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About This Book

The primary objective of this manual is to help programmers provide software that is compatible across the
family of PowerPC™ processors. Because the PowerPC architecture is designed to be flexible to support a
broad range of processors, this book provides a general description of features that are common to PowerPC
processors and indicates those features that are optional or that may be implemented differently in the design
of each processor.

This book describes both the 64 and the 32-bit portions of the PowerPC architecture from the perspective of
the 64-bit architecture. The information in this manual that pertains only to the 32-bit architecture is presented
in PowerPC Microprocessor Family: The Programming Environments for 32-Bit Microprocessors. Both books
reflect changes to the PowerPC architecture made subsequent to the publication of PowerPC Microprocessor
Family: The Programming Environments, Rev. 0 and Rev. 0.1.

To locate any published errata or updates for this document, refer to the world-wide web at
http://www.mot.com/powerpc/ or at http://www-3.ibm.com/chips/products/powerpc/.

For designers working with a specific processor, this book should be used in conjunction with the user’s
manual for that processor. For information regarding variances between a processor implementation and the
version of the PowerPC architecture reflected in this document, see the reference to Implementation Vari-
ances Relative to Rev. 1 of The Programming Environments Manual described in PowerPC Documentation
on page 28.

This document distinguishes between the three levels, or programming environments, of the PowerPC archi-
tecture, which are as follows:

« PowerPC user instruction set architecture (UISA)—The UISA defines the level of the architecture to
which user-level software should conform. The UISA defines the base user-level instruction set, user-
level registers, data types, memory conventions, and the memory and programming models seen by
application programmers.

» PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest component of the
PowerPC architecture, defines additional user-level functionality that falls outside typical user-level soft-
ware requirements. The VEA describes the memory model for an environment in which multiple proces-
sors or other devices can access external memory, and defines aspects of the cache model and cache
control instructions from a user-level perspective. The resources defined by the VEA are particularly use-
ful for optimizing memory accesses and for managing resources in an environment in which other proces-
sors and other devices can access external memory.

Implementations that conform to the PowerPC VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

» PowerPC operating environment architecture (OEA)—The OEA defines supervisor-level resources typi-
cally required by an operating system. The OEA defines the PowerPC memory management model,
supervisor-level registers, and the exception model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC UISA and VEA.

The OEA also defines optional features to simplify the migration of 32-bit operating systems to 64-bit
implementations. This information is not discussed in detail in this book, but is discussed as part of the
64-bit architecture in The PowerPC Microprocessor Family: The Programming Environments.
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It is important to note that some resources are defined more generally at one level in the architecture and
more specifically at another. For example, conditions that can cause a floating-point exception are defined by
the UISA, while the exception mechanism itself is defined by the OEA.

Because it is important to distinguish between the levels of the architecture in order to ensure compatibility
across multiple platforms, those distinctions are shown clearly throughout this book. The level of the architec-
ture to which text refers is indicated in the outer margin, using the conventions shown in Section Conventions
on page 29.

This book does not attempt to replace the PowerPC architecture specification, which defines the architecture
from the perspective of the three programming environments and which remains the defining document for
the PowerPC architecture. This book reflects changes made to the architecture before August 6, 1996. These
changes are described in Section 1.3 Changes to this Document. For information about the architecture
specification, see Section General Information on page 28.

For ease in reference, this book and the processor user’s manuals have arranged the architecture informa-
tion into topics that build upon one another, beginning with a description and complete summary of registers
and instructions (for all three environments) and progressing to more specialized topics such as the cache,
exception, and memory management models. As such, chapters may include information from multiple levels
of the architecture; for example, the discussion of the cache model uses information from both the VEA and
the OEA.

It is beyond the scope of this manual to describe individual PowerPC processors. It must be kept in mind that
each PowerPC processor is unique in its implementation of the PowerPC architecture.

The information in this book is subject to change without notice, as described in the disclaimers on the title
page of this book. As with any technical documentation, it is the readers’ responsibility to be sure they are
using the most recent version of the documentation. For more information, contact your sales representative.

Audience

This manual is intended for system software and hardware developers and application programmers who
want to develop products for the PowerPC processors in general. It is assumed that the reader understands
operating systems, microprocessor system design, and the basic principles of RISC processing.

This revision of this book describes both the 64 and the 32-bit portions of the PowerPC architecture, primarily
from the perspective of the 64-bit architectural definition. The information in this manual that pertains only to
the 32-bit architecture is also presented separately in PowerPC Microprocessor Family: The Programming
Environments for 32-Bit Microprocessors.
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Organization

Following is a summary and a brief description of the major sections of this manual:

Chapter 1, “Overview,” is useful for those who want a general understanding of the features and functions
of the PowerPC architecture. This chapter describes the flexible nature of the PowerPC architecture defi-
nition and provides an overview of how the PowerPC architecture defines the register set, operand con-
ventions, addressing modes, instruction set, cache model, exception model, and memory management
model.

Chapter 2, “PowerPC Register Set,” is useful for software engineers who need to understand the Pow-
erPC programming model for the three programming environments and the functionality of the PowerPC
registers.

Chapter 3, “Operand Conventions,” describes PowerPC conventions for storing data in memory, includ-
ing information regarding alignment, single and double-precision floating-point conventions, and big and
little-endian byte ordering.

Chapter 4, “Addressing Modes and Instruction Set Summary,” provides an overview of the PowerPC
addressing modes and a description of the PowerPC instructions. Instructions are organized by function.

Chapter 5, “Cache Model and Memory Coherency,” provides a discussion of the cache and memory
model defined by the VEA and aspects of the cache model that are defined by the OEA.

Chapter 6, “Exceptions,” describes the exception model defined in the OEA.

Chapter 7, “Memory Management,” provides descriptions of the PowerPC address translation and mem-
ory protection mechanism as defined by the OEA.

Chapter 8, “Instruction Set,” functions as a handbook for the PowerPC instruction set. Instructions are
sorted by mnemonic. Each instruction description includes the instruction formats and an individualized
legend that provides such information as the level(s) of the PowerPC architecture in which the instruction
may be found and the privilege level of the instruction.

Appendix A, “PowerPC Instruction Set Listings,” lists all the PowerPC instructions. Instructions are
grouped according to mnemonic, opcode, function, and form.

Appendix B, “POWER Architecture Cross Reference,” identifies the differences that must be managed in
migration from the POWER architecture to the PowerPC architecture.

Appendix C, “Multiple-Precision Shifts,” describes how multiple-precision shift operations can be pro-
grammed as defined by the UISA.

Appendix D, “Floating-Point Models,” gives examples of how the floating-point conversion instructions
can be used to perform various conversions as described in the UISA.

Appendix E, “Synchronization Programming Examples,” gives examples showing how synchronization
instructions can be used to emulate various synchronization primitives and how to provide more complex
forms of synchronization.

Appendix F, “Simplified Mnemonics,” provides a set of simplified mnemonic examples and symbols.
This manual also includes a glossary and an index.
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Suggested Reading

This section lists additional reading that provides background for the information in this manual as well as
general information about the PowerPC architecture.

General Information

The following documentation provides useful information about the PowerPC architecture and computer
architecture in general:
« The following books are available from the Morgan-Kaufmann Publishers, 340 Pine Street, Sixth Floor,
San Francisco, CA 94104; Tel. (800) 745-7323 (U.S.A.), (415) 392-2665 (International); internet address:
mkp@mkp.com.

— The PowerPC Architecture: A Specification for a New Family of RISC Processors, Second Edition, by
International Business Machines, Inc.

PowerPC Microprocessor Common Hardware Reference Platform: A System Architecture, by Apple
Computer, Inc., International Business Machines, Inc., and Motorola, Inc.

Macintosh Technology in the Common Hardware Reference Platform, by Apple Computer, Inc.

Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson,

« Inside Macintosh: PowerPC System Software, Addison-Wesley Publishing Company, One Jacob Way,
Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.), (800) 637-0029 (Canada), (716) 871-6555 (Interna-
tional).

» PowerPC Programming for Intel Programmers, by Kip McClanahan; IDG Books Worldwide, Inc., 919
East Hillsdale Boulevard, Suite 400, Foster City, CA, 94404; Tel. (800) 434-3422 (U.S.A.), (415) 655-
3022 (International).

PowerPC Documentation

The PowerPC documentation is organized in the following types of documents:

» User's manuals—These books provide details about individual PowerPC implementations and are
intended to be used in conjunction with The Programming Environments Manual.

« Implementation Variances Relative to Rev. 1 of The Programming Environments Manual is available via
the world-wide web at http://www.mot.com/powerpc/ or at http://www-3.ibm.com/chips/techlib.

« Addenda/errata to user’s manuals—Because some processors have follow-on parts an addendum is pro-
vided that describes the additional features and changes to functionality of the follow-on part. These
addenda are intended for use with the corresponding user's manuals.

- Datasheets—Datasheets provide specific data regarding bus timing, signal behavior, and AC, DC, and
thermal characteristics, as well as other design considerations for each PowerPC implementation.

« Technical Summaries—Each PowerPC implementation has a technical summary that provides an over-
view of its features. This document is roughly the equivalent to the overview (Chapter 1) of an implemen-
tation’s user’'s manual.

« PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors: MPCBUSIF/AD (Motor-
ola order #) and G522-0291-00 (IBM order #) provides a detailed functional description of the 60x bus
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interface, as implemented on the 601, 603, and 604 family of PowerPC microprocessors. This document
is intended to help system and chipset developers by providing a centralized reference source to identify
the bus interface presented by the 60x family of PowerPC microprocessors.

» PowerPC Microprocessor Family: The Programmer’s Reference Guide: MPCPRG/D (Motorola order #)
and MPRPPCPRG-01 (IBM order #) is a concise reference that includes the register summary, memory
control model, exception vectors, and the PowerPC instruction set.

« PowerPC Microprocessor Family: The Programmer’s Pocket Reference Guide: MPCPRGREF/D (Motor-
ola order #) and SA14-2093-00 (IBM order #): This foldout card provides an overview of the PowerPC
registers, instructions, and exceptions for 32-bit implementations.

- Application notes—These short documents contain useful information about specific design issues useful
to programmers and engineers working with PowerPC processors.

» Documentation for support chips

Additional literature on PowerPC implementations is being released as new processors become available.
For a current list of PowerPC documentation, refer to the world-wide web at http://www.mot.com/powerpc/ or
at http://www-3.ibm.com/chips/techlib/.

Conventions

This document uses the following notational conventions:

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, beetrx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

frA, frB, frC Instruction syntax used to identify a source FPR

frD Instruction syntax used to identify a destination FPR

REGIFIELD] Abbreviations or acronyms for registers are shown in uppercase text. Specific bits,
fields, or ranges appear in brackets. For example, MSR[LE] refers to the little-
endian mode enable bit in the machine state register.

X In certain contexts, such as a signal encoding, this indicates a don’t care.

n Used to express an undefined numerical value

- NOT logical operator

& AND logical operator

pem0O_preface.fm.2.0
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|
U

0000

OR logical operator

This symbol identifies text that is relevant with respect to the PowerPC user
instruction set architecture (UISA). This symbol is used both for information that
can be found in the UISA specification as well as for explanatory information
related to that programming environment.

This symbol identifies text that is relevant with respect to the PowerPC virtual envi-
ronment architecture (VEA). This symbol is used both for information that can be
found in the VEA specification as well as for explanatory information related to that
programming environment.

This symbol identifies text that is relevant with respect to the PowerPC operating
environment architecture (OEA). This symbol is used both for information that can
be found in the OEA specification as well as for explanatory information related to
that programming environment.

Indicates reserved bits or bit fields in a register. Although these bits may be written
to as either ones or zeroes, they are always read as zeros.

Text that pertains to the optional 64-bit bridge defined by the OEA is presented with a box, as shown

here.

Additional conventions used with instruction encodings are described in Table 8-2 on page 370. Conventions
used for pseudocode examples are described in Table 8-3 on page 372.

Acronyms and Abbreviations

Table i contains acronyms and abbreviations that are used in this document. Note that the meanings for
some acronyms (such as SDR1 and XER) are historical, and the words for which an acronym stands may not
be intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term
ALU
ASR
BAT
BIST
BPU
BUID
CR
CTR

About This Book
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Meaning

Arithmetic logic unit

Address space register

Block address translation

Built-in self test

Branch processing unit

Bus unit ID

Condition register

Count register
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Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning

DABR Data address breakpoint register

DAR Data address register

DBAT Data BAT

DEC Decrementer register

DSISR Register used for determining the source of a DSI exception
DTLB Data translation lookaside buffer

EA Effective address

EAR External access register

ECC Error checking and correction

FPECR Floating-point exception cause register

FPR Floating-point register

FPSCR Floating-point status and control register

FPU Floating-point unit

GPR General-purpose register

IBAT Instruction BAT

IEEE Institute of Electrical and Electronics Engineers
ITLB Instruction translation lookaside buffer

U Integer unit

L2 Secondary cache

LIFO Last-in-first-out

LR Link register

LRU Least recently used

LSB Least-significant byte

Isb Least-significant bit

MESI Modified/exclusive/shared/invalid—cache coherency protocol
MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

MSR Machine state register

NaN Not a number

NIA Next instruction address

No-op No operation

OEA Operating environment architecture

PIR Processor identification register

PTE Page table entry

PTEG Page table entry group

PVR Processor version register
pem0O_preface.fm.2.0 About This Book
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Table i. Acronyms and Abbreviated Terms (Continued)

Register that specifies the page table base address for virtual-to-physical address translation

Term Meaning

RISC Reduced instruction set computing
RTL Register transfer language

RWITM Read with intent to modify

SDR1

SIMM Signed immediate value

SLB Segment lookaside buffer

SPR Special-purpose register

SPRGn Registers available for general purposes
SR Segment register

SRRO Machine status save/restore register 0
SRR1 Machine status save/restore register 1
STE Segment table entry

B Time base register

TLB Translation lookaside buffer

UIMM Unsigned immediate value

UISA User instruction set architecture

VA Virtual address

VEA Virtual environment architecture
XATC Extended address transfer code

XER

Register used primarily for indicating conditions such as carries and overflows for integer operations

Terminology Conventions

Table iilists certain terms used in this manual that differ from the architecture terminology conventions.

Table ii. Terminology Conventions

The Architecture Specification

Data storage interrupt (DSI)
Extended mnemonics

Instruction storage interrupt (ISI)
Interrupt

Privileged mode (or privileged state)
Problem mode (or problem state)
Real address

Relocation

Storage (locations)

Storage (the act of)

About This Book
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DSI exception

Simplified mnemonics
ISI exception

Exception
Supervisor-level privilege
User-level privilege
Physical address
Translation

Memory

Access
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Table iii describes instruction field notation conventions used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification
BA, BB, BT

BF, BFA

D

DS

FLM

FRA, FRB, FRC, FRT, FRS
FXM

RA, RB, RT, RS

SI

u

ul

/N

pem0O_preface.fm.2.0
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Equivalent to:

crbA, crbB, crbD (respectively)
criD, crfS (respectively)

d

ds

FM

frA, frB, frC, frD, frS (respectively)
CRM

rA, rB, rD, rS (respectively)
SIMM

IMM

UIMM

0...0 (shaded)

About This Book
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1. Overview

The PowerPC™ architecture provides a software model that ensures software compatibility among imple-
mentations of the PowerPC family of microprocessors. In this document, and in other PowerPC documenta-
tion as well, the term ‘implementation’ refers to a hardware device (typically a microprocessor) that complies
with the specifications defined by the architecture.

The PowerPC architecture is a 64-bit architecture with a 32-bit subset. The 32 and 64 pertains to the size of
the integer register width and it's supporting registers. In both implementations the floating point registers
have always been 64 bits.

In general, the architecture defines the following:

» Instruction set—The instruction set specifies the families of instructions (such as load/store, integer arith-
metic, and floating-point arithmetic instructions), the specific instructions, and the forms used for encod-
ing the instructions. The instruction set definition also specifies the addressing modes used for accessing
memory.

» Programming model—The programming model defines the register set and the memory conventions,
including details regarding the bit and byte ordering, and the conventions for how data (such as integer
and floating-point values) are stored.

« Memory model—The memory model defines the size of the address space and of the subdivisions
(pages and blocks) of that address space. It also defines the ability to configure pages and blocks of
memory with respect to caching, byte ordering (big or little-endian), coherency, and various types of
memory protection.

« Exception model—The exception model defines the common set of exceptions and the conditions that
can generate those exceptions. The exception model specifies characteristics of the exceptions, such as
whether they are precise or imprecise, synchronous or asynchronous, and maskable or nonmaskable.
The exception model defines the exception vectors and a set of registers used when exceptions are
taken. The exception model also provides memory space for implementation-specific exceptions. (Note
that exceptions are referred to as interrupts in the architecture specification.)

« Memory management model—The memory management model defines how memory is partitioned, con-
figured, and protected. The memory management model also specifies how memory translation is per-
formed, the real, virtual, and physical address spaces, special memory control instructions, and other
characteristics. (Physical address is referred to as real address in the architecture specification.)

- Time-keeping model—The time-keeping model defines facilities that permit the time of day to be deter-
mined and the resources and mechanisms required for supporting time-related exceptions.

These aspects of the PowerPC architecture are defined at different levels of the architecture, and this chapter
provides an overview of those levels—the user instruction set architecture (UISA), the virtual environment
architecture (VEA), and the operating environment architecture (OEA).

To locate any published errata or updates for this document, refer to the website at
http://www-3.ibm.com/chips/.
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1.1 PowerPC Architecture Overview

The PowerPC architecture, developed jointly by Motorola, IBM, and Apple Computer, is based on the
POWER architecture implemented by RS/6000™ family of computers. The PowerPC architecture takes
advantage of recent technological advances in such areas as process technology, compiler design, and
reduced instruction set computing (RISC) microprocessor design to provide software compatibility across a
diverse family of implementations, primarily single-chip microprocessors, intended for a wide range of
systems, including battery-powered personal computers; embedded controllers; high-end scientific and
graphics workstations; and multiprocessing, microprocessor-based mainframes.

To provide a single architecture for such a broad assortment of processor environments, the PowerPC archi-
tecture is both flexible and scalable.

The flexibility of the PowerPC architecture offers many price/performance options. Designers can choose
whether to implement architecturally-defined features in hardware or in software. For example, a processor
designed for a high-end workstation has greater need for the performance gained from implementing floating-
point normalization and denormalization in hardware than a battery-powered, general-purpose computer
might.

The PowerPC architecture is scalable to take advantage of continuing technological advances—for example,
the continued miniaturization of transistors makes it more feasible to implement more execution units and a
richer set of optimizing features without being constrained by the architecture.

The PowerPC architecture defines the following features:

» Separate 32-entry register files for integer and floating-point instructions. The general-purpose registers
(GPRs) hold source data for integer arithmetic instructions, and the floating-point registers (FPRs) hold
source and target data for floating-point arithmetic instructions.

- Instructions for loading and storing data between the memory system and either the FPRs or GPRs

- Uniform-length instructions to allow simplified instruction pipelining and parallel processing instruction
dispatch mechanisms

» Nondestructive use of registers for arithmetic instructions in which the second, third, and sometimes the
fourth operand, typically specify source registers for calculations whose results are typically stored in the
target register specified by the first operand.

« A precise exception model (with the option of treating floating-point exceptions imprecisely)
« Floating-point support that includes IEEE-754 floating-point operations

« A flexible architecture definition that allows certain features to be performed in either hardware or with
assistance from implementation-specific software depending on the needs of the processor design

« The ability to perform both single and double-precision floating-point operations

« User-level instructions for explicitly storing, flushing, and invalidating data in the on-chip caches. The
architecture also defines special instructions (cache block touch instructions) for speculatively loading
data before it is needed, reducing the effect of memory latency.

« Definition of a memory model that allows weakly-ordered memory accesses. This allows bus operations
to be reordered dynamically, which improves overall performance and in particular reduces the effect of
memory latency on instruction throughput.

« Support for separate instruction and data caches (Harvard architecture) and for unified caches

» Support for both big and little-endian addressing modes

Overview pem1_overview.fm.2.0
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Support for 64-bit addressing. The architecture supports both 32-bit or 64-bit implementations. This doc-
ument typically describes the architecture in terms of the 64-bit implementations in those cases where the
32-bit subset can be easily deduced. Additional information regarding the 32-bit definition is provided
where needed.

This chapter provides an overview of the major characteristics of the PowerPC architecture in the order in
which they are addressed in this book:

Register set and programming model
Instruction set and addressing modes
Cache implementations

Exception model

Memory management

1.1.1 The 64-Bit PowerPC Architecture and the 32-Bit Subset

The PowerPC architecture is a 64-bit architecture with a 32-bit subset. It is important to distinguish the
following modes of operations:

64-bit implementations/64-bit mode—The PowerPC architecture provides 64-bit addressing, 64-bit inte-
ger data types, and instructions that perform arithmetic operations on those data types, as well as other
features to support the wider addressing range. For example, memory management differs somewhat
between 32 and 64-bit processors. The processor is configured to operate in 64-bit mode by setting a bit
in the machine state register (MSR).

Processors that implement only the 32-bit portion of the PowerPC architecture provide 32-bit effective
addresses, which is also the maximum size of integer data types.

64-bit implementations/32-bit mode—For compatibility with 32-bit implementations, 64-bit implementa-
tions can be configured to operate in 32-bit mode by clearing the MSR[SF] bit. In 32-bit mode, the effec-
tive address is treated as a 32-bit address, condition bits, such as overflow and carry bits, are set based
on 32-bit arithmetic (for example, integer overflow occurs when the result exceeds 32 bits), and the count
register (CTR) is tested by branch conditional instructions following conventions for 32-bit implementa-
tions. All applications written for 32-bit implementations will run without modification on 64-bit processors
running in 32-bit mode.

This book describes the full 64-bit architecture (for example, instructions are described from a 64-bit perspec-
tive). In most cases, details of the 32-bit subset can easily be determined from the 64-bit descriptions. Signif-
icant differences in the 32-bit subset are highlighted and described separately as they occur.

The OEA defines an additional, optional bridge that may make it easier to migrate a 32-bit operating sys-
tem to the 64-bit architecture. This bridge allows 64-bit implementations to retain certain aspects of the
32-bit architecture that otherwise are not supported, and in some cases not permitted, by the 64-bit
architecture. These resources are summarized in Section 1.3.2 Changes Related to the Optional 64-Bit
Bridge, and are described more fully in Section 7.9 Migration of Operating Systems from 32-Bit Imple-
mentations to 64-Bit Implementations.

These resources are not to be considered a permanent part of the PowerPC architecture.
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1.1.2 The Levels of the PowerPC Architecture

The PowerPC architecture is defined in three levels that correspond to three programming environments,
roughly described from the most general, user-level instruction set environment, to the more specific, oper-
ating environment.

This layering of the architecture provides flexibility, allowing degrees of software compatibility across a wide
range of implementations. For example, an implementation such as an embedded controller may support the
user instruction set, whereas it may be impractical for it to adhere to the memory management, exception,
and cache models.

The three levels of the PowerPC architecture are defined as follows:

« PowerPC user instruction set architecture (UISA)—The UISA defines the level of the architecture to
which user-level (referred to as problem state in the architecture specification) software should conform.
The UISA defines the base user-level instruction set, user-level registers, data types, floating-point mem-
ory conventions and exception model as seen by user programs, and the memory and programming
models. The icon shown in the margin identifies text that is relevant with respect to the UISA.

» PowerPC virtual environment architecture (VEA)—The VEA defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the memory model for an
environment in which multiple devices can access memory, defines aspects of the cache model, defines
cache control instructions, and defines the time base facility from a user-level perspective. The icon
shown in the margin identifies text that is relevant with respect to the VEA.

Implementations that conform to the PowerPC VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

« PowerPC operating environment architecture (OEA)—The OEA defines supervisor-level (referred to as
privileged state in the architecture specification) resources typically required by an operating system. The
OEA defines the PowerPC memory management model, supervisor-level registers, synchronization
requirements, and the exception model. The OEA also defines the time base feature from a supervisor-
level perspective. The icon shown in the margin identifies text that is relevant with respect to the OEA.

Implementations that conform to the PowerPC OEA also conform to the PowerPC UISA and VEA.

The OEA defines an additional, optional bridge that may make it easier to migrate a 32-bit operating sys-
tem to the 64-bit architecture. This bridge allows 64-bit implementations to use a simpler memory man-
agement model to access 32-bit effective address space. Processors that implement this bridge may
implement resources, such as instructions, that are not supported, and in some cases not permitted by
the 64-bit architecture.

For processors that implement the address translation portion of the bridge, segment descriptors take
the form of the STEs defined for 64-bit MMUs; however, only 16 STEs are required to define the entire
4-Gbyte address space. Like 32-bit implementations, the effective address space is entirely defined by
16 contiguous 256-Mbyte segment descriptors. Rather than using the set of 16, 32-bit segment registers
as is defined for the 32-bit MMU, the 16 STEs are implemented and are maintained in 16 SLB entries.

Implementations that adhere to the VEA level are guaranteed to adhere to the UISA level; likewise, imple-
mentations that conform to the OEA level are also guaranteed to conform to the UISA and the VEA levels.
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All PowerPC devices adhere to the UISA, offering compatibility among all PowerPC application programs.
However, there may be different versions of the VEA and OEA than those described here. For example,
some devices, such as embedded controllers, may not require some of the features as defined by this VEA
and OEA, and may implement a simpler or modified version of those features.

The general-purpose PowerPC microprocessors developed IBM comply both with the UISA and with the VEA
and OEA discussed here. In this book, these three levels of the architecture are referred to collectively as the
PowerPC architecture. The distinctions between the levels of the PowerPC architecture are maintained
clearly throughout this document, using the conventions described in the Section Conventions on page 29 of
the Preface.

1.1.3 Latitude Within the Levels of the PowerPC Architecture

The PowerPC architecture defines those parameters necessary to ensure compatibility among PowerPC
processors, but also allows a wide range of options for individual implementations. These are as follows:

- The PowerPC architecture defines some facilities (such as registers, bits within registers, instructions,
and exceptions) as optional.

« The PowerPC architecture allows implementations to define additional privileged special-purpose regis-
ters (SPRs), exceptions, and instructions for special system requirements (such as power management
in processors designed for very low-power operation).

« There are many other parameters that the PowerPC architecture allows implementations to define. For
example, the PowerPC architecture may define conditions for which an exception may be taken, such as
alignment conditions. A particular implementation may choose to solve the alignment problem without
taking the exception.

« Processors may implement any architectural facility or instruction with assistance from software (that is,
they may trap and emulate) as long as the results (aside from performance) are identical to that specified
by the architecture.

« Some parameters are defined at one level of the architecture and defined more specifically at another.
For example, the UISA defines conditions that may cause an alignment exception, and the OEA specifies
the exception itself.

Because of updates to the PowerPC architecture specification, which are described in this document, vari-
ances may result between existing devices and the revised architecture specification. Those variances are
included in Implementation Variances Relative to Rev. 1 of The Programming Environments Manual.

1.1.4 Features Not Defined by the PowerPC Architecture

Because flexibility is an important design goal of the PowerPC architecture, there are many aspects of the
processor design, typically relating to the hardware implementation, that the PowerPC architecture does not
define, such as the following:

» System bus interface signals—Although numerous implementations may have similar interfaces, the
PowerPC architecture does not define individual signals or the bus protocol. For example, the OEA
allows each implementation to determine the signal or signals that trigger the machine check exception.

« Cache design—The PowerPC architecture does not define the size, structure, the replacement algorithm,
or the mechanism used for maintaining cache coherency. The PowerPC architecture supports, but does
not require, the use of separate instruction and data caches. Likewise, the PowerPC architecture does
not specify the method by which cache coherency is ensured.
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» The number and the nature of execution units—The PowerPC architecture is a reduced instruction set
computing (RISC) architecture, and as such has been designed to facilitate the design of processors that
use pipelining and parallel execution units to maximize instruction throughput. However, the PowerPC
architecture does not define the internal hardware details of implementations. For example, one proces-
sor may execute load and store operations in the integer unit, while another may execute these instruc-
tions in a dedicated load/store unit.

« Other internal microarchitecture issues—The PowerPC architecture does not prescribe which execution
unit is responsible for executing a particular instruction; it also does not define details regarding the
instruction fetching mechanism, how instructions are decoded and dispatched, and how results are writ-
ten back. Dispatch and write-back may occur in order or out of order. Also while the architecture specifies
certain registers, such as the GPRs and FPRs, implementations can implement register renaming or
other schemes to reduce the impact of data dependencies and register contention.

1.1.5 Summary of Architectural Changes in this Revision

This revision of The Programming Environments Manual reflects enhancements to the architecture that have
been made since the publication of the PowerPC Microprocessor Family: The Programming Environments,

Rev. 0.1.

The primary differences described in this document are as follows:

« Addition of the rfid and mtmstrd instructions to the 64-bit portion of the architecture. The rfi and mtmstr
instructions are now legal in 32-bit processors and illegal in 64-bit processors. Likewise, the rid and
mtmstrd are valid instructions only in 64-bit processors and are illegal in 32-bit processors.

- Addition of several optional and temporary features to facilitate migration of operating systems from
32-bit to 64-bit processors. These include the following:

— Additional bit in the address space register (ASR[V]) that indicates whether the starting address
in the segment table is valid. If this bit is implemented, the following instructions can optionally
be implemented:

— Ability to execute mtsr, mfsr, mtsrin, and mfsrin instructions in 64-bit implementations that
support the architectural bridge. Otherwise, these instructions, which are defined for the 32-
bit implementations, are illegal in 64-bit implementations. Note that 64-bit processors that
implement these instructions do not implement actual segment registers as defined by the
32-bit architecture, but rather must provide 16 segment lookaside buffers (SLBs) that con-
tain STE entries that define the entire 32-bit effective address space. The mtsr and mfsr
instructions also are redefined slightly to accommodate the emulated segment registers.

— Additional instructions, mtsrd and mtsrdin, are used for writing to the segment descriptors
for systems that provide a full 80-bit virtual address space as defined for 64-bit MMUs.

— Additional bit in the machine state register (MSR[ISF]) that is copied to the MSR[SF] bit to con-
trol whether the processor is in 32 or 64-bit mode when an exception is taken

— The ability to implement the rfi and mtmsr instructions as defined for 32-bit implementations

In addition to these substantive changes, this book reflects smaller changes and clarifications to the
PowerPC architecture. For more information, see Section 1.3 Changes to this Document.

Overview pem1_overview.fm.2.0

Page 40 of 785 June 10, 2003



o < c

1.2 The PowerPC Architectural Models

Programming Environments Manual

PowerPC RISC Microprocessor Family

This section provides overviews of aspects defined by the PowerPC architecture, following the same order as

the rest of this book. The topics include the following:
» PowerPC registers and programming model
« PowerPC operand conventions
» PowerPC instruction set and addressing modes
« PowerPC cache model
» PowerPC exception model

» PowerPC memory management model

1.2.1 PowerPC Registers and Programming Model

The PowerPC architecture defines register-to-register operations for computational instructions. Source oper-
ands for these instructions are accessed from the architected registers or are provided as immediate values
embedded in the instruction. The three-register instruction format allows specification of a target register
distinct from two source operand registers. This scheme allows efficient code scheduling in a highly parallel
processor. Load and store instructions are the only instructions that transfer data between registers and

memory. The PowerPC registers are shown in Figure 1-1.

Figure 1-1. Programming Model—PowerPC Registers
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The programming model incorporates 32 GPRs, 32 FPRs, special-purpose registers (SPRs), and several
miscellaneous registers. Each implementation may have its own unique set of hardware implementation
(HID) regqisters that are not defined by the architecture.

PowerPC processors have two levels of privilege:

» Supervisor mode—used exclusively by the operating system. Resources defined by the OEA can be
accessed only supervisor-level software.

« User mode—used by the application software and operating system software (Only resources defined by
the UISA and VEA can be accessed by user-level software)

These two levels govern the access to registers, as shown in Figure 1-1. The division of privilege allows the
operating system to control the application environment (providing virtual memory and protecting operating
system and critical machine resources). Instructions that control the state of the processor, the address trans-
lation mechanism, and supervisor registers can be executed only when the processor is operating in super-
visor mode.

« User Instruction Set Architecture Registers—All UISA registers can be accessed by all software with
either user or supervisor privileges. These registers include the 32 general-purpose registers (GPRs) and
the 32 floating-point registers (FPRs), and other registers used for integer, floating-point, and branch
instructions.

- Virtual Environment Architecture Registers—The VEA defines the user-level portion of the time base
facility, which consists of the two 32-bit time base registers. These registers can be read by user-level
software, but can be written to only by supervisor-level software.

« Operating Environment Architecture Registers—SPRs defined by the OEA are used for system-level
operations such as memory management, exception handling, and time-keeping.

The PowerPC architecture also provides room in the SPR space for implementation-specific registers, typi-
cally referred to as HID registers. Individual HIDs are not discussed in this manual.
1.2.2 Operand Conventions

Operand conventions are defined in two levels of the PowerPC architecture—user instruction set architecture
(UISA) and virtual environment architecture (VEA). These conventions define how data is stored in registers
and memory.

1.2.2.1 Byte Ordering

The default mapping for PowerPC processors is big-endian, but the UISA provides the option of operating in
either big or little-endian mode. Big-endian byte ordering is shown in Figure 1-2.

Figure 1-2. Big-Endian Byte and Bit Ordering
MSB

Byte 0 Byte 1 v Byte N (max) |

Big-Endian Byte Ordering
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The OEA defines two bits in the MSR for specifying byte ordering—LE (little-endian mode) and ILE (exception
little-endian mode). The LE bit specifies whether the processor is configured for big-endian or little-endian
mode; the ILE bit specifies the mode when an exception is taken by being copied into the LE bit of the MSR.
A value of 0 specifies big-endian mode and a value of 1 specifies little-endian mode.

1.2.2.2 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address of the corre-
sponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store string/multiple
instructions, a sequence of bytes or words. The address of a multiple-byte memory operand is the address of
its first byte (that is, of its lowest-numbered byte). Operand length is implicit for each instruction.

The operand of a single-register memory access instruction has a natural alignment boundary equal to the
operand length. In other words, the natural address of an operand is an integral multiple of the operand
length. A memory operand is said to be aligned if it is aligned at its natural boundary; otherwise it is
misaligned.
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1.2.2.3 Floating-Point Conventions

The PowerPC architecture adheres to the IEEE-754 standard for 64 and 32-bit floating-point arithmetic:

- Double-precision arithmetic instructions may have single or double-precision operands but always pro-
duce double-precision results.

« Single-precision arithmetic instructions require all operands to be single-precision values and always pro-
duce single-precision results. Single-precision values are stored in double-precision format in the FPRs—
these values are rounded such that they can be represented in 32-bit, single-precision format (as they
are in memory).

1.2.3 PowerPC Instruction Set and Addressing Modes

All PowerPC instructions are encoded as single-word (32-bit) instructions. Instruction formats are consistent
among all instruction types, permitting decoding to occur in parallel with operand accesses. This fixed instruc-
tion length and consistent format greatly simplifies instruction pipelining.

1.2.3.1 PowerPC Instruction Set
Although these categories are not defined by the PowerPC architecture, the PowerPC instructions can be
grouped as follows:

- Integer instructions—These instructions are defined by the UISA. They include computational and logical
instructions.

— Integer arithmetic instructions

— Integer compare instructions

— Logical instructions

— Integer rotate and shift instructions

» Floating-point instructions—These instructions, defined by the UISA, include floating-point computational
instructions, as well as instructions that manipulate the floating-point status and control register (FPSCR).

— Floating-point arithmetic instructions

Floating-point multiply/add instructions

Floating-point compare instructions

Floating-point status and control instructions

Floating-point move instructions

Optional floating-point instructions

» Load/store instructions—These instructions, defined by the UISA, include integer and floating-point load
and store instructions.

Integer load and store instructions

Integer load and store with byte reverse instructions

Integer load and store multiple instructions

Integer load and store string instructions

Floating-point load and store instructions
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« The UISA also provides a set of load/store with reservation instructions (lwarx/Idarx and stwex./stdex.)
that can be used as primitives for constructing atomic memory operations. These are grouped under syn-
chronization instructions.

» Synchronization instructions—The UISA and VEA define instructions for memory synchronizing, espe-
cially useful for multiprocessing:

— Load and store with reservation instructions—These UISA-defined instructions provide primitives for
synchronization operations such as test and set, compare and swap, and compare memory.

— The Synchronize instruction (sync)}—This UISA-defined instruction is useful for synchronizing load
and store operations on a memory bus that is shared by multiple devices.

— Enforce In-Order Execution of I/0 (eieio)— The eieio instruction provides an ordering function for the
effects of load and store operations executed by a processor.

« Flow control instructions—These include branching instructions, condition register logical instructions,
trap instructions, and other instructions that affect the instruction flow.

— The UISA defines numerous instructions that control the program flow, including branch, trap, and
system call instructions as well as instructions that read, write, or manipulate bits in the condition reg-
ister.

— The OEA defines two flow control instructions that provide system linkage. These instructions are
used for entering and returning from supervisor level.

» Processor control instructions—These instructions are used for synchronizing memory accesses and
managing caches and translation lookaside buffers (TLBs) (and segment registers in 32-bit implementa-
tions). These instructions include move to/from special-purpose register instructions (mtspr and mfspr).

- Memory/cache control instructions—These instructions provide control of caches, TLBs, and segment
registers (in 32-bit implementations).

— The VEA defines several cache control instructions.
— The OEA defines one cache control instruction and several memory control instructions.

« External control instructions—The VEA defines two optional instructions for use with special input/output
devices.

- The 64-bit bridge allows several instructions to be used in 64-bit implementations that are otherwise
defined for use in 32-bit implementations only. These include the following:

— Move to Segment Register (mtsr) and Move to Segment Register Indirect (mtsrin)
— Move from Segment Register (mfsr) and Move from Segment Register Indirect (mfsrin)
All four of these instructions are implemented as a group and are never implemented individually.

Attempting to execute one of these instructions on a 64-bit implementation on which these instruc-
tions are not supported causes program exception.

« The 64-bit bridge also defines two instructions, Move to Segment Register Double Word (mtsrd)
and Move to Segment Register Double Word Indexed (mtsrdin) that allow an operating system to
write to segment descriptors to support accesses to 64-bit address space.

« Processors that implement the 64-bit bridge can optionally implement the rfi and mtmsr instruc-
tions, which otherwise are not supported in the 64-bit architecture.
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Note that this grouping of the instructions does not indicate which execution unit executes a particular instruc-
tion or group of instructions. This is not defined by the PowerPC architecture.

1.2.3.2 Calculating Effective Addresses

The effective address (EA), also called the logical address, is the address computed by the processor when [
executing a memory access or branch instruction or when fetching the next sequential instruction. Unless
address translation is disabled, this address is converted by the MMU to the appropriate physical address.

(Note that the architecture specification uses only the term effective address and not logical address.)

The PowerPC architecture supports the following simple addressing modes for memory access instructions:
- EA = (rA|0) (register indirect)
- EA = (rA|0) + offset (including offset = 0) (register indirect with immediate index)
- EA = (rA|0) + rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses.

1.2.4 PowerPC Cache Model

The VEA and OEA portions of the architecture define aspects of cache implementations for PowerPC proces- V
sors. The PowerPC architecture does not define hardware aspects of cache implementations. For example, 0
some PowerPC processors may have separate instruction and data caches (Harvard architecture), while
others have a unified cache.

The PowerPC architecture allows implementations to control the following memory access modes on a page
or block basis:

» Write-back/write-through mode
« Caching-inhibited mode
- Memory coherency

- Guarded/not guarded against speculative accesses

Coherency is maintained on a cache block basis, and cache control instructions perform operations on a
cache block basis. The size of the cache block is implementation-dependent. The term cache block should
not be confused with the notion of a block in memory, which is described in Section 1.2.6 PowerPC Memory
Management Model.

The VEA portion of the PowerPC architecture defines several instructions for cache management. These can

be used by user-level software to perform such operations as touch operations (which cause the cache block

to be speculatively loaded), and operations to store, flush, or clear the contents of a cache block. The OEA O
portion of the architecture defines one cache management instruction—the Data Cache Block Invalidate

(debi) instruction.

1.2.5 PowerPC Exception Model

The PowerPC exception mechanism, defined by the OEA, allows the processor to change to supervisor state
as a result of external signals, errors, or unusual conditions arising in the execution of instructions. When
exceptions occur, information about the state of the processor is saved to various registers and the processor
begins execution at an address (exception vector) predetermined for each type of exception. Exception
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handler routines begin execution in supervisor mode. The PowerPC exception model is described in detail in
Chapter 6, “Exceptions.” Note also that some aspects regarding exception conditions are defined at other
levels of the architecture. For example, floating-point exception conditions are defined by the UISA, whereas
the exception mechanism is defined by the OEA.

PowerPC architecture requires that exceptions be handled in program order (excluding the optional floating-
point imprecise modes and the reset and machine check exception); therefore, although a particular imple-
mentation may recognize exception conditions out of order, they are handled strictly in order. When an
instruction-caused exception is recognized, any unexecuted instructions that appear earlier in the instruction
stream, including any that have not yet begun to execute, are required to complete before the exception is
taken. Any exceptions caused by those instructions must be handled first. Likewise, exceptions that are asyn-
chronous and precise are recognized when they occur, but are not handled until all instructions currently
executing successfully complete processing and report their results.

The OEA supports four types of exceptions:
« Synchronous, precise
» Synchronous, imprecise
« Asynchronous, maskable
« Asynchronous, nonmaskable

1.2.6 PowerPC Memory Management Model

The PowerPC memory management unit (MMU) specifications are provided by the PowerPC OEA. The
primary functions of the MMU in a PowerPC processor are to translate logical (effective) addresses to phys-
ical addresses for memory accesses and I/O accesses (most I/O accesses are assumed to be memory-
mapped), and to provide access protection on a block or page basis. Note that many aspects of memory
management are implementation-dependent. The description in Chapter 7, “Memory Management,”
describes the conceptual model of a PowerPC MMU; however, PowerPC processors may differ in the
specific hardware used to implement the MMU model of the OEA.

PowerPC processors require address translation for two types of transactions—instruction accesses and
data accesses to memory (typically generated by load and store instructions).

The memory management specification of the PowerPC OEA includes models for both 64 and 32-bit imple-
mentations. The MMU of a 32,64-bit PowerPC processor provides 26432 bytes of logical address space
accessible to supervisor and user programs with a 4-Kbyte page size and 256-Mbyte segment size.

In 32-bit implementations, the entire 4-Gbyte memory space is defined by sixteen 256-Mbyte segments.
Segments are configured through the 16 segment registers. In 64-bit implementations there are more
segments than can be maintained in architecture-defined registers, so segment descriptors are maintained in
segment table entries (STEs) in memory and are accessed through the use of a hashing algorithm much like
that used for accessing page table entries (PTEs).

PowerPC processors also have a block address translation (BAT) mechanism for mapping large blocks of
memory. Block sizes range from 12Kbyte to 256Mbyte and are software-selectable. In addition, the MMU of
64-bit PowerPC processors uses an interim virtual address (80 bits) and hashed page tables in the genera-
tion of 64-bit physical addresses.
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Two types of accesses generated by PowerPC processors require address translation: instruction accesses,
and data accesses to memory generated by load and store instructions. The address translation mechanism
is defined in terms of segment tables (or segment registers in 32-bit implementations) and page tables used

by PowerPC processors to locate the logical-to-physical address mapping for instruction and data accesses.

The segment information translates the logical address to an interim virtual address, and the page table infor-
mation translates the virtual address to a physical address.

Translation lookaside buffers (TLBs) are commonly implemented in PowerPC processors to keep recently-
used page table entries on-chip. Although their exact characteristics are not specified by the architecture, the
general concepts that are pertinent to the system software are described. Similarly, 64-bit implementations
may contain segment lookaside buffers (SLBs) on-chip that contain recently-used segment table entries, but
for which the PowerPC architecture does not define the exact characteristics.

The block address translation (BAT) mechanism is a software-controlled array that stores the available block
address translations on-chip. BAT array entries are implemented as pairs of BAT registers that are accessible
as supervisor special-purpose registers (SPRs); refer to Chapter 7, “Memory Management,” for more infor-
mation.

The 64-bit bridge provides resources that may make it easier for a 32-bit operating system to migrate to
a 64-bit processor. The nature of these resources are largely determined by the fact that in a 32-bit
address space, only 16 segment descriptors are required to define all 4 Gbytes of memory. That is,
there are sixteen 256-Mbyte segments, as is the case in the 32-bit architecture description.

1.3 Changes to this Document

This book reflects changes made to the PowerPC architecture after the publication of Rev. 0 of The Program-
ming Environments Manual and before Dec. 13, 1994 (Rev. 0.1). In addition, it reflects changes made to the
architecture after the publication of Rev. 0.1 of The Programming Environments Manual and before Aug. 6,
1996 (Rev. 1). Although there are many changes in this revision of The Programming Environments Manual,
this section summarizes only the most significant changes and clarifications to the architecture specification.
There are three types of substantive changes made from Rev. 0 to Rev. 1.

» The temporary addition of a set of resources for optional implementation in 64-bit processors to simplify
the adaptation of 32-bit operating systems. These resources are described briefly in Section 1.3.2
Changes Related to the Optional 64-Bit Bridge.

« The phasing out of the direct-store facility. This facility defined segments that were used to generate
direct-store interface accesses on the external bus to communicate with specialized 1/O devices; it was
not optimized for performance in the PowerPC architecture and was present for compatibility with older
devices only. As of this revision of the architecture (Rev. 1), direct-store segments are an optional proces-
sor feature. However, they are not likely to be supported in future implementations and new software
should not use them.

« General additions to and refinements of the architecture specification are summarized in Section 1.3.3
General Changes to the PowerPC Architecture.
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1.3.1 The Phasing Out of the Direct-store Function

This function defined segments that were used to generate direct-store interface accesses on the external
bus to communicate with specialized I/O devices; it was not optimized for performance in the PowerPC archi-
tecture and was present for compatibility with older devices only. As of this revision of the architecture (Rev.
1), direct-store segments are an optional processor feature. However, they are not likely to be supported in
future implementations and new software should not use them.

1.3.2 Changes Related to the Optional 64-Bit Bridge

As of Rev. 0.1 of the architecture specification, the OEA now provides optional features that facilitate the
migration of operating systems from 32-bit processor designs to 64-bit processors. These features, which
can be implemented in part or in whole, include the following:

Table 1-1. Optional 64-Bit Bridge Features

Change Chapter(s) Affected

ASR][V] (bit 63) may be implemented to indicate whether ASR[STABORG] holds a valid physical base

address for the segment table. 27

Support for four 32-bit instructions that are otherwise defined as illegal in 64-bit mode. These include
the following—mtsr, mtsrin, mfsr, mfsrin. These instructions can be implemented only if ASR[V]is 4,7,8
implemented.

Additional instructions, mtsrd and mtsrdin, that allow software to associate effective segments 0—15
with any of virtual segments 0—(252— 1) without affecting the segment table. These instructions move
64 bits from a specified GPR to a selected SLB entry. These instructions can be implemented only if
ASR[V] is implemented.

4,7,8

The rfi and mtmsr instructions, which are otherwise illegal in the 64-bit architecture, may optionally 4678
be implemented in 64-bit processors if ASR[V] is implemented. R

MSRIISF] (bit 2) is defined as an optional bit that can be used to control the mode (64-bit or 32-bit)
that is entered when an exception is taken. If the bit is not implemented, it is treated as reserved, 2,6,7
except that it is assumed to be set for exception processing.

To determine whether a processor implements any or all of the bridge features, consult the user's man-
ual for that processor.

1.3.3 General Changes to the PowerPC Architecture

Table 1-2 and Table 1-3 list changes made to the UISA that are reflected in this book and identify the chap-
ters affected by those changes. Note that many of the changes made in the UISA are reflected in both the
VEA and OEA portions of the architecture as well.
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Table 1-2. UISA Changes—Rev. 0 to Rev. 0.1

Change Chapter(s) Affected
The rules for handling of reserved bits in registers are clarified. 2

Clarified that isync does not wait for memory accesses to be performed. 4,8

CRO0[0—-2] are undefined for some instructions in 64-bit mode. 4,8

Clarified intermediate result with respect to floating-point operations (the intermediate result has infinite 3
precision and unbounded exponent range).

Clarified the definition pf rounding suc_h that rounding glwgys occurs (specifically, FR and FI flags are 3

always affected) for arithmetic, rounding, and conversion instructions.

Clarified the definition of the term ‘tiny’ (detected before rounding). 3

In D.3.5, “Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Word,” changed value

in FPR 3 from 232 t0 232 — 1 (in 32-bit implementation description). D

Noted additional POWER incompatibility for Store Floating-Point Single (stfs) instruction. B

Table 1-3. UISA Changes—Rev. 0.1 to Rev. 1.0

Change Chapter(s) Affected
Although the stfiwx instruction is an optional instruction, it will likely be required for future processors. 4,8, A
Added the new Data Cache Block Allocate (dcba) instruction. 4,58 A
Deleted some warnings about generating misaligned little-endian access. 3

Table 1-4 and Table 1-5list changes made to the VEA that are reflected in this book and the chapters that
are affected by those changes. Note that some changes to the UISA are reflected in the VEA and in turn,
some changes to the VEA affect the OEA as well.

Table 1-4. VEA Changes—Rev. 0 to Rev. 0.1

Change Chapter(s) Affected
Clarified conditions under which a cache block is considered modified. 5

WIMG bits have meaning only when the effective address is translated. 2,5,7

Clarified that isync does not wait for memory accesses to be performed. 4,5,7,8

Clarified paging implications of eciwx and ecowx. 4,5,7,8

Table 1-5. VEA Changes—Rev. 0.1 to Rev. 1.0

Change Chapter(s) Affected
Added the requirement that caching-inhibited guarded store operations are ordered. 5

Clarified use of the debf instruction in keeping instruction cache coherency in the case of a combined

instruction/data cache in a multiprocessor system. 5

Table 1-6 and Table 1-7 list changes made to the OEA that are reflected in this book and the chapters that
are affected by those changes. Note that some changes to the UISA and VEA are reflected in the OEA as
well.
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Table 1-6. OEA Changes—Rev. 0 to Rev. 0.1

Change
Restricted several aspects of out-of-order operations.

Clarified instruction fetching and instruction cache paradoxes.

Specified that IBATs contain W and G bits and that software must not write 1s to them.

Corrected the description of coherence when the W bit differs among processors.
Clarified that referenced and changed bits are set for virtual pages.

Revised the description of changed bit setting to avoid depending on the TLB.
Tightened the rules for setting the changed bit out of order.

Specified which multiple DSISR bits may be set due to simultaneous DSI exceptions.
Removed software synchronization requirements for reading the TB and DEC.

More flexible DAR setting for a DABR exception.

Table 1-7. OEA Changes—Rev. 0.1 to Rev. 1.0

Change

Changed definition of direct-store segments to an optional processor feature that is not likely to be sup-

ported in future implementations and new software should not use it.

Changed the ranges of bits saved from MSR to SRR1 (and restored from SRR1 to MSR on rfi[d]) on an

exception.

Clarified the definition of execution synchronization. Also clarified that the mtmsr and mtmsrd instructions

are not execution synchronizing.

Clarified the use of memory allocated for predefined uses (including the exception vectors).

For 64-bit implementations, changed the definition of the base address for the exception vectors when

MSR[IP] = 1 from FFFF_FFFF to 0000—-0000.

For 64-bit implementations, added the provision for virtual address spaces of 64 bits (as an alternative to

the existing 80 bits).

Revised the page table update synchronization requirements and recommended code sequences.
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2. PowerPC Register Set

This chapter describes the register organization defined by the three levels of the PowerPC architecture:

» User instruction set architecture (UISA)
« Virtual environment architecture (VEA), and
» Operating environment architecture (OEA).

The PowerPC architecture defines register-to-register operations for all computational instructions. Source
data for these instructions are accessed from the on-chip registers or are provided as immediate values
embedded in the opcode. The three-register instruction format allows specification of a target register distinct
from the two source registers, thus preserving the original data for use by other instructions and reducing the
number of instructions required for certain operations. Data is transferred between memory and registers with
explicit load and store instructions only.

Note: The handling of reserved bits in any register is implementation-dependent. Software is permitted to
write any value to a reserved bit in a register. However, a subsequent reading of the reserved bit returns 0 if
the value last written to the bit was 0 and returns an undefined value (may be 0 or 1) otherwise. This means
that even if the last value written to a reserved bit was 1, reading that bit may return 0.

2.1 PowerPC UISA Register Set

The PowerPC UISA registers, shown in Figure 2-1, can be accessed by either user or supervisor-level
instructions (the architecture specification refers to user-level and supervisor-level as problem state and priv-
ileged state respectively). The general-purpose registers (GPRs) and floating-point registers (FPRs) are
accessed as instruction operands. Access to registers can be explicit (that is, through the use of specific
instructions for that purpose such as Move to Special-Purpose Register (mtspr) and Move from Special-
Purpose Register (mfspr) instructions) or implicit as part of the execution of an instruction. Some registers
are accessed both explicitly and implicitly.

The number to the right of the register names indicates the number that is used in the syntax of the instruction
operands to access the register (for example, the number used to access the XER is SPR 1).

Note that the general-purpose registers (GPRs), link register (LR), and count register (CTR) are 64 bits wide
on 64-bit implementations and 32 bits wide on 32-bit implementations.
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Figure 2-1. UISA Programming Model—User-Level Registers

/ USEﬁlhélgDEL \

General-Purpose Registers

GPRO (64/32)
GPR1 (64/32)

o000 |~ |~

GPR31 (64/32)

Floating-Point Registers
FPRO (64)
FPR1 (64)

FPR31 (64)

Condition Register !

CR (32)

Floating-Point Status
and Control Register !

FPSCR (32)
XER Register !
XER (32) |SPR1
Link Register

LR (64/32) |SPR8

Count Register

CTR (64/32) |SPR9
\Z 4

USER MODEL
VEA

Time Base Facility '
(For Reading)

TBL (32) TBR 268
TBU (32) TBR 269

SUPERVISOR MODEL — OEA

Configuration Registers
Processor Version Register ! (Read Only)
PVR (32) SPR 287

Machine State Register
MSR (64/32)

Memory Management Registers
Instruction BAT Registers Data BAT Registers

IBATOU (64/32) | SPR 528 DBATOU SPR 536
IBATOL (64/32) | SPR 529 DBATOL SPR 537
IBAT1U (64/32) | SPR 530 DBAT1U SPR 538
IBAT1L (64/32) A SPR 531 DBAT1L SPR 539
IBAT2U (64/32) | SPR 532 DBAT2U SPR 540
IBAT2L (64/32) | SPR 533 DBAT2L SPR 541
IBAT3U (64/32) | SPR 534 DBAT3U SPR 542
IBAT3L (64/32) | SPR 535 DBAT3L SPR 543
Segment Registers 12
SDR1 SRO (32)
SDR1 (64/32) SPR 25 SR1 (32)
Address Space Register 3 :
ASR (64) SPR 280 hd
SR15 (32)
Exception Handling Registers
Data Address Register DSISR '
DAR (64/32) SPR 19 DSISR (32) |SPR 18
SPRGs Save and Restore Registers
SPRGO (64/32) | SPR 272 SRRO (64/32) |SPR 26

( )
SPRG1 (64/32) SPR 273 SRR1 (64/32) |SPR 27
SPRG2 (64/32) SPR 274 Floating-Point Exception
SPRG3 (64/32) SPR 275 Cause Register (Optional)
FPECR SPR 1022

Miscellaneous Registers
Time Base Facility ! Data Address Breakpoint
(For Writing) Register (Optional)
TBL (32) SPR 284

TBU (32) SPR 285 DABR (64/32) | SPR 1013

External Access Register
(Optional) !
DEC (32) |SPR22 EAR (32) | SPR282
Processor Identification
Register (Optional)
PIR SPR 1023

Decrementer '

I These registers are 32-bit registers only.
2 These registers are on 32-bit implementations only.
3 These registers are on 64-bit implementations only.
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The user-level registers can be accessed by all software with either user or supervisor privileges. The user-
level registers are:

General-purpose registers (GPRs). The general-purpose register file consists of 32 GPRs designated as
GPRO-GPR31. The GPRs serve as data source or destination registers for all integer instructions and
provide data for generating addresses. See Section 2.1.1 General-Purpose Registers (GPRs) on

page 56,” for more information.

Floating-point registers (FPRs). The floating-point register file consists of 32 FPRs designated as FPR0O—
FPR31; these registers serve as the data source or destination for all floating-point instructions. While the
floating-point model includes data objects of either single or double-precision floating-point format, the
FPRs only contain data in double-precision format. For more information, see Section 2.1.2 Floating-
Point Registers (FPRs) on page 56.

Condition register (CR). The CR is a 32-bit register, divided into eight 4-bit fields, CRO—CR?7. This register
stores the results of certain arithmetic operations and provides a mechanism for testing and branching.
For more information, see Section 2.1.3 Condition Register (CR) on page 57.

Floating-point status and control register (FPSCR). The FPSCR contains all floating-point exception sig-
nal bits, exception summary bits, exception enable bits, and rounding control bits needed for compliance
with the IEEE 754 standard. For more information, see Section 2.1.4 Floating-Point Status and Control
Register (FPSCR) on page 59.

Note: The architecture specification refers to exceptions as interrupts.

XER register (XER). The XER indicates overflows and carry conditions for integer operations and the
number of bytes to be transferred by the load/store string indexed instructions. For more information, see
Section 2.1.5 XER Register (XER) on page 62.

Link register (LR). The LR provides the branch target address for the Branch Conditional to Link Register
(belrx) instructions, and can optionally be used to hold the effective address of the instruction that follows
a branch with link update instruction in the instruction stream, typically used for loading the return pointer
for a subroutine. For more information, see Section 2.1.6 Link Register (LR) on page 63.”

Count register (CTR). The CTR holds a loop count that can be decremented during execution of appropri-
ately coded branch instructions. The CTR can also provide the branch target address for the Branch Con-
ditional to Count Register (beetrx) instructions. For more information, see Section 2.1.7 Count Register
(CTR) on page 64.
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2.1.1 General-Purpose Registers (GPRSs)

Integer data is manipulated in the processor’s 32 GPRs shown in Figure 2-2. These registers are 64-bit regis-
ters in 64-bit implementations and 32-bit registers in 32-bit implementations. The GPRs are accessed as
either source or destination registers in the instruction syntax.

Figure 2-2. General-Purpose Registers (GPRs)

GPRO
GPR1

GPR31

2.1.2 Floating-Point Registers (FPRs)

The PowerPC architecture provides thirty-two 64-bit FPRs as shown in Figure 2-3. These registers are
accessed as either source or destination registers for floating-point instructions. Each FPR supports the
double-precision floating-point format. Every instruction that interprets the contents of an FPR as a floating-
point value uses the double-precision floating-point format for this interpretation. Note that FPRs are 64 bits
on both 64-bit and 32-bit processor implementations.

Instructions for all floating-point arithmetic operations use the data located in the FPRs and, with the excep-

tion of compare instructions, place the result into a FPR. Information about the status of floating-point opera-
tions is placed into the FPSCR and in some cases, into the CR after the completion of instruction execution.
For information on how the CR is affected for floating-point operations, see Section 2.1.3 Condition Register
(CR).

Instructions to load and to store floating-point double precision values transfer 64 bits of data between
memory and the FPRs with no conversion.

Instructions to load floating-point single precision values are provided to read single-precision floating-point
values from memory, convert them to double-precision floating-point format, and place them in the target
floating-point register.

Instructions to store single-precision values are provided to read double-precision floating-point values from a
floating-point register, convert them to single-precision floating-point format, and place them in the target
memory location.

Instructions for single and double-precision arithmetic operations accept values from the FPRs in double-
precision format. For instructions of single-precision arithmetic and store operations, all input values must be
representable in single-precision format; otherwise, the results placed into the target FPR (or the memory
location) and the setting of status bits in the FPSCR and in the condition register (if the instruction’s record bit,
Rec, is set) are undefined.
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The floating-point arithmetic instructions produce intermediate results that may be regarded as infinitely
precise and with unbounded exponent range. This intermediate result is normalized or denormalized if
required, and then rounded to the destination format. The final result is then placed into the target FPR in the
double-precision format or in fixed-point format, depending on the instruction. Refer to Section 3.3 Floating-
Point Execution Models—UISA on page 106 for more information.

Figure 2-3. Floating-Point Registers (FPRs)

FPRO
FPR1

FPR31

2.1.3 Condition Register (CR)

The condition register (CR) is a 32-bit register that reflects the result of certain operations and provides a
mechanism for testing and branching. The bits in the CR are grouped into eight 4-bit fields, CRO—CR7, as
shown in Figure 2-4.

Figure 2-4. Condition Register (CR)

CRO CR1 CR2 CR3 CR4 CR5 CR6 CR7
0 34 7 8 11 12 15 16 19 20 23 24 27 28 31

The CR fields can be set in one of the following ways:
» Specified fields of the CR can be set from a GPR by using the mterf instruction.
« The contents of the XER[0—3] can be moved to another CR field by using the merf instruction.
» A specified field of the XER can be copied to a specified field of the CR by using the merxr instruction.
« A specified field of the FPSCR can be copied to a specified field of the CR by using the mcrfs instruction.

- Logical instructions of the condition register can be used to perform logical operations on specified bits in
the condition register.

« CRO can be the implicit result of an integer instruction.
« CR1 can be the implicit result of a floating-point instruction.
» A specified CR field can indicate the result of either an integer or floating-point compare instruction.

Note: Branch instructions are provided to test individual CR bits.
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2.1.3.1 Condition Register CRO Field Definition

For all integer instructions, when the CR is set to reflect the result of the operation (that is, when Rc = 1), and
for addic., andi., and andis., the first three bits of CRO are set by an algebraic comparison of the result to
zero; the fourth bit of CRO is copied from XER[SO]. For integer instructions, CR bits 0—3 are set to reflect the
result as a signed quantity.

The CR bits are interpreted as shown in Table 2-1. If any portion of the result is undefined, the value placed
into the first three bits of CRO is undefined.

Table 2-1. Bit Settings for CRO Field of CR

CRO Bit Description
0 Negative (LT)—This bit is set when the result is negative.
1 Positive (GT)—This bit is set when the result is positive (and not zero).
2 Zero (EQ)—This bit is set when the result is zero.
3 Summary overflow (SO)—This is a copy of the final state of XER[SO] at the completion of the instruction.

Note: If overflow occurs CRO may not reflect the true (that is, infinitely precise) results. Also, CRO bits 0—2
are undefined if Rc = 1 for the mulhw, mulhwu, divw, and divwu instructions in 64-bit mode.

2.1.3.2 Condition Register CR1 Field Definition

In all floating-point instructions when the CR is set to reflect the result of the operation (that is, when the
instruction’s record bit, Rc, is set), CR1 (bits 4—7 of the CR) is copied from bits 0—3 of the FPSCR and indi-
cates the floating-point exception status. For more information about the FPSCR, see Section 2.1.4 Floating-
Point Status and Control Register (FPSCR). The bit settings for the CR1 field are shown in Table 2-2.

Table 2-2. Bit Settings for CR1 Field of CR

CR1 Bit Description
4 Floating-point exception (FX)—This is a copy of the final state of FPSCR[FX] at the completion of the instruction.
5 Floating-point enabled exception (FEX)—This is a copy of the final state of FPSCR[FEX] at the completion of the
instruction.
6 Floating-point invalid exception (VX)—This is a copy of the final state of FPSCR[VX] at the completion of the
instruction.
7 Floating-point overflow exception (OX)—This is a copy of the final state of FPSCR[OX] at the completion of the

instruction.

2.1.3.3 Condition Register CRn Field—Compare Instruction

For a compare instruction, when a specified CR field is set to reflect the result of the comparison, the bits of
the specified field are interpreted as shown in Table 2-3.

PowerPC Register Set pem2_regset.fm.2.0
Page 58 of 785 June 10, 2003



Programming Environments Manual

PowerPC RISC Microprocessor Family

Table 2-3. CRn Field Bit Settings for Compare Instructions

CRn Bit! Description2

Less than or floating-point less than (LT, FL).
0 For integer compare instructions:rA < SIMM or rB (signed comparison) or rA < UIMM or rB (unsigned comparison).
For floating-point compare instructions:frA < frB.

Greater than or floating-point greater than (GT, FG).
1 For integer compare instructions:rA > SIMM or rB (signed comparison) or rA > UIMM or rB (unsigned comparison).
For floating-point compare instructions:frA > frB.

Equal or floating-point equal (EQ, FE).
2 For integer compare instructions: rA = SIMM, UIMM, or rB.
For floating-point compare instructions: frA = frB.

Summary overflow or floating-point unordered (SO, FU).
3 For integer compare instructions:This is a copy of the final state of XER[SQ] at the completion of the instruction.
For floating-point compare instructions: One or both of frA and frB is a Not a Number (NaN).

Note: 'Here, the bit indicates the bit number in any one of the 4-bit subfields, CRO—CR?7.
%Fora complete description of instruction syntax conventions, refer to Table 8-2 on page 370.

2.1.4 Floating-Point Status and Control Register (FPSCR)
The Floating-Point and Control Register (FPSCR), shown in Figure 2-5, is used for:

» Recording exceptions generated by floating-point operations

» Recording the type of the result produced by a floating-point operation

« Controlling the rounding mode used by floating-point operations

« Enabling or disabling the reporting of exceptions (that is, invoking the exception handler)

Bits 0—23 are status bits. Bits 24—31 are control bits. Status bits in the FPSCR are updated at the completion
of the instruction execution.

Except for the floating-point enabled exception summary (FEX) and floating-point invalid operation exception
summary (VX), the exception condition bits in the FPSCR (bits 0—12 and 21—23) are sticky. Once set, sticky
bits remain set until they are cleared by the relevant merfs, mtfsfi, mtfsf, or mtfsb0 instruction.

FEX and VX are the logical ORs of other FPSCR bits. Therefore, these two bits are not listed among the
FPSCR bits directly affected by the various instructions.

Figure 2-5. Floating-Point Status and Control Register (FPSCR)

[ ] Reserved
VXIDI VXZDZ —————— VXSOFT
VXIS ————— ———— VXIMZ —— VXSQRT
VXSNAN —l Ii VXVC I_ vXeVi
FX|FEX VX |OX| UX| ZX | XX FR|FI| FPRF |0 VE|OE|UE[ZE|XE|NI| RN
01 2 3 4 5 6 7 8 9 10 11 12 13 1415 1920 21 22 23 24 25 26 27 28 29 30 31
A listing of FPSCR bit settings is shown in Table 2-4.
pem2_regset.fm.2.0 PowerPC Register Set

June 10, 2003 Page 59 of 785



Programming Environments Manual

PowerPC RISC Microprocessor Family

Table 2-4. FPSCR Bit Settings

Bit(s) Name Description
Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf, implicitly sets
0 EX FPSCR[FX] if that instruction causes any of the floating-point exception bits in the FPSCR to transition from
0 to 1. The mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1 instructions can alter FPSCR[FX] explicitly. This is a
sticky bit.

Floating-point enabled exception summary. This bit signals the occurrence of any of the enabled exception

FEX conditions. It is the logical OR of all the floating-point exception bits masked by their respective enable bits
(FEX = (VX & VE) » (OX & OE) " (UX & UE) " (ZX & ZE) * (XX & XE)). The mcrfs, mtfsf, mtfsfi, mtfsb0,
and mtfsb1 instructions cannot alter FPSCR[FEX] explicitly. This is not a sticky bit.

Floating-point invalid operation exception summary. This bit signals the occurrence of any invalid operation
2 VX exception. It is the logical OR of all of the invalid operation exceptions. The mcrfs, mtfsf, mtfsfi, mtfsbo0,
and mtfsb1 instructions cannot alter FPSCR[VX] explicitly. This is not a sticky bit.

3 OX Floating-point overflow exception. This is a sticky bit. See Section 3.3.6.2 Overflow, Underflow, and Inexact
Exception Conditions on page 127.

4 UX Floating-point underflow exception. This is a sticky bit. See Underflow Exception Condition on page 130.

5 ZX Floating-point zero divide exception. This is a sticky bit. See Zero Divide Exception Condition on page 126.

Floating-point inexact exception. This is a sticky bit. See Inexact Exception Condition on page 131.

FPSCR[XX] is the sticky version of FPSCR[FI]. The following rules describe how FPSCR[XX] is set by a
given instruction:

« If the instruction affects FPSCR[FI], the new value of FPSCR[XX] is obtained by logically ORing the old
value of FPSCR[XX] with the new value of FPSCRI[FI].

« If the instruction does not affect FPSCR[FI], the value of FPSCR[XX] is unchanged.
VXSNAN Floating-point invalid operation exception for SNaN. This is a sticky bit. See Invalid Operation Exception

7 Condition on page 125.
8 VXIS Floating-point invalid operation exception for x — x. This is a sticky bit. See Invalid Operation Exception Con-
dition on page 125.
9 VXIDI Floating-point invalid operation exception for x + x. This is a sticky bit. See Invalid Operation Exception Con-
dition on page 125.
Floating-point invalid operation exception for 0 + 0. This is a sticky bit. See Invalid Operation Exception Con-
10 VXZDz Y p
dition on page 125.
Floating-point invalid operation exception for x * 0. This is a sticky bit. See Invalid Operation Exception Con-
11 VXIMZ Py P
dition on page 125.
12 VXVG Floating-point invalid operation exception for invalid compare. This is a sticky bit. See Invalid Operation
Exception Condition on page 125.
13 FR Floating-point fraction rounded. The last arithmetic or rounding and conversion instruction that rounded the
intermediate result incremented the fraction. See Section 3.3.5 Rounding.” This bit is not sticky.
Floating-point fraction inexact. The last arithmetic or rounding and conversion instruction either rounded the
14 Fl intermediate result (producing an inexact fraction) or caused a disabled overflow exception. See
Section 3.3.5 Rounding. This is not a sticky bit. For more information regarding the relationship between
FPSCR[FI] and FPSCR[XX], see the description of the FPSCR[XX] bit.
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Table 2-4. FPSCR Bit Settings (Continued)

Bit(s) Name
1519 FPRF
20 —
21 VXSOFT

22 VXSQRT

23

24

25

26
27
28

29

30-31

VXCVI

VE

OE

UE
ZE
XE

NI

RN

Description

Floating-point result flags. For arithmetic, rounding, and conversion instructions, the field is based on the
result placed into the target register, except that if any portion of the result is undefined, the value placed
here is undefined.

15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion instructions may set
this bit with the FPCC bits to indicate the class of the result as shown in Table 2-5. .

16—19 Floating-point condition code (FPCC). Floating-point compare instructions always set one of the
FPCC bits to one and the other three FPCC bits to zero. Arithmetic, rounding, and conversion instructions
may set the FPCC bits with the C bit to indicate the class of the result. Note that in this case the high-order
three bits of the FPCC retain their relational significance indicating that the value is less than, greater than,
or equal to zero.

16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or >)
18 Floating-point equal or zero (FE or =)

19 Floating-point unordered or NaN (FU or ?)

Note that these are not sticky bits.
Reserved

Floating-point invalid operation exception for software request. This is a sticky bit. This bit can be altered
only by the mcrfs, mtfsfi, mtfsf, mtfsb0, or mtfsb1 instructions. For more detailed information, refer to
Invalid Operation Exception Condition on page 125.

Floating-point invalid operation exception for invalid square root. This is a sticky bit. For more detailed infor-
mation, refer to Invalid Operation Exception Condition on page 125.

Floating-point invalid operation exception for invalid integer convert. This is a sticky bit. See Invalid Opera-
tion Exception Condition on page 125.

Floating-point invalid operation exception enable. See Invalid Operation Exception Condition on page 125.”

|IEEE floating-point overflow exception enable. See Section 3.3.6.2 Overflow, Underflow, and Inexact Excep-
tion Conditions on page 127.

|IEEE floating-point underflow exception enable. See Underflow Exception Condition on page 130.
IEEE floating-point zero divide exception enable. See Zero Divide Exception Condition on page 126.”
Floating-point inexact exception enable. See Inexact Exception Condition on page 131.”

Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards and the other
FPSCR bits may have meanings other than those described here. If the bit is set and if all implementation-
specific requirements are met and if an IEEE-conforming result of a floating-point operation would be a
denormalized number, the result produced is zero (retaining the sign of the denormalized number). Any
other effects associated with setting this bit are described in the user’s manual for the implementation (the
effects are implementation-dependent).

Floating-point rounding control. See Section 3.3.5 Rounding.

00 Round to nearest

01 Round toward zero

10 Round toward +infinity
11 Round toward —infinity

Table 2-5illustrates the floating-point result flags used by PowerPC processors. The result flags correspond
to FPSCR bits 15—19.
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Table 2-5. Floating-Point Result Flags in FPSCR

Result Flags (Bits 15—19) Result Value I
esult Value Class

C < > = ?

1 0 0 0 1 |Quiet NaN

0 1 0 0 1 |—Infinity

0 1 0 0 0 |—Normalized number

1 1 0 0 0 |—Denormalized number
1 0 0 1 0 |—Zero

0 0 0 1 0 |+Zero

1 0 1 0 0 |+Denormalized number
0 0 1 0 0 |+Normalized number

0 0 1 0 1| +Infinity

2.1.5 XER Register (XER)
The XER register (XER) is a 32-bit, user-level register shown in Figure 2-6.
Figure 2-6. XER Register

[ ] Reserved

SO|OV|CA 0 0000 0000 0000 0000 0000 O Byte count

01 2 3 24 25 31

The bit definitions for XER, shown in Table 2-6. , are based on the operation of an instruction considered as a
whole, not on intermediate results. For example, the result of the Subtract from Carrying (subfcx) instruction
is specified as the sum of three values. This instruction sets bits in the XER based on the entire operation, not
on an intermediate sum.
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Table 2-6. XER Bit Definitions

Bit(s) Name |Description

Summary overflow. The summary overflow bit (SO) is set whenever an instruction (except mtspr) sets the overflow
bit (OV). Once set, the SO bit remains set until it is cleared by an mtspr instruction (specifying the XER) or an

0 SO | merxr instruction. It is not altered by compare instructions, nor by other instructions (except mtspr to the XER, and
mcrxr) that cannot overflow. Executing an mtspr instruction to the XER, supplying the values zero for SO and one
for OV, causes SO to be cleared and OV to be set.

Overflow. The overflow bit (OV) is set to indicate that an overflow has occurred during execution of an instruction.
Add, subtract from, and negate instructions having OE = 1 set the OV bit if the carry out of the msb is not equal to

1 ov the carry out of the msb + 1, and clear it otherwise. Multiply low and divide instructions having OE = 1 set the OV bit
if the result cannot be represented in 64 bits (mulld, divd, divdu) or in 32 bits (mullw, divw, divwu), and clear it
otherwise. The OV bit is not altered by compare instructions that cannot overflow (except mtspr to the XER, and
mcrxr).

Carry. The carry bit (CA) is set during execution of the following instructions:

- Add carrying, subtract from carrying, add extended, and subtract from extended instructions set CA if there is a
carry out of the msb, and clear it otherwise.

2 CA « Shift right algebraic instructions set CA if any 1 bits have been shifted out of a negative operand, and clear it oth-
erwise.

The CA bit is not altered by compare instructions, nor by other instructions that cannot carry (except shift right alge-
braic, mtspr to the XER, and mcrxr).
324 — Reserved

o5 31 This field specifies the number of bytes to be transferred by a Load String Word Indexed (Iswx) or Store String
Word Indexed (stswx) instruction.

2.1.6 Link Register (LR)

The link register (LR) is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit implementa-
tions. The LR supplies the branch target address for the Branch Conditional to Link Register (belrx) instruc-
tions, and in the case of a branch with link update instruction, can be used to hold the logical address of the
instruction that follows the branch with link update instruction (for returning from a subroutine). The format of
LR is shown in Figure 2-7.

Figure 2-7. Link Register (LR)

Branch Address

0 63

Note: Although the two least-significant bits can accept any values written to them, they are ignored when
the LR is used as an address. Both conditional and unconditional branch instructions include the option of
placing the logical address of the instruction following the branch instruction in the LR.

The link register can be also accessed by the mtspr and mfspr instructions using SPR 8. Prefetching instruc-
tions along the target path (loaded by an mtspr instruction) is possible provided the link register is loaded
sufficiently ahead of the branch instruction (so that any branch prediction hardware can calculate the branch
address). Additionally, PowerPC processors can prefetch along a target path loaded by a branch and link
instruction.

Note: Some PowerPC processors may keep a stack of the LR values most recently set by branch with link
update instructions. To benefit from these enhancements, use of the link register should be restricted to the
manner described in Section 4.2.4.2 Conditional Branch Control.
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2.1.7 Count Register (CTR)

The count register (CTR) is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit imple-
mentations. The CTR can hold a loop count that can be decremented during execution of branch instructions
that contain an appropriately coded BO field. If the value in CTR is 0 before being decremented, it is
OxFFFF_FFFF_FFFF_FFFF (284—1)0xFFFF_FFFF (23°—1) afterward in 64-bit implementations and
OXFFFF_FFFF (2%2—1) in 32-bit implementations. The CTR can also provide the branch target address for
the Branch Conditional to Count Register (beccetrx) instruction. The CTR is shown in Figure 2-8.

Figure 2-8. Count Register (CTR)

CTR

0 63

Prefetching instructions along the target path is also possible provided the count register is loaded sufficiently
ahead of the branch instruction (so that any branch prediction hardware can calculate the correct value of the
loop count).

The count register can also be accessed by the mtspr and mfspr instructions by specifying SPR 9. In branch
conditional instructions, the BO field specifies the conditions under which the branch is taken. The first four
bits of the BO field specify how the branch is affected by or affects the CR and the CTR. The encoding for the
BO field is shown in Table 2-7.

Table 2-7. BO Operand Encodings

BO Description
0000y Decrement the CTR, then branch if the decremented CTR | 0 and the condition is FALSE.
0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.
001zy Branch if the condition is FALSE.
0100y Decrement the CTR, then branch if the decremented CTR | 0 and the condition is TRUE.
0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.
011zy Branch if the condition is TRUE.
1200y Decrement the CTR, then branch if the decremented CTR | 0.
1201y Decrement the CTR, then branch if the decremented CTR = 0.
1z1zz Branch always.

Note: The y bit provides a hint about whether a conditional branch is likely to be taken and is used by some PowerPC implementations
to improve performance. Other implementations may ignore the y bit.

The zindicates a bit that is ignored. The z bits should be cleared (zero), as they may be assigned a meaning in a future version of the
PowerPC UISA.
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2.2 PowerPC VEA Register Set—Time Base

The PowerPC virtual environment architecture (VEA) defines registers in addition to those defined by the
UISA. The PowerPC VEA register set can be accessed by all software with either user or supervisor-level
privileges. Figure 2-9 provides a graphic illustration of the PowerPC VEA register set. Note that the following
programming model is similar to that found in Figure 2-1, with the additional PowerPC VEA registers.

The PowerPC VEA introduces the time base facility (TB), a 64-bit structure that consists of two 32-bit regis-
ters—time base upper (TBU) and time base lower (TBL).

Note: The time base registers can be accessed by both user and supervisor-level instructions. In the context
of the VEA, user-level applications are permitted read-only access to the TB. The OEA defines supervisor-
level access to the TB for writing values to the TB. See Section 2.3.13 Time Base Facility (TB)—OEA for
more information.

In Figure 2-9 the numbers to the right of the register name indicates the number that is used in the syntax of
the instruction operands to access the register (for example, the number used to access the XER is SPR 1).

Note: The general-purpose registers (GPRs), link register (LR), and count register (CTR) are 64 bits on 64-
bit implementations and 32 bits on 32-bit implementations. These registers are described in Section 2.1 Pow-
erPC UISA Register Set.

pem2_regset.fm.2.0 PowerPC Register Set
June 10, 2003 Page 65 of 785



Programming Environments Manual

PowerPC RISC Microprocessor Family

Figure 2-9. VEA Programming Model—User-Level Registers Plus Time Base
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The time base (TB), shown in Figure 2-10, is a 64-bit structure that contains a 64-bit unsigned integer that is
incremented periodically. Each increment adds 1 to the low-order bit (bit 31 of TBL). The frequency at which
the counter is incremented is implementation-dependent.

Figure 2-10. Time Base (TB)

TBU—Upper 32 bits of time base TBL—Lower 32 bits of time base

Note: The TB increments until its value becomes OxFFFF_FFFF_FFFF_FFFF (264— 1). At the next incre-
ment its value becomes 0x0000_0000_0000_0000. There is no explicit indication that this has occurred (that
is, no exception is generated).

The period of the time base depends on the driving frequency. The TB is implemented such that the following
requirements are satisfied:

1. Loading a GPR from the time base has no effect on the accuracy of the time base.

2. Storing a GPR to the time base replaces the value in the time base with the value in the GPR.

The PowerPC VEA does not specify a relationship between the frequency at which the time base is updated
and other frequencies, such as the processor clock. The TB update frequency is not required to be constant;
however, for the system software to maintain time of day and operate interval timers, one of two things is
required:
» The system provides an implementation-dependent exception to software whenever the update fre-
quency of the time base changes and a means to determine the current update frequency; or

» The system software controls the update frequency of the time base.

Note: If the operating system initializes the TB to some reasonable value and the update frequency of the TB
is constant, the TB can be used as a source of values that increase at a constant rate, such as for time
stamps in trace entries.

Even if the update frequency is not constant, values read from the TB are monotonically increasing (except
when the TB wraps from 284 _1100). If a trace entry is recorded each time the update frequency changes,
the sequence of TB values can be postprocessed to become actual time values.

However, successive readings of the time base may return identical values due to implementation-dependent
factors such as a low update frequency or initialization.
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2.2.1 Reading the Time Base

The mftb instruction is used to read the time base. The following sections discuss reading the time base on
64-bit and 32-bit implementations. For specific details on using the mftb instruction, see Chapter 8, “Instruc-
tion Set.” For information on writing the time base, see Section 2.3.13.1 Writing to the Time Base.

2.2.1.1 Reading the Time Base on 64-Bit Implementations

The contents of the time base may be read into a GPR by mftb. To read the contents of the TB into register
rD, execute the following instruction:
mftb rD

The above example uses the simplified mnemonic (referred to as extended mnemonic in the architecture
specification) form of the mftb instruction (equivalent to mftb rA,268). Using this instruction on a 64-bit imple-
mentation copies the entire time base (TBU || TBL) into rA. Note that if the simplified mnemonic form mftbu
rA (equivalent to mftb rA,269) is used on a 64-bit implementation, the contents of TBU are copied to the low-
order 32 bits of rA, and the high-order 32 bits of rA are cleared (0 || TBU).

Reading the time base has no effect on the value it contains or the periodic incrementing of that value.

2.2.1.2 Reading the Time Base on 32-Bit Inplementations

For 32-bit implementations, it is not possible to read the entire 64-bit time base in a single instruction. The
mftb simplified mnemonic moves from the lower half of the time base register (TBL) to a GPR, and the mftbu
simplified mnemonic moves from the upper half of the time base (TBU) to a GPR.

Because of the possibility of a carry from TBL to TBU occurring between reads of the TBL and TBU, a
sequence such as the following example is necessary to read the 32-bit implementation of the time base:

loop:
mf tbu rx #load from TBU
mftb ry #load from TBL
mf tbu rz #load from TBU
cmpw rz,rx #see 1f ‘0ld’ = ‘new’
bne loop #loop i1f carry occurred

The comparison and loop are necessary to ensure that a consistent pair of values has been obtained. The
previous example will also work on 64-bit implementations running in either 64-bit or 32-bit mode.

2.2.2 Computing Time of Day from the Time Base

Since the update frequency of the time base is system-dependent, the algorithm for converting the current
value in the time base to time of day is also system-dependent.

In a system in which the update frequency of the time base may change over time, it is not possible to convert
an isolated time base value into time of day. Instead, a time base value has meaning only with respect to the
current update frequency and the time of day that the update frequency was last changed. Each time the
update frequency changes, either the system software is notified of the change via an exception, or else the
change was instigated by the system software itself. At each such change, the system software must
compute the current time of day using the old update frequency, compute a new value of ticks-per-second for
the new frequency, and save the time of day, time base value, and tick rate. Subsequent calls to compute
time of day use the current time base value and the saved data.
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A generalized service to compute time of day could take the following as input:
« Time of day at beginning of current epoch
« Time base value at beginning of current epoch
« Time base update frequency
« Time base value for which time of day is desired

For a PowerPC system in which the time base update frequency does not vary, the first three inputs would be
constant.

2.3 PowerPC OEA Register Set

The PowerPC operating environment architecture (OEA) completes the discussion of PowerPC registers.
Figure 2-11 shows a graphic representation of the entire PowerPC register set—UISA, VEA, and OEA. In
Figure 2-11 the numbers to the right of the register name indicates the number that is used in the syntax of
the instruction operands to access the register (for example, the number used to access the XER is SPR 1).

All of the SPRs in the OEA can be accessed only by supervisor-level instructions; any attempt to access
these SPRs with user-level instructions results in a supervisor-level exception. Some SPRs are implementa-
tion-specific. In some cases, not all of a register’s bits are implemented in hardware.

If a PowerPC processor executes an mtspr/mfspr instruction with an undefined SPR encoding, it takes
(depending on the implementation) an illegal instruction program exception, a privileged instruction program
exception, or the results are boundedly undefined. See Section 6.4.7 Program Exception (0x00700) for more
information.

Note: Tthe GPRs, LR, CTR, TBL, MSR, DAR, SDR1, SRR0, SRR1, and SPRG0—SPRG3 are 64 bits wide on
64-bit implementations and 32 bits wide on 32-bit implementations.
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Figure 2-11. OEA Programming Model—All Registers
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The PowerPC OEA supervisor-level registers are:
« Configuration registers which include:

— Machine state register (MSR). The MSR defines the state of the processor. The MSR can be modi-
fied by the Move to Machine State Register (mtmsrd [or mtmsr]), System Call (s¢), and Return from
Interrupt (rfid [or rfi]) instructions. It can be read by the Move from Machine State Register (mfmsr)
instruction. For more information, see Section 2.3.1 Machine State Register (MSR).

— Processor version register (PVR). The PVR is a read-only register that identifies the version (model)
and revision level of the PowerPC processor. For more information, see Section 2.3.2 Processor Ver-
sion Register (PVR).

- Memory management registers which include:

— Block-address translation (BAT) registers. The PowerPC OEA includes eight block-address transla-
tion registers (BATs), consisting of four pairs of instruction BATs (IBATOU—-IBAT3U and IBATOL—
IBAT3L) and four pairs of data BATs (DBATOU-DBAT3U and DBATOL—DBAT3L). See Figure 2-11 for
a list of the SPR numbers for the BAT registers. Refer to Section 2.3.3 BAT Registers for more infor-
mation.

— SDR1. The SDR1 register specifies the page table base address used in virtual-to-physical address
translation. For more information, see Section 2.3.4 SDR1. (Note that physical address is referred to
as real address in the architecture specification.)

— Address space register (ASR). The ASR holds the physical address of the segment table. It is found
only on 64-bit implementations. For more information, see Section 2.3.5 Address Space Register
(ASR).

— Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment registers (SR0-SR15).
Note that the SRs are implemented on 32-bit implementations only. The fields in the segment register
are interpreted differently depending on the value of bit 0. For more information, see Section 2.3.6
Segment Registers. Note that the 64-bit bridge facility defines a way in which 64-bit implementations
can use 16 SLB entries as if they were segment registers. See Chapter 7, “Memory Management” for
more detailed information about the bridge facility.

« Exception handling registers which include:

— Data address register (DAR). A data address register (DAR) is set to the effective address generated
by the a DSI or an alignment exception. For more information, see Section 2.3.7 Data Address Reg-
ister (DAR).

— SPRGO-SPRGS3. The SPRGO0—SPRGS3 registers are provided for operating system use. For more
information, see Section 2.3.8 SPRGO-SPRG3.

— DSISR. The DSISR defines the cause of DSI and alignment exceptions. For more information, refer
to Section 2.3.9 DSISR.

— Machine status save/restore register 0 (SRRO0). The SRRO register is used to save machine status on
exceptions and to restore machine status when an rfid (or rfi) instruction is executed. For more infor-
mation, see Section 2.3.10 Machine Status Save/Restore Register 0 (SRRO).

— Machine status save/restore register 1 (SRR1). The SRR1 register is used to save machine status on
exceptions and to restore machine status when an rfid (or rfi) instruction is executed. For more infor-
mation, see Section 2.3.11 Machine Status Save/Restore Register 1 (SRR1).

— Floating-point exception cause register (FPECR). This optional register is used to identify the cause
of a floating-point exception.
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» Miscellaneous registers which include:

— Time base (TB). The TB is a 64-bit structure that maintains the time of day and operates interval tim-
ers. The TB consists of two 32-bit registers—time base upper (TBU) and time base lower (TBL). Note
that the time base registers can be accessed by both user and supervisor-level instructions. For more
information, see Section 2.3.13 Time Base Facility (TB)—OEA and Section 2.2 PowerPC VEA Regis-
ter Set—Time Base.”

— Decrementer register (DEC). The DEC register is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay; the frequency is a sub-
division of the processor clock. For more information, see Section 2.3.14 Decrementer Register
(DEC).

— External access register (EAR). This optional register is used in conjunction with the eciwx and
ecowx instructions. Note that the EAR register and the eciwx and ecowx instructions are optional in
the PowerPC architecture and may not be supported in all PowerPC processors that implement the
OEA. For more information about the external control facility, see Section 4.3.4 External Control
Instructions.

— Data address breakpoint register (DABR). This optional register is used to control the data address
breakpoint facility. Note that the DABR is optional in the PowerPC architecture and may not be sup-
ported in all PowerPC processors that implement the OEA. For more information about the data
address breakpoint facility, see Section 6.4.3 DSI Exception (0x00300).

— Processor identification register (PIR). This optional register is used to hold a value that distinguishes
an individual processor in a multiprocessor environment.

2.3.1 Machine State Register (MSR)

The machine state register (MSR) is a 64-bit register on 64-bit implementations (see Figure 2-12) and a 32-bit
register in 32-bit implementations (see Figure 2-13). The MSR defines the state of the processor. When an
exception occurs, the contents of the MSR register are saved in SRR1. A new set of bits are loaded into the
MSR as determined by the exception. The MSR can also be modified by the mtmsrd (or mtmsr), sc, and rfid
(or Hi) instructions. It can be read by the mfmsr instruction.

Figure 2-12. Machine State Register (MSR)—64-Bit Implementations

SF| 0 |ISF’ 0 0000 ... 0000 0 POW| 0 |ILE|EE|PR|FP|ME|FEO|SE(BE|FE1| O | IP [IR[DR| 00 |RI|LE

01 2 3 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 6061 62 63

* Note that the ISF bit is optional and implemented only as part of the 64-bit bridge. For information see Table 2-8. .

Figure 2-13. Machine State Register (MSR)—32-Bit Implementations

[ ] Reserved

0000 0000 0000 0 POW| 0 | ILE [EE|PR|FP[ME|FEO|SE(BE|FE1| 0 [ IP|IR|DR| 00 |RI|LE

0 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 272829 30 31
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Table 2-8 shows the bit definitions for the MSR.

Table 2-8. MSR Bit Settings

Bit(s)
64 Bit

45

46

47

48

49

50

51

52

53

54

55
56
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32 Bit

012

13

14

15

16

17

18

19

20

21

22

23
24

Name

SF

ISF

POW

ILE

EE

PR

FP

ME

FEO

SE

BE

FE1

Description

Sixty-four bit mode

0 The 64-bit processor runs in 32-bit mode.
1 The 64-bit processor runs in 64-bit mode. Note that this is the default setting.
Reserved

Exception 64-bit mode (optional). When an exception occurs, this bit is copied into MSR[SF]
to select 64 or 32-bit mode for the context established by the exception.

Note: If the bridge function is not implemented, this bit is treated as reserved.
Reserved

Power management enable
0 Power management disabled (normal operation mode)
1 Power management enabled (reduced power mode)

Note: Power management functions are implementation-dependent. If the function is not
implemented, this bit is treated as reserved.

Reserved

Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to
select the endian mode for the context established by the exception.

External interrupt enable

0 While the bit is cleared, the processor delays recognition of external interrupts and
decrementer exception conditions.

1 The processor is enabled to take an external interrupt or the decrementer exception.
Privilege level

0 The processor can execute both user and supervisor-level instructions.

1 The processor can only execute user-level instructions.

Floating-point available

0 The processor prevents dispatch of floating-point instructions, including floating-
point loads, stores, and moves.

1 The processor can execute floating-point instructions.

Machine check enable

0 Machine check exceptions are disabled.

1 Machine check exceptions are enabled.

Floating-point exception mode 0 (see Table 2-9. ).

Single-step trace enable (Optional)
0 The processor executes instructions normally.

1 The processor generates a single-step trace exception upon the successful execu-
tion of the next instruction.

Note: If the function is not implemented, this bit is treated as reserved.

Branch trace enable (Optional)
0 The processor executes branch instructions normally.

1 The processor generates a branch trace exception after completing the execution of
a branch instruction, regardless of whether the branch was taken.

Note: If the function is not implemented, this bit is treated as reserved.
Floating-point exception mode 1 (See Table 2-9. ).

Reserved
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Table 2-8. MSR Bit Settings (Continued)

Bit(s)
64 Bit 32 Bit

Name |Description

Exception prefix. The setting of this bit specifies whether an exception vector offset is
prepended with Fs or Os. In the following description, nnnnn is the offset of the exception vec-
tor. See Table 6-2.

0 Exceptions are vectored to the physical address 0x000n_nnnn in 32-bit implementa-
57 25 P tions and 0x0000_0000_000n_nnnn in 64-bit implementations.

1 Exceptions are vectored to the physical address OxFFFn_nnnn in 32-bit implemen-
tations and 0x0000_0000_FFFn_nnnn in 64-bit implementations.

In most systems, IP is set to 1 during system initialization, and then cleared to 0 when initial-
ization is complete.

Instruction address translation

0 Instruction address translation is disabled.

1 Instruction address translation is enabled.

For more information, see Chapter 7, “Memory Management.”

58 26 IR

Data address translation

0 Data address translation is disabled.

1 Data address translation is enabled.

For more information, see Chapter 7, “Memory Management.”

59 27 DR

60—61 28-29 — Reserved

Recoverable exception (for system reset and machine check exceptions).
0 Exception is not recoverable.

1 Exception is recoverable.

For more information, see Chapter 6, “Exceptions.”

62 30 RI

Little-endian mode enable
63 31 LE 0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

The floating-point exception mode bits (FEO—FE1) are interpreted as shown in Table 2-9.

Table 2-9. Floating-Point Exception Mode Bits

FEO FE1 Mode
0 0 Floating-point exceptions disabled
0 1 Floating-point imprecise nonrecoverable
1 0 Floating-point imprecise recoverable
1 1 Floating-point precise mode
PowerPC Register Set pem?2_regset.fm.2.0
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Table 2-10 indicates the initial state of the MSR at power up.

Table 2-10. State of MSR at Power Up

Bit(s . .
54 Bt e 32 Bt Name Defeut Value Defalt Value

0 — SF 1 —

1 — — Unspecified1 —
;’emporary 64-Bit Bridge ISF 1 o

344 012 — Unspecified1 Unspecified1
45 13 POW 0 0

46 14 — Unspecified1 Unspecified1
47 15 ILE 0 0

48 16 EE 0 0

49 17 PR 0 0

50 18 FP 0 0

51 19 ME 0 0

52 20 FEO 0 0

53 21 SE 0 0

54 22 BE 0 0

55 23 FE1 0 0

56 24 — Unspecified1 Unspecified1
57 25 P 12 12

58 26 IR 0 0

59 27 DR 0 0

6061 2829 — Unspecified” Unspecified”
62 30 RI 0 0

63 31 LE 0 0

Notes: | Unspecified can be either 0 or 1
21 is typical, but might be 0

2.3.2 Processor Version Register (PVR)

The processor version register (PVR) is a 32-bit, read-only register which contains a value identifying the
specific version (model) and revision level of the PowerPC processor (see Figure 2-14). The contents of the
PVR can be copied to a GPR by the mfspr instruction. Read access to the PVR is supervisor-level only; write
access is not provided.

Figure 2-14. Processor Version Register (PVR)

Version Revision

0 15 16 31
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The PVR consists of two 16-bit fields:

« Version (bits 0—15)—A 16-bit number that uniquely identifies a particular processor version. This number
can be used to determine the version of a processor; it may not distinguish between different end product
models if more than one model uses the same processor.

» Revision (bits 16—31)—A 16-bit number that distinguishes between various releases of a particular ver-
sion (that is, an engineering change level). The value of the revision portion of the PVR is implementa-
tion-specific. The processor revision level is changed for each revision of the device.

2.3.3 BAT Registers

The BAT registers (BATs) maintain the address translation information for eight blocks of memory. The BATs
are maintained by the system software and are implemented as eight pairs of special-purpose registers
(SPRs). Each block is defined by a pair of SPRs called upper and lower BAT registers. These BAT registers
define the starting addresses and sizes of BAT areas.

The PowerPC OEA defines the BAT registers as eight instruction block-address translation (IBAT) registers,
consisting of four pairs of instruction BATSs, or IBATs (IBATOU-IBAT3U and IBATOL—-IBAT3L) and eight data
BATs, or DBATSs, (DBATOU-DBAT3U and DBATOL-DBAT3L). See Figure 2-11 for a list of the SPR numbers
for the BAT registers.

Figure 2-15 and Figure 2-16 show the format of the upper and lower BAT registers for 64-bit PowerPC
processors.

Figure 2-15. Upper BAT Register—64-Bit Implementations

|:| Reserved
BEPI 0 000 BL Vs|Vp
0 46 47 50 51 61 62 63
Figure 2-16. Lower BAT Register—64-Bit Implementations
D Reserved
BRPN 0 0000 0000 0 WIMG* 0| PP
0 46 47 56 57 60 61 62 63

*W and G bits are not defined for IBAT registers. Attempting to write to these bits causes boundedly-undefined results.

Figure 2-17 and Figure 2-18 show the format of the upper and lower BAT registers for 32-bit PowerPC
processors.
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Figure 2-17. Upper BAT Register—32-Bit Implementations

[] Reserved
BEPI 0 000 BL Vs|Vp
0 14 15 18 19 29 30 31
Figure 2-18. Lower BAT Register—32-Bit Implementations
[ ] Reserved
BRPN 0 0000 0000 O WIMG* 0 PP
0 14 15 24 25 28 29 30 31

*W and G bits are not defined for IBAT registers. Attempting to write to these bits causes boundedly-undefined results.

Table 2-11 describes the bits in the BAT registers.

Table 2-11. BAT Registers—ifield and Bit Descriptions

Upper/
Lower
BAT 64 Bit
046
46-50
Upper BAT 51-61
Register
62
63

pem2_regset.fm.2.0
June 10, 2003

32 Bit

0-14

1518

1929

30

31

Name

BEPI

BL

Vs

Vp

Description

Block effective page index. This field is compared with high-order bits of the logical
address to determine if there is a hit in that BAT array entry. (Note that the architecture
specification refers to logical address as effective address.)

Reserved

Block length. BL is a mask that encodes the size of the block. Values for this field are
listed in Table 2-12. .

Supervisor mode valid bit. This bit interacts with MSR[PR] to determine if there is a match
with the logical address. For more information, see Section 7.4.2 Recognition of
Addresses in BAT Arrays.

User mode valid bit. This bit also interacts with MSR[PR] to determine if there is a match
with the logical address. For more information, see Section 7.4.2 Recognition of
Addresses in BAT Arrays.
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Table 2-11. BAT Registers—Field and Bit Descriptions (Continued)

Upper/ Bits
Lower Name Description
BAT 64 Bit | 32 Bit

This field is used in conjunction with the BL field to generate high-order bits of the physi-

0-46 0-14 BRPN cal address of the block.

47-56 | 1524 — Reserved
Memory/cache access mode bits
w Write-through
| Caching-inhibited
Lower BAT M Memory coherence
: 5760 | 25-28 @ WIMG
Register G Guarded

Attempting to write to the W and G bits in IBAT registers causes boundedly-undefined
results. For detailed information about the WIMG bits, see Section 5.2.1 Memory/Cache
Access Attributes.

61 29 — Reserved

Protection bits for block. This field determines the protection for the block as described in

62-63 | 30-31 PP Section 7.4.4 Block Memory Protection.

Figure 2-12 lists the BAT area lengths encoded in BAT[BL].

Table 2-12. BAT Area Lengths

BAT Area Length BL Encoding
128 Kbytes 000 0000 0000
256 Kbytes 000 0000 0001
512 Kbytes 000 0000 0011

1 Mbyte 000 0000 0111
2 Mbytes 000 0000 1111
4 Mbytes 000 0001 1111
8 Mbytes 000 0011 1111
16 Mbytes 000 0111 1111
32 Mbytes 000 1111 1111
64 Mbytes 001 1111 1111
128 Mbytes 011 1111 1111
256 Mbytes 111 1111 1111

Only the values shown in Table 2-12 are valid for the BL field. The rightmost bit of BL is aligned with bit 46 (bit
14 for 32-bit implementations) of the logical address. A logical address is determined to be within a BAT area
if the logical address matches the value in the BEPI field.

The boundary between the cleared bits and set bits (0s and 1s) in BL determines the bits of logical address
that participate in the comparison with BEPI. Bits in the logical address corresponding to set bits in BL are
cleared for this comparison. Bits in the logical address corresponding to set bits in the BL field, concatenated
with the 17 bits of the logical address to the right (less significant bits) of BL, form the offset within the BAT
area. This is described in detail in Chapter 7, “Memory Management.”
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The value loaded into BL determines both the length of the BAT area and the alignment of the area in both
logical and physical address space. The values loaded into BEPI and BRPN must have at least as many low-
order zeros as there are ones in BL.

Use of BAT registers is described in Chapter 7, “Memory Management.”

2.3.4 SDR1

The SDR1 is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit implementations. The
64-bit implementation of SDR1 is shown in Figure 2-19.

Figure 2-19. SDR1—#64-Bit Implementations

[ ] Reserved

HTABORG 00 0000 0000 000 HTABSIZE

0 45 46 58 59 63
The bits of the 64-bit implementation of SDR1 are described in Table 2-13.

Table 2-13. SDR1 Bit Settings—64-Bit Implementations

Bits Name Description
045 HTABORG Physical base address of page table
46-58 — Reserved
59-63 HTABSIZE Encoded size of page table (used to generate mask)

In 64-bit implementations the HTABORG field in SDR1 contains the high-order 46 bits of the 64-bit physical
address of the page table. Therefore, the page table is constrained to lie on a 2'8-byte (256 Kbytes) boundary
at a minimum. At least 11 bits from the hash function are used to index into the page table. The page table
must consist of at least 256 Kbytes (2!' PTEGs of 128 bytes each).

The page table can be any size 2" where 18 n 46. As the table size is increased, more bits are used from the
hash to index into the table and the value in HTABORG must have more of its low-order bits equal to 0. The
HTABSIZE field in SDR1 contains an integer value that determines how many bits from the hash are used in
the page table index. This number must not exceed 28. HTABSIZE is used to generate a mask of the form
0b00...011...1; that is, a string of 0 bits followed by a string of 1 bits. The 1 bits determine how many addi-
tional bits (at least 11) from the hash are used in the index; HTABORG must have this same number of low-
order bits equal to 0. See Figure 7-33 for an example of the primary PTEG address generation in a 64-bit
implementation.

For example, suppose that the page table is 16,384 (214), 128-byte PTEGs, for a total size of 22" bytes (2
Mbytes). Note that a 14-bit index is required. Eleven bits are provided from the hash initially, so three addi-
tional bits from the hash must be selected. The value in HTABSIZE must be 3 and the value in HTABORG
must have its low-order three bits (bits 31—33 of SDR1) equal to 0. This means that the page table must begin
ona23* 11 +7 =221 = 2 Mpytes boundary.
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On implementations that support a virtual address size of only 64 bits, software should set the HTABSIZE
field to a value that does not exceed 25. Because the high-order 16 bits of the VSID must be zeros for these
implementations, the hash value used in the page table search will have the high-order three bits either all
zeros (primary hash) or all ones (secondary hash). If HTABSIZE > 25, some of these hash value bits will be
used to index into the page table, resulting in certain PTEGs never being searched.

The 32-bit implementation of SDR1 is shown in Figure 2-20. .
Figure 2-20. SDR1—32-Bit Implementations

|:| Reserved

HTABORG 0000 000 HTABMASK

0 15 16 22 28 31

The bits of the 32-bit implementation of SDR1 are described in Table 2-14. .

Table 2-14. SDR1 Bit Settings—32-Bit Implementations

Bits Name Description

015 HTABORG The high-order 16 bits of the 32-bit physical address of the page table
1622 — Reserved
23-31 HTABMASK Mask for page table address

In 32-bit implementations, the HTABORG field in SDR1 contains the high-order 16 bits of the 32-bit physical
address of the page table. Therefore, the page table is constrained to lie on a 2'6-byte (64 Kbytes) boundary
at a minimum. At least 10 bits from the hash function are used to index into the page table. The page table
must consist of at least 64 Kbytes (210 PTEGs of 64 bytes each).

The page table can be any size 2" where 16 n 25. As the table size is increased, more bits are used from the
hash to index into the table and the value in HTABORG must have more of its low-order bits equal to 0. The
HTABMASK field in SDR1 contains a mask value that determines how many bits from the hash are used in
the page table index. This mask must be of the form 0b00...011...1; that is, a string of 0 bits followed by a
string of 1bits. The 1 bits determine how many additional bits (at least 10) from the hash are used in the
index; HTABORG must have this same number of low-order bits equal to 0. See Figure 7-35 for an example
of the primary PTEG address generation in a 32-bit implementation.

For example, suppose that the page table is 8,192 (213), 64-byte PTEGs, for a total size of 219 bytes (512
Kbytes). Note that a 13-bit index is required. Ten bits are provided from the hash initially, so 3 additional bits
form the hash must be selected. The value in HTABMASK must be 0x007 and the value in HTABORG must
have its low-order 3 bits (bits 13—15 of SDR1) equal to 0. This means that the page table must begin on a
23+10+6 - 219 = 512 Kpytes boundary.

For more information, refer to Chapter 7, “Memory Management.”
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2.3.5 Address Space Register (ASR)

The ASR, shown in Figure 2-21, is a 64-bit SPR that holds bits 0—51 of the segment table’s physical address.
The segment table contains the segment table entries for 64-bit implementations. The segment table defines
the set of segments that can be addressed at any one time. Note that the ASR is defined only for 64-bit imple-
mentations.

Figure 2-21. Address SpaceRegister (ASR)—64-Bit Implementations Only

[] Reserved

STABORG 0000 0000 0000
0 51 52 63

The bits of the ASR are described in Table 2-15.

Table 2-15. ASR Bit Settings

Bits Name Description
051 STABORG Physical address of segment table
52—63 — Reserved

The following values, 0x0000_0000_0000_0000, 0x0000_0000_0000_1000, and 0x0000_0000_0000_2000,

cannot be used as segment table addresses, since these pages correspond to areas of the exception vector

table reserved for implementation-specific purposes. For more information, see Chapter 7, “Memory Manage-
ment.”
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Some 64-bit processors implement optional features that simplify the conversion of an operating system
from the 32-bit to the 64-bit portion of the architecture. This architecturally-defined bridge allows the
option of defining bit 63 as ASR[V], the STABORG field valid bit.

If the ASR[V] bit is implemented and is set, the ASR[STABORG] field is valid and functions are as
described for the 64-bit architecture. However, if the ASR[V] bit is implemented and ASR[V] and
MSR[SF] are cleared, an operating system can use 16 SLB entries similarly to the way 32-bit implemen-
tations use the segment registers, which are otherwise not supported in the 64-bit architecture. Note that
if ASR[V] = 0, a reference to a nonexistent address in the STABORG field does not cause a machine
check exception. For more information, see Section 7.7.1.1 Address Space Register (ASR).

The ASR, with the optional V bit implemented, is shown in Figure 2-22.

Figure 2-22. Address Space Register (ASR)—64-Bit Bridge

[ ] Reserved
STABORG 0000 0000 000 Vv
0 51 52 62 63

The bits of the ASR, including the optional V bit, are described in Table 2-16.

Table 2-16. ASR Bit Settings—64-Bit Bridge

Bits Name Description
051 STABORG Physical address of segment table
5262 — Reserved

STABORG field valid (V = 1) or invalid (V = 0).
63 \Y Note that the V bit of the ASR is optional. If the function is not implemented, this bit is
treated as reserved, except that it is assumed to be set for address translation.

2.3.6 Segment Registers

The segment registers contain the segment descriptors for 32-bit implementations. The OEA defines a
segment register file of sixteen 32-bit registers. Segment registers can be accessed by using the mtsr/mfsr
and mtsrin/mfsrin instructions. The value of bit 0, the T bit, determines how the remaining register bits are
interpreted. Figure 2-23 shows the format of a segment register when T = 0.
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Figure 2-23. Segment Register Format (T = 0)

[ ] Reserved
T |Ks|Kp| N 0000 VSID
0 1 2 3 4 78 31
Segment register bit settings when T = 0 are described in Table 2-17.
Table 2-17. Segment Register Bit Settings (T = 0)
Bits Name Description
0 T T = 0 selects this format
1 Ks Supervisor-state protection key
2 Kp User-state protection key
3 N No-execute protection
47 — Reserved
8-31 VSID Virtual segment ID
Figure 2-24 and Table 2-18 show the bit definition when T = 1.
Figure 2-24. Segment Register Format (T = 1)
T | Ks| Kp BUID Controller-Specific Information
0o 1 2 3 11 12 31

Table 2-18. Segment Register Bit Settings (T = 1)

Bits Name Description
0 T T =1 selects this format.
1 Ks Supervisor-state protection key
2 Kp User-state protection key
311 BUID Bus unit ID
12-31 CNTLR_SPEC | Device-specific data for I/O controller

If an access is translated by the block address translation (BAT) mechanism, the BAT translation takes prece-
dence and the results of translation using segment registers are not used. However, if an access is not trans-
lated by a BAT, and T = 0 in the selected segment register, the effective address is a reference to a memory-
mapped segment. In this case, the 52-bit virtual address (VA) is formed by concatenating the following:

» The 24-bit VSID field from the segment register
« The 16-bit page index, EA[4—19]
« The 12-bit byte offset, EA[20—31]
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The VA is then translated to a physical (real) address as described in Section 7.5 Memory Segment Model.

If T =1 in the selected segment register (and the access is not translated by a BAT), the effective address is
a reference to a direct-store segment. No reference is made to the page tables.

Note: However, the direct-store facility is being phased out of the architecture and will not likely be supported
in future devices. Therefore, all new programs should write a value of zero to the T bit. For further discussion
of address translation when T = 1, see Section 7.8 Direct-Store Segment Address Translation.

2.3.7 Data Address Register (DAR)

The DAR is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit implementations. The
DAR is shown in Figure 2-25.

Figure 2-25. Data Address Register (DAR)

DAR

The effective address generated by a memory access instruction is placed in the DAR if the access causes
an exception (for example, an alignment exception). If the exception occurs in a 64-bit implementation oper-
ating in 32-bit mode, the high-order 32 bits of the DAR are cleared. For information, see Chapter 6, “Excep-
tions.”

2.3.8 SPRGO-SPRG3

SPRGO-SPRGS are 64-bit or 32-bit registers, depending on the type of PowerPC processor. They are
provided for general operating system use, such as performing a fast state save or for supporting multipro-
cessor implementations. The formats of SPRGO-SPRGS3 are shown in Figure 2-26.

Figure 2-26. SPRGO-SPRG3

SPRGO
SPRG1
SPRG2
SPRG3

Table 2-19 provides a description of conventional uses of SPRGO through SPRGS3.
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Table 2-19. Conventional Uses of SPRGO-SPRG3

Register Description
Software may load a unique physical address in this register to identify an area of memory reserved for use by the

SPRGO " : d . ;
first-level exception handler. This area must be unique for each processor in the system.

SPRG1 This register may be used as a scratch register by the first-level exception handler to save the content of a GPR.
That GPR then can be loaded from SPRGO and used as a base register to save other GPRs to memory.

SPRG2 This register may be used by the operating system as needed.

SPRG3 This register may be used by the operating system as needed.

2.3.9 DSISR

The 32-bit DSISR, shown in Figure 2-27, identifies the cause of DSI and alignment exceptions.

Figure 2-27. DSISR

DSISR
0 31

For information about bit settings, see Section 6.4.3 DSI Exception (0x00300) and Section 6.4.6 Alignment
Exception (0x00600).

2.3.10 Machine Status Save/Restore Register 0 (SRRO0)

The SRRO is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit implementations. The
SRRO is used to save the effective address on exceptions (interrupts) and return to the interrupted program
when an rfid (or rfi) instruction is executed. It also holds the EA for the instruction that follows the System
Call (sc) instruction. The format of SRRO is shown in Figure 2-28. For 32-bit implementations, the format of
SRRO is that of the low-order bits (32—63) of Figure 2-28.

Figure 2-28. Machine Status Save/Restore Register 0 (SRR0)

|:| Reserved

SRRO 00

0 61 62 63

When an exception occurs, SRRO is set to point to an instruction such that all prior instructions have
completed execution and no subsequent instruction has begun execution. In the case of an error exception
the SRRO register is pointing at the instruction that caused the error. When an rfid (or rfi) instruction is
executed, the contents of SRRO are copied to the next instruction address (NIA)—the 64 or 32-bit address of
the next instruction to be executed. The instruction addressed by SRRO may not have completed execution,
depending on the exception type. SRRO addresses either the instruction causing the exception or the imme-
diately following instruction. The instruction addressed can be determined from the exception type and status
bits.
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If the exception occurs in 32-bit mode of a 64-bit implementation, the high-order 32 bits of the NIA are
cleared, NIA[32—61] are set from SRR0[32—61], and the two least significant bits of NIA are cleared.

Note: In some implementations, every instruction fetch performed while MSRJ[IR] = 1, and every instruction
execution requiring address translation when MSR[DR] = 1, may modify SRRO.

For information on how specific exceptions affect SRRO, refer to the descriptions of individual exceptions in
Chapter 6, “Exceptions.”
2.3.11 Machine Status Save/Restore Register 1 (SRR1)

The SRR1 is a 64-bit register in 64-bit implementations and a 32-bit register in 32-bit implementations. SRR1
is used to save exception status and the machine status register when an rfid (or rfi) instruction is executed.
The format of SRR1 is shown in Figure 2-29.

Figure 2-29. Machine Status Save/Restore Register 1 (SRR1)

SRR1

0 63

In 64-bit implementations, when an exception occurs, bits 33—-36 and 42—47 of SRR1 are loaded with excep-
tion-specific information and bits 0, 48-55, 5759, and 62—63 of MSR are placed into the corresponding bit
positions of SRR1. When rfid is executed, MSR[0, 4855, 57-59, 62—63] are loaded from SRR1[0, 48-55,
57-59, 62—63].

For 32-bit implementations, wWhen an exception occurs, bits 1—4 and 10—15 of SRR1 are loaded with excep-
tion-specific information and bits 16—23, 2527, and 30—31 of MSR are placed into the corresponding bit posi-
tions of SRR1.When Hi is executed, MSR[16—23, 2527, 30—31] are loaded from SRR1[16—23, 2527, 30—
31].

The remaining bits of SRR1 are defined as reserved. An implementation may define one or more of these
bits, and in this case, may also cause them to be saved from MSR on an exception and restored to MSR from
SRR1 on an Hi.

Note: In some implementations, every instruction fetch when MSRJ[IR] = 1, and every instruction execution
requiring address translation when MSR[DR] = 1, may modify SRR1.

For information on how specific exceptions affect SRR1, refer to the individual exceptions in Chapter 6,
“Exceptions.”

2.3.12 Floating-Point Exception Cause Register (FPECR)

The FPECR register may be used to identify the cause of a floating-point exception.

Note: The FPECR is an optional register in the PowerPC architecture and may be implemented differently
(or not at all) in the design of each processor. The user's manual of a specific processor will describe the
functionality of the FPECR, if it is implemented in that processor.
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2.3.13 Time Base Facility (TB)}—OEA

As described in Section 2.2 , “PowerPC VEA Register Set—Time Base,” the time base (TB) provides a long-
period counter driven by an implementation-dependent frequency. The VEA defines user-level read-only
access to the TB. Writing to the TB is reserved for supervisor-level applications such as operating systems
and boot-strap routines. The OEA defines supervisor-level, write access to the TB.

The TB is a volatile resource and must be initialized during reset. Some implementations may initialize the TB
with a known value; however, there is no guarantee of automatic initialization of the TB when the processor is
reset. The TB runs continuously after start-up.

For more information on the user-level aspects of the time base, refer to Section 2.2 PowerPC VEA Register
Set—Time Base on page 65.

2.3.13.1 Writing to the Time Base
Note: Writing to the TB is reserved for supervisor-level software.

The simplified mnemonics, mttbl and mttbu, write the lower and upper halves of the TB, respectively. The
simplified mnemonics listed above are for the mtspr instruction; see Appendix F, “Simplified Mnemonics,” for
more information. The mtspr, mttbl, and mttbu instructions treat TBL and TBU as separate 32-bit registers;
setting one leaves the other unchanged. It is not possible to write the entire 64-bit time base in a single
instruction.

The instructions for writing the time base are not dependent on the implementation or mode. Thus, code
written to set the TB on a 32-bit implementation will work correctly on a 64-bit implementation running in
either 64 or 32-bit mode.

The TB can be written by a sequence such as:

1wz rx,upper #load 64-bit value for
lwz ry, lower # TB into rx and ry
1i rz,0

mttbl rz #force TBL to 0

mttbu rx #set TBU

mttbl ry #set TBL

Provided that no exceptions occur while the last three instructions are being executed, loading 0 into TBL
prevents the possibility of a carry from TBL to TBU while the time base is being initialized.

For information on reading the time base, refer to Section 2.2.1 Reading the Time Base on page 68.

2.3.14 Decrementer Register (DEC)

The decrementer register (DEC), shown in Figure 2-30, is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay. The DEC frequency is based
on the same implementation-dependent frequency that drives the time base.
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Figure 2-30. Decrementer Register (DEC)

DEC

2.3.14.1 Decrementer Operation

The DEC counts down, causing an exception (unless masked by MSR[EE]) when it passes through zero. The
DEC satisfies the following requirements:

« The operation of the time base and the DEC are coherent (that is, the counters are driven by the same
fundamental time base).

» Loading a GPR from the DEC has no effect on the DEC.
« Storing the contents of a GPR to the DEC replaces the value in the DEC with the value in the GPR.

« Whenever bit 0 of the DEC changes from 0 to 1, a decrementer exception request is signaled. Multiple
DEC exception requests may be received before the first exception occurs; however, any additional
requests are canceled when the exception occurs for the first request.

« |f the DEC is altered by software and the content of bit 0 is changed from 0 to 1, an exception request is
signaled.

2.3.14.2 Writing and Reading the DEC

The content of the DEC can be read or written using the mfspr and mtspr instructions, both of which are
supervisor-level when they refer to the DEC. Using a simplified mnemonic for the mtspr instruction, the DEC
may be written from GPR rA with the following:

mtdec rA

Using a simplified mnemonic for the mfspr instruction, the DEC may be read into GPR rA with the following:
mfdec rA

2.3.15 Data Address Breakpoint Register (DABR)

The optional data address breakpoint facility is controlled by an optional SPR, the DABR. The DABR is a 64-
bit register in 64-bit implementations and a 32-bit register in 32-bit implementations. The data address break-
point facility is optional to the PowerPC architecture. However, if the data address breakpoint facility is imple-
mented, it is recommended, but not required, that it be implemented as described in this section.

The data address breakpoint facility provides a means to detect accesses to a designated double word. The
address comparison is done on an effective address, and it applies to data accesses only. It does not apply to
instruction fetches.

The DABR is shown in Figure 2-31.
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Figure 2-31. Data Address Breakpoint Register (DABR)

DAB BT|DW|DR
0 60 61 62 63
Table 2-20 describes the fields in the DABR.
Table 2-20. DABR—Bit Settings
Bits
Name Description
64 Bit 32 Bit
060 028 DAB Data address breakpoint
61 29 BT Breakpoint translation enable
62 30 DW Data write enable
63 31 DR Data read enable

A data address breakpoint match is detected for a load or store instruction if the three following conditions are
met for any byte accessed:

« EA[0-60] = DABR[DAB]
« MSR[DR] = DABRI[BT]
« The instruction is a store and DABR[DW] = 1, or the instruction is a load and DABR[DR] = 1.

Even if the above conditions are satisfied, it is undefined whether a match occurs in the following cases:
A store string instruction (stwex. or stdex.) in which the store is not performed
» Aload or store string instruction (Iswx or stswx) with a zero length
« Adcbz, dcbz, eciwx, or ecowx instruction. For the purpose of determining whether a match occurs,
eciwx is treated as a load, and dcbz, dcba, and ecowx are treated as stores.

The cache management instructions other than debz and dcba never cause a match. If dcbz or dcba causes
a match, some or all of the target memory locations may have been updated.

A match generates a DSI exception. Note that in the 32-bit mode of a 64-bit implementation, the high-order
32 bits of the EA are treated as zero for the purpose of detecting a match. Refer to Section 6.4.3 DSI Excep-
tion (0x00300) for more information on the data address breakpoint facility.

2.3.16 External Access Register (EAR)

The EAR is an optional 32-bit SPR that controls access to the external control facility and identifies the target
device for external control operations. The external control facility provides a means for user-level instructions
to communicate with special external devices. The EAR is shown in Figure 2-32.
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Figure 2-32. External Access Register (EAR)

E] Reserved

E 000 0000 0000 0000 0000 0000 00 RID

0 1 25 26 31

The high-order bits of the resource ID (RID) field beyond the width of the RID supported by a particular imple-
mentation are treated as reserved bits.

The EAR register is provided to support the External Control In Word Indexed (eciwx) and External Control
Out Word Indexed (ecowx) instructions, which are described in Chapter 8, “Instruction Set.” Although access
to the EAR is supervisor-level, the operating system can determine which tasks are allowed to issue external
access instructions and when they are allowed to do so. The bit settings for the EAR are described in

Table 2-21. Interpretation of the physical address transmitted by the eciwx and ecowx instructions and the
32-bit value transmitted by the ecowx instruction is not prescribed by the PowerPC OEA but is determined by
the target device. The data access of eciwx and ecowx is performed as though the memory access mode
bits (WIMG) were 0101.

For example, if the external control facility is used to support a graphics adapter, the ecowx instruction could
be used to send the translated physical address of a buffer containing graphics data to the graphics device.
The eciwx instruction could be used to load status information from the graphics adapter.

Table 2-21. External Access Register (EAR) Bit Settings

Bit Name Description
0 E Enable bit
1 Enabled
0 Disabled

If this bit is set, the eciwx and ecowx instructions can perform the specified external
operation. If the bit is cleared, an eciwx or ecowx instruction causes a DSI

exception.
1-25 — Reserved
2631 RID Resource ID

This register can also be accessed by using the mtspr and mfspr instructions. Synchronization requirements
for the EAR are shown in Table 2-22. Data Access Synchronization and Table 2-23. Instruction Access
Synchronization.

2.3.17 Processor Identification Register (PIR)

The PIR register is used to differentiate between individual processors in a multiprocessor environment.

Note: The PIR is an optional register in the PowerPC architecture and may be implemented differently (or
not at all) in the design of each processor. The user’s manual of a specific processor will describe the func-
tionality of the PIR, if it is implemented in that processor.
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2.3.18 Synchronization Requirements for Special Registers and for Lookaside Buffers

Changing the value in certain system registers, and invalidating SLB and TLB entries, can cause alteration of
the context in which data addresses and instruction addresses are interpreted, and in which instructions are
executed. An instruction that alters the context in which data addresses or instruction addresses are inter-
preted, or in which instructions are executed, is called a context-altering instruction. The context synchroniza-
tion required for context-altering instructions is shown in Table 2-22. for data access and Table 2-23. for
instruction fetch and execution.

A context-synchronizing exception (that is, any exception except nonrecoverable system reset or nonrecover-
able machine check) can be used instead of a context-synchronizing instruction. In the tables, if no software
synchronization is required before (after) a context-altering instruction, the synchronizing instruction before
(after) the context-altering instruction should be interpreted as meaning the context-altering instruction itself.

A synchronizing instruction before the context-altering instruction ensures that all instructions up to and
including that synchronizing instruction are fetched and executed in the context that existed before the alter-
ation. A synchronizing instruction after the context-altering instruction ensures that all instructions after that
synchronizing instruction are fetched and executed in the context established by the alteration. Instructions
after the first synchronizing instruction, up to and including the second synchronizing instruction, may be
fetched or executed in either context.

If a sequence of instructions contains context-altering instructions and contains no instructions that are
affected by any of the context alterations, no software synchronization is required within the sequence.

Note: Some instructions that occur naturally in the program, such as the rfid (or rfi) at the end of an excep-
tion handler, provide the required synchronization.

No software synchronization is required before altering the MSR (except when altering the MSR[POW] or
MSRI[LE] bits; see Table 2-22 and Table 2-23), because mtmsrd (or mtmsr) is execution synchronizing. No
software synchronization is required before most of the other alterations shown in Table 2-23, because all
instructions before the context-altering instruction are fetched and decoded before the context-altering
instruction is executed (the processor must determine whether any of the preceding instructions are context
synchronizing).

Table 2-22 provides information on data access synchronization requirements.

Table 2-22. Data Access Synchronization

Instruction/Event Required Prior Required After

Exception 1 None None

rfid (or rfi) ! None None

sc None None

Trap 1 None None

mtmsrd (SF) None Context-synchronizing instruction
mtmsrd (or mtmsr) (ILE) None None

mtmsrd (or mtmsr) (PR) None Context-synchronizing instruction
mtmsrd (or mtmsr) (ME) 2 None Context-synchronizing instruction
mtmsrd (or mtmsr) (DR) None Context-synchronizing instruction

( ) (

mtmsrd (or mtmsr) (LE) 3 — —
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Table 2-22. Data Access Synchronization (Continued)

Instruction/Event

mtsr [or mtsrin]

Required Prior

Context-synchronizing instruction

Required After

Context-synchronizing instruction

mtspr (ASR) Context-synchronizing instruction Context-synchronizing instruction

mtspr (SDR1) 45 sync Context-synchronizing instruction

mtspr (DBAT) Context-synchronizing instruction Context-synchronizing instruction

mtspr (DABR) © — _

mtspr (EAR) Context-synchronizing instruction Context-synchronizing instruction

slbie 7 Context-synchronizing instruction Context-synchronizing instruction or sync

slbia 7 Context-synchronizing instruction Context-synchronizing instruction or sync

tibie 7+ 8 Context-synchronizing instruction Context-synchronizing instruction or sync
tlbia 7+ 8 Context-synchronizing instruction Context-synchronizing instruction or sync

Notes:

1. Synchronization requirements for changing the power conserving mode are implementation-dependent.

2. A context synchronizing instruction is required after modification of the MSR[ME] bit to ensure that the modification takes effect for
subsequent machine check exceptions, which may not be recoverable and therefore may not be context synchronizing.

3. Synchronization requirements for changing from one endian mode to the other are implementation-dependent.

4. SDR1 must not be altered when MSR[DR] = 1 or MSRJIR] = 1; if it is, the results are undefined.

5. A sync instruction is required before the mtspr instruction because SDR1 identifies the page table and thereby the location of the
referenced and changed (R and C) bits. To ensure that R and C bits are updated in the correct page table, SDR1 must not be
altered until all R and C bit updates due to instructions before the mtspr have completed. A sync instruction guarantees this syn-
chronization of R and C bit updates, while neither a context synchronizing operation nor the instruction fetching mechanism does
SO.

6.  Synchronization requirements for changing the DABR are implementation-dependent.

7. For data accesses, the context synchronizing instruction before the slbie, slbia, tlbie, or tlbia instruction ensures that all memory
accesses, due to preceding instructions, have completed to a point at which they have reported all exceptions that may be caused.
The context synchronizing instruction after the slbie, slbia, tlbie, or tibia ensures that subsequent memory accesses will not use
the SLB orTLB entry(s) being invalidated. It does not ensure that all memory accesses previously translated by the SLB orTLB
entry(s) being invalidated have completed with respect to memory or, for tibie or tlbia, that R and C bit updates associated with
those memory accesses have completed; if these completions must be ensured, the slbie, slbia, tlbie, or tlbia must be followed by
a sync instruction rather than by a context synchronizing instruction.

8. Multiprocessor systems have other requirements to synchronize TLB invalidate.
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For information on instruction access synchronization requirements, see Table 2-23.

Table 2-23. Instruction Access Synchronization

Instruction/Event Required Prior Required After

Exception ! None None

rfid [or rfi] ! None None

sc ! None None

Trap ! None None

mtmsrd (SF) None Context-synchronizing instruction

mtmsrd (or mtmsr) (POW) — —

mtmsrd (or mtmsr) (ILE) None None

mtmsrd (or mtmsr) (EE) None None

mtmsrd (or mtmsr) (PR) None Context-synchronizing instruction

mtmsrd (or mtmsr) (FP) None Context-synchronizing instruction

mtmsrd (or mtmsr) (M ) None Context-synchronizing instruction

mtmsrd (or mtmsr) (FEO, FE1) None Context-synchronizing instruction

mtmsrd (or mtmsr) (SE, BE) None Context-synchronizing instruction

mtmsrd (or mtmsr) (IP) None None

mtmsrd (or mtmsr) (IR) 5 None Context-synchronizing instruction

mtmsrd (or mtmsr) (RI) None None

mtmsrd (or mtmsr) (LE) — —

mtsr [or mtsrin] 5 None Context-synchronizing instruction

mtspr (ASR) None Context-synchronizing instruction

mtspr (SDR1) sync Context-synchronizing instruction

mtspr (IBAT) None Context-synchronizing instruction

mtspr (DEC) None None

slbie ! None Context-synchronizing instruction or sync
slbia 10 None Context-synchronizing instruction or sync
tibie 10. 11 None Context-synchronizing instruction or sync
tlbia 10, 11 None Context-synchronizing instruction or sync
Notes:

Synchronization requirements for changing the power conserving mode are implementation-dependent.

The alteration must not cause an implicit branch in effective address space. The mtmsrd (SF) instruction and all subsequent
instructions, up to and including the next context-synchronizing instruction, must have effective addresses that are less than 23
The effect of altering the EE bit is immediate as follows:

- If an mtmsrd (or mtmsr) sets the EE bit to 0, neither an external interrupt nor a decrementer exception can occur after the
instruction is executed.

- If an mtmsrd (or mtmsr) sets the EE bit to 1 when an external interrupt, decrementer exception, or higher priority exception
exists, the corresponding exception occurs immediately after the mtmsrd (or mtmsr) is executed, and before the next instruction
is executed in the program that set MSR[EE].

A context synchronizing instruction is required after modification of the MSR[ME] bit to ensure that the modification takes effect for

subsequent machine check exceptions, which may not be recoverable and therefore may not be context synchronizing.
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5. The alteration must not cause an implicit branch in physical address space. The physical address of the context-altering instruction
and of each subsequent instruction, up to and including the next context synchronizing instruction, must be independent of whether
the alteration has taken effect.

6.  Synchronization requirements for changing from one endian mode to the other are implementation-dependent.

SDR1 must not be altered when MSR[DR] = 1 or MSR][IR] = 1; if it is, the results are undefined.

8. A sync instruction is required before the mtspr instruction because SDR1 identifies the page table and thereby the location of the
referenced and changed (R and C) bits. To ensure that R and C bits are updated in the correct page table, SDR1 must not be
altered until all R and C bit updates due to instructions before the mtspr have completed. A sync instruction guarantees this syn-
chronization of R and C bit updates, while neither a context synchronizing operation nor the instruction fetching mechanism does
SO.

9.The elapsed time between the content of the decrementer becoming negative and the signaling of the decrementer exception is not
defined.

10. For data accesses, the context synchronizing instruction before the slbie, slbia, tlbie, or tlbia instruction ensures that all memory
accesses, due to preceding instructions, have completed to a point at which they have reported all exceptions that may be caused.
The context synchronizing instruction after the slbie, slbia, tlbie, or tibia ensures that subsequent memory accesses will not use
the SLB or TLB entry(s) being invalidated. It does not ensure that all memory accesses previously translated by the SLB orTLB
entry(s) being invalidated have completed with respect to memory or, for tlbie or tlbia, that R and C bit updates associated with
those memory accesses have completed; if these completions must be ensured, the slbie, slbia, tlbie, or tlbia must be followed by
a sync instruction rather than by a context synchronizing instruction.

11.  Multiprocessor systems have other requirements to synchronize TLB invalidate.

N
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3. Operand Conventions

This chapter describes the operand conventions as they are represented in two levels of the PowerPC archi-
tecture—user instruction set architecture (UISA) and virtual environment architecture (VEA). Detailed
descriptions are provided of conventions used for storing values in registers and memory, accessing
PowerPC registers, and representing data in these registers in both big and little-endian modes. Additionally,
the floating-point data formats and exception conditions are described. Refer to Appendix D, “Floating-Point
Models,” for more information on the implementation of the IEEE floating-point execution models.

3.1 Data Organization in Memory and Data Transfers

In a PowerPC microprocessor-based system, bytes in memory are numbered consecutively starting with 0.
Each number is the address of the corresponding byte. Memory operands may be bytes, half words, words,
or double words, or, for the load and store multiple and the load and store string instructions, a sequence of
bytes or words. The address of a memory operand is the address of its first byte (that is, of its lowest-
numbered byte). Operand length is implicit for each instruction.

The following sections describe the concepts of alignment and byte ordering of data, and their significance to
the PowerPC architecture.

3.1.1 Aligned and Misaligned Accesses

The operand of a single-register memory access instruction has a natural alignment boundary equal to the
operand length. In other words, the natural address of an operand is an integral multiple of the operand
length. A memory operand is said to be aligned if it is aligned at its natural boundary; otherwise it is
misaligned. Instructions are always four bytes long and word-aligned.

Operands for single-register memory access instructions have the characteristics shown in Table 3-1. .
(Although not permitted as memory operands, quad words are shown because quad-word alignment is desir-
able for certain memory operands.)

Table 3-1. Memory Operand Alignment

Operand Length Aligned Addr(60—63)
Byte 8 bits XXXX
Half word 2 bytes xxx0
Word 4 bytes xx00
Double word 8 bytes x000
Quad word 16 bytes 0000

Note: An x in an address bit position indicates that the bit can be 0 or 1 independent of the state of other bits in the address.

The concept of alignment is also applied more generally to data in memory. For example, a 12-byte data item
is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition, alignment may affect
performance. For single-register memory access instructions, the best performance is obtained when
memory operands are aligned.
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3.1.2 Byte Ordering

If individual data items were indivisible, the concept of byte ordering would be unnecessary. The order of bits
or groups of bits within the smallest addressable unit of memory is irrelevant, because nothing can be
observed about such order. Order matters only when scalars, which the processor and programmer regard
as indivisible quantities, can be made up of more than one addressable unit of memory.

For PowerPC processors, the smallest addressable memory unit is the byte (8 bits), and scalars are
composed of one or more sequential bytes. When a 32-bit scalar is moved from a register to memory, it occu-
pies four consecutive bytes in memory, and a decision must be made regarding the order of these bytes in
these four addresses.

Although the choice of byte ordering is arbitrary, only two orderings are practica—big-endian and little-
endian. The PowerPC architecture supports both big and little-endian byte ordering. The default byte ordering
is big-endian.

3.1.2.1 Big-Endian Byte Ordering

For big-endian scalars, the most-significant byte (MSB) is stored at the lowest (or starting) address while the
least-significant byte (LSB) is stored at the highest (or ending) address. This is called big-endian because the
big end of the scalar comes first in memory.

3.1.2.2 Little-Endian Byte Ordering

For little-endian scalars, the least-significant byte is stored at the lowest (or starting) address while the most-
significant byte is stored at the highest (or ending) address. This is called little-endian because the little end of
the scalar comes first in memory.

3.1.3 Structure Mapping Examples

Figure 3-1 shows a C programming example that contains an assortment of scalars and one array of charac-
ters (a string). The value presumed to be in each structure element is shown in hexadecimal in the comments
(except for the character array, which is represented by a sequence of characters, each enclosed in single
quote marks).

Figure 3-1. C Program Example—Data Structure S

struct {
int a; /* 0x1112_1314 word */
double b; /* 0x2122_2324_2526_2728 double word */
char * «c¢; /* 0x3132_3334 word */
char al7]1; /* 'L','M','N','0','P','Q','R' array of bytes */
short e; /* 0x5152 half word */
int f; /* 0x6162_6364 word */

}S;

The data structure Sis used throughout this section to demonstrate how the bytes that comprise each
element (a, b, ¢, d, e, and f) are mapped into memory.

Operand Conventions pem3_operand_conv.fm.2.0
Page 96 of 785 June 10, 2003



Programming Environments Manual

PowerPC RISC Microprocessor Family

3.1.3.1 Big-Endian Mapping

The big-endian mapping of the structure, S, is shown in Figure 3-2. Addresses are shown in hexadecimal
below each byte. The content of each byte, as shown in the preceding C programming example, is shown in
hexadecimal and, for the character array, as characters enclosed in single quote marks.

Note: The most-significant byte of each scalar is at the lowest address.

Figure 3-2. Big-Endian Mapping of Structure S

Contents 11 12 13 14 (x) (x) (x) (x)
Address 00 01 02 03 04 05 06 07
Contents 21 22 23 24 25 26 27 28
Address 08 09 0A 0B 0C 0D OE OF
Contents 31 32 33 34 ‘v ‘M ‘N’ ‘o
Address 10 11 12 13 14 15 16 17
Contents ‘P’ ‘Q ‘R’ (x) 51 52 (x) (x)
Address 18 19 1A 1B 1C 1D 1E 1F
Contents 61 62 63 64 (x) (x) (x) (x)
Address 20 21 22 23 24 25 26 27

The structure mapping introduces padding (skipped bytes indicated by (x) in Figure 3-2) in the map in order to
align the scalars on their proper boundaries—four bytes between elements a and b, one byte between
elements d and e, and two bytes between elements e and f. Note that the padding is dependent on the
compiler; it is not a function of the architecture.

3.1.3.2 Little-Endian Mapping

Figure 3-3 shows the structure, S, using little-endian mapping. Note that the least-significant byte of each
scalar is at the lowest address.
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Figure 3-3. Little-Endian Mapping of Structure S
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Figure 3-3 shows the sequence of double words laid out with addresses increasing from left to right.
Programmers familiar with little-endian byte ordering may be more accustomed to viewing double words laid
out with addresses increasing from right to left, as shown in Figure 3-4. This allows the little-endian
programmer to view each scalar in its natural byte order of MSB to LSB. However, to demonstrate how the
PowerPC architecture provides both big and little-endian support, this section uses the convention of showing
addresses increasing from left to right, as in Figure 3-3.
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Figure 3-4. Little-Endian Mapping of Structure S —Alternate View

Contents (x) (x) (x) (x) 11 12 13 14
Address 07 06 05 04 03 02 01 00
Contents 21 22 23 24 25 26 27 28
Address OF 0E 0D 0C 0B 0A 09 08
Contents ‘o ‘N’ ‘M r 31 32 33 34
Address 17 16 15 14 13 12 11 10
Contents (x) (x) 51 52 (x) ‘R’ ‘Q ‘P’
Address 1F 1E 1D 1C 1B 1A 19 18
Contents (x) (x) (x) (x) 61 62 63 64
Address 27 26 25 24 23 22 21 20

3.1.4 PowerPC Byte Ordering

The PowerPC architecture supports both big and little-endian byte ordering. The default byte ordering is big-
endian. However, the code sequence used to switch from big to little-endian mode may differ among proces-
Sors.

The PowerPC architecture defines two bits in the MSR for specifying byte ordering—LE (little-endian mode)
and ILE (exception little-endian mode). The LE bit specifies the endian mode in which the processor is
currently operating and ILE specifies the mode to be used when an exception handler is invoked. That is,
when an exception occurs, the ILE bit (as set for the interrupted process) is copied into MSR[LE] to select the
endian mode for the context established by the exception. For both bits, a value of 0 specifies big-endian
mode and a value of 1 specifies little-endian mode.

The PowerPC architecture also provides load and store instructions that reverse byte ordering. These instruc-
tions have the effect of loading and storing data in the endian mode opposite from that which the processor is
operating. See Section 4.2.3.4 Integer Load and Store with Byte-Reverse Instructions for more information on
these instructions.

3.1.4.1 Aligned Scalars in Little-Endian Mode

Chapter 4, “Addressing Modes and Instruction Set Summary,” describes the effective address calculation for
the load and store instructions. For processors in little-endian mode, the effective address is modified before
being used to access memory. The three low-order address bits of the effective address are exclusive-ORed
(XOR) with a three-bit value that depends on the length of the operand (1, 2, 4, or 8 bytes), as shown in
Table 3-2. This address modification is called ‘munging’.
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Note: Although the process is described in the architecture, the actual term ‘munging’ is not defined or used
in the specification. However, the term is commonly used to describe the effective address modifications nec-
essary for converting big-endian addressed data to little-endian addressed data.

Table 3-2. EA Modifications

Data Width (Bytes)

8
4
2
1

EA Modification
No change
XOR with 0b100
XOR with 0b110
XOR with 0b111

The munged physical address is passed to the cache or to main memory, and the specified width of the data
is transferred (in big-endian order—that is, MSB at the lowest address, LSB at the highest address) between

a GPR or FPR and the addressed memory locations (as modified).

Munging makes it appear to the processor that individual aligned scalars are stored as little-endian, when in
fact they are stored in big-endian order, but at different byte addresses within double words. Only the address

is modified, not the byte order.

Taking into account the preceding description of munging, in little-endian mode, structure Sis placed in

memory as shown in Figure 3-5.

Figure 3-5. Munged Little-Endian Structure S as Seen by the Memory Subsystem
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Note: The mapping shown in Figure 3-5is not a true little-endian mapping of the structure S. However,
because the processor munges the address when accessing memory, the physical structure S shown in
Figure 3-5 appears to the processor as the structure S shown in Figure 3-6.
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Figure 3-6. Munged Little-Endian Structure S as Seen by Processor

Contents 14 13 12 11

Address 00 01 02 03 04 05 06 07
Contents 28 27 26 25 24 23 22 21
Address 08 09 0A 0B 0C 0D 0OE OF
Contents 34 33 32 31 L ‘M ‘N’ ‘O
Address 10 11 12 13 14 15 16 17
Contents ‘P’ ‘Q ‘R’ 52 51

Address 18 19 1A 1B 1C 1D 1E 1F
Contents 64 63 62 61

Address 20 21 22 23 24 25 26 27

As seen by the program executing in the processor, the mapping for the structure S (Figure 3-6) is identical to
the little-endian mapping shown in Figure 3-3. However, from outside of the processor, the addresses of the
bytes making up the structure S are as shown in Figure 3-5. These addresses match neither the big-endian
mapping of Figure 3-2 nor the true little-endian mapping of Figure 3-3. This must be taken into account when
performing I/O operations in little-endian mode; this is discussed in Section 3.1.4.5 PowerPC Input/Output
Data Transfer Addressing in Little-Endian Mode.

3.1.4.2 Misaligned Scalars in Little-Endian Mode

Performing an XOR operation on the low-order bits of the address works only if the scalar is aligned on a
boundary equal to a multiple of its length. Figure 3-7 shows a true little-endian mapping of the four-byte word
0x1112_1314, stored at address 05.

Figure 3-7. True Little-Endian Mapping, Word Stored at Address 05

Contents 14 13 12
Address 00 01 02 03 04 05 06 07

Contents 1
Address 08 09 0A 0B 0C 0D 0OE OF
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For the true little-endian example in Figure 3-7, the least-significant byte (0x14) is stored at address 0x05, the
next byte (0x13) is stored at address 0x06, the third byte (0x12) is stored at address 0x07, and the most-
significant byte (Ox11) is stored at address 0x08.

When a PowerPC processor, in little-endian mode, issues a single-register load or store instruction with a
misaligned effective address, it may take an alignment exception. In this case, a single-register load or store
instruction means any of the integer load/store, load/store with byte-reverse, memory synchronization
(excluding sync), or floating-point load/store (including stfiwx) instructions. PowerPC processors in little-
endian mode are not required to invoke an alignment exception when such a misaligned access is attempted.
The processor may handle some or all such accesses without taking an alignment exception.

The PowerPC architecture requires that half words, words, and double words be placed in memory such that
the little-endian address of the lowest-order byte is the effective address computed by the load or store
instruction; the little-endian address of the next-lowest-order byte is one greater, and so on. However,
because PowerPC processors in little-endian mode munge the effective address, the order of the bytes of a
misaligned scalar must be as if they were accessed one at a time.

Using the same example as shown in Figure 3-7, when the least-significant byte (0x14) is stored to address
0x05, the address is XORed with O0b111 to become 0x02. When the next byte (0x13) is stored to address
0x06, the address is XORed with 0b111 to become 0x01. When the third byte (0x12) is stored to address
0x07, the address is XORed with Ob111 to become 0x00. Finally, when the most-significant byte (0x11) is
stored to address 0x08, the address is XORed with 0b111 to become 0xOF. Figure 3-8 shows the misaligned
word, stored by a little-endian program, as seen by the memory subsystem.

Figure 3-8. Word Stored at Little-Endian Address 05 as Seen by the Memory Subsystem

Contents 12 13 14

Address 00 01 02 03 04 05 06 07
Contents 11
Address 08 09 0A 0B 0oC 0D 0OE OF

Note that the misaligned word in this example spans two double words. The two parts of the misaligned word
are not contiguous as seen by the memory system. An implementation may support some but not all
misaligned little-endian accesses. For example, a misaligned little-endian access that is contained within a
double word may be supported, while one that spans double words may cause an alignment exception.

3.1.4.3 Nonscalars

The PowerPC architecture has two types of instructions that handle nonscalars (multiple instances of
scalars):

» Load and store multiple instructions
» Load and store string instructions

Because these instructions typically operate on more than one word-length scalar, munging cannot be used.
These types of instructions cause alignment exception conditions when the processor is executing in little-
endian mode. Although string accesses are not supported, they are inherently byte-based operations, and
can be broken into a series of word-aligned accesses.
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3.1.4.4 PowerPC Instruction Addressing in Little-Endian Mode

Each PowerPC instruction occupies an aligned word of memory. PowerPC processors fetch and execute
instructions as if the current instruction address is incremented by four for each sequential instruction. When
operating in little-endian mode, the instruction address is munged as described in Section 3.1.4.1 Aligned
Scalars in Little-Endian Mode for fetching word-length scalars; that is, the instruction address is XORed with
0b100. A program is thus an array of little-endian words with each word fetched and executed in order (not
including branches).

All instruction addresses visible to an executing program are the effective addresses that are computed by
that program, or, in the case of the exception handlers, effective addresses that were or could have been
computed by the interrupted program. These effective addresses are independent of the endian mode.
Examples for little-endian mode include the following:

» Aninstruction address placed in the link register by branch and link operation, or an instruction address
saved in an SPR when an exception is taken, is the address that a program executing in little-endian
mode would use to access the instruction as a word of data using a load instruction.

« An offset in a relative branch instruction reflects the difference between the addresses of the branch and
target instructions, where the addresses used are those that a program executing in little-endian mode
would use to access the instructions as data words using a load instruction.

- Atarget address in an absolute branch instruction is the address that a program executing in little-endian
mode would use to access the target instruction as a word of data using a load instruction.

« The memory locations that contain the first set of instructions executed by each kind of exception handler
must be set in a manner consistent with the endian mode in which the exception handler is invoked.
Thus, if the exception handler is to be invoked in little-endian mode, the first set of instructions comprising
each kind of exception handler must appear in memory with the instructions within each double word
reversed from the order in which they are to be executed.

3.1.4.5 PowerPC Input/Output Data Transfer Addressing in Little-Endian Mode

For a PowerPC system running in big-endian mode, both the processor and the memory subsystem recog-
nize the same byte as byte 0. However, this is not true for a PowerPC system running in little-endian mode
because of the munged address bits when the processor accesses memory.

For 1/0O transfers in little-endian mode to transfer bytes properly, they must be performed as if the bytes trans-
ferred were accessed one at a time, using the little-endian address modification appropriate for the single-
byte transfers (that is, the lowest order address bits must be XORed with Ob111). This does not mean that I/O
operations in little-endian PowerPC systems must be performed using only one-byte-wide transfers. Data
transfers can be as wide as desired, but the order of the bytes within double words must be as if they were
fetched or stored one at a time. That is, for a true little-endian 1/0 device, the system must provide a mecha-
nism to munge and unmunge the addresses and reverse the bytes within a double word (MSB to LSB).

In earlier processors, I/O operations can also be performed with certain devices by storing to or loading from
addresses that are associated with the devices (this is referred to as direct-store interface operations).
However, the direct-store facility is being phased out of the architecture and will not likely be supported in
future devices. Care must be taken with such operations when defining the addresses to be used because
these addresses are subjected to munging as described in Section 3.1.4.1 Aligned Scalars in Little-Endian
Mode.” A load or store that maps to a control register on an external device may require the bytes of the value
transferred to be reversed. If this reversal is required, the load and store with byte-reverse instructions may
be used. See Section 4.2.3.4 Integer Load and Store with Byte-Reverse Instructions for more information on
these instructions.
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3.2 Effect of Operand Placement on Performance—VEA

V The PowerPC VEA states that the placement (location and alignment) of operands in memory affects the
relative performance of memory accesses. The best performance is guaranteed if memory operands are
aligned on natural boundaries. For more information on memory access ordering and atomicity, refer to
Section 5.1 The Virtual Environment.

3.2.1 Summary of Performance Effects

To obtain the best performance across the widest range of PowerPC processor implementations, the
programmer should assume the performance model described in and with respect to the placement of
memory operands.

The performance of accesses varies depending on:

» Operand size

» Operand alignment

« Endian mode (big-endian or little-endian)
« Crossing no boundary

» Crossing a cache block boundary

» Crossing a page boundary

« Crossing a BAT boundary

» Crossing a segment boundary

Table 3-3 applies when the processor is in big-endian mode.

Table 3-3. Performance Effects of Memory Operand Placement, Big-Endian Mode

Operand Boundary Crossing
Size Byte Alignment
None Cache Block Page BAT/Segment
Integer

8 Optimal — — —
8 byte 4 Good Good Poor Poor
<4 Poor Poor Poor Poor

4 Optimal — — —
4 byte <4 Good Good Poor Poor

2 Optimal — — —
2 byte <2 Good Good Poor Poor

1 byte 1 Optimal — — —
Imw, stmw 4 Good Good Good' Poor
String — Good Good Poor Poor

Floating Point None Cache Block Page BAT/Segment

8 Optimal — — —
8 byte 4 Good Good Poor Poor
<4 Poor Poor Poor Poor

4 Optimal — — —
4 byte <4 Poor Poor Poor Poor

Note: ! Crossing a page boundary where the memory/cache access attributes of the two pages differ is equivalent to crossing a seg-
ment boundary, and thus has poor performance.
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Table 3-4 applies when the processor is in little-endian mode.

Table 3-4. Performance Effects of Memory Operand Placement, Little-Endian Mode

Operand Boundary Crossing
Size Byte Alignment
None Cache Block Page BAT/Segment
Integer
8 Optimal — — —
8 byte <8 Poor Poor Poor Poor
4 Optimal — — —
4 byte <4 Poor Poor Poor Poor
2 Optimal — — —
2byte <2 Poor Poor Poor Poor
1 byte 1 Optimal — — —
Floating Point None Cache Block Page BAT/Segment
8 Optimal — — —
8 byte <8 Poor Poor Poor Poor
4 Optimal — — —
4 byte <4 Poor Poor Poor Poor

The load/store multiple and the load/store string instructions are supported only in big-endian mode. The
load/store multiple instructions are defined by the PowerPC architecture to operate only on aligned operands.
The load/store string instructions have no alignment requirements.

3.2.2 Instruction Restart

If a memory access crosses a page, BAT, or segment boundary, a number of conditions could abort the
execution of the instruction after part of the access has been performed. For example, this may occur when a
program attempts to access a page it has not previously accessed or when the processor must check for a
possible change in the memory/cache access attributes when an access crosses a page boundary. When
this occurs, the processor or the operating system may restart the instruction. If the instruction is restarted,
some bytes at that location may be loaded from or stored to the target location a second time.

The following rules apply to memory accesses with regard to restarting the instruction:

« Aligned accesses—A single-register instruction that accesses an aligned operand is never restarted (that
is, it is not partially executed).

» Misaligned accesses—A single-register instruction that accesses a misaligned operand may be restarted
if the access crosses a page, BAT, or segment boundary, or if the processor is in little-endian mode.

- Load/store multiple, load/store string instructions—These instructions may be restarted if, in accessing
the locations specified by the instruction, a page, BAT, or segment boundary is crossed.

The programmer should assume that any misaligned access in a segment might be restarted. When the
processor is in big-endian mode, software can ensure that misaligned accesses are not restarted by placing
the misaligned data in BAT areas, as BAT areas have no internal protection boundaries. Refer to Section 7.4
Block Address Translation for more information on BAT areas.
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3.3 Floating-Point Execution Models—UISA

There are two kinds of floating-point instructions defined for the PowerPC architecture: computational and
noncomputational. The computational instructions consist of those operations defined by the IEEE-754 stan-
dard for 64 and 32-bit arithmetic (those that perform addition, subtraction, multiplication, division, extracting
the square root, rounding conversion, comparison, and combinations of these) and the multiply-add and
reciprocal estimate instructions defined by the architecture. The noncomputational floating-point instructions
consist of the floating-point load, store, and move instructions. While both the computational and noncompu-
tational instructions are considered to be floating-point instructions governed by the MSR[FP] bit (that allows
floating-point instructions to be executed), only the computational instructions are considered floating-point
operations throughout this chapter.

The IEEE standard requires that single-precision arithmetic be provided for single-precision operands. The
standard permits double-precision arithmetic instructions to have either (or both) single-precision or double-
precision operands, but states that single-precision arithmetic instructions should not accept double-precision
operands. The guidelines are as follows:

» Double-precision arithmetic instructions may have single-precision operands but always produce double-
precision results.

- Single-precision arithmetic instructions require all operands to be single-precision and always produce
single-precision results.

For arithmetic instructions, conversion from double to single-precision must be done explicitly by software,
while conversion from single to double-precision is done implicitly by the processor.

All PowerPC implementations provide the equivalent of the following execution models to ensure that iden-
tical results are obtained. The definition of the arithmetic instructions for infinities, denormalized numbers, and
NaNs follow conventions described in the following sections. Appendix D, “Floating-Point Models has addi-
tional detailed information on the execution models for IEEE operations as well as the other floating-point
instructions.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic uses two additional
bit positions to avoid potential transient overflow conditions. An extra bit is required when denormalized
double-precision numbers are prenormalized. A second bit is required to permit computation of the adjusted
exponent value in the following examples when the corresponding exception enable bit is 1 (exceptions are
referred to as interrupts in the architecture specification):

« Underflow during multiplication using a denormalized operand

« Overflow during division using a denormalized divisor

3.3.1 Floating-Point Data Format

The PowerPC UISA defines the representation of a floating-point value in two different binary, fixed-length
formats. The format is a 32-bit format for a single-precision floating-point value or a 64-bit format for a double-
precision floating-point value. The single-precision format may be used for data in memory. The double-preci-
sion format can be used for data in memory or in floating-point registers (FPRs).

The lengths of the exponent and the fraction fields differ between these two formats. The layout of the single-
precision format is shown in Figure 3-9; the layout of the double-precision format is shown in Figure 3-10.
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Figure 3-9. Floating-Point Single-Precision Format

SEXPFRACTION
0 1 8 9 31
Figure 3-10. Floating-Point Double-Precision Format
SEXPFRACTION
0 1 11 12 63

Values in floating-point format consist of three fields:
« S (sign bit)

« EXP (exponent + bias)

« FRACTION (fraction)

If only a portion of a floating-point data item in memory is accessed, as with a load or store instruction for a
byte or half word (or word in the case of floating-point double-precision format), the value affected depends
on whether the PowerPC system is using big or little-endian byte ordering, which is described in Section 3.1.2
Byte Ordering. Big-endian mode is the default.

For numeric values, the significand consists of a leading implied bit concatenated on the right with the FRAC-
TION. This leading implied bit is a 1 for normalized numbers and a 0 for denormalized numbers and is the first
bit to the left of the binary point. Values representable within the two floating-point formats can be specified by
the parameters listed in Table 3-5 IEEE Floating-Point Fields on page 107.

Table 3-5. IEEE Floating-Point Fields

Parameter Single-Precision Double-Precision
Exponent bias +127 +1023

Maximum exponent (unbiased) +127 +1023

Minimum exponent (unbiased) —126 —1022

Format width 32 bits 64 bits

Sign width 1 bit 1 bit

Exponent width 8 bits 11 bits

Fraction width 23 bits 52 bits
Significand width 24 bits 53 bits

The true value of the exponent can be determined by subtracting 127 for single-precision numbers and 1023
for double-precision numbers. This is shown in Table 3-6. Note that two exponent values are reserved to
represent special-case values. Setting all bits indicates that the value is an infinity or NaN and clearing all bits
indicates that the number is either zero or denormalized.
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Table 3-6. Biased Exponent Format

Biased Exponent Single-Precision Double-Precision
(Binary) (Unbiased) (Unbiased)

11..... 11 Reserved for infinities and NaNs

11..... 10 +127 +1023
11..... 01 +126 +1022
10..... 00 1 1
01..... 11 0 0
01..... 10 — 1
00..... 01 —126 —1022
00..... 00 Reserved for zeros and denormalized numbers

3.3.1.1 Value Representation

The PowerPC UISA defines numerical and nonnumerical values representable within single and double-
precision formats. The numerical values are approximations to the real numbers and include the normalized
numbers, denormalized numbers, and zero values. The nonnumerical values representable are the positive
and negative infinities and the NaNs. The positive and negative infinities are adjoined to the real numbers but
are not numbers themselves, and the standard rules of arithmetic do not hold when they appear in an opera-
tion. They are related to the real numbers by order alone. It is possible, however, to define restricted opera-
tions among numbers and infinities as defined below. The relative location on the real number line for each of
the defined numerical entities is shown in Figure 3-11. Tiny values include denormalized numbers and all
numbers that are too small to be represented for a particular precision format; they do not include zero
values.

Figure 3-11. Approximation to Real Numbers

>l<
Tiny Tiny
—0 +0

| ‘ —X—NOF’(M—DENO ENORM+r\IORM+X | |
- I | | “ I

\j

A

A

Unrepresentable, small numbers

The positive and negative NaNs are encodings that convey diagnostic information such as the representation
of uninitialized variables and are not related to the numbers, %, or each other by order or value.
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Table 3-7 describes each of the floating-point formats.

Table 3-7. Recognized Floating-Point Numbers

Sign Bit Biased Exponent Implied Bit Fraction Value
0 Maximum X Nonzero NaN
0 Maximum X Zero +Infinity
0 0 < Exponent < Maximum 1 X +Normalized
0 0 0 Nonzero +Denormalized
0 0 X Zero +0
1 0 X Zero —0
1 0 0 Nonzero —Denormalized
1 0 < Exponent < Maximum 1 X —Normalized
1 Maximum X Zero —Infinity
1 Maximum X Nonzero NaN

The following sections describe floating-point values defined in the architecture.

3.3.1.2 Binary Floating-Point Numbers

Binary floating-point numbers are machine-representable values used to approximate real numbers. Three
categories of numbers are supported—normalized numbers, denormalized numbers, and zero values.

3.3.1.3 Normalized Numbers (tNORM)

The values for normalized numbers have a biased exponent value in the range:
« 1-254 in single-precision format
» 1-2046 in double-precision format

The implied unit bit is one. Normalized numbers are interpreted as follows:

NORM = (-1)% x 2F x (1.fraction)

The variable (s) is the sign, (E) is the unbiased exponent, and (1.fraction) is the significand composed of a
leading unit bit (implied bit) and a fractional part. The format for normalized numbers is shown in Table 3-12.

Figure 3-12. Format for Normalized Numbers

MIN < EXPONENT < MAX
(BIASED) FRACTION = ANY BIT PATTERN

| SIGN BIT,0OR 1

The ranges covered by the magnitude (M) of a normalized floating-point number are approximated in the
following decimal representation:

Single-precision format:
1.2x1078 < M < 3.4x10%
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Double-precision format:
2.2x10°%8 < M < 1.8x10%

3.3.1.4 Zero Values (£0)

Zero values have a biased exponent value of zero and fraction of zero. This is shown in Figure 3-13. . Zeros
can have a positive or negative sign. The sign of zero is ignored by comparison operations (that is, compar-
ison regards +0 as equal to —0). Arithmetic with zero results is always exact and does not signal any excep-
tion, except when an exception occurs due to the invalid operations as described in Section , “Invalid
Operation Exception Condition.” Rounding a zero only affects the sign (£0).

Figure 3-13. Format for Zero Numbers

X BIASED) | FRACTION = 0

| SIGNBIT,00R 1

3.3.1.5 Denormalized Numbers (tDENORM)

Denormalized numbers have a biased exponent value of zero and a nonzero fraction. The format for denor-
malized numbers is shown in Figure 3-14.

Figure 3-14. Format for Denormalized Numbers

EXPONENT =0 FRACTION = ANY NONZERO
(BIASED) BIT PATTERN

SIGN BIT,0 OR 1

Denormalized numbers are nonzero numbers smaller in magnitude than the normalized numbers. They are
values in which the implied unit bit is zero. Denormalized numbers are interpreted as follows:

DENORM = (-1)% x 2EMN % (0.fraction)

The value Emin is the minimum unbiased exponent value for a normalized number (—126 for single-precision,
—1022 for double-precision).

3.3.1.6 Infinities (+)

These are values that have the maximum biased exponent value of 255 in the single-precision format, 2047
in the double-precision format, and a zero fraction value. They are used to approximate values greater in
magnitude than the maximum normalized value. Infinity arithmetic is defined as the limiting case of real arith-
metic, with restricted operations defined among numbers and infinities. Infinities and the real numbers can be
related by ordering in the affine sense:

—x < every finite number < +x

The format for infinities is shown in Figure 3-15.
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Figure 3-15. Format for Positive and Negative Infinities

EXPONI(EQ:X;EI\S,)AXIMUM FRACTION = 0

SIGN BIT,0OR 1

Arithmetic using infinite numbers is always exact and does not signal any exception, except when an excep-
tion occurs due to the invalid operations as described in Invalid Operation Exception Condition on page 125.

3.3.1.7 Not a Numbers (NaNs)

NaNs have the maximum biased exponent value and a nonzero fraction. The format for NaNs is shown in
Figure 3-16. The sign bit of NaN does not show an algebraic sign; rather, it is simply another bit in the NaN. If
the highest-order bit of the fraction field is a zero, the NaN is a signaling NaN; otherwise it is a quiet NaN
(QNaN).

Figure 3-16. Format for NaNs

EXPONENT = MAXIMUM FRACTION = ANY NONZERO
(BIASED) BIT PATTERN

SIGN BIT (ignored)

Signaling NaNs signal exceptions when they are specified as arithmetic operands.

Quiet NaNs represent the results of certain invalid operations, such as attempts to perform arithmetic opera-
tions on infinities or NaNs, when the invalid operation exception is disabled (FPSCR[VE] = 0). Quiet NaNs
propagate through all operations, except floating-point round to single-precision, ordered comparison, and
conversion to integer operations, and signal exceptions only for ordered comparison and conversion to
integer operations. Specific encodings in QNaNs can thus be preserved through a sequence of operations
and used to convey diagnostic information to help identify results from invalid operations.

When a QNaN results from an operation because an operand is a NaN or because a QNaN is generated due
to a disabled invalid operation exception, the following rule is applied to determine the QNaN to be stored as
the result:
If (frA) is a NaN
Then frD <« (£frA)
Else if (frB) is a NaN
Then if instruction is frsp
Then frD « (frB) [0-34]]](29)0
Else frD <« (frB)
Else if (frC) is a NaN
Then f£frD « (£frC)
Else if generated QNaN
Then frD <« generated QNaN

If the operand specified by frA is a NaN, that NaN is stored as the result. Otherwise, if the operand specified
by frB is a NaN (if the instruction specifies an frB operand), that NaN is stored as the result, with the low-
order 29 bits cleared. Otherwise, if the operand specified by frC is a NaN (if the instruction specifies an frC
operand), that NaN is stored as the result. Otherwise, if a QNaN is generated by a disabled invalid operation
exception, that QNaN is stored as the result. If a QNaN is to be generated as a result, the QNaN generated
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has a sign bit of zero, an exponent field of all ones, and a highest-order fraction bit of one with all other frac-
tion bits zero. An instruction that generates a QNaN as the result of a disabled invalid operation generates
this QNaN. This is shown in Figure 3-17.

Figure 3-17. Representation of Generated QNaN

0 111..1 1000....0

| SIGN BIT (ignored)

3.3.2 Sign of Result

The following rules govern the sign of the result of an arithmetic operation, when the operation does not yield
an exception. These rules apply even when the operands or results are zero (0) or +x:

« The sign of the result of an addition operation is the sign of the source operand having the larger absolute
value. If both operands have the same sign, the sign of the result of an addition operation is the same as
the sign of the operands. The sign of the result of the subtraction operation, x —vy, is the same as the sign
of the result of the addition operation, x + (—y).

« When the sum of two operands with opposite sign, or the difference of two operands with the same sign,
is exactly zero, the sign of the result is positive in all rounding modes except round toward negative infin-
ity (—x), in which case the sign is negative.

« The sign of the result of a multiplication or division operation is the XOR of the signs of the source oper-
ands.

« The sign of the result of a round to single-precision or convert to/from integer operation is the sign of the
source operand.

« The sign of the result of a square root or reciprocal square root estimate operation is always positive,
except that the square root of —0 is —0 and the reciprocal square root of —0 is —infinity.

For multiply-add/subtract instructions, these rules are applied first to the multiplication operation and then to
the addition/subtraction operation (one of the source operands to the addition/subtraction operation is the
result of the multiplication operation).

3.3.3 Normalization and Denormalization

The intermediate result of an arithmetic or Floating Round to Single-Precision (frspx) instruction may require
normalization and/or denormalization. When an intermediate result consists of a sign bit, an exponent, and a
nonzero significand with a zero leading bit, the result must be normalized (and rounded) before being stored
to the target.

A number is normalized by shifting its significand left and decrementing its exponent by one for each bit
shifted until the leading significand bit becomes one. The guard and round bits are also shifted, with zeros
shifted into the round bit; see Section D.1 Execution Model for IEEE Operations for information about the
guard and round bits. During normalization, the exponent is regarded as if its range were unlimited.

If an intermediate result has a nonzero significand and an exponent that is smaller than the minimum value

that can be represented in the format specified for the result, this value is referred to as ‘tiny’ and the stored
result is determined by the rules described in Underflow Exception Condition on page 130. These rules may
involve denormalization. The sign of the number does not change.
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An exponent can become tiny in either of the following circumstances:
« As the result of an arithmetic or Floating Round to Single-Precision (frspx) instruction or
« As the result of decrementing the exponent in the process of normalization.

Normalization is the process of coercing the leading significand bit to be a 1 while denormalization is the
process of coercing the exponent into the target format's range.

In denormalization, the significand is shifted to the right while the exponent is incremented for each bit shifted
until the exponent equals the format’s minimum value. The result is then rounded. If any significand bits are
lost due to the rounding of the shifted value, the result is considered inexact. The sign of the number does not
change.

3.3.4 Data Handling and Precision

There are specific instructions for moving floating-point data between the FPRs and memory. For double-
precision format data, the data is not altered during the move. For single-precision data, the format is
converted to double-precision format when data is loaded from memory into an FPR. A format conversion
from double to single-precision is performed when data from an FPR is stored as single-precision. These
operations do not cause floating-point exceptions.

All floating-point arithmetic, move, and select instructions use floating-point double-precision format.

Floating-point single-precision formats are obtained by using the following four types of instructions:

» Load floating-point single-precision instructions—These instructions access a single-precision operand in
single-precision format in memory, convert it to double-precision, and load it into an FPR. Floating-point
exceptions do not occur during the load operation.

» Floating Round to Single-Precision (frspx) instruction—The frspx instruction rounds a double-precision
operand to single-precision, checking the exponent for single-precision range and handling any excep-
tions according to respective enable bits in the FPSCR. The instruction places that operand into an FPR
as a double-precision operand. For results produced by single-precision arithmetic instructions and by
single-precision loads, this operation does not alter the value.

- Single-precision arithmetic instructions—These instructions take operands from the FPRs in double-pre-
cision format, perform the operation as if it produced an intermediate result correct to infinite precision
and with unbounded range, and then force this intermediate result to fit in single-precision format. Status
bits in the FPSCR and in the condition register are set to reflect the single-precision result. The result is
then converted to double-precision format and placed into an FPR. The result falls within the range sup-
ported by the single-precision format.

Source operands for these instructions must be representable in single-precision format. Otherwise, the
result placed into the target FPR and the setting of status bits in the FPSCR, and in the condition register
if update mode is selected, are undefined.

« Store floating-point single-precision instructions—These instructions convert a double-precision operand
to single-precision format and store that operand into memory. If the operand requires denormalization in
order to fit in single-precision format, it is automatically denormalized prior to being stored. No exceptions
are detected on the store operation (the value being stored is effectively assumed to be the result of an
instruction of one of the preceding three types).
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When the result of a Load Floating-Point Single (Ifs), Floating Round to Single-Precision (frspx), or single-
precision arithmetic instruction is stored in an FPR, the low-order 29 fraction bits are zero. This is shown in
Figure 3-18.

Figure 3-18. Single-Precision Representation in an FPR
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The frspx instruction allows conversion from double to single-precision with appropriate exception checking
and rounding. This instruction should be used to convert double-precision floating-point values (produced by
double-precision load and arithmetic instructions) to single-precision values before storing them into single-
format memory elements or using them as operands for single-precision arithmetic instructions. Values
produced by single-precision load and arithmetic instructions can be stored directly, or used directly as oper-
ands for single-precision arithmetic instructions, without being preceded by an frspx instruction.

A single-precision value can be used in double-precision arithmetic operations. The reverse is true only if the
double-precision value can be represented in single-precision format. Some implementations may execute
single-precision arithmetic instructions faster than double-precision arithmetic instructions. Therefore, if
double-precision accuracy is not required, using single-precision data and instructions may speed operations
in some implementations.

3.3.5 Rounding

All arithmetic, rounding, and conversion instructions defined by the PowerPC architecture (except the
optional Floating Reciprocal Estimate Single (fresx) and Floating Reciprocal Square Root Estimate (frsqrtex)
instructions) produce an intermediate result considered to be infinitely precise and with unbounded exponent
range. This intermediate result is normalized or denormalized if required, and then rounded to the destination
format. The final result is then placed into the target FPR in the double-precision format or in fixed-point
format, depending on the instruction.

The IEEE-754 specification allows loss of accuracy to be defined as when the rounded result differs from the
infinitely precise value with unbounded range (same as the definition of ‘inexact’). In the PowerPC architec-
ture, this is the way loss of accuracy is detected.

Let Z be the intermediate arithmetic result (with infinite precision and unbounded range) or the operand of a
conversion operation. If Z can be represented exactly in the target format, then the result in all rounding
modes is exactly Z. If Z cannot be represented exactly in the target format, let Z1 and Z2 be the next larger
and next smaller numbers representable in the target format that bound Z; then Z1 or Z2 can be used to
approximate the result in the target format.

Figure 3-19 shows a graphical representation of Z, Z1, and Z2 in this case.
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Figure 3-19. Relation of Z1 and Z2
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Four rounding modes are available through the floating-point rounding control field (RN) in the FPSCR. See
Section 2.1.4 Floating-Point Status and Control Register (FPSCR). These are encoded as follows in
Table 3-8.

Table 3-8. FPSCR Bit Settings—RN Field

RN Rounding Mode Rules

00 Round to nearest ec\tg)r??Ii:;isbigﬁfﬁ:‘;%rtot);iitr%??iOn (Z1 or Z2). In case of a tie, choose the one that is
01 Round toward zero Choose the smaller in magnitude (Z1 or Z2).

10 Round toward +infinity Choose Z1.

11 Round toward —infinity Choose Z2.

See Section D.1 Execution Model for IEEE Operations for a detailed explanation of rounding. Rounding
occurs before an overflow condition is detected. This means that while an infinitely precise value with
unbounded exponent range may be greater than the greatest representable value, the rounding mode may
allow that value to be rounded to a representable value. In this case, no overflow condition occurs.

However, the underflow condition is tested before rounding. Therefore, if the value that is infinitely precise
and with unbounded exponent range falls within the range of unrepresentable values, the underflow condition
occurs. The results in these cases are defined in Underflow Exception Condition on page 130.” Figure 3-20
shows the selection of Z1 and Z2 for the four possible rounding modes that are provided by FPSCR[RN].
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Figure 3-20. Selection of Z1 and Z2 for the Four Rounding Modes

Z is infinitely precise
result or operand

Z fits otherwise

target format \‘
72 <Z <271 | perFigure 3-19.
/é\ FPSCR[RN]

otherwise (round toward 0)

FPSCR[RN] = 11
(round toward —x) otherwise

Z>0
frD <— Z2 1frD «— Z1 frD « Z2

FPSCRI[RN] = FPSCR[RN] = 10
round to nearest) (round toward +x)

frD < Best approx (Z1 or Z2) frD « Z1
If tie, choose even (Z1 or Z2 w/Isb 0

All arithmetic, rounding, and conversion instructions affect FPSCR bits FR and Fl, according to whether the
rounded result is inexact (FI) and whether the fraction was incremented (FR) as shown in Figure 3-21. If the
rounded result is inexact, Fl is set and FR may be either set or cleared. If rounding does not change the
result, both FR and Fl are cleared. The optional fresx and frsqrtex instructions set Fl and FR to undefined
values; other floating-point instructions do not alter FR and FI.
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Figure 3-21. Rounding Flags in FPSCR

Czround is rounded result)

otherwise Zround | Z
Fl 1
Fl <0
FR«O0 .
_ fraction otherwise
incremented

3.3.6 Floating-Point Program Exceptions

The computational instructions of the PowerPC architecture are the only instructions that can cause floating-
point enabled exceptions (subsets of the program exception). In the processor, floating-point program excep-
tions are signaled by condition bits set in the floating-point status and control register (FPSCR) as described
in this section and in Chapter 2, “PowerPC Register Set.” These bits correspond to those conditions identified
as |IEEE floating-point exceptions and can cause the system floating-point enabled exception error handler to
be invoked. Handling for floating-point exceptions is described in Section 6.4.7 Program Exception
(0x00700).

The FPSCR is shown in Figure 3-22.

Figure 3-22. Floating-Point Status and Control Register (FPSCR)

[ ] Reserved
VXIDI VXZDZ — VXSOFT
VXIS| ——— ————— VXIMZ VXSQRT
VXSNAN —l Ii VXVC I_ VXCVI
FX|FEX|VX] OX] UX] ZX| XX FR| FI FPRF 0 VE|OE|UE|ZE|(XE|NI| RN
01 2 3 4 5 6 7 8 9 10 11 12 13 1415 1920 21 22 23 24 25 26 27 28 29 30 31
A listing of FPSCR bit settings is shown in Table 3-9.
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Table 3-9. FPSCR Bit Settings

Bit(s)

10

11

12

13

14

Name

FX

FEX

VX

OoX

Ux
ZX

XX

VXSNAN

VXISI

VXIDI

VXZDzZ

VXIMZ

VXVC

FR

Fl
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Description

Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf, implicitly sets
FPSCRIFX] if that instruction causes any of the floating-point exception bits in the FPSCR to transition from 0
to 1. The mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1 instructions can alter FPSCR[FX] explicitly. This is a sticky
bit.

Floating-point enabled exception summary. This bit signals the occurrence of any of the enabled exception
conditions. It is the logical OR of all the floating-point exception bits masked by their respective enable bits
(FEX = (VX & VE) " (OX & OE) " (UX & UE) » (ZX & ZE) * (XX & XE)). The mcrfs, mtfsf, mtfsfi, mtfsb0, and
mtfsb1 instructions cannot alter FPSCR[FEX] explicitly. This is not a sticky bit.

Floating-point invalid operation exception summary. This bit signals the occurrence of any invalid operation
exception. It is the logical OR of all of the invalid operation exception bits as described in Section , “Invalid
Operation Exception Condition.” The mcrfs, mtfsf, mtfsfi, mtfsb0, and mtfsb1 instructions cannot alter
FPSCR[VX] explicitly. This is not a sticky bit.

Floating-point overflow exception. This is a sticky bit. See Section 3.3.6.2 Overflow, Underflow, and Inexact
Exception Conditions.

Floating-point underflow exception. This is a sticky bit. See Underflow Exception Condition on page 130.”
Floating-point zero divide exception. This is a sticky bit. See Zero Divide Exception Condition on page 126.”

Floating-point inexact exception. This is a sticky bit. See Inexact Exception Condition on page 131.”
FPSCR[XX] is the sticky version of FPSCR[FI]. The following rules describe how FPSCR[XX] is set by a given
instruction:
- If the instruction affects FPSCRI[FI], the new value of FPSCR[XX] is obtained by logically ORing the old
value of FPSCR[XX] with the new value of FPSCRI[FI].
- If the instruction does not affect FPSCR[FI], the value of FPSCR[XX] is unchanged.

Floating-point invalid operation exception for SNaN. This is a sticky bit. See Invalid Operation Exception Con-
dition on page 125.”

Floating-point invalid operation exception for x — x. This is a sticky bit. See Invalid Operation Exception Condli-
tion on page 125.”

Floating-point invalid operation exception for x + x. This is a sticky bit. See Invalid Operation Exception Condli-
tion on page 125.”

Floating-point invalid operation exception for 0 + 0. This is a sticky bit. See Invalid Operation Exception Condli-
tion on page 125.”

Floating-point invalid operation exception for x * 0. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 125.”

Floating-point invalid operation exception for invalid compare. This is a sticky bit. See Invalid Operation Excep-
tion Condition on page 125.”

Floating-point fraction rounded. The last arithmetic, rounding, or conversion instruction incremented the frac-
tion. See Section 3.3.5 Rounding. This bit is not sticky.

Floating-point fraction inexact. The last arithmetic, rounding, or conversion instruction either produced an inex-
act result during rounding or caused a disabled overflow exception. See Section 3.3.5 Rounding. This is not a
sticky bit. For more information regarding the relationship between FPSCR[FI] and FPSCR[XX], see the
description of the FPSCR[XX] bit.
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Table 3-9. FPSCR Bit Settings (Continued)

Bit(s)

15-19

20

21

22

23
24
25

26
27
28

29

30-31

Name

FPRF

VXSOFT

VXSQRT

VXCVI

VE

OE

UE
ZE
XE

NI

RN

Description

Floating-point result flags. For arithmetic, rounding, and conversion instructions the field is based on the result
placed into the target register, except that if any portion of the result is undefined, the value placed here is
undefined.

15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion instructions may set
this bit with the FPCC bits to indicate the class of the result as shown in Table 3-10.

16—19 Floating-point condition code (FPCC). Floating-point compare instructions always set one of the
FPCC bits to one and the other three FPCC bits to zero. Arithmetic, rounding, and conversion instructions may
set the FPCC bits with the C bit to indicate the class of the result. Note that in this case the high-order three
bits of the FPCC retain their relational significance indicating that the value is less than, greater than, or equal
to zero.

16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or >)
18 Floating-point equal or zero (FE or =)

19 Floating-point unordered or NaN (FU or ?)
Note that these are not sticky bits.

Reserved

Floating-point invalid operation exception for software request. This is a sticky bit. This bit can be altered only
by the mcrfs, mtfsfi, mtfsf, mtfsb0, or mtfsb1 instructions. For more detailed information, refer to Section ,
“Invalid Operation Exception Condition.”

Floating-point invalid operation exception for invalid square root. This is a sticky bit. For more detailed informa-
tion, refer to Section , “Invalid Operation Exception Condition.”

Floating-point invalid operation exception for invalid integer convert. This is a sticky bit. See Section , “Invalid
Operation Exception Condition.”

Floating-point invalid operation exception enable. See Section , “Invalid Operation Exception Condition.”

IEEE floating-point overflow exception enable. See Section 3.3.6.2 , “Overflow, Underflow, and Inexact Excep-
tion Conditions.”

IEEE floating-point underflow exception enable. See Section , “Underflow Exception Condition.”
IEEE floating-point zero divide exception enable. See Section , “Zero Divide Exception Condition.”
Floating-point inexact exception enable. See Section , “Inexact Exception Condition.”

Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards and the other
FPSCR bits may have meanings other than those described here. If the bit is set and if all implementation-spe-
cific requirements are met and if an IEEE-conforming result of a floating-point operation would be a denormal-
ized number, the result produced is zero (retaining the sign of the denormalized number). Any other effects
associated with setting this bit are described in the user’'s manual for the implementation.

Effects of the setting of this bit are implementation-dependent.

Floating-point rounding control. See Section 3.3.5 Rounding.”

00 Round to nearest

01 Round toward zero

10 Round toward +infinity
11 Round toward —infinity

Table 3-10 illustrates the floating-point result flags used by PowerPC processors. The result flags correspond
to FPSCR bits 15—19 (the FPRF field).
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Table 3-10. Floating-Point Result Flags — FPSCR[FPRF]

Result Flags (Bits 15—19) Result Value CI
esult Value Class

C < > = ?

1 0 0 0 1 Quiet NaN

0 1 0 0 1 |—Infinity

0 1 0 0 0 —Normalized number

1 1 0 0 0 —Denormalized number
1 0 0 1 0 —Zero

0 0 0 1 0 +Zero

1 0 1 0 0 +Denormalized number
0 0 1 0 0 +Normalized number

0 0 1 0 1 +Infinity

The following conditions that can cause program exceptions are detected by the processor. These conditions
may occur during execution of computational floating-point instructions. The corresponding bits set in the
FPSCR are indicated in parentheses:

« Invalid operation exception condition (VX)

— SNaN condition (VXSNAN)

— Infinity — infinity condition (VXISI)

— Infinity + infinity condition (VXIDI)

— Zero + zero condition (VXZDZ)

— Infinity * zero condition (VXIMZ)

— Invalid compare condition (VXVC)

— Software request condition (VXSOFT)

— Invalid integer convert condition (VXCVI)
— Invalid square root condition (VXSQRT)

These exception conditions are described in Invalid Operation Exception Condition on page 125.”

« Zero divide exception condition (ZX). These exception conditions are described in Zero Divide Exception
Condition on page 126.”

» Overflow Exception Condition (OX). These exception conditions are described in Overflow Exception
Condition on page 129.”

» Underflow Exception Condition (UX). These exception conditions are described in Underflow Exception
Condition on page 130.”

« Inexact Exception Condition (XX). These exception conditions are described in Inexact Exception Condi-
tion on page 131.”

Each floating-point exception condition and each category of invalid IEEE floating-point operation exception
condition has a corresponding exception bit in the FPSCR which indicates the occurrence of that condition.
Generally, the occurrence of an exception condition depends only on the instruction and its arguments (with
one deviation, described below). When one or more exception conditions arise during the execution of an
instruction, the way in which the instruction completes execution depends on the value of the IEEE floating-
point enable bits in the FPSCR which govern those exception conditions. If no governing enable bit is setto 1,
the instruction delivers a default result. Otherwise, specific condition bits and the FX bit in the FPSCR are set
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and instruction execution is completed by suppressing or delivering a result. Finally, after the instruction
execution has completed, a nonzero FX bit in the FPSCR causes a program exception if either FEO or FE1 is
set in the MSR (invoking the system error handler). The values in the FPRs immediately after the occurrence
of an enabled exception do not depend on the FEO and FE1 bits.

The floating-point exception summary bit (FX) in the FPSCR is set by any floating-point instruction (except
mtfsfi and mtfsf) that causes any of the exception bits in the FPSCR to change from 0 to 1, or by mtfsfi,
mtfsf, and mtfsb1 instructions that explicitly set one of these bits. FPSCR[FEX] is set when any of the excep-
tion condition bits is set and the exception is enabled (enable bit is one).

A single instruction may set more than one exception condition bit only in the following cases:

« The inexact exception condition bit (FPSCR[XX]) may be set with the overflow exception condition bit
(FPSCRI[OX]).

» The inexact exception condition bit (FPSCR[XX]) may be set with the underflow exception condition bit
(FPSCRI[UX])).

- The invalid IEEE floating-point operation exception condition bit (SNaN) may be set with invalid IEEE
floating-point operation exception condition bit (x*0) (FPSCR[VXIMZ]) for multiply-add instructions.

- The invalid operation exception condition bit (SNaN) may be set with the invalid IEEE floating-point oper-
ation exception condition bit (invalid compare) (FPRSC[VXVC]) for compare ordered instructions.

« The invalid IEEE floating-point operation exception condition bit (SNaN) may be set with the invalid IEEE
floating-point operation exception condition bit (invalid integer convert) (FPSCR[VXCVI]) for convert-to-
integer instructions.

Instruction execution is suppressed for the following kinds of exception conditions, so that there is no possi-
bility that one of the operands is lost:

« Enabled invalid IEEE floating-point operation

- Enabled zero divide

For the remaining kinds of exception conditions, a result is generated and written to the destination specified
by the instruction causing the exception condition. The result may depend on whether the condition is
enabled or disabled. The kinds of exception conditions that deliver a result are the following:

» Disabled invalid IEEE floating-point operation
 Disabled zero divide

» Disabled overflow

 Disabled underflow

- Disabled inexact

» Enabled overflow

+ Enabled underflow

« Enabled inexact

Subsequent sections define each of the floating-point exception conditions and specify the action taken when
they are detected.

The IEEE standard specifies the handling of exception conditions in terms of traps and trap handlers. In the
PowerPC architecture, an FPSCR exception enable bit being set causes generation of the result value speci-
fied in the IEEE standard for the trap enabled case—the expectation is that the exception is detected by soft-
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ware, which will revise the result. An FPSCR exception enable bit of 0 causes generation of the default result
value specified for the trap disabled (or no trap occurs or trap is not implemented) case—the expectation is
that the exception will not be detected by software, which will simply use the default result. The result to be
delivered in each case for each exception is described in the following sections.

The IEEE default behavior when an exception occurs, which is to generate a default value and not to notify
software, is obtained by clearing all FPSCR exception enable bits and using ignore exceptions mode (see
Table 3-11). In this case the system floating-point enabled exception error handler is not invoked, even if
floating-point exceptions occur. If necessary, software can inspect the FPSCR exception bits to determine
whether exceptions have occurred.

If the system error handler is to be invoked, the corresponding FPSCR exception enable bit must be set and
a mode other than ignore exceptions mode must be used. In this case the system floating-point enabled
exception error handler is invoked if an enabled floating-point exception condition occurs.

Whether and how the system floating-point enabled exception error handler is invoked if an enabled floating-
point exception occurs is controlled by MSR bits FEO and FE1 as shown in Table 3-11. (The system floating-
point enabled exception error handler is never invoked if the appropriate floating-point exception is disabled.)

Table 3-11. MSR[FEOQ] and MSR[FE1] Bit Settings for FP Exceptions

FEO FE1 | Description

0 0 Ignore exceptions mode—Floating-point exceptions do not cause the program exception error handler to be
invoked.

Imprecise nonrecoverable mode—When an exception occurs, the exception handler is invoked at some point at or
beyond the instruction that caused the exception. It may not be possible to identify the excepting instruction or the
data that caused the exception. Results from the excepting instruction may have been used by or affected subse-
quent instructions executed before the exception handler was invoked.

Imprecise recoverable mode— When an enabled exception occurs, the floating-point enabled exception handler is
invoked at some point at or beyond the instruction that caused the exception. Sufficient information is provided to

1 0 the exception handler that it can identify the excepting instruction and correct any faulty results. In this mode, no
results caused by the excepting instruction have been used by or affected subsequent instructions that are exe-
cuted before the exception handler is invoked.

Precise mode—The system floating-point enabled exception error handler is invoked precisely at the instruction
that caused the enabled exception.

In precise mode, whenever the system floating-point enabled exception error handler is invoked, the architec-
ture ensures that all instructions logically residing before the excepting instruction have completed and no
instruction after the excepting instruction has been executed. In an imprecise mode, the instruction flow may
not be interrupted at the point of the instruction that caused the exception. The instruction at which the system
floating-point exception handler is invoked has not been executed unless it is the excepting instruction and
the exception is not suppressed.

In either of the imprecise modes, an FPSCR instruction can be used to force the occurrence of any invoca-
tions of the floating-point enabled exception handler, due to instructions initiated before the FPSCR instruc-
tion. This forcing has no effect in ignore exceptions mode and is superfluous for precise mode.

Instead of using an FPSCR instruction, an execution synchronizing instruction or event can be used to force
exceptions and set bits in the FPSCR; however, for the best performance across the widest range of imple-
mentations, an FPSCR instruction should be used to achieve these effects.
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For the best performance across the widest range of implementations, the following guidelines should be
considered:

« |f IEEE default results are acceptable to the application, FEO and FE1 should be cleared (ignore excep-
tions mode). All FPSCR exception enable bits should be cleared.

- If IEEE default results are unacceptable to the application, an imprecise mode should be used with the
FPSCR enable bits set as needed.

« Ignore exceptions mode should not, in general, be used when any FPSCR exception enable bits are set.

» Precise mode may degrade performance in some implementations, perhaps substantially, and therefore
should be used only for debugging and other specialized applications.

3.3.6.1 Invalid Operation and Zero Divide Exception Conditions

The flow diagram in Figure 3-23 shows the initial flow for checking floating-point exception conditions (invalid
operation and divide by zero conditions). In any of these cases of floating-point exception conditions, if the
FPSCRI[FEX] bit is set (implicitly) and MSR[FEO—FE1] | 00, the processor takes a program exception
(floating-point enabled exception type). Refer to Chapter 6, “Exceptions,” for more information on exception
processing. The actions performed for each floating-point exception condition are described in greater detalil
in the following sections.
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Figure 3-23. Initial Flow for Floating-Point Exception Conditions

Check for FP Computational
FP Exception Conditions Instructions

Invalid Operand

otherwise Exception Condition
Perform Actions per Section
. /l\ (FPSCR[FEX] = 1) &
otherwise (MSR[FEO—FE1] | 00)
Take FP Enabled
. Zero Divide Program Exception
otherwise Exception Condition (for Invalid Operation)
Perform Actions per Section
. /J)\ (FPSCRIFEX] = 1) &
otherwise (MSR[FEO-FE1] | 00)
- Take FP Enabled
Execute Instruction; Program Exception
x < Intermediate Result tor Zero Divid
(Infinitely Precise and with Unbounded Range) (for Zero Divide)
x = (0) or (xx) otherwise

T

: ;(rcl:))und ¢~ Rounded x (per FPSCRIRN) Check for Overflow, Underflow
« frD <X,ound L .. ') (see Figure 3-24.)
- Set FPSCRIFI, FR, FPRF] appropriately & Inexact Exception Conditions

Continue Instruction
Execution

Operand Conventions

pem3_operand_conv.fm.2.0
Page 124 of 785

June 10, 2003



Programming Environments Manual

PowerPC RISC Microprocessor Family

Invalid Operation Exception Condition
An invalid operation exception occurs when an operand is invalid for the specified operation. The invalid oper-
ations are as follows:

« Any operation except load, store, move, select, or mtfsf on a signaling NaN (SNaN)

» For add or subtract operations, magnitude subtraction of infinities (x — x)

« Division of infinity by infinity (x + x)

« Division of zero by zero (0 + 0)

» Multiplication of infinity by zero (x * 0)

» Ordered comparison involving a NaN (invalid compare)

« Square root or reciprocal square root of a negative, nonzero number (invalid square root). Note that if the
implementation does not support the optional floating-point square root or floating-point reciprocal square
root estimate instructions, software can simulate the instruction and set the FPSCR[VXSQRT] bit to
reflect the exception.

» Integer convert involving a number that is too large in magnitude to be represented in the target format, or
involving an infinity or a NaN (invalid integer convert)

FPSCR[VXSOFT] allows software to cause an invalid operation exception for a condition that is not neces-

sarily associated with the execution of a floating-point instruction. For example, it might be set by a program
that computes a square root if the source operand is negative. This allows PowerPC instructions not imple-

mented in hardware to be emulated.

Any time an invalid operation occurs or software explicitly requests the exception via FPSCR[VXSOFT],
(regardless of the value of FPSCR[VE]), the following actions are taken:

« One or two invalid operation exception condition bits is set

FPSCR[VXSNAN] (if SNaN)

FPSCRIVXISI] (if x —x)

FPSCRI[VXIDI] (if x + x)
FPSCR[VXZDZ] (if0+0)

FPSCR[VXIMZ] (if x * 0)

FPSCR[VXVC] (if invalid comparison)
FPSCR[VXSOFT] (if software request)
FPSCR[VXSQRT] (if invalid square root)
FPSCR[VXCVI] (if invalid integer convert)

- If the operation is a compare,
FPSCRIFR, FI, C] are unchanged
FPSCR[FPCC] is set to reflect unordered

« |f software explicitly requests the exception,
FPSCRIFR, FI, FPRF] are as set by the mtfsfi, mtfsf, or mtfsb1 instruction.

There are additional actions performed that depend on the value of FPSCR[VE]. These are described in
Table 3-12
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Table 3-12. Additional Actions Performed for Invalid FP Operations

Action Performed

Invalid Operation

Result Category

FPSCRIVE] = 1 FPSCR[VE] =0

frD Unchanged QNaN
glréthmetlc or floating-point round to sin- FPSCRIFR, FI] Cleared Cleared

FPSCR[FPRF] Set for QNaN Unchanged

rD[0—63] Unchanged \l)/;?steposmve 64-bit integer
Convert to 64-bit integer
(positive number or +X) FPSCRIFR, FI] Cleared Cleared

FPSCRI[FPRF] Set for QNaN Undefined

frD[0—63] Unchanged \I)/;?S; negative 64-bit integer
Convert to 64-bit integer
(negative number, NaN, or —X) FPSCRIFR, FI] Cleared Cleared

FPSCR[FPRF] Set for QNaN Undefined

frD[0—31] Unchanged Undefined

Most positive 32-bit integer

Convert to 32-bit integer frD[32-63] Unchanged valuep 9
(positive number or +X)

FPSCRIFR, FI] Cleared Cleared

FPSCRI[FPRF] Set for QNaN Undefined

frD[0-31] Unchanged Undefined

Most negative 32-bit integer

Convert to 32-bit integer frD[32-63] Unchanged value ? ?
(negative number, NaN, or —X)

FPSCRIFR, FI] Cleared Cleared

FPSCRI[FPRF] Set for QNaN Undefined
All cases FPSCRIFEX] Implicitly set Unchanged

(causes exception)

Zero Divide Exception Condition

A zero divide exception condition occurs when a divide instruction is executed with a zero divisor value and a
finite, nonzero dividend value or when an fres or frsqrte instruction is executed with a zero operand value.
This exception condition indicates an exact infinite result from finite operands exception condition corre-
sponding to a mathematical pole (divide or fres) or a branch point singularity (frsqrte).
When a zero divide condition occurs, the following actions are taken:

 Zero divide exception condition bit is set FPSCR[ZX] = 1.

« FPSCR[FR, Fl] are cleared.

Additional actions depend on the setting of the zero divide exception condition enable bit, FPSCR[ZE], as
described in Table 3-13.
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Table 3-13. Additional Actions Performed for Zero Divide

Action Performed
Result Category

FPSCRI[ZE] = 1 FPSCR[ZE] =0
*x (sign determined by XOR of the signs of the
frD Unchanged operands)
FPSCRIFEX] Implicitly set (causes exception) Unchanged
FPSCRI[FPRF] Unchanged Set to indicate +x

3.3.6.2 Overflow, Underflow, and Inexact Exception Conditions

As described earlier, the overflow, underflow, and inexact exception conditions are detected after the floating-
point instruction has executed and an infinitely precise result with unbounded range has been computed.
Figure 3-24 shows the flow for the detection of these conditions and is a continuation of Figure 3-23. As in the
cases of invalid operation, or zero divide conditions, if the FPSCR[FEX] bit is implicitly set as described in
Table 3-9 and MSR[FEO—FE1] | 00, the processor takes a program exception (floating-point enabled excep-
tion type). Refer to Chapter 6, “Exceptions,” for more information on exception processing. The actions
performed for each of these floating-point exception conditions (including the generated result) are described
in greater detail in the following sections.
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Figure 3-24. Checking of Remaining Floating-Point Exception Conditions

Check for Overflow,
CUnderrow, and InexacD (from
[

Xnorm <— Normalized x
(Xnorm Infinitely Precise and with Unbounded Range)

Xnorm 1S tiny otherwise

\‘

(urfgesrgoﬁ\%'ﬁs]agg g Oterwise Xround < Rounded Xporm (per FPSCR[RN])
~ ™ '

* Xdenorm <~ Denormalized Xnorm /othervwse magnitude of Xypng > Magnitude of

» Round Xgenorm (per FPSCR[RN]) | largest finite number in result precision

« D < X;oung < Rounded Xgenorm D —x (overfiow)

* inexact <~ Xyound | Xdenorm ; round | |

« If ‘inexact’, FPSCR[UX] « 1 * Inexact « Xround i Xnorm FPSCR[OX] « 1
* FPSCR[UX] « 1 otherwise FPSCRIOE] = 0
« FPSCRIFEX] =1 (implicitly) (overflow disabled)
* Xagjust <—Adj. EXp. of Xpom per Table 3-14 / ~

* Round Xqjyst (per FPSCRIRN])
* frD < Xround <~ Rounded Xggjust
* inexact < Xyound | Xadjust

« FPSCRI[FEX] = 1 (implicitly)

« Adjust Exponent per Table 3-14
« frD « X,qung (@djusted)

« inexact < Xround | Xnorm

FPSCRIXX] « 1

« Get default fromTable 3-15.
« frD « default
otherwise inexact = 1 + FPSCRIFI] « 1

— ~— « FPSCR[FR] « undefined

FPSCR[XX] «—1 (inexact)

. FPSCR[XE] =0
}therwse (inexact disabled)

~

FPSCRIFEX] =1 (implicitly)

Set FPSCR[FPRF] appropriately
|

If (FPSCRIFEX] = 1) & (MSR[FEO—FE1] | 00),
then take FP Program Exception;
otherwise, continue
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Overflow Exception Condition

Overflow occurs when the magnitude of what would have been the rounded result (had the exponent range
been unbounded) is greater than the magnitude of the largest finite number of the specified result precision.

Regardless of the setting of the overflow exception condition enable bit of the FPSCR, the following action is
taken:

» The overflow exception condition bit is set FPSCR[OX] = 1.

Additional actions are taken that depend on the setting of the overflow exception condition enable bit of the
FPSCR as described in Table 3-14.

Table 3-14. Additional Actions Performed for Overflow Exception Condition

Action Performed

FPSCRIOE] = 1 FPSCR[OE] = 0

Condition Result Category

Double-precision arithmetic | Exponent of normalized inter- Adjusted by subtracting 1536 o

instructions mediate result
Single-precision arithmetic | Exponent of normalized inter- . . _
and frspx instruction mediate result Adjusted by subtracting 192
frD Rounded resultrg\év:tt; adjusted expo- Default result per Table 3-15.
Set if rounded result differs from
FPSCR[XX] intermediate result Set
All cases FPSCRIFEX] Implicitly set (causes exception) Unchanged
FPSCRIFPRF] Set to indicate #normal number  S°! 10 indicate £x or normal num-
FPSCRIFI] Reflects rounding Set
FPSCRIFR] Reflects rounding Undefined

When the overflow exception condition is disabled (FPSCR[OE] = 0) and an overflow condition occurs, the

default result is determined by the rounding mode bit (FPSCR[RN]) and the sign of the intermediate result as
shown in Table 3-15.

Table 3-15. Target Result for Overflow Exception Disabled Case

FPSCR[RN] Sign of Intermediate Result frD
Positive +Infinity
Round to nearest
Negative —Infinity
Positive Format’s largest finite positive number
Round toward zero
Negative Format’s most negative finite number
Positive +Infinity
Round toward +infinity
Negative Format's most negative finite number
Positive Format’s largest finite positive number
Round toward —infinity
Negative —Infinity
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Underflow Exception Condition

The underflow exception condition is defined separately for the enabled and disabled states:
» Enabled—Underflow occurs when the intermediate result is tiny.

» Disabled—Underflow occurs when the intermediate result is tiny and the rounded result is inexact.
In this context, the term ‘tiny’ refers to a floating-point value that is too small to be represented for a par-
ticular precision format.

As shown in Figure 3-24, a tiny result is detected before rounding, when a nonzero intermediate result value
computed as though it had infinite precision and unbounded exponent range is less in magnitude than the
smallest normalized number.

If the intermediate result is tiny and the underflow exception condition enable bit is cleared (FPSCR[UE] = 0),
the intermediate result is denormalized (see Section 3.3.3 Normalization and Denormalization”) and rounded
(see Section 3.3.5 Rounding’) before being stored in an FPR. In this case, if the rounding causes the deliv-
ered result value to differ from what would have been computed were both the exponent range and precision
unbounded (the result is inexact), then underflow occurs and FPSCR[UX] is set.

The actions performed for underflow exception conditions are described in Table 3-16.

Table 3-16. Actions Performed for Underflow Conditions

Action Performed

Condition Result Category
FPSCRIUE] = 1 FPSCRIUE] =0
Double-precision arithmetic Exponent of normalized interme- | , . . .
instructions diate result Adjusted by adding 1536

Single-precision arithmetic and | Exponent of normalized interme- Adjusted by adding192 .

frspx instructions diate result
D Rounded result (with adjusted | Denormalized and rounded
exponent) result
Set if rounded result differs from | Set if rounded result differs from
FPSCRIXX] intermediate result intermediate result
Set only if tiny and inexact after
FPSCRIUX] Set denormalization and rounding
All cases
FPSCR[FPRF] Set to indicate +normalized Set to indicate +denormalized
number number or *zero
FPSCRI[FEX] Implicitly set (causes exception) |Unchanged
FPSCRIFI] Reflects rounding Reflects rounding
FPSCRIFR] Reflects rounding Reflects rounding

Note that the FR and FI bits in the FPSCR allow the system floating-point enabled exception error handler,
when invoked because of an underflow exception condition, to simulate a trap disabled environment. That is,
the FR and FI bits allow the system floating-point enabled exception error handler to unround the result, thus
allowing the result to be denormalized.
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Inexact Exception Condition

The inexact exception condition occurs when one of two conditions occur during rounding:

« The rounded result differs from the intermediate result assuming the intermediate result exponent range
and precision to be unbounded. (In the case of an enabled overflow or underflow condition, where the
exponent of the rounded result is adjusted for those conditions, an inexact condition occurs only if the sig-
nificand of the rounded result differs from that of the intermediate result.)

« The rounded result overflows and the overflow exception condition is disabled.
When an inexact exception condition occurs, the following actions are taken independently of the setting of
the inexact exception condition enable bit of the FPSCR:

« Inexact exception condition bit in the FPSCR is set FPSCR[XX] = 1.

« The rounded or overflowed result is placed into the target FPR.

- FPSCR[FPRF] is set to indicate the class and sign of the result.
In addition, if the inexact exception condition enable bit in the FPSCR (FPSCR[XE]) is set, and an inexact

condition exists, then the FPSCR[FEX] bit is implicitly set, causing the processor to take a floating-point
enabled program exception.

In PowerPC implementations, running with inexact exception conditions enabled may have greater latency
than enabling other types of floating-point exception conditions.
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4. Addressing Modes and Instruction Set Summary

This chapter describes instructions and addressing modes defined by the three levels of the PowerPC archi-
tecture—user instruction set architecture (UISA), virtual environment architecture (VEA), and operating envi-
ronment architecture (OEA). These instructions are divided into the following functional categories:

« Integer instructions—These include arithmetic and logical instructions. For more information, see
Section 4.2.1 , “Integer Instructions.”

« Floating-point instructions—These include floating-point arithmetic instructions, as well as instructions
that affect the floating-point status and control register (FPSCR). For more information, see
Section 4.2.2 , “Floating-Point Instructions.”

« Load and store instructions—These include integer and floating-point load and store instructions. For
more information, see Section 4.2.3 , “Load and Store Instructions.”

» Flow control instructions—These include branching instructions, condition register logical instructions,
trap instructions, and other instructions that affect the instruction flow. For more information, see
Section 4.2.4 , “Branch and Flow Control Instructions.”

» Processor control instructions—These instructions are used for synchronizing memory accesses and
managing of caches, TLBs, and the segment registers. For more information, see Section 4.2.5 , “Pro-
cessor Control Instructions—UISA,” Section 4.3.1 , “Processor Control Instructions—VEA,” and
Section 4.4.2 , “Processor Control Instructions—OEA.”

« Memory synchronization instructions—These instructions control the order in which memory operations
are completed with respect to asynchronous events, and the order in which memory operations are seen
by other processors or memory access mechanisms. For more information, see Section 4.2.6 , “Memory
Synchronization Instructions—UISA,” and Section 4.3.2 , “Memory Synchronization Instructions—VEA.”

- Memory control instructions—These include cache management instructions (user-level and supervisor-
level), segment register manipulation instructions, and translation lookaside buffer management instruc-
tions. For more information, see Section 4.3.3 , “Memory Control Instructions—VEA,” and Section 4.4.3 ,
“Memory Control Instructions—OEA.”

Note: User-level and supervisor-level are referred to as problem state and privileged state, respectively,
in the architecture specification.)

« External control instructions—These instructions allow a user-level program to communicate with a spe-
cial-purpose device. For more information, see Section 4.3.4 , “External Control Instructions.”

This grouping of instructions does not necessarily indicate the execution unit that processes a particular
instruction or group of instructions within a processor implementation.

Integer instructions operate on byte, half-word, word, and double-word (in 64-bit implementations) operands.
Floating-point instructions operate on single-precision and double-precision floating-point operands. The
PowerPC architecture uses instructions that are four bytes long and word-aligned. It provides for byte, half-
word, word, and double-word (in 64-bit implementations) operand fetches and stores between memory and a
set of 32 general-purpose registers (GPRs). It also provides for word and double-word operand fetches and
stores between memory and a set of 32 floating-point registers (FPRs). The FPRs are 64 bits wide in all
PowerPC implementations. The GPRs are 32 bits wide in 32-bit implementations and 64 bits wide in 64-bit
implementations.
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Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory location in
a computation and then modify the same or another memory location, the memory contents must be loaded
into a register, modified, and then written to the target location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands. PowerPC-
compliant assemblers support the mnemonics and operand lists. To simplify assembly language program-
ming, a set of simplified mnemonics (referred to as extended mnemonics in the architecture specification)
and symbols is provided for some of the most frequently-used instructions; see Appendix F, “Simplified
Mnemonics,” for a complete list of simplified mnemonics.

The instructions are organized by functional categories while maintaining the delineation of the three levels of
the PowerPC architecture—UISA, VEA, and OEA; Section 4.2 PowerPC UISA Instructions discusses the
UISA instructions, followed by Section 4.3 PowerPC VEA Instructions that discusses the VEA instructions
and Section 4.4 PowerPC OEA Instructions that discusses the OEA instructions. See Section 1.1.2 The
Levels of the PowerPC Architecture for more information about the various levels defined by the PowerPC
architecture.

4.1 Conventions

This section describes conventions used for the PowerPC instruction set. Descriptions of computation
modes, memory addressing, synchronization, and the PowerPC exception summary follow.

4.1.1 Sequential Execution Model

The PowerPC processors appear to execute instructions in program order, regardless of asynchronous
events or program exceptions. The execution of a sequence of instructions may be interrupted by an excep-
tion caused by one of the instructions in the sequence, or by an asynchronous event. (Note that the architec-
ture specification refers to exceptions as interrupts.)

For exceptions to the sequential execution model, refer to Chapter 6, “Exceptions.” For information about the
synchronization required when using store instructions to access instruction areas of memory, refer to
Section 4.2.3.3 Integer Store Instructions,” and Section 5.1.5.2 Instruction Cache Instructions. For informa-
tion regarding instruction fetching, and for information about guarded memory refer to Section 5.2.1.5 The
Guarded Attribute (G).

4.1.2 Computation Modes

The PowerPC architecture allows for the following types of implementations:

« 64-bit implementations, in which all general-purpose and floating-point registers, and some special-pur-
pose registers (SPRs) are 64 bits long, and the effective addresses are 64 bits long. All 64-bit implemen-
tations have two modes of operation: 64-bit mode (which is the default) and 32-bit mode. The mode
controls how the effective address is interpreted, how condition bits are set, and how the count register
(CTR) is tested by branch conditional instructions. All instructions provided for 64-bit implementations are
available in both 64 and 32-bit modes.

The machine state register bit 0, MSR[SF], is used to choose between 64 and 32-bit modes. When
MSR[SF] = 0, the processor runs in 32-bit mode, and when MSR[SF] = 1 the processor runs in the default
64-bit mode.
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- 32-bit implementations, in which all registers except the FPRs are 32 bits long, and the effective
addresses are 32 bits long.

Instructions defined in this chapter are provided in both 64-bit implementations and 32-bit implementations
unless otherwise stated. Instructions defined only for 64-bit implementations are illegal in 32-bit implementa-
tions, and vice versa.

4.1.2.1 64-Bit Implementations

In both 64-bit mode (the default) and 32-bit mode of a 64-bit implementation, instructions that set a 64-bit
register affect all 64 bits, and the value placed into the register is independent of mode. In both modes, effec-
tive address computations use all 64 bits of the relevant registers (GPRs, LR, CTR, etc.), and produce a 64-
bit result; however, in 32-bit mode (MSR[SF] = 0), only the low-order 32 bits of the computed effective
address are used to address memory.

4.1.2.2 32-Bit Implementations

For a 32-bit implementation, all references to 64-bit implementations should be disregarded. The semantics
of instructions for 32-bit implementations are the same as the 32-bit mode definitions for 64-bit implementa-
tions, except that in a 32-bit implementation all registers except FPRs are 32 bits long.

4.1.3 Classes of Instructions

PowerPC instructions belong to one of the following three classes:
» Defined
« lllegal
» Reserved

Note: While the definitions of these terms are consistent among the PowerPC processors, the assignment of
these classifications is not. For example, an instruction that is specific to 64-bit implementations is considered
defined for 64-bit implementations but illegal for 32-bit implementations.

The class is determined by examining the primary opcode, and the extended opcode if any. If the opcode, or
the combination of opcode and extended opcode, is not that of a defined instruction or of a reserved instruc-
tion, the instruction is illegal.

In future versions of the PowerPC architecture, instruction codings that are now illegal may become defined
(by being added to the architecture) or reserved (by being assigned to one of the special purposes). Likewise,
reserved instructions may become defined.

4.1.3.1 Definition of Boundedly Undefined

The results of executing a given instruction are said to be boundedly undefined if they could have been
achieved by executing an arbitrary sequence of instructions, starting in the state the machine was in before
executing the given instruction. Boundedly undefined results for a given instruction may vary between imple-
mentations, and between different executions on the same implementation.
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4.1.3.2 Defined Instruction Class

Defined instructions contain all the instructions defined in the PowerPC UISA, VEA, and OEA. Defined
instructions are guaranteed to be supported in all PowerPC implementations. The only exceptions are
instructions that are defined only for 64-bit implementations, instructions that are defined only for 32-bit imple-
mentations, and optional instructions, as stated in the instruction descriptions in Chapter 8, “Instruction Set.”
A PowerPC processor may invoke the illegal instruction error handler (part of the program exception handler)
when an unimplemented PowerPC instruction is encountered so that it may be emulated in software, as
required.

A defined instruction can have invalid forms, as described in Invalid Instruction Forms on page 136.

Preferred Instruction Forms

A defined instruction may have an instruction form that is preferred (that is, the instruction will execute in an
efficient manner). Any form other than the preferred form will take significantly longer to execute. The
following instructions have preferred forms:

» Load/store multiple instructions
- Load/store string instructions

« Or immediate instruction (preferred form of no-op)

Invalid Instruction Forms

A defined instruction may have an instruction form that is invalid if one or more operands, excluding opcodes,
are coded incorrectly in a manner that can be deduced by examining only the instruction encoding (primary
and extended opcodes). Attempting to execute an invalid form of an instruction either invokes the illegal
instruction error handler (a program exception) or yields boundedly-undefined results. See Chapter 8,
“Instruction Set,” for individual instruction descriptions.

Invalid forms result when a bit or operand is coded incorrectly, for example, or when a reserved bit (shown as
‘0’) is coded as ‘1°.
The following instructions have invalid forms identified in their individual instruction descriptions:

« Branch conditional instructions

- Load/store with update instructions

« Load multiple instructions

» Load string instructions

« Integer compare instructions (in 32-bit implementations only)

» Load/store floating-point with update instructions

Optional Instructions

A defined instruction may be optional. The optional instructions fall into the following categories:
» General-purpose instructions—fsqrt and fsqrts
- Graphics instructions—fres, frsqrte, and fsel

« External control instructions—eciwx and ecowx

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.2.0
Page 136 of 785 June 10, 2003



Programming Environments Manual

PowerPC RISC Microprocessor Family

» Lookaside buffer management instructions—slbia, slbie, tlbia, tibie, and tlbsync (with conditions, see
Chapter 8, “Instruction Set,” for more information)

The optional 64-bit bridge facility has three other categories of optional instructions for 64-bit implemen-
tations. These are described in greater detail in Section 7.9 Migration of Operating Systems from 32-Bit
Implementations to 64-Bit Implementations and summarized below:

« 32-bit segment register support instructions—mtsr, mtsrin, mfsr, and mfsrin
+ 32-bit system linkage instructions—rfi and mtmsr
« 64-bit segment register support instructions—mtsrd and mtsrdin

Note: The stfiwx instruction is defined as optional by the PowerPC architecture to ensure backwards
compatibility with earlier processors; however, it will likely be required for subsequent PowerPC proces-
Ssors.

Additional categories may be defined in future implementations. If an implementation claims to support a
given category, it implements all the instructions in that category.

Any attempt to execute an optional instruction that is not provided by the implementation will cause the illegal
instruction error handler to be invoked. Exceptions to this rule are stated in the instruction descriptions found
in Chapter 8, “Instruction Set.”

4.1.3.3 lllegal Instruction Class

lllegal instructions can be grouped into the following categories:

« Instructions that are not implemented in the PowerPC architecture. These opcodes are available for
future extensions of the PowerPC architecture; that is, future versions of the PowerPC architecture may
define any of these instructions to perform new functions. The following primary opcodes are defined as
illegal but may be used in future extensions to the architecture:

1,4,5,6, 56,57, 60, 61

« Instructions that are implemented in the PowerPC architecture but are not implemented in a specific Pow-
erPC implementation. For example, instructions specific to 64-bit PowerPC processors are illegal for 32-
bit processors.

« The following primary opcodes are defined for 64-bit implementations only and are illegal on 32-bit imple-
mentations:

2, 30, 58, 62

« All unused extended opcodes are illegal. The unused extended opcodes can be determined from infor-
mation in Appendix A.2 Instructions Sorted by Opcode,” and Section 4.1.3.4 Reserved Instructions.”
Notice that extended opcodes for instructions that are defined only for 64-bit implementations are illegal
in 32-bit implementations. The following primary opcodes have unused extended opcodes.

19, 31, 59, 63 (primary opcodes 30 and 62 are illegal for 32-bit implementations, but as 64-bit opcodes
they have some unused extended opcodes)

« An instruction consisting entirely of zeros is guaranteed to be an illegal instruction. This increases the
probability that an attempt to execute data or uninitialized memory invokes the illegal instruction error
handler (a program exception).
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Note: If only the primary opcode consists of all zeros, the instruction is considered a reserved instruction, as
described in Section 4.1.3.4 Reserved Instructions.

An attempt to execute an illegal instruction invokes the illegal instruction error handler (a program exception)
but has no other effect. See Section 6.4.7 Program Exception (0x00700) for additional information about
illegal instruction exception.

With the exception of the instruction consisting entirely of binary zeros, the illegal instructions are available for
further additions to the PowerPC architecture.

4.1.3.4 Reserved Instructions

Reserved instructions are allocated to specific implementation-dependent purposes not defined by the
PowerPC architecture. An attempt to execute an unimplemented reserved instruction invokes the illegal
instruction error handler (a program exception). See Section 6.4.7 Program Exception (0x00700) for addi-
tional information about illegal instruction exception.

The following types of instructions are included in this class:

1. Instructions for the POWER architecture that have not been included in the PowerPC architecture.

2. Implementation-specific instructions used to conform to the PowerPC architecture specifications (for
example, Load Data TLB Entry (tlbld) and Load Instruction TLB Entry (tlbli) instructions).

3. The instruction with primary opcode 0, when the instruction does not consist entirely of binary zeros

4. Any other implementation-specific instructions that are not defined in the UISA, VEA, or OEA

4.1.4 Memory Addressing

A program references memory using the effective (logical) address computed by the processor when it
executes a load, store, branch, or cache instruction, and when it fetches the next sequential instruction.

4.1.4.1 Memory Operands

Bytes in memory are numbered consecutively starting with zero. Each number is the address of the corre-
sponding byte. Within words bytes are number from left to right.

Memory operands may be bytes, half words, words, or double words, or, for the load/store multiple and
load/store string instructions, a sequence of bytes or words. The address of a memory operand is the address
of its first byte (that is, of its lowest-numbered byte). Operand length is implicit for each instruction. The
PowerPC architecture supports both big-endian and little-endian byte ordering. The default byte and bit
ordering is big-endian; see Section 3.1.2 Byte Ordering for more information.

The operand of a single-register memory access instruction has a natural alignment boundary equal to the
operand length. In other words, the “natural” address of an operand is an integral multiple of the operand
length. A memory operand is said to be aligned if it is aligned at its natural boundary; otherwise it is
misaligned. For a detailed discussion about memory operands, see Chapter 3, “Operand Conventions.”
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4.1.4.2 Effective Address Calculation

An effective address (EA) is the 64 or 32-bit sum computed by the processor when executing a memory
access or branch instruction or when fetching the next sequential instruction. For a memory access instruc-
tion, if the sum of the effective address and the operand length exceeds the maximum effective address, the
memory operand is considered to wrap around from the maximum effective address through effective
address 0, as described in the following paragraphs.

Effective address computations for both data and instruction accesses use 64 or 32-bit unsigned binary arith-
metic. A carry from bit 0 is ignored. In a 64-bit implementation, the 64-bit current instruction address and next
instruction address are not affected by a change from 32-bit mode to the default 64-bit mode, but a change
from the default 64-bit mode to 32-bit mode causes the high-order 32 bits to be cleared.

In the default 64-bit mode, the entire 64-bit result comprises the 64-bit effective address. The effective
address arithmetic wraps around from the maximum address, 284 — 1, to address 0.

When a 64-bit implementation executes in 32-bit mode (MSR[SF] = 0), the low-order 32 bits of the 64-bit
result comprise the effective address for the purpose of addressing memory. The high-order 32 bits of the 64-
bit effective address are ignored for the purpose of accessing data, but are included whenever a 64-bit effec-
tive address is placed into a GPR by load with update and store with update instructions. The high-order 32
bits of the 64-bit effective address are cleared for the purpose of fetching instructions, and whenever a 64-bit
effective address is placed into the LR by branch instructions having link register update option enabled (LK
field, bit 31, in the instruction encoding = 1). The high-order 32 bits of the 64-bit effective address are cleared
in SPRs when an exception error handler is invoked. In the context of addressing memory, the effective
address arithmetic appears to wrap around from the maximum address, 232 — 1, to address zero.

Treating the high-order 32 bits of the effective address as zero effectively truncates the 64-bit effective
address to a 32-bit effective address such as would have been generated on a 32-bit implementation.

In 32-bit implementations, the 32-bit result comprises the 32-bit effective address.

In all implementations (including 32-bit mode in 64-bit implementations), the three low-order bits of the calcu-
lated effective address may be modified by the processor before accessing memory if the PowerPC system is
operating in little-endian mode. See Section 3.1.2 Byte Ordering for more information about little-endian
mode.

Load and store operations have three categories of effective address generation that depend on the oper-
ands specified:

« Register indirect with immediate index mode

« Register indirect with index mode

« Register indirect mode
See Section 4.2.3.1 Integer Load and Store Address Generation for a detailed description of effective
address generation for load and store operations.
Branch instructions have three categories of effective address generation:

» Immediate addressing.

« Link register indirect

« Count register indirect
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See Section 4.2.4.1 Branch Instruction Address Calculation for a detailed description of effective address
generation for branch instructions.

Branch instructions can optionally load the LR with the next sequential instruction address (current instruction
address + 4). This is used for subroutine call and return.

4.1.5 Synchronizing Instructions

The synchronization described in this section refers to the state of activities within the processor that is
performing the synchronization. Refer to Section 6.1.2 Synchronization for more detailed information about
other conditions that can cause context and execution synchronization.

4.1.5.1 Context Synchronizing Instructions

The System Call (sc), Return from Interrupt (rfi), Return from Interrupt Double Word (rfid), and Instruction
Synchronize (isync) instructions perform context synchronization by allowing previously issued instructions
to complete before continuing with program execution. These instructions will flush the instruction prefetch
queue and start instruction fetching from memory in the context established after all preceding instructions
have completed execution. Execution of one of these instructions ensures the following:

1. No higher priority exception exists (sc) and instruction dispatching is halted.

2. All previous instructions have completed to a point where they can no longer cause an exception.
If a prior memory access instruction causes one or more direct-store interface error exceptions, the
results are guaranteed to be determined before this instruction is executed. However, note that the direct-
store facility is being phased out of the architecture and will not likely be supported in future devices.

3. Previous instructions complete execution in the context (privilege, protection, and address translation)
under which they were issued.

4. The instructions at the target of the branch of se, rfi, rfid and those following the isync instruction exe-
cute in the context established by these instructions. For the isync instruction the instruction fetch queue
must be flushed and instruction fetching restarted at the next sequential instruction. Both sc, rfi and rfid
execute like a branch and the flushing and refetching is automatic.

4.1.5.2 Execution Synchronizing Instructions

An instruction is execution synchronizing if it satisfies the conditions of the first two items described above for
context synchronization. The sync instruction is treated like isync with respect to the second item described
above (that is, the conditions described in the second item apply to the completion of sync). The sync and
mtmsr instructions are examples of execution-synchronizing instructions.

The isync instruction is concerned mainly with the instruction stream in the processor on which it is executed,
whereas, sync is looking outward towards the caches and memory and is concerned with data arriving at
memory where it is visible to other processors in a multiprocessor environment. (e.g., cache block store,
cache block flush, etc.)

All context-synchronizing instructions are execution-synchronizing. Unlike a context synchronizing operation,
an execution synchronizing instruction need not ensure that the instructions following it execute in the context
established by that instruction. This new context becomes effective sometime after the execution synchro-
nizing instruction completes and before or at a subsequent context synchronizing operation.
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4.1.6 Exception Summary

PowerPC processors have an exception mechanism for handling system functions and error conditions in an
orderly way. The exception model is defined by the OEA. There are two kinds of exceptions—those caused
directly by the execution of an instruction and those caused by an asynchronous event. Either may cause
components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

« An attempt to execute an illegal instruction causes the illegal instruction (program exception) error han-
dler to be invoked. An attempt by a user-level program to execute the supervisor-level instructions listed
below causes the privileged instruction (program exception) handler to be invoked.

The PowerPC architecture provides the following supervisor-level instructions: dcbi, mfmsr, mfspr,
mfsr, mfsrin, mtmsr, mtmsrd, mtspr, mtsr, mtsrd, mtsrin, mtsrdin, rfi, rfid, slbia, slbie, tibia, tlbie,
and tibsync (defined by OEA).

Note: The privilege level of the mfspr and mtspr instructions depends on the SPR encoding.

« The execution of a defined instruction using an invalid form causes either the illegal instruction error han-
dler or the privileged instruction handler to be invoked.

» The execution of an optional instruction that is not provided by the implementation causes the illegal
instruction error handler to be invoked.

« An attempt to access memory in a manner that violates memory protection, or an attempt to access
memory that is not available (page fault), causes the DSI exception handler or ISI exception handler to be
invoked.

- An attempt to access memory with an effective address alignment that is invalid for the instruction causes
the alignment exception handler to be invoked.

» The execution of an sc instruction permits a program to call on the system to perform a service, by caus-
ing a system call exception handler to be invoked.

« The execution of a trap instruction invokes the program exception trap handler.

« The execution of a floating-point instruction when floating-point instructions are disabled invokes the
floating-point unavailable exception handler.

« The execution of an instruction that causes a floating-point exception that is enabled invokes the floating-
point enabled exception handler.

« The execution of a floating-point instruction that requires system software assistance causes the floating-
point assist exception handler to be invoked. The conditions under which such software assistance is
required are implementation-dependent.

Exceptions caused by asynchronous events are described in Chapter 6, “Exceptions.”

4.2 PowerPC UISA Instructions

The PowerPC user instruction set architecture (UISA) includes the base user-level instruction set (excluding
a few user-level cache-control, synchronization, and time base instructions), user-level registers, program-
ming model, data types, and addressing modes. This section discusses the instructions defined in the UISA.
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4.2.1 Integer Instructions

The integer instructions consist of the following:
- Integer arithmetic instructions
- Integer compare instructions
- Integer logical instructions

« Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into GPRs. Integer
arithmetic, shift, rotate, and string move instructions may update or read values from the XER, and the condi-
tion register (CR) fields may be updated if the Rc bit of the instruction is set.

These instructions treat the source operands as signed integers unless the instruction is explicitly identified
as performing an unsigned operation. For example, Multiply High-Word Unsigned (mulhwu) and Divide Word
Unsigned (divwu) instructions interpret both operands as unsigned integers.

The integer instructions that are coded to update the condition register, and the integer arithmetic instruction,
addic., set CR bits 0—3 (CRO0) to characterize the result of the operation. In the default 64-bit mode, CRO is
set to reflect a signed comparison of the 64-bit result to zero. In 32-bit mode (of 64-bit implementations), CRO
is set to reflect a signed comparison of the low-order 32 bits of the result to zero.

The integer arithmetic instructions, addic, addic., subfic, addc, subfc, adde, subfe, addme, subfme,
addze, and subfze, always set the XER bit, CA, to reflect the carry out of bit 0 in the default 64-bit mode and
out of bit 32 in 32-bit mode (of 64-bit implementations). Integer arithmetic instructions with the overflow
enable (OE) bit set in the instruction encoding (instructions with o suffix) cause the XER[SO] and XER[OV] to
reflect an overflow of the result. Except for the multiply low and divide instructions, these integer arithmetic
instructions reflect the overflow of the 64-bit result in the default 64-bit mode and overflow of the low-order 32-
bit result in 32-bit mode; however, the multiply low and divide instructions (mulld, mullw, divd, divw, divdu,
and divwu) with o suffix cause XER[SO] and XER[OV] to reflect overflow of the 64-bit result (mulld, divd,
and divdu) and overflow of the low-order 32-bit result (mullw, divw, and divwu).

Instructions that select the overflow option (enable XER[OV]) or that set the XER carry bit (CA) may delay the
execution of subsequent instructions.

Unless otherwise noted, when CRO and the XER are set, they characterize the value placed in the target
register.
4.2.1.1 Integer Arithmetic Instructions

Table 4-1 lists the integer arithmetic instructions for the PowerPC processors.

Addressing Modes and Instruction Set Summary pem4_instr_Set.fm.2.0
Page 142 of 785 June 10, 2003



Programming Environments Manual

PowerPC RISC Microprocessor Family

Table 4-1. Integer Arithmetic Instructions

Name Mnemonic Operand Syntax |Operation
Add Immediate addi rD,rA,SIMM The sum (rA|0) + SIMM is placed into rD.
goaimmediate  agais rD,rA,SIMM The sum (FAJ0) + (SIMM || 0x0000) is placed into rD.
The sum (rA) + (rB) is placed into rD.
add Add
add add.  Add with CR Update. The dot suffix enables the update of the
Add add. rD,rA,rB CR. _ . .
addo addo  Add with Overflow Enabled. The o suffix enables the overflow bit
addo. (QV) in the XER.
addo. Add with Overflow and CR Update. The o. suffix enables the
update of the CR and enables the overflow bit (OV) in the XER.
The sum — (rA) + (rB) +1 is placed into rD.
subf  Subtract From
subf subf.  Subtract from with CR Update. The dot suffix enables the update
subf. of the CR.
Subtract From subfo rD,rA,rB subfo Subtract from with Overflow Enabled. The o suffix enables the
subfo overflow bit (OV) in the XER.

' subfo. Subtract from with Overflow and CR Update. The o. suffix
enables the update of the CR and enables the overflow bit (OV)
in the XER.

Add Immediate . . .
Carrying addic rD,rA,SIMM The sum (rA) + SIMM is placed into rD.
Add Immediate
Carrying and addic. rD,rA,SIMM The sum (rA) + SIMM is placed into rD. The CR is updated.
Record
Subtract from
Immediate Carry- | subfic rD,rA,SIMM The sum = (rA) + SIMM + 1 is placed into rD.
ing
The sum (rA) + (rB) is placed into rD.
addc  Add Carrying
addc addc. Add Carrying with CR Update. The dot suffix enables the update
. addc. rD,rA,rB of the CR.
Add Carrying addco addco Add Carrying with Overflow Enabled. The o suffix enables the
addco overflow bit (OV) in the XER.

' addco. Add Carrying with Overflow and CR Update. The o. suffix
enables the update of the CR and enables the overflow bit (OV)
in the XER.

The sum = (rA) + (rB) + 1 is placed into rD.
subfc Subtract from Carrying
subfc subfec. Subtract from Carrying with CR Update. The dot suffix enables
Subtract from Car- | subfc. rD,rA,rB the update of the CR.
rying subfco subfco Subtract from Carrying with Overflow. The o suffix enables the
subfco overflow bit (OV) in the XER.

’ subfco. Subtract from Carrying with Overflow and CR Update. The o.
suffix enables the update of the CR and enables the overflow bit
(OV) in the XER.
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Table 4-1. Integer Arithmetic Instructions (Continued)

Name

Add
Extended

Subtract from
Extended

Add to Minus One
Extended

Subtract from
Minus One
Extended

Add to Zero
Extended

Mnemonic

adde
adde.
addeo
addeo.

subfe
subfe.
subfeo
subfeo.

addme
addme.
addmeo

addmeo.

subfme
subfme.
subfmeo

subfmeo.

addze
addze
addzeo
addzeo.

Operand Syntax

rD,rA,rB

rD,rA,rB

rD,rA

rD,rA

rD,rA
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Operation

The sum (rA) + (rB) + XER[CA] is placed into rD.
adde Add Extended

adde. Add Extended with CR Update. The dot suffix enables the update

of the CR.

addeo Add Extended with Overflow. The o suffix enables the overflow
bit (OV) in the XER.

addeo. Add Extended with Overflow and CR Update. The o. suffix
enables the update of the CR and enables the overflow bit (OV)
in the XER.

The sum — (rA) + (rB) + XER[CA] is placed into rD.
subfe Subtract from Extended

subfe. Subtract from Extended with CR Update. The dot suffix enables
the update of the CR.

subfeo Subtract from Extended with Overflow. The o suffix enables the
overflow bit (OV) in the XER.

subfeo. Subtract from Extended with Overflow and CR Update. The o.
suffix enables the update of the CR and enables the overflow
(OV) bit in the XER.

The sum (rA) + XER[CA] added to OxFFFF_FFFF_FFFF_FFFF for 64-bit

implementations (OxFFFF_FFFF for 32-bit implementations) is placed into

rD.

addme Add to Minus One Extended

addme. Add to Minus One Extended with CR Update. The dot suffix
enables the update of the CR.

addmeoAdd to Minus One Extended with Overflow. The o suffix enables
the overflow bit (OV) in the XER.

addmeo.Add to Minus One Extended with Overflow and CR Update. The
o. suffix enables the update of the CR and enables the overflow
(OV) bit in the XER.

The sum = (rA) + XER[CA] added to OxFFFF_FFFF_FFFF_FFFF for 64-
bit implementations (OxFFFF_FFFF for 32-bit implementations) is placed
into rD.

subfme Subtract from Minus One Extended

subfme.Subtract from Minus One Extended with CR Update. The dot suf-
fix enables the update of the CR.

subfmeoSubtract from Minus One Extended with Overflow. The o suffix
enables the overflow bit (OV) in the XER.

subfmeo.Subtract from Minus One Extended with Overflow and CR
Update. The o. suffix enables the update of the CR and enables
the overflow bit (OV) in the XER.

The sum (rA) + XER[CA] is placed into rD.
addze Add to Zero Extended

addze. Add to Zero Extended with CR Update. The dot suffix enables the
update of the CR.

addzeo Add to Zero Extended with Overflow. The o suffix enables the
overflow bit (OV) in the XER.

addzeo. Add to Zero Extended with Overflow and CR Update. The o. suf-
fix enables the update of the CR and enables the overflow bit
(OV) in the XER.
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Table 4-1. Integer Arithmetic Instructions (Continued)

Name

Subtract from Zero
Extended

Negate

Multiply Low
Immediate

Multiply Low

Multiply Low Dou-
ble Word

(64-bit only)

Multiply High Word

Mnemonic

subfze
subfze.
subfzeo
subfzeo.

neg
neg.

nego
nego.

mulli

mullw
mullw.
mullwo
mullwo.

mulld
mulld.
mulldo
mulldo.

mulhw
mulhw.
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Operand Syntax

rD,rA

rD,rA

rD,rA,SIMM

rD,rA,rB

rD,rA,rB

rD,rA,rB

Operation

The sum = (rA) + XER[CA] is placed into rD.
subfze Subtract from Zero Extended

subfze. Subtract from Zero Extended with CR Update. The dot suffix
enables the update of the CR.

subfzeo Subtract from Zero Extended with Overflow. The o suffix enables
the overflow bit (OV) in the XER.

subfzeo.Subtract from Zero Extended with Overflow and CR Update. The
o. suffix enables the update of the CR and enables the overflow
bit (OV) in the XER.

The sum — (rA) + 1 is placed into rD.
neg Negate

neg. Negate with CR Update. The dot suffix enables the update of the
CR.

nego Negate with Overflow. The o suffix enables the overflow bit (OV)
in the XER.

nego. Negate with Overflow and CR Update. The o. suffix enables the
update of the CR and enables the overflow bit (OV) in the XER.

The low-order 64 bits of the 128-bit product (rA) * SIMM are placed into
rD.

This instruction can be used with mulhdx or mulhwx to calculate a full
128-bit (or 64-bit) product.

The low-order 32 bits of the product are the correct 32-bit product for 32-
bit implementations and for 32-bit mode in 64-bit implementations.

The 64-bit product (rA) * (rB) is placed into register rD. The 32-bit oper-
ands are the contents of the low-order 32 bits of rA and of rB.

This instruction can be used with mulhwx to calculate a full 64-bit product.

The low-order 32 bits of the product are the correct 32-bit product for 32-

bit implementations and for 32-bit mode in 64-bit implementations.

mullw  Multiply Low

mullw. Multiply Low with CR Update. The dot suffix enables the update
of the CR.

mullwo Multiply Low with Overflow. The o suffix enables the overflow bit
(OV) in the XER.

mullwo. Multiply Low with Overflow and CR Update. The o. suffix enables
the update of the condition register and enables the overflow bit
(OV) in the XER.

The low-order 64 bits of the 128-bit product (rA) * (rB) are placed into rD.

mulld  Multiply Low Double Word

mulld. Multiply Low Double Word with CR Update. The dot suffix
enables the update of the CR.

mulldo Multiply Low Double Word with Overflow. The o suffix enables
the overflow bit (OV) in the XER.

mulldo. Multiply Low Double Word with Overflow and CR Update. The o.
suffix enables the update of the CR and enables the overflow bit
(OV) in the XER.

The contents of rA and rB are interpreted as 32-bit signed integers. The
64-bit product is formed. The high-order 32 bits of the 64-bit product are
placed into the low-order 32 bits of rD. The value in the high-order 32 bits
of rD is undefined.

mulhw Multiply High Word

mulhw. Multiply High Word with CR Update. The dot suffix enables the
update of the CR.
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Table 4-1. Integer Arithmetic Instructions (Continued)

Name

Multiply High Dou-
ble Word
(64-bit only)

Multiply High Word
Unsigned

Multiply High Dou-
ble Word Unsigned
(64-bit only)

Divide Word

Mnemonic Operand Syntax
mulhd

mulhd. rD.rArB
mulhwu rD,rA,rB
mulhwu.

mulhdu

mulhdu. rD.rArB
divw

d!VW' rD,rA,rB
divwo

divwo.
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Operation

The high-order 64 bits of the 128-bit product (rA) * (rB) are placed into

register rD. Both operands and the product are interpreted as signed inte-

gers.

mulld  Multiply High Double Word

mulld. Multiply High Double Word with CR Update. The dot suffix
enables the update of the CR.

The contents of rA and of rB are interpreted as 32-bit unsigned integers.

The 64-bit product is formed. The high-order 32 bits of the 64-bit product

are placed into the low-order 32 bits of rD. The value in the high-order 32

bits of rD is undefined.

mulhwu Multiply High Word Unsigned

mulhwu. Multiply High Word Unsigned with CR Update. The dot suffix
enables the update of the CR.

The high-order 64 bits of the 128-bit product (rA) * (rB) are placed into
register rD.

mulhdu Multiply High Word Unsigned

mulhdu. Multiply High Word Unsigned with CR Update. The dot suffix
enables the update of the CR.

The 64-bit dividend is the signed value of the low-order 32 bits of rA. The

64-bit divisor is the signed value of the low-order 32 bits of rB. The low-

order 32 bits of the 64-bit quotient is are placed into the low-order 32 bits

of rD. The contents of the high-order 32 bits of rD are undefined for 64-bit

implementations. The remainder is not supplied as a result.

divw  Divide Word

divw. Divide Word with CR Update. The dot suffix enables the update
of the CR.

divwo Divide Word with Overflow. The o suffix enables the overflow bit
(OV) in the XER.

divwo. Divide Word with Overflow and CR Update. The o. suffix enables
the update of the CR and enables the overflow bit (OV) in the
XER.
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Table 4-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax |Operation

The 64-bit dividend is (rA). The 64-bit divisor is (rB). The 64-bit quotient is
placed into rD. The remainder is not supplied as a result.
divd  Divide Double Word

Divide Double gin divd. Divide Double Word with CR Update. The dot suffix enables the
Word ivd. 1D, rA (B update of the CR.
(64-bit only) divdo divdo Divide Double Word with Overflow. The o suffix enables the over-
divdo. flow bit (OV) in the XER.
divdo. Divide Double Word with Overflow and CR Update. The o. suffix
enables the update of the CR and enables the overflow bit (OV)
in the XER.
The 64-bit dividend is the zero-extended value in the low-order 32 bits of
rA. The 64-bit divisor is the zero-extended value in the low-order 32 bits of
rB. The low-order 32 bits of the 64-bit quotient is are placed into the low-
order 32 bits of rD. The contents of the high-order 32 bits of rD are unde-
. fined for 64-bit implementations. The remainder is not supplied as a result.
divwu . . .
Divide W divwu divwu Divide Word Unsigned
Ulr:/slcijene d"rd O rD,rA,rB divwu. Divide Word Unsigned with CR Update. The dot suffix enables
9 divwuo the update of the CR.
divwuo. divwuo Divide Word Unsigned with Overflow. The o suffix enables the
overflow bit (OV) in the XER.
divwuo. Divide Word Unsigned with Overflow and CR Update. The o. suf-
fix enables the update of the CR and enables the overflow bit
(QV) in the XER.
The 64-bit dividend is (rA). The 64-bit divisor is (rB). The 64-bit quotient is
placed into rD. The remainder is not supplied as a result.
) divdu Divide Word Unsigned
Divide Double g::ga divdu. I?qividedWordeﬂsi%nF?d with CR Update. The dot suffix enables
Word Unsigned o rD,rA,rB i t .elup ate of t e, L )
(64-bit only) divduo divduo Divide Word Unsigned with Overflow. The o suffix enables the
divduo. overflow bit (OV) in the XER.

divduo. Divide Word Unsigned with Overflow and CR Update. The o. suf-
fix enables the update of the CR and enables the overflow bit
(OV) in the XER.

Although there is no “Subtract Immediate” instruction, its effect can be achieved by using an addi instruction
with the immediate operand negated. Simplified mnemonics are provided that include this negation. The subf
instructions subtract the second operand (rA) from the third operand (rB). Simplified mnemonics are provided
in which the third operand is subtracted from the second operand. See Appendix F, “Simplified Mnemonics,”
for examples.

4.2.1.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of register rA with either the
zero-extended value of the UIMM operand, the sign-extended value of the SIMM operand, or the contents of
register rB. The comparison is signed for the ecmpi and cmp instructions, and unsigned for the cmpli and
cmpl instructions. Table 4-2 summarizes the integer compare instructions.

For 64-bit implementations, the PowerPC UISA specifies that the value in the L field determines whether the
operands are treated as 32 or 64-bit values. If the L field is 0 the operand length is 32 bits, and if it is 1 the
operand length is 64 bits. The simplified mnemonics for integer compare instructions, as shown in Appendix
F, “Simplified Mnemonics,” correctly set or clear the L value in the instruction encoding rather than requiring it
to be coded as a numeric operand.
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When operands are treated as 32-bit signed quantities, bit 32 of (rA) and (rB) is the sign bit. For 32-bit imple-
mentations, the L field must be cleared, otherwise the instruction form is invalid.

The integer compare instructions (shown in Table 4-2) set one of the leftmost three bits of the designated CR
field, and clear the other two. XER[SQ] is copied into bit 3 of the CR field.

Table 4-2. Integer Compare Instructions

Name Mnemonic Operand Syntax |Operation

The value in register rA (rA[32—63] sign-extended to 64 bits if L = 0) is
orfD.L.rA.SIMM compared with the sign-extended value of the SIMM operand, treating the
D operands as signed integers. The result of the comparison is placed into
the CR field specified by operand crfD.

Compare Immedi-

ate cmpil

The value in register rA (rA[32—63] if L = 0) is compared with the value in
register rB (rB[32—63] if L = 0), treating the operands as signed integers.
The result of the comparison is placed into the CR field specified by oper-
and crfD.

Compare cmp crfD,L,rA,rB

The value in register rA (rA[32—63] zero-extended to 64 bits if L = 0) is
compared with 0x0000_0000_0000 || UIMM, treating the operands as
unsigned integers. The result of the comparison is placed into the CR field
specified by operand crfD.

Compare Logical

Immediate cmpli crfD,L,rA,UIMM

The value in register rA (rA[32—63] if L = 0) is compared with the value in
cHD.L.rArB register rB (rB[32—63] if L = 0), treating the operands as unsigned inte-
i gers. The result of the comparison is placed into the CR field specified by
operand crD.

Compare Logical |cmpl

The crfD operand can be omitted if the result of the comparison is to be placed in CR0. Otherwise the target
CR field must be specified in the instruction crfD field, using an explicit field number.

For information on simplified mnemonics for the integer compare instructions see Appendix F, “Simplified
Mnemonics.”

4.2.1.3 Integer Logical Instructions

The logical instructions shown in Table 4-3 perform bit-parallel operations on 64-bit operands. Logical instruc-
tions with the CR updating enabled (uses dot suffix) and instructions andi. and andis. set CR field CRO (bits
0 to 2) to characterize the result of the logical operation. In the default 64-bit mode, these fields are set as if
the 64-bit result were compared algebraically to zero. In 32-bit mode of a 64-bit implementation, these fields
are set as if the sign-extended low-order 32 bits of the result were algebraically compared to zero. Logical
instructions without CR update and the remaining logical instructions do not modify the CR. Logical instruc-
tions do not affect the XER[SO], XER[OV], and XER[CA] bits.

See Appendix F, “Simplified Mnemonics,” for simplified mnemonic examples for integer logical operations.
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Table 4-3. Integer Logical Instructions

Name

AND Immediate

AND Immediate
Shifted

OR Immediate

OR Immediate
Shifted

XOR Immediate

XOR Immediate
Shifted

AND

OR

XOR

NAND

NOR

Equivalent

Mnemonic

andi.

andis.

ori

oris

xori

xoris

and
and.

or
or.

Xxor
Xor.

nand
nand.

nor
nor.

eqv
eqv.

pem4_instr_Set.fm.2.0
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Operand Syntax

rA,rS,UIMM

rA,rS,UIMM

rA,rS,UIMM

rA,rS,UIMM

rA,rS,UIMM

rA,rS,UIMM

rA,rS,rB

rA,rS,rB

rA,rS,rB

rA,rS,rB

rA,rS,rB

rA,rS,rB

Programming Environments Manual

PowerPC RISC Microprocessor Family

Operation

The contents of rS are ANDed with 0x0000_0000_0000 || UIMM and the
result is placed into rA.

The CR is updated.

The content of rS are ANDed with 0x0000_0000 || UIMM || 0x0000 and
the result is placed into rA.

The CR is updated.

The contents of rS are ORed with 0x0000_0000_0000 || UIMM and the
result is placed into rA.

The preferred no-op is ori 0,0,0

The contents of rS are ORed with 0x0000_0000 || UIMM || 0x0000 and
the result is placed into rA.

The contents of rS are XORed with 0x0000_0000_0000 || UIMM and the
result is placed into rA.

The contents of rS are XORed with 0x0000_0000 || UIMM || 0x0000 and
the result is placed into rA.

The contents of rS are ANDed with the contents of register rB and the
result is placed into rA.

and AND

and.  AND with CR Update. The dot suffix enables the update of the
CR.

The contents of rS are ORed with the contents of rB and the result is
placed into rA.

or OR
or. OR with CR Update. The dot suffix enables the update of the CR.

The contents of rS are XORed with the contents of rB and the result is
placed into rA.

xor XOR

Xor. XOR with CR Update. The dot suffix enables the update of the
CR.

The contents of rS are ANDed with the contents of rB and the one’s com-
plement of the result is placed into rA.

nand NAND
nand. NAND with CR Update. The dot suffix enables the update of CR.

Note that nandx, with rS = rB, can be used to obtain the one's comple-
ment.

The contents of rS are ORed with the contents of ¥rB and the one’s com-
plement of the result is placed into rA.

nor NOR

nor. NOR with CR Update. The dot suffix enables the update of the
CR.

Note that norx, with rS = rB, can be used to obtain the one's complement.

The contents of rS are XORed with the contents of ¥rB and the comple-
mented result is placed into rA.

eqv Equivalent

eqv. Equivalent with CR Update. The dot suffix enables the update of
the CR.
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Table 4-3. Integer Logical Instructions (Continued)

Name Mnemonic Operand Syntax |Operation

The contents of rS are ANDed with the one’s complement of the contents
of rB and the result is placed into rA.

rA,rS,rB andc  AND with Complement
andc. AND with Complement with CR Update. The dot suffix enables
the update of the CR.

AND with andc
Complement andc.

The contents of rS are ORed with the complement of the contents of rB
and the result is placed into rA.

rA,rS,rB orc OR with Complement

orc. OR with Complement with CR Update. The dot suffix enables the
update of the CR.

OR with Comple- |orc
ment orc.

The contents of the low-order eight bits of rS are placed into the low-order
eight bits of rA. Bit 5624 of rS (bit 24 in 32-bit implementations) is placed
extsb ArS into the remaining high-order bits of rA.
extsb. FAF extsb Extend Sign Byte
extsb. Extend Sign Byte with CR Update. The dot suffix enables the
update of the CR.

Extend Sign Byte

The contents of the low-order 16 bits of rS are placed into the low-order
16 bits of rA. Bit 4816 of rS (bit 16 in 32-bit implementations) is placed into
Extend Sign Half | extsh ArS the remaining high-order bits of rA.
Word extsh. FAF extsh Extend Sign Half Word
extsh. Extend Sign Half Word with CR Update. The dot suffix enables
the update of the CR.

The contents of the low-order 32 bits of rS are placed into the low-order
32 bits of rA. Bit 32 of rS is placed into the remaining high-order bits of rA.
rA,rS extsw Extend Sign Word

extsw. Extend Sign Word with CR Update. The dot suffix enables the
update of the CR.

Extend Sign Word | extsw
(64-bit only) extsw.

A count of the number of consecutive zero bits starting at bit 320 of rS (bit
0 in 32-bit implementations) is placed into rA. This number ranges from 0
to 32, inclusive.

Count Leading | cntlzw rArS If Rc = 1 (dot suffix), LT is cleared in CRO.

Zeros Word entizw. cntlzw Count Leading Zeros Word
cntlzw. Count Leading Zeros Word with CR Update. The dot suffix
enables the update of the CR.
A count of the number of consecutive zero bits starting at bit 0 of rS is
Count Leading placed into rA. This number ranges from 0 to 64, inclusive.
Zeros Double cntlzd If Rc = 1 (dot suffix), LT is cleared in CRO.
Word cntlzd. rAIS cntlzd Count Leading Zeros Double Word
(64-bit only) cntlzd. Count Leading Zeros Double Word with CR Update. The dot suf-

fix enables the update of the CR.

4.2.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the result, is returned to
a GPR. The rotation operations rotate a 64-bit quantity left by a specified number of bit positions. Bits that exit
from position 0 enter at position 63.

The rotate and shift instructions employ a mask generator. The mask is 64 bits long and consists of ‘1’ bits
from a start bit, Mstart, through and including a stop bit, Mstop, and ‘0’ bits elsewhere. The values of Mstart
and Mstop range from 0 to 63. If Mstart > Mstop, the ‘1’ bits wrap around from position 63 to position 0. Thus
the mask is formed as follows:
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if Mstart  Mstop then
mask[mstart—mstop] = ones
mask[all other bits] = zeros
else
mask[mstart—63] = ones
mask[0—mstop] = ones
mask[all other bits] = zeros

It is not possible to specify an all-zero mask. The use of the mask is described in the following sections.

If CR updating is enabled, rotate and shift instructions set CR0[0—2] according to the contents of rA at the
completion of the instruction. Rotate and shift instructions do not change the values of XER[OV] and
XER[SO] bits. Rotate and shift instructions, except algebraic right shifts, do not change the XER[CA] bit.

See Appendix F, “Simplified Mnemonics,” for a complete list of simplified mnemonics that allows simpler
coding of often-used functions such as clearing the leftmost or rightmost bits of a register, left justifying or
right justifying an arbitrary field, and simple rotates and shifts.

Integer Rotate Instructions

Integer rotate instructions rotate the contents of a register. The result of the rotation is either inserted into the
target register under control of a mask (if a mask bit is 1 the associated bit of the rotated data is placed into
the target register, and if the mask bit is 0 the associated bit in the target register is unchanged), or ANDed
with a mask before being placed into the target register.

Rotate left instructions allow right-rotation of the contents of a register to be performed by a left-rotation of 64
— n, where nis the number of bits by which to rotate right. It also allows right-rotation of the contents of the
low-order 32 bits of a register to be performed by a left-rotation of 32 — n, where nis the number of bits by
which to rotate right.

The integer rotate instructions are summarized in Table 4-4
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Table 4-4. Integer Rotate Instructions

Name

Rotate Left Dou-
ble Word Immedi-
ate then Clear Left

(64-bit only)

Rotate Left Dou-
ble Word Immedi-
ate then Clear
Right

(64-bit only)

Rotate Left Dou-
ble Word Immedi-
ate then Clear

(64-bit only)

Rotate Left Word
Immediate then
AND with Mask

Rotate Left Dou-
ble Word then
Clear Left

(64-bit only)

Rotate Left Dou-
ble Word then
Clear Right

(64-bit only)

Mnemonic

rldicl
rldicl.

rldicr
ridicr.

ridic
ridic.

rlwinm
rlwinm.

ridcl
ridcl.

ridcr
ridcr.

Operand Syntax

rA,rS,SH,MB

rA,rS,SH,ME

rA,rS,SH,MB

rA,rS,SH,MB,ME

rA,rS,rB,MB

rA,rS,rB,ME
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Operation

The contents of rS are rotated left by the number of bits specified by oper-
and SH. A mask is generated having 1 bits from the bit specified by oper-
and MB through bit 63 and 0 bits elsewhere. The rotated data is ANDed
with the generated mask and the result is placed into register rA.

ridicl  Rotate Left Double Word Immediate then Clear Left

ridicl. Rotate Left Double Word Immediate then Clear Left with CR
Update. The dot suffix enables the update of the CR.

The contents of rS are rotated left by the number of bits specified by oper-
and SH. A mask is generated having 1 bits from bit 0 through the bit spec-
ified by operand ME and 0 bits elsewhere. The rotated data is ANDed with
the generated mask and the result is placed into register rA.

ridicr  Rotate Left Double Word Immediate then Clear Right

ridicl. Rotate Left Double Word Immediate then Clear Right with CR
Update. The dot suffix enables the update of the CR.

The contents of register rS are rotated left by the number of bits specified
by operand SH. A mask is generated having 1 bits from the bit specified
by operand MB through bit 63 — SH, and 0 bits elsewhere. The rotated
data is ANDed with the generated mask and the result is placed into regis-
ter rA.

rldic  Rotate Left Double Word Immediate then Clear

ridic. Rotate Left Double Word Immediate then Clear with CR Update.
The dot suffix enables the update of the CR.

The contents of register rS are rotated left by the number of bits specified
by operand SH. A mask is generated having 1 bits from the bit specified

by operand MB + 32 through the bit specified by operand ME + 32 and 0
bits elsewhere. The rotated data is ANDed with the generated mask and

the result is placed into register rA.

rlwinm Rotate Left Word Immediate then AND with Mask

rlwinm. Rotate Left Word Immediate then AND with Mask with CR
Update. The dot suffix enables the update of the CR.

The contents of register rS are rotated left by the number of bits specified
by operand in the low-order six bits of rB. A mask is generated having 1
bits from the bit specified by operand MB through bit 63 and 0 bits else-
where. The rotated data is ANDed with the generated mask and the result
is placed into register rA.

ridel  Rotate Left Double Word then Clear Left

ridcl.  Rotate Left Double Word then Clear Left with CR Update. The
dot suffix enables the update of the CR.

The contents of register rS are rotated left by the number of bits specified
by operand in the low-order six bits of rB. A mask is generated having 1
bits from bit 0 through the bit specified by operand ME and 0 bits else-
where. The rotated data is ANDed with the generated mask and the result
is placed into register rA.

rlder  Rotate Left Double Word then Clear Right

ridcr. Rotate Left Double Word then Clear Right with CR Update. The
dot suffix enables the update of the CR.
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Table 4-4. Integer Rotate Instructions (Continued)

Name Mnemonic Operand Syntax |Operation

The contents of rS are rotated left by the number of bits specified by oper-

and in the low-order five bits of rB. A mask is generated having 1 bits from

the bit specified by operand MB + 32 through the bit specified by operand
Rotate Left Word ' jyynm rA,rS,rB,MB,ME |ME + 32 and 0 bits elsewhere. The rotated word is ANDed with the gener-
then AND with ated mask and the result is placed into FA.

Mask rlwnm.

rlwnm Rotate Left Word then AND with Mask

rlwnm. Rotate Left Word then AND with Mask with CR Update. The dot

suffix enables the update of the CR.

The contents of rS are rotated left by the number of bits specified by oper-

and SH. A mask is generated having 1 bits from the bit specified by oper-

and MB + 32 through the bit specified by operand ME + 32 and 0 bits
::rzr?rtﬁé?iile_l?eﬁtm?lrd rlwimi rA,rS,SH,MB,ME |elsewhere. The rotated word is inserted into rA under control of the gener-
Mask Insert riwimi. ated mask.

rlwimi Rotate Left Word Immediate then Mask

rlwimi. Rotate Left Word Immediate then Mask Insert with CR Update.

The dot suffix enables the update of the CR.

The contents of rS are rotated left by the number of bits specified by oper-
Rotate Left Dou- and SH. A mask is generated having 1 bits from the bit specified by oper-
ble Word Immedi- dimi and MB through 63 — SH (the bit specified by SH), and 0 bits elsewhere.
ate then Mask rd!m! rA,rS,SH,MB The rotated data is inserted into rA under control of the generated mask.
Insert ridimi. rldimi  Rotate Left Word Immediate then Mask
(64-bit only) rldimi. Rotate Left Word Immediate then Mask Insert with CR Update.

The dot suffix enables the update of the CR.

Integer Shift Instructions

The integer shift instructions perform left and right shifts. Immediate-form logical (unsigned) shift operations
are obtained by specifying masks and shift values for certain rotate instructions. Simplified mnemonics
(shown in Appendix F, “Simplified Mnemonics”) are provided to make coding of such shifts simpler and easier
to understand.

Any shift right algebraic instruction, followed by addze, can be used to divide quickly by 2". The setting of
XER[CA] by the shift right algebraic instruction is independent of mode.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision Shifts.”

The integer shift instructions are summarized in Table 4-5.
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Table 4-5. Integer Shift Instructions

Name Mnemonic Operand Syntax

Shift Left Double sid

Word d rA,rS,rB

(64-bit only) sid.

Shift Left Word | S™ rAIS,IB
slw.

Shift Right Double srd

Word q rA,rS,rB

(64-bit only) sra.

Shift Right Word | > rAIS,IB
SIw.

Shift Right Alge-

braic Double Word |sradi

Immediate sradi. I'A,I'S,SH

(64-bit only)
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Operation

The contents of rS are shifted left the number of bits specified by the low-
order seven bits of rB. Bits shifted out of position 0 are lost. Zeros are sup-
plied to the vacated positions on the right. The result is placed into rA.
Shift amounts from 64 to 127 give a zero result.

sld Shift Left Double Word

sld. Shift Left Double Word with CR Update. The dot suffix enables
the update of the CR.

The contents of the low-order 32 bits of rS are shifted left the number of
bits specified by operand in the low-order six bits of rB. Bits shifted out of
position 320 (position 0 in 32-bit implementations) are lost. Zeros are sup-
plied to the vacated positions on the right. The 32-bit result is placed into
the low-order 32 bits of rA. In a 64-bit implementation, the value in the
high-order 32 bits of rA is cleared, and shift amounts from 32 to 63 give a
zero result.

slw Shift Left Word

slw. Shift Left Word with CR Update. The dot suffix enables the
update of the CR.

The contents of rS are shifted right the number of bits specified by the low-
order seven bits of rB. Bits shifted out of position 63 are lost. Zeros are
supplied to the vacated positions on the left. The result is placed into rA.
Shift amounts from 64 to 127 give a zero result.

srd Shift Right Double Word

srd. Shift Right Double Word with CR Update. The dot suffix enables
the update of the CR.

The contents of the low-order 32 bits of rS are shifted right the number of
bits specified by the low-order six bits of rB. Bits shifted out of position 63
(position 31 in 32-bit implementations) are lost. Zeros are supplied to the
vacated positions on the left. The 32-bit result is placed into the low-order
32 bits of rA. In a 64-bit implementation, the value in the high-order 32 bits
of rA is cleared to zero, and shift amounts from 32 to 63 give a zero result.
Srw Shift Right Word

srw. Shift Right Word with CR Update. The dot suffix enables the
update of the CR.

The contents of rS are shifted right the number of bits specified by oper-
and SH. Bits shifted out of position 63 are lost. Bit 0 of rS is replicated to
fill the vacated positions on the left. The result is placed into rA. XER[CA]
is set if rS contains a negative number and any 1 bits are shifted out of
position 63; otherwise XER[CA] is cleared. An operand SH of zero causes
rA to be loaded with the contents of rS and XER[CA] to be cleared to zero.
sradi  Shift Right Algebraic Double Word Immediate

sradi.  Shift Right Algebraic Double Word Immediate with CR Update.
The dot suffix enables the update of the CR.
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Table 4-5. Integer Shift Instructions (Continued)

Name Mnemonic Operand Syntax |Operation

The contents of the low-order 32 bits of rS are shifted right the number of
bits specified by operand SH. Bits shifted out of position 63 (position 31 in
32-bit implementations) are lost. Bit 32 of rS is replicated to fill the vacated

Shift Right Alge- | g5y positions on the left for 64-bit implementations. The 32-bit result is sign
(t;ratlc Word Imme- | i rA,rS,SH extended and placed into the low-order 32 bits of rA.
iate :

srawi  Shift Right Algebraic Word Immediate
srawi. Shift Right Algebraic Word Immediate with CR Update. The dot
suffix enables the update of the CR.

The contents of rS are shifted right the number of bits specified by the low-

order seven bits of rB. Bits shifted out of position 63 are lost. Bit 0 of rS is
Shift Right Alge- srad replicated to fill the vacated positions on the left. The result is placed into
braic Double Word rA,rS,rB rA.
(64-bit only) srad. srad  Shift Right Algebraic Double Word

srad.  Shift Right Algebraic Double Word with CR Update. The dot suffix
enables the update of the CR.

The contents of the low-order 32 bits of rS are shifted right the number of

bits specified by the low-order six bits of rB. Bits shifted out of position 63

(position 31 in 32-bit implementations) are lost. Bit 32 of rS is replicated to
Shift Right Alge- | sraw fill the vacated positions on the left for 64-bit implementations. The 32-bit
braic Word sraw. rArS,rB result is placed into the low-order 32 bits of rA.

sraw  Shift Right Algebraic Word

sraw. Shift Right Algebraic Word with CR Update. The dot suffix
enables the update of the CR.

4.2.2 Floating-Point Instructions

This section describes the floating-point instructions, which include the following:
 Floating-point arithmetic instructions
« Floating-point multiply-add instructions
« Floating-point rounding and conversion instructions
» Floating-point compare instructions
 Floating-point status and control register instructions

 Floating-point move instructions

Note: MSR[FP] must be set in order for any of these instructions (including the floating-point loads and

stores) to be executed. If MSR[FP] = 0 when any floating-point instruction is attempted, the floating-point
unavailable exception is taken (see Section 6.4.8 Floating-Point Unavailable Exception (0x00800)). See

Section 4.2.3 Load and Store Instructions for information about floating-point loads and stores.

The PowerPC architecture supports a floating-point system as defined in the IEEE-754 standard, but requires
software support to conform with that standard. Floating-point operations conform to the IEEE-754 standard,
with the exception of operations performed with the fmadd, fres, fsel, and frsqrte instructions, or if software
sets the non-IEEE mode bit (NI) in the FPSCR. Refer to Section 3.3 Floating-Point Execution Models—UISA,
for detailed information about the floating-point formats and exception conditions. Also, refer to Appendix D,
“Floating-Point Models,” for more information on the floating-point execution models used by the PowerPC
architecture.
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4.2.2.1 Floating-Point Arithmetic Instructions

The floating-point arithmetic instructions are summarized in Table 4-6.

Table 4-6. Floating-Point Arithmetic Instructions

Name

Floating
Add
(Double-
Precision)

Floating Add Sin-
gle

Floating Subtract

(Double- Preci-
sion)

Floating Subtract
Single

Floating Multiply
(Double-
Precision)

Floating Multiply
Single

Floating Divide
(Double-
Precision)

Mnemonic

fadd
fadd.

fadds
fadds.

fsub
fsub.

fsubs
fsubs.

fmul
fmul.

fmuls
fmuls.

fdiv
fdiv.

Operand Syntax

frD,frA,frB

frD,frA,frB

frD,frA,frB

frD,frA,frB

frD,frA,frC

frD,frA,frC

frD,frA,frB

Addressing Modes and Instruction Set Summary

Page 156 of 785

Operation

The floating-point operand in register frA is added to the floating-point
operand in register frB. If the most significant bit of the resultant signifi-
cand is not a one the result is normalized. The result is rounded to the tar-
get precision under control of the floating-point rounding control field RN
of the FPSCR and placed into register frD.

fadd  Floating Add (Double-Precision)

fadd. Floating Add (Double-Precision) with CR Update. The dot suffix
enables the update of the CR.

The floating-point operand in register frA is added to the floating-point
operand in register frB. If the most significant bit of the resultant signifi-
cand is not a one, the result is normalized. The result is rounded to the tar-
get precision under control of the floating-point rounding control field RN
of the FPSCR and placed into register frD.

fadds Floating Add Single

fadds. Floating Add Single with CR Update. The dot suffix enables the
update of the CR.

The floating-point operand in register frB is subtracted from the floating-
point operand in register frA. If the most significant bit of the resultant sig-
nificand is not 1, the result is normalized. The result is rounded to the tar-
get precision under control of the floating-point rounding control field RN
of the FPSCR and placed into register frD.

fsub  Floating Subtract (Double-Precision)

fsub. Floating Subtract (Double-Precision) with CR Update. The dot
suffix enables the update of the CR.

The floating-point operand in register frB is subtracted from the floating-
point operand in register frA. If the most significant bit of the resultant sig-
nificand is not 1, the result is normalized. The result is rounded to the tar-
get precision under control of the floating-point rounding control field RN
of the FPSCR and placed into frD.

fsubs Floating Subtract Single

fsubs. Floating Subtract Single with CR Update. The dot suffix enables
the update of the CR.

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC.

fmul  Floating Multiply (Double-Precision)

fmul.  Floating Multiply (Double-Precision) with CR Update. The dot suf-
fix enables the update of the CR.

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC.

fmuls Floating Multiply Single

fmuls. Floating Multiply Single with CR Update. The dot suffix enables
the update of the CR.

The floating-point operand in register frA is divided by the floating-point
operand in register frB. No remainder is preserved.

fdiv Floating Divide (Double-Precision)

fdiv.  Floating Divide (Double-Precision) with CR Update. The dot suf-
fix enables the update of the CR.
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Table 4-6. Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax |Operation

The floating-point operand in register frA is divided by the floating-point
operand in register frB. No remainder is preserved.

Floating Divide  fdivs frD,frAfrB fdivs  Floating Divide Single

Single fdivs. . T . )
fdivs. Floating Divide Single with CR Update. The dot suffix enables the
update of the CR.
The square root of the floating-point operand in register frB is placed into
Floating Square register frD.
Root fsqrt f1D.frB fsqrt  Floating Square Root (Double-Precision)
(Double- fsart. ’ fsqrt. Floating Square Root (Double-Precision) with CR Update. The

Precision) dot suffix enables the update of the CR.
This instruction is optional.

The square root of the floating-point operand in register frB is placed into
register frD.

Floating Square fsqrts f1D.frB fsqrts Floating Square Root Single

Root Single fsqrts. fsqrts. Floating Square Root Single with CR Update. The dot suffix
enables the update of the CR.

This instruction is optional.

A single-precision estimate of the reciprocal of the floating-point operand
in register frB is placed into frD. The estimate placed into frD is correct to
a precision of one part in 256 of the reciprocal of frB.

frD,frB fres  Floating Reciprocal Estimate Single

fres.  Floating Reciprocal Estimate Single with CR Update. The dot suf-
fix enables the update of the CR.

This instruction is optional.

Floating Recipro- | fres
cal Estimate Single | fres.

A double-precision estimate of the reciprocal of the square root of the
floating-point operand in register frB is placed into frD. The estimate
) ) placed into frD is correct to a precision of one part in 32 of the reciprocal
Floating Recipro- frsqrte of the square root of frB.
(I;ilti%qalizre Root frsqrte. frD,frB frsqrte Floating Reciprocal Square Root Estimate

frsqrte. Floating Reciprocal Square Root estimate with CR Update. The
dot suffix enables the update of the CR.

This instruction is optional.

The floating-point operand in frA is compared to the value zero. If the

operand is greater than or equal to zero, frD is set to the contents of frC. If
the operand is less than zero or is a NaN, frD is set to the contents of frB.
The comparison ignores the sign of zero (that is, regards +0 as equal to —

Floating Select  fsel fiDfrAfic B 0)
fsel Floating Select

fsel. Floating Select with CR Update. The dot suffix enables the
update of the CR.

This instruction is optional.

4.2.2.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding operation. The
fractional part of the intermediate product is 106 bits wide, and all 106 bits take part in the add/subtract
portion of the instruction.

Status bits are set as follows:

» Overflow, underflow, and inexact exception bits, the FR and Fl bits, and the FPRF field are set based on
the final result of the operation, and not on the result of the multiplication.
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« Invalid operation exception bits are set as if the multiplication and the addition were performed using two
separate instructions (fmuls, followed by fadds or fsubs). That is, multiplication of infinity by zero or of
anything by an SNaN, and/or addition of an SNaN, cause the corresponding exception bits to be set.

The floating-point multiply-add instructions are summarized in Table 4-7.

Table 4-7. Floating-Point Multiply-Add Instructions

Name

Floating Multiply-
Add

(Double-
Precision)

Floating Multiply-
Add Single

Floating Multiply-
Subtract

(Double-
Precision)

Floating Multiply-
Subtract Single

Floating Negative
Multiply- Add

(Double-
Precision)

Floating Negative
Multiply- Add Sin-
gle

Floating Negative
Multiply- Subtract
(Double-
Precision)

Floating Negative
Multiply- Subtract
Single

Mnemonic

fmadd
fmadd.

fmadds
fmadds.

fmsub
fmsub.

fmsubs
fmsubs.

fnmadd
fnmadd.

fnmadds

fnmadds.

fnmsub
fnmsub.

fnmsubs

fnmsubs.

Operand Syntax

frD,frA,frC,frB

frD,frA,frC,frB

frD,frA,frC,frB

frD,frA,frC,frB

frD,frA,frC,frB

frD,frA,frC,frB

frD,frA,frC,frB

frD,frA,frC,frB
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Operation

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is added
to this intermediate result.

fmadd Floating Multiply-Add (Double-Precision)

fmadd. Floating Multiply-Add (Double-Precision) with CR Update. The
dot suffix enables the update of the CR.

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is added
to this intermediate result.

fmadds Floating Multiply-Add Single

fmadds.Floating Multiply-Add Single with CR Update. The dot suffix
enables the update of the CR.

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is sub-
tracted from this intermediate result.

fmsub Floating Multiply-Subtract (Double-Precision)

fmsub. Floating Multiply-Subtract (Double-Precision) with CR Update.
The dot suffix enables the update of the CR.

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is sub-
tracted from this intermediate result.

fmsubs Floating Multiply-Subtract Single

fmsubs.Floating Multiply-Subtract Single with CR Update. The dot suffix
enables the update of the CR.

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is added
to this intermediate result.

fnmadd Floating Negative Multiply-Add (Double-Precision)

fnmadd.Floating Negative Multiply-Add (Double-Precision) with CR
Update. The dot suffix enables update of the CR.

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is added
to this intermediate result.

fnmaddsFloating Negative Multiply-Add Single

fnmadds.Floating Negative Multiply-Add Single with CR Update. The dot
suffix enables the update of the CR.

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is sub-
tracted from this intermediate result.

fnmsub Floating Negative Multiply-Subtract (Double-Precision)

fnmsub.Floating Negative Multiply-Subtract (Double-Precision) with CR
Update. The dot suffix enables the update of the CR.

The floating-point operand in register frA is multiplied by the floating-point
operand in register frC. The floating-point operand in register frB is sub-
tracted from this intermediate result.

fnmsubsFloating Negative Multiply-Subtract Single

fnmsubs.Floating Negative Multiply-Subtract Single with CR Update. The
dot suffix enables the update of the CR.
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For more information on multiply-add instructions, refer to Appendix D.2 Execution Model for Multiply-Add
Type Instructions.

4.2.2.3 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit double-precision number
to a 32-bit single-precision floating-point number. The floating-point convert instructions convert a 64-bit
double-precision floating-point number to a 32-bit signed integer number.

The PowerPC architecture defines bits 0—31 of floating-point register frD as undefined when executing the
Floating Convert to Integer Word (fctiw) and Floating Convert to Integer Word with Round toward Zero
(fetiwz) instructions. The floating-point rounding instructions are shown in Table 4-8.

Examples of uses of these instructions to perform various conversions can be found in Appendix D, “Floating-
Point Models.”

Table 4-8. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Syntax | Operation

The floating-point operand in frB is rounded to single-precision using the
rounding mode specified by FPSCR[RN] and placed into frD.

frD,frB frsp Floating Round to Single-Precision

frsp.  Floating Round to Single-Precision with CR Update. The dot suf-
fix enables the update of the CR.

Floating Round to | frsp
Single- Precision | frsp.

The 64-bit signed integer operand in frB is converted to an infinitely pre-

cise floating-point integer. The result of the conversion is rounded to dou-

ble-precision using the rounding mode specified by FPSCR[RN] and
frD,frB placed into register frD.

Floating Convert
from Integer Dou- | fcfid

?GI(:-VtYict)fnly) fefid. fcfid  Floating Convert from Integer Double Word
fcfid. Floating Convert from Integer Double Word with CR Update. The
dot suffix enables the update of the CR.
The floating-point operand in register frB is converted to a 64-bit signed
Floating Convert to integer, using the rounding mode specified by FPSCR[RN], and placed in
Integer Double fctid frD.
Word fctid. frD,frB fctiw  Floating Convert to Integer Double Word

(64-bit only) fctiw.  Floating Convert to Integer Double Word with CR Update. The
dot suffix enables the update of the CR.

Floating Convert to The floating-point operand in register frB is converted to a 64-bit signed
Integer Double fetidz integer, using the rounding mode Round toward Zero and placed in frD.
Word with Round fetidz frD,frB fctidz  Floating Convert to Integer Double Word with Round toward Zero
towar_d Zero ’ fctidz. Floating Convert to Integer Double Word with Round toward Zero
(64-bit only) with CR Update. The dot suffix enables the update of the CR.
The floating-point operand in register frB is converted to a 32-bit signed
integer, using the rounding mode specified by FPSCR[RN], and placed in
Floating Convert to | fctiw frD,frB the low-order 32 bits of frD. Bits 0—31 of frD are undefined.
Integer Word fctiw. fctiw  Floating Convert to Integer Word
fctiw.  Floating Convert to Integer Word with CR Update. The dot suffix
enables the update of the CR.
The floating-point operand in register frB is converted to a 32-bit signed
. integer, using the rounding mode Round toward Zero, and placed in the
Floating Convertto | ¢.y,,, frD,frB low-order 32 bits of frD. Bits 0-31 of frD are undefined.

Integer Word with

Round toward Zero fctiwz. fctiwz Floating Convert to Integer Word with Round toward Zero

fctiwz. Floating Convert to Integer Word with Round toward Zero with
CR Update. The dot suffix enables the update of the CR.
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4.2.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers and the comparison
ignores the sign of zero (that is +0 =—0). The comparison can be ordered or unordered. The comparison sets
one bit in the designated CR field and clears the other three bits. The FPCC (floating-point condition code) in
bits 16—19 of the FPSCR (floating-point status and control register) is set in the same way.

The CR field and the FPCC are interpreted as shown in Table 4-9.

Table 4-9. CR Bit Settings

Bit Name Description

0 FL (frA) < (frB)

1 FG (frA) > (frB)

2 FE (frA) = (frB)

3 FU (frA) ? (frB) (unordered)

The floating-point compare instructions are summarized in Table 4-10.

Table 4-10. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax |Operation
Floating Compare femou crfD.frA.frB The floating-point operand in frA is compared to the floating-point operand
Unordered P e in frB. The result of the compare is placed into erfD and the FPCC.

Floating Compare
Ordered

The floating-point operand in frA is compared to the floating-point operand

fempo criD,frA,frB in frB. The result of the compare is placed into crfD and the FPCC.

4.2.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point instructions executed by a
given processor. Executing an FPSCR instruction ensures that all floating-point instructions previously initi-
ated by the given processor appear to have completed before the FPSCR instruction is initiated and that no
subsequent floating-point instructions appear to be initiated by the given processor until the FPSCR instruc-
tion has completed. In particular:

« All exceptions caused by the previously initiated instructions are recorded in the FPSCR before the
FPSCR instruction is initiated.

« Allinvocations of the floating-point exception handler caused by the previously initiated instructions have
occurred before the FPSCR instruction is initiated.

« No subsequent floating-point instruction that depends on or alters the settings of any FPSCR bits
appears to be initiated until the FPSCR instruction has completed.

Floating-point memory access instructions are not affected by the execution of the FPSCR instructions.

The FPSCR instructions are summarized in Table 4-11.
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Table 4-11. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand Syntax |Operation

The contents of the FPSCR are placed into bits 32—63 of frD. Bits 0—31 of
frD are undefined.

Move from FPSCR 222 frD mffs  Move from FPSCR
’ mffs. Move from FPSCR with CR Update. The dot suffix enables the
update of the CR.
Move to Condition The contents of FPSCR field specified by operand crfS are copied to the
Register from mcrfs crfD,crfS CR field specified by operand crfD. All exception bits copied (except FEX
FPSCR and VX bits) are cleared in the FPSCR.

The contents of the IMM field are placed into FPSCR field crfD. The con-
tents of FPSCRI[FX] are altered only if erfD = 0.

crfD,IMM mtfsfi Move to FPSCR Field Immediate
mtfsfi. Move to FPSCR Field Immediate with CR Update. The dot suffix
enables the update of the CR.

Bits 32—63 of frB are placed into the FPSCR under control of the field
mask specified by FM. The field mask identifies the 4-bit fields affected.
Let ibe an integer in the range 0—7. If FM[/] = 1, FPSCR field i (FPSCR
bits 4/ through 4*+3) is set to the contents of the corresponding field of
Move to FPSCR  mtfsf FM.frB the low-order 32 bits of frB.
Fields mitfsf. The contents of FPSCR[FX] are altered only if FM[0] = 1.
mtfsf Move to FPSCR Fields
mtfsf. Move to FPSCR Fields with CR Update. The dot suffix enables
the update of the CR.

Move to FPSCR | mtfsfi
Field Immediate mtfsfi.

The FPSCR bit location specified by operand crbD is cleared.
Bits 1 and 2 (FEX and VX) cannot be reset explicitly.
crbD mtfsb0 Move to FPSCR Bit 0

mtfsb0. Move to FPSCR Bit 0 with CR Update. The dot suffix enables the
update of the CR.

Move to FPSCR mtfsb0
Bit 0 mtfsbO.

The FPSCR bit location specified by operand crbD is set.
Bits 1 and 2 (FEX and VX) cannot be set explicitly.
crbD mtfsb1 Move to FPSCR Bit 1

mtfsb1. Move to FPSCR Bit 1 with CR Update. The dot suffix enables the
update of the CR.

Move to FPSCR | mifsb1
Bit 1 mtfsb1.

4.2.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another, altering the sign bit (bit 0) as described
for the fneg, fabs, and fnabs instructions in Table 4-12. The fneg, fabs, and fnabs instructions may alter the
sign bit of a NaN. The floating-point move instructions do not modify the FPSCR. The CR update option in
these instructions controls the placing of result status into CR1. If the CR update option is enabled, CR1 is
set; otherwise, CR1 is unchanged.

Table 4-12 provides a summary of the floating-point move instructions.

pem4_instr_Set.fm.2.0 Addressing Modes and Instruction Set Summary
June 10, 2003 Page 161 of 785



Programming Environments Manual

PowerPC RISC Microprocessor Family

Table 4-12. Floating-Point Move Instructions

Name Mnemonic Operand Syntax |Operation
The contents of frB are placed into frD.
Floating Move fmr frD.frB fmr Floating Move Register
Register frr. ’ fmr.  Floating Move Register with CR Update. The dot suffix enables

the update of the CR.

The contents of frB with bit 0 inverted are placed into frD.
fneg fD.fB fneg  Floating Negate

fneg. fneg. Floating Negate with CR Update. The dot suffix enables the
update of the CR.

Floating Negate

The contents of frB with bit O cleared are placed into frD.

Floating Absolute | fabs D frB fabs  Floating Absolute Value

Value fabs. fabs. Floating Absolute Value with CR Update. The dot suffix enables
the update of the CR.
The contents of frB with bit 0 set are placed into frD.

Floating Negative |fnabs frD.frB fnabs Floating Negative Absolute Value

Absolute Value  fnabs. fnabs. Floating Negative Absolute Value with CR Update. The dot suffix
enables the update of the CR.

4.2.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the accesses can occur out
of order. Synchronizing instructions are provided to enforce strict ordering. This section describes the load
and store instructions, which consist of the following:

« Integer load instructions

- Integer store instructions

« Integer load and store with byte-reverse instructions
- Integer load and store multiple instructions

« Floating-point load instructions

- Floating-point store instructions

« Memory synchronization instructions

4.2.3.1 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with immediate index
mode (register contents + immediate), register indirect with index mode (register contents + register
contents), or register indirect mode (register contents only). See Section 4.1.4.2 Effective Address Calcula-
tion for information about calculating effective addresses.

Note: In some implementations, operations that are not naturally aligned may suffer performance degrada-
tion. Refer to Section 6.4.6.1 Integer Alignment Exceptions for additional information about load and store
address alignment exceptions.
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Register Indirect with Immediate Index Addressing for Integer Loads and Stores

Instructions using this addressing mode contain a signed 16-bit immediate index (d operand) which is sign
extended, and added to the contents of a general-purpose register specified in the instruction (rA operand) to
generate the effective address. If the rA field of the instruction specifies r0, a value of zero is added to the
immediate index (d operand) in place of the contents of r0. The option to specify rA or 0 is shown in the
instruction descriptions as (rA|0).

Figure 4-1. shows how an effective address is generated when using register indirect with immediate index
addressing.

Figure 4-1. Register Indirect with Immediate Index Addressing for Integer Loads/Stores

0 56 1011 15 16 31
Instruction Encoding: | opcode | rDrs | rA d
0 47 48 Y 63
Sign Extension d
Yes
rA=07? =E|—
Y
Y ~(F
No
0 63 0 63
GPR (rA) — Effective Address
Y
0 63
Store »| Memory
GPR (rD/rS) B Load Interface

Register Indirect with Index Addressing for Integer Loads and Stores

Instructions using this addressing mode cause the contents of two general-purpose registers (specified as
operands rA and rB) to be added in the generation of the effective address. A zero in place of the rA operand
causes a zero to be added to the contents of the general-purpose register specified in operand rB (or the
value zero for Iswi and stswi instructions). The option to specify rA or 0 is shown in the instruction descrip-
tions as (rA|0).

Figure 4-2 shows how an effective address is generated when using register indirect with index addressing.

pem4_instr_Set.fm.2.0 Addressing Modes and Instruction Set Summary
June 10, 2003 Page 163 of 785



Programming Environments Manual

PowerPC RISC Microprocessor Family

Figure 4-2. Register Indirect with Index Addressing for Integer Loads/Stores

0 56 1011 1516 20 21 30 31
|:| Reserved Instruction Encoding: Opcode | rD/rS rA rB Subopcode | 0
0 Y 63
GPR (rB)
Yes n l
-(F
No
0 63 0 63
GPR (rA) Effective Address
Y
0 63
Store »| Memory
GPR (rD/rS) B Load Interface

Register Indirect Addressing for Integer Loads and Stores

Instructions using this addressing mode use the contents of the general-purpose register specified by the rA
operand as the effective address. A zero in the rA operand causes an effective address of zero to be gener-
ated. The option to specify rA or 0 is shown in the instruction descriptions as (rA|0).

Figure 4-3 shows how an effective address is generated when using register indirect addressing.
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Figure 4-3. Register Indirect Addressing for Integer Loads/Stores

0 56 1011 1516 20 21 30 31
[[] Reserved Instruction Encoding: Opcode | rD/rS| rA NB Subopcode | 0
0 63
Yes
rA=0? »00000000000000000000000000000000
No
0 63
GPR (rA)
0 v 63
> Effective Address
Y
0 63
Store | Memory
GPR (rD/rS) B Load Interface

4.2.3.2 Integer Load Instructions

For integer load instructions, the byte, half word, word, or double word addressed by the EA (effective
address) is loaded into rD. Many integer load instructions have an update form, in which rA is updated with
the generated effective address. For these forms, if rA # 0 and rA = rD (otherwise invalid), the EA is placed
into rA and the memory element (byte, half word, word, or double word) addressed by the EA is loaded into
rD.

Note: The PowerPC architecture defines load with update instructions with operand rA =0 or rA =rD as
invalid forms.

The default byte and bit ordering is big-endian in the PowerPC architecture; see Section 3.1.2 Byte Ordering,”
for information about little-endian byte ordering.

Note that in some implementations of the architecture, the load word algebraic instructions (lha, lhax, lwa,
Iwax) and the load with update (Ibzu, Ibzux, Ihzu, lhzux, lhau, lhaux, lwaux, Idu, ldux) instructions may
execute with greater latency than other types of load instructions. Moreover, the load with update instructions
may take longer to execute in some implementations than the corresponding pair of a nonupdate load
followed by an add instruction to update the register.

Table 4-13 summarizes the integer load instructions.
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Table 4-13. Integer Load Instructions

Name

Load Byte and
Zero

Load Byte and
Zero Indexed

Load Byte and
Zero with Update

Load Byte and
Zero with Update
Indexed

Load Half Word
and Zero

Load Half Word
and Zero Indexed

Load Half Word
and Zero with
Update

Load Half Word
and Zero with
Update Indexed

Load Half Word
Algebraic

Load Half Word
Algebraic Indexed

Load Half Word
Algebraic with
Update

Load Half Word
Algebraic with
Update Indexed

Load Word and
Zero

Load Word and
Zero Indexed

Load Word and
Zero with Update

Load Word and
Zero with Update
Indexed

Mnemonic

lbz

Ibzx

lbzu

lbzux

Ihz

lhzx

lhzu

Ihzux

lha

lhax

lhau

Ihaux

Iwzx

lwzu

Iwzux

Operand Syntax

rD,d(rA)

rD,rA,rB

rD,d(rA)

rD,rA,rB

rD,d(rA)

rD,rA,rB

rD,d(rA)

rD,rA,rB

rD,d(rA)

rD,rA,rB

rD,d(rA)

rD,rA,rB

rD,d(rA)

rD,rA,rB

rD,d(rA)

rD,rA,rB
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Operation

The EA is the sum (rA|0) + d. The byte in memory addressed by the EA is
loaded into the low-order eight bits of rD. The remaining bits in ¥rD are
cleared.

The EA is the sum (rA|0) + (rB). The byte in memory addressed by the EA
is loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared.

The EA is the sum (rA) + d. The byte in memory addressed by the EA is
loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared. The EA is placed into rA.

The EA is the sum (rA) + (rB). The byte in memory addressed by the EA is
loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared. The EA is placed into rA.

The EA is the sum (rA|0) + d. The half word in memory addressed by the
EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are
cleared.

The EA is the sum (rA|0) + (rB). The half word in memory addressed by
the EA is loaded into the low-order 16 bits of rD. The remaining bits in rD
are cleared.

The EA is the sum (rA) + d. The half word in memory addressed by the EA
is loaded into the low-order 16 bits of rD. The remaining bits in rD are
cleared. The EA is placed into rA.

The EA is the sum (rA) + (rB). The half word in memory addressed by the
EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are
cleared. The EA is placed into rA.

The EA is the sum (rA|0) + d. The half word in memory addressed by the
EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are
filled with a copy of the most significant bit of the loaded half word.

The EA is the sum (rA|0) + (rB). The half word in memory addressed by
the EA is loaded into the low-order 16 bits of rD. The remaining bits in rD
are filled with a copy of the most significant bit of the loaded half word.

The EA is the sum (rA) + d. The half word in memory addressed by the EA
is loaded into the low-order 16 bits of rD. The remaining bits in rD are filled
with a copy of the most significant bit of the loaded half word. The EA is
placed into rA.

The EA is the sum (rA) + (rB). The half word in memory addressed by the
EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are
filled with a copy of the most significant bit of the loaded half word. The EA
is placed into rA.

The EA is the sum (rA|0) + d. The word in memory addressed by the EA is
loaded into the low-order 32 bits of rD. The remaining bits in the high-order
32 bits of rD are cleared for 64-bit implementations.

The EA is the sum (rA|0) + (rB). The word in memory addressed by the EA
is loaded into the low-order 32 bits of rD. The remaining bits in the high-
order 32 bits of rD are cleared for 64-bit implementations.

The EA is the sum (rA) + d. The word in memory addressed by the EA is
loaded into the low-order 32 bits of rD. The remaining bits in the high-order
32 bits of rD are cleared for 64-bit implementations. The EA is placed into
rA.

The EA is the sum (rA) + (rB). The word in memory addressed by the EA
is loaded into the low-order 32 bits of rD. The remaining bits in the high-
order 32 bits of rD are cleared for 64-bit implementations. The EA is
placed into rA.
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Table 4-13. Integer Load Instructions (Continued)

Name Mnemonic Operand Syntax |Operation

The EA is the sum (rA|0) + (ds||0b00). The word in memory addressed by
the EA is loaded into the low-order 32 bits of rD. The remaining bits in the
high-order 32 bits of rD are filled with a copy of the most significant bit of
the loaded word.

Load Word Alge-
braic lwa rD,ds(rA)
(64-bit only)

The EA is the sum (rA|0) + (rB). The word in memory addressed by the EA

Load Word Alge- is loaded into the low-order 32 bits of rD. The remaining bits in the high-

braic _Indexed Iwax rDrArB order 32 bits of rD are filled with a copy of the most significant bit of the
(64-bit only) loaded word.
Load Word Alge- The EA is the sum (rA) + (rB). The word in memory addressed by the EA

braic with Update is loaded into the low-order 32 bits of rD. The remaining bits in the high-

Indexed Iwaux rD,rA,rB order 32 bits of rD are filled with a copy of the most significant bit of the
(64-bit only) loaded word. The EA is placed into rA.
Load Double Word Id ¥D,ds(rA) The EA is the sum (rA|0) + (ds||0b00). The double word in memory
(64-bit only) ’ addressed by the EA is loaded into rD.
Il_noda:XGD(;)ubIe Word ldx /D.rA.rB The EA is the sum (rA|0) + (rB). The double word in memory addressed by
. e the EA is loaded into rD.
(64-bit only)
\',‘V‘i’t?]du'%‘(’j‘;?f Word du D.ds(rA) The EA is the sum (FA) + (ds||0b00). The double word in memory
. ’ addressed by the EA is loaded into rD. The EA is placed into rA.
(64-bit only)
Load Double Word
with Update ldux /D.rArB The EA is the sum (rA) + (rB). The double word in memory addressed by
Indexed n the EA is loaded into rD. The EA is placed into rA.
(64-bit only)

4.2.3.3 Integer Store Instructions

For integer store instructions, the contents of rS are stored into the byte, half word, word, or double word in
memory addressed by the EA (effective address). Many store instructions have an update form, in which rA is
updated with the EA. For these forms, the following rules apply:

« If rA # 0, the effective address is placed into rA.

- If rS =rA, the contents of register rS are copied to the target memory element, then the generated EA is
placed into rA (rS).

In general, the PowerPC architecture defines a sequential execution model. However, when a store instruc-
tion modifies a memory location that contains an instruction, software synchronization (isync)is required to
ensure that subsequent instruction fetches from that location obtain the modified version of the instruction.

If a program modifies the instructions it intends to execute, it should call the appropriate system library
program before attempting to execute the modified instructions to ensure that the modifications have taken
effect with respect to instruction fetching.

The PowerPC architecture defines store with update instructions with rA = 0 as an invalid form. In addition, it
defines integer store instructions with the CR update option enabled (Rc field, bit 31, in the instruction
encoding = 1) to be an invalid form. Table 4-14 provides a summary of the integer store instructions.
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Table 4-14. Integer Store Instructions

Name

Store Byte

Store Byte Indexed

Store Byte with
Update

Store Byte with
Update Indexed

Store Half Word

Store Half Word
Indexed

Store Half Word
with Update

Store Half Word
with Update
Indexed

Store Word

Store Word
Indexed

Store Word with
Update

Store Word with
Update Indexed

Store Double Word

(64-bit only)

Store Double Word
Indexed

(64-bit only)

Store Double Word
with Update

(64-bit only)

Store Double Word
with Update
Indexed

(64-bit only)

Mnemonic

stb

stbx

stbu

stbux

sth

sthx

sthu

sthux

stw

stwx

stwu

stwux

std

stdx

stdu

stdux

Operand Syntax

rS,d(rA)

rS,rA,rB

rS,d(rA)

rS,rA,rB

rS,d(rA)

rS,rA,rB

rS,d(rA)

rS,rA,rB

rS,d(rA)

rS,rA,rB

rS,d(rA)

rS,rA,rB

rS,ds(rA)

rS,rA,rB

rS,ds(rA)

rS,rA,rB
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Operation

The EA is the sum (rA|0) + d. The contents of the low-order eight bits of rS
are stored into the byte in memory addressed by the EA.

The EA is the sum (rA|0) + (rB). The contents of the low-order eight bits of
rS are stored into the byte in memory addressed by the EA.

The EA is the sum (rA) + d. The contents of the low-order eight bits of rS
are stored into the byte in memory addressed by the EA. The EA is placed
into rA.

The EA is the sum (rA) + (rB). The contents of the low-order eight bits of
rS are stored into the byte in memory addressed by the EA. The EA is
placed into rA.

The EA is the sum (rA|0) + d. The contents of the low-order 16 bits of rS
are stored into the half word in memory addressed by the EA.

The EA is the sum (rA|0) + (rB). The contents of the low-order 16 bits of
rS are stored into the half word in memory addressed by the EA.

The EA is the sum (rA) + d. The contents of the low-order 16 bits of rS are
stored into the half word in memory addressed by the EA. The EAis
placed into rA.

The EA is the sum (rA) + (rB). The contents of the low-order 16 bits of rS
are stored into the half word in memory addressed by the EA. The EA is
placed into rA.

The EA is the sum (rA|0) + d. The contents of the low-order 32 bits of rS
are stored into the word in memory addressed by the EA.

The EA is the sum (rA|0) + (rB). The contents of the low-order 32 bits of
rS are stored into the word in memory addressed by the EA.

The EA is the sum (rA) + d. The contents of the low-order 32 bits of rS are
stored into the word in memory addressed by the EA. The EA is placed
into rA.

The EA is the sum (rA) + (rB). The contents of the low-order 32 bits of rS
are stored into the word in memory addressed by the EA. The EA is
placed into rA.

The EA is the sum (rA|0) + (ds||0b00). The contents of rS are stored into
the double word in memory addressed by the EA.

The EA is the sum (rA|0) + (rB). The contents of rS are stored into the
double word in memory addressed by the EA.

The EA is the sum (rA) + (ds||0b00). The contents of rS are stored into the
double word in memory addressed by the EA. The EA is placed into rA.

The EA is the sum (rA) + (rB). The contents of rS are stored into the dou-
ble word in memory addressed by the EA. The EA is placed into rA.
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4.2.3.4 Integer Load and Store with Byte-Reverse Instructions

Table 4-15 describes integer load and store with byte-reverse instructions. Note that in some PowerPC imple-
mentations, load byte-reverse instructions may have greater latency than other load instructions.

When used in a PowerPC system operating with the default big-endian byte order, these instructions have
the effect of loading and storing data in little-endian order. Likewise, when used in a PowerPC system oper-
ating with little-endian byte order, these instructions have the effect of loading and storing data in big-endian
order. For more information about big-endian and little-endian byte ordering, see Section 3.1.2 Byte
Ordering.”

Table 4-15. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Operand Syntax |Operation

The EA is the sum (rA|0) + (rB). The high-order eight bits of the half word
Load Half Word addressed by the EA are loaded into the low-order eight bits of rD. The
Byte- Ihbrx rD,rA,rB next eight higher-order bits of the half word in memory addressed by the
Reverse Indexed EA are loaded into the next eight lower-order bits of rD. The remaining rD

bits are cleared.

The EA is the sum (rA|0) + (rB). Bits 0—7 of the word in memory
addressed by the EA are loaded into the low-order eight bits of rD. Bits 8—
15 of the word in memory addressed by the EA are loaded into bits 48-55
of rD (bits 1623 of rD in 32-bit implementations). Bits 1623 of the word
in memory addressed by the EA are loaded into bits 4047 of rD (bits 8—
15 in 32-bit implementations). Bits 24-31 of the word in memory
addressed by the EA are loaded into bits 32—39 of rD (bits 0—7 in 32-bit
implementations). The remaining bits in rD are cleared.

Load Word Byte-

Reverse Indexed Iwbrx rD,rA,rB

The EA is the sum (rA|0) + (rB). The contents of the low-order eight bits of
Store Half Word rS are stored into the high-order eight bits of the half word in memory
Byte- Reverse sthbrx rS,rA,rB addressed by the EA. The contents of the next lower-order eight bits of rS
Indexed are stored into the next eight higher-order bits of the half word in memory
addressed by the EA.

The effective address is the sum (rA|0) + (rB). The contents of the low-
order eight bits of rS are stored into bits 0—7 of the word in memory
addressed by EA. The contents of the next eight lower-order bits of rS are
stored into bits 8—15 of the word in memory addressed by the EA. The
contents of the next eight lower-order bits of rS are stored into bits 16—23
of the word in memory addressed by the EA. The contents of the next
eight lower-order bits of rS are stored into bits 24—-31 of the word
addressed by the EA.

Store Word Byte-

Reverse Indexed stwbrx rS,rAr8

4.2.3.5 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of data to and from the GPRs. The load multiple
and store multiple instructions may have operands that require memory accesses crossing a 4-Kbyte page
boundary. As a result, these instructions may be interrupted by a DSI exception associated with the address
translation of the second page. Table 4-16 summarizes the integer load and store multiple instructions.

In the load/store multiple instructions, the combination of the EA and rD (rS) is such that the low-order byte of
GPR831 is loaded from or stored into the last byte of an aligned quad word in memory; if the effective address
is not correctly aligned, it may take significantly longer to execute.

In some PowerPC implementations operating with little-endian byte order, execution of an Imw or stmw
instruction causes the system alignment error handler to be invoked; see Section 3.1.2 Byte Ordering for
more information.
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The PowerPC architecture defines the load multiple word (Imw) instruction with rA in the range of registers to
be loaded, including the case in which rA = 0, as an invalid form.

Table 4-16. Integer Load and Store Multiple Instructions

Name Mnemonic Operand Syntax |Operation
\'7\‘,’(‘;‘%'\"“'“"'6 Imw rD,d(rA) The EA is the sum (FA[0) + d. n = (32— rD).

Store Multiple

Word stmw rS,d(rA) The EA is the sum (rA|0) + d. n= (32 —rS).

4.2.3.6 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to registers or from regis-
ters to memory without concern for alignment. These instructions can be used for a short move between arbi-
trary memory locations or to initiate a long move between misaligned memory fields. However, in some
implementations, these instructions are likely to have greater latency and take longer to execute, perhaps
much longer, than a sequence of individual load or store instructions that produce the same results.

Table 4-17 summarizes the integer load and store string instructions.

Load and store string instructions execute more efficiently when rD or rS = 5, and the last register loaded or
stored is less than or equal to 12.

In some PowerPC implementations operating with little-endian byte order, execution of a load or string
instruction causes the system alignment error handler to be invoked; see Section 3.1.2 Byte Ordering,” for
more information.

Table 4-17. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax  Operation

Il_rg;degit:tr;g Word o rD,rANB The EAis (rA|0).

ILnodaSXS(;ring Word | o vx rD,rA,rB The EA is the sum (rA|0) + (rB).
ﬁ;c:‘:ee (ﬁ;rtigg Word | giowi rS,rANB The EA'is (rA|0).

Store String Word | o rS,rA,rB The EA is the sum (rA|0) + (B).

Indexed

Load string and store string instructions may involve operands that are not word-aligned. As described in
Section 6.4.6 Alignment Exception (0x00600),” a misaligned string operation suffers a performance penalty
compared to an aligned operation of the same type. A non—word-aligned string operation that crosses a
double-word boundary is also slower than a word-aligned string operation.

4.2.3.7 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register indirect with imme-
diate index addressing mode and register indirect with index addressing mode. Floating-point loads and
stores are not supported for direct-store interface accesses. The use of floating-point loads and stores for
direct-store interface accesses results in an alignment exception.
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Note: The direct-store facility is being phased out of the architecture and is not likely to be supported in
future devices.

Register Indirect with Immediate Index Addressing for Floating-Point Loads and Stores

Instructions using this addressing mode contain a signed 16-bit immediate index (d operand) which is sign
extended to 6432 bits, and added to the contents of a GPR specified in the instruction (rA operand) to
generate the effective address. If the rA field of the instruction specifies r0, a value of zero is added to the
immediate index (d operand) in place of the contents of r0. The option to specify rA or 0 is shown in the
instruction descriptions as (rA|0).

Figure 4-4 shows how an effective address is generated when using register indirect with immediate index
addressing for floating-point loads and stores.

Figure 4-4. Register Indirect (Contents) with Immediate Index Addressing for Floating-Point Loads/Stores

0 56 10 11 1516 31
Instruction Encoding: Opcode| frD/ArS rA d
0 47 48 Y 63
Sign Extension d
Yes n
Y
-(F
No
0 63 0 63
GPR (rA) Effective Address
Y
0 63
Store »| Memory
FPR (frD/frS) B Load Access

Register Indirect with Index Addressing for Floating-Point Loads and Stores

Instructions using this addressing mode add the contents of two GPRs (specified in operands rA and rB) to
generate the effective address. A zero in the rA operand causes a zero to be added to the contents of the
GPR specified in operand rB. This is shown in the instruction descriptions as (rA|0).

Figure 4-5 shows how an effective address is generated when using register indirect with index addressing.
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Figure 4-5. Register Indirect with Index Addressing for Floating-Point Loads/Stores

0 56 1011 1516 20 21 30 31
[[] Reserved Instruction Encoding: Opcode | frD/rS | rA | rB | Subopcode |0
0 v 63
GPR (rB)
Yes n l
-(F
No
0 63 0 63
GPR (rA) Effective Address
\
0 63 Store | Memory
FPR (frD/frS) B Load | Access

The PowerPC architecture defines floating-point load and store with update instructions (Ifsu, Ifsux, Ifdu,
Ifdux, stfsu, stfsux, stfdu, stfdux) with operand rA = 0 as invalid forms of the instructions. In addition, it
defines floating-point load and store instructions with the CR updating option enabled (Rc bit, bit 31 = 1) to be
an invalid form.

The PowerPC architecture defines that the FPSCR[UE] bit should not be used to determine whether denor-
malization should be performed on floating-point stores.

4.2.3.8 Floating-Point Load Instructions

There are two forms of the floating-point load instruction—single-precision and double-precision operand
formats. Because the FPRs support only the floating-point double-precision format, single-precision floating-
point load instructions convert single-precision data to double-precision format before loading the operands
into the target FPR. This conversion is described fully in Appendix D.6 Floating-Point Load Instructions.
Table 4-18 provides a summary of the floating-point load instructions.

Note: The PowerPC architecture defines load with update instructions with rA = 0 as an invalid form.
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Table 4-18. Floating-Point Load Instructions

Name

Load Floating-
Point Single

Load Floating-
Point Single
Indexed

Load Floating-
Point Single with
Update

Load Floating-
Point Single with
Update Indexed

Load Floating-
Point Double

Load Floating-
Point Double
Indexed

Load Floating-
Point Double with
Update

Load Floating-
Point Double with
Update Indexed

Mnemonic

Ifs

Ifsx

lfsu

Ifsux

Ifd

Ifdx

Ifdu

[fdux

Operand Syntax

frD,d(rA)

frD,rA,rB

frD,d(rA)

frD,rA,rB

frD,d(rA)

frD,rA,rB

frD,d(rA)

frD,rA,rB

4.2.3.9 Floating-Point Store Instructions

Programming Environments Manual
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Operation

The EA is the sum (rA|0) + d.

The word in memory addressed by the EA is interpreted as a floating-
point single-precision operand. This word is converted to floating-point
double-precision format and placed into frD.

The EA is the sum (rA|0) + (rB).

The word in memory addressed by the EA is interpreted as a floating-
point single-precision operand. This word is converted to floating-point
double-precision format and placed into frD.

The EAis the sum (rA) + d.

The word in memory addressed by the EA is interpreted as a floating-
point single-precision operand. This word is converted to floating-point
double-precision format and placed into frD.

The EA is placed into the register specified by rA.

The EA is the sum (rA) + (rB).

The word in memory addressed by the EA is interpreted as a floating-
point single-precision operand. This word is converted to floating-point
double-precision format and placed into frD.

The EA is placed into the register specified by rA.

The EA is the sum (rA|0) + d.

The double word in memory addressed by the EA is placed into register
frD.

The EA is the sum (rA|0) + (rB).
The double word in memory addressed by the EA is placed into register
frD.

The EA is the sum (rA) + d.

The double word in memory addressed by the EA is placed into register
frD.

The EA is placed into the register specified by rA.

The EA is the sum (rA) + (rB).

The double word in memory addressed by the EA is placed into register
frD.

The EA is placed into the register specified by rA.

This section describes floating-point store instructions. There are three basic forms of the store instruction—
single-precision, double-precision, and integer. The integer form is supported by the stfiwx instruction. (

Note: The stfiwx instruction is defined as optional by the PowerPC architecture to ensure backwards com-
patibility with earlier processors; however, it will likely be required for subsequent PowerPC processors.

Because the FPRs support only floating-point, double-precision format for floating-point data, single-precision
floating-point store instructions convert double-precision data to single-precision format before storing the
operands. The conversion steps are described fully in Appendix D.7 Floating-Point Store Instructions.”
Table 4-19 provides a summary of the floating-point store instructions.

Note: Note that the PowerPC architecture defines store with update instructions with rA = 0 as an invalid

form.

Table 4-19 provides the floating-point store instructions for the PowerPC processors.
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Table 4-19. Floating-Point Store Instructions

Name

Store Floating-
Point Single

Store Floating-
Point Single
Indexed

Store Floating-
Point Single with
Update

Store Floating-
Point Single with
Update Indexed

Store Floating-
Point Double

Store Floating-
Point Double
Indexed

Store Floating-
Point Double with
Update

Store Floating-
Point Double with
Update Indexed

Store Floating-
Point as Integer
Word Indexed

Mnemonic

stfs

stfsx

stfsu

stfsux

stfd

stfdx

stfdu

stfdux

stfiwx

Operand Syntax

frS,d(rA)

frS,rA,rB

S,d(rA)

frS,rA,rB

frS,d(rA)

frS,rA,rB

frS,d(rA)

frS,rA,rB

frS,rA,rB

4.2.4 Branch and Flow Control Instructions

Operation

The EA is the sum (rA|0) + d.

The contents of frS are converted to single-precision and stored into the
word in memory addressed by the EA.

The EA is the sum (rA|0) + (rB).

The contents of frS are converted to single-precision and stored into the
word in memory addressed by the EA.

The EAis the sum (rA) + d.

The contents of frS are converted to single-precision and stored into the
word in memory addressed by the EA.

The EA is placed into rA.

The EA is the sum (rA) + (rB).

The contents of frS are converted to single-precision and stored into the
word in memory addressed by the EA.

The EA is placed into the rA.

The EA is the sum (rA|0) + d.

The contents of frS are stored into the double word in memory addressed
by the EA.

The EA is the sum (rA|0) + (rB).

The contents of frS are stored into the double word in memory addressed
by the EA.

The EA is the sum (rA) + d.

The contents of frS are stored into the double word in memory addressed
by the EA.

The EA is placed into rA.

The EA is the sum (rA) + (rB).

The contents of frS are stored into the double word in memory addressed
by EA.

The EA is placed into register rA.

The EA is the sum (rA|0) + (rB).

The contents of the low-order 32 bits of frS are stored, without conversion,
into the word in memory addressed by the EA.

Note: The stfiwx instruction is defined as optional by the PowerPC archi-
tecture to ensure backwards compatibility with earlier processors; how-
ever, it will likely be required for subsequent PowerPC processors.

Some branch instructions can redirect instruction execution conditionally based on the value of bits in the CR.
When the processor encounters one of these instructions, it scans the execution pipelines to determine
whether an instruction in progress may affect the particular CR bit. If no interlock is found, the branch can be
resolved immediately by checking the bit in the CR and taking the action defined for the branch instruction.

If an interlock is detected, the branch is considered unresolved and the direction of the branch may either be
predicted using the y bit (as described in Table 4-20) or by using dynamic prediction. The interlock is moni-
tored while instructions are fetched for the predicted branch. When the interlock is cleared, the processor
determines whether the prediction was correct based on the value of the CR bit. If the prediction is correct,
the branch is considered completed and instruction fetching continues along the predicted path. If the predic-
tion is incorrect, the fetched instructions are purged, and instruction fetching continues along the alternate

path.
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4.2.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses are always
assumed to be word aligned; the PowerPC processors ignore the two low-order bits of the generated branch
target address.

Branch instructions compute the effective address (EA) of the next instruction address using the following
addressing modes:

« Branch relative
« Branch conditional to relative address

Branch to absolute address

- Branch conditional to absolute address
« Branch conditional to link register
« Branch conditional to count register

In the 32-bit mode of a 64-bit implementation, the final step in the address computation is clearing the high-
order 32 bits of the target address.

Branch Relative Addressing Mode

Instructions that use branch relative addressing generate the next instruction address by sign extending and
appending 0b00 to the immediate displacement operand LI, and adding the resultant value to the current
instruction address. Branches using this addressing mode have the absolute addressing option disabled (AA
field, bit 30, in the instruction encoding = 0). The link register (LR) update option can be enabled (LK field, bit
31, in the instruction encoding = 1). This option causes the effective address of the instruction following the
branch instruction to be placed in the LR.

Figure 4-6 shows how the branch target address is generated when using the branch relative addressing
mode.

Figure 4-6. Branch Relative Addressing

0 56 29 30 3t
Instruction Encoding: 18 LI AA| LK
0 37 38 Y 61 62 63
Sign Extension LI 0fo0
0 63

Current Instruction Address

D Reserved Branch Target Address
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Branch Conditional to Relative Addressing Mode

If the branch conditions are met, instructions that use the branch conditional to relative addressing mode
generate the next instruction address by sign extending and appending 0b00 to the immediate displacement
operand (BD) and adding the resultant value to the current instruction address. Branches using this
addressing mode have the absolute addressing option disabled (AA field, bit 30, in the instruction

encoding = 0). The link register update option can be enabled (LK field, bit 31, in the instruction

encoding = 1). This option causes the effective address of the instruction following the branch instruction to
be placed in the LR.

Figure 4-7 shows how the branch target address is generated when using the branch conditional relative
addressing mode.

Figure 4-7. Branch Conditional Relative Addressing

0 56 1011 1516 30 31
Instruction Encoding: 16 BO BI BD AA(LK

|:| Reserved

0 63

Next Sequential Instruction Address

Condition
Met?

0 47 48 61 62 63

Sign Extension BD 00
0 63  /
Current Instruction Address +

0 63

Branch Target Address

Branch to Absolute Addressing Mode

Instructions that use branch to absolute addressing mode generate the next instruction address by sign
extending and appending 0b00 to the LI operand. Branches using this addressing mode have the absolute
addressing option enabled (AA field, bit 30, in the instruction encoding = 1). The link register update option
can be enabled (LK field, bit 31, in the instruction encoding = 1). This option causes the effective address of
the instruction following the branch instruction to be placed in the LR.

Figure 4-8 shows how the branch target address is generated when using the branch to absolute addressing
mode.
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0 56 29 30 31

Instruction Encoding: 18 LI AA| LK
0 37 38 y 61 62 63

Sign Extension LI 00

0 y 61 62 63

Branch Target Address 010

Branch Conditional to Absolute Addressing Mode

If the branch conditions are met, instructions that use the branch conditional to absolute addressing mode
generate the next instruction address by sign extending and appending 0b00 to the BD operand. Branches
using this addressing mode have the absolute addressing option enabled (AA field, bit 30, in the instruction
encoding = 1). The link register update option can be enabled (LK field, bit 31, in the instruction

encoding = 1). This option causes the effective address of the instruction following the branch instruction to

be placed in the LR.

Figure 4-9 shows how the branch target address is generated when using the branch conditional to absolute

addressing mode.

Figure 4-9. Branch Conditional to Absolute Addressing

0 56 10 11 15 16 29 30 31

Instruction Encoding: 16 BO BI BD AA|LK
0 63

- No
Condition Next Sequential Instruction Address
Met?

0 47 48 61 62 63

Sign Extension BD 0ofo

0 Y 61 62 63

Branch Target Address 0|0
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Branch Conditional to Link Register Addressing Mode

If the branch conditions are met, the branch conditional to link register instruction generates the next instruc-
tion address by using the contents of the LR and clearing the two low-order bits to zero. The result becomes
the effective address from which the next instructions are fetched.

The link register update option can be enabled (LK field, bit 31, in the instruction encoding = 1). This option
causes the effective address of the instruction following the branch instruction to be placed in the LR. This is

done even if the branch is not taken.

Figure 4-10 shows how the branch target address is generated when using the branch conditional to link
register addressing mode.

Figure 4-10. Branch Conditional to Link Register Addressing

Instruction Encoding:

586 10 11

15 16

20 21

30 31

BO

Bl

00000 16

LK

Condition
Met?

|:| Reserved

63

Next Sequential Instruction Address

61

LR

62 63
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Branch Conditional to Count Register Addressing Mode

If the branch conditions are met, the branch conditional to count register instruction generates the next
instruction address by using the contents of the count register (CTR) and clearing the two low-order bits to
zero. The result becomes the effective address from which the next instructions are fetched.

The link register update option can be enabled (LK field, bit 31, in the instruction encoding = 1). This option
causes the effective address of the instruction following the branch instruction to be placed in the LR. This is
done even if the branch is not taken.

Figure 4-11 shows how the branch target address is generated when using the branch conditional to count
register addressing mode.

Figure 4-11. Branch Conditional to Count Register Addressing

0 56 1011 1516 20 21 30 3t
Instruction Encoding: 19 BO BI 00000 528 LK

|:| Reserved

0 63
Next Sequential Instruction Address

Condition
Met?

0 61 62 63
CTR

Y
A
o
o

Branch Target Address
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4.2.4.2 Conditional Branch Control

For branch conditional instructions, the BO operand specifies the conditions under which the branch is taken.
The first four bits of the BO operand specify how the branch is affected by or affects the condition and count
registers. The fifth bit, shown in Table 4-20 as having the value y, is used by some PowerPC implementations
for branch prediction as described below.

The encodings for the BO operands are shown in Table 4-20. M = 32 in 32-bit mode (of a 64-bit implementa-
tion) and M = 0 in the default 64-bit mode. If the BO field specifies that the CTR is to be decremented, the
entire 64-bit CTR is decremented regardless of the 32-bit mode or the default 64-bit mode.

Table 4-20. BO Operand Encodings

BO Description

0000y Decrement the CTR, then branch if the decremented CTR[M—63] # 0 and the condition is FALSE.
0001y Decrement the CTR, then branch if the decremented CTR[M—63] = 0 and the condition is FALSE.
001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR[M—63] # 0 and the condition is TRUE.
0101y Decrement the CTR, then branch if the decremented CTR[M—63] = 0 and the condition is TRUE.
011zy Branch if the condition is TRUE.

1200y Decrement the CTR, then branch if the decremented CTR[M—63] # 0.

1201y Decrement the CTR, then branch if the decremented CTR[M—63] = 0.

1z1zz Branch always.

Note: In this table, z indicates a bit that is ignored.

The z bits should be cleared, as they may be assigned a meaning in some future version of the PowerPC architecture.

The y bit provides a hint about whether a conditional branch is likely to be taken, and may be used by some PowerPC implementations
to improve performance.

The branch always encoding of the BO operand does not have a y bit.

Clearing the y bit indicates a predicted behavior for the branch instruction as follows:
« For bex with a negative value in the displacement operand, the branch is predicted taken.
« In all other cases (bcx with a non-negative value in the displacement operand, belrx, or beetrx), the
branch is predicted not taken.
Setting the y bit reverses the preceding indications.

The sign of the displacement operand is used as described above even if the target is an absolute address.
The default value for the y bit should be 0, and should only be set to 1 if software has determined that the
prediction corresponding to y = 1 is more likely to be correct than the prediction corresponding to y = 0. Soft-
ware that does not compute branch predictions should clear the y bit.

In most cases, the branch should be predicted to be taken if the value of the following expression is 1, and
predicted to fall through if the value is 0.

((BO[O] & BO[2)]) | S) = BO[4]
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In the expression above, S (bit 16 of the branch conditional instruction coding) is the sign bit of the displace-
ment operand if the instruction has a displacement operand and is 0 if the operand is reserved. BO[4] is the y
bit, or 0 for the branch always encoding of the BO operand. (Advantage is taken of the fact that, for belrx and
bectrx, bit 16 of the instruction is part of a reserved operand and therefore must be 0.)

The 5-bit Bl operand in branch conditional instructions specifies which of the 32 bits in the CR represents the
bit to test.

When the branch instructions contain immediate addressing operands, the branch target addresses can be
computed sufficiently ahead of the branch execution and instructions can be fetched along the branch target
path (if the branch is predicted to be taken or is an unconditional branch). If the branch instructions use the
link or count register contents for the branch target address, instructions along the branch-taken path of a
branch can be fetched if the link or count register is loaded sufficiently ahead of the branch instruction execu-
tion.

Branching can be conditional or unconditional. The branch target address is first calculated from the contents
of the count or link register or from the branch immediate field. Optionally, a branch return address can be
loaded into the LR register (this sets the return address for subroutine calls). When this option is selected
(LK=1) the LR is loaded with the effective address of the instruction following the branch instruction.

Some processors may keep a stack of the link register values most recently set by branch and link instruc-
tions, with the possible exception of the form shown below for obtaining the address of the next instruction. To
benefit from this stack, the following programming conventions should be used.

In the following examples, let A, B, and Glue represent subroutine labels:

« Obtaining the address of the next instruction— use the following form of branch and link:
bcl 20,31,$+4

» Loop counts:
Keep loop counts in the count register, and use one of the branch conditional instructions to decrement
the count and to control branching (for example, branching back to the start of a loop if the decremented
counter value is nonzero).

« Computed GOTOs, case statements, etc.:
Use the count register to hold the address to branch to, and use the becetr instruction with the link register
option disabled (LK = 0) to branch to the selected address.

« Direct subroutine linkage—where A calls B and B returns to A. The two branches should be as follows:
— A calls B: use a branch instruction that enables the link register (LK = 1).

— B returns to A: use the bclr instruction with the link register option disabled (LK = 0) (the return
address is in, or can be restored to, the link register).

« Indirect subroutine linkage:
Where A calls Glue, Glue calls B, and B returns to A rather than to Glue. (Such a calling sequence is
common in linkage code used when the subroutine that the programmer wants to call, here B, is in a dif-
ferent module from the caller: the binder inserts “glue” code to mediate the branch.) The three branches
should be as follows:

— A calls Glue: use a branch instruction that sets the link register with the link register option enabled
(LK =1).

— Gilue calls B: place the address of B in the count register, and use the bectr instruction with the link
register option disabled (LK = 0).
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— B returns to A: use the belr instruction with the link register option disabled (LK = 0) (the return
address is in, or can be restored to, the link register).

4.2.4.3 Branch Instructions

Table 4-21 describes the branch instructions provided by the PowerPC processors.

Table 4-21. Branch Instructions

Name Mnemonic Operand Syntax
b

Branch E? target_addr
bla
bc

Branch bca

Conditional bel BO,Bl,target_addr

bcla

Branch Conditional | bclr

to Link Register  |bclrl BO,BI

Branch Condi-

tional to Count beetr BO,BI
bectrl

Register
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Operation

b Branch. Branch to the address computed as the sum of the
immediate address and the address of the current instruction.

ba Branch Absolute. Branch to the absolute address specified.

bl Branch then Link. Branch to the address computed as the sum of
the immediate address and the address of the current instruction. The
instruction address following this instruction is placed into the link register
(LR).

bla Branch Absolute then Link. Branch to the absolute address spec-
ified. The instruction address following this instruction is placed into the
LR.

The Bl operand specifies the bit in the CR to be used as the condition of
the branch. The BO operand is used as described in Table 4-20.

be Branch Conditional. Branch conditionally to the address com-
puted as the sum of the immediate address and the address of the current
instruction.

bca Branch Conditional Absolute. Branch conditionally to the absolute
address specified.

bel Branch Conditional then Link. Branch conditionally to the address
computed as the sum of the immediate address and the address of the
current instruction. The instruction address following this instruction is
placed into the LR.

bcla Branch Conditional Absolute then Link. Branch conditionally to
the absolute address specified. The instruction address following this
instruction is placed into the LR.

The Bl operand specifies the bit in the CR to be used as the condition of
the branch. The BO operand is used as described in Table 4-20, and the
branch target address is LR[0—61] || 0b00, with the high-order 32 bits of
the branch target address cleared in the 32-bit mode of a 64-bit implemen-
tation.

belr Branch Conditional to Link Register. Branch conditionally to the
address in the LR.

belrl  Branch Conditional to Link Register then Link. Branch condition-
ally to the address specified in the LR. The instruction address following
this instruction is then placed into the LR.

The Bl operand specifies the bit in the CR to be used as the condition of
the branch. The BO operand is used as described in Table 4-20, and the
branch target address is CTR[0—61] || 0b00, with the high-order 32 bits of
the branch target address cleared in the 32-bit mode of a 64-bit implemen-
tation.

beetr  Branch Conditional to Count Register. Branch conditionally to the
address specified in the count register.

beetrl  Branch Conditional to Count Register then Link. Branch condi-
tionally to the address specified in the count register. The instruction
address following this instruction is placed into the LR.

Note: If the “decrement and test CTR” option is specified (BO[2] = 0), the
instruction form is invalid.
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4.2.4.4 Simplified Mnemonics for Branch Processor Instructions

To simplify assembly language programming, a set of simplified mnemonics and symbols is provided for the
most frequently used forms of branch conditional, compare, trap, rotate and shift, and certain other instruc-
tions. See Appendix F, “Simplified Mnemonics,” for a list of simplified mnemonic examples.

4.2.4.5 Condition Register Logical Instructions

Condition register logical instructions, shown in Table 4-22, and the Move Condition Register Field (mcrf)
instruction are also defined as flow control instructions.

Note: If the LR update option is enabled for any of these instructions, the PowerPC architecture defines
these forms of the instructions as invalid.

Table 4-22. Condition Register Logical Instructions

Name

Condition Register
AND

Condition Register
OR

Condition Register
XOR

Condition Register
NAND

Condition Register
NOR

Condition Register
Equivalent

Condition Register
AND with
Complement

Condition Register
OR with
Complement

Move Condition
Register Field

4.2.4.6 Trap Instructions

Mnemonic

crand

cror

crxor

crnand

crnor

creqv

crandc

crorc

mcrf

Operand Syntax

crbD,crbA,crbB

crbD,crbA,crbB

crbD,crbA,crbB

crbD,crbA,crbB

crbD,crbA,crbB

crbD,crbA, crbB

crbD,crbA, crbB

crbD,crbA, crbB

crfD,crfS

Operation

The CR bit specified by crbA is ANDed with the CR bit specified by crbB.
The result is placed into the CR bit specified by crbD.

The CR bit specified by crbA is ORed with the CR bit specified by crbB.
The result is placed into the CR bit specified by crbD.

The CR bit specified by crbA is XORed with the CR bit specified by crbB.
The result is placed into the CR bit specified by crbD.

The CR bit specified by crbA is ANDed with the CR bit specified by crbB.
The complemented result is placed into the CR bit specified by crbD.

The CR bit specified by crbA is ORed with the CR bit specified by crbB.
The complemented result is placed into the CR bit specified by crbD.

The CR bit specified by crbA is XORed with the CR bit specified by crbB.
The complemented result is placed into the CR bit specified by crbD.

The CR bit specified by crbA is ANDed with the complement of the CR bit
specified by crbB and the result is placed into the CR bit specified by
crbD.

The CR bit specified by crbA is ORed with the complement of the CR bit
specified by crbB and the result is placed into the CR bit specified by
crbD.

The contents of crfS are copied into crfD. No other condition register
fields are changed.

The trap instructions shown in Table 4-23 are provided to test for a specified set of conditions. If any of the
conditions tested by a trap instruction are met, the system trap handler is invoked. If the tested conditions are
not met, instruction execution continues normally. See Appendix F, “Simplified Mnemonics,” for a complete

set of simplified mnemonics.
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Table 4-23. Trap Instructions

Name

Trap Double Word
Immediate

(64-bit only)

Trap Word Imme-
diate

Trap Double Word
(64-bit only)

Trap Word

Operand Syntax

TO,rA,SIMM

TO,rA,SIMM

TO,rA,rB

TO,rA,rB

4.2.4.7 System Linkage Instruction—UISA

Operand Syntax

The contents of rA are compared with the sign-extended SIMM operand. If
any bit in the TO operand is set and its corresponding condition is met by
the result of the comparison, the system trap handler is invoked.

The contents of the low-order 32 bits of rA are compared with the sign-
extended SIMM operand. If any bit in the TO operand is set and its corre-
sponding condition is met by the result of the comparison, the system trap
handler is invoked.

The contents of rA are compared with the contents of rB. If any bit in the
TO operand is set and its corresponding condition is met by the result of
the comparison, the system trap handler is invoked.

The contents of the low-order 32 bits of rA are compared with the contents
of the low-order 32 bits of rB. If any bit in the TO operand is set and its cor-
responding condition is met by the result of the comparison, the system
trap handler is invoked.

Table 4-24 describes the System Call (sc) instruction that permits a program to call on the system to perform
a service. See Section 4.4.1 System Linkage Instructions—QOEA,” for a complete description of the s¢ instruc-

tion.

Table 4-24. System Linkage Instruction—UISA

Name

System Call

4.2.5 Processor Control Instructions—UISA

Operand Syntax

Operation

This instruction calls the operating system to perform a service. When
control is returned to the program that executed the system call, the con-
tent of the registers will depend on the register conventions used by the
program providing the system service. This instruction is context synchro-
nizing as described in Section 4.1.5.1 Context Synchronizing Instruc-
tions.”

See Section 4.4.1 System Linkage Instructions—OEA,” for a complete
description of the sc¢ instruction.

Processor control instructions are used to read from and write to the condition register (CR), machine state
register (MSR), and special-purpose registers (SPRs). See Section 4.3.1 Processor Control Instructions—
VEA,” for the mftb instruction and Section 4.4.2 Processor Control Instructions—QOEA,” for information about
the instructions used for reading from and writing to the MSR and SPRs.

4.2.5.1 Move to/from Condition Register Instructions

U Table 4-25 summarizes the instructions for reading from or writing to the condition register.
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Table 4-25. Move to/from Condition Register Instructions

Name Mnemonic Operand Syntax | Operation

The contents of the low-order 32 bits of rS are placed into the CR under
control of the field mask specified by operand CRM. The field mask iden-

mtcrf CRM,rS tifies the 4-bit fields affected. Let i be an integer in the range 0—7. If
CRM(j) = 1, CR field i (CR bits 4 * ithrough 4 * i + 3) is set to the contents
of the corresponding field of the low-order 32 bits of rS.

Move to Condition
Register Fields

Move to Condition The contents of XER[0—3] are copied into the condition register field des-

Register from mcrxr crfD ignated by crfD. All other CR fields remain unchanged. The contents of

XER XER[0-3] are cleared.

Move from The contents of the CR are placed into the low-order 32 bits of rD. The
o . mfcr rD contents of the high-order 32 bits of rD are cleared in 64-bit implementa-

Condition Register tions.

4.2.5.2 Move to/from Special-Purpose Register Instructions (UISA)

Figure 4-26 provides a brief description of the mtspr and mfspr instructions. For more detailed information
refer to Section 8 Instruction Set.”

Table 4-26. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Operand Syntax | Operation

Move to Special- mtsor SPR.IS The value specified by rS are placed in the specified SPR. For 32-bit
Purpose Register P ’ SPRs, the low-order 32 bits of rS are placed into the SPR.

Move from Spe- The contents of the specified SPR are placed in rD. For 32-bit SPRs, the
cial-Purpose Reg- |mfspr rD,SPR low-order 32 bits of rD receive the contents of the SPR. The high-order 32
ister bits of rD are cleared.

4.2.6 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are completed with
respect to asynchronous events, and the order in which memory operations are seen by other processors or
memory access mechanisms.

The number of cycles required to complete a sync instruction depends on system parameters and on the
processor's state when the instruction is issued. As a result, frequent use of this instruction may degrade
performance slightly. The eieio instruction may be more appropriate than sync for many cases.

The PowerPC architecture defines the sync instruction with CR update enabled (Rc field, bit 31 = 1) to be an
invalid form.

The proper paired use of the Iwarx with stwex. and Idarx with stdcx. instructions allows programmers to
emulate common semaphore operations such as test and set, compare and swap, exchange memory, and
fetch and add. Examples of these semaphore operations can be found in Appendix E, “Synchronization
Programming Examples.” The lwarx instruction must be paired with an stwex. instruction, and Idarx instruc-
tion with an stdcx. instruction, with the same effective address specified by both instructions of the pair. The
only exception is that an unpaired stwex. or stdcx. instruction to any (scratch) effective address can be used
to clear any reservation held by the processor.

Note: The reservation granularity is implementation-dependent.
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The concept behind the use of the lwarx, ldarx, and stwex., and stdex. instructions is that a processor may
load a semaphore from memory, compute a result based on the value of the semaphore, and conditionally
store it back to the same location. The conditional store is performed based upon the existence of a reserva-
tion established by the preceding Iwarx or Idarx instruction. If the reservation exists when the store is
executed, the store is performed and a bit is set in the CR. If the reservation does not exist when the store is
executed, the target memory location is not modified and a bit is cleared in the CR.

The lwarx, Idarx, and stwex., and stdex. primitives allow software to read a semaphore, compute a result
based on the value of the semaphore, store the new value back into the semaphore location only if that loca-
tion has not been modified since it was first read, and determine if the store was successful. If the store was
successful, the sequence of instructions from the read of the semaphore to the store that updated the sema-
phore appear to have been executed atomically (that is, no other processor or mechanism modified the
semaphore location between the read and the update), thus providing the equivalent of a real atomic opera-
tion. However, in reality, other processors may have read from the location during this operation.

The Iwarx, Idarx, and stwex., and stdex. instructions require the EA to be aligned.

In general, the lwarx, Idarx, and stwcex., and stdex. instructions should be used only in system programs,
which can be invoked by application programs as needed.

At most one reservation exists simultaneously on any processor. The address associated with the reservation
can be changed by a subsequent Iwarx or Idarx instruction. The conditional store is performed based upon
the existence of a reservation established by the preceding Iwarx or Idarx. instruction.

A reservation held by the processor is cleared (or may be cleared, in the case of the fourth and fifth bullet
items) by one of the following:

« The processor holding the reservation executes another lwarx or Idarx instruction; this clears the first
reservation and establishes a new one.

« The processor holding the reservation executes any stwex. or stdcx. instruction whether its address
matches that of the lwarx.

« Some other processor executes a store or debz to the same reservation granule, or modifies a refer-
enced or changed bit in the same reservation granule.

« Some other processor executes a dcbtst, dcbst, debf, or debi to the same reservation granule; whether
the reservation is cleared is undefined.

« Some other processor executes a dcba to the same reservation granule. The reservation is cleared if the
instruction causes the target block to be newly established in the data cache or to be modified; otherwise,
whether the reservation is cleared is undefined.

» Some other mechanism modifies a memory location in the same reservation granule.

Note: Exceptions do not clear reservations; however, system software invoked by exceptions may clear res-
ervations.

Table 4-27 summarizes the memory synchronization instructions as defined in the UISA. See Section 4.3.2
Memory Synchronization Instructions—VEA for details about additional memory synchronization (eieio and
isync) instructions.
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Table 4-27. Memory Synchronization Instructions—UISA

Name Mnemonic Operand Syntax |Operation

Load Double Word

and Reserve Idarx 'D.rArB The EA is the sum (rA|0) + (rB). The double word in memory addressed
Indexed e by the EA is loaded into rD.

(64-bit only)

The EA is the sum (rA|0) + (rB). The word in memory addressed by the
Iwarx rD,rA,rB EA is loaded into the low-order 32 bits of rD. The contents of the high-
order 32 bits of rD are cleared for 64-bit implementations.

The EA is the sum (rA|0) + (rB).

If a reservation exists and the effective address specified by the stdcx.

instruction is the same as that specified by the load and reserve instruc-

tion that established the reservation, the contents of rS are stored into the
Store Double Word double word in memory addressed by the EA, and the reservation is

Conditional cleared. . . . -
Indexed stdex. rS,rA,rB If a reservation exists but the effective address specified by the stdcx.

(64-bit only) instruction is not the same as that specified by the load and reserve

instruction that established the reservation, the reservation is cleared, and
it is undefined whether the contents of rS are stored into the double word
in memory addressed by the EA.

If a reservation does not exist, the instruction completes without altering
memory or the contents of the cache.

Load Word and
Reserve Indexed

The EA is the sum (rA|0) + (rB).

If a reservation exists and the effective address specified by the stwex.
instruction is the same as that specified by the load and reserve instruc-
tion that established the reservation, the low-order 32 bits contents of rS
are stored into the word in memory addressed by the EA, and the reserva-
tion is cleared.

stwex. rS,rA,rB If a reservation exists but the effective address specified by the stwex.
instruction is not the same as that specified by the load and reserve
instruction that established the reservation, the reservation is cleared, and
it is undefined whether the low-order 32 bits contents of rS are stored into
the word in memory addressed by the EA.
If a reservation does not exist, the instruction completes without altering
memory or the contents of the cache.

Store Word Condi-
tional Indexed

Executing a sync instruction ensures that all instructions preceding the
sync instruction appear to have completed before the sync instruction
completes, and that no subsequent instructions are initiated by the pro-
cessor until after the sync instruction completes. When the sync instruc-
tion completes, all memory accesses caused by instructions preceding
the sync instruction will have been performed with respect to all other
mechanisms that access memory.

See Chapter 8, “Instruction Set,” for more information.

Synchronize sync —

4.2.7 Recommended Simplified Mnemonics

To simplify assembly language programs, a set of simplified mnemonics is provided for some of the most
frequently used operations (such as no-op, load immediate, load address, move register, and complement
register). Assemblers should provide the simplified mnemonics listed in Appendix F.9 Recommended Simpli-
fied Mnemonics.” Programs written to be portable across the various assemblers for the PowerPC architec-
ture should not assume the existence of mnemonics not described in this document.

For a complete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics.”
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4.3 PowerPC VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the memory model that can
be assumed by software processes, and includes descriptions of the cache model, cache-control instructions,
address aliasing, and other related issues. Implementations that conform to the VEA also adhere to the UISA,
but may not necessarily adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

4.3.1 Processor Control Instructions—VEA

The VEA defines the mftb instruction (user-level instruction) for reading the contents of the time base
register; see Chapter 5, “Cache Model and Memory Coherency,” for more information. Table 4-28 describes
the mftb instruction.

Simplified mnemonics are provided (See Appendix F.8 Simplified Mnemonics for Special-Purpose Regis-
ters”) for the mftb instruction so it can be coded with the TBR name as part of the mnemonic rather than
requiring it to be coded as an operand. The simplified mnemonics Move from Time Base (mftb) and Move
from Time Base Upper (mftbu) are variants of the mftb instruction rather than of the mfspr instruction. The
mftb instruction serves as both a basic and simplified mnemonic. Assemblers recognize an mftb mnemonic
with two operands as the basic form, and an mftb mnemonic with one operand as the simplified form.

On 32-bit implementations, it is not possible to read the entire 64-bit time base register in a single instruction.
The mftb simplified mnemonic moves from the lower half of the time base register (TBL) to a GPR, and the
mftbu simplified mnemonic moves from the upper half of the time base (TBU) to a GPR.

Table 4-28. Move from Time Base Instruction

Name Mnemonic Operand Syntax |Operation

The TBR field denotes either time base lower or time base upper,
encoded as shown in Table 4-29. and Table 4-30. . The contents of the
designated register are copied to rD. When reading TBU on a 64-bit
implementation, the high-order 32 bits of rD are cleared. When reading
TBL on a 64-bit implementation, the 64 bits of the time base are copied to
rD.

Move from Time

Base mftb rD, TBR

Table 4-29 summarizes the time base (TBL/TBU) register encodings to which user-level access (using mftb)
is permitted (as specified by the VEA).

Table 4-29. User-Level TBR Encodings (VEA)

Decimal Value in TBR Field tbr[0—4] tbr[5-9] Register Name Description
268 01100 01000 TBL Time base lower (read-only)
269 01101 01000 TBU Time base upper (read-only)

Table 4-30 summarizes the TBL and TBU register encodings to which supervisor-level access (using mtspr)
is permitted.
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Table 4-30. Supervisor-Level TBR Encodings (VEA)

Decimal Value in SPR Field spr[0—4] spr[5-9] Register Name Description
284 11100 01000 TBL! Time base lower (write only)
285 11101 01000 TBU! Time base upper (write only)

1. Moving from the time base (TBL and TBU) can also be accomplished with the mftb instruction.

4.3.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are completed with U
respect to asynchronous events, and the order in which memory operations are seen by other processors or
memory access mechanisms. See Chapter 5, “Cache Model and Memory Coherency’ for additional informa-

tion about these instructions and about related aspects of memory synchronization.

System designs that use a second-level cache should take special care to recognize the hardware signaling V
caused by a sync operation and perform the appropriate actions to guarantee that memory references that
may be queued internally to the second-level cache have been performed globally.

In addition to the sync instruction (specified by UISA), the VEA defines the Enforce In-Order Execution of 1/0
(eieio) and Instruction Synchronize (isync) instructions; see Table 4-31. The number of cycles required to
complete an eieio instruction depends on system parameters and on the processor's state when the instruc-
tion is issued. As a result, frequent use of this instruction may degrade performance slightly.

The isync instruction causes the processor to wait for any preceding instructions to complete, discard all
prefetched instructions, and then branch to the next sequential instruction after isync (which has the effect of
clearing the pipeline of prefetched instructions).
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Table 4-31. Memory Synchronization Instructions—VEA

Name Mnemonic Operand Syntax |Operation

The eieio instruction provides an ordering function for the effects of loads
and stores executed by a processor.

Enforce In-Order -

Executionof /O ©'€° -
Executing an isync instruction ensures that all previous instructions com-
plete before the isync instruction completes, although memory accesses
caused by those instructions need not have been performed with respect
to other processors and mechanisms. It also ensures that the processor

isync — initiates no subsequent instructions until the isync instruction completes.
Finally, it causes the processor to discard any prefetched instructions, so
subsequent instructions will be fetched and executed in the context estab-
lished by the instructions preceding the isync instruction.

This instruction does not affect other processors or their caches.

Instruction Syn-
chronize

4.3.3 Memory Control Instructions—VEA

Memory control instructions include the following types:
« Cache management instructions (user-level and supervisor-level)
« Segment register manipulation instructions
« Segment register manipulation instructions

« Translation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the VEA. See Section 4.4.3
Memory Control Instructions—QOEA,” for more information about supervisor-level cache, segment register
manipulation, and translation lookaside buffer management instructions.

4.3.3.1 User-Level Cache Instructions—VEA

The instructions summarized in this section provide user-level programs the ability to manage on-chip caches
if they are implemented. See Chapter 5, “Cache Model and Memory Coherency,” for more information about
cache topics.

As with other memory-related instructions, the effect of the cache management instructions on memory are
weakly ordered. If the programmer needs to ensure that cache or other instructions have been performed
with respect to all other processors and system mechanisms, a sync instruction must be placed in the
program following those instructions.

Note: When data address translation is disabled (MSR[DR] = 0), the Data Cache Block Clear to Zero (dcbz)
and the Data Cache Block Allocate (dcba) instructions allocate a cache block in the cache and may not verify
that the physical address (referred to as real address in the architecture specification) is valid. If a cache
block is created for an invalid physical address, a machine check condition may result when an attempt is
made to write that cache block back to memory. The cache block could be written back as a result of the exe-
cution of an instruction that causes a cache miss and the invalid addressed cache block is the target for
replacement or a Data Cache Block Store (dcbst) instruction.

Any cache control instruction that generates an effective address that corresponds to a direct-store segment
(segment descriptor[T] = 1) is treated as a no-op.

Note: The direct-store facility is being phased out of the architecture and will not likely be supported in future
devices.
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Table 4-32 summarizes the cache instructions defined by the VEA.

Note: These instructions are accessible to user-level programs.

Table 4-32. User-Level Cache Instructions

Name Mnemonic

Data Cache Block

Touch debt

Data Cache Block

Touch for Store dcbtst

Data Cache Block

Allocate deba

Data Cache Block

Clear to Zero debz

pem4_instr_Set.fm.2.0
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Operand Syntax

rA,rB

rA,rB

rA,rB

rA,rB

Operation

The EA is the sum (rA|0) + (rB).

This instruction is a hint that performance will probably be improved if the
block containing the byte addressed by EA is fetched into the data cache,
because the program will probably soon load from the addressed byte.

The EA is the sum (rA|0) + (rB).

This instruction is a hint that performance will probably be improved if the
block containing the byte addressed by EA is fetched into the data cache,
because the program will probably soon store into the addressed byte.

The EA is the sum (rA|0) + (rB).

If the cache block containing the byte addressed by the EA is in the data
cache, all bytes of the cache block are made undefined, but the cache
block is still considered valid. Note that programming errors can occur if
the data in this cache block is subsequently read or used inadvertently.

If the page containing the byte addressed by the EA is not in the data
cache and the corresponding page is marked caching allowed (I = 0), the
cache block is allocated (and made valid) in the data cache without fetch-
ing the block from main memory, and the value of all bytes of the cache
block is undefined.

If the page containing the byte addressed by the EA is marked caching
inhibited (WIM = x1x), this instruction is treated as a no-op.

If the cache block addressed by the EA is located in a page marked as
memory coherent (WIM = xx1) and the cache block exists in the caches of
other processors, memory coherence is maintained in those caches.

The dcba instruction is treated as a store to the addressed byte with
respect to address translation, memory protection, referenced and
changed recording, and the ordering enforced by eieio or by the combina-
tion of caching-inhibited and guarded attributes for a page.

This instruction is optional in the PowerPC architecture.

(In the PowerPC OEA, the dcba instruction is additionally defined to clear
all bytes of a newly established block to zero in the case that the block did
not already exist in the cache.)

The EA is the sum (rA|0) + (rB).

If the cache block containing the byte addressed by the EA is in the data
cache, all bytes of the cache block are cleared to zero.

If the page containing the byte addressed by the EA is not in the data
cache and the corresponding page is marked caching allowed (I = 0), the
cache block is established in the data cache without fetching the block
from main memory, and all bytes of the cache block are cleared to zero.
If the page containing the byte addressed by the EA is marked caching
inhibited (WIM = x1x) or write-through (WIM = 1xx), either all bytes of the
area of main memory that corresponds to the addressed cache block are
cleared to zero, or an alignment exception occurs.

If the cache block addressed by the EA is located in a page marked as
memory coherent (WIM = xx1) and the cache block exists in the caches of
other processors, memory coherence is maintained in those caches.

The dcbz instruction is treated as a store to the addressed byte with
respect to address translation, memory protection, referenced and
changed recording, and the ordering enforced by eieio or by the combina-
tion of caching-inhibited and guarded attributes for a page.
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Table 4-32. User-Level Cache Instructions (Continued)

Name Mnemonic Operand Syntax

Data Cache Block

Store dcbst rA,rB

Data Cache Block

Flush dcbf rA,rB
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Operation

The EA is the sum(rA|0) + (rB).

If the cache block containing the byte addressed by the EA is located in a
page marked memory coherent (WIM = xx1), and a cache block contain-
ing the byte addressed by EA is in the data cache of any processor and
has been modified, the cache block is written to main memory.

If the cache block containing the byte addressed by the EA is located in a
page not marked memory coherent (WIM = xx0), and a cache block con-
taining the byte addressed by EA is in the data cache of this processor
and has been modified, the cache block is written to main memory.

The function of this instruction is independent of the write-through/write-
back and caching-inhibited/caching-allowed modes of the cache block
containing the byte addressed by the EA.

The dcbst instruction is treated as a load from the addressed byte with
respect to address translation and memory protection. It may also be
treated as a load for referenced and changed bit recording except that ref-
erenced and changed bit recording may not occur.

The EA is the sum (rA|0) + (rB).
The action taken depends on the memory mode associated with the tar-
get, and on the state of the block. The following list describes the action
taken for the various cases, regardless of whether the page or block con-
taining the addressed byte is designated as write-through or if it is in the
caching-inhibited or caching-allowed mode.
« Coherency required (WIM = xx1)
— Unmodified block—Invalidates copies of the block in the caches of
all processors.
— Modified block—Copies the block to memory. Invalidates copies
of the block in the caches of all processors.
— Absent block—If modified copies of the block are in the caches of
other processors, causes them to be copied to memory and invali-
dated. If unmodified copies are in the caches of other processors,
causes those copies to be invalidated.
« Coherency not required (WIM = xx0)
— Unmodified block—Invalidates the block in the processor’s cache.
— Modified block—Copies the block to memory. Invalidates the
block in the processor’s cache.
— Absent block—Does nothing.
The function of this instruction is independent of the write-through/write-
back and caching-inhibited/caching-allowed modes of the cache block
containing the byte addressed by the EA.
The dcbf instruction is treated as a load from the addressed byte with
respect to address translation and memory protection. It may also be
treated as a load for referenced and changed bit recording except that ref-
erenced and changed bit recording may not occur.
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Table 4-32. User-Level Cache Instructions (Continued)

Name Mnemonic Operand Syntax

Instruction Cache

Block Invalidate Icbl rArB

4.3.4 External Control Instructions

Operation

The EA is the sum (rA|0) + (rB).

If the cache block containing the byte addressed by EA is located in a
page marked memory coherent (WIM = xx1), and a cache block contain-
ing the byte addressed by EA is in the instruction cache of any processor,
the cache block is made invalid in all such instruction caches, so that the
next reference causes the cache block to be refetched.

If the cache block containing the byte addressed by EA is located in a
page not marked memory coherent (WIM = xx0), and a cache block con-
taining the byte addressed by EA is in the instruction cache of this proces-
sor, the cache block is made invalid in that instruction cache, so that the
next reference causes the cache block to be refetched.

The function of this instruction is independent of the write-through/write-
back and caching-inhibited/caching-allowed modes of the cache block
containing the byte addressed by the EA.

The icbi instruction is treated as a load from the addressed byte with
respect to address translation and memory protection. It may also be
treated as a load for referenced and changed bit recording except that ref-
erenced and changed bit recording may not occur.

The external control instructions allow a user-level program to communicate with a special-purpose device.
Two instructions are provided and are summarized in Table 4-33.

Table 4-33. External Control Instructions

Name Mnemonic Operand Syntax

External Control In

Word Indexed eciwx rD,rA,1B

External Control

Out Word Indexed ecowx rSrAr8

pem4_instr_Set.fm.2.0
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Operation

The EA is the sum (rA|0) + (rB).

A load word request for the physical address corresponding to the EA is
sent to the device identified by the EAR[RID] (bits 26—31), bypassing the
cache. The word returned by the device is placed into the low-order 32
bits of rD. The value in the high-order 32 bits of rD is cleared to zero in 64-
bit implementations. The EA sent to the device must be word-aligned.
This instruction is treated as a load from the addressed byte with respect
to address translation, memory protection, referenced and changed
recording, and the ordering performed by eieio.

This instruction is optional.

The EA is the sum (rA|0) + (rB).

A store word request for the physical address corresponding to the EA
and the contents of the low-order 32 bits of rS are sent to the device iden-
tified by EAR[RID] (bits 26—31), bypassing the cache. The EA sent to the
device must be word-aligned.

This instruction is treated as a store to the addressed byte with respect to
address translation, memory protection, referenced and changed record-
ing, and the ordering performed by eieio. Software synchronization is
required in order to ensure that the data access is performed in program
order with respect to data accesses caused by other store or ecowx
instructions, even though the addressed byte is assumed to be caching-
inhibited and guarded.

This instruction is optional.
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4.4 PowerPC OEA Instructions

The PowerPC operating environment architecture (OEA) includes the structure of the memory management
model, supervisor-level registers, and the exception model. Implementations that conform to the OEA also
adhere to the UISA and the VEA. This section describes the instructions provided by the OEA.

4.4.1 System Linkage Instructions—OEA

This section describes the system linkage instructions (see Table 4-34). The sc instruction is a user-level
instruction that permits a user program to call on the system to perform a service and causes the processor to
take an exception. The rfi and rfid instructions areis a supervisor-level instructions that are is useful for
returning from an exception handler.

Table 4-34. System Linkage Instructions—OEA

Name Mnemonic Operand Syntax |Operation

When executed, the effective address of the instruction following the sc
instruction is placed into SRRO. Bits 33—36 and 42—47 (bits 14, and 10—
15 for 32-bit implementations) of SRR1 are cleared. Additionally, bits 48—
55, 57-59,and 62—63 (16—23, 25—27, and 30-31 for 32-bit implementa-
tions) of the MSR are placed into the corresponding bits of SRR1.
Depending on the implementation, additional bits of MSR may also be
System Call sc - saved in SRR1. Then a system call exception is generated. The exception
causes the MSR to be altered as described in Section 6.4 Exception Defi-
nitions.”
The exception causes the next instruction to be fetched from offset 0xC00
from the base physical address indicated by the new setting of MSR[IP].

This instruction is context synchronizing.
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Table 4-34. System Linkage Instructions—OEA (Continued)

Name Mnemonic Operand Syntax |Operation

Bits 16—23, 2527, and 30-31 of SRR1 are placed into the corresponding
bits of the MSR. Depending on the implementation, additional bits of MSR
may also be restored from SRR1. If the new MSR value does not enable
any pending exceptions, the next instruction is fetched, under control of
the new MSR value, from the address SRRO[0—29] || 0b00.

If the new MSR value enables one or more pending exceptions, the

Return from exception associated with the highest priority pending exception is gener-

Interrupt rfi — ated; in this case the value placed into SRRO (machine status

(32-bit only) save/restore 0) by the exception processing mechanism is the address of
the instruction that would have been executed next had the exception not
occurred.

This is a supervisor-level instruction and is context-synchronizing.

This instruction is defined only for 32-bit implementations. The use of the
rfi instruction on a 64-bit implementation will invoke the system exception
handler.

Bits 0, 4855, 5759, and 62—63 of SRR1 are placed into the correspond-
ing bits of the MSR. Depending on the implementation, additional bits of
MSR may also be restored from SRR1. If the new MSR value does not
enable any pending exceptions, the next instruction is fetched, under con-
trol of the new MSR value, from the address SRRO [0—61] || 0b00 (when
SF =1 in the new MSR value) or 0x0000_0000 || SRR0[32—61] || 0b00

i (when SF = 0 in the new MSR value).

Return from il T If the new MSR value enables one or more pending exceptions, the
Interrupt exception associated with the highest priority pending exception is gener-
ated; in this case, the value placed into SRRO (machine status
save/restore 0) by the exception processing mechanism is the address of
the instruction that would have been executed next had the exception not
occurred.

This is a supervisor-level instruction and is context-synchronizing.

Bits 0, 4855, 5759, and 62—63 of SRR1 are placed into the correspond-
ing bits of the MSR. Depending on the implementation, additional bits of
MSR may also be restored from SRR1. If the new MSR value does not
enable any pending exceptions, the next instruction is fetched, under con-
trol of the new MSR value, from the address SRR0[0—61] || 0b0O0 (default
64-bit mode) or (32)0 || the low-order 32 bits of SRRO || 0b00 (32-bit mode
of 64-bit implementations).
Interrupt Double If the new MSR yalue enables one or more pending exceptions, t.he
Word rfid — exception associated with the highest priority pending exception is gener-
) ated; in this case, the value placed into SRRO (machine status
(64-bit only) save/restore 0) by the exception processing mechanism is the address of
the instruction that would have been executed next had the exception not
occurred.
This is a supervisor-level instruction and is context-synchronizing.
This instruction is defined only for 64-bit implementations. The use of the
rfid instruction on a 32-bit implementation will invoke the system excep-
tion handler.

Return from
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4.4.2 Processor Control Instructions—OEA

This section describes the processor control instructions that are used to read from and write to the MSR and
the SPRs.

4.4.2.1 Move to/from Machine State Register Instructions

Table 4-35 summarizes the instructions used for reading from and writing to the MSR.

Table 4-35. Move to/from Machine State Register Instructions

Name Mnemonic Operand Syntax |Operation

The contents of rS are placed into the MSR.
Move to Machlne This instruction is a supervisor-level instruction and is context synchroniz-
State Register mtmsr rS ing except with respect to alterations to the POW and LE bits. Refer to
(32-bit only) Section 2.3.18 Synchronization Requirements for Special Registers and

for Lookaside Buffers,” for more information.

Bits 32—63 of rS are placed into the MSR. Bits 0—31 of the MSR remain
unchanged.

S This instruction is a supervisor-level instruction and is context synchroniz-
ing except with respect to alterations to the POW and LE bits. Refer to
Section 2.3.18 Synchronization Requirements for Special Registers and
for Lookaside Buffers,” for more information.

Move to Machine | mtmsr
State Register

Move to Machine The contents of rS are placed into the MSR.

State Register This instruction is a supervisor-level instruction and is context synchroniz-
Double Word mtmsrd rS ing except with respect to alterations to the POW and LE bits. Refer to
Section 2.3.18 Synchronization Requirements for Special Registers and

(64-oitonly) for Lookaside Buffers,” for more information.

Move from . o .
Machine State mfmsr D The contents of the MSR are placed into rD. This is a supervisor-level
Register instruction.

4.4.2.2 Move to/from Special-Purpose Register Instructions (OEA)

Provided is a brief description of the mtspr and mfspr instructions (see Table 4-36). For more detailed infor-
mation, see Chapter 8, “Instruction Set.” Simplified mnemonics are provided for the mtspr and mfspr instruc-
tions in Appendix F, “Simplified Mnemonics.” For a discussion of context synchronization requirements when
altering certain SPRs, refer to Appendix E, “Synchronization Programming Examples.”

Table 4-36. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Operand Syntax | Operation

The SPR field denotes a special-purpose register. The contents of rS are

placed into the designated SPR. For SPRs that are 32 bits long, the con-
mtspr SPR,rS tents of the low-order 32 bits of rS are placed into the SPR.

For this instruction, SPRs TBL and TBU are treated as separate 32-bit

registers; setting one leaves the other unaltered.

Move to Special-
Purpose Register

Move from ) . .
1 The SPR field denotes a special-purpose register. The contents of the
ggg?slir Purpose | mtspr rD,SPR designated SPR are placed into rD.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as
a 10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are reversed in
the instruction encoding, with the high-order 5 bits appearing in bits 16—20 of the instruction encoding and the
low-order 5 bits in bits 11—15.
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For information on SPR encodings (both user and supervisor-level), see Chapter 8, “Instruction Set.”

Note: There are additional SPRs specific to each implementation; for implementation-specific SPRs, see the
user’'s manual for your particular processor.

4.4.3 Memory Control Instructions—OEA

Memory control instructions include the following types of instructions:
« Cache management instructions (supervisor-level and user-level)
« Segment register manipulation instructions

« Translation lookaside buffer management instructions
This section describes supervisor-level memory control instructions. See Section 4.3.3 Memory Control
Instructions—VEA,” for more information about user-level cache management instructions.
4.4.3.1 Supervisor-Level Cache Management Instruction

Table 4-37 summarizes the operation of the only supervisor-level cache management instruction. See
Section 4.3.3.1 User-Level Cache Instructions—VEA for cache instructions that provide user-level programs
the ability to manage the on-chip caches.

Note: Any cache control instruction that generates an effective address that corresponds to a direct-store
segment (segment descriptor[T] = 1) is treated as a no-op.

Note: The direct-store facility is being phased out of the architecture and will not likely be supported in future
devices.
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Table 4-37. Cache Management Supervisor-Level Instruction

Name Mnemonic Operand Syntax

Data Cache Block

Invalidate dcbi rArB

Operation

The EA is the sum (rA|0) + (rB).

The action taken depends on the memory mode associated with the tar-
get, and the state (modified, unmodified) of the cache block. The following
list describes the action to take if the cache block containing the byte
addressed by the EA is or is not in the cache.

» Coherency required (WIM = xx1)

— Unmodified cache block—Invalidates copies of the cache block
in the caches of all processors.

— Modified cache block—Invalidates the copy of the cache block
in the cache of the processor where the block is found. (there
can only be one modified block). The modified contents are dis-
carded.

— Absent cache block—If copies are in the caches of any other
processor, causes the copies to be invalidated. (Discards any
modified contents.)

« Coherency not required (WIM = xx0)

— Unmodified cache block—Invalidates the cache block in the
local cache.

— Modified cache block—Invalidates the cache block in the local
cache. (Discards the modified contents.)

— Absent cache block—No action is taken.

When data address translation is enabled, MSR[DT]=1, and the logical
(effective) address has no translation, a data access exception occurs.
The function of this instruction is independent of the write-through and
cache-inhibited/allowed modes determined by the WIM bit settings of the
block containing the byte addressed by the EA.

This instruction is treated as a store to the addressed byte with respect to
address translation and protection, except that the change bit need not be
set, and if the change bit is not set then the reference bit need not be set.

4.4.3.2 Segment Register Manipulation Instructions

The instructions listed in Table 4-38 provide access to the segment registers for 32-bit implementations, and
effective segments 0 through 15 through the use of the optional 64-bit bridge instructions. These instructions
operate completely independently of the MSR[IR] and MSR[DR] bit settings. Refer to Section 2.3.18 Synchro-
nization Requirements for Special Registers and for Lookaside Buffers for serialization requirements and
other recommended precautions to observe when manipulating the segment registers.
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Table 4-38. Segment Register Manipulation Instructions

Name

Move to Segment
Register
(32-bit only)

Move to Segment
Register

Move to Segment
Register Double
Word

Move to Segment
Register Double
Word Indirect

Move to Segment
Register Indirect

(32-bit only)

Move to Segment
Register Indirect

Move from Seg-
ment Register

(32-bit only)

Move from Seg-
ment Register

Move from Seg-
ment Register Indi-
rect

(32-bit only)

Move from Seg-
ment Register Indi-
rect

Mnemonic

mtsr

mtsr

mtsrd

mtsrdin

mtsrin

mtsrin

mfsr

mfsr

mfsrin

mfsrin
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Operand Syntax

SR,rS

SR,rS

SR,rS

rS,rB

rS,rB

rS,rB

rD,SR

tD,SR

rD,rB

rD,rB

Operation

The contents of rS are placed into segment register specified by operand
SR.

This is a supervisor-level instruction.

The SLB entry selected by SR is set as though it were loaded from a seg-
ment table entry. Refer to Section 8.2 PowerPC Instruction Set for addi-
tional information about the operation of the 64-bit bridge mtsr instruction.

This instruction is a supervisor-level instruction.

The SLB entry selected by SR is set as though it were loaded from a seg-
ment table entry. Refer to Section 8.2 PowerPC Instruction Set for addi-
tional information about the operation of the 64-bit bridge mtsrd
instruction.

This instruction is a supervisor-level instruction.

This instruction is defined only for 64-bit implementations. The use of the
mtsrd instruction on a 32-bit implementation will invoke the system
exception handler.

The SLB entry selected by bits 32—35 of register rB is set as though it
were loaded from a segment table entry. Refer to Section 8.2 PowerPC
Instruction Set for additional information about the operation of the 64-bit
bridge mtsrdin instruction.

This instruction is a supervisor-level instruction.

This instruction is defined only for 64-bit implementations. The use of the
mtsrdin instruction on a 32-bit implementation will invoke the system
exception handler.

The contents of rS are copied to the segment register selected by bits 0—
3 of rB.

This is a supervisor-level instruction.

The SLB entry selected by bits 32—35 of register rB is set as though it
were loaded from a segment table entry. Refer to Section 8.2 PowerPC
Instruction Set for additional information about the operation of the 64-bit
bridge mtsrin instruction.

This instruction is a supervisor-level instruction.

The contents of the segment register specified by operand SR are placed
into rD.

This is a supervisor-level instruction.

The contents of the SLB entry specified by operand SR are placed into
rD. Refer to Section 8.2 PowerPC Instruction Set for additional informa-
tion about the operation of the 64-bit bridge mfsr instruction.

This instruction is a supervisor-level instruction.

The contents of the segment register selected by bits 0—3 of rB are copied
into rD.

This is a supervisor-level instruction.

The contents of the SLB entry specified by bits 32—35 of rB are placed
into rD. Refer to Section 8.2 PowerPC Instruction Set for additional infor-
mation about the operation of the 64-bit bridge mfsrin instruction.

This instruction is a supervisor-level instruction.
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4.4.3.3 Translation and Segment Lookaside Buffer Management Instructions

The address translation mechanism is defined in terms of segment descriptors and page table entries (PTESs)
used by PowerPC processors to locate the logical-to-physical address mapping for a particular access.
These segment descriptors and PTEs reside in segment tables and page tables in memory, respectively.

For performance reasons, many processors implement a segment lookaside buffer (SLB) (for 64-bit imple-
mentations) and one or more translation lookaside buffers on-chip. These are buffers (caches) that cache a
portion of the segment table and page table, respectively. As changes are made to the address translation
tables, it is necessary to maintain coherency between the SLB and TLB and the updated tables. This is done
by invalidating SLB and TLB entries, or occasionally by invalidating the entire SLB or TLB, and allowing the
translation caching mechanism to refetch from the tables.

Note: In 32-bit implementations, segment descriptors reside in 16 segment registers, and no other segment
tables in memory (or SLBs) are defined.

Each PowerPC implementation that has an SLB provides means for invalidating an individual SLB entry and
invalidating the entire SLB. Each PowerPC implementation that has a TLB provides means for invalidating an
individual TLB entry and invalidating the entire TLB.

If a 64-bit implementation does not implement an SLB, it treats the corresponding instructions (slbie and
slbia) either as no-ops or as illegal instructions. Similarly, if a processor does not implement a TLB, it treats
the corresponding instructions (tlbie, tlbia, and tlbsync) either as no-ops or as illegal instructions.

Refer to Chapter 7, “Memory Management,” for more information about TLB operation. Table 4-39 summa-
rizes the operation of the SLB and TLB instructions.

Table 4-39. Translation Lookaside Buffer Management Instructions

Name Mnemonic Operand Syntax |Operation

The EA is the contents of rB. If the SLB contains an entry corresponding
to the EA, that entry is removed from the SLB. The SLB search is per-

SLB Invalidate formed regardless of the settings of MSR[IR] and MSR[DR]. Block

Entry slbie B address translation for the EA, if any, is ignored.

(64-bit only) When slbie is issued, the ASR need not point to a valid segment table.
This is a supervisor-level instruction and optional in the PowerPC archi-
tecture.

All SLB entries are made invalid. The SLB is invalidated regardless of the

SLB Invalidate Al settings of MSRJ[IR] and MSR[DR].

(64-bit only) slbia — When slbia is issued, the ASR need not point to a valid segment table.
v This is a supervisor-level instruction and optional in the PowerPC archi-
tecture.
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Table 4-39. Translation Lookaside Buffer Management Instructions (Continued)

Name Mnemonic Operand Syntax

TLB Invalidate

Entry tibie rB

TLB Invalidate All  tlbia —

TLB Synchronize | tlbsync —

Operation

The EA is the contents of rB. If the TLB contains an entry corresponding
to the EA, that entry is removed from the TLB. The TLB search is per-
formed regardless of the settings of MSR[IR] and MSR[DR]. Block
address translation for the EA, if any, is ignored.

This instruction causes the target TLB entry to be invalidated in all proces-
Sors.

The operation performed by this instruction is treated as a caching inhib-
ited and guarded data access with respect to the ordering performed by
eieio.

This is a supervisor-level instruction and optional in the PowerPC archi-
tecture.

All TLB entries are made invalid. The TLB is invalidated regardless of the
settings of MSRJ[IR] and MSR[DR].

This instruction does not cause the entries to be invalidated in other pro-
cessors.

This is a supervisor-level instruction and optional in the PowerPC archi-
tecture.

Executing a tlbsync instruction ensures that all tibie instructions previ-
ously executed by the processor executing the tlbsync instruction have
completed on all processors.

The operation performed by this instruction is treated as a caching inhib-
ited and guarded data access with respect to the ordering performed by
eieio.

This is a supervisor-level instruction and optional in the PowerPC archi-
tecture.

Because the presence and exact semantics of the translation lookaside buffer management instructions is
implementation-dependent, system software should incorporate uses of the instruction into subroutines to

minimize compatibility problems.
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5. Cache Model and Memory Coherency

This chapter summarizes the cache model as defined by the virtual environment architecture (VEA) as well
as the built-in architectural controls for maintaining memory coherency. This chapter describes the cache
control instructions and special concerns for memory coherency in single-processor and multiprocessor
systems. Aspects of the operating environment architecture (OEA) as they relate to the cache model and
memory coherency are also covered.

The PowerPC architecture provides for relaxed memory coherency. Features such as write-back caching and
out-of-order execution allow software engineers to exploit the performance benefits of weakly-ordered
memory access. The architecture also provides the means to control the order of accesses for order-critical
operations.

In this chapter, the term multiprocessor is used in the context of maintaining cache coherency. In this context,
a system could include other devices that access system memory, maintain independent caches, and func-
tion as bus masters.

Each cache management instruction operates on an aligned unit of memory. The VEA defines this cacheable
unit as a block. Since the term ‘block’ is easily confused with the unit of memory addressed by the block
address translation (BAT) mechanism, this chapter uses the term ‘cache block’ to indicate the cacheable unit.
The size of the cache block can vary by instruction and by implementation. In addition, the unit of memory at
which coherency is maintained is called the coherence block. The size of the coherence block is also imple-
mentation-specific. However, the coherence block is often the same size as the cache block.

5.1 The Virtual Environment

The user instruction set architecture (UISA) relies upon a memory space of 254 (232 in 32-bit implementa-

tions) bytes for applications. The VEA expands upon the memory model by introducing virtual memory,
caches, and shared memory multiprocessing. Although many applications will not need to access the
features introduced by the VEA, it is important that programmers are aware that they are working in a virtual
environment where the physical memory may be shared by multiple processes running on one or more
processors.

This section describes load and store ordering, atomicity, the cache model, memory coherency, and the VEA
cache management instructions. The features of the VEA are accessible to both user-level and supervisor-
level applications (referred to as problem state and privileged state, respectively, in the architecture specifica-
tion).

The mechanism for controlling the virtual memory space is defined by the OEA. The features of the OEA are
accessible to supervisor-level applications only (typically operating systems). For more information on the
address translation mechanism, refer to Chapter 7, “Memory Management.”

5.1.1 Memory Access Ordering

The VEA specifies a weakly consistent memory model for shared memory multiprocessor systems. This
model provides an opportunity for significantly improved performance over a model that has stronger consis-
tency rules, but places the responsibility for access ordering on the programmer. When a program requires
strict access ordering for proper execution, the programmer must insert the appropriate ordering or synchro-
nization instructions into the program.
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The order in which the processor performs memory accesses, the order in which those accesses complete in
memory, and the order in which those accesses are viewed as occurring by another processor may all be
different. A means of enforcing memory access ordering is provided to allow programs (or instances of
programs) to share memory. Similar means are needed to allow programs executing on a processor to share
memory with some other mechanism, such as an I/O device, that can also access memory.

Various facilities are provided that enable programs to control the order in which memory accesses are
performed by separate instructions. First, if separate store instructions access memory that is designated as
both caching-inhibited and guarded, the accesses are performed in the order specified by the program. Refer
to Section 5.1.4 Memory Coherency and Section 5.2.1 Memory/Cache Access Attributes for a complete
description of the caching-inhibited and guarded attributes. Additionally, two instructions, eieio and sync, are
provided that enable the program to control the order in which the memory accesses caused by separate
instructions are performed.

No ordering should be assumed among the memory accesses caused by a single instruction (that is, by an
instruction for which multiple accesses are not atomic), and no means are provided for controlling that order.
Chapter 4, “Addressing Modes and Instruction Set Summary,” contains additional information about the sync
and eieio instructions.

5.1.1.1 Enforce In-Order Execution of I/0O Instruction

The eieio instruction permits the program to control the order in which loads and stores are performed when
the accessed memory has certain attributes, as described in Chapter 8, “Instruction Set.” For example, eieio
can be used to ensure that a sequence of load and store operations to an I/O device’s control registers
updates those registers in the desired order. The eieio instruction can also be used to ensure that all stores
to a shared data structure are visible to other processors before the store that releases the lock is visible to
them.

The eieio instruction may complete before memory accesses caused by instructions preceding the eieio
instruction have been performed with respect to system memory or coherent storage as appropriate.

If stronger ordering is desired, the sync instruction must be used.

5.1.1.2 Synchronize Instruction

When a portion of memory that requires coherency must be forced to a known state, it is necessary to
synchronize memory with respect to other processors and mechanisms. This synchronization is accom-
plished by requiring programs to indicate explicitly in the instruction stream, by inserting a sync instruction,
that synchronization is required. Only when sync completes are the effects of all coherent memory accesses
previously executed by the program guaranteed to have been performed with respect to all other processors
and mechanisms that access those locations coherently.

The sync instruction ensures that all the coherent memory accesses, initiated by a program, have been
performed with respect to all other processors and mechanisms that access the target locations coherently,
before its next instruction is executed. A program can use this instruction to ensure that all updates to a
shared data structure, accessed coherently, are visible to all other processors that access the data structure
coherently, before executing a store that will release a lock on that data structure. Execution of the sync
instruction does the following:

« Performs the functions described for the sync instruction in Section 4.2.6 Memory Synchronization
Instructions—UISA.”
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« Ensures that consistency operations, and the effects of icbi, dcbz, dcbst, debf, decba, and dcbi instruc-
tions previously executed by the processor executing sync, have completed on such other processors as
the memory/cache access attributes of the target locations require.

» Ensures that TLB invalidate operations previously executed by the processor executing the sync have
completed on that processor. The sync instruction does not wait for such invalidates to complete on other
processors.

« Ensures that memory accesses due to instructions previously executed by the processor executing the
sync are recorded in the R and C bits in the page table and that the new values of those bits are visible
to all processors and mechanisms; refer to Section 7.5.3 Page History Recording.”

The sync instruction is execution synchronizing. It is not context synchronizing, and therefore need not
discard prefetched instructions.

For memory that does not require coherency, the sync instruction operates as described above except that
its only effect on memory operations is to ensure that all previous memory operations have completed, with
respect to the processor executing the sync instruction, to the level of memory specified by the
memory/cache access attributes (including the updating of R and C bits).

5.1.2 Atomicity

An access is atomic if it is always performed in its entirety with no visible fragmentation. Atomic accesses are
thus serialized—each happens in its entirety in some order, even when that order is neither specified in the
program nor enforced between processors.
Only the following single-register accesses are guaranteed to be atomic:

» Byte accesses (all bytes are aligned on byte boundaries)

» Half-word accesses aligned on half-word boundaries

» Word accesses aligned on word boundaries

» Double-word accesses aligned on double-word boundaries (64-bit implementations only)
No other accesses are guaranteed to be atomic. In particular, the accesses caused by the following instruc-
tions are not guaranteed to be atomic:

« Load and store instructions with misaligned operands

« Imw, stmw, Iswi, Iswx, stswi, or stswx instructions

 Floating-point double-word accesses in 32-bit implementations

« Any cache management instructions
The ldarx/stdex. and lwarx/stwex. instruction combinations can be used to perform atomic memory refer-
ences. The ldarx instruction is a load from a double-word—aligned location that has two side effects:

1. A reservation for a subsequent stdex. instruction is created.

2. The memory coherence mechanism is notified that a reservation exists for the memory location accessed

by the Idarx.

The stdex. instruction is a store to a double-word—aligned location that is conditioned on the existence of the
reservation created by Idarx and on whether the same memory location is specified by both instructions and
whether the instructions are issued by the same processor.
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The lwarx and stwex. instructions are the word-aligned forms of the Idarx and stwex. instructions. To
emulate an atomic operation with these instructions, it is necessary that both Idarx and stdex. (or lwarx and
stwcex.) access the same memory location.

In a multiprocessor system, every processor (other than the one executing Idarx/stdex. or Iwarx/stwex.) that
might update the location must configure the addressed page as memory coherency required. The
Idarx/stdcx. and lwarx/stwex. instructions function in caching-inhibited, as well as in caching-allowed,
memory. If the addressed memory is in write-through mode, it is implementation-dependent whether these
instructions function correctly or cause the DSI exception handler to be invoked.

Note: Exceptions are referred to as interrupts in the architecture specification.

The ldarx/stdcx. and lwarx/stwcex. instruction combinations are described in Section 4.2.6 Memory
Synchronization Instructions—UISA and Chapter 8, “Instruction Set.”

5.1.3 Cache Model

The PowerPC architecture does not specify the type, organization, implementation, or even the existence of a
cache. The standard cache model has separate instruction and data caches, also known as a Harvard cache
model. However, the architecture allows for many different cache types. Some implementations will have a
unified cache (where there is a single cache for both instructions and data). Other implementations may not
have a cache at all.

The function of the cache management instructions depends on the implementation of the cache(s) and the
setting of the memory/cache access modes. For a program to execute properly on all implementations, soft-
ware should use the Harvard model. In cases where a processor is implemented without a cache, the archi-
tecture guarantees that instructions affecting the nonimplemented cache will not halt execution.

Note: dcbz may cause an alignment exception on some implementations. For example, a processor with no
cache may treat a cache instruction as a no-op. Or, a processor with a unified cache may treat the icbi
instruction as a no-op. In this manner, programs written for separate instruction and data caches will run on
all compliant implementations.

5.1.4 Memory Coherency

The primary objective of a coherent memory system is to provide the same image of memory to all devices
using the system. The VEA and OEA define coherency controls that facilitate synchronization, cooperative
use of shared resources, and task migration among processors. These controls include the memory/cache
access attributes, the sync and eieio instructions, and the Idarx/stdcx. and lwarx/stwcex. instruction pairs.
Without these controls, the processor could not support a weakly-ordered memory access model.

A strongly-ordered memory access model hinders performance by requiring excessive overhead, particularly
in multiprocessor environments. For example, a processor performing a store operation in a strongly-ordered
system requires exclusive access to an address before making an update, to prevent another device from
using stale data.

The VEA defines a page as a unit of memory for which protection and control attributes are independently
specifiable. The OEA (supervisor level) specifies the size of a page as 4 Kbytes.

Note: The VEA (user level) does not specify the page size.

Cache Model and Memory Coherency pem5_cache.fm.2.0
Page 206 of 785 June 10, 2003



Programming Environments Manual

PowerPC RISC Microprocessor Family

5.1.4.1 Memory/Cache Access Modes

The OEA defines the set of memory/cache access modes and the mechanism to implement these modes.
Refer to Section 5.2.1 Memory/Cache Access Attributes,” for more information. However, the VEA specifies
that at the user level, the operating system can be expected to provide the following attributes for each page
of memory:

» Write-through or write-back
« Caching-inhibited or caching-allowed
- Memory coherency required or memory coherency not required

» Guarded or not guarded

User-level programs specify the memory/cache access attributes through an operating system service.

Pages Designated as Write-Through

When a page is designated as write-through, store operations update the data in the cache and also update
the data in main memory. The processor writes to the cache and through to main memory. Load operations
use the data in the cache, if it is present.

In write-back mode, the processor is only required to update data in the cache. The processor may (but is not
required to) update main memory. Load and store operations use the data in the cache, if it is present. The
data in main memory does not necessarily stay consistent with that same location’s data in the cache. Many
implementations automatically update main memory in response to a memory access by another device (for
example, a snoop hit). In addition, the dcbst and dcbf instructions can be used to explicitly force an update of
main memory.

The write-through attribute is meaningless for locations designated as caching-inhibited.

Pages Designated as Caching-Inhibited

When a page is designated as caching-inhibited, the processor bypasses the cache and performs load and
store operations to main memory. When a page is designated as caching-allowed, the processor uses the
cache and performs load and store operations to the cache or main memory depending on the other
memory/cache access attributes for the page.

It is important that all locations in a page are purged from the cache prior to changing the memory/cache
access attribute for the page from caching-allowed to caching-inhibited. It is considered a programming error
if a caching-inhibited memory location is found in the cache. Software must ensure that the location has not
previously been brought into the cache, or, if it has, that it has been flushed from the cache. If the program-
ming error occurs, the result of the access is boundedly undefined.

Pages Designated as Memory Coherency Required

When a page is desighated as memory coherency required, store operations to that location are serialized
with all stores to that same location by all other processors that also access the location coherently.This can
be implemented, for example, by an ownership protocol that allows at most one processor at a time to store
to the location. Moreover, the current copy of a cache block that is in this mode may be copied to main
storage any number of times, for example, by successive dcbst instructions.
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Coherency does not ensure that the result of a store by one processor is visible immediately to all other
processors and mechanisms. Only after a program has executed the sync instruction are the previous
storage accesses it executed guaranteed to have been performed with respect to all other processors and
mechanisms.

Pages Designated as Memory Coherency Not Required

For a memory area that is configured such that coherency is not required, software must ensure that the data
cache is consistent with main storage before changing the mode or allowing another device to access the
area.

Executing a debst or debf instruction specifying a cache block that is in this mode causes the block to be
copied to main memory if and only if the processor modified the contents of a location in the block and the
modified contents have not been written to main memory.

In a single-cache system, correct coherent execution may likely not require memory coherency; therefore,
using memory coherency not required mode improves performance.

Pages Designated as Guarded

The guarded attribute pertains to out-of-order execution. Refer to Out-of-Order Accesses to Guarded Memory
on page 217 for more information about out-of-order execution.

When a page is designated as guarded, instructions and data cannot be accessed out of order. Additionally,
if separate store instructions access memory that is both caching-inhibited and guarded, the accesses are
performed in the order specified by the program. When a page is designated as not guarded, out-of-order
fetches and accesses are allowed.

Guarded pages are traditionally used for memory-mapped I/O devices.

5.1.4.2 Coherency Precautions

Mismatched memory/cache attributes cause coherency paradoxes in both single-processor and multipro-
cessor systems. When the memory/cache access attributes are changed, it is critical that the cache contents
reflect the new attribute settings. For example, if a block or page that had allowed caching becomes caching-
inhibited, the appropriate cache blocks should be flushed to leave no indication that caching had previously
been allowed.

Although coherency paradoxes are considered programming errors, specific implementations may attempt to
handle the offending conditions and minimize the negative effects on memory coherency. Bus operations that
are generated for specific instructions and state conditions are not defined by the architecture.
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5.1.5 VEA Cache Management Instructions

The VEA defines instructions for controlling both the instruction and data caches. For implementations that
have a unified instruction/data cache, instruction cache control instructions are valid instructions, but may
function differently.

Note: Any cache control instruction that generates an EA that corresponds to a direct-store segment (SR[T]
=1 or STE[T] = 1) is treated as a no-op. However, the direct-store facility is being phased out of the architec-
ture and will not likely be supported in future devices. Thus, software should not depend on its effects.

This section briefly describes the cache management instructions available to programs at the user privilege
level. Additional descriptions of coding the VEA cache management instructions is provided in Chapter 4,
“Addressing Modes and Instruction Set Summary,” and Chapter 8, “Instruction Set.” In the following instruc-
tion descriptions, the target is the cache block containing the byte addressed by the effective address.

5.1.5.1 Data Cache Instructions

Data caches and unified caches must be consistent with other caches (data or unified), memory, and I/O data
transfers. To ensure consistency, aliased effective addresses (two effective addresses that map to the same
physical address) must have the same page offset.

Note: Physical address is referred to as real address in the architecture specification.

Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst) Instructions

These instructions provide a method for improving performance through the use of software-initiated prefetch
hints. However, these instructions do not guarantee that a cache block will be fetched.

A program uses the dcbt instruction to request a cache block fetch before it is needed by the program. The
program can then use the data from the cache rather than fetching from main memory.

The dcbtst instruction behaves similarly to the debt instruction. A program uses dcbtst to request a cache
block fetch to guarantee that a subsequent store will be to a cached location.

The processor does not invoke the exception handler for translation or protection violations caused by either
of the touch instructions. Additionally, memory accesses caused by these instructions are not necessarily
recorded in the page tables. If an access is recorded, then it is treated in a manner similar to that of a load
from the addressed byte. Some implementations may not take any action based on the execution of these
instructions, or they may prefetch the cache block corresponding to the EA into their cache. For information
about the R and C bits, see Section 7.5.3 Page History Recording.

Both dcbt and dcbtst are provided for performance optimization. These instructions do not affect the correct
execution of a program, regardless of whether they succeed (fetch the cache block) or fail (do not fetch the
cache block). If the target block is not accessible to the program for loads, then no operation occurs.
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Data Cache Block Set to Zero (dcbz) Instruction

The dcbz instruction clears a single cache block as follows:
- If the target is in the data cache, all bytes of the cache block are cleared.

- If the target is not in the data cache and the corresponding page is caching-allowed, the cache block is
established in the data cache (without fetching the cache block from main memory), and all bytes of the
cache block are cleared.

« If the target is designated as either caching-inhibited or write-through, then either all bytes in main mem-
ory that correspond to the addressed cache block are cleared, or the alignment exception handler is
invoked. The exception handler should clear all the bytes in main memory that correspond to the
addressed cache block.

« |f the target is designated as coherency required, and the cache block exists in the data cache(s) of any
other processor(s), it is kept coherent in those caches.

The dcbz instruction is treated as a store to the addressed byte with respect to address translation, protec-
tion, referenced and changed recording, and the ordering enforced by eieio or by the combination of caching-
inhibited and guarded attributes for a page.

Refer to Chapter 6, “Exceptions,” for more information about a possible delayed machine check exception
that can occur by using debz when the operating system has set up an incorrect memory mapping.

Data Cache Block Store (dcbst) Instruction

The dcbst instruction permits the program to ensure that the latest version of the target cache block is in
main memory. The dcbst instruction executes as follows:

« Coherency required—If the target exists in the data cache of any processor and has been modified, the
data is written to main memory. Only one processor in a multiprocessor system should have possession
of a modified cache block.

» Coherency not required—If the target exists in the data cache of the executing processor and has been
modified, the data is written to main memory.

The PowerPC architecture does not specify whether the modified status of the cache block is left unchanged
or is cleared (cleared implies valid-shared or valid-exclusive). That decision is left to the implementation of
individual processors. Either state is logically correct.

The function of this instruction is independent of the write-through/write-back and caching-inhibited/caching-
allowed attributes of the target.

The memory access caused by a dcbst instruction is not necessarily recorded in the page tables. If the
access is recorded, then it is treated as a load operation (not as a store operation).

Data Cache Block Flush (dcbf) Instruction
The action taken depends on the memory/cache access mode associated with the target, and on the state of
the cache block. The following list describes the action taken for the various cases:

« Coherency required
Unmodified cache block—Invalidates copies of the cache block in the data caches of all processors.
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Modified cache block—Copies the cache block to memory. Invalidates the copy of the cache block in the
data cache of any processor where it is found. There should only be one modified cache block in a coher-
ency required multiprocessor system.

Target block not in cache—If a modified copy of the cache block is in the data cache(s) of another pro-
cessor, dcbf causes the modified cache block to be copied to memory and then invalidated. If unmodified
copies are in the data caches of other processors, dcbf causes those copies to be invalidated.

» Coherency not required
Unmodified cache block—Invalidates the cache block in the executing processor's data cache.

Modified cache block—Copies the data cache block to memory and then invalidates the cache block in
the executing processor.

Target block not in cache—No action is taken.

The function of this instruction is independent of the write-through/write-back and caching-inhibited/caching-
allowed attributes of the target.

The memory access caused by a dcbf instruction is not necessarily recorded in the page tables. If the access
is recorded, then it is treated as a load operation (not as a store operation).

5.1.5.2 Instruction Cache Instructions

Instruction caches, if they exist, are not required to be consistent with data caches, memory, or I/O data trans-
fers. Software must use the appropriate cache management instructions to ensure that instruction caches are
kept coherent when instructions are modified by the processor or by input data transfer. When a processor
alters a memory location that may be contained in an instruction cache, software must ensure that updates to
memory are visible to the instruction fetching mechanism. Although the instructions to enforce consistency
vary among implementations, the following sequence for a uniprocessor system is typical:

1. dcbst (update memory)
2. sync (wait for update)
3. icbi (invalidate copy in instruction cache)

4. isync (perform context synchronization)

Note: Most operating systems will provide a system service for this function. These operations are neces-
sary because the memory may be designated as write-back. Since instruction fetching may bypass the data
cache, changes made to items in the data cache may not otherwise be reflected in memory until after the
instruction fetch completes.

For implementations used in multiprocessor systems, variations on this sequence may be recommended. For
example, in a multiprocessor system with a unified instruction/data cache (at any level), if instructions are
fetched without coherency being enforced, the preceding instruction sequence is inadequate. Because the
icbi instruction does not invalidate blocks in a unified cache, a debf instruction should be used instead of a
dcbst instruction for this case.
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Instruction Cache Block Invalidate Instruction (icbi)

The icbi instruction executes as follows:

« Coherency required
If the target is in the instruction cache of any processor, the cache block is made invalid in all such pro-
cessors, so that the next reference causes the cache block to be refetched.

» Coherency not required
If the target is in the instruction cache of the executing processor, the cache block is made invalid in the
executing processor so that the next reference causes the cache block to be refetched.

The icbi instruction is provided for use in processors with separate instruction and data caches. The effective
address is computed, translated, and checked for protection violations as defined in Chapter 7, “Memory
Management.” If the target block is not accessible to the program for loads, then a DSI exception occurs.

The function of this instruction is independent of the write-through/write-back and caching-inhibited/caching-
allowed attributes of the target.

The memory access caused by an icbi instruction is not necessarily recorded in the page tables. If the
access is recorded, then it is treated as a load operation. Implementations that have a unified cache treat the
icbi instruction as a no-op except that they may invalidate the target cache block in the instruction caches of
other processors (in coherency required mode).

Instruction Synchronize Instruction (isync)

The isync instruction provides an ordering function for the effects of all instructions executed by a processor.
Executing an isync instruction ensures that all instructions preceding the isync instruction have completed
before the isyne instruction completes, except that memory accesses caused by those instructions need not
have been performed with respect to other processors and mechanisms. It also ensures that no subsequent
instructions are initiated by the processor until after the isync instruction completes. Finally, it causes the
processor to discard any prefetched instructions, with the effect that subsequent instructions will be fetched
and executed in the context established by the instructions preceding the isync instruction. The isync
instruction has no effect on other processors or on their caches.

5.2 The Operating Environment

The OEA defines the mechanism for controlling the memory/cache access modes introduced in

Section 5.1.4.1 Memory/Cache Access Modes. This section describes the cache-related aspects of the OEA
including the memory/cache access attributes, out-of-order execution, direct-store interface considerations,
and the dcbi instruction. The features of the OEA are accessible to supervisor-level applications only. The
mechanism for controlling the virtual memory space is described in Chapter 7, “Memory Management.”

The memory model of PowerPC processors provides the following features:

Flexibility to allow performance benefits of weakly-ordered memory access

» A mechanism to maintain memory coherency among processors and between a processor and I/0O
devices controlled at the block and page level

» Instructions that can be used to ensure a consistent memory state

+ Guaranteed processor access order
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The memory implementations in PowerPC systems can take advantage of the performance benefits of weak
ordering of memory accesses between processors or between processors and other external devices without
any additional complications. Memory coherency can be enforced externally by a snooping bus design, a
centralized cache directory design, or other designs that can take advantage of the coherency features of
PowerPC processors.

Memory accesses performed by a single processor appear to complete sequentially from the view of the
programming model but may complete out of order with respect to the ultimate destination in the memory
hierarchy. Order is guaranteed at each level of the memory hierarchy for accesses to the same address from
the same processor. The dcbst, dcbf, icbi, isync, sync, eieio, Idarx, stdcx., lwarx, and stwcex. instructions
allow the programmer to ensure a consistent memory state.

5.2.1 Memory/Cache Access Attributes

All instruction and data accesses are performed under the control of the four memory/cache access
attributes:

» Write-through (W attribute)

« Caching-inhibited (I attribute)

« Memory coherency (M attribute)
» Guarded (G attribute)

These attributes are maintained in the PTEs and BATSs by the operating system for each page and block
respectively. The W and | attributes control how the processor performing an access uses its own cache. The
M attribute ensures that coherency is maintained for all copies of the addressed memory location. When an
access requires coherency, the processor performing the access must inform the coherency mechanisms
throughout the system that the access requires memory coherency. The G attribute prevents out-of-order
loading and prefetching from the addressed memory location.

Note: The memory/cache access attributes are relevant only when an effective address is translated by the
processor performing the access. Also, not all combinations of settings of these bits is supported. The
attributes are not saved along with data in the cache (for cacheable accesses), nor are they associated with
subsequent accesses made by other processors.

The operating system maintains the memory/cache access attribute for each page or block as required. The
WIMG attributes occupy four bits in the BAT registers for block address translation and in the PTEs for page
address translation. The WIMG bits are defined as follows:

« The operating system uses the mtspr instruction to store the WIMG bits in the BAT registers for block
address translation. The IBAT register pairs implement the W or G bits; however, attempting to set either
bit in IBAT registers causes boundedly-undefined results.

» The operating system stores the WIMG bits for each page into the PTEs in system memory as it sets up
the page tables.

Note: For data accesses performed in real addressing mode (MSR[DR] = 0), the WIMG bits are assumed to
be 0b0011 (the data is write-back, caching is enabled, memory coherency is enforced, and memory is
guarded). For instruction accesses performed in real addressing mode (MSR[IR] = 0), the WIMG bits are
assumed to be 0b0001 (the data is write-back, caching is enabled, memory coherency is not enforced, and
memory is guarded).
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5.2.1.1 Write-Through Attribute (W)

When an access is designated as write-through (W = 1), if the data is in the cache, a store operation updates
the cached copy of the data. In addition, the update is written to the memory location. The definition of the
memory location to be written to (in addition to the cache) depends on the implementation of the memory
system but can be illustrated by the following examples:

« RAM—The store is sent to the RAM controller to be written into the target RAM.

« |/O device—The store is sent to the memory-mapped I/O controller to be written to the target register or
memory location.

In systems with multilevel caching, the store must be written to at least a depth in the memory hierarchy that
is seen by all processors and devices.

Multiple store instructions may be combined for write-through accesses except when the store instructions
are separated by a sync or eieio instruction. A store operation to a memory location designated as write-
through may cause any part of the cache block to be written back to main memory.

Accesses that correspond to W = 0 are considered write-back. For this case, although the store operation is
performed to the cache, the data is copied to memory only when a copy-back operation is required. Use of
the write-back mode (W = 0) can improve overall performance for areas of the memory space that are seldom
referenced by other processors or devices in the system.

Accesses to the same memory location using two effective addresses for which the W bit setting differs meet
the memory-coherency requirements if the accesses are performed by a single processor. If the accesses
are performed by two or more processors, coherence is enforced by the hardware only if the write-through
attribute is the same for all the accesses.

5.2.1.2 Caching-Inhibited Attribute (1)

If I =1, the memory access is completed by referencing the location in main memory, bypassing the cache.
During the access, the addressed location is not loaded into the cache nor is the location allocated in the
cache.

It is considered a programming error if a copy of the target location of an access to caching-inhibited memory
is resident in the cache. Software must ensure that the location has not been previously loaded into the
cache, or, if it has, that it has been flushed from the cache.

Data accesses from more than one instruction may be combined for cache-inhibited operations, except when
the accesses are separated by a sync instruction, or by an eieio instruction when the page or block is also
designated as guarded.

Instruction fetches, dcbz instructions, and load and store operations to the same memory location using two
effective addresses for which the | bit setting differs must meet the requirement that a copy of the target loca-
tion of an access to caching-inhibited memory not be in the cache. Violation of this requirement is considered
a programming error; software must ensure that the location has not previously been brought into the cache
or, if it has, that it has been flushed from the cache. If the programming error occurs, the result of the access
is boundedly undefined. It is not considered a programming error if the target location of any other cache
management instruction to caching-inhibited memory is in the cache.
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5.2.1.3 Memory Coherency Attribute (M)

This attribute is provided to allow improved performance in systems where hardware-enforced coherency is
relatively slow, and software is able to enforce the required coherency. When M = 0, there are no require-
ments to enforce data coherency. When M = 1, the processor enforces data coherency.

When the M attribute is set, and the access is performed to memory, there is a hardware indication to the rest
of the system that the access is global. Other processors affected by the access must then respond to this
global access. For example, in a snooping bus design, the processor may assert some type of global access
signal. Other processors affected by the access respond and signal whether the data is being shared. If the
data in another processor is modified, then the location is updated and the access is retried.

Because instruction memory does not have to be coherent with data memory, some implementations may
ignore the M attribute for instruction accesses. In a single-processor (or single-cache) system, performance
might be improved by designating all pages as memory coherency not required.

Accesses to the same memory location using two effective addresses for which the M bit settings differ may
require explicit software synchronization before accessing the location with M = 1 if the location has previ-
ously been accessed with M = 0. Any such requirement is system-dependent. For example, no software
synchronization may be required for systems that use bus snooping. In some directory-based systems, soft-
ware may be required to execute dcbf instructions on each processor to flush all storage locations accessed
with M = 0 before accessing those locations with M = 1.

5.2.1.4 W, I, and M Bit Combinations

Table 5-1 summarizes the six combinations of the WIM bits supported by the OEA. The combinations where
WIM = 11x are not supported.

Note: Either a zero or one setting for the G bit is allowed for each of these WIM bit combinations.

Table 5-1. Combinations of W, I, and M Bits

WIM Setting Meaning

The processor may cache data (or instructions).
000 A load or store operation whose target hits in the cache may use that entry in the cache.
The processor does not need to enforce memory coherency for accesses it initiates.

Data (or instructions) may be cached.
001 A load or store operation whose target hits in the cache may use that entry in the cache.
The processor enforces memory coherency for accesses it initiates.

Caching is inhibited.
010 The access is performed to memory, completely bypassing the cache.
The processor does not need to enforce memory coherency for accesses it initiates.
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Table 5-1. Combinations of W, I, and M Bits (Continued)

WIM Setting Meaning

Caching is inhibited.
011 The access is performed to memory, completely bypassing the cache.
The processor enforces memory coherency for accesses it initiates.

Data (or instructions) may be cached.
A load operation whose target hits in the cache may use that entry in the cache.

100 . . . ) .
Store operations are written to memory. The target location of the store may be cached and is updated on a hit.
The processor does not need to enforce memory coherency for accesses it initiates.
Data (or instructions) may be cached.

101 A load operation whose target hits in the cache may use that entry in the cache.

Store operations are written to memory. The target location of the store may be cached and is updated on a hit.
The processor enforces memory coherency for accesses it initiates.

5.2.1.5 The Guarded Attribute (G)

When the guarded bit is set, the memory area (block or page) is designated as guarded. This setting can be
used to protect certain memory areas from read accesses made by the processor that are not dictated
directly by the program. If there are areas of physical memory that are not fully populated (in other words,
there are holes in the physical memory map within this area), this setting can protect the system from undes-
ired accesses caused by out-of-order load operations or instruction prefetches that could lead to the genera-
tion of the machine check exception. Also, the guarded bit can be used to prevent out-of-order (speculative)
load operations or prefetches from occurring to certain peripheral devices that produce undesired results
when accessed in this way.

Performing Operations Out of Order

An operation is said to be performed in-order if it is guaranteed to be required by the sequential execution
model. Any other operation is said to be performed out of order.

Operations are performed out of order by the hardware on the expectation that the results will be needed by
an instruction that will be required by the sequential execution model. Whether the results are really needed
is contingent on everything that might divert the control flow away from the instruction, such as branch, trap,
system call, and rfi instructions, and exceptions, and on everything that might change the context in which
the instruction is executed.

Typically, the hardware performs operations out of order when it has resources that would otherwise be idle,
so the operation incurs little or no cost. If subsequent events such as branches or exceptions indicate that the
operation would not have been performed in the sequential execution model, the processor abandons any
results of the operation (except as described below).

Most operations can be performed out of order, as long as the machine appears to follow the sequential
execution model. Certain out-of-order operations are restricted, as follows.

+ Stores
A store instruction may not be executed out of order in a manner such that the alteration of the target
location can be observed by other processors or mechanisms.

» Accessing guarded memory
The restrictions for this case are given in Out-of-Order Accesses to Guarded Memory on page 217.”
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No error of any kind other than a machine check exception may be reported due to an operation that is
performed out of order, until such time as it is known that the operation is required by the sequential execu-
tion model. The only other permitted side effects (other than machine check) of performing an operation out
of order are the following:

» Referenced and changed bits may be set as described in Section 7.2.5 Page History Information.

- Nonguarded memory locations that could be fetched into a cache by in-order execution may be fetched
out of order into that cache.

Guarded Memory

Memory is said to be well behaved if the corresponding physical memory exists and is not defective, and if
the effects of a single access to it are indistinguishable from the effects of multiple identical accesses to it.
Data and instructions can be fetched out of order from well-behaved memory without causing undesired side
effects.

Memory is said to be guarded if either (a) the G bit is 1 in the relevant PTE or DBAT register, or (b) the
processor is in real addressing mode (MSR[IR] = 0 or MSR[DR] = 0 for instruction fetches or data accesses
respectively). In case (b), all of memory is guarded for the corresponding accesses. In general, memory that
is not well-behaved should be guarded. Because such memory may represent an I/O device or may include
locations that do not exist, an out-of-order access to such memory may cause an I/O device to perform incor-
rect operations or may result in a machine check.

Note: If separate store instructions access memory that is both caching-inhibited and guarded, the accesses
are performed in the order specified by the program. If an aligned, elementary load or store to caching-inhib-
ited, guarded memory has accessed main memory and an external, decrementer, or imprecise-mode float-
ing-point enabled exception is pending, the load or store is completed before the exception is taken.

Out-of-Order Accesses to Guarded Memory

The circumstances in which guarded memory may be accessed out of order are as follows:

« Load instruction
If a copy of the target location is in a cache, the location may be accessed in the cache or in main mem-
ory.

« Instruction fetch
In real addressing mode (MSR][IR] = 0), an instruction may be fetched if any of the following conditions is
met:

— The instruction is in a cache. In this case, it may be fetched from that cache.

— The instruction is in the same physical page as an instruction that is required by the sequential exe-
cution model or is in the physical page immediately following such a page.

If MSR[IR] = 1, instructions may not be fetched from either no-execute segments or guarded memory. If
the effective address of the current instruction is mapped to either of these kinds of memory when
MSR[IR] = 1, an ISI exception is generated. However, it is permissible for an instruction from either of
these kinds of memory to be in the instruction cache if it was fetched into that cache when its effective
address was mapped to some other kind of memory. Thus, for example, the operating system can
access an application's instruction segments as no-execute without having to invalidate them in the
instruction cache.
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Additionally, instructions are not fetched from direct-store segments (only applies when MSR[IR] = 1). If
an instruction fetch is attempted from a direct-store segment, an ISI exception is generated.

Note: The direct-store facility is being phased out of the architecture and will not likely be supported in
future devices. Thus, software should not depend on its effects.

Note: Software should ensure that only well-behaved memory is loaded into a cache, either by marking as
caching-inhibited (and guarded) all memory that may not be well-behaved, or by marking such memory cach-
ing-allowed (and guarded) and referring only to cache blocks that are well-behaved.

If a physical page contains instructions that will be executed in real addressing mode (MSRJ[IR] = 0), software
should ensure that this physical page and the next physical page contain only well-behaved memory.

5.2.2 I/0 Interface Considerations

The PowerPC architecture defines two mechanisms for accessing I/O:

« Memory-mapped /O interface operations where SR[T] = 0 or STE[T] = 0. These operations are consid-
ered to address memory space and are therefore subject to the same coherency control as memory
accesses. Depending on the specific I/O interface, the memory/cache access attributes (WIMG) and the
degree of access ordering (requiring eieio or sync instructions) need to be considered. This is the rec-
ommended way of accessing I/O.

- Direct-store segment operations where SR[T] = 1 or STE[T] = 1. These operations are considered to
address the noncoherent and noncacheable direct-store segment space; therefore, hardware need not
maintain coherency for these operations, and the cache is bypassed completely. Although the architec-
ture defines this direct-store functionality, it is being phased out of the architecture and will not likely be
supported in future devices. Thus, its use is discouraged, and new software should not use it or depend
on its effects.

5.2.3 OEA Cache Management Instruction—Data Cache Block Invalidate (dcbi)

As described in Section 5.1.5 VEA Cache Management Instructions the VEA defines instructions for control-
ling both the instruction and data caches, The OEA defines one instruction, the data cache block invalidate
(debi) instruction, for controlling the data cache. This section briefly describes the cache management
instruction available to programs at the supervisor privilege level. Additional descriptions of coding the dcbi
instruction are provided in Chapter 4, “Addressing Modes and Instruction Set Summary,” and Chapter 8,
“Instruction Set.” In the following description, the target is the cache block containing the byte addressed by
the effective address.

Any cache management instruction that generates an EA that corresponds to a direct-store segment (SR[T] =
1 or STE[T] = 1) is treated as a no-op.

Note: The direct-store facility is being phased out of the architecture and will not likely be supported in future
devices. Thus, software should not depend on its effects.

The action taken depends on the memory/cache access mode associated with the target, and on the state of
the cache block. The following list describes the action taken for the various cases:

» Coherency required
Unmodified cache block—Invalidates copies of the cache block in the data caches of all processors.

Cache Model and Memory Coherency pem5_cache.fm.2.0
Page 218 of 785 June 10, 2003



Programming Environments Manual

PowerPC RISC Microprocessor Family

Modified cache block—Invalidates copies of the cache block in the data caches of all processors. (Dis-
cards the modified data in the cache block.) There can only be one modified cache block in a coherency
required system.

Target block not in cache—If copies of the target are in the data caches of other processors, dcbi causes
those copies to be invalidated, regardless of whether the data is modified (see modified cache block
above) or unmodified.

» Coherency not required
Unmodified cache block—Invalidates the cache block in the executing processor's data cache.

Modified cache block—Invalidates the cache block in the executing processor's data cache. (Discards
the modified data in the cache block.)

Target block not in cache—No action is taken.

The processor treats the dcbi instruction as a store to the addressed byte with respect to address translation
and protection. It is not necessary to set the referenced and changed bits.

The function of this instruction is independent of the write-through/write-back and caching-inhibited/caching-
allowed attributes of the target. To ensure coherency, aliased effective addresses (two effective addresses
that map to the same physical address) must have the same page offset.
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6. Exceptions

The operating environment architecture (OEA) portion of the PowerPC architecture defines the mechanism
by which PowerPC processors implement exceptions (referred to as interrupts in the architecture specifica-
tion). Exception conditions may be defined at other levels of the architecture. For example, the user instruc-
tion set architecture (UISA) defines conditions that may cause floating-point exceptions; the OEA defines the
mechanism by which the exception is taken.

The PowerPC exception mechanism allows the processor to change to supervisor state as a result of
external signals, errors, or unusual conditions arising in the execution of instructions. When exceptions occur,
information about the state of the processor is saved to certain registers and the processor begins execution
at an address (exception vector) predetermined for each exception. Processing of exceptions begins in
supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more specific condition may
be determined by examining a register associated with the exception—for example, the DSISR and the
floating-point status and control register (FPSCR). Additionally, certain exception conditions can be explicitly
enabled or disabled by software.

The PowerPC architecture requires that exceptions be taken in program order; therefore, although a partic-
ular implementation may recognize exception conditions out of order, they are handled strictly in order with
respect to the instruction stream. When an instruction-caused exception is recognized, any unexecuted
instructions that appear earlier in the instruction stream, including any that have not yet entered the execute
state, are required to complete before the exception is taken. For example, if a single instruction encounters
multiple exception conditions, those exceptions are taken and handled sequentially. Likewise, exceptions that
are asynchronous and precise are recognized when they occur, but are not handled until all instructions
currently in the execute stage successfully complete execution and report their results.

Note: Exceptions can occur while an exception handler routine is executing, and multiple exceptions can
become nested. It is up to the exception handler to save the appropriate machine state if it is desired to allow
control to ultimately return to the excepting program.

In many cases, after the exception handler handles an exception, there is an attempt to execute the instruc-
tion that caused the exception. Instruction execution continues until the next exception condition is encoun-
tered. This method of recognizing and handling exception conditions sequentially guarantees that the
machine state is recoverable and processing can resume without losing instruction results.

To prevent the loss of state information, exception handlers must save the information stored in SRR0O and
SRR1 soon after the exception is taken to prevent this information from being lost due to another exception
being taken.

In this chapter, the following terminology is used to describe the various stages of exception processing:

Recognition Exception recognition occurs when the condition that can cause an exception is identified by
the processor.

Taken An exception is said to be taken when control of instruction execution is passed to the excep-
tion handler; that is, the context is saved and the instruction at the appropriate vector offset is
fetched and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the appropriate vector offset. Excep-
tion handling is begun in supervisor mode (referred to as privileged state in the architecture
specification).
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6.1 Exception Classes

As specified by the PowerPC architecture, all exceptions can be described as either precise or imprecise and
either synchronous or asynchronous. Asynchronous exceptions are caused by events external to the
processor’'s execution; synchronous exceptions are caused by instructions.

The PowerPC exception types are shown in Table 6-1.

Table 6-1. PowerPC Exception Classifications

Type Exception

Machine Check

Asynchronous/nonmaskable
y ! System Reset

External interrupt

Asynchronous/maskable
Decrementer

Synchronous/Precise Instruction-caused exceptions, excluding floating-point imprecise exceptions

) Instruction-caused imprecise exceptions
Synchronous/Imprecise . o . .
(Floating-point imprecise exceptions)

Exceptions, their offsets, and conditions that cause them, are summarized in Table 6-2. The exception
vectors described in the table correspond to physical address locations, depending on the value of MSR][IP].
Refer to Section 7.2.1.2 Predefined Physical Memory Locations for a complete list of the predefined physical
memory areas. Remaining sections in this chapter provide more complete descriptions of the exceptions and
of the conditions that cause them.

Table 6-2. Exceptions and Conditions—QOverview

Exception Type Vector Offset (hex) Causing Conditions

The causes of system reset exceptions are implementation-dependent. If the conditions that
cause the exception also cause the processor state to be corrupted such that the contents of

System reset 00100 SRRO0 and SRR1 are no longer valid or such that other processor resources are so corrupted
that the processor cannot reliably resume execution, the copy of the Rl bit copied from the
MSR to SRR1 is cleared.

The causes for machine check exceptions are implementation-dependent, but typically these
causes are related to conditions such as bus parity errors or attempting to access an invalid
physical address. Typically, these exceptions are triggered by an input signal to the processor.
Note: Not all processors provide the same level of error checking.

The machine check exception is disabled when MSR[ME] = 0. If a machine check exception
Machine check 00200 condition exists and the ME bit is cleared, the processor goes into the checkstop state.

If the conditions that cause the exception also cause the processor state to be corrupted such

that the contents of SRRO and SRR1 are no longer valid or such that other processor

resources are so corrupted that the processor cannot reliably resume execution, the copy of

the RI bit written from the MSR to SRR1 is cleared.

Note: The physical address is referred to as real address in the architecture specification.)

A DSI exception occurs when a data memory access cannot be performed for any of the rea-
sons described in Section 6.4.3 DSI Exception (0x00300). Such accesses can be generated

DSl 00300 by load/store instructions, certain memory control instructions, and certain cache control
instructions.
S| 00400 An ISI exception occurs when an instruction fetch cannot be performed for a variety of reasons

described in Section 6.4.4 ISI Exception (0x00400).

An external interrupt is generated only when an external interrupt is pending (typically sig-

External interrupt 00500 nalled by a signal defined by the implementation) and the interrupt is enabled (MSR[EE] = 1).
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Table 6-2. Exceptions and Conditions—QOverview (Continued)

Exception Type

Alignment

Program

Floating-point
unavailable

Decrementer

Reserved
Reserved

System call

Trace
Floating-point
assist
Reserved

Reserved

Vector Offset (hex) |Causing Conditions

00600

00700

00800

00900

00A00
00B0O
00C00

00D00

00E00

00E10-00FFF

01000-02FFF

6.1.1 Precise Exceptions

An alignment exception may occur when the processor cannot perform a memory access for
reasons described in Section 6.4.6 Alignment Exception (0x00600).

Note: Animplementation is allowed to perform the operation correctly and not cause an align-
ment exception.

A program exception is caused by one of the following exception conditions, which correspond
to bit settings in SRR1 and arise during execution of an instruction:

- Floating-point enabled exception—A floating-point enabled exception condition is gener-
ated when MSR[FEO—FE1] # 00 and FPSCR[FEX] is set. The settings of FEQ and FE1
are described in Table 6-3.

FPSCRIFEX] is set by the execution of a floating-point instruction that causes an enabled
exception or by the execution of a Move to FPSCR instruction that sets both an exception
condition bit and its corresponding enable bit in the FPSCR. These exceptions are
described in Section 3.3.6 Floating-Point Program Exceptions.”

« lllegal instruction—An illegal instruction program exception is generated when execution
of an instruction is attempted with an illegal opcode or illegal combination of opcode and
extended opcode fields or when execution of an optional instruction not provided in the
specific implementation is attempted (these do not include those optional instructions that
are treated as no-ops). The PowerPC instruction set is described in Chapter 4, “Address-
ing Modes and Instruction Set Summary.” See Section 6.4.7 Program Exception
(0x00700) for a complete list of causes for an illegal instruction program exception.

» Privileged instruction—A privileged instruction type program exception is generated when
the execution of a privileged instruction is attempted and the MSR user privilege bit,
MSRIPRY], is set. This exception is also generated for mtspr or mfspr with an invalid SPR
field if spr[0] = 1 and MSR[PR] = 1.

- Trap—A trap type program exception is generated when any of the conditions specified in
a trap instruction is met.

For more information, refer to Section 6.4.7 Program Exception (0x00700).”

A floating-point unavailable exception is caused by an attempt to execute a floating-point
instruction (including floating-point load, store, and move instructions) when the floating-point
available bit is cleared, MSR[FP] = 0.

The decrementer interrupt exception is taken if the exception is enabled (MSR[EE] = 1), and it
is pending. The exception is created when the most-significant bit of the decrementer changes
from 0 to 1. If it is not enabled, the exception remains pending until it is taken.

This is reserved for implementation-specific exceptions.

A system call exception occurs when a System Call (sc) instruction is executed.

Implementation of the trace exception is optional. If implemented, it occurs if either the
MSRI[SE] = 1 and almost any instruction successfully completed or MSR[BE] = 1 and a branch
instruction is completed. See Section 6.4.11 Trace Exception (0x00D00) for more information.

Implementation of the floating-point assist exception is optional. This exception can be used to
provide software assistance for infrequent and complex floating-point operations such as
denormalization.

This is reserved for implementation-specific purposes. May be used for implementation-spe-
cific exception vectors or other uses.

When any precise exceptions occur, SRRO is set to point to an instruction such that all prior instructions in the
instruction stream have completed execution and no subsequent instruction has begun execution. However,
depending on the exception type, the instruction addressed by SRRO may not have completed execution.
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When an exception occurs, instruction dispatch (the issuance of instructions by the instruction fetch unit to
any instruction execution mechanism) is halted and the following synchronization is performed:

1. The exception mechanism waits for all previous instructions in the instruction stream to complete to a
point where they report all exceptions they will cause.

2. The processor ensures that all previous instructions in the instruction stream complete in the context in
which they began execution.

3. The exception mechanism implemented in hardware (the loading of registers SRR0O and SRR1) and the
software handler (saving SRR0 and SRR1 in the stack and updating stack pointer, etc.) is responsible for
saving and restoring the processor state.

The synchronization described conforms to the requirements for context synchronization. A complete
description of context synchronization is described in the following section.

6.1.2 Synchronization

The synchronization described in this section refers to the state of activities within the processor that
performs the synchronization.

6.1.2.1 Context Synchronization

An instruction or event is context synchronizing if it satisfies all the requirements listed below. Such instruc-
tions and events are collectively called context-synchronizing operations. Examples of context-synchronizing
operations include the sc and rfid (or Hi) instructions and most exceptions. A context-synchronizing opera-
tion has the following characteristics:

1. The operation causes instruction fetching and dispatching (the issuance of instructions by the instruction
fetch mechanism to any instruction execution mechanism) to be halted.

2. The operation is not initiated or, in the case of isync, does not complete, until all instructions in execution
have completed to a point at which they have reported all exceptions they will cause.
If a prior memory access instruction causes one or more direct-store interface error exceptions, the
results are guaranteed to be determined before this instruction is executed. However, note that the direct-
store facility is being phased out of the architecture and will not likely be supported in future devices.

3. Instructions that precede the operation complete execution in the context (for example, the privilege,
translation mode, and memory protection) in which they were initiated.

4. If the operation either directly causes an exception (for example, the sc instruction causes a system call
exception) or is an exception, the operation is not initiated until no exception exists having higher priority
than the exception associated with the context-synchronizing operation.

A context-synchronizing operation is necessarily execution synchronizing. Unlike the sync instruction, a
context-synchronizing operation need not wait for memory-related operations to complete on this or other
processors, or for referenced and changed bits in the page table to be updated.

6.1.2.2 Execution Synchronization

An instruction is execution synchronizing if it satisfies the conditions of the first two items described above for
context synchronization. The sync instruction is treated like isync with respect to the second item described
above (that is, the conditions described in the second item apply to the completion of sync). The sync and
mtmstr instructions are examples of execution-synchronizing instructions.
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All context-synchronizing instructions are execution-synchronizing. Unlike a context-synchronizing operation,
an execution-synchronizing instruction need not ensure that the subsequent instructions execute in the
context established by this and previous instructions. This new context becomes effective sometime after the
execution-synchronizing instruction completes and before or at a subsequent context-synchronizing opera-
tion.

6.1.2.3 Synchronous/Precise Exceptions

When instruction execution causes a precise exception, the following conditions exist at the exception point:

« SRRO0 always points to the instruction causing the exception except for the sc instruction. In this case
SRRO points to the immediately following instruction. The instruction addressed can be determined from
the exception type and status bits, which are defined in the description of each exception. In all cases
SRRO points to the first instruction that has not completed execution. The sc instruction always completes
execution, updates the instruction pointer and reports the exception. Hence, SRRO points to the instruc-
tions following sc.

» All instructions that precede the excepting instruction complete before the exception is processed. How-
ever, some memory accesses generated by these preceding instructions may not have been performed
with respect to all other processors or system devices.

« The instruction causing the exception may not have begun execution, may have partially completed, or
may have completed, depending on the exception type. Handling of partially executed instructions is
described in Section 6.1.4 Partially Executed Instructions.

» Architecturally, no subsequent instruction has begun execution.

While instruction parallelism allows the possibility of multiple instructions reporting exceptions during the
same cycle, they are handled one at a time in program order. Exception priorities are described in
Section 6.1.5 , “Exception Priorities.”

6.1.2.4 Asynchronous Exceptions

There are four asynchronous exceptions—system reset and machine check, which are nonmaskable and
highest-priority exceptions, and external interrupt and decrementer exceptions which are maskable and low-
priority. These two types of asynchronous exceptions are discussed separately.

System Reset and Machine Check Exceptions

System reset and machine check exceptions have the highest priority and can occur while other exceptions
are being processed.

Note: Nonmaskable, asynchronous exceptions are never delayed; therefore, if two of these exceptions occur
in immediate succession, the state information saved by the first exception may be overwritten when the sub-
sequent exception occurs. Also, these exceptions are context-synchronizing if they are recoverable (MSR[RI]
is copied from the MSR to SRR1 if the exception does not cause loss of state.) If the Rl bit is clear (nonrecov-
erable), the exception is context-synchronizing only with respect to subsequent instructions.

While a system is running the MSR[RI] bit is set. When an exception occurs a copy of the MSR register is
stored in SRR1. Then most bits in the MSR are clear including the RI bit with various exceptions (see the
exceptions types for new setting of the MSR bits, e.g. IP is never cleared). The exception handler saves the
state of the machine (saving SRRO and SRR1 into the stack and updating the stack pointer) to a point that it
can incur another exception. At this point the exception handler sets the MSRJ[RI] bit. Also the external inter-
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rupt can be re-enabled. Now you can clearly understand that if the exception handler ever sees in the SRR1
register a case where the MSR[RI] bit is not set, the exception is not recoverable (because the exception
occurred while the machine state was being saved) and a system restart procedure should be initiated.

System reset and machine check exceptions cannot be masked by using the MSR[EE] bit. Furthermore, if the
machine check enable bit, MSR[ME], is cleared and a machine check exception condition occurs, the
processor goes directly into checkstop state as the result of the exception condition. Clearly, one never wants
to run in this mode (MSR[ME] cleared) for extended periods of time. When one of these exceptions occur, the
following conditions exist at the exception point:

« For system reset exceptions, SRRO addresses the instruction that would have attempted to execute next
if the exception had not occurred.

« For machine check exceptions, SRRO holds either an instruction that would have completed or some
instruction following it that would have completed if the exception had not occurred.

« An exception is generated such that all instructions preceding the instruction addressed by SRRO appear
to have completed with respect to the executing processor.

Note: A bitin the MSR (MSR[RI]) indicates whether enough of the machine state was saved to allow the pro-
cessor to resume processing.

External Interrupt and Decrementer Exceptions

For the external interrupt and decrementer exceptions, the following conditions exist at the exception point
(assuming these exceptions are enabled (MSR[EE] bit is set)):

« All instructions issued before the exception is taken and any instructions that precede those instructions
in the instruction stream appear to have completed before the exception is processed.

« No subsequent instructions in the instruction stream have begun execution.
- SRRO addresses the first instruction that has not completed execution.

That is, these exceptions are context-synchronizing. The external interrupt and decrementer exceptions are
maskable. When the machine state register external interrupt enable bit is cleared (MSR[EE] = 0), these
exception conditions are not recognized until the EE bit is set. MSR[EE] is cleared automatically when an
exception is taken, to delay recognition of subsequent exception conditions. No two precise exceptions can
be recognized simultaneously. Exception handling does not begin until all currently executing instructions
complete and any synchronous, precise exceptions caused by those instructions have been handled. Excep-
tion priorities are described in Section 6.1.5 Exception Priorities.
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6.1.3 Imprecise Exceptions

The PowerPC architecture defines several imprecise exceptions. An imprecise exception is one where the
instruction addressed by SRRO has nothing to do with the exception taking place. That is some instruction
has been previously executed created a condition that is now causing an exception to take place. External
and decrementer exceptions fit this description. A third class of instructions that cause imprecise exceptions
is the imprecise floating-point enabled exception. This can be programmed as one of the conditions that can
cause an imprecise exception.

6.1.3.1 Imprecise Exception Status Description

When the execution of an instruction causes an imprecise exception, SRRO contains information related to
the address of the excepting instruction as follows:

« The exception is generated such that all instructions preceding the instruction addressed by SRRO0 have
completed with respect to the processor.

- If the imprecise exception is caused by the context-synchronizing mechanism (due to an instruction that
caused another exception—for example, an alignment or DSI exception), then SRRO contains the
address of the instruction that caused the exception, and that instruction may have been partially exe-
cuted (refer to Section 6.1.4 Partially Executed Instructions).

« If the imprecise exception is caused by an execution-synchronizing instruction other than sync or isync,
SRRO addresses the instruction causing the exception. Additionally, besides causing the exception, that
instruction is considered not to have begun execution. If the exception is caused by the sync or isync
instruction, SRRO may address either the sync or isync instruction, or the following instruction.

- If the imprecise exception is not forced by either the context-synchronizing mechanism or the execution-
synchronizing mechanism, the instruction addressed by SRRO is considered not to have begun execution
if it is not the instruction that caused the exception.

- When an imprecise exception occurs, no instruction following the instruction addressed by SRRO is con-
sidered to have begun execution.

6.1.3.2 Recoverability of Imprecise Floating-Point Exceptions

The enabled IEEE floating-point exception mode bits in the MSR (FEO and FE1) together define whether
IEEE floating-point exceptions are handled precisely, imprecisely, or whether they are taken at all. The
possible settings are shown in Table 6-3. For further details, see Section 3.3.6 Floating-Point Program
Exceptions.

Table 6-3. IEEE Floating-Point Program Exception Mode Bits

FEO FE1 Mode
0 0 Floating-point exceptions ignored
0 1 Floating-point imprecise nonrecoverable
1 0 Floating-point imprecise recoverable
1 1 Floating-point precise mode

As shown in the table, the imprecise floating-point enabled exception has two modes—nonrecoverable and
recoverable. These modes are specified by setting the MSR[FEQ] and MSR[FE1] bits and are described as
follows:
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« Imprecise nonrecoverable floating-point enabled mode. MSR[FEOQ] = 0; MSR[FE1] = 1. When an excep-
tion occurs, the exception handler is invoked at some point at or beyond the instruction that caused the
exception. It may not be possible to identify the offending instruction or the data that caused the excep-
tion. Results from the offending instruction may have been used by or affected data of subsequent
instructions executed before the exception handler was invoked.

» Imprecise recoverable floating-point enabled mode. MSR[FEOQ] = 1; MSR[FE1] = 0. When an exception
occurs, the floating-point enabled exception handler is invoked at some point at or beyond the offending
instruction that caused the exception. Sufficient information is provided to the exception handler that it
can identify the offending instruction and correct any faulty results. In this mode, no incorrect data caused
by the offending instruction have been used by or affected data of subsequent instructions that are exe-
cuted before the exception handler is invoked.

Although these exceptions are maskable with these bits, they differ from other maskable exceptions in that
the masking is usually controlled by the application program rather than by the operating system.

6.1.4 Partially Executed Instructions

The architecture permits certain instructions to be partially executed when an alignment exception or DSI
exception occurs, or an imprecise floating-point exception is forced by an instruction that causes an align-
ment or DSI exception. They are as follows:

« Load multiple/string instructions that cause an alignment or DSI exception—Some registers in the range
of registers to be loaded may have been loaded.

« Store multiple/string instructions that cause an alignment or DSI exception—Some bytes in the
addressed memory range may have been updated.

« Non-multiple/string store instructions that cause an alignment or DSI exception—Some bytes just before
the boundary may have been updated. If the instruction normally alters CRO (stwcex. or stdex.), CRO is
set to an undefined value. For instructions that perform register updates, the update register (rA) is not
altered.

» Floating-point load instructions that cause an alignment or DSI exception—The target register may be
altered. For update forms, the update register (rA) is not altered.

« Aload or store to a direct-store segment that causes a DSI exception due to a direct-store interface error
exception—Some of the associated address/data transfers may not have been initiated. All initiated
transfers are completed before the exception is reported, and the transfers that have not been initiated
are aborted. Thus the instruction completes before the DSI exception occurs. However, note that the
direct-store facility is being phased out of the architecture and will not likely be supported in future
devices.

In the cases above, the number of registers and the amount of memory altered are implementation, instruc-
tion, and boundary-dependent. However, memory protection is not violated. Furthermore, if some of the data
accessed are in a direct-store segment and the instruction is not supported for use in such memory space,
the locations in the direct-store segment are not accessed. Again, note that the direct-store facility is being
phased out of the architecture and will not likely be supported in future devices.

Partial execution is not allowed when integer load operations (except multiple/string operations) cause an
alignment or DSI exception. The target register is not altered. For update forms of the integer load instruc-
tions, the update register (rA) is not altered.
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6.1.5 Exception Priorities

Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other exceptions—system reset and
machine check exceptions (although the machine check exception condition can be disabled so that the
condition causes the processor to go directly into the checkstop state). These two types of exceptions in
this class cannot be delayed by exceptions in other classes, and do not wait for the completion of any
precise exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in strict program order.

3. If an imprecise exception exists (the instruction that caused the exception has been completed and is
required by the sequential execution model), exceptions signaled by instructions subsequent to the
instruction that caused the exception are not permitted to change the architectural state of the processor.
The exception causes an imprecise program exception unless a machine check or system reset excep-
tion is pending.

4. Maskable asynchronous exceptions (external interrupt and decrementer exceptions) have lowest priority.
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The exceptions are listed in Table 6-4 in order of highest to lowest priority.

Table 6-4. Exception Priorities

Exception Class Priority |Exception

System reset—The system reset exception has the highest priority of all exceptions. If this exception
1 exists, the exception mechanism ignores all other exceptions and generates a system reset exception.
When the system reset exception is generated, previously issued instructions can no longer generate

Nonmaskable exception conditions that cause a nonmaskable exception.

asynchronous Machine check—The machine check exception is the second-highest priority exception. If this exception
5 occurs, the egception mechanism ignores all other exlceptions (except rgset) gnd geqerates a machine
check exception.When the machine check exception is generated, previously issued instructions can no
longer generate exception conditions that cause a nonmaskable exception.
Instruction dependent— When an instruction causes an exception, the exception mechanism waits for
any instructions prior to the excepting instruction in the instruction stream to complete. Any exceptions
caused by these instructions are handled first. It then generates the appropriate exception if no higher
priority exception exists when the exception is to be generated.
Note that a single instruction can cause multiple exceptions. When this occurs, those exceptions are
ordered in priority as indicated in the following:
A. Integer loads and stores
a. Alignment
b. DSI
c. Trace (if implemented)
B. Floating-point loads and stores
a. Floating-point unavailable
b. Alignment
c. DSI
d. Trace (if implemented)
C. Other floating-point instructions
a. Floating-point unavailable
b. Program—Precise-mode floating-point enabled exception
Sync_:hronous, 3 c. Floating-point assist (if implemented)
precise d. Trace (if implemented)
D. rfid (or rfi) and mtmsrd (or mtmsr)
a. Program—~Privileged Instruction
b. Program—Precise-mode floating-point enabled exception
c. Trace (if implemented), for mtmsrd (or mtmsr) only
If precise-mode IEEE floating-point enabled exceptions are enabled and the FPSCR[FEX] bit is set, a
program exception occurs no later than the next synchronizing event.
E. Other instructions
a. These exceptions are mutually exclusive and have the same priority:
—Program: Trap
— System call (sc)
—Program: Privileged Instruction
—~Program: lllegal Instruction
b. Trace (if implemented)
F. ISl exception
The ISI exception has the lowest priority in this category. It is only recognized when all instructions prior
to the instruction causing this exception appear to have completed and that instruction is to be executed.
The priority of this exception is specified for completeness and to ensure that it is not given more favor-
able treatment. An implementation can treat this exception as though it had a lower priority.
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Table 6-4. Exception Priorities (Continued)

Exception Class Priority |Exception

Program imprecise floating-point mode enabled exceptions—When this exception occurs, the exception
handler is invoked at or beyond the floating-point instruction that caused the exception. The PowerPC
architecture supports recoverable and nonrecoverable imprecise modes, which are enabled by setting
MSRI[FEOQ-FE1] = 10 or 01, respectively. For more information see, Section 6.1.3 Imprecise Exceptions.”

Imprecise 4

External interrupt—The external interrupt mechanism waits for instructions currently or previously dis-
patched to complete execution. After all such instructions are completed, and any exceptions caused by
5 those instructions have been handled, the exception mechanism generates this exception if no higher
priority exception exists. This exception is enabled only if MSR[EE] is currently set. If EE is zero when
Maskable, the exception is detected, it is delayed until the bit is set.
asynchronous
Decrementer—This exception is the lowest priority exception. When this exception is created, the excep-
6 tion mechanism waits for all other possible exceptions to be reported. It then generates this exception if
no higher priority exception exists. This exception is enabled only if MSR[EE] is currently set. If EE is
zero when the exception is detected, it is delayed until the bit is set.

Nonmaskable, asynchronous exceptions (namely, system reset or machine check exceptions) may occur at
any time. That is, these exceptions are not delayed if another exception is being handled (although machine
check exceptions can be delayed by system reset exceptions). As a result, state information for the inter-
rupted exception handler may be lost.

All other exceptions have lower priority than system reset and machine check exceptions, and the exception
may not be taken immediately when it is recognized. Only one synchronous, precise exception can be
reported at a time. If a maskable, asynchronous or an imprecise exception condition occurs while instruction-
caused exceptions are being processed, its handling is delayed until all exceptions caused by previous
instructions in the program flow are handled and those instructions complete execution.

6.2 Exception Processing

When an exception is taken, the processor uses the save/restore registers, SRR1 and SRRO, respectively, to
save the contents of the MSR for the interrupted process and to help determine where instruction execution
should resume after the exception is handled.

When an exception occurs, the address saved in SRRO is used to help calculate where instruction processing
should resume when the exception handler returns control to the interrupted process. Depending on the
exception, this may be the address in SRRO or at the next address in the program flow. All instructions in the
program flow preceding this one will have completed execution and no subsequent instruction will have
completed execution. This may be the address of the instruction that caused the exception or the next one
(as in the case of a system call or trap exception). The SRRO register is shown in Figure 6-1.

Figure 6-1. Machine Status Save/Restore Register 0

|:| Reserved
SRRO (holds EA for instruction in interrupted program flow) 00
0 61 62163
This register is 32 bits wide in 32-bit implementations.
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The save/restore register 1 (SRR1) is used to save machine status (selected bits from the MSR and other
implementation-specific status bits as well) on exceptions and to restore those values when rfid (or rfi) is
executed. SRR1 is shown in Figure 6-2.

Figure 6-2. Machine Status Save/Restore Register 1

Exception-specific information and MSR bit values

0 63

This register is 32 bits wide in 32-bit implementations. When an exception occurs, SRR1 bits 33—36 and 42—
47 (bits 1—4 and 1015 in 32-bit implementations) are loaded with exception-specific information and MSR
bits 0, 4855, 57-59 and 6263 (bits 1623, 2527, and 30-31 in 32-bit implementations) are placed into the
corresponding bit positions of SRR1. Depending on the implementation, additional bits of the MSR may be
copied to SRR1.

Note: In some implementations, every instruction fetch when MSR][IR] = 1, and every data access requiring
address translation when MSR[DR] = 1, may modify SRR0O and SRR1.

The MSR bits for 64-bit implementations are shown in Figure 6-3.

Figure 6-3. Machine State Register (MSR)—64-Bit Implementation

[ ] Reserved
SF| 0 |ISF] 0 0000 ... 0000 0 POW| 0 |ILE|EE|PR |FP[ME|FEO|SE|BE|FE1| 0 | IP [IR|DR| 00 |RI|LE
0123 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 6061 62 63

Temporary 64-Bit Bridge
* Note that the ISF bit is optional and implemented only as part of the 64-bit bridge. For information see Table 6-5. .

In 32-bit PowerPC implementations, tThe MSR is 32 bits wide as shown in Figure 6-4. . Note that the 32-bit
implementation of the MSR is comprised of the 32 least-significant bits of the 64-bit MSR.

Figure 6-4. Machine State Register (MSR)—32-Bit Implementation

[ ] Reserved

0000 0000 0000 0 POW| 0 |ILE|EE|PR|FP|ME|FEO|SE|BE|FE1| O | IP| IR|DR| 00 |RI|LE

0 12 13 14 1516171819 20 2122 23 24 252627282930 31
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Table 6-5 shows the bit definitions for the MSR.

Table 6-5. MSR Bit Settings

Bit(s)
64 Bit 32 Bit
0 J—
1 —
64-BIT
BRIDGE —
2
3-44 012
45 13
46 14
47 15
48 16
49 17
50 18
51 19
52 20
53 21
54 22
55 23
56 24

pem6_exceptions.fm.2.0
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Name

SF

ISF

POW

ILE

EE

PR

FP

ME

FEO

SE

BE

FE1

Description

Sixty-four bit mode

0 The 64-bit processor runs in 32-bit mode.
1 The 64-bit processor runs in 64-bit mode. Note that this is the default setting.
Reserved

Exception sixty-four bit mode (optional). When an exception occurs, this bit is copied
into MSR[SF] to select 64- or 32-bit mode for the context established by the exception.

Note: If the function is not implemented, this bit is treated as reserved.
Reserved

Power management enable

0 Power management disabled (normal operation mode)

1 Power management enabled (reduced power mode)

Note: Power management functions are implementation-dependent. If the function is
not implemented, this bit is treated as reserved.

Reserved

Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE]
to select the endian mode for the context established by the exception.

External interrupt enable

0 While the bit is cleared the processor delays recognition of external interrupts
and decrementer exception conditions.

1 The processor is enabled to take an external interrupt or the decrementer
exception.

Privilege level

0 The processor can execute both user- and supervisor-level instructions.

1 The processor can only execute user-level instructions.

Floating-point available

0 The processor prevents dispatch of floating-point instructions, including float-
ing-point loads, stores, and moves.

1 The processor can execute floating-point instructions.

Machine check enable

0 Machine check exceptions are disabled.

1 Machine check exceptions are enabled.

Floating-point exception mode 0 (see Table 2-10 on page 75).

Single-step trace enable (optional)
0 The processor executes instructions normally.

1 The processor generates a single-step trace exception upon the successful
execution of the next instruction.

Note: If the function is not implemented, this bit is treated as reserved.

Branch trace enable (optional)
0 The processor executes branch instructions normally.

1 The processor generates a branch trace exception after completing the execu-
tion of a branch instruction, regardless of whether the branch was taken.

Note: If the function is not implemented, this bit is treated as reserved.
Floating-point exception mode 1 (see Table 2-10 on page 75).

Reserved
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Table 6-5. MSR Bit Settings (Continued)

Bit(s)
Name Description
64 Bit 32 Bit
Exception prefix. The setting of this bit specifies whether an exception vector offset is
prepended with Fs or Os. In the following description, nnnnn is the offset of the excep-
tion vector. See Table 6-2. .
0 Exceptions are vectored to the physical address 0x000n_nnnn in 32-bit imple-
57 25 IP mentations and 0x0000_0000_000n_nnnn in 64-bit implementations.
1 Exceptions are vectored to the physical address OxFFFn_nnnn in 32-bit imple-
mentations and 0x0000_0000_FFFn_nnnn in 64-bit implementations.
In most systems, IP is set to 1 during system initialization, and then cleared to 0 when
initialization is complete.
Instruction address translation
58 26 IR 0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information see Chapter 7, “Memory Management.”
Data address translation
0 Data address translation is disabled.
59 27 DR 1 Data address translation is enabled.
For more information see Chapter 7, “Memory Management.”
6061 2829 — Reserved
Recoverable exception (for system reset and machine check exceptions).
0 Exception is not recoverable.
62 30 RI 1 Exception is recoverable.
For more information see Section 6.4.1 , “System Reset Exception (0x00100),”and
Section 6.4.2 , “Machine Check Exception (0x00200).”
Little-endian mode enable
63 31 LE 0 The processor runs in big-endian mode.

1 The processor runs in little-endian mode.

Bit 2 of the MSR (MSR[ISF]) may optionally be used by a 64-bit implementation to control the mode (64-
bit or 32-bit) that is entered when an exception is taken. If this bit is implemented, it has the following
properties:

« When an exception is taken, the value of MSR[ISF] is copied to MSR[SF].
« When an exception is taken, MSR[ISF] is not altered.

« No software synchronization is required before or after altering MSR[ISF]. Refer to Section 2.3.18
Synchronization Requirements for Special Registers and for Lookaside Buffers for more information
on synchronization requirements for altering other bits in the MSR.

If the MSR[ISF] bit is not implemented, it is treated as reserved except that the value is assumed to be 1
for exception processing.

Those MSR bits that are written to SRR1 are written when the first instruction of the exception handler is
encountered. The data address register (DAR) may be used by several exceptions (for example, DSI and
alignment exceptions) to identify the address of a memory element.
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6.2.1 Enabling and Disabling Exceptions

When a condition exists that may cause an exception to be generated, it must be determined whether the
exception is enabled for that condition as follows:

IEEE floating-point enabled exceptions (a type of program exception) are ignored when both MSR[FEOQ]
and MSR[FE1] are cleared. If either of these bits is set, all IEEE enabled floating-point exceptions are
taken and cause a program exception.

Asynchronous, maskable exceptions (that is, the external and decrementer interrupts) are enabled by
setting the MSR[EE] bit. When MSRI[EE] = 0, recognition of these exception conditions is delayed.
MSRIEE] is cleared automatically when an exception is taken, to delay recognition of conditions causing
those exceptions.

A machine check exception can only occur if the machine check enable bit, MSR[ME], is set. If MSR[ME]
is cleared, the processor goes directly into checkstop state when a machine check exception condition
occurs.

6.2.2 Steps for Exception Processing

After it is determined that the exception can be taken (by confirming that any instruction-caused exceptions
occurring earlier in the instruction stream have been handled, and by confirming that the exception is enabled
for the exception condition), the processor does the following:

1.

The machine status save/restore register 0 (SRRO) is loaded with an instruction address that depends on
the type of exception. See the individual exception description for details about how this register is used
for specific exceptions. Normally, SRRO contains the address to the first instruction to execute if the
exception handler resumes program execution.

SRR1 bits 33—36 and 42—47(bits 1—4 and 10—15 in 32-bit implementations) are loaded with information
specific to the exception type.

MSR bits 0, 48-55, 5759 and 62—63 (bits 16—23, 2527, and 30-31 in 32-bit implementations) are
loaded with a copy of the corresponding bits of the MSR. Note that depending on the implementation,
additional bits from the MSR may be saved in SRR1.

. The MSR is set as described in Table 6-6. . The new values take effect beginning with the fetching of the

first instruction of the exception-handler routine located at the exception vector address.

Note: MSRJ[IR] and MSR[DR] are cleared for all exception types; therefore, address translation is dis-
abled for both instruction fetches and data accesses beginning with the first instruction of the exception-
handler routine.

Also, the MSRJILE] bit setting at the time of the exception is copied to MSR[LE] when the exception is
taken (as shown in Table 6-6).

Similar to MSRJ[ILE], the MSRJ[ISF] bit setting at the time of the exception is copied to MSR[SF] when
the exception is taken (if the ISF bit is implemented).

. The MSRJRI] bit is cleared. This indicates that the interrupt handler is operating in the “window-of-vuner-

ability” and cannot recover if another exception now occurs. After the machine state is saved (SRR0 and
SRR1) and stack pointer has been updated, the exception handler sets this bit to indicate that it could
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now handle another exception. See System Reset and Machine Check Exceptions on page 225 for more
details.

6. Instruction fetch and execution resumes, using the new MSR value, at a location specific to the exception
type. The location is determined by adding the exception's vector offset (see Table 6-2) to the base
address determined by MSR[IP]. If IP is cleared, exceptions are vectored to the physical address
0x0000_0000_000n_nnnn in 64-bit implementations and 0x000n_nnnn in 32-bit implementations. If IP is
set, exceptions are vectored to the physical address 0x0000_0000_FFFn_nnnn in 64-bit implementations
and OxFFFn_nnnnin 32-bit implementations. For a machine check exception that occurs when MSR[ME]
= 0 (machine check exceptions are disabled), the checkstop state is entered (the machine stops execut-
ing instructions). See Section 6.4.2 Machine Check Exception (0x00200).

In some implementations, any instruction fetch with MSR[IR] = 1 and any load or store with MSR[DR] = 1 may
cause SRRO and SRR1 to be modified.

6.2.3 Returning from an Exception Handler

The Return from Interrupt (rfid [or ri]) instruction performs context synchronization by allowing previously
issued instructions to complete before returning to the interrupted process. Execution of the rfid (or rfi)
instruction ensures the following:

« All previous instructions have completed to a point where they can no longer cause an exception.
If a previous instruction causes a direct-store interface error exception, the results are determined before
this instruction is executed. However, note that the direct-store facility is being phased out of the architec-
ture and will not likely be supported in future devices.

» Previous instructions complete execution in the context (privilege, protection, and address translation)
under which they were issued.

» The rfid (or rfi) instruction copies SRR1 bits back into the MSR.
- The instructions following this instruction execute in the context established by this instruction.

For a complete description of context synchronization, refer to Section 6.1.2.1 Context Synchronization.

The 64-bit bridge facility affects the operation of the return from exception mechanism in that the rfi
instruction can optionally be allowed to execute in 64-bit implementations. In this case, the mtmstr
instruction must also be implemented. When these instructions are implemented on a 64-bit implementa-
tion, their operation is identical to their operation in a 32-bit implementation. For an rfi instruction, in
addition to the actions described above, the following occurs:

- The SRR1 bits that are copied to the corresponding bits of the MSR are bits 48-55, 5759 and 62—
63 of SRR1. Note that depending on the implementation, additional bits from SRR1 may be restored
to the MSR. The remaining bits of the MSR, including the high-order 32 bits are unchanged.

- If the new MSR value does not enable any pending exceptions, then the next instruction is fetched,
under control of the new MSR value from the address specified in SRR0[0—61] concatenated with
0b00 (when MSR[SF] = 1 in the new MSR value). Alternately, when MSR[SF] = 0 in the new MSR
value, the next instruction is fetched from the address specified by thirty-two 0’s concatenated with
SRRO0[32—61], concatenated with 0b00.

Exceptions pem6_exceptions.fm.2.0
Page 236 of 785 June 10, 2003



Programming Environments Manual

PowerPC RISC Microprocessor Family

6.3 Process Switching

The operating system should execute the following when processes are switched:

- The sync instruction, which orders the effects of instruction execution. All instructions previously initiated
appear to have completed before the sync instruction completes, and no subsequent instructions appear
to be initiated until the sync instruction completes.

» The isync instruction, which waits for all previous instructions to complete and then discards any fetched
instructions, causing subsequent instructions to be fetched (or refetched) from memory and to execute in
the context (privilege, translation, protection, etc.) established by the previous instructions.

« The stwex./stdex. instruction, to clear any outstanding reservations, which ensures that an lwarx/Idarx
instruction in the old process is not paired with an stwex./stdex. instruction in the new process.
The operating system should handle MSRJ[RI] as follows:

» In machine check and system reset exception handlers—If the SRR1 bit corresponding to MSR[RI] is
cleared, the exception is not recoverable.

« In each exception handle—When enough state information has been saved that a machine check or
system reset exception can reconstruct the previous state, set MSR[RI].

« At the end of each exception handler—Clear MSRJ[RI], set the SRRO and SRR1 registers appropriately,
update stack pointers, and then execute rfid (or rfi).

Note: The RI bit being set indicates that, with respect to the processor, enough processor state data is valid
for the processor to continue, but it does not guarantee that the interrupted process can resume.

6.4 Exception Definitions

Table 6-6 shows all the types of exceptions that can occur and certain MSR bit settings when the exception
handler is invoked. Depending on the exception, certain of these bits are stored in SRR1 when an exception
is taken. The following subsections describe each exception in detail.

Table 6-6. MSR Setting Due to Exception

MSR Bit
Exception Type

SF'2 | |ISF2  POW | ILE | EE |PR FP ME | FEO SE  BE FE1 | IP IR| DR Rl  LE
System reset 1 — 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE
Machine check 1 = 0 — 0 0 0 0 0 0 0 0 — | 0 0 0 | ILE
DSl 1 — 0 — 0 0 0| — 0 0 0 0o |— |0 0 0 | ILE
ISI 1 — 0 — 0 0 0o — 0 0 0 0 — | 0 0 0 | ILE
External 1 = 0 — 0 0 0o — 0 0 0 0 — | 0 0 0 | ILE
Alignment 1 — 0 — 0 0 0| — 0 0 0 0o |— |0 0 0 | ILE
Program 1 — 0 — 0 0 0o — 0 0 0 0 — | 0 0 0 | ILE
Fioating point i1 — o — 0 0 0 — 0 0 0 O — 0 0 0 IE
Decrementer 1 — 0 — 0 0 0o — 0 0 0 0 | —| 0 0 0 | ILE
System call 1 — 0 — 0 0 0| — 0 0 0 0o |— |0 0 0 | ILE
pem6_exceptions.fm.2.0 Exceptions
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Table 6-6. MSR Setting Due to Exception (Continued)

MSR Bit
Exception Type
SF'2 | |SF2 | POW | ILE | EE | PR | FP | ME FEO @ SE
Trace exception 1 — 0 — 0 0 0 — 0 0

Floating-point

assist exception 1 - 0 -/ 0 0 0 — 0 0
0 Bit is cleared.
1 Bit is set.

ILE Bit is copied from the ILE bit in the MSR.
— Bit is not altered.
Reading of reserved bits may return 0, even if the value last written to it was 1.

164-bit implementations only.

Temporary 64-Bit Bridge

BE

FE1 | IP IR | DR | Rl | LE

2 When the 64-bit bridge is implemented in a 64-bit processor and the MSR[ISF] bit is implemented, the value of the MSR[ISF] bit is

copied to the MSR[SF] bit when an exception is taken.

6.4.1 System Reset Exception (0x00100)

The system reset exception is a nonmaskable, asynchronous exception signaled to the processor typically

through the assertion of a system-defined signal; see Table 6-7

Table 6-7. System Reset Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next if no excep-

tion conditions were present.

64-Bit 32-Bit

0 — Loaded with equivalent bit from the MSR
33-36 14 Cleared

4247 10-15 Cleared

48-55 16-23 Loaded with equivalent bits from the MSR
57-59 25-27 Loaded with equivalent bits from the MSR

SRRT 62 30 Loaded from the equivalent MSR bit, MSR[RI], if the exception is recoverable; otherwise
cleared.
63 31 Loaded with equivalent bit from the MSR

Note: Depending on the implementation, additional bits in the MSR may be copied to SRR1.

If the processor state is corrupted to the extent that execution cannot resume reliably, the bit corresponding to
MSRIRI], (SRR1[62] in 64-bit implementations and SRR1[30] in 32-bit implementations), is cleared.

SF 1 PR 0 oE 0
ISF — — FP 0 BE 0
MSR POW 0 ME  — FE1 0
ILE  —
EE 0 FEO 0 IP —
IR 0
PR SE 0

Temporary 64-Bit Bridge

0
0
RI 0
Set to value of ILE

"2\ the MSRJ[ISF] bit is implemented, the value of the MSR[ISF] bit is copied to the MSR[SF] bit when an exception is taken.

When a system reset exception is taken, instruction execution continues at offset 0x00100 from the physical

base address determined by MSR]IP].

If the exception is recoverable, the value of the MSR[RI] bit is copied to the corresponding SRR1 bit. The
exception functions as a context-synchronizing operation. If a reset exception causes the loss of:
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« An external exception (interrupt or decrementer),

« Direct-store error type DSI (the direct-store facility is being phased out of the architecture—not likely to be
supported in future devices), or

» Floating-point enabled type program exception,

then the exception is not recoverable. If the SRR1 bit corresponding to MSRI[RI] is cleared, the exception is
context-synchronizing only with respect to subsequent instructions.

Note: Each implementation provides a means for software to distinguish between power-on reset and other
types of system resets (such as soft reset).

6.4.2 Machine Check Exception (0x00200)

If no higher-priority exception is pending (namely, a system reset exception), the processor initiates a
machine check exception when the appropriate condition is detected.

Note: The causes of machine check exceptions are implementation and system-dependent, and are typically
signalled to the processor by the assertion of a specified signal on the processor interface.

When a machine check condition occurs and MSR[ME] = 1, the exception is recognized and handled. If
MSR[ME] = 0 and a machine check occurs, the processor generates an internal checkstop condition. When a
processor is in checkstop state, instruction processing is suspended and generally cannot continue without
resetting the processor. Some implementations may preserve some or all of the internal state of the
processor when entering the checkstop state, so that the state can be analyzed as an aid in problem determi-
nation.

In general, it is expected that a bus error signal would be used by a memory controller to indicate a memory
parity error or an uncorrectable memory ECC error.

Note: The resulting machine check exception has priority over any exceptions caused by the instruction that
generated the bus operation.

If a machine check exception causes an exception that is not context-synchronizing, the exception is not
recoverable. Also, a machine check exception is not recoverable if it causes the loss of one of the following:

« An external exception (interrupt or decrementer)

 Direct-store error type DSI (the direct-store facility is being phased out of the architecture and is not likely
to be supported in future devices)

» Floating-point enabled type program exception

If the SRR1 bit corresponding to MSR[RI] is cleared, the exception is context-synchronizing only with respect
to subsequent instructions. If the exception is recoverable, the SRR1 bit corresponding to MSR[RI] is set and
the exception is context-synchronizing.

Note: If the error is caused by the memory subsystem, incorrect data could be loaded into the processor and
register contents could be corrupted regardless of whether the exception is considered recoverable by the
SRR1 bit corresponding to MSRI[RI].

On some implementations, a machine check exception may be caused by referring to a nonexistent physical
(real) address, either because translation is disabled (MSR[IR] or MSR[DR] = 0) or through an invalid transla-
tion. On such a system, execution of the debz or deba instruction can cause a delayed machine check

exception by introducing a block into the data cache that is associated with an invalid physical (real) address.
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A machine check exception could eventually occur when and if a subsequent attempt is made to store that
block to memory (for example, as the block becomes the target for replacement, or as the result of executing
a dcbst instruction).

When a machine check exception is taken, registers are updated as shown in Table 6-8.

Table 6-8. Machine Check Exception—Register Settings

Register Setting Description

SRRO On a best-effort basis, implementations can set this to an EA of some instruction that was executing or about to be
executing when the machine check condition occurred.

Bit 62 (bit 30 in 32-bit implementations) is loaded from MSRIRI] if the processor is in a recoverable state. Otherwise

SRR1 cleared. The setting of all other SRR1 bits is implementation-dependent.
SF1 1
BE 0 DR 0
POW 0 “
MSR e ME2 — FE1T 0 RI 0
FEO 0 P — LE Set to value of ILE
EE 0 SE 0 R 0
PR 0

Temporary 64-Bit Bridge
Tlf the MSRJ[ISF] bit is implemented, the value of the MSR[ISF] bit is copied to the MSR[SF] bit when an exception is taken
"2 Note that when a machine check exception is taken, the exception handler should set MSR[ME] as soon as it is practical to handle

another machine check exception. Otherwise, subsequent machine check exceptions cause the processor to automatically enter the
checkstop state.

If MSR[RI] is set, the machine check exception may still be unrecoverable in the sense that execution can
resume in the same context that existed before the exception.

When a machine check exception is taken, instruction execution resumes at offset 0x00200 from the physical
base address determined by MSR]IP].

6.4.3 DSI Exception (0x00300)

A DSI exception occurs when no higher priority exception exists and a data memory access cannot be
performed. The condition that caused the DSI exception can be determined by reading the DSISR, a super-
visor-level SPR (SPR18) that can be read by using the mfspr instruction. Bit settings are provided in

Table 6-9. Table 6-9 also indicates which memory element is pointed to by the DAR. DSI exceptions can be
generated by load/store instructions, cache-control instructions (icbi, decbi, dcbz, dcbst, and debf), or the
eciwx/ecowx instructions for any of the following reasons:

« Aload or a store instruction results in a direct-store error exception.
Note: The direct-store facility is being phased out of the architecture and is not likely to be supported in
future devices.

« The effective address cannot be translated. That is, there is a page fault for this portion of the translation,
so a DSI exception must be taken to retrieve the page and update the translation tables. For example
read a page from a storage device such as a hard disk drive.

- The instruction is not supported for the type of memory addressed.

— For lwarx/stwcex. and Idarx/stdcx. instructions that reference a memory location that is write-through
required. If the exception is not taken, the instructions execute correctly.
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— For Iwarx/stwex., Idarx/stdcx., or eciwx/ecowx instructions that attempt to access direct-store seg-
ments (direct-store facility is being phased out of the architecture—not likely to be supported in future
devices). If the exception does not occur, the results are boundedly undefined.

» The access violates memory protection.

» The execution of an eciwx or ecowx instruction is disallowed because the external access register
enable bit (EAR[E]) is cleared.

» A data address breakpoint register (DABR) match occurs. The DABR facility is optional to the PowerPC
architecture, but if one is implemented, it is recommended, but not required, that it be implemented as fol-
lows. A data address breakpoint match is detected for a load or store instruction if the three following con-
ditions are met for any byte accessed:

— EA[0-60] (EA[0—28] in 32-bit implementations) = DABR[DAB]

— MSRI[DR] = DABRI[BT]

— The instruction is a store and DABR[DW] = 1, or the instruction is a load and DABR[DR] = 1.
The DABR is described in Section 2.3.15 Data Address Breakpoint Register (DABR). In 32-bit mode of
64-bit implementations, the high-order 32 bits of the EA are treated as zero for the purpose of detecting a

match; the DAR settings are described in Table 6-9. If the above conditions are satisfied, it is undefined
whether a match occurs in the following cases:

— The instruction is store conditional but the store is not performed.
— The instruction is a load/store string of zero length.
— The instruction is dcbz, eciwx, or ecowx.
The cache management instructions other than dcbz never cause a match. If dcbz causes a match,

some or all of the target memory locations may have been updated. For the purpose of determining
whether a match occurs, eciwx is treated as a load, and ecowx and dcbz are treated as stores.

If an stwex./stdex. instruction has an EA for which a normal store operation would cause a DSI exception but
the processor does not have the reservation from lwarx/ldarx, whether a DSI exception is taken is implemen-
tation-dependent.

If the value in XER[25—-31] indicates that a load or store string instruction has a length of zero, a DSI excep-
tion does not occur, regardless of the effective address.

The condition that caused the exception is defined in the DSISR. As shown in Table 6-9, this exception also
sets the data address register (DAR).

Table 6-9. DSI Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that caused the exception.
64-Bit 32-Bit
0 — Loaded with equivalent bit from the MSR
3336 14 Cleared
4247 1015 Cleared

SRR1 48-55 16-23 Loaded with equivalent bits from the MSR
57-59 25-27 Loaded with equivalent bits from the MSR
62—63 30-31 Loaded with equivalent bits from the MSR

Note: Depending on the implementation, additional bits in the MSR may be copied to SRR1.
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Table 6-9. DSI Exception—Register Settings (Continued)

Register Setting Description
SF 1 PR 0 SE 0
ISF — IR 0
POW 0 oo BE O
MSR ME — FE1 0 DR 0
ILE — FE RI 0
EE 0 0 0 P — LE  Settovalue of ILE
PR SE 0 IR 0

Temporary 64-Bit Bridge
If the MSR[ISF] bit is implemented, the value of the MSR[ISF] bit is copied to the MSR[SF] bit when an exception is taken.

0 Set if a load or store instruction results in a direct-store error exception; otherwise cleared. Note that the
direct-store facility is being phased out of the architecture and is not likely to be supported in future
devices.

1 Set if the translation of an attempted access is not found in the primary hash table entry group (HTEG), or
in the rehashed secondary HTEG, or in the range of a DBAT register (page fault condition); otherwise
cleared.

23 Cleared

4 Set if a memory access is not permitted by the page or DBAT protection mechanism; otherwise cleared.

5 Set if the eciwx, ecowx, lwarx/Idarx, or stwcx./stdex. instruction is attempted to direct-store interface

space, or if the Iwarx/ldarx or stwex./stdex. instruction is used with addresses that are marked as write-
through. Otherwise cleared to 0. Note that the direct-store facility is being phased out of the architecture
and is not likely to be supported in future devices.

6 Set for a store operation and cleared for a load operation.
78 Cleared
DSISR 9 Set if a DABR match occurs. Otherwise cleared.
10 For 64-bit implementations, set if the segment table search fails to find a translation for the effective
address (segment fault condition); otherwise cleared. Cleared in 32-bit implementations.
11 Set if the instruction is an eciwx or ecowx and EAR[E] = 0; otherwise cleared.

12-31 Cleared

Due to the multiple exception conditions possible from the execution of a single instruction, the following combina-
tions of bits of DSISR may be set concurrently:

« Bits 1 and 11
«Bits 4 and 5

* Bits 4 and 11
« Bits 5and 11
« Bits 10 and 11

Additonally, bit 6 is set if the instruction that caused the exception is a store, ecowx, dcbz, dcba, or debi and bit 6
would otherwise be cleared. Also, bit 9 (DABR match) may be set alone, or in combination with any other bit, or with
any of the other combinations shown above.

Set to the effective address of a memory element as described in the following list:

» A byte in the first word accessed in the segment or BAT area that caused the DSI exception, for a byte, half
word, or word memory access (to a segment or BAT area).

« A byte in the first double word accessed in the segment or BAT area that caused the DSI exception, for a dou-
ble-word memory access (to a segment or BAT area).

« A byte in the block that caused the exception for a cache management instruction.

« Any EA in the memory range addressed (for direct-store error exceptions). Note that the direct-store facility is
DAR being phased out of the architecture and is not likely to be supported in future devices.

» The EA computed by the instruction for the attempted execution of an eciwx or ecowx instruction when
EARI[E] is cleared.

- If the exception is caused by a DABR match, the DAR is set to the effective address of any byte in the range
from A to B inclusive, where A is the effective address of the word (for a byte, half word,or word access) or
double word (for a double word access) specified by the EA computed by the instruction, and B is the EA of
the last byte in the word or double word in which the match occurred.

Note: If the exception occurs when a 64-bit processor is running in 32-bit mode, the 32 high-order bits are cleared.

When a DSI exception is taken, instruction execution resumes at offset 0x00300 from the physical base
address determined by MSR[IP].
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6.4.4 ISI Exception (0x00400)

An ISI exception occurs when no higher priority exception exists and an attempt to fetch the next instruction
to be executed fails for any of the following reasons:

« The effective address cannot be translated. For example, when there is a page fault for this portion of the
translation, an ISI exception must be taken to retrieve the page (and possibly the translation), typically
from a storage device.

- An attempt is made to fetch an instruction from a no-execute segment.
- An attempt is made to fetch an instruction from guarded memory and MSR][IR] = 1.
» The fetch access violates memory protection.

« An attempt is made to fetch an instruction from a direct-store segment.

Note: The direct-store facility is being phased out of the architecture and is not likely to be supported in
future devices.

Register settings for ISI exceptions are shown in Table 6-10.

Table 6-10. ISI Exception—Register Settings

Register Setting Description
Set to the effective address of the instruction that the processor would have attempted to execute next if no excep-
SRRO tion conditions were present (if the exception occurs on attempting to fetch a branch target, SRRO is set to the
branch target address).
64-Bit 32-Bit
0 — Loaded with equivalent bit from the MSR
Set if the translation of an attempted access is not found in the primary hash table entry
33 1 group (HTEG), or in the rehashed secondary HTEG, or in the range of an IBAT register
(page fault condition); otherwise cleared.
34 2 Cleared
Set if the fetch access occurs to a direct-store segment (SR[T] =1 or STE = 1), to a no-
35 3 execute segment (N bit set in segment descriptor), or to guarded memory when

MSRJIR] = 1. Otherwise, cleared. Note that the direct-store facility is being phased out
of the architecture and is not likely to be supported in future devices.

SRR1 36 4 Set if a memory access is not permitted by the page or IBAT protection mechanism,

described in Chapter 7, “Memory Management’; otherwise cleared.

49 . For 64-bit implementations, set if the segment table search fails to find a translation for
the effective address (segment fault condition); otherwise cleared.

4347 1015 Cleared

48-55 16-23 Loaded with equivalent bits from the MSR

5759 25-27 Loaded with equivalent bits from the MSR

62—63 3031 Loaded with equivalent bits from the MSR

Note: Only one of bits 33, 35, 36, and 42 (bits 1, 3, and 4 in 32-bit implementations) can be set .
Also, note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

ISF"  — PRO SE 0 IR 0
POW 0 P BE O DR 0
MSR e ME = — FE1 0 R0
FEO 0 — LE Set to value of ILE
IP
EE 0 SE 0 IR 0
PR

Temporary 64-Bit Bridge
If the MSR[ISF] bit is implemented, the value of the MSR[ISF] bit is copied to the MSR[SF] bit when an exception is taken.
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When an IS| exception is taken, instruction execution resumes at offset 0x00400 from the physical base
address determined by MSR][IP].
6.4.5 External Interrupt (0x00500)

An external interrupt exception is signaled to the processor by the assertion of the external interrupt signal.
The exception may be delayed by other higher priority exceptions or if the MSR[EE] bit is zero when the
exception is detected.

Note: The occurrance of this exception does not cancel the external request.

The register settings for the external interrupt exception are shown in Table 6-11.

Table 6-11. External Interrupt—Register Settings

Register Setting Description
SRRO Set to the effective address of the instruction that the processor would have attempted to execute next if no inter-
rupt conditions were present.
64-Bit 32-Bit
0 — Loaded with equivalent bit from the MSR
3336 14 Cleared
4247 1015 Cleared
SRR1 48-55 16-23 Loaded with equivalent bits from the MSR
57-59 25-27 Loaded with equivalent bits from the MSR
62—63 30-31 Loaded with equivalent bits from the MSR
Note: Depending on the implementation, additional bits in the MSR may be copied to SRR1.
SF* 1
ISET  — PR 0 SE 0 IR 0
POW 0 P BE 0 DR 0
MSR ILE o ME — FE1 0 RI 0
FEO 0 P — LE Set to value of ILE
EE 0 SE 0 R 0
PR 0

Temporary 64-Bit Bridge
If the MSR[ISF] bit is implemented, the value of the MSR[ISF] bit is copied to the MSR[SF] bit when an exception is taken.

When an external interrupt exception is taken, instruction execution resumes at offset 0x00500 from the
physical base address determined by MSR[IP].

6.4.6 Alignment Exception (0x00600)

This section describes conditions that can cause alignment exceptions in the processor. Similar to DSI
exceptions, alignment exceptions use the SRR0O and SRR1 to save the machine state and the DSISR to
determine the source of the exception. An alignment exception occurs when no higher priority exception
exists and the implementation cannot perform a memory access for one of the following reasons:

» The operand of a floating-point load or store instruction is not word-aligned.

« The operand of an integer double-word load or store instruction is not word-aligned.

« The operand of Imw, stmw, lwarx, Idarx, stwcx., stdcx., eciwx, or ecowx is not aligned.

« The instruction is Imw, stmw, Iswi, Iswx, stswi, or stswx and the processor is in little-endian mode.

» The operand of an elementary or string load or store crosses a protection boundary.
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» The operand of Imw or stmw crosses a segment or BAT boundary.

« The operand of debz is in memory that is write-through-required or caching inhibited, or debz is executed
in an implementation that has either no data cache or a write-through data cache.

» The operand of a floating-point load or store instruction is in a direct-store segment (T = 1). Note that the
direct-store facility is being phased out of the architecture and is not likely to be supported in future
devices.

For Imw, stmw, Iswi, Iswx, stswi, and stswx instructions in little-endian mode, an alignment exception
always occurs. For Imw and stmw instructions with an operand that is not aligned in big-endian mode, and
for lwarx, Idarx, stwex., stdex., eciwx, and ecowx with an operand that is not aligned in either endian
mode, an implementation may yield boundedly-undefined results instead of causing an alignment exception
(for eciwx and ecowx when EAR[E] = 0, a third alternative is to cause a DSI exception). For all other cases
listed above, an implementation may execute the instruction correctly instead of causing an alignment excep-
tion. For the debz instruction, correct execution means clearing each byte of the block in main memory. See
Section 3.1 Data Organization in Memory and Data Transfers for a complete definition of alignment in the
PowerPC architecture.

The term, ‘protection boundary’, refers to the boundary between protection domains. A protection domain is a
segment, a block of memory defined by a BAT entry, a virtual 4-Kbyte page, or a range of unmapped effective
addresses. Protection domains are defined only when the corresponding address translation (instruction or
data) is enabled (MSR[IR] or MSR[DR] = 1).

The register settings for alignment exceptions are shown in Table 6-12.

Table 6-12. Alignment Exception—Register Settings

Register Setting Description
SRRO Set to the effective address of the instruction that caused the exception.
64-Bit 32-Bit
0 — Loaded with equivalent bit from the MSR
3336 14 Cleared
4247 1015 Cleared
SRR1 48-55 16-23 Loaded with equivalent bits from the MSR
57-59 25-27 Loaded with equivalent bits from the MSR
62—63 3031 Loaded with equivalent bits from the MSR
Note: Depending on the implementation, additional bits in the MSR may be copied to SRR1.
SF™ 1
ISF* — PR SE- 0 IR 0
POW 0 P 0 BE 0 DR 0
MSR ILE . ME — FEA1 0 RI 0
FEO 0 P — LE Set to value of ILE
EE 0 SE 0 IR 0
PR 0
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Table 6-12. Alignment Exception—Register Settings (Continued)

Register Setting Description

0—14  (32-bit implementations) Cleared
10—11 (64-bit implementations) Cleared

2—13  (64-bit implementations) For 64-bit instructions that use immediate addressing—set to bits 30 and 31. Oth-
erwise cleared.

14 (64-bit implementations) Cleared

15-16  For instructions that use register indirect with index addressing—set to bits 29-30 of the instruction
encoding.
For instructions that use register indirect with immediate index addressing—cleared

17 For instructions that use register indirect with index addressing—set to bit 25 of the instruction encoding.
For instructions that use register indirect with immediate index addressing— set to bit 5 of the instruction
encoding.

1821 For instructions that use register indirect with index addressing—set to bits 21—24 of the instruction encod-
ing.

For instructions that use register indirect with immediate index addressing—set to bits 1—4 of the instruc-
tion encoding.
2226 Set to bits 610 (identifying either the source or destination) of the instruction encoding. Undefined for
dcbz.
27-31 Set to bits 11—15 of the instruction encoding (rA) for update-form instructions
DSISR Set to either bits 11—15 of the instruction encoding or to any register number not in the range of registers
loaded by a valid form instruction for Imw, Iswi, and Iswx instructions. Otherwise undefined.
Note that for load or store instructions that use register indirect with index addressing, the DSISR can be set to the
same value that would have resulted if the corresponding instruction uses register indirect with immediate index
addressing had caused the exception. Similarly, for load or store instructions that use register indirect with immedi-
ate index addressing, DSISR can hold a value that would have resulted from an instruction that uses register indi-
rect with index addressing. For example, a misaligned lwarx instruction that crosses a protection boundary would
normally cause the DSISR to be set to the following binary value:

If there is no corresponding instruction (such as for the Iwaux instruction), no alternative value can be specified.
The instruction pairs that can use the same DSISR values are as follows:

Ibz/Ibzx Ibzu/lbzux lhz/lhzx lhzu/lhzux Iha/lhax Ihau/lhaux
Iwz/lwzx lwzu/lwzux lwa/lwax Id/Idx Idu/Idux stbh/stbx
stbu/stbux sth/sthx sthu/sthux stw/stwx stwu/stwux std/stdx
stdu/stdux Ifs/Ifsx Ifsu/lfsux Ifd/1fdx Ifdu/Ifdux stfs/stfsx
stfsu/stfsux stfd/stfdx stfdu/stfdux

Set to the EA of the data access as computed by the instruction causing the alignment exception. Note that if a 64-

DAR bit processor is running in 32-bit mode, the 32 high-order bits are cleared.

Temporary 64-Bit Bridge
" If the MSRIJISF] bit is implemented, the value of the MSR[ISF] bit is copied to the MSR[SF] bit when an exception is taken.

The architecture does not support the use of a misaligned EA by load/store with reservation instructions or by
the eciwx and ecowx instructions. If one of these instructions specifies a misaligned EA, the exception
handler should not emulate the instruction but should treat the occurrence as a programming error.

6.4.6.1 Integer Alignment Exceptions

Operations that are not naturally aligned may suffer performance degradation, depending on the processor
design, the type of operation, the boundaries crossed, and the mode that the processor is in during execution.
More specifically, these operations may either cause an alignment exception or they may cause the
processor to break the memory access into multiple, smaller accesses with respect to the cache and the
memory subsystem.
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Page Address Translation Access Considerations

A page address translation access occurs when MSR[DR] is set, SR[T] is cleared, and there is no BAT
match.

Note: A dcbz instruction causes an alignment exception if the access is to a page or block with the W (write-
through) or | (cache-inhibit) bit set.

Misaligned memory accesses that do not cause an alignment exception may not perform as well as an
aligned access of the same type. The resulting performance degradation due to misaligned accesses
depends on how well each individual access behaves with respect to the memory hierarchy.

Particular details regarding page address translation is implementation-dependent; the reader should consult
the user's manual for the appropriate processor for more information.

Direct-Store Interface Access Considerations

The following apply for direct-store interface accesses:

« |f a 256-Mbyte boundary will be crossed by any portion of the direct-store interface space accessed by an
instruction (the entire string for strings/multiples), an alignment exception is taken.

» Floating-point loads and stores to direct-store segments may cause an alignment exception, regardless
of operand alignment.

» The load/store word/double word with reservation instructions that map into a direct-store segment
always cause a DSI exception. However, if the instruction crosses a segment boundary an alignment
exception is taken instead.

Note: The direct-store facility is being phased out of the architecture and is not likely to be supported in
future devices.

6.4.6.2 Little-Endian Mode Alignment Exceptions

The OEA allows implementations to take alignment exceptions on misaligned accesses (as described in
Section 3.1.4 PowerPC Byte Ordering) in little-endian mode but does not require them to do so. Some imple-
mentations may perform some misaligned accesses without taking an alignment exception.

6.4.6.3 Interpretation of the DSISR as Set by an Alignment Exception

For most alignment exceptions, an exception handler may be designed to emulate the instruction that causes
the exception. To do this, the handler requires the following characteristics of the instruction:

« Load or store

« Length (half word, word, or double word)

« String, multiple, or normal load/store

« Integer or floating-point

« Whether the instruction performs update

« Whether the instruction performs byte reversal

« Whether it is a dcbz instruction
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The PowerPC architecture provides this information implicitly, by setting opcode bits in the DSISR that iden-
tify the excepting instruction type. The exception handler does not need to load the excepting instruction from
memory. The mapping for all exception possibilities is unique except for the few exceptions discussed below.

Table 6-13 shows the inverse mapping—how the DSISR bits identify the instruction that caused the excep-
tion.

The alignment exception handler cannot distinguish a floating-point load or store that causes an exception
because it is misaligned, or because it addresses the direct-store interface space. However, this does not
matter; in either case it is emulated with integer instructions. Floating-point instructions are distinguished from
integer instructions because different register files must be accessed while emulating the each class. Bits 15-
21 of the DSISR are used to identify whether the instruction is integer or floating-point.

Note: The direct-store facility is being phased out of the architecture and is not likely to be supported in

future devices.

Table 6-13. DSISR(15-21) Settings to Determine Misaligned Instruction

DSISR[15-21] Instruction DSISR[15-21] Instruction
00 0 0000 lwarx, lwz, special casesl! 0110010 stdux—
0000010 Idarx— 0110101 Iwaux
0000010 stw 100 0010 stwex.
0000100 lhz 10 0 0011 stdex.—
000 0101 lha 10 0 1000 Iwbrx
0000110 sth 1001010 stwbrx
0000111 Imw 100 1100 Ihbrx
00 0 1000 Ifs 1001110 sthbrx
00 0 1001 lfd— 101 0100 eciwx
0001010 stfs 1010110 eCcowxX
0001011 stfd— 101 1111 dcbz
000 1101 Id, Idu, Iwa 2 110 0000 Iwzx
000 1111 std, stdu 2 1100010 stwx
00 1 0000 lwzu 11 00100 Ihzx
0010010 stwu 11 0 0101 lhax
0010100 lhzu 1100110 sthx
0010101 lhau 11 0 1000 Ifsx
0010110 sthu 11 0 1001 [fdx—
0010111 stmw 1101010 stfsx
0011000 Ifsu 11 01011 stfdx—
00 1 1001 Ifdu— 1101111 stfiwx
0011010 stfsu 111 0000 lwzux
0011011 stfdu— 111 0010 stwux
01 0 0000 ldx— 1110100 lhzux
0100010 stdx— 1110101 lhaux
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Table 6-13. DSISR(15-21) Settings to Determine Misaligned Instruction (Continued)

DSISR[15-21] Instruction DSISR[15-21] Instruction
0100101 lwax 1110110 sthux
0101000 Iswx 111 1000 Ifsux
010 1001 Iswi 1111001 [fdux—
0101010 stswx 1111010 stfsux
0101011 stswi 1111011 stfdux—
011 0000 I[dux— — —

1
The instructions lwz and Iwarx give the same DSISR bits (all zero). But if lwarx causes an alignment exception, it is an invalid form, so
it need not be emulated in any precise way. It is adequate for the alignment exception handler to simply emulate the instruction as if it

were an lwz. It is important that the emulator use the address in the DAR, rather than computing it from rA/rB/D, because lwz and Iwarx
use different addressing modes.

If opcode 0 (“illegal or reserved”) can cause an alignment exception, it will be indistiguishable to the exception handler from lwarx and
lwz.

2
These instructions are distinguished by DSISR[12—13], which are not shown in this table.

6.4.7 Program Exception (0x00700)

A program exception occurs when no higher priority exception exists and one or more of the following excep-
tion conditions, which correspond to bit settings in SRR1, occur during execution of an instruction:

- System IEEE floating-point enabled exception—A system IEEE floating-point enabled exception can be
generated when FPSCRI[FEX] is set and either (or both) of the MSR[FEO] or MSR[FE1] bits is set.

FPSCRI[FEX] is set by the execution of a floating-point instruction that causes an enabled exception or by
the execution of a “move to FPSCR” type instruction that sets an exception bit when its corresponding
enable bit is set. Floating-point exceptions are described in Section 3.3.6 , “Floating-Point Program
Exceptions.”

- lllegal instruction—An illegal instruction program exception is generated when execution of an instruction
is attempted with an illegal opcode or illegal combination of opcode and extended opcode fields (these
include PowerPC instructions not implemented in the processor), or when execution of an optional or a
reserved instruction not provided in the processor is attempted.

Note: Implementations are permitted to generate an illegal instruction program exception when encoun-
tering the following instructions. If an illegal instruction exception is not generated, then the alternative is
shown in parenthesis.

— An instruction corresponds to an invalid class (the results may be boundedly undefined)

An Iswx instruction for which rA or rB is in the range of registers to be loaded (may cause results that
are boundedly undefined)

A move to/from SPR instruction with an SPR field that does not contain one of the defined values
— MSRIPR] = 1 and spr[0] = 1 (this can cause a privileged instruction program exception)
— MSR[PR] = 0 or spr[0] = 0 (may cause boundedly-undefined results.)

An unimplemented floating-point instruction that is not optional (may cause a floating-point assist
exception)

- Privileged instruction—A privileged instruction type program exception is generated when the execution
of a privileged instruction is attempted and the processor is operating in user mode (MSR[PR] is set). It is
also generated for mtspr or mfspr instructions that have an invalid SPR field that contain one of the
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defined values having spr[0] = 1 and if MSR[PR] = 1. Some implementations may also generate a privi-
leged instruction program exception if a specified SPR field (for a move to/from SPR instruction) is not
defined for a particular implementation, but spr[0] = 1; in this case, the implementation may cause either
a privileged instruction program exception, or an illegal instruction program exception may occur instead.

- Trap—A trap program exception is generated when any of the conditions specified in a trap instruction is
met. Trap instructions are described in Section 4.2.4.6 Trap Instructions.

The register settings when a program exception is taken are shown in Table 6-14.

Table 6-14. Program Exception—Register Settings

Register Setting Description

The contents of SRRO differ according to the following situations:

» For all program exceptions except floating-point enabled exceptions when operating in imprecise mode
(MSR[FEO-FE1] = 10 or 01 respectively), SRRO contains the EA of the excepting instruction.

« When the processor is in floating-point imprecise mode, SRR0 may contain the EA of the excepting instruction

SRRO or that of a subsequent unexecuted instruction. If the subsequent instruction is sync or isync, SRRO points no
more than four bytes beyond the sync or isync instruction.

» If FPSCR[FEX] = 1, but IEEE floating-point enabled exceptions are disabled (MSR[FEOQ] = MSR[FE1] = 0), the
program exception occurs before the next synchronizing event if an instruction alters those bits (thus enabling
the program exception). When this occurs, SRRO points to the instruction that would have executed next and
not to the instruction that modified MSR.

64-Bit 32-Bit
0 — Loaded with equivalent bit from the MSR
3336 14 Cleared
42 10 Cleared
43 11 Set for an IEEE floating-point enabled program exception; otherwise cleared.
44 12 Set for an illegal instruction program exception; otherwise cleared.
45 13 Set for a privileged instruction program exception; otherwise cleared.

SRR1 46 14 Set for a trap program exception; otherwise cleared.
47 15 Cleared if SRRO contains the address of the instruction causing the exception, and set

if SRRO contains the address of a subsequent instruction.

48-55 16-23 Loaded with equivalent bits from the MSR
57-59 25-27 Loaded with equivalent bits from the MSR
62—63 3031 Loaded with equivalent bits from the MSR
Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.
|SSFF . 1_ PR 0 SE 0 IR 0
POW 0 P BE 0 DR 0

MSR ILE . ME — FE1 0 RI 0

FEO 0 P — LE Set to value of ILE

EE 0 SE 0 R 0
PR

Temporary 64-Bit Bridge
" If the MSRJISF] bit is implemented, the value of the MSR[ISF] bit is copied to the MSR[SF] bit when an exception is taken.

When a program exception is taken, instruction execution resumes at offset 0x00700 from the physical base
address determined by MSR]IP].
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6.4.8 Floating-Point Unavailable Exception (0x00800)

A floating-point unavailable exception occurs when no higher priority exception exists, an attempt is made to
execute a floating-point instruction (including floating-point load, store, or move instructions), and the floating-
point available bit in the MSR is cleared, (MSR[FP] = 0).

The register settings for floating-point unavailable exceptions are shown in Table 6-15.

Table 6-15. Floating-Point Unavailable Exception—Register Settings

Register Setting Description
SRRO Set to the effective address of the instruction that caused the exception.
64-Bit 32-Bit
0 — Loaded with equivalent bit from the MSR
3336 14 Cleared
4247 1015 Cleared
SRR1 48-55 16-23 Loaded with equivalent bits from the MSR
57-59 25-27 Loaded with equivalent bits from the MSR
62—63 3031 Loaded with equivalent bits from the MSR
Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.
SF™ 1
: PR 0 SE 0 IR 0
ISF —
POW 0 P BE O DR 0
MSR ILE . ME — FE1 0 RI 0
FEO 0 P — LE Set to value of ILE
EE 0 SE 0 IR 0
PR 0

Temporary 64-Bit Bridge
If the MSR[ISF] bit is implemented, the value of the MSR[ISF] bit is copied to the MSR[SF] bit when an exception is taken.

When a floating-point unavailable exception is taken, instruction execution resumes at offset 0x00800 from
the physical base address determined by MSR]IP].

6.4.9 Decrementer Exception (0x00900)

A decrementer exception occurs when no higher priority exception exists, a decrementer exception condition
occurs (for example, the decrementer register has completed decrementing), and MSR[EE] = 1. The decre-
menter register counts down, causing an exception request when it passes through zero. A decrementer
exception request remains pending until the decrementer exception is taken and then it is cancelled. The
decrementer implementation meets the following requirements:

» The counters for the decrementer and the time-base counter are driven by the same fundamental time
base.

« Loading a GPR from the decrementer does not affect the decrementer.
« Storing a GPR value to the decrementer replaces the value in the decrementer with the value in the GPR.

« Whenever bit 0 of the decrementer changes from 0 to 1, a decrementer exception request is signaled. If
multiple decrementer exception requests are received before the first can be reported, only one excep-
tion is reported. The occurrence of a decrementer exception cancels the request.

« If the decrementer is altered by software and if bit 0 is changed from 0 to 1, an exception request is sig-
naled.

The register settings for the decrementer exception are shown in Table 6-16.
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Table 6-16. Decrementer Exception—Register Settings

Register Setting Description
SRRO Set to thg gffective address of the instruction that the processor would have attempted to execute next if no excep-
tion conditions were present.
64-Bit 32-Bit
0 — Loaded with equivalent bit from the MSR
3336 14 Cleared
4247 1015 Cleared
SRR1 48-55 16-23 Loaded with equivalent bits from the MSR
5759 25-27 Loaded with equivalent bits from the MSR
62—63 30-31 Loaded with equivalent bits from the MSR
Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.
SF . 1 PR 0 SE 0 R 0
ISF — Ep 0 BE 0
POW 0 DR 0
MSR ILE . ME — FE1 0 RI 0
FEO 0 P —_ LE Set to value of ILE
EE 0 SE 0 R 0
PR 0

Temporary 64-Bit Bridge
If the MSR[ISF] bit is implemented, the value of the MSR[ISF] bit is copied to the MSR[SF] bit when an exception is taken.

When a decrementer exception is taken, instruction execution resumes at offset 0x00900 from the physical
base address determined by MSR]IP].

6.4.10 System Call Exception (0x00C00)

A system call exception occurs when a System Call (sc) instruction is executed. The effective address of the
instruction following the sc instruction is placed into SRR0. MSR bits are saved in SRR1, as shown in
Table 6-17. Then a system call exception is generated.

The system call exception causes the next instruction to be fetched from offset 0x00C00 from the physical
base address determined by the new setting of MSR[IP]. As with most other exceptions, this exception is

context-synchronizing. Refer to Context Synchronization on page 224 for more information on the actions
performed by a context-synchronizing operation. Register settings are shown in Table 6-17.
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Table 6-17. System Call Exception—Register Settings

Register Setting Description
SRRO Set to the effective address of the instruction following the System Call instruction
64-Bit 32-Bit
0 — Loaded with equivalent bit from the MSR
3336 14 Cleared
4247 1015 Cleared
SRR1 48-55 16-23 Loaded with equivalent bits from the MSR
5759 25-27 Loaded with equivalent bits from the MSR
62—63 30-31 Loaded with equivalent bits from the MSR
Note: Depending on the implementation, additional bits in the MSR may be copied to SRR1.
SF* 1
ISE*  — PR 0 SE 0 IR 0
POW 0 oo BE 0 DR 0
MSR ILE o ME — FE1 0 RI 0
FEO 0 P — LE Set to value of ILE
EE 0 SE 0 IR 0
PR 0

Temporary 64-Bit Bridge
" If the MSRIJISF] bit is implemented, the value of the MSR[ISF] bit is copied to the MSR[SF] bit when an exception is taken.

When a system call exception is taken, instruction execution resumes at offset 0x00C00 from the physical
base address determined by MSR][IP].

6.4.11 Trace Exception (0x00D00)

The trace exception is optional to the PowerPC architecture, and specific information about how it is imple-
mented can be found in user’'s manuals for individual processors.

The trace exception provides a means of tracing the flow of control of a program for debugging and perfor-
mance analysis purposes. It is controlled by MSR bits SE and BE as follows:

« MSR[SE] = 1: the processor generates a single-step type trace exception after each instruction that com-
pletes without causing an exception or context change (such as occurs when an sc, rfid (or rfi), or a load
instruction that causes an exception, for example, is executed).

« MSR[BE] = 1: the processor generates a branch-type trace exception after completing the execution of a
branch instruction, whether or not the branch is taken.
If this facility is implemented, a trace exception occurs when no higher priority exception exists and either of
the conditions described above exist. The following are not traced:
« rfid (or rfi) instruction

« SC, and trap instructions that trap

Other instructions that cause exceptions (other than trace exceptions)

The first instruction of any exception handler
« Instructions that are emulated by software
MSRI[SE, BE] are both cleared when the trace exception is taken. In the normal use of this function, MSR[SE,

BE] are restored when the exception handler returns to the interrupted program using an rfid (or rfi) instruc-
tion.
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Register settings for the trace mode are described in Table 6-18.

Table 6-18. Trace Exception—Register Settings

Register Setting Description
SRRO Set to the effective address of the next instruction to be executed in the program for which the trace exception was
generated.
64-Bit 32-Bit
0 — Loaded with equivalent bit from the MSR
3336 14 Cleared
4247 1015 Cleared
SRR1 48-55 16-23 Loaded with equivalent bits from the MSR
57-59 25-27 Loaded with equivalent bits from the MSR
62—63 30-31 Loaded with equivalent bits from the MSR
Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.
ISSFF oL PR 0 SE 0 R 0
POW 0 P 0 BE 0 DR 0
MSR ILE . ME — FE1 0 RI 0
FEO 0 P — LE Set to value of ILE
EE 0 SE 0 R 0
PR 0

Temporary 64-Bit Bridge
" If the MSRIJISF] bit is implemented, the value of the MSR[ISF] bit is copied to the MSR[SF] bit when an exception is taken.

When a trace exception is taken, instruction execution resumes at offset 0x00D00 from the base address
determined by MSR][IP].

6.4.12 Floating-Point Assist Exception (0x00EO00)

The floating-point assist exception is optional to the PowerPC architecture. It can be used to allow software to
assist in the following situations:

« Execution of floating-point instructions for which an implementation uses software routines to perform
certain operations, such as those involving denormalization.

« Execution of floating-point instructions that are not optional and are not implemented in hardware. In this
case, the processor may generate an illegal instruction type program exception instead.

Register settings for the floating-point assist exceptions are described in Table 6-19.
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Table 6-19. Floating-Point Assist Exception—Register Settings

Register Setting Description
SRRO Set to the address of the next instruction to be executed in the program for which the floating-point assist exception
was generated.
64-Bit 32-Bit
0 — Loaded with equivalent bit from the MSR
3336 14 Implementation-specific information
4247 10-15 Implementation-specific information
SRR1 48-55 16-23 Loaded with equivalent bits from the MSR
5759 25-27 Loaded with equivalent bits from the MSR
62—63 30-31 Loaded with equivalent bits from the MSR

Note that depending on the implementation, additional bits in the MSR may be copied to SRR1.

SF 1
ISF"  — RO SE 0 IR 0
POW 0 oo BE O DR 0
MSR LE ME  — FET 0 RI 0
FEO 0 P — LE Set to value of ILE
EE 0 SE 0 IR 0
PR

Temporary 64-Bit Bridge
" If the MSRIJISF] bit is implemented, the value of the MSR[ISF] bit is copied to the MSR[SF] bit when an exception is taken..

When a floating-point assist exception is taken, instruction execution resumes as offset 0x00EQO from the
base address determined by MSR][IP].
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7. Memory Management

This chapter describes the memory management unit (MMU) specifications provided by the PowerPC oper-
ating environment architecture (OEA) for PowerPC processors. The primary function of the MMU in a
PowerPC processor is to translate logical (effective) addresses to physical addresses (referred to as real
addresses in the architecture specification) for memory accesses and I/O accesses (most I/O accesses are
assumed to be memory-mapped). In addition, the MMU provides various levels of access protection on a
segment, block, or page basis.

Note: There are many aspects of memory management that are implementation-dependent. This chapter
describes the conceptual model of a PowerPC MMU; however, PowerPC processors may differ in the spe-
cific hardware used to implement the MMU model of the OEA, depending on the many design trade-offs
inherent in each implementation.

Two general types of accesses generated by PowerPC processors require address translation—instruction
accesses, and data accesses to memory generated by load and store instructions. In addition, the addresses
specified by cache instructions and the optional external control instructions also require translation. Gener-
ally, the address translation mechanism is defined in terms of segment descriptors and page tables used by
PowerPC processors to locate the effective to physical address mapping for instruction and data accesses.
The segment information translates the effective address to an interim virtual address, and the page table
information translates the virtual address to a physical address.

The definition of the segment and page table data structures provides significant flexibility for the implementa-
tion of performance enhancement features in a wide range of processors. Therefore, the performance
enhancements used to store the segment or page table information on-chip vary from implementation to
implementation.

Translation lookaside buffers (TLBs) are commonly implemented in PowerPC processors to keep recently-
used page address translations on-chip. Although their exact characteristics are not specified in the OEA, the
general concepts that are pertinent to the system software are described.

The segment information, used to generate the interim virtual addresses, is stored as segment descriptors.
These descriptors may reside in on-chip segment registers (32-bit implementations) or as segment table
entries (STEs) in memory (64-bit implementations). In much the same way that TLBs cache recently-used
page address translations, 64-bit processors may contain segment lookaside buffers (SLBs) on-chip that
cache recently-used segment table entries. Although the exact characteristics of SLBs are not specified,
there is general information pertinent to those implementations that provide SLBs.

The OEA defines an additional, optional bridge to the 64-bit architecture that may make it easier for 32-
bit operating systems to migrate to 64-bit processors. The 64-bit bridge retains certain aspects of the 32-
bit architecture that otherwise are not supported, and in some cases not permitted, by the 64-bit version
of the architecture. In processors that implement this bridge, segment descriptors are implemented by
using 16 SLB entries to emulate segment registers, which, like those defined for the 32-bit architecture,
divide the 32-bit memory space (4 Gbytes) into sixteen 256-Mbyte segments. These segment descrip-
tors however use the format of the segment table entries as defined in the 64-bit architecture and are
maintained in SLBs rather than in architecture-defined segment registers.
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The block address translation (BAT) mechanism is a software-controlled array that stores the available block
address translations on-chip. BAT array entries are implemented as pairs of BAT registers that are accessible
as supervisor special-purpose registers (SPRs).

The MMU, together with the exception processing mechanism, provides the necessary support for the oper-
ating system to implement a paged virtual memory environment and for enforcing protection of designated
memory areas. Exception processing is described in Chapter 6, “Exceptions.” Section 2.3.1 Machine State
Register (MSR) describes the MSR, which controls some of the critical functionality of the MMU.

Note: The architecture specification refers to exceptions as interrupts.

7.1 MMU Features

The memory management specification of the PowerPC OEA includes models for both 64 and 32-bit imple-
mentations. The MMU of a 64-bit PowerPC processor provides 264 bytes of effective address space acces-
sible to supervisor and user programs with a 4-Kbyte page size and 256-Mbyte segment size. PowerPC
processors also have a block address translation (BAT) mechanism for mapping large blocks of memory.
Block sizes range from 128 Kbyte to 256 Mbyte and are software-selectable. In addition, the MMU of 64-bit
PowerPC processors uses an interim virtual address (80 bits or 64 bits) and hashed page tables in the gener-
ation of physical addresses that are < 64 bits in length.

The MMU of a 32-bit PowerPC processor is similar except that it provides 4 Gbytes of effective address
space, a 52-bit interim virtual address and physical addresses that are < 32 bits in length. Table 7-1 summa-
rizes the features of PowerPC MMUs for 64-bit implementations and highlights the differences for 32-bit
implementations.

Table 7-1. MMU Features Summary

64-Bit Implementations

Feature Category 32-Bit Implementations
Conventional Temporary 64-Bit Bridge
264 bytes of effective address 232 bytes of effective address 232 bytes of effective address
Address ranges 222 Eﬁgz ZI X::EZ: :gg::zz or 252 pytes of virtual address 252 pytes of virtual address
<2o®4 bytes of physical address <2% bytes of physical address <2% bytes of physical address
Page size 4 Kbytes Same Same
Segment size 256 Mbytes Same Same
Range of 128 Kbyte—256 Mbyte Same Same

Block address
translation Implemented with IBAT and DBAT

registers in BAT array Same Same
Segments selectable as no-execute | Same Same
Memory protection :r?g?::;lgrflt;ble as UserlSUpeNisor | same Same
Srl]czjclr(esasde_lsrclzltyable as user/supervisor Same Same
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Table 7-1. MMU Features Summary (Continued)

Feature Category

Page address trans-
lation

TLBs

Segment descrip-
tors

64-Bit Implementations

Conventional

Translations stored as PTEs in
hashed page tables in memory

Page table size determined by size
programmed into SDR1 register

Instructions for maintaining optional
TLBs

Stored as STEs in hashed segment

tables in memory

Instructions for maintaining optional
SLBs

Temporary 64-Bit Bridge

Same

Page table size determined by size
programmed into SDR1 register

Same

Stored in 16 SLB entries in the same
format as the STEs defined for 64-bit
implementations.

16 SLB entries are required to emu-
late the segment registers defined
for 32-bit addressing. The slbie and
slbia instructions should not be exe-
cuted when using the 64-bit bridge.

32-Bit Implementations

Different format for PTEs (supports
32-bit translation)

Different format for SDR1 to support
32-bit translation; page table size
programmed into SDR1 as a mask

Same

Stored as segment registers on-chip
(different format)

No SLBs supported

Note: This chapter describes address translation mechanisms from the perspective of the programming
model. As such, it describes the structure of the page and segment tables, the MMU conditions that cause
exceptions, the instructions provided for programming the MMU, and the MMU registers. The hardware
implementation details of a particular MMU (including whether the hardware automatically performs a page
table search in memory) are not contained in the architectural definition of PowerPC processors and are
invisible to the PowerPC programming model; therefore, they are not described in this document. In the case
that some of the OEA model is implemented with some software assist mechanism, this software should be
contained in the area of memory reserved for implementation-specific use and should not be visible to the
operating system.
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In addition to the features described above, the OEA provides optional features that facilitate the migra-
tion of operating systems from 32-bit processor designs to 64-bit processors. These features, which can
be implemented in part or in whole, include the following:

« Support for several 32-bit instructions that are otherwise defined as illegal in 64-bit processors.
These include the following—mtsr, mtsrin, mfsr, mfsrin.

 Additional instructions, mtsrd and mtsrdin, that allow software to associate effective segments 0—
15 with any of virtual segments 0—(252 — 1) without otherwise affecting the segment table. These
instructions move 64 bits from a specified GPR to a selected SLB entry.

- The rfi and mtmsr instructions, which are otherwise illegal in the 64-bit architecture may optionally
be implemented in 64-bit implementations.

« The bridge defines the following additional optional bits:

— ASR]V] (bit 63) may be implemented to indicate whether ASR[STABORG] holds a valid physical
base address for the segment table.

— MSR[ISF] (bit 2) is defined as an optional bit that can be used to control the mode (64-bit or 32-
bit) that is entered when an exception is taken. If the bit is implemented, it should have the prop-
erties described in Section 7.9.1 ISF Bit of the Machine State Register. Otherwise, it is treated
as reserved, except that ISF is assumed to be set for exception processing.

To determine whether a processor implements any or all of the bridge features, consult the user’'s man-
ual for that processor.

7.2 MMU Overview

The PowerPC MMU and exception models support demand-paged virtual memory. Virtual memory manage-
ment permits execution of programs larger than the size of physical memory; the term demand paged implies
that individual pages are loaded into physical memory from backing storage only as they are accessed by an
executing program.

The memory management model includes the concept of a virtual address that is not only larger than that of
the maximum physical memory allowed but a virtual address space that is also larger than the effective
address space. Effective addresses generated by 64-bit implementations are 64 bits wide; those generated
by 32-bit implementations are 32 bits wide. In the address translation process, the processor converts an
effective address to an 80-bit (or 64-bit) virtual address in 64-bit implementations, or to a 52-bit virtual
address in 32-bit implementations, as per the information in the selected descriptor. Then the address is
translated back to a physical address the size (or less) of the effective address.

64-bit implementations have the option of supporting either an 80-bit or a 64-bit virtual address range. The
remainder of this chapter describes the virtual address for 64-bit processors as consisting of 80 bits. For
implementations that support the 64-bit virtual address range, the high-order 16 bits of the 80-bit virtual
address are assumed to be zero.

Note: For 64-bit (or 32-bit) implementations that support a physical address range that is smaller than 64 bits
(or 32 bits), the higher-order bits of the effective address may be ignored in the address translation process.
The remainder of this chapter assumes that implementations support the maximum physical address range.
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The operating system manages the system'’s physical memory resources. Consequently, the operating
system initializes the MMU registers (segment registers or address space register (ASR), BAT registers, and
SDR1 register) and sets up page tables (and segment tables for 64-bit implementations) in memory appropri-
ately. The MMU then assists the operating system by managing page status and optionally caching the
recently-used address translation information on-chip for quick access.

Effective address spaces are divided into 256-Mbyte regions called segments or into other large regions
called blocks (128 Kbyte—256 Mbyte). Segments that correspond to memory-mapped areas can be further
subdivided into 4-Kbyte pages. For each block or page, the operating system creates an address descriptor
(page table entry (PTE) or BAT array entry); the MMU then uses these descriptors to generate the physical
address, the protection information, and other access control information each time an address within the
block or page is accessed. Address descriptors for pages reside in tables (as PTEs) in physical memory; for
faster accesses, the MMU often caches on-chip copies of recently-used PTEs in an on-chip TLB. The MMU
keeps the block information on-chip in the BAT array (comprised of the BAT registers).

This section provides an overview of the high-level organization and operational concepts of the MMU in
PowerPC processors, and a summary of all MMU control registers. For more information about the MSR, see
Section 2.3.1 Machine State Register (MSR).” Section 7.4.3 BAT Register Implementation of BAT Array,”
describes the BAT registers, Section 7.5.2.1 , “Segment Descriptor Definitions,” describes the segment regis-
ters, Section 7.6.1.1 SDR1 Register Definitions,” describes the SDR1, and Section 7.7.1.1 Address Space
Register (ASR),” describes the ASR.

7.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the processor when it
executes a load, store, branch, or cache instruction, and when it fetches the next instruction. The effective
address is translated to a physical address according to the procedures described throughout this chapter.
The memory subsystem uses the physical address for the access.

7.2.1.1 Effective Addresses in 32-Bit Mode

In addition to the 64-and 32-bit memory management models defined by the OEA, the PowerPC architecture
also defines a 32-bit mode of operation for 64-bit implementations. In this 32-bit mode (MSR[SF] = 0), the 64-
bit effective address is first calculated as usual, and then the high-order 32 bits of the EA are treated as zero
for the purposes of addressing memory. This occurs for both instruction and data accesses, and occurs inde-
pendently from the setting of the MSRJ[IR] and MSR[DR] bits that enable instruction and data address transla-
tion, respectively. The truncation of the EA is the only way in which memory accesses are affected by the 32-
bit mode of operation.

Some 64-bit processors implement optional features that simplify the conversion of an operating system
from the 32-bit to the 64-bit portion of the architecture. This architecturally-defined bridge allows an oper-
ating system to use 16 on-chip SLB entries in the same manner that 32-bit implementations use the seg-
ment registers, which are otherwise not supported in the 64-bit architecture. These bridge features are
available if the ASR[V] bit is implemented, and they are enabled when both ASR[V] and MSR[SF] are
cleared.

For a complete discussion of effective address calculation, see Section 4.1.4.2 Effective Address Calculation.
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7.2.1.2 Predefined Physical Memory Locations

There are four areas of the physical memory map that have predefined uses. The first 256 bytes of physical
memory (or if MSR[IP] = 1, the first 256 bytes of memory located at physical address OxFFF0_0000 in 32-bit
implementations and 0x0000_0000_FFFO_0000 in 64-bit implementations) are assigned for arbitrary use by
the operating system. The rest of that first page of physical memory defined by the vector base address
(determined by MSR]IP]) is either used for exception vectors, or reserved for future exception vectors. The
third predefined area of memory consists of the second and third physical pages of the memory map, which
are used for implementation-specific purposes. In some implementations, the second and third pages located
at physical address OxFFFQ_1000 in 32-bit implementations and 0x0000_0000_FFFQO_1000 in 64-bit imple-
mentations when MSR][IP] = 1 are also used for implementation-specific purposes. Fourthly, the system soft-
ware defines the locations in physical memory that contain the page address translation tables (and segment
descriptor tables, in 64-bit implementations). These predefined memory areas are summarized in Table 7-2
in terms of the variable ‘Base’ and Table 7-3 decodes the actual value of ‘Base’. Refer to Chapter 6, “Excep-
tions,” for more detailed information on the assignment of the exception vector offsets.

Table 7-2. Predefined Physical Memory Locations

Memory Area Physical Address Range Predefined Use
1 Base || 0x0_0000—Base || 0x0_00FF Operating system
2 Base || 0x0_0100—Base || 0x0_OFFF Exception vectors
3 Base || 0x0_1000—Base || 0x0_2FFF |mplementation-specific1
4 g;f:)v;g:;speciﬁed—contiguous sequence of physi- Page table
Software-specified—single physical page Segment table (64-bit implementations only)

1Only valid for MSR[IP] = 1 on some implementations

Table 7-3. Value of Base for Predefined Memory Use

MSR][IP] Value of Base

Base = 0x000 for 32-bit implementations

0 Base = 0x0000_0000_000 for 64-bit implementations

Base = OxFFF for 32-bit implementations
Base = 0x0000_0000_FFF for 64-bit implementations

7.2.2 MMU Organization

Figure 7-1 shows the conceptual organization of the MMU in a 64-bit implementation; note that it does not
describe the specific hardware used to implement the memory management function for a particular
processor, and other hardware features (invisible to the system software) not depicted in the figure may be
implemented. For example, the memory management function can be implemented with parallel MMUs that
translate addresses for instruction and data accesses independently.

The instruction addresses shown in the figure are generated by the processor for sequential instruction
fetches and addresses that correspond to a change of program flow. Memory addresses are generated by
load and store instructions, by cache instructions, and by the optional external control instructions.
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As shown in Figure 7-1, after an address is generated, the higher-order bits of the effective address, EAO0—
EA51 (or a smaller set of address bits, EAO—EAnR, in the cases of blocks), are translated into physical address
bits PAO—PA51. The lower-order address bits, A52—A63 are untranslated and therefore identical for both
effective and physical addresses. After translating the address, the MMU passes the resulting 64-bit physical
address to the memory subsystem.

In addition to the higher-order address bits, the MMU automatically keeps an indicator of whether each
access was generated as an instruction or data access and a supervisor/user indicator that reflects the state
of the MSR[PR] bit when the effective address was generated. In addition, for data accesses, there is an indi-
cator of whether the access is for a load or a store operation. This information is then used by the MMU to
appropriately direct the address translation and to enforce the protection hierarchy programmed by the oper-
ating system. See Section 2.3.1 Machine State Register (MSR) for more information about the MSR.
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Figure 7-1. MMU Conceptual Block Diagram—=64-Bit Implementations
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As shown in Figure 7-1. , processors optionally implement on-chip translation lookaside buffers (TLBs) and
optionally support the automatic search of the page tables for page table entries (PTEs).

In 64-bit implementations, the address space register (ASR) defines the physical address of the base of the
segment table in memory. The segment table entries (STEs) contain the segment descriptors, which define
the virtual address for the segment. Some 64-bit implementations may have dedicated hardware to search for
STEs in memory, and copies of STEs may be cached on-chip in segment lookaside buffers (SLBs) for
quicker access.

Processors that implement the 64-bit bridge implement segment descriptors as a table of 16 segment
table entries.

Figure 7-2 shows a conceptual block diagram of the MMU in a 32-bit implementation. The 32-bit MMU imple-
mentation differs from the 64-bit implementation in that after an address is generated, the higher-order bits of
the effective address, EAO—EA19 (or a smaller set of address bits, EAO—EAR, in the cases of blocks), are
translated into physical address bits PAO—PA19. The lower-order address bits, A20—A31 are untranslated
and therefore identical for both effective and physical addresses. After translating the address, the MMU
passes the resulting 32-bit physical address to the memory subsystem.

Also, whereas 64-bit implementations use the ASR and a segment table to generate the 80-bit virtual
address, 32-bit implementations use the 16 segment registers to generate the 52-bit virtual address.
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Figure 7-2. MMU Conceptual Block Diagram—32-Bit Implementations
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7.2.3 Address Translation Mechanisms

PowerPC processors support the following three types of address translation:
- Page address translation—translates the page frame address for a 4-Kbyte page size

» Block address translation—translates the block number for blocks that range in size from 128 Kbyte to
256 Mbyte

» Real addressing mode—when address translation is disabled, the physical address is identical to the
effective address.

In addition, earlier processors implement a direct-store facility that is used to generate direct-store interface
accesses on the external bus.

Note: This facility is not optimized for performance, was present for compatibility with POWER devices, and
is being phased out of the architecture. Future devices are not likely to support it; software should not depend
on its effects and new software should not use it.

Figure 7-3 shows the address translation mechanisms provided by the MMU. The segment descriptors
shown in the figure control both the page and direct-store segment address translation mechanisms. When
an access uses the page or direct-store segment address translation, the appropriate segment descriptor is
required. In 64-bit implementations, the segment descriptor is located via a search of the segment table in
memory for the appropriate segment table entry (STE). In 32-bit implementations, oOne of the 16 on-chip
segment registers (which contain segment descriptors) is selected by the highest-order effective address bits.

Processors that implement the 64-bit bridge divide the 32-bit address space into sixteen 256-Mbyte seg-
ments defined by a table of 16 STEs maintained in 16 SLB entries.

A control bit in the corresponding segment descriptor then determines if the access is to memory (memory-
mapped) or to a direct-store segment.

Note: The direct-store interface is present to allow certain older 1/O devices to use this interface. When an
access is determined to be to the direct-store interface space, the implementation invokes an elaborate hard-
ware protocol for communication with these devices. The direct-store interface protocol is not optimized for
performance, and therefore, its use is discouraged. The most efficient method for accessing 1/0 is by mem-
ory-mapping the 1/O areas.

For memory accesses translated by a segment descriptor, the interim virtual address is generated using the
information in the segment descriptor. Page address translation corresponds to the conversion of this virtual
address into the 64-bit (or 32-bit) physical address used by the memory subsystem. In some cases, the phys-
ical address for the page resides in an on-chip TLB and is available for quick access. However, if the page
address translation misses in a TLB, the MMU searches the page table in memory (using the virtual address
information and a hashing function) to locate the required physical address. Some implementations may have
dedicated hardware to perform the page table search automatically, while others may define an exception
handler routine that searches the page table with software.

Block address translation occurs in parallel with page (and direct-store segment) address translation and is
similar to page address translation, except that there are fewer upper-order effective address bits to be trans-
lated into physical address bits (more lower-order address bits (at least 17) are untranslated to form the offset
into a block). Also, instead of segment descriptors and a page table, block address translations use the on-
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chip BAT registers as a BAT array. If an effective address matches the corresponding field of a BAT register,
the information in the BAT register is used to generate the physical address; in this case, the results of the
page translation (occurring in parallel) are ignored. Note that a matching BAT array entry takes precedence
over a translation provided by the segment descriptor in all cases (even if the segment is a direct-store
segment).

Figure 7-3. Address Translation Types—64-Bit Implementations
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Note that Figure 7-3 shows address sizes for a 64-bit processor operating in 64-bit mode. If the 64-bit
bridge is enabled (ASR[V] is cleared), only the 32-bit address space is available and only 52 bits of the
virtual address are used. However, the bridge supports cross-memory operations that permit an operat-
ing system to establish addressability to an address space, to copy data to it from another address
space, and then to destroy the new addressability, without altering the segment table. For more informa-
tion, see Section 7.9.5 Segment Register Instructions Defined Exclusively for the 64-Bit Bridge.

Direct-store address translation is used when the optional direct-store translation control bit (T bit) in the
corresponding segment descriptor is set (being phased out of the architecture). In this case, the remaining
information in the segment descriptor is interpreted as identifier information that is used with the remaining
effective address bits to generate the protocol used in a direct-store interface access on the external inter-
face; additionally, no TLB lookup or page table search is performed.

Real addressing mode address translation occurs when address translation is disabled; in this case, the
physical address generated is identical to the effective address. Instruction and data address translation is
enabled with the MSR[IR] and MSR[DR] bits, respectively. Thus, when the processor generates an access,
and the corresponding address translation enable bit in MSR (MSRJIR] for instruction accesses and MSR[DR]
for data accesses) is cleared, the resulting physical address is identical to the effective address and all other
translation mechanisms are ignored. See Section 7.2.6.1 Real Addressing Mode and Block Address Transla-
tion Selection,” for more information.

7.2.4 Memory Protection Facilities

In addition to the translation of effective addresses to physical addresses, the MMU provides access protec-
tion of supervisor areas from user access and can designate areas of memory as read-only as well as no-
execute. Table 7-4 shows the eight protection options supported by the MMU for pages.

Table 7-4. Access Protection Options for Pages

User Read Supervisor Read
Option User Write Supervisor Write
I-Fetch Data I-Fetch Data
Supervisor-only — — — b b b
Supervisor-only-no-execute — — — — b b
Supervisor-write-only b b — b b b
Supervisor-write-only-no-execute — b — — b b
Both user/supervisor b b b b b b
Both user/supervisor-no-execute — b b — b b
Both read-only b b — b b —
Both read-only-no-execute — b — — b —

D Access permitted
— Protection violatio

The operating system programs whether or not instruction fetches are allowed from an area of memory with
the no-execute option provided in the segment descriptor. Each of the remaining options is enforced based
on a combination of information in the segment descriptor and the page table entry. Thus, the supervisor-only

pem7_MMU.fm.2.0 Memory Management
June 10, 2003 Page 269 of 785



Programming Environments Manual

PowerPC RISC Microprocessor Family

option allows only read and write operations generated while the processor is operating in supervisor mode
(corresponding to MSR[PR] = 0) to access the page. User accesses that map into a supervisor-only page
cause an exception to be taken.

Note that independently of the protection mechanisms, care must be taken when writing to instruction areas
as coherency must be maintained with on-chip copies of instructions that may have been prefetched into a
queue or an instruction cache. Refer to Section 5.1.5.2 Instruction Cache Instructions for more information on
coherency within instruction areas.

As shown in the table, the supervisor-write-only option allows both user and supervisor accesses to read from
the page, but only supervisor programs can write to that area. There is also an option that allows both super-
visor and user programs read and write access (both user/supervisor option), and finally, there is an option to
designate a page as read-only, both for user and supervisor programs (both read-only option).

For areas of memory that are translated by the block address translation mechanism, the protection options
are similar, except that blocks are translated by separate mechanisms for instruction and data, blocks do not
have a no-execute option, and blocks can be designated as enabled for user and supervisor accesses inde-
pendently. Therefore, a block can be designated as supervisor-only, for example, but this block can be
programmed such that all user accesses simply ignore the block translation, rather than take an exception in
the case of a match. This allows a flexible way for supervisor and user programs to use overlapping effective
address space areas that map to unique physical address areas (without exceptions occurring).

For direct-store segments, the MMU calculates a key bit based on the protection values programmed in the
segment descriptor and the specific user/supervisor and read/write information for the particular access.
However, this bit is merely passed on to the system interface to be transmitted in the context of the direct-
store interface protocol. The MMU does not itself enforce any protection or cause any exception based on the
state of the key bit for these accesses. The I/O controller device or other external hardware can optionally use
this bit to enforce any protection required. Note that the direct-store facility is being phased out of the archi-
tecture and future devices are not likely to implement it.

Finally, a facility defined in the VEA and OEA allows pages or blocks to be designated as guarded, preventing
out-of-order accesses that may cause undesired side effects. For example, areas of the memory map that are
used to control I/O devices can be marked as guarded so that accesses (for example, instruction prefetches)
do not occur unless they are explicitly required by the program. Refer to Out-of-Order Accesses to Guarded
Memory on page 217, for a complete description of how accesses to guarded memory are restricted.

7.2.5 Page History Information

The MMU of PowerPC processors also defines referenced (R) and changed (C) bits in the page address
translation mechanism that can be used as history information relevant to the virtual page. This information
can then be used by the operating system to determine which areas of memory to write back to disk when
new pages must be allocated in main memory. While these bits are initially programmed by the operating
system into the page table, the architecture specifies that the R and C bits are maintained by the processor
and the processor updates these bits when required.

7.2.6 General Flow of MMU Address Translation

The following sections describe the general flow used by PowerPC processors to translate effective
addresses to virtual and then physical addresses. Note that although there are references to the concept of
an on-chip TLB and SLB, these entities may not be present in a particular hardware implementation for
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performance enhancement (and a particular implementation may have one or more TLBs and SLBs). Thus,
they are shown here as optional and only the software ramifications of the existence of a TLB or SLB are
discussed.

7.2.6.1 Real Addressing Mode and Block Address Translation Selection

When an instruction or data access is generated and the corresponding instruction or data translation is
disabled (MSR][IR] = 0 or MSR[DR] = 0), real addressing mode translation is used (physical address equals
effective address) and the access continues to the memory subsystem as described in Section 7.3 Real
Addressing Mode.

Figure 7-4 shows the flow used by the MMU in determining whether to select real addressing mode or block
address translation or to use the segment descriptor to select either direct-store or page address translation.

Figure 7-4. General Flow of Address Translation (Real Addressing Mode and Block)
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Note that if the BAT array search results in a hit, the access is qualified with the appropriate protection bits. If
the access is determined to be protected (not allowed), an exception (ISI or DSI exception) is generated.
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7.2.6.2 Page and Direct-Store Address Translation Selection

If address translation is enabled (real addressing mode translation not selected) and the effective address
information does not match with a BAT array entry, then the segment descriptor must be located. Once the
segment descriptor is located, the T bit in the segment descriptor selects whether the translation is to a page
or to a direct-store segment as shown in Figure 7-5. In addition, Figure 7-5 also shows the way in which the
no-execute protection is enforced; if the N bit in the segment descriptor is set and the access is an instruction

fetch, the access is faulted.
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Figure 7-5. General Flow of Page and Direct-Store Address Translation
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The segment descriptor is contained in different constructs for 64 and 32-bit implementations as shown in
Figure 7-6. For 64-bit implementations, the segment descriptor for each access is located in an STE that
resides in a segment table in memory. The base address of this segment table is specified in the address
space register (ASR) and the entries of the table are located by using a hashing function. Although it is not
architecturally required, hardware implementations may have one or more on-chip SLBs that keep recently-
used STEs for quick access.

For 32-bit implementations, the segment descriptor for an access is contained in one of 16 on-chip segment
registers; effective address bits EAO—EAS select one of the 16 segment registers.

Processors that implement the 64-bit bridge maintain segment descriptors on-chip by emulating seg-
ment tables in 16 SLB entries. As shown in Figure 7-6, this feature is enabled by clearing the optional
ASR][V] bit. This indicates that any value in the STABORG is invalid and that segment table hashing is
not implemented.
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Figure 7-6. Location of Segment Descriptors
Locate Segment
Descriptor

Locate Segment Register
(32-bit implementation)

Locate STE
(64-bit implementation)

~
Locate emulated SR
(ASR[V]=0)
Use EA0—EA3 to
r— = — — — — — — T select one of 16 on-
| Use EA0-EAS3 to selgct one chip segment registers
of 16 segment registers
mapped to SLB entries
U |
Compare EA
with SLB entries
SLB Miss SLB Hit
Use ASR
D)

Perform Segment Table
Search Operation

C Check T bit in )
STE Not Found STE Found Segment Descriptor

\‘

Load SLB Entry

Access Faulted

Note: e Implementation-specific

pem7_MMU.fm.2.0 Memory Management
June 10, 2003 Page 275 of 785



Programming Environments Manual

PowerPC RISC Microprocessor Family

Selection of Page Address Translation

If the T bit in the corresponding segment descriptor is 0, page address translation is selected. The information
in the segment descriptor is then used to generate the 80-bit (or 52-bit) virtual address. The virtual address is
then used to identify the page address translation information (stored as page table entries (PTEs) in a page
table in memory). Once again, although the architecture does not require the existence of a TLB, one or more
TLBs may be implemented in the hardware to store copies of recently-used PTEs on-chip for increased
performance.

If an access hits in the TLB, the page translation occurs and the physical address bits are forwarded to the
memory subsystem. If the translation is not found in the TLB, the MMU requires a search of the page table.
The hardware of some implementations may perform the table search automatically, while others may trap to
an exception handler for the system software to perform the page table search. If the translation is found, a
new TLB entry is created and the page translation is once again attempted. This time, the TLB is guaranteed
to hit. Once the PTE is located, the access is qualified with the appropriate protection bits. If the access is
determined to be protected (not allowed), an exception (ISI or DSI exception) is generated.

If the PTE is not found by the table search operation, an ISI or DSI exception is generated.

Selection of Direct-Store Address Translation

When the segment descriptor has the T bit set, the access is considered a direct-store access and the direct-
store interface protocol of the external interface is used to perform the access. The selection of address

translation type differs for instruction and data accesses only in that instruction accesses are not allowed from
direct-store segments; attempting to fetch an instruction from a direct-store segment causes an ISI exception.

Note that this facility is not optimized for performance, was present for compatibility with POWER devices,
and is being phased out of the architecture. Future devices are not likely to support it; software should not
depend on its effects and new software should not use it. See Section 7.8 Direct-Store Segment Address
Translation for more detailed information about the translation of addresses in direct-store segments in those
processors that implement this.

7.2.7 MMU Exceptions Summary

In order to complete any memory access, the effective address must be translated to a physical address. A
translation exception condition occurs if this translation fails for one of the following reasons:

« There is no valid entry in the page table for the page specified by the effective address (and segment
descriptor) and there is no valid BAT translation.

« There is no valid segment descriptor and there is no valid BAT translation.
« An address translation is found but the access is not allowed by the memory protection mechanism.

The translation exception conditions cause either the I1SI or the DSI exception to be taken as shown in

Table 7-5. . The state saved by the processor for each of these exceptions contains information that identifies
the address of the failing instruction. Refer to Appendix 6, “Exceptions,” for a more detailed description of
exception processing, and the bit settings of SRR1 and DSISR when an exception occurs. Note that the bit
settings shown for the SRR1 register are shown for 64-bit implementations. Since the SRR1 register is a 32-
bit register in 32-bit implementations, the value 32 must be subtracted from the bit numbers shown for SRR1
in these cases.
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Table 7-5. Translation Exception Conditions

Condition Description Exception

| access: ISI exception
SRR1[1] =1 (32 bit)
Page fault (no PTE found) No matching PTE found in page tables (and no SRR1[33] = 1 (64 bit)
matching BAT array entry)
D access: DSI exception

DSISR[1] = 1
| access: IS| exception
Segment fault (no STE found) No matching STE found in the segment tables (for 64- SRR1[42] = 1

bit implementations) and no matching BAT array entry b 5.cess: DSI exception

DSISR[10] =1
| access: IS| exception
SRR1[4] = 1 (32 bit)
Block protection violation Conditions described in Table 7-12. for block SRR1[36] = 1 (64 bit)
D access: DSI exception
DSISR[4] = 1
| access: IS| exception
SRR1[4] = 1 (32 bit)
Page protection violation Conditions described in Table 7-22. for page SRR1[36] = 1 (64 bit)
D access: DSI exception
DSISR[4] = 1

ISI exception
SRR1[3] = 1 (32 bit)
SRR1[35] = 1 (64 bit)

No-execute protection violation ét';empt to fetch instruction when SR[N] = 1 or STE[N]
Instruction fetch from direct-store seg- ISI exception

ment—note that the direct-store facility | Attempt to fetch instruction when SR[T] = 1 or STE[T] SRR1[3] = 1 (32 bit)

is optional and being phased out of the |=1 .
architecture. SRR1[35] = 1 (64 bit)

Attempt to fetch instruction when MSR][IR] = 1 and
either:

matching xBAT[G] = 1, or
no matching BAT entry and PTE[G] = 1

ISI exception
SRR1[3] = 1 (32 bit)
SRR1[35] = 1 (64 bit)

Instruction fetch from guarded memory

In addition to the translation exceptions, there are other MMU-related conditions (some of them implementa-
tion-specific) that can cause an exception to occur. These conditions map to the exceptions as shown in
Table 7-6. The only MMU exception conditions that occur when MSR[DR] = 0 are the conditions that cause
the alignment exception for data accesses. For more detailed information about the conditions that cause the
alignment exception (in particular for string/multiple instructions), see Section 6.4.6 Alignment Exception
(0x00600). Refer to Appendix 6, “Exceptions,” for a complete description of the SRR1 and DSISR bit settings
for these exceptions.
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Table 7-6. Other MMU Exception Conditions

Condition Description Exception

dcbz with W =1 or | = 1 (may cause exception |dcbz instruction to write-through or Alignment exception (implementation-

or operation may be performed to memory) | cache-inhibited segment or block dependent)

Idarx, stdcx., lwarx, or stwex. with W = 1 Reservation instruction to write-through | DSI exception (implementation-dependent)
(may cause exception or execute correctly) | segment or block DSISR[5] = 1

Idarx, stdcx., lwarx, stwex., eciwx, or
ecowx instruction to direct-store segment
(may cause exception or may produce bound-
edly-undefined results)—note that the direct-
store facility is optional and being phased out
of the architecture

Reservation instruction or external con- : . .
A . DSI exception (implementation-dependent
trol instruction when SR[T] =1 or P (imp P )

STE[T] = 1 DSISR[5] = 1

Floating-point load or store to direct-store seg-
ment (may cause exception or instruction may
execute correctly)—note that the direct-store
facility is optional and being phased out of the
architecture

Floating-point memory access when Alignment exception (implementation-
SR[T] =1 or STE[T] =1 dependent)

Load or store operation that causes a direct- )
store error—note that the direct-store facility is | Direct-store interface protocol signalled  DSI exception

optional and being phased out of the architec- |with an error condition DSISR[0] = 1

ture

eciwx or ecowx attempted when external eciwx or ecowx attempted with DSl exception

control facility disabled EARI[E] =0 DSISR[11] =1
. . Imw, stmw, Iswi, Iswx, stswi, or

Imw, stmw, Iswi, Iswx, stswi, or stswx - T ’ L : :

instruction attempted in little-endian mode :/Itggﬁgst:rlictlon attempted while Alignment exception

Translation enabled and operand is
Operand misalignment misaligned as described in Appendix 6,
“Exceptions.”

Alignment exception (some of these cases
are implementation-dependent)

7.2.8 MMU Instructions and Register Summary

The MMU instructions and registers provide the operating system with the ability to set up the segment
descriptors. Additionally, the operating system has the resources to set up the block address translation
areas and the page tables in memory.

Note that because the implementation of TLBs and SLBs is optional, the instructions that refer to these struc-
tures are also optional. However, as these structures serve as caches of the page table (and segment table,
in the case of an SLB), there must be a software protocol for maintaining coherency between these caches
and the tables in memory whenever changes are made to the tables in memory. Therefore, the PowerPC
OEA specifies that a processor implementing a TLB is guaranteed to have a means for doing the following:

- Invalidating an individual TLB entry

- Invalidating the entire TLB

Similarly, a processor that implements an SLB is guaranteed to have a means for doing the following:

« Invalidating an individual SLB entry (the architecture defines an optional slbie instruction for this pur-
pose)

« Invalidating the entire SLB (the architecture defines an optional slbia instruction for this purpose)
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Note that while the implementation of SLBs in 64-bit processors is optional, processors that implement
the 64-bit bridge are required to implement at least 16 SLB entries to provide a means of emulating the
segment registers as they are defined in the 32-bit architecture. When the processor is using the 64-bit
bridge, neither the slbie or slbia instruction should be executed.

When the tables in memory are changed, the operating system purges these caches of the corresponding
entries, allowing the translation caching mechanism to refetch from the tables when the corresponding entries
are required.

A processor may implement one or more of the instructions described in this section to support table invalida-
tion. Alternatively, an algorithm may be specified that performs one of the functions listed above (a loop inval-
idating individual TLB entries may be used to invalidate the entire TLB, for example), or different instructions
may be provided.

A processor may also perform additional functions (not described here) as well as those described in the
implementation of some of these instructions. For example, the tlbie instruction may be implemented so as to
purge all TLB entries in a congruence class (that is, all TLB entries indexed by the specified EA which can
include corresponding entries in data and instruction TLBs) or the entire TLB.

Note that if a processor does not implement an optional instruction it treats the instruction as a no-op or as an
illegal instruction, depending on the implementation. Also, note that the segment register and TLB concepts
described here are conceptual; that is, a processor may implement parallel sets of segment registers (and
even TLBs) for instructions and data.

Because the MMU specification for PowerPC processors is so flexible, it is recommended that the software
that uses these instructions and registers be encapsulated into subroutines to minimize the impact of
migrating across the family of implementations.

Table 7-7 summarizes the PowerPC instructions that specifically control the MMU. For more detailed infor-
mation about the instructions, refer to Chapter 8, “Instruction Set.”

Table 7-7. Instruction Summary—Control MMU

Instruction Description

Move to Segment Register
mtsr SR,rS SR[SR]¢—rS
32-bit implementations and 64-bit bridge only

Move to Segment Register Indirect
mtsrin rS,rB SRI[rB[0-3]]<—TrS
32-bit implementations and 64-bit bridge only

Move to Segment Register Double Word
SLB[SR]¢<—rS
64-bit bridge only

Temporary 64-Bit Bridge
mtsrd SR,rS

Move to Segment Register Indirect Double Word
mtsrdin rS,rB SLB(rB[32-35]) <— (rS)
64-bit bridge only
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Table 7-7. Instruction Summary—Control MMU (Continued)

Instruction

mfsr rD,SR

mfsrin rD,rB

tibia
(optional)

tibie rB
(optional)

tlbsync
(optional)

slbia
(optional)

slbie rB
(optional)

Description

Move from Segment Register
rD<—SR[SR]
32-bit implementations and 64-bit bridge only

Move from Segment Register Indirect
rD<—SR[rB[0-3]]
32-bit implementations and 64-bit bridge only

Translation Lookaside Buffer Invalidate All
For all TLB entries, TLB[V]<—0
Causes invalidation of TLB entries only for processor that executed the tlbia

Translation Lookaside Buffer Invalidate Entry
If TLB hit (for effective address specified as rB), TLB[V]¢—0
Causes TLB invalidation of entry in all processors in system

Translation Lookaside Buffer Synchronize

Ensures that all tibie instructions previously executed by the processor executing the tlbsync
instruction have completed on all processors

Segment Table Lookaside Buffer Invalidate All
For all SLB entries, SLB[V]¢—0
64-bit implementations only

Segment Table Lookaside Buffer Invalidate Entry
If SLB hit (for effective address specified as rB), SLB[V]¢—0
64-bit implementations only

Table 7-8 summarizes the registers that the operating system uses to program the MMU. These registers are
accessible to supervisor-level software only (supervisor level is referred to as privileged state in the architec-
ture specification). These registers are described in detail in Appendix 2, “PowerPC Register Set.”

Table 7-8. MMU Registers

Register

Segment registers
(SR0-SR15)

BAT registers
(IBATOU-IBAT3U,

IBATOL-IBAT3L, DBATOU—
DBAT3U, and DBATOL-DBAT3L)

SDR1 register

Address space register
(ASR)
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Description

The sixteen 32-bit segment registers are present only in 32-bit implementations of the PowerPC
architecture. Figure 7-20. shows the format of a segment register. The fields in the segment regis-
ter are interpreted differently depending on the value of bit 0. The segment registers are accessed
by the mtsr, mtsrin, mfsr, and mfsrin instructions.

There are 16 BAT registers, organized as four pairs of instruction BAT registers (IBATOU-IBAT3U
paired with IBATOL-IBAT3L) and four pairs of data BAT registers (DBATOU-DBAT3U paired with
DBATOL-DBATS3L). The BAT registers are defined as 32-bit registers in 32-bit implementations,
and 64-bit registers in 64-bit implementations. These are special-purpose registers that are
accessed by the mtspr and mfspr instructions.

The SDR1 register specifies the base and size of the page tables in memory. SDR1 is defined as a
64-bit register for 64-bit implementations and as a 32-bit register for 32-bit implementations. This is
a special-purpose register that is accessed by the mtspr and mfspr instructions.

The 64-bit ASR specifies the physical address in memory of the segment table for 64-bit implemen-
tations. This is a special-purpose register that is accessed by the mtspr and mfspr instructions.
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7.2.9 TLB Entry Invalidation

Optionally, PowerPC processors implement TLB structures that store on-chip copies of the PTEs that are
resident in physical memory. These processors have the ability to invalidate resident TLB entries through the
use of the tlbie and tlbia instructions. Additionally, these instructions may also enable a TLB invalidate
signalling mechanism in hardware so that other processors also invalidate their resident copies of the
matching PTE. See Appendix 8, “Instruction Set,” for detailed information about the tlbie and tlbia instruc-
tions.

7.3 Real Addressing Mode

If address translation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular access, the effective address
is treated as the physical address and is passed directly to the memory subsystem as a real addressing mode
address translation. If an implementation has a smaller physical address range than effective address range,
the extra high-order bits of the effective address may be ignored in the generation of the physical address.

Section 2.3.18 Synchronization Requirements for Special Registers and for Lookaside Buffers,” describes the
synchronization requirements for changes to MSR[IR] and MSR[DR].

The addresses for accesses that occur in real addressing mode bypass all memory protection checks as
described in Section 7.4.4 Block Memory Protection and Section 7.5.4 Page Memory Protection and do not
cause the recording of referenced and changed information (described in Section 7.5.3 Page History
Recording).

For data accesses that use real addressing mode, the memory access mode bits (WIMG) are assumed to be
0b0011. That is, the cache is write-back and memory does not need to be updated immediately (W = 0),
caching is enabled (I = 0), data coherency is enforced with memory, 1/0, and other processors (caches) (M =
1, so data is global), and the memory is guarded. For instruction accesses in real addressing mode, the
memory access mode bits (WIMG) are assumed to be either 000001 or 0b0011. That is, caching is enabled (I
= 0) and the memory is guarded. Additionally, coherency may or may not be enforced with memory, 1/0, and
other processors (caches) (M =0 or 1, so data may or may not be considered global). For a complete
description of the WIMG bits, refer to Section 5.2.1 Memory/Cache Access Aftributes.

Note that the attempted execution of the eciwx or ecowx instructions while MSR[DR] = 0 causes boundedly-
undefined results.

Whenever an exception occurs, the processor clears both the MSR[IR] and MSR[DR] bits. Therefore, at least
at the beginning of all exception handlers (including reset), the processor operates in real addressing mode
for instruction and data accesses. If address translation is required for the exception handler code, the soft-
ware must explicitly enable address translation by accessing the MSR as described in Appendix 2, “PowerPC
Register Set.”

Note that an attempt to access a physical address that is not physically present in the system may cause a
machine check exception (or even a checkstop condition), depending on the response by the system for this
case. Thus, care must be taken when generating addresses in real addressing mode. Note that this can also
occur when translation is enabled and the ASR or SDR1 registers sets up the translation such that nonex-
istent memory is accessed. See Section 6.4.2 Machine Check Exception (0x00200) for more information on
machine check exceptions.
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Note that if ASR[V] = 0, a reference to a nonexistent address in the STABORG field does not cause a
machine check exception.

7.4 Block Address Translation

The block address translation (BAT) mechanism in the OEA provides a way to map ranges of effective
addresses larger than a single page into contiguous areas of physical memory. Such areas can be used for
data that is not subject to normal virtual memory handling (paging), such as a memory-mapped display buffer
or an extremely large array of numerical data.

The following sections describe the implementation of block address translation in PowerPC processors,
including the block protection mechanism, followed by a block translation summary with a detailed flow
diagram.

7.4.1 BAT Array Organization

The block address translation mechanism in PowerPC processors is implemented as a software-controlled
BAT array. The BAT array maintains the address translation information for eight blocks of memory. The BAT
array in PowerPC processors is maintained by the system software and is implemented as a set of 16
special-purpose registers (SPRs). Each block is defined by a pair of SPRs called upper and lower BAT regis-
ters that contain the effective and physical addresses for the block.

The BAT registers can be read from or written to by the mfspr and mtspr instructions; access to the BAT
registers is privileged. Section 7.4.3 BAT Register Implementation of BAT Array gives more information about
the BAT registers.

Note: The BAT array entries are completely ignored for TLB invalidate operations detected in hardware and
in the execution of the tlbie or tlbia instruction.

Figure 7-7 shows the organization of the BAT array in a 64-bit implementation. Four pairs of BAT registers
are provided for translating instruction addresses and four pairs of BAT registers are used for translating data
addresses. These eight pairs of BAT registers comprise two four-entry fully-associative BAT arrays (each
BAT array entry corresponds to a pair of BAT registers). The BAT array is fully-associative in that any
address can reside in any BAT. In addition, the effective address field of all four corresponding entries
(instruction or data) is simultaneously compared with the effective address of the access to check for a
match.

The BAT array organization for 32-bit implementations is the same as that shown in Figure 7-7 except that
the effective address field to be compared with the BEPI field (block effective page index) in the upper BAT
register is EAO—EA14 instead of EAO—EA46.

Memory Management pem7_MMU.fm.2.0
Page 282 of 785 June 10, 2003



Programming Environments Manual

PowerPC RISC Microprocessor Family

Figure 7-7. BAT Array Organization—64-Bit Implementations
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Each pair of BAT registers defines the starting address of a block in the effective address space, the size of
the block, and the start of the corresponding block in physical address space. If an effective address is within
the range defined by a pair of BAT registers, its physical address is defined as the starting physical address
of the block plus the lower-order effective address bits.

Blocks are restricted to a finite set of sizes, from 128 Kbytes (2! bytes) to 256 Mbytes (228 bytes). The
starting address of a block in both effective address space and physical address space is defined as a
multiple of the block size.

It is an error for system software to program the BAT registers such that an effective address is translated by
more than one valid IBAT pair or more than one valid DBAT pair. If this occurs, the results are undefined and
may include a spurious violation of the memory protection mechanism, a machine check exception, or a
checkstop condition.

The equation for determining whether a BAT entry is valid for a particular access is as follows:
BAT_entry_valid = (Vs & "MSR[PR]) | (Vp & MSR[PR])

If a BAT entry is not valid for a given access, it does not participate in address translation for that access. Two
BAT entries may not map an overlapping effective address range and be valid at the same time.
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Entries that have complementary settings of V[s] and V[p] may map overlapping effective address blocks.
Complementary settings would be as follows:

BAT entry A:Vs=1,Vp=0
BAT entry B: Vs =0, Vp =1

7.4.2 Recognition of Addresses in BAT Arrays

The BAT arrays are accessed in parallel with segmented address translation to determine whether a partic-
ular effective address corresponds to a block defined by the BAT arrays. If an effective address is within a
valid BAT area, the physical address for the memory access is determined as described in Section 7.4.5
Block Physical Address Generation.

Block address translation is enabled only when address translation is enabled (MSRJ[IR] = 1 and/or
MSRI[DR] = 1). Also, a matching BAT array entry always takes precedence over any segment descriptor
translation, independent of the setting of the STE[T] (or SR[T]) bit, and the segment descriptor information is
completely ignored.

Figure 7-8 shows the flow of the BAT array comparison used in block address translation for 64-bit implemen-
tations. When an instruction fetch operation is required, the effective address is compared with the four
instruction BAT array entries; similarly, the effective addresses of data accesses are compared with the four
data BAT array entries. The BAT arrays are fully-associative in that any of the four instruction or data BAT
array entries can contain a matching entry (for an instruction or data access, respectively).

Note that Figure 7-8 assumes that the protection bits, BATL[PP], allow an access to occur. If not, an excep-
tion is generated, as described in Section 7.4.4 Block Memory Protection.
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Figure 7-8. BAT Array Hit/Miss Flow—64-Bit Implementations
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Two BAT array entry fields are compared to determine if there is a BAT array hit—a block effective page
index (BEPI) field, which is compared with the high-order effective address bits, and one of two valid bits (Vs
or Vp), which is evaluated relative to the value of MSR[PR]. Note that the figure assumes a block size of 128
Kbytes (all bits of BEPI are used in the comparison); the actual number of bits of the BEPI field that are used
are masked by the BL field (block length) as described in Section 7.4.3 BAT Register Implementation of BAT
Array. Also, note that the flow for 32-bit implementations is the same as that shown in Figure 7-8 except that
the effective address field to be compared with the BEPI field is EAO—EA14 instead of EAO—EA46.
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Thus, the specific criteria for determining a BAT array hit are as follows:

« The upper-order 47 bits (or 15 bits for 32-bit implementations) of the effective address, subject to a mask,
must match the BEPI field of the BAT array entry.

« The appropriate valid bit in the BAT array entry must set to one as follows:

— MSR[PR] = 0 corresponds to supervisor mode; in this mode, Vs is checked.
— MSR[PR] = 1 corresponds to user mode; in this mode, Vp is checked.

The matching entry is then subject to the protection checking described in Section 7.4.4 Block Memory
Protection before it is used as the source for the physical address.

Note: If a user mode program performs an access with an effective address that matches the BEPI field of a
BAT area defined as valid only for supervisor accesses (Vp =0 and Vs = 1) for example, the BAT mechanism
does not generate a protection violation and the BAT entry is simply ignored. Thus, a supervisor program can
use the block address translation mechanism to share a portion of the effective address space with a user
program (that uses page address translation for this area).

If a memory area is to be mapped by the BAT mechanism for both instruction and data accesses, the
mapping must be set up in both an IBAT and DBAT entry; this is the case even on implementations that do
not have separate instruction and data caches.

Note that a block can be defined to overlay part of a segment such that the block portion is nonpaged
although the rest of the segment can be paged. This allows nonpaged areas to be specified within a segment.
Thus, if an area of memory is translated by an instruction BAT entry and data accesses are not also required
to that same area of memory, PTEs are not required for that area of memory. Similarly, if an area of memory
is translated by a data BAT entry, and instruction accesses are not also required to that same area of
memory, PTEs are not required for that area of memory.

7.4.3 BAT Register Implementation of BAT Array

Recall that the BAT array is comprised of four entries used for instruction accesses and four entries used for
data accesses. Each BAT array entry consists of a pair of BAT registers—an upper and a lower BAT register
for each entry. The BAT registers are accessed with the mtspr and mfspr instructions and are only acces-
sible to supervisor-level programs. See Appendix F. , “Simplified Mnemonics,” for a list of simplified
mnemonics for use with the BAT registers. (Note that simplified mnemonics are referred to as extended
mnemonics in the architecture specification.)

Figure 7-9 shows the format of the upper BAT registers and Figure 7-10 shows the format of the lower BAT
registers for 64-bit implementations.

Figure 7-9. Format of Upper BAT Registers—64-Bit Implementations

|:| Reserved
BEPI 0 000 BL Vs |Vp
0 46 47 50 51 61 62 63
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Figure 7-10. Format of Lower BAT Registers—64-Bit Implementations

|:| Reserved

BRPN 0 0000 0000 O WIMG* 0 PP

0 46 47 56 57 60 61 62 63

*W and G bits are reserved (not defined) for IBAT registers.

The format and bit definitions of the upper and lower BAT registers for 32-bit implementations are similar to
that of the 64-bit implementations, and are shown in Figure 7-11 and Figure 7-12, respectively.

Figure 7-11. Format of Upper BAT Registers—32-Bit Implementations

|:| Reserved
BEPI 0 000 BL Vs|Vp
0 14 15 18 19 29 30 31
Figure 7-12. Format of Lower BAT Registers—32-Bit Implementations
|:| Reserved
BRPN 0 0000 0000 O WIMG* of pp
0 14 15 24 25 28 29 30 31

*W and G bits are not defined for IBAT registers. Attempting to write to these bits causes boundedly-undefined results.

The BAT registers contain the effective-to-physical address mappings for blocks of memory. This mapping
information includes the effective address bits that are compared with the effective address of the access, the
memory/cache access mode bits (WIMG), and the protection bits for the block. In addition, the size of the
block and the starting address of the block are defined by the physical block number (BRPN) and block size
mask (BL) fields.

Table 7-9 describes the bits in the upper and lower BAT registers for 64-bit implementations. Note that the W
and G bits are defined for BAT registers that translate data accesses (DBAT registers); attempting to write to
the W and G bits in IBAT registers causes boundedly-undefined results. The bit definitions for 32-bit imple-

mentations are the same except that the bit numbers from Figure 7-11 and Figure 7-12 should be substituted.

pem7_MMU.fm.2.0 Memory Management
June 10, 2003 Page 287 of 785



Programming Environments Manual

PowerPC RISC Microprocessor Family

Table 7-9. BAT Registers—Field and Bit Descriptions for 64-Bit Implementations

Upper/

Lower

BAT 64 Bit
046
47-50
5161

Upper BAT

Register
62
63
046
47-56

Lower BAT

Register 57-60
61
62—63

Bits

32 Bit

014

1518

1929

30

31

014

15-24

25-28

29

30-31

Name

BEPI

BL

Vs

Vp

BRPN

WIMG

PP

Description

Block effective page index. This field is compared with high-order bits of the effective
address to determine if there is a hit in that BAT array entry.

Reserved

Block length. BL is a mask that encodes the size of the block. Values for this field
are listed in Table 2-12.

Supervisor mode valid bit. This bit interacts with MSR[PR] to determine if there is a
match with the logical address. For more information, see Section 7.4.2 Recognition
of Addresses in BAT Arrays.

User mode valid bit. This bit also interacts with MSR[PR] to determine if there is a
match with the logical address. For more information, see Section 7.4.2 Recognition
of Addresses in BAT Arrays.

This field is used in conjunction with the BL field to generate high-order bits of the
physical address of the block.

Reserved

Memory/cache access mode bits

w Write-through

| Caching-inhibited
M Memory coherence
G Guarded

Attempting to write to the W and G bits in IBAT registers causes boundedly-unde-
fined results. For detailed information about the WIMG bits, see Section 5.2.1 Mem-
ory/Cache Access Attributes.

Reserved

Protection bits for block. This field determines the protection for the block as
described in Section 7.4.4 , “Block Memory Protection."

The BL field in the upper BAT register is a mask that encodes the size of the block. Table 7-10 defines the bit
encodings for the BL field of the upper BAT register.

Table 7-10. Upper BAT Register Block Size Mask Encodings

Block Size
128 Kbytes
256 Kbytes
512 Kbytes
1 Mbyte

2 Mbytes

4 Mbytes

8 Mbytes
16 Mbytes
32 Mbytes

Memory Management
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BL Encoding
000 0000 0000
000 0000 0001
000 0000 0011
000 0000 0111
000 0000 1111
000 0001 1111
000 0011 1111
0000111 1111
000 1111 1111
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Table 7-10. Upper BAT Register Block Size Mask Encodings (Continued)

Block Size BL Encoding
64 Mbytes 001 1111 1111
128 Mbytes 011 1111 1111
256 Mbytes 111 1111 1111

Only the values shown in Table 7-10 are valid for BL. An effective address is determined to be within a BAT
area if the appropriate bits (determined by the BL field) of the effective address match the value in the BEPI
field of the upper BAT register, and if the appropriate valid bit (Vs or Vp) is set. Note that for an access to
occur, the protection bits (PP bits) in the lower BAT register must be set appropriately, as described in
Section 7.4.4 Block Memory Protection.

The number of zeros in the BL field determines the bits of the effective address that are used in the compar-
ison with the BEPI field to determine if there is a hit in that BAT array entry. The rightmost bit of the BL field is
aligned with bit 46 (or bit 14 for 32-bit implementations) of the effective address; bits of the effective address
corresponding to ones in the BL field are then cleared to zero for the comparison. For 64-bit implementations
operating in 32-bit mode, the highest-order 32 bits of the effective address (EA0—EA31) are treated as zeros.

The value loaded into the BL field determines both the size of the block and the alignment of the block in both
effective address space and physical address space. The values loaded into the BEPI and BRPN fields must
have at least as many low-order zeros as there are ones in BL. Otherwise, the results are undefined. Also, if
the processor does not support 64 bits (or 32 bits, for 32-bit implementations) of physical address, software
should write zeros to those unsupported bits in the BRPN field (as the implementation treats them as
reserved). Otherwise, a machine check exception can occur.

7.4.4 Block Memory Protection

After an effective address is determined to be within a block defined by the BAT array, the access is validated
by the memory protection mechanism. If this protection mechanism prohibits the access, a block protection
violation exception condition (DSI or ISI exception) is generated.

The memory protection mechanism allows selectively granting read access, granting read/write access, and
prohibiting access to areas of memory based on a number of control criteria. The block protection mechanism
provides protection at the granularity defined by the block size (128 Kbyte to 256 Mbyte).

As the memory protection mechanism used by the block and page address translation is different, refer to
Section 7.5.4 Page Memory Protection for specific information unique to page address translation.

For block address translation, the memory protection mechanism is controlled by the PP bits (which are
located in the lower BAT register), which define the access options for the block. Table 7-11 shows the types
of accesses that are allowed for the possible PP bit combinations.

Table 7-11. Access Protection Control for Blocks

PP Accesses Allowed
00 No access
x1 Read only
10 Read/write
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Thus, any access attempted (read or write) when PP = 00 results in a protection violation exception condition.
When PP = x1, an attempt to perform a write access causes a protection violation exception condition, and
when PP =10, all accesses are allowed. When the memory protection mechanism prohibits a reference, one

of the following occurs, depending on the type of access that was attempted:

- For data accesses, a DSI exception is generated and bit 4 of DSISR is set.

» For instruction accesses, an IS| exception is generated and bit 36 of SRR1 (bit 4 in 32-bit implementa-

tions) is set.

See Chapter 6, “Exceptions,” for more information about these exceptions.

Table 7-12 shows a summary of the conditions that cause exceptions for supervisor and user read and write
accesses within a BAT area. Each BAT array entry is programmed to be either used or ignored for supervisor
and user accesses via the BAT array entry valid bits, and the PP bits enforce the read/write protection
options. Note that the valid bits (Vs and Vp) are used as part of the match criteria for a BAT array entry and

are not explicitly part of the protection mechanism.

Table 7-12. Access Protection Summary for BAT Array

1
1

Vp

0

PP Field

XX
00
x1
10
00
x1
10
00
x1

10

Block Type
No BAT array match
User—no access
User-read-only
User read/write
Supervisor—no access
Supervisor-read-only
Supervisor read/write
Both—no access
Both-read-only

Both read/write

User Read
Not used
Exception
b
b
Not used
Not used
Not used
Exception
b
b

User Write
Not used
Exception
Exception
b
Not used
Not used
Not used
Exception
Exception

b

Supervisor Read | Supervisor Write

Not used
Not used
Not used
Not used
Exception

b

b
Exception

b

b

Not used
Not used
Not used
Not used
Exception
Exception
b
Exception
Exception

b

Note: The term ‘Not used’ implies that the access is not translated by the BAT array and is translated by the page address translation
mechanism described in Section 7.5 Memory Segment Model,” instead.

Note: Because access to the BAT registers is privileged, only supervisor programs can modify the protection
and valid bits for the block.

Figure 7-13 expands on the actions taken by the processor in the case of a memory protection violation. Note
that the dcbt and dcbtst instructions do not cause exceptions; in the case of a memory protection violation
for the attempted execution of one of these instructions, the translation is aborted and the instruction
executes as a no-op (no violation is reported). Refer to Appendix 6, “Exceptions,” for a complete description
of the SRR1 and DSISR bit settings for the protection violation exceptions.
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Figure 7-13. Memory Protection Violation Flow for Blocks

Block Memory .
Grotection ViolatioD (From Figure 7-16)

otherwise dcbt/dcbtst
Instruction
Instruction Data C Abort Access )
Access Access
| SRRi4367 1| | DsisRE4 1 |

( ISI Exception ) ( DSI Exception )

Note: *Subtract 32 from bit number for bit setting in 32-bit implementations.

7.4.5 Block Physical Address Generation

If the block protection mechanism validates the access, a physical address is formed as shown in Figure 7-14
for 64-bit implementations. Bits in the effective address corresponding to ones in the BL field, concatenated
with the 17 lower-order bits of the effective address, form the offset within the block of memory defined by the
BAT array entry. Bits in the effective address corresponding to zeros in the BL field are then logically ORed
with the corresponding bits in the BRPN field to form the next higher-order bits of the physical address.
Finally, the highest-order 36 bits of the BRPN field form bits 0—35 of the physical address (PA0—PA35).
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Figure 7-14. Block Physical Address Generation—64-Bit Implementations

0 35 36 46 47 63
Effective Address 36 Bit 11 Bit 17 Bit
Block Size Mask 0.t
Y Y
AND
Y Y
11 Bit 17 Bit
Physical Block Number 36 Bit 11 Bit
OR -
0 v 35 36 y 46 47 v 63
Physical Address 36 Bit 11 Bit 17 Bit

The formation of physical addresses for 32-bit implementations is shown in Figure 7-15. In this case the
highest-order four bits of the BRPN field form bits 0—3 of the physical address (PAO—PAS).

Access to the physical memory within the block is made according to the memory/cache access mode
defined by the WIMG bits in the lower BAT register. These bits apply to the entire block rather than to an indi-
vidual page as described in Section 5.2.1 Memory/Cache Access Attributes.
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Figure 7-15. Block Physical Address Generation—32-Bit Implementations
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Block Size Mask [0........

Physical Block Number

Physical Address

7.4.6 Block Address Translation Summary

0 34 14 15 31
4 Bit 11 Bit 17 Bit
..... 1
\
AND
Y Y

11 Bit 17 Bit
4 Bit 11 Bit

OR -
Oy 34 Y 14 15 Y 31
4 Bit 11 Bit 17 Bit

Figure 7-16is an expansion of the ‘BAT Array Hit’ branch of Figure 7-4 and shows the translation of address

bits for 64-bit implementations.

Note: The figure does not show when many of the exceptions in Table 7-6 are detected or taken as this is

implementation-specific.
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Figure 7-16. Block Address Translation Flow—=64-Bit Implementations

( BAT Array Hit )
/ )\

otherwise Read Access with
PP =00
Write Access with \
PP = any of
PAO—PA63 = BRPN (0-35) || 00
BRPN (36-464—14) OR x1

((EA436-EA146) & (BL)) ||
EA1547—EA631

Subsystem with WIMG in Lower Violation Flow

Continue Access to Memory C/Iemory ProtectiorD
BAT Register

(See Figure 7-13.)

7.5 Memory Segment Model

Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segmented memory model provides
a way to map 4-Kbyte pages of effective addresses to 4-Kbyte pages in physical memory (page address
translation), while providing the programming flexibility afforded by a large virtual address space (80 or 52
bits).

A page address translation may be superseded by a matching block address translation as described in
Section 7.4 Block Address Translation. If not, the page translation proceeds in the following two steps:

1. From effective address to the virtual address (which never exists as a specific entity but can be consid-
ered to be the concatenation of the virtual page number and the byte offset within a page), and

2. From virtual address to physical address.

The page address translation mechanism is described in the following sections, followed by a summary of
page address translation with a detailed flow diagram.
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7.5.1 Recognition of Addresses in Segments

The page address translation uses segment descriptors, which provide virtual address and protection infor-
mation, and page table entries (PTEs), which provide the physical address and page protection information.
The segment descriptors are programmed by the operating system to provide the virtual ID for a segment. In
addition, the operating system also creates the page table in memory that provides the virtual-to-physical
address mappings (in the form of PTEs) for the pages in memory.

Segments in the OEA can be classified as one of the following two types:

- Memory segment—An effective address in these segments represents a virtual address that is used to
define the physical address of the page.

 Direct-store segment—References made to direct-store segments do not use the virtual paging mecha-
nism of the processor. Note that the direct-store facility is optional and being phased out of the architec-
ture. See Section 7.8 Direct-Store Segment Address Translation for a complete description of the
mapping of direct-store segments for those processors that implement it.

The T bit in the segment descriptor selects between memory segments and direct-store segments, as shown
in Table 7-13.

Table 7-13. Segment Descriptor Types

Segment Descriptor (T Bit) |Segment Type
0 Memory segment

1 Direct-store segment—optional, but being phased out of the architecture. Its use is discouraged.

7.5.1.1 Selection of Memory Segments

All accesses generated by the processor can be mapped to a segment descriptor; however, if translation is
disabled (MSR[IR] = 0 or MSR[DR] = 0 for an instruction or data access, respectively), real addressing mode
translation is performed as described in Section 7.3 Real Addressing Mode. Otherwise, if T = 0 in the corre-
sponding segment descriptor (and the address is not translated by the BAT mechanism), the access maps to
memory space and page address translation is performed.

After a memory segment is selected, the processor creates the virtual address for the segment and searches
for the PTE that dictates the physical page number to be used for the access. Note that I/O devices can be
easily mapped into memory space and used as memory-mapped |/O.

7.5.1.2 Selection of Direct-Store Segments

As described for memory segments, all accesses generated by the processor (with translation enabled) map
to a segment descriptor. If T = 1 for the selected segment descriptor, the access maps to the direct-store
interface space and the access proceeds as described in Section 7.8 Direct-Store Segment Address Transla-
tion. Because the direct-store interface is present only for compatibility with existing I/O devices that used this
interface and because the direct-store interface protocol is not optimized for performance, its use is discour-
aged. Additionally, the direct-store facility is being phased out of the architecture and future devices are not
likely to support it. Thus, software should not depend on its results and new software should not use it. The
most efficient method for accessing 1/0O is by mapping the I/O areas to memory segments.
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7.5.2 Page Address Translation Overview

The first step in page address translation for 64-bit implementations is the conversion of the 64-bit effective
address of an access into the 80-bit (or 64-bit) virtual address. The virtual address is then used to locate the
PTE in the page table in memory. The physical page number is then extracted from the PTE and used in the
formation of the physical address of the access. Note that for increased performance, some processors may
implement on-chip TLBs to store copies of recently-used PTEs.

Figure 7-17 shows an overview of the translation of an effective address to a physical address for 64-bit
implementations as follows:

- Bits 035 of the effective address comprise the effective segment ID used to select a segment descriptor,
from which the virtual segment ID (VSID) is extracted.

» Bits 3651 of the effective address correspond to the page number within the segment; these are concat
enated with the VSID from the segment descriptor to form the virtual page number (VPN). The VPN is
used to search for the PTE in either an on-chip TLB or the page table. The PTE then provides the physi-
cal page number (RPN). Note that bits 36—40 form the abbreviated page index (API) which is used to
compare with page table entries during hashing. This is described in detail in PTEG Address Mapping
Example—64-Bit Implementation on page 329.

» Bits 5263 of the effective address are the byte offset within the page; these are concatenated with the
RPN field of a PTE to form the physical address used to access memory.

Because processors that implement the 64-bit bridge access only a 32-bit address space, only 16 STEs
are required to define the entire 4-Gbyte address space. Page address translation for 64-bit processors
using the 64-bit bridge uses a subset of the functionality described here for 64-bit implementations. For
example, only bits 32—35 are used to select a segment descriptor, and as in the 32-bit portion of the

architecture, only 16 on-chip segment registers are required. These segment descriptors are maintained
in 16 SLB entries.

For details concerning the 64-bit bridge, see Section 7.9 Migration of Operating Systems from 32-Bit
Implementations to 64-Bit Implementations.
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Figure 7-17. Page Address Translation Overview—64-Bit Implementations

0 35 36 51 52 63
Ri ; Effective Segment ID API Byte Offset
64-Bit Effective Address 36 B 5Bty | (12 BiY
L I Page Index (16-bit) : I
L
SLB/ <
Segment Table
80-Bit Virtual Address
0 v 51 52 v 67 68 v 79
Virtual Segment ID (VSID) Page Index Byte Offset
(52 Bit) (16 Bit) (12 Bit)
| Virtual Page Number (VPN)
TLB/Page
Table
Y PTE Y
K=Y ; Physical Page Number (RPN) Byte Offset
64-Bit Physical Address (52 Bit) (12 Bit)
0 51 52 63

The translation of effective addresses to physical addresses for 32-bit implementations is shown in

Figure 7-18, and is similar to that for 64-bit implementations, except that 32-bit implementations index into an
array of 16 on-chip segment registers instead of segment tables in memory to locate the segment descriptor,
and the address ranges are obviously different, as shown in Figure 7-18. Thus, the address translation is as
follows:

» Bits 03 of the effective address comprise the segment register number used to select a segment
descriptor, from which the virtual segment ID (VSID) is extracted.

» Bits 419 of the effective address correspond to the page number within the segment; these are concate-
nated with the VSID from the segment descriptor to form the virtual page number (VPN). The VPN is
used to search for the PTE in either an on-chip TLB or the page table. The PTE then provides the physi-
cal page number (RPN).

« Bits 2031 of the effective address are the byte offset within the page; these are concatenated with the
RPN field of a PTE to form the physical address used to access memory.
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Figure 7-18. Page Address Translation Overview—32-Bit Implementations

32-Bit Effective Address

52-Bit Virtual Address

32-Bit Physical Address

0 34 19 20 31
SR# API | Byte Offset
(4 Bit)| (6 Bit) (12 Bit)
L1 PageIndex (16-bit) | I
[ I
Segment
Registers
0 v 23 24 v 39 40 v 51
Virtual Segment ID (VSID) Page Index Byte Offset
(24 Bit) (16 Bit) (12 Bit)
| Virtual Page Number (VPN) |
TLB/Page
Table
Y PTE Y
Physical Page Number (RPN) Byte Offset
(20 Bit) (12 Bit)
0 19 20 31

7.5.2.1 Segment Descriptor Definitions

The format of the segment descriptors is different for 64-bit and 32-bit implementations. Additionally, the
fields in the segment descriptors are interpreted differently depending on the value of the T bit within the
descriptor. When T = 1, the segment descriptor defines a direct-store segment, and the format is as

described in Section 7.8.1 Segment Descriptors for Direct-Store Segments.

For 64-bit processors using the 64-bit bridge, as is the case for 32-bit processors, only 16 segment
descriptors are required, each defining 256-Mbyte segments (assuming T = 0). Although the 64-bit
bridge implements 16 on-chip segment descriptors, it retains the same STE format used by 64-bit pro-
cessors although values stored in the STEs reflect the smaller address space. The format for the seg-
ment descriptor used by 64-bit processors is described in STE Format—64-Bit Implementations on

page 299.
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STE Format—64-Bit Implementations

In 64-bit implementations, the segment descriptors reside as segment table entries (STEs) in hashed
segment tables in memory. These STEs are generated and placed in segment tables in memory by the oper-
ating system using the hashing algorithm described in Section 7.7.1.2 Segment Table Hashing Functions.
Each STE is a 128-bit entity (two double words) that maps one effective segment ID to one virtual segment
ID. Information in the STE controls the segment table search process and provides input to the memory
protection mechanism. Figure 7-19 shows the format of both double words that comprise a T = 0 segment
descriptor (or STE) in a 64-bit implementation.

Figure 7-19. STE Format—64-Bit Implementations

DReserved

ESID 0000 0000 0000 O0O0O0 0000 O|V | T|Ks|Kp[N 000

0 35 36 55 56 57 58 59 60 61 63
VSID 0000 0000 00OOO

0 51 52 63

Table 7-14 lists the bit definitions for each double word in an STE.

Table 7-14. STE Bit Definitions for Page Address Translation—64-Bit Implementations

Double Word |Bit Name Description

0-35 ESID Effective segment ID
36-55 — Reserved
56 \Y Entry valid (V = 1) or invalid (V = 0)
57 T T = 0 selects this format

0 58 Ks Supervisor-state protection key
59 Kp User-state protection key
60 N No-execute protection bit
6163 — Reserved
051 VSID Virtual segment ID

1 5263 — Reserved

The Ks and Kp bits partially define the access protection for the pages within the segment. The page protec-
tion provided in the PowerPC OEA is described in Section 7.5.4 Page Memory Protection. The virtual
segment ID field is used as the high-order bits of the virtual page number (VPN) as shown in Figure 7-17.

Note: Onimplementations that support a virtual address size of only 64 bits, bits 0—15 for the VSID field must
be zeros.

The segment descriptors are programmed by the operating system and placed into segment tables in
memory, although some processors may additionally have on-chip segment lookaside buffers (SLBs). These
SLBs store copies of recently-used STEs that can be accessed quickly, providing increased overall perfor-
mance. A complete description of the structure of the segment tables is provided in Section 7.7 Hashed
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Segment Tables—64-Bit Implementations. The PowerPC OEA has defined specific instructions for control-
ling SLBs (if they are implemented). See Chapter 8, “Instruction Set,” for more detail on the encodings of
these instructions.

Note that processors using the 64-bit bridge implement STEs as defined for 64-bit implementations as
described in this section, however, from a software perspective the function of these segment descrip-
tors is indistinguishable from the segment registers as they are defined for 32-bit implementations. How-
ever, the values in the STEs reflect only a 32-bit address space. For example, the ESID field uses only
four bits (ESID[32—35]), which, like the four highest-order bits in a 32-bit effective address, provide an
index to one of the 16 segment descriptors.

Segment Descriptor Format—32-Bit Implementations

In 32-bit implementations, tThe segment descriptors are 32 bits long and reside in one of 16 on-chip segment
registers. Figure 7-20 shows the format of a segment register used in page address translation (T =0) in a
32-bit implementation.

Figure 7-20. Segment Register Format for Page Address Translation—32-Bit Implementations

|:| Reserved

T |Ks|Kp| N 0000 VSID

0 1 2 3 4 78 31

Table 7-15 provides the corresponding bit definitions of the segment register in 32-bit implementations.

Table 7-15. Segment Register Bit Definition for Page Address Translation—32-Bit Implementations

Bit Name Description

0 T T = 0 selects this format

1 Ks Supervisor-state protection key
2 Kp User-state protection key

3 N No-execute protection bit

4-7 — Reserved

8-31 VSID Virtual segment ID

The Ks and Kp bits partially define the access protection for the pages within the segment. The page protec-
tion provided in the PowerPC OEA is described in Section 7.5.4 Page Memory Protection. The virtual
segment ID field is used as the high-order bits of the virtual page number (VPN) as shown in Figure 7-18.

The segment registers are programmed with specific instructions that reference the segment registers.
However, since the segment registers described here are merely a conceptual model, a processor may
implement separate segment registers for instructions and for data, for example. In this case, it is the respon-
sibility of the hardware to maintain the consistency between the multiple sets of segment registers.
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The segment register instructions are summarized in Table 7-16. These instructions are privileged in that
they are executable only while operating in supervisor mode. See Section 2.3.18 Synchronization Require-
ments for Special Registers and for Lookaside Buffers, for information about the synchronization require-
ments when modifying the segment registers. See Chapter 8, “Instruction Set,” for more detail on the
encodings of these instructions.

Table 7-16. Segment Register Instructions—32-Bit Implementations

Instruction Description

mtsr SR,IS Z;F;F;?jfgmem Register

mtsrin rS,rB ’\SA;\[/r% ;g_Sig]g;nreSnt Register Indirect
mfsr rD,SR :/éoles :?:R]Segment Register

mtsrin rD,rB Move from Segment Register Indirect

rD<SR[rB[0-3]]

Note: These instructions apply only to 32-bit implementations and 64-bit processors that implement the 64-bit bridge.

Note that segment registers and the instructions listed in Table 7-16 are intended for use in 32-bit imple-
mentations. In 64-bit implementations, these instructions are legal only in processors that support the
64-bit bridge architecture described in Section 7.9 Migration of Operating Systems from 32-Bit Imple-
mentations to 64-Bit Implementations. However, if these features are not supported, attempting to exe-
cute these instructions on a 64-bit implementation causes an illegal instruction program exception.

7.5.2.2 Page Table Entry (PTE) Definitions

Page table entries (PTEs) are generated and placed in page table in memory by the operating system using
the hashing algorithm described in Section 7.6.1.3 Page Table Hashing Functions. The PowerPC OEA
defines similar PTE formats for both 64 and 32-bit implementations in that the same fields are defined.
However, 64-bit implementations define PTEs that are 128 bits in length while 32-bit implementations define
PTEs that are 64 bits in length. Additionally, care must be taken when programming for both 64 and 32-bit
implementations, as the bit placements of some fields are different. Some of the fields are defined as follows:

« The virtual segment ID field corresponds to the high-order bits of the virtual page number (VPN), and,
along with the H, V, and APl fields, it is used to locate the PTE (used as match criteria in comparing the
PTE with the segment information).

- The R and C bits maintain history information for the page as described in Section 7.5.3 Page History
Recording.

« The WIMG bits define the memory/cache control mode for accesses to the page.
« The PP bits define the remaining access protection constraints for the page. The page protection pro-
vided by PowerPC processors is described in Section 7.5.4 Page Memory Protection.

Conceptually, the page table in memory must be searched to translate the address of every reference. For
performance reasons, however, some processors use on-chip TLBs to cache copies of recently-used PTEs
so that the table search time is eliminated for most accesses. In this case, the TLB is searched for the
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address translation first. If a copy of the PTE is found, then no page table search is performed. As TLBs are
noncoherent caches of PTEs, software that changes the page table in any way must perform the appropriate
TLB invalidate operations to keep the on-chip TLBs coherent with respect to the page table in memory.

PTE Format for 64-Bit Implementations

In 64-bit implementations, each PTE is a 128-bit entity (two double words) that maps a virtual page number

(VPN) to a physical page number (RPN). Information in the PTE is used in the page table search process (to
determine a page table hit) and provides input to the memory protection mechanism. Figure 7-21 shows the
format of the two double words that comprise a PTE for 64-bit implementations.

Figure 7-21. Page Table Entry Format—64-Bit Implementations

|:| Reserved
0 51 52 56 57 61 62 63
VSID API 000 00 HIV
RPN 000 R|C WIMG 0 PP
0 51 52 54 55 56 57 60 61 62 63

Table 7-17 lists the corresponding bit definitions for each double word in a PTE as defined.

Table 7-17. PTE Bit Definitions—64-Bit Implementations

Double Word Bit Name Description

0-51 VSID ;/L?;Jﬁérst(asgﬁ)nt ID—corresponds to the high-order bits of the virtual page
5256 API Abbreviated page index

0 5761 — Reserved
62 Hash function identifier
63 \ Entry valid (V = 1) or invalid (V = 0)
051 RPN Physical page number
52-54 — Reserved
55 R Referenced bit

1 56 C Changed bit
57—60 WIMG Memory/cache access control bits
61 — Reserved
62—63 PP Page protection bits

The PTE contains an abbreviated page index rather than the complete page index field because at least 11 of
the low-order bits of the page index are used in the hash function to select a PTE group (PTEG) address

(PTEG addresses define the location of a PTE). Therefore, these 11 lower-order bits are not repeated in the
PTEs of that PTEG.

Note that on implementations that support a virtual address size of only 64 bits, bits 0—15 of the VSID field

must be zeros.
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PTE Format for 32-Bit Implementations

Figure 7-22 shows the format of the two words that comprise a PTE for 32-bit implementations.

Figure 7-22. Page Table Entry Format—32-Bit Implementations

|:| Reserved
0 1 24 25 26 31
\' VSID H API
RPN 000 R|C WIMG 0| PP
0 19 20 22 23 24 25 28 29 30 31

Table 7-18 lists the corresponding bit definitions for each word in a PTE as defined above.

Table 7-18. PTE Bit Definitions—32-Bit Implementations

Word Bit Name Description

0 \ Entry valid (V = 1) orinvalid (V = 0)
124 VSID Virtual segment ID

0 25 H Hash function identifier
2631 API Abbreviated page index
0-19 RPN Physical page number
2022 — Reserved
23 R Referenced bit

1 24 C Changed bit
2528 WIMG Memory/cache control bits
29 — Reserved
30-31 PP Page protection bits

In this case, the PTE contains an abbreviated page index rather than the complete page index field because
at least ten of the low-order bits of the page index are used in the hash function to select a PTEG address
(PTEG addresses define the location of a PTE). Therefore, these ten lower-order bits are not repeated in the
PTEs of that PTEG.

7.5.3 Page History Recording

Referenced (R) and changed (C) bits reside in each PTE to keep history information about the page. The
operating system then uses this information to determine which areas of memory to write back to disk when
new pages must be allocated in main memory. Referenced and changed recording is performed only for
accesses made with page address translation and not for translations made with the BAT mechanism or for
accesses that correspond to direct-store (T = 1) segments. Furthermore, R and C bits are maintained only for
accesses made while address translation is enabled (MSRJ[IR] = 1 or MSR[DR] = 1).

In general, the referenced and changed bits are updated to reflect the status of the page based on the
access, as shown in Table 7-19.
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Table 7-19. Table Search Operations to Update History Bits

R and C bits Processor Action

Read: Table search operation to update R

00 Write: Table search operation to update R and C
01 Combination doesn’t occur
10 Read: No special action
Write: Table search operation to update C
11 No special action for read or write

In processors that implement a TLB, the processor may perform the R and C bit updates based on the copies
of these bits resident in the TLB. For example, the processor may update the C bit based only on the status of
the C bit in the TLB entry in the case of a TLB hit (the R bit may be assumed to be set in the page tables if
there is a TLB hit). Therefore, when software clears the R and C bits in the page tables in memory, it must
invalidate the TLB entries associated with the pages whose referenced and changed bits were cleared. See
Section 7.6.3 Page Table Updates for all of the constraints imposed on the software when updating the refer-
enced and changed bits in the page tables.

The R bit for a page may be set by the execution of the debt or debtst instruction to that page. However,
neither of these instructions cause the C bit to be set.

The update of the referenced and changed bits is performed by PowerPC processors as if address translation
were disabled (real addressing mode address).

7.5.3.1 Referenced Bit

The referenced bit for each virtual page is located in the PTE. Every time a page is referenced (by an instruc-
tion fetch, or any other read or write access) the referenced bit is set in the page table. The referenced bit
may be set immediately, or the setting may be delayed until the memory access is determined to be
successful. Because the reference to a page is what causes a PTE to be loaded into the TLB, some proces-
sors may assume the R bit in the TLB is always set. The processor never automatically clears the referenced
bit.

The referenced bit is only a hint to the operating system about the activity of a page. At times, the referenced
bit may be set although the access was not logically required by the program or even if the access was
prevented by memory protection. Examples of this include the following:

» Fetching of instructions not subsequently executed

« Accesses generated by an Iswx or stswx instruction with a zero length

» Accesses generated by a stwex. or stdex. instruction when no store is performed
» Accesses that cause exceptions and are not completed

7.5.3.2 Changed Bit

The changed bit for each virtual page is located both in the PTE in the page table and in the copy of the PTE
loaded into the TLB (if a TLB is implemented). Whenever a data store instruction is executed successfully, if
the TLB search (for page address translation) results in a hit, the changed bit in the matching TLB entry is
checked. If it is already set, the processor does not change the C bit. If the TLB changed bit is 0, it is set and
a table search operation is performed to set the C bit in the corresponding PTE in the page table.
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Processors cause the changed bit (in both the PTE in the page tables and in the TLB if implemented) to be
set only when a store operation is allowed by the page memory protection mechanism and the store is guar-
anteed to be in the execution path, unless an exception, other than those caused by one of the following
occurs:

» System-caused interrupts (system reset, machine check, external, and decrementer interrupts)
» Floating-point enabled exception type program exceptions when the processor is in an imprecise mode
» Floating-point assist exceptions for instructions that cause no other kind of precise exception

Furthermore, the following conditions may cause the C bit to be set:

« The execution of an stwex. or stdex. instruction is allowed by the memory protection mechanism but a
store operation is not performed.

» The execution of an stswx instruction is allowed by the memory protection mechanism but a store opera-
tion is not performed because the specified length is zero.

« A dcba or dcbi instruction is executed.

No other cases cause the C bit to be set.

7.5.3.3 Scenarios for Referenced and Changed Bit Recording

This section provides a summary of the model (defined by the OEA) used by PowerPC processors that main-
tain the referenced and changed bits automatically in hardware, in the setting of the R and C bits. In some
scenarios, the bits are guaranteed to be set by the processor; in some scenarios, the architecture allows that
the bits may be set (not absolutely required); and in some scenarios, the bits are guaranteed to not be set.
Note that when the hardware updates the R and C bits in memory, the accesses are performed as a physical
memory access, as if the WIMG bit settings were 0b0010 (that is, as unguarded cacheable operations in
which coherency is required).

In implementations that do not maintain the R and C bits in hardware, software assistance is required. For
these processors, the information in this section still applies, except that the software performing the updates
is constrained to the rules described (that is, must set bits shown as guaranteed to be set and must not set
bits shown as guaranteed to not be set).

Note: This software should be contained in the area of memory reserved for implementation-specific use and
should be invisible to the operating system.

Table 7-20 defines a prioritized list of the R and C bit settings for all scenarios. The entries in the table are
prioritized from top to bottom, such that a matching scenario occurring closer to the top of the table takes
precedence over a matching scenario closer to the bottom of the table. For example, if an stwex. instruction
causes a protection violation and there is no reservation, the C bit is not altered, as shown for the protection
violation case.

Note: In the table, load operations include those generated by load instructions, by the eciwx instruction,
and by the cache management instructions that are treated as loads with respect to address translation. Sim-
ilarly, store operations include those operations generated by store instructions, by the ecowx instruction,
and by the cache management instructions that are treated as stores with respect to address translation.

pem7_MMU.fm.2.0 Memory Management
June 10, 2003 Page 305 of 785



Programming Environments Manual

PowerPC RISC Microprocessor Family

Table 7-20. Model for Guaranteed R and C Bit Settings

Priority Scenario Causes Setting of R Bit | Causes Setting of C Bit
1 No-execute protection violation No No
2 Page protection violation Maybe No
3 Out-of-order instruction fetch or load operation Maybe No

Out-of-order store operation for instructions that will cause no other
4 kind of precise exception (in the absence of system-caused, impre- Maybe1 Maybe1
cise, or floating-point assist exceptions)

5 All other out-of-order store operations Maybe1 No

6 Zero-length load (Iswx) Maybe No

7 Zero-length store (stswx) Maybe1 Maybe1
8 Store conditional (stwex., or stdex.) that does not store Maybe1 Maybe1
9 In-order instruction fetch Yes? No

10 Load instruction or eciwx Yes No

11 Store instruction, ecowx, dcbz, or deba 3 instruction Yes Yes

12 icbi, dcbt, dcbtst, dcbst, or debf instruction Maybe No

13 dcbi instruction Maybe1 Maybe1

Note:

TIf Cis set, Ris guaranteed to also be set.

2 This includes the case in which the instruction was fetched out of order and R was not set.

3 For a deba instruction that does not modify the target block, it is possible that neither bit is set.

7.5.3.4 Synchronization of Memory Accesses and Referenced and Changed Bit Updates

Although the processor updates the referenced and changed bits in the page tables automatically, these
updates are not guaranteed to be immediately visible to the program after the load, store, or instruction fetch
operation that caused the update. If processor A executes a load or store or fetches an instruction, the
following conditions are met with respect to performing the access and performing any R and C bit updates:

- If processor A subsequently executes a sync instruction, both the updates to the bits in the page table
and the load or store operation are guaranteed to be performed with respect to all processors and mech-
anisms before the sync instruction completes on processor A.

- Additionally, if processor B executes a tlbie instruction that
— signals the invalidation to the hardware,
— invalidates the TLB entry for the access in processor A, and
— is detected by processor A after processor A has begun the access,
and processor B executes a tlbsync instruction after it executes the tlbie, both the updates to the bits

and the original access are guaranteed to be performed with respect to all processors and mechanisms
before the tibsync instruction completes on processor A.
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7.5.4 Page Memory Protection

In addition to the no-execute option that can be programmed at the segment descriptor level to prevent
instructions from being fetched from a given segment (shown in Figure 7-5), there are a number of other
memory protection options that can be programmed at the page level. The page memory protection mecha-
nism allows selectively granting read access, granting read/write access, and prohibiting access to areas of
memory based on a number of control criteria.

The memory protection used by the block and page address translation mechanisms is different in that the
page address translation protection defines a key bit that, in conjunction with the PP bits, determines whether
supervisor and user programs can access a page. For specific information about block address translation,
refer to Section 7.4.4 Block Memory Protection.
For page address translation, the memory protection mechanism is controlled by the following:

- MSR[PR], which defines the mode of the access as follows:

— MSR[PR] = 0 corresponds to supervisor mode
— MSR[PR] = 1 corresponds to user mode

» Ks and Kp, the supervisor and user key bits, which define the key for the page

» The PP bits, which define the access options for the page

The key bits (Ks and Kp) and the PP bits are located as follows for page address translation:
» Ks and Kp are located in the segment descriptor.
» The PP bits are located in the PTE.

The key bits, the PP bits, and the MSR[PR] bit are used as follows:
« When an access is generated, one of the key bits is selected to be the key as follows:

— For supervisor accesses (MSR[PR] = 0), the Ks bit is used and Kp is ignored
— For user accesses (MSR[PR] = 1), the Kp bit is used and Ks is ignored
That is, key = (Kp & MSR[PR]) | (Ks & "MSR[PR])

- The selected key is used with the PP bits to determine if instruction fetching, load access, or store access
is allowed.

Table 7-21 shows the types of accesses that are allowed for the general case (all possible Ks, Kp, and PP bit
combinations), assuming that the N bit in the segment descriptor is cleared (the no-execute option is not
selected).

Table 7-21. Access Protection Control with Key

Key' PP2 Page Type
0 00 Read/write
0 01 Read/write
0 10 Read/write
0 11 Read only
1 00 No access

Note:
TKs or Kp selected by state of MSR[PR]
2pp protection option bits in PTE
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Table 7-21. Access Protection Control with Key (Continued)

Key! PP2 Page Type
1 01 Read only
1 10 Read/write
1 11 Read only

Note:
TKs or Kp selected by state of MSR[PR]
2pp protection option bits in PTE

Thus, the conditions that cause a protection violation (not including the no-execute protection option for
instruction fetches) are depicted in Table 7-22 and as a flow diagram in Figure 7-25. Any access attempted
(read or write) when the key = 1 and PP = 00, causes a protection violation exception condition. When key =
1 and PP = 01, an attempt to perform a write access causes a protection violation exception condition. When
PP =10, all accesses are allowed, and when PP = 11, write accesses always cause an exception. The
processor takes either the I1SI or the DSI exception (for an instruction or data access, respectively) when
there is an attempt to violate the memory protection.

Table 7-22. Exception Conditions for Key and PP Combinations

Key PP Prohibited Accesses
0 0x None
1 00 Read/write
1 01 Write
X 10 None
X 11 Write

Any combination of the Ks, Kp, and PP bits is allowed. One example is if the Ks and Kp bits are programmed
so that the value of the key bit for Table 7-21 directly matches the MSR[PR] bit for the access. In this case,
the encoding of Ks = 0 and Kp = 1 is used for the PTE, and the PP bits then enforce the protection options
shown in Table 7-23.

Table 7-23. Access Protection Encoding of PP Bits for Ks = 0 and Kp = 1

PP Field Option L:;zryFie%d L(Jliz;vgr;t)e Sup(eKr\éi;c;r(l;;ead Sup(e}g;i};sc;r&/)\lrite
00 Supervisor-only Violation Violation b b
01 Supervisor-write-only b Violation b b
10 Both user/supervisor b b b b
11 Both read-only b Violation b Violation

However, if the setting Ks = 1 is used, supervisor accesses are treated as user reads and writes with respect
to Table 7-23. Likewise, if the setting Kp = 0 is used, user accesses to the page are treated as supervisor
accesses in relation to Table 7-23. Therefore, by modifying one of the key bits (in the segment descriptor),
the way the processor interprets accesses (supervisor or user) in a particular segment can easily be
changed.
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Note: Only supervisor programs are allowed to modify the key bits for the segment descriptor. For 64-bit
implementations, although access to the ASR is privileged, the operating system must protect write accesses
to the segment table as well. For 32-bit implementations, aAccess to the segment registers is privileged.

When the memory protection mechanism prohibits a reference, the flow of events is similar to that for a
memory protection violation occurring with the block protection mechanism. As shown in Figure 7-23, one of
the following occurs depending on the type of access that was attempted:

- For data accesses, a DSI exception is generated and DSISR[4] is set. If the access is a store, DSISR[6]
is also set.

« For instruction accesses,

— an ISl exception is generated and SRR1[36] (SRR 1[4] for 32-bit implementations) is set, or
— an ISl exception is generated and SRR1[35] (SRR1[3] for 32-bit implementations) is set if the seg-
ment is designated as no-execute.

The only difference between the flow shown in Figure 7-23 and that of the block memory protection violation
is the ISI exception that can be caused by an attempt to fetch an instruction from a segment that has been
designated as no-execute (N bit set in the segment descriptor). See Appendix 6, “Exceptions,” for more infor-
mation about these exceptions.

Figure 7-23. Memory Protection Violation Flow for Pages

Page Memory
Protection Violation

otherwise dcbt/dcbtst
/O< Instruction
Instruction Data ( Abort Access >
Access Access
N Bit Set in /O/
Segment Descriptor DSISR[4] « 1
* therwi
SRR1[335%] 1 ofhenwise ( DSI Exception >

| SRR1[436] « 1 |

( ISI Exception )

Note: *Subtract 32 from bit number for bit setting in 32-bit implementations.
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If the page protection mechanism prohibits a store operation, the changed bit is not set (in either the TLB or in
the page tables in memory); however, a prohibited store access may cause a PTE to be loaded into the TLB
and consequently cause the referenced bit to be set in a PTE (both in the TLB and in the page table in
memory).

7.5.5 Page Address Translation Summary

Figure 7-24 provides the detailed flow for the page address translation mechanism in 64-bit implementations.
The figure includes the checking of the N bit in the segment descriptor and then expands on the ‘TLB Hit’
branch of Figure 7-5. The detailed flow for the ‘TLB Miss’ branch of Figure 7-5is described in Section 7.6.2
Page Table Search Operation. The checking of memory protection violation conditions for page address
translation is shown in Figure 7-25. The ‘Invalidate TLB Entry’ box shown in Figure 7-24 is marked as imple-
mentation-specific as this level of detail for TLBs (and the existence of TLBs) is not dictated by the architec-
ture. Note that the figure does not show the detection of all exception conditions shown in Table 7-5 and
Table 7-6; the flow for many of these exceptions is implementation-specific.
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Figure 7-24. Page Address Translation Flow for 64-Bit Implementations—TLB Hit
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Figure 7-25. Page Memory Protection Violation Conditions for Page Address Translation
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7.6 Hashed Page Tables

If a copy of the PTE corresponding to the VPN for an access is not resident in a TLB (corresponding to a miss
in the TLB, provided a TLB is implemented), the processor must search for the PTE in the page tables set up
by the operating system in main memory.

The algorithm specified by the architecture for accessing the page tables includes a hashing function on
some of the virtual address bits. Thus, the addresses for PTEs are allocated more evenly within the page
tables and the hit rate of the page tables is maximized. This algorithm must be synthesized by the operating
system for it to correctly place the page table entries in main memory.

If page table search operations are performed automatically by the hardware, they are performed using phys-
ical addresses and as if the memory access attribute bit M = 1 (memory coherency enforced in hardware). If
the software performs the page table search operations, the accesses must be performed in real addressing
mode (MSR[DR] = 0); this additionally guarantees that M = 1.

This section describes the format of the page tables and the algorithm used to access them. In addition, the
constraints imposed on the software in updating the page tables (and other MMU resources) are described.
7.6.1 Page Table Definition

The hashed page table is a variable-sized data structure that defines the mapping between virtual page
numbers and physical page numbers. The page table size is a power of 2, its starting address is a multiple of
its size, and the table must reside in memory with the WIMG attributes of 0b0010.
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The page table contains a number of page table entry groups (PTEGs). For 64-bit implementations, a PTEG
contains eight page table entries (PTEs) of 16 bytes each; therefore, each PTEG is 128 bytes long. For 32-bit
implementations, a PTEG contains eight PTEs of eight bytes each; therefore, each PTEG is 64 bytes long.
PTEG addresses are entry points for table search operations. Figure 7-26 shows two PTEG addresses
(PTEGaddr1 and PTEGaddr2) where a given PTE may reside.

Figure 7-26. Page Table Definitions

Page Table
—»[16 bytesfe«—
PTEO | PTE1 PTE7 PTEGO
PTEGaddr1 PTEO | PTE1 PTE7
PTEGaddr2 PTEO | PTE1 PTE7
PTEGn

A given PTE can reside in one of two possible PTEGS—one is the primary PTEG and the other is the
secondary PTEG. Additionally, a given PTE can reside in any of the PTE locations within an addressed
PTEG. Thus, a given PTE may reside in one of 16 possible locations within the page table. If a given PTE is
not in either the primary or secondary PTEG, a page table miss occurs, corresponding to a page fault condi-
tion.

A table search operation is defined as the search for a PTE within a primary and secondary PTEG. When a
table search operation commences, a primary hashing function is performed on the virtual address. The
output of the hashing function is then concatenated with bits programmed into the SDR1 register by the oper-
ating system to create the physical address of the primary PTEG. The PTEs in the PTEG are then checked,
one by one, to see if there is a hit within the PTEG. If the PTE is not located, a secondary hashing function is
performed, a new physical address is generated for the PTEG, and the PTE is searched for again, using the
secondary PTEG address.

Note, however, that although a given PTE may reside in one of 16 possible locations, an address that is a
primary PTEG address for some accesses also functions as a secondary PTEG address for a second set of
accesses (as defined by the secondary hashing function). Therefore, these 16 possible locations are really
shared by two different sets of effective addresses. Section 7.6.1.6 Page Table Structure Examples, illus-
trates how PTEs map into the 16 possible locations as primary and secondary PTEs.
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7.6.1.1 SDR1 Register Definitions

The SDR1 register contains the control information for the page table structure in that it defines the high-order
bits for the physical base address of the page table and it defines the size of the table. Note that there are
certain synchronization requirements for writing to SDR1 that are described in Section 2.3.18 Synchroniza-
tion Requirements for Special Registers and for Lookaside Buffers. The format of the SDR1 register differs for
64-bit and 32-bit implementations, ais shown in the following sections.

SDR1 Register Definition for 64-Bit Implementations

The format of the SDR1 register for a 64-bit implementation is shown in Figure 7-27.

Figure 7-27. SDR1 Register Format—64-Bit Implementations

|:| Reserved
HTABORG 00 0000 0000 OOO HTABSIZE
0 45 46 58 59 63

The bit settings for SDR1 are described in Table 7-24.

Table 7-24. SDR1 Register Bit Settings—64-Bit Implementations

Bits Name Description

045 HTABORG Physical base address of page table

46-58 — Reserved

59-63 HTABSIZE Encoded size of page table (used to generate mask)

The HTABORG field in SDR1 contains the high-order 46 bits of the 64-bit physical address of the page table.
Therefore, the beginning of the page table lies on a 218 byte (256 Kbyte) boundary at a minimum. If the
processor does not support 64 bits of physical address, software should write zeros to those unsupported bits
in the HTABORG field (as the implementation treats them as reserved). Otherwise, a machine check excep-
tion can occur.

A page table can be any size 2" bytes where 18 n 46. The HTABSIZE field in SDR1 contains an integer
value that specifies how many bits from the output of the hashing function are used as the page table index.
This number must not exceed 28. HTABSIZE is used to generate a mask of the form 0b00...011...1 (a string
of n 0 bits (where nis 28 — HTABSIZE) followed by a string of 1 bits, the number of which is equal to the value
of HTABSIZE). As the table size increases, more bits are used from the output of the hashing function to
index into the table. The 1 bits in the mask determine how many additional bits (beyond the minimum of 11)
from the hash are used in the index; the HTABORG field must have this same number of low-order bits equal
to 0. See Figure 7-35. for an example of the primary PTEG address generation in a 64-bit implementation.

For example, suppose that the page table is 16,384 (214), 128-byte PTEGs, for a total size of 221 bytes (2

Mbytes). Note that a 14-bit index is required. Eleven bits are provided from the hash initially, so three addi-
tional bits from the hash must be selected. The value in HTABSIZE must be 3 and the value in HTABORG
must have its low-order three bits (bits

31-33 of SDR1) equal to 0. This means that the page table must begin on a

23+ 11 +7 = 921 = 5 Mpytes boundary.
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On implementations that support a virtual address size of only 64 bits, software should set the HTABSIZE
field to a value that does not exceed 25. Because the high-order 16 bits of the VSID must be zeros for these
implementations, the hash value used in the page table search will have the high-order three bits either all
zeros (primary hash) or all ones (secondary hash). If HTABSIZE > 25, some of these hash value bits will be
used to index into the page table, resulting in certain PTEGs never being searched.

SDR1 Register Definition for 32-Bit Implementations

The format of SDR1 for 32-bit implementations is similar to that of 64-bit implementations except that the
register size is 32 bits and the HTABMASK field is programmed explicitly into SDR1. Additionally, the address
ranges correspond to a 32-bit physical address and the range of page table sizes is smaller. Figure 7-28
shows the format of the SDR1 register for 32-bit implementations; the bit settings are described in Table 7-25.

Figure 7-28. SDR1 Register Format—32-Bit Implementations

|:| Reserved

HTABORG 0000 000 HTABMASK

0 15 16 22 23 31

Table 7-25. SDR1 Register Bit Settings—32-Bit Implementations

Bits Name Description

015 HTABORG Physical base address of page table
1622 — Reserved

23-31 HTABMASK |Mask for page table address

The HTABORG field in SDR1 contains the high-order 16 bits of the 32-bit physical address of the page table.
Therefore, the beginning of the page table lies on a 216 byte (64 Kbyte) boundary at a minimum. As with 64-
bit implementations, ilf the processor does not support 32 bits of physical address, software should write
zeros to those unsupported bits in the HTABORG field (as the implementation treats them as reserved).
Otherwise, a machine check exception can occur.

A page table can be any size 2" bytes where 16 n 25. The HTABMASK field in SDR1 contains a mask value
that determines how many bits from the output of the hashing function are used as the page table index. This
mask must be of the form 0b00...011...1 (a string of 0 bits followed by a string of 1 bits). As the table size
increases, more bits are used from the output of the hashing function to index into the table. The 1 bits in
HTABMASK determine how many additional bits (beyond the minimum of 10) from the hash are used in the
index; the HTABORG field must have the same number of lower-order bits equal to 0 as the HTABMASK field
has lower-order bits equal to 1.

Example:

Suppose that the page table is 16,384 (214) 128-byte PTEGs, for a total size of 22! bytes (2 Mbytes). A 14-bit
index is required. Eleven bits are provided from the hash to start with, so 3 additional bits from the hash must
be selected. Thus the value in HTABMASK must be 3 and the value in HTABORG must have its low-order 3
bits (SDR1[31—33]) equal to 0. This means that the page table must beginona 2 <3*11+7> =221 =2 Mpyte
boundary.
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7.6.1.2 Page Table Size

The number of entries in the page table directly affects performance because it influences the hit ratio in the
page table and thus the rate of page fault exception conditions. If the table is too small, not all virtual pages
that have physical page frames assigned may be mapped via the page table. This can happen if more than
16 entries map to the same primary/secondary pair of PTEGs; in this case, many hash collisions may occur.

Page Table Sizes for 64-Bit Implementations

In 64-bit implementations, the minimum allowable size for a page table is 256 Kbytes (2'" PTEGs of 128
bytes each). However, it is recommended that the total number of PTEGs in the page table be at least half the
number of physical page frames to be mapped. While avoidance of hash collisions cannot be guaranteed for
any size page table, making the page table larger than the recommended minimum size reduces the
frequency of such collisions, by making the primary PTEGs more sparsely populated, and further reducing
the need to use the secondary PTEGs.

Table 7-26 shows example sizes for total main memory. The recommended minimum page table sizes for
these example memory sizes are then outlined, along with their corresponding HTABORG and HTABSIZE
settings. Note that systems with less than 16 Mbytes of main memory may be designed with 64-bit implemen-
tations, but the minimum amount of memory that can be used for the page tables is 256 Kbytes in these
cases.

Table 7-26. Minimum Recommended Page Table Sizes—64-Bit Implementations

Recommended Minimum Settings for Recommended Minimum
fotal Main Memory Memory for Page Tables Ms!\:c:;)ne:lg%a(ges Nl;r_?ltz)grsof (Ma:'l;ﬁ)?eo I;tcé 18- HTABfnlffk;Qg'Bit
(PTEs) 45)
16 Mbytes (22%) 256 Kbytes (219) ol ol XXX 0 0 ?98800)
32 Mbytes (22) 512 Koytes (219) 015 212 X....00 " 0 998801)
64 Mbytes (2%) 1 Mbyte (220) 216 213 X....xx00 " 00010, N
128 Mbytes (2%7) 2 Mbytes (22) 217 014 X....x000 0 ooolt N
256 Mbytes (228) 4 Mbytes (22) 218 215 X .. X 0000 o 0 001 0 Y
251 Bytes 2% Bytes o4 038 x 0. ..0000 o Lo )
252 Bytes 2% Bytes %2 239 0....0000 11100

(....1111)

As an example, if the physical memory size is 23! bytes (2 Gbyte), there are 23" — 212 (4 Kbyte page size) =
219 (512 Kbyte) total page frames. If this number of page frames is divided by 2, the resultant minimum
recommended page table size is 2'8 PTEGs, or 225 bytes (32 Mbytes) of memory for the page tables.
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Page Table Sizes for 32-Bit Implementations

The recommended page table sizes in 32-bit implementations are similar to that of 64-bit implementations,
except that the total number of pages mapped for a given page table size is larger, because the PTEs are
only 8 bytes (instead of 16 bytes) in length. In a 32-bit implementation, the minimum size for a page table is
64 Kbytes (210 PTEGs of 64 bytes each). However, as with the 64-bit model, it is recommended that the total
number of PTEGs in the page table be at least half the number of physical page frames to be mapped. While
avoidance of hash collisions cannot be guaranteed for any size page table, making the page table larger than
the recommended minimum size reduces the frequency of such collisions by making the primary PTEGs
more sparsely populated, and further reducing the need to use the secondary PTEGs.

Table 7-27 shows some example sizes for total main memory in a 32-bit system. The recommended
minimum page table size for these example memory sizes are then outlined, along with their corresponding
HTABORG and HTABMASK settings in SDR1. Note that systems with less than 8 Mbytes of main memory
may be designed with 32-bit processors, but the minimum amount of memory that can be used for the page
tables in these cases is 64 Kbytes.

Table 7-27. Minimum Recommended Page Table Sizes—32-Bit Implementations

Recommended Minimum Settings for Recommended Minimum

Total Main Memory Memory for Page Tables N“;";’gegso‘zé"TaEpsp)ed Number of PTEGs (Maslt'aTtﬁfgi?SG7_1 5) HTABMASK
8 Mbytes (2%%) 64 Koytes (219) 213 210 X XXXX XXXX 0 0000 0000
16 Mbytes (224 128 Kbytes (217) 214 oM X XXXX XXXO 0 0000 0001
32 Mbytes (225 | 256 Kbytes (219) 215 212 X xxxx xx00 00000 0011
64 Mbytes (22%6) 512 Kbytes (219) 216 213 X XXX X000 00000 0111
128 Mbytes (227) |1 Mbyte (229 217 ol4 X xxxx 0000 00000 1111
256 Mbytes (228) |2 Mbytes (221 018 215 x xxx0 0000 00001 1111
512 Mbytes (2% |4 Mbytes (2% 219 216 x xx00 0000 00011 1111
1 Gbytes (2%0) 8 Mbytes (223) 220 217 x X000 0000 00111 1111
2 Gbytes (231) 16 Mbytes (224 221 018 x 0000 0000 01111 1111
4 Gbytes (2% 32 Mbytes (2%5) 22 219 0 0000 0000 11111 1111

As an example, if the physical memory size is 229 bytes (512 Mbyte), then there are 222 — 212 (4 Kbyte page
size) = 217 (128 Kbyte) total page frames. If this number of page frames is divided by 2, the resultant
minimum recommended page table size is 216 PTEGS, or 222 bytes (4 Mbytes) of memory for the page
tables.

7.6.1.3 Page Table Hashing Functions

The MMU uses two different hashing functions, a primary and a secondary, in the creation of the physical
addresses used in a page table search operation. These hashing functions distribute the PTEs within the
page table, in that there are two possible PTEGs where a given PTE can reside. Additionally, there are eight
possible PTE locations within a PTEG where a given PTE can reside. If a PTE is not found using the primary
hashing function, the secondary hashing function is performed, and the secondary PTEG is searched. Note
that these two functions must also be used by the operating system to set up the page tables in memory
appropriately.
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Typically, the hashing functions provide a high probability that a required PTE is resident in the page table,
without requiring the definition of all possible PTEs in main memory. However, if a PTE is not found in the
secondary PTEG, a page fault occurs and an exception is taken. Thus, the required PTE can then be placed
into either the primary or secondary PTEG by the system software, and on the next TLB miss to this page (in
those processors that implement a TLB), the PTE will be found in the page tables (and loaded into an on-chip
TLB).

The address of a PTEG is derived from the HTABORG field of the SDR1 register, and the output of the corre-
sponding hashing function (primary hashing function for primary PTEG and secondary hashing function for a
secondary PTEG). The value in the HTABSIZE field of SDR1 (HTABMASK field for 32-bit implementations)
determines how many of the higher-order hash value bits are masked and how many are used in the genera-
tion of the physical address of the PTEG.

Page Table Hashing Functions—64-Bit Implementations

Figure 7-29 depicts the hashing functions defined by the PowerPC OEA for page tables. The inputs to the
primary hashing function are the lower-order 39 bits of the VSID field of the STE (bits 13—51 of the 80-bit
virtual address), and the page index field of the effective address (bits 52—67 of the virtual address) concate-
nated with 23 higher-order bits of zero. The XOR of these two values generates the output of the primary
hashing function (hash value 1).
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Figure 7-29. Hashing Functions for Page Tables—64-Bit Implementations

Primary Hash:
VA13 VA51

Lower-Order 39 Bits of VSID (from Segment Descriptor)

XOR
52 67
000... ...000 Page Index
(23 Zeros) (from Effective Address)
Output of Hashing Function 1 Hash Value 1
0 27 28 38
[ I I
Secondary Hash:
0 38
Hash Value 1

One’s Complement Function
Output of Hashing Function 2 Hash Value 2

0 27 28 38
[ I I

When the secondary hashing function is required, the output of the primary hashing function is comple-
mented with one’s complement arithmetic, to provide hash value 2.

Page Table Hashing Functions—32-Bit Implementations

Figure 7-30 depicts the hashing functions defined by the PowerPC OEA for 32-bit implementations. The
inputs to the primary hashing function are the lower-order 19 bits of the VSID field of the selected segment
register (bits 523 of the 52-bit virtual address), and the page index field of the effective address (bits 24—39
of the virtual address) concatenated with three zero higher-order bits. The XOR of these two values gener-
ates the output of the primary hashing function (hash value 1).

As is the case for 64-bit implementations, wWhen the secondary hashing function is required, the output of
the primary hashing function is complemented with one’s complement arithmetic, to provide hash value 2.
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Figure 7-30. Hashing Functions for Page Tables—32-Bit Implementations

Primary Hash:
VA5 VA23

Lower-Order 19 Bits of VSID (from Segment Register)

XOR
24 39
000 Page Index (from Effective Address)
Output of Hashing Function 1 Hash Value 1
0 8 9 18
L Il |
Secondary Hash:
0 18
Hash Value 1

One’s Complement Function

l

Output of Hashing Function 2 Hash Value 2

0 8 9 18
[ I I

7.6.1.4 Page Table Addresses

The following sections illustrate the generation of the addresses used for accessing the hashed page tables
for both 64 and 32-bit implementations. As stated earlier, the operating system must synthesize the table
search algorithm for setting up the tables.

Two of the elements that define the virtual address (the VSID field of the segment descriptor and the page
index field of the effective address) are used as inputs into a hashing function. Depending on whether the
primary or secondary PTEG is to be accessed, the processor uses either the primary or secondary hashing
function as described in Section 7.6.1.3 Page Table Hashing Functions.

Note that unless all accesses to be performed by the processor can be translated by the BAT mechanism
when address translation is enabled (MSR[DR] or MSRJ[IR] = 1), the SDR1 must point to a valid page table.
Otherwise, a machine check exception can occur.

Additionally, care should be given that page table addresses not conflict with those that correspond to areas
of the physical address map reserved for the exception vector table or other implementation-specific
purposes (refer to Section 7.2.1.2 Predefined Physical Memory Locations).
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Page Table Address Generation for 64-Bit Implementations

The base address of the page table is defined by the high-order bits of SDR1[HTABORG]. Effectively, bits
1845 of the PTEG address are derived from the masking of the higher-order bits of the hash value (as
defined by SDR1[HTABSIZE]) concatenated with (implemented as an OR function) the high-order bits of
SDR1[HTABORG] as defined by HTABSIZE. Bits 4656 of the PTEG address are the 11 lower-order bits of
the hash value, and bits 57—63 of the PTEG address are zero. In the process of searching for a PTE, the
processor checks up to eight PTEs located in the primary PTEG and up to eight PTEs located in the
secondary PTEG, if required, searching for a match. Figure 7-31 provides a graphical description of the
generation of the PTEG addresses for 64-bit implementations.
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Figure 7-31. Generation of Addresses for Page Tables—64-Bit Implementations

<«——  Virtual Page Number (VPN) —— »
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(52 Bit) (5 Bit) | (12 Bit)
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Page Table Address Generation for 32-Bit Implementations

For 32-bit implementations, the base address of the page table is defined by the high-order bits of
SDR1[HTABORG].

Effectively, bits 7—15 of the PTEG address are derived from the masking of the higher-order bits of the hash
value (as defined by SDR1[HTABMASK]) concatenated with (implemented as an OR function) the high-order
bits of SDR1[HTABORG] as defined by HTABMASK. Bits 16—25 of the PTEG address are the 10 lower-order
bits of the hash value, and bits 26-31 of the PTEG address are zero. In the process of searching for a PTE,
the processor checks up to eight PTEs located in the primary PTEG and up to eight PTEs located in the
secondary PTEG, if required, searching for a match. Figure 7-32 provides a graphical description of the
generation of the PTEG addresses for 32-bit implementations.
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Figure 7-32. Generation of Addresses for Page Tables—32-Bit Implementations
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7.6.1.5 Page Table Structure Summary

In the process of searching for a PTE, the processor interprets the values read from memory as described in
Section 7.5.2.2 Page Table Entry (PTE) Definitions. The VSID and the abbreviated page index (API) fields of
the virtual address of the access are compared to those same fields of the PTEs in memory. In addition, the
valid (V) bit and the hashing function (H) bit are also checked. For a hit to occur, the V bit of the PTE in
memory must be set. If the fields match and the entry is valid, the PTE is considered a hit if the H bit is set as
follows:

- If this is the primary PTEG, H=0
« |[f this is the secondary PTEG, H =1

The physical address of the PTE(s) to be checked is derived as shown in Figure 7-31 and Figure 7-32, and
the generated address is the address of a group of eight PTEs (a PTEG). During a table search operation, the
processor compares up to 16 PTEs: PTEO—PTE?7 of the primary PTEG (defined by the primary hashing func-
tion) and PTEO—PTE?7 of the secondary PTEG (defined by the secondary hashing function).

If the VSID and API fields do not match (or if V or H are not set appropriately) for any of these PTEs, a page
fault occurs and an exception is taken. Thus, if a valid PTE is located in the page tables, the page is consid-
ered resident; if no matching (and valid) PTE is found for an access, the page in question is interpreted as
nonresident (page fault) and the operating system must load the page into main memory and update the PTE
accordingly.

The architecture does not specify the order in which the PTEs are checked. Note that for maximum perfor-
mance however, PTEs should be allocated by the operating system first beginning with the PTEOQ location
within the primary PTEG, then PTE1, and so on. If more than eight PTEs are required within the address
space that defines a PTEG address, the secondary PTEG can be used (again, allocation of PTEO of the
secondary PTEG first, and so on is recommended). Additionally, it may be desirable to place the PTEs that
will require most frequent access at the beginning of a PTEG and reserve the PTEs in the secondary PTEG
for the least frequently accessed PTEs.

The architecture also allows for multiple matching entries to be found within a table search operation. Multiple
matching PTEs are allowed if they meet the match criteria described above, as well as have identical RPN,
WIMG, and PP values, allowing for differences in the R and C bits. In this case, one of the matching PTEs is
used and the R and C bits are updated according to this PTE. In the case that multiple PTEs are found that
meet the match criteria but differ in the RPN, WIMG or PP fields, the translation is undefined and the resultant
R and C bits in the matching entries are also undefined.

Note that multiple matching entries can also differ in the setting of the H bit, but the H bit must be set
according to whether the PTE was located in the primary or secondary PTEG, as described above.

7.6.1.6 Page Table Structure Examples

The structure of the page tables is very similar for 64 and 32-bit implementations, except that the physical
addresses of the PTEGs are 64 bits and 32 bits long for 64 and 32-bit implementations, respectively. Addi-
tionally, the size of a PTE for a 64-bit implementation is twice that of a PTE in a 32-bit implementation. Finally,
the width of the fields used to generate the PTEG addresses are different (different number of bits used in
hashing functions, etc.), and the way in which the size of the page table is specified in the SDR1 register is
slightly different.
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Example Page Table for 64-Bit Implementation

Figure 7-33. shows the structure of an example page table for a 64-bit implementation. The base address of
the page table is defined by SDR1[HTABORG] concatenated with 18 zero bits. In this example, the address
is identified by bits 0—41 in SDR1[HTABORG]; note that bits 42—45 of HTABORG must be zero because the
HTABSIZE field specifies an integer mask size of four, which decodes to four mask bits of ones. The
addresses for individual PTEGs within this page table are then defined by bits 42—56 as an offset from bits 0—
41 of this base address. Thus, the size of the page table is defined as Ox7FFF (32K) PTEGs.

Two example PTEG addresses are shown in the figure as PTEGaddr1 and PTEGaddr2. Bits 4256 of each
PTEG address in this example page table are derived from the output of the hashing function (bits 57—63 are
zero to start with PTEO of the PTEG). In this example, the ‘b’ bits in PTEGaddr2 are the one’s complement of
the ‘a’ bits in PTEGaddr1. The ‘n’ bits are also the one’s complement of the ‘m’ bits, but these four bits are
generated from bits 24—27 of the output of the hashing function, logically ORed with bits 42—45 of the
HTABORG field (which must be zero). If bits 42-56 of PTEGaddr1 were derived by using the primary hashing
function, PTEGaddr2 corresponds to the secondary PTEG.

Note, however, that bits 42—56 in PTEGaddr2 can also be derived from a combination of effective address
bits, segment descriptor bits, and the primary hashing function. In this case, then PTEGaddr1 corresponds to
the secondary PTEG. Thus, while a PTEG may be considered a primary PTEG for some effective addresses
(and segment descriptor bits), it may also correspond to the secondary PTEG for a different effective address
(and segment descriptor value).

It is the value of the H bit in each of the individual PTEs that identifies a particular PTE as either primary or
secondary (there may be PTEs that correspond to a primary PTEG and PTEs that correspond to a secondary
PTEG, all within the same physical PTEG address space). Thus, only the PTEs that have H = 0 are checked
for a hit during a primary PTEG search. Likewise, only PTEs with H = 1 are checked in the case of a
secondary PTEG search.
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Figure 7-33. . Example Page Table Structure—64-Bit Implementations

Example:
Given: SDR1 HTABSIZE
0 45 46 58 59 63

HTABORG : —
0000 0000 1111 0000 0001 1000 0000 0000 1010 0110 0000 0000 0000 0000 0000 0100

| Base Address (0—41) |
decode l

Page Table 28-Bit Mask (0...0 1111)
$00F0 1800 A600 0000 PTEO | PTEH PTE7 | PTEGO
PTEGaddr1 PTEO | PTE1 PTE7
PTEGaddr2 PTEO | PTE1 PTE7
PTEG7FFF
PTEGaddr1 =
0 42 56 63

T |
0000 0000 1111 0000 0001 1000 0000 0000 1010 0110 00Omm mmaa aaaa aaaa a000 0000

PTEGaddr2 =
0 42 56 63

T 1
0000 0000 1111 0000 0001 1000 0000 0000 1010 0110 00nn nnbb bbbb bbbb b000 0000
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Example Page Table for 32-Bit Implementation

Figure 7-34 shows the structure of an example page table for a 32-bit implementation. The base address of
the page table is defined by SDR1[HTABORG] concatenated with 16 zero bits. In this example, the address
is identified by bits 0—13 in SDR1[HTABORG]; note that bits 14 and 15 of HTABORG must be zero because
the lower-order two bits of HTABMASK are ones. The addresses for individual PTEGs within this page table
are then defined by bits 1425 as an offset from bits 0—13 of this base address. Thus, the size of the page

table is defined as 4096 PTEGs.

Figure 7-34. Example Page Table Structure—32-Bit Implementations

HTABORG HTABMASK
Example: 15 23 31
I | T |
Given: SDR1 [1010 0110 0000 0000 0000 0000 0000 0O11
| Base Address |
Page Table
$A600 0000 PTEO | PTE1 PTE7 | PTEGO
PTEGaddr1 PTEO | PTE1 PTE7
PTEGaddr2 PTEO | PTE1 PTE7
PTEG4095
0 14 25 31
T 1
PTEGaddr1 = 1010 0110 0000 O00Omm aaaa aaaa aa00 0000
0 14 25 31
T 1
PTEGaddr2 = 1010 0110 0000 0Onn bbbb  bbbb bb00 0000
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Two example PTEG addresses are shown in the figure as PTEGaddr1 and PTEGaddr2. Bits 1425 of each
PTEG address in this example page table are derived from the output of the hashing function (bits 26—-31 are
zero to start with PTEO of the PTEG). In this example, the ‘b’ bits in PTEGaddr2 are the one’s complement of
the ‘a’ bits in PTEGaddr1. The ‘n’ bits are also the one’s complement of the ‘m’ bits, but these two bits are
generated from bits 7—8 of the output of the hashing function, logically ORed with bits 14—15 of the
HTABORG field (which must be zero). If bits 14—25 of PTEGaddr1 were derived by using the primary hashing
function, then PTEGaddr2 corresponds to the secondary PTEG.

Note: Bits 14—25 in PTEGaddr2 can also be derived from a combination of effective address bits, segment
register bits, and the primary hashing function. In this case, then PTEGaddr1 corresponds to the secondary
PTEG. Thus, while a PTEG may be considered a primary PTEG for some effective addresses (and segment
register bits), it may also correspond to the secondary PTEG for a different effective address (and segment
register value).

It is the value of the H bit in each of the individual PTEs that identifies a particular PTE as either primary or
secondary (there may be PTEs that correspond to a primary PTEG and PTEs that correspond to a secondary
PTEG, all within the same physical PTEG address space). Thus, only the PTEs that have H = 0 are checked
for a hit during a primary PTEG search. Likewise, only PTEs with H = 1 are checked in the case of a
secondary PTEG search.

7.6.1.7 PTEG Address Mapping Examples

This section contains two examples of an effective address and how its address translation (the PTE) maps
into the primary PTEG in physical memory. The examples illustrate how the processor generates PTEG
addresses for a table search operation; this is also the algorithm that must be used by the operating system in
creating page tables. There is one example for a 64-bit implementation and a second example for a 32-bit
implementation.

PTEG Address Mapping Example—64-Bit Implementation

In the example shown in Figure 7-35, the value in SDR1 defines a page table at address
0x0F05_8400_0F00_0000 that contains 2'7 PTEGs. The highest order 36 bits of the effective address
uniquely map to a segment descriptor. The segment descriptor is then located and the contents of the
segment descriptor are used along with bits 36—63 of the effective address to create the 80-bit virtual
address.

To generate the address of the primary PTEG, bits 13-51, and bits 52—67 of the virtual address are then used
as inputs into the primary hashing function (XOR) to generate hash value 1. The low-order 17 bits of hash
value 1 are then concatenated with the high-order 40 bits of HTABORG and with seven low-order 0 bits,
defining the address of the primary PTEG (0xOF05_8400_0F3F_F300). The ANDing of the 28 high-order bits
of hash value 1 with the mask (defined by the HTABSIZE field) and the ORing with bits 18—45 of HTABORG
are implicitly shown in the figure. The ANDing with the mask selects six additional bits of hash value 1 to be
used (in addition to the 11 prescribed bits) producing a total of 17 bits of hash value 1 bits to be used. The
ORing causes those selected six bits of hash value 1 to comprise bits 4045 of the PTEG address (as bits
4045 of HTABORG should be zero).
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Figure 7-35. Example Primary PTEG Address Generation—64-Bit Implementation

Example:
Given: SDR1 HTABSIZE
0 HTABORG 39 45 59 63
! T 1 —
0000 1111 0000 0101 1000 0100 0000 0000 0000 1111 0000 0000 0000 0000 0000 0110
L |
0 F 0 5 8 4 0 0 0 F decode +

mask (0...011 1111)
EA = 0x0027_0000_00FF_A01B:

0 35 51 52 63
I0000 0000 0010 0111 0000 0000 0000 0000 0000“0000 1111 1111 1010”0000 0001 1011I

Segment Descriptor Search Page Index Byte Offset

L—» Second Double Word of STE:
0 0 0 0 0 2 0 C A 7 0 1 C

0000 0000 0000 0000 0000 0010 0000 1100 1010 0111 0000 0001 1100 | 000...000

0 51
L I

Virtual Address: VSID
Y Y v

I I I 1
0000 0000 0000 0000 0000 0010 0000 1100 1010 0111 0000 0001 1100 0000 1111 1111 1010 0000 0001 1011
L IL I I

12 13 51 52 67

Primary Hash:
000 0000 0010 0000 1100 1010 0111 0000 0001 1100

XOR

A

000 0000 0000 0000 0000 OOOOIOOOO 1111 1111 1010I

Hash Value 1 e ——
000 0000 0010 0000 1100 1010 0111 111 1110 0110
| 28-bits ;. 11-bits |
|
Primary PTEG Address: Start at PTEO
0 HTABORG 39 40 45 46 y56 57 63
\ 1 Y | 10 1

0000 1111 0000 0101 1000 0100 0000 0000 0000 1111|0011 1111 1111 0011 0000 0000
0 F 0 5 8 4 0 0 0 F 3 F F 3 0 0

Figure 7-36 shows the generation of the secondary PTEG address for this example. If the secondary PTEG is
required, the secondary hash function is performed and the low-order 17 bits of hash value 2 are then ORed
with the high-order 46 bits of HTABORG (bits 4045 should be zero), and concatenated with seven low-order
0 bits, defining the address of the secondary PTEG (0xOF05_8400_0FC0_0C80).
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As described in Figure 7-31, the 11 low-order bits of the page index field are always used in the generation of
a PTEG address (through the hashing function). This is why only the 5-bit abbreviated page index (API) is
defined for a PTE (the entire page index field does not need to be checked). For a given effective address,
the low-order 11 bits of the page index (at least) contribute to the PTEG address (both primary and
secondary) where the corresponding PTE may reside in memory. Therefore, if the high-order 5 bits (the API
field) of the page index match with the API field of a PTE within the specified PTEG, the PTE mapping is
guaranteed to be the unique PTE required.

Figure 7-36. Example Secondary PTEG Address Generation—64-Bit Implementation

Hash Value 1: 000 0000 0010 0000 1100 1010 0111 1111 1110 0110

l

\
Secondary Hash: 000 0000 0010 0000 1100 1010 0111 1111 1110 0110

One’s Complement

Hash Value 2: 111 1111 1101 1111 0011 010(1 1000 0000 0001 1001
. , : 1T Bits
28 Bits

Secondary PTEG Address: Start at PTEQ
57 63

4
0 HTABORG 39 40 4548 v 60—
[ 1 Y [ 1
0000 1111 0000 0101 1000 0100 0000 0000 0000 1111 [1100 ogoo 0000 1100 1000 0000

0xo F O 5 8 4 0 0 0 F C 0 0 C 8 0

0x0F05_8400_0F00_0000 PTEGO

1) First compare 8 PTEs
at 0xOF05_8400_0F3F_F300 ——»{ PTEO| |

| |PTE7| PTEG 0x3F_F300

2) Then compare 8 PTEs
at 0xOF05_8400_0FC0_0C80, ——
if necessary

Y

PTEO| |

| |pTE7 PTEG 0xC0_0C80

PTEG OxFF_FF80

Note that a given PTEG address does not map back to a unique effective address. Not only can a given
PTEG be considered both a primary and a secondary PTEG (as described in Section 7.6.1.6 Page Table
Structure Examples), but if the mask defined has four 1 bits or less (not the case shown in the example in the
figure), some bits of the page index field of the virtual address are not used to generate the PTEG address.
Therefore, any combination of these unused bits will map to the same pair of PTEG addresses. (However,
these bits are part of the APl and are therefore compared for each PTE within the PTEG to determine if there
is a hit.) Furthermore, an effective address can select a different segment descriptor with a different value
such that the output of the primary (or secondary) hashing function happens to equal the hash values shown
in the example. Thus, these effective addresses would also map to the same PTEG addresses shown.
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PTEG Address Mapping Example—32-Bit Implementation

Figure 7-37 shows an example of PTEG address generation for a 32-bit implementation. In the example, the
value in SDR1 defines a page table at address 0xO0F98_0000 that contains 8192 PTEGs. The example effec-
tive address selects segment register 0 (SR0) with the highest order four bits. The contents of SRO are then
used along with bits 4-31 of the effective address to create the 52-bit virtual address.

To generate the address of the primary PTEG, bits 523, and bits 24—39 of the virtual address are then used
as inputs into the primary hashing function (XOR) to generate hash value 1. The low-order 13 bits of hash
value 1 are then concatenated with the high-order 16 bits of HTABORG and with six low-order 0 bits, defining
the address of the primary PTEG (0xOF9F_F980). The ANDing of the nine high-order bits of hash value 1 with
the value in the HTABMASK field and the ORing with bits 7—15 of HTABORG are implicitly shown in the
figure. The ANDing with the mask selects three additional bits of hash value 1 to be used (in addition to the 10
prescribed bits) producing a total of 13 bits of hash value 1 bits to be used. The ORing causes those selected
three bits of hash value 1 to comprise bits 13—15 of the PTEG address (as bits 13—15 of HTABORG should
be zero).
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Figure 7-37. Example Primary PTEG Address Generation—32-Bit Implementation

HTABORG HTABMASK

Example: 15 23 31
| 1 | |

Given: SDR1 |0000 1111 1001 1000 0000 0000 0000  O111

0 4 19 20 31

EA= , 0000 0000 1111 1111 1010, 0000 0001 1011
Segment Register Select Byte Offset

0xC A 7 0 1 C

L » SRO [ 0010 0000 1100 1010 0111 0000 0001 1100

8 31
| |

Virtual Address: y VSID Page Index v

I 1T 11 1
1100 1010 0111 0000 0001 1100 0000 1111 1111 1010 0000 0001 1011
L I 1 I
5 23 24 39
Y

Primary Hash: | 010 0111 0000 0001 1100

Y

XOR

000 0000 1111 1111 1010
Hash Value1 [ 010 0111 1111 1110 0110
| 9-bits 0 10-bits |

A

Primary PTEG Address:

HTABORG 12 16y 25 Start at PTEO
I 1 I T 1

0000 1111 1001 1 1111 1001 1000 0000
X 0 F 9 F F 9 8 [}

Figure 7-38 shows the generation of the secondary PTEG address for this example. If the secondary PTEG is
required, the secondary hash function is performed and the low-order 13 bits of hash value 2 are then ORed
with the high-order 16 bits of HTABORG (bits 13—15 should be zero), and concatenated with six low-order 0
bits, defining the address of the secondary PTEG (0x0F98_0640).

As described in Figure 7-32, the 10 low-order bits of the page index field are always used in the generation of
a PTEG address (through the hashing function) for a 32-bit implementation. This is why only the abbreviated
page index (API) is defined for a PTE (the entire page index field does not need to be checked). For a given
effective address, the low-order 10 bits of the page index (at least) contribute to the PTEG address (both
primary and secondary) where the corresponding PTE may reside in memory. Therefore, if the high-order 6
bits (the API field as defined for 32-bit implementations) of the page index match with the API field of a PTE
within the specified PTEG, the PTE mapping is guaranteed to be the unique PTE required.
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Figure 7-38. Example Secondary PTEG Address Generation—32-Bit Implementations

Hash Value 1: 010 o111 1111 1110 0110
|
Secondary Hash: 010 0111 1111 1110 0110

One’s Complement

Hash Value 2: 101 10 0000 0001 1001

9 Bits 10 Bits

Secondary PTEG Address:

HTABORG 13 16 Y 25 Start at PTEQ
T T |

1
0000 1111 1001 1 0000 0110 0100 0000
8

0x 0 F 9 0 6 4 0
0x0F98_0000 PTEGO

1) First compare 8 PTEs

at 0xOF9F_F980 T 1 »>oxoF98_0640|PTEQ] | [eee[ [ [prer| PrEGRS
2) Then compare 8 PTEs

at 0x0F98_0640, S

if necessary L~ 0xOF9F_F980[PTEQ] | [eee| | |PTe7| PTEGSISS

PTEG8191

Notes: A given PTEG address does not map back to a unique effective address. Not only can a given PTEG
be considered both a primary and a secondary PTEG (as described in Section 7.6.1.6 Page Table Structure
Examples), but in this example, bits 24—26 of the page index field of the virtual address are not used to gen-
erate the PTEG address. Therefore, any of the eight combinations of these bits will map to the same primary
PTEG address. (However, these bits are part of the API and are therefore compared for each PTE within the
PTEG to determine if there is a hit.) Furthermore, an effective address can select a different segment register
with a different value such that the output of the primary (or secondary) hashing function happens to equal the
hash values shown in the example. Thus, these effective addresses would also map to the same PTEG
addresses shown.
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7.6.2 Page Table Search Operation

The table search process performed by a PowerPC processor in the search of a PTE varies slightly for 64
and 32-bit implementations. The main differences are the address ranges and PTE formats specified.

7.6.2.1 Page Table Search Operation for 64-Bit Inplementations

An outline of the page table search process performed by a 64-bit implementation is as follows:

1. The 64-bit physical addresses of the primary and secondary PTEGs are generated as described in Page
Table Address Generation for 64-Bit Implementations on page 321.

2. As many as 16 PTEs (from the primary and secondary PTEGs) are read from memory (the architecture
does not specify the order of these reads, allowing multiple reads to occur in parallel). PTE reads occur
with an implied WIM memory/cache mode control bit setting of 0b001. Therefore, they are considered
cacheable.

3. The PTEs in the selected PTEGs are tested for a match with the virtual page number (VPN) of the
access. The VPN is the VSID concatenated with the page index field of the virtual address. For a match
to occur, the following must be true:

— PTE[H] = 0 for primary PTEG; PTE[H] = 1 for secondary PTEG
— PTE[V] =1

— PTE[VSID] = VA[0-51]

— PTE[API] = VA[52-56]

4. If a match is not found within the eight PTEs of the primary PTEG and the eight PTEs of the secondary
PTEG, an exception is generated as described in step 8. If a match (or multiple matches) is found, the
table search process continues.

5. If multiple matches are found, all of the following must be true:

— PTE[RPN] is equal for all matching entries
— PTE[WIMG] is equal for all matching entries
— PTE[PP] is equal for all matching entries

6. If one of the fields in step 5 does not match, the translation is undefined, and R and C bit of matching
entries are undefined. Otherwise, the R and C bits are updated based on one of the matching entries.

7. A copy of the PTE is written into the on-chip TLB (if implemented) and the R bit is updated in the PTE in
memory (if necessary). If there is no memory protection violation, the C bit is also updated in memory (if
necessary) and the table search is complete.

8. If a match is not found within the primary or secondary PTEG, the search fails, and a page fault exception
condition occurs (either an ISI or DSI exception).

Reads from memory for page table search operations are performed as if the WIMG bit settings were 0b0010
(that is, as unguarded cacheable operations in which coherency is required).

7.6.2.2 Page Table Search Operation for 32-Bit Implementations

An outline of the page table search process performed by a 32-bit implementation is as follows:

1. The 32-bit physical addresses of the primary and secondary PTEGs are generated as described in Page
Table Address Generation for 32-Bit Implementations on page 323.

2. As many as 16 PTEs (from the primary and secondary PTEGs) are read from memory (the architecture
does not specify the order of these reads, allowing multiple reads to occur in parallel). PTE reads occur
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with an implied WIM memory/cache mode control bit setting of 0b001. Therefore, they are considered
cacheable.

3. The PTEs in the selected PTEGs are tested for a match with the virtual page number (VPN) of the
access. The VPN is the VSID concatenated with the page index field of the virtual address. For a match
to occur, the following must be true:

— PTE[H] = 0 for primary PTEG; PTE[H] = 1 for secondary PTEG
— PTE[V] =1

— PTE[VSID] = VA[0-23]

— PTE[API] = VA[24-29]

4. If a match is not found within the eight PTEs of the primary PTEG and the eight PTEs of the secondary
PTEG, an exception is generated as described in step 8. If a match (or multiple matches) is found, the
table search process continues.

5. If multiple matches are found, all of the following must be true:

— PTE[RPN] is equal for all matching entries
— PTE[WIMG] is equal for all matching entries
— PTE[PP] is equal for all matching entries

6. If one of the fields in step 5 does not match, the translation is undefined, and R and C bit of matching
entries are undefined. Otherwise, the R and C bits are updated based on one of the matching entries.

7. A copy of the PTE is written into the on-chip TLB (if implemented) and the R bit is updated in the PTE in
memory (if necessary). If there is no memory protection violation, the C bit is also updated in memory (if
necessary) and the table search is complete.

8. If a match is not found within the primary or secondary PTEG, the search fails, and a page fault exception
condition occurs (either an ISI or DSI exception).

Reads from memory for page table search operations are performed as if the WIMG bit settings were 0b0010
(that is, as unguarded cacheable operations in which coherency is required).

7.6.2.3 Flow for Page Table Search Operation

Figure 7-39 provides a detailed flow diagram of a page table search operation. Note that the references to
TLBs are shown as optional because TLBs are not required; if they do exist, the specifics of how they are
maintained are implementation-specific. Also, Figure 7-39 shows only a few cases of R-bit and C-bit updates.
For a complete list of the R- and C-bit updates dictated by the architecture, refer to Table 7-20.

Memory Management pem7_MMU.fm.2.0
Page 336 of 785 June 10, 2003



Programming Environments Manual

PowerPC RISC Microprocessor Family

Figure 7-39. Page Table Search Flow
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7.6.3 Page Table Updates

This section describes the requirements on the software when updating page tables in memory via some
pseudocode examples. Multiprocessor systems must follow the rules described in this section so that all
processors operate with a consistent set of page tables. Even single processor systems must follow certain
rules, because software changes must be synchronized with the other instructions in execution and with auto-
matic updates that may be made by the hardware (referenced and changed bit updates). Updates to the
tables include the following operations:

« Adding a PTE
» Modifying a PTE, including modifying the R and C bits of a PTE
» Deleting a PTE

PTEs must be locked on multiprocessor systems. Access to PTEs must be appropriately synchronized by
software locking of (that is, guaranteeing exclusive access to) PTEs or PTEGs if more than one processor
can modify the table at that time. In the examples below, software locks should be performed to provide
exclusive access to the PTE being updated. However, the architecture does not dictate the specific protocol
to be used for locking (for example, a single lock, a lock per PTEG, or a lock per PTE can be used). See
Appendix E, “Synchronization Programming Examples,” for more information about the use of the reservation
instructions (such as the lwarx and stwcx. instructions) to perform software locking.

When TLBs are implemented they are defined as noncoherent caches of the page tables. TLB entries must
be invalidated explicitly with the TLB invalidate entry instruction (tlbie) whenever the corresponding PTE is
modified. In a multiprocessor system, the tlbie instruction must be controlled by software locking, so that the
tibie is issued on only one processor at a time.

The PowerPC OEA defines the tibsync instruction that ensures that TLB invalidate operations executed by
this processor have caused all appropriate actions in other processors. In a system that contains multiple
processors, the tlbsync functionality must be used in order to ensure proper synchronization with the other
PowerPC processors. Note that a sync instruction must also follow the tlbsync to ensure that the tlbsync
has completed execution on this processor.

On single processor systems, PTEs need not be locked and the eieio instructions (in between the tlbie and
tibsync instructions) and the tibsync instructions themselves are not required. The sync instructions shown
are required even for single processor systems (to ensure that all previous changes to the page tables and all
preceding tlbie instructions have completed).

Any processor, including the processor modifying the page table, may access the page table at any time in an
attempt to reload a TLB entry. An inconsistent PTE must never accidentally become visible (if V = 1); thus,
there must be synchronization between modifications to the valid bit and any other modifications (to avoid
corrupted data).

In the pseudocode examples that follow, changes made to a PTE or STE shown as a single line in the
example is assumed to be performed with an atomic store instruction. Appropriate modifications must be
made to these examples if this assumption is not satisfied (for example, if a store double-word operation on a
64-bit implementation is performed with two store word instructions).

Updates of R and C bits by the processor are not synchronized with the accesses that cause the updates.
When modifying the low-order half of a PTE, software must take care to avoid overwriting a processor update
of these bits and to avoid having the value written by a store instruction overwritten by a processor update.
The processor does not alter any other fields of the PTE.
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Explicitly altering certain MSR bits (using the mtmsrd instruction), or explicitly altering STEs, PTEs, or certain
system registers, may have the side effect of changing the effective or physical addresses from which the
current instruction stream is being fetched. This kind of side effect is defined as an implicit branch. For
example, an mtmsrd instruction may change the value of MSR[SF], changing the effective addresses from
which the current instruction stream is being fetched, causing an implicit branch. Implicit branches are not
supported and an attempt to perform one causes boundedly-undefined results. Therefore, PTEs and STEs
must not be changed in a manner that causes an implicit branch. Section 2.3.18 Synchronization Require-
ments for Special Registers and for Lookaside Buffers lists the possible implicit branch conditions that can
occur when system registers and MSR bits are changed.

For a complete list of the synchronization requirements for executing the MMU instructions, see
Section 2.3.18 Synchronization Requirements for Special Registers and for Lookaside Buffers.

The following examples show the required sequence of operations. However, other instructions may be inter-
leaved within the sequences shown.

7.6.3.1 Adding a Page Table Entry

Adding a page table entry requires only a lock on the PTE in a multiprocessor system. The first bytes in the
PTE are then written (this example assumes the old valid bit was cleared), the eieio instruction orders the
update, and then the second update can be made. A sync instruction ensures that the updates have been
made to memory.

lock(PTE)

PTE[RPN,R,C,WIMG,PP] <— new values
eieio/* order 1st PTE update befor 2nd
PTE[VSID,H,API,V] <— new values (V = 1)
sync/* ensure updates completed
unlock(PTE)

7.6.3.2 Modifying a Page Table Entry

This section describes several scenarios for modifying a PTE.

General Case

Consider the general case where a currently-valid PTE must be changed. To do this, the PTE must be
locked, marked invalid, updated, invalidated from the TLB, marked valid again, and unlocked. The sync
instruction must be used at appropriate times to wait for modifications to complete.

Note that the tlbsync and the sync instruction that follows it are only required if software consistency must be
maintained with other PowerPC processors in a multiprocessor system (and the software is to be used in a
multiprocessor environment).

lock(PTE)

PTE[V] «<— 0/* (other fields don’t matter)

sync/* ensure update completed

PTE[RPN,R,C,WIMG,PP] <— new values

tibie(old_EA)/*invalidate old translation

eieio/* order before tlbsync and order 2nd PTE update before 3rd
PTE[VSID,H,API, V] <— new values (V = 1)
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tibsync/* ensure tlbie completed on all processors
sync/* ensure tlbsync and last update completed
unlock(PTE)

Clearing the Referenced (R) Bit

When the PTE is modified only to clear the R bit to 0, a much simpler algorithm suffices because the R bit
need not be maintained exactly.

lock(PTE)

oldR <—PTE[R]/*get old R
if oldR = 1, then

PTE[R] < 0/* store byte (R = 0, other bits unchanged)
tibie(PTE)/* invalidate entry

eieio/* order tlbie before tibsync

tibsync/* ensure tlbie completed on all processors
sync/* ensure tlbsync and update completed
unlock(PTE)

Since only the R and C bits are modified by the processor, and since they reside in different bytes, the R bit
can be cleared by reading the current contents of the byte in the PTE containing R (bits 4855 of the second
double word, or bits 16—23 of the second word for 64 and 32-bit implementations, respectively), ANDing the
value with OxFE, and storing the byte back into the PTE.

Modifying the Virtual Address

If the virtual address is being changed to a different address within the same hash class (primary or
secondary), the following flow suffices:

lock(PTE)

PTE[VSID,API,H,V] <— new values (V= 1)

sync/* ensure update completed

tibie(old_EA)/* invalidate old translation

eieio/* order tlbie before tlbsync

tibsync/* ensure tlbie completed on all processors
sync/* ensure tlbsync completed

unlock(PTE)

In this pseudocode flow, note that the store into the first double word (for 64-bit implementations) of the PTE
is performed atomically. Also, the tlbsync and the sync instruction that follows it are only required if consis-
tency must be maintained with other PowerPC processors in a multiprocessor system (and the software is to
be used in a multiprocessor environment).

In this example, if the new address is not a cache synonym (alias) of the old address, care must be taken to
also flush (or invalidate) from an on-chip cache any cache synonyms for the page. Thus, a temporary virtual
address that is a cache synonym with the page whose PTE is being modified can be assigned and then used
for the cache flushing (or invalidation).
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To modify the WIMG or PP bits without overwriting an R or C bit update being performed by the processor, a
sequence similar to the one shown above can be used, except that the second line is replaced by a loop
containing an Iwarx/stwcex. instruction pair that emulates an atomic compare and swap of the low-order word
of the PTE.

7.6.3.3 Deleting a Page Table Entry
In this example, the entry is locked, marked invalid, invalidated in the TLB, and unlocked.

Again, note that the tlbsync and the sync instruction that follows it are only required if consistency must be
maintained with other PowerPC processors in a multiprocessor system (and the software is to be used in a
multiprocessor environment).

lock(PTE)

PTE[V] < 0/* (other fields don’t matter)

sync/* ensure update completed

tibie(old_EA)/* invalidate old translation

eieio/* order tlbie before tibsync

tibsync/* ensure tlbie completed on all processors
sync/* ensure tlbsync completed

unlock(PTE)

7.6.4 ASR and Segment Register Updates

There are certain synchronization requirements for writing to the ASR or using the move to segment register
instructions. These are described in Section 2.3.18 Synchronization Requirements for Special Registers and
for Lookaside Buffers.

7.7 Hashed Segment Tables—64-Bit Implementations

Throughout this chapter, the segment information for an access in a 64-bit implementation has been refer-
enced as residing in a segment descriptor. Whereas the segment descriptors reside in on-chip registers for
32-bit implementations, the segment descriptors for 64-bit implementations reside as segment table entries
(STEs) in a hashed segment table in memory, analogous to the hashed page tables for PTEs. Also, similar to
the optional storing of recently-used PTEs on-chip in a TLB, copies of STEs may optionally be stored in one
or more on-chip segment lookaside buffers (SLBs), for quicker access. Additionally, the hardware may
optionally provide dedicated hardware to search the segment table for an STE automatically, or the processor
may vector to an exception routine so that the segment table can be searched by the exception handler soft-
ware when an STE is required. Note that the algorithm for a segment table search operation must be synthe-
sized by the operating system for it to correctly place the STEs in main memory.

If segment table search operations are performed automatically by the hardware, they are performed as if the
WIMG bit settings were 0b0010 (that is, as unguarded cacheable operations in which coherency is required).
Unlike the page tables, note that the segment table is never updated automatically by the hardware as a side
effect of address translation. If the software performs the segment table search operations, the accesses
must be performed in real addressing mode (MSR[DR] = 0); this additionally guarantees that M = 1.

This section describes the format of segment tables and the algorithm used to access them. In addition, the
constraints imposed on the software in updating the segment tables are described.
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Because the 64-bit bridge provides access only to 32-bit address space, the entire 4 Gbytes of effective
address space can be defined with 16 on-chip segment descriptors, each defining a 256-Mbyte seg-
ment.

7.7.1 Segment Table Definition

A segment table is a 4-Kbyte (one page) data structure that defines the mapping between effective segments
and virtual segments for a process. The segment table must reside on a page boundary, and must reside in
memory with the WIMG attributes of 0b0010. Whereas at any given time the processor can address only the
segments that are defined in a particular segment table, many segment tables can exist in memory, and each
one can correspond to a unique process. Physical addresses for elements in the active segment table are
derived from the value in the address space register (ASR) and some hashed bits of the effective address.

The segment table contains a number of segment table entry groups (STEGs). An STEG contains eight
segment table entries (STEs) of 16 bytes each; therefore, each STEG is 128 bytes long. STEG addresses
are entry points for segment table search operations. Figure 7-40 shows two STEG addresses (STEGaddr1
and STEGaddr2) where a given STE may reside.

Figure 7-40. Segment Table Definitions

Segment Table
—»[16 bytesfe«—
STEO | STE1 STE7 STEGO
STEGaddr1 STEO | STE1 STE7
STEGaddr2 STEO | STE1 STE7
STEGS31
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A given STE can reside in one of two possible STEGs. For each STEG address, there is a complementary
STEG address—one is the primary STEG and the other is the secondary STEG. Additionally, a given STE
can reside in any of the STE locations within an addressed STEG. Thus, a given STE may reside in one of 16
possible locations within the segment table. If a given STE is not resident within either the primary or
secondary STEG, a segment table miss occurs, possibly corresponding to a segment fault condition.

A segment table search operation is defined as the search for an STE within a primary and secondary STEG.
When a segment table search operation commences, the primary and secondary hashing functions are
performed on the effective address. The output of the hashing functions are then concatenated with bits
programmed into the ASR by the operating system to create the physical addresses of the primary and
secondary STEGs. The STEs in the STEGs are then checked to see if there is a hit within one of the STEGs.

Note, however, that although a given STE may reside in one of 16 possible locations, an address that is a
primary STEG address for some accesses also functions as a secondary STEG address for a second set of
accesses (as defined by the secondary hashing function). Therefore, these 16 possible locations are really
shared by two different sets of effective addresses. Section 7.7.1.5 Segment Table Structure (with Examples)
illustrates how STEs map into the 16 possible locations as primary and secondary STEs.

7.7.1.1 Address Space Register (ASR)

The ASR contains the control information for the segment table structure in that it defines the highest-order
bits for the physical base address of the segment table. The format of the ASR is shown in Figure 7-41. The
ASR contains bits 0—51 of the 64-bit physical base address of the segment table. Bits 52—56 of the STEG
address are derived from the hashing function, and bits 57—63 are zero at the beginning of a segment table
search operation to point to the beginning of an STEG. Therefore, the beginning of the segment table lies on
a 2'2 pyte (4 Kbyte) boundary.

Note that unless all accesses to be performed by the processor can be translated by the BAT mechanism
when address translation is enabled (MSR[DR] or MSR[IR] = 1), the ASR must point to a valid segment table.
If the processor does not support 64 bits of physical address, software should write zeros to those unsup-
ported bits in the ASR (as the implementation treats them as reserved). Otherwise, a machine check excep-
tion can occur.

Additionally, care should be given that segment table addresses not conflict with those that correspond to
areas of the physical address map reserved for the exception vector table or other implementation-specific
purposes (refer to Section 7.2.1.2 Predefined Physical Memory Locations). Note that there are certain
synchronization requirements for writing to the ASR that are described in Section 2.3.18 Synchronization
Requirements for Special Registers and for Lookaside Buffers.

Figure 7-41. ASR Format—64-Bit Implementations Only

|:| Reserved

STABORG 0000 0000 0000

0 51 52 63

The STABORG field identifies the 52-bit physical address of the segment table. The remaining bits are
reserved.
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The OEA defines an additional, optional bridge to the 64-bit architecture that allows 64-bit implementa-
tions to retain certain aspects of the 32-bit architecture that otherwise are not supported, and in some
cases not permitted by the 64-bit architecture. In processors that implement this bridge, at least 16 STEs
are implemented and are maintained in 16 dedicated SLB entries.

The bridge facilities allow the option of defining bit 63 as ASR[V], the STABORG field valid bit. If this bit
is implemented, STABORG is valid only when ASR[V] is set. This bit is optional, but is implemented if
any of the following instructions, which are optional to a 64-bit processor, are implemented: mtstr,
mtsrin, mfsr, mfsrin, mtsrd, or mtsrdin. If the bit is not implemented it is treated as reserved except
that it is assumed to be 1 for address translation.

The following further describes programming considerations that are affected by the ASRI[V] bit:

- If ASR[V] is cleared, having the STABORG field refer to a nonexistent memory location does not
cause a machine check exception. Also, if ASR[V] is cleared, the segment table in memory is not
searched and the result is the same as if the search had failed.

- For a 64-bit operating system that uses the segment register manipulation instructions as if it were
running on a 32-bit implementation, if ASR[V] = 0, a segment fault can occur only if the operating
system contains a bug that allows the generation of an effective address larger than 232— 1 when
MSR[SF] = 1 or if the operating system fails to ensure that the first 16 ESIDs are established (that is,
the corresponding SLB entries are valid)

- Note that slbie or slbia can be executed regardless of the setting of ASR[V]; however, the instruc-
tions should not be used if ASR[V] is cleared.

If ASR[V] is implemented, the ASR must point to a valid segment table whenever address translation is
enabled, the effective address is not covered by BAT translation, and ASR[V] = 1.

7.7.1.2 Segment Table Hashing Functions

The MMU uses two different hashing functions, a primary and a secondary, in the creation of the physical
addresses used in a segment table search operation. These hashing functions distribute the STEs within the
segment table, in that there are two possible STEGs where a given STE can reside. Additionally, there are
eight possible STE locations within an STEG where a given STE can reside. If an STE is not found using the
primary hashing function, the secondary hashing function is performed, and the secondary STEG is
searched. Note that these two functions must also be used by the operating system to set up the segment
tables in memory appropriately.

Typically, the hashing functions provide a high probability that a required STE is resident in the segment
table, without requiring the definition of all possible STEs in main memory. However, if an STE is not found in
the secondary STEG, an exception is taken. Thus, the required STE can then be placed into either the
primary or secondary STEG by the system software, and on the next SLB miss to this segment (in those
processors that implement an SLB), the STE will be found.

The address of an STEG is derived from the base address specified in the ASR, and the output of the corre-
sponding hashing function (primary hashing function for primary STEG and secondary hashing function for a
secondary STEG).
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Figure 7-42 depicts the hashing functions used by the PowerPC OEA for segment tables. The input to the
primary hashing function is the lower-order 5 bits of the ESID field of the effective address. This value is also
defined as the output of the primary hashing function (hash value 1).

Figure 7-42. Hashing Functions for Segment Tables

Primary Hash:
31 35

Low-Order 5 Bits of ESID (from Effective Address)

Equality Function

l

Output of Hashing Function 1 Hash Value 1
0 4
Secondary Hash:
0 4
Hash Value 1

One’s Complement Function

l

Output of Hashing Function 2 Hash Value 2

0 4

When the secondary hashing function is required, the output of the primary hashing function is the one’s
complement, to provide hash value 2.

Note that although processors using the 64-bit bridge implement STEs as defined for 64-bit implementa-
tions, the use of the segment table hashing function is not required because only 16 segment descrip-
tors are required to define the entire 32-bit (4 Gbyte) address space. These segment descriptors are
defined as STEs and are stored in 16 SLB entries designated for that purpose.
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7.7.1.3 Segment Table Address Generation

The following sections illustrate the generation of the addresses used for accessing the hashed segment
tables. As stated earlier, the operating system must synthesize the segment table search algorithm for setting
up the tables.

The base address of the segment table is defined by the higher-order 52 bits of ASR. Bits 52—56 of the STEG
address are derived from the hash value. Depending on whether the primary or secondary STEG is to be
accessed, the processor uses either the primary or secondary hashing function as described in

Section 7.7.1.2 Segment Table Hashing Functions.” Bits 57—63 of the STEG address are zero. In the process
of searching for an STE, the processor first checks STEO (at the STEG base address). Figure 7-43 provides
a graphical description of the generation of the STEG addresses. Note that Figure 7-43 is also an expansion
of the virtual address generation shown in Figure 7-17.

In the process of searching for an STE, the processor interprets the values read from memory as described in
STE Format—64-Bit Implementations on page 299. The entire ESID field of the effective address of the
access is compared to the same field of the STEs in memory. In addition, the valid (V) bit is also checked. For
a hit to occur, the V bit of the STE in memory must be set. If the ESID field matches and the entry is valid, the
STE is considered a hit.

Note that in the case of the segment table, the H bit (defined for PTESs) is not required to distinguish between
the primary and secondary STEs. Because the entire ESID field of the access is compared with the entire
ESID field of the STE, when there is a hit, the STE should contain the unique mapping of effective to virtual
address for the access (provided there are no programming errors).

During a segment table search operation, the processor compares up to 16 STEs: STE0—STE?7 of the primary
STEG (defined by the primary hashing function) and STEO—STE?7 of the secondary STEG (defined by the
secondary hashing function). If the ESID field does not match (or if V is not set) for any of these STEs, a
segment fault exception condition occurs and an exception is taken. Thus, if no matching (and valid) STE is
found for an access, the operating system must load the STE into the segment table.

The architecture does not specify the order in which the STEs are checked. Note that for maximum perfor-
mance, STEs should be allocated by the operating system first beginning with the STEO location within the
primary STEG, then STE1, and so on. If more than eight STEs are required within the address space that
defines a STEG address, the secondary STEG can be used (again, allocation of STEO of the secondary
STEG first, and so on is recommended). Additionally, it may be desirable to place the STEs that will require
most frequent access at the beginning of a STEG and reserve the STEs in the secondary STEG for the least
frequently accessed STEs.

The architecture also allows for multiple matching STEs to be found within a table search operation.
However, multiple matching STEs must be identical in all fields. Otherwise, the translation is undefined.
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Figure 7-43. Generation of Addresses for Segment Table
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7.7.1.4 Segment Table in 32-Bit Mode

As stated earlier, the only effect on the MMU of operating in 32-bit mode (MSR[SF] = 0) is that the upper-
order 32 bits of the logical (effective) address are truncated (treated as zero). Thus, only the lower-order four
bits of the ESID field of the effective address are used in the address translation. These four bits select one of
16 STEGs in the segment table and correspond to the highest-order four bits of an address that would have
been generated by a 32-bit implementation. The 16 STEGs can then be used in a way similar to the 16
segment registers defined for 32-bit implementations.

Note that operating systems using features of the 64-bit bridge run in 32-bit mode, and just as is the case
for 32-bit mode described in the previous paragraph, only 16 segment descriptors are required. When
ASR][V] bit is cleared, the ASR[STABORG], which indicates the starting address of the segment table is
considered to be invalid. The 16 segment registers are implemented in 16 SLB entries as required by the
64-bit bridge architecture.

7.7.1.5 Segment Table Structure (with Examples)

This section contains an example of an effective address and how its segment descriptor (the STE) maps into
the primary STEG in physical memory. The example illustrates how the processor generates STEG
addresses for a segment table search operation; this is also the algorithm that must be used by the operating
system in creating the segment tables.

In the example shown in Figure 7-44, the value in ASR defines a segment table at address
0x0000_5C80_42A1_7000 that contains 32 STEGs (all segment tables are defined with a size of 4 Kbytes).
The highest-order 36 bits of the effective address are then used to locate the corresponding STE in the
segment table. The contents of the STE are then used along with bits 36—63 of the effective address and the
12-bit byte offset to create the 80-bit virtual address.
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Figure 7-44. Example Primary STEG Address Generation

Example:
Given:

EA= 0000 0100 0101 1100 0001 1100 0001 1100 1001 0000 0001 1000 0011 1001 1010 0000

X0 4 5 C 1 C 1 C 9 0 1 8 3 9 A o
IS
31| 35
Y
Primary Hash: 0 1001

0 1001 Hash Value 1:

0 51 52 63

ASR | x’ 0000 5C80 42A1 7 00...00

Start at STEO
Y 5152 | 5657 63
I 1y
0000 0000 0000 0000 0101 1100 1000 0000 0100 0010 1010 0001 0111 |0100 1|OOO 0000
x0 0 O 0 5 C 8 0 4 2 A 1 7 4 8 0

Primary STEG Address:

To locate the primary STEG (in the segment table), EA bits 31—35 are then used as inputs into the primary
hashing function (a simple equality function) to generate hash value 1. Hash value 1 is then concatenated
with ASR[0—-51] and seven lower-order 0 bits, defining the address of the primary STEG
(0x0000_5C80_42A1_7480).

Figure 7-45 shows the generation of the secondary STEG address for this example. If the secondary STEG is
required, the secondary hash function is performed (one’s complement) and hash value 2 is then concate-
nated with bits 0—51 of the ASR and seven lower-order 0 bits, defining the address of the secondary STEG
(0x0000_5C80_42A1_7B00).
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Figure 7-45. Example Secondary STEG Address Generation

Hash Value 1: 0 1001
Secondary Hash: 0 1001

One’s Complement

Hash Value 2: 1 0110

Secondary STEG Address:

(from ASR) 5152
[ 1

\

/

Start at STEO

56 57 63
1

0000 0000 0000 0000 0101 1100 1000 0000 0100 0010 1010 0001 0111 (1011 @00 0000

x0 0 O 0 5 C 8 0 4 2 A 1 7 B

0 0}

As described earlier, because the entire effective segment ID field of the STE is compared with the effective
segment ID field of the effective address, when an STE compare process results in a match (hit) with the
effective address, the STE mapping should be the unique STE required (provided there are no programming

errors).

Note, however, that a given STEG address does not map back to a unique effective address. Not only can a
given STEG be considered both a primary and a secondary STEG, but many of the bits of the effective
segment ID in the effective address are not used to generate the STEG address. Therefore, any combination

of these unused bits will map to the same pair of STEG addresses.

7.7.2 Segment Table Search Operation

The segment table search process performed by a PowerPC processor in the search of an STE is analogous

to the page table search algorithm described earlier for PTEs and is as follows:

1. The 64-bit physical addresses of the primary and secondary STEGs are generated as described in

Section 7.7.1.3 Segment Table Address Generation.

2. As many as 16 STEs (from the primary and secondary STEGs) are read from memory (the architecture
does not specify the order of these reads, allowing multiple reads to occur in parallel). STE reads occur
with an implied WIM memory/cache mode control bit setting of 0b001. Therefore, they are considered

cacheable.

3. The STEs in the selected STEGs are tested for a match with the effective segment ID (ESID) of the

access. For a match to occur, the following must be true:

— STE[V] =1
— STE[ESID] = EA[0-35]
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4. If no match is found within the eight STEs of the primary STEG and the eight STEs of the secondary
STEG, an exception is generated as described in step 7. If a match (or multiple matches) is found, the
table search process continues.

5. If multiple matches are found, they must be identical in all defined fields. Otherwise, the translation is
undefined.

6. If amatch is found, the STE is written into the on-chip SLB (if implemented) and the segment table search
is complete.

7. If a match is not found within the primary or secondary PTEG, the search fails, and an exception condi-
tion (a page fault) occurs (either an ISI or a DSI exception).

Reads from memory for segment table search operations are performed as if the WIMG bit settings were
0b0010 (that is, as unguarded cacheable operations in which coherency is required).

Figure 7-46 provides a detailed flow diagram of a segment table search operation. Note that the references to
SLBs are shown as optional because SLBs are not required; if they do exist, the specifics of how they are
maintained are implementation-specific.
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Figure 7-46. Segment Table Search Flow
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7.7.3 Segment Table Updates

This section describes the requirements on the software when updating segment tables in memory via some
pseudocode examples; note that these requirements are very similar to the requirements imposed on the
updating of page tables, but do not have the complication of hardware updates to the referenced and
changed bits.

Multiprocessor systems must follow the rules described in this section so that all processors operate with a
consistent set of segment tables. Even single processor systems must follow certain rules, because software
changes must be synchronized with the other instructions in execution. Updates to the tables include the
following operations:

« Adding an STE
» Modifying an STE
« Deleting an STE
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STEs must be locked on multiprocessor systems. Access to STEs must be appropriately synchronized by
software locking of (that is, guaranteeing exclusive access to) STEs or STEGs if more than one processor
can modify the table at that time. In the examples in the following section, lock() and unlock() refer to software
locks that must be performed to provide exclusive access to the STE being updated. However, the architec-
ture does not dictate the specific protocol to be used for locking. See Appendix E, “Synchronization Program-
ming Examples,” for more information about the use of the reservation instructions (such as the lwarx and
stwex. instructions) to perform software locking.

On single processor systems, STEs need not be locked. To adapt the examples given below for the single
processor case, simply delete the ‘lock()’ and ‘unlock()’ lines from the examples. The sync instructions shown
are required even for single processor systems (to ensure that all previous changes to the segment tables
have completed).

When SLBs are implemented, they are defined as noncoherent caches of the segment tables. SLB entries
must be invalidated explicitly with the SLB invalidate entry instruction (slbie) whenever the corresponding
STE is modified. The sync instruction causes the processor to wait until the SLB invalidate operation in
progress by this processor is complete.

Note that in the 64-bit bridge, 16 SLB entries are used to hold the 16 segment descriptors necessary for
defining the 32-bit address space.

Any processor, including the processor modifying the segment table, may access the segment table at any
time in an attempt to reload a SLB entry. An inconsistent segment table entry must never accidentally
become visible (if V = 1); thus, there must be synchronization between modifications to the valid bit and any
other modifications.

As is the case with PTEs, STEs must not be changed in a manner that causes an implicit branch.

Section 2.3.18 on page 91 lists the possible implicit branch conditions that can occur when system registers
and MSR bits are changed and a complete list of the synchronization requirements for executing the MMU
instructions.

The following examples show the required sequence of operations. However, other instructions may be inter-
leaved within the sequences shown.

7.7.3.1 Adding a Segment Table Entry

Adding a segment table entry requires only a lock on the STE in a multiprocessor system. The first bytes in
the STE are then written (this example assumes the old valid bit was cleared), the eieio instruction orders the
update and then the second update can be made. A sync instruction ensures that the updates have been
made to memory.

lock(STE)
if T=0,
then

STE[VSID] ¢ new value

eieio/* order 1st STE update before 2nd

STE[ESID, V, T, Ks, Kp, N] <~ new values (Note: N bit only for T = 0 segments)
else (note that the T = 1 functionality is being phased out of the architecture)
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STE[Ob1,CNTLR_SPEC] < new values

eieio/* order 1st STE update before 2nd

STE[ESID, V, T, Ks, Kp, 0b0] ¢<— new values (V =1)
sync/* ensure updates completed

unlock(STE)

7.7.3.2 Modifying a Segment Table Entry

To change the contents of a currently-valid STE, the STE must be locked, invalidated, updated, invalidated
from the SLB, marked valid again, and unlocked. The syne¢ instruction must be used at appropriate times to
wait for modifications to complete.

lock(STE)

STE[V] <— 0/* other fields don’t matter
sync/* ensure update completed

if T=0,

then

STE[VSID] ¢ new value

eieio/* order 2nd STE update before 3rd

STE[ESID,V, T, Ks, Kp, N] <— new values (Note: N bit only for T = 0 segments)
else (note that the T = 1 functionality is being phased out of the architecture)
STE[Ob1,CNTLR_SPEC] < new value

eieio/* order 2nd STE update before 3rd

STE[ESID, V, T, Ks, Kp, 0b0] <— new value (V = 1)

slbie(old_EA)/* invalidate old translation

sync/* ensure slbie and last update completed

unlock(STE)

7.7.3.3 Deleting a Segment Table Entry
In this example, the entry is locked, marked invalid, invalidated in the SLB, and unlocked.

lock(STE)

STE[V] ¢« 0/* (other fields don’t matter)
sync/* ensure update completed
slbie(old_EA)/* invalidate old translation
sync/* ensure slbie completed
unlock(STE)

7.8 Direct-Store Segment Address Translation

As described for memory segments, all accesses generated by the processor (with translation enabled) that
do not map to a BAT area, map to a segment descriptor. If T = 1 for the selected segment descriptor, the
access maps to the direct-store interface, invoking a specific bus protocol for accessing I/O devices.

Direct-store segments are provided for POWER compatibility. As the direct-store interface is present only for
compatibility with existing I/O devices that used this interface and the direct-store interface protocol is not

optimized for performance, its use is discouraged. Additionally, the direct-store facility is being phased out of
the architecture. This functionality is considered optional (to allow for those earlier devices that implemented

Memory Management pem7_MMU.fm.2.0
Page 354 of 785 June 10, 2003



Programming Environments Manual

PowerPC RISC Microprocessor Family

it). However, future devices are not likely to support it. Thus, software should not depend on its results and
new software should not use it. Applications that require low-latency load/store access to external address
space should use memory-mapped I/O, rather than the direct-store interface.

7.8.1 Segment Descriptors for Direct-Store Segments

The format of many of the fields in the segment descriptors depends on the value of the T bit. Figure 7-47
shows the format of segment descriptors (residing as STEs in segment tables) that define direct-store
segments for 64-bit implementations (T bit is set).

Figure 7-47. Segment Descriptor Format for Direct-Store Segments—64-Bit Implementations

Double Word 0 D Reserved
ESID 0000 0000 0000 0000 0000 0|V [T |Ks|Kp[ 0000

0 3536 55 56 57 58 59 60 63

Double Word 1

0000 0000 0000 000000000000 O] bt CNTLR_SPEC 000000000000

0 2425 3132 51 52 63

Table 7-28 shows the bit definitions for the segment descriptors when the T bit is set for 64-bit implementa-
tions.

Table 7-28. Segment Descriptor Bit Definitions for Direct-Store Segments—64-Bit Implementations

Double Word | Bit Name Description

0-35 ESID Effective segment ID
36-55 — Reserved
56 Vv Entry valid (V = 1) or invalid (V = 0)

0 57 T T =1 selects this format
58 Ks Supervisor-state protection key
59 Kp User-state protection key
6063 — Reserved
024 — Reserved
25-31 b1 Bits 2—8 of the BUID

1 3251 CNTLR_SPEC Controller-specific information
5263 — Reserved

In 32-bit implementations, the segment descriptors reside in one of 16 on-chip segment registers. Figure 7-48
shows the register format for the segment registers when the T bit is set for 32-bit implementations.

Figure 7-48. Segment Register Format for Direct-Store Segments—32-Bit Implementations

T [Ks|Kp BUID CNTLR_SPEC
0 1 2 3 1112 31
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Table 7-29 shows the bit definitions for the segment registers when the T bit is set for 32-bit implementations.

Table 7-29. Segment Register Bit Definitions for Direct-Store Segments

Bit Name Description

0 T T = 1 selects this format.

1 Ks Supervisor-state protection key

2 Kp User-state protection key

311 BUID Bus unit ID

12-31 CNTLR_SPEC Device-specific data for I/O controller

7.8.2 Direct-Store Segment Accesses

When the address translation process determines that the segment descriptor has T = 1, direct-store
segment address translation is selected; no reference is made to the page tables and neither the referenced
or changed bits are updated. These accesses are performed as if the WIMG bits were 0b0101; that is,
caching is inhibited, the accesses bypass the cache, hardware-enforced coherency is not required, and the
accesses are considered guarded.

The specific protocol invoked to perform these accesses involves the transfer of address and data informa-
tion; however, the PowerPC OEA does not define the exact hardware protocol used for direct-store accesses.
Some instructions may cause multiple address/data transactions to occur on the bus. In this case, the
address for each transaction is handled individually with respect to the MMU.

The following describes the data that is typically sent to the memory controller by processors that implement
the direct-store function:
« One of the Kx bits (Ks or Kp) is selected to be the key as follows:

— For supervisor accesses (MSR[PR] = 0), the Ks bit is used and Kp is ignored.
— For user accesses (MSR[PR] = 1), the Kp bit is used and Ks is ignored.

« An implementation-dependent portion of the segment descriptor.

< An implementation-dependent portion of the effective address.

7.8.3 Direct-Store Segment Protection

Page-level memory protection as described in Section 7.5.4 Page Memory Protection is not provided for
direct-store segments. The appropriate key bit (Ks or Kp) from the segment descriptor is sent to the memory
controller, and the memory controller implements any protection required. Frequently, no such mechanism is
provided; the fact that a direct-store segment is mapped into the address space of a process may be
regarded as sufficient authority to access the segment.
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7.8.4 Instructions Not Supported in Direct-Store Segments

The following instructions are not supported at all and cause either a DSI exception or boundedly-undefined
results when issued with an effective address that selects a segment descriptor that has T = 1:

« |warx and Idarx
» stwex. and stdcx.
* eCiwx

* eCOoWX

7.8.5 Instructions with No Effect in Direct-Store Segments

The following instructions are executed as no-ops when issued with an effective address that selects a
segment where T = 1:

» dcba
» dcbt

« dcbtst
o dcbf

« dcb

» dcbst
» dcbz

 icbi

7.8.6 Direct-Store Segment Translation Summary Flow

Table 7-49 shows the flow used by the MMU when direct-store segment address translation is selected. This
figure expands the Direct-Store Segment Translation stub found in Figure 7-5 for both instruction and data
accesses. In the case of a floating-point load or store operation to a direct-store segment, it is implementa-
tion-specific whether the alignment exception occurs. In the case of an eciwx, ecowx, lwarx, Idarx, stwex.,
or stdex. instruction, the implementation either sets the DSISR as shown and causes the DSI exception, or
causes boundedly-undefined results.

pem7_MMU.fm.2.0 Memory Management
June 10, 2003 Page 357 of 785



Programming Environments Manual

PowerPC RISC Microprocessor Family

Figure 7-49. Direct-Store Segment Translation Flow
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7.9 Migration of Operating Systems from 32-Bit Implementations to 64-Bit
Implementations

The facilities and instructions described in this section may optionally be provided by a 64-bit implementation
to reduce the amount of software change required to migrate an operating system from a 32-bit implementa-
tion to a 64-bit implementation. Using the bridge facility allows the operating system to treat the MSR as a 32-
bit register and to continue to use the segment register manipulation instructions (mtsr, mtsrin, mfsr, and
mfsrin) which are defined for 32-bit implementations. These instructions are otherwise illegal in the 64-bit
architecture. Although the 64-bit bridge does not literally implement the 16 registers as they are defined by
the 32-bit portion of the architecture, the segment register manipulation instructions are used to access the 16
predefined segment descriptors stored in the on-chip SLBs.

The bridge features do not conceal the differences in format of the page table, BAT registers, and SDR1
between 32-bit and 64-bit implementations—the operating system must be converted explicitly to use the 64-
bit formats. Note that an operating system that uses the bridge features does not take full advantage of the
64-bit implementation (for example, it can generate only 32-bit effective addresses).
An operating system that uses the 64-bit bridge architecture should observe the following:
» The boot process should do the following:
— Clear MSR[SF] and MSRJISF].
— Initialize the ASR, clearing ASR[V].
— Invalidate all SLB entries.
» The operating system should do the following:
— Support only 32-bit applications.

— If any 64-bit instructions are used, for example, to modify a PTE or a 64-bit SPR, ensure either that
exceptions cannot occur or that the exception handler saves and restores all 64 bits of the GPRs.

— Manipulate only the low-order 32 bits of the MSR, leaving the high-order 32 bits unchanged.
— Always have MSR[ISF] = 0 and ASR[V] = 0.

— Manage virtual segments using the 32-bit segment register manipulation instructions (mtsr, mtsrin,
mfsr, and mfsrin).

— Always map segments 0—15 in the SLB when translation is enabled. They may be mapped with a
VSID for which there are no valid PTEs.

— Never execute an slbie or slbia instruction.

— Never generate an effective address greater than 232— 1 when MSR[SF] = 1.
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7.9.1 ISF Bit of the Machine State Register

MSRI[ISF] (bit 2) may optionally be used by a 64-bit implementation to control the mode (64-bit or 32-bit) that
is entered when an exception is taken. If MSR[ISF] is implemented, it has the properties described below. If it
is not implemented, it is treated as reserved except that ISF is assumed to be set for exception handling.

« When an exception occurs, MSR[ISF] is copied to MSR[SF].
« When an exception occurs, MSR[ISF] is not altered.

« No software synchronization is required before or after altering MSR[ISF] (see Section 2.3.18 Synchroni-
zation Requirements for Special Registers and for Lookaside Buffers”).

7.9.2 rfi and mtmsr Instructions in a 64-Bit Implementation

The rfi and mtmsr instruction pair may be implemented in some 64-bit implementations, along with the rfid
and mtmsrd instructions, which are required by 64-bit implementations. A 64-bit processor must implement
either both or neither of these instructions. Attempting to execute either rfi or mtmsr on a 64-bit processor
that does not support these instructions causes an illegal instruction type program exception.

Except for the following variances, the operation of these instructions in a 64-bit implementation is identical to
their operation in a 32-bit implementation as described in Section 4.4.1 System Linkage Instructions—OEA,
and Section 4.4.3.2 Segment Register Manipulation Instructions.”

o rfi

— The SRR1 bits that are copied to the corresponding bits of the MSR are bits 4855, 57—59 and 62—63
of SRR1. Note that depending on the implementation, additional bits from SRR1 may be restored to
the MSR. The remaining bits of the MSR, including the high-order 32 bits, are unchanged.

— If the new MSR value does not enable any pending exceptions, the next instruction is fetched, under
control of the new MSR value, from the address SRR0[0—61]||0b00 (when SF is set in the new MSR
value) or (32)0||SRR0[32—61]||0b00 (when SF is cleared in the new MSR value).

« mtmsr
— Bits 32—63 of rS are placed into MSR[32—63]. MSR[0—31] are unchanged.

Note: An additional 64-bit—specific instruction for reading the MSR is not needed because the
mfmsr instruction copies the entire contents of the MSR to the selected GPR in both 32 and 64-bit
implementations.

7.9.3 Segment Register Manipulation Instructions in the 64-Bit Bridge

The four segment register manipulation instructions, mtsr, mtsrin, mfsr, and mfsrin, defined as part of the
32-bit portion of the architecture may optionally be provided by a 64-bit implementation that uses the 64-bit
bridge. As part of the 64-bit bridge, these instructions operate as described below rather than in the way they
are described for 32-bit implementations (as described in Section 4.4.3.2 Segment Register Manipulation
Instructions). These instructions are implemented as a group and are not implemented individually.
Attempting to execute one of these instructions on a 64-bit processor on which it is not supported causes an
illegal instruction type program exception.
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These instructions allow software to associate effective segments 0 through 15 with any of virtual segments 0
through 224 — 1 without altering the segment table in memory. Sixteen indexed SLB entries serve as virtual
segment registers. The mtsr and mtsrin instructions move 32 bits from a selected GPR to a selected SLB
entry. The mfsr and mfsrin instructions move 64 bits from a selected SLB entry to a selected GPR and can
be used to read an SLB entry that was created with mtsr, mtsrin, mtsrd, or mtsrdin.

The software synchronization requirements for any of the move to segment register instructions in a 64-bit
implementation are the same as for those defined by the 32-bit architecture.

To ensure that SLB entries contain unique ESIDs when the bridge is used, an ESID mapped by any of the
move to segment register instructions must not have been mapped to that SLB entry by the segment table
when ASR[V] was set.

If an SLB entry that software established using one of the move to segment register instructions is overwritten
while ASR[V] = 1, software must be able to handle any exception caused when a segment descriptor cannot
be located.

Executing an mfsr or mfsrin instruction may set rD to an undefined value if ASR[V] has been set at any time
since execution of the mtsr, mtsrin, mtsrd, or mtsrdin instruction that established the selected SLB entry,
because that SLB entry may have been overwritten by the processor in the meantime.

Typically, 16 fixed SLB entries are used by the segment register manipulation instructions, while SLB reload
from the segment table selects SLB entries based on some other replacement policy such as LRU.

With respect to updating any SLB replacement history used by the SLB replacement policy, implementations
will treat the execution of an mtsr, mtsrd, mtsrin, or mtsrdin instruction the same as an SLB reload from the
segment table.

The following sections describe the move to and move from segment register instructions as they are defined
for the 64-bit bridge.
7.9.4 64-Bit Bridge Implementation of Segment Register Instructions Previously Defined for 32-Bit

Implementations Only

The following sections describe the mfsr, mfsrin, mtsr, and mtsrin instructions that are defined for the 32-bit
architecture and are allowed in the 64-bit bridge architecture only if ASR[V] is implemented. Otherwise,
attempting to execute one of these instructions is illegal on a 64-bit implementation.

7.9.4.1 Move from Segment Register—mfsr

As in the 32-bit architecture, the mfsr instruction syntax is as follows:
mfsr rD, SR

The operation of the instruction is described as follows:

rD < SLB(SR)

When executed as part of the 64-bit bridge, the contents of the SLB entry selected by SR are placed into rD;
the contents of ¥rD correspond to a segment table entry containing values as shown in Table 7-30.
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Table 7-30. Contents of rD after Executing mfsr

Double Word Bit(s) Contents Description

0-31 0x0000_0000 ESID[0-31]
32-35 SR ESID[32-35]
36-56 — —

0 57-59 rD[32-34] T, Ks, Kp
6061 rD[35-36] N, reserved bit, or b0
62—63 — —
0-24 rD[7-31] VSID[0—24] (or reserved if SR[T] = 1)

1 2551 rD[37-63] VSID[25-51] (or b1 and CNTLR_SPEC if SR[T] = 1)
5263 — —

Note: The contents of rD[0—6] are cleared automatically.

If the SLB entry selected by SR was not created by an mtsr, mtsrd, or mtsrdin instruction, the contents of rD
are undefined. Formatting for GPR contents is shown in Figure 7-50. Fields shown as x’s are ignored. Fields
shown as slashes correspond to reserved bits in the segment table entry.

Note: The T =1 (direct-store) facility is being phased out of the architecture and future processors are not
likely to support it.

This is a supervisor-level instruction.

Figure 7-50. GPR Contents for mfsr, mfsrin, mtsrd, and mtsrdin

rB

XXXX XXXX XXXX XXXX XXXX XXXX XXXX ESID XXXX XXXX XXXX XXXX XXXX XXXX XXXX

0 3132 3536 63

rS/tDforT=0

0000 00 VSID{0—24] T|Ks|Kp| N |0 VSID[25-51]

0 67 31 32 33 34 35 3637 63

rS/rD for T = 1

0000 0O 111 T| Ks| Kp BUID CNTLR_SPEC

0 31 32 33 34 35 4344 63
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7.9.4.2 Move from Segment Register Indirect—mfsrin
As in the 32-bit architecture, the mfsrin instruction syntax is as follows:

mfsrin rD,rB

The operation of the instruction is described as follows:

rD < SLB(rB[32-35])

The contents of the SLB entry selected by rB[32—35] are placed into rD; the contents of rD correspond to a
segment table entry containing values as shown in Table 7-34. :

Table 7-31. SLB Entry Following mfsrin

Double Word Bit(s) Contents Description

0-31 0x0000_0000 ESID[0-31]
32-35 rB[32-35] ESID[32-35]

0 36-56 — —
57-59 rD[32-34] T, Ks, Kp
6061 rD[35-36] N, reserved bit, or b0
024 rD[7—31] VSID[0—24] or reserved

1 2551 rD[37-63] VSID[25-51], or b1, CNTLR_SPEC
52-63 — —

Note: The contents of rD[0—6] are cleared automatically.

If the SLB entry selected by rB[32—35] was not created by an mtsr, mtsrd, or mtsrdin instruction, the

contents of rD are undefined. Formatting for GPR contents is shown in Figure 7-50. Fields shown as x’s are
ignored. Fields shown as slashes correspond to reserved bits in the segment table entry. Note thatthe T =1
(direct-store) facility is being phased out of the architecture and future processors are not likely to support it.

This is a supervisor-level instruction.

7.9.4.3 Move to Segment Register—mtsr

As in the 32-bit architecture, the mtsr instruction syntax is as follows:
mtsr SR, rsS

The operation of the instruction is described as follows:
SLB(SR) « (rs[32-63])

The SLB entry selected by SR is set as though it were loaded from a segment table entry, as shown in
Table 7-32.
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Table 7-32. SLB Entry Following mtsr

Double Word Bit(s) Contents Description
0-31 0x0000_0000 ESID[0-31]
32-35 SR ESID[32-35]
36-55 — —
0 56 Ob1 \
57-59 rS[32-34] T, Ks, Kp
60—61 rS[35-36] N, reserved bit, or b0
62—63 — —
024 0x0000_00]|0b0 VSID[0—24] or reserved
1 25-51 rS[37—63] VSID[25-51], or b1, CNTLR_SPEC
5163 — —

This is a supervisor-level instruction. Formatting for GPR contents is shown in Figure 7-51. Fields shown as
x’s are ignored. Fields shown as slashes correspond to reserved bits in the segment table entry.

Note: The T =1 (direct-store) facility is being phased out of the architecture and future processors are not
likely to support it.

Figure 7-51. GPR Contents for mtsr and mitsrin

B

XXXX XXXX XXXX XXXX XXXX XXXX XXXX ESID XXXX XXXX|XXXX XXXX XXXX XXXX XXXX
0 3132 3536 63
rSforT=0

XXXX XXXX XXXX XXXX XXXX XXXX XXXX T |Ks|Kp[N|00O0O VSID[28-51]
0 3132 33 3435 36 39 40 63
rSforT=1

XXXX XXXX XXXX XXXX XXXX XXXX XXXX T | Ks|Kp BUID VSID[28-51]
0 3132 33 3435 43 44 63

Note that when creating a memory segment (T = 0) using the mtsr instruction, rS[36—39] should be cleared,
as these bits correspond to the reserved bits in the T = 0 format for a segment register.
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7.9.4.4 Move to Segment Register Indirect—mtsrin
As in the 32-bit architecture, the mtsrin instruction syntax is as follows:

mtsrin rS,rB

The operation of the instruction is described as follows:

SLB(rB[32-35]) < (rsS[32-63])

The SLB entry selected by bits 32—35 of rB is set as though it were loaded from a segment table entry, as
shown in Table 7-34.

Table 7-33. SLB Entry Following mtsrin

Double Word | Bit(s) Contents Description
0-31 0x0000_0000 ESID[0-31]
32-35 rB[32-35] ESID[32-35]
36-55 — —
0 56 0Ob1 \Y
57-59 rS[32-34] T, Ks, Kp
6061 rS[35-36] N, reserved bit, or b0
6263 — —
024 0x0000_00]|0b0 VSID[0—24] or reserved
1 25-51 rS[37-63] VSID[25-51], or b1, CNTLR_SPEC
5263 — —

This is a supervisor-level instruction. Formatting for GPR contents is shown in Figure 7-51. Fields shown as
x’s are ignored. Fields shown as slashes correspond to reserved bits in the segment table entry.

Note that when creating a memory segment (T = 0) using the mtsrin instruction, rS[36—39] should be
cleared, as these bits correspond to the reserved bits in the T = 0 format for a segment register. Note also
that the T = 1 (direct-store) facility is being phased out of the architecture and future processors are not likely
to support it.

7.9.5 Segment Register Instructions Defined Exclusively for the 64-Bit Bridge

The following sections describe two instructions mtsrd and mtsrdin, that are defined for optional use as part
of the 64-bit bridge. These instructions support cross-memory operations in a manner similar to that on 32-bit
implementations, allowing software to associate effective segments 0—15 (which define the 32-bit address
space) with any of virtual segments 0—(252— 1) [or virtual segments 0—23¢ — 1) for implementations that
support a virtual address size of only 64 bits]. These instructions effectively transfer 64 bits from a selected
GPR to a selected SLB entry. This allows an operating system to establish addressability to an address
space, to copy data to it from another address space, and then to destroy the new addressability, all without
altering the segment table in memory.

Note that altering the segment table is slow because of the software synchronization required, as described in
Section 7.7.3 Segment Table Updates.”
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If either instruction is provided, both should be. If neither is provided, attempting to execute either causes an
illegal instruction type program exception.

Note that on implementations that support a virtual address size of only 64 bits, bits 0—15 of the VSID field in
RS for mtsrd and mtsrdin must be zeros.

Note that because the existing instructions move the entire contents of the selected SLB entry into the
selected GPR, additional versions of the move from segment register instructions are not required.
7.9.5.1 Move to Segment Register Double Word—mtsrd
The mtsrd instruction syntax is as follows:

mtsrd SR,rS
The operation of the instruction is described as follows:

SLB(SR) « (rsS)

The contents of rS are placed into the SLB selected by SR. The SLB entry is set as though it were loaded
from an STE, as shown in Table 7-34.

Table 7-34. SLB Entry Following mtsrd

Double Word Bit(s) Contents Description
0-31 0x0000_0000 ESID[0-31]
32-35 SR ESID[32-35]
36-55 — —
0 56 Ob1 v
57-59 rS[32-34] T, Ks, Kp
6061 rS[35-36] N, reserved bit, or b0
62-63 — —
024 rS[7-31] VSID[0—24] or reserved
1 25-51 rS[37—63] VSID[25-51], or b1, CNTLR_SPEC
52-63 — —

This is a supervisor-level instruction.

This instruction is optional, and defined only for 64-bit implementations. Using it on a 32-bit implementation
causes an illegal instruction exception. Formatting for GPR contents is shown in Figure 7-50. Fields shown as
zeros should be cleared. Fields shown as hyphens are ignored.
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7.9.5.2 Move to Segment Register Double Word Indirect—mtisrdin
The syntax for the mtsrdin instruction is as follows:
mtsrdin rS,rB
The operation of the instruction is described as follows:
SLB(rB[32-35]) < (rS)

The contents of rS are copied to the SLB selected by bits 32—35 of rB. The SLB entry is set as though it were
loaded from an STE, as shown in Table 7-35.

Table 7-35. SLB Entry Following mtsrdin

Double Word Bit(s) Contents Description
0-31 0x0000_0000 ESID[0-31]
32-35 rB[32—35] ESID[32-35]
36-55 — —
0 56 Ob1 v
57-59 rS[32-34] T, Ks, Kp
6061 rS[35-36] N, reserved bit, or b0
62-63 — —
024 rS[7—31] VSID[0—24] or reserved
1 25-51 rS[37-63] VSID[25-51], or b1, CNTLR_SPEC
52-63 — —

This is a supervisor-level instruction.

This instruction is optional, and defined only for 64-bit implementations. Using it on a 32-bit implementation
causes an illegal instruction exception. Fields shown as x’s are ignored. Fields shown as slashes correspond
to reserved bits in the segment table entry.
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8. Instruction Set

This chapter lists the PowerPC instruction set in alphabetical order by mnemonic. Note that each entry
includes the instruction formats and a quick reference ‘legend’ that provides such information as the level(s)
of the PowerPC architecture in which the instruction may be found—user instruction set architecture (UISA),
virtual environment architecture (VEA), and operating environment architecture (OEA); and the privilege level
of the instruction—user- or supervisor-level (an instruction is assumed to be user-level unless the legend
specifies that it is supervisor-level); and the instruction formats. The format diagrams show, horizontally, all
valid combinations of instruction fields; for a graphical representation of these instruction formats, see
Appendix A. , “PowerPC Instruction Set Listings.” The legend also indicates if the instruction is 64-bit, 32-bit,
64-bit bridge, and/or optional. A description of the instruction fields and pseudocode conventions are also
provided. For more information on the PowerPC instruction set, refer to 4. , “Addressing Modes and Instruc-
tion Set Summary.”

Note that the architecture specification refers to user-level and supervisor-level as problem state and privi-
leged state, respectively.

8.1 Instruction Formats

Instructions are four bytes long and word-aligned, so when instruction addresses are presented to the
processor (as in branch instructions) the two low-order bits are ignored. Similarly, whenever the processor
develops an instruction address, its two low-order bits are zero.

Bits 05 always specify the primary opcode. Many instructions also have an extended opcode. The remaining
bits of the instruction contain one or more fields for the different instruction formats.

Some instruction fields are reserved or must contain a predefined value as shown in the individual instruction
layouts. If a reserved field does not have all bits cleared, or if a field that must contain a particular value does
not contain that value, the instruction form is invalid and the results are as described in 4., “Addressing
Modes and Instruction Set Summary.”
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8.1.1 Spilit-Field Notation

Some instruction fields occupy more than one contiguous sequence of bits or occupy a contiguous sequence
of bits used in permuted order. Such a field is called a split field. Split fields that represent the concatenation
of the sequences from left to right are shown in lowercase letters. These split fields—mb, me, sh, spr, and
tor—are described in Table 8-1.

Table 8-1. Split-Field Notation and Conventions

Field

mb (21-26)

me (21-26)

sh (16—20) and
sh (30)

spr (11-20)

tor (11—20)

Description

This field is used in rotate instructions to specify the first 1 bit of a 64-bit mask, as described in
Section 4.2.1.4 , “Integer Rotate and Shift Instructions.” This field is defined in 64-bit implementations only.

This field is used in rotate instructions to specify the last 1 bit of a 64-bit mask, as described in
Section 4.2.1.4 , “Integer Rotate and Shift Instructions.” This field is defined in 64-bit implementations only.

These fields are used to specify a shift amount (64-bit implementations only).

This field is used to specify a special-purpose register for the mtspr and mfspr instructions. The encoding is
described in Section 4.4.2.2 , “Move to/from Special-Purpose Register Instructions (OEA).”

This field is used to specify either the time base lower (TBL) or time base upper (TBU).

Split fields that represent the concatenation of the sequences in some order, which need not be left to right
(as described for each affected instruction), are shown in uppercase letters. These split fields—MB, ME, and
SH—are described in Table 8-2.

8.1.2 Instruction Fields

Table 8-2 describes the instruction fields used in the various instruction formats.

Table 8-2. Instruction Syntax Conventions

Field

AA (30)

BD (16-29)
Bl (11—-15)
BO (6-10)
crbA (11—-15)
crbB (16-20)
crbD (6-10)

crfD (6-8)
crfS (11-13)
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Description

Absolute address bit.

0 The immediate field represents an address relative to the current instruction address (CIA). (For more
information on the CIA, see Table 8-3. .) The effective (logical) address of the branch is either the
sum of the LI field sign-extended to 64 bits (32 bits in 32-bit implementations) and the address of the
branch instruction or the sum of the BD field sign-extended to 64 bits (32 bits in 32-bit implementa-
tions) and the address of the branch instruction.

1 The immediate field represents an absolute address. The effective address (EA) of the branch is the
LI field sign-extended to 64 bits (32 bits in 32-bit implementations) or the BD field sign-extended to 64
bits (32 bits in 32-bit implementations).

Note: The LI and BD fields are sign-extended to 32 bits in 32-bit implementations.

Immediate field specifying a 14-bit signed two's complement branch displacement that is concatenated on the
right with 0b00 and sign-extended to 64 bits (32 bits in 32-bit implementations).

This field is used to specify a bit in the CR to be used as the condition of a branch conditional instruction.

This field is used to specify options for the branch conditional instructions. The encoding is described in
Section 4.2.4.2 , “Conditional Branch Control.”

This field is used to specify a bit in the CR to be used as a source.

This field is used to specify a bit in the CR to be used as a source.

This field is used to specify a bit in the CR, or in the FPSCR, as the destination of the result of an instruction.
This field is used to specify one of the CR fields, or one of the FPSCR fields, as a destination.

This field is used to specify one of the CR fields, or one of the FPSCR fields, as a source.
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Table 8-2. Instruction Syntax Conventions (Continued)

Field
CRM (12-19)

d (16-31)

ds (16-29)

14)

M (7—
frA (11-15)
rB (16-20)
frC (21-25)
frD (6-10)
rS (6-10)

IMM (16—19)

L (10)

LI (6-29)

LK (31)

MB (21-25) and

ME (26-30)

NB (16-20)
OE (21)
OPCD (0-5)
rA (11—15)
rB (16—20)

Rc (31)

rD (6-10)
rS (6-10)

SH (16-20)
SIMM (16-31)
SR (12-15)

SR (12-15)
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Description
This field mask is used to identify the CR fields that are to be updated by the mterf instruction.

Immediate field specifying a 16-bit signed two's complement integer that is sign-extended to 64 bits (32 bits in
32-bit implementations).

Immediate field specifying a 14-bit signed two’s complement integer which is concatenated on the right with
0b00 and sign-extended to 64 bits. This field is defined in 64-bit implementations only.

This field mask is used to identify the FPSCR fields that are to be updated by the mtfsf instruction.
This field is used to specify an FPR as a source.

This field is used to specify an FPR as a source.

This field is used to specify an FPR as a source.

This field is used to specify an FPR as the destination.

This field is used to specify an FPR as a source.

Immediate field used as the data to be placed into a field in the FPSCR.

Field used to specify whether an integer compare instruction is to compare 64-bit numbers or 32-bit numbers.
This field is defined in 64-bit implementations only.

Immediate field specifying a 24-bit signed two's complement integer that is concatenated on the right with
0b00 and sign-extended to 64 bits (32 bits in 32-bit implementations).

Link bit.
0 Does not update the link register (LR).
1 Updates the LR. If the instruction is a branch instruction, the address of the instruction following the

branch instruction is placed into the LR.

These fields are used in rotate instructions to specify a 64-bit mask (32 bits in 32-bit implementations) consist-
ing of 1 bits from bit MB + 32 through bit ME + 32 inclusive, and 0 bits elsewhere, as described in
Section 4.2.1.4 Integer Rotate and Shift Instructions.”

This field is used to specify the number of bytes to move in an immediate string load or store.
This field is used for extended arithmetic to enable setting OV and SO in the XER.

Primary opcode field

This field is used to specify a GPR to be used as a source or destination.

This field is used to specify a GPR to be used as a source.

Record bit.
0 Does not update the condition register (CR).
1 Updates the CR to reflect the result of the operation.

For integer instructions, CR bits 0—2 are set to reflect the result as a signed quantity and CR bit 3
receives a copy of the summary overflow bit, XER[SO]. The result as an unsigned quantity or a bit
string can be deduced from the EQ bit. For floating-point instructions, CR bits 4—7 are set to reflect
floating-point exception, floating-point enabled exception, floating-point invalid operation exception,
and floating-point overflow exception.

(Note that exceptions are referred to as interrupts in the architecture specification.)

This field is used to specify a GPR to be used as a destination.

This field is used to specify a GPR to be used as a source.

This field is used to specify a shift amount.

This immediate field is used to specify a 16-bit signed integer.

This field is used to specify one of the 16 segment registers (32-bit implementations only).

This field is used to specify one of the 16 segment registers in 64-bit implementations that provide the optional
mtsr, mfsr, and mtsrd instructions.
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Table 8-2. Instruction Syntax Conventions (Continued)

Field
TO (6-10)

UIMM (16-31)
XO (21-29,

21-30, 2230, 26-30,
2729, 27-30, or 30—

31)

Description

This field is used to specify the conditions on which to trap. The encoding is described in Section 4.2.4.6 ,
“Trap Instructions.”

This immediate field is used to specify a 16-bit unsigned integer.

Extended opcode field.
Bits 2129, 2729, 27-30, 30—31 pertain to 64-bit implementations only.

8.1.3 Notation and Conventions

The operation of some instructions is described by a semiformal language (pseudocode). See Table 8-3 for a
list of pseudocode notation and conventions used throughout this chapter.

Table 8-3. Notation and Conventions

Notation/Convention

«—

<—iea

<U,>U
?

& |

Il

@, =
Obnnnn

0xnnnn
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Meaning
Assignment

Assignment of an instruction effective address. In 32-bit mode of a 64-bit implementation the high-order 32
bits of the 64-bit target are cleared.

NOT logical operator

Multiplication

Division (yielding quotient)
Two’s-complement addition
Two’s-complement subtraction, unary minus
Equals and Not Equals relations

Signed comparison relations

Update. When used as a character of an instruction mnemonic, a period (.) means that the instruction updates
the condition register field.

Carry. When used as a character of an instruction mnemonic, a ‘c’ indicates a carry out in XER[CA].

Extended Precision.

When used as the last character of an instruction mnemonic, an ‘e’ indicates the use of XER[CA] as an oper-
and in the instruction and records a carry out in XER[CA].

Overflow. When used as a character of an instruction mnemonic, an ‘o’ indicates the record of an overflow in
XER[OV] and CRO[SQO] for integer instructions or CR1[SO] for floating-point instructions.

Unsigned comparison relations

Unordered comparison relation

AND, OR logical operators

Used to describe the concatenation of two values (that is, 010 || 111 is the same as 010111)
Exclusive-OR, Equivalence logical operators (for example, (a = b) = (a ® - b))

A number expressed in binary format.

A number expressed in hexadecimal format.
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Table 8-3. Notation and Conventions (Continued)

Notation/Convention

(rAl0)
(rX)
x[n]
Xn
ABS(x)
CEIL(x)

Characterization

CIA

Clear

Clear left and shift left

Cleared

Do

DOUBLE(x)

Extract

EXTS(x)
GPR(x)

if...then...else...

Insert

Leave

MASK(x, y)

MEM(x, y)
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Meaning

The replication of x, ntimes (that is, x concatenated to itself n— 1 times).

(n)0 and (n)1 are special cases. A description of the special cases follows:

« (n)0 means a field of n bits with each bit equal to 0. Thus (5)0 is equivalent to
0b00000.

- (n)1 means a field of n bits with each bit equal to 1. Thus (5)1 is equivalent to
Ob11111.

The contents of rA if the rA field has the value 1-31, or the value 0 if the rA field is 0.
The contents of rX

nis a bit or field within x, where x is a register

x is raised to the nth power

Absolute value of x

Least integer S x

Reference to the setting of status bits in a standard way that is explained in the text.

Current instruction address.

The 64- or 32-bit address of the instruction being described by a sequence of pseudocode. Used by relative
branches to set the next instruction address (NIA) and by branch instructions with LK = 1 to set the link regis-
ter. In 32-bit mode of 64-bit implementations, the high-order 32 bits of CIA are always cleared. Does not corre-
spond to any architected register.

Clear the leftmost or rightmost n bits of a register to 0. This operation is used for rotate and shift instructions.

Clear the leftmost b bits of a register, then shift the register left by n bits. This operation can be used to scale
a known non-negative array index by the width of an element. These operations are used for rotate and shift
instructions.

Bits are set to 0.

Do loop.

« Indenting shows range.

- “To” and/or “by” clauses specify incrementing an iteration variable.
- “While” clauses give termination conditions.

Result of converting x from floating-point single-precision format to floating-point double-precision format.

Select a field of n bits starting at bit position b in the source register, right or left justify this field in the target
register, and clear all other bits of the target register to zero. This operation is used for rotate and shift instruc-
tions.

Result of extending x on the left with sign bits
General-purpose register x
Conditional execution, indenting shows range, else is optional.

Select a field of n bits in the source register, insert this field starting at bit position b of the target register, and
leave other bits of the target register unchanged. (No simplified mnemonic is provided for insertion of a field
when operating on double words; such an insertion requires more than one instruction.) This operation is used
for rotate and shift instructions. (Note that simplified mnemonics are referred to as extended mnemonics in the
architecture specification.)

Leave innermost do loop, or the do loop described in leave statement.
Mask having ones in positions x through y (wrapping if x > y) and zeros elsewhere.

Contents of y bytes of memory starting at address x. In 32-bit mode of a 64-bit implementation, the high-order
32 bits of the 64-bit value x are ignored.
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Table 8-3. Notation and Conventions (Continued)

Notation/Convention

NIA

OEA
Rotate

ROTL[64](x, ¥)
ROTL[32](x, y)
Set

Shift

SINGLE(x)
SPR(x)
TRAP

Undefined

UISA
VEA

Meaning

Next instruction address, which is the 64- or 32-bit address of the next instruction to be executed (the branch
destination) after a successful branch. In pseudocode, a successful branch is indicated by assigning a value
to NIA. For instructions which do not branch, the next instruction address is CIA + 4. In 32-bit mode of 64-bit
implementations, the high-order 32 bits of NIA are always cleared. Does not correspond to any architected
register.

PowerPC operating environment architecture

Rotate the contents of a register right or left n bits without masking. This operation is used for rotate and shift
instructions.

Result of rotating the 64-bit value x left y positions
Result of rotating the 64-bit value x || x left y positions, where x is 32 bits long
Bits are set to 1.

Shift the contents of a register right or left n bits, clearing vacated bits (logical shift). This operation is used for
rotate and shift instructions.

Result of converting x from floating-point double-precision format to floating-point single-precision format.
Special-purpose register x
Invoke the system trap handler.

An undefined value. The value may vary from one implementation to another, and from one execution to
another on the same implementation.

PowerPC user instruction set architecture

PowerPC virtual environment architecture

Table 8-4 describes instruction field notation conventions used throughout this chapter.

Table 8-4. Instruction Field Conventions

The Architecture Specification

BA, BB, BT
BF, BFA

D

DS

FLM

FRA, FRB, FRC, FRT, FRS

FXM

RA, RB, RT, RS

Sl
u
ul
1010

Equivalent to:

crbA, crbB, crbD (respectively)
crfD, crS (respectively)

d

ds

FM

frA, frB, frC, frD, frS (respectively)
CRM

rA, rB, rD, rS (respectively)
SIMM

IMM

UIMM

0...0 (shaded)

Precedence rules for pseudocode operators are summarized in Table 8-5.
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Table 8-5. Precedence Rules

Operators Associativity
x[n], function evaluation Left to right
A — Fight o lef
unary —, 7 Right to left
* 5 Left to right
+,— Left to right

| Left to right
=1,<8,>8 <U,>U,? Left to right
& @, = Left to right
| Left to right
—(range) None

<, <iea None

Operators higher in Table 8-5 are applied before those lower in the table. Operators at the same level in the
table associate from left to right, from right to left, or not at all, as shown. For example, “—” (unary minus)
associates from left to right, so a—b —c = (a — b) — c. Parentheses are used to override the evaluation order
implied by Table 8-5, or to increase clarity; parenthesized expressions are evaluated before serving as oper-
ands.

8.1.4 Computation Modes

The PowerPC architecture allows for the following types of implementations:

» 64-bit implementations, in which all registers except some special-purpose registers (SPRs) are 64 bits
long and effective addresses are 64 bits long. All 64-bit implementations have two modes of operation:
64-bit mode (which is the default) and 32-bit mode. The mode controls how the effective address is inter-
preted, how condition bits are set, and how the count register (CTR) is tested by branch conditional
instructions. All instructions provided for 64-bit implementations are available in both 64- and 32-bit
modes.

« 32-bit implementations, in which all registers except the FPRs are 32 bits long and effective addresses
are 32 bits long.

Instructions defined in this chapter are provided in both 64-bit implementations and 32-bit implementations
unless otherwise stated. Instructions that are provided only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa.

Note that all pseudocode examples are given in the default 64-bit mode (unless otherwise stated). To deter-
mine 32-bit mode bit field equivalents, simply subtract 32.

Note that the all pseudocode examples provided in this chapter are for 32-bit implementations.For more infor-
mation on 64-bit and 32-bit modes, refer to Section 1.1.1 The 64-Bit PowerPC Architecture and the 32-Bit
Subset,” and Section 4.1.2 Computation Modes.”
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8.2 PowerPC Instruction Set

The remainder of this chapter lists and describes the instruction set for the PowerPC architecture. The
instructions are listed in alphabetical order by mnemonic. Figure 8-1. shows the format for each instruction

description page.

Figure 8-1. Instruction Description

Instruction name
Name (Instruction operation codes in
hexadecimal)

Instruction syntax

Y

Equivalent POWER mnemonics

Instruction encoding

Pseudocode description
of instruction operation

Text description of

The sum (rA) + (rB) is placed into rD.
—OMmer registers altered:

instruction operation

Registers altered by instruction

Quick reference legend

«Condition Register (CRO field):
Affected: LT, GT, EQ, SO(if Rc = 1)

-XER:
Affected: SO, OV(if OE = 1)

UISA

addx addx
Add (x’'7C00 0214’)
add rD,rA,rB (OE=0Rc=0)
add. rD,rA,rB (OE=0Rc=1)
addo rD,rA,rB (OE=1Rc=0)
addo. rD,rA,rB (OE=1Rc=1)
[POWER mnemonics: cax, cax., caxo, caxo.]
L [ 38 | D [ A [ B [Of 266 [Re]
0 5 6 10 11 15 16 20 21 22 30 31
> D (rA) + (rB)

3 PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional

Form
X0

Note that the execution unit that executes the instruction may not be the same for all PowerPC processors.
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addx addx

Add (x'7C00 0214’)

add rD,rA,rB (OE=0Rc=0)
add. rD,rA,rB (OE=0Rc=1)
addo rD,rA,rB (OE=1Rc=0)
addo. rD,rA,rB (OE=1Rc=1)

[POWER mnemonics: cax, cax., caxo, caxo.]

rD« (rA) + (rB)
The sum (rA) + (rB) is placed into rD.
The add instruction is preferred for addition because it sets few status bits.

Other registers altered:
« Condition Register (CRO field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Note: CRO field may not reflect the infinitely precise result if overflow occurs (see XER below).
+ XER:

Affected: SO, OV (if OE = 1)

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information
about 64-bit mode and 32-bit mode in 64-bit implementations, see 4.1.2 , “Computation Modes.”

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA X0
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addcx

Add Carrying (x’7C00 0014’)

addc rD,rA,rB
addc. rD,rA,rB
addco rD,rA,rB
addco. rD,rA,rB

[POWER mnemonics: a, a., ao, ao.]

(OE = 0 Rc = 0)
(OE = 0 Rc = 1)
(OE = 1 Rc = 0)
(OE =1 Rc = 1)

addcx

rD« (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

Other registers altered:
« Condition Register (CRO field):

Affected: LT, GT, EQ, SO(if Rc = 1)

Note: CRO field may not reflect the infinitely precise result if overflow occurs (see XER below).

+ XER:
Affected: CA
Affected: SO, OV(if OE = 1)

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information
about 64-bit mode and 32-bit mode in 64-bit implementations, see 4.1.2 , “Computation Modes.”

PowerPC Architecture Level Supervisor Level

UISA
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32-Bit 64-Bit

64-Bit Bridge Optional Form
X0
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Add Extended (x’7C00 0114)

adde rD,rA,rB
adde. rD,rA,rB
addeo rD,rA,rB
addeo. rD,rA,rB

[POWER mnemonics: ae, ae., aeo, aeo.]

(OE =0Rc=0)
(OE=0Rc=1)
(OE =1Rc=0)
(OE=1Rc=1)

Programming Environments Manual
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addex

rD« (rA) + (rB) + XER[CA]

The sum (rA) + (rB) + XER[CA] is placed into rD.

Other registers altered:
« Condition Register (CRO field):

Affected: LT, GT, EQ, SO (if Rc=1)

Note: CRO field may not reflect the infinitely precise result if overflow occurs (see XER below).

« XER:
Affected: CA
Affected: SO, OV (if OE =1)

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information
about 64-bit mode and 32-bit mode in 64-bit implementations, see 4.1.2 , “Computation Modes.”

PowerPC Architecture Level Supervisor Level

UISA
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32-Bit 64-Bit

64-Bit Bridge Optional Form
X0
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addi

Add Immediate (x’3800 0000)

addi

[POWER mnemonic: cal]

rD,rA,SIMM

if rA = 0 then rD <« EXTS (SIMM)
rD«rA + EXTS (SIMM)

else

The sum (rA|0) + SIMM is placed into rD.

The addi instruction is preferred for addition because it sets few status bits. Note that addi uses the value 0,
not the contents of GPRO, if rA = 0.

Other registers altered:

« None

Simplified mnemonics:

li
la
subi

PowerPC Architecture Level
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rD,value
rD,disp(rA)
rD,rA,value

UISA

equivalent to
equivalent to
equivalent to

Supervisor Level

addi
addi
addi

32-Bit

rD,0,value
rD,rA,disp
rD,rA,—value

64-Bit

64-Bit Bridge

Optional

Form

D
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addic addic
Add Immediate Carrying (x’3000 0000°)

addic rD,rA,SIMM
[POWER mnemonic: ai]

rD« (rA) + EXTS(SIMM)

The sum (rA) + SIMM is placed into rD.

Other registers altered:
- XER:

Affected: CA

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information
about 64-bit mode and 32-bit mode in 64-bit implementations, see 4.1.2 , “Computation Modes.”

Simplified mnemonics:

subic rD,rA,valueequivalent toaddicrD,rA,—value
PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA D
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addic.

Add Immediate Carrying and Record (x’3400 0000°)

0
Q
Q.
o

addic. rD,rA,SIMM
[POWER mnemonic: ai.]

rD« (rA) + EXTS(SIMM)

The sum (rA) + SIMM is placed into rD.

Other registers altered:
« Condition Register (CRO field):

Affected: LT, GT, EQ, SO

Note: CRO field may not reflect the infinitely precise result if overflow occurs (see XER below).
« XER:

Affected: CA

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information
about 64-bit mode and 32-bit mode in 64-bit implementations, see 4.1.2 , “Computation Modes.”

Simplified mnemonics:

subic.rD,rA,valueequivalent toaddic.rD,rA,—value

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA D
Instruction Set pem8.fm.2.0
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addis addis
Add Immediate Shifted (x’3C00 0000’)

addis rD,rA,SIMM

[POWER mnemonic: cau]

if rA = 0 then rD« EXTS(SIMM || (16)0)
else rD« (rA) + EXTS(SIMM || (16)0)

The sum (rA|0) + (SIMM || 0x0000) is placed into rD.

The addis instruction is preferred for addition because it sets few status bits. Note that addis uses the value
0, not the contents of GPRO, if rA = 0.

Other registers altered:

« None
Simplified mnemonics:

lisrD,valueequivalent toaddisrD,0,value
subisrD,rA,valueequivalent toaddisrD,rA,—value

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA D
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addmex addmex

Add to Minus One Extended (x’7C00 01D4’)

addme rD,rA (OE=0Rc=0)
addme. rD,rA (OE=0Rc=1)
addmeo rD,rA (OE=1Rc=0)
addmeo. rD,rA (OE=1Rc=1)

[POWER mnemonics: ame, ame., ameo, ameo.]

rD« (rA) + XER[CA] - 1

The sum (rA) + XER[CA] + OxFFFF_FFFF_FFFF_FFFF is placed into rD.

Other registers altered:
« Condition Register (CRO field):

Affected: LT, GT, EQ, SO(if Rc = 1)

Note: CRO field may not reflect the infinitely precise result if overflow occurs (see XER below).
« XER:

Affected: CA
Affected: SO, OV(if OE = 1)

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information
about 64-bit mode and 32-bit mode in 64-bit implementations, see 4.1.2 , “Computation Modes.”

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA X0
Instruction Set pem8.fm.2.0
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Add to Zero Extended (x’7C00 0194’)

addze rD,rA
addze. rD,rA
addzeo rD,rA
addzeo. rD,rA

[POWER mnemonics: aze, aze., azeo, azeo.]

(OE = 0 Rc = 0)
(OE =0Rc=1)
(OE = 1 Rc = 0)
(OE = 1 Rc = 1)

Programming Environments Manual
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addzex

rD« (rA) + XER[CA]

The sum (rA) + XER[CA] is placed into rD.

Other registers altered:
« Condition Register (CRO field):

Affected: LT, GT, EQ, SO(if Rc = 1)

Note: CRO field may not reflect the infinitely precise result if overflow occurs (see XER below).

« XER:
Affected: CA
Affected: SO, OV(if OE = 1)

Note: The setting of the affected bits in the XER is mode-dependent, and reflects overflow of the 64-bit
result in 64-bit mode and overflow of the low-order 32-bit result in 32-bit mode. For further information
about 64-bit mode and 32-bit mode in 64-bit implementations, see 4.1.2 , “Computation Modes.”

PowerPC Architecture Level Supervisor Level

UISA
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andx
AND (x’7C00 0038’)

and rA,rS,rB
and. rA,rS,rB

andx

rA« (rS) & (rB)

The contents of rS are ANDed with the contents of rB and the result is placed into rA.

Other registers altered:
« Condition Register (CRO field):

Affected: LT, GT, EQ, SO(if Rc = 1)

PowerPC Architecture Level Supervisor Level
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andcx andcx
AND with Complement (x’7C00 0078’)

andc rA,rS,rB (Rc=0)
andc. rA,rS,rB (Rc=1)

rA« (rsS) + - (rB)

The contents of rS are ANDed with the one’s complement of the contents of rB and the result is placed into
rA.

Other registers altered:
« Condition Register (CRO field):

Affected: LT, GT, EQ, SO(if Rc = 1)

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA X
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andi.
AND Immediate (x’7000 0000’)

andi. rA,rS,UIMM
[POWER mnemonic: andil.]

0
=
Q.

rA< (rsS) & ((4816)0 || UIMM)
The contents of rS are ANDed with 0x0000_0000_0000 || UIMM and the result is placed into rA.

Other registers altered:
« Condition Register (CRO field):

Affected: LT, GT, EQ, SO

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional
UISA

Instruction Set
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andis. andis.
AND Immediate Shifted (x’7400 0000°)

andis. rA,rS,UIMM
[POWER mnemonic: andiu.]

rAe (rsS) + ((32)0 || UIMM || (16)0)
The contents of rS are ANDed with 0x0000_0000 || UIMM || 0x0000 and the result is placed into rA.

Other registers altered:
« Condition Register (CRO field):

Affected: LT, GT, EQ, SO

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA D
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bx

Branch (x’4800 0000’)

O
>

b target_addr (AA=0LK=0)
ba target_addr (AA=1LK=0)
bl target_addr (AA=0LK=1)
bla target_addr (AA=1LK=1)
if AA then NIA<¢—ea EXTS(LI || 0b00)
else NIA<¢ea CIA + EXTS(LI || 0b0O)

if LK then LR<¢—ea CIA + 4

target_addr specifies the branch target address.

If AA = 0, then the branch target address is the sum of LI || 0b00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch target address cleared in 32-bit mode of 64-bit implemen-

tations.

If AA =1, then the branch target address is the value LI || 0b00 sign-extended, with the high-order 32 bits of
the branch target address cleared in 32-bit mode of 64-bit implementations.

If LK = 1, then the effective address of the instruction following the branch instruction is placed into the link

register.
Other registers altered:

Affected: Link Register (LR)(if LK = 1)

PowerPC Architecture Level Supervisor Level

UISA
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bcx bcx

Branch Conditional (x’4000 0000°)

be BO,Bl,target_addr (AA=0LK=0)
bca BO,Bl,target_addr (AA=1LK=0)
bel BO,Bl,target_addr (AA=0LK=1)
bcla BO,Bl,target_addr (AA=1LK=1)
16 BO Bl BD AA|LK
0 5 6 10 11 15 16 29 30 31

if (64-bit implementation) & (64-bit mode)
then m« 0

else m« 32

if - BO[2] then CTR ¢« CTR - 1

ctr_ok <« BO[2] | ((CTR[m-63] | 0) @ BOI[3])
cond ok «BO[0] | (CR[BI] = BOI[1])

if ctr_ok & cond ok then

if AA then NIA <—jea EXTS(BD || 0b00)

else NIA <ea CIA + EXTS(BD || 0b0O)

if LK then LR ¢—ea CIA + 4

The Bl field specifies the bit in the condition register (CR) to be used as the condition of the branch. The BO
field is encoded as described in . Additional information about BO field encoding is provided in Section 4.2.4.2
Conditional Branch Control.

Table 8-6. BO Operand Encodings

BO Description
0000y Decrementthe CTR, then branch if the decremented CTR[M—63] | 0 and the condition is FALSE.
0001y Decrement the CTR, then branch if the decremented CTR[M—63] = 0 and the condition is FALSE.
001zy | Branch if the condition is FALSE.
0100y Decrement the CTR, then branch if the decremented CTR[M—63] | 0 and the condition is TRUE.
0101y Decrement the CTR, then branch if the decremented CTR[M—63] = 0 and the condition is TRUE.
011zy | Branch if the condition is TRUE.
1200y |Decrement the CTR, then branch if the decremented CTR[M—63] | 0.
1z01y |Decrement the CTR, then branch if the decremented CTR[M—63] = 0.
1z1zz | Branch always.

M = 32 in 32-bit mode, and M = 0 in the default 64-bit mode. If the BO field specifies that the CTR is to be decremented, the entire 64-
bit CTR is decremented regardless of the 32-bit mode or the default 64-bit mode.

In this table, z indicates a bit that is ignored.
Note that the z bits should be cleared, as they may be assigned a meaning in some future version of the PowerPC architecture.

The y bit provides a hint about whether a conditional branch is likely to be taken, and may be used by some PowerPC implementations
to improve performance.
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target_addr specifies the branch target address.

If AA =0, the branch target address is the sum of BD || 0b00 sign-extended and the address of this instruc-
tion, with the high-order 32 bits of the branch target address cleared in 32-bit mode of 64-bit implementations.

If AA =1, the branch target address is the value BD || 0b00 sign-extended, with the high-order 32 bits of the
branch target address cleared in 32-bit mode of 64-bit implementations.

If LK = 1, the effective address of the instruction following the branch instruction is placed into the link
register.

Other registers altered:
Affected: Count Register (CTR)(if BO[2] = 0)
Affected: Link Register (LR)(if LK = 1)

Simplified mnemonics:

blt target equivalentto  bc 12,0,target
bne cr2 target equivalentto  be 4,10,target
bdnz target equivalentto  be 16,0,target
PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA B
Instruction Set pem8.fm.2.0
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bccetrx bccetrx

Branch Conditional to Count Register (x’'4C00 0420°)

bcctr BO,BI (LK=0)
bectrl BO,BI (LK=1)

[POWER mnemonics: bee, becel]

cond ok < BO[0] | (CR[BI] = BOI[1])
if cond ok then

NIA ¢—ea CTR[0-61] || 0bOO

if LK then LR <¢ea CIA + 4

The Bl field specifies the bit in the condition register to be used as the condition of the branch. The BO field is
encoded as described in . Additional information about BO field encoding is provided in Section 4.2.4.2 ,
“Conditional Branch Control.”

Table 8-7. BO Operand Encodings

BO Description
0000y |Decrementthe CTR, then branch if the decremented CTR[M—63] | 0 and the condition is FALSE.
0001y |Decrement the CTR, then branch if the decremented CTR[M—63] = 0 and the condition is FALSE.
001zy |Branch if the condition is FALSE.
0100y |Decrement the CTR, then branch if the decremented CTR[M—63] | 0 and the condition is TRUE.
0101y |Decrement the CTR, then branch if the decremented CTR[M—63] = 0 and the condition is TRUE.
011zy |Branch if the condition is TRUE.
1200y | Decrement the CTR, then branch if the decremented CTR[M—63] | 0.
1201y | Decrement the CTR, then branch if the decremented CTR[M—63] = 0.
1z1zz |Branch always.

M = 32 in 32-bit mode, and M = 0 in the default 64-bit mode. If the BO field specifies that the CTR is to be decremented, the entire 64-
bit CTR is decremented regardless of the 32-bit mode or the default 64-bit mode.

In this table, z indicates a bit that is ignored.
Note that the z bits should be cleared, as they may be assigned a meaning in some future version of the PowerPC architecture.

The y bit provides a hint about whether a conditional branch is likely to be taken, and may be used by some PowerPC implementa-
tions to improve performance.

The branch target address is CTR[0—61] || 0b00, with the high-order 32 bits of the branch target address
cleared in 32-bit mode of 64-bit implementations.

If LK = 1, the effective address of the instruction following the branch instruction is placed into the link
register.

If the “decrement and test CTR” option is specified (BO[2] = 0), the instruction form is invalid.
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Other registers altered:

Affected: Link Register (LR)(if LK = 1)

Simplified mnemonics:

bltctr equivalentto  bectr
bnectr cr2 equivalentto  bectr
PowerPC Architecture Level Supervisor Level 32-Bit
UISA

Instruction Set
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bclrx belrx

Branch Conditional to Link Register (x’'4C00 0020°)

belr BO,BI (LK = 0)
belrl BO,BI (LK=1)

[POWER mnemonics: ber, berl]

if (64-bit implementation) & (64-bit mode)
then m« 0

else m¢« 32

if - BO[2] then CTR « CTR - 1
ctr_ok « BO[2] | ((CTR[m-63] |
cond_ok <« BO[0] | (CRI[BI] = BOI
if ctr_ok & cond_ok then

NIA <iea LR[0-61] || 0bOO

if LK then LR <—ea CIA + 4

) © BO[3])

0
11)

The Bl field specifies the bit in the condition register to be used as the condition of the branch. The BO field is
encoded as described in Table 8-8. Additional information about BO field encoding is provided in
Section 4.2.4.2 Conditional Branch Control.

Table 8-8. BO Operand Encodings

BO Description
0000y Decrement the CTR, then branch if the decremented CTR[M—63] | 0 and the condition is FALSE.
0001y Decrement the CTR, then branch if the decremented CTR[M—63] = 0 and the condition is FALSE.
001zy Branch if the condition is FALSE.
0100y Decrement the CTR, then branch if the decremented CTR[M—63] | 0 and the condition is TRUE.
0101y Decrement the CTR, then branch if the decremented CTR[M—63] = 0 and the condition is TRUE.
011zy Branch if the condition is TRUE.
1200y Decrement the CTR, then branch if the decremented CTR[M—63] | 0.
1201y Decrement the CTR, then branch if the decremented CTR[M—63] = 0.
1z1zz Branch always.

M = 32 in 32-bit mode, and M = 0 in the default 64-bit mode. If the BO field specifies that the CTR is to be decremented, the entire 64-
bit CTR is decremented regardless of the 32-bit mode or the default 64-bit mode.

In this table, z indicates a bit that is ignored.
Note that the z bits should be cleared, as they may be assigned a meaning in some future version of the PowerPC architecture.

The y bit provides a hint about whether a conditional branch is likely to be taken, and may be used by some PowerPC implementations
to improve performance.

The branch target address is LR[0—61] || 0b00, with the high-order 32 bits of the branch target address
cleared in 32-bit mode of 64-bit implementations.
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If LK = 1, then the effective address of the instruction following the branch instruction is placed into the link

register.

Other registers altered:
Affected: Count Register (CTR)
Affected: Link Register (LR)

Simplified mnemonics:

bltir equivalent to
bnelr cr2 equivalent to
bdnzir equivalent to
PowerPC Architecture Level Supervisor Level
UISA

Instruction Set
Page 396 of 785
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cmp cmp

Compare (x’7C00 0000°)

cmp criD,L,rA,rB

if L = 0 then a <« EXTS(rA[32-63])
b <« EXTS(rB[32-63])
else a « (ra)
b « (rB)
if a < b then ¢ « 0bl00
else if a > b then ¢ « 0b010
else c « 0b001
CR[4 * crfD-4 * crfD + 3] « c || XER[SO]

The contents of rA (or the low-order 32 bits of rA if L = 0) are compared with the contents of rB (or the low-
order 32 bits of rB if L = 0), treating the operands as signed integers. The result of the comparison is placed
into CR field crfD.

In 32-bit implementations, if L = 1 the instruction form is invalid.

Other registers altered:
« Condition Register (CR field specified by operand crfD):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpd rA,rB equivalentto cmp 0,1,rA,rB
cmpw cr3,rA,rB equivalentto cmp 3,0,rA,rB
PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA X
pem8.fm.2.0 Instruction Set
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cmpi

Compare Immediate (x’2C00 0000°)

cmpi criD,L,rA,SIMM

cmpi

if L = 0 then a <« EXTS(rA[32-63])

elsea « (ra)
if a < EXTS(SIMM) then c¢ « 0bl00
else if a > EXTS(SIMM) then ¢ <« 0b010
else c « 0b001
CR[4 * crfD-4 * crfD + 3] « c || XERI[SO]

The contents of rA (or the low-order 32 bits of rA sign-extended to 64 bits if L = 0) are compared with the sign-
extended value of the SIMM field, treating the operands as signed integers. The result of the comparison is

placed into CR field crfD.
In 32-bit implementations, if L = 1 the instruction form is invalid.

Other registers altered:
« Condition Register (CR field specified by operand crfD):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpdi rA,value equivalentto  cmpi 0,1,rA,value
cmpwi cr3,rA,value equivalentto cmpi 3,0,rA,value
PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge
UISA

Instruction Set
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cmpl cmpl

Compare Logical (x’7C00 0040’)

cmpl criD,L,rA,rB

if L = 0 then a < (32)0 || rA[32-63]
b« (32)0 || rB[32-63]
elsea <« (rA)
b « (rB)
if a <U b then ¢ « 0b100
else if a >U b then ¢ « 0b010
else c « 0b001
CR[4 * crfD-4 * crfD + 3] « c || XERI[SO]

The contents of rA (or the low-order 32 bits of rA if L = 0) are compared with the contents of rB (or the low-
order 32 bits of ¥rB if L = 0), treating the operands as unsigned integers. The result of the comparison is placed
into CR field crfD.

In 32-bit implementations, if L = 1 the instruction form is invalid.

Other registers altered:
» Condition Register (CR field specified by operand crfD):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpld rA,rB equivalentto  cmpl 0,1,rA,rB
cmplw cr3,rA,rB equivalentto  cmpl 3,0,rA,rB
PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA X
pem8.fm.2.0 Instruction Set
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cmpli
Compare Logical Immediate (x’2800 0000)

cmpli criD,L,rA,UIMM

cmpli

10 crfD 0L A

if L = 0 then a « (32)0 || rA[32-63]

else a « (rdp)
if a <U ((4816)0 || UIMM) then c <« 0b1l00
else if a >U ((4816)0 || UIMM) then c <« 0b010
else c <« 0b001
CR[4 * crfD-4 * crfD + 3] « c || XER[SO]

The contents of rA (or the low-order 32 bits of rA zero-extended to 64-bits if L = 0) are compared with
0x0000_0000_0000 || UIMM, treating the operands as unsigned integers. The result of the comparison is

placed into CR field crfD.
In 32-bit implementations, if L = 1 the instruction form is invalid.

Other registers altered:
- Condition Register (CR field specified by operand crfD):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpldi r A,value equivalentto  cmpli 0,1,rA,value
cmplwi cr3,rA,value equivalentto  cmpli 3,0,rA,value
PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge
UISA

Instruction Set
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cntlzdx 64-Bit Implementations Only cntlzdx

Count Leading Zeros Double Word (x’7C00 0074’)

cntlzd rA,rS (Rc=0)
cntlzd. rA,rS (Rc=1)
[ ] Reserved
31 S A 0000 0 58 Rc
0 5 6 10 11 15 16 20 21 30 31
n <0
do while n < 64
if rS[n] = 1 then leave
ne—n+ 1
TA< n

A count of the number of consecutive zero bits starting at bit 0 of register rS is placed into rA. This number
ranges from 0 to 64, inclusive.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause the
system illegal instruction error handler to be invoked.

Other registers altered:
» Condition Register (CRO field):

Affected: LT, GT, EQ, SO(Rc = 1)
Note: If Rc = 1, then LT is cleared in the CRO field.

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA b X
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cntlzwx cntlzwx

Count Leading Zeros Word (x’7C00 0034’)

cntlzw rA,rS (Rc=0)
cntlzw. rA,rS (Rc=1)

[POWER mnemonics: cntlz, cntlz.]

[] Reserved
31 S A 00000 26 Rc
0 5 6 10 11 15 16 20 21 30 31
n < 320
do while n < 6432
if rs[n] = 1 then leave
n«<n+1

rA < n— 32

A count of the number of consecutive zero bits starting at bit 320 of rS (bit 0 in 32-bit implementations) is
placed into rA. This number ranges from 0 to 32, inclusive.

Other registers altered:
« Condition Register (CRO field):

Affected: LT, GT, EQ, SO(if Rc = 1)
Note: If Rc = 1, then LT is cleared in the CRO field.

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form

UISA X
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crand crand

Condition Register AND (x’4C00 0202’)

crand crbD,crbA,crbB

CR[crbD] < CR[crbA] & CR[crbB]

The bit in the condition register specified by crbA is ANDed with the bit in the condition register specified by
crbB. The result is placed into the condition register bit specified by crbD.

Other registers altered:

« Condition Register:

Affected: Bit specified by operand crbD

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA XL
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crandc crandc

Condition Register AND with Complement (x’4C00 0102’)

crandc crbD,crbA,crbB
[] Reserved
19 crbD crbA crbB 129 0
0 5 6 10 11 15 16 20 21 30 31

CR[crbD] « CR[crbA] & = CR[crbB]

The bit in the condition register specified by crbA is ANDed with the complement of the bit in the condition
register specified by crbB and the result is placed into the condition register bit specified by crbD.

Other registers altered:

» Condition Register:

Affected: Bit specified by operand crbD

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA XL
Instruction Set pem8.fm.2.0
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creqv creqv

Condition Register Equivalent (x’4C00 0242’)

creqv crbD,crbA,crbB
[ ] Reserved
19 crbD crbA crbB 289 0
0 5 6 10 11 15 16 20 21 30 31

CR[ecrbD] « CR[crbA] = CRI[crbB]

The bit in the condition register specified by crbA is XORed with the bit in the condition register specified by
crbB and the complemented result is placed into the condition register bit specified by crbD.

Other registers altered:

- Condition Register:
Affected: Bit specified by operand crbD

Simplified mnemonics:

crset crbD equivalentto  creqv crbD,crbD,crbD
PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA XL
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crnand crnand

Condition Register NAND (x’4C00 01C2’)

crnand crbD,crbA,crbB
[] Reserved
19 crbD crbA crbB 225 0
0 5 6 10 11 15 16 20 21 30 31

CR[crbD] ¢« - (CR[crbA] & CR[crbB])

The bit in the condition register specified by crbA is ANDed with the bit in the condition register specified by
crbB and the complemented result is placed into the condition register bit specified by crbD.

Other registers altered:

- Condition Register:

Affected: Bit specified by operand crbD

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA XL
Instruction Set pem8.fm.2.0
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crnor crnor

Condition Register NOR (x’4C00 0042’)

crnor crbD,crbA,crbB
[] Reserved
19 crbD crbA crbB 33 0
0 5 6 10 11 15 16 20 21 30 31

CR[crbD] « = (CR[crba] | CR[crbB])

The bit in the condition register specified by crbA is ORed with the bit in the condition register specified by
crbB and the complemented result is placed into the condition register bit specified by crbD.

Other registers altered:

« Condition Register:
Affected: Bit specified by operand crbD

Simplified mnemonics:

crnot crbD,crbA equivalentto  crnor crbD,crbA,crbA
PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA XL
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cror

Condition Register OR (x’4C00 0382’)

0
-
o)
-

cror crbD,crbA,crbB
[] Reserved
19 crbD crbA crbB 449 0
0 5 6 10 11 15 16 20 21 30 31

CR[crbD] « CR[crbA] | CR[crbB]

The bit in the condition register specified by crbA is ORed with the bit in the condition register specified by
crbB. The result is placed into the condition register bit specified by crbD.

Other registers altered:

« Condition Register:
Affected: Bit specified by operand crbD

Simplified mnemonics:

crmove crbD,crbA equivalentto  cror crbD,crbA,crbA
PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA XL
Instruction Set pem8.fm.2.0
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crorc crorc

Condition Register OR with Complement (x’'4C00 0342’)

crorc crbD,crbA,crbB
[] Reserved
19 crbD crbA crbB 417 0
0 5 6 10 11 15 16 20 21 30 31

CR[crbD] « CR[crbA] | — CR[crbB]

The bit in the condition register specified by crbA is ORed with the complement of the condition register bit
specified by crbB and the result is placed into the condition register bit specified by crbD.

Other registers altered:

» Condition Register:

Affected: Bit specified by operand crbD

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA XL
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Crxor Crxor

Condition Register XOR (x’4C00 0182’)

crxor crbD,crbA,crbB
[] Reserved
19 crbD crbA crbB 193 0
0 5 6 10 11 15 16 20 21 30 31

CR[crbD] <« CR[crba] @ CR[crbB]

The bit in the condition register specified by crbA is XORed with the bit in the condition register specified by
crbB and the result is placed into the condition register specified by crbD.

Other registers altered:
« Condition Register:

Affected: Bit specified by erbD

Simplified mnemonics:

crclr crbD equivalentto  crxor crbD,crbD,crbD
PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA XL
Instruction Set pem8.fm.2.0

Page 410 of 785 June 10, 2003



Programming Environments Manual

PowerPC RISC Microprocessor Family

dcba dcba

Data Cache Block Allocate (x’7C00 05EC’)

dcba rA,rB
[] Reserved
31 00000 A B 758 0
0 5 6 10 11 15 16 20 21 30 31

EA is the sum (rA|0) + (rB).

The dcba instruction allocates the block in the data cache addressed by EA, by marking it valid without
reading the contents of the block from memory; the data in the cache block is considered to be undefined
after this instruction completes. This instruction is a hint that the program will probably soon store into a
portion of the block, but the contents of the rest of the block are not meaningful to the program (eliminating
the need to read the entire block from main memory), and can provide for improved performance in these
code sequences.

The dcba instruction executes as follows:

« |f the cache block containing the byte addressed by EA is in the data cache, the contents of all bytes are
made undefined but the cache block is still considered valid. Note that programming errors can occur if
the data in this cache block is subsequently read or used inadvertently.

- If the cache block containing the byte addressed by EA is not in the data cache and the corresponding
memory page or block is caching-allowed, the cache block is allocated (and made valid) in the data
cache without fetching the block from main memory, and the value of all bytes is undefined.

« |f the addressed byte corresponds to a caching-inhibited page or block (i.e. if the | bit is set), this instruc-
tion is treated as a no-op.

- If the cache block containing the byte addressed by EA is in coherency-required mode, and the cache
block exists in the data cache(s) of any other processor(s), it is kept coherent in those caches (i.e. the
processor performs the appropriate bus transactions to enforce this).

This instruction is treated as a store to the addressed byte with respect to address translation, memory
protection, referenced and changed recording and the ordering enforced by eieio or by the combination of
caching-inhibited and guarded attributes for a page (or block). However, the DSI exception is not invoked for
a translation or protection violation, and the referenced and changed bits need not be updated when the page
or block is cache-inhibited (causing the instruction to be treated as a no-op).

This instruction is optional in the PowerPC architecture.

Other registers altered:

« None

In the PowerPC OEA, the dcba instruction is additionally defined to clear all bytes of a newly established
block to zero in the case that the block did not already exist in the cache.

pem8.fm.2.0 Instruction Set
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Additionally, as the dcba instruction may establish a block in the data cache without verifying that the associ-
ated physical address is valid, a delayed machine check exception is possible. See 6. , “Exceptions,” for a
discussion about this type of machine check exception.

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
VEA b X
Instruction Set pem8.fm.2.0
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dcbf dcbf

Data Cache Block Flush (x’7C00 00AC’)

dcbf rA,rB
[] Reserved
31 00000 A B 86 0
0 5 6 10 11 15 16 20 21 30 31

EA is the sum (rA|0) + (rB).

The dcbf instruction invalidates the block in the data cache addressed by EA, copying the block to memory
first, if there is any dirty data in it. If the processor is a multiprocessor implementation (for example, the 601,
604,and 604e and 620) and the block is marked coherency-required, the processor will, if necessary, send an
address-only broadcast to other processors. The broadcast of the dcbf instruction causes another processor
to copy the block to memory, if it has dirty data, and then invalidate the block from the cache.

The action taken depends on the memory mode associated with the block containing the byte addressed by
EA and on the state of that block. The list below describes the action taken for the various states of the
memory coherency attribute (M bit).

» Coherency required
— Unmodified block—Invalidates copies of the block in the data caches of all processors.

— Modified block—Copies the block to memory. Invalidates copies of the block in the data caches of all
processors.

— Absent block—If modified copies of the block are in the data caches of other processors, causes
them to be copied to memory and invalidated in those data caches. If unmodified copies are in the
data caches of other processors, causes those copies to be invalidated in those data caches.

« Coherency not required
— Unmodified block—Invalidates the block in the processor’s data cache.
— Modified block—Copies the block to memory. Invalidates the block in the processor’s data cache.

— Absent block (target block not in cache)}—No action is taken.

The function of this instruction is independent of the write-through, write-back and caching-inhibited/allowed
modes of the block containing the byte addressed by EA.

This instruction is treated as a load from the addressed byte with respect to address translation and memory
protection. It is also treated as a load for referenced and changed bit recording except that referenced and
changed bit recording may not occur.

Other registers altered:

* None
PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
VEA X
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dcbi

Data Cache Block Invalidate (x’7C00 03AC’)

Qo
0
.23

dcbi rA,rB
[] Reserved
31 00000 A B 470 0
0 5 6 10 11 15 16 20 21 30 31

EA is the sum (rA|0) + (rB).

The action taken is dependent on the memory mode associated with the block containing the byte addressed
by EA and on the state of that block. The list below describes the action taken if the block containing the byte
addressed by EA is or is not in the cache.

» Coherency required
— Unmodified block—Invalidates copies of the block in the data caches of all processors.

— Modified block—Invalidates copies of the block in the data caches of all processors. (Discards the
modified contents.)

— Absent block—If copies of the block are in the data caches of any other processor, causes the copies
to be invalidated in those data caches. (Discards any modified contents.)

« Coherency not required
— Unmodified block—Invalidates the block in the processor’s data cache.

— Modified block—Invalidates the block in the processor’s data cache. (Discards the modified con-
tents.)

— Absent block (target block not in cache)}—No action is taken.

When data address translation is enabled, MSR[DR] = 1, and the virtual address has no translation, a DSI
exception occurs.

The function of this instruction is independent of the write-through and caching-inhibited/allowed modes of the
block containing the byte addressed by EA. This instruction operates as a store to the addressed byte with
respect to address translation and protection. The referenced and changed bits are modified appropriately.

This is a supervisor-level instruction.

Other registers altered:

« None
PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
OEA b X
Instruction Set pem8.fm.2.0
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dcbst dcbst

Data Cache Block Store (x’7C00 006C’)

dcbst rA,rB
[] Reserved
31 00000 A B 54 0
0 5 6 10 11 15 16 20 21 30 31

EA is the sum (rA|0) + (rB).

The dcbst instruction executes as follows:

« If the block containing the byte addressed by EA is in coherency-required mode, and a block containing
the byte addressed by EA is in the data cache of any processor and has been modified, the writing of it to
main memory is initiated.

- If the block containing the byte addressed by EA is in coherency-not-required mode, and a block contain-
ing the byte addressed by EA is in the data cache of this processor and has been modified, the writing of
it to main memory is initiated.

The function of this instruction is independent of the write-through and caching-inhibited/allowed modes of the
block containing the byte addressed by EA.

The processor treats this instruction as a load from the addressed byte with respect to address translation
and memory protection. It is also treated as a load for referenced and changed bit recording except that refer-
enced and changed bit recording may not occur.

Other registers altered:

* None
PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
VEA X
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dcbt

Data Cache Block Touch (x’7C00 022C’)

Q.
(9]

o
—

dcbt rA,rB
[] Reserved
31 00000 A B 278 0
0 5 6 10 11 15 16 20 21 30 31

EA is the sum (rA|0) + (rB).

This instruction is a hint that performance will possibly be improved if the block containing the byte addressed
by EA is fetched into the data cache, because the program will probably soon load from the addressed byte.
If the block is caching-inhibited, the hint is ignored and the instruction is treated as a no-op. Executing dcbt
does not cause the system alignment error handler to be invoked.

This instruction is treated as a load from the addressed byte with respect to address translation, memory
protection, and reference and change recording except that referenced and changed bit recording may not
occur. Additionally, no exception occurs in the case of a translation fault or protection violation.

The program uses the dcbt instruction to request a cache block fetch before it is actually needed by the
program. The program can later execute load instructions to put data into registers. However, the processor
is not obliged to load the addressed block into the data cache. Note that this instruction is defined architectur-
ally to perform the same functions as the dcbtst instruction. Both are defined in order to allow implementa-
tions to differentiate the bus actions when fetching into the cache for the case of a load and for a store.

Other registers altered:

« None
PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
VEA X
Instruction Set pem8.fm.2.0
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dcbtst dcbtst

Data Cache Block Touch for Store (x’7C00 01EC’)

dcbtst rA,rB
[ ] Reserved
31 00000 A B 246 0
0 5 6 10 11 15 16 20 21 30 31

EA is the sum (rA|0) + (rB).

This instruction is a hint that performance will possibly be improved if the block containing the byte addressed
by EA is fetched into the data cache, because the program will probably soon store from the addressed byte.
If the block is caching-inhibited, the hint is ignored and the instruction is treated as a no-op. Executing dcbtst
does not cause the system alignment error handler to be invoked.

This instruction is treated as a load from the addressed byte with respect to address translation, memory
protection, and reference and change recording except that referenced and changed bit recording may not
occur. Additionally, no exception occurs in the case of a translation fault or protection violation.

The program uses dcbtst to request a cache block fetch to potentially improve performance for a subsequent
store to that EA, as that store would then be to a cached location. However, the processor is not obliged to
load the addressed block into the data cache. Note that this instruction is defined architecturally to perform
the same functions as the dcbt instruction. Both are defined in order to allow implementations to differentiate
the bus actions when fetching into the cache for the case of a load and for a store.

Other registers altered:

« None
PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
VEA X
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dcbz

Q.
(9]
o
N

Data Cache Block Clear to Zero (x’7C00 07EC’)

dcbz

rA,rB

[POWER mnemonic: dclz]

[] Reserved

31 00000 1014 0

0

5 6 10 11 15 16 20 21 30 31

EA is the sum (rA|0) + (rB).

The dcbz instruction executes as follows:

If the cache block containing the byte addressed by EA is in the data cache, all bytes are cleared.

If the cache block containing the byte addressed by EA is not in the data cache and the corresponding
memory page or block is caching-allowed, the cache block is allocated (and made valid) in the data
cache without fetching the block from main memory, and all bytes are cleared.

If the page containing the byte addressed by EA is in caching-inhibited or write-through mode, either all
bytes of main memory that correspond to the addressed cache block are cleared or the alignment excep-
tion handler is invoked. The exception handler can then clear all bytes in main memory that correspond to
the addressed cache block.

If the cache block containing the byte addressed by EA is in coherency-required mode, and the cache
block exists in the data cache(s) of any other processor(s), it is kept coherent in those caches (i.e. the
processor performs the appropriate bus transactions to enforce this).

This instruction is treated as a store to the addressed byte with respect to address translation, memory
protection, referenced and changed recording. It is also treated as a store with respect to the ordering
enforced by eieio and the ordering enforced by the combination of caching-inhibited and guarded attributes
for a page (or block).

Other registers altered:

None

The PowerPC OEA describes how the debz instruction may establish a block in the data cache without veri-
fying that the associated physical address is valid. This scenario can cause a delayed machine check excep-
tion; see 6., “Exceptions,” for a discussion about this type of machine check exception.

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
VEA X
Instruction Set pem8.fm.2.0
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divdx 64-Bit Implementations Only divdx
Divide Double Word (x’7C00 03D2)
divd rD,rA,rB (OE=0Rc=0)
divd. rD,rA,rB (OE=0Rc=1)
divdo rD,rA,rB (OE=1Rc=0)
divdo. rD,rA,rB (OE=1Rc=1)
31 D A B OF] 489 Rc
0 5 6 10 11 15 16 20 21 22 30 31

dividend[0-63] « (rA)
divisor[0-63] « (rB)
rD « dividend + divisor

The 64-bit dividend is the contents of rA. The 64-bit divisor is the contents of rB. The 64-bit quotient is placed
into rD. The remainder is not supplied as a result.

Both the operands and the quotient are interpreted as signed integers. The quotient is the unique signed
integer that satisfies the equation—dividend = (quotient * divisor) + —where 0 8 r < |divisor| if the dividend is
non-negative, and —|divisor| < r ® 0 if the dividend is negative.

If an attempt is made to perform the divisions—0x8000_0000_0000_0000 + —1 or <anything> + 0—the
contents of rD are undefined, as are the contents of the LT, GT, and EQ bits of the CRO field (if Rc = 1). In this
case, if OE = 1 then OV is set.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause the
system illegal instruction error handler to be invoked.

The g;r-bit signed remainder of dividing (rA) by (rB) can be computed as follows, except in the case that (rA)
=—2°and (rB) =—1:

divd rD,rA,rB # rD = quotient
mulid rD,rD,rB # rD = quotient * divisor
subf rD,rD,rA # rD = remainder

Other registers altered:

« Condition Register (CRO field):
Affected: LT, GT, EQ, SO(if Rc = 1)

- XER:
Affected: SO, OV (if OE=1)
Note: The setting of the affected bits in the XER is mode-independent, and reflects overflow of the 64-bit
result.
PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA 5] X0
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divdux 64-Bit Implementations Only divdux
Divide Double Word Unsigned (x’7C00 0392’)
divdu rD,rA,rB (OE=0Rc=0)
divdu. rD,rA,rB (OE=0Rc=1)
divduo rD,rA,rB (OE=1Rc=0)
divduo. rD,rA,rB (OE=1Rc=1)
31 D A B OE 457 Rc
0 5 6 10 11 15 16 20 21 22 30 31

dividend[0-63] « (rA)
divisor[0-63] « (rB)
rD « dividend + divisor

The 64-bit dividend is the contents of rA. The 64-bit divisor is the contents of rB. The 64-bit quotient of the
dividend and divisor is placed into rD. The remainder is not supplied as a result.

Both the operands and the quotient are interpreted as unsigned integers, except that if Rc is set to 1 the first
three bits of CRO field are set by signed comparison of the result to zero. The quotient is the unique unsigned
integer that satisfies the equation—dividend = (quotient * divisor) + —where 0 0 r < divisor.

If an attempt is made to perform the division—<anything> + 0—the contents of rD are undefined as are the
contents of the LT, GT, and EQ bits of the CRO field (if Rc = 1). In this case, if OE = 1 then OV is set.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause the
system illegal instruction error handler to be invoked.

The 64-bit unsigned remainder of dividing (rA) by (rB) can be computed as follows:

divdu rD,rA,rB # rD = quotient
mulld rD,rD,rB # rD = quotient * divisor
subf rD,rD,rA # rD = remainder

Other registers altered:

» Condition Register (CRO field):
Affected: LT, GT, EQ, SO(if Rc = 1)

« XER:
Affected: SO, OV(if OE = 1)

Note: The setting of the affected bits in the XER is mode-independent, and reflects overflow of the 64-bit

result.
PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA b X0
Instruction Set pem8.fm.2.0
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divwx divwx

Divide Word (x’7C00 03D¢’)

divw rD,rA,rB (OE=0Rc=0)
divw. rD,rA,rB (OE=0Rc=1)
divwo rD,rA,rB (OE=1Rc=0)
divwo. rD,rA,rB (OE=1Rc=1)
31 D A B OE 491 Rc
0 5 6 10 1 15 16 20 21 22 30 31

dividend[0-63] < EXTS (rA[32-63])
divisor[0-63] <« EXTS(rB[32-63])
rD[32-63] <« dividend + divisor
rD[0-31] <« undefined

The 64-bit dividend is the sign-extended value of the contents of the low-order 32 bits of rA. The 64-bit divisor
is the sign-extended value of the contents of the low-order 32 bits of rB. The 6432-bit quotient is formed and
placed in rD. The low-order 32 bits of the 64-bit quotient are placed into the low-order 32 bits of ¥rD. The
contents of the high-order 32 bits of rD are undefined. The remainder is not supplied as a result.

Both the operands and the quotient are interpreted as signed integers. The quotient is the unique signed
integer that satisfies the equation—dividend = (quotient * divisor) + r where 0 & r < |divisor| (if the dividend is
non-negative), and —{divisor| < r 8 O (if the dividend is negative).

If an attempt is made to perform either of the divisions—0x8000_0000 +—1 or
<anything> + 0, then the contents of rD are undefined, as are the contents of the LT, GT, and EQ bits of the
CRO field (if Rc = 1). In this case, if OE = 1 then OV is set.

The 32-bit signed remainder of dividing the contents of the low-order 32 bits of rA by the contents of the low-
order 32 bits of rB can be computed as follows, except in the case that the contents of the low-order 32 bits of
rA = —231 and the contents of the low-order 32 bits of rB = —1.

divw rD,rA,rB # rD = quotient
mullw rD,rD,rB # rD = quotient * divisor
subf rD,rD,rA # rD = remainder

Other registers altered:

« Condition Register (CRO field):
Affected: LT, GT, EQ, SO(if Rc = 1)
LT, GT, EQ undefined(if Rc =1 and 64-bit mode)

+ XER:
Affected: SO, OV(if OE = 1)
Note: The setting of the affected bits in the XER is mode-independent, and reflects overflow of the low-
order 32-bit result.

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA X0
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divwux divwux

Divide Word Unsigned (x’7C00 0396°)

divwu rD,rA,rB (OE=0Rc=0)
divwu. rD,rA,rB (OE=0Rc=1)
divwuo rD,rA,rB (OE=1Rc=0)
divwuo. rD,rA,rB (OE=1Rc=1)
31 D A B OE 459 Rc
0 5 6 10 1 15 16 20 21 22 30 31
dividend[0-63] « (32)0 || (rA) [32-63]

divisor[0-63] <« (32)0|(xB) [32-63]
rD[32-63] <« dividend + divisor
rD[0-31] <« undefined

The 64-bit dividend is the zero-extended value of the contents of the low-order 32 bits of rA. The 64-bit divisor
is the zero-extended value the contents of the low-order 32 bits of rB. A 6432-bit quotient is formed. The low-
order 32 bits of the 6432-bit quotient areis placed into the low-order 32 bits of rD. The contents of the high-
order 32 bits of rD are undefined. The remainder is not supplied as a result.

Both operands and the quotient are interpreted as unsigned integers, except that if Rc = 1 the first three bits
of CRO field are set by signed comparison of the result to zero. The quotient is the unique unsigned integer
that satisfies the equation—dividend = (quotient * divisor) + r (where 0 d r < divisor). If an attempt is made to
perform the division—<anything> + 0—then the contents of rD are undefined as are the contents of the LT,
GT, and EQ bits of the CRO field (if Rc = 1). In this case, if OE = 1 then OV is set.

The 32-bit unsigned remainder of dividing the contents of the low-order 32 bits of rA by the contents of the
low-order 32 bits of rB can be computed as follows:

divwurD,rA,rB# rD = quotient
mullw rD,rD,rB# rD = quotient * divisor
subf rD,rD,rA # rD = remainder

Other registers altered:

« Condition Register (CRO field):
Affected: LT, GT, EQ, SO(if Rc = 1)
LT, GT, EQ undefined(if Rc =1 and 64-bit mode)

« XER:
Affected: SO, OV(if OE = 1)

Note: The setting of the affected bits in the XER is mode-independent, and reflects overflow of the low-
order 32-bit result.

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA X0
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eciwx eciwx

External Control In Word Indexed (x’7C00 026C’)

eciwx rD,rA,rB
[] Reserved
31 D A B 310 0
0 5 6 10 11 15 16 20 21 30 31

The eciwx instruction and the EAR register can be very efficient when mapping special devices such as
graphics devices that use addresses as pointers.

if rA = 0 then b « 0

else b« (rd)

EA <« b + (rB)

paddr <« address translation of EA

send load word request for paddr to device identified by EAR[RID]
rD « (32)0 || word from device

EA is the sum (rA|0) + (rB).

A load word request for the physical address (referred to as real address in the architecture specification)
corresponding to EA is sent to the device identified by EAR[RID], bypassing the cache. The word returned by
the device is placed in the low-order 32 bits of rD. The contents of the high-order 32 bits of rD are cleared.

EAR[E] must be 1. If it is not, a DSI exception is generated.

EA must be a multiple of four. If it is not, one of the following occurs:

» A system alignment exception is generated.
« A DSI exception is generated (possible only if EAR[E] = 0).
» The results are boundedly undefined.

The eciwx instruction is supported for EAs that reference memory segments in which SR[T] =1 (or STE[T] =
1) and for EAs mapped by the DBAT registers. If the EA references a direct-store segment (SR[T] =1 or
STE[T] = 1), either a DSI exception occurs or the results are boundedly undefined. However, note that the
direct-store facility is being phased out of the architecture and will not likely be supported in future devices.
Thus, software should not depend on its effects.

If this instruction is executed when MSR[DR] = 0 (real addressing mode), the results are boundedly unde-
fined. This instruction is treated as a load from the addressed byte with respect to address translation,
memory protection, referenced and changed bit recording, and the ordering performed by eieio. This instruc-
tion is optional in the PowerPC architecture.

Other registers altered:

* None
PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
VEA b X
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eCowXx eCowX

External Control Out Word Indexed (x’7C00 036C’)

ecowx rS,rA,rB
[] Reserved
31 S A B 438 0
0 5 6 10 11 15 16 20 21 30 31

The ecowx instruction and the EAR register can be very efficient when mapping special devices such as
graphics devices that use addresses as pointers.

if rA = 0 then b <« 0

else b « (rAa)

EA < b + (rB)

paddr <« address translation of EA

send store word request for paddr to device identified by EAR[RID]
send rS[32-63] to device

EA is the sum (rA|0) + (rB).

A store word request for the physical address corresponding to EA and the contents of the low-order 32 bits
of rS are sent to the device identified by EAR[RID], bypassing the cache.

EAR[E] must be 1, if it is not, a DSI exception is generated. EA must be a multiple of four. If it is not, one of
the following occurs:

« A system alignment exception is generated.
- A DSI exception is generated (possible only if EAR[E] = 0).
« The results are boundedly undefined.

The ecowx instruction is supported for effective addresses that reference memory segments in which SR[T]
=0 (or STE[T] = 0), and for EAs mapped by the DBAT registers. If the EA references a direct-store segment
(SR[T] =1 or STE[T] = 1), either a DSI exception occurs or the results are boundedly undefined. However,
note that the direct-store facility is being phased out of the architecture and will not likely be supported in
future devices. Thus, software should not depend on its effects.

If this instruction is executed when MSR[DR] = 0 (real addressing mode), the results are boundedly unde-
fined. This instruction is treated as a store from the addressed byte with respect to address translation,
memory protection, and referenced and changed bit recording, and the ordering performed by eieio. Note
that software synchronization is required in order to ensure that the data access is performed in program
order with respect to data accesses caused by other store or ecowx instructions, even though the addressed
byte is assumed to be caching-inhibited and guarded. This instruction is optional in the PowerPC architec-
ture.

Other registers altered:

« None
PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
VEA b X
Instruction Set pem8.fm.2.0
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eieio eieio

Enforce In-Order Execution of /0O (x’7C00 06AC’)

[] Reserved

31 00000 00000 00000 854 0
0 5 6 10 11 15 16 20 21 30 31

The eieio instruction provides an ordering function for the effects of load and store instructions executed by a
processor. These loads and stores are divided into two sets, which are ordered separately. The memory
accesses caused by a debz or a deba instruction are ordered like a store. The two sets follow:

1. Loads and stores to memory that is both caching-inhibited and guarded, and stores to memory that is
write-through required.

The eieio instruction controls the order in which the accesses are performed in main memory. It ensures
that all applicable memory accesses caused by instructions preceding the eieio instruction have com-
pleted with respect to main memory before any applicable memory accesses caused by instructions fol-
lowing the eieio instruction access main memory. It acts like a barrier that flows through the memory
queues and to main memory, preventing the reordering of memory accesses across the barrier. No
ordering is performed for dcbz if the instruction causes the system alignment error handler to be invoked.

All accesses in this set are ordered as a single set—that is, there is not one order for loads and stores to
caching-inhibited and guarded memory and another order for stores to write-through required memory.

- Stores to memory that have all of the following attributes—caching-allowed, write-through not required,
and memory-coherency required.

The eieio instruction controls the order in which the accesses are performed with respect to coherent
memory. It ensures that all applicable stores caused by instructions preceding the eieio instruction have
completed with respect to coherent memory before any applicable stores caused by instructions following
the eieio instruction complete with respect to coherent memory.

With the exception of dcbz and dcba, eieio does not affect the order of cache operations (whether caused
explicitly by execution of a cache management instruction, or implicitly by the cache coherency mechanism).
For more information, refer to 5. , “Cache Model and Memory Coherency.” The eieio instruction does not
affect the order of accesses in one set with respect to accesses in the other set.

The eieio instruction may complete before memory accesses caused by instructions preceding the eieio
instruction have been performed with respect to main memory or coherent memory as appropriate.

The eieio instruction is intended for use in managing shared data structures, in accessing memory-mapped
I/0, and in preventing load/store combining operations in main memory. For the first use, the shared data
structure and the lock that protects it must be altered only by stores that are in the same set (1 or 2; see
previous discussion). For the second use, eieio can be thought of as placing a barrier into the stream of
memory accesses issued by a processor, such that any given memory access appears to be on the same
side of the barrier to both the processor and the I/O device.

Because the processor performs store operations in order to memory that is designated as both caching-
inhibited and guarded (refer to Section 5.1.1 , “Memory Access Ordering”), the eieio instruction is needed for
such memory only when loads must be ordered with respect to stores or with respect to other loads.
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Note that the eieio instruction does not connect hardware considerations to it such as multiprocessor imple-
mentations that send an eieio address-only broadcast (useful in some designs). For example, if a design has
an external buffer that re-orders loads and stores for better bus efficiency, the eieio broadcast signals to that
buffer that previous loads/stores (marked caching-inhibited, guarded, or write-through required) must
complete before any following loads/stores (marked caching-inhibited, guarded, or write-through required).

Other registers altered:

« None
PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
VEA X
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eqvx

eqv rA,rS,rB (Rc=0)
eqv. rA,rS,rB (Rc=1)
31 S B 284 Rc
0 5 6 10 11 15 16 21 22 30 31

rA < (rsS) = (rB)

The contents of rS are XORed with the contents of rB and the complemented result is placed into rA.

Other registers altered:
« Condition Register (CRO field):

Affected: LT, GT, EQ, SO(if Rc = 1)

PowerPC Architecture Level

UISA
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extsbx extsbx

Extend Sign Byte (x’7C00 0774’)

extsb rA,rS (Rc=0)
extsb. rA,rS (Rc=1)
[ ] Reserved
31 ] A 0000 0 954 Re
0 5 6 10 11 15 16 20 21 30 31

S « rs5[5624]
rA[56-6324-31] « rS[56-6324-31]
rA[0-5523] <« (5624)S

The contents of the low-order eight bits of rS[24-31] are placed into the low-order eight bits of rA[24-31]. Bit
5624 of rS is placed into the remaining bits of rA[0-23].

Other registers altered:
- Condition Register (CRO field):

Affected: LT, GT, EQ, SO(if Rc = 1)

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA X
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extshx

extsh rA,rS (Rc=0)
extsh. rA,rS (Rc=1)
[POWER mnemonics: exts, exts.]
[ ] Reserved
31 S A 0000 O 922 Rc
0 5 6 10 11 15 16 20 21 30 31

S « rs5[4816]
rA[48-6316-31] < rS[48-6316-31]
rA[0-470-15] « (4816)S

The contents of the low-order 16 bits of rS[16-31] are placed into the low-order 16 bits of rA[16-31]. Bit 4816

of ¥rS is placed into the remaining bits of rA[0—15].

Other registers altered:
» Condition Register (CRO field):

Affected: LT, GT, EQ, SO(if Rc = 1)

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit

UISA
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extswx 64-Bit Implementations Only extswx
Extend Sign Word (x’7C00 07B4’)
extsw rA,rS (Rc=0)
extsw. rA,rS (Rc=1)
[ ] Reserved
31 s A 0000 0 986 Rc
0 5 6 10 11 15 16 20 21 30 31
S ¢ rs[32]

rA[32-63] ¢« rS[32-63]
rA[0-31] < (32)S

The contents of the low-order 32 bits of rS are placed into the low-order 32 bits of rA. Bit 32 of rS is placed

into the high-order 32 bits of rA.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause the

system illegal instruction error handler to be invoked.

Other registers altered:
« Condition Register (CRO field):

Affected: LT, GT, EQ, SO(if Rc = 1)

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge

UISA b

Instruction Set
Page 430 of 785

Optional

Form

X

pem8.fm.2.0
June 10, 2003



fabsx

Floating Absolute Value (x’FC00 0210°)

Programming Environments Manual

PowerPC RISC Microprocessor Family

fabsx

fabs frD,frB (Rc=0)
fabs. frD,frB (Rc=1)
[ ] Reserved
63 00000 B 264 Re
0 5 6 10 11 15 16 20 21 30 31

The contents of frB with bit O cleared are placed into frD.

Note that the fabs instruction treats NaNs just like any other kind of value. That is, the sign bit of a NaN may
be altered by fabs. This instruction does not alter the FPSCR.

Other registers altered:
« Condition Register (CR1 field):

Affected: FX, FEX, VX, OX(if Rc = 1)

PowerPC Architecture Level
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faddx faddx

Floating Add (Double-Precision) (x’ FC00 002A")

fadd frD,frA,frB (Rc=0)
fadd. frD,frA,frB (Rec=1)

[POWER mnemonics: fa, fa.]

B 00000 21(Rc

The floating-point operand in frA is added to the floating-point operand in frB. If the most- significant bit of the
resultant significand is not a one, the result is normalized. The result is rounded to double-precision under
control of the floating-point rounding control field RN of the FPSCR and placed into frD.

Floating-point addition is based on exponent comparison and addition of the two significands. The exponents
of the two operands are compared, and the significand accompanying the smaller exponent is shifted right,
with its exponent increased by one for each bit shifted, until the two exponents are equal. The two signifi-
cands are then added or subtracted as appropriate, depending on the signs of the operands. All 53 bits in the
significand as well as all three guard bits (G, R, and X) enter into the computation.

If a carry occurs, the sum's significand is shifted right one bit position and the exponent is increased by one.
FPSCRI[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = 1.

Other registers altered:
« Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc=1)

» Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX,VXSNAN, VXISI

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA A
Instruction Set pem8.fm.2.0
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faddsx faddsx

Floating Add Single (X’ EC00 002A")

fadds frD,frA,frB (Rc=0)
fadds. frD,frA,frB (Rc=1)
[ ] Reserved
59 D A B 00000 21 Re
0 5 6 10 11 15 16 20 21 25 26 30 31

The floating-point operand in frA is added to the floating-point operand in frB. If the most-significant bit of the
resultant significand is not a one, the result is normalized. The result is rounded to the single-precision under
control of the floating-point rounding control field RN of the FPSCR and placed into frD.

Floating-point addition is based on exponent comparison and addition of the two significands. The exponents
of the two operands are compared, and the significand accompanying the smaller exponent is shifted right,
with its exponent increased by one for each bit shifted, until the two exponents are equal. The two signifi-
cands are then added or subtracted as appropriate, depending on the signs of the operands. All 53 bits in the
significand as well as all three guard bits (G, R, and X) enter into the computation.

If a carry occurs, the sum's significand is shifted right one bit position and the exponent is increased by one.
FPSCRI[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = 1.

Other registers altered:
- Condition Register (CR1 field):

Affected: FX, FEX, VX, OX (if Rc = 1)
» Floating-Point Status and Control Register:

Affected: FPRF, FR, FI, FX, OX, UX, XX,VXSNAN, VXISI

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA A
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fefidx 64-Bit Implementations Only fefidx
Floating Convert from Integer Double Word (x’FC00 069C’)
fcfid frD,frB (Rc=0)
fcfid. frD,frB (Rc=1)
[ ] Reserved
63 D 00000 B 846 Rc
0 5 6 10 11 15 16 20 21 30 31

The 64-bit signed fixed-point operand in register frB is converted to an infinitely precise floating-point integer.
The result of the conversion is rounded to double-precision using the rounding mode specified by

FPSCR[RN] and placed into register frD.

FPSCRI[FPRF] is set to the class and sign of the result. FPSCR[FR] is set if the result is incremented when

rounded. FPSCRIJFI] is set if the result is inexact.

The conversion is described fully in Section D.4.3 , “Floating-Point Convert from Integer Model.”

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause the

system illegal instruction error handler to be invoked.

Other registers altered:
- Condition Register (CR1 field):

Affected: FX, VX, FEX, OX(if Rc = 1)

» Floating-point Status and Control Register:

Affected: FPRF, FR, FI, FX, XX

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge

UISA b
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fcmpo fcmpo

Floating Compare Ordered (xX’FC00 0040’)

fcmpo criD,frA,frB
[ ] Reserved
63 crfD 00 A B 32 0
0 5 6 8 9 10 11 15 16 20 21 30 31

if (frA) is a NaN or

(frB) is a NaN then ¢ « 0b0001
else if (frA)< (frB) then ¢ < 0b1000
else if (frA)> (frB) then ¢ < 0b0100
else ¢ « 0b0010

FPCC « ¢
CR[4 * crfD—4 * erfD + 3] < ¢

if (frA) is an SNaN or
(frB) is an SNaN then
VXSNAN « 1
if VE = 0 then VXVC « 1
else if (frA) is a QNaN or
(frB) is a QNaN then VXVC « 1

The floating-point operand in frA is compared to the floating-point operand in frB. The result of the compare is
placed into CR field crfD and the FPCC.

If one of the operands is a NaN, either quiet or signaling, then CR field crfD and the FPCC are set to reflect
unordered. If one of the operands is a signaling NaN, then VXSNAN is set, and if invalid operation is disabled
(VE = 0) then VXVC is set. Otherwise, if one of the operands is a QNaN, then VXVC is set.

Other registers altered:
« Condition Register (CR field specified by operand crfD):
Affected: LT, GT, EQ, UN

» Floating-Point Status and Control Register:

Affected: FPCC, FX, VXSNAN, VXVC

PowerPC Architecture Level Supervisor Level 32-Bit 64-Bit 64-Bit Bridge Optional Form
UISA X
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fcmpu

Floating Compare Unordered (x’FC00 0000’)

fcmpu

fcmpu criD,frA,frB
[ ] Reserved
63 crfD 00 0000