
intJ

iAPX432
GENERAL DATA PROCESSOR

ARCH ITECTU.RE
REFERENCE MANUAL

Copyright© 1981, 1982, 1983, Intel Corporation Order Number: 171860-004
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

iAPX 432 GENERAL DATA PROCESSOR

ARCHITECTURE REFERENCE MANUAL

Order Number: 171860-004

Copyright© 1981, 1982, 1983 Intel Corporation

] Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 [

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department

Intel Corporation

3065 Bowers A venue

Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the

implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no

responsibility for any errors that may appear in this document. Intel Corporation makes no commitment to update

or to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel

product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property oflntel Corporation. Use, duplication or

disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9 (a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior written consent of

Intel Corporation.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which

may appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks oflntel Corporation and its affiiates and may be used only to identify Intel products:

AEDIT iLBX iOSP MULTIBUS

BITBUS im iPDS MULTICHANNEL

BXP iMMX iRMX MULTIMODULE

COMMputer Insite iSBC Plug-A-Bubble

CREDIT Intel iSBX PROMPT

in tel iSDM Prom ware

12ICE IntelBOS iSXM Ripple mode

iATC In television Library Manager RMX/80

ICE inteligent Identifier MCS RUPI

iCS int0 ligent Programming Megachassis SYSTEM2000

iDBP lntellec MICRO MAINFRAME UPI

iDIS Intellink

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of

Mohawk Data Sciences Corporation.

MULTIBUS is a patented Intel bus.

Copyright~ 1983, Intel Corporation

11

REV. REVISION HISTORY DATE

""1 -vv.L Original issue Release 1.0 GDP 01i81
components

-002 Advance partial issue, revised for 10/81
Release 2.0 GDP components

-003 Advance partial issue, revised for 10/82
Release 3.0 GDP components

-004 Completed manual for Release 3.2 GDP 01/84
components

111

PREFACE

This manual describes the architecture of Intel's iAPX 432 General Data
Processor (GDP). This architecture provides unique support for:

• flexible run-time protection of programs and data

• operating systems and modular programming languages

• multiprocessing

• accurate and robust numerical computation

• reliable and fault-tolerant hardware and software

ARCHITECTURE VS. IMPLEMENTATION

This manual describes the architecture, but not the implementation, of the iAPX
432 GDP. The architecture consists of the processor instruction set, processor­
recognized data structures (object set), and actions in response to exceptional
conditions (e.g., faults or trace events). The GDP architecture is that information
that a compiler writer or systems programmer needs to know about the GDP.

The GDP implementation is all information about the GDP that is not specified by
the fil'chitecturc, Zu~h as ntamber of VLSI chips, clock speed, hardware signals, and
operator execution times.

A clear separation of architecture and implementation allows the implementation
to be changed without changing any software, because the software should depend
on only the architecture.

COMPONENT RELEASES

There have been several releases of iAPX 432 GDP components, which have
modified the GDP architecture as well as the implementation. This manual
describes Release 3.2 GDP components, first released in August 1983. Intel
expects, but does not guarantee, that any further releases of iAPX 432
components will be limited to correcting errors, improving implementation, or
making upward-compatible extensions to the architecture. That is, further
component releases should not require user software modifications.

v

Pref ace iAPX 432 GDP

iAPX 432 PROCESSOR BASE ARCHITECTURE

The iAPX 432 architecture supports multiple types of processors in a single iAPX
432 system, as well as multiple instances of a single processor type. At this
writing, one other processor type is available, the iAPX 432 Interface Processor
(IP). Both the IP and GDP share a common base architecture that includes object
addressing and protection, interprocessor communication, and interprocess
communication. This manual defines the common base architecture as part of
describing the GDP architecture. The iAPX 432 Interface Processor Architecture
Reference Manual relies on this manual to describe shared architectural features.

REFERENCES

The iAPX 432 Interface Processor is described in:

iAPX 432 Interface Processor Architecture Reference Manual, Order
Number 171863.

The iAPX 432 hardware interconnection architecture, used to interconnect
processor, memory, and bus subsystems, is described in:

iAPX 432 Interconnect Architecture Reference Manual, Order Number
172487.

Chapter 18: "A Design Methodology for Highly Reliable Systems: The Intel
432," The Theory and Practice of Reliable System Design, Sieworik and
Swartz, Digital Press, 1982.

These data sheets describe the iAPX 432 components:

iAPX 43201/iAPX 43202 VLSI General Data Processor, Order Number
171873.

iAPX 43203 VLSI Interface Processor, Order Number 17187 4.

iAPX 43204/iAPX 43205 Fault Tolerant Bus Interface and Memory Control
Units, Order Number 210963.

Electrical Specifications for iAPX 43204 Bus Interface Unit (BIU) and iAPX
43205 Memory Control Unit (MCU), Order Number 172867.

Programs for iAPX 432 systems are developed using the Intel 432 Cross
Development System, described by these manuals:

Introduction to the Intel 432 Cross Development System, Order Number
171954.

Intel 432 Cross Development System VAX* Host User's Guide, Order
Number 171870.

*VAX is a trademark of Digital Equipment Corporation.

vi

iAPX 432 GDP Pref ace

Intel 432 Cross Development System Workstation Reference Manual, Order
Number 172097.

Mainframe Link for Distributed Development User's Guide, Order Number
121565.

Asynchronous Communication Link User's Guide, Order Number 172174.

Intel's System 432/600 is a family of microcomputer boards and systems that use
iAPX 432 components or support iAPX 432 systems. These manuals describe the
System 432/600:

System 432/600 System Reference Manual, Order Number 172098.

System 432/600 Hardware Reference Manual Volume 1, Order Number
172100.

System 432/600 Hardware Reference Manual Volume 2, Order Number
172172.

System 432/670 Installation and Maintenance Manual, Order Number 172101.

System 432/600 Diagnostic Software User's Guide, Order Number 172099.

The Ada* programming language is used to write iAPX 432 programs. The Ada
language, features of Intel's implementation of Ada, and Intel's extensions to Ada
are described in these manuals:

Reference Manual for the Ada Programming Language, Order Number
1" ... "'"" .l I .100'7.

Reference Manual for the Intel 432 Extensions to Ada, Order Number
172283.

NOTE

The Intel 432 Ada compiler is presently an incomplete
implementation of the Ada programming language. It is
intended that the Intel 432 Ada compiler will be further
developed to enable implementation of the complete Ada
programming language, and then be submitted to the Ada
Joint Program Office for validation.

*Ada is a registered trademark of the U.S. Government (Ada Joint Program
Office).

vii

Pref ace iAPX 432 GDP

iMAX 432, Intel's Multifunction Applications Executive, is the iAPX 432 operating
system. iMAX enhances the iAPX 432's unique architectural support for storage
management, concurrent processing, and other operating system functions. iMAX
432 is described in:

iMAX 432 Reference Manual, Order Number 172103.

A Programmer's View of the Intel 432 System, Elliott I. Organick, McGraw­
Hill, New York, 1983.

MANUAL ORGANIZATION

This manual is divided into two major parts. Part I is a tutorial presentation of
the architecture's features and describes how these features interact with each
other and with software in a functioning system. Part II gives reference
information for the architecture, such as operator descriptions.

Part I contains these chapters:

• Chapter 1, "Introduction," introduces the major concepts of the
architecture.

• Chapter 2, "Program Organization," explains the iAPX 432 objects and
operators used to represent high-level programming language structures.
Domains and instruction objects represent the static structure of a program
as a network of modules and subprograms. Processes and contexts represent
the dynamic structure of program execution as a hierarchy of tasks and
subprogram calls. This chapter also describes the architecture's support for
program modules that provide all operations on objects of a particular type.
Such type manager modules are the basis for hardware protection of both
system- and user-defined object types.

• Chapter 3, "Object Addressing," explains how the iAPX 432 translates local
object addresses to virtual object addresses and then to physical addresses.

• Chapter 4, "Memory Management," describes iAPX 432 memory
management services and how they are supported by the architecture.
These services are provided by a combination of hardware and operating
system software.

• Chapter 5, "Parallel Processing," describes the architecture's support for
multiple concurrent processes executing in parallel on multiple processors.
This chapter describes process communication, process and processor
synchronization, and process and processor scheduling and dispatching.

• Chapter 6, "Processor Management," describes GDP caches, interprocessor
communication (IPCs), processor dispatching modes, and system
initialization.

• Chapter 7, "Instruction Interface," describes the fields of GDP instructions
and also all the GDP addressing modes.

viii

iAPX 432 GDP Pref ace

• Chapter 8, "Computational Data Types," describes the form and
interpretation of the GDP's computational data types. Operations on the
types and conversion between types are cove:rede Floating-point data types
and operations are completely described.

Part II contains these chapters:

• Chapter 9, "Object Set,;; aermes the set of processor-recognized data
structures, which support operating systems, object addressing, high-level
languages, and multiprocessing.

• Chapter 10, "Operator Set," describes all GDP operators. Each operator
description specifies the operator encoding, any parameters or results, and
the action of the operator.

• Chapter 11, "Instruction Encoding," describes the instruction field encodings
for operators, operands, and addressing modes.

• Chapter 12, "Fault and Trace Reference," describes the different faults that
can be raised by the GDP, their encodings, and the format of the "fault
areas" into which fault information is written. This chapter also describes
the GDP's encoding of trace information, used to support software
debugging tools.

A glossary follows Part II and defines new terms introduced by the iAPX 432
architecture.

The following abbreviations are used in this manual:

AD Access Descriptor
AP Access Part (of an object)
DP Data Part (of an object)
DTO Dynamic Type Object
EDV Embedded Data Value
ENV Entered Access Environment
GDP General Data Processor
IP lnterf ace Processor
IPC Interprocessor Communication
OD Object Descriptor
OT Object Table
OTD Object Table Directory
OTE Object Table Entry
PCO Processor Communication Object
PSO Physical Storage Object
SCO Storage Claim Object
SRO Storage Resource Object
TCO Type Control Object
TDO Type Definition Object

ix

CONTENTS

CHAPTER l
INTRODUCTION

Software Systems ...
Reliability .. .
The Semantic Gap ..

Objects ..
Object Protection •••
Dynamic Storage Management ••••••••••••••••••••••••••••••••
Object Types ..

Progrannning Systems Support ••••••••••••••••••••••••••••••••••••
Multiprocessing ••
Input/Output Architecture ••••••••••••••••••••••••••••••••••••••
Computation ••
Conclusion •••

CHAPTER 2
PROGRAM ORGANIZATION

Procedures •••
Packages •••
Information Hiding •••
Instruction Objects ••
Domain Objects •••
Static Program Organization ••••••••••••••••••••••••••••••••••••
Context Objects ...

Contexts Vs. Procedues
Access Environment ••
Context Description •••••••••••••••••••••••••••••••••••••••
Preallocated Contexts •••••••••••••••••••••••••••••••••••••
The Call Operators ..
The Return Operators ••••••••••••••••••••••••••••••••••••••
Context Level Numbers •••••••••••••••••••••••••••••••••••••

Process Objects ••
Object Managers ...
Type Managers ..

Type Manager Implementation •••••••••••••••••••••••••••••••
Software-Defined Protected Types •••••••••••••••••••••••••• •· Creating Typed Objects
Type Manager Schema

PAGE

1-1
1-2
1-2
1-4
1-6
1-9
1-10
1-14
1-17
1-19
1-21
1-23

2-1
2-1
2-1
2-3
2-4
2-5
2-7
2-8
2-8
2-12
2-16
2-17
2-17
2-17
2-20
2-20
2-20
2-22
2-22
2-24
2-24

xi

iAPX 432 GDP

CHAPTER 3
OBJECT ADDRESSING

Physical Address Spaces
Two-Part Memory References
Two-Level Address Mapping

.....................................
Address Mapping for Object Protection ••••••••••••••••••••••••••
Object Format ..
Access Descriptor Format •••••••••••••••••••••••••••••••••••••••
Access Selectors •••
Access Selector Format ...
Address Mapping for Dynamic Storage Management Two-Level Object Table Structure
Overview of Object Addressing
Address Space Summary ••
Refinement Addressing ••
Interconnect Addressing ••

CHAPTER 4
MEMORY MANAGEMENT

Object Scope
Objects for Memory Management

Storage Resource Objects
..................................

Object Tables Physical Storage Objects
Storage Claim Objects

Object Creation ..
Object Lifetime Strategies Stack Lifetimes

Global Heap Lifetimes
Local Heap Lifetimes

.....................................
Fragmentation and Compaction
Memory Management Transitions

...................................
Virtual Memory •••
Frozen Memory ••
Multiple Processors and Memory Management ••••••••••••••••••••••

CHAPTER 5
PARALLEL PROCESSING

Processes ••
Interprocess Cormnunication •••••••••••••••••••••••••••••••••••••

Messages ••
Ports ••••••••••••••••••••••••••••• • • • ••• • • • • • • • • • • • • • • • • • •
Carriers ••
Sending Messages ••
Receiving Messages ••
Forwarding Carriers •••••••••••••••••••••••••••••••••••••••

Process and Processor Synchronization ••••••••••••••••••••••••••
Transparent Multiprocessing ••••••••••••••••••••••••••••••••••••
Process Scheduling •••

xii

Contents

PAGE

3-1
3-2
3-2
3-2
3-4
3-5
3-6
3-6
3-7
3-8
3-9
3-9
3-11
3-12

4-2
4-2
4-3
4-4
4-4
4-4
4-5
4-6
4-6
4-6
4-7
4-7
4-7
4-8
4-10
4-10

5-1
5-2
5-4
5-5
5-5
5-6
5-6
5-7
5-8
5-9
5-10

Contents iAPX 432 GDP

CHAPTER 6
PROCESSOR MANAGEMENT

GDP Caches ...
Data Object Cache
Object Table Cache

... ..
Context Cache ...
Process Cache •••
Processor Cache •••
Cache Summary ••• Interprocessor Communication

Normal GDP Execution Cycle
GDP Dispatching Modes
GDP Initialization

.. ...

CHAPTER 7
INSTRUCTION INTERFACE

Instruction Execution Environment ••••••••••••••••••••••••••••••
Current Context •••
Instruction Objects •••••••••••••••••••••••••••••••••••••••
Instruction Stream •• ... Operand Addressing
Operand Types
Operand Alignment

... Logical Address Components
Operand Addressing Modes
Branch References •••
Large Array Indexing ••••••••••••••••••••••••••••••••••••••
r'\------~ t"'l.&.--1- T-~----~! --
VJ:'C.L (SJ.J.U L1 L(S\..1!11. .J..J.J. L C.L Cl\.. L .1. VJ.J. • • • • • • • • • • • • • e • • • e e e • • e e e e e e e e e e e

Instruction Interpretation •••••••••••••••••••••••••••••••••••••
Physical Address Generation •••••••••••••••••••••••••••••••
Instruction Execution •••••••••••••••••••••••••••••••••••••

CHAPTER 8
COMPUTATIONAL DATA TYPES

Overview of Computational Data Types ••••••••••••••••••••••••••• Character Data Type
Short-Ordinal Data Type Ordinal Data Type
Short-Integer Data Type •· Integer Data Type
Short-Real Data Type Real Data Type
Temporary-Real Data Type

Operator~ for Computational Data Types •••••••••••••••••••••••••
Bit Field Manipulation ••••••••••••••••••••••••••••••••••••
Data Type Conversion ••••••••••••••••••••••••••••••••••••••

PAGE

6-1
6-1
6-2
6-3
6-4
6-4
6-5
6-6
6-7
6-7
6-8

7-1
7-1
7-2
7-3
7-6
7-6
7-7
7-7
7-9
7-22
7-23
7-24
7-26
7-27
7-29

8-1
8-2
8-2
8-2
8-2
8-2
8-2
8-2
8-3
8-3
8-4
8-5

Xlll

iAPX 432 GDP

CHAPTER 8 (CONTINUED)
COMPUTATIONAL DATA TYPES

GDP Floating-Point Data Types ••••••••••••••••••••••••••••••••••
General Floating-Point Format •••••••••••••••••••••••••••••
Classification of Floating-Point Numbers ••••••••••••••••••
Normalized Floating-Point Numbers •••••••••••••••••••••••••
Exponent Biases •••
GDP Floating-Point Operand Interpretation •••••••••••••••••
Floating-Point Rounding •••••••••••••••••••••••••••••••••••

Data Operator Faulting •••
Classification of Data Operator Faults ••••••••••••••••••••
Floating-Point Faulting •••••••••••••••••••••••••••••••••••

PART II REFERENCE INFORMATION

CHAPTER 9
OBJECT SET.

Chapter Conventions
Reserved Fields
Preserved Fields ••
Object Illustration Convention ••••••••••••••••••••••••••••
Encoded Values ••
Index Fields
Displacement Fields •••••••••••••••••••••••••••••••••••••••

Object Representation ••
General Storage Segment Structure •••••••••••••••••••••••••
Access Part•....•...•.............•.....•........
Data Part •.•.•••...•••••.•...••...•.....•••••.•.••••..•..•

Access Descriptor
Embedded Data Value
Object Lock
Object Descriptions

System Object Types
Object Table Object

XlV

Processor Object ••
Processor Cormnunication Object ••••••••••••••••••••••••••••
Process Object ••
Context Object ••
Domain Object•••..••...•••.•.•..•••..••••••••••...•.
Instruction Object ••
Port Object ...••...•....•.•..••........••.••.••••........•
Carrier Object•.•..•.•....................•..........
Storage Resource Object •••••••••••••••••••••••••••••••••••
Storage Claim Object ••••••••••••••••••••••••••••••••••••••
Physical Storage Object •••••••••••••••••••••••••••••••••••
Type Definition Object ••••••••••••••••••••••••••••••••••••
Dynamic Type Object •••••••••••••••••••••••••••••••••••••••
Type Control Object

Contents

PAGE

. 8-6
8-9
8-9
8-10
8-11
8-12
8-21
8-22
8-22
8-24

9-1
9-1
9-1
9-2
9-2
9-2
9-3
9-3
9-3
9-5
9-5
9-6
9-8
9-9
9-10
9-10
9-12
9-27
9-33
9-35
9-43
9-48
9-49
9-51
9-55
9-59

. 9-61
9-62
9-65
9-66
9-67

Contents iAPX 432 GDP

CHAPTER 10
OPERATOR SET

Functional Index of Operators •••••••••••••••••••••••••••••••••
Data Operators •••
Object Operators

Operator Descriptions
Operand Types • e •

Data Operators ••
Character Operators ••••••••••••••••••••••••••••••••••••••
Short-Ordinal Operators ••••••••••••••••••••••••••••••••••
Short-Integer Operators ••••••••••••••••••••••••••••••••••
Ordinal Operators ••
Integer Operators ••
Short-Real Operators •••••••••••••••••••••••••••••••••••••
Real Operators •••
Temporary Real Operators •••••••••••••••••••••••••••••••••

Object Operators
Sub-Operator Procedures ••••••••••••••••••••••••••••••••••
Branch Operators •••
Access Descriptor Operators ••••••••••••••••••••••••••••••
Type and Rights Manipulation Operators •••••••••••••••••••
Refinement Operators •••••••••••••••••••••••••••••••••••••
Object Creation Operators ••••••••••••••••••••••••••••••••
Access Inspection Operators ••••••••••••••••••••••••••••••
Access Interlock Operators •••••••••••••••••••••••••••••••
Context Operators ••
Process Communication Operators ••••••••••••••••••••••••••
Processor Communication Operators ••••••••••••••••••••••••
Interconnect Operators ••••••••••••••••••••···~···••••••••

CHAPTER 11
INSTRUCTION ENCODING

Chapter Conventions
Instruction Fields

...
Class Field Encodings
Format Field Encodings
Reference Field Format

....................................

Data Reference Formats ••
Scalar Data Reference ••••••••••••••••••••••••••••••••••••
Record Item Data Reference •••••••••••••••••••••••••••••••
Static Array Element Data Reference ••••••••••••••••••••••
Dynamic Array Element Data Reference •••••••••••••••••••••
Indirect Reference Field Formats •••••••••••••••••••••••••
Access Selection Field Formats •••••••••••••••••••••••••••
Access Selector Formats ••••••••••••••••••••••••••••••••••

Branch Reference Formats ••••••••••••••••••••••••••••••••••••••
Opcode Encoding Summary •••••••••••••••••••••••••••••••••••••••

PAGE

10-1
10-1
10-6
10-9
10-11
10-15
10-15
10-20
10-26
10-32
10-39
10-45
10-51
10-57
10-63
10-63
10-65
10-68
10-69
10-72
10-76
10-78
10-80
10-83
10-89
10-102
10-104
i0-105

11-1
11-1
11-2
11-3
11-4
11-4
11-4
11-5
11-5
11-6
11-6
11-7
11-8
11-9
11-10

xv

iAPX 432 GDP Contents

CHAPTER 12
FAULT AND TRACE REFERENCE PAGE

Fault Reference •••••••••••••·····•••••••••••••••••••••••••••••• 12-1
Fault Area Formats ••••••••••••••••••••••••••••••••••••••• 12-2
Fault Codes •• 12-9

Trace Reference ••• 12-35
Trace Operation •• 12-35
Trace Control Data Area •••••••••••••••••••••••••••••••••• 12-37

GLOSSARY

TABLES

TABLE

1-1
1-2
6-1
7-1
8-1
8-2
8-3
8-4
8-5
8-6

FIGURES

FIGURE

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
2-1
2-2
2-3
2-4
2-5
2-6

xvi

TITLE

iAPX 432 System Objects
Objects and Functions for Programming Systems Support
GDP !PCs
Format Field Encodings
Signif icand Sizes
Exponent Sizes and Biases
Short-Real Operand Classifications
Real Operand Classifications
Temporary-Real Operand Classifications
Signed Zeros

TITLE

The Semantic Gap in Models of Memory
An iAPX 432 Object
Threefold Object Protection
Refinement Object
iMAX 432 Complements the iAPX 432 Architecture
Input/Output Architecture
iAPX 432 Computational Data Types
iAPX 432 Operators and Computational Data Types
Instruction Object
Domain Object and Refinement
Static Program Organization Example
Context Object
Access Selector
Access Environment Example

PAGE

1-11
1-16
6-6
7-5
8-11
8-11
8-13
8-15
8-16
8-20

PAGE

1-3
1-4
1-8
1-13
1-14
1-20
1-21
1-22
2-3
2-5
2-6
2-7
2-9
2-10

Contents

FIGURE

2-7
2-8
2-9
2-10
2-11

2-12
3-1
3-2
3-3
3-4
3-5
3-6
4-1
4-2
5-1
6-1
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11 7_,,,
I ~"-

7-13
7-14
7-15
7-16
7-17
7-18
8-1
8-2
8-3
8-4

TITLE

Context Access Environment
Nested Procedures Example
Preallocated Contexts Example
Dynamic Program Organization Example
Object Scopes and Level Numbers in the

Dynamic Program Organization Example
Type Manager Objects
Two-Level Address Mapping
Object Format
Access Descriptor Format
Two-Level Object Table Structure
Object Addressing
Refinement Object
Objects for Memory Management
Memory Management Transitions
Message AD Transfer
GDP Caches
Instruction Execution Environment
Operand Addressing Overview
Base and Index Address Components
Data Reference Modes
Data Ref erene Modes
Scaiar Data Reference
Record Item Data Reference
Static Array Data Reference
Dynamic Array Data Reference
Stack Indirect Reference
Intrasegment Indirect Reference
1'"-----1 T-.J!---6- n-.C------
UCJ.J.Cl. Cl.J.. ..J..J.J.U..J.. l. C"-1.. .l\.C.J..CL CJ.1"-1::

Access Selection Modes
Direct Access Selection
Stack Indirect Access Selection
General Indirect Access Selection
Branch References
Physical Address Generation
Computational Data Types
Operators and Data Types
Bit Field Operations
Data Type Conversions

iAPX 432 GDP

PAGE

2-11
2-14
2-16
2-18

2-19
2-23
3-3
3-4
3-5
3-8
3-10
3-11
4-3
4-8
5-4
6-5
7-2
7-8
7-10
7-11
7-11
7-12
7-13
7-14
7-16
7-17
7-18
7-18
7-19
7-20
7-21
7-22
7-23
7-27
8-1
8-3
8-4
8-5

xvii

CHAPTER 1
INTRODUCTION

"It used to be the program's purpose to instruct our
computers; it became the computer's purpose to execute
our programs."

--Edsger W. Dijkstra

The iAPX 432 architecture is designed with a single overriding goal: TO
IMPROVE SUPPORT FOR SOFTWARE SYSTEMS. This chapter first describes
some attributes of software systems and how a computer architecture can aid or
hinder the production of quality software. Subsequent sections of this chapter
introduce specific features of the iAPX 432 architecture that support software
systems.

SOFTWARE SYSTEMS

Modern enterprises and institutions rely on large software systems: management
information systems, air traffic control systems, operating systems, etc.
Integrated software systems are even larger. An integrated software system may
include an operating system, data base manager, text processor, financial
modelling software, telecommunications software, and sophisticated graphics.
Future integrated software systems will add more capabilities, such as voice and
video processing and natural language interfaces. Even small software now
depends en the q:..:3.Hty of la.r-ge software, on the translators and operating systems
that intervene between almost any program and the computing hardware.

A large software system may contain hundreds of thousands, even millions, of
program lines. Such systems are developed by many people working together for
several years. During the course of such projects, whole "generations" of
computer hardware may come and go, the people working on the project will
change, and the requirements of the users or the marketplace will definitely
change. To repay the massive development costs, a large software system must
have many users over a period of several years. During the years of its use, the
system must be "maintained," modified to correct the inevitable errors in such a
large product and to adapt to changing hardware and changing user requirements.
The activity of maintenance itself frequently introduces new errors; in practice,
it has been observed that even mature, well-engineered large software systems
contain many errors.

1-1

Introduction iAPX 432 GDP

RELIABILITY

Because of their complexity and continuing change, large software systems will
contain multiple errors. At the same time, more and more applications of
computers demand high reliability of more and more software systems.
Obviously, an air traffic control program must be reliable, but so must the
compiler and operating system that it depends on. A data base system must be
reliable, if it is used by a police department. An engineering design program must
be reliable if it is used to design products that could injure people with their
flaws. The great costs of finding and correcting errors in released software only
increase the importance of software reliability.

Increased support for software reliability is being provided by new "structured"
programming languages, by stricter engineering discipline, and also by innovations
in computer architecture. Computer architecture can contribute to software
reliability in two major ways. The first contribution is to reduce the large gulf
("semantic gap") between high-level programming concepts and the data types and
operations provided directly in hardware by a computer architecture. Such a
high-level architecture can reduce translator complexity and program complexity,
and also improve performance by reducing object code size and providing more
functions in hardware. The second contribution is to provide in hardware
protection mechanisms that, given that some errors will still exist in large
software systems, at least confine errors within a particular module or data set,
and prevent errors from propagating to correct modules and their data. The
alternative to protection, in which hundreds or thousands of software modules and
data objects are mapped into a single large unprotected address space, allows a
single erroneous module to corrupt the code or data of any other module in the
system's memory. Worse, such errors may be transient and nondeterministic in
systems that dynamically load modules or that support multitasking.

Software can be no more reliable than the hardware that executes it, and Intel
432 systems provide comprehensive support for hardware reliability and fault
tolerance. This support includes: paired, self-checking VLSI components
(including GDPs); ECC (error correcting code) memory; bus parity checking; and
support for redundant and reconfigurable buses, memories, and VLSI logic.

THE SEMANTIC GAP

There is a large gulf between the concepts used in modern programming languages
and the operations and data types recognized by a particular computer
architecture. Computer scientist Peter Denning calls this gulf the "semantic
gap." For example, a computer architecture may not provide floating point
arithmetic; adding two real numbers on such a computer requires calling a
subroutine that may execute hundreds of instructions.

A more important part of the semantic gap is the gap between the models of
memory used by programming languages and by computer architectures, as shown
in Figure 1-1. A program in a high-level language is a network of program
structures and data elements. The network structure itself contains information,
e.g., that a particular data element should only be referenced by a particular
procedure. Often parts of the network are organized in a hierarchy of nested
elements, so that parts of the program are local to another program unit that

1-2

iAPX 432 GDP Introduction

contains them. The containing program unit determines the scope of the nested
elements; elements that are not nested are global or at "library level." The
elements of a high-level language program are also typed; each program element
has a fixed type that determines what operations are allowed on the element. For
example, an element of type "procedure" can be called but not added to; an
element of type "integer" can be added to but not called. In contrast, a
conventional computer architecture views memory as a single structureless array
of bytes or words~ When a translator maps a program into the conventional
computer memory, all of the information about network structure, scope, and
element types is lost. Also, it becomes expensive (in execution time) to
implement varying-length data structures, which often results in constrained and
clumsy programs.

Another part of the semantic gap is the presence of features in many computer
architectures that have no counterpart in most programming languages. Such
features include explicit processor registers, condition codes, and auto­
increment/auto-decrement addressing modes. These features make compilation
more difficult and increase the temptation to use machine-level code that can
take advantage of them. Such features can also increase the complexity of an
architecture and actually slow the execution of some operations (such as context
switching or recovery from a virtual memory fault).

HIGH-LEVEL
LANGUAGE
PROGRAM

TYPEB

D
D

A DYNAMIC NETWORK OF INFORMATION

STRUCTURES THAT ARE TYPED,

VARIABLE-LENGTH, AND POSSIBLY

NESTED WITHIN EACH OTHER.

SIMPLE
COMPUTER

MEMORY

I I I I

A STATIC, GLOBAL, FEATURELESS

ARRAY OF BYTES OR WORDS.

Figure 1-1. The Semantic Gap in Models of Memory
F-0303

Reducing the semantic gap requires implementing in the hardware architecture
the data types, operations, and concepts of modern programming languages. Such
improvements in conventional computer architectures include hardware support
for floating point computation, subprogram call and return, and array addressing.
Conventional architectures still do not support operating system services and
structured, typed memory organization.

1-3

Introduction iAPX 432 GDP

Reducing the semantic gap has several advantages. First, programs are less
complex, because services once provided within the program are now provided by
the architecture. Second, performance is improved (faster by more than a
hundred-fold for some floating point operations). Third, ad hoc and varying
solutions to a software problem are replaced by a single standard mechanism.

OBJECTS

All data structures and program structures in an iAPX 432 system are contained
in a network of typed, protected objects. You must understand objects to
understand the iAPX 432 architecture. This section describes the reasons for this
memory organization, the properties of objects, the different types of iAPX 432
objects, how objects provide protection, and how objects support dynamic storage
management.

These are the goals of the iAPX 432 memory structure:

1. Provide memory structures corresponding to the structure of data and
programs in modern programming languages.

2. Provide flexible and efficient protection of program modules and data.

3. Support dynamic memory management in which objects are created,
deleted, relocated, or "swapped" at run-time.

4. Achieve the first three goals with a unified model, not an ad hoc
collection of features.

The resulting structure, called the object model, achieves all these goals and is
simple to understand and use. Figure 1-2 shows an iAPX 432 object, its
attributes, and access descriptors that reference the object. The chart
"Introducing Objects" introduces properties of objects and the object model.

1-4

ACCESS DESCRIPTORS REFERENCING A

OBJECT ID RIGHTS

OBJECT ID RIGHTS

ATI'RIBUTESOF A

TYPE

SCOPE

LENGTH OF DP

OBJECT A

OPTION AL DA TA PART tDPl
can contain any information
except access descriptors

PHVSICAL ADDRESS I }
LENGTH OF AP

OPTIO::-OAL ACCESS PART I APl
i---------1 can only contain access

descriptors

Figure 1-2. An iAPX 432 Object
F-0301

iAPX 432 GDP Introduction

Introducing Objects

1. All information in an iAPX 4:32 system is contained in objects.
Even the instruction pointer, status flags, and other
information used by the GDP are contained in qbjects.

2. Each object ciu1 have two parts, a data part and an access part.
The data part can contain any information except accesses.
Data in the data part can be added, assigned, manipulated
as bit fields, or used for any purpose other than accessing
an object. The access part can contain only access
descriptors (ADs). ADs are used for referencing objects
and can only be modified in carefully controlled ways.

3. Objects can be created with different lengths.
An object can have from 0 to 65,536 bytes in its data part,
and from 0 to 16,384 ADs in its access part. Any reference
to any part of an object is automatically checked to ensure
that it falls within the bounds of the object.

4. Each object has a iu:ed type.
The type of an object is determined when the object is
created. An object's type can be used to define the
operations allowed on the object. Software can define new
object types at run-time.

5. Objects can be local to a program or subprogram call.
Each object is created at a particular level that specifies
u1ho+hoY9 +ho ,..h;,.,.,.+ ; .. ,...1 l.. ... 1, 1 :-:~!- ""c•u-p·-e·· T-o a
.. &&- .. &n, ... ~ ,..,, .. ._ "'LIJ""'""'&. .1,.;> 5.1.VUC2.L VJ. .lllUIL't:U 111 ..., &.

particular program or subprogram activation.

6. Objects can only be read or written via access descriptors.
To access data in an object, you must specify an AD that
references the object and also specify the offset within the
object's data part to the field being accessed.

7. A procedure call can only access objects for which it has ADs.
Each activation of a program or procedure is itself
represented by a context object. The instructions executed
by the context can only access those objects for which the
context has ADs or can obtain ADs.

8. Access descriptors can provide restricted access to objects.
Each AD specifies several rights bits, including read rights
and write rights. To read fro'm an object requires read
rights set on the AD used; to write to an object requires
write rights set on the AD used. Different module
activations can have ADs for the same object, but with
different rights.

1-5

Introduction iAPX 432 GDP

OBJECT PROTECTION

This section describes the protection mechanisms provided by the object model.
These protection mechanisms are built into the processor's basic addressing
mechanism and are both comprehensive and efficient; special processor structures
for parallel checking and for caching frequently-used descriptors contribute to
efficiency.

A computer scientist's abstract "protection model" is defined in terms of subjects,
the active agents being granted or denied access to information, "objects", the
units of information for which access is controlled, and operations, the actions
that are individually allowed or disallowed for a particular subject/object
combination. In all of these three dimensions of a protection model, the iAPX 432
significantly improves the state of the art. First, the subjects for which access is
controlled are not users or large "jobs," but as small as an individual subprogram
call. Second, the objects to which access is controlled are not large blocks of
contiguous "pages" in some "partition" of a computer's memory, but can be as
small as a single one-byte variable (or as large as 128K bytes in a single object).
Third, the operations that are allowed or disallowed are not restricted to the
primitive read and write operations defined for all objects, but can be extended to
include up to three type-specific operations determined by the object's type.

There are other advantages of the iAPX 432 protection model. First, all programs
in an iAPX 432 system still share the same virtual address space, allowing
pointers to information to be transferred between programs efficiently; this is in
contrast with some protection models that "protect" by completely segregating
programs in separate virtual address spaces, so that communication requires calls
on the operating system and much unnecessary copying of data between the
separate address spaces.

A second advantage of the iAPX 432 model is that there is no concept of global
privilege. Many architectures have a supervisor mode in which a program can
perform any operation and access any system registers or descriptor tables. A
program that manages to enter supervisor mode has free run of the system. The
supervisor mode is used by many operating system programs, and it is difficult to
produce an operating system in which none of those programs can be subverted.
In the iAPX 432, there is no supervisor mode, and operating system programs use
exactly the same protection mechanism as user programs.

Privileges in the iAPX 432 are type-specific; for each type of object, there is a
~ manager program module that provides all operations on that type of object.
Within a type manager module, there is a type-specific privilege, so that a
manager (e.g., for file directory objects) has privileged access to those objects.
But the file directory manager could not use its privilege to access another kind
of object, such as objects that represent 1/0 devices. The iAPX 432 architecture
supports the principle of least privilege: Each program or subprogram activation
has only those privileges that it requires to perform its function. In national
security applications, this is called the "need to know" principle, because each
activity only has the access it needs to the information it needs.

The chart "Threefold Object Protection" summarizes the three parts of the iAPX
432 object protection mechanism: "need-to-know" access control, extensible
object typing, and access rights. Figure 1-3 illustrates how these three parts work
together to limit the operations allowed to a particular activity (context).

1-6

iAPX 432 GDP Introduction

Threefold Object Protection

I. "Need-to-Know" Access Control

• Each activation of a program module has a restricted access
environment referencing only those objects that the activation
has a "need-to-know."

• An object reference (access descriptor) cannot be forged or
otherwise corrupted.

• A module can be allowed access to only part of an object by
using the object refinement mechanism.

II. Extensible Object Typing

• Every object has a type and new types can be defined by users.

• Both hardware instructions and software "type manager" modules
verify at run-time that object operands are of the proper type.

• Type manager modules can be defined that perform all
operations on objects of a particular type. The operations
provided by the manager module act as primitives that
completely define the behavior of objects of the type. Modules
outside the type manager have no access to the internal
!'e??!'esenta.t!cn cf objects cf the t:,.7P~·

m. Access Rights

• The association of access rights with object references allows
modules to be granted differing access to the same object (e.g.,
read-only access for one module and write-only access for
another).

• Type-specific access rights can allow or prohibit operations
unique to an object type (e.g., the right to send a message to a
"port" object).

• Type manager software can define new type-specific access
rights. For example, the iMAX 432 type manager for processes
defines a new access right, called "control rights," for processes.

1-7

Introduction

1-8

··-·-·-·-·-·-·-·-·-·~

! The set of all objects !
I I
· in the system i

"NEED - TO - KNOW" ACCESS CONTROL
~·-·-·-·-·-·-·-·-·-.

! Those objects known !
I I

i to the context ·

EXTENSIBLE OBJECT TYPING
r·-·-·-·-·-·-·-·-·-·-·-·-·1

! Those objects known to the !
I I
i context, with the correct type j . .
1 for the operation
L.·-·-·-·-·-·-·-·-·-·-·-·-·..J

ACCESS RIGHTS
r·-·-·-·-·-·-·-·-·-·-·-·-·-·-·,
· Those objects known to the i

context, with the correct type
I I

1 for the operation, and with access 1

! rights permitting the operation !
L·-·-·-·-·-·-·-·-·-·-·-·-·-·--~

Figure 1-3. Threefold Object Protection

iAPX 432 GDP

F-0367

iAPX 432 GDP Introduction

DYNAMIC STORAGE MANAGEMENT

This section briefly describes how the object model supports dynamic storage
management:

• Objects can be relocated in physical memory.

• Objects can be swapped in and out of main memory as needed by programs;
this feature is called virtual memory.

• Objects can be automatically reclaimed when they are no longer needed,
without requiring that a program explicitly delete them.

These services are provided by the architecture and an operating system working
together, in cooperation. They are described in more detail in Chapter 4,
"Memory Management," and in the iMAX 432 Reference Manual.

Objects can be easily relocated in physical memory because physical addresses for
objects are centralized in object descriptors. Each object has one and only one
object descriptor. An access descriptor for an object contains an index into a
structure of object tables. The object tables contain object descriptors. The
object index in an access descriptor selects the object descriptor of the
referenced object. This process is described in more detail in Chapter 3, "Object
Addressing." An object's descriptor contains its base address in physicai memory
and also contains several flag bits used by memory management. When an object
is relocated in physical memory, only the base address field in its object
descriptor must be changed. One of the flag bits can be used to make the object
inaccessible while it is being relocated. One reason for relocating objects in
memory is to compact memory, so that many small fragments of free memory are
nnmh;non in+n nno lal'"O'Ol'" .fyooo momn7"T hln~1'
__ _ .. ____ 'WI" ._. ... _ o-...... -- &&&~&&&."'.&..J .,,,,......,..:'"•

To support virtual memory, flag bits are provided that indicate whether or not an
object is currently allocated in primary memory, and whether an object has been
accessed or altered recently.

To support automatic reclamation of objects when they are no longer needed, a
level number is associated with each object when the object is created. The level
number indicates the object's scope, i.e., the program or subprogram activation
that the object is local to. When control returns from a particular subprogram
call, all objects in the program that are local to that call can be deallocated. The
deallocation is either done by hardware or by the operating system assisted by
hardware, depending on how the objects were allocated. Level numbers are also
used to constrain the copying of access descriptors; a level check ensures that an
AD for an object is never copied into an object with a longer lifetime (i.e., an AD
for an object is never copied outside of the object's scope). Copying an AD for an
object outside of the object's scope would be a· protection violation; the object
could be deleted on exit from its scope, but ADs for the deleted object would still
exist that could later be used to reference a different object when the freed
object descriptor was reused.

1-9

Introduction iAPX 432 GDP

Global objects that are not local to any module activation can only be reclaimed
when there are no access descriptors for them. Because an object can only be
accessed via an AD, an object with no ADs referencing it is unusable and can be
deleted. This process is called garbage collection, and requires an exhaustive
search of all objects in memory that could contain access descriptors for the
objects that are candidates for deletion. In other systems that offer garbage
collection, all other activity in the system must stop whenever garbage collection
is run to produce more free memory; other activity may be halted for seconds or
even minutes, unacceptable in many computer applications. The iAPX 432
supports parallel garbage collection; the garbage collector executes as one
process in a multiprocessing environment, and other system and user processes
can run concurrently with garbage collection. The GDP performs one crucial part
of garbage collection, setting a flag bit in an object's descriptor whenever an AD
for the object is copied. The rest of the algorithm is implemented by the iMAX
432 operating system.

OBJECT TYPES

This section describes the different types of objects recognized by the GDP.
These include:

• generic objects

• system objects

• dynamic-type objects

• refinements of any of these objects

• interconnect objects

Generic objects have no processor-recognized meaning. Such objects can be used
for any purpose by software. Creating generic objects is faster than creating
other types of objects and requires no special privilege. (This makes generic
objects unsuitable for being managed by a type manager module, as such a module
must control the creation of objects of the managed type.) In a language such as
Ada or Pascal, executing a~ operation that creates a record referenced by a
pointer would, on the iAPX 432, create a generic object and an AD referencing it.

System objects have specific uses and specific formats recognized by the GDP.
They are the backbone of the architecture and of the operating system. Much of
your effort in reading this book will be in understanding the different system
objects. These objects are the major part of the iAPX 432's object set, as much a
part of this architecture as the instruction set or register set of another
computer. The definition of system objects as part of the architecture makes it
possible to place important parts of the operating system into the hardware
architecture and to provide high-level services, such as object creation and
intertask communication, as single GDP operators. Table 1-1 lists the 14 iAPX
432 system objects.

1-10

iAPX 432 GDP Introduction

Dynamic-type objects are objects with a software-defined dynamic ~· For
example, software could define a distinct type of objects to represent 1/0 devices
in the system. Chapter 2, "Program Organization," describes how dynamic types
can be used to protect objects using type manager modules. These protection
mechanisms are the same for both system objects and dynamic-type objects.
Creating a dynamic-type object (or a system object) is a privileged operation that
can be r'estricted to a-type manager module.

Table 1-1. iAPX 432 System Objects

I
Instruction Object I

I contains GDP instructions; the GDP will fetch instructions only from I
1

instruction objects.

'~m~ '1 represents a program module (package) and references subprograms
(instruction objects) and data objects in the module. I

~~ I
represents a program or subprogram activation (call) and defines the access I
environment of the call, i.e., the set of objects that the activation can
reference.

Type Definition Object (TOO)
represents a software-defined object type, and can contain attributes of the
type (e.g., the type name).

Tvl\P r.nnf?n1 Ohi~~ ITr.n\ -.,r- ------- --,.--- ,---,
represents type-specific privileges, such as the right to create objects of a
particular type or to gain access to objects of a particular type.

Object Table
contains the object descriptors used in object addressing and memory
management.

Storage Resource Object (SRO)
represents a free storage pool used to create new objects; references an
object table that will contain the new object's descriptor, a physical storage
object from which the new segment will be allocated, and a storage claim
object that limits allocation from this SRO.

Physical Storage Object (PSO)
specifies free storage blocks in memory.

Storage Claim Object (SCO)
limits the number of bytes that can be allocated from a set of SROs that
reference this SCO.

Process
represents a program or subprogram activation that can execute
concurrently (in parallel) with other processes.

1-11

Introduction iAPX 432 GDP

Port
provides communication between concurrent activities. A port includes a
queue of messages sent to the port but not yet received, and a queue of
blocked activities waiting to receive messages (at an empty port) or to send
messages (at a port with a full message queue).

Carrier
represents an activity in communication with other concurrent activities via
ports. Carriers carry messages to and from ports.

Processor Object
contains attributes and state information for an iAPX 432 processor (e.g., a
GDP). Because programs in an iAPX 432 system can only manipulate
information in objects, all information about a processor that must be
visible to software must be contained in an object.

Processor Communication Object
used by the iAPX 432 interprocessor communication mechanism to transfer
messages between processors.

Refinements

A refinement is an object that is part of another object (see Figure 1-4). The user
of an AD for a refinement can only access the part of the underlying object that
is contained in the refinement. For example, if a user is to be allowed access to
only part of an employment record, a refinement of the record can be created.
Sensitive information such as salary can be excluded from the refinement and
cannot be accessed using the refinement.

Operands in a refinement are addressed exactly as in a simple object, with a
displacement from the start of the object (the start of the refinement). A
refinement can itself be refined, and there can be several different refinements
of one underlying object.

Interconnect Objects

An interconnect object is a special kind of data object allocated in a special
interconnect address space. This address space contains hardware registers used
for system initialization, interprocessor communication, hardware error reporting,
and configuration information. Interconnect · objects cannot contain access
descriptors.

1-12

iAPX 432 GDP

REFINEMENT DESCRIPTOR

AP AP DP DP INDEX TO
LENGTll OFFSET OFFS~;T LENGTH REFINEDOBJECT

---:L
I
I

OBJECT DESCRIPTOR

USER'S VIEW OF

REFINEMENT

Introduction

l
I

DATA PART

J
'1FINED OBJECT

ACCESS PART

THE SHADED PARTS OF THE REFINED

OBJECT CANNOT BE ACCESSED USING

THE REFINEMENT.

F-0287

Figure 1-4. Refinement Object

Type information for objects is contained in their object descriptors. The entry
~ field distinguishes between three types of object descriptors: storage
descriptors for normal objects, refinement descriptors for refinements, and
interconnect descriptors for interconnect objects. In storage descriptors and
refinement descriptors, an object ~ field provides further type information,
consisting of system~ and processor~· The system type specifies whether
an object is a generic object, dynamic-type object, or one of the 14 types of
system objects. The processor type field specifies what types of iAPX 432
processors can reference the object: GDPs only, Interface Processors only, or all
processors. Finally, dynamic-type objects and system objects can specify a
software-defined dynamic type for the object, which is represented by an AD for
a type definition object.

1-13

Introduction iAPX 432 GDP

PROGRAMMING SYSTEMS SUPPORT

This section describes how the GDP supports programming systems (e.g.,
operating systems and compilers). The iAPX 432 architecture provides a higher
level of functioning in hardware than conventional computers. Important system
structures (e.g., process control blocks and communication buffers) have
hardware-recognized representations. High-level operations on these system
objects, such as sending a message between processes, are provided as single
machine instructions. These features of the iAPX 432 architecture are called the
"Silicon Operating System." These features are not in themselves a complete
operating system, but are essential parts of one.

The iAPX 432 functions as a hardware/software partnership. Operations are
provided in the hardware for any one of the following reasons: they are time­
critical, thus benefiting from hardware implementation; they are security­
sensitive, thus requiring hardware enforcement; or they are complex in a way that
benefits from special hardware structures. Other operations are provided by the
iMAX 432 operating system, cooperating with hardware to provide complete
system services (see Figure 1-5).

MEMORY

MANAGEMENT

PROCESS

SCHEDULING

AND

DISPATCHING

COMMUNICATION ADDRESSING

AND AND

SYNCHRONIZATION PROTECTION CONFIGURATION

INPUT/OUTPUT AND

INITIALIZATION

USER INTERFACE
TO iAPX 432

iAPX 432 SILICON OS

CONVENTIONAL
ARCHITECTURE

F-0247-1

Figure 1-5. iMAX 432 Complements the iAPX 432 Architecture

1-14

iAPX 432 GDP Introduction

The relationship between the operating system and the hardware architecture is
best called "cooperation" because iMAX doesn't simply "run" on hardware that
passively executes instructions. The iAPX 432 processors act autonomously to
provide important services; e.g., an iAPX 432 GDP automatically obtains and
dispatches the next ready process when it needs work. Type-checking and rights­
checking are among other services provided by the processors.

Memory management is a good example of the division of labor between an
operating system and the hardware. The GDPs recognize system objects used for
memory management, provide single instructions that allocate new objects, and
set flag bits needed for storage reclamation and virtual storage management. The
iMAX 432 operating system creates and reclaims local storage pools and provides
software processes to compact memory and reclaim unreferenced objects.

Three aspects of the iAPX 432 design ensure that the executive structures
embedded in silicon are flexible enough for a wide range of applications. First,
the hardware and the iMAX 432 operating system were designed together, with
the general-purpose services to be provided by iMAX driving the hardware design.
Second, care was taken to separate application-specific policy (specified by
software-supplied parameters) from general-purpose mechanism (determined by
the hardware architecture). Third, all iAPX 432 system objects can be extended
by software, which can define additional object attributes and operations.

The iAPX 432 architecture provides major- support for programming systems in
these areas:

• program organization

• memory management

• parallel processing

Table 1-2 summarizes the objects and functions provided by the GDP in each of
these areas. For more information, refer respectively to Chapter 2, "Program
Organization," Chapter 4, "Memory Management," and Chapter 5, "Parallel
Processing."

1-15

Introduction iAPX 432 GDP

1-16

Table 1-2. Objects and Functions for Programming Systems Support

PROGRAM ORGANIZATION SUPPORT

Instruction Object
Domain
Context
Process
Type Definition Object
Type Control Object

CALL/RETURN
ENTER ENVIRONMENT (change access env.)
COPY PROCESS GLOBALS
RETRIEVE TYPE DEFINITION
RESTRICT RIGHTS
AMPLIFY RIGHTS

MEMORY MANAGEMENT SUPPORT

Storage Resource Object
Object Table
Physical Storage Object
Storage Claim Object

CREATE OBJECT/REFINEMENT
CREATE TYPED OBJECT/REFINEMENT
enforce storage claim
clear new segments
deallocate stack objects on RETURN
support garbage collection
support segment relocation
support virtual memory

PARALLEL PROCESSING SUPPORT

Process
Port
Carrier
Processor Object
Processor Communication

Object

SEND/RECEIVE messages at ports
forward carriers to second ports
DELAY PROCESS
SEND TO PROCESSOR
schedule processes
dispatch processes and processors
LOCK OBJECT/UNLOCK OBJECT
INDIVISIBLY ADD/INDIVISIBLY INSERT
service timers
handle interprocessor messages

Note: iAPX instruction set operator names ~re capitalized.

iAPX 432 GDP Introduction

MULTIPROCESSING

It is commonplace for a single computer system to handle many activities
simultaneously (e.g., multiple terminal users in an office system or multiple
sensors and machines in a factory control computer). The different activities that
seem to occur in parallel (concurrently) are called processes. The machine that
executes the activities is called a processor. In many computer systems that
handie muitipie processes, execution of the different processes is interieaved on a
single processor. This is feasible because each process may spend most of its time
waiting for a slower 1/0 device or may require only a periodic small "slice" of the
processor's time to execute at an acceptable speed. The single processor
approach to handling multiple processes is cheap and relatively simple, but can
have these disadvantages:

1. Such systems often need to offer a range of performance, so that more
users and more devices can be easily accommodated. But a particular
processor offers a fixed level of performance.

2. Even with advanced and more expensive designs, there is an upper
limit to the performance of a single processor, and that limit is
inadequate for some applications.

3. If the single processor fails, the entire system fails.

Computer architects are designing systems with multiple processors both to
overcome these disadvantages, and because the low cost of microprocessors
makes multiple processor systems more economically feasible. Three different
ways to use multiple processors have emerged: using specialized processors,
distributed systems, and "tightly-coupled" multiprocessors such as the iAPX 432.

Specialized processors can be designed to offload major parts of a main
processor's workload. This approach has been quite successful in offloading
input/output operations to 1/0 "channels," and large array calculations to
specialized array processors. Other examples of specialized processors are often
found in device controllers, such as graphics processors and intelligent disk
controllers. Specialized processors can increase system complexity and cost but
provide major increases in performance, resulting in a better ratio of price to
performance. However, the system that includes specialized processors still
suffers from all three disadvantages listed above, albeit at a higher level of
performance. (Though the failure of a single specialized processor may only halt
some and not all processes in the system.)

1-17

Introduction iAPX 432 GDP

Distributed systems replace central computer systems with a network of
workstations, each containing a single processor. There is essentially one
processor per user, which needs to execute only a few parallel processes (one or a
few user tasks and perhaps some simultaneous 1/0 tasks). Distributed systems
overcome all the disadvantages listed above. A system is expanded to handle
more users by adding more workstations. The limited performance of a single
processor is not a significant constraint because each user has a dedicated
processor. If one workstation fails, the user can simply use another workstation.
However, distributed systems have some disadvantages of their own:

1. Many computer applications involve access by multiple users and
programs to central data bases. The centriil data bases cannot (with
the presently implemented state of the art) be distributed; there are
major problems in data base integrity, security, and access in
spreading an organization's master files over hundreds of workstations.

2. Each workstation normally requires disk drives and significant local
memory, as well as a more expensive processor than is needed by a
terminal. To purchase two hundred floppy disk drives for a hundred
workstations can cost much more than purchasing the equivalent
amount of shared disk storage in a central system.

3. Even with networking software, it is more difficult to share data and
programs, to update software, and to do user accounting in a
distributed system.

Note that if a data base in a distributed system is centralized at a single node,
then all the problems of the single processor system can reappear.

A tightly-coupled multiprocessor contains a number of homogeneous processors on
a common bus, executing processes in a shared memory. Applications software
can be structured in the same way in a tightly-coupled multiprocessor as in a
classical single processor: as a collection of cooperating processes executing
within a single computer system. In the multiprocessor there are multiple
processors to service the "ready list" of processes ready to run, speeding up
throughput. All three of the disadvantages of a single processor are overcome by
the tightly-coupled multiprocessor:

• Performance can be increased in increments by plugging in more processors
(without changing software).

• System performance can be increased almost without limit by adding
processors (and using multiple buses between processors and memory to
overcome bus bandwidth limitations).

• If a processor fails, it can be taken out of service and the system can
continue to operate with reduced performance using the remaining
processors.

1-18

iAPX 432 GDP Introduction

The iAPX 432 is a tightly-coupled multiprocessor. Because the number of GDPs
can vary without changing software, the iAPX 432 is said to provide transparent
multiprocessing. The iAPX 432 can also take advantage of the other
multiprocessing approaches where appropriate. Specialized processors are used
for input/output in an iAPX 432 system, and other specialized processors can be
provided in peripheral subsystems idescribed_ below). The small size and cost of
the iAPX 432 MICROMAINFRAME makes it usable in workstations that can be
networked in a distributed system, the other type of multiprocessing system
described above. Chapter 5, "Parallel Processing," describes in detail how the
iAPX 432 supports multiprocessing.

INPUT/OUTPUT ARCHITECTURE

A major task in computing systems is to quickly and reliably transfer data to and
from peripheral devices such as disks, terminals, and printers. Many 1/0
operations require:

• fast response time to interrupts from devices requesting service

• high throughput for simple data transfer, data conversion, logical, and
arithmetic operations

Note that 1/0 operations do not require the floating point arithmetic or high-level
operating system services of the GDP.

1/0 can consume more than half the processing time of a general-purpose
computer system, a large enough fraction to make special optimization of the 1/0
function attractive.

The very features that make the GDP powerful for data processing make it poor
for I/0:

• The GDP's high-level instructions to provide system services in hardware
can consume dozens or even hundreds of microseconds in a single
instruction, too great a duration for acceptable interrupt latency.

• The GDP is designed to execute processes without preemption, until they
block waiting for some event or until a time slice for the process expires.
The GDP caches much information on-chip to speed up process execution.
The size of this on-chip information would slow down any attempt to
preempt a GDP and switch it to an interrupting activity.

• In a system with multiple GDPs, selection of a processor to interrupt would
cause additional overhead.

1-19

Introduction iAPX 432 GDP

In the iAPX 432 architecture, there is a division of labor between the GDPs,
which provide extensive computation, protection, and support for programming
systems, and peripheral subsystems that provide input/output and system
initialization services. The peripheral subsystems act as I/0 "channels" in an
iAPX 432 system. Each peripheral subsystem has a separate bus and address
space. Attached to this bus and addressed in the separate address space are one
or more I/0 devices. A peripheral subsystem also contains memory and at least
one attached processor (AP) which provides processing power in the subsystem.
An iAPX 432 interface processor (IP) is the bridge between each peripheral
subsystem and the iAPX 432 central system. Figure 1-6 illustrates this I/0
architecture.

l<'IHST Pl<~RIPHEHAL
SUBSYSTEM

CENTRAL SYSTEM

CENTltALSYSTEM BUS

Figure 1-6. Input/Output Architecture

SECOND PERIPHERAL
SUBSYSTEM

F-0304

Data is transferred between the central systems and the peripheral subsystems via
IP windows that map a portion of the peripheral subsystem address space to the
data part of a central system object. Each IP can drive 1/0 transfers through up
to four windows simultaneously (with a fifth window dedicated to controlling the
IP). The IP can execute operations on objects in the central system, to send and
receive messages that represent 1/0 transactions for example, or to enter objects
into its access environment. When functioning in the central system, the IP uses
the same object addressing and protection mechanisms as GDPs. All these IP
operations, however, are done at the command of peripheral subsystem software
executing on the Attached Processor. To the AP, the IP appears as a slave
device, to which the AP writes command codes and operands. Within the central
system, the IP, carrying out those commands, functions as an object-based
processor. The AP and IP together can be considered a virtual "1/0 processor," a
partnership in which the AP fetches instructions and provides data addressing,
computational operators, and branching operators within the peripheral
subsystem, while the IP provides the window mechanism for data transfer and
provides object operators within the central system. The 1/0 architecture is
described in much greater detail in the iAPX 432 Interface Processor Reference
Manual and the iMAX 432 Reference Manual.

1-20

iAPX 432 GDP Introduction

COMPUTATION

The iAPX 432 GDP is a powerful computing engine in addition to its support for
modern programming systems. The GDP supports eight computational data types
(Figure 1-7) ranging from 1-byte characters to 10-byte extended precision floating
point numbers. The GDP supports the proposed IEEE stan_dard for binary floating
point arithmetic~ the same standard supported by Intel's 8087 numerical
coprocessor for the iAPX 86 architecture. This industry standard guarantees
significant compatibility and portability of numeric software to and from the
iAPX 432. The iAPX 432 also provides distinct signed integer and unsigned
integer (ordinal) data types, with overflow checking provided as part of all integer
arithmetic operations. These data types and operations are a significant
improvement over many processors that require extra instructions to test or
manipulate different flag bits in order to do overflow checking or provide both
signed and unsigned integer arithmetic. Thirty-two-bit ordinal and integer types
are provided by the GDP, in contrast to many processors that must implement
such types in software.

DCHARACTER
<8 bits)

7 0

II SHORT ORDINAL
L__i_J (16bits)

15 0

I
ORDINAL
<32 bits) ..___..___..___..______.

31 0

II SHORT INTEGER
L__i_J ()6bits)

15 0

I INTEGER
(32 bits) ..___.__.____,____.J

31 0

I
SHORT REAL
<32 bits) ..___..___._____..______.

31

I
REAL

..__..______...____..___..___..___..__..____. (64 bits)

63

I
TEMPORARY REAL
(80 bits)

.____.__..____.__...____.__....___.__~__.-~

79 0

=o_ TEXT CHARACTERS,

_J I BOOLEANS

L'NS!GNED
INTEGERS

SIGNED
INTEGERS

FLOATING
POIJ'.l.'T
NGMBERS

Figure 1-7. iAPX 432 GDP Computational Data Types
F-0274

Operations provided for these data types include arithmetic, logical, relational,
bit-field, and type conversion operators. Table 1-5 shows which operators are
available for which computational data types. Chapter 8, "Computational Data
Types," describes these types and the operations on them in more detail.

1-21

Introduction

MOVE
OPERATORS

LOGICAL
OPERATORS

ARITHMETIC
OPERATORS

BIT-FIELD
OPERATORS

RELATIONAL
OPERATORS

CONVERSION
OPERATORS

{
{

I"

ti(

'-

{

-<

.....

-<

\.

OPERATORS

HOVE
SAVE
ZERO
ONE

AND
INCLUSIVE OR
EXCLUSIVE OR
t::QUHAl:EHCt::

1!Q1

ADD
SUB'rRACT
MUL.TIJ'hI

_Q!!IDE
REMAINDER
INCREMENT
,,._ .Ml'.N_:f

NEGATE
Assm n; VALUE
SQUAR_! ROOT
INDEX

EXTRACT
INSERT
SIGHIFICANI BIT

EQUAL
NO:I: EQUAL
EQUAL ZERO
NOT ~UAL Zj_RO
USS JHAN
LESS THAN OR EQUAL
POSITIVE
NEGi\'l'J:V~
HOVE IN RANGE

TO CHARACTER
TO SHORT ORDINAL
TO ORDINAL
.IQ_ SHORT _INTEGER
TO INTEGER
TO SHORT REAL
.IQ_ Kl::Al..

TO TEMPORARY REAL

iAPX 432 GDP

DATA TYPES

/1!1ilti/1J!I ~!-....., ~ "~ ~ ~
ti ~~ ~ ~& cJI ;. . ~~
r$~ ~ $~ ~- ~~ ~ §j~l
~ ~ ~ ~ t?~ ~. ~

x x x x x x x x
x x x x x x x x
X· x x x x x x _!
x x x x x - - -
x x x - - - - -
x x x - - - - -
x x x - - - - -x x x - - - - -
x x x - - - - -
x x x x x • • x
x x x x x • • x

.x: x x x f -.- .~
x x x x • • x
x x x x - - x

x x x x x - - -:x :x: :x :x :x - - -
- - - x x x x x
- - - x x x

x
- - x - - - -

x x - - - - -x x - - - - -x x - - - - -
x x x x x x x x

_x _x .x .x .x
x x x x x x x x
x x x x I x
:x x x :x x x x .x
x x x x x x x x
- - - x x x x x
- - - x x x x x

x x

- x
x - x

- x x
- :"!"

x x x x - x
- x

- x
x x x x x x -

WHERE: X MEANS THE OPERATOR IS AVAILABLE FOR THE GIVEN DATA TYPE.

1-22

* MEANS THE OPERATOR IS AVAILABLE FOR THE GIVEN DATA TYPE AND
FOR INSTRUCTIONS IN WHICH ONE OF THE OPERANDS IS A
TEMPORARY REAL.

MEANS THE OPERATOR IS NOT AVAILABLE AND WOULD BE OF LITTLE
OR NO USE IF IT WERE.

(BLANK) MEANS THE OPERATOR IS NOT AVAILABLE.

Figure 1-8. iAPX 432 Operators and Computational Data Types
F-0273

iAPX 432 GDP Introduction

CONCLUSION

This chapter began with the iAPX 432 architecture's overriding goal of improving
support for large software systems. It described the importance of large software
systems and their reliability, and of detecting and confining the inevitable errors
in such systems. The semantic gap between conventional computer architectures
and high-level programming concepts was identified as a significant cause of
complexity and unreliability in software, especiaiiy the gap in models of memory.
The object model was introduced as a unifying paradigm that resolves that
semantic gap, provides flexible and efficient protection, and also supports
·dynamic memory management.

The system objects of the iAPX 432 were described, as well as the crucial role
they play in the "Silicon Operating System" that places crucial functions into
hardware, while maintaining flexibility by carefully separating policy and
mechanism.

The importance of multiprocessing was explained, and the iAPX 432's tightly­
coupled multiprocessor architecture was compared with alternative designs. The
iAPX 432 1/0 architecture was introduced as an extension of the basic
multiprocessor architecture.

Last, the iAPX 432 GDP's powerful and standard computational capabilities were
described, including built-in floating point operations to support the proposed
IEEE standard, and also 32-bit integer and ordinal arithmetic.

1-23

CHAPTBR 2
PROGRAM ORGANIZATION

This chapter describes the iAPX 432 system objects and operators that support
high-level language concepts such as procedures and packages. The high-level
language concept of a protected "type manager" module is explained in detail, as
well as how the architecture provides run-time protection for such modules.

PROCEDURES

A computer program is frequently modularized -- organized as a collection of
smaller and more manageable pieces -- as a collection of procedures. Procedures
are also called subroutines or subprograms. Each procedure is a sequence of
instructions to perform some service. For example, a square root procedure takes
a real number, computes the square root, and returns the root to its caller. A
procedure is normally called from some other procedure in the program. The
calling procedure may pass arguments or parameters that control the action of
the called procedure; the called procedure may return result values to its caller.

PACKAGES

A computer program can also be organized as a collection of packages. A
p&:.ckage is a collection of related subprograms and data. A package has a two­
part definition. The package specification defines the subprogram interfaces and
data declarations (types, variables, or eonstants) available to other- p!!.r-ts of the
program. The package body defines the implementation of the specified
subprograms. The package body can also include subprograms, data declarations,
and accesses to other packages that are all hidden from other parts of the
program.

INFORMATION HIDING

Information hiding is an important concept in understanding both for ms of
modularization and in understanding the advantages of organizing a program as a
collection of packages. A procedure interface specification or a package
specification can be thought of as a contract between the module's developer and
the module's "users." (Note that these users are actually other program modules.)
The specification describes the form and content of the services the module is to
deliver to outside users. Within the requirements set by the specification, the
module's implementation can vary: to improve performance, correct errors, or
adapt to new hardware or operating systems.

2-1

Program Organization iAPX 432 GDP

One measure of how well a program is modularized is: "How much information is
hidden by the modularization?" For example, a standard 1/0 interface, like those
provided by the programming languages Ada, C, and Modula-2, can successfully
hide all details of device registers, interrupt handling, and even hide the operating
system. An example of poor modularization is the program with an "initialization
module" that is nothing but a sequence of assignment statements that bind values
to global variables. The global variables and their structure are still known in the
rest of the program, and it is probable that many of the initial values are also
known and relied upon in the rest of the program. Such modularization might
make a program more readable, but it hides little information and does not make
the program more modifiable.

Modularization using procedures can hide complex algorithms easily. For
example, a procedure to compute the sine of an angle can be implemented using a
Taylor series or using Chebyshev polynomials, without changing the interface to
the user. Procedures can also hide complex data structures that arise in the
intermediate stages of an algorithm and are local to the algorithm and the
procedure.

Procedures cannot hide complex data structures that are not local to any
procedure, such as the structure of a disk directory, or an operating system task
control block, or the indexing structures for a data base system. In a language
like Pascal, any data that must be shared by procedures must be global -­
accessible to the entire program.

Packages provide a more powerful and complete form of information hiding.
Complex data structures, such as those for implementing a data base, are hidden
in the package body. The package specification provides a simple interface with
multiple procedures for such operations as Read, Write, Insert, Delete, etc. Such
data structures are "global" in the sense that they may exist throughout execution
of the program, but "local" to a particular package that hides their
representation.

Information hiding using packages has several advantages:

1. Program testing is easier. Most data structures are encapsulated in a
package, and their correctness can be assured by reviewing and testing
just the package body.

2. Program modification is easier. Not just algorithms but major
program data structures can be changed within one module without
changing other modules.

3. Programs are more understandable. Packages can be understood in
isolation, so long as the specifications of any other packages used are
understood. Programs can be organized so that each package manages
a single data type or data object.

Increased understanding of how to modularize programs and of what programming
language constructs are needed has produced a major improvement in
programming methods. The iAPX 432 is the first computer architecture to
support these new methods in hardware, as described in the following sections.

2-2

iAPX 432 GDP Program Organization

INSTRUCTION OBJECTS

The GDP represents a procedure as one or more instruction objects (see Figure 2-
1). When a procedure (an instruction object) is called, the GDP requires certain
information for the context object that represents the call. This information is
contained in an Instruction Object Header in the first eight bytes of the
instruction object's data part. The remainder of the data. part can contain
instruct ions.

GDP instructions are not aligned on byte or word boundaries and are varying­
length sequences of bits. Instruction fields are frequency encoded (Huff man
encoded) so that more frequent operation codes, formats, classes, and addressing
modes are encoded in fewer bits.

GDP instruction pointers and branch destinations are always bit displacements
into the data part of an instruction object. For example, an instruction pointer
value of 93 references bit 5 in byte 1i of an instruction object's data part.

Because instruction pointers and branch destinations are computed as 16-bit short
ordinals, the maximum instruction bit displacement is 65,535. Thus instruction
objects normally will have a data part length less than or equal to 8,192 bytes
(65,536 bits).

~~~;;;;;;;;;;;;;;;;;;;;;;;;;;;~;::I 

Extra space required ~ 
byprefetch 

Instructions 

(bit aligned) 
Byte Displacement 

8 

6 

Instruction Object 4 

Header 2 

0 

Figure 2-1. Instruction Object 
F-0280 

2-3 



Program Organization iAPX 432 GDP 

The instruction object data part length should be rounded up from the end of the 
last instruction to a 16-bit boundary (double-byte boundary) plus 32 bits (four 
bytes). This extra space is required because the GDP fetchs 32 bits at a time 
from the instruction stream, aligned on a 16-bit boundary. If the extra space is 
not provided, the GDP's prefetching from the instruction stream can cause an 
erroneous fault by attempting to read from beyond the bounds of the instruction 
object. 

The first instruction in a procedure is fetched from bit displacement 64, 
immediately following the eight bytes reserved for the instruction object header. 

The fields of GDP instructions and the different operators and addressing modes 
are described in Chapter 7, "Instruction Interface," Chapter 10, "Operator Set," 
and Chapter 11, "Instruction Encoding." 

DOMAIN OBJECTS 

A domain object represents a package. A refinement of the domain is made 
available to other packages (other domains) and represents the package 
specification, the interface that is available to other packages. The portion of 
the domain that is not contained in the refinement contains or references the 
information hidden in the package body, which is not available to other packages. 
Each domain contains two processor-recognized fields, the first two access 
descriptors in the domain access part. These two ADs reference the fault and 
trace instruction objects for the domain. If any operation within the domain 
causes a fault or a trace event, control is transferred to the fault instruction 
object or the trace instruction object referenced by the domain. Chapter 12, 
"Fault and Trace Reference," provides more information about these objects and 
about fault-handling and tracing. Note that the two processor-recognized ADs 
are normally not included in the domain refinement. 

The domain can contain ADs for instruction objects that represent procedures of 
the package, ADs for objects that contain constants used by those procedures, and 
ADs for data objects defined by the package. The domain data part can also 
contain data items defined by the package. 

The public part of a domain is that part in a refinement used by other packages. 
The private part of a domain is that part that is not visible to other packages. 
Figure 2-2 illustrates a domain and domain refinement. 

2-4 



iAPX 432 GDP Program Organization 

Domain 

//_,:-:':/::' .!. Public Data Variables 

l.....----------,.1" ,." ,." 

t r--------...._ _________ , ..... ,, ' .... , .... 

',,_______ '•,, " ~Ds foe Public Opemtio,,. I 
' ........... J and Objects j 

Refinement (Public View) 

Figure 2-2. Domain Object and Refinement 

STATIC PROGRAM ORGANIZATION 

AD Index 

_J 

Not visible to 
other program 
modules 

F-0279 

The statiC structure of an iAPX 432 program is represented by a hierarchy of 
domains and instruction objects, illustrated in Figure 2-3. Each domain provides a 
different access environment for procedures within it. As control flows from one 
domain to another, the set of objects that can be referenced changes. This 
process is described in more detail in the following description of context objects. 

2-5 



Program Organization 

ROOT 
DOMAIN 

INSTRUCTION 
OBJECT FOR ...,._ 

PROCEDURE MAIN 

D 

iAPX 432 GDP 

FAULT INSTRUCTION 
OBJECT 

VISIBLE //' 
DOMAIN ,,./ 

TRACE INSTRUCTION 
OBJECT 

DOMAIN 
A 

REFINEMENT// 

,,-t'TI;m~::,.j\),'jmrj···•.J'.: -., 

,/// :.,:\''!'.:! ~PRIVATE 
• PART 

-------' ................... ... 
..................... ......... w ..... 

... 
"' 

... '...... -+--1 INSTRUCTION 
..__ __ _. OBJECTS 

DOMAIN 
B 

VISIBLE 
DOMAIN ,,,,"'"' 

REFINEMENT// 

"' 
I)).·•·•• ;; t- PRIVATE 

..._-1~----" .·,:. .:,,,, '' PART 

'',, ]~~~~~~~~======================!--' 

2-6 

"'"----1........... .................. :::.: 
...... -...... 

............ -+--___ _, 

INSTRUCTION 
OBJECTS D~ 

l ..... 

Figure 2-3. Static Program Organization Example 
F-0296 



iAPX 432 GDP Program Organization 

CONTEXT OBJECTS 

A context object represents a particular call to a procedure within a domain. The 
context object serves two major purposes: 

1. It provides storage for local variables used by the context. 

2. It provides a distinct access environment for the context, giving 
access to those objects that the context "needs to know." 

All addressing of program operands takes place from within some context, and the 
structure of a context is what the program "sees" when it executes. The objects 
that a program can access are determined by its context. Because of the 
importance of contexts in program organization, they are described in detail in 
the following sections. 

l Operand Stack l 
I I 

l Working Storage Area 1 Byte Displacement 

1-- Trace Control -
1-- DataArea -

Instruction Pointer 
~ .. ·----'- T- ... •-.. ·-"-.: ..... _ /"'\1...!-.-• T'\ AT 
'-'\oil.&. .1. oe.;..a..u .. .a..1..1..:uo1.1. 1.&""11.1.1.v.1..1 '--'UJ'C'"'" ~.C'1..a 

Operand Stack Pointer 

Context Status 

AD to Current Context 

AD to Global Constants 

AD to Context Message 
AD to Defining Domain 

AD to Local Constants 

AD to Environment 1 

AD to Environment 2 
AD to Environment 3 

AD to Calling Context 

AD to Context Link 
AD to Top of Descriptor Stack 

AD to Top of Storage Stack 

AD to Static Link 

AD to Interprocess Message 

12 

10 

8 

6 

2 

o. 
0 

1 

2 
.3 

4 

5 

6 
7 

8 
9 

10 

11 

12 
13 

AD Index 

Figure 2-4. Context Object 
F-0278 

2-7 



Program Organization iAPX 432 GDP 

CONTEXTS VS. PROCEDURES 

It is important to distinguish between contexts and the procedures executed by 
contexts. There can be multiple active contexts corresponding to a single 
procedure. For example, three different users may simultaneously invoke a sort 
procedure, but for different files. In this case, three different context objects 
associated with three different user processes are actively executing the same 
code. When a procedure is recursive, it may call on itself, resulting in multiple 
active contexts corresponding to the same procedure and within a single process. 
For example, compilers frequently use recursive procedures to implement parsers. 

It is enlightening to consider how contexts that correspond to the same procedure 
are the same and how they are different. Such contexts have access to the same 
instruction object and to the same domain. But the parameters referenced by 
each context are normally different. Also, such contexts may be executing in 
different processes, and attributes inherited from the process, such as standard 
l/0 interfaces, may be different. 

ACCESS ENVIRONMENT 

The access environment of a context is all those objects that can be accessed 
from the context. The access environment is all those objects for which the 
context either has an AD or can get an AD by performing a series of ENTER 
operations. (ENTER operations are described below.) The ADs for objects within 
the access environment of a context may or may not have read rights or write 
rights; it can be very useful for a context to hold an AD for an object even if it 
cannot read it or write it Gust how useful is described in the section "Type 
Managers"). 

One can imagine the set of ADs for all the objects in the access environment 
organized into a large array. An instruction executing in the context could then 
specify "byte 5 of the object referenced by the AD in array slot 7" as an operand. 
This is how an instruction specifies an operand, by an index into the access 
environment to specify an AD for an object, and then by an offset to a field 
within the data part of the object. The index into the access environment is 
called an access selector, because it selects an access descriptor. 

The access part of an object matches this description of a "large array" of ADs; 
one object can contain up to 214 (16,384) access descriptors. The access part of 
the context object itself is a major part of the access environment, and a program 
can reference any other object referenced by the context. An access selector is a 
double-byte value, and its 16 bits can select from not one, but four different 
access lists to specify an AD. The lower 2 bits of an access selector specify one 
of the four "environments," and the upper 14 bits specify an AD in the access part 
of the object selected by the lower 2 bits. Figure 2-5 illustrates an access 
selector. 

2-8 



iAPX 432 GDP Program Organization 

15 

ACCESS SELECTOR 

2 1 0 

14 BITS x x 

....___ ENV SELECTOR 

00 Select AD from context itself. 
01 Select AD from object referenced by AD 5 in context. 
10 Select AD from object referenced by AD 6 in context. 
11 Select AD from object referenced by AD 7 in context . 

....___ ______ ACCESS INDEX 

F-0300 
Figure 2-5. Access Selector 

The network topology of ADs and accessible objects within a context cannot be 
directly mapped by a simple array of ADs. Consider a simple linked list of 
objects, in which the context directly references object A which references object 
B which references object C, etc. The access list in the context contains an AD 
for A, but not for B or C. The program must alter its own access environment 
before it can address data in objects B or C. This is done by executing an ENTER 
ENVIRONMENT operator that changes the object used for one of the access lists 
used in access selection. Figure 2-6 shows the example of linked objects A, B, and 
C, after A has been entered as environment 2. 

2-9 



Program Organization iAPX 432 GDP 

CONTEXT 

OBJECT A 

OBJECTB 

AD6 ENV2 
OBJECTC 

AD3 

AD4 , 

Figure 2-6. Access Environment Example 
F-0297 

Object A is directly referenced from AD 6 of the context object. Remember that 
the context itself is always environment O, which cannot be changed. An access 
selector value of (6,0) would be used to reference an operand in the data part of 
object A. Object B is referenced from AD 3 of object A, which is entered as 
environment 2. Because object A is entered as an environment, the data parts of 
any objects that A references are accessible (given proper rights). Thus an access 
selector value of (3,2) can be used to reference an operand in the data part of 
object B. Object C is not directly accessible; it is in the indirect access 
environment of the context but not the direct access environment. To make 
object C accessible, object B must be entered as an environment, e.g., as 
environment 3. This can be done with the operator ENTER ENVIRONMENT 3. 
The operand is an access selector specifying the AD to be entered, (3,2). 

The three modifiable environments are a limited resource that must be managed 
by compilers for iAPX 432 programs. The compiler must keep track of the 
changing direct access environment and generate needed ENTER instructions so 
that all instruction operands are directly addressable when needed. 

Figure 2-7 illustrates the system-defined objects in the context access 
environment. Many of these objects are described in the following section, 
"Context Description." 

2-10 



iAPX 432 GDP Program Organization 

CONTEXT FAULT 

CONTEXT 
MESSAGE 

.. -------· 
I 
I 

I I 

~-------~--------~ i i i 
I I I 

~-------! ~--------

ENTERED 
ENVIRONMENTS 

r-----~ ,---------
= I I 

~ 

[ 

---

---
I I I r-------
1 I I I 

---
~~----------.J I ,-------

1 I I 
r--"\ i I 
I I I I 
I I I I 

L--,--J : : : 

INSTRUCTION 
OBJECT 

DEFINING 
DOMAIN 

-·- -·-a-•-• TRACE 
INSTRUCTIO N 

OBJECT 

-----

J 
----- . .., 

1------
1------

~-+---------J i 
I I I 
I r--"\ I 
I I I I 
I I I I 

L--,--J : : ,--
lo----i--oE- --- ---- --' 
I I 
I I 

jt 
I INSTRUCTION I OBJECT --8 e--n ,..- ----- GLOBAL 

CONSTANTS 
I I 
I I 
L-----J 

E~C!DS!~G 
CONTEXT 

.. ------- .. 
I I 
I I 

~-------~---------------J I I 
I I 

~-------! 

INTERPROCESS 
MESSAGE 

i-------i 
I I 

~-------!..------------------J I I 
I I 
I I ·-------· 

l j 

L~~ rsrJ_ 
PROCESS 
GLOBALS 
OBJECT 

D 

'-·t-· 

~ 

- Reference via required AD 

____ ._ Optional ADs (can be null) 

-·-·-·• Reference via DAI 
(index into domain access part) 

F-0298 

Figure 2-7. Context Access Environment 

2-11 



Program Organization iAPX 432 GDP 

CONTEXT DESCRIPTION 

This section describes the fields of a context. The context object is described in 
detail because the structure of a context is a large part of what a program "sees" 
when it executes. 

Current Context (ADO) 

This AD references the context itself. This seemingly superfluous circular 
reference is needed for programs that reference the context data part. An access 
selector value of (O,O) selects this AD and the context data part. 

Global Constants (AD 1) 

This AD references an object containing frequently used data constants. iAPX 
432 instructions cannot contain constants (literals), and all constants used by a 
program must be allocated in some object. The Global Constants object is a 
system-wide repository for frequently used constants, which then do not have to 
be replicated in each domain that needs them. All contexts in an iAPX 432 
system should reference the same Global Constants object. Compilers for iAPX 
432 systems need to know what constants are in this object, so that they can 
generate references to it rather than create more local constants. 

Context Message (AD 2) 

This AD references a refinement of the calling context (if any). The refinement 
is used for parameters to this context and to store results being returned to the 
calling context. 

Defining Domain (AD 3) 

This AD references the entire domain containing the procedure being executed by 
this context. Note that even if the procedure was called via a refinement (public 
part) of the domain, the AD stored here gives access to the entire domain. 

Local Constants (AD 4) 

This AD references an object containing data constants used by the called 
procedure. A compiler can create a unique local constants object for each 
procedure within a package, or use one local constants object for all procedures in 
a package. The compiler writer must consider tradeoffs in instruction length 
(shorter offsets may be used in some instructions if each procedure has its own 
constants object) versus the space overhead of additional objects (28 to 35 bytes 
per object). 

2-12 



iAPX 432 GDP 

Environment 1 (AD 5) 
Environment 2 (AD 6) 
Environment 3 (AD 7) 

Program Organization 

Each of these three ADs can reference an object with an access part that is 
entered as part of the current access environment. The access environment and 
the objects referenced by these ADs can be changed by executing an ENTER 
ENVIRONMENT operator or a COPY PROCESS GLOBALS operator. These ADs 
do not have delete rights and cannot be modified using the normal COPY AD or 
NULL AD operators. This is understandable because modifying the access 
environment requires changing information cached in the GDP and written in the 
process object; it is more than just copying an AD. 

When a context is called, the defining domain is entered as environment 1 as part 
of the CALL operation. The ADs for environments 2 and 3 are initially null. 

Calling Context (AD 8} 

This AD references the calling context object. If there is no caller, i.e., if this is 
the initial context of a process, then this AD is null. This AD does not have read 
or write rights; the only part of the caller's context that can be accessed is the 
refinement referenced by the Context Message AD (AD 2). This AD normally has 
Return Rights, indicating that the caller can be returned to without faulting. 

Context Link (AD 9) 

This AD is a forward link to the next context in the list of preallocated contexts 
for the process containing this context. Preallocated contexts are discussed 
below. 

Top of Descriptor Stack (AD 10) 

This AD is used by memory management. It references the object most recently 
allocated from the stack, either by this context or its calling contexts. This AD 
does not have read or write rights, because the object it references may not be 
one that this context should be able to access. 

Top of Storage Stack (AD 11) 

This AD is used by memory management. It references the storage object most 
recently allocated from the process allocation stack, either by this context or its 
calling contexts. The difference between this AD and the Top of Descriptor Stack 
AD is that the latter may reference a refinement object or interconnect object; 
this AD references the most recently created object that was allocated storage. 
This AD does not have read or write rights, because the object that it references 
may not be one that this context should be able to access. 

2-13 



Program Organization iAPX 432 GDP 

Static Link (AD 12) 

This AD is a parameter to the CALL instruction. It is intended for use by 
compilers when one procedure definition is textually enclosed within another 
procedure. In many high-level languages, including Ada, the enclosed procedure is 
able to refer to all the local variables of the enclosing procedure. The context of 
an enclosing procedure is not necessarily the calling context, as shown in Figure 
2-8. 

Procedure A textually encloses Procedures B and C. Both B and C should be able 
to access the local variables of the call to A above them in the call chain. A calls 
B which calls C. For both B and C, the static link references a context for A. 
For B, this is also its calling context (though the static link AD has access rights 
and the Calling Context AD does not). For C, the static link references A even 
though A is not its caller. 

It is relatively rare for procedures to textually enclose other procedures, and the 
static link parameter is often unused and null. 

2-14 

PROCEDURE A IS 

PROCEDURE BIS 

BEGIN 

CALLC; 

ENDB; 

PROCEDURE C IS 

BEGIN 

ENDC; 

BEGIN 

CALLB; 

ENDA; 

CONTEXT FOR A 

~ 

CONTEXT FOR B 

_,. -- ---.. AD TO CALLER 
--... AD TO STATIC LINK 

CONTEXT FOR c 

--... AD TO CALLER 
--... AD TO STA TIC LINK 

F-0302 

Figure 2-8. Nested Procedures Example 



iAPX 432 GDP Program Organization 

Interprocess Message (AD 13) 

This AD references the most recent interprocess message received by the 
context. This AD is nuiled when the context is called and until any message is 
received. Interprocess communication is described in Chapter 5, "Parallel 
Processing." 

(Subsequent fields described are in the context data part.,) 

Context Status (bytes O, 1) 

This field contains two subfields that control precision and rounding for the GDP's 
floating point operators. These subfields are described in Chapter 8, 
"Computational Data Types." 

Operand Stack Pointer (bytes 2, 3) 
Operand Stack 

The operand stack pointer is a byte offset into the context data part to the first 
free byte of the operand stack. This is an expression-evaluation stack; each 
context has one. This stack is used for intermediate values by computational 
operators.. This stack is not used for procedure linkage. Using the operand stack 
shortens instructions and improves performance. This stack is aligned on double­
byte boundaries; the operand stack pointer is always even. The operand stack 
grows upward in the context data part, from an initial stack pointer value 
specified by the instruction object header up to the end of the context data part. 
The bounds check automatically performed by the iAPX 432 on all object 
references thus provides a check on stack overflow. The stack pointer is cached 
by the GDP while the context is executing; thus this field is not defined during 
execution of the context. 

Current Instruction Object DAI (bytes 4, 5) 

This field is a domain access index; the upper 14 bits are an index into the 
defining domain's access part to the AD for the current instruction object. This 
value is cached by the GDP and is not defined during context execution; it can be 
changed during execution by an intersegment branch. 

Instruction Pointer (bytes 6, 7) 

This field is the bit displacement into the instruction object data part to the next 
instruction to be executed. The instruction pointer is cached by the GDP and is 
not defined during context execution. 

Trace Control Data Area (bytes 8 •• 13) 

This area contains control information used in tracing, and is described in Chapter 
12, "Fault and Trace Reference." 

2-15 



Program Organization iAPX 432 GDP 

Working Storage 

The area (if any) between the Trace Control Area and the beginning of the 
operand stack can be used by the compiler to allocate local variables for the 
context. ADs in the context access part above the processor-recognized part can 
be used for local access variables. 

PREALLOCATED CONTEXTS 

Calling a procedure is a very frequent programming operation, and is even more 
frequent in programs that use the modular techniques supported by the iAPX 432. 
Each iAPX 432 procedure call requires a new context object, containing several 
specific ADs, to establish a new access environment. To make the procedure call 
mechanism as efficient as possible, the iAPX 432 architecture presumes that 
contexts are preallocated by the operating system. Each process is presumed to 
have a list of these preallocated contexts assigned to it when the process is 
created. When a procedure is called, the next free context on the process's list of 
contexts is used. This eliminates the overhead of creating and deleting context 
objects with each call and return. Also, ADs in the context that do not change 
between calls, such as the Global Constants AD, can be already assigned on entry, 
saving more time. Figure 2-9 shows a process and its preallocated contexts. 
Some of the contexts are active (associated with procedure calls that have not yet 
returned); others are not being used. 

2-16 

INITIAL 
CONTEXT 

LEVELl 

PROCESS 

LEVEL2 

ACTIVE CONTEXTS 

CURRENT 
CONTEXT 

LEVEL3 LEVEL4 

INACTIVE CONTEXTS 

Figure 2-9. Preallocated Contexts Example 
F-0293 



iAPX 432 GDP Program Organization 

THE CALL OPERATORS 

To call a procedure, the calling program must specify the domain being called, an 
access index into that domain to select the instruction object being called, and an 
AD to be passed as the static link to the new context. The CALL and CALL 
THROUGH DOMAIN operators differ only in how they specify the domain being 
called. For CALL, an AD for the new domain must be directly accessible~ That 
is, if the new domain is referenced by the defining domain, then the defining 
domain must be entered as an environment. For CALL THROUGH DOMAIN, an 
AD for the new domain must be in the defining domain, and a domain access index 
is specified; CALL THROUGH DOMAIN does not require the defining domain to 
be entered as an environment. 

Calling a procedure traverses any domain refinement (public view) used to access 
the procedure, and an AD for the entire domain is written into the new context. 
The entire domain is also entered as environment 1 by the call operation. 

There are many other details in the initialization of a called context, described in 
Chapter 10, "Operator Set." 

THE RETURN OPERATORS 

Executing the RETURN operator automatically deallocates any stack 001ects 
created by the current context. The GDP then loads execution information from 
the caller (its environments, instruction pointer, stack pointer, etc.) and resumes 
execution within the calling context. The RETURN AND FAULT operator 
executes the RETURN operation and then immediately raises the Return Fault. 

CONTEXT LEVEL NUMBERS 

Each context in an iAPX 432 system defines the scope of objects local to the 
context. The scope of an object is recorded as a level number in the object's 
descriptor. Objects with level number 0 are global and have indefinite lifetimes. 
Objects with level numbers greater than zero are local to the context with the 
same level number. When a context is called, it has a level number that is one 
greater than the level of its caller. When control returns from a context, all 
objects local to that context (with the same level number) are deallocated. 
Figure 2-10 gives an example of dynamic program organization with several levels 
of processes and contexts. Figure 2-11 shows the corresponding object scopes and 
level numbers. 

2-17 



Program Organization 

CHILD 

PROCESS 

c 

INITIAL 

CONTEXT 

OFC 

PROCESS 

A 

INITIAL 

CONTEXT 

OFA 

CALL TO 

PROCEDURE 
p 

CHILD 

PROCESS 

D 

INITIAL 

CONTEXT 

OFD 

CALL TO 

PROCEDURE 

R 

iAPX 432 GDP 

PROCESS 

B 

INITIAL 

CONTEXT 

OFB 

CALL TO 

PROCEDURE 

R 

NOTE: Arrows indicate relationships within 
the program but do not correspond to ADs. 

F-0294 

Figure 2-10. Dynamic Program Organization Example 

2-18 



iAPX 432 GDP Program Organization 

LEVEL 0 Global Objects, including Process A and Process B 

LEVEL 1 A's Initial Context 

LEVEL 2 Call to P 
ProcessC 
ProcessD 

LEVEL3 LEVEL3 

I I 
C's Initial Context D's Initial Context 

LEVEL4 
Call to R 

I 

\\ )) 
LEVEL 1 B's Initial-Context 

LEVEL 2 Call to R 

Figure 2-11. Object Scopes and Level Numbers in the Dynamic 
Program Organization Example 

F-0295 

2-19 



Program Organization iAPX 432 GDP 

PROCESS OBJECTS 

A process object represents a unit of potentially parallel activity. For example, if 
there are three processes in a system, then potentially all three can execute 
concurrently. It is natural for processes to correspond to real activities that 
occur concurrently. For example, if there are four terminal users simultaneously 
on a timesharing computer system, then each can be represented by a separate 
process. A process can also be associated with each physical I/0 device. Thus the 
printer and the card reader can operate concurrently because there are separate 
printer_handler and card_reader_handler processes that can execute concurrently 
and control both devices. 

Processes and multiprocessing in the iAPX 432 architecture are described in 
detail in Chapter 5, "Parallel Processing." Processes are mentioned in this 
chapter for two reasons: First, processes are part of the dynamic organization of 
an executing program. Second, a process contributes to the access environment 
of every context executing within it, via its associated process globals object. 

The process globals object of a process is an object that is part of the access 
environment of every context executing within the process. The process globals 
object can be entered as an environment by using the COPY PROCESS GLOBALS 
operator. The process globals object can be used by an operating system; for 
example, the process globals object can reference a default global heap SRO to be 
used within the process to create global objects, or can reference standard I/0 
devices to be used within the process. 

OBJECT MANAGERS 

Consider an iAPX 432 system with a single mass storage device and a single file 
directory. It is desirable to hide details of the directory representation from user 
programs so that they do not depend on a particular representation. For example, 
the directory structure might change from a simple linear structure in one release 
to a ''hashed" structure in a subsequent release, giving faster access to directory 
entries but requiring more main memory and more disk space. A "Disk Manager" 
package can conceal the directory representation in the package body and provide 
an external interface with such user operations as "Create," "Open," "Read," 
"Write," and "Close." Note that subordinate packages used by the disk manager 
can conceal the representation of free blocks on the disk (bit map, linked list, or 
other) and of the files themselves (organization as randomly scattered blocks or as 
"extents" of contiguous blocks). 

This type of package can be called an object manager; the module conceals the 
representation of one or more specific objects while providing services to external 
callers that use those objects. 

TYPE MANAGERS 

Next, consider a more difficult and more general problem in modular 
programming, a system with multiple file directories associated with multiple 
users, in which file directories can be created and deieted at run-time and can 
exist in complex hierarchies. Further, access to file directories must be 

2-20 



iAPX 432 GDP Program Organization 

controlled, so that access by one user to files of another user or of the system 
administrator is controlled. For example, these are all attributes of the UNIX* 
operating system's directory structure. Finally, the solution to the problem should 
conceai the representation of directories just as well as the Disk_ Manager 
package described above does in a simpler system. 

A key part of the new problem is that software that uses the new 
"Directory_ Manager" module must be able to ref er to directories. For example, a 
caller of the "Open" operation must specify the directory containing the file to be 
opened. The "Create_ Directory" operation must return such a reference to its 
caller. 

Directory references held by users could be represented as index numbers. Within 
the directory manager, inaccessible to external callers, could be a large table of 
ADs for all the directories in the system. When a user created a directory, an 
empty slot (e.g., slot 5), would be found in this table. An AD for the new 
directory is then written into that slot and the slot number (5) is returned to the 
caller. Subsequent user calls, such as "Create file MEMO in directory 5," specify 
the directory by giving the slot number. The user software never has an AD for 
the directory and can never access the representation of the directory. 

The flaw in this design is that while the directory ADs are protected, the slot 
numbers are not. There is nothing to prevent a user program from doing file 
operations in directory 8 when it should be restricted to directory 5. The slot 
number parameter is simply an ordinal value supplied by the caller; the caller 
could even systematically supply values of O, 1, ••• to access the entire file system 
including files of other users. The same concerns apply to any design in which the 
directory reference returned to the user is unprotected and corruptible. 

The iAPX 432 provides only one type of "data" that !s p!"0te~ted and !ncorl"..:ptible 
-- the access descriptor. Thus it makes sense to search for a solution that returns 
an AD as a directory reference. Most straightforward is to return an AD for the 
directory itself, but without read Q!: write rights. Such a reference is protected, 
incorruptible, and unambiguous, but does not allow the holder to read or write the 
representations of directories. The body of the directory manager must map this 
AD without read or write rights to an AD with read and write rights for the 
directory. The body could do this with a look-up table of all directory ADs, all 
with read and write rights. This table can be scanned and the ADs compared in 
turn to the AD without rights supplied by the caller. The EQUAL ACCESS 
operator can be used, which returns true if two ADs reference the same object, 
even if the rights bits differ. Note that if the caller mistakenly supplies an AD 
for some object other than a directory, no matching entry would be found in the 
directory table, and an exception could be raised. 

Such a module, which provides all operations on a particular class of object, but 
allows other modules to hold references without rights to such objects, is called a 
~manager. 

*UNIX is a trademark of Bell Laboratories. 

2-21 



Program Organization iAPX 432 GDP 

TYPE MANAGER IMPLEMENTATION 

A type manager can actually be implemented without the look-up table 
mechanism described above; the GDP provides an AMPLIFY RIGHTS operator 
that takes an AD without rights and "turns on" selected rights (such as read and 
write rights). Amplifying rights must be a privileged operation, or it would be 
meaningless to restrict read or write rights at all. The AMPLIFY RIGHTS 
operator requires an AD (with amplify rights) for a Type Control Object (TCO) 
that specifies the type of object for which rights can be amplified. The TCO also 
specifies which rights can be amplified. In the directory manager example, the 
body of the module can access a TCO for directories, giving it the privilege of 
amplifying rights on ADs for directory objects. This TCO is not available to 
external users of the module. 

The implementation of type managers uses four features of the iAPX 432 
architecture: 

1. GDP support for protected program modules (domains), where external 
users can only access a refinement of the domain, but code in the body 
of the module has access to the entire domain. 

2. GDP support for software-defined protected types. 

3. GDP implementation of creating typed objects as a privileged 
operation. 

4. GDP implementation of amplifying rights to typed objects as a 
privileged operation. 

SOFTWARE-DEFINED PROTECTED TYPES 

In the hypothetical "look-up table" implementation of the type manager, described 
above, the table itself provided a secure "typing'' of directory objects. An object 
was a directory if and only if it could be found in that table. Only the type 
manager module had access to the table, thus only the type manager could create 
an object as a directory object by creating it and entering an AD for it into the 
table. The actual implementation of type managers uses the AMPLIFY RIGHTS 
operation to map ADs for the managed objects without rights to ADs for the 
managed objects with rights. There is no look-up table, but a secure typing of 
directory objects is still required. Otherwise, an external caller could spoof the 
directory manager by creating an object and passing it to the manager in the guise 
of a directory object. At best this might crash the system; at worst it might 
introduce errors into the file system or give the caller access to protected files. 

Remember that all information in an iAPX 432 system is represented as objects; 
thus the iAPX 432 represents types as objects as well. A software-defined 
protected object type is represented by a ~ definition object (TOO). The TDO 
has no processor-recognized fields. The TDO data part might contain a printable 
name for the type (e.g., "directory") and the TDO access part might reference the 
type manager domain for the type. 

2-22 



iAPX 432 GDP Program Organization 

Each object of the protected type is represented as a dynamic ~ object (DTO). 
A OTO has no processor-recognized fields but is formatted by the type manager. 
For example, a directory object might contain file names, disk addresses, and file 
protection information. The object descriptor for a DTO contains a copy of an 
AD for the TDO that defines the type. The GDP operator RETRIEVE TYPE 
DEFINITION takes an AD for a DTO and returns an AD for the TDO that defines 
its type. 

Figure 2-12 illustrates the relationships between the objects used to implement a 
type manager: domain, TDO, TCO, and DTOs. 

EXTERNAL 
INTERFACE TO 

TYPE MANAGER 
DOMAIN 

DTOOBJECT 
DESCRIPTO.R<S> 

' ' ' 

TYPE MANAGER 
DOMAIN 

: • DYNAMIC TYPE 
I OBJECTS 
I 
I 
I 
I 
I 
I 
I 

'--f----------i-----..... 
I .. ________ _ 

PRIVATE 
PART 

PUB UC 
PART 

TYPE 
DEFINITION 

OBJECT 

Figure 2-12. Type Manager Objects 

TYPE 
CONTROL 
OBJECT 

F-0299 

2-23 



Program Organization iAPX 432 GDP 

It is important to clearly understand the difference between a Type Definition 
Object and a Dynamic Type Object. Suppose that there are two software-defined 
types in a particular system, "directory" and "user job", and that there are 78 
directories and 10 user jobs at a particular instant. -The system will contain two 
TDOs corresponding to the two software-defined types. The system will contain 
88 DTOs. 78 of these DTOs will represent particular directories. Executing the 
RETRIEVE TYPE DEFINITION operator for any of these 78 DTOs will return an 
AD for the "directory" TDO. Ten of the DTOs will represent particular user jobs. 
Executing the RETRIEVE TYPE DEFINITION operator for any of these ten DTOs 
will return an AD for the "user_job" TDO. 

CREATING TYPED OBJECTS 

Creating objects of a protected type must be restricted to the type manager for 
two reasons. First, when a typed object is created, initial values for its contents 
must be written into it, a privileged operation that accesses the object's 
representation. Second, when an object is created by the GDP, the returned AD 
has all rights. Read and write rights must be removed from the AD using the 
RESTRICT RIGHTS operator, before returning the AD to a caller from outside the 
type manager. 

The CREATE TYPED OBJECT operator is used to create an object of any type 
other than "generic." This operator requires an AD with create rights for a Type 
Control Object that specifies the type of the new object. Because only the body 
of a type manager has access to a TCO for the managed type, only the type 
manager can create objects of the type. 

TYPE MANAGER SCHEMA 

This section gives a schema or "template" that can be used for defining type 
managers. This same schema can be used to manage both system typed objects 
(e.g., processes) and software typed objects. 

2-24 

1. For a software-defined type, the package initialization code should 
call an operating system package that creates a new unique software­
def ined type. The call should return ADs for a TCO and a TDO. The 
TCO AD should be stored in the private part of the type manager 
domain and nowhere else. 

2. (If the managed type is XXX), the package should provide a 
Create XXX operation. Create XXX should use the CREATE TYPED 
OBJECT operator to create an object of the type, then initialize the 
object, then use the RESTRICT RIGHTS operator to remove read and 
write rights, and then return the AD without rights to the caller. 

3. Each operation provided on objects of the type will take one or more 
ADs for objects of the type as parameters. The body of each 
operation should use the AMPLIFY RIGHTS operator to get read and 
write rights for these objects within the body of the type manager. 
Remaining code should implement the operation. 



CHAPTER 3 
OBJECT ADDRESSING 

This chapter describes the iAPX 432 architecture's object addressing mechanism, 
which provides these services: 

• conversion of access selectors and off sets to physical addresses for operands 

• bounds checking and checking of read/write rights for all memory 
references 

The GDP supports several different addressing modes -- various ways that an 
access selector and offset can be specified by an instruction. The GDP addressing 
modes are described in Chapters 7, "Instruction Interface," and 11, "Instruction 
Encoding." 

This chapter describes these iAPX 432 types: 

• access selectors 

• access descriptors 

• object descriptors 

• object tables 

Access selcdors cue also described hi Ctiaptt~1., 2, !!Program Organization.;; 1wore 
information about access descriptors, object descriptors, and object tables is 
contained in Chapter 4, "Memory Management." 

PHYSICAL ADDRESS SPACES 

An iAPX 432 system has two physical addressing spaces, a storage address space 
and an interconnect address space. The interconnect address space can be used 
for hardware configuration information, interprocessor communication registers, 
and error registers. All other information in the main memory of an iAPX 432 
system is contained in the storage address space. The section "Interconnect 
Addressing" describes the interconnect address space. All other sections of this 
chapter describe object addressing in the storage address space. 

Though an iAPX 432 system contains multiple processors, all processors share a 
single common storage address space. Even processor state information is stored 
in the storage address space, in processor objects. 

The iAPX 432 supports a storage address space with up to 224 (16, 777 ,216) bytes 
of memory. 

3-1 



Object Addressing iAPX 432 GDP 

TWO-PART MEMORY REFERENCES 

All iAPX 432 memory locations are accessed through some object. Even free 
storage blocks (storage currently not contained in an object) are referenced by 
descriptors in a system object that represents a free storage pool. 

iAPX 432 programs ~ access memory using physical addresses. Instead, a 
program accessing memory specifies the object being accessed. Because each 
iAPX 432 object can contain multiple data fields, a memory reference also 
specifies the offset from the base of the object to the field referenced. 

Each iAPX 432 memory reference has two parts: 

1. An access selector that specifies an object. 

2. An offset into the object's data part to the 
referenced operand. 

The combination of an access selector and an offset 
is called a logical address. 

TWO-LEVEL ADDRESS MAPPING 

The iAPX 432 architecture maps an access selector to a physical base address for 
an object using two levels of descriptors (see Figure 3-1). The two-level address 
mapping supports two different functions: protection and dynamic storage 
management. 

ADDRESS MAPPING FOR OBJECT PROTECTION 

A fundamental part of the iAPX 432 architecture is a uniform protection 
mechanism for objects. Each call to a subprogram is represented by a context 
object that has references for only those objects that it has a "need to know." 
The object references are represented by access descriptors (ADs). The ADs may 
allow only restricted access to the objects they reference. For example, an AD 
may only allow a context to read an object but not to write it. Thus an AD has 
two parts: a unique system-wide identifier for the referenced object and rights 
information that indicates the operations allowed using the AD. An AD can also 
have the value null, referencing no object. 

An AD corresponds to a high-level programming language's pointer or access 
values; the term "access descriptor" is derived from the Ada language's access 
types. Like the pointer values in high-level languages, ADs can be copied at run­
time and more than one context may have ADs for the same object. 

There is no way to read or write an object without an AD, not even if the object's 
identifier or physical address is known. 

3-2 



iAPX 432 GDP 

ACCESS 
SELECTOR 

I 
I 

I 

I 
I 

I 

I 
I 

I 

MEMORY REFERENCE 

PROGRAM'S ACCESS 
ENVIRONMENT 

I 
I 

I 
I 

I 

\ 
\ 
\ 

\ 
\ 

I \ 
I \ 

\ 
\ 
\ 
\ 

\ 
\ 

\ 

I ACCESS DESCRIPTOR \ 

I 

[ 

r 
I RIGHTS I 

SYSTEM-WIDE TABLE OF 
OBJECT DESCRIPTORS 

I \ , ' I \ 
I \ 

I \ 
I \ 

I \ 

/D\ 
I \ , \ 

I \ 
I \ 

I \ 
I \ 

I \ 
I \ 

I \ 
I \ 

I \ 
I \ 

/ OBJECT DESCRIPTOR \ 

I PHYSICAL I J ADDRESS 

REFERENCED 
OBJECT 

OPERAND 

~ 

Fence 

Figure 3-1. Two-Level Address Mapping 

Object Addressing 

OFFSET 

F-0461 

3-3 



Object Addressing 

To reference an object, a context must have an 
access descriptor for the object. 

iAPX 432 GDP 

Because an AD gives its holder rights to reference an object, protection of objects 
requires protection of access descriptors. Even when a program has write rights 
to an object, access descriptors in the object cannot be manipulated as arbitrary 
bit patterns (e.g., added, subtracted, shifted, assigned). Access descriptors can 
only be overwritten by other access descriptor values. New access descriptors are 
created only by the GDP, never by software, and only when creating new objects. 

Any object in the storage address space can contain both ADs and data. The ADs 
in an object represent relations to other objects. For example, the context object 
for a subprogram call contains an AD for its caller. The context object also 
contains data, such as local variables used by the subprogram call. 

OBJECT FORMAT 

Though objects can contain both data and ADs, the two kinds of information are 
physically segregated within an object, into a data part and an access part. The 
data part can contain anything but ADs; the access part can contain only ADs. 
Each part is optional. An object can have a data part and no access part, or an 
access part and no data part. Each part is limited to 216 (65,536) bytes. 
Therefore, the total size of an object is limited to 217 (131,072) bytes. Because 
an AD requires four bytes, the access part of an object is limited to 214 (16,384) 
ADs. Figure 3-2 shows the object format. 

Data Part 

3-4 

Byte Displacement 

t~--- 65,535(MaximumJ 

['A 1 ~·~· 
• 

I"'. 

2 

1 

0 

Access Descriptor Index 
(32 Bits Each) 

Figure 3-2. Object Format 
F-0383 



iAPX 432 GDP Object Addressing 

Objects are laid out in physical memory so that the physical base address of the 
object is the address of the first byte of the data part. The data part occupies 
storage locations above the base address and the access part occupies storage 
locations below the base address. The base address acts as a "fence" between the 
two parts of an object. Note that ADs with higher index values occupy lower 
storage locations. 

ACCESS DESCRIPTOR FORMAT 

Figure 3-3 shows the format of an access descriptor. 

31 20 19 16 15 4 3 1 0 

12 bits x x x x 12 bits xxx 1 

~-- Access Valid 
.___ ____ Type Rights 

..._ ________ Segment Index 

11 

"'-------------- Delete Rights 
---------------- Unchecked Copy Rights 

. --· --------------- Read Rights 
------------------ Write Rights 

---------------------- Directory Index 

F-0384 

Figure 3-3. Access Descriptor Format 

The access valid bit is 1 if the AD references an object and 0 if the AD is null. 

The directory index and segment index fields together constitute a 24-bit object 
index, a unique, system-wide, unchanging identifier for the referenced object. 

The various rights bits allow or restrict operations using the AD. Access rights 
allow or restrict operations on the AD itself. The access rights on an AD are the 
read rights, write rights, and three type rights. Read rights are required to read 
from an object. Write rights are required to write into an object. The three type 
rights bits are used to allow or restrict operations specific to the particular type 
of object referenced. For example, for port objects, type right 1 (in bit position 
1) is interpreted as send rights, required to send a message to the port. Type right 
2 (in bit position 2) is interpreted as receive rights, required to receive a message 
from the port. Of course, for a different type of object, the type rights can have 
a different meaning or no meaning at all. 

3-5 



Object Addressing iAPX 432 GDP 

There are two AD rights, delete rights and unchecked £.QQI rights. Delete rights 
are required on an AD for it to be overwritten by another AD. If an AD does not 
have delete rights, then it can only be deleted by deleting the entire object 
containing it. Unchecked copy rights allow an AD to be copied without a level 
check. Level checking and the use of unchecked copy rights are described in 
Chapter 4, "Memory Management." 

Operations on ADs, and how to use them to implement~ manager modules, are 
described in Chapter 2, "Program Organization.'' 

ACCESS SELECTORS 

Instructions that reference objects cannot just include access descriptors in the 
instruction stream itself. For objects created at run-time or received as 
parameters or messages, the AD values are not known when the instruction object 
is created. Thus instructions must be able to specify an index, called an access 
selector, that selects the AD "slot" containing an AD for the referenced object. 
To preserve the strict separation between ADs and other information, instructions 
cannot include ADs and always specify objects using access selectors, even when 
the AD value is known at compile-time. 

An access selector specifies an object by specifying an 
AD slot in the current context that contains an access 
descriptor for the object. 

An access selector can be embedded directly in the instruction stream or can be 
specified indirectly and taken from the data part of some object. Note that 
indirect access selectors can be assigned and modified under program control. 
For example, an indirect access selector can be modified in a loop to sequence 
through multiple objects. 

ACCESS SELECTOR FORMAT 

An access selector value is 16 bits and can select one of up to 216 (65,536) access 
descriptors. Remember that the access part of any one object is limited to 214 
(16,384) ADs. An access selector has two parts, a 2-bit environment selector and 
a 14-bit access index. The environment selector selects the access part of one of 
four objects, called an environment when so selected. The access index selects an 
AD within the environment. The access part of the current context object is 
always one environment; ADs in the context reference the other three 
environments. The GDP provides special ENTER operators to make an accessible 
object one of the three alterable environments. 

3-6 



iAPX 432 GDP Object Addressing 

ADDRESS MAPPING FOR DYNAMIC STORAGE MANAGEMENT 

The iAPX 432 architecture is designed to support dynamic storage management, 
in which objects can be relocated in physical memory. Objects may be relocated 
in a virtual memory system because they are swapped out to disk and later 
reloaded at a different physical address. In a real-memory system, objects can be 
moved by a compaction process that relocates objects to reduce memory 
fragmentation. 

Because the physical addresses of iAPX 432 objects can change, access 
descriptors cannot contain the physical addresses of the objects that they 
reference. For any object, there could be many access descriptors and no way 
(except an exhaustive search of memory) to locate them all to update addresses in 
them .. 

Instead of specifying the physical address of an object, an AD references another 
descriptor, the object descriptor, that does. There is exactly one object 
descriptor per object in an iAPX 432 system. The object descriptor for an object 
is itself contained in an object, an object table object. 

The position of an object descriptor (OD) in the structure of object tables in an 
iAPX 432 system is fixed for the life of the corresponding object. Even though 
the location of objects in physical memory can change, the positions of the 
associated ODs in the structure of object tabies is fixed. An index into the 
structure of object tables to an OD, called an object index, has these desirable 
attributes: 

• The object index does not change during the life of an object. 

~ The 0bject !ndex provides ~ w~y to find th~ CD for an objc(;t, aud theii to 
find the physical address of the object from the OD. 

• The object index is a system-wide identifier for an object, not relative to 
any process or context. This means that pointers (ADs) to objects can be 
transferred between processes and between contexts. 

An access descriptor contains an object index for the 
referenced object, which selects the object descriptor 
for the object from the system-wide structure of object 
tables. 

Each object descriptor is 16 bytes. An OD specifies the object's physical base 
address and the lengths of the data part and access part. An OD also contains 
type information and storage management information. 

3-7 



Object Addressing iAPX 432 GDP 

TWO-LEVEL OBJECT TABLE STRUCTURE 

Because each OD is 16 bytes, the data part of an object table object can hold up 
to 212 (4,096) ODs. The iAPX 432 architecture uses a two-level object table 
structure to allow up to 224 (16, 777 ,216) objects in a single iAPX 432 system. 
One special object table, the object table directory (OTD), contains only object 
descriptors for all object tables in the system. The object index that specifies an 
OD has two parts, directory index and segment index. The 12-bit directory index 
selects an object table from the OTD. The 12-bit segment index selects an OD 
from the selected object table. The two-level object table structure has these 
advantages: 

• The structure increases the number of objects allowed in a system, providing 
241 bytes of virtual address space. 

• The structure allows object tables to be dedicated to particular processes or 
storage pools. For example, all objects allocated from a particular storage 
pool are referenced by one object table and can be reclaimed together. 

• The structure reduces contention between processes for exclusive access to 
object tables when creating, reclaiming, or relocating objects. 

3-8 

OB.JECTTABLE 
DIRECTORY 

D ~ 

• 
I-,------' 

OBJECT TABLES ~ 
-t--

t-,---..---.., 

OBJF.CTS 

OBJECTTABU<;S 

f--------1 ~ 

Figure 3-4. Two-Level Object Table Structure 
F-0463 



iAPX 432 GDP Object Addressing 

OVERVIEW OF OBJECT ADDRESSING 

This section gives a narrative overview of the iAPX 432's object addressing 
mechanism. Figure 3-5 illustrates the mechanism and is keyed to the narrative. 

1. An operand reference in an instruction specifies a 16-bit access 
selector and a 16-bit offset. 

2. The access selector specifies one of four objects as environments and 
selects an access descriptor from the access part of the chosen 
environment. This mapping supports the iAPX 432 object protection 
mechanism. 

3. The access descriptor specifies access rights that determine what 
operations can be performed on the object with that AD. There can be 
many ADs for an object, each with different rights. This facility 
supports the iAPX 432 object protection mechanism. 

4. The access descriptor also specifies a unique object index for the 
object. The object index selects one of up to 212 object tables from 
the single object table directory, and also selects one of up to 212 
object descriptors from the selected object table. There is only one 
0 D per object. 

5. The OD specifies the physical base address of the object. The operand 
address is computed by adding the offset specified by the operand 
reference to the object's base address. Note that an operand is always 
in the data part of an object. 

ADDRESS SPACE SUMMARY 

The logical address space of an executing context consists of the directly 
accessible objects in its access environment (up to 216 objects). 

The virtual address space of an iAPX 432 system consists of all objects defined in 
the system (up to 224 objects, up to 241 bytes). 

The physical address space of the iAPX 432 consists of the linear storage address 
space (up to 224 bytes) and the linear interconnect address space (up to 224 
bytes). 

3-9 



Object Addressing 

, , , 

ACCESS SELECTOR 

ACCESS INDEX 

~,/ 
/ ACCESS DESCRIPTOR 

DIRECTORY 
INDEX 

INSTRUCTION STREAM 

I OPERAND REFERENCE I 

ENV 
SELECTOR 

OBJECT TABLE 
DIRECTORY (OTD) 

L__~~--~-- .. 
,;' ', 

,,,,"' .......... .. 
,/' STORAGE DESCRIPTOR ' .. , 

ACCESS RIGHTS 

PHYSICAL BASE 
ADDRESS 

OBJECT TABLE 

iAPX 432 GDP 

OFFSET 

REFERENCED 
OBJECT 

DATAPART[ 

~----· 
ACCESS PART [ 

OPERAND 

© Fence 

F-0460 

Figure 3-5. Object Addressing 

3-10 



iAPX 432 GDP Object Addressing 

REFINEMENT ADDRESSING 

The iAPX 432 architecture supports the definition of refinement objects, objects 
that are actually part of another object called the base object. Like any other 
object, a refinement object can have an access part and a data part. The access 
part is contained in the access part of the base object and the data part is in the 
data part of the base object. 

REFINEMENT 
OBJECT 

BASE 
OBJECT 

Figure 3-6. Refinement Object 
F-0462 

A refinement object is described by a particular type of object descriptor, called 
a refinement descriptor. Instead of containing a physical base address, the 
refinement descriptor contains the object index of the object being refined. The 
refinement descriptor also contains offsets within the selected object to the 
portions accessible using the refinement, and contains the lengths of the 
refinement access part and data part. 

3-11 



Object Addressing iAPX 432 GDP 

INTERCONNECT ADDRESSING 

The separate interconnect address space can be used for hardware configuration 
information, interprocessor communication registers, and hardware error 
registers. Use of the interconnect address space in processor communication and 
configuration is described in Chapter 6, "Processor Management." 

All interconnect locations are accessed via interconnect objects. These objects 
are described by a particular type of object descriptor, called interconnect 
descriptors. 

Interconnect objects have no access part, and access descriptors cannot be stored 
in the interconnect address space. 

Interconnect descriptors do not specify processor type or system type for the 
corresponding interconnect objects. All processors can reference interconnect 
objects (equivalent to the processor type all), and interconnect objects can be 
considered similar to objects with the system type generic because interconnect 
objects have no processor-recognized meaning. 

The interconnect address space spans up to 224 (16, 777 ,216) bytes. Interconnect 
objects must be aligned on double-byte boundaries (even addresses) and must 
contain an even number of bytes. All references to interconnect objects must use 
even offsets to also be aligned on double-byte boundaries. 

The GDP provides operators to move a short ordinal value to or from a double­
byte in an interconnect object, MOVE TO INTERCONNECT and MOVE FROM 
INTERCONNECT. These operators fault if a noninterconnect object is specified 
where an interconnect object is expected. No other GDP operators can be used to 
read or write operands in interconnect objects; attempting to do so causes a fault. 

3-12 



I 

• (1 

CHAPTER 4 
MEMORY MANAGEMENT 

The iAPX 432 architecture supports important memory management capabilities 
needed by system desi~11ers and implementers. Memory management in iAPX 432 
systems is a hardware/software partnership, and the facilities described in this 
chapter are provided by, not just the GDP, but by the GDP architecture in 
cooperation with an operating system, such as iMAX 432. iAPX 432 memory 
management: 

1. dynamically allocates new objects with single instructions. 

2. completely supports the scope rules of Ada and other high-level 
languages. 

3. automatically deallocates objects that are no longer needed. 

4. supports virtual memory. 

5. transparently expands free storage pools and object tables as needed 
by executing programs. 

This chapter covers these topics: 

• object scope 

• system objects used for memory management 

• object creation 

• object lifetime strategies, which determine how objects are deallocated 

• fragmentation and compaction 

• virtual memory 

• frozen memory 

• multiple processors and memory management 

4-1 



Memory Management iAPX 432 GDP 

OBJECT SCOPE 

Each object in an iAPX 432 system has a scope, which is either global or local to 
some context. A global object exists indefinitely, and is only deallocated when no 
ADs exist for the object. (Because objects can only be accessed via ADs, and 
because ADs for existing objects can only be copied, not created, then once all 
ADs for an object are deleted, the object can never again be accessed and can 
therefore be reclaimed.) Objects local to a context (to a subprogram call) can 
only be accessed from within that context or subordinate contexts. The iAPX 432 
architecture guarantees that access descriptors for local objects cannot be 
exported out of their scope. Thus, when a context returns, all objects local to 
that context can be deallocated. 

Object scope is indicated by a level number in the object's descriptor. Objects 
with level number zero are global and have indefinite lifetimes. Objects with 
level numbers greater than zero are local to the context with the same level 
number. When a context is called, it has a level number that is one greater than 
the level of its caller. The section "Context Level Numbers" in Chapter 2, 
"Program Organization," gives an example of program organization with several 
levels of processes and contexts, showing object scopes and level numbers. 

Whenever an access descriptor is copied, a level check is normally performed, to 
verify that the destination object has a level number greater than or equal to the 
level number of the object referenced by the AD. This ensures that the scope of 
the destination object is the same scope as, or is contained within, the scope of 
the object being referenced, and prevents ADs for objects from being exported 
out of their scope. For example, a context cannot return an AD for an object 
local to it to its caller. If a level check fails, the AD is not copied and the Level 
Fault is raised. 

Because ADs for global objects will always pass a level check, these ADs are 
created with unchecked £.QQI rights, which enables them to be copied without a 
level check, saving execution time. 

OBJECTS FOR MEMORY MANAGEMENT 

This section describes how four types of system objects are used in memory 
management: 

• storage resource objects, reference all the other objects needed for object 
allocation; the other objects provide object descriptor space, physical 
memory space, and operating system authorization for allocation. 

• object tables, contain object descriptors and free space for allocating new 
ODs. 

• physical storage objects, reference free blocks of physical memory. 

• storage claim objects, enforce operating system limits on memory allocation 
by a particular process or group of processes. 

Figure 4-1 shows these objects. 

4-2 



iAPX 432 GDP Memory Management 

PHYSICAL 
STORAGE 
OBJECT 

HEAP STORAGE 
RESOURCE OBJECT 

HEAP 
OBJECT 
TABLE 

STORAGE 
CLAIM OBJECT 

REMAINING 
CLAIM 

Figure 4-1. Objects for Memory Management 

STORAGE RESOURCE OBJECTS 

··with linked list 
- of free entries 

F-0008 

Creating a new iAPX 432 object requires the allocation of two types of resources: 

• a new object descriptor for the new object -- this is allocation of the virtual 
address space of the iAPX 432. 

• a block of contiguous physical storage for the new object -- this is allocation 
of the physical address space of the iAPX 432. 

Note that creating an object refinement requires a new object descriptor but no 
additional physical storage. 

4-3 



Memory Management iAPX 432 GDP 

A storage resource object provides access to both free object descriptors and 
blocks of free physical memory. There are two types of SROs, heap SROs and 
stack SROs. Objects created from heap SROs may be deallocated by garbage 
collection (described below), whenever no more ADs for the objects exist. 
Because the order that heap objects are deallocated is unrelated to the order that 
they are created, allocated and free memory blocks and allocated and free object 
table entries may be interleaved in a heap SRO. In a stack SRO, the last objects 
allocated are the first objects deallocated, and deallocation is done automatically 
by the GDP. Because objects are allocated and deallocated in this nested fashion, 
free memory and free entries in the stack object table, are maintained as single 
contiguous blocks. Each process contains a single stack SRO; there is no support 
for stack SROs apart from some process. While conceptually a distinct object, 
the stack SRO is contained in the process object, and designated by a special 
access selector value in the instructions that create objects. Only heap SROs can 
be referenced by ADs. 

OBJECT TABLES 

Each SRO references a distinct object table, used to allocate object descriptors 
for objects created from the SRO. SROs do not share object tables. Heap object 
tables, referenced by heap SR Os, have a slightly different structure than stack 
object tables, referenced by stack SROs, as described in Chapter 9, "Object Set." 

PHYSICAL STORAGE OBJECTS 

A physical storage object (PSO) contains storage block descriptors that delimit 
free blocks of physical memory. Physical memory is allocated from a heap PSO 
using a rotating first-fit algorithm. A stack PSO should only reference a single 
free block, used for all allocations and deallocations for a stack SRO. A stack 
SRO references a distinct stack PSO, and stack SROs cannot share a PSO. Many 
heap SROs can share a single heap PSO. The structure of stack and heap PSOs is 
identical, with stack PSOs simply referencing a single free block while heap PSOs 
can reference multiple free blocks. 

STORAGE CLAIM OBJECTS 

Heap SROs can reference a storage claim object (SCO) that limits the number of 
bytes of physical memory that can be allocated from the heap SROs that 
reference it. Multiple heap SR Os can reference the same SRO. If a heap SR O's 
AD to Storage Claim Object is null, then there is no limit (except the available 
physical memory) on the amount of storage allocated via that SRO. Stack SROs 
cannot reference an SCO; however, the size of the single free memory block used 
by a stack SRO is a limit on the number of bytes allocated via the stack SRO. 

4-4 



iAPX 432 GDP Memory Management 

OBJECT CREATION 

The iAPX 432 operator set includes operators to create new objects and return 
ADs for them, CREATE OBJECT, CREATE TYPED OBJECT, CREATE 
REFINEMENT, and CREATE TYPED REFINEMENT. 

CREATE OBJECT creates a generic object with processor type all. CREATE 
REFINEMENT creates a generic refinement with processor type ~lL CREATE 
TYPED OBJECT is a privileged operation and requires an access with create 
rights to a Type Control Object (TCO); the new object has the object type 
specified by the TCO. CREATE TYPED REFINEMENT is a privileged operation 
and requires an access with refine rights to a Type Control Object (TCO); the new 
refinement has the object type specified by the TCO. Both CREATE TYPED 
OBJECT and CREATE TYPED REFINEMENT are normally used only by type 
managers for whatever type of object is being created. 

All of the CREATE operators can specify either the process stack SRO (if the 
SRO access selector is zero) or a heap SRO (the SRO access selector selects an 
SRO AD with create rights). 

Both CREATE OBJECT and CREATE TYPED OBJECT clear the new object, up to 
a maximum of 2,048 bytes in the new object's access and data parts. "Clearing" 
writes zeroes into the data part of the new object and null ADs into the access 
part of the new object. When the object has been cleared, the completed bit in 
the object's OD is set. If a new object is larger than 2,048 bytes, then no part of 
it is cleared, the Clear Memory Size Fault is raised, and the completed bit is 
cleared. These operators also raise a fault if there is not a large enough block of 
contiguous physical storage in the specified SRO to allocate the new object. The 
new AD returned by a successful CREATE OBJECT or CREATE TYPED OBJECT 
operation has all access rights~ delete rights!' and has uneheeked <!opy rights if and 
only if the new object is at level 0. 

The new AD returned by CREATE REFINEMENT or CREATE TYPED 
REFINEMENT has whatever access rights were specified on the AD provided for 
the base object. The new AD has delete rights and has unchecked copy rights if 
and only if the new refinement is at level O. 

For all four CREATE operators, an Object Descriptor Exhaustion fault can occur 
if the specified SRO's object table is full. 

An iAPX 432 operating system should handle these fault conditions transparent to 
user software, automatically expanding object tables and physical storage objects 
as needed, and clearing large objects. If necessary, user processes can be 
suspended until the requested storage is available, then restarted transparently. 

4-5 



Memory Management iAPX 432 GDP 

OBJECT LIFETIME STRATEGIES 

A basic characteristic of iAPX 432 memory management is that storage 
reclamation can be transparent to all programs except the operating system 
kernel. Programs can create objects but do not need to delete them -- the 
operating system and the iAPX 432 architecture cooperate to detect when objects 
are no longer used and then reclaim them. An object's lifetime strategy 
determines when and how it is deallocated, and derives from the lifetime strategy 
of the SRO used to create the object. An operating system may also support 
explicit deallocation of objects by calling an O.S. procedure. 

STACK LIFETIMES 

The most restrictive and most efficient lifetime strategy restricts access to 
objects to the context that creates them and to subordinate contexts. The iAPX 
432 hardware automatically deallocates such objects on returning from the 
context that creates them. This is the stack lifetime strategy. 

Each process has an associated stack SRO. These SROs are bound to their 
associated processes; stack SROs cannot be created or referenced as objects 
distinct from processes. The stack SRO is used by the context to create objects 
local to the context. RETURN deletes all objects local to the context that are 
created by the context. Note that context objects are preallocated by the 
operating system and are not dynamically allocated and deallocated using stack 
SR Os. 

GLOBAL HEAP LIFETIMES 

The least restrictive (and most time-consuming) way to deallocate objects 
requires an exhaustive search of memory that determines what objects are no 
longer reachable from the programs in the system via a chain of ADs. Because 
the only way that an object can be used by a program is via an AD, an object that 
cannot be reached from any program via a chain of ADs is unusable and can be 
deleted. Such unreachable objects are called garbage, and the operating system 
program that finds and reclaims garbage objects is called the garbage collector. 
The garbage collector can execute as a separate operating system process that is 
able to run concurrently with other system and user processes. The garbage 
collector algorithm is based on that of Dijkstra, et al ("On the Fly Garbage 
Collection: An Exercise in Cooperation," Communications of the ACM, November 
1978). The GDP performs one crucial part of the algorithm (the "mutator" role), 
setting a Copied bit in an object descriptor whenever an AD that references the 
object is copied. The lifetime strategy which reclaims objects only via garbage 
collection is the global heap lifetime strategy. Objects allocated from a global 
heap SRO have lifetimes that are not limited by the context or process in which 
they are created. 

4-6 



iAPX 432 GDP Memory Management 

LOCAL HEAP LIFETIMES 

The third lifetime strategy is a hybrid of the other two: a heap SRO that is local 
to a context. Objects created from such a local heap SRO are reclaimed in one of 
two ways. First, during the life of the associated context, the system-wide 
garbage collection process reclaims unreferenced objects found in the local heap. 
Second, on returning from the context, the local heap and all objects allocated 
from it (that have not previously been garbage collected) are reclaimed by the 
operating system. 

Using a local heap, a context can create objects that are not local to it, but have 
the scope of a superordinate, calling context. For example, suppose A calls B, B 
creates a local heap at B's level, and B then calls C, passing an AD for the new 
local heap. C, and any other procedures that C calls, can use the local heap SRO 
to create objects with the same scope as objects created by B using the stack 
SRO. When B returns, the local heap and objects created from it are reclaimed. 

Reclaiming a local heap is not done by the GDP, but must be done by operating 
system software. The operating system can remove Return Rights from the AD 
to Calling Context in the context associated with the local heap; this will cause a 
fault when the RETURN operator is executed, and the operating system can then 
reclaim the local heap and all objects allocated from it (relatively straightforward 
because the local heap references a distinct object table used only for objects 
allocated from it) .. 

FRAGMENTATION AND COMPACTION 

Fragmentation is the division of free physical storage into noncontiguous blocks as 
the result of allocations and dealloeations. nue to f!'agmentat!on7 e segment 
allocation request can fail even if the total amount of free storage is larger than 
the amount requested, because no single block of contiguous storage is large 
enough. 

Compaction reduces fragmentation of nonfrozen memory by relocating objects in 
physical memory to reduce the number and increase the size of the free storage 
blocks. Compaction increases the quality (in larger block size and reduced 
number of blocks to search) of free storage. Compaction can be done by the 
operating system as a parallel process, invisible to users. The GDP supports 
compaction by providing the Allocated bit in storage descriptors, which 
determines whether the Base Address field is valid. While an object is being 
relocated (and temporarily inaccessible), compaction can clear this bit, then move 
the object, assign the new Base Address, and set the Allocated bit again. (This 
process is complicated by the need to flush multiple processor caches of address 
information, as described in Chapter 6, "Processor Management.") 

MEMORY MANAGEMENT TRANSITIONS 

Figure 4-2 ties together the three lifetime strategies, garbage collection, and 
compaction in one illustration, showing the transistions between free memory, 
allocated objects, and garbage. 

4-7 



Memory Management iAPX 432 GDP 

COMPACTION 

OBJECT CREATION 

EXPLICIT DEALLOCATION 
-- local heaps, global heaps 

OBJECTS 

GARBAGE 
COLLECTION 

RETURN 
-- local heaps 

RETURN 
-- stacks, local heaps 

GARBAGEi4-~~__;E~L~IM~IN~A~T~IO~N~O-F~O~BJ-E~CT_RE~FE_R_E_NC_E_S~~~---' 
-- local heaps, global heaps 

Figure 4-2. Memory Management Transitions 

VIRTUAL MEMORY 

F-0284 

A computer architecture supports virtual memory if the architecture and 
operating system can together create the illusion that the system's main memory 
is larger than the amount of physical main memory in the system. For example, a 
program in a virtual memory system may occupy SOOK bytes of main memory, but 
at a particular instant, only 200K bytes of that program may be present in the 
system's physical main memory. The remaining 300K bytes of the program reside 
on a mass storage device (e.g., a disk). If the program makes a reference to 
information that is on the disk and not present in physical memory, the operating 
system intervenes and "swaps", moving the referenced information from the disk 
to main memory, and possibly moving least-referenced information from main 
memory to the disk in order to keep enough free space in the main memory. 

The intervention of the operating system to implement virtual memory is 
transparent to most user programs; programs may execute more slowly but their 
code does not need to be changed. Virtual memory makes a smaller faster 
memory appear as a larger, slower memory. 

4-8 



iAPX 432 GDP Memory Management 

Virtual memory provides these important advantages: 

1. Programs can run on systems with varying amounts of physical 
memory without modifying the program to take advantage of the 
additional memory or to fit in less memory. Programs can be written 
to run in a large virtual memory, and will execute faster or slower if 
their is more or less physical memory in -a system. 

2. Programs can be simplified because the operating system 
automatically swaps in and out to mass storage as needed, eliminating 
the need for application programmers to use program overlays and 
intermediate data files. 

3. In a multiuser system, an additional user does not have to be denied 
access to the system if the system's physical memory is full; it is 
possible to execute the new user's job and all jobs simply run more 
slowly. (Note that there is still some upper limit on user activity on 
the system, at which performance is severely degraded and the I/0 
channels between main memory and mass storage are saturated.) 

In a conventional virtual memory system, the units moved between main physical 
memory and mass storage are fixed-size ~· For example, a page may be lK 
bytes, so that physical addresses 0 to 1,023 are page O, addresses 1,024 to 2,047 
are page 1, etc. A page may be the same size as a disk block, to optimize 
swapping transfers. In such a system, a ~ table contains descriptors for the 
pages that map virtual page numbers to physical page numbers and that contain 
virtual memory control information, such as whether a page is present in main 
memory or not. 

In a conventional virtual memory system~ the unit of protect!on !s la.!'ge7 typ!!!al!y 
a job, which is mapped into a sequence of contiguous pages. All of these pages 
have the same protection attributes which isolate the job from other jobs in the 
system. Each job has a separate address space and to communicate with other 
jobs or with I/0 devices requires an operating system call to copy the information 
being transferred. -

In the iAPX 432, the object addressing mechanism supports both protection and 
virtual memory. In an iAPX 432 virtual memory system, the units swapped to and 
from mass storage are objects, not arbitrary pages. (Note: To improve efficiency, 
an iAPX 432 operating system may group related small objects together into a 
swapping set that is swapped together, but the set still consists of distinct 
integral objects, and the grouping is not visible to users.) 

All of the iAPX 432 architecture's support for virtual memory is in the object 
descriptor: 

The allocated bit is set if the object is currently allocated in physical memory, 
and can be cleared by the operating system if the object is swapped out. 

The accessed bit is set by the GDP whenever the object is read or written. This 
bit can be periodically cleared by the operating system; then if the bit is set when 
looking for objects to swap out, the operating system can leave the object in main 
memory because it has been recently used. 

4-9 



Memory Management iAPX 432 GDP 

The altered bit is set by the GDP whenever the object is written. An object that 
has not been altered may be a good object to delete from main memory if space is 
needed. This is because such an object can be deleted without swapping it out; 
the version on disk is still up-to-date. 

Because the physical address of an object is contained only in its single object 
descriptor, swapping an object into a different range of memory addresses than it 
has previously used is straightforward; only the base address field of its single 
object descriptor must be changed. 

FROZEN MEMORY 

In any iAPX 432 system that supports object relocation (compaction or virtual 
memory), operating system designers need to distinguish memory that is not 
normally relocated or otherwise made inaccessible, frozen memory. Frozen 
memory may constitute a distinct part of physical memory, with a distinct frozen 
global heap SRO; any stack SROs or local heap SROs allocated from the global 
heap SRO should also be frozen. Frozen memory is used for objects that should 
never be inaccessible, such as the object table directory, processor objects, and 
the objects used by the memory management kernel itself. (Note: Memory 
management may need to expand the object table directory if it becomes full, but 
this is a special operation that would not be done by the normal compaction 
process, and that would relocate the OTD within frozen memory itself.) Memory 
that is not frozen is normal memory. 

MULTIPLE PROCESSORS AND MEMORY MANAGEMENT 

To improve performance in address translation, iAPX 432 processors cache 
addressing information for referenced objects and object tables. Whenever an 
iAPX 432 operating system process modifies addressing information in object 
descriptors, it must make sure that all processors in the system flush their 
addressing caches so that they are using correct information. This can be done by 
broadcasting a REQUALIFY DATA OBJECT CACHE or REQUALIFY OBJECT 
TABLE CACHE interprocessor message (IPC) to all processors in the system 
(including to the processor that is executing the operating system process), and 
waiting for all to respond. The caches and how they are flushed are described in 
detail in Chapter 6, "Processor Management." 

4-10 



CHAPTER 5 
PARALLEL PROCESSING 

This chapter describes the iAPX 432 architecture's support for true parallel 
processing, simultaneous execution of multiple programs by multiple processors. 
This chapter cove.rs these topics: 

• processes as units of parallel execution 

• interprocess communication 

• support for process and processor synchronization 

• transparent multiprocessing 

• process scheduling 

Chapter 6, "Processor Management," describes GDP caches, interprocessor 
communication, GDP dispatching modes, and GDP initialization. 

PROCESSES 

A process represents a program activation or subprogram activation that can 
execute at the same time (in parallel, concurrently) as other processes. For 
example, if three persons are using the same computer system at the same time, 
then each user can be represented by a separate process. Processes can also be 
used to represent 1/0 devices. Thus a printer and a card reader attached to a 
system can operate concurrently if they are handled by separate processes. An 
iAPX 432 process is represented by a distinct type of system object, called a 
process object. Also associated with a process and its process object are these 
other objects: 

• process globals object 

• process stack object table 

• process stack physical storage object 

• process carrier 

• a current context, one of a doubly-linked list of preallocated contexts for 
the process 

Objects not subordinated to the process but referenced by it include a dispatching 
port, scheduling port, and fault port. 

5-1 



Parallel Processing iAPX 432 GDP 

The process globals object of a process is part of the access environment of every 
context executing within the process. The process globals object can be entered 
as an environment by using the COPY PROCESS GLOBALS operator. The process 
globals object can be used by an operating system, e.g., to reference standard 1/0 
interfaces to be used within the process. 

The process stack object table and stack physical storage object are part of the 
process stack SRO, used for stack allocation and deallocation of objects local to 
contexts of the process. Storage allocation, deallocation, and stack SROs are 
described in more detail in Chapter 4, "Memory Management." 

The process carrier is the default carrier used in interprocess communication by 
the process, and is also used for process scheduling and dispatching. 

Context objects, preallocated contexts, and their role in program organization are 
described in Chapter 2, "Program Organization." 

A process is sent to its dispatching port to schedule it for execution and then 
dispatch it to run on a particular GDP. 

A process is sent to its scheduling port if it has been allotted a limited number of 
periods (time slices) executing before its scheduling parameters must be 
reevaluated by operating system software; the process is sent to the scheduling 
port when it has used up its allotted number of periods. 

A process is sent to its fault port if it encounters a process-level fault. Faults, 
fault levels, and fault handling are described in Chapter 12, "Fault and Trace 
Reference." 

The data part of a process object contains scheduling parameters, used to decide 
the order in which competing processes are dispatched to run on a processor; a 
process data part also contains status information and a process clock that 
records the execution time received by the process. 

INTERPROCESS COMMUNICATION 

Many program ming applications that use multiple processes require those 
processes to communicate; for example, if user programs and 1/0 devices are 
represented by processes, then printing a report requires transferring information 
from the process executing the user program to the process handling the printer. 
Two natural parts of interprocess communication are queuing and blocking. 
Suppose that one process in a system manages all disk transactions, reading and 
writing blocks on behalf of requestor processes and then sending them 
acknowledgement and any results (such as the value of a read-in block). If 
requests for disk transactions arrive while the disk process is busy, the new 
requests must be queued, must wait. A process that makes a disk request must 
usually wait for the request to be processed before it can execute further; i.e., it 
blocks waiting for the reply. Similarly, when no process is requesting disk 
transactions and all previous work is done, the disk service process blocks waiting 
for new work. When a process blocks, the GDP executing it is freed to execute 
some other process that is ready to run. 

5-2 



iAPX 432 GDP Parallel Processing 

These objects are used in interprocess communication: 

• messages any iAPX 432 object for which an access descriptor is sent from 
a sending process to a receiving process 

• carriers system objects that carry messages on behalf of processes 

• ports system objects that queue messages and carriers 

The basic operations on these objects are: 

• sending a message in a carrier to a port 

• receiving a message in a carrier from a port 

Both of these operations can invoke a third operation, the forwarding of the 
carrier to a second port. 

The iAPX 432 provides both simple and enhanced forms of interprocess 
communication; the simple model is the most frequently used. 

In the simple model, processes are the active agents that send and receive 
messages at ports, and the process carriers are implicitly used. Processes wait at 
ports to send messages if the port is full and to receive messages if the port is 
empty. In this model, the First-In-First-Out (FIFO) queue of blocked processes 
waiting at a full port is an unbounded extension of the port's limited message 
queue. The simple model also supports variants of send and receive that transfer 
a message only if the operation does not block. A Boolean parameter is assigned 
true or false to indicate the success or failure of such a conditional operation. 

In the enhanced model, surrogates can be created that wait to send or receive 
messages in place of processes. Also, priorities can be associated with surrogates 
and used for prioritized message enqueuing within ports (although the queue of 
waiting processes and surrogates is still FIFO). Finally, the enhanced model 
supports the forwarding of surrogates to a second port after they have completed 
their first port operation. 

The simple and enhanced model are unified by the concept of carriers for 
messages. A carrier is associated with each process and represents the process 
when the process must wait at a port. Users can also create carriers explicitly to 
act as process surrogates. This chapter reflects the underlying unity of the 
mechanism by explaining the simple and enhanced operations together. 

5-3 



Parallel Processing iAPX 432 GDP 

MESSAGES 

Messages are transferred by copying access descriptors. Figure 5-1 illustrates the 
steps in transferring a message AD between processes. After a message is sent, 
both the sender and the receiver have accesses for the message. Delete rights are 
set on received ADs, just as if they were explicitly copied. Note that null ADs 
containing embedded data values can be used to transfer small messages (ordinal 
values in the range 0 .:-231 - 1) without referencing a message object. Embedded 
data values are described in Chapter 9, "Object Set." 

5-4 

any SEND to full port 

message AD 
in sender's 

contert 

any SEND to not -full port 
with no carriers waiting 

message AD message AD 

any SEND to empty port 
with carrier waiting 

insending --------- inportmessage ,___ _______ _ 
message AD 
in receiving 

carrier, which 
is forwarded 

carrier waiting RECEIVE queue 
at port COND_RECEIVE 

SURROGATE_RECEIVE 

RECEIVE 
COND_RECEIVE 

message AD 
in receiver's 

contert 

SURROGATE_RECEIVE 

software read message AD 
(if surrogate carrier), or 

hardware (if procesa carrier) 

Figure 5-1. Message AD Transfer 
F-0252-1 



iAPX 432 GDP Parallel Processing 

PORTS 

Ports are system objects that provide queuing mechanisms supported by the iAPX 
432 processors, consisting of two queues for each port, a bounded message queue 
and an unbounded carrier queue. The message queue of a port contains the 
message ADs that have been sent to the port but not yet received. The message 
queue aiso contains a queuing value for each message entry that determines where 
it is inserted in the message queue. The queuing value is either 0 (for simple port 
operations or FIFO ports) or is determined from the surrogate carrier used in 
sending the message. The port's queuing discipline specifies that messages are 
enqueued either FIFO, by priority, deadline within priority, or by delay. Deadline 
within priority enqueuing is normally used only for dispatching ports. Delay 
enqueuing is normally used only for delay ports. Both dispatching and delay ports 
are described in subsequent sections of this chapter. For priority ports, messages 
with higher priority are enqueued first and queuing is FIFO within the same 
priority. 

The message queue has a maximum number of entries that is fixed when the port 
is created and cannot be changed. When the number of messages in the queue 
equals the maximum, the port is said to be full; when a message is sent to a full 
port, the operation blocks and the sending carrier must wait in the carrier queue. 
When the message queue has no entries, the port is said to be empty; when a 
receive is executed on an empty port, the operation blocks, and the receiving 
carrier must wait in the carrier queue. 

The carrier queue is an unbounded FIFO queue with two uses; it can contain 
carriers waiting to receive a message from the port (if the port is empty) or 
carriers waiting to send a message to the port (if the port is full). Because these 
cases are mutually exclusive, only one carrier queue is needed. 

Ports are completely described in Chapter 9, "Object Set." 

CARRIERS 

Carriers transport messages to and from ports. Also, surrogate carriers provide 
message queuing values. A process carrier is associated with each process. 
Process carriers are used by the SEND and RECEIVE operators. If a process 
carrier blocks at a port, then the associated process blocks also. The forwarding 
of a process carrier sends it to a dispatching port so that its associated process 
can run. 

Surrogate carriers act as surrogates on behalf of processes. For example, a 
process can wait at multiple ports for any message sent to any of the ports, by 
creating a surrogate to wait in its place at each of the ports. Each of the 
surrogates is forwarded to a single common port whenever it receives a message. 
The process can then wait at the single common port for the arrival of a 
surrogate, remove the message received by the surrogate, and cause the surrogate 
to again wait at its assigned port for another message. 

Processor carriers are a third type of carrier, but are not used in interprocess 
communication. All three types of carrier are described in Chapter 9, "Object 
Set." 

5-5 



Parallel Processing iAPX 432 GDP 

SENDING MESSAGES 

Sending a message requires a carrier and two ports. The carrier transports the 
message to the first port and waits if the port is full. When the message is 
delivered to the first port, the carrier is forwarded to the second port. 

Two operators always send messages. SEND implicitly uses the sending process's 
carrier with the dispatching port as the second port. SURROGATE SEND uses an 
explicitly specified surrogate carrier and second port. For both operations: 

1. If the port is full, then the message is copied into the sending carrier, 
which is appended to the FIFO queue of waiting carriers. 

2. Otherwise, if the port is empty and carriers are waiting to receive 
messages, then the message is copied into the first waiting carrier, 
which is removed from the carrier queue and forwarded to its second 
port. 

3. Otherwise, the message and queuing value are inserted into the port 
message queue. 

A SEND in which the process carrier must wait is called a blocking send, and the 
sending process blocks with its carrier. When space in the message queue 
eventually becomes available, the blocked process's message is enqueued and the 
process carrier is dequeued and forwarded to its dispatching port. 

A nonblocking SEND does not involve the process carrier. In SURROGATE SEND, 
the surrogate carrier is forwarded to its second port even if it does not block at 
the first port. 

The queuing value used to insert the message is zero for SEND or if the port's 
queuing discipline is FIFO. For a SURROGATE SEND to a priority port, the 
queuing value is the priority from the surrogate carrier. 

A third operator, CONDITIONAL SEND, never blocks. If the port is full, the 
message is not sent and a Boolean destination operand is cleared to false. 
Otherwise, the message is sent as described for SEND and the boolean parameter 
is set to true. 

RECEIVING MESSAGES 

Receiving a message uses a carrier and two ports. The carrier receives the 
message at the first port and is then forwarded to the second port. 

Two operators always receive messages. RECEIVE implicitly uses the receiving 
process's carrier with the dispatching port as the second port. SURROGATE 
RECEIVE uses an explicitly specified surrogate carrier and second port. For both 
operators: 

5-6 



iAPX 432 GDP Parallel Processing 

1. If the port is empty, then the carrier is appended to the FIFO queue of 
waiting carriers. 

2. Otherwise, the first entry in the port message queue is dequeued. For 
RECEIVE, the message is copied into the receiving context and the 
process carrier is never used. For SURROGATE RECEIVE, the 
message is copied into the surrogate carrier. 

If the port is full and carriers are waiting to send messages, then the 
first waiting carrier is dequeued, its message is inserted in the port 
message queue, and the dequeued carrier is forwarded to its second 
port. 

Last, for SURROGATE RECEIVE, the surrogate carrier is forwarded, 
carrying the received message to its second port. The receiving 
process must execute some form of receive on the second port to get 
the surrogate carrier, and must then read the carried message from 
the surrogate carrier. 

A third operator, CONDITIONAL RECEIVE, never blocks. If the port is empty, no 
message is received and a Boolean destination operand is cleared to false. 
Otherwise, the message is received as described by RECEIVE and the Boolean 
parameter is set to true. 

FORWARDING CARRIERS 

When a SURROGATE SEND or SURROGATE RECEIVE operation completes, the 
surrogate carrier is sent to its second port. This second operation is called 
forwarding the carrier to its second port. The forwarding of a surrogate carrier is 
optional; if the second port AD is a surrogate operation is null, the carrier is not 
forwarded. A forwarded carrier is itself the message that is sent to the second 
port. A carrier forwarded from a SUR ROG RATE SEND operation carries no other 
message. A carrier forwarded from a SURROGATE RECEIVE operation carries 
not only itself but the received message as well; such a carrier must be received 
as a message from its second port, before reading the carried message. 

Forwarding is also used to reschedule processes blocked in a simple SEND or 
RECEIVE operation. The carrier implicitly specified for these operations is the 
process carrier, and the implicit second port is the process's dispatching port. 
When a process that was waiting to receive a message is received by a processor 
from the dispatching port, the processor automatically completes the receive 
operation by copying the message AD from the process carrier to the receiving 
context (and then nulling the message AD in the process carrier). A difference in 
forwarding process carriers and surrogate carriers is that surrogate carriers are 
always forwarded (if their second port is not null) while process carriers are 
forwarded only if an operation blocks. This difference is understandable; if a 
process does not block, there is no need to reschedule it and thus no need to 
forward its carrier to the dispatching port. 

5-7 



Parallel Processing iAPX 432 GDP 

PROCESS AND PROCESSOR SYNCHRONIZATION 

Any system that supports multiple processes must provide means to synchronize 
the execution of processes that share data or resources, so that they do not 
interfere with one another. For example, if several processes use a shared printer 
for their reports, the processes must synchronize use of the printer. Otherwise, a 
line sent from process A could be followed by a line sent from process B, etc., 
making the output unreadable. 

A process may need exclusive access to a particular data structure or resource for 
a very short time or for a much longer time. For example, a process that is 
updating a shared field by adding 5 to the present value needs exclusive access to 
the field for the time required to read the old value, add 5, and write the updated 
value--a duration of a few microseconds or less. For another example, a process 
that is printing a lengthy report may need exclusive access to the printer for 
many minutes. An example that is between these two in duration is the searching 
and updating of shared object data structures in certain high-level GDP 
operations, such as sending a message to a port or creating a new object from a 
shared heap SRO; these operations can take dozens of microseconds. 

Three synchronization strategies are used in the iAPX 432: indivisible operators, 
object locks, and using interprocess communication for synchronization. 

Indivisible operators are used to update a single short-ordinal or ordinal data field 
in a single indivisible uninterruptable transaction. A special Read-Modify-Write 
(RMW) bus cycle is used by these operators, so that no other processor can access 
such a field in the interval between reading and writing it. Indivisible variants of 
the short-ordinal and ordinal ADD and INSERT operators are provided. The 
previous value of the modified field is pushed onto the operand stack by these 
operators. 

An object lock is a double-byte field in the data part of an object, used to get and 
release exclusive access to the object. Many system objects contain object locks. 
GDP operators, such as SEND or CREATE OBJECT, always use object locks in 
such objects as ports and heap SROs to ensure exclusive access; operating system 
modules that manage such system objects should also respect the locking 
conventions, which are defined in Chapter 9, "Object Set." Object locks are used 
by processors (e.g., when dispatching from a dispatching port), by processes for a 
single instruction (such as a SEND operation), and by processes for multiple 
instructions, delimited by the operators LOCK OBJECT and UNLOCK OBJECT. 
The LOCK OBJECT operator, if it finds that the lock is not available, waits 300 
processor cycles and retries the lock, waiting and retrying up to 32 times before 
returning an indication that the lock operation failed. Object locks are 
appropriate and efficient for synchronization when a lock is normally held for a 
short time (i.e., less than a millisecond). An advantage of object locks is that the 
identity of the locking processor or process is stored in a busy lock, and only the 
same processor or process can normally release the lock. 

5-8 



iAPX 432 GDP Parallel Processing 

Ports and interprocess communication can be used for process synchronization in 
two ways: by using a server process and by using a port as a semaphore. In the 
server process approach, the resource or data structure to be synchronized is only 
accessed by a single server process. For example, a disk drive may be accessed by 
only a disk server process. Other processes that need to access the disk send 
request messages to a request port; the disk server process receives the requests, 
acts on them one at a time, and acknowledges each request by sending a ~ 
message to a repiy port; each requestor normally uses a separate repiy port, and 
the reply port to be used for a particular request can be specified in the request 
message. 

In the semaphore approach, a port with one entry in its message queue is used to 
indicate if the resource or data structure is available or not. The entry itself is 
not relevant, but simply indicates resource availability by its presence or absence. 
For example, the port being empty can indicate that the resource is available.. A 
process gets exclusive access to the resource by SENDing a message to the port. 
The port is now full and subsequent SENDs by other processes trying to obtain the 
resource will block. When the using process no longer needs exclusive access to 
the resource, it RECEIVEs from the port. If no other processes are waiting, the 
RECEIVE makes the port empty and indicates that the resource is available; if 
processes are waiting, then the first waiting process unblocks and has exclusive 
access to the resource. 

One advantage of the server process approach is that, properly designed, service 
cannot be disrupted by the abnormal termination or suspension of a requesting 
process; if a requesting process fails, it simply never picks up its reply from its 
reply port. (Note that the server process should use the CONDITIONAL SEND 
operator and not SEND to send the reply to the reply port, so that the server 
process never blocks because of a problem with the requestor-specified reply port; 
it is up to the requestor to ensure that the reply port will not be full and the 
CONDITIONAL SEND will succeed.) In contrast, when using a semaphore, if a 
process is abnormally terminated while holding the semaphore, then all other 
users of the semaphore will block when they attempt to get it. 

TRANSPARENT MULTIPROCESSING 

iAPX 432 programs can be designed and implemented independent of the number 
of GDPs in a system. GDPs are homogeneous servers that execute ready 
processes, and more or fewer GDPs simply means faster or slower execution, 
without causing software changes. This is called transparent multiprocessing. A 
good analogy is a modern bank, with a single line of customers served by (a 
varying number of) multiple tellers. The transactions and how they are carried 
out (the programs) are independent of which teller waits on a customer; for the 
purpose of doing normal business with the banks, the tellers are interchangable. A 
change in the number of tellers does not change how the bank does business, but 
simply makes customer service faster or slower. 

5-9 



Parallel Processing iAPX 432 GDP 

Transparent multiprocessing is implemented by the GDP architecture using the 
same basic mechanisms as interprocess communication: ports, carriers, and 
messages. A special port, called a dispatching port, is used to queue ready 
processes that are waiting for a GDP to execute them. Dispatching ports 
normally use a more complex queuing discipline than other ports, deadline within 
priority queuing; this queuing discipline is designed to support process scheduling. 
Processes are forwarded to dispatching ports using their process carriers. G DPs 
pick up processes to run by receiving them from dispatching ports, using their 
processor carriers. The messages being sent and received are the processes 
themselves. If a dispatching port is empty, then there are no processes ready to 
run at the port, and a GDP attempting to receive a process itself blocks, idling. 
When another GDP sends a process to the dispatching port, it "wakes up" the 
waiting GDP to execute the process; the waking up uses the interprocessor 
communication facilities described in Chapter 6, "Processor Management." 

PROCESS SCHEDULING 

If there are more processes ready to run than there are GDPs in a system, then 
processes must compete for execution time, to determine which processes will 
execute before other processes, and to determine how long a process can execute 
before it must give another process a turn. Determining the order in which ready 
processes will be dispatched and how long they can run is called process 
scheduling. Four parameters control process scheduling: priority, deadline, 
service period, and period count. Priority and deadline are contained in the 
process carrier; service period and period count are contained in the process 
object. The deadline and service period parameters use the concept of a system 
time unit (256 microseconds in 432/600 systems), the GDP's basic "tick" or unit of 
passing time, determined by an external circuit that periodically asserts the 
GDP's PCLK pin. 

The priority field is a short ordinal; the lowest priority is zero; the highest is 
65,535. When processes with different priorities are at a dispatching port, the 
process with the highest parameter is always dispatched first. 

The deadline field is a short ordinal ranging from 0 to 214-1 that indicates the 
number of system time units that a process can or should wait for dispatching 
relative to other processes. When a process is queued at a dispatching port, its 
deadline value is equal to the number of system time units that it has waited in 
the message queue minus the value from its deadline field. For example, consider 
process A that has waited 400 time units for dispatching, with a deadline 
parameter of 500, and process B that has waited 100 time units for dispatching, 
with a deadline parameter of 50. A's deadline value for queuing is 400 - 500 = -
100. B's deadline value for queuing is 100 - 50 = 50. B is queued ahead of A, even 
though A has waited longer (presuming A and B have the same priority). 

Processes in a dispatching port's message queue are ordered first by priority, then 
by computed deadline value (computed as described above), and last, FIFO within 
the same deadline value within the same priority value. Note that if a dispatching 
port is full, so that ready processes are in the port's carrier queue, that the 
processes in the carrier queue are in FIFO order, and only scheduled when inserted 
in the message queue. 

5-10 



iAPX 432 GDP Parallel Processing 

A process's service period is the number of system time units that the process is 
allowed to execute before being suspended and redispatched, to allow other 
processes to compete for execution time. 

The period count parameter is the number of times that the process can be 
di~p~tched before being sent to its scheduling port. It can be used by operating 
system software to impose a time lirriff- ori total -process execution time, or fo 
periodically "tune" process scheduling parameters. The period count is a short 
ordinal; a period count value of 65,535 indicates an infinite period count which is 
never decremented and never causes the process to be sent to its scheduling port. 
For a finite period count N, the process's execution time is limited to N times its 
service period, before the process is sent to its scheduling port. If operating 
system software needs to halt execution of a process, it can set the period count 
to zero, guaranteeing that the process will report to the operating system via its 
scheduling port as soon as any current service period is completed. 

5-11 





CHAPTER& 
PROCESSOR MANAGEMENT 

This chapter describes these aspects of processor management: 

1. GDP caches 

2. interprocessor communication 

3. normal GDP execution cycle 

4. GDP dispatching modes 

5. GDP initialization 

GDP CACHES 

This section describes information cached by GDPs from various objects to 
support object addressing and program execution. Internal GDP registers or 
associative memory holds copies of frequently used information, such as the 
current instruction pointer or the physical address of the most-recently-used 
object table. These internal memories (caches) cannot be directly read or written 
by iAPX 432 programs, which can only access information within objects. 

The caches significantly speed up program execution. The only programmers who 
need to concern themselves with the caches are operating system designers and 
implementers. The caches are of concern to operating system programmers only 
when the caches hold different values than the fields that they should represent in 
different objects. Ensuring cache integrity is complicated by multiprocessing, in 
which multiple GDPs may cache the same fields. There are five GDP caches: 
data object cache, object table cache, context cache, process cache, and 
processor cache. 

DATA OBJECT CACHE 

All iAPX 432 instruction operands are located in the data part of some object; 
even operations on access descriptors must designate the ADs via an indirect 
access selector in the data part of some object. The data object cache contains 
addressing information, taken from object descriptors, for the most-recently-used 
"data objects" (objects with an operand in their data part). Note that no 
information from these objects is cached, but just addressing information (such as 
base address and length). The cache is associative; every time a GDP references 
an operand in the data part of an object, the cache responds (a "hit") if addressing 
information for that object is in the cache. Otherwise the cache indicates a 
"miss"; the addressing information is not in the cache and must be read from the 
object descriptor in memory; the information read is then added to the cache, 
displacing the least-recently-used entry. 

6-1 



Processor Management iAPX 432 GDP 

There are some operating system actions that can invalidate entries in the data 
object cache. The following two examples illustrate such actions and how the 
operating system can maintain cache integrity: 

1. If a data object is to be relocated in memory (by compaction) or 
swapped out to disk (in a virtual memory system), then it must be 
marked as inaccessible, by clearing the Allocated bit in the object's 
OD. The operating system software that clears this bit in the OD 
must ensure that all processors (GDPs and IPs) update their data 
object caches before the object is relocated or swapped. Otherwise, a 
processor with cached addressing information for the object could read 
or write memory where the object used to be, a protection violation. 
To ensure that all data object caches are updated, operating system 
software must send the REQUALIFY DATA OBJECT CACHE IPC to 
all processors, and wait for all processors to acknowledge that they 
have received and executed the IPC. 

2. If an object is to be deallocated while ADs for it may still exist (i.e., 
before it is eligible for garbage collection or deallocation by Return 
from a subprogram call), then the object's OD must be marked as 
invalid before deallocating memory used by the object. The operating 
system software that changes the OD must ensure that all processors 
(GDPs and IPs) update their data object caches before the object's 
memory is deallocated. Otherwise, a processor with cached addressing 
information for the object could read or write memory where the 
object used to be, a protection violation. To ensure that all data 
object caches are updated, operating system software must send the 
REQUALIFY DATA OBJECT CACHE IPC to all processors, and wait 
for all processors to acknowledge that they have received and 
executed the IPC. 

OBJECT TABLE CACHE 

The object table cache contains addressing information, taken from object 
descriptors, for the object tables most-recently-used for object addressing. Note 
that this cache doesn't contain information from the object tables but from the 
ODs for the object tables. The cache is associative. Every time a GDP 
references an operand, it is via some object table; the cache responds (a "hit") if 
addressing information for the object table is in the cache. Otherwise, the cache 
indicates a "miss"; the addressing information must be read from the object table 
OD in the Object Table Directory in memory; the addressing information read is 
then added to the cache, displacing the least-recently-used entry. 

6-2 



iAPX 432 GDP Processor Management 

If an object table is to be relocated in memory (by, compaction) or swapped out to 
disk (in a virtual memory system), then it must be marked as inaccessible, by 
clearing the Allocated bit in the object table's OD.. The operating system software 
that clears this bit must ensure that all processors (GDPs and IPs) update their 
object table caches and data object caches before the object table is relocated or 
swapped. The data object caches must be flushed in case any of the data object's 
ODs come from the now-inaccessible object table; all such objects must now be 
inaccessibie as weil; ii the addressing information for such objects is no longer 
cached and the addressing information for the object table is no longer cached, 
then any attempt to reference such objects will fault because the object table is 
inaccessible. To ensure that all these caches are updated, operating system 
software must send the REQUALIFY OBJECT TABLE CACHE IPC to all 
processors and wait for all processors to acknowledge that they have received and 
executed the IPC. This IPC flushes both the object table cache and the data 
object cache in each processor that receives and executes it. 

CONTEXT CACHE 

These fields in the current context are cached by the GDP: 

AD to Current Context (Environment O) 
AD to Environment 1 
AD to Environment 2 
AD to Environment 3 
Context Status 
Operand Stack Pointer 
Instruction Object DAI 
Instruction Pointer 
top double-byte (if any) of the Operand Stack 

All of these fields except the AD to Current Context can change within the GDP 
during context execution, without being updated in memory. Thus, these fields 
cannot be read from memory or altered by writing into memory during context 
execution. The Current Context AD can be read, but lacks delete rights and 
cannot be written. 

The Environment 1, 2, and 3 ADs in the GDP are modified by ENTER 
ENVIRONMENT or COPY PROCESS GLOBALS operators. The Context Status in 
the GDP is modified by the S~T CONTEXT MODE operator. The Operand Stack 
Pointer in the GDP is modified by stack addressing modes or the ADJUST STACK 
POINTER operator. The Instruction Object DAI and Instruction Pointer in the 
GDP are modified by branch instructions, context fault-handling, or trace­
handling. The top-of-stack register is filled when a double-byte is pushed on the 
stack; any double-byte value already in the register is flushed to memory. The 
ADJUST ST ACK POINTER operation flushes any value in the top-of-stack 
register to memory. 

6-3 



Processor Management iAPX 432 GDP 

When a context is called, all cached values for the calling context are flushed to 
memory, except the Current Context AD, which cannot have changed within the 
calling context. Then all context cache entries are filled with their initial values 
for the new context. The Environment 2 and 3 ADs are always null initially. The 
Context Status is inherited from the calling context and thus need not be 
reloaded. The top-of-stack register is initially marked as empty. 

When a context returns, there is no need to update memory with cached fields, 
because all cached fields are local to a call, and the call is over. On return, all the 
cache entries are reloaded from the returned-to context (except the top-of-stack 
register, which is just marked as empty). Note that the context status is 
reloaded, so that any changes in context status made in the called context are 
local to the call. 

The REQUALIFY CONTEXT IPC flushes the context cache and the data object 
cache of the processor that receives and executes it. 

PROCESS CACHE 

The process cache contains information cached by the GDP from a process 
executing on the GDP. This section does not list the fields cached. However, the 
field Period Count is guaranteed not to be cached. This allows operating system 
software to force a process to report to its scheduling port, by writing a zero in 
this field. 

When a process stops executing on a processor (to wait at some port), the process 
cache and context cache are flushed to memory. When a processor dispatches a 
process, the process cache and context cache are loaded from memory. The data 
object cache and object table cache are not affected in any special way by 
process suspension or processor redispatching. 

A process (at any instant) can be executing on only one GDP, therefore, only one 
GDP can be caching information in its process cache for a particular process at a 
particular instant. 

The REQUALIFY PROCESS IPC flushes the process cache, the context cache, and 
the data object cache of the processor that receives and executes it. 

PROCESSOR CACHE 

The processor cache contains information cached by the GDP from its processor 
object. This section does not list the fields cached. However, the processor 
cache does include addressing information for the Object Table Directory in 
addition to fields from the processor object. The REQUALIFY PROCESSOR IPC 
flushes the processor cache and all other GDP caches. For example, all 
processors would be sent this IPC if operating system software had to expand and 
relocate the Object Table Directory in memory. 

6-4 



iAPX 432 GDP Processor Management 

NOTE 

The REQUALIFY PROCESS IPC does not function 
correctly on current GDPs if the GDPs are allowed to 
become idle. The operating system designer should either 
provide special "idle processes" to keep any G DPs from 
going idle, or should use the REQUALIFY PROCESSOR IPC 
in place of the REQUALIFY PROCESS IPC. 

CACHE SUMMARY 

Figure 6-1 shows the GDP caches, the relationships between the caches, and the 
IPCs that flush various caches. 

processor cache 
I '\ j pro~ss cache 

object table cache 
I 

context cache 

. I 
data ob1ect cache 

NOTES 

REQUALIFY PROCESSOR (IPC 7) 

REQU ALIFY PROCESS (IPC 8) 

REQUALIFY OBJECT TABLE CACHE 
(IPC 5) 

REQUALIFY CONTEXT (IPC 9) 

REQUALIFY DATA OBJECT CACHE 
(IPC 10) 

Flushing the data object cache does only that. 
Flushing the object table cache also flushes the data object cache. 
Flushing the context cache also flushes the data object cache. 
Flushing the process cache also flushes the context cache and the data 

object cache. 
Flushing the processor cache flushes all caches. 

Figure 6-1. GDP Caches 

6-5 



Processor Management iAPX 432 GDP 

INTERPROCESSOR COMMUNICATION 

Processes can affect the operation of processors by sending them InterProcessor 
Communications (IPCs) using the SEND TO PROCESSOR operator. Interprocessor 
communication to a processor is via one of two Processor Communication Objects 
(PCOs) referenced by the processor object. The local PCO, unique to the 
processor, is used to send an IPC to just one processor. The global PCO, shared by 
all processors or a pool of processors, is used to send an IPC to all processors that 
reference the global PCO. Chapter 9, "Object Set," describes Processor 
Communication Objects. Chapter 10, "Operator Set," describes the SEND TO 
PROCESSOR operator. Table 6-1 lists IPCs defined for GDPs. 

Code 

0 

1 

2 

6 

3 
4 

5 
7 

Is 

I ~o 
11 
12 
13 
14 

6-6 

Table 6-1. GDP IPCs 

Category/Name 

Control: 
Wakeup 

Start 

Stop 

Reset Processor 

Global IPC Acceptance: 
Accept Global IP Cs 
Ignore Global IP Cs 

Notes 

Used in dispatching, to wake up an idle 
processor when a process is bound to it. 

Causes a processor to begin executing a 
process bound to it or to proceed to a 
dispatching port, depending on its state 
and current dispatching port. 

Causes a process to stop executing any 
current process, flush its process, 
context, and data object caches, and idle, 
waiting for another IPC. 

Causes a processor to flush all caches 
and execute the processor initialization 
sequence. 

Cache and Object Requalification: 
Requalify Object Table Cache 
Requalify Processor 
Requalify Process 
Requalify Context 
Requalify Data Object Cache 

Dispatching Modes: 
Enter Normal Mode 
Enter Alarm Mode 
Enter Reconfiguration Mode 
Enter Diagnostic Mode 



iAPX 432 GDP Processor Management 

NORMAL GDP EXECUTION CYCLE 

When a GDP is executing a process, it executes instructions and checks for three 
different events between instructions: 

• receipt of a_n IPC, via _lo_cal or global PC Os. (global only if processor is -set to 
accept global IPCs). The IPC is executed and acknowledged. Controi then 
resumes, unless the iPC changed the dispatching mode or otherwise 
suspended process execution. 

• process timeout; the process must be suspended and redispatched (if periods 
remaining) or sent to its scheduling port (if no periods remaining); the 
processor must then redispatch. 

• a trace event; return information is saved and the next instruction will be 
taken from the trace instruction object as described by Chapter 12, "Fault 
and Trace Reference." 

The order in which these different events are checked for and handled is not 
defined by this manual. 

GDP DISPATCHING MODES 

Normal GDP scheduling and dispatching is non-preemptive; once a process is 
dispatched, it runs until it blocks at some port or until its time slice expires. 
Even the arrival of a higher-priority process at a dispatching port does not 
preempt a running process. The lack of preemptive scheduling is not normally a 
problem in iAPX 432 central systems, because 1/0 interrupts and real-time 
prneessing are handled in peripherai subsystems. However, some exceptional 
events can require rapid response even in the central system: 

1. A power-failure alarm requires orderly system shutdown in fractions 
of a second. 

2. A hardware failure requires immediate system software action to 
reconfigure the system without the failed component. 

3. A violation of system integrity has been discovered (e.g., a corrupted 
object table or processor object), requiring immediate diagnosis and 
possibly repair. 

It would be wasteful to require a dedicated GDP reserved for each such class of 
exceptions; instead GDPs can function in one of four dispatching modes. A GDP 
that receives an IPC to enter another dispatching mode stops executing any 
current process (flushing caches but not redispatching the process) and can 
immediately begin executing an alternate process bound to an alternate process 
carrier. Each GDP can reference four process carriers and four dispatching ports, 
a process carrier and dispatching port for each dispatching mode. 

6-7 



Processor Management iAPX 432 GDP 

When entering a new dispatching mode, a processor does the fallowing: 

IF the new processor carrier is bound to a process, 
begin executing that process. 

ELSIF the new processor carrier is queued at an empty dispatching port, 
the processor idles. 

ELSE 
the processor redispatches at the new dispatching port. 

END IF 

The four dispatching modes are: 

NORMAL 

DIAGNOSTIC 

The normal mode for both user and system processes, and 
the mode in which GDPs start. The ENTER NORMAL 
MODE IPC is used to return to this mode. 

Entered by the GDP to handle a processor-level fault, or in 
response to a master/checker error (hardware HERR pin is 
also asserted) or if it receives the ENTER DIAGNOSTIC 
MODE IPC. 

RECONFIGURATION 

ALARM 

GDP INITIALIZATION 

Entered if the GDP receives the ENTER 
RECONFIGURATION MODE IPC, and intended to be used 
for dynamic hardware reconfiguration, especially in fault­
tolerant systems. 

Entered if the GDP's hardware ALARM pin is asserted, or 
if it receives the ENTER ALARM MODE IPC. 

A GDP initializes when its hardware INIT pin is asserted or when it receives the 
RESET PROCESSOR IPC. The GDP reads its own 8-bit processor ID from 
interconnect address space location 0 (implemented separately for each 
processor). The GDP assumes that the initial Object Table Directory begins at 
physical location 8 in the storage address space. The GDP reads the addressing 
information for the Processor Object Table from the initial OTD, then uses its 
processor ID to index into the Processor Object Table and read addressing 
information for its own GDP processor object. The GDP verifies ("qualifies") the 
type of the processor object and may check other attributes as well. Initialization 
does not start the GDP executing any process and does not even queue it at any 
dispatching port; a START IPC must be sent to the GDP for it to begin 
dispatching. 

6-8 



CHAPTER 7 
INSTRUCTION INTERFACE 

Like traditional data processors, the GDP executes a sequence of instructions to 
accomplish a programmed operation. The GDP's instruction interface is the set of 
architectural features that define how operators and operand references are 
encoded to make -up instructions, how instructions are fetched and interpreted by 
the processor, and how operands are addressed via the available operand reference 
modes. This chapter describes the GDP's instruction interface. The function of 
instruction -components and the modes of operand addressing are described in 
detail. Basic instruction execution and physical address generation are also 
described. 

INSTRUCTION EXECUTION ENVIRONMENT 

CURRENT CONTEXT 

The GDP's instruction interface is fundamentally affected by the fact that the 
iAPX 432 architecture is object-based. This is reflected in the fact that the GDP 
executes user programs that are encoded in system-typed objects called 
instruction objects. These instruction objects are part of the defining domain of 
the current program environment. The domain object is the architecture's object 
representation of the Ada language's package construct. 

The currently active execution environment is represented by another system­
typed object called a context object. The current context is best thought of as 
the activation record for an invocation of a subprogram or procedure 
(programmed, for example, at the source level within an Ada package). Among 
other things, the current context defines the logical access environment currently 
available to the program. 

The context (or logical) access environment consists of four environments. The 
current context object is one of them and is not changeable. The other three are 
dynamically changeable under program control. The three dynamic environments 
are referred to as ENVl, ENV2, and ENV3. The current context itself is called 
Environment 0 (ENVO). Each entered environment object contains ADs in its 
access part that reference objects directly accessible to the program via that 
environment. Since a running program can dynamically change its own logical 
access environment by using appropriate operators in the operator set, the four 
environments together define the instantaneous access environment of the 
program. Since the instantaneous access environment can only be changed by 
explicit instructions, it does not change during operand evaluation. For more 
information on access environments see the Program Organization chapter of this 
manual. 

7-1 



Instruction Interface iAPX 432 GDP 

Figure 7-1 illustrates the general instruction execution environment. 

CURRENT CONTEXT 

DEFINING DOMAIN 

AD 

ENTER•:n 
ENVIRONMENT 

OBJECTS 

Figure 7-1. Instruction Execution Environment 

INSTRUCTION OBJECTS 

CURRENT 
INSTRUCTION 

OBJECT 

D 
OPERAND 

DIRECTLY 
ACCESSIBLE 

OBJECT 

F-0353 

Instruction objects are system-typed objects containing a sequence of intructions 
that constitute a programmed software operation. Typical compilers will compile 
the instructions for a source-level subprogram (procedure or function) into an 
instruction object. Only instructions obtained from such a system object are 
executable. Any attempt to execute instructions from some other type of object 
will cause the GDP to fault. 

Unlike data items, instructions are not constrained to fit within the fixed length 
formats characteristic of the computational data types. Instead, a GDP views an 
instruction object as containing a contiguous stream of bits called an instruction 
stream. Individual processor instructions, which contain a variable number of 
bits, may begin at any bit displacement within an instruction object. 

7-2 



iAPX 432 GDP Instruction Interface 

The location of a GDP instruction is specified by a bit displacement from the 
beginning of the instruction object data part to the first bit of the instruction. 
Such a displacement is limited to a 16=bit representation and thus has a maximum 
value of 65,535 as a bit displacement, or 8,191 as a byte displacement. Therefore, 
qnly the first 8, 192 bytes. are addressable as instructions. 

Regardless of individual instruction boundaries, in its current implementation, the 
GDP fetches 32-bit portions of the instruction stream at a time for decoding. 
Thus, the instruction object size must be rounded up to the next 16-bit boundary 
plus a 4-byte pad. Otherwise, an Instruction Object Displacement fault can occur 
when the processor attempts to fetch the bits of the last instruction in the object. 

INSTRUCTION STREAM 

Instructions are variable-length sections of a bit-addressed stream in an 
instruction object. The GDP interprets these instructions as being composed of 
fields of varying numbers of bits. The bit stream is scanned from lower-address 
to higher-address bits. Each field ends when the GDP recognizes a valid encoding; 
(one valid encoding is never the same as the beginning of another valid encoding;) 
the next bit in the stream begins the next field or next instruction. The fields are 
organized to present information to the processor in the sequence required for 
decoding. Every instruction contains an operator specification and possibly 
several references. The operator specifies to the processor what operation is to 
be performed, and the references specify the operands to be used or manipulated. 
The major fields of an instruction are ordered as follows: 

increasing bit offset 

Opcode Reference Format Class 

(next) current instruction (previous) 

F-0012 

Instruction Fields 

Class and Opcode Fields 

The operator specified in an instruction is encoded in two fields, the Class field 
and the Opcode field. The Class field specifies the operator class to which the 
operator belongs, and the Opcode field selects the operator to be performed from 
within that class. The Class field is always present; the Opcode field is omitted if 
there is only one operator in the class. The operator's class determines the order 
of the operator (i.e., the number of operands) and the length of each operand. 
GDP instructions manipulate zero, one, two, or three operands of varying sizes as 
specified by the Class field in the instruction. · 

7-3 



Instruction Interface iAPX 432 GDP 

Format Field 

If the Class field indicates one or more operands, a Format field is required to 
specify whether the references are implicit or explicit and to specify the mapping 
of data references to operands. The Format field encoding additionally 
determines which data ref erences--in sequential order--specify which operands. 
The Format field indicates for each operand whether it is: 

• Implicitly accessed at the top of the operand stack, or 

• Explicitly specified by a Data Reference field in the instruction. 

Operands cannot be specified as literals in the instruction stream; they must 
always be located in the data part of an object or on top of the operand stack. 
Note that branch references can be specified literally (directly) in the instruction; 
but, as such, they are not operands. Branch references are discussed later in this 
chapter. 

The Format field permits the GDP to appear to the programmer as a zero-, one-, 
two-, or three-address architecture. The order-zero instructions do not require 
any references and, as a result, do not have a Format field. The order-three 
Format field encodings allow either of the two source operands to come from the 
top of the operand stack if both source operands are specified to come from the 
stack. Thus, the ordering of operands on the stack does not restrict the use of the 
noncommutative, order-three operators. See the Operand Stack Interaction 
section of this chapter for more information on operand ordering on the stack. 

Redundant operand references, such as those that might occur when a source and 
destination address are identical, may be specified (using the Format field) in a 
manner that eliminates the need for their common reference to appear more than 
once in the instruction. Table 7-1 shows how the format field encodings 
determine the mappings from the possible data or stack references to their 
associated operands. 

The Format field provides information allowing a single explicit data reference to 
play more than one role during the execution of the instruction. As an example, 
consider an instruction to increment the value of an integer in memory (INC I 1,1). 
This instruction contains, in sequential order: -

• A Class field, whose value (1100) specifies that the operator is of order-two 
and that the two operands both occupy a word of storage 

• A Format field, whose value (10) indicates that a single data reference 
specifies a logical address to be used both for fetching the source operand 
and for storing the result 

• An explicit Data Reference field (whose encoding depends on the operand 
reference mode) specifying the int.eger operand to be incremented 

• An Op-code field (0001) for the order-two operator INC _I 

7-4 



iAPX 432 GDP Instruction Interface 

Table 7-1. Format Field Encodings 

ORDEROPERAND OPERAND OPERAND EXPLICIT FORMAT 
1 2 3 REFERENCES ENCODING 

0 n """'""' u llVllC 

1 drefl 1 0 
stk 0 1 

2 ·drefl dref2 2 00 
drefl dref 1 1 10 
drefl stk 1 01 
stk drefl 1 011 
stk stk 0 111 

3 drefl dref2 dref 3 3 0000 
drefl dref2 dref2 2 1000 
dref 1 dref2 dref 1 2 0100 
drefl dref2 stk 2 1100 
drefl stk dref2 2 0010 
stk dref 1 dref2 2 1110 

drefl stk dref 1 1 1010 
stk dref 1 drefl 1 0001 

dref 1 stk stk 1 0110 
stk dref 1 stk 1 1001 
st kl stk2 dref 1 1 0111 
stk2 st kl drefl 1 nrn1 
st kl stk2 stk 0 1011 
stk2 st kl stk 0 1101 

dref2 dref 1 dref3 3 0011 
dref 2 drefl stk 2 1111 

NOTES: 

drefl,dref2,dref3 
--indicatethat the operand is referenced through the first, second, 

or third explicit data reference in the instruction's reference field. 

stk 
indicates that the operand itself is to be pushed onto, or popped 
from, the operand stack. 

stkl,stk2 
-- indicate that the operand is popped from the top (stkl) or next-to­

top (stk2) of the operand stack. 

7-5 



Instruction lnterf ace iAPX 432 GDP 

Reference Field 

The Reference field consists of a sequence of 0 to 3 Data References as specified 
by the Format field. A data reference is required for explicit specification of an 
operand location. For branch operators, the Reference field can contain a single 
branch reference or a combination of a data reference followed by a branch 
reference. A branch reference in the Reference field always follows any data 
references that might also be in the reference field. 

Frequency Encoding 

The Class, Format, and Opcode encodings have been chosen on the basis of the 
frequency of usage of the operators or modes they encode. Often used encodings 
are encoded with fewer bits. This reduces both instruction size and execution 
time for the more frequently used operators and operand reference modes. 

Complete composition and encoding information for the instruction fields is 
presented in Part Two of this manual. See the Operator Set and Instruction 
Encoding chapters. 

OPERAND ADDRESSING 

OPERAND TYPES 

An operand is one of up to three data items that are defined for an operator. 
Depending on its class, each operator has a set of operand types defined for it. 
Most GDP operators require simple computational data types as operands. 
However, some operand types are not considered data types in the strict sense due 
to the lack of operations defined for them. These operand types are required by 
certain operators to fully specify the operation. For example, access selectors 
are required by many object operators to specify the objects to be used. Yet, the 
operator set contains no operators that exclusively deal with access selectors as 
data types. The following operand types are used by the GDP operator set: 

• Computational Data Types. These are: Character, Short Ordinal, Short 
Integer, Ordinal, Integer, Short Real, Real, Temporary Real. 

• Boolean. A Boolean is a value of type character used to represent logical 
TRUE or FALSE. 

• Bit Field Specifier. Bit field specifiers specify a field of bits to be 
manipulated within an ordinal or short-ordinal operand by a bit-field 
operator. 

• Access Selector. Access selectors select an access descriptor in the entered 
access environments of the current context. They are often required by 
object operators to specify an object or AD to be used by the operation. 

• Domain Access Index. A domain access index selects an access descriptor in 
the defining domain of the current context. 

l'9 ,. 

1-0 



iAPX 432 GDP Instruction Interface 

• Packed Operands. For many object operators (i.e., operators that perform 
operations on objects as entities), a given operand can be a "packed 
operand". A packed operand is composed of sub-operands that are instances 
of the other recognized operand types. For example, operand 2 of the 
INSPECT OBJECT operator is a packed operand comprised of two 16-bit 
sub-operands. The least-significant 16 bits contajns an access selector for a 
destination data object and the most-significant 16 bits contains a short­
ordinal displacement into the data part of the selected object. 

See the Operator Set chapter in Part Two of this manual for more details on 
operand types. 

OPERAND ALIGNMENT 

When a GDP executes instructions on behalf of a context, it manipulates operands 
found within the access environment of that context. An individual operand may 
occupy one, two, four, eight, or ten bytes of memory. All operands are 
referenced by a logical address. 

The offset component in an operand's logical operand address specifies the number 
of bytes from the base of an object to the first byte of the operand in the data 
part of the object. For operands consisting of multiple bytes, the address locates 
the low-order byte. The higher-order bytes are found at the next higher 
consecutive addresses. 

As an operand, each computational data type can be aligned on an arbitrary byte 
boundary in the data part of the object, although multi-byte operands may be 
processed more efficiently when aligned on double-byte boundaries (if the memory 
system is organized in units of double hytes). Note that Bit G or each byie is foe 
low-order bit of that byte. Also note that byte addresses are numbered 
consecutively. By convention, this manual shows memory addresses increasing 
from right to left and from bottom to top of the page. 

LOGICAL ADDRESS COMPONENTS 

In an iAPX 432 system, all processors (of any type) can access the contents of all 
of the available physical memory. All iAPX 432 processors access memory via a 
two-level addressing structure. The software system exists in a segmented 
environment in which a logical address specifies the location of a data item. The 
processor automatically translates this logical address into a physical address for 
accessing the value in physical memory. 

The memory occupied by an iAPX 432 software system is partitioned into many 
segments. Each segment is a group of contiguously addressed memory bytes that 
constitutes the physical representation of an object. Operands are always 
referenced in the data parts of objects. These data parts can have a maximum 
length of 65,536 bytes. 

7-7 



Instruction Interface iAPX 432 GDP 

The instructions that make up the operations of a software system have access to 
the information contained within the objects that make up the current context 
access environment. Instructions may contain zero to three logical addresses 
each of which specifies the location of an operand in the data part of a directly 
accessible object. Operands are explicitly referenced by logical addresses that 
are encoded as Data Reference fields in instructions. Each data reference has 
two components: an access selection component and an operand offset 
component. 

Figure 7-2 is a simplified overview of operand addressing. 

OPERAND REFERENCE 

OPERAND 
OFFSET 

ACCESS 
SELECTION 

OBJECT 
ADDRESSING 

SELECTED 
DATA 

OBJECT 

Figure 7-2. Operand Addressing Overview 
F-0350 

The following two sections briefly describe the access selection and operand 
offset components. Later sections of this chapter describe in more detail the sub­
components of these fields and discuss the semantics of their content. Object 
Addressing is given particular attention with regards to access rights and object 
type checking in the Object Addressing chapter of this manual. It is discussed in 
this chapter as it relates simply to operand addressing and physical address 
generation. 

7-8 



iAPX 432 GDP Instruction Interface 

Access Selection Component 

The access selection component specifies an index for an AD entry in one of the 
entered environment objects of the current context. The indexed access 
descriptor, in turn, references the object that contains the operand. The access 
selection component of a logical address can be specified directly in the data 
reference or indirectly via a value in the data part of an object. The value of a 
direct component must be known at compiie time. An indirect component permits 
the value to be calculated dynamically at run time. 

Operand Offset Component 

The operand offset component specifies the offset into the data part of the 
selected object to the beginning byte of the desired operand. The byte offset is 
relative to the base or fence of the selected object. The offset is always a 
displacement into the data part of the selected object because operands are not 
interpreted in the access parts of objects. The operand offset component can be 
specified in more than one way. In addition to being specified directly in the data 
reference, it may also be determined indirectly by combining information in the 
data reference with values in the data parts of objects. 

OPERAND ADDRESSING MODES 

All operands reside in memory. There are no GDP registers visible to the 
programmer. Since a data reference is an encoding of an explicit logical address, 
it must provide both the access selection component and the operand offset 
component of the logical address. Both of these components can be specified in 
diiieteni ways. This ilexibilii:y provides a poweriui addressing mechanism that 
allows efficient access to a variety of data structures. The addressing modes are 
completely orthogonal with respect to any of an instruction's operands. Any 
addressing mode is independently available to specify any required operand. This 
applies to all operators in the operator set. 

The operand offset and access selection components independently contribute to 
the operand reference mode for a given operand. The modes for each of the two 
major components are described in detail in the following sections of this chapter. 
The data reference modes of the operand offset component are presented first. 
They are called data reference modes because each so closely relates to a 
particular kind of data structure in which the operand is located. After the 
components that make up the data reference modes are fully described, the 
access selection modes are presented. 

7-9 



Instruction Interface iAPX 432 GDP 

Data Reference Modes 

The encoding of the operand offset component of a data reference consists of two 
basic parts: a base part and an index part. This partitioning leads to viewing the 
entire data reference as having three components: an access selection 
component, which selects an object; a base part of the operand offset, which 
provides a byte displacement to the base of an area of memory within the 
selected object; and an index part of the operand off set, which specifies a 
particular operand within that area. This is illustrated in Figure 7-3. 

OPERAND 
OFFSET 

COMPONENT 

BASE INDEX 

ACCESS 
SELECTION 

COMPONENT 

OBJECT 
ADDRESSING 

Figure 7-3. Base and Index Address Components 
F-0349 

Flexibility is provided by allowing each part of the operand offset to be specified 
directly or indirectly. A direct base or direct index has its value specified 
directly in the data reference encoding. However, when indirection is used, the 
value of the base or index is given by a short-ordinal value located within a 
currently accessible object. 

There are four possible combinations of direct and indirect base and index parts, 
and each combination results in a different mode of data reference. Figure 7-4 
defines these four combinations. Figure 7-5 illustrates these four basic data 
reference modes, and subsequent sections describe each mode in detail. 

7-10 



iAPX 432 GDP 

INDEX 

INDEX 

(INDIRECT 

AND SCALEDI 

Instruction Interface 

BASE 

--~~~~~-~--~~~~~-( \ 
DIRECT INDIRECT 

SCALAR RECORD 
ITEM 

DIRECT 

STATIC DYNAMIC 
ARRAY ARRAY INDIRECT 

Figure 7-4. Data Reference Modes 

SCALAR 

STATIC ARRAY 

ELEMENT 

INDEX 

(INDIRECT 

AND SCALED) 

RECORD ITEM 

DYNAMIC 

ARRAY ELEMENT 

Figure 7-5. Data Reference Modes 

F-0348 

F-0360 

7-11 



Instruction Interface iAPX 432 GDP 

Each of these four combinations has been used to name a data reference mode 
because each gives an indication of the kind of data structure for which the 
reference would typically be used (independent of the access selection mode). All 
four modes are independently available for any operand specified in an 
instruction. For each data reference mode, the processor calculates the operand 
offset as follows. (Bracketed items are specified indirectly.) 

Operand Off set = displacement (Scalar) 

= [base] + index (Record lte m) 

= base + [index]*scale (Static Array Element) 

= [base] + [index]*scale (Dynamic Array Element) 

Scalar Data Reference 

A scalar data reference is the simplest type of data reference. It is used for 
direct access to operands of all the primitive computational data types. Figure 7-
6 illustrates the scalar data reference mode. 

~--------------DISPLACEMENT 

~-----DISPLACEMENT LENGTH CONTROL 

DATA REFERENCE MODE 

7 OR 16 BITS ACCESS SELECTION 

1"-0359 

Figure 7-6. Scalar Data Reference 

7-12 



iAPX 432 GDP Instruction Interface 

The Data Reference Mode field has an encoding of 00 for the scalar data 
reference mode. This field is the first two bits in every data reference. The 
Displacement Length Control field encodes one of two optional lengths for the 
Displacement field itself--either 7 or 16 bits long. The Displacement field 
encodes the byte displacement from the base (fence) of the selected object into 
the data part. to the first byte of the scalar operand. 
The 7-bit wide Displacement field is for operand offsets of less than 128 bytes. 
The 16-bit wide Dispiacement fieid is for operand offsets anywhere in the data 
part of the object. The Access Selection components encode information 
necessary to select the object in which the operand is located. Access Selection 
Modes are described in a later section of this chapter. 

The GDP converts a scalar data reference to a logical address by first using the 
access selection component to select an object. The operand offset component is 
thus simply the value encoded in the Displacement field of the data reference .. 

Record Item Data Reference 

Accessing a data item within an instance of a record requires three pieces of 
information: the data object in which the record instance is located, the byte 
displacement from the base of the object to the base of the particular record 
instance, and the byte displacement (Index) within the record to the data item. 
The Record Item Data Reference mode, illustrated in Figure 7-7, is designed for 
this kind of access. 

------------------------· ::!ASZ !~~D!~~C'!' !iE!?~~~~C~ 

l TO 28 BITS 

SHORT-ORDINAL INDIRECT 

BASE FROM: 

OPERAND STACK 

OR 

SAME DATA OBJECT 

OROTHl<:H OATA OBJECT 

.----------------INDEX 

~--- INDEX LENGTH CONTROL 

DATA REFERENCE MODE 

7 OR 16 BITS 

'--------+{ l=======l } REFERENCED RECORD 

SELECTEDDATAOBJECT =C .._ ___ ..., 
F-0357 

Figure 7-7. Record Item Data Reference 

7-13 



Instruction Interface iAPX 432 GDP 

The access selection component for the entire data reference specifies the object 
in which the record instance is located. Access Selection is described in detail 
later in this chapter. The Base Indirect Reference field is encoded to specify the 
16-bit indirect base from either the operand stack top, the same data object as 
that in which the referenced record is located, or some other data object. 
Indirect reference formats are described in detail later in this chapter. 
The Index field is encoded directly in the data reference and is 7 or 16 bits long as 
determined by the Index Length Control bit. The Base Indirect Reference field 
encodes the byte displacement to the base of the record instance. This 
displacement is given indirectly so that the particular record instance to be 
accessed can be computed dynamically at run-time. 

The GDP converts a record item data reference to a logical address by first using 
the access selection component to select an object. The operand offset 
component is then the sum of the values of the indirect base part and the direct 
index part. The addition operation uses 16-bit modulo arithmetic. 

Static Array Element Data Reference 

Three pieces of information are required to access an element of a static array: 
the object in which the array is located, the byte displacement from the base of 
the object to the base of the array, and the index of the particular array element. 
These three pieces of information are encoded in a Static Array Element Data 
Reference as shown in Figure 7-8. 

7-14 

,.--------------------INDEX INDIRECT REFERENCE 

I TO 28 BITS 

SllORT-OIWINAL INOIRECT 

INDEX FROM: 

OPERAND STACK OR 

SAME OATA OBJECTOR 

~------------BASE 

~---BASE LENGTH CONTROL 

DATA REFERENCE MODE 

0 OR 16 BITS ACCESS SELECTION 

OTHER DATA OBJECT } 

0

-------ii-------{ ARRA y ELEMENT REFERENCED ARRAY 
SCALING liY ... 

DATA TYi'~: 

"''-":'l'WUA1'AOHJ>:C1' __.{ ____ _. 

Figure 7-8. Static Array Data Reference 
F-Q358 



iAPX 432 GDP Instruction Interface 

The Access Selection component (discussed later in this chapter) specifies the 
object in which the array is located. The byte displacement to the base of the 
array is encoded directly in the 0-bit or 16-bit Base field of the data reference. 
The 0- or 16-bit length of the Base field is determined by the Base Length Control 
bit. A 0-bit Base field means that the base part· is not present in the data 
reference and that the value for the base is zeroe The index to the array element 
(a byte displacement from the base of the array) is specified indirectly so that it 
can be computed dynamically at run-time. 

If an index has the value i, it specifies the ith element from the base of the array, 
where an element can be any of the supported computational data types. The 
conversion of a static array data reference to an operand offset requires that this 
index value be converted to a byte displacement from the base of the array. The 
GDP automatically scales the index value, multiplying it by 1, 2, 4, 8, or 16 
depending on whether the operand type occupies a byte, double-byte, word, 
double-word, or extended-word, respectively. Note that because of the manner in 
which scaling is done, when arrays of temporary-real operands are accessed with 
data references that automatically scale the index, each element is treated as if 
it were 16 bytes long. However, only the first 10 bytes of an element are actually 
read or written. 

The GDP converts a static array element data reference to a logical address by 
using the access selection component to select an object. The operand offset 
component is then the sum of the values of the direct base part and the scaled 
value of the indirect index part. The addition operation uses 16-bit modulo 
arithmetic. 

Dynamic Array Element Data Reference 

Accessing an element of a dynamic array is the same as accessing an element of a 
static array except that the byte displacement to the base of the array may also 
be specified at run-time. This is the case if the array is located inside an object 
that is passed as a parameter to a procedure. This data reference mode is also 
useful in multiple dimension arrays where the base specifies a slice (row or 
column) of the multiple-dimension array. A data reference with both the base 
part and the index part specified indirectly is provided as shown in Figure 7-9. 

The GDP converts a dynamic array element data reference to a logical address by 
using the access selection component to select an object. The operand offset 
component is then the sum of the values of the indirect base part and the scaled 
value of the indirect index part. The addition operation uses 16-bit modulo 
arithmetic. 

7-15 



Instruction Interface iAPX 432 GDP 

.------------------------INDEX INDIRECT REFERENCE 

l TO 28 BITS l to 28 BITS 

SHOHT-ORDINAL INDIRECT 

INDEX FROM: 

OPERAND STACK OR 

SAME DATA OBJECTOR 

OTHER DATA OBJECT 

SCALED BY DATA TYPE 

SHORT-ORDINAL INDIRECT 

BASE FROM: 

OPERAND STACK OR 

SAME DATA OBJECTOR 

OTHER DATA OBJECT 

BASE INDIRECT REFERENCE 

..----- DATA REFERENCE MODE 

F-0356 

Figure 7-9. Dynamic Array Data Reference 

Indirect Base and Index References 

When indirection is used to specify the base or index parts of the operand off set 
component of a logical operand address, the data value that supplies the actual 
base or index value may be located in any one of three different ways: Stack 
Indirect Reference, Intrasegment Indirect Reference, and General Indirect 
Reference. All indirect values are 16-bit wide short ordinals. 

7-16 



iAPX 432 GDP Instruction Interface 

Stack Indirect Reference. A stack indirect reference pops the base or index value 
on top of the operand stack. In this case, no additional encoding information is 
needed to locate the value, as is shown in Figure 7-10. 

TOP OF OPERAND STACK 

SHORT ORDINAL 

~---INDIRECT 
REFERENCE MODE 

BASE OR INDEX VALUE 

Figure 7-10. Stack Indirect Reference 
F-0362 

Intrasegment Indirect Reference. An intrasegment indirect reference locates the 
base or index within the same object that is selected by the access selection 
component for the entire data reference. In this case, only the byte displacement 
from the base of the selected object to the base or index value needs to be 
encoded in the indirect reference. Figure 7-11 illustrates Intrasegment Indirect 
Reference. 

General Indirect Reference. A general indirect reference locates the base or 
index value within any object accessible within the current context access 
environment. In this case, the indirect reference field contains a direct access 
selector and a byte displacement from the base of the selected object to the base 
or index value. This is the equivalent of a scalar ·data reference used to yield the 
short-ordinal base or index value. This is illustrated in Figure 7-12. 

7-17 



Instruction Interface 

7-18 

.------------------- DISPLACEMENT 

70Rl6BITS 

DISPLACEMENT 
-------- LENGTH CONTROL 

INDIRECT 
~---- REFERENCE MODE 

10 

BASE OR INDEX VALUE 

SAME DATA OBJECT AS THAT 
SELECTED BY ACCESS SELECTION 

FOR ENTIRE DATA REFERENCE 

Figure 7-11. Intrasegment Indirect Reference 

..--------------------~rnsPLACEMENT 

70R 16BITS 

..-------------- DIRECT ACCESSSELl!:CTOR 

40HllBITS 

2 
OR 
6 I 

oo-----{ 1:-
SCALING BY 4 ,-

1 
I 
I 
I 

.---------- DISPLACEMENT LENGTH CONTROL 

..-------- ACCESS SELECTOR LENGTH CONTROL 

~--- INOIHl::CT HEFl::RENCE MODE 

00 

I I 
t I 
t I 
I I 
t I 
I I 
I I 
I I 
I I 

I I I 

~--!::::::::::..! 
ENTl::Hl::l) 

t.:NVIHONMENTS 

DATA OBJl!:C'I' 

Figure 7-12. General Indirect Reference 

iAPX 432 GDP 

F-0354 

BASE OR INDEX VALUE 

F-0356 



iAPX 432 GDP Instruction Interface 

Access Selection Modes 

Each of the four basic data reference modes requires an Access Selection Mode 
field and an Access Selection field. The Access Selection Mode field specifies 
how the subsequent Access Selection field is to be interpreted. For the logical 
address encoded by a data reference,. the access selection component can be 
specified in two different ways: by specifying a direct access selector or by 
specifying an indirect access selector. Figure 7-13 iliustrates the access selection 
modes. 

DIRECT 

SHORT LONG 

ACCESS 
SELECTION 

INDIRECT 

STACK GENERAL 

Figure 7-13. Access Selection Modes 

Direct Access Selection 

F-0351 

A direct access selector is encoded directly within the data reference as a 4- or 
8-bit field. When the field is 4 bits, the mode is called Short Direct Access 
Selection; when the field is 8 bits, the mode is called Long Direct Access 
Selection. The Direct Access Selection Mode is illustrated in Figure 7-14. 

The 0 encoded in the least-significant bit of the Access Selection Mode field 
specifies that the Access Selection field contains a direct access selector. The 
next-higher bit (in the Access Selection Mode field) is then used to differentiate 
the length of the direct access selector (0 for 4 bits, 1 for 8 bits). 

7-19 



Instruction Interface 

.---------------- ACCESSINDEX 

.------------ ENV SELECTOR 

~---- ACCESS SELECTION MODE 

2 OR 6 BITS 2 BITS 
~~'--____ _.___.__ 

1
2 
OR I 

SCALING 

6 

{ i-
BY 4 ---------• : 

I 
I 
I 
I ·-

I 
I 

I I I 
I I I : ·-------- ,-" 
------------..J 

ENTERED 
ENVIRONMENTS 

Figure 7-14. Direct Access Selection 

iAPX 432 GDP 

SELECTED DA TA OBJECT 

F-0361 

As is evident in Figure 7-14, the low-order two bits (in the ENV Selector field) are 
interpreted to select one of the four Access Environment objects in the current 
context access environment. The remaining 2- or 6-bit access index provides an 
index into the access part of the selected object to an access descriptor. The AD 
in turn references the actual object in which the operand resides. For all access 
selection modes, the GDP automatically scales an access index by 4 (each AD is 4 
bytes wide) to obtain the byte displacement into the access part to the selected 
AD. 

The Short Direct Access Selector can specify the first four ADs in each 
environment. This covers the context, domain, global constants, and the context 
message--the majority of data references. The Long Direct Access Selector can 
specify the first 64 ADs in each environment. Since each environment may 
contain up to 16,384 ADs, AD entries beyond the first 64 can only be referenced 
by using the Stack Indirect Access Selection or the General Indirect Access 
Selection modes (described in the following sections). 

If the access selector is specified indirectly, then the data reference contains 
information to locate a double byte within a currently accessible object. The 
value of this double byte is used as a 16-bit indirect access selector. 

7-20 



iAPX 432 GDP Instruction Interface 

Stack Indirect Access Selection 

This mode pops the access selector value from the current top of the operand 
stack. This mode only requires the Access Selection Mode field. The Access 
Selection field is omitted. This mode is shown in Figure 7-15. 

~------ACCESS INDEX 

J" 

~-- ENV SELECTOR 

} 

SHORT-ORDINAL 
TOP OF OPERAND 
STACK 

SCALING 1----------...-< BY4 

ACCESS SELECTION 

,-- MODE 

-----~ 
.·.··'·' ''···'··'·'···'"' ) 

SELECTED DATA OBJECT 

ENVIRONMENTS 

Figure 7-15. Stack Indirect Access Selection 
F-0363 

In the same manner as described for direct access selectors, the low-order two 
bits (in the ENV Selector field) are interpreted to select one of the four 
Environments in the current context access environment. The remaining high­
order 14 bits select an AD for the actual object in which the operand resides. 

General Indirect Access Selection 

The double byte that contains the indirect access selector can also be located in 
some other accessible object (i.e., other than the current context data part fn 
which the operand stack is located). In this case, the Access Selection field 
contains both a direct access selector and a byte displacement. The direct access 
selector selects an object containing the double byte. The byte displacement 
accesses that double byte within the selected object. The accessed double byte 
then contains the indirect access selector that selects the object in which the 
operand resides. This mode of access selection is called General Indirect Access 
Selection Mode and is illustrated in Figure 7-16. 

7-21 



Instruction Interface iAPX 432 GDP 

.----------------DISPLACEMENT 

7 OR 16BITS 

.------------ DIRECT ACCESS SELECTOR 

40R8BITS 

2 
OR 
6 I 

.-------- DISPLACEMENT LENGTH CONTROL 

.------ ACCESS SELECTOR LENGTH CONTROL 

..---- ACCESS SELECTION MODE 

---ffttI?~m 
SCALING l ' fl'.fif:ii~ 

BY4 !-E==~ 
I 

: 
I 

: : I •---T---- --J 
I I 

ENTERED L---- ------l 
ENVIRONMENTS 

14 

SCALING 
BY4 

AD 

ENTERED 
ENVIRONME!'ITS 

SELECTED 
DATA OBJECT 

Figure 7-16. General Indirect Access Selection 

BRANCH REFERENCES 

F-0365 

The GDP operator set includes several branch operators. Some require operands 
to indirectly specify the target instruction of the branch. These operands are 
ref~renced as described earlier in this chapter. Note that a branch reference is 
not an operand. It is a directly encoded part of a branch instruction (in the 
Reference field) that determines the bit address of the instruction that is the 
target of the branch. There are two types of branch references: relative branch 
references and absolute branch references. 

7-22 



iAPX 432 GDP Instruction Interface 

A relative branch reference is encoded by a 10-bit signed integer value. It is used 
as the bit displacement to the target instruction relative to the beginning of the 
branch instruction. Thus, the range of a relative branch is from -512 to +511 bits 
relative to the first bit of the branch instruction itself. No wraparound occurs. 
This means that if the displacement overflows or underflows the boundary of the 
current instruction object, a Type 1 Instruction Pointer Overflow fa ult occurs. 

An absolute branch reference is encoded by a 16-bit short ordinai vaiue that is the 
bit displacement from the base of the current instruction object to the target 
instruction. 

The range~ of relative and absolute branches are illustrated in the Figure 7-17. 

~ - - INCREASING BIT OFFSET 

+511 RANGE OF RELATIVE BRANCH -512 

: BR.INST. ::: I 
RANGE OF ABSOLUTE BRANCH 

F-0352 

Figure 7-17. Branch References 

LARGE ARRAY INDEXING 

The maximum size of the data part of an object is 65,536 bytes (64K). Some 
applications require arrays larger than 65,536 bytes. The GDP operator set 
provides the Index Ordinal operator to support accessing such large arrays. 

The large array is mapped (at creation time) into a series of objects, each with 
data parts that are 2,048 bytes (2K) long. These objects are directly accessible in 
the current logical access environment. The Index Ordinal operator works as 
follows: 

7-23 



Instruction lnterf ace iAPX 432 GDP 

Given: 

• The size of each element in the array (i.e., a scale factor) 
• The access selector for the base segment of the array 
• The ordinal index for the desired array element 

The operator computes: 

• The access selector for the appropriate 2K data object that contains 
the indexed array element 

• The displacement into the data part of that object to the array 
element 

These resultant short-ordinal values can then be used with the indirect access 
selection mode and the record item, static array, or dynamic array data reference 
modes to access the array element. The range for index values must always begin 
at 0. This means that array bounds such as -2000 to +500 must be accomplished 
by explicitly biasing the index. Thus, the compiler must map the source level 
array bounds onto an ordinal range starting at 0. This ordinal is then used by the 
compiler as the indirect source index operand of a compiled Index Ordinal 
instruction. 

Note that only the least-significant four bits of the scale factor are used. The 
array element size is two raised to the power of this 4-bit value. The permissible 
array element sizes are thus: 1, 2, 4, 8, 16, 32, 64, ••• 32, 768 bytes. Accordingly, 
if the application's array element size is 20 bytes, the scale factor should be 5 
(element size of 32). If the application uses only the least-significant 20 bytes of 
each 32-byte element, the most-significant 12 bytes are not used. 

OPERAND STACK INTERACTION 

Embedded in the data part of each context object is the context's dedicated 
operand stack. Any operand of an instruction may be specified as the value (of 
appropriate data type) at the top of the operand stack. 

The operand stack is handled in a uniform manner whenever implicit stack 
references are used in an instruction. Unless the operator is one of the SAVE 
operators, using the operand stack to obtain a source operand causes the value to 
be popped from the stack when it is fetched. The SAVE operators provide the 
ability to read the value at the top of the operand stack without popping it. The 
SA VE operator will also duplicate the top stack value on the stack when the stack 
is specified as both the source and destination. There are a number of indivisible 
operators which push the original value of the destination on top of the operand 
stack as an inherent part of their operation. 

Whenever the operand stack is specified as the destination, the result of the 
operation is pushed onto the stack. If the operand stack is used as the source for 
both source operands of an order-three operator, the Format field in the 
instruction specifies the order in which the two operands appear on the stack. 
Source operands are popped from the top of the operand stack, and destination 
operands are pushed onto the operand stack. 

7-24 



iAPX 432 GDP Instruction Interface 

The stack pointer, cached in a register within the GDP, contains the displacement 
in bytes from the base of the current context object (into the data part) to the 
first free byte on the operand stack~ When an operand is pushed onto the stack, 
the value is stored beginning at the location specified by the stack pointer, and 
the stack pointer is then incremented by the length of the operand. Similarly, 
when an operand is popped from the stack, the stack pointer is first decremented 
by the length of the operand, and then the value is read beginning at the location 
specified by the stack pointer. The operand stack is 16 bits wide; the stack 
pointer is maintained on double-byte boundaries. 

The GDP caches the access information for the current context object. The 
operand stack pointer is maintained by an internal register to specify the 
displacement to the current top. The top double-byte of the operand stack is also 
cached. An instruction referencing the top operand on the stack need specify 
neither an access selector nor an operand offset. Since very little information is 
required in an instruction to encode a stack reference, temporary results of 
operations are most efficiently stored on the operand stack. 

The exact manner in which operands are stored in an operand stack depends on the 
length of the operand. A byte operand stored on the ~tack is stored in the low 
byte of a double-byte stack element. A double-byte operand simply occupies one 
double-byte wide element on the stack. Word, double-word, and extended-word 
operands require two, four, and five stack elements, respectively, with higher­
order elements stored at higher addresses. 

During the interpretation of a given instruction, the operand stack may be the 
source for several data values. Some of these values may be used in forming 
logical addresses, while others may be used as actual source operands. Because of 
this multiple use of the stack, the order in which operand addresses are formed 
and values are popped from the stack is specified in the following paragraphs. In 
general, items are popped (during instruction decoding) in the order in which they 
are encountered in the instruction. 

There can be no operand order ambiguity with order-zero operators. This is also 
true of most order-one operators, with the exception of the SA VE operators. 
SA VE operators read a value from the operand stack without popping the stack, 
and store that value in the destination operand specified by the single data 
reference. As with all instructions containing order-one operators, the single data 
reference is evaluated before the SAVE operation is actually executed. As a 
result, if the data reference has an indirect access selector, an indirect base part, 
or an indirect index part that is located in the operand stack, that addressing 
information must be on top of the stack with the value to be SA VEd immediately 
below. When the SAVE operation is actually performed, the addressing 
information will have already been used and popped from the stack, leaving the 
value to be saved as the top stack element. 

If a single data reference has more than one indirect part located on the operand 
stack, the following ordering conventions are used. If there are three indirect 
parts on the operand stack, the base part is assumed nearest the top, the index 
part is immediately below the base part, and the indirect access selector is 
immediately below the index part. If only two indirect parts are on the operand 
stack, this same ordering applies with the missing part deleted. 

7-25 



Instruction Interface iAPX 432 GDP 

In the case of order-two operators, the address of data reference one is formed 
first. Since it is always a source operand, the associated value is fetched, and 
then the address of operand two, normally a destination address, is formed. To 
understand the importance of this ordering, consider, for example, an instruction 
that moves a value from the stack to a location specified by a static array 
element data reference whose index part is also on the stack. Since the· value of 
the first operand is fetched before the address of the second operand is formed, 
the operand stack must have the value to be moved in the top stack element and 
the index for the destination in the next-to-top stack element. 

For order-three operators, the address of operand one is formed first, and the 
associated value is fetched. Then the address of operand two is formed, and the 
associated value is fetched. Finally, the address of operand three--normally a 
destination--is formed, and any result is stored there. 

INSTRUCTION INTERPRETATION 

Before the individual instructions in an instruction object can be interpreted by a 
GDP, appropriate process, •domain, context, and instruction object addressing 
information must be loaded into the processor registers. The appropriate system 
objects are "qualified" by taking physical access information from each 
corresponding object descriptor and loading it into the appropriate internal 
registers. These registers are not visible to the programmer. Among other 
things, their contents form an access environment in which logical addresses from 
the instruction stream can be translated to the physical addresses that reference 
memory. Once a processor dispatches itself to execute a process, and a proper 
access environment has been established, the processor begins to interpret the 
instruction referenced by the current value of the instruction pointer. 

The instructions for a GDP are encoded into a common format that allows the 
interpretation of each instruction to proceed in a single, logical sequence. An 
instruction consists of a series of fields (described earlier in this chapter) that are 
organized to present information to the processor as it is needed. As an 
instruction is fetched from memory, each of its several fields is decoded. 
Execution of the specified operation proceeds basically as follows: 

• Decode the number of operands and the length of each (using the Class field) 

• Decode the operand addresses, convert them to physical addresses, and 
fetch the source operands (using the Format and Reference fields) 

• Decode the operator, perform it, and store any result (using the Reference 
and Opcode fields) 

Because the instruction stream of the GDP is a bit stream, instructions are a 
variable number of bits in length and are not aligned on byte or word boundaries. 
In the current GDP implementation, instruction fetches are 32-bit memory 
accesses issued whenever the decoder needs more bits. These 32-bit fetches are 
made independent of the alignment of the instructions and independent of the 
current instruction execution. Instruction decoding and execution are 
asynchronous and pipelined; while the current instruction is executing, the next 
section of the instruction stream can be undergoing fetch and decode by the 
processor. 

7-26 



iAPX 432 GDP Instruction lnterf ace 

PHYSICAL ADDRESS GENERATION 

A 432 software system exists in an object-based environment in which a logical 
address specifies the location of an operand within an object. The processor 
automatically translates this logical address into a physical address for accessing 
the operand in physical memory. User program·s have no way to generate physical 
addresses directly. This section describes the processor activity of physical 
address generation. 

Note that to accelerate this address generation, the current implementation of 
the architecture uses two address caches to store a set of the most recently used 
addresses. This avoids a pass through some or all of the memory-resident 
descriptor structures for each access to a qualified (address cached) object. 

Figure 7-18 illustrates physical address generation and is followed by a general 
algorithmic description. 

LOGICAL ADDRESS 

ACCESS SELECTION OPERAND OFFSET 

,--------. 0 
DATA REFERENCE 

/2 I ____ .............. MODE -----

SCALING 

.ENTERED 
~~~ ~ ENVIRONMENTS 

OBJECT TABLE
DIRECTORY

, __ 0_ 8
I
I
I
I
I
I

OBJECT
TABLE

ADDRESS
CACHE

OBJECT TABLE

8
12 24

l sc:,~:" +---
------7'----------'-----

24 8
24

DATA
OBJECT

ADDRESS
CACHE

---- --;4-- --- - ------ ----- - ---- - ---- - -- .__ ___ _

24 0
Figure 7-18. Physical Address Generation

DATA OBJECT

G
}

F-0364

7-27

Instruction Interface iAPX 432 GDP

The following algorithmic description uses numbered notes that are keyed to the
preceeding illustration. This algorithmic description is not meant to be
exhaustive. For example, type and rights checking are not included here. They
are discussed in the Object Addressing chapter of this manual. The procedure
begins with a logical address (as specified in a data reference) and yields the 24-
bit physical address of the first byte of the referenced operand.

• The specified Access Selector (1) is used to search the Data Object Cache
(2).
• If a match is found (indicating that the Data Object (3) has been

previously cached), the corresponding 24-bit physical address from the
Data Object Cache entry is used to locate the Data Object in which
the operand resides.

• If no match is found, the access selector is used in the normal way to
locate an AD in the current access environment (4). Note that the
specified access selection mode of the current data reference can
entail a recursion of Physical Address Generation for each instance of
an access selector in the access selection mode.
• The Directory Index (5) in this AD is used to search the Object

Table Cache (7).
• If a match is found (indicating that the indexed Object

Table (8) has been previously cached), the 24-bit physical
address from the Object Table Cache entry is used to
locate the indexed Object Table.

• If no match is found, the Object Table is located normally
through the Object Table Directory (9) by using the
Directory Index (5). When this is the case, the 24-bit
physical address for the Object Table is loaded (with other
information) into an appropriate entry in the Object Table
Cache.

• The Segment Index (6) from the AD (4) is used to index into the
Object Table (8) to the OD for the selected Data Object (3).
This OD is then used to provide a 24-bit physical base address for
the Data Object. When this is the case, the 24-bit physical base
address is loaded (with other information) into an appropriate
entry in the Object Cache (2).

• The operand offset is calculated using the specified data reference mode.
This calculation itself can entail a recursion of Physical Address Generation
for each instance of an access selector in the data reference mode.

• The calculated operand offset (10) is added to the physical base address of
the Data Object (3) to obtain the final physical address of the first byte of
the operand (11).

The physical address is then transmitted to memory by the processor. A physical
address is always 24 bits wide. This results in a maximum physical memory size
of 16 Megabytes (16,777,216 bytes).

7-28

iAPX 432 GDP Instruction lnterf ace

INSTRUCTION EXECUTION

Under normal conditions, a GDP is controlled by instructions that are fetched in
sequence from the current instruction object on behalf of the current process
being executed. An instruction is fetched from the current instruction object by
using a bit displacement obtained from. the instruction pointer that is maintained
within the GDP. After the instruction has been executed, the instruction pointer
is incremented by the number of bits in the instruction so that it points to the
next sequential instruction.

Under abnormal conditions, any action in response to software and hardware
exceptions takes several forms with the GDP. Most computational faults cause a
simple branch within the faulting context to a designated fault handler instruction
object. More severe faults, such as object protection faults, result in suspending
the execution of the faulting process and in sending an access descriptor for its
process object to a fault service process via a designated fault port. A faulting
processor is handled somewhat differently by reassigning it to a different
dispatching port where it may attempt to execute a programmed diagnostic
process. For more information on fault handling see the Fault and Trace
Management chapter of this manual.

The GDP has two different kinds of operators. Data operators operate on zero,
one, or two operands of computational data types and produce a single result--also
a computational data type--which is stored as the destination operand. Object
operators perform high-level manipulation of system objects, typically incurring a
transformation on the memory image of one or more objects. Data operators do
not reference or alter information other than the primitive data items specified
by the source and destination operands. However, object operators may access
and alter information in a number of objects during execution.

7-29

CHAPTER 8
COMPUTATIONAL DATA TYPES

This chapter describes the computational data types that are recognized by the
GDP. The data types are first introduced by describing their sizes and uses. Then
follows a section discussing the GDP's operators for manipulating the data types.
Next, the GDP's floating-point model is presented in detail, along with an
explanation of floating-point operand interpretation. Finally, Data Operator
faults are classified and described.

OVERVIEW OF COMPUTATIONAL DATA TYPES

Figure 8-1 summarizes the sizes and general uses of the GDP's computational data
types.

8-1

Computational Data Types iAPX 432 GDP

The following sections briefly introduce the computational data types and
describe the numerical ranges that the types can represent.

CHARACTER DATA TYPE

This 8-bit data type is used to represent Booleans, text characters, or unsigned
integers.

A Boolean is a ·value used to represent logical TRUE or FALSE. TRUE is
represented by xxxxxxxl and FALSE is represented by xxxxxxxO (with the x bits
being uninterpreted "don't-care" bits).

Text characters are used to make up text data. Arrays of text characters can be
used for software-defined string data types.

For unsigned integers, the character data type is used to represent values in the
range 0 to 255.

SHORT-ORDINAL DATA TYPE

This 16-bit data type represents unsigned integer values in the range 0 to 65,535,
or bit fields of 1 to 16 bits.

ORDINAL DATA TYPE

This 32-bit data type represents unsigned integer values in the range 0 to
4,294,967 ,295, or bit fields of 1 to 32 bits.

SHORT-INTEGER DATA TYPE

This 16-bit data type represents signed integer values in the range -32, 768 to
32, 767 in two's complement form.

INTEGER DATA TYPE

This 32-bit data type represents signed integer values in the range -2, 14 7 ,483,648
to 2,147 ,483,647 in two's complement form.

SHORT-REAL DATA TYPE

This 32-bit data type represents floating point numbers. Normalized short-real
values provide the equivalent of aproximately 7 decimal digits of precision. Their
interpretation as operands by the GDP is described in detail later in this chapter.

REAL DATA TYPE

This 64-bit data type represents floating point numbers. Normalized real values
provide the equivalent of aproximately 15 decimal digits of precision. Their
interpretation as operands by the GDP is described in detail later in this chapter.

8-2

iAPX 432 GDP Computational Data Types

TEMPORARY REAL DATA TYPE

This 80-bit data type represents floating point numbers. Normalized temporary­
real values provide the equivalent of approximately 19 decimal digits of precision.
Their interpretation as operands by the GDP is described in detail later in this
chapter.

OPERATORS FOR COMPUTATIONAL DATA TYPES

This section presents an overview of the GDP operators provided for the
computational data types. The Operator Set chapter describes these operators in
detail. Figure 8-2 illustrates the computational operators and which data types
they apply to.

HO'IE
OPERATORS

L.OGICAL
OPERATORS

ARITHMETIC
OPERATORS

BIT-FIELD
OPERATORS

RELATIONAL
OPERATORS

CONVERSION
OPERATORS

WHERE:

{
.._

{
r
t
{

{
{

DATA TYPES

W,f¢1~ ~ ~ ~(Ji (Ji /;' ~'J

OPERATORS
~ s ~ ii~ ~ ~~ ~ ~$

if c§' ~ ~ <?~ ~ ~

MOVE x x x x x x x x
SAVE x x x x x x x x
ZERO x x x x x x x x
OiiE x x x x x - - -
AND x x x - - - - -
INCL.USIVE OR x x x - - - - -
EXCL.USIVE OR x x x - - - - -

rv!" :x -x T - - - - -
NOT x x x - - - - -
ADD x x x x x • T :!

--guerRACT x x x x x • • x
1!Ul:' :f!.I x x x ::!: -..- ,,. T

~ x x x x . .. x
REMAINDER x x x x - - x
INCREMENT x x x x x - - -
ut.1.ttt.Mt.ru~ T x :x "'X" :x: - - -
NEGATE - - - x x x x x
ABSOLu VAL.UE - - - .!. :x :x
SQUARE Roe x
INDEX - - x - - - -
EXTRACT x x - - - - -
INSERT x x - - - - -[p BL :x "'X" - - - - -
EQUAL x x x x x x x x
NQ'f_t;l,lUAL :x ::x x '"'X" -X
EQUAL ZERO x x x x x x x x
NO'fEOUAL :liao_ x x _x_ x x

1:'E'S'S'" tAN ::x ::x x T "'X" x x ::x
L.ESS THAN OR EQUAL x x x x x x x x
POSITIVE - - - x x x x x
rft.1.11!.TIVE - - - x x x x x
MOVE IN RANGE x x

l

TO CHARACTER - x
TO SHORT ORDINAL x - x
TO ORDINAL. - x x
W:>HUtl LNTE;uf;R - ~
TO INTEGER x x x x - I X
TO SHORT REAL

..,. -] x
:J"lJ" REAL -IX
TO TEMPORARY REAL x x x x x x 1 -

X MEANS THE OPERATOR IS AVAILABLE FOR THE GIVEN DATA TYPE.
MEANS THE OPERATOR IS AVAILABLE FOR THE GIVEN DATA TYPE AND
FOR INSTRUCTIONS IN WHICH ONE OF THE OPERANDS IS A
TEMPORARY REAL.

- MEANS THE OPERATOR IS NOT AVAIL.ABLE AND WOULD BE OF LITTLE
OR NO USE IF IT WERE.

(BLANK) MEANS THE OPERATOR IS NOT AVAILABLE.

Figure 8-2. Operators and Data Types
F-0273

8-3

Computational Data Types iAPX 432 GDP

BIT FIELD MANIPULATION

A special set of operators is provided to manipulate bit fields in short-ordinal and
ordinal operands. The extraction operators (EXT_SO, EXT_O) allow a specified
bit field in a short-ordinal or· ordinal source operand to be extracted and right
justified (with high-order zeros) to form a corresponding short ordinal or ordinal
result. The insertion operators (INS SO, INS 0) allow a specified field in a short­
ordinal or ordinal destination to be written with the right-justified binary value of
a corresponding short-ordinal or ordinal source operand. The significant bit
operators (SIG_ SO, SIG_ O) allow the most significant set bit of a short-ordinal or
ordinal source operand to be determined and stored as a position value in a short­
ordinal destination operand. Figure 8-3 illustrates bit field insertion and
extraction operations.

DESTINATION

INSERT

SOURCE

n

BEGINNING BIT

n = 16 bitB(ShortOrdinal)
or

n = 32 bit.a (Ordinal)

0

Figure 8-3. Bit-Field Operations

SOURCE

EXTRACT

DESTINATION

F-0275

The insertion and extraction operators use a special type of operand, a bit field
specifier, to specify the extracted source or inserted destination field of the
operation. A bit-field specifier consists of two adjacent bytes as shown:

15

8-4

87 0

'-----Beginning Bit Number
'---------Bit Field Width

iAPX 432 GDP Computational Data Types

For short-ordinal operators, only the low-order 4 bits of these bytes are
interpreted by the GDP during execution. For ordinal operators, only the low­
order 5 bits of these bytes are interpreted by the GDP during execution. The two
bytes are interpreted as follows:

Beginning Bit Number (bits 0 - 7)
The first byte specifies the beginning bit of the field. The bits of an
operand are numbered with bit number 0 being the ieast-significant bit. The
beginning bit of a field is the smallest numbered bit in the field.

Bit Field Width (bits 8 - 15)
The second (next higher-addressed) byte specifies one less than the number
of bits in the field. For short-ordinal operators, a field of any width up to
16 bits can be specified by a bit-field specifier, regardless of the beginning
position. For ordinal operators, a field of any width up to 32 bits can be
specified by a bit-field specifier, regardless of the beginning position. If a
field is specified that extends beyond the most-significant bit of the
operand, bit 0 is considered to follow the most-significant bit in a wrap­
around fashion.

DATA TYPE CONVERSION

The GDP's operator set includes several operators to allow conversion between
the various computational data types, as shown in Figure 8-4.

CHARACTER

SHORT
REAL

SHORT
ORDINAL

TEMPORARY
REAL

SHORT
INTEGER

Figure 8-4. Data Type Conversions

ORDINAL

F-0378

8-5

Computational Data Types iAPX 432 GDP

GDP FLOATING-POINT DATA TYPES

The GDP directly supports the major time-critical aspects of the IEEE Proposed
Standard for Binary Floating-Point Arithmetic. In most cases, a single machine
instruction performs a given floating-point operation to completion in accordance
with the IEEE standard. However, certain requirements of the standard must be
provided by software enhancements to the underlying floating-point architecture
of the GDP. In particular, the GDP faults on denormalized, NaN {Not a Number),
infinity, and pseudo-denormalized operands. In certain cases, unnormalized
temporary reals will also cause a fault. By raising these faults, the GDP can
invoke an appropriate fault handler that provides the necessary computations to
complete the faulted operation in accordance with the IEEE standard. The
proposed IEEE standard is presented in:

Floating-Point Working Group, Microprocessor Standards Committee,
IEEE Computer Society, "A Proposed Standard for Binary Floating­
Point Arithmetic", Draft 8.0 of IEEE Task P754. Computer, March
1981, pp. 51-62.

Both the IEEE proposed standard single precision (32-bit) and double precision (64-
bit) floating point formats are supported by the GDP. In addition, a double­
extended (80-bit) temporary format is provided.

The GDP thus recognizes three floating-point data types:

• Short-Real, occupying 4 bytes each {corresponding to the IEEE standard
single-precision format)

• Real, occupying 8 bytes each {corresponding to the IEEE standard double­
precision format)

• Temporary-Real, occupying 10 bytes each {corresponding to the minimal
IEEE standard double-extended format)

Each data type is characterized by the amount of storage required and the
operators available for operands of that type. The set of operators provided
permits the accurate determination of almost any arithmetic operation to true
64-bit precision.

The GDP supports floating-point computations that involve the manipulation of
short-real, real, and temporary-real operands by the set of operators associated
with these data types. The floating-point architecture has been designed to
provide clean, accurate arithmetic for floating-point computations and to ease
the writing of reliable mathematical software.

In the discussion that follows, the term "floating-point" is used generically to
describe short-real, real, and temporary-real data types and their associated
operators. Several special terms are also used {e.g., denormalized, unnormalized,
infinity, and NaN). They are defined only briefly later in this chapter. See the
IEEE proposed standard for a more complete discussion of these terms. See also
the iAPX 86/20, 88/20 Numerics Supplement in the iAPX 86, 88 User's Manual.

8-6

iAPX 432 GDP Computational Data Types

GDP calculations using floating-point operands are essentially approximations to
ideal calculations carried out on values from the set of real numbers. From a
mathematical viewpoint; the set of real numbers can be viewed as a number line
stretching from minus infinity to plus infinity:

- infinity -1 0 +1 + infinity

Each point from the infinite set of points on this line represents a unique real
number. The real numbers that can be represented exactly by short-real, real, and
temporary-real operands form a finite set of discrete points along this number
line. Note that the values represented by character, short-ordinal, ordinal, short­
integer, or integer operands also form a finite set of discrete points along this
number line. All of the values that can be represented exactly by these data
types can be represented exactly by real or temporary-real operands, and most
can be represented exactly by short-real operands.

The design of the GDP floating-point architecture is based on a particular model
of floating-point computation. This model assumes that any computation begins
with a set of source values that are represented by either short-real or real
operands. The programmer selects one of the representations for the values,
depending on the precision or exponent range required. The values produced by the
computation are also represented by short-real or real operands. Again, the
program mer makes the choice, depending on the precision or exponent range
required in the results. The model further assumes that any intermediate result
that is generated during the computation is represented by a temporary-real
operand. The additional precision provided by the temporary-real values allows
for much more precision in the final results than if short-real or real values were
used as intermediates. The extended exponent range of temporary reals allows
computations to continue that might otherwise have been halted because the
exponent range of a short-real or real operand was not sufficient to hold the
exponent of an intermediate result.

The set of GDP operators associated with the floating-point data types is
distributed to support the computational model described above. All of the order­
three arithmetic operators produce results that are temporary-real values. Also,
each of these arithmetic operators has· three forms, which allows mixing the
precisions of the source operands. For example, there are three operators for
addition of short-real operands. One adds two short-real operands, another adds a
short-real operand to a temporary-real operand, and the third adds a temporary­
real operand to a short-real operand. All three produce a temporary-real result as
their third operand.

The advantage of this type of operator distribution can be seen from the following
Ada program fragment that might be used as part of a statistical calculation. It
calculates the sum of the elements of a vector and the sum of the squares of the
elements:

8-7

Computational Data Types

SUM:= 0.0
SUMSQ := 0.0
for I in 1 . • MAXI loop

SUM :=SUM+ A(I);
SUMSQ := SUMSQ + A(I) * A(I);

end loop;

iAPX 432 GDP

Assume that variable A represents an array of short-real values, that I is a
short-ordinal index, and thast MAXI is the maximum index for A. The variable
SUM accumulates the array sum, and the variable SUMSQ accumulates the sum of
the squares.

The ease with which the GDP can support this Ada fragment is illustrated by a
translation of the fragment into the fallowing hypothetical assembly language
sequence:

<<LOOP>>

ZRO TR
ZRO TR
ONE SO
ADD TR SR
MUL SR
ADD TR
INC SO
LEQ_SO
BR T

SUM
SUMSQ
I
SUM,A(I,SUM
A(I),A(I),$
$, SUMSQ,SUMSQ;
1,1
I, IMAX,$
<<LOOP>>

; SUM := 0.0;
; SUMSQ := 0.0;
; Start I at 1
; SUM := SUM + A(I);
; Push A(I) * A(I)
; SUMSQ := SUMSQ+<STK>
; Increment index I
; I <=MAXI?
; yes, then loop

The order of the operands shown in the above instructions is the order defined for
the appropriate operators in this manual. The $ indicates that the operand is
pushed onto, or popped from, the operand stack.

The ADD_TR_SR, MUL_SR, and ADD_TR operators are order three operators
that product temporary-real results as their third operand. Thus, the two results
(SUM and SUMSQ) are best represented as temporary-real values to maintain as
much precision as possible during the calculations in the loop.

In accordance with the IEEE standard, the GPD floating-point architecture also
provides the programmer with complete control over rounding. The SET
CONTEXT MODE operator allows setting the bits in the current context status.
Rounding Control is used to determine the number of significant digits to which
the rounding is performed. The SET PROCESS MODE operator allows setting the
Inexact Control bit in the process status. Inexact control provides additional
flexibility by allowing the programmer to select faulting on an inexact result.

Conversion operators are also provided to allow conversion between all of the
GDP's floating-point formats using two conversion instructions at most. On most
cases, only a single conversion instruction is required.

8-8

iAPX 432 GDP Computational Data Types

GENERAL FLOATING-POINT FORMAT

As a short-real, real, or temporary-real operand, the floating-point representation
of a number consists of three binary fields:

n 0

I S I Exponent Significand

These fields are interpreted by the GDP as follows.

s
This one-bit field represents the number's algebraic sign.

Exponent
This field represents the number's binary order of magnitude.

Significand
This field represents the number's significant digits. The Significand is
often broken down into its Most Significant Bit (MSB), an implicit binary
radix point, and a Fraction field.

CLASSIFICATION OF FLOATING-POINT NUMBERS

The fallowing terms serve to classify various kinds of floating-point numbers
... .annrf'T'l;"""'n hu +'h.a f'!n'D ~"'" a mn"~ no+aHon n;C!nnC!C!;nn n.P +'h~C!~ +o"mC! C!o.a +h.a ... """'""'"'6&&.&&A '"" .., ~ "".&."'""' ~A.ti... • .L """.... ~ &&&'"',.,. .. ~_......... ~ "~ '"'...... '"'.. .,.,.,.,,

IEEE proposed standard cited at the start of this chapter.

Normal

Zero

Denormal

NaN

Infinity

Unnormal

a short-real, real, or temporary-real number with a nonzero,
nonmaximum exponent and a significand MSB of 1.

(normal zero) a short-real, real, or temporary-real number with a
zero exponent and zero significand.

a short-real, real, or temporary-real number with a zero
exponent, a significant MSB of O, and a nonzero fraction ..

(Not a Number) a short-real, real, or temporary-real number
with a maximum exponent and a nonzero fraction.

a short-real, real, or temporary-real number with a maximum
exponent and a zero fraction.

a temporary-real number with a nonzero, nonmaximum
component, an explicit significand MSB of O, and a nonzero
fraction.

8-9

Computational Data Types iAPX 432 GDP

Pseudo-zero a temporary-real number with a nonzero, nonmaximum exponent,
and a zero signif icand.

Pseudo-denormala temporary-real number with a zero exponent and an explicit
significand MSB of 1.

NORMALIZED FLOATING-POINT NUMBERS

The GDP performs floating-point arithmetic using normalized floating-point
numbers. In most cases, if short-real or real operands are not normalized, the
GDP interprets them as invalid operands and raises the Domain Error Fault. With
a few exceptions, the GDP interprets unnormalized temporary real values as valid
operands.

A normalized number has a significand with a most significant bit if 1 and a
nonzero, nonmaximum exponent. Normalization allows the maximum number of
significant digits to be represented by a significand of a given width, because
leading zeros are eliminated. This maximizes the precision accommodated by the
represented floating-point number; it ensures that high-order zeros in the fraction
are shifted out and compensated for by decrementing the exponent by 1 for each
shift left. Thus, the binary number:

+ 0.00000 00000 00000 00001 11111

can be equivalently represented as:

+ 1!11111 * (2 ** -20)

where, in both representations, "!" is the binary radix point, which is the binary
counterpart of a decimal point. The -20 value would constitute the true value
that must be represented in the binary Exponent field.

The most significant bit of the significand, called the leading bit, is implicit in the
normalized short-real (32-bit) and real (64-bit) data types. That is, when a short­
real or real operand is referenced, the GDP assumes a leading "1!" at the high­
order (leftmost) end of the significand field. For short-real and real operands,
this implicit leading bit is only interpreted as 0 when the Exponent field is O.

A normalized floating-point number with the implicit leading bit and binary point
is shown below.

n 0

Is I Exponent I Fraction

The Fraction field is defined as that portion of the significand immediately to the
right of the binary point.

8-10

iAPX 432 GDP Computational Data Types

The number of significant bits in a short-real number or real significand is
therefore one greater than the bit-field width of the physically stored fraction.

Temporary-real formats do not use an implicit leading bit in the significand; the
leading bit (with the implicit binary point following it) is explicit and physically
present. A normalized temporary-real operand must have an explicit, leading
significand bit of 1.

Table 8-1 summarizes the significand sizes for the GDP's floating-point data
types.

Table 8-1 Significand Sizes

DATA TYPE No. of Bits Is There an Total Number of
in Explicit Implicit Bit Bits Contributing
Fraction Interpreted? to Signif icand

Short Real 23 Yes 64

Real 52 Yes 53

Temporary Real 64 Explicit 64

EXPONENT BIASES

In accordance with the IEEE standard and to obtain closure under multiplicative
inverse (i.e., 1/x neither overflows nor underflows), the GDP interprets floating­
point exponents as being biased by a constant vaiue. Tabie 8-2 summarizes the
sizes and biases for the Exponent fields for the GDP's three floating-point data
types.

Table 8-2 Exponent Sizes and Biases

DATA TYPE No. of Bits Maximum Minimum Bias of
in Exponent in Field in Field Exponent

Short Real 8 255 0 127

Real 11 2047 0 1023

Temporary Real 15 32767 0 16383

Biases are constant values that are automatically added to the true exponent to
force the biased exponent to always be a positive value. A number's true
exponent can thus be determined by subtracting the bias value for that type from
the stored exponent value:

True Exponent = Biased Exponent - Bias

8-11

Computational Data Types iAPX 432 GDP

When exponents are biased, two normalized floating-point representations of the
same type and sign can be compared as if they were simple binary magnitudes.
That is, when comparing them bitwise beginning with the most significant
exponent bit, the first position that differs serves to order the numbers; no
further comparison need occur. This ease of comparison is one of the benefits of
biasing the exponents.

GDP FLOATING-POINT OPERAND INTERPRETATION

The following sections describe the unique aspects of each floating-point data
type when interpreted by the GDP as an operand.

Short-Real Operand Interpretation

Short-real operands occupy 32 bits of storage and have the following format:

31 30 23 22

Exponent I
/ \

GJ
Fraction

Implicit leading bit
and binary point

0

The most significant bit (bit 31) specifies the sign of the represented number (0 is
positive, 1 is negative).

There are three classes of short-real operands: normalized operands, zero
operands, and invalid operands.

Normalized short-real operands are those in which the Exponent field is neither
all zeros nor all ones. The binary significand is stored in a true magnitude form
that assumes an implicit bit with value 1 to the left of the most significant bit of
the Fraction field. The implicit binary point is between this implied leading bit
and the most significant fraction bit.

Values in the Exponent field have an unsigned binary integer range from 0 through
255. The unsigned binary integer in the Exponent field is interpreted as though a
bias of 127 had been subtracted from it. Since an Exponent field of all zeros or
all ones (unsigned integer values of 0 or 255) has a special meaning, the true
exponent range represented is -126 through 127.

The value of the normalized short-real operand stored as

31 30 23 22 0

8-12

iAPX 432 GDP Computational Data Types

is calculated by

t-ns * t1 f nn ___ f '* f?.(e7 ••• eo)-127,
\ ~, ,~!~ii ii···~ Q, ,- ,

Normalized short-real operands provide the equivalent of approximately 7 decimal
digits of precision.. The smallest and largest decimal absolute values are
approximately:

smallest:
largest:

1.2 * 10-38
3.4 * 1038

A zero short-real operand has both a zero exponent and a zero Fraction field. The
implicit leading bit is assumed to be zero also. Signed short-real zeros are
interpreted. The interpretation of signed zero floating-point operands is discussed
later in this chapter.

Invalid short-real operands always cause a Type 0 Domain Error fault (Invalid
Operand) when referenced in an arithmetic, relational, or conversion instruction.
Though the GDP does not interpret invalid operands beyond recognizing them and
raising the Domain Error fault, Table 8-3 suggests a classification that can be
used by an appropriate fault handler to fulfill the requirements of the IEEE
standard. The shaded areas are invalid operands.

Table 8-3 Short-Real Operand Classifications

SIGNIFICAND EXPONENT

Zero From 1 to Max-1 I Max

Zero ±Zero Normalized -

Nonzero ••••• Normalized 111•
For further information on infinity arithmetic, denormal arithmetic, and NaNs,
see the IEEE proposed standard that is referenced at the start of this chapter.
See also the iAPX 86/20,88/20 Numerics Supplement in the iAPX 86,88 User's
Manual.

Real Operand Interpretation

Real operands occupy 64 bits of storage and have the following for mat:

63 62 52 51 0

s Exponent J Fraction

G Implicit leading bit
and binary point

8-13

Computational Data Types iAPX 432 GDP

The most significant bit (bit 63) specifies the sign of the represented number (O is
positive, 1 is negative).

As with short-reals, there are three classes of real operands: normalized
operands, zero operands, and invalid operands.

Normalized real operands are those in which the Exponent field is neither all
zeros nor all ones. The binary significand is stored in a true magnitude form that
assumes an implicit bit with value 1 to the left of the most significant bit of the
Fraction field. The implicit binary point is between this implied leading bit and
the most significant fraction bit.

Values in the Exponent field have an unsigned binary integer range from 0 through
204 7. The unsigned binary integer in the Exponent field is interpreted as having a
bias of 1023 subtracted from it. Since an Exponent field of all zeros or all ones
(unsigned integer values of 0 or 2047) has a special meaning, the true exponent
range represented is -1022 through 1023.

The value of the normalized real operand stored as

63 62 52 51 0

is calculated by

(-l)S * (l!f 51•••fo) * (2(elO•••eo)-1023)

Normalized real operands provide the equivalent of approximately 15 decimal
digits of precision. The smallest and largest decimal absolute values are
approximately:

smallest:
largest:

2.2 * 10-308
1.8 * 10 308

A zero real operand has both a zero exponent and a zero Fraction field. The
implicit leading bit is assumed to be zero also. Signed real zeros are interpreted.
The interpretation of signed zero floating-point operands is discussed later in this
chapter.

Invalid real operands always cause a Type 0 Domain Error fault (Invalid Operand)
when referenced in an arithmetic, relational, or conversion instruction. Though
the GDP does not interpret invalid operands beyond recognizing them and raising
the Domain Error fault, Table 8-4 suggests a classification that can be used by an
appropriate fault handler to fulfill the requirements of the IEEE standard. The
shaded areas are invalid operands.

8-14

iAPX 432 GDP Computational Data Types

Table 8-4 Real Operand Classifications

SIGNIFICAND EXPONENT

Zero From 1 to Max-1 Max

Zero ±Zero Normalized -

Nonzero Normalized \\\\\\\\\\\\11111\1\\\lll\\ll\\\lll\\l\l\\I\

Temporary-Real Operand Interpretation

Temporary-real operands occupy 80 bits of strage and have the following format:

79 78 64 63

S Exponent

I\
/. \

/ - \

0

Significand

The most significant bit (bit 79) specifies the sign of the represented number (O is
positive, 1 is negative}.

Temporary-real operands are intended for use as intermediate, or temporary
results during floating-point computations~ Tempo!'a.!'y-r-eels correspond to the
minimal double-extended format in the proposed IEEE standard. Supporting such
temporary results has two very important benefits:

• The use of temporary-real operands for the intermediate values of a
multi-step calculation allows a result to be obtained with much less loss of
precision than would occur if short-real or real operands were used to hold
the intermediate values.

• The extended exponent range greatly reduces the possibility that overflow
or underflow might occur and halt the computation before it is complete.

As with short-reals and reals, there are three classes of temporary-real operands:
normalized operands, zero operands, and invalid operands.

Normalized temporary-real operands are those in which the Exponent field is
neither all zeros nor all ones. Unlike the interpretation of short-real and real
operands, the interpretation of normalized temporary-real operands does not
involve an implicit leading bit in the significand. Instead, the binary significand is
stored in a true magnitude form that assumes an explicit most significant bit with
a value of 1. The implicit binary point is interpreted as being to the immediate
right of the explicit leading one bit.

8-15

Computational Data Types iAPX 432 GDP

Values in the Exponent field have an unsigned binary integer range from 0 through
32767. The unsigned binary integer in the Exponent field is interpreted as though
a bias of 32767 had been subtracted from it. Since an Exponent field of all zeros
or all ones (unsigned integer values of 0 or 32767) has a special meaning, the true
exponent range represented is -16382 through 16383.

The value of the normalized temporary-real operand is stored as

79 78 64 63 0

is calculated by

(-l)S * (l!f 62•••f 0) * (2 (e14 .•• eo)-1023)

Normalized real operands provide the equivalent of approximately 19 decimal
digits of precision. The smallest and largest decimal absolute values are
approximately:

smallest:
largest:

1. 7 * 10-4932
1.2 * 104932

A zero temporary-real operand has both a zero exponent and a zero Significand
field. The implicit leading bit is assumed to be zero also. Signed temporary-real
zeros are interpreted. The interpretation of signed zero floating-point operands is
discussed later in this chapter.

Temporary-real invalid operands always cause a Type 0 Domain Error fault
(Invalid Operand) when referenced in an arithmetic, relational, or conversion
instruction. Though the GDP does not interpret invalid operands beyond
recognizing them and raising the Domain Error fault, Table 8-5 suggests a
classification that can be used by an appropriate fault handler to fulfill the
requirements of the IEEE standard. The shaded areas are invalid operands.

Table 8-5 Temporary Real Operand Classifications

SIGNIFICAND EXPONENT

MSB Fraction Zero From 1 to Max-1 Max

1 Nonzero Normalized a•
1 Zero Normalized i///lllflill//j//////i
0 Nonzero Unnormalized i//////(1///////1///////////tlll/////////

0 Zero ±.zero Pseudo-Zero ~

8-16

iAPX 432 GDP Computational Data Types

Unnormalized and Pseudo-Zero temporary reals are invalid only when used as
source operands for the following operators(* means only invalid as denominator):

• Arithmetic: SQT_TR, DIV_TR*, REM_TR*, DIV"'."""TR_SR*, DIV_TR_R*

• Relational: EQL _TR, EQZ _TR, LSS _TR, LEQ_ TR, PTV _TR, NTV _TR

• Conversion: CVT _TR_ O, CVT _TR_ I, CVT _TR_ SR, CVT _TR_ R

True Remainder for Temporary Reals

Though a REMAINDER TEMPORARY REAL operator is available for temporary­
real operands, it does not perform the complete remainder calculation. This
section describes the remainder function in general and how to calculate the true
remainder for two temporary real numbers using the available REM_ TR operator.

The behavior of the remainder calculation is best described in terms of an
example. Consider the problem of dividing 2102.5 by 51 using decimal arithmetic.
The calculation, using long division, is:

first partial remainder

41.
51/ 2102.5

204
-----62.5

51
second partial remainder----~11.5

Each step of the division algorithm generates one digit in the quotient and a
____ ,a_!_'I ____ !_...31 ___ mL ______ !_JI __ -~!_....._ ____ .._!_ .L.L- ___ .._!_'I _____ !_...31 ___ LL-A...·-- _ ... "l..a._

parLuu re11u:Uuuer. 1 ue re11u1111uer u1 uuere:sL 1:s Lilt: par Luu reuu1111uer LIU:iL re:su1L:s

when the last digit of the integer part of the quotient has been generated (the
second partial remainder in the example). Note that this partial remainder is the
first one that is less than the divisor. Note also that as the value of the dividend
increases, or the value of the divisor decreases, the number of digits that must be
generated in the integer part of the quotient increases.

The calculation of the true remainder requires performing steps of the division
algorithm until the last digit of the integer part of the quotient has been
generated. In the case of temporary-real operands, the number of required
division steps could be quite large--so large as to be impractical within one
instruction execution. The REMAINDER TEMPORARY REAL operator provides
the basic capability that allows the complete remainder function for temporary
reals to be programmed in software. The time associated with executing this
operator is approximately the same as that for a normal temporary.;...real division.

8-17

Computational Data Types iAPX 432 GDP

The result of the REMAINDER TEMPORARY REAL operator does not depend on
the setting of the Rounding Control bits or the Precision Control bits in the
Context Status field. The result or partial result generated is always exact;
accuracy is not lost in the process. Each time the REMAINDER TEMPORARY
REAL (REM_ TR) operator is executed, one step of the division algorithm is
performed. It can be iterated in a program loop until a fixed number of division
steps have been performed or until a partial remainder is generated whose
absolute value is less than the absolute value of the divisor. In the latter case,
the partial remainder is the true remainder. The following program fragment
illustrates the true remainder calculation loop in a hypothetical assembly
language:

LOOP:

DONE:

MOV TR
ABS TR
ABS TR
LSS TR
BR T

REM TR
BR

DIVIDEND,PARTREM
PARTREM,$
DIVISOR,$
$2,$1,$
$,DONE

DIVISOR,PARTREM,PARTREM
LOOP

PARTREM := DIVIDEND
push ABS of PARTREM
push ABS of DIVISOR
ABS(PARTREM) less than
ABS(DIVISOR)?
if yes, then exit
else calc next PARTREM
and do loop again
PARTREM contains result.

The order of the operands shown in the above instructions is the order defined for
the appropriate operators in the Operator Set chapter of this manual. $ indicates
that the operand is pushed onto, or popped from, the operand stack. $1 and $2
indicate that the operand is popped from the top ($1) or next-to-top ($2) of the
operand stack.

Zero as a Floating-Point Operand

Both positive and negative zero operands are interpreted by the GDP for all three
floating-point data types, as follows:

• a sign bit of 0 for positive, 1 for negative

• an exponent field of all Os

• a significand field of all Os

Both positive and negative zero are distinguished by the GDP to allow more
information to be associated with certain results than if only a single zero was
recognized. For example, when performing interval arithmetic, the interval
(+0,N) can indicate that the value zero is not included in the interval. Similarly,
the interval (-0,N) can indicate that the value zero is included.

8-18

iAPX 432 GDP Computational Data Types

However, the notion of two distinguishable zeros has a more important use than
for interval arithmetic. For example, the result of the operation A/O, where A is
a positive value, can be considered the limit of A/x as x approaches 0.. The actual
limit depends on whether 0 is approached from the positive or negative side of the
number line. If 0 is approached from the positive direction, the result becomes
more and more positive as x approaches O, and can be represented by positive
infinity. If 0 is approached from the negative direction, the result becomes more
and more negative as x approaches O, and can be represented by negative infinity.
These two different limit operations can be represented by A/+0 and A/-0.

In general, any operation that involves zero as an operand can be thought of as a
limit operation, and the sign of the zero is positive or negative depending on
whether the limit is to be taken by approaching zero from the positive or negative
side of the number line, respectively. Similarly, if zero is the result of a limit
operation, the sign indicates the direction from which zero was approached as the
limit was taken. For example, let A be positive and consider dividing A by
positive infinity. This represents the limit of A/x as x approaches positive
infinity. The result can be represented by +O, since A/x approaches zero from the
positive side of the number line. Likewise, A divided by negative infinity can be
represented by -0.

All of the GDP's floating point operators provide correct results when a zero of
either sign occurs as a source operand. Also, when a zero result is produced, the
correct sign is produced. Table 8-6 shows the results for all arithmetic and
relational floating-point operators that can have signed zero operands. All
combinations of source operands that involve values of zero or produce results of
zero are shown for these operators.

Table 8-6 does not show the floating-point ZERO (ZRO) operators, which always
store +0. The table also does not show the conversion (CVT) operators. The
following rules apply for floating-point zeros in conversions:

• Conversion from non-floating-point to floating-point:
If the source operand is zero, the result is +0.

• Conversion from floating-point to floating-point:
-0 is converted to -0, and +0 is converted to +O.

• Conversion from floating-point to non-floating-point:
Both +0 and -0 are converted to non-floating-point zero.

As an example of using the Signed Zeros table, consider the result of subtracting -
0 from -0. Looking in the SUB column at the row in which OPl and OP2 are both
-0, the entry +0* is found. It means (as indicated by the *) that the result
depends on the rounding mode:

• -0 if the rounding mode is Round Down

• +0 for any other rounding mode

8-19

Computational Data Types iAPX 432 GDP

Table 8-6. Signed Zeros

OPl OP2 ADD ~UB ~UL DIV REM SQT NEG ABS EQL EQZ LSS LEQ PTV NTV

+0 +V +V +V +O -- -- +O -0 +O F T T T F F

-0 +V +V +V -0 -- -- -0 +O +O F T T T F F

+O -v -v -v -0 -- -- F F F

-0 -v -v -v +O -- -- F F F

+V +O +V -v +O +O +O F F F

-v +O -v +V -0 -0 +O F T T

+V -0 +V -v -0 -0 -0 F F F

-v -0 -v +V +O +O -0 F T T

+O +O +O +0-1:1 +O -- -- T F T

+O -0 +o~ -0 -0 -- -- T F T

-0 +O +o~ +O -0 -- -- T F T

-0 -0 -0 +0-1- +O -- -- T F T -
+V -v +o~~

+V +V +0'1:l -

NOTES

1. v represents an arbitrary nonzero positive floating-point
value.

2. T lS the Boolean value TRUE; F lS FALSE.

3. For entries marked +O~':
- ' the result lS -0 if the rounding

mode lS Round Down and +O for all other rounding modes.

4. -- entries are invalid operations (division by zero).

5. For Order-2 operators, OPl is the single source operand. i
I

6. For Order-3 operators, OPl and OP2 are the source operands
and correspond to the same-named operands 1n the Operator
Set chapter of this manual.

8-20

iAPX 432 GDP Computational Data Types

FLOATING-POINT ROUNDING

Rounding Modes

As described earlier in this chapter, floating-point operands represent discrete
points along the real number line. When certain floating-point operators are
executed, the true value of the result may be a value that cannot be represented
by a floating-point operand of the type produced by the operator. In this case, the
result must be rounded before it is stored in the result operand, and the result is
said to be inexact. It must be rounded to one of the two representable floating­
point values on either side of the true result. The GDP's floating-point
architecture provides explicit control over the manner in which this rounding is
done. The option is also provided to fault on the occurrence of an inexact result
and thus to allow fault-handling software to provide a warning or to complete the
operation by dealing with the inexact result in a user-programmed way.

Four rounding modes are supported: Round Nearest, Round Up, Round Down, and
Round Toward Zero. Their selection is controlled by appropriate Rounding
Control bits in the Context Status field of the current context object. The
Context Status of the current context can be changed by a special SET CONTEXT
MODE operator.

Round Nearest is the normal kind of rounding used. With Round Nearest, the true
result is rounded to the nearest representable floating-point value. If the true
result lies along the number line exactly halfway between the two representable
values on either side of it, then the true result is rounded to the representable
value with a least significant fraction bit of zero. This rounding mode delivers
the most statistically unbiased results and is recommended for normal use.

The Round Up and Round Down modes make it easy to program interval
arithmetic. Interval arithmetic requires that each step of a floating-point
computation produce an interval (i.e., an upper and lower bound) that is certain to
contain the true result. The two types of rounding required for interval
arithmetic are thus round toward positive infinity (Round Up) and round toward
negative infinity (Round Down). · Whenever the true result of a floating-point
operator lies between two representable floating-point values, rounding up will
produce the algebraically larger value, and rounding down will produce the
algebraically smaller value. If the true result falls exactly on a representable
value, then both rounding up and rounding down produce the same true result.

Rounding Toward Zero (chopping) chooses the representable value that is
algebraically closest to zero. If the true result falls exactly on a representable
value, then rounding produces the same true result.

Rounding Control

The rounding control used in the current context can be changed with the SET
CONTEXT MODE operator. The new rounding mode is local to the context (does
not propogate to the caller) but is inherited by called contexts. Note that it is not
proper to simply write a new value to the Context Status field that contains the
control bits, as this field is cached by the GDP.

8-21

Computational Data Types iAPX 432 GDP

Precision Control

The Precision Control bits in the Context Status field control the precision to
which temporary-real results are rounded. These bits determine whether the
result fraction is to be rounded to temporary-real precision (64 bits), real
precision (53 bits) or short-real precision (24 bits). As described in the previous
section, the direction of rounding used is specified by the Rounding Control bits.
If a temporary-real result is rounded to real precision, the low-order 11 fraction
bits are zero; if rounded to short-real precision, the low-order 40 fraction bits are
zero.

The Precision Control bits are assigned in the same way as the Rounding Control
bits and with the same scope, by using the SET CONTEXT MODE operator. This
operator assigns the control bits in both the executing GDP and in the Context
Status field.

Inexact Control

The programmer can control whether or not a fault is invoked when an inexact
result is generated. Inexact fault-handling can be used to allow user-programmed
provisions for inexact results in certain numeric algorithms, or for the use of
temporary reals to simulate a 64-bit long integer data type.

Unlike the rounding control and precision control bits, the Inexact Control bit is
located in the Process Status field and is controlled by the SET PROCESS MODE
operator.

DATA OPERATOR FAULTING

CLASSIFICATION OF DATA OPERATOR FAULTS

If an operation is attempted with an operand that is not defined for that
operation, or if the true result of any operand violates the representable bounds of
the destination operand, then an exceptional condition is recognized by the GDP
and an appropriate context-level fault is raised. All Data Operator faults are
Type 0 faults and are classified into the following fault groups:

• Domain Error -- caused by an exceptional operand value being outside the
numeric domain that is defined for the attempted operation (e.g., square root
of a negative number, attempt to divide by zero, floating-point invalid
operand).

• Overflow -- caused by a true result with an absolute value that exceeds the
maximum representable value of the actual destination operand (e.g.,
attempting DEC _SI on a source operand value of -32, 768, attempting INC _SI
on a source operand value of 32, 767).

8-22

iAPX 432 GDP Computational Data Types

• Underflow -- caused by a true result with an absolute value that is less than
the minimum representable value of the actual destination operand (e.g.,
MUL_SR_TR yielding a true result with a.n exponent less than -16,382).

• Inexact -- caused by a true result of a floating-point operation that is not
exactly representable in the specified precision of the destination format
(e.g., the true result of a CVT_TR_SR instruction is not exactly
representable in the Short-Real destination). This fault only occurs when
the Inexact Control bit is set in the current process status.

The Data Operator Faults section of Chapter 12, "Fault and Trace Reference,"
describes the specific conditions that cause these faults to occur for each GDP
operator.

At the time a fault occurs, the GDP automatically places information in the
Context Fault Data Area of the current process object. This information defines
the type and circumstances surrounding the fault. The appropriate fault handler
can then use this information to diagnose the fault and undertake repairs. Only
those fields in the fault data area used to record data unique to the given fault
are valid on entry to the fault handler.

Data operator faults are also classified according to whether they are Pre­
operation or Post-operation. A ore-operation fa ult occurs at the start of
instruction execution when the GDP examines the source operand(s). All Domain
Error faults are pre-operation faults. A pre-operation fault causes the restoration
of the operand stack pointer to its value at the start of the faulted instruction. In
addition, the GDP places appropriate values in the following fault data fields:

• First Fault Data Item (containing source operand 1)

• Second Fault Data Item (containing source operand 2 when appropriate,
according to the operator attempted)

The values placed in these fields are determined by the operator attempted. The
operands stored into the fault data items are always justified into the least­
significant portion of the field with any leftover upper bytes undefined.

A post-operation fault occurs after a faulted instruction that has been executed
up to, but not including, storing a result. The operand stack pointer is not
restored to its previous value. The GDP places the exceptional result value in the
First Fault Data Item field. All overflow, underflow, and inexact faults are post­
operation faults.

8-23

Computational Data Types iAPX 432 GDP

FLOATING-POINT FAULTING

Floating-point Domain Errors

Domain errors occur when an attempt is made to execute an operator with an
operand value that is outside the domain that is defined for the attempted
operation. These floating-point domain errors are defined:

• attempting to divide by ± zero.

• attempting to take the square root of a negative value.

• attempting any arithmetic, relational, or conversion operator with an invalid
floating-point operand. The various kinds of invalid floating-point operands
are discussed in earlier sections of this chapter.

Floating-Point Overflow

A floating-point overflow fault occurs whenever a floating-point operator
produces a result with an exponent that is algebraically too large for the exponent
field of the destination operand. Temporary-real overflow occurs if an instruction
produces a temporary-real result with a true exponent greater than 16,383. Real
overflow and short-real overflow can occur only during conversion instructions;
real overflow occurs if the exponent of the source operand is greater than 1,023;
short-real overflow occurs if the exponent of the source operand is greater than
127.

All overflow faults are post-operation faults. For a temporary-real overflow
fault, the exceptional result written to the First Fault Data Item has the correct,
properly rounded significand, but the exponent is "wrapped around" with a value
that is 32, 767 less than the true exponent. A similar kind of exceptional result
could be written in the case of short-real or real overflow, but a wrapped-around
exponent is not meaningful when overflow is caused by a conversion operator.
Thus, for short-real and real overflows, the exceptional result written to the First
Fault Data Item is the value of the source operand referenced by the conversion
instruction causing the fault.

Floating-Point Underflow

A floating-point underflow occurs whenever a floating-point operator produces a
result with an exponent that is algebraically too small for the exponent field of
the destination operand. Temporary-real underflow occurs if an instruction
produces a temporary-real result with a true exponent less than -16,382. Real and
short-real underflow can occur only during conversion instructions; real underflow
occurs if the exponent of the source operand is less than -1022; short-real
underflow occurs if the exponent of the source operand is less than -126.

8-24

iAPX 432 GDP Computational Data Types

All underflow faults are post-operation faults. For a temporary-real underflow
fault, the exceptional result written to the First Fault Data Item has the correct,
properly rounded significand, but the exponent is "wrapped around" with a value
that is 32, 767 greater than the true exponent. For short-real and real underflows,
the exceptional result written to the First Fault Data Item is the value of the
source operand referenced by the conversion instruction causing·the fault.

Floating-Point Inexact

An inexact fault occurs if the result of a floating-point operation is not exactly
representable in the destination operand. Whether or not the representation can
be accomplished exactly may depend on the current Precision Control. The
setting of the Inexact Control bit in the GDP and the Process Status determines
whether an inexact fault will occur. If the Inexact Control bit is one, then an
instruction with an inexact result does not store its result and raises the inexact
fault. The inexact fault is a post-operation fault. The value stored in the First
Fault Data Item is the value of the exceptional temporary-real result before any
rounding.

8-25

PART II

REFERENCE INFORMATION

CHAPTER 9
OBJECT SET

This chapter defines the Object Set of the iAPX 432 General Data
Processor. The formats and processor interpretation of the fields are
given for all system objects.

CHAPTER CONVENTIONS

Throughout this chapter, certain conventions are used.
described in the following sections.

RESERVED FIELDS

They are

Reserved fields are reserved for use by the processor. Software can
write these fields but cannot depend on retrieving the value written.
Reserved fields are indicated in the illustrations of this chapter
using the following graphic convention:

PRESERVED FIELDS

Preserved fields are not ~ffeoted by the proaessor afte~ thei~ c~eatic~
and may be used by software. Preserved fields are indicated in the
illustrations of this chapter using the following graphic convention:

~I

9-1

Object Set iAPX 432 GDP

OBJECT ILLUSTRATION CONVENTION

System objects are shown in this chapter using the following graphic
convention to illustrate the parts of each object:

Processor-Interpreted l'il.

Higher Storage
Addresses

I

Area of Data Part wl ,_ ______________ _._.Fence

"' Processor-Interpreted
Area of Access Part

Lower Storage
Addresses

The Processor-Interpreted areas contain the fields that uniquely
characterize the system object to a processor. The Software-Defined
areas are optional variable-sized portions of the object that are
preserved by processors for exclusive use by software. Some system
objects (e.g., port objects) cannot include Software-Defined areas.
The Fence is the graphic convention used to .indicate the boundary
between the Access Part (AP) and the Data Part (DP) of an object.

ENCODED VALUES

Unless otherwise noted, binary encoded field values are shown in this
chapter in an most-significant bit (MSB) to least-significant bit (LSB)
order, left to right.

INDEX FIELDS

Values in index fields select an element from an array of entries or
descriptors. Such values are multiplied by the length of a descriptor
in bytes (16 bytes for OTEs and 4 bytes for ADs) to obtain the byte
displacement into the array. The index value itself counts descriptors
starting at zero. Unless otherwise noted, index field values are
automatically scaled by the processor (i.e., multiplied by the
appropriate descriptor length) to obtain byte displacements relative to
the Fence of an object.

9-2

iAPX 432 GDP Object Set

DISPLACEMENT FIELDS

In general, a displacement is a length (counting either bytes or bits)
from the base (Fence) of an object to a specified point in the object.
Unless otherwise noted, displacement fields in this chapter contain
values that count bytes. Displacements are relative to the fence. AP
displacements are negative offsets (i.e., from the fence toward lower
physical addresses) and DP displacements are positive offsets (i.e .. i

from the fence toward higher physical addresses).

OBJECT REPRESENTATION

Objects are physically represented by segments. There are two address
spaces in which segments can be defined: the storage address space and
the interconnect address space. All system objects are defined in the
storage address space. System objects consist of an access part and a
data part, although one or the other may be nonexistent in a given
system object. For example, an instruction object may have no access
part.

The general storage segment structure is maintained by the processor
and is normally transparent to the user. Therefore, throughout this
manual, only the visible segment part of the general storage segment is
shown.

GENERAL STORAGE SEGMENT STRUCTURE

The format of a general storage segment is as follows.

I 1
Byte
Displacement r DP Pad (0 to 7 bytes) r

Rlt V1.·s·i•b•l•e ... D•a•t•a•P•a•r•t al

1

_.: • (O to 65536 bytes) •

~, Visible Access Part ~I

Fence

_ (0 to 16384 ADs) _

• AP Pad (O to 3 bytes) ?$

r-- Segment Prefix (8 bytes)
Access Descriptor
Index (32 bits each)

9-3

Object Set iAPX 432 GDP

Storage segments are always aligned on double-word (8-byte)
boundaries. The first 4 bytes of the 8-byte segment prefix contain an
image of the original access descriptor to the visible segment. These
first 4 bytes of the segment are first in terms of absolute physical
storage address. The segment AD image is initially written by the
processor (as a valid AD with all rights) when the segment is created
and is preserved thereafter. The second 4 bytes of the segment prefix
are preserved. The segment prefix is not normally accessible. There
are cases, however, in which operating system software uses the segment
prefix during storage management. For example, the segment AD image is
used by the parallel storage compaction process.

The maximum visible segment size is 131,072 bytes, while the maximum
size of each visible part is 65,536 bytes. This does not include the
segment prefix. The DP pad is a 0- to 7-byte area that is added to the
end of the visible segment to round the size of the segment up to the
nearest 8-byte integer multiple. The AP pad is a 0- or 4-byte area
that is added between the visible access part and the segment prefix.
These pads ensure the alignment of segments on 8-byte boundaries and
also minimize fragmentation of physical storage. The rounding in size
is required by the processor and is performed automatically if the
segment is created by the GDP.

The Fence is the imaginary boundary separating the access and data
parts.

For objects in the Interconnect Address Space, the General Interconnect
Segment Structure contains a Visible Data Part only, no pads, and no
Segment Prefix. It must be aligned on a double-byte boundary and must
have an even length.

9-4

iAPX 432 GDP Object Set

ACCESS PART

The general format of an Access Part (AP) is shown below. An access
part consists of an array of access descriptors. Access parts can
contain only access descriptors. Access descriptors are laid out in
memory on an AD by AD basis in decreasing physical addresses, and the
least-significant bit of each AD occupies the lowest physical address~
Access descriptors are only interpreted as such by the processor when
they reside in an access part. A copy of an AD in a data part, object
descriptor, or segment prefix is called an access descriptor image and
can neither be used as an AD directly nor copied into an AD location in
an access part.

Access

Access

Access

Access

" I
DATA PART

Descriptor

Descriptor

Descriptor

Descriptor

0

0

0

0

1

2

3

1 Access Descriptor
Index (32 bits each)

A Data Part (DP) contains ordinary data. Many system objects have a
data part containing status and control information required for that
object. Generic data parts can contain any programmer-defined data
structures and operands. Data parts are depicted in this chapter with
the following general form. . \

I

i
DATA t

Byte
Displacement

0

9-5

Object Set iAPX 432 GDP

ACCESS DESCRIPTOR

Access Descriptors are the primary means of object addressing in the
iAPX 432 architecture. They consist of the following fields:

31 20 19 16 15 4 3 1 0

12 bits 12 bits xxx

Access Valid

Type Rights

Segment Index

Delete Rights

Unchecked Copy Rights

Read Rights

--------------------------- Write Rights

Directory Index

The fields that consitute an access descriptor are interpreted as
follows:

Access Valid (Bit 0)
If access valid is 0, this access descriptor is interpreted as null
(i.e., invalid for object addressing). The remaining bits are not
interpreted by the processor, but can be used for a 31-bit embedded
data value (described in the next section of this chapter).

Type Rights (Bits 1 - 3)
The interpretation of this 3-bit field is determined by the object
type of the referenced object. These.bits are called:

Bit 1 Type Right 1
Bit 2 Type Right 2
Bit 3 - Type Right 3

The individual system object descriptions in later sections of this
chapter describe the interpretation of the type rights field in
access descriptors that reference system objects. For many system
objects, some or all of these bits are uninterpreted (preserved).
Type Rights bi ts that are uninterpreted by the processor can be
used by software to define additional rights for objects of a
particular type.

Segment Index (Bits 4 - 15)

9-6

This 12-bi t field contains the index into a selected object table
of the object descriptor for the object referenced by this access
descriptor. The object table itself is selected using the
Directory Index field described below.

iAPX 432 GDP Object Set

Delete Rights (Bit 16)
This bit indicates whether this access descriptor can be deleted
(i.e., can be overwritten). If delete rights is 0, and an attempt
is made to delete this valid access descriptor, an Access
Descriptor Deletion Fault occurs. If the bit is 1, deletion can
occur without faulting. Whenever an access descriptor is copied,
the delete rights bit of the copy is set to 1, so that it may late~
be deleted; otherwise, a proliferation of undeletable access
descriptors might occur. The Delete Rights bit is not interpreted
in null ADs. Thus, null ADs may always be overwritten.

Unchecked Copy Rights (Bit 17)
This bit indicates whether a level compatibility check is required
when this access descriptor is copied. If this bit is 1, the level
compatibility check is bypassed. Setting this bit to 1 via an
AMPLIFY RIGHTS instruction should be done with extreme caution as
it may result in one or more ADs for a previously deleted object.

Read Rights (Bit 18)
This bit indicates whether the access descriptor can be used to
read from the object it references. If read rights is 1, the
access descriptor can be used to read from the referenced object.

Write Rights (Bit 19)
This bit indicates whether the access descriptor can be used to
write to the object it references. If write rights is 1, the
access descriptor can be used to write to the referenced object.

Directory Index (Bits 20 - 31)
This 12~bit field ccnt3ine an inde~ into the object table
directory. It thus yields a storage descriptor containing the base
address and length of an object table. The selected object table
is indexed by the 12-bit Segment Index field (described above) to
select the object descriptor for the object referenced by this
access descriptor.

9-7

Object Set iAPX 432 GDP

EMBEDDED DATA VALUE

31 0

31 bits

Access Valid

Embedded Data Value

The fields that consi tute a null AD can be interpreted by certain
operators as follows:

Access Valid (Bit 0)
For embedded data values the access valid bit is 0 and thus the AD
in which the EDV is embedded is null (i.e., invalid for object
addressing). The remaining bits are not interpreted by the
processor and can be used for a 31-bit embedded data value.

Embedded Data Value (Bit 1 - 31)

9-8

This field contains a 31-bit value that can be passed by value
between processes or contexts like an AD for a message or
parameter, without the overhead in memory space or access time of
referencing the value within an object.

iAPX 432 GDP Object Set

OBJECT LOCK

Object locks must always be located in the data part of objects. The
processor recognizes object locks at specific locations in system
objects and automatically manipulates them during normal operations to
accomplish mutually exclusive access among contending processors and
processes. See the specific system object descriptions in this chapter
for the exclusive access coverage defined for the object lock in that
system object. Object locks can be manipulated by software via LOCK
OBJECT and UNLOCK OBJECT instructions. In this case, long-term
software locking is the lock status used. Mutual exclusion is then
accomplished only if all contending processes honor the convention
explicitly. An object lock consists of the following fields:

15

14 bits

2 1 0

xx

Lock Status
Locker ID

The fields that constitute an object lock are interpreted as follows:

Lock Status (Bits O - 1)
Lock status values are interpreted as follows:

00 - Not locked
01 - Hardware locked
10 - Long-term software locked
11 - Short-term softwareuocked

Hardware locking is set by the processor when performing an
operation on behalf of a processor that requires the object to be
locked.

Short-term software locking is set by the processor when executing
an instruction on behalf of a process that requires the object to
be locked for the duration of one instruction.

Long-term software locking is set by the processor when a software
operation has specified (via a LOCK OBJECT instruction) that an
object be locked. A long-term software lock remains in effect
until an UNLOCK OBJECT instruction is performed on the object.

Locker ID (Bits 2 - 15)
If hardware-locked, this field is written by the processor. (Bits
8 - 15 contain the left-justified 8-bit processor ID of the locking
processor, and bits 2 - 7 contain zeros). The processor ID must be
nonzero. If software locked, this field (bits 2 - 15) is written
by the processor to contain the process ID (from the process data
part of the locking process). The process ID must be nonzero.

9-9

Object Set iAPX 432 GDP

OBJECT DESCRIPTIONS

SYSTEM OBJECT TYPES

Following sections of this chapter contain
objects interpreted by the 432 architecture.
the order in which the system objects are
which each description begins.

descriptions of the system
The following table gives

presented and the page on

9-10

System Object Type

Object Table Object
Processor Object •••••••••••••••••••••••••••••••• • •••• • • • • •
Processor Communication Object ••••••••••••••••••••••••••••
Process Object ••
Context Object ••
I>c:lmain Object •••
Instruction Object ••
Port Object ...
Ca.rrier Object ••••••••• •.• •••••••••••••••••••••••••••••••••
Storage Resource Object ••••••••••••••••••••••••••••••••••• Storage Claim Object
Physical Storage Object
Type Definition Object
Dynamic Type Object
Type Control Object

.......................................

Page

9-12
9-27
9-33
9-35
9-43
9-48
9-49
9-51
9-55
9-59
9-61
9-62
9-65
9-66
9-67

iAPX 432 GDP Object Set

Table of System Object Types and Their Type Rights

The following table lists all system object types and any type rights
interpreted by the processor in ADs that reference the system object.

System Object Type Type Right ·3 Type Right 2 Type Right

Object Table

Processor

Processor Communication Send !PC

Process Set Mode

Context Return

Domain

Instruction Trace

Port Send Process Receive Send

Carrier Surrogate

Storage Resource Create

Storage Claim

Physical Storage

Type Definition

Dynamic Type

Type Control Refine Amplify Create

---- indicates that the type right is not interpreted by the GDP (and is
preserved).

9-11

Object Set iAPX 432 GDP

OBJECT TABLE OBJECT

An object table object contains an array of object table entries
(OTEs), each of which is 16 bytes in length. Refinement descriptors
with object table as their object type are not supported by the GDP.

l 0

0

0

OT Entry

OT Entry

Header Entry

i. OT Entry Index
(16 bytes each)

2

0

OBJECT TABLE ENTRIES

An object table can contain the following types of object table
entries. Each is described in its own section later in this chapter.

Header Entry
Each header entry is used by the processor to control storage
allocation using the object table. The first entry in an object
table can only be a header entry.

Free Entry
Each OT free entry is a place holder for a potential object
descriptor.

The following object table entries are called object descriptors (ODs):

Storage Descriptor
A storage descriptor defines a object allocated in the storage
address space.

Refinement Descriptor
A refinement descriptor defines an object consisting of a
restricted view of parts of a previously defined storage segment.

Interconnect Descriptor

9-12

An interconnect descriptor defines a object in the interconnect
address space.

iAPX 432 GDP Object Set

Specific object table entries are identified by the lower 5 bi ts of
each 16-byte entry as follows:

Bits 4:3 Bit "\ Bits 4 _,.. Object Table Entry t:. I ;v

00 0 00 Free .Entry
00 1 00 Header Entry
01 x 00 Interconnect Descriptor
xx x 01 Reserved
xx x 10 Refinement Descriptor
xx x 11 Storage Descriptor

x means: Not used to identify the specific OTE (but may be used
within another field within the OTE).

OBJECT TABLE DIRECTORY

I OT Entry Index
s each) ~~ OT Entries 1, (16 byte

Object Table Directory OD .':> ·-

Processor Object Table OD 1

Header Entry 0

An object table directory (OTO) is a special kind of object table
object that contains only ODs describing object table objects. Only
the first three entries are uniquely processor-interpreted for an
object table directory. They are:

Header Entry (OTE 0)
This is an ordinary header entry, as described in its own separate
section of this chapter.

Processor Object Table OD (OTE 1)
This storage descriptor defines the object table containing object
descriptors for processor objects. During processor qualification,
a processor indexes into the processor object table with its 8-bit
processor ID to find the object descriptor for its processor object.

Object Table Directory OD (OTE 2)
This storage descriptor defines the object that is this object
table directory itself. All OTDs must have an OD for themselves at
OTE index 2.

9-13

Object Set iAPX 432 GDP

TYPE RIGHTS FOR OBJECT TABLE OBJECTS

The type rights in an access descriptor that references an object table
object are uninterpreted.

OBJECT ADDRESSING SUMMARY

The following diagram summarizes object addressing in the iAPX 432
architecture. - The Object Descriptor for A is often called the access
descriptor's associated object descriptor.

9-14

ACCESS DESCRIPTOR FOR OBJECT A

OBJECT TABLE

DIRECTORY

OBJECT TABLE

OBJECT

OBJECT A

DP

DESCRIPTOR 1--+tm--­
FOR A

STORAGE ._______ __ [h}tr:n>t:rn:::::::(fJ:d
DESCRIPTOR ~

FOR OBJECT

TABLE

AP

F-0071-1

iAPX 432 GDP Object Set

OBJECT TABLE ENTRY DESCRIPTIONS

The following sections of this chapter contain descriptions of the
types of object table entry.

HEADER ENTRY

127 96

Copied

..------ End Index

63 48 47 32

31 20 19 15 6 0

14'n i- ~" 'l'"ru:i

I ~ :::~: ~:::er
L_ Entry Subtype

._ ____ Stack OT Header

Free Index

The fields that constitute a header entry are interpreted as follows:

Entry Type (Bits O - 1)
This field is 00 for a header entry.

Entry Header (Bit 2)
This bit is 1 for a header entry.

Entry Subtype (Bits 3 - 4)
This field is 00 for a header entry.

9-15

Object Set iAPX 432 GDP

Stack OT Header (Bit 5)
This bit is O for heap object table headers. The free entries
associated with a heap OT header entry are organized as a linked
list starting with the free entry indexed by the free index field.
If the free index field is zero in a heap OT header, then there are
no free entries associated with the header (the list is empty).
This bit is 1 for stack object table headers. The free entries
associated with a stack OT header entry are from the free index + 1
to the end index (inclusive). If the free index is greater than or
equal to the end index field in a stack OT header, then there are
no free entries associated with the header.

Free Index (Bits 20 - 31)
If the Stack OT Header bit is 0, for heap allocation, all free
entries (described later in this chapter) are in a linked list.
The free index field in the header entry indexes the first free
entry (if any) in the list. If the Stack OT Header bit is 1, for
stack allocation, the free index field indexes the most recently
allocated object descriptor in the object table, and free index + 1
indexes the first free entry (if any).

End Index (Bits 36 - 47)
This 12-bit field is interpreted only if the Stack OT Header bit is
1 (for stack object tables). It then indexes the last object table
entry in the object table. When Free Index >= End Index, all OTEs
in the stack object table have been allocated. Otherwise, the OTEs
from Free Index+1 through End Index are free entries.

Copied (Bit 72)
This bit indicates whether an access descriptor that references
this object table header has been copied since this bit was last
set to O by software. The copied bit is initialized to 1 when this
object descriptor is created. Furthermore, the copied bit is set
to 1 by the processor whenever an AD that references this entry is
copied. The Copied bit serves as the gray bit for the iMAX
parallel garbage collector algorithm.

Level (Bits 80 - 95)
This 16-bi t field contains either the value found in the Current
Allocation Level field of the process object (during stack
allocation) or the Allocation Level field of the SRO (during heap
allocation) at the time this object descriptor was allocated. For
an OD allocated with a level of O, its associated AD has the
Unchecked Copy Rights bit set to 1 when created.

9-16

iAPX 432 GDP

FREE ENTRY

127

95

63

31

80 79 73

20 19 15 5

96

64

32

0

•

Entry Type

.,_ __ Entry Header

._ ______ Entry Subtype
...________________________________ Free Index

Object Set

Free Entries are only interpreted as such by the processor in heap
object tables. The fields that constitute a free entry are interpreted
as follows:

Entry Type (Bits O - 1)
This field is 00 for a free entry.

Entry Header (Bit 2)
.This bit is 0 for a free entry.

Entry Subtype (Bits 3 - 4)
This field is 00 for a free entry.

Free Index (Bits 20 - 31)
This field is only interpreted for heap object tables. The field
indexes from the base (fence) of this object table to the next free
entry in the linked list of free entries. The last such free entry
in the list is identified by a Free Index value of zero.

9-17

Object Set iAPX 432 GDP

STORAGE DESCRIPTOR

P,-------------------- Completed

127 112 96

x TOO-AD Image

16 bits

95 80 79 73 64

---- Object Type

..._ _____ Copied

------------------------------- Level

...... ----------------------------- AP Length

.-.------- DP Length

63 48 47 32

16 bits I 16 bi ts

24 bits

31 8 0

...._ Entry Type

.,_ __ OD Valid

DP Valid

------ Allocated

------------ Windowed

.,.. ______ ,..Altered

.._ _____ _.Accessed

______________ _.Base Address

The fields that constitute a storage descriptor are interpreted as
follows:

Entry Type (Bits O - 1)
This field is 11 for a storage descriptor.

9-18

iAPX 432 GDP Object Set

OD Valid (Bit 2)
If this bit is 0, only the Copied bit and En try Type fields have
meaning in this descriptor. A fault occurs if OD Valid is O and an
attempt is made to reference a object through this object
descriptor.

DP Valid (Bit 3)
If this bit is 0, the object defined by this storage descriptor
does not have.a data part. Otherwise, the size of the data part is
specified· by the DP Length field.

Allocated (Bit 4)
This bit is 0 if there is no storage allocated with this storage
descriptor, and 1 if there is storage allocated with it. If this
bit is 0, the base address field in this descriptor is undefined.
Each time the object defined by this descriptor is accessed (i.e.,
read from or written to), this bit is checked. If it is 0 and the
object defined by this descriptor is not qualified within the GDP,
a fault occurs.

Windowed (Bit 5)
This bit is referenced by iAPX 432 Interface Processors (IPs) and
by GDP software to determine if the object described by this
storage descriptor is being mapped by an IP window. If windowed is
1, then an IP window is open on all or part of the object. This
bit is not interpreted by the GDP and is initially 0. This bit is
set and cleared by the IP operations that open and close windows.

Altered (Bit 6)

this storage descriptor has been altered (i.e., has been written
into). This bit is set to 1 by the processor whenever any portion
of the object is overwritten. It is cleared by operating system
software in a virtual memory system. In a non-virtual memory
system, this bit slwuld be left as 1 by software to avoid
unnecessary but automatically occurring storage accesses.

Accessed (Bit 7)
This bit is initialized to 1. Subsequently, if the object defined
by this storage descriptor is accessed (i.e., read from or written
to), this field is set to 1 by the processor. It is cleared by
software in a virtual memory system. In a non-virtual memory
system, this bit should be left as 1 by software to avoid
unnecessary but automatically occurring storage accesses.

Base Address (Bits 8 - 31)
This 24-bit field contains the physical base address (in· bytes in
the storage address space) of the object. This value is the
address of the first byte in tbe data part of the object. It is
also the address of the first byte above (i.e., at the next higher
address) the first AD in the access part of the object.

DP Length (Bits 32 - 47)
The value of this 16-bit field is one less than the length in bytes
of the data part of the defined object. Thus, a maximum-length DP
of 65, 5 36 bytes has as its DP Length field a value of 65, 5 35
(OFFFFH). Each time a operand is referenced by a logical address

Q-1q

Object Set iAPX 432 GDP

in an instruction, the operand offset is compared to this DP Length
field. If (operand offset + operand size) exceeas the actual length in
bytes of the data part, a fault occurs.

AP Length (Bits 48 - 63)
The value of this 16-bit field is one less than the lengtb in bytes
of the access part of the defined object. Thus, a maximum-length
access part of 65, 5 36 bytes has as its AP Length field a value of
65 ,535 (OFFFFH). Each time an object is referenced in the course
of generating an address using a scaled AD index, the displacement
into the AP is compared to this AP Length field. If the
displacement exceeds the AP length, a fault occurs. Note that AP
length values of 0, 1, or 2 indicate that the object has no access
part.

Object Type (Bits 64 - 71)
This 8-bit field encodes the object type of the object. An object
type is composed of a 5-bit System Type field and a 3-bit Processor
Type field:

71 69 68 64

xxx 5 bits

._ ______ System Type
.._ _______ Processor Type

System Type (Bits 64 - 68)

9-20

This 5-b it field determines the system type of the object
defiriea by the storage descriptor. The encodings for the
System Type field are as follows:

Encoding System Type

00000 Gene.ric Object
00001 Object Table Object
00010 Domain Object
00011 Instruction ObJect
00100 Context Object
00101 Process Object
00110 Processor Object
00111 Port Object
01000 Carrier Object
01001 Storage Resource Object
01010 Physical Storage Object
01011 Storage Claim Object
01100 Dynamic Type Object
01101 Type Definition Object
01110 Type Control Object
01111 RESERVED
10000 Processor Communication Object
10001
thru RESERVED

11111

iAPX 432 GDP Object Set

Processor Type (Bits 69 - 71)
This 3-bit field encodes the type of iAPX 432 processor for
which the object is defined. If a processor attempts to
access an object that is not of its type, a fault occurs. The
encodings for the Processor Type field are as follows:

Encoding
000
001
010
011
thru
111

Processor Type
All
GDP
IP

Reserved

GDPs can only read or write objects with processor type All or
GDP.

Copied (Bit 72)
This bit indicates whether an access descriptor that references
this object descriptor has been copied since this bit was last set
to 0 by software. The copied bit is initialized to 1 when this
object descriptor is created. Furthermore, the copied bit is set
to 1 by the processor whenever an AD is copied which references
this OD. The Copied bit serves as the gray bit for the iMAX
garbage collector algorithm.

Level (Bits 80 - 95)
This 16-bi t field contains the value found in either the Current
Allocation Level field of the process object (during stack
allocation) or the Allocation Level field of th~ SRO (dl)ri11g h~~p
allocation) at the time this object descriptor was allocated. For
an OD allocated with a level ~f 0, its associated AD has the
Unchecked Copy Rights bit set to 1 when created.

TD~AD Image (Bits 96 - 127)
This 32 bit field contains an image of an access descriptor for the
Type Definition Object that defines the type manager of the object
instance described by this storage descriptor.

Completed (Bit 112)
The interpretation of this bit is only important during the
creation of the object defined by this object descriptor. System
software can consult the Completed bit to determine if segment
creation is still in· progress. If the Completed bit is 1, the
segment creation process has initialized the new segment to all
zeros (and all ADs in the new segment to all null ADs with EDVs
zero) • This bit corresponds to the position of the Delete Rights
bit in the TDO-AD Image. But, the TDO-AD Image can never be used
in-place as an AD. When copied into an access part by a processor,
the Delete Rights bit in the AD image is always set to 1.

9-21

Object Set iAPX 432 GDP

REFINEMENT DESCRIPTOR

AP Length

AP Off set

27 112 111 96

16 bits 16 bits

~I 16 bits ~ ~x xxxxxxxx
~XXXXXXI

95 80 79 73 64

Object Type

Copied

Level

DP Offset

DP Length

63 48 47 32

16 bits 16 bits

~ JxlxJ10 12 bits 12 bits
~

31 20 15 4 0

-- Entry Type

OD Valid

DP Valid

Bypass Segment Index

Bypass Directory Index

The fields that constitute a ·refinement descriptor are interpreted as
follows:

Entry Type (Bits O - 1)
This field is 10 for a refinement descriptor.

OD Valid (Bit 2)
If this bit is O, only the Copied bit and Entry Type fields have
meaning in this descriptor. A fault occurs if OD Valid is 0 and an
attempt is made to reference an object through this object
descriptor.

9-22

iAPX 432 GDP Object Set

DP Valid (Bit 3)
If this bit is 0, the object defined by this object descriptor does
not have a data part. Otherwise, the size of the data part is
specified by the DP Length field.

Bypass Segment Index (Bits 4 - 15)
·this12..:.bit ·field contains the index into the selected object table
to the storage descriptor for the underlying object. . The object
table itself is selected using the bypass directory index described
below.

Bypass Directory Index (Bits 20 - 31)
This 12-bit field contains an index into the object table
directory~ It thus yields a storage descriptor containing the base
(fence) address of an object table. The selected object table is
indexed by the 12-bi t bypass segment index (described above) to
select the storage descriptor of the underlying object.

DP Length (Bits 32 - 47)
This 16-bi t field contains a value that is one less than the
length, in bytes, of the data part of the refinement.

DP Offset (Bits 48 - 63)
This 16-bit field contains a byte offset that is aaaea to tne base
(fence) address of the underlying object to form the "imaginary"
base address of the data part of this refinement.

Object Type (Bits 64 - 71)
This 8-bit field encodes the object type of this refinement. This

descriptor (described earlier in this chapter).

Copied (Bit 72)
This bit indicates whether an access descriptor that references
through this object descriptor has been copied since this bit was
last set to O by software. The copied bit is initialized to 1 when
this object descriptor is created. Furthermore, the copied bit is
set to 1 by the processor whenever an AD that references this OD is
copied. The Copied bit serves as the gray bit for the iMAX
parallel garbage collection algorithm.

9-23

Object Set iAPX 432 GDP

Level {Bits 80 - 95)
This 16-bi t field contains the value found in either the Current
Allocation Level field of the process object {during stack
allocation) or the Allocation Level field of the SRO {during heap
allocation) at the time this object descriptor was allocated. For
an OD allocated with a level of O, its associated AD has the
Unchecked Copy Rights bit set to 1 when created.

AP Offset {Bits 96 - 111)
This 16-bi t field contains a byte offset that is subtracted from
the base {fence) address of the underlying object to form the
"imaginary" base address of the access part of this refinement.

AP Length {Bits 112 - 127)
This 16-bit field contains a value that is one less than the
length, in bytes, of the access part of the refinement.

9-24

iAPX 432 GDP Object Set

INTERCONNECT DESCRIPTOR

127 96

95

~~·
I 80 79 73 1 ... ____ 6_4_ :::::d

..------ Length

63 48 47 32

31 8 0

Entry Type

a--- OD Valid

.._ _____ Entry Subtype

I ----- Windowed

~-------------------------- Base Address

The . fields that constitute an interconnect descriptor are interpreted
as follows:

Entry Type (Bits O - 1)
This field is 00 for an interconnect descriptor.

OD Valid (Bit 2)
If this bit is 0, only the Copied bit and Entry Type fields have
meaning in this descriptor. A fault occurs if OD Valid is O and an
attempt is made to reference a object through this object
descriptor.

Entry Subtype (Bits 3 - 4)
This field is 01 for an interconnect descriptor.

9-25

Object Set iAPX 432 GDP

Windowed (Bit 5)
This bit is referenced by iAPX 4 32 Interface Processors (IPs) and
by GDP software to determine if the object defined by the
interconnect descriptor is being mapped by an IP window. If
windowed is 1 , then an IP window is open on all or part of the
object. This bit is not interpreted by the GDP. This bit is set
and cleared by the IP operations that open and close windows.

Base Address (Bits 8 - 31)
This 24-bi t field contains the physical address (in bytes in the
interconnect address space) of the interconnect object defined by
this interconnect descriptor. This value is the address of the
first byte of t~e object and must be even.

Length (Bits 32 - 47)
The value of this 16-bi t field is one less than the length, in
bytes, of ~he object defined by this interconnect descriptor.

Copied (Bit 72)
This bit indicates whether an access descriptor that references
this object descriptor has been copied since this bit was last set
to O by software. The Copied bit is initialized to 1 when this
object descriptor is created. Fu.rthermore, the Copied bit is set
to 1 by the processor whenever an AD that references this OD is
copied. The Copied bit serves as the gray bit for the iMAX
parallel garbage collection algorithm.

Level (Bits 80 - 95)
This 16-bi t field contains the value found in either the Current
Allocation Level field of the process object (during stack
allocation) or the Allocation Level field of the SRO (during heap
allocation) at the time this object descriptor was allocated. For
an OD allocated with a level of O, its associated AD has the
Unchecked Copy Rights bit set to 1 when created.

9-26

iAPX 432 GDP

PROCESSOR OBJECT (ACCESS PART)

j AD to Current Process Carrier

AD to Local PCO

AD to Global PCO

AD to Object Table Directory

AD to Current Processor Carrier

AD to Current Dispatching Port

AD to Delay Carrier

AD to Delay Port

Processor Fault
Access Area

AD to Generic TOO

AD to Global Constants

AD to Normal Carrier

AD to Normal Port

AD to Alarm Carrier

AD to Alarm Port

AD to Reconfiguration Carrier

AD to Reconfiguration Port

AD to Diagnostic Carrier

AD to Diagnostic Port

1 0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Object Set

PROCESSOR OBJECT

Access Descriptor
Index (32 bits each)

9-27

Object Set iAPX 432 GDP

Refinement descriptors with processor object as their object type are
not supported by the GDP. The access descriptors that constitute the
processor-interpreted access part of a processor object are interpreted
as follows:

Current Process Carrier (AD 0)
This AD references the process carrier of the currently executing
process of this processor.

Local PCO (AD 1)
This AD references the processor communication object used for
local interprocessor communication.

Global PCO (AD 2)
This AD references the processor communication object used for
global interprocessor communication.

Object Table Directory (AD 3)
This AD references the object table directory for this processor.

Current Processor Carrier (AD 4)
This AD is a copy of the AD that references the Normal, Alarm,
Reconfiguration, or Diagnostic Carrier depending on the current
dispatching mode.

Current Dispatching Port (AD 5)
This AD is a copy of the AD that references the Normal, Alarm,
Reconfiguration, or Diagnostic Port depending on the current
dispatching mode.

Delay Carrier (AD 6)
This AD references the delay carrier used by this processor to
service the delay port.

Delay Port (AD 7)
This AD references the delay port used to provide the delay service
for this processor.

Processor Fault Access Area (ADs 8 - 9)
These 2 ADs are written by the processor after a processor level
fault and can be used by fault handling software. They are
described in the Fault and Trace Reference chapter of this manual.

Generic TOO (AD 10)
This AD references a type definition object for generic objects.

Global Constants (AD 11)
This AD references a system wide Global·Constants object. This AD
must be the same as in the same-named fields of all processor
objects and context objects.

9-28

iAPX 432 GDP Object Set

The following 8 ADs (12 19) reference processor carriers and
dispatching ports used by this processor. The current processor
carrier and current dispatching port (each referenced by one of these
ADs) are determined by the dispatching mode in the Processor Status
field of the processor object. A copy of th~ current processor carrier
AD occupies the AD 4 location of this processor object. A copy of the
current dispatching port AD occupies the AD 5 location of this
processor obje9t.

Normal Carrier (AD 12)
This AD references the processor carrier used by a processor to
receive or wait for a process at a normal port.

Normal Port (AD 13)
This AD references the dispatching port where this processor
receives or waits for a normal process.

Alarm Carrier (AD 14)
This AD references the processor carrier used by a processor to
receive or wait for a process at an alarm port.

Alarm Port (AD 15)
This AD references the alarm dispatching port where this processor
receives or waits for a special alarm process.

Reconfiguration Carrier (AD 16)
This AD references the processor carrier used by a processor to
receive or wait for a process at a reconfiguration port.

Reconfiguration Port (AD 17)
This AD references the reconfiguration dispatching port where this
processor receives or waits for a special reconfiguration process.

Diagnostic Carrier (AD 18)
.This AD references the processor carrier used by a processor to
receive or wait for a process at a diagnostic port.

Diagnostic Port (AD 19)
This AD references the diagnostic dispatching port where this
processor receives or waits for a special diagnostic process.

9-29

Object Set

PROCESSOR OBJECT (DATA PART)

Processor Status

Object Lock

Byte
Displacement

62

16

14

4

2

0

iAPX 432 GDP

The fields that constitute the processor-interpreted data part of a
processor object are interpreted as follows:

Object Lock (Bytes 0 - 1)
This field provides mutually exclusive access to this processor
object and to its associated processor carriers and delay carrier.
The object lock field is defined for many system objects and is
described in the first part of this chapter.

Processor Status (Bytes 2 - 3)
The format of the processor status field is shown below:

15 8 1 6 5 4 3 0

8 bits x

.._ ___ Processor State

'----------- Dispatching Mode

"------- Stopped by IPC

"---------- Global IPC Accept Mode
..._ ________________________ Processor ID

9-30

iAPX 432 GDP Object Set

The fields that constitute processor status are interpreted as
follows:

Processor State (Bits O - 3)
This 4-bit field indicates the current state of this processor:

0000 - Initfali zation
0001 - Idle
0010 - Process Selection
0011 - Process Binding
0100 - Process Execution
0101 - Process Suspension
0110
thru - Reserved
1111

Dispatching Mode (Bits 4 - 5)
This 2-bit field determines which mode is to be used to
dispatch this processor:

00 Use normal port and carrier (Normal Mode)
01 - Use alarm port and carrier (Alarm Mode)
10 - Use reconfiguration port and carrier

(Reconfiguration Mode)
11 - Use diagnostic port and carrier (Diagnostic Mode)

Stopped by !PC (Bit 6)
This bit indicates the stopped status of the processor, as
determined by an Interprocessor Communication (!PC):

0 Processor will execute a process if a process is
available to execute.

- Processor is stopped by an !PC message and cannot
execute a process until it receives a START !PC
message.

Global !PC Accept Mode (Bit 7)
This bit determines whether Global interprocessor messages are
currently being accepted/acknowledged:

0 - Global interprocessor messages are not being
accepted nor acknowledged.

- Global interprocessor messages are being accepted
and acknowledged.

Processor ID (Bits 8 - 15)
This 8-b·i t field is written by the associated processor at
initialization time from externally read information. The
value is read from interconnect address zero when the first
local !PC signal is received by the processor after its !nit
pin is asserted.

9-31

Object Set iAPX 432 GDP

Processor Fault Data Area (Bytes 16 - 63)
This 48-byte data area is written by the processor after a
processor-level fault and can be used by fault handling software.
This area is described in the Fault and Trace Reference chapter of
this manual.

TYPE RIGHTS FOR PROCESSOR OBJECTS

The type rights in an access descriptor that references a processor
object are uninterpreted by the processor.

9-32

iAPX 432 GDP

Processor ID

Processor Count

Response Count

!PC Message Code

Object Lock

Object Set

PROCESSOR COMMUNICATION OBJECT

Byte
Displacement

8

6

4

2

0

0

Access Descriptor
Index (32 bits each)

Processor communication objects (PCOs) only require a data part that is
interpreted by the processor. Typed refinements of PCOs are not
supported by the GDP. The fields that constitute the
processor-interpreted data part of a processor communication object are
interpreted as follows:

Object Lock (Bytes O - 1)
This field provides mutually exclusive access to this processor
communication object. The Object Lock field is defined for many
system objects and is described in the first part of this chapter.

!PC Message Code (Bytes 2 - 3)
This 16-bi t field contains one of the following function request
encodings. Message codes 0 through 7 are !PC messages common
between GDPs and Interface Processors (!Ps). Message codes 8
through 14 are defined for GDPs but are ignored by IPs.

9-33

Object Set iAPX 432 GDP

The following list gives the IPC Message Codes.

0 - Wakeup
1 Start
2 - Stop
3 - Accept global IPCs
4 Ignore global IPCs
5 Requalify object table cache
6 Reset processor
7 - Requalify processor
8 Requalify process
9 Requalify context

10 Requalify data object cache
11 - Enter normal mode
12 Enter alarm mode
13 Enter reconfiguration mode
14 Enter diagnostic mode

Response Count (Bytes 4 - 5)
This 16-bit field contains the number of processors remaining that
have yet to respond to this !PC message. This field is initialized
to the value in the Processor Count field (described below) during
the execution of a SEND TO PROCESSOR instruction. As a processor
receives the message, that processor acknowledges the !PC by
decrementing this field.

Processor Count (Bytes 6 - 7)
The interpretation of this 16-bi t field depends on whether this
processor communication object is local or global. In a global
PCO, this field contains the number of processors in global IPC
accept mode using this PCO. In a local PCO, this field contains a
fixed value of 1. This field should be updated by system software
when processors are added or deleted in the system.

Processor ID (Bytes 8 - 9)
The interpretation of this 16-bit field depends on whether this PCO
is local or global. In a global PCO, this field contains the fixed
value of o. In a local PCO, this field contains the processor ID
of the associated processor in the low-order 8 bits with the
high-order 8 bits being o.

TYPE RIGHTS FOR PROCESSOR COMMUNICATION OBJECTS

The type rights in an access descriptor that references a processor
communication object are interpreted as follows:

Type Right 1

Type Right 2

Type Right 3

9-34

Send IPC Rights: If the bit is 1, an interprocessor
message may be sent via this PCO.

Uninterpreted

Uninterpreted

iAPX 432 GDP

PROCESS OBJECT (ACCESS PART)

AD to Process PSO

AD to Process Object Table Header

Null AD

AD to

AD to

AD to

AD to

AD to

Current Context

Process Globals

Process Carrier

Dispatching Port

Scheduling Port

Process Fault
Access Area

AD to Fat_ll ted Context

AD to Fault Port

0

2

3

4

5

6

7

8

9

10

11

12

Object Set

PROCESS OBJECT

Access Descriptor
Index (32 bits each)

Refinement descriptors with process object as their object type are not
supported by the GDP. The access descriptors that constitute the
processor-interpreted portion of a process access part are interpreted
as follows:

Process PSO (AD 0)
This AD references the associated physical storage object used for
stack allocation of storage for this process.

Process Object Table Header (AD 1)
This AD references the object table header used for stack
allocation of object descriptors for this process.

Null AD (AD 2)
This AD must be null and corresponds to the AD in an SRO that
references a storage claim object. A null AD is interpreted as an
infinite storage claim. Thus, no direct limit can be put on stack
storage allocated for a process. ·

9-15

Object Set iAPX 432 GDP

Current Context (AD 3)
This AD references the currently active context object of this
process.

Process Globals (AD 4)
This AD references a global object indirectly accessible by all
contexts within this process, using the COPY PROCESS GLOBALS
operator. This object is defined by software.

Process Carrier (AD 5)
This AD references the process carrier associated with this process
for use in interprocess communication and/or dispatching.

Dispatching Port (AD 6)
This AD references the dispatching port to which the carrier of
this process is routed after expiration of the process's service
period.

Scheduling Port (AD 7)
This AD references the port where the carrier of this process is
routed when the period count of the process has expired; i.e., the
process has used up all its time-slices.

Process Fault Access Area (ADs 8 - 10)
These 3 ADs are written by the processor after a process fault and
can be used by fault handling software. They are described in the
Fault and Trace Reference chapter of this manual.

Faulted Context (AD 11)
This AD references the faulted context object. This field is
initially null and is defined only when written by the processor
after a context fault (the Context Faulted bit in the process
status is 1).

Fault Port (AD 12)
When a process fault occurs for this process, this AD is used as
the refereQce to the port where the process carrier of this process
is routed.

9-36

iAPX 432 GDP

PROCESS OBJECT (DATA PART)

Byte
Displacement

I Context Fault I 94
Af Data Area '6

48

46
Process Control Area Al.

------------------------T a

Object Set

The areas that constitute the processor-interpreted portion of the data
part of a process object are interpreted as follows:

Process Control Area (Bytes O - 47)
This 48-byte area serves as a control and status area for this
process. It is described later in this chapter.

Context Fault Data Area (Bytes 48 - 95)
This 48-byte data area is written by the processor after a context
fault and can be used by fault handling software. It is described
in the Fault and Trace Reference chapter in this manual.

TYPE RIGHTS FOR PROCESS OBJECTS

The type rights in an access descriptor that references a process
object are interpreted as follows:

Type Right 1

Type Right 2

Type Right 3

Set Mode_ Rights: If the bit is 1, the SET PROCESS
MODE operator may be used to change the current
process status.

Uninterpreted

Uninterpreted

9-37

Object Set

PROCESS CONTROL AREA

Process ID

Entered ENV 3 Level

Entered ENV 2 Level

Entered ENV 1 Level

Process Clock

Process Status

Service Period

Period Count

Allocation
Fault Area

Current Context List AP Length

Current Context List DP Length

Current Allocation Level

Object Lock

iAPX 432 GDP

Byte Displacement
46

44

42

40

38

36

34

32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0

iAPX 432 GDP Object Set

•The fields that constitute the processor-interpreted portion of the
Process Control area are interpreted as follows:

Object Lock (Bytes O - 1)
This 16-bit field provides mutually exclusive access to the process
object and its current context object. The Object Lock field is
defined for many system objects and is described in the first part
of this chapter=

Current Allocation Level (Bytes 2 - 3)
This 16-bi t field is used when an
from the process allocation stack.
initialize the Level field of
descriptor. The current allocation
CALL THROUGH DOMAIN instructions
RETURN AND FAULT instructions.

object descriptor is allocated
This 16-bit value is used to
the newly allocated object

level is incremented by CALL or
and decremented by RETURN or

Current Context List DP Length (Bytes 4 - 5)
This 16-bi t field contains the actual allocated length-1 of the
data part of a context object in the pre-allocated context list.

Current Context List AP Length (Bytes 6 - 7)
This 16-bit field contains the actual allocated length-1 of the
access part of a context object in the pre-allocated context list.

Allocation Fault Area (Bytes 8 - 14)
This 8-byte area is written by the processor when an
allocation-related fault occurs. This area can be used by fault
handling software. It is described in the Fault and Trace
Refe~e~ce chapte~ i~ this ~a~ual.

Period Count (Bytes 16 - 17)
The value in this 16-bi t field is one -less than the number of
service periods granted this process by a processor before the
process is routed to its scheduling port. If this value is all 1s
(161FFFF#), the process is never sent to a scheduling port.

Service Period (Bytes 18 - 19)
The value in this 16-bi t field is the maximum period (in system
time uni ts) over which a processor will serve this process before
preemption.

9-39

Object Set iAPX 432 GDP

Process Status (Bytes 20 - 21)
The format of the process status field is shown below:

15 12

4 bits

8 7 6 4 3 2 0

Unbound
----- Process Faulted

Context Faulted
.._ _______ Fault Vector Mode

.._ ________ • Trace Mode

Trace Enable
Waiting for Message
Process Blocked
Inexact Control
Null Surrogate Destination

-------------------------------- First Port Done

The fields that constitute process status are interpreted as
follows:

Unbound (Bit 0)
This bit indicates whether this process is unbound (i.e., not
currently being executed by a processor):

0 - This process is bound to a processor.
1 - This process is not bound to a processor.

Process Faultea (Bit 1)

9-40

This bit indicates whether this process has faulted:

O - Not faulted
1 - Faulted

Context Faulted (Bit 2)
This bit indicates whether the current active context has
faulted:

0 - Not faulted
1 - Faulted

Fault Vector Mooe (Bit 3)
Th is bit determines whether a process-1 evel fault is to be
treated as a process-level fault or a· context-level fault:

0 - Treat process-level fault as context-level fault
1 - Treat process-level fault as process-level fault

iAPX 432 GDP Object Set

Trace Mode (Bits 4 - 5)
Th is 2-b it field determines the current tr ace mode in effect
for this process:

00 - No Trace Mode
01 - Fault Trace Mode
10 - Fl ow Tr ace Mode
11 - Full Trace Mode

Trace Enable (Bit 6)
This bit contains tbe trace rights bit from the cu.rrent
instruction object AD:

O Tracing is disabled
1 Tracing is allowed

Waiting for Message (Bit 7)
This bit indicates whether this process is waiting for a
message:

O This process is not blocked on a receive.
1 Place the AD for the incoming message in the

Interprocess Message location of the context access
part when this process is resumed.

Process Blocked (Bit 8)
This bit indicates whether this process has been preempted
before a possible trace is serviced:

0 - This process has been not pre-empted.
1 - This process has been preempted before a possible

trace is serviced. If the trace mode in the process
status is Full Trace, and the Trace Rights
associated with the current instruction object AD is
1, a trace event needs to be generated before
resumption .of the process.

Inexact Control (Bit 13)
This bit determines whether to fault if a floating-point
instruction produces an inexact result:

0 - No fault on inexact result
1 - Fault on inexact result

Null Surrogate D~stination (Bit 14)
This bit inaicates if the current surrogate operation has a
destination.

O - Valid surrogate destination
- Null surrogate destination

9-41

Object Set iAPX 432 GDP

First Port Done (Bit 15)
This bit indicates whether the operation has completed at the
first port of a two-port operation:

0 - First port operation has completed
- First port operation h~s not completed

Process Clock (Bytes 22 - 25)
This ordinal value is the total processor execution time (in system
time units) received by this process. This field is intialized to
zero at process creation and is incremented by tbe system clock
while this process is bound to a processor. The field may be used
to accurately time a process independent of system scheduling
activity.

Entered ENV 1 Level (Bytes 26 - 27)
Entered ENV 2 Level (bytes 28 - 29)
Entered ENV 3 Level (Bytes 30 - 31)

These three 16-bi t values in the process object contain level
numbers for entered access environments 1 through 3. In each case,
if the access environment is a refinement, then the level number is
the level number of the root storage descriptor. If the
corresponding access environment is null, therj the level number is
all 1 s (OFFFFH) •

Process ID (Bytes 32 - 33)

9-42

The low-order 2 bits of this
high-order 14 bi ts contain the
software).

16-bi t
actual

field must be 00. The
process ID (supplied by

iAPX 432 GDP

CONTEXT OBJECT (ACCESS PART)

AD to Current Context

AD to Global Constants

AD to Context Message

AD to Defining Domain

AD to Local Constants

AD to Environment

AD to Environment 2

AD to Environment 3

AD to Calling Context

AD to Context Link

AD to Top of Descriptor Stack

AD to Top of Stur ag~ Stack

AD to Static Link

AD to Interprocess Message

0

2

3

4

5

6

7

8

9

10

1 1
I I

12

13

Object Set

CONTEXT OBJECT

Access Descriptor
Index (32 bi ts eac 11)

The access descriptors that constitute the processor-interpreted access
part of a context object are interpreted as follows:

Current Context (AD 0)
This AD references this context itself.

Global Constants (AD 1)
This AD references an object containing frequently used data
constants. All contexts reference the same Global Constants object
which mu st be the same as that referenced by the Global Constants
AD in the processor object.

Object Set iAPX 432 GDP

Context Message (AD 2)
Th is AD references a refinement of the calling context object,
which is used for parameter passing to the called context.

Defining Domain (AD 3)
This AD references the defining domain specified in the call
instruction that was used to activate the current context.

Local Constants (AD 4)
This AD references an object containing local data constants
associated with the current context.

Environment (AD 5)
Environment 2 (AD 6)
Environment 3 (AD 7)

Each of these three ADs references an Environment object for the
context. The Current Context access part and Environments 1 - 3
collectively constitute the instantaneous access environment of
this context. When a context is called, the defining domain is
entered as Environment 1 as part of the CALL operation. The ADs
for Environments 2 - 3 are initially null and remain so until ADs
are entered by using access environment manipulation operators.

Calling Context (AD 8)
This AD references the context object of tbe calling context and
normally has Return rights.

Context Link (AD 9)
This AD references the next free context in the linked-list of
pre-allocated contexts.

Top of Descriptor Stack (AD 10)
This AD references the most recent object descriptor allocated from
the process allocation stack by this context or its calling
contexts.

Top of Storage Stack (AD 11)
This AD references the most recent storage descriptor allocated
from the process allocation stack by this context or its calling
contexts.

Static Link (AD 12)
This AD is the static link AD passed with the CALL instruction. It
is used to reference lexical level for supporting compiler
implementation.

Interprocess Message (AD 13)

9-44

This AD is initially null. It references the most recent message
received through a RECEIVE or successful CONDITIONAL RECEIVE
instruction.

iAPX 432 GDP Object Set

DELETE RIGHTS OF ADs IN THE CONTEXT OBJECT

The following access descriptors in the context object are created
without delete rights:

Current Context (AD 0)
Global Constants (AD 1)
Context Message (AD 2)
Defining Domain (AD 3)
Environment 1 - 3 (ADs 5 - 7)
Calling Context (AD 8)
Context Link (AD 9)
Tqp of Descriptor Stack (AD 10)
Top of Storage Stack (AD 11)

The following access descriptors in the context object are not changed
from call to call:

Current Context (AD 0)
Global Constants (AD 1)
Context Message (AD 2)
Calling Context (AD 8)
Context Link (AD 9)

CONTEXT OBJECT (DATA PART)

Operand Stack

Trace Control
Data Area

12

10

8

Byte
Displacement

Instruction Pointer 6

Current Instruction Object DAI 4

Operand Stack Pointer 2

Context Status O

9-45

Object Set iAPX 432 GDP

The fields that constitute the processor-interpreted data part of a
context object are interpreted as follows:

Context Status (Bytes O - 1)
This 16-bi t field contains status information pertinent to this
context. The format of the context status field is shown below:

15 14 13 12 11 0

xx

.._ ____________________________ __. Precision Control

Rounding Control

The fields that constitute context status are interpreted as
follows:

Precision Control (Bits 12 - 13)
This field determines what precision is in effect for
floating-point computation:

00 - Temporary-real precision
01 - Real precision
10 - Short-real precision
11 - Reserved

Rounding Control (Bits 14 - 15)
This field determines which rounding mode is in effect for
floating-point computation:

00 - Round Nearest
01 - Round Up
10 - Round Down
11 - Round Toward Zero (truncate)

Operand Stack Pointer (Bytes 2 - 3)
This 16-bit field contains the byte displacement into the current
context data part and points to the first free byte on the operand
stack. This field is undefined when the context is currently
active or faulted. The operand stack is 16 bi ts wide and, thus,
the pointer is maintained with alignment to double-byte
boundaries.

Current Instruction Object DAI (Bytes 4 - 5)

9-46

This 16 bit field contains the domain access index of the current
instruction object. This field is undefined when the context is
currently active or.faulted.

iAPX 432 GDP Object Set

Instruction Pointer (Bytes 6 - 7)
This 16-bit field contains the bit displacement from the base
(fence) of the current instruction object to the next instruction
to be executed. This field is undefined when the context is
currently active or faulted.

Trace Control Data Area (Bytes 8 - 13)
This 6-byte area contains control information used in tracing. It
is described in the Fault and Trace Reference chapter of this
manual.

Working Storage Area
This area is preserved by the processor and may be used by software
as working storage for this context. The initial value of the
operand stack pointer specifies the beginning of the operand stack
and thus the end of the Working Storage Area.

Operand Stack
This area of the context data part constitutes the operand stack
for this context. This stack is 16 bi ts wide and grows upward
(i.e., toward higher addresses in memory), limited only by the size
of the context data part.

TYPE RIGHTS FOR CONTEXT OBJECTS

The type rights in an access descriptor that references a context
object are interpreted as follows:

Type Right

Type Right 2

Type Right 3

Return Rights: If the bit is 1, the referenced
context may be returned to.

Uninterpreted

Uninterpreted

9-47

Object Set iAPX 432 GDP

DOMAIN OBJECT

The access part of a domain object is described below. Domain objects
must have a data part, though the data part has no processor
interpreted fields. Typed refinements of domain objects are supported
by the GDP. However, the defining domain of a context cannot be a
refinement. (A domain refinement can still be specified in a CALL
THROUGH DOMAIN instruction; the instruction automatically traverses the
refinement and writes an AD for the entire new defining domain into the
called context.)

0

0

Access Descriptor
Index (32 bits each)

The access descriptors that constitute the processor-interpreted access
part of a domain object are interpreted as follows:

Fault Instruction Object (AD 0)
When a context-level fault occurs, control is transferred by a
branch to bit displacement 64 in the instruction object referenced
by this AD.

Trace Instruction Object (AD· 1)
When a trace event occurs, control is transferred by a branch to
bit displacement 64 in the instruction object referenced by this AD.

TYPE RIGHTS FOR DOMAIN OBJECTS

The type rights in an access descriptor that references a domain object
are uninterpreted by the processor.

9-48

iAPX 432 GDP Object Set

INSTRUCTION OBJECT

An instruction object is represented by a data part that is less than
or equal to 8,192 bytes (65,536 bits) in length. An instruction object
has no processor=i nterpreted access part. When created by software,
the size of an instruction object should be rounded up to a 16-bi t
boundary plus 32 bits. This rounding is needed because the GDP fetches
instructions in 32-bit units aligned on 16-bit boundaries.
Displacement into an instruction object is always measured in bi ts,
since instructions are variable bit-length and are not necessarily an
integral number of bytes.

INSTRUCTION OBJECT (DATA PART)

~~ Instructions

Local Constants DAI

Initial Operand Stack Pointer

Context Access Part Length

Context Data Part Length

I
~

8

6

4

2

0

Byte
Displacement

The information in the first 4 double-byte fields of an instruction
object is called the Instruction Object Header. It is only defined in
instruction objects from which a context may be created on behalf of a
Call instruction. Refinement descriptors with instruction object as
their object type are not supported by the GDP. The fields that
constitute an instruction object are interpreted as follows:

Context Data Part Length (Bytes O - 1)
This 16-bi t field contains a value that is one less than the
length, in bytes, of the context data part. This value must be >=
15.

Context Access Part Length (Bytes 2 - 3)
This 16-bi t field contains a value that is one less than the
length, in bytes, of the context access part. This value must be
>= 63.

Initial Operand Stack Pointer (Bytes 4 - 5)
This 16-bi t field contains a byte displacement into the specific
context data part associated with the invocation of this
instruction object. It is initialized to be the displacement to
the first byte of the operand stack. This value must be even.

9-49

Object Set iAPX 432 GDP

Local Constants DAI (Bytes 6 - 7)
This 16-bi t field contains the domain access index of the AD for
the current object from which data constant operands are accessed.
This DAI specifies the AD to be copied into the Local Constants
location (AD 4) in the context object that is associated with the
invocation of this instruction object.

Instructions
The remaining area of the instruction object is for instructions.
The first ·instruction must start at bit displacement 64.

TYPE RIGHTS FOR INSTRUCTION OBJECTS

The type rights in an access descriptor that references an instruction
object are interpreted as follows:

Type Right 1

Type Right 2

Type Right 3

9-50

Uninterpreted

Trace Rights: If the bit is 1, the instruction
object can be traced.

Uninterpreted

iAPX 432 GDP Object Set

PORT OBJECT

l
I

Message·Queue Entry Area

Port Time

Tail of Message Queue

Head of Message Queue

Head of Free Entry List

Port Status

Object Lock

AD to Head of Carrier Queue

AD to Tail of Carrier Queue

f Message Queue Access Area

l
' 16

10

8

6

4

2

0

0

2
•
~

I

Byte
Displacement

Access Descriptor
Index (32 bits each)

Refinement descriptors with port object as their object type are not
supported by the GDP. The access descriptors that constitute the
processor-interpreted access part of a port object are interpreted as·
follows:

Head of Carrier Queue (AD 0)
This AD references the carrier object at the head of the carrier
queue. If the queue is empty, this AD is null.

Tail of Carrier Queue (AD 1).

This AD references the carrier object at the tail of the carrier
queue. If the queue is empty, this AD is null.

Message Queue Access Area
This is a fixed-length area for access descriptors to message
objects. There is a one-to-one correspondence between these ADs
and the port message queue entries in this port's data part
(described below). If the associated queue entry is a free entry,
its corresponding AD in this access area is null.

9-51

Object Set iAPX 432 GDP

The fields that constitute the processor-interpreted data part of a
port object are interpreted as follows:

Object Lock (Bytes O - 1)
This 16-bi t object lock provides mutually exclusive access to the
port object and all associated blocked carriers. The Object Lock
field is defined for many system objects and is described in the
first part of this chapter.

Port Status (Bytes 2 - 3)
The format of the 16-bit port status field is shown below:

15 2 0

The fields that constitute port status are interpreted as follows:

Port Type (Bits 0 - 1)
This field indicates the port type and determines the message
queuing and dequeuing policy in effect at the port:

00 - FIFO (First In First Out)
01 - Priority
10 - Deadline within Priority
11 - Delay

Head of Free Entry List (Bytes 4 - 5)
This 16-bit field contains the byte displacement into the port data
part of the head of a linked list of free message queue entries.
If there are no free queue entries, this value is zero.

Head of Message Queue (Bytes 6 - 7)
This 16-bit field contains the byte displacement into the port data
part of the first entry in the port message queue.

Tail of Message Queue (Bytes 8 - 9)
This 16-bit field contains the byte displacement into the port data
part of the last entry in the port message queue.

9-52

iAPX 432 GDP Object Set

Port Time (Bytes 10 - 11)
This 16-bi t field contains the processor clock value at the time
the port deadline information was last updated in the message queue.

Message Queue Entry Area (Starting at Byte 16)
This is a fixed-length array of message queue entries containing
both a linked list of free entries and a linked list of port
message queue entries. For each message queue entry (i.e. , for
both message and free entries) there is a corresponding access
descriptor in the message queue access area of this port object.
Both free entries and message queue entries are represented by the
same message queue entry format shown below:

MESSAGE QUEUE ENTRY

Message Queuing Value

Next Entry

6

4

2

0

Byte
Displacement

The fields that constitute a message queue entry are interpreted as
follows:

Next Entry (Bytes O - 1)
This 16-bit field contains the byte displacement into the port
data part to the next queue entry (either free entry or
message queue entry).

Message Queuing Value (Bytes 2 - 5)
This 32-bi t field contains priority and deadline values for
this message queue entry. The message queuing value is not
interpreted for FIFO ports. A message queuing value has the
following format:

31 16

I
Priority

I Deadline

15 0

9-53

Object Set iAPX 432 GDP

For priority and deadline ports, the fields that constitute a
message queuing value are interpreted as follows:

Deadline (Bits O - 15)
This 16-bit field contains a 2' s complement value
(in the range of -2**14 to 2**14-1) representing the
relative deadline of this message queue entry with
respect to the previous message queue entry.

·Priority (Bits 16 - 31)
This 16-bi t value determines the priority order of
message entries in the queue--low values are low
priority. Entries with the same priority are
ordered at insertion by their deadline.

TYPE RIGHTS FOR PORT OBJECTS

The type rights in an access descriptor that references a port object
are interpreted as follows:

Type Right 1

Type Right 2

Type Right 3

9-54

Send Rights: If the bit is 1, a message may be sent
using this port.

Receive Rights: If the bit is 1 , a message may be
received using this port.

Send Process Rights: If the bit is 1, a process may
be forwarded using this port.

iAPX 432 GDP Object Set

CARRIER OBJECT

~

70
~i;~1acement

~ Data Area

Process Fault
Restart Area

Second Port
Queuing Value

Blocked
Queuing Value

Carrier Status

Object Lock

AD to Next Carrier

AD to Current Port

AD to Second Port

AD to Save Port

AD to Second Message

AD to Blocked Message

AD to Incoming Message

AD to Carried Object

AD to PCO

24

22

i6

14

12

10

8

6

4

2

0

0

2

3

4

5

6

1

8

Access Descriptor
Index (32 bits each)

9-55

Object Set iAPX 432 GDP

The access descriptors that constitute the processor-interpreted access
part of a carrier object are interpreted as follows:

Next Carrier (AD 0)
This AD references the next carrier in the carrier queue. This AD
is null if the carrier is not in a carrier queue.

Current Port (AD 1)
This AD references the port at which the carrier is enqueued. This
AD is null if the carrier is not queued at a port.

Second Port (AD 2)
This AD references the second port to which this carrier is
forwarded.

Save Port (AD 3)
This AD is interpreted only in process carriers waiting at the
delay port. When the process carrier is removed from the delay
port, it is forwarded to the port referenced by this AD.

Second Message (AD 4)
This AD references the message used in forwarding this carrier. In
processor and process carriers, this is an AD for the carrier
itself. In surrogate carriers, this AD references a refinement of
the carrier beginning at the incoming message AD location
(described below).

Blocked Message (AD 5)
If this carrier is enqueued as the result of a blocked SEND, this
AD references the message being sent.

Incoming Message (AD 6)
If a message is received, this AD references the message received.

Carried Object (AD 7)
For processor and process carriers, this AD references the
corresponding processor or process object.

PCO (AD 8)

For processor carriers, this AD references the Processor
Communication Object associated with the carried object.

Note that ADs 7 and 8 are not interpreted by the processor in surrogate
carriers.

" ,... c. '}-?U

iAPX 432 GDP Object Set

The fields that constitute the processor-interpreted data part of a
carrier object are interpreted as follows:

Object Lock (Bytes O - 1)
This 16-bit field provides mutually exclusive access to the carrier
object. The Object Lock field is defined for many system objects
and is described in the first part of this chapter;

Carrier Status (Bytes 2 - 3)
The format of the carrier status field is shown below:

15 13 4 3 2 1 0

0

---- Carrier Type
--------- Message Received

Unblocked

'------------------------------------ Processor Type

The fields that constitute carrier status are interpreted as
follows:

Carrier Type (Bits O - 1)
This 2-bit field indicates the type of this carrier:

00 - Processor Carrier.
01 - Process Carrier.
10 - Surrogate Carrier.
11 - Reserved

Message Received (Bit 2)
This bit indicates whether the Incoming Message AD location
contains an AD to a received message:

0 - Carrier object has not received message.
- Carrier object has received message.

Unblocked (Bit 3)
This bit indicates whether this carrier is blocked to receive
a message:

O Carrier is blocked to receive a message.
1 - Carrier is not blocked to receive a message.

Processor Type (Bits 13-15)
This field is only interpreted for processor carriers, in
which case it contains the processor type (GDP or IP, never
All) of the associated processor.

9-57

Object Set iAPX 432 GDP

Blocked Queuing Value (Bytes 4 - 7)
If the carrier is blocked on a SEND, this 32-bit queuing value is
used on its behalf to complete the SEND operation when the carrier
becomes unblocked. This value is updated whenever the carrier is
blocked. The fields in a queuing value are described earlier in
this chapter as part of the port object description.

Second Port Queuing Value (Bytes 8 - 11)
If the carrier is a surrogate or forwarded carrier, this 32-bi t
queuing value is used to complete the SURROGATE SEND or forwarding
operation. This value is supplied by software. The fields in a
queuing value are described earlier in this chapter as part of the
port object description.

Process Fault Restart Area (Bytes 16 - 23)
This 8-byte data area is interpreted by the processor during
process binding to allow restarting a faulted process without
changing the Operand Stack Pointer, Current Instruction Object DAI,
and Instruction Pointer in the current context. It is described in
more detail in the Fault and Trace Reference chapter of this
manual. This field is interpreted only in Process Carriers. It is
reserved in all other types of carriers.

Process Fault Data Area (Bytes 24 - 70)
This 48-byte data area is written by the processor after a process
level fault and can be used by fault handling software. It is
described in the Fault and Trace Reference chapter in this manual.
Th~s field is interpreted only in Process Carriers. It is reserved
in all other types of carriers.

TYPE RIGHTS FOR CARRIER OBJECTS

The type rights in an access descriptor that references a carrier
object are interpreted as follows:

Type Right

Type Right 2

Type Right 3

9-58

Surrogate Rights: If the bit is 1, the carrier may
be used with surrogate instructions.

Uninterpreted

Uninterpreted

iAPX 432 GDP

STORAGE RESOURCE OBJECT

AD to Physical Storage Object

AD to Object Table Header

AD to Storage Claim Object

4

2

0

0

2

3

Object Set

Byte Displacement

Access Descriptor
Index (32 bits each)

Refinement descriptors with storage resource object as their object
type are not supported by the GDP. The access descriptors that
constitute the processor-interpreted access part of a Storage Resource
Object (SRO) are interpreted as follows:

Phvsical Storage Object (AD 0)
This AD references the associated physical storage object used for
heap allocation of storage associated with this SRO.

Object Table Header (AD 1)
This AD references the object table header used for heap allocation
of object descriptors associated with this SRO.

Storage Claim Object (AD 2)
This AD references the associated storage claim object used for
heap allocation from this SRO. A null AD is interpreted as an
infinite storage claim.

The fields that constitute the processor-interpreted data part of a
storage resource object are interpreted as follows:

Allocation Level (Bytes 2 - 3)
This 16-bi t field is used when an object descriptor is allocated
from the object table associated with the SRO. The 16-bit
Allocation Level is used to initialize the level field of the newly
allocated object descriptor.

9-59

Object Set iAPX 432 GDP

TYPE RIGHTS FOR STORAGE RESOURCE OBJECTS

The type rights in an access descriptor that references a storage
resource object are interpreted as follows:

Type Right 1

Type Right 2

Type Right 3

Create Rights: If the bit is 1, physical storage
and/or object descriptor space may be allocated for
object creation from the SRO.

Uninterpreted

Uninterpreted

iAPX 432 GDP

STORAGE CLAIM OBJECT

4

2

0

0

Object Set

Byte Displacement

Access Descriptor
Index (32 bits each)

Storage Claim Objects (SCOs) consist of only a data part that is
interpreted by the processor. The fields that constitute the data part
of a storage claim object are interpreted as follows:

Storage Claim (Bytes O - 3)
This 32-bit integer indicates the number of bytes of storage
(including each allocated segment's prefix and pad) that can be
allocated using an SRO. The amount of allocated storage is
indivisibly subtracted from the storage claim by the processor.when
storage is allocated from the PSO associated with the SRO. When
storage allocated using this claim object is deallocated, system
software should add back the amount of deallocated storage to the
storage claim.

TYPE RIGHTS FOR STORAGE CLAIM OBJECTS

The type rights in an access descriptor that references a storage claim
object are uninterpreted by the processor.

9-61

Object Set

Storage Specification Area

iAPX 432 GDP

PHYSICAL STORAGE OBJECT

Byte Displacement

16

14

12

10

8

6

4

2

0

0

Access Descriptor
Index (32 bits each)

Physical Storage Objects (PSOs) consist of only a data part that is
interpreted by the processor. The fields that constitute the
processor-interpreted data part of a physical storage object are
interpreted as follows:

Object Lock (Bytes O - 1)
This 16-bit object lock provides mutually exclusive access to this
physical storage object. The object lock field is defined for many
system objects and is described in the first part of this chapter.

Beginning Block Index (Bytes 2 - 3)
This 12-bit field contains an index into this physical storage data
part to the first storage block specifier located in the Storage
Specification Area. The value in this field counts 16-byte storage
block specifiers and must be>= 1.

Current Block Index (Bytes 4 - 5)
This 12-bit field contains an index into this physical storage data
part to the storage block specifier at which the rotating first-fit
search starts for the next storage allocation cycle. The value in
this field counts 16-byte storage block specifiers and must be >=
1.

9-62

iAPX 432 GDP Object Set

Storage Specification Area (Beginning at Byte 16)
This area contains an array of 16-byte storage block specifiers
used for allocation from this physical storage object. The array
can vary in size. There can only be one storage block specifier
active at a time in a PSO that is used for the current process
allocation stack. This single storage block specifier is indexed
by the same value in both the Beginning Block Index and Current
Block Index fields of this PSO. A storage block specifier
represents an available block of storage and has the following
format:

STORAGE BLOCK SPECIFIER

127 96

66
Last Block
Dirty

c.
0,:) 32

I Ending Address

Beginning Address I 32 bits

32 bits

31 0

The fields that constitute
interpreted as follows:

a storage block specifier are

Beginning Address (Bits O - 31)
This 32-bi t field contains the physical address (in bytes in
the storage address space) for the first byte of the block of
available storage defined by this storage block specifier.
The value must be <= 2**24 and must be an integral multiple of
8 Ci.ea, the least-significant 3 bits must be zero).

Ending Address (Bits 32 - 63)
This 32-bi t field contains the physical address of one byte
past the last available byte in the physical storage block
defined by this storage block specifier. The value must be <=
2**24 and must be an integral multiple of 8 (i.e., the
least-significant 3 bits must be zero).

9-63

Object Set iAPX 432 GDP

Last Block (Bit 64)
This bit indicates whether this storage block specifier is the
last one in this physical storage object:

0 - Not last storage block specifier
1 - Last storage block specifier

Dirty (Bit 6 5)
This bit indicates whether memory allocated using this storage
block specifier needs to be initialized to zero:

0 - No initialization to zero (block already zeroed)
1 - Initialize to zero

TYPE RIGHTS FOR PHYSICAL STORAGE OBJECTS

The type rights in an access descriptor that references a physical
storage object are uninterpreted by the processor.

9-64

iAPX 432 GDP

TYPE DEFINITION OBJECT

Access Descriptor

Access Descriptor

Access Descriptor

Object Set

Byte Displacement

0

0

2

Access Descriptor
Index (32 bits each)

Type Definition Objects (TDOs) contain access descriptors for domains
and other objects used to manage object instances of the dynamic type
defined by this TDO.

TYPE RIGHTS FOR TYPE DEFINITION OBJECTS

The type rights in an access descriptor that references .a type
definition object are uninterpreted by the processor.

9-65

Object Set

0

0

iAPX 432 GDP

DYNAMIC TYPE OBJECT

Byte Displacement

Access Descriptor
Index (32 bits each)

Dynamic Type Objects (DTOs) represent an instance of the Dynamic Type
defined by the Defining TDO. They contain no predefined,
processor-interpreted fields.

TYPE RIGHTS FOR DYNAMIC TYPE OBJECTS

The type rights in an access descriptor that references a dynamic type
object are uninterpreted by the processor.

9-66

iAPX 432 GDP

TYPE CONTROL OBJECT

TYPE CONTROL OBJECT (ACCESS PART)

AD to Defining TDO 0

Object Set

Access Descriptor
Index (32 bits each)

Refinement descriptors with type control object as their object type
are not supported by the GDP. The access descriptors that constitute
the processor-interpreted access part of a Type Control Object (TCO)
are interpreted as follows:

Defining TDO (AD 0)
If the Dynamic/System bit is 0, this AD must be null. If the
Dynamic/System bit is 1, this AD references a defining type
definition object for the dynamic type.

TYPE CONTROL OBJECT (DATA PART)

31 20 19 18 17 16

x x x x 2

Delete Rights
Unchecked Copy Rights
Read Rights
Write Rights

15 8 7 5 4 3 0

8 bits x 0

Dynamic/System
Type Rights
Type Testing Control
Object Type

9-67

Object Set iAPX 432 GDP

Different TCO fields are used by the AMPLIFY RIGHTS, CREATE TYPED
OBJECT, and CREATE TYPED REFINEMENT operators. The fields that
constitute the processor-interpreted data part of a type control object
are interpreted as follows:

Dynamic/System (Bit 0)
If this bit is 1, the TCO is for a user dynamic type object.
Otherwise, the TCO is for a system object.

Type Rights (Bits 1 - 3)
Delete Rights (Bit 16)
Unchecked Copy Rights (Bit 17)
Read Rights (Bit 18)
Write Rights (Bit 19)

During rights amplification of an AD, these values are logically
ORed to their corresponding rights fields in the access descriptor
to be amplified.

Type Testing Control (Bit 4)
This bit is interpreted during an AMPLIFY RIGHTS instruction as
follows:

0 - This TCO can be used to amplify any access descriptor.
- This TCO can only be used to amplify access descriptors

for objects whose object type matches that specified in
the Object Type field of this TCO.

Object Type (Bits 8 - 15)
This 8-bit field is interpreted the same as the corresponding field
in object descriptors. In typed object creation, the Object Type
field in this TCO is written to the corresponding field in the new
OD for the object being created. In amplification, these fields
are used in type testing control (see the Type Testing Control
field described above). In refinement creation, this field defines
the object type of the source object from which the refinement is
obtained and also defines the object type of the newly created
refinement.

TYPE RIGHTS FOR TYPE CONTROL OBJECTS

The type rights in an access descriptor that references a type control
object are interpreted as follows:

Type Right

Type Right 2

Type Right 3

Create Rights: If the bit is 1, the TCO may be used
in typed object creation.

Amplify Rights: If the bit is 1, the TCO may be used
in rights amplification.

Refine Rights: If the bit is 1, the TCO may be used
in typed refinement creation.

CHAPTER 10
OPERATOR SET

This chapter defines the operator set of the iAPX 432 General Data
Processor. Each GDP operator description specifies the operator
encoding and describes the operands required in an instruction using
the operator. The algorithmic action of each operator is also
described.

FUNCTIONAL INDEX OF OPERATORS

In the following functional index of operators, the GDP operators are
functionally grouped in operator Identification Number order. The
opera tor ID/! precedes each operator name.. Some functional groupings
begin with a set of sub-operator procedures that are used later in the
actual operator descriptions of that group. Operators marked with an
asterisk (*) are identical to operators with the same assigned ID/I and
are specified by the same Class and Opcode fields. Operators marked
with a double asterisk (**) do not have a unique operator IDll. They
are classified as absolute branches and relative branches. Absolute
branches have an operator IDll of 254, while relative branches have an
operator ID# of 255.

DATA OPERATORS

Character Operators Mnemonic Page

1 Move Character . MOV c 10-15
2 Zero Character ZRO-C 10-15
3 One Character . ONE C 10-15
4 Save Character SAV c 10-15

5 AND Character . AND c 10-16
6 Inclusive OR Character IOR-C 10-16
7 Exclusive OR Character XORC 10-16
8 Equivalence Character EQV_C 10-16
9 NOT Character . NOT C 10-17

10 Add Character . ADD C 10-17
11 Subtract Character . SUB c 10-17
12 Increment Character INC-C 10-17
13 Decrement Character . DEC C 10-17

10-1

Operator Set

14
15
16
17
18
19

Equal Character ••••••••••••••••••••••••• EQL C
Not Equal Character ••••••••••••••••••••• NEQ-C
Equal Zero Character•••••••••••••••••••• EQZ-C
Not Equal Zero Character •••••••••••••••• NEZ-C
Less Than Character••••••••••••••••••••• LSS-C
Less Than or Equal Character •••••••••••• LEQ=C

iAPX 432 GDP

10-18
10-18
10-18
10-18
10-19
10-19

20 Convert Character to Short Ordinal •••••• CVT C SO •••• 10-19
21 Convert Character to Integer •••••••••••• CVT CI 10-19

Short-Ordinal Operators

* 22
* 23
* 24
* 25

26
27
28
29
30

31
32
33

34
35
36
37
38
39
40

* 41
* 42
* 43
* 44

10-2

45
46

47

Move Short Ordinal
Zero Short Ordinal
One Short Ordinal •••••••••••••••••••••••
Save Short Ordinal

AND Short Ordinal • ••••••••••••••••••••••
Inclusive OR Short Ordinal

MOV SO
ZRO-SO
ONE-SO
SAV-SO

Exclusive OR Short Ordinal ••••••••••••••XOR SO
Equivalence Short Ordinal ••••••••••••••• EQV SO
NOT Short Ordinal •••••••••••••••••••••••NOT-SO

Extract Short Ordinal •••••••••••••••••••EXT SO
Insert Short Ordinal ••••••••••••••••••••INS SO
Significant Bit Short Ordinal ••••••••••• SIG-SO

Add Short Ordinal •••••••••••••••••••••••ADD SO
Subtract Short Ordinal •••••••••••••••••• SUB SO
Increment Short Ordinal••••••••••••••••• INC-SO
Decrement Short Ordinal •••••••••••••••••
Multiply Short Ordinal ••••••••••••••••••
Divide Short Ordinal ••••••••••••••••••••
Remainder Short Ordinal

Equal Short Ordinal •••••••••••••••••••••
Not Equal Short Ordinal •••••••••••••••••
Equal Zero Short Ordinal••••••••••••••••
Not Equal Zero Short Ordinal••••••••••••
Less Than Short Ordinal •••••••••••••••••
Less Than or Equal Short Ordinal

DEC SO
MULSO
DIV-SO
REM-SO

EQL SO
NEQ-SO
EQZ-SO
NEZ-SO
LSS-SO
LEQ=SO

......

......

......

......

......
Convert Short Ordinal to Integer CVT SO I

10-20
10-20
10-20
10-20

10-21
10-21
10-21
10-21
10-22

10-22
10-22
10-22

10-23
10-23
10-23
10-23
10-23
10-24
10-24

10-24
10-24
10-24
10-25
10-25
10-25

10-25

iAPX 432 GDP

Short-Integer Operators

* 22
* 23
* 24
* 25

48
49
50
51
52
53
54
55

* 41
* 42
* 43
* 44

56
57
58
59
60

Move Short Integer
Zero Short Integer
One Short Integer
Save Short Integer

.

......................

MOV SI
ZRO-SI
ONE-SI
SAV-SI

Add Short Integer••••••••••••••••••••••• ADD SI
Subtract Short Integer •••••••••••••••••• SUB-SI
Increment Short Integer ••••••••••••••••• INC SI
Decrement Short Integer ••••••••••••••••• DEC-SI
Negate Short Integer•••••••••••••••••••• NEG-SI
Multiply Short Integer •••••••••••••••••• MU~SI
Divide Short Integer ••••••••••••••••••••DIV-SI
Remainder Short Integer ••••••••••••••••• REM-SI

Equal Short Integer ••••••••••••••••••••• EQL SI
Not Equal Short Integer ••••••••••••••••• NEQ=SI
Equal Zero Short Integer •••••••••••••••• EQZ_SI
Not Equal Zero Short Integer •••••••••••• NEZ SI
Less Than Short Integer ••••••••••••••••• LSS-SI
Less Than or Equal Short Integer •••••••• LEQ-SI
Positive Short Integer •••••••••••••••••• PTV-SI
Negative Short Integer •••••••••••••••••• NTV SI
Move in Range Short Integer •••••••••••••MIR-SI

Operator Set

......

......

......

......

......

......

10-26
10-26
10-26
10-26

10-27
lf'l-'>7
.i.v-'-'

10-27
10-27
10-27
10-28
10-28
10-28

10-28
10-29
10-29
10-29
10-29
10-30
10-30
10-30
10-30

61 Convert Short Integer to Integer CVT SI I 10-31

Ordinal Operators

* 62
* 63
* 64
* 65

66
67
68
69
70

71
72
73

74
75
76
77
78
79
80
81

Move Ordinal
Zero Ordinal

............................
One Ordinal •••••••••••••••••••••••••••••
Save Ordinal
AND Ordinal •••••••••••••••••••••••••••••
Inclusive OR Ordinal .

MOV 0
ZR0-0
ONE-0
SAV-0

Exclusive OR Ordinal•••••••••••••••••••• XOR 0
Equivalence Ordinal ••••••••••••••••••••• EQV-0
NOT Ordinal••••••••••••••••••••••••••••• NOT-0

Extract Ordinal •••••••••••••••••••••••••EXT 0
Insert Ordinal •••••••••••••••••••••••••• INS-0
Significant Bit Ordinal ••••••••••••••••• SIG-0

Add Ordinal
Subtract Ordinal ••••••••••••••••••••••••
Increment Ordinal
Decrement Ordinal

.......................
Multiply Ordinal ••••••••••••••••••••••••
Divide Ordinal ••••••••••••••••••••••••••
Remainder Ordinal •••••••••••••••••••••••
Index Ordinal •••••••••••••••••••••••••••

ADD 0
SUBO
INC 0
DEC-0
MUL-0
DIV-0
REM 0
IDX-0

.......

.......

.......

.......

.......

.......

.......

.......

10-32
10-32
10-32
10-32

10-33
10-33
10-33
10-33
10-34

10-34
10-34
10-34

10-34
10-35
10-35
10-35
10-35
10-35
10-36
10-36

10-3

Operator Set iAPX 432 GDP

* 82
* 83
* 84
* 85

86
87

* 88
89

Integer

* 62

* 63

* 64

* 65

90
91
92
93
94
95
96
97

* 82
* 83
* 84
* 85

98
99

100
101
102

103
104
105

* 88
106

10-4

Equal Ordinal •••••••••••••••••••••••••••
Not Equal Ordinal •••••••••••••••••••••••
Equal Zero Ordinal••••••••••••••••••••••
Not Equal Zero Ordinal ••••••••••••••••••
Less Than Ordinal•••••••••••••••••••••••
Less Than or Equal Ordinal ••••••••••••••

EQL 0
NEQ-0
EQZ=O
NEZ 0
LSS-0
LEQ=O

CVT 0

.......
I Convert Ordinal to Integer ••••••••••••••

Convert Ordinal to Temporary Real ••••••• CVT-0-TR

Operators

Move Integer MOV I
Zero Integer ZRO-I
One Integer ONE I
Save Integer SAV-I

Add Integer ADD I
Subtract Integer SUB-I
Increment Integer INC-I
Decrement Integer DEC-I
Negate Integer NEG-I
Multiply Integer MUL-I
Divide Integer DIV-I
Remainder Integer REM-I

Equal Integer••••••••••••••••••••••••••• EQL I
Not Equal Integer ••••••••••••••••••••••• NEQ=I
Equal Zero Integer •••••••••••••••••••••• EQZ_I
Not Equal Zero Integer •••••••••••••••••• NEZ I
Less Than Integer••••••••••••••••••••••• LSS I
Less Than or Equal Integer •••••••••••••• LEQ=I
Positive Integer •••••••••••••••••••••••• PTV I
Negative Integer •••••••••••••••••••••••• NTV-I
Move in Range Integer •••••••••••••••••••MIR-I

.

.

Convert
Convert
Convert
Convert
Convert

Integer
Integer
Integer
Integer
Integer

to Character •••••••• CVT IC •••••
to Short Ordinal ••••••••• CVT-I-SO
to Short Integer •••••••• CVT-I-SI ••••
to Ordinal • • • • • • • • • • • • • • CVT I 0 •••••
to Temporary Real

10-37
10-37
10-37
10-37
10-38
10-38

10-38
10-38

10-39
10-39
10-39
10-39

10-40
10-40
10-40
10-40
10-40
10-41
10-41
10-41

10-41
10-42
10-42
10-42
10-42
10-43
10-43
10-43
10-43

10-44
10-44
10-44
10-44
10-44

iAPX 432 GDP Operator Set

Short-Real Operators

*
*
*

62
63
65

107
108
109
110
111
112
113
114
llS
116
117
118
119
120

121
122
123
124
125
126

12 7

Move Short Real .
Zero Short Real ••••••••iio••••=•=====:eeee
Save Short Real .
Md Short· Real ... _ ..
Add Temporary Real to Short Real ••••••••
Add Shor_t Real to Temporary Real ••••••••
Subtract Short Real •••••••••••••••••••••

MOV SR
ZROSR
SAV-SR
ADD SR
ADD-TR SR •••
ADD-SR-TR •••
SUB-SR-••••••

Subtract Temporary Real from Short Real • SUB-TR SR •••
Subtract Short Real from Temporary Real. SUB-S~TR •••
Multiply Short Real ••••••••••••••••••••• MUi:-sR-••••••
Multi ply Temporary Real by Short Real ••• MUL-TR SR •••
Multiply Short Real by Temporary Real ••• MUL-SR-TR •••
Divide Short Real •••••••••••••••••••=••e DIV-S~ ••••••
Divide Temporary Real into Short Real ••• DIV-TR SR
Divide Short Real into Temporary Real ••• DIV-SR-TR •••
Negate Short Real ••••••••••••••••••••••• NEG-SR-••••••
Absolute Value Short Real••••••••••••••• ABS-SR ••••••

Equal Short Real . EQL SR
Equal Zero Short Real EQZ~)R

10-45
10-45
10-45

10-46
10-46
10-46
10-46
10-47
10-47
10-47
10-47
10-48
10-48
10-48
10-48
10-49
10-49

10-49
10-49

Less Than Short Real LSS SR • •••••. 10-49
Less Than or Equal Short Real LEQ-SR 10-50
Positive Short Real . PTV-SR 10-50
Negative Short Real NTV SR 10-50

Convert Short Real to Temporary Real •••• CVT SR TR 10-50

Real Opera tors

128
12 9
130

Move
Zero
Save

Real .
Real .
Real .

MOV R 10-51
ZRO-R 10-51
SAV-R 10-51

131 Add Real •••••••• •••••••• ••• •••••• ••••••. ADD R ••••••• 10-52
132 Add Temporary Real to Real ••••••••••••••ADD-TR R 10-52
133 Add Real to Temporary Real •••••••••••••• ADD-R TR •••• 10-52
134 Subtract Real••••••••••••••••••••••••••• SUB R ••••••• 10-52
135 Subtract Temporary Real from Real ••••••• SU~TR R •••• 10-53
136 Subtract Real from Temporary Real ••••••• SUB-R TR •••• 10-53
137 Multiply Real ••••••••••••••••••••••••••• MUL-~ ••••••• 10-53
138 Multiply Temporary Real by Real ••••••••• MUL-TR R 10-53
139 Multiply Real by Temporary Real ••••••••• MUL R TR •••• 10-54
140 Divide Real ••••••••••••••••••••••••••••• DIV-R-••••••• 10-54
141 Divide Temporary Real into Real ••••••••• DIV~TR R 10-54
142 Divide Real into Temporary Real••••••••• DIV R TR •••• 10-54
143 Negate Real ••••••••••••••••••••••••••••• NEG-R-••••••• 10-55
144 Absolute Value Real••••••••••••••••••••• ABS-R ••••••• 10-55

10-5

Operator Set iAPX 432 GDP

145 Equal Real
146 Equal Zero Real
147 Less Than Real
148 less Than or Equal Real
149 Positive Real
150 Negative Real •
151 Convert Real to Temporary Real

Temporary-Real Operators

152
15 3
154

155
156
157
158
159
160
161
162

163
164
165
166
167
168

169
170
171
172

Move Temporary Real
Zero Temporary Real
Save Temporary Real

.....................

Add Temporary Real ••••••••••••••••••••••
Subtract Temporary Real•••••••••••••••••
Multiply Temporary Real •••••••••••••••••
Divide Temporary Real•••••••••••••••••••
Remainder Temporary Real ••••••••••••••••
Negate Temporary Real•••••••••••••••••••
Square Root Temporary Real ••••••••••••••
Absolute Value Temporary Real •••••••••••

Equal Temporary Real .
Equal Zero Temporary Real
less Than Temporary Real
Less Than or Equal Temporary Real
Positive Temporary Real
Negative Temporary Real
Convert Temporary Real to Ordinal
Convert Temporary Real to Integer
Convert Temporary Real to Short Real
Convert Temporary Real to Real

OBJECT OPERATORS

Sub-Operator Procedures

EQL R
EQZR
LSS-R
LEQ-R
PTV-R
NTVR
CVT R TR

MOV TR
ZRO TR
SAV-TR

ADD TR
SUB-TR
MUL-TR
DIV-TR
REM-TR
NEG-TR
SQT-TR
ABS TR

EQL TR
EQZ-TR
LSS-TR
LEQ-TR
PTV-TR
NTV TR

......

......

......

......
CVT TR 0 ••••
CVT-TR-I ••••
CVT-TR-SR •••
CVT-TRR

Set Copied ••
level Check •••
St ore AD •• • • • • • • • •
Object I.ocking ••
OD Allocation •••
Segment Allocation ••

10-6

10-55
10-55
10-55
10-56
10-56
10-56

10-56

10-57
10-57
10-57

10-58
10-58
10-58
10-58
10-59
10-59
10-59
10-59

10-60
10-60
10-60
10-60
10-61
10-61

10-61
10-61
10-62
10-62

10-63
10-63
10-63
10-63
10-64
10-64

iAPX 432 GDP Opera tor Set

Branch Operators

**
**
**

17 3
174
17 5
i76
177

Branch
Branch
Branch
Branch

..............................
True •••••••••••••••••••••••••
False ••••••••••••••••••••••••
Indirect •••••••••••••••••••••

BR ••••••••••• ~ ••
BR T ••••••••••••
BRF ••••••••••••
BRINDIRECT ••••••

Branch Intersegment ••••••••••••••••• BR-ISEG •••••••••
Branch Intersegment without Trace .. ~ .. BR-ISEG WO TRACE
Branch Intersegment and Link••••••••

10-65
10-65
10-65
10-66
10-66
10-66
1,.. £"'7
.tv-01

Breakpoint ••••••••••••••••••••••••••• BREAKPOINT •••••• 10-67

Access Descriptor Operators

178
179

Copy Access Descriptor
Null Access Descriptor COPY AD

NULL-AD 10--68
10-68

Type and Rights Operators

180 Amplify Rights•••••••••••••••••••••• AMPLIFY RIGHTS •• 10-69
181 Restrict Rights ••••••••••••••••••••• RESTRICT RIGHTS • 10-70
182 Retrieve Type Definition•••••••••••• RETRIEV~TYP DEF 10-71

Refinement Operators

183 Create Refinement •••••••••••••••••••CREATE RFN •••••• 10-72
184 Create Typed Refinement ••••••••••••• CREAT~TYPED RFN 10-74

Object Creation Operators

185
186

Create Object
Create Typed Object CREATE OBJ•••••• 10-76

CREATE-TYPED OBJ 10-77

Access Inspection Operators

* 187 Inspect Access Descriptor INSPECT AD
188 Inspect Object . INSPECT-OBJ
189 Equal Access . EQL ACCESS
190 Move to Fm.bedded Data Value MOV-TO EDV

* 187 Move from Fm.bedded Data Value MOV-FM-EDV

Access Interlock Operators

191
192
193
194
195
196

Lock Object •••••••••••••••••••••••••LOCK OBJ••••••••
Unlock Object ••••••••••••••••••••••• UNLOCK OBJ ••••••
Indivisibly Add Short Ordinal ••••••• INDIV ADD SO ••••
Indivisibly Add Ordinal ••••••••••••• INDIV-ADD-0 •••••
Indivisibly Insert Short Ordinal •••• INDIV-INS-SO ••••
Indivisibly Insert Ordinal •••••••••• INDIV-INS-0

10-78
10-78
10-79
10-79
10-79

10-80
10-80
10-81
10-81
10-82
10-82

10-7

Operator Set iAPX 432 GDP

Context Operators

Sub-Operator Procedures:
ENV En try•...•....•••••..••..•.....•.......••...•....
Context Call ...
Operators:

197 Enter Environment 1 ••••••••••••••••
198 Enter Environment 2 ••••••••••••••••
199 Enter Environment 3 ••••••••••••••••
200 Copy Process Globals •••••••••••••••
201 Set Context Mode •••••••••••••••••••
202 .Adjust Stack Pointer •••••••••••••••
203 Call
204
205
206

Call Through Domain •••••••••••••••••
Re turn •••••••••••••••••••••••••••••
Return and Fault •••••••••••••••••••

Process Communication Operators

Sub-Operator Procedures:

ENTER ENV 1
ENTER-ENV-2
ENTER ENV 3 •••••••
COPY PRCS-GLOBALS •
SET CTXT MODE •••••
ADJ SP ••••••••••••
CALL ••••••••••••••
CALL THRU DOMAIN ••
RET •••••••••••••••
RET FAULT

Enqueue Message ••
I>equeue Message ••
Enqueue Carrier ••
I>e queue Carrier ••
Forward Carrier ••
Surrogate Common •••
Send Common ••
Receive Common •••

Operators:
207 Send .
208
209
210
211
212
213
214
215
216

Receive ••••••••••••••••••••••••••••
Conditional Send •••••••••••••••••••
Conditional Receive ••••••••••••••••
Surrogate Send •••••••••••••••••••••
Surrogate Receive ••••••••••••••••••
Delay Process ••••••••••••••••••••••
Send Process •••••••••••••••••••••••
Set Process Mode•••••••••••••••••••
Read Process Clock •••••••••••••••••

Processor Communication Operators

10-8

217
218

Send to Processor ••••••••••••••••••
Read Processor Status ••••••••••••••

SEND ••••••••••••••
RECEIVE •••••••••••
COND SEND•••••••••
COND-RECEIVE ••••••
SUR SEND••••••••••
SUR~CEIVE •••••••
DELAY PRCS ••••••••
SEND PRCS •••••••••
SET PRCS MODE •••••
READ PRCS CLOCK

SEND PSOR •••••••••
READ-PSOR STATUS

10-83
10-83

10-85
10-85
10-85
10-86
10-86
10-86
10-87
10-87
10-88
10-88

10-89
10-89
10-90
10-90
10-90
10-90
10-91
10-92

10-93
10-94
10-95
10-96
10-97
10-98
10-99
10-100
10-100
10-101

10-102
10-103

iAPX 432 GDP Operator Set

Interconnect Operators

219 Move to Interconnect
220 Move from Interconnect

MOV TO ICT
MOV FM ICT

....... 10-104
10-104

Block Move Operator

222 Block Move BLK MOV •••••••••• 10-105

OPERATOR DESCRIPTIONS

This section contains the operator descriptions for the GDP operator
set. Each description includes the number and type of required
operands and a commentary on the operation performed. The descriptions
do not include full details on faulting. See the Fault and Trace
Reference chapter of this manual for ,the descriptions of faults for
each operator.

Each operator is described using a table of the following form:

OPERATOR NAME OPERATOR MNEMONIC

I ID# I Operands I
1-----1-1----2----3--1
I I I I I

I Opcode I Reference I Format I Class I
1----------1-----------1----------1----------1
I I varies I varies I I

The table is split into two parts. The first part characterizes the
operator by describing the order and type of operands it requires. -me
second part of the table shows the binary format of an instruction that
encodes the operator. The binary values given for the Class and Opcode
fields together uniquely determine a given operator. The Format and
Reference fields are included for the sake of completeness--their
actual binary encodings vary depending on the operand locations and the
kind of operand addressing intended.

The labels for the columns in these tables have the following meaning:

ID/I
--This decimal number is an identifier number for the operator.

Though it is not encoded in instructions, this number is used to
identify each GDP opera tor. For example, it is generated by the
processor to indicate (in fault data areas) the operator that was
executing when a fault occurred.

Operands
The term operand has a precise meaning in this manual. See the
Instruction Interface chapter of this manual for more details. Up
to three operands are required for each operator. Operands are
either explicitly or implicitly specified in an instruction and are
addressed through the operand addressing mechanism of the GDP.
Operands always reside in the data parts of objects. For a given
instruction, the operand(s) are never encoded into the instruction
stream as literals.

10-9

Operator Set iAPX 432 GDP

They are explicitly specified by a Data Reference field or implicitly
specified by a particular Format field encoding. An implicit r.eference
always specifies the current context's operand stack for the
corresponding operand. In a particular instruction, the mapping of
data references to operands is defined by the Format field in that
instruction. A table of Format field encodings is included in the
Instruction Encoding chapter of this manual.

Abbreviations are used in the operator tables to indicate operand
types. These operand types are briefly described later in this
chapter. The following abbreviations are used:

Class

as Access Selector (16 bits)
b Boolean (8 bits)
bfs Bit-Field Specifier (16 bits)
c Character (8 bits)
dai Domain Access Index (16 bits)
i Integer (32 bits)
o Ordinal (32 bits)
pd Packed Double-word (64 bits)
pw Packed Word (32 bits)
r Real (64 bits)
si Short Integer (16 bits)
so Short Ordinal (16 bits)
sr Short Real (32 bits)
tr Temporary Real (80 bits)

This field in an instruction consists of a variable-length bit
string that is the class encoding for the given operator. All
digits shown are significant and constitute the actual bit field
encoded in the instruction for that operator.

Format
This field in an instruction consists of a variable-length bit
string that is the format encoding. The specific encoding of the
field varies depending on the order of the specific operator and the
intended mapping of operand references in a given instruction. A
table of format field encodings is included in the Instruction
Composition chapter of this manual.

Reference
TI>.is field in an instruction contains 0 to 3 data references for the
operands of the instruction. It can also contain O or 1 data
references followed by a branch reference. nie specific encoding of
the field varies depending on the intended operand addressing modes
for each operand. A description of reference field formats and
encodings is included in the Instruction Composition chapter of this
manual.

Opcode
This field in an instruction consists of a variable-length bit
string that is the opcode encoding for the given operator. All
digits shown are significant and constitute the actual bit field
encoded in the instruction for that operator.

10=10

iAPX 432 GDP Operator Set

OPERAND TYPES

The types of operands that can be referenced in GDP instructions are
briefly described in this section. For further details about the
interpretation of those operand types that are also data types, see the
Computational Data Types chapter of this manual.

as ACCESS SELECTOR (16 bits)
Access selectors select an AD in the access environment of the
current context. Access selector operands have the following
format:

2 0

14 bits XX

ENV Selector
00 for Current Context (Environment O)
01 for Environment 1
10 for Environment 2
11 for Environment 3 ._.___________ Access Index

b BOOLEAN (8 bits)

This value indexes into the selected
Environment to select an AD

A boolean is a value of type character that is used to represent
logical TRUE or FALSE. TRUE is represented by xxxxxxx1 and FALSE
by xxxxxxxO (with the x bits being uninterpreted don't care
bits).

bfs BIT-FIELD SPECIFIER (16 bits)
A bit-field specifier specifies a field of bits to be manipulated
within an ordinal or short-ordinal operand. A bit-field specifier
consists of two adjacent bytes as shown below:

15 8 7 0

,._ ___ Beginning Bit Number
---------- Bit Field Width

10-11

Operator Set iAPX 432 GDP

For short-ordinal bit-manipulation operators, only the low-order 4
bits of these bytes are interpreted by the GDP during execution.
For ordinal bit-manipulation operators, only the low-order 5 bits
of these bytes are interpreted by the GDP during execution. The
first byte specifies the beginning bit of the field. The second
(next higher-addressed) byte of a bfs specifies one less than the
nt1Dber of bi ts in the field. Thus a bit field within a short
ordinal can contain from 1 to 16 bits; within an ordinal, from 1
to 32 bits. Bit fields that extend past the most significant bit
of the short ordinal or ordinal containing them "wrap around."
For example, a 4-bi t field beginning at bit 14 within a short
ordinal contains bits 14, 15, O, and 1 (LSB to MSB).

c CHARACTER (8 bits)
These 8-bit operands are used to represent booleans, text
characters, or unsigned integers in the range O to 255.

7 0

1 I
dai DOMAIN ACCESS INDEX (16 bits)

A domain access index selects an access descriptor in the defining
domain of the current context. Only the upper 14 bi ts are used
for the AD index. The lower 2 bits are masked out. DAis have the
following format:

15 2 0

14 bits xx

i INTEGER (32 bits)

Masked Out
------------- Access Index

These 32-bit operands represent signed integer values in the range
-2,147,483,648 to 2,147,483,647 in 2's complement form.

31 0

I
o ORDINAL (32 bits)

10-12

These 32-bi t operands represent unsigned integer values in the
range 0 to 4,294,967,295, or bit strings of 32 bits or less.

31 0

I

iAPX 432 GDP Operator Set

pd PACKED DOUBLEWORD (64 bits)
Packed doublewords consist of four 16-bi t parts. Each part can
contain one of the other 16-bit operand types. Packed doubleword
operands are required by some object operators.

64 48 47 32 31 16 15 0

I 16 bits I 16 bits 16 bits I 16 bits

pw PACKED WORD (32 bits)
Packed words consist of two 16-bit parts. Each part can contain
one of the other 16-bi t operand types. Packed word operands are
required by some object operators.

31 16 15 0

16 bits 16 bits J
r REAL (64 bits)

These 64-bi t operands represent floating-point numbers. See the
Computational Data Types chapter in this manual for more details.

63 62 52 51 0

s Exponent Fraction I
si SHORT INTEGER (16 bits)

These 16-bit operands represent signed integer values in the range
-32,768 to 32,767 in 2's complement form.

15 0

so SHORT ORDINAL (16 bits)
These 16-bi t operands represent unsigned integer values in the
range 0 to 65,535, or bit strings of 16 bits or less.

15 0

10-13

Operator Set iAPX 432 GDP

sr SHORT REAL (32 bits)
These 32-bi t operands represent floating-point numbers. See the
Computational Data Types chapter in this manual for more details.

31 30 23 22 0

I S I Exponent Fraction I
tr TEMPORARY REAL (80 bits)

These 80-bi t operands represent floating-point numbers. See the
Computational Data Types chapter in this manual for more details.

79 78 64 63 0

I s Exponent I Significand I

10-14

iAPX 432 GDP Operator Set

DATA OPERATORS

CHARACTER OPERATORS

During the exeoution of instructions using these character operators,
if an arithmetic operation produces a result that cannot be represented
in 8 bi ts, the operation is terminated without storing a result, and
the Character Overflow Fault is raised. This occurs for any result < O
or > 255. See the Fault and Trace Reference chapter for more details
on faulting.

MOVE CHARACTER

IDI
..... - -1

1 c

Opcode

00

HOV C

Reference Format Class

varies varies 011110

Character operand 1 is copied to character operand 2. Using the
operand stack for operand 1 results in the classical POP stack
operation, and using the operand stack for operand 2 results in the
classical PUSH stack operation. Using the operand stack as both
operand 1 and operand 2 results in no change.

ZERO CHARACTER ZRO C

ID# I A Ope~ands _ I I Opcode I Reference Format

2 I ~:I::r:J I 0 I varies varies

Class

010110

A character value of zero is stored in operand 1.

ONE CHARACTER ONE C

ID# Operands Opcode Reference Format Class
.... --.... - - ~--.-3

01 varies varies 010110

A character value of one is stored in operand 1.

SAVE CHARACTER SAV C

ID# Opcode Reference Format Class --------1
4 c 11 varies varies 010110

1be character on top of the operand stack is read, without
adjusting the stack, and copied to operand 1. Using the operand
stack for operand 1 results in an operand stack in which the top
two double-byte locations contain the same character value in the
lower byte of each.

10-15

Operator Set iAPX 432 GDP

AND CHARACTER AND C

I Opcode Reference rormat: Class

000 varies varies 011101

Operand 1 is logically ANDed with operand 2. A bit in the result
is set if the corresponding bits of both source operands are set;
otherwise the result bit is cleared. The result is stored in
operand 3.

INCLUSIVE OR CHARACTER IOR C

ID# Opcode Reference Format Class
..---.-1

6 c 100 varies varies 011101

Operand 1 is logically ORed (INCLUSIVE ORed) with operand 2. A bit
in the result is set if either or both corresponding bits in the
source operands are set; otherwise the result bit is cleared. The
result is stored in operand 3.

EXCLUSIVE OR CHARACTER XOR C

I Opcode Reference Format Class
------t-1

7 c 010 varies varies 011101

Operand 1 is logically XORed (EXCLUSIVE ORed) with operand 2. A
bit in the result is set if the corresponding bits in the source
operands contain opposite values (one is set, the other is
cleared); otherwise the result bit is cleared. The result is
stored in operand 3. Note that applying this operator to two
boolean operands produces a boolean result that is the same as if
the two boolean operands are compared for inequality.

EQUIVALENCE CHARACTER EQV_C

ID# Opcode Reference Format Class
..... --.-·1

8 c 110 varies varies 011101

Bitwise logical equivalence is performed between operand 1 and
operand 2. A bit in the result is set if the corresponding bits in
the source operands contain the same value (both are set or both
are cleared); otherwise the result bit is cleared. The result is
stored in operand 3. Note that applying this operator to two
boolean operands produces a boolean result that is the same as if
the two boolean operands are compared for equality.

4" 4 ~
1u-10

iAPX 432 GDP Operator Set

NOT CHARACTER NOT C

Opcode Reference Format Class

10 varies varies 011110

The bitwise logical NOT (1 's complement) of character operand 1 is
stored in character operand 2.

ADD CHARACTER ADD C

ID# Opcode Reference Format Class
._ _ _._1

10 c 001 varies varies 011101

Unsigned 8-bit addition is used to add operand 1 and operand 2.
The result is stored in operand 3.

SUBTRACT CHARACTER SUB C

ID# Operands Opcode Reference Format Class
._ __ .._._1 3

11 c 101 varies varies 011101

Unsigned 8-bit subtraction is used to subtract operand 1 from
operand 2. The result is stored in operand 3.

INCREMENT CHARACTER INC C

!DI Opcode Reference Format Class
.__ _1

12 c 001 varies varies 011110

Operand 1 is read and the value is incremented by one using
unsigned 8-bit addition. The result is stored in operand 2.

DECREMENT CHARACTER DEC C

ID# Opcode Reference Format Class
... - ... -1

13 c 101 varies varies 011110

Operand 1 is read and the value is decremented by one using
unsigned 8-bit subtraction. The result is stored in operand 2.

10-17

Operator Set iAPX 432 GDP

EQUAL CHARACTER EQL_C

ID# Opcode Reference Format Class
.... _ ... _1

14 c 0011 varies varies 011101

An 8-bit comparison is made between operand 1 and operand 2. If
they are equal, the boolean result is TRUE. Otherwise, the result
is FALSE. The boolean result is stored in operand 3. Note that
this operator should not be used to compare two boolean operands.
The EQUIVALENCE CHARACTER operator should be used instead.

NOT EQUAL CHARACTER NEQ_C

ID# Opcode Reference Format Class

15 c 1011 varies varies 011101

An 8-bit comparison is made between operand 1 and operand 2. If
they are not equal, the boolean result is TRUE. Otherwise, the
result is FALSE. The boolean result is stored in operand 3. Note
that this operator should not be used to compare two boolean
operands for inequality. The EXCLUSIVE OR CHARACTER operator
should be used instead.

EQUAL ZERO CHARACTER EQZ_C

ID# Operands Opcode Reference Format Class
__ _, 2 3

16 c b 011 varies varies 011110

An 8-bit comparison is made between operand 1 and a character value
of zero. If they are equal, the boolean result is TRUE.
Otherwise, the result is FALSE. The boolean result is stored in
operand 2. Note that this operator should not be used to compare a
boolean operand to a boolean value of FALSE. The NOT CHARACTER
operator should be used instead.

NOT EQUAL ZERO CHARACTER NEZ C

Opcode Reference Format Class

111 varies varies 011110

An 8-bit comparison is made between operand 1 and a character value
of zero. If they are not equal, the boolean result is TRUE.
Otherwise, the result is FALSE. The boolean result is stored in
operand 2. Note that this operator should not be used to compare a
boolean operand to a boolean value of TRUE. The MOVE CHARACTER
operator should be used instead.

1 f'\ __ 1 Q
1v-1v

iAPX 432 GDP Operator Set

LESS THAN CHARACTER LSS C

IOI Opcode Reference Format Class
~-.... -1

18 c 0111 varies varies 011101

An unsigned 8-bit comparison is made between operand 1 and operand
2. If operand 1 is less than operand 2, the boolean result is
TRUE. Otherwise, the result is FALSE. The boolean result is
stored in operand 3. Note that this operator should not be used to
compare booleans. The logical character operators should be used
instead.

LESS THAN OR EQUAL CHARACTER

ID#
t---+-1

c

Opcode Reference

1111 varies

LEQ C

Format Class

varies 011101

An unsigned 8-bit comparison is made between operand 1 and operand
2. If operand 1 is less than or equal to operand 2, the boolean
result is TRUE. Otherwise, the result is FALSE. The boolean
result is stored in operand 3. Note that this operator should not
be used to compare booleans. The logical character operators
should be used instead.

CONVERT CHARACTER TO SHORT ORDINAL CVT C SO

ID# Operar,ids Opcode Reference Format Class
to---t-1 2 3

20 c so none varies varies 111110

Character operand 1 is converted to short-ordinal operand 2.
Operand 1 is moved to the low-order byte of operand 2. The
high-order byte of operand 2 is zeroed.

CONVERT CHARACTER TO INTEGER CVT C I

ID# Opcode Reference Format Class
...... - -1

21 c none varies varies 000001

Character operand 1 is converted to integer operand 2. Operand 1
is moved to the low-order byte of operand 2. The three high-order
bytes of operand 2 are zeroed.

10-19

Operator Set iAPX 432 GDP

SHORT-ORDINAL OPERATORS

During the execution of instructions using these short-ordinal
operators, if any arithmetic operation produces a result that cannot be
represented in 16 bits, the operation is terminated without storing a
result, and the Short Ordinal Overflow Fault is raised. This occurs
for any result < 0 or > 65,535. If the divisor is zero in any divide
or remainder operation, the operation is suppressed, and the Short
Ordinal Divide by Zero Fault is raised. See the Fault and Trace
Reference chapter for more details on faulting.

MOVE SHORT ORDINAL HOV SO

ID# Opcode Reference Format Class
.,_. _ _.,_1

22 0000 varies varies 0100

Short-ordinal operand 1 is copied to short-ordinal operand 2.
Using the operand stack for operand 1 results in the classical POP
stack operation, and using the operand stack for operand 2 results
in the classical PUSH stack operation. Using the operand stack as
both operand 1 and operand 2 results in no change.

ZERO SHORT ORDINAL ZRO SO

IDI Opcode Reference Format Class
..,__ _,

23 000 varies varies 0000

A short-ordinal value of zero is stored in operand 1.

ONE SHORT ORDINAL ONE SO

-
ID# Opcode Reference Format Class

-----..-1
24 0100 varies varies 0000

A short-ordinal value of one is stored in operand 1.

SAVE SHORT ORDINAL SAV SO

ID# Operands Opcode Reference Format Class
.,_ _ _.,_1 2--"'--

25 1100 varies varies 0000

The short-ordinal on top of the operand stack is read, without
adjusting the stack, and copied to operand 1. Using the operand
stack for the operand 1 destination results in an operand stack in
which the top two short-ordinal entries contain the same value.

1 f\ ")('\
1v-c::.v

iAPX 432 GDP Operator Set

AND SHORT ORDINAL AND SO

ID# Operands Opcode Reference Format Class
.,_ _ _,._, 2

26 0000 varies varies 0010

Operand 1 is logically ANDed with operand 2. A bit in the result
is set if the corresponding bits of both source operands are set;
otherwise the result bit is cleared. The result is stored in
operand 3-.

INCLUSIVE OR SHORT ORDINAL IOR SO

-opcode Reference Format Class .,_ _ _,._,
27 1000 varies varies 0010

Operand 1 is logically ORed (INCLUSIVE ORed) with operand 2. A bit
in the result is set if either or both corresponding bits in the
source operands are set; otherwise the result bit is cleared. The
result is stored in operand 3.

EXCLUSIVE OR SHORT ORDINAL XOR SO

I Opcode Reference Format Class
..---.-1

28 0100 varies varies 0010

Operand 1 is logically XORed (EXCLUSIVE ORed) with operand 2. A
bit in the result is set if the corresponding bits in the source
operands contain opposite values (one is set and the other is
cleared); otherwise the result bit is cleared. The result is
stored in operand 3.

EQUIVALENCE SHORT ORDINAL EQV_SO

ID# Opcode Reference Format Class
.._ _ _,._1

29 1100 varies varies 0010

Bitwise logical equivalence is performed between operand 1 and
operand 2. A bit in the result is set if the corresponding bits in
the source operands contain the same value (both are set or both
are cleared); otherwise the result bit is cleared. The result is
stored in operand 3.

10-21

Operator Set iAPX 432 GDP

NOT SHORT ORDINAL NOT SO

ID# Opcode Reference Format Class
...... --.-1

30 1000 varies varies 0100

The bitwise logical NOT (1's complement) of short-ordinal operand 1
is stored in short-ordinal operand 2.

EXTRACT SHORT ORDINAL EXT SO

ID# Operands Opcode Reference Format Class

31
2--·~ ...

0010 varies varies 0010

Operand 2 is a short-ordinal from which a bit field is to be
extracted. Operand 1 is a bit-field specifier that specifies the
field to be extracted. nie extracted bit field is right justified
with high-order zeros to form a short-ordinal result that is stored
in operand 3.

INSERT SHORT ORDINAL INS SO

IDI Opcode Reference Format Class

32 1010 varies varies 0010

Operand 2 is a short-ordinal that contains a right-justified bit
field to be inserted into the destination. Any high-order bits in
operand 2 outside the bit field are ignored. Operand 1 is a
bit-field specifier that specifies the field in the destination
that is replaced by the inserted field. Operand 3 is the
short-ordinal destination.

SIGNIFICANT BIT SHORT ORDINAL SIG SO

Opcode Reference Format Class

0100 varies varies 0100

nie bit number (from 0 to 15) of the most-significant set bit in
short-ordinal operand 1 is determined as a short-ordinal result and
is stored in operand 2. If operand 1 has the value zero, the
result is 16.

10-22

iAPX 432 GDP Operator Set

ADD SHORT ORDINAL ADD SO

Opcode Reference Format Class

0110 varies varies 0010

Unsigned 16-bi t addition is used to add operand 1 and operand 2-.
The result is stored in operand 3.

SUBTRACT SHORT ORDINAL SUB SO

Opcode Reference Format Class

1110 varies varies 0010

Unsigned 16-bi t subtraction is used to subtract operand 1 from
operand 2. 'Ihe result is stored in operand 3.

INCREMENT SHORT ORDINAL

ID#
----.-.-1

6

Operand 1 is read and
unsigned 16-bit addition.

DECREMENT SHORT ORDINAL

ID#
.-.-.... -1

37

INC SO

Opcode Reference Format Class

1100 varies varies 0100

the value is incremented by one
'Ihe result is stored in operand 2.

using

DEC SO

Opcode Reference Format Class

0010 varies varies 0100

Operand 1 is read and the value is decremented by one using
unsigned 16-bit subtraction. 1be result is stored in operand 2.

MULTIPLY SHORT ORDINAL MUL SO

ID# Operands Opcode Reference Format Class
___ ..._1 2 3

38 so 0001 varies varies 0010

Unsigned 16-bit multiplication is used to multiply operand 1 and
operand 2. 'Ihe short-ordinal result is stored in operand 3.

10-23

Operator Set iAPX 432 GDP

DIVIDE SHORT ORDINAL DIV SO

I Opcode Reference Format TI ass
.,_ _ _.,_1

39 1001 varies varies 0010

Unsigned 16-bit division is used to divide operand 1 into operand
2. The 16-bit quotient is stored in operand 3. Note that when the
dividend is not an exact short-ordinal multiple of the divisor, the
quotient is truncated toward zero (e.g., 8 divided by 3 yields 2).

REMAINDER SHORT ORDINAL REH SO

ID# Opcode Reference Format Class
-----.-1

40 0101 varies varies 0010

Unsigned 16-bit division is used to divide operand 1 into operand
2. The 16-bit remainder is stored in operand 3. This operator
performs the MOD function for the source operands.

EQUAL SHORT ORDINAL EQL_SO

ID# Opcode Reference Format Class
..... - -1

41 000 varies varies 111101

A 16-bi t comparison is made between operand 1 and operand 2. If
they are equal, the boolean result is TRUE. Otherwise, the result
is FALSE. The boolean result is stored in operand 3.

NOT EQUAL SHORT ORDINAL NEQ_SO

ID# Opcode Reference Format Class
----..-1

42 100 varies varies 111101

A 16-bi t comparison is made between operand 1 and operand 2. If
they are not equal, the boolean result is TRUE. Otherwise, the
result is FALSE. The boolean result is stored in operand 3.

EQUAL ZERO SHORT ORDINAL EQZ_SO

ID# Operands Opcode Reference rormat; Glass
.,__ 1 2 3

43 so b 00 varies varies 100001

A 16-bi t comparison is made between operand 1 and a short-ordinal
value of zero. If they are equal, the boolean result is TRUE.
Otherwise, the result is FALSE. The boolean result is stored in
operand 2 •

... ,.. "ii
IU-C::::"+

iAPX 432 GDP Operator Set

NOT EQUAL ZERO SHORT ORDINAL NEZ SO

ID# Opcode Reference Format Class -------1
44 10 varies varies 100001

A 16-bi t · comparison is made between operand 1 and a short;..ordinal
value of zero~ If they are not equal; the boolean result is TRUE~
Otherwise, the result is FALSE. The boolean result is stored in
operand 2 ..

LESS THAN SHORT ORDINAL LSS SO

per ands
-------1 2 3

45 so so b

Opcode

010

Reference

varies

Format -class

varies 111101

An unsigned 16-bit comparison is made between operand 1 and operand
2. If operand 1 is less than operand 2, the boolean result is
TRUE. Otherwise, the result is FALSE. The boolean result is
stored in operand 3.

LESS THAN OR EQUAL SHORT ORDINAL LEQ_SO

ID# Opcode Reference Format: Class
..... --+-1

46 so 110 varies varies 111101

An unsigned 16-bit comparison is made between operand 1 and operand
2. If operand 1 is less than or equal to operand 2, the boolean
result is TRUE. Otherwise, the result is FALSE. The boolean
result is stored in operand 3.

CONVERT SHORT ORDINAL TO INTEGER CVT SO I

4

Opcode Re Terence Format: Class

00 varies varies 010001

Short;..ordinal operand 1 is converted to integer operand 2. Operand
1 is moved to the low-order 16 bits of operand 2. The high-order
16 bits of operand 2 are zeroed.

10-25

Operator Set iAPX 432 GDP

ISHORT-INTEGER OPERATORSI

During the execution of instructions using these short-integer
operators, if any arithmetic operation produces a result that cannot be
represented in a 16-bit 2's complement value, the operation is
terminated without storing a result, and the Short Integer Overflow
Fault is raised. Tilis occurs for any result < -32,768 or > 32,767. If
the divisor is zero in any division or remainder operation, the
operation is suppressed, and the Short Integer Divide by Zero Fault is
raised. See the Fault and Trace Reference chapter for more details on
faulting.

HOVE SHORT INTEGER HOV SI

ID# Opcode Reference Format Class
.... --.-1

22 0000 varies varies 0100

Short-integer operand 1 is copied to short-integer operand 2.
Using the operand stack for operand 1 results in the classical POP
stack operation, and using the operand stack for operand 2 results
in the classical PUSH stack operation. Using the operand stack as
both operand 1 and operand 2 results in no change.

ZERO SHORT INTEGER ZRO SI

Operands Opcode Reference Format Class
.,___...,_1 2 3

23 si 000 varies varies 0000

A short-integer value of zero is stored in operand 1.

ONE SHORT INTEGER ONE SI

ID# Opcode Reference Format Class

24 0100 varies varies 0000

A short-integer value of one is stored in operand 1.

SAVE SHORT INTEGER SAV SI

I Opcode Reference rorma~ Class
.... --.-1

25 1100 varies varies 0000

Tile short-integer on top of the operand stack is read, without
adjusting the stack, and copied to operand 1 • Using the operand
stack for the operand 1 destination results in an operand stack in
which the top two short-integer entries contain the same value.

iAPX 432 GDP Operator Set

ADD SHORT INTEGER ADD SI

IOI Operands Opcode Reference Format Class
....... - -1

48 1101 varies varies 0010

S-igned 16-bit additi-on is used to add operand 1 and operand 2. The
result is stored in operand 3.

SUBTRACT SHORT INTEGER SUB SI

ID# Opcode Reference Format Class --------1
49 0011 varies varies 0010

Signed 16-bit subtraction is used .to subtract operand 1 from
operand 2. The result is stored in operand 3.

INCREMENT SHORT INTEGER INC SI

ID# Opcode Reference Format Class --------1
50 1010 varies varies 0100

Operand 1 is read and the value is incremented by one using signed
16-bit addition. The result is stored in operand 2.

DECREMENT SHORT INTEGER DEC SI

ID# Opcode Reference Format Class
.--..... -1

51 0110 varies varies 0100

Operand 1 is read and the value is decremented by one using signed
16-bit subtraction. The result is stored in operand 2.

NEGATE SHORT INTEGER NEG SI

ID# Opcode Reference Format Class
..... - -~

52 1110 varies varies 0100

The 2's complement of short-integer operand 1 is stored in
short-integer operand 2.

10-27

Operator Set iAPX 432 GDP

MULTIPLY SHORT INTEGER HUL SI

IOI Opcode Reference Format Class
-----.-1

53 01011 varies varies 0010

Signed 16-bit multiplication is used to multiply operand 1 and
operand 2. The short-integer result is stored in operand 3.

DIVIDE SHORT INTEGER DIV SI

ID# Opcode Reference Format Class
..... ---.-1

54 11011 varies varies 0010

Signed 16-bit division is used to divide operand 1 into operand 2.
The 16-bit quotient is stored in operand 3. Note that when the
dividend is not an exact short-integer multiple of the divisor, the
quotient is truncated toward zero {e.g., 8 divided by 3 yields 2
and -8 divided by 3 yields -2).

REMAINDER SHORT INTEGER REM SI

ID# Opcode Reference Format Class
..... --..-1

55 00111 varies varies 0010

Signed 16-bit division is used to divide operand 1 into operand 2.
The signed 16-bit remainder is stored in operand 3. The sign of
the remainder is the same as the sign of the dividend {operand 2).
This operator performs the REH function for the source operands.

EQUAL SHORT INTEGER EQL_SI

IOI Opcode Reference Format Class
t-----1-1

41 000 varies varies 111101

A 16-bit comparison is made between operand 1 and operand 2. If
they are equal, the boolean result is TRUE. Otherwise, the result
is FALSE. The boolean result is stored in operand 3.

""" n IU-~O

iAPX 432 GDP Operator Set

NOT EQUAL SHORT INTEGER NEQ_SI

ID# Opcode Reference Format Class .,.__..,._,
42 100 varies varies 111101

A 16-bit comparison is made between operand 1 and operand 2. If
they are not equale the boolean result is TRUE~ Otherwise; the
result is FALSE. The boolean result is stored in operand 3.

EQUAL ZERO SHORT INTEGER EQZ_SI

ID# Operands Opcode Reference Format Class -------1 3
43 si 00 varies varies 100001

A 16-bi t comparison is made between operand 1 and a short-integer
value of zero. If they are equal, the boolean result is TRUE.
Otherwise, the result is FALSE. The boolean result is stored in
operand 2.

NOT EQUAL ZERO SHORT INTEGER NEZ SI

ID# Opcode Reference Format Class
-----+-1

44 10 varies varies 100001

A 16-bi t comparison is made between operand 1 and a short-integer
value of zero. If they are not equal, the boolean result is TRUE.
Otherwise, the result is FALSE. The boolean result ls stored in
operand 2.

LESS THAN SHORT INTEGER LSS SI

ID# Opcode Reference Format Class
.... .-... -1

56 001 varies varies 111101

A signed 16-bit comparison is made between operand 1 and operand
2. If operand 1 is less than operand 2, the boolean result is
TRUE. Otherwise, the result is FALSE. The boolean result is
stored in operand 3.

10-29

Operator Set iAPX 432 GDP

LESS THAN OR EQUAL SHORT INTEGER LEQ_SI

ID# Opcode Reference Format Class
----.... -1

57 101 varies varies 111101

A signed 16-bi t comparison is made between operand 1 and operand
2. If operand 1 is less than or equal to operand 2, the boolean
result is TRUE. Otherwise, the result is FALSE. The boolean
result is stored in operand 3.

POSITIVE SHORT INTEGER PTV SI

ID# Operands Opcode Reference Format C1ass
---...... 1 2 3

58 si b 01 varies varies 100001

If short-integer operand 1 is positive (greater than zero), the
boolean result is TRUE. Otherwise, the result is FALSE. The
boolean result is stored in operand 2. Note that the result is
FALSE if operand 1 is zero.

NEGATIVE SHORT INTEGER NTV SI

ID# Opcode Reference Format Class
..__...,._1

59 011 varies varies 100001

If short-integer operand 1 is negative (less than zero), the
boolean result is TRUE. Otherwise, the result is FALSE. The
boolean result is stored in operand 2.

MOVE IN RANGE SHORT INTEGER MIR SI

ID# Operands Opcode Reference Format Class
.,__..._1 3

60 w

Operation:

Operand 1:

0 - 15:
16 - 31:

Operand 2:

Operand 3:

Action: o

10-30

none varies varies 110011

If short-integer operand 2 is within the range specified
by operand 1, store the value of operand 2 in operand 3.

A packed word operand comprised of the following:
Contains the short-integer lower bound of the range
Contains the short-integer upper bound of the range

Contains the short-integer source operand

Contains the short-integer destination operand

If short-integer operand 2 is less than the lower bound,
raise the Short-Integer Underflow fault. If operand 2 is
greater than the upper bound, raise the Short-Integer
Overflow fault.

Otherwise, store the value of operand 2 in operand 3.

iAPX 432 GDP Operator Set

CONVERT SHORT INTEGER TO INTEGER CVT SI I

ID# Opcode Reference Format Class .,_ _ _,._,
61 01-0 varies varies 0-10001

Short-integer operand 1 is converted to integer operand 2. Operand
1 is moved to the low-order 16-bi ts of operand 2. The sign bit
(bit 15) of operand 1 is extended to the high-order 16-bits of
operand 2. (E.g., if the sign bit is 1, then the high-order 16
bits of operand 2 are all set to 1.)

10-31

Operator Set iAPX 432 GDP

ORDINAL OPERATORS

During the execution of instructions using these ordinal operators, if
any arithmetic operation produces a result that cannot be represented
in 32 bits, the operation is terminated without storing a result, and
the Ordinal Overflow Fault is raised. This occurs for any result < 0
or > 4,294,967,295. If the divisor is zero in any divide or remainder
operation, the operation is suppressed, and the Ordinal Divide by Zero
Fault is raised. See the Fault and Trace Reference chapter for more
details on faulting.

MOVE ORDINAL HOV 0

IOI Operands Opcode Reference Format -CI ass
----..... 1 2 3

62 0 0 000 varies varies 1100

Ordinal operand 1 is copied to ordinal operand 2. Using the
operand stack for operand 1 results in the classical POP stack
operation, and using the operand stack for operand 2 results in the
classical PUSH stack operation. Using the operand stack as both
operand 1 and operand 2 results in no change.

ZERO ORDINAL ZRO 0

I Opcode Reference Format Class
-----.-1

63 0 00 varies varies 110110

An ordinal value of zero is stored in operand 1.

ONE ORDINAL ONE 0

IOI Opcode Reference Format Class
..... - -1

64 010 varies varies 110110

An ordinal value of one is stored in operand 1.

SAVE ORDINAL SAV 0

IOI Operands Opcode Reference Format Class
----...... 1 2 3

65 0 110 varies varies 110110

The ordinal on top of the operand stack is read, without adjusting
the stack, and copied to operand 1. Using the operand stack for
the operand 1 destination results in an operand stack in which the
top two ordinal entries contain the same value.

1" ".) "') 1v-Jt:..

iAPX 432 GDP Operator Set

AND ORDINAL AND 0

ID# Operands Opcode Reference Format Class
.---.-1 2

66 0 0 000 varies varies 1010

Operand 1 is logically ANDed with operand 2. A bit in the result
is set if the corresponding bits of both source operands are set;
otherwise the result bit is cleared. The result is stored in
operand 3.

INCLUSIVE OR ORDINAL IOR 0

ID# Opcode Reference Format Class
...--.... -1

67 0100 varies varies 1010

Operand 1 is logically ORed (INCLUSIVE ORed) with operand 2. A bit
in the result is set if either or both corresponding bits in the
source operands are set; otherwise the result bit is cleared. The
result is stored is operand 3.

EXCLUSIVE OR ORDINAL XOR 0

IOI Opcode Reference Format Class
----.-~

68 0 1100 varies varies 1010

Operand 1 is logically XORed (EXCLUSIVE ORed) with operand 2. A
bit in the result is set if the corresponding bits in the source
operands contain opposite values (one· is set and the other is
cleared); otherwise the result bit is cleared. The result is
stored in operand 3.

EQUIVALENCE ORDINAL EQV_O

IOI Operands Opcode Reference Format Class
2--·~ ...

69 0 0010 varies varies 1010

Bitwise logical equivalence is performed between operand 1 and
operand 2. A bit in the result is set if the corresponding bits in
the source operands contain the same value (both are set or both
are cleared); otherwise the result bit is cleared. The result is
stored in operand 3.

10-33

Operator Set iAPX 432 GDP

NOT ORDINAL NOT 0

ID# Opcode Reference Format Class
------4-1

70 0 100 varies varies 1100

The bitwise logical NOT (1 's complement) of ordinal operand 1 is
stored in ordinal operand 2.

EXTRACT ORDINAL EXT 0

Opcode Reference Format Class

00 varies varies 100011

Operand 2 is an ordinal from which a bit field is to be extracted.
Operand 1 is a bit-field specifier that specifies the field to be
extracted. The extracted bit field is right justified with
high-order zeros to form an ordinal result that is stored in
operand 3.

INSERT ORDINAL INS 0

Opcode Reference Format Class

10 varies varies 100011

Operand 2 is an ordinal that contains a right-justified bit field
to be inserted into the destination. Any high-order bits in
operand 2 outside the bit field are ignored. Operand 1 is a
bit-field specifier that specifies the field in the destination
that is replaced by the inserted field. Operand 3 is the ordinal
destination.

SIGNIFICANT BIT ORDINAL SIG 0

7

Opcode Reference Format Class

00 varies varies 101001

The bit number (from 0 to 31) of the most-significant set bit in
ordinal operand 1 is determined as a short-ordinal result and is
stored in operand 2. If operand 1 has the value zero, the result
is 32.

ADD ORDINAL ADD 0

ID# Opcode Reference Format Class
---..... -1

74 0 1010 varies varies 1010

Unsigned 32-bi t addition is used to add operand 1 and operand 2.
The result is stored in operand 3.

10-34

iAPX 432 GDP Operator Set

SUBTRACT ORDINAL SUB 0

IOI Operands Opcode Reference Format Class
....__...._, 3

75 0 0 0110 varies varies 1010

Unsigned 32-bi t subtraction is used to . subtract operand 1 from
operand 2. The result is stored in operand 3.

INCREMENT ORDINAL INC 0

IOI Opcode Reference Format Class
----.... -1

76 010 varies varies 1100

Operand 1 is read and the value is incremented by one using
unsigned 32-bit addition. The result is stored in operand 2.

DECREMENT ORDINAL DEC 0

Opcode Reference Format Class

0110 varies varies 1100

Operand 1 is read and the value is decremented by one using
unsigned 32-bit subtraction. The result is stored in operand 2.

MULTIPLY ORDINAL MUL 0

Opcode Reference Format Class

1110 varies varies 1010

Unsigned 32-bi t multi plication is used to multi ply operand 1 and
operand 2. The ordinal result is stored in operand 3.

DIVIDE ORDINAL DIV 0

ID# Operands Opcode Reference Format Class
...__..._1 3

0 0001 varies varies 1010

Unsigned 32-bit division is used to divide operand 1 into operand
2. The 32-bit quotient is stored in operand 3. Note that when the
dividend is not an exact ordinal multiple of the di visor, the
quotient is truncated toward zero (e.g., 8 divided by 3 yields 2).

10-35

Operator Set iAPX 432 GDP

REMAINDER ORDINAL REH 0

I Operands Opcode Reference -Format Class
...... _..,._, 2

80 1001 varies varies 1010

Unsigned 32-bi t di vision is used to di vi de operand 1 into operand
2. The 32-bit remainder is stored in operand 3. This operator
performs the REH function for the source operands.

INDEX ORDINAL

...... --+-1
81

Operation:

Operand 1:
0 - 15:

16 - 31:

Operand 2:

Operand 3:
0 - 15:

16 - 31:

Action: •

•

•

•

Notes: •

Opcode

0101

Computes the access
element of a large
array.

!DX 0

Reference Format crass

varies varies 1010

selector and displacement for an
multi-segment (2K bytes/segment)

A packed word operand comprised of the following:
Contains a scale factor that specifies the size of an
array element in bytes. Only the least-significant 4
bits are interpreted. The size of each array element (in
bytes) is two raised to the power of this 4-bit value.
For example, a value of 2 is for a 4-byte size, a value
of 3 is for an 8-byte size, etc. The size of an array
element is then used to scale the index (operand 2).
Contains the access selector for the first segment of the
multi-segment array.

Contains an ordinal index into the multi-segment array

A packed word destination comprised of the following:
The computed byte displacement into the selected segment
The computed access selector for the array segment in
which the indexed element is located

Scale the index (operand 2) by the scale factor specified
by operand 1.
Extract the least-significant 11 bits of the scaled
index. This is the computed displacement (zero extended)
into the selected 2K segment.
Bits 12 through 25 of the scaled index are extracted and
added to the access index of the base access selector
specified in operand 1 to form a computed access selector.
Store the computed displacement and computed access
selector into their respective locations in operand 3.

Bits 26 through 31 of the scaled index are ignored.

• The access part containing ADs for the array segments
must be entered as an environment. The ADs for the
2Kbyte segments should be contiguous, so that successive
access index values select successive segments.

·1 ;"\ ., ,;:
IV-JU

iAPX 432 GDP Operator Set

EQUAL ORDINAL EQL_O

ID# Opcode Reference Format Class
1i--.... -1

82 0 000 varies varies 001011

A 32-bi t compa-rison is made between operand l and operand 2. If
they are equal, the boolean result is TRUE. Otherwise, the result
is FALSE. The boolean result is stored in operand 3.

NOT EQUAL ORDINAL NEQ_O

ID# Opcode Reference Format Class .,_ _ _..,_,
83 0 100 varies varies 001011

A 32-bit comparison is made between operand 1 and operand 2. If
they are not equal, the boolean result is TRUE. Otherwise, the
result is FALSE. The boolean result is stored in operand 3.

EQUAL ZERO ORDINAL EQZ_O

ID# Opcode Reference Format Class .,__...,._,
84 0 000 varies varies 001001

A 32-bit comparison is made between operand 1 and an ordinal value
of zero. If they are equal, the boolean result is TRUE.
Otherwise, the result is FALSE. The boolean result is stored in
operand 2.

NOT EQUAL ZERO ORDINAL NEZ 0

ID# Operands Opcode Reference Format Class
...... _ , 2 3

85 0 b 100 varies varies 001001

A 32-bit comparison is made between operand 1 and an ordinal value
of zero. If they are not equal, the boolean result is TRUE.
Otherwise, the result is FALSE. The boolean result is stored in
operand 2.

10-37

Operator Set iAPX 432 GDP

LESS THAN ORDINAL LSS 0

ID# Opcode Reference Format Class
----..... -1

86 0 010 varies varies 001011

An unsigned 32-bit comparison is made between operand 1 and operand
2. If operand 1 is less than operand 2, the boolean result is
TRUE. Otherwise, the result is FALSE. The boolean result is
stored in operand 3.

LESS THAN OR EQUAL TO ORDINAL LEQ_O

ID# Opcode Reference Format Class
..... - -1

87 0 110 varies varies 001011

An unsigned 32-bit comparison is made between operand 1 and operand
2. If operand 1 is less than or equal to operand 2, the boolean
result is TRUE. Otherwise, the result is FALSE. The boolean
result is stored in operand 3.

CONVERT ORDINAL TO INTEGER CVT 0 I

ID# Opcode Reference Format Class
..... - -1

88 0 1110 varies varies 1100

Ordinal operand is converted to integer operand 2. If the
most-significant bit of operand 1 has the value 1 (operand 1 >
32,767), the Integer Overflow Fault is raised.

CONVERT ORDINAL TO TEMPORARY REAL CVT 0 TR

ID# Opcode Reference Format Class
t----ei-1

89 0 0 varies varies 011001

Ordinal operand 1 is converted exactly to temporary-real operand
2. '!be settings of the Rounding Control bits and of the Precision
Control bits have no effect on the value of the result.

1" ".)Q
1v-.)V

iAPX 432 GDP Operator Set

INTEGER OPERATORS

During the execution of instructions using these integer operators, if
any arithmetic instruction produces a result that cannot be represented
in a 32-bit 2's complement value, the operation is terminated without
storing a result, and the Integer Overflow Fault is raised. This
occurs for any result < -2, 147 ,483,648 or > 2, 147 ,483,647. If the
divisor is zero in any divide or remainder operation, the operation is
suppressed, and the Integer Divide by Zero Fault is raised. See the
Fault and Trace Reference chapter for more details on faultinge

MOVE INTEGER HOV I

IDI Opcode Reference Format Class
t----+-1

62 i 000 varies varies 1100

Integer operand 1 is copied to integer operand 2. Using the
operand stack for operand 1 results in the classical POP stack
operation, and using the operand stack for operand 2 results in the
classical PUSH stack operation. Using the operand stack as both
operand 1 and operand 2 results in no change.

ZERO INTEGER ZRO I

Ii5J Operands =-l I Opcode Reference Format Class
1--r-2-,--3

I 63 i I - I - I 00 varies varies 110110

An integer value of zero is stored in operand .1.

ONE INTEGER ONE I

ID# Opcode Reference Format Class
..... - -1

64 i 010 varies varies 110110

An integer value of one is stored in operand 1.

SAVE INTEGER SAV I

ID# Opcode Reference Format Class
..... - -1

65 i 110 varies varies 110110

The integer on top of the operand stack is read, without adjusting
the stack, and copied to operand 1 • Using the operand stack for
the operand 1 destination results in an operand stack in which the
top two integer entries contain the same value.

10-39

Operator Set iAPX 432 GDP

ADD INTEGER ADD I

ID# Opcode Reference Format Class
.... - ... -1

90 i 1101 varies varies 1010

Signed 32-bit addition is used to add operand 1 and operand 2. The
result is stored in operand 3.

SUBTRACT INTEGER SUB I

Opcode Reference Format Class

0011 varies varies 1010

Signed 32-bit subtraction is used to subtract operand 1 from
operand 2. The result is stored in operand 3.

INCREMENT INTEGER INC I

Opcode Reference Format Class

0001 varies varies 1100

Operand 1 is read and the value is incremented by one using signed
32-bit addition. The result is stored in operand 2.

DECREMENT INTEGER DEC I

ID# Opcode Reference Format Class
..,_ _ _,._1

9 i 1001 varies varies 1100

Operand 1 is read and the value is decremented by one using signed
32-bit subtraction. The result is stored in operand 2.

NEGATE INTEGER

ID# Opcode Reference
...--... -1

94 i 0101 varies

The 2's complement of integer operand
operand 2.

1 n II" rv--rv

NEG I

Format Class

varies 1100

is stored in integer

iAPX 432 GDP Operator Set

MULTIPLY INTEGER MUL I

D Operands Opcode Reference rormat Class
2 3

95 i i i 1 011 varies varies 1010

Signed 32-Li t multiplication is used to multiply operand and
operand 2. The integer result is stored in operand 3.

DIVIDE INTEGER DIV I

ID# Operands

----..... 1-,-2 3
6 i i i

Opcode

0111

Reference

varies

Format Class

var its 1010

Signed 32-bit division is used to divide operand 1 into operand 2.
The 32-bi t quotient is stored in operand 3. Note that when the
dividend is not an exact integer multiple of the divisor, the
quotient is truncated toward zero (e.g. , 8 di viciec.t by 3 yields 2
and -8 divided by 3 yields -2).

REMAINDER INTEGER REM I

ID/I Operands Opcode Reference Format Class

('\ '7
7 I 1•~·~- 1 1 1 1 '1".:".11""'-i'oc U'!::JV';.O~ 1 n1 n

.1. I .J.. I .J.. I

Signed 32-bit division is used to divide operand 1 into operand 2.
The signed 32-bit remainder is stored in operand 3. The sign of
the remainder is the same as tbe sign of the dividend (operand 2).
This operator performs the REM function for the source operands.

EQUAL INTEGER EQL_I

IDll Opcode Reference Format Class

82 i 000 varies varies 001 011

A 32-oi t comparison is made between operand 1 and operand 2. If
they are equal, the boolean result is TRUE. Otherwise, the result
is FALSE. 1be boolean result is stored in operand 3.

10-41

Operator Set iAPX 432 GDP

NOT EQUAL INTEGER NEQ_I

8

Opcode Reference Format Class

100 varies varies 001011

A 32-bi t comparison is made between operand 1 and operand 2. If
they are not equal, the boolean result is TRUE. otherwise, the
result is FALSE. The boolean result is stored in operand 3.

EQUAL ZERO INTEGER EQZ_I

!DI Opcode Reference Format Class

84 i 000 varies varies 001001

A 32-bit comparison is made between operand 1 and an integer value
of zero. If they are equal, the boolean result is TRUE.
Otherwise, the result is FALSE. The boolean result is stored in
operand 2.

NOT EQUAL ZERO INTEGER NEZ I

IDI Opcode Reference Format Class
.--... -1

85 i 100 varies varies 001001

A 32-bit comparison is made between operand 1 and an integer value
of zero. If they are not equal, the boolean result is TRUE.
Otherwise, the result is FALSE. The boolean result is stored in
operand 2.

LESS THAN INTEGER LSS I

Opcode Reference Format Class

001 varies varies 001011

A signed 32-bi t comparison is made between operand 1 and operand
2. If operand 1 is less than operand 2, the boolean result is
TRUE. Otherwise, the result is FALSE. The boolean result is
stored in operand 3.

10-42

iAPX 432 GDP Operator Set

LESS THAN OR EQUAL INTEGER LEQ_I

ID# Opcode Reference Format Class .,_ _ _.._,
99 i 101 varies varies 001011

A signed 32-bi t comparison is made between operand 1. and operand
2. If operand 1 is less than or equal to operand 2, the boolean
result is TRUE. otherwise, the result is FALSE. The boolean
result is stored in operand 3.

POSITIVE INTEGER PTV I

ID# Opcode Reference Format Class

100 i 010 varies varies 001001

If integer operand 1 is positive (greater than zero), the boolean
result is TRUE. Otherwise,· the result is FALSE. The boolean
result is stored in operand 2. Note that the result is FALSE if
operand 1 is zero.

NEGATIVE INTEGER NTV I

ID# Opcode Reference Format Class
.,_ _ __._1

101 i 110 varies varies 001001

If integer operand is negative (less than zero), the boolean
result is TRUE. Otherwise, the result is FALSE. The boolean
result is stored in operand 2.

MOVE IN RANGE INTEGER MIR I

ID#

102

Operation:

Operand 1:
0 - 31:

32 - 63:

Operand 2:

Operand 3:

Action: •

Opcode Reference Format Class

none varies varies 111011

If integer operand 2 is within the range specified by
operand 1, store the value of operand 2 in operand 3.

A packed double word comprised of the following:
Contains the integer lower bound of the range
Contains the integer upper bound of the range

Contains the integer source operand

Contains the integer destination operand

If integer operand 2 is less than the lower bound, raise
the Integer Underflow Fault. If integer operand 2 is
gr:eater than the upper bound, raise the Integer Overflow
Fault.

• Otherwise, store the value of operand 2 in operand 3.

Operator Set iAPX 432 GDP

CONVERT INTEGER TO CHARACTER CVT I C

Opcode Reference Format Class

10 001 varies varies 001001

Integer operand 1 is converted to character operand 2. If operand
1 is < O or > 255, the Character Overflow Fault is raised.

CONVERT INTEGER TO SHORT ORDINAL CVT I SO

ID# Opcode Reference Format Class

104 i 10 varies varies 101001

Integer operand 1 is converted to short-ordinal operand 2. If
operand 1 is < 0 or > 65,535, the Short-Ordinal Overflow Fault is
raised.

CONVERT INTEGER TO SHORT INTEGER CVT I SI

ID# Opcode Reference Format Class
-----.-1

105 i 01 varies varies 101001

Integer operand is converted to short-integer operand 2. If
operand 1 is < -32,768 or > 32,767, the Short-Integer Overflow
Fault is raised.

CONVERT INTEGER TO ORDINAL CVT I 0

ID# Opcode Reference Format Class

88 1110 varies varies 1100

Integer operand 1 is converted to ordinal operand 2. If operand 1
is negative, the Ordinal Overflow fault is raised.

CONVERT INTEGER TO TEMPORARY REAL CVT I TR

ID# Opcode Reference Format Class
..... -~-1

106 i 01 varies varies 011001

Integer operand 1 is converted exactly to temporary-real operand
2. 1be settings of the Rounding Control bits and of the Precision
Control bits have no effect on the value of the result.

i0-44

iAPX 432 GDP Operator Set

SHORT-REAL OPERATORS

During the execution of instructions using these short-real operators,
if rounding is required to produce the final result, the type of
rounding used is determined by the setting of the Rounding Control bits
(in the Context Status field)= Where noted in the operator
descriptions, the precision maintained in temporary-real results is
determined by the setting of the Precision Control bits (in the Context
Status field).

The following data operator faults are recognized by the processor
during short-real instructions: overflow, Underflow, Inexact, and
Domain Error. See the Fault and Trace Reference chapter for details
about which of these faults can be raised by specific short-real
instructions.

HOVE SHORT REAL HOV SR

ID# Operands Opcode Reference Format Class
.--..... 1 2 3-

62 000 varies varies 1100

Short-real operand 1 is copied to short-real operand 2. Using the
operand stack for operand 1 results in the classical POP stack
operation, and using the operand stack for operand 2 results in the
classical PUSH stack operation. Using the operand stack as both
cpe~and 1 and ope~and 2 ~esults in no ohane~:

ZERO SHORT REAL ZRO SR

ID# Operands Opcode Reference Format Class
...---.-1 2

63 00 varies varies 110110

A short-real value of zero is stored in operand 1.

SAVE SHORT REAL SAV SR

ID# Opcode Reference Format Class
..--..... -1

65 110 varies varies 110110

The short-real on top of the operand stack is read, without
adjusting the stack, and copied to operand 1. Using the operand
stack for the operand 1 destination results in an operand stack in
which the top two short-real entries contain the same value.

10-45

Operator Set iAPX 432 GDP

ADD SHORT REAL ADD SR

10

Opcode Reference Format Class

00 varies varies 101011

Short-real operand 1 is added to short-real operand 2 to produce
temporary-real operand 3. The settings of the Rounding Control
bi ts and the Precision Control bi ts specify the type of rounding
that is used and the precision to which the result is rounded.

ADD TEMPORARY REAL TO SHORT REAL ADD TR SR

Opcode Reference Format Class

00 varies varies 110111

Temporary-real operand 1 is added to short-real operand 2 to
produce temporary-real operand 3. The settings of the Rounding
Control bi ts and the Precision Control bi ts specify the type of
rounding that is used and the precision to which the result is
rounded.

ADD SHORT REAL TO TEMPORARY REAL ADD SR TR

ID# Operands Opcode Reference Format Class
.,__..,._1 3

10 sr 00 varies varies 011011

Short-real operand is added to temporary-real operand 2 to
produce temporary-real operand 3. The settings of the Rounding
Control bi ts and the Precision Control bi ts specify the type of
rounding that is used and the precision to which the result is
rounded.

SUBTRACT SHORT REAL SUB SR

ID# Opcode Reference Format Class
---..... -1

110 10 varies varies 101011

Short-real operand 1 is subtracted from short-real operand 2 to
produce temporary-real operand 3. The settings of the Rounding
Control bi ts and the Precision Control bi ts specify the type of
rounding that is used and the precision to which the result is
rounded.

i0-46

iAPX 432 GDP Operator Set

SUBTRACT TEMPORARY REAL FROM SHORT REAL SUB TR SR

ID# Opcode Reference Format Class

111 10 varies varies 110111

Temporary-real- operand 1 is subtracted from short.;..real operand 2 to
produce temporary-real operand 3. The settings of the Rounding
Control bi ts and the Precision Control bi ts specify the type of
rounding that is used and the precision to which the result is
rounded.

SUBTRACT SHORT REAL FROM TEMPORARY REAL SUB SR TR

ID# Opcode Reference Format Class
a.--.-.-1

112 10 varies varies 011011

Short-real operand 1 is subtracted from temporary-real operand 2 to
produce temporary-real operand 3. The settings of the Rounding
Control bits and the Precision Control bits specify the type of
rounding that is used and the precision to which the result is
rounded.

MULTIPLY SHORT REAL

ID# Operands j
-----..... -1--..-2..-.it-3

113 sr I sr I tr I
I Opcode

I 01

MUL SR

Reference Format Class I
varies varies 101011 J

Short-real operand 1 is multiplied by short-real operand 2 to
produce temporary-real operand 3. The settings of the Rounding
Control bits and the Precision Control bits specify the type of
rounding that is used and the precision to which the result is
rounded.

MULTIPLY TEMPORARY REAL BY SHORT REAL MUL TR SR

ID# Opcode Reference Format Class

114 01 varies varies 110111

Temporary-real operand 1 is multiplied by short-real operand 2 to
produce temporary-real operand 3. The settings of the Rounding
Control bits and the Precision Control bits specify the type of
rounding that is used and the precision to which the result is
rounded.

10-47

Operator Set iAPX 432 GDP

MULTIPLY SHORT REAL BY TEMPORARY REAL MUL SR TR

Opcode Reference Format Class

01 varies varies 011011

Short-real operand 1 is multiplied by temporary-real operand 2 to
produce temporary-real operand 3. The settings of the Rounding
Control bi ts and the Precision Control bi ts specify the type of
rounding that is used and the precision to which the result is
rounded.

DIVIDE SHORT REAL DIV SR

Opcode Reference Format Class

11 varies varies 101011

Short-real operand is divided into short-real operand 2 to
produce a quotient that is stored in temporary-real operand 3. The
settings of the Rounding Control bi ts and the Precision Control
bits specify the type of rounding that is used and the precision to
which the result is rounded.

DIVIDE TEMPORARY REAL INTO SHORT REAL DIV TR SR

ID# Operands Opcode Reference Format Class
.,_ _ _.,_1 2--·--

117 11 varies varies 110111

Temporary-real operand 1 is divided into short-real operand 2 to
produce a quotient that is stored in temporary-real operand 3. The
settings of the Rounding Control bi ts and the Precision Control
bits specify the type of rounding that is used and the precision to
which the result is rounded.

DIVIDE SHORT REAL INTO TEMPORARY REAL DIV SR TR

ID# Opcode Reference Format Class

118 11 varies varies 011011

Short-real operand 1 is divided into temporary-real operand 2 to
produce a quotient that is stored in temporary-real operand 3. The
settings of the Rounding Control bits and the Precision Control
bits specify the type of rounding that is used and the precision to
which the result is rounded.

10-48

iAPX 432 GDP Operator Set

NEGATE SHORT REAL NEG SR

ID/I Opcode Reference Format Class

119 1101 varies varies 1100

The negated value of short-real operand 1 is stored in short-real

ABSOLUTE VALUE SHORT REAL ABS SR

IDll Opcode Reference Format Class

120 0011 varies varies 1100

The absolute value of short-real operand 1 is stored in short-real
operand 2.

EQUAL SHORT REAL EQL_SR

ID/I Opcode Reference Format Class
------.-1

121 011 varies varies 001011

A short-real comparison is made between operand 1 and operand 2.
If they are equal, the boolean result is TRUE. Otherwise, the
result is FALSE. The boolean result is stored in operand 3.

EQUAL ZERO SHORT REAL EQZ_SR

ID/I Operands Opcode Reference Format Class
.-.--.... - ---~--.-3

122 sr 101 varies varies 001001

A short-real comparison is made between operand 1 and a short-real
value of zero. If they are equal, the boolean result is TRUE.
Otherwise, the result is FALSE. The boolean result is stored in
operand 2.

LESS THAN SHORT REAL LSS SR

ID/I Opcode Reference Format Class

123 0111 varies varies 001011

A short-real comparison is made between operand 1 and operand 2.
If operand 1 is less than operand 2, the boolean result is TRUE.
Otherwise, the result is FALSE. The boolean result is stored in
operand 3.

10-4Q

Operator Set iAPX 432 GDP

LESS THAN OR EQUAL SHORT REAL LEQ_SR

ID# Opcode Reference Format Class

124 1111 varies varies 0010U

A short-real comparison is made between operand 1 and operand 2.
If operand 1 is less than or equal to operand 2, the boolean result
is TRUE. Otherwise, the result is FALSE. The boolean result is
stored in operand 3.

POSITIVE SHORT REAL PTV SR

ID# Opcode Reference Format CI ass

125 011 varies varies 001001

If short-real operand is positive (greater than zero), the
boolean result is TRUE. Otherwise, the result is FALSE. The
boolean result is stored in operand 2. Note that the result is
FALSE if operand 1 is zero.

NEGATIVE SHORT REAL NTV SR

ID# Opcode Reference Format Class

126 111 varies varies 001001

If short-real operand 1 is negative (less than zero), the boolean
result is TRUE. Otherwise, the result is FALSE. The boolean
result is stored in operand 2.

CONVERT SHORT REAL TO TEMPORARY REAL CVT SR TR

12

Opcode Reference Format CTass

11 varies varies 011001

Short-real operand is converted without loss of precision to
temporary-real operand 2. The settings of the Rounding Control
bits and of the Precision Control bits have no effect on the value
of the result.

10-50

iAPX 432 GDP Operator Set

REAL OPERATORS

During the execution of instructions using these real operators, if
rounding is required to produce the final result, the type of rounding
used is determined by the setting of the Rounding Control bits (in the
Context Status field)= Where noted in the operator descriptions 7 the
precision maintained in temporary-real results is determined by the
setting of the Precision Control bits (in the Context Status field).

The following data operator faults are recognized by the processor
during these real instructions: Overflow, Underflow, Inexact, and
Domain Error. See the Fault and Trace Reference chapter for details
about which of these faults can be raised by specific real·
instructions.

MOVE REAL MOV R

IDll Operands Opcode Reference Format Class
2 3

128 r r 00 varies varies 000101

Real operand is copied to real operand 2. Using the operand
stack for operand 1 results in the classical POP stack operation,
and using the operand stack for operand 2 results in the classical
PUSH stack operation. Using the operand stack as both operand 1
and operand 2 results.in no change.

ZERO REAL ZRO R

IDll Operands Opcode Reference Format Class ._ __ ...,._ _ __ ..,., ____ 3

12 0 varies varies 001110

A real value of zero is stored in real operand 1.

SAVE REAL SAV R

IOI Opcode Reference Format Class

0 1 varies varies 001110

The real operand on top of the operand stack is read, without
adjusting the stack, and copied to operand 1. Using the operand
stack for the operand 1 destination results in an operand stack in
which the top two real entries contain the same value.

10-51

Operator Set iAPX 432 GDP

ADD REAL ADD R

Opcode Reference Format Class

00 varies varies 100111

Real operand 1 is added to real operand 2 to produce temporary-real
operand 3. The settings of the Rounding Control bits and the
Precision Control bi ts specify the type of rounding that is used
and the precision to which the result is rounded.

ADD TEMPORARY REAL TO REAL ADD TR R

ID/I Opcode Reference Formq.t Class

2 00 varies varies 001111

Temporary-real operand is added to real operand 2 to produce
temporary-real operand 3. The settings of the Rounding Control
bi ts and the Precision Control bi ts specify the type of rounding
that is used and the precision to which the result is rounded.

ADD REAL TO TEMPORARY REAL ADD R TR

ID/I Operands Opcode Reference Format Class
.,_ __ _ - -i:::--.-3

13 00 varies varies 010111

Real operand 1 is added to temporary-real operand 2 to produce
temporary-real operand 3. The settings of the Rounding Control
bits and the Precision Control bits specify the type of rounding
that is used and the precision to which the result is rounded.

SUBTRACT REAL SUB R

ID/I Operands Opcode Reference Format Class ._ __ _ ---------3
4 r 10 varies varies 100111

Real operand is subtracted from real operand 2 to produce
temporary-real operand 3. The settings of the Rounding Control
bi ts and the Precision Control bi ts specify the type of rounding
that is used and the precision to which the result is rounded.

1 t"I C'.'"'I
I v-.)C..

iAPX 432 GDP Operator Set

SUBTRACT TEMPORARY REAL FROM REAL SUB TR R

ID# Operands Opcode Reference Format Class ____ ..,._., 2 3

5 tr 10 varies varies 001111

Temporary-real operand 1 is subtracted from real operand 2 to
produce temporary-real operand 3 = The settings of the Rounding
Control bi ts and the Precision Control bi ts specify the type of
rounding that is used and the precision to which the result is
rounded.

SUBTRACT REAL FROM TEMPORARY REAL SUB R TR

Opcode Reference Format CTass

10 varies varies 010111

Real operand 1 is subtracted from temporary-real operand 2 to
produce temporary-real operand 3. The settings of the Rounding
Control bi ts and the Precision Control bi ts specify the type of
rounding that is used and the precision to which the result· is
rounded.

MULTIPLY REAL MUL R

I _. Opcode .[Reference Format Class I
I 01 I varies varies 100111 --,

Real operand is multiplied by real operand 2 to produce
temporary-real operand 3. The settings of the Rounding Control
bi ts and the Precision Control bi ts specify the type of rounding
that is used and the precision to which the result is rounded.

MULTIPLY TEMPORARY REAL BY REAL MUL TR R

Opcode Reference Format Class

01 varies varies 001111

Temporary-real operand 1 is multiplied by real operand 2 to produce
temporary-real operand 3. The settings of the Rounding Control
bi ts and the Precision Control bi ts specify the type of rounding
that is used and the precision to which the result is rounded.

10-53

Operator Set iAPX 432 GDP

MULTIPLY REAL BY TEMPORARY REAL MUL R TR

ID# Opcode Reference Format Class

139 r 01 varies varies 010111

Real operand 1 is multiplied by temporary-real operand 2 to produce
temporary-real operand 3. The settings of the Rounding Control
bi ts and the Precision Control bi ts specify the type of rounding
that is used and the precision to which the result is rounded.

DIVIDE REAL DIV R

ID# Opcode Reference Format Class

140 r 11 varies varies 100111

Real operand 1 is divided into real operand 2 to produce a quotient
that is stored in temporary-real operand 3. The settings of the
Rounding Control bi ts and the Precision Control bi ts specify the
type of rounding that is used and the precision to which the result
is rounded.

DIVIDE TEMPORARY REAL INTO REAL DIV TR R

IDI Opcode Reference Format; Class

141 11 varies varies 001111

Temporary-real operand 1 is divided into real operand 2 to produce
a quotient that is stored in temporary-real operand 3. The
settings of the Rounding Control bi ts and the Precision Control
bits specify the type of rounding that is used and the precision to
which the result is rounded.

DIVIDE REAL INTO TEMPORARY REAL DIV R TR

Opcode Reference Format Class

142 r tr 11 varies varies 010111

Real operand 1 is divided into temporary-real operand 2 to produce
a quotient that is stored in temporary-real operand 3. The
settings of the Rounding Control bi ts and the Precision Control
bits specify the type of rounding that is used and the precision to
which the result is rounded.

1 " r- II
I u-:JA-t

iAPX 432 GDP Operator Set

NEGATE REAL NEG R

ID# Operands Opcode Reference Format Class
3

14 r 10 varies varies 000101

The negated value of real operand 1 is stored in real operand 2.

ABSOLUTE VALUE REAL ABS R

ID# Operands Opcode Reference Format Class
..,_ __ _.,_ - ~-...... -3

144 r 01 varies varies 000101

The absolute value of real operand 1 is stored in real operand 2.

EQUAL REAL EQL_R

ID# Opcode Reference Format Class .,_ _ _._,
145 r 0 varies varies 000111

A real comparison is made between operand 1 and operand 2. If they
are equal, the boolean result is TRUE. Otherwise, the result is
FALSE. The boolean result is stored in operand 3.

EQUAL ZERO REAL

ID# Opcode Reference Format Class

146 r 0 varies varies 111001

A real comparison is made between operand 1 and a real value of
zero. If they are equal, the boolean result is TRUE. Otherwise,
the result is FALSE. The boolean result is stored in oper.and 2.

LESS THAN REAL LSS R

!DH Operands Opcode Reference Format Class
2 3

147 r b 01 varies varies 000111

A real comparison is made between operand 1 and operand 2. If
operand is less than operand 2, the boolean result is TRUE.
Otherwise, the result is FALSE. The boolean result is stored in
operand 3.

10-SS

Operator Set iAPX 432 GDP

LESS THAN OR EQUAL REAL LEQ_R

ID/I Opcode Reference Format Class

148 r 11 varies varies 000111

A real comparison is made between operand 1 and operand 2. If
operand 1 is less than or equal to operand 2, the boolean result is
TRUE. Otherwise, the result is FALSE. The boolean result is
stored in operand 3.

POSITIVE REAL PTV R

ID/I Opcode Reference Format Class
...... - -1

149 r 01 varies varies 111001

If real operand is positive (greater than zero), the boolean
result is TRUE. Otherwise, the result is FALSE. The boolean
result is stored in operand 2. Note that the result is FALSE if
operand 1 is zero.

NEGATIVE REAL

IOI Operands
2
b

Opcode

11

NTV R

Reference Format Class

varies varies 111001

If real operand 1 is negative (less than zero), the boolean result
is TRUE. Otherwise, the result is FALSE. The boolean result is
stored in operand 2.

CONVERT REAL TO TEMPORARY REAL CVT R TR

Opcode Reference Format Class

none varies varies 100101

Real operand is converted without loss of prec1s1on to
temporary-real operand 2. The settings of the Rounding Control
bits and of the Precision Control bits have no effect on the value
of the result.

10-56

iAPX 432 GDP Operator Set

TEMPORARY-REAL OPERATORS

During the execution of instructions using these temporary-real
operators, if rounding is required to produce the final result, the
type of rounding used is determined by the setting of the Rounding
Control bits (in the Context Status field). Where noted in the
operator descriptions, the precision maintained in temporary-real
results is determined by the setting of the Precision Control bits (in
the Context Status field).

The following data operator faults are recognized by the processor
during these temporary-real instructions: Overflow, Underflow, Inexact,
and Domain Error. See the Fault and Trace Reference chapter for
details about which of these faults can be raised by specific
temporary-real instructions.

MOVE TEMPORARY REAL MOV TR

IDll Operands Opcode Reference Format Class
.__..,._ 1--.2 3

152 tr tr 00 varies varies iOiiOi

Temporary-real operand is copied to temporary-real operand 2.
Using the operand stack for operand 1 results in the classical POP
stack operation, and using the_ operand stack for operand 2 results
in the classical PUSH stack operation. Using the operand stack as
both operand 1 atid operand 2 results in

ZERO TEMPORARY REAL ZRO TR

Opcode Reference Format Class

153 tr (J varies varies 101110

A temporary-real value of zero is stored in operand 1.

SAVE TEMPORARY REAL SAV TR

ID/I Opcode Reference Format Class

154 1 varies varies 101110

The temporary-real operand on top of the operand stack is read,
without adjusting the stack, and copied to operand 1. Using the
operand stack for the operand 1 destination results in an operand
stack in which the top two temporary-real operands contain the same
value.

10-57

Operator Set iAPX 432 GDP

ADD TEMPORARY REAL ADD TR

Opcode Reference Format Class

155 tr tr 00 varies varies 011111

Temporary-real operand 1 is added to temporary-real operand 2 to
produce temporary-real operand 3. The settings of the Rounding
Control bits and the Precision Control bits specify the type of
rounding that is used and the precision to which the result is
rounded.

SUBTRACT TEMPORARY REAL SUB TR

IDll Opcode Reference Format Class

156 10 varies varies 011111

Temporary-real operand 1 is subtracted from temporary-real operand
2 to produce temporary-real operand 3. The settings of the
Rounding Control bi ts and the Precision Control bi ts specify the
type of rounding that is used and the precision to which the result
is rounded.

MULTIPLY TEMPORARY REAL MUL TR

ID# Opcode Reference Format Class

157 01 varies varies 011111

Temporary-real operand 1 is multiplied by temporary-real operand 2
to produce temporary-real operand 3. The settings of the Rounding
Control bi ts and the Precision Control bi ts specify the type of
rounding that is used and the precision to which the result is
rounded.

DIVIDE TEMPORARY REAL DIV TR

ID# Operands Opcode Reference Format Class
2 3

158 tr tr 011 varies varies 011111

Temporary-real operand 1 is divided into temporary-real operand 2
to produce a quotient that is stored in temporary-real operand 3.
The settings of the Rounding Control bits and the Precision Control
bits specify the type of rounding that is used and the precision to
which the result is rounded.

10-58

iAPX 432 GDP Operator Set

REMAINDER TEMPORARY REAL REM TR

IDll Opcode Reference Format Class

159 111 varies varies 011111

Division is performed using temporary-real operand 1 as the divisor
and temporary-real operand 2 as the dividend to produce a
temporary-real partial remainder. Execution of this operator
causes one step of the division algorithm to be performed. It can
be iterated until a fixed number of division steps have been
performed or until a partial remainder whose absolute value is less
than the absolute value of the divisor is generated. In the latter
case, that partial remainder is the true remainder of the division
operation. If the result is not the true remainder, no rounding is
done. In either case the partial remainder generated by the last
di vision step is stored in temporary-real operand 3 with the same
sign as that of operand 2. The remainder or partial remainder
generated is always exact. This operator performs only the inner
loop operation of the remainder function. See the Computational
Data Types chapter in Part One of this manual for more information
about how to calculate the true temporary-real remainder.

NEGATE TEMPORARY REAL NEG TR

IDll Operands Opcode Reference Format Class

160 tr 10 varies varies 101101

The negated value of temporary-real operand
temporary-real operand 2.

is stored in

SQUARE ROOT TEMPORARY REAL SQT_TR

IDll Opcode Reference Format Class

161 01 varies varies 101101

The square root of temporary-real operand 1 is computed and stored
in temporary-real operand 2. The settings of the Rounding Control
bi ts and the Precision Control bi ts specify the type of rounding
that is used and the precision to which the result is rounded.

ABSOLUTE VALUE TEMPORARY REAL

IDll Opcode Reference Format

162 11 varies varies

The absolute value of temporary-real operand
temporary-real operand 2.

ABS TR

Class

101101

is stored in

10-59

Operator Set iAPX 432 GDP

EQUAL TEMPORARY REAL EQL_TR

IDll Opcode Reference Format Class

163 0 varies varies 101111

A temporary-real comparison is made between operand 1 and operand
2. If they are equal, the boolean result is TRUE. Otherwise, the
result is FALSE. The boolean result is stored in operand 3.

EQUAL ZERO TEMPORARY REAL EQZ_TR

ID/I Opcode Reference Format Class

164 0 varies varies 010101

A temporary-real comparison is made between operand and a
temporary-real value of zero. If they are equal, the boolean
result is TRUE. Otherwise, the result is FALSE. The boolean
result is stored in operand 2.

LESS THAN TEMPORARY REAL LSS TR

IDll Opcode Reference Format Class

16 01 varies varies 101111

A temporary-real comparison is made between operand 1 and operand
2. If operand 1 is less than operand 2, the boolean result is
TRUE. Otherwise, the result is FALSE. The boolean result is
stored in operand 3.

LESS THAN OR EQUAL TEMPORARY REAL LEQ_TR

ID/I Opcode Reference Forrriat Class

166 11 varies varies 101111

A temporary-real comparison is made between operand 1 and operand
2. If operand 1 is less than or equal to operand 2, the boolean
result is TRUE. Otherwise, the result is FALSE. The boolean
result is stored in operand 3.

i 0-60

iAPX 432 GDP Operator Set

POSITIVE TEMPORARY REAL PTV TR

ID/I Operands Opcode Reference Format Class
___ _,._j 2

167 tr b 01 varies varies 010101

If temporary-real operand 1 is positive (greater than zero) , the
boolean result is TRUE~ Otherwise. the result is FALSE. The
boolean result is stored in operand 2. Note that the result is
FALSE if operand 1 is zero.

NEGATIVE TEMPORARY REAL NTV TR

Opcode Reference Format
...

Class

168 tr 11 varies varies 010101

If temporary-real operand is negative (less than zero), the
boolean result is TRUE. Otherwise, the result is FALSE. The
boolean result is stored in operand 2.

CONVERT TEMPORARY REAL TO ORDINAL CVT TR 0

ID# Opcode Reference Format Class

169 0 varies varies 110101

Te~po!"a!"y-real ope!"and 1 is ccnve!"ted to o~dinal ope1and 2. The
setting of the Rounding Control bits determines the type of
rounding that is used. If the rounded value is < O or >
4,294,967,295, the Ordinal Overflow Fault is raised.

CONVERT TEMPORARY REAL TO INTEGER CVT TR I

Opcode Reference Format Class

170 tr 01 varies varies 110101

Temporary-real operand 1 is converted to integer operand 2. The
setting of the Rounding Control bits determines the type of
rounding that is used. If the rounded value is < -2,147,483,648 or
> 2,147,483,647, the Integer Overflow Fault is raised.

10-61

Operator Set iAPX 432 GDP

CONVERT TEMPORARY REAL TO SHORT REAL CVT TR SR

ID# Operands Opcode Reference Format Class
2

171 11 varies varies .· 110101

Temporary-real operand 1 is converted to short-real operand 2. The
setting of the Rounding Control bits determines the type of
rounding that is used. The setting of the Precision Control bi ts
has no effect. If the magnitude of the rounded value is too large
to be represented as a short real, the Short Real Overflow Fault is
raised. If the magnitude of the rounded value is too small to be
represented as a short real, the Short Real Underflow Fault is
raised.

CONVERT TEMPORARY REAL TO REAL CVT TR R

ID# Operands Opcode Reference Format Class
2 3

172 tr r none varies varies 001101

Temporary-real operand is converted to real operand 2. The
setting of the Rounding Control bits determines the type of
rounding that is used. The setting of the Precision Control bits
has no effect. If the magnitude of the rounded value is too large
to be represented as a real, the Real Overflow Fault is raised. If
the magnitude of the rounded value is too small to be represented
as a real, the Real Underflow Fault is raised.

i0-62

iAPX 432 GDP Operator Set

OBJECT OPERATORS

SUB-OPERATOR PROCEDURES

Due to the complexity of the bbject operators, a more algorithmic
description of each operator's action is used in the rest of this
chapter. The following procedures are used throughout the descriptions
of the object operators. Whenever these procedures are mentioned in
the action descriptions, the procedure's action as defined below is
performed. Additional sub-operatqr procedures are defined for specific
functional groups of object operators (e.g., for the process
communication operators).

Set Copied

• If the access descriptor is access-valid, set the copied bit
of its associated object descriptor. Otherwise, do nothing.

Level Check

• If the specified access descriptor is access-valid, if its
Unchecked Copy Rigbts bit is 0, and if the level number of its
associated object descriptor is greater than the destination's
level, then raise the Level Fault. Otherwise do nothing.

Store AD

• Perform Level Check of the specified access descriptor with
that of the destination access environment. Note that if the
destination access environment is specified by a refinement,
the level number of the base object, rather than that of the
refinement, is used in the level check.

• Read the access descriptor that is in the destination access
environment location.

• If that AD is access-valid and does not have Delete Rights,
raise the Destination Delete Rights Fault.

• Otherwise, store the specified access descriptor (setting
Delete Rights) into the destination access descriptor
location.

Object Locking

• If the lock mode in the object lock field is 00, indivisibly
update the obJect lock with the lock mode and locker ID
specified by the operation that has invoked this procedure.

• Otherwise, wait 300 machine cycles and retry the operation.
• If the object lock cannot be locked after 32 retries, return

from Object Locking with a status of unsuccessful.

10-6~

Operator Set iAPX 432 GDP

OD Al location

• If stack allocation is specified by the operation that invoked
this ~rocedure, allocate an object descriptor from the current
process object table.

• Otherwise, for heap allocation, allocate a Free Entry from the
object table referenced by the specified SRO.

• Create an image for the AD to the newly allocated object
descriptor with all access rights and with Delete Rights. If
the Allocation Level = 0, then set Unchecked Copy Rights;
otherwise clear it. Return the AD image to the operation that
invoked this procedure.

Segment Allocation

• Initialize the newly allocated OD to a stora5e descriptor with
the specified object type, the specified access part and data
part lengths, and the appropriate level, and clear the
Completed bit (in the storage descriptor) to 0 and initialize
the defining TOO as the specified TOO.

• If heap allocation is specified by the operation that invoked
this procedure, a rotating first-fit algorithm is used to
search the physical storage object specified by the SRO for a
storage block of sufficient size.

• Otherwise, for stack allocation, the single storage block in
the current process physical storage object is used.

• Allocate from the selected storage block.
• Initialize the Base Address field in the new storage

descriptor to the fence address in the object that is
represented by the newly allocated segmeDt.

• If tbe storage block is dirty (as indicated by the Dirty bit
in the Storage Block Specifier) and the sum of the AP and DP
rounded lengths is greater than 2, 304 bytes, raise the Clear
Memory Size fault. Otherwise, clear the r,ew segment to zeros
and set tbe Completed bit in the new segment's storage
descriptor.

10-64

iAPX 432 GDP Operator Set

BRANCH OPERATORS

If a branch reference in a branch instruction specifies a displacement,
either relative or absolute, to a point that is outside the boundary of
the object containing the target instruction, an Instruction Object
Displacement Fault occurs.

BRANCH

IDll

**
Operation:

BRANCH TRUE

BR
......

Opcode Reference Format Class

none bref none 100110

A branch is made within the current instruction object to
the target instruction specified by a branch reference.

BR T

ID/I Op er ands Opcode Reference Format Class
---...... 1 2 3

** b 0 brefl dref varies 1000

Operation: If the boolean value specified by operand 1 is TRUE, a
branch is made in the instruction stream within the
current instruction object to the target instruction
specified by a branch reference. The data reference for
operand 1 must be encoded before the branch reference in
a BR T instruction's Reference field.

BRANCH FALSE BR F

IDll
...... - -1

** b

Operation:

Operands Opcode Reference Formaf Class

=1~ 1 brefl dref varies 1000

If the boolean value specified by operand 1 is FALSE, a
branch is made in the instruction stream within the
current instruction object to the target instruction
specified by the branch reference. The data reference
for operand 1 m~st be encoded before the branch reference
in a BR F instruction's Refer~nce field.

10-65

Operator Set iAPX 432 GDP

BRANCH INDIRECT BR INDIRECT

ID# Operands Opcode Reference Format Class

so

Operation:

2 3
0010 varies varies 0000

Short-ordinal operand 1 is used as the new value for the
instruction pointer. This causes a branch within the
current instruction object to the instruction whose bit
displacement from the base of the object is given by
operand 1.

BRANCH I NTERSEGI ENT BR ISEG

ID# Operands Opcode Reference Format Class ..._ __ _,._ -----·---3
w

Operation:

Operand 1:
0 - 15:

16 - 31:

Action: •

OOl varies varies 110110

Branches to a target instruction in a specific
instruction object in the defining domain of the current
context.

A packed word operand comprised of the following:
Contains the domain access index for the new instruction
object.
Contains the short-ordinal bit displacement from the base
of the new instruction object to the first bit of the
instruction where execution is to continue.

Branch to the instruction at the specified displacement
into the instruction object specified by the DAI in
operand 1.

BRANCH INTERSEGMENT WITHOUT TRACE BR I SEG WO TRACE

ID# Operands Opcode Reference Format Class
2 3

101 varies varies 110110

Operation: lbis operator operates identically to the BRANCH
INTERSEGtENT operator with the exception that it .is
immune to all trace events at the end of this
instruction.

10-66

iAPX 432 GDP Operator Set

BRANCH INTERSEGMENT AND LINK BR ISEG LINK

ID#

176

Operation:

Operand 1:
0 - 15:

16 - 31:

Operand 2:
0 - 15:

16 - 31:

Action: •

•

- -

Opcode Reference Format Class

1011 varies varies 1.100
··-· -····---:::- . -~

Branches a target instruction in a specified
instruction object in the defining domain of the current
context and stores the necessary linkage information to
allow later return.

A packed word operand comprised of the following:
Contains the domain access index fQr the new instruction
object.
Contains the short-ordinal bit displacement from the base
of the new instruction object to the first bit of the
instruction where execution is t6 continue.

A packed word operand comprised of the following:
Is used as storage for the domain access index to the
current instruction oLject.
Is used to store the short-ordinal bit displacement from
the base of the current instruction object to the first
bit of the instruction where execution is to continue
(i.e., the current instruction pointer).

Store the linkage information in operand 2.
Branch to the instruction at the specified displacement
into the itl~tr~ction object specified
operand 1.

, ...,.
... u

BREAKPOINT BREAKPOINT

ID# Operands Opcode Reference Format Class
.,__ __ _,._ - 9':'.----3

1 7

Operation:

none none none 111111

Branches to bit displacement 64 in the trace instruction
object within the current definiDg domain and stores the
necessa~y linkage information to allow later return. The
appropriate linkage information is stored in the Trace
DAI and Trace Ins_truction Pointer fields in the Trace
Control Data Area ·of t.he.'c'urrent context. A trace code
of 5 is written in the Trace Code field of this same
area.

10-67

Operator Set iAPX 432 GDP

ACCESS DESCRIPTOR OPERATORS

COPY ACCESS DESCRIPTOR COPY AD

178 as

Operation:

Operand 1:

Operand 2:

Action: •

•

ass

0001 varies varies 1 0

Copies an access descriptor from a specified location in
any directly accessible environment to another specified
location in any directly accessible environment.

Contains an access selector for the source access
descriptor to be copied.

Contains an access selector for the destination access
descriptor location.

Perform Set Copied for the source AD.
Perform Store AD of the source AD into the destination AD
location.

NULL ACCESS DESCRIPTOR NULL AD

Operation:

Operand 1:

Action: •

10-68

1Jpcode -Reference "Format Class

1010 varies varies 0000

Logically clears a given AD location, overwriting the
previous AD in the specified location with a null AD.
Access paths using the AD in this location to reference
the object are thus disconnectea froffi the object.

Contains the Qccess selector for tbe destination access
descriptor location.

Perform Store AD of a null access descriptor into the
destination AD location.

iAPX 432 GDP

AMPLIFY RIGHTS

Operation:

Operand 1:

Operand 2:

Action: •

•
•

Operator Set

TYPE AND RIGHTS MANIPULATION OPERATORS

ANPLIFY RIGHTS

Opcode Refer-ence -···.

F6rmat Class···

1001 varies varies 0100

Amplifies, uncier control of a type control object, the
selected rights bits in the specified source access
descriptor.

Contains the access selector for a type control object.
Tiie selected AD must Lave Amplify Rights.

Contains the access selector for the access descriptor
u.at is to be amplified. This source access descriptor
is both a source and a destination.

If tLe source AD is not access valid, ao nothing for this
entire operation. Otherwise:
head the contents of the type control object •
If the Type Test bit in the type control object is 1,
tberJ:
• If the object type of tbe source AD does not match

that contc.ined in the type control object, raise tLe
Type Fault.
Tf' tho nun.::im;n/~ucd·.om h~i- ;.,. 1 +i.r-. T"l~4='.;., . .;.,.,~ 'T'TV'I AT\
-- - _ ..,,., ... ~.u.-.-1 ...,J "'"'~"""'" ..,. .. ", I' Vl.J'- V\.;.L ..1.lJ..&.llQ .LJ.JV nv

in tLe source OD must match t.be Defining TDO AD in
the type control object; otherwi::>e, raise tbe Type
Fault.

• If the AD to be amplified is changed between type testing
and amplification, perform no amplification and raise the
Race Condition Fault.

• Otherwise, logically OR the Delete, Unchecked Copy, Read,
Write, arjd Type Rights of the TCO into their
corresponding fields in the source/destination AD.

Opera tor Set iAPX 432 GDP

RESTRICT RIGHTS RESTRICT RIGHTS

181 0

Operation:

0,1Jerand 1:

'Io

- J•
1 (,:
17:
18:
19:

Operand 2:

Action: •

•

10-70

Opcode Reference Format Class

011 varies vari_e_s JO_lQ_01

Restricts, under control of an ordinal bit mask, the set
of rights in the specified access descriptor.

Contains an orainal that has the appropriate rights bit
values that are required as a mask by this iristruction.
TLe bits values are interpreted at tbe same bit offset
that they have in an AD. The mask bit offsets are as
follows:
Type Rights field
Delete Rights
Unchecked Copy Rights
Read Rights
Write Rights

Contains the access selector for the access descriptor to
be restricted. Ibis source AD is also the destination.

If the source AD is not access valid or the Delete Rights
bit is 0, do nothing.
Otherwise, clear the rights bit in the source/destination
AD provioed tliat the corresponding rights bit is 1 in
operand 1.

iAPX 432 GDP Operator Set

RETRIEVE TYPE DEFINITION RETRIEVE TYPE DEF

IDIJ Operands Opcode Reference Format Class
2 3

182 as as 01 01 varies varies 0100

Operation: Retrieves the type definition object associated with an
dynamic-type or system-type object.

Operand 1:

OpErand 2:

Action: •

•

•

Contains tbe access selector for the dynamic-type or
system-type object.

Contains the c.ccess selector for the destination access
descriptor location.

If tbe source AD is not access-valid, raise the Source AD
Vc.lidity 1 a ult.
If the object type of the source OD is generic, use the
generic TDO AD (specified in the processor object) as the
type definition AD.
If the source OD is a storage descriptor, then use the
dtfining TDO AD Image in the storage descriptor as the
type definition AD.

• If the source OD is a refinement descriptor, then use the
defining TDO AD Image in tbe base storage descriptor of
the refinement.

• Perform Set Copied for the type definition AD.
~ Perform Store AD of an i!!'!ege of th:t type defintion AD

into the destination access descriptor location.

10-71

Operator Set iAPX 432 GDP

REFINEMENT OPERATORS

CREATE REFINEMENT CREA1E RFN

18

Opt:ration:

upuand 1:

Operand 2:
0 - 15:

Opcode Referer1ce Format Class

none varies varies 010011

CrE:ate s a refineruen t of a source object given an SRO and
specified offsets and lengths.

Contains an access selector for a storage resource
object. The selected AD must have Create Rights. If
tLis operand is zero, t.he current process allocation
stack is used for allocation.

A pbcked word operana comprised of the following:
Contains the access selector for the destination access
descriptor location.

16 - 31: Contains the access selector f~r the source object to be
refined.

Operond 3:
o:

1 - 15:

16 - j1:

32 - 47:

A packed doubleword operand comprised of the following:
Contains the bit for specifying refinement wi tb a data
part.
Contains a short-ordinal value whicb specifies the
(length-1)/2 in bytes of the access part of tbe refined
object. A value of zero specifie~ a null accEss part.
Contains a short-ordinal value which specifies the offset
aisplacement in bytes from the bas€ of tbe object being
r~t'iried to the base of the access part of tbe
ref inE:men t.
Contains
lerigtb-1
object.

a
in

short-ordinal
bytes of the

value
data

which specifies the
part of the refined

48 - 63: Contains a short-ordinal value which spE:c111es the offset
displacemE:nt in bytes from tbe beise of the object being

ActiorJ: •

·10-72

• •

•

refined to the base of the de.ta part of the refinement.

If the source AD is not Ciccess-valid, raise the Source AD
Validity Fault.
Perform Set Ccpied tcr the source AD •
If the source AD does not reference c.n associated storage
uescr iptor or refirit:ment descriptor, then raise tLe
Object Descriptor Type Feiult.
f\ai.se tli~ Offset and Lt:11gtL Compatibility Fault if:
• the specified AP offset is not an integral multiple

() f 4.
• the sum of the AP offset and AP length-1 :i.s greater

tban 65/):)5.
• U the DP Valid bit is 1 ana the sum of DP offset

c.rici DP lt=ngtb-1 is grec.ter than 6?,535.

iAPX 432 GDP Operator Set

• Raise the Refinement Overflow Fault if:
• The DP valid bit is 1, and the sum of the DP offset

and DP length is greater than the DP length of the
source object.

• The sum of the AP offset and AP length is greater
than the AP length of the source object.

e Perform OD Allocation.
• Perform Level Check of the source AD with the

(destination) level in the new OD.
• Initialize the new OD to a refinement descriptor of

generic objtct type.
• The AP Length and DP Length fields are initialized

to the values specified by Operand 3.
• If the source AD references an associated storage

descriptor:
• Initialize the Base Directory Index and Base

Segment Inoex fields to be the same as the
Directory Index and Segment Index fields in the
source AD.

• Initialize the AP Offset and DP Offset fields
to the values specified by Operand 3.

• Otherwise, if the source AD references an associated
refinement descriptor:
• Initialize the Base Directory Index and Base

Segment Index fields to be the same as those in
the associated refinement descriptor.

• Initialize the AP Offset field to the sum of
the AP Offset of the associated refineruent
descriptor and the AP offset specified by
Operand 3.

• Initialize the DP Offset field to the sum of
the DP Offset of the associated refinement
descriptor and the DP offset specified by
01-1erand 3.

• Perform Store AD of the AD image for the new refined
object into the destination access descriptor location as
follows:
• Make the Read Rights and Write Rights the same as

tbe corresponding rights in the source AD.
• Write the Type Rights field to match the

corresponding rights in the source AD.

10-73

Operator Set iAPX 432 GDP

CREATE TYPED REFINEMENT CREATE TYPED RFN

Dll Operands Opcode Reference Format Class
2 3

184 d 11 varies varies 000101

Operation: Creates a typed refinement of the source object given an
TCO, an SRO, and specified offsets and lengths.

Operand 1:
0 - 15:

16 - 31:

32 - 47:

48 - 63:

A packed doubleword operand comprised of the following:
Contains the access selector for a type control object.
The selected ad must have Refine Rights.
Contains the access selector for a storage resource
object. The selected AD must have Create Rights. If
this operand is zero, the current process allocation
stack is used for allocation.
Contains the access selector for the destination access
de~criptor location.
Contains the access selector for the source object to be
refined

Operand 2: A packed doubleword operand comprised of the following:
O: Contains the bit for specifying refinement with a data

part.
1 - 15: Contains a short-ordinal value which specifies the

(length-1) /2 in bytes of the access part of the refined
object. A value of zero specifies a null access part.

16 - 31: Contains a short-ordinal value which specifies the offset
displacement in bytes from the base of the object being
ret ined to the base of the access part of the
refinement.

32 - 47: Contains a short-ordinal value which specifies the
length-1 in bytes of the data part of the refined
object.

48 - 63: Contains a short-ordinal value which specifies the offset
displacement in bytes from the base of the object being

Action: •

10-74

• •

•
•

refined to tbe base of the data part of the ref~nement.

If the source AD is not access valid, raise the Source AD
Validity Fault.
Perform Set Copied for the source AD •
If the source AD does not reference an associated storage
descriptor or refinement descriptor, then raise the
Object Descriptor Type Fault.
If the source object type does not match the object type
in the TCO, then raise the Type Fault.
Raise the Offset and Length Compatibility Fault if:
• the specified AP offset is not an integral multiple

of 4.
• the sum of the AP offset and AP length-1 is greater

than 65,53~.
• If the DP valid bit is 1 and the sum of DP offset

and DP length-1 is greater than 65,535.

iAPX 432 GDP Operator Set

• Raise the Refinement Overflow Fault if:
• The DP valid bit is 1 and the sum of the DP offset

and DP length is greater than the DP length of the
source object.

• The sum of the AP offset and AP length is greater
than the AP length of the source object.

• Perform OD Allocation.
• Perform Level Check of the source AD with the

(destination) level in the new OD.
• Initialize the new OD to a refinement descriptor of the

object type specified by the Object Type field in the
TCO:
• Initialize the AP Length and DP Length fields to

that specified by Operand 2.
• If the source AD references an associated storage

descriptor:
• Initialize the Base Directory Index and Base

Segment Index fields to be the same as the
Directory Index and Segment Index fields in the
source AD.

• Initialize the AP Offset and DP Offset fields
to the values specified by Operand 2.

• Otherwise, if the source AD references an associated
refinement descriptor:
• Initialize the Base Directory Index and Base

Segment Index fields to be the same as those in
the associated refinement descriptor.

• Initialize the AP Offset field to the sum of
the AP Offset of the associated refinement
descriptor and the AP offset specified by
""- --- -- _] """
U!J~l dUU C. •

• Initialize the DP Offset field to the sum of
the DP Offset of the associated refinement
descriptor and the DP offset specified by
Operand 2.

• Perform Store AD of the AD image for the new refined
object into the destination access descriptor location as
follows:
• Make the Read and Write Rights fields the same as

the corresponding rights in the source AD.
• Write the Type Rights field to match the

corresponding rights in the source AD.

10-75

Operator Set iAPX 432 GDP

OBJECT CREATION OPERATORS

CREATE OBJECT CREATE OBJ

IDll Operands Opcode Reference Format Class
2 3

18 w 0 varies varies 000011

Operation: Creates an object with the specified access and data part
lengths and an access descriptor (with associated OD) for
the new obJect.

Operand 1: Contains the access selector for a storage resource
object. The selected AD must have Create Rights. If
this operand is zero, the current process allocation
stack is used for allocation.

Operand 2: Contains the access selector for the destination access
descriptor location.

Operand 3:
0 - 15:

16:

17 - 31:

Action: •

A packed word operand comprised of the following:
Contains the short-ordinal length-1 of the data part of
the object to be created.
Contains the boolean which specifies whether the object
has a data part or not.
Contains the (length-1)/2 of the access part of the
object to be created. A value of zero specifies a null
access object part in the new object.

Perform OD Allocation.
• Perform Segment Allocation for a generic object using a

null AD as the TDO-AD Image.

10-76

• Perform Store AD of the AD for the new storage descriptor
into the specified destination access descriptor
location.

iAPX 432 GDP Operator Set

CREATE TYPED OBJECT CREATE TYPED OBJ

ID# Opcode Reference Format Class

·· 186 01 varies varies 100011

Operation: Creates a typed object with specified access and data
part lengths and an access descriptor (with associated
OD) for the new object.

Operand 1:

Operand 2:
0 - 15:

16 - 31:

Operand 3:
0 - 15:

16:

17 - 31:

Action: •

Contains the access selector for a storage resource
object. The selected AD must have Create Rights. If
this operand is zero, the current process allocation
stack is used for allocation.

A packed word operand comprised of the following:
Contains the access selector for a type control object.
The selected AD must have Create Rights.
Contains the access selector for the destination access
descriptor location.

A packed word operand comprised of the following:
Contains the short-ordinal length-1 of the data part of
the object to be created.
Contains the bit which specifies whether the object has a
data part or not.
Contains the (length-1)/2 of the access part of the
object to be created. A value of zero specifies a null
access part.

Perform Set Copied for the Defining TOO AD in the TCO.
• Perform OD Allocation.
• Perform Level Check of the Defining TOO AD in the TCO

with the (destination) level in the new OD.
• Perform Segment Allocation for an object with Object Type

the same as specified in the TCO and use the Defining TOO
AD in the TCO as the defining TOO AD Image in the newly
allocated storage descriptor.

• Preform Store AD of the AD for the new object into the
specified aestination access descriptor location.

10-77

Operator Set iAPX 432 GDP

ACCESS INSPECTION OPERATORS

INSPECT ACCESS DESCRIPTOR INSPECT AD

ID/I

187

Operation:

Operand 1:

Operand 2:

Action: •

Opcode Reference Format Class

110 varies varies 010001

Copies the image of an access descriptor into an ordinal
in the data part of an object.

Contains the access selector for the source access
descriptor that is to be inspected.

Is an ordinal destination for . the image of the source
access descriptor.

Read the source access descriptor and write an image of
it into ordinal operand 2.

INSPECT OBJECT INSPECT OBJ

ID/I Operands Opcode Reference Format Class
------.- - -c.-.-3

188 as

Operation:

Operand 1:

Operand 2:
0 - 15:

16 - 31:

Action: •

10-78

001 varies varies 01 0001

Copies an image of an access descriptor and its
associated object descriptor into the data part of an
object beginning at a specified location.

Contains the access selector for the source access
descriptor that is to be inspected.

A packed word operand comprised of the following:
Contains the access selector for the destination object.
Contains a short-ordinal which specifies the byte
displacement within the data part of the destination
object to the location where the inspection data is to be
stored.

Write a 20-byte record beginning at the specified
location in the data part of the destination object. The
record contains the following:
• An image of the source AD in the first 4 bytes.
• An image of the associated OD of the source AD in

the last 16 bytes.

iAPX 432 GDP

EQUAL ACCESS

ID#

18 as

Operation:

Action: •

Operator Set

EQL_ACCESS

Opcode Reference Format Class

0011 varies varies 111101

Compares two source access descriptors for equality ..

If the two source access descriptors are access-valid and
their Directory and Segment indices are equal or both are
not access-valid, return a boolean value of TRUE to the
destination. Otherwise, return a boolean FALSE.

MOVE TO EMBEDDED DATA VALUE MOV TO EDV

190 0

Operation:

Operand 1:

Operand 2:

Action: •

•

Opcode Reference Format Class

111 varies varies 101 001

Copies an ordinal value into an embedded data value in a
destination access descriptor locatione

Contains an ordinal value to be copied to the destination
AD location.

· Contains the access selector for the destination AD
location.

Compose an embedded data value using the most-significant
31 bits of operand 1 (bit 0 is cleared).
Perform Store AD of the embedded data value into the
destination AD location specified by operand 2.

MOVE FROM EMBEDDED DATA VALUE MOV FM EDV

ID#

187

Operation:

Operand 1:

Operand 2:

Action: •

Opcode Reference Format Class

110 varies varies 01 0001

Copies the image of an embedded data value into an
ordinal in the data part of an object. This operator is
identical to the INSPECT ACCESS DESCRIPTOR operator.

Contains the access selector for the source AD location.

Contains the ordinal destination for the embedded data
value.

Read the source access descriptor location specified by
operand 1 and write an image of that AD into operand 2.
The least-signi fie ant bit of operand 2 will be zero if
the result is an embedded data value.

10-79

Operator Set iAPX 432 GDP

ACCESS INTERLOCK OPERATORS

LOCK OBJECT

IDll

191

Operation:

Operand 1:

Operand 2:

Operand 3:

Action: •

•

LOCK OBJ

Opcode Reference Format Class

1011 varies varies 111101

Locks an object lock at a specified location within the
data part of an object.

Contains the access selector for the object that contains
the object lock.

Contains a short-ordinal byte displacement within the
data part of the selected object to the object lock
field.

Contains a boolean result that is set TRUE if the lock
operation is successful.

Perform Object Locking at the specified location using a
Long-Term Software Lock.
If the lock operation is successful, the boolean result
is TRUE. Otherwise, the result is FALSE. The boolean
result is stored in aestination operand 3.

UNLOCK OBJECT UNLOCK OBJ

Opcode Reference Format Class

1101 varies varies 0100

Operation: Unlocks an object lock at a specified location within a
data part of an object.

Operand 1: Contains the access selector for the object that contains
the object lock.

Operand 2: Contains a short-ordinal byte displacement within the
data part of the selected object to the object lock
field.

Action: •

•

10-80

If the Lock Mode field in the specified object lock is 10
(i.e., long-term software locked), and the Locker ID
field is equal to the current Process ID (reflected in
the current process object), the Object Lock field is
indivisibly cleared to zeros.
Otherwise, raise the Object Lock ID/Type Fault .

iAPX 432 GDP Operator Set

INDIVISIBLY ADD SHORT ORDINAL INDIV ADD SO

IDll

193

Operation:

Opcode Reference Format Class

oon varies varies 0100

Short-ordinal operand is indivisibly (within one
read-modify-write cycle) added to short-ordinal operand
2. The result is stored into operand 2. The original
value of operand 2 is pushed onto the operand stack. A
Short-Ordinal Overflow Fault cannot occur. Thus, this
operator can be used to indivisibly subtract operand 1
from operand 2 if operand 1 contains the 2 's complement
of the number to be subtracted.

INDIVISIBLY ADD ORDINAL INDIV ADD 0

ID/I Operands Opcode Reference Format Class
2

194 0 0

Operation:

0111 varies varies 1100

Ordinal operand is indivisibly (within one
read-modify-write cycle) added to ordinal operand 2. The
result is stored into operand 2. The original value of
operand 2 is pushed onto the operand stack. An Ordinal
Overflow Fault cannot occur. Thus, this operator can be
used to indivisibly eubtract operand 1 from operand 2 if
operand 1 contains the 2's complement of the number to be
subtracted.

10-R1

Operator Set iAPX 432 GDP

INDIVISIBLY INSERT SHORT ORDINAL INDIV INS SO

ID# Operands Opcode Reference Format Class
2 3

1 5 bfs so so 10111 varies varies 0010

Operation:

Operand 1:

Operand 2:

Operand 3:

Action: •

•

Indivisibly inserts a bit field from one short ordinal
into another short ordinal.

Contains the bi t-f'ield speci fie·r for the destination bit
field that is to be written.

Contains a short ordinal with a right-justified bit field
that is to be inserted into the destination short
ordinal.

Contains the destination short ordinal into which the bit
field is to be insetted.

Indivisibly (within one read-modify-write cycle) insert
the source field from operand 2 into the specified
destination bit-field in operand 3.
Push the original value of operand 3 onto the operand
stack.

INDIVISIBLY INSERT ORDINAL INDIV INS 0

ID#

196

Operation:

Operand 1:

Operand 2:

Operand 3:

Action: •

•

10-82

Opcode Reference Format Class

011 varies varies 100011

Indivisibly inserts a bit field from one ordinal into
another ordinal.

Contains the bit-field specifier for the destination bit
field that is to be written.

Contains an ordinal with a right-justified bit field that
is to be inserted into the destination ordinal.

Contains the destination ordinal into which the bit field
is to be inserted.

Indivisibly (within one read-modify-write cycle) insert
the source field from operand 2 into the specified
destination bit-field in operand 3.
Push the original value of operand 3 onto the operand
stack.

iAPX 432 GDP Operator Set

CONTEXT OPERATORS

The following sub-operator procedures (ENV Entry and Context Call) are
used in the action descriptions of context operators.

ENV F;ntry

• If the source AD is access-valid, then do the following:
• Perform Set Copied for this source AD.
• Read the level number of the object referenced by the

source AD. If the source object is specified by a
refinement, the level number of the base object rather
than that of the refinement is read. The level number is
located in the OD of the object.

• Otherwise, if the source AD is not access valid, then use the
maximum level number (65,535).

• Write the level number in the appropriate Entered ENV Level
field in the process object.

• Write the source AD without Delete Rights into the appropriate
Access Environment AD location in the current context object.

• Save the new access environment information within the GDP.

Context Call

• If the static link access selector (specified as an operand)
is 4, a null AD is used as the static link AD. Otherwise, the
static link access selector is interpreted as selecting the AD
to be used as the static link.

• Perform Set Copied for the AD of the specified domain.
• If the domain is a refinement, then do the following:

• Traverse to the base object by using the Base Segment and
Base Directory indices (in the refinement descriptor).

• Adjust the called instruction object's DAI to that
relative to the base domain by adding the AP Offset in
the refinement descriptor.

• Read the AD of the called instruction object using the
adjusted domain access index.

• If the called instruction object AD has no Call Rights, raise
the Instruction Object Type Rights Fault.

• Read the instruction object header (the first 8 bytes of the
instruction object).

• If either the Context Data Part Length or the Context Access
Part Length (from the instruction object header) is less than
its respective minimum size, raise the Context Parameters Size
Fault.

• If either the Context Data Part Length or the Context Access
Part Length (from the instruction object header) is greater
than its respective current size (of the pre-created context)
in the process object, raise the Context Parameters Size
Fault.

• Increment the Current Allocation Level in the process object
by 1.

10-83

Operator Set iAPX 432 GDP

• Read the Context Link AD in the current context.
• Update the AP Length and DP Length of the new context to that

specified in the instruction object header.
• Initialize the context access part starting with the AD 14

location to null ADs. Initialize the data part to zeros.
• Initialize the new c0ntext access part:

• Write into the Defining Domain location an AD (with Write
Rights and without Delete Rights) for the specified domain
(the base domain after any refinement traversal).

• Write into the Local Constants location an AD for the
object specified by the Local Constants DAI field in the
called instruction object's header.

• Write into AD location 5 (Environment 1) the AD for the
defining domain.

• Write null ADs into AD locations 6, and 7 for the initial
environments 2 and 3.

• Write the Top of Descriptor Stack AD and Top of Storage
Stack AD of the current context into the corresponding
locations.

• Write into Static Link location the specified static link
AD.

• Initialize the new context data part as follows:
• Copy the current context status into the Context Status

field.
• Write into the Operand Stack Pointer field the value from

the Initial Operand Stack Pointer field in the called
instruction object's header.

• Write into tbe Current Instruction Object DAI field the
adjusted domain access index of the instruction object
(adjusted above only in the case of refinement).

• Write into the Instruction Pointer field an initial value
of 64.

• Set up the return information for the current (calling) context
as follows:
• Write the current values into the following current

context data part:
• Context Status
• Operand Stack Pointer
• Current Instruction Object DAI
• Instruction Pointer
Write the Instruction Pointer with the value pointing to
the next instruction to be executed upon return from the
called context.

• Write an AD for the new context into the Current Context
location in the process object.

• Initialize the Entered ENV 1 Level field in the current process
object with the level number of the defining domain.

• Initialize the Entered ENV 2 and 3 Level fields in the current
process object to maximum.

• Replace the GDP's internal context environment with that of the
called context and continue execution at the instruction
specified.

10-84

iAPX 432 GDP Operator Set

ENTER ENVIRONMENT 1 ENTER ENV 1

ID# Operands Opcode Reference F-ormeit Class

197 as :T: 01 lO varies varies 0000

Operation:

Operand 1:

Action: e

Changes environment of the current context to allow
direct access to the access descriptors in a specified
object.

Contains the access selector for the object to be
ente·red.

Perform ENV Entry cf the source AD into AE 1.

ENTER ENVIRONMENT 2 ENTER ENV 2 - -
IDll Operands Opcode Reference Format Class

....,._ _ - -£ -3
198 as

Operation:

Operand 1:

Action: •

1110 varies varies 0000

Changes environment 2 of the current context to allow
direct access to the access descriptors in a specified
object.

Contains the access selector for the object to be
entered.

Perform ENV Entry of the source AD into AE 2.

ENTER ENVIRONMENT 3 ENTER_ENV_3

Operation:

Operand 1:

Action: •

Opcode Reference Format Class

0001 varies varies 0000

Changes environment 3 of the current context to allow
direct access to the access descriptors in a specified
object.

Contains the access selector for the object to be
entered.

Perform ENV Entry of the source AD into AE 3.

10-85

Operator Set iAPX 432 GDP

COPY PROCESS GLOBALS COPY PRCS GLOBALS

200 as

Operation:

Operand 1:

Action: •

•
•

- -

Opcode Reference Format Class

1001 varies varies 0000

Copies an access descriptor for the current process's
process globals object into the specified AD location.

Contains an access selector for the destination access
descriptor location.

Read the Process Globals AD (in the current process
object).
Perform Set Copied for this AD •
Perform Store AD of this AD into the destination AD
location.

SIT CONTEXT MODE SET CTXT MODE

ID/I Opcode Reference Format Class

201 0101 varies varies 0000

Operation: Writes the value of short-ordinal operand to the
Context Status field of the current context object. The
context moae within the GDP is also updated accordingly.

ADJUST STACK POINTER ADJ SP

1Jpcode Reference rormat Class

01011 varies varies 0100

Operation: Adds short-integer operand to the operand stack
pointer, returning the previous stack pointer value to
short-ordinal destination operand 2.

Action: • Save the current operand stack pointer temporarily. The
value saved is after operand and address evaluation.

10-86

• Add short-integer operand 1 to the current operand stack
pointer. A short-integer overflow fault cannot occur.

• Store the saved operand stack pointer value into operand
2. If the destination is the operand stack, the
destination is specified by the new stack pointer.

iAPX 432 GDP

CALL

20

Operand 1:

Operand 2:

0 - 15:

16 - 31:

Action: •

Operator Set

CALL

Opcode Reference Format Class

101 varies varies~ . OlOOOJ

Creates a new context using an instruction object in a
directly accessible domain and then calls that new
context while passing a static link to it.

Contains the access selector for the static link of the
new context.

A packed word operand comprised of the following:
Contains the access selector for the defining domain of
the new context.
Contains the domain access index into the specified
defining domain of an access descriptor for the
instruction object for which the context is to be created.

Perform Context Call of the specified instruction object
using the static link AD specified by operand 1.

CALL THROUGH DOMAIN CALL THRU DOMAIN

I ID# I
1

Ope~ancts3~
--·· -.- .-

Opcode

011

Reference

varies

Format Class

varies 010001 I ~u~ I as I pw I - I

Operation:

Operand 1:

Operand 2:
0 - 15:

16-31:

Action: •

Creates a new context using an instruction object in a
specified new defining domain that is within the current
defining domain and then calls that new context while
passing a static link to it.

Contains the access selector for the static iink to be
passed.

A packed word operand comprised of the following:
Contains the domain access index for an access descriptor
for the defining domain of the new context.
Contains the domain access index into the specified
defining domain of an access descriptor for the
instruction object for which the context is to be created.

Perform Context Call of the specified instruction object
using the static link AD specified by operand 1.

• Enter the new domain as Environment 1.

10-87

Operator Set

RETURN

Operation:

Action: •

•
•

•

•
•

•

iAPX 432 GDP

RET

Opcode Reference rormat Class

0 none none 000110

Returns f~om the currently active context to the calling
context.

If tracing is enabled and the Trace Mode field (in the
Process Status field) specifies Flow Trace, then raise
the Trace Event Fault and thus continue execution in the
Trace Instruction Object (referenced by AD 1 in the
domain access part).
If the Calling Context AD does not have Return Rights,
raise the Context Type Rights Fault.
If the Top of Storage Stack AD of the current context
differs from that of the calling context, use the Top of
Storage Stack AD (in the calling context) to calculate an
end address to update (and set the Dirty bit of) the
allocation stack specifier in the process's physical
storage object. This deallocates the local storage
allocated for this returning context.
If the Top of Descriptor Stack AD (in the current
context) differs from that of the calling context, use
tbe Segment Index of the Top of Descriptor Stack AD (in
the calling context) to update the Free Index field of
the Header Entry in the process object table. This
deallocates all ODs in the process object table that were
allocated to this returning context.
Decrement by 1 the Current Allocation Level field of the
process object.
Write the AD from the Calling Context location (in the
returning context object) into the Current Context
location in the process object. That is, make the
previous calling context the current context.
Replace the GDP's internal context environment with that
of the calling context and continue execution at the
instruction specified in the Instruction Pointer field of
the new current context object.

RETURN AND FAULT RET FAULT

Operation:

Action: •

lYpcoae lreTerence Format CT ass

1 none none 000110

Returns froru the currently active context and resumes
execution at bit displacement 64 in the Fault Instruction
Object specified in the defining domain of tbe context
returned to.

Perform the RETURN operator.
• Raise the Return Fault.

10-88

iAPX 432 GDP Operator Set

PROCESS COMMUNICATION OPERATORS

The following sub-operator procedures (Enqueue Message, Dequeue
Message~ Enqueue Carrier, De-queue Ga-rrie-r, Forward Carri-er, Surrogate
Common, Send Common, and Receive Common) are used in the action
descriptions of process communication operators.

Enqueue Message

• Remove a port message queue entry from the free list.
• Write the specified message AD into the AD location (in the

Message Queue Access Area) corresponding to the new message
queue entry.

• If the Queue Discipline (in the Port Status) is FIFO, insert
the new entry into the message queue at the tail of the
message queue linked list.

• Otherwise, search the message queue linked list and, depending
on the queuing values in the message queue entries, find an
appropriate insertion point. Insert the new entry into the
message queue at this point with the appropriate queuing
value.

Dequeue Message

• If the Port Type is De lay (in the Port Status field) and the
Deadline value in the head entry of the message queue is
positive, then return from Dequeue Message.

• Otherwise, because the Port Type is not Delay, remove the head
entry of the message queue and return its corresponding
message AD (from the Port Message Access Area). The AD
location (from which this dequeued message AD was obtained) is
written with a null AD, and the dequeued entry is returned to
the free list.

10-89

Operator Set iAPX 432 GDP

Enqueue Carrier

• Enqueue the specified carrier at the tail of the carrier
queue.

Dequeue Carrier

• Dequeue a carrier from the head of the carrier queue.

Forward Carrier

• If the AD for the Second Port in the current Carrier is null,
then unlock the carrier and return from Forward Carrier.
Otherwise, continue.

• Write that AD for the Second Port into the Current Port
location in the current Carrier. That is, make the second
port the current port.

• Write a null AD in the second port location of the current
carrier to prevent forwarding the second time.

• Use the AD for the Second Message in the current carrier as
the specified message AD.

• Use the Second Port Queuing Value in the current carrier as
the current queuing value.

• Perform Send Common.

Surrogate Common

• If the specified carrier is a refinement, traverse the
refinement by using the Base Segment and Base Directory
indices in the refinement descriptor.

• Use the unrefined (base object) carrier as both the current
carrier and the current surrogate carrier.

• Perform Object Locking on the current carrier. If locking
fails, raise the Carrier Lock Fault.

• If the specified AD for the Destination Port is null, then set
the Null Surrogate Destination bit, and clear the First Port
Done bit in the Process Status field of the current process.

• Otherwise, clear the Null Surrogate Destination and First Port
Done bits in the Process Status field of the current process.

• Write the specified AD for the destination port into the
Second Port location in the current Carrier.

• If the levels of the current port, destination port, and
carrier are not equal, raise the Level Fault.

10-90

iAPX 432 GDP Operator Set

Send Common

• Perform Object Locking on the current port. If the locking
operation is not successful, raise the Port Lock Fault.

• If the message queue is not full and no carrier is blocked at
the current port awaiting a message, then do the following:
• Perform Enqueue Message of the specified message into the

port message queue.
• If the First Port Done or Null Surrogate Destination bit

is set (in the process status), unlock the current
carrier.

• Set the First Port Done bit in the Process Status field.
• Unlock the current port.
• Return from Send Common.

• If the message queue is empty (i.e.j the Head of Message Queue
field is zero) and a carrier is blocked at the current port
awaiting a message, tben do the following:
• If either the First Port Done or Null Surrogate

Destination bit is set, unlock the current carrier.
• Perform Dequeue Carrier of a carrier from the current

port.
• Make the dequeued carrier the current carrier.
• Write the specified message AD into the Incoming Message

location in the new current Carrier.
• Set the Message Received and Unblocked bits in the

Carrier Status field of the current Carrier.
• Set the First Port Done bit in the Process Status.
• Unlock the current port.
• If the current carrier is a processor carrier (as

indicated by the Carried Object Type field in the Carrier
Status), send a Wake-Up IPC to the carried processor.

• Otherwise, perform Forward Carrier of the carrier to its
second port.

• Return from Send Common.
• If the message queue is full (as indicated by a va~ue of zero

in the Head of Free Entry List field), then do the following:
• If this is not a conditional SEND operation, then do the

following:
• Write the specified message AD in the Blocked

Message location in the current carrier.
• Write the current· queuing value into the Blocked

Queuing Value field of the current Carrier.
• Perform Enqueue Carrier of the current carrier.
• Unlock the current port.
• Return from Send Common.

• Otherwise, do the following steps for a conditional SEND
operation:
• Unlock the current port.
• Return from Send Common with a status of

unsuccessful.

10-91

Operator Set iAPX 432 GDP

Receive Common

• Perform Object Locking on the current port. If the locking
operation is not successful, raise the Port Lock Fault.

• If the message queue is not empty (as indicated by a non-zero
value in the Head of Message Queue field), and there is no
blocked carrier awaiting, then do the following:
• Perform Dequeue Message to obtain a message from the

message queue.
• Write the received message AD into the Incomming Message

location in the current Carrier, and set the Message
Received and the Unblocked bits in the Carrier Status
field.

• Set the First Port Done bit in the Process Status field.
• Unlock the current port.
• Return from Receive Common.

• If the message queue is full and there is a blocked carrier
awaiting, then do the following:
• Perform Dequeue Message to obtain a message from the

message queue.
• Write the received message AD into the Incoming Message

location in the current Carrier and set the Message
Received and Unblocked bits in the current Carrier Status
field.

• Perform Dequeue Carrier on the current port to obtain a
carrier from the carrier queue.

• Make the dequeued carrier the current carrier.
• Perform Enqueue Message of the Blocked Message in the

current carrier by using the Blocked Queuing Value field
of the current carrier.

• Write a null AD into the Blocked Message location.
• Set the First Port Done bit in the Process Status.
• Unlock the current port.
• Perform Forward Carrier of the current carrier to its

Second Port.
• Return from Receive Common.

• If the message queue is empty, then do the following:

10-92

• If this is not a conditional RECEIVE operation, then do
the following:
• Clear the Message Received and Unblocked bits in the

current Carrier Status.
• Perform Enqueue Carrier of the current carrier at

the current port.
• Unlock the current port.
• Return from Receive Common.

• Otherwise, do the following steps for a conditional
RECEIVE operation:
• Unlock the current port.
• Return from Receive Common -with a status of

unsuccessful.

iAPX 432 GDP

SEND

ID#

207

Operation:

Operand 1:

Operand 2:

Action: •
• •
•
•
•
•
•

•

Operator Set

SEND

Opcode Reference Format Class

11011 varies varies 0100

Sends a specified message to a specified port.

Contains the access selector for a port to which the
message is to be sent. The selected AD must have Send
Rights.

Contains the access selector for the object to be sent as
a message.

Use the Current Process Carrier as the current carrier •
Use the port specified by operand 1 as the current port •
Use the message AD specified by operand 2 as the message
AD in further operations.
Use a Queuing Value of zero (i.e., 0 for Priority and 0
for Deadline).
Clear the First Port Done bit and the Null Surrogate
Destination bit (in the current process status).
If the level of the message object is less than that of
the port, raise Level Fault.
Perform Send Common •
If the send operation is successful (as indicated by the
First Port Done bit being 1 in the Process Status),
continue normal execution.
Otherwise, suspend the current process and relinquish the
processor for redispatching.

10-93

Operator Set iAPX 432 GDP

RECEIVE RECEIVE

Opcode Reference Format Class

208 as 1101 varies varies 0000

Operation: Receives a message at a specified port.

Operand 1: Contains the access selector for the port at which the
process is to receive a message. The selected AD must
have Receive Rights.

Action: •

• •

Use the Current Process Carrier as the current carrier.
Use the port specified by operand 1 as the current port •
Clear the First Port Done bit and the Null Surrogate
Destination bit (in the current process status).

10-94

• Perform Receive Common.
• If the receive operation is successful (as indicated by

the First Port Done bit being 1 in the Process Status),
then write the AD of the received message into the
Interprocess Message AD location in the current context
and continue normal execution.

• Otherwise, set the Waiting for Message bit in the Process
Status field, suspend the current process, and relinquish
the processor for redispatching.

iAPX 432 GDP Operator Set

CONDITIONAL SEND COND SEND

ID/I

209 as

Operation:

Operand 1:

Operand 2:

Operand 3:

Action: •
• •
•
•
•
•
•

Opcode Reference Format Class

0111 varies varies . 111101

Checks for the availability of message queue space at a
specified port and indivisibly sends a specified message
if space is available.

Contains the access selector for a port to which the
message is to be sent. The selected AD must have Send
Rights.

Contains the access selector for the object to be sent as
a message.

Contains a boolean ·c in the low-order byte) that is set to
TRUE if the SEND operation is successful and to FALSE
otherwise. The high-order byte is not affected.

Use the Current Process Carrier as the current carrier.
Use the port specified by operand 1 as the current port •
Use the message AD specified by operand 2 as the message
AD in further operations.
Use a Queuing Value of zero (i.e., 0 for Priority and 0
for Deadline).
Clear the First Port Done bit and the Null Surrogate
Destination bit (in the current process status).
If the level of the message AD is less than that of the
port, raise Level Fault.
Perform Send Common •
If the send operation is successful (as indicated by the
First Port Done bit being 1 in the Process Status), then
write a result of TRUE in the destination boolean operand
3 and continue normal execution. ·

• Otherwise, write a result of FALSE in the destination
boolean operand 3 and continue normal execution.

10-95

Operator Set iAPX 432 GDP

CONDITIONAL RECEIVE COND RECEIVE

IDll Operands Opcode Reference Format Class
·-----+- _ _...,~·---3

210 as

Operation:

Operand 1:

Operand 2:

Action: •

•
•
•
•

111 varies varies 100001

Checks for the availability of a message at a specified
port and indivisibly receives the message if it is
available.

Contains the access selector for the port at which the
message is to be received. The selected AD must have
Receive Rights.

Contains a boolean in the low-order byte that is set to
TRUE if the RECEIVE operation is successful and to FALSE
otherwise. The high-order byte is not affected.

Use the Current Process Carrier as the current carrier.
Use the port specified by operand 1 as the current port •
Clear the First Port Done bit and the Null Surrogate
Destination bit (in the current process status).
Perform Receive Common •
If the receive operation is successful (as indicated by
the First Port Done bit being 1 in the Process Status),
then write the AD of the received message into the
Interprocess Message AD location in the current context,
write a result of TRUE in the destination boolean operand
3, and continue normal execution.

• Otherwise, write a result of FALSE in the destination
boolean operand 3 and continue normal execution.

10-96

iAPX 432 GDP

SURROGATE SEND

ID/I

211

Operation:

Operand 1:

Operand 2:

Operand 3:
0 - 15:

16-31:

Action: •

•
•
•
•
•

Operator Set

SUR SEND

Opcode Reference Format Class

1 varies varies 000011

Sends a specified message to a specified port via a
specified surrogate carrier.

Contains the access selector for a port to which the
message is to be sent. The selected AD must have Send
Rights.

Contains the access selector for the object to be sent as
a message.

A packed word operand comprised of the following:
Contains the access selector for the second port to which
the surrogate carrier can be forwarded. The selected AD
must have Send Rights.
Contains the access selector for the surrogate carrier.
The selected AD must have Surrogate Rights.

Perform Surrogate Common.
Use the message AD specified by operand 2 as the message
AD in current operations.
Use the Second Queuing Value in the current carrier as
the current queuing value.
If the level of the message AD is less than that of the
port, raise the Level Fault.
Perform Send Common •
If the First Port Done bit is 1, and the Null Surrogate
Destination bit is 0 (i.e., the send operation did not
block and the current surrogate carrier needs to be
forwarded to its second port), then perform Forward
Carrier of the current surrogate carrier to its second
port.

10-97

Operator Set iAPX 432 GDP

SURROGATE RECEIVE SUR RECEIVE

ID#

2·12

Operation:

Operand 1:

Operand 2:
0 - 15:

16 - 31:

Action: •

•
•

10-98

Opcode Reference Format Class

The current process uses a specified surrogate carrier at
a specified port to wait for a message.

Contains the access selector for the port at which to
receive a message. The selected AD must have Recieve
Rights.

A packed word operand comprised of the following:
Contains the access selector for the second port to which
the surrogate carrier will be forwarded. The selected AD
must have Send Rights.
Contains the access selector for the surrogate carrier.
The selected AD must have Surrogate Rights.

Perform Surrogate Common.
Perform Receive Common •
If a message has been received successfully (i.e., the
First Port Done bit is 1 and the receive operation did
not block), then perform Forward Carrier of the surrogate
carrier to its second port.

iAPX 432 GDP Operator Set

DELAY PROCESS DELAY PRCS

Opcode Reference Format Class

21 0011 varies varies 0000

OperatiQn: Delays the current process for a specified period of time
in the normal dispatching mode. Otherwise, it
reschedules the process.

Operand 1:

Action: •

•

Contains the short-integer delay period that is an
appropriate delay value (in system time uni ts) based on
the resolution of the system clock. This value must be
positive.

Use the current process carrier as the current carrier.
If the current dispatching mode (in the processor status)
is Normal, do the following:
• Write the Second Port AD into the Save Port AD in

the current ca~rier.
• Write a null AD into the Second Port AD location.
• Use the Delay Port (referenced in the processor

object) as the current port.
• Use operand 1 as the Deadline value.

• If the current dispatching mode (in the processor status)
is not Normal, do the following:
• ~-Use the Second Port (in the current carrier) as the

current port.
• Write a null AD into the Second Port Ad location in

the current carrier.
• Use the Second Port Queuing Value (in the current

carrier) as the current queuing value.
• Use the Second Message (specified in the current carrier

object) as the message.
• Perform Send Common.
• Suspend the current process and relinquish the processor

for redispatching.

10-99

Operator Set

SEND PROCESS

214 as

Operation:

Operand 1:

Action: •
•
•
•
•
•
•
•

iAPX 432 GDP

SEND PRCS

Opcode Reference Format Class

1011 varies varies 0000

Sends the current process to the specified port.

Contains the access selector for the port at which the
current process is forwarded as a message. The selected
AD must have Send Process Rights.

Use the current process carrier as the current carrier.
Use the port specified by operand 1 as the current port .
Write a null AD into the Second Port AD location •
Set the First Port Done and Null Surrogate Destination
bits to 1 in the current process status.
Use the Second Port Queuing Value in the current carrier
as the current queuing value.
Use the Second Message (specified in the current carrier
object) as the message.
Perform Send Common •
Suspend the current process and relinquish the processor
for redispatching.

SET PROCESS MODE SET PRCS MODE

ID#

215

Operation:

Operand 1:

Operand 2:

Action: •

•

10-1 00

Opcode Reference Format Class

00111 varies varies 0100

Updates the process status of a specified process.

Contains an access selector for an AD for the current
process object. The selected AD must have Set Process
Mode Rights.

Contains the short-ordinal for the new process status.

If the source AD is not equal to the current process
object AD, raise the Process Object Access Mismatch fault.
Store the new process status (while preserving the old
values of the Unbounded bit, the Process Faulted bit, and
the Trace Enable bit) into the Process Status field of
the process object. Update the process status within the
GDP accordingly.

iAPX 432 GDP Operator Set

READ PROCESS CLOCK READ PRCS CLOCK

ID/I Operands Opcode Reference Format Class

216
1T2 3
0 - 011 varies varies 110110

Operation: The 32-bi t process clock value is read from the Process
Clock field in the current process data part, updated to
include the time (in system time units) consumed during
the current service period, and stored in destination
orainal operand 1.

1 ()_ 1 01

Operator Set iAPX 432 GDP

PROCESSOR COMMUNICATION OPERATORS

SEND TO PROCESSOR SEND PSOR

IDll Opcode Reference Format Class

21 1ll1 varies varies 1111 01

Operation: Sends an interprocessor message to a specified processor
(possibly the one this instruction is executing on) via
tbe interprocessor communication (IPC) mechanism.

Operand 1: Contains the access selector for the destination PCO.
The selected AD must have Send IPC Rights.

Operand 2: Contains the short-ordinal value for the IPC message
code.

Operand 3: Contains a boolean that is set to TRUE if the IPC is
successfully sent and otherwise, is set to FALSE.

Action: • Perform Object Locking on the PCO specified by operand
1.

10-102

• If the locking operation is not successful, then store a
boolean result of FALSE into destination operand 3 and
end this instruction.

• If the locking operation is successful and the Response
Count field is not zero, then unlock the PCO and store a
boolean FALSE in the destination operand 3, ano end this
instruction.

• If the locking operation is successful, then do the
following:
• In the PCO, set the Response Count field to the

value of Processor Count. This field will be
decremented by the receiving processor.

• Copy the IPC message code specified by operand 2
into the IPC Message Code field of the PCO.

• Signal an IPC by writing into IPC register address 2
in the interconnect address space the value of the
Processor ID from the specified PCO.

• Return boolean TRUE to the destination operand 3.
• Unlock the PCO.

iAPX 432 GDP Operator Set

READ PROCESSOR STATUS READ PSOR STATUS - -

ID# Operands Opcode Reference Format Class
----....-1-2 3

218 w ,_

Operation:

Operand 1:

0 - 15:
16 - 31:

Action: •

•

111 varies varies 110110

Reads the current processor status and system clock and
stores them in a 32-bit location.

A packed word destination operand comprised of
following:
Used to store the processor status.
Used to store the current value of the system clock.

the

Read the 16-bi t Processor Status field in the current
processor data part, and append it to the current value
of the processor resident system clock to form an ordinal
value.
Store the ordinal result in destination operand 1 •

10-10~

Operator Set iAPX 432 GDP

INTERCONNECT OPERATORS

MOVE TO INTEHCONNECT MOV TO ICT

IDll Operands Opcode Reference Format Class
2 3

219 as so 01111 varies varies 0010

Operation:

Operand 1:

Operand 2:

Operand 3:

Action: •

Moves a source short-ordinal
interconnect register.

to a destination

Contains the access selector for the destination
interconnect object.

Contains the short-ordinal byte displacement within the
interconnect object to the destination interconnect
register. This value must be even.

Contains the source short-ordinal that is moved to the
destination.

Move operand 3 to the interconnect register specified by
operand 1 and operand 2.

MOVE FROM INTERCONNECT MOV FM ICT

IDll

220

Operation:

Operand. 1:

Operand 2:

Operand 3:

Action: •

i0-i04

Opcode Reference Format Class

11111 varies varies 0010

Moves a source short-ordinal in an interconnect register
to a destination short-ordinal.

Contains the access selector for the source interconnect
object.

Contains the short-ordinal byte displacement within the
interconnect object to the source interconnect register.
This value must be even.

Contains the destination short-ordinal that is copied
from the source interconnect register.

Move the contents of the interconnect register specified
by operand 1 and operand 2 into short-ordinal operand 3.

iAPX 432 GDP Operator Set

BLOCK MOVE OPERATORS

BLOCK MOVE BLK MOV

[ID# 1
1

Ope;ands
3
-1

I 222 etletls-0 I

Opcode

none

f Reference

l varies

Class l

I
Format

110001 varies

Operation:

Operand 1:
0 - 15:

16 - 31:

Operand 2:
0 - 15:

16 - 31:

Operand 3:

Action: •

Moves a block of up to 2,048 bytes of a time, possibly
within a larger region being moved using a loop built
around this op~rator.

A packed word operand comprised of the following:
destination access selector
destination displacement

A packed word 01Jerand comprised of the following:
source access selector
source displacement

Short ordinal number of bytes to be moved, minus

The size of the total region to be moved is the number of
bytes (operand 3 plus one) rounded up to a multiple of 8.

• The number of bytes that will be moved by this operation
is the size of the total region modulo 2; O 48= (For
example, if operand 3 is 4,999, then the size of the
total region is 5,000 and the number of bytes that will
be moved by this operation is 904.)

• The source region begins with the source displacement in
the source object. The destination region begins with
the destination displacement in the destination object.

• Move from the top of the source region to the top of the
destination region the calculated number of bytes in
units of eight bytes. The move operation begins at high
displacements and progresses to lower displacements.
(For example, if both source and destination displacement
are 1,000 and using the sizes from the example above:
The bytes in tbe region to be moved have displacements
1, 000 to 5, 999. The bytes moved by this operation have
displacements 5,096 to 5,099. The first eight-byte unit
transferred is from displacements 5,092 to 5,099.) There
is no alignment requirement for the source or destination
displacements.

10-105

• C:'
CHAPTER 11

INSlHUCTION ENCUDING

Th is chapter c.iefines GDP instruction composition. 1 t includes the
field formats required f~r the various operand addressin~ modes and the
complete instruction encoding information. -For a full disct1sston of
the GDP instruction interface SE:e the Instruction Interface chapter of
this manual.

CHAPTER CONVENTIONS

Throughout the tables in this chapter tLe followi11g abbreviations are
used to inc.iicate the lengths of operands:

b byte (8 bits)
dL double-byte (1b bits)
w word (32 bits)
dw double-word (64 l>its)
ew extended-word (80 bits)

Unless otherwise noted, field formats and binary encoded field values
are :::ihown iri all NSB to L.SB 0rde r, left to r igb t on the page.

INSTRUCTION FIELDS

Instructions are variable-length sections of & bit-addressed stream iL
an instruction object. Every instruction contc.iins an operator
specification and possibly several references. The operator specifies
to tLe ptuce~s0r ivLat operation is to be performed, and operand
references select the operands to be used or n1anipulated. The major
fields of an iristruction are ordered as follows:

MSB ~ increasing addres~ LSB

Opcode Rtference Format Class

(next) (current in~truction) (previot.:s)

The operator specified in an iDstruction is encoded in two fields, the
Class field and the Opcode field. The Class field specifies the
operc:.tor class to which the o}lerator belongs, and the Opcode field
selects from within tLat class the processor operation to be
performea. The oper eitor 's class determines the order of the operator
(i.e. , tbe number or rEquired operands) and the length of the
associated operano~. Later s€ctions of this chapter define the formats
and encodings of the Cl ass, Furmat, Reference, and Opcode instructiori
fields.

11-1

Instruction Encoding

lCLASS FIELD ENCODINGSl

ORDER

0

1

2

"..(_,

l

OPERAND
LENGTHS

none
none (branch)
none (breakpt)

b (branch)
b

db
w

dw
ew

b, b

b,dl>
b, w

db, b
db,db
db, w

w, b
w,~b

w, w
w,ew

dw, b
d'W,dW
dw ,ew
ew, b
E-W, w
ew,dw
e\rv ,ew

b, b, b

c..b, c!b, b
db,db,db
db, db, w
db, wt w
db, w,ow

w,ob,c.;b

w, w, b
w, w ,db
w, w, w
w, w,ew
w,ew,ew

dw, w, w
dw,aw, b
dw, dw ,ew
dw,ew,ew
ew, w,ew
ew,dw,ew
ew,ew, b
ew,ew,ew

CLASS
ENCODING

000110
100110
111111

1000
010110

0000
110110
001110
101110

011110

111110
000001
1 00001

0100
010001
001001
, 01001

1100
011001
, 11001
0001 01
100101

01 01 01
110101
001101
i01101

011101

111101
0010

C00011

100011
010011
i 10011

001 011
110001

101 0
101011
011011
111011
000111
100111
010111
110111
001111
101111
01111,

iAPX Lj2 GLP

iAPX 432 GDP Instruction Encoding

FORMAT FIELD ENCODINGS

The Format field of an instruction determines which references
(implicit stack references or explicit data references) in the
instruction specify which operands. The following table shows the
Format field encodings for the mappings from the possible data or stack
references to thei~ associated operands.

ORDER I OPE~AND
0 --- ---
1 dref1 ---

stk ---
2 dref1 dref2

dref1 dref1
dref1 stk
stk dref1
stk stk

3 dref1 dref2
dref1 dref2
dref1 dref2
dref1 dref2
dref1 stk
stk dref1

...1- ~1 -.&.1 ..
'\,,&J. "i;;".L I ,;;)"'!\.

stk dref1
dref1 stk
stk dref1
stk1 stk2
stk2 stk1
stk1 stk2
stk2 stk1

dref2 dref1
dref2 dref1

OPERAND
3

--

--

dref3
dref2
dref1
stk

dref2
dref2
...J __ - ,,... ..

ur-t:.L 1

dref1
stk
stk

dref1
dref1
stk
stk

dref3
stk

EXPLICIT
REFERENCES

0

1
0

2
1
1
1
0

3
2
2
2
2
2
i
1
1
1
1
1
0
0
3
2

l FORMAT
ENCODING

none

0
1

00
10
01

011
111

0000
1000
0100
1100
0010
1110
10i0
0001
0110
1001
0111
0101
1011
1101
0011
1111

dref1 ,dref2 ,dref3

stk

indicate that the operand is referenced through the first, second,
or third explicit data reference in the instruction's reference
field.

indicates that the operand itself is to be pushed onto, or popped
from, the operand stack.

stk1,stk2
indicate that the operand is popped from the top (stk1) or
next-to-top (stk2) of the operand stack.

11-3

Instruction Encoding iAPX 432 GDP

REFERENCE FIELD FORMAT

The Reference Field of an instruction can consist of either 0 or 1 data
references followed by a branch reference or from O to 3 data
references. Data references and branch references are both variable in
length. Explicit data refererences are encoded in the following order:

MSB ~ increasing address LSB

Data Reference 3 Data Reference 2 Data Reference 1

The format of a data reference is determined by the desired data
reference mode and access selection mode. The following sections of
this chapter define the fields and encodings of a data reference.

DATA REFERENCE FORMATS

SCALAR DATA REFERENCE

7 or 16 bits

Data Reference Mode
.._______ Access Selection Mode

-------------- Displacement
Length Control
O for 7 bits
1 for 16 bits

----------------------- Access Selection Field
"-------------------------------------- Displacement

11-4

iAPX 432 GDP

RECORD ITEM DATA REFERENCE

7 or 16 bits I x 01 I

Instruction Encoding

Data Reference Mode
Access Selection Mode
Index Length Control

0 for 7 bits
1 for 16 bits

--------- Access Selection Field
Index

...-.--------------------------------------- Base Indirect
Reference

STATIC ARRAY ELEMENT DATA REFERENCE

0 or 16 bits I x I xx

I "-.... -n-L'------ __ •• __ • _
- vc:1 i,ca m::: l t:rt:uct: r1uue

-------- Access Selection Mode
Base Length Control

0 for O bits
1 for 16 bits

------------------ Access Selection Field .._ ____________________________ Base

Index Indirect
Reference (scaled)

11-5

Instruction Encoding iAPX 432 GDP

DYNAMIC ARRAY ELEMENT DATA REFERENCE

xx 11

Data Reference Mode
--------- Access Selection Mode

'----------------- Access Selection Field
Base Indirect

Reference
Index Indirect

Reference (scaled)

INDIRECT REFERENCE FIELD FORMATS

Stack Indirect Reference

The 16-bit indirectly referenced (Base or Index) value is popped from
the current top of the operand stack.

i=e_ Indirect Reference Mode

Intrasegment Indirect Reference

The 16-bit indirectly referenced (Base or Index) value is obtained
using the below Displacement field to offset into the same data segment
that is selected by the Access Selection field of the present data
reference.

7 or 16 bits x 10

Indirect Reference Mode
..._ ______ Displacement Length Control

O for 7 bits
1 for 16 bits

'"'----------------- Displacement

11-6

iAPX 432 GDP Instruction Encoding

General Indirect Reference

The 16-bi t indirectly referenced (Base or Index) value is obtained
using the below Displacement field to offset into the data segment
selected by the below Access Selector field.

(variable)

7 or 16 bits 4 or 8 bits

Indirect Reference
Mode

..._ ______ Access Selector
Length Control

0 for 4 bits
1 for 8 bits

..._ __________ Displacement
Length Control

0 for 7 bits
1 for 16 bits

'---------------------- Direct Access Selector
"-------------------------------------- Displacement

ACCESS SELECTION FIELD FORMATS

Short Direct Access Selection

4 bits

Access Selection
Mode

'------------- Short Direct Access Selector

Long Direct Access Selection

8 bits

Access Selection
Mode

'------------- Long Direct Access Selector

11-7

Instruction Encoding

Stack Indirect Access Selection

There is no Access Selection field in

iAPX 432 GDP

Access Selection
Mode

the instruction stream. Access Selection
occurs via a 16-bit indirect access
selector that is popped from the current
top of the operand stack.

G

General Indirect Ac~ess Selection

Access selection (for the entire data reference) occurs via a 16-bi t
indirect access selector. The indirect access selector is located, in
turn, by using the below Displacement field to offset into the the data
object that is selected by the below Direct Access Selector field.

7 or 16 bits 4 or 8 bits

ACCESS SELECTOR FORMATS

Access Selection
Mode

G
Access Selector

Length Control
O for 4 bits
1 for 8 bits

..._ _____ Displacement
Length Control
O for 7 bits
1 for 16 bits

Direct Access Selector
Displacement

An access selector's function is to select an access descriptor.
Access selectors in the instruction stream can be either 4 or 8 bits in
length. When found in data locations other than the current
instruction stream (e.g., when used as operands for object operators),
access selectors are always 16 bi ts in length and are simply called
access selectors. Four- or eight-bit access selectors are called
direct access selectors when the distinction is required. Access
selectors have one of the following formats.

11-8

iAPX 432 GDP Instruction Encoding

Direct Access Selector

I 2 or 6 bits xx

I
L---- ENV selector

00 for Current Context Access
01 for Environment 1
10 for Environment 2
11 for Environment 3

o--~
.l Cll " (ENV O)

'"------------- Access Index

Indirect Access Selector

14 bits xx

2 bits used for Short Direct AS,
6 bits used for Long Direct AS.
Tilis value indexes into the selected
Environment to an AD.

ENV Selector
00 for Current Context Access Part (ENV 0)

10 for Environment 2
11 for Environment 3

._. ____________ Access Index

BRANCH REFERENCE FORMATS

10 or 16 bits x

14 bits used for Indirect Access Selector.
1bis value indexes into the selected
Environment to an AD.

Branch Reference Type
O for Relative Branch using 10 bits
1 for Absolute Branch using 16 bits

------------- Bit Displacement

11-9

Instruction Encoding iAPX 432 GDP

OPCODE ENCODING SUMMARY

OPERATOR I ORDER I OPERAND I CLASS I OPCODE
LENGTHS

CHARACTER OPERATORS,------------1-2-3-------

Move Character
Zero Character
One Character
Save Character

AND Character
Inclusive OR Character
Exclusive OR Character
Equivalence Character
NOT Character

Add Character
Subtract Character
Increment Character
Decrement Character

Equal Character
Not Equal Character
Equal Zero Character
Not Equal Zero Characte
Less Tilan Character
Less Tilan or Equal Char

Convert Character to Sh
Convert Character to In

r

acter

ort Ordinal
teger

SHORT-ORDINAL OPERATORS

Hove Short Ordinal
Zero Short Ordinal
One Short Ordinal
Save Short Ordinal

AND Short Ordinal
Inclusive OR Short Ordi
Exclusive OR Short Ordi
Equivalence Short Ordin
NOT Short Ordinal

nal
nal
al

Extract Short Ordinal
Insert Short Ordinal
Significant Bit Short O rdinal

11-10

2
1
1
1

3
3
3
3
2

3
3
2
2

3
3
2
2
3
3

2
2

2
1
1
1

3
3
3
3
2

3
3
2

b, b 011110 00
b 010110 0
b 010110 01
b 010110 11

b, b, b 011101 000
b, b, b 011101 100
b, b, b 011101 010
b, b, b 011101 110
b, b 011110 10

b, b, b 011101 001
b, b, b 011101 101
b, b 011110 001
b, b 011110 101

b, b, b 011101 0011
b, b, b 011101 1011
b, b 011110 011
b, b 011110 111
b, b, b 011101 0111
b, b, b 011101 1111

b,db 111110 none
b, w 000001 none

db,db 0100 0000
db 0000 0000
db 0000 0100
db 0000 1100

db,db,db 0010 0000
db,db,db 0010 1000
db,db,db 0010 0100
db,db,db 0010 1100
db,db 0100 1000

db,db,db 0010 0010
db,db,db 0010 1010
db,db 0100 0100

iAPX 432 GDP Instruction Encoding

OPERATOR ORDER OPERAND CLASS OPCODE
LENGTHS
1-2-3

Add Short Ordinal 3 db,db,db 0010 0110
Subtract Short Ordinal 3 db,db,db 0010 1110
Increment Short Ordinal 2 db,db 0100 1100
Decrement Short Ordinal 2 db,db 0100 0010
Multiply Short Ordinal 3 db,db,db 0010 0001
Divide Short Ordinal 3 db,db,db 0010 1001
Remainder Short Ordinal 3 db,db,db 0010 0101

Equal Short Ordinal 3 db,db, b 111101 000
Not Equal Short.Ordinal 3 db,db, b 111101 100
Equal Zero Short Ordinal 2 db, b 100001 00
Not Equal Zero Short Ordinal 2 db, b 100001 10
Less Than Short Ordinal 3 db,db, b 111101 010
Less Than or Equal Short Ordinal 3 db,db, b 111101 110

Convert Short Ordinal to Integer 2 db, w 010001 00

SHORT-INTEGER OPERATORS

Move Short Integer 2 db,db 0100 0000
Zero Short Integer 1 db 0000 000
One Short Integer 1 db 0000 0100
Save Short Integer 1 db 0000 1100

Add Short Integer 3 db,db,db 0010 1101
Subtract Short Integer 3 db,db,db 0010 0011
Increment Short Integer 2 db,db 0100 1010
Decrement Short Integer 2 db,db 0100 0110
Negate Short Integer 2 db,db 0100 1110
Multiply Short Integer 3 db,db,db 0010 01011
Divide Short Integer 3 db,db,db 0010 11011
Remainder Short Integer 3 db,db,db 0010 00111

Equal Short Integer 3 db,db, b 111101 000
Not Equal Short Integer 3 db,db, b 111101 100
Equal Zero Short Integer 2 db, b 100001 00
Not Equal Zero Short Integer 2 db, b 100001 10
Less Than Short Integer 3 db,db, b 111101 001
Less Than or Equal Short Integer 3 db,db, b 111101 101
Positive Short Integer 2 db, b 100001 01
Negative Short Integer 2 db, b 100001 011
Move in Range Short Integer 3 w,db,db 110011 none

Convert Short Integer to Integer 2 db, w 010001 010

11 _11

Instruction Encoding

OPERATOR

Move Ordinal
Zero Ordinal
One Ordinal
Save Ordinal

AND Ordinal
Inclusive OR Ordinal
Exclusive OR Ordinal
Equivalence Ordinal
NOT Ordinal

Extract Ordinal
Insert Ordinal
Significant Bit Ordinal

Add Ordinal
Subtract Ordinal
Increment Ordinal
Decrement Ordinal
Multiply Ordinal
Divide Ordinal
Remainder Ordinal
Index Ordinal

Equal Ordinal
Not Equal Ordinal
Equal Zero Ordinal
Not Equal Zero Ordinal
Less Tilan Ordinal
Less Tilan or Equal Ordinal

Convert Ordinal to Integer
Convert Ordinal to Temporary Real

I ORDER I

2
1
1
1

3
3
3
3
2

3
3
2

3
3
2
2
3
3
3
3

3
3
2
2
3
3

2
2

w, w
w

.w
w

w, w, w
w, w, w
w, w, w
w, w, w
w, w

db, w, w
db, w, w
w,db

w, w, w
w, w, w
w, w
w, w
w, w, w
w, w, w
w, w, w
w, w, w

w, w, b
w, w, b
w, b
w, b
w, w, b
w, w, b

w, w
w,ew

iAPX 432 GDP

1100
110110
110110
110110

1010
1010
1010
1010
1100

100011
100011
101001

1010
1010
1100
1100
1010
1010
1010
1010

001011
001011
001001
001001
001011
001011

1100
011001

000
00

010
110

000
0100
1100
0010

100

00
10
00

1010
0110

010
1110
1110
0001
1001
0101

000
100
000
100
010
110

1110
0

INTEGER OPERATOR~---

Hove Integer
Zero Integer
One Integer
Save Integer

Add Integer
Subtract Integer
Increment Integer
Decrement Integer
Negate Integer
Multiply Integer
Divide Integer
Remainder Integer

1 1 1 ")
11-1c..

2
1
1
1

3
3
2
2
2
3
3
3

w, w
w
w
w

w, w, w
w, w, w
w, w
w, w
w, w
w, w, w
w, w, w
w, w, w

1100
110110
110110
110110

1010
1010
1100
1100
1100
1010
1010
1010

000
00

010
110

1101
0011
0001
1001
1101
1011
0111
111 1

iAPX 432 GDP

OPERATOR ORDER

Instruction Encoding

OPERAND
LENGTHS

CLASS OPCODE

--------------------------------...... ------+--1--2--~1--------.,._ ____ _

Equal Integer
Not Equal Integer
Equa 1 Zero Intege-r
Not Equal Zero Integer
Less Than Integer
Less Than or Equal Integer
Positive Integer
Negative Integer
Move in Range Integer

Convert Integer to Character
Convert Integer to Short Ordinal
Convert Integer to Short Integer
Convert Integer to Ordinal
Convert Integer to Temporary Real

3
3
2
2
3
3
2
2
3

2
2
2
2
2

w, w, b
w, w, b
w, b
w= b
w, w, b
w, w, b
w, b
w, b

dw, w, w

w, b
w,db
w,db
w, w
w,ew

001011
001011
0-01001
001001
001011
001011
001001
001001
111011

001001
101001
101001

1100
011001

000
100
000
100
001
101
010
110

none

001
10
01

1110
01

SHORT-REAL OPERATOR;::;----------------------

Move Short Real
Zero Short Real
Save Short Real

Add Short Real
Add Temporary Real to Short Real
Add Short Real to Temporary Real
Subtract Short Real
Subtract Temporary Real

from Short Real
Subtract Short Real

from Temporary Real
Multiply Short Real
Multiply Temporary Real

by Short Real
Multiply Short Real

by Temporary Real
Divide Short Real
Divide Temporary Real

into Short Real
Divide Short Real

into Temporary Real
Negate Short Real
Absolute Value Short Real

Equal Short Real
Equal Zero Short Real
Less Than Short Real
Less Than or Equal Short Real
Positive Short Real
Negative Short Real

Convert Short Real
to Temporary Real

2
1
1

3
3
3
3

3

3
3

3

3
3

3

3
2
2

3
2
3
3
2
2

2

w, w
w
w

w, w,ew
ew, w,ew
w,ew,ew

ew, w,ew

w,ew,ew
w, w,ew

ew, w,ew

w,ew,ew
w, w,ew

ew, w,ew

w,ew,ew
w, w
w, w

w, w, b
w, b
w, w, b
w, w, b
w, b
w, b

w,ew

1100
110110
110110

101011
110111
011011
101011

110111

011011
101011

110111

011011
101011

110111

011011
1100
1100

001011
001001
001011
001011
001001
001001

011001

000
00

110

00
00
00
10

10

10
01

01

01
11

11

11
1101
0011

011
101

0111
1111
011
111

11

11-13

Instruction Encoding

OPERATOR

Move Real
Zero Real
Save Real

Add Real
Add Temporary Real to Real
Add Real to Temporary Real
Subtract Real
Subtract Temporary Real from Real
Subtract Real from Temporary Real
Multiply Real
Multiply Temporary Real by Real
Multiply Real by Temporary Real
Divide Real
Divide Temporary Real into Real
Divide Real into Temporary Real
Negate Real
Absolute Value Real

Equal Real
Equal Zero Real
Less Than Real
Less Than or Equal Real
Positive Real
Negative Real

Convert Real to Temporary Real

I ORDER

2
1
1

3
3
3
3
3
3
3
3
3
3
3
3
2
2

3
2
3
3
2
2

2

dw,dw
dw
dw

dw,dw,ew
ew,dw,ew
dw,ew,ew
dw,dw,ew
ew,dw,ew
dw,ew,ew
dw,dw,ew
ew,dw,ew
dw,ew,ew
dw,dw,ew
ew,dw,ew
dw,ew,ew
dw,dw
dw,dw

dw,dw, b
dw, b
dw,dw, b
dw,dw, b
dw, b
dw, b

dw,ew

iAPX 432 GDP

000101
001110
001110

100111
001111
010111
100111
001111
010111
100111
001111
010111
100111
001111
010111
000101
000101

000111
111001
000111
000111
111001
111001

100101

00
0
1

00
00
00
10
10
10
01
01
01
11
11
11
10
01

0
0

01
11
01
11

none

TEMPORARY-REAL OPERATOR~~~~~~~~~~~~~~~~~~~~-

Move Temporary Real
Zero Temporary Real
Save Temporary Real

Add Temporary Real
Subtract Temporary Real
Multiply Temporary Real
Divide Temporary Real
Remainder Temporary Real
Negate Temporary Real
Square Root Temporary Real
Absolute Value Temporary Real

1 1 1 ll
I 1- I '"T

2
1
1

3
3
3
3
3
2
2
2

ew,ew
ew
ew

ew,ew,ew
ew,ew,ew
ew,ew,ew
ew,ew,ew
ew,ew,ew
ew,ew
ew,ew
ew,ew

101101
101110
101110

011111
011111
011111
011111
011111
101101
101101
101101

00
0
1

00
10
01

011
111

10
01
11

iAPX 432 GDP Instruction Encoding

OPERATOR ORDER OPERAND CLASS OPCODE
LENGTHS

--------------------------------+-----..... --1--2--3-.--------.------

Equal Temporary Real
Equal Zero Temporary Real
Less Than Temporary Real
Less Than or Equal Temporary Real
Positive Temporary Real
Negative Temporary Real

Convert Temporary Real to Ordinal
Convert Temporary Real to Integer
Convert Temporary Real

to Short Real
Convert Temporary Real to Real

3
2
3
3
2
2

2
2

2
2

ew,ew, b
ew, b
ew,ew, b
ew,ew, b
ew, b
ew, b

ew, w
ew, w

ew, w
ew,dw

101111
010101
101111
101111
010101
010101

110101
110101

110101
001101

0
0

01
11
01
11

0
01

11
none

OBJECT OPERATORS-----------------------

Branch
Branch True
Branch False
Branch Indirect
Branch Intersegment
Branch Intersegment without Trace
Branch Intersegment and Link
Breakpoint

Copy Access Descriptor
Null Access Descriptor

Amplify Rights
Restrict Rights

Retrieve Type Definition

Create Refinement
Create Typed Refinement

Create Object
Create Typed Object

Inspect Access Descriptor
Inspect Object
Equal Access
Move to Embedded Data Value
Move from Embedded Data Value

Lock Object
Unlock Object
Indivisibly Add Short Ordinal
Indivisibly Add Ordinal
Indivisibly Insert Short Ordinal
Indivisibly Insert Ordinal

0
1
1
1
1
1
2
0

2
1

2
2

2

3
.2

3
3

2
2
3
2
2

3
2
2
2
3
3

none
b
b

db
w
w
w, w

none

db,db
db

db,db
w,db

db,db

db, w,dw
dw,dw

db,db, w
db, w, w

db, w
db, w
db,db, b

w,db
db, w

db,db, b
db,db
db,db

w, w
db,db,db
db, w, w

100110
1000
1000
0000

110110
110110

1100
111111

0100
0000

0100
101001

0100

010011
000101

000011
100011

010001
010001
111101
101001
010001

111101
0100
0100
1100
0010

100011

none
0
1

0010
001
101

1011
none

0001
1010

1001
011

0101

none
11

0
01

110
001

0011
111
110

1011
1101
0011
0111

10111
011

11-15

Instruction Encoding iAPX 432 GDP

OPERATOR ORDER OPERAND CLASS OPCODE
LENGTHS
1-2-3

Enter Environment 1 1 db 0000 0110
Enter Environment 2 1 db 0000 1110
Enter Environment 3 1 db 0000 0001
Copy Process Globals 1 db 0000 1001
Set Context Mode 1 db 0000 0101
Adjust Stack Pointer 2 db,db 0100 01011
Call 2 db, w 010001 101
Call Through Domain 2 db, w 010001 011
Return 0 none 000110 0
Return and Fault 0 none 000110 1

Send 2 db,db 0100 01111
Receive 1 db 0000 1011
Conditional Send 3 db,db, b 111101 0111
Conditional Receive 2 db, b 100001 111
Surrogate Send 3 db,db, w 000011 1
Surrogate Receive 2 db, w 010001 111
Delay Process 1 db 0000 0111
Send Process 1 db 0000 1111
Set Process Mode 2 db,db 0100 11111
Read Process Clock 1 w 110110 011

Send to Processor 3 db,db, b 111101 1111
Read Processor Status 1 w 110110 111

Hove to Interconnect 3 db,db,db 0010 01111
Move from Interconnect 3 db,db,db 0010 11111

Block Move 3 w, w,db 110001 none

Where:

b byte (8 bits)
db double-byte (16 bits)
w word (32 bits)
dw double-word (64 bits)
ew extended-word (80 bits)

11-16

CHAPTER 12
FAULT AND TRACE REFERENCE

This chapter provides reference information for the GDP' s support of
Faulting and Tracing. The Fault and Trace Areas are defined and fault
encoding are listed.

FAULT REFERENCE

Faults can occur at the following severity levels (the least severe
first):

• Context-level fault: These faults require interruption of the
normal execution of instructions within the currently active
context. When such a fault occurs i information identifying its
cause is recorded by the processor in the Context Fault Data Area
of the process object. The Context Faulted bit in the process
status is set to 1. An intersegment branch is then effectively
executed to offset 64 of the Fault Instruction Object currently
designated as context fault handler (referenced by AD 0 in the
defining domain).

• Process-level fault: These faults require suspension of the
faulted process and repair by a fault handling process. When such
a fault occurs, 'the processor is preempted from executing the
currently running process and information about the fault is
recorded in the Process Fault Data area in the process carrier of
the faulted process. The Process Faulted bit in the process status
is set to 1. The Second Port AD in the process carrier is copied
into the Save Port AD location of the process carrier. The carrier
of the preempted process is then sent as a message to the Fault
Port referenced _by its process object. The processor then attempts
normal dispatching at its current dispatching port.

• Processor-level fault: The most severe fault disruption of
processing is a processor-level fault. Such a fault requires the
suspension of both the executing process and the normal dispatching
mechanism for the processor. When such a fault occurs, information
about the fault is recorded in the Processor Fault Access and
Processor Fault Data areas of the faulted processor object. If
there is a process associated with the processor which is not
process-faulted, the execution of the process is preempted and it
is forwarded to the second port in its carrier. If the current
process is process-faulted, the Message Received bit in the
processor Carrier Status is set to 1 and the incoming message of
the processor carrier is set to reference the current process. The
processor dispatching mode is then switched from Normal to
Diagnostic and the processor attempts dispatching at the Diagnostic
Dispatching Port (referenced in the processor object).

12-1

Fault and Trace Reference iAPX 432 GDP

FAULT AREA FORMATS

Fault areas are used to record appropriate fault information. The
information can be used by fault handling software to determine the
nature of the fault and to administer recovery. Each Fault Area has a
fixed format which defines fields for any information that may be
stored by faults at a specific level. Which fields actually contain
valid information after a fault depends on the specific fault.

PROCESSOR FAULT ACCESS AREA

The Processor Fault Access Area in the processor object is organized as
follows:

AD to Current Carrier

AD to Current Port

The fields have the following meanings:

Current Carrier (AD 8)

Access Descriptor
Index (32 bits each)

8

9

This AD references the carrier being operated on by a processor
port operation when the fault occurred.

Current Port (AD 9)
This AD references the port being operated on by a processor port
operation when the fault occurred.

12-2

iAPX 432 GDP Fault and Trace Reference

PROCESS FAULT ACCESS AREA

The Process Fault Access Area in the process access part is organized
as follows:

Access Descriptor
Index (32 bits each)

AD to Current Carrier or New AD 8

AD to Current Port 9

AD to Current Surrogate Carrier 10

The fields have the following meanings:

Current Carrier or New AD (AD 8)
As Current Carrier, this AD references the carrier being operated
on by a port operation when the fault occurred. As New AD, this
field is written by the processor when an allocation-related fault
occurs. It then contains the associated access descriptor of the
newly allocated OD.

Current Port (AD 9)
This AD references the port being operated on by a port operation

Current Surrogate Carrier (AD 11)
This AD references the unrefined surrogate carrier specified by an
interprocess SURROGATE SEND or SURROGATE RECEIVE instruction that
faulted.

12-~

Fault and Trace Reference iAPX 432 GDP

ALLOCATION FAULT AREA

The Allocation Fault Area in the Process Object is organized as follows:

Byte
Destination Displacement 14 Displacement

Destination Access Selector 12

10
1-- SRO AD Image ~

8

The fields that constitute the Allocation Fault Area have the following
meanings:

SRO AD Image (Bytes 8 - 11)
This 32-bit field is written by the processor when an
allocation-related fault occurs. It then contains the image of the
associated access descriptor for the specified SRO. A value of
zero indicates the process allocation stack was specified.

Destination Access Selector (Bytes 12 - 13)
This 16-bi t field is written by processor when an
allocation-related fault occurs. It is the access selector for the
destination AD associated with the newly allocated object
descriptor. In certain operators, this field contains the access
selector of the data object where a boolean result should be
stored.

Destination Displacement (Bytes 14 - 15)

12-4

In some operators, this 16-bi t field contains the displacement of
the boolean result.

iAPX 432 GDP Fault and Trace Reference

FAULT DATA AREA

The Fault Data Area is a 48-byte record organized as follows:

L J
Byte

n+46 Displacement
~

~

First Fault Data Item
-
----l

n+38

n+36 -
~

Second Fault Data Item
~

--1

n+28

n+26

n+24

Fault Displacement n+22

Fault Access Selector n+20

Fault Code n+18

Faulted Operator ID/I n+16

Processor Status n+14

Process Status n+12

Fault Status n+10

Pre-Inst. Stack Pointer n+8

Post-Inst. Stack Pointer n+6

Pre-Inst. Instruction Pointer n+4

Post-Inst. Instruction Pointer n+2

Faulted Inst. Obj. DAI n

12-5

Fault and Trace Reference iAPX 432 GDP

The Fault Data Area for context-, process-, and processor-level faults
has the same organization (shown above). Process objects contain Fault
Data Areas for context- and process-level faults. Processor objects
contain Fault Data Areas for processor-level faults. The fields in the
Fault Data Area are interpreted as follows:

Faulted Inst. Obj. DAI (Bytes n thru n+1)
Records the DAI for the instruction object in which the faulted
instruction is located.

Post-Inst. Instruction Pointer (Bytes n+2 thru n+3)
Records the instruction pointer of the instruction physically
following the instruction that caused the fault. If the fault
occurred during instruction decoding, this field is undefined.

Pre-Inst. Instruction Pointer (Bytes n+4 thru n+5)
Records the instruction pointer of the instruction which caused the
fault.

Post-Inst. Stack Pointer (Bytes n+6 thru n+7)
Records the operand stack pointer at the time the fault occurred.
This value should be incremented by 2 if the Post-Inst. Stack Full
bit in the Fault Status is 1.

Pre-Inst. Stack Pointer (Bytes n+8 thru n+9)
Records the operand stack pointer at
instruction that caused the fault.
incremented by 2 if the Pre-Inst. Stack
Status is 1.

the beginning of the
This value should be
Full bit in the Fault

Fault Status (Bytes n+10 thru n+11)

12-6

The Fault Status field has the following organization:

15

xx xx

4 3 2 1 0

Result Destination
Inexact Result
Pre-Inst. Stack Full
Post-Inst. Stack Full
Execution Phase

These fields are interpreted as follows:

Result Destination (Bit 0)
This bit records where the operand destination should have
been:

0
1

Destination was the operand stack
Destination was in memory

iAPX 432 GDP Fault and Trace Reference

Inexact Result (Bit 1)
This bit records whether the generated result was exact or
inexact:

0
1

exact
inexact

Pre.;.;.Inst~ ·Stack Full (Bit 2)
This bit records whether the 16=bi t top of stack register
(within the GDP) was occupied at the beginning of the faulted
instruction:

0 - empty
1 occupied

Post-Inst. Stack Full (Bit 3)
This bit records whether the top-of-stack register {within the
GDP) was occupied when the instruction faulted:

O empty
1 occupied

Execution Phase (Bits 12 - 15)
This 4-bi t field records a value that indicates the phase of
execution when the fault occurred. It is used to identify
fault handling strategies in the more complex operators. A
value of zero indicates that the instruction can be
re-executed with no fault handling repair of data necessary.

Process Status (Bytes n+12 thru n+13)
This 16-bit field records the process status at the time the fault
occurred.

Processor Status (Bytes n+14 thru n+15)
This 16-bi t field records the processor status at the time the
fault occurred.

Faulted Operator ID# (Bytes n+16 thru n+17)
If the fault occurred during instruction decoding, this field is
zero. Otherwise, this field records the operator ID# of the
faulted instruction.

Fault Code (Bytes n+18 thru n+19)
The Fault Code field contains a processor-written 16-bi t encoding
that indicates the specific fault that occurred. The detailed
encodings of this field are defined in subsequent sections of this
chapter.

Fault Access Selector (Bytes n+20 thru n+21)
The interpretation of this field varies depending on the specific
fault. See the following sections of this chapter for more
details.

Fault Displacement (Bytes n+22 thru n+23)
The interpretation of this field varies depending on the specific
fault. See the following sections of this chapter for more
details.

12-7

Fault and Trace Reference iAPX 432 GDP

Second Fault Data Item (Bytes n+28 thru n+37)
The value in this field depends on whether the fault is
pre-operation or post-operation:
• If the fault is pre-operation, this field contains the value

of the source operand 1. Unused high-order bits are
undefined.

• If the fault is post-operation, this field is not defined.

First Fault Data Item (Bytes n+38 thru n+47)
The value in this field depends on whether the fault is
pre-operation or post-operation:
• If the fault is pre-operation, this field contains the value

of the source operand 2. Unused high-order bits are
undefined.

• If the fault is post-operation, this field contains the value
of the exceptional result. Unused high-order bi ts are
undefined.

PROCESS FAULT RESTART AREA

The Process Fault Restart Area in a Process Carrier Object is organized
as follows:

Byte
Instruction Pointer 22 Displacement

Instruction Object DAI 20

Operand Stack Pointer 18

Restart Status 16

The fields that constitute the Process Fault Restart Area have the
following meanings:

Restart Status (Bytes 16 - 17)

12-8

The lower bit of this field is the Restart Boolean and determines
whether the next 3 fields (Operand Stack Pointer, Instruction
Object DAI, and Instruction Pointer) should be copied by the GDP
into the corresponding entries of the current context when the
process is restarted. The Restart Boolean also determines whether
the entire Restart Status field will be copied into the Process
Status for the process. (The Restart Boolean bit itself will thus
be copied into the Unbound bit in the Process Status; the Unbound
bit is cleared when the process is bound to the processor). If the
Restart Boolean is false, no copy is performed. Otherwise, the
three context fields and one process field are copied, then the
Restart Boolean bit is cleared by the processor. This allows
restarting a faulted process without changing the current context.

iAPX 432 GDP Fault and Trace Reference

Operand Stack Pointer (Bytes 18 - 19)
Instruction Object DAI (Bytes 20 - 21)
Instruction Pointer (Bytes 22 - 23)

These three fields have the
corresporidirig fields in the context

FAULT CODES

same interpretation
object.,

as the

FAULT TYPES

Faults are categorized into seven general types as determined by bits 5
through 8 of the Fault Code field:

15 8 7 0

I x x x x x x x T T T T x x x x x

In subsequent encoaing diagrams in this chapter, the x values designate
bits that are undefined for the particular fault type being described.
The TTTT bi ts shown above are used to encode the general type of the
fault that occurred. In addition to the TTTT bi ts, certain of the
other bits in the Fault Code are used to further encode the nature of
the fault.

The following list defines the TTTT encodings and gives a two letter
mnemonic for the fault type. These mnemonics are used throughout this
chapter.

TYPE TTTT MNEM Faults

0 0000 FF All other faults not named here
1 0001 IP Instruction Pointer Overflow fault
2 0010 TS Test Object Type or Entry Type faults
4 0100 so Segment Overflow fault
5 0101 MO Memory Overflow fault (physical addr >= 2**24)
6 0110 RR Read Rights fault
7 0111 WR Write Rights fault

TTTT values 3 and 8 through 15 are undefined.

All faults of types 1 through 7 are process-level faults. Subsequent
sections of this chapter describe the more detailed fault encodings for
the different fault types.

12-9

Fault and Trace Reference iAPX 432 GDP

Type O Faults

Type O faults have the following bits defined in the Fault Code field:

15 8 7 0

I x x x x x L L 0 0 0 0 x E E E E

The LL bits encode the fault level as follows:

LL Description

00 Context-Level Faults
01 Process-Level Faults (group 1)
10 Process-Level Faults (group 2)
11 Processor-Level Faults

The EEEE bits encode the specific fault within the level group.

The following Type O Fault List presents the type 0 faults in the order
of their encoding. The encoding column of this table (and of other
tables in the following sections) contains the LL EEEE bits if the type
is 0 (FF).

12-10

iAPX 432 GDP Fault and Trace Reference

TYPE 0 FAULT LIST

FAULTS TYPE I ENCODING
---LL EEEE-
Domain Error Fault •••••••••••••••••••••••••••••••••
Overflow Fault •••••••••••••••••••••••••••••••••••••
Underflow Fault ••••••••••••••••••••••••••••••••••••
Inexact Fault ••••••••••••••••••••••••••••••••••••••
Return Fault •••••••••••••••••••••••••••••••••••••••

Access Descriptor Validity Fault •••••••••••••••••••
Object Descriptor Fault ••••••••••••••••••••••••••••
Domain Access Index Overflow Fault •••••••••••••••••
Destination Delete Rights Fault ••••••••••••••••••••
Race Condition Fault •••••••••••••••••••••••••••••••
Level Fault ••
Access Path Object Descriptor Validity Faults ••••••
Instruction Object Type Rights Fault •••••••••••••••
Odd Interconnect Descriptor Base Address Fault •••••
Source AD Validity Fault •••••••••••••••••••••••••••
Surrogate Carrier Validity •••••••••••••••••••••••••
Surrogate Carrier Type Rights Fault ••••••••••••••••
Context Parameters Size Faults •••••••••••••••••••••
TCO Type Rights Fault ••••••••••••••••••••••••••••••
Odd Displacement Fault •••••••••••••••••••••••••••••
Port Type Rights Fault •••••••••••••••••••••••••••••
PCO Type Rights Fault ••••••••••••••••••••••••••••••
Process Object Type Rights Fault •••••••••••••••••••
Source Representation Rights Fault •••••••••••••••••
Context Object Type Rights Fault •••••••••••••••••••
SRO Type Rights Fault ••••••••••••••••••••••••••••••
Destination Port Type Rights Fault •••••••••••••••••
Clear Memory Size Fault ••••••••••••••••••••••••••••
Process Object Access Mismatch Fault •••••••••••••••
Type Fault•......•..•.........
Carrier Lock Fault •••••••••••••••••••••••••••••••••
Object Lock ID/Type Fault ••••••••••••••••••••••••••
Offset and Length Compatibility Fault ••••••••••••••
PSO Lock Fault •••••••••••••••••••••••••••••••••••••
SRO Lock Fault •••••••••••••••••••••••••••••••••••••
Domain Access Index Overflow Fault •••••••••••••••••
Port Lock Fault ••••••••••••••••••••••••••••••••••••
Refinement Overflow Fault ••••••••••••••••••••••••••
Object Descriptor Exhaustion Fault •••••••••••••••••
Carrier Queued Fault •••••••••••••••••••••••••••••••
Storage Block Index Overflow Fault •••••••••••••••••
Storage Block Fragmentation Fault ••••••••••••••••••
Storage Claim Underflow Fault ••••••••••••••••••••••

Instruction Fetch Fault ••••••••••••••••••••••••••••
Instruction Object Displacement Fault ••••••••••••••

I~ ~~~~I

l
u "rrJ
0 (FF)
0 (FF)
0 (FF)

0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)

I 0 (FFYI
0 (FF)

00 0000

12-11

Fault and Trace Reference

FAULTS

Bus Error Fault
Process Level Objects Lock Fault •••••••••••••••••••
Process Lock Fault •••••••••••••••••••••••••••••••••
PCO Response Count Fault •••••••••••••••••••••••••••
PCO Lock Fault •••••••••••••••••••••••••••••••••••••

Type Faults

iAPX 432 GDP

I TYPE I ENCODING
LL EEEE-

0 (FF) 11 0000
0 (FF) 11 0001
0 (FF) 11 0001
0 (FF) 11 0010
0 (FF) 11 0011

Type faults have only the TTTT bits defined in the Fault Code field
to distinguish it. A Type 1 fault is for an instruction pointer
overflow during a relative branch.

Type 2 Faults

Type 2 faults have the following bits defined in the Fault Code field:

15 8 7 0

I z Q x x x x x 0 0 1 0 K K K K K

The Z bit indicate• whether the fault resulted with testing the object
type or the object table entry type. The Z bit is defined as follows:

O - OTE type test
1 - Object type test

The Q bit indicates whether the fault is associated with object table
qualification. It thus determines the meaning of the Fault Access
Selector and Fault Displacement fields in the fault data area as
follows:

O - The fault did not occur during object table qualification and
the Fault Access Selector and Fault Displacement fields
contain the indices in the associated access descriptor.

1 - The fault occurred during object table qualification and the
Fault Displacement field contains the directory index.

12-12

iAPX 432 GDP Fault and Trace Reference

The Z bit determines two alternate interpretations of the KKKKK bits as
follows:

Z=O (fauit because of object table entry type test). The KKKKK
bi ts encode the expected values of the least-significant 5
bits of the object table entry. Their meanings are thus
determined by the expected Entry Type of the object table
entry. The following case is for a

4 3 2 0
i-.... --.... - ..

K K K
~-.........................

.._ __ Entry Type
00 - Free Entry or Header Entry
10 - Refinement Descriptor
11 - Storage Descriptor

OD Valid (0 - Not Valid, 1 - Valid)
DP Valid (0 - Not Valid, 1 - Valid)
Allocated (0 - No, 1 - Yes)

Z= 1 (fault because of system type test) • The KKKKK bi ts encode
the expected value of the System Type field in the faulted
object table entry:

KKKKK

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010,
01011
01100
01101
01110
01111
10000
10001
thru

11111

SYSTEM TYPE

Generic object

Domain Object
Instruction Object
Context Object
Process Object
Processor Object
Port Object
Carrier Object
Storage Resource Object
Physical Storage Object
Storage Claim Object
Dynamic Type Object
Type Definition Object
Type Control Object
RESERVED
Processor Communication Object

RESERVED

The encoding column of the tables in the later sections of this chapter
contains the Z KKKKK bits if the type is 2 (TS).

12-13

Fault and Trace Reference iAPX 432 GDP

Types 4,5,6,7 Faults

These faults have the following bits defined in the Fault Code field:

15 8 7 0

I z w A A A x x T T T T x s s s s

These fault types are memory access faults.
whether the fault occurred on a read or write:

The W bit indicates

0 - Faulted on Read
1 - Faulted on Write

The AAA and Z bits indicate the type of memory access that faulted:

AAA Z TYPE OF ACCESS

Oxx x Storage Address Space (Data Part)
The storage segment being accessed is indicated by
the SSSS bi ts. Displacement is given by the Fault
Displacement field in the Fault Data Area.

110 0 Storage Address Space (Access Part)
The storage segment being accessed is indicated by
the SSSS bits. Displacement is given by the Fault
Displacement field in the Fault Data Area.

100 x Access Environment
The access selector of the segment is given by the
Fault Access Selector in the Fault Data Area.

110 Interconnect Address Space
Displacement is given by the Fault Displacement
field in the Fault Data Area.

111 x Operand Stack

12-14

Displacement is given by the Post-Inst. Stack
Pointer field in the Fault Data Area.

iAPX 432 GDP Fault and Trace Reference

The SSSS bi ts are defined for accesses to both the storage address
space (data part or access part) and interconnect address space. The
SSSS bits are defined as follows:

SSSS OBJECT BEING ACCESSED

0000 Context Access Part
0101 Processor Object
0111 Process Object
1000 Instruction Object
1010 Defining Domain
1011 Process Carrier
1100 Context Data Part
1101 Object Table Directory
111 O Object Cache (The Fault Access Selector field contains

the Access Selector of the object).
1111 Object Table Cache (The Fault Access Selector field bi ts

4-15 contains the directory index from the AD).

SSSS values 0001, 0010, 0011, 0100, 0110, and 1001 are undefined.

12-15

Fault and Trace Reference iAPX 432 GDP

GENERAL FAULT GROUPS

The following faults can occur anywhere during the execution of
an operator or sub-operation (which includes instruction decoding,
process dispatching, binding etc.) • These faults are not explicitly
referenced in the later sections. The => symbol indicates that the
group name preceding it stands for any of the possible faults that are
listed after it. A group name is used in this table (and others in
this chapter) by enclosing the name in angle brackets <like so>. This
indicates that any of the possible faults of that named group are
included.

FAULT GROUPS

Memory Reference Faults =>
Segment Overflow Fault
Memory Overflow Fault
Read Rights Fault
Write Rights Fault
Bus Error

Instruction Fetch Fault

Data Part Cache Qualification Faults =>
Data Part Altered Faults =>

Access Descriptor Validity Fault
Object Descriptor Type Fault

Object Table Cache Qualification Faults =>
Object Descriptor Type Fault
Object Type Fault

Access Environment Altered Faults =>
Access Descriptor Validity Fault
Object Descriptor Fault

12-16

I TYPE I ENCODING

4 (SO)
5 (MO)
6 (RR)
7 (WR)
0 (FF) 01 0010

0 (FF) 10 0000

0 (FF) 01 0000
2 (TS) 0 11111
2 (TS) 0 01110

2 (TS) 0 11111
2 (TS) 1 00001

0 (FF) 01 0000
0 (FF) 01 0001

iAPX 432 GDP Fault and Trace Reference

DATA OPERATOR FAULT GROUPS

FAULT GROUP I TYPE I ENCODING
--LL EEEE-

Domain Error Fault
Overflow Fault
Underflow Fault
Inexact Fault

i I
! 0 (FF)!
I 0 (FF) I
I 0 (FF) I
I 0 (FF) I
I I

00 0000
00 0001
00 0010
00 OOll

---~------------------------

DAT A OPERA TOR FAUL TS

'Th.e following table defines the data operator faults for the GDP. The
R and P columns indicate whether or not the operator makes use of the
Rounding Control bits or the Precision Control bits, respectively, in
the context status. An x in a column indicates that the operator does
make use of the corresponding control bi ts 9 A number in parentheses
following a fault type in data manipulation operators specifies the
nature of the exceptional result that is produced when that
post-operation fault occurs. These numbered notes are defined as
follows:

(1) Exceptional result (in the First Fault Data Item) is undefined.
(2) Exceptional result (in the First Fault Data Item) is the

single source operand.
(3) Exceptional result (in the First Fault Data Item) has correct

significand with wrapped-around exponent.
(4) The fault occurs only if the inexact control bit in the

process status is set. 'Th.e First Fault Data Item contains the
exceptional result.

12-17

Fault and Trace Reference

OPERATOR R p FAULTS

Move Character None
Zero Character None
One Character None
Save Character None

AND Character None
Inclusive OR Character None
Exclusive OR Character None
Equivalence Character None
NOT Character None

Add Character
Subtract Character
Increment Character
Decrement Character

Equal Character
Not Equal Character
Equal Zero Character
Not Equal Zero

Character
Less Than Character
Less Than or Equal

Character

Convert Character to
Short Ordinal

Convert Character to
Integer

12-18

Overflow(1)
Overflow(1)
Overflow(1)
Overflow(1)

None
None
None

None
None

None

None

None

iAPX 432 GDP

COMMENT

True result is > 255
True result is < O
Attempt to increment 255
Attempt to decrement O

iAPX 432 GDP

OPERATOR

Move Short Ordinal
Zero Short Ordinal
One Short Ordinal
Save Short Ordinal

AND Short Ordinal
Inclusive OR

Short Ordinal
Exclusive OR

Short Ordinal
Equivalence

Short Ordinal
NOT Short Ordinal

Extract Short Ordinal
Insert Short Ordinal
Significant Bit

Short Ordinal

Add Short Ordinal
Subtract Short Ordinal
Increment

Short Ordinal
Decrement

Short Ordinal
Multiply Short Ordinal
Divide Short Ordinal
Remainder

Short Ordinal

Equal Short Ordinal
Not Equal

Short Ordinal
Equal Zero

Short Ordinal
Not Equal Zero

Short Ordinal
Less Than

Short Ordinal
Less Than or Equal

Short Ordinal

Convert Short Ordinal
to Integer

R p

- -

FAULTS

None
None
None
None -

None

None

None

None
None

None
None

None

Overflow(1)
Overflow(1)

Overflow(1)

Over flow(1)
Overflow(1)
Domain Error

Domain Error

None

None

None

None

None

None

None

Fault and Trace Reference

COMMENT

True result is > 65,535
True result is < 0

Attempt to increment 65,535

Attempt to decrement O
True result is > 65,535
Division by zero

Division by zero

12-19

Fault and Trace Reference

OPERATOR

Move Short Integer
Zero Short Integer
One Short Integer
Save Short Integer

Add Short Integer

Subtract Short Integer

Increment
Short Integer

Decrement
Short Integer

Negate Short Integer
Multiply Short Integer

Divide Short Integer

Remainder
Short Integer

Equal Short Integer
Not Equal

Short Integer
Equal Zero

Short Integer
Not Equal Zero

Short Integer
Less Than

Short Integer
Less Than or Equal

Short Integer
Positive Short Integer
Negative Short Integer
Range Check

Short Integer

Convert Short Integer
to Integer

12-20

R p FAULTS

None
None
None
None

Overflow(1)

Overflow(1)

Overflow(1)

Overflow(1)
Overflow(1)
Overflow(1)

Domain Error
Overflow(1)

Domain Error

None

None

None

None

None

None
None
None

Underflow(1)
Overflow(1)

- - None

iAPX 432 GDP

COMMENT

True result is > 32,767 or
< -32,768

True result is > 32,767 or
< -32,768

Attempt to increment 32,767

Attempt to decrement -32,768
Attempt to negate -32,768
True result is> 32,767 or

< -32,768
Division by zero
Division of -32,768 by -1

Division by zero

< lower bound
> upper bound

iAPX 432 GDP

OPERATOR

Move Ordinal
Zero Ordinal
One Ordinal
Save Ordinal

AND Ordinal
Inclusive OR Ordinal
Exclusive OR Ordinal
Equivalence Ordinal
NOT Ordinal

Extract Ordinal
Insert Ordinal
Significant Bit

Ordinal

Add Ordinal

Subtract Ordinal
Increment Ordinal

Decrement Ordinal
Multiply Ordinal

Divide Ordinal
Remainder Ordinal
Index Ordinal

R p FAULTS

None
None
None
None

None
None
None
None
None

None
None

None

Overflow(1)

Overflow(1)
Overflow(1)

Overflow(1)
Overflow(1)

Domain Error
Domain Error
None

Equal Ordinal None
Not Equal Ordinal None
Equal Zero Ordinal None
Not Equal Zero Ordinal None
Less Than Ordinal None
Less Than or Equal

Ordinal None

Convert Ordinal
to Integer

Convert Ordinal
to Temporary Real

- - Overflow(2)

- - None

Fault and Trace Reference

COMMENT

True result is
> 4,294,967,295

True result is < O
Attempt to increment

4,294,967,295
Attempt to decrement 0
True result is

> 4,294,967,295
Division by zero
Division by zero

Attempt to convert
ordinal with non-zero
high order bit

12-21

Fault and Trace Reference

OPERATOR

Move Integer
Zero Integer
One Integer
Save Integer

Add Integer

Subtract Integer

Increment Integer

Decrement Integer

Negate Integer

Multiply Integer

Divide Integer

Remainder Integer

Equal Integer
Not Equal Integer
Equal Zero Integer
Not Equal Zero Integer
Less Than Integer
Less Than or Equal

Integer
Positive Integer
Negative Integer
Range Check Integer

Convert Integer
to Character

Convert Integer
to Short Ordinal

Convert Integer
to Short Integer

Convert Integer
to Ordinal

Convert Integer
to Temporary Real

12-22

R p FAULTS

None
None
None
None

Overflow(1)

- - Overflow(1)

Overflow(1)

Overflow(1)

Overflow(1)

Overflow(1)

Domain Error
Overflow(1)

Domain Error

None
None
None
None
None

None
None
None
Underflow(1)
Overflow(1)

Overflow(2)

Overflow(2)

- - Overflow(2)

Domain Error

None

iAPX 432 GDP

COMMENT

True result is
> 2,147,483,647 or
< -2,147,4&3,648

True result is
> 2,147,483,647 or
< -2,147,483,648

Attempt to increment
2, 147 ,483,647

Attempt to decrement
-2, 147 ,483,648

Attempt to negate
-2,147,483,648

True result is
> 2,147,483,647 or
< -2,147,483,648

Division by zero
Division of -2,147,483,648

by -1
Division by zero

< lower bound
> upper bound

Attempt to convert
integer whose value is
> 255 or < O

Attempt to convert
integer whose value is
> 65,535 or < O

Attempt to convert
integer whose value is
> 32,767 or < -32,768

Attempt to convert a
negative integer value

iAPX 432 GDP Fault and Trace Reference

OPERATOR R p FAULTS COMMENT

Move Short Real None
Zero Short Real None
Save Short Real None

Add Short Real x x Domain Error Invalid operand
Inexact(4) Inexact result

Add Temporary Real
to Short Real x x Domain Error Invalid operand

Overflow(3) Exponent of true result is
> 16,383

Underflow(3) Exponent of true result is
< -16,382

Inexact(4) Inexact result
Add Short Real

to Temporary Real x x Domain Error Invalid operand
Overflow(3) Exponent of true result is

> 16,383
Underflow(3) Exponent of true result is

< -16,382
Inexact(4) Inexact result

Subtract Short Real x x Domain Error Invalid operand
Inexact(4) Inexact result

Subtract Temporary
Real from Short Real x x Domain Error Invalid operand

Overflow(3) Exponent of true result is
> 16' 383

Underflow(3) Exponent of true result is
< -16,382

Inexact(4) Inexact result
Subtract Short Real

from Temporary Real x x Domain Error Invalid operand
Overflow(3) Exponent of true result is

> 16,383
Underflow(3) Exponent of true result is

< -16,382
Inexact(4) Inexact result

Multiply Short Real x x Domain Error Invalid operand
Inexact(4) Inexact result

Multiply Temporary
Real by Short Real x x Domain Error Invalid operand

Overflow(3) Exponent of true result is
> 16,383

Under flow(3) Exponent of true result is
< -16,382

Inexact(4) Inexact result

12-23

Fault and Trace Reference

OPERATOR

Multiply Short Real
by Temporary Real

Divide Short Real

Divide Temporary

R

x

x

p FAULTS

x Domain Error
Overflow(3)

Underflow(3)

Inexact(4)
x Domain Error

Inexact(4)

Real into Short Real x x Domain Error

Divide Short Real
into Temporary Real

Negate Short Real
Absolute Value

Short Real

Equal Short Real
Equal Zero Short Real
Less Than Short Real
Less Than or Equal

Short Real
Positive Short Real
Negative Short Real

Convert Short Real to
Temporary Real

12-24

x x

Overflow(3)

Underflow(3)

Inexact(4)

Domain Error

Overflow(3)

Underflow(3)

Inexact(4)

Domain Error

Domain Error

Domain Error
Domain Error
Domain Error

Domain Error
Domain Error
Domain Error

Domain Error

iAPX 432 GDP

COMMENT

Invalid operand
Exponent of true result is

> 16,383
Exponent of true result is

< -16,382
Inexact result
Invalid operand or

division by zero
Inexact result

Invalid operand, division
by zero, or division
by unnormalized value

Exponent of true result is
> 16,383

Exponent of true result is
< -16,382

Inexact result

Invalid operand or
division by zero

Exponent of true result is
> 16,383

Exponent of true result is
< -16,382

Inexact result

Invalid operand

Invalid operand

Invalid operand
Invalid operand
Invalid operand

Invalid operand
Invalid operand
Invalid operand

Invalid operand

iAPX 432 GDP Fault and Trace Reference

OPERATOR R p FAULTS COMMENT

Move Real None
Zero Real None
Save ·Real None

Add Real x x Domain Error Invalid operand
Inexact(4) Inexact result

Add Temporary Real
to Short Real x x Domain Error Invalid operand

Overflow(3) Exponent of true result is
> 16,383

Underflow(3) Exponent of true result is
< -16,382

Inexact(4) Inexact result
Add Real to

Temporary Real x x Domain Error Invalid operand
Overflow(3) Exponent of true result is

> 16,383
Underflow(3) Exponent of true result is

< -16,382
Inexact(4) Inexact result

Subtract Real x x Domain Error Invalid operand
Inexact(4) Inexact result

Subtract Temporary
Real from Real x x Domain Error Invalid operand

overflow(3) Exponent of true result is
> 16,383

Underflow(3) Exponent of true result is
< -16,382

Inexact(4) Inexact result
Subtract Real from

Temporary Real x x Domain Error Invalid operand
Overflow(3) Exponent of true result is

> 16,383
Underflow(3) Exponent of true result is

< -16,382
Inexact(4) Inexact result

Multiply Real x x Domain Error Invalid operand
Inexact(4) Inexact result

Multiply Temporary
Real by Real x x Domain Error Invalid operand

overflow(3) Exponent of true result is
> 16,383

Underflow(3) Exponent of true result is
< -16,382

Inexact(4) Inexact result

12-25

Fault and Trace Reference

OPERATOR

Multiply Real by
Temporary Real

Divide Real

Divide Temporary Real
into Real

Divide Real into
Temporary Real

Negate Real
Absolute Value Real

Equal Real
Equal Zero Real
Less Than Real
Less Than or Equal Real
Positive Real
Negative Real

Convert Real to
Temporary Real

12-26

R

x

x

x

x

p

x

x

x

x

FAULTS

Domain Error
Overflow(3)

Under flow(3)

Inexact(4)
Domain Error

Inexact(4)

Domain Error

Overflow(3)

Underflow(3)

Inexact(4)

Domain Error

Overflow(3)

Underflow(3)

Inexact(4)
Domain Error
Domain Error

Domain Error
Domain Error
Domain Error
Domain Error
Domain Error
Domain Error

Domain Error

iAPX 432 GDP

COMMENT

Invalid operand
Exponent of true result is

> 16,383
Exponent of true result is

< -16,382
Inexact result
Invalid operand or

division by zero
Inexact result

Invalid operand, division
by zero, or division
by unnormalized value

Exponent of true result is
> 16,383

Exponent of true result is
< -16,382

Inexact result

Invalid operand or
division by zero

Exponent of true result is
> 16,383

Exponent of true result is
< -16,382

Inexact result
Invalid operand
Invalid operand

Invalid operand
Invalid operand
Invalid operand
Invalid operand
Invalid operand
Invalid operand

Invalid operand

iAPX 432 GDP

OPERATOR

Move Temporary Real
Zero Temporary Real
Save ·Temporary Real

Add Temporary Real

Subtract
Temporary Real

Multiply
Temporary Real

R p FAULTS

None
None
None

x x Domain Error
Overflow(3)

Underflow(3)

Inexact(4)

x x Domain Error
Overflow(3)

Underflow(3)

Inexact(4)

x x Domain Error
Overflow(3)

Underflow(3)

Inexact(4)
Divide Temporary Real x x Domain Error

Remainder
Temporary Real

Negate Temporary Real
Square Root

Temporary Real

Absolute Value
Temporary Real

Over flow(3)

Underflow(3)

Inexact(4)

Domain Error

Underflow(3)

Domain Error

x x Domain Error

Inexact(4)

Domain Error

Fault and Trace Reference

COMMENT

Invalid operand
Exponent of true result is

> 16,383
Exponent of true result is

< -16,382
Inexact result

Invalid operand
Exponent of true result is

> 16,383
Exponent of true result is

< -16,382
Inexact result

Invalid operand
Exponent of true result is

> 16,383
Exponent of true result is

< -16,382
Inexact result
Invalid operand, division

by zero, or division
by unnormalized value

Exponent of true result is
> 16,383

Exponent of true result is
< -16,382

Inexact result

Invalid operand, division
by zero, or division
by unnormalized value

Exponent of partial result
< -16383

Invalid operand

Invalid operand,
unnormalized operand, or
non-zero negative operand

Inexact result

Invalid operand

12-27

Fault and Trace Reference

OPERATOR

Equal Temporary Real

Equal Zero Temporary
Real

Less Than
Temporary Real

Less Than or Equal
Temporary Real

Positive Temporary
Real

Negative Temporary
Real

Convert Temporary Real
to Ordinal

Convert Temporary Real
to Integer

Convert Temporary Real
to Short Real

Convert Temporary Real
to Real

12-28

R p

x -

x -

x -

x -

FAULTS

Domain Error

Domain Error

Domain Error

Domain Error

Domain Error

Domain Error

Domain Error

0Verflow(2)

Inexact(4)

Domain Error

Overflow(2)

Inexact(4)

Domain Error

Overflow(2)

Underflow(2)

Inexact(4)

Domain Error

Overflow(2)

Underflow(2)

Inexact(4)

iAPX 432 GDP

COMMENT

Invalid operand or
unnormalized operand

Invalid operand or
unnormalized operand

Invalid operand or
unnormalized operand

Invalid operand or
unnormalized operand

Invalid operand or
unnormalized operand

Invalid operand or
unnormalized operand

Invalid operand,
unnormalized operand or
negative operand

Temporary real value is
> 4,294,967,295

Inexact result

Invalid operand or
unnormalized operand

Temporary real value is
> 2,147,483,647 or
< -2,147,483,648

Inexact result

Invalid operand or
unnormalized operand

Temporary real value has
exponent > 127

Temporary real value has
exponent < -126

Inexact result

Invalid operand or
unnormalized operand

Temporary real value has
exponent > 1023

Temporary real value has
exponent < -1022

Inexact result

iAPX 432 GDP Fault and Trace Reference

SUB-OPERATOR FAULT GROUPS

FAULT GROUPS

Store Access Descriptor Faults =>
Level Fault
Destination Delete Rights Fault

Object Qualification Faults =>
Access Descriptor Validity Fault
Object Descriptor Fault
Object Descriptor Type Fault

Descriptor Allocation Faults =>
SRO Type Rights Fault
<Object Qualification Faults (SRO)>
Object Descriptor Type Fault
Object Descriptor Exhaustion Fault
Object Descriptor Type Fault

Segment Allocation Faults =>
<Object Qualification Faults (Claim)>
<Object Qualification Faults (PSO)>
PSO Lock Fault
Storage Block Index Overflow Fault

(missing last block bit)
Storage Block Fragmentation Fault
S~orage Claim Unde~flow
Clear Memory Size Fault

Port Operation Faults =>
<Object Qualification Faults (Carrier)>
<Object Qualification Faults (Port)>
Carrier Lock Fault
Port Lock Fault
Carrier Queued Fault

Context Qualification Faults =>
<Object Qualification Faults (Context)>
<Object Qualification Faults (Domain)>
<Object Qualification Faults (Instruction)>

Process Binding and Qualification Faults =>
<Object Qualification Faults (Process)>
Process Level Object Lock Fault
<Context Qualification Faults>

I TYPE I ENCODING

lo (FF)' 01 0100
0 (FF) 01 0011

0 (FF)
0 (FF)
2 (TS)
2 (TS)

0 (FF)
2 (TS)
2 (TS)
0 (FF)
2 (TS)

2 (TS)
2 (TS)
0 (FF)
0 (FF)

0 (FF)
0 (FF)
0 (FF)

2 (TS)
2 (TS)
0 (FF)
0 (FF)
0 (FF)

2 (TS)
2 (TS)
2 (TS)

2 (TS)
0 (FF)

01 0000
01 0001
0 10111
0 11111

01 0111
1 01001
0 00100
01 1011
0 00000

1 01011
1 01010
01 1001
01 1101

01 1110
01 1111
01 1000

1 01000
1 00111
01 1001
01 1010
01 1100

1 00100
1 00010
1 00011

1 00101
11 0001

12-29

Fault and Trace Reference

NON-INSTRUCTION INTERFACE FAUL TS

OPERATOR

Initializ~tion =>
<Object Qualification Faults (Processor)>
<Object Qualification Faults (Obj. Table Directory)>
<IPC Faults>

IPC Faults =>
<Object Qualification Faults (PCO)>
PCO Response Count Fault
PCO Lock Fault

Idle =>
<Delay Port Service Faults>

Process Binding =>
<Object Qualification Faults (Carrier)>
Process Lock Fault
<Process Qualification Faults>
<Port Operation Faults>

Process Selection =>
<Delay Port Service Faults>
<Object Qualification Faults (Carrier)>
<Port Operation Faults>

12-30

iAPX 432 GDP

I TYPE I ENCODING

2 (TS)
2 (TS)

2 (TS)
0 (FF)
0 (FF)

1 00110
1 00001

1 10000
11 0010
11 0011

2 (TS) 1 01000
0 (FF) 11 0001

2 (TS) 1 01000

iAPX 432 GDP

OPERATOR

Branch
Branch True
Branch False

Instruction Pointer Overflow Fault
Instruction Object Displacement Fault

Branch Indirect
Instruction Object Displacement Fault

Branch Intersegment
Branch Intersegment without Trace
Branch Intersegment and Link

<Object Qualification Faults (Instruction)>
· Instruction Object Displacement Fault

Breakpoint
no explicit fault cases

Copy Access Descriptor
<Store Access Descriptor Faults>

Null Access Descriptor
Destination Delete Rights Fault

Amplify Rights
TCO Type Rights Fault
<Object Qualification Faults (TCO)>
Type Fault

Fault and Trace Reference

OBJECT OPERATOR FAULTS

TYPE ENCODING

1 (IP)
0 (FF)

0 (FF)

2 (TS)
0 (FF)

10 0000

10 0000

1 00011
10 0000

0 (FF) 01 0011

Race Condition Fault (the access descriptor was
changed before the amplified value is stored back)

0 (FF)
2 (TS)
0 (FF)
0 (FF)

01 0110
1 01110
01 1000
01 0011

Restrict Rights
no explicit fault cases

Retrieve Type Definition
Source AD Validity Fault
<Store Access Descriptor Faults>

0 (FF) 01 0101

12-31

Fault and Trace Reference

OPERATOR

Create Refinement
Source AD Validity Fault
Object Descriptor Type Fault
Offset and Length Compatibility Fault
Refinement Overflow Fault
<Descriptor Allocation Faults>
Level Fault
<Store Access Descriptor Faults>

Create Typed Refinement
TCO Type Rights Fault
<Object Qualification Faults (TCO)>
Source AD Validity Fault
Object Descriptor Type Fault
Type Fault
Offset and Length Compatibility Fault
Refinement Overflow Fault
<Descriptor Allocation Faults>
Level Fault
<Store Access Descriptor Faults>

Create Object
<Descriptor Allocation Faults>
<Segment Allocation Faults>
<Store Access Descriptor Faults>

Create Typed Object
TCO Type Rights Fault
<Object Qualification Faults (TCO)>
<Descriptor Allocation Faults>
Level Fault
<Segment Allocation Faults>
<Store Access Descriptor Faults>

Inspect Access Descriptor
no explicit cases

Inspect Object
Access Path Object Descriptor Validity Fault

Equal Access
Move to Embedded Data Value
Move from Fmbedded Data Value

no explicit fault cases

Lock Object
Source Representation Rights Fault
<Object Qualification Faults>

Unlock Object
Source Representation Rights Fault
<Object Qualification Faults>
Object Lock ID/Type Fault

12-32

iAPX 432 GDP

I TYPE I ENCODING

0 (FF)
2 (TS)
0 (FF)
0 (FF)

0 (FF)

0 (FF)
2 (TS)
0 (FF)
2 (TS)
0 (FF)
0 (FF)
0 (FF)

0 (FF)

01 0101
0 00110
01 1001
01 1010

01 0100

01 0110
1 01110
01 0101
0 00110
01 1000
01 1001
01 1010

01 0100

0 (FF) 01 0110
2 (TS) 1 0 111 0

0 (FF) 01 0100

0 (FF) 01 0101

0 (FF) 01 0110

0 (FF) 01 011 0

0 (FF) 01 1001

iAPX 432 GDP

OPERATOR

Indivisibiy Add Short Ordinal
Indivisibly Add Ordinal
Indivisibly Insert Short Ordinal
Indivisibly Insert Ordinal

no explicit fault cases

Enter Environment 1, 2, 3
<Object Qualification Faults>

Copy Process Globals
<Store Access Descriptor Faults>

Set Context Mode
no explicit fauit cases

Adjust Stack Pointer
no explicit fault cases

Call
Call through Domain

<Object Qualification Faults (Domain)>
Domain Access Index Overflow Fault
Instruction Object Type Rights Fault
<Object Qualification Faults (Instruction)>
Context Parameters Size Fault
Context Type Rights Fault
<Object Qualification Faults (Context)>
Instruction Object Displacement Fault

Return
Context Type Rights Fault
<Context Qualification Faults>
<Object Qualification Faults (PSO)>
<Object Qualification Faults (Object Table)>
PSO Lock Fault
Instruction Object Displacement Fault

Return and Fault
<Return>

Return Fault

Send
Receive
Conditional Send
Conditional Receive
Surrogate Send
Surrogate Receive

Surrogate Carrier Validity Fault
Surrogate Carrier Type Rights Fault
Destination Port Type Rights Fault
Port Type Rights Fault
Level Fault
<Port Operation Faults>

Fault and Trace Reference

I TYPE I ENCODING

2 (TS) 1 00010
0 (FF) 01 0010
0 (FF) 01 0101
2 (TS) 1 00011
0 (FF) 01 0110
0 (FF) 01 0111
2 (TS) 1 00100
0 (FF) 10 0000

0 (FF) 01 0111

2 (TS) 1 01010
2 (TS) 0 00100
0 (FF) 01 1001
0 (FF) 10 0000

0 (FF) 00 0100

0 (FF)
0 (FF)
0 (FF)
0 (FF)
0 (FF)

01 0101
01 0101
01 0111
01 0110
01 0100

12-33

Fault and Trace Reference

OPERATOR

Delay Process
Send Process

Port Type Rights Fault
Level Fault
<Port Operation Faults>

Set Process Mode
Process Object Type Rights Fault
Process Object Access Mismatch Fault

Read Process Clock
no explicit fault cases

Send to Processor
PCO Type Rights Fault
<Object Qualification Faults (PCO)>

Read Processor Status
no explicit fault cases

Move to Interconnect
Move from Interconnect

Odd Displacement Fault
Odd Interconnect Descriptor Base Address Fault
<Object Qualification Faults (Interconnect)>

Block Move
Offset Overflow

12-34

iAPX 432 GDP

I TYPE I ENCODING

0 (FF) 01 0110
0 (FF) 01 0100

0 (FF)
0 (FF)

01 0110
01 1000

0 (FF) 01 0110
2 (TS) 1 01010

0 (FF)
0 (FF)
2 (TS)

0 (FF)

01 0110
01 0101
0 01100

00 0001

iAPX 432 GDP Fault and Trace Reference

TRACE REFERENCE

TRACE OPERATION

GDP support for software debugging and analysis is based on the tracing
mechanism. When a trace event occurs, the instruction object Domain
Access Index (DAI)! the instruction pointer, and a trace code are
recorded in the Trace Control Data Area in the current context data
part. An intersegment branch is then effectively executed to bit
displacement 64 of the Trace Instruction Object (specified by AD 1 in
the current defining domain).

A process may be in one of four trace modes as determined by the setting
of the Trace Mode field in the current process status:

00 - No Trace Mode (not tracing)
01 - Fault Trace Mode
10 - Flow Trace Mode
11 - Full Trace Mode

These trace modes are defined as follows:

No Trace Mode: Process execution is as described throughout
the rest of this manual.

Fault Trace Mode: A trace event occurs prior to the execution of the
first instruction of a context-level fault handler.

Flo-w Traoe Mode~ A trace event occurs prior to the execution of the
first instruction of a context-level fault handler.
A trace event occurs after the execution of all
instructions that change the current instruction
object. This includes all intersegment branch
instructions, CALL, CALL THROUGH DOMAIN, RETURN, and
RETURN AND FAULT instructions. In RETURN or RETURN
AND FAULT instructions, a trace event also occurs
prior to the execution of the instruction.

Full Trace Mode: A trace event occurs prior to the execution of the
first instruction of a context-level fault handler.
A trace event occurs prior to the execution of every
instruction.

When a trace mode other than no trace is specified by a process, trace
events are generated as described whenever the process is executing an
instruction object which is opened for tracing. An instruction object
is open for tracing if it is accessed via an AD which has trace
rights. If an instruction object is not open for tracing to the
process, then no trace events are ever generated from within it.

12-35

Fault and Trace Reference iAPX 432 GDP

When a process which is in full trace mode transfers from a closed
instruction object to an open one, the first trace event generated is
prior to the execution of the first instruction in the open instruction
object. When such a process transfers from an open instruction object
to a closed one, the last trace event is generated immediately prior to
the instruction which causes the transfer.

When a process is in flow trace mode, the first trace event generated
is prior to the execution of the first instruction in any open
instruction object independent of whether the transfer instruction is
located in an open or closed one. When a process is in the flow trace
mode, a trace event is also generated prior to the execution of a
Return instruction if the current instruction object is an open one.
This allows the current context and its associated local objects to be
examined before they are reclaimed by the Return instruction. If the
instruction object that a context returns to is an open one, another
trace event is generated prior to the execution of the next instruction
after the CALL or CALL THROUGH DOMAIN instruction.

Access descriptors to trace instruction objects, and to any associated
instruction objects {i.e. , objects that the trace routine can branch
to) should have their Trace Rights bit Off. Otherwise, it may be
possible to get into an infinite loop. The current implementation
always forces the processor's trace enable off when branching to the
trace routine.

The trace mode bi ts of the current process can be changed by the SET
PROCESS MODE instruction.

12-36

iAPX 432 GDP Fault and Trace Reference

TRACE CONTROL DATA AREA

The Trace Control Data Area is located in the context data part and is
organized as follows:

Byte Displacement

Trace Event Code 12

1'r ace Instruction Pointer 10

Trace DAI 8

These fields have the following meaning:

Trace DAI (Bytes 8 - 9)
This 16-bit field records the DAI in the defining don1ain of the
instruction vl>ject in which the trace event should resume.

Trace Instruction Pointer (Bytes 10 - 11)
This 16-bi t field records the instruction pointer of the
instruction ~d th which execution CCln resume after the trace event.

Trace Event Code (Bytes 12 - 13)
Th is 1 l-b it field records the encoding for the method used to
resume. The trace event code is definea as follows:

indicates that normal instruction flow can be resumed by a
BRANCH IN1'ERSEGMENT WITHOUT TRACE instruction using the Trace
DAI and the Trace Instruction Pointer.

2 indicates that normal instruction flow bas to be resumed by
executing a RETURN instruction.

3 indicates that liOrrneil instruction flow has to be resumed by
executing a RETURN AND FAULT instruction.

4 indicates fault trace arid no Trace DAI nor Trace Instruction
Pointer is recorded.

5 indicates a BREAKPOINT fostructiot1 is executed.

12-37

GLOSSARY

This glossary defines important terms used in this manual. Within the definitions,
references to other terms defined in this glossary are underscored ..

access descriptor
access environment
access part
access rights
access selector
AD rights
attached processor

bit-field specifier
blocked
Boolean

carrier
central system
character
compaction
nnn+ov+ nhiont "'"'".&..&. .. ""' .. "",,..,.J __ ...

data part
defining domain
delete rights
domain
domain access index
dynamic type
dynamic-type object

embedded data value

fault
FIFO
forwarding
fragmentation

garbage collection
general data processor
generic object
global heap SRO

List of Terms Defined

heap SRO

instruction object
integer
interconnect
interface processor
interprocessor

communication

level
level check
lifetime strategy
LIFO
local heap SRO

message

object
object descriptor
object lock
object reference
object table
object table directory
object type
operand stack
ordinal

package
peripheral subsystem
physical storage object
port
process
process globals object

read rights
real
refinement
representation rights

segment
short integer
short ordinal
short real
stack SRO
storage claim object
storage resource object
system object
system type

temporary real
typ~

type control object
type definition object
type manager
type rights

unchecked copy rights

write rights

processor communication object
processor object
processor type

Glossary-1

Glossary iAPX 432 GDP

access descriptor (AD): a reference to an iAPX 432 object that restricts
operations on both the object using the AD (access rights) and on the AD itself
(AD rights). The iAPX 432 hardware ensures that access descriptors and the
objects they ref er to can only be manipulated in controlled ways.

access environment: the set of all iAPX 432 objects that can be directly or
indirectly accessed from a given context. The access environment of a context is
determined by its defining domain, by the process globals object of the process
that contains the context, and by any access descriptors passed as parameters
from its caller, returned as results from operations called by the context,
received in interprocess communication, or created during the context's execution.

access part: a distinct, optional part of an iAPX 432 object that can only contain
access descriptors (ADs). The hardware limits operations on object access parts
to ensure that ADs are not corrupted. An access part can contain from 0 to 16,384
ADs.

access rights: attributes of an iAPX 432 access descriptor (AD) that restrict
operations on the referenced object using the AD. Access rights consist of
representation rights, which restrict the rights to read or write the referenced
object, and type rights, which restrict the right to execute certain high-level
operations using the AD (e.g., the right to send a message to a port).

access selector: a 16-bit data value that selects an access descriptor (AD) from
the current access environment of a context. The ENV selector field in an access
selector selects one of up to four objects that determine the current access
environment. The access index field in an access selector selects an AD from the
access part of the object specified by the ENV selector.

AD rights: attributes of an iAPX 432 access descriptor (AD) that restrict
operations on the AD itself. AD rights consist of delete rights and unchecked copy
rights.

attached processor (AP): a processor, usually an Intel microprocessor, which
controls the peripheral subsystem. The peripheral subsystem contains peripheral
devices, controllers, memory, the AP, and an iAPX 432 interface processor (IP), all
communicating on the peripheral subsystem's bus. Software running on the AP
controls the IP.

bit-field specifier: specifies a field of bits within an ordinal or short-ordinal
operand. The specifier gives the beginning bit position and width in bits of the
field.

blocked: the state of a carrier that is queued at a full port, waiting to send a
message, or is queued at an empty port, waiting to receive a message. A process
or processor is blocked if its carrier is blocked.

Boolean: a one-byte value of the character data type, used to represent logical
TRUE (xxxxxxxl) or FALSE (xxxxxxxO).

Glossary-2

iAPX 432 GDP Glossary

carrier: an iAPX 432 system object that carries messages to and from ports, and
that may optionally be forwarded to a second port after completing a primary
operation. A carrier can be a process carrier, processor carrier, or surrogate
carrier. Process carriers and processor carriers directly represent processes and
processors in port operations; if such a carrier must wait for a port operation to
complete, then the corresponding process or processor waits as well. However, a
surrogate carrier, while it normally acts on behalf of some process, does not cause
any process to wait when it must wait, and multiple surrogate carriers can act on
behalf of a single process.

central system: the main iAPX 432 system in which multiple general data
processors (GDPs) and interface processors (IPs) share a common memory and
concurrently execute. 1/0 and initialization for the central system are provided
by one or more peripheral subsystems. The iAPX 432 interface processors are
part of both systems and provide the bridge between them.

character: a one-byte computational data type used to represent text characters,
Booleans, and unsigned integers in the range 0 to 255.

compaction: an operating system memory management service which relocates
objects in memory to combine fragmented free storage blocks, thus allowing the
allocation of larger segments. Compaction runs concurrently with user programs
and its operation is invisible (except in timing).

context object: an iAPX 432 system object that represents an activation of a
subprogram.

data part: a distinct, optional part of an iAPX 432 object that can contain any
information except access descriptors (ADs). Programs with proper rights to an
object can make arbitrary Ghan.ges to the object's data. pa.rt using any of the iAPX
432 data operators. A data part can contain from 0 to 65536 bytes.

defining domain: the domain through which the current context was called. This
domain is a major part of the context's access environment. The caller usually
possesses an access for just some refinement of the domain (its "public part"), but
the called context is able to access all of the domain.

delete rights: an attribute of an iAPX 432 access descriptor (AD) that restricts
the right to overwrite the AD with a new access value. If an AD is not null and
delete rights are absent, then the access value can be eliminated only by
reclaiming the segment that contains the AD.

domain: an iAPX 432 system object that represents a program module and can
contain or reference multiple subprograms and data elements. A domain is a
major part of the access environment of a context called through the domain.
The caller may have access to just a refinement of the domain, called the "public
part," but the called context can access the entire domain.

domain access index: a 16-bit data value that selects an access descriptor (AD)
from the defining domain of the current context. The low two bits are ignored;
the high 14 bits index into the domain access part.

Glossary-3

Glossary iAPX 432 GDP

dynamic type: an iAPX 432 object type defined by software and represented by
an iAPX 432 type definition object (TDO).

dynamic-type object: an instance of a dynamic type.

embedded data value (EDV): a 31-bit ordinal value stored (embedded) in a null
access descriptor. Special operations are provided to convert ordinals to and from
EDVs. EDVs allow simple messages to be sent between processes in null ADs
without the overhead of allocating and referencing a separate message object.

fault: a processor-detected error during program execution. For example, if an
addition operation overflows, the GDP detects the error and raises a fault. There
are three levels of faults, increasing in severity: context faults, process faults,
and processor faults.

FIFO: First-In-First-Out, a queuing discipline in which the first item to enter a
queue is al ways the first to leave it.

forwarding: the iAPX 432 operation of sending a carrier on to a second port after
the carrier has been used to send or receive a message at a first port.

fragmentation: the division of free storage into multiple noncontiguous blocks,
caused by the normal operation of heap allocation and garbage collection.

garbage collection: a concurrent operating system process that detects
unreferenced objects and reclaims the corresponding descriptors and storage.
Garbage collection runs concurrently with user processes and is invisible to them.

general data processor (GDP): the main type of processor provided by Intel to
execute within the iAPX 432 central system. The GDP is a general purpose
processor that provides object-oriented addressing and protection, operating
system functions in silicon, and hardware floating-point arithmetic.

generic object: an iAPX 432 object with a system type (generic) that has no
hardware-recognized meaning and can be used to implement arbitrary software
structures. Other objects are either system objects, dynamic-type objects, or
interconnect objects.

global heap SRO: a heap SRO at level zero; only garbage collection can reclaim
storage allocated from a global heap.

heap SRO: an iAPX 432 storage resource object (SRO) on which garbage
collection is performed to reclaim discarded (unreferenced) objects. Objects can
be created and reclaimed in any order using a heap SRO, which can result in
fragmentation. Two types of heap SROs are defined, global heap SROs and local
heap SROs.

instruction object: an iAPX 432 system object that contains GDP instructions,
typically for a single subprogram.

integer: a four-byte computational data type used to represent signed whole
numbers in the range -2,147 ,483,648 to 2,147 ,483,647.

Glossary-4

iAPX 432 GDP Glossary

interconnect: a secondary address space used for special-purpose hardware
registers associated with initialization, hardware configuration, and hardware
error logging. The interconnect address space is organized into special
interconnect objects which are normaliy defined at system initialization.

interface processor (IP): an iAPX 432 processor that connects an iAPX 432
central system to one peripheral subsystem. The IP is a slave processor to the
attached processor (AP) in the peripheral subsystem. The IP provides the object
addressing and high-level operators needed to access the iAPX 432 central
system.

interprocessor communication (IPC): a protocol for sending special interprocessor
message codes (IPCs) between iAPX 432 processors.

level: a short-ordinal attribute of an object that characterizes the relative
lifetime of the object -- a greater level means a shorter lifetime. The level
number of a context is always one greater than the level of its caller. The level
number is normally one for the first context associated with a given process. All
objects allocated from a stack SRO have the same level number as the context in
which they are allocated, and all are -reclaimed when control returns from the
context. Objects allocated from global heap SROs have level number zero, while
local heap SROs all have level numbers greater than zero. Objects at level zero
can only be reclaimed by garbage collection and never because a context returns.
Objects at level zero can only be created from a global heap SRO.

level check: a check when an access descriptor (AD) is copied, to ensure that the
level number of the destination object is greater than or equal to the level number
of the object referenced by the AD. This check ensures that no "dangling
references" exist when a context returns and deallocates all objects created in it.
The level check is suppressed if the AD being copied has unchecked coov riQ'ht~.

lifetime strategy: an attribute of objects defined by iMAX that determines when
and how an object is deleted, and that derives from the type of SRO used to create
the object. The three lifetime strategies are global heap SRO, local heap SRO,
and stack SRO.

LIFO: Last-In-First-Out, a dynamic data structure organization in which the last
item added to the structure is the first item removed from it.

local heap SRO: a heap SRO that is tied to some context and has a level greater
than zero. Objects allocated from a local heap can be reclaimed either by
garbage collection or by returning from the associated context.

message: any iAPX 432 object for which an access descriptor (AD) is copied from
a sending process to a receiving process.

object: a data structure within memory described by an object descriptor and
accessed via access descriptors (ADs). Objects are the iAPX 432 construct for
access control, run-time type checking, storage management, and program
addressing.

object descriptor: an object table enty that gives object attributes needed by the
iAPX 432 processors, e.g., type and storage information.

Glossary-5

Glossary iAPX 432 GDP

object lock: a double-byte field in many iAPX 432 system objects used to
synchronize concurrent hardware and/or software access to the object containing
the object lock. Properly used, an object lock ensures that a process or processor
has exclusive access to an object while reading or updating it.

object reference: see access descriptor.

object table: an iAPX 432 system object containing object descriptors.

object table directory {OTD): a special object table that only contains object
descriptors for all other object tables in an iAPX 432 system.

object type: type information given in object descriptors for storage segments
and refinements, consisting of system type and processor type.

operand stack: an area within a context data part that provides an expression
evaluation stack for the context.

ordinal: a four-byte computational data type used to represent unsigned integers
in the range 0 to 4,294,967,295, and also to represent bit strings of 32 bits or less.

package: an Ada program unit specifying a collection of related entities such as
constants, variables, types, and subprograms. The visible part {"public part") of a
package contains entities accessible from outside the package. The private part
of a package contains structural details hidden from the user of the package;
these details complete the specification of the visible entities. The visible and
private parts together constitute the package specification. The package body,
which can be separately compiled, contains the bodies {implementations) of
subprograms, tasks, or other packages declared in the package specification. A
package is represented by an iAPX 432 domain.

peripheral subsystem: a computer system controlled by an attached processor
{AP), which manages one or more peripheral devices and is linked to an iAPX 432
central system by an iAPX 432 interface processor {IP). The peripheral subsystem
contains peripheral devices, controllers, memory, the AP, and an IP.

physical storage object {PSO): an iAPX 432 system object that provides a free
storage pool for use by an iAPX 432 storage resource object {SRO).

port: an iAPX 432 system object that provides a queuing mechanism with two
queues, a bounded message queue and an unbounded carrier queue. Ports support
FIFO, priority, and deadline-within-priority queuing. Ports are used for
interprocess communication and process scheduling and dispatching.

process: an iAPX 432 system object that represents part of a program that
execute concurrently with other parts, also represented as processes. Because
processes can compete for execution time, scheduling information is associated
with processes for use in selecting the next process to run, and to ensure that a
process does not monopolize a processor for longer than some time limit. A
program can consist of one or more processes.

Glossary-6

iAPX 432 GDP Glossary

process globals object (PGO): an iAPX 432 generic object that is designated by a
process as its globals object and that provides access to additional attributes of a
process's run-time environment. For example, a PGO can reference a heap SRO
used by the process to allocate heap objects.

processor communication object (PCO): an iAPX 432 system object used to send
and receive interprocessor messages (IPCs).

processor object: an iAPX 432 system object that contains state information for
one physical iAPX 432 processor.

processor type: an iAPX 432 object type field; each of its values designates the
kinds of processors that can reference objects with that processor type. The
alternatives are GDP only, IP only, and "all" (both GDP and IP).

read rights: attribute of an iAPX 432 access descriptor (AD) that controls the
right to read the referenced object.

real: an eight-byte computational data type used to represent sif8-:ed floating
point numbers with magnitudes in the range 2.2*10-308 to 1.8*10 08 (and also
zero).

refinement: an iAPX 432 object that is contained within another object. When a
refinement is created, the displacement of the base of the refinement in the
underlying object and the size of the refinement are specified and are checked by
the GDP.

representation rights: attributes of an iAPX 432 access descriptor (AD) that
restrict the rights to read or write the referenced object. Representation rights
consist of read rignts and write rights.

segment: a set of contiguous memory locations, from 0 to 131,072 (128K) bytes in
apparent size, defined by an iAPX 432 object descriptor. A segment can be in the
storage address space or the interconnect address space. (Interconnect segments
are a maximum of 65,536 bytes.)

short integer: a two-byte computational data type used to represent signed whole
numbers in the range -32, 768 to 32, 767.

short ordinal: a two-byte computational data type used to represent unsigned
integers in the range 0 to 65,535, and also to represent bit strings of 16 bits or
less.

short real: a four-byte computational data type used to represent signed floating
point numbers with magnitudes in the range 1.2*10-38 to 3.4* 10 38 (and also zero).

stack SRO: an iAPX 432 storage resource object (SRO) built in to the process
object of a process and used for allocation of objects with lifetimes local to the
creating context. Allocation and deallocation for a stack SRO are strictly LIFO
(Last-In-First-Out). There is no object descriptor for a stack SRO, but it is
conceptually a distinct object.

Glossary-7

Glossary iAPX 432 GDP

storage claim object (SCO): an iAPX 432 system object used to limit the total
number of bytes of physical storage allocated via the set of heap SROs that
reference the SCO.

storage resource object (SRO): an iAPX 432 system object that provides for the
dynamic creation of objects by specifying an object table in which to allocate the
object descriptor for a new object, and by specifying a physical storage object
(PSO) that specifies a free storage pool from which the new object can be
allocated. An SRO specifies the lifetime strategy of objects allocated from it. A
heap SRO can also specify a storage claim object that limits the amount of
physical storage that can be allocated from a particular set of SROs.

system object: an iAPX 432 object with a system type that indicates that it has a
special role recognized by the hardware. Other objects are either generic objects
or dynamic type objects.

system type: an iAPX 432 object type field that distinguishes a class of iAPX 432
objects with a particular processor-recognized meaning.

temporary real: a ten-byte computational data type used to represent si~ed
floating point numbers with magnitudes in the range 1. 7* 10-4932 to 1.2* 10 932
(and also zero).

~: a set of values with certain operations and representations defined for the
set.

type control object (TCO): an iAPX 432 system object that provides the right to
amplify specific rights on access descriptors (ADs) for objects of a particular
type, and/or the right to create objects of the type, and/or the right to create
refinements of the type.

type definition object (TDO): an iAPX 432 system object that represents a
particular software-defined dynamic type.

type manager: an Ada package or iAPX 432 domain object that defines all basic
operations on a certain type of object. Any other operations on objects of the type
must be composed by using the basic operations. A type manager may distribute
accesses for the managed objects, but normally retains for itself the rights to
directly read or write those objects.

type rights: attributes of an iAPX 432 access descriptor (AD) that restrict the
right to execute certain operations using the AD, depending on the type of object
it references. For example, create rights are required to create a new object
using an SRO access.

unchecked copy rights: an attribute of an iAPX 432 access descriptor (AD) which,
if set, suppresses the level check when the AD is copied. When a new object is
created, unchecked copy rights are set on the returned AD only if the new
object's level is zero (i.e., if a level check could never fail). Amplifying
unchecked copy rights is a privileged operation, used only by O.S. software.

write rights: an attribute of an iAPX 432 access descriptor that controls the right
to write the referenced object.

Glossary-8

intel® iAPX 432 General Data Processor
Architecture Reference Manual

171860-004

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all
Intel product users. This form lets you participate directly in the publication process. Your comments
will help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of this
pubiication. if you have any comments on the product that this publication desc;ibes, please contact
your Intel representative. If you wish to order publications, contact the Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make suggestions
for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
pubiications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME~~~~~~~~~~~~~~~~~~~~~~~~- DATE
TITLE
COMPANY NAME/DEPARTMENT __ ~

ADDRESS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

CITY STATE ZIP CODE 
~~~~~~~~~~~~ 

(COUNTRY)

Please check here if you require a written reply. D

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will help us

produce better manuals. Each reply will be carefully reviewed by the responsible person. All comments and

suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON. OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 NE Elam Young Parkway
Hillsboro OR 97123

ISO-N TECHNICAL PUBLICATIONS

NO POSTAGE

NECESSARY

IF MAILED

INTHE

UNITED STATES

intJ
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

IS-055/1 K/0284/0SPS
MICROPROCESSORS

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	09-00
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	09-55
	09-56
	09-57
	09-58
	09-59
	09-60
	09-61
	09-62
	09-63
	09-64
	09-65
	09-66
	09-67
	09-68
	10-001
	10-002
	10-003
	10-004
	10-005
	10-006
	10-007
	10-008
	10-009
	10-010
	10-011
	10-012
	10-013
	10-014
	10-015
	10-016
	10-017
	10-018
	10-019
	10-020
	10-021
	10-022
	10-023
	10-024
	10-025
	10-026
	10-027
	10-028
	10-029
	10-030
	10-031
	10-032
	10-033
	10-034
	10-035
	10-036
	10-037
	10-038
	10-039
	10-040
	10-041
	10-042
	10-043
	10-044
	10-045
	10-046
	10-047
	10-048
	10-049
	10-050
	10-051
	10-052
	10-053
	10-054
	10-055
	10-056
	10-057
	10-058
	10-059
	10-060
	10-061
	10-062
	10-063
	10-064
	10-065
	10-066
	10-067
	10-068
	10-069
	10-070
	10-071
	10-072
	10-073
	10-074
	10-075
	10-076
	10-077
	10-078
	10-079
	10-080
	10-081
	10-082
	10-083
	10-084
	10-085
	10-086
	10-087
	10-088
	10-089
	10-090
	10-091
	10-092
	10-093
	10-094
	10-095
	10-096
	10-097
	10-098
	10-099
	10-100
	10-101
	10-102
	10-103
	10-104
	10-105
	10-106
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	12-36
	12-37
	12-38
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	replyA
	replyB
	xBack

