INTEL CORP. 3065 Bowers Avenue, Santa Clara, California 95051 -« (408) 246-7501

M-8

A Guide to |
PL/M Programming

PL/M is a new high level programming language designed specifically for Intel 's 8
bit microcomputers. The new language gives the microcomputer systems program-
mer the same advantages of high level language programming currently available in
the mini and large computer fields. Designed to meet the special needs of systems
programming, the new language will drastically cut microcomputer programming
time and costs without sacrifice of program efficiency. In addition, training, docu-
mentation, program maintenance and the inclusion of library subroutines will all be
made correspondingly easier. PL/M is well suited for all microcomputer program-
ming applications, retaining the control and efficiency of assembly language, while
greatly reducing programming effort The PL/M compiler is written in ANS/ stand-
ard Fortran 1V and thus will execute on most machines without alteration.

SEPTEMBER 1973
REV. 1

© Intel Corporation 1973

TABLE OF CONTENTS

Section Page
I INTRODUCTION TOPL/M [e 1
II1. A TUTORIAL APPROACHTOPL/M i i i 2
1. The Organization ofa PL/M Program 2

2. Basic Constituents of a PL/M Program 4

2.1. PL/M Character Set iiiiinene.. 4

2.2. Identifiers and Reserved Words 5

2.8. Comments i e e 7

3. PL/M Statement Organizationcc0iiuiieenn.. 7

4. PL/MDataElements0 00t iinnennennn 9

4.1. Variable Declarations 9

4.2. Byte and Double Byte Constants 10

5. Well-Formed Expressions and Assignments 11

6. ASimpleExample e 15

T DO-GroUPS .ot ii ettt it ettt et e e e e 16

7.1. The DO-WHILE Groupciiuiineuinnnnnnnns 16

7.2. The Iterative DO-Group0 i inirenon.. 17

7.3. The DO-CASE i et enan 18

8. Subscripted Variables and the INITIAL Attribute 19

8.1. Subscript Declarations and Value References 19

8.2. The INITIAL Attribute 21

9. ASortingProgram e 22

10. Procedure Definitions and Procedure Calls 23
10.1. Procedure Declarations 23

10.2. Procedure Calls0. i iininnnnn.. 26

11. Based Variablesttt i 28

12. LongConstantsotiiii ittt iiinnnn. 32

13. Scopeof Variables 35

14. Statement Labelsand GOTO’s iiiiiienn... 38
14.1. Label Namesttt 38

14.2. GO TO Statements0iiiiiiiiinannn.. 39

14.3. Scopeof Labels i, 40

15. Compile-Time Macro Processing 43

16. Predeclared Variables and Procedures 45
16.1. Condition Code Variablesc.c...... 45

16.2. The MEMORY Vector............... 46

16.3. The TIME Procedure iiiininnnnnn. 46

16.4. Type Transfer Functions 47

16.5. Bit Manipulation Procedures 47

16.6. I/OProcessingcou e eenenennnnnn 48

III1. THE FORMAL DEFINITIONOFPL/M i 49
IV, COMPILING AND DEBUGGING PL/M PROGRAMS 51
1. PLM1 Operating Procedures.cuiiiiinueennnnan.. 51

2. PLM2 Operating Procedures. 61

3. Program Check-Out 63

4. Implementation-Dependent Operating Procedures 80

V. PL/M RUN-TIME CONVENTIONS FOR THE 8008 CPU 88
1. Storage Allocation it 88

2. Subroutine Linkage Conventions u... 92

3. Use of Assembler Language Subroutines with PL/M 93

A GUIDE TO PL/M PROGRAMMING

I. INTRODUCIION TO PL/M.

PL/M is a programming 1language designed specifically
for the INTEL MCS-8 Microcomputer. The language 1is
structurally similar to PL/I (in particular, PL/M <closely
resembles XPL), with data types and primitive operations
which reflect the architecture of the MCS-8 CPU. Thus, the
systems designer can use PL/M to quickly and easily express
programs which execute on the MCS-8 CPU, with little or no
loss 1in execution efficiency when compared to assembly
langquage programming. In addition, programs written in PL/M
are somewhat self-documenting, are =easily altered and
maintained, and provide upward software compatibility in the
INTEL 8000 CPU series. That is, programs written in PL/M
for the 8008 CPU can be recompiled for the 8080 CPU with no
alteration of +the source progranm. In each case, the
resulting object code takes advantage of the particular

target CPU architecture.

The discussion of PL/M given here 1is in two main
sections. Section II provides a tutorial description of
PL/M; only a minimal amount of programming experience 1is
assumed, and the discussion is mainly expository. Section
III presents a more formal approach to PL/M, providing the
exact syntactic structure and corresponding actions of each
statement in PL/M. Section III is intended as "a reference
manual, but may 'be used as an introduction to PL/M by
readers‘who are familiar with block structured 1languages
similar tc PL/I or XPL.

The remaining sections provide system notes on the use
of PL/M, including compiler error messages, control toggles,
and execution controls and commands. Appendix A contains
sample PL/M programs; it may be useful for the reader to
refer occassionally to this appendix to find - instances of
the various statements as they are discussed in Sections II
and III.

IT. A TUTORIAL APPROACH TO PL/M.

As mentioned above, this section describes the PL/M
programming language from a tutorial viewpoint. The various
structures of PL/M are introduced at various levels of
complexity. Examples of each of the constructs are also
given. The overall structure of a PL/M program is given
first.

1. The Organization of a PL/M Progran.

A PL/H program is arranged as a sequence of

declarations and statements separated by semicolons. The

declarations allow the programmer to control allocation of
storage, define simple macros, and define procedures.
Procedures are subroutines which are invoked through certain
statements in PL/M. These procedures may contain further
declarations which «control storage allocation and define
nested procedures. The procedure definition capabilities of
PL/M allow modular programming; that is, a particuiar
program can be divided into a number of subtasks, such as
processing teletype input, converting from binary to decimal
forms, and printing output messages. Each of these subtasks
is written as a procedure in PL/M. These procedures are
conceptually simple, are easy to formulate and debug, are
easily incorporated into a large program, and form a basis
for library subroutine facilities when writing a number of

similar progranms.

In addition to the procedure declaration facilities,
PL/M allows a number of data types to be declared and used
‘in a program. The two basic data types are Byte and
Address. A Byte variable or constant is one which can be

represented in an eight-bit word, while an Address variable

or constant requires sixteen Dbits (double byte). The:
programmer can declare variable names in a PL/M program to

represent Byte and Address values. PL/M also allows the

vectors of Byte or Address variables to be declared.

A number of arithmetic, 1logical, and relational
operations are definred in PL/M on Byte and Address variables
and constants. These operators and values are combined to
form expressions which resemble elementary algebraic
expressions. The PL/M expression

X * (Y-3) /R
represents the calculation of the value of X times the
quantity ¥-3 divided by the value of R. When values in
expressions _are both Byte and Address type, PL/M

automatically converts the Byte value to an Address value.

Expressions are the major components of most PL/M
statements. A simple statement form is the PL/M assignment
statement which allows the programmer to compute a result
and store it in a 1location defined by a variable nanme.
Thus, the assignment

Q=X* (Y-3) /R
first causes the computation of the expression to the right
of the equal sign. The result of this computation is then
saved in the memory location represented by the variable

name Q.

Additional statements are provided in PL/M for
conditional tests and branching, iteration «control, and

procedure invocation with parameter passing.

Input and output statements in PL/M allow the
programmer to read the eight-bit value 1latched into a
particular MCS-8 input port, or set the value of an
eight-bit output port. Procedures can be defined which use

these basic input and output statements to perform more

complicated I/0 functions.

A compile-time macro processing facility is also
provided in PL/M. This facility allows the programmer to
define a name in the program to represent an arbitrary
sequénce of characters. Each time the name is encountered,
the corresponding character sequence is substituted into the

source progranm.

The section which follows provides a detailed
description of the format of a PL/M progranm.

2. Basic Constituents of a PL/M Program.

PL/M programs are written in free-form. That is, the
input lines are column independent and blanks can be freely
inserted between the -elements of the program. The only
requirement is that the declarations and statements are all
terminated with a semicolon. The characters recognized by
PL/M are given below. These characters can be combined to
form identifiers and reserved words.

2.1. PL/M Character Set. The character set recognized
by PL/M 1is a subset of both the ASCII and EBCDIC character
sets. The valid PL/M characters consist of the alphanumerics

0123456789
ABCDEFGHIJKLMDNOPQRS STUVWIXZY?Z
along with- the special characters
$ =/ () +- v x <>
all other characters are ignored by PL/M (a blank is

substituted for an unrecognized character).

Special characters and combinations of special
characters have particular meanings in a PL/M program, as
shown below. ' ”

Symbol Name Use

$ dollar compil

sign and id
= equal relati
:= assign imbedd
. dot addres
/ slash divisi
() parens list a
+ plus additi
- minus subtra
' apostrophe strin
* asterisk multip
< less relati
> greater "
<= less or "

egual
>= greater "

or equal

<> not equal "
colon label

semicolon declar

2.2. Identifiers
identifier is used to
procedure names, macro
Identifiers can be up to 3
character must be alphab
can be alphabetic or numer
ignored by PL/M, and can b

name. Thus, valid identif

Lo

Note, however, that
words in PL/M which cannot

er controls, number

entifier spacer

onal test and assignments

ed assignments

s indicator

on symbol and comment delimiter
nd subscript delimiter

on

ction

g delimiter

lication and comment delimiter

onal tests

delimi ter

ation and statement delimiter

and Reserved Words, A PL/M
represent names of variables,
names, and statement label names.
1 characters in length; the first
etic, and the remaining characters
ic. 1Imbedded dollar signs ($) are
e used to improve readability of a
iers are

X
GAMMA

NGIDENTIFIER
INPUT$COUNT

there are a number of reserved

be used as names in a PL/M

program. These reserved words are shown below
Reserved Word Use

IF conditional tests and branching
THEN

ELSE

DO statement grouping
PROCEDURE and procedure definition
END ‘
DECLARE data declarations

BYTE

ADDRESS

LABEL

INITIAL

DATA

LITERALLY

BASED

GO unconditional branching
TO and iteration control

BY

GOTOQO

CASE

WHILE

CALL subroutine call

RETURN subroutine return

HALT machine stop

OR logical or

AND logical and

XOR logical xor

NOT logical not

MOD remainder after division
PLUS add with carry

MINUS subtract with carry

EOF end-of-file

Blanks may be inserted freely around identifiers and
special characters. Blanks are not necessary, however, when
two identifiers are separated by a special character. Thus,
the expression

X * (Y-3) /R
is equivalent to
X* (Y-3)/R
in PL/M.

2.3. Comments. Explanatory remarks can be used
throughout a PL/M program to improve readability and provide
a measure of self-documentation. Comments are sequences of
symbols from the character set of PL/M bounded by the symbol
pairs /* and */. Thus, the sequence

/*¥THIS IS A COMMENT ABOUT COMMENTS*/
is completely ignored by the PL/M compiler, and has no
effect on the program. Comments may be freely interspersed

in a PL/M program, and may appear anywhere a blank is valid.

2 PL/M Statement Organization.

The statements found in PL/M programs are one of three

basic types: simple statements, conditional statements, and

groups.

An example of a simple statement is thg PL/M assignment
, A =B+ C * D;
Note that simple statements are always followed by a
semicolon. Other forms of simple statements are defined 1in
later sections.

Conditional statements are preceded by the reserved
word IF and contain one or more other statements as a part

of the statement body. A conditional statement could be
written in PL/M as

IF A > B THEN A = Bj
which assigns the value of B to the variable A only if A's

value is greater than B's value.

A more complicated conditional statement involves an
alternative, denoted by the reserved word ELSE. The
conditional

IF A > B THEN C = A; ELSE C = Bj;
assigns the larger of the two values A and B to the variable
C.
Statements can be <collected together in groups which are
delimited by the reserved words DO and END. These groups of
statements are then +treated as a single statement in the
flow of ccntrol. The group could, for example, become a
part of a conditional statement: *
IF A > B THEN
DO; A = B; B = C;
END;
which would perform the two assignments to A and B only if

A is greater then B.

Simple statements, conditional statements, and groups
can be labelled for control flow purposes. The label may be
a PL/M identifier, which precedes the statement, and is
separated from the statement by a colon (:). Thus,

LAB1: A = B + C * D;
is an example of a simple statement labelled by LABI1.

The exact details of the various simple, conditional,

and statement groups are discussed in following sections.

j; PL/M Data Elements.

PL/M data elements represent single bytes, double
bytes, and strings corresponding to 8-bit wvalues, 16-bit
values, and ASCII character strings of length greater than
two. Data elements can be either variables or constants.
Variables are PL/M identifiers corresponding to values which
can change during execution of a PL/M program, while
constants have a value which is fixed. The expression

X * (Y-3) /R
involves the variables X, Y, and R, and the constant 3.

Variables must declared in PL/M programs before they
are used in expressions. The declaration tells the PL/M
compiler how to handle expressions and assignments which

involve the variable.

4.1, Variable Declarations. A declaration for a
variable or set of variables is headed by the reserved word
DECLARE and followed by either a single identifier or a list
of identifiers enclosed in parenthesis, and terminated by
one of the data types BYTE or ADDRESS. Thus, valid PL/M
declarations are:

DECLARE X BYTE;
DECLARE (Q,R,S) BYTE;
DECLARE (U,V,W) ADDRESS;
Thus, expressions involving only the variables X, Q, R, and
S produce single byte operations, while expressions
involving U, V, or W would produce double byte operations

and results.

Additional facilities are present in PL/M for declaring
vectors, macros, and data 1lists. These facilities are

discussed in later sections.

4.2. Byte and Double Byte Constants. Constants
representing single and double byte values can be expressed
in several different ways in PL/M. First, PL/M accepts
constants in the binary, octal, decimal, and hexadecimal
bases. In addition, ASCII strings of length one or twc are
translated tc single and double byte constants.

In general, the base of a constant 1is represented by

one of the letters
B OQDH
following a sequence of digits. The letter B represents a
binary <constant, while the 1letters O and Q denote octal
constants. The letter D optionally follows decimal numbers.
Hexadecimal numbers consist of sequences of hexadecimal
digits (0,1, ... ,9,A,B,C,D,E,F) followed by the 1letter H.
Note that the leading digit of a hexadecimal number must be
a decimal digit to avoid confusion with a PL/M identifier (a
leading 0 is always sufficient). Any number not followed by
one of the letters B, O, Q, D, or H 1is assumed to be
decimal. The numbers must always be capable of
representation as a single or double byte value (a maximum
of 16 bits). Thus, the following are valid constants in
PL/M
2 33Q 110B 33FH 55D 55 OBF3H 65535

The dollar sign symbol may be freely inserted within
constants to improve readability. Thus, the binary constant
11110110011B
could be expressed as
111$1011$0011B

ASCII strings are represented by PL/M characters
enclosed within apostrophe symbols ('). Strings of length
one or two translate to byte and double byte values as
mentioned previously. Thus, the string

IAI

10

is the same as 65 decimal. A pair of apostrophes ('')
within a string results in a single apostrophe in the
internal representation of the string. Thus, the string
11191 hecomes a single apostrophe followed by the character

Q.

5. Well-Formed Expressions and Assignments.

PL/M expressions can now be more completely defined. A
well-formed expression consists of basic data elements
combined through the various arithmetic, 1logical, and
relational operators, in accordance with the usual algebraic
notation. Thus, an expression consists of a simple data
element, such as a number or variable, or an expression can
be two (sub) expressions separated by an operator:

expressionl operator expression2

Examples are
A+ B
A+ B ~-C
A*xX B+ C/ D ,
Operators in expressions have an assumed precedence which
determines the order in which the operations in the
expression are evaluated. The valid PL/M operators are
listed below from highest to lowest precedence. Orerators
listed on the same line are of equal precedence and are
evaluated from left-to-right when they occur in an
expression.
¥ / MOD
+ - PLUS MINUS
< K= <> = >= >
NOT
AND
OR XOR
The expression
A+ B * C

for example, results first in the computation of B times C

1

since the multiplication (*) has a higher precedence than
the addition (+). The result of this <computation 1is then
added to the value of A.

Parenthesis can be used to override the assumed
precedence Ly enclosing subexpressions which are to be
computed first. The expression

(A +B) *C
causes A + B to Dbe evaluated first. The result is then
multiplied by C's value. Following are a number of

well-formed PL/M expressions

A+ B-C*0D
A- (B+C) *0D
A/ (B+ C) *
A/ (B +C)
A OR B AND OFH
A+ B> C=-0D

Each expression results in either a single or double
byte value. The number of bytes in the result is determined
by the number of bytes required by the subexpressions in the
result. Generally, 1f both operands in an expression are
byte values, the result is a byte value. If either operand,
however, 1is a double byte, the result is a doukle byte
value. In this case, the shorter operand 1is padded with

high-order zeroes.

Two exceptions to these rules occur in PL/M. The first
is in the <case of the *, /, and MOD operations. These
operators always result in a double byte value. The second
exception is the case of relational operators. A relational
test results in either a true or false condition. A true
condition 1is represented in PL/M by a byte value equal to
255 (all bits are 1's), and a‘false condition is represented
by the byte value 0.

12

Suppose the variables X, Y, and Z have been declared as
follows:
DECLARE X BYTE ;
DECLARE (Y,Z) ADDRESS;
given these declarations, the expressions below yield
results with the precision shown +to the right c¢f the
expression:
X + 5 single byte result
X + 300 double byte result
X + Y double byte result
Y + Z double byte result
X / 5 double byte result
X+ (Y> Z) single byte result

The NOT operator is a unary operator, and thus PL/m
expressions involving NCT take the form
NOT expression
The effect of the NOT operator is that all the bits of the
expression are inverted (1,s become O0's, and O0's becone
1's). In particular, true <conditions <change to false
‘conditions, and false conditions revert to true. Examples
of the use of the NOT operator are
NOT A
NOT (& > B)
NOT A OR B

For convenience, a unary minus sign is also allowed in

PL/¥ expressions. The form of the wunary minus ih an
expression is

- expression
The effect is exactly the same as the expression

0 - expression
where the "-% in this last case is the subtract operator.
The expression -1, for example, 1is egquivalent to 0-1,

resulting in the byte value 255.

13

Recall +that the assignment statement is used to store
the result of an expression into a variable. The declared
precision of the assigned variable affects the resulting
store operation. If the assigned variable is a single byte
variable, and the expression is a double byte result, the
high order byte is omitted in the store. Similarly, if the
expression yields a single byte result, and the receiving
variable is declared as type ADDRESS, the high order byte is

set to zero.

It is often convenient to assign the same expression to
several variables. This is accomplished in PL/M by listing
all the variables to the left of the equal sign, separated
by conmnas. The variables A, B, and C could all be set to
the expression X + Y with the single assignment

A, B, C=X + Y

A special form of the assignment is allowed within

expressions in PL/M. The form of an imbedded assignment is

and may appear anywhere an expression is allowed in PL/M.
The expression to the right of the assign symbol (:=) 1is
evaluated and then stored into the variable on the left.
The value of the imbedded assignment is the same as the
expression on the right. The expression
A+ (B:=C+D) - (E::=TF /G)
results in exactly the same value as
A+ (C+D) - (F/G)

except that the intermediaté results C+D and F/C are stored
into B and E, respectively. These intermediate computations
can then be used at a later point in the program without

recomputation.
Note that the form

A= (Bz:= (C:=X+17Y))
has exactly the same effect as the multiple assignment to A,

14

B, and C given previously.
It is now possible to construct a simple program based
upon these expressions and assignments.

6. A Simrle Example.

The following PL/M sample program reads data from input
ports 0 and 1, and writes the larger of these two values at
output port 0. ©Note that the twe pseudo-variables INPUT(0),
and INPUT(1) act like PL/M single byte variables, but have
the effect of reading the values latched into input ports 0
and 1, respectively. Similarly, the pseudo-variable
OUTPUT{0) can be used in an assignment statement in order to

write values to output port 0.

The complete PL/M program for performing this simple
function is shown below

DECLARE (I,J,MAX) BYTE;

/* READ INPUT PORT O AND SAVE IN VARIABLE I */

100E:
I = INPUT(O);

/* NOW READ INPUT PORT 1 AND SAVE IN VARIABLE J */
J = INPUT(1);

/* SET MAX TO THE LARGER OF THESE TWO VALUES */
IF I > J THEN MAX = I; ELSE MAX = J;

/¥ WRITE THE VALUE OF MAX AT OUTPUT PORT 0 */
OUTPUT (0) = MAX; '

/¥ GO BACK AND READ THE INPUT PORTS AGAIN */

GO TO LOOP;

EOF

The symbol EOF (end-of-file) 1is required in PL/M to
indicate the end of the program. Note also that the GO TO
statement causes program control to restart at the point

labelled 'LOOP:' where input values are read again.

15

In crder to effectively construct more comprehensive
PL/M programs, it is necessary to consider the structure of

PL/M statement groups, including the locp control groups.

1. DO Groups.

As mentioned previously, statements can be grouped
together within the bracketing reserved words DO and END as
a DO-group. Recall that the simplest DO-group is of the
form

DO;
statement-1;

statement-2;

s
. L3 -

statement-n;
END;
Several additional ~DO-groups are defined in PL/M which

control program flow. These groups are shown below.

7.1. The DO-WHILE Group. One form of the DO-group is
called a DO-WHILE. The DO-WHILE has the form
' DO WHILE expression;
statement-1;
statement-2;
statement-n;
END;
In this case, the expression following the reserved word
WHILE is evaluated before the statements within the group
are executed. If the expression evaluates to true (i.e.,
the rightmost bit of the result is 1), the statements up to
the <corresponding END are executed. At the end of the
group, program control is transferred to the top of the
DO-group and the expression is evaluated again. The group

is executed over and over until the expression results in a

16

false condition (the rightmost bit is 0). Consider the

following example:

A = 1;
DO WHILE A <= 3;
A=A+ 1;
END;
The statement A = A + 1 will be executed exactly three

times. The value of A at the end of execution of the group

is four.

7.2. The Iterative DO-group. An Iterative DO-group
allows a group of statements to be executed a fixed number
of times. The simplest form of the Iterative DO-group is

DO variable = expressionl TO expression2;
statement-1;
statement-2;
statement-n;
END;
The effect of this group is to first store expressicnl into
the variakle following the DO. The group is executed with
this initial value once, and control returns to the top of
the DO. The value of the variable is incremented by 1 and
tested against’' expression2. If the incremented value
exceeds expression2, contrcl transfers to the statement
folloiing the END; otherwise, the group is executed once
again. An example is
DO I =1 TO 10;
A = A + I;
END;
Note that this DO-group has exactly the same effect as the
following DO-WHILE:
I=1;
DO WHILE I <= 10;
A=A + I;
I=1I+ 1;

17

END;

A slightly more complicated form of an Iterative
DO-group allows a stepping value other than 1. This second
form is

DO variable = expr1 TO expr2 BY expr3;
statement-1;
statement-2;
statement-n;
END;
In this case, the variable following the DO is stepped” by
the value expr3 instead of by 1.

7.3. ThexDO—CASE. Another form of the DO-group is the

DO-CASE statement. The form of a DO-CASE group is

DO CASE expression;

statement-1;

statement-2;

statement-n;

END;
The effect of this group is the following. Upon entry to
the DO-CASE, the expression following the CASE is evaluated.
The result of this expression is a value k which must be
between 0 and n-1. This value k is used to select one of
the n statements of the DO-CASE to execute. The first case
corresponds to k = 0 (statement-1), the second case
corresponds to k = 1 (statement-2), and so-forth. Control
transfers to the selected statement, the statement is
executed, and control then passes to the statement following
the END. |

An example of the DO-CASE is:

DO CASE X - 5;
X=X+5; /% CASE 0 */

18

DO; /* CASE 1 */
X=X+ 10; Y = X - 3;
END;
/¥ CASE 2 */
DOI =3 TO 10; A = A + I;
END;

END /* OF CASES */ ;

Before giving more comprehensive examples, it is useful
to define the notion of a subscripted variable and its use
in a PL/M program.

8. Subscripted Variables and the INITIAL Attribute.

It is often wuseful in PL/M to —reference nmemory
locations with an "offset" from some base address. This

feature is allowed in PL/M through subscripting.

8.1. Subscript Declarations and Value References. A
subscripted variable is similar to a simple variable with
the addition of an expression enclosed within parentheses
following the variable name. The location referenced by the
subscripted variable is the sum of the base address of the
variable and the subscript expression. Any variable name
can be subscripted in PL/M.

Suppose a PL/M programmer declares the variables X, Y,
and Z as follows

' DECLARE (X,Y,2) BYTE;
The first memory location can be referenced simply as X or
as the subscripted variable X (0) . Similarly, X (1) refers to
the location Y, and X (2) references Z's location.

PL/M also allows a fixed number of locations to be set

aside in the declaration statement. These fixed locations
start at the variable name specified in the declare

19

statement. For example, the statement

DECLARE X (100) BYTE;
provides a memory area of 100 bytes starting at X. In this
case, X is called a vector. Note that the size of a vector

must always be a constant.

Several vectors of the same length can be declared in

the same declare statement. The statement
DECLARE (U,V,W) (50) ADDRESS;

causes three vectors of length 50 (each) to be allocated in
contiquous memory 1locations. Note, however, that these
vectors are of type ADDRESS, and thus each element regquires
two bytes; hence, U takes up the first 50 two-byte
locations, requiring 100 bytes altogether. The storage for
the second vector starts at V and requires the next 100
bytes. Similarly, W occupies the 100 byte area following V.

As mentioned previously, a subscript can be thought of
as a displacement from a base address. This displacement,
however, is affected by the declared ©precision of the
variable. That is, if the declared precision is BYTE, then
the displacement is measured in single bytes. TIf, however,
the variable is type ADDRESS, the displacement is measured
in doukle bytes. Thus, given the declaration of U, V, and W
above, the first element of U is U(0), and the last element
is U(49). The first element of V is V(0), or U(50).
Storage is always arranged so that double byte variables are
at memory addresses which are even numbers; hence, there is
sometimes one extra word allocated between contigous byte

and double byte variables.

Before continuing, it should be noted that the
subscripts <can be complicated expressions, and not
necessarily Jjust the simple constants shown above. Note
also that subscripted variables <can occur everywhere a

simple variable 1is allowed, including expressions and

20

assignments. A single exception to this rule is that a
subscripted variable cannot be used as the indexing variable

in an Iterative DO group.

Two built in functions are provided in PL/M which are
based upon the declared size of a vector. These functions
take the forms

LENGTH (identifier) and LAST(identifier)
where the identitifers correspond to variables declared
previously. These forms can appear anywhere an expression
is allowed in PL/M, and result in the declared 1length and
last element number of the specified variable, respectively.
The following program, for example, uses the LAST function
to set all the elements of a vector v to the constant 5.
DECLARE V (100) BYTE;
DECLARE I BYTE;
DO I = 0 TO LAST (V) ;
V(I) = 5;
END;
EOF

8.2. The INITIAL Attribute. The values of variables
can be initialized in a declaration statement using the
INITIAL attribute. This attribute takes the form

INITIAL (constant-1,constant-2,...,constant-n);
and must directly follow the type (BYTE or ADDRESS) in the

declare statement.

The purpose of the INITIAL attribute is to preset the
values of memory locations starting at the location named in
the declarations. The constants given in the INITIAL
attribute are placed into memory before the program starts
(these constants become a part of the object code and must
be loaded into random-access memory). The following are
valid variable declarations which use the INITIAL attribute.

DECLARE X BYTE INITIAL(10);

21

DECLARE Y(10) BYTE INITIAL (1,2,3,4,5,6,7,8,9,10);
DECLARE Z (100) BYTE INITIAL
('SHORT','STRING',OFH,33)#

DECLARE U (100) ADDRESS INITIAL (3,4,333Q);
DECLARE (Q,R,S) BYTE INITIAL(O0,1,2);

Note that the number of bytes required to hold the
constants given in the INITIAL attribute need not correspond
to the length declared for the variable. The constants are
placed into memory without truncation starting at the first

byte allocated in the declare statement.

The wuse of subscripted variables 1is shown 1in the
example which follows.

9. A Sorting Progranm.

It is now possible to <construct a more comnrlicated
program, given the expressions, DO-groups, and subscripted
variables which have been presented. In the program which
follows, a vector A is initialized to a set of constants in
unsorted order. The program below sorts the values of A
into ascending order.

/% FIRST DECLARE A VECTOR TO HOLD THE
VALUES TO SORT.
ASSUME THERE ARE NO MORE THAN 10 ELEMENTS TO BE
SORTED. EACH ELEMENT IS BETWEEN O AND 65535 */
DECLARE A(10) ADDRESS INITIAL
(33,10,2000,400,410,3,3,33,500,1999);
/* START THE 'BUBBLE SORT' AT THIS POINT
EXAMINE ADJACENT ELEMENTS OF 'A' AND SWITCH INTO
ASCENDING SEQUENCE. - RECYCLE UNTIL NO MORE
SWITCHING OCCURS */)
DECLARE (I,SWITCHED) BYTE,
TEMP ADDRESS;

SWITCHED = 1;

DO WHILE SWITCHED; SWITCHED = 0;

/%¥ GO THROUGH 'A' ONCE AND LOOK FOR A PAIR
WHICH NEEDS TO BE REVERSED */
DO I =0 TO 8;
IF A(I) > A(I+1) THEN
DO; SWITCHED = 1;
TEMP = A(I); A(I) = A(I+1);
A(I+1) = TEMP;
END;
END;
END;
/% THE VALUES IN 'A' ARE NOW IN ASCENDING ORDER */
EOF

[Y
les

Procedure Definitions and Procedure Calls.

The procedyre .cdpabilities of PL/M are discussed in
this section. A proce&ure, or subroutine, is a section of
PL/M source code which 1is declared, but not executed
immediately. 1Instead, the procedure is called from various
parts of the progranm. The call amounts to a transfer of
program ccntrol from the calling point to the procedure.
The procedure executes, and, upon completicn, returmns to the

statement following the call.

The use of procedures in PL/M allows construction of
modular programs, allows construction and use of subroutine
libraries, eases programming and documentation, and reduces
generated code when similar program segments are used at

several points in the progranm.

Procedures are described in two parts: how to define

them, and how to use them.
10.1. Procedure Declarations. A procedure declaration

consists of four main parts: the procedure nanme,
specification of values which are sent to the procedure, the

23

type of the returned value (i.e., BYTE, ADDRESS, or no
returned value), and the description of the actions of the
procedure, called the procedure body. The procedure may be
invoked anywhere in the program after it is declaread. The
form of a procedure declaration is
procedure-name: PROCEDURE argument-list procedure-type;
statement-1;
statement-2;
sStatement-n;

END procedure-name;

The procedure-name is any valid PL/M identifier, and is
used to name the procedure so that it can be called at a

later point in the program.

The argument-list takes the form
(argument-1,argument-2,...,argument-n)
where argument-1 through argument-n are valid PL/M

identifiers. These identifiers are called formal parameters

and are used to hold particular values which are sent to the
procedure from the point of invocation. Each of these
parameters must also appear 1in a declarations statement
within the procedure body (before the corresponding END).
Note that the argument-list can be omitted altogether if no

parameters are passed to the procedure.

The procedure-type is either BYTE, ADDRESS, or «can be
omitted 1if the procedure does not return a value to the
calling point. The procedure-type defines the precisicn of
the value returned so that proper type conversion takes
place when the procedure is invoked as a part of an

expression.

The execution of a procedure 1is terminated with a
RETURN statement in the procedure body. The RETURN

24

statement takes the form
RETURN;
or
RETURN expression;

The first form is used if the procedure-type is omitted (no
value is returned to the calling point). The second form is
used if the procedure-type is BYTE or ADDRESS. The
expression following the RETURN is brought back to the
calling point in this case.

The statements within the procedure body can be any
valid PL/M statements, including nested procedure
definitions and invocations.. A number of valid PL/M
procedure declarations are iisted below.

NULL: PROCEDURE;
RETURN;
END NULL;

SUM: PROCEDURE (X,Y) ;
DECLARE (X,Y) ADDRESS:
/% ASSUME U IS PREVIGUSLY DECLARED */
U= X+ Y,
RETURN;
ZND SUM;

ZERO: PROCEDURE BYTE;
RETURN O
END ZERO;

IDENTITY: PROCEDURE (X) ADDRESS;
DECLARE X ADDRESS;

RETURN X;
END IDENTITY;

PLUSXY: PROCEDURE (X,Y) BYTE;
DECLARE (I,X,Y) BYTE;
I=X-1Y;

RETURN X + Y;
END PLUSXY;

25

10.2. Procedure Calls. Procedures can be invoked
anywhere after their declaration. There are two pocssible
forms of the call, depending upon whether the procedure-type
is present or omitted in the procedure declaration.

If the procedure-type 1is omitted, then the procedure
does not return a value to the point of invocation. 1In this
case, the form of the call is

CALL procedure-name argument-list ,
where the procedure-name and argument-list correspond to
those defined above. The effect in PL/M is to assign the
actual values in the argument-list at the <call to the
identifiers given in the argument-list in the procedure
declaration. The elements of the argument-1list in the call

are called actual parameters, and are not restricted to

simple PL/m identifiers. In fact, any valid PL/M expression
can be ©placed in the argument-list. These expressicns are
all evaluated in the actual parameter list before they are
assigned to the <corresponding identifiers in the formal
parameter list. If the procedure is declared with an empty
formal parameter list then the actual parameter list is also
omitted. Control is then transferred to the beginning of

the procedure named by the procedure-nanme.

Thus, given the ©procedure definitions above, the

following are all valid procedure calls

CALL NULL;

CALL SUM (5,3);

CALL SUM(Q,R + 2);
In the last case, for example, the value of Q 1is first
placed into X in the procedure SUM. The value of R + Z is
then computed and stored into the formal parameter Y.
Control then passes to the procedure SUM where the variable
U is set to the sum of these two values (it is assumed that
U has been declared ahead of the procedure SUM). Note that
automatic type conversion occurs between BYTE and ADDRESS

26

values when the actual parameters are assigned to the formal
parameters. .

The second form of a procedure call occurs when the
procedure is declared with a procedure-type of BYTE or
ADDRESS. In this <case, the procedure call results in a
value which can be used in an expression. The form of the
call is

procedure-name argument-list;

and may appear anywhere a PL/M expression is allowed. The
following calls demonstrate a number of valid PL/M procedure
invocations '

I = IDENT ITY(I);
X = PLUSXY(X,Y) ;
X = Q-PLUSXY (X+Y,Q)/ (X-Y);
DO I=PLUSXY (Q,R) TO PLUSKY(Z+R,Q)+10; END;

As an exahple- of a procedure declaration and call,
consider the sorting program given earlier. The segment of
the program which performs the sorf can ke redefined as a
procedure. Assume the procedure has a single formal
parameter which gives the upper bound of the sort loop. The
value returned by the procedure is the number of switches
required to sort the vector. ‘

DECLARE A (10) ADDRESS INITIAL
(33,10,2000,400,410,3,3,33,500,1999) ;
SORT: PROCEDURE (N) ADDRESS;
/¥ SCRT THE VECTOR AT 'A' OF LENGTH
N + 2. RETURN THE NUMBER OF SWITCHES
REQUIRED TO PERFORM THE SORT */
DECLARE (N,I,SWITCHED) BYTE,
(T1,T2,COUNT) ADDRESS;
SWITCHED = 1; COUNT = 0;
DO WHILE EWITCHED; SWITCHED=0;
DO I = 0 TO N;
71 A(I); T2=A(I+1);

27

IF T1 > T2 THEN
DO; A(I+1) = T1;
A(I) = T2; SWITCHED = 1
COUNT = COUNT + 1;
END;
END;
END;
RETURN COUNT;
END SORT;
/% THE SORT PROCEDURE IS DECLARED ABOVE.
CALL SORT WITH N -2 = 10 - 2 = 8 */
DECLARE NSWITCHES ADDRESS;
NSWITCHES = SORT (8) ;
EOF

.o

The program shown above illustrates a difficulty in
parameter passing which has not yet been considered. 1In
particular, the SORT procedure would be much more useful as
a library subroutine if several different vectors coculd be
processed by the same subroutine. As shown, the SORT

procedure 1is only capable of sorting the particular vector
A.

The next section introduces the notion of Dbased

variables which overcome this difficulty.

11. Based Variables.

Based variable features of PL/M allow computation of

variable addresses during execution of a program. A based
variable is similar to the variables discussed previously,
except that no storage 1is allocated for the variable.
Instead, corresponding to each based variable is an address
variable, <called the base, which determines the memory

address for the based variable during execution.

28

Based variables are declared using the BASED attribute
which specifies the base. The form of the BASED attribute
is

BASED identifier
where the identifier is a previously declared ALDRESS
variable name. The BASED attribute must immediately follow
the name c¢f the based variable in the declaration statement.
The following are examples of PL/M Dbased variable
declarations
DECLARE X BASED A BYTE;
DECLARE (X BASED XA, Y BASED YA) ADDRE‘SS;
DECLARE (Q BASED QA) (100) BYTE;

In the first case, a byte variable called X is declared.
The declaration implies that X will be found at the location
given by the address variable A (which must be declared as
an ADDRESS variable elsewhere).

The second declaration above defines two Dbased
variables X and Y both of type ADDRESS which are located at
XA and YA, respectively.

The third declaration defines a vector based variable
called Q based at QA. VNote that the vector size need not be
stated, however, since no storage is allocated to Q by the
PL/M compiler. The only use for the vector size is to
provide values <for the LENGTH(Q) and LAST(Q) built-in

functions described previously.

In order to make effective use of based variables, it
is necessary to allow programmatic reference to the assigned
address of a non-based variable. The memory lccation
assigned to a variable 1is designated by preceding the
variable name with a dot symbol (.). Thus, the expressions

.A and .A(5)
yield the address of A and the address of A(5),

respectively. If A is a BYTE variable, the value of .A+5 is

the same as .A(5). Similarly, if A is of type ADDRESS, then
.A+10 is the same as .A(5). The address reference to a
based variable is allow and results simply in the value of
the base.

An address reference using the dot symbol can be used
anywhere an expression is valid in PL/M.

As an 1illustration of the use of based variables,
consider the following loop which initializes the elements
of a vector to their respective element numbers

DECLARE A (100) ADDRESS;
CECLARE I BYTE;
DO I = 0 TO LAST (A) ;

A(I) = I;
END;
EOF
This same function can be performed (rather

inefficiently) with the following loop using based variables
DECLARE A(100) ADDRESS,

QA ADDRESS, Q BASED QA ADDRESS;

/¥ SET QA TO THE BASE ADDRESS OF A%/

QA = .A;

DECLARE I BYTE;
DO I = 0 TO 99;
Q = I; QA = QA + 23

Note that QA starts at the base of A and moves up by
two bytes on each iteration since each element of A occupies

two bytes.

Based, variables are, most commonly found in procedure
parameter passing. It is often necessary to return more

30

than one value from a procedure. In this case, the address
- of an actual ‘parameter can be passed' to the procedure
"instead of the value of the actual parameter. The
corresponding formal parameter is declared within the called
procedute as an address variable. This formal parameter is
 then used as a base for a based variable whithin the

procedure. Any changes to the based variable then alter the
“correspohding'actual parameter.

In the case of the SORT procedure, for example, the
_address of a vector to be sorted can be sent as an actual
paramétér} The SORT procedure then operates upon a locally
defined based variable. The revised SORT procedure is shown
below | | |
SGRT: PROCEDURE (Q,N) ADDRESS;
DECLARE (N,I,SWITCHED) BYTE,
(Q,T1,T2,COUNT) ADDRESS;
" /% AND THEN SET UP THE BASED
VARIABLE TO SORT */
DECLARE A BASED Q ADDRESS;
SWITCHED = 1; COUNT = 0;
DO?WHILE SWITCHED; SWITCHED=0;
DO I = 0 TO N;
T1 = A(I); T2=A(I+1);
IF T1 > T2 THEN
" DO; A(I+1) = T1;
A(I) = T2; SWITCHED = 1;
COUNT = COUNT + 1;
END; END;END;
RETURN COUNT;
END SORT;
DECLARE B (10) ADDRESS INITIAL
(33,10,2000,400,410,3,3,33,500,1999) ;
CECLARE C(5) ADDRESS
INITIAL(*A',32,0FFFH,22Q,2D) ;
/¥ NOW'SORT THE VECTORS B AND C */

31

DECLARE (N1,N2) ADDRESS;

N1 = SORT (.B,LAST(B)-1);
N2 = SORT (.C,LENGTH(C)=2);
EOF

The SORT procedure has two formal parameters Q and N.
Q is an ADDRESS variable which gives the base address of the
vector to be sorted. The parameter N gives the upper bound
in the sort 1loop, as before. The variable A is declared
inside SORT as an ADDRESS variable based at Q. Thus,
references to A 1inside 'SORT are actually references to
memory locations starting at the value of Q.

The SORT procedure is called twice. First, the vector
B is sorted bty sending the base address of B. The second
call sorts C by passing the base address of C as the first
actual parameter.

The section which follows introduces the concept of a
long constant. These long constants allow manipulation of

data which exceed two bytes in length.

[=y
o

Long Constants.

Recall that PL/M allows direct representaticn of
numeric and string constants which require a single or
double byte internal representation. It is often useful,
however, to manipulate constants of indefinite length. This
facility 1is provided in PL/M through the wuse of long
constants.

A PL/M 1long constant 1is a set of contiguous memory
locations represented by the address of the first byte. The
memory locations for long constants are allocated in the
same area as the program storage, and are initialized to the

string and numeric values specified in the constant (program

32

steps and long constants are normally a part of the Read
Only Memcry portion of storage, and thus cannot be aitered
during execution). The first form of a 1long constant is
simply
. constant
where the constant is a string or numeric value. The result
of this vexpression is an address value providing °the
location of the constant. The second form allows several
constants to be gathered together and based at the same
address. This form is
. (constant-1,constant-2,...,constant-n)

Again, the result of this expression is an address value

giving the starting position of the constan'ts in memory.

Valid PL/M long constants are
. 335
- tTHIS(IS A LONG CONSTANT STRING'
. ("THREE', 'STRING','CONSTANTS')
e« (3,'CONSTANTS',O0FFE2H)
These long constants can appear anywhere a PL/M expression

is allowed.

Another form of a long constant allows the constant to
be named and accessed as a subscripted variable. This
second form is a particular case of the declare statement
called a LDATA declaration. The form is

DECLARE identifier DATA (constant-1,...,constant-n);
The following are valid PL/M DATA declarations

DECLARE X DATA ('LONG STRING?') ;
DECLARE Y DATA (0,1,2,3,'STRING',4) ;
These two declarations have an effect similar to INITIAL
declarations except that new values cannot generally be
assigned to the elements of X and Y. In addition, there is
an automatic vector size assigned to elements declared in a
DATA declaration which is the number of bytes required to
hold the constants listed in the DATA attribute. In the

33

above case, both X and Y are treated as BYTE variables with
vector size 11. As a result, the LENGTH and LAST built-in
procedures can be applied to DATA variables to determine the

length of the constant string.

Given the above DATA declaration, the expressions below
evaluate to the result shown on the right

X(0) = 'Lt
X(10) = G
Y(3) = 3

LENGTH(Y) = 11

As an example, consider the following PL/M procedure,
called EQUAL, which compares two 1long constants for
equality. EQUAL has two formal parameters which give the
base addresses of two.long constants. The last byte of each
constant is 0ffh. EQUAL returns a 1 if the constants match,
and 0 if not.

EQUAL: PROCEDURE (AS1,AS2) BYTE;
DECLARE (AS1,AS2,I) ADDRESS,
(S1 BASED AS1, S2 BASED AS2) BYTE,
(J1,J2) BYTE;
/* COMPARE UNTIL A MISMATCH OR OFFH
IS FOUND IN BOTH STRINGS */
Ji, J2, 1 = 0;
DO WHILE J1 = J2;
IF J1 = OFFH THEN RETURN 1;
J1 = S1(I); J2 = S2(1);
I =1I+1;
END;
RETURN O0;
END EQUAL;

Assume that the following declarations occur in the
progranm
DECLARE X DATA ('WALLAWALLAWASH',OFFH) ;

DECLAKE Y DATA ('WALLAWASH',OFFH);
The EQUAL procedure can be called by
I = EQUAL(.X,. (*WALLAWALLAWASH',O0FFH)) ;
As a result, I is set to 1. The value of I in the case
I = EQUAL (.X,.Y)

is zero since the strings X and Y differ.

As a final <comment, one should note that the
fundamental difference between DATA variablies and BYTE
variables with the INITIAL attribute is in the allocation
of storage. DATA variables are stored in the same area as
program code, as mentioned previously, and cannot generally
be altered through a PL/M as