MC68360UM/AD

MC68360

Quad Integrated
Communications
Controller

USER'S MANUAL

@ MOTOROLA

Introduction

Signal Descriptions
Memory Map

Bus Operation
CPU32+

System Integration Module (SIM60)

Communication Processor Module (CPM)
IEEE 1149.1 Test Access Port
Applications

Electrical Characteristics

- Ordering Information and Mechanical Data
Serial Performance
Development Tools and Support
RISC Microcode from RAM

Index

n System Integration Module (SIM60)

‘Communication Processor Module (CPM)
IE] ek 1149.1 Test Access Port

n Applications

“ Electrical Characteristics

Al Ordering Information and Mechanical Data

Serial Performance

“ Development Tools and Support

RISC Microcode from RAM

BN e

@ MOTOROLA

MC68360

QUad Integrated
Communications Controller
User’s Manual

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and the () are registered trademarks of Motorola, Inc. Motorola, Inc. is an
Equal Opportunity/Affirmative Action Employer.

MC68360 USER’S MANUAL

MOTOROLA

PREFACE

The complete documentation package for the MC68360 consists of the MC68360UM/AD,
MC68360 QUad Integrated Communications Controller User’'s Manual, M68000PM/AD,
MC68000 Family Programmer’s Reference Manual, and the MC68360/D, MC68360 QUad
Integrated Communications Controller Product Brief.

The MC68360 QUad Integrated Communications Controller User’s Manual describes the
programming, capabilities, registers, and operation of the MC68360 and the MC68EN360;
the MC68000 Family Programmer’s Reference Manual provides instruction details for the
MC68360; and the MC68360 QUad Integrated Communications Controller Product Brief
provides a brief description of the MC68360 capabilities.

This user’s manual is organized as follows:

Section 1 Introduction

Section2 Signal Descriptions

Section3 Memory Map

Section4 Bus Operation

Section5 CPU32+

Section6 System Integration Module (SIM60)
Section7 Communication Processor Module (CPM)
Section8 |EEE 1149.1 Test Access Port

Section9 Applications

Section 10 Electrical Characteristics

Section 11 Ordering Information and Mechanical Data
Appendix A Serial Performance

Appendix B Development Tools and Support
Appendix C RISC Microcode from RAM

MOTOROLA MC68360 USER’S MANUAL iii

MC68360 USER’S MANUAL

' MOTOROLA

TABLE OF CONTENTS

Paragraph Page
Number Title Number
Section 1
Introduction
1.1 QUICC Ky FEAtUIEScccvevuiiirnisiirencsuissnnmntsssinssesisssesssssssssssssssnns 1-1
1.2 QUICC Architecture OVeIVIEW..........cvrviiiieninnnennnieeinseonnneen 1-4
1.2.1 CPUB24 COrB ...ccvireerrerreenreesseeseesssnsnessssssneeressenssssssssssnassssossssssssnns 1-5
1.2.2 System Integration Module (SIMBO0)cccceertrinrnnerctisnierinssernnssensens 1-6
1.2.3 Communications Processor Module (CPM)......cccceerveerccrcnnineeesane 1-6
1.3 Upgrading Designs from the MCB8302.........ccueemeemiininncnnneniineenn 1-7
1.3.1 Architectural APProachccoccivecvninnninnssnsnnineene s, 1-7
1.3.2 Hardware Compatibility ISSUEScccccveeriieiineninneiinessensenncsisnnns 1-7
1.33 Software Compatibility ISsues.........ccccvvvviirvnneniinviininnineees 1-8
1.4 QUICC Glueless System Designcccoccvirsinnsrinnniennnsssnneene. 1-9
1.5 QUICC Serial Configurationscccuuiunenneinieeiecnisn. 1-10
1.6 QUICC Serial Configuration EXamplesc.ccucerveenensesensensisnsecannes 1-17
1.7 QUICC System Bus Configurationsccvevvevensninissninssnninn. 1-19
Section 2
Signal Descriptions

2.1 System Bus Signal INdexXcccvvinireinnnenin s 2-1
2.1.1 Address BUS ... 2-1
2111 Address Bus (A27=A0)ccocuvmriscsnsenserennemssenissnene 241
21.1.2 Address Bus (A31-A28)ccouvrreinirirsmsnsissensneesiesnsssnaesene: 25
21.2 Function Codes (FC3=FCO0).....ccccccvrmrmenrinrmnsensesssenesssisnmsssessssnssessens 2-6
213 Data BuS.....cooueerreensienensenserasenssensenaess ettt sr s b e 2-6
2.1.3.1 Data Bus (D31-D16)....ccccccrvmriininsinisinecsnsisnscsecssnsscsssessens 2-6
2.1.3.2 Data Bus (D15-D0).....cc.cccrverernririrmnnininnnsscnssneisisenssssesssnmsessenss 2-7
214 PACEY ..ooviernnniinnnsineesnessnneennesstnsenissssnsssts s s sasassessans s cesassanennesns 27
2141 Parity (PRTY0) ...cccceeeirerenicrienenressssnsensssnssnsisssssonsessssssessssssssenssass 2.7
2.1.4.2 Parity (PRTY 1) .ccccciiireenccernnssiennenesssssesssssssnssessnsessasssssssssssesess 2-7
2.14.3 — Parity (PRTY2) cuueeerersnnsessesssssssssesesssnssssssssssessasssssssssssssssesionses | 27
2144 Parity (PRTY3) ..cciverinreeneiensenisaniscnesseseesesssssessessssessssessssssssassans 2-7
215 MemOry CONIOIETcccveecrreeienrineiiiressserecrsetsssicesssesses e ssssessessnes 2-7
2.1.5.1 Chip Select/Row Address Select (CS6-CS0/RAS6—-RAS0)......... 2-7
2.1.5.2 Chip Select/Row Address Select/Interrupt Acknowledge

(CST/RAST/IATKT) cuvvevivierrerirsrreesesssensssssnsssssssssssnssssssssisssasans 2-7

MOTOROLA MC68360 USER'S MANUAL v

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

21.5.3 Column Address Select/Interrupt Acknowledge

(CAS3—CASO/IACKB,3,2,1) ..cevvrrerrrererensrsrresesesessssssasasasensssessones 2-8
2154 Address Multiplex (AMUX)cccceiniinnninnninnnneenniseesmensnmsssioss 2-8
21.6 Interrupt Request Level (IRQ7-TRQT)ccoceervverirerenreertsnrsesssssnsenens 2-8
217 Bus Control SIgNalS........cocovriineiiinciiniminseiissseiiesnesieise 2-8
21.74 Data and Size Acknowledge (DSACK1-DSACKO)ccoeueveenes 29
21.7.2 Autovector/Interrupt Acknowledge (AVEC/IACKS).......ccccuvurrceranes 2-9
21.7.3 AAress Strobe (AS)cvceeeeerereersserssssessnassessssessssssssssssssesans 29
21.74 Data Strobe (DS)coveererererrrreressenerseeesesssrarssssesessesarsessssessssn 2-9
2175 Transfer Size (S1Z1, SIZ0)ccccvvirvininininnsiininnniiieen. 29
21.7.6 Read/WIite (R/W).......ccocererriernneneneecesesnsssesisesesssesssssesssssesnnsssnses 2-10
21.7.7 Output Enable/Address Multiplex (OE/AMUX)........ccccevnrreeeresnnnns 2-10
21.7.8 Byte Write Enable (WES—WED)cceviusrsrenmsusssssensscsasasssssessaes 2-10
218 Bus Arbitration Signalscccceeccerreeerceeernnrrrreereretsie s 2410
2.1.8.1 Bus Request (BR)ceceevrerereierersnsecirerssessssnsessessessesessesessassns 2-10
21.8.2 BUS Grant (BG)coevvvirreereecrinseenssssessssesssssssssssasssssssssssasessssssssne 2-10
2183 Bus Grant Acknowledge (BGACK)........covvuerneensssssesscsnsusessssasnacacs 2-10
2184 Read-Modify-Write Cycle/Initial Configuration (RMC/CONFIG0). 2-10
2.1.8.5 Bus Clear Out/Initial Configuration/Row Address Select

Double-Drive (BCLRO/CONFIG1/RAS2DD).........covenersuseeesescses 2-10
219 System Control Signalscccovviecenccnecisninnnnnesinssnnesssisnsssssens 2-11
21.9.1 Soft Reset (RESETS) ..ccccvvieeriinnincenscnniinssniiesnsssssnssssssmsassseseess 2-11
21.9.2 Hard Reset (RESETH)ccovceininnnnnnnnnninnnsnsnnisnnsensisnisss 2-11
21.9.3 Halt (HALT) ..cuceirnrnenininnnnisinisissessessnnsssssssessisnessssessnene teesaeas 2-11
2194 Bus Error (BERR) ..cccivieivciniininniiininiennininecninnieiniscne, 2-11
2.1.10 ClOCK SIgNalS.....cceeiiieerrisiniisnisiiinsnissnssisesesesee 2-11
2.1.10.1 System Clock Outputs (CLKO2-CLKO1)ccccernervuncnnisrisersersenees 2-11
2.1.10.2 Crystal Oscillator (EXTAL, XTAL)ccocenririirccssunsnnsecsnissusessnnsanes 2-12
2.1.10.3 External Filter Capacitor (XFC)......cecectiresnreensnsssssnenissessssssnsneassas 2-12
21.104 Clock Mode Select (MODCK1-MODCKO).......cvcvrursuessunsnssuncneens 2-12
2111 Instrumentation and Emulation Signals..........ccececrnccsnnicininnsniennen. 2-12
2.1.11.1 Instruction Fetch/Development Serial Input (IFETCH/DS).......... 2-12
21.11.2 Instruction Pipe/Development Serial Output (IPIPE0/DSO)......... 2-12
21.11.3 Instruction Pipe/Row Address Select Double-Drive

(TPTPET/RASTDD) ..ouveceeereereneessnesssssaressrsssssssrssssrsssssssessssessess 2-12
21114 Breakpoint/Development Serial Clock (BKPT/DSCLK)................ 2-13
21.11.5 Freeze/Initial Configuration (FREEZE/CONFIG2)c.cccceueeuen. 2-13
21.12 Test Signals........ccceeieniinnnis s 2-13
2.1.12.1 Tri-State Signal (TRIS).....cceecerererernmrasessesseesmressssssscsssssssessasssssasass 2-13
2.1.12.2- TestReset (TRST) cvsniciniinininininnnnniiineesnsensensmieons 2-13
21123 Test Clock (TCK)cccvvirenniicininnsisnisnessesnssmnesissmnisnsessuiansnn, 2-13
21124 Test Mode Select (TMS).....cccvnirvcnninninnincssnsessnniesnseenee 2-13

vi MC68360 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
21.125 Test Data In (TDI) c...ciiiiineicninecnniinnnicsntiecnecnnenenssineesescessssssanes 2-13
2.1.126 Test Data Out (TDO).......ccceveinmmreinmsnieissmnnesssssmeessnssesssssassen 2-13
2113 Initial Configuration Ping (CONFIG)........ccccveevrumnnrenssecsereseesnnresssncns 2-13
21.14 Power Signals.........cccccvviiinmniinicn e sasees 2-14
21141 VCCSYN and GNDSYN........coccrvmminininnnoeiinnsseenines 2-14
21142 VCCCLK and GNDCLK.......ccocerrnennmnsressinsssessnnessnsassnssessarnssessens 2-14
2.1.143 GNDS1 and GNDS2.......cccovininiinnensennisnorissnssssissssssssissassssonns 2-14
2.1.144 VCC and GNDcccvvmrnierinninenisnnssnnssssnssssissssssnesessssnsssssses 2-14
2.1.145 NCA-NCHT ...ttt sssssssssessesseens 2-14
22 System Bus Signal Index in Slave Modeccccvvvrrreinnreecscnsenensacnes 2-14
23 On-Chip Peripherals Signal IndeX........c.ccvververnrrncivnreeniennneennenienesenens 2-16
Section 3
QUICC Memory Map
3.1 Dual-Port RAM Memory Mapcccccoeeeemnurisnnesssesnmnsessenesassenesesnsssesses 32
3.2 CPM Sub-Module Base AdAresses..........covvrirnceninnnesecsesessssinsssesns 3-3
3.3 Internal Registers Memory Mapccocccvvvcvimencsininncininnneinenisssenn 3-4
3.3.1 SIM Registers Memory Map ..o, 3-5
3.3.2 CPM Registers Memory Mapcccvvceinirninnensssesenssessssnssesessssne 3-7
Section 4
Bus Operation
4.1 Bus Transfer SignalS.........ceeriirirneinrenemsrmnenisessssersessssissnmsssanes 4-2
4.1.1 Bus Control Signalsccccieieniineiinieneninnissesnsisemenss 4-3
4.1.2 Function Codes (FC3—FCO0).....ccccevcerrrrrrrnerrsrernersnrsanesseessssrsasisnessons 4-3
4.1.3 Address Bus (A31—A0)ccccererrerirerernesarrseessnesesssnessssnrsssesssesressssns 4-4
414 Address Strobe (AS).......ccccverereernurereserenseserssisresssesssesssasessesssssssseses 4-4
4.1.5 Data Bus (D31-D0)cccviirminrnnernninnnsccsinsiienessssesnssssssmnesssons 4-4
416 Data Strobe (DS)cceuvurerervreerereresennersrensssesssessssssssesesesesssssssiessasans 4-4
4.1.7 Output ENable (OF)cceeveeeerernnerererusnsnsnssessssssessssssssssasssssassssenssns 4-5
41.8 Byte Write Enable (WE3—WED)c.covueerererresseresressssresessssnnssesesens 4-5
4.1.9 Bus Cycle Termination Signals.........ccceceeviieiriienniiccsirnnnecsnrcninsennas 4-5
4.1.9.1 Data Transfer and Size Acknowledge (DSACK1 and DSACKO) .. 4-5
4.1.9.2 BuUS Error (BERR)occecviiiiiiiiiircnncstsecnssinecsnestsssessasssnsesssnas 4-6
4193 AUtOVECIOT (AVEC)cocreicerinereneccrecnnscansniessesssnssersssnessssssnsasssnns 4-6
4.2 Data Transfer Mechanismccccviviinmncninennnnenisnsisesn 4-6
4.21 Dynamic BUS SIZING .c.eeeuirueireretsinmnnsssirserssicsnssesssisenesssessesssssensessesenes 4-6
4.2.2 Misaligned Operands.........cccoevrrerecrneresnniesencsnerercenennecssnessssnsnnsssnes 4-14
423 Effects of Dynamic Bus Sizing and Operand Misalignment............. 4-20
424 BUS Operation......cuecuiciesssonmssiinersnssssinessosnsssssssnmmassssssnessisssarnssasios 4-21

MOTOROLA MC68360 USER'S MANUAL vii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

425 Synchronous Operation with DSACKXc.cccurereiersnisersnrenseninnens 4-22
426 Fast Termination CyCles.........cccvvvvnnmininncinnsinnenenseienn 4-22
43 Data Transfer CYCIEScvieinninincninnnssess s ssssnsssses 4-23
4.3.1 Read CYCIOccirrtiirrerisinceinsssnneesssssenssessansisessansssasonsssssesssssnasses 4-24
432 WIIE CYCI@ ..ottt s ssestsanns 4-28
433 Read-Modify-Write Cycle.........cccvvmniiininmmninineininnnnienennneinnnnn 4-31
4.4 CPU SPaCe CYCIES ..ueveeerrirernrenirensiienrereimissnnsssesssnesssnsssstisessnssssssessnnes 4-34
441 Breakpoint Acknowledge Cycle........cccvvinincnnincccnrirsiniennsnincsnnenens 4-34
442 LPSTOP Broadcast Cycle.........c.ccouverimnnnreiesennnicnnannniassnsnssnnnnns 4-38
443 Module Base Address Register (MBAR) ACCESS.......ccocreenrnririanrene 4-39
444 Interrupt Acknowledge Bus CyCles.........coouievniercninsimnnnnencsesninnes 4-39
4441 Interrupt Acknowledge Cycle—Terminated Normally 4-39
4442 Autovector Interrupt Acknowledge Cycle..........ccenmviineincnncnnnns 4-41
4443 Spurious Interrupt CYCleccevvevviireernrtercrccerrenr st csnesseessanesans 4-43
45 Bus Exception Control Cycles..........cccuvmnninennnsneiinesmnnsennnninena, 4-44
45.1 BUS EITOIS ..ccccrrriir st et re st s st saeents 4-46
452 REtry Operationceeerreriresersnnnsrersssssmmsessssstsannisssssssnnsssssssossasanss 4-48
45.3 Halt Operationc..ccciirennieninnnnccsninnne . e 4-50
454 Double BUS Fault..........cccooreniiinmreniinnininnnnnenssseensseisesinssessseese 4-52
46 Bus Arbitration ... e 4-53
4.6.1 BUS REQUESE ..o ittt e 4-56
46.2 BUS Grantcccoeeeiirercneciinnnnnnesnnensnsisnsnssstisssnesnssisessnsessssssnssansns 4-57
46.3 Bus Grant Acknowledge..........ccerinnnennecininncnnencsnenneiniene, 4-57
46.4 Bus Arbitration COntrolcceeeerrcerrcnrerrnssiscnensnrsierensscssesseesenns 4-58
46.5 Slave (Disable CPU32+) Mode Bus Arbitration...........cc.cccueenennunee 4-59
46.6 Slave (Disable CPU32+) Mode Bus EXceptionsccccevverserennnnes 4-63
46.6.1 HALT ot sssnssssensasasssse s ssssasssssasasses 4-63
46.6.2 RETRY ..ureriiiiicnnsisiiensccstnnssisssssassssssssssssnsssene PR 4-64
46.7 INternal ACCESSES ...uuivuiiiimiiniinseniiiinsr i seaenane 4-64
46.8 SHOW CYCIES....cceurrirnicirirennsaessnrransesstssnnssssstessasessasssssssessssssssesssnss 4-67
4.7 Reset OPeration.........cuveecceccrnnenermrcerensiesecneessssesmennisssssnesssssssesonenens 4-68

Section 5

CPU32+
5.1 OVEIVIBW ...ttt sise st ssesssssssaneassssssansssessesssasssaasasesassssssnnan 5-1
56.1.1 FRAUIESvtiieiiiirensnrcttrssincstrse s setesss e s s ssmseas s e st esanssans 5-3
5.1.2 Virtual MEMOKYcocieiiiniiiininicnsisinesne e sssessessennessesssssssssssas 5-3
513 Loop Mode Instruction Execution................. erssreseiseratseesesernesasannes 5-4
5.1.4 Vector Base RegiISter........ccvvviiinncriniiinnnenissiennnmsnsieniiisesennnnes 5-5
5.1.5 Exception Handling........cccivimiiinmninsnnsnnnisennsmnnisesinesen 5-5
5.1.6 Addressing MOdES........ccoireruiisinnnniiemniissiei s 5-6

viti MC68360 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

5.2 Architecture SUMMANYccoiiininninir e 5-6
5.2.1 Programming Modelccoceeiiecriiicmiinierennresnerinssscsessseesiesenense 5-7
52.2 REQISIEIS ...ecvtirerrircrisrrrsrisessseessencsrrcsessenesnesesssssnassnsestessessnnessssnsone 5-8
53 INSEIUCHON St ...oooveriecriiitireeiines et s sas s ssrassesanes 5-9
5.3.1 M68000 Family Compatibilitycccccveeenmcresmnernessnnsnmscsscsesesessncns 5-11
53.1.1 NeW INSHIUCHIONScccecvriirreicnener et seneas 5-11
53.1.1.1 Low-Power Stop (LPSTOP)cccvvirincmmisnesicsssnsssnsscsissinenns 5-11
53.1.1.2 Table Lookup and Interpolate (TBL).........cccvevverrcnnississiennnsnnes 5-11
5.3.1.2 Unimplemented INStrUCtioNSccccvveeevvereerenireennenncrnnenessenessnnes 5-11
5.3.2 Instruction Format and Notationccccvvcvnivninniicnicnninnneen. 5-11
53.3 INStrUCtion SUMMAYcoeveinreciiersirense st ssesssasssssasssne 5-14
5.3.3.1 Condition Code Register.........ccovvnineicinnciiniennenninnrnne e 5-19
5.3.3.2 Data Movement Instructionscccvvviecrvicncneninnenincnncnenn 5-20
5.3.3.3 Integer Arithmetic Operationscccvceevevcneinvninnnnscniinnnene, 5-21
5.3.3.4 LOGIC INSEIUCHIONScecveeerrrerirrreccneerrenssenereeseesscesentsssesssnnsesansassns 5-23
5.3.35 Shift and Rotate InStructions..........cccvvrecniencinresiivsnnnenniesenens 5-23
5.3.3.6 Bit Manipulation INStrUCtIONSccovvirerersrenisinininnetisecsnnssenn, 5-24
53.3.7 Binary-Coded Decimal (BCD) Instructions..........cccovvveinnnineccnne 5-25
5.3.3.8 Program Control INStructionscccceeeveecccncrcniinssnnccnnninssnens 5-25
5.3.3.9 System Control INStructionsc.ccevveeecrivrenrernieeinensreessenenieressens 5-26
5.3.3.10 COoNAItION TESES ..cc.vvrcrrerirneririiernecrre s ssae st s e stsssanesns 5-28.
53.4 Using the TBL INStructionscc.ccvinieiiiniiinnssnnieinnennin, 5-28
5.3.4.1 Table Example 1 Standard Usagecceevvecvinseencnnirininicsannae 5-29
5.3.4.2 Table Example 2 Compressed Tableccocvevirrcnnrcsinneenns 5-30
5.34.3 Table Example 3 8-Bit Independent Variable..............cc.cceu.ee. 5-31
5344 Table Example 4 Maintaining Precisionc.cccuvvincensinicsaeens 5-33
5.3.4.5 Table Example 5 Surface Interpolationsc.cecevviecinsecnens 5-35
5.3.5 Nested Subrouting Callscc.covciviniicivirineinenniiissnnnniieiiane 5-35
5.3.6 Pipeline Synchronization with the NOP Instructionc.ccccovuuuene. 5-35
5.4 Processing Statesccceecereriineirnnie et s 5-35
5.4.1 State TransitionNS........ccevvevveerninennnnisnnsti i 5-36
5.4.2 Privilege LeVeIScvveiiecrinrrnnirncireinnssisnesssisnssaiesssses 5-36
5.4.2.1 Supervisor Privilege Levelcocveiinriininiiinniiiinniniimann, 5-36
5422 User Privilege Level ...t 6-37
54.2.3 Changing Privilege Levelcciimininnnnneneinenn, 5-37
5.5 EXCEption ProCessing.....cvermriinnrininsinsssnnsissesssnesesissnsessssssses §-37
5.5.1 37 CoT=T o) ({0 g AT/ o1 (o] £- TN P 5-38
5.5.1.1 Types of EXCEPUONS.....ccccvmrecrerrnticrrtinerisnesisenisensssssinsessesssssene 5-39
5656.1.2 Exception Processing SeqUENCEcccuiernisiminsnensnsniniensanes 5-39
5.5.1.3 Exception Stack Frame.ccevvvireciinnmininicnnincsniennnonen, 5-40
55.14 Multiple EXCEPLIONSeviiverrcrntiircetensicnenssenssssessnsncssssesassenes 5-40
5.5.2 Processing of Specific EXCEPONS.........cvvcrereninecssnninnesiecmsesensane 5-42
MOTOROLA MC68360 USER'S MANUAL ix

TABLE OF CONTENTS (Continued)

Paragraph , Page
Number Title Number
6.5.2.1 RESEL....ciiiiiticii et e 5-42
5.5.2.2 BUS EITOr...uiiiiiiitriinicniriniinnissscssnisanssetissnesssssnssssnesenneseesanens 5-44
5.5.2.3 AAAress Error........coieecincceneiscnecesinnnse s s ess s ssnsesnesagessne 5-44
565.2.4 INStrUCHON Traps ...t 5-45
5.5.2.5 Software Breakpoints.........cvevveeeerrirsreensnersnisnsssreesersenesssrsnsensenns 5-45
5.5.2.6 Hardware Breakpointscccciieniiiccenniiinmicinnenmenmsennenmenn 5-45
6.5.2.7 Format Ermorcccvecennninininsnssnnnssennssnsnnsnesie eesasassesasnessnrsasaes 5-46
5.5.2.8 lllegal or Unimplemented INStructions.........cccvceveencninisnissencsinsanes 5-46
5.5.2.9 Privilege Violations.........cccocvviiinnnininininncnnnsnieisensessesnsssens 5-47
5.5.2.10 JLILE= o8 5-48
5.5.2.11 INEEITUPES . .oeeeeeireceeenerrerees serssnesreeseeneessressaesnessne s st e sanese s snnns 5-49
5.5.2.12 Return from EXCeptionccccvvveniinnvinnnenenniecnnnesseenesessnseesnses 5-50
5.5.3 Fault RECOVEIYcoiviivnnieiinnniiisntsisiessninneinonssiensseenissssssenssssenns 5-51
5.5.3.1 Types of Faultsccceevcvvviercnnecnennrcnenenenns rereesseeesr et ssas 5-563
5.5.3.1.1 Type I—Released Write Faultscccoevcevviviinenisiiinniinncns 5-53
55.3.1.2 Type ll—Prefetch, Operand, RMW, and MOVEP Faults 5-54
5.5.3.1.3 Type lll—Faults During MOVEM Operand Transfer 5-55
55.3.14 Type IV—Faults During Exception Processingc.covceneee 5-55
5.5.3.2 Correcting @ Fault ... 5-56
5.5.3.2.1 Type I—Completing Released Writes via Software 5-56
5.5.3.2.2 Type I—Completing Released Writes via RTEc.ccceveneene 5-56
5.5.3.2.3 Type H—Correcting Faults via RTEcccoovmiiniiiinciinnnennae 5-57
5.5.3.2.4 Type Hl—Correcting Faults via Softwarecccceeererirvieeneans 5-57
5.5.3.2.5 Type 1ll—Correcting Faults by Conversion and Restant........... 5-57
55.3.2.6 Type lll—Correcting Faults via RTE.........c.cocevveririvcnrnrnenecnnnns 5-58
55.3.2.7 Type IV—Correcting Faults via Software..........ccccceveeeccerrnenenen. 5-58
55.4 CPU32+ Stack Frames........cccceivimimiiniinnninenensinninnn, 5-58
5.5.4.1 Four-Word Stack Framecccvvunnenssninnisssnnnsenisncesensssssosnesanes 5-59
5.5.4.2 Six-Word Stack Frame.......c.cceeeeeveecrenieensrecnrnnnessneesnseseesenssvasesans 5-59
55.4.3 Bus Error Stack Framecevieininvcineninicnnenccsscnencnnaene 5-69
5.6 Development SUPPOMccvciviniinnsissnncnnnnssenncnesnnesseessessnsasensees 5-62
5.6.1 CPU32+ Integrated Development Support.......c.cocceeeivicnierciecersenne 5-62
5.6.1.1 Background Debug Mode...........cccviienniieneniennnieecensnnes 5-63
5.6.1.2 Deterministic Opcode Tracking Overview.......c...covverecvernrnncnencnns 5-63
5.6.1.3 On-Chip Hardware Breakpoint Overview...........ccceevceveereersenessnnne 5-63
5.6.2 . Background Debug Mode...........coccerimrinernniinnninisncsnnninnnsneesninn 5-64
5.6.2.1 ENabling BDM.......ccooviiniiciniinniec s sinensessecsssesacsassnnse 5-64
5.6.2.2 BDM SOUICES.....cutvreismneersrermsermersosissnsssnsansssrsnssssssssssassasssasanssnsns 5-65
5.6.2.2.1 External BKPT Signal.......cccoiviivinneniieninincnnciinnicnns 5-65 -
5.6.2.2.2 BGND. ..ottt ssasssestatssanssssssessasstesssssanns 5-65
5.6.2.2.3 Double Bus Fault. ... 5-65
5.6.2.3 Entering BDMcccverninrnreecsincninnnssnnnensessarsennesstesssneransseneons 5-65

X MC68360 USER'S MANUAL MOTOROLA

Paragraph
Number

5.6.2.4
5.6.2.5
5.6.2.5.1
5.6.2.5.2
5.6.2.5.3
5.6.2.6
5.6.2.7
5.6.2.7.1
5.6.2.7.2
5.6.2.8
5.6.2.8.1
5.6.2.8.2
5.6.2.8.3
5.6.2.8.4
5.6.2.8.5
5.6.2.8.6
5.6.2.8.7
5.6.2.8.8
5.6.2.8.9
5.6.2.8.10
5.6.2.8.11
5.6.2.8.12
5.6.2.8.13
5.6.2.8.14
5.6.2.8.15
5.6.2.8.16
5.6.3
5.6.3.1
5.6.3.2
5.6.3.3
5.7
5.7.1
56.7.1.1
5.7.1.2
5713
5.7.1.3.1
5.7.1.3.2
5.7.1.3.3
5714
5.7.1.5
5.7.1.6
5717

MOTOROLA

TABLE OF CONTENTS (Continued)

Page

Title Number
Command EXECULON.........ccocuirreresinnensincinessnrnssissnssessessssnonsnsness 5-66
BDM RegiSters.......ccvviiiininiinnninniinninnininnnineieinensimns 5-66
Fault Address Register (FAR)cccccnirvceinneiiniennnnncccniinesesans 5-66
Return Program Counter (RPC)ccevvireenireininnncsiennncsnenes 5-66
Current Instruction Program Counter (PCC).ccccvvcrerrenennen 5-66
Returning from BDMcccoieiicnnninnmmnnnennismsnn 5-67
Serial INterface........cocecvemvircmnincii i e 5-67
CPU Serial LOGIC ..cccvreriiereninisinecrnssicsisssnsinssssessisssesissssscnss 5-68
Development System Serial LOGICcccccevvureueeviininencsiennncnane 5-70
Command Setccccvrrccinnriinrresneneertrerrere s sse s sreerisesane 5-72
Command Formatcoccevenininnnnnnnnneennenees 5-72
Command Sequence Diagramcccvvevveersncrscnrieciesnsensennes 5-73
Command Set SUMMALYcccivrineinmncninics e 5-74
Read A/D REQISErccceierrerirerriraresnrnenemsnnnserierssssesssanesssteconees 5-75
Write A/D RegiSter.....ccoviiirierinirinernnsennenissnsessssesssssinessssanes 5-76
Read System Register (RSREG)cccoeevveriiinvensnciicisieneens 5-76
Write System Register (WSREG).......cccvrvimneercsninninccsnnniencnnns 5-77
Read Memory Location (READ).......ccccceceveeruirieennienivicnineennnes 5-78
Write Memory Location (WRITE).......cccccvvniviinnncnnsinnsniennaen 5-78
Dump Memory Block (DUMP).covrieeriiniennrennnininecnieeinen 5-79
Fill Memory BIOCK (FILL)ccvverrrereiinmnisinecnsscenassisensssasnesssesans 5-81
Resume Execution (GO)cccveimnerenmnnnimnnnneinninnnnssinnssne e 5-82
Call User Code (CALL)......ceevrierveriircrctssineninsnisenessssansssesesees 5-83
Reset Peripherals (RST)cccceeeerircennircinnescssnnnesssensssnannisssanee 5-84
NO Operation (NOP).......ccccvririnicrcnceriennsnseresscnsessennsisssnans 5-85
Future COMMANGS.........corveeimrnerirneircresisienessinnseesrnssssssesnessane 5-86
Determlnlstlc Opcode Trackingccocevissiisnsnssesseisesssensessnnessnnns 5-86
Instruction Fetch (IFETCH)ccvveiceniicnninirccniicnnneiecneninees 5-86
Instruction Pipe (IPIPE1—IPIPEQ).....cccccveervrrecsiccnnsiinnasireniisssnnes 5-86
Opcode Tracking during Loop Mode.........cccceveerrneercennensssnenissnnees 5-88
Instruction Execution TiMINGccocverirrnmiscsennininmiiie e, 5-88
Resource Scheduling ..., 5-89
MiCTOSEQUENCET.....cceviceercreeerrcrrsnrrseeernecaneseessasssnnsssssaresssseseseassnss 989
INStruction PIPeline........ccocciimriinieniiinsiieenecmennemenn 5-89
Bus Controller RESOUICEScorvecvrrererminnisimnsiessssninesesiscsnsnes 5-90
Prefetch CONtrollercivinnninsineenenees 5-90
Write-Pending BUffer.ccccvveeiivineminnennccsienencnecscesseieneen, 5-91
Microbus Controllerccvveiniininninermneines . 5-91
Instruction Execution Overlapccccivmeniinneinnnnniinnicenenene 5-91
Effects of Wait States.........ccccnimnninnnnnnnincnnnnennen. 5-92
Instruction Execution Time Calculation...........ccoceecvenncrivinininnnens 5-93
Effects of Negative Tailsccccereriiriinennnininnnncnnnninnn. 5-94

MC68360 USER'S MANUAL xi

Paragraph
Number

5.7.2
5.7.2.1
5.7.2.2
5.7.2.3
5.7.3
5.7.3.1
5.7.3.2
5.7.3.3
5.7.3.4
5.7.3.5
5.7.3.6
6.7.3.7
5.7.3.8
5.7.3.9
5.7.3.10
5.7.3.11
5.7.3.12
5.7.3.13
5.7.3.14

6.1

6.2

6.3

6.3.1
6.3.1.1
6.3.1.2
6.3.1.2.1
6.3.1.2.2
6.3.1.2.3
6.3.1.2.4
6.3.2
6.3.2.1
6.3.2.2
6.3.3
6.3.4

6.4

6.5

6.5.1
6.5.2

xii

TABLE OF CONTENTS (Continued)

Page
Title Number
Instruction Stream Timing Examples.......c.cccuveninnniiniiniercnrornennaeene 5-94
Timing Example 1—Execution Overlapccccvvinervervinievececnens 5-95
Timing Example 2—Branch Instructions..........cc.ccvcvvcernrernerennnen. 5-95
Timing Example 3—Negative TailS.......cccceeviiiirecnicrnrennrcrennnens 5-96
Instruction TiMING TabIEScc.vcerveerrreiiierirrercceerreeesrere e serrenns 5-97
Fetch Effective ADAress......ccoccveiivnniiniiniicneinncrniiscnnnnssnennenn 5-99
Calculate Effective ADAress.....ccocvveevrreecrininnrcreenssnssrneeseessserseeees 5-100
MOVE INStIUCHON.......cevrierireerrecieneesnineessestsseseessaneessararessessaersesans 5-101
Special-Purpose MOVE INStructionccccevvererenrececierensanenennne 5-101
Arithmetic/Logic InStructionsccceeverccrircrcinnecniercreneenecnnnn. 5-102
Immediate Arithmetic/Logic Instructionsccoeevvercrnereencesnnne 5-104
Binary-Coded Decimalccccevevivessirrerncnsensneestineessmsseersesenseressnens 5-105
Single Operand INStructionsccccierernininnnnnnecrenennessneecesnennes 5-105
Shift/Rotate INStructions.........cceevvviinnrnisienerenisennneessensrecnnnes . 5-106
Bit Manipulation INStruCtionsc.ceccvcervecircneeereinnnnsseesvensanens 5-107
Conditional Branch Instructions...........ccceecveverrtncsnrsenrcnsssnnneeneas 5-108
Control INStIUCHIONSocoveerrsiiiereetireri e s sassasserensane 5-109
Exception-Related Instructions and Operatlons 5-110
Save and Restore Operationscccccveennneinsienescismonnsssnesnnens 5-111
Section 6
System Integration Module (SIM60)
MOdUIE OVEIVIEWovviiereriiriircnninensstisersnsersseressnessssressseseessasnesenes 6-1
Module Base Address Register (MBAR).......ccccocceerieeniecrnesenscsercenenenns 6-3
System Configuration and Protection..........ccccevvervecvereniencrenenernennene 6-4
System Configurationccvvcirinineseniei e 6-7
SIM60 Interrupt Generationeeeeveeseereeeressereiens eeeenenrerens 6-7
Simultaneous SIM60 Interrupt SOUrCEScccververcrrcrerssscrerennnne 6-9
BUS MONIOFcoiviiieriinssnnieesisininsccsnnensenssnressisenesssesssssessenns 6-9
Spurious Interrupt MONItOr.........ceeevivvnecrinineniiesssscsesiesseons 6-9
Double Bus Fault MONItor.........cocvcmiiienininniinensccinnnniscnsnienenens 6-10
Software Watchdog Timer (SWT)ccevinvinrnnncicnnicieeennnnens 6-10
Periodic Interrupt TiImer (PIT) ..cocvvcevvinvireerreerersrrcrseere e sereseeesennes 6-11
PIT Period Calculationcceeuvimereninnninncneinniininnnnnnssnn. 6-11
Using the PIT as a Real-Time ClocK........ccocereerrnernersieecsnnnneesenes 6-12
Freeze SUPPOI........ccuveverereenerrernerererrrateseeesssseeraressssessssasessnsesssneres 6-12
Low-Power Stop SUPPOM.....cccceiceeernrsinerceeivsnnnsssseesssessessnssrvessnnness 6-12
Low Power in Normal Operationccceceveerniereresiennnnecssssnensssennenens 6-13
SIM60 System Clock Generationccccvvecerevinninensenianecsvacssssveesnesaes 6-13
On-Chip OsCillatorcccvveruirerenerreneesennrereesessasaeneas reenenerneenesrananes 6-14
Oscillator Prescaler (Divide by 128)ccccovrvvivreneninnecernrenenecenenns 6-15

MC68360 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph _ Page
Number Title Number

6.5.3 Phase-Locked LOOP (PLL)cccvrercreniisninireinessnnssssensessansssnnmsenennss 6-15
6.5.3.1 Frequency Multiplicationcoeeiininiiincniinnciinnnnneennenn. 6-16
6.5.3.2 Skew ElmINation.........ccccecereerrereenseieninsnisesensseseseesenssessnmeesssns 6-16
6.5.4 LOW-POWEr DIVIAENccoocriireiiniiiernnrnnrrsnsencnresanssnssssnsssessssseses 6-16
6.5.5 QUICC Internal Clock SIgnalsccceueeeeeniinnesenmnsiesnsssimsasensssssansas 6-17
6.5.5.1 SPCLK c.oetiersiiinestrneessennsssnnatssnasssesssstesnssensss snsssssnassssnssssasasaess 6-17
6.5.5.2 General System ClOcKoccvvviiniinnciinninisncccneninneenn. 6-17
6.5.5.3 22 {07 I N 6-18
6.5.5.4 SYNCCLKoeeerrrerteisensessessesssssstessessnesssssesssnssssasssssssnsasasses 6-19
6.5.5.5 SIMCLK ...t secrescsnrctesece s sesnesssssessssssssessessssessessarasaness 6-19
6.5.5.6 CLKOT c.ererrrcscenrennssesessssesssssssssessssssstesessesasnsanssssssasesas 6-19
6.5.5.7 CLKO2 ...ecreesreeteennsnrrssesestessessnrsnssnssassassassnsstssnasacssssssensassans 6-20
6.5.6 PLL POWEK PINS ...cooonriiireirceinieresensasssnessssnesssnessessesssesssscsnsaneasas 6-20
6.5.6.1 VCCSYN wotiniiiinetinessinisscsesissnssesnisisssssssssessssasssssssssessssssnsesses 6-20
6.5.6.2 GNDSYN....ooirieenienirinriseinsenescesestssssisessessnssessssssssssssssssssssssssssess 6-20
6.5.6.3 XFC ottt st snesessas st s sesss sas s saassassassaessssibestarssnnees 6-20
6.5.7 CLKO POWET PiNS ..ccveiienrrenrsisinssisanssiessssinessisssessassessessessanssssronsasse 6-20
6.5.7.1 VOCCLK .iirrrirectinetnsnisaestssenesssnnissenesssssnsssesassssssssssssassssssssnss 6-20
6.5.7.2 GNDCLKeeeeeciererenessssseeecsssasensassssesssssssssassasssssnassesassassnssasasss 6-21
6.5.8 Configuration Pins (MODCK1-MODCKO)c.cceeermrrrerersnnssenreesennnes 6-21
6.6 Breakpoint LOGIC.......c.ccivienrieinrininnninsiiiissncsnssnssssssessessensssessnes 6-21

6.7 External Bus Interface Controlccoivcvimncnnnnsivnieenannn. beerireares 6-23
6.7.1 Initial CoNfIQUIAtION.......ccevveerreerieenrinersteevereseessessssesnecsteseressensrmanesss 6-23
6.7.2 POM D ettt cetreec e steneese s ses e s e st saesassnsssnessssesansnesenenrnananse 6-24
6.7.3 POM E....o ittt st ettt snsssssnssssssesssssssssessssstssassssnesens 6-24
6.8 Slave (Disable CPU32+) MOdeccvriiinmennnsnninnnnnsnnnnnscsnenne 6-24
6.8.1 MBAR in a Multiple QUICC System........ccocvenicmncennnninnnisnnncsienanss 6-25
6.8.2 Global Chip Select (CS0) in Slave Mode.......ccccvueveereererereesenesens 6-27
6.8.3 Bus Clear in Slave Modecccvinenrinnnnnnnsnninnmnnmsssssese, 6-27
6.8.4 Interrupts in SIave MOdEe.......ccvvvivevercrnireenrercnnesaenserssanssanssnsesssreesans 6-27
6.8.5 Pin Differences in Slave Modeccocciisiinnninnninnnicninninninnee, 6-28
6.8.6 Other Functionality in Slave Mode..........ccocvvenrennnisinininensnenaens 6-28
6.9 Programmer’'s Model........uucvveeeirerernernnicsnnssenessessesssnessaessessesisessas 6-29
6.9.1 Module Base Address Register (MBAR)cocccevniniiiinnnniensninnnnne 6-29
6.9.2 Module Base Address Register Enable (MBARE).........ccccoeveiiviennes 6-30
6.9.3 System Configuration and Protection Registers...........cccoevvirvnnecn 6-31

6.9.3.1 Module Configuration Register (MCRY).........ccoeemrnennsuncniininnnnns 6-31

6.9.3.2 Autovector Register (AVR).......ccccviiecimmnininnnninncnenie, 6-35
6.9.3.3 Reset Status Register (RSR)ccccvuervnnninsnnsinneninccnnninne, 6-36
6.9.34 Software Watchdog Interrupt Vector Register (SWIV)................. 6-37
6.9.3.5 System Protection Control Register (SYPCRY)........c.ccoecivicninnnees 6-37
6.9.3.6 Periodic Interrupt Control Register (PICRY).......cccceuereiviineccenenen 6-39

MOTOROLA MC68360 USER'S MANUAL ' xiii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
6.9.3.7 Periodic Interrupt Timer Register (PITR)ccccccviecninniinneisenneas 6-40
6.9.3.8 Software Service Register (SWSR)cccoevvivcrserveissninineesienesennns 6-40
6.9.3.9 CLKO Control Register (CLKOCR).......cccoeureeursnnsmsrensninrensessesenns 6-40
6.9.3.10 PLL Control Register (PLLCRY)..........ccocvensuirusresseenssnnirnsessnisssesanens 6-42
6.9.3.11 Clock Divider Control Register (CDVCR)c.ccocvretivererseerareenens 6-43
6.9.3.12 Breakpoint Address Register (BKAR).......cccccecvrrrveersrenrensneninncenes 6-45
6.9.3.13 Breakpoint Control Register (BKCR)cccocvvmnnerninessiesaiesincssenens 6-46
6.9.4 Port E Pin Assignment Register (PEPAR)ccccvviemvininnrrcinnne 6-49
6.10 MemOry CONMIONIENcoecivieireeenereeeeeertecae st et se e raeennrones 6-51
6.10.1 Memory Controller Key Features..........ccoeveruiinerisinenneeninsnsensanecanens 6-51
6.10.2 Memory Controller OVEIVIEWcceeeeerervermeereecsnmsaisieressessenssessns 6-52
6.11 General-Purpose Chip-Select Overview (SRAM Banks)ccceeveveene 6-57
6.11.1 Associated RegiSters......cienmiiniicnerisninniniseiesieresimnmeseens 6-57
6.11.2 8-, 16-, and 32-Bit Port Size Configuration..........ccccccvvereeenerivreernenns 6-58
6.11.3 Write Protect Configurationccceervmeiccnnnnecnninnnicnssconcinennns 6-58
6.11.4 Programmable Wait State Configurationccccevivinninnicsvesinninnns 6-58
6.11.5 Address and Address Space Checking........c.cveeevrerssaeirrsesssnnssenens 6-58
6.11.6 SRAM Bank Parity.......cocciernnisnsnnninneesssmsnniinssiiasismes 6-58
6.11.7 External Master SUPPOM........cccciiiminimiineenesees 6-58
6.11.8 Global (Boot) Chip-Select Operationccccvveeerecresieerseneessessanses 6-59
6.11.9 SRAM BUS EITOF.......cccereeereenveretrienssressnmscrsossesiesssasesnssssserssssanessessaes 6-59
6.12 DRAM Controller Overview (DRAM Banks).......cc.ceeerensruisensersssesnanees 6-60
6.12.1 DRAM Normal ACCESS SUPPOTIt......ccccerviruiresniinreinsessnnsesesesesessneses 6-61
6.12.2 DRAM Page Mode SUPPOfc.ceeeinreiiinenssissensesivensissessnssennes 6-62
6.12.3 DRAM Burst ACCESS SUPPOTItcviciervinenensisniiisinressssssssessessansesses 6-63
6.12.4 DRAM BankK Paritycccciirvemisienrissnensssisnensinneiscnessssnissssenesssasess 6-63
6.12.5 Refresh Operationc.ccceereeevrercerrersreecnnnseserensessansssssssessnsreseessones 6-63
6.12.6 DRAM Bank External Master Support..........ccocuiivivnisncsnsssencnnennes 6-64
6.12.7 Double-Drive RAS LINES......cocveverrrerernrnsnsnsraesessressessssssessessssserenes 6-65
6.12.8 DRAM BUS EFTOF....cciiiniiinisnininsisnissssssiesnsssssisssssssssssnssssssssnes 6-65
6.13 Programming Model.........ccceivricinnninninniieniiinennsaennsiesnnessssin 6-65
6.13.1 Global Memory Register (GMRY).....c.coceerirerreecneiresienessssnsersssnsssnens 6-65
6.13.2 Memory Controller Status Register (MSTAT).....c.ccevcvmecriinicnscsnnens 6-71
6.13.3 Base Register (BR).......ccoceverimsinnininsiniiiieeineimenoes 6-72
6.13.4 Option Register (OR).....coeciiveiiinnicsinnnisnnnssensioseessssstanssssesssssinsass 6-76
6.13.5 DRAM-SRAM Performance SUMmMArycccccoevimeisirarmsveesencssnnes 6-79
Section 7
Communication Processor Module (CPM)

74 RISC CONroller......ccciuinriiinnennnienisnsinnassnesinmssismessmasees 7-3
711 RISC Controller Configuration Register (RCCRY)..........cccovvuceersunnens 7-5

xiv MC68360 USER'S MANUAL MOTOROLA

Paragraph
Number

71.2
7.2
7.2.1
722
7.3
7.3.1
7.3.2
7.4
74.1
74.2
743
74.4
7.4.5
746
74.7
74.8
74.9
7.4.10
7.5
7.5.1
7.5.2
7.5.2.1
7.5.2.2
7.5.2.3
7.5.24
7.5.2.5
7.5.2.6
7.5.2.7
7.5.3
7.6
7.6.1
7.6.2
7.6.2.1
7.6.2.2
7.6.2.3
7.6.2.4
7.6.2.5
7.6.2.6
7.6.2.7
7.6.2.8
7.6.2.9
7.6.3

MOTOROLA

TABLE OF CONTENTS (Continued)

Page
Title Number

RISC Microcode Revision Number.........cccoovccerirecressenscnnennnnnnssnens 7-6

Command Setcecirercirirrreer e s e ssanens 7-7
Command Register EXamples.......c.o.cevceeeernvennrnnneesnemenssnnnine 7-10
Command Execution Latency...........ccccvceevrncecnisennsnnnsssnnsscnes 7-10
DUal-POt RAMcccirrriirneneeseereesencssesnennssnesnssmsessesssssensesessassnsasssses 7-10
Buffer DesSCrPIOrScccviereirecrnrseeereesseisenssnssnsssnessessiessessnnsessseenes 7-13
Parameter RAM...........coviiiernniiiinnicnnsnsisnsenisisssansessessesns 7-13
RISC Timer TabIeS.......ccocvrrerrmrcrnisrisreensnninissenissersnssnssssisssesnsssmsessssnee 7-14
RISC Timer Table Parameter RAMcccoocrreriirnerrrncrsnseninrennnens 7-15
RISC Timer Table Entries.........ccccvvvrmrrieninnnnienernniisssissnincencnesenses 7-18
RISC Timer Event Register (RTER)cccccerruinnrincsnensnissuciesenas 7-18
RISC Timer Mask Register (RTMR)cccceverermrrnrecnrrsesssereserersssens 7-18
SET TIMER Command........cceeesisiisinsnnssmssnssnmssnsiosissessesssssassisnsses 7-18
RISC Timer Initialization Sequence............cccecvvrenerinisenssnisnssnenenns 7-18
RISC Timer Initialization Exampleccccecviniinnsninniscninnnncnanns 7-19
RISC Timer Interrupt Handlingcccvvenmsnnnicneeiecsnnsnsencieennns 7-19
RISC Timer Table Algorithm.......cccceveninincenniinnscsinienesassesnens 7-20
RISC Timer Table Application: Track the RISC Loadingc.ceueuue 7-20
LI 11 1= £ TR 7-20
Timer Key FeAtUresccucvvciirvcrcnrensrcessennivennstsssssssessanssssnessnssssnene 7-21
General-Purpose Timer UNitSccccveeeecreeremrrrenressecessecenseninsnssessens 7-22
Cascaded MOAEcccirrecicsnrsrecrensnesissssnisseserneesasssessasssnnsessssssns 7-23
Timer Global Configuration Register (TGCR)ccccoceecinevnenenns 7-24
Timer Mode Register (TMR1, TMR2, TMR3, TMR4)................... 7-25
Timer Reference Registers (TRR1, TRR2, TRR3, TRR4)........... 7-26
Timer Capture Registers (TCR1, TCR2, TCR3, TCR4)............... 7-26
Timer Counter (TCN1, TCN2, TCN3, TCN4)cccecevrnvivcrnnnnans ' 7-26
Timer Event Registers (TER1, TER2, TER3, TER4)ccccueuee 7-26
TIMEr EXAMPIES....ccccevrvieererieeenrererierisenerernerisssssssssnssiesssnsessansssenssss 7-27
IDMA ChannelS........coveiieiiiunceneniniciniinnrsissisnsiessssissssssesssscsssssess 7-28
IDMA Key FRALUIESeercueeereticrerecnnnrcnecssenennnrensessssssssssenssenenissonses 7-29
IDMA REGISEErSuciiiiererrerrcsiriiinirnnneenssssnssrenennsensssesssasssssansrsssenss 7-30
IDMA Channel Configuration Register (ICCR).........ccceveerricrunnne 7-30
Channel Mode Register (CMR).......c.ccoceneninvensinecsensnnnissnsannens 7-32
Source Address Pointer Register (SAPR)cccoceinecmecnrseneens 7-34
Destination Address Pointer Register (DAPRY).........ccocverreeeseennas 7-35
Function Code Register (FCR)cccccvereninerinnnsensnssnnennnnisenses 7-35
Byte Count Register (BCR)ciceermieinsisinnscsanesiininsisssssiasens 7-35
Channel Status Register (CSR)ccccnvvvrirnenmsnisisnmnnassesnne 7-35
Channel Mask Register (CMAR).......c.cocciirrmrrnnnesiscrrenrnenensiessens 7-37
Data Holding Register (DHR).........ccccvvenrcirnnnnictainenssnsnenoneenes 7-37
" Interface Signals.......ccccoverincninrrinernnsnsscsss s reeesestenaes 7-37

MC68360 USER'S MANUAL

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

7.6.3.1 DREQ and DACKcoorinmiisinnninsencniemnisssnise s
7.6.3.2 DONEX ..couierrinnnaninissssscsmserssumsesssssssanessesssssesssssssssssisssssnsss
7.6.4 IDMA Operation.......c.cceeeeereerecnesseseersenses ererererneeserennesnsanersras
7.6.4.1 Single BUfer ...t s
76.4.2 Auto Buffer and Buffer Chainingcc.cceeeevveiivecisenieiiinnennes
7.6.4.2.1 IDMA Parameter Ramc.cccvvcemrisivccnnnssnnenennensniiseennnns
76.4.2.2 IDMA Buffer Descriptors (BDS)cccceinimrvenienireesainsnneas
7.6.4.2.3 IDMA Commands (INIT_IDMA)......cccccerrvmnreminnnneessenssnnns
7643 Starting the IDMA ...t
764.4 Requesting IDMA Transfersccnevivviinicinsenssnninennnenne
76.4.4.1 Internal Maximum Ratecccvcceervinininineecniaenns ieerennes
76.4.4.2 Internal Limited Rateccccooerniciiiiiniciinnrnence,
7.6.4.4.3 External Burst Mode........cccevrreinennnccennecnncnsenninenne
76.4.4.4 External Cycle Steal.........ccccceverviiennecsennecnicssniennnnnns
7645 IDMA Bus Arbitrationccecevvevrernnconcineeninsninnieneannn,
7.6.4.6 IDMA Operand Transfers......c.comemieenmninsmsmsn.
76.4.6.1 Dual Address Mode........ccvevmrrnnmsisnmniennienmeenas
7.6.4.6.2 Single Address Mode (Flyby Transfers)c..ccccvueennuennee
7.6.4.6.3 Fast-Termination Option........cccevevveernveiirciiiieencrnnnnnecen.
764.6.4 Externally Recognizing IDMA Operand Transfers............
7.64.7 2TTTR 23 =T o (o] o 1=
7.64.7.1 RESEE...viiricviiicrir e e
764.7.2 12130 1 o T
7.6.4.7.3 ROty e e
7.6.4.8 Ending the IDMA Transfercccoccnnniennnvciiennneicinnens
7.6.4.8.1 Single Buffer Mode Termination.........cccceevevvcrnnicnuninnes
7.6.4.8.2 Auto Buffer Mode Terminationccccecvvvennceniinnnnnann,
7.6.4.8.3 Buffer Chaining Mode Terminationcccceecenvienscncinnnes
765 IDMA EXamples........ccccvnininnniiiinnsnenrensnenenamemneeenas
7.6.5.1 Single Buffer EXamples ...,
7.6.5.2 Buffer Chaining EXampleccceveeinrinieennnicninnsnniniieens
7.6.5.3 Auto Buffer EXamplecccevvvrrerieerninrinnenisnnesmnsnineseee
77 SDMA Channelscccvverinismrnessinissscenisessmeresissssesesssassassesans
771 SDMA Bus Arbitration and Bus Transfers.........cc.ccunnuniniinninnns
7.7.2 SDMA ReQIStErS ...cccvierveirreinrecsnieeiinnesseressesarsseessnssnesssessssesses
7.7.21 SDMA Configuration Register (SDCR).ccceeevinerseisensaninne
7722 SDMA Status Register (SDSR)cccccceineiirsisncenseiensnnnans
7.7.23 SDMA Address Register (SDAR)ccocverrininrsnsescisscnnenans
7.8 Serial Interface with Time Slot Assignerccoccvveeenvcceniisiveennn.
7.8.1 SIKeY FEAtUIES.......cceveeiirnrenrrceerenrs i sisssecssssssessssessns
782 TSA OVEIVIEWvereerrrenrnirisessnnssressessssssssnssisssisssssssssssassssssans
783 Enabling Connections to the TSAcccovrrercrnervrnrenieciennnnes '

xvi MC68360 USER'S MANUAL

Page
Number

........ 7-64
........ 7-66

MOTOROLA

Paragraph
Number

7.8.4
7.8.4.1
7842
7843
7.8.4.4
7.8.4.5
7.8.4.6
7.8.4.7
7.8.5
7.8.5.1
7.8.5.2
7.8.5.3
7.8.5.4
7.85.5
7.8.5.6
7.8.5.6.1
7.8.5.6.2
7.8.5.6.3
7.8.5.6.4
7.8.6
7.8.6.1
7.8.6.2
7.8.7
7.8.7.1
7.8.7.2
7.8.7.21
7.8.7.22
7.8.8
7.9

7.9.1
7.9.2
7.9.3
7.10
7.10.1
7.10.2
7.10.3
7.104
7.10.5
7.10.6
7.10.7
7.10.7.1
7.10.7.2

MOTOROLA

TABLE OF CONTENTS (Continued)

Page
Title Number
SERAM .ttt ss s senessessssssssssssassassssnsess 7-73
One Multiplexed Channel with Static Framesccceevveiireennnen. 7-74
One Multiplexed Channel with Dynamic Frames...........cceeeeeeeunens 7-74
Two Multiplexed Channels with Static Framescccccccinieinans 7-75
Two Multiplexed Channels with Dynamic Frames............ccucu... 7-76
Programming S| RAM Entries.........cocvveineennnnininennninnennonsennnes 7-77
SI RAM Programming EXamplecoceveesseernesscesennsseseseasnassensas 7-80
S| RAM Dynamic Changesc...cceverneenmseenmreeseesemessessesssessanns 7-80
SEREQISIErS ...ttt ae erreeeiaes 7-83
Sl Global Mode Register (SIGMR)......c.cocovveririnerisnnicnnssenieneseenns 7-83
Sl Mode Register (SIMODE)........ccccrecreinrinineereesessusseecsssmseseraees 7-84
Sl Clock Route Register (SICR).......cocceverneererrernnecierseesiennessennes 7-88
Sl Command Register (SICMR)......cccceeeevermrersersecreisnesenescnens 7-89
Sl Status Register (SISTR)ooiiveenrevrinresiniessnniensmsssniensmsscnnes 7-89
Sl RAM Pointers (SIRP).......ccocererieresriersneeressnensssnsessnsssssnsnsesssnses 7-90
SIRP When RDM = 00 (One Static TDM)ccccoevvinnensiniecnsnene 7-91
SIRP When RDM = 01 (One Dynamic TDM)ccccevvenienennes 7-91
SIRP When RDM = 10 (Two Static TDMS).....c.cccouvnerrinieersenes 7-92
SIRP When RDM = 11 (Two Dynamic TDMS)cceevvinenenne 7-92
S| IDL Interface SUPPOMcccoeeerrireeerererierses e sseesesessessesesesseneses 7-92
IDL Interface EXamplecooeevceerrrreneencnrenneienseessserscssensneseanenne 7-93
IDL Interface Programmingcccceeevserrerniserssnisisnnersnsecsenseniossnnne 7-97
Sl GCI SUPPOMtcoireirisrrresstennessstereenssssresassseesessssessrnsssesmmsiss s esnans 7-99
SI GCI Activation/Deactivation Procedurecccvveeneernennnenne 7-101
S| GCI Programming.......ccoceveseermssisessisssssmesnssisisssesnssesessssmansanss 7-101
Normal Mode GCl Programmingcceceveeervecnrceesrernrirnsnasnnne 7-101
SCIT Programming........ccceereeereererirereseeessnessessessesssesssnnsssmssessaes 7-101
NMSI Configurationcccceenincninnnne e 7-103
Baud Rate Generators (BRGS)c.cccveerrierereeneriennsrnessernisnssensasnssnsssnene 7-106
AUtObAUd SUPPOM.....ceivriicirriiiinirrrciece et sses s ssssessrnsissssnnes 7-108
BRG Configuration Register (BRGC)cccuvinmncnnniscinineiesssesisaninns 7-109
UART Baud Rate EXamplesccccvveeevceercrenienniiiensnnecsneeccseensenenee 7-110
Serial Communication Controllers (SCCS)......coccvvvrveervernessesareneesiens 7-112
SCC OVEIVIBW ...coviineriiiniirniiinesissssssnssssessssssssssisessessssnssssssasssasases 7-113
General SCC Mode Register (GSMR).......cccvvrecmnrnnnneninsinsnnennns 7-114
SCC Protocol-Specific Mode Register (PSMR).......cc.ccecevvreinnirerennns 7-124
SCC Data Synchronization Register (DSR).........coceervreirerieniseresrnns 7-124
SCC Transmit-on-Demand Register (TODR)cocceccermsersunnnisensns 7-124
SCC Buffer DESCHPLOrSc.cveceiserennerirecenresmssensssessesssssnaesssnsnces 7-125
SCC Parameter RAMccovivmriiriecnniinnniesiennsssccsinnessssesssansssees 7-127
BD Table Pointer (RBASE, TBASE)ccccoivrmninsiennnsssinenmssenssns 7-128
SCC Function Code Registers (RFCR, TFCR).......cccccvcernninseacne 7-128
MC68360 USER'S MANUAL xvii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

7.10.7.3 Maximum Receive Buffer Length Register (MRBLR) 7-130
7.10.7.4 Receiver BD Pointer (RBPTR).......c.cccvveierceeennnercneenssneccsssesrenenes 7-130
7.10.7.5 Transmitter BD Pointer (TBPTR)cccccetrcrennieerineeiiniecneeecinnnnnnes 7-130
7.10.7.6 Other General Parameters..........cccvnnnneeiinnnnisnnnciisncsnennnneenes 7-131
7.10.8 Interrupts from the SCCS........ccreeiivrrrnneisersrreerererereresseesenssesssens 7-131
7.10.8.1 SCC Event Register (SCCE)cccocvieerminninccsinmncistnnnennrsseniense 7-131
7.10.8.2 SCC Mask Register (SCCM)ccccvvrivererniecrenninnenssceniacseniesees 7-131
7.10.8.3 SCC Status Register (SCCS) ...ccvvvvrrrcrnrrerenrnrseessnnnessescsnessnsenses 7-132
7.10.9 SCC INIIAliZAtiONcccrveererreieerrerseeresrersteserssresescensssessessessessanenns 7-132
7.10.10 SCC Interrupt Handlingcccoecervermecieneinserernsesinnrenessinesnescesssnns 7-133
7.10.11 SCC TimMING CONLIOloveiirrenerirecitiernsssennisesstesessssseeseessesaessnes 7-133
7.10.11.1 Synchronous ProtoCoIS.........ceuiieiseneissnseessnsenniniensenissstsnnessens 7-133
7.10.11.2 ASYNChronous ProtoColsccvvirncineercneeccsnnicnnesseenineneescneenees 7-137
7.10.12 Digital Phase-Locked LOOp (DPLL)cccecciivereccineneisieesnenenecneas 7-138
7.10.12.1 Data ENCOAING ...ccoiveeenerireircirniniceeniniiessensesaessseeessesssressessnessnsens 7-138
7.10.12.2 DPLL Operationccciuseeernnerissnsunsssaessnmssenssnssstasnsssssssnessssssnnases 7-139
7.10.13 Clock Glitch Detectioncccceveerrirmnnessivennvisinnsesstsnesnsessnssesssansanns 7-142
7.10.14 Disabling the SCCs on the Flyccccvevvvvicinniisnneinicnniecnnnnns 7-142
7.10.14.1 SCC Transmitter Full Sequencecceeveeeecervceenecceeneerereveneneens 7-143
7.10.14.2 SCC Transmitter Shortcut Sequencecoccevevverecreveecrerieninnns 7-143
7.10.14.3 SCC Receiver Full SEqQUENCe..........cvvceirirerenniniennenncieesessneeeses 7-143
7.10.14.4 SCC Receiver Shortcut Sequence...........cccecerniernereniiersnsenennns 7-144
7.10.14.5 SWItChING ProtoColsccovuierruinnrenmnicennniesnnessiscsnessinsensnens 7-144
7.10.15 SAVING POWET ...ccveuiiririererirerennnresesesessssessssesessessssssssssesessesssssnsssenes 7-144
7.10.16 UART CONOIET ... eecceteecnricticeresieessennesensesseesssessosesseresessassssnnesnes - 7-144
7.10.16.1 UART Key Features........ccecvvreeriieeerierisirensonserneernieessinnresssessnnenses 7-146
7.10.16.2 Normal Asynchronous Mode..........ccoveiereenineienniseesnnnsiscinenees 7-147
7.10.16.3 Synchronous Mode ... 7-147
7.10.16.4 UART MEMOIY MAPcveiereccriisieissnsiiessniessassesesasssssssnesssssencasnns 7-148
7.10.16.5 UART Programming Model.........ccceeervrerrvenennenrnensensessncnsennssnnenens 7-150
7.10.16.6 UART Command Set.......ccccvveeecinrrerrnnincrsnnnensincessssessereesanenes 7-150
7.10.16.6.1 Transmit ComMMAaNGSccvccervrrneicreecrnesnmssreessnesessessssrssnesssens 7-150
7.10.16.6.2 Receive Commands.........cocverrerienecsnnsnenisnsssnesesesssesessnnns 7-151
7.10.16.7 - UART Address Recognition...........cocverererersiennensenenssrsssnessansnrnsnees 7-152
7.10.16.8 UART Control Characters.........ccovevereeerrrserssessessensesseseessnsseesnenes 7-153
7.10.16.9 Wake-Up Timer (RECEIVEN)cuivvieriseecrrsrersrecssivsesssinseersrneseesns 7-154
7.10.16.10 Break Support (RECEIVET)cccviiiiiinininsinisessnisissnsissssesssne 7-155
7.10.16.11 Send Break (Transmitter)ccccvvverenrerreecnrvensnsiverreerenseneseranenees 7-156
7.10.16.12 Sending a Preamble (Transmitter)........ccevrirncrnvinieccnniarcnsensannnes 7-156
7.10.16.13 Fractional Stop Bits (Transmitter)cccoccvvvccsinnniicnnrcenicsrnnnees 7-156
7.10.16.14 UART Error-Handling Procedure..........ccccuveeeverernreneserncaessnnsensanes 7-158
7.10.16.14.1 TransSmISSION EITOr.......cccvvviciiivrenivnnnnncstinenetssnessessensssesssessanes 7-158

xviil MC68360 USER'S MANUAL MOTOROLA

Paragraph
Number

7.10.16.14.2
7.10.16.15
7.10.16.16
7.10.16.17
7.10.16.18
7.10.16.19
7.10.16.20
7.10.16.21
7.10.16.22
7.10.17
7.10.17.1
7.10.17.2
7.10.17.3
7.10.17.4
7.10.17.5
7.10.17.6
7.10.17.6.1
7.10.17.6.2
7.10.17.7
7.10.17.7.1
7.10.17.7.2
7.10.17.8
7.10.17.9
7.10.17.10
7.10.17.11
7.10.17.12
7.10.17.13
7.10.17.14
7.10.17.15
7.10.18
7.10.18.1
7.10.18.2
7.10.18.2.1
7.10.18.2.2
7.10.18.2.3
7.10.18.2.4
7.10.18.3
7.10.18.3.1
7.10.18.3.2
7.10.18.3.3
7.10.19
7.10.19.1

MOTOROLA

TABLE OF CONTENTS (Continued)

Reception EITOrscccocvcvmiiimecnniniosmenmsssssnenessmssssneens
UART Mode Register (PSMR)cccvevrimrirnneessnisensimsnssinies
UART Receive Buffer Descriptor (Rx BD)cccceveerenserinnnns
UART Transmit Buffer Descriptor (TXx BD)......ccceevveccecvernnnn.
UART Event Register (SCCE)cccovvrrrnrrvnnnennncninnnennensnsenns
UART Mask Register (SCCM)ccccmmriineccsinnenisinnnsecnens
SCC Status Register (SCCS).....cccvuvurrrnenninsnrnecsesenerennnnnns
SCC UART EXaMPIE....cccveerrererrereennrersemsseessensrnsssessonsrnnsanns
S-Records Programming Examplecccceniveiccniinnnnens,
HDLC Controller
HDLC Controller Key Featuresc..covnernrerecerivnsscsssnenns
HDLC Channel Frame Transmission Processingc.ceeuee
HDLC Channel Frame Reception Processingc..c..cecvesnnas
HDLC Memory Mapcooiiienennnnisnennnssnenensnenm
HDLC Programming Model.........cccvevveeniinmnnssiscncinsessiessnns
HDLC Command Setccverirnnnnnnnienesnnnuensnnsessesens

Transmit COMMANScecerervrerenaesarrrereassssessaresssesasssn

Receive CommaNdsccvenerianenssessescsnsesssessessssssssneins
HDLC Error-Handling Procedurecccccovmrieeeerinnicinnerisnnienns

Transmission EITOrScueveveireerrenssessnesnnissemssenssisnsrsnnnes

Reception ErTOrSccccoveevererrnreneesereerenssessarrsassosessnnssnenne
HDLC Mode Register (PSMRY)......ccccceenrrernrenesssiccenrorssseenanens
HDLC Receive Buffer Descriptor (RX BD)cccvvveueireecnvrennns
HDLC Transmit Buffer Descriptor (Tx BD)........cccccevvvreucriannns
HDLC Event Register (SCCE)c.cccvvmvrerinimninnsssssnsessessenes
HDLC Mask Register (SCCM)cocvuvrvminrinninnsnnsecsessesnesnnens
SCC Status Register (SCCS).......cocvmmrrrrvccnsessenessensnsessesnens
SCC HDLC Example #1.........ccocoemriererennincennsernesnsssennnnnes
SCC HDLC Example #2........cccceerrreireenreescvrnnesescssnnsessensesenes
HDLC Bus Controller
HDLC Bus Key Features..........ccocevveiciininmnsenssnnninsessinees
HDLC Bus Operationccccneiimermsneneemois

Accessing the HDLC BUS.......ccccvivveerieecnnnssennnesseissnninnn

More Performance..........ccuiieriisennicnniisnnmnsenssissaemanens

Delayed RTS Modeccccvvirvicninninnrncnnnseisnsnsnsnsinneesnes

UsiNg the TSAceeiieerreenenneesrnrrsnessasessnissesssessasessssssssne
HDLC Bus Memory Map and Programmingccceeveuenaene

GSMR Programmingc.cocvvmssemeressmenesnecssestssesesnsssssensens

PSMR Programmingc.cccceivsssmmesstsssrsnnssessessanesessssssssen

HDLC Bus Controller Example............ccovveveiinininiencsinnnanne
AppleTalk Controller
LocalTalk Bus Operation..........ccceeveeriecrrecnvunessaneecseressnsessnenes

MC68360 USER'S MANUAL

--

Page
Number

Xix

Paragraph
Number

7.10.19.2
7.10.19.3
7.10.19.4
7.10.19.4.1
7.10.19.4.2
7.10.19.4.3
7.10.19.4.4
7.10.20
7.10.20.1
7.10.20.2
7.10.20.3
7.10.20.4
7.10.20.5
7.10.20.5.1
7.10.20.5.2
7.10.20.6
7.10.20.7
7.10.20.8
7.10.20.9
7.10.20.10.1
7.10.20.10.2
7.10.20.11
7.10.20.12
7.10.20.13
7.10.20.14
7.10.20.15
7.10.20.16
7.10.20.17
7.10.20.18
7.10.21
7.10.21.1
7.10.21.2
7.10.21.3
7.10.21.4
7.10.21.4.1
7.10.21.4.2
7.10.21.4.3
7.10.21.5
7.10.21.6
7.10.21.6.1
7.10.21.6.2
7.10.21.7

TABLE OF CONTENTS (Continued)

Page
Title Number
AppleTalk Controller Key Features...........coovircineininineieiennnsnicnnens 7-203
QUICC AppleTalk Hardware Connectioncoonienecrrcniene. 7-203
AppleTalk Memory Map and Programming Model...........cccocceureee 7-203
. GSMR Programming.....c.ceccereereiseerereerensseessansseessarsssessssesssesnseas 7-204
PSMR Programmingccccevvsvevnnnninissnninncnniensinssssssncne 7-205
TODR Programming.......cc.ceceveevssessennae SR 7-205
AppleTalk Controller EXamplecccveieveercereceniseseneecsensaneenes 7-205
BISYNC CONrOllErveeererreerrecrrnecsnessnsnrsseesraressessnssesansassessension 7-205
BISYNC Controller FEatures..........cccovvviruivvcrrninsssisseenessesscssannes 7-206
BISYNC Channel Frame TransSmissionccccoevreersiaessnnessensens 7-206
BISYNC Channel Frame Receptionccccueevvvcerevvuecrsnreecneeneens 7-207
BISYNC Memory Mapcccoecccrneninncnnmsecisnenmenninnessmsssressssssesssnssss 7-208
BISYNC Command Setccccrmcmnininininicninnenninnnssnnene. 7-209
Transmit ComMMAaNSccccvnvveiiniiennennneiii e 7-209
Receive CoMmMAandS........ccceirvinnimisinsisns e ssssassssssesans 7-210
BISYNC Control Character Recognitionc.cceceeniencnniicnineenes 7-211
BSYNC-BISYNC SYNC Registerc.ocvvurivernnnnnenrecscssensnsnnnnens 7-213
BDLE-BISYNC DLE Registerccccvrnernnsinsnnuninisnsicensnsnnees 7-213
Transmitting and Receiving the Synchronization Sequence........ 7214
TransSmMISSION EITOrSccovivrecienecsneisserinersnessiesennesesssessansnes 7-214
ReCEplion EITOrSc.covccmiiniinniniineinncecsnsssesse s sesesesses 7-214
BISYNC Mode Register (PSMR)ccoeiriininnnniennnsnenscnsisaninne. 7-215
BISYNC Receive Buffer Descriptor (RX BD).......cccoeereieniiicsunnen. 7-217
BISYNC Transmit Buffer Descriptor (Tx BD)cccccreemrerrcvreennen. 7-220
BISYNC Event Register (SCCE).......c.coovrmniinnnninnseiesiessnsnssenns 7-222
BISYNC Mask Register (SCCOM).......ccvvriinininicniniiinisnccsninninaennes 7-223
SCC Status Register (SCCS)ccerieririerenenrmsransssnsmssesinsnsnennens 7-224
Programming the BISYNC Controllerccceevueenes e 7-224
SCC BISYNC EXamMPIecerereerreeriinecnnercssninecneessnionessesessssssenes 7-225
Transparent CoNtrollercociivveverininiinnecrniisisre e 7-226
Transparent Controller Features.......c.ccovnminicnnncinnnniensnnen. 7-227
Transparent Channel Frame Transmission Processing 7-227
Transparent Channel Frame Reception Processing..........c........ 7-228
Achieving Synchronization in Transparent Mode 7-229
In-Line Synchronization Patternccoceevvecrinnnneninnnenssisenn, 7-229
External Synchronization Signals.........cccceiieinniniinniiiiiennnne 7-230
Transparent Synchronization Examplec.ccciiniiccinniiennnens 7-230
Transparent Memory Mapcocmeeisnnineinisnsese. 7-231
Transparent Command Setcccvvviniiicinnnniniciinncnenieeee, 7-232
Transmit CoOMMANASccociniiricnninnmisniaienesiiessessessane 7-232
Receive COmMmMAandScccvverimnninnsisesisinsimsesissssnsinsssssssesnsss 7-233
Transparent Error-Handling Procedurecccovninniininninisnnnes 7-233
MC68360 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
- 7.10.21.7.1 TransmisSion EITOrSccvvciniimnnnmoiioneinisesensissm e, 7-233
7.10.21.7.2 Reception Errorsccciiiiniiinnniininiicncinieneneeeesenes 7-234
7.10.21.8 Transparent Mode Register (PSMR)cccccvnivnniinnininiiiinecnnen. 7-234
7.10.21.9 Transparent Receive Buffer Descriptor (Rx BD).....c.cccveevinincnnaen. 7-234
7.10.21.10 Transparent Transmit Buffer Descriptor (Tx BD)ccoccevveieecnnee. 7-236
7.10.21.11 Transparent Event Register (SCCE)........cccccvvtrrrerrcninnsnnsieseneens 7-238
7.10.21.12 Transparent Mask Register (SCCM)......ccccivvnrinnncnincnininnniinne 7-239
7.10.21.13 SCC Status Register (SCCS).....ccecvrvrrrrercrnessissensaressniseessneneanes 7-239
7.10.21.14 SCC Transparent EXampleccccveininnnnccnniennsnnnnes e, 7-239
7.10.22 RAM Microcodesceriineiiinnniiiinccnninncsesss s sneses 7-241
7.10.23 Ethemnet Controller ... sseses 7-241
7.10.23.1 Ethernet On QUICC—MCB8ENSE0..........cocveererninnennisceninnennes 7-242
7.10.23.2 Ethermnet Key Featurescccceeriiinieciiinininnnsciennncsnnie e 7-243
7.10.23.3 Learning Ethemet on the QUICCcccoeovvirininnvincnenncnecnen, 7-244
7.10.234 Connecting QUICC to Ethemet........c.ccciviciininiininnininninneinens 7-245
7.10.23.5 Ethemet Channel Frame Transmissioncccccovevinniinenniccnnenns 7-247
7.10.23.6 Ethernet Channel Frame Receptioncccvvevvveinicnnnnnsinniennnnn. 7-248
7.10.23.7 CAM INEITACE ...t sesn e srsn s 7-249
7.10.23.8 Ethemet Memory Mapcccvevnvemnvicnnncnnieinnninneisaeen 7-253
7.10.23.9 Ethernet Programming Modelcccvveerriconnnrmrennncninesnieneenns 7-256
7.10.23.10 Ethernet Command Set.........cccocoimeiinienninrcrrresrseiee e 7-256
7.10.23.10.1 Transmit CoOMMANGScccviiiiiniinsnmninnms s 7-256
7.10.23.10.2 Receive ComMmands ... s, 7-257
7.10.23.10.3 Set Group Address Commandcceeenrcinncrinnnnennneeinennene: 7-258
7.10.23.11 Ethernet Address Recognitionccceriviecnninecncnnnnncennenne, 7-258
7.10.23.12 Hash Table Algorithm.........cceererreecrrennnrericrenserssescesesnersrsseseres 7-260
7.10.23.13 Interpacket Gap TiMe.....cccvvvervrerrrerrinseerseeiesnrsesssessesssnssessrsssseess 7-260
7.10.23.14 Collision Handlingcccvveermrrerrnrensrnsesnsnsnssnssssssssnsesisessrssennens 7-260
7.10.23.15 Internal and External LOOPDACKccceerercrrirnerisecssssnnennnrers esenes 7-261
7.10.23.16 Ethernet Error-Handling Procedure...........ccceevevecimrrrennicnnesenene 7-261
7.10.23.16.1 TransmisSioN EITOrS ...cccicviiiiiniincniseniiesnnnsnnneronsessnsioenassins 7-261
7.10.23.16.2 {2 T=Tol=T o] {{o] 4 W = ¢ £ £ J RN 7-262
7.10.23.17 Ethernet Mode Register (PSMR)ccceveveermeenmccmrnnrccerniee e 7-262
7.10.23.18 Ethernet Receive Buffer Descriptor (Rx BD).......cccveicinccniieerinnn 7-264
7.10.23.19 Ethemet Transmit Buffer Descriptor (TX BD)cc.ccvviieivinennne 7-268
7.10.23.20 Ethemnet Event Register (SCCE)ovvrvevvrerevrcieniesiincnesennes 7-270
7.10.23.21 Ethermnet Mask Register (SCCM)ccorvvriimninnmnninnnicssininenneens 7-271
7.10.23.22 Ethernet Status Register (SCCS)......cccevnnnninnnnnersnninnnnnessenns 7-271
7.10.23.23 SCC Ethernet EXampleccoveeeveivercreerrenerenvnennsvnsssssssssesnnsenses 7-272
7.11 Serial Management Controllers (SMCS).......ccoccunvninniiiinsennnsnnnisnesinnns 7-274
7111 SMC OVEIVIEW...c.ueeeeereeeetrcsercnnssenessseesssssnessnssanssansertsssnssssssnssassssnes 7-274
7.11.2 General SMC Mode Register (SMCMR)cccovcniiiinninniannnnninens 7-276

MOTOROLA MC68360 USER'S MANUAL Xxi

Paragraph
Number

7.11.3
7.11.4
7.11.41
7.11.4.2
7.11.4.3
7.11.4.4
7.11.4.5
7.11.4.6
7.11.5
7.11.51
7.11.5.2
7.11.53
71154
7.11.5.5
7.11.6
7117
71171
711.7.2
711.7.3
7.11.7.4
7.11.7.5
7.11.7.6
711.7.7
7.11.7.71
7.11.7.7.2
7.11.7.8
7.11.7.9
7.11.7.10
7.11.7.10.1
7.11.7.10.2
7.11.7.10.3
7.11.7.10.4
7.11.7.105
7.11.7.11
711.7.12
7.11.7.13
711.7.14
711.7.15
711.8
7.11.9
7.11.10
7.11.10.1

xxil

TABLE OF CONTENTS (Continued)

Page

Title Number

SMC Buffer DesCriptors........cccceeerriininiieninnsmssineiiseensnesssesenenn 7-276
SMC Parameter RAM........ reeresererestistsstesanesressasen st ara e antsratsnesaerates 7-277
BD Table Pointer (RBASE, TBASE)cccccvnuniiisinsinnencsenivenanns 7-278
SMC Function Code Registers (RFCR, TFCR)ccocvviinnennen. 7-278
Maximum Receive Buffer Length Register (MRBLR)................... 7-279
Receiver Buffer Descriptor Pointer (RBPTR)......ccccccvcmeenmrinniienne. 7-280
Transmitter Buffer Descriptor Pointer (TBPTR)ccccovvvveereccne 7-280
Other General Parameters.........c.ocvvvnninninnneennienneonennnn, 7-280
Disabling the SMCs 0n the Flyccoiinnmnineninninnninsenecnenn, 7-280
SMC Transmitter Full Sequence.........cuuvimnienmmiscenen. 7-281
SMC Transmitter Shortcut SeqUENCEcocviveirrrenreeeniiseniseanns 7-281
SMC Receiver Full SEQUENCE.......ccoceeereeereecrenerenresenneiesssscssnsesenes 7-281
SMC Receiver Shortcut SequUENCec.cvveniivicnninicseinnisenns 7-282
Switching Protocols.cccevvernenieincinininennncnie e 7-282
SaVING POWETcociiiiiiniiniiniinsisnnsessissssesssss s esssesnsnsnes 7-282
SMC @S @ UARTccevecireecrneeenns st tsssssissesssnssaessaessansssessasssssssssasns 7-282
SMC UART Key Features.........coovieeinecsenssinninncnnisinnssennnnsenonees 7-282
SMC UART COMPANSON ...cccccerrrnersrermererissrnissnsressnissrasssssssssssssanses 7-283
SMC UART Memory Mapccccccvverinreininnnsnninssniseemsseesssnessssenns 7-283
SMC UART Transmission Processingcocvcerevensinserssressnisnnanns 7-284
SMC UART Reception Processingcccuriirierrrssvrnnemssresisssnssssaens 7-285
SMC UART Programming Model........c.ceevcmnenseiinniiinisionennennnnns 7-285
SMC UART Command Setcccccrveniiicrininiinnennncessessesssnnens 7-286
Transmit Commands......ccvereenrrivensuens rerernesssresnessarssareseessenenas 7-286
Receive COmMMAnds........ccovvveimniiiniininisiiieseneses s ssseneesssenne 7-286
Send Break (Transmitter)cccevreerreecnevreeveniseerereseersssseseseeesanes 7-287
Sending a Preamble (Transmitter)cccocvvnincsinnnnncnnisnnneienneas -7-287
SMC UART Error-Handling Procedure........................ rverrerersnnnens 7-287
OVEITUN EITONooveierierirerninesriaesssnnssnesseessnsssssssessaessassssnessnsssns 7-287
Parity EITOT .couvivrierercennesrinessesssinssiesiessssissessnssssasarsssessssessassnas 7-287

Idle Sequence ReCeIVEccoeiveiiminiinninnicniecnne e, 7-287
Framing EMTOrcocovveeievccrnmneniniinsiisssiseineessienssscesssrsssesssensies 7-287
Break SEQUENCE.........cccceeevrerreerrercrneersiaeecseeesssesssersssnsssansssaeses 7-288
SMC UART Mode Register (SMCMR).....cccovurrciineinivcnsinnninnens .. 7-288
SMC UART Receive Buffer Descriptor (Rx BD)c.ccccreveiinnnrecnes 7-289
SMC UART Transmit Buffer Descriptor (TX BD)......ccccececnrirenerseans 7-293

SMC UART Event Register (SMCE).......ccccocevieninsivinsmneinnnnnnenne 7-204

SMC UART Mask Register (SMCM)......ccccvvnerncrnirinivnssnninienne 7-295
SMC UART EXample....ccccruirernirninisessiseiinssnsinsessensessmesssssnssessessense 7-296
SMC Interrupt Handlingcccoimeereeccsinnciiniinniscnisininnsnsnesenenee. 7-297
SMC as a Transparent CONtroller.........cccvvveevverenecsnerserernrrsnnrsserssaesons 7-297
SMC Transparent Controller Key Featuresceccuenvreirininiineans 7-297

MC68360 USER'S MANUAL MOTOROLA

Paragraph
Number

7.11.10.2
7.11.10.3
7.11.104
7.11.105
7.11.10.6
7.11.10.7
7.11.10.8
7.11.10.8.1
7.11.10.8.2
7.11.10.9
7.11.10.9.1
7.11.10.9.2
7.11.10.10
7.11.10.12
7.11.10.13
7.11.10.14
7111
71112
7.11.13
7.11.14
7.11.141
7.11.14.11
7.11.141.2
7.11.14.2
7.11.14.21
7.11.1422
7.11.143
711144
7.11.145
7.11.14.6
7.11.14.7
7.11.14.8
7.11.14.9
7.11.14.10
7.12
7.12.1
7.12.2
7123
7.12.4
712441
7.124.2
71243

MOTOROLA

TABLE OF CONTENTS (Continued)

Page

Title Number
SMC Transparent COMPAriSONccccrerierccienieessnnnsieesenasesssens 7-297
SMC Transparent Memory Map........ccccvcvninnnninnincincnnnnen s, 7-298
SMC Transparent Transmission Processingcc.ocuerenneenssennne 7-298
SMC Transparent Reception Processing........c..ccvveevereensenneerianns 7-299
Using the SMSYNx Pin for Synchronization...........cccccrevnieecrcnen 7-299
Using the TSA for Synchronizationccccceceveiviinnnnneninnnienene 7-301
SMC Transparent Command Set.......cccvverinrinininnnininsninnsnsenenns 7-302
Transmit CoMMANGSccccvvvriiinnninninin s s 7-302
Receive Commands........c.cccvrerceiiniennnninnimminsisnsesses 7-302
SMC Transparent Error-Handling Procedure...........c.ccecevenernueenn. 7-303
Transmission Error (Underrun).........ccveneenvinninisninnnin e 7-303
Reception Error (OVEITUN).......cocceernvimssnricinsinsnnsessessssessmossaneses 7-303
SMC Transparent Mode Register (SMCMR)ccocovieiienniinennns 7-303
SMC Transparent Transmit Buffer Descriptor (Tx BD) 7-306
SMC Transparent Event Register (SMCE)cccoevnvnncenniennne 7-307
SMC Transparent Mask Register (SMCM)cccccevvvviiniencnnneens 7-308
SMC Transparent NMSI Examplecccccevvemecnnriinnicinnnnnsen e 7-308
SMC Transparent TSA EXamplecccecvivnncnnncinnnisieinnsinennnne 7-309
SMC Interrupt Handlingccoceveneenmiinnininnesninnincninnensneesenmssessense 7-310
SMC as a GCI Controller..........c.ccevveniiciinninieisinninienne e 7-311
SMC GCl MemOry Map.....ccccvveerrrrecrmrsesiensensonsesesssemerssiosiasassesss 7-311
SMC Monitor Channel TransmisSion.........c.ccvevvieriennnessnansennnns 7-312
SMC Monitor Channel Reception.........ccoveveinninereniscrnnnsesnsnes 7-312
SMC C/l Channel Handlingccccccceeicreeiirenninnnesiinsessensssnismenssienes 7-313
SMC C/I Channel TransSmisSSiONeeerrererressnnsinssessssienassessans 7-313
SMC C/I Channel Receptioncccocvvnecnievinnnensniennnsencnnnnas 7-313
SMC Commands in GCI MOdEcovvernnnccnininnnsnnnnsscenaninne 7-313
SMC GCI Mode Register (SMCMR)cooovreneiiinninncenininnicnnans 7-313
SMC Monitor Channel RX BDc..ccvverneerrrrernssnssssesesesesesmmesssssses 7-314
SMC Monitor Channel TX BDoccceviiemnimscsicsnnisnissicsiemansanss 7-316
SMC C/I Channel Receive Buffer Descriptor (Rx BD)c...... 7-316
SMC C/I Channel Transmit Buffer Descriptor (Tx BD)......c..ceeueee. 7-317
SMC Event Register (SMCE)......ccocvveermrrersininnnrsienecrcnnees e 7-317
SMC Mask Register (SMCM)cocvirmnemnrcnnnisnsnesnssiesienseesnens 7-318
Serial Peripheral Interface (SPI)......c.ccccivverneincnrnnsnnenneniensneninnsnennnns 72318
OVEBIVIBW......ccovimiiitiniecsrenreisecesss s s sssasssssesnes rereerereenens 7-318
SPIKeY Faturescccvvvirirrcrmsninnnrinesssensensnissessnssessessons snssseeas 7-319
SPI Clocking and Pin Functions S 7-320
SPI Transmit/Receive ProCessiiuuiniininiiisninciniininonienn, 7-321
SPIMaSter MORccevenirreerreeeninensneresinnsessacenmesenseessisassssasssasansese 7-321
SPI SIave MOcoocvrivriernrrrenrnrerssnsesisssnsssosssssnessssissssssmssssassas 7-322
SPI Multi-Master Operation............cvcniinninnnsieneeennnn, 7-322

MC68360 USER'S MANUAL xxiii

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

7.12.5 SPI Programming Modelccvveiiiniinnvinnnnnnnnnnnnninsnenen.
7.12.5.1 SPI Mode Register (SPMODE).........cccecverretsseesnrsensanencssserns
7.12.5.2 SPI Command Register (SPCOM)........cccccuniinvinieiscsrnnnnnne
7.12.5.3 SPI Parameter RAM Memory Mapccoveivinnniinninieisenenne
7.12.5.3.1 BD Table Pointer (RBASE, TBASE)..........coouvevveirnesennnnne
7.12.5.3.2 SPI Function Code Registers (RFCR, TFCR)......cccccevnen..
7.12.5.3.3 Maximum Receive Buffer Length Register (MRBLR).......
7.12.5.3.4 Receiver Buffer Descriptor Pointer (RBPTR)ccccceveeesns
7.12.5.3.5 Transmitter Buffer Descriptor Pointer (TBPTR)
7.12.5.3.6 Other General Parameters.........cocoveervennenncccnenrennereseanas
7.12.5.4 SPI CommMAaNS.........cervrrecreennremssnresseseressssssnessassressanssssssses
712541 INIT TX PARAMETERS Commandccocoecenierniesenne
7.12.5.4.2 CLOSE Rx BD Commandcc.ceecevrerrinecnesecniineessenssneesanes
712543 INIT RX PARAMETERS Commandcccceceevercerrernneene
7.12.5.5 SPI Buffer Descriptor RiNG......c.ceevrrennrieeniiiccrnniennemseesssens
7.12.5.5.1 SPI Receive Buffer Descriptor (Rx BD)......covceneineienennee,
7.12.5.5.2 SPI Transmit Buffer Descriptor (TX BD) ...ccccovvviercriereinnne
7.12.5.6 SPI Event Register (SPIE)ccccvvvvernenniininnnncinensenssssnessanas
71257 SPI Mask Register (SPIM)cccovecninnmnnnnnnnnionnniennens
7.12.6 SPI Master EXamPpIe........vcceererrrernerisnersensreessressnsssesssesessassssssas
712.7 SPI Slave EXample........ccvvviimmennneisnissnnnessnmioneinmnreimseaas
7.12.8 SPI Interrupt HandliNgccceeevrverinecniininnnrisneesssscssncnsnessesesans
713 Parallel interface Port (PIP) eresseesseseneresanen e e srnesan e asasaees
7.13.1 PIP Key Featurescccvvviinniercereninineeieennenncseninenens
7.13.2 PIP OVEIVIEWcveiciieierenennsnnnsensessessssensenssinnessssssssssssnassssenens
713.3 General-Purpose /O Pins (POrt B)ccoveiveeniinnccnninenninininenne
7134 Interlocked Data Transferscocvvviiicviinnnnnnnnnneniinnennnne
7.13.5 Pulsed Data Transfers.......ccvcminniciinicnccnineienimnesneseen,
7.13.5.1 Busy Signal......c..cccinininimmnnnnennseen,
7.13.5.2 Pulsed Handshake Tlmlng ...
7.13.6 Transparent Data Transfers ...,
713.7 Programming Modelccecvrnrcreinirnnnnnnersnesisseicssnnsessns
7.13.7.1 Parameter RAMccciiiicnnmnnnninniesensensninn,
713.7.2 PIP Configuration Register (PIPC)........ccccevvrernnniciiinienninenns
7.13.7.3 PIP Timing Parameters Register (PTPR)ccvevvvuiiinnnen.
713.74 PIP Buffer Descriptorsc.cccvvvsieneccniiiinnimnniinnnenesannns
713.7.5 PIP Event Register (PIPE)c.ccocvninnnnnicnnnnnnnnnninisinn,
7.13.7.6 PIP Mask Register (PIPM)......ccccovernininnnnnnericsinnnnincnenens
713.8 Port B ReQIStersccccvveieinennicnninniisivnnnnisissiene e
7.13.8.1 Port B Assignment Registers (PBPAR) e
7.13.8.2 Data Direction Register (PBDIR)c.cccereereiseniensncsirnsnnens
7.13.8.3 Data Register (PBDAT)cocovcvrniinniiniiimnernnnisnssnsssssesans

xxiv MC68360 USER'S MANUAL

MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
7.13.8.4 Open-Drain Register (PBODRY)cccccviiiniinnnnnnnnccnnnnnisininsenenns 7-349
7.14 Parallel VO POMScccviininciiininnssit e s sssessisssesass 7-349
7.141 Parallel /O Key Featuresocoeemensninecneninnnnicnnnieiiniesesnens 7-349
7.14.2 Parallel /O OVEIVIBW........cciicerieriiiii st s 7-350
7.14.3 Port A Pin FUNCHONScoccceiiiniinininic e e e 7-350
7.14.4 Port A REGISIErS......cccvveuiniiniirrnissiisnsissiesssssssssssssssessesessssens 7-351
7.14.41 Port A Open-Drain Register (PAODRY).........cccoveniisnnnensnnisnenianens 7-351
7.14.4.2 Port A Data Register (PADAT).....cocccrrmrsivenineesnincsssnnnceeinnssssenens 7-352
71443 Port A Data Direction Register (PADIR)ccccveviirveernvcnnicnsnieenn, 7-352
7.14.4.4 Port A Pin Assignment Register (PAPAR)c.cocvvvivemnnisirnesnnnins 7-352
7.14.5 POt A EXAMPIES......ceeiieercrcrirssserrrrecessis e snst s snnsssssnsssesssssssnne 7-352
7.14.6 Port B Pin FUNCHIONSccoinmicrriiiiiesieninsresenessnsiecnsecnane 7-354
7.14.7 Port B RegiSters........ccvvmieiirnecisniinininissiiiscssescsisssssis s sssssses 7-356
7.14.71 Port B Open-Drain Register (PBODRY)........cccoccvvierinnrivieninencnnnee, 7-356
7.14.7.2 Port B Data Register (PBDAT)........cccorvereniinnnnineennieninnnnsnesnes 7-357
7.14.7.3 Port B Data Direction Register (PBDIR)ccovevciisineenessareecnsnnns 7-357
7.14.7.4 Port B Pin Assignment Register (PBPAR)c.ccocvinvrmreiseeriienenas 7-357
7.14.8 Port B EXampIe......ociereniicniinenniiissmsinenemnmnssmem s 7-358
7.14.9 Port C Pin FUNCHIONScoccmineniieniinninniesinieneisssessiessisnnes 7-358
7.14.10 Port C RegiSterscieinneinnnniinnndinnnsrssssennns 7-360
7.14.10.1 Port C Data Register (PCDAT)ccccevvurnsnnnnnnnnene i cnsecnes 7-361
7.14.10.2 Port C Data Direction Register (PCDIR)c.ccocveermrnnicisnrernsinee. 7-361
7.14.10.3 Port C Pin Assignment Register (PCPAR).........cccoevivnnrinisennnnee 7-361
7.14.10.4 Port C Special Options (PCSO)cceerrrrerrvnisicrneresnssisesesansssesssans 7-361
7.14.10.5 Port C Interrupt Control Register (PCINT)ccoivvrnenimnseisseniiencns 7-362
7.15 CPM Interrupt Controller (CPIC)coccvimviiinnnninnennnsncnneneens 7-362
7.151 OVEIVIBW....c.cciriinriiinii s st ssssassessnes ssanssss 7-363
7.15.2 CPM Interrupt Source Prioritiesccoinirenniicnicsiinnnnncinnssennns 7-365
7.15.2.1 SCC Relative PriONiYccoeeueercrrssessiienerncsienessseseneesssaesesssenes 7-365
7.15.2.2 Highest Priority Interrupt ..o, 7-365
7.15.2.3 Nested INterruptscocoviiiivnivinin e 7-367
7.153 Masking Interrupt Sources in the CPM.......ccocnvvnninnincnncsiensanne, 7-367
7.15.4 Interrupt Vector Generation and Calculationcccvcviiininnieenans 7-368
7.15.5 CPIC Programming Model.........ccocvviiineinnininniicnnnninnnininiensien, 7-370
7.15.5.1 CPM Interrupt Configuration Register (CICR).........ccvevvvenrerennne 7-370
7.15.5.2 CPM Interrupt Pending Register (CIPR)....c.cccccvvvrnecnnninniinienens 7-372
7.15.5.3 CPM Interrupt Mask Register (CIMR)ccocemnenniiensninninines 7-373
7.155.4 CPM Interrupt In-Service Register (CISR)c.cccocverreecinnnicninineennas 7-374
7.15.6 Interrupt Handler EXamplescccovvmniniinsncninnnininnneescnnnnnnnnenn 7-375
7.15.6.1 Example 1—PC6 Interrupt Handler...........ccceeuiviuiiniinrnnciinennanes 7-375
7.15.6.2 Example 2—SCC1 Interrupt Handlerccovviiniiiiinncceninnnen 7-375

MOTOROLA MC68360 USER'S MANUAL XXV

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
Section 8
IEEE 1149.1 Test Access Port
8.1 OVEIVIBWcerirveeceeniienaessnssessenssestssteseesensrsssnssnesessnesssensess senesnessesnassans 8-1
8.2 Tap CONrOlErcvveeeiiiciiinicrr e senes 8-2
8.3 Boundary Scan Registerccccnmeinininnniiinincsisnesnn 8-3
84 INStruction REGIStErccvciverirecreiiiieniceenerecserrcerssnr s ss st eee s neessanes 8-10
8.4.1 EXTEST .octirercrcninssssssenssississcinnesnssssssnsessssstessssssssessessnessnesssnses 8-11
84.2 SamPle/Preloadcoeeeereciecrcrncneeinnniensseerenessieesseesssssesseesessessssnes 8-11
8.4.3 BYPASS ...ttt snesres st st sssss s st s s renssnnsnns s 8-11
8.4.4 CLAMP ...corrrccrerresesesninsst s e s sessnssenssassassssssessesennnnssnanansss 8-12
845 HISZ et s seeser s snes s e s se s e s s eseessnesrns s neanasnaesnes 8-12
85 QUICC ReStHCHONScccvererrirrirrersniceesneeisesisesssessressesssnssssesnessanssnnssans 8-12
8.6 Non-IEEE 1149.1 Operationc.cccceeeeiierecivenseinvenencssseeessveesesssennnes 8-13
Section 9
Applications

9.1 Minimum System Configurationc.cccccvvnnvniincinnnnnninnnnceceneen 9-1
9.1.1 QUICC Hardware Configuration.............cceouveervennisnsiinsnsiesnnsensnnns 9-1
9.1.1.1 QUICC BasiC ACCESSESciverrrerrrrrersressressnssnmissmissessessssmssnessasssses 9-1
9.1.1.2 Clocking Strategy.......cocvcerermminerinninenrniinneniriesseses e 9-3
9.1.1.3 Resetting the QUICC ...t 9-3
9.1.14 101 (= {1 o =2 PR SRTT O 9-3
9.1.1.5 Bus Arbitrationccueiiiiiiiininneiss e 9-3
9.1.1.6 Breakpoint Generationc.cceveverevrerrecnsiinninninneneneee 9-3
9.1.1.7 Bus Monitor FUNCHONcociviiiirirmrrrrnenresrescnnssssecsstesnnsssnessnnsons 9-3
9.1.1.8 Spurious Interrupt MONIOrccevveeerirciniissinninnsnsinsene 9-3
9.1.1.9 Software Watchdogcoeevininniinienninineree e 9-3
9.1.1.10 Double Bus Fault reenersreteeraneaestesare s ne s e et e s e s anensnererarnns 9-4
9.1.1.11 JTAG and Three-State.........ccvcrerverrrrrrsnnerrisesnnnicenssstisensnessneranes 9-4
9.1.1.12 QUICC Serial POMS........ccciimneiitrininneerieniessiessssssessenesseniens 9-4
9.1.2 Memory INterfaces.......cevricrverrnicseene e sersee e sresseesesesesnens 9-4
9.1.2.1 QUICC Memory Interface PiNscccceemncnnnnineniinenneneen 9-4
9.1.2.2 Regular EPROMoiieevirecrininceienneseninsisnsssnessssssssonesssesssnesas 9-5
9.1.2.3 Flash EPROM.......c.ccceriiminnrsenirneninnisesesssssnssenssnssnesssesssnsssesssssssses 9-5
9124 SRAM .ttt e st a e s st rase st e b e s ne e e aes 9-6
9.1.25 EEPROMcoicvrvrceinnecnseriennns erereeneeseee sttt s s et e e e seas 9-8
9.1.2.6 DRAM SIMM.....coorrrirecetneeserecesenessnssnnessnssssssasenes eereenaeeens 9-8
9.1.2.7 DRAM DBVICESuererrriivsitiiniseinnersnerisnssmessissemsasssstsssnssessssessssens 9-9
9.1.3 Software Configurationcceiiinnccnnnnnnn . 9-10
9.1.3.1 Basic Intializationccceveciireennmmennmecneneneneennn 9-10

xxvi MC68360 USER'S MANUAL ‘ MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

9.1.3.2 Configuring the Memory Controllercocvvcniiinensnnininceesanes 9-11

9.1.3.3 Using the QUICC in 16-bit Data Bus Mode..........cceeerevrinncnnininnane 9-13
9.2 How to Take a QUICC Software Test-Drive.........covevvnienecsnnnecinen 9-13
9.3 Porting MC68302 IMP Code to the MC68360 QUICCcccceeuue. 9-19
9.3.1 CPU and Compilerscccovemnnncinnnncninniinenensesese 9-19
9.3.2 Differences/Similanitiescccvivrenniinininee, 9-19
9.33 Notes about POriNgGccccvvvirveriniinnccnnnniinnreecnnessnnennnae s 9-19
9.3.4 How to Port MC68302 FUNCHONS.........ccoceirvinnecrercnsnnsnenneceseensans 9-20
9.3.4.1 System Configuration Registerscc.cviivnniivinnecnnnnnneninens 9-20
9.3.4.1.1 Base Address Register (BAR).........ccovvneisnicnnnincssnnninaninnns 9-20
9.34.1.2 System Control Register (SCR)cccovnecsmernnninesnnniesnienennns 9-20
9.34.2 System RAM ...ttt ssassessssssesassnes 9-21

9.3.4.2.1 Buffer Descriplors........coccvvverieinceinnnninnninneeeneinnan 9-22
9.34.2.2 Protocol-Independent Parameter RAM Valuesccoeenenes 9-22
9.34.23 Protocol-Dependent Parameter RAM Values..........ccoeiieenen. 9-23
9.34.3 Internal Registers (System Integration BIOCK).........c..ccovcvnnenrennens 9-24
9.3.4.4 Internal Registers (Communication Processor)coevesrisseenne 9-27
9.4 Using the QUICC MC68040 Companion Modeccecevneeniininiensene 9-33
9.4.1 MC68EC040 to QUICC INtErfaceceevvvsminesnrensessussnesessesersssanne 9-33
9.4.1.1 MC68EC040 Reads and Writes to QUICCcceceeurevnniecniensanes 9-33
9.4.1.2 Clocking Strategyc.cvecerirriiinininnsiennninnnnne . 9-35
9.4.1.3 Reset Strategycovvieriinniiniisnnnsisn s 9-35
9.4.14 1410 ¢ (1] o] (PO PR 9-35
9.4.1.5 Bus ArbItrationccvveecreniinmnierenensisscnisscnsennnssssss s ssaesesserens 9-36
9.4.1.6 Breakpoint Generation.........cccceemrveeniccnieninnnncnnessnnncnanensanen 9-37
9.4.1.7 - Bus Monitor FUNCHONccveeiineiiiinicinsniinninsinnsnesesnsseene, 9-37
9.4.1.8 Spurious Interrupt MONItOrc.cvvieeriircnnnicrenrnsseseesersens e 9-37
9.4.1.9 Software Watchdog........c.cececriineisinininiinninnncsnnnivsen 9-37
9.4.1.10 Periodic Interval TIMer......cccciviiiiininiinne s, 9-37
9.4.1.11 MCB8EC040 Caching Configuration.........c..ceernsiennensensecssnncsaens 9-37
9.4.1.12 MCBBECO40 SNOOPING ..coccvvermsrmrsieninsessiisssninisnissssessessonnsesses 9-37
9.4.1.13 Double Bus Faultccccvmiinnninnninnnnnncnincniniisien. 9-38
9.4.1.14 JTAG and Three-State.........cccvcvinnninnnnncninnnnnenan. 9-38
9.4.1.15 QUICC Serial POMSccuccvrrreerecneeseensnesssnnsnssassnnesssesssssasssesrssssese 9-38
94.2 Memory INterfaces ...t 9-38
9.4.2.1 QUICC Memory Interface Pinsccovvmivnincsiienneiinsnnesisissnnnes 9-38
94.2.2 Regular EPROMccciinnirimnsnnnninssssinnsssssesssssensnsns 9-39
9.4.2.3 Burst EPROM........cociiiiimncinnii s snsnsssssessseessssasssssssesans 9-39
9424 Flash EPROM......ccocvvnviinmeinenniniisicinns eereenresnetssasestennrentrestanns 9-42
9.4.2.5 Regular SRAM ...t s ssees 9-42
9.4.2.6 BUurst SRAMccoiiertiicsnrnesesissessecss s sssassassens 9-42
9427 EEPROM ...ooierictininninmnessssstsssssnssesssssassssssssssssssssssnsssssssesans 9-46

MOTOROLA MC68360 USER'S MANUAL XXVii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
94.2.8 DRAM SIMM.....ccivimiinnininiiessiessesesassssssssssssssssassnses 9-47
9.4.2.9 DRAM DEVICES......orverrirrcriisinsercnnsnssnrenmesessnssasstesssessnssesnanss 9-47
9.4.3 Software Configurationc.ccecvvveinnscncninnnc, 9-49
9.4.3.1 Basic Initializationc.cceieiiinnnnrencrriinireene s 9-50
9.4.3.2 Configuring the Memory Controller..........ccvncniniiniennnnsnnnnnennnnes 9-50
9.4.4 Interfacing Multiple QUICCs to an MC68EC040cccceeveeervvennes 9-52
9.5 Selecting Cache Modes on the MCEBECO040.........cceveerininniiennissnninenns 9-53
9.5.1 The AIGOrthMmcieiieenrerercrrs et e s eseessaneesnne 9-53
9.5.2 ProteCtionccceorerieeiinii ettt e 9-54
9.5.3 MC68ECO040 Cache Behaviorc.cucuvecrreninnenninisinincnnnnneneesnanas 9-54
9.5.4 Enabling the Caching MOdes.........cccvvccrrrerverrensreerscnsssiinnesnessensens 9-54
9.6 Interfacing the QUICC to the 53C90 SCSI Controllerccovceeecnennes 9-55
9.6.1 SCSI General OVEIVIEWcuiiirerimiisnissss st esaesns 9-55
9.6.2 Physical INnterfacecvreeerrrcnrnnrnnnesrierrse st 9-56
9.6.3 Logical INterfacecceiveiniincninissnae s 9-60
9.6.4 Functional DesCriptionccvevrevirvemrceecercsnnesnessnsssressesssanesnessnsssneess 9-62
9.6.5 Hardware Configurationcceecmsecininnnnnnnnenonnens 9-63
9.6.5.1 Clocking Strategy......ccvcevrvreereinsrirsessenecnreensrasescessesstersenssnnssensene 9-63
9.6.5.2 Reset Strategycccovniiirinniniinicnccc e 9-63
9.6.5.3 Read/Write TimiNgcoovivnieiiciiininircsirmssisesiss s ssssssssssssees 9-64
9.6.5.4 Interrupt Handling ..., 9-64
9.6.5.5 IDMA1 Setup and TiMiNgG......cccoverrrerrrrcresrensresssessessiseennessnsssesssns 9-64
9.6.5.6 QUICC /O POMS ...couriririniiirisienneisecsisscsssssissssssnssessssscsssssessssssnes 9-65
9.6.6 Active SCSI Terminationsccccecvvrcerrinissnrsrersissneeresaneeisnsesssens 9-67
9.6.7 Software Configurationcccveecnvrninicninnene 9-67
9.6.7.1 Configuring IDMAT ..o sse s s sasessessnnesseas 9-67
9.6.7.2 Configuring the Memory Controller...........ccoevrevcrncnnerrnscsnennns 9-68
9.7 Using the QUICC as a Tap Controller for Board Self-Test 9-69
9.7.1 Board Layout.........ccocievinnrinninnnnniinisinsisesnesseiieiesssnnssesssssneenn 9-69
9.7.2 Board Testingcccevvreeminrinrtiirrnrssrres et 9-70
9.7.3 Microcontroller Interface.........cccoivvniiirnrnrinccsrecscccni e 9-73
9.7.4 Test Pattern Generationc.cccvvenerrieennenrncnnecnensennnenennnneenne 9-74
9.8 Interfacing an MC68EC030 Master to the QUICC in Slave Mode 9-77
9.8.1 MC68ECO030 to QUICC Interfacecccvvvivmnenminceenennennninensnennenens 9-77
9.8.1.1 MC68EC030 Reads and Writes to QUICCccoviiiirincencnnees 9-77
9.8.1.2 Clocking Strategycoceereererrcrrieeninicnnssesssisseseseessessersenseeseesesnans 9-77
9.8.1.3 Reset Strategycocevminviinnicncni i 9-79
9.8.1.4 101 4=T4 (1]) €=U 9-79
9.8.1.5 BUS ADItrationcceieiiinninicnencnsninsns s 9-80
9.8.1.6 Breakpoint Generationc.ccvvevivericrennrecsninsinininennenne e 9-80
9.8.1.7 Bus Monitor FUNCHION......ccciveninncennniinc e 9-80
9.8.1.8 Spurious Interrupt MONItOrcccvvvevrivrrnercrecnnsiveerinercserereesseeensens 9-80

xxviit MC68360 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
9.8.1.9 Software Watchdog..........ccce.... reressreeresisesseateanassseseanenanesaranaaneans 9-81
9.8.1.10 Periodic Interval TIMerc..cccccvviinneninniinnncnensnssessisensseie 9-81
9.8.1.11 MC68EC030 Caching Configuration..........c..ceeeeercreerereersnieensenns 9-81
9.8.1.12 Double BUS Faultcccoreemrrererrerccererneesinecne s sevesseseeseens 9-81
9.8.1.13 JTAG and Three-State...........ccveviernessnnnernneissinneeseesnnesnnaresens 9-81
9.8.1.14 QUICC Serial POrSccoccivirmmininciimnnesscsinnnesniseirnessiessssssnmsssssnnne 9-81
9.8.2 Memory INterfacescoviciinerreisiccrrcnessnere st srenesnesssssserasassssssnnnes 9-81
9.8.2.1 QUICC Memory Interface Pinscovvervvnnicnnennninennenninnennns 9-82
9.8.2.2 Regular EPROM or Flash EPROMcoovvrvecvecnnnies eeereenssssasens 9-82
9.8.2.3 Regular SRAM ...t renecsirenresnnse e sesssassse st sesrsssessnns 9-84
9.8.2.4 EEPROM ..ottt cninsssssnssnssnsassssssssssissessssssmssessass 9-85
9.8.2.5 DRAM SIMMcooviirniniinmnninniiscesneennssessessnssesssssnssatssesssesansssreses 9-86
9.8.2.6 DRAM DEVICES....c.ccvveiiieiiireninsirississsinsessesssteraessetsssssesnnsssavansas 9-88
9.8.3 Software Configurationccceeecnerernsicinreneresssrirnressressnosenens 9-88
9.8.3.1 Basic Initialization..........ccccoeenmncinnnenninn e 9-88
9.8.3.2 - Configuring the Memory Controllercccvveveerenrerieesienienenneens 9-90
9.84 Interfacing Multiple QUICCs to an MC68ECO030ccveenmrenennencns 9-91
9.8.5 Using a Higher Speed MC68EC030 Master with the QUICC........... 9-92
9.9 Putting a Background Debug Mode Connector on a Target Board..... 9-94
Section 10
Electrical Characteristics
10.1 Maximum RatiNgSc.cccvvceiimrrceniersnierecserssrscsensesesesessasessesessssssssssnenes 10-1
10.2 Thermal CharacteristiCsccvveerrirrrreisrrerirecrrsessnensesseesnnessanns 10-1
10.3 Power Considerationsc.cvrmsennirinsemssnnnennnssiisssssessens 10-2
104 AG Electrical Specification Definitions........ccccvveerinccnrereereerivenennneneenens 10-2
105 DC Electrical SpecifiCationsccoeceererrersenrersenesessenererecsessersasessens 104
10.6 AC Power DiSSIPAtIONceovvrriiniciisneiiennesiennsseensenssnminsesssesssnessesssesses 10-4
10.7 AC Electrical Specifications Control TIMingc..ccecnericrinncninssninnns 10-5
10.8 External Capacitor for PLLccccrerreenienninncennenensenneessnioresssiessenees 10-6
10.9 Bus Operation AC Timing Specificationscccevveevennecsiinccrsneceninns 10-7
10.10 Bus Operation—DRAM Accesses AC Timing Specifications.............. 10-26
10.11 030/QUICC Bus Type Slave Mode Bus Arbitration AC Electrical
: SPECIfiCAtIONS ...ccceererrierererrrerieereneerrer e seeseresresssessnesseessnsenssensenses 10-32

10.12 030/QUICC Bus Type Slave Mode Internal Read/Write/IACK

Asynchronous Cycles AC Electrical Specificationscccccoueenen. 10-35
10.13 030/QUICC Bus Type Slave Mode Internal Read/Write/IACK

Synchronous Cycles AC Electrical Specifications..........c.coevecierennen. 10-38
10.14 030/QUICC Bus Type SRAM/DRAM Cycles AC Electrical

SPECIfICAtIONS ...ccvvveerricrricerrersreerenrerseesseseseersreseressressnesseessnsersasnsenes 10-43

MOTOROLA : MC68360 USER'S MANUAL XXix

Paragraph
Number

10.15
10.16

10.17
10.18
10.19
10.20
10.21
10.22
10.23
10.24
10.25
10.26
10.27
10.28
10.29
10.30
10.31

1.1
1.2
13
14
11.5

TABLE OF CONTENTS (Concluded)

Page
Title Number

040 Bus Type Slave Mode Bus Arbitration AC Electrical

SPECHICAtIONS .cveereerreerrenrersrerrerssnrssnreanssenisareseresrreessnessnessessseessnsanes 10-50
040 Bus Type Slave Mode Intermal Read/Write/IACK Cycles

AC Electrical Specifications.......cccceceecieieisnecnnscnnnecrsnnnsnesssneecsnenines 10-52
040 Bus Type SRAM/DRAM Cycles AC Electncal Specifications....... 10-57
IDMA AC Electrical Specificationsccoceerecerirneriessercnesenseeesessensaees 10-63
PIP/PIO AC Electrical Specificationsccceevveevseneecncsneinscccnnscrsanenes 10-65
Interrupt Controller AC Electrical Specificationscccceeeervverervceenenns 10-68
RISC Controller AC Electrical Specificationsccceecerrersrrernerereerannes 10-69
Baud Rate Generator AC Electrical Specificationsc..cccvernerrennn. 10-69
Timer Electrical Specificationsccocvveereniecrcncnsctnnnssnsnisnnnssnisscnnnnes 10-70
Sl Electrical Specifications.........cccecrrreerrrirnneervenisneserenreseassssrsseecsenes 10-72
SCC in NMSI Mode—EXxternal Clock Electrical Specifications 10-78
SCC in NMSI Mode—Intemal Clock Electrical Specifications............. 10-78
Ethernet Electrical Specifications......c..ccvereerrervereresssisssnrereesseresnessrernne 10-81
SMC Transparent Mode Electrical Specifications...........cevceveercnsevrennne 10-84
SPI Master Electrical Specificationsc.cuveeeeeceerecercansonssarsnessesesenens 10-86
SPI Slave Electrical Specificationsc..ccoeerecrnecnineresccssnnesnessesennens 10-88
IEEE 1149.1 Electrical Specificationsccccccvermrrcrrcnnisnnnnsccnnisnnne 10-90

Section 11
Ordering Information and Mechanical Data
Standard Ordering Informationcceevvvinenineinnncnnssinnncsniinns 111
Pin Assignment—240-Lead Quad Flat Pack (QFP).........ccccocevvuruenen. 11-2
Pin Assignment—241-Lead Pin Grid Array (PGA)....cccccvreeerennercseneenens 11-4
Package Dimensions—QFP (EM SUffiX)ccoveriesersnninennsinsnensessenanae 11-6
Package Dimensions—PGA (RC SUfiX)cccrereercrersercrenereeccnenseennnns 11-6
APPENDIX A

Serial Performance

APPENDIX B
Development Tools and Support

APPENDIX C
RISC Microcode from RAM

MC68360 USER'S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS

Figure

Number Title

1-1 QUICC BIOCK Di@gramc.cceereeereeereeenseessenenessnesssesseseeeiasessansessnsssns
1-2 Minimum QUICC System Configuration.........c.ccvcceviennnsinniniciinnns
1-3 Larger QUICC System Configuration..........ccceecvvinrecnisnncnscnsinnnes
1-4 Ethemet LAN Capabilitycccoerecrcrninnnicninnneniinminnnenne.
1-5 AppleTalk LAN Capabilityccccervrervrieeseeneissensensesiessessessesseesenns
1-6 HDLC BUS LANcoteeereerrrceenseeest e ssesssnec e ssnssessessneesessessnenes
1-7 SDLC Bus Implementationcccccecieeerreenenssencriesenseesveesseeessennes
1-8 UART LAN Implementation........ccccevevevireiinerresesnsenssenssesseesesnenaens
1-9 SPI Local Bus Implementationccccccevvceerneeriniencnneenneeeneesneennne
1-10 SPI Implementation Using SCPccccvrvvenrennnnnnsssessrssrsensennsenss
1-11 SPI Master-Slave Implementation.........ccccevcerveenieenrvneennnensnnrieessnens
1-12 Centronics Interface Implementationc.cceeieverrereereercennienssenna:
1-13 Fast Parallel Connection Implementationc..ccccovververrccnvnecranens
1-14 SCC Protocol Implementationccceeveercrericnieninienneseresssnnseesinees
1-15 Multiple QUICC Point-to-Point Implementation...........ccccceerveveeveeenne
1-16 Other Point-to-Point Implementationsccceviinicvnnsivnnneeninnncns
1-17 Serial Channel to TDM Bus Implementationccceecvvrerenrrvrenenne
1-18 Dual TDM Bus Implementationccccceernevcrnnensseensennrensseccsnennes
1-19 Multiple QUICC TDM Bus Implementation..........ccceceverseeiercsecsneens
1-20 General-Purpose Applicationccccverveeveeieecnenseenecnensensesseeesennes
1-21 Master-Slave QUICC Implementation.........c.ceccevvererercenrccenivennseenenns
1-22 MC68040 Companion MOdEceccvererereeerrererieessreeseseneesesssseesenees
2-1 QUICC Functional Signal Groupscceceerreversersessessseesesseessessesnes
3-1 QUICC MemOory Map.......cccvveernmierrinnennineeecnnneneesssesserssssssesssesssesseens
4-1 Input Sample WINAOWc.cccvervinernenincneineneseeesnsssessssssssessesssenns
4-2 - Internal Operand Representation........ccceeervecieennnnenscenssnessesersesnes
4-3 QUICC Interface to Various Port Size$.......ccccecvcenrecrerrenvensresennsnens
4-4 Example of Long-Word Transfer to Word Port........ccccccvvcinenicennnne.
4-5 Long-Word Operand Write Timing (16-Bit Data Port)cccoveevvnee
4-6 Example of Word Transfer to Byte Portccccoceeeerivnvivencencnnnn
4-7 Word Operand Write Timing (8-Bit Data Port).........cccccovvnvrerncrennnne.
4-8 Misaligned Long-Word Transfer to Word Port Example...................
4-9 Misaligned Long-Word Transfer to Word Port Timing.......cccceeuevene.
4-10 Misaligned Word Transfer to Word Port Examplec.ccececivieininne

MOTOROLA MC68360 USER'S MANUAL

Page
Number

XX

LIST OF ILLUSTRATIONS (Continued)

Figure
Number : Title
4-11 Misaligned Word Transfer to Word Port Timingcceeverecerreeriersveceennne
4-12 Misaligned Long-Word Transfer to Long-Word Port Example
4-13 Misaligned Long-Word Transfer to Long-Word Port Timingccccecevene
4-14 Fast Termination TiMiNgccoccerreeenermiseinseerenensnnrenseressesnsesesssesnesane
4-15 Long-Word Read Cycle Flowchart...........ccccceeeeerenenennnceecrersncnenennseens
4-16 Byte Read Cycle Flowchart.........cccuvniniinniininnnmnnnnsnmernssesamssnsensenas
4-17 Byte and Word Read Cycles—32-Bit Port Timingccoevrevrerevecrercenans
4-18 Long-Word Read—16-Bit and 32-Bit Port Timing.........ccceceereererseesanerenns
4-19 Write Cycle FIowchartcoeevevcrivecinrneenrinnenrersnnnssenesssessreesseessnees
4-20 Read-Write-Read Cycles—32-Bit POf........c.occccvrvrnninnirensinnreeseeseerananions
4-21 Read-Modify-Write Cycle TiMiINgGccoccevnenrinininmsennereecnsrseermmsnsessannes
4-22 CPU Space Address ENCOAINGcccerereruennereesernssersnssnssesessninenserssaenns
4-23 Breakpoint Operation Flowchartcccccvricinceennninnninnineineneesnenssennnns
424 Breakpoint Acknowledge Cycle Timing (Opcode Retumed)
4-25 Breakpoint Acknowledge Cycle Timing (Exception Signaled)
426 Interrupt Acknowledge Cycle Flowchart..........ccccvieiniinninsnssininisessinnnnes
4-27 Interrupt Acknowledge Cycle TimiNgccccerereccenicnennssnssersiesnsnesaenns
4-28 Autovector Operation TIMINGccevererversininsnsnnsesssessisisisssessessies
4-29 Bus Error without DSACKXcccoceenimninnninnincnnnnsnsiinssessiisesiees
4-30 Late Bus Error With DSACKXc.cccevverervenercsenssesensnesessssesesonsssseesannne
4-31 REY SEQUENCEocveervricrierecrerinesereseernsseessarssnsessrestessessesesaesseessensessers
4-32 Late Retry SEQUENCEccccrveerrenrseecenierisessssnssnessesssnessssssnssnssosssssnasnne
4-33 HALT TimMiNG ..cooeeiiensrnreiiniissivsessnressnssnssssssnsssnisresssnssanssasssssssassssesssssressss
4-34 Bus Arbitration Flowchart for Single Requestcceeiviicicncnnnncivnnne
4-35 Bus Arbitration Timing Diagram—Idle Bus Caseccceererecrurrersnnans
4-36 Bus Arbitration Timing Diagram—Active Bus Case..........c.ceevrererceriunans
'4-37 Bus Arbitration State Diagram ...
4-38 Slave Mode Bus Arbitration State Machine........... T,
4-39 MC68040 Companion Mode Bus Arbitration State Machine
4-40 Slave Mode Bus Arbitration Timing Diagramccceveerververcesiessersenns
4-41 MC68ECO040 Internal Registers Read Cycle.........ccvevmrcrennrnnesensncennans
4-42 MC6E8ECO040 Internal Registers Write Cycle......cc.cvvvvvervierecerrnceersnncnnas
4-43 MC68EC040 Autovector Operation TiImMiNg........ccevererreceseressereseesessans
4-44 MCG68BECO040 Interrupt Acknowledge Cycle.........ccovrvernnnircennerenessinnneas
4-45 Show Cycle Timing Diagram.......c.cecceeeeereerereneeseessneneesssssessesessessasiossenss
4-46 = Timing for External Devices Driving RESETcc.ccoiseesereirnrissenessseenens
4-47 Initial Reset Operation TiMING......cccceerererceercserienssseecnersassssecsnessssssnsesaens
5-1 CPUS32+ BIOCK Diagrameeeiniesienssisseissiorsisiesessnmsensarsanssesssssssssessnees
5-2 Loop Mode Instruction SeqUENCEccvvisinninnissinessieeinisssessanneen
5-3 User Programming Modelc.ccviiniinnrcnnensrnnnesnnserennnnsinnssesmssnsennins :
5-4 Supervisor Programming Model Supplementccccouevveeennnerercnneens

xxxii MC68360 USER'S MANUAL

Page
Number

MOTOROLA

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
5-5 Status RegiSter.......ccviiiiiiinrrrrce et s sse s senes e e sraen s resnans 5-9
5-6 Instruction Word General FOrmat..........cccoccveieeccninnceennnenscninnneennesesserecsnnns 5-12
5-7 Table EXAMPIE 1ocercirereenireneenreeerrecesenssesseesssessseessesssessasssssssnsis sesnsens 5-29
5-8 Table EXamMPIE 2ciiieiiniinniiciiiniiniennninenstisseeseseesenssessesesssessorasesssss 5-30
5-9 Table EXamMPIE 3vvieerceiiiiriniincnnrincnrecsnnionsecssessssnesesensssnsesssesessensrsssassssans 5-32
5-10 Exception Stack Frame........ccccccvvcmiennecrinnneneennesinsenninnrencnesssssessesesssnmessennes 5-40
5-11 Reset Operation Flowchartcccceeiviiniincsinnnincninninncssiseeennes 5-43
5-12 Format $0—Four-Word Stack Frame..........ccccceeerercersinenenvcsesnsesssesssessennes 5-59
5-13 Format $2—Six-Word Stack Framec.cccveevreecersieesenriennervnssnsresesnnasserens 5-59
5-14 Internal Transfer Count RegiSter..........cccorvernicrininiciiniicnnnrerenesnnennssssnes 5-60
5-15 Format $C—BERR Stack for Prefetches and Operandsc.cccevieveenene 5-61
5-16 Format $C—BERR Stack on MOVEM Operandc.coeeeeervererseseesiressenees 5-61
5-17 Format $C—Four- and Six-Word BERR Stackcccevureeienensernenneesniseienes 5-62
5-18 In-Circuit Emulator Configuration..........cccceceevevmniinininnnnnnnnncensesnne 5-63
5-19 Bus State Analyzer Configurationcc.ccceeerenrnnrnncnncninicicsnseensensnens 5-63
5-20 BDM BIOCK Diagramccovcnirniiniiniesinicseninnmssssisnsisissssssiesnessnsssmssssssns 5-64
5-21 BDM Command Execution FIowchartccccciernviveenneecnernnnecsessenssenens 5-67
5-22 Debug Serial I/O Block Diagramc.cccccreeererierserseescerenssesssessersnssessssssssaes 5-69
5-23 Serial INterfacecvivieviicnnicricnecinneiceencneenecsssse s sneessssesaestaseernes 5-70
5-24 BKPT Timing for Single Bus CyCle.......ccceirerneiiiciinieeciereeeernessnsesee e 5-71
5-25 BKPT Timing for Forcing BDMcccceivivininnncinniinniecinesesssennes 5-71
5-26 BKPT/DSCLK LOGIC Diagram.......ccucosivirseinernensesssemssssscssississeesasssessnesessessens 5-71
5-27 Command Sequence Diagram.......ccecveerrvrerieecrnrisnsnesnesseniseesssresmnessnes 5-74
5-28 Functional Model of Instruction Pipeline..........ccocceeviiecircvnnnnrnnnrernnennssnnenas 5-87
5-29 Instruction Pipeline Timing Diagram........ccocceevmmeiisininiincisnnnsinesnnnsnsnins 5-88
5-30 Block Diagram of Independent RESOUICES.........ccervmrcerrcrrenercensveesenniseseas 5-90
5-31 Simultaneous INstruction EXECULIONccccevvrvereererceereisnesnnsecenensesacsanieseesens 5-92
5-32 Attributed INStruCtion TIMESc.ccccivirnnirrerreinennrecsiecrnesenseseressnesssessessesnie 5-92
5-33 Example 1—Instruction SIreamccccecvreviiecreeevenencrennnnnssnsssssssnisssasens 5-95
5-34 Example 2—Branch Takencccccvvereeivnisirienrcsnerseessesssnesnessesnsessisssssens 5-95
5-35 Example 2—Branch Not Taken.........cccccvrveeerceirecenicrennsnneessneescerecsensisesnens 5-96
5-36 Example 3—Branch Negative Tailccooervecrinniinninincnncnnnnnessse s 5-96
6-1 QUICC MemOry Map.......cceeirmniiniiininnneennensensamssssssessissesseessssnsenessnssiors ssssnns 6-4
6-2 System Configuration and Protection LOGICccuuurveiricriercersnnrnneressuesseene 6-6
6-3 QUICC INterrupt SIIUCIUTE........cccevervnrrrevreererseecsesseseneereesessnsssessrssssssassaeens 6-8
6-4 SWT and PIT Block Diagramccceceeereneeennennssssesessnnsessrssssssesseessesssssssens 6-10
6-5 System CIocks SChemMaLIC........cocevvrererrrrrreeeinisineseeserrrseeserensrssersesessmassseres 6-14
6-6 External COmMPONENES.......coceveciiierierierierieernessnsseesesssesseessessessessassnssnessanessens 6-15
6-7 General System Clock Selectoovciiirecinnciiinnnrcnns e e 6-17
6-8 Divided CIOCKS.......ccoiinemnrenniinnineienenninecmensssssssssssssssssssesesssrsssesasssasseas 6-18
6-9 MBAR Access to a Multiple QUICC Slave Systemccocvuevvcivinsnnnnenns 6-26

MOTOROLA MC68360 USER'S MANUAL XXxiii

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
6-10 Memory Controller Block Diagramcccecrsesiscernsnsenssnssisssssesssanisesssees 6-53
6-11 Minimum QUICC System Configurationcccccvveenincncnnenicnsnsesseisnnnes 6-55
6-12 Larger QUICC System Configuration..........c.cvercsmnnsinnenssnnnnecenecniennies 6-56
6-13 CSNTQ = 1 During an Intemnal CycCle.........ccceirrcrinniiccssnneeniieniscsnsneceennns 6-74
6-14 CSNTQ = 1 During an External QUICC/MCB8ECO030 Cyclecveurrurrenne 6-75
6-15 CSNT40 = 1 During an External MCE8EC040 Cycle.........cccrcrrsnnnensvecaninnes 6-75
6-16 TRLXQ =1 During an Internal Cyclecccvvvriversessniisiinsnnnnisniseccsnennns 6-75
6-17 TRLXQ = 1 During an External QUICC/MC68030 Cyclec.ccevvrervuivinninees 6-76
7-1- CPM BIOCK Diagram.........cecusmeisinsnisniseisessnsnsensesssmsmsosmissesmsenasaee 7-3
7-2 Dual-Port RAM Memory Map ... 7-11
7-3 Dual-Port RAM Block Diagramcceeceieiiinsiisneseninnessinnmsnmseisesses e 7-12
7-4 Parameter RAM OVEIVIEWccccniiiiiiinnnicincniensnnnensscsnesnesssssienssanns 7-14
7-5 RISC Timer Table RAM USAQEcceverrernricreeisinninnueniiiessnensnnsieisseessssssens 7-16
76 Timer BlOCK DIQQramccocinrveiiiininniscensssniisnsisssisnsssemsssemsseseessssessssens 7-21
77 Timer Cascaded Mode Block Diagramcecceuicurvvnisinsinnennsscnsnnnneninee 7-23
78 IDMA Controller Block Diagramc.cciccvieerniisnerieemsnnennsissiemssenseessenen 7-29
79 IDMA BD RiNQ....cocciinimninnsciisnsnnisneessnesesnsssssssessssssssemssssssssisesseessnsssseses 7-38
7-10 External Burst ReqUESESccocviiiiveiiniinnnntiiiiniccineeinnsiniennnennnnsseenee 7-44
7-11 External Cycle Steal........ccciriierercrnrinrnininnrens st sssssisesssmssscssasssses 7-46
7-12 IDMA Bus Arbitration (Normal Operation).........ccovveeennenresseieessenseessensessanas 7-48
7-13 Dual Address Transfer EXamplecocoveinisinnisninnnmininininnmen. 7-49
7-14 Single Address Transfer EXamplec.c.ccvevivrvinnnicnncinnnnessnencnian, 7-52
7-15 Single Address Mode TimiNgc.veevseeireneniiinnnnin s 7-53
7-16 Fast Termination EXample ...t nnnseccnnnennne, 7-54
7-17 SDMA Data Paths......cccocreinicinnnnninninennnstsnnsssisessnsssssssesessessnsssesses 7-62
7-18 SDMA Bus Arbitration (Normal Operation)ccccicevreererrcnnicsesssnsssinsaesas 7-63
7-19 SIBIOCK DIaQramcccccciveereeseereereesnssunerssesstssnssnmsansssssesssssanssssanssssssesssssseses 7-68
7-20 Various Configurations of a Single TDM Channelccccveenieiinnnneeeenna, 7-70
7-21 Dual TDM Channel EXamplecovviveniiniininimimemmniessn. 7-71
7-22 Enabling Connections Through the Slccccvinniniinnininnininniieninnne 7-73
723 SI RAM: One TDM with Static Framesc.cccvvimvinnicnnicseniniesennnnineines 7-74
724 S| RAM: One TDM with Dynamic Framescoevvvrimnninniinnnenesenessesanens 7-75
7-25 SI RAM: Two TDMs with Static Frames........cccevvvniennvinnnncncnsennncnennsinennes 7-76
7-26 S| RAM: Two TDMs with Dynamic Frames............cecvvvenvensenrnssnncnnsinininnanns 7-77
7-27 Using the SWTR Feature ... 7-78
7-28 S| RAM Dynamic Changescceerereieinnisnnieininsnsnssisssensesivnsesnissessens 7-82
7-29 One Clock Delay from Sync to Data (RFSD = 01)....ccccoveersemnnrnnecsnnniensenees 7-87
7-30 No Delay from Sync to Data (RFSD = 00)c.ccccenimvviriecsnncnsnneisensnicsuesnne 7-87
7-31 . Dual IDL Bus Application EXampleccceccvieeiniiiiniiininninininienninnneinin. 7-93
7-32 IDL Terminal Adaplorccceverereenmnsiessniisssisnniisisessnsnsisesssseissmans 7-94
7-33 IDL BUS SigNalS.....cccoeniiiirinniinnniiniiniiieiiissseninsnnssnssesns 7-96

xxxiv v MC68360 USER'S MANUAL MOTOROLA

Figure
Numbe

7-34
7-35
7-36
7-37
7-38
7-39
7-40
7-41
7-42
7-43
7-44
7-45
7-46
7-47
7-48.
7-49
7-50
7-51
7-52
7-53
7-54
7-55
7-56
7-57
7-58
7-59
7-60
7-61
7-62
7-63
7-64
7-65
7-66
7-67
7-68
7-69
7-70
7-71
7-72
7-73
7-74
7-75

LIST OF ILLUSTRATIONS (Continued)

Page

r Title Number
GOl BUS SIGNAIS ...ccouiiiiiitiercecerer et se s se et ssae st s s s s s is s sssneane 7-100
Bank Of CIOCKScccvrieiirericenisncnneneninninnnissnnissnsssssssssenssssessssssessesssssssss snesseses 7-104
Baud Rate Generator Block Diagram..........cccuvcevmivniiennnnninnscsenennenienes 7-107
ST 07 020 =1Ta Tl @ 7= | - 1o 7-114
SCC Memory StIUCIUNE ...t s s snnas 7-126
Output Delays from RTS Asserted for Synchronous Protocols...........ccceun. 7-134
Output Delays from CTS Asserted for Synchronous Protocols................... 7-135
CTS Lost in Synchronous ProtoCols........c..cecerrreeeresiessersnesenssessessesennrrsssnns 7-136
Using CD to Control Reception of Synchronous Protocols.........cccccivnieneenes 7-137
DPLL Encoding EXamples.........cciiiiiiiimiinniineinisis e, 7-138

DPLL Receive Block Diagramcocerieeisessnsnsisosensssiiessnmeecine. 7-140
DPLL Transmit Block Diagram.........c.oceccmviriecnninncriinnennnensnnscnscisseeniseesans 7-140
UART Character FOrmMatcccvvieerniininnninnsnnsenninnesisnnsnonsmssssosse s 7-145

Two Configurations of UART Multidrop Operation.........c.ccccceevirvencccnnncncnn. 7-153
SCC UART RX BD EXQMIPIE.......cecrrrverrerrercivrrserersseerersnssseeessenesssssssassnasessnes 7-163
UART Interrupt Events EXampleccccvvirniennnnnnisnseninnesnnesnssesnsessonssens 7-168
HDLC Framing StrUCIUIE.......ccccecrervecrenrrrerersseeissnesneraesersessersasesassssessssnssanes 7-174
HDLC Address Recognition EXamplec.cccvivinnnnnsnnninniincivininne. 7-178
HDLC RX BD EXaMPI@ ..o e r s s e st sess e 7-184
HDLC Interrupt Event Example.......c.ccccocrncvnnniinnnnene [T 7-189
HDLC Bus Multi-Master Configurationcceeevniinnisininsnsnnnsains 7-195
HDLC Bus Single-Master Configurationccccenicemnnninnieninnsninenin, 7-195
HDLC Bus Collision Detection...........coeevrerceernrnnssesrorenrcssnsnenssnssessnseressones 7-197
Nonsymmetrical Duty CYCIeocoiviiviirecmriniiinniieest s assannes 7-198
HDLC Bus Transmission Line Configuration..........cccevveisciiisnnssivenisnenens 7-198
Delayed RTS MOGE.....ccurieeecceiernieniecnnenninessseesssnssesssesssesssesssssesssassssnssnesens 7-199
HDLC Bus TSA Transmission Line Configuration..........ccceceevennennenccnnnceninne 7-200
LocalTalk Frame Formatcociinvninnnnninnnnnncsnessssiesissassssssns 7-201

Connecting the QUICC to LocalTalK........cccecvrirenniinnnensisnnnesnnsesnssssnssinssessens 7-204
Typical BISYNC Frames ..o 7-205
Sending Transparent Frames Between QUICCSccccveevceenniecsiinnnsnenines 7-231

Ethemet/802.3 Frame Format...........ccovvmvecnuiciinsnnnnnecsinninsnsinesenssonsessenne 7-241

Ethernet BIOCK Diagramccccceeeeeerneiseeerecneineereesessessesseessnsnnssnsesesssinnssensns 7-243
Connecting the QUICC to Ethemet..........cccvvviivnircrenennnnncicnneininesicnnes 7-246
QUICC Ethernet Serial CAM Interface..........ccevererveererscrrescnnsnrscssrsensmessnss . 7-250
QUICC Ethemet Parallel CAM Interfacecccovevurneninnnnnencnscsesnnnsnssenns 7-252
Ethernet Address Recognition Flowchart..........cccuriiiinnnisicsinsionnnaneenns 7-259
Ethernet RX BD EXQMPILcoccverirrecrerneerseeisrnecererenssescsenesessnessnessessesivessin 7-265
Ethemet Interrupt Events EXamplecccccvcveeerincnncrssnnsnnissessnnssensssssenssns 7-271

SMC BIOCK DIiagramcccceeeeecrirerceneeisenssesseesacsmssessenesssssossssssssnsiosssons sonseses 7-275
SMC MemOTY SEIUCIUIE.......ccvviieriirrinrsirrenssnserssssessssesssssssesasssssessessssessesses 7-276
SMC UART Frame FOrmMat........cccvvrieerennnieniessecsesnnssssnsessessassanssssssssssones 7-283

MOTOROLA MC68360 USER'S MANUAL.. XXXV

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
7-76 ~ SMC UART Rx BD EXaMPIB....covirirreinnnuincnnsesinmsisnsisinesenisssisssssssessssesssaes 7-292
7-77 SMC UART Interrupts EXampIec.ccvceerrerermrcenrenicsenseninerssenssnassesssnsssssenes 7-295
7-78 Synchronization with the SMSYNX PiNc.ceccviiinicininnninnennecnenin. 7-300
7-79 Synchronization with the TSA ..., 7-301
7-80 SPIBIOCK DIagram........ccoeeeicmininenniennensecnsisnisssnsnsssissessssnesstssssssessssasesns 7-319
7-81 SPI Transfer Format With CP = 0.......ccccevrriinnnnicnniinnnncnnienernsnsnsenens 7-325
7-82 SPI Transfer Format With CP =1ccccnniiinnnnnninncincnsennsnneens 7-325
7-83 SPIMemOry StrUCIUIEccuvvcriirircnisirciienssnssstnesessssisiee e sessesssonsosssaens 7-330
7-84 PIP Block Diagram......c..cccoserevrceiiisnnsinnsinnnniininmeenieosmssmes 7-338
7-85 Interlock Handshake MOdEcccoviiininnicsnnnsnsinnneinnmenecmensisene 7-340
7-86 Pulsed Handshake Full Cycleccccivimininninneiinnnnnneinnieccanne 7-341
7-87 Pulsed Handshake Busy Signal.........ccceersesninninsmennicncninnnnsiessisssieisess 7-342
7-88 Centronics Transmitter TIMING.......occecvveerrennssetssinninminneenn. 7-342
7-89 Centronics Receiver Timing Mode 0.........ccceccveerriernieennsnncnninnnesssoncssssansans 7-343
7-90 Centronics Receiver TiIming Mode 1 ..., 7-343
791 Centronics Receiver Timing Mode 2........cccvuvviecninnnnensiniininennissesnsesnnsens 7-343
7-92 Centronics Receiver TiIming Mode 3........cceeiiiicrinnsnnecncnnnsesnissnmenenens 7-343
7-93 PIP Transparent Handshake Mode.........ccccceveirenicreninerencensninnssessessssnssonense 7-344
7-94 Port B General-Purpose /O ... e, 7-349
7-95 Parallel Block Diagram for PAQ........cccceeeeessinniinisnisennensesssessmesesssssesssesssnne 7-353
7-96 Parallel Block Diagram for PATcccovnmninniniinnninieesresincsnine 7-354
7-97 QUICC Interrupt Structure eerereeesnessaeee e nes e eseseren s ae e asabees s sesanen 7-364
798 Interrupt Request Masking ... 7-368
8-1 Test Logic BIOCK DIiagramccccevrrrrenseesssscsssisnssssnssssmssnessnesssessssssssssssense 8-2
8-2 TAP Controller State Machingccccveererveenienircncncniesinnnncnssssssssssssseees 8-3
8-3 Output Latch Cell (O.Latch)covveceirrenerccrsicnnecsiniercnsacanns TR 8-8
8-4 INput Pin Cell (ILPIN) «co.eeiiiciiiereeireecresersieneseessrrssesesessscessessnssssnsassessnessassssns 8-8
8-5 Control Cell (JO.CH)...cuereeeeeerenerinecrere s sessesseessesseeressaesansssassssasssnesnenns 8-9
8-6 Bidirectional Data Cell (I0.Cell)cocvvrerrcnririisinncniinscsieeicsseceseeenes 8-9
8-7 General Arrangement for Bidirectional Pins........c..cccvciinnninisiniciionineninnns 8-10
8-8 Bypass Register.......cccvcininiiinninnniniinnnssasssesns 8-12
9-1 MC68360 Minimum System Configurationccecevvvsieinernssennsnissicesinninnne 9-2
92 Gilueless Interface to Standard EPROMccocviiininninnninncsnsinenneninnne 9-5
9-3 Gilueless Interface to Flash EPROM........cccecvviiiercnnninnennnnnninnnsciensecseninnne 9-6
9-4 Glueless Interface to0 SRAM........cccvvieririnnsinnrines s sisessessessseses 9-7
9-5 Glueless Interface t0 EEPROM.........ccccovmeininenncnnnnnnisiessscsensansssssaine 9-8
9-6 Gilueless Interface to MCM36100S SRAM.........cccecuniviiinniniennieisnnensnnsesannens 9-9
97 Glueless Interface to Standalone DRAMccovinininicincssinnnnnnnnnenn 9-10
9-8 MC6E8EC040 to QUICC INterfacecveverscscinsininsnscisunnninsnsennssnsssessinssenns 9-34
99 512-Kbyte EPROM Bank—32 Bits Widecccovreircennrmrrr e 9-40

xxxvi MC68360 USER'S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
9-10 256-Kbyte Burst EPROM Bank—32 Bits Wideccccevvernneiicisnnncincsccnnneas 9-41
9-11 1-Mbyte Flash EPROM Bank—32 Bits Widec.cccvceervririvecrencenecnisnnnanens 9-43
9-12 128-Kbyte Static RAM Bank—32 Bits Widecccccevvererrrrerrsnncenerinsesscenenns 9-44
9-13 128-Kbyte Burst SRAM Bank—32 Bits Wide........cc.cceevrrveerneirnncnnierseensnens 9-45
9-14 8-Kbyte EEPROM Bank—=8 Bits Widec.ccccorvenicnrrnnnenncrnnnicessnnessisenns 9-46
9-15 4-Mbyte DRAM Bank—236 Bits WiIde........c.eccevvreretrcernenesssessenenssinsenssassnsnens 9-48
9-16 1-Mbyte DRAM Bank—32 Bits Wide.........cccoremriernnnnniccniriinnninnssninsinn. 9-49
9-17 SCSIBUS SIGNAlS.....ccccervrrirreirerrerrenserreneressesssresssesesrarsasssssssesasessssassesssssessns 9-57
9-18 Single-Ended SCSI Bus INtEIfacecccevvereeervecriinnennncscsnnnnnesesesnenensseeneens 9-58
9-19 Differential SCSI BUS INterfacec.coccoveevccerencrrcereseinensersnesnesseseeseneessssnens 9-59
9-20 Phase Sequences of the SCSI BUSccoevcrrinirrrrnrenntrennnnesnemenissneeenne 9-61
9-21 QUICC to SCSI Bus INtErfacecevvmuereisiisenrnesiinierannissssnisnnsssssssessesseseanns 9-66
9-22 IEEE 1149.1 SCan Pathccccvviiieicencnicniinnsceeeccnnnicsnnneseesssssseseessernssessssesens 9-70
9-23 TAP Controller and RegiSterscccecererrrreiensrnieneeecivnneesncsnessesessseseenns 9-72
9-24 Signal Routing with TAP Port Used in Board Testc.ccoceeveceirecrernireresennens 9-73
9-25 Signal Routing for Test Bus Mastercccccvcvninnncnncnnnnnscninessnnnen. 9-74
9-26 Bit Banging of Boundary Scan Pattem...........cccoviimivinninenntiincnnessinnnesesennns 9-75
9-27 MCGE8BECO030 to QUICC INtErfacecevervirvernrniisinnensssssmsnensessesnenmansssiones 9-78
9-28 128-Kbyte EPROM Bank—=8 Bits Wide.........cccccveveemerriecicrrrecreceeerenrenenens 9-83
9-29 1-Mbyte Flash EPROM Bank—32 Bits Widec.ccvccevnrinennninnnnisiecsnsennns 9-84
9-30 128-Kbyte Static RAM Bank—32 Bits Wide...........cccceeeereercernnrcesseesnnerescrennas 9-85
9-31 8-Kbyte EEPROM Bank—=8 Bits Wideccccoverninennrennnnnceninnesssnsenesssnenns 9-86
9-32 4-Mbyte DRAM Bank—32 Bits Wide.......c.ceeereecernmrinerennnneesnisncrenssseonussaninens 9-87
9-33 1-Mbyte DRAM Bank—32 Bits Wide.......ccccceererrrserrernenriciennsenssssecmsnsassssaenns 9-89
9-34 BDM CONNECION.....cccviiinnnrriiienrerissensneseessscassassasssssnssasassensassessassessnssssaessesnnes 9-94
10-1 Drive Levels and Test Points for AC Specificationscccccoecvriiinerisseinanns 10-3
10-2 ClOCK TIMING....conirinnenireensssnieesssssenncessesseeseesasssssnssscsssssnsssasssssesnesssnssssesnes 10-5
10-3 Read CyCle.....cccvviiiiinreceicrnrecnassnesensensessessnessesnseses Creeesenssrrenatesenesneaesnranes 10-11
10-4 Fast Termination Read CycCle..........cvemvcrirnenniinsincnicncnnsecensscsnsenns 10-12
10-8 REAA CYClR ...ttt sttt st seet s sessnsassses e seasessnenas 10-13
10-6 SRAM Read Cyclec.cceereuunee. eeteeereret e e et e ae st s e naa st st e e sre Rt asranns 10-14
10-7 CPU32+ IACK CyClecccvurrrrririnnnsnsnsesessansnssens erieneseesessesaas e asiesarnans 10-15
10-8 WIHE CYCIE ..ttt sttt st ssenenesansssesnasnsassonsanes 10-16
10-9 Fast Termination Write CyCle........cccuvvrviricennnniiiiinnncnnnnnnensie e 10-17
10-10 SRAM Fast Termination Write CyClecvvvvncnnrinensncniinncisnesienessesenas 10-18
10-11 SRAM WIite CYCle...ciuiiiruiiiiiiisiinicnnniscnnnniessessssenessessssssssssssssssonssassasss 10-19
10-12 ASYNC Bus Arbitration—IDLE BUS CasSecvceerrvnrssisurrcneristssnsassssssisnss 10-20
10-13 ASYNC Bus Arbitration—Active Bus Casec.ccccvrvnrreenrnnecsnssncssnnnnsessnens 10-21
10-14 SYNC Bus Arbitration—IDLE BUS CaSe.........ccccererrrecsreresnnencssnssnsanessessaens 10-22
10-15 SYNC Bus Arbitration—Active BUS Case.......c.uceverrrrnreresnesineecssessnssnnnesssens 10-23
10-16 Configuration And Clock Mode Select TIming........coccvniernirineesesisssscesesisenes 10-24

MOTOROLA MC68360 USER'S MANUAL XXXVil

LIST OF ILLUSTRATIONS (Continued)

Figure
Number Title

10-17 ShOW CYCI@ ...eeeeiirceecrccnnnre st e s sssesstessasssssesesnsssnsssnnns
10-18 Background Debug Mode FREEZE Timingccoeverienvimiensnnsensincsencens
10-19 Background Debug Mode Serial Port Timing.......cccooovveveiiensecrenseisecsnnns
10-20 DRAM Normal Read CYCIecccveremrciirnnnniinnensinesssessassenssssssnenne
10-21 DRAM Normal Write CYCIeccvveerreeinnnrerrennnnnsesenetsstnnsnesssssssssesanesesnes
10-22 DRAM Refresh CYCle.......cciiiimminmininiiniisnmmiemmosmiasoss
10-23 DRAM Page-Mode—Page-Hit..........cccevrnniiinmnneniisnnnniniennenincines
10-24 DRAM Page-Mode—Page-MiSsccoceeiremincnrinnnencinmioniensnsncenins
10-25 MC68360 Slave Mode Asynchronous Arbitrationcc.ceeeeeerveieerenenens
10-26 MC68360 Slave Mode Synchronous Arbitrationccccvvreiceiniennesaneees
10-27 Extemnal MC68030/MC68360 Internal ASynchronous.........coevveenuecnecnns
10-28 External MC68030/MC68360 Internal Registers Asynchronous............
10-29 External MC68030/MC68360 ASYNChIronouUScevuieerveisensnesnissessnessnes
10-30 External MC68030/MC68360 Internal Synchronous............cccovercerensnee
10-31 External MC68030/MC68360 Internal Synchronous...........c.eeevueereeennes
10-32 External MC68030/MC68360 Synchronous...........cecevvisuesessnsssssscassinens
10-33 External MC68030/MC68360 SRAM ASYNChronouscceeeeesesnesnsns
10-34 External MC68030/MC68360 SRAM SynChronouscesveesnessnssnnns
10-35 External MC68030/MC68360 DRAM Asynchronousc.cceeeeeiveeeecnens
10-36 External MC68030/MC68360 DRAM Asynchronousceweeverieeiaens
10-37 External MC68030/MC68360 DRAM Synchronousccccevesvrsncrenns
10-38a External MC68030/MC68360 Parity Bitsccocooevviercineicsienrennennes
10-38b External MC68030/MC68360 Parity Bitscocvvrenenienensnsiissnnesnnnes
10-39 MC68040 Companion Mode Arbitration.........ccccereceeeeveeen. renerresssrereerenns
10-40 MC68040 Internal Registers Read Cycles.........ccoevneviiiiiercenninicnennene,
10-41 MC68040 Internal Registers Write Cyclescvvinivericinnienniecinenanns
10-42a MC68040 IACK Cycles (VeCtor Driven)ccveverrrecriineersnnearinsscssnseenes
10-42b MC68040 IACK Cycles (No Vector Driven).......ccccoencensvsninensiniiessseens
10-43 MC68040 SRAM Read/Write CYCIEScoomeeeeecrmiiiteireecntriin e
10-44 MC68040 SRAM Read/Write CyCIescevuirvrisniinecsnisessnnsensnnsnions
10-45 External MC68040 DRAM Cycles Timing Diagram........cc.ccueecrnnrieerennnns
10-46 External MC68040 DRAM Burst Cycles Timing Diagram...........cccceeueeiee
10-47 External MC68040 Parity Bit Checking Timing Diagramccecevueenen
10-48 IDMA Signal Asynchronous Timing diagramc.ccceeevveerviinnincrennne
10-49 IDMA Signal Synchronous Timing diagramc..cccevnvcineiinncnininsennnes
10-50 PIP Rx (Interlock MOde).......ccevivvmreirseinmniniesnininisivecsnsncsseeesansssssnnane
10-51 PIP Tx (Interlock MOde)cccvviiciinnicinnnnninisnnsinnsnsccssssssssessessscens
10-52 PIP TX (Pulse MOde)ccciviiieernernircniiiniescsensennssitesssssssnessessessansssnes
10-53 PIP Tx (Pulse MOde)ccccovviiinmnniininiininmsnncsmmieisnmssissmsiesssesans
10-54 Parallel I/O Data-In/Data-Out Timing Diagramcccvmeniennsesncnienne
10-55 Interrupts Timing Diagramccccooivciciiinenmecssnnennniesesssessssssassssnene
10-56 Slave Mode Interrupts Timing Diagram........ccceereriircsnsercninnsenae, -

xxxviii MC68360 USER'S MANUAL

Page
Number

MOTOROLA

LIST OF ILLUSTRATIONS (Concluded)

Figure , Page
Number Title Number
10-57 RISC External Request Timing Diagram.........ccocvveeireriencsecnieennncninansssnsnnns 10-69
10-58 Baud Rate Generator Output Signalscccceeinnrcrnnnninnnnnnnnnessennens 10-69
10-59 CPM General PUrpoSe TIMErSc.coveevirrvreierrerereersreresnsssereseesseerssssssreessasssns 10-71
10-60 Sl Receive Timing with Normal Clockingcccocmnminiinnnnneensneccnnensesssenes 10-73
10-61 Sl Receive Timing with Double Speed Clockingccervecrrecsenereessrmeanesesnes 10-74
10-62 Sl Transmit Timing with Normal Clockingceeveeniininnnnnnnnnnnanenens 10-75
10-63 Sl Transmit Timing with Double Speed Clockingc.cccevrereiinneinccnerienians 10-76
10-64 IDL TiMiNG ...coceieiiiiiireirriinsiisinst st s esn st s s st et esas s sssssmesnassensnes 10-77
10-65 SCC NMSI RECEIVe.......cccortririririirninsisienn st sassisnssssssans 10-79
10-66 SCC NMSI Transmit.........cccoerienrinninninnisneenonmsnsssenssnennsioissosssmeensosseses 10-79
10-67 HDLC BUS TiMING ..ceiruiiuinernnisnnsenisissinsnsnesnssissismissmmss s 10-80
10-68 Ethernet Collision TIMINGccccvveiniinncciicnnnninnsniessssssress e srssssessns 10-81
10-69 Ethemet Receive TimMiNg......cccccviiinniiinnnnnnicnnnnnnisecsesssnnsienessssiessssenes 10-82
10-70 Ethemet Transmit TIMING....cccccceevinemntirininninceinincen e 10-82
10-71 CAM Interface Receive Start TIMiNg......ccccvvveererecrnsnnsssessencsesennes eteninenenee 10-83
10-72 CAM Interface Reject TIMINGccovvverrerricnemrennnsssisiisiiieseeesnnsenssresnsssassnes 10-83
10-73 SDACK Timing Diagram........cccceeverrreererierrersnrsiasssressressessssessarssesssasessessssasses 10-83
10-74 SMC Transparent........ccccccerueune evesseersanerenneesaserresssnereranseansesnesesnasertasarestrares 10-85
10-75 SPIMaSIer (CP = 0) ...ttt rresrerrcereesssnnessessensssessnsssssssasassssensns 10-87
10-76 SPIMASIEr (CP = 1) ...uceverveeriiireinisnnnnnrsinsssennsssssscssessesssssnsenessnesassssassssssens 10-87
10-77 SPISIAVe (CP = 0) c...cveericrctiercreennerstesseesesssesesssssessssnssssssssesssssssessasssssssssns 10-89
10-78 SPISIAVE (CP = 1) cciiviriiniinininnininisssinnienensssssssssssisssssisssssssse sssssssssas 10-89
10-79 Test Clock Input Timing Diagram.........ccuvveeerenniemsesesnscnsnssciesmimsnnion. 10-80
10-80 TRST Timing DIagram........cccceeeerrsariinesssnessenreessesssscssssssesassesserssnersassrssssesasss 10-90
10-81 Boundary Scan (JTAG) Timing Diagram.........c.cueesmsinnienenenienesssssnscessnns 10-91
10-82 Test Access Port Timing Diagram.......ccccceevevecccrrnnnerscnsionsensenessnssrssssessens 10-91
B-1 SOftWare OVEIVIEWcciieriiiiciniiniinniiicinenssseesissseesnesssessssssesenssssessssens B-2
B-2 QUADS SYSIEM ...coeeiiicnieriinsicernrennssenesenensesssssssssnsssassasssnsesnasssasensssssnes B-7
B-3 QUADS BIOCK DIiagramc.cooeversesinerssesnsessesesssssssnssssessssssssessssssssesnanssasane B-9

MOTOROLA MC68360 USER'S MANUAL XxXix

LIST OF TABLES

Table Page
Number Title Number
2-1 System Bus Signal Index (Normal Operation)c.ccceeververeverseererereceereienenes 2-3
22 Address Space ENCOdiNg.......ccccvrreermmrcmesmrnnisnersseresnsensssssnesessessenesnsssssnesanss 2-6
2-3 DSACKX ENCOAINGevvrurrrerrrrrrnionrarnereissaresaessinsenssnecssssnsssnsssnessnsssassssessassaens 29
24 SIZX ENCOUING ...ceecvrnreeernrrrrrnerersrereersennorsesnessnnesssssessssnesorsnseesssssrsssransssssssnens 2-9
2-5 Default Operation Mode of the PLL.........cc.cccecernirniecnnveniencenseenensensaesennns 2-12
2-6 Initial CoNfIQUIAtIONcccveverrrrierrcniriecsreereenreernresnesnterssesreessesseeesassssressessersns 2-14
2-7 System Bus Signal Index (Slave Mode)........cccovivcniininnnnncnnnenncnnon 2-15
2-8 Peripherals Signal INAEXcccvevererrrveerrnrenesisnnseseseeesrsessssesssssesssassssaens 2-17
3-1 Dual-Port RAM Mapccuvimiiiiiniminninenssscieiecsiessissnsssssssssensssssins 3-3
32 CPM Sub-Module Base AdAresses........cccveiernineininnmnessssseessesssssesssssssnnes 3-4
3-3 QUICC SIM Registers Memory Map.......ccccevveereeerenreerersecssessessnrssssesssessenne 3-5
4-1 Address Space ENCOAING......ccccvreeererrernrererernnnierseessesesnssaesssssssesssessassessssees 4-4
4-2 DSACKX ENCOTING vvevviireirerrmrernrenesnssrssssnesesssesesssessrssesssnsssnsssnesssesssesssssens 4-7
4-3 SIZX ENCOAING...cccveruerierriersaeisnerneecssirsnessnessessessansesssssensssssessssnsesssssssssssesanesns 4-8
4-4 Address Offset ENCOAINGcccereereerecremrecrennnisinrensanereeressecsessessnsssnssssssessnssess 4-9
4-5 Data Bus Requirements for Read Cyclesc.cocevvnniinvininniirinsnscnccninnns 4-10
4-6 QUICC Internal to External Data Bus Multiplexer—Write Cycle................... 4-11
4-7 Memory Alignment and Port Size Influence..........cccoovviniineccnncciniecnnnnnn. 4-21
4-8 DSACKXx, BERR, and HALT Assertion Resultsccccccvvveeverernrecenninennenneenes 4-45
49 Reset SOUICe SUMMAIYcociiiiniinniinsueiieenicssionsiesisessinsssssasssssssssssansases 4-69
5-1 INSEFUCHON SOtcooviiviriinrcrinrinreererrerrernssesressnssesssnssnnsesnsssasssesssssssnesens 5-10
5-2 Instruction Set SUMMANY.....ucciiiiiisrrrsessstssarssssees 5-15
5-3 Condition Code Computationscvcvvververciecnnenreenieniennesseesessssesssssnssessasans 5-19
5-4 Data Movement Operationsccccverrirreenesrensnrisrsssssnissrsssssssssesssssesnesans 5-20
5-5 Integer Arithmetic Operationscc..ervrrecrrnsrrirnccnnrrsrnssinssninessseessisseeseseasaes 5-22
5-6 LOGIC OPErationsS.....c.cccerreeerecrnrecerieserssneesssseesesensssseessesssesssssenessssensessssanesas 5-23
5-7 Shift and Rotate Operations..........cccceeeirervenenenereninsennesseeseseesessssssessssees 5-24
5-8 Bit Manipulation Operations...........cccevivcirinnniiiinniecnnnnesees 5-24
5-9 Binary-Coded Decimal Operationscccecureniininniecinnesnennnssnisssssssesennns 5-25
5-10 Program Control Operationsccvreieerreesnssssssssesnnssnsssssncssnsssessesssssenssenes 5-25
5-11 System Control OPerations..........cecverererersessnneranssnnsssssnssesesasssarssasssnssssarssns 5-27
5-12 CONAItION TOSES ..cuvivuiruiirrrerneecrmrrerseeressansseserssnsssssnssnssasssesnssnnssessnssaessrsseasassnes 5-28
5-13 Standard Usage Entries..........ccoeverveerereercennniennesensessesesessessessesssssesessessesnes 5-29

5-14 Compressed Table ENtries ..., 5-31

xl MC68360 USER'S MANUAL MOTOROLA

LIST OF TABLES (Continued)

Table Page
Number Title Number
5-15 8-Bit Independent.......cccuvciiiiiiniieininnniinenienneniessseneanieesnssssstsesssesenes 5-32
5-16 Exception Vector ASSIGNMENLESccccvvrrverricsreriarssenesiensenionesinrsssnnsenessessaneanes 5-38
5-17 Exception Priofity GrOUPScccovciiivminniienisnnenessennnssnnnnsssnesssssssnssseernssssasans 5-41
5-18 Tracing CONLrOl......c.coomeneiiceircrirt et e m e s e aes 5-48
5-19 BDM SOoUrce SUMMATYcccoriirreiiinnrisieenrsssrniseiseesssisssnssssssessseesssesasaessseess 5-65
5-20 Polling the BDM Entry SOUICe.......cccocvirieiiinmicnsinisesnnisecnestsnssss e sceane 5-66
5-21 CPU Generated Message Encodingc.ccecenennicninniniiisnnnennninnnesnnsenns 5-68
5-22 Size Field ENCOAING ...ccccreeiviinerrecniniierecenstinesecesseseesasssnesesssessesssssssassssens 5-72
5-23 BDM Command SUMMAIYcccccceerrrecereiivisennienerniessessessessansesssassessansessesans 5-75
5-24 Register Field for RSREG and WSREG..........c.ccceciiirnmniinrnsnenssiesnsienenns 5-77
6-1 Default Operation Mode of the PLL........cc.ccovveinenninnninvenneennnnieesreesiessennene 6-21
6-2 QUICC Initial Configuration..........cccecvvieeresnseeecrsrnnseessensessresecrensinssansensenes 6-24
6-3 Show Cycle Control BitS.........ccceeerrninresiinenrsiencsiennesiesessssesstssesesesssssseenes 6-33
6-4 Deriving SWT TIMEOULc.ceeiirerrerireeesernesserse s sressesssnssssessnssnsssssssnssnssaness 6-38
6-5 BMT ENCOAING...ccocerrerreerneecinicrtrreeesrerceenesesesssesssesseessenes PR 6-39
6-6 Periodic Interrupt Request Level Encoding.........cvceeeerennirrenirsnessnnnnscssnnnes 6-39
6-7 Address MUltiplexingcccereerrenernrcnneereniresenieenes eererererserenrenessas e r e essnaans 6-60
6-8 DRAM PAQe SiZEcccirrvrirrreneinrinnenniieerieescnseensessnsesessssesssssnsssseessssesssssssnnes 6-66
6-9 DRAM POIt SIiZEcovveiirircneiinniisinnntiinsns e sens st s sstesnsssssnsssssenssssneessssneses 6-67
6-10 External MC68030-Type Cycle Lengthcoceivcvveeicrrnernrercnrnnssnnecesnens 6-69
6-11 SYNC-BSTM Bit Combination SUmMmMarycccocvrerennnninnnnsnsnsssseesennes 6-70
6-12 SRAMPOI SiZE ...cceeieiiireirierts ettt st s ssenaess 6-77
6-13 Cycle Length in ClOCKS......cvcertrvinuiniiiriinie s e e se s sesnsanans 6-79
6-14 Maximum DRAM/SRAM Performance (25 MHz)ccccvvnrinnininicsniennnes 6-80
7-1 OPCOUESc..eicerrinrriesereieinsste et estessessesesseentsssssesssssesseessssasssnesssssassssssenss 7-8
7-2 RISC Timer Table Parameter RAM.......coocicecriireniencnnnncnrsenncnssnsessnssessaenns 7-16
7-3 IDMA Parameter RAM.......cccouiiirvemienncniinc ettt et stesessenans 7-39
7-4 Typical Baud Rates of Asynchronous Communicationcccoccveicneeneenee 7-111
7-5 SCC Parameter RAM Common to All Protocolscccvverveeecrercnnerccseennens 7-128
7-6 UART-Specific Parameterscvcevverveeneriiinnrcrensesnreniessssesssessssessessnssneenes 7-148
7-7 HDLC-Specific Parameters.......ccccieeevreniecrerienrneseeiessnieresssensesseesaseressaressaense 7-176
7-8 BISYNC-Specific Parametersc.cccvrrnniimvinnicnneicsiissessessseesssssesnes 7-208
7-9 Transparent-Specific PArametersccccovvecveveenieresincvensrecnnisnessssessesesneeens 7-231
7-10 Ethernet-Specific Parametersc.ccivcvvirvcivennnnnenesnensseennnessssssessnassessenes 7-253
7-11 SMC UART and TranSparentccceveeerveerceersnessseesssnessssnsserssssarsssssassnsenens 7-277
7-12 SMC UART-Specific Parameter RAM.........cocceereerrrreernnineennsnesnesseesiassesssens 7-284
7-13 SMC Transparent-Specific Parameter RAMcocccveicnnniininninnencnnniecine: 7-298
7-14 SMC GCI Parameter RAMcocccoeinniiininnniiinssennsesssiisssssinsenns 7-312
7-15 SPI Parameter RAM Memory Map.........ccivnivnnmnninninniniinnsnens 7-326
7-16 Port A Pin ASSIGNMENLcoveiiicniinrnntcinncinnressinntesieseesstessssseessssssiessssns 7-351

MOTOROLA MC68360 USER'S MANUAL ' i

LIST OF TABLES (Concluded)

Table

Number Title

7-17 Port B Pin ASSIgNMent ...,
7-18 Port C Pin ASSIgNMENt.......ccovcevnecrnrnnneeniiinnnsssersscsnsessnssessssssessens
7-19 Prioritization of CPM Interrupt Sources.........ccvninenineinisisnnienins
7-20 Encoding the Interrupt Vectorc.ccoevvviniininnininnnecnncinnenneen,
8-1 Boundary Scan Control BitS.........ccceevricrcnnnernetsnencisessnenressssnsnanas
8-2 Boundary Scan Bit Definitioncccvvinnnineiniinniiiienininnnn,
8-3 Instruction Decodingccevernsiinnnisininninicnssee.
9-1 SCSI Bus Signals........ccccerieeiiiinnnnnsiinineesnsssessesesnne
9-2 Information Transfer Phases..........cccccviiniinnieinncncninnennncnennneen.
9-3 53C90 Read and Write Registerscccvrrininiivinninsiniecnnnininnnes
A1 SCC Performance Data with 25-MHz Clockc.ccovinieenisinennnn.
xlil MC68360 USER'S MANUAL

Page
Number

MOTOROLA

MC68360 ACRONYM LIST

ABCD—Add Decimal with Extend
ACK—ENQ Acknowledgement
ADDX—Add Extended

ADD—Add

ALEC—Alignment Error Counter
AMUX—Address Multiplex

-~ AUl—Attachment Unit Interface
AVR—Autovector Register

BAR—Base Address Register
BCC—Block Check Code
BCD—Binary-Coded Decimal
BCHG—BIt Test and Change
BCLRO—Bus Clear Out

BCLR—BIt Test and Clear

BCR—Byte Count Register

BCS—Block Check Sequence
BDM—Background Debug Mode
BDs—IDMA Buffer Descriptors .
BGND—Background Instruction
BISYNC—Binary Synchronous Communication
BKAR—Breakpoint Address Register
BKCR—Breakpoint Control Register
BRG1—Baud Rate Generators
BRGC—BRG Configuration Register
BRGs—Baud Rate Generators
BRKe—Break End

BRKs—Break Start

BR—Base Register

BSET—BIt Test and Set
C/l—Command/Indication
CACR—Cache Access Control Register
CALL—Call User Code
CDB—Command-Descriptor Block
CDVCR—Clock Divider Control Register
CICR—CPM Interrupt Configuration Register
CIMR—CPM Interrupt Mask Register
CIPR—CPM Interrupt Pending Register
CISR—CPM Interrupt In-Service Register
CLKOCR—Clock Out Control Register

MOTOROLA MC68360 USER'S MANUAL

xliii

ACRONYM LIST (Continued)

CLKOWP—CLKOCR Write Protect
CLR—Clear

CLSN—Collision

CMAR—Channel Mask Register
CMR—Channel Mode Register

CPIC—CPM Interrupt Controller
CPM—Communication Processor Module
CP—Communication Processor
CRCEC—CRC Error Counter

CRC—Cyclic Redundancy Check
CR—Command Register ,
CSMA/CD—Carrier Sense Multiple Access/Collision Detect
CSR—Channel Status Register

CTS—Clear to Send a Data Frame
DACK—DMA Acknowledge
DAPR—Destination Address Pointer Register
DCE—Data Circuit-Terminating Equipment
DDCMP—Digital Data Communications Message Protocol
DFC—Destination Function Code
DHR—Data Holding Register
DISFC—Discarded Frame Counter
DIV—Divide

DMA—Direct Memory Access

DONE—IDMA Transfer Complete
DPLL—Digital Phase-Locked Loop
DPLL—Digital Phase-l.ocked Loop
DPRBASE—Dual-Port RAM Base
DRAM—Dynamic Random-Access Memory
DREQ—DMA Request

DSR—Data Synchronization Register
DTE—Data Terminal Equipment
DUMP—Dump Memory Block

EBI—External Bus Interface

ED—End Delimiter

EEST—Enhanced Ethernet Serial Transceiver
ENQ—Enquiry '
EPROM—Electrically Programmable Read-Only Memory
ETB—End of Block

ETX—End of Text

EVT—Exception Vector Table
EXG—Exchange Registers

EXTAL—EXxternal Clock Entering the Chip
EXTEST—External Test

EXT—Sign Extend

FAR—Fault Address Register

xliv MC68360 USER'S MANUAL MOTOROLA

ACRONYM LIST (Continued)

FCR—8-Bit Function Code Register
FCR—Function Code Register
FIFO—First-In-First-Out

FILL—Fill Memory Block

FISU—Fill In Signal Units
FPU—Floating-Point Unit

GCl—General Circuit Interface

GMR—Global Memory Register
GO—Resume Execution

GSMR—General SCC Mode Register
HCMOS—High-Speed Complementary Metal-Oxide Semiconductor
HDLC/SDLC—High-Level/Synchronous Data Link Control
HDLC—High-Level Data Link Control
HLL—High-Level Language

|IARB—Interrupt Arbitration

ICCR—IDMA Channel Configuration Register
IDG—Interdialog Gap

IDLC—Internal Idle Counter

IDL—Interchip Digital Link
IDMA—Independent Direct Memory Access
IFG—Interframe Gap

IMB—Intermodule Bus

IMP—Integrated Multiprotocol Processor
ISDN—Integrated Services Digital Network
JTAG—Joint Test Action Group

LAN—Local Area Network

LA—LocalTalk Adaptor

LEA—Load Effective Address

LINK—Link Stack

LPSTOP—Low-Power Stop Instruction
LRC—Longitudinal Redundancy Check
LSSU—Link Status Signal Units
MBARE—Module Base Address Register Enable
MBAR—Module Base Address Register
MCR—Module Configuration Register
MM—Master Mode

MOVEM-—Move Multiple Registers
MOVEP—Move Peripheral Data
MOVEQ—Move Quick

MRBLR—Maximum Receive Buffer Length Register
MSTAT—Memory Controller Status Register
MTP—Message Transfer Part

MUL—Multiply

NBCD—Negate Decimal with Extend
NEGX—Negate Binary with Extend

MOTOROLA MC68360 USER'S MANUAL

xlv

ACRONYM LIST (Continued)

NEG—Negate

NMARC—Nonmatching Address Received Counter
NMSI—Nonmultiplexed Serial Interface
NOP—No Operation

NO—Nonoctet Aligned

OE/AMUX—Output Enable/Address Multiplex
OR—Option Register

PADAT—Port A Data Register
PAODR—Port A Open-Drain Register
PAPAR—Port A Pin Assignment Register
PBDAT—Port B Data Register
PBDIR—Port B Data Direction Register
PBODR—Port B Open-Drain Register
PBPAR—Port B Pin Assignment Register
PCC—Current Instruction Program Counter
PCDAT—Port C Data Register
PCDIR—Port C Data Direction Register
PCINT—Port C Interrupt Control Register
PCM—Pulse Code Modulation
PCPAR—Port C Pin Assignment Register
PCSO—Port C Special Options Register
PC—Program Counter

PEA—Push Effective Address
PEPAR-—Port E Pin Assignment Register
PGA—Pin Grid Array

PICR—Periodic Interrupt Control Register
PIPC—PIP Configuration Register
PIPE—PIP Event Register

PIPM—PIP Mask Register

PIP—Parallel Interface Port
PITR—Periodic Interrupt Timer Register
PIT—Periodic Interrupt Timer
PLLCR—Phase-Locked Loop Control Register
PLL—Phase-Locked Loop
POR—Power-On Reset

PPADIR—Port A Data Direction Register
PQFP—PIlastic Quad Flat Pack
PROFIBUS—Process Field Bus
PSMR—Protocol-Specific Mode Register
PTPR—PIP Timing Parameters Register
QFP—Quad Flat Pack

QUICC—QUad Integrated Communication Controller
RAREG/RDREG—Read A/D Register
RBASE, TBASE—BD Table Pointer
RBPTR—Receiver BD Pointer

xlvi MC68360 USER'S MANUAL

MOTOROLA

ACRONYM LIST (Continued)

RBPTR—Receiver Buffer Descriptor Pointer
RCCR—Received Control Character Register
RCCR—RISC Controller Configuration Register
RCLK—Receive Clock to the SCC
READ—Read Memory Location
RENA—Receive Enable

RFCRx—Receive Function Code Register
RPC—Retumn Program Counter
RSREG—Read System Register
RSR—Reset Status Register

RST-—Reset Peripherals

RTER—RISC Timer Event Register
RTE—Retum-From-Exception

RTMR—RISC Timer Mask Register
RTS—Request to Send a Data Frame

Rx BD—Receive Buffer Descriptor
SAPR—Source Address Pointer Register
DAPR—Destination Address Pointer Register
ICCR—Channel Configuration Register
CMAR—Channel Mask Register
FCR—Function Code Register

BCR—Byte Count Register

CSR—Channel Status Register
CMR—Channel Mode Register
SAPR—Source Address Pointer Register
SASI—Schugart Associates System Interface
SBCD—Subtract Decimal with Extend
SCCE—SCC Event Register

SCCM—SCC Mask Register

SCC—Serial Communications Controller
SCP—Serial Communications Port’
SCR—System Control Register

SCSl—small computer system interface
SDAR—SDMA Address Register
SDCR—SDMA Configuration Register
SDLC—Synchronous Data Link Control
SDMA—Serial Direct Memory Access
SDSR—SDMA Status Register
SFC—Source Function Code

SIA—Serial Interface Adaptor
SICMR—Serial Interface Command Register
SICR—SI Clock Route Register
SIGMR—Serial Interface Global Mode Register
SIM60—System Integration Module for MC68360
SIMMs—DRAM Single In-Line Memory Modules

MOTOROLA MC68360 USER'S MANUAL

xivii

ACRONYM LIST (Continued)

SIMODE—Serial Interface Mode Register
SIM—System Integration Module

SIRP—SI RAM Pointer Register

SISTR—SI Status Register

Sl—Serial Interface

SMCE—SMC Transparent Event Register
SMCMR—General SMC Mode Register
SMCM—SMC Mask Register .
SMCs—Serial Management Controllers
SYNCs—Synchronization Characters
SPCOM—SPI Command Register
SPIE—SPI Event Register

SPIMISO—SPI Master-Mn Slave-Out
SPIM—SPI Mask Register

SPI—Serial Peripheral Interface
SPMODE—SPI Mode Register

SP—Stack Pointers

SRAM—Static Random Access Memory
SR—Status Register

SSP—Supervisor Stack Pointer
SSW—Software Status Word
SUBX—Subtract Extended

SUB—Subtract

SWIV—Software Watchdog Interrupt Vector Register
SWSR—Software Service Register
SWT—Software Watchdog Timer ,
SYPCR—System Protection Control Register
TAP—Test Access Port

TBL—Table Lookup and Interpolate
TBPTR—Transmitter Buffer Descriptor Pointer
TCK—Clock Signal

TCLK—Transmit Clock to the SCC
TCNx—Timer Counter

TCN—Timer Counter

TCRx—Timer Capture Registers
TCR—Timer Capture Register

TDI—Test Data In

TDM—Time-Division Multiplexed
TDO—Test Data Out

TENA—Transmit Enable

TERx—Timer Event Registers

TER—Timer Event Register
TFCRx—Transmit Function Code Register
TGCR—Timer Global Configuration Register
TMRx—Timer Mode Register

xiviil MC68360 USER'S MANUAL

MOTOROLA

ACRONYM LIST (Concluded)

TMR—Timer Mode Register

TMS—Test Mode Signal
TODR—Transmit-on-Demand Register
TRRx—Timer Reference Registers

TRR—Timer Reference Register

TRST—Optional Test Reset

TSA—Time Slot Assigner

Tx BD—Transmit Buffer Descriptor
UART—Universal Asynchronous Receiver Transmitter
UNLK—Unlink Stack

USP and SSP-—User and Supervisor Stack Pointers
VBR—Vector Base Register
VCO—Voltage-Controller Oscillator

VRC—Vertical Redundancy Check
WAREG/WDREG—Write A/D Register
WRITE—Write Memory Location

WSREG—Write System Register

MOTOROLA MC68360 USER'S MANUAL

xlix

MC68360 USER'S MANUAL MOTOROLA

SECTION 1
INTRODUCTION

The MC68360 QUad Integrated Communication Controller (QUICC ™) is a versatile one-
chip integrated microprocessor and peripheral combination that can be used in a variety of
controller applications. It particularly excels in communications activities. The QUICC
(pronounced “quick”) can be described as a next-generation MC68302 with higher
performance in all areas of device operation, increased flexibility, major extensions in
capability, and higher integration. The term "quad" comes from the fact that there are four
serial communications controllers (SCCs) on the device; however, there are actually
seven serial channels: four SCCs, two serial management controllers (SMCs), and one
serial peripheral interface (SPI).

The purpose of this document is to describe the operation of all QUICC functionality.
Although this document has an overview of the CPU32+, the M68000PM/AD M68000
Family Programmer's Reference Manual should be used in addition to this document.
The CPU32RM/AD, M68300 Family CPU32 Reference Manual, also provides information
on the CPU32.

- 1.1 QUICC KEY FEATURES

The following list summarizes the key MC68360 QUICC features:

¢ CPU32+ Processor (4.5 MIPS at 25 MHz)
— 32-Bit Version of the CPU32 Core (Fully Compatible with the CPU32)
— Background Debug Mode
— Byte-Misaligned Addressing

° Up to 32-Bit Data Bus (Dynamic Bus Sizing for 8 and 16 Bits)

* Up to 32 Address Lines (At Least 28 Always Available)

e Complete Static Design (0—25-MHz Operation)

» Slave Mode To Disable CPU32+ (Allows Use with External Processors)
— Multiple QUICCs Can Share One System Bus (One Master)

— MC68040 Companion Mode Allows QUICC To Be an MC68040 Companion
Chip and Intelligent Peripheral (22 MIPS at 25 MHz)

— Also Supports External MC68030-Type Bus Masters
— All QUICC Features Usable in Slave Mode
* Memory Controller (Eight Banks)

MOTOROLA MC68360 USER’S MANUAL 1-1

- — Contains Complete Dynamic Random-Access Memory (DRAM) Controller
— Each Bank Can Be a Chip Select or Support a DRAM Bank
— Up to 15 Wait States

— Glueless Interface to DRAM Single In-Line Memory Modules (SIMMs), Static
Random-Access Memory (SRAM), Electrically Programmable Read-Only Memory
(EPROM), Flash EPROM, etc.

— Four CAS lines, Four WE lines, One OE line
— Boot Chip Select Available at Reset (Options for 8-, 16-, or 32-Bit Memory)
— Special Features for MC68040 Including Burst Mode Support
e Four General-Purpose Timers
— Superset of MC68302 Timers
— Four 16-Bit Timers or Two 32-Bit Timers
— Gate Mode Can Enable/Disable Counting
¢ Two Independent DMAs (IDMAs)
— Single Address Mode for Fastest Transfers
— Buffer Chaining and Auto Buffer Modes
— Automatically Performs Efficient Packing
— 32-Bit Internal and External Transfers
¢ System Integration Module (SIM60)
— Bus Monitor
— Double Bus Fault Monitor
— Spurious Interrupt Monitor
— Software Watchdog
— Periodic Interrupt Timer
— Low Power Stop Mode
— Clock Synthesizer
— Breakpoint Logic Provides On-Chip Hardware Breakpoints
— External Masters May Use On-Chip Features Such As Chip Selects
— On-Chip Bus Arbitration with No Overhead for Internal Masters
— IEEE 1149.1 Test Access Port
* Interrupts
— Seven External IRQ Lines
— 12 Port Pins with Interrupt Capability
— 16 Internal Interrupt Sources
— Programmable Priority Between SCCs
— Programmable Highest Priority Request

1-2 MC68360 USER'S MANUAL MOTOROLA

e Communications Processor Module (CPM)
— RISC Controller

— Many New Commands (e.g., Graceful Stop Transmit, Close RxBD)
— 224 Buffer Descriptors
— Supports Continuous Mode Transmission and Reception on All Serial Channels
— 2.5 Kbytes of Dual-Port RAM
— 14 Serial DMA (SDMA) Channels
-— Three Parallel I/O Registers with Open-Drain Capability
— Each Seriai Channel Can Have lts Own Pins (NMSI Mode)
¢ Four Baud Rate Generators
— Independent (Can Be Connected to Any SCC or SMC)
— Allows Changes During Operation
— Autobaud Support Option
* Four SCCs
— Ethernet/IEEE 802.3 Optional on SCC1 (Full 10-Mbps Suppon)
— HDLC/SDLC™ (All Four Channels Supported at 2 Mbps)
— HDLC Bus (Implements an HDLC-Based Local Area Network (LAN))
— AppleTalk®
— Signaling System #7
— Universal Asynchronous Receiver Transmitter (UART)
— Synchronous UART
— Binary Synchronous Communication (BISYNC)
— Totally Transparent (Bit Streams)

— Totally Transparent (Frame Based with Optional Cyclic Redundancy Check
(CRQC))

— Profibus (RAM Microcode Option)

— Asynchronous HDLC (RAM Microcode Option)
— DDCMP™ (RAM Microcode Option)

— V.14 (RAM Microcode Option)

— X.21 (RAM Microcode Option)

™ SDLC is a trademark of International Business Machines.
® AppleTalk is a registered trademark of Apple Computer, Inc.
™ DDCMP is a trademark of Digital Equipment Corporation.

MOTOROLA MC68360 USER’S MANUAL 1-3

Two SMCs

— UART

— Transparent

— General Circuit Interface (GCI) Controller

— Can Be Connected to the Time-Division Multiplexed (TDM) Channels
¢ One SPI

— Superset of the MC68302 SCP

— Supports Master and Slave Modes

— Supports Multimaster Operation on the Same Bus
Time-Slot Assigner

Supports Two TDM Channels

— Each TDM Channel Can Be T1, CEPT, PCM Highway, ISDN Basic Rate, -
ISDN Primary Rate, User Deflned

— 1- or 8-Bit Resolution ,
— Allows Independent Transmit and Receive Routing, Frame Syncs, Clocking
— Allows Dynamic Changes

— Can Be internally Connected to Six Serial Channels (Four SCCs and
Two SMCs)

¢ Parallel Interface Port
— Centronics " Interface Support
— Supports Fast Connection Between QUICCs

¢ 240 Pins Defined: 241-Lead Pin Grid Array (PGA) and 240-Lead Plastic Quad Flat
Pack (PQFP)

1.2 QUICC ARCHITECTURE OVERVIEW

The QUICC is 32-bit controller that is an extension of other members of the Motorola
M68300 family. Like other members of the M68300 family, the QUICC incorporates the
intermodule bus (IMB). (The MC68302 is an exception, having an M68000 bus on chip.)
The IMB provides a common interface for all modules of the M68300 family, which allows
Motorola to develop new devices more quickly by using the library of existing modules.
Although the IMB definition always included an option for an on-chip 32-bit bus, the
QUICC is the first device to implement this option.

The QUICC is comprised of three modules: the CPU32+ core, the SIM60, and the CPM.
Each module utilizes the 32-bit IMB. The MC68360 QUICC block diagram is shown in
Figure 1-1.

™ Centronics is a trademark of Centronics, Inc.

1-4 MC68360 USER’S MANUAL MOTOROLA

SIM 60

SYSTEM JTAG
PROTECTION
BREAK
CPU32+ PERODC | ot
CORE LOGIC
CLOCK
GENERATION DRAM
: CONTROLLER
AND
F&TT’&%ZS CHIP SELECTS
SYSTEM
IMB (32 BIT) mg&m F
J.> INTERFACE <:>
CPM
COMMUNICATIONS PROCESSOR
RISC 25-KBYTE
CONTROLLER DUAL-PORT
RAM FOUR
TWO GENERAL
IDMAs 14 SERIAL INTERRUPT PURPOSE
DMAs CONTROLLER TIMERS
StRAL | | TMESLor || omiER
CHANNELS ASSIGNER

Figui'e 1-1. QUICC Block Diagram

1.2.1 CPU32+ Core

The CPU32+ core is a CPU32 that has been modified to connect directly to the 32-bit IMB
and apply the larger bus width. Although the original CPU32 core had a 32-bit internal
data path and 32-bit arithmetic hardware, its interface to the IMB was 16 bits. The
CPU32+ core can operate on 32-bit external operands with one bus cycle. This allows the
CPU32+ core to fetch a long-word instruction in one bus cycle and to fetch two word-
length instructions in one bus cycle, filling the internal instruction queue more qunckly The
CPU32+ core can also read and write 32-bits of data in one bus cycle.

Although the CPU32+ instruction timings are improved, its instruction set is identical to
that of the CPU32. It will also execute the entire M68000 instruction set. It contains the
same background debug mode (BDM) features as the CPU32. No new compilers,

MOTOROLA MC68360 USER’S MANUAL 1-5

assemblers, or other software support tools need be implemented for the CPU32+;
standard CPU32 tools can be used.

The CPU32+ delivers approximately 4.5 MIPS at 25 MHz, based on the standard
(accepted) assumption that a 10-MHz M68000 delivers 1 VAX MIPS. If an application
requires more performance, the CPU32+ can be disabled, allowing the rest of the QUICC
to operate as an intelligent peripheral to a faster processor. The QUICC provides a special
mode called MC68040 companion mode to allow it to conveniently interface to members
of the M68040 family. This two-chip solution provides a 22-MIPS performance at 25 MHz.

The CPU32+ also offers automatic byte alignment features that are not offered on the
CPU32. These features allow 16 or 32-bit data to be read or written at an odd address.
The CPU32+ automatically performs the number of bus cycles required.

1.2.2 System Integration Module (SIM60)

The SIM60 integrates general-purpose features that would be useful in almost any 32-bit
processor system. The term “SIM60” is derived from the QUICC part number, MC68360.
The SIM60 is an enhanced version of the SIM40 that exists on the MC68340 and
MC68330 devices.

First, new features, such as a DRAM controller and breakpoint logic, have been added.
Second, the SIM40 was modified to support a 32-bit IMB as well as a 32-bit external
system bus. Third, new configurations, such as slave mode and internal accesses by an
external master, are supported.

Although the QUICC is always a 32-bit device internally, it may be configured to operate
with a 16-bit data bus. Regardless of the choice of the system bus size, dynamic bus
sizing is supported. Bus sizing allows 8-, 16-, and 32-bit peripherals and memory to exist
in the 32-bit system bus mode and 8- and 16-bit peripherals and memory to exist in the
16-bit system bus mode.

1.2.3 Communications Processor Module (CPM)

The CPM contains features that allow the QUICC to excel in communications and control
applications. These features may be divided into three sub-groups:

+ Communications Processor (CP)

¢ Two IDMA Controllers

¢ Four General-Purpose Timers

The CP provides the communication features of the QUICC. Included are a RISC
processor, four SCCs, two SMCs, one SPI, 2.5 Kbytes of dual-port RAM, an interrupt
controller, a time slot assigner, three parallel ports, a parallel interface port, four
independent baud rate generators, and fourteen serial DMA channels to support the
SCCs, SMCs, and SPI.

The ID'MAs provide two channels of general-purpose DMA capability. They offer high-
speed transfers, 32-bit data movement, buffer chaining, and independent request and

1-6 MC68360 USER’S MANUAL v MOTOROLA

acknowledge logic. The RISC controller may access the IDMA registers directly in the
buffer chaining modes. The QUICC IDMAs are similar to, yet enhancements of, the two
DMA channels found on the MC68340 and the one IDMA channel found on the MC68302.

The four general-purpose timers on the QUICC are functionally similar to the two general-
purpose timers found on the MC68302. However, they offer some minor enhancements,
such as the internal cascading of two timers to form a 32-bit timer. The QUICC also
contains a periodic interval timer in the SIM60, bringing the total to five on-chip timers.

1.3 UPGRADING DESIGNS FROM THE MC68302

Since the QUICC is a next-generation MC68302, many designers currently using the
MC68302 may wish to use the QUICC in a follow-on design. The following paragraphs
briefly discuss this endeavor in terms of architectural approach, hardware issues, and
software issues. See Section 9 Applications for further information.

1.3.1 Architectural Approach

The QUICC is the logical extension of the MC68302, but the overall architecture and
philosophy of the MC68302 design remains intact in the QUICC. The QUICC keeps the
best features of the MC68302, while making the changes required to provide for the
increased flexibility, integration, and performance requested by customers. Because the
CPM is probably the most difficult module to learn, anyone who has used the MC68302
can easily become familiar with the QUICC since the CPM architectural approach remains
intact. ’

The most significant architectural change made on the QUICC was the translation of the
design into the standard M68300 family IMB architecture, resulting in a faster CPU and
different system integration features.

Although the features of the SIM60 do not exactly correspond to those of the MC68302
SIM, they are very similar. The QUICC SIM60 combines the best MC68302 SIM features
with the best MC68340 SIM features for improved performance.

Because of the similarity of the QUICC SIM60 and CPU to other members of the M68300
family, such as the MC68332 and the MC68340, previous users of these devices will be
comfortable with these same features on the QUICC.

1.3.2 Hardware Compatibility Issues
The following list summarizes the hardware differences between the MC68302 and the
QuICC:
* Pinout—The pinout is not the same. The QUICC has 240 pins; the MC68302 has 132
pins.

» Package—Both devices offer PGA and PQFP packages. However, the QUICC
PQFP package has a 20-mil pitch; whereas, the MC68302 PQFP package has a
25-mil pitch.

MOTOROLA MC68360 USER’S MANUAL 1-7

System Bus—The system bus signals now look like those of the MC68030 as
opposed to those of the M68000. it is still possible to interface M68000 peripherals to
the QUICC, utilizing the same techniques used to interface them to an MC68020 or
MC68030.

System Bus in Slave Mode—A number of QUICC pins take on new functionality in
slave mode to support an external MC68EC040. On the MC68302, the pin names
generally remained the same in slave mode.

Peripheral Timing—The external timings of the peripherals (SCCs, timers, etc.) are
very similar (if not identical) to corresponding peripherals on the MC68302.

Pin Assignments—The assignment of peripheral functions to I/O pins is different in
several ways. First, the QUICC contains more general-purpose parallel I/O pins than
the MC68302. However, the QUICC offers many more functions than even a 240-pin
package would normally allow, resulting in more multifunctional pins than the
MC68302.

1.3.3 Software Compatibility Issues

The following list summarizes the major software differences between the MC68302 and
the QUICC:

1-8

Since the CPU32+ is a superset of the M68000 instruction set, all previously written
code will run. However, if such code is accessing the MC68302 peripherals, it will
require some modification.

The QUICC contains an 8-Kbyte block of memory as opposed to a 4-Kbyte block
on the MC68302. The register addresses within that memory map are different.

The code used to initialize the system integration features of the MC68302 has
to be modified to write the corresponding features on the QUICC SIM60. Code written
for the MC68340 may be adapted in large part.

As much as possible, QUICC CPM features were made identical to those of the
MC68302 CP. The most important benefit is that the code flow (if not the code itself)
will port easily from the MC68302 to the QUICC. The nuances learned from the
MC68302 will still be useful in the QUICC.

Although the registers used to initialize the QUICC CPM are new (for example, the
SCM on the MC68302 is replaced with the GSMR and PSMR on the QUICC), most
registers retain their original purpose such as the SCC event, SCC mask, SCC status,
and command registers. The parameter RAM of the SCCs is very similar, and most
parameter RAM register names and usage are retained. More importantly, the basic
structure of a buffer descriptor (BD) on the QUICC is identical to that of the MC68302,
except for a few new bit functions that were added. (In a few cases, a bitin a BD
status word had to be shifted.)

When porting code from the MC68302 CP to the QUICC CPM, the software writer
may find that the QUICC has new options to simplify what used to be a more code-
intensive process. For specific examples, see the INIT TX AND RX PARAMETERS,
GRACEFUL STOP TRANSMIT, and CLOSE BD commands.

MC68360 USER’S MANUAL MOTOROLA

1.4 QUICC GLUELESS SYSTEM DESIGN

A fundamental design goal of the QUICC was ease of interface to other system
components. An example of this goal is a minimal QUICC design using EPROM and
DRAM, shown in Figure 1-2. This system interfaces gluelessly to an EPROM and a DRAM

SIMM module. It also offers parity support for the DRAM.

Quicc
MC68360

8-BIT BOOT
EPROM
(FLASH OR REGULAR)

Cso

OE

WED
DATA
ADDRESS

RAS1
CAS3-CASO

RW

PRTY3-PRTY0

CE (ENABLE)

OE (OUTPUT ENABLE)
WE (WRITE)

DATA

ADDRESS

16- OR 32-BIT
DRAM SIMM
(OPTIONAL PARITY)

Figure 1-2. Minimum QUICC System Configuration

RAS
CAS3-CASO
W (WRITE)
DATA
ADDRESS
PARITY

Figure 1-3 shows a larger system configuration. This system offers one EPROM, one flash
EPROM, and supports two DRAM SIMMs. Depending on the capacitance on the system
bus, external buffers may be required. From a logic standpoint, however, a glueless

system is maintained.

MOTOROLA MCe68360 USER’S MANUAL

1-9

8BITBOOT

Quicc EPROM
MC68360 (FLASH OR REGULAR)
TS0 CE (ENABLE)
3 OE (OUTPUT ENABLE)
WEO WE (WRITE)
DATA DATA
ADDRESS ADDRESS
8-, 16-, OR 32-BIT SRAM
cs7 E (ENABLE)
G (OUTPUT ENABLE)
WE3-WE0 W (WRITE)
DATA
ADDRESS
16- OR 32.BIT
TWO DRAM SIMMs
(OPTIONAL PARITY)
RASZ RAS
RAST fAs
- BUFFER RAS
CAS3-CASO CAS3-CASO
RW W (WRITE)
1 DATA
. ADDRESS
PRTY3-PRTY0 PARITY

Figure 1-3. Larger QUICC System Configuration

1.5 QUICC SERIAL CONFIGURATIONS

The QUICC offers an extremely flexible set of communications capabilities. Although a full
understanding of the possibilities requires reading the appropriate sections, some of the
possibilities are shown in the following diagrams. They show possible connections
between QUICC devices. In addition, connections are often shown between QUICCs and
the MC68302 to show the compatibility between these devices.

For readability, transceivers are usually omitted’in the following diagrams. For local on-

board communications, however, transceivers are often optional and depend on the
protocol used.

1-10 MC68360 USER’S MANUAL MOTOROLA

Figure 1-4 shows the Ethernet LAN capability of the QUICC. An external SIA transceiver
is required to complete the interface to the media. This functionality is implemented in the

MC68160 enhanced Ethemet serial transceiver (EEST™). The MC68160 EEST supports
connections to the attachment unit interface (AUI) or twisted-pair Ethernet formats and

provides a glueless interface to the QUICC.

ETHERNET

| | wmceste0
scet ok

Quicc

Quicc

scc1 |—] MCes160
EEST

Quicc

| | wmcssie0
sce EEST

Figure 1-4. Ethernet LAN Capability

™ EEST is a trademark of Motorola.

MOTOROLA MC68360 USER’S MANUAL 1-11

Figure 1-5 shows the AppleTalk LAN capability of the QUICC. Note that the MC68302
requires an extra device, the MC68195 LocalTalk adapter, to interface to AppleTalk.

auice
| | Rsaz
sce XCVR
auice
| | Rsaz
sce XCVR
MC88302 MC58195
1A RS422
$cC 1 xeve [

NOTE: The QUICC implements the AppleTalk LAN
protocol without the need for the MC68195.

Figure 1-5. AppleTalk LAN Capability

Figure 1-6 shows the implementation of a LAN structure of HDLC called HDLC bus. This

protocol is the fastest, easiest way to interface multiple QUICCs in an HDLC-based
protocol.

QuicC
ScC

Quicc

SCC HOLC BUS

Quicc
SCC

NOTES:
1. HDLC bus—any node can obtain
mastership.
2. The QUICC handles collisions
without external glue.

Figure 1-6. HDLC Bus LAN

1-12 MC68360 USER’S MANUAL MOTOROLA

Figure 1-7 shows the original SDLC application, which can be implemented by both 1
QUICCs and MC68302s.

Quicc
scC

Quice

ScC SDLCBUS

MC68302
scC

NOTE: No collisions are allowed in this
master-slave approach. Also
available on the MC68302.

Figure 1-7. SDLC Bus Implementation

Figure 1-8 shows a UART LAN configuration that is supported by both the QUICC and the
MC68302, as well as many other industry UARTS.

Quicc

scC

Quicc

MULTI-DROP
see UART

MC68302

scc

NOTES:
1. Simple LAN based on UART mode.
2. Ninth bit is an "address" bit.

Figure 1-8. UART LAN Implementation

MOTOROLA MC68360 USER’S MANUAL 1-13

Figure 1-9 shows how the SPIs on the QUICC can be used to connect devices together
into a local bus. The SPI exists on many other Motorola devices, such as the MC68HC 11
microcontroller, and a number of peripherals such as A/D and D/A converters, LED
drivers, LCD drivers, real-time clocks, serial EEPROM, PLL frequency synthesizers, and

shift registers.

Quicc

SPI
MASTER/SLAVE

QuIicC

SPI SPIBUS
MASTER/SLAVE

.Quicc

SPI
MASTER/SLAVE

NOTE: SPI bus configuration—each QUICC
can be the master in turn.

Figure 1-9. SPI Local Bus Implementation

Figure 1-10 shows how the SCP on the MC68302 can be used to interface to the QUICC

SPI.
Mcs8302 Quicc
SPIBUS
scp SPI
MASTER SLAVE
EEPROMS
ETC.
SPI
SLAVE

NOTE: The MC68302 SCP can communicate with the QUICC SPI.

Figure 1-10. SPI Implementation Using SCP

1-14 MC68360 USER’S MANUAL MOTOROLA

Figure 1-11 shows how the SPI on the QUICC can interface to another QUICC or SPI-
based peripherals.

Quicc Quicc
Pl SPIBUS SPi
MASTER SLAVE
EEPROMS
ETC.
Pl
SLAVE

NOTE: Two QUICCs configured for a master-slave SP! connection.

Figure 1-11. SPI Master-Slave Implementation

“Figure 1-12 shows how the parallel interface port (PIP) can be used to implement the
Centronics interface connection. The QUICC may be the peripheral or the host.

quice CENTRONICS
INTERFACE HOST
PP COMPUTER
8 DATALINES OR PRINTER

NOTE: The QUICC can communicate over a Centronics Interface.

Figure 1-12. Centronics Interface Implementation

Figure 1-13 shows how the PIP can also be used to implement a fast parallel connection
between devices.

Quicc Quicc
PARALLEL

op _ INTERFACE op
8 DATALINES

NOTE: Fast parallel connection between QUICCs.

Figure 1-13. Fast Parallel Connection Implementation

MOTOROLA MC68360 USER'S MANUAL 1-15

1 Figure 1-14 ‘shows which SCC protocols may be used to connect SCCs on the QUICC
and the MC68302.

HDLC/SDLC
Quicc BISYNC MC68302
UART
TRANSPARENT
sCC scc

Figure 1-14. SCC Protocol Implementation

Figure 1-15 shows which SCC protocols may be used to connect SCCs on multiple
QUICCs or to other devices supporting such protocols.

HDLC/SDLC

auice NG AR auicc

SYNCHRONOUS UART
SSH#T
SCC SCC

NOTE: Point-to-point (WAN) configurations are available on the QUICC.

Figure 1-15. Multiple QUICC Point-to-Point Implementation

Figure 1-16 shows other point-to-point options that are possible with the QUICC and the

MC68302.
auicc MCe8302
sMe
UART sce
TRANSPARENT
auicc Mces302
sMC scp
TRANSPARENT
auice auicc
sMC
UART s
TRANSPARENT

Figure 1-16. Other Point-to-Point Implementations

1-16 MC68360 USER’S MANUAL MOTOROLA

Figure 1-17 shows how up to six of the serial channels can connect to a TDM interface.
The QUICC provides a built-in time-slot assigner for access to the TDM time slots. Other

channels can work with their own set of pins, allowing possibilities like an Ethernet to T1

bridge, etc.
Quicc
sce
e TIME
g% | swor TIME DIVISION MULTIPLEXED BUS
oy ASSIGNER T1,CEPT, IDL, GCI, ISDN,
MG PRIMARY RATE,
USER-DEFINED
ANY COMBINATION OF SCCs
AND SMCs MAY BE
CONNECTED TO THE TDM.

NOTE: Independent receive and transmit clocking, routing,

and syncs are supported.

Figure 1-17. Serial Channel to TDM Bus Implementation

Figure 1-18 shows that the QUICC time-slot assigner can support two TDM buses. Each
TDM bus can be of a different format—for example, one TDM can be a T1 line, and one
can be a CEPT line. Also this technique could be used to bridge frames from basic rate

ISDN to a T1/CEPT line, etc.

TDMBUS 1
pr—— TDM BUS 2

Quicc
scc
o TIME
soc |— stor
Me ASSIGNER
sMC
ANY COMBINATION OF SCCs
AND SMCs MAY BE
CONNECTED TO ANY TDM.

NOTE: Two TDM buses may be simultaneously supported
with the time slot assigner.

Figure 1-18. Dual TDM Bus Implementation

MOTOROLA MC68360 USER’S MANUAL 1-17

- 1.6 QUICC SERIAL CONFIGURATION EXAMPLES

Figure 1-19 shows a situation where multiple QUICCs can communicate over a TDM line.
This can be used, for instance, to implement an 8-channel line card. The SCCs implement
the line interfaces, and the SMCs provide the local on-board communication between the
QUICCs. The additional SMC on each QUICC can be used as a serial debug port. The
SPI can be used to interface to peripherals, such as a serial EEPROM.

TDM BUS

Quicc
SCC
e TIME
ig sLoT
oyt ASSIGNER
SMC
4
/ /
TWO SMCs ARE
USED TO
COMMUNICATE
LOCALLY
BETWEEN QUICCs
OVER A TIME SLOT.
Quicc
sCC
SCC
\ scc TIME
SCC SLoT
N awe ASSIGNER
sMC

NOTE: The eight SCCs and two SMCs support 10 time slots on the TDM bus.
The length and position of the time slots are made with time slot assigners.

Figure 1-19. Multiple QUICC TDM Bus Implementation

1-18 ’ MC68360 USER’S MANUAL

MOTOROLA

Figure 1-20 shows a general-purpose application that includes Ethernet, AppleTalk, an
HDLC connection to a T1 line, an HDLC connection to frame relay, a UART debug
monitor port, a totally transparent data stream port, and an SPI connection to a serial

EEPROM.

SYSTEM
BUS

SERIAL

EEPROM

UART

DEBUG
PORT

SPI

SMC2

MOTOROLA

QuicC
SCC1
scc2
TIME
SCC3— sLOT
ASSIGNER
SCC4

SMC1

SIA ETHERNET
TRANSCEIVER
RS<22 APPLE TALK
T1LUNE X.25 (HDLC)
TRANSCEIVER
RS-232 | _FRAME RELAY (HDLC)
RS.232 TRANSPARENT DATA

Figure 1-20. General-Purpose Application

MOTOROLA

MC68360 USER’S MANUAL

- 1.7 QUICC SYSTEM BUS CONFIGURATIONS

Figure 1-21 shows a master-slave QUICC configuration. This system gives eight SCCs,
four SMCs, two SPls, four IDMAs, etc. Each QUICC uses its own DMA capability, but the
CPU32+ is the only processor in the system. More QUICCs can be easily supported on
the system bus, if desired.

QUICC SYSTEM BUS

Quicc Quicc
MASTER SLAVE
CPU32+ +
SCC SCC
§CC SCC
scC SCC
SscC scc
SMC SMC
SMC SMC
SPI SPI

Figure 1-21. Master-Slave QUICC Implementation

The QUICC has special features in slave mode to support the M68040 family. When the
QUICC is used in this way, it is said to be in MC68040 companion mode. Figure 1-22
shows how a QUICC in slave mode can interface to a MC68EC040. (The MC68EC040 is
a low-cost version of the MC68040 with identical integer performance, but without the
memory management unit (MMU) and the floating-point unit (FPU).) The DRAM controller
on the QUICC will control the accesses of the MC68EC040 (including the burst modes).
This configuration does require external address mutiplexers, but the QUICC controls the
multiplexers. The QUICC supports the MC68ECO040 in other ways, such as interrupt
handling and system protection features. When it is in slave mode, the QUICC can also be
interfaced to any MC68030-type bus master instead of the MC68EC040.

1-20 MC68360 USER’S MANUAL MOTOROLA

MOTOROLA

MC68EC040

QUICC SLAVE

Figure 1-22. MC68040 Companion Mode

MCEEEC040

> SUPPORT

FUNCTIONS

SYSTEMBUS

sce
sce
sce
sce
CONTROL SMC
| wmemory Swe

< CONTROLLER

EPROM

- DRAM

|

>| ADDRESS

MUXs

SRAM

MC68360 USER’S MANUAL

1-21

1-22 MC68360 USER'S MANUAL MOTOROLA

SECTION 2
SIGNAL DESCRIPTIONS

This section contains brief descriptions of the QUICC input and output signals in their
functional groups as shown in Figure 2-1.

2.1 SYSTEM BUS SIGNAL INDEX

The QUICC system bus signals consist of two groups. The first group, listed in Table 2-1,
consists of system bus signals that exist when the QUICC is in the normal mode (CPU32+
enabled). The second group consists of system bus signals that exist when the QUICC is
in the slave mode (CPU32+ disabled). They are listed in Table 2-7 and may also be
identified in Figure 2-1 as those with an italic font. In Table 2-1, the signal name,
mnemonic, and a brief functional description are presented. For more detail on each
signal, refer to the paragraphs that discuss each signal.

2.1.1 Address Bus

The address bus consists of the following two groups. Refer to Section 4 Bus Operation
for information on the address bus and its relationship to bus operation.

2.1.1.1 ADDRESS BUS (A27-A0). This three-state bidirectional bus (along with A31-
A28) provides the address for the current bus cycle, except in the CPU address space.
Refer to Section 4 Bus Operation for more information on the CPU address space. A27
is the most significant address signal in this group.

MOTOROLA MC68360 USER’S MANUAL 2-1

ADDRESS BUS

PORT A

RXD1/PAQ ——>
TXD1PAl —

RXD2/PA2 |

TXD2/PA3 <——>}

L1TXDB/RXD3/PA4 ~——>r]
L1RXDB/TXD3/PA5 ~——>~|

LITXDA/RXD4/PAG ~——>
LIRXDA/TXD4/PA7 ~&—>

TIMERs/SCCs/Sis/CLOCKs/BRG
TINILIRCLKA/BRGO1/CLK1/PAS ~€———>
BRGCLK1/TOUT1/CLK2/PA9 &>

TIN2LI TCLKA/BRGO2/CLK3/PA1) >~
TOUT2/CLK4/PA11 ~——>
TINI/BRGOS/CLKS/PA12 ~—]
BRGCLK2L1RCLKB/TOUT3/CLK6/PA13]
TIN4/BRGO4/CLK7/PA14 €
L1TCLKB/TOUT4/CLKS/PA1S ~&————>

PORT B (PIP)
RRJCT1/SPISEL/PB0 ~——>~1
SPICLK/PB| ~€——>
SPIMOSI(SPITXD)/PB2 <——>
BRGO4/SPIMISO(SPIRXD)/PB3 ~€————>
DREQ1/BRGO1/PB4 ~<—>
DACKi/BRGO2/PBS ~€———>]
DONE1/SMTXD1/PBE ~€————>~]
DONE2/SMRXD1/PB7 ~€———>|
DREQ2/SMSYN1/PB8 ~——>1
DACK2/SMSYN2/PB9 ~€——>1
LICLKOB/SMTXD2/PB10 ~€——3>]
L1CLKOA/SMRXD2/PB11 <€——>|
LISTI/RTSI/PB12 ~—>]
LIST2/RTS2/PBI3 ~e——>
LIST3LIRQB/RTSI/PBI4 ~—>]
L1ST4L1RQA/RTS4/PB15 ~€—>
STRBO/BRGO3/PB16 ~€—3»]
STRBYRSTRTI/PB17 ~—>]

PORT C (INTERRUPT PARALLEL I10)

LISTY/RTS1/EXTO/PCO <31
L1ST2/RTS2/EXT1/PC1 ~<——>
LiSTALIRQB/RTSIPC2 ~-—>
LIST4LTROARTS4/PC3 €~
CTS1/PC4 <——>

TGATE1/CD/PC5 ~——>

CTS2/PC6 &>

TGATE2/CD2/PCT >
SDACK2/LITSYNCB/CTS3/PC8 ~—>1
L1RSYNCEB/CD3/PCY ~-——>
SDACK1/LITSYNCAICTS4/PC10 <——>]
LIRSYNCA/CD4/PC11 ~——>~]

QuicC
MC68360
240 PINS

A27-A0
A31-A28/WE3-WED
K———) FC2-FCO/TM2-TIO
lc—> FC3/TTO
DATA BUS

D31-D16

K———) b15-00

PRTY1-PRTY0/IOUT1-IOUT2
«———> PRTY2/IOUTO/RQOUT
|€———> PRTY3/16BM

BUS CONTROL

l&—> S|20
<~z

«——>~ DSACKD/TBI

|«——> DSACKI/TA

}———> OE/AMUX

BUS ARBITRATION _
<c———>» RMC/CONFIGO/LOCK
l<——> BR

l€—> BG

«———>» BGACK/BB

<3 BCLRO/CONFIG1/RAS2DD
SYSTEM CONTROL

| «———> RESETH

«——> RESETS

l«——> HALT

INTERRUPT CONTROL
<——> [RQ1/IOUTO/RQOUT
<—> IRQ4/I0UT1
l«—— |RQ6/IOUT2
RQ235,7
<———> AVEC/IACKS/AVECO
MEMORY CONTROLLER
R
————> CS/RASTAACKT
CAS3-CASO/iACK1,23,6
<TET__ R/
«———> BKPT/BKPTOIDSCLK
[<€———> FREEZE/CONFIG2/MBARE
<<——> PIPE1RASIDD/BCLAI
(—————> IPIPE(/BADD2/DSO
l&«———>~ [FETCH/BADD3DSI

je—-— TCK

[<€——— MODCK1-MODCKO
> CLKO2-CLKO1

Figure 2-1. QUICC Functional Signal Groups

MC68360 USER’S MANUAL

MOTOROLA

Table 2-1. System Bus Signal Index (Normal Operation)

Group Signal Name Mnemonic Function
Address Address Bus A27-A0 Lower 27 bits of address bus. (I/O)
Address Bus/Byte A31-A28/ Upper four bits of address bus (I/0), or byte write enable
Wirite Enables WE3S-WED signals (O) for accesses to external memory or
peripherals.
Function Codes FC3-FCo Identifies the processor state and the address space of
the current bus cycle. (I//O)
Data Data Bus 31-16 D31-D16 Upper 16-bit data bus used to transfer byte or word data.
Used in 16-bit bus mode (I/O).
Data Bus 15-0 D15-D0O Lower 16-bit data bus used to transfer 3-byte or long-
word data (I/O). Not used in 16-bit bus mode.
Parity Parity 2-0 PRTY2-PRTYO | Parity signals for byte writes/reads from/to external
- : memory module (//O).
Parity3/16BM PRTY3/16BM | Parity signals for byte writes/reads from/to external
memory module or defines 16-bit bus mode. (I/0)
Parity Error PERR Indicates a parity error during a read cycle. (O)
Memory Chip SelectRow | CTS/RAS7/TACK7 | Enables peripherals or DRAMSs at programmed
Controller Address Select 7/ addresses (O) or interrupt level 7 acknowledge line (O).
Interrupt
Acknowledge 7
Chip Select 6-0/ CS6-CSo/ Enables peripherals or DRAMs at programmed
Row Address RAS6-RAS0 addresses. (O)
Select 6-0 :
Column Address CAS3-CASU/ DRAM column address select or interrupt level
Select 3— IACK1,236 acknowledge lines. (O)
0/Interrupt
Acknowledge 1, 2,
3,6
Bus Arbitration Bus Request BR Indicates that an external device requires bus mastership.
@)
Bus Grant BG Indicates that the current bus cycle is complete and the
QUICC has relinquished the bus. (O)
Bus Grant BGACK Indicates that an external device has assumed bus
Acknowledge mastership. (1)
Read-Modify-Write | RMC/CONFIGO | Identifies the bus cycle as part of an indivisible read-
Cycle/Initial modify-write operation (I/O) or initial QUICC configuration
Configuration 0 select (1).
Bus Clear Out/ BCLRO/CONFIG1/ | Indicates that an internal device requires the external bus
Initial Configuration RASZ0D (O) or initial QUICC configuration select (I) or row
1/Row Address address select 2 double-drive output (O).
Select 2 Double-
Drive
MOTOROLA MC68360 USER'S MANUAL 2-3

Table 2-1. System Bus Signal Index (Normal Operation) (Continued)

Group Signal Name Mnemonic Function
Bus Control Data and Size DSACK1-DSACKO | Provides asynchronous data transfer acknowledgement
Acknowledge and dynamic bus sizing (open-drain 1/O but driven high
before three-stated).
Address Strobe AS Indicates that a valid address is on the address bus. (//O)
Data Strobe bS During a read cycle, DS indicates that an external device
should place valid data on the data bus. During a write
cycle, DS indicates that valid data is on the data bus.
(/0)
Size SIZ1-81Z0 Indicates the number of bytes remaining to be transferred
for this cycle. (/O)
Read/Write RW Indicates the direction of data transfer on the bus. (I//O)
~ Output Enable/ OE/AMUX Active during a read cycle indicates that an extemal
Address Multiplex device should place valid data on the data bus (O) or
provides a strobe for external address multiplexing in
DRAM accesses if internal multiplexing is not used (O).
Interrupt Interrupt Request TRQ7-RQT Provides external interrupt requests to the CPU32+ at
Control Level 7-1 priority levels 7-1. (1)
Autovector/Interrupt AVEC/TACK5 Autovector request during an interrupt acknowledge cycle
Acknowledge 5 (open-drain I/O) or interrupt level 5 acknowledge line (O).
System Soft Reset RESETS Soft system reset. (open-drain I/0)
Control
Hard Reset RESETH Hard system reset. (open-drain I/O)
Halt HALT Suspends external bus activity. (open-drain 1/O)
Bus Error BERR Indicates an erroneous bus operation is being attempted.
(open-drain 1/O)
Clock and Test | System Clock Out 1 CLKO1 Internal system clock output 1. (O)
System Clock Out 2 CLKO2 Internal system clock output 2—normally 2x CLKO1. (O)
Crystal Oscillator EXTAL, Connections for an external crystal to the internal
XTAL oscillator circuit. EXTAL (1), XTAL (O).
External Filter XFC Connection pin for an external capacitor to filter the circuit
Capacitor of the PLL (1).
Clock Mode Select MODCK1- Selects the source of the internal system clock. (I)
1-0 MODCKO
Instruction Fetch/ IFETCH/DSI Indicates when the CPU32+ is performing an instruction
Development word prefetch (O) or input to the CPU32+ background
Serial Input debug mode (1).
Instruction Pipe 0/ IPIPEC/DSO Used to track movement of words through the instruction
Development pipeline (O) or output from the CPU32+ background
Serial Output debug mode (O).
Instruction Pipe IPIPET/RASTDD | Used to track movement of words through the instruction
1/Row Address pipeline (O), or a row address select 1 “double-drive”
Select 1 Double- output (O).
Drive
2-4 MC68360 USER’'S MANUAL MOTOROLA

Table 2-1. System Bus Signal Index (Normal Operation) (Concluded)

Group Signal Name Mnemonic Function
Clock and Test Breakpoint/ BKPT/DSCLK | Signals a hardware breakpoint to the QUICC (open-drain
(Cont'd) Development 1/0), or clock signal for CPU32+ background debug mode
Serial Clock ().
Freeze/lnitial FREEZE/ Indicates that the CPU32+ has acknowledged a
Configuration 2 CONFIG2 breakpoint (O), or initial QUICC configuration select (I).
Three-State TRIS Used to three-state all pins if QUICC is configured as a
master. Sampled during system reset. ({)
Test Clock TCK Provides a clock for IEEE 1149.1 JTAG test logic. (I)
Test Mode Select TMS Controls test mode operations. (I)
Test Data In TDI Serial test instructions and test data signal. (I)
Test Data Out TDO Serial test instructions and test data signal. (O)
Test Reset TRST Provides an asynchronous reset to the test controller. (1)
Power Clock Synthesizer VCCSYN Power supply to the PLL of the clock synthesizer.
Power
Clock Synthesizer GNDSYN Ground supply to the PLL of the clock synthesizer.
Ground
Clock Out Power VCCCLK Power supply to clock out pins.
Clock Out Ground GNDCLK Ground supply to clock out pins.
Special Ground 1 GNDS1 Special ground for fast AC timing on certain system bu:
signals. :
Special Ground 2 GNDS2 Special ground for fast AC timing on certain system bus
signals.
System Power VCC, GND Power supply and return to the QUICC.
Supply and Return
—_ No Connect NC4-NCt Four no-connect pins.

NOTE: | denotes input, 0 denotes output, and /O is input/output.

2.1.1.2 ADDRESS BUS (A31-A28). These pins can be programmed as the most
significant four address bits or as four byte write enables.

A31-A28—These pins can function as the most significant 4 address bits. A31 is the most
significant address signal in this group.

WE3-WEO0—On a write cycle, these active-low signals indicates which byte of the 32-bit
data bus contains valid data.
WEO—Corresponds to A31 and selects data bits 31-24. Also may be referred to as

UUWE.

WE1—Corresponds to A30 and selects data bits 23—16. Also may be referred to as

UMWE.

WE2—Corresponds to A29 and selects data bits 15-8. Also may be referred to as

LMWE.

WE3—Corresponds to A28 and selects data bits 7-0. Also may be referred to as LLWE.

MOTOROLA

MC68360 USER’S MANUAL ‘ 2-5

2.1.2 Function Codes (FC3-FC0)

These three-state bidirectional signals identify the processor state and the address space
of the current bus cycle as noted in Table 2-2. The function code pins provide the purpose
of each bus cycle to external logic.

Other bus masters besides the QUICC may also output function codes during their bus
cycles. On the QUICC, this capability is provided for each potential internal bus master
(i.e., the IDMA, SDMA, and DRAM refresh units). Provision is also made for the decoding
of function codes that are output from external bus masters (e.g., in the memory controller
chip-select generation logic).

In computer design, function code information can be used to protect certain portions of
the address map from unauthorized access or to extend the addressable range beyond
the address limit. However, in controller applications, function codes are most often used
as a debugging aid. Furthermore, in most controller applications, the QUICC stays
continuously in the supervisor state.

Refer to Section 4 Bus Operation for more information.

Table 2-2. Address Space Encoding

Function Code Bits

3 2 1 0 Address Space
0 0 0 0 | Reserved (Motorola)

0 0 0 1 | User Data Space

0 0 1 0 | User Program Space

0 0 1 1 | Reserved (User)

0 1 0 0 | Reserved (Motorola)

0 1 0 1 | Supervisor Data Space
0|1 110 Supetrvisor Program Space
0 1 1 1 | Supervisor CPU Space
1 X X x | DMA Space

2.1.3 Data Bus

The data bus consists of the following two groups. Refer to Section 4 Bus Operation for
information on the data bus and its relationship to bus operation.

2.1.3.1 DATA BUS (D31-D16). These three-state bidirectional signals (along with D15-
DO0) provide the general-purpose data path between the QUICC and all other devices.
Although the data path is a maximum of 32 bits wide, it can be dynamically sized to
support 8-, 16-, or 32-bit transfers. D31 is the MSB of the data bus. Byte and word
operations occur on D31-D16. Additionally, if the QUICC is configured into 16-bit bus
mode, the D31-D16 pins are the only data pins used. Refer to Section 4 Bus Operation
for information on the data bus and its relationship to bus operation.

2-6 MC68360 USER’S MANUAL MOTOROLA

2.1.3.2 DATA BUS (D15-D0). These pins can function as 16 additional data pins used in
long-word and 3-byte transfers. They are three-stated and not used if the QUICC is
configured into 16-bit bus mode.

2.1.4 Parity n

These three-state bidirectional signals provide parity generation/checking for the data path
between the QUICC or external masters and other devices. There are four parity lines—
one for every eight data bits. The parity lines consists of two groups. Refer to Section 6
System Integration Module (SIM60) for more information on parity generation/checking.

2.1.4.1 PARITY (PRTYO0). This pin is the parity value for data bits 31-24.
2.1.4.2 PARITY (PRTY1). This pin is the parity value for data bits 23~16.
2.1.4.3 PARITY (PRTY2). This pin is the parity value for data bits 15-8.

2.1.4.4 PARITY (PRTY3). This pin has two functions. During total system reset, it is the
16BM pin to determine whether 16-bit data bus mode is to be enabled. After system reset,
it functions as the parity line 3.

PRTY3—This pin is the parity value for data bits 0-7.

16BM—This pin selects the 16-bit data bus mode. To choose a 32-bit data bus during total
system reset, this pin can be left floating (it has an internal pullup resistor) or can be
driven/pulled high. To choose a 16-bit data bus during total system reset, this pin should
be driven/pulled low.

2.1.5 Memory Controller
The following signals are used to control an external memory device.

2.1.5.1 CHIP SELECT/ROW ADDRESS SELECT (CS6-CS0/RAS6-RAS0). The chip-
select output signals enable peripherals or memory arrays at programmed addresses.
CSO0 is the global chip select for the boot ROM containing the user's reset vector and
initialization program. Refer to Section 6 System Integration Module (SIM60) for more
information on chip selects.

NOTE

In addition, RAS1 can be simultaneously output on the RAS1DD
pin to increase the RAS1 line drive capability, and RAS2 can
be simultaneously output on the RAS2DD pin to increase the
RAS?2 line drive capability.

2.1.5.2 CHIP SELECT/ROW ADDRESS SELECI[I_!I_TER'RUPT ACKNOWLEDGE (CS7/
RAS7/ACK?). This pin can be programmed as a CS7/RAS7 pin or as the TACK? line. See
Section 6 System Integration Module (SIM60) for more information on this selection.

RAS7/CS7—Row address select 7 or chip select 7 output signal.

MOTOROLA MC68360 USER’S MANUAL 2-7

IACK7—The QUICC asserts this pin to indicate a level 7 external interrupt during an
interrupt acknowledge cycle. Peripherals can use the IACKXx strobes instead of monitoring
the address bus and function codes to determine that an interrupt acknowledge cycle is in
progress and to obtain the current interrupt level. IACKX lines need not be used when the
vector is generated internally by the QUICC. See Section 4 Bus Operation for more
information.

2.1.5.3 COLUMN ADDRESS SELECT/INTERRUPT ACKNOWLEDGE (CAS3-CASO/
TACK®,3,2,1). These pins can be programmed as four column address selects for DRAMs
or as interrupt acknowledge lines.

CAS3-CASO—The DRAM column address select output signal enables the DRAM
columns:

CASO selects data bits 31-24.
CAST selects data bits 23-16.
CASZ selects data bits 15-8.
CAS3 selects data bits 7-0.

IACK1, IACK2, IACK3, IACK6—The QUICC asserts one of these pins to indicate the level
of an external interrupt during an interrupt acknowledge cycle. Peripherals can use the
TACKx strobes instead of monitoring the address bus and function codes to determine that
an interrupt acknowledge cycle is in progress and to obtain the current interrupt level.
IACKXx lines need not be used when the vector is generated internally by the QUICC. See
Section 4 Bus Operation for more information.

TACKT corresponds to CASO.
TACKZ corresponds to CAST.
TACK3 corresponds to CAS2.
TACK® corresponds to CAS3.

2.1.5.4 ADDRESS MULTIPLEX (AMUX). See 2.1.7.7 Output Enable/Address Multiplex
(OE/AMUX) for more information.

2.1.6 Interrupt Request Level (IRQ7-IRQ1)

These pins are prioritized interrupt request lines. IRQ7, the highest priority, is
nonmaskable; IRQ6-IRQ1 are internally maskable interrupts. Refer to Section 5 CPU32+
for more information on the interrupt request lines.

N

2.1.7 Bus Control Signals

These signals control the bus transfer operations of the QUICC. Refer to Section 4 Bus
Operation for more information on these signals.

2-8 MC68360 USER’S MANUAL MOTOROLA

2.1.7.1 DATA AND SIZE ACKNOWLEDGE (DSACKT-DSACKO0). These two active-low
bidirectional signals allow asynchronous data transfers and dynamic data bus sizing
between the QUICC and external devices (see Table 2-3).

Table 2-3. DSACKx Encoding

BSACKT DSACKO Result
1 (Negated) 1 (Negated) Insert wait states in current bus cycle.
1 (Negated) 0 (Asserted) Complete cycle—data bus pont size is 8 bits.
0 (Asserted) 1 (Negated) Complete cycle—data bus port size is 16 bits.
0 (Asserted) | O (Asserted) Complete cycle—data bus port size is 32 bits.

2.1.7.2 AUTOVECTOR/INTERRUPT ACKNOWLEDGE (AVEC/IACKS5). This pin can be

programmed to be an autovector input or the interrupt acknowledge 5 line output.

AVEC—This signal requests an automatic vector during an interrupt acknowledge cycle.
Refer to Section 6 System Integration Module (SIM60) for more information on the

autovector function. AVEC need not be used if the QUICC supplies the vector internally.

IACK5—The QUICC asserts this pin to indicate the level of an external interrupt during an
interrupt acknowledge cycle at level 5. Peripherals can use the IACKx strobes instead of
monitoring the address bus and function codes to determine that an interrupt acknowledge
cycle is in progress and to obtain the current interrupt level. IACKXx lines need not be used
when the vector is generated internally by the QUICC.

2.1.7.3 ADDRESS STROBE (AS). This bidirectional signal is driven by the bus master to
indicate a valid address on the address bus. The function code, size, and read/write
signals are also valid when AS is asserted.

2.1.7.4 DATA STROBE (DS). During a read cycle, this input/output signal is driven by the
bus master to indicate that an external device should place valid data on the data bus.

During a write cycle, the data strobe indicates that valid data is on the data bus.

2.1.7.5 TRANSFER SIZE (SIZ1, S1Z0). These bidirectional signals are driven by the bus
master to indicate the number of operand bytes remaining to be transferred in the current

bus cycle (see Table 2-4).

MOTOROLA

Table 2-4. S1Zx Encoding

Siz1 SIZo Transfer Size
0 1 Byte
1 0 Word
1 1 3Bytes
0 0 Long Word
MC68360 USER'S MANUAL

2-9

2.1.7.6 READ/WRITE (R/W). This active-high bidirectional signal is driven by the bus
master to indicate the direction of data transfer on the bus. A logic one lndlcates a read
from a slave device; a logic zero indicates a write to a slave device.

2.1.7.7 OUTPUT ENABLE/ADDRESS MULTIPLEX (OE/AMUX). This pin can be
programmed as the output enable (OE) output or as the address multiplex output.

OE—During a read cycle, this output signal is driven by the bus master to indicate that an
external device should place valid data on the data bus. OE may used to save an external
inversion of the R/W signal.

AMUX—This output signal is driven by the DRAM controller to the external address
multiplexer. AMUX need not be used if the DRAM addresses are multiplexed intemally by
the QUICC.

2.1.7.8 BYTE WRITE ENABLE (WE3-WED). See 2.1.1.2 Address Bus (A31-A28) for the
description.

2.1.8 Bus Arbitration Signals

The following signals are the four bus arbitration control signals used to determine the bus
master. Refer to Section 4 Bus Operation for more information conceming these signals.

2.1.8.1 BUS REQUEST (BR). This active-low input signal indicates that an external device
needs to become the bus master. This input is typically wire-ORed.

2.1.8.2 BUS GRANT (BG). Assertion of this active-low output signal indicates that the bus
master has relinquished the bus.

2.1.8.3 BUS GRANT ACKNOWLEDGE (BGACK). Assertion of this active-low input
indicates that an external device has become the bus master.

2.1.8.4 READ-MODIFY-WRITE CYCLE/INITIAL CONFIGURATION (RMC/CONFIGO).
This pin can be programmed as the read-modify-write cycle output or as the initial
configuration pin 0 input signal during system reset.

RMC—This output signal identifies the bus cycle as part of an indivisible read-modify-write
operation; it remains asserted during all bus cycles of the read-modify-write operation to
indicate that bus ownership cannot be transferred.

CONFIG0—See 2.1.13 Inltial Configuration Pins (CONFIG) for the description.

2.1.8.5 BUS CLEAR OUT/INITIAL CONFIGURATION/ROW ADDRESS SELECT
DOUBLE-DRIVE (BCLRO/CONFIG1/RAS2DD). This pin can be programmed as the bus
clear out output or as the initial configuration pin 1 input signal during system reset or as
the RAS2DD output double-drive signal.

BCLRO—This active-low open-drain output indicates that one of the QUICC intemal bus
masters is requesting the external bus master to release the bus.

210 MC68360 USER’S MANUAL MOTOROLA

CONFIG1—See 2.1.13 Inltial Configuration Pins for the description.

RAS2—See 2.1.5.1 Chip Selects/Row Address Select (C56-CS0/RAS6-RASO0) for the
description.

2.1.9 System Control Signals

The QUICC uses these signals to recover from an exception. Refer to Section 4 Bus
Operation for more.information on these signals.

2.1.9.1 SOFT RESET (RESETS). This active-low, open-drain, bidirectional signal is used
to initiate reset. An external reset signal (as well as a reset from the SIM60) resets the
QUICC as well as all external devices. A reset signal from the CPU32+ (asserted as part
of the RESET instruction) resets external devices only—the internal state of the CPU32+
is not affected; other on-chip modules are reset, but the configuration is not altered. When
asserted by the QUICC, this signal is guaranteed to be asserted for a minimum of 512
clock cycles. ;

2.1.9.2 HARD RESET (RESETH). This active-low, open-drain, bidirectional signal is used
to initiate reset. An external hard reset signal (as well as an hard reset from the SIM60)
resets the QUICC as well as all external devices and the internal state of the CPU32+;
other on-chip modules are reset as well as the QUICC configuration. When asserted by
the QUICC, this signal is guaranteed to be asserted for a minimum of 512 clock cycles.

During a hard reset, the address, data, and bus control pins are all three-stated. The BG
pin output is the same as that on the BR input. The general-purpose /O pins are all
configured as inputs. The NC4-NC1 pins are undefined outputs. The XTAL, CLKO1, and
CLKO2 pins are active outputs, except for CLKO1 which does not oscillate while the on-
chip PLL is attaining a lock. The RESETS pin is an output. Note that if this is not a power-
on reset, the DRAM refresh controller remains active, and the address, data, and bus
control pins may therefore become active.

2.1.9.3 HALT (HALT). This active-low, open-drain. bidirectional signal is asserted to
suspend external bus activity, to request a retry when used with BERR, or to perform a
single-step operation. As an output, HALT indicates a double bus fault by the CPU32+.

2.1.9.4 BUS ERROR (BERR). This active-low, open-drain, bidirectional signal indicates
that an invalid bus operation is being attempted or, when used with HALT, that the bus
master should retry the current cycle.

2.1.10 Clock Signals

These signals are used by the QUICC for controlling or generating the system clocks.
Refer to Section 6 System Integration Module (SIM60) for more information on these
clock signals. '

2.1.10.1 SYSTEM CLOCK OUTPUTS (CLKO2-CLKO1). These output signals reflect the
general system clock and are used as the bus timing reference by external devices.

MOTOROLA MC68360 USER’S MANUAL 2-11

CLKOf1 is the general system clock. CLKO2 is 2x CLKO1 if the on-chip clock synthesizer
PLL is used, and is 1x CLKO1 otherwise. ,

2.1.10.2 CRYSTAL OSCILLATOR (EXTAL, XTAL). These two pins are the connections
for an external crystal to the internal oscillator circuit. If an external oscillator is used, it
should be connected to EXTAL, with XTAL left open.

2.1.10.3 EXTERNAL FILTER CAPACITOR (XFC). This pin is used to add an external
capacitor to the filter circuit of the PLL. The capacitor should be connected between XFC
and VCCSYN.

2.1.10.4 CLOCK MODE SELECT (MODCK1-MODCKO). The state of these active-high
input signals during reset selects the type of external clock that is used by the PLL in the
clock synthesizer to generate the system clocks. Table 2-5 lists the default values of the
PLL. These pins have internal pullups during hardware reset.

Table 2-5. Default Operation Mode of the PLL

MODCK Prescaled Multl. Factor | EXTAL Freq. | CLKIN to Initial Freq.
1-0 PLL by 128 (MF + 1) (examples) the PLL (vCO/2)
oo! Disabled | Reserved Reserved Reserved Reserved Reserved

L Enabled No 1 >10 MHz =EXTAL =EXTAL

10 Enabled Yes 401 4,192 MHz 32.75 kHz 13.14 MHz
1 Enabled No 401 32.768 kHz 32.768 kHz 13.14 MHz

1This mode is reserved.

2.1.11 Instrumentation and Emulation Signals

These signals are used for test or software debugging. Refer to Section 5§ CPU32+ for
more information on these signals.

2.1.11.1 INSTRUCTION FETCH/DEVELOPMENT SERIAL INPUT (IFETCH/DSI). This
active-low output signal indicates when the CPU32+ is performing an instruction word
prefetch and when the instruction pipeline has been flushed. Addltlonally, this signal is the
serial input to the CPU32+ in its background debug mode to issue background
commands, etc.

2.1.11.2 INSTRUCTION PIPE/DEVELOPMENT SERIAL OUTPUT (IPIPE0/DSO). This
active-low output signal is used to track movement of words through the instruction
pipeline. Additionally, this signal is the serial output from the CPU32+ in its background
debug mode to issue background status, etc.

2.1.11.3 INSTRUCTION PIPE/ROW ADDRESS SELECT DOUBLE-DRIVE
(IPIPE1/RAS1DD). This active-low output signal is used to track movement of words
through the instruction pipeline. This signal also functions as a second output of the RAST
signal to increase fanout capability.

2-12 MCe&8360 USER'’S MANUAL MOTOROLA

2.1.11.4 BREAKPOINT/DEVELOPMENT SERIAL CLOCK (BKPT/DSCLK). This active-
low input signal is used to signal a hardware breakpoint to the CPU32+. Additionally, this
signal is the serial clock used to transfer commands/status to and from the CPU32+
during background debug mode.

2.1.11.5 FREEZE/INITIAL CONFIGURATION (FREEZE/CONFIG2). This pin can be
programmed as the freeze output or as the initial configuration pin 2 input signal during
system reset.

| FREEZE—Assertion of this active-high output signal indicates that the CPU32+ has
acknowledged a breakpoint and has initiated background mode operation.

CONFIG2—See 2.1.13 Inttial Configuration Pins (CONFIG) for the description.

2.1.12 Test Signals

The following signals are used with the on-board test logic defined by the IEEE 1149.1
JTAG standard. See Section 8 IEEE 1149.1 Test Access Port for more information on
the use of these signals.

2.1.12.1 TRI-STATE SIGNAL (TRIS). This input is sampled during total system reset and,
when asserted, three-states all the QUICC pins. This signal is only valid when the
CPU32+ is enabled (normal operation).

2.1.12.2 TEST RESET (TRST). This input provides asynchronous reset to the test logic.

2.1.12.3 TEST CLOCK (TCK). This input provides a clock for on-board test logic defined
by the IEEE 1149.1 standard.

2.1.12.,4 TEST MODE SELECT (TMS). This input controls test mode operations for on-
board test logic defined by the IEEE 1149.1 standard.

2.1.12.5 TEST DATA IN (TDI). This input is used for serial test instructions and test data
for on-board test logic defined by the IEEE 1149.1 standard.

2.1.12.6 TEST DATA OUT (TDO). This output is used for serial test instructions and test
data for on-board test logic defined by the IEEE 1149.1 standard.

2.1.13 Initial Configuration Pins (CONFIG)

The CONFIG2-CONFIGO pins select the QUICC initial configuration during reset (see
Table 2-6). They decide whether the CPU32+ core will be enabled or disabled, the global
chip select port will be 8-, 16-, or 32-bits, and the MBAR address will be $003FF00 or
$0033FF04. After reset, these pins may be programmed to their other function. The
CONFIG2—-CONFIGO lines have internal pullup resistors so that if they are left floating, the
default selection will be 111. See Section 6 System Integration Module (SIM60) for
more information.

MOTOROLA MC68360 USER’S MANUAL 2-13

Table 2-6. Initial Configuration

Configuration Pins
CONFIG2/ | CONFIG1/ | CONFIGO/

FREEZE BCLRO RMC Result
0 0 0 Slave mode; global CS 8-bit size; MBAR at $003FF00.
0 0 1 Slave mode; global CS 32-bit size; MBAR at $003FF00; not MC68040
companion mode; BR output, BG input.
0 Slave mode; global CS 16-bit size; MBAR at $003FF00.

[N Y
-

MC68040 companion mode; global CS 32-bit size; MBAR at $003FF00;
BR input, BG output.

1 0 0 CPU enabled; global CS 32-bit size; MBAR at $003FF00.

1 0 1 CPU enabled; global CS 16-bit size; MBAR at $003FF00.

1 1 0 Slave mode; global CS disabled; MBAR at $003FF04.

1 1 1 CPU enabled; global CS 8-bit size; MBAR at $003FFO00. (Default)
2.1.14 Power Signals

The following signals are used for power and ground to the QUICC.

2.1.14.1 VCCSYN AND GNDSYN. These pins provide power and ground to the clock
synthesizer. They should be bypassed to each other with a 0.1-uF capacitor. See the
system clock generation description in Section 6 System Integration Module (SIM60) for
more details.

2.1.14.2 VCCCLK AND GNDCLK. These pins provide power and ground to the clock
output pins (CLKO1 and CLKO2). They should be bypassed to each other with a 0.1-uF
capacitor. See the system clock generation description in Section 6 System Integration
Module (SIM60) for more detail.

2.1.14.3 GNDS1 AND GNDS2. These two pins are special ground pins that, if used
properly, allow more aggressive timing to be provided on certain system bus pins. These
pins include AS, CASx, and IPIPE. Section 10 Electrical Characteristics already shows
the aggressive timing; the user does not need to modify any values in the section. GNDS1
and GNDS2 should be connected to a quiet ground source or to a low-noise ground plane.

2.1.14.4 VCC AND GND. These pins are the rest of the power and ground connections for
the QUICC.

2.1.14.5 NC4-NC1. These four pins should not be connected on the QUICC package.
They are reserved for future enhancements.

2.2 SYSTEM BUS SIGNAL INDEX IN SLAVE MODE

The CONFIG2-CONFIGO pins are used to cause the QUICC to enter the slave mode. The
signal name, mnemonic, and a brief functional description are presented in Table 2-7. The

2-14 MC68360 USER’S MANUAL MOTOROLA

rest of the QUICC pins maintain their functionality in slave mode. See Section 4 Bus

Operation for details.

Additionally, the QUICC provides special support for the MC68EC040 bus (or other
MC68040 family members) during slave mode. The MC68ECO040 signals are marked in
boldface in the table. For more information on MC68ECO040 bus operation, see
M68040UM/AD, M68040 User's Manual. The QUICC MC68EC040 support is described in

Section 4 Bus Operation and Section 6 System Integration Module (SIM60).

Table 2-7. System Bus Signal Index (Slave Mode)

Master Mode Slave Mode Slave Mode
Mnemonic Signal Name Mnemonic Slave Mode Function
FC2-FCO Function Codes/ FC2-FC0/ | Identifies the processor state and the address space of the
Transfer Modlfier TM2-TMO current bus cycle (I/0), or indicates the MC68EC040
supplement Information about the access (J).
FC3 Function Code/ FC3/TTO Identifies the DMA address space of the current bus cycle
Transfer Type (I/0), or Indicates the MC68EC040 general transfer type:
normal, MOVE 16, alternate logical function code, and
acknowledge (f).
DS Data Strobe/ bsnT Data strobe (I/0), or Indicates the MC68EC040 general
Transfer Type transfer type: normal, MOVE18, alternate logical function
code, and acknowledge (I).
DSACKT Data and Size DSACKI/TA | Provides asynchronous data transfers and dynamic bus
Acknowledge/ sizing; for the MC68EC040, asserted to acknowledge bus
Transfer transfer. (Both are open-drain I/O but driven high before
Acknowledge three-stated.) :
DSACKO Data and Size DSACKo/ Provides asynchronous data transfers and dynamic bus
Acknowledge/ TBl sizing; for the MC68EC040, indicates that a slave cannot
Transfer Burst handle a line burst access. (Both are open-drain /O but
Inhibit driven high before three-stated.)
BERR Bus Error/ BERR/ BERR indicates an erroneous bus operation is being
Transfer Error attempted by the QUICC (open-drain I/O); TEA Indicates
Acknowledge the same for the MC68EC040 (open-drain I/O)
TRIS Transfer Start hi] Indicates the beginning of an MC68040 bus transfer. (I)
TPIPEO/IFETCH | Burst Address BADD3- Address lines 2,3 generated by the QUICC on behalf of
BADD2 the MC68EC040, for MC68EC040 burst memory cycles.
©)
BR Bus Request BR Asserted by the QUICC to request bus mastership (O.D. O),
BR or bus request input from the MC68040. (f)
BG Bus Grant BG Asserted by external logic to grant bus mastership to the
BG QUICC (1), or bus grant output to the MC68040. (O)
BGACK Bus Grant BGACK Indicates that an external device or the QUICC has assumed
Acknowledge BB bus mastership. (Open-drain I/O but driven high before three-
Bus Busy stated).
RMC/CONFIGO | 040 Lock Cycle/ ToCKR An MC68040 LOCK signal input to prevent the QUICC
Configuration 0 CONFIGO from obtalning the system bus during locked cycles (i),
and the initial QUICC configuration select (1).
MOTOROLA MC68360 USER'S MANUAL 2-15

Table 2-7. System Bus Signal Index (Slave Mode) (Continued)

Master Mode Slave Mode Slave Mode
Mnemonic Signal Name Mnemonic Slave Mode Function
BKPT Breakpoint Out BRPTO Signals a hardware breakpoint to the external CPU. (O)
FREEZE/ Freeze/lInitial MBARE/ Provides an MBAR access enable (1), or the initial QUICC
CONFIG2 Configuration CONFIG2 configuration select. (1)
Pin 2
IRQ1,4,6 Interrupt Request/ TRQT,4,6/ Provides an interrupt request to the QUICC interrupt
Interrupt Outputs | TOUT2-TOUTO/ | controller (f), or interrupt output signals (O) (either RQOUT as
RQOUT a single request or TOUT2-IOUT0 encoded).
PRTYO Parity O/Interrupt | PRTYO/IOUT2 | Parity signals for D31-D24 writes/reads from/to external
Output 2 memory bank (I/O), or interrupt output 2 signal (O).
PRTY1 Parity 1/interrupt | PRTY1/IOUTT | Parity signals for D23-D16 writes/reads from/to external
Output 1 memory bank (I/O) or interrupt output 1 signal. (O)
PRTY2 Parity 2/ PRTY2/IOUTO/ | Parity signals for D15-D8 writes/reads from/to external
Interrupt Output 0/ RQOUT memory bank (I/O), or interrupt output 0 signal (O), or
Request Output RQOUT as a single interrupt request output (O).
AVEC/IACK5 | Autovector Output AVECO Signal output to the external processor to generate an
internal vector number during an interrupt acknowledge
cycle. (three-stated O)
TPIPET/ Bus Clear Input/ BCLRI/ Signals that an external device requests the QUICC to
RASTDD Row Address RAS1DD release the external bus (1), or row address select 1 double-
Select 1 drive (O).
Double-Drive

2.3 ON-CHIP PERIPHERALS SIGNAL INDEX

The input and output system signals for the QUICC peripherals are listed in Table 2-8.
The signal name, mnemonic, and a brief functional description are presented. For more
detail on each signal, refer to the specific module section. The peripherals pins are divided
into three ports: A, B, and C.

Port A has 16 pins, port B has 18 pins, and port C has 12 pins. All the following signals
are multiplexed with either port A, B, or C. All pins may be inputs or outputs; in addition,
some pins may be configured to be open-drain. See 7.14 Parallel I/O Ports for further

details.

2-16

MC68360 USER’S MANUAL MOTOROLA

Table 2-8. Peripherals Signal Index

Group Signal Name Mnemonic Function
ScC Receive Data RXD4-RXD1 Serial receive data input to the SCCs. (1)
Transmit Data TXD4-TXD1 Serial transmit data output from the SCCs. (O)
Requesi to Send RTS4-RTS1 Request to send outputs indicate that the SCC is ready to
transmit data. (O)
Clear to Send CTS4-CTS1 Clear to send inputs indicate to the SCC that data transmission
may begin. (1)
Carrier Detect CD4-CDT Carrier detect inputs indicate that the SCC should begin reception
of data. (I)
Receive Start RSTRTI This output from SCC1 identifies the start of a receive frame. Can
be used by an Ethemnet CAM to perform address matching. (O)
Receive Reject RRJICTT This input to SCC1 allows a CAM to reject the current Ethernet
frame after it determines the frame address did not match. (1)
Clocks CLK8-CLK81 Input clocks to the SCCs, SMCs, SI, and the baud rate
generators. (l)
IDMA DMA Request DREQ2-DREQ1 | A request (input) to an IDMA channel to start an IDMA transfer. (l)
DMA Acknowledge | DACK2-DACK1 | An acknowledgement (output) by the IDMA that an IDMA transfer
is in progress. (O) ’
DMA Done DONE2-DONET | A bidirectional signal that indicates the last IDMA transfer in a
block of data. (I/0)
TIMER Timer Gate TGATE2-TGATET | An input to a timer that enables/disables the counting function. (l)
Timer Input TIN4-TIN1 Time reference input to the timer that allows it to function as a
counter. (1)
Timer Output TOUT4-TOUTT | Output waveform (pulse or toggle) from the timer as a result of a
reference value being reached. (O)
SPI SPI Master-In SPIMISO Serial data input to the SPI master (l); serial data output from an
Slave-Out SPI slave (O).
SPI Master-Out SPIMOSI Serial data output from the SPI masteér (O).; serial data input to an
Slave-in SP! slave (I).
SPI Clock SPICLK Output clock from the SPI master (O); input clock to the SPI slave
().
SPI Select SPISEL SPI slave select input. (1)
SMC SMC Receive SMRXD2- Serial data input to the SMCs. (1)
Data SMRXD1
SMC Transmit SMTXD2- Serial data output from the SMCs. (O)
Data SMTXD1
SMC Sync SMSYN2-SMSYN1 | SMC synchronization signal. (!)
Sl Sl Receive Data | LIRXDA, L1RXDB | Serial input to the time division multiplexed (TDM) channel A or
channel B.
S| Transmit Data | L1ITXDA, L1TXDB | Serial output from the TDM channel A or channel B.
S| Receive Clock L1RCLKA, Input receive clock to TDM channel A or channel B.
L1RCLKB
MOTOROLA . MC68360 USER'S MANUAL 2-17

Table 2-8. Peripherals Signal Index (Continued)

2-18

Group Signal Name Mnemonic Function
| SI Transmit Clock L1TCLKA, Input transmit clock to TDM channel A or channel B.
(Cont'd) L1TCLKB
S| Transmit LITSYNCA, = | Input transmit data sync signal to the TDM channel A or channel
Sync Signals LITSYNCB B.
Sl Receive L1RSYNCA, Input receive data sync signal to TDM channel A or channel B.
Sync Signals L1RSYNCB
IDL interface L1RQA, L1RQB | IDL interface request to transmit on the D channel. Output from
Request the Sl
Sl Output Clock L1CLKOA, Output serial data rate clock. Can output a data rate clock when
L1CLKOB the input clock is 2x the data rate.
S| Data Strobes L1ST4-L1ST1 | Serial data strobe outputs can be used to gate clocks to external
devices that do not have a built-in time slot assigner (TSA).
BRG Baud Rate BRGO4-BRGO1 | Baud rate generator output clock allows baud rate generator to be
Generator Out 4-1 used externally.
BRG Input Clock CLK2, CLK6é Baud rate generator input clock from which BRG will derive the
baud rates.
PIP Port B 15-0 PB15-PBO PIP Data /O Pins
Strobe Out STRBO This input causes the PIP output data to be placed on the PIP
data pins.
Strobe In STRBI This input causes data on the PIP data pins to be latched by the
PIP as input data.
RISC | External Request EXT1-EXTO External request input to the RISC controller. Used only with
1-0 Motorola-supplied RAM microcode packages.
SDMA SDACKZ-SDACKT | SDMA output signals used in RISC receiver to mark fields in the |
Acknowledge 2-1 Ethernet receive frame.
MC68360 USER'S MANUAL MOTOROLA

SECTION 3
QUICC MEMORY MAP n

The following tables present a programmer’'s model (register map) of all registers in the
QUICC. For more information about a particular register, refer to the description for the
module or sub-module indicated in the right column. The address column indicates the

- offset of the register from the address stored in the module base address register (MBAR).
This register in the SIM block controls the location of all internal memory/registers as well
as their supervisor/user access space (see Section 6 System Integration Module
(SIM)). Bold letters mark registers that are restricted to supervisor access. Other registers
are programmable to exist in either supervisor or user space. Registers that are reset only
by hard reset are marked with an H in the reset value column. All of the registers are
memory-mapped.

All internal memory and registers occupy a single 8-Kbyte memory block that is
relocatable along 8-Kbyte boundaries. The location is fixed by writing the desired base
address of the 8-Kbyte memory block to the MBAR using the MOVES instruction. The
MBAR is the only exception since it resides at a fixed location in $03FFO00.

The 8-Kbyte block is divided into two 4-Kbyte sections. The RAM occupies the first
section; the internal registers occupy the second section. The location of the QUICC
registers is shown in Figure 3-1.

MOTOROLA MC68360 USER’S MANUAL 31

DPRBASE (DUAL-PORT RAM BASE)

DUAL-PORT RAM

REGB (REGISTER BASE) = DPRBASE + 4K

- INTERNAL
“8 REGISTERS

TN

Figure 3-1. QUICC Memory Map

3.1 DUAL-PORT RAM MEMORY MAP

The internal 2560-byte dual-port RAM is partitioned to 1536 bytes of system RAM, 256-
byte microcode scratch area, and 768 bytes of parameter RAM (see Table 3-1). Its base
address, called dual-port RAM base (DPRBASE), is the address pointed to by the MBAR.

The system RAM may be used for microcode program area, data area, and buffer
descriptors (BDs). It may be partitioned in several ways, allowing programmablé partition
sizes to fit the system requirements. This is described in Section 7 Communication
Processor Module (CPM).

The parameter RAM contains the protocol-specific parameters. For detailed information

about the use of the buffer descriptors and protocol parameters in a specific protocol, see
Section 7 Communication Processor Module (CPM).

3-2 MC68360 USER'S MANUAL MOTOROLA

Table 3-1. Dual-Port RAM Map

Address Slze Block Description
DPRBASE + 0 1024 Bytes | Dual-Port RAM User Data /BDs /
DPRBASE + 3FF Microcode

i Program
DPRBASE + 400 512 Bytes Dual-Port RAM User Data / BDs
DPRBASE + 5FF
DPRBASE + 600 256 Bytes Dual-Port RAM User Data / BDs /
DPRBASE + 6FF Microcode Scratch
DPRBASE + 700 Reserved Reserved
DPRBASE + BFF
DPRBASE + C00 192 Bytes Dual-Port RAM Parameter RAM
DPRBASE + CBF Page 1
DPRBASE + CCO Reserved Reserved
DPRBASE + CFF
DPRBASE + D00 192 Bytes Dual-Port RAM Parameter RAM
DPRBASE + DBF Page 2
DPRBASE + DCO Reserved Reserved
DPRBASE + DFF
DPRBASE + E00 192 Bytes Dual-Port RAM Parameter RAM
DPRBASE + EBF Page 3
DPRBASE + ECO Reserved Reserved
DPRBASE + EFF
DPRBASE + F00 192 Bytes Dual-Port RAM Parameter RAM
DPRBASE + FBF Page 4
DPRBASE + FCO Reserved Reserved
DPRBASE + FFF ‘

3.2 CPM SUB-MODULE BASE ADDRESSES

Within the four parameter RAM pages are the base addresses for the CPM sub-modules
such as the SCCs, SMCs, etc. The base addresses for the sub-modules are shown in
Table 3-2. See the particular sub-module description within Section 7 Communication
Processor Module (CPM) for further information.

MOTOROLA

MC68360 USER’S MANUAL

Table 3-2. CPM Sub-Module Base Addresses

. ' Parameter
RAM Page Sub-Module Base Address
1 SCC1 Base DPRBASE + $C00
1 Misc Base DPRBASE + $CBO
2 SCC2 Base DPRBASE + $D00
2 SPI Base DPRBASE + $D80
2 Timer Base DPRBASE + $DB0
3 SCC3 Base DPRBASE + $E00
3 IDMA1 Base DPRBASE + $E70
3 SMC1 Base DPRBASE + $E80
4 SCC4 Base DPRBASE + $F00
4 IDMA2 Base DPRBASE + $F70
4 SMC2 Base DPRBASE + $F80

3.3 INTERNAL REGISTERS MEMORY MAP

In addition to the internal dual-port RAM, there are a number of internal registers to
support the functions of the various CPU32+ core peripherals. The internal registers (see
Tables 3-3 and 3-4) are memory-mapped registers offset from the register base
(REGBASE) pointer. REGBASE (abbreviated REGB) = DPRBASE + 4K. All registers are
located on the internal IMB. ’

3-4

NOTES

All registers that are underlined in the following tables are
special registers called event registers. In these registers, bits
are set by the QUICC and cleared by the user. To clear a bit,
the user must write a one to that bit. For example, to clear bit 2
in SCCE1, the MOVE.B #3$04,SCCE1 instruction may be used.
Do NOT use read-modify-write instructions (such as BSET,
BCLR, AND, OR, etc.) with these registers, or ALL bits in that
register will inadvertently be cleared. See the individual register
descriptions for more information.

All undefined and reserved bits within registers and parameter
RAM values written by the user should be written with zero to
allow for future enhancements to the device.

Bold letters mark registers that are restricted to supervisor
access.

MC68360 USER’S MANUAL

MOTOROLA

3.3.1 SIM Registers Memory Map
Table 3-3 lists the SIM registers memory map.

Table 3-3. QUICC SIM Registers Memory Map

Address Name Width Description Reset Value Block
REGB + 0000 MCR 32 | Module Configuration Register 0000 7cff H SIM
REGB + 0004 32 | Reserved .

REGB + 0008 AVR 8 Autovector Register 00 H
REGB + 0009 BSA 8 Reset Status Register H/S
REGB + 000a 16 | Reserved
REGB + 000c | CLKOCR 8 | CLKO Control Register 00 H
REGB + 000d Reserved
REGB + 0010 PLLCR 16 | PLL Control Register #{MODCK1-0) H
REGB + 0012 16 | Reserved
REGB + 0014 CDVCR 16 | Clock Divider Control Register 0000 H
REGB + 0016 PEPAR 16 | Port EPin Assignment Register 0000 H
REGB + 0018 Reserved
REGB“:- 0021
REGB + 0022 SYPCR 8 System Protection Control f(MODCK1-0) H
REGB + 0023 swiv 8 Software Interrupt Vector OF H
REGB + 0024 16 | Reserved
REGB + 0026 PICR 16 | Periodic Interrupt Control Register 000F H
REGB + 0028 16 | Reserved
REGB + 002a PITR 16 | Periodic Interrupt Timing Register 0000/0300 H
REGB + 002¢ 24 | Reserved
REGB + 002f SWSR 8 Software Service Register 00 H
REGB + 0030 BKAR 32 | Breakpoint Address Register XXXX —
REGB + 0034 BKCR 32 | Breakpoint Control Register 0000 0000 H
REGB + 0038 Reserved
REGB‘°+ 003f
REGB + 0040 GMR 32 | Global Memory Register 0000 1200 H MEMC
REGB + 0044 MSTAT 16 | Memory Controller Status Register 0000 H/S
REGB + 0046 Reserved
REGBt°+ 004f
REGB + 0050 BRO 32 | Base Register 0 0000 0051 H
REGB + 0054 ORO 32 | Option Register 0 F000 0000 H
REGB + 0058 Reserved
REGI;i 005f

MOTOROLA MC68360 USER'S MANUAL 3-5

Table 3-3. QUICC SIM Registers Memory Map (Continued)

Address Name Width Description Reset Value Block
REGB + 0060 BR1 32 | Base Register 1 0000 0050 H MEMC
(Cont'd)
REGB + 0064 OR1 32 | Option Register 1 F000 0000 H
REGB + 0068 Reserved
to
REGB +006f
REGB + 0070 BR2 32 | Base Register'z 0000 0050 H
REGB + 0074 OR2 32 | Option Register 2 FO00 0000 H
REGB + 0078 Reserved
to
REGB + 007f
REGB + 0080 BR3 32 | Base Register 3 0000 0050 H
REGB + 0084 OR3 32 | Option Register 3 FO00 0000 H
REGB + 0088 Reserved
to
REGB + 008f
REGB + 0090 BR4 32 [Base Address Register 4 0000 0050 H
REGB + 0094 OR4 32 | Option Register 4 F000 0000 H
REGB + 0098 Reserved
to
REGB + 009f
REGB + 00a0 BR5 32 | Base Address Register 5 0000 0050 H
REGB + 00a4 ORS 32 | Option Register 5 F000 0000 H
REGB + 00a8 Reserved
to
REGB + 00af
REGB + 00b0 BR6 32 | Base Address Register 6 0000 0050 H
REGB + 00b4 OR6 32 | Option Register 6 FOO00 0000 H
REGB + 00b8 Reserved
to
REGB + 00bf
REGB + 00c0 BR7 32 | Base Address Register 7 0000 0050 H
REGB + 00c4 OR7 32 | Option Register 7 F000 0000 H
REGB + 00c8 Reserved
to
REGB «+ 00ef
" REGB + 00f0 Reserved
to
REGB + 00ff
3-6 MC68360 USER’S MANUAL MOTOROLA

3.3.2 CPM Registers Memory Map
Table 3-4 lists the CPM registers memory map.

Table 3-4. QUICC CPM Registers Memory Map

Address Name Width Description Reset Value Block

REGB + 400 Reserved
to
REGB + 4ff
REGB + 500 ICCR 16 | Channel Configuration Register 0000 IDMA1
REGB + 502 16 | Reserved
REGB + 504 CMR1 16 | IDMA1 Mode Register 0000
REGB + 506 16 | Reserved
REGB + 508 SAPR1 32 | IDMA1 Source Address Pointer 0000 0000
REGB + 50C DAPR1 32 | IDMA1 Destination Address Pointer 0000 0000
REGB + 510 BCR1 32 | IDMA1 Byte Count Register 0000 0000
REGB + 514 FCR1 8 IDMA2 Function Code Register 00
REGB + 515 8 Reserved
REGB + 516 CMAR1 8 | Channel Mask Register 00
REGB + 517 8 Reserved
REGB + 518 CSR1 8 IDMA1 Channel Status Register 00
REGB + 519 24 | Reserved
REGB + 51C SDSR 8 SDMA Status Register 00 SDMA
REGB + 51D Reserved
REGB + §1E SDCR 16 | SDMA Configuration Register 0000
REGB + 520 SDAR 32 | SDMA Address Register XXXX XXXX
REGB + 524 16 | Reserved IDMA2
REGB + 526 CMR2 16 | IDMA2 Mode Register 0000
REGB + 528 SAPR2 32 | IDMA2 Source Address Pointer 0000 0000
REGB + 52C DAPR2 32 | IDMA2 Destination Address Pointer 0000 0000
REGB + 530 BCR2 32 | IDMA2 Byte Count Register 0000 0000
REGB + 534 FCR2 8 IDMA2 Function Code Register 00
REGB + 535 8 Reserved
REGB + 536 CMAR2 8 Channel Mask Register 00
REGB + 537 8 Reserved
REGB + 538 CSR2 8 IDMA2 Channel Status Register 00
REGB + 539 Reserved
to
REGB + 53F
MOTOROLA MC68360 USER’S MANUAL 37

Table 3-4. QUICC CPM Registers Memory Map (Continuéd)

Address Name Width Description Reset Value Block
REGB + 540 CICR 24 | CP Interrupt Configuration Register Xx00 0000 H CPIC
REGB + 544 ClPR 32 [CP Interrupt Pending Register 0000 0000
REGB + 548 CIMR 32 | CP Interrupt Mask Register 0000 0000
REGB + 54C CISR 32 | CP In-Service Register 0000 0000
REGB + 550 PADIR 16 | Port A Data Direction Register 0000 H Parallel

: /o
- REGB + 552 PAPAR 16 | Port A Pin Assignment Register 0000 H
REGB + 554 PAODR 16 | Port A Open Drain Register 0080 H
REGB + 556 PADAT 16 | Port A Data Register XXXX ‘
REGB + 558 Reserved
to

REGB + 55f

REGB + 560 PCDIR 16 | Port C Data Direction Register 0000 H
REGB + 562 PCPAR 16 | Port C Pin Assignment Register 0000 H
REGB + 564 PCSO 16 | Port C Special Options 0000 H
REGB + 566 PCDAT 16 | Port C Data Register XXXX

REGB + 568 PCINT 16 | Port C Interrupt Control Register 0000 H
REGB + 56a Reserved

to)

REGB + 57f

REGB + 580 TGCR 16 | Timer Global Configuration Register 0000 H TIMER
REGB + 582 Reserved

B)

REGB + 58f

REGB + 590 TMR1 16 | Timert Mode Register 0000

REGB + 592 TMR2 16 | Timer2 Mode Register 0000

REGB + 594 TRR1 16 | Timer1 Reference Register FFFF

REGB + 596 TRR2 16 | Timer2 Reference Register FFFF

REGB + 598 TCR1 16 | Timer1 Capture Register FFFF

REGB + 59A TCR2 16 | Timer2 Capture Register FFFF

REGB + 59C TCN1 16 | Timer1 Counter 0000

REGB + 59E TCN2 16 | Timer2 Counter 0000

REGB+5A0 | TMR3 16 | Timer3 Mode Register 0000 -
REGB + 5A2 TMR4 16 | Timer4 Mode Register 0000

REGB + 5A4 TRR3 16 | Timer3 Reference Register FFFF

REGB + 5A6 TRR4 16 | Timer4 Reference Register FFFF

REGB + 5A8 TCR3 16 | Timer3 Capture Register FFFF
REGB + 5AA TCR4 16 | Timer4 Capture Register FFFF

3-8 MC68360 USER'S MANUAL MOTOROLA

Table 3-4. QUICC CPM Registers Memory Map (Continued)

Address Name Width Description Reset Value Block
REGB + 5AC TCN3 16 | Timer3 Counter 0000 TIMER
(Cont'd)
REGB + 5AE TCN4 16 | Timer4 Counter 0000
REGB + 5B0 TER1 16 | Timer1 Event Register 0000
REGB + 5B2 JER2 16 | Timer2 Event Register 0000
REGB + 5B4 JER3 16 | Timer3 Event Register 0000
REGB + 5B6 TER4 16 | Timer4 Event Register 0000
REGB + 5b8 Reserved
to
REGB + 5bf
REGB + 5CO CR 16 | Command Register 0000 cP
REGB + 5C4 RCCR 16 | RISC Configuration Register 0000 H
REGB + 5c6 Reserved
to
REGB + 5d5
REGB + 5D6 RTER 16 | RISC Timers Event Register 0000
REGB + 5DA RTMR 16 | RISC Timers Mask Register 0000
REGB + 5dc Reserved
to
REGB + 5ef
REGB + 5F0 BRGC1 24 | BRG1 Configuration Register xx00 0000 H BRG
REGB + 5F4 BRGC2 24 | BRG2 Configuration Register xx00 0000 H
REGB + 5F8 BRGC3 24 | BRG3 Configuration Register xx00 0000 H
REGB + 5FC BRGC4 24 | BRG4 Configuration Register xx00 0000 H
REGB + 600 GSMR_L1 32 | SCC1 General Mode Register 0000 0000 SCC1
REGB + 604 GSMR_H1 32 | SCC1 General Mode Register 0000 0000
REGB + 608 PSMR1 16 | SCC1 Protocol-Specific Mode Registar | 0000
REGB + 60c TODRH1 16 | SCC1 Transmit on Demand 0000
REGB + 60e DSR1 16 | SCC1 Data Sync. Register 7E7E
REGB + 610 SCCE1 16 | SCC1 Event Register 0000
REGB + 614 SCCM1 16 | SCC1 Mask Register 0000
REGB + 617 SCCS1 8 SCC1 Status Register 00
REGB + 618 Reserved '
to
REGB + 61f
REGB + 620 GSMR_L2 32 | 8CC2 General Mode Register 0000 0000 SCC2
REGB + 624 GSMR_H2 32 | SCC2 General Mode Register 0000 0000
REGB + 628 PSMR2 16 | SCC2 Protocol-Specific Mode Register | 0000
REGB + 62¢ TODR2 16 | SCC2 Transmit on Demand 0000
MOTOROLA MC68360 USER’S MANUAL 3-9

‘Table 3-4. QUICC CPM Registers Memory Map (Continued)

Address Name Width Description Reset Value Block
REGB + 62e¢ DSR2 16 | SCC2 Data Sync. Register 7E7E SCC2
(Cont))
REGB + 630 - SCCE2 16 | SCC2 Event Register 0000
REGB + 634 SCCM2 16 | SCC2 Mask Register 0000
REGB + 637 SCCSs2 8 SCC2 Status Register 00
REGB + 638 Reserved
to
REGB + 63f
REGB + 640 GSMR_L3 32 | SCC3 General Mode Register 0000 0000 SCC3
REGB + 644 GSMR_H3 32 SCC3 General Mode Register 0000 0000
REGB + 648 PSMR3 16 |sccs Protocol-Specific Mode Register | 0000
REGB + 64c TODR3 16 | SCC3 Transmit on Demand 0000
REGB + 64e DSR3 16 | SCC3 Data Sync. Register 7E7E
REGB + 650 SCCE3 16 | SCC3 Event Register 0000
REGB + 654 SCCM3 16 | SCC3 Mask Register 0000
REGB + 657 SCCS3 8 SCC3 Status Register 00
REGB + 658 Reserved
to
REGB + 65f
REGB + 660 GSMR_L4 32 | SCC4 General Mode Register 0000 0000 SCC4
REGB + 664 GSMR_H4 32 | SCC4 General Mode Register 0000 0000
REGB + 668 PSMR4 16 | SCC4 Protocol-Specific Mode Register | 0000
REGB + 66¢ - TODR4 16 | SCC4 Transmit on Demand 0000
REGB + 66e DSR4 16 | SCC4 Data Sync. Register 7E7E
REGB + 670 SCCE4 16 | SCC4 Event Register 0000
REGB + 674 SCCM4 16 | SCC4 Mask Register 0000
REGB + 677 SCCSs4 8 SCC4 Status Register 00
REGB + 678 Reserved
to
REGB + 681
REGB + 682 SMCMR1 16 | SMC1 Mode Register 0000 SMC1
REGB + 686 SMCE1 SMC1 Event Register 00
REGB + 68a SMCM1 SMC1 Mask Register 00
REGB + 68C Reserved
REGB + 692 SMCMR2 16 | SMC2 Mode Register 0000 SMC2
REGB + 696 SMCE2 SMC2 or PIP Event Register 00
REGB + 69a SMCM2 SMC2 Mask Register 00
REGB + 69C Reserved
3-10 MC68360 USER’S MANUAL MOTOROLA

Table 3-4. QUICC CPM Registers Memory Map (Concluded)

Address Name Width - Description Reset Value Block
REGB + 6A0 SPMODE 16 | SPI Mode Register 0000 H SPI
REGB + 6A6 SPIE SPI Event Register 00
REGB + 6AA SPIM SPI Mask Register 00
REGB + 6AC SPCOM SPI Command Register xx00
REGB + 6B2 PIPC 16 | PIP Configuration Register 0000 H PIP
REGB + 6B6 PTPR 16 | PIP Timing Parameters Register 0000
REGB + 6B8 PBDIR 18 | Port B Data Direction Register xxx0 0000 H
REGB + 6BC PBPAR 18 | Port B Pin Assignment Register xxx0 0000 H
REGB + 6C0 PBODR 16 | Port B Open Drain Register xxxx 0000 H
REGB + 6C4 PBDAT 18 | Port B Data Register XXX XXXX
REGB + 6c8 Reserved

to
REGB + 6df
REGB + 6E0 SIMODE 32 | Sl Mode Register 0000 0000 H Sl
REGB + 6E4 SIGMR Sl Giobal Mode Register 00 H
REGB + 6E6 SISTR Sl Status Register 00 H
REGB + 6E7 SICMR S| Command Register 00
REGB + 6E8 32 | Reserved
REGB+ 6EC SICR 32 | Sl Clock Route 0000 0000 H
REGB + 6F0 SIRP 32 | SI RAM Pointers 0000 0000
REGB + 6F4 RES Reserved
to
REGB + 6FF
REGB + 700 SIRAM 256 | Sl Routing RAM XXXX
to Bytes
REGB + 7ff
MOTOROLA MC68360 USER’S MANUAL 3-11

3-12 MC68360 USER’S MANUAL MOTOROLA

SECTION 4
BUS OPERATION

This section provides a functional description of the system bus, the signals that control it,
and the bus cycles provided for data transfer operations. It also describes the error and
halt conditions, bus arbitration, and reset operation. Operation of the external bus is the
same whether the QUICC or an external device is the bus master; the names and
descriptions of bus cycles are from the viewpoint of the bus master. For exact timing
specifications, refer to Section 10 Electrical Characteristics.

NOTE

The bus operation of the QUICC is very similar to the bus
operation of the MC68030 and the MC68340. Much of the text
and figures of the bus operation of those devices is common to
this section.

The QUICC also supports the MC68ECQ40 (or other M68040 family members) as an
external bus master. The MC68EC040 can access QUICC registers and use QUICC
peripherals. The QUICC has a glueless MC68ECO040 interface and special logic for acting
as the MCB8EC040 memory controller, interrupt controller, and the provider of system
protection logic. The MC68ECO040 bus operation is described in the M68040 User Manual.
When the QUICC is the bus master of an M68040 system, its bus operation remains the
same when it is the only bus master in the system. See 4.6.7 Internal Accesses for a
description and timing diagram of the MC68ECO040 internal read/write cycles (i.e.,
MC68EC040 reading/writing the QUICC) and interrupt acknowledge cycles. See 6.11
General-Purpose Chip-Select Overview (SRAM Banks) and 6.12 DRAM Controller
Overview (DRAM Banks) for more information on the timing diagrams of MC68EC040
DRAM and SRAM accesses.

The QUICC architecture supports byte, word, and long-word operands allowing access to
8-, 16-, and 32-bit data ports through the use of asynchronous cycles controlled by the
size outputs (SIZ1, SIZ0) and data size acknowledge inputs (DSACK1, DSACKO).

The QUICC allows byte, word, and long-word operands to be located in memory on any
byte boundary. For a misaligned transfer, more than one bus cycle may be required to
complete the transfer, regardless of port size. For a port less than 32 bits wide, multiple
bus cycles may be required for an operand transfer due to either misalignment or a port
width smaller than the operand size. Instruction words and their associated extension
words must be aligned on word boundaries. The user should be aware that misalignment
of word or long-word operands can cause the CPU32+ to perform multiple bus cycles for
operand transfers; therefore, processor performance is optimized if word and long-word

MOTOROLA MC68360 USER’S MANUAL 4-1

memory operands are aligned on word or long-word boundaries, respectively. The QUICC
IDMAS, when used, reduce the misalignment overhead to a minimum.

4.1 BUS TRANSFER SIGNALS

The bus transfers information between the QUICC and external memory or a peripheral
device. External devices can accept or provide 8, 16, or 32 bits in parallel and must follow
the handshake protocol described in this section. The maximum number of bits accepted
or provided during a bus transfer is defined as the port width. The QUICC contains an
address bus that specifies the address for the transfer and a data bus that transfers the
data. Control signals indicate the beginning and type of the cycle as well as the address
space and size of the transfer. The selected device then controls the length of the cycle
with the signal(s) used to terminate the cycle. Strobe signals, one for the address bus and
ancther for the data bus, indicate the validity of the address and provide timing information
for the data.

Both asynchronous and synchronous operation is possible for any port width. In
asynchronous operation, the bus and control input signals are internally synchronized to
the QUICC clock, introducing a delay. This delay is the time required for the QUICC to
sample an input signal, synchronize the input to the internal clocks, and determine
whether it is high or low. In synchronous mode, the bus and control input signals must be
timed to setup and hold times. Since no synchronization is needed, bus cycles can be
completed in three clock cycles in this mode. Additionally, using the fast-termination option
of the chip-select signals, two-clock operation is possible.

Furthermore, for all inputs, the QUICC latches the level of the input during a sample
window around the falling edge of the clock signal. This window is illustrated in Figure 4-1,
where tgy and tp are the input setup and hold times, respectively. To ensure that an input
signal is recognized on a specific falling edge of the clock, that input must be stable during
the sample window. If an input makes a transition during the window time period, the level
recognized by the QUICC is not predictable; however, the QUICC always resolves the
latched level to either a logic high or low before using it. In addition to meeting input setup
and hold times for deterministic operation, all input signals must obey the protocols
described in this section.

4-2 MC68360 USER’S MANUAL MOTOROLA

tsy—> [—

Fe——tp,

CLK N

exr_XXXXXXXXXXXXXXXX] | XXXXXXXXXXXXKKAX

L__I_J
SAMPLE WINDOW

Figure 4-1. Input Sample Window

4.1.1 Bus Control Signals

The QUICC initiates a bus cycle by driving the address, size, function code, and read/write
outputs. At the beginning of a bus cycle, SIZ1 and SIZ0 are driven with the FC signals.
SlIZ1 and SIZ0 indicate the number of bytes remaining to be transferred during an operand
cycle (consisting of one or more bus cycles). Table 4-3 lists the encoding of SIZ1 and
SIZ0. These signals are valid while AS is asserted.

The R/W signal determines the direction of the transfer during a bus cycle. Driven at the
beginning of a bus cycle, R/W is valid while AS is asserted. R'W only transitions when a
write cycle is preceded by a read cycle or vice versa. The signal may remain low for
consecutive write cycles.

The RMC signal is asserted at the beginning of the first bus cycle of a read-modify-write
operation and remains asserted until completion of the final bus cycle of the operation.

4.1.2 Function Codes (FC3-FC0)

The FCx signals are outputs that indicate one of 16 address spaces to which the address
applies. Fifteen of these spaces are designated as either a normal or DMA cycle, user or
supervisor, and program or data spaces. One other address space is designated as CPU
space to allow the CPU32+ to acquire specific control information not normally associated
with read or write bus cycles. The FCx signals are valid while AS is asserted.

Function codes (see Table 4-1) can be considered as extensions of the 32-bit address
that can provide up to eight different 4-Gbyte address spaces. Function codes are
automatically generated by the CPU32+ to select address spaces for data and program at
both user and supervisor privilege levels, and a CPU address space for processor
functions. User programs access only their own program and data areas to increase
protection of system integrity and can be restricted from accessing other information. The
S-bit in the CPU32+ status register is set for supervisor accesses and cleared for user
accesses to provide differentiation. Refer to 4.4 CPU Space Cycles for more information.

MOTOROLA MC68360 USER’S MANUAL 4-3

Table 4-1. Address Space Encoding

Function Code Bits

3 2 1 0 Address Spaces

0 0 0 0 | Reserved (Motorola)

0 0 0 1 User Data Space

0 0 1 0 User Program Space

0 0 1 1 Reserved (User)

0 1 0 0 Reserved (Motorola)

0 1 0 1 Supervisor Data Space

[1 1 0 Supervisor Program Space
0 1 1 1 Supervisor CPU Space

1 X X X DMA space

4.1.3 Address Bus (A31-A0)

The address bus signals are outputs that define the address of the byte (or the most
significant byte) to be transferred during a bus cycle. The QUICC places the address on
the bus at the beginning of a bus cycle. The address is valid while AS is asserted.

4.1.4 Address Strobe (AS)

AS is an output timing signal that indicates the validity of an address on the address bus
and of many control signais. AS is asserted approximately one-half clock cycle after the
beginning of a bus cycle.

4.1.5 Data Bus (D31-D0)

The data bus is a bidirectional, nonmultiplexed, parallel bus that contains the data being
transferred to or from the QUICC. A read or write operation may transfer 8, 16, 24, or 32
bits of data (one, two, three, or four bytes) in one bus cycle. During a read cycle, the data
is latched by the QUICC on the last falling edge of the clock for that bus cycle. For a write
cycle, all 32 bits of the data bus are driven, regardless of the port width or operand size.
The QUICC places the data on the data bus approximately one-half clock cycle after AS is
asserted in a write cycle.

4.1.6 Data Strobe (DS)

DS is an output timing signal that applies to the data bus. For a read cycle, the QUICC
asserts DS and AS simultaneously to signal the external device to place data on the bus.
For a write cycle, DS signals to the external device that the data to be written is valid. The
QUICC asserts DS approximately one clock cycle after the assertion of AS during a write
cycle.

4-4 MC68360 USER’S MANUAL MOTOROLA

4.1.7 Output Enable (OE)

OE is an output timing signal that applies to the data bus. On a read cycle, the QUICC
asserts OE to signal the external device to place data on the bus. OE is asserted during
read cycles with timing similar to AS.

OE is not shown in the diagrams in this section. Use AS timing instead during read cycles.

4.1.8 Byte Write Enable (WE3-WED)

The upper upper write enable (WEO) indicates that the upper eight bits of the data bus
(D31-D24) contain valid data during a write cycle. The upper middle write enable (WET)
indicates that the upper middle eight bits of the data bus (D23-D16) contain valid data
during a write cycle. The lower middle write enable (WE2) indicates that the lower middle
eight bits of the data bus (D15-D8) contain valid data during a write cycle. The lower write
enable (WE3) indicates that the lower eight bits of the data bus contain valid data during a
‘write cycle

The equations of the byte write enables for 32-bit port (B16M = 1) are as follows:
WEO = R'W + AS + A0 + A1.
= R/W + AS + not {(AT * SIZ0) + (A0 *AT) + (AT * SIZ1)}

WEZ = R/W + &S + not {(A0 * A1) + (AT * SIZ0 * S1Z7) + (AT * SIZ0 * SIZ1) +
(A * AT * SIZ0)}

- WES3 = R/W + AS + not {(A0 * SIZ0 * SIZ1) + (SIZ0 * SIZ1) + (A0 * SIZ0) + (A1 * SIZ1)}
These signals have the same timing as AS. The equations are valid only for a 32-bit port.

The equations of the byte write enables for 16-bit port (B16M = 0) are as follows:
WEO=R/W +AS + A0
WET = R/W + AS + (A0 * SIZ0 * SIZ1)

These signals have the same timing as AS. The equations are valid only for a 16-bit port.

WEX signals are not shown in the diagrams in this section. Use AS timing instead during
write cycles. The particular WEX signals that are active in a given bus cycles depend on
which bytes are being written.

4.1.9 Bus Cycle Termination Signals
The following signals can terminate a bus cycle.

4.1.9.1 DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACK1 AND DSACKO).
During bus cycles, external devices assert DSACKT and/or DSACKO as part of the bus
protocol. During a read cycle, this signals the QUICC to terminate the bus cycle and to
latch the data. During a write cycle, this indicates that the external device has successfully
stored the data and that the cycle may terminate. These signals also indicate to the
QUICC the size of the port for the bus cycle just completed (see Table 4-3). Refer to 4.3.1
Read Cycle for timing relationships of DSACK1 and DSACKO.

MOTOROLA : MC68360 USER’S MANUAL 4-5

Additionally, the system integration module (SIM60) can be programmed to internally
generate DSACK1 and DSACKO for external accesses, eliminating logic required to
generate these signals. The SIM60 can alternatively be programmed to generate a fast
termination, providing a two-cycle external access. Refer to 4.2.6 Fast-Termination
Cycles for additional information on these cycles.

4.1.9.2 BUS ERROR (BERR). This signal is also a bus cycle termination indicator and can
be used in the absence of DSACKX to indicate a bus error condition. BERR can also be
asserted in conjunction with DSACKXx to indicate a bus error condition, provided it meets
the appropriate timing described in this section and in Section 10 Electrical
Characteristics. Additionally, BERR and HALT can be asserted together to indicate a
retry termination. Refer to 4.5 Bus Exception Control Cycles for additional information
on the use of these signals.

See the memory controller description in Section 6 System Integration Module (SIM60)
for precautions about asserting BERR externally too early during DRAM and SRAM cycles
controlled by the memory controller.

The internal bus monitor can be used to generate the BERR signal for internal and
external transfers in all the following descriptions.

4.1.9.3 AUTOVECTOR (AVEC). This signal can be used to terminate interrupt
acknowledge cycles, indicating that the QUICC should internally generate a vector
(autovector) number to locate an interrupt handler routine. AVEC can be generated either
externally or internally by the SIM60 (refer to Section 6 System Integration Module
(SIM60) for additional information). AVEC is ignored during all other bus cycles.

4.2 DATA TRANSFER MECHANISM

The QUICC supports byte, word, and long-word operands, allowing access to 8-,16-, and
32-bit data ports through the use of asynchronous cycles controlled by DSACK1 and
DSACKO. The QUICC also supports byte, word, and long-word operands, allowing access
to 8-, 16, and 32-bit data ports through the use of synchronous cycles controlled by the
fast-termination capability of the SIM60.

4.2.1 Dynamic Bus Sizing

The QUICC dynamically interprets the port size of the addressed device during each bus
cycle, allowing operand transfers to or from 8-, 16-, and 32-bit ports. During an operand
transfer cycle, the slave device signals its port size (byte, word, or long word) and
indicates completion of the bus cycle to the QUICC through the use of the DSACKXx inputs.
Refer to Table 4-2 for DSACKx encoding.

4-6 MC68360 USER’S MANUAL MOTOROLA

Table 4-2. DSACKx Encoding
DSACKT DSACKO Result

Insert Wait States in Current Bus Cycle
Complete Cycle—Data Bus Port Size is 8 Bits
Complete Cycle—Data Bus Port Size is 16 Bits
Complete Cycle—Data Bus Port Size is 32 Bits

O |O = |-
O |=|O =

For example, if the QUICC is executing an instruction that reads a long-word operand
from a long-word aligned address, it attempts to read 32 bits during the first bus cycle.
(Refer to 4.2.2 Misaligned Operands for the case of a word or byte address.) If the port
responds that it is 32 bits wide, the QUICC latches all 32 bits of data and continues with
the next operation. If the port responds that it is 16 bits wide, the QUICC latches the 16
bits of valid data and runs another bus cycle to obtain the other 16 bits. The operation for
an 8-bit port is similar, but requires four read cycles. The addressed device uses the
DSACKXx signals to indicate the port width. For instance, a 32-bit device always returns
DSACKX for a 32-bit port (regardiess of whether the bus cycle is a byte, word, or long-
word operation).

Dynamic bus sizing requires that the portion of the data bus used for a transfer to or from
a particular port size be fixed. A 32-bit port must reside on data bus bits 0-31, a 16-bit port
must reside on data bus bits 16—32, and an 8-bit port must reside on data bus bits 24-31.
This requirement minimizes the number of bus cycles needed to transfer data to 8- and
16-bit ports and ensures that the QUICC correctly transfers valid data. The QUICC always
attempts to transfer the maximum amount of data on all bus cycles; for a long-word
operation, it always assumes that the port is 32 bit wide when beginning the bus cycle.

The bytes of operands are designated as shown in Figure 4-2. The most significant byte of
a long-word operand is OPO, and OP3 is the least significant byte. The two bytes of a
word-length operand are OP2 (most significant) and OP3. The single byte of a byte-length
operand is OP3. These designations are used in the figures and descriptions that follow.

31 0

LONG-WORD OPERAND | 0PO l OP1 | 0P2 | oes |
15 0

WORD OPERAND | 0P2 | os |

7 0

Figure 4-2. Internal Operand Representation

Figure 4-3 shows the required organization of data ports on the QUICC bus for 8, 16, and
32-bit devices. The four bytes shown are connected through the internal data bus and
data multiplexer to the external data bus. This path is the means through which the
QUICC supports dynamic bus sizing and operand misalignment. Refer to 4.2.2

MOTOROLA MC68360 USER’S MANUAL 4-7

Misaligned Operands for the definition of misaligned operand. The data multiplexer
establishes the necessary connections for different combinations of address and data

sizes.

0P0

OP1

0P2

REGISTER I

0

|

2 |

N

/

=
7

/ | 1

MULTIPLEXER ROUTING AND DUPLICATION
/ \ INTERNAL TO
- —————— EXTERNAL - THEMCEESS0
DATA BUS °3I°2‘ I mf“‘ | D‘T" l °1°° F---rmacas
oRessl evieo | et | eviez | evies | seameomr
INCREASING
MEMORY Y Y
ADDRESSES — p—
16-BIT PORT
2 BYTE2 BYTES
X00000X0 BYTEO
1 BYTE 1
8-BIT PORT
2 BYTE 2
3 BYTE3

Figure 4-3. QUICC Interface to Various Port Sizes

The multiplexer takes the four bytes of the 32-bit bus and routes them to their required
positions. For example, OP0 can be routed to D24-D31, as would be the normal case, or
it can be routed to any other byte position to support a misaligned transfer. The same is
true for any of the operand bytes. The positioning of bytes is determined by the size and

address outputs.

The SIZ0 and SIZ1 outputs indicate the remaining number of bytes to be transferred
during the current bus cycle (see Table 4-3).

Table 4-3. SIZx Encoding
sIZ1 SIZo Size
0 1 Byte
1 0 Word
1 1 3 Bytes
0 0 Long Word
MC68360 USER’S MANUAL

MOTOROLA

The number of bytes transferred during a write or read bus cycle is equal to or less than
the size indicated by the SIZx outputs, depending on port width and operand alignment.
For example, during the first bus cycle of a long-word transfer to a word port, the SIZx
outputs indicate that four bytes are to be transferred, although only two bytes are moved

on that bus cycle.

A0 and A1 also affect operation of the data multiplexer. During an operand transfer, A2-
A31 indicate the long-word base address of that portion of the operand to be accessed;
A0 and A1 indicate the byte offset from the base. Table 4-4 lists the encoding of A0 and
A1 and the corresponding byte offset from the long-word base.

Table 4-4. Address Offset Encoding

A1 A0 Offset
0 0 +0 Byte
0 1 +1 Byte
1 0 +2 Bytes
1 1 +3 Bytes

Table 4-5 lists the bytes required on the data bus for read cycles. The entries shown as
OPx are portions of the requested operand that are read during that bus cycle and are
defined by S1Z0, SIZ1, A0, and A1 for the bus cycle. Bytes labeled x are “don’t cares” and
are not required during that read cycle.

MOTOROLA

MC68360 USER’S MANUAL

Table 4-5. Data Bus Requirements for Read Cycles

» ‘ Word Port Byte Port
Transfer Long-Word Port External Data External Data
Size Size Address External Data Bytes Required Bytes Required | Bytes Required
SIZ1(SiZo| A1 | A0 | D31:D24 | D23:D16 | D15:D8 | D7:DO0 | D31:D24 | D23:D16 D31:D24
Byte 0 1 0 0 OP3 X X X OP3 X OP3
0 1 0 1 X OP3 X X X OP3 OoP3
0 1 1 0 X X OP3 X OP3 X OoP3
0 1 1 1 X X X OP3 X OP3 OP3
Word 1 0 0 0 OP2 OP3 X X OoP2 OP3 oP2
1 0 0 1 X OP2 OP3 X X - OP2 OP2
1]lo|l1]o x X or2 | op3| oOP2 | oP3 oP2
1 0 1 1 X X X oP2 X oP2 OP2
3Bytes | 1 1 0 0 OP1 OP2 OP3 X OP1 OP2 OP1
1 1 0 1 X OP1 OoP2 | OP3 X OP1 OP1
1 1 1 0 X X OP1 OP2 OP1 opP2 OP1
1 1 1 1 X X X OP1 X OP1 OP1
Long 0 0 0 0 OPO OP1 OP2 OP3 ©OPO OP1 OPO
Word
0 0 0 1 X OPO oP1 OP2 x OPO OPO
ol 1|0 «x X opo | op1| opo | oOP1 0P0
1 1 X X X OPO X OPO OPO

Table 4-6 lists the combinations of SIZ0, SIZ1, A0, and A1 and the corresponding pattern
of the data transfer for write cycles from the internal multiplexer of the QUICC to the
external data bus. Bytes labeled x are “don't care.”

Figure 4-4 shows the transfer of a long-word operand to a word port. In the first bus cycle,
the QUICC places the four operand bytes on the external bus. Since the address is long-
word aligned in this example, the multiplexer follows the pattern in the entry of Table 4-6
corresponding to SIZ0, SiZ1, A0, A1 = 0000. The port latches the data on bits D16-D31 of
the data bus, asserts DSACK1 (DSACKO remains negated), and the QUICC terminates
the bus cycle. It then starts a new bus cycle with SIZ0, SIZ1, AQ, A1 = 1010 to transfer the
remaining 16 bits. SIZ0 and SIZ1 indicate that a word remains to be transferred; A0 and
A1 indicate that the word corresponds to an offset of two from the base address. The
multiplexer follows the pattern corresponding to this configuration of the size and address
signals and places the two least significant bytes of the long word on the word portion of
the bus (D16-D31). The bus cycle transfers the remaining bytes to the word-size port.
Figure 4-5 shows the timing of the bus transfer signals for this operation.

4-10 MC68360 USER’S MANUAL MOTOROLA

Table 4-6. QUICC Internal to External Data Bus Multiplexer—Write Cycle

Transfer Size Size -Address External Data Bus Connection
SiZ1 Sizo Al A0 D31:D24 | D23:D16 | D15:D8 D7:D0
Byte 0 1 0 0 OP3 X X X
0 1 0 1 OP3 OP3 X X
0 1 1 0 ors | «x OP3 X
0 1 1 1 OP3 OP3 X OP3
Word 1 0 0 0 OoP2 OP3 X X
1 0 0 1 OoP2 OoP2 OP3 X
1 0 1 0 OP2 OP3 oP2 OP3
1 0 1 1 OoP2 oP2 X oP2
3 Bytes 1 1 0 0 OP1 oP2 OP3 X
1 1 0 1 OP1 OP1 opP2 OP3
1 1 1 0 OP1 OoP2 OP1 oP2
1 1 1 1 OP1 X oP2 OP1
Long Word 0 0 0 0 OPO OP1 OoP2 OoP3
0 0 0 1 OPO OPO OP1 OoP2
0 0 1 0 OPO OP1 OPO OP1
0 0 1 1 OPO OPO X OPO
31 LONG-WORD OPERAND 0
| 0PO 0Pt | oP2 o3 |
Y
D31 DATA BUS D16

WORD MEMORY MC68360 MEMORY CONTROL
MsB LsB szt siz0 Al A0 DSACKi DSACKO
0PO 0P 0 0 0 0 L H
0P2 0P3 1 0 1 0 L H

Figure 4-4. Example of Long-Word Transfer to Word Port

MOTOROLA MC68360 USER’S MANUAL 4-11

exor] L LI LT 11 LT
A31-A2 :X - X
/

DSACKi / \ / \
p3t-024 »—{ D e G
o306 Y— 0P1 — __ »s

[«———WORD WRITE——»’(—WORD WRITE————>

[«e—— LONG-WORD OPERAND WRITE TO 16-BIT PORT————>

Figure 4-5. Long-Word Operand Write Timing (16-Bit Data Port)

Figure 4-6 shows a word transfer to an 8-bit bus port. Like the preceding example, this
example requires two bus cycles. Each bus cycle transfers a single byte. The size signals
for the first cycle specify two bytes; for the second cycle, they specify one byte. Figure 4-7
shows the associated bus transfer signal timing.

4-12

MC68360 USER’S MANUAL

MOTOROLA

15 WORD OPERAND 0
0P2 0P3

Y
D31_DATABUS D24

BYTE MEMORY MC68360 MEMORY CONTROL
SIZ1 SIZ0 Al A0 DSACK1 DSACKo

0P2 1 0 0 0 H L
0P3 0 1 0 1 H L

Figure 4-6. Example of Word Transfer to Byte Port

MOTOROLA MC68360 USER’S MANUAL 4-13

wo_ 1L LT LML L
e _ X - X
M\

0\ /
FC3-FCO _X X
szt / \
s\ /

j

@

OP3

—

o23-016 _ y»—— o3 »—X oPs
—
—

-0 OP3 OP3

[« BYTEWRITE _—>|<—— BYTE WRITE ——>~|

€—————————— WORD OPERAND WRITE—————>>|

Figure 4-7. Word Operand Write Timing (8-Bit Data Port)

4.2.2 Misaligned Operands

Since operands may reside at any byte boundaries, they may be misaligned. A byte
operand is properly aligned at any address; a word operand is misaligned at an odd
address; a long word is misaligned at an address that is not evenly divisible by four. The
MC68302, MC68000/MC68008, MC68010, and MC68340 implementations allow long-
word transfers on odd-word boundaries but force exceptions if word or long-word operand
transfers are attempted at odd-byte addresses. Although the QUICC does not enforce any
alignment restrictions for data operands (including PC relative data addresses), some
performance degradation occurs when additional bus cycles are required for long-word or

4-14 MC68360 USER’S MANUAL MOTOROLA

word operands that are misaligned. For maximum performance, data items should be
aligned on their natural boundaries. All instruction words and extension words must reside
on word boundaries. Attempting to prefetch an instruction word at an odd address causes
an address error exception.

Figure 4-8 shows the transfer of a long-word operand to an odd address in word-
organized memory, which requires three bus cycles. For the first cycle, the SIZx signals
specify a long-word transfer, and the address offset (A2—A0) is 001. Since the port width is
16 bits, only the first byte of the long word is transferred. The slave device latches the byte
and acknowledges the data transfer, indicating that the port is 16 bits wide. When the
processor starts the second cycle, the SIZx signals specify that three bytes remain to be n
transferred with an address offset (A2—A0) of 010. The next two bytes are transferred
during this cycle. The processor then initiates the third cycle, with the SIZx signals
indicating one byte remaining to be transferred. The address offset (A2—A0) is now 100;
the port latches the final byte, and the operation is complete. Figure 4-9 shows the
associated bus transfer signal timing.

31 LONG-WORD OPERAND 0
[e oP1 | 0P2] 0P3]

Y
D31 DATA BUS D16

L |

l

WORD MEMORY MC68360 MEMORY CONTROL
MSB LSB SiZt SiZ0 A2 Al A0 DSACKI DSACKO
XXX 0PO 0 0 0 0 1 L H
oP1 P2 1 1 0 1 0 L H
oP3 XXX 0 1 1 0 0 L H

Figure 4-8. Misaligned Long-Word Transfer to Word Port Example

MOTOROLA MC68360 USER’S MANUAL 4-15

szt \

X

/

\
resFe0 X X_ X
/S —\

/

bs _/ n_/ _/

DSACKO

D31-D2¢ w0) _®1) 0P3
D15-08 — Pt) —_P1_) 0P8

07-00 (_®_) (o) 073
<«—— BYTE wmrs—>|<—- WORD wmn:——»l«——ams WRITE ——>|
< LONG-WORD OPERAND WRITE >

Figure 4-9. Misaligned Long-Word Transfer to Word Port Timing

4-16 MC68360 USER’S MANUAL MOTOROLA

Figures 4-10 and 4-11 show a word transfer to an odd address in word-organized
memory. This example is similar to the one shown in Figures 4-8 and 4-9 except that the
operand is word sized and the transfer requires only two bus cycles.

15 WORD OPERAND 0
OP2 OP3 |
\i
D31 DATABUS D16
WORD MEMORY MC58360 MEMORY CONTROL
MsB LS8 SiZi SIZ0 A2 A1 A0 DSACKi DSACKO
XXX 0P2 t 0 0 0 L H
0P3 XXX o 1 0 1 0 L H

Figure 4-10. Misaligned Word Transfer to Word Port Example

MOTOROLA v MC68360 USER’S MANUAL 4-17

akor [LT L LI LT LI
w2 X

N
NSNS

DSACK1 \ / \ /

DSACKO

D31-024 e 0P8
D23-D16 o2) oP3
D15-D8 o 0P3
o7o o

<€~ WORD WRITE———)'I*—' BYTE WRITE———3~

<«———————— WORD OPERAND WRITE TO A1/A0 = 01 —————>

Figure 4-11. Misaligned Word Transfer to Word Port Timing

MC68360 USER’S MANUAL MOTOROLA

Figures 4-12 and 4-13 show an example of a long-word transfer to an odd address in
long-word-organized memory. In this example, a long-word access is attempted beginning
at the least significant byte of a long-word-organized memory. Only one byte can be
transferred in the first bus cycle. The second bus cycle then consists of a three-byte
access to a long-word boundary. Since the memory is long-word organized, no further bus
cycles are necessary.

LONG-WORD OPERAND
[E 0PO | OP1 - oP2 0P3
\ n
D31 DATA BUS
LONG-WORD MEMORY MC68EC030 MEMORY CONTROL
MSB UMB LMB LSB SIZ1 SIZo A2 A1 A0 DSACK1 DSACKO
XXX XXX 0P0O 0PO 0 0o 0 1 1 L L
OP1 0P2 0P3 XXX 1 1 1 0 O L L

Figure 4-12. Misaligned Long-Word Transfer to Long-Word Port Example

MOTOROLA

MC68360 USER'S MANUAL 4-19

DSACK1 / \ / \
DSACKO / \ / \

pot-024 (w0) 0Pt
0z3-D16 (w0) oP2
D15-08 (ot) 0P
D7-D0 (o0) 0P

<——— BYTE WRITE -——>‘<—— 3-BYTEWRITE >

<«€—————————— LONG-WORD OPERAND WRITE ——————— >

Figure 4-13. Misaligned Long-Word Transfer to Long-Word Port Timing

4.2.3 Effects of Dynamic Bus Sizing and Operand Misalignment

The combination of operand size, operand alignment, and port size determines the
number of bus cycles required to perform a particular memory access. Table 4-7 lists the
number of bus cycles required for different operand sizes to different port sizes with all
possible alignment conditions for write cycles and read cycles.

4-20 MC68360 USER'S MANUAL MOTOROLA

Table 4-7. Memory Alignment and Port Size Influence
on Write Bus Cycles

Number of Bus Cycles
A1-A0 00 01 10 1"
Instruction! 1:2:4 N/A N/A N/A
Byte Operand) 1:11 1:1:1 1:1:1 1:1:1
Word Operand 1:1:2 1:2:2 1:1:2 2:2:2
Long-Word Operand 1:2:4 2:3:4 2:2:4 2:3:.4

Notes:
1. Data Port Size—32 Bits: 16 Bits:8 Bits
2. Instruction reads can be either two words from an even-word
boundary or one word from an odd-word boundary.

This table verifies that bus cycle throughput is significantly affected by port size and
alignment. The QUICC system designer and programmer should be aware of and account
for these effects, particularly in time-critical applications.

If the required instruction begins at an even-word boundary, the processor prefetches a
long word (up to two instructions) by reading a long word from a long-word address (A1-—
A0 = 00), regardless of port size. When the required instruction begins at an odd-word
boundary, the processor reads 16-bits only, from the odd-word boundary. Refer to
Section 5 CPU32+ for a complete description of the pipeline operation.

4.2.4 Bus Operation

The QUICC bus is asynchronous, allowing external devices connected to the bus to
operate at clock frequencies different from the clock for the QUICC. Bus operation uses
the handshake lines (AS, DS, DSACK1, DSACKO, BERR, and HALT) to control data
transfers. AS signals a valid address on the address bus, and DS is used as a condition
for valid data on a write cycle. Decoding the SIZx outputs and lower address lines (A1-AQ)
provides strobes that select the active portion of the data bus. The slave device (memory
or peripheral) responds by placing the requested data on the correct portion of the data
bus for a read cycle or by latching the data on a write cycle; the slave asserts the
DSACK1/DSACKO combination that corresponds to the port size to terminate the cycle.

Altematively, the SIM60 can be programmed to assert the DSACK1/DSACKO0 combination
internally and respond for the slave. If no slave responds or the access is invalid, external
control logic may assert BERR or BERR with HALT to abort or retry the bus cycle,
respectively. DSACKXx can be asserted before the data from a slave device is valid on a
read cycle. The length of time that DSACKx may precede data must not exceed a
specified value in any asynchronous system to ensure that valid data is latched into the

QUICC. (See Section 10 Electrical Characteristics for timing parameters.) ‘

Note that no maximum time is specified from the assertion of AS to the assertion of
DSACKXx. Although the QUICC can transfer data in a minimum of three clock cycles when
the cycle is terminated with DSACKX, the QUICC inserts wait cycles in clock-period
increments until DSACKXx is recognized. BERR and/or HALT can be asserted after

MOTOROLA MC68360 USER’S MANUAL ’ 4-21

DSACKX is asserted. BERR and/or HALT must be asserted within the time specified after
DSACKX is asserted in any asynchronous system. If this maximum delay time is violated,
the QUICC may exhibit erratic behavior.

4.2.5 Synchronous Operation with DSACKXx

Although cycles terminated with DSACKx are classified as asynchronous, cycles
terminated with DSACKXx can also operate synchronously in that signals are interpreted
relative to clock edges. The devices that use these cycles must synchronize the response
to the QUICC clock (CLKO1) to be synchronous. Since the devices terminate bus cycles
with DSACKXx, the dynamic bus sizing capabilities of the QUICC are available. The
minimum cycle time for these cycles is also three clocks. To support systems that use the
system clock to generate DSACKx and other asynchronous inputs, the asynchronous
input setup time and the asynchronous input hold time are given. If the setup and hold
times are met for the assertion or negation of a signal, such as DSACKX, the QUICC is
guaranteed to recognize that signal level on that specific falling edge of the system clock.
If the assertion of DSACKXx is recognized on a particular falling edge of the clock, valid
data is latched into the QUICC (for a read cycle) on the next falling clock edge if the data
meets the data setup time. In this case, the parameter for asynchronous operation can be
ignored. The timing parameters are described in Section 10 Electrical Characteristics.

If a system asserts DSACKXx for the required window around the falling edge of S2 and
obeys the proper bus protocol by maintaining DSACKx (and/or BERR/HALT) until and
throughout the clock edge that negates AS (with the appropriate asynchronous input hold
time), no wait states are inserted. The bus cycle runs at its maximum speed for bus cycles
terminated with DSACKXx (three clocks per cycle). When BERR (or BERR and HALT) is
asserted after DSACKx, BERR (and HALT) must meet the appropriate setup time prior to
the falling clock edge one clock cycle after DSACKX is recognized. This setup time is
critical, and the QUICC may exhibit erratic behavior if it is violated. When operating
synchronously, the data-in setup and hold times for synchronous cycles may be used
instead of the timing requirements for data relative to DS.

4.2.6 Fast Termination Cycles

With an external device that has a fast access time, the memory controller circuits can
provide a two-clock external bus transfer. Since the memory controller circuits are driven
from the system clock, the bus cycle termination is inherently synchronized with the
system clock. Refer to Section 6 System Integration Module (SIM60) for more
“information on chip selects and the DRAM controller. To use the fast termination (cycle
length is two clocks) option, an external device should be fast enough to have data ready,
within the specified setup time, by the falling edge of S4. Figure 4-14 shows the DSACKx
timing for a read with two wait states, followed by a fast termination read and write.

4-22 MC68360 USER’S MANUAL ‘ MOTOROLA

S0 St S2 S3 SW SW*SW SW*S4 S5 S0 S1 S4 S5 SO St S4 S5 SO

wo [LI UL LI
AN T/ S
s | \ /T S
RV __/

DACKE \ /I /]

031-D0 C

le&——— TWO WAIT STATES IN READ ——»1«——FAST —~«——FAST:

TERMINATION * TERMINATION
READ WRITE

* DSACKXx only internally asserted for fast termination cycles.

Figure 4-14. Fast Termination Timing

NOTES

When using the fast termination option (cycle length is two
clocks), DS is asserted only in a read cycle, not in a write

cycle.
DSACKX is only internally asserted for fast termination cycles.

4.3 DATA TRANSFER CYCLES

The transfer of data between the QUICC and other devices involves the following signals:
e Address Bus A31-A0
¢ Data Bus D31-D0
¢ Control Signals

The address and data buses are both parallel, nonmultiplexed buses. The bus master
moves data on the bus by issuing control signals, and the bus uses a handshake protocol
to ensure correct movement of the data. In all bus cycles, the bus master is responsible
for deskewing all signals it issues at both the start and end of the cycle. In addition, the
bus master is responsible for deskewing the acknowledge and data signals from the slave
devices. The following paragraphs define read, write, and read-modify-write cycle
operations. Each bus cycle is defined as a succession of states that apply to the bus
operation. These states are different from the QUICC states described for the CPU32+.
The clock cycles used in the descriptions and timing diagrams of data transfer cycles are
independent of the clock frequency. Bus operations are described in terms of external bus
states.

MOTOROLA MC68360 USER’S MANUAL 4-23

4.3.1 Read Cycle

During a read cycle, the QUICC receives data from a memory or peripheral device. If the
instruction specifies a long-word operation, the QUICC attempts to read four bytes at
once. For a word operation, the QUICC attempts to read two bytes at once. For a byte
operation, the QUICC reads one byte. The section of the data bus from which each byte is
read depends on the operand size, address signals (A1, A0), and the port size. Refer to
4.2.1 Dynamic Bus Sizing and 4.2.2 Misaligned Operands for more information.

Figure 4-15 shows a long-word read cycle flowchart and Figure 4-16 illustrates a byte read
cycle flowchant. Figures 4-17 and 4-18 show functional read cycles timing diagrams
specified in terms of clock periods.

BUS MASTER SLAVE

ADDRESS DEVICE

1) SET RW TO READ

2) DRIVE ADDRESS ON A31-A0

3) DRIVE FUNCTION CODE ON FC3-FCO
4) DRIVE SIZx PINS FOR FOUR BTYES
5) ASSERT AS, OE AND DS >

" PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31-D0

ACQUIRE DATA

1) LATCHDATA_
2) NEGATE AS, OF AND DS

3) DRIVE DSACKx SIGNALS

TERMINATE CYCLE

Y

START NEXT CYCLE

1) REMOVE DATA FROM D31-D0
2) NEGATE DSACKx

Figure 4-15. Long-Word Read Cycle Flowchart

4-24 MC68360 USER’S MANUAL MOTOROLA

BUS MASTER EXTERNAL DEVICE

ADDRESS DEVICE

1) SET RMW TO READ
2) DRIVE ADDRESS ON A31-A0
3) DRIVE FUNCTION CODE ON FC3-FCO -
4) DRIVE SIZE (S11-S1Z0) (ONE BYTE) PRESENT DATA
5) ASSERT AS, DS, AND OE 1) DECODE ADDRESS

2) PLACE DATA ON D31-D24, OR D23-16,OR

D15-D8, OR D7-D0.
3) ASSERT DSACKx
TERMINATE OUTPUT TRANSFER <
1) LATCHDATA
2) NEGATE AS, DS, AND OE
- TERMINATE CYCLE

1) REMOVE DATA FROM D31-D0
| 2) NEGATE DSACKx

[START NEXT CYCLE

Figure 4-16. Byte Read Cycle Flowchart

MOTOROLA MC68360 USER’S MANUAL 4-25

Y. N N I I IS N I
D' X X

N

N

5
-

WORD BYTE

DSACK1 —____/—___/___
moe . ./ ./

Ds1-D2¢ o)
D23-D16 \/_ﬁ—_\ﬁ
D15-D8 (o »—
D7-D0 \’T

I‘—-— WORD READ _>|<— BYTE READ ———>|'<—— BYTE READ———>|

Figure 4-17. Byte and Word Read Cycles—32-Bit Port Timing

4-26 MC68360 USER'S MANUAL MOTOROLA

FC3-FCO X

Siz1 \
Sizo \

><
><

N
/

LONG WORD WORD LONG WORD

moa /N /N /
DSACKO /

D31-D24 {opo) (o2) 0P0

D23-D16 P) @« 0Pt
D15-D8 :\ w2
o0 (o

~<€——WORD READ —'——)|<— WORD READ—><—— LONG-WORD HEAD—A
FROM 32-BIT PORT
<——— LONG-WORD OPERAND READ FROM 16-BIT PORT———>~1

Figure 4-18. Long-Word Read—16-Bit and 32-Bit Port Timing

State 0—The read cycle starts in state 0 (S0). During SO, the QUICC places a valid
address on,A31—-A0 and valid function codes on FC3-FCO. The function codes select the
address space for the cycle. The QUICC drives RW high for a read cycle. SIZ1 and SIZ0
become valid, indicating the number of bytes requested for transfer.

MOTOROLA MC68360 USER’S MANUAL 4-27

State 1—One-half clock later, in state 1 (S1), the QUICC asserts AS indicating a valid
address on the address bus. The QUICC also asserts DS and OE during S1. The selected
device uses R/W, SIZ1 or SI1Z0, A0, A1, DS, and OE to place its information on the data
bus. Any or all of the bytes (D31-D24, D23-D16, D15-D8, and D7-D0) are selected by
SlZ1, SIZ0, A1, and AO. Concurrently, the selected device asserts DSACKx.

State 2—As long as at least one of the DSACKXx signals is recognized on the falling edge
of S2 (meeting the asynchronous input setup time requirement), data is latched on the
falling edge of S4, and the cycle terminates.

State 3—If DSACKXx is not recognized by the start of state 3 (S3), the QUICC inserts wait
states instead of proceeding to states 4 and 5. To ensure that wait states are inserted,
both DSACK1 and DSACKO must remain negated throughout the asynchronous input
setup and hold times around the end of S2. If wait states are added, the QUICC continues
to sample DSACKXx on the falling edges of the clock until one is recognized.

State 4—At the falling edge of state 4 (S4), the QUICC latches the incoming data and
samples DSACKXx to get the port size.

State 5—The QUICC negates AS, DS, and OE during state 5 (S5). It holds the address
valid during S5 to provide address hold time for memory systems. R/W, SIZ1, SIZ0, and
FC3-FCO also remain valid throughout S5. The external device keeps its data and
DSACKXx signals asserted until it detects the negation of AS, DS, or OE (whichever it
detects first). The device must remove its data and negate DSACKXx within approximately
one clock period after sensing the negation of AS, DS, or OE. DSACKXx signals that remain
asserted beyond this limit may be prematurely detected for the next bus cycle.

4-28 MC68360 USER’S MANUAL MOTOROLA

4.3.2 Write Cycle

During a write cycle, the QUICC transfers data to memory or a peripheral device. Figure
4-19 is a flowchart of a write cycle operation for a long-word transfer. Figure 4-20 shows
the functional write cycle timing diagram specified in clock periods for two write cycles
(between two read cycles with no idle time) for a 32-bit port.

PROCESSOR EXTERNAL DEVICE

ADDRESS DEVICE
1) SETRWTOWRTE
2) DRIVE ADDRESS ON A31-A0

3) DRIVE FUNCTION CODE ON FC3-FCO

4) DRIVE SIZE (SIZ1-S120)

5) ASSERT ADDRESS STROBE (AS) AND WEx
6) DRIVE DATA LINES D31-D0 -

7) ASSERT DATA STROBE (DS) > PRESENT DATA

1) DECODE ADDRESS
. 2) PLACE DATA ON D31-D0

B 3) ASSERT DATA TRANSFER AND SIZE
- ACQUIRE DATA ACKNOWLEDGE (DSACKx)

1) NEGATE AS AND DS AND WEX
2) REMOVE DATA FROM D31-D0 TERMINATE CYCLE

1) NEGATE DSACKx

Y
START NEXT CYCLE

Figure 4-19. Write Cycle Flowchart

MOTOROLA MC68360 USER’S MANUAL 4-29

LONG WORD

W/ \ /

.
5 0 N\ / _/ /" \ /

oo ————C_ >—C >—C _
I(—-—READ—)I‘—WRITE \Il WRITE >I4 READ WITH WAIT STATES —>'

NOTE: WE3-WED is not shown.

Figure 4-20. Read-Write-Read Cycles—32-Bit Port

State 0—The write cycle starts in S0. During SO, the QUICC places a valid address on
A31-A0 and valid function codes on FC3-FCO0. The function codes select the address
space for the cycle. The QUICC drives R/W low for a write cycle. SIZ1 and SIZ0 become
valid, indicating the number of bytes to be transferred.

State 1—One-half clock later during S1, the QUICC asserts AS, indicating a valid address

on the address bus. During this state, any or all of the byte write enables (WEO, WET,
WE2, and WES3) are asserted simultaneously with AS.

State 2—During S2, the QUICC places the data to be written onto D31-D0 and samples
DSACKXx at the end of S2.

4-30 MC68360 USER’S MANUAL MOTOROLA

State 3—The QUICC asserts DS during S3, indicating that data is stable on the data bus.
As long as at least one of the DSACKX signals is recognized by the end of S2 (meeting
the asynchronous input setup time requirement), the cycle terminates one clock later. If
DSACKX is not recognized by the start of S3, the QUICC inserts wait states instead of
proceeding to S4 and S5. To ensure that wait states are inserted, both DSACK1 and
DSACKO must remain negated throughout the asynchronous input setup and hold times
around the end of S2. If wait states are added, the QUICC continues to sample DSACKx
on the falling edges of the clock until one is recognized. The selected device uses the four
write enables lines or R/W, SIZ1, SIZ0, A1, and A0 to latch data from the appropriate
byte(s) of the data bus (D31-D24, D23-D16, D15-D8, and D7-D0). WE3-WEO or SIZ1,
SIZ0, A1, and A0 select the bytes of the data bus. If it has not already done so, the device n
asserts DSACKXx to signal that it has successfully stored the data.

State 4—The QUICC issues no new control signals during S4.

State 5—The QUICC negates WE3-WEQO, AS, and DS during S5. It holds the address and
data valid during S5 to provide address hold time for memory systems. R/W, SI1Z1, SIZ0,
and FC3-FCO0 also remain valid throughout S5. The external device must keep DSACKx
asserted until it detects the negation of AS or DS (whichever it detects first). The device
must negate DSACKx within approximately one clock period after sensing the negation of
AS or DS. DSACKXx signals that remain asserted beyond this limit may be prematurely
detected for the next bus cycle.

4.3.3 Read-Modify-Write Cycle

The read-modify-write cycle performs a read, conditionally modifies the data in the
arithmetic logic unit, and may write the data out to memory. In the QUICC, this operation
is indivisible, providing semaphore capabilities for multiprocessor systems. During the
entire read-modify-write sequence, the QUICC asserts RMC to indicate that an indivisible
operation is occurring. The QUICC does not issue a bus grant (BG) signal in response to
a bus request (BR) signal during this operation. Figure 4-21 is an example of a functional
timing diagram of a read-modify-write instruction specified in terms of clock periods.

MOTOROLA MC68360 USER’S MANUAL 4-31

S2 $4 S0 S2 S4 S0

S siinligligigigigigigh

A31-A0

FC3-FCO

SIZ1-8120

E]

X
X
X
/
me N\
—
—
/

DSACKx \ / \ /
4
D31-D0 ‘ (>
|<<——— READ ——>] l€e———WRITE —>|

INDIVISIBLE
CYCLE

NOTE: OE and WE3-WED are not shown.

Y

A

Figure 4-21. Read-Modify-Write Cycle Timing

State 0—The QUICC asserts RMC in S0 to identify a read-modify-write cycle. The QUICC
places a valid address on A31-A0 and valid function codes on FC3-FCO. The function
codes select the address space for the operation. SIZ1 and SIZ0 become valid in SO to
indicate the operand size. The QUICC drives R/W high for the read cycle.

State 1—One-half clock later in S1, the QUICC asserts AS, indicating a valid address on
the address bus. The QUICC also asserts OE and DS during S1.

State 2—The selected device uses OE, R'W, SIZ1, SIZ0, A0, and DS to place information
on the data bus. Any of the bytes (D31-D24, D23-D16, D15-D8, and D7-DO0) are
selected by SIZ1, SIZ0, A1, and A0. Concurrently, the selected device may assert
DSACKX.

State 3—As long as at least one of the DSACKXx signals is recognized by the end of S2
{mesting the asynchionous input setup time requireiment), data is iaiched on the nexi
falling edge of the clock, and the cycle terminates. If DSACKXx is not recognized by the
start of S3, the QUICC inserts wait states instead of proceeding to S4 and S5. To ensure
that wait states are inserted, both DSACK1 and DSACKO must remain negated throughout

the asynchronous input setup and hold times around the end of S2. If wait states are

4-32 MC68360 USER’S MANUAL MOTOROLA

added, the QUICC continues to sample DSACKXx on the falling edges of the clock until one
is recognized.

State 4—At the end of 84, the QUICC latches the incoming data.

State 5—The QUICC negates OE, AS, and DS during S5. If more than one read cycle is

required to read in the operand(s), S0-S5 are repeated for each read cycle. When

finished reading, the QUICC holds the address, R/W, and FC3-FCO valid in preparation

for the write portion of the cycle. The external device keeps its data and DSACKXx signals

asserted until it detects the negation of AS or DS (whichever it detects first). The device

must remove the data and negate DSACKx within approximately one clock period after n
sensing the negation of AS or DS. DSACKXx signals that remain asserted beyond this limit

may be prematurely detected for the next portion of the operation.

Idle States—The QUICC does not assert any new control signals during the idle states,
but it may internally begin the modify portion of the cycle at this time. SO-S5 are omitted if
no write cycle is required. If a write cycle is required, R/W remains in the read mode until
S0 to prevent bus conflicts with the preceding read portion of the cycle; the data bus is not
driven until S2.

State 0—The QUICC drives R/W low for a write cycle. Depending on the write operation to
be performed, the address lines may change during SO.

State 1—In S1, the QUICC asserts AS, indicating a valid address on the address bus.
During this state, WEO, WE1, WE2, and/or WES is asserted simultaneously with AS.

‘State 2—During S2, the QUICC places the data to be written onto D31-DO0.

State 3—The QUICC asserts DS during S3, indicating stable data on the data bus. As
long as at least one of the DSACKXx signals is recognized by the end of S2 (meeting the
asynchronous input setup time requirement), the cycle terminates one clock later. If
DSACKX is not recognized by the start of S3, the QUICC inserts wait states instead of
proceeding to S4 and S5. To ensure that wait states are inserted, both DSACK1 and
DSACKO must remain negated throughout the asynchronous input setup and hold times
around the end of S2. If wait states are added, the QUICC continues to sample DSACKXx
on the falling edges of the clock until one is recognized. The selected device uses WE3-
WED or RW, DS, SIZ1, SIZ0, A1, and A0 to latch data from the appropriate section(s) of
the data bus (D24-D31, D16-D23, D8-D15, and DO-D7). WE3-WEQO or SIZ1, SIZ0, At,
and A0 select the data bus sections. If it has not already done so, the device asserts
DSACKXx when it has successfully stored the data.

State 4—The QUICC issues no new control signals during S4.

State 5—The QUICC negates WE3-WEQ, AS, and DS during S5. It holds the address and
data valid during S5 to provide address hold time for memory systems. R/W and FC3-
FCO0 also remain valid throughout S5. If more than one write cycle is required, S0-S5 are..
repeated for each write cycle. The external device keeps DSACKx asserted until it detects
* the negation of AS or DS (whichever it detects first). The device must remove its data and

MOTOROLA MC68360 USER'S MANUAL 4-33

negate DSACKXx within approximately one clock period after sensing the negation of AS or
DS.

4.4 CPU SPACE CYCLES

FC2-FCO select user and supervisor program and data areas. The area selected by
function code FC3-FCO = $7 is classified as the CPU space. The breakpoint
acknowledge, LPSTOP broadcast, module base address register access, and interrupt
acknowledge cycles described in the following paragraphs use CPU space. The CPU
space type, which is encoded on A19-A16 during a CPU space operation, indicates the
function that the QUICC is performing. On the QUICC, four of the encodings are
implemented as shown in Figure 4-22. All unused values are reserved by Motorola for
additional CPU space types. -

CPU SPACE CYCLES

FUNCTION ADDRESS BUS
CODE
BREAKPONT [y 1916 g
AckNowLeDae 211 1] [000000000000J0000J0000000000 ofskeTe|T 0]
3 0 3 |19 1el 0
LOW-POWER
stopBRosocasT L0 111] [oooo0o0oco0o0o0ooofoo vttt 1111 11111111110]
MODULEBASE 3.0 31 1916 0
ADDRESS |0111] {0000 o0o0o0o00o00o0foo11ft111111100000000]
REGISTER ACCESS |
NTERRUPT [0 B 116 9
il FER R BN IR EEEEEEEER (EEE] IEEEREEEERER] =85
I_I._.l
CPU SPACE
TYPE FIELD

Figure 4-22. CPU Space Address Encoding

4.4.1 Breakpoint Acknowledge Cycle

The breakpoint acknowledge cycle allows external hardware to insert an instruction
directly into the instruction pipeline as the program executes. The breakpoint acknowledge
cycle is generated by the execution BKPT instruction, the internal breakpoint logic, or the
assertion of the BKPT pin. The T-bit state (shown in Figure 4-22) differentiates a software
breakpoint cycle (T = 0) from a hardware breakpoint cycle (T = 1).

When a software BKPT is executed, the QUICC performs a word read from CPU space,

hlnn n at an addroee nnrmepnnrlmg to tha hmabpmno numhbar (b.ts {2 C] of tha BKDT

opcode) on A4-A2, and the T-bit (A1) is cleared. If this bus cycle is terminated with BERR
(i.e., no instruction word is available), the QUICC then performs illegal instruction
exception processing. If the bus cycle is terminated by DSACKX, the QUICC uses the data

4-34 MC68360 USER’S MANUAL MOTOROLA

on the bus to replace the BKPT instruction in the internal instruction pipeline and then
begins execution of that instruction.

When the CPU32+ acknowledges hardware breakpoint (BKPT pin assertion or internal
breakpoint logic) with background mode disabled, the CPU32+ performs a word read from
CPU space, type 0, at an address corresponding to all ones on A4-A2 (BKPT#7), and the
T-bit (A1) is set. If this bus cycle is terminated by BERR, the QUICC performs hardware
breakpaoint exception processing. If this bus cycle is terminated by DSACKXx, the QUICC
ignores data on the data bus and continues execution of the next instruction.

NOTE

The BKPT pin is sampled on the same clock phase as data
and is latched with data as it enters the CPU32+ pipeline. If
BKPT is asserted for only one bus cycle and a pipeline flush

- occurs before BKPT is detected by the CPU32+, BKPT is

ignored. To ensure detection of BKPT by the CPU32+, BKPT
can be asserted until a breakpoint acknowledge cycle is
recognized.

When the QUICC is configured for a 32-bit bus, the CPU32+
can fetch two instructions simultaneously. Since there is only
one BKPT pin, the external user cannot break individually on
those instructions, but rather must break on both, causing the
BKPT exception to be taken after the first instruction and
before the second instruction. The internal breakpoint logic,
however, can individually assert a breakpoint for either
instruction. (See the BKAR and BKCR discussion in Section 6
System Integration Module (SIM60) for details).

The breakpoint operation flowchart is shown in Figure 4-23. Figures 4-24 and 4-25 show
the timing diagrams for the breakpoint acknowledge cycle with instruction opcodes
supplied on the cycle and with an exception signaled, respectively.

MOTOROLA

MC68360 USER’S MANUAL

4-35

PROCESSOR EXTERNAL DEVICE

BREAKPOINT ACKNOWLEDGE

IF BREAKPOINT INSTRUCTION EXECUTED:

1) SETRW TO READ

2) SET FUNCTION CODE TO CPU SPACE

3) PLACE CPU SPACE TYPE 0 ON A19-A16

4) PLACE BREAKPOINT NUMBER ON A4-A2

5) CLEAR T-BIT (A1)

6) SET §12x TO WORD

7) ASSERT AS AND DS -
IF BKPT PIN OR INTERNAL LOGIC ASSERTED BKPT
INTERNALLY:

1) SETRW TO READ

2) SET FUNCTION CODE TO CPU SPACE

3) PLACE CPU SPACE TYPE 0 ON A19-A16

4) PLACE ALL ONES ON Ad-A2

5) SET T-BIT (A1) TO ONE

6) SET SIZxTO WORD.

7) ASSERT AS AND DS

IF BREAKPOINT INSTRUCTION EXECUTED: -
1) PLACE REPLACEMENT OPCODE ON DATA BUS
2) ASSERT DSACKx
___OR
1) ASSERT BERR TO INITIATE EXCEPTION PROCESSING
IF BKPT PIN ASSERTED: '
1) ASSERT DSACKx
___OR
1) ASSERT BERR TO INITIATE EXCEPTION PROCESSING

IF BREAKPOINT INSTRUCTION EXECUTED AND
DSACKx IS ASSERTED:
1) LATCHDATA
2) NEGATE AS AND DS
3) GOTO(A)
IF BKPT PIN ASSERTED AND DSACKx IS ASSERTED:
1) NEGATE AS AND DS
Jmmw

IFBERRASSERTED:
1) NEGATE AS AND DS
2) GOTO(B)

()] ®

(

1) NEGATE DSACKx or BERR

IF BREAKPOINT INSTRUCTION EXECUTED:
1) PLACE LATCHED DATA IN INSTRUCTION PIPELINE
2) CONTINUE PROCESSING

IF BKPT PIN ASSERTED:
1) CONTINUE PROCESSING

¥

IF BREAKPOINT INSTRUCTION EXECUTED: -
1) INITIATE ILLEGAL INSTRUCTION PROCESSING

IF BKPT PIN ASSERTED:
1) INITIATE HARDWARE BREAKPOINT PROCESSING

Figure 4-23. Breakpoint Operation Flowchart

4-36 MC68360 USER’S MANUAL MOTOROLA

S0 St S2 S3 S4 S5 S0 St S2 S3 S4 S5 S0 S1 S2 S3 S84 S5 S0

CLKOt
N N \
A31-A20
x x‘J N
A N
A19-A16 N N x BREAKPOINT ENCODING (0000) \
| N

A

ma X NI BREAKPOINTNUMBER/T-BILX

N N
FC3-FCO :X :::X ::_X CPU SPACE k‘_X
A N\
sizo :X \‘T_X ;:\ N /
k‘ l‘ L‘
o X 8| \ —
AS \ / | | W -
o N— AN— N—

)
L

A A I\
DSACKX \ \/ \ A \ A
D23-D16 ‘, “, { “r‘ ‘\ ,‘ N
D31-D24 ,’ ‘ \, { \r*‘ { \F\
A N\ L‘
'B—ﬁﬁ -/ A\l N
k‘ k‘ LV
HALT _/
-\ A \

o— N N N
BT (\ /[N / FETCHED

INSTRUCTION
BREAKPOINT ECUTIO
’(———- Bﬂgéézglsm—)l(——‘ READ ACKNOWLEDGE 4){3)(——&’
INSTRUCTION WORD FETCH

Figure 4-24. Breakpoint Acknowledge Cycle Timing (Opcode Returned)

MOTOROLA MC68360 USER’S MANUAL 4-37

S0 S1 S2 S3 S4 S5 SO S1 S2 S3 S4 S5 S0 S1 S2 S3 S4 S5 S0

N

N
e Y X A\ -
ao-nts X :‘J BREAKPOINT ENCODING (qtoW\ /
A J) N
ma X :'] BREAKPOINTNUMBER/LBI:F—iX N ¢
A N

k‘ k‘ N
I\ k‘ I\
FC3-FCO :x ‘TX N X CPU SPACE k:X
N N
a X X 1\ -
N N\
szt X : NI/ \
N N

A A '\

RIW .—/ N N A

k‘ k‘ k‘

| T\ A 7
D23-D16 N { ™ D—N—

D31-D24 {) { M { M\

./ /YN (D

A N N

BERR _/ N N _/‘

A [\ A

m j N A] N

o\ N A

_ —_r_\ \ | \} N
BRFY / A J EXCEPTION
BREAKPOINT STACKING
BREAKPOINT READ ————»-|«c—— ACKNOWLEDGE >l >
OCCURS BUS ERROR ASSERTED

Figure 4-25. Breakpoint Acknowledge Cycle Timing (Exception Signaled)

4-38 MC68360 USER’S MANUAL MOTOROLA

4.4.2 LPSTOP Broadcast Cycle

The LPSTOP broadcast cycle is generated by the CPU32+ executing the LPSTOP
instruction. The external bus interface must get a copy of the interrupt mask level from the
CPU32+, so the CPU32+ performs a CPU space type 3 write with the interrupt mask level
(12-10) encoded on bits 2-0 of the data bus, as shown in the following figure. The CPU
space type 3 cycle waits for the bus to be available, and is shown externally to indicate to
external devices that the QUICC is going into LPSTOP mode. If an external device
requires additional time to prepare for entry into LPSTOP mode, entry can be delayed by
asserting HALT. The SIM60 provides internal DSACKx response to this cycle. For more
information on how the SIM60 responds to LPSTOP mode, see Section 6 System
Integration Module (SIM60) for details.

5 14 13 12 1 19 8 7 6 5 4 3 2 1 0
| - e [n]w]

4.4.3 Module Base Address Register (MBAR) Access

All internal module registers, including the SIM60, occupy a single 8-kbyte block that is
locatable along 8-kbyte boundaries. The location is fixed by writing the desired base
address of the SIM60 block to the MBAR using the MOVES instruction. The MBAR is only
accessible in CPU space at address $0003FF00. The SFC or DFC register must indicate
CPU space (FC2-FCO = $7), using the MOVEC instruction, before accessing MBAR.
Refer to Section 6 System Integration Module (SIM60) for additional information on the
MBAR. ,

4.4.4 Interrupt Acknowledge Bus Cycles

The CPU32+ makes an interrupt pending in three cases. The first case occurs when a
peripheral device signals the CPU32+ (with the IRQ7-IRQ1 signals) that the device
requires service and the internally synchronized value on these signals indicates a higher
priority than the interrupt mask in the status register. The second case occurs when a
transition has occurred in the case of a level 7 interrupt. A recognized level 7 interrupt
must be removed for one clock cycle before a second level 7 can be recognized. The third
case occurs if, upon returning from servicing a level 7 interrupt, the request level stays at
7 and the processor mask level changes from 7 to a lower level, a second level 7 is
recognized. The CPU32+ takes an interrupt exception for a pending interrupt within one
instruction boundary (after processing any other pending exception with a higher priority).
The following paragraphs describe the various kinds of interrupt acknowledge bus cycles
that can be executed as part of interrupt exception processing.

4.4.4.1 INTERRUPT ACKNOWLEDGE CYCLE—TERMINATED NORMALLY. When the
CPU32+ processes an interrupt exception, it performs an interrupt acknowledge cycle to
obtain the number of the vector that contains the starting location of the interrupt service
routine. Some interrupting devices have programmable vector registers that contain the
interrupt vectors for the routines they use. The following paragraphs describe the interrupt
acknowledge cycle for these devices. Other interrupting conditions or devices cannot

MOTOROLA MC68360 USER’S MANUAL - ' 4-39

supply a vector number and use the autovector cycle described in 4.4.4.2 Autovector
Interrupt Acknowledge Cycle.

The interrupt acknowledge cycle is a read cycle. It differs from the read cycle described in
4.3.1 Read Cycle in that it accesses the CPU address space. Specifically, the differences
are as follows:

FC3-FCO are set to $7 (FC3/FC2/FC1/FCO = 0111) for CPU address space.

1.
2.

3.
4,

A3, A2, and A1 are set to the interrupt request level, and the IACKx strobe

corresponding to the current interrupt level is asserted. (Either the function codes
and address signals or the IACKXx strobes can be monitored to determine that an

interrupt acknowledge cycle is in progress and the current interrupt level.)
The CPU32+ space type field (A19-A16) is set to $F (interrupt acknowledge).

Other address signals (A31-A20, A15—-A4, and AQ) are set to one.

The responding device places the vector number on the data bus during the interrupt

acknowledge cycle. Beyond this, the cycle is terminated normally with DSACKXx.

Figure 4-26 is a flowchart of the interrupt acknowledge cycle; Figure 4-27 shows the
timing for an interrupt acknowledge cycle terminated with DSACKX.

4-40

INTERRUPTING DEVICE

REQUEST INTERRUPT

Y

Quicc

PROVIDE VECTOR NUMBER

GRANT INTERRUPT

1) PLACE VECTOR NUMBER ON LEAST SIGNIFICANT
BYTE OF DATA PORT (DEPENDS ON
PORT S -

2) ASSERT DSACKx (OR AVEC IF NO VECTOR
NUMBER)

A

1) SYNCHRONIZE iRQ7-IRQ1

2) COMPARE IRQ7-IRQT TO MASK LEVEL AND
WAIT FOR INSTRUCTION TO COMPLETE

3) ASSERT BCLRO

4) PLACE INTERRUPT LEVEL ON A1-A3;
TYPE FIELD (A19-A16) = $F

5) SET RW TO READ

6) SET FC3-FCO TO 0111

7) DRIVE SIZx PINS TO INDICATE A ONE-BYTE
TRANSFER

8 NEGATEBCLRO

9) ASSERT AS, DS, AND OF

RELEASE

ACQUIRE VECTOR NUMBER

1) NEGATE DSACKx

1) LATCH VECTOR NUMBER
2) NEGATE AS, DS, AND OE

START NEXT CYCLE

Figure 4-26. Interrupt Acknowledge Cycle Flowchart

MC68360 USER’S MANUAL

MOTOROLA

S0 [s2 |s4 |so] o2clocks' |s1 sz s4 s |s2
awor [LI 1S UL L
- ' A
A31-M X N
A3-At X INTERRUPT LEVEL N
1 N
. A
A0 X N
FC3-FCO X CPU SPACE
- |
N
8120 X 1BYTE ‘
siz1

\)J\x
P

]

:

= \
A\
e /N / /" N
VECTOR FROM 16-BIT PORT
D23-D16 { W /\:
VECTOR FROM 8-BIT PORT
031-D24)N (_

s |\ 775777

TACK7-ACK1 | <€——— READ ——> \ /
CYCLE < INTERNAL >
ARBITRATION STACK

~€———————— JACK CYCLE ——————>>|

* Internal arbitration may take between 0-2 clock cycles.

Figure 4-27. Interrupt Acknowledge Cycle Timing

MOTOROLA MC68360 USER’S MANUAL

4-41

4.4.4.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE. When the interrupting
device cannot supply a vector number, it requests an automatically generated vector
(autovector). Instead of placing a vector number on the data bus and asserting DSACKYX,
the device asserts AVEC to terminate the cycle. The DSACKXx signals may not be asserted
during an interrupt acknowledge cycle terminated by AVEC. The vector number supplied
in an autovector operation is derived from the interrupt level of the current interrupt. When
the AVEC signal is asserted instead of DSACKx during an interrupt acknowledge cycle,
the QUICC ignores the state of the data bus and internally generates the vector number
(the sum of the interrupt level plus 24 ($18)).

AVEC is multiplexed with IACK5. The AVEC bit in the port E pin assignment register
(PEPAR) controls whether the AVEC/IACKS5 pin is used as an autovector input or as

TACK5 (see Section 6 System Integration Module (SIM60) for additional information).

AVEC is only sampled during an interrupt acknowledge cycle; during all other cycles,
AVEC is ignored. Additionally, AVEC can be internally generated for external devices by
programming the autovector register (note that in this case it is not being asserted
externally). Seven distinct autovectors can be used, corresponding to the seven levels of
interrupt available with signals IRQ7-IRQ1. Figure 4-28 shows the timing for an autovector
operation.

4-42 MC68360 USER'S MANUAL MOTOROLA

S0 S2 $4 S0 | 0-2CLOCKS' | 81 82 $4 S0 S2

wo LML LD

A31-Ad4

A3-A1 INTERRUPT LEVEL N

L

| I |

/l)\':<'><>(><7<><

FC3-FCO CPU SPACE

SIZo

]
d

1BYTE

]
Jr

A1

B \

D31-D0 \|

WES | \ /f:
o |\ 1IN/
" IACK7-IACK1 k‘

<—PREAD____ 5| |<INTERNAL> «—WAITE
CYCLE ARBITRATION STACK

€ JACKCYCLE ————————

* Internal Arbitration may take between 0-2 clock cycles.

Figure 4-28. Autovector Operation Timing

4.4.4.3 SPURIOUS INTERRUPT CYCLE. Requested interrupts, whether internal or
external, are arbitrated internally. When no internal module (including the SIM60, which
responds for external requests) responds during an interrupt acknowledge cycle by
arbitrating for the.interrupt acknowledge cycle internally, the spurious interrupt monitor
generates an internal bus error signal to terminate the vector -acquisition. The QUICC

MOTOROLA MC68360 USER’S MANUAL 4-43

automatically generates the spurious interrupt vector number, 24, instead of the interrupt
vector number in this case. When an external device does not respond to an interrupt
acknowledge cycle with AVEC or DSACKX, a bus monitor must assert BERR, which results
in the CPU32+ taking the spurious interrupt vector. If HALT is also asserted, the QUICC
retries the interrupt acknowledge cycle instead of using the spurious interrupt vector.

4.5 BUS EXCEPTION CONTROL CYCLES

The bus architecture requires assertion of DSACKXx from an external device to signal that
a bus cycle is complete. Neither DSACKXx nor AVEC is asserted in the following cases:

1. DSACKXx in fast-termination cycles.

2. AVEC when programmed to respond internally.

3. The external device does not respond.

4. Various other application-dependent errors occur.

The QUICC provides BERR when no device responds by asserting DSACKX/AVEC within
an appropriate period of time after the QUICC asserts AS. This mechanism allows the
cycle to terminate and the QUICC to enter exception processing for the error condition.
HALT is also used for bus exception control. This signal can be asserted by an external
device for debugging purposes to cause single bus cycle operation or, in combination with
BERR, a retry of a bus cycle in error. To properly control termination of a bus cycle for a
retry or a bus error condition, DSACKx, BERR, and HALT can be asserted and negated
with the rising edge of the QUICC clock. This assures that when two signals are asserted
simultaneously, the required setup and hold time for both is met for the same falling edge
of the QUICC clock. This or an equivalent precaution should be designed into the external
circuitry to provide these signals. Alternatively, the internal bus monitor could be used.
The acceptable bus cycle terminations for asynchronous cycles are summarized in
relation to DSACKXx assertion as follows (case numbers refer to Table 4-8):
1. Normal Termination: DSACKXx is asserted; BERR and HALT remain negated
(case 1).
2. Halt Termination: HALT is asserted at the same time or before DSACKx, and BERR
remains negated (case 2).
3. Bus Error Termination: BERR is asserted in lieu of, at the same time, or before
DSACKX (case 3) or after DSACKx (case 4), and HALT remains negated; BERR is
negated at the same time or after DSACKx.

4. Retry Termination: HALT and BERR are asserted in lieu of, at the same time, or
before DSACKX (case 5) or after DSACKXx (case 6); BERR is negated at the same
time or after DSACKX, and HALT may be negated at the same time or after BERR.

Table 4-8 shows various combinations of control signal sequences and the resulting bus
cycie ierminations. To ensure predictabie operation, BERH and HALT shiouid be negaied
according to the specifications in Section 10 Electrical Characteristics. DSACKx, BERR,
and HALT may be negated after AS. If DSACKx or BERR remain asserted into S2 of the
next bus cycle, that cycle may be terminated prematurely.

4-44 MC68360 USER’S MANUAL MOTOROLA

EXAMPLE A: A system uses a bus monitor timer to terminate accesses to an unpopulated
address space. The timer asserts BERR after timeout (case 3).

EXAMPLE B: A system uses error detection and correction on RAM contents. The
designer may:
1. Delay DSACKx until data is verified and assert BERR and HALT simultaneously to
indicate to the QUICC to automatically retry the error cycle (case 5), or, if data is
valid, assert DSACKXx (case 1).

2. Delay DSACKXx until data is verified and assert BERR with or without DSACKXx if data
is in error (case 3). This initiates exception processing for software handling of the n
condition. '

3. Return DSACKXx prior to data verification; if data is invalid, BERR is asserted on the
next clock cycle (case 4). This initiates exception processing for software handling of
the condition.

4. Return DSACKX prior to data verification; if data is invalid, assert BERR and HALT on
the next clock cycle (case 6). The memory controller can then correct the RAM prior
to or during the automatic retry.

Table 4-8. DSACKXx, BERR, and HALT Assertion Results

Asserted on Rising
Case | Control Edge of State
Num Signal N N+2 Result

1 DSACKx A S Normal cycle terminate and continue.
BERR NA NA
HALT NA X

2 DSACRx A S Normal cycle terminate and halt; continue when HALT negated.
BERR NA NA
HALT AS S

3 DSACKx NA/A X Terminate and take bus error exception, possibly deferred.
BERR A S
HALT NA X

4 DSACKx A X Terminate and take bus error exception, possibly deferred.
BERR NA A
HALT NA NA

5 DSACKx NA/A X Terminate and retry when HALT negated.
BERR A S
HALT A/S S

6 DSACKx A X Terminate and retry when HALT negated.
BERR NA A
HALT NA A

NOTES:
N — The number of current even bus state (e.g., S2, S4, etc.)
A — Signal is asserted in this bus state
NA — Signal is not asserted in this state
X — Don't care
S — Signal was asserted in previous state and remains asserted in this state

MOTOROLA MC68360 USER’S MANUAL 4-45

4.5.1 Bus Errors

BERR can be used to abort the bus cycle and the instruction being executed. BERR takes
precedence over DSACKXx provided it meets the timing constraints described in Section
10 Electrical Characteristics. If BERR does not meet these constraints, it may cause
unpredictable operation of the QUICC. If BERR remains asserted into the next bus cycle, it
may cause incorrect operation of that cycle. When BERR is issued to terminate a bus
cycle, the QUICC may enter exception processing immediately following the bus cycle, or
it may defer processing the exception.

The instruction prefetch mechanism requests instruction words from the bus controller
before it is ready to execute them. If a bus error occurs on an instruction fetch, the QUICC
does not take the exception until it attempts to use that instruction word. Should an
intervening instruction cause a branch or should a task switch occur, the bus error
exception does not occur. The bus error condition is recognized during a bus cycle in any
of the following cases:

1. DSACKXx and HALT are negated, and BERR is asserted.

2. HALT and BERR are negated, and DSACKXx is asserted. BERR is then asserted
within one clock cycle (HALT remains negated).

3. BERR and HALT are asserted together, indicating a retry.

When the QUICC recognizes a bus error condition, it terminates the current bus cycle in
the normal way. Figure 4-29 shows the timing of a bus error for the case in which DSACKx
is not asserted. Figure 4-30 shows the timing for a bus error that is asserted after
DSACKXx. Exceptions are taken in both cases. (Refer to Section 5 CPU32+ for details of
bus error exception processing.)

4-46 MC68360 USER’S MANUAL MOTOROLA

CLKO1 _‘

A31-A0

FC3-FCO

|
3

/T /T
\

ﬁ\))'\'ﬁxff

DSACKx /
{ 4
D31-D0 —(N {
BERR \ ~N
|~€————READ CYCLE WITH BUS ———|<€—INTERNAL ->|€—— STACK ——>>
ERROR PROCESSING WRITE

‘ Figure 4-29. Bus Error without DSACKx -

MOTOROLA MC68360 USER’S MANUAL 4-47

CLKO1 J

A31-A0

gi
X
i X X
\
iy

3

N
~
N

= T\ \/T"
A \ a AN /
wo1-00 C Y C O
L _ﬁ) |

‘ INTERNAL STACK
< CYCLE > <€oRocESSING™ | ™€ WRTE >

Figure 4-30. Late Bus Error with DSACKx

In the second case, in which BERR is asserted after DSACKX is asserted, BERR must be
asserted within the time specified for purely asynchronous operation, or it must be
asserted and remain stable during the sample window around the next falling edge of the
clock after DSACKXx is recognized. If BERR is not stable at this time, the QUICC may
exhibit erratic behavior. BERR has priority over DSACKXx. In this case, data may be
present on the bus but may not be valid. This sequence can be used by systems that have
memory error detection and correction logic and by external cache memories.

4.5.2 Retry Operation

When both BERR and HALT are asserted by an external device during a bus cycle, the
QUICC enters the retry sequence shown in Figure 4-31. A delayed retry, which is similar
to the delayed bus error signal described previously, can also occur (see Figure 4-32).
The QUICC terminates the bus cycle, places the control signals in their inactive state, and
does not begin another bus cycle until the BERR and HALT signals are negated by
external logic. After a svnchronization delay, the QUICC retries the previous cvcle using
the same access information (address, function code, size, etc.). BERR should be negated
before S2 of the retried cycle to ensure correct operation of the retried cycle.

4-48 MC68360 USER'S MANUAL MOTOROLA

\)J\deg
3

DSACKx A \
g LA/ VToata T\ \\ \ V4

Dst-00 S ianoren | 2 777N A)

Py 4 A\

| 7

FALT _ —

[&———— READ CYCLE WITH ———»1<«€¢——HALT-—>>»1«€——READ RERUN —>>1
RETRY .

Figure 4-31. Retry Sequence

The QUICC retries any read or write cycle of a read-modify-write operation separately;
RMC remains asserted during the entire retry sequence.

Asserting BR at the same time as BERR and HALT provides a relinquish and retry
operation. The QUICC does not relinquish the bus during a read-modify-write cycle, but
may relinquish the bus between any other bus cycles. (i.e., relinquish-and-retry has
priority over bus coherency, except in the case of read-modify-write cycles). Any device
that requires the QUICC to give up the bus and retry a bus cycle during a read-modify-
write cycle must assert BERR and BR only (HALT must not be included). The bus error
handler software should examine the read-modify-write bit in the special status word (refer
to Section 5 CPU32+) and take the appropriate action to resolve this type of fault when it
occurs.

MOTOROLA MC68360 USER'S MANUAL 4-49

NOTE

When the relinquish and retry is asserted during an internal
master's word access to an 8-bit port, and the external master
that takes the bus performs an external-to-internal bus cycle,
the entire word access will be retried. This is true even if the

- relinquish and retry was asserted on the second access and
the first 8-bit access was completed normally.

S0 $2 $4 S0 $2 S4

*plinigintinlisinlinly

A31-A0

FC3-FCO

N
~

/
= NIV _/T
ms T\ ‘ \

D31-D10 N

=/ A/
AT | | /

«——WRTE____ 5 e HAT—>l«——ATE___ 5|

Figure 4-32. Late Retry Sequence

4.5.3 Halt Operation

When HALT is asserted and BERR is not asserted, the QUICC halts external bus activity
at the next bus cycle boundary (see Figure 4-33). HALT by itself does not terminate a bus
cycle. HALT affects external bus cycles only; thus, a program that does not require use of
the external bus may continue executing until it requires use of the external bus.

Negating and reasserting HALT in accordance with the correct timing requirements
provides a single step (bus cycle to bus cycle) operation. The single-cycle mode allows

4-50 MC68360 USER’S MANUAL MOTOROLA

the user to proceed through (and debug) external QUICC operations, one bus cycle at a
time. Since the occurrence of a bus error while HALT is asserted causes a retry operation,

the user must anticipate retry cycles while debugging in the single-cycle mode. The single-

step operation and the software trace capability allow the system debugger to trace single
bus cycles, single instructions, or changes in program flow.

When the QUICC completes a bus cycle with HALT asserted, D31-D0 is placed in the
high-impedance state, and bus control signals are driven inactive (not high-impedance
state); the address, function code, size, and read/write signals remain in the same state.
The halt operation has no effect on bus arbitration (refer to 4.6 Bus Arbitration). When
bus arbitration occurs while the QUICC is halted, the address and control signals are also
placed in the high-impedance state. Once bus mastership is returned to the QUICC, if
HALT is still asserted, the address, function code, size, and read/write signals are again
driven to their previous states. The QUICC does not service interrupt requests while it is

halted.

MOTOROLA

NOTES

In Figure 4-33, note that BR is not asserted until after the halt
operation is complete. If BR is asserted at the same time as
HALT, the user should note that the BG signal may not be
asserted immediately (as in other M68000 family devices) but
rather after the full operand transfer is complete. This
difference in behavior is due to the coherency rules imposed
by the QUICC and other IMB-based M68300 family members
refer to 4.6 Bus Arbitration for more details. To override the
coherency rules, a relinquish and retry cycle may be used.

In the MCR of the SIM60, if the show cycles enable bits
SHEN1-SHENO = 1x to enable show cycles mode, and HALT
is asserted externally, the following behavior is possible. It is
possible that the QUICC may not show the last bus cycle
externally, if that bus cycle happens to be an internal-to-
internal bus cycle. This is due to a pipelining characteristic of
the QUICC coupled with the HALT signal being asserted late
into an internal-to-external bus cycle. Note that show cycles
mode is'not the normal configuration for the QUICC.

MC68360 USER’S MANUAL

4-51

CLKO1 J

A31-A0

FC3-FCO

]

IMPPRTT

DSACKx

N

D31-D0 ¢ N\
T AN N

BR | \—"f/
o/

\—’
BGACK _/

(«€——— READ ———3»1<€——— HALT —>»<«€——— READ —>>|
(ARBITRATION PERMITTED
WHILE THE PROCESSOR IS

HALTED)

Figure 4-33. HALT Timing

4.5.4 Double Bus Fault
A double bus fault results when a bus error or an address error occurs during the
exception processing sequence for any of the following:

1. A previous bus error

2. A previous address error

3. Areset

For example, the QUICC attempts to stack several words containing information about the
state of the machine while processing a bus error exception. If a bus error exception
occurs during the stacking operation, the second error is considered a double bus fault.
When a double bus fault occurs, the QUICC halts and drives the HALT line low. Only a
reset operation can restart a halted QUICC. However, bus arbitration can still occur (refer
to 4.6 Bus Arbitration). A second bus error or address error that occurs after exception

4-52 MC68360 USER’S MANUAL MOTOROLA

processing has completed (during execution of the exception handler routine or later)
does not cause a double bus fault. A bus cycle that is retried does not constitute a bus
error or contribute to a double bus fault. The QUICC continues to retry the same bus cycle
as long as the external hardware requests it.

Reset can also be generated internally by the halt monitor (see Section 5 CPU32+).

4.6 BUS ARBITRATION

The bus design of the QUICC provides for a single bus master at any one time, either the
QUICC or an external device. One or more of the external devices on the bus can have n
the capability of becoming bus master for the external bus and the QUICC internal bus.

Bus arbitration is the protocol by which an external device becomes bus master; the bus

controller in the QUICC manages the bus arbitration signals so that the QUICC has the

lowest priority.

NOTE

The QUICC may assert the BCLRO signal for one or more of
its internal bus masters, IDMA, SDMA, or DRAM refresh cycle,
or when an interrupt request is pending on a level that is
greater than a programmable level. The user can use BCLRO
to negate the BR line asserted by an external master to reduce
the interrupt latency for programmable interrupt levels and to
increase the QUICC internal master arbitration priority over
external masters.

External devices that need to obtain the bus must assert the bus arbitration signals in the
sequences described in the following paragraphs. Systems that include several devices
that can become bus master require external circuitry to assign priorities to the devices, so
that when two or more external devices attempt to become bus master at the same time,
the one having the highest priority becomes bus master first. The sequence of the protocol
is as follows:

1. An external device asserts BR.

2. The QUICC asserts BG to indicate that the bus is available.

3. The external device asserts BGACK to indicate that it has assumed bus mastership.

BR may be issued any time during a bus cycle or between cycles. BG is asserted in
response to BR. To guarantee operand coherency, BG is only asserted at the end of an
operand transfer. (For example if any internal master such as the CPU, SDMA or IDMA on
the QUICC is writing a 32-bit operand to an 8-bit port size, BG is not asserted until the
fourth byte is written.) Additionally, BG is not asserted until the end of a read-modify-write
operation (when RMC is negated) in response to a BR signal. When the requesting device
receives BG and more than one external device can be bus master, the requesting device
should begin whatever arbitration is required. When it assumes bus mastership, the
external device asserts BGACK and maintains BGACK during the entire bus cycle (or
cycles) for which it is bus master. The following conditions must be met for an external

MOTOROLA ‘MC68360 USER’S MANUAL ’ 4-53

device to assume mastership of the bus through the normal bus arbitration procedure: it
must have received BG through the arbitration process, and BGACK must be inactive,
indicating that no other bus master has claimed ownership of the bus.

Figure 4-34 is a flowchart showing the detail involved in bus arbitration for a single device.
This technique allows processing of bus requests during data transfer cycles.

Quicc REQUESTING DEVICE

REQUEST THE BUS

GRANT BUS ARBITRATION - 1) ASSERT BR

1) ASSERTBG

ACKNOWLEDGE BUS MASTERSHIP

1) EXTERNAL ARBITRATION DETERMINES
NEXT BUS MASTER -

2) NEXT BUS MASTER WAITS FORBGACK
TO BE NEGATED -

3) NEXT BUS MASTER ASSERTS BGACK

TERMINATE ARBITRATION < TO BECOME NEW MASTER

4) BUS MASTER NEGATES BR

1) NEGATE BG (AND WAIT FOR
BGACK TO BE NEGATED) > OPERATE AS BUS MASTER

1) PERFORM DATA TRANSFERS (READ AND
WRITE CYCLES) ACCORDING TO THE
SAME RULES THE PROCESSOR USES

Y

RELEASE BUS MASTERSHIP

RE-ARBITRATE OR RESUME —
PROCESSOR OPERATION 1) NEGATE BGACK

Figure 4-34. Bus Arbitration Flowchart for Single Request

The QUICC has a synchronous arbitration timing mode to reduce the BR to BG delay to
one clock in the idle bus case (see Figure 4-35). Figure 4-36 illustrates the active bus
case.

BR is negated at the time that BGACK is asserted. This type of operation applies to a
system consisting of the QUICC and one device capable. of bus mastership. In a system
having a number of devices capable of bus mastership, BR from each device can be wire-
ORed to the QUICC. In such a system, more than one bus request could be asserted
simultaneously. BG is negated a few clock cycles after the transition of BGACK. However,
if bus requests are still pending after the negation of BG, the QUICC asserte ansther BG
within a few clock cycles after it was negated. This additional assertion of BG allows
external arbitration circuitry to select the next bus master before the current bus master
has finished using the bus. The following paragraphs provide additional information about

the three steps in the arbitration process. Bus arbitration requests are recognized during

4-54 MC68360 USER’S MANUAL “MOTOROLA

normal processing, HALT assertion, and when the CPU32+ has halted due to a double
bus fault.

ciKo1 |
> <
oo >
. \ T T\
- N /
DSACKI-DSACKD N /
= |\ /
=T |
A= =
s NN/

NOTE:
Il BR has synchronous timing.
B BRhas asynchronous timing.

Figure 4-35. Bus Arbitration Timing Diagram—Idle Bus Case

MOTOROLA MC68360 USER’S MANUAL 4-55

SO St S2 S8 sS4 S5

CLKO1
- \
A31-A0 X)
\ / \
D31-D0) ()

3
_
~

DSACK1-DSACKO /

BR(IN) ; ‘A \ /

BG (OUT)

/
___ 7 \
BGACK (IN) /
/

NOTE:
Il BR has synchronous timing.
¥ BR has synchronous timing.

Figure 4-36. Bus Arbitration Timing Diagram—Active Bus Case

4.6.1 Bus Request

External devices capable of becoming bus masters request the bus by asserting BR. This
signal can be wire-ORed to indicate to the QUICC that some external device requires
control of the bus. The QUICC is effectively at a lower bus priority level than the external
device and relinquishes the bus after it has completed the current bus cycle (if one has
started). If no BGACK is received while the BR is active, the QUICC remains bus master
once BR is negated. This prevents unnecessary interference with ordinary processing if
the arbitration circuitry inadvertently responds to noise or if an external device determines
that it no longer requires use of the bus before it has been aranted mastership.

4-56 MC68360 USER'S MANUAL) MOTOROLA

4.6.2 Bus Grant

The QUICC supports operand coherency; thus, if an operand transfer requires multiple
bus cycles, the QUICC does not release the bus until the entire transfer is complete. The
assertion of BG is therefore subject to the following constraints:

The minimum time for BG assertion after BR is asserted depends on internal
synchronization.

When working in synchronous mode (ASTM bit in the MCR is set), the minimum time
can be one clock

During an external operand transfer, the QUICC does not assert BG until after the last
cycle of the transfer (determined by SiZx and DSACKX).

During an external operand transfer, the QUICC does not assert BG as long as RMC
is asserted.

If the show cycle bits SHEN1-SHENO = 1x and if one of the QUICC internal masters
is making internal accesses, the QUICC does not assert BG until the transfer is
terminated. ,

If SHEN1-SHENO = 00 and if one of the QUICC internal masters is making internal
accesses, the external bus is granted away, and the QUICC continues to execute
internal bus cycles. In this case, the arbitration overhead (external bus idle time is
minimal).

If SHEN1-SHENO = 01, the QUICC does not assert BG to an external master.

Externally, the BG signal can be routed through a daisy-chained network or a priority-
encoded network. The QUICC is not affected by the method of arbitration as long as the
protocol is obeyed.

4.6.3 Bus Grant Acknowledge

An external device cannot request and be granted the external bus while another device is
the active bus master. A device that asserts BGACK remains the bus master until it
negates BGACK. BGACK should not be negated until all required bus cycles are
completed. Bus mastership is terminated at the negation of BGACK. When no other
device requests the bus after BGACK is negated, the QUICC will regain bus mastership.

The minimum time for the first bus cycle after BGACK negation depends on internal
synchronization and internal bus arbitration. This timing is therefore subject to the
following constraints:

When working in synchronous mode (ASTM bit in the MCR is set) and SHEN1-
SHENO = 00 and one of the QUICC internal masters requests an external accesses,
the minimum time can be one clock.

When working in asynchronous mode (ASTM bit in the MCR is cleared) and SHEN1-
SHENO = 00 and one of the QUICC internal masters requests an external accesses,
the minimum time depends on internal synchronization plus one clock.

I SHEN1—SHENO = 1x, another clock is added for internal bus arbitration.

MOTOROLA MC68360 USER’S MANUAL 4-57

Once an external device receives the bus and asserts BGACK, it should negate BR. If BR
remains asserted after BGACK is asserted, the QUICC assumes that another device is
requesting the bus and prepares to issue another BG.

4.6.4 Bus Arbitration Control

The bus arbitration control unit in the QUICC is implemented with a finite state machine.
As discussed previously, all asynchronous inputs to the QUICC are internally
synchronized in a maximum of two cycles of the clock. As shown in Figure 4-37, input
signals labeled R and A are internally synchronized versions of BR and BGACK,
respectively. The BG output is labeled G, and the internal high-impedance control signal is
labeled T. If T is true, the address, data, and control buses are placed in the high-
impedance state after the next rising edge following the negation of AS and RMC. All
signals are shown in positive logic (active high), regardless of their true active voltage
level. The state machine shown in Figure 4-37 does not have a state 1 or state 4.

State changes occur on the next rising edge of the clock after the internal signal is valid.
The BG signal transitions on the falling edge of the clock after a state is reached during
which G changes. The bus control signals (controlled by T) are driven by the QUICC
immediately following a state change, when bus mastership is returned to the QUICC.
State 0, in which G and T are both negated, is the state of the bus arbiter while the QUICC
is bus master. R and A keep the arbiter in state 0 as long as they are both negated.

The QUICC does not allow arbitration of the external bus during the RMC sequence. For
the duration of this sequence, the QUICC ignores the BR input. If mastership of the bus is
required during an RMC operation, BERR must be used to abort the RMC sequence.

4-58 MC68360 USER’S MANUAL MOTOROLA

R—BUS REQUEST G—BUS GRANT
A-—-BUS GRANT ACKNOWLEDGE T —THREE-STATE SIGNAL TO BUS CONTROL
B—BUS CYCLE IN PROGRESS V—BUS AVAILABLE TO BUS CONTROL

Figure 4-37. Bus Arbitration State Diagram

4.6.5 Slave (Disable CPU32+) Mode Bus Arbitration

When configured in the slave mode, the QUICC follows the bus arbitration mechanism .
‘described in 4.6 Bus Arbitration. When acting as one or more of the QUICC internal
masters (refresh cycles, IDMA, and SDMA), the QUICC will output the BR signal. Systems
that include several devices that-can become bus master require external circuitry to
assign priorities to the devices, so that when two or more external devices attempt to
become bus master at the same time, the one having the highest priority becomes bus

MOTOROLA MC68360 USER’S MANUAL 4-59

_master first. The sequence of the protocol in normal slave mode is as follows:
1. The QUICC asserts BR.

2. The QUICC waits for the assertion of BG and the negation of BGACK to indicate that
the bus is available.

3. The QUICC asserts BGACK to indicate that it has assumed the bus.

The state machine for the normal slave mode arbitration is shown in Figure 4-38.

BUS IDLE

Quice
WAITING FOR

IDLE QUICC REQUIRES EXTERNAL BUS

BR
NEGATED

HALT IS ASSERTED AND DRAM REFRESH
DOES NOT REQUIRE EXTERNAL BUS

QUICC NO LONGER NEEDS BUS
OR
HALT ASSERTED AND DRAM
REFRESH DOES NOT NEED BUS

Quicc
OWNS BUS

BR NEGATED
QUICC STILL NEEDS BUS

NOTE: BGACK is only asserted by QUICC during the state *QUICC Owns Bus*, otherwise BGACK is
three-stated by the QUICC.

Figure 4-38. Slave Mode Bus Arbitration State Machine

In MC68040 companion mode, the QUICC changes its bus arbitration sequence to match
that needed by the MC68040. The sequence is as follows:

1. The QUICC asserts BG continuously whenever the QUICC does not need the bus.

2. When ihe QUICC needs the bus and the MC68040 is not requesting the bus, it wiii
negate BG from the MC68040 and assert BB to indicate that it has assumed the bus.
If the MC68040 then requests the bus using the BR pin while the QUICC is asserting
BB, the BR040ID bits in the MCR will be used to determine if the MC68040 has a

_gh enough bus request priority to cause the QUICC to give up the bus (i.e., negate
BB and assert BG.)

4-60 MC68360 USER’S MANUAL ‘ MOTOROLA

3. If the MC68040 requests the bus at the same time that a QUICC internal master is
requesting the bus, the BR040ID bits are used to determine who will acquire the bus
first.

4. When the QUICC no longer needs the bus, it negates BB and asserts BG.
The state machine for the MC68040 companion mode arbitration is shown in Figure 4-39.

The QUICC has another mechanism to assign priorities to the bus masters. A new pin
called bus clear in (BCLRI) is defined. BCLRI indicates to the QUICC that a request is
being made for the QUICC to release the system bus. The QUICC will then clear all
internal bus masters with an arbitration 1D smaller than the programmed value of the bus
clear in ID (BCLRIID) in the MCR.

Slave (disable CPU32+) mode bus arbitration has fewer arbitration modes than exist in a
normal mode, since in slave mode, the SHEN1-SHENO bits are forced to be "00":

* In synchronous mode (ASTM bit in the MCR is set), BG and BGACK have
synchronous timing, and the minimal delay between the assertion of BG (negation of
BGACK) and the assertion of BGACK is one clock.

* In asynchronous mode, the minimum time for BGACK assertion after BG is asserted
(BGACK is negated) depends on internal synchronization.

* The QUICC will not request the external bus (assert BR) when one of its internal
masters is making an internal access. The QUICC will request the external bus only
when one of its internal masters is beginning an external access. In this case, the
arbitration overhead (external bus idle time is minimal).

See Figure 4-40 for the slave mode bus arbitration timing diagram.

MOTOROLA MC68360 USER’S MANUAL 4-61

040 STILL NEEDS BUS

040 OWNS
BUS

Y

BG
ASSERTED

QUICC INTERNAL MASTER OF HIGHER
PRIORITY THAN THE 040 REQUIRES
EXTERNAL BUS

040 REQUESTS BUS

040 FINISHES
USE OF BUS

EXTERNAL
BUSIDLE

INTERNAL MASTER (IDMA, SDMA, OR DRAM
REFRESH) REQUESTS BUS

B \

HALT IS ASSERTED AND DRAM REFRESH
DOES NOT REQUIRE EXTERNAL BUS

Quicc
WAITING FOR

IDLE

B
ASSERTED

QUICC NO LONGER NEEDS BUS

OR
HALT ASSERTED AND DRAM
REFRESH DOES NOT NEED BUS

BR IS ASSERTED BY 040 AND 040 HAS
PRIORITY OVER CURRENT QUICC
INTERNAL BUS MASTER

Quicc
OWNS BUS

BG NEGATED

BB ASSERTED

QUICC STILL NEEDS BUS

NOTES:
1. If the MC68040 and the QUICC intemal master request the bus at the same time, the highest priority requester wins.
2. The transition from "040 Owns Bus" to "QUICC Waiting for Bus" may be delayed until the write portion of an MC68040
locked cycle If an MC68040 locked cycle Is in progress when the higher priority QUICC Intemal master requests the bus.
3. BBis only asserted by QUICC during the state *QUICC Owns Bus*; otherwise, BB is three-stated by the QUICC.

4-62

Figure 4-39. MC68040 Companion Mode Bus Arbitration State Machine

MC68360 USER’S MANUAL

MOTOROLA

SO S1 S2 S3 S4 S5

CLKO1
\ / \
A31-A0) {)
\ \
D31-D0) /
3 \. YA /”_\
D8 \ / \ /P\

]

.
7
~

DSACKT-DSACKD \ -/
BR(OUT) _—\ /
BG(IN) \ /

iNoun \ /

NOTES:
1. Synchronous arbitration with SHEN1-SHENO =-00.
2. Minimum bus idle time.

Figure 4-40. Slave Mode Bus Arbitration Timing Diagram

4.6.6 Slave (Disable CPU32+) Mode Bus Exceptions

The reset and bus error master mode support also applies to the slave mode. There is a
difference, however, in supporting halt and retry as explained in the following paragraphs.

4.6.6.1 HALT. The QUICC transfer operation may be suspended at any time by asserting
HALT to the QUICC. In response, any bus cycle in progress is completed (after DSACKx
is asserted), and bus ownership is released. No further bus cycles will be started while
HALT remains asserted. When the QUICC is in the middle of an operand transfer when
halted and when a new transfer request is pending, the QUICC will arbitrate for the bus
-and continue normal operation.

MOTOROLA MC68360 USER’S MANUAL 4-63

NOTES

When the QUICC is doing a word access to an 8-bit port and
HALT is asserted during the first access to an 8-bit port, the
QUICC will access this byte again after bus ownership is
granted to the QUICC.

In slave mode, HALT has more priority than bus coherency;
whereas, in normal mode (CPU32+ is enabled), HALT has less
priority than bus coherency.

4.6.6.2 RETRY. When HALT and BERR are asserted during a bus cycle, the QUICC
terminates the bus cycle, releases the bus, and suspends any further operation until these
signals are negated. The QUICC will then arbitrate for the bus, re-execute the previous
bus cycle, and continue normal operation. Thus, in slave mode, a retry is actually a
relinquish and retry.

NOTE

When the relinquish and retry is asserted during a word access
to an 8-bit port and the external master that takes the bus
performs an external-to-internal bus cycle, the entire word
access will be retried. This is true even if the relinquish and
retry was asserted on the second access and the first 8-bit
access was completed normally.

4.6.7 Internal Accesses

The QUICC supports an external-master access to its internal registers with a glueless
interface. The QUICC internal register port size is always 32 bits. External
QUICC/MC68ECO030 accesses have the same bus operation as the QUICC (see 4.3 Data
Transfer Cycles). The QUICC supports the interrupt acknowledge cycles presented in
4.4.4 Interrupt Acknowledge Bus Cycles. The QUICC also supports the MC68EC040
read and write accesses and interrupt acknowledge cycles (see Figures 4-41-4-44).

4-64

MC68360 USER'S MANUAL

MOTOROLA

ct) oW cw ow
CLKO I

. A31-AD
g X X

TM2-TMO

e 1/

.

% \

Tr

U
D31-D0 :\/ {

Figure 4-41. MC68EC040 Internal Registers Read Cycle

C1 C2 cw cw cw

CLKO1 _I
si)-520
TT1-TT0 X
TM2-TTO

B O\
D31-D0 :>——<

Figure 4-42. MC68EC040 Internal Registers Write Cycle

SRdIIE

MOTOROLA MC68360 USER’S MANUAL 4-65

CLKOt F_
A31-A0
SIZ1-81Z0 >

TT-TT0

TM2-TMO INTERRUPT LEVEL

X
X
Y

=
ST

- |/
i |/
D31-D0 j} C:>
WSS L/
% INTERNAL ARBITRATION \ /

Figure 4-43. MC68EC040 Autovector Operation Timing

4-66 MC68360 USER’S MANUAL MOTOROLA

(4] c2 cw oW cw cw cw

CLKO1

A31-AQ
SIZ1-8120
m-TT0

TM2-TMO x INTERRUPT LEVEL-

D31-D8

Nr
UL L

OR#

D7-D0

1ACK7
ACK1 ' INTERNAL ARBITRATION \ 7

Figure 4-44. MC68EC040 Interrupt Acknowledge Cycle

k)l @,
(3]

4.6.8 Show Cycles

The QUICC can perform data transfers with its internal modules without using the external
bus, but when debugging, it is desirable to have address and data information appear on
the external bus. These external bus cycles, called show cycles, are distinguished by the
fact that AS is not asserted externally. DS is used to signal address strobe timing in show
cycles.

After reset, show cycles are disabled and must be enabled by writing to the SHEN bits in
the module configuration register. When show cycles are disabled, the address bus,
function codes, size, and read/write signals continue to reflect internal bus activity.
However, AS and DS are not asserted externally, and the external data bus remains in a
high impedance state. When show cycles are enabled, DS indicates address strobe timing
and the external data bus contains data. The following paragraphs are a state-by-state
description of show cycles, and Figure 4-45 illustrates a show cycle timing diagram. Refer
to Section 10 Electrical Characteristics for specific timing information.

State 0 — During state 0, the address and function codes become valid, RW is driven to
indicate a show read or write cycle, and the size pins indicate the number of bytes to
transfer. During a read, the addressed peripheral is dnvmg the data bus, and the user
must take care to avoid bus conflicts.

MOTOROLA MC68360 USER’S MANUAL » 4-67

State 41 — One-half clock cycle later, DS (rather than AS) is asserted to indicate that
address information is valid.

State 42— No action occurs in state 42. The bus controller remains in state 42 (wait states
will be inserted) until the intemnal read cycle is complete.

State 43— When DS is negated, show data is valid on the next falling edge of the system
clock. The external data bus drivers are enabled so that data becomes valid on the
external bus as soon as it is available on the internal bus.

State 0 — The address, function codes, read/write, and size pins change to begin the next
cycle. Data from the preceding cycle is valid through state 0.

A31-A0
Lo X
X X

T __/
| SHOW CYOLE——>}c— START OF———>{

EXTERNAL CYCLE

Figure 4-45. Show Cycle Timing Diagram

4.7 RESET OPERATION

The QUICC has reset control logic to determine the cause of reset, synchronize it if
necessary, and assert the appropriate reset lines. The reset control logic can
independently drive five different internal lines:

1. EXTSYSRST (external system reset) drives the external hard and soft reset pins
(RESETH and RESETS).

2. EXTRST (external reset) drives the external soft reset pin (RESETS).
3. CLKRST (clock reset) resets the clock module.

4. INTSYSRST (internal system reset) resets the memory controller, system protection
logic, serial interface, interrupt controller, and parallel I/O modules.

5. INTRST (internal reset) goes to all other internal circuits.

4-68 MC68360 USER’S MANUAL MOTOROLA

Table 4-9 summarizes the result of each reset source. Synchronous reset sources are not
asserted until the end of the current bus cycle, regardless of whether RMC is asserted.
The internal bus monitor is automatically enabled for synchronous resets; therefore, if the
current bus cycle does not terminate normally, the bus monitor terminates it. Only single-
byte or word transfers are guaranteed valid for synchronous resets. Asynchronous reset
sources indicate a catastrophic failure, and the reset controller logic immediately resets
the system. Resetting the QUICC causes any bus cycle in progress to terminate as if
DSACKXx or BERR had been asserted. In addition, the QUICC appropriately initializes
registers for a reset exception.

Table 4-9. Reset Source Summary n

Type Source Timing Reset Lines Asserted by Controller
External Hard Reset (RESETH) External | Asynchronous | INTRST | INTSYSRST | CLKRST | EXTSYSRST
External Soft Reset (RESETS) External | Synchronous | INTRST — — EXTRST
Power-Up EBI Asynchronous | INTRST | INTSYSRST | CLKRST | EXTSYSRST
Software Watchdog Sys Prot | Asynchronous | INTRST | INTSYSRST — EXTSYSRST
Double Bus Fault Sys Prot | Asynchronous | INTRST | INTSYSRST | CLKRST | EXTSYSRST
Loss of Clock! Clock | Asynchronous | INTRST | INTSYSRST | CLKRST | EXTSYSRST
Reset Instruction CPU32+ | Asynchronous | INTRST2 - - EXTRST
NOTES:)
1. '(I'gf éeos);t behavior is this case is dependent on the PLL programming (see 6.9.3.9 CLKO Contro! Register

2. Doesn't cause a CPU32 reset exception nor does it affect any of its internal registers.

If an external device drives RESETS or RESETH low, they should be asserted for at least
32 clock periods to ensure that the QUICC resets. When the reset control logic detects
that an external device drives RESETS low, it starts driving both internal and external
RESETS low for 512 cycles to guarantee this length of reset to the entire system. When
the reset control logic detects that an external device drives RESETH low, it starts driving
both internal and external RESETS and RESETH low for 512 cycles to guarantee this
length of reset to the entire system. The external and the intenal resets are released after
the external device stops driving the external reset signal low or after the 512 cycles,
whatever is later. Figure 4-46 shows the reset timing.

T=14CLKS
|<-—— 512 cvass——>|<———>l
RESETS OR \
RESETH
l T= 32CLKS l
PULLED EXTERNAL

Figure 4-46. Timing for External Devices Driving RESET

MOTOROLA MC68360 USER’S MANUAL 4-69

If reset is asserted from any other source, the reset control logic asserts a reset for a
minimum of 512 cycles and until the source of reset is negated.

After any internal reset occurs, a 14-cycle rise time is allowed before testing for the
presence of an external reset If no external reset is detected, the CPU32+ begins its
vector fetch.

Figure 4-47 is a timing diagram of the power-up reset operation, showing the relationships
between RESETH, RESETS, VCC, and bus signals. During the reset period, the entire bus
three-states (except for non-three-statable signals, which are driven to their inactive state).
Once RESETH and RESETS negate, all control signals are driven to their inactive state,
the data bus is in read mode, and the address bus is driven. After this, the first bus cycle
of the reset exception processing begins.

Veo
LOCK
Vee ——'/ 328 x < 512 x << 14 CLOCKS—>
TCLKIN TCLKOUT o
- 21177777
BUS
CYCLES oS STATE ADDRESS AND , 2 s "
BUS STATE CONTROL SIGNALS -1

THREE-STATED

NOTES:
1. Internal start-up time.
2. SSP read here.
3. PC read here.
4. First instruction fetched here.

Figure 4-47. Initial Reset Operation Timing

When a RESET instruction is executed, the QUICC drives the RESETS signal for 512
clock cycles. In this case, the QUICC resets the external devices of the system, and many
of the internal registers of the QUICC (see Section 3 Memory Map for a list of registers
affected by each type of reset).

The bus arbitration circuitry is only reset during a power-on reset. It may be used during all
other resets.

In QUICC slave mode (diSable CPU32+) the reset operates the same as in the normal
{masier) mode except that the RESET instruction does not exist.

4-70 MC68360 USER’S MANUAL MOTOROLA

SECTION 5
CPU32+

The CPU32+, the second instruction processing module of the M68300 family, is based
on the industry-standard MC68000 core processor. Like the original CPU32, it has many
features of the MC68010 and MC68020 as well as unique features suited for high-
performance processor applications. The CPU32+ provides a significant performance
increase over the MC68000 CPU, yet maintains source- code and binary-code
compatibility with the M68000 family.

The CPU32+ differs from the original CPU32 in two ways: it allows an option of a 32-bit
data interface and allows byte-misaligned accesses to data operands.

5.1 OVERVIEW

The CPU32+ is designed to interface to the intermodule bus (IMB), allowing interaction
with other IMB submodules. In this manner, integrated processors can be developed that
contain useful peripherals on chip. This integration provides high-speed accesses among
the IMB submodules, increasing system performance.

The CPU32+ core is a CPU32 core with its bus interface unit modified to connect directly
to the 32-bit IMB and take advantage of the larger bus width. Although the original CPU32
core already had a 32-bit internal data path and 32-bit arithmetic hardware, its external
interf ace (i.e., to the internal IMB) was 16 bits. The CPU32+ core, however, can operate
on 32-bit external operands with one bus cycle. This capability allows the CPU32+ core to
fetch a long-word instruction or two word-length instructions in one bus cycle, allowing the
internal instruction queue to be filled more quickly. The CPU32+ core can also read and
write 32-bits of data in one bus cycle. The CPU32+ has an additional word in its
instruction pipeline when fetching from a 32-bit port. When fetching from a 16-bit port, this
additional word is disabled. The performance of the CPU32+ on a 16-bit bus is the same
as the CPU32 performance.

The CPU32+ also supports byte-misaligned operands. Since operands can reside at any
byte boundary, they may occasionally become misaligned. A byte operand is properly
aligned at any address; a word operand is misaligned at a odd address; a long-word
operand is misaligned at an address that is not evenly divisible by four. Devices such as
the MC68302, MC68000/8, MC68010, and CPU32-based MC68300 allow long-word
_operand transfers at odd-word addresses, but force exceptions if word or long-word
operand transfers are attempted at odd-byte addresses. Although the CPU32+ does not
enforce any alignment restrictions for data operands (including PC relative data

addresses), some performance degradation occurs when additional bus cycles are

required for long-word or word operands that are misaligned. For maximum performance,

MOTOROLA MC68360 USER’S MANUAL 6-1

data items should be aligned on their natural boundaries. All instruction words and
extension words must reside on word boundaries. Attempting to prefetch an instruction
word at an odd address causes an address error exception.

The CPU32+ has four bits (SZ1,SZ0 and SZC1,SCZ0) in the software status word (SSW)
that are new or have changed definitions.

The CPU32+ offers low power consumption. The CPU32+ is implemented in high-speed
complementary metal-oxide semiconductor (HCMOS) technology, providing low power
use during normal operation. During periods of inactivity, the low-power stop (LPSTOP)
instruction can be executed, shutting down the CPU32+ and other IMB modules, greatly
reducing power consumption.

Ease of programming is an important consideration when using an integrated processor.
The CPU32+ instruction format reflects a predominant register-memory interaction
philosophy. All data resources are available to operations that require them. The
programming model includes eight multifunction data registers and seven general-purpose
addressing registers. The data registers support 8-bit (byte), 16-bit (word), and 32-bit
(long-word) operand lengths for all operations. Address manipulation is supported by word
-and long-word operations. Although the program counter (PC) and stack pointers (SP) are
special-purpose registers, they are also available for most data addressing activities. Ease
of program checking and diagnosis is enhanced by trace and trap capabilities at the
instruction level.

As processor applications become more complex and programs become larger, high-level
languages (HLLs) become the system designer's choice in programming languages. HLLs
aid in the rapid development of complex algorithms with less error and are readily
portable. The CPU32+ instruction set efficiently support HLLs.

52 MC68360 USER'S MANUAL MOTOROLA

5.1.1 Features
Features of the CPU32+ are as follows:
¢ Fully Upward Object-Code Compatible with M68000 Family
¢ Virtual Memory Implementation
¢ Loop Mode of Instruction Execution
¢ Fast Multiply, Divide, and Shift Instructions
¢ Fast Bus Interface with Dynamic Bus Port Sizing
_* Improved Exception Handling
¢ Additional Addressing Modes
— Scaled Index
— Address Register Indirect with Base Displacement and Index
— Expanded PC Relative Modes
— 32-Bit Branch Displacements
¢ Instruction Set Additions
— High-Precision Multiply and Divide
— Trap on Condition Codes
— Upper and Lower Bounds Checking
¢ Enhanced Breakpoint Instruction
¢ Trace on Change of Flow
¢ Table Lookup and Interpolate (TBL) Instruction
¢ LPSTOP Instruction
» Hardware BKPT Signal, Background Mode
¢ Fully Static Implementation
A block diagram of the CPU32+ is shown in Figure 5-1. The major blocks depicted
operate in a highly independent fashion that maximizes concurrences of operation while
managing the essential synchronization of instruction execution and bus operation. The
bus controller loads instructions from the data bus into the decode unit. The sequencer

and control unit provide overall chip control by managing the internal buses, registers, and
functions of the execution unit.

5.1.2 Virtual Memory

A system that supports virtual memory has a limited amount of high-speed physical
memory that can be accessed directly by the processor and maintains an image of a
much larger virtual memory on a secondary storage device. When the processor attempts
to access a location in the virtual memory map that is not resident in physical memory, a
page fault occurs. The access to that location is temporarily suspended while the
necessary data is fetched from secondary storage and placed in physical memory. The
CPU32+ uses instruction restart, which requires that only a small portion of the internal

MOTOROLA MC68360 USER’S MANUAL 5-3

machine state be saved. After correcting the page fault, the machine state is restored, and
the instruction is refetched and restarted. This process is completely transparent to the
application program.

SEQUENCER
CONTROL ‘
INSTRUCTION
U PREFETCH

AND
DECODE

ADDRESS
BUS 132

DATABUS 32 BUS
EXECU'PON : CONTROL BUS CONTROL

Figure 5-1. CPU32+ Block Diagram

5.1.3 Loop Mode Instruction Execution

The CPU32+ has several features that provide efficient execution of program loops. One
of these features is the DBcc looping primitive instruction. To increase the performance of
the CPU32+, a loop mode has been added to the processor. The loop mode is used by
any single-word instruction that does not change the program flow. Loop mode is
implemented in conjunction with the DBcc instruction. Figure 5-2 shows the required form
of an instruction loop for the processor to enter loop mode.

ONE-WORD INSTRUCTION <

DBee

DBce DISPLACEMENT
SFF FC=-4

Figure 5-2. Loop Mode Instruction Sequence

The loop mode is entered when the DBcc instruction is executed and the loop
displacement is —4. Once in loop mode, the processor performs only the data cycles
associated with the instruction and suppresses all instruction fetches. The termination
condition and count are checked after each execution of the data operations of the looped

5-4 MC68360 USER’S MANUAL MOTOROLA

instruction. The CPU32+ automatically exits the loop mode during interrupts or other
exceptions.

5.1.4 Vector Base Register

The vector base register (VBR) contains the base address of the 1024-byte exception
vector table, which consists of 256 exception vectors. Exception vectors contain the
memory addresses of routines that begin execution at the completion of exception
processing. These routines perform a series of operations appropriate for the
corresponding exceptions. Because the exception vectors contain memory addresses,
each vector consists of one long word, except the reset vector. The reset vector consists
of two long words: the address used to initialize the supervisor stack pointer (SSP) and
the address used to initialize the PC.

The address of an interrupt exception vector is derived from an 8-bit vector number and
the VBR. The vector numbers for some exceptions are obtained from an external device;
other numbers are supplied automatically by the processor. The processor multiplies the
vector number by 4 to calculate the vector offset, which is added to the VBR. The sum is
the memory address of the vector. All exception vectors are located in supervisor data
space, except the reset vector, which is located in supervisor program space. Only. the
initial reset vector is fixed in the processor's memory map; once initialization is complete,
there are no fixed assignments. Since the VBR provides the base address of the vector
table, the vector table can be located anywhere in memory; it can even be dynamically
relocated for each task that is executed by an operating system. Refer to 5.5 Exceptlon
Processing for additional details.

31 ')
| VECTOR BASE REGISTER (VER)]

5.1.5 Exception Handling

The processing of an exception occurs in four steps, with variations for different exception
causes. During the first step, a temporary internal copy of the status register (SR) is made,
and the SR is set for exception processing. During the second step, the exception vector
is determined. During the third step, the current processor context is saved. During the
fourth step, a new context is obtained, and the processor then proceeds with instruction
processing. :

Exception processing saves the most volatile portion of the current context by pushing it
on the supervisor stack. This context is organized in a format called the exception stack
frame. This information always includes the SR and PC context of the processor when the
exception occurred. To support generic handlers, the processor places the vector offset in
the exception stack frame. The processor also marks the frame with a frame format. The
format field allows the return-from-exception (RTE) instruction to identify what information
is on the stack so that it may be properly restored.

MOTOROLA MC68360 USER’S MANUAL 5-5

5.1.6 Addressing Modes

Addressing in the CPU32+ is register oriented. Most instructions allow the results of the
specified operation to be placed either in a register or directly in memory; this flexibility
eliminates the need for extra instructions to store register contents in memory.
The seven basic addressing modes are as follows:
¢ Register Direct
Register Indirect
* Register Indirect with Index
e Program Counter Indirect with Displacement
¢ Program Counter Indirect with Index
Absolute
* Immediate

Included in the register indirect addressing modes are the capabilities to postincrement,
predecrement, and offset. The PC relative mode also has index and offset capabilities. In
addition to these addressing modes, many instructions implicitly specify the use of the SR,
SP and/or PC, Addressing is explained fully in the M68000PM/AD, M68000 Family
Programmer’s Reference Manual.

5.2 ARCHITECTURE SUMMARY

The CPU32+ is upward source- and object-code compatible with the MC68000 and
MC68010. It is downward source- and object-code compatible with the MC68020. Within
the M68000 family, architectural differences are limited to the supervisory operating state.
User programs can be executed unchanged on upward-compatible devices.

The major CPU32+ features are as follows:
* 32-Bit Internal Data Path and Arithmetic Hardware
* 32-Bit Address Bus Supported by 32-Bit Calculations
* Rich Instruction Set
¢ Eight 32-Bit General-Purpose Data Registers
* Seven 32-Bit General-Purpose Address Registers
* Separate User and Supervisor Stack Pointers (USP and SSP)
» Separate User and Supervisor Address Spaces
» Separate Program and Data Address Spaces
* iMany Daia Types
¢ Flexible Addressing Modes
¢ Full Interrupt Processing
¢ Expansion Capability

5-6 : MC68360 USER'S MANUAL MOTOROLA

5.2.1 Programming Model

The CPU32+ programming model consists of two groups of registers that correspond to
the user and supervisor privilege levels. User programs can only use the registers of the
user model. The supervisor programming model, which supplements the user
programming model, is used by CPU32+ system programmers who wish to protect
sensitive operating system functions. The supervisor model is identical to that of MC68010

and later processors.

The CPU32+ has eight 32-bit data registers, seven 32-bit address registers, a 32-bit PC,
separate 32-bit SSP and USP, a 16-bit SR, two alternate function code registers, and a
32-bit VBR (see Figures 5-3 and 5-4).

31

16 15 87 0

D1

D3

D5

D7

3

16 15

FHEERXEB

31

0

| arwsp)

A

MOTOROLA

Figure 5-3. User Programming Model

MC68360 USER’S MANUAL

DATA REGISTERS

ADDRESS REGISTERS

USER STACK POINTER

PROGRAM COUNTER

CONDITION CODE
REGISTER

31 16 15 0

, SUPERVISOR STACK
| 1 | A7 (8SP) poinTER
87 0
| [com | sm STATUS REGISTER

e 2 VECTOR BASE
| | ven REGISTER

3 32 0

e sc ALTERNATE
T FUNCTION CODE
L - DFC REGISTERS

Figure 5-4. Supervisor Programming Model Supplement

5.2.2 Registers

Registers D7-DO0 are used as data registers for bit, byte (8-bit), word (16-bit), long-word
(32-bit), and quad-word (64-bit) operations. Registers A6 to A0 and the USP and SSP are
address registers that may be used as software SPs or base address registers. Register
A7 (shown as A7 and A7' in Figures 5-3 and 5-4) is a register designation that applies to
the USP in the user privilege level and to the SSP in the supervisor privilege level. In
addition, address registers may be used for word and long-word operations. All 16
general-purpose registers (D7-D0, A7-A0Q) may be used as index registers.

The PC contains the address of the next instruction to be executed by the CPU32+.
During instruction execution and exception processing, the processor automatically
increments the contents of the PC or places a new value in the PC, as appropriate.

The SR (see Figure 5-5) contains condition codes, an interrupt priority mask (three bits),
and three control bits. Condition codes reflect the results of a previous operation. The
codes are contained in the low byte (CCR) of the SR. The interrupt priority mask
determines the level of priority an interrupt must have to be acknowledged. The control
bits determine trace mode and privilege level. At user privilege level, only the CCR is
available. At supervisor privilege level, software can access the full SR.

The VBR contains the base address of the exception vector table in memory. The
displacement of an exception vector is added to the value in this register to access the
vector table.

Alternate source and destination function code registers (SFC and DFC) contain 3-bit
function codes. The CPU32+ generates a function code each time it accesses an address.
Specific codes are assigned to each type of access. The codes can be used to select

eicht dedicated 4 -Chyte addiess spaces. The MCVEC insiruciion can use regisiers SFC
and DFC to specify the function code of a memory address.

5-8 - MC68360 USER’S MANUAL MOTOROLA

USER BYTE
SYSTEY BYTE (CONDITION OC}DE REGISTER)
[15 14 13 12 9 s '\ 7 [0 !

110 5 4 3 2 1
mlrwjs] ool el n]ww]oflol] ol x] Nn]z]Vv]cl
|

TRACE INTERRUPT EXTEND
ENABLE PRIORITY MASK
NEGATIVE
SUPERVISORUSER ZERO
STATE
OVERFLOW
CARRY
Figure 5-5. Status Register
5.3 INSTRUCTION SET H

The following paragaphs describe the CPU32+ instruction set. A description of the
instruction format, the operands used by the instructions, and a summary of the
instructions by category are included. Complete programming information is provided in
the M68000OPM/AD, M68000 Family Programmer’s Reference Manual.
The CPU32+ instructions include machine functions for all the following operations:
¢ Data Movement
¢ Arithmetic Operations
Logical Operations
Shifts and Rotates
¢ Bit Manipulation
Conditionals and Branches
e System Control

The large instruction set encompasses a complete range of capabilities and, combined
with the enhanced addressing modes, provides a flexible base for program development.

- The instruction set of the CPU32+ is very similar to that of the MC68020 (see Table 5-1).
The following M68020 instructions are not implemented on the CPU32+:

BFxx — Bit Field Instructions (BFCHG, BFCLR, BFEXTS, BFEXTU,
BFFFO, BFINS, BFSET, BFTST)

CALLM, RTM — Call Module, Return Module
CAS,CAS2 — Compare and Set (Read-Modify-Write Instructions)

CPXXX — Coprocessor Instructions (cpBcc, cpDBcc, cpGEN, cpRESTORE,
CcpSAVE, cpScc, cpTRAPcc)

PACK, UNPK — Pack, Unpack BCD Instructions

MOTOROLA MC68360 USER’S MANUAL 59

The CPU32+ traps on unimplemented instructions or illegal effective addressing modes,

allowing user-supplied code to emulate unimplemented capabilities or to define special-

purpose functions. However,

Motorola reserves the right to use all currently

unimplemented instruction operation codes for future M68000 core enhancements.

Table 5-1. Instruction Set

Mnemonic Description Mnemonic Description
ABCD Add Decimal with Extend MOVEA Move Address
ADD Add MOVE CCR | Move Condition Code Register
ADDA Add Address MOVE SR Move toffrom Status Register
ADDI Add Immediate MOVE USP Move User Stack Pointer
ADDQ Add Quick MOVEC Move Control Register
AND Logical AND MOVEM Move Multiple Registers
ANDI Logical AND Immediate MOVEP Move Peripheral Data
ASL Arithmetic Shift Left MOVEQ Move Quick
ASR Arithmetic Shift Right MOVES Move Alternate Address Space
Bee Branch Conditionally (16 Tests) MULS Signed Multiply
BCHG Bit Test and Change MULU Unsigned Multiply
BCLR Bit Test and Clear NBCD Negate-Decimal with Extend
BGND Enter Background Mode NEG Negate
BKPT Breakpoint NEGX Negate with Extend
BRA Branch Always NOP No Operation
BSET Bit Test and Set NOT Ones Complement
BSR Branch to Subroutine OR Logical Inclusive OR
BTST Bit Test ORI Logical Inclusive OR Immediate
CHK Check Register against Bounds PEA Push Effective Address
CHK2 Check Register against Upper and RESET Reset External Devices
Lower Bounds ROL, ROR Rotate Left and Right
CLR Clear Operand ROXL, ROXR | Rotate with Extend Left and Right
CMP Compare RTD Return and Deallocate
CMPA Compare Address RTE Return from Exception
CMPI Compare Immediate RTR Return and Restore
CMPM Compare Memory RTS Return from Subroutine
CcMP2 Compare Register against Upper SBCD Subtract Decimal with Extend
and Lower Bounds Sce Set Conditionally
DBcc Test Condition, Decrement and STOP Stop
Branch (16 Tests) suB Subtract
DIVS, DIVSL . | Signed Divide SUBA Subtract Address
DIVU, DIVUL | Unsigned Divide SUBI Subtract Inmediate
EOR Logical Exclusive OR suBQ Subtract Quick
EORI Logical Exclusive OR Immediate SUBX Subtract with Extend
EXG Exchange Registers SWAP Swap Data Register Halves
EXT, EXTB Sign Extend TAS Test and Set Operand
ILLEGAL Take lllegal Instruction Trap TBLS, TBLSN | Table Lookup and Interpolate,
JMP Jump Signed
JSR Jump to Subroutine - TBLU, TBLUN | Table Lookup and Interpolate,
LEA Load Effective Address Uncinned
LINK Link and Allocate TRAPcc Trap Conditionally (16 Tests)
LPSTOP Low-Power Stop TRAPV Trap on Overflow
LSL, LSR Logical Shift Left and Right TST Test
MOVE Move UNLK Unlink
5-10 MC68360 USER’S MANUAL MOTOROLA

5.3.1 M68000 Family Compatibility

It is the philosophy of the M68000 Family that all user-mode programs should execute
unchanged on a more advanced processor and that supervisor-mode programs and
exception handlers should require only minimal alteration.

The CPU32+ can be thought of as an intermediate member of the M68000 family. Object
code from an MC68000 or MC68010 may be executed on the CPU32+, and many of the
instruction and addressing mode extensions of the MC68020 are also supported.

5.3.1.1 NEW INSTRUCTIONS. Two instructions have been added to the M68000
instruction set: LPSTOP and TBL.

5.3.1.1.1 Low-Power Stop (LPSTOP). In applications where power consumption is a
consideration, the CPU32+ can force the device into a low-power standby mode when n
immediate processing is not required. The low-power mode is entered by executing the

LPSTOP instruction. The processor remains in this mode until a user-specified or higher

level interrupt or a reset occurs.

5.3.1.1.2 Table Lookup and Interpolate (TBL). To maximize throughput for real-time
applications, reference data is often precalculated and stored in memory for quick access.
The storage of sufficient data points can require an inordinate amount of memory. The
TBL instruction uses linear interpolation to recover intermediate values from a sample of
data points, thus conserving memory.

When the TBL instruction is executed, the CPU32+ looks up two table entries bounding
the desired result and performs a linear interpolation between them. Byte, word, and long-
word operand sizes are supported. The result can be rounded according to a round-to-
nearest algorithm or retumned unrounded along with the fractional portion of the calculated
result (byte and word results only). This extra precision can be used to reduce cumulative
error in complex calculations. See 5.3.4 Using the TBL Instructions for examples.

5.3.1.2 UNIMPLEMENTED INSTRUCTIONS. The ability to trap on unimplemented
instructions allows user-supplied code to emulate unimplemented capabilities or to define
special-purpose functions. However, Motorola reserves the right to use all currently
unimplemented instruction operation codes for future M68000 enhancements. See 5.5.2.8
litegal or Unimplemented Instructions for more details.

5.3.2 Instruction Format and Notation

All instructions consist of at least one word. Some instructions can have as many as -
seven words, as shown in Figure 5-6. The first word of the instruction, called the operation
word, specifies instruction length and the operation to be performed. The remaining
words, called extension words, further specify the instruction and operands. These words
may be immediate operands, extensions to the effective address mode specified in the
operation word, branch displacements, bit number, special register specifications, trap
operands, or argument counts.

MOTOROLA MC68360 USER’S MANUAL 511

OPERATION WORD
(ONE WORD, SPECIFIES OPERATION AND MODES)
SPECIAL OPERAND SPECIFIERS
(IF ANY, ONE OR TWO WORDS)

IMMEDIATE OPERAND OR SOURCE ADDRESS
EXTENSION

(IF ANY, ONE TO THREE WORDS)
DESTINATION EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO THREE WORDS)

Figure 5-6. Instruction Word General Format

Besides the operation code, which specifies the function to be performed, an instruction
defines the location of every operand for the function. Instructions specify an operand
location in one of three ways:

* Register Specification
* Effective Address

¢ Implicit Reference

the register.
address mode information.

specific registers.

A register field of the mstructlon contains the number of
An effective address field of the instruction contains

The definition of an instruction implies the use of

The register field within an instruction specifies the register to be used. Other fields within
the instruction specify whether the register is an address or data register and how it is to
be used. The M68000PM/AD, M68000 Family Programmer’s Reference Manual, contains
detailed register information.

Except where noted, the following notation is used in this section:

Data
Destination
Source
Vector

An

Ax, Ay

Dn

Rc

Rn

Dh, DI

Ne NaA
iy WYy

Dx, Dy
Dym, Dyn
Xn

[An]

5-12

Immediate data from an instruction

Destination contents

Source contents

Location of exception vector

Any address register (A7-A0)

Address registers used in computation

Any data register (D7-D0)

Control register (VBR, SFC, DFC)

Any address or data register

Data registers high- and low-order 32 bits of product
Data regisies, aivision remainder, Aivision quotieni
Data registers, used in computation

Data registers, table interpolation values

Index register

Address extension

MC68360 USER’S MANUAL

MOTOROLA

cc Condition code

d# Displacement
Example: d1g is a 16-bit displacement
(ea) Effective address
#(data) Immediate data; a literal integer
label Assembly program label
list List of registers
Example: D3-DO
[...] Bits of an operand
Examples: [7] is bit 7; [31:24] are bits 31-24
(...) Contents of a referenced location
Example: (Rn) refers to the contents of Rn
CCR Condition code register (lower byte of SR)
X—extend bit ’
N—negative bit
Z—zero bit
V—overflow bit
C—carry bit
PC Program counter
SP Active stack pointer
SR Status register
SSP Supervisor stack pointer
USP User stack pointer
FC Function code
DFC Destination function code register
SFC Source function code register
+ Arithmetic addition or postincrement
- Arithmetic subtraction or predecrement
/ Arithmetic division or conjunction symbol
X Arithmetic multiplication
= Equal to
= Not equal to
> Greater than
= Greater than or equal to
< Less than
< Less than or equal to
A Logical AND
A Logical OR
@ Logical exclusive OR

Invert; operand is logically complemented

MOTOROLA MC68360 USER’S MANUAL 5-13

BCD Binary-coded decimal, indicated by subscript
Example: Source1(is a BCD source operand.

LSwW Least significant word
MSw Most significant word
{R/W} Read/write indicator

Ina description of an operation, a destination operand is placed to the right of source
operands and is indicated by an arrow (=).

5.3.3 Instruction Summary
The instructions form a set of tools to perform the following operations:

Data Movement Bit Manipulation

Integer Arithmetic Binary-Coded Decimal Arithmetic
Logic Program Control

Shift and Rotate System Control

The complete range of instruction capabilities combined with the addressing modes
described previously provide flexibility for program development. All CPU32+ instructions
are summarized in Table 5-2.

5-14 MC68360 USER’S MANUAL MOTOROLA

Table 5-2. Instruction Set Summary

Opcode Operation Syntax
ABCD Sourcetg + Destination{g + X = Destination ABCD Dy,Dx
ABCD —{Ay),~(Ax)
ADD Source + Destination = Destination ADD (ea),Dn
ADD Dn,{ea)
ADDA Source + Destination = Destination ADDA (ea),An
ADDI Immediate Data + Destination = Destination ADDI #(data),(ea)
ADDQ Immediate Data + Destination =» Destination ADDQ #(data),(ea)
ADDX Source + Destination + X = Destination ADDX Dy,Dx
ADDX —(Ay),~Ax)
AND Source A Destination => Destination AND (ea),Dn
AND Dn,{ea)
ANDI Immediate Data A Destination => Destination ANDI #(data),{ea)
ANDI to CCR | Source A CCR => CCR ANDI #(data),CCR
ANDI to SR If supervisor state ANDI #(data),SR
the Source A SR = SR
else TRAP ‘
ASL,ASR Destination Shifted by (count) => Destination ASd Dx,Dy
ASd #(data),Dy
ASd (ea)
Bee If (condition true) then PC + d = PC Bec (label)
BCHG ~({number) of Destination) = Z; BCHG Dn,(ea)
~({{number) of Destination) =» (bit number) of BCHG #(data),(ea)
Destination
BCLR ~({number) of Destination) = Z; BCLR Dn,(ea)
0 = (bit number) of Destination BCLR #(data),(ea)
BGND If (background mode enabled) then BGND
enter background mode
else Format/Vector offset = —(SSP)
PC = —(SSP)
SR = —(SSP)
(Vector) = PC
BKPT Run breakpoint acknowledge cycle; BKPT #(data)
TRAP as illegal instruction
BRA PC+d=PC BRA (label)
BSET ~({number) of Destination) = Z; BSET Dn,{ea)
1 = (bit number) of Destination BSET #(data),(ea)
BSR SP-4=>SP; PC=> (SP); PC+d=PC BSR (label)
BTST = ((number) of Destination) =» Z; BTST Dn,(ea)
BTST #(data),(ea)
CHK If Dn < 0 or Dn > Source then TRAP CHK (ea),Dn
CHK2 If Rn < lower bound or CHK2 (ea),Rn
If Rn > upper bound
then TRAP
CLR 0 = Destination CLR (ea)
CMP Destination — Source = c¢ CMP (ea),Dn
CMPA Destination — Source CMPA {ea),An
CMPI Destination — Immediate Data CMPI #(data),(ea)
CMPM Destination — Source = cc CMPM (Ay)+,(Ax)+
MOTOROLA MC68360 USER’S MANUAL

5-15

Table 5-2. Instruction Set Summary (Continued)

Opcode Operation Syntax
CMP2 Compare Rn < lower-bound or CMP2 (ea),Rn
Rn > upper-bound
and Set Condition Codes
DBce If condition false then (Dn ~ 1 =» Dn; DBcc Dn,(label)
If Dn » ~1 then PC + d = PC)
DIVS Destination/Source =» Destination DIVS.W (ea),Dn 32/16 =» 161:16q
DIvsL - : DIVS.L (ea),Dq 32/32 = 32q
DIVS.L (ea),Dr:Dq 64/32 =» 32r:32q
. DIVSL.L (ea),Dr:Dq 32/32 =» 32r:32q
DIVU Destination/Source =» Destination DIVU.W (ea),Dn 32/16 =» 161:16q
DIvUL DIVU.L {ea),Dq 32/32 =» 32q
DIVU.L (ea),Dr:Dq 64/32 = 32r:32q
DIVUL.L {ea),Dr:Dq 32/32 = 32r:32q
EOR Source @ Destination =» Destination EOR Dn,{ea)
EORI Immediate Data @ Destination =» Destination EORI #(data),(ea)
EORI Source @ CCR = CCR EORI #(data),CCR
to CCR
EORI If supervisor state EORI #(data),SR
to SR the Source ® SR = SR
else TRAP
EXG Rx e Ry EXG Dx,Dy
EXG Ax,Ay
EXG Dx,Ay
EXG Ay,Dx
EXT Destination Sign-Extended = Destination EXT.WDn extend byte to word
EXTB EXT.LDn extend word to long word
EXTB.L Dn extend byte to long word
LLEGAL SSP -2 = SSP; Vector Offset = (SSP); ILLEGAL
SSP -4 = SSP; PC = (SSP);
SSp -2 =» SSP; SR = (SSP);
Illegal Instruction Vector Address = PC
JMP Destination Address'=s PC JMP (ea)
JSR SP -4 = SP; PC = (SP) JSR (ea)
Destination Address =» PC
LEA (ea) = An LEA (ea),An
LINK SP - 4 = SP; An =» (SP) LINK An,#(displacement)
SP = An, SP + d = SP o
LPSTOP If supervisor state LPSTOP #(data)
Immediate Data =» SR
Interrupt Mask =» External Bus Interface (EBI)
STOP
else TRAP
LSL,LSR Destination Shifted by {count) =» Destination LSd! Dx,Dy
LSd! #(data),Dy
LSd! (ea)
MOVE Source = Destination MOVE (ea),(ea)
MOVEA Source =» Destination MOVEA (ea),An
MOVE from | CCR = Destination MOVE CCR,(ea)
CCR
5-16 MC68360 USER'S MANUAL MOTOROLA

Table 5-2. Instruction Set Summary (Continued)

Opcode Operation Syntax
MOVE to CCR | Source = CCR MOVE (ea),CCR
MOVE from SR | If supervisor state MOVE SR (ea)
then SR => Destination
else TRAP
MOVE to SR | If supervisor state MOVE (ea),SR
then Source = SR
else TRAP
MOVE USP | If supervisor state MOVE USP,An
then USP => An or An = USP MOVE An,USP
else TRAP
MOVEC If supervisor state MOVEC Rc,Rn
then Rc= RnorRn= Rc MOVEC Rn,Rc
else TRAP
MOVEM Registers = Destination MOVEM register list,(ea)
) Source = Registers MOVEM (ea),register list
MOVEP Source = Destination MOVEP Dx,(d,Ay)
MOVEP (d,Ay),Dx
MOVEQ Immediate Data = Destination MOVEQ #(data),Dn
MOVES If supervisor state MOVES Rn,(ea)
then Rn = Destination [DFC] or Source MOVES (ea),Rn
[SFC]= Rn
else TRAP
MULS Source x Destination = Destination MULS.W (ea),Dn 16 x 16 = 32
MULS.L {ea),Di 32x32=>32
MULS.L (ea),Dh:DI 32 x32=>64
MULV Source x Destination = Destination MULU.W (ea),Dn 16 x 16 = 32
MULU.L (ea),DI 32x32=32
MULU.L (ea),Dh:DI 32 x32= 64
NBCD 0 — (Destinationqg) — X => Destination NBCD (ea)
NEG 0 - (Destination) = Destination NEG (ea)
NEGX 0 - (Destination) - X = Destination NEGX (ea)
NOP None NOP
NOT ~Destination =» Destination NOT (ea)
OR Source V Destination = Destination OR (ea),Dn
OR Dn,{ea)
ORI Immediate Data V Destination => Destination - ORI #(data),(ea)
ORIto CCR | Source VCCR == CCR ORI #(data),CCR
ORI to SR I supervisor state OR| #(data),SR
then Source V SR = SR
else TRAP
PEA Sp— 4 = SP; (ea) = (SP) PEA (ea)
RESET If supervisor state RESET
then Assert RESET
else TRAP .
ROL,ROR | Destination Rotated by (count }=> Destination ROd! Rx,Dy
ROd! #(data),Dy
ROd! {ea)
MOTOROLA MC68360 USER’S MANUAL

5-17

Table 5-2. Instruction Set Summary (Concluded)

Opcode Operation Syntax
ROXL,ROXR | Destination Rotated with X by (count) =» Destination | ROXd? Rx,
‘ - ROXd! #(data),Dy
ROXd1 (ea)
RTD (SP) =» PC; SP +4 +d = SP RTD #(displacement)
RTE If supervisor state RTE
the (SP) =» SR; SP + 2 = SP; (SP) = PC;
SP + 4 = SP;
restore state and deallocatestack accordingto(SP)
else TRAP
RTR (SP) = CCR; SP + 2 = SP; RTR
(SP) = PC; SP + 4 =» SP
RTS (SP) = PC; SP + 4 = SP RTS
SBCD Destination1g — Source{g — X => Destination SBCD Dx,Dy
SBCD —{Ax),—~(Ay)
Sce If Condition True Scc (ea)
then 1s =» Destination
else Os =» Destination
STOP If supervisor state STOP #(data)
then Immediate Data =» SR; STOP
else TRAP
suB Destination - Source = Destination SUB (ea),Dn
SUB Dn,(ea)
SUBA Destination — Source =» Destination SUBA (ea),An
SuBI Destination — Immediate Data =» Destination SUBI #(data),(ea)
SuBQ Destination - Immediate Data = Destination SUBQ #(data),(ea)
sSuBX Destination — Source ~ X =» Destination SUBX Dx,Dy
SUBX —{Ax),~Ay)
SWAP Register [31:16] «» Register [15:0] SWAP Dn
TAS Destination Tested =» Condition Codes; TAS (ea)
1= bit 7 of Destination
TBLS ENTRY(n) + {(ENTRY(n + 1) - ENTRY(n)) x TBLS.ésize) (ea), Dx
Dx{7:0]} / 256 => Dx TBLS.(size) Dym:Dyn, Dx
TBLSN ENTRY(n) x 256 + {(ENTRY(n + 1) - ENTRY(n)) x TBLSN.ﬁsize; {ea),Dx
Dx [7:0]} = Dx TBLSN.(size) Dym:Dyn, Dx
TBLU ENTRY(n) + {(ENTRY(n + 1) - ENTRY(n)) x TBLU.(size) (ea),Dx
Dx[7:0]} / 256 =» Dx TBLU.(size) Dym:Dyn, Dx
TBLUN ENTRY(n) x 256 + {(ENTRY(n + 1) — ENTRY(n)) x TBLUN.§size§ (ea),Dx
Dx[7:0]}) = Dx . TBLUN.(size) Dym:Dyn,Dx
TRAP SSP - 2 = SSP; Format/Offset = (SSP); TRAP #(vector)
SSP — 4 = SSP; PC = (SSP); SSP - 2 =» SSP;
SR = (SSP); Vector Address = PC
TRAPcc If cc then TRAP TRAPcc
TRAPcc.W #(data)
TRAPcc.L #(data)
TRAAFV ii V then 1HAP TRAPV
TST Destination Tested = Condition Codes TST (ea)
UNLK An =» SP; (SP) =» An; SP + 4= SP UNLK An
NOTE 1: dis direction, L or R.
5-18 MC68360 USER’'S MANUAL MOTOROLA

5.3.3.1 CONDITION CODE REGISTER. The CCR portion of the SR contains five bits that
indicate the result of a processor operation. Table 5-3 lists the effect of each instruction on
these bits. The carry bit and the multiprecision extend bit are separate in the M68000
Family to simplify programming techniques that use them. Refer to Table 5-7 as an

example.
Table 5-3. Condition Code Computations
Operations X N 4 v c Special Definition
ABCD * U ? U ? | C=Decimal Carry _
Z=ZARmA..ARO
ADD, ADDI, ADDQ * * * ? ? V=SmADmAmV§FﬁAmAF_{m
C=SmADmVEmMADmMYVSmARMm
ADDX * * ? ? ? |V=SmADmARmMVSmADmARm
C=SmADmVRmADMYVSmARm
Z=ZARmA..ARO
AND, ANDI, EOR,EORI, | — | * * 0 0
MOVEQ, MOVE, OR,
ORI, CLR, EXT, NOT,
TAS, TST
CHK — * U U U
CHK2, CMP2 — 1] U ? U ? |Z=(R=LB)V(R=UB)
"|C=(LB<UB)A(IR<LB)V(R>UB)V
(UB<LB)A(R>UB)A(R<LB)
SUB, SUBI, SUBQ *]~ 1] 21] ? |V=SAADmARMVSmADmARm
C=SmADmVRMADMYVSmARmM
suBx . . 2| 2 ? |V=SmADmARmVSmADmARmM
C=SmADmVRMADmVSmARmM
Z=ZARmA..ARO
CMP, CMPI, CMPM —_ * * ? ? V="$ﬁAD_mAﬁrﬁVSmAﬁﬁiA Rm
C=SmADmVRmADmMYVSmARm
DIVS, DIVU - * * ? 0 | V = Division Overflow
MULS, MULU —_ * * ? 0 [V =Multiplication Overflow
| SBCD, NBCD * U ? u ? | C=Decimal Borrow _
‘ Z=ZARmA..ARD/
NEG * * * ? ? | V=DmARm
C=DmV Rm
NEGX * * ? ? ? |V=DmARm
C=DmVRm
. Z=ZARmA..ARO
ASL * ' . ? ? |[V=DmMADOmM-1V..VDm-r)V DmA
(ODm-1V..+Dm-1)
C=Dm-r+1
ASL (r=0) — | . ol o
LSL, ROXL * * * 0 ? |C=Dm-r+1
LSR (r = 0) — 1 - . oo
ROXL (r = 0) —1 . o 2 |[c=x
ROL — * * [? |C=Dm-r+1
ROL (r=0) = . 0 0
ASR, LSR, ROXR * * v 0 ? |C=Dr-1
ASR, LSR (r=0) e * 0 0
ROXR (r=0) -] . o| ? |c=X
MOTOROLA MC68360 USER’S MANUAL

5-19

Table 5-3. Condition Code Computations (Continued)

Operations X N r4 v C Special Definition
ROR —_ . * 0 ? |C=Dr-1
ROR (r =0) —_ » * 0 0
NOTE: The following notations apply to this table only.
— = Not affected Sm = Source operand MSB
U = Undefined Dm = Destination operand MSB
? = See special definition Rm = Result operand MSB
*+ = General case R = Register tested
X = C n = Bit Number
N = Rm r = Shift count
Z = BRmA..AR0 LB = Lowerbound
A = Boolean AND UB = Upperbound
v

= Boolean OR Bm = NOTRm

5.3.3.2 DATA MOVEMENT INSTRUCTIONS. The MOVE instruction is the basic means of
transferring and storing address and data. MOVE instructions transfer byte, word, and
long-word operands from memory to memory, memory to register, register to memory,
and register to register. Address movement instructions (MOVE or MOVEA) transfer word
and long-word operands and ensure that only valid address manipulations are executed.

In addition to the general MOVE instructions, there are several special data movement
instructions—move multiple registers (MOVEM), move peripheral data (MOVEP), move
quick (MOVEQ), exchange registers (EXG), load effective address (LEA), push effective
address (PEA), link stack (LINK), and unlink stack (UNLK). Table 5-4 is a summary of the
data movement operations.

Table 5-4. Data Movement Operations

Operand Operand
Instruction Syntax . Size Operation
EXG Rn, Rn 32 Rn = Rn
LEA (ea), An 32 (ea) = An
LINK An, #(d) 16, 32 SP -4 = SP, An = (SP); SP = An, SP + d = SP
MOVE (ea), (ea) 8, 16, 32 Source = Destination
MOVEA (ea), An 16,32 =>32 | Source = Destination
MOVEM list, (ea) 16, 32 Listed registers = Destination
(ea), list 16,32 =32 | Source = Listed registers
MOVEP Dn, (d16, An) 16, 32 Dn [31:24] = (An + d); Dn [23:16] = (An + d + 2);
Dn [15:8] = (An + d+ 4); Dn [7:0] = (An + d + 6)
(d16, An), Dn (An + d) = Dn [31:24]; (An + d + 2) = Dn [23:16];
: (An + d + 4) = Dn [15:8]; (An + d + 6) => Dn [7:0]
MOVEQ #(data), Dn 8=32 Immediate Data = Destination
PEA (ea) 32 SP -4 = SP; (ea) = SP
UNLK An 32 An = SP; (SP) = An, SP + 4= SP
5-20 MC68360 USER'S MANUAL MOTOROLA

5.3.3.3 INTEGER ARITHMETIC OPERATIONS. The arithmetic operations include the
four basic operations of add (ADD), subtract (SUB), multiply (MUL), and divide (DIV) as
well as arithmetic compare (CMP, CMPM, CMP2), clear (CLR), and negate (NEG). The
instruction set includes ADD, CMP, and SUB instructions for both address and data
operations with all operand sizes valid for data operations. Address operands consist of
16 or 32 bits. The clear and negate instructions apply to all sizes of data operands.

Signed and unsigned MUL and DIV instructions include:
“ « Word multiply to produce a long-word product

Long-word multiply to produce a long-word or quad-word product
Division of a long-word dividend by a word divisor (word quotient and word

remainder)

Division of a long-word or quad-word dividend by a long-word divisor (long-word n
quotient and long-word remainder)

A set of extended instructions provides multiprecision and mixed-size arithmetic. These
instructions are add extended (ADDX), subtract extended (SUBX), sign extend (EXT), and

negate binary with extend (NEGX). Refer to Table 5-6 for a summary of the integer

arithmetic operations.

MOTOROLA . MC68360 USER’S MANUAL 5-21

Table 5-5. Integer Arithmetic Operations

Operand Operand
Instruction Syntax Size Operation
ADD Dn, (ea) 8, 16, 32 Source + Destination = Destination
(ea), Dn 8, 16, 32
ADDA (ea), An 16, 32 Source + Destination = Destination
ADDI #(data), (ea) 8, 16, 32 Immediate Data + Destination =» Destination
ADDQ #(data), (ea) 8, 16, 32 Immediate Data + Destination = Destination
ADDX Dn, Dn 8, 16, 32 Source + Destination + X = Destination
—(An), - (An) 8, 16, 32
CLR {ea) 8, 16, 32 0 = Destination
CMP (ea), Dn 8, 16, 32 (Destination — Source), CCR shows results
"CMPA (ea), An 16, 32 (Destination — Source), CCR shows results
CMPI #(data), (ea) 8, 16,32 (Destination — Immediate Data), CCR shows results
CMPM (An) +, (An) + 8, 16, 32 (Destination — Source), CCR shows results
CMP2 (ea), Rn 8, 16, 32 Lower bound < Rn s Upper Bound, CCR shows
) results
DIVs/DIVU (ea), Dn 32/16 = 16:16 | Destination/Source => Destination (signed or
(ea), Dr:Dq 64/32 => 32:32 | unsigned)
(ea), Dq 32/32 = 32
DIVSL/DIVUL (ea), Dr:Dq 32/32 = 32:32
EXT Dn 8=16 Sign Extended Destination = Destination
Dn 16 = 32
EXTB Dn 8=32 Sign Extended Destination = Destination
MULS/MULU (ea), Dn 16 x 16 = 32 | Source x Destination = Destination (signed or
(ea), DI 32 x 32 =32 | unsigned)
(ea), Dh:DI 32 x 32 = 64
NEG (ea) 8, 16, 32 0 - Destination => Destination
NEGX (ea) 8, 16, 32 0 - Destination — X = Destination
suB (ea), Dn 8, 16, 32 Destination — Source => Destination
Dn, (ea)
SUBA {(ea), An 16, 32 Destination — Source = Destination
susl #(data), (ea) 8, 16, 32 Destination — Immediate Data = Destination
suBsQ #(data), (ea) 8, 16,32 Destination — Immediate Data = Destination
SuBX Dn, Dn 8, 16, 32 Destination — Source — X = Destination
= (An), - (An) 8, 16, 32
TBLS/TBLU {ea), Dn 8, 16, 32 Dyn — Dym = Temp
Dym:Dyn, Dn (Temp x Dn [7:0]) = Temp
(Dym x 256) + Temp = Dn
TBLSN/TBLUN {ea), Dn 8, 16, 32 Dyn - Dym => Temp
Dym:Dyn, Dn (Temp x Dn [7:0]) / 256 = Temp
Dym + Temp => Dn

MC68360 USER'S MANUAL

MOTOROLA

5.3.3.4 LOGIC INSTRUCTIONS. The logical operation instructions (AND, OR, EOR, and
NOT) perform logical operations with all sizes of integer data operands. A similar set of
immediate instructions (ANDI, ORI, and EORI) provide these logical operations with all
sizes of immediate data. The test (TST) instruction arithmetically compares the operand
with zero, placing the result in the CCR. Table 5-6 summarizes the logical operations.

Table 5-6. Logic Operations

Operand Operand
Instruction Syntax Size Operation
AND (ea), Dn 8, 16, 32 Source A Destination = Destination
Dn, {ea) 8, 16, 32
ANDI #(data), (ea) 8, 16, 32 Immediate Data A Destination => Destination
EOR Dn, (ea) 8, 16, 32 Source @ Destination =» Destination
EORI #(data), (ea) 8, 16, 32 Immediate Data @ Destination = Destination
NoT {ea) 8,16,32 | Destination = Destination
OR {ea), Dn 8,16, 32 Source V Destination =» Destination
Dn, (ea) 8, 16, 32
ORI #(data), (ea) 8, 16, 32 Immediate Data V Destination = Destination
TST (ea) 8, 16, 32 Source - 0, to set condition codes

5.3.3.5 SHIFT AND ROTATE INSTRUCTIONS. The arithmetic shift instructions, ASR and
ASL, and logical shift instructions, LSR and LSL, provide shift operations in both
directions. The ROR, ROL, ROXR, and ROXL instructions perform rotate (circular shift)
operations, with and without the extend bit. All shift and rotate operations can be
-performed on either registers or memory.

Register shift and rotate operations shift all operand sizes. The shift count may be
specified in the instruction operatlon word (to shift from 1 to 8 places) or in a register
(modulo 64 shift count).

Memory shift and rotate operations shift word-length operands one bit position only. The
SWAP instruction exchanges the 16-bit halves of a register. Performance of shift/rotate
instructions is enhanced so that use of the ROR and ROL instructions with a shift count of
eight allows fast byte swapping. Table 5-7 is a summary of the shift and rotate operations.

MOTOROLA MC68360 USER’S MANUAL 5-23

Table 5-7. Shift and Rotate Operations

Operand Operand
Instruction Syntax Size Operation
ASL Dn, Dn 8, 16, 32
#(data), Dn 8,16, 32 [xc fe— «——— o
(ea) 16
ASR Dn, Dn 8, 16,32
#(data), Dn 8, 16, 32 I:[_r——-—* > xc |
(ea) 16
LSL Dn, Dn 8, 16, 32
#{data), Dn 8, 16,32 [xc fe— «— j«—0
(ea) 16
LSR Dn, Dn 8, 16, 32
#(data), Dn 8, 16,32 > —— > xc]|
(ea) 16
ROL Dn, Dn 8, 16,32
#(data), Dn 8, 16, 32 | c |<J_| (___:k_l
{ea) 16
ROR Dn, Dn 8, 16, 32
#(data), Dn 8, 16, 32 I._)li___) J-L)I c I
(ea) 16
ROXL <Dn, I))n 8, 16, 32
#(data), Dn 8,16, 32 | c|<-|_|<—-—-|<—| x]<-|
(ea) 16
ROXR <Dn, l))n 8, 16, 32 |—>|
#(data), Dn 8, 16, 32 X — c
s s g ENFY
SWAP Dn 16 [
| wsw | Low |
|

5.3.3.6 BIT MANIPULATION INSTRUCTIONS. Bit manipulation operations are
accomplished using the following instructions: bit test (BTST), bit test and set (BSET), bit
test and clear (BCLR), and bit test and change (BCHG). All bit manipulation operations
can be performed on either registers or memory. The bit number is specified as immediate
data or in a data register. Register operands are 32 bits, and memory operands are 8 bits.
Table 5-8 is a summary of bit manipulation instructions.

Table 5-8. Bit Manipulation Operations

Operand Operand
Instruction Syntax Size Operation

BCHG Dn, (ea) 8,32 ~((bit number) of destination) => Z = bit of
#(data), (ea) 8,32 destination

BCLR Dn, (ea) 8,32 ~((bit number) of destination) = Z; 0 = bit of
#(data), (ea) 8, 32 destination

seer o, {eo) g 22 {{bit number) of doctination) = 7, 1 — bit of
#(data), (ea) 8, 32 destination

BTST Dn, (ea) 8,32 ~({bit number) of destination) => Z
#(data), (ea) 8, 32

5-24

MC68360 USER’S MANUAL

MOTOROLA

5.3.3.7 BINARY-CODED DECIMAL (BCD) INSTRUCTIONS. Five instructions support
operations on BCD numbers. The arithmetic operations on packed BCD numbers are add
decimal with extend (ABCD), subtract decimal with extend (SBCD), and negate decimal
with extend (NBCD). Table 5-9 is a summary of the BCD operations.

Table 5-9. Binary-Coded Decimal Operations

Operand Operand
Instruction Syntax Size Operation
ABCD Dn, Dn 8 Sourceq + Destination1g + X => Destination
= (An), - (An) 8
NBCD (ea) 8 0 - Destination1g — X = Destination
8
SBCD Dn, Dn 8 Destination1g — Source1g — X = Destination
- (An)v - (An) 8

5.3.3.8 PROGRAM CONTROL INSTRUCTIONS. A set of subroutine call and return
instructions and conditional and unconditional branch instructions perform program control
operations. Table 5-10 summarizes these instructions.

Table 5-10. Program Control Operations

Operand Operand
Instruction Syntax Size Operation
Conditional
Bee (label) 8, 16, 32 If condition true, then PC + d = PC
DBcc Dn, (label) 16 If condition false, then Dn — 1 = PC;
if Dnw (- 1), then PC + d= PC
Sce (ea) 8 If condition true, then destination bits are set to 1;

else destination bits are cleared to 0

Unconditional

BRA (label) 8, 16,32 PC+d=PC
BSR (label) 8, 16,32 SP -4 = SP; PC= (SP); PC+d=PC
JMP (ea) none Destination = PC
JSR (ea) none SP - 4 = SP; PC = (SP); destination = PC
NOP none none PC+2=PC
Returns
RTD #(d) 16 (SP)=PC; SP+ 4+ d=SP
RTR none none (SSPP) = CCR; SP+2=SP; (SP)=PC; SP +4 =
RTS none none (SP)=PC; SP + 4= SP

MOTOROLA MC68360 USER’S MANUAL 5-25

To specify conditions for change in program control, condition codes must be substituted
for the letters "cc” in conditional program control opcodes. Condition test mnemonics are
given below. Refer to 5.3.3.10 Condition Tests for detailed information on condition

codes.
cC —
CsS —
EQ —
F —
GE —
GT —
H —
LE —

Carry clear

_Carry set

Equal

False*

Greater or equal
Greater than
High

Less or equal

LS —
LT —
M —
NE —
PL —
T —
vC —
Vs —

*Not applicable to the Bcc instruction

Low or same
Less than
Minus

Not equal
Plus

True

Overflow clear
Overflow set

5.3.3.9 SYSTEM CONTROL INSTRUCTIONS. Privileged instructions, trapping
instructions, and instructions that use or modify the CCR provide system control
operations. All of these instructions cause the processor to flush the instruction pipeline.
Table 5-11 summarizes the instructions. The preceding list of condition tests also applies
to the TRAPcc instruction. Refer to 5.3.3.10 Condition Tests for detailed information on
condition codes.

5-26

MC68360 USER’S MANUAL

MOTOROLA

Table 5-11. System Control Operations

Operand Operand
Instruction Syntax Size Operation
Privileged
ANDI #(data), SR 16 Immediate Data A SR =» SR
EORI #(data), SR 16 Immediate Data @ SR = SR
MOVE (ea), SR 16 Source = SR
SR, (ea) 16 SR = Destination
MOVEA USP, An 32 USP =» An
An, USP 32 An = USP
MOVEC Rc, Rn 32 Rc = Rn
Rn, Re 32 Rn =» Rc
MOVES Rn, (ea) 8, 16, 32 Rn =» Destination using DFC
(ea), Rn Source using SFC =» Rn
ORI #(data), SR 16 Immediate Data V SR = SR
RESET none none Assert RESET line
RTE none none (SP)=>SR; SP +2=>8SP; (SP) = PC;SP + 4=
SP; restore stack according to format
STOP #(data) 16 Immediate Data =» SR; STOP
LPSTOP #(data) none Immediate Data =» SR; interrupt mask =» EBI;
STOP
Trap Generating
BKPT #(data) none If breakpoint cycle acknowledged, then execute
returned operation word, else trap as illegal
instruction.
BGND none none If backgroundmode enabled, then enter background
mode, else format/vector offset => — (SSP);
PC =» — (SSP); SR = — (SSP); (vector) = PC
CHK {ea), Dn 16, 32 If Dn <0 or Dn < (ea), then CHK exception
CHK2 {ea), Rn 8, 16, 32 If Rn < lower bound or Rn > upper bound, then
CHK exception
ILLEGAL none none SSP - 2 = SSP; vector offset = (SSP);
SSP -4 = SSP; PC = (SSP);
SSP -2 = SSP; SR = (SSP);
llegal instruction vector address = PC
TRAP #(data) none SSP — 2 = SSP; format/vector offset =» (SSP);
SSP — 4 = SSP; PC = (SSP); SR = (SSP);
vector address = PC
TRAPcc none none If cc true, then TRAP exception
#(data) 16, 32
TRAPV none none It V set, then overflow TRAP exception
Condition Code Register
ANDI #(data), CCR 8 Immediate Data A CCR =» CCR
EORI #(data), CCR 8 Immediate Data ® CCR = CCR
MOVE (ea), CCR 16 Source =» CCR
CCR, (ea) 16 CCR => Destination
ORI #(data), CCR 8 Immediate Data V CCR = CCR
MOTOROLA MC68360 USER’S MANUAL

5-27

5.3.3.10 CONDITION TESTS. Conditional program control instructions and the TRAPcc
instruction execute on the basis of condition tests. A condition test is the evaluation of a
logical expression related to the state of the CCR bits. If the result is 1, the condition is
true. If the result is 0, the condition is false. For example, the T condition is always true,
and the EQ condition is true only if the Z-bit condition code is true. Table 5-12 lists each
condition test. ‘

Table 5-1 2. Condition Tests

Mnemonic Condition Encoding Test
T True 0000
F* False . 0001
HI High 0010 CeZ
LS Low or Same oo C+2Z
cC Carry Clear 0100 C
CS Carry Set 0101 C
NE Not Equal 0110 V4
EQ Equal 0111 z
vC Overflow Clear 1000 v
Vs Overflow Set 1001 '
PL Plus 1010 N
Mi Minus 1011 N
GE Greater or Equal 1100 NeV+NevV
LT Less Than 1101 NeV+NeV
GT Greater Than 1110 NeVeZiNeVez
LE Less or Equal 1111 Z+NeV+NeV
* Not available for the Bec instruction.

* = Boolean AND

+ = Boolean OR

N = Boolean NOT

5.3.4 Using the TBL Instructions

There are four TBL instructions. TBLS retums a signed, rounded byte, word, or long-word
result. TBLSN returns a signed, unrounded byte, word, or long-word result. TBLU returns
an unsigned, rounded byte, word, or long-word result. TBLUN returns an unsigned,
unrounded byte, word, or long-word result. All four instructions support two types of
interpolation data: an n-element table stored in memory and a two-element range stored in
a pair of data registers. The latter form provides a means of performing surface (3D)
interpolation between two previously calculated linear interpolations.

The following examples show how to compress tables and use fewer interpolation levels
between table entries. Example 1 (see Figure 5-7) demonstrates TBL for a 257-entry
table, allowing up to 256 interpolation levels between entries. Example 2 (see Figure 5-8)
reduces table length for the same data to four entries. Example 3 (see Figure 5-9)
demonstrates use of an 8-bit independent variable with an instruction.

5-28 MC68360 USER’S MANUAL MOTOROLA

Two additional examples show how TBLSN can reduce cumulative error when mulitiple
table lookup and interpolation operations are used in a calculation. Example 4
demonstrates addition of the results of three table interpolations. Example 5 illustrates use

of TBLSN in surface interpolation.

5.3.4.1 TABLE EXAMPLE 1: STANDARD USAGE. The table consists of 257 word
entries. As shown in Figure 5-7, the function is linear within the range 32768 < X = 49152.
Table entries within this range are as given in Table 5-13.

Table 5-13. Standard Usage Entries

Entry Number X-Value Y-Value
128* 32768 1311
162 41472 1659
163 41728 1669
164 41984 1679
165 42240 1690
192* 49152 1966

*These values are the end points of the range.
All entries between these points fall on the line.

DEPENDENT VARIABLE

O\

i
|
!
1
1
L}
'
1
[}
]
L}
1
L}
1
|
t
|
'

16384 32768 49152
X
INDEPENDENT VARIABLE
Figure 5-7. Table Example 1

MOTOROLA MC68360 USER'S MANUAL

5-29

The table instruction is executed with the following bit pattern in Dx:

31 16 15 0
| NOT USED [+ o 1 000111000000 0

Table Entry Offset = Dx [8:15] = $A3 = 163
Interpolation Fraction => Dx [0:7] = $80 = 128
Using this information, the table instruction calculates dependent variable Y:

Y = 1669 + (128 (1679 — 1669)) / 256 = 1674

data from Example 1 has been compressed by limiting the maximum value of the
independent variable. Instead of the range 0 < X = 65535, X is limited to 0 = X = 1023.
The table has been compressed to only five entries, but up to 256 levels of interpolation
are allowed between entries.

E 5.3.4.2 TABLE EXAMPLE 2 COMPRESSED TABLE. In Example 2 (see Figure 5-8), the

DEPENDENT VARIABLE

gt

'
)
'
'
'
]
'
'
t
]
'
'
'
'
]
'
"
]
L}

! I
256 512
X

INDEPENDENT VARIABLE

Figure 5-8. Table Example 2

NOTE

Extreme table compression with many levels of interpolation is
possible only with highly linear functions. The table entries
within the range of interest are listed in Table 5-14.

5-30 MC68360 USER’S MANUAL MOTOROLA

Table 5-14. Compressed Table Entries

Entry Number X-Value Y-Value
2 512 1311
3 786 1966

Since the table is reduced from 257 to 5 entries, independent variable X must be scaled
appropriately. In this case the scaling factor is 64, and the scaling is done by a single
instruction:

LSR.W #6,Dx

Thus, Dx now contains the following bit pattern:

31 18 15 0
| " NOT USED o 0o oo 001 01000111 0]

Table Entry Offset = Dx [8:15] = $02 = 2
Interpolation Fraction => Dx [0:7] = $8E = 142
Using this information, the table instruction calculates dependent variable Y:

Y =1331 + (142 (1966 — 1311)) / 256 = 1674

The function chosen for Examples 1 and 2 is linear between data points. If another
function had been used, interpolated values might not have been identical.

5.3.4.3 TABLE EXAMPLE 3: 8-BIT INDEPENDENT VARIABLE. This example shows
how to use a table instruction within an interpolation subroutine. Independent variable X is
calculated as an 8-bit value, allowing 16 levels of interpolation on a 17-entry table. X is
passed to the subroutine, which returns an 8-bit result. The subroutine uses the data listed
in Table 5-15, based on the function shown in Figure 5-9.

MOTOROLA . MC68360 USER’S MANUAL 5-31

INDEPENDENT VARIABLE
<

X
INDEPENDENT VARIABLE

Figure 5-9. Table Example 3

Table 5-15. 8-Bit Independent
Variable Entries

(Subrc):(utlne) (lnstrt)l(ctlon) Y
0 0 0
1 256 16
2 512 32
3 768 48
4 1024 64
5 1280 80
6 1536 96
7 1792 112
8 2048 128
9 2304 112
10 2560 96
11 2816 80
12 3072 64
13 3328 48
14 3584 32
15 3840 16
16 4096 0

The first column is the value passed to the subroutine, the second column is the value
expected by the table instruction, and the third column is the result returned by the
subroutine.

5-32 MC68360 USER’S MANUAL MOTOROLA

The following value has been calculated for independent variable X:

31 16 15 0
| NOT USED lo oo oo 0001011110 1]

Since X is an 8-bit value, the upper four bits are used as a table offset, and the lower four
bits are used as an interpolation fraction. The following results are obtained from the
subroutine:
Table Entry Offset = Dx [4:7] = $B = 11
Interpolation Fraction = Dx [0:3] = $D = 13
Thus, Y is calculated as follows:

Y =80 + (13 (64 — 80)) / 16 = 67 n

If the 8-bit value for X were used directly by the table instruction, interpolation would be
incorrectly performed between entries 0 and 1. Data must be shifted to the left four places
before use:

LSL.W #4, Dx

The new range for X is 0 s X < 4096; however, since a left shift fills the least significant
digits of the word with zeros, the interpolation fraction can only have one of 16 values.

After the shift operation, Dx contains the following value:

31 16 15 0
| NOT USED lo 0o o0 1 01 11 1 0100 0ol

Execution of the table instruction using the new value in Dx yields:
Table Entry Offset = Dx [8:15] = $0B = 11

Interpolation Fraction = Dx [0:7] = $D0 = 208

Thus, Y is calculated as follows:
Y =80 + (208 (64 — 80)) / 256 = 67

5.3.4.4 TABLE EXAMPLE 4: MAINTAINING PRECISION. In this example, three TBL
operations are performed and the results are summed. The calculation is done once with
the result of each TBL rounded before addition and once with only the final result rounded.
Assume that the result of the three interpolations are as follows (a “." indicates the binary
radix point).

TBL #1 0010 0000.0111 0000
TBL# 2 0011 1111.0111 0000
TBL#3 0000 0001.0111 0000

MOTOROLA MC68360 USER’S MANUAL 5-33

First, the results of each TBL are rounded with the TBLS round-to-nearest-even algorithm.
The following values would be returned by TBLS:

TBL #1 0010 0000 .
TBL#2 0011 1111.
TBL#3 0000 0001 .

Summing, the following result is obtained:

0010 0000.
0011 1111.

0000 0001,
0110 0000.

n Now, using the same TBL results, the sum is first calculated and then rounded according
to the same algorithm:

0010 0000.0111 0000
0011 1111.0111 0000

0000 0001.0111 0000
0110 0001.0101 0000

Rounding yields:

0110 0001 .

The second result is preferred. The following code sequence illustrates how addition of a
series of table interpolations can be performed without loss of precision in the intermediate
results:
LO:
TBLSN.B (ea), Dx
TBLSN.B (ea), Dx
TBLSN.B (ea), DI

ADD.L Dx, Dm Long addition avoids problems with carry
ADD.L Dm, DI

ASR.L #8, DI Move radix point

BCC.B L1 Fraction MSB in carry

ADDQ.B #1, DI ‘

Li:...

5-34 MC68360 USER’S MANUAL ’ MOTOROLA

5.3.4.5 Table Example 5: Surface Interpolations. The various forms of table can be
_used to perform surface (3D) TBLs. However, since the calculation must be split into a
series of 2D TBLs, it is possible to lose precision in the intermediate results. The following
code sequence, incorporating both TBLS and TBLSN, eliminates this possibility.

Lo:
MOVE.W Dx, DI Copy entry number and fraction number
TBLSN.B {ea), Dx
TBLSN.B {ea), DI

TBLS.W Dx:DI, Dm Surface interpolation, with round
ASR.L #8, Dm Read just the result
BCC.B L1 . No round necessary

ADDQ.B #1, DI Half round up
L1:...

Before execution of this code sequence, Dx must contain fraction and entry numbers for n
the two TBL, and Dm must contain the fraction for surface interpolation. The (ea) fields in

the TBLSN instructions point to consecutive columns in a 3D table. The TBLS size
parameter must be word if the TBLSN size parameter is byte, and must be long word if

TBLSN is word. Increased size is necessary because a larger number of significant digits

is needed to accommodate the scaled fractional results of the 2D TBL.

5.3.5 Nested Subroutine Calls

The LINK instruction pushes an address onto the stack, saves the stack address at which
the address is stored, and reserves an area of the stack for use. Using this instruction in a
series of subroutine calls will generate a linked list of stack frames.

The UNLK instruction removes a stack frame from the end of the list by loading an
address into the SP and pulling the value at that address from the stack. When the
instruction operand is the address of the link address at the bottom of a stack frame, the
effect is to remove the stack frame from both the stack and the linked list.

5.3.6 Pipeline Synchronization with the NOP Instruction

Although the no operation (NOP) instruction performs no visible operation, it does force
synchronization of the instruction pipeline, since all previous instructions must complete
execution before the NOP begins.

5.4 PROCESSING STATES

This section describes the processing states of the CPU32+. It includes a functional
description of the bits in the supervisor portion of the SR and an overview of actions taken
by the processor in response to exception conditions.

MOTOROLA MC68360 USER’S MANUAL 5-35

5.4.1 State Transitions

The processor is always in one of four processing states: normal, background, exception,
or halted.

When the processor fetches instructions and operands or executes instructions, it is in the
normal processing state. The stopped condition, which the processor enters when a
STOP or LPSTOP instruction is executed, is a variation of the normal state in which no
further bus cycles are generated.

Background state is an alternate operational mode used for system debugging. Refer to
5.6 Development Support for more information.

Exception processing refers specifically to the transition from normal processing of a
program to normal processing of system routines, interrupt routines, and other exception
handlers. Exception processing includes the stack operations, the exception vector fetch,
and the filling of the instruction pipeline caused by an exception. Exception processing
ends when execution of an exception handler routine begins. Refer to 5.5 Exception
Processing for comprehensive information.

A catastrophic system failure occurs if the processor detects a bus error or generates an
address error while in the exception processing state. This type of failure halts the
processor. For example, if a bus error occurs during exception processing caused by
another bus error, the CPU32+ assumes that the system is not operational and halts.

The halted condition should not be confused with the stopped condition. After the
processor executes a STOP or LPSTOP instruction, execution of instructions can resume
when a trace, interrupt, or reset exception occurs.

5.4.2 Privilege Levels

To protect system resources, the processor can operate with either of two levels of
access—user or supervisor. Supervisor level is more privileged than user level. All
instructions are available at the supervisor level, but execution of some instructions is not
permitted at the user level. There are separate SPs for each level. The S-bit in the SR
indicates privilege level and determines which SP is used for stack operations. The
processor identifies each bus access (supervisor or user mode) via function codes to
enforce supervisor and user access levels.

In a typical system, most programs execute at the user level. User programs can access
only their own code and data areas and are restricted from accessing other information.
The operating system executes at the supervisor privilege level, has access to all
resources, performs the overhead tasks for the user level programs, and coordinates their

e

5.4.2.1 SUPERVISOR PRIVILEGE LEVEL. If the S-bit in the SR is set, supervisor
privilege level applies, and all instructions are executable. The bus cycles generated for
instructions executed in supervisor level are normally classified as supervisor references,
and the values of the function codes on FC2-FCO refer to supervisor address spaces.

5-36 , MC68360 USER’S MANUAL MOTOROLA

All exception processing is performed at the supervisor level. All bus cycles generated
during exception processing are supervisor references and all stack accesses use the
SSP.

Instructions that have important system effects can only be executed at supervisor level.
For instance, user programs are not permitted to execute STOP, LPSTOP, or RESET
instructions. To prevent a user program from gaining privileged access, except in a
controlled manner, instructions that can alter the S-bit in the SR are privileged. The TRAP -
#n instruction provides controlled user access to operating system services.

5.4.2.2 USER PRIVILEGE LEVEL. If the S-bit in the SR is cleared, the processor
executes instructions at the user privilege level. The bus cycles for an instruction executed
at the user privilege level are classified as user references, and the values of the function
codes on FC2-FCO specify user address spaces. While the processor is at the user level,
implicit references to the system SP and explicit references to address register seven (A7)
refer to the USP.

5.4.2.3 CHANGING PRIVILEGE LEVEL. To change from user privilege level to
supervisor privilege level, a condition that causes exception processing must occur. When
exception processing begins, the current values in the SR, including the S-bit, are saved
on the supervisor stack, and then the S-bit is set to enable supervisor access. Execution
continues at supervisor privilege level until exception processing is complete.

To return to user access level, a system routine must execute one of the following
instructions: MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, or RTE. These
instructions execute only at supervisor privilege level and can modify the S-bit of the SR.
After these instructions execute, the instruction pipeline is flushed, then refilled from the
appropriate address space.

The RTE instruction causes a return to a program that was executing when an exception
occurred. When RTE is executed, the exception stack frame saved on the supervisor
stack can be restored in either of two ways.

If the frame was generated by an interrupt, breakpoint, trap, or instruction exception, the
SR and PC are restored to the values saved on the supervisor stack, and execution
resumes at the restored PC address, with access level determined by the S-bit of the
restored SR.

If the frame was generated by a bus error or an address error exception, the entire
processor state is restored from the stack.

5.5 EXCEPTION PROCESSING

An exception is a special condition that pre-empts normal processing. Exception
processing is the transition from normal mode program execution to execution of a routine
that deals with an exception. The following paragraphs discuss system resources related
to exception handling, exception processing sequence, and specific features of individual
exception processing routines. !

MOTOROLA r MC68360 USER’S MANUAL 5-37

5.5.1 Exception Vectors

An exception vector is the address of a routine that handles an exception. The VBR
contains the base address of a 1024-byte exception vector table, which consists of 256
exception vectors. Sixty-four vectors are defined by the processor, and 192 vectors are
reserved for user definition as interrupt vectors. Except for the reset vector, which is two
long words, each vector in the table is one long word. Refer to Table 5-16 for information

on vector assignment.

Table 5-16. Exception Vector Assignments

Vector Offset
Vector Number Dec Hex Space Assignment
0 0 000 SP Reset: Initial Stack Pointer
1 4 004 SP Reset: Initial Program Counter
2 8 008 SD Bus Error
3 12 00C SD Address Error
4 16 010 SD illegal Instruction
5 20 014 sD Zero Division
6 24 018 sD CHK, CHK2 Instructions
7 28 01C SD TRAPce, TRAPV Instructions
8 32 020 SD Privilege Violation
9 36 024 sD Trace
10 40 028 SD Line 1010 Emulator
11 44 02C SD Line 1111 Emulator
12 48 030 SD Hardware Breakpoint
13 52 034 sD (Reserved for Coprocessor Protocol Violation)
14 56 038 SD Format Error
15 60 03C sD Uninitialized interrupt
16-23 64 040 SD (Unassigned, Reserved)
92 05C —_
24 96 060 SD Spurious Interrupt
25 100 064 SD Level 1 Interrupt Autovector
26 104 068 SD Level 2 Interrupt Autovector
27 108 06C SD Level 3 Interrupt Autovector
28 112 070 sD Level 4 Interrupt Autovector
29 116 074 SD Level § Interrupt Autovector
30 120 078 SD Level 6 Interrupt Autovector
31 124 07C SD Level 7 Interrupt Autovector
32-47 128 080 SD Trap Instruction Vectors (0-15)
188 0BC —
48-58 192 oco SD (Reserved for Coprocessor)
232 OE8 — ,
59-63 236 OEC SD (Unassigned, Reserved)
252 . OFC —
64-255 256 100 SD User-Defined Vectors (192)
1020 3FC
5-38 MC68360 USER’S MANUAL MOTOROLA

CAUTION

Because there is no protection on the 64 processor-defined
vectors, external devices can access vectors reserved for
internal purposes. This practice is strongly discouraged.

All exception vectors, except the reset vector, are located in supervisor data space. The
reset vector is located in supervisor program space. Only the initial reset vector is fixed in
the processor memory map. When initialization is complete, there are no fixed
assignments. Since the VBR stores the vector table base address, the table can be
located anywhere in memory. It can also be dynamically relocated for each task executed
by an operating system.

obtained from an external device; others are supplied by the processor. The processor
multiplies the vector number by 4 to calculate vector offset, then adds the offset to the
contents of the VBR. The sum is the memory address of the vector.

Each vector is assigned an 8-bit number. Vector numbers for some exceptions are u

5.5.1.1 TYPES OF EXCEPTIONS. An exception can be caused by internal or external
events. ; ,

An internal exception can be generated by an instruction or by an error. The TRAP,
TRAPcc, TRAPV, BKPT, CHK, CHK2, RTE, and DIV instructions can cause exceptions
during normal execution. lllegal instructions, instruction fetches from odd addresses, word
or long-word operand accesses from odd addresses, and privilege violations also cause
internal exceptions.

Sources of external exception include interrupts, breakpoints, bus errors, and reset
requests. Interrupts are peripheral device requests for processor action. Breakpoints are
used to support development equipment. Bus error and reset are used for access control
and processor restart.

5.5.1.2 EXCEPTION PROCESSING SEQUENCE. For all exceptions other than a reset
exception, exception processing occurs in the following sequence. Refer to 5.5.2.1 Reset
for details of reset processing.

As exception processing begins, the processor makes an internal copy of the SR. After
the copy is made, the processor state bits in the SR are changed—the S-bit is set,
establishing supervisor access level, and bits T1 and TO are cleared, disabling tracing. For
reset and interrupt exceptions, the interrupt priority mask is also updated.

Next, the exception number is obtained. For interrupts, the number is fetched from CPU
space $F (the bus cycle is an interrupt acknowledge). For all other exceptions, internal
logic provides a vector number.

Next, current processor status is saved. An exception stack frame is created and placed
on the supervisor stack. All stack frames contain copies of the SR and the PC for use by
RTE. The type of exception and the context in which the exception occurs determine what
other information is stored in the stack frame.

MOTOROLA MC68360 USER’S MANUAL 5-39

Finally, the processor prepares to resume normal execution of instructions. The exception
vector offset is determined by multiplying the vector number by 4, and the offset is added
to the contents of the VBR to determine displacement into the exception vector table. The
exception vector is loaded into the PC. If no other exception is pending, the processor will
resume normal execution at the new address in the PC.

5.5.1.3 EXCEPTION STACK FRAME. During exception processing, the most volatile
portion of the current context is saved on the top of the supervisor stack. This context is
organized in a format called the exception stack frame.

The exception stack frame always includes the contents of SR and PC at the time the
exception occurred. To support generic handlers, the processor also places the vector
offset in the exception stack frame and marks the frame with a format code. The format
field allows an RTE instruction to identify stack information so that it can be properly
restored.

The general form of the exception stack frame is illustrated in Figure 5-10. Although some
formats are peculiar to a particular M68000 family processor, format 0000 is always legal
and always indicates that only the first four words of a frame are present. See 5.5.4
CPU32+ Stack Frames for a complete discussion of exception stack frames.

15 0
STATUS REGISTER
PROGRAM COUNTER HIGH
PROGRAM COUNTER LOW
FORMAT VECTOR OFFSET
OTHER PROCESSOR STATE INFORMATION,

DEPENDING ON EXCEPTION
(0,2, OR 8 WORDS)

f

HIGHER ADDRESSES
STACKING ORDER

Figure 5-10. Exception Stack Frame

5.5.1.4 MULTIPLE EXCEPTIONS. Each exception has been assigned a priority based on
its relative importance to system operation. Priority assignments are shown in Table 5-17.
Group O exceptions have the highest priorities; group 4 exceptions have the lowest
priorities. Exception processing for exceptions that occur simultaneously is done by
priority, from highest to lowest.

It is important to be aware of the difference between exception processing mode and
execution of an exception handler. Each exception has an assigned vector that points to
an associated handler routine. Exception processing includes steps described in 5.5.1.2
Exception Processing Sequence, but does not inciude execution of handier routines,
which is done in normal mode.

5-40 MC68360 USER’S MANUAL MOTOROLA

When the CPU32+ completes exception processing, it is ready to begin either exception
processing for a pending exception or execution of a handler routine. Priority assignment
governs the order in which exception processing occurs, not the order in which exception
handlers are executed.

Table 5-17. Exception Priority Groups

Group/ Exception and
Priority Relative Priority Characteristics
0 Reset Aborts all processing (instruction or
exception); does not save old context.
11 Address Error Suspends processing (instruction or
1.2 Bus Error exception); saves internal context.
2 BKPT#n, CHK, CHK2, Exception processing is a part of
Division by Zero, RTE, instruction execution.
TRAP#n, TRAPcc, TRAPV
3 lllegal Instruction, Line A, Exception processing begins before
Unimplemented Line F, instruction execution.
Privilege Violation
4.1 Trace Exception processing begins when current
4.2 Hardware Breakpoint instruction or previous exception
4.3 Interrupt processing is complete.

As a general rule, when simultaneous exceptions occur, the handler routines for lower
priority exceptions are executed before the handler routines for higher priority exceptions.
For example, consider the arrival of an interrupt during execution of a TRAP instruction
while tracing is enabled. Trap exception processing (2) is done first, followed immediately
by exception processing for the trace (4.1), and then by exception processing for the
interrupt (4.3). Each exception places a new context on the stack. When the processor
resumes normal instruction execution, it is vectored to the interrupt handler, which returns
to the trace handler that returns to the trap handler.

There are special cases to which the general rule does not apply. The reset exception will
always be the first exception handled since reset clears all other exceptions. It is also
possible for high-priority exception processing to begin before low-priority exception
processing is complete. For example, if a bus error occurs during trace exception
processing, the bus error will be processed and handled before trace exception
processing has completed.

MOTOROLA MC68360 USER’S MANUAL 5-41

5.5.2 Processing of Specific Exceptions

The following paragraphs provide details concerning sources of specific exceptions, how
each arises, and how each is processed.

5.5.2.1 RESET. Assertion of RESET by external hardware or assertion of the intermnal
RESET signal by an internal module causes a reset exception. The reset exception has
the highest priority of any exception. Reset is used for system initialization and for
recovery from catastrophic failure. When the reset exception is recognized, it aborts any
processing in progress, and that processing cannot be recovered. Reset performs the
following operations:

1. Clears T0 and T1 in the SR to disable tracing

Sets the S-bit in the SR to establish supervisor privilege

Sets the interrupt priority mask to the highest priority level (%111)
Initializes the VBR to zero ($00000000)

Generates a vector number to reference the reset exception vector
Loads the first long word of the vector into the interrupt SP

Loads the second long word of the vector into the PC

Fetches and initiates decode of the first instruction to be executed

PNO O A ON

Figure 5-11 is a flowchart of the reset exception

After initial instruction prefetches, normal program execution begins at the address in the
PC. The reset exception does not save the value of either the PC or the SR.

If a bus error or address error occurs during reset exception processing, a double bus fault
occurs, the processor halts, and the HALT signal is asserted to indicate the halted
condition.

Execution of the RESET instruction does not cause a reset exception nor does it affect
any internal CPU register. The SIM40 registers and the module control register in each
internal peripheral module (DMA, timers, and serial modules) are not affected. All other
internal peripheral module registers are reset the same as for a hardware reset. The
exteral devices connected to the RESET signal are reset at the completion of the RESET
instruction.

5-42 MC68360 USER’S MANUAL MOTOROLA

ENTRY

138
0 pTOTH
§7 § 12:0
% I’VB“

§

FETCHVECTOR #0

;

OTHERWISE BUS ER“(’R\
SP (VECTOR #0)

FETCHVECTOR # 1

;

OTHERWISE BUS Em
PC NVTTOR #1)

PREFETCH 3 WORDS

;

US ERROR/
ADDRESS
OTHERWISE BEGIN
INSTRUCTION ERROR |
EXECUTION (DOUBLE BUS FAULT)
ASSERT HALT
EXIT

—

Figure 5-11. Reset Operation Flowchart

MOTOROLA MC68360 USER’S MANUAL 5-43

5.5.2.2 BUS ERROR. A bus error exception occurs when an assertion of the BERR signal
is acknowledged. The BERR signal can be asserted by one of three sources:

1. External logic by assertion of the BERR input pin
2. Direct assertion of the internal BERR signal by an internal module

3. Direct assertion of the intemal BERR signal by the on-chip hardware watchdog
after detecting a no-response condition

Bus error exception processing begins when the processor attempts to use information
from an aborted bus cycle.

When the aborted bus cycle is an instruction prefetch, the processor will not initiate
exception processing unless the prefetched information is used. For example, if a branch
instruction flushes an aborted prefetch, that word is not accessed, and no exception
occurs.

When the aborted bus cycle is a data access, the processor initiates exception processing
immediately, except in the case of released operand writes. Released write bus errors are
delayed until the next instruction boundary or until another operand access is attempted.

Exception processing for bus error exceptions follows the regular sequence, but context
preservation is more involved than for other exceptions because a bus exception can be
initiated while an instruction is executing. Several bus error stack format organizations are
utilized to provide additional information regarding the nature of the fault.

First, any register altered by a faulted-instruction EA calculation is restored to its initial
value. Then a special status word (SSW) is placed on the stack. The SSW contains
specific information about the aborted access—size, type of access (read or write), bus
cycle type, and function code. Finally, fault address, bus error exception vector number,
PC value, and a copy of the SR are saved.

If a bus error occurs during exception processing for a bus error, an address error, a reset,
or while the processor is loading stack information during RTE execution, the processor
halts. This simplifies isolation of catastrophic system failure by preventing processor
interaction with stacks and memory. Only assertion of RESET can restart a halted
processor.

5.5.2.3 ADDRESS ERROR. Address error exceptions occur when the processor attempts
to access an instruction, word operand, or long-word operand at an odd address. The
effect is much the same as an internally generated bus error. The exception processing
sequence is the same as that for bus error, except that the vector number refers to the
address error exception vector.

Address error exception processing begins when the processor attempts to use
information from the aborted bus cycle. If the aborted cycle Is a data space access,
exception processing begins when the processor attempts to use the data, except in the
case of a released operand write. Released write exceptions are delayed until the next
instruction boundary or attempted operand access.

5-44 MC68360 USER’S MANUAL MOTOROLA

An address exception on a branch to an odd address is delayed until the PC is changed.
No exception occurs if the branch is not taken. In this case, the fault address and retum
PC value placed in the exception stack frame are the odd address, and the current
instruction PC points to the instruction that caused the exception.

If an address error occurs during exception processing for a bus error, another address
error, or a reset, the processor halts.

5.5.2.4 INSTRUCTION TRAPS. Traps are exceptions caused by instructions. They arise
from either processor recognition of abnormal conditions during instruction execution or
from use of specific trapping instructions. Traps are generally used to handle abnormal
conditions that arise in control routines.

The TRAP instruction, which always forces an exception, is useful for implementing
system calls for user programs. The TRAPcc, TRAPV, CHK, and CHK2 instructions force
exceptions when a program detects a run-time error. The DIVS and DIVU instructions
force an exception if a division operation is attempted with a divisor of zero.

Exception processing for traps follows the regular sequence. If tracing is enabled when an
instruction that causes a trap begins execution, a trace exception will be generated by the
instruction, but the trap handler routine will not be traced. (The trap exception will be
processed first, then the trace exception.)

The vector number for the TRAP instruction is internally generated—part of the number
comes from the instruction itself. The trap vector number, PC value, and a copy of the SR
are saved on the supervisor stack. The saved PC value is the address of the instruction
that follows the instruction that generated the trap. For all instruction traps other than
TRAP, a pointer to the instruction causing the trap is also saved in the fifth and sixth
words of the exception stack frame.

5.5.2.5 SOFTWARE BREAKPOINTS. To support hardware emulation, the CPU32+ must
provide a means of inserting breakpoints into target code and of announcing when a
breakpoint is reached.

The MC68000 and MC68008 can detect an illegal instruction inserted at a breakpoint
when the processor fetches from the illegal instruction exception vector location. Since the
VBR on the CPU32+ allows relocation of exception vectors, the exception vector address
is not a reliable indication of a breakpoint. CPU32+ breakpoint support is provided by
extending the function of a set of illegal instructions ($4848—$484F).

When a breakpoint instruction is executed, the CPU32+ performs a read from CPU space
$0, at a location corresponding to the breakpoint number. If this bus cycle is terminated by
BERR, the processor performs illegal instruction exception processing. If the bus cycle is
terminated by DSACKX, the processor uses the data retumed to replace the breakpoint in
the instruction pipeline and begins execution of that instruction. See Section 4 Bus
Operation for a description of CPU space operations.

5.5.2.6 HARDWARE BREAKPOINTS. The CPU32+ recognizes hardware breakpoint
requests. Hardware breakpoint requests do not force immediate exception processing, but

MOTOROLA MC68360 USER’S MANUAL 5-45

are left pending. An instruction breakpoint is not made pending until the instruction
corresponding to the request is executed.

A pending breakpoint can be acknowledged between instructions or at the end of
exception processing. To acknowledge a breakpoint, the CPU performs a read from CPU
space $0 at location $1E (see Section 4 Bus Operation).

If the bus cycle terminates normally, instruction execution continues with the next
instruction as if no breakpoint request occurred. If the bus cycle is terminated by BERR,
the CPU begins exception processing. Data returned during this bus cycle is ignored.

Exception processing follows the regular sequence. Vector number 12 (offset $30) is
internally generated. The PC of the executing instruction, the PC of the next instruction to
be executed, and a copy of the SR are saved on the supervisor stack.

5.5.2.7 FORMAT ERROR. The processor checks certain data values for control
operations. The validity of the stack format code and, in the case of a bus cycle fault
format, the version number of the processor that generated the frame are checked during
execution of the RTE instruction. This check ensures that the program does not make
erroneous assumptions about information in the stack frame.

If the format of the control data is improper, the processor generates a format error
exception. This exception saves a four-word format exception frame and then vectors
through vector table entry number 14. The stacked PC is the address of the RTE
instruction that discovered the format error.

5.5.2.8 ILLEGAL OR UNIMPLEMENTED INSTRUCTIONS. An instruction is illegal if it
contains a word bit pattern that does not correspond to the bit pattern of the first word of a
legal CPU32+ instruction, if it is a MOVEC instruction that contains an undefined register
specification field in the first extension word, or if it contains an indexed addressing mode
extension word with bits 5—4 = 00 or bits 3-0 = 0000.

If an illegal instruction is fetched dUring instruction execution, an illegal instruction
exception occurs. This facility allows the operating system to detect program errors or to
emulate instructions in software.

Word patterns with bits 15-12 = 1010 (referred to as A-line opcodes) are unimplemented
instructions. A separate exception vector (vector 10, offset $28) is given to unimplemented
instructions to permit efficient emulation.

Word patterns with bits 15-12 = 1111 (referred to as F-line opcodes) are used for M68000
family instruction set extensions. They can generate an unimplemented instruction
exception caused by the first extension word of the instruction or by the addressing mode
exiension word. A sepaiaie r-iiig eimulaton vecior (vecior 11, ofset $2C) is used for the
exception vector. :

5-46 MC68360 USER’S MANUAL MOTOROLA

All unimplemented instructions are reserved for use by Motorola for enhancements and
extensions to the basic M68000 architecture. Opcode pattern $4AFC is defined to be
illegal on all M68000 family members. Those customers requiring the use of an
unimplemented opcode for synthesis of “custom instructions," operating system calls, etc.,
should use this opcode.

Exception processing for illegal and unimplemented instructions is similar to that for traps.
The instruction is fetched and decoding is attempted. When the processor determines that
execution of an illegal instruction is being attempted, exception processing begins. No
registers are altered.

Exception processing follows the regular sequence. The vector number is generated to
refer to the illegal instruction vector or in the case of an unimplemented instruction, to the
corresponding emulation vector. The illegal instruction vector number, current PC, and a
copy of the SR are saved on the supervisor stack, with the saved value of the PC being
the address of the illegal or unimplemented instruction.

5.5.2.9 PRIVILEGE VIOLATIONS. To provide system security, certain instructions can be
executed only at the supervisor access level. An attempt to execute one of these
instructions at the user level will cause an exception. The privileged exceptions are as
follows:

¢ AND Immediate to SR
¢ EOR Immediate to SR
e LPSTOP

* MOVE from SR

* MOVE to SR

e MOVE USP

e MOVEC

» MOVES

* OR Immediate to SR
e RESET

e RTE

e STOP

Exception processing for privilege violations is nearly identical to that for illegal
instructions. The instruction is fetched and decoded. If the processor determines that a
privilege violation has occurred, exception processing begins before instruction execution.

Exception processing follows the regular sequence. The vector number (8) is generated to
reference the privilege violation vector. Privilege violation vector offset, current PC, and
SR are saved on the supervisor stack. The saved PC value is the address of the first word
of the instruction causing the privilege violation.

MOTOROLA ' MC68360 USER’S MANUAL 5-47

5.5.2.10 TRACING. To aid in program development, M68000 processors include a facility
to allow tracing of instruction execution. CPU32+ tracing also has the ability to trap on
changes in program flow. In trace mode, a trace exception is generated after each
instruction executes, allowing a debugging program to monitor the execution of a program
under test. The T1 and TO bits in the supervisor portion of the SR are used to control
tracing.

When T1-T0Q = 00, tracing is disabled, and instruction execution proceeds normally (see
Table 5-18). '

Table 5-18. Tracing Control

T1 TO Traclng Function
0 0 | Notracing
0 1| Trace on change of flow
1 0 | Trace on instruction execution
1 1 | Undefined; reserved

When T1-TO = 01 at the beginning of instruction execution, a trace exception will be
generated if the PC changes sequence during execution. All branches, jumps, subroutine
calls, returns, and SR manipulations can be traced in this way No exception occurs if a
branch is not taken.

When T1-TO = 10 at the beginning of instruction execution, a trace exception will be
generated when execution is complete. If the instruction is not executed, either because
an mterrupt is taken or because the instruction is illegal, unimplemented, or pnvuleged an
exception is not generated.

At the present time, T1-TO = 11 is an undefined condition. It is reserved by Motorola for
future use.

Exception processing for trace starts at the end of normal processing for the traced
instruction and before the start of the next instruction. Exception processing follows the
regular sequence; tracing is disabled so that the trace exception itself is not traced. A
vector number is generated to reference the trace exception vector. The address of the
instruction that caused the trace exception, the trace exception vector offset, the current
PC, and a copy of the SR are saved on the supervisor stack. The saved value of the PC is
the address of the next instruction to be executed.

A trace exception can be viewed as an extension to the function of any instruction. If a
trace exception is generated by an instruction, the execution of that instruction is not
complete until the trace exception processing associated with it is also complete.

If an instruction is aborted by a bus error or address error exception, trace exception
processing is deferred until the suspended instruction is restarted and completed
normally. An RTE from a bus error or address error will not be traced because of the
possibility of continuing the instruction from the fault.

5-48 MC68360 USER’S MANUAL MOTOROLA

If an instruction is executed and an interrupt is pending on completion, the trace exception
is processed before the interrupt exception.

If an instruction forces an exception, the forced exception is processed before the trace
exception.

If an instruction is executed and a breakpoint is pending upon completion of the
instruction, the trace exception is processed before the breakpoint.

If an attempt is made to execute an illegal, unimplemented, or privileged instruction while
tracing is enabled, no trace exception will occur because the instruction is not executed.
This is particularly important to an emulation routine that performs an instruction function,
adjusts the stacked PC to beyond the unimplemented instruction, and then returns. The
SR on the stack must be checked to determine if tracing is on before the return is
executed. If tracing is on, trace exception processing must be emulated so that the trace
exception handler can account for the emulated instruction.

Tracing also affects normal operation of the STOP and LPSTOP instructions. If either
instruction begins execution with T1 set, a trace exception will be taken after the
instruction loads the SR. Upon return from the trace handler routine, execution will
continue with the instruction following STOP (LPSTOP), and the processor will not enter
the stopped condition.

5.5.2.11 INTERRUPTS. There are seven levels of interrupt priority and 192 assignable
interrupt vectors within each exception vector table. Careful use of multiple vector tables
and hardware chaining will permit a virtually unlimited number of peripherals to interrupt
the processor.

Interrupt recognition and subsequent processing are based on internal interrupt request
signals (IRQ7-1RQ1) and the current priority set in SR priority mask 12—-10. Interrupt
request level 0 (IRQ7-IRQ1 negated) indicates that no service is requested. When an
interrupt of level 1 through 6 is requested via IRQ6-IRQT, the processor compares the
request level with the interrupt mask to determine whether the interrupt should be
processed. Interrupt requests are inhibited for all priority levels less than or equal to the
current priority. Level 7 interrupts are nonmaskable.

IRQ7-IRQ1 are synchronized and debounced by input circuitry on consecutive rising
edges of the processor clock. To be valid, an interrupt request must be held constant for
at least two consecutive clock periods.

Interrupt requests do not force immediate exception processing, but are left pending. A
pending interrupt is detected between instructions or at the end of exception processing—
all interrupt requests must be held asserted until they are acknowledged by the CPU. If
the priority of the interrupt is greater than the current priority level, exception processing
begins.

Exception processing occurs as follows. First, the processor makes an internal copy of the
SR. After the copy is made, the processor state bits in the SR are changed—the S-bit is
set, establishing supervisor access level, and bits T1 and TO are cleared, disabling

MOTOROLA , MC68360 USER’S MANUAL 5-49

tracing. Priority level is then set to the level of the interrupt, and the processor fetches a
vector number from the interrupting device (CPU space $F). The fetch bus cycle is
classified as an interrupt acknowledge, and the encoded level number of the interrupt is
placed on the address bus.

If an interrupting device requests automatic vectoring, the processor generates a vector
number (25 to 31) determined by the interrupt level number.

If the response to the interrupt acknowledge bus cycle is a bus error, the interrupt is taken
to be spurious, and the spurious interrupt vector number (24) is generated.

The exception vector number, PC, and SR are saved on the supervisor stack. The saved
value of the PC is the address of the instruction that would have executed if the interrupt
had not occurred.

Priority level 7 interrupt is a special case. Level 7 interrupts are nonmaskable interrupts
(NMI). Level 7 requests are transition sensitive to eliminate redundant servicing and
resultant stack overflow. Transition sensitive means that the level 7 input must change
state before the CPU will detect an interrupt.

An NMl is generated each time the interrupt request level changes to level 7 (regardless
of priority mask value), and each time the priority mask changes from 7 to a lower number
while the request level remains at 7.

Many M68000 peripherals provide for programmable interrupt vector numbers to be used
in the system interrupt request/acknowledge mechanism. If the vector number is not
initialized after reset and if the peripheral must acknowledge an interrupt request, the
peripheral should return the uninitialized interrupt vector number (15).

See Section 4 Bus Operation for detailed information on interrupt acknowledge cycles.

5.5.2.12 RETURN FROM EXCEPTION. When exception stacking operations for all
pending exceptions are complete, the processor begins execution of the handler for the
last exception processed. After the exception handler has executed, the processor must
restore the system context in existence prior to the exception. The RTE instruction is
designed to accomplish this task.

When RTE is executed, the processor examines the stack frame on top of the supervisor
stack to determine if it is valid and determines what type of context restoration must be
performed. See 5.5.4 CPU32+ Stack Frames for a description of stack frames.

For a normal four-word frame, the processor updates the SR and PC with data pulled from
the stack increments the SSP by 8, and resumes normal instruction execution. For a six-

..... ~uan o Slam O A
woid frams, the SRand PCars L.pdu':cd from the stacl tha activa Q8P iec increamentad hv

12, and normal instruction execution resumes.

For a bus fault frame, the format value on the stack is first checked for validity. In addition,
the version number on the stack must match the version number of the processor that is

5-50 MC68360 USER’S MANUAL MOTOROLA

attempting to read the stack frame. The version number is located in the most significant
byte (bits 15-8) of the internal register word at location SP + $14 in the stack frame. The
validity check ensures that stack frame data will be properly interpreted in multiprocessor
systems.

If a frame is invalid, a format error exception is taken. If it is inaccessible, a bus error
exception is taken. Otherwise, the processor reads the entire frame into the proper
internal registers, de-allocates the stack (12 words), and resumes normal processing. Bus
error frames for faults during exception processing require the RTE instruction to rewrite
the faulted stack frame. If an error occurs during any of the bus cycles required by rewrite,
the processor halts. \

fault stack frame below the frame that it was attempting to use. If a bus error occurs, a
bus-error stack frame will be created. The faulty stack frame remains intact, so that it may
be examined and repaired by an exception handler or used by a different type of
processor (e.g., MC68010, MC68020, or future M68000 processor) in a multiprocessor
system.

If a format error occurs during RTE execution, the processor creates a normal four-word n

5.5.3 Fault Recovery

There are four phases of recovery from a fault: recognizing the fault, saving the processor
state, repairing the fault (if possible), and restoring the processor state. Saving and
restoring the processor state are described in the following paragraphs.

The stack contents are identified by the special status word (SSW). In addition to
identifying the fault type represented by the stack frame, the SSW contains the internal
processor state corresponding to the fault.

15 14 18 12 1110 9 8 7 6 5 4 3 2 1 0
7P| mviszct] TR | Bt [Bo | RR RM | W | AW |szco] sz | FUNC |

TP—BERR Frame Type
The TP field defines the class of the faulted bus operation. Two bus error exception
frame types are defined. One is for faults on prefetch and operand accesses, and the
other is for faults during exception frame stacking.
0 = Operand or prefetch bus fault
1 = Exception processing bus fault

MV—MOVEM in Progress
MV is set when the operand transfer portion of the MOVEM instruction is in progress at
the time of a bus fault. If a prefetch bus fault occurs while prefetching the MOVEM
opcode and extension word, both the MV and IN bits will be set.
0 = MOVEM was not in progress when fault occurred
-1 = MOVEM was in progress when fault occurred

MOTOROLA MC68360 USER’S MANUAL 5-51

SZC1,SCZ0—Original Operand Size

The SZC1,SZCO0 field specifies the size of the original bus cycle (i.e., the size bits of the
first cycle, when a transaction is divided into two or three cycles due to bus size or
operand address). _

00 = Original operand size was long word

01 = Original operand size was byte

10 = Original operand size was word

11 = Unused, reserved

TR—Trace Pending

TR indicates that a trace exception was pending when a bus error exception was
processed. The instruction that generated the trace will not be restarted upon return
from the exception handler. This includes MOVEM and released write bus errors
indicated by the assertion of either MV or RR in the SSW.

0 = Trace not pending

1 = Trace pending

B1—Breakpoint Channel 1 Pending

B1 indicates that a breakpoint exception was pending on channel 1 (external breakpoint
source) when a bus error exception was processed. Pending breakpoint status is
stacked, regardless of the type of bus error exception.

0 = Breakpoint not pending
1 = Breakpoint pending

B0—Breakpoint Channel 0 Pending

BO indicates that a breakpoint exception was pending on channel 0 (intemal breakpoint
source) when the bus error exception was processed. Pending breakpoint status is
stacked, regardless of the type of bus error exception.

0 = Breakpoint not pending
1 = Breakpoint pending

RR—Rerun Write Cycle after RTE

RR will be set if the faulted bus cycle was a released write. A released write is one that
is overlapped. If the write is completed (rerun) in the exception handler, the RR bit
should be cleared before executing RTE. The bus cycle will be rerun if the RR bit is set
upon return from the exception handler.

0 = Faulted cycle was read, RMW, or unreleased write
1 = Faulted cycle was a released write

RM—Faulted Cycle Was Read-Modify-Write
Faulted RMW bus cycles set the RM bit. RM is ignored during unstacking.

0 = Faulted cycle was non-RMW cycle
1 = Faulted cycle was either the read or write of an RMW cycle

5-52 MC68360 USER’S MANUAL MOTOROLA

IN—Instruction/Other
Instruction prefetch faults are distinguished from operand (both read and write) faults by
the IN bit. If IN is cleared, the error was on an operand cycle; if IN is set, the error was
on an instruction prefetch. IN is ignored during unstacking.
0 = Operand
1 = Prefetch

RW-—Read/Write of Fauited Bus Cycle
Read and write bus cycles are distinguished by the RW bit. Read bus cycles will set this
bit, and write bus cycles will clear it. RW is reloaded into the bus controller if the RR bit
is set during unstacking.
‘0 = Faulted cycle was an operand write
1 = Faulted cycle was a prefetch or operand read

SIZ—Remaining Size of Faulted Bus Cycle

The SIZ field shows operand size remaining when a fault was detected. This field does
not indicate the initial size of the operand, nor does it necessarily indicate the proper
status of a dynamically sized bus cycle. Dynamic sizing occurs on the extenal bus and
is transparent to the CPU. Byte size is shown only when the original operand was a
byte. The field is reloaded into the bus controller if the RR bit is set during unstacking.
The SIZ field is encoded as follows:

00 = Long word

01 =Byte

10 = Word

11 = Unused, reserved

FUNC—Function Code of Faulted Bus Cycle _
The function code for the faulted cycle is stacked in the FUNC field of the SSW, which is
a copy of FC2—-FCO for the faulted bus cycle. This field is reloaded into the bus
controller if the RR bit is set during unstacking. All unused bits are stacked as zeros and
are ignored during unstacking. Further discussion of the SSW is included in 5.5.3.1
Types of Faults.

5.5.3.1 TYPES OF FAULTS. An efficient implementation of instruction restart dictates that
faults on some bus cycles be treated differently than faults on other bus cycles. The
CPU32+ defines four fault types: released write faults, faults during exception processing,
faults during MOVEM operand transfer, and faults on any other bus cycle.

5.5.3.1.1 Type —Released Write Faults. CPU32+ instruction pipelining can cause a final
instruction write to overlap the execution of a following instruction. A write that is
overlapped is called a released write. A released write fault occurs when a bus error or
some other fault occurs on the released write.

Released write faults are taken at the next instruction boundary. The stacked PC is that of
the next unexecuted instruction. If a subsequent instruction attempts an operand access

MOTOROLA MC68360 USER’S MANUAL 5-53

while a released write fault is pending, the instruction is aborted and the write fault is
acknowledged. This action prevents the instruction from using stale data.

The SSW for a released write fault contains the following bit pattern:

15 14 13 12 1110 9 8 7 6 5 4 3 2 0
[o] ofszciJm |t [BO|] 1] o] of o [szco|] sz | FUNC |

TR, B1, and BO are set if the corresponding exception is pending when the bus error
exception is taken. Status regarding the faulted bus cycle is reflected in the SZCx, SIZ,
and FUNC fields.

The remainder of the stack contains the PC of the next unexecuted instruction, the current
SR, the address of the faulted memory location, and the contents of the data buffer that
was to be written to memory. This data is written on the stack in the format depicted in
Figure 5-15. When a released write fault exception handler executes, the machine will
complete the faulted write and then continue executing instructions wherever the PC
“indicates.

5.5.3.1.2 Type ll—Prefetch, Operand, RMW, and MOVEP Faults. The majority of bus
error exceptions are included in this category—all instruction prefetches, all operand
reads, all RMW cycles, and all operand accesses resulting from execution of MOVEP
(except the last write of a MOVEP Rn,(ea) or the last write of MOVEM, which are type |
faults). The TAS, MOVEP, and MOVEM instructions account for all operand writes not
considered released write faults.

All type |l faults cause an immediate exception that aborts the current instruction. Any
registers that were altered as the result of an EA calculation (i.e., postincrement or
predecrement) are restored prior to processing the bus cycle fault.

The SSW for faults in this category contains the following bit pattern:

15 14 13 121110 9 8 7 6 5 4 3 2 0
| o] o]szci] o |81 [B] o ru]| N]|rw][szco] sz | FUNC |

The trace pending bit is always cleared since the instruction will be restarted upon return
from the handler. Saving a pending exception on the stack causes a trace exception to be
taken prior to restarting the instruction. If the exception handler does not alter the stacked
SR trace bits, the trace is requeued when the instruction is started.

The breakpoint pending bits are stacked in the SSW, even though the instruction is
restarted upon return from the handler. This avoids problems with bus state analyzer
eauipment that has been programmed to breakpoint only the first access to a specific
location or to count accesses to that location. If this response is not desired, the exception
handler can clear the bits before return. The RM, IN, RW, SZCx, FUNC, and SIZ fields
reflect the type of bus cycle that caused the fault. If the bus cycle was an RMW, the RM bit
will be set, and the RW bit will show whether the fault was on a read or write.

554 - MC68360 USER’S MANUAL MOTOROLA

5.5.3.1.3 Type lll—Faults During MOVEM Operand Transfer. Bus faults that occur as a
result of MOVEM operand transfer are classified as type Il faults. MOVEM instruction
prefetch faults are type Il faults.

Type [l faults cause an immediate exception that aborts the current instruction. Registers
altered during execution of the faulted instruction are not restored prior to execution of the
fault handler. This includes any register predecremented as a result of the effective
address calculation or any register overwritten during instruction execution. Since
postincremented registers are not updated until the end of an instruction, the register
retains its pre-instruction value unless overwritten by operand movement.

The SSW for faults in this category contains the following bit pattern:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
[o] 1+ JszetJwm e [eo[rRR] o [W [rw][szco] sz] FUNC |
MV is set, indicating that MOVEM should be continued from the point where the fault
occurred upon return from the exception handler. TR, B1, and B0 are set if a
corresponding exception is pending when the bus error exception is taken. IN is set if a
bus fault occurs while prefetching an opcode or an extension word during instruction
restart. RW, SZCx, SlIZ, and FUNC all reflect the type of bus cycle that caused the fault.
All write faults have the RR bit set to indicate that the write should be rerun upon return
from the exception handler.

The remainder of the stack frame contains sufficient information to continue MOVEM with
operand transfer following a faulted transfer. The address of the next operand to be
transferred, incremented or decremented by operand size, is stored in the faulted address
location ($08). The stacked transfer counter is set to 16 minus the number of transfers
attempted (including the faulted cycle). Refer to Figure 5-12 for the stacking format.

5.5.3.1.4 Type IV—Faults During Exception Processing. The fourth type of fault occurs
during exception processing. If this exception is a second address or bus error, the
machine halts in the double bus fault condition. However, if the exception is one that
causes a four- or six-word stack frame to be written, a bus cycle fault frame is written
below the faulted exception stack frame.

The SSW for a fault within an exception contains the following bit pattern:

15 14 13 12 1110 9 8 7 6 & 4 3 2 0
[+] ofszci]w | Bt [B] of of o 1 [szco] sz | FUNC |

TR, B1, and BO are set if a corresponding exception is pending when the bus error
exception is taken.

The contents of the faulted exception stack frame are included in the bus fault stack
frame. The pre-exception SR and the format/vector word of the faulted frame are stacked.
The type of exception can be determined from the format/vector word. If the faulted
exception stack frame contains six words, the PC of the instruction that caused the initial

MOTOROLA MC68360 USER’S MANUAL : 5-55

exception is also stacked. This data is placed on the stack in the format shown in Figure
5-13. The return address from the initial exception is stacked for RTE .

5.5.3.2 CORRECTING A FAULT. There are two ways to complete a faulted released write
bus cycle. The first is to use a software handler. The second is to rerun the bus cycle via
RTE. v

Type |l fault handlers must terminate with RTE, but specific requurements must also be
met before an instruction is restarted.

There are three varieties of type lll operand fault recovery. The first is completion of an
instruction in software. The second is conversion to type Il with restart via RTE. The third
is continuation from the fault via RTE.

5.5.3.2.1 Type |—Completing Released Writes via Software. To complete a bus cycle
in software, a handler must first read the SSW function code field to determine the
appropriate address space, access the fault address pointer on the stack, and then
transfer data from the stacked image of the output buffer to the fault address.

If the CPU32+ is configured to 16-bit operation, rather than 32-bit operation, on the
internal data bus, long operands require two bus accesses. A fault during the second
access of a long operand causes the SZCx bits in the SSW to be set to long word. The
SIZ field indicates remaining operand size. If operand coherency is important, the
complete operand must be rewritten. After a long operand is rewritten, the RR bit must be
cleared. Failure to clear the RR bit can cause the RTE instruction to rerun the bus cycle.
Following rewrite, it is not necessary to adjust the PC (or other stack contents) before
executing RTE.

5.5.3.2.2 Type I—Completing Released Writes via RTE. An exception handler can use
the RTE instruction to complete a faulted bus cycle. When RTE executes, the fault
address, data output buffer, PC, and SR are restored from the stack. Any pending
breakpoint or trace exceptions, as indicated by TR, B1, and B0 in the stacked SSW, are
requeued during SSW restoration. The RR bit in the SSW is checked during the
unstacking operation; if it is set, the RW, FUNC, and SIZ fields are restored and the
released write cycle is rerun.

To maintain long-word operand coherence, stack contents must be adjusted prior to the
RTE execution. The fault address must be decremented by 2 if the SZCx bits are set to
long word and SIZ indicates a remaining byte or word. SIZ must be set to long. All other
fields should be left unchanged. The bus controller uses the modified fault address and
SIZ field to rerun the complete released write cycle.

Manipulating the stacked SSW can cause unpredictable results because RTE checks only
the RR bit {0 deiermine ii a bus Gycie Musi De iefun. Inadveiisnt aisiation of the Sontior
bits could cause the bus cycle to be a read instead of a write or could cause access to a
different address space than the original bus cycle If the rerun bus cycle is a read,

retured data will be ignored.

5-56 MC68360 USER’S MANUAL MOTOROLA

5.5.3.2.3 Type ll—Correcting Faults via RTE. Instructions aborted because of a type Il
fault are restarted upon return from the exception handler. A fault handler must establish
safe restart conditions. If a fault is caused by a nonresident page in a demand-paged
virtual memory configuration, the fault address must be read from the stack, and the
appropriate page retrieved. An RTE instruction terminates the exception handler. After
unstacking the machine state, the instruction is refetched and restarted.

5.5.3.2.4 Type lll—Correcting Faults via Software. Sufficient information is contained in
the stack frame to complete MOVEM in software. After the cause of the fault is corrected,
the faulted bus cycle must be rerun. Perform the following procedures to complete an
instruction through software:

A. Set Up for Rerun
1. Read the MOVEM opcode and extension from locations pointed to by stack frame n
PC and PC + 2. The EA need not be recalculated since the next operand address
is saved in the stack frame. However, the opcode EA field must be examined to
determine how to update the address register and PC when the instruction is
complete.

2. Adjust the mask to account for operands already transferred. Subtract the stacked
operand transfer count from 16 to obtain the number of operands transferred. Scan
the mask using this count value. Each time a set bit is found, clear it and decrement
the counter. When the count is zero, the mask is ready for use.

3. Adjust the operand address. If the predecrement addressing mode is in effect,
subtract the operand size from the stacked value; otherwise, add the operand size to
the stacked value. ,

B. Rerun Instruction

1. Scan the mask for set bits. Read/write the selected reglster from/to the operand
address as each bit is found.

2. As each operand is transferred, clear the mask bit and increment (decrement) the
operand address. When all bits in the mask are cleared, all operands have been
transferred.

3. If the addressing mode is predecrement or postincrement, update the register to
complete the execution of the instruction.

4. If TR is set in the stacked SSW, create a six-word stack frame and execute the trace
handler. If either B1 or B0 is set in the SSW, create another six-word stack frame
and execute the hardware breakpoint handler.

5. De-allocate the stack and return control to the faulted program.

5.5.3.2.5 Type lll—Correcting Faults by Conversion and Restart. In some situations it
may be necessary to rerun all the operand transfers for a faulted instruction rather than
continue from a faulted operand. Clearing the MV bit in the stacked SSW converts a type
Il fault into a type Il fault. Consequently, MOVEM, like all other type Il exceptions, will be
restarted upon return from the exception handler. When a fault occurs after an operand
has transferred, that transfer is not "undone®. However, these memory locations are
accessed a second time when the instruction is restarted. If a register used in an EA

MOTOROLA MC68360 USER’S MANUAL 5-57

calculation is overwritten before a fault occurs, an incorrect EA is calculated upon
instruction restart.

5.5.3.2.6 Type lll—Correcting Faults via RTE. The preferred method of MOVEM bus
fault recovery is to correct the cause of the fault and then execute an RTE instruction
without altering the stack contents.

The RTE recognizes that MOVEM was in progress when a fault occurred, restores the
appropriate machine state, refetches the instruction, repeats the faulted transfer, and
continues the instruction.

MOVEM is the only instruction continued upon return from an exception handler. Although
the instruction is refetched, the EA is not recalculated, and the mask is rescanned the
same number of times as before the fault. Modifying the code prior to RTE can cause
unexpected results.

5.5.3.2.7 Type IV—Correcting Faults via Software. Bus error exceptions can occur
during exception processing while the processor is fetching an exception vector or while it
is stacking. The same stack frame and SSW are used in both cases, but each has a
distinct fault address. The stacked faulted exception format/vector word identifies the type
of faulted exception and the contents of the remainder of the frame. A fault address
corresponding to the vector specified in the stacked format/vector word indicates that the
processor could not obtain the address of the exception handler.

A bus error exception handler should execute RTE after correcting a fault. RTE restores
the internal machine state, fetches the address of the original exception handler, recreates
the original exception stack frame, and resumes execution at the exception handler
address.

If the fault is intractable, the exception handler should rewrite the faulted exception stack
frame