IAPX 432
GENERAL DATA PROCESSCR

z/n/ Y M / R RN / Lo
/ﬂ/ N S { éﬁ?xﬂ SR R o
St g Avr/‘?%?/éf?éé/ - o
SRS
M%/ M,/ o ?%Z%yﬁ% R é 1
e
/i///%?/l/é SRS % o
NN R S
M%,zféféﬁ%? W W/fﬁ%ﬁ&é/éf/ég / ?«ﬁ?/ //é/ff ﬁ/wf fre3
3 S /.y //4» N o
o z o
ﬂ/,/f%émé//éz?fﬁ//f/ R ?ﬁe%y W/é o féx///x//ff/‘ig?/a? -—
/2,//25 Ww ™~
-

/%«
IS /»%o.//éﬁi& SN

T
MW& ,,%w M

?/ﬁ%gf
S R

.? gf.& MM W
W AN
&74?/ e

sy / //
?/MW %V/f% AR 44//47#
e -
SN %12 SNREN.
S

%/x;ﬁ
2/4
& X
JEC N
/WV%///@????% /éf// ,ﬁ% éﬁf/x/éﬁ??f}?;ﬁ//?
W SNSRI
W» &%?&«V AAZ«,«%PI Q«%
e —
P - . sad
SN N

A«fé

R

mf/
3

M«éy// ///iézy ;é??ﬁp/;éyf/ MM %%M

L\ M ,M e Y

?@%?z?ff/éféf /fié% %zﬁﬂfé/éy/wf/éy . /

f/w?
sy

Y
M Mi,ﬁé/%

/ﬁ///j %/347// Wf/xf
/

. _Zz,

o)

,@#ﬁf?//fﬁ/?/é R %f%&ff?/é?,{//é,ﬂ

Raned
PO

R i./
ﬂ,

Order Number

H
Y
N

N

SRR
M 1 % SN
s
= ,/,

.
/ff&zw /,szvf M AW
SR SRR fai%zé/ﬁﬁf
£

£ AV
MW/% o
S & .%?A%Zzégf/
M S
s
Mr%@%&&%/f@?/ Qi %,//4,/ 47 . 5 ﬁ

w, / @%f/?ei
/o% PN e NN W

Mz?ﬁ%ﬁs?xy//ﬁﬁf&y/

Ry

M Méf%?é

Y

Mﬁf W»ﬁ?%%,/ /xf?
N

M/f za%////fzyéff?éf/M

S\

é%,,%i/, ?,
& Mﬂ%%/w
m R

//
\Y M«f@?x/é/f/xg
ol
” &iﬁ?&%%&éﬁf;ﬁ
- M? fﬁ;&éfif
A > @
RN o N

Mé@éxgzﬁgféfw %y/ay/// A SR
SNR— M W
e S é%éf MM %

/

w; o
— M/

/iy/s

4%54/&2@?;?/ X

=

N
g

ARCHITECTURE
REFERENCE MANUAL

Mtgfiﬁ
R DI
%/iff?fr“,w .

L

SR R /?W
W; W
&%&/éf/f/ﬁM
RIS
O
\ ?@ﬁ?f/x/&y@f,ﬂw

Copyright© 1981, 1982,1983, Intel Corporation

Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051



iIAPX 432 GENERAL DATA PROCESSOR
ARCHITECTURE REFERENCE MANUAL

Order Number: 171860-004

Copyright® 1981, 1982, 1983 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051




Additional copies of this manual or other Intel literature may be obtained from:
Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no
responsibility for any errors that may appear in this document. Intel Corporation makes no commitment to update

or to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel
product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR 7-104.9 (a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior written consent of
Intel Corporation.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which
may appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and its affliates and may be used only to identify Intel products:

AEDIT iLBX iOSP MULTIBUS
BITBUS im iPDS MULTICHANNEL
BXP iMMX iRMX MULTIMODULE
COMMputer Insite iSBC Plug-A-Bubble
CREDIT Int,l iSBX PROMPT

i intel iSDM Promware

12ICE IntlBOS iSXM Ripplemode
iATC Intelevision Library Manager RMX/80

ICE intgligent Identifier MCS RUPI

iCS intgligent Programming  Megachassis SYSTEM 2000
iDBP Intellec MICROMAINFRAME  UPI

iDIS Intellink

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of
Mohawk Data Sciences Corporation.

MULTIBUS is a patented Intel bus.

Copyright ©1983, Intel Corporation

ii



REV. REVISION HISTORY DATE
-001 Original issue Release 1.0 GDP 01/81
components
-002 Advance partial issue, revised for 10/81
Release 2.0 GDP components
-003 Advance partial issue, revised for 10/82
Release 3.0 GDP components
-004 Completed manual for Release 3.2 GDP 01/84

components

iii






PREFACE

This manual deseribes the architecture of Intel's iAPX 432 General Data
rocessor (GDP). This architecture provides unique support for:

° flexible run-time protection of programs and data

° operating systems and modular programming languages
° multiprocessing

° accurate and robust numerical computation

° reliable and fault-tolerant hardware and software

ARCHITECTURE VS. IMPLEMENTATION

This manual deseribes the architecture, but not the implementation, of the iAPX
432 GDP. The architecture consists of the processor instruction set, processor-
recognized data structures (object set), and actions in response to exceptional
conditions (e.g., faults or trace events). The GDP architecture is that information
that a compiler writer or systems programmer needs to know about the GDP.

The GDP implementation is all information about the GDP that is not specified by
the erchitecture, such as number of VLS chips, clock speed, hardware signais, and

operator execution times.
A clear separation of architecture and implementation allows the implementation

to be changed without changing any software, because the software should depend
on only the architecture.

COMPONENT RELEASES

There have been several releases of iAPX 432 GDP components, which have
modified the GDP architecture as well as the implementation. This manual
describes Release 3.2 GDP components, first released in August 1983. Intel
expects, but does not guarantee, that any further releases of iAPX 432
components will be limited to correcting errors, improving implementation, or
making upward-compatible extensions to the architecture. That is, further
component releases should not require user software modifications.



Preface iAPX 432 GDP

iAPX 432 PROCESSOR BASE ARCHITECTURE

The iAPX 432 architecture supports multiple types of processors in a single iAPX
432 system, as well as multiple instances of a single processor type. At this
writing, one other processor type is available, the iAPX 432 Interface Processor
(IP). Both the IP and GDP share a common base architecture that includes object
addressing and protection, interprocessor communication, and interprocess
communication. This manual defines the common base architecture as part of
describing the GDP architecture. The iAPX 432 Interface Processor Architecture
Reference Manual relies on this manual to describe shared architectural features.

REFERENCES

The iAPX 432 Interface Processor is deseribed in:

iAPX 432 Interface Processor Architecture Reference Manual, Order
Number 171863.

The iAPX 432 hardware interconnection architecture, used to interconnect
processor, memory, and bus subsystems, is described in:

iAPX 432 Interconnect Architecture Reference Manual, Order Number
172487.

Chapter 18: "A Design Methodology for Highly Reliable Systems: The Intel
432," The Theory and Practice of Reliable System Design, Sieworik and
Swartz, Digital Press, 1982.

These data sheets describe the iAPX 432 components:

iAPX 43201/iAPX 43202 VLSI General Data Processor, Order Number
171873.

iAPX 43203 VLSI Interface Processor, Order Number 171874.

iAPX 43204/iAPX 43205 Fault Tolerant Bus Interface and Memory Control
Units, Order Number 210963.

Electrical Specifications for iAPX 43204 Bus Interface Unit (BIU) and iAPX
43205 Memory Control Unit (MCU), Order Number 172867.

Programs for iAPX 432 systems are developed using the Intel 432 Cross
Development System, deseribed by these manuals:

Introduction to the Intel 432 Cross Development System, Order Number
171954.

Intel 432 Cross Development System VAX* Host User's Guide, Order
Number 171870.

*VAX is a trademark of Digital Equipment Corporation.

vi



iAPX 432 GDP Preface

Intel 432 Cross Development System Workstation Reference Manual, Order
Number 172097.

Mainframe Link for Distributed Development User's Guide, Order Number
121565.

Asynchronous Communication Link User's Guide, Order Number 172174.

Intel'é System 432/600 is a family of microcomputer boards and systems that use
iAPX 432 components or support iAPX 432 systems. These manuals describe the
System 432/600:

System 432/600 System Reference Manual, Order Number 172098.

System 432/600 Hardware Reference Manual Volume 1, Order Number
172100.

System 432/600 Hardware Reference Manual Volume 2, Order Number
172172.

System 432/670 Installation and Maintenance Manual, Order Number 172101.

System 432/600 Diagnostic Software User's Guide, Order Number 172099.

The Ada* programming language is used to write iAPX 432 programs. The Ada
language, features of Intel's implementation of Ada, and Intel's extensions to Ada
are described in these manuals:

Reference Manual for the Ada Programming Language, Order Number

Aamreannn
L{100J.

Reference Manual for the Intel 432 Extensions to Ada, Order Number
172283.

NOTE

The Intel 432 Ada compiler is presently an incomplete
implementation of the Ada programming language. It is
intended that the Intel 432 Ada compiler will be further
developed to enable implementation of the complete Ada
programming language, and then be submitted to the Ada
Joint Program Office for validation.

*Ada is a registered trademark of the U.S. Government (Ada Joint Program
Office).

vii



Preface iAPX 432 GDP

iMAX 432, Intel's Multifunction Applications Executive, is the iAPX 432 operating
system. iMAX enhances the iAPX 432's unique architectural support for storage
management, concurrent processing, and other operating system functions. iMAX
432 is described in:

iMAX 432 Reference Manual, Order Number 172103.

A Programmer's View of the Intel 432 System, Elliott I. Organick, McGraw-
Hill, New York, 1983.

MANUAL ORGANIZATION

This manual is divided into two major parts. Part I is a tutorial presentation of
the architecture's features and describes how these features interact with each
other and with software in a functioning system. Part II gives reference
information for the architecture, such as operator desecriptions.

Part I contains these chapters:

° Chapter 1, "Introduction," introduces the major concepts of the
architecture.

° Chapter 2, "Program Organization,”" explains the iAPX 432 objects and
operators used to represent high-level programming language struectures.
Domains and instruction objects represent the static structure of a program
as a network of modules and subprograms. Processes and contexts represent
the dynamic structure of program execution as a hierarchy of tasks and
subprogram calls. This chapter also describes the architecture's support for
program modules that provide all operations on objects of a particular type.
Such type manager modules are the basis for hardware protection of both
system- and user-defined object types.

° Chapter 3, "Object Addressing," explains how the iAPX 432 translates local
object addresses to virtual object addresses and then to physical addresses.

. Chapter 4, "Memory Management," deseribes iAPX 432 memory
management services and how they are supported by the architecture.
These services are provided by a combination of hardware and operating
system software.

° Chapter 5, "Parallel Processing," describes the architecture's support for
multiple concurrent processes executing in parallel on multiple processors.
This chapter describes process communication, process and processor
synchronization, and process and processor scheduling and dispatching.

° Chapter 6, "Processor Management," describes GDP caches, interprocessor
communication (IPCs), processor dispatching modes, and system
initialization.

] Chapter 7, "Instruction Interface," describes the fields of GDP mstructlons
and also all the GDP addressing modes.

viii



iAPX 432 GDP Preface

Chapter 8, "Computational Data Types," deseribes the form and
interpretation of the GDP's computational data types. Operations on the
types and conversion between types are covered. Floating-point data types
and operations are completely described.

Part II contains these chapters:

Chapter 9, "Object Set," defines the set of processor-recognized data
structures, which support operating systems, object addressing, high-level
languages, and multiprocessing.

Chapter 10, "Operator Set," describes all GDP operators. Each operator
description specifies the operator encoding, any parameters or results, and
the action of the operator.

Chapter 11, "Instruction Encoding," describes the instruction field encodings
for operators, operands, and addressing modes.

Chapter 12, "Fault and Trace Reference," describes the different faults that
can be raised by the GDP, their encodings, and the format of the "fault
areas" into which fault information is written. This chapter also deseribes
the GDP's encoding of trace information, used to support software
debugging tools.

A glossary follows Part II and defines new terms introduced by the iAPX 432
architecture.

The following abbreviations are used in this manual:

AD Access Descriptor

AP Access Part (of an object)

DP Data Part (of an object)

DTO Dynamic Type Object

EDV Embedded Data Value

ENV Entered Access Environment
GDP General Data Processor

IP  Interface Processor

IPC Interprocessor Communication
OD Object Descriptor

OT Object Table

OTD Object Table Directory

OTE Object Table Entry

PCO Processor Communication Object
PSO Physical Storage Object

SCO Storage Claim Object

SRO Storage Resource Object

TCO Type Control Object

TDO Type Definition Object

ix






CONTENTS

CHAPTER 1
INTRODUCTION PAGE

Software SYSLemMS ececocecccescscssccscsccscscctssccosscnsssssansasns
Relidbililfy seeeccccscscssscccosasasssssssssssasssssssssccss
The SemanticC GADP ceseecessecssscosssssassassssasossscassascss
ODJECLS ceseescssescosscosessssesesssscnssnssossnssososasssannnass
Object Protection ceceeeccesccescecescssccscsssssssssannocs
Dynamic Storage Management e.ccecececessscccsccsosccsansanss
Object TYPES ceesecccsscsccscscscnccscccscscsccscsssasssssssas
Programming Systems SUDPOTL seeececccsccacsssscsssssssssssscccnas
MultiproCesSSing eceeecececcecccesccosscccscscssssoscssssssscnssccnae
Input/Output ATChiteCLUTe seeesseescscscscscososcscscossccccnnss
COMPULALION ceeeesecccesccscesososcccocscconsscccsssssssocossssecse 1-21

HIT&-'D-'-‘O-I-'O—‘O—‘D—'
HSLDO\J-\NN:.—-

—
[ I |
—
O NP

COHCIUSiOH 0 0 000 2000000000002 0 00000 BLBPOD000C0NLINISISISISIPROIOSITOSTE 1-23

CHAPTER 2
PROGRAM ORGANIZATION

Procedutes 9 00 00008 000000 0ELC00EEL00EPPL0000CPECORRIOECEOIEOEBRIOIOERIRTOTOETOSES

PaACkagesS eceececsccsscssevssosssccscsossrcscsoscsasssssssosscsscscse
Information Hiding eeeceeecsccosccesscsccsconcscssssssascsnconas
InStrucilon ODJECLS eeessvescscscessosssssssssssossscssscnsssnnss
DOmMAain ODJECES ceceeveeccscssccccrscsasssssssssosnssssscasncssns
Static Program OrganizZatiOn .eeessecsccccccesecsccscsscasccccanccs
Context ObJECLS ceeevesssscsssssoessssvossasassscssacsnsssceacnesse
Contexts Vs. Procedues cececececescccccenccccossccacsocsccsns
Access ENVITONMENEt eeeececscascacsscosccsssscsssssocscancas
Context DeSCriptiON seeeecececcessssccccescsccossscnsasessannsse
Preallocated CONteXLS ceseecccecccsccooscncsscacsncoscnnnnsns
The Call Operators ceceeecevececccccccccsnccsccsoncoscncssone
The Return Operators ecceecceccessssccccoscscessccssssssscee 2-17
Context Level Numbers ..ccecececccccscesccscscccsceccoscaneee 2—17
Process ODJECLS eseececsssocssccccsassosssscencssasscasnnssccnnse 2-20
Object ManagersS ecseesscccccccssscessscvsscsscccsnncsssscccssscccesa 2—20
Type Managers sicececscccscccessccctssssccccscsscccsscssssssosocse 2—20
Type Manager Implementation scececececceccacssssccscccccccee 2=22
Software-Defined Protected TYPeS seccececesscccsscssssssccnse 2=22
Creating Typed ODJECLS .ececeacocosscsccoscssssscsssscncees 2-24
Type Manager Schema cecececcorsecssccscccsscsssssscccncnsses 2-24

PRRRYVRRNTYY
= = 00 00 ~ W P () s =
[« )30V

[
—
~J

xi



iAPX 432 GDP Contents

CHAPTER 3
OBJECT ADDRESSING PAGE

Physical AddresSsS SpPACeS cecescccscsssascosssscvssssccssosssccsscns
Two—Part Memory References cccescceccececscccsscscsossscsssncccsns
Two-Level Address Mapping cecececececseccescecossccossccccssccsssns
Address Mapping for Object Protection .ccceecsscececssscnsasssse
Object FOIMAL .sceececeosesssssssocsssasascssccssssssssossnsancss
Access DescCriptor FOrmat ccceceeccccscecccscccsscnsscsscccssasansce
Access SeleCtOrS cevecescscscesscsssscasscnasccssssasossssssssnes
Access Selector FOrmat ceeceecsescsccscssscecssosscsnssesssasscnes
Address Mapping for Dynamic Storage Management ccceceoccsccccesses
Two-Level Object Table StruCtuUre ciecececcsscccscccsccscscscnnss
Overview of Object AddreSSiNg eeeeesccecsesssscosscsccnsssnsssas
Address Space SUMMATY cescesccssscesccsssocsasccssoscsscsssccsocs
Refinement AddresSSing eeeeccssesssssssssssasssssssssscssscssasas 3-11
Interconnect AdAreSSINg ceseeeesccscrsascsacsassssssasssssssssssass 3=-12

[

I
VOWRNIIPARANANLEENNN-

wwuwuuﬁuwuwww

CHAPTER 4
MEMORY MANAGEMENT

ObJECt SCOPE eccvvecencsoossonscsacscssscscssssossscsssassscsssese 4—2
Objects for Memory Management e...ceoceeccesccscccsssscscnsccsssnss 4=2
Storage Resource ObJeCtS .eeceeceesssccscossssssssssssassnss 4-3
Object TableS cevecececassscccessscnnasssesnssssssencsscess 4-4
Physical Storage ObJECES ec.cceecescssccnsssassonsssssonness G4=b
Storage Claim ObJECLS ceesvecsccssssccsnvsssnscsssnsssanncss 4=4
Object Creation sececseceosscessscssssosccnsosnoscosassassnsssens 4=5
Object Lifetime Strategies ceecsececcsccsescsssscccscnsnscsascces 4=6
Stack LifetimesS ceeeeceeesvsesscssssccssccssssassasscasscss 4=6
Global Heap Lifetimes8 .cecessssccceaccssscccsssscsscssscnees 46
Local Heap Lifetimes ec.eeceescccesscccsscssccacsscsssncnses 4=7
Fragmentation and CompactiON ceeeeessseossccccseasssecssssscnossse 4=7
Memory Management TranSitionS cceeeecescccssscscsccsscssccnsanes 4-7
Virtual MemoOry eceececccccssccososecsnsccosnsscssssscavscssssnssacs 4-8
Frozen Memory .ceeceesscccecscscscssosccscncnssnssccocssssnncscascsese 410
Multiple Processors and Memory Management sceecescecsecscecescess 4-10

CHAPTER 5
PARALLEL PROCESSING

Processes 0P S8 0095080000000 0PDPOTILNNGOOSEBBCLILLOSSESOEOSIOSIOEDRNDNGS

Interprocess COMMUNICALION seeeeccesscscscessccssccscsccscsoscnnns

MessagES S B O NPV NGNS ELEBEC0000000P0TTONS0EBLPIRNONNEIENEIENSIOENPNOIOETTE

POItS ® 05 985 00000 N PPN S OSSNSO NSPEENOPRENSSENGOOOSOTSDS

MmkﬂU‘\ﬂkpU‘U‘l\ﬂU’lU‘
OO0V E N -

i
o

CATTIErS teeeesscensssnccovesccsnscsssscsssancnsssccscncsasn
Sending MeSSaZeS sesecscccccssccsscsccssrccssssrcsssssnnnss
Receiving MESSAZeS cceassccescssssosssssassnssssssosossssnans
Forwarding CaArri@rS eveesscccscsescsscsccsosassssasscsossnsssas
Process and Processor SynchronizZatiOnN ceeecececsssscecscscsccesscssse
Transparent MultiprocessSing eececececsccesccaccscccsccccssoossns
Process Scheduling eeeeeeecoceasesoscsasennsasacsassessacsacncncs

xii



Contents iAPX 432 GDP

CHAPTER 6
PROCESSOR MANAGEMENT PAGE

GDP CacheS ceececovoecscocesosscssscssncasssscsscssccscsnsscssssansos
Data Object Cache .seeceeceressacvsssssscssscsooscacsasnscnce
Object Table Cache ecceceeececcsscocssccsscccsncsossosnsasnns
Context CAcChe ceeeeccsececscscccscecscsccsscencansnscssosnncnns

Process €ache ccccecceeccsvstvoscesscecevsvccsscnosssncsnnna
Processor CAche ceeeeseccccscvrccsessssrscessvscsccssccncassnse
Cache SUMMATY ccecocccssccccocccsscsossoscarssscscsonssossnssocsce
Interprocessor COMMUNICALION ceeeecserevcssccannscscsssesosnsonse
Normal GDP Execution CyCle seececececcescsccssscccacsscnsassscannsns
GDP Dispatching Modes eeceececscccoscctcccesccoscocccocscccccnas
GDP InitializZation ceeeceesssesssosssosssosseosssssessccnsscanas

O\O\O\O\O\O'\O’\O\O\O\a\
CO~N~NOWVEPWN -

CHAPTER 7
INSTRUCTION INTERFACE

Instruction Execution Environment ...ccececececcessssccsscssscssce
Current CONteXL ceecescsossceccsoscesscocssocsscscssssscssocssse
Instruction ObJECLS ceesecovrssscsccssacassssccssnscscnncnss
INStruction SETEAM seecocscesocscssvscsssscssssssacnssssanae

Operand AdAresSSing eecceeececcssscccesoscscessssscnsssncsssssccsnsss
Operand TYPES ececscccccccssscsstscsossccncsasssssccsacncsnnsns
Operand Alignment .eeeeecceccsscscssoceseccscscsnsssscnssose
Logical Address COMPONENES cececsssceccsscccsscccsrssascaccsse
Operand Addressing MOdeS seeescesscscscssccccscacsosscscses
Branch References ..ccececececccccscccsccccccscsscscscssssnss
Large Array Indexing cecceecececcccesesscsccccsccosssssccsonss

R O NN
NRNNNDNNONNOOWN =

[ g VPO R o P P N NPy -
UpTLAll JLACEK LULTLAULLULIL eeeessececessscccssscscscsoscssscscccocse

Instruction INterpretation seeeeececscssscsssssccscssacsnsssssas
Physical Address Generat ion ® 0 0000600000900 080000 OOTOLIOOIEDSTESISIDS
Instruction Execution ® 6 9 0 0 0 0600 0006000000 OSSOSO OSEOSIEOSETOSDIDSE

CHAPTER 8
COMPUTATIONAL DATA TYPES

Overview of Computational Data TYPES ceesesoscossccsssssccsasasa
Character Data Type ceecessccesscscocsccccscosossccssssssssnss
Short-0rdinal Data TYPE eccececcscccccsevscossscnssssscccsnnss
Ordinal Data TYPE eeescesseccsscesccssesssossossssssscnnnss
Short-Integer Data TYPE cecceesvcecsccecssscscssscssscncncss
Integer Data TYPe ecececccescsecovsscccccccsssscscsscssocsccscs
Short-Real Data TYPE eeececseccoceccscssssssscssooscsssansncs
Real Data TYPE eeececccasscsssccssccccacssccsscsssscsscccnsos
Temporary-Real Data TYPE sececscecsccccscessssocncccannscass

Operators for Computational Data TYPES seeceeecccssccsccsscsccsse
Bit Field Manipulation eeeececeeccscecscoscoscsscssosccsccanses
Data Type CONVErSiON eecececcesceccscssccccssccsansssccansnas

| U U U U
MEBEWWNNNNNMNNDNN -

00 00 00 OO 00 00 OO 00 OO 00 C0 O°

xiii



iAPX 432 GDP Contents

CHAPTER 8 (CONTINUED)
COMPUTATIONAL DATA TYPES PAGE

GDP Floating~Point Data TYPES ceeeeesevecscssoossnssccsssnsannse.
General Floating-Point FOrmat .ececscsccccococcccosonsnsssess
Classification of Floating—Point Numbers ..sceeeessscessscs
Normalized Floating-Point NUMbErS ..eceeseeccescscscsscnsccs
Exponent BiaSeS ceeecesecececccoscsoscsncscccasccasscessnnse
"GDP Floating-Point Operand Interpretation eesesssecssascess
Floating=Point RoOUNdING seeeeeescccescccosasaacsacccasssnne

Data Operator Faulting .eececescecossssccscasssasacsassasssasace
Classification of Data Operator Faults ..ececeeecssscsncacs
Floating—Point Faulbing cseeececsececsscacsssccsasssacsnssns

00000000(}00000(1)0003
NN~~~ OO

PART II REFERENCE INFORMATION

CHAPTER 9
OBJECT SET.

Chapter CONVENLI1ONS seeeeecscssovesosocsssscasonsoosesoccnssonnss
Reserved FieldsS ceeeeceseeessseseascsecesscanscssnacscsennsa
Preserved Fields teeeeesececesencessconsscncassacansssnanss
Object Illustration COnvention sseseeceseasssscssssssassanes
Encoded Values ceeeieeceecsssscencocssccossssassssccanncnons
Index Fields .eeeeececsseccasascccsssnnosnseannssonassssnnnasn
Displacement FleldsS ceeeeeecececscacscasasccooscsssnsanncas

Object Representalion .ueeeecccececcscssscssssssssansssnsasnasssns
General Storage Segment SETYUCLUYE ceeveoscsceavssoccsrecnsse

ACCeSS PArt ceeesevevssneseocsosncsssvsssnssscssncssssssssscsssas

DAata PArl ceeeevececccscsssocscsscsscssacscassassnscscsscssscsses
Access DeSCTripLOT ceeseessssescessscssassssssnsnsssasssssssansas
Embedded Data VAlue ceseeececsccrocsssssssssssccccsasssassncssnses

ObJecCt LOCK ecuevevecesnvoncaacesvcccoassassosssossossssncnassscsssns
Object DeSCTLiPLIiONS eeeseeceecossssscnsssssccsssossssssssssassssas
System ObJect TYPES ceeeeseecocssosessscnsssacssccccnssonsns
Object Table ObBJECL ceuerieeeceosescoccccssoccsscccasnnnnnes
Processor ObBJECL ceescevescssccsssssssesonasancasasssssssne
Processor Communication ObJECl ..eseeeeseccsccsccsssccnnsas
Process ODJECE ceeceescscocecscssssossssesosoacsscocsossssncsnns
Context ODJECL teceeeererersosasssascscacccncsnssssassannss
DOMAIin ODJECL teuveececcoaoenssosssssoncassassnsassssssssssss
Instruction ObBJECL seeeveveossosrscssssasncccssscssssssocsnssss I-49
POTt ObDJECL ceveecceccsocscsccnosssssoassssssrsssssnsessscss 9-51
Carrier ObJeCL .veeeeescscccecsasssnsssssssnassnsascssssssss 9-55
Storage Resource ODJECL «eeeeseecsssesccccnsssssssssssssssea 9-59
Storage Claim ODJECE .eeveeessnsscsscceacosssccsssssscnnseea I=61
Physical Storage ObJeCL s.esesecsnacecccssasanconncnssnsass 9-62
Type Definition ObJECL seveseecssecsscsecsssssasccssansaass 965
Dynamic Type ODJECE seueeoeeccosssssscssacssssssssssscacsss 9-66
Type Control ObJECE wuieeeeeeecconacassossccsaassasssssnanass 9=67

[N D T R B |
WUmwWw~NNO O

\OkO\D\-D\O\O\DkD\D\D\?\D\D\D\D\O\DkD\O\D\D\D
gbwwNHHHOG)G\UU‘wwwNNMHHH

xiv



Contents iAPX 432 GDP

CHAPTER 10
OPERATOR SET PAGE

Functional Index of Operators scceecececessceccecsscssccscnassannas 10-1
Data OperatorS cececsescscsccscscsccscsssascosssssssscnssse 10-1
Object OpEratoOrS ccesececcccscsscsscsscosscscscsscnccsssccasse 10-6

Operator DeSCriptiOnS ceeeeeccceccssccscscssossocccscscscasssnsee 10-9
Operand TYPES cvecescscccccsscccsossssssescanscssssseseces 10-11

Data OperatOrsS eesceccescscsccccccccsscssscsscscscccccsncsssccess 10-15
Character OperatoOrsS cecececcecescssccecsssosscccscsccsscossss 10-15
Short-Ordinal OperatorsS cececccescscssssccsssssssssssseasss 10-20
Short-Integer OperatOrS seeeececececsescscsesscsssccsscssceses 10-26
Ordinal Operators cceeeecscecesocssossoscccccsscasanscssee 10-32
Integer OperatorsS ccsceccccecsccssccsscoscsoscccaccnccssseses 10-39
Short-Real OperatorS ececeeesceccesscscsscesnssscscossssssssses 10-45
Real Operators eceeeeesesssscccscssssssesassasssssssccsacss 10-51
Temporary Real Operators .eceeeccvecsscccecscesesccssscses 10-57

Object OpEratOrS eeececscssesessccsccsccsosscsscssossccassssases 10-63
Sub-Operator Procedures <seceseecccccosssscesscscsssessscses 10-63
Branch OperatorS sceesccccecssessccessccsscscssacscccnsscsse 10-65
Access Descriptor Operators ..ecececscsssscsessesssssnscscss 10-68
Type and Rights Manipulation Operators .ceeccescecsscecsses 10~69
Refinement OpPeratorS seeesescscsscscssscsscsassssscsassess 10-72
Object Creation OpPEratOrS eccccecesscecsccsccsscssccssscssee 10-76
Access Inspection OperatorsS ceeeeecsssccccsssssscsssssosss 10-78
Access Interlock OperatorsS cececccecesccsssscsssssasesccses 10-80
Context OPeratorS eceeceoessscccscsssccsssccsscsasccccssssnss 10-83
Process Communication OperatorsS eesseececceccsccscsscscessss 10-89
Processor Communication Operators .ceeeseccscccssecsccssess 10-102
Interconnect OperatorS eceececscscoscvesessssscssccscscsscssce 10-104

D1 mmle Moo N .~ -
DIULR liuve uycnatuts ®© 6000000000000 0000000000000s0B0080000Ee lU—lUD

CHAPTER 11
INSTRUCTION ENCODING

Chapter CONVENtiONS seeeecssccccsccsccssasacccscsscsaccsssscnces 11-1
Instruction FieldS seeeecsccoccccasccssssssesssccsassscsacsssss L1l=1
Class Field Encodings ececececcecccccososocssssocssssosssseas 11=2
Format Field Encodings ecceeececscesasssssscesccassccesscss 11-3
Reference Field FOrmAL cceeeevcesscecsccoscsssssscsscocnssss Ll=4
Data Reference FOrmats eceecececcsccacecssccscssccscscscccsscscssce 1l=4
Scalar Data Reference cccecececcececscscecsscsccsscsscscscee 1l=4
Record Item Data Reference ecceeeeececccccccscscscaccsscscsee 11=5
Static Array Element Data Reference ...eeeeececccecscccsss 11-5
Dynamic Array Element Data Reference ...cceccecececccsness 11-6
Indirect Reference Field FOrmats .cecescceccesscecssscssseas 11-6
Access Selection Field FOrmats eececeesccecsescecscacssecee 11=7
Access Selector FOrmats ceeceevesccsescescoccsccscsscsscscsse 11-8
Branch Reference FOrmats .eeecscscececscsascscccscscccscscssnsses 11=9
Opcode Encoding SUMMAYY .cceeecccccccosccsosncsscssseansssssassssss 11-10

Xv



iAPX 432 G

CHAPTER 12
FAULT AND

Fault Refe
Fault
Fault

Trace Refe
Trace
Trace

GLOSSARY

TABLES

TABLE

ooooooooo'ooowon-.—
AUV WN - = =N

FIGURES

FIGURE

TYTYYNTTTrTTOY
AUV WNHOONOWVEWNE

]

xvi

DP

TRACE REFERENCE

TENCE cescscsssosacsssscsnsossccssoancscssnsssssssnsnsssnce
Area FOTMALS eceecscsacescscencssccsscscsssssoasssonnse
COdCS eceveevscscecsscscssccncssasanccsoscsnscsscosssosssse

TEICE secscoscsccososncssosssossoncsssssssossonoscssensae

Operation $ 0006000900800 0000Cc00RRCCOIEOCIROEOIROSIBTOEBIGISITBSBTOETDNTS

COHtrOl Data Area Se s s 00000000000 RRNNORNSIOLELTECEOVINSEONSETOEDOITSDE

TITLE

1APX 432 System Objects

Objects and Functions for Programming Systems Support
GDP IPCs

Format Field Encodings

Significand Sizes

Exponent Sizes and Biases

Short-Real Operand Classifications

Real Operand Classifications

Temporary-Real Operand Classifications

Signed Zeros

TITLE

The Semantic Gap in Models of Memory

An iAPX 432 Object

Threefold Object Protection

Refinement Object

iMAX 432 Complements the iAPX 432 Architecture
Input/Output Architecture

iAPX 432 Computational Data Types

iAPX 432 Operators and Computational Data Types
Instruction Object

Domain Object and Refinement

Static Program Organization Example

Context Object

Access Selector

Access Environment Example

Contents

PAGE

12-1
12-2
12-9
12-35
12-35
12-37

PAGE

1-11
1-16
6-6

7-5

8-11
8-11
8-13
8-15
8-16
8-20

PAGE

L L UNUSLL R N L
HWOSNOOWVMWNNNDE -~ PW
N -=O W

th:h)hotholT = b b e

1
o



Contents iAPX 432 GDP

FIGURE TITLE PAGE
2-7 Context Access Environment 2-11
2-8 Nested Procedures Example 2-14
2-9 Preallocated Contexts Example 2-16
2-10 Dynamic Program Organization Example 2-18
2-11 Object Scopes and Level Numbers in the

Dynamic Program Organization Example 2-19
2-12 Type Manager Objects 2-23
3-1 Two-Level Address Mapping 3-3
3-2 Object Format 3-4
3-3 Access Descriptor Format 3-5
3-4 Two-Level Object Table Structure 3-8
3-5 Object Addressing 3-10
3-6 Refinement Object 3-11
4-1 Objects for Memory Management 4-3
4-2 Memory Management Transitions 4-8
5-1 Message AD Transfer 5-4
6-1 GDP Caches 6-5
7-1 Instruction Execution Environment 7-2
7-2 Operand Addressing Overview 7-8
7-3 Base and Index Address Components 7-10
7-4 Data Reference Modes - 7-11
7-5 Data Referene Modes 7-11
7-6 Scalar Data Reference 7-12
7-7 Record Item Data Reference 7-13
7-8 Static Array Data Reference 7-14
7-9 Dynamic Array Data Reference 7-16
7-10 Stack Indirect Reference 7-17
7-11 Intrasegment Indirect Reference 7-18
7-12 General Indirect Reference 7-18
7-13 Access Selection Modes 7-19
7-14 Direct Access Selection 7-20
7-15 Stack Indirect Access Selection 7-21
7-16 General Indirect Access Selection 7-22
7-17 Branch References 7-23
7-18 - Physical Address Generation 7-27
8-1 Computational Data Types 8-1
8-2 Operators and Data Types 8-3
8-3 Bit Field Operations 8-4
8-4 Data Type Conversions 8-5

xvii






CHAPTER 1
INTRODUCTION

"It used to be the program's purpose to instruct our
computers; it became the computer's purpose to execute
our programs."

—-Edsger W. Dijkstra

The iAPX 432 architecture is designed with a single overriding goal: TO
IMPROVE SUPPORT FOR SOFTWARE SYSTEMS. This chapter first describes
some attributes of software systems and how a computer architecture can aid or
hinder the production of quality software. Subsequent sections of this chapter
introduce specific features of the iAPX 432 architecture that support software
systems.

SOFTWARE SYSTEMS

Modern enterprises and institutions rely on large software systems: management
information systems, air traffic control systems, operating systems, etec.
Integrated software systems are even larger. An integrated software system may
include an operating system, data base manager, text processor, financial
modelling software, telecommunications software, and sophisticated graphics.
Future integrated software systems will add more capabilities, such as voice and
video processing and natural language interfaces. Even small software now
depends on the guality of large software, on the transialors and operating systems
that intervene between almost any program and the computing hardware.

A large software system may contain hundreds of thousands, even millions, of
program lines. Such systems are developed by many people working together for
several years. During the course of such projects, whole "generations" of
computer hardware may come and go, the people working on the project will
change, and the requirements of the users or the marketplace will definitely
change. To repay the massive development costs, a large software system must
have many users over a period of several years. During the years of its use, the
system must be "maintained," modified to correct the inevitable errors in such a
large product and to adapt to changing hardware and changing user requirements.
The activity of maintenance itself frequently introduces new errors; in practice,
it has been observed that even mature, well-engineered large software systems
contain many errors.

1-1



Introduction iAPX 432 GDP

RELIABILITY

Because of their complexity and continuing change, large software systems will
contain multiple errors. At the same time, more and more applications of
computers demand high reliability of more and more software systems.
Obviously, an air traffiec control program must be reliable, but so must the
compiler and operating system that it depends on. A data base system must be
reliable, if it is used by a police department. An engineering design program must
be reliable if it is used to design products that could injure people with their
flaws. The great costs of finding and correcting errors in released software only
increase the importance of software reliability.

Increased support for software reliability is being provided by new "structured"
programming languages, by stricter engineering discipline, and also by innovations
in computer architecture. Computer architecture can contribute to software
reliability in two major ways. The first contribution is to reduce the large guif
("semantic gap") between high-level programming concepts and the data types and
operations provided directly in hardware by a computer architecture. Such a
high-level architecture can reduce translator complexity and program complexity,
and also improve performance by reducing object code size and providing more
functions in hardware. The second contribution is to provide in hardware
protection mechanisms that, given that some errors will still exist in large
software systems, at least confine errors within a particular module or data set,
and prevent errors from propagating to correct modules and their data. The
alternative to protection, in which hundreds or thousands of software modules and
data objects are mapped into a single large unprotected address space, allows a
single erroneous module to corrupt the code or data of any other module in the
system's memory. Worse, such errors may be transient and nondeterministic in
systems that dynamically load modules or that support multitasking.

Software can be no more reliable than the hardware that executes it, and Intel
432 systems provide comprehensive support for hardware reliability and fault
tolerance. This support includes: paired, self-checking VLSI components
(including GDPs); ECC (error correcting code) memory; bus parity checking; and
support for redundant and reconfigurable buses, memories, and VLSI logic.

THE SEMANTIC GAP

There is a large gulf between the concepts used in modern programming languages
and the operations and data types recognized by a particular computer
architecture. Computer scientist Peter Denning calls this gulf the "semantic
gap." For example, a computer architecture may not provide floating point
arithmetic; adding two real numbers on such a computer requires calling a
subroutine that may execute hundreds of instructions.

A more important part of the semantic gap is the gap between the models of
memory used by programming languages and by computer architectures, as shown
in Figure 1-1. A program in a high-level language is a network of program
structures and data elements. The network structure itself contains information,
e.g., that a particular data element should only be referenced by a particular
procedure. Often parts of the network are organized in a hierarchy of nested
elements, so that parts of the program are local to another program unit that

1-2



iAPX 432 GDP Introduction

contains them. The containing program unit determines the scope of the nested
elements; elements that are not nested are global or at "library level." The
elements of a high-level language program are also typed; each program element
has a fixed type that determines what operations are allowed on the element. For
example, an element of type "procedure" can be called but not added to; an
element of type "integer" can be added to but not called. In contrast, a
conventional computer architecture views memory as a single structureless array
of bytes or words. When a translator maps a program into the conventional
computer memory, all of the information about network structure, scope, and
element types is lost. Also, it becomes expensive (in execution time) to
implement varying-length data structures, which often results in constrained and
clumsy programs. ’

Another part of the semantic gap is the presence of features in many computer
architectures that have no counterpart in most programming languages. Such
features include explicit processor registers, condition codes, and auto-
inerement/auto-decrement addressing modes. These features make compilation
more difficult and increase the temptation to use machine-level code that can
take advantage of them. Such features can also increase the complexity of an
architecture and actually slow the execution of some operations (such as context
switching or recovery from a virtual memory fault).

HIGH-LEVEL SIMPLE
LANGUAGE COMPUTER
PROGRAM MEMORY
TYPEA
L—r' TYPEB 1[
Y
A DYNAMIC NETWORK OF INFORMATION A STATIC, GLOBAL, FEATURELESS
STRUCTURES THAT ARE TYPED, ARRAY OF BYTES OR WORDS.

VARIABLE-LENGTH, AND POSSIBLY
NESTED WITHIN EACH OTHER.

F-0303

Figure 1-1. The Semantic Gap in Models of Memory

Reducing the semantic gap requires implementing in the hardware architecture
the data types, operations, and concepts of modern programming languages. Such
improvements in conventional computer architectures include hardware support
for floating point computation, subprogram call and return, and array addressing.
Conventional architectures still do not support operating system services and
structured, typed memory organization.



Introduction iAPX 432 GDP

Reducing the semantic gap has several advantages. First, programs are less
complex, because services once provided within the program are now provided by
the architecture. Second, performance is improved (faster by more than a
hundred-fold for some floating point operations). Third, ad hoec and varying
solutions to a software problem are replaced by a single standard mechanism.

OBJECTS

All data structures and program structures in an iAPX 432 system are contained
in a network of typed, protected objects. You must understand objects to
understand the iAPX 432 architecture. This section describes the reasons for this
memory organization, the properties of objects, the different types of iAPX 432
objects, how objects provide protection, and how objects support dynamic storage
management.

These are the goals of the iAPX 432 memory structure:

1. Provide memory structures corresponding to the structure of data and
programs in modern programming languages.

2. Provide flexible and efficient protection of program modules and data.

3. Support dynamic memory management in which objects are created,
deleted, relocated, or "swapped" at run-time.

4. Achieve the first three goals with a unified model, not an ad hoe
collection of features.

The resulting structure, called the object model, achieves all these goals and is
simple to understand and use. Figure 1-2 shows an iAPX 432 objeect, its
attributes, and access descriptors that reference the object. The chart
"Introducing Objects" introduces properties of objects and the objeet model.

ACCESS DESCRIPTORS REFERENCING A

[ OBJECTID | RIGHTS |

[ OBJECTID l RIGHTi‘

OBJECT A

OPTIONAL DATA PART(DP)
— can contain any information
ATTRIBUTES OF A exceptaccessdescriptors
TYPE
SCOPE
LENGTH OF DP
PHYSICAL ADDRESS f—
LENGTH OF AP

OPTIONAL ACCESS PART(AP)
— can only contain access
descriptors

Figure 1-2. An iAPX 432 Object

F-0301

1-4



iAPX 432 GDP Introduction

Introducing Objects

1.  All information in an iAPX 432 system is contained in objects.
Even the instruction pointer, status flags, and other
information used by the GDP are contained in objeects.

2. Each object can have two parts, a data part and an access pari.
The data part can contain any information except accesses.
Data in the data part can be added, assigned, manipulated
as bit fields, or used for any purpose other than accessing
an object. The access part can contain only access
descriptors (ADs). ADs are used for referencing objects
and can only be modified in carefully controlled ways.

3.  Objects can be created with different lengths.
An object can have from 0 to 65,536 bytes in its data part,
and from 0 to 16,384 ADs in its access part. Any reference
to any part of an objeet is automatically checked to ensure
that it falls within the bounds of the object.

4.  Each object has a fixed type.
The type of an object is determined when the object is
created. An object's type can be used to define the
operations allowed on the object. Software can define new
object types at run-time.

5. Objects can be local to a program or subprogram call.
Each object is created at a particular level that specifies
whether the gbjcet is global or limited in scope to a

particular program or subprogram activation.

6. Objects can only be read or written via access descriptors.
To access data in an object, you must specify an AD that
references the object and also specify the offset within the
object's data part to the field being accessed.

7. A procedure call can only access objects for which it has ADs.
Each activation of a program or procedure is itself
represented by a context object. The instructions executed
by the context can only access those objects for which the
context has ADs or can obtain ADs.

8. Access descriptors can provide restricted access to objects.
Each AD specifies several rights bits, including read rights
and write rights. To read from an object requires read
rights set on the AD used; to write to an object requires
write rights set on the AD used. Different module
activations can have ADs for the same objeect, but with
different rights.

1-5



Introduction iAPX 432 GDP

OBJECT PROTECTION

This section describes the protection mechanisms provided by the object model.
These protection mechanisms are built into the processor's basic addressing
mechanism and are both comprehensive and efficient; special processor structures
for parallel checking and for caching frequently-used descriptors contribute to
efficiency.

A computer scientist's abstract "protection model" is defined in terms of subjects,
the active agents being granted or denied access to information, "objects", the
units of information for which access is controlled, and operations, the actions
that are individually allowed or disallowed for a particular subject/object
combination. In all of these three dimensions of a protection model, the iAPX 432
significantly improves the state of the art. First, the subjects for which access is
controlled are not users or large "jobs," but as small as an individual subprogram
call. Second, the objects to which access is controlled are not large blocks of
contiguous "pages" in some "partition" of a computer's memory, but can be as
small as a single one-byte variable (or as large as 128K bytes in a single object).
Third, the operations that are allowed or disallowed are not restricted to the
primitive read and write operations defined for all objects, but can be extended to
inelude up to three type-specific operations determined by the object's type.

There are other advantages of the iAPX 432 protection model. First, all programs
in an iAPX 432 system still share the same virtual address space, allowing
pointers to information to be transferred between programs efficiently; this is in
contrast with some protection models that "protect" by completely segregating
programs in separate virtual address spaces, so that communication requires calls
on the operating system and much unnecessary copying of data between the
separate address spaces.

A second advantage of the iAPX 432 model is that there is no concept of global
privilege. Many architectures have a supervisor mode in which a program can
perform any operation and access any system registers or descriptor tables. A
program that manages to enter supervisor mode has free run of the system. The
supervisor mode is used by many operating system programs, and it is difficult to
produce an operating system in which none of those programs can be subverted.
In the iAPX 432, there is no supervisor mode, and operating system programs use
exactly the same protection mechanism as user programs.

Privileges in the iAPX 432 are type-specific; for each type of object, there is a
type manager program module that provides all operations on that type of object.
Within a type manager module, there is a type-specific privilege, so that a
manager (e.g., for file directory objects) has privileged access to those objects.
But the file directory manager could not use its privilege to access another kind
of object, such as objects that represent I/0 devices. The iAPX 432 architecture
supports the principle of least privilege: Each program or subprogram activation
has only those privileges that it requires to perform its function. In national
security applications, this is called the "need to know" principle, because each
activity only has the access it needs to the information it needs.

The chart "Threefold Object Protection" summarizes the three parts of the iAPX
432 object protection mechanism: 'need-to-know" access control, extensible
object typing, and access rights. Figure 1-3 illustrates how these three parts work
together to limit the operations allowed to a particular activity (context).

1-6



iAPX 432 GDP Introduction

Threefold Object Protection

I. "Need-to-Know" Access Control

° Each activation of a program module has
environment referencing only those objects
"

has a "need-to-know.

a restricted access
that the activation

° An object reference (access descriptor) cannot be forged or
otherwise corrupted. .

° A module can be allowed access to only part of an object by
using the object refinement mechanism.

II. Extensible Object Typing
® Every object has a type and new types can be defined by users.

9 Both hardware instructions and software "type manager" modules
verify at run-time that object operands are of the proper type.

° Type manager modules can be defined that perform all
operations on objeets of a particular type. The operations
provided by the manager module aet as primitives that
completely define the behavior of objects of the type. Modules
outside the type manager have no access to the internal

renrasentation of nhjanf-c Af +ha +urnana
renresentation oI odjecis ©

& LIkt UJHCQ

III. Access Rights

° The association of access rights with object references allows
modules to be granted differing access to the same object (e.g.,
read-only access for one module and write-only access for
another).

° Type-specific access rights can allow or prohibit operations
unique to an object type (e.g., the right to send a message to a
"port" object).

° Type manager software can define new type-specific access
rights. For example, the iMAX 432 type manager for processes
defines a new access right, called "control rights," for processes.

1-7



Introduction

iAPX 432 GDP

; The set of all objects :
\ in the system 1

: Those objects known :
i to the context i

A e - o o - a—

EXTENSIBLE OBJECT TYPING

i Those objects known to the '
1 1
; context, with the correct type ;
i for the operation i

i Those objects known to the
! context, with the correct type

| for the operation, and with access
;_ rights permitting the operation

Figure 1-3. Threefold Object Protection

F-0367

1-8



iAPX 432 GDP Introduction

DYNAMIC STORAGE MANAGEMENT

This section briefly describes how the object model supports dynamie storage
management:

° Objects can be relocated in physical memory.

+

e Objects can be swapped in and out of main memor

this feature is called virtual memory.

s ieeded by programs;

<
m
w

° Objects can be automatically reclaimed when they are no longer needed,
without requiring that a program explicitly delete them.

These services are provided by the architecture and an operating system working
together, in cooperation. They are described in more detail in Chapter 4,
"Memory Management," and in the iMAX 432 Reference Manual.

Objects can be easily relocated in physical memory because physical addresses for
objects are centralized in object descriptors. Each object has one and only one
object descriptor. An access descriptor for an objeet contains an index into a
structure of object tables. The object tables contain object descriptors. The
object index in an access descriptor selects the objeect descriptor of the
referenced object. This process is deseribed in more detail in Chapter 3, "Object
Addressing." An object's descriptor contains its base address in physical memory
and also contains several flag bits used by memory management. When an object
is relocated in physical memory, only the base address field in its object
descriptor must be changed. One of the flag bits can be used to make the object
inaccessible while it is being relocated. One reason for relocating objects in
memory is to compact memory, so that many small fragments of free memory are

A ine

To support virtual memory, flag bits are provided that indicate whether or not an
object is currently allocated in primary memory, and whether an object has been
accessed or altered recently.

To support automatic reclamation of objects when they are no longer needed, a
level number is associated with each object when the object is created. The level
number indicates the object's scope, i.e., the program or subprogram activation
that the object is local to. When control returns from a particular subprogram
call, all objeets in the program that are local to that call can be deallocated. The
deallocation is either done by hardware or by the operating system assisted by
hardware, depending on how the objects were allocated. Level numbers are also
used to constrain the copying of access descriptors; a level check ensures that an
AD for an object is never copied into an object with a longer lifetime (i.e., an AD
for an object is never copied outside of the object's secope). Copying an AD for an
object outside of the object's scope would be a protection violation; the object
could be deleted on exit from its scope, but ADs for the deleted object would still
exist that could later be used to reference a different objeet when the freed
object descriptor was reused.

1-9



Introduction iAPX 432 GDP

Global objects that are not local to any module activation can only be reclaimed
when there are no access descriptors for them. Because an object can only be
accessed via an AD, an object with no ADs referencing it is unusable and can be
deleted. This process is called garbage collection, and requires an exhaustive
search of all objects in memory that could contain access descriptors for the
objects that are candidates for deletion. In other systems that offer garbage
collection, all other activity in the system must stop whenever garbage collection
is run to produce more free memory; other activity may be halted for seconds or
even minutes, unacceptable in many computer applications. The iAPX 432
supports parallel garbage collection; the garbage collector executes as one
process in a multiprocessing environment, and other system and user processes
can run concurrently with garbage collection. The GDP performs one crucial part
of garbage collection, setting a flag bit in an object's descriptor whenever an AD
for the object is copied. The rest of the algorithm is implemented by the iMAX
432 operating system.

OBJECT TYPES

This section describes the different types of objects recognized by the GDP.
These include:

° generic objects

° system objects

[ dynamic-type objects

° refinements of any of these objects

. interconnect objects

Generic objects have no processor-recognized meaning. Such objects can be used
for any purpose by software. Creating generic objects is faster than creating
other types of objects and requires no special privilege. (This makes generic
objects unsuitable for being managed by a type manager module, as such a module
must control the creation of objects of the managed type.) In a language such as
Ada or Pascal, executing a new operation that creates a record referenced by a
pointer would, on the iAPX 432, create a generic object and an AD referencing it.

System objects have specific uses and specific formats recognized by the GDP.
They are the backbone of the architecture and of the operating system. Much of
your effort in reading this book will be in understanding the different system
objeets. These objects are the major part of the iAPX 432's object set, as much a
part of this architecture as the instruction set or register set of another
computer. The definition of system objects as part of the architecture makes it
possible to place important parts of the operating system into the hardware
architecture and to provide high-level services, such as object creation and
intertask communication, as single GDP operators. Table 1-1 lists the 14 iAPX
432 system objects.

1-10



iAPX 432 GDP Introduction

Dynamie-type objects are objects with a software-defined dynamie type. For
example, software could define a distincet type of objects to represent I/0 devices
in the system. Chapter 2, "Program Organization," describes how dynamiec types
can be used to protect objects using type manager modules. These protection
mechanisms are the same for both system objects and dynamiec-type objeects.
Creating a dynamic-type object (or a system object) is a privileged operation that
can be restricted to a type manager module.

Table 1-1. iAPX 432 System Objects

Instruction Object
contains GDP instructions; the GDP will feteh instruections only from
instruction objects.

Domain
represents a program module (package) and references subprograms
(instruction objects) and data objects in the module.

Context
represents a program or subprogram activation (call) and defines the access
environment of the call, i.e., the set of objects that the activation can
reference.

Type Definition Object (TDO)
represents a software-defined object type, and can contain attributes of the
type (e.g., the type name).

Tyvne Control Ohject (TCO)
represents type-specific privileges, such as the right to create objects of a
particular type or to gain access to objects of a particular type.

Object Table
contains the object descriptors used in object addressing and memory
management.

Storage Resource Object (SRO)
represents a free storage pool used to create new objects; references an
object table that will contain the new object's descriptor, a physical storage
object from which the new segment will be allocated, and a storage claim
object that limits allocation from this SRO.

Physical Storage Object (PSO)
specifies free storage blocks in memory.

Storage Claim Object (SCO)
limits the number of bytes that can be allocated from a set of SROs that
reference this SCO.

Process

represents a program or subprogram activation that can execute
concurrently (in parallel) with other processes.

1-11




Introduction iAPX 432 GDP

Port
provides communication between concurrent activities. A port includes a
queue of messages sent to the port but not yet received, and a queue of
blocked activities waiting to receive messages (at an empty port) or to send
messages (at a port with a full message queue).

Carrier
represents an activity in communication with other concurrent activities via
ports. Carriers carry messages to and from ports.

Processor Object
contains attributes and state information for an iAPX 432 processor (e.g., a
GDP). Because programs in an iAPX 432 system can only manipulate
information in objects, all information about a processor that must be
visible to software must be contained in an object.

Processor Communication Object
used by the iAPX 432 interprocessor communication mechanism to transfer
messages between processors.

Refinements

A refinement is an object that is part of another object (see Figure 1-4). The user
of an AD for a refinement can only access the part of the underlying object that
is contained in the refinement. For example, if a user is to be allowed access to
only part of an employment record, a refinement of the record can be created.
Sensitive information such as salary can be excluded from the refinement and
cannot be accessed using the refinement.

Operands in a refinement are addressed exactly as in a simple object, with a
displacement from the start of the object (the start of the refinement). A
refinement can itself be refined, and there can be several different refmements
of one underlying object.

Interconnect Objects

An interconnect object is a special kind of data object allocated in a special
interconnect address space. This address space contains hardware registers used
for system initialization, interprocessor communication, hardware error reporting,
and configuration information. Interconnect objects cannot contain access
descriptors.

1-12




iAPX 432 GDP Introduection

REFINEMENT DESCRIPTOR

AP AP Dp DP INDEX TO
LENGTH | OFFSET | OFFSET | LENGTH | REFINED OBJECT

OBJECT DESCRIPTOR

DATA PART

USER'S VIEW OF
REFINEMENT

_REFINED OBJECT

ACCESS PART

THE SHADED PARTS OF THE REFINED
OBJECT CANNOT BE ACCESSED USING
THE REFINEMENT.

F-0287

Figure 1-4. Refinement Object

Type information for objects is contained in their object deseriptors. The entry
type field distinguishes between three types of object descriptors: storage
descriptors for normal objects, refinement descriptors for refinements, and
interconneet descriptors for interconnect objects. In storage descriptors and
refinement descriptors, an object type field provides further type information,
consisting of system type and processor type. The system type specifies whether
an object is a generic object, dynamic-type object, or one of the 14 types of
system objects. The processor type field specifies what types of iAPX 432
processors can reference the object: GDPs only, Interface Processors only, or all
processors. Finally, dynamic-type objects and system objects can specify a
software-defined dynamie type for the object, which is represented by an AD for
a type definition object.

1-13



Introduction iAPX 432 GDP

PROGRAMMING SYSTEMS SUPPORT

This section describes how the GDP supports programming systems (e.g.,
operating systems and compilers). The iAPX 432 architecture provides a higher
level of functioning in hardware than conventional computers. Important system
structures (e.g., process control blocks and communication buffers) have
hardware-recognized representations. High-level operations on these system
objects, such as sending a message between processes, are provided as single
machine instructions. These features of the iAPX 432 architecture are called the
"Silicon Operating System." These features are not in themselves a complete
operating system, but are essential parts of one.

The iAPX 432 functions as a hardware/software partnership. Operations are
provided in the hardware for any one of the following reasons: they are time-
critical, thus benefiting from hardware implementation; they are security-
sensitive, thus requiring hardware enforcement; or they are complex in a way that
benefits from special hardware structures. Other operations are provided by the
iMAX 432 operating system, cooperating with hardware to provide complete
system services (see Figure 1-5).

USER INTERFACE
TO iAPX 432

PROCESS OBJECT
COMMUNICATION ADDRESSING
AND AND

SYNCHRONIZATION PROTECTION

iAPX 432 SILICON 0OS

PROCESS
SCHEDULING
AND
DISPATCHING

CONFIGURATION
AND
INITIALIZATION

MEMORY
MANAGEMENT

INPUT/OQUTPUT

CONVENTIONAL
ARCHITECTURE

F-0247-1

Figure 1-5. iMAX 432 Complements the iAPX 432 Architecture

1-14



iAPX 432 GDP Introduction

The relationship between the operating system and the hardware architecture is
best called "cooperation" because iMAX doesn't simply "run" on hardware that
passively executes instructions. The iAPX 432 processors act autonomously to
provide important services; e.g., an iAPX 432 GDP automatically obtains and
dispatches the next ready process when it needs work. Type-checking and rights-
checking are among other services provided by the processors.

Memory management is a good example of the division of labor between an
operating system and the hardware. The GDPs recognize system objects used for
memory management, provide single instructions that allocate new objects, and
set flag bits needed for storage reclamation and virtual storage management. The
iMAX 432 operating system creates and reclaims local storage pools and provides

software processes to compact memory and reclaim unreferenced objects.

Three aspects of the iAPX 432 design ensure that the executive structures
embedded in silicon are flexible enough for a wide range of applications. First,
the hardware and the iMAX 432 operating system were designed together, with
the general-purpose services to be provided by iMAX driving the hardware design.
Second, care was taken to separate application-specific policy (specified by
software-supplied parameters) from general-purpose mechanism (determined by
the hardware architecture). Third, all iAPX 432 system objects can be extended
by software, which can define additional object attributes and operations.

The iIAPX 432 architecture provides major support for programming systems in
these areas:

. program organization

° memory management

) parallel processing

Table 1-2 summarizes the objects and funetions provided by the GDP in each of
these areas. For more information, refer respectively to Chapter 2, "Program

Organization," Chapter 4, "Memory Management," and Chapter 5, "Parallel
Processing."

1-15



Introduction iAPX 432 GDP

Table 1-2. Objects and Functions for Programming Systems Support

PROGRAM ORGANIZATION SUPPORT

Instruction Object CALL/RETURN

Domain , ENTER ENVIRONMENT (change access env.)
Context COPY PROCESS GLOBALS

Process RETRIEVE TYPE DEFINITION

Type Definition Object RESTRICT RIGHTS

Type Control Object AMPLIFY RIGHTS

MEMORY MANAGEMENT SUPPORT

Storage Resource Objeect = CREATE OBJECT/REFINEMENT

Object Table CREATE TYPED OBJECT/REFINEMENT
Physical Storage Object enforce storage claim
Storage Claim Object clear new segments

deallocate stack objects on RETURN
support garbage collection

support segment relocation

support virtual memory

PARALLEL PROCESSING SUPPORT

Process SEND/RECEIVE messages at ports
Port forward carriers to second ports
Carrier DELAY PROCESS
Processor Object SEND TO PROCESSOR
Processor Communication schedule processes

Object dispatch processes and processors

LOCK OBJECT/UNLOCK OBJECT
INDIVISIBLY ADD/INDIVISIBLY INSERT
service timers

handle interprocessor messages

Note: iAPX instruction set operator names are capitalized.

1-16



iAPX 432 GDP Introduction

MULTIPROCESSING

It is commonplace for a single computer system to handle many activities
simultaneously (e.g., multiple terminal users in an office system or multiple
sensors and machines in a factory control computer). The different activities that
seem to occur in parallel (concurrently) are called processes. The machine that
executes the activities is called a processor. In many computer systems that
handie muitipie processes, execution of the different processes is interieaved on a
single processor. This is feasible because each process may spend most of its time
waiting for a slower I/O device or may require only a periodic small "slice" of the
processor's time to execute at an acceptable speed. The single processor
approach to handling multiple processes is cheap and relatively simple, but can
have these disadvantages:

1. Such systems often need to offer a range of performance, so that more
users and more devices can be easily accommodated. But a particular
processor offers a fixed level of performance.

2. Even with advanced and more expensive designs, there is an upper
limit to the performance of a single processor, and that limit is
inadequate for some applications.

3. If the single processor fails, the entire system fails.

Computer architects are designing systems with multiple processors both to
overcome these disadvantages, and because the low cost of microprocessors
makes multiple processor systems more economically feasible. Three different
ways to use multiple processors have emerged: using specialized processors,
distributed systems, and "tightly-coupled" multiprocessors such as the iAPX 432.

Specialized processors can be designed to offload major parts of a main
processor's workload. This approach has been quite sucecessful in offloading
input/output operations to I/O "channels," and large array calculations to
specialized array processors. Other examples of specialized processors are often
found in device controllers, such as graphies processors and intelligent disk
controllers. Specialized processors can increase system complexity and cost but
provide major increases in performance, resulting in a better ratio of price to
performance. However, the system that includes specialized processors still
suffers from all three disadvantages listed above, albeit at a higher level of
performance. (Though the failure of a single specialized processor may only halt
some and not all processes in the system.)

1-17



Introduction iAPX 432 GDP

Distributed systems replace central computer systems with a network of
workstations, each containing a single processor. There is essentially one
processor per user, which needs to execute only a few parallel processes (one or a
few user tasks and perhaps some simultaneous I/O tasks). Distributed systems
overcome all the disadvantages listed above. A system is expanded to handle
more users by adding more workstations. The limited performance of a single
processor is not a significant constraint because each user has a dedicated
processor. If one workstation fails, the user can simply use another workstation.
However, distributed systems have some disadvantages of their own:

1. Many computer applications involve access by multiple users and
programs to central data bases. The central data bases cannot (with
the presently implemented state of the art) be distributed; there are
major problems in data base integrity, security, and access in
spreading an organization's master files over hundreds of workstations.

2. Each workstation normally requires disk drives and significant local
memory, as well as a more expensive processor than is needed by a
terminal. To purchase two hundred floppy disk drives for a hundred
workstations can cost much more than purchasing the equivalent
amount of shared disk storage in a central system.

3. Even with networking software, it is more difficult to share data and
programs, to update software, and to do user accounting in a
distributed system.

Note that if a data base in a distributed system is centralized at a single node,
then all the problems of the single processor system can reappear.

A tightly-coupled multiprocessor contains a number of homogeneous processors on
a common bus, executing processes in a shared memory. Applications software
can be structured in the same way in a tightly-coupled multiprocessor as in a
classical single processor: as a collection of cooperating processes executing
within a single computer system. In the multiprocessor there are multiple
processors to service the "ready list" of processes ready to run, speeding up
throughput. All three of the disadvantages of a single processor are overcome by
the tightly-coupled multiprocessor:

° Performance can be increased in increments by plugging in more processors
(without changing software).

° System performance can be increased almost without limit by adding
processors (and using multiple buses between processors and memory to
overcome bus bandwidth limitations).

° If a processor fails, it can be taken out of service and the system can

continue to operate with reduced performance using the remaining
processors.

1-18



iAPX 432 GDP . Introduction

The iAPX 432 is a tightly-coupled multiprocessor. Because the number of GDPs
can vary without changing software, the iAPX 432 is said to provide transparent
multiprocessing. The iAPX 432 can also take advantage of the other
multiprocessing approaches where appropriate. Specialized processors are used
for mput/output in an iAPX 432 system, and other specialized processors can be
provided in peripheral subsystems 'gdescrlbed below). The small size and cost. of
the iAPX 432 MICROMAINFRAME  makes it usable in workstations that can be
networked in a distributed system, the other type of multiprocessing system
deseribed above. Chapter 5, "Parallel Processing," describes in detail how the
iAPX 432 supports multiprocessing.

INPUT/OUTPUT ARCHITECTURE

A major task in computing systems is to quickly and reliably transfer data to and
from peripheral devices such as disks, terminals, and printers. Many I/O
operations require:

. fast response time to interrupts from devices requesting service

° high throughput for simple data transfer, data conversion, logical, and
arithmetic operations

Note that I/O operations do not require the floating point arithmetic or high-level
operating system services of the GDP.

I/O can consume more than half the processing time of a general-purpose
computer system, a large enough fraction to make special optimization of the I/0
funetion attractive.

The very features that make the GDP powerful for data processing make it poor
for I/0:

. The GDP's high-level instructions to provide system services in hardware
can consume dozens or even hundreds of microseconds in a single
instruction, too great a duration for acceptable interrupt latency.

° The GDP is designed to execute processes without preemption, until they
block waiting for some event or until a time slice for the process expires.
The GDP caches much information on-chip to speed up process execution.
The size of this on-chip information would slow down any attempt to
preempt a GDP and switch it to an interrupting activity.

] In a system with multiple GDPs, selection of a processor to interrupt would
cause additional overhead.

1-19



Introduction . iAPX 432 GDP

In the iAPX 432 architecture, there is a division of labor between the GDPs,
which provide extensive computation, protection, and support for programming
systems, and peripheral subsystems that provide input/output and system
initialization services. The peripheral subsystems act as I/O "channels" in an
iAPX 432 system. Each peripheral subsystem has a separate bus and address
space. Attached to this bus and addressed in the separate address space are one
or more I/O devices. A peripheral subsystem also contains memory and at least
one attached processor (AP) which provides processing power in the subsystem.
An iAPX 432 interface processor (IP) is the bridge between each peripheral
subsystem and the iAPX 432 central system. Figure 1-6 illustrates this I/O
architecture.

CENTRAL SYSTEM

{ / { } l SHARED | | SHARED ’
eesf GDP GDP MEMORY MEMORY |eee :

CENTRAL SYSTEM BUS

———————— —— INTERFACE —— e e G ———— —— —-——-—————'N’I‘ERPACE
PROCESSOR r PROCESSOR

SUBSYSTEM

SUBSYSTEM
MEMORY SECOND PERIPHERAL
SUBSYSTEM SUBSYSTEM

[}
I
|
1
I
MULTIBUS ® 1 MULTIBUS ®
<7 { | |
I
TAPX 86 DEVICE DEVICE ! DEVICE DEVICE IAPX 86
ATTACHED b A g oA (e e e ] s SRR AR R IA R ATTACHED
e INTERFACE | | INTERFACE I INTERFACE | | INTERFACE Foied

Figure 1-6. Input/Output Architecture

FIRST PERIPHERAL MEMORY

F-0304

Data is transferred between the central systems and the peripheral subsystems via
IP windows that map a portion of the peripheral subsystem address space to the
data part of a central system object. Each IP can drive I/O transfers through up
to four windows simultaneously (with a fifth window dedicated to controlling the
IP). The IP can execute operations on objects in the central system, to send and
receive messages that represent I/O transactions for example, or to enter objects
into its access environment. When funetioning in the central system, the IP uses
the same object addressing and protection mechanisms as GDPs. All these IP
operations, however, are done at the command of peripheral subsystem software
executing on the Attached Processor. To the AP, the IP appears as a slave
device, to which the AP writes command codes and operands. Within the central
system, the IP, carrying out those commands, functions as an object-based
processor. The AP and [P together can be considered a virtual "I/O processor," a
partnership in which the AP fetches instructions and provides data addressing,
computational operators, and branching operators within the peripheral
subsystem, while the IP provides the window mechanism for data transfer and
provides objeet operators within the central system. The I/O architecture is
described in much greater detail in the iAPX 432 Interface Processor Reference
Manua! and the iMAX 432 Reference Manual.

1-20



iAPX 432 GDP Introduction

COMPUTATION

The iAPX 432 GDP is a powerful computing engine in addition to its support for
modern programming systems. The GDP supports eight computational data types
(Figure 1-7) ranging from 1-byte characters to 10-byte extended precision floating
point numbers. The GDP supports the proposed IEEE standard for binary floating
point arithmetie, the same standard supported by Intel's 8087 numerical
coprocessor for the iAPX 886 architecture. This industry standard guarantees
significant compatibility and portability of numeric software to and from the
iAPX 432. The iAPX 432 also provides distinet signed integer and unsigned
integer (ordinal) data types, with overflow checking provided as part of all integer
arithmetic operations. These data types and operations are a significant
improvement over many processors that require extra instructions to test or
manipulate different flag bits in order to do overflow checking or provide both
signed and unsigned integer arithmetic. Thirty-two-bit ordinal and integer types
are provided by the GDP, in contrast to many processors that must implement
such types in software.

—
CHARACTER |___ TEXT CHARACTERS,
(8 bits) _‘ BOOLEANS
7 0
SHORT ORDINAL UNSIGNED
| (16 bits) | INTEGERS

15 0

ORDINAL
| | | (32 bits)

31 0

SHORT INTEGER
| (16 bits)

15 ° | _ SIGNED

INTEGERS

INTEGER
| | (32 bits)

3 0 pu—

SHORT REAL
| ] | (32 bits)

31 0

FLOATING

REAL — POINT
] | | b 1 1 | (64 bits) NUMBERS
63 0
TEMPORARY REAL
] | | 1 | | 1 | | (80bits) —

9 0

F-0274

Figure 1-7. iAPX 432 GDP Computational Data Types

Operations provided for these data types include arithmetie, logical, relational,
bit-field, and type conversion operators. Table 1-5 shows which operators are
available for which computational data types. Chapter 8, "Computational Data
Types," describes these types and the operations on them in more detail.

1-21



Introduction

iAPX 432 GDP

MOVE
OPERATORS

LOGICAL
OPERATORS

ARITHMETIC
OPERATORS

BIT-FIELD
OPERATORS

RELATIONAL
OPERATORS

CONVERSION
OPERATORS

WHERE:

OPERATORS

DATA TYPES

MOVE

SAVE

ZERO

ONE

AND

[INCLUSIVE OR

EXCLUSIVE OR

QULIVALENCE

I B E 8 F I PO P P O

tad ta bl Lol ol ta] tal tad tad

ADD

SUBTRACT

tad Eal

tad Lol

MOLTIPLY
[ DIVIDE

L E EIR,

 AE RIR,

REMAINDER

INCREMENT

NEGATE

[} Lo bad

II#NNNNNN tad s tad ol Bl B Eod Eod £ad o

(R I Ee Ead Lol B B B b

b B Eod Bl Bl b

xaxb<m%xm i o

e L LR I I

AN

T ABSOLUTE VALUE

ARE ROOT

INDEX

>

Ead o

LESS_THAN OR_EQUAL

POSITIVE

t]t NﬁNNINN

Il><74><><>€>< WNNN ]

(B 1B Ead b NNPNN

NEGATIVE

b ol B Eo- B Eod

tal tall ol Lo B Lo < i1 l><>1><ll><><>{><>< t g N

xHxxx <1 =<t b

MOVE IN RANGE

><>q>J><>4><><:~=&

[ TO CHARACTER

TO SHORT ORDINAL

1<]4

TO ORDINAL

' TO SHORT INTEGER

TO _INTEGER

[ b o Ea Eo Ll tad tad tad &y >‘J>T>< [X LB L

TO SHORT REAL

10 R

1 v1x =] 1=

TO TEMPORARY REAL

X

X

X

X X

X

(BLANK)

X  MEANS THE OPERATOR IS AVAILABLE FOR THE GIVEN DATA TYPE.
*  MEANS THE OPERATOR IS AVAILABLE FOR THE GIVEN DATA TYPE AND

FOR INSTRUCTIONS IN WHICH
TEMPORARY REAL.

ONE OF THE OPERANDS IS A

-  MEANS THE OPERATOR IS NOT AVAILABLE AND WOULD BE OF LITTLE
OR NO USE IF IT WERE.

MEANS THE OPERATOR IS NOT AVAILABLE.

F-0273

Figure 1-8. iAPX 432 Operators and Computational Data Types

1-22



iAPX 432 GDP : Introduction

CONCLUSION

This chapter began with the iAPX 432 architecture's overriding goal of improving
support for large software systems. It described the importance of large software
systems and their reliability, and of detecting and confining the inevitable errors
- in such systems. The semantic gap between conventional computer architectures
and high-level programming concepts was identified as a significant cause of
complexity and unreliability in software, especiaily the gap in models of memory.
The object model was introduced as a unifying paradigm that resolves that
semantic gap, provides flexible and efficient protection, and also supports
‘dynamic memory management.

The system objects of the iAPX 432 were described, as well as the crucial role
they play in the "Silicon Operating System" that places crucial functions into
hardware, while maintaining flexibility by ecarefully separating policy and
mechanism.

The importance of multiprocessing was explained, and the iAPX 432's tightly-
coupled multiprocessor architecture was compared with alternative designs. The
iAPX 432 1/O architecture was introduced as an extension of the basic
multiprocessor architecture.

Last, the iAPX 432 GDP's powerful and standard computational capabilities were

described, including built-in floating point operations to support the proposed
IEEE standard, and also 32-bit integer and ordinal arithmetic.

1-23






CHAPTER 2
- PROGRAM ORGANIZATION

This chapter describes the iAPX 432 system objects and operators that support
high-level language concepts such as procedures and packages. The high-level
language concept of a protected "type manager" module is explained in detail, as
well as how the architecture provides run-time protection for such modules.

PROCEDURES

A computer program is frequently modularized -- organized as a collection of
smalier and more manageable pieces —- as a collection of procedures. Procedures
are also called subroutines or subprograms. Each procedure is a sequence of
instructions to perform some service. For example, a square root procedure takes
a real number, computes the square root, and returns the root to its caller. A
procedure is normally called from some other procedure in the program. The
calling procedure may pass arguments or parameters that control the action of
the called procedure; the called procedure may return result values to its caller.

PACKAGES

A computer program can also be organized as a collection of packages. A
package is a collection of related subprograms and data. A package has a two-
part definition. The package specification defines the subprogram interfaces and
data declarations (types, variables, or constants) availahle to other parts of the
program. The package body defines the implementation of the specified
subprograms. The package body can also include subprograms, data declarations,
and accesses to other packages that are all hidden from other parts of the
program.

INFORMATION HIDING

Information hiding is an important coneept in understanding both forms of
modularization and in understanding the advantages of organizing a program as a
collection of packages. A procedure interface specification or a package
specification can be thought of as a contract between the module's developer and
the module's "users." (Note that these users are actually other program modules.)
The specification desecribes the form and content of the services the module is to
deliver to outside users. Within the requirements set by the specification, the
module's implementation can vary: to improve performance, correct errors, or
adapt to new hardware or operating systems. '




Program Organization iAPX 432 GDP

One measure of how well a program is modularized is: "How much information is
hidden by the modularization?" For example, a standard I/O interface, like those
provided by the programming languages Ada, C, and Modula-2, can successfully
hide all details of device registers, interrupt handling, and even hide the operating
system. An example of poor modularization is the program with an "initialization
module" that is nothing but a sequence of assignment statements that bind values
to global variables. The global variables and their structure are still known in the
rest of the program, and it is probable that many of the initial values are also
known and relied upon in the rest of the program. Such modularization might
make a program more readable, but it hides little information and does not make
the program more modifiable.

Modularization using procedures can hide complex algorithms easily. For
example, a procedure to compute the sine of an angle can be implemented using a
Taylor series or using Chebyshev polynomials, without changing the interface to
the user. Procedures can also hide complex data structures that arise in the
intermediate stages of an algorithm and are local to the algorithm and the
procedure.

Procedures cannot hide complex data structures that are not local to any
procedure, such as the structure of a disk directory, or an operating system task
control block, or the indexing structures for a data base system. In a language
like Pascal, any data that must be shared by procedures must be global --
accessible to the entire program.

Packages provide a more powerful and complete form of information hiding.
Complex data structures, such as those for implementing a data base, are hidden
in the package body. The package specification provides a simple interface with
multiple procedures for such operations as Read, Write, Insert, Delete, ete. Such
data structures are "global" in the sense that they may exist throughout execution
of the program, but "local' to a particular package that hides their
representation.

Information hiding using packages has several advantages:

1. Program testing is easier. Most data structures are encapsulated in a
package, and their correctness can be assured by reviewing and testing
just the package body.

2. Program modification is easier. Not just algorithms but major
program data structures can be changed within one module without
changing other modules.

3. Programs are more understandable. Packages can be understood in
isolation, so long as the specifications of any other packages used are
understood. Programs can be organized so that each package manages
a single data type or data object.

Increased understanding of how to modularize programs and of what programming
language constructs are needed has produced a major improvement in
programming methods. The iAPX 432 is the first computer architecture to
support these new methods in hardware, as described in the foliowing sections.

2-2



iAPX 432 GDP Program Organization

INSTRUCTION OBJECTS

The GDP represents a procedure as one or more instruction objects (see Figure 2-
1). When a procedure (an instruction object) is called, the GDP requires certain
information for the context object that represents the call. This information is
contained in an Instruction Object Header in the first eight bytes of the
instruction object's data part. The remainder of the data part can contain

. .
instructions.

AninS va

GDP instructions are not aligned on byte or word boundaries and are varying-
length sequences of bits. Instruction fields are frequency encoded (Huffman
encoded) so that more frequent operation codes, formats, classes, and addressing
modes are encoded in fewer bits.

GDP instruction pointers and branch destinations are always bit displacements
into the data part of an instruction object. For example, an instruction pointer
value of 93 references bit 5 in byte 11 of an instruction object’s data part.

Because instruction pointers and branch destinations are computed as 16-bit short
ordinals, the maximum instruction bit displacement is 65,535. Thus instruction
objects normally will have a data part length less than or equal to 8,192 bytes
(65,536 bits).

7 red TIVTTITII7I7T 777

%M E"tf: Spa::f;‘::;ired %//

LL

’ Instructions L
(bit aligned) Byte Displacement
8
16
[ Instruction Object | 4
__ Header 2
0

F-0280
Figure 2-1. Instruction Object

2-3



Program Organization iAPX 432 GDP

The instruction object data part length should be rounded up from the end of the
last instruction to a 16-bit boundary (double-byte boundary) plus 32 bits (four
bytes). This extra space is required because the GDP fetechs 32 bits at a time
from the instruction stream, aligned on a 16-bit boundary. If the extra space is
not provided, the GDP's prefetching from the instruction stream can cause an
erroneous fault by attempting to read from beyond the bounds of the instruction
object.

The first instruetion in a procedure is fetched from bit displacement 64,
immediately following the eight bytes reserved for the instruction object header.

The fields of GDP instructions and the different operators and addressing modes

are described in Chapter 7, "Instruction Interface,"” Chapter 10, "Operator Set,"
and Chapter 11, "Instruction Encoding."

DOMAIN OBJECTS

A domain object represents a package. A refinement of the domain is made
available to other packages (other domains) and represents the package
specification, the interface that is available to other packages. The portion of
the domain that is not contained in the refinement contains or references the
information hidden in the package body, which is not available to other packages.
Each domain contains two processor-recognized fields, the first two access
deseriptors in the domain access part. These two ADs reference the fault and
trace instruction objects for the domain. If any operation within the domain
causes a fault or a trace event, control is transferred to the fault instruction
object or the trace instruction object referenced by the domain. Chapter 12,
"Fault and Trace Reference," provides more information about these objects and
about fault-handling and tracing. Note that the two processor-recognized ADs
are normally not included in the domain refinement.

The domain can contain ADs for instruction objects that represent procedures of
the package, ADs for objects that contain constants used by those procedures, and
ADs for data objects defined by the package. The domain data part can also
contain data items defined by the package.

The public part of a domain is that part in a refinement used by other packages.
The private part of a domain is that part that is not visible to other packages.
Figure 2-2 illustrates a domain and domain refinement.



iAPX 432 GDP Program Organization

Domain

A4 Public Data Variables 1

Refinement (Public View)

3 Not visible to
other program
1 < — - - modules
T ki Trace Instruction Object A
S T Index
ADs for Private Operation:
and Objects
!
. ADs for Public Operations |
AN T and Objects T
F-0279

Figure 2-2. Domain Object and Refinement

STATIC PROGRAM ORGANIZATION

The statie structure of an iAPX 432 program is represented by a hierarchy of
domains and instruction objects, illustrated in Figure 2-3. Each domain provides a
different access environment for procedures within it. As control flows from one
domain to another, the set of objects that can be referenced changes. This
process is described in more detail in the following description of context objects.



Program Organization iAPX 432 GDP

ROOT . FAULTINSTRUCTION
DOMAIN OBJECT

M

TRACE INSTRUCTION
OBJECT

INSTRUCTION
OBJECTFOR
PROCEDURE MAIN

VISIBLE
DOMAIN
REFINEMENT .~

|_ PRIVATE
PART

INSTRUCTION
OBJECTS

VISIBLE
DOMAIN
REFINEMENT .~

| PRIVATE
PART

INSTRUCTION
OBJECTS

PF-0296
Figure 2-3. Static Program Organization Example




iAPX 432 GDP Program Organization

CONTEXT OBJECTS

A context object represents a particular call to a procedure within a domain. The
context obiect serves two major purposes:

1. It provides storage for local variables used by the context.

2. It provides o distinet access environment for the context, giving
access to those objects that the context "needs to know."

All addressing of program operands takes place from within some context, and the
structure of a context is what the program "sees" when it executes. The objects
that a program can access are determined by its context. Because of the
importance of contexts in program organization, they are described in detail in
the following sections.

¢

= Operand Stack k

% Working Storage Area = Byte Displacement

— Trace Control —] 12

[ Data Area —

-
[=]

Instruction Pointer

Current Instruction Chject DAL

Operand Stack Pointer
Context Status

AD to Current Context

AD to Global Constants

AD to Context Message

AD to Defining Domain

AD to Local Constants

AD to Environment 1

AD to Environment 2

AD to Environment 3

AD to Calling Context

AD to Context Link

AD to Top of Descriptor Stack

AD to Top of Storage Stack

AD to Static Link

AD to Interprocess Message

WO 00 N N bW~ O ON D

ot
o

[
Pt

[
[

[
w

AD Index

F-0278

Figure 2-4. Context Object




Program Organization iAPX 432 GDP

CONTEXTS VS. PROCEDURES

It is important to distinguish between contexts and the procedures executed by
contexts. There can be multiple active contexts corresponding to a single
procedure. For example, three different users may simultaneously invoke a sort
procedure, but for different files. In this case, three different context objects
associated with three different user processes are actively executing the same
code. When a procedure is recursive, it may call on itself, resulting in multiple
active contexts corresponding to the same procedure and within a single process.
For example, compilers frequently use recursive procedures to implement parsers.

It is enlightening to consider how contexts that correspond to the same procedure
are the same and how they are different. Such contexts have access to the same
instruetion object and to the same domain. But the parameters referenced by
each context are normally different. Also, such contexts may be executing in
different processes, and attributes inherited from the process, such as standard
I/0 interfaces, may be different.

ACCESS ENVIRONMENT

The access environment of a context is all those objects that can be accessed
from the context. The access environment is all those objects for which the
context either has an AD or can get an AD by performing a series of ENTER
operations. (ENTER operations are deseribed below.) The ADs for objects within
the access environment of a context may or may not have read rights or write
rights; it can be very useful for a context to hold an AD for an object even if it
cannot read it or write it (just how useful is desecribed in the section "Type
Managers").

One can imagine the set of ADs for all the objects in the access environment
organized into a large array. An instruction executing in the context could then
specify "byte 5 of the object referenced by the AD in array slot 7" as an operand.
This is how an instruction specifies an operand, by an index into the access
environment to specify an AD for an object, and then by an offset to a field
within the data part of the object. The index into the access environment is
called an access selector, because it selects an access deseriptor.

The access part of an object matches this description of a "large array" of ADs;
one object can contain up to 214 (16,384) access descriptors. The access part of
the context object itself is a major part of the acecess environment, and a program
can reference any other object referenced by the context. An access selector is a
double-byte value, and its 16 bits can select from not one, but four different
access lists to specify an AD. The lower 2 bits of an access selector specify one
of the four "environments," and the upper 14 bits specify an AD in the access part
of the object selected by the lower 2 bits. Figure 2-5 illustrates an access
selector.



iAPX 432 GDP Program Organization

ACCESS SELECTOR
15 2 1 0

14 BITS X X

ENV SELECTOR

00 Select AD from context itself.

01 Select AD from object referenced by AD 5 in context.
10 Select AD from object referenced by AD 6 in context.
11 Select AD from object referenced by AD 7 in context.

ACCESS INDEX

F-0300
Figure 2-5. Access Selector

The network topology of ADs and accessible objects within a context cannot be
directly mapped by a simple array of ADs. Consider a simple linked list of
objects, in which the context directly references object A which references object
B which references object C, ete. The access list in the context contains an AD
for A, but not for B or C. The program must alter its own access environment
before it can address data in objects B or C. This is done by executing an ENTER
ENVIRONMENT operator that changes the object used for one of the access lists
used in access selection. Figure 2-6 shows the example of linked objects A, B, and
C, after A has been entered as environment 2.

2-9



Program Organization iAPX 432 GDP

CONTEXT

OBJECT A

OBJECTB

OBJECT C

AD6 |ENV2

AD3 -

AD4 >

Figure 2-6. Access Environment Example o

Object A is directly referenced from AD 6 of the context object. Remember that
the context itself is always environment 0, which cannot be changed. An access
selector value of (6,0) would be used to reference an operand in the data part of
object A. Object B is referenced from AD 3 of object A, which is entered as
environment 2. Because object A is entered as an environment, the data parts of
any objects that A references are accessible (given proper rights). Thus an access
selector value of (3,2) can be used to reference an operand in the data part of
objeect B. Object C is not directly accessible; it is in the indirect access
environment of the context but not the direct access environment. To make
object C accessible, object B must be entered as an environment, e.g., as
environment 3. This can be done with the operator ENTER ENVIRONMENT 3.
The operand is an access selector specifying the AD to be entered, (3,2).

The three modifiable environments are a limited resource that must be managed
by compilers for iAPX 432 programs. The compiler must keep track of the
changing direct access environment and generate needed ENTER instructions so
that all instruction operands are directly addressable when needed.

Figure 2-7 illustrates the system-defined objects in the context access

environment. Many of these objects are described in the following section,
"Context Description.”

2-10



iAPX 432 GDP Program Organization

CONTEXT
FAULT
INSTRUCTION
OBJECT
DEFINING
CONTEXT DOMAIN
MESSAGE i 1 TRACE
pmmmmtss i INSTRUCTION
! OBJECT
; i I —
P ——— - - i
i i H
1 ] 1 ]
oo ! . I 1
)
ENTERED i
ENVIRONMENTS i
pm———— v Femmmmmmmmmefe e T
: : ] L. 3l
i H I St vt
P o - = = = 4 E ,emc——ehe————
] [ 1
' N I A
1 [} i 1 ] H
eeqest . i
25—14 --------- 4o INSTRUCTION
! hemsy ! i OBJECT
1 1 t 1 ]
i 1 ] 1 -
eyeet R :
e R T . GLOBAL i
: ! Vo CONSTANTS !
i
R H 0o i
: ( P A1 S
.
ENCLOSING N
CONTEXT v LOCAL
; ; bl CONSTANTS
) ]
S SO 4
] 1 ]
] 1 ]
1 ] )
LS ! H
)
]
INTERPROCESS i PROCESS
MESSAGE \ GLOBALS
Rty ' OBJECT . .
i | ——> Reference via required AD
' ]
r)

----3 Optional ADs (can be null)

------ » Reference via DAI
(index into domain access part)

’ F-0298
Figure 2-7. Context Access Environment

2-11



Program Organization iAPX 432 GDP

CONTEXT DESCRIPTION

This section describes the fields of a context. The context object is described in
detail because the structure of a context is a large part of what a program "sees"
when it executes.

Current Context (AD 0)

This AD references ‘the context itself. This seemingly superfluous circular
reference is needed for programs that reference the context data part. An access
selector value of (0,0) selects this AD and the context data part.

Global Constants (AD 1)

This AD references an object containing frequently used data constants. iAPX
432 instructions cannot contain constants (literals), and all constants used by a
program must be allocated in some object. The Global Constants object is a
system-wide repository for frequently used constants, which then do not have to
be replicated in each domain that needs them. All contexts in an iAPX 432
system should reference the same Global Constants objeet. Compilers for iAPX
432 systems need to know what constants are in this object, so that they can
generate references to it rather than create more local constants.

Context Message (AD 2)

This AD references a refinement of the calling context (if any). The refinement
is used for parameters to this context and to store results being returned to the
calling context.

Defining Domain (AD 3).

This AD references the entire domain containing the procedure being executed by
this context. Note that even if the procedure was called via a refinement (public
part) of the domain, the AD stored here gives access to the entire domain.

Local Cornstants (AD 4)

This AD references an objeet containing data constants used by the called
procedure. A compiler can create a unique local constants object for each
procedure within a package, or use one local constants object for all procedures in
a package. The compiler writer must consider tradeoffs in instruction length
(shorter offsets may be used in some instructions if each procedure has its own
constants object) versus the space overhead of additional objects (28 to 35 bytes
per object).

2-12



iAPX 432 GDP ' Program Organization

Environment 1 (AD 5)
Environment 2 (AD 6)
Environment 3 (AD 7)

Each of these three ADs can reference an object with an access part that is
entered as part of the current access environment. The access environment and
the objects referenced by these ADs can be changed by executing an ENTER
ENVIRONMENT operator or a COPY PROCESS GLOBALS operator. These ADs
do not have delete rights and cannot be modified using the normal COPY AD or
NULL AD operators. This is understandable because modifying the access
environment requires changing information cached in the GDP and written in the
process object; it is more than just copying an AD.

When a context is called, the defining domain is entered as environment 1 as part
of the CALL operation. The ADs for environments 2 and 3 are initially null.

Calling Context {(AD 8)

This AD references the calling context object. If there is no caller, i.e., if this is
the initial context of a process, then this AD is null. This AD does not have read
or write rights; the only part of the caller's context that can be accessed is the
refinement referenced by the Context Message AD (AD 2). This AD normally has
Return Rights, indicating that the caller can be returned to without faulting.

Context Link (AD 9)

This AD is a forward link to the next context in the list of preallocated contexts
for the process containing this context. Preallocated contexts are discussed
below. :

Top of Deseriptor Stack (AD 10)

This AD is used by memory management. It references the object most recently
allocated from the stack, either by this context or its calling contexts. This AD
does not have read or write rights, because the object it references may not be
one that this context should be able to access.

Top of Storage Stack (AD 11)

This AD is used by memory management. It references the storage object most
recently allocated from the process allocation stack, either by this context or its
calling contexts. The difference between this AD and the Top of Descriptor Stack
AD is that the latter may reference a refinement object or interconnect object;
this AD references the most recently created object that was allocated storage.
This AD does not have read or write rights, because the objeect that it references
may not be one that this context should be able to access.

2-13



Program Organization iAPX 432 GDP

Static Link (AD 12)

This AD is a parameter to the CALL instruction. It is intended for use by
compilers when one procedure definition is textually enclosed within another
procedure. In many high-level languages, including Ada, the enclosed procedure is
able to refer to all the local variables of the enclosing procedure. The context of
an enclosing procedure is not necessarily the calling context, as shown in Figure
2-8.

Procedure A textually encloses Procedures B and C. Both B and C should be able
to access the local variables of the call to A above them in the call chain. A calls
B which calls C. For both B and C, the static link references a context for A.
For B, this is also its calling context (though the statie link AD has access rights
and the Calling Context AD does not). For C, the static link references A even
though A is not its caller.

It is relatively rare for procedures to textually enclose other procedures, and the
statie link parameter is often unused and null.

CONTEXTFOR A
PROCEDURE AIS

PROCEDURE B IS
BEGIN
CALLC;
ENDB:
CONTEXT FOR B
PROCEDURE C IS R
— - AD TO CALLER
—e AD TO STATIC LINK
BEGIN
ENDC;
CONTEXT FOR C
BEGIN
CALLB; o AD TO CALLER
END A; o AD TO STATIC LINK

F-0302
Figure 2-8. Nested Procedures Example

2-14



iAPX 432 GDP Program Organization

Interprocess Message (AD 13)

This AD references the most recent interprocess message received by the
context. This AD is nuiled when the context is calied and until any message is
received. Interprocess communication is desceribed in Chapter 5, "Parallel
Processing."

(Subsequent fields described are in the context data part.)

Context Status (bytes 0, 1)

This field contains two subfields that control precision and rounding for the GDP's
floating point operators. These subfields are described in Chapter 8,
"Computational Data Types."

Operand Stack Pointer (bytes 2, 3)
Operand Stack

The operand stack pointer is a byte offset into the context data part to the first
free byte of the operand stack. This is an expression-evaluation stack; each
context has one. This stack is used for intermediate values by computational
operators. This stack is not used for procedure linkage. Using the operand stack
shortens instructions and improves performance. This stack is aligned on double-
byte boundaries; the operand stack pointer is always even. The operand stack
grows upward in the context data part, from an initial stack pointer value
specified by the instruction object header up to the end of the context data part.
The bounds check automatically performed by the iAPX 432 on all object
references thus provides a check on stack overflow. The stack pointer is cached
by the GDP while the context is executing; thus this field is not defined during
execution of the context.

Current Instruction Object DAI (bytes 4, 5)

This field is a domain access index; the upper 14 bits are an index into the
defining domain's access part to the AD for the current instruction object. This
value is cached by the GDP and is not defined during context execution; it can be
changed during execution by an intersegment branch.

Instruction Pointer (bytes 6, 7)

This field is the bit displacement into the instruction object data part to the next
instruction to be executed. The instruction pointer is cached by the GDP and is
not defined during context execution. :

Trace Control Data Area (bytes 8 .. 13)

This area contains control information used in tracing, and is deseribed in Chapter
12, "Fault and Trace Reference."

2-15



Program Organization iAPX 432 GDP

Working Storage

The area (if any) between the Trace Control Area and the beginning of the
operand stack can be used by the compiler to allocate local variables for the
context. ADs in the context access part above the processor-recognized part can
be used for local access variables.

PREALLOCATED CONTEXTS

Calling a procedure is a very frequent programming operation, and is even more
frequent in programs that use the modular techniques supported by the iAPX 432,
Each iAPX 432 procedure call requires a new context object, containing several
specifiec ADs, to establish a new access environment. To make the procedure call
mechanism as efficient as possible, the iAPX 432 architecture presumes that
contexts are preallocated by the operating system. Each process is presumed to
have a list of these preallocated contexts assigned to it when the process is
created. When a procedure is called, the next free context on the process's list of
contexts is used. This eliminates the overhead of creating and deleting context
objects with each call and return. Also, ADs in the context that do not change
between calls, such as the Global Constants AD, can be already assigned on entry,
saving more time. Figure 2-9 shows a process and its preallocated contexts.
Some of the contexts are active (associated with procedure calls that have not yet
returned); others are not being used.

PROCESS

™~

LEVELO

INITIAL CURRENT
CONTEXT CONTEXT

N

o
e ] ol
LEVEL1 LEVEL?2 LEVEL3 LEVEL4 L
f !
ACTIVE CONTEXTS ' INACTIVE CONTEXTS

F-0293
Figure 2-9. Preallocated Contexts Example

2-16



iAPX 432 GDP Program Organization

THE CALL OPERATORS

To call a procedure, the calling program must specify the domain being called, an
access index into that domain to select the instruction object being called, and an
AD to be passed as the static link to the new context. The CALL and CALL
THROUGH DOMAIN operators differ only in how they specify the domain being
cailed. For CALL, an AD for the new domain must be directly accessible. That
is, if the new domain is referenced by the defining domain, then the defining
domain must be entered as an environment. For CALL THROUGH DOMAIN, an
AD for the new domain must be in the defining domain, and a domain access index
is specified; CALL THROUGH DOMAIN does not require the defining domain to
be entered as an environment.

-Calling a procedure traverses any domain refinement (public view) used to access
the procedure, and an AD for the entire domain is written into the new context.
The entire domain is also entered as environment 1 by the call operation.

There are many other details in the initialization of a called context, deseribed in
Chapter 10, "Operator Set."

THE RETURN OPERATORS

Executing the RETURN operator automatically deallocates any stack objeects
created by the current context. The GDP then loads execution information from
the caller (its environments, instruction pointer, stack pointer, ete.) and resumes
execution within the calling context. The RETURN AND FAULT operator
executes the RETURN operation and then immediately raises the Return Fault.

CONTEXT LEVEL NUMBERS

Each context in an iAPX 432 system defines the scope of objects loecal to the
context. The scope of an object is recorded as a level number in the object's
descriptor. Objects with level number 0 are global and have indefinite lifetimes.
Objects with level numbers greater than zero are local to the context with the
same level number. When a context is called, it has a level number that is one
greater than the level of its caller. When control returns from a context, all
objects local to that context (with the same level number) are deallocated.
Figure 2-10 gives an example of dynamic program organization with several levels
of processes and contexts. Figure 2-11 shows the corresponding object scopes and
level numbers.

2-17



Program Organization

iAPX 432 GDP

PROCESS
A

Y

INITIAL
CONTEXT
OF A

Y

- CALLTO
PROCEDURE
P

CHILD

PROCESS

C

\i

INITIAL
CONTEXT
OFC

PROCESS
B

Y

INITIAL
CONTEXT
OF B

Y

CALLTO
PROCEDURE
R

CHILD
PROCESS
D

Y

INITIAL
CONTEXT
OFD

Y

CALLTO
PROCEDURE
R

Figure 2-10. Dynamic Program Organization Example

NOTE: Arrows indicate relationships within
the program but do not correspond to ADs.

F-0294

2-18



iAPX 432 GDP

Program Organization

LEVELO Global Objects, including Process A and Process B

e

LEVEL1 A’sInitial Context

Vs

LEVEL?2 Call to P
Process C
Process D

\\

LEVEL 3 LEVEL3
C'’s Initial Context

LEVEL 4
CalltoR

D’s Initial Context

\\

/

N\

LEVEL1 B’s Initial Context

—~

LEVELZ2 CalltoR

/
N

/

F-0295

Figure 2-11. Object Scopes and Level Numbers in the Dynamic
Program Organization Example

2-19



Program Organization iAPX 432 GDP

PROCESS OBJECTS

A process object represents a unit of potentially parallel activity. For example, if
there are three processes in a system, then potentially all three can execute
concurrently. It is natural for processes to correspond to real activities that
occur concurrently. For example, if there are four terminal users simultaneously
on a timesharing computer system, then each can be represented by a separate
process. A process can also be associated with each physical I/O device. Thus the
printer and the card reader can operate concurrently because there are separate
printer_handler and card reader_handler processes that can execute concurrently
and control both devices.

Processes and multiprocessing in the iAPX 432 architecture are described in
detail in Chapter 5, "Parallel Processing." Processes are mentioned in this
chapter for two reasons: First, processes are part of the dynamic organization of
an executing program. Second, a process contributes to the access environment
of every context executing within it, via its associated process globals object.

The process globals object of a process is an object that is part of the access
environment of every context executing within the process. The process globals
object can be entered as an environment by using the COPY PROCESS GLOBALS
operator. The process globals object can be used by an operating system; for
example, the process globals object can reference a default global heap SRO to be
used within the process to create global objects, or can reference standard I/O
devices to be used within the process.

OBJECT MANAGERS

Consider an iAPX 432 system with a single mass storage device and a single file
directory. It is desirable to hide details of the directory representation from user
programs so that they do not depend on a particular representation. For example,
the directory structure might change from a simple linear structure in one release
to a "hashed" structure in a subsequent release, giving faster access to directory
entries but requiring more main memory and more disk space. A "Disk_Manager"
package can conceal the directory representation in the package body and provide
an external interface with such user operations as "Create," "Open," "Read,"
- "Write," and "Close." Note that subordinate packages used by the disk manager
can conceal the representation of free blocks on the disk (bit map, linked list, or
other) and of the files themselves (organization as randomly scattered blocks or as
"extents" of contiguous blocks).

This type of package can be called an object manager; the module conceals the
representation of one or more specific objects while providing services to external
callers that use those objects.

TYPE MANAGERS

Next, consider a more difficult and more general problem in modular
programming, a system with multiple file directories associated with multiple
users, in which file directories can be created and deleted at run-time and can
exist in complex hierarchies. Further, access to file directories must be

2-20



iAPX 432 GDP Program Organization

controlled, so that access by one user to files of another user or of the system
administrator is controlled. For example, these are all attributes of the UNIX*
operating system's directory structure. Finally, the solution to the problem should
conceai the representation of directories just as well as the Disk Manager
package deseribed above does in a simpler system.

A key part of the new problem is that software that uses the new
"Directory Manager" module must be able to refer to directories. For example, a
caller of the "Open" operation must specify the directory containing the file to be
opened. The "Create Directory" operation must return such a reference to its
caller.

Directory references held by users could be represented as index numbers. Within
the directory manager, inaccessible to external callers, could be a large table of
ADs for all the directories in the system. When a user created a directory, an
empty slot (e.g., slot 5), would be found in this table. An AD for the new
directory is then written into that slot and the slot number (5) is returned to the
caller. Subsequent user calls, such as "Create file MEMO in directory 5," specify
the directory by giving the slot number. The user software never has an AD for
the directory and can never access the representation of the directory.

The flaw in this design is that while the directory ADs are protected, the slot
numbers are not. There is nothing to prevent a user program from doing file
operations in directory 8 when it should be restricted to directory 5. The siot
number parameter is simply an ordinal value supplied by the caller; the caller
could even systematically supply values of 0, 1, ... to access the entire file system
including files of other users. The same concerns apply to any design in whieh the
directory reference returned to the user is unprotected and corruptible.

The iAPX 432 provides only one type of "data" that is nroteceted and inccrruptible
-- the access descriptor. Thus it makes sense to search for a solution that returns
an AD as a directory reference. Most straightforward is to return an AD for the
directory itself, but without read or write rights. Such a reference is protected,
ineorruptible, and unambiguous, but does not allow the holder to read or write the
representations of directories. The body of the directory manager must map this
AD without read or write rights to an AD with read and write rights for the
directory. The body could do this with a look-up table of all directory ADs, all
with read and write rights. This table can be scanned and the ADs compared in
turn to the AD without rights supplied by the caller. The EQUAL ACCESS
operator can be used, which returns true if two ADs reference the same object,
even if the rights bits differ. Note that if the caller mistakenly supplies an AD
for some object other than a directory, no matching entry would be found in the
directory table, and an exception could be raised.

Such a module, whiech provides all operations on a particular class of objeet, but
allows other modules to hold references without rights to such objects, is called a

tyge manager,

*UNIX is a trademark of Bell Laboratories.

2-21



Program Organization iAPX 432 GDP

TYPE MANAGER IMPLEMENTATION

A type manager can actually be implemented without the look-up table
mechanism described above; the GDP provides an AMPLIFY RIGHTS operator
that takes an AD without rights and "turns on" selected rights (such as read and
write rights). Amplifying rights must be a privileged operation, or it would be
meaningless to restrict read or write rights at all. The AMPLIFY RIGHTS
operator requires an AD (with amplify rights) for a Type Control Object (TCO)
that specifies the type of object for which rights can be amplified. The TCO also
specifies which rights can be amplified. In the directory manager example, the
body of the module can access a TCO for directories, giving it the privilege of
amplifying rights on ADs for directory objects. This TCO is not available to
external users of the module.

The implementation of type managers uses four features of the iAPX 432
architecture:

1.  GDP support for protected program modules (domains), where external
users can only access a refinement of the domain, but code in the body
of the module has access to the entire domain.

2. GDP support for software-defined protected types.

3. GDP implementation of creating typed objects as a privileged
operation.

4. GDP implementation of amplifying rights to typed objects as a
privileged operation.

SOFTWARE-DEFINED PROTECTED TYPES

In the hypothetical "look-up table" implementation of the type manager, described
above, the table itself provided a secure "typing" of directory objects. An object
was a directory if and only if it could be found in that table. Only the type
manager module had access to the table, thus only the type manager could create
an object as a directory object by creating it and entering an AD for it into the
table. The actual implementation of type managers uses the AMPLIFY RIGHTS
operation to map ADs for the managed objects without rights to ADs for the
managed objects with rights. There is no look-up table, but a secure typing of
directory objects is still required. Otherwise, an external caller could spoof the
directory manager by creating an object and passing it to the manager in the guise
of a directory object. At best this might crash the system; at worst it might
introduce errors into the file system or give the caller access to protected files.

Remember that all information in an iAPX 432 system is represented as objects;
thus the iAPX 432 represents types as objects as well. A software-defined
protected object type is represented by a type definition object (TDO). The TDO
has no processor-recognized fields. The TDO data part might contain a printable
name for the type (e.g., "directory") and the TDO access part might reference the
type manager domain for the type.

2-22



iAPX 432 GDP Program Organization

Each object of the protected type is represented as a dynamic type object (DTO).
A DTO has no processor-recognized fields but is formatted by the type manager.
For example, a directory object might contain file names, disk addresses, and file
protection information. The object descriptor for a DTO contains a copy of an
AD for the TDO that defines the type. The GDP operator RETRIEVE TYPE
DEFINITION takes an AD for a DTO and returns an AD for the TDO that defines
its type.

Figure 2-12 illustrates the relationships between the objects used to implement a
type manager: domain, TDO, TCO, and DTOs.

OTHER MODULES
A
TYPE MANAGER
DOMAIN
—_
EXTERNAL
INTERFACE TO
TYPE MANAGER |_ PRIVATE
DOMAIN PART
N
N
\‘.
\\
\\
“\| TCO ACCESS —]
N TDO ACCESS —
~
N | _ PUBLIC
AN PART
\\
Y
TYPE
DTO OBJECT
DEFINITION
DESCRIPTOR(S) TYPE
OBJECT CONTROL
. - OBJECT
L -
. .. DYNAMIC TYPE
° . OBJECTS

Figure 2-12. Type Manager Objects

F-0299

2-23



Program Organization iAPX 432 GDP

It is important to clearly understand the difference between a Type Definition
Object and a Dynamic Type Object. Suppose that there are two software-defined
types in a particular system, "directory" and "user job", and that there are 78
directories and 10 user jobs at a particular instant. The system will contain two
TDOs corresponding to the two software-defined types. The system will contain
88 DTOs. 78 of these DTOs will represent particular directories. Executing the
RETRIEVE TYPE DEFINITION operator for any of these 78 DTOs will return an
AD for the "directory" TDO. Ten of the DTOs will represent particular user jobs.
Executing the RETRIEVE TYPE DEFINITION operator for any of these ten DTOs
will return an AD for the "user_job" TDO.

CREATING TYPED OBJECTS

Creating objects of a protected type must be restricted to the type manager for
two reasons. First, when a typed object is created, initial values for its contents
must be written into it, a privileged operation that accesses the object's
representation. Second, when an object is created by the GDP, the returned AD
has all rights. Read and write rights must be removed from the AD using the
RESTRICT RIGHTS operator, before returning the AD to a caller from outside the
type manager.

The CREATE TYPED OBJECT operator is used to create an object of any type
other than "generic." This operator requires an AD with create rights for a Type
Control Object that specifies the type of the new object. Because only the body
of a type manager has access to a TCO for the managed type, only the type
manager can create objects of the type.

TYPE MANAGER SCHEMA

This section gives a schema or "template" that can be used for defining type
managers. This same schema can be used to manage both system typed objects
(e.g., processes) and software typed objects.

1. For a software-defined type, the package initialization code should
call an operating system package that creates a new unique software-
defined type. The call should return ADs for a TCO and a TDO. The
TCO AD should be stored in the private part of the type manager
domain and nowhere else.

2. (If the managed type is XXX), the package should provide a
Create XXX operation. Create XXX should use the CREATE TYPED
OBJECT operator to create an object of the type, then initialize the
object, then use the RESTRICT RIGHTS operator to remove read and
write rights, and then return the AD without rights to the caller.

3. Each operation provided on objects of the type will take one or more
ADs for objects of the type as parameters. The body of each
operation should use the AMPLIFY RIGHTS operator to get read and
write rights for these objects within the body of the type manager.
Remaining code should implement the operation.

2-24



CHAPTER 3
OBJECT ADDRESSING

This chapter deseribes the iAPX 432 architecture's object addressing mechanism,
which provides these services:

. conversion of access selectors and offsets to physical addresses for operands

. bounds checking and checking of read/write rights for all memory
references

The GDP supports several different addressing modes -- various ways that an
access selector and offset can be specified by an instruction. The GDP addressing
modes are described in Chapters 7, "Instruction Interface," and 11, "Instruction
Encoding."

This chapter desecribes these iAPX 432 types:

® access selectors

° access descriptors

® objeet desecriptors

[ object tables

Access selectors are also described in Chapter 2, "Frogram Organization.” More

information about access descriptors, object descriptors, and object tables is
contained in Chapter 4, "Memory Management."

PHYSICAL ADDRESS SPACES

An iAPX 432 system has two physical addressing spaces, a storage address space
and an interconnect address space. The interconnect address space can be used
for hardware configuration information, interprocessor communication registers,
and error registers. All other information in the main memory of an iAPX 432
system is contained in the storage address space. The section "Interconnect
Addressing" describes the interconnect address space. All other sections of this
chapter describe object addressing in the storage address space.

Though an iAPX 432 system contains multiple processors, all processors share a
single common storage address space. Even processor state information is stored
in the storage address space, in processor objects.

The iAPX 432 supports a storage address space with up to 224 (16,777,216) bytes
of memory.

3-1



Object Addressing iAPX 432 GDP

TWO-PART MEMORY REFERENCES

All iAPX 432 memory locations are accessed through some object. Even free
storage blocks (storage currently not contained in an object) are referenced by
descriptors in a system object that represents a free storage pool.

iAPX 432 programs never access memory using physical addresses. Instead, a
program accessing memory specifies the object being accessed. Because each
iAPX 432 object can contain multiple data fields, a memory reference also
specifies the offset from the base of the object to the field referenced.

Each iAPX 432 memory reference has two parts:

1. An access selector that specifies an object.

2. An offset into the object's data part to the
referenced operand.

The combination of an access selector and an offset
is called a logical address.

TWO-LEVEL ADDRESS MAPPING

The iAPX 432 architecture maps an access selector to a physical base address for
an object using two levels of descriptors (see Figure 3-1). The two-level address
mapping supports two different functions: protection and dynamic storage

management.

ADDRESS MAPPING FOR OBJECT PROTECTION

A fundamental part of the iAPX 432 architecture is a uniform protection
mechanism for objeets. Each call to a subprogram is represented by a context
object that has references for only those objects that it has a "need to know."
The object references are represented by access descriptors (ADs). The ADs may
allow only restricted access to the objects they reference. For example, an AD
may only allow a context to read an object but not to write it. Thus an AD has
two parts: a unique system-wide identifier for the referenced object and rights
information that indicates the operations allowed using the AD. An AD can also
have the value null, referencing no object.

An AD corresponds to a high-level programming language's pointer or access
values; the term "access descriptor" is derived from the Ada language's access
types. Like the pointer values in high-level languages, ADs can be copied at run-
time and more than one context may have ADs for the same object.

There is no way to read or write an object without an AD, not even if the object's
identifier or physical address is known.



iAPX 432 GDP

Object Addressing

MEMORY REFERENCE
L

ACCESS
SELECTOR

1'

PROGRAM'S ACCESS
ENVIRONMENT

i,

/ ACCESS DESCRIPTOR
® RIGHTS

SYSTEM-WIDE TABLE OF
OBJECT DESCRIPTORS

Vi OBJECT DESCRIPTOR AN

PHYSICAL
ADDRESS

REFERENCED
OBJECT

OPERAND

Fence

I

OFFSET

.

fe——1

F-0461

Figure 3-1. Two-Level Address Mapping

3-3



Object Addressing iAPX 432 GDP

To reference an object, a context must have an
access descriptor for the object.

Because an AD gives its holder rights to reference an object, protection of objects
requires protection of access descriptors. Even when a program has write rights
to an object, access descriptors in the object cannot be manipulated as arbitrary
bit patterns (e.g., added, subtracted, shifted, assigned). Access descriptors can
only be overwritten by other access descriptor values. New access descriptors are
created only by the GDP, never by software, and only when creating new objects.

Any object in the storage address space can contain both ADs and data. The ADs
in an object represent relations to other objects. For example, the context object
for a subprogram call contains an AD for its caller. The context objeect also
contains data, such as local variables used by the subprogram call.

OBJECT FORMAT

Though objeets can contain both data and ADs, the two kinds of information are
physically segregated within an object, into a data part and an access part. The
data part can contain anything but ADs; the access part can contain only ADs.
Each part is optional. An object can have a data part and no access part, or an
access part and no data part. Each part is limited to 216 (65,536) bytes.
Therefore, the total size of an object is limited to 217 (131,072) bytes. Because
an AD requires four bytes, the access part of an object is limited to 214 (16,384)
ADs. Figure 3-2 shows the object format.

Byte Displacement

J——_— 65,535 (Maximum)

L

-—---Fence

Data Part —

© = e e e

{

Physical Base Address

Access Part =

)2
3
€

® & & ~ O

16,383 (Maximum)

Access Descriptor Index
(32 Bits Each)

F-0383

Figure 3-2. Object Format




iAPX 432 GDP Object Addressing

Objects are laid out in physical memory so that the physical base address of the
object is the address of the first byte of the data part. The data part occupies
storage locations above the base address and the access part occupies storage
locations below the base address. The base address acts as a "fence" between the
two parts of an object. Note that ADs with higher index values occupy lower
storage locations.

ACCESS DESCRIPTOR FORMAT

Figure 3-3 shows the format of an access descriptor.

31 20 19 16 15 4 3 10
12 bits x[x|x]|x 12 bits xxx|1

Access Valid
Type Rights
Segment Index
Delete Rights
Unchecked Copy Rights
Read Rights
Write Rights
Directory Index

F-0384
Figure 3-3. Access Descriptor Format

The access valid bit is 1 if the AD references an object and 0 if the AD is null.

The directory index and segment index fields together constitute a 24-bit object
index, a unique, system-wide, unchanging identifier for the referenced object.

The various rights bits allow or restrict operations using the AD. Access rights
allow or restrict operations on the AD itself. The access rights on an AD are the
read rights, write rights, and three type rights. Read rights are required to read
from an object. Write rights are required to write into an object. The three type
rights bits are used to allow or restrict operations specific to the particular type
of object referenced. For example, for port objects, type right 1 (in bit position
1) is interpreted as send rights, required to send a message to the port. Type right
2 (in bit position 2) is interpreted as receive rights, required to receive a message
from the port. Of course, for a different type of object, the type rights can have
a different meaning or no meaning at all.



Object Addressing iAPX 432 GDP

There are two AD rights, delete rights and unchecked copy rights. Delete rights
are required on an AD for it to be overwritten by another AD. If an AD does not
have delete rights, then it can only be deleted by deleting the entire object
containing it. Unchecked copy rights allow an AD to be copied without a level
check. Level checking and the use of unchecked copy rights are described in
Chapter 4, "Memory Management."

Operations on ADs, and how to use them to implement type manager modules, are
described in Chapter 2, "Program Organization."

ACCESS SELECTORS

Instructions that reference objects cannot just include access descriptors in the
instruction stream itself. For objects created at run-time or received as
parameters or messages, the AD values are not known when the instruction object
is created. Thus instructions must be able to specify an index, called an access
selector, that selects the AD "slot" containing an AD for the referenced object.
To preserve the strict separation between ADs and other information, instructions
cannot include ADs and always specify objects using access selectors, even when
the AD value is known at compile-time.

An access selector specifies an object by specifying an
AD slot in the current context that contains an access
descriptor for the object.

An access selector can be embedded directly in the instruction stream or can be
specified indirectly and taken from the data part of some object. Note that
indirect access selectors can be assigned and modified under program control.
For example, an indirect access selector can be modified in a loop to sequence
through multiple objects.

ACCESS SELECTOR FORMAT

An access selector value is 16 bits and can select one of up to 216 (65,536) access
descriptors. Remember that the access part of any one object is limited to 214
(16,384) ADs. An access selector has two parts, a 2-bit environment selector and
a 14-bit access index. The environment selector selects the access part of one of
four objects, called an environment when so selected. The access index selects an
AD within the environment. The access part of the current context object is
always one environment; ADs in the context reference the other three
environments. The GDP provides special ENTER operators to make an accessible
object one of the three alterable environments.




iAPX 432 GDP Object Addressing

ADDRESS MAPPING FOR DYNAMIC STORAGE MANAGEMENT

The iAPX 432 architecture is designed to support dynamic storage management,
in which objects can be relocated in physical memory. Objects may be relocated
in a virtual memory system because they are swapped out to disk and later
reloaded at a different physical address. In a real-memory system, objects can be
moved by a compaction process that relocates objects to reduce memory
fragmentation.

Because the physical addresses of iAPX 432 objects can change, access
descriptors cannot contain the physical addresses of the objects that they
reference. For any object, there could be many access descriptors and no way
(except an exhaustive search of memory) to locate them all to update addresses in
them.

Instead of specifying the physical address of an object, an AD references another
descriptor, the object descriptor, that does. There is exactly one object
descriptor per object in an iAPX 432 system. The object descriptor for an object
is itself contained in an object, an object table object.

The position of an object descriptor (OD) in the structure of object tables in an
iAPX 432 system is fixed for the life of the corresponding object. Even though
the location of objeets in physical memory can change, the positions of the
associated ODs in the structure of object tables is fixed. An index into the
structure of object tables to an OD, called an object index, has these desirable
attributes:

° The object index does not change during the life of an object.

+
(3

=l
“r
(o]

i i i H tha NN £ 1ant a3 AL
- The ohjeet index provides a way tc find the CD for an object, and the

find the physical address of the object from the OD.

° The object index is a system-wide identifier for an object, not relative to
any process or context. This means that pointers (ADs) to objects can be
transferred between processes and between contexts.

An access descriptor contains an object index for the
referenced object, which selects the object descriptor
for the object from the system-wide structure of object
tables.

Each object descriptor is 16 bytes. An OD specifies the object's physical base
address and the lengths of the data part and access part. An OD also contains
type information and storage management information.

3-7



Object Addressing iAPX 432 GDP

TWO-LEVEL OBJECT TABLE STRUCTURE

Because each OD is 16 bytes, the data part of an object table object can hold up
to 212 (4,096) ODs. The iAPX 432 architecture uses a two-level object table
structure to allow up to 224 (16,777,216) objects in a single iAPX 432 system.
One special object table, the object table directory (OTD), contains only object
descriptors for all object tables in the system. The object index that specifies an
OD has two parts, directory index and segment index. The 12-bit directory index
selects an object table from the OTD. The 12-bit segment index selects an OD
from the selected object table. The two-level object table structure has these
advantages:

° The structure increases the number of objects allowed in a system, providing
241 bytes of virtual address space.

° The structure allows object tables to be dedicated to particular processes or
storage pools. For example, all objects allocated from a particular storage
pool are referenced by one object table and can be reclaimed together.

) The structure reduces contention between processes for exclusive access to
object tables when creating, reclaiming, or relocating objects.

OBJECT TABLE
DIRECTORY

el

ORJECT TABLES OBJECT TABLES

I

OBJECTS

F-0463

Figure 3-4. Two-Level Object Table Structure




iAPX 432 GDP Object Addressing

OVERVIEW OF OBJECT ADDRESSING

This section gives a narrative overview of the iAPX 432's object addressing
mechanism. Figure 3-5 illustrates the mechanism and is keyed to the narrative.

1.  An operand reference in an instruction specifies a 16-bit access
selector and a 16-bit offset.

2. The access selector specifies one of four objects as environments and
selects an access descriptor from the access part of the chosen
environment. This mapping supports the iAPX 432 object protection
mechanism.

3. The access descriptor specifies access rights that determine what
operations can be performed on the object with that AD. There can be
many ADs for an object, each with different rights. This facility
supports the iAPX 432 object protection mechanism.

4, The access descriptor also specifies a unique object index for the
object. The object index selects one of up to 214 object tables from
the single object table directory, and also selects one of up “up to 212
object descriptors from the selected object table. There is only one
OD per object.

5. The OD specifies the physical base address of the object. The operand
address is computed by adding the offset specified by the operand
reference to the object's base address. Note that an operand is always
in the data part of an object.

ADDRESS SPACE SUMMARY

The logical address space of an executing context consists of the directly
accessible objects in its access environment (up to 216 objects).

The virtual address space of an iAPX 432 system consists of all objects defined in
the system (up to 222 objects, up to 241 bytes).

The physical address space of the iAPX 432 consists of the linear storage address
space (up to 24% bytes) and the linear interconnect address space (up to 24%
bytes).




Object Addressing iAPX 432 GDP

INSTRUCTION STREAM

[ OPERAND REFERENCE I

| ®

ADDRESSING

ACCESS SELECTOR

IACCESS INDEX | . OFF@

L_ ENV
SELECTOR

ENTERED
ENVIRONMENTS

/" ACCESSDESCRIPTOR
DIRECTORY SEGMENT OBJECT TABLE

INDEX INDEX DIRECTORY (OTD)
‘Zaccess | ()5~
RIGHTS

_.~"" STORAGE DESCRIPTOR “._

PHYSICAL BASE
ADDRESS

OBJECT TABLE

ACCESS RIGHTS

27 h

REFERENCED
OBJECT
DATA PART — OPERAND
— L= —— }
Fence @
ACCESS PART -

F-0460

Figure 3-5. Object Addressing

3-10



iAPX 432 GDP Object Addressing

REFINEMENT ADDRESSING

The iAPX 432 architecture supports the definition of refinement objects, objects
that are actually part of another object called the base object. Like any other
object, a refinement object can have an access part and a data part. The access
part is contained in the access part of the base object and the data part 1s in the
data part of the base object.

BASE
OBJECT
REFINEMENT . D%
OBJECT ~ ___.--=="""
,,,,,,,,,,,,, Y
-

\\\\\\\\\\\\\\\\\\ )

-
-
-
~ -
-
-~—
-~
-
~-
-~

s,

[z

F-0462
Figure 3-6. Refinement Object

A refinement object is described by a particular type of object descriptor, called
a refinement descriptor. Instead of containing a physical base address, the
refinement descriptor contains the object index of the object being refined. The
refinement descriptor also contains offsets within the selected object to the
portions accessible using the refinement, and contains the lengths of the
refinement access part and data part.

3-11



Object Addressing iAPX 432 GDP

INTERCONNECT ADDRESSING

The separate interconnect address space can be used for hardware configuration
information, interprocessor communication registers, and hardware error
registers. Use of the interconnect address space in processor communication and
configuration is described in Chapter 6, "Processor Management."

All interconnect locations are accessed via interconnect objects. These objects
are described by a particular type of object descriptor, called interconnect
descriptors. '

Interconnect objects have no access part, and access deseriptors cannot be stored
in the interconneect address space.

Interconnect descriptors do not specify processor type or system type for the
corresponding interconnect objects. All processors can reference interconnect
objects (equivalent to the processor type all), and interconnect objects can be
considered similar to objects with the system type generic because interconnect
objects have no processor-recognized meaning.

The interconnect address space spans up to 224 (16,777,216) bytes. Interconnect
objeets must be aligned on double-byte boundaries (even addresses) and must
contain an even number of bytes. All references to interconnect objects must use
even offsets to also be aligned on double-byte boundaries.

The GDP provides operators to move a short ordinal value to or from a double-
byte in an interconnect object, MOVE TO INTERCONNECT and MOVE FROM
INTERCONNECT. These operators fault if a noninterconnect object is specified
where an interconnect object is expected. No other GDP operators can be used to
read or write operands in interconnect objects; attempting to do so causes a fault.



CHAPTER 4
MEMORY MANAGEMENT

The iAPX 432 architecture supports important memory management capabilities

o e o e e mamme  ame o

needed by system designers and implementers. Memory management in iAPX 432
systems is a hardware/software partnership, and the facilities described in this
chapter are provided by, not just the GDP, but by the GDP architecture in
cooperation with an operating system, such as iMAX 432. iAPX 432 memory
management:

1. dynamically allocates new objects with single instruections.

2. completely supports the scope rules of Ada and other high-level
languages.

3. automatically deallocates objects that are no longer needed.
4, supports virtual memory.
5. transparently expands free storage pools and object tables as needed
by executing programs.
This chapter covers these topies:
° object scope
° system objects used for memory management
° object creation
° object lifetime strategies, which determine how objects are deallocated
° fragmentation and compaction
° virtual memory
° frozen memory

[ multiple processors and memory management

4-1



Memory Management iAPX 432 GDP

OBJECT SCOPE

Each object in an iAPX 432 system has a scope, which is either global or local to
some context. A global object exists indefinitely, and is only deallocated when no
ADs exist for the object. (Because objects can only be accessed via ADs, and
because ADs for existing objects can only be copied, not created, then once all
ADs for an object are deleted, the object can never again be accessed and can
therefore be reclaimed.) Objects local to a context (to a subprogram call) can
only be accessed from within that context or subordinate contexts. The iAPX 432
architecture guarantees that access descriptors for local objects cannot be
exported out of their scope. Thus, when a context returns, all objects local to
that context can be deallocated.

Object scope is indicated by a level number in the object's descriptor. Objects
with level number zero are global and have indefinite lifetimes. Objects with
level numbers greater than zero are local to the context with the same level
number. When a context is called, it has a level number that is one greater than
the level of its caller. The section "Context Level Numbers" in Chapter 2,
"Program Organization," gives an example of program organization with several
levels of processes and contexts, showing object scopes and level numbers.

Whenever an access deseriptor is copied, a level check is normally performed, to
verify that the destination object has a level number greater than or equal to the
level number of the object referenced by the AD. This ensures that the scope of
the destination object is the same scope as, or is contained within, the scope of
the object being referenced, and prevents ADs for objects from being exported
out of their scope. For example, a context cannot return an AD for an object
local to it to its caller. If a level check fails, the AD is not copied and the Level
Fault is raised.

Because ADs for global objects will always pass a level check, these ADs are
created with unchecked copy rights, which enables them to be copied without a
level check, saving execution time.

OBJECTS FOR MEMORY MANAGEMENT

This section describes how four types of system objects are used in memory
management:

(] storage resource objects, reference all the other objects needed for object
allocation; the other objects provide object descriptor space, physical
memory space, and operating system authorization for allocation.

) object tables, contain object deseriptors and free space for allocating new
ODs.

° physical storage objects, reference free blocks of physical memory.

° storage claim objects, enforce operating system limits on memory allocation
by a particular process or group of processes.

Figure 4-1 shows these objects.

4-2



iAPX 432 GDP Memory Management

HEAP STORAGE
RESOURCE OBJECT

ALLOCATION
LEVEL

HEAP
OBJECT
TABLE
PHYSICAL .
STORAGE N
OBJECT = \\ \)
Z 7 -- with linked list
- of free entries
STORAGE | ~~~__ N
BLOCK S~
SPECIFIER
~ FREE
~ MEMORY
S BLOCK
N STORAGE
CLAIM OBJECT
REMAINING
CLAIM

F-0008
Figure 4-1. Objects for Memory Management

STORAGE RESOURCE OBJECTS
Creating a new iAPX 432 object requires the allocation of two types of resources:

° a new object descriptor for the new objeet - this is allocation of the virtual
address space of the iAPX 432.

° a block of contiguous physical storage for the new object —- this is allocation
of the physical address space of the iAPX 432.

Note that creating an object refinement requires a new object deseriptor but no
additional physical storage.



Memory Management iAPX 432 GDP

A storage resource object provides access to both free object descriptors and
blocks of free physical memory. There are two types of SROs, heap SROs and
stack SROs. Objects created from heap SROs may be deallocated by garbage
collection (described below), whenever no more ADs for the objects exist.
Because the order that heap objects are deallocated is unrelated to the order that
they are created, allocated and free memory blocks and allocated and free object
table entries may be interleaved in a heap SRO. In a stack SRO, the last objects
allocated are the first objects deallocated, and deallocation is done automatically
by the GDP. Because objects are allocated and deallocated in this nested fashion,
free memory and free entries in the stack object table, are maintained as single
contiguous blocks. Each process contains a single stack SRO; there is no support
for stack SROs apart from some process. While conceptually a distinet object,
the stack SRO is contained in the process object, and designated by a special
access selector value in the instructions that create objects. Only heap SROs can
be referenced by ADs.

OBJECT TABLES

Each SRO references a distinet object table, used to allocate object descriptors
for objects created from the SRO. SROs do not share object tables. Heap object
tables, referenced by heap SROs, have a slightly different structure than stack
object tables, referenced by stack SROs, as described in Chapter 9, "Object Set."

PHYSICAL STORAGE OBJECTS

A physical storage object (PSO) contains storage block descriptors that delimit
free blocks of physical memory. Physical memory is allocated from a heap PSO
using a rotating first-fit algorithm. A stack PSO should only reference a single
free block, used for all allocations and deallocations for a stack SRO. A stack
SRO references a distinet stack PSO, and stack SROs cannot share a PSO. Many
heap SROs can share a single heap PSO. The structure of stack and heap PSOs is
identical, with stack PSOs simply referencing a single free block while heap PSOs
can reference multiple free blocks.

STORAGE CLAIM OBJECTS

Heap SROs can reference a storage claim objeet (SCO) that limits the number of
bytes of physical memory that can be allocated from the heap SROs that
reference it. Multiple heap SROs can reference the same SRO. If a heap SRO's
AD to Storage Claim Object is null, then there is no limit (except the available
physical memory) on the amount of storage allocated via that SRO. Stack SROs
cannot reference an SCO; however, the size of the single free memory block used
by a stack SRO is a limit on the number of bytes allocated via the stack SRO.



iAPX 432 GDP Memory Management

OBJECT CREATION

The iAPX 432 operator set includes operators to create new objects and return
ADs for them, CREATE OBJECT, CREATE TYPED OBJECT, CREATE
REFINEMENT, and CREATE TYPED REFINEMENT.

CREATE OBJECT creates a generic object with processor type all. CREATE
REFINEMENT creates a generic refinement with processor type all. CREATE
TYPED OBJECT is a privileged operation and requires an access with create
rights to a Type Control Object (TCO); the new object has the object type
specified by the TCO. CREATE TYPED REFINEMENT is a privileged operation
and requires an access with refine rights to a Type Control Object (TCO); the new
refinement has the object type specified by the TCO. Both CREATE TYPED
OBJECT and CREATE TYPED REFINEMENT are normally used only by type
managers for whatever type of object is being created.

All of the CREATE operators can specify either the process stack SRO (if the
SRO access selector is zero) or a heap SRO (the SRO access selector selects an
SRO AD with create rights).

Both CREATE OBJECT and CREATE TYPED OBJECT clear the new object, up to
a maximum of 2,048 bytes in the new object's access and data parts. "Clearing"
writes zeroes into the data part of the new object and null ADs into the access
part of the new object. When the object has been cleared, the completed bit in
the objeect's OD is set. If a new object is larger than 2,048 bytes, then no part of
it is cleared, the Clear Memory Size Fault is raised, and the completed bit is
cleared. These operators also raise a fault if there is not a large enough block of
contiguous physical storage in the specified SRO to allocate the new object. The
new AD returned by a successful CREATE OBJECT or CREATE TYPED OBJECT
operation has all access rights, delete rights, and has unchecked copy rights if and
only if the new object is at level 0.

The new AD returned by CREATE REFINEMENT or CREATE TYPED
REFINEMENT has whatever access rights were specified on the AD provided for
the base object. The new AD has delete rights and has unchecked copy rights if
and only if the new refinement is at level 0.

For all four CREATE operators, an Object Descriptor Exhaustion fault can ocecur
if the specified SRO's object table is full.

An iAPX 432 operating system should handle these fault conditions transparent to
user software, automatically expanding object tables and physical storage objects
as needed, and clearing large objects. If necessary, user processes can be
suspended until the requested storage is available, then restarted transparently.



Memory Management iAPX 432 GDP

OBJECT LIFETIME STRATEGIES

A basic characteristic of iAPX 432 memory management is that storage
reclamation can be transparent to all programs except the operating system
kernel. Programs can create objects but do not need to delete them -- the
operating system and the iAPX 432 architecture cooperate to detect when objects
are no longer used and then reclaim them. An object's lifetime strategy
determines when and how it is deallocated, and derives from the lifetime strategy
of the SRO used to create the object. An operating system may also support
explicit deallocation of objects by calling an O.S. procedure.

STACK LIFETIMES

The most restrictive and most efficient lifetime strategy restricts access to
objects to the context that creates them and to subordinate contexts. The iAPX
432 hardware automatically deallocates such objects on returning from the
context that creates them. This is the stack lifetime strategy.

Each process has an associated stack SRO. These SROs are bound to their
associated processes; stack SROs cannot be created or referenced as objects
distinet from processes. The stack SRO is used by the context to create objects
local to the context. RETURN deletes all objects loecal to the context that are
created by the context. Note that context objects are preallocated by the
operating system and are not dynamically allocated and deallocated using stack
SROs.

GLOBAL HEAP LIFETIMES

The least restrictive (and most time-consuming) way to deallocate objects
requires an exhaustive search of memory that determines what objects are no
longer reachable from the programs in the system via a chain of ADs. Because
the only way that an object can be used by a program is via an AD, an object that
cannot be reached from any program via a chain of ADs is unusable and can be
deleted. Such unreachable objects are called garbage, and the operating system
program that finds and reclaims garbage objects is called the garbage collector.
The garbage collector can execute as a separate operating system process that is
able to run concurrently with other system and user processes. The garbage
collector algorithm is based on that of Dijkstra, et al ("On the Fly Garbage
Collection: An Exercise in Cooperation," Communications of the ACM, November
1978). The GDP performs one crucial part of the algorithm (the "mutator" role),
setting a Copied bit in an object descriptor whenever an AD that references the
object is copied. The lifetime strategy which reclaims objects only via garbage
collection is the global heap lifetime strategy. Objects allocated from a global
heap SRO have lifetimes that are not limited by the context or process in which
they are created.

4-6



iAPX 432 GDP Memory Management

LOCAL HEAP LIFETIMES

The third lifetime strategy is a hybrid of the other two: a heap SRO that is local
to a context. Objects created from such a local heap SRO are reclaimed in one of
two ways. First, during the life of the associated context, the system-wide
garbage collection process reclaims unreferenced objecets found in the local heap.
Second, on returning from the context, the local heap and all objects allocated
from it (that have not previously been garbage collected) are reclaimed by the
operating system.

Using a local heap, a context can create objects that are not local to it, but have
the scope of a superordinate, calling context. For example, suppose A calls B, B
creates a local heap at B's level, and B then calls C, passing an AD for the new
local heap. C, and any other procedures that C calls, can use the local heap SRO
to create objects with the same scope as objects created by B using the stack
SRO. When B returns, the local heap and objects created from it are reclaimed.

Reclaiming a local heap is not done by the GDP, but must be done by operating
system software. The operating system can remove Return Rights from the AD
to Calling Context in the context assoeciated with the local heap; this will cause a
fault when the RETURN operator is executed, and the operating system can then
reclaim the local heap and all objects allocated from it (relatively straightforward
because the local heap references a distinet object table used only for objects
alloeated from it).

FRAGMENTATION AND COMPACTION

Fragmentation is the division of free physical storage into noncontiguous blocks as
the result of allocations and deallocations. Due to fragmentation, a segment
allocation request can fail even if the total amount of free storage is larger than
the amount requested, because no single block of contiguous storage is large
enough.

Compaction reduces fragmentation of nonfrozen memory by relocating objeets in
physical memory to reduce the number and increase the size of the free storage
blocks. Compaction increases the quality (in larger block size and reduced
number of blocks to search) of free storage. Compaction can be done by the
operating system as a parallel process, invisible to users. The GDP supports
compaction by providing the Allocated bit in storage descriptors, which
determines whether the Base Address field is valid. While an object is being
relocated (and temporarily inaccessible), compaction can clear this bit, then move
the object, assign the new Base Address, and set the Allocated bit again. (This
process is complicated by the need to flush multiple processor caches of address
information, as described in Chapter 6, "Processor Management.")

MEMORY MANAGEMENT TRANSITIONS

Figure 4-2 ties together the three lifetime strategies, garbage collection, and
compaction in one illustration, showing the transistions between free memory,
allocated objects, and garbage.



Memory Management iAPX 432 GDP

COMPACTION
OBJECT CREATION
FREE
MEMORY A4
EXPLICIT DEALLOCATION
--local heaps, global heaps
A OBJECTS
RETURN
-- stacks, local heaps
RETURN
-- local heaps
GARBAGE
COLLECTION
GARBAGE | ELIMINATION OF OBJECT REFERENCES

--local heaps, global heaps

F-0284
Figure 4-2. Memory Management Transitions

VIRTUAL MEMORY

A computer architecture supports virtual memory if the architecture and
operating system can together create the illusion that the system's main memory
is larger than the amount of physical main memory in the system. For example, a
program in a virtual memory system may occupy 500K bytes of main memory, but
at a particular instant, only 200K bytes of that program may be present in the
system's physical main memory. The remaining 300K bytes of the program reside
on a mass storage device (e.g., a disk). If the program makes a reference to
information that is on the disk and not present in physical memory, the operating
system intervenes and "swaps", moving the referenced information from the disk
to main memory, and possibly moving least-referenced information from main
memory to the disk in order to keep enough free space in the main memory.

The intervention of the operating system to implement virtual memory is
transparent to most user programs; programs may execute more slowly but their
code does not need to be changed. Virtual memory makes a smaller faster
memory appear as a larger, slower memory.

4-8



iAPX 432 GDP Memory Management

Virtual memory provides these important advantages:

1. Programs can run on systems with varying amounts of physical
memory without modifying the program to take advantage of the
additional memory or to fit in less memory. Programs can be written
to run in a large virtual memory, and will execute faster or slower if
their is more or less physical memory in a system.

2. Programs can be simplified because the operating system
automatieally swaps in and out to mass storage as needed, eliminating
the need for application programmers to use program overlays and
intermediate data files.

3. In a multiuser system, an additional user does not have to be denied
access to the system if the system's physical memory is full; it is
possible to execute the new user's job and all jobs simply run more
slowly. (Note that there is still some upper limit on user activity on
the system, at which performance is severely degraded and the I/O
channels between main memory and mass storage are saturated.)

In a conventional virtual memory system, the units moved between main physical
memory and mass storage are fixed-size pages. For example, a page may be 1K
bytes, so that physical addresses 0 to 1,023 are page 0, addresses 1,024 to 2,047
are page 1, ete. A page may be the same size as a disk block, to optimize
swapping transfers. In such a system, a page table contains descriptors for the
pages that map virtual page numbers to physical page numbers and that contain
virtual memory control information, such as whether a page is present in main
memory or not.

In a conventional virtual memory system, the unit of protection ig large; tvnically
a job, which is mapped into a sequence of contiguous pages. All of these pages
have the same protection attributes which isolate the job from other jobs in the
system. Each job has a separate address space and to communicate with other
jobs or with I/O devices requires an operating system call to copy the information
being transferred. '

In the iAPX 432, the object addressing mechanism supports both protection and
virtual memory. In an iAPX 432 virtual memory system, the units swapped to and
from mass storage are objects, not arbitrary pages. (Note: To improve efficiency,
an iAPX 432 operating system may group related small objects together into a
swapping set that is swapped together, but the set still consists of distinet
integral objects, and the grouping is not visible to users.)

All of the iAPX 432 architecture's support for virtual memory is in the object
descriptor:

The allocated bit is set if the object is currently allocated in physical memory,
and can be cleared by the operating system if the object is swapped out.

The accessed bit is set by the GDP whenever the object is read or written. This
bit can be periodically cleared by the operating system; then if the bit is set when
looking for objects to swap out, the operating system can leave the object in main
memory because it has been recently used.



Memory Management iAPX 432 GDP

The altered bit is set by the GDP whenever the object is written. An object that
has not been altered may be a good object to delete from main memory if space is
needed. This is because such an object can be deleted without swapping it out;
the version on disk is still up-to-date.

Because the physical address of an object is contained only in its single object
descriptor, swapping an object into a different range of memory addresses than it
has previously used is straightforward; only the base address field of its single
object descriptor must be changed.

FROZEN MEMORY

In any iAPX 432 system that supports object relocation (compaction or virtual
memory), operating system designers need to distinguish memory that is not
normally relocated or otherwise made inaccessible, frozen memory. Frozen
memory may constitute a distinet part of physical memory, with a distinet frozen
global heap SRO; any stack SROs or local heap SROs allocated from the global
heap SRO should also be frozen. Frozen memory is used for objects that should
never be inaccessible, such as the object table directory, processor objects, and
the objects used by the memory management kernel itself. (Note: Memory
management may need to expand the object table directory if it becomes full, but
this is a special operation that would not be done by the normal compaction
process, and that would relocate the OTD within frozen memory itself.) Memory
that is not frozen is normal memory.

MULTIPLE PROCESSORS AND MEMORY MANAGEMENT

To improve performance in address translation, iAPX 432 processors cache
addressing information for referenced objects and object tables. Whenever an
iAPX 432 operating system process modifies addressing information in object
descriptors, it must make sure that all processors in the system flush their
addressing caches so that they are using correct information. This can be done by
broadcasting a REQUALIFY DATA OBJECT CACHE or REQUALIFY OBJECT
TABLE CACHE interprocessor message (IPC) to all processors in the system
(including to the processor that is executing the operating system process), and
waiting for all to respond. The caches and how they are flushed are described in
detail in Chapter 6, "Processor Management."

4-10



CHAPTER 5
PARALLEL PROCESSING

This chapter describes the iAPX 432 architecture's support for true parallel
processing, simultaneous execution of multiple programs by multiple processors.
This chapter covers these topies:

] processes as units of parallel execution

° interprocess communication

° support for process and processor synchronization
° transparent multiprocessing

° process scheduling

Chapter 6, "Processor Management," describes GDP caches, interprocessor
communication, GDP dispatching modes, and GDP initialization.

PROCESSES

A process represents a program activation or subprogram activation that can
execute at the same time (in parallel, concurrently) as other processes. For
example, if three persons are using the same computer system at the same time,
then each user can be represented by a separate process. Processes can also be
used to represent I/O devices. Thus a printer and a card reader attached to a
system can operate concurrently if they are handled by separate processes. An
i1APX 432 process is represented by a distinet type of system object, called a
process object. Also associated with a process and its process object are these
other objects:

. process globals object

° process stack object table

° process stack physical storage object
° process carrier

° a current context, one of a doubly-linked list of preallocated contexts for
the process

Objects not subordinated to the process but referenced by it include a dispatching
port, scheduling port, and fault port.

5-1



Parallel Processing iAPX 432 GDP

The process globals object of a process is part of the access environment of every
context executing within the process. The process globals object can be entered
as an environment by using the COPY PROCESS GLOBALS operator. The process
globals object can be used by an operating system, e.g., to reference standard I/0O
interfaces to be used within the process.

The process stack object table and stack physical storage object are part of the
process stack SRO, used for stack allocation and deallocation of objects local to
contexts of the process. Storage allocation, deallocation, and stack SROs are
described in more detail in Chapter 4, "Memory Management."

The process carrier is the default carrier used in interprocess communication by
the process, and is also used for process scheduling and dispatching.

Context objects, preallocated contexts, and their role in program organization are
described in Chapter 2, "Program Organization."

A process is sent to its dispatching port to schedule it for execution and then
dispateh it to run on a particular GDP.

A process is sent to its scheduling port if it has been allotted a limited number of
periods (time slices) executing before its scheduling parameters must be
reevaluated by operating system software; the process is sent to the scheduling
port when it has used up its allotted number of periods.

A process is sent to its fault port if it encounters a process-level fault. Faults,
fault levels, and fault handling are described in Chapter 12, "Fault and Trace
Reference."

The data part of a process object contains scheduling parameters, used to decide
the order in which competing processes are dispatched to run on a processor; a
process data part also contains status information and a process clock that
records the execution time received by the process.

INTERPROCESS COMMUNICATION

Many programming applications that use multiple processes require those
processes to communicate; for example, if user programs and I/O devices are
represented by processes, then printing a report requires transferring information
from the process executing the user program to the process handling the printer.
Two natural parts of interprocess communication are queuing and blocking.
Suppose that one process in a system manages all disk transactions, reading and
writing blocks on behalf of requestor processes and then sending them
acknowledgement and any results (such as the value of a read-in block). If
requests for disk transactions arrive while the disk process is busy, the new
requests must be queued, must wait. A process that makes a disk request must
usually wait for the request to be processed before it can execute further; i.e., it
blocks waiting for the reply. Similarly, when no process is requesting disk
transactions and all previous work is done, the disk service process blocks waiting
for new work. When a process blocks, the GDP executing it is freed to execute
some other process that is ready to run.



iAPX 432 GDP - Parallel Processing

These objects are used in interprocess communication:

® messages any iAPX 432 object for which an access descriptor is sent from
a sending process to a receiving process

® carriers  system objects that carry messages on behalf of processes

° ports system objects that queue messages and carriers

The basic operations on these objects are:
° sending a message in a carrier to a port
® receiving a message in a carrier from a port

Both of these operations can invoke a third operation, the forwarding of the
carrier to a second port.

The iAPX 432 provides both simple and enhanced forms of interprocess
communication; the simple model is the most frequently used.

In the simple model, processes are the active agents that send and receive
messages at ports, and the process carriers are implicitly used. Processes wait at
ports to send messages if the port is full and to receive messages if the port is
empty. In this model, the First-In-First-Out (FIFO) queue of blocked processes
waiting at a full port is an unbounded extension of the port's limited message
queue. The simple model also supports variants of send and receive that transfer
a message only if the operation does not block. A Boolean parameter is assigned
true or false to indicate the success or failure of such a conditional operation.

In the enhanced model, surrogates can be created that wait to send or receive
messages in place of processes. Also, priorities can be associated with surrogates
and used for prioritized message enqueuing within ports (although the queue of
waiting processes and surrogates is still FIFO). Finally, the enhanced model
supports the forwarding of surrogates to a second port after they have completed
their first port operation.

The simple and enhanced model are unified by the concept of carriers for
messages. A carrier is associated with each process and represents the process
when the process must wait at a port. Users can also create carriers explicitly to
act as process surrogates. This chapter reflects the underlying unity of the
mechanism by explaining the simple and enhanced operations together.



Parallel Processing iAPX 432 GDP

MESSAGES

Messages are transferred by copying access descriptors. Figure 5-1 illustrates the
steps in transferring a message AD between processes. After a message is sent,
both the sender and the receiver have accesses for the message. Delete rights are
set on received ADs, just as if they were explicitly copied. Note that null ADs
containing embedded data values can be used to transfer small messages (ordinal
values in the range 0 .. 291 - 1) without referencing a message object. Embedded
data values are described in Chapter 9, "Object Set."

message AD
in sender’s
context

any SEND to not -full port

with no carriers waitin any SEND to empty port
any SEND to full port € with carrier waiting
message AD message AD message AD
in sending in port g .| inreceiving
carrier waiting RECEIVE queue SURROGATE_RECEIVE carrier, which
atport COND_RECEIVE - isforwarded
SURROGATE_RECEIVE
RECEIVE software read message AD
COND_RECEIVE (if surrogate carrier),or
l hardware (if process carrier)
message AD
inreceiver's
context

F-0252-1

Figure 5-1. Message AD Transfer




iAPX 432 GDP Parallel Processing

PORTS

Ports are system objects that provide queuing mecharnisms supported by the iIAPX
432 processors, consisting of two queues for each port, a bounded message queue
and an unbounded carrier queue. The message queue of a port contains the
message ADs that have been sent to the port but not yet received. The message
queue also contains a queuing value for each message entry that determines where
it is inserted in the message queue. The queuing value is either 0 (for simple port
operations or FIFO ports) or is determined from the surrogate carrier used in
sending the message. The port's queuing discipline specifies that messages are
enqueued either FIFO, by priority, deadline within priority, or by delay. Deadline
within priority enqueuing is normally used only for dispatching ports. Delay
enqueuing is normally used only for delay ports. Both dispatching and delay ports
are described in subsequent sections of this chapter. For priority ports, messages
with higher priority are enqueued first and queuing is FIFO within the same
priority.

The message queue has a maximum number of entries that is fixed when the port
is ereated and cannot be changed. When the number of messages in the queue
equals the maximum, the port is said to be full; when a message is sent to a full
port, the operation blocks and the sending carrier must wait in the carrier queue.
When the message queue has no entries, the port is said to be empty; when a
receive is executed on an empty port, the operation blocks, and the receiving
carrier must wait in the carrier queue.

The carrier queue is an unbounded FIFO queue with two uses; it can contain
carriers waiting to receive a message from the port (if the port is empty) or
carriers waiting to send a message to the port (if the port is full). Because these
cases are mutually exelusive, only one carrier queue is needed.

Ports are completely described in Chapter 9, "Object Set."

CARRIERS

Carriers transport messages to and from ports. Also, surrogate carriers provide
message queuing values. A process carrier is associated with each process.
Process carriers are used by the SEND and RECEIVE operators. If a process
carrier blocks at a port, then the associated process blocks also. The forwarding
of a process carrier sends it to a dispatching port so that its associated process
can run.

Surrogate carriers act as surrogates on behalf of processes. For example, a
process can wait at multiple ports for any message sent to any of the ports, by
creating a surrogate to wait in its place at each of the ports. Each of the
surrogates is forwarded to a single common port whenever it receives a message.
The process can then wait at the single common port for the arrival of a
surrogate, remove the message received by the surrogate, and cause the surrogate
to again wait at its assigned port for another message.

Processor carriers are a third type of carrier, but are not used in interprocess
communication. All three types of carrier are described in Chapter 9, "Object
Set."




Parallel Processing iAPX 432 GDP

SENDING MESSAGES

Sending a message requires a carrier and two ports. The carrier transports the
message to the first port and waits if the port is full. When the message is
delivered to the first port, the carrier is forwarded to the second port.

Two operators always send messages. SEND implicitly uses the sending process's
carrier with the dispatching port as the second port. SURROGATE SEND uses an
explicitly specified surrogate carrier and second port. For both operations:

1. If the port is full, then the message is copied into the sending carrier,
which is appended to the FIFO queue of waiting carriers.

2.  Otherwise, if the port is empty and carriers are waiting to receive
messages, then the message is copied into the first waiting carrier,
which is removed from the carrier queue and forwarded to its second
port.

3. Otherwise, the message and queuing value are inserted into the port
message queue,

A SEND in which the process carrier must wait is called a blocking send, and the
sending process blocks with its carrier. When space in the message queue
eventually becomes available, the blocked process's message is enqueued and the
process carrier is dequeued and forwarded to its dispatching port.

A nonblocking SEND does not involve the process carrier. In SURROGATE SEND,
the surrogate carrier is forwarded to its second port even if it does not block at
the first port.

The queuing value used to insert the message is zero for SEND or if the port's
queuing discipline is FIFO. For a SURROGATE SEND to a priority port, the
queuing value is the priority from the surrogate carrier.

A third operator, CONDITIONAL SEND, never blocks. If the port is full, the
message is not sent and a Boolean destination operand is cleared to false.
Otherwise, the message is sent as described for SEND and the boolean parameter
is set to true.

RECEIVING MESSAGES

Receiving a message uses a carrier and two ports. The carrier receives the
message at the first port and is then forwarded to the second port.

Two operators always receive messages. RECEIVE implicitly uses the receiving
process's carrier with the dispatching port as the second port. SURROGATE
RECEIVE uses an explicitly specified surrogate carrier and second port. For both
operators:



iAPX 432 GDP Parallel Processing

1. If the port is empty, then the carrier is appended to the FIFO queue of
waiting carriers.

2. Otherwise, the first entry in the port message queue is dequeued. For
RECEIVE, the message is copied into the receiving context and the
process carrier is never used. For SURROGATE RECEIVE, the
message is copied into the surrogate carrier.

If the port is full and carriers are waiting to send messages, then the
first waiting carrier is dequeued, its message is inserted in the port
message queue, and the dequeued carrier is forwarded to its second
port.

Last, for SURROGATE RECEIVE, the surrogate carrier is forwarded,
carrying the received message to its second port. The receiving
process must execute some form of receive on the second port to get
the surrogate carrier, and must then read the carried message from
the surrogate carrier.

A third operator, CONDITIONAL RECEIVE, never blocks. If the port is empty, no
message is received and a Boolean destination operand is cleared to false.
Otherwise, the message is received as described by RECEIVE and the Boolean
parameter is set to true.

FORWARDING CARRIERS

When a SURROGATE SEND or SURROGATE RECEIVE operation completes, the
surrogate carrier is sent to its second port. This second operation is called
forwarding the carrier to its second port. The forwarding of a surrogate carrier is
optional; if the second port AD is a surrogate operation is null, the carrier is not
forwarded. A forwarded carrier is itself the message that is sent to the second
port. A carrier forwarded from a SURROGRATE SEND operation carries no other
message. A carrier forwarded from a SURROGATE RECEIVE operation carries
not only itself but the received message as well; such a carrier must be received
as a message from its second port, before reading the carried message.

Forwarding is also used to reschedule processes blocked in a simple SEND or
RECEIVE operation. The carrier implicitly specified for these operations is the
process carrier, and the implicit second port is the process's dispatching port.
When a process that was waiting to receive a message is received by a processor
from the dispatching port, the processor automatically completes the receive
operation by copying the message AD from the process carrier to the receiving
context (and then nulling the message AD in the process carrier). A difference in
forwarding process carriers and surrogate carriers is that surrogate carriers are
always forwarded (if their second port is not null) while process carriers are
forwarded only if an operation blocks. This difference is understandable; if a
process does not block, there is no need to reschedule it and thus no need to
forward its carrier to the dispatching port.

5-7



Parallel Processing iAPX 432 GDP

PROCESS AND PROCESSOR SYNCHRONIZATION

Any system that supports multiple processes must provide means to synchronize
the execution of processes that share data or resources, so that they do not
interfere with one another. For example, if several processes use a shared printer
for their reports, the processes must synchronize use of the printer. Otherwise, a
line sent from process A could be followed by a line sent from process B, ete.,
making the output unreadable.

A process may need exclusive access to a particular data structure or resource for
a very short time or for a much longer time. For example, a process that is
updating a shared field by adding 5 to the present value needs exclusive access to
the field for the time required to read the old value, add 5, and write the updated
value--a duration of a few microseconds or less. For another example, a process
that is printing a lengthy report may need exclusive access to the printer for
many minutes. An example that is between these two in duration is the searching
and updating of shared object data structures in certain high-level GDP
operations, such as sending a message to a port or creating a new object from a
shared heap SRO; these operations can take dozens of microseconds.

Three synchronization strategies are used in the iAPX 432: indivisible operators,
object locks, and using interprocess communication for synchronization.

Indivisible operators are used to update a single short-ordinal or ordinal data field
in a single indivisible uninterruptable transaction. A special Read-Modify-Write
(RMW) bus cycle is used by these operators, so that no other processor can access
such a field in the interval between reading and writing it. Indivisible variants of
the short-ordinal and ordinal ADD and INSERT operators are provided. The
previous value of the modified field is pushed onto the operand stack by these
operators.

An object lock is a double-byte field in the data part of an object, used to get and
release exclusive access to the object. Many system objects contain object locks.
GDP operators, such as SEND or CREATE OBJECT, always use object locks in
such objects as ports and heap SROs to ensure exclusive access; operating system
modules that manage such system objects should also respect the locking
conventions, which are defined in Chapter 9, "Object Set." Object locks are used
by processors (e.g., when dispatching from a dispatching port), by processes for a
single instruction (such as a SEND operation), and by processes for multiple
instructions, delimited by the operators LOCK OBJECT and UNLOCK OBJECT.
The LOCK OBJECT operator, if it finds that the lock is not available, waits 300
processor cycles and retries the lock, waiting and retrying up to 32 times before
returning an indication that the lock operation failed. Object locks are
appropriate and efficient for synchronization when a lock is normally held for a
short time (i.e., less than a millisecond). An advantage of objeect locks is that the
identity of the locking processor or process is stored in a busy lock, and only the
same processor or process can normally release the lock.

5-8



iAPX 432 GDP Parallel Processing

Ports and interprocess communication can be used for process synchronization in
two ways: by using a server process and by using a port as a semaphore. In the
server process approach, the resource or data structure to be synchronized is only
accessed by a single server process. For example, a disk drive may be accessed by
only a disk server process. Other processes that need to access the disk send
request messages to a request port; the disk server process receives the requests,
acts on them one at a time, and acknowledges each request by sending a reply
message to a repiy port; each requestor normaily uses a separate reply port, and
the reply port to be used for a particular request can be specified in the request
message.

In the semaphore approach, a port with one entry in its message queue is used to
indicate if the resource or data structure is available or not. The entry itself is
not relevant, but simply indicates resource availability by its presence or absence.
For example, the port being empty can indicate that the resource is available. A
process gets exclusive access to the resource by SENDing a message to the port.
The port is now full and subsequent SENDs by other processes trying to obtain the
resource will block. When the using process no longer needs exclusive access to
the resource, it RECEIVEs from the port. If no other processes are waiting, the
RECEIVE makes the port empty and indicates that the resource is available; if
processes are waiting, then the first waiting process unblocks and has exclusive
access to the resource.

One advantage of the server process approach is that, properly designed, service
cannot be disrupted by the abnormal termination or suspension of a requesting
process; if a requesting process fails, it simply never picks up its reply from its
reply port. (Note that the server process should use the CONDITIONAL SEND
operator and not SEND to send the reply to the reply port, so that the server
process never blocks because of a problem with the requestor-specified reply port;
it is up to the requestor to ensure that the reply port will not be full and the
CONDITIONAL SEND will succeed.) In contrast, when using a semaphore, if a
process is abnormally terminated while holding the semaphore, then all other
users of the semaphore will block when they attempt to get it.

TRANSPARENT MULTIPROCESSING

iAPX 432 programs can be designed and implemented independent of the number
of GDPs in a system. GDPs are homogeneous servers that execute ready
processes, and more or fewer GDPs simply means faster or slower execution,
without causing software changes. This is called transparent multiprocessing. A
good analogy is a modern bank, with a single line of customers served by (a
varying number of) multiple tellers. The transactions and how they are carried
out (the programs) are independent of which teller waits on a customer; for the
purpose of doing normal business with the banks, the tellers are interchangable. A
change in the number of tellers does not change how the bank does business, but
simply makes customer service faster or slower.

9-9



Parallel Processing iAPX 432 GDP

Transparent multiprocessing is implemented by the GDP architecture using the
same basic mechanisms as interprocess communication: ports, carriers, and
messages. A special port, called a dispatching port, is used to queue ready
processes that are waiting for a GDP to execute them. Dispatching ports
normally use a more complex queuing discipline than other ports, deadline within
priority queuing; this queuing discipline is designed to support process scheduling.
Processes are forwarded to dispatching ports using their process carriers. GDPs
pick up processes to run by receiving them from dispatching ports, using their
processor carriers. The messages being sent and received are the processes
themselves. If a dispatching port is empty, then there are no processes ready to
run at the port, and a GDP attempting to receive a process itself blocks, idling.
When another GDP sends a process to the dispatching port, it "wakes up" the
waiting GDP to execute the process; the waking up uses the interprocessor
communication facilities described in Chapter 6, "Processor Management."

PROCESS SCHEDULING

If there are more processes ready to run than there are GDPs in a system, then
processes must compete for execution time, to determine which processes will
execute before other processes, and to determine how long a process can execute
before it must give another process a turn. Determining the order in which ready
processes will be dispatched and how long they can run is called process
scheduling. Four parameters control process scheduling: priority, deadline,
service period, and period count. Priority and deadline are contained in the
process carrier; service period and period count are contained in the process
object. The deadline and service period parameters use the concept of a system
time unit (256 microseconds in 432/600 systems), the GDP's basic "tick" or unit of
passing time, determined by an external circuit that periodically asserts the
GDP's PCLK pin.

The priority field is a short ordinal; the lowest priority is zero; the highest is
65,535. When processes with different priorities are at a dispatching port, the
process with the highest parameter is always dispatched first.

The deadline field is a short ordinal ranging from 0 to 214-1 that indicates the
number of system time units that a process can or should wait for dispatching
relative to other processes. When a process is queued at a dispatching port, its
deadline value is equal to the number of system time units that it has waited in
the message queue minus the value from its deadline field. For example, consider
process A that has waited 400 time units for dispatching, with a deadline
parameter of 500, and process B that has waited 100 time units for dispatching,
with a deadline parameter of 50. A's deadline value for queuing is 400 - 500 = -
100. B's deadline value for queuing is 100 - 50 = 50. B is queued ahead of A, even
though A has waited longer (presuming A and B have the same priority).

Processes in a dispatching port's message queue are ordered first by priority, then
by computed deadline value (computed as described above), and last, FIFO within
the same deadline value within the same priority value. Note that if a dispatching
port is full, so that ready processes are in the port's carrier queue, that the
processes in the carrier queue are in FIFO order, and only scheduled when inserted
in the message queue.

5-10



iAPX 432 GDP | Parallel Processing

A process's service period is the number of system time units that the process is
allowed to execute before being suspended and redispatched, to allow other
processes to compete for execution time.

The period count parameter is the number of times that the process can be
dispatched before being sent to its scheduling port. It can be used by operating
system software to impose a time limit on total process execution time, or to
periodically "tune" process scheduling parameters. The pericd count is a short
ordinal; a period ecount value of 65,535 indicates an infinite period count which is
never decremented and never causes the process to be sent to its scheduling port.
For a finite period count N, the process's execution time is limited to N times its
service period, before the process is sent to its scheduling port. If operating
system software needs to halt execution of a process, it can set the period count
to zero, guaranteeing that the process will report to the operating system via its
seheduling port as soon as any current service period is completed.

5-11






CHAPTER 6
PROCESSOR MANAGEMENT

This chapter descriibes these aspects of processor manage r.nent:'
1.  GDP caches
2. interprocessor communication
3. normal GDP execution cyele
4, GDP dispatching modes

5. GDP initialization

GDP CACHES

This section describes information cached by GDPs from various objeects to
support object addressing and program execution. Internal GDP registers or
associative memory holds copies of frequently used information, such as the
current instruction pointer or the physical address of the most-recently-used
object table. These internal memories (caches) cannot be directly read or written
by iAPX 432 programs, which can only access information within objects.

The caches significantly speed up program execution. The only programmers who
need to concern themselves with the caches are operating system designers and
implementers. The caches are of concern to operating system programmers only
when the caches hold different values than the fields that they should represent in
different objects. Ensuring cache integrity is complicated by multiprocessing, in
which multiple GDPs may cache the same fields. There are five GDP caches:
data object cache, object table cache, context cache, process cache, and
processor cache.

DATA OBJECT CACHE

All iAPX 432 instruction operands are located in the data part of some object;
even operations on access descriptors must designate the ADs via an indirect
access selector in the data part of some object. The data object cache contains
addressing information, taken from object descriptors, for the most-recently-used
"data objects" (objects with an operand in their data part). Note that no
information from these objects is cached, but just addressing information (such as
base address and length). The cache is associative; every time a GDP references
an operand in the data part of an object, the cache responds (a "hit") if addressing
information for that object is in the cache. Otherwise the cache indicates a
"miss"; the addressing information is not in the cache and must be read from the
object descriptor in memory; the information read is then added to the cache,
displacing the least-recently-used entry.



Processor Management iAPX 432 GDP

There are some operating system actions that can invalidate entries in the data
object cache. The following two examples illustrate such actions and how the
operating system can maintain cache integrity:

1. If a data object is to be relocated in memory (by compaction) or
swapped out to disk (in a virtual memory system), then it must be
marked as inaccessible, by clearing the Allocated bit in the object's
OD. The operating system software that clears this bit in the OD
must ensure that all processors (GDPs and IPs) update their data
object caches before the object is relocated or swapped. Otherwise, a
processor with cached addressing information for the object could read
or write memory where the object used to be, a protection violation.
To ensure that all data objeet caches are updated, operating system
software must send the REQUALIFY DATA OBJECT CACHE IPC to
all processors, and wait for all processors to acknowledge that they
have received and executed the IPC.

2. If an object is to be deallocated while ADs for it may still exist (i.e.,
before it is eligible for garbage collection or deallocation by Return
from a subprogram call), then the object's OD must be marked as
invalid before deallocating memory used by the object. The operating
system software that changes the OD must ensure that all processors
(GDPs and IPs) update their data object caches before the object's
memory is deallocated. Otherwise, a processor with cached addressing
information for the objeect could read or write memory where the
object used to be, a protection violation. To ensure that all data
object caches are updated, operating system software must send the
REQUALIFY DATA OBJECT CACHE IPC to all processors, and wait
for all processors to acknowledge that they have received and
executed the IPC.

OBJECT TABLE CACHE

The object table cache contains addressing information, taken from object
descriptors, for the object tables most-recently-used for object addressing. Note
that this cache doesn't contain information from the object tables but from the
ODs for the object tables. The cache is associative. Every time a GDP
references an operand, it is via some object table; the cache responds (a "hit") if
addressing information for the object table is in the cache. Otherwise, the cache
indicates a "miss"; the addressing information must be read from the object table
OD in the Object Table Directory in memory; the addressing information read is
then added to the cache, displacing the least-recently-used entry.



iAPX 432 GDP Processor Management

If an object table is to be relocated in memory (by compaction) or swapped out to
disk (in a virtual memory system), then it must be marked as inaccessible, by
clearing the Allocated bit in the object table's OD. The operating system software
that clears this bit must ensure that all processors (GDPs and IPs) update their
object table caches and data object caches before the object table is relocated or
swapped. The data object caches must be flushed in case any of the data object's
ODs come from the now-inaccessible object table; all such objects must now be
inaccessibie as weli; if the addressing information for such objeects is no longer
cached and the addressing information for the object table is no longer cached,
then any attempt to reference such objects will fault because the object table is
inaccessible. To ensure that all these caches are updated, operating system
software must send the REQUALIFY OBJECT TABLE CACHE IPC to all
processors and wait for all processors to acknowledge that they have received and
executed the IPC. This IPC flushes both the object table cache and the data
object cache in each processor that receives and executes it.

CONTEXT CACHE
These fields in the current context are cached by the GDP:

AD to Current Context (Environment 0)

AD to Environment 1

AD to Environment 2

AD to Environment 3

Context Status

Operand Stack Pointer

Instruetion Object DAI

Instruction Pointer

top double-byte (if any) of the Operand Stack

All of these fields except the AD to Current Context can change within the GDP
during context execution, without being updated in memory. Thus, these fields
cannot be read from memory or altered by writing into memory during context
execution. The Current Context AD can be read, but lacks delete rights and
cannot be written.

The Environment 1, 2, and 3 ADs in the GDP are modified by ENTER
ENVIRONMENT or COPY PROCESS GLOBALS operators. The Context Status in
the GDP is modified by the SET CONTEXT MODE operator. The Operand Stack
Pointer in the GDP is modified by stack addressing modes or the ADJUST STACK
POINTER operator. The Instruction Object DAI and Instruction Pointer in the
GDP are modified by branch instructions, context fault-handling, or trace-
handling. The top-of-stack register is filled when a double-byte is pushed on the
stack; any double-byte value already in the register is flushed to memory. The
ADJUST STACK POINTER operation flushes any value in the top-of-stack
register to memory.



Processor Management iAPX 432 GDP

When a context is called, all cached values for the calling context are flushed to
memory, except the Current Context AD, which ecannot have changed within the
calling context. Then all context cache entries are filled with their initial values
for the new context. The Environment 2 and 3 ADs are always null initially. The
Context Status is inherited from the calling context and thus need not be
reloaded. The top-of-stack register is initially marked as empty.

When a context returns, there is no need to update memory with cached fields,
because all cached fields are local to a call, and the call is over. On return, all the
cache entries are reloaded from the returned-to context (except the top-of-stack
register, which is just marked as empty). Note that the context status is
reloaded, so that any changes in context status made in the called context are
loeal to the call.

The REQUALIFY CONTEXT IPC flushes the context cache and the data object
cache of the processor that receives and executes it.

PROCESS CACHE

The process cache contains information cached by the GDP from a process
executing on the GDP. This section does not list the fields cached. However, the
field Period Count is guaranteed not to be cached. This allows operating system
software to force a process to report to its scheduling port, by writing a zero in
this field.

When a process stops executing on a processor (to wait at some port), the process
cache and context cache are flushed to memory. When a processor dispatches a
process, the process cache and context cache are loaded from memory. The data
object cache and object table cache are not affected in any special way by
process suspension or processor redispatching.

A process (at any instant) can be executing on only one GDP, therefore, only one
GDP can be caching information in its process cache for a particular process at a
particular instant.

The REQUALIFY PROCESS IPC flushes the process cache, the context cache, and
the data object cache of the processor that receives and executes it.

PROCESSOR CACHE

The processor cache contains information cached by the GDP from its processor
object. This section does not list the fields cached. However, the processor
cache does include addressing information for the Object Table Directory in
addition to fields from the processor object. The REQUALIFY PROCESSOR IPC
flushes the processor cache and all other GDP caches. For example, all
processors would be sent this IPC if operating system software had to expand and
relocate the Object Table Directory in memory.

6-4



iAPX 432 GDP

NOTE

The REQUALIFY PROCESS IPC does not funetion
correctly on current GDPs if the GDPs are allowed to
become idle. The operating system designer should either
provide special "idle processes" to keep any GDPs from
going idle, or should use the REQUALIFY PROCESSOR IPC

Processor Management

in place of the REQUALIFY PROCESS IPC.

CACHE SUMMARY

Figure 6-1 shows the GDP caches, the relationships between the caches, and the

IPCs that flush various caches.

processor cache
[

process cache

object table cache

context cache

data object cache

NOTES

REQUALIFY PROCESSOR (IPC 7)

REQUALIFY PROCESS (IPC 8)

REQUALIFY OBJECT TABLE CACHE
(IPC 5)

REQUALIFY CONTEXT (IPC 9)

REQUALIFY DATA OBJECT CACHE
(IPC 10)

Flushing the data object cache does only that.

Flushing the object table cache also flushes the data object cache.
Flushing the context cache also flushes the data objeet cache.
Flushing the process cache also flushes the context cache and the data

object cache.

Flushing the processor cache flushes all caches.

Figure 6-1. GDP Caches




Processor Management iAPX 432 GDP

INTERPROCESSOR COMMUNICATION

Processes can affect the operation of processors by sending them InterProcessor
Communications (IPCs) using the SEND TO PROCESSOR operator. Interprocessor
communication to a processor is via one of two Processor Communication Objects
(PCOs) referenced by the processor object. The local PCO, unique to the
processor, is used to send an IPC to just one processor. The global PCO, shared by
all processors or a pool of processors, is used to send an IPC to all processors that
reference the global PCO. Chapter 9, "Object Set," describes Processor
Communication Objects. Chapter 10, "Operator Set," describes the SEND TO
PROCESSOR operator. Table 6-1 lists IPCs defined for GDPs.

Table 6-1. GDP IPCs

Code Category/Name Notes
Control:
0 Wakeup Used in dispatehing, to wake up an idle

processor when a process is bound to it.

1 Start Causes a processor to begin executing a
process bound to it or to proceed to a
dispatching port, depending on its state
and current dispatching port.

2 Stop Causes a process to stop executing any
current process, flush its process,
context, and data object caches, and idle,
waiting for another IPC.

6 Reset Processor Causes a processor to flush all caches
and execute the processor initialization
sequence,

Global IPC Acceptance:
3 Accept Global IPCs
4 Ignore Global IPCs

Cache and Object Requalification:

5 Requalify Object Table Cache

7 Requalify Processor

8 Requalify Process

9 Requalify Context

10 Requalify Data Object Cache
Dispatching Modes:

11 Enter Normal Mode

12 Enter Alarm Mode

13 Enter Reconfiguration Mode

14 Enter Diagnostic Mode




iAPX 432 GDP ' - Processor Management

NORMAL GDP EXECUTION CYCLE

When a GDP is executing a process, it executes instructions and checks for three
different events between instructions:

° receipt of an IPC, via local or global PCOs (global only if processor is set to
accept global IPCs). The IPC is executed and acknowledged. Control then
resumes, uniess the IPC changed the dispatching mode or otherwise
suspended process execution.

. process timeout; the process must be suspended and redispatched (if periods
remaining) or sent to its scheduling port (if no periods remaining); the
processor must then redispatch.

° a trace event; return information is saved and the next instruction will be
taken from the trace instruction object as described by Chapter 12, "Fault
and Trace Reference."

The order in which these different events are checked for and handled is not

defined by this manual.

GDP DISPATCHING MODES

Normal GDP scheduling and dispatching is non-preemptive; once a process is
dispatched, it runs until it blocks at some port or until its time slice expires.
Even the arrival of a higher-priority process at a dispatching port does not
preempt a running process. The lack of preemptive scheduling is not normally a
problem in iAPX 432 central systems, because I/O interrupts and real-time
processing are handied in peripheral subsystems. However, some exceptional
events can require rapid response even in the central system:

1. A power-failure alarm requires orderly system shutdown in fractions
of a second.

2. A hardware failure requires immediate system software action to
reconfigure the system without the failed component.

3. A violation of system integrity has been discovered (e.g., a corrupted
object table or processor object), requiring immediate diagnosis and
possibly repair.

It would be wasteful to require a dedicated GDP reserved for each such class of
exceptions; instead GDPs can function in one of four dispatching modes. A GDP
that receives an IPC to enter another dispatching mode stops executing any
current process (flushing caches but not redispatching the process) and can
immediately begin executing an alternate process bound to an alternate process
carrier. Each GDP can reference four process carriers and four dispatching ports,
a process carrier and dispatching port for each dispatching mode.

6-7



Processor Management iAPX 432 GDP

When entering a new dispatching mode, a processor does the following:

IF the new processor carrier is bound to a process,
begin executing that process.

ELSIF the new processor carrier is queued at an empty dispatching port,
the processor idles.

ELSE
the processor redispatches at the new dispatching port.

END IF

The four dispatching modes are:

NORMAL The normal mode for both user and system processes, and
the mode in which GDPs start. The ENTER NORMAL
MODE IPC is used to return to this mode.

DIAGNOSTIC  Entered by the GDP to handle a processor-level fault, or in
response to a master/checker error (hardware HERR pin is
also asserted) or if it receives the ENTER DIAGNOSTIC
MODE IPC.

RECONFIGURATION
Entered if the GDP receives the ENTER
RECONFIGURATION MODE IPC, and intended to be used
for dynamic hardware reconfiguration, especially in fault-
tolerant systems.

ALARM Entered if the GDP's hardware ALARM pin is asserted, or
if it receives the ENTER ALARM MODE IPC.

GDP INITIALIZATION

A GDP initializes when its hardware INIT pin is asserted or when it receives the
RESET PROCESSOR IPC. The GDP reads its own 8-bit processor ID from
interconnect address space location 0 (implemented separately for each
processor). The GDP assumes that the initial Object Table Directory begins at
physical location 8 in the storage address space. The GDP reads the addressing
information for the Processor Object Table from the initial OTD, then uses its
processor ID to index into the Processor Object Table and read addressing
information for its own GDP processor object. The GDP verifies ("qualifies") the
type of the processor object and may check other attributes as well. Initialization
does not start the GDP executing any process and does not even queue it at any
dispatching port; a START IPC must be sent to the GDP for it to begin
dispatching.

6-8



CHAPTER 7
INSTRUCTION INTERFACE

Like traditional data processors, the GDP executes a sequence of instructions to
accomplish a programmed operation. The GDP's instruction interface is the set of
architectural features that define how operators and operand references are
encoded to make up instructions, how instructions are fetched and interpreted by
the processor, and how operands are addressed via the available operand reference
modes. This chapter deseribes the GDP's instruction interface. The function of
instruetion -components and the modes of operand addressing are described in
detail. Basic instruction execution and physical address generation are also
described.

INSTRUCTION EXECUTION ENVIRONMENT

CURRENT CONTEXT

The GDP's instruction interface is fundamentally affected by the fact that the
iAPX 432 architecture is object-based. This is reflected in the fact that the GDP
executes user programs that are encoded in system-typed objects called
instruction objects. These instruction objects are part of the defining domain of
the eurrent program environment. The domain objeect is the architecture's object
representation of the Ada language's package construet.

The currently active execution environment is represented by another system-
typed object called a context object. The current context is best thought of as
the activation record for an invocation of a subprogram or procedure
(programmed, for example, at the source level within an Ada package). Among
other things, the current context defines the logical access environment currently
available to the program.

The context (or logical) access environment consists of four environments. The
current context object is one of them and is not changeable. The other three are
dynamically changeable under program control. The three dynamic environments
are referred to as ENV1, ENV2, and ENV3. The current context itself is called
Environment 0 (ENV0). Each entered environment object contains ADs in its
access part that reference objects directly accessible to the program via that
environment. Since a running program can dynamically change its own logical
access environment by using appropriate operators in the operator set, the four
environments together define the instantaneous access environment of the
program. Since the instantaneous access environment can only be changed by
explicit instructions, it does not change during operand evaluation. For more
information on access environments see the Program Organization chapter of this
manual.

7-1



Instruction Interface iAPX 432 GDP

Figure 7-1 illustrates the general instruction execution environment.

! iNsTRUCTION
OBJECT

CURRENT CONTEXT

CURRENT
INSTRUCTION
OBJECT

TO CALLING :
CONTEXT ENVI

ENV2
ENV3

OPERAND

AD

DIRECTLY
____—I ACCESSIBLE
ENTERED OBJECT

ENVIRONMENT
OBJECTS

F-0353
Figure 7-1. Instruction Execution Environment

INSTRUCTION OBJECTS

Instruction objects are system-typed objects containing a sequence of intructions
that constitute a programmed software operation. Typical compilers will compile
the instructions for a source-level subprogram (procedure or funection) into an
instruction object. Only instructions obtained from such a system object are
executable. Any attempt to execute instructions from some other type of object
will cause the GDP to fault.

Unlike data items, instructions are not constrained to fit within the fixed length
formats characteristic of the computational data types. Instead, a GDP views an
instruction object as containing a contiguous stream of bits called an instruction
stream. Individual processor instructions, which contain a variable number of
bits, may begin at any bit displacement within an instruction object.

7-2



iAPX 432 GDP Instruction Interface

The location of a GDP instruction is specified by a bit displacement from the
beginning of the instruction object data part to the first bit of the instruetion.
Such a displacement is limited to a 16-bit representation and thus has a maximum
value of 65,535 as a bit displacement, or 8,191 as a byte displacement. Therefore,
only the first 8,192 bytes are addressable as instructions.

Regardless of individual instruction boundaries, in its eurrent implementation, the
GDP fetches 32-bit portions of the instruction stream at a time for decoding.
Thus, the instruction object size must be rounded up to the next 16-bit boundary
plus a 4-byte pad. Otherwise, an Instruction Object Displacement fault can occur
when the processor attempts to fetch the bits of the last instruection in the object.

INSTRUCTION STREAM

Instructions are variable-length sections of a bit-addressed stream in an
instruction object. The GDP interprets these instructions as being composed of
fields of varying numbers of bits. The bit stream is scanned from lower-address
to higher-address bits. Each field ends when the GDP recognizes a valid encoding;
(one valid encoding is never the same as the beginning of another valid encoding;)
the next bit in the stream begins the next field or next instruction. The fields are
organized to present information to the processor in the sequence required for
decoding. Every instruction contains an operator specification and possibly
several references. The operator specifies to the processor what operation is to
be performed, and the references specify the operands to be used or manipulated.
The major fields of an instruction are ordered as follows:

< increasing bitoffset

Opcode Reference Format Class

(next) current instruction (previous)

F-0012

Instruction Fields

Class and Opcode Fields

The operator specified in an instruction is encoded in two fields, the Class field
and the Opcode field. The Class field specifies the operator class to which the
operator belongs, and the Opcode field selects the operator to be performed from
within that class. The Class field is always present; the Opcode field is omitted if
there is only one operator in the class. The operator's class determines the order
of the operator (i.e., the number of operands) and the length of each operand.
GDP instructions manipulate zero, one, two, or three operands of varying sizes as
specified by the Class field in the instruction. '

7-3



Instruction Interface iAPX 432 GDP

Format Field

If the Class field indicates one or more operands, a Format field is required to
specify whether the references are implicit or explicit and to specify the mapping
of data references to operands. The Format field encoding additionally
determines which data references--in sequential order--specify which operands.
The Format field indicates for each operand whether it is:

° Implicitly accessed at the top of the operand stack, or
° Explicitly specified by a Data Reference field in the instruction.

Operands cannot be specified as literals in the instruction stream; they must
always be located in the data part of an object or on top of the operand stack.
Note that branch references can be specified literally (directly) in the instruction;
but, as such, they are not operands. Branch references are discussed later in this
chapter.

The Format field permits the GDP to appear to the programmer as a zero-, one-,
two-, or three-address architecture. The order-zero instructions do not require
any references and, as a result, do not have a Format field. The order-three
Format field encodings allow either of the two source operands to come from the
top of the operand stack if both source operands are specified to come from the
stack. Thus, the ordering of operands on the stack does not restrict the use of the
noncommutative, order-three operators. See the Operand Stack Interaction
section of this chapter for more information on operand ordering on the stack.

Redundant operand references, such as those that might occur when a source and
destination address are identical, may be specified (using the Format field) in a
manner that eliminates the need for their common reference to appear more than
once in the instruction. Table 7-1 shows how the format field encodings
determine the mappings from the possible data or stack references to their
associated operands.

The Format field provides information allowing a single explicit data reference to
play more than one role during the execution of the instruction. As an example,
consider an instruction to increment the value of an integer in memory (INC I LI).
This instruction contains, in sequential order:

° A Class field, whose value (1100) specifies that the operator is of order-two
and that the two operands both occupy a word of storage

° A Format field, whose value (10) indicates that a single data reference
specifies a logical address to be used both for fetching the source operand
and for storing the result

° An explicit Data Reference field (whose encoding depends on the operand
reference mode) specifying the integer operand to be incremented

o An Op-code field (0001) for the order-two operator INC I




iAPX 432 GDP Instruction Interface

Table 7-1. Format Field Encodings

ORDEROPERAND OPERAND OPERAND EXPLICIT FORMAT
1 2 3 REFERENCES ENCODING

1] th none

1 drefl 1 0
stk 0 1

2 drefl dref?2 2 00
drefl drefl 1 10
drefl stk 1 01
stk drefl 1 011
stk stk 0 111

3 drefl dref2 dref3 3 0000
drefl dref2 dref?2 2 1000
drefl dref?2 drefl 2 0100
drefl dref?2 stk 2. 1100
drefl stk dref2 2 0010
stk drefl dref2 2 1110
drefl stk drefl 1 1010
stk drefl drefl 1 0001
drefl stk stk 1 0110
stk drefl stk 1 1001
stkl stk2 drefl 1 0111
stkZ stkl drefl i 0101
stkl stk2 stk 0 1011
stk2 stkl stk 0 1101
dref2 drefl dref3 3 0011
dref2 drefl stk 2 1111

NOTES:
drefl,dref2,dref3

indicate that the operand is referenced through the first, second,
or third explicit data reference in the instruction's reference field.

stk
indicates that the operand itself is to be pushed onto, or popped
from, the operand stack.

stkl,stk2
indicate that the operand is popped from the top (stkl) or next-to-
top (stk2) of the operand stack.




Instruction Interface iAPX 432 GDP

Reference Field

The Reference field consists of a sequence of 0 to 3 Data References as specified
by the Format field. A data reference is required for explicit specification of an
operand location. For branch operators, the Reference field can contain a single
branch reference or a combination of a data reference followed by a branch
reference. A branch reference in the Reference field always follows any data
references that might also be in the reference field.

Frequency Encoding

The Class, Format, and Opcode encodings have been chosen on the basis of the
frequency of usage of the operators or modes they encode. Often used encodings
are encoded with fewer bits. This reduces both instruction size and execution
time for the more frequently used operators and operand reference modes.

Complete composition and encoding information for the instruetion fields is

presented in Part Two of this manual. See the Operator Set and Instruction
Encoding chapters.

OPERAND ADDRESSING

OPERAND TYPES

An operand is one of up to three data items that are defined for an operator.
Depending on its class, each operator has a set of operand types defined for it.
Most GDP operators require simple computational data types as operands.
However, some operand types are not considered data types in the strict sense due
to the lack of operations defined for them. These operand types are required by
certain operators to fully specify the operation. For example, access selectors
are required by many object operators to specify the objects to be used. Yet, the
operator set contains no operators that exclusively deal with access selectors as
data types. The following operand types are used by the GDP operator set:

° Computational Data Types. These are: Character, Short Ordinal, Short
Integer, Ordinal, Integer, Short Real, Real, Temporary Real.

° Boolean. A Boolean is a value of type character used to represent logical
TRUE or FALSE.

® Bit Field Specifier. Bit field specifiers specify a field of bits to be
manipulated within an ordinal or short-ordinal operand by a bit-field
operator. :

] Access Selector. Access selectors select an access deseriptor in the entered
access environments of the current context. They are often required by
object operators to specify an object or AD to be used by the operation.

. Domain Access Index. A domain access index selects an access descriptor in
the defining domain of the current context.

-;l
=}



iAPX 432 GDP ' Instruetion Interface

° Packed Operands. For many object operators (i.e., operators that perform
operations on objects as entities), a given operand can be a "packed
operand". A packed operand is composed of sub-operands that are instances
of the other recognized operand types. For example, operand 2 of the
INSPECT OBJECT operator is a packed operand comprised of two 16-bit
sub-operands. The least-significant 16 bits contains an access selector for a
destination data object and the most-significant 16 bits contains a short-
ordinal displacement into the data part of the selected object.

See the Operator Set chapter in Part Two of this manual for more details on
operand types.

OPERAND ALIGNMENT

When a GDP executes instructions on behalf of a context, it manipulates operands
found within the access environment of that context. An individual operand may
occupy one, two, four, eight, or ten bytes of memory. All operands are
referenced by a logical address.

The offset component in an operand's logical operand address specifies the number
of bytes from the base of an object to the first byte of the operand in the data
part of the object. For operands consisting of multiple bytes, the address locates
the low-order byte. The higher-order bytes are found at the next higher
consecutive addresses.

As an operand, each computational data type can be aligned on an arbitrary byte
boundary in the data part of the object, although multi-byte operands may be
processed more efficiently when aligned on double-byte boundaries (if the memory
system is organized in uiits of double Dytes). Note that Bit § of each byte is the
low-order bit of that byte. Also note that byte addresses are numbered
consecutively. By convention, this manual shows memory addresses increasing
from right to left and from bottom to top of the page.

LOGICAL ADDRESS COMPONENTS

In an iAPX 432 system, all processors (of any type) can access the contents of all
of the available physical memory. All iAPX 432 processors access memory via a
two-level addressing structure. The software system exists in a segmented
environment in which a logical address specifies the location of a data item. The
processor automatically translates this logical address into a physical address for
accessing the value in physical memory.

The memory occupied by an iAPX 432 software system is partitioned into many
segments. Each segment is a group of contiguously addressed memory bytes that
constitutes the physical representation of an object. Operands are always
referenced in the data parts of objects. These data parts can have a maximum
length of 65,536 bytes.

-7



Instruction Interface iAPX 432 GDP

The instructions that make up the operations of a software system have access to
the information contained within the objects that make up the current context
access environment. Instructions may contain zero to three logical addresses
each of which specifies the location of an operand in the data part of a directly
accessible object. Operands are explicitly referenced by logical addresses that
are encoded as Data Reference fields in instructions. Each data reference has
two components: an access selection component and an operand offset
component.

Figure 7-2 is a simplified overview of operand addressing.

OPERAND REFERENCE
OPERAND ACCESS
OFFSET SELECTION
y
OBJECT
ADDRESSING
OPERAND
P -

SELECTED
DATA
OBJECT

F-0350

Figure 7-2. Operand Addressing Overview

The following two sections briefly describe the access selection and operand
offset components. Later sections of this chapter describe in more detail the sub-
components of these fields and discuss the semantics of their content. Object
Addressing is given particular attention with regards to access rights and object
type checking in the Object Addressing chapter of this manual. It is discussed in
this chapter as it relates simply to operand addressing and physical address
generation.

7-8



iAPX 432 GDP Instruction Interface

Access Selection Component

The access selection component specifies an index for an AD entry in one of the
entered environment objects of the current context. The indexed access
descriptor, in turn, references the object that contains the operand. The access
selection component of a logical address can be specified directly in the data
reference or indirectly via a value in the data part of an object. The value of a
direct component must be known at compile time. An indireet component permits
the value to be calculated dynamically at run time.

Operand Offset Component

The operand offset component specifies the offset into the data part of the
selected object to the beginning byte of the desired operand. The byte offset is
relative to the base or fence of the selected object. The offset is always a
displacement into the data part of the selected object because operands are not
interpreted in the access parts of objects. The operand offset component can be
specified in more than one way. In addition to being specified directly in the data
reference, it may also be determined indirectly by combining information in the
data reference with values in the data parts of objects.

OPERAND ADDRESSING MODES

All operands reside in memory. There are no GDP registers visible to the
programmer. Since a data reference is an encoding of an explicit logical address,
it must provide both the access selection component and the operand offset
component of the logical address. Both of these components can be specified in
differeni ways. This fiexibiiily provides a powerfui addressing mechanism that
allows efficient access to a variety of data structures. The addressing modes are
completely orthogonal with respect to any of an instruction's operands. Any
addressing mode is independently available to specify any required operand. This
applies to all operators in the operator set.

The operand offset and access selection components independently contribute to
the operand reference mode for a given operand. The modes for each of the two
major components are described in detail in the following sections of this chapter.
The data reference modes of the operand offset component are presented first.
They are called data reference modes because each so closely relates to a
particular kind of data structure in which the operand is located. After the
components that make up the data reference modes are fully described, the
access selection modes are presented.

7-9



Instruction Interface iAPX 432 GDP

Data Reference Modes

The encoding of the operand offset component of a data reference consists of two
basic parts: a base part and an index part. This partitioning leads to viewing the
entire data reference as having three components: an access selection
component, which selects an object; a base part of the operand offset, which
provides a byte displacement to the base of an area of memory within the
selected object; and an index part of the operand offset, which specifies a
particular operand within that area. This is illustrated in Figure 7-3.

OPERAND
OFFSET ACCESS
COMPONENT SELECTION
COMPONENT
BASE | INDEX
OBJECT
ADDRESSING
OPERAND
e S
M

F-0349
Figure 7-3. Base and Index Address Components

Flexibility is provided by allowing each part of the operand offset to be specified
directly or indirectly. A direct base or direct index has its value specified
directly in the data reference encoding. However, when indirection is used, the
value of the base or index is given by a short-ordinal value located within a
currently accessible object.

There are four possible combinations of direet and indirect base and index parts,
and each combination results in a different mode of data reference. Figure 7-4
defines these four combinations. Figure 7-5 illustrates these four basic data
reference modes, and subsequent sections describe each mode in detail.

7-10



iAPX 432 GDP Instruetion Interface

BASE
A
f Y
DIRECT INDIRECT
/
RECORD
SCALAR
DIRECT ITEM
INDEX <
STATIC DYNAMIC
INDIRECT ARRAY ARRAY
.

F-0348
Figure 7-4. Data Reference Modes
RECORD ITEM
DISPL ACEMENT |_
EEEELEEERS INDEXUMRECT)‘—L—
(BASE AND
INDEX HAVE SAME '
DIRECT VALUE) BASE (INDIRECT)
SCALAR RECORD ITEM
Ith ELEMENT
Ith ELEMENT _
x
> INI -
INDEX 4 : DEX ¥
(INDIRECT —| ;ND’“ECT =]
AND SCALED) AND SCALED) =
E . C 0th ELEMENT
E o0th ELEMENT =
B BASE (INDIRECT) —
BASE (DIRECT)
STATIC ARRAY DYNAMIC
ELEMENT ARRAY ELEMENT
F-0360

Figure 7-5. Data Reference Modes

7-11



Instruction Interface iAPX 432 GDP

Each of these four combinations has been used to name a data reference mode
because each gives an indication of the kind of data structure for which the
reference would typically be used (independent of the access selection mode). All
four modes are independently available for any operand specified in an
instruction. For each data reference mode, the processor calculates the operand
offset as follows. (Bracketed items are specified indirectly.)

Operand Offset = displacement (Scalar)
= [base] + index (Record Item)
= base + [index]*scale (Static Array Element)
=  [base] + [index]*scale (Dynamic Array Element)

Scalar Data Reference

A scalar data reference is the simplest type of data reference. It is used for
direct access to operands of all the primitive computational data types. Figure 7-
6 illustrates the scalar data reference mode.

DISPLACEMENT

DISPLACEMENT LENGTH CONTROL

DATA REFERENCE MODE

v/
N A\N

7 OR 16 BITS

&
AAN

ANN

SCALAR OPERAND

SELECTED DATA OBJECT

F-0359
Figure 7-6. Scalar Data Reference

7-12



iAPX 432 GDP Instruction Interface

The Data Reference Mode field has an encoding of 00 for the scalar data
reference mode. This field is the first two bits in every data reference. The
Displacement Length Control field encodes one of two optional lengths for the
Displacement field itself--either 7 or 16 bits long. The Displacement field
encodes the byte displacement from the base (fence) of the selected object into
the data part to the first byte of the scalar operand.

The 7-bit wide Displacement field is for operand offsets of less than 128 bytes.
The 16-bit wide Displacement field is for operand offsets anywhere in the data
part of the object. The Access Selection components encode information
necessary to select the object in which the operand is located. Access Selection
Modes are described in a later section of this chapter.

The GDP converts a scalar data reference to a logical address by first using the
access selection component. to select an object. The operand offset component is
thus simply the value encoded in the Displacement field of the data reference.

Record Item Data Reference

Accessing a data item within an instance of a record requires three pieces of
information: the data object in which the record instance is located, the byte
displacement from the base of the objeet to the base of the particular record
instance, and the byte displacement (Index) within the record to the data item.
The Record Item Data Reference mode, illustrated in Figure 7-7, is designed for
this kind of access.

INDEX LENGTH CONTROL

,— DATA REFERENCE MODE

01

1 TO 28 BITS 7T OR 16 BITS  ACCESS SELECTION 7

4

SHORT-ORDINAL INDIRECT
BASE FROM:
OPERAND STACK
OR
SAME DATA OBJECT RECORD ITEM REFERENCED RECORD
OR OTHER DATA OBJECT {
.
>
s [
SELECTED DATA OBJECT

F-0357
Figure 7-7. Record Item Data Reference

7-13



Instruction Interface iAPX 432 GDP

The access selection component for the entire data reference specifies the object
in which the record instance is located. Access Selection is deseribed in detail
later in this chapter. The Base Indirect Reference field is encoded to specify the
16-bit indirect base from either the operand stack top, the same data object as
that in which the referenced record is located, or some other data object.
Indirect reference formats are described in detail later in this chapter.

The Index field is encoded directly in the data reference and is 7 or 16 bits long as
determined by the Index Length Control bit. The Base Indirect Reference field
encodes the byte displacement to the base of the record instance. This
displacement is given indirectly so that the particular record instance to be
accessed can be computed dynamically at run-time.

The GDP converts a record item data reference to a logical address by first using
the access selection component to select an object. The operand offset
component is then the sum of the values of the indirect base part and the direct
index part. The addition operation uses 16-bit modulo arithmetiec.

Static Array Element Data Reference

Three pieces of information are required to access an element of a static array:
the object in which the array is located, the byte displacement from the base of
the object to the base of the array, and the index of the particular array element.
These three pieces of information are encoded in a Static Array Element Data
Reference as shown in Figure 7-8.

INDEX INDIRECT REFERENCE

BASE

BASE LENGTH CONTROL

l—' DATA REFERENCE MODE

< g AN
1 TO 28 BITS 0 OR 16 BITS ACCESS SELECTION 100 Foe

,

SHORT-ORDINAL INDIRECT
INDEX FROM:

OPERAND STACK OR
SAME DATA OBJECTOR
OTHER DATA OBJECT

SCALING BY -~
DATA TYPE g

{
SELECTED DATA OBJECT —

ARRAY ELEMENT REFERENCED ARRAY

F-0358

Figure 7-8. Static Array Data Reference

7-14



iAPX 432 GDP Instruction Interface

The Access Selection component (discussed later in this chapter) specifies the
object in which the array is located. The byte displacement to the base of the
array is encoded directly in the 0-bit or 16-bit Base field of the data reference.
The 0- or 16-bit length of the Base field is determined by the Base Length Control
bit. A 0-bit Base field means that the base part is not present in the data
reference and that the value for the base is zero. The index to the array element
(a byte displacement from the base of the array) is specified indirectly so that it
can be computed dynamically at run-time.

If an index has the value i, it specifies the ith element from the base of the array,
where an element can be any of the supported computational data types. The
conversion of a static array data reference to an operand offset requires that this
index value be converted to a byte displacement from the base of the array. The
GDP automatically scales the index value, multiplying it by 1, 2, 4, 8, or 16
depending on whether the operand type occupies a byte, double-byte, word,
double-word, or extended-word, respectively. Note that because of the manner in
which scaling is done, when arrays of temporary-real operands are accessed with
data references that automatically scale the index, each element is treated as if
it were 16 bytes long. However, only the first 10 bytes of an element are actually
read or written.

The GDP converts a static array element data reference to a logical address by
using the access selection component to select an object. The operand offset
component is then the sum of the values of the direct base part and the scaled
value of the indireet index part. The addition operation uses 16-bit modulo
arithmetic.

Dynamic Array Element Data Reference

Accessing an element of a dynamic array is the same as accessing an element of a
static array except that the byte displacement to the base of the array may also
be specified at run-time. This is the case if the array is located inside an object
that is passed as a parameter to a procedure. This data reference mode is also
useful in multiple dimension arrays where the base specifies a slice (row or
column) of the multiple-dimension array. A data reference with both the base
part and the index part specified indirectly is provided as shown in Figure 7-9.

The GDP converts a dynamic array element data reference to a logical address by
using the access selection component to select an object. The operand offset
component is then the sum of the values of the indirect base part and the scaled
value of the indirect index part. The addition operation uses 16-bit modulo
arithmetie.

7-15



Instruction Interface iAPX 432 GDP

INDEX INDIRECT REFERENCE

BASE INDIRECT REFERENCE
DATA REFERENCE MODE
Y
K
1 TO 28 BITS 1 w0 28 BITS 1
. _ e W
l \<
SHORT-ORDINAL INDIRECT
INDEX FROM:
OPERAND STACK OR
SAME DATA OBJECT OR
OTHER DATA OBJECT
» ARRAY ELEMENT
N REFERENCED ARRAY
—
M > .
SCALED BY DATA TYPE s ~
SHORT-ORDINAL INDIRECT
BASE FROM:
OPERAND STACK OR
SAME DATA OBJECT OR
OTHER DATA OBJECT
SELECTED DATA OBJECT —
F-0356

Figure 7-9. Dynamic Array Data Reference

Indirect Base and Index References

When indirection is used to specify the base or index parts of the operand offset
component of a logical operand address, the data value that supplies the actual
base or index value may be located in any one of three different ways: Stack
Indirect Reference, Intrasegment Indirect Reference, and General Indirect
Reference. All indirect values are 16-bit wide short ordinals.

7-16



iAPX 432 GDP Instruction Interface

Stack Indirect Reference. A stack indirect reference pops the base or index value
on top of the operand stack. In this case, no additional encoding information is
needed to locate the value, as is shown in Figure 7-10.

INDIRECT
REFERENCE MODE

TOP OF OPERAND STACK

SHORT ORDINAL BASE ORINDEX VALUE

F-0362

Figure 7-10. Stack Indirect Reference

Intrasegment Indirect Reference. An intrasegment indirect reference locates the
base or index within the same object that is selected by the access selection
component for the entire data reference. In this case, only the byte displacement
from the base of the selected object to the base or index value needs to be
encoded in the indirect reference. Figure 7-11 illustrates Intrasegment Indirect
Reference.

General Indirect Reference. A general indirect reference locates the base or
index value within any object accessible within the current context access
environment. In this case, the indirect reference field contains a direct access
selector and a byte displacement from the base of the selected object to the base
or index value. This is the equivalent of a scalar data reference used to yield the
short-ordinal base or index value. This is illustrated in Figure 7-12.

7-17



Instruction Interface iAPX 432 GDP

DISPLACEMENT

DISPLACEMENT
LENGTH CONTROL

INDIRECT

| REFERENCE MODE

7OR 16 BITS 10

SHORT-ORDINAL BASE ORINDEX VALUE

SAME DATA OBJECT AS THAT
SELECTED BY ACCESS SELECTION
FOR ENTIRE DATA REFERENCE

F-0354
Figure 7-11. Intrasegment Indirect Reference
DISPLACEMENT
DIRECT ACCESS SELECTOR
DISPLACEMENT LENGTH CONTROL
ACCESS SELECTOR LENGTH CONTROL
INDIRECT REFERENCE MODE
TOR16BITS 4OR8BITS 00
S -
2 7
OR
6 fr—
H ‘
(.
)
)
1
]
)
SCALING BY 4 :
-
:
]
SHORT-ORDINAL BASE OR INDEX VALUE
ENTERED
ENVIRONMENTS
e
DATA OBJECT F-0355

Figure 7-12. General Indirect Reference

7-18



iAPX 432 GDP Instruction Interface

Access Selection Modes

Each of the four basic data reference modes requires an Access Selection Mode
field and an Access Selection field. The Access Selection Mode field specifies
how the subsequent Access Selection field is to be interpreted. For the logical
address encoded by a data reference, the access selection ecomponent can be
specified in two different ways: by specifying a direct access selector or by
specifying an indirect access selector. Figure 7-13 illustrates the access seiection
modes.

ACCESS
SELECTION

DIRECT INDIRECT

SHORT LONG STACK GENERAL

F-0351

Figure 7-13. Access Selection Modes

Direct Access Selection

A direct access selector is encoded directly within the data reference as a 4- or
8-bit field. When the field is 4 bits, the mode is called Short Direct Access
Selection; when the field is 8 bits, the mode is called Long Direct Access
Selection. The Direct Access Selection Mode is illustrated in Figure 7-14.

The 0 encoded in the least-significant bit of the Access Selection Mode field
specifies that the Access Selection field contains a direct access selector. The
next-higher bit (in the Access Selection Mode field) is then used to differentiate
the length of the direct access selector (0 for 4 bits, 1 for 8 bits).

7-19



Instruection Interface iAPX 432 GDP

ACCESSINDEX

ENV SELECTOR

ACCESS SELECTION MODE

20R 6 BITS " 2BITS X0

SCALING

BY4 @

SELECTED DATA OBJECT

{_/\___\-
|

f
]

ENTERED
ENVIRONMENTS

F-0361

Figure 7-14. Direct Access Selection

As is evident in Figure 7-14, the low-order two bits (in the ENV Selector field) are
interpreted to select one of the four Access Environment objects in the current
context access environment. The remaining 2- or 6-bit access index provides an
index into the access part of the selected object to an access descriptor. The AD
in turn references the actual object in which the operand resides. For all access
selection modes, the GDP automatically scales an access index by 4 (each AD is 4
bytes wide) to obtain the byte displacement into the access part to the selected
AD.

The Short Direct Access Selector can specify the first four ADs in each
environment. This covers the context, domain, global constants, and the context
message--the majority of data references. The Long Direct Access Selector can
specify the first 64 ADs in each environment. Since each environment may
contain up to 16,384 ADs, AD entries beyond the first 64 can only be referenced
by using the Stack Indirect Access Selection or the General Indirect Access
Selection modes (described in the following sections).

If the access selector is specified indirectly, then the data reference contains

information to locate a double byte within a currently accessible object. The
value of this double byte is used as a 16-bit indirect access selector.

7-20



iAPX 432 GDP Instruction Interface

Stack Indirect Access Selection

This mode pops the access selector value from the current top of the operand
stack. This mode only requires the Access Selection Mode field. The Access
Selection field is omitted. This mode is shown in Figure 7-15.

ACCESS SELECTION
MODE

ACCESS INDEX

ENV SELECTOR

SHORT-ORDINAL
14BITS 2BITS TOP OF OPERAND
STACK

SCALING
BY4

SELECTED DATA OBJECT

ENVIRONMENTS

F-0363

Figure 7-15. Stack Indirect Access Selection

In the same manner as described for direect access selectors, the low-order two
bits (in the ENV Selector field) are interpreted to select one of the four
Environments in the current context access environment. The remaining high-
order 14 bits select an AD for the actual object in which the operand resides.

General Indirect Access Selection

The double byte that contains the indirect access selector can also be located in
some other accessible object (i.e., other than the current context data part in
which the operand stack is located). In this case, the Access Selection field
contains both a direct access selector and a byte displacement. The direct access
selector selects an object containing the double byte. The byte displacement
accesses that double byte within the selected object. The accessed double byte
then contains the indirect access selector that selects the objeet in whieh the
operand resides. This mode of access selection is called General Indirect Access
Selection Mode and is illustrated in Figure 7-186.

7-21



Instruction Interface iAPX 432 GDP

DISPLACEMENT

DISPLACEMENT LENGTH CONTROL
ACCESS SELECTOR LENGTH CONTROL

ACCESS SELECTION MODE

‘ DIRECT ACCESS SELECTOR

TOR16BITS

SELECTED
DATA OBJECT

ENTERED
ENVIRONMENTS

F-0365
Figure 7-16. General Indirect Access Selection

BRANCH REFERENCES

The GDP operator set includes several branch operators. Some require operands
to indirectly specify the target instruction of the branch. These operands are
referenced as described earlier in this chapter. Note that a branch reference is
not an operand. It is a directly encoded part of a branch instruction (in the
Reference field) that determines the bit address of the instruction that is the
target of the branch. There are two types of branch references: relative branch
references and absolute branch references. .

7-22



iAPX 432 GDP Instruction Interface

A relative branch reference is encoded by a 10-bit signed integer value. It is used
as the bit displacement to the target instruction relative to the beginning of the
branch instruction. Thus, the range of a relative branch is from -512 to +511 bits
relative to the first bit of the branch instruction itself. No wraparound occurs.
This means that if the displacement overflows or underflows the boundary of the
current instruction object, a Type 1 Instruction Pointer Overflow fault occurs.

An absolute branch reference is encoded by a 16-bit short ordinal value that is the
bit displacement from the base of the current instruction object to the target
instruetion.

The ranges of relative and absolute branches are illustrated in the Figure 7-17.

<€-- [NCREASING BIT OFFSET

+511 RANGE OF RELATIVE BRANCH -512
|< > |
! . I — |
757 77
BR. INST.
//,/ ,/,/
|< >|
| |
RANGE OF ABSOLUTE BRANCH

/A AT DTM TATAMDT TAMTART AT TR A
\UTIY D11 LANDLIVU U LLIVLY VD IV 1)

. F-0352
Figure 7-17. Branch References

LARGE ARRAY INDEXING

The maximum size of the data part of an object is 65,536 bytes (64K). Some
applications require arrays larger than 65,536 bytes. The GDP operator set
provides the Index Ordinal operator to support accessing such large arrays.

The large array is mapped (at creation time) into a series of objects, each with
data parts that are 2,048 bytes (2K) long. These objects are directly accessible in
the current logical access environment. The Index Ordinal operator works as
follows:

7-23



Instruection Interface iAPX 432 GDP

Given:

° The size of each element in the array (i.e., a scale factor)
° The access selector for the base segment of the array
[ The ordinal index for the desired array element

The operator computes:

® The access selector for the appropriate 2K data object that contains
the indexed array element

° The displacement into the data part of that objeect to the array
element

These resultant short-ordinal values can then be used with the indirect access
selection mode and the record item, static array, or dynamic array data reference
modes to access the array element. The range for index values must always begin
at 0. This means that array bounds such as -2000 to +500 must be accomplished
by explicitly biasing the index. Thus, the compiler must map the source level
array bounds onto an ordinal range starting at 0. This ordinal is then used by the
compiler as the indirect source index operand of a compiled Index Ordinal
instruction.

Note that only the least-significant four bits of the scale factor are used. The
array element size is two raised to the power of this 4-bit value. The permissible
array element sizes are thus: 1, 2, 4, 8, 16, 32, 64, ... 32,768 bytes. Accordingly,
if the application's array element size is 20 bytes, the scale factor should be 5
(element size of 32). If the application uses only the least-significant 20 bytes of
each 32-byte element, the most-significant 12 bytes are not used.

OPERAND STACK INTERACTION

Embedded in the data part of each context object is the context's dedicated
operand stack. Any operand of an instruction may be specified as the value (of
appropriate data type) at the top of the operand stack.

The operand stack is handled in a uniform manner whenever implicit stack
references are used in an instruction. Unless the operator is one of the SAVE
operators, using the operand stack to obtain a source operand causes the value to
be popped from the stack when it is fetched. The SAVE operators provide the
ability to read the value at the top of the operand stack without popping it. The
SAVE operator will also duplicate the top stack value on the stack when the stack
is specified as both the source and destination. There are a number of indivisible
operators which push the original value of the destination on top of the operand
stack as an inherent part of their operation.

Whenever the operand stack is specified as the destination, the result of the
operation is pushed onto the stack. If the operand stack is used as the source for
both source operands of an order-three operator, the Format field in the
instruction specifies the order in which the two operands appear on the stack.
Source operands are popped from the top of the operand stack, and destination
operands are pushed onto the operand stack.

7-24



iAPX 432 GDP Instruction Interface

The stack pointer, cached in a register within the GDP, contains the displacement
in bytes from the base of the current context object (into the data part) to the
first free byte on the operand stack. When an operand is pushed onto the stack;
the value is stored beginning at the location specified by the stack pointer, and
the stack pointer is then incremented by the length of the operand. Similarly,
when an operand is popped from the stack, the stack pointer is first decremented
by the length of the operand, and then the value is read beginning at the location
specified by the stack pointer. The operand stack is 16 bits wide; the stack
pointer is maintained on double-byte boundaries.

The GDP caches the access information for the current context object. The
operand stack pointer is maintained by an internal register to specify the
displacement to the current top. The top double-byte of the operand stack is also
cached. An instruction referencing the top operand on the stack need specify
neither an access selector nor an operand offset. Since very little information is
required in an instruction to encode a stack reference, temporary results of
operations are most efficiently stored on the operand stack.

The exact manner in which operands are stored in an operand stack depends on the
length of the operand. A byte operand stored on the stack is stored in the low
byte of a double-byte stack element. A double-byte operand simply occupies one
double-byte wide element on the stack. Word, double-word, and extended-word
operands require two, four, and five stack elements, respectively, with higher-
order elements stored at higher addresses.

During the interpretation of a given instruction, the operand stack may be the
source for several data values. Some of these values may be used in forming
logical addresses, while others may be used as actual source operands. Because of
this multiple use of the stack, the order in which operand addresses are formed
and values are popped from the stack is specified in the following paragraphs. In
general, items are popped (during instruction decoding) in the order in which they
are encountered in the instruction.

There can be no operand order ambiguity with order-zero operators. This is also
true of most order-one operators, with the exception of the SAVE operators.
SAVE operators read a value from the operand stack without popping the stack,
and store that value in the destination operand specified by the single data
reference. As with all instructions containing order-one operators, the single data
reference is evaluated before the SAVE operation is actually executed. As a
result, if the data reference has an indirect access selector, an indirect base part,
or an indirect index part that is located in the operand stack, that addressing
information must be on top of the stack with the value to be SAVEd immediately
below. @ When the SAVE operation is actually performed, the addressing
information will have already been used and popped from the stack, leaving the
value to be saved as the top stack element.

If a single data reference has more than one indirect part located on the operand
stack, the following ordering conventions are used. If there are three indirect
parts on the operand stack, the base part is assumed nearest the top, the index
part is immediately below the base part, and the indirect access selector is
immediately below the index part. If only two indirect parts are on the operand
stack, this same ordering applies with the missing part deleted.

7-25



Instruction Interface iAPX 432 GDP

In the case of order-two operators, the address of data reference one is formed
first. Since it is always a source operand, the associated value is fetched, and
then the address of operand two, normally a destination address, is formed. To
understand the importance of this ordering, consider, for example, an instruction
that moves a value from the stack to a location specified by a static array
element data reference whose index part is also on the stack. Since the value of
the first operand is fetched before the address of the second operand is formed,
the operand stack must have the value to be moved in the top stack element and
the index for the destination in the next-to-top stack element.

For order-three operators, the address of operand one is formed first, and the
associated value is fetched. Then the address of operand two is formed, and the
associated value is fetched. Finally, the address of operand three--normally a
destination--is formed, and any result is stored there.

INSTRUCTION INTERPRETATION

Before the individual instructions in an instruction object can be interpreted by a
GDP, appropriate process, ‘domain, context, and instruction object addressing
information must be loaded into the processor registers. The appropriate system
objects are "qualified" by taking physical access information from each
corresponding object descriptor and loading it into the appropriate internal
registers. These registers are not visible to the programmer. Among other
things, their contents form an access environment in which logical addresses from
the instruction stream can be translated to the physical addresses that reference
memory. Once a processor dispatches itself to execute a process, and a proper
access environment has been established, the processor begins to interpret the
instruction referenced by the current value of the instruction pointer.

The instructions for a GDP are encoded into a common format that allows the
interpretation of each instruction to proceed in a single, logical sequence. An
instruetion consists of a series of fields (described earlier in this chapter) that are
organized to present information to the processor as it is needed. As an
instruction is fetched from memory, each of its several fields is decoded.
Execution of the specified operation proceeds basically as follows:

° Decode the number of operands and the length of each (using the Class field)

° Decode the operand addresses, convert them to physical addresses, and
fetch the source operands (using the Format and Reference fields)

° Decode the operator, perform it, and store any result (using the Reference
and Opcode fields)

Because the instruction stream of the GDP is a bit stream, instructions are a
variable number of bits in length and are not aligned on byte or word boundaries.
In the current GDP implementation, instruction fetches are 32-bit memory
accesses issued whenever the decoder needs more bits. These 32-bit fetches are
made independent of the alignment of the instructions and independent of the
current instruction execution. Instruction decoding and execution are
asynchronous and pipelined; while the current instruction is executing, the next
section of the instruction stream can be undergoing fetch and decode by the
processor.

7-26



iAPX 432 GDP Instruction Interface

PHYSICAL ADDRESS GENERATION

A 432 software system exists in an object-based environment in which a logical
address specifies the location of an operand within an object. The processor
automatically translates this logical address into a physical address for accessing
the operand in physical memory. User programs have no way to generate physical
addresses directly. This section describes the processor activity of physical
address generation.

Note that to accelerate this address generation, the current implementation of
the architecture uses two address caches to store a set of the most recently used
addresses. This avoids a pass through some or all of the memory-resident
descriptor structures for each access to a qualified (address cached) object.

Figure 7-18 illustrates physical address generation and is followed by a general
algorithmie desecription.

LOGICAL ADDRESS

c--~¢  ACCESSSELECTION OPERAND OFFSET
@ DATA REFERENCE ‘
2 l MODE —
P
|
i

/y ENVIRONMENTS

| R,

—<

SCALING
Dv

4

fmmmm——————

AD OBJECT TABLE
DIRECTORY

SCALING
BY16

--——’:\---___-_____-

©

=3

OBJECT
TABLE
ADDRESS
CACHE

DATA OBJECT

DATA }‘ﬁ
L.l ommcr |_____ o m e mmen :

ADDRESS

CACHE 2‘ @

Figure 7-18. Physical Address Generation

_--__--_--_-_..___--_-_.._..---..\-_-----_-----_---_---_-_--___.,_-..__..-_-__-_..,_-_-__..___

F-0364

7-27



Instruction Interface iAPX 432 GDP

The following algorithmic description uses numbered notes that are keyed to the
preceeding illustration. This algorithmic description is not meant to be
exhaustive. For example, type and rights checking are not included here. They
are discussed in the Object Addressing chapter of this manual. The procedure
begins with a logical address (as specified in a data reference) and yields the 24-
bit physical address of the first byte of the referenced operand.

° The specified Access Selector (1) is used to search the Data Object Cache
(2).
° If a mateh is found (indicating that the Data Object (3) has been

previously cached), the corresponding 24-bit physical address from the

Data Object Cache entry is used to locate the Data Object in which

the operand resides.

° If no match is found, the access selector is used in the normal way to
locate an AD in the current access environment (4). Note that the
specified access selection mode of the current data reference can
entail a recursion of Physical Address Generation for each instance of
an access selector in the access selection mode.

° The Directory Index (5) in this AD is used to search the Object

Table Cache (7).

° If a match is found (indicating that the indexed Object
Table (8) has been previously cached), the 24-bit physical
address from the Object Table Cache entry is used to
locate the indexed Object Table.

° If no match is found, the Object Table is located normally
through the Object Table Directory (9) by using the
Directory Index (5). When this is the case, the 24-bit
physical address for the Object Table is loaded (with other
information) into an appropriate entry in the Object Table
Cache.

. The Segment Index (6) from the AD (4) is used to index into the

Object Table (8) to the OD for the selected Data Object (3).

This OD is then used to provide a 24-bit physical base address for

the Data Object. When this is the case, the 24-bit physical base
address is loaded (with other information) into an appropriate

entry in the Object Cache (2).

° The operand offset is calculated using the specified data reference mode.
This calculation itself can entail a recursion of Physical Address Generation
for each instance of an access selector in the data reference mode.

° The calculated operand offset (10) is added to the physical base address of
the Data Object (3) to obtain the final phy51cal address of the first byte of
the operand (11).

The physical address is then transmitted to memory by the processor. A physical

address is always 24 bits wide. This results in a maximum physical memory size
of 16 Megabytes (16,777,216 bytes).

7-28



iAPX 432 GDP Instruction Interface

INSTRUCTION EXECUTION

Under normal conditions, a2 GDP is controlled by instructions that are fetched in
sequence from the current instruction objeet on behalf of the current process
being executed. An instruction is fetched from the current instruction object by
using & bit displacement obtained from the instruetion pointer that is maintained
within the GDP. After the instruction has been executed, the instruction pointer
is incremented by the number of bits in the instruction so that it points to the
next sequential instruetion.

Under abnormal conditions, any action in response to software and hardware
exceptions takes several forms with the GDP. Most computational faults cause a
simple branch within the faulting context to a designated fault handler instruction
object. More severe faults, such as object protection faults, result in suspending
the execution of the faulting process and in sending an access descriptor for its
process objeet to a fault service process via a designated fault port. A faulting
processor is handled somewhat differently by reassigning it to a different
dispatching port where it may attempt to execute a programmed diagnostic
process. For more information on fault handling see the Fault and Trace
Management chapter of this manual.

The GDP has two different kinds of operators. Data operators operate on zero,
one, or two operands of computational data types and produce a single result--also
a computational data type--which is stored as the destination operand. Object
operators perform high-level manipulation of system objects, typically incurring a
transformation on the memory image of one or more objects. Data operators do
not reference or alter information other than the primitive data items specified
by the source and destination operands. However, object operators may access

and alter information in a number of objects during execution.

7-29






CHAPTER 8
COMPUTATIONAL DATA TYPES

This chapter describes the computational data types that are recognized by the
GDP. The data types are first introduced by describing their sizes and uses. Then
follows a section discussing the GDP's operators for manipulating the data types.
Next, the GDP's floating-point model is presented in detail, along with an
explanation of floating-point operand interpretation. Finally, Data Operator
faults are classified and described.

OVERVIEW OF COMPUTATIONAL DATA TYPES

Figure 8-1 summarizes the sizes and general uses of the GDP's computational data

types.
CHARACTER _[ | TEXT CHARACTERS,
(8 bits) BOOLEANS
7 0
SHORT ORDINAL UNSIGNED
1 (16 bits) - INTEGERS
15 0
ORDINAL
| | ] (32 bits)
31 0
SHORT INTEGER
| (16 bits)
15 0 |__ SIGNED
INTEGERS
INTEGER
| ] | (32bits)
31 0 pa——
SHORT REAL
| ] | (32 bits)
31 0
FLOATING
REAL —— POINT
| | | | | | | (64 bits) NUMBERS
63 0
. TEMPORARY REAL
| | | L1 1 ] | (80bits) |
79 0

F.0274

Figure 8-1. Computational Data Types




Computational Data Types iAPX 432 GDP

The following sections briefly introduce the computational data types and
describe the numerical ranges that the types can represent.

CHARACTER DATA TYPE

This 8-bit data type is used to represent Booleans, text characters, or unsigned
integers.

A Boolean is a value used to represent logical TRUE or FALSE. TRUE is
represented by xxxxxxx1 and FALSE is represented by xxxxxxx0 (with the x bits
being uninterpreted "don't-care" bits).

Text characters are used to make up text data. Arrays of text characters can be
used for software-defined string data types.

For unsigned integers, the character data type is used to represent values in the
range 0 to 255.
SHORT-ORDINAL DATA TYPE

This 16-bit data type represents unsigned integer values in the range 0 to 65,535,
or bit fields of 1 to 16 bits.

ORDINAL DATA TYPE

This 32-bit data type represents unsigned integer values in the range 0 to
4,294,967,295, or bit fields of 1 to 32 bits.

SHORT-INTEGER DATA TYPE

This 16-bit data type represents signed integer values in the range -32,768 to
32,767 in two's complement form.

INTEGER DATA TYPE

This 32-bit data type represents signed integer values in the range -2,147,483,648
to 2,147,483,647 in two's complement form.

SHORT-REAL DATA TYPE

This 32-bit data type represents floating point numbers. Normalized short-real
values provide the equivalent of aproximately 7 decimal digits of precision. Their
interpretation as operands by the GDP is described in detail later in this chapter.
REAL DATA TYPE

This 64-bit data type represents floating point numbers. Normalized real values

provide the equivalent of aproximately 15 decimal digits of precision. Their
interpretation as operands by the GDP is described in detail later in this chapter.

8-2



iAPX 432 GDP Computational Data Types

TEMPORARY REAL DATA TYPE

This 80-bit data type represents floating point numbers. Normalized 're...,.or'avy-
real values provide the equivalent of apprommately 19 decimal digits of preclslon.
Their interpretation as operands by the GDP is described in detail later in this

chapter.

OPERATORS FOR COMPUTATIONAL DATA TYPES

This section presents an overview of the GDP operators provided for the
computational data types. The Operator Set chapter describes these operators in
detail. Figure 8-2 illustrates the computational operators and which data types

they apply to.

OPERATORS

MOVE X
[SATE
[ZER0
ONE X < X X - - -

MOVE
OPERATORS

["AND X L X1 X
INCLUSIVE OR
FXCLUSIVE OR

or—

{
{
1
{

LOGICAL
OPERATORS

LR o
L b
T
IR U LR IN L}
LN LI LN L L)

ta] tad

MUCTIPLY

REMAINDER
INCREMENT
1

tal B e kel Ead

ARITHMETIC
OPERATORS

L1 B K £ ol B

NEGATE
[ABSOLUTE VALUE
["SQUARE_ROOT.

[THDEX

ERUABEERE
RO ELID

[} LN ia (ol

i
)
<!
1
:
)
]

BIT-FIELD ﬂ&‘f

OPERATORS

)
]
h
'
)

INSER
msrcmr BIT . T

(" | EQUAL
N T
EQUAL ZERO x| x | x

LESS THAN OR EQUAL

POSITIVE - - -
ATIVE - - -

\_[MOVE IN _RANGE

te tad
ta tad
ta tad
ta [a}
ke (a3
tad
tad
>

RELATIONAL
OPERATORS

Al

(| TO CHARACTER -
TO SHORT ORDINAL X | =
TO_ORDINAL _
CONVERSION < [T0 SHORT INTEGER -
OPERATORS | TO INTEGER X 1 X | x X
TO SHORT REAL -
MO REAL

[ 1o 2 i 1
<

\. . .TO_TEMPORARY REAL X X X X X X =
WHERE: X  MEANS THE OPERATOR IS AVAILABLE FOR THE GIVEN DATA TYPE.
&  MEANS THE OPERATOR IS AVAILABLE FOR THE GIVEN DATA TYPE AND
FOR INSTRUCTIONS IN WHICH ONE OF THE OPERANDS IS A
TEMPORARY REAL.
-  MEANS THE OPERATOR IS NOT AVAILABLE AND hOULD BE OF LITTLE
OR NO USE IF IT WERE.
(BLANK) MEANS THE OPERATOR IS NOT AVAILABLE.

F-0273
Figure 8-2. Operators and Data Types

8-3



Computational Data Types iAPX 432 GDP

BIT FIELD MANIPULATION

A special set of operators is provided to manipulate bit fields in short-ordinal and
ordinal operands. The extraction operators (EXT_ SO, EXT O) allow a specified
bit field in a short-ordinal or ordinal source operand to be extracted and right
justified (with high-order zeros) to form a corresponding short ordinal or ordinal
result. The insertion operators (INS_SO, INS O) allow a specified field in a short-
ordinal or ordinal destination to be written with the right-justified binary value of
a - corresponding short-ordinal or ordinal source operand. The significant bit
operators (SIG_SO, SIG_O) allow the most significant set bit of a short-ordinal or
ordinal source operand to be determined and stored as a position value in a short-
ordinal destination operand. Figure 8-3 illustrates bit field insertion and
extraction operations.

BEGINNING BIT

DESTINATION SOURCE

INSERT EXTRACT

SOURCE DESTINATION

n = 16 bita (Short Ordinal)
or
n = 32 bits (Ordinal)

F-0276

Figure 8-3. Bit-Field Operations

The insertion and extraction operators use a special type of operand, a bit field
specifier, to specify the extracted source or inserted destination field of the
operation. A bit-field specifier consists of two adjacent bytes as shown:

15 87 0

Beginning Bit Number
Bit Field Width

8-4



iAPX 432 GDP Computational Data Types

For short-ordinal operators, only the low-order 4 bits of these bytes are
interpreted by the GDP during execution. For ordinal operators, only the low-
order 5 bits of these bytes are interpreted by the GDP during execution. The two
bytes are interpreted as follows:

Beginning Bit Number (bits 0 - 7) _ . o
The first byte specifies the beginning bit of the field. The bits of an
operand are numbered with bit number § being the least-significant bit. The
beginning bit of a field is the smallest numbered bit in the field.

Bit Field Width (bits 8 - 15)

The second (next higher-addressed) byte specifies one less than the number
of bits in the field. For short-ordinal operators, a field of any width up to
16 bits can be specified by a bit-field specifier, regardless of the beginning
position. For ordinal operators, a field of any width up to 32 bits can be
specified by a bit-field specifier, regardless of the beginning position. If a
field is specified that extends beyond the most-significant bit of the
operand, bit 0 is considered to follow the most-significant bit in a wrap-
around fashion.

DATA TYPE CONVERSION

The GDP's operator set includes several operators to allow conversion between
the various computational data types, as shown in Figure 8-4.

INTEGER

SHORT SHORT
TE
CHARACTER ORDINAL INTEGER ORDINAL

A

TEMPORARY
REAL

SHORT

REAL REAL

F-0378

Figure 8-4. Data Type Conversions

8-5



Computational Data Types iAPX 432 GDP

GDP FLOATING-POINT DATA TYPES

The GDP directly supports the major time-critical aspects of the IEEE Proposed
Standard for Binary Floating-Point Arithmetic. In most cases, a single machine
instruction performs a given floating-point operation to completion in accordance
with the IEEE standard. However, certain requirements of the standard must be
provided by software enhancements to the underlying floating-point architecture
of the GDP. In particular, the GDP faults on denormalized, NaN (Not a Number),
infinity, and pseudo-denormalized operands. In certain cases, unnormalized
temporary reals will also cause a fault. By raising these faults, the GDP can
invoke an appropriate fault handler that provides the necessary computations to
complete the faulted operation in accordance with the IEEE standard. The
proposed IEEE standard is presented in:

Floating-Point Working Group, Microprocessor Standards Committee,
IEEE Computer Society, "A Proposed Standard for Binary Floating-
Point Arithmetie", Draft 8.0 of IEEE Task P754. Computer, March
1981, pp. 51-62.

Both the IEEE proposed standard single precision (32-bit) and double precision (64-
bit) floating point formats are supported by the GDP. In addition, a double-
extended (80-bit) temporary format is provided.

The GDP thus recognizes three floating-point data types:

° Short-Real, occupying 4 bytes each (corresponding to the IEEE standard
- single-precision format)

] Real, occupying 8 bytes each (corresponding to the IEEE standard double-
precision format)

° Temporary-Real, occupying 10 bytes each (corresponding to the minimal
IEEE standard double-extended format)

Each data type is characterized by the amount of storage required and the
operators available for operands of that type. The set of operators provided
permits the accurate determination of almost any arithmetic operation to true
64-bit precision.

The GDP supports floating-point computations that involve the manipulation of
short-real, real, and temporary-real operands by the set of operators associated
with these data types. The floating-point architecture has been designed to
provide clean, accurate arithmetic for floating-point computations and to ease
the writing of reliable mathematical software.

In the discussion that follows, the term "floating-point" is used generically to
describe short-real, real, and temporary-real data types and their associated
operators. Several special terms are also used (e.g., denormalized, unnormalized,
infinity, and NaN). They are defined only briefly later in this chapter. See the
IEEE proposed standard for a more complete discussion of these terms. See also
the iAPX 86/20, 88/20 Numerices Supplement in the iAPX 86, 88 User's Manual.

8-6



iAPX 432 GDP Computational Data Types

GDP calculations using floating-point operands are essentially approximations to
ideal caleculations carried out on values from the set of real numbers. From a
mathematical viewpoint, the set of real numbers can be viewed as a number lin
stretching from minus infinity to plus infinity:

< +—t t >
- infinity e e 0o 0 -1 0 +1 e o o0 + infinity

Each point from the infinite set of points on this line represents a unique real
number. The real numbers that can be represented exactly by short-real, real, and
temporary-real operands form a finite set of discrete points along this number
line. Note that the values represented by character, short-ordinal, ordinal, short-
integer, or integer operands also form a finite set of discrete points along this
number line. All of the values that can be represented exactly by these data
types can be represented exactly by real or temporary-real operands, and most
can be represented exactly by short-real operands.

The design of the GDP floating-point architecture is based on a particular model
of floating-point computation. This model assumes that any computation begins
with a set of source values that are represented by either short-real or real
operands. The programmer selects one of the representations for the values,
depending on the precision or exponent range required. The values produced by the
computation are also represented by short-real or real operands. Again, the
programmer makes the choice, depending on the precision or exponent range
required in the results. The model further assumes that any intermediate result
that is generated during the computation is represented by a temporary-real
operand. The additional precision provided by the temporary-real values allows
for much more precision in the final results than if short-real or real values were
used as intermediates. The extended exponent range of temporary reals allows
computations to continue that might otherwise have been halted because the
exponent range of a short-real or real operand was not sufficient to hold the
exponent of an intermediate result.

The set of GDP operators associated with the floating-point data types is
distributed to support the computational model described above. All of the order-
three arithmetiec operators produce results that are temporary-real values. Also,
each of these arithmetic operators has three forms, which allows mixing the
precisions of the source operands. For example, there are three operators for
addition of short-real operands. One adds two short-real operands, another adds a
short-real operand to a temporary-real operand, and the third adds a temporary-
real operand to a short-real operand. All three produce a temporary-real result as
their third operand.

The advantage of this type of operator distribution can be seen from the following
Ada program fragment that might be used as part of a statistical caleculation. It
calculates the sum of the elements of a vector and the sum of the squares of the
elements:



Computational Data Types iAPX 432 GDP

SUM := 0.0
SUMSQ := 0.0
for Iin 1 .. MAXI loop
SUM := SUM + A(l);
SUMSQ := SUMSQ + A(I) * A(I);
end loop;

Assume that variable A represents an array of short-real values, that I is a
short-ordinal index, and thast MAXI is the maximum index for A. The variable
SUM accumulates the array sum, and the variable SUMSQ accumulates the sum of
the squares.

The ease with which the GDP can support this Ada fragment is illustrated by a
translation of the fragment into the following hypothetical assembly language
sequence:

ZRO TR SUM ; SUM := 0.0;
ZRO TR SUMSQ ; SUMSQ := 0.0;
ONE_SO I ; Start T at 1
<<LOOP>> ADD _TR_SR SUM,A(I,SUM ; SUM := SUM + A(I);
MUL_SR A(D),A(]),$ ; Push A(I) * A(D)
ADD TR $, SUMSQ,SUMSQ; ; SUMSQ := SUMSQ+<STK>
INC_SO LI ; Inecrement index I
LEQ SO LIMAX,$ ;s 1 <= MAXI ?
BR T <<LOOP>> ; yes, then loop

The order of the operands shown in the above instructions is the order defined for
the appropriate operators in this manual. The $ indicates that the operand is
pushed onto, or popped from, the operand stack.

The ADD TR_SR, MUL_SR, and ADD TR operators are order three operators
that product temporary-real results as their third operand. Thus, the two results
(SUM and SUMSQ) are best represented as temporary-real values to maintain as
much precision as possible during the ealculations in the loop.

In accordance with the IEEE standard, the GPD floating-point architecture also
provides the programmer with complete control over rounding. The SET
CONTEXT MODE operator allows setting the bits in the current context status.
Rounding Control is used to determine the number of significant digits to which
the rounding is performed. The SET PROCESS MODE operator allows setting the
Inexact Control bit in the process status. Inexact control provides additional
flexibility by allowing the programmer to select faulting on an inexact result.

Conversion operators are also provided to allow conversion between all of the

GDP's floating-point formats using two conversion instructions at most. On most
cases, only a single conversion instruction is required.

8-8



iAPX 432 GDP Computational Data Types

GENERAL FLOATING-POINT FORMAT

As a short-real, real, or temporary-real operand, the floating-point representation
of a number consists of three binary fields:

S | Exponent Significand

These fields are interpreted by the GDP as follows.

S
This one-bit field represents the number's algebraic sign.

Exponent
This field represents the number's binary order of magnitude.

Significand
This field represents the number's significant digits. The Significand is
often broken down into its Most Significant Bit (MSB), an impliecit binary
radix point, and a Fraction fieid.

CLASSIFICATION OF FLOATING-POINT NUMBERS

The following terms serve to classify various kinds of floating-point numbers

nannrnircad he tha QND Far a mana Aatailad Aiennccinn Af thaca tarsme caa tha
reeogniZel Oy g LY. IO a more Qotaled CIsgussion oI tiesSe Ioris, s Iac

IEEE proposed standard cited at the start of this chapter.

Normal a short-real, real, or temporary-real number with a nonzero,
nonmaximum exponent and a significand MSB of 1.

Zero (normal zero) a short-real, real, or temporary-real number with a
zero exponent and zero significand.

Denormal a short-real, real, or temporary-real number with a zero
exponent, a significant MSB of 0, and a nonzero fraction.

NaN (Not a Number) a short-real, real, or temporary-real number
with a maximum exponent and a nonzero fraction.

Infinity a short-real, real, or temporary-real number with a maximum
exponent and a zero fraction.

Unnormal a temporary-real number with a nonzero, nonmaximum
component, an explicit significand MSB of 0, and a nonzero
fraction.

8-9



Computational Data Types iAPX 432 GDP

Pseudo-zero a temporary-real number with a nonzero, nonmaximum exponent,
and a zero significand.

Pseudo-denormala temporary-real number with a zero exponent and an explicit
significand MSB of 1.

NORMALIZED FLOATING-POINT NUMBERS

The GDP performs floating-point arithmetic using normalized floating-point
numbers. In most cases, if short-real or real operands are not normalized, the
GDP interprets them as invalid operands and raises the Domain Error Fault. With
a few exceptions, the GDP interprets unnormalized temporary real values as valid
operands.

A normalized number has a significand with a most significant bit if 1 and a
nonzero, nonmaximum exponent. Normalization allows the maximum number of
significant digits to be represented by a significand of a given width, because
leading zeros are eliminated. This maximizes the precision accommodated by the
represented floating-point number; it ensures that high-order zeros in the fraction
are shifted out and compensated for by decrementing the exponent by 1 for each
shift left. Thus, the binary number:

+0.00000 00000 00000 00001 11111
can be equivalently represented as:
+1,11111 * (2 ** -20)

where, in both representations, "." is the binary radix point, which is the binary
counterpart of a decimal point. The -20 value would constitute the true value
that must be represented in the binary Exponent field.

The most significant bit of the significand, called the leading bit, is implieit in the
normalized short-real (32-bit) and real (64-bit) data types. That is, when a short-
real or real operand is referenced, the GDP assumes a leading "1." at the high-
order (leftmost) end of the significand field. For short-real and real operands,
this implicit leading bit is only interpreted as 0 when the Exponent field is 0.

A normalized floating-point number with the implicit leading bit and binary point
is shown below.

S Exponent Fraction

The Fraction field is defined as that portion of the significand immediately to the
right of the binary point.

8-10



iAPX 432 GDP Computational Data Types

The number of significant bits in a short-real number or real significand is
therefore one greater than the bit-field width of the physically stored fraction.

Temporary-real formats do not use an implicit leading bit in the significand; the
leading bit (with the implieit binary point following it) is explicit and physically
present. A normalized temporary-real operand must have an explicit, leading
significand bit of 1.

Table 8-1 summarizes the significand sizes for the GDP's floating-point data
types.

Table 8-1 Significand Sizes

DATA TYPE No. of Bits Is There an Total Number of
in Explicit Implicit Bit Bits Contributing
Fraction Interpreted? to Significand

Short Real 23 Yes 64

Real 52 Yes 53

Tempoi‘ary Real 64 Explicit 64

EXPONENT BIASES

In accordance with the IEEE standard and to obtain closure under multiplicative
inverse (i.e., 1/x neither overflows nor underflows), the GDP interprets floating-
point exponenis as bDeing biased Dy a constant vaiue. Tabie 8-Z summarizes the
sizes and biases for the Exponent fields for the GDP's three floating-point data
types.

Table 8-2 Exponent Sizes and Biases

DATA TYPE No. of Bits Maximum Minimum Bias of
in Exponent in Field in Field Exponent
Short Real 8 255 0 127
Real 11 2047 0 1023
Temporary Real 15 32767 0 16383

Biases are constant values that are automatically added to the true exponent to
force the biased exponent to always be a positive value. A number's true
exponent can thus be determined by subtracting the bias value for that type from
the stored exponent value:

True Exponent = Biased Exponent - Bias

8-11



Computational Data Types iAPX 432 GDP

When exponents are biased, two normalized floating-point representations of the
same type and sign can be compared as if they were simple binary magnitudes.
That is, when comparing them bitwise beginning with the most significant
exponent bit, the first position that differs serves to order the numbers; no
further comparison need occur. This ease of comparison is one of the benefits of
biasing the exponents.

GDP FLOATING-POINT OPERAND INTERPRETATION
The following sections describe the unique aspects of each floating-point data

type when interpreted by the GDP as an operand.

Short-Real Operand Interpretation

Short-real operands occupy 32 bits of storage and have the following format:

31 30 23 22 0

S Exponent Fraction

1. Implicit leading bit
and binary point

The most significant bit (bit 31) specifies the sign of the represented number (0 is
positive, 1 is negative).

There are three classes of short-real operands: normalized operands, zero
operands, and invalid operands.

Normalized short-real operands are those in which the Exponent field is neither
all zeros nor all ones. The binary significand is stored in a true magnitude form
that assumes an implicit bit with value 1 to the left of the most significant bit of
the Fraction field. The implicit binary point is between this implied leading bit
and the most significant fraction bit.

Values in the Exponent field have an unsigned binary integer range from 0 through
255. The unsigned binary integer in the Exponent field is interpreted as though a
bias of 127 had been subtracted from it. Since an Exponent field of all zeros or
all ones (unsigned integer values of 0 or 255) has a special meaning, the true
exponent range represented is -126 through 127.

The value of the normalized short-real operand stored as

31 30 23 22 0

s e7...e( f99...f5

8-12



iAPX 432 GDP Computational Data Types

is calculated by
(-1)8 * (1=f226iaf0\ % (2 (e7oc-e0)-127)

Normalized short-real operands provide the equivalent of approximately 7 decimal
digits of precision. The smallest and largest decimal absolute values are
approximately:

smallest: 1.2 * 1038
largest: 3.4 * 1038

A zero short-real operand has both a zero exponent and a zero Fraction field. The
implicit leading bit is assumed to be zero also. Signed short-real zeros are
interpreted. The interpretation of signed zero floating-point operands is discussed
later in this chapter.

Invalid short-real operands always cause a Type 0 Domain Error fault (Invalid
Operand) when referenced in an arithmetie, relational, or conversion instruction.
Though the GDP does not interpret invalid operands beyond recognizing them and
raising the Domain Error fault, Table 8-3 suggests a classification that ean be
used by an appropriate fault handler to fulfill the requirements of the IEEE
standard. The shaded areas are invalid operands.

Table 8-3 Short-Real Operand Classifications

SIGNIFICAND EXPONENT
Zero From 1 to Max-1| Max
Zero *Zero Normalized

Nonzero Normalized

For further information on infinity arithmetie, denormal arithmetie, and NaNs,
see the IEEE proposed standard that is referenced at the start of this chapter.
See also the iAPX 86/20,88/20 Numerics Supplement in the iAPX 86,88 User's
Manual.

Real Operand Interpretation

Real operands occupy 64 bits of storage and have the following format:

63 62 52 51 0
S Exponent Fraction
70
1. Implicit leading bit
and binary point

8-13



Computational Data Types iAPX 432 GDP

The most significant bit (bit 63) specifies the sign of the represented number (0 is
positive, 1 is negative).

As with short-reals, there are three classes of real operands: normalized
operands, zero operands, and invalid operands.

Normalized real operands are those in which the Exponent field is neither all
zeros nor all ones. The binary significand is stored in a true magnitude form that
assumes an implicit bit with value 1 to the left of the most significant bit of the
Fraction field. The implicit binary point is between this implied leading bit and
the most significant fraction bit.

Values in the Exponent field have an unsigned binary integer range from 0 through
2047. The unsigned binary integer in the Exponent field is interpreted as having a
bias of 1023 subtracted from it. Since an Exponent field of all zeros or all ones
(unsigned integer values of 0 or 2047) has a special meaning, the true exponent
range represented is -1022 through 1023.

The value of the normalized real operand stored as

63 62 52 51 0

s e10---€g fg51..-fp

is calculated by
k E 3 e @ - “2

Normalized real operands provide the equivalent of approximately 15 decimal
digits of precision. The smallest and largest decimal absolute values are
approximately:

smallest: 2.2 * 10-308
largest: 1.8 * 10308

A zero real operand has both a zero exponent and a zero Fraction field. The
implicit leading bit is assumed to be zero also. Signed real zeros are interpreted.
The interpretation of signed zero floating-point operands is discussed later in this
chapter.

Invalid real operands always cause a Type 0 Domain Error fault (Invalid Operand)
when referenced in an arithmetie, relational, or conversion instruction. Though
the GDP does not interpret invalid operands beyond recognizing them and raising
the Domain Error fault, Table 8-4 suggests a classification that can be used by an
appropriate fault handler to fulfill the requirements of the IEEE standard. The
shaded areas are invalid operands.

8-14



iAPX 432 GDP Computational Data Types

Table 8-4 Real Operand Classifications

SIGNIFICAND EXPONENT

Zero From 1 to Max—l_! Max

Zero 1Zero Normalized

Nonzero Normalized

Temporary-Real Operand Interpretation

Temporary-real operands occupy 80 bits of strage and have the following format:

79 78 64 63 0
S Exponent Significand
N
/,1\\

The most significant bit (bit 79) specifies the sign of the represented number (0 is
positive, 1 is negative).

Temporary-real operands are intended for use as intermediate, or temporary
results during floating-point computations. Temnaorary-reals ecorrespond to the
minimal double-extended format in the proposed IEEE standard. Supporting such
temporary results has two very important benefits:

. The use of temporary-real operands for the intermediate values of a
multi-step calculation allows a result to be obtained with much less loss of
precision than would occur if short-real or real operands were used to hold
the intermediate values.

° The extended exponent range greatly reduces the possibility that overflow
or underflow might occur and halt the computation before it is complete.

As with short-reals and reals, there are three classes of temporary-real operands:
normalized operands, zero operands, and invalid operands.

Normalized temporary-real operands are those in which the Exponent field is
neither all zeros nor all ones. Unlike the interpretation of short-real and real
operands, the interpretation of normalized temporary-real operands does not
involve an implicit leading bit in the significand. Instead, the binary significand is
stored in a true magnitude form that assumes an explicit most significant bit with
a value of 1. The implicit binary point is interpreted as being to the immediate
right of the explicit leading one bit.

8-15



Computational Data Types iAPX 432 GDP

Values in the Exponent field have an unsigned binary integer range from 0 through
32767. The unsigned binary integer in the Exponent field is interpreted as though
a bias of 32767 had been subtracted from it. Since an Exponent field of all zeros
or all ones (unsigned integer values of 0 or 32767) has a special meaning, the true
exponent range represented is -16382 through 16383,

The value of the normalized temporary-real operand is stored as

79 78 64 63 0

S e14-+-€Q fg2..-fp

is ealculated by |
(-1)8 * (Lfgg...Tq) * (2(C14-+-€0)"1023)

Normalized real operands provide the equivalent of approximately 19 decimal
digits of precision. The smallest and largest decimal absolute values are
approximately:

smallest: 1.7 * 10-4932
largest: 1.2 * 104932

A zero temporary-real operand has both a zero exponent and a zero Significand
field. The implicit leading bit is assumed to be zero also. Signed temporary-real
zeros are interpreted. The interpretation of signed zero floating-point operands is
discussed later in this chapter.

Temporary-real invalid operands always cause a Type 0 Domain Error fault
(Invalid Operand) when referenced in an arithmetic, relational, or conversion
instruction. Though the GDP does not interpret invalid operands beyond
recognizing them and raising the Domain Error fault, Table 8-5 suggests a
classification that can be used by an appropriate fault handler to fulfill the
requirements of the IEEE standard. The shaded areas are invalid operands.

Table 8-5 Temporary Real Operand Classifications

SIGNIFICAND EXPONENT
MSB | Fraction Zero From 1 to Max-1 Max
1 Nonzero Normalized
1 Zero Normalized
0 Nonzero Unnormalized
0 Zero ¥Zero Pseudo-Zero

8-16



iAPX 432 GDP Computational Data Types

Unnormalized and Pseudo-Zero temporary reals are invalid only when used as
source operands for the following operators (* means only invalid as denominator):

e  Arithmetic: SQT_TR, DIV_TR*, REM_TR*, DIV_TR_SR*, DIV_TR_R*

e  Relational: EQL TR, EQZ TR, LSS TR, LEQ TR, PTV TR, NTV TR

TIrm mTr ~ LNTTIITV 'MMTY T NI T ™ FNTTITY TITY ™
T TR O, CVT_TR_I, CVT_TR_SR, CVT_TR_R

® Conversion: C

True Remainder for Temporary Reals

Though a REMAINDER TEMPORARY REAL operator is available for temporary-
real operands, it does not perform the complete remainder caleculation. This
section describes the remainder function in general and how to calculate the true
remainder for two temporary real numbers using the available REM_TR operator.

The behavior of the remainder calculation is best described in terms of an
example. Consider the problem of dividing 2102.5 by 51 using decimal arithmetiec.
The calculation, using long division, is:

41,

51/ 2102.5
204

first partial remainder —————————=62.5
51

second partial remainder —— 11,5

Each step of the division algorithm generates one digit in the quotient and a
pariiai remainder. The reinainder of interest is the partial remainder thati resuits
when the last digit of the integer part of the quotient has been generated (the
second partial remainder in the example). Note that this partial remainder is the
first one that is less than the divisor. Note also that as the value of the dividend
increases, or the value of the divisor decreases, the number of digits that must be -
generated in the integer part of the quotient increases.

The calculation of the true remainder requires performing steps of the division
algorithm until the last digit of the integer part of the quotient has been
generated. In the case of temporary-real operands, the number of required
division steps could be quite large--so large as to be impractical within one
instruction execution. The REMAINDER TEMPORARY REAL operator provides
the basie capability that allows the complete remainder function for temporary
reals to be programmed in software. The time associated with executing this
operator is approximately the same as that for a normal temporary-real division.

8-17



Computational Data Types iAPX 432 GDP

The result of the REMAINDER TEMPORARY REAL operator does not depend on
the setting of the Rounding Control bits or the Precision Control bits in the
Context Status field. The result or partial result generated is always exact;
accuracy is not lost in the process. Each time the REMAINDER TEMPORARY
REAL (REM_TR) operator is executed, one step of the division algorithm is
performed. It can be iterated in a program loop until a fixed number of division
steps have been performed or until a partial remainder is generated whose
absolute value is less than the absolute value of the divisor. In the latter case,
the partial remainder is the true remainder. The following program fragment
illustrates the true remainder calculation loop in a hypothetical assembly
language:

PARTREM := DIVIDEND
push ABS of PARTREM
push ABS of DIVISOR
ABS(PARTREM) less than
ABS(DIVISOR)?

if yes, then exit

else calc next PARTREM
and do loop again
PARTREM contains result.

MOV TR DIVIDEND, PARTREM
LOOP: ABS TR PARTREM, $

ABS TR DIVISOR,$

LSS TR $2,%1,%

BR T $,DONE

REM TR DIVISOR,PARTREM,PARTREM
BR LOOP

WE We Vs We We We We we we

DONE:

The order of the operands shown in the above instructions is the order defined for
the appropriate operators in the Operator Set chapter of this manual. $ indicates
that the operand is pushed onto, or popped from, the operand stack. $1 and $2
indicate that the operand is popped from the top ($1) or next-to-top ($2) of the
operand stack.

Zero as a Floating-Point Operand

Both positive and negative zero operands are interpreted by the GDP for all three
floating-point data types, as follows:

° a sign bit of 0 for positive, 1 for negative

° an exponent field of all 0s

° a significand field of all 0s

Both positive and negative zero are distinguished by the GDP to allow more
information to be associated with certain results than if only a single zero was
recognized. For example, when performing interval arithmetic, the interval

(+0,N) can indicate that the value zero is not included in the interval. Similarly,
the interval (-0,N) can indicate that the value zero is included.

8-18



iAPX 432 GDP Computational Data Types

However, the notion of two distinguishable zeros has a more important use than
for interval arithmetic. For example, the result of the operation A/0, where A is
a positive value, can be considered the limit of A/x as x approaches 0. The actual
limit depends on whether 0 is approached from the positive or negative side of the
number line. If 0 is approached from the positive direction, the result becomes
more and more positive as x approaches 0, and can be represented by positive
infinity. If 0 is approached from the negative direction, the result becomes more
and more negative as x approaches 0, and can be represented by negative infinity.
These two different limit operations can be represented by A/+0 and A/-0.

In general, any operation that involves zero as an operand can be thought of as a
limit operation, and the sign of the zero is positive or negative depending on
whether the limit is to be taken by approaching zero from the positive or negative
side of the number line, respectively. Similarly, if zero is the result of a limit
operation, the sign indicates the direction from which zero was approached as the
limit was taken. For example, let A be positive and consider dividing A by
positive infinity. This represents the limit of A/x as x approaches positive
infinity. The result can be represented by +0, since A/x approaches zero from the
positive side of the number line. Likewise, A divided by negative infinity can be
represented by -0.

All of the GDP's floating point operators provide correct results when a zero of
either sign occurs as a source operand. Also, when a zero result is produced, the
correct sign is produced. Table 8-6 shows the results for all arithmetic and
relational floating-point operators that can have signed zero operands. All
combinations of source operands that involve values of zero or produce results of
zero are shown for these operators.

Table 8-6 does not show the floating-point ZERO (ZRO) operators, which always
store +0. The table also does not show the conversion (CVT) operators. The
following rules apply for floating-point zeros in conversions:

° Conversion from non-floating-point to floating-point:
If the source operand is zero, the result is +0.

° Conversion from floating-point to floating-point:
-0 is converted to -0, and +0 is converted to +0.

° Conversion from floating-point to non-floating-point:
Both +0 and -0 are converted to non-floating-point zero.

As an example of using the Signed Zeros table, consider the result of subtracting -
0 from -0. Looking in the SUB column at the row in which OP1 and OP2 are both
-0, the entry +0* is found. It means (as indicated by the *) that the result
depends on the rounding mode:

° -0 if the rounding mode is Round Down

° +0 for any other rounding mode

8-19



Computational Data Types iAPX 432 GDP

Table 8-6. Signed Zeros

OP1 (OP2| ADD SUB MUL (DIV{REM {SQT |NEG {ABS {EQL |EQZ | LSS |LEQ |PTV|NTV
+0| +V| +V | +V | 40} --| ——| +0| -0} +0| F T T T F F
-0| +V{ +V |4V |-0| —-| ——| 0| 40 +O|{ F | T | T | T | F | F
+0| -vV| -v{-V|-0 ——| —- F F | F
-0| -V} -Vi-V}+0 -} -- F F | F
+V | +0| +V | -V | +0| +0| +0 F F | F
-V| +0| -V |[+V | -0| -0} +0 F T | T
+V| -0} +v |-V | -0} -0 -0 F F F
=V| -0| -V | +V | +0]| +0] -0 F T | T
+0 | +0| +0 | +0% +0| -—f -~ T F | T
+0| -0| +0% -0|-0| --| -- T F| T
-0| +0| 0% +0 | -0} -~| -- T F| T
-0| -0 -0 | +0% +0| --| -- T F| T
+V | -V +0%
+V | +V +0%

NOTES

1. V represents an arbitrary nonzero positivé floating-point

value.

2. T is the Boolean value TRUE; F is FALSE.

3. For entries marked #0%, the result is -0 if the rounding

mode is Round Down and +0 for all other rounding modes.

4, -- entries are invalid operations (division by zero).

5. For Order-2 operators,yOPl is the single source operand.

6. For Order-3 operators, OPl and OP2 are the source operands

and correspond to the same-named operands in the Operator
Set chapter of this manual.

8-20



iAPX 432 GDP Computational Data Types

FLOATING-POINT ROUNDING

Rounding Modes

As described earlier in this chapter, floating-point operands represent discrete
peints along the real number line. When certain floating-point operators are
executed, the true value of the result may be a value that cannot be represented
by a floating-point operand of the type produced by the operator. In this case, the
result must be rounded before it is stored in the result operand, and the result is
said to be inexact. It must be rounded to one of the two representable floating-
point values on either side of the true result. The GDP's floating-point
architecture provides explicit control over the manner in which this rounding is
done. The option is also provided to fault on the occurrence of an inexaect result
and thus to allow fault-handling software to provide a warning or to complete the
operation by dealing with the inexact result in a user-programmed way.

Four rounding modes are supported: Round Nearest, Round Up, Round Down, and
Round Toward Zero. Their selection is controlled by appropriate Rounding
Control bits in the Context Status field of the current context object. The
Context Status of the current context can be changed by a special SET CONTEXT
MODE operator.

Round Nearest is the normal kind of rounding used. With Round Nearest, the true
result is rounded to the nearest representable floating-point value. If the true
result lies along the number line exactly halfway between the two representable
values on either side of it, then the true result is rounded to the representable
value with a least significant fraction bit of zero. This rounding mode delivers
the most statistically unbiased results and is recommended for normal use.

The Round Up and Round Down modes make it easy to program interval
arithmetic. Interval arithmetiec requires that each step of a floating-point
computation produce an interval (i.e., an upper and lower bound) that is certain to
contain the true result. The two types of rounding required for interval
arithmetic are thus round toward positive infinity (Round Up) and round toward
negative infinity (Round Down). Whenever the true result of a floating-point
operator lies between two representable floating-point values, rounding up will
produce the algebraically larger value, and rounding down will produce the
algebraically smaller value. If the true result falls exactly on a representable
value, then both rounding up and rounding down produce the same true result.

Rounding Toward Zero (chopping) chooses the representable value that is
algebraically closest to zero. If the true result falls exactly on a representable
value, then rounding produces the same true result.

Rounding Control

The rounding control used in the current context can be changed with the SET
CONTEXT MODE operator. The new rounding mode is local to the context (does
not propogate to the caller) but is inherited by called contexts. Note that it is not
proper to simply write a new value to the Context Status field that contains the
control bits, as this field is cached by the GDP.

8-21



Computational Data Types iAPX 432 GDP

Precision Control

The Precision Control bits in the Context Status field control the precision to
which temporary-real results are rounded. These bits determine whether the
result fraction is to be rounded to temporary-real precision (64 bits), real
precision (53 bits) or short-real precision (24 bits). As described in the previous
section, the direction of rounding used is specified by the Rounding Control bits.
If a temporary-real result is rounded to real precision, the low-order 11 fraction
bits are zero; if rounded to short-real precision, the low-order 40 fraction bits are
zero.

The Precision Control bits are assigned in the same way as the Rounding Control
bits and with the same scope, by using the SET CONTEXT MODE operator. This
operator assigns the control bits in both the executing GDP and in the Context
Status field.

Inexact Control

The programmer can control whether or not a fault is invoked when an inexact
result is generated. Inexact fault-handling can be used to allow user-programmed
provisions for inexact results in certain numeric algorithms, or for the use of
temporary reals to simulate a 64-bit long integer data type.

Unlike the rounding control and precision control bits, the Inexaet Control bit is

located in the Process Status field and is controlled by the SET PROCESS MODE
operator.

DATA OPERATOR FAULTING

CLASSIFICATION OF DATA OPERATOR FAULTS

If an operation is attempted with an operand that is not defined for that
operation, or if the true result of any operand violates the representable bounds of
the destination operand, then an exceptional condition is recognized by the GDP
and an appropriate context-level fault is raised. All Data Operator faults are
Type 0 faults and are classified into the following fault groups:

° Domain Error -- caused by an exceptional operand value being outside the
numeric domain that is defined for the attempted operation (e.g., square root
of a negative number, attempt to divide by zero, floating-point invalid
operand).

. Overflow -- caused by a true result with an absolute value that exceeds the
maximum representable value of the actual destination operand (e.g.,
attempting DEC_SI on a source operand value of -32,768, attempting INC SI
on a source operand value of 32,767).

8-22



iAPX 432 GDP Computational Data Types

° Underflow -- caused by a true result with an absolute value that is less than
the minimum representable value of the actual destination operand (e.g.,
MUL SR TR yielding a true result with an exponent less than -16,382).

° Inexact —— caused by a true result of a floating-point operation that is not
exaetly representable in the specified precision of the destination format
(e.g., the true result of a CVT_TR_SR instruction is not exactly
representable in the Short-Real destination). This fault only occurs when
the Inexact Control bit is set in the current process status.

The Data Operator Faults section of Chapter 12, "Fault and Trace Reference,"
describes the specific conditions that cause these faults to occur for each GDP
operator.

At the time a fault occurs, the GDP automatically places information in the
Context Fault Data Area of the current process object. This information defines
the type and circumstances surrounding the fault. The appropriate fault handler
can then use this information to diagnose the fault and undertake repairs. Only
those fields in the fault data area used to record data unique to the given fault
are valid on entry to the fault handler.

Data operator faults are also classified according to whether they are Pre-
operation or Post-operation. A pre-operation fault occurs at the start of
instruction execution when the GDP examines the source operand(s). All Domain
Error faults are pre-operation faults. A pre-operation fault causes the restoration
of the operand stack pointer to its value at the start of the faulted instruction. In
addition, the GDP places appropriate values in the following fault data fields:

. First Fault Data Item (containing source operand 1)

° Second Fault Data Item (containing source operand 2 when appropriate,
according to the operator attempted)

The values placed in these fields are determined by the operator attempted. The
operands stored into the fault data items are always justified into the least-
significant portion of the field with any leftover upper bytes undefined.

A post-operation fault occurs after a faulted instruction that has been executed
up to, but not including, storing a result. The operand stack pointer is not
restored to its previous value. The GDP places the exceptional result value in the
First Fault Data Item field. All overflow, underflow, and inexact faults are post-
operation faults. ‘

8-23



Computational Data Types iAPX 432 GDP

FLOATING-POINT FAULTING

Floating-point Domain Errors

Domain errors occur when an attempt is made to execute an operator with an
operand value that is outside the domain that is defined for the attempted
operation. These floating-point domain errors are defined:

° attempting to divide by + zero.
° attempting to take the square root of a negative value.
° attempting any arithmetie, relational, or conversion operator with an invalid

floating-point operand. The various kinds of invalid floating-point operands
are discussed in earlier sections of this chapter.

Floating-Point Overflow

A floating-point overflow fault occurs whenever a floating-point operator
produces a result with an exponent that is algebraically too large for the exponent
field of the destination operand. Temporary-real overflow occurs if an instruetion
produces a temporary-real result with a true exponent greater than 16,383. Real
overflow and short-real overflow can occur only during conversion instructions;
real overflow occurs if the exponent of the source operand is greater than 1,023;
short-real overflow occurs if the exponent of the source operand is greater than
127.

All overflow faults are post-operation faults. For a temporary-real overflow
fault, the exceptional result written to the First Fault Data Item has the correct,
properly rounded significand, but the exponent is "wrapped around" with a value
that is 32,767 less than the true exponent. A similar kind of exceptional result
could be written in the case of short-real or real overflow, but a wrapped-around
exponent is not meaningful when overflow is caused by a conversion operator.
Thus, for short-real and real overflows, the exceptional result written to the First
Fault Data Item is the value of the source operand referenced by the conversion
instruction causing the fault.

Floating-Point Underflow

A floating-point underflow occurs whenever a floating-point operator produces a
result with an exponent that is algebraically too small for the exponent field of
the destination operand. Temporary-real underflow ocecurs if an instruction
produces a temporary-real result with a true exponent less than -16,382. Real and
short-real underflow can occur only during conversion instructions; real underflow
occurs if the exponent of the source operand is less than -1022; short-real
underflow occurs if the exponent of the source operand is less than -126.

8-24



iAPX 432 GDP : Computational Data Types

All underflow faults are post-operation faults. For a temporary-real underflow
fault, the exceptional result written to the First Fault Data Item has the correct,
properly rounded significand, but the exponent is "wrapped around" with a value
that is 32,767 greater than the true exponent. For short-real and real underflows,
the exceptional result written to the First Fault Data Item is the value of the
source operand referenced by the conversion instruetion causing the fault.

Floating-Point Inexact

An inexact fault occurs if the result of a floating-point operation is not exactly
representable in the destination operand. Whether or not the representation can
be accomplished exactly may depend on the current Precision Control. The
setting of the Inexact Control bit in the GDP and the Process Status determines
whether an inexact fault will oceur. If the Inexaet Control bit is one, then an
instruction with an inexact result does not store its result and raises the inexact
fault. The inexact fault is a post-operation fault. The value stored in the First
Fault Data Item is the value of the exceptional temporary-real result before any
rounding.

8-25






PART I

REFERENCE INFORMATION




CHAPTER 9
OBJECT SET

This chapter defines the Object Set of the iAPX 432 General Data
Processor. The formats and processor interpretation of the fields are
given for all system objects. '

CHAPTER CONVENTIONS

Throughout this chapter, certain conventions are used. They are
described in the following sections,

RESERVED FIELDS

Reserved fields are reserved for use by the processor. Software can
write these fields but cannot depend on retrieving the value written.
Reserved fields are indicated in the illustrations of this chapter
using the following graphic convention:

PRESERVED FIELDS

LR S LSl bl 3 4 ~ = Yaa— s i T s

and may be used by software. Preserved fields are indicated in the
illustrations of this chapter using the following graphic convention:

%%




Object Set iAPX 432 GDP

OBJECT ILLUSTRATION CONVENTION

System objects are shown in this chapter using the following graphic
convention to illustrate the parts of each object:

;//// W/ ////, faner Storage

~ Processor-Interpreted 4
Area of Data Part

— Fence

% Processor-Interpreted
Area of Access Part

Lower Storage
Addresses

The Processor-Interpreted areas contain the fields that uniquely
characterize the system object to a processor. The Software-Defined
areas are optional variable-sized portions of the object that are
preserved by processors for exclusive use by software. Some system
objects (e.g., port objects) cannot include Software-Defined areas.
The Fence is the graphic convention used to indicate the boundary
between the Access Part (AP) and the Data Part (DP) of an object.

ENCODED VALUES

Unless otherwise noted, binary encoded field values are shown in this

chapter in an most-significant bit (MSB) to least-significant bit (LSB)
order, left to right.

INDEX FIELDS

Values in index fields select an element from an array of entries or
descriptors. Such values are multiplied by the length of a descriptor
in bytes (16 bytes for OTEs and 4 bytes for ADs) to obtain the byte
displacement into the array. The index value itself counts descriptors
starting at zero. Unless otherwise noted, index field values are
automatically scaled by the processor (i.e., multiplied by the
appropriate descriptor length) to obtain byte displacements relative to
the Fence of an object.



iAPX 432 GDP Object Set

DISPLACEMENT FIELDS

In general, a displacement is a length (counting either bytes or bits)
from the base (Fence) of an object to a specified point in the object.
Unless otherwise noted, displacement fields in this chapter contain
values that count bytes. Displacements are relative to the fence. AP
displacements are negative offsets (i.e., from the fence toward lower
physical addresses) and DP displacements are positive offsets (i.e

Ry=1C¢alL 200CArce=Ca3; aiul Ur Qla3paqCelitilta allc POl Ll =S5

from the fence toward higher physical addresses).

OBJECT REPRESENTATION

Objects are physically represented by segments., There are two address
spaces in which segments can be defined: the storage address space and
the interconnect address space. All system objects are defined in the
storage address space. System objects consist of an access part and a
data part, although one or the other may be nonexistent in a given
‘system object. For example, an instruction object may have no access
part.

The general storage segment structure is maintained by the processor
and is normally transparent to the user. Therefore, throughout this

manual, only the visible segment part of the general storage segment is
shown.

GENERAL STORAGE SEGMENT STRUCTURE

The format of a general storage segment is as follows.

Byte
Displacement
A DP Pad (0 to 7 bytes) 2
- Visible Data Part -
(0 to 65536 bytes) 0

< Visible Access Part a
(0 to 16384 ADs)

y 3 AP Pad (0 to 3 bytes) ~

S Segment Prefix (8 bytes) —

Access Descriptor
Index (32 bits each)

9-3



Object Set iAPX 432 GDP

Storage segments are always aligned on double-word (8-byte)
boundaries. The first 4 bytes of the 8-byte segment prefix contain an
image of the original access descriptor to the visible segment, These
first 4 bytes of the segment are first in terms of absolute physical
storage address. The segment AD image is .initially written by the
processor (as a valid AD with all rights) when the segment is created
and is preserved thereafter. The second 4 bytes of the segment prefix
are preserved. The segment prefix is not normally accessible. There
are cases, however, in which operating system software uses the segment
prefix during storage management. For example, the segment AD image is
used by the parallel storage compaction process.

The maximum visible segment size is 131,072 bytes, while the maximum
size of each visible part is 65,536 bytes., This does not include the
segment prefix, The DP pad is a 0- to T-byte area that is added to the
end of the visible segment to round the size of the segment up to the
nearest 8-byte integer multiple. The AP pad is a 0- or U4-byte area
that is added between the visible access part and the segment prefix.
These pads ensure the alignment of segments on 8-byte boundaries and
also minimize fragmentation of physical storage. The rounding in size
is required by the processor and is performed automatically if the
segment is created by the GDP.

The Fence is the imaginary boundary separating the access and data
parts.

For objects in the Interconnect Address Space, the General Interconnect
Segment Structure contains a Visible Data Part only, no pads, and no
Segment Prefix, It must be aligned on a double~byte boundary and must
have an even length.



iAPX 432 GDP Object Set

ACCESS PART

The general format of an Access Part (AP) is shown below. An access
part consists of an array of access descriptors. Access parts can
contain only access descriptors. Access descriptors are laid out in
memory on an AD by AD basis in decreasing physical addresses, and the
‘least-significant bit of each AD occupies the lowest physical address.
Access descriptors are only interpreted as such by the processor when
they reside in an access part. A copy of an AD in a data part, object
descriptor, or segment prefix is called an access descriptor image and
can neither be used as an AD directly nor copied into an AD location in
an access part.

Access Descriptor 1
Access Descriptor 2
Access Descriptor 3
-4 ; @ Access Descriptor
o Index (32 bits each)

DATA PART

A Data Part (DP) contains ordinary data. Many system objects have a
data part containing status and control information required for that
object. Generic data parts can contain any programmer-defined data
structures and operands. Data parts are depicted in this chapter with
the following general form. - R

Byte
Displacement

2 DATA

9-5



Object Set iAPX 432 GDP

ACCESS DESCRIPTOR

Access Descriptors are the primary means of object addressing in the
iAPX U432 architecture. They consist of the following fields:

31

20 19 16 15 4310

12 bits xIxixlx 12 bits xxx

The

Access Valid

Type Rights

Segment Index

Delete Rights

seeeseeesmss  Inchecked Copy Rights

Read Rights

Write Rights

Directory Index

fields that consitute an access descriptor are interpreted as

follows:

Access Valid (Bit 0)

If access valid is 0, this access descriptor is interpreted as null
(i.e., invalid for object addressing). The remaining bits are not
interpreted by the processor, but can be used for a 31-bit embedded
data value (described in the next section of this chapter).

Type Rights (Bits 1 - 3)

The interpretation of this 3-bit field is determined by the object
type of the referenced object. These bits are called:

Bit 1 - Type Right 1
Bit 2 - Type Right 2
Bit 3 - Type Right 3

The individual system object descriptions in later sections of this
chapter describe the interpretation of the type rights field in
access descriptors that reference system objects. For many system
objects, some or all of these bits are uninterpreted (preserved).
Type Rights bits that are uninterpreted by the processor can be
used by software to define additional rights for objects of a
particular type.

Segment Index (Bits 4 - 15)

9-6

This 12-bit field contains the index into a selected object table
of the object descriptor for the object referenced by this access

descriptor. The object table itself is selected using the
Directory Index field described below.



iAPX 432 GDP Object Set

Delete Rights (Bit 16)
This bit indicates whether this access descriptor can be deleted
(i.e., can be overwritten). If delete rights is 0, and an attempt
is made to delete this valid access descriptor, an Access
Descriptor Deletion Fault occurs. If the bit is 1, deletion can
occur without faulting. Whenever an access descriptor is copied,
the delete rights bit of the copy is set to 1, so that it may later

be deleted; otherwise, a proliferation of undeletable access

descriptors might occur. The Delete Rights bit is not interpreted
in null ADs. Thus, null ADs may always be overwritten.

Unchecked Copy Rights (Bit 17)
This bit indicates whether a level compatibility check is required
when this access descriptor is copied. If this bit is 1, the level
compatibility check is bypassed. Setting this bit to 1 via an
AMPLIFY RIGHTS instruction should be done with extreme caution as
it may result in one or more ADs for a previously deleted object.

Read Rights (Bit 18)

This bit indicates whether the access descriptor can be used to
read from the object it references. If read rights is 1, the
access descriptor can be used to read from the referenced object.

Write Rights (Bit 19)
This bit indicates whether the access descriptor can be used to
write to the object it references. If write rights is 1, the
access descriptor can be used to write to the referenced object.

Directory Index (Bits 20 - 31)

Thia 12 _hi+ £ialAd nankainoe an indav intAn fha rhiant +ahla
uuuuuuuuuuuuuuu CChLvallio Qi BN 410-459-4 wiiwl vl Cogelyv vareT

directory. It thus yields a storage descriptor containing the base
address and length of an object table. The selected object table
is indexed by the 12-bit Segment Index field (described above) to
select the object descriptor for the object referenced by this
access descriptor.




Object Set iAPX 432 GDP

EMBEDDED DATA VALUE

31 10

31 bits o}

e Access Valid

Embedded Data Value

The fields that consitute a null AD can be interpreted by certain
operators as follows:

Access Valid (Bit 0)

For embedded data values the access valid bit is 0 and thus the AD
in which the EDV is embedded is null (i.e., invalid for object
addressing). The remaining bits are not interpreted by the
processor and can be used for a 31-bit embedded data value,

Embedded Data Value (Bit 1 - 31)
This field contains a 31-bit value that can be passed by value
between processes or contexts like an AD for a message or
parameter, without the overhead in memory space or access time of
referencing the value within an object.




iAPX 432 GDP Object Set

OBJECT LOCK

Object locks must always be located in the data part of objects. The
processor recognizes object locks at specific 1locations in system
objects and automatically manipulates them during normal operations to
accomplish mutually exclusive access among contending processors and
processes. See the specific system object descriptions in this chapter
for the exclusive access coverage defined for the object lock in that
system object. Object locks can be manipulated by software via LOCK
OBJECT and UNLOCK OBJECT instructions. In this case, 1long-term
software locking is the lock status used. Mutual exclusion is then
accomplished only if all contending processes honor the convention
explicitly. An object lock consists of the following fields:

15 2 10

14 bits 8.4

— [.0ck Status
Locker ID

The fields that constitute an object lock are interpreted as follows:

Lock Status (Bits 0 - 1)
Lock status values are interpreted as follows:

00 Not locked

01 Hardware locked

10 - Long-term software locked
11 Short-term software slocked

Hardware locking is set by the processor when performing an
operation on behalf of a processor that requires the object to be
locked.

Short-term software locking is set by the processor when executing
an instruction on behalf of a process that requires the object to
be locked for the duration of one instruction.

Long-term software locking is set by the processor when a software
operation has specified {(via a LOCK OBJECT instruction) that an
object be locked. A long-term software lock remains in effect
until an UNLOCK OBJECT instruction is performed on the object.

Locker ID (Bits 2 - 15)
If hardware-locked, this field is written by the processor. (Bits
8 - 15 contain the left-justified 8-bit processor ID of the locking
processor, and bits 2 - 7 contain zeros). The processor ID must be
nonzero. If software locked, this field (bits 2 - 15) is written
by the processor to contain the process ID (from the process data
part of the locking process). The process ID must be nonzero,



Object Set iAPX 432 GDP

OBJECT DESCRIPTIONS

SYSTEM OBJECT TYPES

Following sections of this chapter contain descriptions of the system
objects interpreted by the 432 architecture. The following table gives
the order in which the system objects are presented and the page on
which each description begins.

System Object Type Page

Object Table ObjeCt eceeecsccsscccsccnscsccccccccsscsasocscsaes 9-12
Processor Object cecececcsscccccssossscosscscsvscnssascssscsne 9=27
Processor Communication Object eeeeeceescecseccccsccssascess 9-33
Process ObjeCt seeeecececcsccsccscccsoscscscossscsccacccnsossees 9=35
Context ObJECL eeeescecssssssccscssssscccccccsassssssasscss 9-43
Domain Object ceeeecectcccsotcccccosscccccsssscscscnccccsnss 9I=48
Instruction Object eeceececcccccccsassssscsccccccosssssscsse 9—49
Port Object sevececceccecscecssccccscsscssossscsassscsnsnse 9-51
Carrier ObJeCt ecesescecccescscccsconsscsceassscnossssssnssscss 9-55
Storage Resource ObjeCt ceececeesecscscsscscassacscssssasssas 9-59
Storage Claim ObjeCt seeecsveesssovsvsssssescssccosssssasscss 9-61
Physical Storage ObJeCL eceeeceecccccccccscccsoscscancascanee 9=62
Type Definition ObJeCt seceesssccccscsssscecccscssasccsnnes 9-65
Dynamic Type ObjJeCt ssecececcessnsscasussrcsssasssssssananss I—6H6
Type Control ObjJeCt eeeeccssscscccoscscsscsccsnsssssasassans 9-67



iAPX 432 GDP

Table of System Object Types and Their Type Rights

Object Set

The following table lists all system object types and any type rights
interpreted by the processor in ADs that reference the system object.

System Obgect Type

Type Right 3

Type Rigﬁt 2

Type Ri§ﬁt 1

Object Table

Processor

Processor Communication

Process

Context

Domain
Instruction

Port

Carrier

Storage Resource
Storage Claim
Physical Storage
Type Definition
Dynamic Type

Type Control

ememamam

Send Process

Refine

Trace

Receive

Amplify

Send IPC
Set Mode

Return

Send
Surrogate

Create

Create

-——- indicates that the type right is not interpreted by the GDP (and

preserved).

9-11

is



Object Set iAPX 432 GDP

OBJECT TABLE OBJECT

An object table object contains an array of object table entries
(OTEs), each of which is 16 bytes in length. Refinement descriptors
with object table as their object type are not supported by the GDP.

o] OT Entry Index
-1 o ¢ (16 bytes each)
o
OT Entry 2
OT Entry 1
Header Entry 0

OBJECT TABLE ENTRIES

An object table can contain the following types of object table
entries. Each is described in its own section later in this chapter.

Header Entry
Each header entry is used by the processor to control storage
allocation using the object table. The first entry in an object
table can only be a header entry.

Free Entry

Each OT free entry is a place holder for a potential object
descriptor.

The following object table entries are called object descriptors (ODs):

Storage Descriptor

A storage descriptor defines a object allocated in the storage
address space.

Refinement Descriptor

A refinement descriptor defines an object consisting of a
restricted view of parts of a previously defined storage segment.

Interconnect Descriptor

An interconnect descriptor defines a object in the interconnect
address space.




iAPX 432 GDP Object Set

Specific object table entries are identified by the lower 5 bits of
each 16-byte entry as follows:

Bits 4:3 Bit 2 Bits 1:0 Object Table Entry
00 0 00 Free Entry
00 1 00 Header Entry
01 X 00 Interconnect Descriptor
XX X 01 Reserved
XX X 10 Refinement Descriptor
XX X 11 Storage Descriptor

X means: Not used to identify the specific OTE (but may be used
Wwithin another field within the OTE).

OBJECT TABLE DIRECTORY

OT Entry Index

® OT Entries % (16 bytes each)
Object Table Directory 0D A
Processor Object Table OD 1
Header Entry 0

An object table directory (OTD) is a special kind of object table
object that contains only ODs describing object table objects. Only
the first three entries are uniquely processor-interpreted for an
object table directory. They are:

Header Entry (OTE 0)

This is an ordinary header entry, as described in its own separate
section of this chapter.

Processor Object Table OD (OTE 1) :
This storage descriptor defines the object table containing object
descriptors for processor objects. During processor qualification,

a processor indexes into the processor object table with its 8-bit
processor ID to find the object descriptor for its processor object.

Object Table Directory OD (OTE 2)
This storage descriptor defines the object that is this object
table directory itself, All OTDs must have an 0D for themselves at
OTE index 2.




Object Set iAPX U432 GDP

TYPE RIGHTS FOR OBJECT TABLE OBJECTS

The type rights in an access descriptor that references an object table
object are uninterpreted.

OBJECT ADDRESSING SUMMARY

The following diagram summarizes object addressing in the 1APX 1432

architecture. The Object Descriptor for A is often called the access
descriptor's associated object descriptor.

ACCESS DESCRIPTOR FOR OBJECT A

SEGMENT
INDEX

DIRECTORY
INDEX

OBJECT TABLE

et ittt

1
1
1
]
{
1
1
1
1
|
]
]
]
1
1
1
1
1
]
[]
:
; OBJECT TABLE
! DIRECTORY OBJECT A
1
1
: OBJECT DP
: DESCRIPTOR
! FOR A AP
i
i
! STORAGE
' DESCRIPTOR >
I FOR OBJECT
1
! TABLE
|
]
]
[}
I
L.
F-0071-1



iAPX 432 GDP Object Set

OBJECT TABLE ENTRY DESCRIPTIONS

The following sections of this chapter contain descriptions of the
types of object table entry.

HEADER ENTRY

127 : 96
16 bits X
95 80 79 64
Copied
Level
End Index
63 , 48 u7 32
] e
1 D1TS
LR XA
12 bits g.z.:’:g/ xJoo}1]oo
31 20 19 15 6 0

Entrar rna
Nty re

s Entry Header

— ENtry Subtype

Stack OT Header

Free Index

The fields that constitute a header entri are interpreted as follows:

Entry Type (Bits 0 - 1)
This field is 00 for a header entry.

Entry Header (Bit 2)
This bit is 1 for a header entry.

Entry Subtype (Bits 3 - 4)
This field is 00 for a header entry,




Object Set iAPX 432 GDP

Stack OT Header (Bit 5)

This bit is 0 for heap object table headers. The free entries
associated with a heap OT header entry are organized as a linked
list starting with the free entry indexed by the free index field.
If the free index field is zero in a heap OT header, then there are
no free entries associated with the header (the list is empty).

This bit is 1 for stack object table headers. The free entries
associated with a stack OT header entry are from the free index + 1
to the end index (inclusive). If the free index is greater than or
equal to the end index field in a stack OT header, then there are
no free entries associated with the header.

Free Index (Bits 20 - 31)

If the Stack OT Header bit is 0, for heap allocation, all free
entries (described later in this chapter) are in a linked list.
The free index field in the header entry indexes the first free
entry (if any) in the list. If the Stack OT Header bit is 1, for
stack allocation, the free index field indexes the most recently
allocated object descriptor in the object table, and free index + 1
indexes the first free entry (if any).

End Index (Bits 36 —~ U7)
This 12-bit field is interpreted only if the Stack OT Header bit is
1 (for stack object tables). It then indexes the last object table

entry in the object table. When Free Index >= End Index, all OTEs
in the stack object table have been allocated. Otherwise, the OTEs
from Free Index+1 through End Index are free entries,

Copied (Bit 72)
This bit indicates whether an access descriptor that references
this object table header has been copied since this bit was last
set to 0 by software. The copied bit is initialized to 1 when this
object descriptor is created. Furthermore, the copied bit is set

to 1 by the processor whenever an AD that references this entry is
copied. The Copied bit serves as the gray bit for the iMAX

parallel garbage collector algorithm.

Level (Bits 80 - 95)
This 16-bit field contains either the value found in the Current
Allocation Level field of the process object (during stack
allocation) or the Allocation Level field of the SRO (during heap
allocation) at the time this object descriptor was allocated. For
an OD allocated with a 1level of 0, its associated AD has the
Unchecked Copy Rights bit set to 1 when created.



iAPX 432 GDP

FREE ENTRY

127 96

77777

ot

64
32

%oo ofoo

31 20 19 15 5 0

beee Entry Type

b Entry Header

————— ENtry Subtype

Free Index

Object Set

Free Entries are only interpreted as such by the processor in heap
object tables. The fields that constitute a free entry are interpreted

as follows:

Entry Type (Bits 0 - 1)
This field is 00 for a free entry.

Entry Header (Bit 2)
This bit is O for a free entry.

Entry Subtype (Bits 3 - 4)
This field is 00 for a free entry.

Free Index (Bits 20 - 31)
This field is only interpreted for heap object tables.

The field

indexes from the base (fence) of this object table to the next free

entry in the linked list of free entries. The last such
in the list is identified by a Free Index value of zero.

free entry



Object Set iAPX 432 GDP

STORAGE DESCRIPTOR

i Completed
127 112 96
ey
X = TDO-AD Image
16 bits £ X XXXXXXXX
95 80 79 73 64
b Ob ject Type
Copied
Level
AP Length
DP Length
63 48 47 32
16 bits 16 bits
24 bits xfxfxxixix11
31 8 0
Entry Type
0D Valid
e DP Valid

Allocated

Windowed

Altered

hssnessnsessmenseemr Accessed

esssessssvessss» Base Address

The fields that constitute a storage descriptor are interpreted as
follows:

Entry Type (Bits 0 - 1)

This field is 11 for a storage descriptor,

9-18



iAPX 432 GDP Object Set

0D Valid (Bit 2)

If this bit is 0, only the Copied bit and Entry Type fields have
meaning in this descriptor. A fault occurs if OD Valid is 0 and an

attempt is made to reference a object through this object
descriptor.

DP Valid (Bit 3)

If this bit is 0, the object defined by this storage descriptor
does not have:a data part Otherwise, the size of the data part is

specified-by the DP Length field.

Allocated (Bit 4)
This bit is 0 if there is no storage allocated with this storage
descriptor, and 1 if there is storage eallocated with it. If this
bit is 0, the base address field in this descriptor is undefined.
Each time the object defined by this descriptor is accessed (i.e.,
read from or written to), this bit is checked., If it is 0 and the
object defined by this descriptor is not qualified within the GDP,

a fault occurs.

Windowed (Bit 5)
This bit is referenced by iAPX 432 Interface Processors (IPs) and

by GDP software to determine if the object described by this
storage descriptor is being mapped by an IP window. .If windowed is
1, then an IP window is open on all or part of the object. This
bit is not interpreted by the GDP and is initially O. This bit is
set and cleared by the IP operations that open and close windows.

Altered (Bit 6)

Thiao lr\-|+- Sa dimditrialseond A 1 A Aanadasa +thet 1
PR fpRs) AW LUULVLAILLOTU VU LU UL UVLE U vi

this storage descriptor has been altered (i.e., has been written
into). This bit is set to 1 by the processor whenever any portion
of the object is overwritten. It is cleared by operating system
software in a virtual memory system. In a non-virtual memory
system, this bit should be 1left as 1 by software to avoid
unnecessary but automatically occurring storage accesses.

Accessed (Bit 7)
This bit is initialized to 1. Subsequently, if the object defined
by this storage descriptor is accessed (i.e., read from or written
to), this field is set to 1 by the processor. It is cleared by
software in a virtual memory system. In a non-virtual menory
system, this bit should be left as 1 by software to avoid
unnecessary but automatically occurring storage accesses.

Base Address (Bits 8 - 31)
This 24-bit field contains the physical base address (in- bytes in
the storage address space) of the object. This value is the
address of the first byte in the data part of the object. It is

also the address of the first byte above (i.e., at the next higher
address) the first AD in the access part of the object.

DP Length (Bits 32 -~ 47)
The value of this 16-bit field is one less than the length in bytes
of the data part of the defined object. Thus, a maximum-length DP
of 65,536 bytes has as its DP Length field a value of 65,535
(OFFFFH). Each time a operand is referenced by a logical address

9-19g



Object Set iAPX 432 GDP

in an instruction, the operand offset is compared to this DP Length

tield. If (operand offset + operand size) exceeas the actual length in
bytes of the data part, a fault occurs.

AP Length (Bits 48 - 63)

The value of this 16-bit field is one less than the length in bytes
of the access part of the defined object. Thus, a maximum-length
access part of 65,536 bytes has as its AP Length field a value of
65,535 (OFFFFH). Each time an object is referenced in the course
of generating an address using a scaled AD index, the displacement
into the AP 1is compared to this AP Length field. If the
displacement exceeds the AP length, a fault occurs. Note that AP
length values of 0, 1, or 2 indicate that the object has no access
part.

Ob ject Type (Bits 64 - 71) :
This 8-bit field encodes the object type of the object. An object
type is composed of a 5-bit System Type field and a 3-bit Processor
Type field:

71 69 68 64

XXX 5 bits

System Type
Processor Type

System Type (Bits 64 - 68)
This 5-bit field determines the system type of the object
definea by the storage descriptor. The encodings for the
System Type field are as follows:

Encoding System Type

00000 Generic Object

00001 Ob ject Table Object
00010 Domain Object

00011 Instruction Object
00100 Context Object

00101 Process Ob ject

00110 Processor Object

00111 Port Ob ject

01000 Carrier Object

01001 Storage Resource Object
01010 Physical Storage Object
01011 Storage Claim Object
01100 Dynamic Type Object
01101 Type Definition Object
01110 Type Control Object
01111 RESERVED

10000 Processor Communication Object
10001
thru RESERVED

11111

9-20



iAPX 432 GDP Object Set

Processor Type (Bits 69 - 71)
This 3-bit field encodes the type of iAPX 432 processor for
which the object is defined. If a processor attempts to

access an object that is not of its type, a fault occurs. The
encodings for the Processor Type field are as follows:

Encoding Processor Type
000 All
001 GDP
010 IP
011
thru Reserved
1M

GDPs can only read or write objects with processor type All or
GDP.

Copied (Bit T2)

This bit indicates whether an access descriptor that references
this object descriptor has been copied since this bit was last set
to 0 by software. The copied bit is initialized to 1 when this
object descriptor is created. Furthermore, the copied bit is set
to 1 by the processor whenever an AD is copied which references
this OD. The Copied bit serves as the gray bit for the iMAX
garbage collector algorithm.

Level (Bits 80 - 95)
This 16-bit field contains the value found in either the Current
Allocation Level field of the process object (during stack
allocation) or the Allocation Level field of the SRO (during heap
allocation) at the time this object descriptor was allocated. For
an 0D allocated with a 1level of 0, its associated AD has the
Unchecked Copy Rights bit set to 1 when created.

TDO-AD Image (Bits 96 - 127)
This 32 bit field contains an image of an access descriptor for the
Type Definition Object that defines the type manager of the object
instance described by this storage descriptor.,

Completed (Bit 112)

The interpretation of this bit is only important during the
creation of the object defined by this object descriptor. System
software can consult the Completed bit to determine if segment
creation is still in- progress, If the Completed bit is 1, the
segment creation process has initialized the new segment to all
zeros (and all ADs in the new segment to all null ADs with EDVs
zero). This bit corresponds to the position of the Delete Rights
bit in the TDO-AD Image., But, the TDO-AD Image can never be used
in-place as an AD. When copied into an access part by a processor,
the Delete Rights bit in the AD image is always set to 1.

9-21



Object Set iAPX U432 GDP

REFINEMENT DESCRIPTOR

AP Length
AP Offset
127 112 111 96
16 bits 16 bits
16 bits X IXXXXXXXX
95 80 79 T3 64

eeemeae Ob ject Type

Copied

Level

DP Offset

DP Length

63 ug u7 32

16 bits 16 bits

12 bits %‘é 12 bits  |xlxl10

31 20 15 y 0

Entry Type

OD Valid

DP Valid

Bypass Segment Index

Bypass Directory Index

The fields that constitute a refinement descriptor are interpreted as
follows:

Entry Type (Bits 0 - 1)

This field is 10 for a refinement descriptor.

0D Valid (Bit 2)

If this bit is 0, only the Copied bit and Entry Type fields have
meaning in this descriptor. A fault occurs if OD Valid is 0 and an
attempt is made to reference an object through this object
descriptor.

9-22



iAPX 432 GDP Object Set

DP Valid (Bit 3)

If this bit is 0, the object defined by this object descriptor does
not have a data part. Otherwise, the size of the data part is
specified by the DP Length field.

Bypass Segment Index (Bits 4 - 15)
This 12-bit field contains the index into the selected object table

tc the storage descriptor for the underlying object. The object
table itself is selected using the bypass directory index desecribed
below.

Bypass Directory Index (Bits 20 - 31)
This 12-bit field contains an index 1into the object table
directory. It thus yields a storage descriptor containing the base
(fence) address of an object table. The selected object table is
indexed by the 12-bit bypass segment index (described above) to
select the storage descriptor of the underlying object.

DP Length (Bits 32 - 47)
This 16-bit field contains a value that is one less than the
length, in bytes, of the data part of the refinement.

DP Offset (Bits 48 - 63)
This i6-bit field contains a byte offset that is added to the base
(fence) address of the underlying object to form the "imaginary"
base address of the data part of this refinement,

Object Type (Bits 64 - 71)
This 8-bit field encodes the object type of this refinement., This

fialAd ia intarnmatad £ha agama aa +tha nhdant tvna fiald in a eknracge
21C.C I8 ANUCTProlel UTAC 3ame a8 Ui COJCCU Lype 1.i2.l Ll & SIClag®e

descriptor (described earlier in this chapter).

Copied (Bit 72)

This bit indicates whether an access descriptor that references
through this object descriptor has been copied since this bit was
last set to 0 by software. The copied bit is initialized to 1 when
this object descriptor is created. Furthermore, the copied bit is
set to 1 by the processor whenever an AD that references this OD is
copied. The Copied bit serves as the gray bit for the iMAX
parallel garbage collection algorithm.

9-23



Object Set iAPX 432 GDP

Level (Bits 80 - 95)

This 16-bit field contains the value found in either the Current
Allocation Level field of the process object (during stack
allocation) or the Allocation Level field of the SRO (during heap
allocation) at the time this object descriptor was allocated. For
an OD allocated with a 1level of 0, its associated AD has the
Unchecked Copy Rights bit set to 1 when created.

AP Offset (Bits 96 - 111)

This 16-bit field contains a byte offset that is subtracted from
the base (fence) address of the underlying object to form the

"imaginary" base address of the access part of this refinement.

AP Length (Bits 112 - 127)

This 16-bit field contains a value that is one 1less than the
length, in bytes, of the access part of the refinement.

g-2i



iAPX 432 GDP Object Set

INTERCONNECT DESCRIPTOR

127

i //////4//

95 8079 173 64
Copied
Level
Length

63 | ug u7 32

Z%%Z%%%é%%@%%%???@?l 16 bits

21 bits xjo1}x|oo
31 8 0

e Entry Type

b 0D Valid

e Entry Subtype

b Windowed

Base Address

The .fields that constitute an interconnect descriptor are interpreted
as follows:

Entry Type (Bits 0 - 1)
This field is 00 for an interconnect descriptor.

0D Valid (Bit 2)

If this bit is 0, only the Copied bit and Entry Type fields have
meaning in this descriptor. A fault occurs if OD Valid is 0 and an
attempt 1is made to reference a object through this object
descriptor.

Entry Subtype (Bits 3 - 4)
This field is 01 for an interconnect descriptor.

9-25



Object Set iAPX 432 GDP

Windowed (Bit 5)
This bit is referenced by iAPX 432 Interface Processors (IPs) and
by GDP software to determine if the object defined by the
interconnect descriptor is being mapped by an IP window. If
windowed is 1, then an IP window is open on all or part of the
object. This bit is not interpreted by the GDP. This bit is set
and cleared by the IP operations that open and close windows.

Base Address (Bits 8 - 31)
This 2U4-bit field contains the physical address (in bytes in the
interconnect address space) of the interconnect object defined by
this interconnect descriptor. This value is the address of the
first byte of the object and must be even.

Length (Bits 32 - 47)
The value of this 16-bit field is one less than the 1length, in
bytes, of the object defined by this interconnect descriptor.

Copied (Bit T72) :

This bit indicates whether an access descriptor that references
this object descriptor has been copied since this bit was last set
to 0 by software. The Copied bit is initialized to 1 when this
object descriptor is created. Furthermore, the Copied bit is set
to 1 by the processor whenever an AD that references this 0D is
copied. The Copied bit serves as the gray bit for the iMAX
parallel garbage collection algorithm,

Level (Bits 80 - 95)
This 16-bit field contains the value found in either the Current
Allocation Level field of the process object (during stack
allocation) or the Allocation Level field of the SRO (during heap
allocation) at the time this object descriptor was allocated, For
an OD allocated with a 1level of 0, its associated AD has the
Unchecked Copy Rights bit set to 1 when created.

9-26



iAPX 432 GDP

PROCESSOR OBJECT (ACCESS PART)

AD to Current Process Carrier

AD

to

Local PCO

AD

to

Global PCO

AD

to

Object Table Directory

AD

to

Current Processor Carrier

AD

to

Current Dispatching Port

AD

to

Delay Carrier

AD

to

Delay Port

Processor Fault
Access Area

AD

to

Generic TDO

AD

to

Global Constants

AD

to

Normal Carrier

AD

to

Normal Port

AD

to

Alarm Carrier

AD

to

Alarm Port

AD

to

Reconfiguration Carrier

AD

to

Reconfiguration Port

AD

to

Diagnostic Carrier

AD

to

Diagnostic Port

V.

Object Set

PROCESSOR OBIJECT

[e2]

10
1
12
13
14
15
16
17
18
19

Access Descriptor
Index (32 bits each)

9-27



Object Set iAPX 432 GDP

Refinement descriptors with processor object as their object type are
not supported by the GDP. The access descriptors that constitute the

processor-interpreted access part of a processor object are interpreted
as follows:

Current Process Carrier (AD 0)

This AD references the process carrier of the currently executing
process of this processor.

Local PCO (AD 1)

This AD references the processor communication object used for
local interprocessor communication,

Global PCO (AD 2)

This AD references the processor communication object used for
global interprocessor communication.

Ob ject Table Directory (AD 3)
This AD references the object table directory for this processor.

Current Processor Carrier (AD U4)
This AD is a copy of the AD that references the Normal, Alarm,
Reconfiguration, or Diagnostic Carrier depending on the current
dispatching mode.

Current Dispatching Port (AD 5)
This AD is a copy of the AD that references the Normal, Alarm,

Reconfiguration, or Diagnostic Port depending on the current
dispatching mode.

Delay Carrier (AD 6)

This AD references the delay carrier used by this processor to
service the delay port.

Delay Port (AD T)

This AD references the delay port used to provide the delay service
for this processor,

Processor Fault Access Area (ADs 8 - 9)
These 2 ADs are written by the processor after a processor level
fault and can be used by fault handling software. They are
described in the Fault and Trace Reference chapter of this manual.

Generic TDO (AD 10)
This AD references a type definition object for generic objects.

Global Constants (AD 11)

This AD references a system wide Global -Constants object. This AD
must be the same as in the same-named fields of all processor
objects and context objects.

9-28



iAPX 432 GDP Object Set

The following 8 ADs (12 - 19) reference processor carriers and
dispatching ports used by this processor. The current processor
carrier and current dispatching port (each referenced by one of these
ADs) are determined by the dispatching mode in the Processor Status
field of the processor object. A copy of the current processor carrier
AD occupies the AD Y4 location of this processor object. A copy of the
current dispatching port AD occupies the  AD 5 location of this
processor object.

Normal Carrier (AD 12)

This AD references the processor carrier used by a processor to
receive or wait for a process at a normal port.

Normal Port (AD 13)

This AD references the dispatching port where this processor
receives or waits for a normal process.

Alarm Carrier (AD 14)

This AD references the processor carrier used by a processor to
receive or wait for a process at an alarm port.

Alarm Port (AD 15)

This AD references the alarm dispatching port where this processor
receives or waits for a special alarm process.

Reconfiguration Carrier (AD 16)

This AD references the processor carrier used by a processor to
receive -or wait for a process at a reconfiguration port.

Reconfiguration Port (AD 17)

This AD references the reconfiguration dispatching port where this
processor receives or waits for a special reconfiguration process.

Diagnostic Carrier (AD 18)

.This AD references the processor carrier used by a processor to
receive or wait for a process at a diagnostic port.

Diagnostie Port (AD 19)

This AD references the diagnostic dispatching port where this
processor receives or waits for a special diagnostic process.

9-29



Object Set iAPX U432 GDP

PROCESSOR OBJECT (DATA PART)

¢ Byte
V//// //// Displacement
Processor 62
ﬁg Fault Data Area v
16
14
y
Processor Status 2
Object Lock 0

The fields that constitute the processor-interpreted data part of a
processor object are interpreted as follows:

Object Lock (Bytes 0 - 1)
This field provides mutually exclusive access to this processor
object and to its associated processor carriers and delay carrier.
The object lock field is defined for many system objects and is
described in the first part of this chapter,

Processor Status (Bytes 2 -~ 3)
The format of the processor status field is shown below:

15 8 7T 6 5 43 0

8 bits X X XX XXXX

Processor State

Dispatching Mode

Stopped by IPC

Global IPC Accept Mode

Processor ID

9-30



iAPX 432 GDP Object Set

The fields that constitute processor status are interpreted as
follows:

Processor State (Bits 0 - 3)
This U4-bit field indicates the current state of this processor:

0000 - Initialization
0001 - Idle

0010 - Process Selection
0011 - Process Binding
0100 - Process Execution
0101 - Process Suspension
0110 ~

thru - Reserved

1111

Dispatching Mode (Bits & = 5)
This 2-bit field determines which mode is to be used to
dispatch this processor:

00 - Use normal port and carrier (Normal Mode)

01 - Use alarm port and carrier (Alarm Mode)

10 - Use reconfiguration port and carrier
(Reconfiguration Mode)

11 - Use diagnostic port and carrier (Diagnostic Mode)

Stopped by IPC (Bit 6)
This bit indicates the stopped status of the processor, as
determined by an Interprocessor Communication (IPC):

0 - Processor will execute a process if a process is
available to execute.

1 - Processor is stopped by an IPC message and cannot
execute a process until it receives a START IPC
message.

Global IPC Accept Mode (Bit 7)
This bit determines whether Global interprocessor messages are
currently being accepted/acknowledged:

0 - Global interprocessor messages are not Dbeing
accepted nor acknowledged.

1 - Global interprocessor messages are being accepted
and acknowledged.

Processor ID (Bits 8 - 15)

This 8-bit field is written by the associated processor at
initialization time from externally read information. The

value is read from interconnect address zero when the first
local IPC signal is received by the processor after its Init
pin is asserted.

9-31



Object Set iAPX 432 GDP

Processor Fault Data Area (Bytes 16 - 63)
This 48-byte data area is written by the processor after a
processor-level fault and can be used by fault handling software,
This area is described in the Fault and Trace Reference chapter of
this manual,

TYPE RIGHTS FOR PROCESSOR OBJECTS

The type rights in an access descriptor that references a processor
object are uninterpreted by the processor.

9-32



iAPX 432 GDP : Object Set

PROCESSOR COMMUNICATION OBJECT

Byte
giééylé%ééééz/ Displacement
L |
Processor ID 8
Processor Count ’ 6
Response Count L
IPC Message Code 2
Object Lock 0]
Y
_ :
% Access Descriptor
Index (32 bits each)

Processor communication objects (PCOs) only require a data part that is
interpreted by the processor, Typed refinements of PCOs are not
supported by the GDP. The fields that constitute the
processor-interpreted data part of a processor communication object are
interpreted as follows:

Object Lock (Bytes 0 - 1)
This field provides mutually exclusive access to this processor
communication object. The Object Lock field is defined for many
system objects and is described in the first part of this chapter.

IPC Message Code (Bytes 2 - 3)
This 16-bit field contains one of the following function request
encodings. Message codes 0O through 7 are IPC messages common
between GDPs and Interface Processors (IPs). Message codes 8
through 14 are defined for GDPs but are ignored by IPs.

9-33



Obje

Resp

ct Set iAPX 432 GDP

The following list gives the IPC Message Codes.

0 -~ Wakeup

1 - Start

2 - Stop

3 =~ Accept global IPCs

4 -~ TIgnore global IPCs

5 - Requalify object table cache
6 -~ Reset processor

7 - Requalify processor

8 - Requalify process

9 - Requalify context

10 - Requalify data object cache
11 - Enter normal mode

12 - Enter alarm mode

13 - Enter reconfiguration mode
14 - Enter diagnostic mode

onse Count (Bytes 4 - 5)

Proc

This 16-bit field contains the number of processors remaining that
have yet to respond to this IPC message. This field is initialized
to the value in the Processor Count field (described below) during
the execution of a SEND TO PROCESSOR instruction. As a processor
receives the message, that processor acknowledges the IPC by
decrementing this field.

essor Count (Bytes 6 - 7)

Proc

The interpretation of this 16-bit field depends on whether this
processor communication object is local or global. In a global

PCO, this field contains the number of processors in global IPC
accept mode using this PCO., In a local PCO, this field contains a
fixed value of 1, This field should be updated by system software
when processors are added or deleted in the system.

essor ID (Bytes 8 - 9)

B

The interpretation of this 16-bit field depends on whether this PCO
is local or global. In a global PCO, this field contains the fixed
value of 0. In a local PCO, this field contains the processor ID
of the associated processor in the 1low-order 8 bits with the
high-order 8 bits being 0.

TYPE RIGHTS FOR PROCESSOR COMMUNICATION OBJECTS

The

type rights in an access descriptor that references a processor

communication object are interpreted as follows:

Type Right 1 Send IPC Rights: If the bit is 1, an interprocessor
message may be sent via this PCO.

Type Right 2 Uninterpreted

Type Right 3 Uninterpreted

9-34



iAPX 432 GDP Object Set

PROCESS OBJECT

PROCESS OBJECT (ACCESS PART)

AD to Process PSQO 0
AD to Process Object Table Header 1
Null AD 2
AD to Current Context 3
AD to Process Globals y
AD to Process Carrier 5
AD to Dispatching Port | 6
AD to Scheduling Port 7
8
— Process Fault T 9
T Access Area a—
10
AD to Faulted Context 11
AD to Fault Port 12

Access Descriptor
Index (32 bits each)

Refinement descriptors with process object as their object type are not

supported by the GDP. The access descriptors that constitute the
processor-interpreted portion of a process access part are interpreted

as follows:

Process PSO (AD 0)

This AD references the associated physical storage object used for
stack allocation of storage for this process,

Process Object Table Header (AD 1)

This AD references the object table header used for stack
allocation of object descriptors for this process.

Null AD (AD 2)

This AD must be null and corresponds to the AD in an SRO that
references a storage claim object. A null AD is interpreted as an

infinite storage claim. Thus, no direct limit can be put on stack
storage allocated for a process,

9-35



Object Set iAPX 432 GDP

Current Context (AD 3)

This AD references the currently active context object of this
process.

Process Globals (AD 4)

This AD references a global object indirectly accessible by all
contexts within this process, using the COPY PROCESS GLOBALS

operator. This object is defined by software.

Process Carrier (AD 5)

This AD references the process carrier associated with this process
for use in interprocess communication and/or dispatching.

Dispatching Port (AD 6)

This AD references the dispatching port to which the carrier of
this process is routed after expiration of the process's service
period.

Scheduling Port (AD 7)
This AD references the port where the carrier of this process is
routed when the period count of the process has expired; i.e., the
process has used up all its time-slices.

Process Fault Access Area (ADs 8 - 10)
These 3 ADs are written by the processor after a process fault and
can be used by fault handling software. They are described in the
Fault and Trace Reference chapter of this manual.

Faulted Context (AD 11)
This AD references the faulted context object. This field is
initially null and is defined only when written by the processor
after a context fault (the Context Faulted bit in the process
status is 1).

Fault Port (AD 12)

When a process fault oceurs for this process, this AD is used as
the reference to the port where the process carrier of this process
is routed.

9-36



iAPX 432 GDP Object Set

PROCESS OBJECT (DATA PART)

Byte
V/ Displacement

Context Fault L' 94
-1 Data Area
»
48
46
1 Process Control Area )
_ 0

The areas that constitute the processor-interpreted portion of the data
part of a process object are interpreted as follows:

Process Control Area (Bytes 0 - 47)

This A48-byte area serves as a control and status area for this
process., It is described later in this chapter.

Context Fault Data Area (Bytes 48 - 95)
This U8-byte data area is written by the processor after a context
fault and can be used by fault handling software., It is described
in the Fault and Trace Reference chapter in this manual.

TYPE RIGHTS FOR PROCESS OBJECTS

The type rights in an access descriptor that references a process
object are interpreted as follows:

Type Right 1 Set Mode Rights: If the bit is 1, the SET PROCESS

MODE operator may be used to change the current
process status,

Type Right 2 Uninterpreted

Type Right 3 Uninterpreted

9-37



Object Set

PROCESS CONTROL AREA

0
|

Y
W
' 7
7
v
Z
Ail
Process ID
Entered ENV 3 Level
Entered ENV 2 Level
Entered ENV 1 Level
amae Process Clock a—

Process Status

Service Period

Period Count

SR ——

Allocation
Fault Area

Current Context List AP Length

Current Context List DP Length

Current Allocation Level

Object Lock

0

46
by
42

40

24
22
20
18
16
14
12

10

iAPX U432 GDP

Byte Displacement



iAPX 432 GDP Object Set

*The fields that constitute the processor-interpreted portion of the
Process Control area are interpreted as follows:

Object Lock (Bytes 0 = 1)
This 16-bit field provides mutually exclusive access to the process
object and its current context object. The Object Lock field is
defined for many system objects and is described in the first part
of this chapter.

Current Allocation Level (Bytes 2 - 3) _
This 16-bit field is used when an object descriptor is allocated
from the process allocation stack. This 16-bit value is used to
initialize the Level field of the newly allocated object
descriptor. The current allocation level is incremented by CALL or
CALL THROUGH DOMAIN instructions and decremented by RETURN or
RETURN AND FAULT instructions.

Current Context List DP Length (Bytes 4 - 5)
This 16-bit field contains the actual allocated length-1 of the
data part of a context object in the pre-allocated context list.

Current Context List AP Length (Bytes 6 - T)
This 16-bit field contains the actual allocated length-1 of the
access part of a context object in the pre-allocated context list.

Allocation Fault Area (Bytes 8 - 1U4)
This 8-byte area is written Dby the processor when an
allocation-related fault occurs. This area can be used by fault
handling software. It is described in the Fault and Trace

Reference chapter in this manual,

Period Count (Bytes 16 - 17)
The value in this 16-bit field is one -less than the number of
service periods granted this process by a processor before the
process is routed to its scheduling port. If this value is all 1s
(16#FFFF#), the process is never sent to a scheduling port.

Service Period (Bytes 18 - 19)
The value in this 16-bit field is the maximum period (in system
time units) over which a processor will serve this process before
preemption,

9-39



Ob ject Set iAPX 432 GDP

Process Status (Bytes 20 - 21)

The format of the process status field is shown below:

15 12 876 43210

|x xIx)] 4 bits ¥xgxFxixxixix)xix

— Unbound

s Process Faulted
e COntext Faulted
e Fault Vector Mode
ere———  Tr ace Mode

Trace Enable
Waiting for Message
———— Process Blocked
Inexact Control
Null Surrogate Destination
First Port Done

The fields that constitute process status are interpreted as
follows:

Unbound (Bit 0)

This bit indicates whether this process is unbound (i.e., not
currently being executed by a processor):

0 - This process is bound to & processor.
1 - This process is not bound to a processor.

Process Faulted (Bit 1)
This bit indicates whether this process has faulted:

0 - Not faulted
1 - Faulted

Context Faulted (Bit 2)
This bit indicates whether the current active context has
faulted:

0 - Not faulted
1 - Faulted

Fault Vector Mode (Bit 3)
This bit determines whether a process-level fault is to be

treated as a process-level fault or a context-level fault:

0 - Treat process-level fault as context-level fault
1 - Treat process-level fault as process-level fault



iAPX 432 GDP Object Set

Trace Mode (Bits 4 - 5)
This 2-bit field determines the current trace mode in effect
for this process:

00 - No Trace Mode
01 - Fault Trace Mode
10 = Flow Trace Mode

11 Full Trace Mode

Trace Enable (Bit 6)
This bit contains the trace rights bit from the current
instruction object AD:

0 - Tracing is disabled
1 - Tracing is allowed

Waiting for Message (Bit T7)
This bit indicates whether this process is waiting for a
message:

0 - This process is not blocked on a receive.

1 - Place the AD for the incoming message in the
Interprocess Message location of the context access
part when this process is resumed.

Process Blocked (Bit 8)
This bit indicates whether this process has been preempted
before a possible trace is serviced: ‘

0 - This process has been not pre-empted.

1 - This process has been preempted betore a possibie
trace is serviced. If the trace mode in the process
status 1is Full Trace, and the Trace Rights

associated with the current instruction object AD is

1, a trace event needs to be generated before
resumption of the process.

Inexact Control (Bit 13)
This bit determines whether to fault if a floating-point

instruction produces an inexact result:

0 - No fault on inexact result
1 - Fault on inexact result

Null Surrogate Destination (Bit 14)

This bit inaicates if the current surrogate operation has a
destination.

0 - Valid surrogate destination
1 - Null surrogate destination

9-41



Object Set i1APX 432 GDP

First Port Done (Bit 15)
This bit indicates whether the operation has completed at the
first port of a two-port operation:

0 - First port operation has completed
1 - First port operation has not completed

Process Clock (Bytes 22 - 25)

This ordinal value is the total processor execution time (in system
time units) received by this process. This field is intialized to
zero at process creation and 1is incremented by the system clock
while this process is bound to & processor. The field may be used

to accurately time a process independent of system scheduling
activity.

Entered ENV 1 Level (Bytes 26 - 27)
Entered ENV 2 Level (Bytes 28 - 29)

Entered ENV 3 Level (Bytes 30 - 31)
These three 16-bit values in the process object contain level
numbers for entered access environments 1 through 3. 1In each case,
if the access environment is a refinement, then the level number is
the 1level number of the root storage descriptor. If the
corresponding access environment is null, then the level number is
all 1s (OFFFFH).

Process ID (Bytes 32 - 33)
The low-order 2 bits of this 16-bit field must be 00. The

high-order 14 bits contain the actual process ID (supplied by
software).



iAPX 432 GDP

CONTEXT OBJECT (ACCESS PART)

AT &
AU U0 wurreric Context

P--I*

AD to Global Constants

AD to Context Message

AD to Defining Domain

AD to Local Constants

AD to Envirconment 1

AD to Environment 2

AD to Environment 3

AD to Calling Context

AD to Context Link

AD to Top of Descriptor Stack

-

AD to Top of Sturage Stack

AD to Static Link

AD to Interprocess Message

(o]

10

-
-

12

13

Object Set

CONTEXT OBJECT

Access Descriptor
Index (32 bits each)

The access descriptors that constitute the processcr-interpreted access

part of a context object are interpreted as follows:

Current Context (AD 0)

This AD references this context itself.

Global Constants (AD 1)

This AD references an object

containing frequently used data

constants. All contexts reference the same Global Constants object
which must be the same as that referenced by the Global Constarits

AD in the processor object.

a_Uuxz



Object Set iAPX 432 GDP

Context Message (AD 2)

This AD references a refinement of the calling context object,
which is used for parameter passing to the called context.

Defining Domain (AD 3)
This AD references the defining domain specified in the call
instruction that was used to activate the current context.

Local Constants (AD 4)

This AD references an object containing 1local data constants
associated with the current context.

Environment 1 (AD 5)

Environment 2 (AD 6)

Environment 3 (AD 7)
Eachi of these three ADs references an Environment object for the
context. The Current Context access part and Environments 1 - 3
collectively constitute the instantaneous access environment of
this context. When a context is called, the defining domain is
entered as Environment 1 as part of the CALL operation. The ADs
for Environments 2 - 3 are initially null and remain so until ADs
are entered by using access environment manipulation operators.

Calling Context (AD 8)

This AD references the context object of the calling context ana
normally has Return rights.

Context Link (AD 9)

This AD references the next free context in the linked-list of
pre-allocated contexts.

Top of Descriptor Stack (AD 10)
This AD references the most recent object descriptor allocated from

the process allocation stack by this context or its calling
contexts.

Top of Storage Stack (AD 11)
This AD references the most recent storage descriptor allocated
from the process allocation stack by this context or its calling
contexts.

Static Link (AD 12)

This AD is the static link AD passed with the CALL instruction. It
is wused to reference lexical 1level for supporting compiler
implementation,

Interprocess Message (AD 13)
This AD is initially null. It references the most recent message

received through a RECEIVE or successful CONDITIONAL RECEIVE
instruction.




iAPX 432 GDP Object Set

DELETE RIGHTS OF ADs IN THE CONTEXT OBJECT

The following access descriptors in the context object are created
without delete rights:

Current Context (AD 0)

Global Constants (AD.1)
Context Message (AD 2)

Defining Domain (AD 3)
Environment 1 - 3 (ADs 5. - T)
Calling Context (AD 8)

Context Link (AD 9)

Top of Descriptor Stack (AD 10)
Top of Storage Stack (AD 11)

The following access descriptors in the context object are not changed
from call to call:

Current Context (AD 0)
~Global Constants (AD 1)
Context Message (AD 2)
Calling Context (AD 8)

Context Link (AD 9)

CONTEXT OBJECT (DATA PART)

Byte
Displacement
» Operand Stack &
’/W/%//%‘
12
m— Trace Control ——
Data Area 10
8
Instruction Pointer 6
Current Instruction Object DAI y
Operand Stack Pointer 2
Context Status 0

s——————————————r

9-45



Object Set iAPX 432 GDP

The fields that constitute the processor-interpreted data part of a
context object are interpreted as follows:

Context Status (Bytes 0 - 1)

This 16-bit field contains status information pertinent to this
context. The format of the context status field is shown below:

15 14 13 12 1

Precision Control

Rounding Control

The fields that constitute context status are interpreted as
follows:

Precision Control (Bits 12 - 13)

This field determines what precision 1is in effect for
floating-point computation:

00 - Temporary-real precision
01 - Real precision

10 - Short-real precision

11 - Reserved

Rounding Control (Bits 14 - 15)

This field determines which rounding mode is in effect for
floating-point computation:

00 - Round Nearest

01 - Round Up

10 - Round Down

11 - Round Toward Zero (truncate)

Operand Stack Pointer (Bytes 2 - 3)
This 16-bit field contains the byte displacement into the current
context data part and points to the first free byte on the operand
stack. This field is undefined when the context 1is currently
active or faulted. The operand stack is 16 bits wide and, thus,

the pointer 1is maintained with alignment to double-byte
boundaries.

Current Instruction Object DAI (Bytes 4 - 5)

This 16 bit field contains the domain access index of the current

instruction object. This field is undefined when the context is
currently active or faulted.

9-46



iAPX 432 GDP : Object Set

Instruction Pointer (Bytes 6 - T)
This 16-bit field contains the bit displacement from the base
(fence) of the current instruction object to the next instruction
to be executed. This field is undefined when the context is
currently active or faulted.

Trace Control Data Area (Bytes 8 - 13)
This 6-byte area contains control information used in tracing. It
is described in the Fault and Trace Reference chapter of this
manual,

Working Storage Area
This area is preserved by the processor and may be used by software
as working storage for this context., The initial value of the
operand stack pointer specifies the beginning of the operand stack
and thus the end of the Working Storage Area.

Operand Stack
This area of the context data part constitutes the operand stack
for this context. This stack is 16 bits wide and grows upward
(i.e., toward higher addresses in memory), limited only by the size
of the context data part.

TYPE RIGHTS FOR CONTEXT OBJECTS

The type rights in an access descriptor that references a context
object are interpreted as follows:

Type Right 1 Return Rights: If the bit is 1, the referenced
context may be returned to.

Type Right 2 Uninterpreted

Type Right 3 Uninterpreted

9-47



Object Set iAPX 432 GDP

DOMAIN OBJECT

The access part of a domain object is described below. Domain objects
must have a data part, though the data part has no processor
interpreted fields. Typed refinements of domain objects are supported
by the GDP. However, the defining domain of a context cannot be a
refinement. (A domain refinement can still be specified in a CALL
THROUGH DOMAIN instruction; the instruction automatically traverses the

refinement and writes an AD for the entire new defining domain into the
called context.)

______

AD to Fault Instruction Object 0

AD to Trace Instruction Object 1

P/y A%/%/y Access Descriptor
% % //%“ Index (32 bits each)

The access descriptors that constitute the processor-interpreted access
part of a domain object are interpreted as follows:

Fault Instruction Object (AD 0)
When a context-level fault occurs, control is transferred by a
branch to bit displacement 64 in the instruction object referenced
by this AD.

Trace Instruction Object (AD 1)

When a trace event occurs, control is transferred by a branch to
bit displacement 64 in the instruction object referenced by this AD.

TYPE RIGHTS FOR DOMAIN OBJECTS

The type rights in an access descriptor that references a domain object
are uninterpreted by the processor.

9-u8



iAPX 432 GDP Object Set

INSTRUCTION OBJECT

An instruction object is represented by a data part that is less than
or equal to 8,192 bytes (65,536 bits) in length. An instruction object
has no processor-interpreted access -part. When created by software,
the size of an instruction object should be rounded up to a 16-bit
boundary plus 32 bits. This rounding is needed because the GDP fetches
instructions in 32-bit units aligned on 16-bit  boundaries.
Displacement into an instruction object is always measured in bits,
since instructions are variable bit-length and are not necessarily an
integral number of bytes.

INSTRUCTION OBJECT (DATA PART)

Byte
Displacement
~x Instructions 2
8
Local Constants DAI 6
Initial Operand Stack Pointer 4
Context Access Part Length 2
Context Data Part Length 0

_

The information in the first 4 double-byte fields of an instruction
object is called the Instruction Object Header. It is only defined in
instruction objects from which a context may be created on behalf of a
Call instruction. Refinement descriptors with instruction object as
their object type are not- supported by the GDP., The fields that
constitute an instruction object are interpreted as follows:

Context Data Part Length (Bytes 0 - 1)

This 16-bit field contains a value that is one 1less than the
length, in bytes, of the context data part. This value must be >=
15.

Context Access Part Length (Bytes 2 - 3)
This 16-bit field contains a value that is one 1less than the

length, in bytes, of the context access part. This value must be
>= 63,

Initial Operand Stack Pointer (Bytes 4 - 5)
This 16-bit field contains a byte displacement into the specific

context data part associated with the invocation of this
instruction object. It is initialized to be the displacement to

the first byte of the operand stack. This value must be even.

9-49



Object Set iAPX 432 GDP

Local Constants DAI (Bytes 6 - 7)
This 16-bit field contains the domain access index of the AD for
the current object from which data constant operands are accessed.

This DAI specifies the AD to be copied into the Local Constants
location (AD 4) in the context object that is associated with the

invocation of this instruction object.

Instructions

The remaining area of the instruction object is for instructions.
The first instruction must start at bit displacement 64,

TYPE RIGHTS FOR INSTRUCTION OBJECTS

The type rights in an access descriptor that references an instruction
object are interpreted as follows:

Type Right 1 Uninterpreted

Type Right 2 Trace Rights: If the bit is 1, the instruction
object can be traced.

Type Right 3 Uninterpreted

9-50



iAPX 432 GDP Object Set

PORT OBJECT
' Byte
l Displacement
& Message Queue Entry Area &
i6
14
R R X R XK IKR KX
2020000202050 2020200 202 %0 Y020 % %0 0o
G RIEIRIILIIILLIIILIILRILLIILRNKY 12
RO 0202000202020 202020202020 20 02020
Port Time 10
Tail of Message Queue 8
Head of Message Queue 6
Head of Free Entry List y
Port Status 2
Object Lock 0
AD to Head of Carrier Queue 0
AD to Tail of Carrier Queue 1
2
N Message Queue Access Area 4, Access Descriptor
Index (32 bits each)

Refinement descriptors with port object as their object type are not
supported by the GDP. The access descriptors that constitute the

processor-interpreted access part of a port object are interpreted as-
follows:

Head of Carrier Queue (AD 0)

This AD references the carrier object at the head of the carrier
queue. If the queue is empty, this AD is null.

Tail of Carrier Queue (AD 1).

This AD references the carrier object at the tail of the carrier
queue, If the queue is empty, this AD is null.

Message Queue Access Area
This is a fixed-length area for access descriptors to message
objects., There is a one-to-one correspondence between these ADs
and the port message queue entries in this port's data part
(described below). If the associated queue entry is a free entry,
its corresponding AD in this access area is null.

9-51



Object Set iAPX 432 GDP

The fields that constitute the processor-interpreted data part of a
port object are interpreted as follows:

Object Lock (Bytes 0 - 1)

This 16-bit object lock provides mutually exclusive access to the
port object and all associated blocked carriers. The Object Lock
field is defined for many system objects and is described in the
first part of this chapter.

Port Status (Bytes 2 - 3)
The format of the 16-bit port status field is shown below:

555 Nxx

0

The fields that constitute port status are interpreted as follows:

Port Type (Bits 0 - 1)
This field indicates the port type and determines the message
queuing and dequeuing policy in effect at the port:

00 - FIFO (First In First Out)
01 = Priority

10 - Deadline within Priority
11 - Delay

Head of Free Entry List (Bytes 4 - 5)
This 16-bit field contains the byte displacement into the port data
part of the head of a linked list of free message queue entries.
If there are no free queue entries, this value is zero.

Head of Message Queue (Bytes 6 - T)

This 16-bit field contains the byte displacement into the port data
part of the first entry in the port message queue.

Tail of Message Queue (Bytes 8 - 9)

This 16-bit field contains the byte displacement into the port data
part of the last entry in the port message queue,




iAPX 432 GDP Object Set

Port Time (Bytes 10 - 11)

This 16-bit field contains the processor clock value at the time
the port deadline information was last updated in the message queue.

Message Queue Entry Area (Starting at Byte 16)

This is a fixed-length array of message queue entries containing
both a linked 1list of free entries and a 1linked 1list of port
message queue entries. For each message queue entry ({(i.e., for
both message and free entries) there is a corresponding access
descriptor in the message queue access area of this port object.
Both free entries and message queue entries are represented by the
same message queue entry format shown below:

MESSAGE QUEUE ENTRY

Byvte
Displacement
6
i
e Message Queuing Value —
2
Next Entry 0

The fields that constitute a message queue entry are interpreted as
follows:

Next Entry (Bytes 0 - 1)
This 16-bit field contains the byte displacement into the port
data part to the next queue entry (either free entry or
message queue entry).

Message Queuing Value (Bytes 2 - 5)
This 32-bit field contains priority and deadline values for
this message queue entry. The message queuing value is not
interpreted for FIFO ports. A message queuing value has the
following format:

31 16

Priority

Deadline

15 0

9-53



Object Set iAPX 432 GDP

For priority and deadline ports, the fields that constitute a
message queuing value are interpreted as follows:

Deadline (Bits 0 - 15)
This 16-bit field contains a 2's complement value
(in the range of -2%¥14 to 2*¥*14-1) representing the
relative deadline of this message queue entry with
respect to the previous message queue entry.

“Priority (Bits 16 - 31)
This 16-bit value determines the priority order of
message entries in the queue--low values are low

priority. Entries with +the same priority are
ordered at insertion by their deadline,

TYPE RIGHTS FOR PORT OBJECTS

The type rights in an access descriptor that references a port object
are interpreted as follows:

Type Right 1 Send Rights: If the bit is 1, a message may be sent

using this port.

Type Right 2 Receive Rights: If the bit is 1, a message may be

received using this port.

Type Right 3 Send Process Rights: If the bit is 1, a process may

9-54

be forwarded using this port.



1APX 432 GDP

CARRIER OBJECT

Byte
‘séééy’ A%¢/%j;;¢%%y /////// Displacement
7 3
L zz00%%
" Process Fault 70
Data Area &
% 24
Process Fault 22
~ Restart Area ﬁﬁ‘6
i
14
12
‘ Second Peort 10
e Queuing Value —
8
Blocked 6
— Queuing Value p— Y
Carrier Status 2
Object Lock 0
AD to Next Carrier 0
AD to Current Port 1
AD to Second Port 2
AD to Save Port 3
AD to Second Message y
AD to Blocked Message 5
AD to Incoming Message 6
AD to Carried Object 7
AD to PCO 8

Access Descriptor
Index (32 bits ea

_

Object Set

ch)

9-55



Object Set iAPX 432 GDP

The access descriptors that constitute the processor-interpreted access
part of a carrier object are interpreted as follows:

Next Carrier (AD 0)

This ‘AD references the next carrier in the carrier queue, This AD
is null if the carrier is not in a carrier queue.

Current Port (AD 1)

This AD references the port at which the carrier is enqueued. This
AD is null if the carrier is not queued at a port,

Second Port (AD 2)

This AD references the second port to which this carrier is
forwarded.

Save Port (AD 3)

This AD is interpreted only in process carriers waiting at the
delay port. When the process carrier is removed from the delay
port, it is forwarded to the port referenced by this AD.

Second Message (AD 4)
This AD references the message used in forwarding this carrier., 1In
processor and process carriers, this is an AD for the -carrier
itself. 1In surrogate carriers, this AD references a refinement of
the carrier Dbeginning at the incoming message AD location
(described below).

Blocked Message (AD 5)

If this carrier is enqueued as the result of a blocked SEND, this
AD references the message being sent.

Incoming Message (AD 6)
If a message is received, this AD references the message received.

Carried Object (AD T)

For processor and process carriers, this AD references the
corresponding processor or process object.

PCO (AD 8)

For processor carriers, this AD references the Processor
Communication Object associated with the carried object.

Note that ADs 7 and 8 are not interpreted by the processor in surrogate
carriers.

Yol
\

W

Ccn



iAPX 432 GDP Ob ject Set

The fields that constitute the processor-interpreted data part of a
carrier object are interpreted as follows:

Object Lock (Bytes 0 - 1)

This 16-bit field provides mutually exclusive access to the carrier
object. The Object Lock field is defined for many system objects

and is described in the first part of this. chapter.

Carrier Status (Bytes 2 - 3)
The format of the carrier status field is shown below:

15 43210

s Carrier Type
Message Received
———————— JNb1ocked
Processor Type

The fields that constitute carrier status are interpreted as
follows:

Carrier Type (Bits 0 - 1)
This 2-bit field indicates the type of this carrier:

00 - Processor Carrier,
01 Process Carrier.
10 Surrogate Carrier.
11 Reserved

Message Received (Bit 2)

This bit indicates whether the Incoming Message AD location
contains an AD to a received message: ’

0 - Carrier object has not received message.
1 - Carrier object has received message.

Unblocked (Bit 3)

This bit indicates whether this carrier is blocked to receive
a message:

0 - Carrier is blocked to receive a message.
1 - Carrier is not blocked to receive a message.

Processor Type (Bits 13-15)

This field is only interpreted for processor carriers, in
which case it contains the processor type (GDP or IP, never

All) of the associated processor.

9-57



Object Set iAPX 432 GDP

Blocked Queuing Value (Bytes 4 - 7)
If the carrier is blocked on a SEND, this 32-bit queuing value is
used on its behalf to complete the SEND operation when the carrier
becomes unblocked. This value is updated whenever the carrier is
blocked. The fields in a queuing value are described earlier in
this chapter as part of the port object description.

Second Port Queuing Value (Bytes 8 - 11)

If the carrier is a surrogate or forwarded carrier, this 32-bit
queuing value is used to complete the SURROGATE SEND or forwarding

operation. This value is supplied by software. The fields in a
queuing value are described earlier in this chapter as part of the
port object description.

Process Fault Restart Area (Bytes 16 - 23)

This B8-byte data area is interpreted by the processor during
process binding to allow restarting a faulted process without
changing the Operand Stack Pointer, Current Instruction Object DAI,
and Instruction Pointer in the current context. It is described in
more detail in the Fault and Trace Reference chapter of this
manual. This field is interpreted only in Process Carriers. It is
reserved in all other types of carriers.

Process Fault Data Area (Bytes 24 - 70)
This U48-byte data area is written by the processor after a process
level fault and can be used by fault handling software. It 1is
described in the Fault and Trace Reference chapter in this manual.
This field is interpreted only in Process Carriers. It is reserved
in all other types of carriers.

TYPE RIGHTS FOR CARRIER OBJECTS

The type rights in an access descriptor that references a carrier
object are interpreted as follows:

Type Right 1 Surrogate Rights: If the bit is 1, the carrier may
be used with surrogate instructions.

Type Right 2 Uninterpreted

Type Right 3 Uninterpreted

9-58



iAPX 432 GDP Object Set

STORAGE RESOURCE OBJECT

Byte Displacement

7/ 4

7
7200000004224,
Allocation Level 2

<LK R XXX X HK X X IR KAIXIXIK KK KKK KX XK XK
B ISESIESIBIIIISIEIIIEY 0
v PSSO OO 0.9.9.9.9.0.0.0.0.0.0.0.0.0.9.9.9.9.99.%,
AD to Physical Storage Object 0
AD to Object Tabie Header 1
AD to Storage Claim Object 2

; 3
ﬁ Access Descriptor
4 Index (32 bits each)

Refinement descriptors with storage resource object as their object
type are not supported by the GDP. The access descriptors that
constitute the processor-interpreted access part of a Storage Resource
Ob ject (SRO) are interpreted as follows:

Physical Storage Object (AD 0)

This AD references the associated physical storage object used for
heap allocation of storage associated with this SRO.

Ob ject Table Header (AD 1)

This AD references the object table header used for heap allocation
of object descriptors associated with this SRO.

Storage Claim Object (AD 2)

This AD references the associated storage claim object wused for
heap allocation from this SRO. A null AD is interpreted as an

infinite storage claim.

The fields that constitute the processor-interpreted data part of a
storage resource object are interpreted as follows:

Allocation Level (Bytes 2 - 3)
This 16-bit field is used when an object descriptor is allocated
from the object table associated with the SRO. The 16-bit
Allocation Level is used to initialize the level field of the newly
allocated object descriptor.

9-59



Object Set iAPX 432 GDP

TYPE RIGHTS FOR STORAGE RESOURCE OBJECTS

The type. rights in an access descriptor that references a storage
resource object are interpreted as follows:

Type Right 1 Create Rights: If the bit is 1, physical storage

and/or object descriptor space may be allocated for
object creation from the SRO.

Type Right 2 Uninterpreted

Type Right 3 Uninterpreted



iAPX 432 GDP Object Set

STORAGE CLAIM OBJECT
Byte Displacement
/ ’
_ 2
g Storage Claim
0

///, °
: // Access Descriptor
A 1Index (32 bits each)

Storage Claim Objects (SCOs) consist of only a data part that is
interpreted by the processor. The fields that constitute the data part
of a storage claim object are interpreted as follows:

Storage Claim (Bytes 0 - 3)

This 32-bit integer indicates the number of bytes of storage
(including each allocated segment's prefix and pad) that can be
allocated wusing an SRO. The amount of allocated storage is
indivisibly subtracted from the storage claim by the processor . when
storage is allocated from the PSO associated with the SRO. When
storage allocated using this claim object is deallocated, system
software should add back the amount of deallocated storage to the
storage claim.

TYPE RIGHTS FOR STORAGE CLAIM OBJECTS

The type rights in an access descriptor that references a storage claim
object are uninterpreted by the processor.

9-61



Object Set iAPX 432 GDP

PHYSICAL STORAGE OBJECT

Byte Displacement
' 4 Storage Specification Area &

16
% » 14

12

)

Current Block Index

Beginning Block Index 2

Object Lock 0

Physical Storage Objects (PSOs) consist of only a data part that is
interpreted by the processor. The fields that constitute the
processor-interpreted data part of a physical storage object are
interpreted as follows:

Access Descriptor
Index (32 bits each)

Object Lock (Bytes 0 - 1)
This 16-bit object lock provides mutually exclusive access to this
physical storage object. The object lock field is defined for many
system objects and is described in the first part of this chapter.

Beginning Block Index (Bytes 2 - 3)
This 12-bit field contains an index into this physical storage data
part to the first storage block specifier located in the Storage
Specification Area. The value in this field counts 16-byte storage
block specifiers and must be >= 1.

Current Block Index (Bytes 4 - 5)

This 12-bit field contains an index into this physical storage data
part to the storage block specifier at which the rotating first-fit
search starts for the next storage allocation cycle. The value in
this field counts 16-byte storage block specifiers and must be >=
1.

(Vo)



iAPX 432 GDP Object Set

Storage Specification Area (Beginning at Byte 16)

This area contains an array of 16-byte storage block specifiers
used for allocation from this physical storage object. The array
can vary in size. There can only be one storage block specifier
active at a time in a PSO that is used for the current process
allocation stack. This single storage block specifier is indexed
by the same value in both the Beginning Block 'Index -and Current
Block 1Index fields of this PSO. A storage block specifier
represents an available block of storage and has the following
format:

STORAGE BLOCK SPECIFIER

127 96

74777}

95

—— a5t Block

63 32

32 bits e Ending Address

32 bits e Beginning Address
21 0

The fields that constitute a storage block specifier are
interpreted as follows:

Beginning Address (Bits 0 - 31)
This 32-bit field contains the physical address (in bytes in
the storage address space) for the first byte of the block of
available storage defined by this storage block specifier.
The value must be <=z 2¥*24 and must be an integral multiple of
8 (i.e., the least-significant 3 bits must be zero).

Ending Address (Bits 32 - 63)
This 32-bit field contains the physical address of one byte
past the last available byte in the physical storage block
defined by this storage block specifier. The value must be <=
2**24 and must be an integral multiple of 8 (i.e., the
least-significant 3 bits must be zero).

9-63



Object Set iAPX 432 GDP

Last Block (Bit 6u4)

This bit indicates whether this storage block specifier is the
last one in this physical storage object:

0 - Not last storage block specifier
1 - Last storage block specifier

Dirty (Bit 65)
This bit indicates whether memory allocated using this storage
block specifier needs to be initialized to zero:

0 - No initialization to zero (block already zeroed)
1 - 1Initialize to zero

TYPE RIGHTS FOR PHYSICAL STORAGE OBJECTS

The type rights in an access descriptor that references a physical
storage object are uninterpreted by the processor.



iAPX 432 GDP Object Set

TYPE DEFINITION OBJECT

Byte Displacement

1 o

Access Descriptor 0
Access Descriptor 1
Access Descriptor 2

4féé27 Access Descriptor
Index (32 bits each)

Type Definition Objects (TDOs) contain access descriptors for domains
and other objects used to manage object instances of the dynamic type
defined by this TDO.

TYPE RIGHTS FOR TYPE DEFINITION OBJECTS

The type rights in an access descriptor that references a type
definition object are uninterpreted by the processor.

9-65



Object Set iAPX 432 GDP

DYNAMICTYPE OBJECT

Byte Displacement

0

Dynamic Type Objects (DTOs) represent an instance of the Dynamic Type
defined by the Defining TDO. They contain no predefined,
processor-interpreted fields.

0

Access Desecriptor
Index (32 bits each)

TYPE RIGHTS FOR DYNAMIC TYPE OBJECTS

The type rights in an access descriptor that references a dynamic type
object are uninterpreted by the processor,

9-66



iAPX 432 GDP Object Set

TYPE CONTROL OBJECT

TYPE CONTROL OBJECT (ACCESS PART)

%D to Défining TDO

Access Descriptor
Index (32 bits each)

Refinement descriptors with type control object as their object type
are not supported by the GDP. The access descriptors that constitute
the processor-interpreted access part of a Type Control Object (TCO)
are interpreted as follows:

Defining TDO (AD 0)
If the Dynamic/System bit is 0, this AD must be null. If the
Dynamic/System bit is 1, this AD references a defining type
definition object for the dynamic type.

TYPE CONTROL OBJECT (DATA PART)

31 20 19 18 17 16

X X X X 2

— Delete Rights
beemeene  Unchecked Copy Rights
Read Rights

Write Rights

Dynamic/System

Type Rights

Type Testing Control
Object Type

9-67



Object Set iAPX 432 GDP

Different TCO fields are used by the AMPLIFY RIGHTS, CREATE TYPED
OBJECT, and CREATE TYPED REFINEMENT operators. The fields that
constitute the processor-interpreted data part of a type control object
are interpreted as follows:

Dynamic/System (Bit 0)

If this bit is 1, the TCO is for a user dynamic type object.
Otherwise, the TCO is for a system object.

Type Rights (Bits 1 - 3)
Delete Rights (Bit 16)

Unchecked Copy Rights (Bit 17)

Read Rights (Bit 18)

Write Rights (Bit 19)
During rights amplification of an AD, these values are logically
ORed to their corresponding rights fields in the access descriptor
to be amplified.

Type Testing Control (Bit U4)

This bit is interpreted during an AMPLIFY RIGHTS instruction as
follows:

0 - This TCO can be used to amplify any access descriptor.

1 - This TCO can only be used to amplify access descriptors
for objects whose object type matches that specified in
the Object Type field of this TCO.

Object Type (Bits 8 - 15)
This 8-bit field is interpreted the same as the corresponding field

in object descriptors. In typed object creation, the Object Type
field in this TCO is written to the corresponding field in the new
0D for the object being created. In amplification, these fields
are used in type testing control (see the Type Testing Control
field described above). 1In refinement creation, this field defines
the object type of the source object from which the refinement is
obtained and also defines the object type of the newly created
refinement.

TYPE RIGHTS FOR TYPE CONTROL OBJECTS

The type rights in an access descriptor that references a type control
object are interpreted as follows:

Type Right 1 Create Rights: If the bit is 1, the TCO may be used
in typed object creation,

Type Right 2 Amplify Rights: If the bit is 1, the TCO may be used
in rights amplification.

Type Right 3 Refine Rights: If the bit is 1, the TCO may be used
in typed refinement creation,

D
4
(o))

[¢]



CHAPTER 10
OPERATOR SET

This chapter defines the operator set of the 1iAPX 432 General Data
Processor. Each GDP operator description specifies the operator
encoding and describes the operands required in an instruction using
the operator. The algorithmic action of each operator is alsc
described.

FUNCTIONAL INDEX OF OPERATORS

In the following functional index of operators, the GDP operators are
functionally grouped in operator Identification Number order. The
operator IDff precedes each cperator name. Some functional groupings
begin with a set of sub-operator procedures that are used later in the
actual operator descriptions of that group. Operators marked with an
asterisk (*) are identical to operators with the same assigned ID# and
are specified by the same (Class and Opcode fields. Operators marked
with a double asterisk (**) do not have a unique operator ID#. They
are classified as absolute branches and relative branches. Absolute
branches have an operator ID# of 254, while relative branches have an
operator ID# of 255.

DATA OPERATORS

Character Operators Mnemonic Page
1 Move C}Iaracter ® 8 9 0 5 0 20 5000 S OO E oS D MOV—C oo o0 000 10—15
2 Zero Character ® 60 0 000 00000 00008 8009 0080 ZRO—C ® 000 ® 00 10-15
3 me Character ® 0 0 5 0 00 600 OO O 0PN OSSOSOt ONE—C oo 00 0o o ].O_l 5
4 Save CharaCter ®ecscececescccnne ® & 00 8000 00 00 SAV C ® & 00 00 10—15

AND Character eceecscececccsccscssscscscsesee AND C ceeseo. 10-16
Inclusive OR ChAaracter eeeecesscessecscss IOR C eeeeees 10-16
Exclusive OR Character eeececeeccccececssce XOR C veveee. 10-16
Equivalence Character eeececeseecsssssese EQV C evueess 10-16
NOT Character eececessesesssssssessasssee NOT C avevons 10-17

WO 00~ OV

10 Add Character eeceececcsccsscscscsssscscces ADDC soceeee 10-17
11 Subtract Character eeeeceesesesecscecsees SUB C ceuseo. 10-17
12 Increment Character seeeseceecsecscccesscess INCC ceoeees 10-17
13 Decrement Character eeecceeeceecsccccscssee DEC C oenenns 10-17

10-1



Operator Set

14
15
16
17
18
19

20
21

Equal Character eseeseccscescssccssssscsss
Mt Equal Character ® & 8 89000000 8006000 0L

"Equal Zero Character .cccescssecssssascscs

Not Equal Zero Character eceececcecssssccces
LeSS Tt)an Character ® O 5 0668 50000 08 0000 e 0
Less Than or Equal Character eececccecces

Convert Character to Short Ordinal ......
Convert Character to Integer seeesceseses

Short-0Ordinal Operators

® ¥ % *

* % ¥ %

10-2

22
23
24
25

26
27
28
29
30

31
32
33

34
35
36
37
38
39
40

41
42
43
44
45
46

47

Move Short Ordinal eesceccsescscscsccsccss
Zero Short Ordinal eececccsccecccsscssscsne
One Short Ordinal eeeceececcscccsccccccccas
Save Short Ordinal sececceccevccccscccsccss

AND Short Ordinal eeecesccscecscscscscssnscs
Inclusive OR Short Ordinal eecececscccces
Exclusive OR Short Ordinal seececescecccce
Equivalence Short Ordinal eecececcscescsecs
NOT Short Ordindl ceecececcocccascscscsssecs

Extract Short Ordinal ® 9 6 00 005 e PO D OSSNSO DS R
Insert Short Ordinal ceeecececcceccccnncs
Significant Bit Short Ordinal ceeeececesss

Add Short Ordinal eeeeecescscscsssccccacs
Subtract Short Ordinal .eccecesccsccccsccss
Increment Short Ordinal ceececececceccsccscs
Decrement Short Ordinal eceecescceccccccss
Multiply Short Ordinal .ececcecescccscces
Divide Short Ordinal seeesccecscccscscese
Remainder Short Ordinal .eeeccscecescsscs

Equal Short Ordinal eeeeescccsccecccesnns
Not Equal Short Ordinal cececececcscccsss
Equal Zero Short Ordinal eeeeeccccesssees
Not Equal Zero Short Ordinal ceeceecscceces
Less Than Short Ordinal eeeessscsccsccsas
Less Than or Equal Short Ordinal «eeseese

Convert Short Ordinal to Integer eeseesss,

EQL C .
NEQ C .
EQZ C .
NEZ C .
LSS C .
LEQ C .

iAPX

CRCRC R I )
seo0seoe
seceecoe
LU I )
seocece

CVT C SO L

CVT C I

MOV SO
ZRO SO
ONE SO
SAV_SO

AND SO
I0R SO
XOR SO
EQV SO
NOT SO

EXT SO
INS SO
SIG S0

ADD SO
SUB SO
INC SO
DEC SO
MUL SO
DIV SO
REM SO

EQL SO
NEQ SO
EQZ SO
NEZ SO
LSS SO
LEQ SO

CVT SO_

se s e e

se e se e

®eecsece

se0 e

s e e

s es0e 00

s e0eee

¢ o0 s

s e e

432 GDP

10-18
10-18
10~-18
10-18
10-19
10-19

10-19
10-19

10-20
10-20
10-20
10-20

10-21
10-21
10-21
10-21
10-22

10-22
10-22
10-22

10-23
10-23
10-23
10-23
10-23
10-24
10-24

10-24
10-24
10-24
10-25
10-25
10-25

10-25



iAPX 432 GDP Operator Set

Short-Integer Operators

22 Move Short INteger <ecsceccecccssssscscese MOV SI seeees 10-26
23 Zero Short INteger eeceeecescsssscscsssce ZRO SI eeveee 10-26
24 One Short INteger eseecesecacscscssecsssce ONE ST ceeees 10-26
25 Save Short INteGETr eseesccccccscscscsessas SAVZSI essses 10-26

»

* X ¥ OF

48 Add Short Integer «eecececesceccscssessssss ADD ST ..o... 10-27
49 Subtract Short INCEZEr eseeesescssscscssce SUB ST eeeees 10-27
50 Increment Short INteger eeeeesecessescses INC SI eeese. 10-27
51 Decrement Short INnteger esesesescecssssss DEC SI seeese 10-27
52 Negate Short INteger seeesesessscscssssse NEG ST seuess 10-27
53 Multiply Short INteger secesececececssesesss MUL SI ceesss 10-28
54 Divide Short INteger «eeesessecessscsssesee DIV SI cueuss 10-28

55 Remainder Short Integer eeecceccscccscesss RE&:SI sssses 10-28

41 Equal Short Integer .ececcecesesssscsssss EQL SI cvsaes 10-28
42 Not Equal Short INteger «esseeesssccsssse NEQ SI eevve. 10-29
43 FEqual Zero Short INteger ceeececesscecssse EQZ:SI ceeses 10-29
44 Not Equal Zero Short Integer esecececesse NEZ ST ceeees 10-29
56 Less Than Short INteger «eeeeeceseesseess LSS ST ceuves 10-29
57 Less Than or Equal Short Integer «eeeee.. LEQ SI e.eess 10-30
58 Positive Short Integer ccecececcsssscccces PTVZSI essses 10-30
59 Negative Short Integer eececscececsccssee NIV SI ceeses 10-30
60 Move in Range Short Integer eeeecececcccscs MIR;?I eeeess 10-30

* % ¥ *

61 Convert Short Integer to Integer eeeeeees CVT SI I .... 10-31

Ordinal Operators

62 Move Ordinal cceececseccoccsccccscssscscese MOV O ceeeees 10-32
63 Zero Ordinal eeceeescsccsccscsscsscscssse ZRO O eoveess 10-32
64 One Ordinal eeeeececseccescsscesosssscsses ONE O ceeaees 10-32
65 Save Ordinal cceeceecescsccccccsscccccnss SAv:Q eeessss 10-32

% % * X

66 AND Ordinal eeeeeeececcecccsccescsscasces AND O cuuvues 10-33
67 Inclusive OR Ordinal seececeeccecscccscess IOR O cevesss 10-33
68 Exclusive OR Ordinal .ecceesscsccsscsscse XORO ceeeees 10-33
69 Equivalence Ordinal eeeeeeecsssescccsccese EQV O eeesees 10-33
70 NOT Ordinal <eeeeceesecesssccsceccacescss NOT O cuvuees 10-34

71 Extract Ordinal Sesesccseccsececsccscrsente o EXT_O escscce e 10-34
72 Insert Ordina]. v eccesessesersceseevesso e INS_O LRI Y W 10-34
73 Significant Bit Ordinal eeccecececccescse SIG O ceeeve. 10-34

74 Add Ordinal eeeseecccesccccoccecscccacase ADD O voeesse 10-34
75 Subtract Ordinal seecesoescescescoscsccas SUB O cuveees 10-35
76 Increment Ordinal eeccecececccecesccccoses INC O ceseeas 10-35
77 Decrement Ordinal ecececececsccescsscsesee DEC O eeesess 10-35
78 Multiply Ordinal .evececececcessscscscsee MUL O ceeeees 10-35
79 Divide Ordinal eeeeceesesceesssscessosses DIV O ceveess 10-35
80 Remainder Ordinal «ececeecccescecscscecses REM O s0vsav.. 10-36
81 Index Ordinal ceeececcevecccsccscacsscnas IDX;p esessss 10-36

10-3



Operator Set iAPX 432 GDP

82 Equal Ordinal eeeeeeecescccsccesscccsssace EQL O ceveees 10-37
83 DNot Equal Ordinal eeeeecesecsscccscsscacss NEQ O sessess 10-37
84 Equal Zero Ordinal ..eesesseecccscscassse EQZ O veeeese 10-37
85 Not Equal Zero Ordinal «ecsseesssecececss NEZ O eeeesss 10-37
86 Less Than Ordinal «eececessccscesssscescss LSS O veveess 10-38
87 1less Than or Equal Ordinal .eccceeceeeseee LEQ O ¢ecesss 10-38

¥ % ¥ F

* 88 Convert Ordinal to Integer .e.eseeecesceses CVT O I .o... 10-38
89 Convert Ordinal to Temporary Real «...... CVT O TR .... 10-38

Integer Operators

62 Move INtEZET ecevcccccsscccosscscosssssee MOVI c0eeeeee 10-39
63 Zero INteger eecesescesescscsssscssescses ZRO I suseees 10-39
64 One INLEZEr ceesessesccssssccccassscscsss ONE I eeeeese 10-39
65 Save INLEZET ceecscccccscscoccccscccssonccs SAV:i eessess 10-39

* % * *

90 Add InNteger «eecescececcccscccccacscccsssce ADD I cevesee 10-40
91 Subtract INtEZETr eeeececscscsacscsscsssce SUB I ceveass 10-40
92 TIncrement TNLEEET «ecesecessccascssaascss INC I cuveees 10-40
93 Decrement INtEZET ecsescsccssscssscssssse DEC I vevesss 10-40
94 Negate INLEZET eeeeessssscassascsccsasase NEGI wuuanes 10-40
95 Multiply INteger seeeeesecesscssccsssssses MUL I cuueess 10-41
96 Divide INtEZEr <esesecscscsessscsssasssee DIV I suaaaes 10-41
97 Remainder INteger seseessscssesssscessses REM I cuvonns 10-41

82 FEqual INnteger eeescececcsccescccccsssccsces EQL I ceesass 10-41
83 Not Equal INteger seeecscessccossascssces NEQ I coveses 10-42
84 Equal Zero INteger seseseesscsscsscsssese EQZ I vevaees 10-42
85 Not Equal Zero INteger eseeessessssscssces NEZ I weesees 10-42
98 Less Than INLEEET «eeeecesscsasssssasasss LSS I seeeaes 10-42
99 1Less Than or Equal Integer seeeeseescsces LEQ I ceeeees 10-43
100 Positive INLEEET esssseeeessscssssssssccss PIV I cueeees 10-43
101 Negative INtegeTr eeccecessesscsssscsscanns NTf:I eseeeees 10-43
102 Move in Range Integer seeeescsscescsceess MIRT ouunae. 10-43

¥ % % ¥

103 Convert Integer to Character sesseess CVT I C oew.s 10-44
104 Convert Integer to Short Ordinal.ecsesees CVT I SO ou.. 10-44
105 Convert Integer to Short Integer ceeceses CVf:i:SI eoe. 10-44
* 88 Convert Integer to Ordinal «.ceeeeeeceese CVT 1 O sveea 10-44
106 Convert Integer to Temporary Real eeeeess CVf:i:TR eese 10-44

10-4



iAPX 432 GDP Operator Set

Shor t-Real Operators

* 2 Move Short Real ® ® @ 0 8 0 0 89 000 0SSO S OB OEE S o0 MOV_SR ® e 0000 10_45
*63 ZerO Short Real es PP eSS EP eSS SETEsSss e e ZRO_SR_ sencon 10_45
* 65 Save Short Re@l eeeeecseccccccosccccscccnca SAY_SR eesses 10-45

107 Add Short Real ceeevecssssccscccocscsscses ADD SR eseeces 10-46
108 Add Temporary Real to Short Real «....... ADD TR SR ... 10-46
109 Add Short Real to Temporary Real eeee..s. ADD SR TR ... 10-46
110 Subtract Short Real eececesecceccesscasess SUB SR eveees 10-46
111 Subtract Temporary Real from Short Real . SUB TR SR ... 10-47
112 Subtract Short Real from Temporary Real . SUB SR TR ... 10-47
113 Multiply Short Real seeeeceeesscecascccsse MUL SR eeeees 10-47
114 Multiply Temporary Real by Short Real ... MUL TR SR ... 10-47
115 Multiply Short Real by Temporary Real ... MUL SR TR ... 10-48
116 Divide Short Real eeeeseeeeccccscesscsces DIV SK s0usas 10-48
117 Divide Temporary Real into Short Real ... DIV TR SR ... 10-48
118 Divide Short Real into Temporary Real ... DIV SR TR ... 10-48
119 Negate Short Real eeeeeeecessesssssscesss NEG SR eueess 10-49
120 Absolute Value Short Real «eeeeesseseesss ABS SR ¢ouue. 10-49

121 Equal Short Real eceeececcscsccoccsconcee EQL SR ecesee 10-49
122 Equal Zero Short Real seeeeeeeseesecssees EQZ SR oeue.s 10-49
123 1ess Than Short Real seeeececcescsccsscee LSS SR ceeees 10-49
124 Less Than or Equal Short Real eececsseees LEQ SR eveees 10-50
125 Positive Short Real eeseceessessescccsess PIV SR seeees 10-50
126 Negative Short Real seceveececesceceeccses NIV SR oeeeee 10-50

127 Convert Short Real to Temporary Real .... CVT SR TR ... 10-50

Real Operators

128 MOVe R.eal ® 0000000000000 0000000000000000 0 MOVRO.-.... ].0"’51
129 Zero Real S0 00s 0000000000 c00 0000000000 ZRO:R evsec v 10-51
130 SaVe Rﬁal e 00000000000 es 0000000000000 000 SAV_R eeecccee 10"5].

131 Add Real eeeeccccvccccccncsossscscsccssscsse ADD R ceeeese 10-52
132 Add Temporary Real to Real eeeseeseeseees ADD TR R oe.. 10-52
133 Add Real to Temporary Real eeeseveseceses ADD R TR «v.. 10-52
134 Subtract Real secececeessscssasssscsssscs SUBR cuveeas 10-52
135 Subtract Temporary Real from Real seeeee. SUB TR R ... 10-53
136 Subtract Real from Temporary Real ....... SUB R TR .... 10-53
137 Multiply Real eeseeescecsccscscscasscscee MUL R sesesss 10-53
138 Multiply Temporary Real by Real «eeeseees MUL TR R .... 10-53
139 Multiply Real by Temporary Real eesesesee MUL R TR o... 10-54
140 Divide Re@l eeeessecccccccsssasssscssscas DIVR seesess 10-54
141 Divide Temporary Real into Real seeeeeess DIV TR R .... 10-54
142 Divide Real into Temporary Real «eescsee. DIVR TR .... 10-54
143 Negate Real sesesescscscscssscassssssscse NEGR sesesss 10-55
144 Absolute Value Real «evveesevcssacscsccss ABS R aeeenas 10-55

10-5



Operator

145
146
147
148
149
150

151

Set

Equal ReAl seseeececcecssscsccccsscscsons
Equal Zero Real ceeceescceccccescacsssncns
Less Than Real cceeecssccssccssscssnscene
less Than or Equal Real cceececscssccccca

_POSitive Real @0 e ss s s e0 s 00000000t

Negative Real S0 0 0000000080000 000000000 0

Convert Real to Temporary

Temporary-Real Operators

152

153
154

155
156
157
158
159
160
161
162

163
164
165
166
167
168

169
170
171
172

Real ®es o000 s

Move Temporary Real ® 9 0000 080080 s00 e e
Zero Temporary Real eccscececsccscscccccse
Save Temporary Real ® 008 0000000000008

Add Temporary Real .ececececvescceccccscses
Subtract Temporary Real ssecescsccccsscce
Multiply Temporary Real sceeccececcceccccccs
Divide Temporary Readl ceecesscccscecsscssne
Remainder Temporary Real eceesccecccscsese
Negate Temporary Real cceececceccsccscane
Square Root Temporary Real ccescecesescss
Absolute Value Temporary Real ceeeesccees

Equal Témporary Real LRI IE I I A I I B I Y )

Equal Zero Temporary Real

®seececcsssvenoe

less Than Temporary Real cececeecccoccccs
Less Than or Equal Temporary Real .eeeeee
Positive Temporary Real ecesececccscsccses
Negative Temporary Real cececscecscscesns

Convert Temporary Real to
Convert Temporary Real to
Convert Temporary Real to
Convert Temporary Real to

OBJECT OPERATORS

Sub-Operator Procedures

Ordinal eseeeses
Integer seeesas
Short Real ....
Real ceeeesnens

1APX

EQL R ¢ esesc 000
EQZ—R LIC I I

LSS R ceeeees
LEQ R ceaness
PTV R ceeeans
NIV R ceecenn

CVT_R_TR ¢ o0 e

MOV TR @eossece

ZRO TR evess
SAV TR ......

ADD TR eevees
SUB TR eecees
MUL TR eeceee
DIV TR eeeons
REM TR eeeeee
NEG TR eeeeee
SQT TR seeses
ABS TR +veuse

EQL TR saveee
EQZ TR ceasasse
LSS TR eeeees
LEQ TR ¢evees
PIV TR «ceeves
NIV TR eeeoes

CVT TR O evee
CVT TR I eoeoe
CVT TR SR ...
CVI TR R ....

Set COpied ® 900000000 0CN ORI EOLLE0000SIPNOEORNIOESISIOCROOECEOESEEOTTOTERETY

IEV81 Check ® 645 0000000005 0000000000090500009000800000000s00s00s0se

StOTe AD ceeeeceaosssccecsccacssssncsosasosctosssttoassasanocssse
Object LocCKking eeveescseccsncsssessascncossssscssccasossccccns
OD AlloCcAtion ececescecscscvecsssscssasstsasssssnncasssscescssosns
Segment AllOCAtIiON ceceesescesssssccccosnccascssssssssssscsssssss

432 GDP

10-55
10-55
10-55
10-56
10-56
10-56

10-56

10-57
10-57
10-57

10-58
10-58
10-58
10-58
10-59
10-59
10-59
10-59

10-60
10-60
10-60
10-60
10-61
10-61

10-61
10-61
10-62
10-62

10-63
10-63
10-63
10-63
10-64
10-64



iAPX 432 GDP Operator Set

Branch Operators

*% Branch ¢ceceececsccccecocscessscccsese BR cocenceceaarses 10-65
*% Branch True eceececccecsccccsscssssoses BR T covcececesee 10-65 -
*% Branch FalSe seeeecceccscecssscscecsse BRF cevececeanss 10-65
173 Branch Indirect eseeessecsescscscsscss BR INDIRECTevese. 10-66
174 Branch Intersegment «eceeeesscesessse BR ISEG ceeeeeess 10-66
175 Branch Intersegment without Trace ... BR ISEG WO TRACE 10-66
176 Branch Intersegment and Link eeceseess BEZISEdefﬁK eeee 10-67
177 Breakpointeeseeessssessssssssossceces BREAKPOINT seeess 10-67

Access Descriptor Operators

178 Copy Access DeSCriptor eeeececceccesece COPY AD ceeeveese 10-68
179 Null Access ]kscriptor ® 0 0006000009000 NULL—AD Seo 0000000 10—68

Type and Rights Operators

1 80 Amplify Rights ® 0600000600000 00000 000 MLIFY_RIGHTS LN ) 10-69
18 1 Restrict Rights ® 8000000000000 0000 RESTRICT—RIGHTS . 10_70
182 Retrieve Type Definition ¢eceece..... RETRIEVE TYP DEF 10-71

Refinement Operators

183 Create Refinement R R YN CREATE_RFN ®0es0ee 10-72
184 Create Typed Refinement sececsevecsssee CREATE_TYPED_RFN 10-74

Ob ject Creation Operators

185 Create Object ® 0 & 0500 0000 00000 CREATE—OBJ ¢ o000 10-76
186 Create Typed Object «eceececeecssececss CREATE TYPED OBJ 10-77

Access Inspection Operators

* 187 1Inspect Access Descriptor seeseceseses INSPECT AD .ceo.. 10-78
188 Inspect ObjeCt eseecescccsscccsccecssees INSPECT OBJ eosee 10-78
189 Equal ACCESS «eeesosscccsscccsssscsss EQL ACCESS ¢eues. 10-79
190 Move to Embedded Data Value sessesses MOV TO EDV .e.o.. 10-79

* 187 Move from Embedded Data Value ¢eeecee MOV FM EDV ¢e.ceee 10-79

Access Interlock Operators

191 TLock Object eeeeesesesacessscesssscecss LOCK OBJ eeeassss 10-80
192 Unlock ObjeCt sesesecscscsccccscscsses UNLOCK OBJ eeeese 10-80
193 Indivisibly Add Short Ordinal «...... INDIV ADD SO .... 10-81
194 Indivisibly Add Ordinal eeveeeeeeeces INDIV ADD O eeos. 10-81
195 1Indivisibly Insert Short Ordinal .... INDIV INS SO .... 10-82
196 Indivisibly Insert Ordinal e...ecece. INDIV_INS O ..... 10-82

10-7



Operator Set iAPX 432 GDP

Context Operators

Sub-Operator Procedures:
ENV Entry ® 6 5 05 500 00600 0SSO0 SO 0SSN OO O RN OO NG SESe NN CENDSOEDS 10—83
Context Ca-ll ® S 8 0609 009 0000 000D PO SO 0PSSO0 OSSOSO OSSOSO SNDE SN 10-83

Operators:

197 Enter Environment 1 eseesecescecscess ENTER ENV 1 ce0eees 10-85
198 Enter Environment 2 seesecesscccsscs ENTEﬁ:ENV:? eessses 10-85
199 Enter Environment 3 ceecceccesesesss ENITER ENV 3 .c0vees. 10-85
200 Copy Process Globals eeeseeseesessss COPY PRCS GLOBALS . 10-86
201 Set Context Mode «eseecccsssccssssss SET CTXT MODE «.... 10-86
202 Adjust Stack Pointer seeeeescecscces ADJ SP vesecscacsss 10-86
203 €21l veeeeececscencacecsscesscesccse CALL secesecaccseess 10-87
204 Call Through Domaineseeeeseeceeseess. CALL THRU DOMAIN .. 10-87
205 RetUrN .sseeesccscscsesccsccscsscesase RET secesencassecass 10-88
206 Return and Fault cececececececocecse RET FAULT eveecncns 10-88

Process Communication Operators

Sub-Operator Procedures:

Enqueue MeSSAge eesescccosssecsccsosccsscnnssssessssssasccssssasss 10-89
Dequeue MESSALZE eescevcccsscssssscscssscsscssncasccscssncccncscss 10-89
Enqueue Carrier ceeeeccecccscccccscscscsssscacsccssasnscasssssss 10-90
Dequeue CAYri€r seeccacsesssssosccscsscscnsssssssscssssassssscssse 10-90
Forward Carri@r seceeesccssccssscsccsscssssscssscssscsscnnssnsss 10-90
Surrogate COMMON ececeoccccccssscssscsssscssassacssnsssnascsssas 10-90
Send COMMON .eessecesccscscsvscsascsssssscscscsscscsnsssssssccscsse 10-91
Receive COMMON eceesccoccccsccsscccessncacsscsscsssscessssssces 10-92

Operators:

207 Send ecceecsoccsscvcscnscvcscsscssace SEND eveesscecsseas 10-93
208 Receive veeecscescssscessscsssscssse RECEIVE ceeeeeeasess 10-94
209 Conditional Send eececssceccsassacsas COND SEND eeevesees 10-95
210 Conditional Receive secesseesesscess COND RECEIVE sveees 10-96
211 Surrogate Send eecesssccsssscscasccs SUR SEND covevsaass 10-97
212 Surrogate ReceivVe sesseeesscssesssss SUR RECEIVE ....... 10-98
213 Delay ProcesS «seseeessscesscssssess DELAY PRCS ceevena. 10-99
214 Send Process sescececssccscccescscss SEND PRCS ceueenens 10-100
215 Set Process Mode eceeecesccsccasscace SET PRCS MODE ¢eve. 10-100
216 Read Process Clock esessessescessess READ PRCS CLOCK ... 10-101

Processor Communication Operators

217 Send to ProceSSOr esesssoscssccscsss SEND PSOR eveveoses 10-102
218 Read Processor StatUS eeeeececcccens REA§:PSOR;§TATUS .. 10-103

10-8



1APX 432 GDP Operator Set

Interconnect Operators

219 Move to Interconnect ©eeess0e00ss 00 MOV—TO—_ICT ®cecrsse 10'104
22() Move from Interconnect sses s eee MOV—FM_ICT LI AN I 10-104

Block Move Operator

222 BlOCk MOVG ® 0600 e0rs000000000000c0Ce BLK_IMOV S seovvoenre 10-105

OPERATOR DESCRIPTIONS

This section contains the operator descriptions for the GDP operator
set. Each description includes the number and type of required
operands and a commentary on the operation performed. The descriptions
do not include full details on faulting. See the Fault and Trace
Reference chapter of this manual for the descriptions of faults for
each operator.

Each operator is described using a table of the following form:

OPERATOR NAME OPERATOR MNEMONIC

| ID# | Operands | | Opcode | Keference | Format | Class |
| -1 2 3--] I I I | I
| | | | [ | | wvaries | varies | |

The table is split into two parts. The first part characterizes the
operator by describing the order and type of operands it requires. The
second part of the table shows the binary format of an instruction that
encodes the operator. The binary values given for the Class and Opcode
fields together uniquely determine a given operator. The Format and
Reference fields are included for the sake of completeness—-their
actual binary encodings vary depending on the operand locations and the
kind of operand addressing intended.

The labels for the columns in these tables have the following meaning:

ID#

T This decimal number is an identifier number for the operator.
Though it is not encoded in instructions, this number is used to
identify each GDP operator. For example, it is generated by the
processor to indicate (in fault data areas) the operator that was
executing when a fault occurred.

Operands

The term operand has a precise meaning in this manual. See the
Instruction Interface chapter of this manual for more details. Up
to three operands are required for each operator. Operands are
either explicitly or implicitly specified in an instruction and are
addressed through the operand addressing mechanism of the GDP.
Operands always reside in the data parts of objects. For a given
instruction, the operand(s) are never encoded into the instruction
stream as literals.

10-9



Operator Set iAPX 432 GDP

They are explicitly specified by a Data Reference field or implicitly
specified by a particular Format field encoding. An implicit reference
always specifies the current context's operand stack for the
corresponding operand. In a particular instruction, the mapping of
data references to operands is defined by the Format field in that
instruction. A table of Format field encodings is included in the
Instruction Encoding chapter of this manual.

Abbreviations are used in the operator tables to indicate operand

types. These operand types are briefly described later in this
chapter, The following abbreviations are used:

as Access Selector (16 bits)

b Boolean (8 bits)

bfs Bit-Field Specifier (16 bits)
c Character (8 bits)

dai Domain Access Index (16 bits)
i Integer (32 bits)

o Ordinal (32 bits)

pd Packed Double-word (64 bits)
pw Packed Word (32 bits)

r Real (64 bits)

si Short Integer (16 bits)

so Short Ordinal (16 bits)

sr  Short Real (32 bits)

tr Temporary Real (80 bits)

Class
This field in an instruction consists of a variable-length bit
string that is the class encoding for the given operator. All
digits shown are significant and constitute the actual bit field
encoded in the instruction for that operator,

Format

This field in an instruction consists of a variable-length bit
string that is the format encoding. The specific encoding of the
field varies depending on the order of the specific operator and the
intended mapping of operand references in a given instruction. A
table of format field encodings 1is included in the Instruction
Composition chapter of this manual.

Reference

This field in an instruction contains 0 to 3 data references for the
operands of the instruction. It can also contain 0 or 1 data
references followed by a branch reference. The specific encoding of
the field varies depending on the intended operand addressing modes
for each operand. A description of reference field formats and
encodings is included in the Instruction Composition chapter of this
manual.

Opcode
This field in an instruction consists of a variable-length bit

string that is the opcode encoding for the given operator., All
digits shown are significant and constitute the actual bit field
encoded in the instruction for that operator.

10=10



iAPX 432 GDP Operator

OPERAND TYPES

The types cf cperands that can be referenced in GDP instructions
briefly described in this section. For further details about
interpretation of those operand types that are also data types, see
Computational Data Types chapter of this manual,

as ACCESS SELECTOR (16 bits)
Access selectors select an AD in the access environment of

Set

are
the
the

the

current context. Access selector operands have the following

format:

14 bits XX

ENV Selector

00 for Current Context (Environment 0)
01 for Environment 1

10 for Environment 2

11 for Environment 3
Access Index

This value indexes into the selected
Environment to select an AD

b BOOLEAN (8 bits)

A boolean is a value of type character that is used to represent
logical TRUE or FALSE, TRUE is represented by xxxxxxx1 and FALSE

by xxxxxxx0 (with the x bits being uninterpreted don't care

bits).

bfs BIT-FIELD SPECIFIER (16 bits)

A bit-field specifier specifies a field of bits to be manipulated
within an ordinal or short-ordinal operand. A bit-field specifier

consists of two adjacent bytes as shown below:

15 8 7 0

—a—— Beginning Bit Number
Bit Field Width

10-11



Operator Set iAPX 432 GDP

dai

10-12

For short-ordinal bit-manipulation operators, only the low-order 4
bits of these bytes are interpreted by the GDP during execution.
For ordinal bit-manipulation operators, only the low-order 5 bits
of these bytes are interpreted by the GDP during execution. The
first byte specifies the beginning bit of the field. The second
(next higher-addressed) byte of a bfs specifies one less than the
number of bits in the field. Thus a bit field within a short
ordinal can contain from 1 to 16 bits; within an ordinal, from 1
to 32 bits, Bit fields that extend past the most significant bit
of the short ordinal or ordinal containing them "wrap around."

For example, a U4-bit field beginning at bit 14 within a short
ordinal contains bits 14, 15, 0, and 1 (LSB to MSB).

CHARACTER (8 bits)
These 8-bit operands are used to represent booleans, text
characters, or unsigned integers in the range 0 to 255.

7 0

DOMAIN ACCESS INDEX (16 bits)

A domain access index selects an access descriptor in the defining
domain of the current context. Only the upper 14 bits are used
for the AD index. The lower 2 bits are masked out. DAIs have the
following format:

15 2 0

14 bits XX

e Masked Out
Access Index

INTEGER (32 bits)

These 32-bit operands represent signed integer values in the range
-2,147,483,648 to 2,147,483,647 in 2's complement form.

31 0

ORDINAL (32 bits) )
These 32-bit operands represent unsigned integer values in the
range 0 to 4,294,967,295, or bit strings of 32 bits or less.

31 0




iAPX 432 GDP Operator Set

pd

Pw

si

30

PACKED DOUBLEWORD (64 bits)

Packed doublewords consist of four 16-bit parts. Each part can
contain one of the other 16-bit operand types. Packed doubleword

operands are required by some cbject operators.

64 b8 u7 32 N 16 15 0

16 bits 16 bits 16 bits 16 bits

PACKED WORD (32 bits)

Packed words consist of two 16-bit parts. Each part can contain
one of the other 16-bit operand types. Packed word operands are
required by some object operators.

31 16 15 0

16 bits 16 bits

REAL (64 bits)
These 64-bit operands represent floating-point numbers. See the
Computational Data Types chapter in this manual for more details.,

63 62 52 51 0

S Exponent Fraction

SHORT INTEGER (16 bits)

These 16-bit operands represent signed integer values in the range
-32,768 to 32,767 in 2's complement form,

15 0

SHORT ORDINAL (16 bits)

These 16-bit operands represent unsigned integer values in the
range 0 to 65,535, or bit strings of 16 bits or less.

15 0

10-13



Operator Set iAPX U432 GDP

sr

tr

10-14

SHORT REAL (32 bits)

These 32-bit operands represent floating-point numbers. See the
Computational Data Types chapter in this manual for more details.,

31 30 23 22 0

S Exponent Fraction

TEMPORARY REAL (80 bits)
These 80-bit operands represent floating-point numbers. See the
Computational Data Types chapter in this manual for more details.,

79 78 64 63 0

S Exponent Significand |




iAPX 432 GDP Operator Set

DATA OPERATORS

CHARACTER OPERATORS

During the execution of instructions using these character operators,
if an arithmetic operation produces a result that cannot be represented
in 8 bits, the operation is terminated without storing a result, and
the Character Overflow Fault is raised.  This occurs for any result < 0

or > 255, See the Fault and Trace Reference chapter for more details
on faulting.

MOVE CHARACTER Mov_C
ID# Operands Opcode Reference Format Class
1 2 S
1 c c - 00 varies varies 011110

Character operand 1 is copied to character operand 2. Using the
operand stack for operand 1 results in the classical POP stack
operation, and using the operand stack for operand 2 results in the
classical PUSH stack operation. Using the operand stack as both
operand 1 and operand 2 results in no change.

ZERO CHARACTER ZRO C
T 1D7 Operands Opcode | Reference r;?ormat ] Class )
i 2 3 ] ‘
2 c - - 0 varies varies 010110

A character value of zero is stored in operand 1.

ONE CHARACTER | ONE_C
'_ID# Operands Opcode Reference “Format Class

1 2 3]
3 c - - 01 varies varies 010110

A character value of one is stored in operand 1.

SAVE CHARACTER SAV C
| I Operands Opcode | Reference | Format Class
1 2 3 e
L c - - 11 varies varies 0101 1044

The character on top of the operand stack is read, without
adjusting the stack, and copied to operand 1. Using the operand
stack for operand 1 results in an operand stack in which the top

two double-byte locations contain the same character value in the
lower byte of each,

10-15



Operator Set iAPX 432 GDP

AND CHARACTER AND C
ID# Operands Opcode Reference Tormat ~Class
1 2 g f—
5 c c c 000 varies varies 011101

Operand 1 is logically ANDed with operand 2. A bit in the result
is set if the corresponding bits of both source operands are set;
otherwise the result bit is cleared. The result is stored in

operand 3,
INCLUSIVE OR CHARACTER IOR C
[ 1D# Operands Opcode Reference Format Class
1 2 S
6 ¢ c ¢ 100 varies varies 011101

Operand 1 is logically ORed (INCLUSIVE ORed) with operand 2, A bit
in the result is set if either or both corresponding bits in the
source operands are set; otherwise the result bit is cleared. The
result is stored in operand 3.

EXCLUSIVE OR CHARACTER XOR_C
ID# Operands Opcode Reference Format Class
1 2 3 e
7 c c c 010 varies varies 011101

Operand 1 is logically XORed (EXCLUSIVE ORed) with operand 2. A
bit in the result is set if the corresponding bits in the source
operands contain opposite values (one is set, the other 1is
cleared); otherwise the result bit is cleared. The result is
stored in operand 3. Note that applying this operator to two
boolean operands produces a boolean result that is the same as if
the two boolean operands are compared for inequality.

EQUIVALENCE CHARACTER EQV C
[ 1D# Operands Opcode Reference Format Class
1 2 o |
8 c c ¢ 110 varies varies 011101

Bitwise logical equivalence is performed between operand 1 and
operand 2. A bit in the result is set if the corresponding bits in
the source operands contain the same value (both are set or both
are cleared); otherwise the result bit is cleared. The result is
stored in operand 3. Note that applying this operator to two
boolean operands produces a boolean result that is the same as if
the two boolean operands are compared for equality.



iAPX 432 GDP Operator Set
NOT CHARACTER NOT C
ID# Operands Opcode Reference "Format Class
1 2 3
9 c c - 10 varies varies 011110

The bitwise logical NOT (1's complement) of character operand 1 is
stored in character operand 2.

ADD CHARACTER

ADD C

ID#

1

Operands
2

e

10

C

C

Opcode

Reference

(]

001

varies

Eormat Eiass
varies | 011101 |

Unsigned 8-bit addition is used to add operand 1 and operand 2.

The result is stored in operand 3.

SUBTRACT CHARACTER SUB_C
ID# Opesands Opcode Reference Format Class
11 l ; 3-- 101 varies varies 011101
Unsigned 8-bit subtraction is used to subtract operand 1 from
operand 2. The result is stored in operand 3.
INCREMENT CHARACTER INC C
ID# Ope:ands Opcode Reference Format Class
12 : ; E— 001 varies varies 011110
Operand 1 is read and the value is incremented by one using

unsigned 8-bit addition.

The result is stored in operand 2,

DECREMENT CHARACTER DEC C
ID# Operands Opcode I Reference Format Class
1 2 3
| 13 c c - 101 l varies varies 011110
Operand 1 is read and the value is decremented by one using

unsigned 8-bit subtraction.

The result is stored in operand 2,

10-17



Operator Set iAPX 432 GDP

EQUAL CHARACTER EQL C
ID# Operands Opcode Reference Format Class
1 2 3]
14 c c b 0011 varies varies 011101

An 8-bit comparison is made between operand 1 and operand 2. If
they are equal, the boolean result is TRUE., Otherwise, the result
is FALSE. The boolean result is stored in operand 3. Note that
this operator should not be used to compare two boolean operands.
The EQUIVALENCE CHARACTER operator should be used instead.

NOT EQUAL CHARACTER NEQ C
ID# Operands Opcode Reference Format Class
1 2 3
15 c c b 1011 varies varies 011101

An 8-bit comparison is made between operand 1 and operand 2. If
they are not equal, the boolean result is TRUE. Otherwise, the
result is FALSE. The boolean result is stored in operand 3. Note
that this operator should not be used to compare two boolean
operands for inequality. The EXCLUSIVE OR CHARACTER operator
should be used instead.

EQUAL ZERO CHARACTER EQZ_C
ID# Operands Opcode Reference “Format Class

[ 1 2 3—
16 c b - 011 varies varies 011110

An 8-bit comparison is made between operand 1 and a character value
of zero. If they are equal, the boolean result 1is TRUE,.
Otherwise, the result is FALSE. The boolean result is stored in
operand 2. Note that this operator should not be used to compare a
boolean operand to a boolean value of FALSE, The NOT CHARACTER
operator should be used instead.

NOT EQUAL ZERO CHARACTER NEZ C
ID# Operands Opcode Reference Format Class
1 2 3w
17 c b - 111 varies varies 011110

An 8-bit comparison is made between operand 1 and a character value
of =zero. If they are not equal, the boolean result is TRUE.
Otherwise, the result is FALSE. The boolean result is stored in
operand 2, Note that this operator should not be used to compare a
boolean operand to a boolean value of TRUE. The MOVE CHARACTER
operator should be used instead.

P
<O
ey
<o



iAPX 432 GDP Operator Set

LESS THAN CHARACTER ' LSS C
ID# Operands Opcode Reference Format Class
1 2 3
18 c c b 0111 varies varies 011101

An unsigned 8-~bit comparison is made between operand 1 .and .operand
2. If operand 1 is less than operand 2, the boolean result is
TRUE. Otherwise, the result is FALSE. The boolean result is
stored in operand 3. Note that this operator should not be used to
compare booleans. The logical character operators should be used

instead.
LESS THAN OR EQUAL CHARACTER LEQ C
ID# Operands Opcode Reference Format Class
1 2 o
19 c c b 1111 varies varies 011101

An unsigned 8-bit comparison is made between operand 1 and operand
2. If operand 1 is less than or equal to operand 2, the boolean
result is TRUE. Otherwise, the result is FALSE, The boolean
result is stored in operand 3. Note that this operator should not
be used to compare booleans. The 1logical character operators
should be used instead.

CONVERT CHARACTER TO SHORT ORDINAL CVT_C_S0
ID# Operands Opcode Reference Format Class
1 2 Je
20 c S0 - none varies varies 111110

Character operand 1 1is converted to short-ordinal operand 2.
Operand 1 is moved to the 1low-order byte of operand 2. The
high-order byte of operand 2 is zeroed.

CONVERT CHARACTER TO INTEGER CVI C I
ID# Operands Opcode Reference Format Class
1 2 3 e
21 c i - none varies varies 000001

Character operand 1 is converted to integer operand 2. Operand 1
is moved to the low-order byte of operand 2. The three high-order
bytes of operand 2 are zeroed.,

10-19



Operator Set i1APX 432 GDP

SHORT-ORDINAL OPERATORS

During the execution of instructions wusing these short-ordinal
operators, if any arithmetic operation produces a result that cannot be
represented in 16 bits, the operation is terminated without storing a
result, and the Short Ordinal Overflow Fault is raised., This occurs
for any result < 0 or > 65,535. If the divisor is zero in any divide
or remainder operation, the operation is suppressed, and the Short
Ordinal Divide by Zero Fault is raised. See the Fault and Trace
Reference chapter for more details on faulting.

MOVE SHORT ORDINAL MOV_SO0
ID# Operands Opcode Reference Format Class
1 2 3
22 so | so | - 0000 varies varies 0100

Short-ordinal operand 1 is copied to short-ordinal operand 2.
Using the operand stack for operand 1 results in the classical POP
stack operation, and using the operand stack for operand 2 results
in the classical PUSH stack operation. Using the operand stack as

both operand 1 and operand 2 results in no change.

ZERO SHORT ORDINAL ZRO_SO
' ID# Operands Opcode Reference Format Class
1 2 3
! 23 so | - - 000 varies varies 0000
A short-ordinal value of zero is stored in operand 1.
ONE SHORT ORDINAL ONE_SO
—— JRn— —
ID# Operands Opcode Reference Format Class
1 2 3
24 so | - - 0100 varies varies 0000
A short-ordinal value of one is stored in operand 1.
SAVE SHORT ORDINAL SAV_S0
ID# Operands Opcode Reference Format Class
1 2 S
25 so | - - 1100 varies varies 0000
The short-ordinal on top of the operand stack is read, without

adjusting the stack,

and copied to operand 1.

Using the operand
stack for the operand 1 destination results in an operand stack in

which the top two short-ordinal entries contain the same value,



iAPX 432 GDP Operator Set

AND SHORT ORDINAL ' AND S0
1D# Operands Opcode Reference Format Class
1 2 3 — -
26 so | so | so 0000 varies varies 0010

Operand 1 is logically ANDed with operand 2, A bit in the result
is set if the corresponding bits of both source operands are set;
otherwise the result bit is cleared., The result is stored in

operand 3.
INCLUSIVE OR SHORT ORDINAL IOR_SO
TOF Operands  Opcode Reference | Format Class
e 2 g 3}
27 SO { so0 | so 1000 varies varies 0010

Operand 1 is logically ORed (INCLUSIVE ORed) with operand 2. A bit
in the result is set if either or both corresponding bits in the
source operands are set; otherwise the result bit is cleared. The
result is stored in operand 3.

EXCLUSIVE OR SHORT ORDINAL XOR_SO
ID# Operands Opcode Reference Format Class
1 2 St
28 so | so ] so 0100 varies varies 0010

Operand 1 is logically XORed (EXCLUSIVE ORed) with operand 2. A
bit in the result is set if the corresponding bits in the source
operands contain opposite values (one is set and the other is
cleared); otherwise the result bit is cleared. The result is
stored in operand 3.

EQUIVALENCE SHORT ORDINAL EQV_SO
ID# Operands Opcode Reference Format Class
1 2 F
29 so | so | so 1100 varies varies 0010

Bitwise 1logical equivalence is performed between operand 1 and
operand 2, A bit in the result is set if the corresponding bits in
the source operands contain the same value (both are set or both
are cleared); otherwise the result bit is cleared., The result is
stored in operand 3.

10-21



Operator Set iAPX 432 GDP

NOT SHORT ORDINAL NOT_SO

IDf Opegands Opcode Reference “Format | Class |
30 ;o ;o E- r-l71000 varies varies 0100

The bitwise logical NOT (1's complement) of short-ordinal operand 1

is stored in short-ordinal operand 2.

EXTRACT SHORT ORDINAL EXT SO
ID# Operands Opcode Reference Format Class
1 2 K
31 bfs] so | so 0010 varies varies 0010

Operand 2 is a short-ordinal from which a bit field is to be
extracted., Operand 1 is a bit-field specifier that specifies the
field to be extracted. The extracted bit field is right justified

Wwith high-order zeros to form a short-ordinal result that is stored
in operand 3.

INSERT SHORT ORDINAL INS SO
ID# Operands Opcode Reference Format Class
1 2 e |
32 bfs} so | so 1010 varies varies 0010

Operand 2 is a short-ordinal that contains a right-justified bit
field to be inserted into the destination. Any high-order bits in
operand 2 outside the bit field are ignored. Operand 1 is a
bit-field specifier that specifies the field in the destination
that is replaced by the inserted field, Operand 3 1is the
short-ordinal destination.

SIGNIFICANT BIT SHORT ORDINAL SIG SO
ID# Operands Opcode Reference Format Class
1 2 S
33 so | so | - 0100 varies varies 0100

The bit number (from 0 to 15) of the most-significant set bit in
short-ordinal operand 1 is determined as a short-ordinal result and

is stored in operand 2, If operand 1 has the value =zero, the
result is 16.

10-22



iAPX 432 GDP Operator Set

ADD SHORT ORDINAL ADD_S0
ID# Operands Opcode Reference Format Class
1 2 3=
34 1e) S0 80 0110 varies varies 0010

Unsigned . 16-bit addition is used to add operand 1 and operand 2.
The result is stored in operand 3.

SUBTRACT SHORT ORDINAL SuB_SO

ID# Operands Opcode Reference Format Class
1 2 3 e
35 so | so | so 1110 varies varies 0010

Unsigned 16-bit subtraction is used to subtract operand 1 from
operand 2. The result is stored in operand 3.

INCREMENT SHORT ORDINAL INC SO
ID# Operands Opcode Reference Format Class
1 2 S
| 36 so | so | - 1100 varies varies 0100

Operand 1 is read and the value is incremented by one using
unsigned 16-bit addition. The result is stored in operand 2.

DECREMENT SHORT ORDINAL DEC_SO
ID# Operands Opcode Reference Format Class
1 2 o |
37 S0 | so ] - 0010 varies varies 0100

Operand 1 is read and the value is decremented by one using
unsigned 16-bit subtraction. The result is stored in operand 2.

MULTIPLY SHORT ORDINAL MUL_SO
ID# Operands Opcode Reference Format Class
1 2 e 3 e
| 38 so | so l S0 0001 varies varies 0010

Unsigned 16-bit multiplication is used to multiply operand 1 and
operand 2. The short-ordinal result is stored in operand 3.

10-23



Operator Set

iAPX 432 GDP

DIVIDE SHORT ORDINAL DIV_SO
1DF Operands Opcode | Reference | Format Class
1 s 2 e 3
39 so | so | so 1001 varies varies 0010

Unsigned 16-bit division is used to divide operand 1 into operand

2.

The 16-bit quotient is stored in operand 3.

Note that when the

dividend is not an exact short-ordinal multiple of the divisor, the
quotient is truncated toward zero (e.g., 8 divided by 3 yields 2).

REMAINDER SHORT ORDINAL REM_SO
[ 1D# Operands Opcode Reference Format Class
1 2 3
40 so | so | so 0101 varies varies 0010

Unsigned 16-bit division is used to divide operand 1 into operand
The 16-bit remainder is stored in operand 3. Th
performs the MOD function for the source operands.

2.

is operator

EQUAL SHORT ORDINAL EQL_SO
ID# Operands Opcode Reference Format Class
1 2 e
41 so | so b 000 varies varies 111101

A 16-bit comparison is made between operand 1 and operand 2. If

they are equal, the boolean result is TRUE,.

Otherwise, the result

is FALSE. The boolean result is stored in operand 3.
NOT EQUAL SHORT ORDINAL NEQ_SO
ID# Operands Opcode Reference Format Class
1 2 e
42 so | so}lb 100 varies varies 111101

A 16-bit comparison is made between operand 1 and operand 2. If

they are not equal, the boolean result is TRUE. Otherwise, the
result is FALSE. The boolean result is stored in operand 3.
EQUAL ZERO SHORT ORDINAL EQZ_S0
ID# Operands Opcode Reterence Format Tlass
1 2 3
43 so b - 00 varies varies 100001

A 16-bit comparison is made between operand 1 and a short-ordinal
value of zero. If they are equal, the boolean result is TRUE,
Otherwise, the result is FALSE, The boolean result is stored in
operand 2.

-

0-24



iAPX 432 GDP Operator Set

NOT EQUAL ZERO SHORT ORDINAL NEZ_SO
ID# I Operands Opcode Reference Format Class
1 2 e
by I so | b - 10 varies varies 100001

A 16-bit comparison is made between operand 1 and a short-ordinal
value of zero. If they are not equal, the boolean result is TRUE,

- Otherwise, the result is FALSE. The boolean result is stored in

operand 2.
LESS THAN SHORT ORDINAL LSS SO0
D7 5berands Opcode ‘Reference Format Class ‘ﬂ
i 2 3
45 S0 §j S0 { b 010 varies varies 111101

An unsigned 16-bit comparison is made between operand 1 and operand

2. If operand 1 is less than operand 2, the boolean result is
TRUE. Otherwise, the result is FALSE. The boolean result is
stored in operand 3.

LESS THAN OR EQUAL SHORT ORDINAL LEQ_SO
[ 1D7 Operands Opcode Reference Tormat Class ‘
1 2 g -
46 so | solb 110 varies varies 111101
R

An unsigned 16-bit comparison is made between operand 1 and operand
2. If operand 1 is less than or equal to operand 2, the boolean
result is TRUE. Otherwise, the result is FALSE. The boolean
result is stored in operand 3.

CONVERT SHORT ORDINAL TO INTEGER CVT_ SO I
[ 1D# Operands l Opcode Reference Yormat “Class
1 2 3
47 so | i - ' 00 varies varies 010001

Short-ordinal operand 1 is converted to integer operand 2. Operand
1 is moved to the low-order 16 bits of operand 2. The high-order
16 bits of operand 2 are zeroed.

10-25



Operator Set iAPX 432 GDP

1 SHORT-INTEGER OPERATORS|

During the execution of instructions using these short-integer
operators, if any arithmetic operation produces a result that cannot be
represented in a 16-bit 2's complement value, the operation is
terminated without storing a result, and the Short Integer Overflow
Fault is raised. This occurs for any result < -=32,768 or > 32,767. If
the divisor 1is zero in any division or remainder operation, the
operation is suppressed, and the Short Integer Divide by Zero Fault is
raised. See the Fault and Trace Reference chapter for more details on
faulting.

MOVE SHORT INTEGER MOV_SI
ID# Operands Opcode Reference Format Class
1 2 3 d
22 si |} si}] - 0000 varies varies 0100

Short-integer operand 1 is copied to short-integer operand 2.
Using the operand stack for operand 1 results in the classical POP
stack operation, and using the operand stack for operand 2 results
in the classical PUSH stack operation. Using the operand stack as
both operand 1 and operand 2 results in no change.

ZERO SHORT INTEGER ZRO_SI
 1DF Operands Opcode | Reference Format Class
1 2 Senam
23 si | - - 000 varies varies 0000

A short-integer value of zero is stored in operand 1.

ONE SHORT INTEGER ONE_SI
[ 1DF Operands Opcode Reference Format Class
1 2 S |
24 si] - - 0100 varies varies 0000

A short-integer value of one is stored in operand 1.

SAVE SHORT INTEGER SAV_SI
~ 1DF Operands Opcode Reference Format Class
1 2 3
25 si | - - 1100 varies varies 0000

The short-integer on top of the operand stack is read, without
adjusting the stack, and copied to operand 1. Using the operand
stack for the operand 1 destination results in an operand stack in
which the top two short-integer entries contain the same value,

10-26



iAPX 432 G

DP

Operator Set

ADD SHORT INTEGER ADD SI
ID# Operands Opcode Reference Format Class
1 2 S ams -
48 si | si|] si 1101 varies varies 0010

Signed 16-bit addition is used to add operand 1 and operand 2., The
result is stored in operand 3.

SUBTRACT SHORT INTEGER SUB_SI
ID# Operands Opcode Reference “Format Class
1 2 3
49 si | si | si 0011 varies varies 0010
Signed 16-bit subtraction is wused to subtract operand 1 from
operand 2. The result is stored in operand 3.
INCREMENT SHORT INTEGER INC SI
ID# Operands Opcode Reference Format Class
1 2 3
50 si [ si] - 1010 varies varies 0100

Operand 1 is read and the value is incremented by one using signed
16-bit addition.

The result is stored in operand 2.

DECREMENT SHORT INTEGER DEC_SI
ID# Operands Opcode Reference Format Class
1 2 3 s
51 si §si}| - 0110 varies varies 0100

Operand 1 is read and the value is decremented by one using signed

16-bit subtraction.

The result is stored in operand 2.

NEGATE SHORT INTEGER NEG SI
ID# Operands Opcode Reference Format Class
1 2 St
52 si si | - 1110 varies varies 0100

The 2's complement of short-integer
short-integer operand 2.

operand 1 is

stored in

10-27



Operator Set

iAPX 432 GDP

MULTIPLY SHORT INTEGER MUL_SI
ID# Opegands Opcode Reference Format Class
53 ;1 ;i 2;- 01011 varies varies 0010
Signed 16-bit multiplication is used to multiply operand 1 and
The short-integer result is stored in operand 3,

operand 2.

DIVIDE SHORT INTEGER DIV SI
ID# Operands Opcode Reference Format Class
1 2 3 .
54 si | si | si 11011 varies varies 0010

Signed 16-bit division is used to divide operand 1 into operand 2.
The 16-bit quotient is stored in operand 3. Note that when the
dividend is not an exact short-integer multiple of the divisor, the
quotient is truncated toward zero (e.g., 8 divided by 3 yields 2
and -8 divided by 3 yields -2).

REMAINDER SHORT INTEGER REM_SI
1DF Operands Opcode | Reference | Format Class
1 2 3 e
55 si | si | si 00111 varies varies 0010

Signed 16-bit division is used to divide operand 1 into operand 2.
The signed 16-bit remainder is stored in operand 3. The sign of
the remainder is the same as the sign of the dividend (operand 2).
This operator performs the REM function for the source operands.

EQUAL SQORT INTEGER

EQL_SI
ID# Operands l Opcode Reference Format Class
41 si si b ' 000 varies varies 111101

A 16-bit comparison is made between operand 1 and operand 2. If
they are equal, the boolean result is TRUE. Otherwise, the result
is FALSE., The boolean result is stored in operand 3.

-

<)
i

n)

(e>]



iAPX 432 GDP Operator Set

NOT EQUAL SHORT INTEGER ' NEQ SI
ID# Operands Opcode Reference Format Class
1 2 g -
42 si Jsi}]b 100 varies varies 111101

A 16-bit comparison is made-between operand 1 and operand 2, If
they are not equal. the boolean result is TRUE. Otherwise, the
result is FALSE, The boolean result is stored in operand 3.

EQUAL ZERO SHORT INTEGER EQZ_SI
ID# Operands Opcode Reference Format Class
1 -2 3
43 si § b - 00 varies varies 100001

A 16-bit comparison is made between operand 1 and a short-integer
value of zero. If they are equal, the boolean result is TRUE,
Otherwise, the result is FALSE. The boolean result is stored in

operand 2.
NOT EQUAL ZERO SHORT INTEGER NEZ_SI
ID# Operands Opcode Reference Format Class
1 2 S |
4y si|b - 10 varies varies 100001

A 16-bit comparison is made between operand 1 and a short-integer
value of zero. If they are not equal, the boolean result is TRUE.
Otherwise, the result is FALSE. The boolean result is stored in

operand 2.
LESS THAN SHORT INTEGER LSS SI
ID# Operands Opcode Reference Format Class
e, 1 2 -
56 sifsi]b 001 varies varies 111101

A signed 16-bit comparison is made between operand 1 and operand
2. If operand 1 is less than operand 2, the boolean result is
TRUE. Otherwise, the result is FALSE, The boolean result is
stored in operand 3.

10-29



Operator Set

iAPX 432 GDP

LESS THAN OR EQUAL SHORT INTEGER LEQ SI
ID# Operands Opcode Reference Format Class
1 2 3
57 si ] si]b 101 varies varies 111101

A signed 16-bit comparison is made between operand 1 and operand
2. If operand 1 is less than or equal to operand 2, the boolean
The boolean

result

is TRUE.

Otherwise,

result is stored in operand 3.

the result is FALSE.

POSITIVE SHORT INTEGER PTV_SI
ID# Ope;ands Opcode Reference | Format Class
58 ;i ; éf-’ 01 varies varies 100001

If short-integer operand 1 is positive (greater than zero), the

boolean result is TRUE. Otherwise, the result is FALSE. The

boolean result is stored in operand 2.

FALSE if operand 1 is zero.

Note that the result is

NEGATIVE SHORT INTEGER NTV_SI
ID# Ope:ands Opcode Reference Format Class
59 ;i g i-_‘ 011 varies varies 100001
If short-integer operand 1 is negative (less than =zero), the

boolean result is TRUE, Otherwise, the result is FALSE. The
boolean result is stored in operand 2.
MOVE IN RANGE SHORT INTEGER MIR_SI
ID¥ Operands Opcode Reference Format Class
1 2 33—
60 pw | si si none varies varies 110011

Operation:

Operand 1:
0 -1
16 - 3
Operand 2:

Operand 3:

Action: o

10-30

If short-integer operand 2 is within the range specified
by operand 1, store the value of operand 2 in operand 3.

A packed word operand comprised of the following:

5: Contains the
1: Contains the

Contains the

Contains the

short-integer source operand

short-integer destination operand

short-integer lower bound of the range
short-integer upper bound of the range

Otherwise, store the value of operand 2 in operand 3.

If short-integer operand 2 is less than the lower bound,
raise the Short-Integer Underflow fault.
greater than the upper bound,
Overflow fault,

If operand 2 is
raise the Short-Integer



iAPX 432 GDP

Operator Set

CONVERT SHORT INTEGER TO INTEGER CVT SI I
ID# Operands Opcode Reference Format Class
1 2 3
61 si §i 4§ = 010 varies varies 010001

Short~integer operand 1 is converted to integer operand 2. Operand
1 is moved to the low-order 16-bits of operand 2.
(bit 15) of operand 1 is extended to the high-order 16-bits of

operand 2.

(E-go [

if the sign bit is 1,

bits of operand 2 are all set to 1.)

The sign bit

then the high-order 16

10-31



Operator Set iAPX 432 GDP

ORDINAL OPERATORS

During the execution of instructions using these ordinal operators, if
any arithmetic operation produces a result that cannot be represented
in 32 bits, the operation is terminated without storing a result, and
the Ordinal Overflow Fault is raised. This occurs for any result < O
or > 4,294,967,295. If the divisor is zero in any divide or remainder
operation, the operation is suppressed, and the Ordinal Divide by Zero
Fault is raised. See the Fault and Trace Reference chapter for more
details on faulting.

MOVE ORDINAL MOV_O
ID# Operands Opcode Reference Format Class
1 2 3
62 0 0 - 000 varies varies 1100

Ordinal operand 1 is copied to ordinal operand 2. Using the
operand stack for operand 1 results in the classical POP stack
operation, and using the operand stack for operand 2 results in the
classical PUSH stack operation. Using the operand stack as both
operand 1 and operand 2 results in no change.

ZERO ORDINAL ZRO O
[ 1DF Operands Opcode Reference “Format Class
63 0 - - 00 varies varies 110110

An ordinal value of zero is stored in operand 1.

ONE ORDINAL ONE O
ID# Operands Opcode Reference Format Class
1 2 3 ——
64 0 - - 010 varies varies 110110

An ordinal value of one is stored in operand 1.

SAVE ORDINAL SAV O
ID# Operands Opcode Reference Format Class
1 2 3
65 0 - - 110 varies varies 110110

The ordinal on top of the operand stack is read, without adjusting
the stack, and copied to operand 1. Using the operand stack for
the operand 1 destination results in an operand stack in whieh the
top two ordinal entries contain the same value.

10-32



iAPX 432 GDP

Operator Set

AND ORDINAL AND O
ID# Operands Opcode Reference Format Class
1 2 ]
66 0 0 0 000 varies varies 1010

Operand 1 is logically ANDed with operand 2,

otherwise the result bit is cleared.

operand 3.

A bit 'in the result
is set if the corresponding bits of both source operands are set;

The result is stored in

INCLUSIVE OR ORDINAL IOR O
[ ID# Opegands Opcode Reference Format Class
67 l ; 2-— 100 varies varies 1010

Operand 1 is logically ORed (INCLUSIVE ORed) with operand 2. A bit

in the result is set if either or both corresponding bits in the
source operands are set; otherwise the result bit is cleared. The
result is stored is operand 3.

EXCLUSIVE OR ORDINAL XOR_O
ID# Operands Opcode Reference Format Class
d 2 e
68 0 o o 1100 varies varies 1010

Operand 1 is logically XORed (EXCLUSIVE ORed) with operand 2. A
bit in the result is set if the corresponding bits in the source
operands contain opposite values (one - is set and the other is
cleared); otherwise the result bit is cleared. The result is
stored in operand 3.

EQUIVALENCE ORDINAL EQV O
ID# Operands Opcode Reference Format Class
1 2 end
69 0 0 0 0010 varies varies 1010

Bitwise logical equivalence 1is performed between operand 1 and
operand 2. A bit in the result is set if the corresponding bits in
the source operands contain the same value (both are set or both
are cleared); otherwise the result bit is cleared. The result is
stored in operand 3.

10-33



Operator Set iAPX 432 GDP

NOT ORDINAL NOT O
ID# Operands Opcode Reference Format Class
1 2 3 e
70 0 0 - 100 varies varies 1100

The bitwise logical NOT (1's complement) of ordinal operand 1 is
stored in ordinal operand 2.

EXTRACT ORDINAL EXT O
ID# Operands Opcode Reference Format Class
1 2 3 e
T1 bfs] o 0 00 varies varies 100011

Operand 2 is an ordinal from which a bit field is to be extracted.
Operand 1 is a bit-field specifier that specifies the field to be
extracted. The extracted bit field is right justified with
high-order zeros to form an ordinal result that is stored in
operand 3.

INSERT ORDINAL INS_p
—1DF Operands Opcode | Reference | Format Class
1 2 e 3
72 bfs} o 0 10 varies varies 100011

Operand 2 is an ordinal that contains a right-justified bit field
to be inserted into the destination. Any high-order bits in
operand 2 outside the bit field are ignored. Operand 1 1is a
bit-field specifier that specifies the field in the destination
that is replaced by the inserted field. Operand 3 is the ordinal

destination.,
SIGNIFICANT BIT ORDINAL ' SIG 0
[-TD# Operands Opcode Reference Format Class
1 2 3 e
| 13 0 so | - 00 varies varies 101001

The bit number (from 0 to 31) of the most-significant set bit in
ordinal operand 1 is determined as a short-ordinal result and is
stored in operand 2., If operand 1 has the value zero, the result

is 32,
ADD ORDINAL ADD O
1DF Operands Opcode Reference Format Class
1 2 3—1
T4 o) 0 o} 1010 varies varies 1010

Unsigned 32-bit addition is used to add operand 1 and operand 2.
The result is stored in operand 3.
10-34



iAPX 432 GDP Operator Set
SUBTRACT ORDINAL SUB O
ID# Operands Opcode Reference Format Class
1 2 3 et
75 0 o 0 0110 varies varies 1010
Unsigned 32-bit subtraction iz used to subtract operand 1 from
operand 2. The result is stored in operand 3.
INCREMENT ORDINAL INC O
ID# Operands Opcode Reference Format Class
1 2 S
76 (o} 0 - 010 varies varies 1100
Operand 1 is read and the value is incremented by one using

unsigned 32-bit addition.

The result is stored in operand 2,

DECREMENT ORDINAL DEC O
ID# Opegands Opcode Reference Format Class
17 ; ; %—_ 0110 varies varies 1100

Operand 1 is read and the value is decremented by one using

unsigned 32-bit subtraction.

The result is stored in operand 2,

MULTIPLY ORDINAL MUL O
ID# Operands Opcode Reference Format Class
1 2 3
78 0 0 0 1110 varies varies 1010

Unsigned 32-bit multiplication is used to multiply operand 1 and

operand 2.

The ordinal result is stored in operand 3.

DIVIDE ORDINAL DIV O
ID# Operands Opcode Reference Format Class
1 2 e
79 0 0 0001 varies varies 1010

Unsigned 32-bit division is used to divide operand 1 into operand
Note that when the
dividend is not an exact ordinal multiple of the divisor,
quotient is truncated toward zero (e.g., 8 divided by 3 yields 2).

2.

The 32-bit quotient is stored in operand 3.

1

the

0-35



Operator Set

iAPX 432 GDP

REMAINDER ORDINAL REM O
iD# Operands Opcode Reference | Format Class
1 2 p—
80 o (o} 1001 varies varies 1010

Unsigned 32-bit division is used to divide operand 1 into operand

2.

The 32-bit remainder is stored in operand 3.

This operator

performs the REM function for the source operands.

INDEX ORDINAL IDX O
IDF Opegands " Opcode | Reference | Format Class

81 ;w ; <2;AV 0101 varies varies 1010
Operation: Computes the access selector and displaéement for an

Operand 1:
0 - 15:

16 - 31:

Operand 2:

Operand 3:

0 - 15:

16 - 31:
Action: e
[ )
°
°
Notes: °
°

-
<
(<)}

element of a
array.

large multi-segment (2K bytes/segment)

A packed word operand comprised of the following:

Contains a scale factor that specifies the size of an
array element in bytes. Only the 1least-significant 4
bits are interpreted. The size of each array element (in
bytes) is two raised to the power of this 4-bit value.
For example, a value of 2 is for a U-byte size, a value
of 3 is for an 8-byte size, etc. The size of an array
element is then used to scale the index (operand 2).
Contains the access selector for the first segment of the
multi-segment array.

Contains an ordinal index into the multi-segment array

A packed word destination comprised of the following:

The computed byte displacement into the selected segment
The computed access selector for the array segment in
which the indexed element is located

Scale the index (operand 2) by the scale factor specified
by operand 1.

Extract the least-significant 11 bits of the scaled
index, This is the computed displacement (zero extended)
into the selected 2K segment.

Bits 12 through 25 of the scaled index are extracted and
added to the access index of the base access selector
specified in operand 1 to form a computed access selector,
Store the computed displacement and computed access
selector into their respective locations in operand 3.

Bits 26 through 31 of the scaled index are ignored.

The access part containing ADs for the array segments
must be entered as an environment, The ADs for the
2Kbyte segments should be contiguous, so that successive
access index values select successive segments.



iAPX 432 GDP

Operator Set

EQUAL ORDINAL EQL_O
ID# Operands Opcode Reference Format Class
1 2 St
82 o) b 000 varies varies 001011

A 32-bit comparison is -made between operand. 1 and operand 2, If

they are equal, the boolean result is TRUE.

Otherwise, the result

is FALSE., The boolean result is stored in operand 3.
NOT EQUAL ORDINAL NEQ O
ID# Operands Opcode Reference | Format Class
1 2 3 —
83 o o b 100 varies varies 001011

A 32-bit comparison is made between operand 1 and operand 2, If

they are not equal, the boolean result is TRUE, Otherwise, the
result is FALSE. The boolean result is stored in operand 3.
EQUAL ZERO ORDINAL EQZ_O
ID# Operands Opcode Reference Format Class
1 2 3 e
84 0 b - 000 varies varies 001001

A 32-bit comparison is made between operand 1 and an ordinal value

of zero. If they are equal, the boolean result is TRUE.
Otherwise, the result is FALSE. The boolean result is stored in
operand 2,

NOT EQUAL ZERO ORDINAL NEZ O
ID# Operands Opcode Reference Format Class
1 2 3
85 o) b - 100 varies varies 001001

A 32-bit comparison is made between operand 1 and an ordinal value

of zero. If they are not equal, the boolean result is TRUE.
Otherwise, the result is FALSE. The boolean result is stored in
operand 2.

10-37



Operator Set

iAPX 432 GDP

LESS THAN ORDINAL LSS O
ID# Operands Opcode Reference Format Class
86 0 0 b 010 varies varies 001011

An unsigned 32-bit comparison is made between operand 1 and operand
If operand 1 is less than operand 2,

2.

TRUE,

Otherwise,

the result is FALSE,
stored in operand 3.

the boolean result is
The boolean result is

LESS THAN OR EQUAL TO ORDINAL LEQ O
ID# Operands Opcode Reference Format Class
1 2 S
87 0 0 b 110 varies varies 001011

An unsigned 32-bit comparison is made between operand 1 and operand
If operand 1 is less than or equal to operand 2, the boolean
result is TRUE.
result is stored in operand 3.

2,

Otherwise,

the result is FALSE.

The boolean

CONVERT ORDINAL TO INTEGER CVT 0 1
ID# Operands Opcode Reference Format Class
1 2 3
88 i - 1110 varies varies 1100
Ordinal operand 1 is converted to integer operand 2. If the

most-significant bit of operand 1 has the value 1

32,767), the Integer Overflow Fault is raised.

(operand 1 >

CONVERT ORDINAL TO TEMPORARY REAL CVT_O_TR
ID# Operands Opcode Reference Format Class
1 2 o
89 o) tr | - 0 varies varies 011001

Ordinal operand 1 is converted exactly to temporary-real operand
The settings of the Rounding Control bits and of the Precision

2.
Control bits have no effect on the value of the result,

-
<
[
W
Co



iAPX U432 GDP Operator Set

INTEGER OPERATORS

During the execution of instructions using these integer operators, if
any arithmetic instruction produces a result that cannot be represented
in a 32-bit 2's complement value, the operation is terminated without
storing a result, and the Integer Overflow Fault is raised. This
occurs for any result < -2,147,483,648 or > 2,147,483,647. If the
divisor is zero in any divide or remainder operation, the operation is
suppressed, and the Integer Divide by Zero Fault is raised. See the
Fault and Trace Reference chapter for more details on faulting.

MOVE INTEGER MOV_I
ID# Operands Opcode Reference Format Class
1 2 e
62 i i - 000 varies varies 1100

Integer operand 1 1is copied to integer operand 2. Using the
operand stack for operand 1 results in the classical POP stack
operation, and using the operand stack for operand 2 results in the
classical PUSH stack operation. Using the operand stack as both
operand 1 and operand 2 results in no change.

ZERO INTEGER ZRO I
ID# Operands Opcode Reference Format Class
1 2 3 —
63 i - - 00 varies varies 110110

An integer value of zero is stored in operand 1.

ONE INTEGER ONE I
ID# Operands Opcode Reference Format Class
1 2 S
64 i - - 010 varies varies 110110

An integer value of one is stored in operand 1.

SAVE INTEGER SAV_ I
ID# Operands Opcode Reference Format Class
1 2 3 g
65 i - - 110 varies varies 110110

The integer on top of the operand stack is read, without adjusting

the stack, and copied to operand 1. Using the operand stack for
the operand 1 destination results in an operand stack in which the

top two integer entries contain the same value,

10-39



Operator Set

iAPX 432 GDP

ADD INTEGER ADD I
ID# Operands Opcode Reference Format Class
1 2 —
90 i i l i 1101 varies varies 1010

Signed 32-bit addition is used to add operand 1 and operand 2. The
result is stored in operand 3.

SUBTRACT INTEGER

SUB_I
I Operands Opcode Reference Format Class
1 2 3
91 i i i 0011 varies varies 1010
Signed 32-bit subtraction is wused to subtract operand 1 from
operand 2. The result is stored in operand 3.
INCREMENT INTEGER INC I
ID# Operands Opcode Reference Format Class
1 2 e
92 i i - 0001 varies varies 1100

Operand 1 is read and the value is incremented by one using signed
32-bit addition.

The result is stored in operand 2.

DECREMENT INTEGER DEC I
ID# Operands Opcode Reference Format Class
1 2 3
93 i i - 1001 varies varies 1100

Operand 1 is read and the value is decremented by one using signed

32-bit subtraction.

The result is stored in operand 2,

NEGATE INTEGER NEG I
ID# Operands Opcode Reference Format Class
1 2 S
94 i i - 0101 varies varies 1100

The 2's complement
operand 2.

of integer operand 1 is stored in integer



iAPX 432 GDP

Operator Set

MULTIPLY INTEGER MUL_I
L1D# Operands Opcode Reference Format Class
1 2 S
S5 i i i 1011 varies varies 1010

Sighed 32-bit multiplication is used to multiply operand 1 and

cperand 2.

The integer result is stored irn operand 3.

DIVIDE INTEGER DIV I
Ip# Operands Opcode Reference Format Class
1 2 3
96 i i i 0111 varies varies 1010

Signed 32-bit division is used to divide operand 1 into operand 2.
Note that when the
dividend is not an exact integer multiple of the divisor, the

quotient is truncated toward zero (e.g., 8 divided by 3 yields 2
and -8 divided by 3 yields -2).

The 32-bit quotient is stored in operand 3.

REMAINDER INTEGER REM I
ID# Operands Opcode Refererice Format Class
2 3
ST i i i 1117 varies varies 1010

Signed 32-bit division is used to divide operand 1 into operand 2.
The signed 32-bit remainder is stored in operand 3. The sign of
the remainder is the same as the sign of the dividend (operand 2).
This operator performs the REM function for the source operands.

EQUAL INTEGER EQL I
ID# Operands Opcode Reference Format Class
1 2 S
82 i i b 000 varies varies 001011

A 32-bit comparison 1s made between operand 1 and operand 2. If
they are equal, the boolean result is TRUE. Otherwise, the result
is FALSE. The boolean result is stored in operand 3.

10-41



Operator Set iAPX 432 GDP

NOT EQUAL INTEGER NEQ I
I 1D# Operands Opcode Reference Format Class

1 2 3
| 83 i i b 100 varies varies 001011

A 32-bit comparison is made between operand 1 and operand 2. If
they are not equal, the boolean result is TRUE., Otherwise, the
result is FALSE. The boolean result is stored in operand 3.

EQUAL ZERO INTEGER EQZ_I
—1D? Operands Opcode Reference Format Class
1 2 R
84 i b - 000 varies varies 001001

A 32-bit comparison is made between operand 1 and an integer value
of zero, If they are equal, the boolean result is TRUE.
Otherwise, the result is FALSE. The boolean result is stored in

operand 2.
NOT EQUAL ZERO INTEGER NEZ I
ID# Operands Opcode Reference Format Class
1 2 3—i
85 i b - 100 varies varies 001001

A 32-bit comparison is made between operand 1 and an integer value
of zero. If they are not equal, the boolean result is TRUE,
Otherwise, the result is FALSE. The boolean result is stored in

operand 2.
LESS THAN INTEGER LSS I
ID# Operands I Opcode Reference Format Class
1 2 3 et
98 i i b l 001 varies varies 001011

A signed 32-bit comparison is made between operand 1 and operand
2. If operand 1 is less than operand 2, the boolean result is
TRUE. Otherwise, the result is FALSE. The boolean result is
stored in operand 3.

10-U42



iAPX 432 GDP Operator Set

LESS THAN OR EQUAL INTEGER LEQ I
ID# Operands Opcode Reference Format Class
1 2 F ey
99 i i b 101 varies varies 001011

‘A signed 32-bit comparison is made between operand 1 and operand
2. If operand 1 is less than or equal to operand 2, the boolean
result is TRUE. Otherwise, the result is FALSE. The boolean
result is stored in operand 3.

POSITIVE INTEGER PTV_I
ID# Operands Opecode Reference Format Class
i 2 S
100 | i b - 010 varies varies 001001

If integer operand 1 is positive (greater than zero), the boolean
result is TRUE, Otherwise, the result is FALSE., The boolean
result is stored in operand 2. Note that the result is FALSE if
operand 1 is zero.

NEGATIVE INTEGER NTV_I
ID# Operands Opcode Reference Format Class
1 2 o
101 i b - 110 varies varies 001001

If integer operand 1 is negative (less than zero), the boolean
result is TRUE., Otherwise, the result is FALSE., The boolean
result is stored in operand 2.

MOVE IN RANGE INTEGER MIR I

ID# Operands Opcode Reference Format Class
1 2 3]
102 | pdw| i i none varies varies 111011
Operation: If integer operand 2 is within the range specified by

operand 1, store the value of operand 2 in operand 3.

Operand 1: A packed double word comprised of the following:
0 - 31: Contains the integer lower bound of the range
32 - 63: Contains the integer upper bound of the range

Operand 2: Contains the integer source operand
Operand 3: Contains the integer destination operand
Action: e If integer operand 2 is less than the lower bound, raise

the Integer Underflow Fault, If integer operand 2 is

greater than the upper bound, raise the Integer Overflow
Fault.

° Otherwise, store the value of operand 2 in operand 3.



Operator Set

iAPX 432 GDP

CONVERT INTEGER TO CHARACTER CVT_IC
ID# Operands Opcode Reference Format Class
2 S
103 | i c - 001 varies varies 001001
Integer operand 1 is converted to character operand 2. If operand
1 is < 0 or > 255, the Character Overflow Fault is raised.
CONVERT INTEGER TO SHORT ORDINAL CVT_I SO
ID# Operands Opcode Reference Format Class
1 2 3 e
104 | i so | - 10 varies varies 101001

Integer operand 1 is converted to short-ordinal operand 2. If
operand 1 is < 0 or > 65,535, the Short-Ordinal Overflow Fault is
raised.

CONVERT INTEGER TO SHORT INTEGER CVT_I SI
ID# Operands Opcode Reference Format Class
1 2 3—
105 | i si | - 01 varies varies 101001

Integer operand 1

operand 1 1is
Fault is raised.

<

is converted to short-integer operand 2. If

-32,768 or > 32,767,

the Short-Integer Overflow

CONVERT INTEGER TO ORDINAL CVT_. IO
ID# Operands Opcode Reference | Format Class
1 2 S
88 | i o - 1110 varies varies 1100

Integer operand 1 is converted to ordinal operand 2,
is negative, the Ordinal Overflow fault is raised.

If operand 1

CONVERT INTEGER TO TEMPORARY REAL CVT_I TR
ID# Operands Opcode Reference Format Class
1 2 3
106 § i tr | - 01 varies varies 011001

Integer operand 1 is converted exactly to temporary-real operand
2. The settings of the Rounding Control bits and of the Precision
Control bits have no effect on the value of the result,

i Omiili



iAPX 432 GDP Operator Set

SHORT-REALOPERATORS

During the execution of instructions using these short-real operators,
if rounding is required to produce the final result, the type of
rounding used is determined by the setting of the Rounding Control bits
(in the Context Stat field). Where noted in the operator
descriptions, the precision maintained in temporary-real results is
determined by the setting of the Precision Control bits (in the Context
Status field).

The following data operator faults are recognized by the processor
during short-real instructions: Overflow, Underflow, Inexact, and
Domain Error. See the Fault and Trace Reference chapter for details
about which of these faults can be raised by specific short-real
instructions.

MOVE SHORT REAL MOV_SR
ID# Ope;ands Opcode “Reference Format Class
62 ;r ;r E-— 000 varies varies 1100

Short-real operand 1 is copied to short-real operand 2. Using the

operand stack for operand 1 results in the classical POP stack
operation, and using the operand stack for operand 2 results in the
Using the operand stack as both

classical PUSH stack operation.

operand 1 and operand 2 results in no change.
esults in no change.

ZERO SHORT REAL ZRO_SR
ID# Operands Opcode Reference Format Class
1 2 3
| 63 sr | - - 00 varies varies 110110
A short-real value of zero is stored in operand 1.
SAVE SHORT REAL SAV_SR
ID# Opegands Opcode Reference Format Class
65 ;r - §- 110 varies varies 110110
The short-real on top of the operand stack is read, without

adjusting the stack,

and copied to operand 1.

Using the operand
stack for the operand 1 destination results in an operand stack in
which the top two short-real entries contain the same value.

10-45



Operator Set ‘ iAPX 432 GDP

ADD SHORT REAL ADD SR
ID# Operands Opcode Reference Format Class
1 2 S
107 { sr | sr | tr 00 varies varies 101011

Short-real operand 1 is added to short-real operand 2 to produce

temporary-real operand 3. The settings of the Rounding Control
bits and the Precision Control bits specify the type of rounding

that is used and the precision to which the result is rounded.

ADD TEMPORARY REAL TO SHORT REAL ADD TR SR
ID¥ Operands Opcode Reference Format Class
1 2 33—
108 § tr | sr | tr 00 varies varies 110111

Temporary-real operand 1 is added to short-real operand 2 to
produce temporary-real operand 3. The settings of the Rounding
Control bits and the Precision Control bits specify the type of
rounding that is used and the precision to which the result is

rounded.
ADD SHORT REAL TO TEMPORARY REAL ADD SR TR
ID# Operands Opcode Reference Format Class
D FE— -
109 | sr | tr | tr 00 varies varies 011011

Short-real operand 1 is added to temporary-real operand 2 to
produce temporary-real operand 3. The settings of the Rounding
Control bits and the Precision Control bits specify the type of
rounding that is used and the precision to which the result is

rounded.
SUBTRACT SHORT REAL SUB_SR
ID# Operands Opcode Reference Format Class
1 2 3
110 sr sr tr 10 varies varies 101011

Short-real operand 1 is subtracted from short-real operand 2 to
produce temporary-real operand 3. The settings of the Rounding
Control bits and the Precision Control bits specify the type of
rounding that is used and the precision to which the result is
rounded,



iAPX 432 GDP Operator Set

SUBTRACT TEMPORARY REAL FROM SHORT REAL SUB_TR_SR
ID# Operands Opcode Reference Format Class
i 2 S
111 tr § sr }§ tr 10 varies varies 110111

Temporary-real operand 1 is subtracted from short-real operand 2 to
produce temporary-real operand 3. The settings of the Rounding
Control bits and the Precision Control bits specify the type of
rounding that is used and the precision to which the result is

rounded.
SUBTRACT SHORT REAL FROM TEMPORARY REAL SUB_SR_TR
ID# Operands Opcode Reference Format Class
1 2 Feoemg
112 ] sr | tr | tr 10 varies varies 011011

Short~real operand 1 is subtracted from temporary-real operand 2 to
produce temporary-real operand 3. The settings of the Rounding
Control bits and the Precision Control bits specify the type of
rounding that is used and the precision to which the result is

rounded,
MULTIPLY SHORT REAL MUL_SR
ID# Operands Opcode Reference Format Class
113 | sr sr tr 01 varies varies 101011

Short-real operand 1 is multiplied by short-real operand 2 to
produce temporary-real operand 3. The settings of the Rounding
Control bits and the Precision Control bits specify the type of
rounding that is used and the precision to which the result is

rounded.
MULTIPLY TEMPORARY REAL BY SHORT REAL MUL_TR_SR
ID# Operands Opcode Reference Format Class
1 2 3
114 § tr { sr | ¢r 01 varies varies 110111

Temporary-real operand 1 is multiplied by short-real operand 2 to
produce temporary-real operand 3. The settings of the Rounding
Control bits and the Precision Control bits specify the type of
rounding that is used and the precision to which the result is
rounded.

10-47



Operator Set iAPX 432 GDP

MULTIPLY SHORT REAL BY TEMPORARY REAL MUL_SR TR
ID# Operands Opcode Reference Format Class
1 2 3 e
115 r i tr ] tr 01 varies varies 011011

Short-real operand 1 is multiplied by temporary-real operand 2 to
produce temporary-real operand 3. The settings of the Rounding
Control bits and the Precision Control bits specify the type of
rounding that is used and the precision to which the result is

rounded.
DIVIDE SHORT REAL DIV_SR
ID# Operands Opcode Reference Format Class
1 2 3
116 1 sr r.Ltr 1 varies varies 101011

Short-real operand 1 is divided into short-real operand 2 to
produce a quotient that is stored in temporary-real operand 3. The
settings of the Rounding Control bits and the Precision Control
bits specify the type of rounding that is used and the precision to
which the result is rounded.

DIVIDE TEMPORARY REAL INTO SHORT REAL DIV_TR SR
Ip? Operands Opcode Reference Format Class
1 2 e
117 | tr | sr | tr 11 varies varies 110111

Temporary-real operand 1 is divided into short-real operand 2 to
produce a quotient that is stored in temporary-real operand 3. The
settings of the Rounding Control bits and the Precision Control
bits specify the type of rounding that is used and the precision to
which the result is rounded.

DIVIDE SHORT REAL INTO TEMPORARY REAL DIV SR TR
ID# Operands Opcode Reference Format Class
1 2 3
118 | sr | tr | tr 11 varies varies 011011

Short-real operand 1 is divided into temporary-real operand 2 to
produce a quotient that is stored in temporary-real operand 3. The
settings of the Rounding Control bits and the Precision Control
bits specify the type of rounding that is used and the precision to
which the result is rounded.

10-48



iAPX U432 GDP Operator Set

NEGATE SHORT REAL NEG_SR
ID# Operands Opcode Reference Format Class
1 2 3
119 sr sr - 1101 varies varies 1100

The negated value of short-real operand 1 1is stored in short-real

AT AW A

A 2
uycl atliu e

ABSOLUTE VALUE SHORT REAL ABS SR
ID# Operands Opcode Reference Format Class
1 2 3 o
120 sr sr - 0011 varies varies .~ 1100

The absolute value of short-real operand 1 is stored in short-real

operand 2.
EQUAL SHORT REAL EQL_SR
ID# Operands Opcode Reference Format Class
1 2 S
121 sr sr i b 011 varies varies 001011

A short-real comparison is made between operand 1 and operand 2.
If they are equal, the boolean result is TRUE. Otherwise, the
result is FALSE. The boolean result is stored in operand 3.

EQUAL ZERO SHORT REAL EQZ_SR
ID# Operands Opcode Reference Format Class
1 2 3
122 | sr | b - 101 varies varies 001001

A short-real comparison is made between operand 1 and a short-real
value of zero. If they are equal, the boolean result is TRUE.
Otherwise, the result is FALSE. The boolean result is stored in

operand 2.
LESS THAN SHORT REAL LSS SR
ID# Operands Opcode Reference Format Class
1 2 3
123 | sr sr { b 0111 varies varies 001011

A short-real comparison is made between operand 1 and operand 2.
If operand 1 is less than operand 2, the boolean result is TRUE.
Otherwise, the result is FALSE, The boolean result is stored in
operand 3.

10-=49



Operator Set iAPX 432 GDP

LESS THAN OR EQUAL SHORT REAL LEQ_SR
ID# Operands I Opcode Reference Format Class
1 2 s
124 § sr { sr | b I 1111 varies varies 001011

A short-real comparison is made between operand 1 and operand 2.
If operand 1 is less than or equal to operand 2, the boolean result
is TRUE. Otherwise, the result is FALSE. The boolean result is
stored in operand 3.

POSITIVE SHORT REAL PTV_SR
|~ 1DF Operands : Opcode Reference Format Class
1 2 S
125 sr | b - 011 varies varies 001001

If short-real operand 1 1is positive (greater than zero), the
boolean result is TRUE. Otherwise, the result is FALSE. The
boolean result is stored in operand 2. Note that the result is
FALSE if operand 1 is zero.

NEGATIVE SHORT REAL NTV_SR
ID# Operands Opcode Reference Format Class
1 2 Bl |
126 | sr | b - 111 varies varies 001001

If short-real operand 1 is negative (less than zero), the boolean
result is TRUE. Otherwise, the result is FALSE. The boolean
result is stored in operand 2.

CONVERT SHORT REAL TO TEMPORARY REAL CVTI_SR_TR
ID# Operands Opcode Reference Format | Class
1 g 2 g 3
127 sr | tr - 11 varies varies 011001

Short-real operand 1 is converted without loss of precision to
temporary-real operand 2. The settings of the Rounding Control
bits and of the Precision Control bits have no effect on the value
of the result.

10-50



iAPX 432 GDP Operator Set

REAL OPERATORS

During the execution of instructions using these real operators, if
rounding is required to produce the final result, the type of rounding
used 'is determined by the setting of the Rounding Control bits (in the
Context Status field). Where noted in the operator deseriptions, the

precision maintained in temporary-real results is determined by the
setting of the Precision Control bits (in the Context Status field).

The following data operator faults are recognized by the processor
during these real instructions: Overflow, Underflow, Inexact, and
Domain Error. See the Fault and Trace Reference chapter for details

about which of these faults can be raised by specific real
instructions, *

MOVE REAL MOV_R
ID# Operands Opcode Reference Format Class
1 2 3t
128 | r r - 00 varies varies 000101

Real operand 1 is copied to real operand 2. Using the operand
stack for operand 1 results in the classical POP stack operation,
and using the operand stack for operand 2 results in the classical
PUSH stack operation. Using the operand stack as both operand 1
and operand 2 results. in no change.

ZERO REAL . ZRO_R
ID# Operands Opcode Reference Format Class
1 2 S
129 | r - - 0 varies varies 001110

A real value of zero is stored in real operand 1.

SAVE REAL SAV_R
ID# Operands Opcode Reference Format Class
1 2 3
130 1 r - - 1 varies varies 001110

The real operand on top of the operand stack is read, without
adjusting the stack, and copied to operand 1. Using the operand
stack for the operand 1 destination results in an operand stack in
which the top two real entries contain the same value.

10-51



Operator Set iAPX 432 GDP

ADD REAL ADD R
ID# Operands Opcode Reference Format Class
1 2 3=
131 r r tr 00 varies varies 100111

Real operand 1 is added to real operand 2 to produce temporary-real
operand 3. The settings of the Rounding Control bits and the
Precision Control bits specify the type of rounding that is used
and the precision to which the result is rounded.

ADD TEMPORARY REAL TO REAL ADD TR R
ID# Operands Opcode Reference Format Class
1 2 3
132 § tr r tr 00 varies varies 001111

Temporary-real operand 1 is added to real operand 2 to produce
temporary-real operand 3. The settings of the Rounding Control
bits and the Precision Control bits specify the type of rounding
that is used and the precision to which the result is rounded.

ADD REAL TO TEMPORARY REAL ADD R TR
ID# Operands Opcode Reference Format Class
1 2 S
133 r tr tr 00 varies varies 010111

Real operand 1 is added to temporary-real operand 2 to produce
temporary-real operand 3. The settings of the Rounding Control
bits and the Precision Control bits specify the type of rounding
that is used and the precision to which the result is rounded.

SUBTRACT REAL SUB_R
ID# Operands Opcode Reference Format Class
1 ?: 3o
134 | r r tr 10 varies varies 100111

Real operand 1 is subtracted from real operand 2 to produce
temporary-real operand 3. The settings of the Rounding Control
bits and the Precision Control bits specify the type of rounding
that is used and the precision to which the result is rounded.



iAPX 432 GDP

Operator Set

SUBTRACT TEMPORARY REAL FROM REAL SUB_TR R
ID# Operands Opcode Reference Format Class
1 2 et
135 tr r tr 10 varies varies 001111

Temporary-real operand 1
produce temporary-r

eal

operand 3.

is subtracted from real operand 2 to

The settings of the Rounding

Control bits and the Precision Control bits specify the type of

rounding that is used and the precision to which the result is
rounded.

SUB_R_TR

SUBTRACT REAL FROM TEMPORARY REAL
ID# Operands Opcode Reference | Format Class
i 2 Fomme
136 | r tr | tr 10 varies varies 010111

Real operand 1 1is subtracted from temporary-real operand 2 to
produce temporary-real operand 3. The settings of the Rounding
Control bits and the Precision Control bits specify the type of
rounding that is used and the precision to which the result is
rounded.

MULTIPLY REAL MUL R
ID# \ Ope:andso Opcode Reference Format Class
137 ; | ”; §:== _ 01 varies varies 100111

Real operand 1 is multiplied by real operand 2 to produce

temporary-real operand 3. The settings of the Rounding Control
bits and the Precision Control bits specify the type of rounding
that is used and the precision to which the result is rounded.

MULTIPLY TEMPORARY REAL BY REAL MUL TR R
ID# Operands Opcode Reference Format Class
1 2 g—
138  tr | r tr 01 varies varies 001111

Temporary-real operand 1 is multiplied by real operand 2 to produce
temporary-real operand 3. The settings of the Rounding Control
bits and the Precision Control bits specify the type of rounding
that is used and the precision to which the result is rounded.

10-53



Operator Set iAPX U432 GDP

MULTIPLY REAL BY TEMPORARY REAL MUL R_TR
1ID# Operands Opcode Reference Format Class
1 2 3o
139 § r tr { tr 01 varies varies 010111

Real operand 1 is multiplied by temporary-real operand 2 to produce
temporary-real operand 3. The settings of the Rounding Control
bits and the Precision Control bits specify the type of rounding
that is used and the precision to which the result is rounded.

DIVIDE REAL DIV R

ID# Operands Opcode Reference Format Class
1 2 3
140 { r r tr 11 varies varies 100111

Real operand 1 is divided into real operand 2 to produce a quotient
that is stored in temporary-real operand 3. The settings of the
Rounding Control bits and the Precision Control bits specify the
type of rounding that is used and the precision to which the result
is rounded.

DIVIDE TEMPORARY REAL INTO REAL DIV TR R
ID# Operands Opcode Reference Tormat Class
1 2 S
141 J tr l r tr 11 varies varies 001111

Temporary-real operand 1 is divided into real operand 2 to produce
a quotient that is stored in temporary-real operand 3. The
settings of the Rounding Control bits and the Precision Control
bits specify the type of rounding that is used and the precision to
which the result is rounded.

DIVIDE REAL INTO TEMPORARY REAL DIV_R_TR
ID# Operands Opcode Reference Format Class
1 2 RE
142 | r tr tr 11 varies varies 010111

Real operand 1 is divided into temporary-real operand 2 to produce
a quotient that is stored in temporary-real operand 3. The
settings of the Rounding Control bits and the Precision Control
bits specify the type of rounding that is used and the precision to
which the result is rounded.



iAPX 432 GDP Operator Set

NEGATE REAL

NEG_R
ID# Operands Opcode Reference Format Class
i 2 S
14 r r - 10 varies varies 000101

The negated value of real operand i is stored in real operand 2.

ABSOLUTE VALUE REAL

ABS R
[ ID# Operands Opcode Reference Format Class
1 2 3
144 1 r r - 01 varies varies 000101

The absolute value of real operand 1 is stored in real operand 2.

EQUAL REAL

EQL R
ID# Ope:ands Opcode Reference Format Class
145 l ; g-. 0 varies varies 000111
A real comparison is made between operand 1 and operand 2. If they

are equal,

the boolean result is TRUE.

Otherwise,

FALSE. The boolean result is stored in operand 3.

N~

Lw

the result is

n
n

Operands Opcode Reference | Format Class
2 S
146 | r b - 0 varies varies 111001

A real comparison is made between operand 1 and a real value of
Otherwise,

Zero.

If they are equal,
the result is FALSE.

the boolean result is TRUE.
The boolean result is stored in operand 2.

LESS THAN REAL L3S R
ID# Operands Opcode Reference Format Class
1 2 3
147 | r r b 01 varies varies 000111

A real comparison is made between operand 1 and operand 2. If

operand 1 is less than operand 2, the boolean result is TRUE.
Otherwise, the result is FALSE. The boolean result is stored in
operand 3.

10-55



Operator Set iAPX 432 GDP

LESS THAN OR EQUAL REAL LEQ R
ID# Operands Opcode Reference Format Class
1 2 3 e
148 r r b 11 varies varies 000111

A real comparison is made between operand 1 and operand 2. If
operand 1 is less than or equal to operand 2, the boolean result is
TRUE. Otherwise, the result is FALSE. The boolean result is
stored in operand 3.

POSITIVE REAL PTV R
ID# Operands Opcode Reference Format Class
1 2 3o
149 | r b - 01 varies varies 111001

If real operand 1 is positive (greater than zero), the boolean
result is TRUE. Otherwise, the result is FALSE. The boolean
result is stored in operand 2. Note that the result is FALSE if
operand 1 is zero.

NEGATIVE REAL NTV_R
ID# Operands Opcode Reference Format Class
1 2 Sd
150 | r b - 11 varies varies 111001

If real operand 1 is negative (less than zero), the boolean result
is TRUE. Otherwise, the result is FALSE, The boolean result is
stored in operand 2.

CONVERT REAL TO TEMPORARY REAL CVT_R_TR
ID# Operands Opcode Reference Format Class
1 2 S
151 r tr - none varies varies 100101

Real operand 1 1is converted without 1loss of precision to
temporary-real operand 2. The settings of the Rounding Control
bits and of the Precision Control bits have no effect on the value
of the result.



iAPX 432 GDP Operator Set

TEMPORARY-REAL OPERATORS

During the execution of instructions wusing these temporary-real
operators, if rounding is required to produce the final result, the
type of rounding used is determined by the setting of the Rounding
Control bits (in the Context Status field). Where noted in the
operator descriptions, the precision maintained in temporary-real

results is determined by the setting of the Precision Control bits (in
the Context Status field).

The following data operator faults are recognized by the processor
during these temporary-real instructions: Overflow, Underflow, Inexact,
and Domain Error. See the Fault and Trace Reference chapter for

details about which of these faults can be raised by specific
temporary-real instructions.
MOVE TEMPORARY REAL MOV_TR
ID# Operands Opcode Reference Format Class
1 2 Cl— ,
152 L tr ] tr | - 00 varies varies 101101

Temporary-real operand 1

stack operation, and using the operand
in the classical PUSH stack operation.

is copied to temporary-real operand 2.
Using the operand stack for operand 1 results in the classical POP

stack for operand 2 results
Using the operand stack as

both operand 1 and operand 2 resulits in no change.
ZERO TEMPORARY REAL ZRO_TR
ID# Operands Opcode Reference Format Class
1 2 S
153 { tr | - - o varies varies 101110
A temporary-real value of zero is stored in operand 1.
SAVE TEMPORARY REAL SAV_TR
ID# Operands Opcode Reference Format Class
1 2 S
154 tr | - - 1 varies varies 101110

The temporary-real operand on top of the operand stack is read,
without adjusting the stack, and copied to operand 1. Using the
operand stack for the operand 1 destination results in an operand

stack in which the top two temporary-real operands contain the same
value. "

10-57



Operator Set : iAPX 432 GDP

ADD TEMPORARY REAL ADD TR
ID# Operands Opcode Reference Format Class
1 2 3
155 § tr | tr | tr 00 varies varies 011111

Temporary-real operand 1 is added to temporary-real operand 2 to
produce temporary-real operand 3. The settings of the Rounding
Control bits and the Precision Control bits specify the type of
rounding that is used and the precision to which the result is

rounded.
SUBTRACT TEMPORARY REAL SUB_TR
ID# Operands Opcode Reference Format Class
1 2 S
156 | tr | tr | tr 10 varies varies 011111

Temporary-real operand 1 is subtracted from temporary-real operand
2 to produce temporary-real operand 3. The settings of the
Rounding Control bits and the Precision Control bits specify the
type of rounding that is used and the precision to which the result
is rounded.

MULTIPLY TEMPORARY REAL MUL_TR
ID# Operands Opcode Reference Format Class
1 2 3
157 { tr L tr | tr 01 varies varies 011111

Temporary-real operand 1 is multiplied by temporary-real operand 2
to produce temporary-real operand 3. The settings of the Rounding
Control bits and the Precision Control bits specify the type of
rounding that is used and the precision to which the result is

rounded.
DIVIDE TEMPORARY REAL DIV_TR
ID# Operands Opcode Reference Format Class
1 2 S
158 ] tr | tr | tr 011 varies varies 011111

Temporary-real operand 1 is divided into temporary-real operand 2
to produce a quotient that is stored in temporary-real operand 3.
The settings of the Rounding Control bits and the Precision Control
bits specify the type of rounding that is used and the precision to
which the result is rounded,



iAPX 432 GDP Operator Set

REMAINDER TEMPORARY REAL REM_TR

ID# Opcode Format

Operands Reference

Vel 3—-

tr tr

Class

a
I

tr

159 111 varies varies 011111

Division is performed using temporary-real operand i1 as the divisor

and temporary-real operand 2 as the dividend
temporary-real partial remainder. Execution of this operator
causes one step of the division algorithm to be performed. It can
be iterated until a fixed number of division steps have been
performed or until a partial remainder whose absolute value is less
than the absolute value of the divisor is generated. In the latter
case, that partial remainder is the true remainder of the division
operation. If the result is not the true remainder, no rounding is
done. In either case the partial remainder generated by the last
division step is stored in temporary-real operand 3 with the same
sign as that of operand 2. The remainder or partial remainder
generated is always exact. This operator performs only the inner
loop operation of the remainder function., See the Computational
Data Types chapter in Part One of this manual for more information
about how to calculate the true temporary-real remainder.

to produce a

LAROAS LV L84

NEGATE TEMPORARY REAL NEG_TR
ID# Operands Opcode Reference Format Class
1 cmmpe? g S
160 | tr | tr | - 10 varies varies 101101
The negated value of temporary-real operand 1 1is stored in
temporary-real operand 2.
SQUARE ROOT TEMPORARY REAL SQT_TR
ID# Operands Opcode Reference Format - Class
1 2 3
161 ] tr | tr | - 01 varies varies 101101

The square root of temporary-real operand 1 is computed and stored
in temporary-real operand 2. The settings of the Rounding Control
bits and the Precision Control bits specify the type of rounding
that is used and the precision to which the result is rounded.

ABSOLUTE VALUE TEMPORARY REAL ABS TR
ID# Opegands Opcode Reference Format Class
162 lr Er E-l 11 varies varies 101101
The absolute value of temporary-real operand 1 is stored in

temporary-real operand 2.

10-59



Operator Set

iAPX 432 GDP

EQUAL TEMPORARY REAL EQL_TR
1D# Operands Opcode Reference Format Class
1 2 3o
163 J tr | tr | b 0 varies varies 101111

A temporary-real comparison is made between operand 1 and operand

2.

If they are equal, the boolean result is TRUE.

result is FALSE.

Otherwise, the
The boolean result is stored in operand 3.

EQUAL ZERO TEMPORARY REAL EQZ_TR
ID# Ope;ands Opcode Reference Format Class
164 lr g E- 0 varies varies 010101

A temporary-real comparison is made between operand 1 and a

temporary-real value of =zero.

If they are equal,

the boolean

result is TRUE. Otherwise, the result is FALSE. The boolean
result is stored in operand 2.
LESS THAN TEMPORARY REAL LSS_TR
ID# Operands Opcode Reference Format Class
1 2 3w
1651 tr { tr i b 01 varies varies 101111

A temporary-real comparison is made between operand 1 and operand
If operand 1

2.

TRUE.

Otherwise,
stored in operand 3.

is less than operand 2,
the result is FALSE.

the boolean result is
The boolean result is

LESS THAN OR EQUAL TEMPORARY REAL LEQ_TR
ID# Operands Opcode Reference Format Class
1 2 et
166 1 tr | tr |l b 11 varies varies 101111

A temporary-real comparison is made between operand 1 and operand

If operand 1 is less than or equal to operand 2, the boolean
result is TRUE.
result is stored in operand 3.

2.

10-60

Otherwise,

the result is FALSE.

The boolean



iAPX 432 GDP Operator Set
POSITIVE TEMPORARY REAL PTV_TR
ID# Operands Opcode Reference Format Class
1 2 pI—
167 | tr |} b - 01 varies varies 010101

If temporary-real operand ‘1 is positive (greater than zero), the

boolean result is TRUE.
boolean result is stored in operand 2.

FALSE if operand 1 is zero.

NEGATIVE TEMPORARY REAL

Otherwise, the

result is

FALSE, The
Note that the result is

NTV_TR
ID# Operands Opcode Reference | Format | Class
1 2 3t
168 | tr | b - 11 varies varies 010101

If temporary-real operand 1

boolean result is TRUE.

Otherwise,

boolean result is stored in operand 2.

the result

is negative (less than zero), the
is FALSE. The

CONVERT TEMPORARY REAL TO ORDINAL CVT_TR O
ID# Operands Opcode Reference Format Class
1 2 3=
169} tr { o - 0 varies varies 110101
Temporary-real operand 1 is converted to ordinal operand 2. The
setting of the Rounding Control bits determines type of
rounding that is used. If the rounded value is < 0 or >
4,294,967,295, the Ordinal Overflow Fault is raised.
CONVERT TEMPORARY REAL TO INTEGER CVT_TR_I
ID# Operands Opcode Reference Format Class
1 2 3
170 ] tr | i - 01 varies varies 110101
Temporary-real operand 1 is converted to integer operand 2. The
setting of the Rounding Control bits determines the type of

rounding that is used.

If the rounded value is < -2,147,483,648 or
> 2,147,483,647, the Integer Overflow Fault is raised.

10-61



Operator Set iAPX 432 GDP

CONVERT TEMPORARY REAL TO SHORT REAL CVT_TR_SR
ID# Operands Opcode Reference I Format Class
1 2 S
171 tr sr - 11 varies I varies - 110101

Temporary-real operand 1 is converted to short-real operand 2. The
setting of the Rounding Control bits determines the type of
rounding that is used. The setting of the Precision Control bits
has no effect. If the magnitude of the rounded value is too large
to be represented as a short real, the Short Real Overflow Fault is
raised., If the magnitude of the rounded value is too small to be
represented as a short real, the Short Real Underflow Fault is

raised.
CONVERT TEMPORARY REAL TO REAL CVT_TR_R
ID# Operands Opcode Reference Format Class
1 2 S
172 J tr | r - none varies varies 001101

Temporary-real operand 1 is converted to real operand 2. The
setting of the Rounding Control bits determines the type of
rounding that is used. The setting of the Precision Control bits
has no effect, If the magnitude of the rounded value is too large
to be represented as a real, the Real Overflow Fault is raised., If
the magnitude of the rounded value is too small to be represented
as a real, the Real Underflow Fault is raised.



iAPX 432 GDP Operator Set

OBJECT OPERATORS

SUB-OPERATOR PROCEDURES

Due to the complexity of the object operators, a more algorithmic
description of each operator's action is used in the rest of this
chapter. The following procedures are used throughout the descriptions
of the object operators. Whenever these procedures are mentioned in
the action descriptions, the procedure's action as defined below is

performed., Additional sub-~operator procedures are defined for specific

functional groups of object operators (e.g., for the process
communication operators).

Set Copied

° If the access descriptor is access-valid, set the copied bit
cf its asscciated object descriptor. Otherwise, do nothing.

Level Check

° If the specified access descriptor is access-valid, if its
Unchecked Copy Rights bit is 0, and if the level number of its
associated object descriptor is greater than the destination's
level, then raise the Level Fault. Otherwise do nothing.

Store AD

o Perform Level Check of the specified access descriptor with
that of the destination access environment. Note that if the

destination access environment is specified by a refinement,
the level number cf the base object, rather than that of the

refinement, is used in the level check.

° Read the access descriptor that is in the destination access
environment location.

° If that AD is access-valid and does not have Delete Rights,
raise the Destination Delete Rights Fault.

) Otherwise, store the specified access descriptor (setting
Delete Rights) into the <destination access descriptor
location.

Object Locking

. If the lock mode in the object lock field is 00, indivisibly
update the object lock with the lock mode and locker 1ID
specified by the operation that has invoked this procedure.

° Otherwise, wait 300 machine cycles and retry the operation.

[ If the object lock cannot be locked after 32 retries, return
from Object Locking with a status of unsuccessful,

10-6



Operator Set iAPX 432 GDP

0D Al location

If stack allocation is specified by the operation that invoked
this procedure, allocate an object descriptor from the current
process object table.

Otherwise, for heap allocation, allocate a Free Entry from the
object table referenced by the specified SRO,

Create an image for the AD to the newly allocated object
descriptor with all access rights and with Delete Rights. If
the Allocation Level = 0, then set Unchecked Copy Rights;
otherwise clear it. Return the AD image to the operation that
invoked this procedure. :

Segment Allocation

10-64

Initialize the newly allocated OD to & storage descriptor with
the specified object type, the specified access part and data
part 1lengths, and the appropriate level, and clear the
Completed bit (in the storage descriptor) to 0 and initialize
the defining TDO as the specified TDO.

If heap allocation is specified by the operation that invoked
this procedure, a rotating first-fit algorithm is used to
search the physical storage object specified by the SRO for a
storage block of sufficient si:ze.

Otherwise, for stack allocation, the single storage block in
the current process physical storage object is used.

Alliocate from the selected storage block.

Initialize +the Base Address field 1in the new storage
descriptor to the fence address in the object that is
represented by the newly allocated segment.

If the storage block is dirty (as indicated by the Dirty bit
in the Storage Block Specifier) and the sum of the AP and DP
rounded lengths is greater than 2,304 bytes, raise the Clear
Memory Size fault. Otherwise, clear the rnew segment to zeros
and set the Completed bit in the new segment's storage

descriptor.



iAPX 432 GDP v Operator Set

BRANCH OPERATORS

If a branch reference in a branch instruction specifies a displacement,

either relative or absolute, to a point that is outside the boundary of
the object containing the target instruction, an Instruction Object

Displacement Fault occurs.

BRANCH BR
ip# Operands Opcode Refereﬁce Format Class
Dh F—B—
¥ * - - - none bref none 100110
Operation: A branch is made within the current instruction object to

the target instruction specified by a branch reference.

BRANCH TRUE BR T
ID# Operands Opcode Reference Format Class
¥ ¥ ; E E- 0 brefidref varies 1000
Operation: If the boolean value specified by operand 1 is TRUE, a

branch is made in the instruction stream within the
current 1instruction object to the target instruction
specified by a branch reference. The data reference for
operand 1 must be encoded before the branch reference in

a BR T instruction's Reference field,

BRANCH FALSE , BR F
ID# Operands Opcode Reference Format | Class
(L S—
¥ ¥ b - - 1 brefidref varies 1000
Operation: If the booclean value specified by operand 1 is FALSE, a

branch is made in the instruction stream within the
current instruction object to the target instruction
specified by the branch reference. The data reference
for operand 1 must be encoded before the branch reference
in a BR F instruction's Reference field.

10-65



Operator Set iAPX 432 GDP

BRANCH INDIRECT BR INDIRECT

[ 1D# Operands Opcode Reference Format Class
1 2 3 e
173 so } - - 0010 varies varies 0000
Operation: Short-ordinal operand 1 is used as the new value for the

instruction pointer. This causes a branch within the
current instruction object to the instruction whose bit
displacement from the base of the object is given by

operand 1.

BRANCH INTERSEGMENT BR ISEG
ID# Operands I Opcode l*Réference Format Class
174 pw | - - l 0071 l varies varies 110110
Operation: Branches to a target instruction in a specific
instruction object in the defining domain of the current
context.
Operand 1: A packed word operand comprised of the following:
0 - 15: Contains the domain access index for the new instruction
object.
16 - 31: Contains the short-ordinal bit displacement from the base

Acticon: e

BRANCH INTERSEGMENT WITHOUT TRACE

of the new instruction object to the first bit of the
instruction where execution is to continue.

Branch to the instruction at the specified displacement

into the instruction object specified by the DAI
operand 1.

in

BR ISEG WO TRACE

ID# Operands Opcode Reference Format Class
1 2 3
175 4 pw | - - 101 varies varies 110110
Operation: 1his operator operates identically to the BRANCH
INTERSEGMENT operator with the exception that it is
immune to all trace events at the end of this

10-66

instruction.



iAPX 432 GDP

Operator Set

BRANCH INTERSEGMENT AND LINK , BR_ISEG_LINK
ID# Operands ' Opcode Reference Format Class
176 | pw | pw 1011 varies § varies } 1100 |
Operation: Branches to a target instruction in a specifie

Operand 1:
0 - 15

16 - 31:

Operand 2:
0 - 15:

16 - 31:

Action: e

instruction object in the defining domain of the curren
context and stores the necessary linkage information t
allow later return.

A packed word operand comprised of the following:

Contains the domain access index for the new instruction
object.

Contains the short-ordinal bit displacement from the base
of the new instruction object to the first bit of the
instruction where execution is to continue.

A packed word operand comprised of the following:

Is used as storage for the domain access index to the
current instruction object.

Is used to store the short-ordinal bit displacement from
the base of the current instruction object to the first
bit of the instruction where execution is to continue
(i.e., the current instruction pointer).

Store the linkage information in operand 2.

) Branch to the instruction at the specified displacement
into the instruction object specified by the DAI in
operand 1.
BREAK POINT BREAKPOINT
ID# Operands Opcode Reference Format ~ Class
1 2 —
177 § - - lﬁ- none none hone 111111
Operation: Branches to bit displacement 64 in the trace instruetion

object within the current defining domain and stores the
necessary linkage information to allow later return. The
appropriate 1linkage information is stored in the Trace
DAT and Trace Instruction Pointer fields in the Trace
Control Data Area of the 'current context. A trace code
of 5 is written in the Trace Code field of this same
area.

10-67



Operatcr Set iAPX 432 GDP

ACCESS DESCRIPTOR OPERATORS

COPY ACCESS DESCRIPTOR COPY_AD
1D# Operands Upcode Reference Formet - Class
178 ;s is i-—~ 0001 varies varies Q1oo ___}
Operation: Copiles an access descriptor from a specified location in

any directly accessible environment to another specitied
location in any directly accessible environment.

Operand 1: Contains an access selector for the source access
descriptor to be copied.

Operand 2: Contains an access selector for the destination access
descriptor location.

Action: e Perform Set Copied for the source AD.

) Perform Store AD of the source AD into the destination AD
location.
NULL ACCESS DESCRIPTOR NULL _AD
57 Operands Opcode Reference Format Class
179 § as | - - 1010 varies varies 0coo__ §
Operation: Logically clears a given AD location, overwriting the
previous AD in the specified location with a null AD,
Access paths using the AD in this location to reference
the object are thus disconnected from the object.
Operand 1: Contains the access selector for the destination access
descriptor location.
Action: e Perform Store AD of a null access aescriptor into the

destination AD location.

10-68



iAPX 432 GDP

AMPLIFY RIGHTS

Operator Set

TYPE AND RIGHTS MANIPULATION OPERATORS

AMPLIFY RIGHTS

ID# Operands Opcode Reference | Format Class
1 2 S
180 | as | as | = 1001 varies varies 0100
Operation: Amplifies, under control of a type control object, the

Operand 1:

Operand 2:

Acticn: e

selected rights bits 1in the
descriptor.

specified source access

Contains the access selector for a type control object.
The selected AD must have Amplify Rights.

Contains the access selector for the access descriptor
that is to be amplitfied. This source access descriptor
is both & source and a destinatioi.

If the source AD is not access valid, ao nothing for this

entire operaticn. Otherwise:

kead th:e contents of the type control object.

If the Type Test bit in the type control object is 1,

then:

. It the object type of thie source AD does not match
that contained in the type control object, raise the
Type Fault.

- If the Dynamic/Sygtem bit is 1, the Defining TD0 AD

in the socurce OD must match the Defining TDO AD in

the type contrcl object; otherwise, raise the Type

Fault.

It the AD to be amplified is changed between type testing

and amplification, perform no amplification and raise the

Race Condition Fault.

Otherwise, logically OR the Delete, Unchecked Copy, Read,

Write, and Type Rights of the TCO into their

corresponding fields in the source/cestination AD.

10-AG



Operator Set iAPX 43z GDP

RESTRICT RIGHTS RESTRICT RIGHTS
ID# : Opegands Opcode Reference Format Class
181 0 ;s E_-. 011 varies varies 101001
Operation: Restricts, under control of an ordinal bit mask, the set

of rights in the specified access descriptor.

Operand 1: Contains an orainal that has the appropriate rights bit
values that are required as a mask by this instruction.
The bits values are interpreted at the same bit offset
that they have in an AD. The mask bit offsets are as
follows:
1 - 3 Type Rights field

162 Delete Rights

17: Unchecked Copy Rights

18: Read Rights

19: Write Rights

Operand Z: Contains the access selector for the access descriptor to
be restricted, This source AD is also the destination.

Action: e If the source AD is not access valid or the Delete Rights
bit is 0, do nothing.
3 Otherwise, clear the rights bit in the source/destination

AD provived that the corresponding rights bit is 1 in
cperand 1.

10-70



iAPX U432 GDP Operator Set

RETRIEVE TYPE DEFINITICN RETRIEVE_TYPE DEF
ID# : Opegandsﬁ Opcode Reference Format Class

l 182 | as ;s if— 0101 varies | varies 0100

Operaticn: Retrieves the type definition object associated with an

dynamic-type or system-type object.

Operand 1: Contains the access selector for the dynamic-type or
system-type object.

Gperand 2: Contains the access selector for the destination access
descriptor location.

Action: e If the source AD is not access-valid, raise the Source AD
Velidity {ault.
® If the object type of the source OD is generic, use the

generic TDO AD (specified in the processor object) as the
type definition AD.

[ ] If the source OD is a storage descriptor,
defining TDOC AD Image in the storage descriptor as
type definition AD.

] If the source 0D is a refinement descriptor, then use the
deiining 1DO AD Imzge in the base storage descriptor of
the refinement.

. Perform Set Copied for the type definition AD.

Perform Store AD of an image of that type def

intion AD

into the destination access descriptor locztion.

10-71



Operatocr Set

iAPX 432 GDP

REFINEMENT OPERATORS

CREATE REFINEMENT CREA1E_RFN
1D# Operands Opcode Refererice Format Class
183 ;s gw g;- none varies varies 010011
Operation: Creates a refinement of a source object givern an SRO and

Operand 1:

Operand z:
0 - 15:

16 - 31:

Operand 3:
0:

1 - 15:
16 - 31:
352 = 47:
48 - 63:

Acticn: e

10-72

specified offsets and lengths.

Contains an access selector for a storage resource
cbject. The selected AD must have Create Rights. If
this cperand 1is zero, the current process allocation
stack is used for allocetion.

A pucked word operaha comprised of the following:

Contains the access selector for the destination access
descriptor location.

Contains the access selector for the source object to be
rerined.

A packed doubleword operand comprised of the following:
Contains the bit for specitying refinement with a data
pert.

Contains & short-ordinal value which specifies the
(length-1)/2 in bytes of the access part of the refined
object. A value of zero speciiies a null access part.
Contains a short-ordinal value which specifies the offset
displacement in bytes from the base of the object being
retined to the base of the access part of the
refinement.

Contains a short-ordinal value which specifies the
iength-1 in bytes of the data part of the refined
object.

Contains a short-ordinal value which specities the offset
displacement in bytes from tlie base of the object being
refined to the base of the data part of the refinement.

1f the source AD is not access-valid, raise the Scurce AD

Validity Fault.

Perform Set Copied fcr the source AD.

If the source AD does not reference an associated storage

uescriptor or refinement descriptor, then raise tle

Ob ject Descriptor Type Fault.

haise the Citset ana Length Compatibility Feult if:

° the specified AP offset is not an integral multiple
of 4,

. the sum of the AP offset arnd AP length-1 is greater
than 65,535,

. 1t the DP Valid bit is 1 and the sum of DP ofiset
and DP length-1 is grester than 65,535.



iAPX 432 GDP

Operator Set

Raise the Retinement Overflow Fault if:

® The DP valid bit is 1, and the sum of the DP offset
and DP length is greater than the DP length of the
source object.

° The sum of the AP offset and AP length is greater
than the AP length of the source object.

Perform OD Allocation. o Co

Perform = Level Check of the source AD with the

(destination) level in the new OD.

Initialize the new 0D to a refinement descriptor of

generic object type.

. The AP Length and DP Length fields are initialized

to the values specified by Operand 3.

. It the source AD references an associated storage
descriptor:
] Initialize the Base Directory Index and Base

Segment Index fields to be the same as the
Directory Index and Segment Index fields in the
source AD.

° Initialize the AP Offset and DP Offset fields
to the values specified by Operand 3.

° Otherwise, if the source AD references an associated
refinement descriptor:
° Initialize the Base Directory Index and Base

Segment Index fields to be the same as those in
the associated refinement descriptor.

] Initialize the AP Offset field to the sum of
the AP Offset of the associated refinement
descriptor and the AP offset specified by
Operand 3.

) Initialize the DP Offset field to the sum of
the DP Offset of the associasted refinement
descriptor and the DP offset specified by
Operand 3.

Perform Store AD of the AD image for the hew refined

object into the destination access descriptor location as

follows:

° Make the Read Rights and Write Rights the same as
the corresponding rights in the source AD.

[ Write the Type Rights field to match the
correspcnding rights in the source AD.

10-73



Operator Set iAPX 432 GDP

CREATE TYPED REFINEMENT CREATE TYPED RFN
1D# Operands “Opcode | Reference | rormat Class
2 p—
184 ;d ;d i 11 varies varies 000101
Operation: Creates a typed refinement of the source object given an

TCO, an SRO, and specified offsets and lengths.

Operand 1: A packed doubleword operand comprised of the following:
0 - 15¢ Contains the access selector for a type control object.
Thie selected ad must have Refine Rights.

16 - 31: Contains the access selector for a storage resource
object. The selected AD must have Create Rights. If
this operand is zero, the current process allocation
stack is used for allocation.

32 - 47: Contains the access selector for the destination access
descriptor location.

48 - 63: Contains the access selector for the source object to be

refined
Operand 2: A packed doubleword operand comprised of the following:
0: Contains the bit for specifying refinement with a data
part.

1 - 15: Contains a short-ordinal value which specifies the
(length-1)/2 in bytes of the access part of the refined
object. A value of zero specifies a null access part.

16 - 31: Contains a short-ordinal value which specifies the offset
displacement in bytes from the base of the object being
refired to the Dbase of the access part of the
refinement.

32 - 47: Contains a short-ordinal value which specifies the
length-1 in bytes of the data part of the refined
object. '

48 - 63: Contains a short-ordinal value which specifies the offset
displacement in bytes from the base of the object being

refined to the base of the data part of the refinement.

Action: e If the source AD is not access valid, raise the Source AD
Validity Fault.
° Perform Set Copied for the source AD.

° If the source AD does not reference an associated storage
descriptor or refinement descriptor, then raise the
Ob ject Descriptor Type Fault,
° If the source object type does not match the object type
in the TCO, then raise the Type Fault.
. Raise the Offset and Length Compatibility Fault if:
] the specified AP offset is not an integral multiple
of 4,
. the sum of the AP offset and AP length-1 is greater
than 65,535.
) If the DP valid bit is 1 and the sum of DP offset
and DP length-1 is greater than 65,535.

10-74



iAPX 432 GDP

Operator Set

Raise the Refinement Overflow Fault if:

) The DP valid bit is 1 and the sum of the DP offset
and DP length is greater than the DP length of the
source object.

) The sum of the AP offset and AP length is greater
than the AP length of the source object.

Perform Q0D Allocation. o L

Perform Level Check of +the socurce AD with the

(destination) level in the new OD.

Initialize the new OD to a refinement descriptor of the

object type specified by the Object Type field in the

TCO:

. Initialize the AP Length and DP Length fields to
that specified by Operand 2.

® If the source AD references an associated storage
descriptor:
° Initialize the Base Directory Index and Base

Segment Index fields to be the same as the
Directory Index and Segment Index fields in the
source AD.

° Initialize the AP Offset and DP Offset fields
to the values specified by Operand 2.

) Otherwise, if the source AD references an associated
refinement descriptor:
) Initialize the Base Directory Index and Base

Segment Index fields to be the same as those in
the associated refinement descriptor.

° Initialize the AP Offset field to the sum of
the AP Offset of the associated refinement
descriptor and the AP offset specified by

A e e A
vpclranu c.

) Initialize the DP Offset field to the sum of
the DP Offset of the associated refinement
descriptor and the DP offset specified by
Operand 2.

Perform Store AD of the AD image for the new refined

object into the destination access descriptor location as
follows: ‘

. Make the Read and Write Rights fields the same as
the corresponding rights in the source AD.

® Write the Type Rights field to match the
corresponding rights in the source AD.

10-75



Operator Set

iAPX 432 GDP

OBJECT CREATION OPERATORS

CREATE OBJECT CREATE OBJ
ID# Operands Opcode Reference Format Class
185 ;s gs g;_ 0 varies varies 000011
Operation: Creates an object with the specified access and data part

Operand 1:

Operand 2:

Operand 3:
0 - 15:
16:
17 - 31:

Action: e

10-76

lengths and an access descriptor (with associated 0D) for
the new object.

Contains the access selector for a storage resource
object. The selected AD must have Create Rights. If

this operand is =zero, the current process allocation
stack is used for allocation.

Contains the access selector for the destination access
descriptor location.

A packed word operand comprised of the following:

Contains the short-ordinal length-1 of the data part of
the object to be created.

Contains the boolean which specifies whether the object
has a data part or not.

Contains the (length-1)/2 of the access part of the
object to be created. A value of zero specifies a null
access object part in the new object.

Perform QD Allocation.

Perform Segment Allocation for a generic object using a
null AD as the TDO-AD Image.

Perform Store AD of the AD for the new storage descriptor
into the specified destination access descriptor

location.




iAPX 432 GDP

CREATE TYPED OBJECT

Operator Set

CREATE_TYPED_OBJ

ID# Operands Opcode Reference Format Class
1 2 3 e
-186 } as § pw | pw 01 - varies: varies 100011
Operation: Creates a typed object with specified access and data

Operand 1:

Operand 2:

0 - 15:

16 - 31:
Operand 3:

0 - 15:

16:

17 - 312

Action: e

part lengths and an access descriptor (with associated

0D) for the new object.

Contains the access selector for a storage resource
object. The selected AD must have Create Rights. If
this operand is =zero, the current process allocation

stack is used for allocation.

A packed word operand comprised of the following:

Contains the access selector for a type control object.
The selected AD must have Create Rights.

Contains the -access selector for the destination access
descriptor location.

A packed word operand comprised of the following:

Contains the short-ordinal length-1 of the data part of
the object to be created.
Contains the bit which specifies whether the object has a

data part or not.
Contains the (length-1)/2 of the access part of the
object to be created. A value of zero specifies a null

access part.

Perform Set Copied for the Defining TDO AD in the TCO.

Perform OD Allocation.

Perform Level Check of the Defining TDO AD in the TCO
with the (destination) level in the new OD.

Perform Segment Allocation for an object with Object Type
the same as specified in the TCO and use the Defining TDO
AD in the TCO as the defining TDO AD Image in the newly
allocated storage descriptor.

Preform Store AD of the AD for the new object into the
specified destination access descriptor location.

10-77



Operator Set

iAPX 432 GDP

ACCESSINSPECTION OPERATORS

INSPECT ACCESS DESCRIPTOR INSPECT AD
ID# Operands Opcode Reference Format Class
1 2 3t
187 1 as | o - 110 varies varies 010001
Operation: Copies the image of an access descriptor into an ordinal

Operand 1:

Operand 2:

Action: e

INSPECT OBJECT

in the data part of an object.

Contains the access selector for
descriptor that is to be inspected.

the source access

Is an ordinal destination for the image of the source
access descriptor.

Read the source access descriptor and write an image of
it into ordinal operand 2.

INSPECT OBJ

ID# Operands Opcode Reference Format Class
1 9 3—‘
188 1 as | pw | - 001 varies varies 010001
Operation: Copies an image of an access descriptor and its

Operand 1:

Operand 2:
0 - 15:
16 - 31:

Action: e

10-78

associated object descriptor into the data part of an
object beginning at a specified location.

Contains the access selector for the

descriptor that is to be inspected.

source access

A packed word operand comprised of the following:

Contains the access selector for the destination object,
Contains a short-ordinal which specifies the Dbyte
displacement within the data part of the destination

object to the location where the inspection data is to be
stored.

Write a 20-byte record beginning at the

location in the data part of the destination object.

record contains the following:

° An image of the source AD in the first 4 bytes.

° An image of the associated 0D of the source AD in
the last 16 bytes.

specified
The



iAPX 432 GDP Operator Set

EQUAL ACCESS EQL_ACCESS
ID# Operands Opcode Reference Format Class
1 2 3
189 as fas | b 0011 varies varies 111101

_Operation: Compares two source access descriptors for equality.

Action: e If the two source access descriptors are access-valid and
their Directory and Segment indices are equal or both are
not access-valid, return a boolean value of TRUE to the
destination. Otherwise, return a boolean FALSE.

MOVE TO EMBEDDED DATA VALUE MOV_TO_EDV
ID# , Opegands Opcode Reference Format Class
190 } o ;s f—- 1 varies varies 101001
Operation: Copies anh ordinal value into an embedded data value in a

Operand 1:

Operand 2:

Action: e

destination access descriptor location.

Contains an ordinal value to be copied to the destination
AD location.

"Contains the access selector for the destination AD

location.

Compose an embedded data value using the most-significant

31 bits of operand 1 (bit 0 is cleared).
Perform Store AD of the embedded data value into the
destination AD location specified by operand 2.

MOVE FROM EMBEDDED DATA VALUE MOV_FM EDV
ID# Operands Opcode Reference Format Class
Jemm———t. | -2 S o
187 as | o - 110 varies varies 010001
Operation: Copies the image of an embedded data value into an

Operand 1:

Operand 2:

Action: e

ordinal in the data part of an object. This operator is
identical to the INSPECT ACCESS DESCRIPTOR operator.

Contains the access selector for the source AD location.

Contains the ordinal destination for the embedded data
value.

Read the source access descriptor location specified by
operand 1 and write an image of that AD into operand 2.

The least-significant bit of operand 2 will be zero if
the result is an embedded data value.

10-79



Operator et

iAPX 432 GDP

ACCESS INTERLOCK OPERATORS

LOCK OBJECT LOCK_OBJ
ID# Operands Opcode Reference Format Class I
191 ;s go g-- 1011 varies varies 111101 l

Operation: Locks an object lock at a specified location within the

Operand 1:

Operand 2

Operand 3

Action: e

data part of an object.

Contains the access selector for the object that contains
the object lock.

Contains a short-ordinal byte displacement within the
data part of the selected object to the object 1lock
field.

Contains a boolean result that is set TRUE if the 1lock
operation is successful.

Perform Object Locking at the specitied location using a
Long-Term Sof'tware Lock.

If the lock operation is successful, the boolean result
is TRUE. Otherwise, the result is FALSE. The boolean
result is stored in destination operand 3.

UNLOCK OBJECT UNLOCK_OBJ
D7 5perands Opcode Reference Format Class
T 2 v 3 o]
192 | as { so { - 1101 varies varies 0100
Operation: Unlocks an object lock at a specified location within a

Operand 1:

Operand 2:

Action: e

10-80

data part of an object.

Contains the access selector for the object that contains
the object lock.

Contains a short-ordinal byte displacement within the

data part of the selected object to the object 1lock
field.

If the Lock Mode field in the specified object lock is 10
(i.e., long-term software 1locked), and the Locker 1ID
field is equal to the current Process ID (reflected in
the current process object), the Object Lock field is
indivisibly cleared to Zzeros.

Otherwise, raise the Object Lock ID/Type Fault.



iAPX 432 GDP Operator Set

INDIVISIBLY ADD SHORT ORDINAL INDIV_ADD SO
ID# Opegands Opcode Reference Format Class
193 ;o ;o 3- "~ 0011 varies varies | 0100
Operation: Short-ordinal operand 1 1is 1indivisibly (within one

read-modify-write cycle) added to short-ordinal operand
2. The result is stored into operand 2. The original
value of operand 2 is pushed onto the operand stack. A
Short-Ordinal Overflow Fault cannot occur. Thus, this
operator can be used to indivisibly subtract operand 1
from operand 2 if operand 1 contains the 2's complement
of the number to be subtracted.

INDIVISIBLY ADD ORDINAL INDIV_ADD O
ID# Operands Opcode Reference Format Class
1 2 St
194 ] o 0 - 0111 varies varies 1100
Operation: Ordinal operand 1 is indivisibly (within one

read-modify-write cycle) added to ordinal operand 2. The
result is stored into operand 2. The original value of
operand 2 is pushed onto the operand stack. An Ordinal
Overflow Fault cannot occur. Thus, this operator can be
used to indivisiblv subtract operand 1 from operand 2 if

operand 1 contains the 2's complement of the number to be
subtracted.

10-R1



Operator Set

INDIVISIBLY INSERT SHORT ORDINAL

iAPX U432 GDP

INDIV_INS_SO

ID# , Ope;ands Opcode Reference Format Class
195 | bfs] so 20 10111 varies varies 0010
Operation: Indivisibly inserts a bit field from one short ordinal
into another short ordinal.
Operand 1: Contains the bit-field specifier for the destination bit

Operand 2:

Operand 3:

Action: e

field that is to be written,

Contains a short ordinal with a right-justified bit field

that is to be inserted into the destination short
ordinal.

Contains the destination short ordinal into which the bit
field is to be inserted.

insert
specified

Indivisibly (within one read-modify-write cycle)
the source field from operand 2 into the
destination bit-field in operand 3.

Pushkthe original value of operand 3 onto the operand
stack.

INDIVISIBLY INSERT ORDINAL INDIV_INS O
ID# Operands Opcode Reference Format Class
1 2 3
196 | bfs| o l°] 011 varies varies 100011
Operation: Indivisibly inserts a bit field from one ordinal into
another ordinal.
Operand 1: Contains the bit-field specifier for the destination bit
field that is to be written.
Operand 2: Contains an ordinal with a right-justified bit field that

Operand 3:

Action: e

10-82

is to be inserted into the destination ordinal.

Contains the destination ordinal into which the bit field
is to be inserted.

Indivisibly (within one read-modify-write cycle) insert
the source field from operand 2 into the specified
destination bit-field in operand 3.

Push the original value of operand 3 onto the operand
stack.



iAPX 432 GDP Operator Set

CONTEXT OPERATORS

The feollowing sub-cperator procedures (ENV Entry and Context Call) are
used in the action descriptions of context operators.

ENV Entry
] If the source AD is access-valid, then do the following:

° Perform Set Copied for this source AD.

o Read the 1level number of the object referenced by the
source AD. If the source object is specified by a
refinement, the level number of the base object rather
than that of the refinement is read. The level number is
located in the OD of the object.

® Otherwise, if the source AD is not access valid, then use the

maximum level number (65,535).

) Write the level number in the appropriate Entered ENV Level

field in the process object.

° Write the source AD without Delete Rights into the appropriate
Access Environment AD location in the current context object.

] Save the new access environment information within the GDP.

Context Call

[ If the static link access selector (specified as an operand)
is 4, a null AD is used as the static link AD. Otherwise, the
static link access selector is interpreted as selecting the AD
to be used as the static link.

° Perform Set Copied for the AD of the specified domain.

. If the domain is a refinement, then do the following:

) Traverse to the base object by using the Base Segment and
Base Directory indices (in the refinement descriptor).

o Adjust the called instruction object's DAI to that
relative to the base domain by adding the AP Offset in
the refinement descriptor.

. Read the AD of the called instruction object using the
adjusted domain access index,

) If the called instruction object AD has no Call Rights, raise
the Instruction Object Type Rights Fault.

® Read the instruction object header (the first 8 bytes of the
instruction object).

. If either the Context Data Part Length or the Context Access
Part Length (from the instruction object header) is less than
its respective minimum size, raise the Context Parameters Size
Fault.

° If either the Context Data Part Length or the Context Access
Part Length (from the instruction object header) is greater
than its respective current size (of the pre-created context)
in the process object, raise the Context Parameters Size
Fault.

° Increment the Current Allocation Level in the process object
by 1.

10-83



Operator Set iAPX 432 GDP

10-84

Read the Context Link AD in the current context.

Update the AP Length and DP Length of the new context to that

specified in the instruction object header.

Initialize the context access part starting with the AD 14

location to null ADs. Initialize the data part to zeros.

Initialize the new context access part:

° Write into the Defining Domain location an AD (with Write
Rights and without Delete Rights) for the specified domain
(the base domain after any refinement traversal).

. Write into the Local Constants location an AD for the
object specified by the Local Constants DAI field in the
called instruction object's header.

° Write into AD location 5 (Environment 1) the AD for the
defining domain.

. Write null ADs into AD locations 6, and 7 for the initial
environments 2 and 3.

. Write the Top of Descriptor Stack AD and Top of Storage
Stack AD of the current context into the corresponding

locations.

° Write into Static Link location the specified static link
AD.

Initialize the new context data part as follows:

° Copy the current context status into the Context Status
field.

. Write into the Operand Stack Pointer field the value from

the Initial Operand Stack Pointer field in the called
instruction object's header.

° Write into the Current Instruction Object DAI field the
adjusted domain access 1index of the instruction object
(ad justed above only in the case of refinement).

° Write into the Instruction Pointer field an initial value
of 64,

Set up the return information for the current (calling) context

as follows:

)] Write the current values into the following current
context data part:
. Context Status
[ Operand Stack Pointer
. Current Instruction Object DAI
° Instruction Pointer

Write the Instruction Pointer with the value pointing to
the next instruction to be executed upon return from the
called context.
Write an AD for the new context intc the Current Context
location in the process object.
Initialize the Entered ENV 1 Level field in the current process
object with the level number of the defining domain.
Initialize the Entered ENV 2 and 3 Level fields in the current
process object to maximum.
Replace the GDP's internal context environment with that of the
called context and continue execution at the instruction

specified.



iAPX 432 GDP

Operator Set

ENTER ENVIRONMENT 1 ENTER_ENV_ 1
ID# Ope;andsﬁ Opcode Reference Format | Class
197 ;s : _ 0110 varies varies 0000
Operation: Changes environment 1 of the current context to allow
direct access to the access descriptors in a specified
object.
Operand 1: Contains the access selector for the object to be
entered.
Action: e Perform ENV Entry of the scurce AD into AE 1.
ENTER ENVIRONMENT 2 ENTER _ENV_2
ID# Opegands Opcode Reference Format Class
198 ;s - E-—- 1110 varies varies 0000
Operation: Changes environment 2 of the current context to allow

direct access to the access descriptors in a specified
object.

Operand 1: Contains the access selector for the object to be
entered.
Action: e Perform ENV Entry of the source AD into AE 2.
ENTER ENVIRONMENT 3 ENTER_ENV_3
ID# Opegands Opcode Reference Format Class
199 ;s - E‘- 0001 varies varies 0000
Operation: Changes environment 3 of the current context to allow

Operand 1:

Action: e

direct access to the access descriptors in a specified
object.

Contains the selector for the be

entered.

access object to

Perform ENV Entry of the source AD into AE 3.

10-85



Operator Set

COPY PROCESS GLOBALS

iAPX 432 GDP

COPY_PRCS GLOBALS

ID# Operands Opcode Reference Format Class
1 2 3—
200 t as | - - 1001 varies varies 0000
Operation: Copies an access descriptor for the current process's

Operand 1:

Action: e

SET CONTEXT MODE

process globals object into the specified AD location.

Contains an access selector for the destination access
descriptor location.

Read the Process Globals AD
object).

Perform Set Copied for this AD.
Perform Store AD of this AD into the destination AD
location.

(in the current process

SET_CTXT_MODE

iD# Operands Opcode Reference Format Class
1 2 3 —
201 { so ] - = 0101 varies varies 0000
Operation: Writes the value of short-ordinal operand 1 to the

ADJUST STACK POINTER

Context Status field of the current context object. The
context mode within the GDP is also updated accordingly.

ADJ SP

1D#
1

Operands

Opcode TReference Tormat Class

202 si

2 et 3 ]
SO -

01011 varies varies 0100

Operation:

Action: e

10-86

Adds short-integer operand 1 to the operand stack

pointer, returning the previous stack pointer value to
short-ordinal destination operand 2.

Save the current operand stack pointer temporarily.
value saved is after operand and address evaluation,

The

Add short-integer operand 1 to the current operand stack
pointer. A short-integer overflow fault cannot occur,

Store the saved operand stack pointer value intc operand
2. If the destination is the operand stack, the

destination is specified by the new stack pointer.



iAPX 432 GDP Operator Set

CALL CALL
ID# Operands Opcode Reference Format Class
1 2 3t
. 203 | as | pw § - 101 varies | varies 1 010007
Operation: Creates a new context using an instruction object in a
directly accessible domain and then c&lls that new
context while passing a static link to it.
Operand 1: Contains the access selector for the static link of the

Operand 2:
0 - 15:

16 -~ 31:

Action: e

new context.

A packed word operand comprised of the following:

Contains the access selector for the defining domain of
the new context.

Contains the domain access index into the specified
defining domain ©of an access descriptor for the
instruction object for which the context is to be created.

Perform Context Call of the specified instruction object
using the static link AD specified by operand 1.

CALL THROUGH DOMAIN CALL_THRU_DOMAIN
ID# , Opegands Opcode Reference Format Class
204 ] as ;w E-. 011 varies varies 010001

Operation: Creates a new context using an instruction bbject in a

Operand 1:
Operand 2:
0 -15:

16 - 31:

Action: e

specified new defining domain that is within the current
defining domain and then calls that new context while
passing a static link to it.

Contains the access selector for the static link to be
passed.

A packed word operand comprised of the following:

Contains the domain access index for an access descriptor
for the defining domain of the new context.

Contains the domain access index into the specified
defining domain of an access descriptor for the

instruction object for which the context is to be created.

Perform Context Call of the specified instruction object
using the static link AD specified by operand 1.

Enter the new domain as Environment 1.

10-87



Operator Set

iAPX 432 GDP

RETURN RET
| ID# Operands Opcode Reference Format Class

1 2 3 e
laos |- 1- = 0 none none 000110
Operation: Returns from the currently active context to the calling

Action: e

context.

If tracing is enabled and the Trace Mode field (in the
Process Status field) specifies Flow Trace, then raise
the Trace Event Fault and thus continue execution in the
Trace Instruction Object (referenced by AD 1 in the
domain access part).

If the Calling Context AD does not have Return Rights,
raise the Context Type Rights Fault.

If the Top of Storage Stack AD of the current context
differs from that of the calling context, use the Top of
Storage Stack AD (in the calling context) to calculate an
end address to update (and set the Dirty bit of) the

allocation stack specifier in the process's physical
storage object. This deallocates the 1local storage
allocated for this returning context.

If the Top of Descriptor Stack AD (in the current

context) differs from that of the calling context, use
the Segment Index of the Top of Descriptor Stack AD (in
the calling context) to update the Free Index field of

the Header Entry in the process object table. This

deallocates all ODs in the process object table that were
allocated to this returning context.

Decrement by 1 the Current Allocation Level field of the
process object.

Write the AD from the Calling Context location (in the
returning context object) into the Current Context
location in the process object. That is, make the
previous calling context the current context.

Replace the GDP's internal context environment with that
of the calling context and continue execution at the
instruction specified in the Instruction Pointer field of

the new current context object.

RETURN AND FAULT RET_FAULT
ID# Operands Opcode Reference Format Class
1 2 3
206 | - = = 1 none none 000110
Operation: Returns from the currently active context and resumes

Action: e
°

10-88

execution at bit displacement 64 in the Fault Instruction
Object specified in the defining domain of the context

returned to.

Perform the RETURN operator.
Raise the Return Fault.



iAPX 432 GDP Operator Set

PROCESS COMMUNICATION OPERATORS

The following sub-operator procedures (Enqueue Message, Dequeue
. Message, Engueue Carrier, Dequeue - Carrier, Ferward Carrier, -Surrogate-
Common, Send Common, and Receive Common) are used in the action
descriptions of process communication operators.

Enqueue Message

° Remove a port message queue entry from the free list.

. Write the specified message AD into the AD location (in the
Message Queue Access Area) corresponding to the new message
queue entry.

. If the Queue Discipline (in the Port Status) is FIFO, insert
the new entry into the message queue at the tail of the
message queue linked list.

° Otherwise, search the message queue linked list and, depending
on the queuing values in the message queue entries, find an
appropriate insertion point. Insert the new entry into the
message -queue at this point with the appropriate queuing
value.

Dequeue Message

. If the Port Type is Delay (in the Port Status field) and the
Deadline value in the head entry of the message queue is
positive, then return from Dequeue Message.

] Otherwise, because the Port Type is not Delay, remove the head
entry of the message queue and return its 'corresponding
message AD (from the Port Message Access Area). The AD
location (from which this dequeued message AD was obtained) is
written with a null AD, and the dequeued entry is returned to
the free list.

10-89



Operator Set iAPX 432 GDP

Enqueue Carrier

Enqueue the specified carrier at the tail of the carrier
queue.

Dequeue Carrier

Dequeue a carrier from the head of the carrier queue,

Forward Carrier

If the AD for the Second Port in the current Carrier is null,
then unlock the carrier and return from Forward Carrier.
Otherwise, continue.
Write that AD for the Second Port into the Current Port

location in the current Carrier, That is, make the second
port the current port.

Write a null AD in the second port location of the current
carrier to prevent forwarding the second time.

Use the AD for the Second Message in the current carrier as
the specified message AD.

Use the Second Port Queuing Value in the current carrier as
the current queuing value.

Perform Send Common.

Surrogate Common

10-90

If the specified carrier is a refinement, traverse the
refinement by using the Base Segment and Base Directory
indices in the refinement descriptor.

Use the unretined (base object) carrier as both the current
carrier and the current surrogate carrier,

Perform Object Locking on the current carrier. If locking
tails, raise the Carrier Lock Fault.

If the specified AD for the Destination Port is null, then set
the Null Surrogate Destination bit, and clear the First Port
Done bit in the Process Status field of the current process.
Otherwise, clear the Null Surrogate Destination and First Port
Done bits in the Process Status field of the current process.
Write the specified AD for the destination port into the
Second Port location in the current Carrier.

If the 1levels of the current port, destination port, and
carrier are not equal, raise the Level Fault.




iAPX 432 GDP Operator Set

Send Common

° Perform Object Locking on the current port. If the locking
operation is not successful, raise the Port Lock Fault.

L] If the message queue 1s not full and no carrier is blocked at
the current port awaiting a message, then do the following:

° Perform Enqueue Message of the specified message into the
port message queue,

[ If the First Port Done or Null Surrogate Destination bit
is set (in the process status), unlock the current
carrier.

] Set the First Port Done bit in the Process Status field.

® Unlock the current port.

) Return from Send Common.

° If the message queue is empty (i.e., the Head of Message Queue

field is zero) and a carrier is blocked at the current port

awaiting a message, tlien do the following:
° If either the First Port Done or Null Surrogate
Destination bit is set, unlock the current carrier.

° Perform Dequeue Carrier of a carrier from the current
port.

° Make the dequeued carrier the current carrier.

® Write the specified message AD into the Incoming Message
location in the new current Carrier.

° Set the Message Received and Unblocked bits in the

Carrier Status field of the current Carrier.

° Set the First Port Done bit in the Process Status.

° Unlock the current port.

° If the current carrier is a processor carrier (as
indicated by the Carried Object Type field in the Carrier
Status), send a Wake-Up IPC to the carried processor.

®  Otherwise, perform Forward Carrier of the carrier to its
second port.
° Return from Send Common.
° If the message queue is full (as indicated by a value of zero
in the Head of Free Entry List field), then do the following:
° If this is not a conditional SEND operation, then do the
following:
° Write the specified message AD in the Blocked
Message location in the current carrier,
® Write the current queuing value into the Blocked
Queuing Value field of the current Carrier.
° Perform Enqueue Carrier of the current carrier.
° Unlock the current port.
) Return from Send Common.
) Otherwise, do the following steps for a conditional SEND
operation:
® Unlock the current port.
° Return from Send Common Wwith a status of
unsuccessful.

10-91



Operator Set iAPX 432 GDP

Receive Common

° Perform Object Locking on the current port. If the 1locking
operation is not successful, raise the Port Lock Fault.

] If the message queue is not empty (as indicated by a non-zero
value in the Head of Message Queue field), and there is no
blocked carrier awaiting, then do the following:

° Perform Dequeue Message to obtain a message from the
message queue,
) Write the received message AD into the Incomming Message

location in the current Carrier, and set the Message
Received and the Unblocked bits in the Carrier Status

field.

. Set the First Port Done bit in the Process Status field.

) Unlock the current port.

° Return from Receive Common.

° If the message queue is full and there is a blocked carrier

awaiting, then do the following:

° Perform Dequeue Message to obtain a message from the
message queue.

] Write the received message AD into the Incoming Message

location in the current Carrier and set the Message
Received and Unblocked bits in the current Carrier Status

field.

[ Perform Dequeue Carrier on the current port to obtain a
carrier from the carrier queue.

) Make the dequeued carrier the current carrier,

. Perform Enqueue Message of the Blocked Message in the
current carrier by using the Blocked Queuing Value field
of the current carrier.

° Write a null AD into the Blocked Message location,

° Set the First Port Done bit in the Process Status.

. Unlock the current port.

° Perform Forward Carrier of the current carrier to its
Second Port.

o Return from Receive Common.

° If the message queue is empty, then do the following:

° If this is not a conditional RECEIVE operation, then do

the following:
) Clear the Message Received and Unblocked bits in the
current Carrier Status.
° Perform Enqueue Carrier of the current carrier at
the current port.
. Unlock the current port.
] Return from Receive Common.
o Otherwise, do the following steps for a conditional

RECEIVE operation:

e Unlock the current port.

® Return from Receive Common with a status of
unsuccessful.

10-92



iAPX 432 GDP

Operator Set

SEND SEND
ID# Opegands Opcode Reference Format Claés
207 ;s ;s E-— 11011 varies varies 0100
Operation: Sends a specified message to a specified port.
Operand'1: . Contains the access selector for a port to which the

Operand 2:

Action: e

message is to be sent. The selected AD must have Send

Rights.

Contains the access selector for the object to be sent as
a message.

Use the Current Process Carrier as the current carrier,.
Use the port specified by operand 1 as the current port.
Use the message AD specified by operand 2 as the message
AD in further operations.

Use a Queuing Value of zero (i.e., 0 for Priority and 0
for Deadline).

Clear the First Port Done bit and the Null Surrogate
Destination bit (in the current process status).

If the level of the message object is less than that of
the port, raise Level Fault.

Perform Send Common.

If the send operation is successful (as indicated by the
First Port Done bit being 1 in the Process Status),
continue normal execution.

Otherwise, suspend the current process and relinquish the
processor for redispatching.

10-93



Operator Set iAPX 432 GDP

RECEIVE RECEIVE
ID# 1 Ope;ands Opcode Reference Format Class
208 | as | - E- 1101 varies varies 0000

Operation: Receives a message at a specified port.

Operand 1: Contains the access selector for the port at which the

process 1is to receive a message. The selected AD must
have Receive Rights.

Action:

Use the Current Process Carrier as the current carrier,

Use the port specified by operand 1 as the current port.

° Clear the First Port Done bit and the Null Surrogate
Destination bit (in the current process status).

] Perform Receive Common.

] If the receive operation is successful (as indicated by
the First Port Done bit being 1 in the Process Status),
then write the AD of the received message into the
Interprocess Message AD location in the current context
and continue normal execution.

° Otherwise, set the Waiting for Message bit in the Process

Status field, suspend the current process, and relinquish

the processor for redispatching.

10-94



iAPX 432 GDP

Operator Set

CONDITIONAL SEND COND_SEND
ID# Operands Opcode Reference Format Class
209 ) as | as 1 b 01.11 varies varies 111101
Operation: Checks for the availability of message queue space at a

Operand 1:

Operand 2:

Operand 3:

Action: e

specified port and indivisibly sends a specified message
if space is available,

Contains the access selector for a port to which the

message is to be sent. The selected AD must have Send
Rights.

Contains the access selector for the object to be sent as
a message.

Contains a boolean (in the low-order byte) that is set to
TRUE if the SEND operation is successful and to FALSE
otherwise. The high-order byte is not affected.

Use the Current Process Carrier as the current carrier.

Use the port specified by operand 1 as the current port.
Use the message AD specified by operand 2 as the message
AD in further operations.

Use a Queuing Value of zero (i.e., 0 for Priority and 0
for Deadline).

Clear the First Port Done bit and the Null Surrogate

Destination bit (in the current process status).

If the level of the message AD is less than that of the
port, raise Level Fault.

Perform Send Common.
If the send operation is successful (as indicated by the
First Port Done bit being 1 in the Process Status), then

write a result of TRUE in the destination boolean operand
3 and continue normal execution.
Otherwise, write a result of FALSE in the destination

boolean operand 3 and continue normal execution.

10-95



Operator Set

CONDITIONAL RECEIVE

iAPX 432 GDP

COND_RECEIVE

ID#
1

Oper
2

ands Opcode Reference Format Class

210 as

b

3

111 varies varies

100001

Operation:

Operand

\¥]

Operand

Action:

10-96

Checks for the availability of a message at a specified

port and indivisibly if it
available.

receives the message is

Contains the access selector for the port at which the
message is to be received. The selected AD must have
Receive Rights.

Contains a boolean in the low-order byte that is set to
TRUE if the RECEIVE operation is successful and to FALSE

otherwise. The high-order byte is not affected.

Use the Current Process Carrier as the current carrier.,
Use the port specified by operand 1 as the current port.
Clear the First Port Done bit and the Null Surrogate
Destination bit (in the current process status).

Perform Receive Common.

If the receive operation is successful (as indicated by
the First Port Done bit being 1 in the Process Status),
then write the AD of the received message into the
Interprocess Message AD location in the current context,
write a result of TRUE in the destination boolean operand
3, and continue normal execution.

Otherwise, write a result of FALSE in the destination
boolean operand 3 and continue normal execution.




iAPX 432 GDP

Operator Set

SURROGATE SEND SUR_SEND
ID# Ope:ands Opcode Reference Format Class

L2131 ;s 23 2;_ 1 varies varies 000011

Operation: Sends a specified message to a specified port via a

Operand 1:

Operand 2:

Operand 3:
0 - 15:

16 - 31:

Action: e

specified surrogate carrier.

Contains the access selector for a port to which the

message is to be sent. The selected AD must have Send
Rights.

Contains the access selector for the object to be sent as
a message.

A packed word operand comprised of the following:

Contains the access selector for the second port to which
the surrogate carrier can be forwarded, The selected AD
must have Send Rights.

Contains the access selector for the surrogate carrier.

The selected AD must have Surrogate Right

Surr te Rights.
Perform Surrogate Common.
Use the message AD specified by operand 2 as the message
AD in current operations.
Use the Second Queuing Value in the current carrier as
the current queuing value.

If the level of the message AD is less than that of the
port, raise the Level Fault.

Perform Send Common.

If the First Port Done bit is 1, and the Null Surrogate
Destination bit is 0 (i.e., the send operation did not
block and the current surrogate carrier needs to be
forwarded to its second port), then perform Forward

Carrier of the current surrogate carrier to its second
port.

10-97



Operator Set

iAPX 432 GDP

SURROGATE RECEIVE SUR_RECEIVE
ID# Operands Opcode Reference | Format Class
1 2 3
212 4 as | pw | - 111 varies varies | 010001

Operation:

Operand 1:

Operand 2:
0 - 15:

16 - 31:

Action: e
°

10-98

The current process uses a specified surrogate carrier at
a specified port to wait for a message.

Contains the access selector for the port at which to

receive a message. The selected AD must have Recieve
Rights. ‘

A packed word operand comprised of the following:

Contains the access selector for the second port to which
the surrogate carrier will be forwarded. The selected AD
must have Send Rights.

Contains the access selector for the surrogate carrier.
The selected AD must have Surrogate Rights.

Perform Surrogate Common.
Perform Receive Common.

If a message has been received successfully (i.e., the
First Port Done bit is 1 and the receive operation did
not block), then perform Forward Carrier of the surrogate

carrier to its second port.




iAPX 432 GDP Operator Set

DELAY PROCESS DELAY PRCS
ID# Operands Opcode Reference Format Class
2 — .
213 ;;; : E 0011 varies varies 0000
Operation: Delays. the current process for a specified period of time
in the normal dispatching mode, Otherwise, it

reschedules the process.

Operand 1: Contains the short-integer delay period that is an
appropriate delay value (in system time units) based on
the resolution of the system clock. This value must be

positive.
Action: e Use the current process carrier as the current carrier.
° If the current dispatching mode (in the processor status)

is Normal, do the following:

. Write the Second Port AD into the Save Port AD in
the current carrier.

) Write a null AD into the Second Port AD location.

)] Use the Delay Port (referenced in the processor
object) as the current port. )
. Use operand 1 as the Deadline value.
° If the current dispatching mode (in the processor status)

is not Normal, do the following:
° Use the Second Port (in the current carrier) as the
current port.

® Write a null AD into the Second Port Ad location in
the current carrier.
° Use the Second Port Queuing Value (in the current
carrier) as the current queuing value.
] Use the Second Message (specified in the current carrier
object) as the message.
) Perform Send Common.
° Suspend the current process and relinquish the processor

for redispatching.

10-99



Operator Set

iAPX 432 GDP

SEND PROCESS SEND_PRCS
[ 1ID# Operands Opcode Reference Format Class

214 ;s E é-_- 1011 varies varies 0000
Operation: Sends the current process to the specified port.

Operand 1:

Action:

SET PROCESS MODE

Contains the access selector for the port at which the
current process is forwarded as a message. The selected
AD must have Send Process Rights.

Use the current process carrier as the current carrier.
Use the port specified by operand 1 as the current port.
Write a null AD into the Second Port AD location.

Set the First Port Done and Null Surrogate Destination
bits to 1 in the current process status.

Use the Second Port Queuing Value in the current carrier
as the current queuing value.

Use the Second Message (specified in the current carrier
object) as the message.

Perform Send Common.,

Suspend the current process and relinquish the processor
for redispatching.

SET_PRCS_MODE

ID# Operands Opcode Reference Format Class
1 2 3 e
215 | as | so | - 00111 varies varies 0100
Operation: Updates the process status of a specified process.

Operand 1:

Operand 2:

Action: e

10-100

AD for the current
The selected AD must have Set Process

Contains an access selector for an
process object.

Mode Rights.
Contains the short-ordinal for the new process status.

If the source AD is not equal to the current process
object AD, raise the Process Object Access Mismatch fault.
Store the new process status (while preserving the old
values of the Unbounded bit, the Process Faulted bit, and
the Trace Enable bit) into the Process Status field of
the process object. Update the process status within the
GDP accordingly.



iAPX 432 GDP

READ PROCESS CLOCK

Operator Set

READ_PRCS_CLOCK

ID# Operands Opcode Reference Format Class
1 2 3
. 216 ] © = - 011" varies’ " varies 110110
Operation: The 32-bit process clock value is read from the Process

Clock field in the current process data part,

updated to

include the time (in system time units) consumed during

the current service period,

ordinal operand 1.

and stored

in destination

10-101



Operator Set iAPX 432 GDP

PROCESSOR COMMUNICATION OPERATORS

SEND TO PROCESSOR SEND_PSOR
ID# , Opegandsa Opcode Reference Format Class

| 217 1 as ] so g 1111 varies yaries 111101

Operation: Sends an interprocessor message to a specified processor

(possibly the one this instruction is executing on) via
the interprocessor communication (IPC) mechanism.

Operand 1: Contains the access selector for the destination PCO.
The selected AD must have Send IPC Rights.

Operand 2: Contains the short-ordinal value for the IPC message
code.

Operand 3: Contains a boolean that is set to TRUE if the IPC is
successfully sent and otherwise, is set to FALSE.

Action: e Perform Object Locking on the PCO specified by operand

1.

. If the locking operation is not successful, then store a
boolean result of FALSE into destination operand 3 and
end this instruction.

[ If the locking operation is successful and the Response
Count field is not zero, then unlock the PCO and store a
boolean FALSE in the destination operand 3, and end this
instruction.

° If the locking operation is successful, then do the
following:

. In the PCO, set the Response Count field to the
value of Processor Count. This field will be
decremented by the receiving processor.

) Copy the IPC message code specified by operand 2
into the IPC Message Code field of the PCO.

° Signal an IPC by writing into IPC register address 2
in the interconnect address space the value of the
Processor ID from the specified PCO.

) Return boolean TRUE to the destination operand 3.
) Unlock the PCO.

10-102



iAPX 432 GDP

Operator Set

READ PROCESSOR STATUS READ PSOR_STATUS
ID# Operands Opcode Reference Format Class
1 2 3 e
- 2181 pw |-~ - - 111 -{- varies -y varies 110110
Operation: Reads the current processor status and system clock and

Operand 1:

0 - 15:;
16 - 31:

Action: e

stores them in a 32-bit location,

A packed word destination operand comprised of the
following:

Used to store the processor status.

Used to store the current value of the system clock.

Read the 16-bit Processor Status field in the current
processor data part, and append it to the current value
of the processor resident system clock to form an ordinal
value. '

Store the ordinal result in destination operand 1.

10-10%



Operator Set

iAPX 432 GDP

INTERCONNECT OPERATORS

MOVE TO INTERCONNECT MOV_TO_ICT

1D# Operands Opcode Reference “Format Class

219 | as § so | so 01111 varies varies 0010

Operation: Moves a source short-ordinal to a destination
interconnect register,

Operand 1: Contains the access selector for the destination
interconnect object.

Operand 2: Contains the short-ordinal byte displacement within the
interconnect object to the destination interconnect
register. This value must be even.

Operand 3: Contains the source short-ordinal that is moved to the

Action: e

destination.

Move operand 3 to the interconnect register specified by
operand 1 and operand 2.

MOVE FROM INTERCONNECT MOV_FM_ICT
ID# Operands Opcode Reference Format Class
220 ;s io 2;- 11111 varies varies 0010
Operation: Moves a source short-ordinal in an interconnect register

Operand 1:

Operand 2

Operand

(¥}
.o

Action: e

to a destination short-ordinal.

Coritains the access selector for the source interconnect
object.

Contains the short-ordinal byte displacement within the
interconnect object to the source interconnect register,

This value must be even.

Contains the destination short-ordinal that
from the source interconnect register,

is copied

Move the contents of the interconnect register specified
by operand 1 and operand 2 into short-ordinal operand 3.



iAPX 432 GDP Operator Set

BLOCK MOVE OPERATORS
BLOCK MOVE BLK MOV
ID# dﬁerands Opcode Reference Format Class
i 2 Jome]
222 { pw | pw | so none varies varies 110001

Operation: Moves a block of up to 2,048 bytes of a time, possibly

within a larger region being moved using a loop built
around this operator.

Operand 1: A packed word operand comprised of the following:
0 - 15: destination access selector
16 - 31: destination displacement

Operand 2: A packed word operand comprised of the following:
0 - 15: source access selector
16 - 31: source displacement

Operand 3: Short ordinal number of bytes to be moved, minus one.

Action: e The size of the total region to be moved is the number of
bytes (operand 3 plus one) rounded up to a multiple of 8.

) The number of bytes that will be moved by this operation
is the size of the total region modulo 2.0L8. (For
example, 1if operand 3 is 4,999, then the size of the

total region is 5,000 and the number of bytes that will
be moved by this operation is 904.)

. The source region begins with the source displacement in
the source object. The destination region begins with
the destination displacement in the destination object.

] Move from the top of the source region to the top of the

destination region the calculated number of bytes in
units of eight bytes. The move operation begins at high
displacements and progresses to lower displacements.

- (For example, if both source and destination displacement
are 1,000 and using the sizes from the example above:
- The bytes in the region to be moved have displacements
1,000 to 5,999. The bytes moved by this operation have

displacements 5,096 to 5,099. The first eight-byte unit
transferred is from displacements 5,092 to 5,099.) There

is no aligmnment requirement for the source or destination
displacements.

10-105






CHAPTER 11
INSTKUCTION ENCODING

This chapter defines GDP instruction compositicnh. 1t includes the
field formats required for the various operand adGressing modes and the
complete .instruction.-enceding -information. For- a full discussion “of
the GDP instruction interface see the Instruction Interface chapter of
this manual,

CHAPTER CONVENTIONS

Throughout the tables in this chapter the following abbreviaticns are
used to inuicate the lengths of operands:

b byte (8 bits)

db  double-byte (16 bits)
W word (32 bits)

dw  double-word (64 bits)
ew  extended-word (80 bits)

Unless otherwise noted, field formats and binery encoded field values
are shown in an MSB to LSB crder,; lef't to right on the page.

INSTRUCTION FIELDS

Instructions are variable-length sections of & bit-addressed stream in
an instruction obgect. Every instruction contains an operator
specification and possibly several references. The operator specifies
to the processor what operstion is to be performed, and operand
references select the operands to be used cor manipulated. The major
fields of an instruction are ordered as follows:

MSB - increasing address LSB
Upcode Reference Format Class
(next) (current instruction) (previous)

The operator specified in &an instructicn is encoded in two fields, the
Class {field and the OCpcode field. The Class field specities the
operator class to which the operator belongs, and the Opcode {ield
selects from within that c¢lass the processor operation to be
pertormea. The operatcr's class determines the order of the operator
(i.e., the number o1 required operands) and the length of the
associated operanus. Later sections of this chapter define the formats
and encodings of the Class, Format, Reference, and Opcode instruction
fields.

11-1



Instruction Encodihg 1APX L32 GLP

1 CLASS FIELD ENCODINGS|

ORDER OPERAND CLASS
LENGTHS ENCODING

0 none 000110
none (branch) 100110

none (breakpt) 111111

1 b (branch) 1000
b 016110

db 0000

W 110110

dw G01110

ew 101110

2 b, b 011110
b,db 111110

b, w 000001

db, b 100001

db,db 0100

db, w 010001

w, b 001001

w,ub 101001

W, W 1100

W,ew 011001

dw, b 111001

dw,dw 000101

dw,ew 100101

ew, b £10101

€W, W 110101

ew,Cw 001101

ew,ew 101101

3 b, b, b . c111o
ub,db, b 111101

db,db,ab 0010

db,db, w C00011

db, W, W 106011

éb, w,aw ¢10011

w,uab,cb 110011

w, W, b G01011

w, wW,ab 110001

W, W, W 1010

W, W,ew 101011

W,eW,EW ¢11C11

dw, w, W 111011

dw,aw, b oco111

dw ,dw ,ew 160111

dv,ew,ew 01Cc111

ew, w,ew 110111

ew,dw,ew ¢01111

ew,ew, b 101111

ew,ew,ew 111

-3
—a



iAPX 432 GDP Instruction Encoding

FORMAT FIELD ENCODINGS

The Format field of an instruction determines which references
(implicit stack references or explicit data references) in the
instruction specify which operands. The following table shows the
Format field encodings for the mappings from the possible data or stack

~d o~ P
references to their associated operands,

ORDER | OPERAND | OPERAND | OPERAND EXPLICIT ]| FORMAT
1 2 3 REFERENCES | ENCODING

0 — —_— — 0 none
1 dref1 —_— — 1 0
stk —_— —_— 0 1

2 dref1 dref2 — 2 00
dref1 dref1 — 1 10

dref1 stk 1 01

stk dref1 —_— 1 01

stk stk —_— 0 111

3 drefi dref2 dref3 3 0000
dref1 dref?2 dref2 2 1000

dref1 dref?2 drefi 2 0100

dref1 dref?2 stk 2 1100

dref1 stk dref2 2 0010

stk dref1 dref2 2 1110

drefl stk areflt i 1010

stk dref1 dref1 1 0001

dref1 stk stk 1 0110

stk dref1 stk 1 1001

stk stk2 dref1 1 0111

stk2 stk dref1 1 0101

stki stk2 stk 0 1011

stk2 stk1 stk 0 1101

dref2 dref1 dref3 3 0011

dref?2 dref1 stk 2 1M1

dref1,dref2,dref3

indicate that the operand is referenced through the first, second,
or third explicit data reference in the instruction's reference
field.

stk

indicates that the operand itself is to be pushed onto, or popped
from, the operand stack.

stk1,stk2

indicate that the operand is popped from the top (stkl) or
next-to-top (stk2) of the operand stack.




Instruction Encoding i1APX 432 GDP

REFERENCE FIELD FORMAT

The Reference Field of an instruction can consist of either 0 or 1 data
references followed by a branch reference or from O to 3 data
references. Data references and branch references are both variable in
length. Explicit data refererences are encoded in the following order:

MSB -¢— increasing address LSB

Data Reference 3 Data Reference 2 Data Reference 1

The format of a data reference is determined by the desired data
reference mode and access selection mode. The following sections of
this chapter define the fields and encodings of a data reference.

DATA REFERENCE FORMATS

SCALAR DATA REFERENCE

7 or 16 bits X} xx| oo

b Data Reference Mode
e ACcC@8S Selection Mode
Displacement

Length Control

0 for 7 bits

1 for 16 bits
Access Selection Field
Displacement

11-4



iAPX 432 GDP

RECORD ITEM DATA REFERENCE

"7 or 16 bits XX | 01
STATIC ARRAY ELEMENT DATA REFERENCE
0 or 16 bits XX 10

Instruction Encoding

‘e Data Reference Mode

Access Selection Mode
Index Length Control
0 for 7 bits
1 for 16 bits
Access Selection Field
Index
Base Indirect
Reference

Data Reference Mode
Access Selection Mode
Base Length Control
0 for 0 bits
1 for 16 bits
Access Selection Field
Base
Index Indirect
Reference (scaled)

11-5



Instruction Encoding iAPX 432 GDP

DYNAMIC ARRAY ELEMENT DATA REFERENCE

x| n

l— Data Reference Mode

Access Selection Mode

Access Selection Field

Base Indirect
Reference

Index Indirect
Reference (scaled)

INDIRECT REFERENCE FIELD FORMATS

Stack Indirect Reference

The 16-bit indirectly referenced (Base or Index) value is popped from
the current top of the operand stack.

Indirect Reference Mode

Intrasegment Indirect Reference

The 16-bit indirectly referenced (Base or Index) value is obtained
using the below Displacement field to offset into the same data segment
that is selected by the Access Selection field of the present data
reference,

T or 16 bits X 10

Indirect Reference Mode
e DiSplacement Length Control
0 for 7 bits
1 for 16 bits
Displacement

11-6



iAPX 432 GDP Instruction Encoding

General Indirect Reference

The 16-bit indirectly referenced (Base or Index) value is obtained
using the below Displacement field to offset into the data segment
selected by the below Access Selector field.

{variable)

7 or 16 bits 4 or 8 bits X1 X | oo

b Indirect Reference
Mode
e ACCESS Selector
Length Control
0 for 4 bits
1 for 8 bits
Displacement
Length Control
0 for 7 bits
1 for 16 bits
Direct Access Selector
Displacement

ACCESS SELECTION FIELD FORMATS

Short Direct Access Selection

Access Selection
Mode

4 bits 00

Short Direct Access Selector

Long Direct Access Selection

Access Selection
Mode

8 bits 10

Long Direct Access Selector

1-7



Instruction Encoding iAPX 432 GDP

Stack Indirect Access Selection

Access Selection

There is no Access Selection field in Mode
the instruction stream. Access Selection

occurs via a 16-bit indirect access 01
selector that is popped from the current

top of the operand stack.

General Indirect Access Selection

Access selection (for the entire data reference) occurs via a 16-bit
indirect access selector. The indirect access selector is located, in
turn, by using the below Displacement field to offset into the the data
object that is selected by the below Direct Access Selector field.

Access Selection
Mode

T or 16 bits 4 or 8 bits X1 X 11

- Access Selector

Length Control

0 for 4 bits

1 for 8 bits
e D1 3pl acement

Length Control

0 for 7 bits

1 for 16 bits

Direct Access Selector

Displacement

ACCESS SELECTOR FORMATS

An access selector's function is to select an access descriptor.
Access selectors in the instruction stream can be either U4 or 8 bits in
length. When found in data locations other than the current
instruction stream (e.g., when used as operands for object operators),
access selectors are always 16 bits in length and are simply called
access selectors., Four- or eight-bit access selectors are called

direct access selectors when the distinetion 1s required. Access
selectors have one of the following formats.

11-8



iAPX 432 GDP Instruction Encoding

Direct Access Selector

2 or 6 bits XX

b0t ENV Selector
00 for Current Contex
01 for Environment
10 for Environment
11 for Environment
Access Index
2 bits used for Short Direct AS,
6 bits used for Long Direct AS.
This value indexes into the selected
Environment to an AD.

ctr
o>
(¢
[¢]
[1}]
[/
/]
=0
o
=
ct
~
%]
-1
-
(=]
e’

1
2
3

Indirect Access Selector

14 bits XX

b—— ENV Selector
00 for Current Context Access Part (ENV 0)

81 for Eanvironament 1
10 for Environment 2
11 for Environment 3

Access Index
14 bits used for Indirect Access Selector,
This value indexes into the selected
Environment to an AD,

BRANCH REFERENCE FORMATS

10 or 16 bits X

- Branch Reference Type
0 for Relative Branch using 10 bits
1 for Absolute Branch using 16 bits
Bit Displacement

11-9



Instruction Encoding

OPCODE ENCODING SUMMARY

OPERATOR

iAPX U432 GDP

CHARACTER OPERATORS

Move Character
Zero Character
One Character
Save Character

AND Character
Inclusive OR Character
Exclusive OR Character
Equivalence Character
NOT Character

Add Character
Subtract Character
Increment Character
Decrement Character

Equal Character

Not Equal Character

Equal Zero Character

Not Equal Zero Character
Less Than Character

Less Than or Equal Character

Convert Character to Short Ordinal

Convert Character to Integer

SHORT-ORDINAL OPERATORS

Move Short Ordinal
Zero Short Ordinal
One Short Ordinal
Save Short Ordinal

AND Short Ordinal
Inclusive OR Short Ordinal
Exclusive OR Short Ordinal
Equivalence Short Ordinal
NOT Short Ordinal

Extract Short Ordinal

Insert Short Ordinal
Significant Bit Short Ordinal

11-10

ORDER OPERAND | CLASS OPCODE
LENGTHS
123
2 b, b 011110 00
1 b 010110 0
1 b 010110 01
1 b 010110 1
3 b, b, b | 011101 000
3 b, b, b | 011101 100
3 b, b, b ] 011101 010
3 b, b, b |} 011101 110
2 b, b 011110 10
3 b, b, b | 011101 001
3 b, b, b | 011101 101
2 b, b 011110 001
2 b, b 011110 101
3 b, b, b | 011101 0011
3 b, b, b |} 011101 1011
2 b, b 011110 011
2 b, b 011110 111
3 b, b, b | 011101 0111
3 b, b, b ] 011101 111
2 b,db 111110 none
2 « W 000001 none
2 db,db 0100 0000
1 db 0000 0000
1 db 0000 0100
1 db 0000 1100
3 db,db,db 0010 0000
3 db,db,db 0010 1000
3 db,db,db 0010 0100
3 db,db,db 0010 1100
2 db,db 0100 1000
3 db,db,db 0010 0010
3 db,db,db 0010 1010
2 db,db 0100 0100



iAPX 432 GDP

Instruction Encoding

OPERATOR ORDER OPERAND | CLASS OPCODE
LENGTHS
123

Add Short Ordinal 3 db,db,db 0010 0110
Subtract Short Ordinal 3 db,db,db 0010 1110
Increment Short Ordinal 2 db,db 0100 1100
Decrement Short Ordinal 2 db,db 0100 0010
Multiply Short Ordinal 3 db,db,db 0010 0001
Divide Short Ordinal 3 db,db,db 0010 1001
Remainder Short Ordinal 3 db,db,db 0010 0101
Equal Short Ordinal 3 db,db, b 111101 000
Not Equal Short.Ordinal 3 db,db, b 111101 100
Equal Zero Short Ordinal 2 db, b 100001 00
Not Equal Zero Short Ordinal 2 db, b 100001 10
Less Than Short Ordinal 3 db,db, b 111101 010
Less Than or Equal Short Ordinal 3 db,db, b 111101 110
Convert Short Ordinal to Integer 2 db, w 010001 00
SHORT-INTEGER OPERATORS

Move Short Integer 2 db,db 0100 0000
Zero Short Integer 1 db 0000 000
One Short Integer 1 db 0000 0100
Save Short Integer 1 db 0000 1100
Add Short Integer 3 db,db,db 0010 1101
Subtract Short Integer 3 db,db,db 0010 0011
Increment Short Integer 2 db,db 0100 1010
Decrement Short Integer 2 db,db 0100 0110
Negate Short Integer 2 db,db 0100 1110
Multiply Short Integer 3 db,db,db 0010 01011
Divide Short Integer 3 db,db,db 0010 11011
Remainder Short Integer 3 db,db,db 0010 00111
Equal Short Integer 3 db,db, b 111101 000
Not Equal Short Integer 3 db,db, b 111101 100
Equal Zero Short Integer 2 db, b 100001 00
Not Equal Zero Short Integer 2 db, b 100001 10
Less Than Short Integer 3 db,db, b 111101 001
Less Than or Equal Short Integer 3 db,db, b 111101 101
Positive Short Integer 2 db, b 100001 01
Negative Short Integer 2 db, b 100001 011
Move in Range Short Integer 3 w,db,db 110011 none
Convert Short Integer to Integer 2 db, w 010001 010

11 114



Instruction Encoding

OPERATOR

1APX 432 GDP

-
-
-
N

ORDER OPERAND | CLASS OPCODE
LENGTHS

ORDINAL OPERATORS 123
Move Ordinal 2 W, W 1100 000
Zero Ordinal 1 W 110110 00
One Ordinal 1 W 110110 010
Save Ordinal 1 W 110110 110
AND Ordinal 3 W, Wy, W 1010 000
Inclusive OR Ordinal 3 W, W, W 1010 0100
Exclusive OR Ordinal 3 W, W, W 1010 1100
Equivalence Ordinal 3 W, W, W 1010 0010
NOT Ordinal 2 W, W 1100 100
Extract Ordinal 3 db, w, w { 100011 00
Insert Ordinal 3 db, w, w | 100011 10
Significant Bit Ordinal 2 w,db 101001 00
Add Ordinal 3 W, W, W 1010 1010
Subtract Ordinal 3 W, W, W 1010 0110
Increment Ordinal 2 W, W 1100 010
Decrement Ordinal 2 W, W 1100 1110
Multiply Ordinal 3 W, W, W 1010 1110
Divide Ordinal 3 Wy W, W 1010 0001
Remainder Ordinal 3 W, W, W 1010 1001
Index Ordinal 3 W, W, W 1010 0101
Equal Ordinal 3 w, W, b ] 001011 000
Not Equal Ordinal 3 W, W, b 001011 100
Equal Zero Ordinal 2 W, b 001001 000
Not Equal Zero Ordinal 2 W, b 001001 100
Less Than Ordinal 3 w, Ww, b } 001011 010
Less Than or Equal Ordinal 3 w, w, b | 001011 110
Convert Ordinal to Integer 2 W, W 1100 1110
Convert Ordinal to Temporary Real 2 W,ew 011001 0
INTEGER OPERATORS
Move Integer 2 W, W 1100 000
Zero Integer 1 W 110110 00
One Integer 1 W 110110 010
Save Integer 1 W 110110 110
Add Integer 3 W, W, W 1010 1101
Subtract Integer 3 W, W, W 1010 0011
Increment Integer 2 W, W 1100 0001
Decrement Integer 2 W, W 1100 1001
Negate Integer 2 W, W 1100 1101
Multiply Integer 3 W, W, W 1010 1011
Divide Integer 3 W, W, W 1010 o111
Remainder Integer 3 W, W, W 1010 1M



iAPX 432 GDP Instruction Encoding
OPERATOR ORDER OPERAND | CLASS OPCODE
LENGTHS
=23

Equal Integer 3 W, w, b | 001011 000
Not Equal Integer 3 w, W, b } 001011 100
Equal Zero Integer 2 W, b 001001 000
Not Equal Zero Integer 2 w, b 001001 100
Less Than Integer 3 w, W, b | 001011 001
Less Than or Equal Integer 3 W, W, b } 001011 101
Positive Integer 2 w, b 001001 010
Negative Integer 2 w, b 001001 110
Move in Range Integer 3 dw, w, w { 111011 none
Convert Integer to Character 2 W, b 001001 001
Convert Integer to Short Ordinal 2 w,db 101001 10
Convert Integer to Short Integer 2 w,db 101001 01
Convert Integer to Ordinal 2 W, W 1100 1110
Convert Integer to Temporary Real 2 W,ew 011001 01
SHORT-REAL OPERATORS
Move Short Real 2 W, W 1100 000
Zero Short Real 1 W 110110 00
Save Short Real 1 W 110110 110
Add Short Real 3 W, W,ew 101011 00
Add Temporary Real to Short Real 3 ew, wW,ew 110111 00
Add Short Real to Temporary Real 3 w.,ew,ew | 011011 00
Subtract Short Real 2 w, wew | 101011 10
Subtract Temporary Real :

from Short Real 3 ew, W,ew 110111 10
Subtract Short Real

from Temporary Real 3 w,ew,ew | 011011 10
Multiply Short Real 3 W, w,ew | 101011 01
Multiply Temporary Real

by Short Real 3 ew, w,ew | 110111 01
Multiply Short Real

by Temporary Real 3 w,ew,ew | 011011 01
Divide Short Real 3 W, W,ew | 101011 1
Divide Temporary Real

into Short Real 3 ew, w,ew | 110111 11
Divide Short Real

into Temporary Real 3 w,ew,ew | 011011 11
Negate Short Real 2 W, W 1100 1101
Absolute Value Short Real 2 W, W 1100 0011
Equal Short Real 3 w, W, b | 001011 011
Equal Zero Short Real 2 Ww, b 001001 101
Less Than Short Real 3 W, w, b | 001011 0111
Less Than or Equal Short Real 3 W, w, b ] 001011 1111
Positive Short Real 2 W, b 001001 011
Negative Short Real 2 W, b 001001 11
Convert Short Real

to Temporary Real 2 W,ewW 011001 11

11-13



Instruction Encoding

OPERATOR

iAPX U432 GDP

ORDER OPERAND | CLASS OPCODE
LENGTHS

REAL OPERATORS 123,
Move Real 2 dw,dw 000101 00
Zero Real 1 dw 001110 0
Save Real 1 dw 001110 1
Add Real : 3 dw,dw,ew 100111 00
Add Temporary Real to Real 3 evw,dw,ew 001111 00
Add Real to Temporary Real 3 dw,ew,ew | 010111 00
Subtract Real 3 dw,dw,ew | 100111 10
Subtract Temporary Real from Real 3 ew,dw,ew 001111 10
Subtract Real from Temporary Real 3 dw,ew,ew | 010111 10
Multiply Real 3 dw,dw,ew | 100111 01
Multiply Temporary Real by Real 3 ew,dw,ew | 001111 01
Multiply Real by Temporary Real 3 dw,ew,ew | 010111 01
Divide Real 3 dw,dw,ew 100111 11
Divide Temporary Real into Real 3 ew,dw,ew | 001111 11
Divide Real into Temporary Real 3 dw,ew,ew | 010111 1"
Negate Real 2 dw,dw 000101 10
Absolute Value Real 2 dw,dw 000101 01
Equal Real 3 dw,dw, b 000111 0
Equal Zero Real 2 dw, b 111001 0
Less Than Real 3 dw,dw, b | 000111 01
Less Than or Equal Real 3 dw,dw, b 000111 1
Positive Real 2 dw, b 111001 01
Negative Real 2 dw, b 111001 1
Convert Real to Temporary Real 2 dw,ew 100101 none
TEMPORARY-REAL OPERATORS
Move Temporary Real 2 ew,ew 101101 00
Zero Temporary Real 1 ew 101110 0
Save Temporary Real 1 ew 101110 1
Add Temporary Real 3 ew,ew,ew | 011111 00
Subtract Temporary Real 3 eW,ew,ew | 011111 10
Multiply Temporary Real 3 ew,ew,ew | 011111 01
Divide Temporary Real 3 ew,ew,ew | 011111 oM
Remainder Temporary Real 3 ew,ew,ew | 011111 111
Negate Temporary Real 2 ew,ew 101101 10
Square Root Temporary Real 2 ew,ew 101101 01
Absolute Value Temporary Real 2 ew,ew 101101 1

-y
-t
1
-
4=




iAPX 432 GDP

Instruction Encoding
OPERATOR ORDER OPERAND | CLASS OPCODE
LENGTHS
=23
Equal Temporary Real 3 ew,ew, b 1 101111 0
Equal Zero Temporary Real 2 ew, b 010101 0
Less Than Temporary Real 3 ew,ew, b 181111 01
Less Than or Equal Temporary Real 3 ew,ew, b | 101111 11
Positive Temporary Real 2 ew, b 010101 01
Negative Temporary Real 2 ew, b 010101 1
Convert Temporary Real to Ordinal 2 ew, w 110101 0
Convert Temporary Real to Integer 2 eWw, W 110101 01
Convert Temporary Real
to Short Real 2 ew, W 110101 11
Convert Temporary Real tc Real 2 ew,dw 0011701 none
OBJECT OPERATORS
Branch 0 none 100110 none
Branch True 1 b 1000 0
Branch False 1 b 1000 1
Branch Indirect 1 db 0000 0010
Branch Intersegment 1 w 110110 001
Branch Intersegment without Trace 1 W 110110 101
Branch Intersegment and Link 2 W, W 1100 1011
Breakpoint 0 none 11111 none
Copy Access Descriptor 2 db,db 0100 0001
Null Access Descriptor 1 db 0000 1010
Amplify Rights 2 db,db 0100 1001
Restrict Rights 2 w,db 101001 on
Retrieve Type Definition 2 db,db 0100 0101
Create Refinement 3 db, w,dw | 010011 none
Create Typed Refinement -2 dw,dw 000101 1
Create Object 3 db,db, w | 000011 0
Create Typed Object 3 db, w, w | 100011 01
Inspect Access Descriptor 2 db, w 010001 110
Inspect Object 2 db, w 010001 001
Equal Access 3 db,db, b 111101 0011
Move to Embedded Data Value 2 w,db 101001 1M1
Move from Embedded Data Value 2 db, w 010001 110
Lock Object 3 db,db, b | 111101 1011
Unlock Object 2 db,db 0100 1101
Indivisibly Add Short Ordinal 2 db,db 0100 0011
Indivisibly Add Ordinal 2 W, W 1100 0111
Indivisibly Insert Short Ordinal 3 db,db,db 0010 1011
Indivisibly Insert Ordinal 3 db, w, w 100011 011

11-15



Instruction Encoding iAPX 432 GDP

OPERATOR ORDER OPERAND | CLASS OPCODE

LENGTHS
23
Enter Environment 1 1 db 0000 0110
Enter Environment 2 1 db 0000 1110
Enter Environment 3 1 db 0000 0001
Copy Process Globals 1 db 0000 1001
Set Context Mode 1 db 0000 0101
Ad just Stack Pointer 2 db,db 0100 01011
Call 2 db, w 010001 101
Call Through Domain 2 db, w 010001 011
Return 0 none 000110 0
Return and Fault 0 none 000110 1
Send 2 db,db 0100 01111
Receive 1 db 0000 1011
Conditional Send 3 db,db, b 111101 0111
Conditional Receive 2 db, b 100001 111
Surrogate Send 3 db,db, w | 000011 1
Surrogate Receive 2 db, w 010001 111
Delay Process 1 db 0000 0111
Send Process 1 db 0000 1111
Set Process Mode 2 db,db 0100 1111
Read Process Clock 1 W 110110 (A
Send to Processor 3 db,db, b 111101 1111
Read Processor Status 1 W 110110 11
Move to Interconnect 3 db,db,db 0010 01111
Move from Interconnect 3 db,db,db 0010 11111
Block Move 3 W, w,db 110001 none
Where:

b byte (8 bits)

db double-byte (16 bits)
W word (32 bits)

dw double-~word (64 bits)
ew extended-word (80 bits)

11-16



CHAPTER 12
FAULT AND TRACE REFERENCE

This chapter provides reference information for the GDP's support of
Faulting and Tracing. The Fault and Trace Areas are defined and fault
encoding are listed.

FAULT REFERENCE

Faults can occur at the following severity levels (the least severe
first):

° Context-level fault: These faults require interruption of the
normal execution of instructions within the currently active
context. When such a fault occurs, information identifying its
cause is recorded by the processor in the Context Fault Data Area
of the process object. The Context Faulted bit in the process
status is set to 1. An intersegment branch is then effectively
executed to offset 64 of the Fault Instruction Object currently
designated as context fault handler (referenced by AD O in the
defining domain).

° Process-level fault: These faults require suspension of the
faulted process and repair by a fault handling process. When such
a fault occurs, the processor is preempted from executing the
currently running process and information about the fault is
recorded in the Process Fault Data area in the process carrier of
the faulted process. The Process Faulted bit in the process status
is set to 1. The Second Port AD in the process carrier is copied
into the Save Port AD location of the process carrier. The carrier
of the preempted process is then sent as a message to the Fault
Port referenced by its process object. The processor then attempts
normal dispatching at its current dispatching port.

° Processor-level fault: The most severe fault disruption of
processing is a processor-level fault., Such a fault requires the
suspension of both the executing process and the normal dispatching
mechanism for the processor. When such a fault occurs, information
about the fault is recorded in the Processor Fault Access and
Processor Fault Data areas of the faulted processor object, If
there is a process associated with the processor which is not
process-faulted, the execution of the process is preempted and it
is forwarded to the second port in its carrier. If the current
process 1is process-faulted, the Message Received bit in the
processor Carrier Status is set to 1 and the incoming message of
the processor carrier is set to reference the current process. The
processor dispatching mode 1is then switched from Normal to
Diagnostic and the processor attempts dispatching at the Diagnostic
Dispateching Port (referenced in the processor object).

12-1



Fault and Trace Reference iAPX 432 GDP

FAULT AREA FORMATS

Fault areas are used to record appropriate fault information. The
information can be used by fault handling software to determine the
nature of the fault and to administer recovery. Each Fault Area has a
fixed format which defines fields for any information that may be
stored by faults at a specific level. Which fields actually contain
valid information after a fault depends on the specific fault.

PROCESSOR FAULT ACCESS AREA

The Processor Fault Access Area in the processor object is organized as
follows:

Access Descriptor
Index (32 bits each)

AD to Current Carrier 8

AD to Current Port 9

The fields have the following meanings:

Current Carrier (AD 8)

This AD references the carrier being operated on by a processor
port operation when the fault occurred.

Current Port (AD 9)

This AD references the port being operated on by a processor port
operation when the fault occurred.

12=2



iAPX 432 GDP Fault and Trace Reference

PROCESS FAULT ACCESS AREA

The Process Fault Access Area in the process access part is organized
as follows: ' ' '

Access Descriptor
Index (32 bits each)

AD to Current Carrier or New AD 8
AD to Current Port 9
AD to Current Surrogate Carrier 10

The fields have the following meanings:

Current Carrier or New AD (AD 8)
As Current Carrier, this AD references the carrier being operated
on by a port operation when the fault occurred. As New AD, this
field is written by the processor when an allocation-related fault

occurs. It then contains the associated access descriptor of the
newly allocated OD.

Current Port (AD 9)

This AD references the port being operated on by a port operation

tthan Flha Fainl e AanaAiimma A
WIICE: UG 1 AUl v UvLUl Ll SUe

Current Surrogate Carrier (AD 11)

This AD references the unrefined surrogate carrier specified by an

interprocess SURROGATE SEND or SURROGATE RECEIVE instruction that
faulted.

12-3



Fault and Trace Reference iAPX 432 GDP

ALLOCATION FAULT AREA
The Allocation Fault Area in the Process Object is organized as follows:
Byte
Destination Displacement 14 Displacement
Destination Access Selector 12
10
— SRO AD Image —
8
The fields that constitute the Allocation Fault Area have the following
meanings:
SRO AD Image (Bytes 8 - 11)

This 32-bit field 1is written by the processor when an
allocation-related fault occurs. It then contains the image of the
associated access descriptor for the specified SRO. A value of
zero indicates the process allocation stack was specified.

Destination Access Selector (Bytes 12 - 13)

This 16-bit field is written by processor when an
allocation-related fault occurs. It is the access selector for the
destination AD associated with the newly allocated object
descriptor. In certain operators, this field contains the access

selector of the data object where a boolean result should be
stored.

Destination Displacement (Bytes 14 - 15)

12-4

In some operators, this 16-bit field contains the displacement of
the boolean result.



iAPX 432 GDP Fault and Trace Reference

FAULT DATA AREA

The Fault Data Area is a iU8-byte record organized as follows:

Byte
n+46 Displacement

B First Fault Data Item ]

— _—
n+38
n+36

B Second Fault Data Item ]

B - n+28
n+26
n+24

Fault Displacement n+22
Fault Access Selector n+20
Fault Code n+18
Faulted Operator ID# n+16
Processor Status n+14
Process Status n+12
Fault Status n+10
Pre-Inst. Stack Pointer n+8
Post-Inst. Stack Pointer n+6
Pre-Inst. Instruction Pointer n+4
Post-Inst. Instruction Pointgr n+2
Faulted Inst. Obj. DAI n

12-5



Fault and Trace Reference iAPX 432 GDP

The Fault Data Area for context-, process-, and processor-level faults
has the same organization (shown above). Process objects contain Fault
Data Areas for context- and process-level faults. Processor objects
contain Fault Data Areas for processor-level faults. The fields in the
Fault Data Area are interpreted as follows:

Faulted Inst. Obj. DAI (Bytes n thru n+1)
Records the DAI for the instruction object in which the faulted
instruction is located.

Post-Inst., Instruction Pointer (Bytes n+2 thru n+3)
Records the instruction pointer of the instruction physically
following the instruction that caused the fault. If the fault
occurred during instruction decoding, this field is undefined.

Pre-Inst. Instruction Pointer (Bytes n+4 thru n+5)

Records the instruction pointer of the instruction which caused the
fault.

Post-Inst. Stack Pointer (Bytes n+6 thru n+7)
Records the operand stack pointer at the time the fault occurred.
This value should be incremented by 2 if the Post-Inst. Stack Full
bit in the Fault Status is 1.

Pre-Inst. Stack Pointer (Bytes n+8 thru n+9)
Records the operand stack pointer at the beginning of the
instruction that caused the fault. This value should be
incremented by 2 if the Pre-Inst. Stack Full bit in the Fault
Status is 1.

Fault Status (Bytes n+10 thru n+11)
The Fault Status field has the following organization:

15 43210

XXXX P

L——- Result Destination
b= Inexact Result
Pre-Inst. Stack Full
Post-Inst. Stack Full
Execution Phase

These fields are interpreted as follows:

Result Destination (Bit 0)

This bit records where the operand destination should have
been:

0 -~ Destination was the operand stack

1 -~ Destination was in memory

12-6



iAPX U432 GDP Fault and Trace Reference

Inexact Result (Bit 1)
This bit records whether the generated result was exact or
inexact:
0 - exact
1 - inexact

Pre=Inst. Stack Full (Bit 2)

This bit records whether the 16-=bit top of stack register

AT viiTl wvis U= vy vawn
(within the GDP) was occupied at the beginning of the faulted
instruection:
0 - empty

1 - occupied

Post-Inst. Stack Full (Bit 3)

This bit records whether the top-of-stack register (within the
GDP) was occupied when the instruction faulted:

0 - empty

1 - occupied

Execution Phase (Bits 12 - 15)
This 4-bit field records a value that indicates the phase of
execution when the fault occurred. It is used to identify
fault handling strategies in the more complex operators. A
value of zero indicates that the instruction can be
re-executed with no fault handling repair of data necessary.

Process Status (Bytes n+12 thru n+13)

This 16-bit field records the process status at the time the fault
ocecurred.

Processor Status (Bytes n+14 thru n+15)
This 16-bit field records the processor status at the time the
fault occurred.

Faulted Operator ID# (Bytes n+16 thru n+17)
If the fault occurred during instruction decoding, this field is
zZero. Otherwise, this field records the operator ID# of the
faulted instruction.

Fault Code (Bytes n+18 thru n+19)
The Fault Code field contains a processor-written 16-bit encoding
that indicates the specific fault that occurred. The detailed

encodings of this field are defined in subsequent sections of this
chapter.

Fault Access Selector (Bytes n+20 thru n+21)
The interpretation of this field varies depending on the specifie
fault, See the following sections of this chapter for more
details,

Fault Displacement (Bytes n+22 thru n+23)
The interpretation of this field varies depending on the specific
fault. See the following sections of this chapter for more
details.

12=7



Fault and Trace Reference iAPX 432 GDP

Second Fault Data Item (Bytes n+28 thru n+37)

The wvalue in this field depends on whether the fault is
pre-operation or post-operation:

) If the fault is pre-operation, this field contains the value
of the source operand 1. Unused high-order bits are
undefined.

) If the fault is post-operation, this field is not defined.

First Fault Data Item (Bytes n+38 thru n+47)

The value in this field depends on whether the fault is
pre-operation or post-operation:

] If the fault is pre-operation, this field contains the value
of the source operand 2. Unused high-order bits are
undefined.

° If the fault is post-operation, this field contains the value
of the exceptional result. Unused high-order bits are
undefined.

PROCESS FAULT RESTART AREA

The Process Fault Restart Area in a Process Carrier Object is organized
as follows:

Byte
Instruction Pointer 22 Displacement
Instruction Object DAI 20
Operand Stack Pointer 18
Restart Status 16

The fields that constitute the Process Fault Restart Area have the
following meanings:

Restart Status (Bytes 16 - 17)
The lower bit of this field is the Restart Boolean and determines
whether the next 3 fields (Operand Stack Pointer, Instruction

Ob ject DAI, and Instruction Pointer) should be copied by the GDP
into the corresponding entries of the current context when the

process is restarted. The Restart Boolean also determines whether

the entire Restart Status field will be copied into the Process
Status for the process. (The Restart Boolean bit itself will thus

be copied into the Unbound bit in the Process Status; the Unbound
bit is cleared when the process is bound to the processor). If the
Restart Boolean is false, no copy is performed. Otherwise, the
three context fields and one process field are copied, then the
Restart Boolean bit 1is cleared by the processor. This allows
restarting a faulted process without changing the current context.




iAPX 432 GDP Fault and Trace Reference

Operand Stack Pointer (Bytes 18 - 19)

Instruction Object DAI (Bytes 20 - 21)

Instruction Pointer (Bytes 22 - 23)
These three fields have the same interpretation as the
corresponding fields in the context object.

FAULT CODES

FAULT TYPES

Faults are categorized into seven general types as determined by bits 5
through 8 of the Fault Code field:

15 8 7 0

X XxxxxxT TTTx x x XX

In subsequent encoding diagrams in this chapter, the x values designate
bits that are undefined for the particular fault type being described.
The TTTT bits shown above are used to encode the general type of the
fault that occurred. In addition to the TTTT bits, certain of the
other bits in the Fault Code are used to further encode the nature of
the fault.

The following list defines the TTTT encodings and gives a two letter
mnemonic for the fault type. These mnemonics are used throughout this
chapter.

TYPE TTTT MNEM Faults

0000 FF All other faults not named here

0001 IP Instruction Pointer Overflow fault

0010 TS Test Object Type or Entry Type faults

0100 SO Segment Overflow fault

0101 MO Memory Overflow fault (physical addr >= 2¥¥24)
0110 RR Read Rights fault »

0111 WR Write Rights fault

OVt EN-—=O

TTTT values 3 and 8 through 15 are undefined.
All faults of types 1 through 7 are process-level faults. Subsequent

sections of this chapter describe the more detailed fault encodings for
the different fault types.

12-9



Fault and Trace Reference ‘ iAPX 432 GDP

Type 0 Faults

Type 0 faults have the following bits defined in the Fault Code field:

15 8 7 0

X xxxxLLO 000X EEEE

The LL bits encode the fault level as follows:

LL Desecription
00 Context-Level Faults
01 Process-Level Faults (group 1)

10 Process-Level Faults (group 2)
11 Processor-Level Faults

The EEEE bits encode the specific fault within the level group.

The following Type 0 Fault List presents the type 0 faults in the order
of their encoding. The encoding column of this table (and of other
tables in the following sections) contains the LL EEEE bits if the type
is 0 (FF).

12-10



iAPX 432 GDP Fault and Trace Reference

TYPE O FAULT LIST

FAULTS | TYPE | ENCODING
: - e — LL EEEE~
Domain Error FAult c..eeeeeececssccscscsssecsessesss JO (FF)] 00 0000
OVErfloWw FAUIL ceeececvenccnscsscsscscscscscscscsnss JO (FFJJ GO 000A
UNderflow FAULL ceeececessccccccccscccssccsesecessss |0 (FF)] 00 0010
Inexact FAUlt v.ceeeceeccscccacecacccsccscscssesssss JO (FF)] 00 0011
Return FAUlt cececeeccscsccscasscscacscscssnscsssses |0 (FF)] 00 0100

LL EEEE=
(FF)] 01 0000
(FF)} 01 0001
(FF)] 01 0010
(FF)} 01 0011
(FF)] 01 0011
(FF)} 01 0100
(FF)| 01 0101
(FF)| 01 0101
(FF){ 01 0101
(FF)| 01 0101
(FF)§ 01 0101
(FF)| 01 0101
(FF)] 01 0110
(FF)} 01 0110
(FF)} 01 0110
(FF)§ 01 0110
(FF)] 01 0110

2 e ~aanm

(FFjg 01 0110
(FF)} 01 0110
(FF)] 01 0111
(FF)] 01 0111
(FF)] 01 0111
(FF)] 01 1000
(FF)§} 01 1000
(FF)] 01 1000
(FF)}] 01 1001
(FF)| 01 1001
(FF)} 01 1001
(FF)] 01 1001
(FF)} 01 1001
(FF)} 01 1010
(FF)] 01 1010
(FF)| 01 1010
(FF)] o1 1011
(FF)} 01 1100
(FF)] 01 1101
(FF)| o1 1110
(FF)Y 01 1111
LL EEEE=
(FF)| 10 0000
(FF){ 10 0000

Access Descriptor Validity Fault ...ccceccecccsnnaas
Object Descriptor Fault .eececececccccccccccsscasnes
Domain Access Index Overflow Fault ..ceecececsccccees
Destination Delete Rights FAull .eeeecececccccsannss
Race Condition Fault .ecesececccccsnccsscccscsaconns
Level FAult tuiueeeescocersaconcosccssccncsscscscnncs
Access Path Object Descriptor Validity Faults ......
Instruction Object Type Rights Fault ....eeececccens
0dd Interconnect Descriptor Base Address Fault .....
Source AD Validity Fault ..eeceeseccccccccaseccncans
Surrogate Carrier Validity ceecceceecccccccscscncocss
Surrogate Carrier Type Rights Fault ..ceeeeecenscens
Context Parameters Size Faults .ceeeececccccccsccscss
TCO Type Rights Fault ...ceceececcccsccasssccnncnnane
Odd Displacement Fault ..ceccccceccccccsscescsasoscen
Port Type Rights FAult .ecececcecccccssnscccsasccnsss
PCO Type Rights Fault ...cceeeccccccccscsccccsconnsns
Process Object Type HRights FAULT sececevccsccsccscecs
Source Representation Rights Fault ...ccecceecccccess
Context Object Type Rights Faulf .eeeevececsscccccase
SRO Type Rights Fault ..cceeccecocscsscccccscccsccnne
Destination Port Type Rights Fault ..iccevecaccccees
Clear Memory Size Fault ..cceeeecccesscccscccsacnces
Process Object Access Mismatch Fault ..cveecceccceee
Type Faull .seiceencescecccccssrecsvscscssnscccscanncns
Carrier Lock FAult ...iceeeeeeeecscscsascssssssscnnss
Object Lock ID/Type Fault ...ceeecsccccccccccscccces
Offset and Length Compatibility Fault .eeecececccess
PSO Lock Fault ..ceesecesccsesccccscccsccascsscccces
SRO Lock FAUlL ceeevacosncecccscsssacsssssccsncsnnsns
Domain Access Index Overflow Fault ..ccesecevcececse
Port Lock FAUll ..iceeecececoonsascssscscossscscsccas
Refinement Overflow Fault ..ccececccceccccccssccscss
Object Descriptor Exhaustion Fault ...ceceecceccscces
Carrier Queued Fault ..iicececscesccscscscccscenssnns
Storage Block Index Overflow Fault ccecececescrccnes
Storage Block Fragmentation Fault ..ccccccccesccecss
Storage Claim Underflow Fault ...cececescsceccscocnce

=R eRoReReReR=R»ReleNoRoNoleNoloNeoNoNoNaNoloNeNoleNololeNo oo lejololNe R Re)

Instruction Fetch Fault ® 9 9 00 9 00 0000 S OSSO PSS SESeOS
Instruction Object Displacement Fault ...cceceeccecce

[@ N o)

12-11



Fault and Trace Reference iAPX 432 GDP

FAULTS | TYPE | ENCODING
LL EEEE=

(FF)] 11 0000
(FF){ 11 0001
(FF)] 11 0001
(FF)| 11 0010
(FF)} 11 o011

Bus Error Fault .ceeecececcsccsescsccsccooncsscccnses
Process Level Objects Lock Fault ...eececcccsccovcns
Process Lock Fault ...ecececcescraccoscccccccscnsosns
PCO Response Count Fault .....cccocvcevvaccrccccocccs
PCO Lock FAaUlt sievveeeveccrscrssccocascsnsossnannnse

[eNeNoNeNe)

Type 1 Faults

Type 1 faults have only the TTTT bits defined in the Fault Code field
to distinguish it., A Type 1 fault is for an instruction pointer
overflow during a relative branch.

Type 2 Faults

Type 2 faults have the following bits defined in the Fault Code field:

15 8 7 0

ZQxxxxx 90 01T 0KKKKK

The Z bit indicates whether the fault resulted with testing the object
type or the object table entry type. The Z bit is defined as follows:

0 - OTE type test
1 - Object type test

The Q bit indicates whether the fault is associated with object table
qualification, It thus determines the meaning of the Fault Access

Selector and Fault Displacement fields in the fault data area as
follows:

0 - The fault did not occur during object table qualification and
the Fault Access Selector and Fault Displacement fields
contain the indices in the associated access descriptor.

1 - The fault occurred during object table qualification and the
Fault Displacement field contains the directory index.

12-12



iAPX 432 GDP Fault and Trace Reference

The Z bit determines two alternate interpretations of the KKKKK bits as
follows:

Z=0 (fault because of object table entry type test). The KKKKK
bits encode the expected values of the 1least-significant 5
bits of the object table entry. Their meanings are thus
determined by the expected Entry Type of the object table

entry. The following case is for a storage descriptor:
entry. 1s 1for a storage ptor:

12T A VaaUWLi: -~ AT AN

432 10
Z_“

K K K 11'
¢

— Entry Type

00 -~ Free Entry or Header Entry

10 - Refinement Descriptor

11 - Storage Descriptor
b 0D Valid (0 - Not Valid, 1 - Valid)
DP Valid (0 = Not Valid, 1 - Valid)
Allocated (0 - No, 1 - Yes)

Z

1 (fault because of system type test). The KKKKK bits encode
the expected value of the System Type field in the faulted
object table entry:

KKKKK ~ SYSTEM TYPE

00000 Generic object

00001 Ohiject Table Object
00010 Domain Object

00011 Instruction Object
00100 Context Object

00101 Process Object

00110 Processor Object

00111 Port Object

01000 Carrier Object

01001 Storage Resource Object
01010. Physical Storage Object
01011 Storage Claim Object
01100 Dynamic Type Object
01101 Type Definition Object
01110 Type Control Object
01111 RESERVED

10000 Processor Communication Object
10001

thru RESERVED

The encoding column of the tables in the later sections of this chapter
contains the Z KKKKK bits if the type is 2 (TS).

12-13



Fault and Trace Reference : iAPX 432 GDP

Types 4,5,6,7 Faults

These faults have the following bits defined in the Fault Code field:

15 8 7 0

IZWAAAXXT TTTxSSSS

These fault types are memory access faults. The W bit indicates
whether the fault occurred on a read or write:

0 - Faulted on Read
1 - Faulted on Write

The AAA and Z bits indicate the type of memory access that faulted:

AAA  Z TYPE OF ACCESS

Oxx x  Storage Address Space (Data Part)
The storage segment being accessed is indicated by
the SSSS bits. Displacement is given by the Fault
Displacement field in the Fault Data Area.

110 0 Storage Address Space (Access Part)
The storage segment being accessed is indicated by
the S3SS bits. Displacement is given by the Fault
Displacement field in the Fault Data Area,

100 X Access Environment
The access selector of the segment is given by the
Fault Access Selector in the Fault Data Area.

110 1 Interconnect Address Space
Displacement is given by the Fault Displacement
field in the Fault Data Area,

111 X Operand Stack :
Displacement 1is given by the Post-Inst. Stack
Pointer field in the Fault Data Area.

12-14



iAPX 432 GDP Fault and Trace Reference

The SSSS bits are defined for accesses to both the storage address

space (data part or access part) and interconnect address space. The
SSSS bits are defined as follows:

SSSS OBJECT BEING ACCESSED

0000 Context Access Part

0101 Processor Object

0111 Process Object

1000 Instruction Object

1010 Defining Domain

1011 Process Carrier

1100 Context Data Part

1101 Object Table Directory

1110 Object Cache (The Fault Access Selector field contains
the Access Selector of the object).

1111 Object Table Cache (The Fault Access Selector field bits

4-15 contains the directory index from the AD).

S3SS values 0001, 0010, 0011, 0100, 0110, and 1001 are undefined.

12-15



Fault and Trace Reference iAPX 432 GDP

GENERAL FAULT GROUPS

The following faults can occur anywhere during the execution of
an operator or sub-operation (which includes instruction decoding,
process dispatching, binding etc.). These faults are not explicitly
referenced in the later sections, The => symbol indicates that the
group name preceding it stands for any of the possible faults that are
listed after it., A group name is used in this table (and others in
this chapter) by enclosing the name in angle brackets <like so>. This

indicates that any of the possible faults of that named group are
included.

FAULT GROUPS | TYPE | ENCODING

Memory Reference Faults =>

Segment Overflow Fault 4 (s0)
Memory Overflow Fault 5 (MO)
Read Rights Fault 6 (RR)
Write Rights Fault 7 (WR)
Bus Error 0 (FF)} 01 0010

Instruction Fetch Fault

o

(FF)] 10 0000

Data Part Cache Qualification Faults =>
Data Part Altered Faults =>

Access Descriptor Validity Fault 0 (FF)] 01 0000
Object Descriptor Type Fault 2 (TS)] o 11111
2 (TS)] 0 01110
Object Table Cache Qualification Faults =>
Object Descriptor Type Fault 2 (TS)f 0 11111
Object Type Fault 2 (Ts)] 1 00001
Access Environment Altered Faults =>
Access Descriptor Validity Fault 0 (FF)| 01 0000
Object Descriptor Fault 0 (FF)| 01 0001

12-16



iAPX 432 GDP Fault and Trace Reference

DATA OPERATOR FAULT GROUPS

F AULT GROUP | TYPE | ENCODING
- LL EEEE-
i i
Domain Error Fault 10 (FF)| 00 0000
Overflow Fault {0 (FF)| 00 0001
Underflow Fault |0 (FF)| 00 0010
Inexact Fault {0 (FF)| 00 0011
| |
DATA OPERATOR FAULTS

The following table defines the data operator faults for the GDP. The
R and P columns indicate whether or not the operator makes use of the
Rounding Control bits or the Precision Control bits, respectively, in
the context status. An x in a column indicates that the operator does
make use of the corresponding control bits. A number in parentheses
following a fault type in data manipulation operators specifies the
nature of the exceptional result that is produced when that
post-operation fault occurs. These numbered notes are defined as

follows:

Exceptional result (in the First Fault Data Item) is undefined.
Exceptional result (in the First Fault Data Item) is the
single source operand.

(3) Exceptional result (in the First Fault Data Item) has correct

significand with wrapped-around exponent.

(4) The fault occurs only if the inexact control bit in the
process status is set. The First Fault Data Item contains the
exceptional result.

1
2

o~~~
N’ N

12-17



Fault and Trace Reference iAPX U432 GDP

OPERATOR R|P FAULTS COMMENT

Move Character -]-1 None
Zero Character -]-1 None
One Character ~l-1 None
Save Character -]-| None
AND Character ~]-! None
Inclusive OR Character |-|-]| None
Exclusive OR Character |-]-] None
Equivalence Character -|=] None
NOT Character -}-] None
Add Character ~}-1 Overflow(1) True result is > 255
Subtract Character -|-] overflow(1) True result is < 0
Increment Character ~-]-] Overflow(1) Attempt to increment 255
Decrement Character -|=] Overflow(1) Attempt to decrement O
Equal Character -}-] None
Not Equal Character ~]-] None
Equal Zero Character -}-] None
Not Equal Zero

Character -}-1 None
Less Than Character -{-] None
Less Than or Equal

Character -}-] None
Convert Character to

Short Ordinal -]-1 None
Convert Character to

Integer ~|-] None

12-18



iAPX 432 GDP Fault and Trace Reference

OPERATOR R|P FAULTS COMMENT
Move Short Ordinal -i-§ None
Zero Short Ordinal -}-1 None
One Short Ordinal -]-] None
--Save Short Ordinal —1=f None -

AND Short Ordinal -1-{ None
Inclusive OR

Short Ordinal -}-1 None
Exclusive OR

Short Ordinal -]-1 None
Equivalence

Short Ordinal -j=] None
NOT Short Ordinal -[—-{ None
Extract Short Ordinal -}-{ None
Insert Short Ordinal -}-1 None
Significant Bit

Short Ordinal -}-] None
Add Short Ordinal ~|={ Overflow(1) True result is > 65,535
Subtract Short Ordinal l-l-1 Overflow(1) True result is < 0
Increment

Short Ordinal -|-} Overflow(1) Attempt to increment 65,535

Decrement

Short Ordinal -j-1 Overflow(1) Attempt to decrement 0
Multiply Short Ordinal }-}-] Overflow(1) True result is > 65,535
Divide Short Ordinal —1-1 Domain Error | Division by zero
Remainder

Short Ordinal -{-}{ Domain Error Division by zero
Equal Short Ordinal -}~ None
Not Equal

Short Ordinal -|-} None
Equal Zero

Short Ordinal -]-1 None
Not Equal Zero

Short Ordinal -]-1 None
Less Than

Short Ordinal -}-1 None
Less Than or Equal

Short Ordinal -]-1 None
Convert Short Ordinal

to Integer -|-~1 None

12-19



Fault and Trace Reference

FAULTS

iAPX 432 GDP

COMMENT

OPERATOR R
Move Short Integer -
Zero Short Integer -

One Short Integer -
Save Short Integer -

Add Short Integer -
Subtract Short Integer |-

Increment
Short Integer -
Decrement
Short Integer -
Negate Short Integer -
Multiply Short Integer |-

Divide Short Integer -

Remainder
Short Integer -

Equal Short Integer -
Not Equal
Short Integer -
Equal Zero
Short Integer -
Not Equal Zero
Short Integer -
Less Than
Short Integer -
Less Than or Equal
Short Integer -
Positive Short Integer |-
Negative Short Integer |-
Range Check
Short Integer -

Convert Short Integer
to Integer -

12-20

None
None

None
None
Overflow(1)

Overflow(1)

Overflow(1)
Overflow(1)
Overflow(1)
Overflow(1)

Domain Error
Overflow(1)

Domain Error
None

None

None

None

None

None

None

None
Underflow(1)
Overflow(1)

None

True result is > 32,767 or
< -32,768

True result is > 32,767 or
< -32 0768

Attempt to increment 32,767

Attempt to decrement -32,768
Attempt to negate -32,768
True result is > 32,767 or

< -32,768
Division by zero
Division of -32,768 by -1

Division by zero

< lower bound
> upper bound



iAPX 432 GDP Fault and Trace Reference

OPERATOR R{P FAULTS COMMENT
Move QOrdinal ~1-1 None
Zero Ordinal —]-] None
One Ordinal ~]-|] None
Save Ordinal -1-1 None
AND Ordinal ~1-] None
Inclusive OR Ordinal -]-{ None
Execlusive OR Ordinal -1-1 None
Equivalence Ordinal —-]-] None
NOT Ordinal ~]-} None
Extract Ordinal -}-| None
Insert Ordinal -1-1 None
Significant Bit
Ordinal -1-1 None
Add Ordinal : -]-1 Overflow(1) True result is
> 4,294,967,295
Subtract Ordinal -{-] Overflow(1) True result is < 0
Increment Ordinal -}-] Overflow(1) Attempt to increment
4,294,967,295
Decrement Ordinal -{-] Overflow(1) Attempt to decrement 0
Multiply Ordinal ~-}-| Overflow(1) True result is
> 4,294,967,295
Divide Ordinal -{-] Domain Error Division by zero
Remainder Ordinal ~1-] Domain Error | Division by zero
Index Ordinal -}-] None
Equal Ordinal -{-] None
Not Equal Ordinal =}-] None
Equal Zero Ordinal -}-| None
Not Equal Zero Ordinal |-|-] None
Less Than Ordinal -|-] None
Less Than or Equal
Ordinal -1-] None
Convert Ordinal
to Integer -}-| Overflow(2) Attempt to convert
ordinal with non-zero
high order bit
Convert Ordinal
to Temporary Real -}-1 None

12-21



Fault and Trace Reference

iAPX 432 GDP

OPERATOR R FAULTS COMMENT
Move Integer - None
Zero Integer - None
One Integer - None
Save Integer - None
Add Integer - Overflow(1) True result is
> 2,147,483,647 or
< =2,147,463,648
Subtract Integer - Overflow(1) True result is
> 2,147,483,647 or
< -2,147,483,648
Increment Integer - Overflow(1) Attempt to increment
2,147,483,647
Decrement Integer - Overflow(1) Attempt to decrement
-2,147,483,648
Negate Integer - Overflow(1) Attempt to negate
-2,147,483,648
Multiply Integer - Overflow(1) True result is

Divide Integer -

Remainder Integer -

Equal Integer -
Not Equal Integer -

Equal Zero Integer -
Not Equal Zero Integer |-
Less Than Integer -
Less Than or Equal
Integer -

Positive Integer -
Negative Integer -
Range Check Integer -

Convert Integer -
to Character

Convert Integer -
to Short Ordinal

Convert Integer -
to Short Integer

Convert Integer -
to Ordinal
Convert Integer -
to Temporary Real

12-22

Domain Error
Overflow(1)

Domain Error

None
None
None

None
None
None

None
None

Underflow(1)
Overflow(1)

Overflow(2)

Overflow(2)

Overflow(2)

Domain Error

None

> 2,147,483,647 or
< -2,147,483,648
Division by zero

Division of -=2,147,483,648

by -1
Division by zero

< lower bound
> upper bound

Attempt to convert
integer whose value is
> 255 0r <0

Attempt to convert
integer whose value is
> 65,535 or < O

Attempt to convert
integer whose value is
> 32,767 or < -32,768

Attempt to convert a
negative integer value



iAPX 432 GDP

Fault and Trace Reference

OPERATOR R}P FAULTS COMMENT
Move Short Real -}—§ None
Zero Short Real -{-} None
Save Short Real -|-1 None
Add Short Real x|x} Domain Error Invalid operand
Inexact(4) Inexact result
Add Temporary Real
to Short Real x{x{ Domain Error Invalid operand
Overflow(3) Exponent of true result is
> 16,383
Underflow(3) | Exponent of true result is
< -16,382
Inexact(4) Inexact result
Add Short Real '
to Temporary Real x|x] Domain Error Invalid operand
Overflow(3) Exponent of true result is
> 16,383
Underflow(3) | Exponent of true result is
< -16,382
Inexact(l) Inexact result
Subtract Short Real x{x3 Domain Error | Invalid operand
Inexact(l) Inexact result
Subtract Temporary
Real from Short Real |x]x] Domain Error Invalid operand
Overflow(3) Exponent of true result is
> 16,383
Underflow(3) | Exponent of true result is
< -16,382
Inexact(l) Inexact result
Subtract Short Real
from Temporary Real x{x{ Domain Error Invalid operand
Overflow(3) Exponent of true result is
> 16,383
Underflow(3) Exponent of true result is
< -16,382
Inexact(4) Inexact result
Multiply Short Real x}x| Domain Error Invalid operand
Inexact(4) Inexact result
Multiply Temporary
Real by Short Real x}x} Domain Error Invalid operand
Overflow(3) Exponent of true result is
> 16,383
Underflow(3) Exponent of true result is
< -16,382
Inexact () Inexact result

12-23



Fault and Trace Reference

OPERATOR R

FAULTS

iAPX 432 GDP

COMMENT

Multiply Short Real
by Temporary Real X

Divide Short Real X

Divide Temporary
Real into Short Real |x

Divide Short Real
into Temporary Real X

Negate Short Real -

Absolute Value

Short Real -

Equal Short Real -
Equal Zero Short Real -
Less Than Short Real -

Less Than or Equal

Short Real -
Positive Short Real -
Negative Short Real -

Convert Short Real to

Temporary Real -

12-24

Domain Error
Overflow(3)

Underflow(3)

Inexact(l)
Domain Error

Inexact(l4)

Domain Error

Overflow(3)
Underflow(3)
Inexéct(u)
Domain Error
Overflow(3)
Underflow(3)
Inexact(4)
Domain Error
Domain Error
Domain Error
Domain Error
Domain Error
Domain Error

Domain Error
Domain Error

Domain Error

Invalid operand

Exponent of true result is
> 16,383

Exponent of true result is
< -16,382

Inexact result

Invalid operand or
division by zero

Inexact result

Invalid operand, division
by zero, or division
by unnormalized value

Exponent of true result is
> 16,383

Exponent of true result is
< -16,382

Inexact result

Invalid operand or
division by zero

Exponent of true result is
> 16,383

Exponent of true result is

- < -16,382

Inexact result

Invalid operand
Invalid operand
Invalid operand
Invalid operand
Invalid operand
Invalid operand

Invalid operand
Invalid operand

Invalid operand



iAPX 432 GDP

OPERATOR

Move Real
Zero Real
Save ‘Real
Add Real

Add Temporary Real
to Short Real

Add Real to
Temporary Real

Subtract Real

Subtract Temporary
Real from Real

Subtract Real from
Temporary Real

Multiply Real

Multiply Temporary
Real by Real

Fault and Trace Reference

COMMENT

FAULTS
—

None
None
None

Domain Error
Inexact(4)

Domain Error
Overflow(3)

Underflow(3)
Inexact{y)

Domain Error
Overflow(3)

Underflow(3)
Inexact(Y)
Domain Error

Inexact(}4)

Domain Error
Overflow(3)

Underflow(3)
Inexact(4)

Domain Error
Overflow(3)

Underflow(3)
Inexact(4)
Domain Error

Inexact ()

Domain Error
Overflow(3)

Underflow(3)

Inexact(l)

Invalid operand
Inexact result

Invalid operand
Exponent of true
> 16,383
Exponent of true
< -16,382
Inexact result

Invalid operand
Exponent of true
> 16,383
Exponent of true
< -16,382
Inexact result
Invalid operand
Inexact result

Invalid operand
Exponent of true
> 16,383
Exponent of true
< -16,382
Inexact result

Invalid operand
Exponent of true
> 16,383
Exponent of true
< -16,382
Inexact result
Invalid operand
Inexact result

Invalid operand
Exponent of true
> 16,383
Exponent of true
< -16,382
Inexact result

result

result

result

result

result

result

result

result

result

result

is

is

is

is

is

is

is

is

is

is

12-25



Fault and Trace Reference

OPERATOR R

FAULTS

iAPX 432 GDP

COMMENT

Multiply Real by
Temporary Real X

Divide Real X

Divide Temporary Real
into Real X

Divide Real into
Temporary Real X

Negate Real -
Absolute Value Real -

Equal Real -
Equal Zero Real -
Less Than Real -
Less Than or Equal Reall-
Positive Real -
Negative Real -

Convert Real to
Temporary Real -

12-26

Domain Error
Overflow(3)

Underflow(3)

Inexact(l)
Domain Error

Inexact(U4)

Domain Error

Overflow(3)
Underflow(3)
Inexact(4)
Domain Error
Overflow(3)
Underflow(3)

Inexact(4)
Domain Error
Domain Error

Domain Error
Domain Error
Domain Error
Domain Error
Domain Error
Domain Error

Domain Error

Invalid operand

Exponent of true result is
> 16,383

Exponent of true result is
< -16,382

Inexact result

Invalid operand or
division by zero

Inexact result

Invalid operand, division
by zero, or division
by unnormalized value

Exponent of true result is
> 16,383

Exponent of true result is
< -16,382

Inexact result

Invalid operand or
division by zero

Exponent of true result is
> 16,383

Exponent of true result is
< -16,382

Inexact result

Invalid operand

Invalid operand

Invalid operand
Invalid operand
Invalid operand
Invalid operand
Invalid operand
Invalid operand

Invalid operand



iAPX 432 GDP

OPERATOR

FAULTS

Fault and Trace Reference

COMMENT

Move Temporary Real
Zero Temporary Real
Save Temporary Real

Add Temporary Real

Subtract
Temporary Real

Multiply
Temporary Real

Divide Temporary Real

Remainder
Temporary Real

Negate Temporary Real
Square Root
Temporary Real

Absolute Value
Temporary Real

None

None
None

Domain Error

Overflow(3)
Underflow(3)
Inexact(l)

Domain Error
Overflow(3)

Underflow(3)
Inexact (1)

Domain Error
Overflow(3)

Underflow(3)
Inexact(4)
Domain Error
Overflow(3)
Underflow(3)
Inexact(4)

Domain Error

Underflow(3)
Domain Error

Domain Error

Inexact(l4)

Domain Error

Invalid operand

Exponent of true result i
> 16,383

Exponent of true result is
< -16,382

Inexact result

™
(7]

Invalid operand

Exponent of true result is
> 16,383

Exponent of true result is
< -16,382

Inexact result

Invalid operand

Exponent of true result is
> 16,383

Exponent of true result is
< -16,382

Inexact result

Invalid operand, division
by zero, or division
by unnormalized value

Exponent of true result is
> 16,383

Exponent of true result is
< -16,382

Inexact result

Invalid operand, division
by zero, or division
by unnormalized value
Exponent of partial result
< -16383 A
Invalid operand

Invalid operand,

unnormalized operand, or

non-zero negative operand
Inexact result

Invalid operand

12-27



Fault and Trace Reference

OPERATOR R

FAULTS

iAPX 432 GDP

COMMENT

Equal Temporary Real -

Equal Zero Temporary

Real -

Less Than

Temporary Real -

Less Than or Equal

Temporary Real -

Positive Temporary

Real -

Negative Temporary

Real -

Convert Temporary Real
to Ordinal X

Convert Temporary Real
to Integer X

Convert Temporary Real
to Short Real X

Convert Temporary Real
to Real X

Domain Error

Domain Error

Domain Error

Domain Error

Domain Error

Domain Error

Domain Error

Overflow(2)
Inexact(y4)
Domain Error

Overflow(2)

Inexact(4)
Domain Error
Overflow(2)
Underflow(2)
Inexact(H4)
Domain Error
Overflow(2)
Underflow(2)

Inexact(l4)

Invalid operand or
unnormalized operand

Invalid operand or
unnormalized operand

Invalid operand or
unnormalized operand

Invalid operand or
unnormalized operand

Invalid operand or
unnormalized operand

Invalid operand or
unnormalized operand

Invalid operand,
unnormalized operand or
negative operand

Temporary real value is
> 4,294,967,295

Inexact result

Invalid operand or
unnormalized operand
Temporary real value is
> 2,147,483,647 or

< -2,147,483,648
Inexact result

Invalid operand or
unnormalized operand
Temporary real value has

exponent > 127
Temporary real value has

exponent < =126
Inexact result

Invalid operand or
unnormalized operand
Temporary real value has

exponent > 1023
Temporary real value has

exponent < -1022
Inexact result

12-28



iAPX U432 GDP Fault and Trace Reference

SUB-OPERATOR FAULT GROUPS

FAULT GROUPS | TYPE ] ENCODING

Store Access Descriptor Faults =)

Level Fault 0 (FF){ 01 0100

Destination Delete Rights Fault 0 (FF)] 01 0011
Object Qualification Faults =>

Access Descriptor Validity Fault 0 (FF)| 01 0000

Object Descriptor Fault 0 (FF)| 01 0001

Object Descriptor Type Fault 2 (Ts)] o 10111

2 (T3)} 0 11111

Descriptor Allocation Faults =>

SRO Type Rights Fault 0 (FF){ 01 0111

<Object Qualification Faults (SRO)> 2 (TS)| 1 01001

Object Descriptor Type Fault 2 (TS)} 0 00100

Object Descriptor Exhaustion Fault 0 (FF)} 01 101

Object Descriptor Type Fault 2 (TS)| 0 00000
Segment Allocation Faults =>

<Object Qualification Faults (Claim)> 2 {Ts)} 1 o10M

<{Object Qualification Faults (PS0)> 2 (Ts)} 1 01010

PSO Lock Fault 0 (FF)} 01 1001

Storage Block Index Overflow Fault 0 (FF)}] 01 1101

(missing last block bit)

Storage Block Fragmentation Fault 0 (FF)| 01 1110

Storage Claim Underflow Fault 0 (FFYI 01 1111

Clear Memory Size Fault 0 (FF)| 01 1000
Port Operation Faults =>

<0Ob ject Qualification Faults (Carrier)> 2 (TS){ 1 01000

<Object Qualification Faults (Port)> 2 (TsS)} 1 00111

Carrier Lock Fault 0 (FF)} 01 1001

Port Lock Fault 0 (FF)}] 01 1010

Carrier Queued Fault 0 (FF)] 01 1100
Context Qualification Faults =>

<Object Qualification Faults (Context)> 2 (TS)| 1 00100

{Object Qualification Faults (Domain)> 2 (TS)| 1 00010

<Object Qualification Faults (Instruction)> 2 (TS)} 1 00011
Process Binding and Qualification Faults =>

<Ob ject Qualification Faults (Process)> 2 (TS)] 1 00101

Process Level Object Lock Fault 0 (FF)] 11 0001

{Context Qualification Faults>

12-29



Fault and Trace Reference iAPX 432 GDP

NON-INSTRUCTION INTERFACE FAULTS

OPERATOR | TYPE | ENCODING

Initialization =>
<Object Qualification Faults (Processor)> 2 (TS)] 1 00110
<0bject Qualification Faults (Obj. Table Directory)> |2 (TS)| 1 00001
<IPC Faults>

IPC Faults => -

<Object Qualification Faults (PCO)> 2 (TS)] 1 10000
PCO Response Count Fault 0 (FF)| 11 0010
PCO Lock Fault 0 (FF)| 11 0011

Idle =>
<Delay Port Service Faults>

Process Binding =>
<Object Qualification Faults (Carrier)>
Process Lock Fault
{Process Qualification Faults>
<Port Operation Faults>

(TS)| 1 01000
(FF)| 11 0001

on

Process Selection =>
<Delay Port Service Faults>

<Object Qualification Faults (Carrier)>
{Port Operation Faults>

N

(TS)]| 1 01000

12-30



iAPX 432 GDP Fault and Trace Reference

OBJECT OPERATOR FAULTS

OPERATOR | TYPE | ENCODING

Branch

Branch True

Branch False
Instruction Pointer Overflow Fault (IP)
Instruction Object Displacement Fault 0 (FF)| 10 0000

-

Branch Indirect
Instruction Object Displacement Fault 0 (FF){ 10 0000

Branch Intersegment

Branch Intersegment without Trace

Branch Intersegment and Link ‘
<0Ob ject Qualification Faults (Instruction)> 2 (Ts)]| 1 00011
Instruction Object Displacement Fault 0 (FF)! 10 0000

Breakpoint
no explicit fault cases

Copy Access Descriptor
{Store Access Descriptor Faults>

Null Access Descriptor
Destination Delete Rights Fault 0 (FF)] 01 0011

Amplify Rights
TCO Type Rights Fault
<Object Qualification Faults (TCO)>
Type Fault
Race Condition Fault (the access descriptor was
changed before the amplified value is stored back)

(FF){ 01 0110
(Ts)} 1 01110
(FF){ 01 1000
(FF)} 01 0011

[eNeol Vo]

Restrict Rights
no explicit fault cases

Retrieve Type Definition
Source AD Validity Fault 0 (FF)| 01 0101
<{Store Access Descriptor Faults>

12-31



Fault and Trace Reference iAPX 432 GDP

OPERATOR | TYPE | ENCODING

Create Refinement
Source AD Validity Fault
Object Descriptor Type Fault
Offset and Length Compatibility Fault
Refinement Overflow Fault
<Descriptor Allocation Faults>
Level Fault
{Store Access Descriptor Faults>

(FF)| 01 0101
(Ts)} 0 00110
(FF)] 01 1001
(FF)| 01 1010

O O MNNO

o

(FF)| 01 0100

Create Typed Refinement
TCO Type Rights Fault
<Object Qualification Faults (TCO)>
Source AD Validity Fault
Object Descriptor Type Fault
Type Fault
Offset and Length Compatibility Fault
Refinement Overflow Fault
<{Descriptor Allocation Faults>
Level Fault
{Store Access Descriptor Faults>

(FF)| 01 0110
(TS)] 1 01110
(FF)] 01 0101
(TS)} 0 00110
(FF)| 01 1000
(FF)| 01 1001
(FF)} 01 1010

OO OMNMNMNOMNO

o

(FF)| 01 0100

Create Object
<{Descriptor Allocation Faults>
<Segment Allocation Faults>
{Store Access Descriptor Faults>

Create Typed Object

TCO Type Rights Fault 0 (FF)}] 01 0110
<Object Qualification Faults (TCO)> 2 (TsS)] 1 01110
<{Descriptor Allocation Faults>

Level Fault 0 (FF)] 01 0100

<Segment Allocation Faults>
{Store Access Descriptor Faults>

Inspect Access Descriptor
no explicit cases

Inspect Object
Access Path Object Descriptor Validity Fault 0 (FF)] 01 0101

Equal Access

Move to Embedded Data Value
Move from Embedded Data Value
no expliecit fault cases

Lock Object

Source Representation Rights Fault 0 (FF)| 01 0110
<Object Qualification Faults>

Unlock Object

Source Representation Rights Fault 0 (FF)} 01 0110
{Object Qualification Faults)
Object Lock ID/Type Fault 0 (FF)1 01 1001

12-32



iAPX 432 GDP Fault and Trace Reference

OPERATOR | TYPE | ENCODING

Indivisibly Add Short Ordinal
Indivisibly Add Ordinal
Indivisibly Insert Short Ordinal
Indivisibly Insert Ordinal

no explicit fault cases

Enter Environment 1, 2, 3

<0bject Qualification Faults>
Copy Process Globals

{Store Access Descriptor Faults>

Set Context Mode

no explicit fault cases
Ad just Stack Pcinter

no explicit fault cases

Call

Call through Domain
{Object Qualification Faults (Domain)>
Domain Access Index Overflow Fault
Instruction Object Type Rights Fault
{Ob ject Qualification Faults (Instruction)>
Context Parameters Size Fault
Context Type Rights Fault
{Object Qualification Faults (Context)>
Instruction Object Displacement Fault

(TS)} 1 00010

(FF)] 01 0010
(FF)1 01 0101
(TS)| 1 00011
(FF)| 01 0110
(FF)] 01 0111
(TS)} 1 00100

(FF)] 10 0000

oONOOMNMNOON

Return
Context Type Rights Fault
{Context Qualification Faults>
<Ob ject Qualification Faults (PSO)>
<Object Qualification Faults (Object Table)>
PSO Lock Fault
Instruction Object Displacement Fault

o

(FF)} 01 0111

(TS)| 1 01010
(TS)] 0 00100
(FF)| 01 1001
(FF)| 10 0000

oo

Return and Fault
<Return>
Return Fault 0 (FF)} 00 0100

Send

Receive

Conditional Send

Conditional Receive

Surrogate Send

Surrogate Receive
Surrogate Carrier Validity Fault
Surrogate Carrier Type Rights Fault
Destination Port Type Rights Fault
Port Type Rights Fault
Level Fault
{Port Operation Faults>

(FF){ 01 0101
(FF)| 01 0101
(FF){ 01 0111
(FF)| 01 0110
(FF)] 01 0100

OO OO0

12-33



Fault and Trace Reference iAPX 432 GDP

OPERATOR | TYPE | ENCODING

Delay Process

Send Process
Port Type Rights Fault
Level Fault
<Port Operation Faults>

(FF)} 01 0110
(FF)} 01 0100

o o

Set Process Mode
Process Object Type Rights Fault (FF)] 01 0110
Process Object Access Mismatch Fault 0 (FF)] 01 1000

o

Read Process Clock
no explicit fault cases

Send to Processor
PCO Type Rights Fault 0 (FF)] 01 0110
<Object Qualification Faults (PCO)> 2 (TS)] 1 01010

Read Processor Status
no explicit fault cases

Move to Interconnect
Move from Interconnect

0dd Displacement Fault 0 (FF)| 01 0110

0dd Interconnect Descriptor Base Address Fault 0 (FF)] 01 0101

<Object Qualification Faults (Interconnect)> 2 (TS)] 0 01100
Block Move

Offset Overflow 0 (FF)] 00 0001

12-34



iAPX 432 GDP Fault and Trace Reference

TRACE REFERENCE

TRACE OPERATION

GDP support for software debugging and analysis is based on the tracing
mechanism., When a trace event occurs, the instruction object Domain
Access 1Index (DAI), the instruction pointer, and a trace code are
recorded in the Trace Control Data Area in the current context data
part. An intersegment branch is then effectively executed to bit
displacement 64 of the Trace Instruction Object (specified by AD 1 in
the current defining domain).

A process may be in one of four trace modes as determined by the setting
of the Trace Mode field in the current process status:

00 - No Trace Mode (not tracing)
01 - Fault Trace Mode
10 - Flow Trace Mode

11 = Full Trace Mode
These trace modes are defined as follows:

No Trace Mode: rocess execution is as described throughout
the rest of this manual.

Fault Trace Mode: A trace event occurs prior to the execution of the
first instruction of a context-level fault handler,

Flow Trace Mode: A trace event occurs prior to the execution of the
first instruction of a context-level fault handler,
A trace event occurs after the execution of all
instructions that change the current instruction
object. This includes all intersegment branch
instructions, CALL, CALL THROUGH DOMAIN, RETURN, and
RETURN AND FAULT instructions. In RETURN or RETURN
AND FAULT instructions, a trace event also occurs
prior to the execution of the instruction,

Full Trace Mode: A trace event occurs prior to the execution of the
first instruction of a context-level fault handler.
A trace event occurs prior to the execution of every
instruection.

When a trace mode other than no trace is specified by a process, trace
events are generated as described whenever the process is executing an
instruction object which is opened for tracing. An instruction object
is open for tracing if it is accessed via an AD which has trace
rights. If an instruction object is not open for tracing to the
process, then no trace events are ever generated from within it,

12-35



Fault and Trace Reference iAPX 432 GDP

When a process which is in full trace mode transfers from a closed
instruction object to an open one, the first trace event generated is
prior to the execution of the first instruction in the open instruction
object. When such a process transfers from an open instruction object
to a closed one, the last trace event is generated immediately prior to
the instruction which causes the transfer.

When a process is in flow trace mode, the first trace event generated
is prior to the execution of the first instruetion in any open
instruction object independent of whether the transfer instruection is
located in an open or closed one. When a process is in the flow trace
mode, a trace event is also generated prior to the execution of a
Return instruction if the current instruction object is an open one.
This allows the current context and its associated local objects to be
examined before they are reclaimed by the Return instruction. If the
instruction object that a context returns to is an open one, another
trace event is generated prior to the execution of the next instruction
after the CALL or CALL THROUGH DOMAIN instruction.

Access descriptors to trace instruction objects, and to any associated
instruction objects (i.e., objects that the trace routine can branch
to) should have their Trace Rights bit Off. Otherwise, it may be
possible to get into an infinite 1loop. The current implementation
always forces the processor's trace enable off when branching to the
trace routine.

The trace mode bits of the current process can be changed by the SET
PROCESS MODE instruction.



iAPX 432 GDP Fault and Trace Reference

TRACE CONTROL DATA AREA

The Trace Control Data Area is located in the context data part and is
organized as fTollows:

Byte Displacement

Trace Event Code 12
Trace Instruction Pointer 10
Trace DAI 8

These fields have the following meaning:

Trace DAI (Bytes & ~ G)
This 16-bit field records the DAI in the defining domain of the
instruction c¢bject in which the trace event should resume.

Trace Instruction Pointer (Bytes 10 - 11)

A S

This 16-bit {field records the instruction pointer of the
instruction with which execution can resume aiter the trace event.

Trace Event Code (Bytes 12 - 13)

This 1€é-bit field records the encoding for the method used to

resunie. The trace event code is definea as follows:

1 indicates that normal instruction flow can be resumed by a
BRANCH INTERSEGMENT WITHOUT TRACE instruction using the TIrace
DAI and the Trace Instruction Pcinter.

2 indicates that normal instruction flow has to be resumed by
executing a RETURN instruction.

3 indicates that normal instruction flow has to be resumed by
executing @ RETURN AND FAULT instruction.

4 indicates fault trace and no Trace DAI nor Trace Instruction
Pcinter is recorded,

5 indicates @ BREAKPOINT inustruction is executed.

12-37






GLOSSARY

This glossary defines important terms used in this manual. Within the definitions,
a

references to other terms defined in this

LTILILOO LU Vel oo

il

glossary are underscored.

List of Terms Defined

access descriptor
access environment
access part

access rights
access selector

AD rights

attached processor

bit-field specifier
blocked
Boolean

carrier

central system
character
compaction

nnntavt nhiant
CLiiceie OL)eCt

data part

defining domain
delete rights
domain

domain access index
dynamic type
dynamic-type object

embedded data value

fault

FIFO
forwarding
fragmentation

garbage collection
general data processor
generie object

global heap SRO

heap SRO

instruetion object
integer
interconnect
interface processor
interprocessor
communication

level

level check
lifetime strategy
LIFO

local heap SRO

message

object

object deseriptor
object lock

object reference
object table

object table directory
object type

operand stack

ordinal

package
peripheral subsystem

physical storage object

port
process
process globals object

read rights

real

refinement
representation rights

segment

short integer

short ordinal

short real

stack SRO

storage claim object
storage resource object
system object

system type

temporary real

tvpe

type control object
type definition object
type manager

type rights

unchecked copy rights

write rights

processor communication object

processor object
processor type

Glossary-1




Glossary iAPX 432 GDP

access descriptor (AD): a reference to an iAPX 432 object that restricts
operations on both the object using the AD (access rights) and on the AD itself
(AD_rights). The iAPX 432 hardware ensures that access descriptors and the
objects they refer to can only be manipulated in controlled ways.

access environment: the set of all iAPX 432 objects that can be directly or
indirectly accessed from a given context. The access environment of a context is
determined by its defining domain, by the process globals object of the process
that contains the context, and by any access descriptors passed as parameters
from its caller, returned as results from operations called by the context,
received in interprocess communication, or created during the context's execution.

access part: a distinet, optional part of an iAPX 432 object that can only contain
access descriptors (ADs). The hardware limits operations on object access parts
to ensure that ADs are not corrupted. An access part can contain from 0 to 16,384
ADs.

access rights: attributes of an iAPX 432 access descriptor (AD) that restrict
operations on the referenced object using the AD. Access rights consist of
representation rights, whieh restrict the rights to read or write the referenced
object, and type rights, which restrict the right to execute certain high-level
operations using the AD (e.g., the right to send a message to a port).

access selector: a 16-bit data value that selects an access descriptor (AD) from
the current access environment of a context. The ENV selector field in an access
selector selects one of up to four objects that determine the current access
environment. The access index field in an access selector selects an AD from the
access part of the object specified by the ENV selector.

AD rights: attributes of an iAPX 432 access descriptor (AD) that restrict
operations on the AD itself. AD rights consist of delete rights and unchecked copy

rights.

attached processor (AP): a processor, usually an Intel microprocessor, which
controls the peripheral subsystem. The peripheral subsystem contains peripheral
devices, controllers, memory, the AP, and an iAPX 432 interface processor (IP), all
communicating on the peripheral subsystem's bus. Software running on the AP
controls the IP.

bit-field specifier: specifies a field of bits within an ordinal or short-ordinal
operand. The specifier gives the beginning bit position and width in bits of the
field.

blocked: the state of a carrier that is queued at a full port, waiting to send a
message, or is queued at an empty port, waiting to receive a message. A process
or processor is blocked if its carrier is blocked.

Boolean: a one-byte value of the character data type, used to represent logical
TRUE (xxxxxxx1) or FALSE (xxxxxxx0).

Glossary-2



iAPX 432 GDP Glossary

carriers an iAPX 432 system object that carries messages to and from ports, and
that may optionally be forwarded to a second port after completing a primary
operation. A carrier can be a process carrier, processor carrier, or surrogate
carrier. Process carriers and processor carriers directly represent processes and
processors in port operations; if such a carrier must wait for a port operation to
complete, then the corresponding process or processor waits as well. However, a
surrogate carrier, while it normally acts on behalf of some process, does not cause
any process to wait when it must wait, and multiple surrogate carriers can act on
behalf of a single process.

central system: the main iAPX 432 system in which multiple general data
processors (GDPs) and interface processors (IPs) share a common memory and
concurrently execute. I/O and initialization for the central system are provided
by one or more peripheral subsystems. The iAPX 432 interface processors are
part of both systems and provide the bridge between them.

character: a one-byte computational data type used to represent text characters,
Booleans, and unsigned integers in the range 0 to 255.

compaction: an operating system memory management service which relocates
objects in memory to combine fragmented free storage blocks, thus allowing the
allocation of larger segments. Compaction runs concurrently with user programs
and its operation is invisible (except in timing).

context object: an iAPX 432 system object that represents an activation of a
subprogram.

data part: a distinet, optional part of an iAPX 432 object that can contain any
information except access descriptors (ADs). Programs with proper rights to an
objeci can make arbitrary changes tc the chiect's data part uging any of the iAPX

432 data operators. A data part can contain from 0 to 65536 bytes.

defining domain: the domain through which the current context was called. This
domain is a major part of the context's access environment. The caller usually
possesses an access for just some refinement of the domain (its "publie part"), but
the called context is able to access all of the domain.

delete rights: an attribute of an iAPX 432 access descriptor (AD) that restricts
the right to overwrite the AD with a new access value. If an AD is not null and
delete rights are absent, then the access value can be eliminated only by
reclaiming the segment that contains the AD.

domain: an iAPX 432 system object that represents a program module and can
contain or reference multiple subprograms and data elements. A domain is a
major part of the access environment of a context called through the domain.
The caller may have access to just a refinement of the domain, called the "public
part," but the called context can access the entire domain.

domain access index: a 16-bit data value that selects an access deseriptor (AD)
from the defining domain of the current context. The low two bits are ignored;
the high 14 bits index into the domain access part.

Glossary-3



Glossary iAPX 432 GDP

dynamic type: an iAPX 432 object type defined by software and represented by
an iAPX 432 type definition object (TDO).

dynamic-type object: an instance of a dynamie type.

embedded data value (EDV): a 31-bit ordinal value stored (embedded) in a null
access descriptor. Special operations are provided to convert ordinals to and from
EDVs. EDVs allow simple messages to be sent between processes in null ADs
without the overhead of allocating and referencing a separate message object.

fault: a processor-detected error during program execution. For example, if an
addition operation overflows, the GDP detects the error and raises a fault. There
are three levels of faults, increasing in severity: context faults, process faults,
and processor faults.

FIFO: First-In-First-Out, a queuing discipline in which the first item to enter a
queue is always the first to leave it.

orwardmg: the iAPX 432 operation of sendmg a carrier on to a second port after
the carrier has been used to send or receive a message sage at a first port.

fragmentation: the division of free storage into multiple noncontiguous blocks,
caused by the normal operation of heap allocation and garbage collection.

garbage collection: a concurrent operating system process that detects
unreferenced objects and reclaims the corresponding descriptors and storage.
Garbage collection runs concurrently with user processes and is invisible to them.

general data processor (GDP): the main type of processor provided by Intel to
execute within the iAPX 432 central system. The GDP is a general purpose
processor that provides object-oriented addressing and protection, operating
system funections in silicon, and hardware floating-point arithmetiec.

generic object: an iAPX 432 object with a system type (generie) that has no
hardware-recognized meaning and can be used to implement arbitrary software
structures. Other objects are either system objects, dynamie-type objects, or
interconnect objects.

global heap SRO: a heap SRO at level zero; only garbage collection can reclaim
storage allocated from a global heap.

heap SRO: an iAPX 432 storage resource object (SRO) on which garbage
collection is performed to reclaim discarded (unreferenced) objects. Objects can
be created and reclaimed in any order using a heap SRO, which can result in
fragmentation. Two types of heap SROs are defined, global heap SROs and local

heap SROs.

instruction object: an iAPX 432 system object that contains GDP instructions,
typically for a single subprogram.

integer: a four-byte computational data type used to represent signed whole
numbers in the range -2,147,483,648 to 2,147,483,647.

lossary-4



iAPX 432 GDP Glossary

interconnect: a secondary address space used for special-purpose hardware
registers associated with initialization, hardware configuration, and hardware
error logging. The interconnect address space is organized into special
interconnect objects which are normaliiy defined at system initialization.

interface processor (IP): an iAPX 432 processor that connects an iAPX 432
central system to one peripheral subsystem. The IP is a slave processor to the
attached processor (AP) in the peripheral subsystem. The IP provides the object
addressing and high-level operators needed to access the iAPX 432 central
system.

interprocessor communication (IPC): a protocol for sending special interprocessor
message codes (IPCs) between iAPX 432 processors.

level: a short-ordinal attribute of an objeet that characterizes the relative
lifetime of the object -- a greater level means a shorter lifetime. The level
number of a context is always one greater than the level of its caller. The level
number is normally one for the first context associated with a given process. All
objects allocated from a stack SRO have the same level number as the context in
which they are allocated, and all are reclaimed when control returns from the
context. Objects allocated from global heap SROs have level number zero, while
local heap SROs all have level numbers greater than zero. Objects at level zero
can only be reclaimed by garbage collection and never because a context returns.
Objects at level zero can only be ereated from a global heap SRO.

level check: a check when an access descriptor (AD) is copied, to ensure that the
level number of the destination object is greater than or equal to the level number
of the object referenced by the AD. This check ensures that no "dangling
references" exist when a context returns and deallocates all objects created in it.
The level check is suppressed if the AD being copied has unchecked copv rights.

lifetime strategy: an attribute of objects defined by iMAX that determines when
and how an object is deleted, and that derives from the type of SRO used to create
the object. The three lifetime strategies are global heap SRO, local heap SRO,
and stack SRO.

LIFO: Last-In-First-Out, a dynamic data structure organization in which the last
item added to the strueture is the first item removed from it.

local heap SRO: a heap SRO that is tied to some context and has a level greater
than zero. Objects allocated from a local heap can be reclaimed either by
garbage collection or by returning from the associated context.

message: any iAPX 432 object for which an access descriptor (AD) is copied from
a sending process to a receiving process.

object: a data strueture within memory described by an object descriptor and
accessed via access descriptors (ADs). Objects are the iAPX 432 construect for
access control, run-time type checking, storage management, and program
addressing.

object descriptor: an object table enty that gives object attributes needed by the
iAPX 432 processors, e.g., type and storage information.

Glossary-5



Glossary iAPX 432 GDP

object lock: a double-byte field in many iAPX 432 system objects used to
synchronize concurrent hardware and/or software access to the object containing
the object lock. Properly used, an object lock ensures that a process or processor
has exclusive access to an object while reading or updating it.

object reference: see access descriptor.

object table: an iAPX 432 system object containing object descriptors.

object table directory (OTD): a special object table that only contains object
descriptors for all other object tables in an iAPX 432 system.

object type: type information given in object descriptors for storage segments
and refinements, consisting of system type and processor type.

operand stack: an area within a context data part that provides an expression
evaluation stack for the context.

ordinal: a four-byte computational data type used to represent unsigned integers
in the range 0 to 4,294,967,295, and also to represent bit strings of 32 bits or less.

package: an Ada program unit specifying a collection of related entities such as
constants, variables, types, and subprograms. The visible part ("public part") of a
package contains entities accessible from outside the package. The private part
of a package contains structural details hidden from the user of the package;
these details complete the specification of the visible entities. The visible and
private parts together constitute the package specification. The package body,
which can be separately compiled, contains the bodies (implementations) of
subprograms, tasks, or other packages declared in the package specification. A
package is represented by an iAPX 432 domain.

peripheral subsystem: a computer system controlled by an attached processor
(AP), which manages one or more peripheral devices and is linked to an iAPX 432
central system by an iAPX 432 interface processor (IP). The peripheral subsystem
contains peripheral devices, controllers, memory, the AP, and an IP.

physical storage object (PSO): an iAPX 432 system object that provides a free
storage pool for use by an iAPX 432 storage resource object (SRO).

port: an iAPX 432 system object that provides a queuing mechanism with two
queues, a bounded message queue and an unbounded carrier queue. Ports support
FIFO, priority, and deadline-within-priority queuing. Ports are used for
interprocess communication and process scheduling and dispatching.

process: an iAPX 432 system object that represents part of a program that
execute concurrently with other parts, also represented as processes. Because
processes can compete for execution time, scheduling information is associated
with processes for use in selecting the next process to run, and to ensure that a
process does not monopolize a processor for longer than some time limit. A
program can consist of one or more processes.

Glossary-6



iAPX 432 GDP Glossary

process globals object (PGO): an iAPX 432 generic object that is designated by a
process as its globals object and that provides access to additional attributes of a
process's run-time environment. For example, a PGO can reference a heap SRO
used by the process to allocate heap objects.

processor communication objeet (PCO): an iAPX 432 system object used to send
and receive interprocessor messages (IPCs).

processor object: an iAPX 432 system object that contains state information for
one physical iAPX 432 processor.

processor type: an iAPX 432 object type field; each of its values designates the
kinds of processors that can reference objects with that processor type. The
alternatives are GDP only, IP only, and "all" (both GDP and IP).

read rights: attribute of an iAPX 432 access descriptor (AD) that controls the
right to read the referenced object.

real: an eight-byte computatmnal data type used to represent mgned floating
point numbers with magnitudes in the range 2. 2#10-308 to 1.8*10 (and also
Zero).

refinement: an iAPX 432 object that is contained within another objeet. When a
refinement is created, the displacement of the base of the refinement in the
underlying object and the size of the refinement are specified and are checked by
the GDP.

representation rights: attributes of an iAPX 432 access descriptor (AD) that
restrict the rights to read or write the referenced object. Representation rights
consist of read rights and write rights.

segment: a set of contiguous memory locations, from 0 to 131,072 (128K) bytes in
apparent size, defined by an iAPX 432 object descriptor. A segment can be in the
storage address space or the interconnect address space. (Interconnect segments
are a maximum of 65,536 bytes.)

short integer: a two-byte computational data type used to represent signed whole
numbers in the range -32,768 to 32,767.

short ordinal: a two-byte computational data type used to represent unsigned
integers in the range 0 to 65,535, and also to represent bit strings of 16 bits or
less.

short real: a four-byte computatlonal data type used to represent signed floating
point numbers with magnitudes in the range 1. 2%10-38 to0 3.4*103 8 (and also zero).

stack SRO: an iAPX 432 storage resource object (SRO) built in to the process
object of a process and used for allocation of objeets with lifetimes local to the
creating context. Allocation and deallocation for a stack SRO are strictly LIFO
(Last-In-First-Out). There is no object descriptor for a stack SRO, but it is
conceptually a distinet object.

Glossary-7



Glossary iAPX 432 GDP

storage claim object (SCO): an iAPX 432 system object used to limit the total
number of bytes of physical storage allocated via the set of heap SROs that
reference the SCO.

storage resource object (SRO): an iAPX 432 system object that provides for the
dynamie creation of objects by specifying an object table in which to allocate the
object descriptor for a new object, and by specifying a physical storage object
(PSO) that specifies a free storage pool from which the new objeet can be
allocated. An SRO specifies the lifetime strategy of objects allocated from it. A
heap SRO can also specify a storage claim object that limits the amount of
physical storage that can be allocated from a particular set of SROs.

system object: an iAPX 432 object with a system type that indicates that it has a
special role recognized by the hardware. Other objects are either generic objects
or dynamic type objects.

system type: an iAPX 432 object type field that distinguishes a class of iAPX 432
objects with a particular processor-recognized meaning.

temporary real: a ten-byte computatlonal data type used to represent mgn
floating point numbers with magnitudes in the range 1.7*10-4 4932 to 1.2*10
(and also zero).

type: a set of values with certain operations and representations defined for the
set.

type control object (TCO): an iAPX 432 system object that provides the right to
amplify specifie rights on access descriptors (ADs) for objects of a particular
type, and/or the right to create objects of the type, and/or the right to create
refinements of the type.

type definition object (TDO): an iAPX 432 system object that represents a
particular software-defined dynamic type.

type manager: an Ada package or iAPX 432 domain object that defines all basie
operations on a certain type of object. Any other operations on objects of the type
must be composed by using the basic operations. A type manager may distribute
accesses for the managed objects, but normally retains for itself the rights to
directly read or write those objects.

type rights: attributes of an iAPX 432 access descriptor (AD) that restrict the
right to execute certain operations using the AD, depending on the type of object
it references. For example, create rights are required to create a new object
using an SRO access.

unchecked copy rights: an attribute of an iAPX 432 access descriptor (AD) which,
if set, suppresses the level check when the AD is copied. When a new object is
created, unchecked copy rights are set on the returned AD only if the new
object's level is zero (i.e., if a level check could never fail). Amplifying
unchecked copy rights is a privileged operation, used only by O.S. software.

write rights: an attribute of an iAPX 432 access descriptor that controls the right
to write the referenced object.

Glossary-8



inte |® iAPX 432 General Data Processor
Architecture Reference Manual
171860-004

REQUEST FOR READER’'S COMMENTS

Intel’s Technical Publications Departments attempt to provide publications that meet the needs of all
Intel product users. This form lets you participate directly in the publication process. Your comments
will help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of this
pubiication. if you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Literature Department (see

page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make suggestions
for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
pubiications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME DATE

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

ary STATE ZIP CODE
(COUNTRY)

Please check here if you require a written reply. []



WE'D LIKE YOUR COMMENTS...

This document is one of a series describing Intel products. Your comments on the back of this form will help us
produce better manuals. Each reply will be carefully reviewed by the responsible person. All comments and
suggestions become the property of intel Corporation.

| Il || | NO POSTAGE
NECESSARY
(F MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 NE Elam Young Parkway
Hillsboro OR 97123

ISO-N TECHNICAL PUBLICATIONS



. e
INTEL CORPORATION, 3065 Bowers Avehue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

I1S-055/1K/0284/0SPS
MICROPROCESSORS



	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	09-00
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	09-55
	09-56
	09-57
	09-58
	09-59
	09-60
	09-61
	09-62
	09-63
	09-64
	09-65
	09-66
	09-67
	09-68
	10-001
	10-002
	10-003
	10-004
	10-005
	10-006
	10-007
	10-008
	10-009
	10-010
	10-011
	10-012
	10-013
	10-014
	10-015
	10-016
	10-017
	10-018
	10-019
	10-020
	10-021
	10-022
	10-023
	10-024
	10-025
	10-026
	10-027
	10-028
	10-029
	10-030
	10-031
	10-032
	10-033
	10-034
	10-035
	10-036
	10-037
	10-038
	10-039
	10-040
	10-041
	10-042
	10-043
	10-044
	10-045
	10-046
	10-047
	10-048
	10-049
	10-050
	10-051
	10-052
	10-053
	10-054
	10-055
	10-056
	10-057
	10-058
	10-059
	10-060
	10-061
	10-062
	10-063
	10-064
	10-065
	10-066
	10-067
	10-068
	10-069
	10-070
	10-071
	10-072
	10-073
	10-074
	10-075
	10-076
	10-077
	10-078
	10-079
	10-080
	10-081
	10-082
	10-083
	10-084
	10-085
	10-086
	10-087
	10-088
	10-089
	10-090
	10-091
	10-092
	10-093
	10-094
	10-095
	10-096
	10-097
	10-098
	10-099
	10-100
	10-101
	10-102
	10-103
	10-104
	10-105
	10-106
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	12-36
	12-37
	12-38
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	replyA
	replyB
	xBack

