logical bus master and the MC68851 inputs. In addition, no delay may be
introduced between the address outputs of the synchronous master and the logical address inputs
of the MC68851. Finally, the frequency and phase of the clock driving the MC68851 must be
identical to that of the bus master. System designers must ensure that the address and control
signals do not exceed worst case values specified by the MC68020 due to signal loading or routing
constraints.

4.2.2.2 ASYNCHRONOUS OPERATION. In contrast to the synchronous requirements outlined
above, operation of the MC68851 in the asynchronous mode imposes minimal restrictions on the
bus timing of the logical master, but at the expense of increasing the logical-to-physical address
strobe delay by the time required to internally synchronize tk2 LAS input.

Operating in the asynchronous mode, the MC68851 makes no assumptions concerning signal
relationships to clock edges or address/data setup times relative to the bus control strobes (except
that they must be non-negative). When operating in the asynchronous mode, it is assumed, but
not required, that the logical master and the MC68851 are operating at different clock frequencies.

4.2.3 Functional Descriptions

The following paragraphs provide a functional description of the bus operations of the MC68851
during address translation.

MC68851 USER'S MANUAL MOTOROLA
4-7

NOTE
In order to clarify the diagrams that are presented in this manual, different line widths
are used to distinguish the actions of different devices. Signals that are driven by the
MC68851 are drawn using a bold line; signals driven by the CPU are drawn using a
normal width line, and signals driven by other external devices (for example, a memory
controller, alternate bus masters, . . ., etc.) are drawn using a fine line.

4.2.3.1 NORMALLY TERMINATED ADDRESS TRANSLATION (NON-CPU SPACE). An address
translation with normal termination refers to those cycles initiated by the logical master that have
corresponding translation descriptors resident in the MC68851 address translation cache (ATC)

and do not generate any conditions that are detected as exceptions by the MC68851 (for example,
n write violation, . . ., etc.). This type of bus cycle is terminated by an external device and the
termination sequence may consist of any of the allowable M68000 bus conditions (normal, bus
error, retry, etc.) without affecting the MC68851.

A normal translation is initiated when the master drives a valid address and function code onto
the logical bus and sets the R/W output to indicate the direction of transfer. The MC68851 detects
the transition in the address bus from its previous state and initiates a lookup in the ATC. After
a period, determined by the worst case translation time, the MC68851 drives valid address onto
the physical bus. When LAS is asserted by the logical bus master, the MC68851 checks the validity
of the access using the status information stored in the ATC.

After the physical address has been driven, PAS and, if appropriate, CLI is/are asserted and the
physical address bus cycle is validated. As long as LAS remains asserted, the MC68851 performs
no further activity during the bus cycle.

When external hardware determines that the bus cycle should be terminated, some combination
of the DSACKXx signals is/are asserted (or BERR could be asserted with or without HALT) and the
logical bus master negates its bus control strobes. Inmediately after the negation of LAS, the
MC68851 negates PAS in order to allow physical devices to prepare for the next cycle.

In the synchronous mode, as shown in Figure 4-3, the bus cycle is initiated at the rising edge of
(entering into) clock state SO when logical address, function code, and RW are driven valid. At
the falling edge of SO, the master asserts its address strobe, which is connected to the LAS input
of the MC68851. On the falling edge of S2, one clock after the master drives the logical address
strobe, the MC68851 asserts the physical address strobe (PAS). Some period after this, as deter-
mined by the access time of the referenced device, the device signals termination of the bus cycle.

With certain system configurations, it is possible that some bus operations can deviate slightly
from the above, particularly in those systems having a high-speed data/instruction cache. In this
case, the CPU can run bus cycles at its maximum bandwidth (three clock periods for the MC68020)
for those cycles whose target operands reside in the cache. In order to execute such a bus cycle,
the MC68020 requires that DSACKx be asserted, with the proper setup time, prior to the falling
edge of clock state S2. Since PAS is generated from this same edge, it is clearly not possible to
include PAS in the qualification equations for the generation of DSACKx for these cycles. Instead,
the cache control circuitry is allowed to assert DSACKx for appropriate cycles without regard to
the state of PAS. Figure 4-4 illustrates a three-cycle access to a local cache.

If the MC68851 determines that the bus cycle should not be allowed to complete, PAS is not
asserted and a relinquish and retry or a bus error is signaled in time to abort or retry the bus
cycle using the delayed bus error or retry capabilities of the M68000 bus, provided that additional
decision timeout delay has not been enabled (refer to 4.1.2.3 DECISION TIMEOUT DELAY). Refer
to APPENDIX B HARDWARE CONSIDERATIONS for further discussion of cache considerations.

MOTOROLA MC68851 USER'S MANUAL
4-8

cok [L LT LT 1

LAO-LA31,
FCO-FC3

R/

LAS

DSACKx

X
X
T\
mo . \ /-

G} \ /

ASYNC

NEXT
}4—7 SYNCHRONOUS ADDRESS TRANSLATION ———D}d— CYCLE —b'

Figure 4-3. Synchronous Mode Translation

S0 s2 s4 S0
e [L1 L[|1
LAD-LA31,
FCO-FC3

)&
i X X
S \ 7

SYSTEM
FAS
BERR,

FALT — L
ASYAC

SYNCHRONOUS CYCLE ACCESSING NEXT
FAST LOGICAL DEVICE CYCLE

Figure 4-4. Synchronous Translation Accessing Logical Cache

MC68851 USER'S MANUAL MOTOROLA
4-9

In the asynchronous mode of operation, the MC68851 samples LAS on falling edges of the clock.
If LAS meets the asynchronous input setup time specification (#47A) relative to the falling edge
of the clock and the translation is successful, PAS is asserted on the next falling edge of the clock.
If LAS does not meet this setup time, an additional one-clock delay in the assertion of PAS may
be imposed. Additionally, if the negation period (high time) for LAS is less than one clock period,
the assertion of PAS by the MC68851 will be delayed one clock period in addition to the delay
described above. Figure 4-5 illustrates an asynchronous mode address translation.

4.2.3.2 ADDRESS TRANSLATION TERMINATED BY RELINQUISH AND RETRY SE-
QUENCE. Certain bus cycles initiated by a logical bus master require that the MC68851 acquire
control of the bus and access the address translation tables in physical memory before that cycle
can be successfully completed. Such cases include:

1) Translation descriptor for access not resident in ATC,

2) Modified bit not set in descriptor and pending cycle is a write,

3) Translation descriptor for a module descriptor not resident in ATC during execution of the

CALLM instruction (refer to SECTION 10 ACCESS LEVEL INTERFACE), and
4) Restart of an aborted table search initiated by a PLOAD or PTEST instruction.

In any of the above cases the MC68851 forces the logical bus master into the relinquish and retry
sequence by simultaneously asserting bus error (BERR), halt (HALT), and logical bus request out
(LBRO).

Since the lower eight address lines and several bus control signals are shared between the logical
and physical buses, the MC68851 must control both the logical and physical buses in order to

ek |] L L1 L1 LI 1
Yrearts — —
Y] X X

w O\ /T
ASYNC

PA-PA31 zxz& m
PAS \ /

‘4 NEXT
I‘ ASYNCHRONOUS BUS CYCLE ——————’l‘— CYCLE‘.‘

Figure 4-5. Asynchronous Mode Translation
(LAS Meets Input Setup Time)

MOTOROLA MC68851 USER'S MANUAL
4-10

perform physical bus activity. The MC68851 is the default physical bus master but it must arbitrate
for the logical bus.

The relinquish and retry sequence signals to the logical master that it must abort the current bus
cycle, release mastership of the logical bus to the requesting device, and retry the aborted cycle
when it regains ownership of the bus. Before the master regains control of the bus, the MC68851
completes the arbitration sequence to take ownership of the logical bus (refer to 4.4 LOGICAL
BUS ARBITRATION), performs all table search operations that are required, and updates the ATC
accordingly.

immediately negates BERR. HALT and LBRO remain asserted until the completion of the arbitration
sequence (assertion of logical bus grant acknowledge (LBGACK) by the MC68851). If there are no
requests for bus mastership by alternate logical bus masters, HALT is negated one-half clock prior
to the assertion of LBGACK and LBRO is negated one-half clock period after the assertion of
LBGACK. If, however, the MC68851 is prevented from assuming mastership of the logical bus by
external assertion of LBRI, both HALT and LBRO are negated one-half clock period prior to the
assertion of LBGO.

When the logical master acknowledges termination of the bus cycle by negating LAS, the MC68851 “

The MC68851 does not assert PAS for any cycles that are terminated with the relinquish and retry
sequence or for any other fault.

The following paragraphs discuss the relinquish and retry sequence for the different translation
modes. The arbitration phase and subsequent table search operations are discussed in 4.4 LOG-
ICAL BUS ARBITRATION and 4.3 TABLE SEARCH OPERATIONS, respectively.

Similar to the normal assertion of PAS for a synchronous master, and provided that all relevant
setup times are met, the MC68851 asserts BERR, HALT, and LBRO on the falling edge of the clock
one clock period (plus any additional decision timeout delay specified during reset) after the
logical master asserts LAS when operating in the synchronous transiation mode.

The assertions of BERR and HALT occur early enough in the bus cycle to satisfy all timing re-
quirements of the MC68020 for the late assertion of BERR. Therefore, devices that operate on the
logical bus (for example, a logical cache controller) need not monitor the state of PAS for cycles
that do not access a physical address space device — that is, the validity of the bus cycle can be
correctly implied by the absence of an abort or retry signal from the MC68851.

Figure 4-6 illustrates the synchronous relinquish and retry sequence.

In the asynchronous mode, BERR, HALT, and LBRO are asserted on the falling edge of the MC68851
clock one period (plus any additional decision timeout delay specified during reset) after LAS is
detected as being asserted. If LAS meets the asynchronous input setup time specified (#47A)
relative to the falling edge of the clock, and the cycle cannot be completed for reasons as discussed
above, the signals are asserted on the next falling edge of the clock. If LAS does not meet this
setup time, an additional one-clock delay in the assertion of the relinquish and retry sequence
may be imposed.

Normally, when operating in the asynchronous translation mode, the BERR, HALT, and LBRO
signals are not asserted early enough during a bus cycle to allow use of late bus error or retry
features of the logical bus master when coupled with a fast logical data cache that operates with
no wait states. However, this is dependent on the exact bus timing of the particular master.

Figure 4-7 illustrates the asynchronous relinquish and retry sequence.

MC68851 USER'S MANUAL MOTOROLA
4-11

eock | L L1 L_J LI 1

TCITEIND'§ >

FCO-FC3, P ——
R/W X > T\ —
AQ-A7, \ V G

S120/8121 X / —
mw o\ / N

PAS-PA31 X X
PAS \

R \ /
iy \ /

% \ /
] \

BRI

ASYNC
NON-RESIDENT
DESCRIPTOR RELINQUISH AND LOGICAL MASTER RELEASES BUS TO MC68851
DETECTED RETRY SIGNALED

Figure 4-6. Synchronous Relinquish and Retry

4.2.3.3 ADDRESS TRANSLATION TERMINATED BY BUS ERROR. Certain bus cycles initiated
by a logical bus master must not be allowed to be completed due to exceptional conditions
generated by those accesses. Such cycles include:

1) Attempt to write to a write-protected page,

2) An access that exceeds the current access level,

3) An access that references an ATC descriptor that has its bus error bit set,

4) A breakpoint acknowledge cycle that references a breakpoint acknowledge control register
that has a skip count equal to zero,

5) A breakpoint acknowledge cycle that references a breakpoint acknowledge control register
that has its E bit (enable) clear, and

6) A read-modify-write operation is attempted to a page that does not have a corresponding
descriptor resident in the address translation cache, has its modified bit clear, or is write-
protected.

MOTOROLA MC68851 USER'S MANUAL
4-12

e [L L L LI LI LI L1

FE0-FC3 e S ——C
LABLA3! e >—

207 ——— > _——C
wo O\ [—

o n
PAS-PA31 X , x
PAS

BERR \ /

HALT

(670 \ /
[l \

BRI

LBGACK \

RSVNC
NON-RESIDENT DESCRIPTOR DETECTED LOGICAL MASTER RELEASES
L DURING ASYNCHRONOUS CYCLE l < RELINQUISH AND RETRY SIGNALED —-1= BUS TO MC68851 >

Figure 4-7. Asynchronous Relinquish and Retry
(LAS Misses Input Setup Time)

|

The MC68851 aborts any of the above types of cycles by asserting bus error (BERR) which signals
the logical master that the cycle can neither be completed nor is it appropriate to retry the cycle
without intervention from the operating system. Bus cycles may also be terminated by the as-
sertion of BERR by an external device.

The MC68851 does not assert PAS for any bus cycle that it terminates with BERR.

The timing of BERR in each of the translation modes corresponds exactly to the BERR assertion
timing for the relinquish and retry sequence discussed above. Figures 4-8 and 4-9 illustrate the
assertion of BERR during address translation.

4234 CPU SPACE ACCESS WITH RELINQUISH REQUEST. The MC68851 PTEST and PLOAD
instructions require that the MC68851 perform table search operations. As part of the normal
dialog between the main processor and the MC68851 during execution of memory management

MC68851 USER'S MANUAL MOTOROLA
4-13

CLOCK

—
|—1
—
by
—

LA8-LA31

FCO-FC3,
R/W

AC-A7,
S§120/81Z1

1AS

DSACKx

X
X
XC
A\
3 4
PA8-PA31 m m

BERR \ /

TRANSLATION MC68851 ABORTS NEXT
FAULT DETECTED CYCLE CYCLE

Figure 4-8. Synchronous Cycle Terminated by Bus Error

aock | L] 1
veua ——— ¢ <
A
XX

A N /

DSACKx

PAS-PA31 m

PAS

TR \

ASYNC

}C—TRANSLATIUN FAULT DETECTED ‘Plf— MC68851 ABORTS CYCLE ——+‘ [I:“YEE(I; - >

Figure 4-9. Asynchronous Cycle Terminated by Bus Error
(LAS Meets Input Setup Time)

|

MOTOROLA MC68851 USER'S MANUAL
4-14

instructions, the CPU writes requests for action to the MC68851 coprocessor interface command
register and then reads the MC68851 response to this request from the MC68851 coprocessor
interface response register (refer to SECTION 9 COPROCESSOR INTERFACE).

When the request written by the main processor requires that the MC68851 perform a table search
operation, the MC68851 initiates this activity by terminating the access of its registers with an
appropriate combination of the DSACKx signals and also asserting the logical bus request output
(LBRO) and the halt signal (HALT). This sequence causes the main processor to proceed with the
next portion of the instruction dialog (reading the response register) but not without first granting
bus mastership to the MC68851. The MC68851 can then perform the required service before
resuming communication with the CPU.

Interprocessor communication between the MC68851 and the logical master does not result in
the assertion of the physical bus control signals (PAS or CLI).

Figure 4-10 illustrates the above termination. The asynchronous mode operations differ from
those in the synchronous mode in two ways. First, additional synchronization delay may be
introduced between the assertion of LAS and the MC68851 termination of the cycle. Second,
during a read cycle from an MC68851 register, DSACKXx is asserted two clock periods after data
is driven onto the data bus instead of being driven on the same clock edge as data as would
occur during synchronous operation.

When the MC68851 terminates an access to its register set with a relinquish request and is
initialized for early processing startup (refer to 4.1.2.5 EARLY PROCESSING STARTUP), the logical
master must release control of the bus to the MC68851 (which may release it to an alternate
master). Neither the CPU nor any other logical bus master may initiate a logical bus cycle prior
to the assertion of LBGO and the negation of HALT by the MC68851 during this arbitration
sequence. Note that the M68000 Family of processors fully satisfy this requirement. Use of the
MC68851 with other processor families may necessitate the use of additional hardware to satisfy
this requirement.

4.2.3.5 TRANSLATION OF CPU SPACE ACCESSES. A CPU space access is any access to the
address space identified by the function code value of seven ($7). The CPU space accesses are
used for special CPU functions, including coprocessor communications, access level control,
breakpoint acknowledge, and interrupt acknowledge operations. The MC68851 treats these ac-
cesses differently than references generated in other address spaces. The MC68851 response to
a CPU space cycle is dependent on whether the access is being made to the MC68851 or to another
device.

CPU space accesses that reference the MC68851 include the breakpoint acknowledge functions,
coprocessor operations with a Cp-ID of zero, and all access level operations (refer to Sections 8,
9, and 10). These accesses are decoded by the bus interface unit and are not passed through to
the physical address bus. Cycles that access the coprocessor interface or the access level control
registers are terminated by the MC68851 with the assertion of some combination of the bus
termination signals after the appropriate action has been taken (for example, data latched during
a write cycle or driven during a read cycle). In cases where the cycle in progress is requesting an
MC68851 configuration change, DSACKXx is not asserted until the reconfiguration is complete in
order that the next bus cycle may be properly translated.

CPU space cycles that access the MC68851 breakpoint hardware may be terminated by the as-
sertion of either DSACKx or BERR, as appropriate (refer to SECTION 8 BREAKPOINTS). Figures
4-11 and 4-12 illustrate the functional timing of CPU space cycles that access the MC68851.

MC68851 USER’S MANUAL MOTOROLA
4-15

5 CLOCK
PERIODS
S0 S2 Sw S4

/_\
X
e

DSACKx \ : / :
[\
[\

PAS

(o}

DBDIS

WRITE TO OPERAND REGISTER MC68851 TERMINATES CYCLE
PROVIDES SEARCH ADDRESS AND REQUESTS LOGICAL BUS

Figure 4-10. Synchronous CPU Space Cycle Accessing MC68851 Registers
Terminated by Relinquish Request

MOTOROLA ' MC68851 USER'S MANUAL
4-16

F 17023 ‘-‘

cLock

S0 52 PERIODS Sw 54 50
eox [L[LI 1T L I LT L
FC3 L L

FCO-FC2 y __

LAO-LA31 X X
R/W)’ X

S120/5121 L X

RN —

COO—

D0-D31

DSACKx \ /

PAS

(3]

DBDIS

READ CYCLE ACCESSING MC68851 PROVIDES DATA NEXT
MC68851 REGISTER AND TERMINATES TRANSFER CYCLE

Figure 4-11. Synchronous CPU Space Read Cycle Accessing MC68851 Register

CPU space accesses that do not access the MC68851 are passed directly through to the physical
bus with a unity mapping (i.e., unmapped). However, unlike normal address translations, map-
pings of CPU space accesses do not result in assertion of physical address strobe. Instead, CLI is
asserted with timing similar to that of PAS and the combination of CLI with a CPU space indicator
(FC3—-FCO = $7) can be used to generate a CPU space address strobe. The functional timing for
CPU space cycles that do not access the MC68851 is shown in Figure 4-13.

PAS is not asserted for CPU space accesses in order that external controllers for physical memory
devices not be required to monitor the function codes in addition to normal address decode in
order to qualify the accesses. Figure 4-14 shows a typical representation of the logic required to
generate a CPU space address strobe. Logical address strobe (LAS) is included in order to negate
the strobe immediately upon termination of the bus cycle.

MC68851 USER’S MANUAL MOTOROLA
4-17

27023
CLOCK
PERIODS
NI S2 Sw S4 SO

cLocK I_—I [1 [J | J L

NN

b
X

—

n— _/

DSACKx

PAS

[&]

DBDIS

MC68851 ACCEPTS DATA NEXT
LWRITE CYCLE ACCESSING MC68851 REGISTER ’I‘ANU TERMINATES TRANSFER" CYCLE l‘i

Figure 4-12. Synchronous CPU Space Write Cycle Accessing MC68851 Register

Also shown in Figure 4-14 are two alternative (though not mutually exclusive) methods for gen-
erating other required physical address space control strobes. The first method conditions the
data strobe output of the logical bus master with PAS to generate a physical data strobe (PDS).
The second method conditions the RW signal of the logical master with PAS to generate a physical
R/W signal (PR/W). One or both of these methods should be employed as dictated by the control
requirements for a particular system.

4.2.3.6 CPU SPACE ACCESS WITH RELINQUISH AND RETRY. The MC68851 terminates accesses
to its register set with a relinquish and retry request (assertion of BERR, HALT, and LBRO) under
two conditions. The first case occurs when a value is written to the descriptor address ALCR (refer
to SECTION 10 ACCESS LEVEL PROTECTION MECHANISM) that does not have a corresponding
entry resident in the MC68851 ATC. The relinquish and retry is issued in order that the MC68851

MOTOROLA MC68851 USER'S MANUAL
4-18

DSACKx \ /

PAS

@\ /-

DBDIS

L‘LDGICAL BUS MASTER ACCESSING CPU SPACE 4,l<‘£‘YE§L‘>l

Figure 4-13. Synchronous CPU Space Cycle Accessing Physical Address Space

CPU SPACE
ADDRESS
STROBE
(CSAS)

-
=

s ——Q . RAW ——Q _
- DS OR PR/W
PAS ———Q PAS ———Q

Figure 4-14. Typical Physical Address Space Strobe and R/W Generation

MC68851 USER'S MANUAL MOTOROLA
4-19

can gain control of the logical bus in order to load the referenced entry into the ATC prior to
being re-queried by the CPU. The second case occurs when a PLOAD or PTEST instruction is
interrupted by the activity of an alternate logical bus master. Should this event occur, the table
search is suspended by the MC68851 until the CPU reads the response register at which time the
MC68851 issues a relinquish and retry and restarts the table search.

The functional timing for this operation is similar to that of a relinquish and retry issued during
an address translation, as shown in Figure 4-6, with the exception that BERR, HALT, and LBRO
are asserted one-half clock period later than shown in this figure.

m 4.3 TABLE SEARCH OPERATIONS
The following paragraphs describe the control signal and bus operation of the MC68851 during

table search operations. For this discussion, it is assumed that the MC68851 possesses mastership
of the logical bus. The operations required to gain this mastership are discussed in detail in 4.4
LOGICAL BUS ARBITRATION.

During table search operations, the bidirectional signals DSACKO, DSACK1, BERR, and HALT are
always used as bus control inputs. The signals RMC, DS, SIZ0, SIZ1, RW, FC3-FC0, A7-AQ, and
LBGACK are used as three-state outputs. The MC68851 drives the data bus during all write cycles
and inputs data from the bus during read cycles.

4.3.1 Operand Transfer Mechanism

When performing table search operations as the physical bus master, the MC68851 provides a
very powerful operand transfer mechanism utilizing parallel, non-multiplexed buses.

The MC68851 architecture supports byte, word, and long word operands and allows 8-, 16-, and
32-bit ports through the use of the data transfer and size acknowledge signals (DSACKO and
DSACK1). The DSACKXx signals are controlled by the slave devices currently being accessed and
are discussed further in 4.3.1.1 DYNAMIC BUS SIZING.

The current implementation of the MC68851 utilizes only long word and byte operands. Address
and status information in the translation tables is normally accessed as long words; the descriptor
status bytes containing the used, or used and modified bits (refer to SECTION5 ADDRESS TRANS-
LATION) are accessed using byte write or byte read-modify-write cycles when the MC68851 must
update these bits. The MC68851 performs write operations only to update descriptor status in-
formation and, as such, all write cycles are byte operations as are all read-modify-write cycles.

As opposed to the MC68020, which does not place any alignment restrictions on operands in
memory, the MC68851 always operates on data that is aligned to long word boundaries. This
requires that all entries in the translation table be aligned to long word boundaries. Although
table pointers utilized by the MC68851 for address calculations (root, table, and page pointers)
may contain values that are not long word aligned (i.e., A1/A0 # 00), the MC68851 implicitly sets
these bits to zero before performing physical address calculations.

4.3.1.1 DYNAMIC BUS SIZING. The MC68851 allows operand transfers to or from 8-, 16-, and
32-bit ports by dynamically determining the port size during each bus cycle. During an operand
transfer cycle, the slave device signals its port size (byte, word, or long word) and transfer status
(complete or not complete) to the MC68851 through the use of the DSACKx signals. The DSACKx
signals perform the same transfer akcnowledge function as does the DTACK signal of other M68000
Family devices as well as informing the MC68851 of the current port width. Refer to Table 4-3 for
DSACKx encodings and assertion results.

MOTOROLA MC68851 USER'S MANUAL
4-20

For example, if the MC68851 is exe- Table 4-3. DSACK Codes and Results
cuting a table search operation to read

a page or table pointer (a long word DSACK1 DSACKO Result
operand) it attempts to read 32 bits H H
during the first bus cycle. If the port H L
responds that it is 32 bits wide, the
MC68851 latches all 32 bits of data L H Complete Cycle — Data Bus Port is 16 Bits
and continues with the next opera- L L Complete Cycle - Data Bus Port is 32 Bits
tion. If the port responds that it is 16

bits wide, the MC68851 latches the 16

bits of valid data and initiates another bus cycle to obtain the other 16 bits. An 8-bit port is handled
similarly, but with four read cycles.

Insert Wait States in Current Bus Cycle

Complete Cycle — Data Bus Port is 8 Bits

Each port is fixed in assignment to particular sections of the data bus. A 32-bit port is located on
data bus bits 0 through 31, a 16-bit port is located on bits 16 through 31, and an 8-bit port is
located on bits 24 through 31. The MC68851 makes these assumptions in order to locate valid
data and to minimize the number of transfers required to access 8- and 16-bit ports. The MC68851
always attempts to transfer the maximum amount of data on all bus cycles; i.e., for a long word
operation, it always assumes that the port is 32 bits wide when beginning the bus cycle.

Figure 4-15 shows the required organization of data ports on the MC68851 bus for 8-, 16-, and
32-bit devices, and also illustrates the internal organization of operands used by the MC68851,
the internal multiplex and routing hardware, and the operand organization in memory required
to provide this organization regardless of the port size.

The internal multiplexer shown in Figure 4-15 takes the four bytes of the 32-bit bus and routes
them to their required positions. For example, OP3 can be routed to D0-D7, as would be the
normal case, or it can be internally routed to D23-D16 or D31-D24 to support transfers to 16- or
8-bit ports, respectively.

INTERNAL SOURCE/DESTINATION | 0P0 | 0P1 [P2 | o3 |
MULTIPLEXER [ROUTING AND DUPLICATION |
EXTERNAL / / \ L
oATABUS. L D31-024 023016 D15.08 0700 |
< y y y y
ADDRES
BYTE O BYTE 1 BYTE 2 BYTE 3 32-BIT PORT
INCREASING xoxxxexQ L l I I I
MEMORY
ADDRESSES
xxxxxxx0 BYTE 0 BYTE 1
16-BIT PORT
2 BYTE 2 BYTE 3
xxxxxxx0 BYTE 0
1 BYTE 1
8.BIT PORT
2 BYTE 2
3 BYTE 3

Figure 4-15. MC68851 Interface to Various Port Sizes

MC68851 USER'S MANUAL MOTOROLA
4-21

The positioning of the bytes on the internal data bus is determined by the size (SIZ1 and SIZ0)
and address (A1 and AO) outputs. The size outputs indicate the number of bytes of the operand
that remain to be transferred.

The number of bytes transferred during a bus cycle is always equal to or less than the operand
size indicated by the SIZ1 and SIZ0 outputs, depending on the port width. For example, during
the first bus cycle of a long word transfer from a word port, the size outputs indicate that four
bytes are to be transferred although only two bytes are read on that cycle. The MC68851 executes
another bus cycle to read the remainder of the operand with the size outputs indicating that a
word remains to be read. Table 4-4 shows the encodings for SiZ1 and SIZ0.

n It is important to recognize the distinction between port size and operand size. The port size is a

function of the physical width of the device being accessed and is considered, but not required,
to be static for any particular device. In contrast, the operand size, as indicated by the SIZ0 and
SIZ1 signals, provides the size of the operand that remains to be transferred. The DSACKXx signals
always indicate port size.

The address lines A1 and AO also affect the operation of the internal data bus multiplexer. During
an operand transfer, A2-A31 indicate the long word base address of the operand to be accessed,
while A1 and A0 give the byte offset from that base. For example, consider the transfer of a long
word from a word port requiring two bus cycles to complete. For the first transfer, the MC68851
initiates an aligned long word read (A1/A0 = 00, SIZ1/SIZ0 = 00), accepting OP0 and OP1 on D24~
D31 and D16-D23, respectively. To access the remainder of the operand, the MC68851 increments
the access address by one word and initiates an aligned word read (A1/A0 = 10, SiZ1/S1Z20 = 10),
accepting OP2 and OP3, again, on D24-D31 and D16-D23, respectively. Table 4-5 shows the
encodings of A1 and AQ and the corresponding byte offsets from the long word base.

Table 4-4. Size Output Encodings Table 4-5. Address Offset Encodings
s1z1 S1Z0 Size A1 A0 Offset
0 1 Byte 0 0 + 0 Bytes
1 0 Word 0 1 + 1 Bytes
1 1 3 Byte 1 0 + 2 Bytes
0 0 Long Word 1 1 + 3 Bytes

Table 4-6 describes the use of SIZ1, SIZ0, A1, and A0 in defining the transfer pattern between the
internal multiplexer of the MC68851 and the external data bus. Transfer patterns that are not
supported by the MC68851 due to operand alignment restrictions are not shown in this table. To
summarize this description, the MC68851 initiates only aligned long word read, byte write, and
byte read-modify-write cycles. All other permutations of alignment and size are in response to
dynamic sizing request from slave devices that do not support single-cycle 32-bit transfers.

Table 4-6. MC68851 Internal to External Data Bus Multiplexer

Transfer Size Address Source/Destination External Data Bus Connection

Size Siz1 SIZo A1 A0 D31-D24 D23-D16 D15-D8 D7-D0
Byte 0 1 1 1 OP3 oP3 oP3 OoP3
Word 1 0 1 0 OP2 OP3 0P2 OP3
3 Byte 1 1 0 1 OP1 OP1 oP2 OP3
Long Word 0 0 0 0 OPO OP1 0P2 0oP3

MOTOROLA MC68851 USER'S MANUAL
4-22

Figure 4-16 shows the basic control flow associated with an aligned long word transfer from a
16-bit port. Refer to Figure 4-17 for timing relationships. The high order word of the long word
(OPO and OP1) are transferred from the port located on D16-D31 during the first bus cycle. For
the first transfer, the size outputs indicate that four bytes remain to be transferred and the A1/A0
indicate that the transfer is aligned (SI1Z1/SI1Z0/A1/A0 = 0000). The port responds to the MC68851
by asserting the DSACKx signals to indicate completion of a 16-bit transfer (DSACK1/DSACKO = LH).
The MC68851 latches the word of data, terminates this cycle and begins a second cycle to complete
the transfer. For the second cycle, the size and address lines indicate that a word transfer is to
take place on D16-D31 (SI1Z1/SiZ0/A1/A0 = 1010). The base address has been incremented by two
(bytes) in order to access the next highest word location in memory. The slave device places data
on D16-D31 (OP2 and OP3) and again responds by asserting the DSACKx inputs (DSACK1/
DSACKO = LH). n

The control flow for a long word transfer from an 8-bit port is shown in Figure 4-18. Four bus
cycles are required to transfer this operand, moving one byte per cycle. Similar to the previous
example, the size outputs indicate a long word transfer during the first cycle, three bytes during
the second, a word during the third, and a byte during the final cycle. Refer to Table 4-6 for
internal multiplexer operation during this transfer. Figure 4-19 shows timing relationships for
these bus cycles.

4.3.1.2 EFFECTS OF DYNAMIC BUS SIZING. The dynamic sizing capabilities of the MC68851
allow placement of the address translation tables in 8-, 16-, and 32-bit memories or any desired
mixture of these port widths. However, since the table search operations access primarily long
word operands, residence of the translation tables in memory that is less than 32 bits wide has
detrimental effects on system performance due to the increased number of bus cycles required
to access this information. First, the overall average translation time increases, simply due to the
increased number of bus cycles that are required to load translation descriptors from memory.
Second, since the CPU cannot access the bus during MC68851 table search operations, any
increase in the time required to perform a table search produces a corresponding increase in
interrupt latency (refer to SECTION 11 OPERATIONS TIMINGS).

4.3.1.3 ADDRESS, SIZE, AND DATA BUS RELATIONSHIPS. The dynamic bus capabilities of the
MC68851 create a very powerful and flexible bus structure. Correct external interpretation of bus
control signals is critical to ensure valid data transfer operation.

LONG WORD OPERAND

0P0 op1 0P2 0P3 1
31 0
\
DATA BUS
031 D16
Y
WORD MEMORY MC68851 MEMORY CONTROL
MsB LSB SizZi sizo Al A0 DSACKI DSACKD
oPo op1 ¢ o o o L H
op2 o0P3 10 10 L H

Figure 4-16. Example of Long Word Transfer from 16-Bit Port

MC68851 USER'S MANUAL MOTOROLA
4-23

FCO-FC3 r SUPERVISOR DATA

m’/

DSACK1 ; \ / \

LBGACK

-~ J‘ —
WORD READ > WORD READ

[————————— LONG WORD OPERAND READ FROM 16-BIT PORT >

Figure 4-17. Long Word Operand Read Timing (16-Bit Data Port)

The MC68851 system designer should ensure that data ports are aligned as discussed in 4.3.1.1
DYNAMIC BUS SIZING such that the MC68851 is able to route data to the correct locations. It is
also required that the correct byte data strobes (four, for long word memory) be generated which
enable only those sections of the data port(s) that are active during the current bus cycle. The
MC68851 always drives all portions of the data bus during a write cycle, so this necessitates
careful control of the enable signals for independent bytes of a data port. During write operations,
those ports that are not active in that transfer must not be enabled.

MOTOROLA MC68851 USER’S MANUAL
4-24

LONG WORD OPERAND

[0P0 [oP1 [P2 | 0P3 |
3 l 0
DATA BUS
D31 D24
BYTE MEMORY MC68851 MEMORY CONTROL
Szl Sz Al AO DSACK] DSACKO
0p0 o o 0 o H L
0P2 10 H L
oP1 10 1 o0 H L
op3 o1 1 H L

Figure 4-18. Example of Long Word Transfer from Byte Port

The required active bytes of the data bus for any given MC68851 bus transfer are a function of
the size (SIZ1/S1Z0) and lower address (A1/A0) outputs and are shown in Table 4-7.

Table 4-7. Data Bus Activity for Byte, Word, and Long Word Ports

Data Bus Active Sections
Transfer Size Address Byte (B) — Word (W) - Long Word (L) Ports
Size Siz1 sizo A1 A0 D32-D24 D23-D16 D15-D8 D7-Do0
Byte 0 1 1 1 B w — L
Word 1 0 1 0 B W w L L
3 Byte 1 1 0 1 B WL L L
Long Word 0 0 0 0 BWL WL L L

The MC68851 bus interface is a proper subset of the MC68020 bus structure and thus, coupled
with the fact that all bus control strobe signals are wire-ORed with those of the CPU, the MC68851
can directly share all byte data strobe circuitry utilized by the processor. Refer to the MC68020
32-Bit Microprocessor User’s Manual for additional information.

4.3.2 Physical Bus Operation

Transfer of translation information between the MC68851 and the translation tables located in
physical memory involves the following signals:

1)
2)
3)
4)
5)

Physical address PA8 through PA31,
Shared address AO through A7,
Data bus DO through D31,

Bus control signals, and

Transfer size SIZ0 and SIZ1.

The physical address and data buses are parallel, non-multiplexed buses used to transfer data
using an asynchronous protocol. In all bus cycles the bus master is responsible for deskewing

MC68851 USER'S MANUAL MOTOROLA

4-25

9Z-v
VY104O10N

AVNNVYIN S.H3ASN LS8890IN

S0

S0

s2
CLOCK | | | | |

S4 S0 S2 sS4 S0

S2 S4

|_||_f827ILII[IrI|_]l__Iﬁ

FCO-FC3 x

PAB-PA31 x

SUPERVISOR DATA
/ \ /
/ \
/ \ /

DBDIS

D24-D31

C_m) l_®m > 0r2

11

0P3

DSACKI /
DSACKD

LBGACK

BYTE READ

:L BYTE READ BYTE READ ~L
I —’1‘— T

BYTE READ ————————

LONG WORD OPERAND READ FROM 8-BIT PORT

Figure 4-19. Long Word Operand Read Timing (8-Bit Data Port)

all signals issued at both the start and the end of the cycle. In addition, the bus master is responsible
for deskewing the acknowledge and data signals from the slave devices.

The following paragraphs describe the MC68851 data transfer operations.

4.3.21 READ CYCLE. During a read cycle the MC68851 receives data from an external memory
device. The MC68851 always reads a byte, or bytes, as determined by the operand and port sizes
(refer to 4.3.1 Operand Transfer Mechanism). If the DSACKx inputs or BERR are not asserted
during the sample window of the falling edge of S2, wait states are inserted in the bus cycle until
either DSACK1/DSACKO or BERR is recognized as being asserted.

A flowchart of an MC68851 read cycle is shown in Figure 4-20. At the initiation of the bus cycle,
the MC68851 outputs the operand size on the SIZ1/SIZ0 signals. If the transfer response from the
accessed device indicates that the port size is smaller than the operand size, then the MC68851
immediately initiates another transfer to read the remainder of the operand. During successive
cycles required to complete the operand transfer, the size outputs of the MC68851 indicate the
size of the operand remaining to be transferred, that is, the operand size less the number of bytes
previously acquired.

MC68851 SLAVE

ADDRESS DEVICE

RISING EDGE OF SO
1) SET R/W TO READ
2) SET FUNCTION CODE TO SUPERVISOR DATA
3) DRIVE ADDRESS ON AQ-A7 AND PA8-PA31
4) SET SIZE (SIZ1, SIZ0) TO SIZE OF OPERAND REMAINING
UNACCESSED

FALLING EDGE OF S1
5) ASSERT PHYSICAL ADDRESS STROBE (PAS)
6) ASSERT DATA STROBE (DS)

RISING EDGE OF S2
7) NEGATE DATA BUFFER DISABLE (DBDIS) > PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON APPROPRIATE PORTION(S) OF DATA BUS
ACQUIRE DATA - 3) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKx)

FALLING EDGE OF $2
1) RECOGNIZE DATA TRANSFER AND SIZE ACKNOWLEDGE
FALLING EDGE OF $4
2) LATCH DATA
3) NEGATE PAS

4) NEGATE DS TERMINATE CYCLE
5) ASSERT DBDIS

1) NEGATE DSACKx

Y

IF ACKNOWLEDGED SIZE (DSACKx) LESS THAN INDICATED SIZE (SIZ1, SIZ0),
THEN DECREMENT SIZE OF OPERAND REMAINING UNACCESSED BY
ACKNOWLEDGED SIZE, INCREMENT ADDRESS, AND GO TO @

ese 6010 (8) ® ®

A
[START NEXT OPERATION |

Figure 4-20. Read Cycle Flowchart

MC68851 USER'S MANUAL MOTOROLA
4-27

i LU

Recalling that the MC68851 performs read cycles only on aligned long word operands, all multiple
cycle transfers are the result of long word accesses to ports that are not 32 bits wide. The various
combinations of read cycles performed by the MC68851 are illustrated in Figures 4-17, 4-19, and
4-21. The parametric timing information for read cycles is shown in SECTION 12 ELECTRICAL
SPECIFICATIONS.

S0 S2 S4

FCO-FC3

PA8-PA31

A2-A7

Al

L~ < S PS

.~

A
sz \
s\
Ty 4
T\ /
s\ /-

D16-D23 0P1
D8-D15 0P2
D0-D7 0P3

TSACKD 7——\—_/—
DSACK] 7———________/—

LBGACK

’1— LONG WORD READ FROM LONG WORD PURT‘D‘

Figure 4-21. Long Word Operand Read Timing (32-Bit Data Port)

MOTOROLA MC68851 USER'S MANUAL
4-28

4.3.2.2 WRITE CYCLE. During a write cycle, the MC68851 sends data to a memory device. The
function of the operand transfer mechanism during a write cycle is identical to that during a read
cycle (refer to 4.3.1 Operand Transfer Mechanism).

The only write cycles initiated by the MC68851 are byte operations to update the used bit, modified
bit, or both in order to ensure that information contained in the translation tables is consistent
with information stored in the address translation cache (refer to 5.1 ADDRESS TRANSLATION
CACHE).

A flowchart of the MC68851 write operation is shown in Figure 4-22. The functional timing for
this operation is shown in Figure 4-23. The parametric timing information for write cycles is shown
in SECTION 12 ELECTRICAL SPECIFICATIONS. n

4.3.2.3 READ-MODIFY-WRITE CYCLE. The read-modify-write cycle performs a read, modifies
the data in the EU, and writes the data back to the same address. During the entire read-modify-
write sequence the MC68851 asserts the RMC signal to indicate that an indivisible operation is
occurring. During this operation, the MC68851 will not issue a physical bus grant (PBG) in response
to a physical bus request (PBR) nor will it release logical bus grant acknowledge (LBGACK) in
response to a logical bus request (LBRI).

MC68851 SLAVE

ADDRESS DEVICE

RISING EDGE OF SO
1) SET R/W TO WRITE
2) SET FUNCTION CODE TO SUPERVISOR DATA
3) DRIVE ADDRESS ON AQ-A7 AND PAS-PA31
4) SET SIZE (SIZ1, SIZ0) TO BYTE

FALLING EDGE OF S1
5) ASSERT PHYSICAL ADDRESS STROBE (PAS)
6) NEGATE DATA BUFFER DISABLE (DBDIS)

RISING EDGE OF S2
7) DRIVE DATA ONTO DATA BUS

FALLING EDGE OF S2
8) ASSERT DATA STROBE (DS) > ACCEPT DATA

1) DECODE ADDRESS
2) LATCH DATA FROM APPROPRIATE PORTION(S) OF DATA BUS
TERMINATE QUTPUT TRANSFER - 3) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKXx)

FALLING EDGE OF S2
1) RECOGNIZE DATA TRANSFER AND SIZE ACKNOWLEDGE

FALLING EDGE OF S4
2) NEGATE PAS
3) NEGATE DS

RISING EDGE OF S5
4) REMOVE DATA FROM DO0-D31
5) ASSERT DBDIS > TERMINATE CYCLE

Y 1) NEGATE DSACKX

I START NEXT OPERATION I

Figure 4-22. Write Cycle Flowchart

MC68851 USER’S MANUAL MOTOROLA
4-29

S0 S2 S4

woo [L] L1

FCO-FC3 X SUPERVISOR DATA

nanAARRn

j
1

DBDIS 1 /_
024-031 >—(0p3) S—
D16-023 >———(oP3 "y
08015 >—(~0p3 P =
D0-07 H 0p3 ‘)_

osacki [/ \ /
sacko [/ \ /

LBGACK
L— BYTE WRITE CYCLE —Dl

Figure 4-23. Byte Write Timing Diagram

The read-modify-write sequence is implemented to allow multiple MC68851s, in a multi-processing
environment, to utilize the same address translation tables without corrupting critical status in-
formation contained in the tables. For example, consider the case where the MC68851 is setting
the used bit in a page descriptor status byte that has not been modified (M = 0). The update is
accomplished by reading the status byte (as part of the read of the descriptor), setting the ap-

MOTOROLA M068851 USER’S MANUAL
4-30

propriate bit (U = 1), and writing the entire status byte back to its original location. Effectively,
the only bit that is changed is the used bit although all of the status byte has been overwritten.
However, suppose that another MC68851, using the same page descriptor, initiates a cycle to set
the modified bit (M = 1) and succeeds in setting it while the first MC68851 is still performing the
data modification in its EU. The first MC68851 completes the modification and writes the byte
back to memory. At this point the status byte has been corrupted since the image of the byte
originally read by the first MC68851 had the modified bit clear and this is the value that will be
written back, clearing the bit that had just been set by the second MC68851. The use of read-
modify-write cycles during transfers that can cause corruption of the modified bit solves this
problem by performing the entire operation in an indivisible sequence that does not allow alternate
physical bus masters concurrent access to the information.

The MC68851 utilizes a read-modify-write sequence to update the descriptor status byte whenever n
itis required to set the used bit but not affect the state of the modified bit. Pointer table descriptors,
which do not contain modified bits, are not referenced using read-modify-write sequences.

The use of read-modify-write cycles prevents multiple MC68851s, that are setting status bits in
shared translation tables, from corrupting status information. However, it does not prevent al-
ternate bus masters from rendering the table status information inconsistent if they are capable
of accessing the translation tables and clearing the used or modified bits during an MC68851
table search operation. Devices capable of clearing the used and modified bits, or otherwise
modifying a descriptor, should have their accesses to the translation tables synchronized with
MC68851 table search operations (i.e., they should not be allowed access to the tables during
table search operations).

A flowchart of the read-modify-write operation is shown in Figure 4-24. Figure 4-25 depicts the
functional timing of the read-modify-write sequence. The parametric timing information for the
read-modify-write cycle is shown in SECTION 12 ELECTRICAL SPECIFICATIONS.

4.3.2.4 BUS ERROR AND HALT OPERATION. In a bus architecture that requires a handshake
from an external device to signal that a bus cycle is complete, the possibility exists that the
handshake might not occur. Since different systems require different maximum response times,
a bus error signal is provided; refer to 3.8.3 Bus Error (BERR). External circuitry must be used to
determine the maximum allowable duration between the assertion of physical address strobe
(PAS) and data size and transfer acknowledge (DSACKXx) and it should issue a bus error signal
when that time is exceeded. When a BERR signal is received the MC68851 immediately terminates
its table search operation. When both BERR and HALT are received the MC68851 retries the cycle
that was terminated.

4.3.2.4.1 Bus Error Operation. When the bus error signal is issued to terminate a bus cycle and
HALT is not asserted, the MC68851 immediately aborts the table search operation that was in
progress and creates a translation descriptor in the address translation cache reflecting the error
(refer to 5.2 ADDRESS TRANSLATION CACHE).

The bus error signal is recognized during a bus cycle in any of the following cases:
1) DSACKx and HALT are negated and BERR is asserted, or

When the bus error condition is recognized, the current bus cycle is terminated in the normal
fashion. Figures 4-26 and 4-27 show the timing diagrams for both the normal and the delayed
bus error signals.

MC68851 USER'S MANUAL MOTOROLA
4-31

MC68851

LOCK BUS

RISING EDGE OF S0
1) ASSERT AMC

Y

ADDRESS DEVICE

RISING EDGE OF SO
1) SET R/W TO READ
2) SET FUNCTION CODE TO SUPERVISOR DATA
3) DRIVE ADDRESS ON AQ-A7 AND PA8-PA31
4) SET SIZE (SIZ1, SIZ0) TO BYTE

FALLING EDGE OF S1
5) ASSERT PHYSICAL ADDRESS STROBE (PAS)
6) ASSERT DATA STROBE (DS)

RISING EDGE OF S2
7) NEGATE DATA BUFFER DISABLE (DBDIS)

SLAVE

PRESENT DATA

ACQUIRE DATA

FALLING EDGE OF S2
1) RECOGNIZE DATA TRANSFER AND SIZE ACKNOWLEDGE

FALLING EDGE OF S4
2) LATCH DATA
3) NEGATE PAS
4) NEGATE DS
5) ASSERT DBDIS

1) DECODE ADDRESS
2) PLACE DATA ON DATA BUS
3) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKx)

TERMINATE CYCLE

Y

ADDRESS DEVICE

1) NEGATE DSACKx

RISING EDGE OF SO
1) SET R/W TO WRITE
2) DRIVE ADDRESS ON A0-A7 AND PA8-PA31
3) SET SIZE (SI121, SIZ0) TO BYTE

FALLING EDGE OF §1 o
4) ASSERT PHYSICAL ADDRESS STROBE (PAS)
5) NEGATE DATA BUFFER DISABLE (DBOIS)

RISING EDGE OF S2
6) DRIVE DATA ONTO DATA BUS

FALLING EDGE OF S2 _
7) ASSERT DATA STROBE (DS)

ACCEPT DATA

TERMINATE OUTPUT TRANSFER

FALLING EDGE OF S2

1) RECOGNIZE DATA TRANSFER AND SIZE ACKNOWLEDGE
FALLING EDGE OF S4

2) NEGATE PAS

3) NEGATE DS
RISING EDGE OF S5

4) REMOVE DATA FROM DO0-D31

1) DECODE ADDRESS
2) LATCH DATA FROM DATA BUS
3) ASSERT DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACKXx)

5) ASSERT DBDIS

TERMINATE CYCLE

UNLOCK BUS

1) NEGATE DSACKx

RISING EDGE OF S5
1) NEGATE AN

¥

I START NEXT OPERATION

Figure 4-24. Read-Modify-Write Cycle Flowchart

MOTOROLA
4-32

McC68851 USER'S MANUAL

S0 S2 S4

L 1 I LI 1

SUPERVISOR DATA

(%)
=]
1]
)
4
=

CLOCK

’__
-
|
[

FCO-FC3

PA8-PA31

A2-A7

Al

AD

SIZ1

SIz0

NN

DBOIS _-_____/ \

0007 0P3
osacki / \
DSACK0 / \ /

LBGACK
“ INDIVISIBLE CYCLE J

r 'I

Figure 4-25. Read-Modify-Write Cycle Timing Diagram (32-Bit Port)

0P3

A

MC68851 USER'S MANUAL MOTOROLA
4-33

MAXIMUM
23 CLOCK
PERIODS
S0 S2 Sw Sw S4

eo [L[L L LT L LI L_J

FCO-FC3 X SUPERVISOR DATA)_—
PAS-PA31 X X
AO-A7 X D —
m Al x)—_____.
sizo r)—_
R/W / N—

DBDIS __-\ /_ \
00-031 >_

DSACK0 /.

ek /

@
m
-
>

LBGACK /

L l MC68851
INTERNAL |
I‘ READ BUS ERROR DETECTION PROCESSING RELBEll‘\:ES

Figure 4-26. Bus Error Timing

4.3.2.4.2 Retry Operation. When, during a bus cycle, the BERR and HALT signals are both
asserted by an external device, the MC68851 enters the retry sequence. A delayed retry may be
used, similar to the delayed bus error described above. Figures 4-28 and 4-29 show the functional
timing of both methods of retrying the bus cycle.

The MC68851 terminates the bus cycle, places the control signals in their inactive state and does
not initiate further bus activity until both BERR and HALT are negated by external logic. The
MC68851 then retries the previous cycle using the same access information (address, size, . . .,
etc.). The BERR signal must be negated before or at the same time as the HALT signal.

|
MOTOROLA MC68851 USER'S MANUAL
4-34

MAXIMUM
23 CLOCK
PERIODS
S0 S2 Sw Sw S4

wooe [L L L[L[LI LI L1

FCOFC3 x SUPERVISOR DATA D o ——
PAS-PA31 X X
AO-A7 X D ——
sizt) —
Siz0 r)
R\ —

oes \ / \

o003t >——i_ >
osacko / \ /
oK/ N

BERR

—

MC68851
INTERNAL
ITE
WRITE BUS ERROR DETECTION ——.‘1—~ PROCESSING "L RH;SSSESJ

Figure 4-27. Delayed Bus Error Timing

LBGACK

N

The MC68851 imposes no restrictions on retrying any type of bus cycle. Specifically, any portion
of a read-modify-write operation may be separately retried since the RMC signal remains asserted
during the entire retry sequence.

4.3.2.4.3 Halt Operation. The HALT signal, when used as an input, performs a halt/run/single-
step function. The halt and run modes are somewhat self-explanatory in that when, during a table
search operation, the halt signa!l is constantly asserted the MCE88E1 ‘halte’ {does nothing) and

when the halt signal is constantly negated the MC68851 ‘runs’ (does something).

The single-step mode is derived from correctly timed transitions on the HALT line. If HALT is
asserted when the MC68851 begins a bus cycle (see below) and remains asserted, the bus cycle

MC68851 USER'S MANUAL MOTOROLA
4-35

9e-v
VI04O1OW

S0 S2 Sw S4

o [L L L1 L L L1 L

FCO-FC3 X SUPERVISOR DATA

PAS-PA31 x

weois .\ /

D0-D31
bsacko /
osacki /
BERR \ /

= __
3 HALT \ /
@
@ __
a LBGACK
Cc
7 .
b < READ > HALT RETRY
@ B T
s
E Figure 4-28. Bus Cycle Retry Timing
>
-

J NEXT
| cyete

TVANVIN S.H3SN L58890N

V104OLOW

LEV

S0 82 Sw S4

oo [T L L L L LI e

FCO-FC3 x SUPERVISOR DATA

thiiiii

—
DBDIS \

[E Eh

D0-031 >
s/ \ /
osacki /- \
BERR \
FALT N\ ya
BGACK

{l# READ % HALT - %‘r‘ RETRY —’. CNYEl;(LTE Lﬁ

Figure 4-29. Delayed Bus Cycle Retry Timing

will complete, but another bus cycle is not allowed to start. When it is desired to continue, HALT
is then negated and reasserted when the next bus cycle is started. Thus, the single-step mode
allows the user to step through (and debug) MC68851 table search operations, one bus cycle at
a time.

The timing required for correct single-step operation is detailed in Figure 4-30. Some care must
be exercised to avoid harmful interactions between the BERR and HALT signals (refer to
4.3.2.4.2 Retry Operation) when using the single-step mode as a debugging tool.

When the MC68851 completes a bus cycle after recognizing that the HALT line is active, all bus
; control signals are placed in their inactive states, buses remain driven with their previous values,
m and the logical and physical bus arbitration circuitry functions normally.

4.3.2.4.4 The Relationship of DSACKx, BERR, and HALT. In orderto properly control termination
of a bus cycle for a retry or a bus error condition, DSACKx, BERR, and HALT should be asserted
and negated on the rising edge of the MC68851 clock. This assures that when two signals are
asserted simultaneously, the required setup time to the falling edge of the clock (#47A) and hold
times (#47B) for both of them will be met during the same bus state. This, or some equivalent
precaution, must be designed external to the MC68851.

The preferred bus cycle terminations may be summarized as follows (case numbers refer to Table

4-8).
Normal Termination: DSACKXx is asserted, BERR and HALT remain negated (case 1).
Halt Termination: HALT is asserted at the same time as, or before DSACKx and BERR

remains negated (case 2).

Bus Error Termination: BERR is asserted in lieu of, at the same time as, or before DSACKx
(case 3) or within one clock cycle after DSACKx (case 4) and HALT
remains negated; BERR is negated at the same time as or after DSACKx.

Retry Termination: HALT and BERR are asserted in lieu of, at the same time as, or before
DSACKXx (case 5) or within one clock cycle after DSACKx (case 6);
BERR is negated at the same time as or after DSACKx. HALT may be
negated at the same time as, or after BERR.

Table 4-8 details the resulting bus cycle terminations under various conditions of control signal
sequences. The correct timing for negation of BERR and HALT must also be used to ensure
predictable operation. Note that for cases 4 and 6, BERR and/or HALT must meet the input setup
time specified by #27a. For bus cycle retry operation BERR must be negated prior to, or at the
same time as HALT. DSACKx, BERR, and HALT may be negated when PAS is negated. If DSACKx
or BERR remain asserted past the maximum hold time specified (#47B), the operation of the
MC68851 bus is not predictable (i.e., DSACKx or BERR may or may not be recognized early in the
next bus cycle).

4.3.2.5 ASYNCHRONOUS VERSUS SYNCHRONOUS PHYSICAL BUS OPERATION. The follow-
ing paragraphs describe the asynchronous and synchronous physical bus operation.

4.3.2.5.1 Asynchronous Operation. To achieve clock frequency independence at a system level,
the MC68851 can be used in an asynchronous manner. This requires using only the bus handshake
lines (PAS, DS, DSACKx, BERR, and HALT) to control the data transfer. Using this method, PAS
signals the start of a bus cycle and DS is used as a condition for valid data on a write cycle.
Decode of the size outputs and lower address lines A1 and A0 provide strobes that indicate which

MOTOROLA MC68851 USER’'S MANUAL
4-38

TYNNVIA S, HISN LS8890IN

V10HOLOW

6E-v

ok L L L1 L4 L1 L4 LI L] 1

FCO-FC3 X SUPERVISOR DATA

nnnnnn |

| J'
N\
”

EE gﬂ

i/ \ /

e/ \ /

BERR

oy \ /
[BGACK

!< READ ani HALT =!- NEXT CYCLE ——, C'"fé(LTE lq‘
Figure 4-30. Halt Operation Timing

Table 4-8. DSACK, BERR, and HALT Assertion Results

Asserted on Rising
Case Control Edge of State Resul
No. Signal N N+ 2 esult
DSACKXx A S Normal Cycle Terminate and Continue
1 BERR NA NA
HALT NA X
DSACKXx A S Normal Cycle Terminate and Halt
2 BERR NA NA Continue when HALT Removed
HALT A/S S
DSACKx NA/A X Terminate and Abort Table Search
3 BERR A S
HALT NA NA
DSACKx A X Terminate and Abort Table Search
4 BERR NA A
HALT NA NA
DSACKx NA/A X Terminate and Retry when HALT Removed
5 BERR A S
HALT A/S S
DSACKx A X Terminate and Retry when HALT Removed
6 BERR NA A
HALT NA A
LEGEND:
N — The number of the current even bus state (e.g., S2, S4, . . ., etc.)
A — Signal is asserted in this bus state.
NA — Signal is not asserted in this state.
X — Don't Care
S — Signal was asserted in previous state and remains asserted in this state.

portion of the data bus is active. The slave device then responds by placing the requested data
on the bus for a read cycle or latching the data on a write cycle and asserting data transfer and
size acknowledge corresponding to the port size to terminate the cycle. If no slave responds, or
the access is invalid, external control logic should assert the BERR, or BERR and HALT signal(s)
to abort or retry the cycle.

The DSACKXx signals are allowed to be asserted before the data from a slave device is valid on a
read cycle. The length of time that DSACKx may precede data is given by parameter #31, and it
must be met in any asynchronous system to ensure that valid data is latched by the MC68851.
Notice that there is no maximum time specified from the assertion of PAS to the assertion of
DSACKXx. This is because the MC68851 inserts wait cycles in one clock period increments until
DSACKX is recognized as asserted.

The BERR and HALT signals are allowed to be asserted after DSACKXx is asserted. BERR, or BERR
and HALT must be asserted within the time given by parameter #48 after DSACKXx is asserted in
any asynchronous system to ensure proper operation. If this maximum delay is violated, the
MC68851 may exhibit erratic behavior.

4.3.25.2 Synchronous Operation. To support those systems that use the system clock as a
signal to generate DSACKx and other asynchronous inputs, the asynchronous input setup time
is given by parameter #47A, and the asynchronous input hold time is given by parameter #47B.
If these setup and hold times are met for the assertion or negation of an input, such as DSACKX,
the MC68851 is guaranteed to recognize that signal level on that specific falling edge of the system

-
MOTOROLA MC68851 USER'S MANUAL
4-40

clock. However, the converse is not true — if the input signal does not meet the setup and/or
hold time, that level is not guaranteed not to be recognized. In addition, if the assertion of DSACKx
is recognized on a falling edge of the clock, valid data will be latched into MC68851 (on a read
cycle) on the next falling edge provided that the data meets the setup time given by parameter
#27. Given this situation, parameter #31 may be ignored. Note that if DSACKx is asserted for the
required setup time before the falling edge of S2, no wait states will be incurred and the bus
cycle will run at its maximum speed of three clock cycles.

In order to assure proper operation in a synchronous system when BERR or BERR and HALT is/
are asserted after DSACKx, BERR or BERR and HALT must meet the setup time (parameter #27A)
prior to the falling edge of the clock one clock cycle after DSACKXx is recognized as asserted. This
setup time is critical for proper operation, and the MC68851 may exhibit erratic behavior if it is
violated.

4.3.3 Bus Cycle Sequence

During a table search operation, the MC68851 performs sequences of operand transfers and
address calculations to locate a page descriptor for the referenced logical-to-physical address
mapping (refer to SECTION 5 ADDRESS TRANSLATION for more detail). The MC68851 uses the
information acquired during one operand transfer (or transfers) to generate the address for the
next level of the search. In general, two clock periods are required for this calculation and, there-
fore, successive operand transfers are separated by two clock periods.

However, when accessing multiple operands within a single level of the table structure (for ex-
ample, when fetching long-format descriptors) additional address calculation is not required after
the fetch of the first operand and, therefore, subsequent operands within that level may be
accessed with consecutive bus cycles (i.e., no intervening idle clock periods). Successive bus
cycles required to fetch a single operand (for example, in response to a dynamic sizing request
from a port that is smaller than the operand width) are also executed consecutively. Finally, the
MC68851 access after the fetch of a table descriptor that required the update of a status bit (U or
M), occurs immediately since the address calculation for the next level of a search is performed
in parallel with the status bit update.

Examples of MC68851 bus cycle sequences are provided in 4.7 BUS OPERATION EXAMPLES.

4.4 LOGICAL BUS ARBITRATION

Bus arbitration is the technique used by the MC68851 and other bus master-type devices to request,
be granted, and acknowledge bus mastership.

NOTE
The following paragraphs make reference to a ‘logical bus arbiter’. This is the control
logic that processes bus mastership requests and issues bus grants in response to these
requests. Normally, the logical bus arbiter is contained in the bus arbitration circuitry of
the CPU. However, there is no constraint that dictates that this control function cannot
be implemented externally. The MC68851 and other alternate logical bus masters are
‘requesting’ devices that contain logic to generate requests for bus access and, in general,

ara elavae in tha arhitratinn nrarnace [i a thowv nannat initiata arante)
arg CiaVes N NG aroiiralitn proCoes (LS., IngYy cannotl iniiaic granie,.

When the MC68851 must initiate a table search in physical memory to complete a service requested
by the logical bus master, it must first arbitrate for the logical bus. This is required in order to
avoid contention between the control signals, data bus, and lower address bus of the MC68851

MC68851 USER'S MANUAL MOTOROLA
4-41

and other logical bus masters. The MC68851 arbitrates for mastership of the logical bus for the
following circumstances:
1) The logical address output by the current logical bus master does not have a corresponding
translation descriptor resident in the MC68851 address translation cache,
2) The logical bus master attempts to write (not part of a read-modify-write sequence) to a
previously unmodified page,
3) The CPU executes a module call operation that references a non-resident descriptor, or
4) The CPU executes any coprocessor instruction that either explicitly requests, or implicitly
requires, that the MC68851 perform table search operations.

In addition to requesting control of the logical bus for its own requirements, the MC68851 also
n contains circuitry to monitor arbitration for the logical bus by other alternate bus masters.

Finally, the MC68851 logical bus arbitration circuitry must resolve conflicts resulting from higher
priority alternate logical bus masters requesting control of the bus coincident with the initiation
of MC68851 requests for the bus to service a current, lower priority master.

In its simplest form, the logical bus arbitration process consists of the following:
1) The MC68851 outputs a bus request to the logical bus arbiter,
2) The logical bus arbiter asserts a bus grant to indicate that the bus will be available at the
end of the current bus cycle, and
3) The MC68851 either acknowledges that it has assumed bus mastership by asserting logical
bus grant acknowledge or it passes the bus grant to another device if a higher priority
request also has been signaled.

Figure 4-31 is a flowchart detailing the logical bus arbitration process for the MC68851. Figure 4-
32 illustrates the functional timing of the arbitration process when the MC68851 is requesting the
bus as part of a relinquish and retry sequence.

4.4.1 Requesting the Logical Bus

The MC68851 contains arbitration logic required to request control of the logical bus and to monitor
the requests of other alternate bus masters. Requests for bus mastership are monitored using
the logical bus request input (LBRI) and signaled using the logical bus request output (LBRO).

The LBRO signal should be logically ORed externally with the LBRI signal to generate a single
‘bus request’ to the logical bus arbiter. Requests generated by the MC68851 on LBRO must not
be reflected on LBRI or a dead-lock situation will arise when the MC68851 requests access to the
bus.

Figure 4-33 illustrates the signal connections required for the logical bus arbitration circuitry.

4.41.1 ALTERNATE MASTER REQUESTING THE LOGICALBUS. The LBRIinputisused to signal
the MC68851 that a logical master with a higher priority that the current master is requesting
access to the bus.

In systems that employ a single alternate logical bus master (for example, a single DMA controller)
LBRI is a function of the bus request output of that device. It is necessary to externally condition
the bus request output of the alternate master such that after receiving a relinquish and retry
from the MC68851, the alternate master does not again assert LBRI until the MC68851 has com-
pleted the table search required to support the access requested by the master. An illustration of
the circuitry required to provide the above conditioning is shown in Figure 4-34.

MOTOROLA MC68851 USER'S MANUAL
4-42

MC68851 LOGICAL BUS ARBITER

REQUEST THE BUS

1) ASSERT LOGICAL BUS REQUEST OUT (LBRO) -

GRANT BUS ARBITRATION

1) ASSERT LOGICAL BUS GRANT (LBGI)

ACKNOWLEDGE BUS MASTERSHIP <t

IF LOGICAL BUS REQUEST IN (LBRI) ASSERTED BEFORE OR WHEN BGI
ASSERTED, THEN GO TO @

ELSE PROCEED WITH (1) @
1) WAIT FOR CURRENT MASTER TO COMPLETE CYCLE
2) ASSERTED LOGICAL BUS GRANT ACKNOWLEDGE (LBGACK)
3) NEGATE [BRO > TERMINATE ARBITRATION

1) NEGATE BUS GRANT AND WAIT FOR LBGACK TO BE NEGATED

OPERATE AS BUS MASTER

1) MONITOR LOGICAL BUS REQUEST INPUT (LBRI)
2) IF (BRI ASSERTED

THEN G0 To ()

ELSE PROCEED WITH (3)

3) PERFORM DATA TRANSFER
4) IF BUS OPERATIONS COMPLETE
THEN GO TO

ELSE RETURN TO (1)
5) ASSERT LBGO

THEN 60 T0 (B) ®

\
RELEASE BUS MASTERSHIP

1) NEGATE LBGACK > RE-ARBITRATE OR RESUME

PROCESSOR OPERATION

RELEASE BUS MASTERSHIP REQUEST

1) NEGATE [BRO -
2) ASSERT LBGO

Figure 4-31. Logical Bus Arbitration Flowchart for MC68851 Bus Request

In systems that employ multiple alternate logical bus masters, LBRI should be the output of an
external prioritization arbiter that signals that an alternate device with higher priority than the
current master is requesting access to the bus. The external prioritization also ensures that table
search operations for high priority masters are not interrupted by requests from lower priority
devices.

In either of the above two system configurations LBRI is routed in parallel to the MC68851 and
to the arbiter for the logical bus.

During a table search opertion, the MC68851 adopts the priority of the master that it is currently
serving. Any time during the table operations that the MC68851 recognizes LBRI as being asserted,
it aborts the table search in progress and relinquishes the bus, assuming that a master with higher
priority than the one it is currently serving requires access to the bus. The table search is aborted
MC68851 USER'S MANUAL MOTOROLA

4-43

vo-v
V104OL10OWN

AVNANVYIN S.H3ISN LS889ON

50 52 s4 50 $2
cock | | I I . LI 1 | | | L l [I L
ueus X >
o > C X
s > < X
w0\ /N
DSACKx \ /
PAS-PA3T - X) ¢
ES)
o e/
mro \ /
w .\ /

1BGI

BRI

LBGO

LBGACK

PBGACK

L— LOGICAL MASTER BUS CYCLE =!<

TABLE SEARCH

ARBITRATION FOR LOGICAL BUS :!‘ MC68851 IN'TIATES—J

Figure 4-32. Logical Bus Arbitration During Relinquish and Retry Sequence

»{ BRI
BR A [BG0 MC68851
LOGICAL BUS ARBITER _ -
(CPU) 86 LBGI
BGACK [<—>{ [BGACK
CONDITIONING
LOGICAL BUS REQUESTER(S) BR Logic
AND/OR EXTERNAL BG
PRIORITIZATION LOGIC T |

Figure 4-33. Logical Bus Arbitration Signal Inter-Connection

PR

{>c > —d -
rﬂ}

LOGICAL BUS REQUEST (FROM ALTERNATE MASTER)

=]

Figure 4-34. Single Alternate Logical Master Bus Request Conditioning Logic

immediately upon completion of the bus cycle (if any) in progress and the MC68851 then negates
LBGACK. Some time later, when the lower priority master regains control of the bus and retries
the bus cycle for which the MC68851 was performing the table search, it will again encounter the
exception from the MC68851 that originally caused it to initiate the table search. The MC68851
will then either continue or restart the search that was interrupted by the higher priority master
depending on whether or not any other table search operations were performed between attempts
to perform this search (refer to 4.4.1.2 MC68851 REQUESTING THE LOGICAL BUS).

Figure 4-35 illustrates the case of an MC68851 table search operation being aborted by a higher
priority bus request.

4.4.1.2 MC68851 REQUESTING THE LOGICAL BUS. The LBRO output signals to the Ioglcal bus

LV Yor~3 E1 v mtval ~AF 2la ke - Faw b lmmeims
a'h'*or H""f *hc v VVSS.... |C\.|u.:luo CCntirs) OF tne ous o PV' YOIy S&rViCe 101 tne cuivent I\lslbal

master. Since the MC68851 implicitly operates with the priority of the current bus master, the
assertion of LBRO should not cause the external prioritization logic (if present) to update its current
priority level (i.e., bus activity by the MC68851 should be viewed as an extension of that performed
by the master it is currently serving).

MC68851 USER'S MANUAL MOTOROLA
4-45

v
V104O1ON

IAVNNVIN S.43SN LS8890N

S2 S4 S0 S2

FCO-FC3,
R/W

AC-A7,
SIZ0/8IZ1

AN /[7\

DSACKx

PA8-PA31

(870 \ /

1861

BRI

1BGO

LBGACK

LOGICAL MASTER BUS CYCLE RECEIVES

RELINGUISH AND RETRY FROM MC68851 HIGHER PRIORITY LOGICAL MASTER PREEMPTS MC68851 REQUEST FOR LOGICAL BUS

Figure 4-35. Relinquish and Retry Operation — MC68851 Arbitration for Logical Bus
Preempted by Bus Request from Higher Priority Logical Master

HIGHER PRIORITY MASTER
INITIATES BUS CYCLE

If the MC68851 asserts LBRO and some time later, but before it receives a bus grant, LBRI is
asserted (with an appropriate setup and synchronization time), the MC68851 will negate its bus
request output and any other asserted logical bus control signals after ensuring that the current
bus master has correctly recognized the termination sequence. For example, if during a relinquish
and retry sequence, the MC68851 has not received a bus grant and detects that LBRI is asserted,
it will wait until the current logical master has negated LAS and it will then negate BERR (LBRO
and HALT are negated later). The negation of LAS ensures that the logical master recognized the
relinquish and retry sequence and will retry its cycle and it regains control of the bus. This sequence
is shown in Figure 4-35.

If a relinquish operation (DSACKx, HALT, and LBRO) is interrupted before the MC68851 completes
the required table search operations, upon regaining control of the logical bus, the CPU will query
the MC68851 concerning the status of the request. If the MC68851 is required to perform table
search operations before resumption of the interrupted service, the CPU will receive a relinquish
and retry from the MC68851 in order that the aborted table search may be reinitiated. The relinquish
and retry sequence is issued by the MC68851 in order to immediately gain mastership of the
logical bus and to cause the CPU to automatically retry its query of the coprocessor interface
response register upon regaining bus mastership. If the MC68851 was not required to perform
any table search operations during the interruption of service, the CPU will receive a relinquish
and retry on the read of the response register and the interrupted table search will be continued
at the point that it was interrupted. Otherwise, the table search will be restarted from the point
that the relinquish operation was signaled.

Normally, after a table search is aborted by a higher priority logical bus master, the MC68851
must completely restart the search since the internal state information concerning that search
will have been lost while servicing the alternate master. However, in cases where the MC68851
is not required to perform any table search operations before control is returned to the master
for which the MC68851 was performing the aborted search, the state information is not lost and
the MC68851 will resume the table search at the point at which it was interrupted. This is common,
for example, with spurious or transient bus requests or with logical DMA devices that have
translation descriptors locked into the address translation cache and do not require table searches
to load descriptors.

4.4.2 Receiving the Logical Bus Grant

The LBGI input should be connected to the bus grant output of the logical bus arbiter which
indicates that an alterate master may take control of the logical bus as soon as the bus cycle in
progress (if any) is complete and the bus is free.

This grant output of the logical bus arbiter is connected to the MC68851 and possibly to an external
prioritization arbiter, but is not connected to any other requesting devices. The MC68851 controls
the timing for when the grant may be passed to alternate requesting devices.

4.4.3 Passing the Logical Bus Grant

The LBGO output is generated from a synchronized version of the logical bus grant input and is
asserted when the MC68851 passes a grant from the logical bus arbiter to an alternate requesting
device.

If the MC68851 has requested the bus and LBRI is negated, the MC68851 will not assert LBGO
and will, instead, take control of the bus to perform the required table searches. Should an alternate
higher-priority master request the bus after the MC68851 has determined that it will initiate a
table search but has not yet asserted LBGACK, the requesting device will not receive a bus grant

MC68851 USER’S MANUAL MOTOROLA
4-47

until the table search can be aborted and the MC68851 is ready to perform address translations
for the higher priority device. If the MC68851 has asserted LBGACK when the external request is
recognized, LBGO will be asserted as soon as possible but the MC68851 will not negate LBGACK
until the table search has been aborted and the MC68851 is ready to perform address translations.

If LBGI is recognized as asserted and LBRI is also asserted, indicating that a higher priority master
requires control of the bus, the MC68851 passes the grant by asserting LBGO immediately if the
MC68851 has not also requested control of the logical bus or is not initialized for early processing
startup (refer to 4.1.2.5 EARLY PROCESSING STARTUP). Otherwise, the assertion of LBGO will
be delayed until the MC68851 is again ready to perform address translation.

n Finally, if LBGI is asserted and neither LBRI nor the LBRO output are asserted, a grant has occurred
due to a spurious or transient request and the MC68851 does not pass the grant by asserting
LBGO, but instead ignores the grant and continues monitoring LBRI.

Figure 4-36 illustrates the functional timing associated with the MC68851 passing a bus grant to
an alternate bus master.

4.44 Acknowledgement of Logical Bus Mastership

Logical bus grant acknowledge (LBGACK) is asserted by an alternate logical bus master (including
the MC68851) whenever it has taken control of the logical bus.

The bus grant acknowledge signals from all alternate logical masters should be directly connected
to the LBGACK line which is also routed in parallel to the logical bus arbiter.

The MC68851 will not accept mastership of the bus until the following conditions are met:
1) The MC68851 has issued a request and the logical bus arbiter has issued a bus grant,
2) At the time the grant is issued, no other device has requested bus mastership,

3) LAS is negated indicating that the previous master has completed its bus activity,

4) DSACKXx is negated indicating that the previous slave device has terminated its connection
to the bus, and

5) LBGACK is not asserted, indicating that no other master is claiming ownership of the bus.

4.45 Read-Modify-Write Cycles

The RMC signal is driven by the logical bus master to indicate that an indivisible operation is in
progress. The MC68020 will not issue a bus grant in response to a bus request during a read-
modify-write operation that it initiated and, thus, will not release control of the bus to the MC68851,
or any other device during this operation.

If the MC68851 observes an asserted level on RMC when it attempts to issue a relinquish and
retry, it will instead assert bus error to force termination of the cycle (refer to 4.2.1.3 ADDRESS
TRANSLATION TERMINATED BY BUS ERROR).

If the MC68851 is performing a read-modify-write operation (RMC asserted by the MC68851)
during a table search and observes an asserted level on LBRI, it will assert LBGO in response to
an assertion of LBGI. However, the MC68851 will not negate LBGACK until it has completed the
read-modify-write operation that was in progress and has idled its exception processing hardware.

MOTOROLA MC68851 USER'S MANUAL
4-48 ,

TAVNNVIA S.H3SN LS889ON

VIO4O1OW

6v-v

S0 S2 S4 S0 S2

ek [L | L | - I = =1 = °J bJ I
LAS-LA31 X

FCO-FC3,
R/W

AO-A7,
SIZ0/8121

w o\ /O — 7\
BEAC \\ 7 .
PAB-PA31 X X ~ X

\/ \r N/

(86 \ _/
O\ /
G \ /

[BGACK \L
LOGICAL MASTER BUS CYCLE ALTERNATE LOGICAL MASTER
ALTERNATE MASTER REQUESTING BUS MCEBEST PASSES BUS GRANTTO ALTERNATE MASTER INITIATES BUS CYCLE ’l

Figure 4-36. MC68851 Passes Logical Bus Grant to Alternate Master

45 PHYSICAL BUS ARBITRATION

Physical bus arbitration is the technique used by physical address space bus master-type devices
to request, be granted, and acknowledge mastership of the physical bus. The MC68851 is the
default master of the physical bus and any device that requires access to the bus must gain
mastership through the arbitration process. In its simplest form, the physical bus arbitration
process consists of the following:

1) An external device issues a physical bus request to the MC68851,

2) The MC68851 asserts physical bus grant to indicate that the bus will be available at the end

of the current bus cycle, and

3) The external device acknowledges that it has assumed physical bus mastership by asserting

m physical bus grant acknowledge.

Figure 4-37 is a flowchart showing the details involved in physical bus arbitration for a single
device. Figure 4-38 illustrates the functional timing of the arbitration circuitry when the MC68851
is performing address translation for the logical bus master. Figure 4-39 illustrates the same
process when the MC68851 is performing table search operations.

The timing diagrams show that the bus request (PBR) is negated at the time that bus grant
acknowledge (PBGACK) is asserted. This type of operation is true for a system consisting of the
MC68851 and a single device capable of physical bus mastership. In systems having a number
of devices capable of physical bus mastership, the requst line from each device is wire-ORed to
the MC68851. In such a system, it is possible that there could be more than one bus request
asserted simultaneously.

REQUESTING DEVICE MC68851

REQUEST THE BUS

1) ASSERT PHYSICAL BUS REQUEST (PBR) GRANT BUS ARBITRATION

1) ASSERT PHYSICAL BUS GRANT (PBG)

ACKNOWLEDGE BUS MASTERSHIP -

1) EXTERNAL ARBITRATION DETERMINES NEXT BUS MASTER

2) NEXT BUS MASTER WAITS FOR CURRENT CYCLE TO COMPLETE

3) NEXT BUS MASTER ASSERTS PHYSICAL BUS GRANT
ACKNOWLEDGE (PBGACK) TO BECOME NEW MASTER

4) REQUESTING DEVICE NEGATES (PBR) > TERMINATE ARBITRATION

1) NEGATE PHYSICAL BUS GRANT (PBG) AND WAIT FOR PBGACK
TO BE NEGATED

OPERATE AS BUS MASTER

1) PERFORM DATA TRANSFERS (READ OR WRITE) CYCLES

\
RELEASE BUS MASTERSHIP

1) NEGATE PBGACK RE-ARBITRATE OR RESUME
PHYSICAL BUS OPERATION

Figure 4-37. Physical Bus Arbitration Flowchart for Single Request

MOTOROLA MC68851 USER'S MANUAL
4-50

IVNNVIA S.H43SN LS8890N

LG-¥
VIOHOLOW

cLock

LA8-LA31

FCO-FC3,

R/W
AO-A7,
$120/8121

As

DSACKx

PA8-PA31

PAS

PBR

PBG

PBGACK

Sw Sw Sw 83

I B e B e B i s e T e O e O e O e

v

__ LOGICAL MASTER BUS CYCLE .
PHYSICAL MASTER REQUESTING BUS

MC68851 RELEASES
PHYSICAL BUS ALTERNATE PHYSICAL MASTER PERFORMS BUS OPERATIONS
TO ALTERNATE MASTER

Figure 4-38. Physical Bus Arbitration During Address Translation

MC68851 REGAINS CONTROL OF PHYSICAL BUS
AND OUTPUTS PHYSICAL ADDRESS

sy
VIOHOLON

IAYNANVYIN S.4H3SN LS889OIN

CLOCK

FCO-FC3

PA8-PA31

A0-A7

Siz1/s1z0,
R/W

PAS

[
DBDIS
DSACKD
DSACK1
[BGACK
PBR

PBG

PBGACK

S0 S2 S4 S0

| I 0 =—J4 4 45 4 =

SUPERVISOR DATA

p—t

vV VV VY

=
X
X
X
X
—\
—\

N
N

-
N

o
——
—
T\ ——
e —
N\ ——

m

_/\—__/__

_/

_/

_/

MC68851 REGAINS
ALTERNATE PHYSICAL MASTER PERFORMS BUS OPERATIONS CONTROL OF PHYSICAL —
BUS AND RESUMES TABLE SEARCH

MC68851 INITIATED BUS CYCLE, ALTERNATE PHYSICAL BUS
PHYSICAL MASTER REQUESTS BUS ARBITRATION

Figure 4-39. Physical Bus Arbitration During MC68851 Table Search

The timing diagram in Figure 4-38 shows that the bus grant (PBG) signal is negated a few clocks
after the transition of the bus grant acknowledge signal. However, if bus requests are still pending
after the assertion of bus grant acknowledge, the MC68851 will assert another bus grant within
a few clock cycles after the grant is negated. This additional assertion of bus grant allows external
arbitration circuitry to select the next bus master before the current bus master has completed
its use of the bus. The following three paragraphs provide additional information about the three
steps in the arbitration process. The precise delays between signals are provided in SECTION 12
ELECTRICAL SPECIFICATIONS.

4.5.1 Requesting the Physical Bus

External devices that are capable of becoming physical bus masters request the bus by asserting
the physical bus request (PBR) signal. This can be a wire-ORed signal (although it need not be
constructed from open-collector devices) that indicates to the MC68851 that some external device
requires control of the physical bus. The MC68851 is effectively at a lower bus priority than all
external physical devices and always relinquishes the bus after it has completed its current bus
cycle or address translation, if one has started.

If no acknowledge is received before the bus request signal is negated, the MC68851 continues
bus operations once it detects that the bus request is negated. This allows ordinary address
translation and table search operations to continue if the arbitration circuitry inadvertently re-
sponded to noise or an external device determines that it no longer requires use of the bus before
it has acknowledged mastership.

4.5.2 Receiving the Physical Bus Grant

The MC68851 asserts physical bus grant (PBG) as soon as possible after the receipt of the physical
bus request. Normally this is immediately following internal synchronization, but there are two
exceptions to this rule. If the MC68851 has made an internal decision to execute a bus cycle or
to output an address translation but has not progressed into the operation to assert the physical
address strobe (PAS) signal, then physical bus grant will be delayed until PAS is asserted to
indicate to external devices that a bus cycle is in progress. The second exception occurs when a
read-modify-write cycle is in progress regardless of whether that cycle was initiated by the MC68851
or the logical bus master. The MC68851 will not issue a physical bus grant if the RMC signal is
driven either by the MC68851 or by a logical bus master.

The physical bus grant signal may be routed through a daisy-chained network or through a specific
priority-encoded network. The MC68851 is not affected by an external method of arbitration as
long as the protocol is obeyed.

4.5.3 Acknowledgement of Physical Bus Mastership

Upon receiving a physical bus grant, the requesting device waits until PAS, DSACKx, and PBGACK
are negated before asserting its own PBGACK. The negation of the PAS indicates that the previous
master (including the MC68851) has completed its cycle. The negation of PBGACK indicates that
the previous master (if any) has released the bus. The negation of DSACKx indicates that the
previous slave has terminated its connection to the previous master. Note that in some appli-
cations, DSACKx might not enter into this function and devices are then connected such that thew
are only dependent on PAS. When physical bus grant acknowledge is asserted, the device is bus
master until it negates PBGACK. Physical bus grant acknowledge should not be negated until
after all bus cycles required by the alternate bus master are complete. Bus mastership is terminated
at the negation of PBGACK.

MC68851 USER'S MANUAL MOTOROLA
4-53

The bus request from the granted device should be negated after the physical bus grant acknowl-
edge is asserted. If a bus request is still pending after the assertion of PBGACK, another bus grant
will be issued within a few clocks of the negation of the bus grant. Refer to 4.5.4 Physical Bus
Arbitration Control. Note that the MC68851 does not perform any external bus cycles before it
reasserts the bus grant.

4.5.4 Physical Bus Arbitration Control

The physical bus arbitration control unit in the MC68851 is implemented using a finite state
machine. As discussed previously, all asynchronous inputs to the MC68851 are internally syn-
chronized in a maximum of two cycles of the system clock.

As shown in Figure 4-40, the inputs labeled R and A are internally synchronized versions of the
physical bus request and physical bus grant acknowledge inputs, respectively. The physical bus
grant output is labeled G and the internal three-state control signal T. If T is true, the physical
address bus, PAS, and other physical control signals are placed in the high-impedance state after
PAS and RMC are negated (refer to 4.6 CONCURRENT DISSOCIATE LOGICAL AND PHYSICAL
BUS ACTIVITY). All signals are shown in pasitive logic (active high) regardless of their true active
voltage level.

State changes (valid outputs) occur on the next rising edge of the clock after the internal signal
is valid.

Timing diagrams of the physical bus arbitration sequence during address translation and table
search operations are shown in Figures 4-38 and 4-39, respectively. The physical bus arbitration
sequence while the physical bus is inactive is shown in Figure 4-41.

R - PHYSICAL BUS REQUEST

A - PHYSICAL BUS GRANT ACKNOWLEDGE

G - PHYSICAL BUS GRANT

T - THREE-STATE CONTROL TO PHYSICAL BUS CONTROL LOGIC
X - DONT CARE

NOTE: The PBG output will not be asserted while RMC is asserted
by the MC68851 or the Logical Bus Master

Figure 4-40. Physical Bus Arbitration State Diagram

MOTOROLA MC68851 USER'S MANUAL
4-54

1o 4

TVNNVIN S.H3SN LS8890N

VIOHOLON

ctock | 1 | 1 |

FCO-FC3

PA8-PA31

A0-A7
8121/8120,
R/W
PAS

[H

DBDIS

0

l

o - 4 =t J = =g I

v

DSACKO /

DSACK1

LBGACK

PBR

PBG

PBGACK

MC68851 LOGICAL AND PHYSICAL

BUSES INACTIVE

_

/

PHYSICAL BUS

ARBITRATION ALTERNATE PHYSICAL MASTER PERFORMS BUS OPERATIONS

Figure 4-41. Physical Bus Arbitration (Bus Inactive)

MC68851 REGAINS CONTROL
QF PHYSICAL BUS

4.6 CONCURRENT DISSOCIATE LOGICAL AND PHYSICAL BUS ACTIVITY

“In systems that utilize alternate physical bus masters, the MC68851 allows independent operation

of both the logical and physical buses while still performing access rights checking for logical
bus activity. For example, it is possible for the logical master to access devices resident on the
logical bus (a coprocessor, a logical cache, . . ., etc.) while the physical bus has been arbitrated
away from the MC68851. This concurrence is obtained by the correct employment of the logical
bus control signals and buffering of the control signals and buses that are shared between the
logical and physical buses.

When the MC68851 does not possess ownership of the physical bus (PBGACK is asserted), the

m physical address bus and physical address strobe are in the high-impedance state. Also, the

MC68851 does not drive the lower address A0-A7, size, function codes, data strobe, RMC or read/
write, although these signals may be driven by the logical bus master. This requires that any of
these that are used by external, physical address space devices must be buffered between the
MC68851 and the alternate physical master.

If a bus cycle initiated by the logical master is held up pending the completion of alternate physical
bus master activity, the MC68851 does not assert PAS for that cycle until it regains ownership of
the physical bus. After the negation of PBGACK is detected by the MC68851 (subject to a syn-
chronization delay), physical address will be driven and then PAS will be asserted on the next
appropriate clock edge (as determined by the decision timeout delay).

In order to support logical bus activity, the MC68851 monitors logical addresses regardless of the
state of PBGACK and uses the signals LBRO, HALT, BERR, CLI, DSACKx, and D0-D31 to control
and respond to accesses on the logical bus. Any of these signals that are employed by an alterate
physical bus master must be buffered. Additionally, in order to prevent spurious assertions of
PAS, some provision must be made to block propagation of the PAS signal to physical address
space devices when the target for a bus cycle resides on the logical bus. In order to prevent these
transient assertions of PAS to physical address space devices, the logical bus control circuitry
must block the propagation of PAS early enough in the bus cycle to account for the earliest
possible assertion of PAS by the MC68851 and must maintain the blocking until the latest possible
negation time. In general, the above requirement also applies to all systems that have memory
devices resident on the logical bus.

In addition to proper buffering of signals, logical address space devices (henceforth referred to
as logical devices) that are designed to operate independently of the physical bus must satisfy
several criteria:
1) The address decode for the logical device must operate on only the logical address and
function code,
2) The chip select, or similar function, for the logical device must be based on the state of the
logical address strobe (i.e., independent of PAS),
3) Likewise, the cycle termination response (for example, DSACKx) must be generated from
the logical address strobe, and
4) Any logical bus master capable of accessing the logical devices must be capable of aborting
or retrying the bus cycle in response to a bus error or relinquish and retry signaled by the
MC68851 (for example, refer to 4.2.2.1 SYNCHRONOUS OPERATION).

In a suitably configured system, when a logical bus master is accessing a logical device, the
MC68851 still provides access checking for the bus cycle and will assert the appropriate signals
to terminate faulting cycles (bus error), to communicate across its coprocessor interface (DSACKx
and the data bus), or to indicate the need to access the translation tables in physical memory
(relinquish or relinquish and retry).

MOTOROLA ‘ MC68851 USER'S MANUAL
4-56

The above discussion of system configuration and buffering requirements applies only to those
systems desiring to employ concurrent logical and physical bus activity for overall system per-
formance enhancement, and should not be construed as a general requirement for all system
configurations.

Figure 4-42 provides a simple block diagram of the buffering and control sections required to
implement the above criteria.

Figure 4-43 illustrates several example sequences of concurrent logical and physical bus activity.

4.7 BUS OPERATION EXAMPLES “

The following paragraphs contain several specific examples of MC68851 bus operations and is
intended to provide better understanding of the MC68851 by demonstrating sequences of typical
bus operations.

4.7.1 Table Search Operations

The bus operations required to initiate and complete a table search operation, including startup
and terminate overhead, are shown in Figure 4-44. This figure demonstrates the timing for a
translation descriptor fetch and address translation cache update assuming that the MC68851 is
operating in the early processing startup and fast table search modes of operation (refer to 4.1.2
Bus Interface Initialization) and that physical memory operates with no wait states. The table
structure accessed consists of a function code index and two levels of long format descriptors.

The startup overhead associated with a table search operation is affected by the table structure
used and operational mode of the MC68851. For example, if the first level of the table search is
not an index by the function codes, the startup overhead is increased by the two clock periods
required to perform a limit check of the root pointer used in the search. Also, if the early processing
startup mode is disabled, an additional six clock periods of overhead is required to initiate a table
search.

Figures 4-45 and 4-46 demonstrate the bus operations and timings associated with updating the
used and modified descriptor status bits. The overall time required to perform a table search
operation such as depicted in Figure 4-44 is affected by the number of status bits that must be
updated during the search.

It should be noted that both the used and modified bits may be set in a single operation that
does not require use of a read-modify-write operation. However, if only the used bit of a page
descriptor is to be set and the status of the M bit is not to be changed, the MC68851 always uses
a read-modify-write operation in order to maintain status consistency in systems that allow mul-
tiple MC68851s to share the same translation tables. It should also be noted that a simple write
operation is always used to update the used bit at all levels of the translation table other than
the page descriptor level.

4.7.2 Logical Bus Arbitration

Figure 4-47 illustrates an MC68851 table search operation that is interrupted by an alternate logical
hue master requecting control of the logical bus, The MCE22E1 continues the table cearch until
it detects an assertion of logical bus grant in (LBGI) after which it asserts logical bus grant out
(LBGO) to indicate that it will relinquish control of the logical bus at the end of the current bus
cycle. After placing all shared control lines in the high-impedance state, the MC68851 negates
logical bus grant acknowledge (LBGACK).

MC68851 USER’'S MANUAL MOTOROLA
4-57

If the MC68851 was performing a table search to update the ATC as the result of a request for an
address translation that did not have a descriptor resident in the address translation cache, the
interrupted table search will not be resumed when the alternate logical bus master releases control
of the bus; instead, the MC68851 will wait for the bus cycle that initiated the search to be retried
by the logical master. When the master does retry that cycle, the MC68851 will resume the table
search at the point it was terminated if, and only if, no operations have occurred between inter-
ruption of the table search and the retry of the cycle that require that the MC68851 perform any
other internal operations. Otherwise, the table search will be completely re-executed.

If the MC68851 was performing a table search in response to a PTEST or PLOAD instruction, the
table search will be automatically resumed or restarted (refer to 4.4.1.2 MC68851 REQUESTING

m THE LOGICAL BUS).

MOTOROLA MC68851 USER'S MANUAL
4-58

IVANVIN S.43sN L8830

LOGICAL DATA CACHE
AND CONTROL

V10HOLOW

65-¥

THREE-STATE
BUFFERS

D0-D31 00-D31 1 PHYSICAL ADDRESS SPACE

R/W RAN L | DATA BUS

SIZ1/8120 $IZ1/8120 |

— — 1

o8 o8 PHYSICAL ADDRESS BUS

DSACK1/DSACKD DSACK1/DSACKD | CONTROL SIGNALS

RMC RMC |

BERR, RALT BERR, HALT (

AO-A7 AD-A7 —

LAS-LA31 PAS-PA31 L PHYSICAL ADDRESS BUS

AS LOGICAL CYCLE IN PROGRESS
— —d PHYSICAL ADDRESS SPACE
PAS a3 ADDRESS STROBE

(] [
MC68851

Figure 4-42. Example of Signal Buffering Requirements for Support of
Concurrent Logical and Physical Bus Activity

MOTOROLA
4-60

cLock

FCO-FC3,
$8iz0/s121

LA8-LA31,
AO-A7 R/W

LAS

DBDIS

00-031

DSACKx

BERR

PA8-PA31

PAS

PBR

PBG

PBGACK

CPU

ALT. PHYSICAL
MASTER

MC68851

Sw S4

\'4

-\

\

FAST CYCLE ACCESSING
LOGICAL CACHE

LOGICAL MASTER READS FROM MC68851

PERFORMS BUS CYCLE ASSESSING
REGISTER SET

PHYSICAL ADDRESS SPACE

e—

r<&———— ARBITRATES FOR BUS MASTERSHIP + PERFORMS BUS

BUS MASTERSHIP GRANTED TO CONTINUES TO MONITOR DECODES ACCESS TO REGISTER SET, SUPPLIES __,
ALTERNATE PHYSICAL MASTER LOGICAL ACTIVITY DATA, AND ASSERTS DSACKx

Figure 4-43. Example of Concurrent

MC68851 USER’S MANUAL

/X
T/
— .

ACCESSES PAGE WITH
BERR BIT SET IN WRITE TO SYSTEM STACK MUST WAIT PENDING COMPLETION NEXT
CORRESPONDING DESCRIPTOR OF PHYSICAL BUS ACTIVITY CYCLE
INTERNAL
PROCESSING
OPERATIONS - RELINQUISHES CONTROL OF PHYSICAL BUS TO MC68851 ————
CONTINUES TO MONITOR
ABORTS BUS CYCLE >l LOGICAL BUS ACTIVITY >l REGAINS BUS MASTERSHIP AND COMPLETES NEXT <
BUT CANNOT PERFORM PHYSICAL ADDRESS SPACE CYCLE CYCLE
PHYSICAL ADDRESS SPACE ACTIVITY
Logical and Physical Bus Activity
MC68851 USER'S MANUAL MOTOROLA

4-61

5 CLOCK
*| PERIODS®
S0 82 84 S5 S0 §2 sS4 N S2 sS4

wo LT L L L L L L L ri g

roras X > —<

woa X —

L € X X X
wr X > —< X)
X > ——

s Y > ——
Y N~ — 7/

ias

s

0BOIS

00-031

N S
N S
s X 7 N e U
s
e
—/\

PAS

BERR

HALT

18RO

6 N

BRI

LBGACK \

ASYNC
RELINQUISH HELEALSOEG;CB{:.S'\:"SS;ECRGB&‘)I FIRST LEVEL OF SEARCH CALCULATE
AND AND MC68851 SETS UP (INDEX BY NEXT LONG FORMAT (64-BIT)
RETRY SIGNALED FOR TABLE SEARCH FUNCTION CODE) ADDRESS .

NON-RESIDENT
DESCRIPTOR
DETECTED
* MC68851 Initialized for Fast Table Search and Early Processing Startup - Operating on 32-Bit Bus. This Initial

Figure 4-44. MC68851
(Table Search with Function Code Lookup

MOTOROLA ‘ ' ~ MC68851 USER'S MANUAL
4-62

67016
CLocK
PERIODS
S0 §2 S4 N 82 S4 S0 S2 S4 S0

S e s Y e Y Y e I s Yy Sy oy

SUPERVISOR DATA \r \—/
<
C N——
X XC
N\ Y
C A A D —
Y
7 N——
——
4 N—
N\ C
- N—
—_/———\ [\ [ro— —\
\ / \ / \ / \
\ / \ / \ /
ATC UPDATE
AND
BUS RELEASE
CALCULATE CPU REGAINS
DESCRIPTOR FETCH NEXT LONG FORMAT (64-BIT) DESCRIPTOR FETCH BUS MASTERSHIP
ADDRESS 'l AND RETRIES CYCLE
overhead is increased by two clock periods if the first level of the table search is not an index by function code
Table Search Example
and Two Levels of Long Format Descriptors)
MC68851 USER’S MANUAL MOTOROLA

4-63

y9-v
V104O10ON

AVNNVIN S.H3SN LS8890N

eock [L LI LT L

FCO-FC3

PA8-PA31

AO-A7,
8izo/8iz1

R/W
RMC
PAS

Ds
DBDIS
D0-D31
DSACK0/DSACKT
BERR
HALT
(BRO
186
BRI
[BGACK

[

SO

S2 S4

6 CLOCK
PERIODS
S0 82 S4 S0

S2

S4

SUPERVISOR DATA >r—
) & X y
T\ —
\ —
MC68851 J END
DESCRIPTOR FETCH DETECTS U BIT OF U BIT UPDATE USING INDIVISIBLE CYCLE > OF
DESCRIPTOR NOT SET SEARCH

Figure 4-45. Page Descriptor U Bit Status Update

IVNNVIN S.H3SN LS8890N

VI10HOL1OW

99-v

6 CLOCK
PERIODS
S0 52 54 50 52 Sw s4 50 52 s4
ok [L LT L T 1 J L L LI | T
F30-FC3 SUPERVISOR DATA
PA3.PA3T x X
AD-AT,
$120/8121 X) X
R/W \ /

RMC

ms T\ / \ /- \
\

DS

DBDIS __/ \

10-031

DSACKO/L SACKT \ /

{

MC68851 DETECTS U
'——nsscmma FETCH—.L (OR U AND M) ——L——smussn UPOATE -l NEXTTABLE‘?FE/;ZCVT OPERATION
BIT(S) FOR ENTRY NOT SET

Figure 4-46. Table Pointer U Bit or Page Descriptor U and M Bit Status Update

99-v
V104O1LOW

IVANVIN S.HISN LG889IIN

S0 §2 S4 N s2 S4 S0 S2 Sw S4

eo [L L L L LI

FCO-FC3)
v
LAB-LA3! <
PA8-PA31 X X
AG-AT, r) (
S120/5121 A
R/W M——L

s N\

S

AN /— \ / \

e N e U o S N

S

DBDIS \ ’ \

D0-D31

DSACKO/DSACK1 \ / \ / \ /

BERR-

HALT

A \ _/

E \ ——
% \ ——

TBGATK VARN

ARBITRATION FOR LOGICAL BUS DURING MC68851 BUS CYCLE MC68851 RELEASES BUS ALTERNATE MASTER PERFORMS BUS CYCLE(S)

Figure 4-47. MC68851 Table Search Operation Interrupted by Alternate Logical Bus Master

SECTION 5
ADDRESS TRANSLATION

This section discusses the mapping of addresses from the logical address space to the physical
address space by the MC68851. Included in this section is the description of the MC68851 trans-
lation table structure, formats and uses of translation descriptors, and operation of the MC68851
address translation cache (ATC).

5.1 ADDRESS TRANSLATION TABLES

In a paged virtual system, the logical address space is divided into a number of fixed-size pages
and corresponding to each of these ‘logical pages’ there is (possibly) a unique mapping into the
physical address space. The mapping may translate the logical address to the address of a page
located in physical memory (a page frame), may indicate that the logical address is temporarily
unuseable because the corresponding physical page is resident on a secondary storage device,
or may indicate that the logical address does not (currently) have a corresponding physical map-
ping. The primary task for a memory management unit in such a system is to perform the
translation from logical addresses to physical addresses for bus cycles executed by the logical
bus master. Although the memory management unit performs address translation, it depends on
the operating system to supply it with the information describing the logical-to-physical mapping.

In order to allow each ‘logical page’ to have a unique mapping into the physical address space,
itis necessary to provide a translation descriptor corresponding to each page in the logical address
space. In a system with a logical address space of size 2N and a page size 2M, there are 2n—M
logical pages. The highest order n—m bits of the logical address specify the logical page address
and the lowest order m bits specify an offset within the page to address an individual entry in
that page. In order to locate a translation for a given logical address, a memory management
unit uses the logical page address as an index into a table of translation descriptors to select the
entry corresponding to that page address.

The descriptor table containing the logical-to-physical mappings for the system can be organized
in one of two ways. A linear table is the simplest form and would consist of a single, contiguous
table with one entry corresponding to each logical page. In order to locate a translation for a
particular logical address, the memory management unit would use the logical page address as
an index into this table selecting the entry at this location as the appropriate translation descriptor.
Although the structure of this table is very simple and a translation descriptor could be fetched
in a single bus operation, this type of table is not used since the entire table must always reside
in the system’s memory (i.e., there is no way to indicate that a portion of the address space is
not (currently) mapped except by having an entry in the table indicating this). This disadvantage
is significant in MC68020-based systems that are capable of supporting logical address spaces
with several million pages.

Alternately, a tree structure could be used to contain the mapping information. Using this type
of structure, a portion of the logical address space is mapped at each ievei of the transiation tree.
The higher levels of the tree subdivide the logical address space into relatively large blocks and
the lower levels further subdivide these large blocks until, at the lowest level, the address space
is broken down into individual pages. Compared to the linear table, a tree structure is somewhat
more complex and may require that the memory management unit perform several bus operations

MC68851 USER'S MANUAL MOTOROLA
5-1

to locate a translation descriptor. However, provided with an address translation cache of suffi-
ciently high hit rate and a very efficient bus interface, these disadvantages are not significant.
The significant advantage of using a tree structure is the ability to deallocate large portions of
the logical address space with a single entry at the higher levels of the tree. Additionally, portions
of the tree itself may reside on a secondary storage device or may not exist at all until they are
required by the system. These advantages allow a tree structure to efficiently map a very large
logical address space using only a fraction of the memory that would be required by a linear
table.

The mapping of logical to physical addresses for a system is described to the MC68851 using
trees of tables in physical memory. The physical addresses of the roots of these trees are contained
in the MC68851 root pointer registers (refer to 6.1.1 Root Pointer Registers). In addition to mapping
information, the tables contain protection information and usage-history information for both
translation tables and pages of physical memory. When the MC68851 needs to locate a logical-

n to-physical mapping, it uses the logical address to index into the translation tables and select the

corresponding mapping. The MC68851 searches these tables to locate a logical-to-physical map-
ping when the ATC does not contain a translation for a bus cycle executed by a logical bus master,
as part of a PTEST or PLOAD instruction, or when a module call operation references a module
descriptor that does not have a corresponding entry in the ATC.

5.1.1 General Translation Table Structure

Address translation tables for the MC68851 are organized as trees of tables located in physical
memory, each table being composed of pointers to other branches of the tree (table descriptors)
or pointers to physical pages (page descriptors). The tables themselves may be termed to be
either ‘pointer tables’ or ‘page tables’ depending on whether they contain table descriptors or
page descriptors, respectively. The MC68851 can have as many as three of these trees active
simultaneously, one pointed to by each of the root pointer registers: SRP, CRP, and DRP corre-
sponding to translations for supervisor, user, or DMA accesses, respectively (refer to 6.1.1 Root
Pointer Registers).

Searching an address translation table tree for the physical address corresponding to a logical
address consists of extracting a field from the logical address or function code, using the extracted
field to select a descriptor in a table identified either by the root pointer or by a pointer table at
a higher level of the translation tree, checking protection information, and using the selected
descriptor to locate the next table. This process is repeated with successive fields in the logical
address until a page descriptor is found, indicating the physical base address of the page frame,
or until an error occurs, terminating the table search. A simplified flowchart of the address trans-
lation table search procedure is shown in Figure 5-1 (a complete flowchart is provided in Figure
5-23).

A translation tree may be composed of up to five levels of tables requiring the use of five separate
index fields to locate a logical-to-physical mapping. Additionally, tables at different levels of the
translation tree may all be of the same size or they may each have different sizes. The general
structure of the translation tree is determined by the translation control (TC) register (refer to
6.1.3 Translation Control). The IS field (initial shift) is used to set the size of the logical address
space which is given by 232-IS, The PS field (page size) determines the page size to be used in
the system (2PS) and, together with the IS field, specifies the number of pages in the system
(232-1S-PS), Additionally, if the logical address space is also mapped by the function code signals,
there are eight separate logical address spaces of size 232-1S, one corresponding to each of the
M68000 function code assignments, increasing the logical address space size to 232-1S+3 and
the number of pages in the system to 232-1S-PS+3,

MOTOROLA MC68851 USER'S MANUAL
5-2

ENTRY

DETERMINE ROOT POINTER TO BE USED
AND SET x = A

DT 5 'PAGE DESCRIPTOR DT = "PAGE DESCRIPTOR'

OTHERWISE
FCL SET OR DRP
1

FETCH DESCRIPTOR AT
TABLE ADDRESS + (FC*SIZE)

OTHERWISE -~)
DT = "INVALID' DT = 'PAGE DESCRIPTOR

\

FETCH DESCRIPTOR AT
TABLE ADDRESS + (TIx*SIZE)

/?})AGE DESCRIPTOR'
DT =INVALID' OTHERWISE \\J
NO MORE Ti FIELDS/CL\

\

NEXT x
{x=80C D)

MORE Tl FIELDS

(MUST BE INDIRECT)

INDIRECT DESCRIPTOR:
FETCH DESCRIPTOR POINTED TO
BY PREVIOUS DESCRIPTOR

OTHERWISE

(?/ DT = 'PAGE DESCRIPTOR

CREATE INVALID
ATC ENTRY (BERR BIT SET) CREATE VALID ATC ENTRY
PAGE FRAME ADDRESS = UNUSED LOGICAL PAGE ADDRESS (IF ANY)

+ ADDRESS FIELD FROM LAST DESCRIPTOR FETCHED
(SIGNED ADDITION)

T “SIZE" IS THE SIZE (IN BYTES) OF THE DESCRIPTOR
EXIT AT THE PARTICULAR TABLE LEVEL

Figure 5-1. Simplified MC68851 Table Search Flowchart

MC68851 USER'S MANUAL MOTOROLA
5-3

In order to provide for a unique logical-to-physical mapping for each logical page, the logical
page address (32-1S-PS + 3 bits) is used to index into the translation tables to select the appropriate
mapping. The logical page address is divided into one or more fields, as determined by the FCL
bit and the TIA, TIB, TIC, and TID fields of the TC register, to be used as indices into the tree
structure at its various levels. This division of the logical address is illustrated in Figure 5-2.

I +TI8 ‘l +TIC =L +TID :L PS
| i | |
| I F] [| l A] B | c [0 I OFFSET]

Figure 5-2. Derivation of Table Index Fields

FCL s I +TIA

Y

E The F field consists of function code bits FC2-FCO (FC3 is used only to select use of the DMA root
pointer (DRP)) and is used when the logical address space is mapped based on the function codes.
Use of the F field is required for address translation trees pointed to by the DRP register. For
address translation trees pointed to by the CRP and SRP registers, use of the F field is controlled
by the FCL bit of the TC register (refer to 6.1.3.3 FUNCTION CODE LOOKUP). An F level table is
always eight entries long (one entry identifying a branch of the three corresponding to each of
the M68000 function code assignments) and is always the first table accessed during a table
search by the MC68851 (provided that function code lookup is enabled). If the F field is not used,
the function codes are used only for protection purposes, the root pointer register points to the
base of the A level table, and the first level of the address translation tree is indexed using the
A field.

The table index fields (TIA, TIB, TIC, TID) specify the number of bits of the logical address to be
used at each level of the translation tree thus specifying the division of the logical address space
at each level. For example, if the TIA field is set to n then the table at the root level of the translation
tree contains 2N entries and the logical address space is subdivided into 2N regions of equal size,
one of these regions corresponding to each of the entries in this table. Further, if the TIA field is
as above and the TIB field is set to m (m + n < 32-I1S-PS) then each of the 2N regions defined
in the first level of the tree are further subdivided into 2M regions of equal size. The table index
fields are applied to tables in the sequence A, B, C, D. Use of the F, B, C, and D fields can be
suppressed, so that the minimum number of levels in an address translation tree is one.

The A, B, C, and D fields of the logical address specified by the IS, TIA, TIB, TIC, and TID fields
of the TC register are subject to restrictions as follows:

Field Starting Bit Position Width Restrictions
A 31-IS 1-15 (TIA Must be Non-Zero)
B 31-IS-TIA 0-15if TIB=0, then TIC=TID=0 is Required
C 31-IS-TIB-TIB 0-15 if TIC=0, then TID=0 is Required
D 31-IS-TIB-TIB-TIC 0-15

In addition to the restrictions listed above, the fields of the TC register (when treated as unsigned
integers) must satisfy the following relationship:

IS+PS+TIA+TIB+TIC+TID = 32

The logical-to-physical mappings for a system can be described to the MC68851 using two different
formats of translation descriptors. The descriptors may be either of the long format (eight bytes)
or the short format (four bytes) and these different formats may be freely intermixed in different

MOTOROLA MC68851 USER'S MANUAL
5-4

tables of the translation tree. The determination of field widths described above does not determine
the format (long or short) of descriptors in various tables of the tree. The format of the descriptors
in a table is independent of all index field widths and the formats of all other tables of the tree.
The MC68851 is informed of the format of descriptors in a table during the table search by the
descriptor type fields in the pointers at the higher levels of the tree and the MC68851 uses this
to scale the index into the table by four or eight bytes, as appropriate. Thus, tables at the same
level in different branches of the tree may have different format descriptors, although mixing of
descriptor formats within a single table is not allowed.

Figure 5-3 shows an example of a simple address translation table tree and a logical address
translated using this tree. The 32-bit logical address is divided into three fields: A (12 bits), B (10
bits), and PS (10 bits). The function code lookup is suppressed such that the index by function
code is not used. This division would be set at system initialization time by writing the value
$80AO0CAO00 to the TC register (refer to 6.1.3 TRANSLATION CONTROL). The bold lines indicate
the sequence of descriptors used to translate the logical address ($00A01A00 for this example).
The shaded descriptor on the right contains the physical page address that corresponds to the
logical address. At the end of the table search, an entry will be made in the ATC pairing the logical
address with this physical address. Subsequent references to this logical page, until the ATC is
flushed of this entry, will not require the table search.

Figure 5-4 shows one possible arrangement of this translation tree in main memory. For con-
venience, all of the tables are shown as contiguous in physical memory; however, this is not
required since all page frames are equivalent. Note that all addresses in the tables are physical
addresses.

5.1.2 Variations in Translation Table Structure

Many aspects of the MC68851 translation tree structure are software configurable, allowing the
system designer a great range of flexibility to optimize the performance of the MC68851 for a
particular system. The following paragraphs discuss the variations of the tree structure from the
general structure discussed above.

5.1.2.1 CONTIGUOUS MEMORY. The MC68851 provides the ability to translate a contiguous
range of the logical address space (an integral number of logical pages) to an equivalent contig-
uous physical address range with a single descriptor. This is done by placing the code for ‘page
descriptor’ ($1) in the descriptor type (DT) field of a descriptor at a level of the tree that would
normally contain a table pointer, thereby deleting a sub-tree of the table.

When the MC68851 is performing a table search operation and encounters a descriptor with a
DT field indicating ‘page descriptor’ it terminates the search and creates an entry in the ATC. In
a normal table search, the MC68851 will have exhausted the page address field of the logical
address (the most significant 32-I1S-PS bits) indicating that the descriptor resides in a page table
at the leaf level of the transiation tree. In this case, the page frame address is simply the value
contained in the ‘page address’ field of the descriptor. If the MC68851 has not exhausted the page
address field (i.e., has not encountered a TIx field with a value of zero or has not used the most
significant 32-1S-PS bits of the logical address) when it encounters the ‘page descriptor’ encoding,
this indicates to the MC68851 that the range of the logical page address that was not used in the
table search ic to be defined ac a contiguous range of memory. The MCBR8K1 terminates the tahle
search and creates an ATC entry. The physical address contained in this entry is the sum of the
logical page address (bits already used in the table search are set to zero) and the page frame
address (the most significant 32-PS bits in the page address field of the descriptor). If n bits of
the logical page address are unused when a page descriptor encoding is encountered, the single

|
MC68851 USER'S MANUAL MOTOROLA
55

A B PS
EXAMPLE ADDRESS $00A01A00 [0 0 0 0 00 00 10 10f0 000000 11 0fx x x x x x x x x x|
$A $6 X

[| TABLE SO
B LEVEL

ROOT POINTER

!

P — |

ENTRY $006 |

ENTRY $00A |~ PAGE FRAME ADDRESS | TABLE $00A

B LEVEL

A LEVEL TABLES
(4K ENTRIES)

| TABLE $FFF
B LEVEL

B LEVEL TABLES
(4K TABLES MAXIMUM, 1K ENTRIES/TABLE)

Figure 5-3. Example Translation Table Tree

descriptor creates a mapping of a.contiguous region of the logical address space starting at the
logical page address (with the n unused bits set to zero) to a contiguous region in the physical
address space starting at the page frame base address with a size of 2PS + n bytes.

This type of descriptor is referred to as a ‘type-2 page descriptor’ and is characterized by having
a descriptor type of ‘page descriptor’ but not being located at the lowest level of the translation
tree. If the type-2 page descriptor is of the long format, the limit field is applied to the next index

MOTOROLA MC68851 USER'S MANUAL
5-6 .

A B PS

EXAMPLE ADDRESS $00A01A00 DUUUUOODIUIU‘DUDUUUOIlﬂlxxxxxxxxxx

$A $6 X
$10000 I] 7]
$10028 $37000 | A LEVEL TABLE

] (4-BYTE ENTRIES)
$13FFC]
ROOT POINTER él—ll_[)b[]_]

- -

| B LEVEL TABLE $0

(4-BYTE ENTRIES)
are ——

$37000 j
$37018 | FRAME ADDRESS | BLEVEL TABLE $00A
— (4-BYTE ENTRIES)
— _

Figure 5-4. Example Translation Tree Layout in Memory

field. This allows the number of pages mapped contiguously to be restricted. Refer to 5.1.5
Descriptor Types for additional information.

Although the type-2 page descriptor creates a contiguous logical-to-physical mapping without
having to maintain individual descriptors in the translation tree for each page that is a member
of the contiguous region, the ATC will contain one entry for each page mapped. These entries
are created internally by the MC68851 each time a page boundary (as determined by the page
size) is crossed in the contiguous region. Figure 5-5 shows an example translation table with a
portion of the logical address space translated as a contiguous block.

Note that the DT field may be set to ‘page descriptor’ at any level of the translation tree including
the root pointer level. Setting the DT field of a root pointer to ‘page descriptor’ creates a direct
mapping from the logical to the physical address space with a constant offset as determined by
the value in the table address field of the root pointer.

__|
MC68851 USER'S MANUAL MOTOROLA
57

A B PS
EXAMPLEADDRESS$UUADIAUDIOUDUUUDO]UIOUOOUOOUIll]xxxxxxxxxx

$A $6 X

5 | TABLE$0
B LEVEL

ROOT POINTER

A B PS

IODUOUUUUUUUO'UUUUODUI1D|1000000000I$00001A00

+

[tooooooo0o0o0o00foooooooooofoooooooooo] ssoooooo

.

[toooooooo0ooo0foooooooi1of1o000000 00| ssoo0incn

L |
T
EARLY TERMINATION OF TABLE SEARCH - PAGE DESCRIPTOR ENCOUNTERED
(LOGICAL ADDRESS RANGE $00A00000 TO $00AFFFFF MAPPED
\——1——' T0 PHYSICAL ADDRESS RANGE $80A00000 TO $80AFFFFF)
A LEVEL TABLES .
(4K ENTRIES) .
-
| TABLE §FFF
B LEVEL

B LEVEL TABLES
(4K TABLES MAXIMUM, 1K ENTRIES/TABLE)

Figure 5-5. Example Translation Using Contiguous Memory

MOTOROLA

MC68851 USER'S MANUAL
5-8

5.1.2.2 INDIRECTION. The MC68851 provides the ability to replace an entry in a page table with
a pointer to an alternate entry. The indirection capability of the MC68851 allows multiple tasks to
share a physical page while maintaining only a single set of history information for the page (i.e.,
the ‘modified’ indication is maintained only in the single descriptor). The indirection capability
also allows the page frame to appear at arbitrarily different addresses in the logical address spaces
of each task. Using the indirection capability, single entries or entire tables may be shared between
multiple tasks. Figure 5-6 shows two tasks sharing a page using indirect descrtiptors.

When the MC68851 has completed a normal table search (has exhausted all index fields of the
logical page address), it examines the descriptor type field of the last entry fetched from the
translation tables. If the DT field contains a ‘valid long’ ($2) or ‘valid short’ ($3) encoding, this
indicates to the MC68851 that the address contained in the highest order 30 bits of the table
address field of the descriptor is a pointer to the page descriptor that is to be used to map the
logical address. The MC68851 then fetches the type-1 page descriptor of the indicated format at
this address and uses the page address field of this entry as the physical mapping for the logical
address.

The page descriptor located at the address given by the address field of the indirect descriptor
must not have a DT field with the long or short code (it must either be ‘page descriptor’ or
‘invalid’). Otherwise, the descriptor will be treated as invalid and the MC68851 will create an ATC
entry with an error condition signaled (BERR bit set).

5.1.2.3 TABLE SHARING BETWEEN TASKS. A page or pointer table may be shared between
tasks by placing a pointer to the shared table in the address translation tables of more than one
task. The upper (non-shared) tables may contain different settings of protection bits, allowing
different tasks to use the area with different permissions. In Figure 5-7, two tasks share the memory
translated by the table at the B level. Note that task ‘A" cannot write to the shared area. Task ‘B’,
however, has the WP bit clear in its pointer to the shared table, so it can read and write the shared
area. Also note that the shared area appears at different addresses for each task.

5.1.2.4 PAGING OF TABLES. It is not required that the entire address translation tree for an
active task be resident in main memory at once. In the same way that only the working set of
pages need be kept in main memory, only the tables needed to describe the resident set of pages
need be kept. This is done by placing the ‘invalid’ code ($0) in the DT field of the pointer descriptor
that points to the absent table(s). When a task attempts to use an address that would be translated
by an absent table, the MC68851 will be unable to locate a translation and asserts the bus error
signal when the CPU retries the bus cycle that caused the table search to be initiated.

It is the responsibility of the system software to determine that the ‘invalid’ code in the descriptor
indicates non-resident tables. This determination can be facilitated by using the descriptor to store
status information concerning the ‘invalid’ encoding. When the MC68851 encounters an ‘invalid’
descriptor, it makes no interpretation (or modification) of any fields of this descriptor other than
the DT field allowing the operating system to store system-defined information in this location.
Typical information that might be stored includes the reason for the ‘invalid’ encoding (tables
paged-out, region not allocated, . . ., etc.) and possibly the disk address for non-resident tables.

Figure 5-8 shows an address translation table in which only a singie page table (table n) is resident

and all athor nans tahloe ara nAat racidant
anT G CINCr page atiee are nol resident.

5.1.25 DYNAMIC ALLOCATION OF TABLES. Similar to the case discussed above concerning
table residence in memory, it is not required that a complete translation tree exist for an active

MC68851 USER'S MANUAL MOTOROLA
5-9

A B PS

EXAMPLEADDRESS$UUAUIAUD[000000001OIUUUOOUDOIlexxxxxxxxx

$A $6 X

ROOT POINTER .

ENTRY $00A I i ENTRY 506 [§70000 (B =831
]

—
L___l__l :

TASK ‘A’
A LEVEL TABLES ABSOLUTE PHYSICAL ADDRESS OF
(4K ENTRIES) PAGE DESCRIPTOR

i |—> PAGE FRAME ADDRESS

TASK ‘B
A LEVEL TABLES
(4K ENTRIES)

Figure 5-6. Example Translation Tree Using Indirect Descriptors

MOTOROLA MC68851 USER'S MANUAL
5-10

A

B

PS

EXAMPLEADDRESS$UUAUIAUO[0000[]0[10I010|UO[]00001IDFxxxxxxxxll

$A

ROOT POINTER

WP SET

ENTRY $00A

—
I_.l___l

TASK ‘A’
A LEVEL TABLES
(4K ENTRIES)

$6

TASK ‘A
B LEVEL TABLES

X

(4K TABLES MAXIMUM, 1K ENTRIES/TABLE)

—

WP CLEAR

I_.r__l

TASK ‘B
A PRt TADITE
A LEVEL TADLIS

(4K ENTRIES)

|__.'_l

1AON D

B LEVEL TABLES

PAGE FRAME ADDRESS
(SHARED BY "A" AND 'B')
(WRITE-PROTECTED FROM TASK 'A’)

(4K TABLES MAXIMUM, 1K ENTRIES/TABLE)

Figure 5-7. Example Translation Tree Using Shared Tables

MC68851 USER'S MANUAL

MOTOROLA
5-11

A B PS
EXAMPLEADDHESS$00AOIAUO[000000001010'00000001I[]lxxxxxxxxxx

$A $6 X
: TABLE #0

B LEVEL
[(PAGED OUT OR
NOT ALLOCATED)

RODT POINTER
i l 7]

T=
DT = INVALID
ENTRY $006 [PAGE FRAME ADDRESS | TABLE #n
B LEVEL

ENTRY $00A

.

DT = ‘INVALID

Dr-$20R88

DT = "INVALID'
DT = ‘INVALID*

A LEVEL TABLES
(4K ENTRIES)

TABLE #m

| BLEVEL
{PAGED OUT OR

NOT ALLOCATED)

—

|_|_l

B LEVEL TABLES
(4K TABLES MAXIMUM, 1K ENTRIES/TABLE)

Figure 5-8. Example Translation Tree With Non-Resident Tables

task. The translation tree may be dynamically allocated by the operating system based on requests
for access to particular areas.

As in the case of demand paging, it is difficult, if not impossible, to predict the areas of memory
that will be used by a task over any extended period of time. Instead of attempting to predict the
requirements of the task, the operating system performs no action for a task until a ‘demand’ is
made requesting access to a previously unused area or an area that is no longer resident in
memory. This same technique can be used to efficiently create a translation tree for a task.

MOTOROLA MC68851 USER'S MANUAL
5-12

For example, consider an operating system that is going to dispatch for execution a previously
unexecuted task that has no translation tree. Rather than trying to guess what the memory usage
requirements of the task will be, the operating system creates a translation tree for the task that
maps one page corresponding to the initial value of the program counter for that task and possibly
one page corresponding to the initial stack pointer of the task. All other branches of the translation
tree for this task remain unallocated until the task requests access to the areas mapped by these
branches. This technique allows the operating system to construct a minimal translation tree for
each task conserving physical memory utilization and operating system overhead.

5.1.3 Functions Controlled by Address Translation Tables

The following paragraphs describe functions that are controlled by fields in the address translation
tables. These topics are discussed further in 5.1.5 Translation Descriptors.

5.1.3.1 PROTECTION. Protection information is indicated in the address translation tables. A
page or segment is designated non-writable by setting the WP (write protect) bit in a descriptor,
and a page or segment is restricted to access by only the supervisor by setting the S (supervisor)
bit. Protections can be assigned based on access levels using the RAL (read access level) and
WAL (write access level) fields. Finally, a page is permitted to contain module descriptors for the
MC68020 CALLM instruction by setting the G (gate) bit. Refer to SECTION 7 PROTECTION for a
complete discussion of the various aspects of the MC68851 protection mechanism.

5.1.3.2 ATC MANAGEMENT. Certain functions of the ATC are controlled using the address
translation tables. Entries can be made exempt from removal by the ATC replacement algorithm
by setting the L (lock) bit. Entries can be made exempt from removal by the RPT replacement
algorithm by setting the SG (shared globally) bit. Setting the SG bit is also an indication to the
ATC that the same ATC entry is to be used by all tasks (i.e., the task alias field is ignored for
entries loaded with the SG bit set). ATC entries made with both bits set cannot be removed except
by a PFLUSHS or PFLUSHA instruction (or by altering the TC register or the corresponding root
pointer register).

5.1.3.3 DATA CACHE INHIBIT. The MC68851 provides the ability to indicate that pages should
not be cached in external data caches. If the translation descriptor for a page has the Cl (cache
inhibit) bit set, the CLI (cache load inhibit) signal is asserted when that page is accessed. Local
caches should use this signal to inhibit loading of entries when asserted.

The cache inhibit function allows system software to determine whether or not a particular area
in the memory map should be cacheable. For example, interface registers for peripheral devices
should be non-cacheable locations and so, when creating a mapping for these registers, the
operating system should set the Cl bit in the corresponding translation descriptor. In multi-pro-
cessor systems, the Cl function can be used to prevent caching of shared data areas and can
resolve cache consistency problems (stale data) by marking all shared data areas as non-cacheable.

5.1.4 Root Pointers

The MC68851 locates the root of a translation tree by using one of its three root pointer registers:
the CPU root pointer (CRP), the supervisor root pointer (SRP), or the DMA root pointer (DRP).
These registers contain the physical address of the root of the corresponding translation tree as
well as control information about the trees.

MC68851 USER'S MANUAL MOTOROLA
5-13

5.1.4.1 ROOT POINTER FORMAT.The format of the root pointer registers is discussed in detail
in 6.1.1 Root Pointer Registers. A brief summary is included below and the format of these registers
is shown in Figure 5-9.

5.1.4.1.1 Lower/Upper (LU). The L/U bit specifies whether the value contained in the limit field
is to be used as the upper or lower limit of indices into the translation table. If L/U equals zero,
the limit field contains the unsigned upper limit of indices. If L/U equals one, the limit field contains
the unsigned lower limit of indices.

5.1.4.1.2 Limit. The limit field specifies a maximum or minimum value for the index to be used
at the next level of the tables search operation (with the exception of the function code lookup)
and is used to limit the size of the translation table at the root level. The limit field and L/U bit of
the root pointer are ignored if the first level of the table search is a lookup by function code.

5.1.4.1.3 Shared Globally (SG). The SG bit indicates that the entire logical address space mapped
by the root pointer is shared globally by all tasks within the system. Setting the SG bit to one
informs the MC68851 that the logical-to-physical mappings identified by this root pointer are
identical for all tasks and that only an single descriptor for the translation needs to be maintained
in the ATC.

The shared globally attribute can significantly effect the performance of the MC68851 ATC and,
thus, merits further discussion. The MC68851 task aliasing mechanism (refer to 5.3 ROOT POINTER
TABLE) assigns a task alias to all entries that are created in the ATC; this includes all supervisor
and DMA entries. The value assigned to an entry is the current value of the internal task alias. In
order for a logical address to match an entry in the ATC, the logical page address, function code,
and task alias fields must match exactly. Without use of the shared globally attribute, this would
mean that all supervisor and DMA entries in the ATC that are used during the execution of multiple
user tasks would require individual ATC entries to be created, one corresponding to each user
task during which the entry is used. The SG attribute allows the task alias compare to be suppressed
during address translation and thus allows that only a single ATC entry be created regardless of
the number of tasks in which the entry is used.

It is recommended that the SG bit be set in the DMA root pointer and, either in the supervisor

root pointer, if enabled, or in one of the higher levels of the translation tree if supervisor accesses
are translated using the CPU root pointer.

63 48

Ly Lmit

ofojofofojo|scGfojJofjojojojo]oO 0T

TABLE ADDRESS (PA31-PA16)

TABLE ADDRESS (PA15-PA4) UNUSED

15 4 0
Figure 5-9. Root Pointer Register Format

MOTOROLA MC68851 USER'S MANUAL
5-14

5.1.4.1.4 Descriptor Type (DT). The DT field specifies the type of descriptor contained in either
the root pointer or in the first level of the translation field identified by that root pointer. The
values are defined as follows:
$0 INVALID
This value is not allowed for root pointers.
$1 PAGE DESCRIPTOR
Indicates that a translation table for this root pointer does not exist and that the MC68851
should internally create an ATC entry (page descriptor) for accesses using this root
pointer. A limit check is performed regardless of the state of the FCL bit when the DT
field of a root pointer is set to $1.
$2 VALID 4 BYTE
This value indicates that the translation table at the root of the translation tree contains
short format descriptors.
$3 VALID 8 BYTE
This value indicates that the translation table at the root of the translation tree contains
long format descriptors.

5.1.4.1.5 Table Address. The table address field specifies the physical base address of the root-
level translation table for that particular root pointer or the constant offset if the DT = 1.

5.1.4.1.6 Unused. These bits of the root pointer are not used by the MC68851 and may be used
by the operating system for other purposes.

5.1.4.2 SELECTION OF ROOT POINTER. The selection of which root pointer to use in translating
an address is based on the function code of the logical address and the setting of the SRE bit in
the TC register.

FC3 FC2 SRE Root Pointer Used
0 0 0 CRP
0 0 1 CRP
0 1 0 CRP
0 1 1 SRP
1 X X DRP

The DRP is used for translating all accesses for which FC3 = 1. It is intended that peripheral
devices using the MC68851 generate logical addresses with FC3 = 1 so that their address spaces
may be separate from that of the main processor. Any DMA-type coprocessors should generate
addresses with FC3 = 0 so that they may share the main processor’s address space. With the
SRE bit of the TC register clear, the CRP is used for translating all accesses that have FC3 = 0.
With the SRE bit of the TC register set, the CRP translates logical addresses with FC3/FC2 = 00
(user mode), while the SRP translates logical addresses with FC3/FC2 = 01 (supervisor mode). It
is intended that the main processor generate logical addresses with FC3 = 0.

5.1.5 Translation Descriptors

The MC68851 uses several types of descriptors as described in the paragraphs below. Each type
of descriptor has a long and a short format. All descriptors share one characteristic: the lowest
order two bits of the first long word of the descriptor contain a descriptor type (DT) field. The
value of these bits affect the interpretation of other bits in the descriptor. In particular, if the value
of the DT field is ‘invalid’ (refer to 5.1.4 FIELD DEFINITIONS), then the descriptor is of one of the
‘invalid’ types and the other bits are undefined and are available for use by the system software.

MC68851 USER'S MANUAL MOTOROLA
5-15

The exact interpretation of the bits in a descriptor is determined by three factors: the value of the
DT field of the descriptor, the state of the table search, and the value of the DT field of the previous
descriptor used in the search. The value of the previous descriptor determines whether the current
descriptor is of the long or short format. The type of a descriptor is determined according to the
table in Figure 5-10. The table entries marked ““illegal’ are not valid configurations and are treated
as the ‘invalid’ type by the MC68851.

TABLE SEARCH STATE

TI FIELDS NOT
EXHAUSTED

TI FIELDS
EXHAUSTED

INDIRECT
DESCRIPTOR SEEN

INVALID

INVALID

INVALID

INVALID

m -
PAGE

DESCRIPTOR
81

PAGE DESCRIPTOR
TYPE-2

PAGE DESCRIPTOR
TYPE-1

PAGE DESCRIPTOR
TYPE-1

DT FIELD —

SHORT

52) TABLE DESCRIPTOR

INDIRECT ILLEGAL

LONG

TABLE DESCRIPTOR
($3) BLE DESCRIPTO

INDIRECT ILLEGAL

L—

Figure 5-10. Descriptor Type Determination

5.1.5.1 DESCRIPTOR FORMATS. There are two formats of address translation descriptors: long
(64 bits) and short (32 bits) and each descriptor type exists in both a long and a short format.
Long format descriptors contain all fields that short format descriptors of the same type do, and
(possibly) additional information. The MC68851 features that are controlled only by long format
descriptors are limit checking on indices (L/U and limit fields), access level protection (RAL and
WAL fields), supervisor-only protection (S bit) and sharing of ATC entries (SG bit).

All descriptors in an individual table must be of the same format. The format of the descriptors
in different tables may be determined individually. There is no requirement that all tables at the
same level of the address translation tree contain descriptors of the same format, or that all
descriptors in a table contain DT fields with the same code. An example translation tree with
different format descriptors is shown in Figure 5-11.

5.1.5.2 DESCRIPTOR TYPES. The following describes the format of the five basic descriptor types
supported by the MC68851. Each of the descriptor types exist in a long and a short format.

5.1.5.2.1 Table Descriptors.This descriptor type is used to identify pointer or page tables at lower
levels of the translation tree. The formats of this type of descriptor are shown in Figures 5-12 and
5-13.

5.1.5.2.2 Type-1 and Type-2 Page Descriptors. This descriptor type is found in the page tables
and is used to define page frames when a table search terminates having used all fields of the
logical page address (as specified by the TC register) as indices into the translation tree (i.e., the

L]
MOTOROLA MC68851 USER'S MANUAL
5-16

A B

PS

EXAMPLE ADDRESS $00A01A00 ﬁOUDODOGIU]UlUDOODOU]1[]|xxxxxxxxxx_

$A $6

ROOT POINTER

0T = "VALID 4 BYTE'
DT = INVALID'

ENTRY S00A | 0T-= "VALD 8 8YTE'

OT = "VALID 4 BYTE'

A LEVEL TABLES
(4K ENTRIES)

Figure 5-11. Example Translation Tree Using Different Format Descriptors

31

B LEVEL TABLES
(4K TABLES MAXIMUM, 1K ENTRIES/TABLE)

X

TABLE ADDRESS (PA31-PA16)

TABLE ADDRESS (PA15-PA4) u

WP

o7

15

4 3

2

Figure 5-12. Short Format Table Descriptor

—

| ENTRY $006 E—» PAGE FRAME ADDRESS

TABLE $0

B LEVEL

(SHORT FORMAT
DESCRIPTORS)

TABLE $00A

B LEVEL

(LONG FORMAT
DESCRIPTORS)

TABLE $FFF

B LEVEL

(SHORT FORMAT
DESCRIPTORS)

MC68851 USER'S MANUAL

MOTOROLA
5-17

63 48

L/U Lmir

RAL WAL S6|S|0]0]J0jO0O]uU]|wWP DT

TABLE ADDRESS (PA31-PA16)

TABLE ADDRESS (PA15-PA4) UNUSED

15 4 0
Figure 5-13. Long Format Table Descriptor

table search was not terminated early due to encountering a ‘page descriptor’ DT field in a pointer
table). The formats of this type of descriptor are shown in Figures 5-14 and 5-15.

Note that the only difference in the long format of the type-1 and type-2 page descriptors is the

presence of the LIMIT field and L/U bit in the long format of the type-2 descriptor. The type-1 and
type-2 short format descriptors are identical.

31 16

PAGE ADDRESS {PA31-PA16)

PAGE ADDRESS (PA15-PA8) GlCa|L]|M]U]wp DT

15 7 6 5 4 3 2 0

Figure 5-14. Type-1 and Type-2 Short Format Page Descriptors

63 48

UNUSED

RAL WAL S| S|G|C|L|IM|uU[wpP oT

PAGE ADDRESS (PA31-PA16)

PAGE ADDRESS (PA15-PA8) UNUSED

15 8 0
Figure 5-15. Type-1 Long Format Page Descriptor

63 48

L/u LimiT

RAL WAL S| S|G|C|L|M]U]|wp ot

PAGE ADDRESS (PA31-PA16)

PAGE ADDRESS (PA15-PA8) UNUSED

15 8 0
Figure 5-16. Type-2 Long Format Page Descriptor

MOTOROLA MC68851 USER'S MANUAL
5-18

5.1.5.2.3 Indirect Descriptors.

This descriptor type is found in the page tables and is used to

identify a page descriptor in another page table to be used to perform the logical-to-physical
mapping. The formats of this type of descriptor are shown in Figures 5-17 and 5-18.

31

16

DESCRIPTOR ADDRESS (PA31-PA16)

DESCRIPTOR ADDRESS (PA15-PA2)

oT

63

2

Figure 5-17. Short Format Indirect Descriptor

48

UNUSED

UNUSED

DESCRIPTOR ADDRESS (PA31-PA16)

DESCRIPTOR ADDRESS (PA15-PA2)

oT

5.1.5.2.4 Invalid Descriptors.

2

Figure 5-18. Long Format Indirect Descriptor

This descriptor type may be found at any level of the translation

tree except at the root. The formats of this type of descriptor are shown in Figures 5-19 and 5-

20.

31

UNUSED

UNUSED

oT

63

2

Figure 5-19. Short Format Invalid Descriptor

48

UNUSED

UNUSED

UNUSED

UNUSED

DT

2
Figure 5-20. Long Format Invalid Descriptor

MC68851 USER'S MANUAL

MOTOROLA
5-19

5.1.5.3 DESCRIPTOR FIELD DEFINITIONS. The following defines the fields that are found in the
various types of table and page descriptors discussed in 5.1.56.2 DESCRIPTOR TYPES. Not all of
these fields are found in all descriptor formats and some fields are mutually exclusive of others.

5.1.5.3.1 Lower/Upper(L/U). The L/U bit (bit [63] of a long format table or type-2 page descriptor)
specifies whether the value contained in the limit field (see below) is to be used as the upper or
lower limit of indices into the translation table at the next level of the table search. If L/U equals
zero, the limit field contains the unsigned upper limit of the index and all table indices for the
next level must be less than or equal to the value contained in the limit field or a limit violation
will occur. If L/U equals one, the limit field contains the unsigned lower limit of the index and all
table indices for the next level must be greater than or equal to the value contained in the limit
field; otherwise, a limit violation will occur.

5.1.5.3.2 Limit. The limit field (bits [62-48] of a long format table or type-2 page descriptor)
specifies a maximum or minimum value for the table index to be used at the next level of the
table search and is used to limit the size of the translation tables. The limit field may contain any
value between 0 and 215 (inclusive) in powers of two.

The limit function can be effectively suppressed by either setting L/U to zero and setting the limit
field to all ones ($7FFF) or by setting L/U to one and clearing the limit field ($8000).

5.1.5.3.3 Read Access Level (RAL). The RAL field (bits [47-45] of a long format table or page
descriptor) indicates the maximum value (minimum privilege) that the access level field of the

logical address can contain to allow a translation for a read or write operation using this descriptor
(refer to 7.2 ACCESS LEVEL PROTECTION).

5.1.5.3.4 Write Access Level (WAL). The WAL field (bits [44-42] of a long format table or page
descriptor) indicates the maximum value (minimum privilege) that the access level field of the
logical address can contain to allow a translation for a write operation using this descriptor (refer
to 7.2 ACCESS LEVEL PROTECTION).

5.1.5.3.5 Shared Globally (SG). The SG bit (bit [41] of a long format table or page descriptor)
indicates that the portion of the logical address space mapped by the descriptor is shared globally
by all tasks within the system. Setting the SG bit informs the MC68851 that the logical-to-physical
mappings identified by this descriptor are identical for all tasks and that only a single descriptor
for the translation needs to be maintained in the ATC (as opposed to one descriptor for each task
that uses that mapping).

Clearing the SG bit informs the MC68851 that the logical-to-physical mapping identified by the
descriptor is unique for a particular task.

5.1.5.3.6 Supervisor (S). The S bit (bit [40] of long format table and page descriptors) is used
to specify that a task must be operating in the supervisor mode in order to access the portion of
the logical address space mapped by the descriptor. If this bit is set, accesses using this descriptor
are restricted to supervisor-only. If this bit is clear, accesses using this descriptor are not restricted
to supervisor-only unless the access is restricted at some other level of the translation tree.

5.1.56.3.7 Gate (G). The G bit (bit [39] of long format page descriptors, bit [7] of short format
page descriptors) is used to indicate whether or not the corresponding page is allowed to contain
module descriptors (gates) for the MC68020 CALLM instruction. If this bit is set, the page is allowed

MOTOROLA MC68851 USER'S MANUAL
5-20

to contain gates. If this bit is clear, the page is not allowed to contain gates (refer to 7.2 ACCESS
LEVEL PROTECTION).

5.1.5.3.8 Cache Inhibit (C). The CI bit (bit [38] of long format page descriptors, bit [6] of short
format page descriptors) is used to indicate whether or not the data contained in the corresponding
page is cacheable by local caches. When Cl is set, the MC68851 asserts the CLI output during
accesses to this page signaling to local caches that the data of the current bus cycle should not
be placed in the cache. If Cl is clear, the MC68851 does not assert the CLI output during accesses
that reference this descriptor.

5.1.5.3.9 Lock (L). The L bit (bit [37] of long format page descriptors, bit [5] of short format
page descriptors) is used to inform the MC68851 that the corresponding page descriptor should
be made exempt from the actions of the ATC replacement algorithm. When set, L indicates that
ATC entries formed with this descriptor should be unavailable for replacement. When clear, L
indicates that ATC entries formed with this descriptor are available for replacement.

Although the action of the L bit is to make the entries exempt from the actions of the ATC
replacement algorithm, ATC entries with a set L bit may be removed as part of a task whose root
pointer table entry is being replaced. To avoid this removal for supervisor and DMA ATC entries
that are not task-specific, the SG bit should also be set (refer to 5.3 ROOT POINTER TABLE).
Additionally, the L bit will be ignored if the ATC already contains 63 locked entries (refer to 5.2.1.2
DATA SECTION).

5.1.5.3.10 Modified (M). The M bit (bit [36] of long format page descriptors, bit [4] of short
format page descriptors) is used to indicate whether or not the corresponding page has been
written to by a logical bus master. This bit is set by the MC68851 to indicate that the page
corresponding to the descriptor has been written to; the MC68851 never changes this bit from a
one to a zero. Refer to 5.1.5.3.11 Used for information regarding how the M bit is set by the
MC68851.

5.1.5.3.11 Used (U). The U bit (bit [35] of long format page or table descriptors, bit [3] of short
format page or table descriptors) is used to indicate whether or not the corresponding descriptor
has been used. In a page descriptor table, this bit is set by the MC68851 to indicate that the page
corresponding to the descriptor has been accessed. In a pointer table, this bit is set to indicate
that the pointer has been fetched by the MC68851 as part of a table search. Note that a pointer
may be fetched, and its U bit set, for an address to which access is denied at another level of the
tree.

Updates of the U and M bits are performed before the MC68851 allows a page to be accessed or
written. The MC68851 optimizes its activity by examining the U and M bits in descriptors as they
are fetched, and only performing write cycles to modify these bits are required. For a pointer
descriptor, a write cycle to set the U bit occurs only if the U bit was clear. For page descriptors,
the update is done as described below:

Previous _ New
Action by MC68851 u ™M RW U WM
RMW Cycle to Set U (M Not Changed) 0 o0 R 1 X
Write to Set U and M 0 0 w 1 1
Write to Set U 0o 1 R 1 1
Write to Set U 0 1 w 1 1
No Write 1 0 R 1 0
Write to Set M (U Written Set) 1 0 w 1 1
No Write 1 1 R 1 1
No Write 1 1 w 1 1
|
MC68851 USER'S MANUAL MOTOROLA

5-21

A bus cycle executed by a logical bus master is considered to be a write for updating purposes
if either R/'W or RMC is low.

5.1.5.3.12 Write Protect (WP). The WP bit (bit [34] of long format page or table descriptors, bit
[2] of short format page or table descriptors) is used to write-protect a range of the logical address
space. When WP is set, the MC68851 does not allow the portion of the logical address space
mapped by that descriptor to be written by any logical bus master operating at any privilege level
(i.e., this protection is absolute). if the WP bit is clear, the MC68851 allows write accesses using
this descriptor unless access is restricted at some other level of the translation tree.

Conditional write-protection can be designed by using the WAL (refer to 7.2 ACCESS LEVEL
PROTECTION).

5.1.5.3.13 Descriptor Type (DT). The DT field (bits [33-32] of all long format descriptors, bits
[1-0] of all short format descriptors) specifies the type of descriptor contained in either the de-
scriptor itself or in the next level of the translation tree, depending on the value in the field and
the state of the table search. The values are defined as follows:

$0 INVALID
Regardless of the state of the table search, the current descriptor is invalid and all other
bits are unused. When a descriptor of this type is encountered, the table search terminates
and an ATC entry for the logical address is made with the BERR bit set.

$1 PAGE DESCRIPTOR
This value is used to terminate the table search with a valid translation. It indicates either
a type 1 or type 2 page descriptor, depending on the state of the table search (refer to
5.1.5.2 DESCRIPTOR TYPES).

$2 VALID 4 BYTE
This value indicates that the translation table at the next level of the translation tree
contains short format descriptors. The current descriptor is of the table, indirect, or invalid
type depending on the state of the table search.

$3 VALID 8 BYTE
This value indicates that the translation table at the next level of the translation tree
contains long format descriptors. The current descriptor is of the table, indirect, or invalid
type depending on the state of the table search.

5.1.56.3.14 Table Address. This field (bits [31-4] of all table descriptors) contains the most sig-
nificant 28 bits of the physical base address of a table of descriptors.

5.1.56.3.15 Page Address. This field (bits [31-8] of all page descriptors) contains the most sig-
nificant 24 bits of the physical address of a page of memory. If the page size is greater than 256
bytes, then the least significant bits of this field are unused by the hardware. Specifically, [LOG2
(page size)]-8 bits are not used by the MC68851 and may be used by system software.

5.1.5.3.16 Indirect Address. This field (bits [31-2] of all indirect descriptors) contains the most
significant 30 bits of the physical address of an individual page descriptor.

5.1.5.3.177 Unused. All fields marked ‘unused’ do not affect the operation of the MC68851 and
are guaranteed not to be modified by the MC68851. They may be used by software for system-
specific functions.

MOTOROLA ‘ ’ MC68851 USER'S MANUAL
5-22

5.1.6 Protections

Some information may be stored in multiple levels of a translation tree. In general, the effective
protection assigned to a page is the most strict of those indicated at any level. The supervisor-
only, write-protect, and shared attributes may be specified at any level of the translation tree
when using long format descriptors. An attribute will be conferred if the corresponding bit is set
at any level. The effective RAL of a page will be the minimum (most privileged) of all RAL fields
encountered. The effective WAL of a page will be the minimum (most privileged) of all WAL fields
encountered, with the exception that if a WP bit is set for the page at any level, the page will not
be writable for any access level. If there are no long format descriptors in the path through the
translation tree that is used to translate an address, then the shared attribute is as indicated in
the root pointer used, the page is not restricted to supervisor-only, and the effective RAL and
WAL are both $7 (least privileged).

5.2 ADDRESS TRANSLATION CACHE

The address translation cache (ATC) of the MC68851 provides a mechanism for translating recently
used logical addresses without the table search overhead. It consists of a fully-associative or
content addressable memory (CAM) in which information about recently used logical addresses
(tags) is stored, a RAM for storing the physical address (data) corresponding to the logical ad-
dresses in the CAM, and circuitry implementing the cache replacement algorithm. There are 64
entries in the CAM array and 64 corresponding entries in the RAM array.

5.2.1 Internal Organization

The information contained in the ATC is not directly accessible to the programmer. The following
paragraphs provide an overview of the internal cache organization.

5.2.1.1 TAG SECTION. The tag, or CAM, section of the ATC contains logical addresses and
control information for use inside the ATC. A diagram of an entry in the tag section of the cache
is shown in Figure 5-21. The FC and logical address fields are compared with the values on the
similarly named pins during bus cycles run by the logical bus master and the lower order bits of
the logical address field are ignored during compare operations if the page size is larger than 256
bytes. The TA and SG fields are managed internally by the MC68851 to allow ATC entries for
more than one task to be resident simultaneously. For a CAM entry to match a logical address
presented by a logical bus master, both the logical address field (exclusive of low order bits
representing the page offset) and the FC field must match exactly. In addition, the task alias (TA)
field must match the current TA value of the MC68851 (refer to 5.3 ROOT POINTER TABLE), or
the entry’s SG bit must be set in order for a match to occur.

SG TA FC LOGICAL ADDRESS

Figure 5-21. ATC Tag Entry

5.2.1.2 DATA SECTION. The data, or RAM, section of the ATC contains the physical addresses
and control information corresponding to the logical addresses stored in the tag section. A diagram
of an entry in the data section is shown in Figure 5-22.

L{B|JC|W|M|]G PHYSICAL ADDRESS

Figure 5-22. ATC Data Entry

MC68851 USER'S MANUAL MOTOROLA
5-23

The physical address field contains the physical page frame address corresponding to the logical
address in the respective tag entry. The lower order bits of this field are unused if the page size
is larger than 256 bytes. The data in this field of the logical address is not interpreted by the
MC68851 but is presented on the physical address outputs during an address translation.

The G, L, and Cl bits are copies of the similarly named bits extracted from the page descriptor in
the translation table when the ATC entry is formed. The internal L bit exempts the entry from
replacement using the ATC replacement algorithm. However, it will not be a copy of the page
descriptor L bit if there are already 63 entries with set L bits in the ATC. In this case, the L bit for
new entries will always be clear (indicating that the entry can be replaced). The inverse of the Cl
bit is presented on the CLI output during address translations. The WP bit is the effective write
protection determined during the translation table search. The M bit is a copy of the M bit in the
page descriptor in the translation table when the ATC entry is loaded. If it is clear and a write is
attempted and permitted through the ATC entry, both the internal M bit and the M bit in the page

m descriptor will be set by the MC68851.

The B bit, when set, indicates that no translation should be performed using this ATC entry and
that a bus error will be signaled to the logical bus master when a logical address matches the
corresponding entry in the tag array. Primarily, this bit indicates that no translation is available
for the logical address. This may be because an invalid descriptor or bus error was encountered
during the table search. The B bit is also used to implement supervisor-only protection and access
level protection with the RAL translation descriptor field. In these cases a task may generate the
address of a restricted memory page, and instead of maintaining the RAL field and S bit in the
ATC, the validity of the access is evaluated when the ATC entry is made. If access is to be denied,
an ATC entry is made with the B bit set.

5.2.1.3 REPLACEMENT ALGORITHM. The MC68851 contains circuitry to automatically deter-
mined which tag/data pair to use for a new ATC entry. The algorithm is as follows: locate an
invalid entry and use it. If no invalid entries are found, use a psuedo least-recently-used (LRU)
algorithm to select an entry without its L bit set and replace that entry.

To implement this replacement algorithm, the ATC contains two additional bits for each entry.
One is a valid bit to indicate that an entry contains a valid translation. The other is a history bit
to indicate that the entry has been recently used.

During an ATC replacement operation when the ATC is full (all entries valid), the LRU algorithm
attempts to locate the entry that was last used longest ago and, as such, allows the ATC to
maintain a very close approximation to a proper working set of page descriptors. Although cache
hit rates are very dependent on the nature of CPU activities, performance of the MC68851 ATC
with psuedo-LRU replacement algorithm can be expected in the range of 95% to 99%.

5.2.2 ATC Operation
The following paragraphs describe the ATC operation.

5.2.2.1 ADDRESS TRANSLATION BY THE ATC. When the MC68851 is enabled and is not itself
bus master, it performs an ongoing comparison between the address currently on the logical bus
and in the ATC tag section. When LAS is asserted, the ATC allows time for the circuitry to settle
and determines if any of its tag entries indicate a match. There are several actions that the ATC
may take, depending on the number of entries in the tag section that match, the contents of a
matching entry, and the state of the physical bus.

MOTOROLA MC68851 USER'S MANUAL
5-24

If the bus cycle addresses the MC68851 on-chip registers, the MC68851 peforms the action required
by the bus cycle. If the bus cycle accesses an address in the CPU space (function code = $7) and
is not an access to an MC68851 register, then the logical address is placed on the physical address
outputs and the CLI signal is asserted with the same functional timing as PAS would have if an
ATC hit had occurred.

If the cycle is not a CPU space access, there are no ATC entries that match, and the logical master
does not have the RMC signal asserted, then BERR, HALT, and LBRO signals are asserted and
the MC68851 initiates a translation table search to load an ATC entry. If the cycle does have RMC
asserted, only BERR is asserted. The signals are asserted by the MC68851 after the time specified
by the decision timeout (refer to 4.1.2.3 DECISION TIMEOUT DELAY).

If one ATC entry matches, and the MC68851 owns the physical bus, the MC68851 gates the PA

and ClI fields of the data section to the appropriate pins, and the B, W, M, and G bits to access

checking circuitry. Then the time specified by the decision timeout is allowed to elapse (refer to ﬂ
4.1.2.3 DECISION TIMEOUT DELAY). If the access is to be denied, BERR is asserted. If the access

is to be granted, PAS is asserted. If the MC68851 does not own the physical bus, the MC68851

does not drive PAS, but continues checking protections and will assert CLI or BERR as appropriate.

This allows the use of a logical data cache with protection checking in parallel with other activity

on the physical bus. The MC68851 will not assert the PAS signal until it regains control of the

physical bus (provided that the logical bus master is still requesting the translation).

If more than one ATC entry matches, then all of the matching entries are flushed and the condition
is treated as a cache miss. This condition may occur through improper use of the SG translation
descriptor attribute (i.e., not having the SG bit set in all translation trees mapping a logical address
that is marked as shared in another tree).

5.2.2.2 TRANSLATION MODES. The MC68851 can perform address translations in one of two
modes: synchronous or asynchronous. The translation mode is selected on a bus cycle-by-bus
cycle basis by the state of the ASYNC pin.

In the synchronous mode, the logical bus master must present bus cycles with the same timing
as an MC68020 would if running with the same clock as the MC68851. The relationships between
the clock, address timing, and LAS assertion are known for the MC68020. This allows elimination
of synchronization delays in the address translation. The earliest that PAS can be asserted in
synchronous mode is one clock period from the clock edge from which the logical bus master
initiates the assertion of LAS.

In asynchronous mode, no assumptions are made about the relationships of signals to the clock.
All decisions are delayed until after the internally synchronized version of LAS is asserted. The
earliest that PAS can be asserted in asynchronous mode is one and one-half clock periods after
the clock edge on which LAS is asserted at the MC68851 input pin.

5.3 ROOT POINTER TABLE

In order to improve ATC utilization, the MC68851 internally maintains eight recently-used values
of the CRP register in the root pointer table (RPT). These values are associated with eight recently
active tasks. The MC68851 assigns each of these tasks a task alias for tagging ATC entries. The
mapping of 1asks to task aiias vaiues, and re-assignment of task aiias vaiues, is performed by the
MC68851 hardware with no software intervention. When an entry is made in the ATC, the RPT
index (a three bit value) corresponding to the current CRP value is stored in the TA field of the
ATC entry. The TA field is then treated as part of the logical address to determine if a match has
occurred in the ATC.

MC68851 USER'S MANUAL MOTOROLA
5-25

5.3.1 Loading the RPT

The RPT is checked whenever ther CRP register is loaded by a PMOVE or PRESTORE instruction.
If the new CRP value is found in the RPT, the index of the matching entry becomes the current
task alias. This value is then displayed in the TA field of the PCSR register, and the F bit of the
PCSR register is cleared. The current task alias is then used as part of the logical address for
succeeding bus cycles until the CRP is loaded with a new value.

If the new CRP value matches the address field and L/U bit of a value in the RPT, but does not
match the limit and DT fields, the RTP entry is overwritten with the new value and the RPT index
becomes the new current task alias. All ATC entries that match the new current task alias are
invalidated, the current task alias is displayed in the TA field of the PCSR register, and the F bit
of the PCSR register is set.

If no RPT entries matching the new CRP value are found, an entry from the RPT is selected from
the RPT using the same replacement algorithm as the ATC (psuedo-LRU). If there is an invalid
entry in the RPT, it is selected and its index becomes the current task alias. The new CRP value
is loaded, the current task alias is displayed in the TA field of the PCSR register, and the F bit of
the PCSR register is set. If a valid entry must be selected, the RPT entry is overwritten with the
new value and the RPT index becomes the new current task alias. All ATC entries that match the
new current task alias are invalidated, the current task alias is displayed in the TA field of the
PCSR register, and the F bit of the PCSR register is set.

5.3.2 Flushing the RPT

Entries are normally flushed from the RPT by the replacement algorithm without explicit action
by system software. When a task is destroyed, software should ensure that all ATC entries for it
have been invalidated by executing the PFLUSHR instruction giving the CRP value of the destroyed
task as the operand. This also invalidates the corresponding RPT entry thus improving utilization
of the RPT.

5.4 DETAIL OF TABLE SEARCH OPERATIONS

Figures 5-23 through 5-27 provide a detailed description of the MC68851 table search operations
in the form of several flowcharts. These flowcharts document the logical flow of control for table
search operations and are not intended to convey any timing-related information. Refer to SEC-
TION 11 OPERATIONS TIMING for timing information for table search operations.

The master flowchart for table searches is shown in Figure 5-23 and the detailed description of
various sub-functions of the table search are provided in the subsequent diagrams. The initiali-
zation for a table search, creation of an ATC entry, limit check procedure, and descriptor fetch
detail are shown in Figures 5-24, 5-25, 5-26, and 5-27 respectively.

MOTOROLA MC68851 USER'S MANUAL
5-26

ROOT POINTER SELECTION TRUTH TABLE

FC3 FC2 SRE ROOT

INITIALIZE
(REFER TO FIGURE 5-24)

0 0 o | cee

DETERMINE ROOT POINTER TO BE USED 0 0) CRP

(REFER TO TRUTH TABLE AT RIGHT) 0 ; o | cre

x -— A 0 1 1 SRP

y _— P 1 0 0 DRP

(CHECK DESCRIPTOR TYPE OF ROOT POINTER) ! 0 ! DRP

DT = ‘PAGE DESCAIPTOR' ! ! 0 | DRe
1 1 1

I/ DT = "4 BYTE' OR "8 BYTE' DRP

TYPE <&— EARLY' SIZE <— 4 0R 8

CREATE ATC ENTRY LAST SIZE <— 8
(REFER TO FIGURE 5-25)

FCL=10RFC3 =1 FCL=0 &FC3 # 1

FETCH DESCRIPTOR
(REFER TO FIGURE 5-27)

(CHECK DESCRIPTOR TYPE)

(PERFORM FUNCTION CODE LOOKUP IF REQUIRED)

DT = 'PAGE DESCRIPTOR DT = “INVALID*

./ DT = "4 BYTE' OR '8 BYTE'

TYPE <&— 'EARLY’ LAST SIZE <&— SIZE TYPE <e&— ‘INVALID'

SIZE <«— 4 0R 8
CREATE ATC ENTRY
(REFER TO FIGURE 5-25)

CREATE ATC ENTRY
(REFER TO FIGURE 5-25)

(ENTERING A LEVEL TABLE SEARCH)

PERFORM LIMIT CHECK
(REFER TO FIGURE 5-26)

(REPEAT SEARCH)
(CHECK DESCRIPTOR TYPE)

DT = "PAGE DESCRIPTOR DT = "4 BYTE' OR '8 BYTE'
DT = "INVALID*
TYPE <&— ‘INVALID* LAST SIZE -&— SIZE

SIZE <&— 4 0R 8

x# D x=D x="D x# D

- ' =
_ V - X
x <&— NEXT x (x =B, C, D) TvpE \I NORMAL x <&— NEXTx (x=B, C, D)
=0 C Th#0 /O"T'X¢D
- ~ Tix=0 ~
TYPE <&— ‘NORMAL' TYPE <@— ‘EARLY

TYPE <&— "INDIRECT

FETCH DESCRIPTOR
REFER TO FIGURE 5-27)
O

(CHECK DESCRIPTOR TYPE)
DT = "PAGE DESCRIPTOR' OTHERWISE

~
TYPE <&— 'INVALID'
" <—"1i8Tht
CREATE ATC ENTRY
(REFER TO FIGURE 5-25)

Figure 5-23. Detailed Flowchart of MC68851 Table Search Operation

CREATE ATC ENTRY
(REFER TO FIGURE 5-25)

ASSIGNIVIENT OrCnATOR

MC68851 USER'S MANUAL MOTOROLA
5-27

C INITIALIZE FOR TABLE SEARCH) (INITIALIZE ACCRUED STATUS)

ACC_STATUS [RAL] <&— §7
ACC_STATUS [WAL] --— §7
ACC_STATUS [WP] -— 0
ACC_STATUS [SG] -e— 0

ACC_STATUS [S] <— 0

=

Figure 5-24. Table Search Initialization Detail

CREATE ATC ENTRY

TYPE = "INVALID’

CREATE ATC ENTRY WITH

TYPE = ‘EARLY TYPE = INDIRECT’ TYPE = ‘NORMAL
BERR BIT SET PFA = PAGE ADDRESS FIELD OF PFA = PAGE ADDRESS FIELD OF

PERFORM LIMIT CHECK

(REFER TO FIGURE 5-26)
DESCRIPTOR FETCHED INDIRECTLY FROM DESCRIPTOR FETCHED AT
PFA = LPA + TA FIELD OF TREE LEVEL x TREE LEVEL x
DESCRIPTOR FETCHED AT

CREATE ATC ENTRY USING PFA FROM ABOVE
AND ACCRUED STATUS (REFER TO FIGURE 5-27)

ABBREVIATIONS USED:

EXIT TABLE SEARCH

PFA: = PAGE FRAME ADDRESS
LPA: = UNUSED FIELDS OF LOGICAL PAGE ADDRESS
TA: = TABLE ADDRESS FIELD OF A TABLE DESCRIPTOR

Figure 5-25. Detail of ATC Entry Creation During Table Search

MOTOROLA ' MC68851 USER'S MANUAL
5-28

PERFORM LIMIT CHECK

y =R OTHERWISE
FCL = 1 OR DRP IS AP
OTHERWISE
(LIMIT CHECK NOT REQUIRED)
RETURN
LAST SIZE =4 LAST SIZE = 8
(LIMIT CHECK NOT REQUIRED)
L/U=0

RETURN

pe

LPA[TIX] < LIMIT

RETURN

LPA([TIx] > LIMIT__LPA[TIx] < LIMIT

(PERFORM LIMIT CHECK)

L/u=1

LPA[TIx] = LMIT

TYPE <s— 'INVALID'

RETURN

CREATE ATC ENTRY
(REFER TO FIGURE 5-25)

Figure 5-26. Detail of Limit Check Procedure

MC68851 USER'S MANUAL

MOTOROLA
5-29

M AND U BITS SET

WRITE OPERATION

M OR U BIT CLEAR

FETCH DESCRIPTOR &
UPDATE HISTORY AND STATUS

FETCH 4 OR 8 BYTE DESCRIPTOR AT
PA = TA + (INDEX"SIZE)
(INDEX = FC, TIA, TIB, TiC, OR TID)
OR AT
PA = DESCRIPTOR ADDRESS
(INDIRECT DESCRIPTOR)

umsawwz/? :

NORMAL TERMINATION OF ALL BUS ACTIVITY

TYPE <s— 'INVALID’

CREATE ATC ENTRY
(REFER TO FIGURE 5-25)

DT = ‘PAGE DESCRIPTOR'

DT = "INVALID'
READ OPERATION

U BIT CLEAR U BIT SET
™~

(CHECK DESCRIPTOR TYPE)

DT =4 BYTE' OR '8 BYTE'

U BIT SET U BIT CLEAR

EXECUTE WRITE CYCLE
U -1

EXECUTE WRITE CYCLE
M -1
U -—1

M BIT SET

r

M BIT CLEAR

EXECUTE WRITE CYCLE
M-
U -1

EXECUTE RMW CYCLE

OTHERWISE

TYPE <&— ‘INVALID

CREATE ATC ENTRY
(REFER TO FIGURE 5-25)

NORMAL TERMINATION OF ALL BUS ACTIVITY
TYPE <&— 'INVALID'

SIZE=4 SIZE=8

ACC STATUS[WP] <&— ACC_STATUS[WP] V WP
ACC STATUS[G] <&— G
ACC_STATUS(CI) <€— CI
ACC STATUS|L] -&— L

OTHERWISE

ACC_STATUS[WP] <t—

RAL < ACC_STATUS[RAL]

ACC STATUS[RAL] <— RAL

OTHERWISE
NORMAL TERMINATION OF ALL BUS ACTIVITY

SIZE = 4 SIZE=38
>
RAL < ACC_STATUS[RAL]
~
ACC_STATUS[WP] v WP ACC_STATUS[RAL] <€— RAL
OTHERWISE

WAL < ACG STATUS[WAL]

ACC_STATUS[WAL] <— WAL
OTHERWISE

MOTOROLA
5-30

WAL < ACC_STATUS[WAL]

ACC_STATUS[WAL] <—— WAL
OTHERWISE

ACC_STATUS[SG] <&—— ACC STATUS[SG] V SG
ACC_STATUS[S] <& ACC STATUS[S] V S
ACG_STATUS[WP] <— ACC STATUS[WP] vV WP
ACC_STATUS[G] <— G
ACC STATUS[C!] <&— Cl
ACC STATUS|L] -&— L

ACC_STATUS[SG) <&— ACC STATUS[SG] V SG
ACC_STATUS(S] <&— ACC_STATUS[S] V S
ACC _STATUS[WP] < ACC STATUS[WP] vV WP

RETURN

O “V" IS THE LOGICAL OR OPERATOR

RETURN

Figure 5-27. Detailed Flowchart of Descriptor Fetch Operation

MC68851 USER'S MANUAL

SECTION 6
INSTRUCTION SET PROCESSOR

This section describes the instruction set processor for the MC68851.

6.1 REGISTERS

The MC68851 contains programmer-visible registers as shown in Figure 1-1. There are ten registers
that control the translation and protection functions of the MC68851. They are: the CPU root
pointer register (CRP), the supervisor root pointer register (SRP), the DMA root pointer register
(DRP), the PMMU cache status register (PCSR), the translation control register (TC), the access
control register (AC), the current access level register (CAL), the validate access level register
(VAL), the stack change control register (SCC), and the PMMU status register (PSR). The other
registers control the breakpoint functions. They are: the breakpoint acknowledge data registers
(BADO-BAD?7) and the breakpoint acknowledge control registers (BACO-BAC7).

All MC68851 registers are directly accessible only to programs operating in the supervisor state,
although certain user mode instructions can access some registers in a limited fashion. The
MC68020 instructions CALLM and RTM can read and alter CAL and VAL under control of the
MC68851 access level protection mechanism. The PVALID instruction reads the contents of the
VAL register to determine if a trap should be taken (refer to SECTION 7 PROTECTION).

6.1.1 Root Pointer Registers

The three MC68851 root pointer registers, CRP, SRP, and DRP contain the physical address of the
root of the translation tree for user, supervisor, and DMA accesses, respectively. The format of
these registers is shown in Figure 6-1.

The CPU root pointer (CRP) contains the pointer to the root of the translation tree for the current
user mode task of the CPU. Before the operating system dispatches a new user task for execution,

63 48

L/u LMir

ofojojojojofsGyojojJofjo}joJO}|oO DT

TABLE ADDRESS (PA31-PA16)

TABLE ADDRESS (PA15-PA4) UNUSED

L/U — LOWER OR UPPER PAGE RANGE

SG — SHARED GLOBALLY

DT — DESCRIPTOR TYPE

LIMIT — LIMIT ON TABLE INDEX FOR THIS TABLE ADDRESS

TABLE ADDRESS — ADDRESS OF TABLE AT NEXT LEVEL OR PAGE OFFSET IF OT=1

Figure 6-1. Root Pointer Register (CRP, SRP, DRP) Format

MC68851 USER'S MANUAL MOTOROLA
6-1

it reloads the CRP to point at the root of the translation tree for that task. The CRP register works
in conjunction with the root pointer table (RPT) and writing to the CRP may cause ATC entries to
be invalidated and the PCSR register to be updated (refer to 5.3 ROOT POINTER TABLE).

If the SRE bit of the translation control register is set, the supervisor root pointer (SRP) register
points to the root of the translation table to be used for translating supervisor accesses. Writing
to this register causes all ATC entries marked as supervisor to be flushed (this includes globally
shared entries). If the SRE bit of the translation control register is clear, this register is unused
and the CRP is used to translate supervisor accesses.

The DMA root pointer (DRP) register points to the root of the translation table to be used when
FC3 = 1. Entries in the ATC loaded when an alternate bus master begins translation will be tagged
as such. Writing to this register causes all ATC entries marked as ‘DMA’ to be flushed (this includes
globally shared entries).

6.1.1.1 LOWER/UPPER (L/U) The L/U (bit [63]) specifies whether the value contained in the limit
field (see below) is to be used as the upper or lower limit of indices into the next level of the
n translation tree. If L/U equals zero, the limit field contains the unsigned upper limit of indices and
all table indices must be less than or equal to the value contained in the limit field or a limit
violation will occur (refer to 6.3.1.2 LIMIT FIELD EXCEEDED). If L/U equals one, the limit field
contains the unsigned lower limit of indices and all table indices must be greater than or equal
to the value contained in the limit field; otherwise a limit violation will occur.

6.1.1.2 LIMIT. The limit field (bits [62-48]) specifies a maximum or minimum value for the
index to be used at the next level of the table search with the exception of the function code
lookup and is used to limit the size of the next level of the translation tree. The limit field may
limit the size of the next level of the translation tree to any value between 0 and 215 (inclusive)
in powers of two.

The limit function can be effectively suppressed by either setting L/U to zero and setting the limit
field to all ones ($7FFF) or by setting L/U to one and clearing the limit field ($8000).

If function code lookup is enabled (refer to 6.1.3 Translation Control), the limit field and the L/U
bit of a root pointer are ignored.

6.1.1.3 SHARED GLOBALLY (SG). The SG bit (bit [41]) indicates that the logical address space
mapped by the root pointer is shared globally by all tasks within the system. Setting the SG bit
to ‘one’ informs the MC68851 that the logical-to-physical mappings identified by this root pointer
are identical for all tasks and that only a single descriptor for the translation needs to be maintained
in the ATC (as opposed to one descriptor for each task that uses that mapping). Setting the SG
bit to zero informs the MC68851 that the logical-to-physical mapping identified by the root pointer
is unique for a particular task (user, supervisor, or DMA).

The shared globally attribute can significantly effect the performance of the MC68851 ATC. The
MC68851 task aliasing mechanism (refer to 5.3 ROOT POINTER TABLE) assigns a task alias to al/
entries that are created in the ATC; this includes all supervisor and DMA entries. The value assigned
to an entry is the current value of the internal task alias maintained by the MC68851. In order for
a logical address to match an entry in the ATC, the logical page address, function code, and task
alias fields must match exactly. Without use of the shared globally attribute, this would mean
that all supervisor and DMA entries in the ATC that are used during the execution of multiple
user tasks would require individual ATC entries be created, one corresponding to each user task
during which the entry is used. The SG attribute allows the task alias compare to be suppressed

MOTOROLA MC68851 USER'S MANUAL
6-2

during address translation and thus allows that only a single ATC entry be created regardless of
the number of tasks in which the entry is used.

It is recommended that the SG bit be set in the DMA root pointer and, either in the supervisor
root pointer, if enabled, or in one of the highest levels of the translation tree if supervisor accesses
are translated using the CPU root pointer.

6.1.1.4 DESCRIPTOR TYPE (DT). The DT field (bits [33-32]) specifies the type of descriptor
contained in either the root pointer or in the first level of the translation table identified by that
root pointer. The values are defined as follows:
$0 INVALID
Indicates that the value contained in the table address field does not point to a valid
translation table. The MC68851 does not allow the operating system to load a root pointer
with an ‘invalid’ descriptor type with the PMOVE instruction. An ‘invalid’” descriptor may
be loaded by the PRESTORE instruction; however, the operation of the MC68851 is
undefined should this occur and care must be taken to avoid this.
$1 PAGE DESCRIPTOR
Indicates that a translation table for this root pointer does not exist and that the MC68851
should internally create an ATC entry (page descriptor) for accesses using this root
pointer. The page descriptor is formed by adding (unsigned) the value in the table address
field to the incoming logical address. This operation yields a direct-mapping of the logical
address space with a constant offset (the table address field) for all accesses that use
this root pointer. If the DT field of a root pointer is set to $1, the MC68851 performs a
limit check regardless of the state of the FCL bit.
$2 VALID 4-BYTE
The value indicates that the translation table at the root of the translation tree contains
short format descriptors and that the MC68851 must scale the table index for this level
of the table search by four bytes.
$3 VALID 8-BYTE
This value indicates that the translation table at the root of the translation tree contains
long format descriptors and that the MC68851 must scale the table index for this level
of the table search by eight bytes.

6.1.1.5 TABLE ADDRESS. The table address field (bits [31-4]) specifies the physical base ad-
dress of the translation table for that particular root pointer. If the DT field is set to $1 (page
descriptor), the value in the table address field provides a constant offset (may be zero) to the
logical address when the MC68851 creates a page descriptor.

6.1.1.6 UNUSED. Bits [3-0] of the root pointer are not used by the MC68851 and may be used
by the operating system for other purposes. All other unused bits of the root pointer registers
must be zero.

6.1.2 PMMU Cache Status (PCSR)

The format of this 16-bit read-only register is shown in Figure 6-2. This register contains infor-
mation about the MC68851 ATC to aid the operating system in maintaining a logical cache.

PCSR is updated whenever the CPU root pointer register is written by either the PMOVE or
PRESTORE instructions. The contents of PCSR reflect the results of the root pointer table search
(refer to 5.3 ROOT POINTER TABLE) and it can be read with the PMOVE instruction. When written,
all unused bits must be zero.

MC68851 USER'S MANUAL MOTOROLA
6-3

% 14 13 12 1 100 9 8 7 6 5 4 3 0

F — FLUSH
LW — LOCK WARNING
TA — TASK ALIAS

Figure 6-2. Cache Status Register (PCSR) Format

6.1.2.1 TASK ALIAS (TA). The TA field (bits [2-0]) contains the current internal task alias main-
tained by the MC68851 (refer to 5.3 ROOT POINTER TABLE).

6.1.2.2 FLUSH (F). When the MC68851 flushes entries from the ATC as the result of a write to
the CRP, bit [15] (F) of PCSR is set to indicate that entries with the task alias shown in the TA field
have been flushed. Otherwise, this bit is cleared.

m In a system incorporating a logical cache that maintains entries for multiple user tasks, the op-

erating system should read PCSR after writing to the CRP and, if F is set, it should flush all entries
in the logical cache corresponding to the TA encoding.

6.1.2.3 LOCK WARNING (LW). The lock warning flag (LW) is set when all entries in the ATC
but one have been locked. When this bit is set, no additional entries will be locked into the ATC
until others are removed, regardless of the state of L bits in translation descriptors. In systems
that frequently lock descriptors into the ATC, it is recommended that this flag be checked pe-
riodically since severe performance degradation will result from having only a single entry in the
ATC available for replacement.

6.1.3 Translation Control (TC)

This register contains control fields to configure the address translation mechanism of the MC68851.
The format of this 32-bit register is shown in Figure 6-3. All unimplemented fields of this register
are read as zeros and must always be written as zeros.

Manipulation of this register has side effects: writing a value with its enable bit clear to this
register cause a flush of the entire ATC. When written with the E bit (bit 31) set (translation
enabled), a consistency check is performed on the values of PS, IS, and TiIx as follows. TheTlx

31 25 24 20 16
EfO0]JO0|0)] 0] 0 |SRE|FCL PS 1S
TIA TIB Tic TiD
15 12 8 4 0
E — ENABLE

SRE — SUPERVISOR ROOT POINTER ENABLE
FCL — FUNCTION CODE LOOKUP ENABLE
PS — PAGE SIZE

IS — INITIAL SHIFT

TIA, TIB, TIC, TID — TABLE INDICES

Figure 6-3. Translation Control Register Format

MOTOROLA MC68851 USER'S MANUAL
6-4

fields are added together and this sum is added to PS and IS. The total must be 32, or an MMU
configuration exception (refer to 6.3.2.3 CONFIGURATION ERROR) is signaled to the processor
through the coprocessor interface. If an exception is taken, the TC register is updated with the
data except that the E bit is cleared.

6.1.3.1 ENABLE (E). When set, the MC68851 translation mechanism is enabled and execution
of the PLOAD, PTEST, and CALLM instructions is allowed. When clear, the MC68851 performs no
translation operations, terminates all PTEST, PLOAD, and CALLM/RTM (type $1) instructions with
an exception. Additionally, when the translation mechanism is disabled, logical addresses are
routed directly from the logical address bus to the physical address bus, the physical address
strobe (PAS) is asserted for all non-CPU space cycles, and CLI is asserted for all CPU space cycles
that do not access the MC68851.

This bit is cleared during reset and it may also be cleared by software. The E bit must be clear
before it can be written set (i.e., the MC68851 must be disabled before the TC contents can be
updated).

6.1.3.2 SUPERVISOR ROOT POINTER ENABLE (SRE). When SRE is set, all supervisor accesses
are translated using the translation tree identified by the supervisor root pointer. When SRE is
clear, use of the supervisor root pointer is disabled, and the CPU root pointer is used for supervisor
space translations.

6.1.3.3 FUNCTION CODE LOOKUP (FCL). The function code lookup field determines whether
or not the top level table in the translation tree should be indexed with the function code when
using the CRP or SRP. When clear, function code lookup is disabled. If the function code lookup
is suppressed, then the first lookup is made using the portion of the logical address specified by
IS and TIA as the index. When set, function code lookup is enabled and the limit field of the root
pointer used for translations is ignored.

A function code lookup is always performed when the MC68851 executes a table search using
the DMA root pointer.

6.1.3.4 PAGE SIZE (PS). The page size field indicates the current page size that the MC68851
is supporting. Its defined values are:

$8 — 256 Bytes
$9 — 512Bytes
$A — 1K Bytes
$B — 2K Bytes
$C — 4K Bytes
$D — 8K Bytes
$E — 16K Bytes
$F — 32K Bytes

Page size bit [3] must always be one. Writing values of zero to bit [3] of this field will cause an
MMU configuration exception to be generated (refer to 6.3.2.3 CONFIGURATION ERROR).

6.1.3.5 INITIAL SHIFT (IS). This IS field determines how many upper logical address bits are
ignored by the MC68851 during table search operations. The value of this field is an integer from
0 to 15 indicating the number of bits to discard from the logical address, starting with bit [31].
This allows the MC68851 to adapt to systems using logical addresses consisting of 17 to 32 bits.

MC68851 USER'S MANUAL MOTOROLA
6-5

Although the MC68851 ignores high-order logical address bits during table searches as determined
by the IS encoding, all bits of the logical address are significant during address translation.
Therefore, any unused bits should be tied to a constant voltage source (i.e., either Vcc or GND).

6.1.3.6 TABLE INDEX (TIA, TIB, TIC, AND TID). The table index fields specify the number of bits
of the logical address to be used as an index into the translation tabiés at each level during a
table search operation. Four fields are provided. The first lookup using logical address bits (which
will be the second lookup if the function code lookup is enabled) uses TIA, the second TIB, . . .,
etc.

The value of the field is an unsigned integer from 0 to 15 that represents the number of bits to
be extracted from the logical address as an index. A zero value in a Tlx field specifies that the
lookup process is over when that field is encountered during a table search.

6.1.4 Current Access Level (CAL)

This register contains the encoded access level of the current user task. The register is eight bits
n wide, but only the upper three bits are implemented. Unimplemented bits always read as zeros

and are ignored when written. This register is automatically loaded by the CALLM and RTM
instructions of the MC68020 and can also be loaded with the PMOVE or PRESTORE instructions.
The format of the CAL register is shown in Figure 6-4.

1 5 0

ACCESSLEVEL| 0 | O [O | O | O

Figure 6-4. CAL and VAL Register Formats

When the access level protection mechanism is enabled, the value in CAL is compared against a
field of the high-order logical address to ensure that a user task does not exceed the privilege
assigned to it by the operating system. If a violation occurs, the MC68851 aborts the bus cycle in
progress preventing the errant access. For a complete description of the use of this register refer
to SECTION 10 ACCESS LEVEL PROTECTION MECHANISM.

6.1.5 Validate Access Level (VAL)

This register contains the access level of the caller of the current routine (called using the CALLM
instruction). The register is eight bits wide, but only the upper three bits are implemented. Un-
implemented bits always read as zeros and are ignored when written. This register is automatically
loaded with the contents of the CAL register by the CALLM instruction of the MC68020 and can
also be loaded with the PMOVE or PRESTORE instructions. The format of the VAL register is
shown in Figure 6-4.

6.1.6 Stack Change Control (SCC)

SCC is an 8-bit register that determines if a stack change should occur during an MC68020 CALLM
instruction. The format of the SCC register is shown in Figure 6-5. A one in a bit position indicates
that a stack pointer change will occur on a module call operation to an equal or more privileged
level.

This register is initialized by the operating system to dictate the requirements for stack changes
during module call operations. The MC68851 examines this register during execution of the CALLM
instruction to determine whether or not the CPU should be instructed to change stack pointers

MOTOROLA MC68851 USER'S MANUAL
6-6

Figure 6-5. Stack Change Control Register Format

before passing program execution control to the called module. If the current access level is n
and the MC68020 requests a call to a module of privilege m where m < n (greater privilege), the
MC68851 will instruct the CPU to change stack pointers if any bit of SCC between n and m
(inclusive) is set. For a complete description of the use of this register refer to SECTION 10 ACCESS
LEVEL PROTECTION MECHANISM.

6.1.7 Access Control (AC)

This 16-bit register is used to configure the various access controls that the MC68851 supports.
The register controls whether or not access levels are enabled, how many upper address bits
contain access level information (up to a maximum of three), and also designates the size of a
module descriptor and consequently the boundary on which a module descriptor is allowed to
fall. The format of this register is shown in Figure 6-6.

15 7 6 4 2 0

ojfojojojojofjojo|MmMC|O ALC 0l]o0 MDS

MC — MODULE CONTROL
ALC — ACCESS LEVEL CONTROL
MDS — MODULE DESCRIPTOR SIZE

Figure 6-6. Access Control Register Format

6.1.7.1 MODULE CONTROL (MC).When MC is set, module operations are enabled and MC68020
module call/return instructions function as described in 7.2 ACCESS LEVEL PROTECTION. if MC
is clear, module operations are disabled, writes to the IAL and DAL access level control registers
(ALCRs) do not change CAL, and all reads of the access status ALCR return the illegal code ($0)
causing all MC68020 CALLM and RTM instructions to trap. In addition, the PVALID instruction will
always cause an exception when MC is clear.

6.1.7.2 ACCESS LEVEL CONTROL (ALC). This field determines the number of upper logical
address bits used as access level information and whether access levels are enabled. The field is
encoded as:

$0 — No Address Bits Used: Access Level Checking is Disabled

$1 — One Address Bit Used: Two Access Levels are Used

$2 — Two Address Bits Used: Four Access Levels are Used

$3 — Three Address Bits Used: Eight Access Levels are Used
This field is initialized to zero during reset.

6.1.7.3 MODULE DESCRIPTOR SIZE (MDS). This field designates the boundaries on which a
module descriptor is permitted to fall. The field is encoded as:

$0 — All Module Descriptors are Invalid

$1 — Valid Module Descriptors are Aligned to 16-Byte Boundaries

$2 — Valid Module Descriptors are Aligned to 32-Byte Boundaries

$3 — Valid Module Descriptors are Aligned to 64-Byte Boundaries

MC68851 USER'S MANUAL MOTOROLA
6-7

6.1.8 PMMU Status Register (PSR)

This 16-bit register contains status information for use by the operating system in determining
the cause of system faults. The contents of PSR are affected only by the PTEST instruction. The
format for this register is shown in Figure 6-7 and the fields are defined in the following paragraphs.

% 14 13 12 11 10 9 8 7 3 0
BlL|S|A|W]I|M|G|JC]JO|O|O]DO N

B — BUS ERROR | — INVALID

L — LIMIT VIOLATION M — MODIFIED

S — SUPERVISOR-ONLY G — GATE

A — ACCESS LEVEL VIOLATION C — GLOBALLY SHARABLE

W — WRITE-PROTECTED N — NUMBER OF LEVELS

Figure 6-7. PMMU Status Register Format

n 6.1.8.1 BUS ERROR (B). For the PTEST instruction with a level specification of one through
seven, this bit is set if a bus error is returned to the MC68851 from physical memory during the
table search and is cleared otherwise. For the PTEST instruction with a level specification of zero,
this bit is set if a matching descriptor is found in the ATC with its BERR bit set and is cleared
otherwise.

6.1.8.2 LIMIT VIOLATION (L). Forthe PTEST instruction with a level specification of one through
seven, this bit is set if a table index exceeded a limit field during a table search and is cleared
otherwise. For the PTEST instruction with a level specification of zero, this bit is always clear.

6.1.8.3 SUPERVISOR VIOLATION (S). For the PTEST instruction with a level specification of
one through seven, this bit is set if the tested address had a user function code and a set S bit
of a long format descriptor was encountered and is cleared otherwise. For the PTEST instruction,
with a level specification of zero, this bit is always clear.

6.1.8.4 ACCESS LEVEL VIOLATION (A). For the PTEST instruction with a level specification of
one through seven, this bit is set if the address tested exceeded RAL for the PTESTR instruction,
or exceeded WAL or RAL for the PTESTW instruction (refer to SECTION 7 PROTECTION) and is
cleared otherwise. For the PTEST instruction with a level specification of zero, this bit is always
clear.

6.1.8.5 WRITE PROTECTED (W). For any PTEST instruction, this bit is set if the address tested
is not writeable. This may occur if any descriptor encountered in the search contained a set WP
bit, or if the address tested exceeded the WAL field of any long descriptor encountered. It is
cleared otherwise.

6.1.8.6 INVALID (I}. For the PTEST instruction with a level specification of one through seven,
this bit is set if the address has no translation in the table (i.e., an ‘invalid’ descriptor type, bus
error, or limit violation was encounted during the table search). It is also set if the PTEST instruction
requested a level zero search (search ATC only) and no corresponding entry was found in the
ATC or an entry was found in the ATC but had its BERR bit set. The | bit is cleared for all other
cases.

‘ .
MOTOROLA MC68851 USER'S MANUAL
6-8

6.1.8.7 MODIFIED (M). For the PTEST instruction with a level specification of zero, this bit is
set if the address is found in the ATC and it has the M bit set. For the PTEST instruction with a
level specification of one through seven, this bit is set if a translation is located in the table and
the M bit of the page descriptor is set. It is cleared otherwise.

6.1.8.8 GATE (G). For the PTEST instruction with a level specification of zero, this bit is set if
an address is found in the ATC with its G bit set. For the PTEST instruction with a level specification
of one through seven, this bit is set if a translation for the address is found in the table and the
G bit of the page descriptor is set. It is cleared otherwise.

6.1.8.9 GLOBALLY SHARED (C). For any PTEST instruction, this bit is set if a translation for the
address is found in the table and the SG bit in a long format descriptor is set. It is cleared otherwise.

6.1.8.10 LEVEL NUMBER (N). Forthe PTEST instruction with a level specification of one through
seven, this bit is set to the number of tables used in the translation of an address. For the PTEST
instruction with a level specification of zero, this field is always zero.

The bits of the PSR are ordered to allow use of the MC68020 ‘bit field find first one’ (BFFO)
instruction to determine the cause of a fault. An example sequence is:

PTESTR (fc)(ea),7 *TEST ADDRESS

PMOVE PSR,DO *GET PMMU STATUS RESULTS
BFFFO D0{16:6},D1 *LOOK FOR SET BITS

BEQ NOT__PMMU *NO SET BITS = NOT PMMU (MAYBE)
JMP ([TABLE,D1.W*4]) *JUMP TO APPROPRIATE CODE TABLE
DS.L B_CODE

DS.L L_CODE

DS.L S_CODE

DS.L A_CODE

DS.L W_CODE

DS.L I_CODE

The code fragment shows a move of the PSR register into a main processor register, followed
by a ‘bit field find first one’ operation to determine the cause of the fault. If the bit field is entirely
clear, then either the MC68851 did not cause the value, or the fault was caused by a descriptor
miss for a TAS, CAS, or CAS2 instruction (refer to 6.3.1.7 RMC CYCLE), or a user task attempted
to exceed the current access level assigned to it. The ‘BEQ’ instruction branches to code to handle
these cases. The JMP uses scaled, indexed memory indirect addressing implementing a case
structure to go immediately to code to handle the fault. The different cases typically have these
implications:
B — Bad Pointer in Table or Main Memory Failure

— Addressing Error by Task or Request for Stack Extension

— Attempt by User to Access Supervisor-Only Information
Attempt to Exceed Access Level
— Attempt to Write to Protected Memory
— Page Fault

_S>»ur
I

6.1.9 Breakpoint Acknowledge Data (BAD0O-BAD?7)

There are eight BADx registers (BAD7-BADO), each of which is 16 bits wide. These registers hold
the opcodes that are provided to the CPU during a breakpoint acknowledge cycle. The format of

MC68851 USER'S MANUAL MOTOROLA
6-9

this register is shown in Figure 6-8. For a complete description of the use of these registers refer
to SECTION 8 BREAKPOINTS.

15 0

REPLACEMENT OPCODE

Figure 6-8. Breakpoint Acknowledge Data Register Format

6.1.10 Breakpoint Acknowledge Control (BACO-BAC7)

There are eight BACx registers (BAC7-BACO0), each of which is 16 bits wide. They contain the
enable and count functions for the instruction breakpoint acknowledge mechanism. The format
of these registers is shown in Figure 6-9. For a complete description of the use of these registers
refer to SECTION 8 BREAKPOINTS.

m - - U

BPEf O [O|JO|O|O}JO]O BREAKPOINT SKIP COUNT

BPE — BREAKPOINT ENABLE
Figure 6-9. Breakpoint Acknowledge Control Register

6.1.10.1 BREAKPOINT ENABLE (BPE). When set, this bit enables the breakpoint instruction
corresponding to this register.

6.1.10.2 SKIP COUNT. This field contains an unsigned integer that specifies how many times
the data from the corresponding BADX register should be returned to the CPU before signaling
a bus error. When this field is zero and a breakpoint instruction corresponding to this register is
executed, the MC68851 terminates the breakpoint acknowledge cycle by asserting bus error.

6.2 INSTRUCTIONS

The MC68851 implements instruction extensions to M68000 Family processors using the M68000
Family coprocessor interface. These instructions provide control functions for loading and storing
of MC68851 registers, testing access rights and conditionals based on the results of the tests, and
setting the MC68851 control functions.

The functions provided by these instructions are described briefly below. For detailed descriptions,
refer to APPENDIX A INSTRUCTION SET DETAILS. For a description of the M68000 Family co-
processor interface, refer to SECTION 9 COPROCESSOR INTERFACE.

All MC68851 instructions are privileged except PVALID. An attempt to execute any other MC68851
instruction while the CPU is in user state will cause a privilege exception.

The MC68851 participates in the execution of the CALLM and RTM instructions of the MC68020.
These instructions use the CAL, access status, IAL, DAL, and descriptor address access level control
registers. The MC68851 also provides a breakpoint acknowledge function in support of the MC68020
breakpoint instructions.

MOTOROLA MC68851 USER'S MANUAL
6-10

6.2.1 Data Movement (PMOVE)

The PMOVE instruction is provided to move data to or from MC68851 registers using the ad-
dressing modes available on the CPU. The operation can be byte, word, long word, or double
long word, depending on the size of the MC68851 register involved. Data movement into the
MC68851 may cause side effects, depending on the register moved.

6.2.2 Parameter Validation (PVALID)

The PVALID instruction examines the access level bits of its operand and executes an unsigned
compare against the access level bits of the VAL register or to a surrogate level provided by the
instruction. If the operand bits are arithmetically less than the VAL (or surrogate VAL) bits, this
instruction causes a trap with the access level violation exception.

The purpose of this instruction is to prevent a routine from passing parameters to a module that
the calling routine does not have access to but to which the called does (i.e., a module can be
prevented from requesting that a higher-privilege module operate on data to which the lower-
privileged module does not have access).

This instruction is intended for use in systems that use the access level protection mechanism.
It allows a routine to verify that a pointer passed to it can be legally used by its caller. The
addressing mode specification is the same as a data movement instruction would use. For ex-
ample, if a routine is passed parameters on the stack, the following sequence may be used to
verify that the calling routine has sufficient privilege to use these parameters itself:

PVALID ([A7,offset]) *VALIDATE ADDRESS
MOVE ([A7,0offset]),DO *USE ADDRESS

If the data will be frequently used, loading the data into a register may be more efficient:

LEA ([A7,0offset]),AQ *CALCULATE ADDRESS
PVALID (A0) *VALIDATE ADDRESS
MOVE (A0),DO *USE ADDRESS

6.2.3 Address Attribute Testing (PTEST)

The PTEST instruction takes an address and function code and searches the ATC and/or translation
tables for an entry that translates this address. The results of the search are available in the PSR.
Optionally, the physical address of the last descriptor fetched may be returned.

This instruction is primarily used in bus error handling routines. For example, if a bus error has
occurred, then the handler can execute an instruction such as:
PTESTW #1, ([A7,offset]), #7, AO

This instruction requests that the MC68851 search the translation tables for an address in user
data space (#1) and to examine protection information as if a write cycle were occurring. This
particular address is stored at offset from the current stack pointer ([A7,offset]). The MC68851 is
instructed to search to the bottom of the table (#7 — there cannot be more than six levels) and
return the physical address of the last table entry used in register AO. After executing this instruc-
tion, the handler can examine PSR for the source of the fault, and use A0 to access the last
descriptor.

6.2.4 Cache Pre-Loading (PLOAD)

The PLOAD instruction takes an address and function code, searches the translation table, and
loads the ATC with an entry to translate the address. Any existing entry in the ATC that will

MC68851 USER'S MANUAL MOTOROLA
6-11

translate the specified address is removed. The pre-load can be executed for either read or write
attributes. If the write attribute is selected (PLOADW), the MC68851 performs the table search
and updates all history information in the translation tables (used and modified bits) as if a write
operation to that address had occurred. Similarly, if the read attribute is selected (PLOADR), the
history information in the translation table (used bit) is updated as if a read operation had occurred.

6.25 Cache Flushing

The following paragraphs describe cache flushing.

6.2.5.1 PFLUSH/PFLUSHS. The PFLUSH instruction allows ATC entries to be invalidated in sev- ‘
eral ways: by effective address, by function code, or by both effective address and function code.

Only entries that are associated with the current task alias and that are not globally shared may

be flushed with the PFLUSH instruction. Entries that are globally shared can be flushed from the

ATC with the PFLUSHS instruction.

operand is compared against the values in the root pointer table. If a match is found, that entry

m 6.25.2 PFLUSHR. The PFLUSHR instruction invalidates an entry in the root pointer table. The

in the RPT and all ATC entries associated with the matching RPT entry (i.e., that task alias) are
invalidated. If no entry is found in the RPT that matches the operand for this instruction, neither
the RPT nor the ATC are flushed.

6.2.5.3 PFLUSHA. The PFLUSHA instruction unconditionally invalidates all ATC entries.

6.2.6 Conditionals

The M68000 Family coprocessor interface provides several conditional instructions that are used
to test for the following bits in the PSR: B, L, S, A, W, |, G, and C (refer to 6.1.8 PMMU STATUS
REGISTER (PSR)). The negation of these conditions may also be tested.

6.2.6.1 BRANCH CONDITIONALLY (PBcc). This instruction tests a condition based on one of
the bits listed above and branches if the condition is true.

6.2.6.2 DECREMENT AND BRANCH (PDBcc). This instruction is a looping primitive identical to
the DBcc instruction of the M68000 Family.

6.2.6.3 SET CONDITIONALLY (PScc). This instruction tests a condition and sets the byte spec-
ified by the effective address to all ones if the condition is true.

6.2.6.4 TRAP CONDITIONALLY (PTRAPcc). This instruction tests a condition and causes an
exception if the condition is true.

6.2.7 State Save and Restore

The following paragraphs describe the state save and restore instructions.

6.2.7.1 PSAVE. This instruction saves the task-specific state of the MC68851. This consists of
the CRP, SRP, CAL, VAL, SCC, breakpoint registers (if enabled) and internal state information. The
saved data also contains additional internal state information if the MC68851 had an instruction
execution in progress at the time of the save. The PSAVE instruction is intended for use in context

MOTOROLA MC68851 USER'S MANUAL
6-12

switch operations. Refer to APPENDIX C SOFTWARE CONSIDERATIONS for further implications
concerning the use of the PSAVE instruction.

6.2.7.2 PRESTORE. This instruction restores the internal state of the MC68851 that was saved
with PSAVE. Refer to SECTION 9 COPROCESSOR INTERFACE for details on the restore operation.
Refer to 6.3 EXCEPTIONS for information on the format of the data to be restored.

6.2.7.3 STATE FORMATS. Data saved by the PSAVE instruction can have three formats as
shown in Figures 6-10, 6-11, and 6-12. Note that these figures depict the memory organization
for the state formats when using the predecrement addressing mode. When using other address-
ing modes, the first word of the state frame (identified by ‘“SP" in Figures 6-10 through 6-12) is
located at the specified effective address and successive words are located in higher memory.

The idle format is used when there is no coprocessor instruction in progress at the time of the
PSAVE. The mid-coprocessor format is used when a coprocessor instruction is in progress. Both
of these formats are used only when there are no breakpoints enabled. If there are any breakpoints
enabled, the breakpoint enabled format is used regardless of the state of any coprocessor or
module call/return instructions.

3 15 0
SP —m c l 0 I 2 I 0 x] X x x
+504 PSR sce o [x] v |
+508 SRP LOW
+$0C SRP HIGH
+$10 CRP LOW
514 CRP HIGH
518 INTERNAL DATA
+$1C INTERNAL DATA
520 INTERNAL DATA

Figure 6-10. Idle Format Frame

3 15 0
5P — c I 0 l 2 I 8 | x I X I X T x
+504 INTERNAL DATA
+508 INTERNAL DATA
+50C PSR I see IENOEEE
+$10 SRP LOW
+$14 SRP HIGH
+518 CRP LOW
4810 CRP HIGH
+$20 INTFRNAI NATA
524 INTERNAL DATA
+528 INTERNAL DATA

Figure 6-11. Mid-Coprocessor Format Frame

MC68851 USER'S MANUAL MOTOROLA
6-13

31 15 0

P — C I 0 | 4 I 8 x I x] x | X
+504 BACO BADO
+508 BACT BADI
+$0C BAC2 BAD2
+$10 BAC3 BAD3
514 BACA BAD4
+518 BACS BADS
+$1C BACS BADS
520 BAC7 BAD?
524 INTERNAL DATA
+$28 INTERNAL DATA
+$2C PSR sce] CAL le VAL lx
830 SRP LOW
+534 SRP HIGH
n +$38 CRP LOW
+$3C CRP HIGH
+540 INTERNAL DATA
+544 INTERNAL DATA
+548 INTERNAL DATA

Figure 6-12. Breakpoint Enabled Format Frame

All data marked as ‘internal’ should not be modified by software. Modifying this data may result
in erroneous behavior of the MC68851.

If the length field of the restored data is zero (i.e., the reset format frame), the MC68851 is reset
(i.e., placed in the idle state with no operations in progress). Configuration data from the data
bus is not read as it is during a hardware reset and no MC68851 register contents are altered.
This state frame format is shown in Figure 6-13.

Lo [ol o J o J o f o f of o]

Figure 6-13. Reset Format Frame

=

6.3 EXCEPTIONS

The following paragraphs describe the exceptions.

6.3.1 Bus Error

The bus error exception (vector #8 in M68000 systems) is signaled to the main processor by
assertion of the BERR signal. Due to the limited number of signals available for error reporting,
the BERR signal may be asserted for several different reasons. The handler for the bus error
exception of the main processor must be prepared to handle all of these cases. Normal bus error

|
MOTOROLA MC68851 USER'S MANUAL
6-14

handler action should be to execute a PTEST instruction (after ensuring that no other MC68851
coprocessor instructions are in progress) giving the fault address stored by the CPU or returned
by the logical bus master (if the CPU was not the logical bus master). If the MC68851 has denied
access to the location due to restrictions in the translation table, the reason will be indicated by
the bits of the PSR register. The following conditions must be detected by software: main memory
failure (transient or otherwise), access exceeded value of CAL at the time the bus cycle was run,
an ATC miss during a TAS, CAS, or CAS2 instruction, or an alteration in the translation tables
between the time the bus cycle was aborted by the MC68851 and time of the PTEST instruction.

6.3.1.1 BUS ERROR SIGNALED FROM MAIN MEMORY. Main memory may assert the BERR
signal to the MC68851 during a table search operation. If the table search was initiated by a bus
cycle run by a logical bus master or by a PLOAD instruction, an ATC entry will be made with its
internal bus error (B) bit set. When a logical bus master attempts an access using this ATC entry,
the MC68851 will assert the BERR signal. If the table search was initiaited by a PTESTR or PTESTW
instruction, the B bit of the PSR register will be set.

memory failure. If there is a main memory failure, the error may be transient and the PTEST

This error indicates that a bad pointer was loaded into a translation table, or that there is a main n
instruction may not indicate any fault.

6.3.1.2 LIMIT FIELD EXCEEDED. If a table index extracted from a logical address exceeds the
limit field of a corresponding long format descriptor, an ATC entry will be made with its internal
bus error (B) bit set. When a logical bus master attempts an access using this ATC entry, the
MC68851 will assert the BERR signal. The PTEST instruction signals that a limit violation has
occurred by setting the ‘L’ bit in the PSR.

6.3.1.3 ATTEMPTED USER ACCESS OF SUPERVISOR ADDRESS. If bit FC[2] of a logical address
is zero, and a set S bit is encountered during the table search in a long format descriptor for that
address, an ATC entry will be made with its internal bus error (B) bit set. When a logical bus
master attempts an access using this ATC entry, the MC68851 will assert the BERR signal. The
PTEST instruction signals that this condition has arisen by setting the ‘S’ bit in the PSR.

6.3.1.4 ACCESS LEVEL VIOLATION. If access levels are enabled, and the access level bits of a
logical address indicates a higher privilege (numerically less) than the value of the CAL register,
the MC68851 will assert the BERR signal. Note that the PTEST instruction will not detect this
condition and the fault handler of the main processor should compare the access level field of
the fault address with the value contained in the MC68851 CAL register at the time of the fault to
determine whether or not this condition caused the fault.

Additionally, if access levels are enabled and the access level bits of a logical address indicate
less privilege (numerically greater) than that indicated by the RAL field of a long descriptor in the
table search path for a read, or less privilege than the RAL or WAL fields for a write, an ATC entry
will be made with its internal bus error (B) bit set. When a logical bus master attempts an access
using this ATC entry, the MC68851 will assert the BERR signal. The PTEST instruction signals that
this condition has arisen by setting the ‘A’ bit in the PSR.

6.3.1.5 WRITE PROTECTION VIOLATION. If a write cycle is attempted with a logical address
for which the WP bit is set in any descriptor in the table search path, or access levels are enabled
and the access level bits of the logical address are less privileged (numerically greater) than the
value of a WAL field in a long descriptor, an ATC entry will be made with its internal bus error

MC68851 USER'S MANUAL MOTOROLA
6-15

(B) bit set. When a logical bus master attempts an access using this ATC entry, the MC68851 wiill
assert the BERR signal. The PTEST instruction signals that this condition has arisen by setting
the ‘W’ bit of the PSR.

6.3.1.6 INVALID ADDRESS. If the DT field of any descriptor in the table search path for a logical
address contains the valid ‘invalid’, an ATC entry will be made with its internal bus error (B) bit
set. When a logical bus master attempts an access using this ATC entry, the MC68851 will assert
the BERR signal.

This error indicates that a valid translation is not available to the MC68851. Typical system im-
plications would be that the page requested is allocated but paged out, or the page requested is
currently unallocated. The PTEST signals that this error has occurred by setting the ‘I’ bit in the
PSR.

6.3.1.7 READ-MODIFY-WRITE (RMW)CYCLE. The MC68851 asserts the BERR signal if the logical
bus master attempts to execute a bus cycle with the RMC signal asserted to an address that does

not have a descriptor in the ATC, or to an address whose ATC entry does not have the modified
n (M) bit set. The action on the part of the bus error exception handler should be to execute a

PTESTR or PTESTW instruction giving the faulted address, determine that the access should be
valid (by examining the ‘I’ bit of the PSR), execute PLOADW instruction giving the faulted address,
and return to the faulted instruction with the rerun bit of the SSW set (refer to the MC68020 32-
Bit Microprocessor User’s Manual). The MC68020 will return to the beginning of the set of inter-
locked bus cycles and rerun the set. To reduce the average response time for this situation, the
following heuristic is suggested: maintain the address of the most recent RMW fault in a local
static data area. If the current fault is an RMW (as indicated by the SSW), and it does not match
the stored address or there is no stored address, update the stored address with the current
address, execute a PLOAD and return. Otherwise, search for other causes of the fault.

This action, by the MC68851, is necessary to allow the uninterrupted sequence of bus cycles
required by the TAS, CAS, and CAS2 instructions of the MC68020, without increasing bus arbi-
tration latency to an unacceptable level. Note that software intervention is not required on every
instruction execution that asserts RMC, but only on those that require a table search. The operating
system can reduce the frequency of table searches by maintaining the page descriptors of sem-
aphore areas with their L (lock), M (modified), and U (used) bits always set. Preceding sequences
of TAS, CAS, and/or CAS2, instructions by non-RMW writes to a location in the shared pages also
reduces the frequency of table searches during RMW cycles.

Note that it is possible, by locking ATC entries, to create a situation in which there are too few
unlocked ATC entries to allow an RMW instruction to complete. The minimum number of unlocked
entries required depends on the system software configuration. It can be computed as follows:
four entries for the longest RMW instruction itself (CAS2 where both operands cross page bound-
aries), two entries for the supervisor stack, one entry for the exception vector table, one entry for
each page of the bus error handler routine, and enough entries for any interrupt routines that
may execute during the bus error handler. The MC68851 lock warning facility does not detect the
locking of this number of entries. Therefore, the bus error handler must infer the existence of this
condition from the fact that the same fault address has been processed more than once in succes-
sion with no other discernible cause.

6.3.2 Coprocessor Interface Exceptions

The MC68851 may return the ‘take exception’ coprocessor primitive through the coprocessor
interface. The following paragraphs describe the exceptions that may be returned and their causes.

MOTOROLA v MC68851 USER'S MANUAL
6-16

6.3.2.1 F-LINE EMULATION. The MC68851 returns this exception (exception vector #11 ($0B))
when presented with an unrecognized command or condition. It is returned as a pre-instruction
exception.

6.3.2.2 PROTOCOL VIOLATION. The MC68851 returns this exception (exception vector #13
($0D)) when it detects a coprocessor protocol violation. It is returned as a pre-instruction exception.
When an RTE is performed by the main processor, the MC68851 will attempt to execute the
instruction again. This behavior is based on the assumption that the most likely cause of this
error is faulty system software that attempted an MC68851 instruction, other than PSAVE, during
a fault in another MC68851 instruction. The pre-instruction exception causes the faulted MC68851
instruction to be discarded and the more recent instruction to be executed after the RTE.

6.3.2.3 CONFIGURATION ERROR. The MC68851 returns this exception (exception vector #56
($38)) when the data to be loaded into the TC, CRP, SRP, or DRP registers is not valid. It is returned
as a post-instruction exception. The scanPC (on an MC68020) is moved to the next instruction.

6.3.2.4 ILLEGAL OPERATION ERROR. The MC68851 returns this exception (exception vector
#57 ($39)) when a PTEST or PLOAD instruction is executed and the E (enable) bit of the TC register
is clear. It is returned as a post-instruction exception. The scanPC (on an MC68020) is moved to
the next instruction.

6.3.2.5 ACCESS VIOLATION. The MC68851 returns this exception vector #58 ($3A) when a
PVALID instruction check fails. It is returned as a post-instruction exception. The scanPC (on an
MC68020) is moved to the next instruction.

MC68851 USER'S MANUAL MOTOROLA
6-17

MOTOROLA MC68851 USER'S MANUAL
6-18

SECTION 7
PROTECTION

This section discusses the facilities provided by the MC68851 to protect address spaces and
portions of address spaces. These facilities include protection of the supervisor from user tasks,
of user tasks from each other, and of user tasks from themselves. In addition, the access level
protection mechanism and its use with the MC68020 CALLM and RTM instructions is discussed.

The MC68851 provides two protection mechanisms that can be used either independently or
together, as dictated by the protection requirements for a particular system, to provide a com-
prehensive protection scheme. The primary protection mechanism utilizes the function code out-
puts of the logical bus master to define address space based on the current operating mode of
the master and the type of operand that is being accessed. The more comprehensive access level
protection mechanism subdivides the logical address spaces of user mode tasks into discrete
regions of distinct privilege with a hierarchical structure.

7.1 PROTECTION USING ADDRESS SPACE ENCODINGS

M68000 Family processors and other bus master-type devices (DMA controllers, . . ., etc.) provide
an indication of the context in which they are operating on a cycle-by-cycle basis through the
function code outputs. The function codes indicate the current privilege mode of the bus master
(supervisor or user) and the type of operand that is being accessed (program or data). Other
distinctions provided by the function code signals (for example, CPU space accesses) are used
for special purposes and are not of concern in discussion of the protection mechanism.

All mapping and protection information used by the MC68851 is contained in the translation tables
in physical memory and the basis for the protection mechanism based on address space encodings
is the structure of these translation tables and how they are accessed by the MC68851. Tasks or
routines are prevented from gaining access to valid translation descriptors mapping those areas.
In essence, the translation tables are structured such that the MC68851 cannot locate a valid
translation (‘valid’ indicating that the mapping exists in the translation tables and that the access
status information contained in it results in the assertion of the physical address strobe by the
MC68851 for that access) for any access to an area that should be protected from that access.

The function code signals provide the basis for the MC68851 protection mechanism by forcing
different translation tables or branches of a single table to be used to locate logical-to-physical
mappings for accesses to different address spaces.

7.1.1 Supervisor/User and User/Supervisor Protection

Supervisor mode programs and data can be protected from access by user mode programs in
one of two ways. The first method uses the function code of the logical address to index into the
first level of the address translation table. Using this method. a branch of the active translation
table (pointed to by the CPU root point register) is dedicated to contain mapping information for
each of the address spaces (supervisor program and data, user program and data). This has the
effect of breaking the logical address space of the system into four separate address spaces, as
shown in Figure 7-1.

MC68851 USER'S MANUAL MOTOROLA
7-1

32 32 32 32
2 2 2 2
SUPERVISOR SUPERVISOR USER USER
PROGRAM DATA PROGRAM DATA
SPACE SPACE SPACE SPACE

Figure 7-1. Logical Address Map Using Function Code Lookup

Since a user mode program cannot generate addresses with either the supervisor program or
supervisor data function codes, supervisor code and data can be protected from any user mode
accesses by not placing any valid logical-to-physical mappings in the user branch of the translation
table that references supervisor-only information. Additionally, since the supervisor cannot gen-
erate user program or data address space references with normal effective address calculations
(although these spaces are accessible using the MOVES (move to alternate address space) in-
struction of the MC68020), user information is protected against all but deliberate supervisor
accesses. Figure 7-2 illustrates an example of the upper portion of the address translation table
for a task using this method.

If it is desired to separate the supervisor and user address spaces, but to make no distinction
between program and data, the supervisor root pointer register can be used and the function
code lookup can be suppressed. Use of the supervisor root pointer is enabled by setting the SRE
bit of the translation control (TC) register and the function code lookup is suppressed by clearing
the FCL bit of the TC register (refer to 6.1.5 TRANSLATION CONTROL). When SRE is set, all
supervisor mode references are translated using the address translation table pointed to by the
SRP register and user mode references are translated using the address translation table pointed
to by the CRP register.

If the system requires that the user task and the supervisor share the same address space, an
alternate method of providing protection for supervisor code and data is provided. The CRP is
used to map both supervisor and user mode accesses, and individual pages or entire sections of
memory may be restricted to supervisor-only access by setting the S bit in the long format page
or table descriptors. Additionally, if the function code lookup is enabled (in order to provide
distinction between program and data references) the corresponding user and supervisor entries
in the function code table (for example, the user data and supervisor data) should contain the
same values such that they point to the same sub-branch of the translation table. Finally, each
user task may have a different supervisor mapping if desired. Figure 7-3 shows an example address
space using this structure, and Figure 7-4 shows a two level translation table that implements
this space.

MOTOROLA MC68851 USER'S MANUAL
7-2

USER DATA SPACE BRANCH

USER PROGRAM SPACE BRANCH

CPU ROOT
pOINTER —> | (UNDEFINED, RESERVED)
4 USER DATA SPACE
8 USER PROGRAM SPACE
$C | {USERDEFINED, RESERVED)
$10 (UNDEFINED, RESERVED)
$14 | SUPERVISOR DATA SPACE
$18 | SUPERVISOR PROGRAM SPACE
$1C CPU SPACE (UNMAPPED)
l |
I

ADDRESS OF FIRST TABLE POINTER =
CPU ROOT POINTER + (FUNCTION CODE ~SIZE)

Figure 7-2. Example Translation Tree Using Function Code Lookup

7.1.2 User/User Protection

Similar to the requirements for providing protection of the supervisor, the essential requirement

SUPERVISOR DATA SPACE BRANCH

SUPERVISOR PROGRAM SPACE BRAN

CH

-

TABLE INDEX AT THIS LEVEL USES

LOGICAL ADDRESS FIELD SPECIFIED
BY TIA FIELD OF TRANSLATION CONTROL

REGISTER

for providing protection between multiple user tasks is to prevent a task from accessing areas to

which it does not have access rights by preventing the MC68851 from locating a valid descriptor

to translate errant accesses. In order to enforce protection, each user mode task must have its

own translation table. The recommended method to perform this function is to provide each task

with a complete address translation table, including a function code table, duplicating the su-
pervisor program and supervisor data pointers in each function code table. Changing the address
mapping during a context switch is done by loading the CPU root pointer register with the pointer
to the address translation table of the new task. This method takes advantage of the automatic

MC68851 USER’S MANUAL

MOTOROLA
7-3

THIS AREA SUPERVISOR-ONLY,
READ-ONLY

THIS AREA SUPERVISOR-ONLY,
READ/WRITE

THIS AREA SUPERVISOR OR USER,
READ-ONLY

THIS AREA SUPERVISOR OR USER,
32 READ/WRITE

SUPERVISOR
AND
USER SPACE

Figure 7-3. Example Logical Address Map With Shared Supervisor and User Spaces

flushing, task aliasing, and other address translation cache management facilities of the MC68851.
Figure 7-5 depicts an example of the upper portion of the address translation table for tasks using
this method. When using this table structure, it is recommended that the SG bit be set in all long
format descriptors in the supervisor branches of the tables (refer to SECTION 5 ADDRESS TRANS-
LATION). This allows sharing of supervisor entries among tasks and makes more efficient use of
the address translation cache. '

It is possible to maintain one function code table for the entire system and alter the address
mapping on a context switch by replacing the user program and user data entries in the functian
code table. However, this method requires that the address translation tables in memory be
modified and the MC68851 address translation cache be explicitly flushed at each context switch
and is therefore not recommended.

7.1.3 Write Protection

Another means to protect certain pages or entire areas of memory is to designate them write-
protected (read-only). There are two ways to accomplish this. The first is to set the WP bit in the
page or table descriptor for the memory that is to be protected. This write-protection is absolute
in that neither user nor supervisor mode programs can write to the protected area. In translation
table structures with more than one level of tables there may be more than one WP bit encountered
during the table search for any individual page. A page is protected if the WP bit is set in any of
the descriptors used in the translation.

If access levels are being used, individual pages or areas of memory may be write-protected
based on access level. This protection is indicated using the WAL field of the long page and table
descriptors and is discussed further in 7.2 ACCESS LEVEL PROTECTION MECHANISM, and in
SECTION 5 ADDRESS TRANSLATION. Use of the WAL field and WP bits may be combined to
provide both conditional and absolute write protection.

In addition, if the logical address space is separated into program and data spaces through the
use of function code lookup, the program space is effectively write-protected since M68000 Family
microprocessors cannot generate writes to program space under normal circumstances. The
privileged MOVES instruction can be used only by a supervisor mode program to perform writes
to program space.

MOTOROLA ‘ MCe8851 USER'S MANUAL
7-4

THIS BRANCH SUPERVISOR-ONLY
READ-ONLY

1

THIS BRANCH SUPERVISOR-ONLY
READ/WRITE

CPU ROOT
S=1, WP=1

POINTER
S=1, WP=0
S=0, WP=1
$=0, WP=0

TABLE INDEX AT THIS LEVEL USES
LOGICAL ADDRESS FIELD SPECIFIED
BY TIA FIELD OF TRANSLATION CONTROL

REGISTER

THIS BRANCH SUPERVISOR/USER
READ-ONLY

THIS BRANCH SUPERVISOR/USER
READ/WRITE

L J
[

TABLE INDEX AT THIS LEVEL USES
LOGICAL ADDRESS FIELD SPECIFIED
BY TIB FIELD OF TRANSLATION CONTROL
REGISTER

Figure 7-4. Example Translation Tree Using S and WP Bits to Set Protection

7.1.4 Access (Read and Write) Protection

A fourth type of access protection for individual pages or areas of memory can be enforced by
setting the DT (descriptor type) field of a page or table descriptor to ‘invalid’ (refer to 5.1.3

Translation Descriptors). When the MC68851 is performing a table search and reads a page or
table descriptor that has an ‘invalid’ descriptor type, the table search is terminated and an entry
for the logical address that caused the table search to be initiated is created in the ATC with its

BERR bit set. When the logical master retries the bus cycle that caused the MC68851 to initiate

When a descriptor is created in the translation tables with an ‘invalid’ descriptor type, the other

hits of the descriptor may be used by the operating system to store other information. The

MC68851 USER'S MANUAL

MOTOROLA
7-5

USER DATA SPACE BRANCH i

> -
——
CPU ROOT POINTER - :
FOR TASK ‘A JUNDEFINED, e SERVEL J
4 USER DATA SPACE .
8 USER PROGRAM SPACE e
C B BECIKNED ROl
§ Ll ﬂ’,as TRANSLATION TABLE
$10 ‘ - .
sia USER PROGRAM SPACE BRANCH FOR TASK ‘A
$18 [SUPERVISOR PROGRAM SPACE > .
$1C CPU SPACE [UNMAPPED) >
L | .
l —
ADDRESS OF FIRST TABLE POINTER = ‘
CPU ROOT POINTER + (FUNCTION CODE *SIZE) —>
USER DATA SPACE BRANCH .
Em—
cPu Rgm PU'NT,EB ' (UNDEFINED, BESERVED) .
OR TASK ‘B > :_._.—:.__-—:I
4 USER DATA SPACE F—
8 USER PROGRAM SPACE —>
$fz ‘ﬁ;‘;f:&%ﬁmﬁ | TRANSLATION TABLE
J — 2 USER PROGRAM SPACE BRANCH FOR TASK '’
$14 | SUPERVISOR DATA SPACE
$18 | SUPERVISOR PROGRAM SPACE > >
$IC CPU SPACE (UNMAPPED] | >
0
——
SUPERVISOR DATA SPACE BRANCH —_
- .
E—
. F——
——
| TRANSLATION TABLE FOR
SUPERVISOR PROGRAM SPACE BRANCH SUPERVISOR ACCESSES
o ' | e———
 Em——
N R
2

Figure 7-5. Example Translation Tree Structure for Two Tasks
Sharing a Common Supervisor Table

MOTOROLA ’ MC68851 USER'S MANUAL
7-6

MC68851 makes no interpretation of the information stored in a descriptor marked ‘invalid’.
Typically, information stored in the invalid descriptor might include the reason for the invalid
setting and any other information that may be required by the operating system. Access to a page
may be denied because the page is not currently resident in memory or because DMA activity
that affects that page is in progress. Additionally, the invalid descriptor type can be used to deny
access to the portion of the logical address space that is mapped by the branch (or page) of the
translation table for the task whose logical-to-physical mappings are contained in that translation
table.

7.1.5 Protection Examples

Using the facilities described, some of the protection classes that can be created are listed below.

No Access
Set the descriptor type for all areas of the logical address to which access is to be denied to
invalid. This protection can be set for individual pages or ranges of the logical address by
setting the descriptor type fields in the page descriptors or table pointers, respectively.

Supervisor-Only (Read/Write)
If a single logical address space is shared by the supervisor and the user, set the S bit in the
status field of all long format descriptors that map areas to be protected. If both the supervisor
and user have separate logical address spaces (using either function code lookup or the
supervisor root pointer), all supervisor information is protected if the translation tables for
user accesses do not contain logical-to-physical mappings that reference areas of physical
memory owned by the supervisor.

Supervisor-Only (Read-Only)
Similar to the previous example except that the WP bit is set in addition to the S bit. The WP
bit must also be set in descriptors in the supervisor’s translation table for all protected areas.

Supervisor/User (Read/Write)
No protection is required for these areas. This type of protection (and those discussed below)
is applicable to those systems in which the supervisor and user share a common logical
address space.

Supervisor/User (Read-Only)
Set the WP bit in the status field of all long format descriptors that map read-only areas.

Supervisor/User Data-Only (Read/Write)
Function code lookup is enabled. All data-only areas are contained in the branch of the
translation table pointed to by the user data or supervisor data entries in the function code
table.

Supervisor/User Program-Only (Read-Only)
Function code lookup is enabled. All program-only areas are contained in the branch of the
translation table pointed to by the user program or supervisor program entries in the function
code table. Note that this does not provide execute-only protection if the PC-relative effective
addressing mode is used for data accesses.

7.2 PROTECTION USING THE ACCESS LEVEL PROTECTION MECHANISM

In addition to the user/supervisor distinction provided by M68000 Family microprocessors, a
system containing an MC68020 and MC68851 can use the access level protection mechanism to

MC68851 USER'S MANUAL MOTOROLA
7-7

construct up to eight additional levels of protection. These levels subdivide the user mode logical
address space, providing the ability to restrict read and write accesses based on the privilege
level assigned to the current task. The MC68020 module call and return instructions (CALLM and
RTM) interface with the MC68851 to allow a task to alter its access level in a manner that is
controlled by the operating system (refer to SECTION 10 ACCESS LEVEL CONTROL INTERFACE
for further information on the mechanics of these instructions).

7.21 Overview of Operation

The access level protection mechanism provides a hierarchy of two, four, or eight distinct privilege
levels within the user logical address space. The mechanism is hierarchical in the sense that a
task operating at a given level of privilege n has access to all areas of the logical address space
that require a privilege level of n or less but cannot access areas corresponding to higher levels
of privilege. Figure 7-6 illustrates this concept. In the figure, four access levels are in use with
lower numbers representing higher levels of privilege. The shaded areas in the Figure 7-6 represent
areas to which accesses by a task operating at level n are allowed while the unshaded areas are
not accessible to the task except through use of the CALLM instruction.

The MC68020 CALLM (call module) instruction allows a task operating at one level of privilege
to request temporary transfer of program execution control to a module operating at a higher (or
same) privilege level and to pass parameters to the called module. The calling routine cannot
access or otherwise disrupt the higher privilege module since the only control the calling routine
has over the called module is the value and number of parameters that are passed. The MC68020
RTM (return from module) instruction reverses the operation of the CALLM instruction and pro-
vides a secure means of returning program execution control to a routine from a module of higher
privilege.

Note that when the CALLM instruction is used to pass program control to a module operating at
a higher level of privilege than the calling routine, the called module is effectively rendered
‘execute-only’ since the calling routine cannot access the module through any means other than
passing program execution control to that module.

Figure 7-6. Example of Protection Mechanism Privilege Hierarchy

MOTOROLA MC68851 USER'S MANUAL
7-8

Access levels are useful in any system where more than two levels of privilege are required. For
example, a system may contain a data base manager that requires access to sensitive tables. It
may be undesirable to require a task switch in order to invoke a data base manager function, or
to allow the manager to run in supervisor mode. Using the access level mechanism, both the
application and data base manager code can reside in the same address space. Data base functions
can be invoked as module calls from the application code to predefined entry points in the data
base manager. Data base manager code and data can be protected from being read or written
by the application code. This allows the data base manager to be made execute-only from the
application. By structuring the system tables properly, the data base manager can be invoked
from several tasks simultaneously, and each instance can have some shared and some private
data areas.

Another use for the access level mechanism is to create an operating system with an interface
that appears as an external subroutine call to application programs. In such a system, most of
the operating system executes in user mode at the most privileged access level. The access level
mechanism is used to protect system tables and peripheral device interface registers. Application
code can request operating system services through the CALLM instruction in the MC68020.
Supervisor mode is then considered to be an extension of the processor microcode for functions
that are either too complex or too system specific to be implemented in the microprocessor itself.
Code that must run in supervisor mode includes the front end of exception handlers and code
that must use privileged instructions for context switching and processor control.

An address map demonstrating an example of the access level mechanism is shown in Figure 7-
7. In this figure, four access levels (or more if the application code area is further subdivided by
several different access levels) are implemented. The most privileged level contains the bulk of
the operating system code and is directly accessible only to itself; the application code or the
data base manager can request operating system services by using the CALLM instruction. The
next most privileged level contains the data base management code and is directly accessible by
both the data base manager and the operating system and is callable by the application code.
The application code occupies the next access level and, similar to above, is accessible to itself,
the data base manager, and the operating system. The lowest level of privilege is allocated to a
data area that is shared by the data base manager and the application code. However, the pro-
tection attributes of the shared area are set such that the application code has rights only to read
from the shared area and cannot write to it (refer to 7.2.3.1 Write Protection). Figure 7-8 illustrates
one method of configuring a translation table to provide this type of function.

OPERATING SYSTEM
ACCESSIBLE ONLY TO ITSELF
CALLABLE FROM DBM OR APPLICATION

MOST PRIVILEGED AREA
(ACCESS LEVEL 0)

DATA BASE MANAGEMENT (DBM)
ACCESSIBLE TO ITSELF AND OPERATING SYSTEM
CALLABLE FROM ITSELF OR APPLICATION
DECREASING PRIVILEGE

APPLICATION CODE
ACCESSIBLE TO ITSELF, DBM, AND OPERATING SYSTEM
CALLABLE FROM ITSELF

SHARED DATA AREA
ACCESSIBLE TO OPERATING SYSTEM AND DBM LEAST PRIVILEGED AREA
READ-ONLY FROM APPLICATION CODE (ACCESS LEVEL 3)
NOT-CALLABLE

Figure 7-7. Example Logical Address Map for System Using Access Level Mechanism

MC68851 USER’S MANUAL MOTOROLA
7-9

OPERATING SYSTEM ADDRESS MAPPINGS
- >
—>

DATA BASE MANAGER ADDRESS MAPPINGS

—
CPU ROOT
RAL=0, WAL=
POINTER RAL=1 WAL‘?
RAL:ZV Wi j
=2, WAL=2 3
RAL=3, WAL=1
l | APPLICATION ADDRESS MAPPINGS
| - L,
TABLE INDEX AT THIS LEVEL USES F—

LOGICAL ADDRESS FIELD SPECIFIED
BY TIA FIELD OF TRANSLATION CONTROL
REGISTER

SHARED DATA AREA ADDRESS MAPPINGS

TABLE INDEX AT THIS LEVEL USES
LOGICAL ADDRESS FIELD SPECIFIED
BY TIB FIELD OF TRANSLATION CONTROL
REGISTER

Figure 7-8. Translation Table for Example System

7.2.2 Access Level Protection Mechanism Operation

Throughout the system, access levels are one, two, or three bit quantities describing the level of
privilege possessed or required. The number of bits used for access levels, and hence the number
of levels, is set by the ALC field of the AC register in the MC68851 (refer to 6.1.9 ACCESS CONTROL
(AC)). An access level of zero represents the most privileged or protected level. Larger numbers
indicate lower privilege. The access level mechanism is hierarchical; if access to an address is
permitted from a given level, it is permitted from all levels with greater privilege (smaller values
of access level). If access to an address is denied from a given level, it is denied from all levels
with less privilege (larger values of access level).

Access levels are associated with logical addresses, pages in the logical address space, and tasks.
The access level of a logical address is contained in the most significant one, two, or three bits

MOTOROLA MC68851 USER'S MANUAL
7-10

of the logical address (determined by the ALC field of the AC register). It is interpreted as the
level of privilege requested by an access using the address. It is not directly related to the access
level of the page to which it refers, as described below.

A page in the logical address space (corresponding to a page in physical memory as determined
by the current logical-to-physical mapping) has two access levels associated with it: one for read
accesses and one for write accesses. These are interpreted as protection information. An access
to the page must indicate a privilege of at least the read access level to read or write the page,
and a privilege of at least the write access level in order to write to it. The access levels of a page
are determined from information contained in the address translation tables. Long format page
and table descriptors have read access level (RAL) and write access level (WAL) fields. When the
address translation tables are searched for a translation for a logical address, the access level
bits of the logical address are compared against the RAL and WAL fields of all long descriptors
encountered in the search. The effective read access level of the page is the most privileged
(numerically least) of all RAL fields encountered. The effective write access level is the most
privileged (numerically least) of all WAL and RAL fields encountered.

The access level of the current task is contained in the current access level (CAL) register of the
MC68851. It is interepreted as the level of privilege possessed by the task. A task may use only
those logical addresses with equal or less privilege than it possesses. That is, the access level
encoded in the highest-order logical address bits must be greater than (less privileged) or equal
to the value in CAL; otherwise, the MC68851 aborts the access.

Before the operating system dispatches a task for execution, the physical address of the root for
the translation table for that task is loaded into the MC68851 CRP and the access level for the
task is written to the CAL register.

The MC68851 uses the access level information in the following way. Since a task is capable of
formulating a logical address with any access level, the MC68851 compares the access level of
each logical address that the task tries to use with the access level of the task stored in the CAL
register. If the task attempts to use an access level more privileged than it is permitted, the MC68851
aborts the access by asserting the bus error signal. If the access is permitted, the MC68851
translates it, using the address translation tables if necessary. If the access is a read and the
logical address indicates an access level less privileged (numerically greater) than the effective
read access level of the page, the MC68851 aborts the access by asserting the bus error signal.
Similarly, the MC68851 aborts the cycle if the access is a write with an access level less privileged
than either the effective write access level or read access level of the page.

The MC68851 performs the above protection functions as follows. When the access level protection
mechanism is enabled (refer to 6.1.9 Access Control (AC)), the access level bits of the logical
address for each bus cycle with FC3/FC2 = 00 (indicating an access to one of the user address
spaces) are compared (unsigned) with the access level bits of the CAL register. If the access level
value in the logical address is numerically less than that in CAL, the address requests more
privilege than the task possesses, and the MC68851 terminates the bus cycle by asserting bus
error. Otherwise the access is allowed and the address is translated. When the address translation
cache is searched, all bits of the logical address, including the access level bits and function code
bits are significant. If an exact match is found, and the BERR bit is set in the entry or the WP bit
is set and the access is a write cycle, the MC68851 terminates the bus cycle by asserting the bus
error signal. Otherwise, the MC68851 outputs the physical address. If no match is found in the
ATC, a search of the translation tables is required.

When a search of the translation tables occurs, the access level bits of the logical address are
compared (unsigned) against all RAL and WAL fields encountered. If any RAL field contains a

MC68851 USER'S MANUAL MOTOROLA
7-11

value less than the access level bits of the logical address, the resulting entry in the ATC will have
its BERR bit set. If any WAL field contains a value less (greater privilege) than the access level
bits of the logical address, or if any set WP bits are encountered, the resulting ATC entry will have
its WP bit set.

When access levels are enabled and a bus cycle has FC2 equal to one (a supervisor space reference)
the check against the CAL register is not performed. When access levels are enabled and a bus
cycle has FC3 equal to a one (a DMA access) the check against the CAL register is not performed
but the RAL and WAL fields are checked during table search operations initiated due to misses
in the ATC caused by these accesses. It is the responsibility of the operating system to ensure
that sensitive areas of the user address space are not misused by the supervisor resources.

7.2.3 Constructing Address Spaces Using Access Levels

The access level mechanism supports three basic types of address spaces, depending on how
the MC68851 is instructed to interpret access level bits. In the first of these, the access level bits
are treated as address information as well as protection information and are used to index into
the address translation tables during table search operations. This type of structure separates
objects by both access level and logical address and results in an address map as shown in Figure
7-9. Lower levels of privilege are associated with the higher ranges of the logical address space
and, conversely, higher levels of privilege are associated with the lower ranges. When using this
type of address space, use of the RAL and WAL fields in the address translation tables is not
required since any access to an area more privileged than the access level of executing task fails
the check against the CAL register and will be aborted by the MC68851.

0 0 MOST PRIVILEGED AREA
(ACCESS LEVEL 0)
DECREASING PRIVILEGE
32 39 LEAST PRIVILEGED AREA
2 2 (ACCESS LEVEL 7)
SUPERVISOR ADDRESS USER ADDRESS
SPACE SPACES

Figure 7-9. Logical Address Map Using Access Level Information as Address Information

The second type of address space uses the access level bits of the logical address as protection
information only and they are not used to index into translation tables during a table search. This
is done by setting the IS field of the TC register to discard them (refer to 6.1.5.5 INITIAL SHIFT).
When using this type of protection, the logical address space is now smaller, since fewer bits are
used as addressing information and the resulting logical address map is as shown in Figure 7-
10. Although the access level bits are not used as table indices, they are compared against RAL
and WAL fields during table search operations and against the CAL register during all bus cycles
by the CPU as described above. Using this type of address map has several benefits. Code and

MOTOROLA MC68851 USER'S MANUAL
7-12

0 0
29 29
2 2
SUPERVISOR ADDRESS USER ADDRESS
SPACE SPACE

Figure 7-10. Logical Address Map Using Access Level Information as Control Information Only

data need not be arranged in the address space according to the access level required to use
them. This type of organization is of particular benefit in systems that allow dynamic loading of
memory since the protection attributes are no longer location dependent. It also allows areas of
memory to be accessible to different parts of a program with different access rights; areas may
be read/write to code executing at one access level, read-only to code executing at a less privileged
level, and inaccessible to code executing at a still less privileged level.

The third type of address space uses the access level bits of the logical address selectively to
provide access level and address information for certain accesses while providing only access
level information for other accesses. To implement such an address space, the translation tables
are used to provide the necessary distinction. For example, consider a system that uses the highest
order three bits of the logical address (as determined by the TIA field of the translation control
register) to index into the first level of the translation tree. By manipulating the values in this
eight entry table, the operating system can separate or merge access level and address information
at will. If all entries in this first-level table have the same value, then the access level information
is effectively not used as address information. Similarly, if the entries in the table point to different
sub-branches of the translation table tree, then the high-order address information is used for
both access level and addressing information. By using the CRP, SRP, and DRP, the translation
tables for each type of access (user, supervisor, and DMA) can be configured to either use or to
ignore the high-order logical address bits for addressing purposes.

An additional variable in the design of the address space for a system is the treatment of supervisor
space accesses. Figures 7-9 and 7-10 show supervisor space to be a separate and disjoint space.
This is not required as supervisor and user spaces may overlap. Supervisor space references are
treated specially as described in 7.2.2 Access Level Protection Mechanism Operation.

7.2.3.1 WRITE PROTECTION. The access level protection mechanism allows areas of the logical
address space to be conditionally write-protected based on the privilege level associated with the
address used to reference the area.

When using the access level encodings presented by the CPU as protection information only, the
WAL fields of long format page and table descriptors are used to specify the minimum access
level that must be used to write to the page or range of the logical address, respectively. Addi-
tionally, since denying a task read access to an area implies that the task also does not have
sufficient privilege to write to that area, the MC68851 prohibits write accesses to all areas to which
a task does not have read access. This is true regardless of the write access level associated with
that area.

In order to write to an area, a task must have an access level reflecting a privilege of at least the

most privileged of all RAL and WAL fields encountered in the table search performed by the
MC68851 when loading the translation descriptor for that access. This requires that the access
level used by the task to access the protected area be less than (more privileged than) or equal
to the lowest value (most privileged) of all WAL or RAL fields in the branch of the translation

table containing the logical-to-physical mapping for that access.

MC68851 USER'S MANUAL MOTOROLA
7-13

For example, consider a page that has RAL and WAL settings both equal to five (eight access
levels in use). In order to read or write that area, a task must use an address with a privilege level
of at least five. An access with a privilege of six or seven would be aborted by the MC68851. Now
consider a page with a RAL encoding of five and a WAL encoding of four; a task may read from
this page using a privilege level of five but must use an access level of four or lower (more
privileged) to write to the page. Finally, consider a page with a RAL encoding of five and a WAL
encoding of six; a task must use an access level of five or lower to read from or write to this
page. An attempt to write to this page using an access level of six would be aborted by the
MC68851 since it is less privileged than the read access level of the page.

If the access level encoding is used both as address and protection information, areas are either
accessible or not accessible to a task, as described below; there is no distinction between read-
only and read/write protection except as provided by settings of the WP bit in page or pointer
descriptors.

7.2.3.2 ACCESS (READ AND WRITE) PROTECTION. Similar to the case described above for
write protection in a system that uses access level information as protection information only, an
area can be protected from all accesses (read and write) by tasks operating at or below a particular
level of privilege by setting the RAL fields of the page and/or table descriptors to the access level
of the lowest privilege level from which the area should be accessible.

For example, setting the RAL field of a page descriptor to four prevents access to that page from
access levels five, six, and seven while allowing access from levels zero through four.

When using the access level encodings presented by the CPU as both address and protection
information, access protection of an area or areas of the logical address space is achieved through
the use of the CAL register. Since areas of different privilege are separated by logical address
range, the MC68851 prevents a task from gaining access to an area to which it does not have
sufficient access rights by aborting all accesses to that area by that task. All that is required for
this protection is that the logical addresses generated by the task be compared against the privilege
level of that task contained in the CAL register. Any time that the access level encoding of a logical
address is greater than (less privileged than) the value in the CAL register the MC68851 aborts
the access by asserting bus error.

7.2.4 Transfers Between Access Levels

Transfers between access levels are done in hardware using the MC68020 module call instruction
(CALLM) and module return instruction (RTM). These instructions provide an indivisible transfer
of program execution control and change in access level, under the control of module descriptors
provided by the operating system. A module descriptor contains information including the entry
point address of the called routine, and the access level at which it should execute: For a detailed
description of the descriptor formats used by the CALLM and RTM instructions refer to the MC68020
32-Bit Microprocessor User’s Manual.

The CALLM and RTM instructions communicate with the MC68851 through a special set of bus
interface registers. During the CALLM or RTM instruction, the MC68851 is responsible for verifying
that the requested change in access level is legal, for verifying that the address given for the
module descriptor is legal, for updating its access level registers, and for determining whether
the stack pointer of the microprocessor should be changed. The programmer-visible registers
involved in a module call or return are the current access level (CAL) register, and the stack change
control (SCC) register.

MOTOROLA MC68851 USER'S MANUAL
7-14

Routines are only allowed to call modules operating at a privilege level that is greater than or
equal to the privilege level of the calling routine. Similarly, module return operations are allowed
only when the return passes program execution control to a routine that is operating at a lower
or equal level of privilege than the module from which the return is being made. This requirement
is made because the M68000 Family stores return information about subroutine calls on the stack
where it is accessible to the called routine. In the case of module calls, this return information
includes the access level of the caller which is restored to the CAL register during execution of
the RTM instruction. These restrictions prevent a routine from obtaining higher privilege through
misuse of the RTM instruction (i.e., falsifying the stored value of the CAL register in the module
stack frame).

The protection mechanism used by the MC68851 to ensure validity of all changes in access level
is described in detail in SECTION 10 ACCESS LEVEL CONTROL INTERFACE and an example usage
of the CALLM and RTM instructions is provided in APPENDIX C SOFTWARE CONSIDERATIONS.

7.2.5 Passing Parameters Between Routines at Different Access Levels

The MC68020/MC68851 combination provides several facilities to ease the passing of parameters

between routines at different access levels. By selecting the appropriate value in the OPT field

when creating a module descriptor, the MC68020 can be made to copy stacked parameters from

the old stack to the new stack in the event a stack pointer change is required. In this way, the

code for accessing stack arguments can be identical, regardless of whether a stack pointer change
occurred or whether the caller was running at a different access level.

Address parameters are given special attention. A routine called with the CALLM instruction finds
the access level of its caller in the VAL register. Aithough the VAL register is not directly readable
by user programs, the MC68851 instruction PVALID allows a routine to compare the access level
of a pointer with the access level in the VAL register. An exception is taken if the access level of
the address is more privileged than that in the VAL register (refer to 6.3.2.5 ACCESS VIOLATION).
This allows a routine to quickly determine if its caller would have had permission to use an
address. In effect, the PVALID instruction performs the check against the CAL register that would
have taken place if the calling routine had used the address and thus verifies whether or not the
calling routine has sufficient privilege to use the data areas identified by the pointers. Once this
check has been done, the called routine is guaranteed that it can use the address with no greater
access privileges than the calling routine would have had. Note that this instruction can be used
with any address, so that each link in a chain of pointers can be validated.

7.2.6 Security

The security of the access level system is comprised of two separate parts. The first is the ability
to guarantee that a low privileged routine cannot gain access to areas requiring higher privilege.
The MC68851 check of addresses against the CAL register ensures that low privileged routines
will not be able to use entries in the address translation cache that may have been left there by
more privileged routines.

The second issue is the ability to forbid low privileged programs from creating, modifying, or
misusing module descriptors. This is important because one of the features of the CALLM in-
struction is allowing a general effective address specification to locate the module descriptor, and
so the module descriptor exists in the address space of the caller. The ability to call a routine is
in fact granted by allowing its module descriptor to be readable by the caller. Unauthroized creation
of module descriptors is prevented by the checks on the module descriptor address peformed by
the MC68851. All module descriptors must reside in pages that have the G bit set in their page
descriptor in the address translation tables. The security of the address translation tables must

MC68851 USER'S MANUAL MOTOROLA
7-15

be guaranteed by the system software and, minimally, requires that all pages that have the G bit
set in the corresponding page descriptors also be write-protected from user accesses. The re-
qguirement enforced by the MC68851 that module descriptors must fall on specified boundaries
prevents a program from using data in the middle of a valid module descriptor as a module
descriptor, and possibly causing an illegal increase in access level. Additionally, the alignment
restriction prevents a module descriptor from crossing a page boundary which simplifies protec-
tion checking.

7.2.7 Relationship Between Access Levels and Supervisor Mode

The access level mechanism operates in addition to the user/supervisor mode distinction of the
processor. Supervisor space accesses are treated specially in that they are not subject to the check
against the CAL register or RAL and WAL during a table search, meaning that addresses generated
by the supervisor can use any access level. This is similar to a program running with a value of
zero in the CAL register. Supervisor and access level zero are, however, not equivalent. Supervisor
mode is entered only via an exception or interrupt, and the MC68851 hardware does not update
the value of the CAL register on these translations. When using access levels, it is recommended
that systems run with most of the operating system in user mode, using the access level mech-
anism to protect code, data, and peripheral registers. Supervisor mode should only be used for
code that must use privileged instructions.

7.2.8 Considerations for Non-32-Bit Systems

Since the access level protection information is carried in the highest-order logical address bits,
there are special considerations that should be taken for those systems that do not utilize a 32-
bit logical address bus. The access level bits of the logical address must be routed to the most
significant one, two, or three logical address inputs (depending on the number of access levels
in use) of the MC68851 in order to utilize the access level protection mechanism. Additionally, in
order to use the PVALID instruction, the access level bits of the PVALID operand must be shifted
(in software) to occupy the most-significant bits of the operand.

’

MOTOROLA MC68851 USER'S MANUAL
7-16

SECTION 8
BREAKPOINTS

The MC68851 provides a breakpoint acknowledgement facility to support software analysis and
debugging for the MC68020 when used in conjunction with the M68000 breakpoint instructions.

The M68000 instruction set implements eight breakpoint opcodes ($4848 through $484F). When
one of these opcodes is executed by the MC68020, the processor responds by performing a
breakpoint acknowledge cycle to inform external hardware that a breakpoint instruction has been
encountered. The breakpoint acknowledge cycle is executed by reading from the specific address
in the system CPU space (function code = $7) corresponding to the particular breakpoint instruc-
tion. The required format for the address generated during a breakpoint acknowledge cycle is
shown in Figure 8-1. The bits marked as ‘x’ are ignored by the MC68851 and are zero filled by
the MC68020.

FUNCTION
CODE

3 0 31 19 15 4 10

LOIII—IIxxxxxxxxxxxx[ﬂﬂDlJll]O[]DOUUOU[]UIBKPT#IXX] “

Figure 8-1. Breakpoint Acknowledge Cycle Address Encoding

Upon termination of the breakpoint acknowledge cycle, the MC68020 can proceed with one of
two sequences. First, if the cycle is terminated by the assertion of bus error, the MC68020 im-
mediately begins exception processing for an illegal instruction (M68000 exception vector #4).
Alternately, a replacement opcode may be supplied on the processor data bus and the DSACK
signals asserted. In response to this termination, the MC68020 replaces the breakpoint opcode in
its instruction pipeline with the opcode supplied during the acknowledge cycle and continues with
normal program execution.

The MC68851 contains special hardware to fully control the MC68020 breakpoint instruction fea-
tures and supply additional capabilities for program debug and analysis.

8.1 INSTRUCTION BREAKPOINT MECHANISM

The MC68851 contains eight pairs of breakpoint registers, one pair corresponding to each of the
breakpoint opcodes, which control the breakpoint operations. The breakpoint register set is shown
in Figure 8-2.

The register pair BADO/BACO corresponds to the breakpoint opcode $4848, BAD1/BAC1 to $4849, . . .,
etc.

8.1.1 Breakpoint Acknowledge Data Registers

Each of the breakpoint acknowledge data registers, BADO through BAD7, can be loaded with an
opcode to be transferred to the MC68020 during the breakpoint acknowledge cycle. These registers

MC68851 USER'S MANUAL MOTOROLA
8-1

BADO

BAD1

BAD2

BAD3

BAD4

BADS

BAD6

BAD7

CORRESPONDING
0 OPCODE

BACO

$4848

BAC1

$4849

BAC2

$484A

BAC3

$4848

BAC4

$484C

BACH

$484D

BAC6

$484E

BAC7

$484F

Figure 8-2. MC68851 Breakpoint Registers

may be loaded with any 16-bit value, but in order to provide useful operation, the value should
be a recognizable, legal MC68020 opcode. For example, it is possible to load BADO with $4848
(breakpoint zero opcode) causing the breakpoint acknowledge cycle to be repeated until the skip
count, as described below, is exhausted. However, the value of this operation is questionable.
These registers may be read or written using the PMOVE instruction.

The format of these registers are shown in Figure 8-3.

BADx

REPLACEMENT OPCODE

Figure 8-3. Breakpoint Acknowledge Data Register Format

8.1.2 Breakpoint Acknowledge Control Registers

The operation of each of the breakpoint acknowledge data registers is controlled by the corre-
sponding breakpoint acknowledge control register, BACO through BAC7. The format of the BACx

registers is shown in Figure 8-4.

BACx

15

7

0

BPE

0

0

0

0

0

L T T T T T

01]0 BREAKPOINT SKIP COUNT

1 1 1 i 1 1

Figure 8-4. Breakpoint Acknowledge Control Register Format

Bit [15] of the BACx register is the breakpoint enable control. If this bit is clear, breakpoint ac-
knowledgement for the corresponding breakpoint instruction is disabled and any breakpoint ac-
knowledge cycle generated by execution of that opcode is terminated by the MC68851 with the
assertion of bus error. The BPE bit is cleared at reset; the skip count field is not.

The breakpoint skip count contained in bits [0-7] specifies the number of times that the replace-
ment opcode contained in the corresponding BADx register is returned with DSACKx in response
to a breakpoint acknowledge cycle before the MC68851 signals the MC68020 to initiate exception
processing for the breakpoint by asserting bus error.

MOTOROLA
8-2

MC68851 USER’S MANUAL

If, at the beginning of a breakpoint acknowledge cycle, the breakpoint skip count is non-zero, the
MC68851 will return the corresponding replacement opcode and assert DSACKx. During the
breakpoint cycle, the skip count is decremented by one. If, at the beginning of a breakpoint
acknowledge cycle, the breakpoint skip count is zero, the MC68851 terminates the cycle by as-
serting bus error, causing the MC68020 to initiate illegal instruction exception processing for the
breakpoint.

The breakpoint acknowledge control registers may be read or written using the PMOVE instruction.
All unimplemented bits (bits [8-14]) are always read as zeros and must be written as zeros.

A flowchart for the breakpoint operation is shown in Figure 8-5. Figure 8-6 illustrates the functional
timing for the breakpoint acknowledge cycle when the MC68851 supplies the replacement opcode
and asserts DSACKx. Figure 8-7 illustrates the functional timing of the cycle, when the MC68851
asserts bus error due to either the corresponding enable bit being clear or the skip count having
been decremented to zero.

MC68020 MC68851

BREAKPOINT ACKNOWLEDGE

1) SET R/W TO READ

2) SET FUNCTION CODE TO CPU SPACE

3) PLACE CPU SPACE TYPE 0 ON A16-A19
4) PLACE BREAKPOINT NUMBER ON A2-A4
5) SET SIZE (SIZ1, SI20) TO WORD

6) ASSERT LOGICAL ADDRESS STROBE (LAS)
7) ASSERT DATA STROBE (DS) > ACKNOWLEDGE CYCLE

IF BREAKPOINTS ENABLED IN BACx CORRESPONDING TO
BREAKPOINT NUMBER

THEN PROCEED WITH (1)

ELSE GO TO (6)

1) IF SKIP COUNT 5% 0 THEN PROCEED WITH (2)
ELSE GO TO (6)
2) PLACE CONTENTS OF BADx REGISTER ON DATA BUS
3) DECREMENT SKIP COUNT IN BACx BY ONE
4) ASSERT DSACKx (DETERMINED BY CONFIGURATION AT RESET)
5) 6010 @

6) ASSERT BERR TO INITIATE EXCEPTION PROCESSING
7 6010 (A) ®

IF DSACK ASSERTED]
1) LATCH DATA
2) NEGATE LAS AND DS
3) GOTO

IF BERR ASSERTED
1) NEGATE [AS AND DS MC68851 NEGATES
2) GO TO @ @ @ DSACK OR BERR

A

1) PLACE LATCHED DATA FROM BREAKPOINT ACKNOWLEDGE CYCLE
IN INSTRUCTION PIPELINE
2) CONTINUE PROCESSING

1) INITIATE ILLEGAL INSTRUCTION EXCEPTION PROCESSING -—I

Figure 8-5. Instruction Breakpoint Flowchart

MC68851 USER'S MANUAL MOTOROLA
8-3

11 CLOCK
PERIODS
S0 S2 Sw Sw S4 S0

cLock | |_| L__I L j I_l I___l

LAO-LA19 X LA16-LA19 = 0, LA2-LA4 = BKPT#, LA5-LA15 =0

mo\

SI1Z0/81Z1 X 812178120 = 10 (WORD)

5\

D0-D15

18 ldfn

DSACKx

n PAB-PA31 X

It

BREAKPOINT ACKNOWLEDGE CYCLE MC68851 PROVIDES OPCODE NEXT
DETECTED AND SKIP COUNT DECREMENTED AND TERMINATES TRANSFER CYCLE

Figure 8-6. Breakpoint Acknowledge Cycle — MC68851 Supplies Replacement Opcode

8.2 BREAKPOINT USAGE

The instruction breakpoint facilities of the MC68020 and MC68851 provided simplified program
monitoring and debug capabilities without the need for additional hardware.

The most typical use of the instruction breakpoints is in the monitoring of program execution
flow. For example, when it is desired to observe the entry of program execution into a particular
segment of code, the first instruction in the target segment can be replaced with one of the eight
breakpoint opcodes and the original opcode stored in the breakpoint acknowledge data register
corresponding to the breakpoint opcode used. If the corresponding breakpoint acknowledge con-
trol register is disabled or the skip count is zero, the MC68851 will assert bus error on the first
pass through the program segment. At this point control is passed to the illegal instruction
exception handler that can perform any activities required to report or log the breakpoint and, if

MOTOROLA MC68851 USER'S MANUAL
8-4

11 CLOCK
PERIODS
S0 S2 Sw Sw S4 S0

o [L L L I LI LT

LAO-LA19 X LA16-LA19 = 0. LA2-LA4 = BKPT#, LA5-LA16 =0

j
Wﬁ}‘lﬁﬁﬂ

§120/8121 X SIZ1/8120 = 10 (WORD)
i \
D0-D15
oA N/
PAB-PA31 X
PAS, CUI
DBOIS

BREAKPOINT ACKNOWLEDGE CYCLE DETECTED NEXT
AND SKIP COUNT =0 OR BPE IS CLEAR CYCLE

Figure 8-7. Breakpoint Acknowledge Cycle — Bus Error Asserted

desired, replace the original opcode in memory and allow the program to continue with normal
execution.

In order to resume execution of a program that has been interrupted by a breakpoint exception,
the breakpoint opcode can be left in memory and the breakpoint skip count set to one in the
breakpoint acknowledge control register for that opcode. When the MC68020 executes a return
from exception (RTE) instruction from the illegal instruction handler, it attempts to re-execute the
instruction that caused the fault (the stacked program counter points to the instruction that caused
the exception). Setting the skip count to one causes the MC68851 to provide the replacement
opcode the first time the bieakpoiint is executed (imimediately upon compistion of the RTL) and

to force exception processing on subsequent accesses.

In an alternate use, if the MC68851 breakpoint control register is enabled and the skip count is
non-zero, program execution continues unaffected by the fact that one of the opcodes for the

MC68851 USER'S MANUAL MOTOROLA
8-5

program was supplied by the MC68851 during the breakpoint acknowledge cycle. In this manner
it is possible to take the breakpoint exception only after n (1 < n < 255) repetitions of a program
segment. When the skip count is exhausted and control is passed to the illegal instruction ex-
ception handler, the occurrence of n passes through the program segment can be reported to
the user, or the skip count register can be reinitialized, the n passes added to a static counter
maintained by the exception handling routine and program execution resumed for another n
passes.

By using the breakpoint instructions with non-zero skip counts, it is also possible to keep a log
of the relative frequency of execution of up to eight different sections of code without significantly
affecting program execution time. To perform this function, an instruction from each of the relevant
code sections is replaced with a different breakpoint opcode, the replaced opcode is placed in
the correct breakpoint acknowledge data register and the skip counts set to n. When an illegal
instruction exception occurs due to an exhausted skip count, a master counter for the particular
breakpoint is incremented by n and the skip count is reset to n. At the termination of the program,
the residual skip counts (n — remainder in count register) for each of the breakpoints are added
to the corresponding master counts providing a history of the relative frequency of execution of
each of the code sections.

Note that the execution of the instruction breakpoints is unaffected by whether the breakpoints
reside in external memory or in the MC68020 on-chip cache.

MOTOROLA MC68851 USER'S MANUAL
8-6

SECTION 9
COPROCESSOR INTERFACE

This section describes the coprocessor interface with respect to the communication protocol
utilized by the MC68851 and MC68020. This communication protocol includes electrical and com-
mand level mechanisms that allow a coprocessor to act as an extension to the main processor.

9.1 COPROCESSOR INTERFACE SIGNAL CONNECTION

The connection between the MC68020 and the MC68851 is a simple extension of the M68000 bus
interface with the MC68851 directly connected to the MC68020. The selection of the MC68851 is
based upon an internally generated chip select signal that is decoded from the logical address
and function code inputs.

The MC68851 contains a set of coprocessor interface registers (CIRs) by which the main processor
and coprocessor communicate. These registers are not related to the programming model im-
plemented by the MC68851. Rather, they are used as communication ports that have specific
functions associated with each register. When the MC68851 is used as a coprocessor to the
MC68020, the programmer is never required to explicitly access these interface registers, since
the coprocessor interface is implemented in the hardware and microcode of the MC68020. When
the MC68020 is not used as the main processor, the MC68851 CIRs can be explicitly accessed by
a software routine that emulates the behavior of the MC68020 with respect to the coprocessor
interface.

For more information on the electrical interconnection between the main processor and the
MC68851, refer to APPENDIX B HARDWARE CONSIDERATIONS.

9.1.1 Selecting the MC68851

The MC68851 does not require any special bus signals, beyond the normal M68000 Family bus
control signals, for connection to the MC68020. The former MC68000 interrupt acknowledge
address space (function code $7) is extended in the MC68020 to be the CPU address space. A
portion of this space, identified by the MC68020 address bus, is dedicated to coprocessor devices.
Figure 9-1 illustrates the required address bus encoding for coprocessor accesses in the CPU
address space. The bit positions marked with an ‘x’ are zero-filled by the MC68020 but are ignored
by the MC68851.

During CPU space cycles, address bits A16-A19 indicate the CPU space function that the main
processor is performing. The MC68020 utilizes four of the possible 16 encodings of A16-A19 as
listed in Table 9-1.

FUNCTION

nonc
Goue

3 0 31 19 15 12 4 0

IO]II|Ixxxxxxxxxxxxll][)IOICp-lDIUUOUUUUUI CIRSELECT]

Figure 9-1. Coprocessor Interface Address Bus Encoding

MC68851 USER'S MANUAL MOTOROLA
9-1

The coprocessor identification (Cp-ID), A13- Table 9-1. MC68020 CPU Space

A15, is taken from the coprocessor instruction Type Field Encodings
operation word (refer to 9.2 COPROCESSOR

INSTRUCTIONS and to the MC68020 32-Bit Mi- CPU Space Type Field

croprocessor User’s Manual). The MC68851 al- (A19-A16) CPU Space Transaction
ways operates as coprocessor zero and, 0000 Breakpoint Acknowledge
therefore, selects itself for coprocessor com- 0001 Access Level Control
munlc:atlons (CPU space type = $2) "f’he" the 0010 Coprocessor Communications
Cp-ID is set to zero. The coprocessor interface

register (CIR select) field, AO-A12, is decoded trat Interrupt Acknowledge

by the MC68851 to select the appropriate CIR.

Although the MC68851 decodes the full address range specified on A0-A12, the MC68851 register
set occupies only the lower 32 bytes of this range. Any access above this range (A0-A12 = $20)
is ignored for a write cycle and returns the null response (all ones) for a read (the MC68851
terminates these cycles by asserting DSACKx). For a map of the coprocessor interface registers
implemented on the MC68851, refer to Figure 9-2. Since address bits A20-A31 are not present
on all implementations of M68000 processors, these bits are not essential for decoding CPU space
accesses.

The internal M68851 chip select decode is therefore based upon the function code signals (FCO-
FC3), the CPU space type field (A16-A19), and the Cp-ID field (A13-A15). The MC68851 decodes
the address bits AO-A4 (A5—A12 must be zero) to determine the CIR involved in any coprocessor
access.

9.1.2 Coprocessor Interface Registers

Table 9-2 identifies the MC68851 coprocessor interface register locations in the CPU space that
are used for communications between the MC68020 and the MC68851. Figure 9-2 illustrates the
m memory map of the CIRs on a 32-bit bus. When a coprocessor communication cycle is executed
with a Cp-ID of zero, the MC68851 decodes the CIR select field of the address bus, A0-A4 (A5-
A12 = 0), to select the appropriate coprocessor interface register.

31 15 0
$20000 RESPONSE
$20002 CONTROL
$20004 SAVE
$20006 RESTORE
$20008 OPERATION WORD
$2000A COMMAND
$2000C RESERVED
$2000E CONDITION
$20010 OPERAND
$20014 REGISTER SELECT (RESERVED)
$20018 INSTRUCTION ADDRESS
$20016 OPERAND ADDRESS

Figure 9-2. MC68851 Coprocessor Interface Register Map

MOTOROLA MC68851 USER'S MANUAL
9-2

Table 9-2. Coprocessor Interface Register Characteristics

Register A4-A0 Offset Width Type
Response 0000x $00 16 Read
Control 0001x $02 16 Write
Save 0010x $04 16 Read
Restore 0011x $06 16 Read/Write
Operation Word* 0100x $08 16 Write
Command 0101x $0A 16 Write
(Reserved) 0110x $0C 16 -
Condition 0111x $OE 16 Write
Operand 100xXx $10 32 Read/Write
Register Select 1010x $14 16 Read
(Reserved) 1011x $16 16 —
Instruction Address* 1T10xx $18 32 Read/Write
Operand Address 1T11xx $1C 32 Write

*Unimplemented

The following paragraphs describe the characteristics of each of the coprocessor interface registers

as implemented by the MC68851. In these descriptions, the read/write attributes of each register

are given. If a register is read-only, write accesses to that location are ignored; read accesses of

a write-only register always return all ones. In all cases, the MC68851 asserts DSACKx in response

to all CPU space cycles accessing coprocessor zero (FCO-FC3 = $7, CPU space type = $2, and n
Cp-ID = 0) to terminate the bus cycle.

9.1.2.1 RESPONSE CIR ($00). This 16-bit read-only register is used to communicate service
requests from the MC68851 to the main processor. A read of the response CIR is always legal,
regardless of the state of an instruction dialog. The format of the response primitives that are
returned through this register are detailed in 9.2.2 Response Primitives.

In general, the primitive encoding returned in the response register is not changed until the action
requested by the primitive is performed by the processor. For example, if an evaluate and transfer
effective address primitive is encoded in the response CIR and the main processor reads that
primitive, the response register will not be updated until the processor completes a long-word
(32-bit) transfer to the operand address CIR (refer to 9.1.2.11 OPERAND ADDRESS CIR ($1C)).

Primitive responses that do not request explicit service from the processor are discarded by the
MC68851 when the response register is read. The supervisor check primitive is one example of
such a primitive in that it requires only that the processor perform a check of its internal status
and either re-read the status register or take an exception (refer to 9.2.2.4 SUPERVISOR CHECK
PRIMITIVE).

Althougah a read of the response regqister is legal at any time. the read mav not be the access that
is expected by the MC68851. In such cases, the MC68851 returns the null done primitive (refer to
9.2.2.1 NULL PRIMITIVE) unless the expected access was to the register select CIR in which case
an unimplemented response ($0 or $1) is returned (refer to 9.2.2.6 TRANSFER MAIN PROCESSOR
CONTROL REGISTER PRIMITIVE).

MC68851 USER'S MANUAL MOTOROLA
9-3

Unexpected accesses are not a normal occurrence but may occur due to either improper syn-
chronization of multiple devices accessing the MC68851 or a memory fault generated during the
execution of an MC68851 instruction. Since the instruction dialog is interrupted and program
control is passed to the bus error handler, it is possible to initiate another coprocessor instruction
that will cause an unexpected access or protocol violation due to the incomplete state of the
previous instruction. A protocol violation will be signaled if the dialog for a new MC68851 in-
struction is initiated (by writing to the command register). Unexpected accesses receive either a
‘null done’ or ‘unimplemented’ primitive in order to prevent potential lockups by signaling the
errant device that communication should be terminated.

9.1.2.2 CONTROL CIR ($02). This 16-bit write-only register is utilized by a main processor to
issue an exception acknowledge or instruction abort to the MC68851. Figure 9-3 illustrates the
format of this register. Only two of the 16 bits are defined: the exception acknowledge (XA) and
abort (AB) bits.

UNDEFINED, RESERVED XA | AB

Figure 9-3. Control CIR Register

The MC68851 does not utilize these two bits; instead, it simply interprets a write to this CIR
address as an abort command, regardless of the data pattern written. Thus, an exception ac-
knowledge (in response to a take exception primitive) or abort (in response to an illegal format
word, an invalid request primitive, or a supervisor check violation) issued during any MC68851
instruction protocol, or an explicit write (for example, with the MOVES instruction) to the control
CIR always has the same effect on the MC68851. Also, write cycles to this register are never
m illegal, since the MC68851 always responds in the same manner.

The response of the MC68851 to a write of the control CIR is to:

1) Immediately terminate processing of any instruction that may be in progress. If an operation
involving an MC68851 user-visible register is aborted and the abort was not requested by
the MC68851, the contents of the register is undefined,

2) Clear any pending exceptions, and

3) Reset the coprocessor interface state to the idle condition. Thus, the MC68851 is ready to
begin a new instruction protocol following the write cycle.

9.1.2.3 SAVE CIR ($04). This 16-bit read-only register is used by the main processor to issue a
context save command to the MC68851, and to return the format word of the MC68851 state
frame to the main processor. A read of this register causes the operation currently being executed
by the MC68851 (except a state save or restore) to be suspended, and a state save operation is
initiated.

After the read of the save register, the next expected access is to the operand CIR (to transfer the
state frame).

The only time that a read of this register is illegal is when the MC68851 is executing a PSAVE or
PRESTORE instruction; a read of the save CIR is legal at any other time. If the main processor
reads the save CIR at an illegal time, the invalid format word is returned. In response to the invalid
format word, the main processor must issue an abort to the MC68851 to return it to the idle state
(the MC68020 does this automatically).

MOTOROLA MC68851 USER'S MANUAL
9-4

In systems that support multiple devices accessing the MC68851, an external synchronization
protocol (for example software semaphores) must be employed to ensure that the coprocessor
instruction execution by one device is never interrupted by attempts to access MC68851 registers
by any other device.

9.1.2.4 RESTORE CIR ($06). This 16-bit read/write register is used by the main processor to
issue a context restore command to the MC68851 and to validate the format word of a state
frame. A write of this register causes the MC68851 to immediately stop any operation that may
be executing and prepare to load a new internal state context from the memory resident state
frame.

After the main processor writes a format word to the restore CIR, it must read the restore CIR to
receive the results of the format word verification. If the previously written format word is valid,
that format word will be read back from the restore CIR to indicate the successful verification. If
the format word is invalid, the ‘invalid format take exception’ value is placed in the restore CIR
to indicate the verification failure. After a successful verification is signaled, the next expected
access is to the operand CIR (to transfer the state frame). After a verification failure is signaled,
the main processor should write an abort to the control CIR in order to return the MC68851 to
the idle state (the MC68020 does this automatically).

9.1.2.5 OPERATION WORD CIR ($08). This 16-bit write-only register is not used by the MC68851.
The only time that this CIR location is used by the M68000 Family coprocessor interface is when
a coprocessor issues the transfer operation word primitive, in which case the main processor
writes the F line word of the instruction to the operation word CIR. Since the MC68851 never
issues the transfer operation word primitive, the operation word CIR location should never be
written by the main processor. If a write to this location occurs, it will be ignored and will not
cause a protocol violation.

9.1.2.6 COMMAND CIR ($0A). This 16-bit write-only register is used by the main processor to
initiate the dialog for a general type coprocessor instruction. When the MC68851 detects a write
to this CIR location, the data value.is latched from the data bus. If the MC68851 is executing a
previous instruction when the command CIR is written, a protocol violation pre-instruction ex-
ception is signaled to the processor indicating a fault in the coprocessor dialog.

Due to the implications that many MC68851 instructions have on system configuration, the MC68851
does not allow concurrent instruction processing (that is, upon initiation of an MC68851 instruction,
the main processor cannot proceed with the next instruction until completion of all MC68851
activities). Normally, synchronization is forced since the MC68851 does not issue a release pri-
mitive until completion of the instruction in progress. However, since the MC68851 may request
evaluation of effective addresses during the coprocessor instruction dialog, it is possible to gen-
erate an exception (for example, a page fault) during the communication that would leave the
previous instruction incomplete. If, after such an error occurs, the processor attempts to initiate
another MC68851 instruction, the MC68851 signals the protocol violation and then aborts the
uncompleted instruction that caused the fault. This causes a protocol violation exception handler
to return and rerun the instruction that received the protocol violation. The exception handler
must be capable of correcting the problem that caused the fault and, additionally, since the entire
instruction that wae aborted must be rerun, the exception handler must be ablc to correct problems

associated with the predecrement addressing mode, if employed.

A write to this CIR location is legal only when the MC68851 is in the idle state (i.e., not currently
executing an instruction). If a write to the command CIR occurs when it is not expected, a protocol

MC68851 USER'S MANUAL MOTOROLA
9-5

violation occurs, the command word that is written is not saved by the MC68851 and the previous
command word is discarded.

9.1.2.7 CONDITION CIR ($0E). This 16-bit write-only register is used by the main processor to
initiate the dialog for a conditional type coprocessor instruction. When the MC68851 detects a
write to this CIR location, the data value is latched from the data bus. If the MC68851 is executing
a previous instruction when the condition CIR is written, a protocol violation is signaled. If the
MC68851 is in the idle or reset state when a write to the condition CIR occurs, it first returns the
supervisor check primitive. After a read of the response register, the MC68851 then evaluates the
selected condition and returns the null (CA = 0, TF = 0/1) primitive (where the TF bit indicates
whether the conditional evaluation is true or false).

A write to this CIR location is legal only when the MC68851 is in the idle or reset state. If a write
to the condition CIR occurs when it is not expected, a protocol violation occurs, the conditional
predicate that is written is not saved by the MC68851, and the operation in progress is aborted.

9.1.2.8 OPERAND CIR ($10). This 32-bit read/write register is used by the main processor to
transfer data to and from the MC68851. The MC68851 transfers data through this CIR location in
the following cases:

1) Following an evaluate effective address and transfer data primitive,

2) Following a transfer single main processor register primimtive,

3) Following a read of an idle or busy format word from the save CIR,

4) Following a read of an idle or busy format word to the restore CIR, and

5) Following the read of the register select CIR in response to a transfer main processor control
register primitive.

n These five cases are the only times when an access to the operand CIR is legal. At any other time,
an access to this CIR location causes a protocol violation.

The MC68851 expects all operands that are to be transferred through this CIR location to be
aligned with the most-significant byte of the register. Any operand larger than four bytes is
transferred through this register using a sequence of long-word transfers. Figure 9-4 illustrates
the operand CIR data alignment expected by the MC68851 when transferring data through the

operand CIR.
TRANSFER
ORDER 31 23 15 7 0
1 [evieoperano I NG TRANSFER l
1 | WORD OPERAND T NO TRANSFER I
1 [THREE BYTE OPERAND L NO TRANSFER J
1 | LONG WORD OPERAND |
1 MsB
QUAD WORD GPERAND
2 LsB

Figure 9-4. Operand CIR Data Alignment

MOTOROLA MC68851 USER’S MANUAL
9-6

9.1.2.9 REGISTER SELECT CIR ($14). This 16-bit read-only register is read by the main processor
to transfer the register select code from the MC68851 in response to a transfer main processor
control register primitive. The MC68851 instructions PFLUSH, PLOAD, and PTEST may require
access to operands residing in the MC68020 source and destination function code registers (SFC
and DFC). Values returned by the MC68851 in this register are $0 and $1 to request transfer of
the SFC and DFC, respectively.

This register may be accessed by the processor only in response to a transfer main processor
control register primitive. Accesses at any other time will cause the MC68851 to return a protocol
violation on the next read from the response register.

9.1.2.10 INSTRUCTION ADDRESS CIR ($18). This 32-bit read/write register is used by the main
processor to transfer the address of a coprocessor instruction being executed when the PC bit of
any primitive is set. This CIR is used to support concurrent processor/coprocessor instruction
execution and is not implemented by the MC68851. Primitives returned by the MC68851 do not
have the PC bit set.

All writes to this CIR are ignored and reads return all ones. Accessing this register will not cause
a protocol violation.

9.1.2.11 OPERAND ADDRESS CIR ($1C). This 32-bit read/write register is used by the main
processor to transfer an operand address in response to the evaluate and transfer effective address
primitive issued by the MC68851 during the PFLUSH, PLOAD, PTEST, and PVALID instructions.

Writes to this CIR are legal only in response to the evaluate and transfer effective address primitive.
Any other write will cause a protocol violation, the faulting cycle will be ignored, and the instruction
currently being executed (if any) will be aborted.

Reads from this register are ignored and always return all ones.

9.1.3 Interprocessor Transfers

All interprocessor transfers are initiated by the MC68020. During the processing of an MC68851
instruction, the MC68020 transfers instruction information and data to the MC68851 via standard
write bus cycles; it receives data, requests for service, and status information from the MC68851
via standard read bus cycles. A detailed description of the electrical characteristics of the MC68851
bus interface is contained in SECTION 4 BUS OPERATION and SECTION 12 ELECTRICAL SPECI-
FICATIONS.

9.2 COPROCESSOR INSTRUCTIONS

MC68851 instructions are from one to eight words in length. The first word of the instruction is
called the operation word, and the second word of the instruction, for the general instruction
type, is called the coprocessor command word. Additional words specify the operands, and are
either extensions to the effective addressing mode specified in the operation word, or immediate
operands which are part of the instruction. The general format of an MC68851 instruction is
illustrated in Figure 9-5. '

All coprocessor operations are based on the F-line operation codes (i.e., operand words with bits
[15:12] = $F) which instruct the MC68020 to call upon a coprocessor for execution of the instruc-
tion. Figure 9-6 illustrates the format of this word.

MC68851 USER'S MANUAL MOTOROLA
9-7

OPERATION WORD

COPROCESSOR COMMAND WORD (IF ANY)

EFFECTIVE ADDRESS EXTENSION WORDS (1 T0 6, IF ANY)

Figure 9-5. Coprocessor Instruction General Format

% 14 13 12 1 0 9 8 7 6 5 4 3 2 1 0

T 1 1 Cp-ID TYPE TYPE DEPENDENT

Figure 9-6. MC68851 Instruction Operation Word

The Cp-ID field indicates which coprocessor is to be selected. Cp-IDs of 0—$5 are reserved by
Motorola, and Cp-IDs $6 and $7 are reserved for user definition. The MC68851 always corresponds
to Cp-ID zero. The type field indicates to the MC68020 which type of coprocessor operation is
selected: general, branch, conditional, save, or restore. The type and type-dependent fields and
the coprocessor command word for all MC68851 instructions are described in 6.2 INSTRUCTION
DETAILS.

n 9.2.1 Instruction Protocol

All MC68851 instructions have a typical protocol which the MC68020/MC68851 pair follows. This

communication protocol is as follows:

1) When the MC68020 detects an F-line operation word, communication is initiated by writing
information (a command, condition selector, or restore format word) to the appropriate
MC68851 coprocessor interface register location (the MC68851 save instruction is initiated
by a read operation).

2) The MC68020 then reads the coprocessor response to the previous write operation. The
response may indicate any of the following:

a) An exception condition exists, and the MC68851 instructs the MC68020 to take an
exception, using a specific exception vector. The MC68020 acknowledges the ex-
ception and initiates exception processing.

b) There is an MC68851 service request; for example, to evaluate the effective address
and transfer data to/from the effective address from/to the MC68851. The MC68851
may also request that the MC68020 query the coprocessor after the service is
performed.

c) No service is requested but the processor is instructed to read from the response
register again.

d) A supervisor check is requested.

Each MC68851 instruction type has specific requirements based upon this simplified protocol.
The main processor service requests required for each MC68851 instruction are described in 6.2
INSTRUCTION DETAILS. All MC68851 main processor service requests (response primitives) are
described in the following paragraphs. In addition, the dialog used by the MC68020 and the
MC68851 during the execution of each instruction is detailed in 9.3 INSTRUCTION DIALOGS.

MOTOROLA MC68851 USER’S MANUAL
98

9.2.2 Response Primitives

Data read form the MC68851 coprocessor interface response register is referred to as a primitive.
Although the M68000 Family coprocessor interface defines 18 response primitives, the MC68851
only uses eight of those primitives. For additional information on the complete set of response
primitives and how they are serviced, refer to the MC68020 32-Bit Microprocessor User’s Manual.
The following paragraphs summarize all MC68851 response primitives and how they are used.

The M68000 coprocessor response primitives are encoded in a 16-bit word that is transferred to

the main processor through the response CIR. Figure 9-7 illustrates the general format of a
response primitive.

% 14 13 12 1 100 9 8 7 6 5 4 3 2 1 0

CAfPC{DRJO t 0 O[WA]JO © O O 0 O /[PF|TF

Figure 9-7. M68000 Coprocessor Response Primitive General Format

The encoding of bits [0-12] of a coprocessor response primitive is dependent on the individual
primitive being implemented. Bits [13-15], however, are used to specify particular attributes of
the response primitive which can be utilized in most of the primitives defined for the M68000
coprocessor interface.

Bit [15] of the primitive format, denoted by CA, is used to specify the come-again operation of
the main processor. Whenever the main processor receives a response primitive from the MC68851
with the CA bit set to one, it should perform the service indicated by the primitive and then return
to read the response CIR again.

Bit [14] of the primitive format, denoted by PC, is used to specify the pass program counter
operation. The MC68851 never issues a primitive with the PC bit set.

Bit [13] of the primitive format, denoted by DR, is the direction bit; and is used in conjunction
with operand transfers between the main processor and the MC68851. If DR is zero, the direction
of the transfer is from the main processor to the MC68851 (a main processor write). If DR is one,
the direction of the transfer is from the MC68851 to the main processor (a main processor read).
If the operation indicated by a given response primitive does not involve an explicit operand
transfer, the value of this bit is dependent on the particular primitive encoding.

The following paragraphs detail the response primitive encodings used by the MC68851 and the
expected main processor response to each one.

9.2.2.1 NULL PRIMITIVE. This primitive is used by the MC68851 to indicate completion of a
coprocessor instruction. The format of the null primitive is shown in Figure 9-8. In addition to the
bits CA and PC that are discussed above, the null primitive uses three other bits to identify the
required action to be taken by the main processor. When set to one, bit [8], denoted by IA, is
used to specify that the main processor may process pending interrupts if necessary. The IA bit
is never set in any MC68851 primitive. Bit [1], denoted by PF, is used to indicate the status of the
MC68851 during instruction execution; if PF equals zero, then the MC68851 is executing an in-
struction; otherwise it is idle. Bit [0], denoted by TF, is used to communicate the result of a
conditional evaluation. If TF equals one, then the condition is true; otherwise it is false.

MC68851 USER'S MANUAL MOTOROLA
9-9

1% 14 13 12 11 10 9 8 7 6 5 .4 3 2 1 0

cAjlrcfofo 1 o O|WKA}jO 0 O O O O]|PF|TF

Figure 9-8. Null Primitive Format

As indicated by the format of this primitive, there are 32 possible null primitive encodings of
which the MC68851 uses only three. Table 9-3 lists the MC68851 null primitive encodings, and
the circumstances in which they are used.

Table 9-3. Null Primitive Encodings

CA PC 1A PF TF Usage

0 0 0 1 0 Returned when the MC68851 is in the idle state or as the final primitive of an instruction
dialog. The PF bit indicates that no instruction is being executed; thus, there is no expected
response to this primitive.

1 0 0 0 0 | Returned when the MC68851 is executing an instruction and requires further service from
the main processor before the next instruction can be executed. The expected response is
for the main processor to re-read the response CIR.

0 0 0 1 0/1 | Returned by the MC68851 in response to the write of a conditional predicate to the condition
: CIR. The TF bit indicates the result of the conditional evaluation; TF = 1 if the condition is
true, TF = 0 if the condition is false.

The meaning of the CA, PC, and IA bits are as described above. The PF bit is an indicator that
reflects the processing state of the MC68851 during instruction execution. In normal operation,

the PF bit is of no concern to the main processor. However, if the main processor is in the trace
m mode, it should wait until the MC68851 has completed execution of an instruction before taking
the trace exception. This is always enforced since the MC68851 does not allow the processor to
proceed with the next instruction until the coprocessor operation is complete.

The TF bit is utilized only for the conditional instructions. When the main processor writes a
conditional predicate to the condition CIR, the MC68851 uses the null primitive to return the true
or false result of the conditional evaluation. If TF equals one, then the condition is true; otherwise
it is false. For all reads of the response CIR for other instruction types, the TF bit is a don’t care.

9.2.2.2 EVALUATE EFFECTIVE ADDRESS AND TRANSFER DATA PRIMITIVE. This primitive is
used by the MC68851 during the execution of the PMOVE instruction to request the transfer of a
data item between the MC68851 internal registers and an external location (either memory or a
main processor register). The format of this primitive is shown in Figure 9-9. The main processor
services this request by evaluating the effective address indicated by the F line word of the
instruction and transferring the number of bytes indicated by the length field of the primitive to
or from the operand CIR.

% 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

CA[O [DR} 1 0 [VALD <ea> LENGTH

Figure 9-9. Evaluate Address and Transfer Data Primitive Format

This primitive encoding remains in the response register until the requested data transfer is

complete.
L. .- .|
MOTOROLA MC68851 USER'S MANUAL

9-10

The meaning of the CA bit is as described above. The PC bit is always zero. The DR bit indicates
the direction of data transfer between the effective address location and the operand CIR of the
coprocessor. If DR equals zero, the operand is transferred from the effective address location to
the coprocessor. If DR equals one, the operand is transferred from the coprocessor to the effective
address location.

The effective address that is to be evaluated is specified in the F-line operation word, and any
required extension words are fetched by the main processor, as needed. If the predecrement or
postincrement addressing mode is used, the address register is decremented or incremented
before or after the transfer by the size of the operand, as indicated in the length field.

Table 9-4. Coprocessor Valid

The ‘valid EA' field specifies various classes of addressing modes .

with the encodings shown in Table 9-4. If the effective address Effective Address Codes

in the operand word is not of the specified class, then the main $0 Control Alterable

processor should write an abort to the control CIR and take an F- $1 Data Alterable

line emulator trap. The addressing categories below are as de-

fined for all M68000 Family processors. $2 Memory Alterable
$3 Alterable

The number of bytes transferred to or from an effective address $4 Control

location is indicated in the length field. If the effective address is $5 Data

a main processor register (register direct), only lengths of one, %5 Memory

two, or four bytes are used. If the effective addressing mode is

immediate, the length is always one or even, and the transfer is $7 Any Effective Address

effective address to coprocessor. If the effective address is a memory location, any length is legal
(including odd). The PMOVE instruction uses lengths of one, two, four, or eight bytes depending
on the MC68851 register involved in the transfer. If the effective address mode is predecrement
or postincrement, with A7 as the specified register and a length of one, the transfer causes the
stack pointer to be decremented or incremented by two, in order to keep the stack aligned to a
word boundary.

Table 9-5 lists the encodings of the evaluate effective address and transfer data primitive that are
used by the MC68851 and the cases for which they are used.

Table 9-5. Evaluate Effective Address and Transfer Data Primitive Encoding

Usage CA PC DR Valid (ea) Length
PMOVE PMMUreg,(ea) 0 0 1 $3 1
Issued during the PMOVE instruction dialog to request the transfer of an op- 0 0 1 $3 2
erand from the MC68851 to memory or to a main processor data register. The 0 0 1 $3 4
length field indicates the size of the operand; byte, word, long, or quad word. 0 0 1 $2 8
PMOVE (ea),PMMUreg
Issued during the PMOVE instruction dialog to request the transfer of an op- 0 0 0 $7 1
erand from memory or a main processor data register to the MC68851. The 1 0 0 $7 1
length field indicates the size of the operand; byte, word, long, or quad word. 0 0 0 $7 2
1 0 0 $7 2
0 0 0 $7 4
1 0 0 $7 4
0 0 0 $6 8
1 0 0 $6 8

9.2.2.3 TRANSFER SINGLE MAIN PROCESSOR REGISTER PRIMITIVE. This primitive is used by
the MC68851 to request the transfer of one main processor register. The format of this primitive
is shown in Figure 9-10. The D/A bit is used to specify whether the register is a data or an address
register. A value of one for the D/A bit specifies an address register; a value of zero specifies a

MC68851 USER'S MANUAL MOTOROLA
9-11

% 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

CAJO|DR|O 1 1 0 0|0 0 0 0 |[D/A| REGISTER

Figure 9-10. Transfer Single Main Processor Register Primitive

data register. When the DR bit in this primitive is set, the direction of transfer is from the MC68851
to the main processor. The main processor services this request by reading a long word from the
operand CIR and transferring it to the appropriate main processor register. When the DR bit is
clear the transfer is from the main processor to the MC68851. The main processor services this
request by taking the appropriate register and writing it to the MC68851 operand CIR.

This primitive remains in the response CIR until the register transfer is complete.

9.2.2.4 SUPERVISOR CHECK PRIMITIVE. The supervisor check primitive allows the MC68851
to verify that the main processor is operating in the supervisor state during MC68851 instruction
execution. When this primitive is read, the main processor checks the S bit in its status register.
If the bit is set, indicating that the processor is operating in the supervisor state, the instruction
dialog may be continued by again reading the response register. Otherwise, the instruction must
be aborted and a privilege violation exception taken. The MC68020 does this automatically. The
format of the supervisor check primitive returned by the MC68851 is illustrated in Figure 9-11.

% 14 13 12 1 100 9 8 7 6 5 4 3 2 1 0

Tjofojojof1 ofofofojofofojo]|Ofo0O

m Figure 9-11. Supervisor Check Primitive Format

As with all other primitives returned by the MC68851, the PC bit (bit [15]) is always returned clear.

The supervisor check primitive is always returned during the dialog for a privileged instruction
before any user-visible state is altered. A read of the response register following a read of the
supervisor check primitive is an indication to the MC68851 that the check passed. This primitive
is returned only once during an MC68851 instruction.

9.2.25 EVALUATE AND TRANSFER EFFECTIVE ADDRESS PRIMITIVE. This primitive is used
by the PFLUSH, PLOAD, PTEST, and PVALID instructions to instruct the main processor to evaluate
the effective address specified by the coprocessor instruction operation word and transfer the
address to the MC68851 operand address register. The format of this primitive is shown in Figure
9-12.

% 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

cAfojofo}j1fo}jtrtofofojofojo]jo]|0O]O

Figure 9-12. Evaluate and Transfer Effective Address Primitive Format

This primitive is retained in the response register until the requested effective address has been
completely transferred to the MC68851.

MOTOROLA MC68851 USER'S MANUAL
9-12

9.2.2.6 TRANSFER MAIN PROCESSOR CONTROL REGISTER PRIMITIVE. This primitive is used
by the MC68851 to request the transfer of the MC68020 source or destination function code
registers (SFC or DFC) to the MC68851. The format of this primitive is shown in Figure 9-13.

% 14 13 121 10 9 8 7 6 5 4 3 2 1 0

CAJO OO0 1 oji1J]ojojojojojo}jojo

Figure 9-13. Transfer Main Processor Control Register Primitive Format

In response to this primitive, the main processor reads the register select field from the register
select CIR and transfers either the SFC or DFC to the MC68851 operand CIR. This primitive is
issued only once during the MC68851 instruction dialog.

After this primitive is read from the response CIR, the next expected access is to the register select
CIR. If the response register is read when the next expected access is to the register select CIR,
the MC68851 will return an illegal primitive ($0 or $1) (refer to 9.1.2.1 RESPONSE CIR).

9.2.2.7 TAKE EXCEPTION PRIMITIVES. These primitives are used by the MC68851 to instruct
the main processor to abort the current operation and initiate exception processing. The main
processor services these requests by writing an exception acknowledge to the control CIR (which
clears the pending exception in the MC68851), creates the appropriate stack frame on the currently
active supervisor stack, and begins execution of an exception handler. The exception handler is
located by using the vector number that is supplied as part of the take exception primitive. Table

9-6 lists the vector numbers used by the MC68851. n
Table 9-6. MC68851 Vector Numbers
Vector Number Vector Offset
(Decimal) (Hexidecimal) Assignment Type
1" $02C F-Line Emulator Pre-Instruction
13 $034 Coprocessor Protocol Violation Pre-Instruction
56 $0EQ Configuration Error Post-Instruction
57 $0E4 lllegal Operation Post-Instruction
58 $OE8 Access Violation Post-Instruction

The take exception primitive remains in the response CIR until an abort is signaled through the
control CIR or a further exception (for example, protocol violation) occurs.

The MC68851 returns one of these primitives until the control CIR is written. When an exception
acknowledge is written to the control CIR, the take exception primitive is discarded by the MC68851,
and the response encoding is changed to the null primitive. By doing this, the MC68851 assures
that the take exception request is received by the main processor.

While the M68000 coprocessor interface defines three take-exception primitives, the MC68851
utilizes only two of them. The following paragraphs describe the two take exception primitives
that are used by the MC68851.

!
MC68851 USER'S MANUAL ~ MOTOROLA
9-13

9.2.2.7.1 Take Pre-Instruction Exception Primitive. This primitive is used by the MC68851 if an
illegal command word is written to the command CIR or if a protocol violation occurs. The format
of this primitive is shawn in Figure 9-14. :

% 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

0|0 fo0}1 1 1 0 0 VECTOR NUMBER

Figure 9-14. Take Pre-Instruction Exception Primitive Format

The CA bit is always zero for this primitive since there is an implied protocol preemption in this
service request. The vector number identifies the type of the exception and is used by the main
processor to locate the appropriate exception handling routine.

In response to this primitive, the MC68020 creates a four word stack frame on top of the currently
active supervisor stack. The format of this stack frame is shown in Figure 9-15. The value of the
program counter in the stack frame is the address of the F-line operation word of the MC68851
instruction that was preempted by the exception. Thus, if no modifications are made to the stack
frame within the exception handler, an RTE instruction causes the MC68020 to return and reinitiate
the instruction that was being attempted when the primitive was received. Refer to the MC68020
32-Bit Microprocessor User’s Manual for further details on exception handling by the MC68020.

15 0
SP —— STATUS REGISTER
i +$02
n — PROGRAM COUNTER
+06 [0 0 0 0 VECTOR OFFSET

Figure 9-15. Pre-Instruction Exception Stack Frame

9.2.2.7.2 Take Post-Instruction Exception Primitive. This primitive is used by the MC68851
when an exception occurs during the execution of a PMOVE (ea),reg instruction, an invalid op-
eration is requested by the PTEST or PLOAD instructions, or to signal failure of a PVALID instruc-
tion. The format of this primitive is shown in Figure 9-16.

% 14 13 12 1 100 98 8 7 6 5 4 3 2 1 0

0J0]o0]1 1 1 10 VECTOR NUMBER

Figure 9-16. Take Post-Instruction Exception Primitive Format

The CA bit is always zero for this primitive, since there is an implied protocol preemption in this
service request. The vector number identifies the type of the exception, and is used by the main
processor to locate the exception handler routine.

In response to this primitive, the MC68020 creates a six word stack frame on top of the currently
active supervisor stack. The format of this stack frame is shown in Figure 9-17. The value of the

MOTOROLA MC68851 USER'S MANUAL
9-14

Sp — STATUS REGISTER

+$02
PROGRAM COUNTER

+$06 T 0 0 1 VECTOR OFFSET

+$08
INSTRUCTION ADDRESS

Figure 9-17. Post-Instruction Stack Frame

scanPC at the time the take exception primitive was encountered is stored in the program counter
field of the frame and points to the next instruction after the coprocessor instruction that generated
the exception. The address of the F-line operation word of the MC68851 instruction that caused
the exception is stared in the instruction address field of the stack frame.

When the MC68020 receives the take post-instruction exception primitive it assumes that the
coprocessor either completed or aborted the instruction in progress with an exception. The MC68851
always adjusts the MC68020 scanPC to point to the next instruction before returning a take post-
instruction exception primitive. If no modifications are made to the stack frame within the ex-
ception handler, an RTE instruction causes the MC68020 to return to program execution at the
location specified by the program counter field of the stack frame, which is the address of the
next instruction to be executed.

9.2.2.8 RESPONSE PRIMITIVE SUMMARY. Table 9-7 lists a summary of all primitive responses
utilized by the MC68851 in numeric order. The utilization of these primitives is implementation-
dependent and is subject to future change without notice.

9.3 INSTRUCTION DIALOGS

The following paragraphs detail the coprocessor communication dialogs that are executed by the
MC68851 and MC68020 during each memory management instruction. In this discussion, a dialog
refers to the sequence of command and data transfers to/from the MC68851, and the service
request primitives that are returned to control that sequence. Although the following discussion
assumes that the main processor is an MC68020, information is also presented that may be used
by designers of systems that utilize a different main processor.

The diagrams presented in the following paragraphs represent the activity of the MC68020 and
the MC68851 during the execution of an MC68851 instruction. In these diagrams, boxes are used
to depict periods of time during which a device is actively participating in the execution of an
instruction; the absence of a box during a period indicates that a device is waiting on the other
one to complete an operation.

Fach hox in the following diagrame is lzbeled t¢ indicatc the activity depicted by that box. The
labels above or to the right of the boxes identify the actions taken by the main processor, while
the labels below or to the left of the boxes identify the encoding of the response CIR at any time
during a dialog. Usually, when a response CIR encoding is indicated, the encoding will be received

by the main processor any time that the response CIR is read until the next primitive encoding

MC68851 USER'S MANUAL MOTOROLA
9-15

Table 9-7. MC68851 Primitive Responses

Primitive Primitive
Value Type Comments
$0802 Null CA=0,PC=0IA=0PF=1TF=0
$0803 CA=0,PC=0,IA=0PF=1TF=1
$0A00 Evaluate and Transfer Effective Address CA=0PC=0
$0C00 Transfer Single Main Processor Register Do
$0C01 CA =0, PC = 0, DR = 0 (Main Processor to MC68851) D1
$0C02 D2
$0C03 D3
$0C04 D4
$0C05 D5
$0C06 D6
$0C07 D7
$0D00 Transfer Main Processor Control Register CA=0,PC=0DR=0
$1608 Evaluate (ea) and Transfer Data Quad Word (Memory Only)
$1701 CA =0, PC = 0, DR = 0 (External to MC68851) Byte
$1702 Word
$1704 Long Word
$1C0B Take Pre-Instruction Exception F-Line Emulation
$1CoD PC=0 Protocol Violation
$1E38 Take Post-Instruction Exception Configuration Error
$1E39 PC=0 lllegal Operation
$1E3A Access Violation
$2C08 Transfer Single Main Processor Register A0
$2C09 CA =0, PC = 0, DR = 1 (MC68851 to Main Processor) A1l
$2C0A A2
$2C0B A3
$2Cc0C Ad
$2C0D A5
$2COE A6
$2COF A7
$3208 Evaluate (ea) and Transfer Data Quad Word (Memory Only)
$3301 CA =0, PC = 0, DR = 1 (MC68851 to External) Byte
$3302 Word
$3304 Long Word
$8400 Supervisor Check
$8800 Null CA=1,PC=0,IA=0,PF=0TF=0
$8A00 Evaluate and Transfer Effective Address CA=1PC=0
$8C00 Transfer Single Main Processor Register DO
$8C01 CA = 1,PC = 0, DR = 0 (Main Processor to MC68851) D1
$8C02 D2
$8C03 D3
$8C04 D4
$8C05 D5
$8C06 D6
$8C07 D7
$8C08 A0
$8C09 A1
$8COA A2
$8C0B A3
$8C0OC Al
$8C0OD A5
$8COE A6
$8COF A7
$8D00 Transfer Main Processor Control Register CA=1,PC=0,DR=0
$9608 Evaluate (ea) and Transfer Data Quad Word (Memory Only)
$9701 CA =1, PC = 0, DR = 0 (External to MC68851) Byte
$9702 Word
$9704 Long Word
MOTOROLA MC68851 USER'S MANUAL

9-16

is indicated. Additionally, if the MC68020 fails a supervisor check performed as the result of the
MC68851 supervisor check primitive, the resulting trap is the privilege violation exception.

In all of the following paragraphs, the following assumptions are made:
1) Before the start of an instruction dialog, except for the PSAVE and PRESTORE instructions,
the MC68851 is in the idle state,
2) The MC68020 and the MC68851 communicate via a 32-bit data bus, and
3) The memory width is 32 bits, and all memory operands are long-word aligned.

9.3.1 General Instructions

This group of instructions includes the MC68851 instructions: PFLUSH, PFLUSHA, PFLUSHR,
PFLUSHS, PLOADR, PLOADW, PMOVE, PTESTR, PTESTW, and PVALID. The common factor be-
tween these instructions is the format of the F-line operation word, which uses the CpGEN format
of the M68000 Family coprocessor instruction set (refer to the MC68020 32-Bit Microprocessor
User’s Manual. Thus, the initial phase of the communication dialog for these instructions is
identical, with the MC68020 writing the command word to the MC68851 and then relying on the
MC68851 to control the remainder of the dialog through the use of the coprocessor interface
response primitive set.

In general, the dialog for an MC68851 instruction does not advance to the next state until all
activity has been completed in the current state. The MC68851 enforces this by controlling the
assertion of the data transfer and size acknowledge (DSACKXx) signals and through the use of the
come-again attribute of the response primitives.

The following paragraphs discuss the different protocols that are used by the MC68851 for this
group of instructions.

9.3.1.1 PFLUSH INSTRUCTIONS. The dialogs for these instructions are initiated by a write to
the command register and a read of the response register.

The PFLUSH instruction may require that one of the main processor function code registers (SFC
of DFC) be transferred if a function code is required for the flush operation and the value is not
encoded in the coprocessor operation word. If the transfer of SFC or DFC is required, the MC68851
issues a transfer main processor control register primitive and indicates the required register in
the register select CIR. Alternately, the function code may reside in one of the main processor
data registers. If so, the MC68851 will issue the transfer single main processor register primitive
to have the appropriate register transferred. After the function code transfer is complete (if re-
quired), the evaluate and transfer effective address primitive is issued requesting the calculation
and transfer of an effective address from the main processor to the MC68851 for use in the flush
operation. The MC68851 performs the flush operation and releases the processor upon comple-
tion. Until the flush is complete, the MC68851 does not terminate the write cycle accessing the
operand address CIR (i.e., the DSACKXx signals are not asserted). This ensures that the next cycle
is translated correctly.

The supervisor check for these instructions may be returned either before or after the function
code transfer (if any) but always occurs before any entries are flushed from the ATC.

The dialogs for the PFLUSH instructions are shown in Figures 9-18 and 9-19. The key for all
instruction dialogs presented in this section are shown in Figure 9-19.

9.3.1.2 PLOAD INSTRUCTIONS. The dialog for these instructions is similar to that used during
the PFLUSH instructions. The major difference in the communication required for these instruc-

MC68851 USER'S MANUAL MOTOROLA
9-17

8L-6
VI104OL1OW

TVNANVIN S.H3SN LG889ON

FC IN DATA REGISTER

FC IN COMMAND WORD

TRANSFER SINGLE MAIN
PROCESSOR REGISTER
(CA=1, DR=0, PF=0)

READ RESPONSE

TRANSFER DATA
REGISTER

SUPERVISOR CHECK

EVALUATE AND TRANSFER EFFECTIVE
ADDRESS (CA=1, DR=0, PF=0)

FLUSH ATC

NULL (CA=0, PF=1)
$0802

MC68851 MC68020
NULL (CA=0, PF=1)

50802 DECODE INSTRUCTION

WRITE COMMAND

O

FLUSH BY LOGICAL ADDRESS & FC

FLUSH BY FC ONLY

FC IN SFC OR DFC

TRANSFER MAIN
PROCESSOR CONTROL REGISTER
(CA=1, DR=0, PF=0)

READ RESPONSE

READ REGISTER SELECT

MC68851 SPECIFIES SFC OR DFC SUPERVISOR CHECK [

READ RESPONSE

ILLEGAL (S0 OR $1) CIR
TRANSFER CONTROL
NuLL REGISTER

FC IN DATA REGISTER

FC IN COMMAND WORD

READ RESPONSE

TRANSFER SINGLE MAIN
"TER":’?'I‘F""SS;TPTS’;SEERTC“ECK PROCESSOR REGISTER I:D READ RESPONSE
(- (CA=0, DR=0, PF=0)

PRIVILEGE VIOLATION)
READ RESPONSE

EVALUATE <ea>

TRANSFER EFFECTIVE ADDRESS

READ RESPONSE

MC68851 FLUSHES ATC

NEXT OPERATION

Figure 9-18. PFLUSH and PFLUSHS Instruction Dialog

PERFORM SUPERVISOR CHECK
(TRAP IF S BIT NOT SET — PRIVILEGE VIOLATION)

FC IN SFC OR DFC

TRANSFER MAIN
PROCESSOR CONTROL REGISTER
(CA=0, DR=0, PF=0)
MC68851 SPECIFIES
SFC OR DFC (OR ILLEGAL)

READ RESPONSE

READ REGISTER
SELECT CIR

ONLY IF FC IN CPU
REGISTER

MC68851 MC68020

NULL (CA=0, PF=1)]
90802 DECODE INSTRUCTION
WRITE COMMAND
SUPERVISOR CHECK READ RESPONSE
PERFORM SUPERVISOR CHECK
| | (TRAPIF S BIT NOT SET — PRIVILEGE VIOLATION)
PFLUSHR PFLUSHA
EVALUATE EFFECTIVE ADDRESS
AND TRANSFER DATA READ RESPONSE
(CA=0, DR=0, LEN = 8)
EVALUATE <ea> FLUSH ATC READ RESPONSE
FLUSH ATC AND RPT TRANSFER <ea>
NEXT OPERATION
KEY:
INDICATES AN OPERATION THAT IS PERFORMED ITALICS ~ INDICATES THE ENCODING OF THE RESPONSE CIR
ONLY FOR CERTAIN CASES OF THE INSTRUCTION OR AT POINTS IN AN INSTRUCTION DIALOG WHERE IT
OPERATION BEING EXECUTED. THESE OPERATIONS ARE WILL NORMALLY NOT BE READ BY THE MC68020.
IDENTIFIED EXPLICITLY IN THE DIAGRAMS AS TO THE THIS INFORMATION IS INCLUDED FOR DESIGNERS
CONDITIONS UNDER WHICH THEY ARE EXECUTED. OF SYSTEMS THAT DO NOT UTILIZE THE MC68020

AS THE MAIN PROCESSOR. WHEN AN ENCODING
IS INDICATED FOR THE RESPONSE CIR, IT IS NOT

CHANGED UNTIL A NEW ENCODING IS GIVEN.
Figure 9-19. PFLUSHA and PFLUSHR Instruction Dialog n

tions is that the MC68851 must take control of the logical bus in order to perform a search of the
address translation tables (refer to 4.2.3.4 NORMALLY TERMINATED ADDRESS TRANSLATION
WITH RELINQUISH REQUEST). The MC68851 requests bus mastership simultaneously with the
termination of the effective address transfer accessing the operand address CIR.

During the table search operation it is possible for an alternate higher priority bus master to
request and receive control of the logical bus, preempting completion of the MC68851 operation.
The state of the coprocessor instruction is always maintained although the table search may have
to be restarted. However, unless a PSAVE is executed prior to access and a PRESTORE is executed
prior to returning control to the main processor, alternate bus masters must not be allowed to
access the MC68851 coprocessor interface register set during instruction execution as this may
cause the context of the instruction in progress to be permanently lost. Systems employing
multiple devices capable of accessing the MC68851 registers must provide for synchronization of
instruction execution (refer to APPENDIX C SOFTWARE CONSIDERATIONS).

The only difference between the PLOADR and PLOADW instructions is that the translation tables
are updated for a read or a write cycle, respectively, during the table search. The dialog for the

DINAD inatriintinma in ablhaiarm T Ciceonn o_on
RN IO UVLIVTID 1D DI1IUVYIEL TIE) IHUIG v 4V 5

9.3.1.3 PMOVE INSTRUCTION. The dialogs for this instruction are used for all move operations
to and from the MC68851 register set.

MC68851 USER'S MANUAL MOTOROLA
9-19

MC68851

NULL (CA=0, PF=1)
$0802

FC IN DATA REGISTER

MC68020

DECODE INSTRUCTION

WRITE COMMAND

FC IN SFC OR DFC

FCIN COMMAND WORD pveceo i

TRANSFER SINGLE MAIN

PROCESSOR REGISTER READ RESPONSE
(CA=1. DR=0, PF=0) TRANSFER DATA
REGISTER

SUPERVISOR CHECK

EVALUATE AND TRANSFER EFFECTIVE
ADDRESS (CA=1), DR=0, PF=0)

MC68851 TERMINATES TRANSFER AND
ARBITRATES FOR BUS MASTERSHIP

PROCESSOR CONTROL REGISTER
(CA=1, DR=0, PF=0) READ RESPONSE
MC68851 SPECIFIES SFC OR DFC READ REGISTER SELECT
ILLEGAL (80 or $1) CiR
NULL TRANSFER CONTROL
REGISTER

|

READ RESPONSE

PERFORM SUPERVISOR CHECK
(TRAP IF S BIT NOT SET — PRIVILEGE VIOLATION)

READ RESPONSE

EVALUATE EFFECTIVE ADDRESS

TRANSFER EFFECTIVE ADDRESS

TABLE SEARCH COMPLETED

NORMALLY

NULL (CA=0, PF=1) WITH
RELINQUISH AND RETRY

g} [Houvas 318w

TABLE SEARCH COMPLETE

TABLE SEARCH ABORTED BY
LOGICAL BUS TRAFFIC

] READ RESPONSE

TABLE SEARCH ABORTED
BY LOGICAL BUS TRAFFIC

[Houvas 1avL

=]
S
b=
o
NULL (CA=0, PF=1) I
50802 READ RESPONSE
NEXT OPERATION

Figure 9-20. PLOAD Instruction Dialog

MOTOROLA
9-20

MC68851 USER'S MANUAL

The dialog is initiated with the command CIR write and the supervisor check primitive response.
After performing the supervisor check, the main processor is requested to evaluate the effective
address encoded in the F-line coprocessor instruction word and transfer data to or from the
MC68851.

After the data transfer is complete, the main processor is released from the MC68851-to-external
instruction dialog as shown in Figure 9-21. For external transfers to the MC68851, the protocol is
somewhat more complex. Data written to any of the root pointer registers must be checked for
validity and the ATC must be updated before the processor can be allowed to continue with the
next instruction. Data written to the translation control register undergoes several consistency
checks to ensure that the logical address is completely mapped and the requested memory page
size is greater than 256 bytes. Before the processor is allowed to continue, the ATC is flushed.
The dialog for a write to the translation control register or the root pointer registers is shown in
Figure 9-22.

The instruction dialog for write operations to other MC68851 registers is shown in Figure 9-23.
The only operation that is not entirely straight-forward is the write to the breakpoint acknowledge
control register. When the write operation enables the breakpoint corresponding to the register
accessed, the MC68851 sets a save-breakpoint-state flag (if it is not already set) that indicates that
the long format state frame including all the BADx and BACx registers, must be saved in response
to a PSAVE instruction. When the write operation disables the corresponding breakpoint, the
MC68851 checks the enable bits of all of the breakpoint acknowledge control registers to determine
if there are any breakpoints still enabled. If no breakpoints remain enabled, the MC68851 clears
the save-breakpoint-state flag indicating that the long format state no longer needs to be saved
in response to a PSAVE instruction. Otherwise, the flag remains set.

The PMOVE external-to-MC68851 dialog for accesses to the CAL, VAL, SCC, AC, BADx, status,

and BACx registers is shown in Figure 9-23. n

MC68851 MC68020

—

NULL (CA=0, PF=1)
I I
$0802 DECODE INSTRUCTION
WRITE COMMAND
SUPERVISOR CHECK READ RESPONSE

PERFORM SUPERVISOR CHECK
(TRAP IF S BIT NOT SET — PRIVILEGE VIOLATION)

READ RESPONSE

EVALUATE <ea> AND TRANSFER DATA
(CA=0, DR=1,LEN =1, 2, 4, OR 8)

EVALUATE <ea>

TRANSFER OPERAND

" NEXT OPERATION

Figure 9-21. PMOVE PMMUreg,(ea) Instruction Dialog

MC68851 USER'S MANUAL MOTOROLA
: 9-21

MC68851 MC68020
NULL (CA=0, PC=0, IA=0, PF=1)]

T
50802 DECODE INSTRUCTION

WRITE COMMAND

SUPERVISOR CHECK READ RESPONSE

PERFORM SUPERVISOR CHECK
(TRAP IF § BIT NOT SET — PRIVILEGE VIOLATION)

WRITE TO ROOT POINTER REGISTER ~ WRITE TO TRANSLATION CONTROL REGISTER

EVALUATE <Cea>> AND TRANSFER
DATA (CA=1, DR=0, LEN = 8)

EVALUATE <Cea>> AND TRANSFER
DATA (CA=1, DR=0, LEN = 4)

EVALUATE <ea> EVALUATE <ea>

READ RESPONSE READ RESPONSE

TRANSFER DATA ACCEPT DATA AND CHECK

TRANSFER DATA
ENABLE BIT (BIT[31]) NS

RP CONSISTENCY CHECK

7

AND ATC UPDATE TC ENABLED TC DISABLED
UPDATE TC REGISTER D
ONLY IF WRITE TO CRP AND FLUSH ATC
VALID ROOT POINTER VALUE C INVALID ROOT POINTER VALUE PREVIOUS TC DISABLED H\/mus C ENABLED\‘
I’ \l NULL (CA=1, PF=0) READ RESPONSE \
TAKE POST-INSTRUCTION READ RESPONSE $8800
EXCEPTION $1E38 5\
WRITE CONTROL CIR

SUM OF TABLE INDEX | SUM OF TABLE INDEX FIELDS 7 32

NULL (CA=0, PF=1) N
m $0802 READ RESPONSE FIELDS = 32 \ﬁ)

NULL (CA=1, PE=0) :l READ RESPONSE

$8800

PS FIELD = 8 PS FIELD < 8

UPDATE TC l:]

UPDATE TC (DISABLED)

TAKE POST-INSTRUCTION
EXCEPTION $1E38

READ RESPONSE

WRITE CONTROL CIR

NULL (CA=0, PF=1)

$0802 READ RESPONSE

NEXT OPERATION

Figure 9-22. PMOVE (ea),PMMUreg (Root Pointer or TC Registers)

MOTOROLA MC68851 USER'S MANUAL
9-22

MC68851 MC68020

NULL (CA=0, PC=0, IA=0, PF=1)]
s0802 DECODE INSTRUCTION
WRITE COMMAND
SUPERVISOR CHECK READ RESPONSE
PERFORM SUPERVISOR CHECK
(TRAP IF S BIT NOT SET — PRIVILEGE VIGLATION)
WRITE TO CAL, VAL, OR SCC REGISTERS WRITE TO BACx REGISTERS

WRITE TO AC, BADx,
OR STATUS REGISTERS
EVALUATE <ea>> AND

TRANSFER DATA l READ RESPONSE EVALUATE <Cea>> AND TRANSFER DATA READ RESPONSE
(CA=0, DR=0, LEN = 1) (CA=1. DR=0, LEN = 2)

EVALUATE <ea>> EVALUATE <ea>

TRANSFER DATA TRANSFER DATA

UPDATE REGISTER

UPDATE REGISTER

BREAKPOINT ENABLED — BREAKPOINT DISABLED
~ 3

x <— 0

TEST ENABLE BIT
IN BACx

X - xtl

x=0,2350R6 x=1,40R7

READ
RESPONSE

EVALUATE <Cea>> AND TRANSFER DATA

READ RESPONSE
(CA=0, DR=0, LEN = 2)

EVALUATE <ea>

TRANSFER DATA x < 7 & BACx[15] = 0

BACx[15] =1
UPDATE REGISTER (x>=>7 & BACx[15] =0

BREAKPOINT SAVE DISABLED

BREAKPOINT SAVE ENABLED

ONLY FOR WRITES TO BACx —» LA PRl | READ RESPONSE
$0802
|

NEXT OPERATION

Figure 9-23. PMOVE (ea),PMMUreg (CAL, VAL, SCC, AC, PSR, PSCR, BADx, and BACx Registers)

MC68851 USER’S MANUAL MOTOROLA
9-23

9.3.1.4 PTESTINSTRUCTIONS. The beginning of the dialog for the PTEST instructions is similar
to that of the PLOAD instructions described above. However, the MC68851 does not perform a
table search operation if a level zero test is requested. At the termination of a PTEST instruction
with a non-zero level specification, the MC68851 may optionally return the physical address used
to perform the last level of the search. If this is requested, the MC658851 issues the transfer main
processor register primitive that causes the main processor to transfer a long word address from
the MC68851 operand register into one of the address registers of the processor.

The only difference between the PTESTR and PTESTW variations of this instruction is in the
examination of access rights for the detection of an access level violation (refer to 6.1.10.4 ACCESS
LEVEL VIOLATION). The dialog of this instruction is shown in Figure 9-24.

9.3.1.5 PVALID INSTRUCTION. The PVALID instruction differs from other MC68851 general
instructions in that the supervisor check primitive is not issued during the dialog for this instruction.
Since this instruction terminates with an exception (access violation) if the task executing this
instruction does not have sufficient access rights, no further protection is required. Furthermore,
if the access level protection mechanism is disabled, the dialog for this instruction is always
terminated with an access violation exception. The dialog for this instruction is shown in Figure
9-25.

9.3.2 Conditional Instructions

This group of instructions includes the PBcc, PDBcc; PScc, and PTRAPcc instructions. The common
factor between these instructions is that the execution of each one is defined by the M68000
Family coprocessor instruction set, and the dialog used for all of them is the same. The dialog
consists of only one write cycle and two read cycles; the main processor writes the conditional
predicate to the MC68851 and then reads the response CIR, first to receive a supervisor check,
n and again to receive the result of the evaluation. After the supervisor check, the MC68851 always

responds immediately with a true or false result, and the main processor then proceeds with the
appropriate conditional action. This dialog is shown in Figure 9-26.

9.3.3 Context Switch Instructions

This group of instructions includes the PSAVE and PRESTORE instructions. The common factor
between these instructions is that the execution of each one is defined by the M68000 Family
coprocessor instruction set, and the coprocessor does not control the dialog in the flexible manner
available with the general and conditional instruction types. The dialog consists of the save and
restore command, followed by the transfer of the appropriate state information. These dialogs
are discussed in the following paragraphs.

9.3.3.1 PSAVE. This dialog is utilized for the context save instruction. The dialog for this in-
struction is shown in Figure 9-27. No response primitives are issued during the dialog for the
PSAVE instruction. The MC68851 controls the frame transfer to a limited extent through the use
of the format word encoding.

The main processor initiates this dialog by reading from the save CIR. During this read cycle, the
MC68851 returns a format word that indicates the current state of the machine. For most cases
of this dialog, the first read of the save CIR returns the idle format word, and the main processor
then proceeds to transfer nine long words from the operand CIR to memory. If the MC68851 is
busy processing a coprocessor instruction when the PSAVE is encountered, a busy format word
is returned and an 11 long word, mid-coprocessor instruction frame will be saved if all breakpoints
were disabled. A 19 long word frame will be saved if any breakpoints were enabled. The invalid

MOTOROLA MC68851 USER'S MANUAL
9-24

MC68851 MC68020

NULL (CA=0, PF=1)

50802 DECODE INSTRUCTION

WRITE COMMAND

FC IN DATA REGISTER/?\FC IN SFC OR DFC

FC IN COMMAND WORD TRANSFER MAN—=
PROCESSOR CONTROL REGISTER

READ RESPONSE

TRANSFER SINGLE MAIN PROCESSOR (CA=1, DR=0, PF=0)
READ RESPONSE - DR=0,
REGISTER (CA=1, DR=0, PF=0) MC68851 SPECIFIES SFC OR DFC gls:n REGISTER SELECT
TRANSFER DATA ILLEGAL (30 OR $1)
REGISTER NULL TRANSFER CONTROL
REGISTER
SUPERVISOR CHECK L READ RESPONSE

PERFORM SUPERVISOR CHECK

— PRI IOLATION
NOT DONE IF LEVEL = 0 (TRAP IF S BIT NOT SET — PRIVILEGE VIOI)

AND PHYSICAL ADDRESS —- EVALUATE AND TRANSFER EFFECTIVE [AEAD RESPONSE
1S T0 B RETURNED ADDRESS {CA=1, DR=0, PF=0)
LEVEL 1 THROUGH 7 TEST LEVEL 0 TEST
r EVALUATE EFFECTIVE ADDRESS v ci0AL ADDRESS RETURNED "~ NO PHYSICAL ADDRESS RETURNED
TERMINATES TRANSFER AND I/ ~
F
ARBITRATES FOR BUS MASTERSHIP TRANSFER EFFECTIVE ADDRESS] i\l/JI?JL:EASTSE EFFECTIVE
TAKE F-LINE
TABLE SEARCH READ RESPONSE
L EXCEPTION AT SEARCH TRANSFER EFFECTIVE
WRITE CONTROL ADDRESS
oR UPDATE STATUS
REGISTER
TABLE SEARCH COMPLETED NORMALLY TABLE SEARCH ABORTED BY LOGICAL BUS TRAFFIC
NULL (CA=0, PF=1) READ RESPONSE
50802

NULL {CA=1, PF=0) WITH
RELINQUISH AND RETRY

TABLE SEARCH

READ RESPONSE

TABLE SEARCH ABORTED
BY LOGICAL BUS TRAFFIC

TABLE SEARCH COMPLETE

UPDATE STATUS REGISTER

PHYSICAL ADDRESS RETURNED i NO PHYSICAL ADDRESS RETURNED

NULL (CA=1, PF=0)
$5800 READ RESPONSE

TRANSFER SINGLE MAIN PROCESSOR READ RESPONSE
REGISTER (CA=0, DR=1, D/A=1)

TRANSFER REGISTER

NULL (CA=0, PF=1)
ESPONSE
\ 50802 [D READ R SV
1

NEXT OPERATION

Figure 9-24. PTEST Instruction Dialog

MC68851 USER'S MANUAL MOTOROLA
9-25

MC68851 MC68020

NULL (CA=0, PF=1)

50802 DECODE INSTRUCTION

WRITE COMMAND

MC BIT (ACCESS CONTROL REGISTER BIT[7]) SET MC BIT (ACCESS CONTROL REGISTER BIT[7]) CLEAR

SURROGATE VAL IN An LEVEL IN VAL

TRANSFER SINGLE MAIN PROCESSOR

E
REGISTER (CA=1, DR=0, D/A=1) READ RESPONS

TRANSFER REGISTER

EVALUATE AND TRANSFER EFFECTIVE
ADDRESS (CA-) READ RESPONSE
EVALUATE <ea> EVALUATE AND
TRANSFER EFFECTIVE READ RESPONSE
TRANSFER <ga> ADDRESS (CA=1)
PERFORM ACCESS RIGHTS CHECK CALCULATE <ea>
I TRANSFER <ea>
n VALID REQUEST INVALID REQUEST
|/ TAKE POST-INSTRUCTION
0. PF= READ RESPONSE
nuL ‘BA‘”';OFB‘JZ’ READ RESPONSE EXCEPTION $1E3A
TAKE EXCEPTION
NEXT OPERATION

Figure 9-25. PVALID Instruction Dialog

format word may also be returned, as discussed in 9.3.4.6 FORMAT EXCEPTION, PSAVE IN-
STRUCTION.

After the MC68020 receives a valid format word, it then evaluates the effective address and writes
the format word to that address. The appropriate state frame is then transferred to the effective
address, and the main processor is free to proceed with the execution of the next instruction.

Since the MC68851 does not return any primitives during execution of the PSAVE instruction, it
is the responsibility of the processor to ensure that a PSAVE instruction is executed only in the
supervisor mode of operation (the MC68020 does this automatically).

Note that after the state save operation is complete, the MC68851 is in the idle state with no
pending exceptions.

MOTOROLA MC68851 USER'S MANUAL
9-26

MC68851 MC68020

NULL (CA=0, PF=1) DECODE INSTRUCTION

$0802
WRITE PREDICATE
SUPERVISOR CHECK READ RESPONSE
TEST CONDITION

PERFORM SUPERVISOR CHECK
(TRAP IF S BIT NOT SET — PRIVILEGE VIOLATION)

READ RESPONSE

NULL (CA=0, PF=1, TF=x)
$0802 OR $0803

PERFORM CONDITIONAL ACTION

L

Figure 9-26. Conditional Instruction Dialog

MC68851 MC68020

(RESPONSE CIR MAY BE |
INANY STATE) DECODE INSTRUCTION

IDLE, BUSY, BREAKPOINT ENABLED, I READ SAVE CIR
OR ILLEGAL FORMAT WORD

LEGAL FORMAT WORD ‘é— ILLEGAL FORMAT WORD
—

EVALUATE <ea>

STORE FORMAT WORD

[READ STATE FROM MC68851
r-‘ TAKE FORMAT EXCEPTION

STORE STATE IN MEMORY
‘ : r WRITE CONTROL CIR

STORE STATE FRAME N
9, 11, OR 19 LONG-WORD —
TRANSFERS

NEXT OPERATION
Figure 9-27. PSAVE Instruction Dialog

s
MC68851 USER'S MANUAL MOTOROLA
9-27

9.3.3.2 PRESTORE. This dialog is utilized for the context restore instruction. The dialog for this
instruction is shown in Figure 9-28. As with the PSAVE instruction, no primitives are issued during
the dialog for this instruction. The MC68851 controls the frame transfer to a limited extent through
the use of the format word encoding.

The main processor initiates the restore dialog by evaluating the effective address, fetching a
format word from that address, and writing the format word to the restore CIR. The main processor
then reads the restore CIR to verify that the format word is valid. During this read cycle, the
MC68851 returns a format word that indicates if the format word that was written is valid for the
current revision of the device. If the format word is valid, the same value that was written is read
back from the restore CIR, and the main processor proceeds to transfer the state frame appropriate
for the format word. The state frame size is 0, 9, 11, or 19 long words for the current implementation
of the MC68851. The invalid format word may also be returned as discussed in 9.3.4.7 FORMAT
EXCEPTION, PRESTORE INSTRUCTION. Note that after the state restore operation is complete,
the MC68851 is in the state of the instruction (if any) that was previously suspended with a PSAVE
instruction.

Since the MC68851 does not return any primitives during execution of the PRESTORE instruction,
it is the responsibility of the processor to ensure that a PRESTORE instruction is executed only
in the supervisor mode of operation (the MC68020 does this automatically).

MC68851 MC68020

(RESPONSE CIR MAY BE

IN ANY STATE) T DECODE INSTRUCTION

—
EVALUATE <ea>

n FETCH FORMAT WORD
NULL, IDLE, BUSY, BREAKPOINT ENABLED, WAITE RESTORE CIf

OR ILLEGAL FORMAT WORD

READ RESTORE CIR

LEGAL FORMAT WORD —é)~ ILLEGAL FORMAT WORD
—

’T FETCH STATE FROM MEMORY

WRITE STATE TO MC68851

TAKE FORMAT EXCEPTION

RESTORE STATE FRAME : WRITE CONTROL CIR
0.9, 11, OR 19 LONG-WORD —
TRANSFERS

L
(RESPONSE CIR RESUMES \Q/
SUSPENDED DIALOG)
NEXT OPERATION
Figure 9-28. PRESTORE Instruction Dialog

MOTOROLA MC68851 USER'S MANUAL
9-28

9.3.4 Exception Processing

This group of dialogs is actually a set of special cases of the dialogs described previously; they
are grouped here for quick reference, and to simplify the preceding discussions. For each of the
exception processing dialogs, only the differences from the normal instruction dialogs shown
above are discussed here. Also, it should be noted that these dialogs do not include all exception
processing sequenc